

"There is no more common error than to assume that, because prolonged and accurate mathematical calculations have been made, the application of the result to some fact of nature is absolutely certain."

Alfred North Whitehead.

POPULATION DYNAMICS AND BEHAVIOUR OF DEERMICE IN
 A COASTAL FOREST OF BRITISH COLUMBIA

By
Bruce Gordon Petticrew
B.Sc., University of Victoria, 1968

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in the Department
of

Biological Sciences
(c) BRUCE GORDON PETTICREW

SIMON FRASER UNIVERSITY

OCTOBER, 1972

APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Bruce Gordon Petticrew

Master of Science

Population dynamics and behaviour of deermice in a coastal forest of British Columbia.

Chairman: Dr. G. H. Gean

R.M.F.S. Sadleir Senior Supervisor
A. Mackauer
B. B. Beltane

Abstract

A two year live trapping study of deermice, Peromyscus maniculatus, was carried out on the University of British Columbia Research Forest at Maple Ridge, B.C., starting in the fall of 1968. Monthly trapping was conducted on three one hectare grids representing different vegetational succession stages in relation to logging; area 1 - a 100 year stand of Douglas fir; area 2 - an area logged in summer 1968; area 3 - an area logged in 1964 and planted in 1965. All areas were at an altitude of between 150 and 200 metres and within 1.7 kilometres of each other. The study was designed to monitor the relative importance of habitat differences and extrinsic and intrinsic factors which could affect populations over large areas.

Capture-recapture data was analysed by using Jolly's stochastic model, which gave estimates of total numiers (N), probability of survival (ϕ), and recruitment (B). Populations on all three areas followed similar trends in these parameters but the numbers on areas 1 and 2 were generally higher than on area 3. The population of deermice on area 3 vanished in August 1970. There were considerable differences between the years in the pattern of population fluctuations. Numbers were highest in 1969. Comparisons of the total number, probability of survival, and recruitment estimates Indicated that the main factor determining population change was the length of the non-breeding season, in particular as it affected recruitment.

Home ranges of particular animals were compared by the live trapping minimum area method and by the smoked paper toe-clipping technique. It was not possible to compare home range between areas because the apparent home range increased with capture frequency. Males in breeding condition occupied larger home ranges than non-breeding males or females at any time of the year. The smoked paper toe-clipping technique gave a much better estimate of home range and movements than trapping.

Agonistic behaviour of males was studied on area 2, from January 1970, by determining the number of aggressive acts between field individuals in paired bouts. Aggression increased to a peak in June and then declined. This was confirmed by the movement patterns revealed by the smoked paper studies. Although only a small number of males were monitored on a sufficient number of occasions, there appeared to be a strong relationship between the level of aggressive behaviour and size of home range.

Control of this species in relation to reseeding is discussed.

ACKNOWLEDGEMENTS
I would first wish to express my sincere gratitude to Dr. R.M. Sadleir for his support, encouragement and patience throughout this study. I would also like to thank Drs. J.P.M. Mackauer and A.L. Turnbull for their contributions as members of my committee.

I would like to extend my appreciation to Mr . K. Casperson, Mr . J. Harling and Mrs. T. Petticrew for their assistance in the field, without whose cooperation much of this study would have been impossible.

I am also grateful for the facilities provided to me by Mr. J. Walters, Director, University of British Columbia Research Forest, Maple Ridge, and Dr. G. H. Geen, Chairman, Department of Biological Sciences, Simon Fraser University. In addition, I thank Dr. M. Greig for his advice on certain statistical procedures.
Page
Frontispiece
\qquad
Philosophy
Examining Committee Approval ii
Abstract i1i
Acknowledgements v
Table of Contents vi
List of Tables ix
List of Plates xi
List of Figures xii
Chapter 1. General Introduction 1
Chapter 2. Introduction - Home Range 7
Methods 12
Determination of Home Range 12
(a) Field Techniques 12
(b) Analysis of Data 15
Results 16

1) Determination of the number of captures needed to determine home range size 16
2) Distance moved between traps in 24 hours 16
3) Comparisons of home range determined by smoked paper and by trapping 21
Discussion 21
Chapter 3. Introduction - Population Dynanics 29
Methods 32
Population Dynamics 32
(a) Field Techniques 32
(b) Analysis of data 40
Page
Results 42
4) Seasonal fluctuations in numbers of males and females 42
5) Seasonal fluctuations in total numbers 48
6) Probability of survival 55
7) Recruitment 62
8) Relative importance of recruitment, probability of survival, and length of season on change in numbers 62
9) Seasonal changes in body weight 70
10) Reproduction 71
11) Transients 71
12) Species composition 74
Discussion 74
Population changes during breeding season 76
Population changes during non-breeding season. 78
Other factors 79
Weather 79
Parasitism 80
Predation and disease 81
Population models 81
Chapter 4. Behaviour - Introduction 85
Methods 87
Behaviour Investigations 87
Results 88
13) Sexual condition of mice used in behaviour tests 88
14) Aggressive acts as a function of time 88
15) The relationship of aggressive behaviour to home range area 93
16) Inhibitory behaviour 93
Discussion 96
Chapter 5. Forestry Implications 100
Logging Effects 103
Slash Burning 104
Control 105

Page
Summary and Conclusions 109
Literature Cited .. 111
Appendix 1 .. 124
Appendix 2 .. 129
Appendix 3 .. 130
Appendix 4 . 155
Curriculum Vitae .. 156
PageTable 1 Minimum distances moved between smokedpaper cartons in 24 hours by males.......... 2222
Comparison of home range area determinations based on trapping and smoked paper methods.. 23
Table 3 Trapping schedule on each grid 33Table 4 Comparison of estimates of total numbers(Jo1ly model and minimum number known to bealive)43
Table 5
Correlation coefficients comparing Jolly'sN estimate and minimum number known to bealive44
Mean Jolly N estimate (and variance) for allgrids by sex and season.46
Table 7 Comparison of mean Jolly N values betweenareas. (Test criteria values.)47
Table 8 Correlation coefficient comparing minimumnumbers known to be alive on the three areas. 56Table 9Mean probability of survival (and variance)for all grids by sex and season61
Table 10Correlation coefficients between male andfemale survival, total recruitment, length ofseason and changes in total numbers between
Page
the beginning and end of seasons 69
Table 11 Duration of breeding seasons on each grid... 72
Table 12 Numbers of transient deermice on each grid
by sex and season 73
Table 13 Frequency of captures of all mamal species on each grid. 75
Table 14 Total number of captures on burned andunburned area of grid 2.......................... 106

LIST OF PLATES

Page

Plate $1 \quad$ Photograph of tracks of deermice through a smoked paper carton 14
Plate 2 General view of Grid 35
Plate 3 General view of Grid 2. 37
Plate 4 General view of Grid 3............................. 39

LIST OF FIGURES

		Page
Figure 1	Map of University of British Columbia	
	Research Forest, Maple Ridge, indicating	
	location of grids............................	3
Figure 2	Cumulative home range area as a function	
	of the number of captures.....................	18
Figure 3	Mean distances moved between traps in 24 hours	
	in different seasons	20
Figure 4	Cohort diagram showing changes in numbers	
	and individual survival on grid 1...........	50
Figure 5	Cohort diagram showing changes in numbers	
	and individual survival on grid 2...........	52
Figure 6	Cohort diagram showing changes in numbers	
	and individual survival on grid 3...........	54
Figure 7	Males: Probability of survival, recruitment	
	and numbers..... .	58
Figure 8	Females: Probability of survival,	
	recruitment and numbers	60
Figure 9	Weight distribution on grid 1..............	64
Figure 10	Weight distribution on grid 2...............	66
Figure 11	Weight distribution on grid 3...............	68

Page

Figure 12 Sexual condition of grid and tested
males 90Figure 13 Average number of aggressive acts for bout
by months and number of fights. 92
Figure 14 Relationship of aggressive behaviour to
home range area. 95

CHAPTER 1

GENERAL INTRODUCTION

The deermouse, Peromyscus, has a wide distribution over the North American continent. Osgood (1909) statid "... it is probable that a line or several lines could be drawn from Lalrador to Alaska and hence to Southern Mexico through which not a single mile is not inhabited by some form of this species." And this is almost certainly still correct. Deermice usually inhabit woodland and bushland areas but may occur in open areas of mixed weeds and grasses characteristic of pioneer stages of grassland development. However, in these latter areas, Peromysus are usually secondary to Microtus or other microtines, especially in the north temperate and boreal regions.

In the west coast rain forest (Kraina, 1970) of the mainland and coastal islands of British Columbia, there are twenty-four subspecies of Peromyscus (Cowan and Guiget, 1965). In the general area where this study was conducted the species concerned was Peromyscus maniculatus austerus. There is another species, P. oreas, which also occurs in this region and cases of interbreeding between these two species have been reported (Osgood, 1909). Sheppe (1961) has shown that P. oreas and P. maniculatus are reproductively and spatially isolated in the study area. This study was conducted entirely in the area which Sheppe designated as the range of P. M. austerus (Fig. 1).

Practically all knowledge of small mammal population parameters such as movement, home range, activity rhythms, and spatial distribution have been determined by live traps. The estimation of these parameters as

Fig. 1 Map of University of British Columbia Research Forest, Maple Ridge, indicating location of grids.

485 meters
————ROAD
---- FOREST BOUNDARY
well as the dynamic aspects of the population is entirely "dependent upon trapping and involves some basic assumptions for which evidence is not universally established" (Kikkawa, 1964). For example, the basic assumption common to many formulae used to estimate population size from trapping data is that all individuals have the same probability of being captured in any sample period. In fact, trapping
procedures affect this probability and some of this bias can be detected in trapping results (Kikkawa, 1964; Tanton, 1965). They arise because certain biological characteristics of the population prevent random sampling and are dependent on and vary with trapping procedure. Such bias may be attributed to (summarized in part from Kikkawa (1964)):
(a) trapping interval - this may affect parameters such as weight distribution, the proportion of animals of which grow to trappable size and die or immigrate before being sampled, the proportion of animals which pass through the area unnoticed or those which move on or off the grid between trapping periods. The latter two biases can be generally classified as dispersal as defined by Leslie, Chitty, and Chitty (1953).
(b) trap spacing - this affects the sampling of individuals because as traps are spaced farther apart the probability of an individual encountering a trap within its home range diminishes. However, Hayne (1950) found for Microtus, that increasing the distance between traps tended to increase the apparent area and consequently distorted its original home range.
(c) reaction to traps - the population includes individuals whose behaviour ranges from those which never enter traps because they are trap shy, to those so
addicted that they enter traps at every possible occasion. This differential response may diminish with repeated exposure to traps or may be enhanced after the initial encounter. There may also be social factors which favour certain individuals such as in sexual differences, that is, sex ratios (Davis, 1955; Tanton, 1965), age groups (Davis and Emlen, 1956), or interspecific differences. Superimposed on all these above factors are the type of bait used, the activity rhythm of the species concerned and the presence and numbers of other trappable species all of which vary according to day length, food supply, and weather (Calhoun, 1945). Therefore, any attempt to establish the relationship between samples and population will have to consider trap response in relation to trapping procedure.

This study was conducted, in the University of British Columbia Research Forest at Maple Ridge, B.C., on three one hectare grids which were located in different forest habitats. Vegetation on these areas was described by Petticrew and Sadleir (1970) and Kellman (1969). The grids were chosen in relation to their vegetational stage of development after logging, since one of the concerns of this study was the effect of present and past logging operations and burning on small mammal populations.

This project was designed to study the home range and population dynamics of P. $M_{\text {. }}$ austerus in three specific areas. It was hoped that the use of multiple grids (instead of a single grid) would allow the construction of a general population model which could explain population changes over a general area and that this model would be consistent with
all three populations. The study also compared the stability of home range in relation to varying environments. An additional study of the behaviour of feral deermice on one particular grid was undertaken and analysed as to its conformity to the agonistic population control theories of Sadleir (1965). It was also hoped that a general overview of the total study could be made of the effects of the drastic environmental changes caused by logging on the mouse populations, as well as suggesting means of control for this seed eating species. It was envisaged that the findings of this study could then become the basis for recommendations as to the means and timing of the control of deermice as a forest pest.

CHAPTER 2

INTRODUCTION - HOME RANGE

Individuals of most mammal species do not wander at random but confine their activities to limited areas or home ranges. This enables each individual or social group to become familiar with its own area the physical structure, resources, predators as well as the presence of the other members or groups of the same species. Seton (1910) has often been quoted for his descriptions of the home range or home area of mammals whilst Darling (1937) wrote of these areas as territories. However, Burt (1940 , 1943) advocated separate uses for these terms. He considered the home range to be that area around the established home which is traversed by the animal in its normal activities of food gathering, mating, and caring for the young. This excludes occasional sallies outside the area. Burt considered territory as any defended area. Later Burt (1946) described three categories of home range: permanent, semi-permanent, and seasonal. Small mammals have home ranges of the first two types. Hayne's (1949) concept of home range differed from that of Burt as he conceived of home range in a mathematical sense as being limited not by fixed lines but by statistical zones of decreasing probability of occurrence. Jewell (1966) defined home range as an area with a certain productivity that meets the energy requirements of the individual or group that occupies it. The difficulty in defining home range precisely in a physical sense stems largely from the fact that one is attempting to state in static terms (that is, in square feet or fractions of acres), the area of activity of a living mobile animal that may have its movements
influenced by a great many factors in the physical and biological environment.

Except at special times in its life history, for example, the dispersal that occurs at the onset of sexual maturity, small mammals remain within their established home ranges. There is a proportion of the small mammal population, the transients, which does not become established. In fact, Andrzejewski (1962) has suggested that small mammal populations consist of two parts, residents and transients (Andrzejewski and Wierzbowska, 1961; Andrzejewski and Wroclawek, 1962). The proportion of animals that are in transit varies, and it is rarely possible to determine whether captured transients are on exploratory trips from home areas outside the trapping area or whether they are individuals who have never succeeded in establishing ranges anywhere. Stickel and Warbach (1960) found that 79 percent of a population of Peromyscus leucopus noveboracensis had relatively stable home ranges, remaining in the same general area from month to month, while the remaining 21 percent were considered to be transient. Youngmen (1956) noted that there was a seasonal variation in the number of transients. He found that the proportion of transients in an Apodemus agarius population was higher in February (35.84\%) than in May (21.51%). When the resident population was reduced, transients took the place of residents and their proportion fell to 14.28 percent.

Home range is more than just the area that a rodent happens to occupy. Each individual has a positive relationship to its range as shown by the frequency with which they return when removed from their ranges and released away from it (Sheppe, 1966). The home range concept allows one
to evaluate the relative importance of the factors that influence a population. These include the number of individuals, the biomass of the community, the growth of the individual, the social stability of the group, and the "psychological well-being" of the individual (Calhoun, 1952). The effects of physical parameters such as habitat and food supply on home range size are difficult to evaluate. Stickel (1948) has attempted to show that the size of the home range area may be influenced by the diversity of the habitat, although in field studies it usually has not been possible to separate habitat differences from the effects of other factors such as food and population density. She determined that Peromyscus gossypinus had home ranges of very similar size in burned and unburned plots of pine (Pinus) in Louisiana, and that P. leucopus noveboracensis living in unproductive pine-oak association had larger home ranges than mice living in the bottomlands where food was more plentiful. No definite relationship between home range size and food supply has been established in mammals, although such relationships have been proposed for birds (Watson, 1964). However, it has been shown that mice living in corn stocks where food was abundant travelled much shorter distances than mice living in open fields of wheat stubble (Linduska, 1942).

The individuals constituting a population of small mammals are part of an organized society. The position of an individual in the structure of such a society will affect its behaviour and thus its movements over the home area. In each group of Apodemus sylvaticus living within a specific area, there is a single dominant male who ranges more widely than any of its subordinates (Brown, 1966). Although such a system has not yet been found in Peromyscus maniculatus populations
in a natural habitat, Sadleir (1970a) has demonstrated that a dominance hierarchy can last for more than a month in a laboratory colony of P . maniculatus.

Sanderson (1966) has excellently reviewed most of the techniques used to study mammal movements. He uses the term "movements" in a broad sense including activity, home range, immigration, emigration, and movements associated with behavioural changes. Movement data can be collected by direct and indirect methods. Direct observations of mammals are advantageous in that they minimize handling, do not hamper individual movement, and enable immediate information on where an animal is and what it is doing to be gathered. The disadvantages of the technique are the time required, the limited number of individuals that can be observed at one time, and the influence, if any, of the observer on the behaviour of the individual being studied. Indirect methods include the use of natural signs such as tracks, feces (Murie, 1936; Scott, 1943); capture, mark, release, and recapture methods (Chitty, 1937; Burt, 1940; Howard, 1949; B1air, 1951); radioactive marking techniques (Godfrey, 1954; Kaye, 1960, 1961); the use of dyes to mark urine and feces (New, 1958; Kindel, 1960; Brown, 1961; Brown and Conaway, 1961); smoked paper (Justice, 1961); photographic devices (Pearson, 1960; Voisey and Kalbfleisch, 1962); radiotelemetry (Storm, 1965; Cochran, Warner, Tester, and Kuechle, 1965). As Sanderson (1966) has pointed out, however, the techniques involved in locating and observing mammals appear to be far ahead of the systems available for
interpreting the data. No one technique for determining location and no system for analyzing data can give an accurate picture for all species and all situations. The influence of the length of the observation period has rarely been considered in calculating home ranges or distances of movement (Sanderson, 1966). Techniques for analyzing home range data are many: the minimum area method, the boundary strip method, the inclusive boundary strip method, the observed range length, and the adjusted range length. Van Vleck (1969) has described in detail the advantages and disadvantages of using the above methods. Other methods are the centre of activity, activity radii, recapture radius, standard diameter, and standard range. The biological significance of each method is difficult to determine.

