

"There is no more common error than to assume that, because prolonged and accurate mathematical calculations have been made, the application of the result to some fact of nature is absolutely certain."

Alfred North Whitehead.

POPULATION DYNAMICS AND BEHAVIOUR OF DEERMICE IN

A COASTAL FOREST OF BRITISH COLUMBIA

Bу

Bruce Gordon Petticrew

B.Sc., University of Victoria, 1968

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department

of

Biological Sciences

© BRUCE GORDON PETTICREW

SIMON FRASER UNIVERSITY

OCTOBER, 1972

APPROVAL

Bruce Gordon Petticrew

Name:

Degree: Master of Science

Title of Thesis:

Population dynamics and behaviour of deermice in a coastal forest of British Columbia.

Examining Committee:

Chairman: Dr. G. H. Geen

R.M.F.S. Sadleir Senior Supervisor P.M. Mackauer

A. L. Turnbull

B. P. Beirne

Date Approved:

10th October, 1972

ABSTRACT

A two year live trapping study of deermice, <u>Peromyscus maniculatus</u>, was carried out on the University of British Columbia Research Forest at Maple Ridge, B.C., starting in the fall of 1968. Monthly trapping was conducted on three one hectare grids representing different vegetational succession stages in relation to logging; area 1 - a 100 year stand of Douglas fir; area 2 - an area logged in summer 1968; area 3 - an area logged in 1964 and planted in 1965. All areas were at an altitude of between 150 and 200 metres and within 1.7 kilometres of each other. The study was designed to monitor the relative importance of habitat differences and extrinsic and intrinsic factors which could affect populations over large areas.

Capture-recapture data was analysed by using Jolly's stochastic model, which gave estimates of total numbers (N), probability of survival (\$\u03c6), and recruitment (B). Populations on all three areas followed similar trends in these parameters but the numbers on areas 1 and 2 were generally higher than on area 3. The population of deermice on area 3 vanished in August 1970. There were considerable differences between the years in the pattern of population fluctuations. Numbers were highest in 1969. Comparisons of the total number, probability of survival, and recruitment estimates indicated that the main factor determining population change was the length of the non-breeding season, in particular as it affected recruitment.

iii

Home ranges of particular animals were compared by the live trapping minimum area method and by the smoked paper toe-clipping technique. It was not possible to compare home range between areas because the apparent home range increased with capture frequency. Males in breeding condition occupied larger home ranges than non-breeding males or females at any time of the year. The smoked paper toe-clipping technique gave a much better estimate of home range and movements than trapping.

Agonistic behaviour of males was studied on area 2, from January 1970, by determining the number of aggressive acts between field individuals in paired bouts. Aggression increased to a peak in June and then declined. This was confirmed by the movement patterns revealed by the smoked paper studies. Although only a small number of males were monitored on a sufficient number of occasions, there appeared to be a strong relationship between the level of aggressive behaviour and size of home range.

Control of this species in relation to reseeding is discussed.

iv

ACKNOWLEDGEMENTS

I would first wish to express my sincere gratitude to Dr. R.M. Sadleir for his support, encouragement and patience throughout this study. I would also like to thank Drs. J.P.M. Mackauer and A.L. Turnbull for their contributions as members of my committee.

I would like to extend my appreciation to Mr. K. Casperson, Mr. J. Harling and Mrs. T. Petticrew for their assistance in the field, without whose cooperation much of this study would have been impossible.

I am also grateful for the facilities provided to me by Mr. J. Walters, Director, University of British Columbia Research Forest, Maple Ridge, and Dr. G. H. Geen, Chairman, Department of Biological Sciences, Simon Fraser University. In addition, I thank Dr. M. Greig for his advice on certain statistical procedures.

v

TABLE OF CONTENTS

	rage
Frontispiece	
Philosophy	
Examining Committee Approval	ii
Abstract	iii
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Plates	xi
List of Figures	xii
Chapter 1. General Introduction	1
Chapter 2. Introduction - Home Range	7
Methods Determination of Home Range (a) Field Techniques (b) Analysis of Data	12 12 12 15
Results	16
 Determination of the number of captures needed to determine home range size Distance moved between traps in 24 hours Comparisons of home range determined by 	16 16
smoked paper and by trapping	21
Discussion	21
Chapter 3. Introduction - Population Dynamics	29
Methods Population Dynamics (a) Field Techniques (b) Analysis of data	32 32 32 40

	Results	42
	1) Seasonal fluctuations in numbers of males	
	and females	42
	2) Seasonal fluctuations in total numbers	48
	3) Probability of survival	55
	4) Recruitment	62
	5) Relative importance of recruitment,	
	probability of survival, and length of	
	season on change in numbers	62
	6) Seasonal changes in body weight	70
	7) Reproduction	71
	8) Transients	71
	9) Species composition	74
	Discussion	74
	Population changes during breeding season	76
	Population changes during non-breeding season.	78
	Other factors	79
	Weather	79
	Parasitism	80
	Predation and disease	81
	Population models	81
Chapter 4.	Behaviour - Introduction	85
	Methods	87
	Behaviour Investigations	87
		•••
	Results	88
	 Sexual condition of mice used in behaviour 	
	tests	88
	2) Aggressive acts as a function of time	88
	3) The relationship of aggressive behaviour	
	to home range area	93
	4) Inhibitory behaviour	93
	Discussion	96
Chapter 5.	Forestry Implications	100
	Logging Effects	103
	Slash Burning	104
	Control	105

Summary and Conclusions	109
Literature Cited	111
Appendix 1	124
Appendix 2	129
Appendix 3	130
Appendix 4	155
Curriculum Vitae	156

Page

.

LIST OF TABLES

.

ł

		Page
Table 1	Minimum distances moved between smoked	
	paper cartons in 24 hours by males	22
Table 2	Comparison of home range area determinations	
	based on trapping and smoked paper methods	23
Table 3	Trapping schedule on each grid	33
Table 4	Comparison of estimates of total numbers	
	(Jolly model and minimum number known to be	
	alive)	43
Table 5	Correlation coefficients comparing Jolly's	
	N estimate and minimum number known to be	
	alive	44
Table 6	Mean Jolly N estimate (and variance) for all	
	grids by sex and season	46
Table 7	Comparison of mean Jolly N values between	
	areas. (Test criteria values.)	47
Table 8	Correlation coefficient comparing minimum	
	numbers known to be alive on the three areas.	56
Table 9	Mean probability of survival (and variance)	
	for all grids by sex and season	61
Table 10	Correlation coefficients between male and	
4 } 	female survival, total recruitment, length of	
	season and changes in total numbers between	,

ix

	the beginning and end of seasons	69
Table 11	Duration of breeding seasons on each grid	72
Table 12	Numbers of transient deermice on each grid	
	by sex and season	73
Table 13	Frequency of captures of all mammal species	
	on each grid	75
Table 14	Total number of captures on burned and	
	unburned area of grid 2	106

LIST OF PLATES

Plate 1	Photograph of tracks of deermice	
	through a smoked paper carton	14
Plate 2	General view of Grid 1	35
Plate 3	General view of Grid 2	37
Plate 4	General view of Grid 3	39

LIST OF FIGURES

Figure 1	Map of University of British Columbia	
	Research Forest, Maple Ridge, indicating	
	location of grids	3
Figure 2	Cumulative home range area as a function	
	of the number of captures	18
Figure 3	Mean distances moved between traps in 24 hours	
	in different seasons	20
Figure 4	Cohort diagram showing changes in numbers	
	and individual survival on grid 1	50
Figure 5	Cohort diagram showing changes in numbers	
	and individual survival on grid 2	52
Figure 6	Cohort diagram showing changes in numbers	
	and individual survival on grid 3	54
Figure 7	Males: Probability of survival, recruitment	
	and numbers	58
Figure 8	Females: Probability of survival,	
	recruitment and numbers	60
Figure 9	Weight distribution on grid 1	64
Figure 10	Weight distribution on grid 2	66
Figure 11	Weight distribution on grid 3	68
	*	

Figure 12	Sexual condition of grid and tested	
	males	90
Figure 13	Average number of aggressive acts for bout	
	by months and number of fights	92
Figure 14	Relationship of aggressive behaviour to	
	home range area	95

£ 3,

Ś

3

. .

and the second

1

Page

:

CHAPTER 1

GENERAL INTRODUCTION

The deermouse, <u>Peromyscus</u>, has a wide distribution over the North American continent. Osgood (1909) stated "... it is probable that a line or several lines could be drawn from Labrador to Alaska and hence to Southern Mexico through which not a single mile is not inhabited by some form of this species." And this is almost certainly still correct. Deermice usually inhabit woodland and bushland areas but may occur in open areas of mixed weeds and grasses characteristic of pioneer stages of grassland development. However, in these latter areas, <u>Peromyscus</u> are usually secondary to <u>Microtus</u> or other microtines, especially in the north temperate and boreal regions.

In the west coast rain forest (Krajina, 1970) of the mainland and coastal islands of British Columbia, there are twenty-four subspecies of <u>Peromyscus</u> (Cowan and Guiget, 1965). In the general area where this study was conducted the species concerned was <u>Peromyscus maniculatus austerus</u>. There is another species, <u>P. oreas</u>, which also occurs in this region and cases of interbreeding between these two species have been reported (Osgood, 1909). Sheppe (1961) has shown that <u>P. oreas</u> and <u>P. maniculatus</u> are reproductively and spatially isolated in the study area. This study was conducted entirely in the area which Sheppe designated as the range of <u>P</u>. m. austerus (Fig. 1).

Practically all knowledge of small mammal population parameters such as movement, home range, activity rhythms, and spatial distribution have been determined by live traps. The estimation of these parameters as

- 1 -

2

Ş.

ž

÷

Ą

- 3 -

well as the dynamic aspects of the population is entirely "dependent upon trapping and involves some basic assumptions for which evidence is not universally established" (Kikkawa, 1964). For example, the basic assumption common to many formulae used to estimate population size from trapping data is that all individuals have the same probability of being captured in any sample period. In fact, trapping procedures affect this probability and some of this bias can be detected in trapping results (Kikkawa, 1964; Tanton, 1965). They arise because certain biological characteristics of the population prevent random sampling and are dependent on and vary with trapping procedure. Such bias may be attributed to (summarized in part from Kikkawa (1964)):

(a) trapping interval - this may affect parameters such as weight distribution, the proportion of animals of which grow to trappable size and die or immigrate before being sampled, the proportion of animals which pass through the area unnoticed or those which move on or off the grid between trapping periods. The latter two biases can be generally classified as dispersal as defined by Leslie, Chitty, and Chitty (1953).

(b) trap spacing - this affects the sampling of individuals because as traps are spaced farther apart the probability of an individual encountering a trap within its home range diminishes. However, Hayne (1950) found for <u>Microtus</u>, that increasing the distance between traps tended to increase the apparent area and consequently distorted its original home range.

(c) reaction to traps - the population includes individuals whose behaviour ranges from those which never enter traps because they are trap shy, to those so

- 4 -

addicted that they enter traps at every possible occasion. This differential response may diminish with repeated exposure to traps or may be enhanced after the initial encounter. There may also be social factors which favour certain individuals such as in sexual differences, that is, sex ratios (Davis, 1955; Tanton, 1965), age groups (Davis and Emlen, 1956), or interspecific differences. Superimposed on all these above factors are the type of bait used, the activity rhythm of the species concerned and the presence and numbers of other trappable species all of which vary according to day length, food supply, and weather (Calhoun, 1945). Therefore, any attempt to establish the relationship between samples and population will have to consider trap response in relation to trapping procedure.

This study was conducted, in the University of British Columbia Research Forest at Maple Ridge, B.C., on three one hectare grids which were located in different forest habitats. Vegetation on these areas was described by Petticrew and Sadleir (1970) and Kellman (1969). The grids were chosen in relation to their vegetational stage of development after logging, since one of the concerns of this study was the effect of present and past logging operations and burning on small mammal populations.

This project was designed to study the home range and population dynamics of <u>P. m. austerus</u> in three specific areas. It was hoped that the use of multiple grids (instead of a single grid) would allow the construction of a general population model which could explain population changes over a general area and that this model would be consistent with

- 5 -

all three populations. The study also compared the stability of home range in relation to varying environments. An additional study of the behaviour of feral deermice on one particular grid was undertaken and analysed as to its conformity to the agonistic population control theories of Sadleir (1965). It was also hoped that a general overview of the total study could be made of the effects of the drastic environmental changes caused by logging on the mouse populations, as well as suggesting means of control for this seed eating species. It was envisaged that the findings of this study could then become the basis for recommendations as to the means and timing of the control of deermice as a forest pest.

- 6 -

CHAPTER 2

INTRODUCTION - HOME RANGE

Individuals of most mammal species do not wander at random but confine their activities to limited areas or home ranges. This enables each individual or social group to become familiar with its own area the physical structure, resources, predators as well as the presence of the other members or groups of the same species. Seton (1910) has often been quoted for his descriptions of the home range or home area of mammals whilst Darling (1937) wrote of these areas as territories. However, Burt (1940, 1943) advocated separate uses for these terms. He considered the home range to be that area around the established home which is traversed by the animal in its normal activities of food gathering, mating, and caring for the young. This excludes occasional sallies outside the area. Burt considered territory as any defended area. Later Burt (1946) described three categories of home range: permanent, semi-permanent, and seasonal. Small mammals have home ranges of the first two types. Hayne's (1949) concept of home range differed from that of Burt as he conceived of home range in a mathematical sense as being limited not by fixed lines but by statistical zones of decreasing probability of occurrence. Jewell (1966) defined home range as an area with a certain productivity that meets the energy requirements of the individual or group that occupies it. The difficulty in defining home range precisely in a physical sense stems largely from the fact that one is attempting to state in static terms (that is, in square feet or fractions of acres), the area of activity of a living mobile animal that may have its movements

influenced by a great many factors in the physical and biological environment.

Except at special times in its life history, for example, the dispersal that occurs at the onset of sexual maturity, small mammals remain within their established home ranges. There is a proportion of the small mammal population, the transients, which does not become established. Tn fact, Andrzejewski (1962) has suggested that small mammal populations consist of two parts, residents and transients (Andrzejewski and Wierzbowska, 1961: Andrzejewski and Wroclawek, 1962). The proportion of animals that are in transit varies, and it is rarely possible to determine whether captured transients are on exploratory trips from home areas outside the trapping area or whether they are individuals who have never succeeded in establishing ranges anywhere. Stickel and Warbach (1960) found that 79 percent of a population of Peromyscus leucopus noveboracensis had relatively stable home ranges, remaining in the same general area from month to month, while the remaining 21 percent were considered to be transient. Youngmen (1956) noted that there was a seasonal variation in the number of transients. He found that the proportion of transients in an Apodemus agarius population was higher in February (35.84%) than in May (21.51%). When the resident population was reduced, transients took the place of residents and their proportion fell to 14.28 percent.

Home range is more than just the area that a rodent happens to occupy. Each individual has a positive relationship to its range as shown by the frequency with which they return when removed from their ranges and released away from it (Sheppe, 1966). The home range concept allows one

- 8 -

to evaluate the relative importance of the factors that influence a These include the number of individuals, the biomass of the population. community, the growth of the individual, the social stability of the group, and the "psychological well-being" of the individual (Calhoun, 1952). The effects of physical parameters such as habitat and food supply on home range size are difficult to evaluate. Stickel (1948) has attempted to show that the size of the home range area may be influenced by the diversity of the habitat, although in field studies it usually has not been possible to separate habitat differences from the effects of other factors such as food and population density. She determined that Peromyscus gossypinus had home ranges of very similar size in burned and unburned plots of pine (Pinus) in Louisiana, and that P. leucopus noveboracensis living in unproductive pine-oak association had larger home ranges than mice living in the bottomlands where food was more plentiful. No definite relationship between home range size and food supply has been established in mammals, although such relationships have been proposed for birds (Watson, 1964). However, it has been shown that mice living in corn stocks where food was abundant travelled much shorter distances than mice living in open fields of wheat stubble (Linduska, 1942).

The individuals constituting a population of small mammals are part of an organized society. The position of an individual in the structure of such a society will affect its behaviour and thus its movements over the home area. In each group of <u>Apodemus sylvaticus</u> living within a specific area, there is a single dominant male who ranges more widely than any of its subordinates (Brown, 1966). Although such a system has not yet been found in <u>Peromyscus maniculatus</u> populations

- 9 -

in a natural habitat, Sadleir (1970a) has demonstrated that a dominance hierarchy can last for more than a month in a laboratory colony of \underline{P} . maniculatus.

Sanderson (1966) has excellently reviewed most of the techniques used to study mammal movements. He uses the term "movements" in a broad sense including activity, home range, immigration, emigration, and movements associated with behavioural changes. Movement data can be collected by direct and indirect methods. Direct observations of mammals are advantageous in that they minimize handling, do not hamper individual movement, and enable immediate information on where an animal is and what it is doing to be gathered. The disadvantages of the technique are the time required, the limited number of individuals that can be observed at one time, and the influence, if any, of the observer on the behaviour of the individual being studied. Indirect methods include the use of natural signs such as tracks, feces (Murie, 1936; Scott, 1943); capture, mark, release, and recapture methods (Chitty, 1937; Burt, 1940; Howard, 1949; Blair, 1951); radioactive marking techniques (Godfrey, 1954; Kaye, 1960, 1961); the use of dyes to mark urine and feces (New, 1958; Kindel, 1960; Brown, 1961; Brown and Conaway, 1961); smoked paper (Justice, 1961); photographic devices (Pearson, 1960; Voisey and Kalbfleisch, 1962); radiotelemetry (Storm, 1965; Cochran, Warner, Tester, and Kuechle, 1965). As Sanderson (1966) has pointed out, however, the techniques involved in locating and observing mammals appear to be far ahead of the systems available for

- 10 -

interpreting the data. No one technique for determining location and no system for analyzing data can give an accurate picture for all species and all situations. The influence of the length of the observation period has rarely been considered in calculating home ranges or distances of movement (Sanderson, 1966). Techniques for analyzing home range data are many: the minimum area method, the boundary strip method, the inclusive boundary strip method, the observed range length, and the adjusted range length. Van Vleck (1969) has described in detail the advantages and disadvantages of using the above methods. Other methods are the centre of activity, activity radii, recapture radius, standard diameter, and standard range. The biological significance of each method is difficult to determine.

Most information about the home ranges of small nocturnal mammals has come from records of repeated captures of marked individuals in live traps. Repeated captures of an individual establishes points that limit the area of the estimated range of that animal. This estimate of home range size is certainly a crude estimate of the actual area ranged over and only in the rarest of circumstances will the estimated home range correspond exactly to the area of movement of the animal. In most studies the estimation of home range has been a by-product of trapping to estimate the numbers of a specific population. Consequently all early estimates of home range size were trap determined. Dalke and Sime (1938) suggested the minimum area method for the determination of home range size. They assumed that every point at which an animal was captured was the furthest extent of his range in that particular direction. Each point of capture

素がいたかっているのできったのできたち

というたいでないのできたとうない

- 11 -

was connected by straight lines and the enclosed area measured. Modifications of this method resulted in the boundary strip and the inclusive boundary strip methods of estimation. Each of these methods is similar to the minimum area method except that in the latter method a correction factor is added (Stickel, 1954). However, the corrections are merely arbitrary and although they may give larger estimates of home range size they bear no biological significance to the true range of the animal.

METHODS

Determination of Home Range

(a) Field Techniques

The location of animals inside their home range was determined by trapping and by the smoked paper-toe clipping technique described by Justice (1961) and Sheppe (1965). Trap revealed home range was determined on all grids from September 1968 through to September 1970 (whereas the latter technique was employed only on Area 2 from January through to September 1970). The grids are described in more detail on pages 3 and 32.

Strips of waterproof paper were smoked using a benzene flame. Each strip of smoked paper was then placed in a quart size milk carton from which the ends had been removed, forming a tunnel. Cartons were placed within 2 m of every 10 m stake on the grid. When these milk carton tunnels had been in place overnight footprints of particular toe-clipped males were discernible on many of the smoked paper surfaces (Plate 1). These cartons were set out on day 4 and picked up on day 5 of every trapping week. Plate 1

Photograph of tracks of deermice through a smoked paper carton. This animal was toe clipped number 11.

Toe clipping involved the removal of certain digits on the fore and hind feet of deermice. The digits on the front feet represented the units ranging from one to eight, those on the hind feet represented the tens ranging from ten to one hundred, i.e. total of eight toes on the front feet and ten on the hind feet. Therefore if the second digit on the right front foot and the second digit on the right rear foot had been removed then the toe clipped number for this specific mouse was 2 plus 20 equals 22 (see Plate 1). Thus, ninety-eight mice could be marked individually using this system.

(b) Analysis of data

Home range determinations for the trap determined, smoked paper, and the combined methods were calculated using the minimum area method (Dalke and Sime, 1938). This method assumes that the most extreme points of capture of an individual animal defines the outermost limits of its home range. Ranges were determined for animals which were captured on more than three separate occasions at capture sites which were nonlinear in distribution. Edge trapped animals were excluded if they were captured more than 25% of the time on the peripheral rows and columns of the grid. All home range areas were averaged and grouped according to the sex and breeding status of the mice.

- 15 -

RESULTS

1) Determination of the number of captures needed to determine home range size

Fig. 2 shows the home range areas as a function of the number of captures for males and females during breeding and non-breeding seasons. The data from individuals from all grids were combined as there were no significant differences by sex between grids for comparable periods. The cumulative mean home range area was determined by calculating the area for the first three captures, then adding the fourth capture and computing the new area, and so on (Haugen, 1942). These cumulative home range values of individuals were then averaged for each number of captures and plotted by season. The breeding males utilize larger areas than males in the non-breeding season and the females at all times of the year. Every animal was captured at least once, almost as many were captured twice or three times but very few were caught more than seven times. Thus, as the numbers of recaptures increase, the sample size on which each home range area mean was determined decreases and the reliability of that mean declines. This reduced reliability suggests that the curve may not reach the plateau phase as in the case of the breeding females.

2) Distance moved between traps in 24 hours

The average of the straight line distance that a mouse moved between traps on consecutive trap nights is shown in Fig. 3 which indicates that both sexes move more in the breeding season than they do in the non-breeding Fig. 2

Cumulative home range area as a function of the

number of captures.

- 18 -

Fig. 3

Mean distances moved between traps in 24 hours in different seasons.

MEAN DISTANCE (M.) MOVED IN 24 HOURS

season. Males seem to move longer distances than females but the differences are not statistically significant (Students' "t" test, $p \leq 0.05$). The variability of this measurement did not make statistical comparisons possible but the pattern is consistent with shorter movements in non-breeding seasons on all grids and in both sexes. Also the minimum distance moved between smoked paper cartons in a single night suggested the same pattern of increased male movement in the breeding season (Table 1) although the differences were not significant. Females were not tested.

3) Comparisons of home range determined by smoked paper and by trapping

An attempt was made to determine the reliability of trap determined home ranges for male mice on Area 2, from January to September 1970. The areas of capture points from both the smoked paper and trap method were calculated separately using the minimum area method (Dalke and Sime, 1938). All capture points by both methods were then combined and used to determine the total area shown in the second column of table 2. Smoked paper area determinations (Justice, 1961) represent an average 82 percent of the total areas whereas trap area represents only a mean of 44.2 percent of the total area. These means are significantly different (t = 3.544, p < 0.01).

DISCUSSION

Although this present study was primarily concerned with the population dynamics of the species, <u>Peromyscus maniculatus</u>, it was hoped that some insight into its movements and home range activities might be gained from the trapping work. In this investigation home range size was determined by the

- 21 -

Table 1. Minimum distances moved by males between smoked paper

MONTH		MEAN DISTANCE MOVED (M.)	NUMBER OF MOVEMENTS
Jan 1970	Non breeding season	38.0	(5)
Feb	Non breeding season	34.4	(8)
Mar	Non breeding season	-	-
Apr	Breeding season	45.5	(6)
May	Breeding season	45.3	(3)
June	Breeding season	65.8	(6)
July	Breeding season	50.7	(6)
August	Breeding season	28.0	(2)

cartons in 24 hours.

Table 2.	Comparison o	f home	range area	determinations	based
----------	--------------	--------	------------	----------------	-------

Total Home dividual Range Area		Trap-revealed Smoked-paper reve Home Range home range		
male	(sq. m)	(as percentage of total)	(as percentage of total	
# 993	1795	67	81	
#974	2350	62	100	
#7 70	1150	26	100	
#761	2050	29	85	
∦ 763	500	90	85	
#695	600	33	67	
#971	925	5	86	
#969	800	25	81	
# 805	550	36	64	
#581 ¹	1250	16	42	
#581 ¹	1850	108 ²	65	
# 441	1400	33	107 ²	
x <u>+</u>	1 S.D.	44 <u>+</u> 29	82 <u>+</u> 18	
Coefficien	t of Variation	0.66	0.22	

on trapping and smoked paper methods.

¹ #581 was captured many times over a prolonged period and moved its home range during this time.

「「「」というないので、

² These are artifacts due to the minimum area method measurement techniques.

minimum area method, although Brown (1962) and Van Vleck (1969) have suggested that this method gives an underestimate of the total area. The other methods of home range determination all involve mathematical manipulations of basically the same data used in the minimum area calculations. Although larger areas result from these techniques, they seem to offer no great advantage over the minimum area method.

Haugen (1942) claimed that trap revealed home range increased rapidly for the first few captures and then levelled off with further captures. The number of minimum captures needed for an accurate estimate of total area is where the slope becomes asymtotic (Haugen, 1942; Blair, 1951). I had hoped to compare the home range size of deermice on the three study areas. As Burt (1940) has stated, "the size of the area occupied by any animal is limited by that animal's ability to travel and its necessity for food and protection". Two problems arose which made such comparisons invalid. I attempted to compare the mean home range sizes on different grids at comparable capture intervals (i.e. mean home range size of males on grid 1 which had been captured 4 times cf. mean home range size of males on grid 2 which had been captured 4 times) but the variation in individual home ranges within a grid was so high that comparison between grids was pointless. Because figure 2 never reached an asymtote, I could not determine the minimum numbers of captures necessary for an accurate determination of an individuals home range. Although the home range of females in the breeding season tended to increase less after seven captures, the home range area of males in both seasons continued to increase with increased captures and showed no signs of

- 24 -

levelling off. There are three possible explanations for this steady increase in home range area: (1) either the mice were not captured a sufficient number of times and thus had not yet reached the plateau phase presumed to be required for an accurate estimate; or (2) the trapping grid area was too small so that mice were captured over only a small portion of their actual range, or (3) the basic premise of stable home range size is incorrect.

As 55 of the 492 individual mice captured in this study were captured 7 or more times over periods extending up to 4 or more months, and were thus definite residents of the grid areas, it would seem that the first explanation is highly improbable. The second is also most unlikely as none of the frequently captured mice were ever trapped on special trap lines placed 10 and 20 meters outside the grid periphery (see next chapter). The only hypothesis remaining is that the basic premise of a stable home range is not correct.

Burt (1943) defined home range as "that area around the established home which is traversed by the animal in its normal activities of food gathering, mating, and caring for the young. It excludes occasional sallies outside the area". Burt (1940, 1943, 1946) considered the home range of small mammals to be a well defined area which varies little in each individuals lifetime. My data, and that of Brown (1966) suggests that this is not correct. The concept of stability of home range areas

- 25 -

in small mammals has probably arisen due to the trapping regimes used. Most previous studies have been concerned with the population dynamics of a species over a short period of time, or during a certain defined period of the year. The home range in these cases was determined from a large number of capture points taken every night over 1 to 3 week period. Such intensive trapping would interfere with the movement of individuals especially in a trap prone species such as <u>P. austerus</u>, and give a biased estimation of home range size. In this study mice were only trapped for two nights (occasionally four) in each month. This resulted in a better determination of the area over which the mice were trapped during their entire life span as opposed to previous methods which concentrated on smaller periods of time.

The present study has produced some interesting data, which seems to be somewhat in opposition to current hypotheses explaining small mammal home ranges. Calculation of home ranges on the basis of captures in breeding and non-breeding seasons, showed that males covered considerably larger areas in the breeding season than do either males in the non-breeding season or females at any other time. This increased male movement during the breeding season (Fig. 2) could be related to a number of behavioural and physiological factors, for example males are more aggressive during the breeding season (Sadleir, 1965; Healey, 1967), which is probably an effect of increased testosterone production. It has been suggested

(Beeman, 1947; Scott and Fredericson, 1951) that increased levels of testosterone cause male mice to become much more active. This increased movement of male mice could therefore be attributed to physiological changes associated with breeding. By moving over larger areas, the probability of intercepting receptive females would increase. If Sadleir (1965) is correct in his hypothesis that population maintenance is based on agonistic behaviour of males towards other males and juveniles, then, by roaming over larger areas in the breeding season, the resident male mice could more effectively control the Both the trap and smoked paper records number of competitors in an area. (Fig. 3, Table 1) suggest that mice move greater distances between traps or smoked paper cartons in the breeding season than they do in the nonbreeding season but this cannot be shown statistically. Krebs (1966) has used such movement data to define home range size. In this study the mice on Area 3 in the breeding seasons may possibly have had slightly larger home ranges than mice on the other areas which may have been related to the low population numbers and hence reduced social pressures.

It has already been suggested that the minimum area determination for home range size is an underestimate. It was possible in this study to compare the home range determination by two methods which showed that the best estimate of actual home range size is probably the combined trap and smoked paper sites. If this estimate is assumed to correspond to

- 27 -

100 percent of the actual range size then the smoked paper determination underestimated the total area by an average of 18.5 percent whereas the trap determined method underestimated it by 56 percent. Smoked paper was also useful in determining the total distance move by a particular mouse in a single night since there was no restrictions on its movement pattern. More importantly, although both methods are variable, over a series of animals (Table 2) the smoked paper method gave the least variable estimate of the total range area.

Thus, because the plateau phase was never reached, home range comparisons between areas were not possible. Hence the affects of environmental change on <u>Peromyscus</u> home areas could not be determined. What this study does suggest, however, is that <u>Peromyscus</u> may not have well defined areas and although the trapping system gives only a small number of records, the data indicates that <u>P. maniculatus</u> has a similar range shape and type to that described by Brown (1966) for <u>A. sylvaticus</u> whereby a central area is used intensively but there are occasional sallies outwards for a greater distance so that the home range resembles the hub and spokes of a wheel.

- 28 -

CHAPTER 3

INTRODUCTION - POPULATION DYNAMICS

Animal populations fluctuate seasonally, and in some species annually. These fluctuations are dependent on several factors which influence either the survival of certain individuals at the expense of others, or the reproductive pattern of the adult population (McCarley, 1958).

In general, all stable mammal populations are regulated so that their numbers in any particular area fluctuate within relatively narrow limits. Hence, an objective of field studies is to find why population density does not increase indefinitely and why it varies from one environment to another (Nicholson, 1954; Chitty, 1960). From his studies of <u>Microtus</u> <u>agrestis</u> in England, Chitty (1952, 1958, 1960, 1964) has attempted to develop a general theory of intra-specific density dependent control of population numbers for cyclic species. He suggests that under appropriate circumstances an indefinite increase in population density is prevented through a change in the quality of the population (Chitty, 1960).

Two other current hypotheses which attempt to explain cyclical fluctuations are: Lack's (1954) hypothesis regarding food supply which was supported by Pitelka, Tomich and Treichel (1955), and Christian's (1950) stress hypothesis derived from work by Selye (1946). In a review of all three theories, Krebs (1964) came to the conclusion that the food supply and Christian's stress hypotheses are not an adequate explanation of the biological phenomena that are occurring in population regulation.

- 29 -

The populations of all species of Peromyscus, a cricetine rodent, are relatively stable. Many workers have demonstrated that these small mammals exhibit seasonal rises and decline in numbers but they are thought not to be cyclic, as are the microtines. Fuller (1969) suggested that Peromyscus populations may cycle at Great Slave Lake, N.W.T. However, his study was carried out for only four years and the single peak in the numbers which he noted may not be an indication of a cycle but merely an aberration. In the Northern United States and Canada the common seasonal pattern is that of declining population numbers during winter and early spring because of the lack of reproductive activity during this time. The peak population occurs at the end of the breeding season (Blair, 1940; Howard, 1949; Orr-Ewing, 1950; Snyder, 1956; Tevis, 1956a; Sheppe, 1963; Davenport, 1964; Beer and MacLeod, 1965; Sadleir, 1965, 1970b; Terman, 1966; Harris, 1968; Fuller, 1969). Apparently the lack of reproduction during the winter months in the northern part of the United States and Canada can be attributed at least indirectly to the extremely low temperatures which prevail and Sadleir, Casperson and Harling (1973) have suggested that under these conditions caloric intake is insufficient to maintain or lactation. Fuller (1969) has shown that delayed spring pregnancy weather can adversely affect P. maniculatus by causing delays in the spring weight increase and hence delayed sexual maturity - the ultimate effect being late first litters and consequently reduced recruitment of young into the population for that year, hence a decline in numbers. He attributes this decline in the population solely to environmental effects and not to population density dependent factors or to severe winter mortality.

- 30 -

Studies of the European field mouse, Apodemus sylvaticus, which occupies a niche similar to P. maniculatus, have shown a similar annual cycle, that is, declining numbers in winter and early spring; the peak occurring in late summer and early autumn (Miller, 1958; Kikkawa, 1964; Tanton, 1965, 1969; Ashby, 1967; Hansson, 1969; Watts, 1969). Tanton (1965) suggested that the low summer populations with increases in the fall, may not reflect true changes in numbers but rather a change in the behaviour towards the trap. He thinks that many individuals caught in the autumn are present in summer but for some reason do not enter the traps. A change in behaviour towards the traps, possibly related to a diminished food supply (Tanton pre-baited his traps for two days), results in more mice being caught in the autumn. This increase is due however to the recruitment of young into the population and not the appearance of old individuals present previously but uncaught (Ashby, 1962; Watts, 1966 - cited from Watts, 1969). Watts (1966) agrees with Sadleir (1965) that this increase of juveniles at the end of breeding is more likely due to better juvenile survival as a result of a change in the aggressive behaviour of the males.

Most studies of the population dynamics in <u>Peromyscus</u> have dealt with species that inhabit either old deciduous wood lots or grassland areas. Only little work has been done on <u>Peromyscus</u> in the rain forest of Western North America (Orr-Ewing, 1950; Sheppe, 1961; Sadleir, 1965, 1970b), although the deermouse is probably one of the most important mammalian omnivores in this ecosystem.

- 31 -

METHODS

Population Dynamics

(a) Field Techniques

From September 1968 through October 1970, three one hectare grids (100 m x 100 m) previously described by Petticrew and Sadleir (1970; see Appendix 1) were live trapped at four week intervals. The schedule of trapping is shown in Table 3. In addition, grid 2 was live trapped two weeks after each regular trapping from January through to September 1970. From June 1970 to August 1970, trap lines were set on the periphery on Area 1 and Area 2. These peripheral lines were placed at 20 and 30 m from the edge of the grid, so as to determine a crude estimate of emigration from the grid areas.

The grids were marked out by labelled stakes at 10 m intervals. One Longworth live trap was placed within 2 m of every stake so that a total of 121 traps were located on each grid (Plates 2, 3, 4). Traps contained terylene batting as bedding and were baited with either whole oats, pelleted rat rations or Purina mouse chow. The nest box portion of each trap was enclosed in a cover of expanded polystyrene (Shaw and Milner, 1967) to provide extra insulation for trapped animals. Traps were set on day 1 and checked in the mornings of day 2 and day 3. Traps were placed as closely as possible to the same locations during each trapping period.

All deermice caught were weighed to the nearest 0.5 g using Salter spring balances, sexed and ear tagged with serially numbered fish fingerling tags. Their reproductive condition (Sadleir, 1970b) was also noted. Testes size was determined by palpation and categorized as large, medium, small, or undescended. Checks of snap-trapped individuals

- 32 -

MONTHS	AREA 1	AREA 2	AREA 3	
<u>1968</u>				
ctober	73	71	72	Non-Breeding
lovember	-	77	77	Season
ecember	79	-	80	
1969				
anuary	87	84	- .	
ebruary	91	. 89	91	Breeding
arch	95	93	95	Season
pril	99	97	99	
ay	103	101	103	
ine	107	105	107	
1y	111	111	111	
gust	115	115	115	Non-Breeding
ptember	119	119	119	Season
tober	123	123	123	
vember	127	127	127	
cember	131	131	131	
<u>1970</u>				
anuary	136	136	136	
ebruary	140	140	140	
rch	144	144	144	
ril	148	148	148	Breeding
ay	152	152	152	Season
y	156	156	156	
ne	160	160	160	
1y	164	164	164	
gust	168	168	168	·
ptember	172	172		
tober	176	176		

.

Table 3. Trapping schedule on each grid. The numbers in the Table refer to week numbers with week 1 being the. first week of June, 1967.

(Week 1 was the first week of June 1967.)

Plate 2

General view of grid 1 photographed in September 1970. Stakes marking the trap sites can be seen in this and the subsequent two plates.

Plate 3

General view of grid 2 photographed in

September 1970.

ļ

General view of grid 3 photographed in

September 1970.

from other areas indicated that males with medium or large testes were in reproductive condition because active spermatogenesis was noted in the histological analysis. Males with small testes were either just entering reproductive condition or regressing from it. Animals with small or undescended testes were considered as non-reproductive. Female reproductive condition was recorded as non-vascular or vascular, pregnant or lactating. Females with vascular vaginae were found in the snap-trapped samples to have cyclic ovaries, and were thus considered as potentially reproductive.

Other mammals such as <u>Sorex vagrans</u>, <u>Eutamius amoenus</u>, <u>Tamiasciurus</u> <u>douglasi</u>, <u>Glaucomys sabrinus</u>, <u>Microtus oregoni</u> (identified from Cowan and Guiget, 1965) were recorded when captured. Since numerous <u>Microtus</u> <u>oregoni</u> were trapped on Area 3, they were marked by toe-clipping, weighed, sexed, and their reproductive condition noted. After January 1970 the numbers of <u>M. oregoni</u> dropped to a very low level and the marking of individuals was discontinued. No voles were captured on this area after June 1970.

(b) Analysis of data

Population parameters from multiple capture-recapture data can be estimated by a variety of techniques. These techniques fall into two broad categories, deterministic and stochastic. The deterministic models assume that there is an exact survival rate over a specific time interval (which usually equals the length of time between trapping periods), whereas stochastic models estimate a probability of survival.