Most information about the home ranges of small nocturnal mammals has come from records of repeated captures of marked individuals in live traps. Repeated captures of an individual establishes points that limit the area of the estimated range of that animal. This estimate of home range size is certainly a crude estimate of the actual area ranged over and only in the rarest of circumstances will the estimated home range correspond exactly to the area of movement of the animal. In most studies the estimation of home range has been a by-product of trapping to estimate the numbers of a specific population. Consequently all early estimates of home range size were trap determined. Dalke and Sime (1938) suggested the minimum area method for the determination of home range size. They assumed that every point at which an animal was captured was the furthest extent of his range in that particular direction. Each point of capture
was connected by straight lines and the enclosed area measured. Modifications of this method resulted in the boundary strip and the inclusive boundary strip methods of estimation. Each of these methods is similar to the minimum area method except that in the latter method a correction factor is added (Stickel, 1954). However, the corrections are merely arbitrary and although they may give larger estimates of home range size they bear no biological significance to the true range of the animal.

METHODS

Determination of Home Range
(a) Field Techniques

The location of animals inside their home range was determined by trapping and by the smoked paper-toe clipping technique described by Justice (1961) and Sheppe (1965). Trap revealed home range was determined on all grids from September 1968 through to September 1970 (whereas the latter technique was employed only on Area 2 from January through to September 1970). The grids are described in more detail on pages 3 and 32.

Strips of waterproof paper were smoked using a benzene flame. Each strip of smoked paper was then placed in a quart size milk carton from which the ends had been removed, forming a tunnel. Cartons were placed within 2 m of every 10 m stake on the grid. When these milk carton tunnels had been in place overnight footprints of particular toe-clipped males were discernible on many of the smoked paper surfaces (Plate 1). These cartons were set out on day 4 and picked up on day 5 of every trapping Week.
Plate $1 \quad$ Photograph of tracks of deermice through a smoked paper carton. This animal was toe clipped number 11.

Toe clipping involved the removal of certain digits on the fore and hind feet of deermice. The digits on the front feet represented the units ranging from one to eight, those on the hind feet represented the tens ranging from ten to one hundred, i.e. total of eight toes on the front feet and ten on the hind feet. Therefore if the second digit on the right front foot and the second digit on the right rear foot had been removed then the toe clipped number for this specific mouse was 2 plus 20 equals 22 (see Plate 1). Thus, ninety-eight mice could be marked individually using this system.
(b) Analysis of data

Home range determinations for the trap determined, smoked paper, and the combined methods were calculated using the minimum area method (Dalke and Sime, 1938). This method assumes that the most extreme points of capture of an individual animal defines the outermost limits of its home range. Ranges were determined for animals which were captured on more than three separate occasions at capture sites which were nonlinear in distribution. Edge trapped animals were excluded if they were captured more than 25% of the time on the peripheral rows and columns of the grid. All home range areas were averaged and grouped according to the sex and breeding status of the mice.

1) Determination of the number of captures needed to determine home range size

Fig. 2 shows the home range areas as a function of the number of captures for males and females during breeding and non-breeding seasons. The data from individuals from all grids were combined as there were no significant differences by sex between grids for comparable periods. The cumulative mean home range area was determined by calculating the area for the first three captures, then adding the fourth capture and computing the new area, and so on (Haugen, 1942). These cumulative home range values of individuals were then averaged for each number of captures and plotted by season. The breeding males utilize larger areas than males in the non-breeding season and the females at all times of the year. Every animal was captured at least once, almost as many were captured twice or three times but very few were caught more than seven times. Thus, as the numbers of recaptures increase, the sample size on which each home range area mean was determined decreases and the reliability of that mean declines. This reduced rellability suggests that the curve may not reach the plateau phase as in the case of the breeding females.
2) Distance moved between traps in 24 hours

The average of the straight line distance that a mouse moved between traps on consecutive trap nights is shown in Fig. 3 which indicates that both sexes move more in the breeding season than they do in the non-breeding

Fig. 2 Cumulative home range area as a function of the number of captures.

SIGNIFICANT DIFFERENCES

1) ÓBREEDING VS. q BREEDING

* 5% * 2.5% *** 0.1%

Fig. 3
Mean distances moved between traps in 24 hours in different seasons.

SynOH tz NI aヨNOW（＇W）ヨON甘ISIO N甘ヨW
season. Males seem to move longer distances than females but the differences are not statistically significant (Students' "t" test, $\mathrm{p} \leq 0.05$). The variability of this measurement did not make statistical comparisons possible but the pattern is consistent with shorter movements in non-breeding seasons on all grids and in both sexes. Also the minimum distance moved between smoked paper cartons in a single night suggested the same pattern of increased male movement in the breeding season (Table 1) although the differences were not significant. Females were not tested. 3) Comparisons of home range determined by smoked paper and by trapping

An attempt was made to determine the reliability of trap determined home ranges for male mice on Area 2, from January to September 1970. The areas of capture points from both the smoked paper and trap method were calculated separately using the minimum area method (Dalke and Sime, 1938). All capture points by both methods were then combined and used to determine the total area shown in the second column of table 2. Smoked paper area determinations (Justice, 1961) represent an average 82 percent of the total areas whereas trap area represents only a mean of 44.2 percent of the total area. These means are significantly different ($t=3.544, p<0.01$).

DISCUSSION

Although this present study was primarily concerned with the population dynamics of the species, Peromyscus maniculatus, it was hoped that some insight into its movements and home range activities might be gained from the trapping work. In this investigation home range size was determined by the

Table 1. Minimum distances moved by males between smoked paper cartons in 24 hours.

MONTH		MEAN DISTANCE MOVED $($ M. $)$	NUMBER OF MOVEMENTS
Jan 1970	Non breeding season	38.0	(5)
Feb	Non breeding season	34.4	(8)
Mar	Non breeding season	-	-
Apr	Breeding season	45.5	(6)
May	Breeding season	45.3	(6)
June	Breeding season	65.8	(6)
July	Breeding season	50.7	(2)
August	Breeding season	28.0	

Table 2. Comparison of home range area determinations based on trapping and smoked paper methods.

Individual male	Total Home Range Area (sq. m)	Trap-revealed Home Range (as percentage of total)	Smoked-paper revealed home range (as percentage of total)
\#993	1795	67	81
\#974	2350	62	100
\#770	1150	26	100
\#761	2050	29	85
\#763	500	90	85
\#695	600	33	67
\#971	925	5	86
\#969	800	25	81
\#805	550	36	64
\#581 ${ }^{1}$	1250	16	42
\#581 ${ }^{1}$	1850	108^{2}	65
\#441	1400	33	107^{2}
$\overline{\mathrm{x}} \pm 1$	S.D.	44 ± 29	82 ± 18
Coefficient	of Variation	0.66	0.22

1 \#581 was captured many times over a prolonged period and moved its home range during this time.
2 These are artifacts due to the minimum area method measurement techniques.
minimum area method, although Brown (1962) and Van Vleck (1969) have suggested that this method gives an underestimate of the total area. The other methods of home range determination all involve mathematical manipulations of basically the same data used in the minimum area calculations. Although larger areas result from these techniques, they seem to offer no great advantage over the minimum area method.

Haugen (1942) claimed that trap revealed home range increased rapidly for the first few captures and then levelled off with further captures. The number of minimum captures needed for an accurate estimate of total area is where the slope becomes asymtotic (Haugen, 1942; Blair, 1951). I had hoped to compare the home range size of deermice on the three study areas. As Burt (1940) has stated, "the size of the area occupied by any animal is limited by that animal's ability to travel and its necessity for food and protection". Two problems arose which made such comparisons invalid. I attempted to compare the mean home range sizes on different grids at comparable capture intervals (i.e. mean home range size of males on grid 1 which had been captured 4 times cf. mean home range size of males on grid 2 which had been captured 4 times) but the variation in individual home ranges within a grid was so high that comparison between grids was pointless. Because figure 2 never reached an asymtote, I could not determine the minimum numbers of captures necessary for an accurate determination of an individuals home range. Although the home range of females in the breeding season tended to increase less after seven captures, the home range area of males in both seasons continued to increase with increased captures and showed no signs of
levelling off. There are three possible explanations for this steady increase in home range area: (1) either the mice were not captured a sufficient number of times and thus had not yet reached the plateau phase presumed to be required for an accurate estimate; or (2) the trapping grid area was too small so that mice were captured over only a small portion of their actual range, or (3) the basic premise of stable home range size is incorrect.

As 55 of the 492 individual mice captured in this study were captured 7 or more times over periods extending up to 4 or more months, and were thus definite residents of the grid areas, it would seem that the first explanation is highly improbable. The second is also most unlikely as none of the frequently captured mice were ever trapped on special trap lines placed 10 and 20 meters outside the grid periphery (see next chapter). The only hypothesis remaining is that the basic premise of a stable home range is not correct.

Burt (1943) defined home range as "that area around the established home which is traversed by the animal in its normal activities of food gathering, mating, and caring for the young. It excludes occasional sallies outside the area". Burt $(1940,1943,1946)$ considered the home range of small mamals to be a well defined area which varies little in each individuals lifetime. My data, and that of Brown (1966) suggests that this is not correct. The concept of stability of home range areas
in small mammals has probably arisen due to the trapping regimes used. Most previous studies have been concerned with the population dynamics of a species over a short period of time, or during a certain defined period of the year. The home range in these cases was determined from a large number of capture points taken every night over 1 to 3 week period. Such intensive trapping would interfere with the movement of individuals especially in a trap prone species such as P. austerus, and give a biased estimation of home range size. In this study mice were only trapped for two nights (occasionally four) in each month. This resulted in a better determination of the area over which the mice were trapped during their entire life span as opposed to previous methods which concentrated on smaller periods of time.

The present study has produced some interesting data, which seems to be somewhat in opposition to current hypotheses explaining small mamal home ranges. Calculation of home ranges on the basis of captures in breeding and non-breeding seasons, showed that males covered considerably larger areas in the breeding season than do either males in the non-breeding season or females at any other time. This increased male movement during the breeding season (Fig. 2) could be related to a number of behavioural and physiological factors, for example males are more aggressive during the breeding season (Sadleir, 1965; Healey, 1967), which is probably an effect of increased testosterone production. It has been suggested
(Beeman, 1947; Scott and Fredericson, 1951) that increased levels of testosterone cause male mice to become much more active. This increased movement of male mice could therefore be attributed to physiological changes associated with breeding. By moving over larger areas, the probability of intercepting receptive females would increase. If Sadleir (1965) is correct in his hypothesis that population maintenance is based on agonistic behaviour of males towards other males and juveniles, then, by roaming over larger areas in the breeding season, the resident male mice could more effectively control the number of competitors in an area. Both the trap and smoked paper records (Fig. 3, Table 1) suggest that mice move greater distances between traps or smoked paper cartons in the breeding season than they do in the nonbreeding season but this cannot be shown statistically. Krebs (1966) has used such movement data to define home range size. In this study the mice on Area 3 in the breeding seasons may possibly have had slightly larger home ranges than mice on the other areas which may have been related to the low population numbers and hence reduced social pressures.

It has already been suggested that the minimum area determination for home range size is an underestimate. It was possible in this study to compare the home range determination by two methods which showed that the best estimate of actual home range size is probably the combined trap and smoked paper sites. If this estimate is assumed to correspond to

100 percent of the actual range size then the smoked paper determination underestimated the total area by an average of 18.5 percent whereas the trap determined method underestimated it by 56 percent. Smoked paper was also useful in determining the total distance move by a particular mouse in a single night since there was no restrictions on its movement pattern. More importantly, although both methods are variable, over a series of animals (Table 2) the smoked paper method gave the least variable estimate of the total range area.

Thus, because the plateau phase was never reached, home range comparisons between areas were not possible. Hence the affects of environmental change on Peromyscus home areas could not be determined. What this study does suggest, however, is that Peromyscus may not have well defined areas and although the trapping system gives only a small number of records, the data indicates that P. maniculatus has a similar range shape and type to that described by Brown (1966) for A. sylvaticus whereby a central area is used intensively but there are occasional sallies outwards for a greater distance so that the home range resembles the hub and spokes of a wheel.

CHAPTER 3

INTRODUCTION - POPULATION DYNAMICS

Animal populations fluctuate seasonally, and in some species annually. These fluctuations are dependent on several factors which influence either the survival of certain individuals at the expense of others, or the reproductive pattern of the adult population (McCarley, 1958).

In general, all stable mammal populations are regulated so that their numbers in any particular area fluctuate within relatively narrow limits. Hence, an objective of field studies is to find why population density does not increase indefinitely and why it varies from one environment to another (Nicholson, 1954; Chitty, 1960). From his studies of Microtus agrestis in England, Chitty (1952, 1958, 1960, 1964) has attempted to develop a general theory of intra-specific density dependent control of population numbers for cyclic species. He suggests that under appropriate circumstances an indefinite increase in population density is prevented through a change in the quality of the population (Chitty, 1960).

Two other current hypotheses which attempt to explain cyclical fluctuations are: Lack's (1954) hypothesis regarding food supply which was supported by Pitelka, Tomich and Treichel (1955), and Christian's (1950) stress hypothesis derived from work by Selye (1946). In a review of all three theories, Krebs (1964) came to the conclusion that the food supply and Christian's stress hypotheses are not an adequate explanation of the biological phenomena that are occurring in population regulation.

The populations of all species of Peromyscus, a cricetine rodent, are relatively stable. Many workers have demonstrated that these small mammals exhibit seasonal rises and decline in numbers but they are thought not to be cyclic, as are the microtines. Fuller (1969) suggested that Peromyscus populations may cycle at Great Slave Lake, N.W.T. However, his study was carried out for only four years and the single peak in the numbers which he noted may not be an indication of a cycle but merely an aberration. In the Northern United States and Canada the common seasonal pattern is that of declining population numbers during winter and early spring because of the lack of reproductive activity during this time. The peak population occurs at the end of the breeding season (Blair, 1940; Howard, 1949; Orr-Ewing, 1950; Snyder, 1956; Tevis, 1956a; Sheppe, 1963; Davenport, 1964; Beer and MacLeod, 1965; Sadleir, 1965, 1970b; Terman, 1966; Harris, 1968; Fuller, 1969). Apparently the lack of reproduction during the winter months in the northern part of the United States and Canada can be attributed at least indirectly to the extremely low temperatures which prevail and Sadleir, Casperson and Harling (1973) have suggested that under these conditions caloric intake is insufficient to maintain pregnancy or lactation. Fuller (1969) has shown that delayed spring weather can adversely affect \underline{p}. maniculatus by causing delays in the spring weight increase and hence delayed sexual maturity - the ultimate effect being late first litters and consequently reduced recruitment of young into the population for that year, hence a decline in numbers. He attributes this decline in the population solely to environmental effects and not to population density dependent factors or to severe winter mortality.

Studies of the European field mouse, Apodemus sylvaticus, which occupies a niche similar to \underline{p}. maniculatus, have shown a similar annual cycle, that is, declining numbers in winter and early spring; the peak occurring in late summer and early autumn (Miller, 1958; Kikkawa, 1964; Tanton, 1965, 1969; Ashby, 1967; Hansson, 1969; Watts, 1969). Tanton (1965) suggested that the low summer populations with increases in the fall, may not reflect true changes in numbers but rather a change in the behaviour towards the trap. He thinks that many individuals caught in the autumn are present in summer but for some reason do not enter the traps. A change in behaviour towards the traps, possibly related to a diminished food supply (Tanton pre-baited his traps for two days), results in more mice being caught in the autumn. This increase is due however to the recruitment of young into the population and not the appearance of old individuals present previously but uncaught (Ashby, 1962; Watts, 1966 - cited from Watts, 1969). Watts (1966) agrees with Sadleir (1965) that this increase of juveniles at the end of breeding is more likely due to better juvenile survival as a result of a change in the aggressive behaviour of the males.

Most studies of the population dynamics in Peromyscus have dealt with species that inhabit either old deciduous wood lots or grassland areas. Only little work has been done on Peromyscus in the rain forest of Western North America (Orr-Ewing, 1950; Sheppe, 1961; Sadleir, 1965, 1970b), although the deermouse is probably one of the most important mamalian omnivores in this ecosystem.

METHODS

Population Dynamics

(a) Field Techniques

From September 1968 through October 1970, three one hectare grids ($100 \mathrm{~m} \times 100 \mathrm{~m}$) previously described by Petticrew and Sadleir (1970; see Appendix 1) were live trapped at four week intervals. The schedule of trapping is shown in Table 3. In addition, grid 2 was live trapped two weeks after each regular trapping from January through to September 1970. From June 1970 to August 1970, trap lines were set on the periphery on Area 1 and Area 2. These peripheral lines were placed at 20 and 30 m from the edge of the grid, so as to determine a crude estimate of emigration from the grid areas.

The grids were marked out by labelled stakes at 10 m intervals. One Longworth live trap was placed within 2 m of every stake so that a total of 121 traps were located on each grid (Plates 2, 3, 4). Traps contained terylene batting as bedding and were baited with either whole oats, pelleted rat rations or Purina mouse chow. The nest box portion of each trap was enclosed in a cover of expanded polystyrene (Shaw and Milner, 1967) to provide extra insulation for trapped animals. Traps were set on day 1 and checked in the mornings of day 2 and day 3 . Traps were placed as closely as possible to the same locations during each trapping period.

All deermice caught were weighed to the nearest 0.5 g using Salter spring balances, sexed and ear tagged with serially numbered fish fingerling tags. Their reproductive condition (Sadleir, 1970b) was also noted. Testes size was determined by palpation and categorized as large, medium, small, or undescended. Checks of snap-trapped individuals

Table 3. Trapping schedule on each grid. The numbers in the Table refer to week numbers with week 1 being the. first week of June, 1967.

MONTHS	AREA 1	AREA 2	AREA 3	
1968				
October	73	71	72	Non-Breeding
November	-	77	77	Season
December	79	-	80	
1969				
January	87	84	-	
February	91	89	91	Breeding
March	95	93	95	Season
April	99	97	99	
May	103	101	103	
June	107	105	107	
July	111	111	111	
August	115	115	115	Non-Breeding
September	119	119	119	Season
October	123	123	123	
November	127	127	127	
December	131	131	131	
1970				
January	136	136	136	
February	140	140	140	
March	144	144	144	
April	148	148	148	Breeding
May	152	152	152	Season
May	156	156	156	
June	160	160	160	
July	164	164	164	
August	168	168	168	
September	172	172		
October	176	176		

\qquad
(Week 1 was the first week of June 1967.)

General view of grid 1 photographed in September 1970. Stakes marking the trap sites can be seen in this and the subsequent two plates.

from other areas indicated that males with medium or large testes were in reproductive condition because active spermatogenesis was noted in the histological analysis. Males with small testes were either just entering reproductive condition or regressing from it. Animals with small or undescended testes were considered as non-reproductive. Female reproductive condition was recorded as non-vascular or vascular, pregnant or lactating. Females with vascular vaginae were found in the snap-trapped samples to have cyclic ovaries, and were thus considered as potentially reproductive.

Other mammals such as Sorex vagrans, Eutamius amoenus, Tamiasciurus douglasi, Glaucomys sabrinus, Microtus oregoni (identified from Cowan and Guiget, 1965) were recorded when captured. Since numerous Microtus oregoni were trapped on Area 3, they were marked by toe-clipping, weighed, sexed, and their reproductive condition noted. After January 1970 the numbers of M. oregoni dropped to a very low level and the marking of individuals was discontinued. No voles were captured on this area after June 1970.

(b) Analysis of data

Population parameters from multiple capture-recapture data can be estimated by a variety of techniques. These techniques fall into two broad categories, deterministic and stochastic. The deterministic models assume that there is an exact survival rate over a specific time interval (which usually equals the length of time between trapping periods), whereas stochastic models estimate a probability of survival.

In the present study, Jolly's (1965) stochastic model was used to analyse the data. This model uses all the information that is gained from repeated recaptures, so that, despite the low numbers released at some trapping periods, it is possible to give standard errors for the estimates of the total population (N), probability of survival (\emptyset) and the number of new animals entering the population (B) for each recapture period. Jolly's model does, however, make some basic assumptions which are difficult to test. The model assumes that: (a) sampling is random and that marked animals have so redistributed themselves after release that they have the same probability as any other animal of being caught in subsequent trappings; (b) survival rates and probabilities of capture are unaffected by the marking of animals; and (c) survival rates are independent of the age of the animal. Although these assumptions are very important for the absolute determination of the total numbers as well as the other parameters in any one area, it should be noted that in this study the model was used to compare populations on three areas. Therefore provided that there are no differences in the validity of these assumptions between areas, all comparisons of the population parameters are relevant and valid.

In a summary of a variety of population estimation techniques, Manly (1970) has shown that Jolly's method has a tendency to give a large over-estimate when samples are small as well as a tendency to give population size estimates equal to the sample size. Despite Manly's criticism,

Jolly's model was considered to be an appropriate analysis method for this study, since an investigation of relative changes between areas formed the main part of this study and absolute changes in numbers were of secondary importance. Analysis was accomplished using a computer program written by Dr. C. Krebs of the University of British Columbia.

RESULTS

1) Seasonal fluctuations in numbers of males and females

Since each grid was one hectare in area all figures and diagrams dealing with numbers are expressed in terms of numbers per hectare. The monthly estimate of numbers for each area are shown in Table 4. Table 5 gives the correlation coefficients between the Jolly estimate and the minimum number of animals known to be alive at a specific point in time (t). It is possible for an animal not to be captured at time " t " but to have been caught at " $t-1$ " and subsequently caught at " $t+1$ ". This animal is therefore considered to be alive at "t". Only 7\% of such potential captures were missed. These correlates are significant in most cases indicating that both estimates are very similar. The 1968-69 winter was extremely cold with a heavy snow cover and during this time trapping was difficult. On Area 1, 11 of the marked males were caught in February which had not been caught in January. Their absence in that month resulted in an overestimate by the Jolly model. This probably accounted for the lack of correlation in numbers during the non-breeding period from October 1968 to the end of the breeding period in 1969. The single very high estimate of females by the Jolly model for January 1970 on Area 3 (Table 4)

Table 4. Comparison of estimates of total numbers (Jolly model and minimum number known to be alive)

| | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | AREA 1 | AREA 2 | | |
| A AREA 3 | | | | |

1968

October	13	10	12	10	4	13	4	9	2	9	2	9
November	-	-	-	-	19	19	19	19	8	12	8	12
December	24	21	19	21	-	-	-	-	-	-	-	-

1969

January	24	9	9	7	16	17	14	13	-	-	-	-
February	33	14	12	12	17	14	15	12	3	7	3	6
March	15	19	11	12	17	9	16	9	5	7	5	6
Apri1	17	12	15	11	18	10	18	10	9	5	9	5
May	19	10	16	9	33	15	33	15	8	17	8	8
June	17	11	17	11	27	12	25	12	15	13	13	11
July	15	18	14	15	23	15	21	11	12	11	10	9
August	13	15	12	13	23	15	21	15	25	18	17	13
September	14	15	14	15	20	11	19	9	20	13	20	13
October	15	16	14	16	18	13	18	13	19	10	16	10
November	18	14	14	14	15	9	13	8	7	8	7	8
December	11	12	10	11	11	7	10	7	10	9	7	9
l970												
January	9	10	7	9	14	5	13	5	10	18	4	6
February	7	10	7	8	14	6	14	6	4	6	4	6
March	6	6	5	5	13	11	13	11	3	8	3	4
April	5	7	5	5	13	8	13	7	3	6	3	3
May	5	8	5	4	8	6	8	6	4	6	4	3
May	13	5	9	5	7	5	7	5	4	3	4	3
June	11	4	9	4	11	4	11	4	5	2	5	2
July	8	8	8	5	11	9	11	9	4	2	4	2
August	10	6	10	6	11	13	11	13			6	2
September	10	9	10	9	8	7	4	7				
October	9	15	9	9	16	13	16	13				
November			10	14			16	12				

A: Total number estimated by Jolly model (by sex).
B: Minimum number known to be alive (by trapping).

Table 5. Correlation coefficients comparing Jolly's N estimate and minimum number known to be alive.

		AREA 1	AREA 2	AREA 3
Non-Breeding	8^{87}	0.225*	0.989	
Season				
Oct-Jan	9\%	0.991	0.953	
Breeding	88^{7}	-0.306*	0.989	0.988
Season Feb-July	97	0.788	0.763	0.725
Non-Breeding	80°	0.953	0.978	0.927
$\begin{aligned} & \text { Season } \\ & \text { Aug-Mar } \end{aligned}$	98	0.979	0.977	0.448*
Breeding	$0^{\circ 0}$	0.857	0.934	1.00
Season Apr-Oct	9%	0.746	0.994	0.801

* r is not significant.
which I cannot explain, but it had the effect of reducing the level of correlation of female numbers for the non-breeding period of 1969-70. On Area 3 in 1969 both male and female numbers were low before breeding began and stayed low until mid-summer. Highest numbers occurred at the end of the breeding season, a pattern which has been reported by other authors, (Blair, 1940; Howard, 1949; Orr-Ewing, 1950; Tevis, 1950a; Sadleir, 1965, 1970b; Terman, 1966; Fuller, 1969). Area 2 follows the same pattern but the peak numbers occurred in the middle of the breeding season and not at the end. Area 1 did not show this trend, as female numbers stayed relatively stable although the males showed a definite decrease during this season. From the cessation of breeding in 1969 the numbers began to decrease, finally from the beginning of 1970, male and female numbers remained constant (Table 4). The only autumn increase was seen on Area 2 in October.

The Jolly model permits a reasonably accurate estimation of the mean number of animals present on an area over a number of sampling periods (Appendix 2). Table 6 gives mean numbers and variance by sex, area, and season and shows their statistical comparison. Because sampling periods were not coincident on all areas for each of the periods of this study, the best method of inter-area comparison involves using different groupings of monthly samples, so that the inter-area comparisons are coincident.

Table 7 shows that the mean numbers on Area 1 and 2 were never significantly different whereas Area 3 had significantly lower numbers of males than Area 1 and 2 in three of the four periods; the females were significantly lower once. With the exception of the non-breeding period of 1969-70 the mean numbers on Area 3 were lower than on the other two areas.
Table 6. Mean Jolly N estimate (and variance) for all grids

> This pair of means, and others in the table, are not the same as sampling periods are not coincident. See explanation in text.

Table 7. Comparison of mean Jolly N values between areas. (Test criteria values.)

| GRID 1 | GRID 2 |
| :---: | :---: | :---: |
| Males Females Males Females | |

Grid 2

Non-Breeding	$1968 / 69$	0.88	0.72	-	-
Breeding	1969	0.95	0.31	-	-
Non-Breeding	$1969 / 70$	1.41	1.07	-	-
Breeding	1970	0.79	0.20	-	-

Grid 3

Non-Breeding	$1968 / 69$	$2.56 *$	$2.21 *$	$3.89 * * *$	$2.88 * *$
Breeding	1969	$2.48 *$	1.12	$6.00 * * *$	0.57
Non-Breeding	$1969 / 70$	0.33	0.18	0.99	0.58
Breeding	1970	$2.17 *$	0.92	$3.66 * * *$	1.19

$*=P \leq 0.05 \quad * *=P \leq 0.01 \quad * * *=P \leq 0.001$

2) Seasonal fluctuations in total numbers

The minimum numbers known to be alive for each month (both sexes combined) are shown for each area in Figs. 4, 5, 6. On all areas numbers were much higher in 1969 than in 1970. On Area 1 there was a dramatic increase in numbers in the second half of 1968, although the December 1968 peak was not maintained. From February 1969 onward there were usually twenty or more deermice per plot for the whole year and the numbers fluctuated little. However from October onward a persistent decline in numbers set in until March/May 1970. The numbers then increased until the end of the year but failed to approach the 1969 numbers.

On Area 2, the second half of 1968 showed a similar trend to Area 1. There was a similar mid-winter peak and a sudden decline and, with one exception, the numbers for each month through 1969 again stayed relatively constant although slightly higher than Area 1. The peak in May was due to a week-long trapping period which coincided with an exceptionally large number of juveniles dispersing through the area (see weight distribution, Fig. 10). Other week-long trapping sessions in January, February, March, and May 1970 failed to reveal any difference in numbers when compared to the normal two day trapping period. Area 2 differed from Area 1 in that early in 1970 numbers increased; although like Area 1, this was followed by a decrease to a May 1970 minimum. Thus, it can be seen that although the magnitudes are different, the numbers on Areas 1 and 2 fluctuate in a reasonably similar manner.

Cohort diagram showing changes in numbers and individual survival on grid 1.

Fig. 5 Cohort diagram showing changes in numbers and individual survival on grid 2.

Area 3 (Fig. 6) showed a different pattern. Although there was a similar increase in the second half of 1968, from January 1969 to September 1969 there was a persistent increase in numbers while the population highs were maintained on Areas 1 and 2. There was, however, a decline from September 1969 to March/May 1970 which paralleled that on other areas but the population on this area showed no recovery and no mice were trapped on it in August 1970. At this point trapping ceased on this area.

Table 8 shows that the total number of deermice for each month on Areas 1,2 , and 3 are all significantly correlated for appropriately comparable periods (Area $1 / 2$ comparison is for 24 months while the comparison of Areas $1 / 2$ with 3 is for 21 months).
3) Probability of survival

Figs. 7 and 8 show that the probability of survival estimates fluctuated considerably throughout this study. The degree of fluctuation in monthly survival estimates of rodent populations has been reported by many workers (Krebs, 1966; Sadleir, 1965; Tamarin and Malecha, 1971) and is considered to be caused by many interacting small factors, analysis of which would be extremely difficult. From Jolly's tables (see Appendix 3) an estimate of the mean probability of survival over several trapping periods can be calculated along with its variance (Sadleir, 1965; see Appendix 4). There is no difference at the 5% level, in the survival of either sex of deermice between Area 1 and 2 and significance occurs only between Areas 1 and 3 as well as 2 and 3 in the first non-breeding period (Table 9). The significant difference may be an artifact due to

Table 8. Correlation coefficient comparing minimum numbers known to be alive on the three areas.

	MALES	FEMALES	COMBINED	N
Area 1 vs Area 2	$0.68 * *$	$0.40 *$	$0.61 * *$	24
Area 1 vs Area 3	$0.66 * *$	$0.80 * *$	$0.78 * *$	21
Area 2 vs Area 3	$0.54 * *$	$0.48 *$	$0.60 * *$	21

* $\mathrm{P} \leq 0.05 \quad$ ** $\mathrm{P} \leq 0.01$

Males: Probability of survival (\varnothing), recruitment (B) and Jolly's N estimate for all grids by months.
(Φ S.人770r) 7

Fig. 8 Females: Probability of survival (\varnothing), recruitment (B) and Jolly's N estimate for all grids by months.

Table 9. Mean probability of survival (and variance) for all grids by sex and season.

		AREA 1		AREA 2		AREA 3	
		ϕ	s^{2}	ϕ	S^{2}	ϕ	s^{2}
$\begin{aligned} & \text { Non-Breeding } \\ & \text { Oct-Jan } \end{aligned}$	88^{8}	. 322	. 252	. 744	. 019	. 189	. 079
	¢\%	. 637	. 310	. 644	. 023	. 181	. 033
Breeding	$0^{*} \sigma^{*}$. 535	. 017	. 670	. 009	. 628	. 058
$\begin{gathered} \text { Feb-July } \\ (1969) \end{gathered}$	9%	. 637	. 026	. 575	. 019	. 648	. 048
$\begin{aligned} & \text { Non-Breeding } \\ & \text { Aug-Mar } \end{aligned}$	$\sigma^{\circ} 0^{\prime \prime}$. 736	. 023	. 650	. 011	. 514	. 044
	99	. 759	. 023	. 630	. 018	. 650	. 068
Breeding	80°	. 536	. 021	. 379	. 022	. 684	. 058
$\begin{gathered} \text { Apr-Sept } \\ (1970) \end{gathered}$	9%	. 547	. 061	. 398	. 024	. 501	. 152

the small sample of two months for Area 3. There were also no differences in the survival of males and females on the same grids ($\mathrm{P} \leq 0.05$).
4) Recruitment (Births and Immigration)

Recuitment generally increased during the breeding seasons as the young of the year joined the population (see Fig. 7 and 8). However, between January and February 1969 there was an increase in the population of Area 1. This increase was directly related to a corresponding increase in the recruitment. The animals that joined the population at this time were fully mature overwintered adults, as indicated by their body weight (see Figs. 9, 10, 11). A similar increase did not occur in 1970. Area 2 followed a similar pattern to Area 1, although recruitment in the spring of 1970 was higher than on Area 1. The recruitment of both sexes during breeding in 1969^{\prime} was extremely high. In 1970 an. increase in adult recruitment occurred from December 1969 to March 1970, but this adult recruitment did not occur on Area 1. Area 3 was much the same as Area 2 for 1969, but although there was an initial increase between December 1969 and January 1970, the adult recruitment on this area remained extremely low for the remainder of this study.
5) Relative importance of recruitment, probability of survival, and length of season on change in numbers.

In order to determine the relative importance of recruitment, probability of survival and length of season on changes in numbers these factors were correlated with the changes in numbers seen for the sixbreeding and six non-breeding seasons. These correlations are shown in Table 10. Changes in numbers were determined by subtracting the numbers

10 and 11 the width of the polygram is proportional to the frequency of individuals in each weight class.

Table 10. Correlation coefficients between male and female survival, total recruitment, length of season and changes in total numbers between the beginning and end of seasons.

	BREEDING SEASON	NON-BREEDING SEASON
Total Recruitment cf. Change in Total Numbers	. 354	. $817 *$
Total Recruitment cf. Change in Female Numbers	. 480	. 723
Total Recruitment cf. Change in Male Numbers	. 180	.826*
Mean Female Probability of Survival cf. Change in Total Numbers	. 185	-. 401
Mean Female Probability of Survival cf. Change in Female Numbers	. 083	-. 575
Mean Male Probability of Survival cf. Change in Total Numbers	-. 069	. 043
Mean Male probability of Survival cf. Change in Male Numbers	. 207	. 143
Length of Season cf. Change in Total Numbers	. 193 (.494)	-.936**
Length of Season cf. Change in Female Numbers	. 0 (.837)	-.859*
Length of Season cf. Change in Male Numbers	. 208 (.178	-.917*
Total Recruitment, Mean Female Probability of Survival and Length of Season cf. Change in Total Numbers	. 714 (.536)	. 946
Total Recruitment, Mean Male Probability of Survival and Length of Season cf. Change in Total Numbers	. 756 (.780)	. 963

() for 5 months on Area 3.

* $=\mathrm{P} \leq 0.05$
** $=P \leq 0.01$
present in the last month of the season from the numbers present in the first month. Total recruitment refers to the mean monthly recruitment rates of both sexes combined. The disappearance of deermice from Area 3 presented problems in allocating a length to the breeding season in 1970. Correlation coefficients for the observed season length of 5 months and an assumed season length of 8 months, as occurred on areas 1 and 2 , are both given in Table 6 although survival and change in numbers could only be calculated over 5 months.