- 40 -

In the present study, Jolly's (1965) stochastic model was used to analyse the data. This model uses all the information that is gained from repeated recaptures, so that, despite the low numbers released at some trapping periods it is possible to give standard errors for the estimates of the total population (N), probability of survival (\emptyset) and the number of new animals entering the population (B) for each recapture period. Jolly's model does, however, make some basic assumptions which are difficult to test. The model assumes that: (a) sampling is random and that marked animals have so redistributed themselves after release that they have the same probability as any other animal of being caught in subsequent trappings; (b) survival rates and probabilities of capture are unaffected by the marking of animals; and (c) survival rates are independent of the age of the animal. Although these assumptions are very important for the absolute determination of the total numbers as well as the other parameters in any one area, it should be noted that in this study the model was used to compare populations on three areas. Therefore provided that there are no differences in the validity of these assumptions between areas, all comparisons of the population parameters are relevant and valid.

In a summary of a variety of population estimation techniques, Manly (1970) has shown that Jolly's method has a tendency to give a large over-estimate when samples are small as well as a tendency to give population size estimates equal to the sample size. Despite Manly's criticism,

- 41 -

Jolly's model was considered to be an appropriate analysis method for this study, since an investigation of relative changes between areas formed the main part of this study and absolute changes in numbers were of secondary importance. Analysis was accomplished using a computer program written by Dr. C. Krebs of the University of British Columbia.

RESULTS

1) Seasonal fluctuations in numbers of males and females

Since each grid was one hectare in area all figures and diagrams dealing with numbers are expressed in terms of numbers per hectare. The monthly estimate of numbers for each area are shown in Table 4. Table 5 gives the correlation coefficients between the Jolly estimate and the minimum number of animals known to be alive at a specific point in time (t). It is possible for an animal not to be captured at time "t" but to have been caught at "t-1" and subsequently caught at "t+1". This animal is therefore considered to be alive at "t". Only 7% of such potential captures were missed. These correlates are significant in most cases indicating that both estimates are very similar. The 1968-69 winter was extremely cold with a heavy snow cover and during this time trapping was difficult. On Area 1, 11 of the marked males were caught in February which had not been caught in January. Their absence in that month resulted in an overestimate by the Jolly model. This probably accounted for the lack of correlation in numbers during the non-breeding period from October 1968 to the end of the breeding period in 1969. The single very high estimate of females by the Jolly model for January 1970 on Area 3 (Table 4)

- 42 -

		AR	EA 1			AREA	2			ARE	A 3	
		A	:	В	A		E	3		A	:	В
MONTH	ರೆರೆ	\$ \$	ර ්ර්	¥¥	ර්ර්	¥\$	ರ ್	\$ \$	ರೆರೆ	\$ <u>\$</u>	ಕೆಕೆ	\$ \$
<u>1968</u>												
October	13	10	12	10	4	13	4	9	2	9	2	9
November	-	-	-	-	19	19	19	19	8	12	8	12
December	24	21	19	21	-	-		-	-	•		-
1969												
January	24	9	9	7	16	17	14	13	-	-	-	-
February	33	14	12	12	17	14	15	12	3	7	3	6
March	15	19	11	12	17	9	16	9	5	7	5	6
April	17	12	15	11	18	10	18	10	9	5	9	5
Мау	19	10	16	9	33	15	33	15	8	17	8	8
June	17	11	17	11	27	12	25	12	15	13	13	11
July	15	18	14	15	23	15	21	11	12	11	10	9
August	13	15	12	13	23	15	21	15	25	18	17	13
September	14	15	14	15	20	11	19	9	20	13	20	13
October	15	16	14	16	18	13	18	13	19	10	16	10
November	18	14	14	14	15	9	13	8	7	8	7	8
December	11	12	10	11	11	7	10	7	10	9	7	9
<u>1970</u>												
January	9	10	7	9	14	5	13	5	10	18	4	6
February	7	10	7	8	14	6	14	6	4	6	4	6
March	6	6	5	5	13	11	13	11	3	8	3	4
April	5	7	5	5	13	8	13	7	3	6	3	3
May	5	8	5	4	8	6	8	6	4	6	4	3 3 3
May	13	5	9	5	7	5	7	5	4	3	4	
June	11	4	9	4	11	4	11	4	5	2	5	2
July	8	8	8	5	11	9	11	9	4	2	4	2
August	10	6	10	6	11	13	11	13			6	2
September	10	9	10	9	8	7	4	7				
October	9	15	9	9	16	13	16	13				
November			10	14			16	12				

Table 4. Comparison of estimates of total numbers (Jolly model and minimum number known to be alive)

A: Total number estimated by Jolly model (by sex).

B: Minimum number known to be alive (by trapping).

		AREA 1	AREA 2	AREA 3
Non-Breeding Season	ರೆರೆ	0.225*	0.989	
Oct-Jan	£ £	0.991	0.953	
Breeding	ರೆರೆ	-0.306*	0.989	0.988
Season Feb-July	\$ \$	0.788	0.763	0.725
Non-Breeding	ೆ ೆ	0,953	0.978	0.927
Season Aug-Mar	\$ \$	0.979	0.977	0.448*
Breeding	ರೆರೆ	0.857	0.934	1.00
Season Apr-Oct	29 22	0.746	0.994	0.801

. '

Table 5.	Correlation coefficients comparing Jolly's N
	estimate and minimum number known to be alive.

* r is not significant.

which I cannot explain, but it had the effect of reducing the level of correlation of female numbers for the non-breeding period of 1969-70.

On Area 3 in 1969 both male and female numbers were low before breeding began and stayed low until mid-summer. Highest numbers occurred at the end of the breeding season, a pattern which has been reported by other authors, (Blair, 1940; Howard, 1949; Orr-Ewing, 1950; Tevis, 1950a; Sadleir, 1965, 1970b; Terman, 1966; Fuller, 1969). Area 2 follows the same pattern but the peak numbers occurred in the middle of the breeding season and not at the end. Area 1 did not show this trend, as female numbers stayed relatively stable although the males showed a definite decrease during this season. From the cessation of breeding in 1969 the numbers began to decrease, finally from the beginning of 1970, male and female numbers remained constant (Table 4). The only autumn increase was seen on Area 2 in October.

The Jolly model permits a reasonably accurate estimation of the mean number of animals present on an area over a number of sampling periods (Appendix 2). Table 6 gives mean numbers and variance by sex, area, and season and shows their statistical comparison. Because sampling periods were not coincident on all areas for each of the periods of this study, the best method of inter-area comparison involves using different groupings of monthly samples, so that the inter-area comparisons are coincident. Table 7 shows that the mean numbers on Area 1 and 2 were never significantly different whereas Area 3 had significantly lower numbers of males than Area 1 and 2 in three of the four periods; the females were significantly lower once. With the exception of the non-breeding period of 1969-70 the mean numbers on Area 3 were lower than on the other two areas.

- 45 -

ds	ļ
grí	
a11	
for	
estimate (and variance) for all grids	eason.
(and	nd se
estimate	by sex a
fean Jolly N	by sex and season.
Меа	ĺ
Table 6.	

			COMPARISON				
		WITH ARE/	REA 2	WITH AREA	A 3	WITH AREA	tA 3
		AREA 1	AREA 2	AREA 1	AREA 3	AREA 2	AREA 3
	ئۇ*	19.97±23.29 ^x	15.49±2.41	20.39±31.45 ^x	5.47± 2.56	13.88±2.46	5.17± 2.56
Non-Breeaing	55	15.41 [±] 2.55	17.35±4.73	14.45± 2.72	10.18± 1.01	16.61±4.11	10.21± 0.83
:	ور ر	19.05±14.88	23.25±4.53	19.62±17.80	8.79± 1.25	23.25±4.53	8.79± 1.29
breeding	0 0	13.07± 4.77	12.18±3.32	14.16± 4.76	10.23± 7.62	12.18±3.32	10.23± 8.42
:	ورو	11.61± 4.35	15.91±5.00	11.61± 4.35	12.66± 5.83	15.91±5.00	12.66± 5.83
Non-Breeaing	64 64	12.36± 4.26	9.63±2.28	12.36± 4.27	11.67±10.11	9.63±2.28	11.67±10.11
:	વર્ષ	8.94± 2.23	10.56±1.94	8.50± 3.40	4.00± 0.90	10.00±1.79	4.00± 0.90
breeding	64 64	7.68± 3.32	8.10±1.05	6.24± 3.65	3.80± 3.43	6.36±1.19	3.80± 3.43

^XThis pair of means, and others in the table, are not the same as sampling periods are not coincident. See explanation in text.

- 46 -

		GR	[D 1	GRID 2		
		Males	Females	Males	Females	
Grid 2				· <u> </u>		
Non-Breeding	1968/69	0.88	0.72	-	-	
Breeding	1969	0.95	0.31	-	-	
Non-Breeding		1.41	1.07	-	-	
Breeding	1970	0.79	0.20	-	-	
<u>Grid 3</u>						
Non-Breeding	1968/69	2.56*	2.21*	3.89***	2.88**	
Breeding	1969	2.48*	1.12	、6.00***	0.57	
Non-Breeding	1969/70	0.33	0.18	0.99	0.58	
Breeding	1970	2.17*	0.92	3.66***	1.19	

Table 7. Comparison of mean Jolly N values between areas. (Test criteria values.)

Presenter 1

2) Seasonal fluctuations in total numbers

The minimum numbers known to be alive for each month (both sexes combined) are shown for each area in Figs. 4, 5, 6. On all areas numbers were much higher in 1969 than in 1970. On Area 1 there was a dramatic increase in numbers in the second half of 1968, although the December 1968 peak was not maintained. From February 1969 onward there were usually twenty or more deermice per plot for the whole year and the numbers fluctuated little. However from October onward a persistent decline in numbers set in until March/May 1970. The numbers then increased until the end of the year but failed to approach the 1969 numbers.

On Area 2, the second half of 1968 showed a similar trend to Area 1. There was a similar mid-winter peak and a sudden decline and, with one exception, the numbers for each month through 1969 again stayed relatively constant although slightly higher than Area 1. The peak in May was due to a week-long trapping period which coincided with an exceptionally large number of juveniles dispersing through the area (see weight distribution, Fig. 10). Other week-long trapping sessions in January, February, March, and May 1970 failed to reveal any difference in numbers when compared to the normal two day trapping period. Area 2 differed from Area 1 in that early in 1970 numbers increased; although like Area 1, this was followed by a decrease to a May 1970 minimum. Thus, it can be seen that although the magnitudes are different, the numbers on Areas 1 and 2 fluctuate in a reasonably similar manner.

- 48 -

Fig. 4

Cohort diagram showing changes in numbers and individual survival on grid 1.

- 50 -

Fig. 5

Cohort diagram showing changes in numbers and individual survival on grid 2.

Fig. 6

Cohort diagram showing changes in numbers and individual survial on grid 3.

Area 3 (Fig. 6) showed a different pattern. Although there was a similar increase in the second half of 1968, from January 1969 to September 1969 there was a persistent increase in numbers while the population highs were maintained on Areas 1 and 2. There was, however, a decline from September 1969 to March/May 1970 which paralleled that on other areas but the population on this area showed no recovery and no mice were trapped on it in August 1970. At this point trapping ceased on this area.

Table 8 shows that the total number of deermice for each month on Areas 1, 2, and 3 are all significantly correlated for appropriately comparable periods (Area 1/2 comparison is for 24 months while the comparison of Areas 1/2 with 3 is for 21 months).

3) Probability of survival

Figs. 7 and 8 show that the probability of survival estimates fluctuated considerably throughout this study. The degree of fluctuation in monthly survival estimates of rodent populations has been reported by many workers (Krebs, 1966; Sadleir, 1965; Tamarin and Malecha, 1971) and is considered to be caused by many interacting small factors, analysis of which would be extremely difficult. From Jolly's tables (see Appendix 3) an estimate of the mean probability of survival over several trapping periods can be calculated along with its variance (Sadleir, 1965; see Appendix 4). There is no difference at the 5% level, in the survival of either sex of deermice between Area 1 and 2 and significance occurs only between Areas 1 and 3 as well as 2 and 3 in the first non-breeding period (Table 9). The significant difference may be an artifact due to

- 55 -

	MALES	FEMALES	COMBINED	N
Area 1 vs Area 2	0.68**	0.40*	0.61**	24
Area 1 vs Area 3	0.66**	0.80**	0.78**	21
Area 2 vs Area 3	0.54**	0.48*	0.60**	21

Table 8. Correlation coefficient comparing minimum numbers known to be alive on the three areas.

* P < 0.05 ** P < 0.01

Fig. 7

Males: Probability of survival (Ø), recruitment (B) and Jolly's N estimate for all grids by months.

- 58 -

Fig. 8

Females: Probability of survival (\emptyset) , recruitment (B) and Jolly's N

estimate for all grids by months.

- 60

		AREA 1		A	REA 2	AREA 3	
		ф	S ²	ф	S ²	ф	S ²
Non-Breeding	ಕೆಗೆ	.322	.252	.744	.019	.189	.079
Oct-Jan	\$ 9	.637	.310	.644	.023	.181	.033
Breeding	ರ್ರೆ	.535	.017	.670	.009	.628	.058
Feb-July (1969)	\$ \$.637	.026	.575	.019	.648	.048
Non-Breeding	ರೆರೆ	.736	.023	.650	.011	.514	.044
Aug-Mar	\$ \$.759	.023	.630	.018	.650	.068
Breeding	ರೆರೆ	.536	.021	. 379	.022	.684	.058
Apr-Sept (1970)	\$ ¥	.547	.061	.398	.024	.501	.152

.

Table 9.	Mean probability of survival (and variance)
	for all grids by sex and season.

the small sample of two months for Area 3. There were also no differences in the survival of males and females on the same grids ($P \le 0.05$). 4) Recruitment (Births and Immigration)

Recuitment generally increased during the breeding seasons as the young of the year joined the population (see Fig. 7 and 8). However, between January and February 1969 there was an increase in the population of Area 1. This increase was directly related to a corresponding increase in the recruitment. The animals that joined the population at this time were fully mature overwintered adults, as indicated by their body weight (see Figs. 9, 10, 11). A similar increase did not occur in 1970. Area 2 followed a similar pattern to Area 1, although recruitment in the spring of 1970 was higher than on Area 1. The recruitment of both sexes during breeding in 1969 was extremely high. In 1970 an increase in adult recruitment occurred from December 1969 to March 1970, but this adult recruitment did not occur on Area 1. Area 3 was much the same as Area 2 for 1969, but although there was an initial increase between December 1969 and January 1970, the adult recruitment on this area remained extremely low for the remainder of this study.

5) <u>Relative importance of recruitment</u>, probability of survival, and length of season on change in numbers.

In order to determine the relative importance of recruitment, probability of survival and length of season on changes in numbers these factors were correlated with the changes in numbers seen for the sixbreeding and six non-breeding seasons. These correlations are shown in Table 10. Changes in numbers were determined by subtracting the numbers

- 62 -

Fig. 9

Weight distribution on grid 1. In this and Figs. 10 and 11 the width of the polygram is proportional to the frequency of individuals in each weight class.

- 63 -

.

Fig. 10 Weight distribution on grid 2.

.

...

.

 Fig. 11

-

Weight distribution on grid 3.

,

•

,

.

.

WEIGHT IN GRAMS

- 68 -

Table 10. Correlation coefficients between male and female survival, total recruitment, length of season and changes in total numbers between the beginning and end of seasons.

	BREEDING SEASON	NON-BREEDING SEASON	
Total Recruitment cf.Change in Total Numbers	.354	.817*	
Total Recruitment cf. Change in Female Numbers	.480	.723	
Total Recruitment cf. Change in Male Numbers	.180	.826*	
Mean Female Probability of Survival cf.			
Change in Total Numbers	.185	401	
Mean Female Probability of Survival cf.			
Change in Female Numbers	.083	575	
Mean Male Probability of Survival cf.			
Change in Total Numbers	069	.043	
Mean Male probability of Survival cf.			
Change in Male Numbers	.207	.143	
Length of Season cf.Change in Total Numbers	.193 (.494)	~.936**	
Length of Season cf. Change in Female Numbers	.0 (.837)	859*	
Length of Season cf. Change in Male Numbers	.208 (.178		
Total Recruitment, Mean Female Probability of			
Survival and Length of Season cf. Change			
in Total Numbers	.714 (.536)	.946	
Total Recruitment, Mean Male Probability of Survival and Length of Season cf.Change			

() for 5 months on Area 3.

* = $P \leq 0.05$

** = P < 0.01

present in the last month of the season from the numbers present in the first month. Total recruitment refers to the mean monthly recruitment rates of both sexes combined. The disappearance of deermice from Area 3 presented problems in allocating a length to the breeding season in 1970. Correlation coefficients for the observed season length of 5 months and an assumed season length of 8 months, as occurred on areas 1 and 2, are both given in Table 6 although survival and change in numbers could only be calculated over 5 months.

6) Seasonal changes in body weight

There is little variation in the mean weight by month of the adult males on Area 1 during the study (Figs. 9, 10, 11). A single exception was the increase in weight which occurred from January to March 1969. Juvenile animals were considered to be any animals caught during or immediately after the breeding season with a weight below 12 grams (Sadleir, 1965). The most noticeable change in weight distribution occurred during the breeding season, due to the numbers of juvenile males which joined the population. The females on this area exhibited similar trends as the males but with more variation in weight because of pregnancy. After the breeding season had ended, weights for both males and females tended to stabilize. It is also possible by looking at Figs. 9, 10, 11 to note the influx of juveniles into the population. Area 2 showed similar trends to Area 1. Both males and females on Area 3 exhibited little fluctuation in body weights, there being no gain in either sex at the beginning of 1969. During the breeding period there was little variation in weights indicating either that breeding success was very poor or that juveniles on this area were trap shy. There was one period of low body weights, August 1969, indicating juvenile recruitment.

7) Reproduction

On Area 1, males in both 1969 and 1970 came into breeding activity before the females (Table 11). In 1969 breeding commenced in late February but in 1970 it did not start until the beginning of April. Area 2 in 1969 exhibited much the same pattern as Area 1, although the males came into breeding condition a few weeks before the males on Area 1. The females on Area 2 came into breeding condition after male testes development had begun. In 1970 both sexes were in reproductive condition on Area 2 at the same time, this being synchronous with male condition on Area 1. Area 3 showed a trend in reproductive activity for both sexes which was similar to Area 1. Of the six breeding periods investigated it is interesting to note that in four (one instance being undetermined, i.e. Area 2 - 1970) the females remained in reproductive condition for at least one month after male reproductive activity had ceased.

8) Transients

Table 12 gives the number of resident animals as well as the number and proportion of transients caught per breeding and non-breeding period. There is no significant difference between grids in the proportion of transients which were caught (Chi square $P \leq 0.05$). Of the 126 deermice caught on the 20 and 30 m peripheral lines, 12 (10%) of these had been captured previously on the grid, whereas only 9 (7%) caught on the peripheral lines were caught subsequently on the grid.

- 71 -

	-	GRID 1	GRID 2	GRID 3
1969	Testes descended	February (91)	February (89)	February (91)
	First pregnancy	March (95)	March (93)	March (95)
	Testes regressing	July (111)	July (111)	July (111)
	Last lactation	August (115)	July (111)	August (115)
1970	Testes descended	April (148)	April (148)	April (148)
	First pregnancy	May (152)	May (152)	May (152)
	Testes regressing	October (176)	August (168) ¹	2
	Last lactation	October (176)	September (172) ¹	2

~

Table 11. Duration of breeding seasons on each grid.

() Month of study, see Table 3.

¹ See text.

² Sampling ceased in August when males and females breeding.

								T	OTALS	
		Area	a 1	Area	ı 2	Area	a 3	Area	Area	Area
		రేరే	ŶŶ	ರೆರೆ	\$ \$	రర్	ŶŶ	1	2	3
1968-69										
Non-Breeding	Transients	8	12	- 9	9	6	11		18	17
Oct-Jan	Residents	12	13	11	16	3	8	25	27	11
1969										
Breeding	Transients	12	10	18	11	6	5	22	29	11
Feb-July	Residents	28	12	48	23	16	15		71	21
	Rebracheb	20				20			. –	
1969-70							-	-		~
Non-Breeding	Transients	2	6	3	13	11	9		16	20
Aug-Mar	Residents	16	16	31	19	20	12	32	50	32
1970										
Breeding	Transients	9	10	23	20	1	2		43	
Apr-Sept	Resident	18	10	22	18	7	2	28	40	

Table 12. Numbers of transient deermice on each grid by sex and season.

9) Species composition

From Table 13, it can be seen that the most frequently captured species was <u>Peromyscus maniculatus</u>. The interesting comparisons between areas reflect the vegetational successional stages. Area 3's most plentiful species was <u>Microtus oregoni</u>, the numbers of which are plotted on Fig. 6, indicating that this area contained a wide variety of grasses and other annual plants (Kellman, 1969) which make up a high proportion of the herbivorous voles diet (Lobue and Darnell, 1959).

DISCUSSION

This study investigated the effects of environmental a coastal forest. changes on populations of deermice in The general hypothesis was that differences in numbers, survival, length of breeding and non-breeding seasons would exist between the three areas studied. In addition, it was hoped that a population model could be developed to which all three populations would conform. Although there have been many studies on the biology of deermice, perusal of the chapter by Terman (1968) will indicate that there are very few studies which are sufficiently detailed. In addition, the majority of these studies which have been done, have been carried out on single trapping areas so that no analysis of between area comparisons were possible. Sadleir (1965, 1970b) attempted to trap several grids in adjacent areas but his grids were very small. In this study, it was hoped that the trapping schedule would give substantial data on variations between areas so that population changes over a large area could be considered.

- 74 - ,

	AREA 1	AREA 2	AREA 3
Peromyscus maniculatus (deermice)	485	619	323
Microtus oregoni (vole)	24	13	450
Sorex vagrans (shrew)	93	140	34
Eutamius amoenus (chipmunk)	11	23	56
<u>Tamiasciurus</u> <u>douglasi</u> (squirrel)	1	0	0
<u>Glaucomys</u> sabrinus (flying squirrel)	3	0	0
Neurotrichus gibbsi (shrew mole)	14	29	1
<u>Clethrionomys</u> gapperi (Red-backed vole)	1	3	0
Zapus trimicronatus (jumping mouse)	0	3	0
Mustela erminea (weasel)	2	0	0
Slug	46	65	26

Table 13. Frequency of captures of all species _______ on each grid.

Maintenance of all populations at stable levels depends upon both intrinsic and extrinsic factors. The significance of such parameters and their interaction is difficult to assess. However, this study attempted to determine the relative importance of population parameters contributing to absolute numbers and their fluctuations. The discussion which follows will consider changes in the recruitment rates and survival probabilities in breeding and non-breeding seasons, in conjunction with the effects of various environmental conditions. The effects of these parameters will be discussed first separately and then as combined units.

The factors controlling the start of the breeding season in <u>Peromyscus</u> <u>maniculatus</u> have not as yet been fully determined. Whitaker (1940) has stated that for <u>P. leucopus</u> breeding is under photoperiodic control but his evidence is not very clear. In this study, breeding commenced in different months in different years which would suggest that photoperiod alone is not the major determinant. Sadleir <u>et al.</u> (1973) considered that breeding in wild deermice is strongly affected by the interaction of temperature and food supply acting through the energetics of activity and lactation. Thus, although there are considerable differences in the duration and onset of breeding seasons between years, in any population, the exact causes of these differences are not proven.

Population changes during breeding season

Recruitment during the breeding season is a function of the number of young produced and their survival. The number of young produced depends on litter size and the number of pregnancies in the population during the season. This is, in turn, dependent on the number of females which

- 76 -

reach sexual maturity during the season and the number which were originally available for breeding at the beginning of the season. The latter is directly related to the length of the non-breeding season as will be discussed later.

Recruitment during the breeding seasons was good, ranging from eight to fourteen new recruits per month. The single exception was Area 3 in 1970. On this area, the number of males and females was extremely low. As this period of low numbers coincided with a period of low survival in May-June, there was a further reduction in the potential breeding population. Also with the low number of females on the area the probability of male-female interaction was reduced. Survival probabilities fluctuated considerably and did not show any consistent trends between or within areas (Figs. 7 and 8). In the 1969 breeding season the mean survival probabilities were generally much better than those in 1970. Area 2, for 1970, showed a very low mean survival probability but still the total numbers on the grid increased (Table 9).

During the breeding season, the total population on the three areas increased with the exception of Area 3, 1970 which has already been discussed. In general, the probability of survival had considerably less effect on the population numbers than had recruitment even during periods of extremely low survival (Table 10). The increase of populations during this time reflected more closely the recruitment of new mice in each area. Recruited mice may join either by being able to establish themselves in the hierarchial system, or by replacing overwintered mice that had died during the season, but the relative importance of these two

- 77 -

methods is not known. Also at the end of the breeding season, the social system, i.e. hierarchy, begins to break down (Sadleir, 1965) with the result that it is easier for recruits to establish themselves. In most breeding seasons, recruitment more than compensates for the effects of mortality and thus appears to be a more important parameter in the breeding season than survival.

It would seem that the viability of a population from one year to the next would depend, in part, on the number of mice present at the end of breeding. Although Sadleir (1965) has suggested that aggressiveness of dominant males plays a role in population regulation during breeding, aggressiveness resulting in dispersal at the end of the breeding season would not be advantageous, in terms of numerical consistency, to the population, in terms of survival of that population in its particular area. In this study, recruitment reaches a high point at or just prior to the cessation of breeding. This is necessary to ensure that a large number of animals are present at the onset of the non-breeding period.

Population changes during non-breeding season

The average level of recruitment for the two non-breeding seasons were entirely different. Recruitment in the non-breeding season consists of both adult immigrants or juveniles born in the previous season which join the population. In 1968-69 recruitment on all areas was extremely high (8 - 18 mice/month) and was probably due to both the long breeding season which was 8 months and to the good survival of the previous generation. The large recruitment of 25 animals on Area 1 in January 1969 cannot be explained. In 1968-69 there was thus a large number of sub-

- 78 -

adult mice on all grids (Figs. 9, 10, 11). However, in 1969-70 recruitment rates were stable and low, with only a few mature adult mice joining the population. The monthly average of the probability of survival for both non-breeding seasons, with the exception of Area 3, 1968-69 (where the sample size was very small) was extremely high. For both sexes ϕ ranged from 0.514 to 0.822 and was generally above 0.630 (Figs. 7 and 8).

In 1969-70 all areas showed a decline in the total numbers despite good survival, which indicates that low recruitment was an important factor (Table 4). In the previous year, 1968-69, increased recruitment resulted in an increase in total numbers. The decrease in numbers in the non-breeding season is much more noticeable in periods where the season is long, as in 1969-70 (8 months). The mortality over a long period of time, accompanied with low recruitment, resulted in a gradual decrease in population numbers.

Other factors

Factors which may have also affected the population numbers on the three areas include weather, parasitism, predation and disease. The effects of these four factors were extremely subtle and consequently changes in numbers as a result of these elements were difficult to assess.

<u>Weather</u>: The two winters were entirely different: the 1968-69 winter was extremely cold, however, there was approximately 0.75 metres of snow on the ground from late December to early February. This snow layer acts as insulation, hence the ambient temperature below the snow did not

fluctuate much from 0°C. In 1969-70 the winter was relatively free of snow but temperatures were below freezing, ranging from -10° to -5°C, from mid-January to mid-March. the ground layers being frozen for most of this period. In general, the monthly mean air temperature was the same as the 9" (20 cm) soil temperature with the exceptions of periods when snow was present on the ground. In this case the temperature under the snow level ranged from -1° to 0°C (Harling, 1972) and hence was considerably warmer than the mean monthly air temperature. In 1970 it would seem that mice which ventured out of their burrows would have to use up all of their energy supplies to maintain themselves and would have no surplus calories for the development of reproductive organs - the result being that breeding started later. The opposite situation was true in 1968-69. This is reflected in the body weights of the mice during these two comparable periods. The average weights of both male and female mice at the beginning of 1969 was much higher than those in 1970, the mice in 1969 also tended to show a rapid increase in weight. It is not known whether this weight increase had any effect on the earlier commencement of breeding in 1969 as compared to 1970.

<u>Parasitism</u>: <u>Peromyscus</u> carries a number of external parasites (reviewed by Whitaker (1968)). The most predominant parasite, in this study area, was the botfly, <u>Cuterebra grisea</u>. Hunter, Sadleir and Webster (1972) have shown that there was no significant difference between the survival rates of mice infected with <u>C. grisea</u> and those not infected.

- 80 -

<u>Predation and disease</u>: The effect of these two factors was very difficult to assess. Although such potential predators as racoons (<u>Procyon lotor</u>), weasels (<u>Mustela erminia</u>), and owls were known to inhabit all study areas, their combined effect on the population was not known. There were however, no sudden dramatic declines in population numbers during the study, such as result after intensive predation. With regards to disease, the dead sample study gave no indication of any major disease outbreak in the mouse population (Casperson and Harling, personal communication, 1972). Occasionally some mice had abnormally large and discoloured lungs and liver indicating an unidentified infection. Again the effects of this on the population was not known.

Population models

From the preceding information it is possible to deduce a generalized scheme of events which is consistent with the fluctuations of all three populations of deermice. The most important factors affecting the changes in numbers are recruitment and the length of the non-breeding season (Table 10). It is this change in numbers which governs the numbers of potentially breeding deermice which are present at the beginning of the subsequent reproductive season. The significant negative correlations in Table 10 show that if the non-breeding season is short, populations of deermice are dense at the beginning of the subsequent breeding season. If the non-breeding season is long, the numbers entering the breeding season are reduced and do not increase with such a season until it is well progressed. There are, therefore, four possible model proposals, assuming that the rate of recruitment is at its highest point after the cessation of breeding

- 81 -

and then steadily declines as the non-breeding season progresses (i.e. the recruitment curve is skewed to the left). The four possibilities are: 1) short non-breeding season with a high average recruitment; 2) short non-breeding season with a low average recruitment; 3) long nonbreeding season with a high average recruitment and 4) long non-breeding season with a low average recruitment. Mortality or its converse, survival does not appear to be an important factor affecting the change in numbers (Table 10). Of the four possibilities, 2 and 3 are unlikely on the following grounds:- possibility 2 could only occur if the prior breeding season had a very low recruitment and/or poor survival. Possibility 3 is extremely unlikely as this requires continual recruitment on to the area throughout the long non-breeding season. As the majority of recruits to any area are juveniles from the previous breeding season it would be impossible to maintain a high average recruitment through the seasons. The remaining two possibilities 1 and 4 were both observed during this study. Possibility 1 occurred in the non-breeding season of 1968-69. This involved a short four month season with high average monthly recruitment (10 to 18.3 mice/month). Trapping by Casperson (personal communication, 1972) revealed a similar pattern on grids 1 and 2 for 1970-71. Possibility 4 occurred in 1969-70 when the season was eight months long and average monthly recruitment was low (2.8 to 6 mice/month). During the breeding season the relationship between the change in numbers and the number of males and females present differed. The low correlations using an eight month season on grid 3 (1970) were almost certainly an artifact as the actual

- 82 -

change numbers, for each sex, could not be determined since the population vanished. However, when the correlations were determined on the observed data, 5 months in duration, the r value was much higher for females than males and was statistically significant. Therefore it appears that, during the breeding season, the change in the number of males is relatively independent of the length of the season. This concurs with the suggestion of Sadleir (1965) and Healey (1971) and the observations of Fordham (1971) that the numbers of males during breeding seasons remain fairly constant and are probably determined by the level of their agonistic interaction.

It is now possible to propose a general model for the regulation of numbers in this species. During breeding seasons the numbers of males appears to be regulated by their agonistic behaviour toward each other. The males are aggressive to all juveniles but those females which do reach sub-adulthood are tolerated and hence the numbers of females can increase as the season progresses. During the non-breeding season the regulation system changes and individuals of both sexes regardless of age appear to act in a similar fashion. Although recruitment rates are low at this time, change in numbers is more correlated with recruitment during the non-breeding season than during the breeding season. However the strongest correlations are with the length of the non-breeding season. If the non-breeding season is short, numbers change very little and populations remain high and are relatively dense when breeding commences. If the non-breeding season is long, there is a steady decrease in numbers as the monthly mortality operates over an increasing period of time. When breeding commences after such a period, numbers are extremely low for

- 83 -

the first part of the season, showing an increase only at the end of the season. In summary, to use an analogy the "capital" present during the breeding season is mainly a function of the size of the initial "deposit" and much less a function of the seasons "interest" or "withdrawals". In turn the "deposit" is controlled by the length of the previous nonbreeding season.

-

CHAPTER 4

BEHAVIOUR - INTRODUCTION

The seasonal incidence of aggressive behaviour and its correlation with testes condition has been reported for a variety of rodents and other species (Beeman, 1947; Davis, 1964; Scott and Fredericson, 1951). Davis (1963) correlated an increase in territorial behaviour with an increase in the size of gonads in birds, and noted that injections of androgens in domestic fowl (Gallus gallus) resulted in fighting and courtship. He concluded that androgen levels controlled such behaviour. Beeman (1947) showed that testosterone levels affect aggressiveness in white mice (Mus musculus) whereas McCabe and Blanchard (1950) demonstrated that the intensity of fighting in Peromyscus californicus and P. maniculatus varies with the season and testes weight. Levy and King (1953) injected immature rodents with testosterone and noted increases in aggressive behaviour with increased dosages of this hormone. Lagerspetz (1969) reported that aggressive behaviour in M. musculus does not begin without the presence of male hormones and a decrease in the androgen level results in a decrease in aggressive behaviour. Whitaker (1940) suggested that increases in day length stimulate testes development in deermice with increase in testosterone production release, and resulting in an a potentiality for increased aggressiveness. Female reproduction in P. maniculatus is affected by photoperiod (Price, 1966).

Changes in agonistic behaviour of male deermice (<u>P. maniculatus</u>) have been measured in connection with a field study of the species population dynamics by observing the arena behaviour of individual field collected males towards strange laboratory males (Sadleir, 1965). Sadleir suggested that the survival of juvenile deermice is influenced by the aggressiveness of the adult males of the population. During the summer when adult aggression is high juvenile survival is poor, but in the fall when aggression decreases juveniles survive well. Healey (1967) has confirmed Sadleir's conclusions.

In both these investigations field animals were isolated from their social and natural environmental contact for extended periods of time. It has been found that even short periods of isolation can induce aggressive behaviour (Sigg, 1969). This suggests that the levels of aggression determined by Sadleir and Healey may have been too high, although it should not affect the seasonality of changes in behaviour. In addition both Sadleir and Healey tested their field animals against laboratory animals which had considerable experience of bouts in an arena.

This present study attempted to document seasonal and individual changes in male behaviour by: (a) testing field animals against each other (so that each opponent had approximately equal bout experience) and (b) by reducing as much as possible the length of isolation time of the tested males. In addition it was hoped that detailed studies of home range could be related to an individual's aggressive level.

METHODS

- 87 -

Behaviour Investigations

From January 1970 through to September 1970, all male deermice captured on day 3 on grid 2 were taken to the laboratory to determine their relative levels of aggressiveness. This was done every second week, so that captured males were placed in a bout only once per two week period. Female aggressive behaviour was not examined because of the presumed complicating factors associated with pregnancy and estrus (Sadleir, 1965).

Aggression between males was assessed by observing their behaviour in a neutral arena measuring 24" x 12" x 12", with a vertically sliding partition which divided it into two. One side of the arena consisted of clear perspex through which observations could be made. Only two mice were observed each time and no individual deermouse ever met another individual more than once per bout per two weeks. Care was taken to match animals from extreme ends of the grid to reduce the possibility of prior contact between the opponents. Mice were first placed one on each side of the partition for a period of five minutes. One of the mice was marked with a coloured flowpen. After five minutes the partition was lifted. Each matched bout was observed for five minutes and aggressive encounters were described into a tape recorder. Most of the behavioural units described by Eisenberg (1962) were noted, but only the aggressive units, as summarized by Sadleir (1965), were recorded. These were as follows: (1) jumping at an opponent; (2) chasing opponent; (3) threatening opponent; (4) upright threat; (5) grooming of a defeated opponent,

(6) being groomed by a defeated opponent; (7) fighting. Upon completion of a bout each encounter was transcribed from the tape recorder onto data sheets. Each data sheet was subdivided into ten second intervals, thus an aggressive unit was scored if it occurred within a ten second interval. If more than one unit of the same type occurred within the ten seconds it was scored only once but other units were scored within the same time period if of a different type.

RESULTS

1) Sexual condition of mice used in behaviour tests

Since testes development is an important factor governing the agonistic responses of male mice (Beeman, 1947), it was essential that the mice tested were sexually representative of the population on the grid. Fig. 12 shows that this was the case. Tested mice and grid mice were not in full breeding condition until the beginning of April and they ceased breeding at the same time. During the latter part of this study several juveniles were tested against resident adults which explains the presence of mice with small testes in June and August.

2) Aggressive acts as a function of time

The average number of aggressive acts per bout for each month is shown in Fig. 13. This figure also gives the total number of fights per month. This seasonal aggressive cycle is similar to that suggested by Sadleir (1965) and Healey (1967). Increase in aggression from February to March is coincident with an increase in testes development (Fig. 12) suggesting that there is a possible relationship between testosterone secretion Fig. 12

-

.

.

Sexual condition of grid and tested males.

.

.

1970

Fig. 13 Average number of aggressive acts per bout by months and number of fights.

and aggression. However, the decrease in aggressive behaviour from May to June does not coincide with regression of the testes which occurred much later in August.

3) The relationship of aggressive behaviour to home range area.

Fig. 14 compares aggressiveness and home range area occupied for the six males which had participated in four or more bouts. Their hierarchial relationships were not clearly defined. Aggressive tests were conducted on a further 22 males but because they were tested less frequently, it proved difficult to determine their relative social status. However, it is likely that the relationship shown for the six males in Fig. 14 would have held for all adult males on the area. The scatter diagram indicates that there is a relationship between aggressiveness and area covered, and although the sample is small, the correlation coefficient (r = 0.804) achieves significance at the 10 percent level. 4) Inhibitory behaviour

During fights a submissive act was observed which totally inhibited further aggressive acts by the winning male. This act consisted of a short chirp or chit and was emitted when the submissive male was lying on its back and is similar to a behavioural act described by Eisenberg (1962). Of the 26 bouts where a decisive behavioural outcome could be determined (i.e. dominance of one male over the other), 19 of these bouts included a chit response from the submissive. In cases where juveniles were matched against adult mice the chit response did not have the same totally inhibitory action; the adults would continue to threaten and sometimes attack the juveniles, although the juveniles remained in a totally submissive posture.

- 93 -

Fig. 14 Relationship of aggressive behaviour to home range area.

· · · · ·

. .

- 94 -

DISCUSSION

Beeman (1947), Scott and Fredericson (1951) and Davis (1964) have shown that agonistic behaviour in rodents is influenced by androgen secretions. At the beginning of this study testes were not developed and aggressive activity was minimal. As the testes increased in size at the beginning of the breeding season and became located in the scrotal region, the number of aggressive acts increased. In the wild population the proportion of males in sexual condition increased gradually as the season progressed. The trapping record of individual males showed that their testes increased in size suddenly (Fig. 12).

Agonistic behaviour probably operates in the first part of the breeding season by establishing an adult male hierarchy in the population. This subsequently decides recruitment, dispersal, and thus indirectly the size of the population. Fordham (1971) has shown that excess food placed on an area causes considerable increase in the total population but this increase is not reflected in an increase in the complement of resident adult males. Brown (1962) found that the adult male <u>Apodemus sylvaticus</u> which were resident on the area at the commencement of breeding was dominant and controlled the stability of the society. She stated that a hierarchial system existed between these mice. The hierarchy is extremely important since it defines the relationship of mice in a particular area so that intruders are more readily identified. Sadleir (1970a) has shown that hierarchial systems do exist for Peromyscus maniculatus austerus.

- 96 -

In this study it was difficult to determine the relationships of the adult males on the grid. Six mice were considered to be dominant and hence constituted a possible hierarchy. But there are two possible hierarchial systems, first the top six mice control the entire area and there exists no relationships between the mice which do not constitute this hierarchy, that is, the non-hierarchial mice are of equal status one to another. Or second, a continuum exists whereby the behavioural position of every male on the grid is defined and the status of one to another is very strictly regulated. Therefore, which system existed in this study was not determined because the frequency of testing and trapping made it difficult to define the status of non-hierarchial mice.

Death or emigration of any member of the hierarchy would result in competition for the vacant position and home range by juveniles and transient adult mice as well as "lower members" of the hierarchy. This leads to a socially unstable condition and a possible reduction in dispersal pressure until the re-establishment of a new social hierarchy. During this period it is possible that more mice could be supported on the area. Nowack (1971) reported that removal of the first and second dominant male <u>Mus</u> <u>musculus</u> caused an increase in aggressive acts indicating that the hierarchial relationships had been disturbed. She also demonstrated that there was a decrease in the number of fights through time and suggested that this can be explained by the establishing of orderly relations. between individuals. The natural analogue to the behavioural action described by Nowack (1971) would be the death of a dominant. In Fig. 13 it can be seen that the

- 97 -

highest number of aggressive acts was in May. This coincided with the death of two of the hierarchial mice; also the number of fights was relatively high, indicating a possible change in the social structure of the population. However, this analysis of the effect of the death of two hierarchy mice is complicated by influxes of juveniles in May. Therefore, it is difficult to determine which social change caused the increase in aggressive acts and fights.

The pattern of aggressive acts (Fig. 13) follows very closely that described by Sadleir (1965) and Healey (1967). The peak in May coincides with the first influx of juveniles. The survival of juveniles is related to adult male aggressiveness as adult females do not take part in any of these behavioural interactions (Healey, 1967). The response of adult males matched against themselves as opposed to those matched against juveniles was entirely different (see section 4 of the results). In the first place when an adult male was in a submissive position and the dominant continued to attack, the submissive would emit a chit which completely inhibited further actions by the dominant. However, when an adult male attacked a juvenile and the juvenile emitted a chit, the adult male was generally not inhibited and continued to attack or threaten the juvenile. This would suggest that the adult males are more persistent / in their aggressiveness to juveniles which would act to ensure their expulsion from the home ranges of such males. This agrees with the hypothesis of Sadleir (1965).

- 98 -

The relationship between home range or territory and aggressiveness has been demonstrated for prairie gophers (Cynomys ludovicianus) by King (1955), woodchucks (Marmota monax monax) by Bronson (1963), and for red grouse (Lagopus lagopus) by Watson (1964). In all these studies the animal concerned was easily observable in a natural situation. This study has also shown that a similar relationship possibly exists for P. m. austerus and it was possible to deduce such a correlation from field studies, despite the complexity of the environment and the species' nocturnal habits (Fig. 14). The biological reasons for the existence of such a relationship for this species are difficult to determine. One possible advantage would be the unhindered movement (i.e. few behavioural interactions with other adult males that may be encountered) over large areas, thus increasing the probability of encountering more females or better food supplies. Whether the home range areas of the top hierarchial mice are related to food quality or quantity or optimum habitat suitability is not known.

CHAPTER 5

FORESTRY IMPLICATIONS

The role of Peromyscus as a seed eater and its relation to reforestation programs by direct reseeding has been well documented (Kverno, 1954; Shaw, 1954; Spencer, 1954; Ahlgren, 1966). Shaw (1954) claims that a deermouse can consume as many as 200 Douglas fir (Pseudotsuga menziesii) seeds a day even when alternate food is available. Tevis (1956a) and Ahlgren (1966) have noted that the populations of Peromyscus increase after logging operations. This increase is associated not only with seeds as a food source, but also with the presence of large quantities of insects in the burned slash areas and areas where vegetation is recovering. The increased presence of seeds is a function of the destruction of the "A" soil horizon layer by fire or erosion and consequently the increased availability of seeds (Spencer, 1954). The use of rodenticides as a control method has proven to be unsatisfactory, since, as Spencer (1954) has pointed out, although 95% of resident populations can be controlled, as few as six deermice per acre can nullify a program in which treated Douglas fir seed is broadcast at the rate of one-fourth pound per acre. The failure of direct reseeding has forced the forest industries to rely heavily on the age old method of growing seedlings and planting them by hand, but the advance in labour and material costs in recent years is creating renewed interest in direct reseeding.

The two previous chapters have discussed the population dynamics, and home range in three different forest regimes of P. maniculatus. These previous chapters have shown that there are: (1) probably no differences in home range patterns or movement activities between any of the three populations (Fig. 3); (2) no differences in the probability of survival of either sex on the same area or between the three areas (Table 9); (3) no differences in recruitment (Figs. 7 and 8); and (4) there did exist, however, differences between grids 1 and 3, and 2 and 3 in the number of mice supported per hectare, grids 1 and 2 generally supporting more mice than grid 3. The aim of this chapter is to discuss previous results in relation to forestry practice. In addition, it was hoped to relate the knowledge gained to the practical aspects of a reforestation program. This could be done by recommending an optimum time for aerial reseeding to be conducted in relation in the annual cycle of P. m. austerus or an ideal time for various types of control methods to be implemented.

The numbers of deermice on all three grids seems to be related to the successional stages of the logged areas. Diebold (1938) has suggested how logging operations could possibly effect rodent populations. He stated that the removal of stands of coniferous trees tends to allow winter snowfall to accumulate on the ground and act as an added insulating layer that prevents the soil from freezing. In thick conifer stands, the tree crowns tend to intercept the snow which then evaporates or melts and drips to the ground where it freezes. Frozen soil would prohibit <u>Peromyscus</u> maniculatus from foraging in the soil layer for insect larvae and seeds. It would thus seem that more mice would be present on grid 2 but this was not the case. Tevis (1956b) noted that higher numbers of Peromyscus maniculatus were found on slash areas and he suggested that the advantage to mice of such areas is related to the density of cover and quantity and variety of food. In cutover areas Tevis (1956b) found that insects constituted 60% of the stomach contents as opposed to 44% of such contents in forested areas. insects that thrive in association He concluded that the many with the vegetation of recently logged areas may be responsible, in part, for increased numbers of mice. No such relationship was found in this study. Harling (personal communication, 1972) found few differences in the dietary habits between mice taken from slash or forest areas. In areas which have been logged and burned the colonization by annual plants occurs quickly. Fireweed (Epilobium augustifolium), bracken (Pteridium aquilinum) and various grasses invade the area and create a dense vegetational mat After six years this vegetational stage (Kellman, 1969). was very well developed on area 3. This may explain the presence of both Microtus and Peromyscus populations with their different dietary demands, Microtus being primarily herbivorous whereas Peromyscus is omnivorous. Lobue and Darnell (1959) have suggested that competition between these two species is unlikely, basing their argument on the fact that Microtus is diurnal and Peromyscus is nocturnal. Peromyscus apparently prefers less dense vegetation than Microtus. Other authors (Wirtz and Pearson, 1960; Grant, 1970, 1971) have demonstrated in both field and

- 102 -

laboratory studies that aggressive interspecific interactions between <u>Microtus</u> and <u>Peromyscus</u> occur. Wirtz and Pearson (1960) reported that <u>M. pennsylvanicus</u> was more aggressive than <u>P. leucopus</u> and Grant (1971) stated that <u>M. pennsylvanicus</u> excluded <u>P. maniculatus</u> from grassland habitats when the former species was high in number. In this study it was difficult to determine which factors were affecting the reciprical nature of the changes in numbers of <u>M. oregoni</u> and <u>P. m.</u> <u>austerus</u> populations on grid 3. It should be noted that <u>M. oregoni</u> frequently occupies forest habitats (Ingles, 1965) although the frequency of its capture on grid 1 and 2 was extremely low (Table 13). Therefore it would seem that the changes in populations of the two species could possibly be the result of some type of competitive interaction. The reason as to the declines of both the <u>Microtus</u> and <u>Peromyscus</u> population in the late summer of 1970 cannot be explained. Lobue and Darnell (1959) have also suggested that habitats such as grid 3 are not conducive to <u>Peromyscus</u>.

LOGGING EFFECTS

Logging does not adversely effect the mouse populations, in fact areas which have just been logged seem to be very attractive. Area 2 populations (Fig. 5) increased considerably after logging. Although logging causes drastic macro-environmental changes there do not seem to be significant changes in the micro-environment which <u>Peromyscus</u> inhabits. Therefore the factor which seems to have the most effect on the population numbers is the various vegetational stages that follow logging, especially the successional stages four years (Plate 4) after logging.

SLASH BURNING

After logging has been completed there is a large amount of slash which is left behind. Slash consists of interlocking tangles of branches, tops of conifers, splintered trunks, shattered sections of bark, great piles of culled logs and other non-marketable trees. During the summer this slash becomes dry and flammable, thus constituting a fire hazard which is potentially more dangerous than a virgin timber stand. Moreover by covering the ground slash makes the planting of seedlings difficult and also prevents seed from reaching the soil. For these reasons slash burning has become the standard operational procedure, following logging, in British Columbia.

Various authors have suggested that slash burning may be detrimental to small mammal populations (Krauch, 1936; Shirley 1937; Fowells and Schubert, 1951) either by destroying the animals on the area or by driving them out. In 1969, half of area 2 was burned in August to determine the effect such burning had on resident deermice. This area was trapped immediately before burning commenced and soon after burning had ceased. Although the ashes were still warm and various stumps were still burning, mice were caught on this area that evening. During the burn there was no indication of a mass exodus of mice from the area, although mice may have left the area when the fire started and re-invaded during the night from the surrounding area. Tevis (1956b) in a similar experiment found that 33 percent of the mice were recaptured on the grid compared with 77 percent in this study, however the fire described by Tevis (1956b) seems to have been more intense, this being based on the amount of ash left after burning. In the months after burning there was no indication in the trapping records that the deermouse avoided the burnt areas as captures on it were just as frequent as those on the unburned area (Table 14) $x^2 = 2.24$ N.S.).

CONTROL

There have been attempts at protecting Douglas fir seeds used in aerial reseeding by either poisoning the area prior to their distribution or by impregnating the seeds with either sodium fluoroacetate (1080), thallous sulphate (Radwan, 1963) or endrin (Radwan, Crouch and Ellis, 1970). These preventive methods have not been very successful (Radwan, 1963). Poisoning techniques have failed because in the Douglas fir region the two most commonly used poisons 1080 and thallous sulphate are applied directly to Douglas fir seeds. Consequently, the poison is concentrated in the hulls which the rodents usually cut through but do not eat and the animal does not consume much of the poison (Radwan, 1963). The use of endrin although effective, can not be continued because of its high toxicity to all heterotrophic organisms (Radwan et al., 1970) Crouch and Radwan (1971) have reported that by using an antifertility chemical, mestranol, at a two percent concentration consumption of seeds was reduced and germination rates were not affected.

-		
	BURNED AREA	UNBURNED AREA
Before Burn	187 (32%)	395 (78%)
After Burn	131 (37%)	224 (73%)
Number Trap Stations	40	80

.

Table 14. Total number of captures on burned and

 χ^2 = 2.24 n.s. at P \leq 0.05.

unburned area of grid 2.

Aerial reseeding has usually been conducted in the fall. At this time most rodent populations are at their peak so that the success of such an operation is doubtful. Hooven (1958) has reported that two mice per 0.5 hectare can consume up to 300 Douglas fir seeds per night. Half a pound of seed is normally distributed over such an area and this amount could be easily consumed by deermice at this low density in 35 nights. Spencer (1954) has noted that the presence of deermice has been shown to almost nullify attempts to aerially reseed in various parts of Washington and Oregon. Casperson (personal communication, 1972) has estimated that the bare minimum requirement for feral deermice would be approximately 150 seeds per night. Such reseeding programs would thus be severely curtailed by the presence of deermice. Suggestions as to the control of deermice populations are very difficult to make since it is the most ubiqutous of all forest rodents. The problem is also complicated by the deermice's high mobility and exploratory nature. Even if areas could be cleared of deermice by either trapping or poisoning, reinvasion will occur almost immediately (Sadleir, 1965, Healey, 1967, Fordham, 1971). A promising method is being developed by J. Walters, the Director of the U.B.C. Research Forest. This method involves aerially restocking an area by dropping small seedlings which have their roots in a soil pack encased in a 10 to 12 centimetre long biodegradable plastic bullet. These seedlings upon hitting the ground become embedded in the soil and as the seedlings begin to grow the plastic case is ruptured. Deermice do not attack seedlings as readily as they do seeds Although voles may do so.

A possible solution to successfully restocking logged forest areas by aerial reseeding lies in distributing Douglas fir seed in a form which is unpalatable to deermice. Attempts at trapping or poisoning populations have failed as they must result in 100% mortality as well as curtailing immigration. Possible solutions to this problem would be in the development of non-toxic repellents which would discourage consumption. Mestranol (Crouch and Radwan, 1971) seems to have this effect but its high cost prevents its use in a large scale situation. Other possible means of restocking would be to aerially distribute recently germinated Douglas fir seed or to bring Douglas fir seeds to within a few hours or days of germination in an optimum environment, as deermice will not attack germinated seeds (Radwan, et al., 1970) and then broadcast them aerially. This would reduce the period of risk to predation. In summary it would seem that use of non-toxic repellents on seeds, as well as distributing seeds in periods when the Peromyscus population is low would be a more efficient and practical method of reforesting large areas and is certainly worthy of further investigation.

SUMMARY AND CONCLUSIONS

- Home ranges of deermice were estimated by trapping and smoked paper methods. Using the combined ranges as 100%, traps revealed an average of 44% of the range and smoked paper 82%. The smoked paper system showed the lower variability in estimating the range.
- 2. Males covered considerably larger areas in the breeding season than do either males or females at any other time. This increased movement was attributed to behavioural and physiological factors.
- 3. In both sexes the size of home ranges continued to increase as more captures were made. This inherent limitation, which has not been previously reported, prevented valid comparisons of mean home range areas in different habitats.
- 4. <u>Peromyscus maniculatus</u> does not appear to have a well defined home area. A central area is apparently used intensively but there are occasional sallies outwards for a greater distance so that the home range resembles the hub and spokes of a wheel.
- 5. Population changes during breeding seasons are a direct function of the number of the young produced and their survival. The population on grid 3 disappeared in August 1970.
- The probability of survival, in the breeding season, had considerably less effect on population numbers than recruitment, even during periods of low survival.
- 7. In most breeding seasons, recruitment more than compensates for the effects of mortality. This appears to be a more important parameter in the breeding season than survival.

- 8. The viability of a population from one year to the next appears to depend mainly on the number of mice present at the end of breeding.
- 9. Factors such as weather, parasitism, predation and disease did not seem to affect population levels.
- 10. From the analysis of the population data, it was possible to deduce a generalized scheme of events which was consistent with the fluctuations of all three populations of deermice. The most important factors affecting the changes in numbers are recruitment and length of the non-breeding season.
- Aggressive behaviour was studied in paired bouts in 1970 and is related to testes development.
- 12. The highest number of aggressive acts occurred in May 1970. The seasonal changes in aggression seen followed those reported by previous workers.
- 13. A relationship was noted between the level of aggressiveness and the home rar area occupied but the advantage of this relationship is not known.
- 14. Logging practice and slash burning did not affect the mouse populations adversely. The vegetational stages after logging seem to determine the population levels.
- 15. Present methods of chemical or physical control of <u>Peromyscus</u> as a seed predator have been largely unsuccessful.
- 16. Suggestions as to optimum seeding time or methods of by-passing the seed stage of reforestation are discussed.

LITERATURE CITED

- Ahlgren, C. E. (1966) Small mammals and reforestation following prescribed burning. J. Forest 64:614-618.
- Andrzejewski, R. (1962) Estimation of resident and transient part of small mammal population by the capture - recapture method. Symp. Theriologicum, Brno, 1960: 34-39.
- Andrzejewski, R. and T. Wierzbowska. (1961) An attempt at assessing the duration of residence of small rodents in a defined forest area and the rate of interchange between individuals. Acta Theriol. <u>5</u>:153-172.
- Andrzejewski, R. and H. Wroclawek. (1962) Settling by small rodents a terrain in which catching out had been performed. Acta. Theriol. <u>6</u>:257-274.
- Ashby, K. R. (1962) Dinamica di popolazioni dei Topi Campagnoli e suo Significato per la Rinnovazione dei Boschi. Atti. Ist. veneto Sci. <u>120</u>:319-26.
- Ashby, K. R. (1967) Studies on the ecology of field mice and voles (Apodemus sylvaticus, Clethrionomys glareolus and Microtus agrestis) in Houghall Wood, Durham. J. Zool. 152:389-513.
- Beeman, E. A. (1947) The effect of male hormone on aggressive behaviour in mice. Physiol. Zool. 20:373-405.
- Beer, J. R. and C. F. MacLeod. (1966) Seasonal population changes in the prairie deermouse. Am. Midl. Nat. <u>76</u>:227-290.
- Blair, W. F. (1940) A study of prairie deermouse populations in southern Michigan. Am. Midl. Nat. 24:273-305.

- Blair, W. F. (1951) Population structure, social behaviour, and environmental relations in a natural population of the beach mouse (<u>Peromyscus polionotus leucocephalus</u>). Contr. Lab. vetebr. Biol. Univ. Mich. 48:1-47.
- Bronson, F. H. (1963) Some correlates of interaction rate in natural populations of woodchucks. Ecology 44:637-643.
- Brown, L. E. (1962) Home range in small mammal communities. Survey of Biological Progress IV, Academic Press Inc. 131-179.
- Brown, L. E. (1966) Home range and movement of small mammals. Symp. zool. Soc. Lond. <u>18</u>:111-142.
- Brown, L. N. (1961) Excreted dyes used to determine movements of cottontail rabbits. J. Wildl. Mgmt. <u>25</u>:199-202.
- Brown, L. N. and C. H. Conaway. (1961) Dye excretion as a method for determination of small mammal home ranges. Am. Midl. Nat. <u>66</u>:128-137.
- Burt, W. H. (1940) Territorial behaviour and populations of some small mammals in southern Michigan. Misc. Publ., Musc. Zool. Univ. Mich. 45:1-58.
- Burt, W. H. (1943) Territoriality and home range concepts as applied to mammals. J. Mammal. 24:346-352.
- Calhoun, J. B. (1945) Diel activity rhythms of the rodents, <u>Microtus</u> ochrogaster and <u>Sigmodon hispidus hispidus</u>. Ecology <u>26</u>:251-273.

Calhoun, J. B. (1952) The social aspects of population dynamics.

J. Mammal. 33:139-159.

Chitty, D. (1937) A ringing technique for small mammals. J. Anim. Ecol. 6:36-53.

- Chitty, D. (1952) Mortality among voles (<u>Microtus agrestis</u>) at Lake Vyrnwy, Montgomeryshire in 1936-9. Phil. Trans. Roy. Soc. London, Ser. B. 236:227-237.
- Chitty, D. (1958) Self regulation of numbers through changes in viability. Cold Spring Harbour Symposia Quant. Biol. <u>22</u>:277-280.
- Chitty, D. (1960) Population processes in the vole and their relevance to general theory. Can. J. Zool. 38:99-113.
- Chitty, D. (1964) Animal numbers and behaviour. p 41-53 in J.R. Dymond (Ed.), Fish & Wildlife: a memorial to W.J.K. Harkness. Longmans Canada Ltd., Don Mills.
- Christian, J.J. (1950) The adrenal pitvitary system and population cycles in mammals. J. Mammal. <u>31</u>:247-259.
- Cochran, W.W., D.W. Warner, J.R. Tester, and V.B. Kuechle (1965) Automatic radio tracking system for monitoring animal movements. Bio-Science 15:98-100.
- Crouch, G. L. and M. A. Radwan (1971) Evaluation of R-55 and mestranol to protect Douglas-fir seed from deermice. U.S.D.A. Forest Serv. Res. Pap. PNW-170, 6 pp.
- Cowan, I. McT., and C. J. Guiget (1965) The mammals of British Columbia. Handbook No. 11, B.C. Prov. Mus. Dept. of Recreation and Conservation, Victoria, B.C.
- Dalke, P. D. and P. R. Sime (1938) Home and seasonal ranges of the eastern cottontail in Connecticult. Trans. North. Am. Wild. Conf., Baltimore <u>3</u>:659-669.

- Darling, F. F. C. (1937) <u>A Herd Of Red Deer</u>. Oxford University Press, London.
- Davenport, L. B. (1964) Structure of two <u>Peromyscus polionotus</u> populations in old-field ecosystems at the A.E.C. Savannah River Plant. J. Mammal. 45:95-113.
- Davis, D. E. (1955) Social interaction of rats as indicated by trapping procedures. Behaviour. <u>8</u>:335-343.
- Davis, D. E. (1963) The hormonal control of aggressive behaviour. Proc. Inter. Ornith. Cong. <u>12</u>:994-1003.
- Davis, D. E. (1964) The physiological analysis of aggressive behaviour. Chapter <u>in</u> Social Behaviour And Organization Among Vertebrates. Univ. of Chicago Press, Chicago.
- Davis, D. E. and J. T. Emlen (1956) Differential trappability of rats according to size and sex. J. Wildl. Mgmt. <u>20</u>:326-327.
- Diebold, C. H. 1938. Interrelationships between water, tables, soil characteristics, silvics, reforestation and flood control in southcentral New York. Ecology <u>19</u>:463-479.
- Eisenberg, J. F. (1962) Studies on the behaviour of <u>Peromyscus maniculatus</u> <u>gambelii</u> and <u>Peromyscus californicus parasiticus</u>. Behaviour <u>19</u>:177-207.
- Fordham, R. A. (1971) Field populations of deermice with supplemental food. Ecology 52:138-146.
- Fowells, H. A. and G. H. Schubert (1951) Recent direct seeding trials in the pine region of California. Calif. Forest and Range Expt. Stn. Res. Note. 78.

- Fuller, W. A. (1969) Changes in numbers of three species of small rodents near Great Slave Lake, N.W.T., Canada, 1964-1967 and their significance for general population theory. Ann. Zool. Fennici <u>6</u>:113-144.
- Godfrey, G. K. (1954) Tracing field voles (<u>Microtus agrestis</u>) with a Geiger - Muller counter. Ecology 35:5-10.
- Grant, P. R. (1970) Experimental studies of competitive interaction in a two-species system. II The behaviour of <u>Microtus</u>, <u>Peromyscus</u> and <u>Clethrionomys</u> species. Ann. Behav. <u>18</u>:411-426.
- Grant, P. R. (1971) Experimental studies of competitive in a two species
 system. III <u>Microtus</u> and <u>Peromyscus</u> species in enclosures. J.
 Anim. Ecol. <u>40</u>:323-350.
- Hansson, L. (1969) Home range, population structure and density estimates at removal catches with edge effect. Acta theriol. <u>14</u>:153-160.
- Harris, A. S. (1968) Small mammals and natural reforestation in southeast Alaska. U.S.D.A. Forest Serv. Res. Pap. PNW-75, 7 pp.
- Haugen, A. O. (1942) Home range of the cottontail rabbit. Ecology 23:354-367.
- Hayne, D. W. (1949) Calculation of size of home range. J. Mammal. 30:1-18.
- Hayne, D. W. (1950) Apparent home range of <u>Microtus</u> in relation to distance between traps. J. Mammal. <u>31</u>:26-39.
- Healey, M. C. (1967) Aggression and self-regulation of population size in deermice. Ecology 48:377-392.
- Hooven, E. (1958) Deermouse and reforestation in the Tillamook Burn. Oregon For. Lands Res. Cent., Corvallis Res. Note 37: 31 pp.

- Howard, W. E. (1949) Dispersal amount of inbreeding and longevity in a local population of prairie deermice on the George Reserve, southern Michigan. Contr. Lab. vetebr. Biol., Univ. Mich. <u>43</u>:1-50.
- Hunter, D. M., R.M.F.S. Sadleir, and J. M. Webster (1972) Studies on the ecology of cuterebrid parasitism in deermice. Can. J. Zool. 50:25-29.
- Ingles, L. G. (1965) Mammals of the Pacific states. Standord Univ. Press.
- Jewell, P. A. (1966) The concept of home range in mammals. Symp. Zool. Soc. Lond. <u>18</u>:85-109.
- Jolly, G. M. (1965) Explicit estimates from capture-recapture data with both death and immigration - stochastic model. Biometrika 52:225-247.
- Justice, K. E. (1961) A new method for measuring home ranges of small mammals. J. Mammal. <u>42</u>:462-470.
- Kaye, S. V. (1960) Gold 198 wires used to study movements of small mammals. Science 131(3403):824.
- Kaye, S. V. (1961) Movements of harvest mice tagged with gold-198. J. Mammal. 42:323-337.
- Kellman, M. C. (1969) Plant species interrelationships in a secondary succession in coastal British Columbia. Syesis 2:201-212.
- Kikkawa, J. (1964) Movement, Activity and distribution of the small rodents <u>Clethrionomys glareolus</u> and <u>Apodemus sylvaticus</u> in woodland. J. Anim. Ecol. <u>33</u>:259-299.

- Kindel, F. (1960) Use of dyes to mark ruminant feces. J. Wildl. Mgmt. <u>24</u>:429.
- King, J. A. (1955) Social behaviour, social organization and population dynamics in a black-tailed prairie dog town in the Black Hills of South Dakota. Contrib. Lab. Vert. Biol. Univ. Mich. <u>67</u>:1-65.
- Krajina, V. J. (1970) Ecology of forest trees in British Columbia. Chapter <u>in</u> Ecology of western North America ed. by V. J. Krajina and R. C. Brooke. Published by Dept. of Botany, Univ. of British Columbia.
- Krauch, H. (1936) Some factors influencing Douglas fir reproduction in the southwest. J. Forest 34:601-608.
- Krebs, C. J. (1966) Demographic changes in fluctuating populations of <u>Microtus californicus</u>. Ecol. Monogr. <u>36</u>:239-273.
- Kverno, N. B. (1954) Development of better seed protectants. J.
 Forest <u>52</u>:826-827.
- Lack, D. (1954) The natural regulation of animal numbers. Oxford 343 pp.
- Lagerspetz, K. M. J. (1969) Aggression and aggressiveness <u>in</u> Agressive Behaviour (Ed. Garattini and Sigg). Excerpta Medica Foundation, Amsterdam.
- Leslie, P. H., D. Chitty, and H. Chitty. (1953) The estimation of population parameters from data obtained by means of capture recapture method. III. An example of the practical applications of the method. Biometrika 40:137-169.

- Levy, I. V. and I. A. King. (1953) The effects of testosterone propionate on fighting behaviour in young male C₅₇ BL/10 mice. Anat. Rec. 117:562-579.
- Linduska, J. P. (1942) Winter rodent populations in field-shocked corn. J. Wildl. Mgmt. <u>6</u>:353-363.
- Lobue, J. and R. M. Darnell (1959) Effect of habitat disturbance on a small mammal population. J. Mammal. 40:425-437.
- Manly, B. F. J. (1970) A simulation study of animal population estimation using the capture - recapture method. J. appl. Ecol. <u>7</u>:13-39.
- Miller, R. S. (1958) A study of a wood mouse population in Wytham Woods, Berkshire. J. Mammal. <u>39</u>:477-493.
- Murie, A. (1936) Following fox trails. Univ. of Michigan Museum Zool. Misc. Publ. 32:1-45.
- McCabe, T. T. and B. D. Blanchard (1950) Three species of <u>Peromyscus</u> Rood Associates, Santa Barbara, Calif.

McCarley, H. (1958) Ecology behaviour and population dynamics of <u>Peromyscus nuttalli</u> in eastern Texas. Tex. J. Sci. <u>10</u>:147-171.

- New, J. G. (1958) Dyes for studying the movements of small mammals. J. Mammal. <u>39</u>:416-429.
- Nowack, Z. (1971) The effect of removing a dominant on the social organization of laboratory mice populations. Acta Theriol. 16:61-71.

- Orr-Ewing, A. L. (1950) Life history of the deermouse. Forest. Chron. 26:115-126.
- Osgood, W. H. (1909) Revision of the mice of the American genus Peromyscus. North American Fauna 28:1-265.
- Pearson, O. P. (1960) Habits of <u>Microtus californicus</u> revealed by automatic photographic recorders. Ecol. Monogr. 30:231-249.
- Petticrew, B. G. and R.M.F.S. Sadleir (1970) The use of index trap lines to estimate population numbers of deermice (Peromyscus <u>maniculatus</u>) in a forest environment in British Columbia. Can. J. Zool. <u>48</u>:385-389.
- Pitelka, F. A., D. Q. Tomich, and G. W. Triechel (1955) Ecological relations of jaegers and owls as lemming predators near Barrow, Alaska. Ecol. Mono. <u>25</u>:85-117.
- Price, E. O. (1966) Influence of light on reproduction in <u>Peromyscus</u> maniculatus gracilis. J. Mammal. 47:343-344.
- Radwan, M. A. (1963) Protecting forest trees and their seed from wild mammals. U.S.D.A. Forest Serv. Res. Pap. PNW-6, 28 pp.
- Radwan, M. A., G. L. Crouch, and W. D. Ellis (1970) Impregnating and coating with endrin to protect Douglas-fir seed from rodents. U.S.D.A. Forest Serv. Res. Pap. PNW-94, 17 pp.
- Sadleir, R.M.F.S. (1965) The relationship agonistic behaviour and population changes in the deermouse, <u>Peromyscus maniculatus</u>. J. Anim. Ecol. <u>34</u>:331-352.
- Sadleir, R.M.F.S. (1970a) The establishment of a dominance rank order in male <u>Peromyscus maniculatus</u> and its stability with time. Anim. Behav. 18:55-59.

- Sadleir, R.M.F.S. (1970b) Population dynamics and breeding of the deermouse (<u>Peromyscus maniculatus</u>) on Burnaby Mountain, British Columbia. Syesis 3:67-74.
- Sadleir, R.M.F.S., K. D. Casperson and J. Harling. (1973) Intake and requirments of energy and protein in wild deermice (<u>Peromyscus</u> <u>maniculatus</u>) relative to breeding duration. Symp. Study Fertil. 18: (in press).
- Sanderson, G. C. (1966) The study of animal movements a review. J. Wildl. Mgmt. <u>30</u>:215-235.
- Scott, T. G. (1943) Some food coactions of the northern plains red fox. Ecol. Monogr. 13:427-479.
- Scott, J. P. and Fredericson, E. (1951) The causes of fighting in mice and rats. Physiol. Zool. <u>24</u>:273-303.
- Selye, H. (1946) The general adaptation syndrome and the diseases of adptation. J. Clin. Endocrin. <u>6</u>:117-230.
- Seton, E. H. (1910) Life Histories of Northern Animals, Constable, London.
- Shaw, E. W. (1954) Direct reseeding in the Pacific Northwest. J. Forest. <u>52</u>:827-828.
- Shaw, M. W. and C. Milner (1967) The use of insulating corers for Longworth traps. J. Zool. 51:546-547.
- Sheppe, W. (1961) Systematic and ecological relations of <u>Peromyscus</u> <u>oreas</u> and <u>P. maniculatus</u>. Proc. Am. phil. Soc. <u>105</u>:421-446.
- Sheppe, W. (1963) Population structure of the deermouse, <u>Peromyscus</u>, in the Pacific Northwest. J. Mammal. <u>44</u>:180-185.

- Sheppe, W. (1965) Characteristics and uses of <u>Peromyscus</u> tracking data. Ecology 46:630-634.
- Sheppe, W. (1966) The effects of live trapping on the movement of Peromyscus. Am. Midl. Nat. 78:471-480.
- Shirley, L. H. (1937) Direct seeding in the Lake States. Jour. For. <u>35</u>:379-387.
- Sigg, E. B. (1969) Relationship of aggressive behaviour to adrenal and gonadal function in male mice. Chapter <u>in</u> Aggressive Behaviour (ed. Garattini and Sigg). Excerpta Medica Foundation, Amsterdam.
- Snyder, D. P. (1956) Survival rates, longevity and population fluctuations in the white-footed mouse, <u>Peromyscus leucopus</u>, in southeastern Michigan. Misc. Publ. Mus. Zool. Univ. Mich. <u>95</u>:1-33.
- Spencer, D. A. (1954) Rodents and direct reseeding. J. Forest. <u>52</u>:824-826. Stickel, L. F. (1948) The trap line as a measure of small mammal

populations. J. Wildl. Mgmt. <u>12</u>:153-161.

- Stickel, L. F. (1954) A comparison of certain methods of measuring ranges of small mammals. J. Mammal. <u>35</u>:1-15.
- Stickel, L. F. and O. Warbach. (1960) Small mammal populations of a Maryland woodlot, 1949-1954. Ecology 41:269-286.
- Storm, G. L. (1965) Movements and activities of foxes as determined by radio tracking. J. Wildl. Mgmt. 29:1-13.
- Tamarin, R. H. and S. R. Malecha. (1971) The population biology of Hawaiian rodents: Denographic patterns. Ecology <u>52</u>:383-394.

- Tanton, M. T. (1965) Problems of live trapping and population estimation for the wood mouse, <u>Apodemus sylivaticus</u> (L.). J. Anim. Ecol. <u>34</u>:1-22.
- Tanton, M. T. (1969) The estimation and biology of populations of the bank vole (<u>Clethrionomys glareolus</u> (Schr.)) and wood mouse (Apodemus sylvaticus (L.)). J. Anim. Ecol. <u>38</u>:511-529.
- Terman, C. R. (1966) Population fluctuations of <u>Peromyscus maniculatus</u> and other small mammals as revealed by the North American Census of Small Mammals. Am. Midl. Nat. <u>76(2):419-426</u>.
- Terman, C. R. (1968) Population dynamics. Chapter <u>in</u> Biology of <u>Peromyscus</u> (Rodentia). Spec. Publ. 2 Am. Soc. Mammalogists (Ed. J.A. King)
- Tevis, L. (1956a) Responses of small mammal populations to logging of Douglas Fir. J. Mammal. <u>37</u>:189-196.
- Tevis, L. (1956b) Effects of slash burn on forest mice. J. Wildl. Mgmt. <u>20</u>:405-409.
- Van Vleck, D. B. (1969) Standardization of <u>Microtus</u> home range calculation. J. Mammal. 50:68-80.
- Voisey, P. W. and W. Kalbfleisch. (1962) A mechanical treadle for the study of small animal traffic in the field or laboratory. J. Mammal. 43:281.
- Watson, A. (1964) Aggression and population regulation in red grouse. Nature, Lond. 202:506-507.
- Watts, C. H. S. (1969) The regulation of wood mouse (<u>Apodemus sylvaticus</u>) numbers in Wytham Woods, Berkshire. J. Anim. Ecol. <u>38</u>:285-304.
- Whitaker, W. L. (1940) Some effects of artificial illumination on reproduction in the white-footed mouse, <u>Peromyscus leucopus</u> <u>noveboracensis</u>. J. exp. Zool. <u>83</u>:33-60.

- Whitaker, J. O. (1968) Parasites. Chapter in Biology of <u>Peromyscus</u> (Rodentia). Spec. Publ. 2 Am. Soc. Mammalogists. (Ed. J.A. King).
- Wirtz, W. O. and Pearson, P. G. (1960) A preliminary analysis of habitat orientation in <u>Microtus</u> and <u>Peromyscus</u>. Amer. Midl. Nat. 63:131-142.
- Youngman, P. M. (1956) A population of the striped field mouse, <u>Apodemus agarius coreae</u> in central Korea. J. Mammal. <u>37</u>:1-10.

· •••

APPENDIX 1

The use of index trap lines to estimate population numbers of deermice (*Peromyscus maniculatus*) in a forest environment in British Columbia

B. G. PETTICREW AND R. M. F. S. SADLEIR

Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia Received August 23, 1969

PETTICREW, B. G., and R. M. F. S. SADLEIR. 1970. The use of index trap lines to estimate population numbers of deermice (*Peromyscus maniculatus*) in a forest environment in British Columbia. Can. J. Zool. 48: 385-389.

Monthly live trapping of three 1-hectare grids in differing forest habitats was carried out over an 8-month period. Immediately after 2 nights of trapping on each grid a central index line was trapped for a further 2 nights. The total capture numbers, numbers of males, and numbers of females of deermice (*Peromyscus maniculatus*) on the index line correlated significantly with the same parameters on the grid. In addition, survival rates and body weights were almost identical and similar representation of other small mammal species was determined by both arrangements of traps. It is suggested that the index line may be a more efficient method of sampling small mammal populations.

Introduction

General statements regarding seasonal changes in population numbers of small mammals in different types of habitat require sampling of large areas. Trapping exceedingly large grids is time consuming, but comparable data can often be obtained from either a number of small grids or combinations of grids and index lines. However, the use of lines must be related experimentally to the use of grids as indicators of numbers of animals on a specified area. Such an approach has been described by Brant (1962) using a live trapping and release technique. He found a close relationship between density estimates of three species of small mammal on a single 28acre grid and density estimates based on two trap lines running through the grid. Hansson (1967) described a relationship between the densities of four small mammal species on index lines and on a small grid in a Swedish forest. Linn (1968) has discussed the theory of index trapping of small mammals. In this paper we report an attempt to relate population numbers as determined by live trapped index lines to densities on live trapped grids in various forest environments.