6) Seasonal changes in body weight

There is little variation in the mean weight by month of the adult males on Area 1 during the study (Figs. 9, 10, 11). A single exception was the increase in weight which occurred from January to March 1969. Juvenile animals were considered to be any animals caught during or immediately after the breeding season with a weight below 12 grams (Sadleir, 1965). The most noticeable change in weight distribution occurred during the breeding season, due to the numbers of juvenile males which foined the population. The females on this area exhibited similar trends as the males but with more variation in weight because of pregnancy. After the breeding season had ended, weights for both males and females tended to stabilize. It is also possible by looking at Figs. 9, 10, 11 to note the influx of fuveniles into the population. Area 2 showed similar trends to Area 1. Both males and females on Area 3 exhibited little fluctuation in body weights, there being no gain in either sex at the beginning of 1969. During the breeding period there was little variation
in weights indicating either that breeding success was very poor or that juveniles on this area were trap shy. There was one period of low body weights, August 1969, indicating juvenile recruitment.

7) Reproduction

On Area 1, males in both 1969 and 1970 came into breeding activity before the females (Table 11). In 1969 breeding commenced in late February but in 1970 it did not start until the beginning of April. Area 2 in 1969 exhibited much the same pattern as Area 1, although the males came into breeding condition a few weeks before the males on Area 1. The females on Area 2 came into breeding condition after male testes development had begun. In 1970 both sexes were in reproductive condition on Area 2 at the same time, this being synchronous with male condition on Area 1. Area 3 showed a trend in reproductive activity for both sexes which was similar to Area 1 . Of the six breeding periods investigated it is interesting to note that in four (one instance being undetermined, 1.e. Area $2-1970$) the females remained in reproductive condition for at least one month after male reproductive activity had ceased.

8) Transients

Table 12 gives the number of resident animals as well as the number and proportion of transients caught per breeding and non-breeding period. There is no significant difference between grids in the proportion of transients which were caught (Chi square $\mathrm{P} \leq 0.05$). Of the 126 deermice caught on the 20 and 30 m peripheral lines, 12 (10%) of these had been captured previously on the grid, whereas only 9 (7\%) caught on the peripheral lines were caught subsequently on the grid.

Table 11. Duration of breeding seasons on each grid.

		GRID 1	GRID 2	GRID 3
1969	Testes descended	February (91)	February (89)	February (91)
	First pregnancy	March (95)	March (93)	March (95)
	Testes regressing	July (111)	Ju1y (111)	July (111)
	Last lactation	August (115)	July (111)	August (115)
1970	Testes descended	April (148)	April (148)	April (148)
	First pregnancy	May (152)	May (152)	May (152)
	Testes regressing	October (176)	August (168) ${ }^{1}$	2
	Last lactation	October (176)	September (172) ${ }^{1}$	2

() Month of study, see Table 3.
1 See text.
2 Sampling ceased in August when males and females breeding.

Table 12. Numbers of transient deermice on each grid by sex and season.

		Area 1		Area 2		Area 3		TOTALS		
				Area 1	Area 2			Area 3		
		$0^{\circ} 0^{\circ}$	¢\%			80°	97		$8^{\circ} 0^{\circ}$	9
1968-69			12	9	9	6	11	20	18	17
Non-Breeding	Transients	8	12	- 9	9	6	11	20	18	17
Oct-Jan	Residents	12	13	11	16	3	8	25	27	11
Bree $\frac{1969}{}{ }^{\text {ding }}$		12		18	11	6	5	22	29	
Breeding Feb-July	Transients Residents	28	12	48	23	16	15	40	71	21
$\frac{1969-70}{}$										
Non-Breeding	Transients	2	6	3	13	11	9	8	16	20
Aug-Mar	Residents	16	16	31	19	20	12	32	50	32
Breeding ${ }^{1970}$	Transients	9	10	23	20	1	2	19	43	3
Apr-Sept	Resident	18	10	22	18	7	2	28	40	9

9) Species composition

From Table 13, it can be seen that the most frequently captured species was Peromyscus maniculatus. The interesting comparisons between areas reflect the vegetational successional stages. Area 3's most plentiful species was Microtus oregoni, the numbers of which are plotted on Fig. 6, indicating that this area contained a wide variety of grasses and other annual plants (Kellman, 1969) which make up a high proportion of the herbivorous voles diet (Lobue and Darnell, 1959).

DISCUSSION
This study investigated the effects of environmental changes on populations of deermice in a coastal forest. The general hypothesis was that differences in numbers, survival, length of breeding and non-breeding seasons would exist between the three areas studied. In addition, it was hoped that a population model could be developed to which all three populations would conform. Although there have been many studies on the biology of deermice, perusal of the chapter by Terman (1968) will indicate that there are very few studies which are sufficiently detailed. In addition, the majority of these studies which have been done, have been carried out on single trapping areas so that no analysis of between area comparisons were possible. Sadleir (1965, 1970b) attempted to trap several grids in adjacent areas but his grids were very small. In this study, it was hoped that the trapping schedule would give substantial data on variations between areas so that population changes over a large area could be considered.

Table 13. Frequency of captures of all species on each grid.

	AREA 1	AREA 2	AREA 3
Peromyscus maniculatus (deermice)	485	619	323
Microtus oregoni (vole)	24	13	450
Sorex vagrans (shrew)	93	140	34
Eutamius amoenus (chipmunk)	11	23	56
Tamiasciurus douglasi (squirrel)	1	0	0
Glaucomys sabrinus (flying squirrel)	3	0	0
Neurotrichus gibbsi (shrew mole)	14	29	1
Clethrionomys gapperi (Red-backed vole)	1	3	0
Zapus trimicronatus (jumping mouse)	0	3	0
Mustela erminea (weasel)	2	0	0
Slug	46	65	26

Maintenance of all populations at stable levels depends upon both intrinsic and extrinsic factors. The significance of such parameters and their interaction is difficult to assess. However, this study attempted to determine the relative importance of population parameters contributing to absolute numbers and their fluctuations. The discussion which follows will consider changes in the recruitment rates and survival probabilities in breeding and non-breeding seasons, in conjunction with the effects of various environmental conditions. The effects of these parameters will be discussed first separately and then as combined units.

The factors controlling the start of the breeding season in Peromyscus maniculatus have not as yet been fully determined. Whitaker (1940) has stated that for P. leucopus breeding is under photoperiodic control but his evidence is not very clear. In this study, breeding commenced in different months in different years which would suggest that photoperiod alone is not the major determinant. Sadleir et al. (1973) considered that breeding in wild deermice is strongly affected by the interaction of temperature and food supply acting through the energetics of activity and lactation. Thus, although there are considerable differences in the duration and onset of breeding seasons between years, in any population, the exact causes of these differences are not proven. Population changes during breeding season

Recruitment during the breeding season is a function of the number of young produced and their survival. The number of young produced depends on litter size and the number of pregnancies in the population during the season. This is, in turn, dependent on the number of females which
reach sexual maturity during the season and the number which were originally available for breeding at the beginning of the season. The latter is directly related to the length of the non-breeding season as will be discussed later.

Recruitment during the breeding seasons was good, ranging from eight to fourteen new recruits per month. The single exception was Area 3 in 1970. On this area, the number of males and females was extremely low. As this period of low numbers coincided with a period of low survival in May-June, there was a further reduction in the potential breeding population. Also with the low number of females on the area the probability of male-female interaction was reduced. Survival probabilities fluctuated considerably and did not show any consistent trends between or within areas (Figs. 7 and 8). In the 1969 breeding season the mean survival probabilities were generally much better than those in 1970. Area 2, for 1970 , showed a very low mean survival probability but still the total numbers on the grid increased (Table 9).

During the breeding season, the total population on the three areas increased with the exception of Area 3, 1970 which has already been discussed. In general, the probability of survival had considerably less effect on the population numbers than had recruitment even during periods of extremely low survival (Table 10). The increase of populations during this time reflected more closely the recruitment of new mice in each area. Recruited mice may join either by being able to establish themselves in the hierarchial system or by replacing overwintered mice that had died during the season, but the relative importance of these two
methods is not known. Also at the end of the breeding season, the social system, i.e. hierarchy, begins to break down (Sadleir, 1965) with the result that it is easier for recruits to establish themselves.' In most breeding seasons, recruitment more than compensates for the effects of mortality and thus appears to be a more important parameter in the breeding season than survival.

It would seem that the viability of a population from one year to the next would depend, in part, on the number of mice present at the end of breeding. Although Sadleir (1965) has suggested that aggressiveness of dominant males plays a role in population regulation during breeding, aggressiveness resulting in dispersal at the end of the breeding season would not be advantageous, in terms of numerical consistency, to the population, in terms of survival of that population in its particular area. In this study, recruitment reaches a high point at or just prior to the cessation of breeding. This is necessary to ensure that a large number of animals are present at the onset of the non-breeding period. Population changes during non-breeding season

The average level of recruitment for the two non-breeding seasons were entirely different. Recruitment in the non-breeding season consists of both adult immigrants or juveniles born in the previous season which join the population. In 1968-69 recruitment on all areas was extremely high (8 - 18 mice/month) and was probably due to both the long breeding season which was 8 months and to the good survival of the previous generation. The large recruitment of 25 animals on Area 1 in January 1969 cannot be explained. In 1968-69 there was thus a large number of sub-
adult mice on all grids (Figs. 9, 10, 11). However, in 1969-70 recruitment rates were stable and low, with only a few mature adult mice joining the population. The monthly average of the probability of survival for both non-breeding seasons, with the exception of Area 3, 1968-69 (where the sample size was very small) was extremely high. For both sexes ϕ ranged from 0.514 to 0.822 and was generally above 0.630 (Figs. 7 and 8).

In 1969-70 all areas showed a decline in the total numbers despite good survival, which indicates that low recruitment was an important factor (Table 4). In the previous year, 1968-69, increased recruitment resulted in an increase in total numbers. The decrease in numbers in the non-breeding season is much more noticeable in periods where the season is long, as in 1969-70 (8 months). The mortality over a long period of time, accompanied with low recruitment, resulted in a gradual decrease in population numbers.

Other factors
Factors which may have also affected the population numbers on the three areas include weather, parasitism, predation and disease. The effects of these four factors were extremely subtle and consequently changes in numbers as a result of these elements were difficult to assess.

Weather: The two winters were entirely different: the 1968-69 winter was extremely cold, however, there was approximately 0.75 metres of snow on the ground from late December to early February. This snow layer acts as insulation, hence the ambient temperature below the snow did not
fluctuate much from $0^{\circ} \mathrm{C}$. In 1969-70 the winter was relatively free of snow but temperatures were below freezing, ranging from -10° to $-5^{\circ} \mathrm{C}$, from mid-January to mid-March, the ground layers being frozen for most of this period. In general, the monthly mean air temperature was the same as the 9 " $(20 \mathrm{~cm})$ soil temperature with the exceptions of periods when snow was present on the ground. In this case the temperature under the snow level ranged from -1° to $0^{\circ} \mathrm{C}$ (Harling, 1972) and hence was considerably warmer than the mean monthly air temperature. In 1970 it would seem that mice which ventured out of their burrows would have to use up all of their energy supplies to maintain themselves and would have no surplus calories for the development of reproductive organs - the result being that breeding started later.' The opposite situation was true in 1968-69. This is reflected in the body weights of the mice during these two comparable periods. The average weights of both male and female mice at the beginning of 1969 was much higher than those in 1970 , the mice in 1969 also tended to show a rapid increase in weight. It is not known whether this weight increase had any effect on the earlier commencement of breeding in 1969 as compared to 1970.

Parasitism: Peromyscus carries a number of external parasites (reviewed by Whitaker (1968)). The most predominant parasite, in this study area, was the botfly, Cuterebra grisea. Hunter, Sadleir and Webster (1972) have shown that there was no significant difference between the survival rates of mice infected with C. grisea and those not infected.

Predation and disease: The effect of these two factors was very difficult to assess. Although such potential predators as racoons (Procyon lotor), weasels (Mustela erminia), and owls were known to inhabit all study areas, their combined effect on the population was not known. There were however, no sudden dramatic declines in population numbers during the study, such as result after intensive predation. With regards to disease, the dead sample study gave no indication of any major disease outbreak in the mouse population (Casperson and Harling, personal communication, 1972). Occasionally some mice had abnormally large and discoloured lungs and liver indicating an unidentified infection. Again the effects of this on the population was not known.

Population models

From the preceding information it is possible to deduce a generalized scheme of events which is consistent with the fluctuations of all three populations of deermice. The most important factors affecting the changes in numbers are recruitment and the length of the non-breeding season (Table 10). It is this change in numbers which governs the numbers of potentially breeding deermice which are present at the beginning of the subsequent reproductive season. The significant negative correlations in Table 10 show that if the non-breeding season is short, populations of deermice are dense at the beginning of the subsequent breeding season. If the non-breeding season is long, the numbers entering the breeding season are reduced and do not increase with such a season until it is well progressed. There are, therefore, four possible model proposals, assuming that the rate of recruitment is at its highest point after the cessation of breeding
and then steadily declines as the non-breeding season progresses (i.e. the recruitment curve is skewed to the left). The four possibilities are: 1) short non-breeding season with a high average recruitment; 2) short non-breeding season with a low average recruitment; 3) long nonbreeding season with a high average recruitment and 4) long non-breeding season with a low average recruitment. Mortality or its converse, survival, does not appear to be an important factor affecting the change in numbers (Table 10). Of the four possibilities, 2 and 3 are unlikely on the following grounds:- possibility 2 could only occur if the prior breeding season had a very low recruitment and/or poor survival. Possibility 3 is extremely unlikely as this requires continual recruitment on to the area throughout the long non-breeding season. As the majority of recruits to any area are juveniles from the previous breeding season it would be impossible to maintain a high average recruitment through the seasons. The remaining two possibilities 1 and 4 were both observed during this study. Possibility 1 occurred in the non-breeding season of 1968-69. This involved a short four month season with high average monthly recruitment (10 to 18.3 mice/month). Trapping by Casperson (personal communication, 1972) revealed a similar pattern on grids 1 and 2 for 1970-71. Possibility 4 occurred in 1969-70 when the season was eight months long and average monthly recruitment was low (2.8 to 6 mice/month). During the breeding season the relationship between the change in numbers and the number of males and females present differed. The low correlations using an eight month season on grid 3 (1970) were almost certainly an artifact as the actual
change numbers, for each sex, could not be determined since the population vanished. However, when the correlations were determined on the observed data, 5 months in duration, the r value was much higher for females than males and was statistically significant. Therefore it appears that, during the breeding season, the change in the number of males is relatively independent of the length of the season. This concurs with the suggestion of Sadleir (1965) and Healey (1971) and the observations of Fordham (1971) that the numbers of males during breeding seasons remain fairly constant and are probably determined by the level of their agonistic interaction.

It is now possible to propose a general model for the regulation of numbers in this species. During breeding seasons the numbers of males appears to be regulated by their agonistic behaviour toward each other. The males are aggressive to all juveniles but those females which do reach sub-adulthood are tolerated and hence the numbers of females can increase as the season progresses." During the non-breeding season the regulation system changes and individuals of both sexes regardless of age appear to act in a similar fashion. Although recruitment rates are low at this time, change in numbers is more correlated with recruitment during the non-breeding season than during the breeding season. However the strongest correlations are with the length of the non-breeding season. If the non-breeding season is short, numbers change very little and populations remain high and are relatively dense when breeding comences. If the non-breeding season is long, there is a steady decrease in numbers as the monthly mortality operates over an increasing period of time. When breeding commences after such a period, numbers are extremely low for
the first part of the season, showing an increase only at the end of the season. In summary, to use an analogy the "capital" present during the breeding season is mainly a function of the size of the initial "deposit" and much less a function of the seasons "interest" or "withdrawals". In turn the "deposit" is controlled by the length of the previous nonbreeding season.

CHAPTER 4

BEHAVIOUR - INTRODUCTION

The seasonal incidence of aggressive behaviour and its correlation with testes condition has been reported for a variety of rodents and other species (Beeman, 1947; Davis, 1964; Scott and Fredericson, 1951). Davis (1963) correlated an increase in territorial behaviour with an increase in the size of gonads in birds, and noted that injections of androgens in domestic fowl (Gallus gallus) resulted in fighting and courtship. He concluded that androgen levels controlled such behaviour. Beeman (1947) showed that testosterone levels affect aggressiveness in white mice (Mus musculus) whereas McCabe and Blanchard (1950) demonstrated that the intensity of fighting in Peromyscus californicus and P. maniculatus varies with the season and testes weight. Levy and King (1953) injected immature rodents with testosterone and noted increases in aggressive behaviour with increased dosages of this hormone. Lagerspetz (1969) reported that aggressive behaviour in M. musculus does not begin without the presence of male hormones and a decrease in the androgen level results in a decrease in aggressive behaviour. Whitaker (1940) suggested that increases in day length stimulate testes development in deermice with an increase in testosterone production release, and resulting in a potentiality for increased aggressiveness. Female reproduction in P. maniculatus is affected by photoperiod (Price, 1966).

Changes in agonistic behaviour of male deermice (P. maniculatus) have been measured in connection with a field study of the species
population dynamics by observing the arena behaviour of individual field collected males towards strange laboratory males (Sadleir, 1965). Sadleir suggested that the survival of juvenile deermice is influenced by the aggressiveness of the adult males of the population. During the summer when adult aggression is high juvenile survival is poor, but in the fall when aggression decreases juveniles survive well. Healey (1967) has confirmed Sadleir's conclusions.

In both these investigations field animals were isolated from their social and natural environmental contact for extended periods of time. It has been found that even short periods of isolation can induce aggressive behaviour (Sigg, 1969). This suggests that the levels of aggression determined by Sadleir and Healey may have been too high, although it should not affect the seasonality of changes in behaviour. In addition both Sadleir and Healey tested their field animals against laboratory animals which had considerable experience of bouts in an arena.

This present study attempted to document seasonal and individual changes in male behaviour by: (a) testing field animals against each other (so that each opponent had approximately equal bout experience) and (b) by reducing as much as possible the length of isolation time of the tested males. In addition it was hoped that detailed studies of home range could be related to an individual's aggressive level.