Methods

Three 1-hectare grids $(100 \text{ m} \times 100 \text{ m})$ with 121 stations spaced 10 m apart were trapped at 4-week or longer intervals. One Longworth live trap was set inside a 2-meter radius of each station. Traps were baited with whole oats, and Terylene batting was supplied as bedding. The nest boxes of the traps were covered with expanded polystyrene as described by Shaw and Milner (1967). Traps were set on day 1, and checked on the mornings of days 2 and 3. On day 3 the grid traps were taken up and the index line set. This consisted of 11 stations 10 m apart (the same stations which formed the central line of the grid) at which four Longworth traps were set inside a 2-m radius of each station. The index line traps were checked on days 4 and 5 and the traps taken up on day 5.

Grid 1 was set in 98-year-old Douglas fir (Pseudotsuga menziesii), hemlock (Tsuga heterophylla), and red cedar (Thuja plicata) forest. The ground cover consisted mainly of salal (Gaultheria shallon), vine maple (Acer circinatum), salmonberry (Rubus spectabilis), and assorted ferns (Polystichum, Struthiopteris). Grid 2 was set on an area of originally similar forest which was logged in August, 1968. During the study period the main cover was dead unburned slash through which bracken (Pteridium aquilinum) and sword fern (Polystichum munitum) were emerging. A feature of this area was the considerable proportion of open bare soil caused by the removal of trees during logging. Grid 3 was set on an area which was partially blown down in 1962, logged in 1964, and burned and planted with 2-year-old Douglas fir seedlings in 1965. During the study period this grid was characterized by a summer flush of growth of annuals such as fireweed (Epilobium angustifolium) and bracken. There was considerable growth of various grasses (Luzula spp.) and alder (Alnus rubra), elder (Sambucus racemosa), and vine maple with willow (Salix) lining a small stream passing through the grid. All grids were located in the University of British Columbia Research Forest at Haney, B.C., and the main species investigated, the deermouse (Peromyscus maniculatus), was handled in the field by methods previously described (Sadleir 1965).

Results

The total numbers (and numbers by sex) captured on the grids were compared with those captured on the index lines. Table I presents the results of statistical analysis of the data while Fig. 1 shows the regression lines relating captures on the grids and index lines. The curved lines on Fig. 1 delineate the 5% confidence

interval within which an average of many observed values of Y, each with the same value of X, could be expected to fall (second method, Campbell 1967). The 5% confidence limits inside which a single value of Y could be expected to fall were about \pm 13 of the mean values for the total numbers, \pm 7 for males, and \pm 7 for females.

Survival rates and mean body weights of line sampled animals were compared with those of the grid samples (Table II). The crude minimum survival rate (p) was calculated as the proportion of animals known to be alive at time x + 1which were released at time x. These rates were not standardized to a fixed time interval as the comparisons necessary were always over the same time period even though these were of differing lengths. Statistical comparison of these proportions is only possible by the use of the chi-squared test but in most cases "expected" values were found to be less than five, thus rendering the test invalid (Campbell 1967). Chi-squares computed were not significant nor was the chi-square value (= 0.203) significant when the summed recaptures and non-recaptures were compared for all the index and grid samples. Comparisons of mean body weights (Table II) were made by the use of "Students" *t*-test.

TABLE 1

Correlation, regression, and analysis of variance comparing captures on grid and index

Value	D.F.	Total numbers	Males	Females
Correlation coefficient, R	16	0.810***	0.823***	0.658**
Regression, $A \pm S.E.$	-	5.67 ± 3.40	3.66 ± 1.87	4.27 + 1.72
B + S.E.		1.30 ± 0.24	1.25 ± 0.22	0.94 ± 0.28
Analysis of variance				
Regression M.S. (a)	1	793.035	364.028	117.764
Curvature M.S. (b)	ī	3.935	0.011	0.085
Remainder M.S. (c)	15	27.535	11.583	10.295
		0.014	0.001	0.008
$F_1 = b/c$ $F_2 = a/c$		28.800**	31.428**	11.439**

FIG. 1. Scatter diagrams, regression lines, and confidence intervals comparing captures on index lines and hectare grids.

TABLE II	Comparison of survival rates and body weights (by sex) as determined from grid and index trapping
----------	---

Monday of week of week of tweek of week of and release Weeks at large Number released 1 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 1 1 3 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 2 1 1 1 1 2 2 3 1 1 1 1 1 1 <tr< th=""><th>Survival rates n</th><th>5</th><th></th><th></th><th></th><th></th><th></th><th>Body weights</th><th>reights</th><th></th><th></th><th></th><th></th></tr<>	Survival rates n	5						Body weights	reights																																																																																																																																																																																																								
art arguing and release 25 Feb. 68 25 Feb. 68 26 May 69 27 Mar. 69 26 May 69 27 Mar. 69 26 May 69 27 Mar. 69 28 Feb. 68 29 May 69 20 Mar. 60 20 Mar. 70 20	Crist	Indae Indae				Males					Females																																																																																																																																																																																																						
and release and release 2 These 68 2 These 68 2 These 68 2 These 68 2 These 68 2 These 68 2 May 68 2 M	RID		CX	Grid			Index		Grid			Index																																																																																																																																																																																																					
Dec. 68 Apr. 69 Apr. 69 May 69 May 69 Mar. 69 Mar. 69 May 69 July 69 July 69 May 69 May 69 May 69 May 69 May 69 May 69 May 69 May 69 May 60 May 60 Ma	Number released p	Number released	đ	١×	S.D.	×	S.D.	-	R	S.D.	IR	S.D.	-																																																																																																																																																																																																				
Apr. 6 Mary 6 Ma	33 0.24	21	5.0	15.82	2.84	15.60	3.32	0.17	15.25	4.06	13.50	4.7	1.10																																																																																																																																																																																																				
May June 66 May 66 Mar 66 Mar 66 May 66 June 66 May 66 Ma		o 2	880	10.01	116	89.61	22	5.0	14.60	1.90	16.50	2.12	1.48																																																																																																																																																																																																				
June 69 June 69 Apr. Apr. <tr tr=""> Apr.<td></td><td>15</td><td>0.60</td><td>16.23</td><td>2.78</td><td>15.44</td><td>14</td><td>19</td><td>18.50</td><td>1.87</td><td>17.16</td><td>10.0</td><td></td></tr> <tr><td>Nouve 66 Nouve 66 Maar, 66 Maar, 66 Maar, 66 Nouve 66 Nouve 66 Appr, 66 Maar Maar, 66 Maar Maar Maar Maar Maar Maar Maar Ma</td><td>Ū</td><td>13</td><td>0.54</td><td>15.14</td><td>2.75</td><td>16.00</td><td>2.52</td><td>0.69</td><td>16.62</td><td>2.35</td><td>15.50</td><td>3.02</td><td>0.85</td></tr> <tr><td>Nov: 68 Mar. 69 Apr. 69 Juny 69 July 69 July 69 Feb. 68 May. 69 May. 69 May 69 May 69 May 69 May 69 May 69 May 69 May 69 May 60 May 60</td><td></td><td>I</td><td>1</td><td>16.08</td><td>2.50</td><td>15.83</td><td>2.93</td><td>0.73</td><td>15.50</td><td>3.00</td><td>15.50</td><td>3.74</td><td>0.0</td></tr> <tr><td>Apar, 68 Apar, 68 May 66 9 4 May 66 9 4 Feb. 68 14 Apr. 69 8 8 May 69 4 May 69 4 May</td><td>-</td><td>15</td><td>0.33</td><td>14.52</td><td>4.23</td><td>14.14</td><td>3.94</td><td>0.21</td><td>15.26</td><td>4.67</td><td>14.00</td><td>4.24</td><td>0.72</td></tr> <tr><td>May. 69 May 69 June 69 Novy 66 Apyr. 69 May 69 May 69 May 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 60 Patrone 60 Patro</td><td></td><td>13</td><td>0.92</td><td>18.73</td><td>1.06</td><td>19.00</td><td>1.20</td><td>0.53</td><td>18.43</td><td>1.57</td><td>17.80</td><td>1.48</td><td>0.70</td></tr> <tr><td>May 69 June 66 July 66 Feb. 68 Apr. 69 May 66 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 60 Apr. 60</td><td>-</td><td>16</td><td>0.69</td><td>20.76</td><td>1.89</td><td>20.66</td><td>2.22</td><td>0.10</td><td>21.22</td><td>8.1</td><td>21.20</td><td>1.30</td><td>0.03</td></tr> <tr><td>June 69 Nov. 68 Feb. 69 Apr. 69 Apr. 69 Apr. 69 4 Fune 69 10me 69 4</td><td>-</td><td>50</td><td>0.45</td><td>15.40</td><td>5.07</td><td>15.71</td><td>6.26</td><td>0.16</td><td>17.11</td><td>4.26</td><td>17.33</td><td>4.28</td><td>0.10</td></tr> <tr><td>July 69 Nov. 68 14 Apr. 69 8 May 69 4 June 69 4</td><td></td><td>20</td><td>0.35</td><td>14.88</td><td>3.84</td><td>15.20</td><td>4.33</td><td>0.25</td><td>17.50</td><td>4.25</td><td>17.66</td><td>6.03</td><td>9.0</td></tr> <tr><td>Nov. 68 14 Feb. 69 8 Apr. 69 4 May 69 4 June 69 4</td><td></td><td>I</td><td>ł</td><td>14.50</td><td>3.74</td><td>15.00</td><td>4.89</td><td>0.51</td><td>14.90</td><td>99.E</td><td>17.83</td><td>3.60</td><td>1.92</td></tr> <tr><td>Feb. 69 8 Apr. 69 4 May 69 4 1 June 69 4</td><td>Ť</td><td>6</td><td>0.33</td><td>14.85</td><td>1.39</td><td>14.83</td><td>1.62</td><td>0.02</td><td>15.25</td><td>2.70</td><td>14.20</td><td>3.12</td><td>0.66</td></tr> <tr><td>Apr. 69 4 May 69 4 June 69 4</td><td></td><td>ŝ</td><td>0.66</td><td>16.33</td><td>1</td><td>20.00</td><td>1</td><td>•</td><td>13.75</td><td>I</td><td>14.50</td><td>l</td><td>1</td></tr> <tr><td>May 69 4 June 69 4</td><td></td><td>œ</td><td>0.38</td><td>16.60</td><td>3.28</td><td>17.33</td><td>2.96</td><td>4.0</td><td>18.75</td><td>I</td><td>18.00</td><td>I</td><td>1</td></tr> <tr><td>June 69 4</td><td>13 0.80</td><td>12</td><td>0.75</td><td>16.71</td><td>1.73</td><td>17.50</td><td>1.76</td><td>0.83</td><td>17.33</td><td>2.75</td><td>17.50</td><td>2.17</td><td>0.01</td></tr> <tr><td></td><td>-</td><td>10</td><td>0, 30</td><td>16.80</td><td>2.86</td><td>18.00</td><td>ю. 1.00</td><td>0.83</td><td>17.90</td><td>3.07</td><td>17.50</td><td>3.70</td><td>0.20</td></tr> <tr><td>- 60 Am</td><td>1</td><td>I</td><td>1</td><td>17.38</td><td>2.50</td><td>18.00</td><td>2.83</td><td>0.58</td><td>18.67</td><td>4.02</td><td>19.60</td><td>2.06</td><td>2.0</td></tr>		15	0.60	16.23	2.78	15.44	14	19	18.50	1.87	17.16	10.0		Nouve 66 Nouve 66 Maar, 66 Maar, 66 Maar, 66 Nouve 66 Nouve 66 Appr, 66 Maar Maar, 66 Maar Maar Maar Maar Maar Maar Maar Ma	Ū	13	0.54	15.14	2.75	16.00	2.52	0.69	16.62	2.35	15.50	3.02	0.85	Nov: 68 Mar. 69 Apr. 69 Juny 69 July 69 July 69 Feb. 68 May. 69 May. 69 May 69 May 69 May 69 May 69 May 69 May 69 May 69 May 60 May 60		I	1	16.08	2.50	15.83	2.93	0.73	15.50	3.00	15.50	3.74	0.0	Apar, 68 Apar, 68 May 66 9 4 May 66 9 4 Feb. 68 14 Apr. 69 8 8 May 69 4 May	-	15	0.33	14.52	4.23	14.14	3.94	0.21	15.26	4.67	14.00	4.24	0.72	May. 69 May 69 June 69 Novy 66 Apyr. 69 May 69 May 69 May 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 60 Patrone 60 Patro		13	0.92	18.73	1.06	19.00	1.20	0.53	18.43	1.57	17.80	1.48	0.70	May 69 June 66 July 66 Feb. 68 Apr. 69 May 66 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 60 Apr. 60	-	16	0.69	20.76	1.89	20.66	2.22	0.10	21.22	8.1	21.20	1.30	0.03	June 69 Nov. 68 Feb. 69 Apr. 69 Apr. 69 Apr. 69 4 Fune 69 10me 69 4	-	50	0.45	15.40	5.07	15.71	6.26	0.16	17.11	4.26	17.33	4.28	0.10	July 69 Nov. 68 14 Apr. 69 8 May 69 4 June 69 4		20	0.35	14.88	3.84	15.20	4.33	0.25	17.50	4.25	17.66	6.03	9.0	Nov. 68 14 Feb. 69 8 Apr. 69 4 May 69 4 June 69 4		I	ł	14.50	3.74	15.00	4.89	0.51	14.90	99.E	17.83	3.60	1.92	Feb. 69 8 Apr. 69 4 May 69 4 1 June 69 4	Ť	6	0.33	14.85	1.39	14.83	1.62	0.02	15.25	2.70	14.20	3.12	0.66	Apr. 69 4 May 69 4 June 69 4		ŝ	0.66	16.33	1	20.00	1	•	13.75	I	14.50	l	1	May 69 4 June 69 4		œ	0.38	16.60	3.28	17.33	2.96	4 .0	18.75	I	18.00	I	1	June 69 4	13 0.80	12	0.75	16.71	1.73	17.50	1.76	0.83	17.33	2.75	17.50	2.17	0.01		-	10	0, 30	16.80	2.86	18.00	ю. 1.00	0.83	17.90	3.07	17.50	3.70	0.20	- 60 Am	1	I	1	17.38	2.50	18.00	2.83	0.58	18.67	4.02	19.60	2.06	2.0
	15	0.60	16.23	2.78	15.44	14	19	18.50	1.87	17.16	10.0																																																																																																																																																																																																						
Nouve 66 Nouve 66 Maar, 66 Maar, 66 Maar, 66 Nouve 66 Nouve 66 Appr, 66 Maar Maar, 66 Maar Maar Maar Maar Maar Maar Maar Ma	Ū	13	0.54	15.14	2.75	16.00	2.52	0.69	16.62	2.35	15.50	3.02	0.85																																																																																																																																																																																																				
Nov: 68 Mar. 69 Apr. 69 Juny 69 July 69 July 69 Feb. 68 May. 69 May. 69 May 69 May 69 May 69 May 69 May 69 May 69 May 69 May 60 May 60		I	1	16.08	2.50	15.83	2.93	0.73	15.50	3.00	15.50	3.74	0.0																																																																																																																																																																																																				
Apar, 68 Apar, 68 May 66 9 4 May 66 9 4 Feb. 68 14 Apr. 69 8 8 May 69 4 May	-	15	0.33	14.52	4.23	14.14	3.94	0.21	15.26	4.67	14.00	4.24	0.72																																																																																																																																																																																																				
May. 69 May 69 June 69 Novy 66 Apyr. 69 May 69 May 69 May 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 69 Patrone 60 Patrone 60 Patro		13	0.92	18.73	1.06	19.00	1.20	0.53	18.43	1.57	17.80	1.48	0.70																																																																																																																																																																																																				
May 69 June 66 July 66 Feb. 68 Apr. 69 May 66 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 69 Apr. 60 Apr. 60	-	16	0.69	20.76	1.89	20.66	2.22	0.10	21.22	8.1	21.20	1.30	0.03																																																																																																																																																																																																				
June 69 Nov. 68 Feb. 69 Apr. 69 Apr. 69 Apr. 69 4 Fune 69 10me 69 4	-	50	0.45	15.40	5.07	15.71	6.26	0.16	17.11	4.26	17.33	4.28	0.10																																																																																																																																																																																																				
July 69 Nov. 68 14 Apr. 69 8 May 69 4 June 69 4		20	0.35	14.88	3.84	15.20	4.33	0.25	17.50	4.25	17.66	6.03	9.0																																																																																																																																																																																																				
Nov. 68 14 Feb. 69 8 Apr. 69 4 May 69 4 June 69 4		I	ł	14.50	3.74	15.00	4.89	0.51	14.90	99.E	17.83	3.60	1.92																																																																																																																																																																																																				
Feb. 69 8 Apr. 69 4 May 69 4 1 June 69 4	Ť	6	0.33	14.85	1.39	14.83	1.62	0.02	15.25	2.70	14.20	3.12	0.66																																																																																																																																																																																																				
Apr. 69 4 May 69 4 June 69 4		ŝ	0.66	16.33	1	20.00	1	•	13.75	I	14.50	l	1																																																																																																																																																																																																				
May 69 4 June 69 4		œ	0.38	16.60	3.28	17.33	2.96	4 .0	18.75	I	18.00	I	1																																																																																																																																																																																																				
June 69 4	13 0.80	12	0.75	16.71	1.73	17.50	1.76	0.83	17.33	2.75	17.50	2.17	0.01																																																																																																																																																																																																				
	-	10	0, 30	16.80	2.86	18.00	ю. 1.00	0.83	17.90	3.07	17.50	3.70	0.20																																																																																																																																																																																																				
- 60 Am	1	I	1	17.38	2.50	18.00	2.83	0.58	18.67	4.02	19.60	2.06	2.0																																																																																																																																																																																																				

* $N_{\rm grid} + N_{\rm index} < 10$.

68

- 126 -

TABLE III

Numbers of captures	
---------------------	--

	Grid	Index
Peromyscus maniculatus	414	233
Microtus oregoni	111	50
Sorex vagrans	64	6
Eutamius amoenus	27	19
Tamiasciurus douglasi	1	3
Glaucomys sabrinus	1	4
Neurotrichus gibbsi	2	1
Clethrionomys gapperi	1	0
Clethrionomys gapperi Trap "nights"*	2178	792

*See text.

A number of other species of small mammal were captured during this study and their distribution on the two types of trapping is shown in Table III. In this table a trap "night" refers actually to one trap set for 2 nights since an animal captured on 2 adjacent nights is only considered a single capture. Of the four most abundant species only the shrew, *Sorex vagrans*, has a strongly biased capture, as it dies in the grid traps, and thus cannot be trapped later. Except for shrews, the index method gave much the same species representation as the grid.

Discussion

If samples of animals captured by a line trapping method are to be related to samples captured on a grid of traps, it must first be demonstrated that both trap placements are sampling the same trappable population. This can be assumed if the population parameters determined from index line samples are in close agreement with those found on the grid as a whole. Characteristics such as numbers captured, sex ratios, weights, survival, and species composition can be easily compared but the parameter of density cannot be calculated by an index line because the sample is linear with unknown spatial properties.

The numbers of deermice captured over 2 nights on the index line correlated well with the numbers captured during 2 nights on the grid. Thus the index line could be used to determine fluctuations in the abundance of deermice in these forest environments. Moreover, the regression line allows estimation of the average density of animals on a hypothetical hectare grid from a sample taken on an isolated index line although the variation of such an estimate is large (Fig. 1). Stickel (1948) considered that single lines of traps could not be used as a reliable means of measuring the relative abundance of animals because she found that the numbers of animals caught in two types of habitat differed between grid and index. Figure 1 includes data from three different habitats, none of which shows any consistent differences in proportion.

Significant correlations and regressions were noted when sexes were treated separately. The differences between males and females is understandable as many studies of small mammals (excellently reviewed by Brown 1962, 1966) have shown home ranges of males are larger than those of females and this is also true for *P. maniculatus* (Allred and Beck 1963). However, the correlations and regressions allow for estimates of the numbers of males and females independently on the hypothetical hectare around a standard index line.

Despite the necessarily low numbers released from the index trapping, the survival rates determined from both samples are very similar even over differing periods of time (Table II). No explanation can be offered for the apparently different survivals on grid 1 from December to February. Considerable seasonal changes in mean body weights were seen on all areas and the weights differed between grids and sexes, but both the grid and index samples show similar mean weights. The *t*-test indicated no significant differences.

It would thus appear that the 100-m index trapping system can give an excellent indication of the population parameters over 1 hectare. This being so, index lines could be used to sample deermice populations over a considerably greater area for the same expenditure of time and energy that is involved in setting up and maintaining a single grid. It would obviously be necessary to test, occasionally, the representativeness of the index line by temporarily setting up a grid around it, especially if this technique of sampling is attempted for other species of small mammals, or in environments other than the coastal forest of British Columbia. However, the success of this investigation would suggest that the use of index lines as indices of population changes is a technique worthy of reinvestigation by workers studying small mammals.

Acknowledgments

We thank K. Casperson and J. Harling for their very considerable assistance in the grid trapping. Mr. J. Walters (Director, U.B.C. Research Forest) and his staff gave us full cooperation and assistance, and Dr. N. Gilbert advised us on statistical procedures. This study was financed by grants from the National Research Council of Canada.

- ALLRED, D. M., and D. E. BECK. 1963. Range of movement and dispersal of some rodents at the Nevada Atomic Test Site. J. Mammalogy, 44: 190-200. BRANT, D. H. 1962. Measures of the movements and
- population densities of small rodents. Univ. Calif. Publ. Zool. 62: 105-184.

BROWN, L. E. 1962. Home range in small mammal communities. In Survey of biological progress. Vol. IV. Edited by Bentley Glass. Academic Press, New York and London.

mammals, Symp. Zool. Soc. London, 18: 111-142.

- CAMPBELL, R. C. 1967. Statistics for biologists. Cambridge University Press, London. HANSSON, L. 1967. Index line catches as a basis of
- population studies on small mammals. Oikos, 18: 261-267.
- LINN, I. 1968. A theory of small mammal index trapping. Proc. 16th Int. Congr. Zool. I: 268, SADLEIR, R. M. F. S. 1965. The relationship between
- agonistic behaviour and population changes in the deermouse, *Peromyscus maniculatus* (Wagner). J. Anim. Ecol. 34: 331-352. SHAW, M. W., and C. MILNER. 1967. The use of insulat-
- ing covers for Longworth traps. J. Zool. 51: 546-547. STICKEL, L. F. 1948. The trap line as a measure of small mammal populations. J. Wildlife Manage. 12: 153-161.

APPENDIX 2

Mean N and Variance

ſ,

$$\vec{N} = \sum_{i=n_1}^{n_2} \vec{n}_2$$

$$\operatorname{Var} \widetilde{N} = \sum_{\substack{i=n_1}}^{n_2} a_i^2 \operatorname{Var} N_i + 2 \sum_{\substack{\Sigma \\ i=n_1}}^{n_2-1} \sum_{\substack{n_2-1 \\ i=n_1}}^{n_2} a_i^2 \operatorname{Var} N_i + 2 \sum_{\substack{\Sigma \\ i=n_1}}^{n_2-1} \sum_{\substack{n_2-1 \\ i=n_1}}^{n_2} a_i^2 \operatorname{Var} N_i + 2 \sum_{\substack{i=n_1 \\ i=n_1}}^{n_2-1} a_i^2 a_i^2 \operatorname{Var} N_i + 2 \sum_{\substack{i=n_1 \\ i=n_1}}^{n_2-1} a_i^2 a$$

 a_i is a weighting factor given to the i th sample period in computing \overline{N} where the sampling periods of the two N runs do not coincide. Its calculation is shown in the following theoretical example. Assume comparison of \overline{N} 's is required from week 62 to week 70 from area A sampled on weeks, 58, 63, 64, 68 and 75 and from area B sampled as week 58, 62, 66, 70 and 75. Estimates of N must be made for those weeks in which N determinations were not coincident.

$$\bar{N} \frac{A}{62-70} = 1/6 \left[\left(\frac{4}{5} \frac{N^{A}}{63} + \frac{1}{5} \frac{N^{A}}{58} \right) + \frac{N^{A}}{63} + \frac{N^{A}}{64} + \frac{2}{4} \frac{N^{A}}{68} + \frac{2}{4} \frac{N^{A}}{64} \right] + \frac{N^{A}}{64} + \frac{2}{7} \frac{N^{A}}{64} + \frac{1}{68} + \frac{2}{7} \frac{N^{A}}{64} + \frac{1}{68} + \frac{1}{68} + \frac{1}{68} + \frac{1}{68} + \frac{1}{68} + \frac{1}{75} \right]$$

$$= 1/6 \left[\frac{1}{5} \frac{N^{A}}{58} + \frac{9}{5} \frac{N^{A}}{63} + \frac{6}{4} \frac{N^{A}}{64} + \frac{62}{28} \frac{N^{A}}{68} + \frac{2}{7} \frac{N^{A}}{75} \right]$$

$$= 1/30 \frac{N^{A}}{58} + \frac{3}{10} \frac{N^{A}}{63} + \frac{1}{4} \frac{N^{A}}{64} + \frac{31}{84} \frac{N^{A}}{68} + \frac{1}{21} \frac{N^{A}}{75}$$

The fraction before each N value is its separate a_i (N.B. $\Sigma a_i = 1$) Similar calculations are then carried out for the B area with other N estimates inserted and \overline{N} calculated.

APPENDIX 3

.1

_

.

123 127 131 136 140 144 148 152 156 160 164 168 172 176			3 1 2 0 1 0 0 1 1 0 0 0
HANET 15 99 103 107 111 115 119	00000 00000 001110 00000		1 1 C 1 2 1 3
MALES 60 64 68 73 79 87 91 9	m D C O C O D O O O M O O O O M O O O O M O O O O O O O O	119 0	SUMS A(1.1) 0 0 1 1 5 3 2 SUMS N(1.1)

- 131 -

- ##

	MAL	L ES																									
EEK OF Ast ca	FAPTURE										N EK	C OF	CAPTUR	URE													2
	09	49	68 7	3 79	6	16 7	1 95	66	103	107	111	115 1	191	23 1	27 13	1 13	6 140	144	148	152	156 1	160 1	164 1	68 1	72 1	76 19	80
	<i>P</i>					`																					
90		-									d	9	d								d	d	d	0	0	0	0
40,		0									0	0	0								0	0 0	0	0	0 0	0 0	00
002		> c		•				> c			> c	> c	. .								> c	> c	> c	ی د	> c	> c) c
79		0	Į.			I I					0	0	0								0	0	0	ار	0	0	0
87	00	00	00	00	00	ς Έλους	о с	0 c	υc	о с	00	00	00	00		00	00	00	00	0 9	00	0	00	00	00	00	00
95		0							1	1	0	0	0			1					0	0	0	0	0	 >0	0
66		•									00	00	00								0	0 9	0 9	00	00	00	00
											╡╹	┥╸										-	┥╸				
		, o									0	~	, –								0	0	0	, 0	0	» o	0
115		q								·	d	q	10			Í					d	d	q	0	d	a	0
119		0 0									00	00	0 9								0 0	0 0	0 0	0 0	00	00	00
127		50									> o	> a	> a								00	, a	, a	20	, a	00	, a
131		0			•						0	U	0			1				1	0	0	0	0	0	0	0
140		0 C									00	00	00								00	00	00	0 4	0 9	۰ د	0
441	0	0									0	0	0			1					0	0	0	0	0	0	0
148	00	00									00	00	00	•							0	0-	00	00	0	0	00
15	0	0	Ľ	1	ł				1		10	10	0					1			40	┨┉		10	0	0	20
160	0	0									o i	0	0								0	0	n,	U.	0	0	0
401		d									0	9	00								d	9	d	-	0		 0,0
100	D C	- <									0 0	5 0) (00	0	00		0 0	0 4	00
227	d	29	1	- 1			- 1	ļ		- 1	bd	. 9	٦d		, 0	1	Í				۶d	۶۹	Þd	, a	ba	٦d	2 2
•		•	•	•	•		•	•	•	•		•	•			•		•	•	•		•	•				•
OT AL P	MARKED 0	e	\$ \$	60		9	•	60	S	60	6	-	11	10	5	8	ŝ	. m	4	n	m	+	g	e	9	ŝ	8
TOTAL (UNMARKE 6	0 m	~	5 10		1	un .	•		σ	+	n	2	-	2	1	5	-	-	~	s.	+	~	-	•	+	60
					•	•	•	•		•	• • •	•	••••		•		•	•		•••••••••••••••••••••••••••••••••••••••	•		•••••••••••••••••••••••••••••••••••••••		•		•
TOTAL C	ATCH																										
	•	•	12 1	1 18	•	5	5	4	1	11	13	10	13	11	-	с С	2	4	ŝ	5	80	80	80	10	2	с С	0
TOTAL .	RELEASE	ED .	1 0			a 	U			- 1	51	9	51		-	0	, P			u	a	a	a	9	01	0	G
	١																					5	٢	;			

Σ Ο Ο				
MEEK ALPHA M N + 4 SE PTURE 0.0 0.0 0.0 + 0.0				
PTURE 60 0.0 0.0 0.0 + 0.0	PHI + 4 SE	B+ 4 SE	LAMBDA + 4 SE	
PTURE 0.0 0.0 0.0 + 0.0	EEK OF CAPTURE			
0*0 0*0 0*0 0*0				
	0.600 + 0.876	0°0 + 0°0	0.0	
		+ 0		
C°C + D°ZI D°C /916/0 80 7 01 7 2 21 32 2 37 0 22	⊃ ⊂ +		1-833 + 0-091 2-050 + 0-170	
0.4444 10.57 23.8 4	0-875 + 2-650	3.2 + 30	• 153 +	
C.7500 18.00 24.0 +	+	9 + 65.	348 +	
0.3333 11.00 33.0 + 82.	+	+ 29	÷	
0-4444 6-57 14-8 + 20	+	5 + 13.	370 + 0.	
0.5714 9.56 16.7 +	+	6+9.	• 550 +	
0.6000 11.14 18.6 +	0.467 + 0.515	+	1.962 + 0.141	
<u>C+4706</u> 8-00 17-0 + 10	+ ¦	•	•]	
10.63 15.3 + 12	+	3.4 + 6.0	1.361 + 0.041	
0.7000 9.00 12.9 + 11	+	ين 4	÷	
C.8462 12.08 14.3 +	+	+	+	
15.0 +	+	+	1.192 + 0.015	
0.8182 14.50 17.7 + 17	• •	+	+	
0.8889 9.80 11.0 +	•••	+	• 224. +	
0.8000 7.33 9.2 + 14		1.5 + 3.9	.273 + 0.	
40 0.7143 5.00 7.0 +	•	+	+	
<u>C.7500 4.33 5.8 + 9</u>	d •	+	<u> 154 + 0 - </u>	
0.8000 4.00 5.0 + 6	+	•	••	
0.6000 3.00 5.0 +	+ 1.		•667 + 0.	
0.3750 5.00 13.3 + 23	• •	7 + 13	•500 + 0 •	
0.5000 5.60 11.2 + 14	•	9 + C	• •	
C. 7500 6.00 8.0 + 8.	+	0.0 + C.7	• 333 +	
0.3000 3.00 10.0 + 6	+	ט + כ	+0-0+ 799+	
0.6000 6.00 10.0 + 7	• 200 + 0•	+ 0.	• • • • •	
0.5556 5.00 9.0 + 1	0.0 + 0.0	0.0 + 0.0	•000 + 000•	
1800.20000.0 0.0 0.0 0.0	ບຸ + 	• •	0.0 + 0.0	
M IS TCTAL MARKED PCPULATION N IS TOTAL POPULATION				
PHI IS PROBABILITY OF SURVIVAL	na na antana ina ao amin'ny faritr'o ao amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o ami	and and a second s		
IN	JLATION			

15
-
Ξ
-
÷
S
•
٠
2
-
Z
æ
-
CN
Ļ
1
ŝ
0
260
Ξ
•
ä.
5
¥
3
F.
•

PERCMYSCUS AREA 1 CONTROL HANEY

MALES

NEEK		INST. DEI	DEATH RATE	SURVIVAL RATE	DIFUTION	RATE
60	-0.511 (-1	01 170.			(0.0 TO	
49	-0.182 (-0	•913 TO	0.548)		66 TO 3.	934)
68	יי	1		668(0.139 TO 1	4 (0.770 ID 2.	4781
73	<u>-</u>			C.955(0.388 TO 1.530)	(0.731 TO 2.	506)
61	-0.067 (-1	-581 TO	-	935(481 TO	404 TO	744)
87	-0.492 1-4		٩	611(***** 70 2	(-2.432 TD 7	.127)
16	[-2	.748 TO	0	411(352 T0 1	(-1.331 TO 3.	.581)
55	-0.191 (-0	• 548		826(0.201 T0 1	(-0.133 TD 2.	872)
99	-0.334 (-1		٩	716(0.063 TO 1	1 0.525 TD 2.	576)
103	-0.762 (-1	.866 TO		.C49 TO 0	TO 3.	462)
107	-C. 470 (-1	.322 TO		625(0.092 T0 1	(0.849 TO 2	040)
111	-0-486 [-1	. 363		615(0.076 70 1	(0.548 TO 2	175)
115	0.007 (-0	•032	0.0461	007(0.568 T0 1	(0.639 T0 1	567)
119	-0.030 (-0	• 398		σ	(0.813 T0 1.	3571
123	0-1 110-0-	197		ጣ	1 0.695 ID 1.	6901
127	[-]	•685		097 TO 1	(0.558 T0 1	537)
131	1	.452	0	104 70 1	(0.529 TO]	8231
136	-0.511 [-1	01 170 -	٩	276	(0.290 TO 2	.256)
140		.862 TO	0	- 162	TO 2.	351)
144	-0.288 (-1	• 4 4 2	ŏ	116	(0.299 T0 2.	(600-
148	1-1 113-0-	<u>01 176-</u>		0.6CC(276 TO 1.476)	2	1666
152	0.0 (-1	•265 TO		265 TO 2		337)
156	L	•0.78	0	279 TO 1	(-0.986 TO 3	•986)
160	-0.470 I-1	•565.	a 	060	(C. 097 TD 2	189)
164	[-2	.807	0.845)	310 TO 1.	(-1.550 TD 8.	
168	-511 (-	• 244	0	020	861 TO 2.	472)
172		- 958	d	-132 70 1.	634 TO 2.	966)
176	0.0	• 10	(0.0		0 (5.000 TO	(000
180	0 0 0 0	•	0.0	0	10	0.0)

					I																								
	FEM	FEMAL ES																							1		İ		
9	60 64	4	8 73	61 8	α Ο	6 1	1 6	6	9 10	3 107		115	=	9 123	127	131	136	140	144	148	152	156	160	164	168	172	176	180	
60	o	ra I	0	0	o		0	a	G		- C																		
64	0	0		_		0		0						İ					l										~
6 9 7 9	00	00	00		0	00		00																					0.7
62				1		1						ļ	ł		1	ł	4.		1	:	1	Ì		4	1	:			<u>،</u>
81	00	00			00	00		U	00		, 1 -																		0.0
95	-	-			10	10		0					1				İ.			}				1					
66	0 9	0		00	00	00		00	00	ب ر																			0.0
107	0	0		0	0	0	1	a	0	50	1	Į.	ł		-			1	:	1	l	•	1	:	l.		:		0
111	00	00		00	00	0.		00	00	υc			-																6
611	0	-		-	0			0	0			1	1	-			1											1	
123	00	0		00	0.	00		00	00	00					-														00
131	0	0		0	0	0		0	0	0			1	-	i	1	•	í.		1	-	1	-	1	•	1		:	20
136	0 0	00		00	00	0 L		00	00	0 0							•												00
144	0	0		0	0	0	Į	0	0	<u>ں</u>		ļ	[1												0
148	9 G	00		00	00	00	i	5 6	o a	0 4																		ļ	- 0
156	¢ c	00	00	00	00	00	00	00	00	υo	00	00	00	00	00	00	00	00	00	00	00		00	20		0-		00	00
164	٩	, 9		d		۰d		, d					- (1												d
168	0	0		0	0	0		0	0	0																			o
172 176	• •	٥d	Ì	00	υd	υa	00	00	00	: ت 0			÷								Ļ			i	i I		1		- - -
•	•	•			•	•		•	•		•	•	•		:	•	•			•		•	•	•				:	:
THE SUMS	I V S	50	0	0	m	-	4	-	-	U	-	2	-	1	-	-	2	1	-	-		0	0		0	0	~	0	
THE SUMS	S NLI		•		•	•	•						•	•					•	•	•			•					
									•																				

- 135 -

	FEMALES	LES																									
EK OF St captur	URE										N U U U	L L	CAPTU	RE						l i		1		1			
9(0 64	68	73	62	87	16	95	99 1	103 1	107 1	1 11	15 1	19 12	23 12	27 13	11 13	6 14	0 14	4 I	8 152	156	160	164	108	2	2	
60 (1		1						q	9	d				1				i		1	i i	1		!	ł	
48										00		00															
-	1								ا د	9-	90	0	1		1	1	1			1				·			
-									υd	00	00	с, с										i		i		1	ł
91 6									50	0	0	0		1		1	1										
0.0									ه ه	0 10	0 0	٥a									1						1
		1			1		1	ł	00	00	~ 0	0-															
111		1							, دا ا	0	0	0				1								1.		!	
									00	00	000	000					•										
	1	1	1						40	90	90	•		i i	1					Į.			1				
									00	00	00	00					Ì				1						1
144	000		000 000	00	00	00	00	00	00	00	00	00	00	000	000	000	000	000	000	noc	0 9 0	000 00-	0 0 0	0 U O	000	000	000
1.									00	do	90	0			1			1						-			
									υç	00	00	00							1				.		:	ł	
								1	0	0	0	0	•														
					1				- 9	⊳ d	Þ	,	. 4														1
		•		•		•		•	•	•	•	•	••••	•	••••	•	•		•	•	•	•	•				
AL MAR	N N N	9	4	80	m	S	v	~	ų	Q	~	2	10	14	12	æ	v	v	e		~	8	8	2		۴ ا	•
TOTAL UNM	ARKE 3	0~	4	2 13		•	~	Ē		~	-	3	4	-	-	~	-	-	-	-	7	e j	8	N -	en en		60
				•	•	•	•	•		•	•	•	•	•			•		:			•	:	•		•	•
TOT N CA	ICH 3 1	0	8	0 2		11	8	10	œ	F	1	=	14	15	13	10	~	~	+	•	e	5			5	0	1
TOTAL RE	LEASED	ġ														1						ų	•			0	

- 136 -

FK ALPHA N + 4 SE PHI + 4 SE B+ 4 SE LAMBDA + 4 SE 60 0.0	FEK ALPHA N 4 SE PHI 4 SE LAMBDA 4 10 0.0 <th>FK ALPHA N 4 SE PHI 4 SE B+ 4 SE LMBUA + 4 60 0.0 <td< th=""><th>PERCRYSCUS Esmarts</th><th>T ANEN T</th><th></th><th></th><th>· · · ·</th><th></th><th></th><th></th><th></th><th></th><th></th></td<></th>	FK ALPHA N 4 SE PHI 4 SE B+ 4 SE LMBUA + 4 60 0.0 <td< th=""><th>PERCRYSCUS Esmarts</th><th>T ANEN T</th><th></th><th></th><th>· · · ·</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	PERCRYSCUS Esmarts	T ANEN T			· · · ·						
K ALPHA N 4 SE PHI 4 SE LAMBDA 6 0	K ALPHA N N 4 SE LAMBDA<+5	K ALPHA N + 4 SE PHI + 4 SE B+ 4 SE LAMBDA + 5 60 0.0	LENAL CO										
MEK DF CAPTURE 60 0.0 <th>WEEK DF. CAPTURE 69 0.0 0</th> <th>WEEK D D0 0.0 <th< th=""><th>H EEK</th><th>ALPHA</th><th>X</th><th></th><th>4</th><th>IHd</th><th>S</th><th>+</th><th>S</th><th>AMBD</th><th></th></th<></th>	WEEK DF. CAPTURE 69 0.0 0	WEEK D D0 0.0 <th< th=""><th>H EEK</th><th>ALPHA</th><th>X</th><th></th><th>4</th><th>IHd</th><th>S</th><th>+</th><th>S</th><th>AMBD</th><th></th></th<>	H EEK	ALPHA	X		4	IHd	S	+	S	AMBD	
60 0.0 <td>60 0.0<td>60 0.0</td><td></td><td></td><td></td><td></td><td>. A</td><td>Ч Ч</td><td>APTURE</td><td></td><td> Manufactory of the state of the</td><td></td><td>and a subscription of the subscription of</td></td>	60 0.0 <td>60 0.0</td> <td></td> <td></td> <td></td> <td></td> <td>. A</td> <td>Ч Ч</td> <td>APTURE</td> <td></td> <td> Manufactory of the state of the</td> <td></td> <td>and a subscription of the subscription of</td>	60 0.0					. A	Ч Ч	APTURE		 Manufactory of the state of the		and a subscription of the subscription of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60 0.0 <td>60 0.</td> <td>RE</td> <td></td>	60 0.	RE										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64 0.5000 3.00 10.0 0.0 0.625 0.685 5.0 0.0 2.003 0.0 73 0.55000 5.00 10.0 6.2 0.505 0.565 0.0 2.625 0.0 87 0.7500 5.00 10.0 6.2 1.3 1.3 0.516 2.625 0.0 2.625 91 0.7500 5.00 10.0 6.2 13.7 $11.2.7$ 1.145 1.248 0.522 13.7 92 0.7500 4.00 14.01 12.7 1.145 1.240 0.0 2.625 1.2496 93 0.7500 4.07 12.44 11.55 0.1510 2.14 5.3 1.246 90 0.7500 4.07 12.44 11.55 0.4551 0.759 1.274 90 0.7500 4.07 10.1 1.145 0.755 0.651 0.715 910 0.7500 4.07 10.1 0.755 0.657 4.7 1.279 0.7500 4.75 11.5 0.755 0.657 4.3 9.4 1.714 111 0.5067 3.75 11.5 0.755 0.756 1.75 1.756 1111 0.5067 3.75 10.455 0.657 4.3 9.4 1.1144 127 0.7525 0.7525 0.6657 4.3 1.7756 1.7756 1127 0.7525 0.7525 0.657 1.246 1.045 1.172 123 <	64 0.3000 3.00 10.0 0.0 0.00 0.0 <th0.0< th=""> 0.0 0.0 0.0</th0.0<>	0	0.0	0.0	+ 0•0	•	1.000				+	9
0.5000 4.00 8.0 6.2 C.625 9.0685 5.0 0.0 2.000 2.000 2.625 9.0 0.5000 5.00 10.0 6.7 0.380 6.056 13.0 10.0 2.625 9.0 0.5000 5.00 10.0 6.7 0.380 6.556 1.186 10.0 0.7500 7.00 9.3 14.9 C.778 0.566 3.0 10.7 1.886 9.0 0.7500 16.0 12.4 0.555 0.557 0.567 9.1 1.256 1.259 1.256 1.259 1.256 1.259 1.256 1.259 1.256 1.259 1.256 1.259 1.256 1.259 1.256 1.259 1.256 1.259 1.256 1.256 1.256 1.256 1.259 1.256 1.259 1.256 1.256 1.256 1.256 1.259 1.256 1.256 1.256 1.256 1.256 1.256 1.259 1.256 1.256	68 0.5000 5.0 10.0 6.2 6.625 0.6855 5.0 10.0 2.625 0 73 0.55000 5.00 10.0 7.4 0.333 0.506 13.0 0.0 2.200 0.00 2.625 0 91 0.45456 6.02 13.7 7.25 1.145 1.240 3.0 15.22 11.990 0 91 0.45455 6.02 13.7 22.57 0.542 0.189 0.0 2.3 8.7 1.224 1.377 92 0.7500 8.07 112.4 0.755 0.6657 9.48 0.700 2.3 8.7 1.224 1.777 101 0.5956 0.605 12.4 12.4 0.755 1.224 1.224 0.777 1.274 1.274 1.274 1.274 1.274 1.277 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.274 1.276 1.275 1.1777	68 0.5000 5.0 0.0 2.000 4.00 8.0 2.000 4.00 2.500 4.00 2.500 4.00 2.500 4.00 2.500 4.00 2.500 4.00 2.500 1.333 4.01 1.3		0.3000	3.00	+ 0-01	- 1	0.400	+ 0.620	4 0 4	0.0	+ 000-	_
0.5000 5.00 10.0 6.7 0.800 0.516 2.3 8.4 1.333 9.6 0.7500 7.00 9.3 14.9 6.778 0.333 0.67 1.00 2.625 1.186 1.224	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73 0.5000 5.00 10.0 6.7 0.500 2.525 8.4 1.30 9.0 2.525 8.4 1.523 1.133 2.565 0.0 2.565 1.133 2.565 1.133 2.565 1.135 1.133 1.523 1.133 1.523 1.1234 0.565 8.4 1.155 1.1234 0.565 8.4 1.155 1.1234 0.565 8.4 1.155 1.1234 0.565 8.4 1.155 1.1234 0.565 8.4 1.1234 1.2345 1.1234 0.55 1.246 1.256 1.1234 0.55 1.1246 1.256 0.651 0.715 2.1 5.3 1.1234 0.56 1.1256 1.1256 0.557 8.75 1.256 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 1.011 0.756 1.011 0.756 1.011 0.756 1.011 0.756 1.011 0.756 1.011 0.756 1.011 0.756 1.011 0.756 1.011 0.756 1.011 0.756 <t< td=""><td></td><td>0.5000</td><td>4.00</td><td>8.0 +</td><td></td><td>C. 625</td><td>+ 0.685</td><td>÷ 2•0 +</td><td>0.0</td><td>+ 000</td><td></td></t<>		0.5000	4.00	8.0 +		C. 625	+ 0.685	÷ 2•0 +	0.0	+ 000	
0.35810 8.00 21.0 7.4 0.333 0.9216 2.3 8.4 1.145 1.0.7 1.866 1.0.7 0.4545 0.570 7.00 9.3 12.4 1.145 1.240 3.0 15.2 1.190 9 0.7500 13.7 12.4 1.145 1.240 3.0 15.2 1.190 9 0.7500 13.6 12.4 1.145 0.655 9.685 4.1 2.9 1.1254 9 0.7500 13.6 10.01 11.0 11.4 11.5 0.655 9.685 1.240 3.3 1.2174 1.2164 0.5000 8.7 17.5 15.4 0.607 0.557 8.8 9.4 1.2144 9.7 0.5001 9.44 14.8 11.3 0.645 9.657 1.2144 9.4 1.239 9.4 0.5010 9.4 14.8 11.3 0.645 9.453 1.239 9.4 1.239 1.239 1.239 </td <td>79 0.3810 8.00 21.0 7.4 0.333 0.9216 2.3 4 10.7 1.886 0.00 87 0.7500 7.00 9.3 14.9 0.7510 7.0 9.3 1.1224 0.522 0.523 0.60 0.7 1.224 1.224 0.552 0.525 0.652 0.652 0.525 0.652 0.525 <th0.525< th=""> 0.525 <th0.525< td=""><td>79 0.33010 8.00 21.3 7.4 0.3310 8.00 21.3 1.135 1.125 1.135 1.125</td><td></td><td>0.5000</td><td>5.00</td><td>10.0+</td><td></td><td>0.800</td><td>+ 0, 506</td><td>13.0 +</td><td>0.0</td><td>+ 670 •</td><td>_</td></th0.525<></th0.525<></td>	79 0.3810 8.00 21.0 7.4 0.333 0.9216 2.3 4 10.7 1.886 0.00 87 0.7500 7.00 9.3 14.9 0.7510 7.0 9.3 1.1224 0.522 0.523 0.60 0.7 1.224 1.224 0.552 0.525 0.652 0.652 0.525 0.652 0.525 <th0.525< th=""> 0.525 <th0.525< td=""><td>79 0.33010 8.00 21.3 7.4 0.3310 8.00 21.3 1.135 1.125 1.135 1.125</td><td></td><td>0.5000</td><td>5.00</td><td>10.0+</td><td></td><td>0.800</td><td>+ 0, 506</td><td>13.0 +</td><td>0.0</td><td>+ 670 •</td><td>_</td></th0.525<></th0.525<>	79 0.33010 8.00 21.3 7.4 0.3310 8.00 21.3 1.135 1.125 1.135 1.125		0.5000	5.00	10.0+		0.800	+ 0, 506	13.0 +	0.0	+ 670 •	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 0.7500 7.00 9.3 14.9 0.778 0.7842 0.1681 0.1221 10.07 1.007 1.007 1.256 0.1222 1.2124 1.256 1.226 1.226 1.226 0.7500 1.007 1.226	87 0.45545 6.22 3.7 14.9 0.475 6.248 3.0 15.2 11.900 0.5 99 0.45545 6.02 12.4 12.5 0.5542 6.189 2.3 8.7 1.254 0.5 90 0.7500 3.67 12.4 12.4 0.5542 6.189 2.3 8.7 1.255 1.256 1.266 1.266 1.266 1.266 <td></td> <td>0-3810</td> <td>8.00</td> <td></td> <td></td> <td>0.333</td> <td>+ 0.516</td> <td>2.3 +</td> <td>αie</td> <td>+ F5E.</td> <td>0.020</td>		0-3810	8.00			0.333	+ 0.516	2.3 +	αie	+ F5E.	0.020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 0.4575 0.422 13.7 12.5 0.4575 0.422 13.7 12.5 0.525 0.6551 0.7150 3.07 1.2256 0.075 8.7 1.2256 0.0750 8.7 1.2256 0.0750 8.7 1.2256 0.0750 8.7 1.2256 0.0750 8.7 1.256 0.0750 8.7 1.256 0.0750 8.7 1.256 0.0750 8.7 1.256 0.0750 8.7 1.256 0.0750 8.7 1.256 0.0750 8.7 1.268 1.200 10.11 0.7500 8.7 1.268 0.0517 0.6780 0.0776	91 0.4945 6.02 13.7 12.6 0.451 0.7140 2.0 8.7 1.256 0 93 0.7000 3.67 12.4 12.6 0.651 0.715 2.0 8.7 1.256 0 0.7190 1.276 1.256 0 0.719 2.0 1.27 1.256 0 0.719 2.0 1.27 2.0 1.27 2.0 1.27 0 0.714 0 0.714 0.717 0.201 1.275 0.717 0.7 0.7 0.7 0.7 0.001 0.714 0.714 0.717 0.7		0.1500	00*1	+ " • • •	14.9	C. 18	+ C. 908	* 0 • 0	s١	• 000	0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	930.7000 3.07 12.4 12.4 $1.2.6$ 0.625 0.7187 2.1 5.3 1.225 1.256 0.7137 0.7157 0.7757 0.7000 0.775 11.75 11.56 0.6607 0.6577 0.88 0.6677 0.88 1.648 1.2414 0.701 112 0.53004 9.44 11.56 10.64 1.011 0.0657 0.733 1.214 2.001 0.714 112 0.60731 11.607 15.44 10.011 0.0657 0.733 1.214 2.001 1.014 1127 0.6971 8.80 10.11 0.6677 0.733 1.214 2.00 1.014 1127 0.8571 8.80 10.113 0.7932 1.214 1.0256 1.0743 1.224 1.0274 128 0.6677 5.33 1.0114 0.7703 1.0256 1.0274 1.0143 1.0274 1.0274 1.0274 129 0.8571 8.80 10.73 1.0143 1.0274 0.7012 1.0274 1.0274 1.0274 127 0.8571 8.80 10.73 0.732 1.0456 1.0464 0.7321 1.0274 1.0274 128 0.8571 8.80 10.72	97 0.47500 4.67 12.4 12.5 0.655 4.0 4.7 5.3 1.256 0.737 103 0.5500 7.60 10.1 11.5 0.655 4.0 5.3 1.256 0.6 111 0.5505 0.634 9.4 14.8 12.9 0.6795 4.7 2.9 1.737 0.6 112 0.5505 9.4 14.8 12.9 0.6988 0.465 3.3 6.8 1.414 0.714 113 0.5364 9.4 14.8 12.9 0.818 0.465 3.3 6.8 1.414 0.717 0.708 1.208 1.208 1.414 0.707 0.717 0.717 0.717 0.717 0.717 0.717 0.717 0.717 0.717 0.717 0.717 0.728 1.114 0.717 0.717 0.717 0.728 1.214 1.114 0.717 0.717 0.728 1.229 1.214 1.114 0.717 0.728 1.123 1.229 1.217 1.214 1.114 0.717 0.728 1.1231 1.2129		0.4545	6.22	13.7 +	12.1	1.145	+ 1.240	+ + 	ń o	• 120 •	0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000 0.001	9.9 0.7000 7.60 10.1 1.2.5 0.601 1.2.4 0.601 1.2.4 0.601 1.2.4 0.601 0.1.4 1.2.5 0.657 8.8 9.7 2.000 0.01 111 0.5600 8.75 17.5 12.9 0.818 0.600 0.557 8.8 9.7 2.000 0.01 112 0.56364 9.44 14.8 11.2 0.601 0.01 8.4 0.7 1.414 0.077 0.0 127 0.9333 15.17 16.3 10.1 0.898 0.433 1.1 2.0 1.007 4.6 1.114 0.077 <td< td=""><td></td><td>0.000</td><td></td><td>1</td><td>2.2</td><td></td><td>T UA 107</td><td></td><td>0.0</td><td></td><td></td></td<>		0.000		1	2.2		T UA 107		0.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103 0.7500 0.001 10.01 0.657 8.8 9.7 2.000 0.669 111 0.5606 8.75 11.60 11.61 0.657 4.3 9.4 1.414 0.606 112 0.6364 9.44 14.8 12.9 0.8118 0.657 4.3 0.617 2.9 0.617 0.57 2.001 1.014 0.007 0.567 4.3 1.014 0.074 0.6 1.017 0.667 0.617 0.57 0.68 1.024 1.011 0.077 0.07 3.3 1.027 1.024 1.0147 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 1.017 0.077 0.077 1.077 0.077 <	103 0.7500 7.00 10.0 0.7500 7.0 2.000 7.0 111 0.5605 8.75 11.5 15.4 10.4 1.4 4.3 9.4 1.4 115 0.6364 9.44 14.8 12.9 0.818 0.6605 5.3 5.4 1.074 6 115 0.6364 9.44 14.8 12.9 0.818 0.6605 5.3 5.8 1.414 9.4 127 0.6364 9.44 14.8 11.3 0.645 9.582 1.24 10.74 1.24 127 0.9333 15.17 10.34 11.1 0.453 2.3 4.3 1.114 131 0.8571 8.30 10.3 11.7 0.645 9.582 1.014 1.017 1.239 144 0.7550 4.33 5.4 11.7 0.453 1.266 1.231 4.3 1.231 4.3 1.114 6.7 146 0.7550 4.3 1.127 0.456 1.346 1.033 1.231 4.3 1.231 4.		0.000			•			• • •	•	• •	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101 0.5952 0.00 0.679 0.701 1.007 1.077 0.701 0.701 0.701	111 0.57000 8.75 15.4 0.670 0.605 4.3 9.4 1.414 0 112 0.5500 8.75 15.4 10.4 0.605 0.57 4.3 9.4 1.414 0 113 0.5364 9.44 14.8 12.9 0.818 0.465 3.3 6.8 1.014 0.77 0 1		0041-0	1.60		•	670°D		+		ان ا م	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111 0.5000 8.75 17.5 15.4 0.600 0.567 4.3 9.4 1.414 115 0.70364 9.44 14.8 12.9 0.818 0.465 3.3 6.8 1.268 123 0.7933 15.17 16.3 10.4 10.11 0.645 7.652 3.3 6.8 1.077 127 0.9231 15.17 16.3 11.0 5.44 11.0 5.432 1.1 2.0 127 0.9231 15.17 16.3 11.0 5.45 10.1 0.8712 2.3 3.3 3.4 1.077 131 0.8571 8.80 103 113 0.645 7.582 2.3 3.3 1.077 4.6 135 0.8571 8.80 103 117 0.850 11.043 11.2 4.6 1.1131 136 0.8571 8.80 103 117 0.850 1.026 1.073 4.5 1.131 148 0.75500 4.33 5.0 0.833 2.575 1.9 11.2 1.2260 152 0.6667 5.00 6.7 128 0.833 2.557 42 1.236 152 0.6667 5.00 6.0 4.0 1.039 2.5 42 1.236 152 0.5607 5.00 1.0667 0.0876 1.070 2.00 0.02 2.000 152 0.5607 0.0876 1.070 5.0 0.07 0.0 <	111 0.5000 8.75 17.5 15.4 0.600 0.567 4.3 9.4 1.444 0 123 0.9334 9.44 14.8 10.1 0.898 0.433 1.1 2.0 1.0014 0.055 3.3 6.8 1.264 0 127 0.9333 15.17 16.3 10.1 0.898 0.433 1.1 2.0 1.017 0 127 0.9333 15.17 16.3 11.1 0.859 1.045 3.4 1.114 1.077 131 0.8070 9.41 11.1 0.850 1.045 1.065 3.3 1.239 1.077 134 0.8571 8.80 10.3 11.1 0.850 1.045 1.02 1.071 <td< td=""><td></td><td>0.5425</td><td>0000</td><td>+ 0 • 1</td><td></td><td></td><td>+ 0.05 F</td><td>+ D D</td><td>2.1</td><td>•</td><td>U-111</td></td<>		0.5425	0000	+ 0 • 1			+ 0.05 F	+ D D	2.1	•	U-111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115 0.6364 9.44 14.8 12.9 0.818 0.465 3.3 6.8 1.0264 1.0244 123 0.9233 15.17 16.2 10.4 10.4 10.4 10.4 10.4 1.011 0.0753 3.3 1.074 1.074 127 0.9231 13.63 14.8 11.0 15.4 11.01 15.4 11.3 0.6454 7.33 1.114 2.0 127 0.9231 13.63 14.8 11.1 0.6454 10.41 1.113 2.33 1.239 9.64 136 0.8571 8.80 10.3 11.1 0.6454 0.701 1.2 4.3 1.239 9.6 136 0.8571 8.80 10.3 11.1 0.6504 1.043 1.02 4.3 1.239 9.6 140 0.8571 8.80 10.3 11.1 0.6504 1.043 1.02 2.3 1.239 9.6 140 0.8571 8.80 10.3 11.1 0.6464 0.836 1.063 1.234 1.114 152 0.7500 4.33 5.7 13.7 0.4644 0.836 1.234 1.236 144 0.7550 5.00 1.2667 1.039 2.5644 9.6876 1.039 2.5644 152 0.6677 1.0687 1.0687 1.039 2.5644 0.00 2.0044 152 0.6677 0.8334 2.575 1.29 1.2366 2.0064 0.007	115 0.6364 9.44 14.8 12.9 0.818 0.465 3.3 6.8 1.268 1.074 0 113 0.7143 11.00 15.17 16.3 11.01 0.6958 0.7143 1.017 0 127 0.9233 15.17 16.3 11.01 0.645 9.582 0.1 2.0 1.077 0 127 0.9233 15.17 16.3 11.1 0.770 0 3.3 1.239 0 131 0.8070 9.43 11.3 0.6450 1.043 1.1 2.0 1.071 0 134 0.7500 9.3 5.8 9.4 1.3 1.239 4.3 1.231 0 155 0.7500 4.33 5.8 9.4 1.3 6.3 1.231 6 1.231 6 1.231 6 1.231 6 1.231 6 1.231 6 1.231 6 1.231 6 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231 1.231		0.5000	8.75	17.5 +	٠	0.600	+ 0.567	4°3 +	4°	•	U.081
0.7143 11.00 15.4 \div 10.4 1.011 \div 0.075 0.7 \div 3.4 1.074 \div 0.074 \div 0.9333 15.17 16.3 \div 10.1 0.898 \div 0.433 1.1 \div 2.0 1.077 \div 0.9333 0.9231 13.63 14.8 \div 11.1 0.770 \div 0.701 1.2 \div 4.4 1.131 \div 0.9231 13.63 14.8 \div 11.1 0.770 \div 0.701 1.2 \div 4.4 1.131 \div 0.8571 8.80 10.3 \div 11.1 0.770 \div 0.701 1.2 \div 4.4 1.114 \div 0.8571 8.80 10.3 \div 11.7 0.850 \div 1.043 1.234 \div 1.234 \div 0.8571 8.33 5.8 \div 9.4 0.933 \div 1.968 1.3 \div 4.3 1.280 \div 0.7500 $\bullet.7500$ $\bullet.770$ 0.833 \div 1.468 1.3 \div $\bullet.3$ 1.231 \div 0.7500 $\bullet.770$ 0.833 \div 2.575 1.9 \div 1.280 \div $t.2300 \div$ $t.24.00$ $t.230 \div$ $t.230 \div$ 1.220 \div <td>119$0.7143$11.0015.410.11$0.055$$0.77$$3.4$$1.007$$1.074$$4.0$127$0.9333$15.1716.3$10.1$$0.6464$$0.6433$$1.11$$2.0$$1.077$$4.0$121$0.9231$13.6314.8$11.13$$0.6464$$0.701$$1.23$$4.6$$1.114$136$0.8571$$8.80$$10.3$$11.17$$0.850$$1.0433$$1.02$$4.6$$1.114$136$0.8571$$8.80$$10.3$$11.17$$0.8570$$1.0433$$1.02$$4.6$$1.114$140$0.8571$$8.80$$10.3$$11.17$$0.833$$2.575$$1.9$$4.3$$1.239$152$0.8571$$8.33$$5.8$$9.4$$0.833$$2.575$$1.9$$4.2$$2.000$152$0.6677$$1.0697$$2.06$$0.07$$2.000$$4.22$$2.000$156$0.4444$$4.00$$5.0$$1.009$$2.0$$4.0$$2.000$164$0.5700$$2.00$$1.000$$1.722$$4.0$$1.500$$2.000$168$0.5070$$3.00$$6.0$$1.000$$1.722$$4.0$$1.500$172$0.4444$$4.00$$5.0$$0.07$$0.0$$2.0$$0.0$169$0.5700$$2.0$$1.000$$2.0$$0.0$$2.000$$1.500$160$0.5700$$2.0$$1.000$$2.0$$0.0$$0.0$$2.250$<</td> <td>119 0.7143 11.00 15.4 10.4 1.011 0.055 0.7 3.4 1.074 4.0 123 0.9333 15.17 16.3 11.3 0.645 7.582 1.3 1.074 4.0 121 0.9333 15.17 16.3 11.3 0.645 7.582 1.3 1.237 1.231 1.2</td> <td></td> <td>0.6364</td> <td>9•44</td> <td>14.8 +</td> <td>٠</td> <td>0.818</td> <td>+ 0.465</td> <td>+ m ·</td> <td>6.8</td> <td>+</td> <td>250.0</td>	119 0.7143 11.0015.410.11 0.055 0.77 3.4 1.007 1.074 4.0 127 0.9333 15.1716.3 10.1 0.6464 0.6433 1.11 2.0 1.077 4.0 121 0.9231 13.6314.8 11.13 0.6464 0.701 1.23 4.6 1.114 136 0.8571 8.80 10.3 11.17 0.850 1.0433 1.02 4.6 1.114 136 0.8571 8.80 10.3 11.17 0.8570 1.0433 1.02 4.6 1.114 140 0.8571 8.80 10.3 11.17 0.833 2.575 1.9 4.3 1.239 152 0.8571 8.33 5.8 9.4 0.833 2.575 1.9 4.2 2.000 152 0.6677 1.0697 2.06 0.07 2.000 4.22 2.000 156 0.4444 4.00 5.0 1.009 2.0 4.0 2.000 164 0.5700 2.00 1.000 1.722 4.0 1.500 2.000 168 0.5070 3.00 6.0 1.000 1.722 4.0 1.500 172 0.4444 4.00 5.0 0.07 0.0 2.0 0.0 169 0.5700 2.0 1.000 2.0 0.0 2.000 1.500 160 0.5700 2.0 1.000 2.0 0.0 0.0 2.250 <	119 0.7143 11.00 15.4 10.4 1.011 0.055 0.7 3.4 1.074 4.0 123 0.9333 15.17 16.3 11.3 0.645 7.582 1.3 1.074 4.0 121 0.9333 15.17 16.3 11.3 0.645 7.582 1.3 1.237 1.231 1.2		0.6364	9•44	14.8 +	٠	0.818	+ 0.465	+ m ·	6.8	+	250.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	123 0.9333 15.17 16.3 10.1 0.8998 C.433 1.1 2.0 1.077 127 0.8231 13.63 14.8 11.1 C.770 10.4 4.6 1.114 136 0.8070 9.43 11.1 C.770 10.4 4.6 1.114 136 0.8571 8.80 10.3 11.1 0.6770 1.041 1.2 4.4 1.114 136 0.8571 8.80 10.3 11.1 0.6464 9.4 1.013 1.234 4.3 1.231 140 0.7500 4.33 5.8 9.4 0.464 0.835 1.536 1.231 1.231 148 0.7500 4.33 5.8 9.4 0.833 2.575 1.9 1.336 1.336 155 0.6667 5.00 5.7 0.233 1.089 2.5 4.4 1.333 1.236 156 0.5700 5.00 5.7 0.405 1.008 2.5 1.9 1.350 1.350 156 0.5700 10.00		0.7143	00-11			11011	+ 0.055	0.7 +	4.6	•	0.003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	127 0.9231 13.63 14.8 11.3 0.645 7.582 2.3 3.3 1.239 131 0.8571 8.80 10.3 11.1 0.857 1.2 4.4 1.131 136 0.8571 8.80 10.3 11.7 0.856 1.043 1.0 4.6 1.113 140 0.8571 8.83 5.8 9.4 0.936 1.3 4.3 1.231 140 0.7550 5.00 6.7 12.8 0.833 2.575 1.9 1.231 4.3 152 0.6667 5.00 6.7 12.8 0.833 2.575 1.9 1.231 4.3 152 0.6667 5.00 7.5 12.8 0.833 2.575 1.9 1.230 4.2 2.000 5.00 5.000 5.000 2.500 0.350 1.350 4.2 2.000 5.000 5.000 2.500 1.350 4.02 1.350 4.02 1.350 4.02 1.350 4.02 1.350 4.02 1.500 2.000 1.500 1.500		•	15.17			0.898	+ 0.433	1.1 +	•	+ 220	0• 002
0.8000 9.43 11.8 11.1 $C.770$ 0.701 1.2 4.4 1.131 0.8571 8.80 10.3 11.7 0.850 1.043 1.06 4.6 1.114 0.8571 8.80 10.3 11.7 0.850 1.043 1.06 4.6 1.114 0.8571 8.33 5.7 13.7 0.650 1.043 1.231 4.6 1.114 0.7500 4.33 5.8 9.4 0.6334 1.466 1.33 4.23 1.231 0.7500 5.00 6.7 12.8 0.8334 2.575 1.23 1.231 0.6667 5.00 7.5 24.00 0.8334 1.089 2.55 4.22 2.000 0.6667 2.00 7.5 $2.4.00$ 0.8376 2.05 2.000 2.000 0.5000 4.00 7.0 0.876 2.00 0.00 2.000 2.000 <	131 0.8000 9.43 11.84 11.11 $C.770$ 0.701 1.22 4.4 1.131 136 0.8571 8.80 10.3 11.7 0.850 1.043 1.0 4.6 1.114 140 0.8571 8.80 10.3 11.7 0.850 1.043 1.22 4.6 1.114 140 0.8571 8.80 10.3 11.7 0.850 1.043 1.231 4.6 1.114 152 0.6667 5.00 6.7 12.88 0.833 2.575 1.9 11.8 1.250 152 0.6667 5.00 6.7 12.88 0.833 2.575 1.9 $1.1.8$ 1.250 152 0.6667 5.00 6.7 12.88 0.833 2.575 1.9 1.231 2.000 156 0.4000 8.7 1.268 0.833 2.575 1.9 1.230 2.000 156 0.4000 1.732 2.07 0.02 2.000 2.000 160 0.5000 1.732 1.000 2.000 2.000 172 0.4444 4.00 5.0 6.2 0.657 1.732 2.010 176 0.4286 6.50 1.000 2.00 0.0 2.333 1.000 176 0.4286 6.0 1.732 1.000 2.01 2.333 176 0.4286 6.50 1.000 0.0 0.0 0.0 0.0 176 0.4286 6.50 <t< td=""><td>131 0.8000 9.43 11.8 11.1 C.770 0.701 1.2 4.4 1.131 140 0.8571 8.80 10.3 11.7 0.850 1.043 1.0 4.6 1.114 140 0.8571 8.80 10.3 11.7 0.464 0.836 1.3 4.6 1.114 141 0.7500 4.33 5.9 9.4 9.836 1.466 1.3 4.5 1.280 152 0.6667 5.00 6.7 12.8 0.833 2.5575 1.9 11.8 1.350 152 0.6667 5.00 7.5 2.40 0.333 1.089 2.5 4.2 1.231 1.231 154 0.5700 4.0 8.7 0.0 2.000 2.000 2.000 1.500 2.533 2.000 1.500 2.500 2.000 1.500 2.500 2.000 2.500 2.500 2.000 2.500 2.000 2.500 2.500 2.500 2.500 2.500 2.500 2.600 2.500 2.600 2.500 2.600</td><td></td><td></td><td>13.63</td><td></td><td></td><td>C.645</td><td>+ 7.582</td><td>2•3 +</td><td>•</td><td>239 +</td><td>0.011</td></t<>	131 0.8000 9.43 11.8 11.1 C.770 0.701 1.2 4.4 1.131 140 0.8571 8.80 10.3 11.7 0.850 1.043 1.0 4.6 1.114 140 0.8571 8.80 10.3 11.7 0.464 0.836 1.3 4.6 1.114 141 0.7500 4.33 5.9 9.4 9.836 1.466 1.3 4.5 1.280 152 0.6667 5.00 6.7 12.8 0.833 2.5575 1.9 11.8 1.350 152 0.6667 5.00 7.5 2.40 0.333 1.089 2.5 4.2 1.231 1.231 154 0.5700 4.0 8.7 0.0 2.000 2.000 2.000 1.500 2.533 2.000 1.500 2.500 2.000 1.500 2.500 2.000 2.500 2.500 2.000 2.500 2.000 2.500 2.500 2.500 2.500 2.500 2.500 2.600 2.500 2.600 2.500 2.600			13.63			C.645	+ 7.582	2•3 +	•	239 +	0.011
0.8571 8.80 10.3 + 11.7 0.850 + 1.043 1.0 + 4.6 1.114 + 0.8571 8.33 9.7 + 13.7 0.464 + 0.836 1.3 + 4.3 1.280 + 0.8571 8.33 9.7 + 13.7 0.464 + 0.836 1.3 + 4.3 1.280 + 0.7500 4.33 5.8 + 9.4 0.933 + 2.575 1.3 + 6.3 1.231 + 0.7500 5.00 6.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.350 + 0.6667 5.00 7.5 24.0 0.333 + 1.089 2.5 + 4.2 2.000 + 0.6667 5.0 4.0 1.32 4.2 2.00 2.0 2.000 + 2.000 + 2.000 + 0.4400 2.00 4.0 6.2 0.4507 + 0.1770 2.0 0.0 2.050 + 0.4444 4.00 5.0 6.2 0.722 + 1.065 8.7 + 2.33 + 2.33 + 0.4444 4.00 5.0 0.0 0.0 0.0 0.23	136 0.8571 8.80 10.3 11.7 0.850 1.043 1.0 4.6 1.114 140 0.8571 8.33 5.7 13.7 0.464 0.836 1.3 4.5 1.280 144 0.7500 4.33 5.7 13.7 0.464 0.836 1.3 4.5 1.231 152 0.6667 5.00 6.7 12.88 0.833 2.575 1.9 11.8 1.350 152 0.6667 5.00 7.5 24.0 $C.333$ 1.0089 2.5 4.2 2.000 156 0.4000 7.5 24.0 $C.333$ 1.0089 2.5 4.2 2.000 156 0.5000 1.732 2.575 1.9 1.332 2.000 164 0.5700 4.0 1.732 4.0 1.333 2.000 166 0.5700 1.732 4.0 1.732 2.000 2.250 168 0.5000 1.772 0.0170 5.0 0.0 2.250 172 0.4444 4.00 5.0 6.2 0.722 1.005 2.251 176 0.4286 6.50 15.2 20.1 0.0 0.0 0.0 176 0.4286 6.50 1.006 0.0 0.0 1.615 117 0.4286 6.50 1.005 0.0 0.0 1.615 1176 0.4286 6.50 1.000 0.0 0.0 0.0 1176 <td>136 0.8571 8.80 10.3 + 11.7 0.850 + 1.043 1.0 + 4.6 1.114 + 1.280 + 1.280 140 0.8571 8.33 5.7 + 13.7 0.464 + 0.836 1.3 + 6.3 1.231 + 1.280 + 1.280 152 0.4667 5.00 6.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.231 + 1.231 + 1.280 152 0.4607 5.00 6.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.230 + 1.231 + 1.280 155 0.4000 5.00 7.5 + 24.0 0.333 + 2.575 1.99 + 11.8 1.530 + 1.590 156 0.4000 2.00 7.5 + 24.0 0.333 + 1.089 2.5 + 4.2 2.000 + 1.732 156 0.5000 4.09 4.9 1.000 1.732 4.0 + 13.3 2.500 + 1.500 164 0.5700 3.00 6.0 6.2 0.657 + 0.770 5.0 + 0.0 2.500 + 1.500 172 0.4444 4.00 5.2 1.005 8.7 + 22.1 2.333 + 1.615 176 0.4286 6.50 1.000 1.000 2.07 0.0 2.250 + 1.500 176 0.4286 6.50 1.000</td> <td></td> <td>0.8000</td> <td>9.43</td> <td>11.8 +</td> <td></td> <td>C. 770</td> <td>+ 0. 701</td> <td></td> <td>4.4</td> <td>131 +</td> <td>0.017</td>	136 0.8571 8.80 10.3 + 11.7 0.850 + 1.043 1.0 + 4.6 1.114 + 1.280 + 1.280 140 0.8571 8.33 5.7 + 13.7 0.464 + 0.836 1.3 + 6.3 1.231 + 1.280 + 1.280 152 0.4667 5.00 6.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.231 + 1.231 + 1.280 152 0.4607 5.00 6.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.230 + 1.231 + 1.280 155 0.4000 5.00 7.5 + 24.0 0.333 + 2.575 1.99 + 11.8 1.530 + 1.590 156 0.4000 2.00 7.5 + 24.0 0.333 + 1.089 2.5 + 4.2 2.000 + 1.732 156 0.5000 4.09 4.9 1.000 1.732 4.0 + 13.3 2.500 + 1.500 164 0.5700 3.00 6.0 6.2 0.657 + 0.770 5.0 + 0.0 2.500 + 1.500 172 0.4444 4.00 5.2 1.005 8.7 + 22.1 2.333 + 1.615 176 0.4286 6.50 1.000 1.000 2.07 0.0 2.250 + 1.500 176 0.4286 6.50 1.000		0.8000	9.43	11.8 +		C. 770	+ 0. 701		4.4	131 +	0.017
0.8571 8.33 9.7 + 13.7 0.466 + 0.836 1.3 + 4.3 1.280 + 3.3 0.7500 4.33 5.8 + 9.4 0.938 + $1.46E$ 1.3 + 6.3 1.231 + 1.231 + 1.231 + 1.231 0.7500 5.00 5.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.350 + 1.231 + 1.231 + 1.250 0.6667 5.00 5.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.350 + 1.350 + 1.250 0.6667 5.00 7.5 + 24.0 $C.333$ + 1.089 2.5 + 4.2 2.000 + 2.000 0.6607 5.00 7.5 + 24.0 $C.333$ + 1.089 2.5 + 4.2 2.000 + 1.350 0.6607 2.000 4.02 5.0 1.000 1.732 4.0 + 13.3 2.000 + 1.500 0.5700 4.00 8.0 + 18.6 $C.500$ + 1.000 2.0 + 0.0 2.20 + 0.0 2.260 + 1.500 0.4444 4.00 5.0 + 5.2 1.065 8.7 + 22.1 2.333 + 0.445 0.4444 4.00 5.0 + 0.0 0.0 0.0 0.0 1.615 + 1.615 0.4444 4.00 <th< td=""><td>140$0.8571$$833$$5.7$$13.7$$0.464$$0.836$$1.3$$43$$1.280$144$0.7500$$433$$5.8$$9.4$$0.933$$1.466$$1.3$$6.3$$11.231$152$0.6667$$5.00$$6.7$$12.8$$0.833$$2.575$$1.9$$11.8$$1.350$156$0.6667$$5.00$$7.5$$24.0$$0.833$$2.575$$1.9$$4.2$$2.000$156$0.6667$$5.00$$7.5$$24.0$$0.833$$2.575$$1.9$$4.2$$2.000$156$0.6667$$5.00$$7.5$$2.70$$0.876$$2.00$$2.000$160$0.5700$$4.0$$4.0$$1.732$$4.0$$13.3$$2.000$164$0.5700$$4.0$$1.772$$0.0710$$5.0$$6.0$$2.000$168$0.5700$$4.0$$1.732$$4.0$$1.3.3$$2.250$172$0.4444$$4.00$$5.0$$6.2$$0.722$$1.005$$8.7$$2.231$176$0.4286$$6.50$$15.2$$30.1$$0.0$$0.0$$0.0$$1.615$176$0.4286$$6.50$$15.2$$30.1$$0.0$$0.0$$0.0$$1.615$176$0.4286$$6.50$$15.2$$0.00$$0.0$$0.0$$0.0$$1.615$176$0.4286$$6.50$$1.000$$0.0$$0.0$$0.0$$0.0$$1.615$176$0.4286$</td><td>140 0.8571 8.33 5.7 + 13.7 0.464 + 0.836 1.3 + 6.3 1.280 + 1.280 144 0.77500 5.33 5.8 + 9.4 0.494 0.833 + 2.575 1.9 + 11.8 1.231 + 1.231 + 1.231 + 1.250 152 0.6667 5.00 6.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.231 + 1.250 + 1.000 156 0.4000 2.00 7.5 + 24.0 0.333 + 1.089 2.5 + 4.2 2.000 + 1.200 156 0.4000 2.00 7.5 + 24.0 0.4700 + 0.876 2.0 + 4.2 2.000 + 1.000 160 0.5500 4.00 8.0 + 18.6 0.770 2.0 + 6.9 1.500 + 1.500 172 0.4444 4.00 5.0 + 10.00 2.00 7.2 + 1.065 8.7 + 22.1 2.333 + 1.615 176 0.4286 6.50 15.2 + 30.1 0.0 + 0.0 0.0 2.250 + 1.665 1.615 + 1.615 176 0.4228 0.00 0.00 0.00 0.00 2.250 + 1.665 1.615 + 1.615 1.615 + 1.615 176 0.4228 0.00 0.00 0.00 0.00 1.615 + 1.615 1.615 + 0.00 1.615 + 0.00</td><td></td><td>0.8571</td><td>8.80</td><td>10.3 +</td><td></td><td>0.850</td><td>+ 1.043</td><td>1.0 +</td><td>٠</td><td>114 +</td><td>0.020</td></th<>	140 0.8571 833 5.7 13.7 0.464 0.836 1.3 43 1.280 144 0.7500 433 5.8 9.4 0.933 1.466 1.3 6.3 11.231 152 0.6667 5.00 6.7 12.8 0.833 2.575 1.9 11.8 1.350 156 0.6667 5.00 7.5 24.0 0.833 2.575 1.9 4.2 2.000 156 0.6667 5.00 7.5 24.0 0.833 2.575 1.9 4.2 2.000 156 0.6667 5.00 7.5 2.70 0.876 2.00 2.000 160 0.5700 4.0 4.0 1.732 4.0 13.3 2.000 164 0.5700 4.0 1.772 0.0710 5.0 6.0 2.000 168 0.5700 4.0 1.732 4.0 $1.3.3$ 2.250 172 0.4444 4.00 5.0 6.2 0.722 1.005 8.7 2.231 176 0.4286 6.50 15.2 30.1 0.0 0.0 0.0 1.615 176 0.4286 6.50 15.2 30.1 0.0 0.0 0.0 1.615 176 0.4286 6.50 15.2 0.00 0.0 0.0 0.0 1.615 176 0.4286 6.50 1.000 0.0 0.0 0.0 0.0 1.615 176 0.4286	140 0.8571 8.33 5.7 + 13.7 0.464 + 0.836 1.3 + 6.3 1.280 + 1.280 144 0.77500 5.33 5.8 + 9.4 0.494 0.833 + 2.575 1.9 + 11.8 1.231 + 1.231 + 1.231 + 1.250 152 0.6667 5.00 6.7 + 12.8 0.833 + 2.575 1.9 + 11.8 1.231 + 1.250 + 1.000 156 0.4000 2.00 7.5 + 24.0 0.333 + 1.089 2.5 + 4.2 2.000 + 1.200 156 0.4000 2.00 7.5 + 24.0 0.4700 + 0.876 2.0 + 4.2 2.000 + 1.000 160 0.5500 4.00 8.0 + 18.6 0.770 2.0 + 6.9 1.500 + 1.500 172 0.4444 4.00 5.0 + 10.00 2.00 7.2 + 1.065 8.7 + 22.1 2.333 + 1.615 176 0.4286 6.50 15.2 + 30.1 0.0 + 0.0 0.0 2.250 + 1.665 1.615 + 1.615 176 0.4228 0.00 0.00 0.00 0.00 2.250 + 1.665 1.615 + 1.615 1.615 + 1.615 176 0.4228 0.00 0.00 0.00 0.00 1.615 + 1.615 1.615 + 0.00 1.615 + 0.00		0.8571	8.80	10.3 +		0.850	+ 1.043	1.0 +	٠	114 +	0.020
0.7500 4.33 5.8 9.4 0.6338 1.466 1.3 6.3 1.231 1.350 0.7500 5.00 6.7 12.8 0.833 2.575 1.9 11.8 1.350 1.350 0.6667 5.00 6.7 12.8 0.833 2.575 1.9 11.8 1.350 1.350 0.6667 5.00 7.5 $2.4.0$ $C.3333$ 1.089 2.55 4.2 2.000 5.00 5.000 2.000 5.250 5.000 5.250 5.250 5.250 $5.$	144 0.7500 4.33 5.8 9.4 $C.938$ 1.468 1.3 6.3 1.231 152 0.6667 5.00 6.7 12.8 0.833 2.575 1.9 11.8 1.350 152 0.6667 5.00 7.5 $2.4.0$ $C.333$ 1.089 2.5 4.2 2.000 156 0.400 7.5 $2.4.0$ $C.333$ 1.089 2.5 4.2 2.000 160 $C.5500$ 7.5 4.0 4.9 1.000 1.732 4.0 $1.3.3$ 2.000 164 0.5700 4.00 4.9 1.000 1.732 4.0 $1.3.3$ 2.000 164 0.5700 4.00 4.9 1.000 1.732 4.0 1.500 2.250 172 0.4444 4.00 5.0 6.2 0.722 1.005 8.7 2.333 176 0.4286 6.50 1.005 8.7 2.333 1.533 176 0.4286 6.50 1.005 8.7 2.21 2.333 176 0.4286 6.50 1.065 8.7 2.333 1.615 176 0.4286 6.50 1.000 0.0 0.0 0.0 1.615 176 0.4286 0.0 0.0 0.0 0.0 0.0 0.0 176 0.4286 0.0 0.0 0.0 0.0 0.0 180 0.4286 0.0 0.0 0.0 0.0 180 0.4286	144 0.7500 4.33 5.8 9.4 C.938 1.466 1.3 6.3 1.231 1 152 0.6667 5.00 6.7 12.8 0.833 2.575 1.9 11.8 1.350 152 0.6667 5.00 6.7 12.8 0.833 2.575 1.9 11.8 1.350 156 0.400 2.00 7.5 2.40 C.333 1.089 2.55 4.2 2.000 4.2 2.000 4.0 1.350 4.00 2.000 4.00 2.000 4.00 2.000 4.00 2.000 4.00 2.000 4.00 2.000 4.00 2.000 4.00 2.000 4.00 2.000 4.00 1.500 2.250 4.00 1.500 2.250 4.00 1.500 2.250 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05 1.615 4.05		0.8571	8.33			0.464	+ 0.836	1.3 +	٠	280 +	0.076
C. 75C0 5.00 6.7 + 12.8 0.833 2.575 1.9 + 11.8 1.350 + 0.6667 5.00 7.5 + 24.0 C. 333 + 1.089 2.5 + 4.2 2.000 + 0.4000 2.00 5.0 7.5 + 24.0 C. 333 + 1.089 2.5 + 4.2 2.000 + 0.4000 2.00 5.0 4.0 5.7 0.400 + 0.876 2.00 2.000 + 0.5C00 4.0 4.0 1.000 1.732 4.0 13.3 2.000 + 0.5C00 4.00 8.0 18.6 C. 500 + 1.000 2.0 0.0 2.000 + 0.5700 4.00 8.0 18.6 C. 500 + 1.000 2.0 0.0 2.250 + 0.4444 4.00 5.0 6.2 0.722 + 1.065 8.7 + 2.333 + 0.4444 4.00 5.2 0.0 0.0 0.0 1.615 +	148 $C_{-7}5C0$ $5_{-0}0$ 6_{-7} 12.8 0.833 $2_{-5}75$ 1.9 11.8 1.350 152 0.6667 $5_{-0}0$ $7_{-5}5$ $2_{-4}0$ C_{-333} 1.089 $2_{-5}5$ $4_{-2}2$ 2_{-000} 156 $0_{-4}090$ $2_{-0}0$ $7_{-5}5$ 4_{-9} $1_{-0}09$ $2_{-0}00$ 2_{-000} 164 0.5700 $4_{-0}0$ $4_{-0}0$ 4_{-0} 4_{-9} $1_{-0}000$ $1_{-1}732$ $4_{-0}0$ $1_{-5}00$ 164 0.5700 $4_{-0}0$ 8_{-0} 1000 $1_{-1}732$ $4_{-0}0$ $1_{-5}00$ $1_{-5}00$ 164 0.5700 $4_{-0}0$ 8_{-0} 1000 $1_{-1}732$ $4_{-0}0$ $1_{-5}00$ 164 0.5700 $4_{-0}0$ 8_{-0} 1000 $1_{-1}732$ $4_{-0}0$ $2_{-2}000$ 172 0.4444 $4_{-0}0$ $5_{-0}0$ $1_{-0}00$ $2_{-2}20$ $1_{-5}50$ 176 0.4286 $6_{-5}0$ $15_{-2}2$ $3_{-0}0$ $0_{-0}0$ $1_{-6}15$ 176 0.4286 $6_{-5}0$ $15_{-2}2$ $2_{-0}0$ $0_{-0}0$ $1_{-6}15$ 180 $0_{-4}286$ $0_{-0}0$ $0_{-0}0$ $0_{-0}0$ $0_{-0}0$ $0_{-0}0$	148 C75C0 5.00 6.7 + 12.8 0.833 + 5.575 1.9 11.8 1.350 152 0.6667 5.00 7.5 + 24.0 C.333 + 0.9 2.50 4.2 2.000 + 156 0.4000 2.00 7.5 + 5.7 0.490 0.876 2.5 4.2 2.000 + 160 C.5500 2.00 4.0 4.9 1.000 + 13.3 2.000 + 164 0.5700 4.00 4.0 18.6 C.500 1.732 4.0 13.3 2.000 + 15.50 + 15.60		0.7500	4.33	- 4		C. 938	+ 1.468	1.3+		231 +	0.099
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	152 0.6667 5.00 7.5 24.0 $C.333$ 1.089 2.5 4.2 2.000 4.0 156 0.4000 2.00 5.0 5.7 0.490 0.876 2.0 0.0 2.000 4.0 160 $C.5500$ 4.0 4.9 1.000 1.732 4.0 13.3 2.000 4.0 164 0.5700 4.0 8.0 18.6 $C.500$ 1.732 4.0 13.3 2.000 4.00 5.0 1.500 2.260 1.500 2.260 1.500 2.200 4.0 1.500 2.260 1.500 2.200 4.0 1.500 2.260 1.500 2.200 4.0 2.200 4.0 2.200 4.0 2.200 1.500 2.250 4.0 4.0 2.260 1.500 2.250 4.0 2.200 4.0 2.233 4.0 2.333 4.0 1.0 2.224 2.333 4.0 1.615 4.0 0.0 0.0 0.0 <	152 0.6667 5.00 7.5 24.0 C.333 1.089 2.5 4.2 2.000 4 156 0.4000 2.00 5.0 5.7 0.490 0.876 2.0 0.0 2.000 4 160 C.5000 4.0 4.9 1.0000 1.732 4.0 13.3 2.000 4 164 0.5700 4.00 8.0 18.6 C.500 1.732 4.0 4.9 1.500 4 5.0 4.0 1.500 4 5.0 4.0 1.500 4 5.0 4.0 1.500 4 5.0 4.0 1.500 5.0 4.0 1.500 4 5.0 4.0 1.500 5.0 4.0 1.500 5.0 4.0 1.500 5.0 4.0 1.500 5.0 1.500 5.0 4.0 1.500 5.0 4.0 1.500 5.0 1.500 5.0 1.500 5.0 1.500 5.0 1.500 5.0 4.0 1.500 5.250 1.500 1.600 5.0 4.0 1.615 5.333 <td></td> <td>C-75CO</td> <td>5.00</td> <td>6.7 +</td> <td></td> <td>0.833</td> <td>+ 2.575</td> <td>1.9 +</td> <td>-</td> <td>350 +</td> <td>0. 268</td>		C-75CO	5.00	6.7 +		0.833	+ 2.575	1.9 +	-	350 +	0. 268
6 0.4070 2.00 5.0 5.7 0.470 0.876 2.0 0.0 2.000 4.0 0 0.5500 4.0 4.0 4.9 1.000 1.732 4.0 13.3 2.000 4.0 4 0.5700 4.00 8.0 18.6 0.5700 2.0 0.0 2.0 1.500 4.0 8 0.5500 3.00 6.0 6.2 0.657 0.770 5.0 0.0 2.550 1.500 2 0.4444 4.00 5.0 6.2 0.722 1.065 8.7 22.1 2.333 4.6 2 0.44286 6.50 15.2 30.1 0.0 1.615 8.7 2.21 2.333 4.65	156 0.4000 2.00 5.0 5.7 0.400 0.876 2.0 0.0 2.000 1.732 4.0 13.3 2.000 1.500 160 0.5000 4.0 1.00 1.732 4.0 13.3 2.000 1.500 164 0.5000 4.0 8.0 18.6 $C.500$ 1.000 2.0 6.9 1.500 2.205 1.500 2.250 1.550 1.550 1.550 1.550 1.550 1.550 2.250 1.550 2.250 1.550 2.250 1.550 2.250 1.550 2.2250 2.000 2.233 2.33 2.170 5.0 0.0 2.233 2.33 2.334 2.334 2.200 2.231 2.233 2.334 2.334 2.346 0.0	156 0.4000 2.00 5.0 5.7 0.400 0.876 2.00 2.000 4.0 160 C.5C0C 2.00 4.0 4.9 1.000 1.732 4.0 13.3 2.000 4.00 164 0.5C00 4.00 8.0 18.6 C.500 1.732 4.0 4.3 2.000 4.00 5.0 1.500 4.0 5.0 4.0 4.3 2.250 1.500 4.0 5.0 4.0 7.2 2.333 2.333 4.0 2.350 4.0 2.333 4.0 4.00 5.0 4.00 7.4 2.333 4.0 4.05 8.7 2.333 4.0 4.05 1.615 4.0 4.0 1.615 4.0 1.615 4.0 1.615 4.0 1.615 4.0 4.0 0.0 1.615 4.0 4.0 0.0 1.615 4.0 4.0 0.0 1.615 4.0 4.0 1.615 4.0 4.0 0.0 1.615 4.0 4.0 0.0 1.615 4.0 4.0 0.0 1.615 4.0		0.6667	5.00	7.5 +		C. 333	+ 1.089	2•5 +	٠	+ 000	1.046
0 C.5C0C Z.000 4.0 4.0 1.000 1.732 4.0 13.3 Z.000 4 4 0.5C00 4.00 8.0 18.6 C.500 1.000 Z.0 6.9 1.500 4 8 C.5070 3.00 6.0 6.2 0.667 9.770 5.0 0.0 Z.2504 2 0.4444 4.00 5.0 6.2 0.722 1.065 8.7 22.1 Z.333 4 2 0.44286 6.50 15.2 30.1 0.0 7.0 0.0 1.615 4 6.15 1.615 4 0.0 1.615 4 4.515 4 1.615 4 0.0 1.615 4 4 0.0 1.615 4 4 0.0 1.615 4 4 0.0 1.615 4 4 0.0 1.615 4 4 0.0 1.615 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	160 C.5C0C 2.000 4.0 + 4.9 1.000 1.732 4.0 + 13.3 2.000 + 164 0.5700 4.00 8.0 + 18.6 C.500 + 1.000 2.0 + 6.9 1.500 + 172 0.4444 4.00 5.0 + 6.2 0.722 + 1.065 8.7 + 2.333 + 176 0.4286 6.50 15.2 + 30.1 C.0 722 + 1.065 8.7 + 2.333 + 180 0.4286 6.50 15.2 + 30.1 C.0 9.0 0.0 1.615 + 180 0.4286 0.0 9.0 0.0 0.0 0.0 0.0 0.0 1.615 + 180 0.4286 0.0 9.0 0	156	0.4000	2.00	5.0.+		0.4-0	+ 0.876	2.0 +		+ 000	0.382
4 0.5000 4.00 8.0 + 18.6 0.500 + 1.000 2.0 + 6.9 1.500 + 8 0.5000 3.00 6.0 + 6.2 0.667 + 0.770 5.0 + 0.0 2.250 + 2 0.4444 4.00 5.0 + 0.6722 + 1.0065 8.7 + 2.333 + 5 0.4286 6.50 15.2 + 30.1 0.0 1.615 + 1.615 +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	164 0.5700 4.00 8.0 + 18.6 C.500 + 1.000 2.0 + 6.9 1.500 + 168 C.5000 3.00 6.0 + 6.2 D.667 + 0.770 5.0 + 0.0 2.250 + 172 0.4444 4.00 5.0 + 6.2 0.722 + 1.065 8.7 + 22.1 2.333 + 176 0.4286 6.50 15.2 + 30.1 C.0 + 0.0 0.0 + 0.0 1.615 + 180 0.4286 0.0 -0 -0 0.0 0.0 0.0 + 0.0 0.0 + 0.0 1.615 + 181 0.4286 0.0 + 0.0 0.0 0.0 + 0.0 0.0 + 0.0 M + 0.0 H + 0.0 M +	160		2.00	+ 0 +		1.000	+ 1.732	+ 0 +		+ 600	0.595
B C_5070 3.00 6.0 6.2 0.667 0.770 5.0 0.0 2.250 2 0.4444 4.00 5.0 6.2 0.722 1.065 8.7 2.31 2.333 4 6 0.4286 6.50 15.2 30.1 0.0 4.615 1.615 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	168 0.5070 3.00 6.0 6.2 0.667 0.770 5.0 0.0 2.250 4 172 0.4444 4.00 5.0 5.2 3.33 4 176 0.4444 4.00 2.250 2.333 4 176 0.4286 6.50 15.2 30.1 0.0 0.0 0.0 1.615 4 180 0.4286 0.0 9.0 0.0 0.0 0.0 1.615 4 180 0.4286 0.0 9.0 0.0 0.0 0.0 0.0 1.615 4 180 0.4286 0.0 9.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 4 0.0 0.0 0.0 4 0.0 0.0 0.0 4 0.0 0.0 4 0.0 4 0.0 4 0.0 4 0.0 4 0.0 0.0 4 0.0 4 4 <	164	0.5000	4.00	8.0 +		C. 500	+ 1.000	2.0 +	٠	500 +	0.459
2 0.4444 4.00 5.0 + 6.2 0.722 + 1.065 8.7 + 22.1 2.333 + 0.6 6 0.4286 6.50 15.2 + 30.1 0.0 + 0.0 0.0 + 0.0 1.615 + 0.0	172 0.4444 4.00 5.0 + 6.2 0.722 + 1.065 8.7 + 22.1 2.333 + 0.6 176 0.4286 6.50 15.2 + 30.1 C.0 + 0.0 0.0 + 0.0 1.615 + 0.0 180 0.4286 0.0 9.0 + 0.0 0.0 + 0.0 + 0.0 + 0.0	172 0.4444 4.00 5.0 + 6.2 0.722 + 1.065 8.7 + 22.1 2.333 + 0.6 176 0.4286 6.50 15.2 + 30.1 0.0 + 0.0 1.615 + 0.0 180 0.4286 0.0 9.0 + 0.0 0.0 - 0.0 1.615 + 0.0 180 0.4286 0.0 9.0 + 0.0 0.0 0.0 - 0.0 180 0.4286 0.0 9.0 + 0.0 0.0 0.0 + 0.0 180 0.4286 0.0 9.0 0.0 0.0 0.0 + 0.0 180 0.4286 0.0 9.0 0.0 0.0 0.0 + 0.0 180 0.4286 0.0 9.0 0.0 0.0 0.0 + 0.0 180 0.4286 0.0 9.0 0.0 0.0 -0.0 0.0 180 0.4286 0.0 9.0 0.0 0.0 0.0 0.0 1810 0.4286 0.0 0.0 0.0 0.0 0.0 0.0 1810 0.4486 0.0 0.0 0.0 0.0 <td>168</td> <td>0.5070</td> <td>3.00</td> <td>6 0 +</td> <td></td> <td>1.667</td> <td>+ 0.770</td> <td>5=0 +</td> <td>-</td> <td>250 +</td> <td>0.234</td>	168	0.5070	3.00	6 0 +		1.667	+ 0.770	5=0 +	-	250 +	0.234
6 0.4286 6.50 15.2 + 30.1 C.0 + C.0 0.0 + 0.0 1.615 + 0.	176 0.4286 6.50 15.2 + 30.1 C.0 + C.0 0.0 + 0.0 1.615 + 0. 180 0.4286 0.0 9.0 + 0.0 0.0 0.0 + 0.0	I76 0.4286 6.50 15.2 + 30.1 C.0 + C.0 0.0 + 0.0 1.615 + 0. 180 0.4286 0.0 9.0 + 0.0 0.0 0.0 + 0.0 0.0 + 0.0 + 0. ALPHA IS PROPRTIGN OF MARKEC ANIMALS M IS TOTAL MARKED POPULATION	172		4.00			0.722	+ 1.065	٠	~		•
	180 0.4286 0.0 0.0 10.0 10.0 0.0 10.0 0.0 10.0 10	180 0.4286 0.0 9.0 9.0 4 0.0 0.0 0.0 4 0.0 4 0.0 4 0.0 4 0. Alpha is propried of markee animals M is total marked population	176		6.50			0. 10	٠	٠	٠	.61	
		ALPHA IS PROPRTICN OF MARKEC ANIMALS M IS TOTAL MARKED POPULATION		.428	٠			0.0	•	٠		•	
ALPHA IS PROPRTIGN OF MARKEC ANIMALS M is total marked population N is total population	S TOTAL POPULATION		- ~	ABILIT OF NE	ANI	VAL Joining		LATION					
ALPHA IS PROPRTICN OF MARKEC ANIMALS M IS TOTAL MARKED POPULATION N IS TOTAL POPULATION PHI IS PRCBABILITY OF SURVIVAL B IS NUMBER OF NEW ANIMALS JOINING T	S TOTAL POPULATION Is prcbability of survival s number of nem animals joining the	IS PRCBABILITY OF SURVIVAL S NUMBER OF NEW ANIMALS JOINING THE											