METHODS

Behaviour Investigations
From January 1970 through to September 1970, all male deermice captured on day 3 on grid 2 were taken to the laboratory to determine their relative levels of aggressiveness. This was done every second week, so that captured males were placed in a bout only once per two week period. Female aggressive behaviour was not examined because of the presumed complicating factors associated with pregnancy and estrus (Sadleir, 1965).

Aggression between males was assessed by observing their behaviour in a neutral arena measuring $24^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$, with a vertically sliding partition which divided it into two. One side of the arena consisted of clear perspex through which observations could be made. Only two mice were observed each time and no individual deermouse ever met another individual more than once per bout per two weeks. Care was taken to match animals from extreme ends of the grid to reduce the possibility of prior contact between the opponents. Mice were first placed one on each side of the partition for a period of five minutes. One of the mice was marked with a coloured flowpen. After five minutes the partition was lifted. Each matched bout was observed for five minutes and aggressive encounters were described into a tape recorder. Most of the behavioural units described by Eisenberg (1962) were noted, but only the aggressive units, as summarized by Sadleir (1965), were recorded. These were as follows: (1) jumping at an opponent; (2) chasing opponent; (3) threatening opponent; (4) upright threat; (5) grooming of a defeated opponent,
(6) being groomed by a defeated opponent; (7) fighting. Upon completion of a bout each encounter was transcribed from the tape recorder onto data sheets. Each data sheet was subdivided into ten second intervals, thus an aggressive unit was scored if it occurred within a ten second interval. If more than one unit of the same type occurred within the ten seconds it was scored only once but other units were scored within the same time period if of a different type.

RESULTS

1) Sexual condition of mice used in behaviour tests

Since testes development is an important factor governing the agonistic responses of male mice (Beeman, 1947), it was essential that the mice tested were sexually representative of the population on the grid. Fig. 12 shows that this was the case. Tested mice and grid mice were not in full breeding condition until the beginning of April and they ceased breeding at the same time. During the latter part of this study several juveniles were tested against resident adults which explains the presence of mice with small testes in June and August.
2) Aggressive acts as a function of time

The average number of aggressive acts per bout for each month is shown in Fig. 13. This figure also gives the total number of fights per month. This seasonal aggressive cycle is similar to that suggested by Sadleir (1965) and Healey (1967). Increase in aggression from February to March is coincident with an increase in testes development (Fig. 12) suggesting that there is a possible relationship between testosterone secretion

Fig. 12 Sexual condition of grid and tested males.

- 91 -

Fig. 13 Average number of aggressive acts per bout by months and number of fights.

and aggression. However, the decrease in aggressive behaviour from May to June does not coincide with regression of the testes which occurred much later in August.
3) The relationship of aggressive behaviour to home range area.

Fig. 14 compares aggressiveness and home range area occupied for the six males which had participated in four or more bouts. Their hierarchial relationships were not clearly defined. Aggressive tests were conducted on a further 22 males but because they were tested less frequently, it proved difficult to determine their relative social status. However, it is likely that the relationship shown for the six males in Fig. 14 would have held for all adult males on the area. The scatter diagram indicates that there is a relationship between aggressiveness and area covered, and although the sample is small, the correlation coefficient ($r=0.804$) achieves significance at the 10 percent level. 4) Inhibitory behaviour

During fights a submissive act was observed which totally inhibited further aggressive acts by the winning male. This act consisted of a short chirp or chit and was emitted when the submissive male was lying on its back and is similar to a behavioural act described by Eisenberg (1962). Of the 26 bouts where a decisive behavioural outcome could be determined (i.e. dominance of one male over the other), 19 of these bouts included a chit response from the submissive. In cases where juveniles were matched against adult mice the chit response did not have the same totally inhibitory action; the adults would continue to threaten and sometimes attack the juveniles, although the juveniles remained in a totally submissive posture.

DISCUSSION

Beeman (1947), Scott and Fredericson (1951) and Davis (1964) have shown that agonistic behaviour in rodents is influenced by androgen secretions. At the beginning of this study testes were not developed and aggressive activity was minimal. As the testes increased in size at the beginning of the breeding season and became located in the scrotal region, the number of aggressive acts increased. In the wild population the proportion of males in sexual condition increased gradually as the season progressed. The trapping record of individual males showed that their testes increased in size suddenly (Fig. 12).

Agonistic behaviour probably operates in the first part of the breeding season by establishing an adult male hierarchy in the population. This subsequently decides recruitment, dispersal, and thus indirectly the size of the population. Fordham (1971) has shown that excess food placed on an area causes considerable increase in the total population but this increase is not reflected in an increase in the complement of resident adult males. Brown (1962) found that the adult male Apodemus sylvaticus which were resident on the area at the commencement of breeding was dominant and controlled the stability of the society. She stated that a hierarchial system existed between these mice. The hierarchy is extremely important since it defines the relationship of mice in a particular area so that intruders are more readily identified. Sadleir (1970a) has shown that hierarchial systems do exist for Peromyscus maniculatus austerus.

In this study it was difficult to determine the relationships of the adult males on the grid. Six mice were considered to be dominant and hence constituted a possible hierarchy. But there are two possible hierarchial systems, first the top six mice control the entire area and there exists no relationships between the mice which do not constitute this hierarchy, that is, the non-hierarchial mice are of equal status one to another. Or second, a continuum exists whereby the behavioural position of every male on the grid is defined and the status of one to another is very strictly regulated. Therefore, which system existed in this study was not determined because the frequency of testing and trapping made it difficult to define the status of non-hierarchial mice.

Death or emigration of any member of the hierarchy would result in competition for the vacant position and home range by juveniles and transient adult mice as well as "lower members" of the hierarchy. This leads to a socially unstable condition and a possible reduction in dispersal pressure until the re-establishment of a new social hierarchy. During this period it is possible that more mice could be supported on the area. Nowack (1971) reported that removal of the first and second dominant male Mus musculus caused an increase in aggressive acts indicating that the hierarchial relationships had been disturbed. She also demonstrated that there was a decrease in the number of fights through time and suggested that this can be explained by the establishing of orderly relations between individuals. The natural analogue to the behavioural action described by Nowack (1971) would be the death of a dominant. In Fig. 13 it can be seen that the
highest number of aggressive acts was in May. This coincided with the death of two of the hierarchial mice; also the number of fights was relatively high, indicating a possible change in the social structure of the population. However, this analysis of the effect of the death of two hierarchy mice is complicated by influxes of juveniles in May. Therefore, it is difficult to determine which social change caused the increase in aggressive acts and fights.

The pattern of aggressive acts (Fig. 13) follows very closely that described by Sadleir (1965) and Healey (1967). The peak in May coincides with the first influx of juveniles. The survival of juveniles is related to adult male aggressiveness as adult females do not take part in any of these behavioural interactions (Healey, 1967). The response of adult males matched against themselves as opposed to those matched against juveniles was entirely different (see section 4 of the results). In the first place when an adult male was in a submissive position and the dominant continued to attack, the submissive would emit a chit which completely inhibited further actions by the dominant. However, when an adult male attacked a fuvenile and the juvenile emitted a chit, the adult male was generally not inhibited and continued to attack or threaten the Juvenile. This would suggest that the adult males are more persistent, in their aggressiveness to fuveniles which would act to ensure their expulsion from the home ranges of such males. This agrees with the hypothesis of Sadleir (1965).

The relationship between home range or territory and aggressiveness has been demonstrated for prairie gophers (Cynomys ludovicianus) by King (1955), woodchucks (Marmota monax monax) by Bronson (1963), and for red grouse (Lagopus lagopus) by Watson (1964). In all these studies the animal concerned was easily observable in a natural situation. This study has also shown that a similar relationship possibly exists for P. m. austerus and it was possible to deduce such a correlation from field studies, despite the complexity of the environment and the species' nocturnal habits (Fig. 14). The biological reasons for the existence of such a relationship for this species are difficult to determine. One possible advantage would be the unhindered movement (i.e. few behavioural interactions with other adult males that may be encountered) over large areas, thus increasing the probability of encountering more females or better food supplies. Whether the home range areas of the top hierarchial mice are related to food quality or quantity or optimum habitat suitability is not known.

CHAPTER 5

FORESTRY IMPLICATIONS

The role of Peromyscus as a seed eater and its relation to reforestation programs by direct reseeding has been well documented (Kverno, 1954; Shaw, 1954; Spencer, 1954; Ahlgren, 1966). Shaw (1954) claims that a deermouse can consume as many as 200 Douglas fir (Pseudotsuga menziesii) seeds a day even when alternate food is available. Tevis (1956a) and Ahlgren (1966) have noted that the populations of Peromyscus increase after logging operations. This increase is associated not only with seeds as a food source, but also with the presence of large quantities of insects in the burned slash areas and areas where vegetation is recovering. The increased presence of seeds is a function of the destruction of the " A " soil horizon layer by fire or erosion and consequently the increased availability of seeds (Spencer, 1954). The use of rodenticides as a control method has proven to be unsatisfactory, since, as Spencer (1954) has pointed out, although 95% of resident populations can be controlled, as few as six deermice per acre can nullify a program in which treated Douglas fir seed is broadcast at the rate of one-fourth pound per acre. The failure of direct reseeding has forced the forest industries to rely heavily on the age old method of growing seedlings and planting them by hand, but the advance in labour and material costs in recent years is creating renewed interest in direct reseeding.

The two previous chapters have discussed the population dynamics, and home range in three different forest regimes of P. maniculatus. These previous chapters have shown that there are: (1) probably no differences in home range patterns or movement activities between any of the three populations (Fig. 3); (2) no differences in the probability of survival of either sex on the same area or between the three areas (Table 9); (3) no differences in recruitment (Figs. 7 and 8); and (4) there did exist, however,differences between grids 1 and 3, and 2 and 3 in the number of mice supported per hectare, grids 1 and 2 generally supporting more mice than grid 3. The aim of this chapter is to discuss previous results in relation to forestry practice. In addition, it was hoped to relate the knowledge gained to the practical aspects of a reforestation program. This could be done by recommending an optimum time for aerial reseeding to be conducted in relation in the annual cycle of P. m . austerus or an ideal time for various types of control methods to be implemented.

The numbers of deermice on all three grids seems to be related to the successional stages of the logged areas. Diebold (1938) has suggested how logging operations could possibly effect rodent populations. He stated that the removal of stands of coniferous trees tends to allow winter snowfall to accumulate on the ground and act as an added insulating layer that prevents the soil from freezing. In thick conifer stands, the tree crowns tend to intercept the snow which then evaporates or melt's and drips to the ground where it freezes. Frozen soil would prohibit Peromyscus maniculatus from foraging in the soil layer for insect larvae and seeds.

It would thus seem that more mice would be present on grid 2 but this was not the case. Tevis (1956b) noted that higher numbers of Peromyscus maniculatus were found on slash areas and he suggested that the advantage to mice of such areas is related to the density of cover and quantity and variety of food. In cutover areas Tevis (1956b) found that insects constituted 60% of the stomach contents as opposed to 44% of such contents in forested areas. He concluded that the many insects that thrive in association with the vegetation of recently logged areas may be responsible, in part, for increased numbers of mice. No such relationship was found in this study. Harling (personal communication, 1972) found few differences in the dietary habits between mice taken from slash or forest areas. In areas which have been logged and burned the colonization by annual plants occurs quickly. Fireweed (Epilobium augustifolium), bracken (Pteridium aquilinum) and various grasses invade the area and create a dense vegetational mat (Kellman, 1969). After six years this vegetational stage was very well developed on area 3. This may explain the presence of both Microtus and Peromyscus populations with their different dietary demands, Microtus being primarily herbivorous whereas Peromyscus is omnivorous. Lobue and Darnell (1959) have suggested that competition between these two species is unlikely, basing their argument on the fact that Microtus is diurnal and Peromyscus is nocturnal. Peromyscus apparently prefers less dense vegetation than Microtus. Other authors (Wirtz and Pearson, 1960; Grant, 1970, 1971) have demonstrated in both field and
laboratory studies that aggressive interspecific interactions between Microtus and Peromyscus occur. Wirtz and Pearson (1960) reported that M. pennsylvanicus was more aggressive than P. leucopus and Grant (1971) stated that M. pennsylvanicus excluded P. maniculatus from grassland habitats when the former species was high in number. In this study it was difficult to determine which factors were affecting the reciprical nature of the changes in numbers of M. oregoni and P. m. austerus populations on grid 3. It should be noted that M. oregoni frequently occupies forest habitats (Ingles, 1965) although the frequency of its capture on grid 1 and 2 was extremely low (Table 13). Therefore it would seem that the changes in populations of the two species could possibly be the result of some type of competitive interaction. The reason as to the declines of both the Microtus and Peromyscus population in the late summer of 1970 cannot be explained. Lobue and Darnell (1959) have also suggested that habitats such as grid 3 are not conducive to Peromyscus.

LOGGING EFFECTS

Logging does not adversely effect the mouse populations, in fact areas which have just been logged seem to be very attractive. Area 2 populations (Fig. 5) increased considerably after logging. Although logging causes drastic macro-environmental changes there do not seem to be significant changes in the micro-environment which Peromyscus inhabits. Therefore the factor which seems to have the most effect on the population numbers is the various vegetational stages that follow logging, especially the successional stages four years (Plate 4) after logging.

SLASH BURNING
After logging has been completed there is a large amount of slash which is left behind. Slash consists of interlocking tangles of branches, tops of conifers, splintered trunks, shattered sections of bark, great piles of culled logs and other non-marketable trees. During the summer this slash becomes dry and flammable, thus constituting a fire hazard which is potentially more dangerous than a virgin timber stand. Moreover by covering the ground slash makes the planting of seedlings difficult and also prevents seed from reaching the soil. For these reasons slash burning has become the standard operational procedure, following logging, in British Columbia.

Various authors have suggested that slash burning may be detrimental to small mammal populations (Krauch, 1936; Shirley 1937; Fowells and Schubert, 1951) either by destroying the animals on the area or by driving them out. In 1969, half of area 2 was burned in August to determine the effect such burning had on resident deermice. This area was trapped immediately before burning commenced and soon after burning had ceased. Although the ashes were still warm and various stumps were still burning, mice were caught on this area that evening. During the burn there was no indication of a mass exodus of mice from the area, although mice may have left the area when the fire started and re-invaded during the night from the surrounding area. Tevis (1956b) in a similar experiment found that 33 percent of the mice were recaptured on the grid compared with 77 percent
in this study, however the fire described by Tevis (1956b) seems to have been more intense, this being based on the amount of ash left after burning. In the months after burning there was no indication in the trapping records that the deermouse avoided the burnt areas as captures on it were just as frequent as those on the unburned area (Table 14) $x^{2}=2.24$ N.S.).

CONTROL

There have been attempts at protecting Douglas fir seeds used in aerial reseeding by either poisoning the area prior to their distribution or by impregnating the seeds with either sodium fluoroacetate (1080), thallous sulphate (Radwan, 1963) or endrin (Radwan, Crouch and Ellis, 1970). These preventive methods have not been very successful (Radwan, 1963). Poisoning techniques have failed because in the Douglas fir region the two most commonly used poisons 1080 and thallous sulphate are applied directly to Douglas fir seeds. Consequently, the poison is concentrated in the hulls which the rodents usually cut through but do not eat and the animal does not consume much of the poison (Radwan, 1963). The use of endrin although effective, can not be continued because of its high toxicity to all heterotrophic organisms (Radwan et al., 1970) Crouch and Radwan (1971) have reported that by using an antifertility chemical, mestranol, at a two percent concentration consumption of seeds was reduced and germination rates were not affected.

Table 14. Total number of captures on burned and unburned area of grid 2 .

	BURNED AREA	UNBURNED AREA	
Before Burn	$187(32 \%)$	395	(78%)
After Burn	$131(37 \%)$	224	(73%)
Number Trap Stations	40	80	

Aerial reseeding has usually been conducted in the fall. At this time most rodent populations are at their peak so that the success of such an operation is doubtful. Hooven (1958) has reported that two mice per 0.5 hectare can consume up to 300 Douglas fir seeds per night. Half a pound of seed is normally distributed over such an area and this amount could be easily consumed by deermice at this low density in 35 nights. Spencer (1954) has noted that the presence of deermice has been shown to almost nullify attempts to aerially reseed in various parts of Washington and Oregon. Casperson (personal communication, 1972) has estimated that the bare minimum requirement for feral deermice would be approximately 150 seeds per night. Such reseeding programs would thus be severely curtailed by the presence of deermice. Suggestions as to the control of deermice populations are very difficult to make since it is the most ubiqutous of all forest rodents. The problem is also complicated by the deermice's high mobility and exploratory nature. Even if areas could be cleared of deermice by either trapping or poisoning, reinvasion will occur almost immediately (Sadleir, 1965, Healey, 1967, Fordham, 1971). A promising method is being developed by J. Walters, the Director of the U.B.C. Research Forest. This method involves aerially restocking an area by dropping small seedlings which have their roots in a soil pack encased in a 10 to 12 centimetre long biodegradable plastic bullet. These seedlings upon hitting the ground become embedded in the soil and as the seedlings begin to grow the plastic case is ruptured. Deermice do not attack seedlings as readily as they do seeds Although voles may' do so.

A possible solution to successfully restocking logged forest areas by aerial reseeding lies in distributing Douglas fir seed in a form which is unpalatable to deermice. Attempts at trapping or poisoning populations have failed as they must result in 100% mortality as well as curtailing immigration. Possible solutions to this problem would be in the development of non-toxic repellents which would discourage consumption. Mestranol (Crouch and Radwan, 1971) seems to have this effect but its high cost prevents its use in a large scale situation. Other possible means of restocking would be to aerially distribute recently germinated Douglas fir seed or to bring Douglas fir seeds to within a few hours or days of germination in an optimum environment, as deermice will not attack germinated seeds (Radwan, et al., 1970) and then broadcast them aerially. This would reduce the period of risk to predation. In summary it would seem that use of non-toxic repellents on seeds, as well as distributing seeds in periods when the Peromyscus population is low would be a more efficient and practical method of reforesting large areas and is certainly worthy of further investigation.