- 137 -

LI PI 75	
4 SE	
٠	
RATES	
ZO-OAY	
STANDARCI ZED	
	ZEO ZO-OAY RI

•

PERDMYSCUS AREA 1 CONTROL HANEY

FEMALES

			KAIE	SURVIVAL RATE	DILUI IUN KAIE
60	-	1	•	10 1	(0.0 TO
64	-0.916 (-2.465	TD 0.(0.633)	0.400(220 TO 1.020)	-
68	- I I		5001	10.1	L D.807 TO 2.
73	7		.273)	T0 1	
61	9 645	•	224)	0.131	(0.618 TO 1.
87	-0.251 (-1.419	•	9161	0.7781130 TO 1.686)	(-0.433. TO
15	136 (-	-	218)	095 TD 2	1.190 (0.165 TO 2.216)
95	-0.613 (-2.070	•	.844)	247 T0 1	(0.211 TO
99	429 L-	q	6691	064 TO 1	1 0.475 TD
103	-0.470 (-1.565	.	625)	TO 1.	(0.479 TO
107	•	T0 0.	. (125	TO 1.4	(0.631 T0 3
111	-0.511 (-1.456	o	4331	0.600 (0.033 TO 1.166)	1 0.278 TD 2
115	-	0	368)	10 1	(0.549 TO 1.
119		to 0.	•0651		(0.815 T0 1
123	ÿ	٩	3751	IO L	(0.916 ID 1
127	-	0	463)	101	(0.812 TO 1.
191	-	•	519)	101	(0.696 T0 1
136	-0.162 (-1.389	-	0641	TO 1	1 0.550 TD 1.
140	-0.767 (-2.569	-	(460	C.464(372 TO 1.301)	10
144		TO 1.	502)	TO 2	(-0.027 70
148	-0.182 (-3.272	2	5071	E OI	2
	•+-) 660	2	.167)	T0 1	(-2.091 TO
	-C.916 (-3.107	-	275)	TO 1.	(-0.471 TO
160	-1-1	TO 1.	7321	TO 2.	086. TO
164	693 (-S.	-	.307)	10	(-1.210 TO 4
168	102	•	749)	1.01	.250 (0.317 TO
172	-1-	101	149)		(-0.982 ID
176	0.0 1 0.0	10 0.	- 0.		. 615
100	•		-	01	

- 139 -

1

,

1 1	DISTRINUTION	SCUS	AREA	RECAI 2	APTURES ACCOR EXPERIMENTAL	S HI	ACCORDING Ental Ha	HANE	ц Т	E INT	I ERVAL		SINCE 1	THEY	H ER E	: LAS	⊨	CAP TURED		(METHOD	8	GROUP)	• (4)					
Aff C Fulue Aff C Fulue 5. 53 6 71 77 34 69 71 71 11	MALES				•																							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EEK OF AST CAPTU									N UN	1		RE															
	4 58	9	~			66	~	0			. –	- 1		, 	i mi	-	14	14	5	156	· •	ġ.		17	~			
		1	3								3	3	1	1	1	1		1	1			ł	3	1	ł	I		
111 1					000	1000	000	5000	000			:			1			н. 1		2000	000		1					
7 7 7 7 7 7 113 6 0 </td <td>2000 2000</td> <td></td> <td></td> <td></td> <td> c</td> <td></td> <td>06</td> <td></td> <td>0000</td> <td>0000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>000</td> <td>0000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2000 2000				c		06		0000	0000										000	0000							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3000		•		000	1001	200	, u <u>4</u> c	0004	,						;		•	ļ	2000	000	-						
113 0	15 0 0 0				000	000	000		000	- 000					1 :			-	1	000	000							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					000	000	000	000	000	c		-	-							000	000						•	-
144 C					000	000	000	000	000	000		1	ĺ		1	-	l .	ļ		000	000					}	ţ	
156 0	4 8 2 4 8 2				000	000	000	000	000	000									l	000	000							
172 0	000 000				600	000	000	0 V C	000	000										000	400							
OTAL WARKED 2 3 3 14 16 14 15 10 8 6 1 3 4 6 2 1 3 1 3 1 1 6 2 4 6 2 1 3 1 1 6 2 4 6 2 1 3 1 1 6 2 4 6 2 1 3 1 1 6 2 4 6 2 1 3 1 3 1 1 6 2 4 6 2 1 3 1 1 6 1 1 1 3 3 3 1 1 6 2 1 3 1 3 1 1 6 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1	000		1		0000	0000		0000		0000									!	0000	9 0 0 C	Ì	i	:		-		
OTAL MARKED C 2 2 3 14 16 10 14 15 10 8 6 12 9 5 6 5 4 6 2 1 3 1 OTAL UNMARKED 6 1 16 1 5 3 5 19 8 10 5 3 3 1 1 6 2 4 8 2 13 3 OTAL UNMARKED 4 1 1 1 6 2 4 8 2 13 1 1 6 2 4 8 2 13 3 OTAL UNMARKED 4 3 6 10 1 1 1 6 2 4 8 2 13 3 14 10 1		:	:	:																							:	
IL UNMARKED 4 I 6 I 16 I 5 3 5 19 8 10 5 3 3 1 1 6 2 4 8 2 2 7 5 9 2 13 3 8 CATCH 4 3 8 4 19 11 13 15 18 33 24 20 19 17 18 11 9 12 14 13 13 8 7 11 11 11 3 16 1 AL RELEASED AL RELEASED A RELEASED 3 8 4 19 11 13 15 18 32 20 19 17 18 11 9 12 14 13 13 8 7 11 11 11 3 16 1	OTAL MARKED C 2				60	12	13	4		0	+ 1					T	•	n	Ð	ŝ	*	v	8	-	m .			
el CATCH 4 3 8 4 19 11 13 15 18 33 24 20 19 17 18 11 9 12 14 13 13 8 7 11 11 11 3 16 1 AL RELEASED 3 3 8 4 19 11 13 15 18 32 23 20 19 17 18 11 9 12 14 13 13 8 7 11 11 11 3 16 1	AL UNMARKED 4 I		-	-	ŝ	e	\$		60	e	n						•	•	~	N	~		0	~	13	m		
4 3 8 4 19 11 13 15 18 33 24 20 19 17 18 11 9 12 14 13 13 8 7 11 11 11 3 16 1 AL RELEASED 3 3 8 4 19 11 13 15 18 32 23 20 19 17 18 11 9 12 14 13 13 8 7 11 11 11 3 16 1	AL CATC				:			:				:				•	•	:				•					:	
DTAL RELEASED 3 3 8 4 19 11 13 15 18 32 23 20 19 17 18 11 9 12 14 13 13 8 7 11 11 11 3 16 1	•		-	-							0	~	8				-		80	2				m	16	19		
	DTAL RELEASE		-	-					e		¢	2	8			-	-		•	-		11			10	16		
										•				•					•		ů Ú Ú						1	

- 140 -

MALES											
NEEK	ALPHA	T	+ Z	4 SE	+ IHd	4 SE	B	4 SE	LAMBDA 4	+ 4 SE	
				2	04 J J J J J J J J J J J J J J J J J J J						
CAPTURE											and the second second second second second second second second second second second second second second second
	0-0	0•0		0.0	0.667 +	1.085	+ 0 •0	0.0	0.0	0.0	
58	0.6667	2.00	3.0 +	3.4	0.667 +	9		0-0	4.000	+ 2.241	
66	0.2500	2.00	8.0 +	4.0	0.375 +	68	1.0 +	0.0	1.333	• 0.025	
11	0.1500	3.00	+ 0 +	5.7	0.750 +	æ		0.0	6.333	• 5.953	
-11	0.1579	3.00	19.0 +	5.5	0.774 +	0.564		3.6	1.100	• D-004	
84	1606.0	14.71		12.6	C.660 +	0. 60 E	6•2 +	7.7	1.578	+ 0.053	
68	0.6154	10.36	16.8 +	12.7	0.862 +	0.415		0.1	1.140	• 0•019	
63	0.8000	13.25	16.6 +	7.01	0.800 +	0.413	4 8 4	2.3	1.358	+ 0.008	
16	0.7222	13.00	18.0 +	10.3	0.778 +	C. 392	I 3° 0 +	0.0	2.357	+ 0.067	
101	0.4242	14.00	33.0 +	10.7	0.572 +	0.417	9.1 +	6.7	1.500	+ 0.014	
105	0 • 6 6 6 7	18.30	27.4 +	17.8	C.448 +	0.430	10.8 +	8•3	1.913	+ 0.095	
111	0.5000	11.33	22.7 +	14.7	0.783 +	G.42C	+ 6 • 	8.0	1.277	+ 0.019	
115	0.7368	16.71	22.7 +	14.3	0.765 +	0.431	2.8+	5.7	1.162	+ 0.009	
119	0.8235	16-62	20.2 +	9.51	0.765 +	0.412	2.6 +	3.1	1.167	+ 0°00+	
123	0.8333	15.00	8	121	0.730 +	0.538	1. 3 +	2.8	1.100	+ 0.003	
127	T606*0	13.14	14.5 +	13.7	0.672 +	0.635	1.0 +	2•9	1.101	+ 0.007	
131	0.8889	9.50	•	•	0.675 +	0. 639	1. 0 +	6.7	1.965	+ 0.160	
136	C. 5000	1.09	4	11.7	0.917 +	0.319	1.0 +	6.1	1.077	+ 0.016	
140	0.8571	12.00	14.0 +	9°6	C. 643 +	0.512	+ 0 • •	0.0	1 • 4 4 4	+ 0.014	
144	0.6923	9.00		•	C • 385 +	C=540	+ 0 • B	0-0	Z= 600	+ 0.400	
148	0.3846	5.00			0.462 +	0.553	2°0 +	0.0	1.333	+ 0,013	
152	0.7500	6 • 0 0	+ D 0 0	8 . 1	C. 625 +	0.685 2.52	2•0 +	0.0	1.400	+ 0,022	
156	0.1143	00.5	+ 0•2	· · · · · · · ·	+ 1/5•0	0.748	+ 6 • 2	0.0	04/ 7	+ 0. 544	
160	0.3636	4.00		6.7	0.545 +	0.601	5•0 +	0	1.833	+ 0.069	
164	0.5455	6.0.9	•	1.6	0.182 +	0.465	+ 0.5	0.0	006.6	+ 8.882	
168	•	9		523	0.227 +	0-636	in i	20 - B	9	+ 4.894	
172	0.3333	2.50	•	23.5	C. 667 +	1.089 2.2	11.0 +	13.9	3.200	+ 5.412	
	•	? (•	•		•	•		• •		
Nat	٩	עייע		0.0	•	•	•		•		
• • • • • • • • •		•••••	•••••	•••••	• • • • • • • • • •	• • • • • • •	••••••	•••••			
ALPHA		N CF MARKEC	ANIMAL	S				-			
	TUTAL MAKKEU PUP Tetal Deputation	TICN	Z								
SI INd		Y CF SURVIVAL	I VAI			•			no e a an an an an an an an an an an an an a		
` v i	NUMBER OF NEW	ANIMALS	NING	HE POPI	ILATI CN						
LARBUA		K AI E (AS	DEPINED BY	(JOLLY	_						

STANCARCIZED	260 28-DAY	AY RATES	+ 5	SE LIVIT	S					
PERCEYSCUS	AREA	2 EXPE	EXP.ER.I.NENTAL	VT ALHANEY			ann a stàinn ann ann an an an ann ann ann ann ann		and the second second second	
MALES										
W EEK		INST.	DEATH	H RATE	SUR	SURVIVAL RATE		10	DILUTION	RATE
	-	-2.038	10	1.228)	0.6671422	-	0.0	0.01		• •
	0.203	-1.019		0.614)	0.816(C.150		2.000	0.503	10 10 10	3.497)
	1`	•		0 5 2 0 1	0 01510 100	162101 11	102 1			1070
1		-0.562			0.8640.505	TO 1.223	1 - 056			1061-1
84		-120-1-		0.405)	0.717(0.188	• –	1.440	(0.765-		2.115)
	-	-0.629		(5333)	C.86210.448		1.140	(0.593	_	•688)
69	-0.223 (-0.740		(563)	0.80010.387	102	1.358			725)
57	-0.251 1			0.2531	0.778(0.386	I DI	2.357	1 1.325	٦	1066 -
101	-0.559 (-1.288		0.170)	0.572(0.155	10	1.500	(1.033	-	.967)
105	-0.535 (-1.175		0.104)	0.585(0.211	0,		(C. 880	N 1	(202)
	-0.244 (-0.780		0.292)	C. 783(0.363	1	1.211	1 0 120	1	
115	-0.268	-0.831	0	0.256)	C. 7651 C.334	-	1.162		-	•536)
	-0.268 (-0.806		0.270)	0.765(0.353		1.167		- •	(+2+)
521				0-422)	261-01051-0			1 0 265		16264
121		C+C 1-	26				10101		- 0	
121		-0.435		0.2411	C. 91760.598		1.077	0.568	- 1	• 5861
140	-0-442	-1 -239		0.3551	0.643(0.131	22	1.444	1 0.978	10	.911)
144	-0.956 (• 35	10	0.448)	0.385(155	TO 0	2.600	(0.071	10 5	. 129)
148	1.517.0-	126-1-	Π	•	C. 4621092	10 1.015)	1.333	(0.885	1 1	.781)
152	-0.470	I-1.565	10	0.625)	0 • 6 2 5 (- • 0 6 0	T0 1	1.400	0 _	י פ	.995)
156	-0.560 (-1.869	10	C.750)		-	2.750	5	ŝ	. 102)
160	-0.606	1-1-707	2	0.4551	C-545(055	TO 1.146)	1.833	(0.783	2	.884)
164	-1.705 (-4.263	10	•		0	5.500	L		.421)
168	-1.482 (1-4.279	₽	1.316)	C. 227(40 9	TO 0.863)	000° E	(5,849	T0 11,	.849)
172		-2 .03B	9	22.	0-6671422	TO 1.7551	3.200	빅		12.5051
176	0.0	0.0	2	0.0	0.01 0.0		1.231	-	T0	. 231)
1 PO	0,0		1U			TU 0.0 1	0-0	0.0	TOOL	

142 -

a H H

()

	Ltr	CUD CLUTAL			Y																						
	FEMAL	AL ES							1										•							1	
	54 5	8	6 71	12	ŵ	4 85	66 6	16	101	105	111	115	119 1	123 1	27 1	31 13	6	40 14	4 1	48 15	2 156	6 160	0 164	168	172	176	160
								•			:																
-		2							1			9	9	4	4	4						l					
	-	0							ب د			5	5 0	ن د	20	o ç	, ,		, c								
9 e 9 e		0 0							50			50	> c	່	00	. c	00	> c	0								
-		c				1	!		0			U U	0	U	0	0	c	0	0								
- 4	0	. 0	, U	. 0	0		8		0	0	0	0	0	ا ن	00	00	00	00	~ ~	00	00	00	00	00	0 C 0 C	• •	00
0		٩												2				- -									1
		00										i c	ە د	0 0	° c	> c	, o	, o	, o								
												, C,	0	ں _ا	, C	c	0	0	c								
15						1						-	0	c	Ċ	0	c	¢	0								
1		0			•							9	o	0	0	0	0	0	0								
5		d										9	4	m (ci			00									
61		0										0 9	c, (00	5	υ.	,	> c	> c								
		0 (50	5 0	ی د	٥ c		0	50	2								
		3 0										0	00	0	0	0	ŝ	0	0								
		• c										, υ	Ċ	U	c	U	C.	4	0								
0		U.				1						٩	٩	3	0	c	0	c	و								
4		3										C	C	ç	Ċ,	0	0	0	0								
6 8		c										U d	00		00	00	0	0 c	- C								
152	Ì											> c		Ċ	> c	5 C	e e	e c	00								!
		> c										0	e en	0	ι U	0	0	0	0								
4		0		1								C	c	c	d	c	0	d	0								
88		0										o	C	C	C	0	0	c	0								
72		0						0				<u>ں</u> ر	00	υc	ני כ	υc	0 0	ت د									
16		IJ										נ	2	Ċ	>		,		,								
:		•	:		:	:		:	:	:			•	:								:	:				
SUMS	S AII.	50	-	0						1	0		0	-	•	0	c	0	-	0	0	0	0	0	U U	0	
•	•		•	•			•			:			•	:	•			•	•		:	:	•		•		
MILS	SUMS NLL.	-																									
	c	•	v	-	~	v	- -	u a	U V	ſ	ſ	2	ſ	-	ſ	"	4	4	ý	4	~	2	-	5		6	
	Þ	~		-					, ,			-		•						•	•			•	•		

- 143 -

WEEK CF Last cap	PTURE									3	ш Ж	OF CA	AP TUR	ш													
	54 58	66	14	77	84	89	63	97 1(01 10	5 11	1 11	5 119	9 123	127	131	136	140	144	148 1	152 1	26	160 16	54 16	8 17	2 17	6 18	o •
5			C	0	0	0	o	C	U								5	0	0	0	0	0	0			0	0
58	00	~0	04	0-	00	00	00	00	່ວບັບ	- 	000)))))	000	000	00	00	00	00	00	00	00	00	υo	00	00	00
2			d		d	d		d								Ì	0	d	d	d	9	d	d		ļ	d	4
48			00	00	~ 0	ng kn	ч V	-0	ر م								00	00	00	5 C	00	00	00				
89 63			00	0 4	00	00	ە ب	د «	с с								00	00	0 0	00	00	00	00			00	
101			000	000	000	• c c	000	000									000	00	00	00		00	00			00	00
105			00	- 	00	00	- 	00			ĺ	1			1	1	0	00	00	00	00	00	00			00	
115	1	l	00	> 0	00	50	00	00	- 0								ט ני	0	00	00	00	• •	0			0	
119	•	1	00	υc	υc	00	υc	υc	<u>ں د</u>								c 0	00	с с	00	ΰO	00	00			00	
121			, c	, u	, ၂	, c	: 0			ĺ	1						0	ףי	٩	• 9	0	, d	. 9				ų,
131		ļ	0 0	υc	υc	00	υc	00	υc								04	00	υC	00	0 C	۰ с	o c			00	00
140			0	00	υ	0	00	0	sυ								t c.	o o	Ċ	0	, o	0	0			` 0	~
144			c	00	00	ə c	00	00	ں ر								0 0	ົ	ωc	4	c, c	ر د	o c			0 C	
152			s d	» J	5 4	5 O	<u>ہ</u> د	54		Ì		ł			i		, c	° c		۲q	اہ ہ ا	0	, a				, e
156			00	ن ر	٥٢	00	а с	00	υι								¢, ¢	00	00	00	00	~ 0	0-			00	~ ~
164	;) ບ	<i>.</i> .	ں ر	b C	υ	90									0	• o	, o	0	••	0	•0			0	_
168			0 9	с ч	00	0 0	00	c (د و								¢ (00	00	00	00	00	00			0 4	
176			ð	bid	þ	ba	20	50	. J	Ì	1		.		1		ba	bd	pd	Þa	>d	Þq	þa				I
	. Ŭ		•	•			•	•			•	:		•	•		•	•	•			•	•	•	•	:	
	AKKEU 0 2	2	4	4	2	80	~	σ	41	υ	4	۲ ب	4	•	•	Ē	4	Ŷ	ŝ	ŝ	ŝ	2	1	ŝ	4	5	Ð
TOTAL UN	UNMARKED 4 4	2	4	15	-	2	-	-	10	e	9	6	5	-	1	8	~	S	-	1	8	~	œ	æ	e	60	m
		•	:			•	•	•				•	•	•	•		•	•	•		•	•		:		:	
1	0.	-	æ	15	æ	10	ω	10	15 1	1 2	10	5	6 13	-	-	2	Q	11	Q	¢	5	4	6	13	-	3	
TOTAL RI	FLEASED																										

- 144 -

POPULATION PARAMETERS ESTIMATED FACP MULTIPLE RECAPTURE DATA - JOLLYS STOCHASTIC MODEL

. . .

PEROMYSCUS_AREA 2 EXPERIMENTAL HANEY

43	FF Def CAP TURE CAPTURE 0.0 0		ALPHA	I	+ Z	4 SE	PHI + 4 SE	8	4 SE	L AM BDA +	4 SE	
CAPTURE 0.0	CAPTURE C.6 0.0					- Fil	DF C					
58 0.00 4.0 6.400 6.1333 2.000 4.0 6.400 6.333 2.000 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.300 3.600 <	58 0.00 70 0.00 7.00 0.00 3.00 4.00 3.00 4.00 5.00 5.00 4.00 5.00 <td< td=""><td>CAPIUKE</td><td></td><td>0</td><td></td><td>c c</td><td>500 + 1.</td><td></td><td>•</td><td>+ 0.0</td><td>•••</td><td></td></td<>	CAPIUKE		0		c c	500 + 1.		•	+ 0.0	•••	
38 0.4237 2.00 7.0 4.9 0.785 1.246 6.3 $1.2.7$ 2.000 5.300 71 0.2507 6.03 12.7 20.37 0.789 0.789 0.762 0.720 6.3 12.7 2.0 7.2 1.143 1.443 71 0.2500 15.00 17.1 10.766 2.001 7.2 1.143 87 0.4000 11.23 14.4 0.789 0.762 0.789 1.001 0.72 0.712 0.761 0.72 0.712 0.799 1.143 0.775 0.799 1.143 0.799 1.143 0.799 1.143 0.799 1.143 0.799 1.143 0.799 1.143 0.799 1.143 0.799 1.143 0.799 1.143 0.799 1.143 0.799 1.143 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799	6 0.2323 5.00 7.0 </td <td>4 G</td> <td>0.0</td> <td></td> <td>- </td> <td></td> <td></td> <td></td> <td>• •</td> <td>3 - 500 +</td> <td>2.344</td> <td></td>	4 G	0.0		- 				• •	3 - 500 +	2.344	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71 0.5000 6.30 12.7 20.3 7.72 0.735 2.1 6.3 1.167 71 0.6700 1.30 1.2 1.40 6.3 1.167 1.167 89 0.8000 11.33 1.2 1.4 0.735 2.1 1.40 4.00 71 0.6700 11.33 1.2 1.4 0.733 2.2 1.40 1.167 89 0.8000 11.33 1.2 1.4 1.2 1.40 1.167 1.167 1.167 91 0.8700 11.3 0.4700 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.00 15.0 5.0 15.0 5.0 15.0 5.0 15.0	8	22220	200 5		0.4	05 + 1.	Ę	•	2.000 +	0.230	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tr 0.2100 4.00 19.0 7.3 0.789 0.795 2.1 6.9 1.167 R 0.8750 15.00 17.1 1.81.1 0.703 2.03 1.7 1.076 1.67 8 0.8750 15.00 17.1 1.610 6.67 1.67 1.69 1.167 1.076 1.033 1.076 1.076 1.033 1.076 1.076 1.033 1.076 1.076 1.076 1.076 1.033 1.076 1.076 1.033 1.076 1.016 1.076 1.076<	0	0.5521			20° 3	+ 02	14.	•	3.800 +	2.483	
$(1 \ 0.1003)$ (2.0) (7.1) (1.0) (2.6) 3.0 (1.0) (2.6) 3.0 (1.0) <td>R4 0.2150 15.00 17.1 18.1 0.708 7.02 7.0 1.076 87 0.8150 11.33 14.2 1.600 6.0 0.0 0.0 0.00 93 0.8170 11.33 14.2 1.600 6.0 0.0 0.0 0.00 1.003 93 0.8170 10.0 0.0 12.0 1.00 0.0 0.0 1.003 0.00 1.003 0.00 1.003 1.103 1.1</td> <td>21</td> <td>000000</td> <td></td> <td>•</td> <td>• • • •</td> <td></td> <td></td> <td></td> <td>1.143 +</td> <td>0.013</td> <td></td>	R4 0.2150 15.00 17.1 18.1 0.708 7.02 7.0 1.076 87 0.8150 11.33 14.2 1.600 6.0 0.0 0.0 0.00 93 0.8170 11.33 14.2 1.600 6.0 0.0 0.0 0.00 1.003 93 0.8170 10.0 0.0 12.0 1.00 0.0 0.0 1.003 0.00 1.003 0.00 1.003 1.103 1.1	21	000000		•	• • • •				1.143 +	0.013	
87 0.6770 $1.7.3$ $1.1.7$ 1.001 6.0 1.07 1.076 1.076 87 0.68700 $1.1.3$ $1.1.7$ 1.001 6.0 1.07 1.076 1.076 1.076 87 0.68700 1.016 9.0 10.0 1.02 1.00 1.0 1.07 1.076 101 0.3333 9.00 12.0 10.0 $1.2.0$ 1.00 1.07 1.0333 101 0.3333 9.00 12.0 8.9 0.500 12.0 8.9 0.500 1.75 103 0.4750 6.00 15.0 22.01 0.775 9.09 16.3 2.900 111 0.4607 6.00 15.0 22.1 0.590 1.167 1.2867 112 0.6667 7.60 15.0 2.0 0.6332 7.2 1.267 1.2674 113 0.6154 8.0 15.0 1.44 0.6332 7.2 1.2667 1.2674 113 0.6157 1.2697 1.2796 0.603 1.2697 1.2697 1.2697 113 0.6157 1.269 1.440 0.6032 7.26 1.2697 1.2674 113 0.6157 1.2697 1.2697 1.2697 1.2697 1.2697 1.2674 113 0.6157 1.279 0.6192 0.603 1.2679 0.2697 1.2697 1.2674 123 0.6157 0.6167 1.2716 0.2597 0.2697 0.2697 $1.$	89 0.6100 11.30 4.1 4.6 0.6 3.9 1.004 1.7 93 0.8150 8.00 19.1 5.6 14.2 14.0 5.6 3.9 1.07 5.9 1.07 5.9 1.07 5.9 1.094 5.9 1.094 1.7 5.001 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0		0.2102	0.0 4						1.167 +	0.027	
83 0.8000 11.33 14.3 14.3 100 6.00 17.3 1004 6.00 10.0	89 0.8000 11.00 9.1.2 9.1.0 0.0.0 3.000 9.1.2 1.004 0.0.0 3.000 101 0.31303 9.1.0 1.0.0 0.0.0 1.0.0 0.0.0 3.000 111 0.4000 15.0 7.5 0.500 0.775 9.0 1.0.0 0.0.0 111 0.4000 6.00 15.0 2.500 0.775 3.0 1.0.3 2.500 111 0.4000 6.00 15.0 2.51 0.550 3.5 7.2 1.358 1.358 111 0.4000 15.0 1.4 1.4 2.500 1.4 1.500 1.4 1.500 1.500 1.500 1.358 1.358 1.358 1.358 1.358 1.358 1.358 1.356 1.356 1.155 1.1550	4	0413-0	12.00	:.				•	1.076 +	0.016	
93 0.6170 9.00 10.0 7.9 0.643 0.632 10.0 0.0 1.333 101 0.3333 5.00 15.0 7.9 0.643 0.7512 3.0 0.0 1.333 101 0.3333 5.00 15.0 7.9 0.643 7.5 8.7 2.590 111 0.4000 6.00 15.0 8.9 0.500 0.775 9.3 1.590 119 0.4667 7.60 11.4 14.3 0.8133 0.6494 1.2 2.931 112 0.6467 7.60 11.4 14.3 0.8133 0.6494 1.2 2.94 112 0.6467 7.60 11.4 9.3 1.590 1.1567 127 0.8571 7.40 8.6 9.9 0.11667 1.35667 127 0.6677 1.2604 1.2 0.6432 1.3687 1.1567 127 0.6577 7.408 9.2 0.7488 0.7604 1.1567 136 0.6667 4.90 6.22 $1.000 + 0.064$ 1.2 2.964 1.1567 140 0.6567 4.22 0.6677 6.29 0.00 1.367 1.1567 140 0.68333 6.500 7.08 9.2 0.00 1.372 0.6677 140 0.68333 6.50 7.88 9.2 0.6677 1.3 2.9600 140 0.68333 6.50 7.88 6.2776 0.00 1.66	73 0.6320 9.00 10.0 5.5 5.500 15.0 7.5 5.500 15.333 5.500 15.333 5.500 15.0 6.512 3.0 15.0	89	0.8000	11.33	•	0 • 0			•	+ + 094 +	0.003	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	101 0.33333 5.00 15.0 7.9 0.643 6.512 3.0 0.0 10.3 2.590 4.00 15.0 2.590 4.00 15.0 10.3 2.590 4.00 15.0 10.3 2.590 4.00 10.3 2.590 4.00 15.0 8.7 7.9 7.59 11.5 0.4000 6.00 15.0 8.8 0.590 7.9 1.63 2.590 4.00 15.0 11.6 1.4 1.4 1.6 7.9 7.69 1.16 7.9 7.69 1.16 7.9 7.60 1.16 7.9 7.60 1.16 7.9 7.60 1.16 7.9 7.60 1.16 7.9 7.60 1.16 7.9 7.60 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 1.16 7.9 <	55	UC18-0		•	2 2	+ 00	10.	0.0	3.000 +	0.625	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	101 0.3333 5.00 15.0 8.9 0.500 9.0 15.0 8.7 2.500 111 0.4000 6.00 15.0 8.9 0.501 7.5 8.7 2.500 115 0.4667 5.00 15.0 8.8 0.633 7.501 8.7 2.500 115 0.4667 7.60 15.0 8.8 7.591 3.5 7.9 1.157 127 0.6571 7.40 8.6 9.0 0.714 0.683 1.9 1.157 127 0.6567 4.00 9.0 6.714 0.683 1.0 1.157 131 0.6567 4.00 9.0 6.714 0.683 1.0 1.157 144 0.6567 4.00 5.0 6.714 0.683 2.0 1.155 144 0.5667 4.00 5.0 6.50 7.8 5.0 1.657 1.155 145 0.5657 6.00 10.0 6.0 7.3 9.50 6.60 1.250 1.155 146 0.6333	15	0.3220						0.0		0.007	
111 0.4700 5.0 15.0 22.1 0.503 7.5 8.7 2.020 115 0.4000 6.00 15.0 8.8 0.537 0.632 7.5 8.7 2.020 119 0.6667 7.60 11.4 14.3 9.833 0.604 1.2 2.4 11.167 127 0.6571 7.40 8.2 0.748 0.748 2.0 1.364 1.167 127 0.6677 1.740 8.2 0.748 2.0 0.0 1.567 136 0.6667 4.00 5.0 6.729 0.6872 1.3667 140 0.6667 4.00 5.0 6.22 1.590 0.0 140 0.6667 4.00 5.0 6.22 1.6997 0.0 140 0.5455 6.00 11.0 6.2 1.6997 0.718 2.0 140 0.6667 4.00 5.0 6.0 1.200 9.2 0.0 140 0.5455 6.00 11.0 0.507 0.617 1.5067 150 0.6007 1.2 0.607 0.00 1.507 0.0 152 0.8333 5.00 6.0 7.3 0.5507 0.00 1.507 152 0.8333 5.00 6.0 7.3 0.507 0.0 1.567 152 0.8333 5.00 6.0 7.3 0.507 0.0 1.567 152 0.8333 5.00 6.0 7.3 0.507 <td< td=""><td>111 0.4000 6.00 15.0 22.1 0.632 7.5 8.7 2.000 115 0.4000 6.00 15.0 8.8 0.632 7.5 8.7 2.000 119 0.4000 6.00 15.0 8.8 0.633 7.5 8.7 2.000 127 0.6154 8.0 13.4 9.9 0.714 0.683 1.9 1.15 127 0.6511 7.40 8.6 9.9 0.714 0.683 1.9 1.15 131 0.6571 5.00 1.049 5.0 0.61 1.2 2.4 1.15 131 0.6571 5.00 11.0 9.2 0.748 2.0 0.0 1.15 140 0.6667 4.00 5.0 11.0 6.7 1.033 1.154 144 0.5556 6.00 11.0 5.0 1.234 7.3 1.550 1.155 152 0.6507 5.00 11.0 5.0 0.111 1.55 0.6 1.154 1.154 1.154 1.154 <t< td=""><td>101</td><td>6665°0</td><td></td><td></td><td>- 0</td><td></td><td></td><td>16.3</td><td>•</td><td>0.578</td><td></td></t<></td></td<>	111 0.4000 6.00 15.0 22.1 0.632 7.5 8.7 2.000 115 0.4000 6.00 15.0 8.8 0.632 7.5 8.7 2.000 119 0.4000 6.00 15.0 8.8 0.633 7.5 8.7 2.000 127 0.6154 8.0 13.4 9.9 0.714 0.683 1.9 1.15 127 0.6511 7.40 8.6 9.9 0.714 0.683 1.9 1.15 131 0.6571 5.00 1.049 5.0 0.61 1.2 2.4 1.15 131 0.6571 5.00 11.0 9.2 0.748 2.0 0.0 1.15 140 0.6667 4.00 5.0 11.0 6.7 1.033 1.154 144 0.5556 6.00 11.0 5.0 1.234 7.3 1.550 1.155 152 0.6507 5.00 11.0 5.0 0.111 1.55 0.6 1.154 1.154 1.154 1.154 <t< td=""><td>101</td><td>6665°0</td><td></td><td></td><td>- 0</td><td></td><td></td><td>16.3</td><td>•</td><td>0.578</td><td></td></t<>	101	6665°0			- 0			16.3	•	0.578	
111 0.4^{610} 6.00 15.0 8.8 0.507 0.597 3.5 7.9 1.590 123 0.6154 7.600 11.4 14.3 0.833 0.604 1.2 2.4 1.167 127 0.6154 8.0 11.4 14.3 0.833 0.604 1.2 2.4 1.167 131 0.6154 8.0 11.4 9.9 0.714 0.682 2.6 1.167 131 0.6154 8.0 11.4 9.9 0.714 2.0 0.0 1.167 131 0.6157 6.00 11.4 0.682 0.714 2.0 0.0 1.167 133 0.6567 4.00 5.0 6.2 1.000 0.748 2.0 0.0 1.667 146 0.5455 6.00 11.0 6.2 1.000 0.00 1.667 1.567 148 0.6667 4.00 7.3 0.507 0.716 2.0 0.0 1.667 148 0.63333 5.00 5.0 6.0 7.3 0.577 0.0 0.0 152 0.6607 7.3 0.577 0.697 1.833 2.00 0.07 152 0.6300 5.00 5.0 6.0 7.3 0.576 0.01 1.567 160 0.5333 5.00 5.0 0.2 0.607 1.230 0.0 160 0.53346 5.00 13.0 6.2 0.667 0.716 0.0 164<	111 0.4000 5.00 15.0 5.51 5.597 5.597 5.597 5.596 1.5500 123 0.6667 7.60 11.4 14.3 7.833 7.603 1.516 1.155 1.1567 123 0.6157 7.60 11.4 9.5 6.507 7.60 11.5 1.1567 1.1567 123 0.6517 7.60 13.0 9.0 0.533 6.00 13.0 9.0 0.6677 1.157 1.15590 131 0.6557 6.00 13.0 9.0 0.748 2.0 0.0 1.1557 136 0.6677 4.00 10.0 5.00 11.0 6.3 1.8079 0.0 1.1557 1.8579 1.8579 1.15579 1.8579 1.8579 1.15579 1.15579 1.1551 1.8579 1.15579 1.15579 1.15579 1.15579 1.15599 1.15599 1.15599 1.15599 1.15599 1.1567 1.1567 1.1567 1.15674 1.15647 1.15647 1.15647 1.15647 1.15647 1.156979 1.15647 1.156474 <td>501</td> <td>0057-0</td> <td>2.00</td> <td>12.0</td> <td></td> <td></td> <td></td> <td>8.7</td> <td></td> <td>0.419</td> <td></td>	501	0057-0	2.00	12.0				8.7		0.419	
115 0.4000 6.00 15.0 8.8 0.531 0.594 3.5 7.9 1.167 123 0.6667 8.0 11.4 $1.4.3$ 0.669 1.2 2.4 1.167 127 0.8571 7.40 8.0 9.9 0.714 0.683 0.609 1.2 2.4 1.167 131 0.6571 6.00 7.0 8.2 0.4229 0.687 0.601 1.2 2.4 1.167 136 0.6667 4.00 5.0 6.3 0.699 0.716 8.2 0.697 0.0 1.590 136 0.6667 4.00 5.0 6.3 7.8 7.2 0.697 1.24 2.6 140 0.5457 6.000 11.0 6.2 0.607 0.607 1.833 1.200 152 0.8333 6.50 7.8 9.2 0.667 0.67 0.00 1.832 154 0.6333 6.50 7.8 9.200 0.667 0.00 1.832 155 0.6670 0.816 8.0 0.00 0.00 1.833 156 0.8333 6.50 7.8 9.200 0.00 1.667 152 0.8333 6.50 7.8 9.200 0.00 1.667 152 0.8333 6.50 7.8 9.200 0.00 1.00 156 0.6374 0.8366 8.0 0.00 1.667 154 0.8333 6.50 7.0 6.0 0.657 </td <td>115 0.4600 6.00 15.0 + 9.8 0.533 + 0.697 5.67 11.6 1.15 1.368 127 0.6657 7.60 13.0 + 9.9 0.714 0.683 0.6 1.9 1.155 127 0.6571 7.40 8.6 + 9.9 0.714 0.6 1.9 1.155 131 0.6567 7.00 8.6 + 9.9 0.714 0.6 1.9 1.155 131 0.6567 4.00 7.0 8.2 0.4291 1.9 1.155 131 0.6567 4.00 5.0 6.0 1.2 2.4 1.19 131 0.6567 4.00 5.0 6.2 1.00 0.6 1.135 146 0.6667 4.00 6.0 7.3 6.50 7.3 2.0 0.0 148 0.6333 6.50 7.8 9.2 0.50 1.154 1.154 1.154 148 0.8333 5.00 5.0 6.0 7.3 0.50 0.0 1.154 1.154 156 0.1111 1.00 9.0</td> <td>111</td> <td>0.4000</td> <td>6.00</td> <td>10.0 +</td> <td>1.22</td> <td></td> <td></td> <td>0</td> <td></td> <td>0-110</td> <td></td>	115 0.4600 6.00 15.0 + 9.8 0.533 + 0.697 5.67 11.6 1.15 1.368 127 0.6657 7.60 13.0 + 9.9 0.714 0.683 0.6 1.9 1.155 127 0.6571 7.40 8.6 + 9.9 0.714 0.6 1.9 1.155 131 0.6567 7.00 8.6 + 9.9 0.714 0.6 1.9 1.155 131 0.6567 4.00 7.0 8.2 0.4291 1.9 1.155 131 0.6567 4.00 5.0 6.0 1.2 2.4 1.19 131 0.6567 4.00 5.0 6.2 1.00 0.6 1.135 146 0.6667 4.00 6.0 7.3 6.50 7.3 2.0 0.0 148 0.6333 6.50 7.8 9.2 0.50 1.154 1.154 1.154 148 0.8333 5.00 5.0 6.0 7.3 0.50 0.0 1.154 1.154 156 0.1111 1.00 9.0	111	0.4000	6.00	10.0 +	1.22			0		0-110	
119 0.6667 7.6011.4 14.3 0.833 0.604 1.2 2.6 1.167 127 0.6571 7.40 8.2 0.697 1.2 2.6 1.9 1.1567 127 0.6571 7.40 8.2 0.679 0.6714 2.0 0.0 1.567 136 0.6571 7.40 8.2 0.429 0.748 2.0 0.0 1.567 136 0.6667 4.00 5.0 6.2 1.000 0.0 1.569 1.933 149 0.5667 4.00 5.0 6.2 1.000 0.0 1.597 1.833 144 0.5455 6.00 11.01 6.2 1.000 0.0 1.833 152 0.6667 4.00 5.0 6.0 7.3 9.2667 0.8165 152 0.6667 4.00 6.2 7.3 0.6677 0.9 0.0 152 0.63333 6.50 7.8 7.3 0.550 0.8165 2.0 0.0 152 0.83333 6.50 7.8 7.3 0.550 0.8166 2.0 0.0 152 0.6667 2.00 6.0 7.3 0.550 0.6116 0.0 1.667 154 0.6607 2.00 6.0 7.3 9.266 0.607 2.00 0.00 152 0.83333 5.00 5.00 6.0 7.16 0.00 0.00 2.007 160 0.5667 0.663 8.0	119 0.6667 7.60 11.4 14.3 0.433 0.404 1.2 2.4 1.167 123 0.6154 8.0 9.0 0.504 1.2 2.4 1.167 121 0.6154 8.0 9.0 0.504 1.2 2.4 1.167 121 0.6154 7.40 8.5 9.0 0.6154 1.0 1.0 131 0.6567 4.00 5.0 6.2 0.748 2.0 0.0 144 0.5657 6.00 11.0 6.2 0.501 0.6 1.265 1.303 145 0.5657 6.00 11.0 6.2 0.501 1.34 2.0 1.154 145 0.5657 6.00 11.0 6.2 0.500 1.234 2.0 1.1657 152 0.6657 6.0 7.3 9.500 6.1 2.01 1.1654 2.01 1.1654 152 0.6333 6.50 7.3 9.500 6.0 2.00 0.0 2.00 2.00 1.16574 164 <t< td=""><td>115</td><td>0.4000</td><td>6 •00</td><td>15.0 +</td><td>8.8</td><td></td><td>n n</td><td></td><td></td><td>0.089</td><td></td></t<>	115	0.4000	6 •00	15.0 +	8.8		n n			0.089	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	123 0.6154 8.00 13.0 9.0 0.559 1.5	119	0.6667	7.60	-	14.3	+			1.167	0.000	
127 0.6571 7.40 $8.6 + 9.9$ $0.714 + 0.683$ $0.6871 + 1.9$ 1.40 131 0.6571 5.00 8.2 $0.429 + 0.748$ $2.0 + 0.0$ $1.667 + 1.9$ 140 0.6667 $5.00 + 6.2$ $1.000 + 0.0$ $5.0 + 0.0$ $1.833 + 1.9$ 144 0.5455 6.00 $11.01 + 6.2$ $1.000 + 0.0$ $1.833 + 1.206 + 1.933 + 1.206$	127 0.8571 7.40 8.6 9.9 C.714 0.683 C.88 1.9 1.657 131 0.6000 3.00 5.00 7.0 8.2 C.429 0.748 2.0 0.0 1.550 140 0.6667 4.00 6.0 11.0 6.2 1.000 0.0 1.550 1.500 144 0.5667 4.00 6.0 11.0 6.2 1.000 0.0 1.550 1.500 148 0.6567 4.00 6.0 11.0 6.2 1.000 0.0 1.550 1.550 152 0.8333 6.50 7.8 9.2 6.601 1.657 1.550 152 0.6333 6.50 7.8 9.2 6.607 7.3 0.550 0.0 2.050 2.050 2.050 2.051 1.557 2.060 2.051 2.050 2.051 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 2.600 0.0	123	0.6154	8.00	0.0	0.6	269 + 7	•	•••			
131 $C_{1} \in E_{7} T_{1}$ $6_{*} 0 0$ $7_{*} 0$ $8_{*} 2$ $C_{*} 429$ $9_{*} 748$ $2_{*} 0$ $0_{*} 0$ 136 0.6667 $4_{*} 00$ $5_{*} 0$ $6_{*} 3$ $C_{*} 8C7$ $C_{*} 716$ $2_{*} 0$ $0_{*} 0$ 140 0.6667 $4_{*} 00$ $6_{*} 0$ $6_{*} 2$ $1_{*} 00$ $6_{*} 0$ $1_{*} 50$ $1_{*} 3$ 148 0.5455 $6_{*} 00$ 11.04 $6_{*} 2$ $C_{*} 6677$ $C_{*} 776$ $2_{*} 8$ $2_{*} 1.200$ 152 0.8333 $6_{*} 50$ 7.8 $9_{*} 2$ $C_{*} 6677$ $C_{*} 776$ 0.8 $2_{*} 1.200$ 152 0.8333 $6_{*} 50$ 7.8 $9_{*} 2$ $C_{*} 6677$ $C_{*} 776$ 0.8 $2_{*} 0$ 154 0.8333 $6_{*} 50$ 7.8 $9_{*} 2$ 0.6677 $C_{*} 776$ 0.8 $2_{*} 0$ 152 0.8333 $6_{*} 50$ 7.8 $9_{*} 7.9$ 0.0816 $8_{*} 0.7$ 0.00 155 0.6677 $C_{*} 716$ $C_{*} 876$ $8_{*} 0.7$ 0.02 $2_{*} 0007$ 164 0.11111 1.000 $9_{*} 0.7$ 0.5507 0.8166 $8_{*} 0.7$ 0.02 164 0.3846 $5_{*} 00$ 7.04 $6_{*} 714$ $C_{*} 683$ $8_{*} 0.7$ 0.07 172 0.3846 $5_{*} 00$ $1_{*} 7.52$ $0_{*} 0.7$ $0_{*} 0.7$ $0_{*} 0.7$ 172 0.3846 $5_{*} 00$ $1_{*} 0.7$ $0_{*} 0.7$ $0_{*} 0.7$ $0_{*} 0.7$ 180<	131 C.6571 6.00 7.0 + 8.2 C.429 + 9.748 2.0 + 0.0 1.590 + 136 0.66000 3.00 5.0 + 6.3 C.807 + C.716 2.0 + 0.0 1.590 + 144 0.5667 4.00 6.2 1.000 1.0 1.200 1.300 152 0.5933 6.50 7.8 + 9.2 C.667 + 2.1 1.154 + 152 0.8333 6.50 7.8 + 9.2 C.667 + 2.0 + 0.0 152 0.8333 6.50 7.8 + 9.2 C.667 + 2.0 0.0 1.457 + 152 0.8333 6.50 7.8 + 9.2 C.667 + 2.0 0.0 1.657 + 152 0.8333 6.50 7.8 + 9.2 0.500 2.00 + 0.0 1.657 + 156 0.5114 1.00 9.666 8.0 + 0.0 1.657 + 0.600 + 1.657 + 164 0.1111 1.00 9.070 + 8.0 + 0.60 1.668 + 8.0 + 0.0 1.657 +	127	0.8571	7.40	•	6•6	714 + 0		· · ·			
136 0.6000 3.00 $5.0 + 6.3$ $(.8C) + C.716$ $2.0 + 0.0$ $1.591 + 0.699$ 140 0.6667 4.00 $6.0 + 6.2$ $1.000 + 0.0$ $5.0 + 0.0$ $1.833 + 1.200$ 144 0.5455 6.00 $11.0 + 6.2$ $C.591 + 0.699$ $1.3 + 2.8$ $1.200 + 1.200$ 152 0.8333 6.50 $7.8 + 5.2$ $C.567 + C.77C$ $0.8 + 2.1$ $1.154 + 1.200 + 1.657 + 1.200 + 1.657 + 1.200 + 1.155 + 1.200 + 1.155 + 1.200 + 1.200 + 1.155 + 1.200 + 1.100 + 1.155 + 1.200 + 1.1111560.66003.005.006.0 + 7.30.55000.8168.0 + 0.01.667 + 1.155 + 1.155 + 1.2500 + 0.0116 + 1.155 + 1.250 + 1.0563 + 1.0563 + 1.0503 + 1.0507 + 1.155 + 1.000 + 1.750 + 0.0 + 0.0 - 1.750 + 1.750 + 1.750 + 1.750 + 0.0 + 0.0 - 0.0 + 1.750 + 1.750 + 0.0 + 0.0 + 0.0 + 1.333 + 1.5500 + 0.0 + 0.0 + 0.0 - 0.0 + 0.0 + 1.333 + 1.5500 + 0.$	136 0.6000 3.00 5.0 + 6.3 (.803) + (.00) 6.0 + 6.2 1.000 + (.00) 5.0 + (.0) 1.833 5.3 140 0.5455 6.00 11.0 + 6.2 1.500 + 0.0 1.833 5.4 1.60 1.10 + 6.2 1.500 + 0.0 1.833 5.4 1.833 5.50 1.833 5.50 1.833 5.65 7.8 7.2 6.667 + 7.4 0.8333 5.50 1.10 + 6.2 1.667 + 1.154 + 0.667 + 1.154 + 1.156 0.667 + 1.156 0.610 + 2.00 + 1.657 + 1.657 + 2.007 + 9.007 + 9.070 + 9.0	121	0.6571	6.00	+ 0 +	8.2	429 + 0	2.	•	1.001	0.123	
140 0.6667 4.00 6.0 11.0 6.2 1.000 0.0 1.3 2.0 1.200 144 0.5455 6.00 11.0 6.2 0.591 0.690 1.3 2.0 1.200 152 0.8333 6.50 7.8 5.2 0.667 0.8716 2.0 0.0 156 0.8333 5.00 6.0 7.3 0.570 0.8116 2.0 0.0 156 0.6670 2.0 6.0 7.3 0.570 0.8116 2.0 0.0 160 0.500 5.0 6.0 7.3 0.570 0.8116 2.0 0.0 160 0.5100 5.0 6.0 7.3 0.570 0.8116 2.0 0.0 160 0.5100 5.0 6.0 7.0 0.563 8.0 0.0 2.600 164 0.1111 1.00 9.0 3.7 0.556 0.663 8.0 0.0 2.600 164 0.1111 1.00 9.0 5.0 13.26 0.663 8.0 0.0 2.600 172 0.5714 4.00 7.0 0.2643 8.0 0.0 0.0 2.600 176 0.7594 0.063 8.0 0.0 0.0 1.750 117 0.7596 0.663 8.0 0.0 0.0 1.750 1176 0.7596 0.063 8.0 0.0 0.0 1.730 100 0.0 0.0 <	140 0.6667 4.00 6.0 6.2 1.000 0.0 1.200 1.100 1.200 2.00 1.100 1.100 1.667 1.156 0.00 1.1667 1.6607 1.6607 1.660<	136	0.6000	00° E	2.0 +	6.3	9C3 + C	2.	•	1-500 +	. 0.05	
144 0.5455 6.00 11.0 6.2 $C.591$ 0.690 1.3 2.8 1.200 148 0.8333 6.50 7.8 9.2 $C.667$ $C.770$ 0.8 2.1 1.154 152 0.8333 5.00 6.0 7.3 0.570 0.8116 2.0 0.0 1.667 156 0.6600 3.00 5.0 6.0 7.3 0.570 0.8116 2.0 0.0 1.667 156 0.6600 3.00 5.0 6.0 7.3 0.570 0.816 8.0 0.0 160 0.5000 2.90 4.0 5.0 0.257 0.866 8.0 0.0 2.000 164 0.11111 1.00 9.0 3.7 0.556 0.6633 8.0 0.0 2.600 164 0.3846 5.00 13.0 6.3 6.714 6.643 8.0 0.0 1.750 172 0.3846 5.00 13.0 13.2 0.0 0.0 0.0 0.0 1.333 180 0.7590 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1176 0.3846 5.00 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 108 0.7590 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 108 0.7590 0.0 0.0 0.0 0.0 0.0 0.0 <td>144 0.5455 6.00 11.0 6.2 C.591 0.697 1.3 2.8 1.200 152 0.8333 6.50 7.8 9.2 C.667 C.667 C.67 1.667 152 0.8333 6.50 7.8 9.2 C.667 C.667 C.667 C.667 1.667 152 0.8333 5.00 6.0 7.3 0.550 0.816 2.0 0.0 1.667 152 0.8333 5.00 5.0 6.0 7.3 0.550 0.816 2.0 0.0 2.0 0.0 2.600 1.667 4.677 160 0.5104 5.00 5.0 4.0 5.0 0.2550 0.866 8.0 0.0 2.600 4.07 2.60 1.750 4.07 2.60 4.07 1.750 4.03 4.00 1.750 4.07 2.600 4.07 1.750 4.07 1.750 4.00 1.750 4.07 1.750 4.00 1.750 4.00 1.750 4.00 1.750 4.07 0.00 1.750 4.00 1.</td> <td>071</td> <td>0.6667</td> <td>4.00</td> <td>+ 0•9</td> <td>6.2</td> <td>0 + 000</td> <td>5.</td> <td>• •</td> <td>I. 833 +</td> <td>0.046</td> <td></td>	144 0.5455 6.00 11.0 6.2 C.591 0.697 1.3 2.8 1.200 152 0.8333 6.50 7.8 9.2 C.667 C.667 C.67 1.667 152 0.8333 6.50 7.8 9.2 C.667 C.667 C.667 C.667 1.667 152 0.8333 5.00 6.0 7.3 0.550 0.816 2.0 0.0 1.667 152 0.8333 5.00 5.0 6.0 7.3 0.550 0.816 2.0 0.0 2.0 0.0 2.600 1.667 4.677 160 0.5104 5.00 5.0 4.0 5.0 0.2550 0.866 8.0 0.0 2.600 4.07 2.60 1.750 4.07 2.60 4.07 1.750 4.03 4.00 1.750 4.07 2.600 4.07 1.750 4.07 1.750 4.00 1.750 4.07 1.750 4.00 1.750 4.00 1.750 4.00 1.750 4.07 0.00 1.750 4.00 1.	071	0.6667	4.00	+ 0•9	6.2	0 + 000	5.	• •	I. 833 +	0.046	
148 0.8333 6.50 7.8 9.2 $C.667 + C.77C$ $0.8 + 2.1$ $1.154 + 0.0$ 152 0.8333 5.00 $6.0 + 7.3$ $0.590 + 0.816$ $2.0 + 0.0$ $1.667 + 0.0$ 156 0.6600 3.00 $5.0 + 7.3$ $0.590 + 0.816$ $2.0 + 0.0$ $2.090 + 0.0$ 160 0.5000 2.90 $4.0 + 5.0$ $0.259 + 0.866$ $8.0 + 0.0$ $2.090 + 54$ 164 0.1111 1.000 $9.0 + 3.7$ $0.556 + 0.663$ $8.0 + 0.0$ $2.600 + 0.65$ 164 0.1111 1.000 $9.0 + 3.7$ $0.556 + 0.663$ $8.0 + 0.0$ $2.600 + 0.65$ 164 0.1111 1.000 $9.0 + 3.7$ $0.556 + 0.663$ $8.0 + 0.0$ $2.600 + 0.65$ 176 0.3846 5.00 $13.0 + 6.9$ $0.714 + 0.683$ $8.0 + 0.0$ $2.600 + 0.65$ 176 0.3846 5.00 $13.0 + 13.2$ $0.0 + 9.0$ $0.0 + 0.0$ $1.333 + 0.0$ 180 0.7500 $0.0 + 0.0$ $0.0 + 0.0$ $0.0 + 0.0$ $0.0 + 0.0$ $0.0 + 0.0$	148 0.8333 6.50 7.8 9.2 C.667 + C.77C 0.8 + 2.1 1.154 + 0.0 152 0.8333 5.00 6.0 + 7.3 0.590 + 0.816 2.0 + 0.0 1.667 + 0.0 156 0.6000 3.00 5.0 + 6.1 9.400 + C.876 2.0 + 0.0 2.000 + 0.0 156 0.5000 2.00 4.0 + 5.0 0.2556 + 0.663 8.0 + 0.0 2.600 + 0.0 164 0.1111 1.00 9.0 + 3.7 0.556 + 0.663 8.0 + 0.0 2.600 + 0.0 168 0.3846 5.00 13.0 + 6.3 6.714 + C.683 8.0 + 0.0 2.600 + 0.0 172 0.3744 4.00 7.0 + 6.9 C.714 + C.683 8.0 + 0.0 1.333 + 0.0 172 0.3746 5.00 13.0 + 0.0 0.0 + 0.0 1.333 + 0.0 172 0.3746 5.00 13.0 + 0.0 0.0 + 0.0 1.333 + 0.0 180 0.7500 0.0 + 0.0 0.0 + 0.0 1.333 + 0.0 180 0.7500 0.0 + 0.0 0.0 + 0.0 1.333 + 0.0 180 0.7500 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0	144	0.5455	6.00	11.0 +	6.2	591 + 0.	•1	+ 2.8	-	0.014	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	152 0.8333 5.00 6.0 7.3 0.590 0.016 1.667 0.0 156 0.66000 3.00 5.0 6.1 0.400 C.876 2.0 0.0 540 4.0 160 0.5000 2.00 4.0 5.0 0.250 0.866 8.0 0.0 5400 5400 164 0.1111 1.00 9.0 3.7 0.556 0.663 8.0 0.0 2.600 9.0 164 0.1111 1.00 9.0 5.00 13.0 6.3 6.3 8.0 0.0 2.600 9.0 172 0.5714 4.00 7.0 5.00 13.0 6.9 0.714 6.61 7.600 2.600 0.0 2.600 9.00 2.600 9.00 2.600 4.0 1.750 9.00 2.600 9.00 2.600 4.0 1.750 9.00 1.750 9.00 1.750 9.00 1.750 9.00 1.750 9.00 1.733 9.0 0.0 0.0 0.0 1.733 9.0 1.733 <td< td=""><td>071</td><td>0 8333</td><td>6 - 50</td><td>×</td><td>5.2</td><td>667 + C.</td><td>• 0</td><td>• 2.1</td><td></td><td>5</td><td></td></td<>	071	0 8333	6 - 50	×	5.2	667 + C.	• 0	• 2.1		5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156 0.6000 3.00 5.0 + 6.1 0.400 + 0.866 8.0 + 0.0 2.000 + 54 160 0.5000 2.00 4.0 + 5.0 0.256 + 0.663 8.0 + 0.0 2.600 + 0. 164 0.1111 1.00 9.0 + 3.7 0.556 + 0.663 8.0 + 0.0 2.600 + 0. 164 0.3846 5.00 13.0 + 6.3 0.512 3.0 + 0.0 2.600 + 0. 172 0.5714 4.00 7.0 + 6.9 0.714 + 0.683 8.0 + 0.0 2.600 + 0. 176 0.3846 5.00 13.0 + 0.0 0.0 + 0.0 1.750 + 0. 176 0.3846 5.00 13.2 + 13.2 0.0 + 0.0 0.0 + 0.0 1.333 + 0. 180 0.7500 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 1.333 + 0. 180 0.7500 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 180 0.7500 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 0.0 + 0.0 180 0.7500 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 0.0 180 0.7500	15.0	0.8333	5,00	+ 0 - 9	7.3	500 + 0.	2.	•••			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	160 0.5000 2.00 4.0 5.0 0.250 0.866 8.0 0.0 9.000 54. 164 0.1111 1.00 9.0 3.7 0.556 0.663 8.0 0.0 2.600 0.0 172 0.5714 4.00 7.0 6.9 C.714 C.512 3.0 0.0 2.600 4.0 172 0.5714 4.00 7.0 6.9 C.714 4.663 8.0 0.0 2.600 4.0 176 0.3846 5.00 13.2 0.0 4.0 1.322 0.0 0.0 1.333 0.0 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 0.0 180 0.7500 0.0 0.0 0.0 0.0 1.333 0.0 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 0.0 180 0.7500 0.0 0.0 0.0 0.0 0.0 0.0 1.333 0.0 180 0.7500 0.0 </td <td>154</td> <td></td> <td></td> <td>+</td> <td>6-1</td> <td>400 + C.</td> <td>2.</td> <td>0°0 +</td> <td></td> <td>3</td> <td></td>	154			+	6-1	400 + C.	2.	0°0 +		3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	164 0.1111 1.00 9.0 + 3.7 0.556 + 0.663 8.0 + 0.0 2.600 + 0. 172 0.3846 5.00 13.0 + 6.9 C.714 + C.683 8.0 + 0.0 2.600 + 0. 172 0.3846 5.00 13.0 + 13.2 0.0 + 0.0 2.600 + 0. 176 0.3846 5.00 13.0 + 13.2 0.0 + 0.0 2.600 + 0. 176 0.3846 5.00 13.2 + 13.2 0.0 + 0.0 2.600 + 0. 180 0.7500 0.0 13.2 + 0.0 0.0 0.0 1.333 + 0. 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0. 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0. 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0. 180 0.7550 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1810 0.75500	140	0.5000	00.0	+ 0 • 4	2.0	250 + 0.	æ	• 0• 0		•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	168 0.3846 5.00 13.0 6.3 6.3714 4.00 7.0 6.3 6.3714 4.00 7.0 0.30 1.750 4.010 1.750 4.010 2.600 0.30 172 0.5714 4.00 7.0 6.9 C.714 4.06 2.600 0.30 176 0.3846 5.00 13.2 0.0 9.0 0.0 2.600 0.33 180 0.7500 9.0 0.0 0.0 0.0 0.0 1.333 0.0 180 0.7500 9.0 0.0 0.0 0.0 0.0 1.333 0.0 180 0.7500 9.0 0.0 0.0 0.0 0.0 1.333 0.0 180 0.7500 9.0 0.0 0.0 0.0 0.0 1.333 0.0 180 0.7500 9.0 0.0 0.0 0.0 0.0 1.333 0.0 ALPHA IS PRINFTION 0.0 0.0 0.0 0.0 0.0 0.0 0.0 M IS </td <td>144</td> <td>0.1111</td> <td>00.1</td> <td>+ 0-6</td> <td>3.7</td> <td>556 + 0.</td> <td></td> <td>0°0 +</td> <td></td> <td>٠</td> <td></td>	144	0.1111	00.1	+ 0-6	3.7	556 + 0.		0°0 +		٠	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172 0.5714 4.00 7.0 + 6.9 C.714 + C.683 8.0 + 0.0 2.600 + 0.3 176 0.3846 5.00 13.2 0.0 + 0.0 1.333 + 0.0 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0.0 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0.0 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0.0 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0.0 180 0.75500 0.0 0.0 0.0 0.0 0.0 1.333 + 0.0 180 0.75500 0.0 0.0 0.0 0.0 0.0 1.333 + 0.0 ALPHA IS PRIPRTION OF MARKED MIMALS 0.0 0.0 0.0 0.0 M IS FOPULATION MARKED ANIMALS 0.0 0.0 0.0 0.0	101		5.00	•	6.3	3C8 + C.	3.	+ 0.0		9	
176 0.3846 5.00 13.0 + 13.2 0.0 + 0.0 + 0.0 + 0.0 1.333 + 0. 180 0.7500 9.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 + 0.0	176 0.3846 5.00 13.2 0.0 9.0 0.0 1.333 + 0. 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0. 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0. 180 0.7500 0.0 0.0 0.0 0.0 0.0 1.333 + 0. ALPHA IS PROPARTION OF MARKED ANIMALS M IS TCTAL WARKED POPULATION M MARKED ANIMALS 0.0 0.0 0.0 0.0 PHI IS PROBABILITY OF SURVIVAL PHI IS PROBABILITY OF SURVIVAL 0.0<	172		00.4	1	6-9	714 + C.	8 .	••••	• 60	ς.	
	180 0.7500 0.0 0.0 + 0.0 - 0.0 + 0.0 - 0.0 + 0.0 - 0.0 + 0. ALPHA IS PROPRTION OF MARKEE ANIMALS M IS TCTAL WARKEE PCPULATION N IS TOTAL POPULATICN PHI IS PROBABILITY OF SURVIVAL	717	77000				+	0	٠	÷.	٠	
	ALPHA IS PROPRTION OF MARKEC ANIMALS M IS TCTAL MARKEC PCPULATION N IS TOTAL POPULATICN PHI IS PROBABILITY OF SURVIVAL	180	0.7500	0.0			+	•0	٠			
	ALPHA IS PROPRTION OF MARKEC ANIMALS M IS TCTAL MARKEC PCPULATION N IS TOTAL POPULATICN PHI IS PROBABILITY OF SURVIVAL				•	:	•	• • • • • • • • •				•
	S TOTAL POPULATICN IS PROBABILITY OF SURVIVAL	-	٢.	C PCPULATIC		,						
TETAL WARKED POPULATION	IS PROBABILITY OF SURVIVAL	15		VIICN		i						
TCTAL MARKEC PCPULATION		•	PROBABIL I		IVAL							

- 145 -

ſ	
ł	3
ł	
ł	÷
L	-
l	Э
L	-
L	w
l	ñ
ł	S.
1	4
ł	
I	٠
L	
l	
l	2
Į	2
Ł	2
ł	-
ł	2
ł	<u>ج</u>
Í	ò
ł	T
l	2
l	28-DAY RATES
	0
I	ū
1	N
ł	-
ł	0
	5
l	2
ł	븆
ł	2
I	F
I	И
I	STANDARDIZED
I	
I	

PEROMYSCUS AREA 2 EXPERIMENTAL HANEY

MEEK	INSI.	UEATH KATE	SURVI VAL RATE	DILUTION ANTE
54	-0.693 (-2.693	TO 1.3671	0.500(500 TO 1.500)	0.0
58	-0.458 (-1.554		.632(060 70 1	871 (0.234 TD
66	[-]	TO 1.021)	TO L	1 6 0.406 TD
11	-1-)		0.568(093 TO 1.230)	(-0.257 T0 5.
77	-0.135 (-0.679		10 1	(0.834 TO 1.
84	-0.276 1-1.216	10 0.664)	T0_1	I 0.624 TD 1.
89	-		TO 1.2	•••••••••••••••••••••••••••••••••••••••
66	0.0 0.0	TO 0.0)	101	(0.865 TO 1.
16	Ľ		TO 1	JD 6.
101	-1-		TO 1.15	(1.002 TO 1.
105	-0.462 (-1.455	TU 0.571)	TO 1.2	(0.348 TO 3.
111	Ξ	i	TO 1.1	(-0.589 TD 4.
115	[-]	TO 0.4E5)	TD 1.0	T0 2.
119	-0.182 (-0.913	TO 0.548)	0.833(0.225 T0 1.442)	(C.173 TO 2.
123	ב		0.569(035 TO 1.174)	1 0.796
127	1-)		0.714(0.031 TO 1.357)	TO 1.
131	-		0.508(201 TO 1.217)	(C. 492 TD 2.
136	-0.223 [-1.118		C. 8CO(0.084 TO 1.5161	(0.726
140	0.0 1 0.0	10 0.0)	101	(0.974 TO 2.
144	-1-)		TO 1.2	(C.720 TO 1
148	1		C.667(103 TO 1.436)	1 0 . 631
152	-		TO 1.3	(0.312 TO
156	<u> </u>		•	507 TO
160	-		.250(616 TO 1.1	[******]
164	-	TO 0.605)	107 TO 1.2	(C.583 TO 4
168	-		.3C8(204 TO 0.8	750 (C.450 TO 3.
172	(-1		-714(0.031 TO 1.3	(C.397 TO 4,
176	0) 0.		.0 (0.0 10 0.	(1.333 TO 1.
1 A O	0.0) C.0	TO C.))	0.0 (0.0 TO 0.0)	.0 1 0.0 1 0.0

• 5

07 111 115 119 123 127 131 136 140 144 148 152 156 160 164 168				2201012000000
IS AREA 3 5 YR SLASH FANEY 63 72 77 91 95 99 103 10				0 0 0 0 0
PERGMYSCUS MALES 51 55 59	N00000	20000000000000000000000000000000000000	~~~~~~~~~	 THE SUMS A(1.J)

- 147 -

POPULATION PARAMETERS ESTIMATED FROM PULTIPLE RECAPTURE DATA - JCLLYS STOCHASTIC MODEL

1

I

PERCHYSCUS AREA 3 5 YR SLASH HANEY

DF WEEK OF CAPTURE 55 0.6667 0.0 0.0 0.0 0.0 0.0 59 0.5000 2.00 0.0 0.0 0.0 0.0 59 0.5000 2.00 0.0 0.0 0.0 0.0 0.0 59 0.5000 2.00 3.0 0.00 0.0 0.0 0.0 71 0.5000 2.00 3.0 0.00 0.0 0.0 0.00 0.00 71 0.5000 2.00 3.0 0.00 0.0 0.00 1.000 71 0.5000 2.00 3.0 0.00 0.0 0.00 1.251 71 0.5000 2.00 3.0 0.0550 5.00 3.0 0.01 1.252 710 0.5000 7.59 10.00 3.0 0.5000 0.011 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Ē				2	5		5	5	1 0 1		
51 0.0 0	DF DF						EK OF C	TURE				2 2 2 2 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAPTURI	U.										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			•	0.0	+ 0•0	0.0	99	08	+ 0 • 0		•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	. 6667	2.00	3.0 +	3 .3	56	0.8	2.0 +		-C + 000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i		.5000	2.00	+ 0 +	3.9	C.250 +	86	3.0 +		.000 + 7.	
C_{-50CC 1.00 $2.0 +$ 3.6 $1.000 + 0.0$ $4.000 + 0.0$ $4.000 + 0.0$ 0.2303 1.000 $3.0 +$ 3.6 $C.125 + 0.468$ $2.0 +$ 0.0 $5.000 + 12.$ 0.23556 5.00 $9.0 +$ 3.5 $1.0033 + 1.009$ $4.0 +$ 0.0 $5.000 + 12.$ 0.2556 5.00 $9.0 +$ 3.5 $1.0333 + 0.099$ $4.0 +$ 0.0 $5.000 + 0.0$ 0.5576 5.00 $9.0 +$ 3.5 $0.5556 + 0.663$ $3.0 +$ 0.0 $1.600 + 0.0$ 0.5570 5.00 $9.0 +$ 3.5 $0.5556 + 0.663$ $3.0 +$ 0.0 $1.600 + 0.0$ 0.5570 1.003 1.009 $4.0 +$ $1.250 + 0.0$ $1.2029 + 0.0$ 0.5500 10.20 11.00 $20.0 +$ $11.256 + 0.936$ $1.653 + 2.666$ $2.882 + 0.0$ 0.8700 10.20 11.00 $20.0 +$ $11.256 + 0.936$ 1.602 $1.2029 + 0.0$ 0.8970 11.00 $20.0 +$ 11.23 0.566 $2.986 + 0.936$ $1.2029 + 0.0$ 0.8970 15.00 10.2 $0.8926 + 0.926$ $0.382 + 0.0$ $1.233 + 0.666$ 0.8970 15.00 10.2 0.896 1.612 $1.233 + 0.666$ 0.8933 10.00 $1.6141 + 0.102$ $1.686 + 4.9$ $1.233 + 0.0$ 0.8920 0.00667 $2.00 + 0.00$ $1.6141 + 0.006$ $1.016 + 0.0$ 0.8933 $1.000 + 0.000$ $0.000 + 0.000$ $1.016 + 0.000$ $1.0339 + 0.000$ 0.89333			.2500	1.00	+ 0 +	3.6	C.250 +	86	1.0 +		•0 + 000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			- 5000	1-20	2.0 +	3.6	1.000 +	0	+ 0.9		000 + 1.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.2500	2.00	8.0+	3.6	C. 125 +	40	2.0 +		.000 + 3.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.3333	1.00	+ 0• E	3.8	0.333 +	08	4°0 +		000 +12.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.2000	1-00	5.0 +	3.5	1.000 +	a	+ 6+4		800 + 0.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5556	5.00	+ 0.6	3.5	0.556 +	99	3.0+		600 + 0.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		.6250	5.00	8 O +	6 • 3	C.938 +	57	7.5 +		COO + 0°	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			- 5000	7.50	15.0 +	12.5	C.756 +	2	0.3 +		0 + 0.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.8750	10.20	11.7 +	11.7	0.744 +	89	16.3 +	•	882 + 0.	
0.5500 11.00 $20.0 +$ 11.1 $C_{1}750 + 0.487$ $0.8 +$ 5.1 $1.257 + 0.682$ 0.8000 15.00 $18.8 +$ 18.1 $7.333 + 0.487$ $0.8 +$ 2.3 $1.120 + 0.692$ 0.87511 6.00 $7.0 +$ 9.0 $1.143 + 1.602$ $1.6 +$ 4.9 $1.270 + 0.692$ 0.8333 8.00 $9.6 +$ 17.7 $C.556 + 1.832$ $4.7 +$ 28.6 $1.875 + 1.670 + 0.697 + 0.807 + 0.697 + 0.807 + 0.90$ 0.80333 8.00 $9.6 +$ 17.7 $C.556 + 1.832$ $4.7 +$ 28.6 $1.875 + 1.200 + 0.90$ 0.5000 5.00 $10.0 +$ $3.0 +$ $4.0 +$ 6.3 $C.250 + 0.866$ $2.0 +$ 0.0 0.7500 3.00 $4.0 +$ 4.1 $1.000 + 0.7$ $1.0 +$ 0.0 $1.0333 + 0.000 + 3.000 + 3.000 + 3.000 + 3.000 + 3.000 + 4.010.56672.003.00 + 4.01 + 6.3C.750 + 0.86661.0 + 0.01.0333 + 0.000 + 3.000 + 3.00 + 4.010.75003.004.0 + 4.1C.750 + 0.86661.0 + 0.01.333 + 0.000 + 3.00 + 4.01 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.00 + $. 3333	8.33	25.0 +	31.6	C.6CD +	50	5.0 +	•	.333 + 0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.5500	11-00	20.0 +	11.1	C. 750 +	66	3 8 +	5	250 + 0.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8000	15.00	18.8 +	18.1	+ 665.0	48	0.8 +		120 + 0.	
0.8333 8.00 9.6 + 17.7 C.556 + 1.832 4.7 + 28.6 1.875 + 1. 0.5000 5.00 10.0 + 38.4 0.500 + 1.414 -1.0 + 13.9 0.807 + 0. 0.7500 3.00 4.0 + 6.3 C.250 + 0.866 2.0 + 0.0 3.007 + 3. 0.7500 3.00 4.0 + 6.3 C.250 + 0.866 2.0 + 0.0 3.007 + 3. 0.3333 1.00 3.0 + 4.1 1.009 + 0.7 1.0 + 0.0 1.500 + 0. 0.6667 2.00 3.0 + 4.1 1.000 + 0.7 1.0 + 0.0 1.333 + 0. 0.7500 3.00 4.0 + 4.1 C.750 + 0.866 1.0 + 0.0 1.333 + 0. 0.7500 3.00 4.0 + 4.1 C.750 + 0.866 1.0 + 0.0 1.333 + 0. 0.7500 3.00 4.0 + 4.1 C.750 + 0.866 1.0 + 0.0 1.333 + 0. 0.7500 3.00 4.0 + 6.6 C.6 + 0.0 0.0 + 0.0 1.333 + 0. 0.7500 3.00 4.0 + 0.0 0.0 + 0.0 1.333 + 0. 0.0 1.333 + 0. 0.7500 3.00 4.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 2.500 + 0. <tr< td=""><td></td><td></td><td>. 6571</td><td>6.00</td><td>7.0 +</td><td>0.6</td><td>1.143 +</td><td>60</td><td>1.6 +</td><td></td><td>200 + 0.</td><td></td></tr<>			. 6571	6.00	7.0 +	0.6	1.143 +	60	1.6 +		200 + 0.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$:	.8333	8.00	9°6 +	17.7	C. 556 +	83	4.7.+	æ	875 + 1.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		.5000	5.00		38.4	0.500 +	41	-1.0 +	m	800 + 0	
0.3333 1.00 3.0 3.0 3.0 4.0 1.500 4.0 0.6667 2.00 3.0 4.1 1.000 0.0 1.0 4.0 1.333 0 0.6667 2.00 3.0 4.1 1.000 0.0 1.0 4.0 1.333 0 0.7500 3.00 4.0 4.1 0.750 0.10 1.333 0 0.7500 3.00 4.0 4.1 0.750 0.866 1.0 1.333 0 0.7500 3.00 4.0 4.7 0.500 1.00C 3.0 2.500 0 0.4000 2.00 5.0 4.4 0.500 1.00C 3.0 0.0 1.333 0 0.4000 5.0 4.6 0.500 1.00C 3.0 0.0 1.333 0 0.7500 3.00 4.0 0.6 0.0 0.0 1.333 0 0.7500 3.00 4.0 0.0 0.0 0.0 1.333 0 0.7500 0.0 0.0 0.0		O.	.7500	3.00	4.0.4	6.3	C.250 +	86	2.0 +		•00C + 3.	
0.6667 2.00 3.0 4.0 1.000 4.0 1.000 4.0 1.033 0. 0.7500 3.00 4.0 4.1 C.750 0.866 1.0 6.0 1.333 0. 0.7500 3.00 4.0 4.1 C.750 0.866 1.0 6.0 1.333 0. 0.7500 3.00 4.0 4.7 0.500 1.00C 3.0 2.570 7. 0.4000 2.00 5.0 4.7 0.500 1.00C 3.0 2.570 7. 0.4000 2.00 5.0 4.6 C.600 9.876 1.0 0.0 2.570 7. 0.7500 3.00 4.0 6.6 C.7 4.0 0.0 2.500 7. 0.7500 3.00 4.0 0.0 0.0 7.0 7.0 7.0 7.0 7.0 0.500 0.0 0.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 0.500 0.0 0.0 0.0 0.0 0.0 7.0		44 0	.3333	1.00	+ 0 = E	3.6	C.667 +	80	1.0 +		500 + 0.	
0.7500 3.00 4.0 + 4.1 C.750 + 0.866 1.0 + C.0 1.333 + 0. 0.7500 3.00 4.0 + 4.7 0.500 + 1.00C 3.0 + C.0 2.570 + 0. 0.4000 2.00 5.0 + 4.6 C.600 + 9.876 1.0 + 0.0 1.333 + 0. 0.4000 2.00 5.0 + 4.6 C.600 + 9.876 1.0 + 0.0 1.333 + 0. 0.7500 3.00 4.0 + 6.6 C.5 4.0.7 0.0 2.500 + 0.0 0.7500 3.00 4.0 + 0.0 C.5 4.0.7 0.0 2.500 + 0.0 0.500 0.0 0.0 0.0 0.0 0.0 2.500 + 0.0			. 6667	2.00	3.0 +	4.1	1.000 +	ن• 0	1.0 +		.333 + 0.	
0.7500 3.09 4.0 4.7 0.500 1.000 3.9 0.0 2.590 9. 0.4000 2.00 5.0 4.6 0.600 9.876 1.0 0.0 1.333 0.0 0.7500 3.00 4.0 6.6 0.7 0.0 1.333 0.0 0.7500 3.00 4.0 6.6 0.7 0.0 1.333 0.0 0.7500 3.00 4.0 6.6 0.7 0.0 2.00 2.00 0.0 0.500 0.0 0.0 0.0 0.0 0.0 0.0 2.00 4.0		52	.7500	3.00	+ 0 +	4.1	C.750 +	86	1.0 +		.333 + 0.	
0.4000 2.00 5.0 + 4.6 C.600 + 7.876 1.0 + 0.0 1.333 + 0. 0.7500 3.00 4.0 + 6.6 C.C + 0.C 0.0 + 7.9 2.500 + 7. 0.5000 7.0 + 0.0 5.0 + 0.0 2.5 + 0.0 0.0 + 0.9			.7500	3 •00	+ 0.4	4.7	0.503 +	8	3•0 +		500 + 0.	i
0.7500 3.00 4.0 + 6.6 C.C + 0.C 0.0 + 0.0 2.C00 + 0. 0.5000 0.0 0.0 + 0.0 C.C + 0.0 0.0 + 0.0 0.0 + 0.0		0	1.4000	2.00	5.0 +	4.6	C.600 +	87	1.0 +		, 333 + 0,	
$8 0.50c0 0.0 0.0 0.0 c_{s}c + \ 0.0 0.0 + \ 0.0 0.0 + \ 0.0 0.0 + \ 0.$		0	.7500	3.00	4.0 +	6.6	+ 	0.0	+ c•0			
		80		0-0	+ 0-0	0.0	+ 3.3	0.0	+ 0-0		0 + 0	
		1014	L PARKED	FCPULATIO		3						
TCTAL PARKED FCPULATICN	2 2 0	HI IS PR	CBABILITY ER OF NEI	CF SUR	NING	_ ~	LATICN					
IS TEAL FARKED FEPULATION IS TETAL POPULATION HI IS PREBABILITY CF SURVIVAL IS NUMBER OF NEW ANIMALS JOINING THE		MRFA IS	TIT.	ATELAS	DEETNED BY		_					

ı İ

149 -

S
11417
÷
Y RAT
28-CA
STANCARCIZEC 28-CAY RATES + 4 SE LIMITS
NIC A C
S 11

PERDMYSCUS AREA 3 5 YR SLASH HANEY

																				.5				a a sum a sum a sum a sum a sum		
DILUTION RATE	0 0.0 10 0.	(0.037 TD 3.	100 1-6.801	(0.278 TO 2.	(-0.224 TO 6.	369(0.386 TO .	(-8.997 TO 18.	(1.240 TO 2.	847 ID 2.	(0.653 TO 3.	344 TO 1.	(-0.505 TO 6.	(-0.145 TO 2.	(0.905 TO 1.	1.120 [0.669 TO 1.571]	(C.615 TO	01 668	(-1.437 TO	(-4.620 T0 10.	0 (0.466 TO	1.333 [C.874 TO 1.793]	(0.817 TO 1.	500 (-0.970 TO 5.	333. (0.757 TD . 1	{ 2.000 TO 2.	0 0 0 10 0
SURVIVAL RATE	.667(422 TO 1.7	- 422	0.2501616 TO 1.1161	. 162 261	1.000 TO 1	038_TU.1	102	1.000 TO 1	C.556(-,107 TO 1,218)	0.938(0.365 TO 1.510)	C.756(C.050 TO 1.461)	0.744(155 TO 1.643)	4 TO 1	0.75C(0.088 TO 1.412)	0.333(154 TU 0.820)	1.143(459 TO 2.745)	0.625(***** TO 2.274)	C.5CC(914 TO 1.914)	616 TO 1	0.667(422 TO 1.755)	1.0COLL-COO TO 1.000)	۰	0.500(500 TO 1.500)	276 TO 1.	C.O (C.O TO 0.0)	~
IAST. DEATH RATE	(-2.038 TD 1	(-2.038 10	1-4.850 TO	(-2.156 T0	-	_I-1.663 T0 _	(-4.365 TO	.0 (0.0 10		(-0.676 70	(-1.214 TO	(-1.504 TD	(-1.354 TO	-0.288 (-1.170 70 0.555)	1-2.559 ID	(-1.268 TO 1.	.109 TO	(-3.522 10 2.	(-4.850 T0 2.0	-0.405 (-2.038 TO 1.228)	10 0-	.288 (~1.442 TO 0.	(-2.693 TO 1.	.511. (-1.971	0.0 10	0 (9.0 TO
WEEK	51	55	59	63	72	11	16	55	99	103	107	111	115	119	123	127	131	136	140	144	148	. 152	156	160	164	168

•

-

.

	F	FEMALES	v i																								
	15	55	59 6	3 7	2	5 22	16	55	59 IC	3 10	11 1	1 11	2 11	9 123	3 127	131	136	140	144	148	152	156	160	164	168		
			c							••••				•	•	•	•	•	•	•			:	:			
	00	00		20 m	00	00	00	00	00	00	000	000	ļ		00	000	00	00		00	00	00	00		0 U 0 O		
	0	9					00	00			00																
	- 00	000	- 		- - - -	ηυς	5 m c	, 	o		000	500															
	<u>ا</u> ن		-		0	-0	0	0	44	,0	200	0						ł						ĺ			
56 103	00	00	00	00	υ 0	υq	0 0	00	n a		0 10	-															
107	່. 	0	0	0		0	0	0	0	0	0	.														•	
111	0 0	0 C	0 0	0 c	00	0 0	00		u 0	- o	- 0	0 0															
-	0	0	0	0	<u>ں</u>	0	0	0	0	0	0	0															
123	0 C	0 ¢	00	0 0	ເບ	00	0,0	0 0	00	u 0	00	• •															
131	ן ה נ	0	0	0	υ	0	0	U	0	υ	. 0	0															
m v	0 4	0 0	c, c	00		0 0	00	0 0	00	υ c	er e	۰ c											-				
শু কা	0	0	0	اد	0	u د	0	0	0	0	0	0															
াৰ ।	0	0	0	c	0	5	0	υd	00	ں ر	ი (00															
152	ن د	ن د			ې د		ະດ	5 C		5 L	הכ	5 C															
160	Ċ	o c	. C	5	5	, o	0	0	0	ن ب	· C	, ບ															
164	ပ	d	c ,	4			n	4		-		þ															
		•	•	• • • ;	•	•	•	• • •	• • •	•	•		•			•											
	No No		¢	c	U	1	-	U	-	-	2	2	J	0	-	•	4	- с	-	-	1	0	0		0		
••••••														:													•
THE SUMS		7 6.1 11		:						•																	

- 151 -

DISTRIEUTION OF RECAPTURES ACCORDING TO THE INTERVAL SINCE THEY WERE LAST CAPTURED (METHOD B GROUP).

!

PEROMYSCUS AREA 3 5 YR SLASH HANEY

FEMAL ES

WEEK OF CAPTURE

WFFK CF Last capture

.....

POPULATION PARAMETERS ESTIMATED FRCP PULTIPLE RECAPTURE CATA - JOLLYS STOCHASTIC MODEL

ł.

1

į

1

WEEK OF CAPTU 0.0 C.0 + C.C 1.CCC + 0. 1.00 2.0 + 0.C 1.CO2 + 0. 2.00 3.0 + 0.0 1.000 + 0.			
E 51 0.0 0.0 C.0 + C.C 1.CCC + 0. 55 0.50C0 1.00 2.0 + 0.C 1.CC2 + 0. 59 0.6667 2.00 3.0 + 0.0 1.000 + 0.	JRE		
0.0 0.0 0.0 0.0 0.0 0.0 1.000 + 0.0 0.5000 1.00 2.0 + 0.0 1.000 + 0. 0.6667 2.00 3.0 + 0.0 1.000 + 0.			
0.6667 2.00 3.0 + 0.0 1.000 + 0.0	+ · · · · · · · · · · · · · · · · · · ·	0.0	0.0 + 0.0 1.522 - 0.000
0.6667 2.00 3.0 + 0.0 1.000 + 0.	-	4	
	ت ا		3 33 + 0.
0.7500 3.60 4.0 + 0.0 C.250 + 0.	8		100 +48 ·
0.1111 1.00 9.0 + 3.5 0.333 + 0.	629 9.		00C + 2.
0.2500 3.00 12.0 + 5.8 C.354 + 0.	590 2.	•	667 + 0.
0.6000 4.25 7.1 + 5.E C.907 + C.	• 217 C.7 +	6.4	1.103 + 0.071
C.8C0C 5.67 7.1 + 9.9 0.600 + 9.	0.		•
0.8000 4.00 5.0 + 6.7 0.480 + 1.	109 14.4 +	51.4	+36+
0.1429 2.40 16.8 + 53.1 C.794 + C.	838 C.O +	41.3	• •
6.67 13.3 + 14.7 0.669 + 0.	746 2.0 +	9.3	• •
0.7143 7.83 10.9 + 12.8 5.831 + 3.	891 8.8 +	17.1	ت +
0.4545 8.14 17.9 + 21.7 C.636 + C.	58C 1.6 +	10.9	• •
0.6923 9.00 13.C + 9.9 C.538 + 0.	553 3.0 +	0-0	0+
0.7000 7.00 10.C + 8.9 C.717 + C.	601 1.2 +	2.1	1.167 + 0.008
7 0.8571 7.17 8.4 + 9.1 <u>0.857 + 0.</u>	529 1.8 +	1. 9	• •
0.7778 7.DC 9.0 + 8.4 1.C00 + 2.	811 9.0 +	54.3	
9.00 18.0 + 79.2 C.503 + 1.	414 -3.0 +	25.3	• •
0.8333 5.00 6.0 + 6.4 0.833 + 2.	388 2.5 +	-	° +
7.5 + 23.8 C.5CC + 1.	944 2.3 +	16.2	+ 1.2
n.5000 3.30 6.0 + 22.1 C.75C + 2.	64 6 1	18.3	+ 1.29
3.Cr 6.C + 22.1 C.500 + 1.	.414 0	8.Q	• • 0 • 0 • • • • • • • • •
0.6667 2.00 3.0 + 5.8 C.333 +	1 580 ·	0.0	06-0 + 000
0 0.5000 1.JC 2.0 + 3.8 C.5Cn + 1	.414 1	0.0	.000 + C.72
C.500C 1.00 2.0 + 5.3 C.0 + 0	0 • ټ	c •0	· c · o + 0 · 0
8 0.5030 0.0 0.0 0.0 0.0 0.C C.C + C	0	0-0	0 + 0

...................

- 153 -

1	
1	
1	
i	
i	
İ	
i	
I	15
÷	
	Ē.
Í	
	4 SE LIMITS
	•
	•
I	
	ũ.
ł	Z
	æ
	X
	ų.
	ė.
	STANCARCIZED 28-CAY RATES +
	5
	2
	ž
	F
	5
- 1	

ļ

1

1

. . .

ł

. 1

:

PEROMYSCUS AREA 3 5 YR SLASH HANEY

FEMAL ES

	i cu i	•		SURVIVAL KAIE	DILUIUN VALE
	0 0 0.	10	Ö	1.000(1.000 TO 1.000)	0.0 (0.0 TD C.0)
- 22	0.0 1 0.0	-		1.000 TO 1	00 (1.499 TO
	0 1 0		d	-000 TO 1	(1.332 TD
63	.616 (-2.	-	0	1 10 1	2.655 (-C.979 TD 6.289)
72	•	•	0	0.415(211 T0 1.042)	
11	297 (-C.	773 TO	9	9 TO 1	(0.818 TO 1.
16	.098 (-1.	76 10		C71 T0 1	T0 2.
5 5	(-1-)	1	0	276 TO 1.	(0.431
66	.734 (-2.0	43		C.48C(629 TO 1.589)	7.000 [###### TO 31.113]
103	.231 (-1.	-	0	.044 TO 1.	(-2.098 10
107	403 (-1.	518 TO	0	0.669(077 TO 1.414)	2
111	-1-5	· ·	o	C.831(C60 TO 1.722)	(-0.259 10
115		364 TO	0.460)	636(C.056 TO 1.	1.140 (C.046 TO 2.235)
119	(-1-	646 T <u>0</u>	0	101.	(0.881 TO
123	1-1-1	72 ID	٩	C.717(C.116 TO 1.319)	(0.814
	54 (-0.	771 70	¢	0.857(0.328 TO 1.386)	
131	(-2.		2•2	1。OCū(***** TO 3。249}	1.741 (-2.030 TO 5.512)
136	.6-3.690	522 TO	2.	C.5CC(914 TJ 1.914)	(-1.240 TO 2.
140	182 (-3.	048 TO	2.6	0.833(***** TO 3.222)	1.500 (-0.506 TO 3.506)
144	-0.653 (-4.5	80		C. 5CC(**** TO 2.444)	-
148	.288 (-3.8	15	3.2	C.750(**** TU 3.356)	ſ
152	653 (-3.		2.1	5C 0(914 TO 1	567
156	10099 (-4		2.1	(.333(755 TU 1.422)	(-1.804 TO
160	693 (-3		2.	1 CT +10)005	408 TO 5
164	C•0 C•0	10	C • 0	C.0 (0.0 TO 0.0)	(2.
	•				

154 -

• 🛶

-

Mean Probability of Survival and Variance (28 day ϕ)

\$ = number of weeks in sample
1

s = number of sample periods

$$\overline{\phi} = \begin{bmatrix} s \\ \Pi & \phi_{1} \\ i=1 \end{bmatrix} \begin{bmatrix} \frac{4}{s} \\ \Sigma & \ell_{1} \\ i=1 \end{bmatrix}$$

$$V(\overline{\phi}) = \left(\overline{\phi} \quad \frac{4}{s} \\ \frac{5}{1=1} \quad \frac{1}{s}\right)^{2} \quad \left[\begin{array}{c} s \quad V\phi_{1} \\ \frac{5}{2} \quad \frac{V\phi_{1}}{\phi^{2}} + s \\ \frac{1}{s} \quad \frac{2}{s} \quad \frac{2}{s} \\ \frac{1}{s} \quad \frac{1}{s} \\ \frac{1}{s} \quad \frac{1}{s} \\ \frac{1}$$

 M_i = total number of marked animals in the population at time i. N_i = number of marked animals in the i th sample.

 S_i = the number of animals released marked from the i th sample. <u>Test Criteria</u> T.C. = $\overline{N} - \overline{N}_y$ <u>Var \overline{N}_x + Var \overline{N}_y </u>

CURRICULUM VITAE

Bruce Gordon Petticrew

PERSONAL HISTORY

Place of birth: Victoria, British Columbia Date of birth: March 9, 1945 Marital Status: Married

EDUCATIONAL BACKGROUND

Graduated from Oak Bay Senior Secondary, 1964

Degrees

B.Sc. (Mathematics and Zoology) May 1968.

AWARDS

British Columbia Government Scholarships 1966-67 and 1967-68 Simon Fraser University President's Research Grant, Spring 1970

TEACHING EXPERIENCE

Teaching Assistant, Simon Fraser University: BISC 101-BISC 102, Introduction to Biology; BISC 316, Vertebrate Biology; BISC 407, Population Dynamics.

general c

GRADUATE COURSES TAKEN

BISC 843 - Population Processes BISC 869 - Special Topics II: Advanced Ecology BISC 836 - Vertebrate Reproductive Ecology BISC 879 - Special Topics III: Modern Forestry Practices BISC 806 - Adaption and Adaptability.

MEMBERSHIP IN PROFESSIONAL ORGÁNIZATIONS

The Canadian Society of Zoology

PUBLICATIONS

Petticrew, B.G. and R.M.F.S. Sadleir. (1970) The use of index trap lines to estimate population numbers of deermice <u>Peromyscus maniculatus</u> in a forest environment in British Columbia. Can. J. Zool. 48:385-389.