SUMMARY AND CONCLUSIONS

1. Home ranges of deermice were estimated by trapping and smoked paper methods. Using the combined ranges as 100%, traps revealed an average of 44% of the range and smoked paper 82%. The smoked paper system showed the lower variability in estimating the range.
2. Males covered considerably larger areas in the breeding season than do either males or females at any other time. This increased movement was attributed to behavioural and physiological factors.
3. In both sexes the size of home ranges continued to increase as more captures were made. This inherent limitation, which has not been previously reported, prevented valid comparisons of mean home range areas in different habitats.
4. Peromyscus maniculatus does not appear to have a well defined home area. A central area is apparently used intensively but there are occasional sallies outwards for a greater distance so that the home range resembles the hub and spokes of a wheel.
5. Population changes during breeding seasons are a direct function of the number of the young produced and their survival. The population on grid 3 disappeared in August 1970.
6. The probability of survival, in the breeding season, had considerably less effect on population numbers than recruitment, even during periods of low survival.
7. In most breeding seasons, recruitment more than compensates for the effects of mortality. This appears to be a more important parameter in the breeding season than survival.
8. The viability of a population from one year to the next appears to depend mainly on the number of mice present at the end of breeding.
9. Factors such as weather, parasitism, predation and disease did not seem to affect population levels.
10. From the analysis of the population data, it was possible to deduce a generalized scheme of events which was consistent with the fluctuations of all three populations of deermice. The most important factors affecting the changes in numbers are recruitment and length of the non-breeding season.
11. Aggressive behaviour was studied in paired bouts in 1970 and is related to testes development.
12. The highest number of aggressive acts occurred in May 1970. The seasonal changes in aggression seen followed those reported by previous workers.
13. A relationship was noted between the level of aggressiveness and the home ran area occupied but the advantage of this relationship is not known.
14. Logging practice and slash burning did not affect the mouse populations adversely. The vegetational stages after logging seem to determine the population levels.
15. Present methods of chemical or physical control of Peromyscus as a seed predator have been largely unsuccessful.
16. Suggestions as to optimum seeding time or methods of by-passing the seed stage of reforestation are discussed.

LITERATURE CITED

Ahlgren, C. E. (1966) Small mamals and reforestation following prescribed burning. J. Forest 64:614-618.

Andrzejewski, R. (1962) Estimation of resident and transient part of small mammal population by the capture - recapture method. Symp. Theriologicum, Brno, 1960: 34-39.

Andrzejewski, R. and T. Wierzbowska. (1961) An attempt at assessing the duration of residence of small rodents in a defined forest area and the rate of interchange between individuals. Acta Theriol. 5: 153-172.

Andrzejewski, R. and H. Wroclawek. (1962) Settling by small rodents a terrain in which catching out had been performed. Acta. Theriol. 6:257-274.

Ashby, K. R. (1962) Dinamica di popolazioni dei Topi Campagnoli e suo Significato per la Rinnovazione dei Boschi. Atti. Ist. veneto Sci. 120:319-26.

Ashby, K. R. (1967) Studies on the ecology of field mice and voles (Apodemus sylvaticus, Clethrionomys glareolus and Microtus agrestis) in Houghall Wood, Durham. J. Zool. 152:389-513.

Beeman, E. A. (1947) The effect of male hormone on aggressive behaviour in mice. Physiol. Zool. 20:373-405.

Beer, J. R. and C. F. MacLeod. (1966) Seasonal population changes in the prairie deermouse. Am. Midl. Nat. 76:227-290.

Blair, W. F. (1940) A study of prairie deermouse populations in southern Michigan. Am. Midl. Nat. 24:273-305.

Blair, W. F. (1951) Population structure, social behaviour, and environmental relations in a natural population of the beach mouse (Peromyscus polionotus leucocephalus). Contr. Lab. vetebr. Biol. Univ. Mich. 48:1-47.

Bronson, F. H. (1963) Some correlates of interaction rate in natural populations of woodchucks. Ecology 44:637-643.

Brown, L. E. (1962) Home range in small mammal communities. Survey of Biological Progress IV, Academic Press Inc: 131-179.

Brown, L. E. (1966) Home range and movement of small mammals. Symp. zool. Soc. Lond. 18:111-142.

Brown, L. N. (1961) Excreted dyes used to determine movements of cottontail rabbits. J. Wildl. Mgmt. 25:199-202.

Brown, L. N. and C. H. Conaway. (1961) Dye excretion as a method for determination of small mamal home ranges. Am. Mid1. Nat. 66:128-137.

Burt, W. H. (1940) Territorial behaviour and populations of some small mammals in southern Michigan. Misc. Publ., Musc. Zool. Univ. Mich. 45:1-58.

Burt, W. H. (1943) Territoriality and home range concepts as applied to marmals. J. Mammal. 24:346-352.

Calhoun, J. B. (1945) Diel activity rhythms of the rodents, Microtus ochrogaster and Sigmodon hispidus hispidus. Ecology 26:251-273. Calhoun, J. B. (1952) The social aspects of population dynamics. J. Mammal. 33:139-159.

Chitty, D. (1937) A ringing technique for small mammals. J. Anim. Ecol. 6:36-53.

Chitty, D. (1952) Mortality among voles (Microtus agrestis) at Lake Vyrnwy, Montgomeryshire in 1936-9. Phil. Trans. Roy. Soc. London, Ser. B. 236:227-237.

Chitty, D. (1958) Self regulation of numbers through changes in viability. Cold Spring Harbour Symposia Quant. Biol. 22:277-280. Chitty, D. (1960) Population processes in the vole and their relevance to general theory. Can. J. Zool. 38:99-113.

Chitty, D. (1964) Animal numbers and behaviour, p 41-53 in J.R. Dymond (Ed.), Fish \& Wildlife: a memorial to W.J.K. Harkness. Longmans Canada Ltd., Don Mills.

Christian, J.J. (1950) The adrenal pitvitary system and population cycles in mammals. J. Mammal. 31:247-259.

Cochran, W.W., D.W. Warner, J.R. Tester, and V.B. Kuechle (1965) Automatic radio tracking system for monitoring animal movements. Bio-Science 15:98-100.

Crouch, G. L. and M. A. Radwan (1971) Evaluation of R-55 and mestranol to protect Douglas-fir seed from deermice. U.S.D.A. Forest Serv. Res. Pap. PNW-170, 6 pp.

Cowan, I. McT., and C. J. Guiget (1965) The mammals of British Columbia. Handbook No. 11, B.C. Prov. Mus. Dept. of Recreation and Conservation, Victoria, B.C.

Dalke, P. D. and P. R. Sime (1938) Home and seasonal ranges of the eastern cottontail in Connecticult. Trans. North. Am. Wild. Conf., Baltimore 3:659-669.

Darling, F. F. C. (1937) A Herd Of Red Deer. Oxford University Press, London.

Davenport, L. B. (1964) Structure of two Peromyscus polionotus populations in old-field ecosystems at the A.E.C. Savannah River Plant. J. Mammal. 45:95-113.

Davis, D. E. (1955) Social interaction of rats as indicated by trapping procedures. Behaviour. 8:335-343.

Davis, D. E. (1963) The hormonal control of aggressive behaviour. Proc. Inter. Ornith. Cong. 12:994-1003.

Davis, D. E. (1964) The physiological analysis of aggressive behaviour. Chapter in Social Behaviour And Organization Among Vertebrates. Univ. of Chicago Press, Chicago.

Davis, D. E. and J. T. Emlen (1956) Differential trappability of rats according to size and sex. J. Wildl. Mgmt. 20:326-327.

Diebold, C. H. 1938. Interrelationships between water, tables, soil characteristics, silvics, reforestation and flood control in southcentral New York. Ecology 19:463-479.

Eisenberg, J. F. (1962) Studies on the behaviour of Peromyscus maniculatus gambelii and Peromyscus californicus parasiticus. Behaviour 19:177-207. Fordham, R. A. (1971) Field populations of deermice with supplemental food. Ecology 52:138-146.

Fowells, H. A. and G. H. Schubert (1951) Recent direct seeding trials in the pine region of California. Calif. Forest and Range Expt. Stn. Res. Note. 78.

Fuller, W. A. (1989) Changes in numbers of three species of small rodents near Great Slave Lake, N.W.T., Canada, 1964-1967 and their significance for general population theory. Ann. Zool. Fennici 6:113-144.

Godfrey, G. K. (1954) Tracing field voles (Microtus agrestis) with a Geiger - Muller counter. Ecology 35:5-10.

Grant, P. R. (1970) Experimental studies of competitive interaction in a two-species system. II The behaviour of Microtus, Peromyscus and Clethrionomys species. Ann. Behav. 18:411-426.

Grant, P. R. (1971) Experimental studies of competitive in a two species system. III Microtus and Peromyscus species in enclosures. J. Anim. Ecol. 40:323-350.

Hansson, L. (1969) Home range, population structure and density estimates at removal catches with edge effect. Acta theriol. 14:153-160.

Harris, A. S. (1968) Small mammals and natural reforestation in southeast Alaska. U.S.D.A. Forest Serv. Res. Pap. PNW-75, 7 pp.

Haugen, A. 0. (1942) Home range of the cottontail rabbit. Ecology 23:354-367.

Hayne, D. W. (1949) Calculation of size of home range. J. Mammal. 30:1-18.

Hayne, D. W. (1950) Apparent home range of Microtus in relation to distance between traps. J. Mammal. 31:26-39.

Healey, M. C. (1967) Aggression and self-regulation of population size in deermice. Ecology 48:377-392.

Hooven, E. (1958) Deermouse and reforestation in the Tillamook Burn. Oregon For. Lands Res. Cent., Corvallis Res. Note 37: 31 pp.

Howard, W. E. (1949) Dispersal amount of inbreeding and longevity In a local population of prairie deermice on the George Reserve, southern Michigan. Contr. Lab. vetebr. Biol., Univ. Mich. 43:1-50. Hunter, D. M., R.M.F.S. Sadleir, and J. M. Webster (1972) Studies on the ecology of cuterebrid parasitism in deermice. Can. J. Zool. 50:25-29.

Ingles, L. G. (1965) Mammals of the Pacific states. Standord Univ. Press.

Jewell, P. A. (1966) The concept of home range in mamals. Symp. Zool. Soc. Lond. 18:85-109.

Jolly, G. M. (1965) Explicit estimates from capture-recapture data with both death and immigration - stochastic model. Biometrika 52:225-247.

Justice, K. E. (1961) A new method for measuring home ranges of small mammals. J. Mammal. 42:462-470.

Kaye, S. V. (1960) Gold 198 wires used to study movements of small mammals. Science 131(3403):824.

Kaye, S. V. (1961) Movements of harvest mice tagged with gold-198. J. Mammal 42:323-337.

Kellman, M. C. (1969) Plant species interrelationships in a secondary succession in coastal British Columbia. Syesis 2:201-212.

Kikkawa, J. (1964) Movement, Activity and distribution of the small rodents Clethrionomys glareolus and Apodemus sylvaticus in woodland. J. Anim. Ecol. 33:259-299.

Kinde1, F. (1960) Use of dyes to mark ruminant feces. J. Wildl. Mgmt. 24:429.

King, J. A. (1955) Social behaviour, social organization and population dynamics in a black-tailed prairie dog town in the Black Hills of South Dakota. Contrib. Lab. Vert. Biol. Univ. Mich. 67:1-65. Krajina, V. J. (1970) Ecology of forest trees in British Columbia. Chapter in Ecology of western North America ed. by V. J. Krajina and R. C. Brooke. Published by Dept. of Botany, Univ. of British Columbia.

Krauch, H. (1936) Some factors influencing Douglas fir reproduction in the southwest. J. Forest 34:601-608.

Krebs, C. J. (1966) Demographic changes in fluctuating populations of Microtus californicus. Ecol. Monogr. 36:239-273.

Kverno, N. B. (1954) Development of better seed protectants. J. Forest 52:826-827.

Lack, D. (1954) The natural regulation of animal numbers.
Oxford 343 pp .
Lagerspetz, K. M. J. (1969) Aggression and aggressiveness in Agressive Behaviour (Ed. Garattini and Sigg). Excerpta Medica Foundation, Amsterdam.

Leslie, P. H., D. Chitty, and H. Chitty. (1953) The estimation of population parameters from data obtained by means of capture recapture method. III. An example of the practical applications of the method. Biometrika 40:137-169.

Levy, I. V. and I. A. King. (1953) The effects of testosterone propionate on fighting behaviour in young male $\mathrm{C}_{57} \mathrm{BL} / 10$ mice. Anat. Rec. 117:562-579.

Linduska, J. P. (1942) Winter rodent populations in field-shocked corn. J. Wildl. Mgmt. 6:353-363.

Lobue, J. and R. M. Darnell (1959) Effect of habitat disturbance on a sma11 mammal population. J. Mammal. 40:425-437.

Manly, B. F. J. (1970) A simulation study of animal population estimation using the capture - recapture method. J. appl. Ecol. 7:13-39.

Miller, R. S. (1958) A study of a wood mouse population in Wytham Woods, Berkshire. J. Mammal. 39:477-493.

Murie, A. (1936) Following fox trails. Univ. of Michigan Museum Zoo1. Misc. Pub1. 32:1-45.

McCabe, T. T. and B. D. Blanchard (1950) Three species of Peromyscus Rood Associates, Santa Barbara, Calif.

McCarley, H. (1958) Ecology behaviour and population dynamics of Peromyscus nuttalli in eastern Texas. Tex. J. Sci. 10:147-171. New, J. G. (1958) Dyes for studying the movements of small mammals. J. Mammal. 39:416-429.

Nowack, Z. (1971) The effect of removing a dominant on the social organization of laboratory mice populations. Acta Theriol. 16:61-71.

Orr-Ewing, A. L. (1950) Life history of the deermouse. Forest. Chron. 26:115-126.

Osgood, W. H. (1909) Revision of the mice of the American genus Peromyscus. North American Fauna 28:1-265.

Pearson, 0. P. (1960) Habits of Microtus californicus revealed by automatic photographic recorders. Ecol. Monogr. 30:231-249.

Petticrew, B. G. and R.M.F.S. Sadleir (1970) The use of index trap lines to estimate population numbers of deermice (Peromyscus maniculatus) in a forest environment in British Columbia. Can. J. Zool. 48:385-389.

Pitelka, F. A., D. Q. Tomich, and G. W. Triechel (1955) Ecological relations of jaegers and owls as lemming predators near Barrow, Alaska. Ecol. Mono. 25:85-117.

Price, E. O. (1966) Influence of light on reproduction in Peromyscus maniculatus gracilis. J. Mammal. 47:343-344.

Radwan, M. A. (1963) Protecting forest trees and their seed from wild mammals. U.S.D.A. Forest Serv. Res. Pap. PNW-6, 28 pp.

Radwan, M. A., G. L. Crouch, and W. D. Ellis (1970) Impregnating and coating with endrin to protect Douglas-fir seed from rodents. U.S.D.A. Forest Serv. Res. Pap. PNW-94, 17 pp.

Sadleir, R.M.F.S. (1965) The relationship agonistic behaviour and population changes in the deermouse, Peromyscus maniculatus. J. Anim. Ecol. 34:331-352.

Sadleir, R.M.F.S. (1970a) The establishment of a dominance rank order in male Peromyscus maniculatus and its stability with time. Anim. Behav. 18:55-59.

Sadleir, R.M.F.S. (1970b) Population dynamics and breeding of the deermouse (Peromyscus maniculatus) on Burnaby Mountain, British Columbia. Syesis 3:67-74.

Sadleir, R.M.F.S., K. D. Casperson and J. Harling. (1973) Intake and requirments of energy and protein in wild deermice (Peromyscus maniculatus) relative to breeding duration. Symp. Study Fertil. 18: (in press).

Sanderson, G. C. (1966) The study of animal movements - a review. J. Wildl. Mgmt. 30:215-235.

Scott, T. G. (1943) Some food coactions of the northern plains red fox. Ecol. Monogr. 13:427-479.

Scott, J. P. and Fredericson, E. (1951) The causes of fighting in mice and rats. Physiol. Zoo1. 24:273-303.

Selye, H. (1946) The general adaptation syndrome and the diseases of adptation. J. C1in. Endocrin. 6:117-230.

Seton, E. H. (1910) Life Histories of Northern Animals, Constable, London.

Shaw, E. W. (1954) Direct reseeding in the Pacific Northwest. J. Forest. 52:827-828.

Shaw, M. W. and C. Milner (1967) The use of insulating corers for Longworth traps. J. Zool. 51:546-547.

Sheppe, W. (1961) Systematic and ecological relations of Peromyscus oreas and P. maniculatus. Proc. Am. phil. Soc. 105:421-446.

Sheppe, W. (1963) Population structure of the deermouse, Peromyscus, in the Pacific Northwest. J. Mammal. 44:180-185.

Sheppe, W. (1965) Characteristics and uses of Peromyscus tracking data. Ecology 46:630-634.

Sheppe, W. (1966) The effects of live trapping on the movement of Peromyscus. Am. Midl. Nat. 78:471-480.

Shirley, L. H. (1937) Direct seeding in the Lake States. Jour. For . 35:379-387.
Sigg, E. B. (1969) Relationship of aggressive behaviour to adrenal and gonadal function in male mice. Chapter in Aggressive Behaviour (ed. Garattini and Sigg). Excerpta Medica Foundation, Amsterdam.

Snyder, D. P. (1956) Survival rates, longevity and population fluctuations in the white-footed mouse, Peromyscus leucopus, in southeastern Michigan. Misc. Pub1. Mus. Zool. Univ. Mich. 95:1-33.

Spencer, D. A. (1954) Rodents and direct reseeding. J. Forest. 52:824-826.
Stickel, L. F. (1948) The trap line as a measure of small mammal populations. J. Wildl. Mgmt. 12:153-161.

Stickel, L. F. (1954) A comparison of certain methods of measuring ranges of small mammals. J. Mammal. 35:1-15.

Stickel, L. F. and O. Warbach. (1960) Small mammal populations of a Maryland woodlot, 1949-1954. Ecology 41:269-286.

Storm, G. L. (1965) Movements and activities of foxes as determined by radio tracking. J. Wildl. Mgmt. 29:1-13.

Tamarin, R. H. and S. R. Malecha. (1971) The population biology of Hawaiian rodents: Denographic patterns. Ecology 52:383-394.

Tanton, M. T. (1965) Problems of live trapping and population estimation for the wood mouse, Apodemus sylivaticus (L.). J. Anim. Ecol. 34:1-22. Tanton, M. T. (1969) The estimation and biology of populations of the bank vole (Clethrionomys glareolus (Schr.)) and wood mouse (Apodemus sylvaticus (L.)). J. Anim. Ecol. 38:511-529.

Terman, C. R. (1966) Population fluctuations of Peromyscus maniculatus and other small mammals as revealed by the North American Census of Small Mammals. Am. Mid1. Nat. 76(2):419-426.

Terman, C. R. (1968) Population dynamics. Chapter in Biology of Peromyscus (Rodentia). Spec. Publ. 2 Am. Soc. Mammalogists (Ed. J.A. King) Tevis, L. (1956a) Responses of small mammal populations to logging of Douglas Fir. J. Mammal. 37:189-196.

Tevis, L. (1956b) Effects of slash burn on forest mice. J. Wildl. Mgmt. 20:405-409.

Van Vleck, D. B. (1969) Standardization of Microtus home range calculation. J. Manmal. 50:68-80.

Voisey, P. W. and W. Kalbfleisch. (1962) A mechanical treadle for the study of small animal traffic in the field or laboratory. J. Mammal. 43:281.

Watson, A. (1964) Aggression and population regulation in red grouse. Nature, Lond. 202:506-507.

Watts, C. H. S. (1969) The regulation of wood mouse (Apodemus sylvaticus) numbers in Wytham Woods, Berkshire. J. Anim. Ecol. 38:285-304.

Whitaker, W. L. (1940) Some effects of artificial illumination on reproduction in the white-footed mouse, Peromyscus leucopus noveboracensis. J. exp. Zool. 83:33-60.

Whitaker, J. O. (1968) Parasites. Chapter in Biology of Peromyscus (Rodentia). Spec. Publ. 2 Am. Soc. Mammalogists. (Ed. J.A. King). Wirtz, W. O. and Pearson, P. G. (1960) A preliminary analysis of habitat orientation in Microtus and Peromyscus. Amer. Midl. Nat. 63:131-142.

Youngman, P. M. (1956) A population of the striped field mouse,
Apodemus agarius coreae in central Korea. J. Mammal. 37:1-10.

The use of index trap lines to estimate population numbers of deermice (Peromyscus maniculatus) in a forest environment in British Columbia

B. G. Petticrew and R. M. F. S. Sadleir
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia

Received August 23, 1969

Abstract

Petticrew, B. G., and R. M. F. S. Sadleir. 1970. The use of index trap lines to estimate population numbers of deermice (Peromyscus maniculatus) in a forest environment in British Columbia. Can. J. Zool. 48: 385-389. Monthly live trapping of three 1 -hectare grids in differing forest habitats was carried out over an 8 -month period. Immediately after 2 nights of trapping on each grid a central index line was trapped for a further 2 nights. The total capture numbers, numbers of males, and numbers of females of deermice (Peromyscus maniculatus) on the index line correlated significantly with the same parameters on the grid. In addition, survival rates and body weights were almost identical and similar representation of other small mammal species was determined by both arrangements of traps. It is suggested that the index line may be a more efficient method of sampling small mammal populations.

Introduction

General statements regarding seasonal changes in population numbers of small mammals in different types of habitat require sampling of large areas. Trapping exceedingly large grids is time consuming, but comparable data can often be obtained from either a number of small grids or combinations of grids and index lines. However, the use of lines must be related experimentally to the use of grids as indicators of numbers of animals on a specified area. Such an approach has been described by Brant (1962) using a live trapping and release technique. He found a close relationship between density estimates of three species of small mammal on a single 28acre grid and density estimates based on two trap lines running through the grid. Hansson (1967) described a relationship between the densities of four small mammal species on index lines and on a small grid in a Swedish forest. Linn (1968) has discussed the theory of index trapping of small mammals. In this paper we report an attempt to relate population numbers as determined by live trapped index lines to densities on live trapped grids in various forest environments.

Methods

Three 1-hectare grids ($100 \mathrm{~m} \times 100 \mathrm{~m}$) with 121 stations spaced 10 m apart were trapped at 4 -week or longer intervals. One Longworth live trap was set inside a 2 -meter radius of each station. Traps were baited with whole oats, and Terylene batting was supplied as bedding. The nest boxes of the traps were covered with expanded polystyrene as described by Shaw and Milner (1967). Traps were set on day 1, and checked on the mornings of
days 2 and 3. On day 3 the grid traps were taken up and the index line set. This consisted of 11 stations 10 m apart (the same stations which formed the central line of the grid) at which four Longworth traps were set inside a $2-\mathrm{m}$ radius of each station. The index line traps were checked on days 4 and 5 and the traps taken up on day 5 .

Grid 1 was set in 98 -year-old Douglas fir (Pseudotsuga menziesil), hemlock (Tsuga heterophylla), and red cedar (Thuja plicata) forest. The ground cover consisted mainly of salal (Gaultheria shallon), vine maple (Acer circinatum), salmonberry (Rubus spectabilis), and assorted ferns (Polystichum, Struthiopteris). Grid 2 was set on an area of originally similar forest which was logged in August, 1968. During the study period the main cover was dead unburned slash through which bracken (Pteridium aquilinum) and sword fern (Polystichum munitum) were emerging. A feature of this area was the considerable proportion of open bare soil caused by the removal of trees during logging. Grid 3 was set on an area which was partially blown down in 1962, logged in 1964, and burned and planted with 2 -year-old Douglas fir seedlings in 1965. During the study period this grid was characterized by a summer flush of growth of annuals such as fireweed (Epilobium angustifolium) and bracken. There was considerable growth of various grasses (Luzula spp.) and alder (Alnus rubra), elder (Sambucus racemosa), and vine maple with willow (Sallx) lining a small stream passing through the grid. All grids were located in the University of British Columbia Research Forest at Haney, B.C., and the main species investigated, the deermouse (Peromyscus maniculatus), was handled in the field by methods previously described (Sadleir 1965).

Results

The total numbers (and numbers by sex) captured on the grids were compared with those captured on the index lines. Table I presents the results of statistical analysis of the data while Fig. 1 shows the regression lines relating captures on the grids and index lines. The curved lines on Fig. 1 delineate the 5% confidence
interval within which an average of many observed values of Y, each with the same value of X, could be expected to fall (second method, Campbell 1967). The 5% confidence limits inside which a single value of Y could be expected to fall were about ± 13 of the mean values for the total numbers, ± 7 for males, and ± 7 for females.
Survival rates and mean body weights of line sampled animals were compared with those of the grid samples (Table II). The crude minimum survival rate (p) was calculated as the proportion of animals known to be alive at time $x+1$ which were released at time x. These rates were
not standardized to a fixed time interval as the comparisons necessary were always over the same time period even though these were of differing lengths. Statistical comparison of these proportions is only possible by the use of the chi-squared test but in most cases "expected" values were found to be less than five, thus rendering the test invalid (Campbell 1967). Chisquares computed were not significant nor was the chi-square value ($=0.203$) significant when the summed recaptures and non-recaptures were compared for all the index and grid samples. Comparisons of mean body weights (Table II) were made by the use of "Students" t-test.

TABLE I
Correlation, regression, and analysis of variance comparing captures on grid and index

Value				
D.F.	Total numbers	Males	Females	
Correlation coefficient, R	16	$0.810^{* * *}$	$0.823^{* * *}$	$0.658^{* *}$
Regression, A \pm S.E.		5.67 ± 3.40	3.66 ± 1.87	4.27 ± 1.72
Analysis of variance		1.30 ± 0.24	1.25 ± 0.22	0.94 ± 0.28
Regression M.S. (a)			793.035	364.028
Curvature M.S. (b)	1	3.935	0.011	117.764
Remainder M.S. (c)	15	27.535	11.583	10.085
$F_{1}=b / c$		0.014	0.001	0.295
$F_{2}=a / c$				

** 1% significant, *** 0.1% significant.

Fig. 1. Scatter diagrams, regression lines, and confidence intervals comparing captures on index lines and hectare grids.
table II
Comparison of survival rates and body weights (by sex) as determined from grid and index trapping

Grid	Monday of week of trapping and release	Survival rates, p					Body weights									
		Weeks at large	Grid		Index		Males					Females				
							Grid		Index			Grid		Index		
			released	p	released	P	\bar{x}	S.D.	\bar{x}	S.D.	t	\bar{x}	S.D.	\bar{x}	S.D.	t
1	2 Dec. 68	12	33	0.24	$2!$	0.04	15.82	2.84	15.60	3.32	0.17	15.25	4.06	13.50	4.77	1.10
1	25 Feb .69	8	19	0.53	5	0.60	16.00	1.77	15.66	1.22	0.30	14.60	1.90	16.50	2.12	1.48
1	21 Apr. 69	4	21 19	0.58	12	0.58	16.66	3.16	17.62	2.57	0.72	17.11	4.96	18.00	0.81	0.34
1	19 May 69	4	19	0.55	15	0.60	16.23	2.78	15.44	3.14	0.64	18.50	1.87	17.16	3.21	0.89
1	16 June 69	4	23	0.65	13	0.54	15.14	2.75	16.00	2.52	0.69	16.62	2.35	15.50	3.02	0.85
2	19 Nov. 68	$\overline{16}$	38	0.38	15	0.33	16.08	2.50 4.23	15.83 14.14	3.93	0.73	15.50	3.00 4.67	15.50 14.00	3.74 4.24	0.00 0.72
2	10 Mar. 69	4	22	0.91	13	0.92	18.73	1.06	19.00	1.20	0.53	18.43	1.57	17.80	1.48 1.48	0.70
2	7 Apr. 69	4	28 28	0.64	16	0.69	20.76	1.89	20.66	2.22	0.10	21.22	1.00	21.20	1.30	0.03
2	6 May 69 2 June 69	4	28 35	0.57 0.40	20 20	0.45 0.35	15.40 14.88	5.07 3.84	15.71 15	6.26 4.33	0.16	17.11 17.50	4.26	17.33	4.28	0.10
2	14 July 69	6	35	0.40	20	0.35	14.88 14.50	3.84 3.74	15.20 15.00	4.33 4.89	0.25	17.50 14.90	4.25 3.60	17.66 17.83	6.03 3.60	0.06 1.92
3	19 Noy. 68	14	19	0.25	9	0.33	14.85	1.39	14.83	1.62	0.02	15.25	2.70	14.20	3.12	0.66
3	25 Feb. 69	8	6	0.66	3	0.66	16.33	-	20.00	-	-*	13.75	2.70	14.50	.	-*
3	21 Apr. 69	4	13	0.54	8	0.38	16.60	3.28	17.33	2.96	0.44	18.75		18.00		
3	19 May 69	4	13	0.80	12	0.75	16.71	1.73	17.50	1.76	0.83	17.33	2.75	17.50	2.17	0.01
3	16 June 69	4	20	0.45	10	0.50	16.80	2.86	18.00	3.00	0.83	17.90	3.07	17.50	3.70	0.20
3	14 July 69	-	-		-	--	17.38	2.50	18.00	2.83	0.58	18.67	4.02	19.60	2.06	0.64

TABLE III
Numbers of captures

	Grid	Index
Peromyscus maniculatus	414	233
Microtus oregoni	111	50
Sorex vagrans	64	6
Eutamius amoenus	27	19
Tamiasciurus douglasi	1	3
Glaucomys sabrinus	1	4
Neurotrichus gibbsi	2	1
Clethrionomys gapperi	1	0
Trap "nights"*	2178	792

*See text.

A number of other species of small mammal were captured during this study and their distribution on the two types of trapping is shown in Table III. In this table a trap "night" refers actually to one trap set for 2 nights since an animal captured on 2 adjacent nights is only considered a single capture. Of the four most abundant species only the shrew, Sorex vagrans, has a strongly biased capture, as it dies in the grid traps, and thus cannot be trapped later. Except for shrews, the index method gave much the same species representation as the grid.

Discussion

If samples of animals captured by a line trapping method are to be related to samples captured on a grid of traps, it must first be demonstrated that both trap placements are sampling the same trappable population. This can be assumed if the population parameters determined from index line samples are in close agreement with those found on the grid as a whole. Characteristics such as numbers captured, sex ratios, weights, survival, and species composition can be easily compared but the parameter of density cannot be calculated by an index line because the sample is linear with unknown spatial properties.

The numbers of deermice captured over 2 nights on the index line correlated well with the numbers captured during 2 nights on the grid. Thus the index line could be used to determine fluctuations in the abundance of deermice in these forest environments. Moreover, the regression line allows estimation of the average density of animals on a hypothetical hectare grid from a sample taken on an isolated index line although
the variation of such an estimate is large (Fig. 1). Stickel (1948) considered that single lines of traps could not be used as a reliable means of measuring the relative abundance of animals because she found that the numbers of animals caught in two types of habitat differed between grid and index. Figure 1 includes data from three different habitats, none of which shows any consistent differences in proportion.

Significant correlations and regressions were noted when sexes were treated separately. The differences between males and females is understandable as many studies of small mammals (excellently reviewed by Brown 1962, 1966) have shown home ranges of males are larger than those of females and this is also true for P. maniculatus (Allred and Beck 1963). However, the correlations and regressions allow for estimates of the numbers of males and females independently on the hypothetical hectare around a standard index line.

Despite the necessarily low numbers released from the index trapping, the survival rates determined from both samples are very similar even over differing periods of time (Table II). No explanation can be offered for the apparently different survivals on grid 1 from December to February. Considerable seasonal changes in mean body weights were seen on all areas and the weights differed between grids and sexes, but both the grid and index samples show similar mean weights. The t-test indicated no significant differences.

It would thus appear that the $100-\mathrm{m}$ index trapping system can give an excellent indication of the population parameters over 1 hectare. This being so, index lines could be used to sample deermice populations over a considerably greater area for the same expenditure of time and energy that is involved in setting up and maintaining a single grid. It would obviously be necessary to test, occasionally, the representativeness of the index line by temporarily setting up a grid around it, especially if this technique of sampling is attempted for other species of small mammals, or in environments other than the coastal forest of British Columbia. However, the success of this investigation would suggest that the use of index lines as indices of population changes is a technique worthy of reinvestigation by workers studying small mammals.

Acknowledgments

We thank K. Casperson and J. Harling for their very considerable assistance in the grid trapping. Mr. J. Walters (Director, U.B.C. Research Forest) and his staff gave us full cooperation and assistance, and Dr. N. Gilbert advised us on statistical procedures. This study was financed by grants from the National Research Council of Canada.

Allred, D. M., and D. E. Beck. 1963. Range of movement and dispersal of some rodents at the Nevada Atomic Test Site. J. Mammalogy, 44: 190-200.
Brant, D. H. 1962. Measures of the movements and population densities of small rodents. Univ. Calif. Publ. Zool. 62: 105-184.

Brown, L. E. 1962. Home range in small mammal communities. In Survey of biological progress. Vol. IV. Edited by Bentley Glass. Academic Press, New York and London.
1966. Home range and movement of small mammals. Symp. Zool. Soc. London, 18: 111-142.
Camprell, R. C. 1967. Statistics for biologists. Cambridge University Press, London.
Hansson, L. 1967. Index line catches as a basis of population studies on small mammals. Oikos, 18: 261-267.
Linn, I. 1968. A theory of small mammal index trapping. Proc. 16th Int. Congr. Zool. I: 268.
Sadleir, R. M. F. S. 1965. The relationship between agonistic behaviour and population changes in the deermouse, Peromyscus maniculatus (Wagner). J. Anim. Ecol. 34: 331-352.
Shaw, M. W., and C. Milner. 1967. The use of insulating covers for Longworth traps. J. Zool. 51: 546-547.
Stickel, L. F. 1948. The trap line as a measure of small mammal populations. J. Wildlife Manage. 12: 153-161.

APPENDIX 2

Mean N and Variance

$$
\begin{aligned}
\overline{\mathrm{N}} & =\sum_{i=n_{1}}^{n_{2}} a_{i} N_{i} \\
\operatorname{Var} \overline{\mathrm{~N}} & =\sum_{i=n_{1}}^{n_{2}} a_{i}^{2} \operatorname{Var} N_{i}+2 \sum_{i=n_{1}}^{n_{2}-1} \sum_{t=i+1}^{n_{2}} \quad a_{i} a_{t} \operatorname{Cov}\left(N_{i}, N_{t}\right)
\end{aligned}
$$

a_{i} is a weighting factor given to the 1 th sample period in computing \bar{N} where the sampling periods of the two N runs do not coincide. Its calculation is shown in the following theoretical example. Assume comparison of $\overline{\mathrm{N}}$'s is required from week 62 to week 70 from area A sampled on weeks, $58,63,64,68$ and 75 and from area B sampled as week 58,62 , 66, 70 and 75. Estimates of N must be made for those weeks in which N determinations were not coincident.

$$
\begin{aligned}
\overline{\mathrm{N}}{ }_{62-70}^{\mathrm{A}}= & 1 / 6\left[\left(4 / 5 \mathrm{~N}_{63}^{\mathrm{A}}+1 / 5 \mathrm{~N}_{58}^{\mathrm{A}}\right)+\mathrm{N}_{63}^{\mathrm{A}}+\mathrm{N}_{64}^{\mathrm{A}}+\left(2 / 4 \mathrm{~N}_{68}^{\mathrm{A}}+2 / 4 \mathrm{~N}_{64}^{\mathrm{A}}\right)+\mathrm{N}_{68}\right. \\
& \left.+\left(2 / 7 \mathrm{~N}_{75}^{\mathrm{A}}+5 / 7 \mathrm{~N}_{68}^{\mathrm{A}}\right)\right] \\
= & 1 / 6\left[1 / 5 \mathrm{~N}_{58}^{\mathrm{A}}+9 / 5 \mathrm{~N}_{63}^{\mathrm{A}}+6 / 4 \mathrm{~N}_{64}^{\mathrm{A}}+62 / 28 \mathrm{~N}_{68}^{\mathrm{A}}+2 / 7 \mathrm{~N}_{75}^{\mathrm{A}}\right] \\
= & 1 / 30 \mathrm{~N}_{58}^{\mathrm{A}}+3 / 10 \mathrm{~N}_{63}^{\mathrm{A}}+1 / 4 \mathrm{~N}_{64}^{\mathrm{A}}+31 / 84 \mathrm{~N}_{68}^{\mathrm{A}}+1 / 21 \mathrm{~N}_{75}^{\mathrm{A}}
\end{aligned}
$$

The fraction before each N value is its separate a_{i} (N.B. $\sum a_{i}=1$) Similar calculations are then carried out for the B area with other N estimates inserted and $\overline{\mathrm{N}}$ calculated.

APPENDIX 3
table of cumulative totals (the ali.j)

THE SUMS A(I.J)

THE	SUMS			1	1	5	2	$\underline{3}$	2	1	1	C	1	2	1	3	3	1	2	0	1	0	0	1	1	0	0	0	0	0
SUMS NRIRAL																														
		0	5	7	8	7	1	I	3	7	5	7	10	8	10	12	9	6	5	3	4	3	3	4	4	5	3	6	5	2

000000000000000000000000000 N
00000000000000000000000000 olog 0000000000000000000000000000 000040000000000400400000 OOO 0000000000000000000000 On 0000 000000000000000000000 O 000000 000000000000000000000 OOOO 0000 doodoo00000000000000m0000000 $900000000000000000-100000000$ 000000000000000000 moO 000000 $0000000000000000 N m 0000000000$ $000000000000000-100000000000$ $9000000000-00 N 0 n 000000000000$ 0000000000000000000000000000 00000000000000000000000000 $00000000000-000000000000000$ 0000000000rooodoodoogoodood 00000000000000000000000000 $00-00000 \mathrm{HOOO} 00000000000000$ 4oudoudovavodooduoquoguoyooc 0000-00 No0000000000000000000 OOOQmumoodoodoodoodoodoogood $0000 N=0000000000000000000000$ ooomooooduoduowoodoodoudood
 000000000004000000000000000 0nocooorocoo0000000000000000 $\cdots 000000000000000000000000000$ 0000000000000000000000000 9

populaticn parapeters estimated frcy pultiple recapture data - jollys stochastic model
PEROMYSOUS AREA 1 CONTROL HANEY
PALES
HEEK
LAST CAPTURE

$00000000090000000090000000 N+$ 00000000000000000000000000 mog $0000000000000000000000000+00$ 900000000000uOOOOUGOUONmNOOC 00000000000000000000000 No000
 $0000000000000-00000001000000$
 000000000000000000 O 00000000 0000000000000000000000000 $0000000000000000-10000000000$ 0000000000000000000000000000 9000000000000000000000000000 $00000000000000 \mathrm{N0000000000000}$ $00000000000-0 m 00000000000000$ $0000000000-10000000000000000$ 9000000000010000000000000000 doodoodoodro0000000000000000 $0000-0000 N 000000000000000000$ duoduvovoduoyuoyoovooquououd $000000 \mathrm{mso0} 000004000000000000$ 0000000000000000000000000000
0000Nmo000000000000000000000 duodmoouoyoocoodoudoodooduve duodoovwo 00000000400000000 gondoovoodeodoodoodoodoodood $0-00000004000000000000000000$ N000000000000000000000000000 0000000000000000000000000

-… HARXED 03
TOTAL UNMARKED

pofulation parameters estimated from multiple recapture data - jollys stochastic model
PERCMYSCUS AREA 1 CONTROL HANEY
females

60
64
68
73
79
87
91
95
99

CAP
PEROMYSCUS AREA 2 EXPERIMENTAL HANEY
MALES
LAST CAPTURE
54
HEER CF CAPTURE

MALES

STANCARCIIED 28-OAY RATES + 4 SE LIPITS
PERCPYSCUS AREA 2 EXPERIMENTAL HANEY
MALES
WEEK

$\begin{aligned} & 54 \\ & 58 \\ & 66 \end{aligned}$	$\begin{aligned} & -0.405 \\ & -0.203 \\ & -0.785 \end{aligned}$	$\begin{array}{ll} 1-2.038 & \text { TO } \\ 1-1.019 & \text { TO } \\ 1-2.245 & 10 \end{array}$	$\begin{aligned} & 1.2281 \\ & 0.6141 \\ & 0.6761 \end{aligned}$	$\begin{aligned} & 0.6671-.422 \\ & 0.81610 .150 \\ & 0.4561-.210 . \end{aligned}$	$\begin{array}{ll} \text { TO } & 1.7551 \\ \text { TO } & 1.4831 \\ \text { TO } & 1.1231 \end{array}$	$\begin{aligned} & 0.0 \\ & 2.000 \\ & 1.259 \\ & \hline \end{aligned}$	$\begin{array}{lll} 1 & 0.0 & T \\ 1 & 0.503 \\ 1 & 0.782 & T \end{array}$	$\begin{aligned} & T O \\ & 10 \\ & T 0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 3.4971 \\ & 1.2351 \end{aligned}$
71	-0.192	1-0.962 T0	0.5781	0.82510 .190	T0 1.461)	3.423	(-0.093 T	TO	6.9401
77	-0.146	(-0.562 T0	0.2701	0.86410 .505	TO 1.223)	1.056	10.922	T0	1.1901
84	-0.333	1-1.071 T0	0.4051	0.71710 .188	T0_1.2461	1.440	(0. 165	T0	2.1151
89	-0.148	(-0.629 TO	0.3331	C. 86210.448	TO 1.277)	1.140	10.593 T	T0	1.6881
93	-0.223	1-0.740 10	0.2931	0.80010 .387	T0 1.2131	1.358	(0.992	TO	1.7251
57	-C. 251	1-0.755 10	0.2531	0.77810 .386	T0 1.1701	2.357	(1.325	T0	3.3901
101	-0.559	(-1.288 TO	0.1701	C. 57210.155	T0 0.9891	1.500	11.0331	TO	1.9671
105	-0.535	(-1.175 T0	0.1041	0.58510 .211	T0 0.9601	1. 541	(C. 880	T0	2. 2021
111	-C.244	1-0.780 10	0.2921	C. 78310.363	T0 1.2031	1.277	10.720	TO	1.8341
115	-0.268	1-0.831 T0	0.2961	C.7E510.334	T0 1.1961	1.162	10.789	T0	1.5361
119	-0.268	(-0.806 T0	0.2701	0.76510 .353	T0 1.176)	1.167	10.899	T0	1.434)
123	-0.314	$1-1.051 .10$	0.4221	C. 73010.192	TO 1.2681	1.100	10.877	10	1.3231
127	-0.398	(-1.343 TO	0.5471	0.67210 .037	T0 1.3C61	1.101	10.765	TO	1.4361
131	-0.314	(-1.070 T0	0.4421	0.73010 .178	T0 1.2831	1.717	10.597	TO	2.8361
136	-0.0.87	1-0.435 T0	0.2611	C. 91710.598	TO.1.2361	1.077	1.0.568	10	1.5861
140	-0.442	1-1.239 10	0.3551	0.64310 .131	TO 1.155)	1.444	10.978	T0	1.9111
144	-0.956	(-2.359 TO	0.4481	$0.3851-.155$	T0 0.9241	2.600	10.071	T0	5. 1291
148	-0.773	$1-1.971 .10$	0.4251	C.4621-. 092	10.0151	1.333	10.885	10	1.781)
152	-0.470	(-1.565 T0	0.6251	0.6251-.060	T0 1.3101	1.400	(0.805	T0	1.9951
156	-0.560	(-1.869 T0	C.7501	C. $5711-.177$	T0 1.3201	2.750	1-C. 202	T0	5.702)
160	-0.606	$1-1.707$ TO	0.4951	C. $5451-.055$.10 1.146)	1.833	10.783	. 10	2.8841
164	-1.7C5	(-4.263 TO	0.8541	0.1821-. 283	T0 0.6471	5.500	1-6.421	T0	17.4211
168	-1.482	(-4.279 T0	$1.316)$	C. $2271-.409$	T0 0.8631	3.000	(-5.849	TO	11.8491
172	-0.405	1-2.038	1.2281	$0.6671-422$	T0 1.7551	3.200	$(-6.105$	T0	12.5051
176	0.0	1 C .0 TO	0.01	$0.0 \quad 10.0$	T0 0.0	1.231	11.231	TO	1.2311
180	0.0	10.0	0.01	$0.0 \quad 10.0$	T0 0.01	0.0	10.0	TO	0.0)

[^0]

									c		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
54	0	2	0	0	0	0	0	0	0	C	0	0	c	0	c	0	C	0	0	0	0	0	0	0	0	0	0	0	0
58 66	0	0	0	4	1	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0
71	0	0	0	0	4	C	0	C	0	C	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0
77	0	0	0	0	0	7	3	1	1	0	0	0	C	0	C	0	0	9	0	0	0	0	0	0	0	0	0	0	0
84	0	0	0	C	0	C	8	1	1	0	0	0	0	0	C	0	0	0	0	3	0	0	0	0	0	C	0	0	
89	0	0	0	0	0	0	0	1	1	C	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	C	0		
93	C	0	0	0	0	0	0	0	9	C	0	0	6	0	C	0	0	0	9	0	0	0	0	0	0	0	0	0	0
97	0	0	0	0	C	C	0	C	0	5	0	9	C	$?$	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0
101	0	0	0	0	0	0	0	0	0	C	9	0	\bigcirc	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0
105	C	0	0	0	0	0	0	0	0	C	0	4	1	0	0	C	0	0	0	0	7	0	0	0	0	C	0	0	0
111	0	0	0	0	0	C	0	C	C	C	0	0	6	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0
115	0	0	0	0	0	0	0	0	c	c	2	0	2	4	3	0	c	0	0	0	0	2	0	0	0	0			
119	0	0	0	C	C	C	0	C	0	C	0	\bigcirc	0	0	8	0	0	0	0	0	0	0	0	0	0	C	0	0	0
123	0	0	0	0	C	C	0	C	C	C	0	0	C	0	C	6	1	$?$	0	9	0	5	0	0	0	C	0	0	0
127	0	0	0	0	0	0	1	0	0	C	0	0	C	0	0	0	6	0	0	0	0	0	0	0	0	C	0	0	0
131	0	0	0	c	C	C	0	C	0	C	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	C	0	0	0
136	0	0	0	0	0	0	0	0	0	C	0	0	C	0	C	0	C	?	4	0	0	0	0	0	0	0	0	0	0
14.	C	c	0	0	c	0	0	0	2	c	0	2	0	0	$1)$	0	n	0	0	6	6	0	0	0	0	c	0	0	
144	0	$\stackrel{0}{0}$	0	0	C	0	0	C	0	6	0	0	C	0	0	0	0	0	0	0	5	1	0	0	0	0	0	0	0
148	0	0	0	0	0	C	0	0	0	C	0	0	C	0	C	0	0	0	0	0	0	5	0	0	0	0	0	0	0
152	C	0	0	0	C	C	0	C	0	C	0	0	0	9	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0
156	0	0	0	0	C	C	0	C	C	C	0	0	0	0	C	0	C	\bigcirc	0	0	0	0	0	2	0	C	0	0	0
160	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	C	0	0	0	0	0	0	0	0	1	0	0	0	0
164	C	0	0	0	c	c	0	C	0	0	2	2	C	2	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
168	0	0	0	0	C	C	C	0	0	C	\bigcirc	C	0	\bigcirc	r	0	0	0	0	$?$	C	0	0	0	0	0	4	0	0
172	0	0	0	0	C	0	0	0	0	C	0	0	C	0	C	$\underset{\sim}{-}$	6	0	0	0	0	0	0	0	0	0	0	5	0
176	0	c	0	C	C	C	0	0	C	C	0	0	C	0	0	0	\because	0	0	0	0	0	0	0	0	C	0	0	9

$$
0
$$

0
n
\checkmark

0
$-$
N
m
$\stackrel{\rightharpoonup}{*}$

0
∞
$\stackrel{\rightharpoonup}{*}$
m
n

N
n
r
n
\because
n
n
∞
-
u

12
m
n

ffales

WEEK CF
LAST CAPTURE
 200000000c,00000moncidonoood o00000000docon-ucoociouocued
 ouovcouoociomnccucuccócuca 000do000000utooduonuogonciad
 orodoonono00000congkodionood
 जood-0Noodocoucoucoooyvoocod dovencouoduoovcou00004000000 $0000 \mathrm{minocooovo0co0000000000}$ GOMONUOUOQOUOUOMUOUOOYOUNOO OOMmuNovoduoovovuovoovunuvud OONOUOOOOOOOOOOCOOUCOOOOOOOO cNodooducocoooov00000000000 No00000000000000000000000000 0000000004000000000000000000

total marke
0

STAMDARDILED 2日-DAY RATES • 4 SE LIPITS
PEROMYSCUS AREA 2 EXPERIMENTAL HANEY

 -
\qquad

THE SUMS A(I.J) $\underset{0}{0} 0$
0

THE SUMS_N(1.J)

$$
0 \quad 0
$$

males
WEEK OF
LAST CAPTURE

MALES

FEMALES

FEMALES

0000000000000000000000000 0000000009000000000000100 0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 ooodocoondeooocdocoo-cooo 000000000400000dcoonodooo oondoconociococogoonoogooo 000900000docucnctwo00900c ooncoononoccocoditooooqooc
 $00000 c 000000000000000 c 000$ ocoynuocucuorvacocooccoc जoncooooodonnondoccoooooo ucuáoveucinmovoouvoudowos $00000000 m d+00000000000000$ vooctooocenoonoodooooodooo $00000-0 m c d 000000000000000$ dovyoutoodu00u0400000000u 00000 O 0000000000000000000 ovudmuavoducuvovuowoocouc ouvauouvducouoduounogouv oomooocucoocooocoovoodoco cNoduoveodooocovoodoodcoo 1000000000000000000000000 cuocuoououvouoowovocuocoa

1
n
n
n
$3-2$

-

APPENDIX 4

Mean Probability of Survival and Variance (28 day ϕ)
$\ell_{i}=$ number of weeks in sample
$s=$ number of sample periods
$V(\bar{\phi})=\left(\bar{\phi} \frac{4}{s} \sum_{i=1}^{s} \ell_{i}\right)^{2}\left[\sum_{i=1}^{s} \frac{V \phi_{i}}{\phi^{2}}+\underset{i=2}{s} \frac{2 \operatorname{Cov}\left(\begin{array}{cc}\phi & \phi \\ i-1, & i\end{array}\right)}{\phi_{i-1}{ }_{i}}\right]$
where $\operatorname{Cov}\left(\hat{\phi}_{i-1}, \phi_{i}\right)=-\phi_{i-1} \phi_{i}\left[\frac{M_{i}-n_{i}}{M_{i}}\left(\frac{1}{R_{i}}-\frac{1}{S_{i}}\right)\right]$
$M_{i}=$ total number of marked animals in the population at time 1.
$N_{i}=$ number of marked animals in the i th sample.
$R_{i}=$ the number of the S_{i} animals released from the i th sample which are caught subsequently.
$S_{i}=$ the number of animals released marked from the i th sample.
Test Criteria
T.C. $=\frac{\overline{\mathrm{N}}-\overline{\mathrm{N}}_{\mathrm{y}}}{\sqrt{\operatorname{Var} \overline{\mathrm{N}}_{\mathrm{x}}+\operatorname{Var} \overline{\mathrm{N}}_{\mathrm{y}}}}$

CURRICULUM VITAE

Bruce Gordon Petticrew

PERSONAL HISTORY

Place of birth: Victoria, British Columbia
Date of birth: March 9, 1945
Marital Status: Married

EDUCATIONAL BACKGROUND
Graduated from Oak Bay Senior Secondary, 1964

Degrees

B.Sc. (Mathematics and Zoology) May 1968.

AWARDS
British Columbia Government Scholarships 1966-67 and 1967-68 Simon Fraser University President's Research Grant, Spring 1970

TEACHING EXPERIENCE

Teaching Assistant, Simon Fraser University: BISC 101-BISC 102, Introduction to Biology; BISC 316, Vertebrate Biology; BISC 407, Population Dynamics.

GRADUATE COURSES TAKEN

BISC 843 - Population Processes
BISC 869 - Special Topics II: Advanced Ecology
BISC 836 - Vertebrate Reproductive Ecology
BISC 879 - Special Topics III: Modern Forestry Practices
BISC 806 - Adaption and Adaptability.
MEMBERSHIP IN PROFESSIONAL ORGÁNIZATIONS
The Canadian Society of Zoology

PUBLICATIONS

Petticrew, B.G. and R.M.F.S. Sadleir. (1970) The use of index trap lines to estimate population numbers of deermice Peromyscus maniculatus in a forest environment in British Columbia. Can. J. Zool. 48:385-389.

[^0]:

