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Abstract 

A free-variable theory is a first-order theory without 

quantifiers, plus a rule of substitution for individual var- 

iables, and possibly, with some "nonlogical" rules of proof. 

The idea arose from Goodstein's equation calculus J\ of Prim- 

itive Recursive Arithmetic (Recursive Number Theory, 1957). 

In Chapter 1 we survey the subject, starting with Skolem 

(1923). Chapter 2 defines "free-variable theory", and dis- 

cusses two theories, A and A-, of arithmetic, and a certain 

formalization, R, of , all of which have mathematical in- 

duction as a rule of proof. A has the axiom 1fO. Theorem: 
- 

A "represents" R. A ,  A- and R., hence ir( , are incomplete 

and undecidable. For @ , undecidability is new. It is no- 

table that, within A, Goodstein's "Logical constants" are 

equivalent to the classical logical connectives. Chapter 3 

is a semantical analysis. Validity in structures is watered 

down from the first-order case. Models are structures that 

validate the theorems of a theory; stronz models further val- 

idate the rules. These provide the usual and stronq seman- 

tics. A semantics is adequate for a theory T if, whenever P - 
is a nontheorem, there exist models of that kind for T which 

invalidate P. Theorem: The usual semantics is adequate for all 

free-variable theories. This is along the lines of Henkin's 

well-known proof having structures built of closed terms, but 

(iii) 



must differ in case some theory with nonlogical rules is such 

that either it is without constants, or the deduction the ore^, 

fails. Our proof succeeds by means of some A-canonical strut- - -- 
tures, which are new. Next we bear down on some admissible 

theories, and prove the theorem: The strong semantics is adecu- 

ate for all admissible theories. This uses the former theorcm, 

and it can be applied to show that the strong semantics is ac.e- 

quate for the theories A and A-. The former theorem can be cp-  

plied to show that the open theorems of an open first-order 

theory are exactly the theorems on a naturally corresponding 

free-variable theory. It is open whether a theory for which 

the strong semantics is adequate can have models that are not. 

atgong. 
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Errata 

Page 59,line 8: After "formula" put "such that no two r n w .  

bers have the same (n+l)-th formula". 

Page 80, line 2 from bottom: After "holds" put ", if thcre 

is one, and 0 if there is not". 

It might have been well to define a rule of proof to be 

on - a language L when each of its instances is in L. For this 

would eliminate the need for some circumlocution and, in par- 

ticular, after "rule" in line 11,page 95 one could put "on L' , 

which happens to be implied there by the definitions, but is 

worth emphasizing. 

(viii) 



Introduction 

This writing grew out of R. L. Goodstein's monograph, 

Recursive Number Theory, A - Development - of Recursive Arithmeti: 

in a Loqic-Free Equation Calcuius. It was during my earliest - -  
searching~ for a thesis topic that I chanced on the library 

copy of this book, and found it interesting. The thesis bec.an 

with Steve Thomason's suggestion to "modernize" Goodstein's 

presentation, that is, to supply the equation calculus with 

a precise language consisting of specific terms and formulas, 

to restate its rules of proof in this context, and to report 

its properties. 

Of course, the primary justification for such a project 

is that the material to be presented is worthy of review. In 

this regard there are three main points of interest: (i) Even 

though the calculus does not postulate any of classical logic, 

a substantial amount of elementary number theory can be derivcd 

from it. Notably one can prove the unique prime factorization 

theorem (sometimes called the fundamental theorem of arithmetic) 

and that every pair of numbers has a least common multiple. 

More exactly, the calculus postulates the defining equations 

of the primitive recursive functions, and its rules of deriv- 

ation enable one to exhibit a binary primitive recursive 

function cp such that cp (a,l) , . . . ,cp (a,n) (some n) are the prime 

factors of a, and such that cp(a,x) = 0 if x > n, and a binary 

primitive recursive function $ such that q(a,b) is the least 

common multiple of a and b. Thus, in other words, in some 



significant cases, even though one cannot establish the usucl 

first-order assertion, he can establish one of its quantifi~r- 

free equivalents, i.e. one of its Skolem forms. (Anyone whc 

is unfamiliar with this terminology is referred to Shoenfielci 

1393.1  

(ii) Some analogues of the logical connectives are introduc~d, 

merely as a way of abbreviating certain equations, and many of 

the usual logical properties and interrelations are derived. 

For example, E +* E' abbreviates a certain equation which is 

built out of the equations E and E', and it turns out that if 

both E and E +* E' are derivable, then so is E', so that the 
rule of modus ponens is valid. Thus one has a semblance of 

the propositional calculus definable within the equation 

calculus. 

(iii) The principle of generalized induction is derivable, 

and the calculus is incomplete in the sense that there is an 

equation G(x) = 0 which is not derivable, but is such that 

G(n) = 0 is derivable for every n. Thus it turns out that 

the calculus is an example of a system with weaker expressicnal 

strength and with stronger rules of proof than first-order 

number theory, which is nevertheless incomplete in precisely 

the same sense. 

A modernization is warranted, mainly because of the kind 

of vagueness that pervades the entire monograph. Upon examin- 

ation, this vagueness appears to stem from the practice of 

employing "signs" without distinguishing clearly between their 



formal and informal usage. For example, where it is said 

that F is some function, this sometimes means that the letter 

"F" is the sign of some function, and sometimes it means thct 

the letter "F" is a metasyrnbol that denotes some function s i .gn .  

Thus, in the early parts of the book, it is not clear whether 

the rules of derivation are thought to be operations on 

equations of functions, or on strings of signs, or both. 

Later on in the book, when the calculus is "codified", 

it is clear that there the rules of derivation are opera ti or,^ 

on strings of signs. However, in that section one encounters 

another difficulty. F new phrase, "recursive term", appears 

without explanation; and it is not made explicit until the 

last chapter that "function" also includes numbers, considered 

as constant functions, and variables, considered as identity 

functions, and that "recursive function" and "recursive terrr" 

are synonymous. Moreover, in this last chapter the calculus 

is supplied with a precise language after all, which finally 

makes it clear that a sign is properly analyzed as a symbol, 

together with a fixed meaning. 

At first sight, that the monograph even considers signs, 

rather than symbols, which were certainly well-known at the 

time of publication, is strange. But it turns out that this 

is done for a definite purpose. By assuming that each function 

symbol in the language of the system is the sign of a distinct 

primitive recursive function, a major step in the proof of 

the system's incompleteness can be eliminated. Under these 

conditions, there is no need to establish that every primitive 



recursive function is "represented" in the system. IIow t h i ~  

happens is discussed in Chapter 1 of this thesis. 

Yet, in another vein, it seems strange that the concept 

of "a sign" as "a symbol with a fixed interpretation" is not 

presented earlier, so that the calculus could be introduced 

at the outset with a language and some clear notion of "function" 

and "recursive term". Apparently, the reason for this is 

grounded in a philosophical view of mathematics as a "devel- 

oping" body of knowledge, which is being advanced. For one 

could reason that the naive idea of a sign is known to anyoce 

who is familiar with the methods of mathematics, and that t k . e  

formal notion becomes clear when it is needed. Since this 

philosophy is touched on in Chapter 1, let it only be said 

here that a manner of presenting these views that does not 

detract so severely from the intelligibility of the mathematical 

work, would be preferable. 

But the fact remains that the information therein is 

worthy of attention. Hence it becomes a service to make the 

monograph more accessible to the students and working mathem3- 

ticians of today. However, in the process of writing this the- 

sis, that project has become submerged in a study of much wider 

scope, and which grew out of the author's idea of writing primi- 

tive recursive arithmetic as a system that is not logic-free, 

but rather postulates the propositional calculus and the axioms 

for equality. This idea immediately gave rise to the more gene- 

ral notion of a "free-variable theory", and thereafter the q u e s -  



- 
tion of a"comp1eteness theorem for free-variable theories" soon 

followed. The author's supervisor recognised that these ideas 

could be well worth pursuing, and encouraged him to do so. 

Recently, the author discovered that, except for the 

semantical analysis, these ideas are not new. It turns out 

that, as early as 1936, Hilbert and Bernays introduced some 

"elementary free-variable calculi" for the purpose of for- 

malizing the original primitive recursive arithmetic, which 

was introduced by Skolem; and surprisingly enough, their 

"calculus" is almost exactly the theory of arithmetic A, 

that is discussed in this thesis. Their work went only so 

far, however, so that most of the related results of the 

present work are an extension of their investigation. 

Briefly, a free-variable theory is a first-order theory 

(as in Shoenfield [ 3 9 ] )  without quantification, but with a 

rule of substitution for individual variables, and possibly, 

with some further "non-logical" rules of proof. Free-variable 

theories are so called because the variables occurring in any 

formula are not "bound" by any quantifiers. The reasons for 

adding the logical rule of substitution are (i) that it is 

needed, and (ii) that by eliminating quantifiers in a first- 

order theory, one also eliminates the "existential introduction 

rule", so that the substitution rules cannot be derived. 

The reason for considering nonlogical rules is of a more 

fundamental nature. Later on it is demonstrated that, except 

perhaps in some very unusual cases, nothing can be gained by 



adding further rules of proof to a first-order theory, that 

can't also be had by adding some axioms instead. This is n c t  

true about free-variable theories. For suppose that P and C 

are some quantifier-free formulas in which the only variable 

that occurs is x. It is well-known that there is no free- 

variable formula which is semantically equivalent to VxP + C ,  

even though VxP is semantically equivalent to P. However, 

the statement "if VxP is valid, then Q is valid" means the 

same as the statement "if P is valid, then Q is valid", so 

that VxP + Q is semantically equivalent to the rule "from P 

infer Q". It follows that, in a free-variable theory, this 

rule cannot be replaced by a set of axioms without some loss. 

In this thesis, the main example of a nonlogical'rale 

is one of mathematical induction: from P(O/x) and P + P(Sx/x) 

infer P (where P is any free-variable formula, 0 denotes the 

constant zero symbol, S denotes the successor function symbol, 

and P( .../ - ) denotes the formula that is obtained from P by 
replacing each occurrence of - with an occurrence of ..., 
if there are occurrences of - , and which is just P if there 
are not). It is clear that this rule is semantically equivalent 

to the collection of axioms of the form P(O/x)&Vx(P+P(Sx/x) - P 

where P is quantifier-free, and irrespective of whatever otker 

variables occur in P. 

Of course, this is not to say that one can obtain a 

free-variable theory that is semantically equivalent to any 

given first-order theory. For there clearly is no free- 



variable equivalent of a formula of the form 3xP, unless 

perhaps in special cases, such can be built into a free- 

variable theory by some other means. 

Since nonlogical rules are considered, there arise two 

semantics for free-variable theories. In both semantics, 

"validity in a structure" is just the natural watering down 

of "validity in a structure for a first-order language". In 

one semantics, a structure for the language of a theory is a 

model of that theory if it has the usual property of validating 

the theorems (derivable formulae) of that theory. In the ot.hcr, 

a structure is a model when it validates both the theorems a d  

the rules, where a rule is valid if all inferences by it from 

valid hypotheses, yield valid conclusions. Respectively, 

these are called the "usual semantics" and the "strong ~ema~tics" 

for free-variable theories. 

A chapter by chapter survey of this thesis now follows. 

Chapter 1 is an historical survey of primitive recursive arith- 

metic~, and in which Goodstein is reviewed. Very little of 

this chapter is used in the thesis proper, and the reader who 

is interested in getting straight to the mathematics is advised 

to begin with Chapter 2. Then in Section 2.3 he should refer 

back to pages 19-22 for a few definitions, and thereafter only 

refer to Chapter 1 as indicated in the proof of Lemma 3 of Theo- 

rem 2.2. 

The purpose of the first section of Chapter 2 is to lay 

down some notations and terminology. 5 2 . 2  presents a defin- 



ition of "free-variable theory" and some associated notions, 

such as consistency and completeness, and records some elemen- 

tary theorems which carry over with only slight modificatio~:~ 

from the literature on first-order theories. 

The third and last section of Chapter 2 is a study of 

two theories of arithmetic: the theory A of Peano arithmetic, 

and the theory A- of primitive recursive arithmetic. Both 

theories have the defining equations of the primitive recur- 

sive functions as axioms, and mathematical induction as a 

nonlogical rule. They differ only in that A has the formula 

If0 as an axiom, while A- does not. A number theoretic function 

is "representable" in a free-variable theory under a definition 

that approximates the well-known one due to Godel. Theorem 2.1 

is that a function is representable in A and A- if and only if 

it is primitive recursive. This theorem enables one to see 

that a certain "formal system" of primitive recursive arithmetic 

R uniquely formalizes Goodstein's equation calculus (denote& 

4 ) .  Theorem 2.2 shows that an 

free formula) is provable in A- 

R. An immediate consequence is 

of the known properties of @. 

equation (in effect, a logic- 

exactly if it is provable ix 

that A- thereby inherits maEy 

In particular, A- is incomplete. 

The third theorem uemonstrates that, within the theory A, 

every formula is equivalent to an equation; or more exactly, 

for each formula P of the language of A, there is a term t 

such that the formula P-t=O is provable in A. An interesting 

interpretation of this theorem might be that the logical 
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connectives and their aforementioned primitive recursive 

analogues (herein called "logical constants") are equivalent 

in A; for where P and t are the above, t = 0 is an equivalent 

of the equation that is abbreviated by the expression that is 

obtained from P by replacing each logical connective by the 

corresponding logical constant. 

A constructive consistency proof for A and A- is presented 

in Theorem 2.4. The proof is recorded mainly because of its 

striking simplicity in comparison with similar proofs for sone 

first-order theories. 

Theorem 2.5 states that A is incomplete, and Theorem 2.5 

states that A, A- and R are undecidable. The proofs of thes.2 

results begin by establishing that there is a primitive 

,lve recursive enumeration of the defining equations of the primi-' 

recursive functions, which is surprising since it is well-known 

that there is no primitive recursive enumeration (in the sense 

of P6ter [ 3 3 ] )  of these functions. The fact that certain sys- 

tems of primitive recursive arithmetic are undecidable is esta- 

lished by Kreisel [29]; but the fact that R is undecidable is 

new since it deals with a system that has infinitely many ax;oms. 

Chapter 3 is the semantical analysis. The first section 

deals mainly with the definition of "model" and "strong model". 

The two main results appear in $3.2. A semantics is "adequate 

for" a theory T, if for each formula P in the language of T 

that is not a theorem of T, there is a model of T in that 

semantics which invalidates P. 



The first main result is Theorem 3.1: The usual semantics 

is adequate for all free-variable theories. The proof of this 

theorem is along the lines of Henkin's well-known proof of t~(. 

completeness theorem for first-order theories, wherein a mod31 

for a theory T is built out of the closed terms in the language 

of T, but is more difficult in the case that there are no cl~sed 

terms, that is, if T does not contain a constant. For if T 

has nonlogical rules, an extension that is obtained by adding 

a constant need not be "conservative". The difficulty is 

circumvented by means of some A-canonical structures, for which 

there need only be open terms, such as variables. These struc- 

tures are new, and were defined by Steve Thomason for the 

purposes of this result. 

It turns out that the strong semantics is not adequate 

for all free-variable theories. In an effort to bear down 03 

the class of theories for which the strong semantics is adeq~ate, 

some conditions on the nonlogical rules of a theory are intro- 

duced, and some collections of "admissible theories" and "weakly 

admissible theories" are described. 

The second of the main results is that the strong semantics 

is adequate for all admissible theories. This is Theorem 3.5. 

Theorem 3.2 is a technical result about the conditions on 

non-logical rules. Theorems 3.3 and 3.4 lead up to Theorem 3.5. 

The former states some criteria under which a theory has a zom- 

plete simple extension, and the second says that a consistent 

weakly admissible theory has a strong model. Theorem 3.6 shows 



that A and A- are admissible theories. 

Theorem 3.7 is an application of Theorem 3.1. The main 

point is the corrolary which says that the open theorems of an 

open first-order theory are exactly the theorems of the free- 

variable theory having the same nonlogical axioms. It turns out 

that Theorem 3.1 is a consequence of Theorem 3.7, and that tne 

latter theorem can be proved by other means. Theorem 3.8 is an 

appication of Theorem 3.5 to the study of proofs in systems 

consisting of an open first-order theory with nonlogical rules. 

This theorem tells when a formula might have an "open proof". 

Perhaps the most important question to be opened up but 

left unanswered by this thesis is whether a theory for which 

the strong semantics is adequate has any models that are not 

strong models. The question is interesting in light of the 

fact that A and A- are admissible theories, and hence are theo- 

ries for which the strong semantics definitely is adequate. 

In the pages that follow, it is clear that the rule of 

mathematical induction is a primary motivating example, and 

that this is because its role in a proof cannot be duplicated 

by any set of axioms. It should be said that the onl:~ 

rules with this property that the author has uncovered so far, 

are other forms of induction, for example, the rule for induc- 

tion on the elements of a tree. 

It turns out, however, that other kinds of rules can be 

of interest, even in the first-order case, as a means of replacing 

infinite sets of axioms. An example that is discussed in $3.2 
I 



1 2  

is the rule which expresses the duality principle in Lattice 

Theory. Another example is in the methods of Church [6] for 

eliminating all but finitely many of the axioms of primitive 

recursive arithmetic by incorporating the procedures of defir.1n.j 

functions by substitution and primitive recursion as rules of 

proof. 

Nevertheless, a question has often occurred to this 

writer about the worthwhileness of an extensive treatment of 

the general concept of free-variable theories with non-logic21 

rules, when few interesting examples are known. It happens 

that the basis for continuing this work has been the likelihcod 

that further such examples would appear, and that in truth, 

few have. However, it does not yet seem reasonable for this 

likelihood to be denied. For now, the author rests in the 

satisfaction that his work pre-empts some of the problems in 

the event that further examples be discovered. At the very 

least, that study sheds new light on the more general relation- 

ship of axioms and rules. 

On the other hand, free-variable theories without non- 

logical rules are plentiful. Worth mentioning is that, due 

to Birkhoff's characterizations in [2] (a handier reference 

is Gratzer [ 2 2 ] ) ,  each equational class is uniquely determined 

by a set of equations which can serve as the axioms for a theory 

of that class. It turns out, in fact, that there is a one-to- 

one correspondence between free-variable theories and open 

first-order theories. In each case, the correspondent is the 



theory with the same non-logical axioms, and whose language 

differs only in that it either has or does not have quantifiers. 

Proof theorists may be interested to note that the above 

correspondents are as described In Theorem 3.7. For by Skolem's 

Theorem (see [3g]),this means that the consistency of any fizst- 

order theory can be reduced to that of the correspondent of some 

open conservative extension, thereby simplifying the consistency 

proof. 

In this thesis, definitions, theorems and propositions 

are numbered-with respect to the chapters, and irrespective 

of the sections, with different kinds of entries being listed 

separately. Propositions are numbered only when it is useful 

for future reference. With the exception of Definitions 2.1 

and 2.3, all numbered definitions and theorems are thought to 

be new, at least in the present context. The two exceptions 

are the aforementioned things whose essential parts were 

recently found in Hilbert and Bernays [26]. Names of theorem 

that are underlined are taken from some well-known theorems 

about first-order theories, of which all but one are in [ 3 g ] .  

The unique readability theorem was taken from some notes for 

an undergraduate course in mathematical logic that was given 

by Steve Thomason. Names of theorems that are enclosed in 

parentheses are suggestions by the author. 

The usual practice of underlining a word group to indicate 

that it is being defined for the purposes of the work is adhered 

to. A not so ordinary use of parentheses is to enclose a pazt 



of such a group to indicate that it is to be understood when 

only the other part is written. In Chapter 1, quotation marks 

are used to set off a word group that is being defined just f : :  

the purposes of that chapter. In these cases, the definition 

is usually being taken from Goodstein [161. 

The double arrow "-" is used to abbreviate the phrase 

"if and only if". When an "- ' I  assertion is being proved, the 

beginning of the "only if" part is sometimes indicated by 0 ,  

in which case the beginning of the "if" part is indicated bl. 

a .  More frequently, "0" is used simply to abbreviate "implies". 

The end of each proof is marked by an oblong: 0 . 
The thesis is thought to be self-contained. But it should 

be worth mentioning that the reader will find this writing much 

less cryptic if he first becomes acquainted with 1391 .  

The author is indebted to many people for their 

suggestions, criticism and encouragement. But to more than 

anyone, he owes Steve Thomason, not only for the advice and 

encouragement, rebuffs, admonishments, interest and enthusiasm 

in his service as a supervisor, without which this thesis surely 

would not have been written, but also for many things beyond 

what would normally be expected from one in his official 

capacity, and which clearly distinguishes him as a friend. 

This writer is hard pressed for words to express his appre- 

ciation. 



Chapter - 1 

A Survev of Primitive Recursive Arithmetics 

The beginning of all things lies still 
in the beyond in the form of ideas that 
have yet to become real. 

From the Wilhelm/Baynes 
translation of the I Chinq 

The first primitive recursive arithmetic was introduced 

by Thoralf Skolem in 1923. Today, it is folklore that this 

treatise 1401 ,  grandiosely entitled "The Foundations of ~lernen- 

tary Arithmetic Established by means of the ~ecursive   ode of 

Thought without the Use of Apparent Variables Rangins over In- 

finite Domains", was slow to gain more than a sideways qlance 

from the current intelligentsia: "Is it necessary to prove that 

the elementary arithmetical operations exist? Moreover, even 

if one can seriously doubt that they exist, Skolem has not 

proved this. Clearly, all that has been accomplished is to 

define the functions in terms of some other functions whose 

existence might be subjected to the same scrutiny." 

Now this opinion prevailed for a while, and could well 

have remained, had it not been for a remarkable property of 

those "more elementary" functions. Without a doubt, given any 

argument for such a function, one can compute the value in fi- 

nitely many mechanical steps. 

Eight years later, these "recursive" functions had a ma- 

jor part in Godel's famous proof [12] (1931) of the existence 



of undecidable propositions in Russell and Whitehead's Princi- 

pia Mathematica [ 3 8 1 .  Now called the "primitive recursive" 

functions, they were eventually to admit a qeneralization to 

the (general) recursive functions (due to Godel [ 13 1 (1934) , 

on a suggestion of Herbrand), subsequently to become the foun- 

dation of an entirely new fie16 of "effective computability", 

and thereby find their way into the heart of modern computer 

technology and the theory of finite automata. 

As it happens, some of these functions had previously 

been considered by Dedekind [lo] in 1888, and the first few 

had been defined by Peano 1321 in 1889. But Skolem was first 

to exploit their full capacity for providing a foundation for 

arithmetic. Let us begin by givinq a brief review of this 

work. 

Starting with the successor function which, for each n, 

takes the value n+l, one can define more and more functions 

(and predicates) in a recursive fashion, and many of their 

properties can be established by means of the principle of 

mathematical induction. The first function so described is 

addition: since a+l is defined for all a, in order to define 

a+b generally, one need only say, far each b, how It is de- 

fined at b+l, assuming that it is already defined at b. Sim- 

ply, he sets a+(b+l)=(a+b)+l. In words: The sum of a and the 

successor of b is the successor of the sum of a and b. A ty- 

pical example of a "recursive proof" is the proof by induction 

on c that a+(b+c)=(a+b)+c for all a,b,c. Fy these means, Sko- 



lem was able to introduce enough functions and predicates to 

state and prove the fundamental theorem of arithmeti.c,TJp to 

the order of factors, every number can be uniquely written as 

a product of prime~!',and furthermore the facts that every pair 

of numbers has a least common multiple and a greatest common 

divisor. 

As a system, the resulting arithmetic is a "quantifier- 

free" equation calculus. Proofs are conducted in the "naive 

arithmetic" and the "naive propositional calculus", yet sty- 

listically approach the careful formality of the strictly syn- 

tactical arguments in 1 3 8 1 .  Of particular importance is the 

introduction of the new concept of a "bounded quantifier". 

In contrast with the unbounded quantifiers, these are intro- 

duced simply for the purpose of abbreviating certain primitive 
a 

recursive predicates. For example, Cx(a=bx) is taken as an 
1 

abbreviation of (a=b)or(a=2b)or***or(a=ab), and thus says that 

there exist x such that lcxra and a=bx. (Note that this fur- 

thermore says that a is divisible by b.) Perhaps the single 

most important aspect of theVrecursive mode of thouqht" is its 

ability to capture the intuitive content of the existential 

quantifier in a great many cases. 

The concept of an apparent variable had been elucidated 

earlier by Russell. As an explanation, in the above example, 

the variable x is apparent in contradistinction with a and b, 

which remain fixed throughout some given context. More pre- 

cisely, the assertion is made for "each" choice of a and b, 



for "a1 1" x such that lsxsa. The  distinction is aptly viewed 

as one of a pseudo-temporal priority. Since all primitive re- 

cursive functions are finite valued, it is clear that the "a" 

in this example may be replaced by any one of these without 

upsetting the requirement that apparent variables range over 

finite domains only. 

Skolem also introduced a bounded universal quantifier, 
a 

(for all x such that lcxca) , and a new operator,  in (P (x) ,a) , 
1x 
I 

which yields, for each a, the least x such that lsx~a and 

the predicate P holds for x, if there is one, and yields 1 if 

there is not. This latter is now written bxzaP(x) and is known 

as the "bounded p-operator". Its unbounded version is shown hy 

Kleene [27] (1936) to be a key to the general recursive func- 

t ions. 

Independently of Brouwer's school of intuitionism, Skolem's 

restriction to finite domains had denied the classical equiva- 

lence of the unbounded E,P (x) and l l x m  (it is not the case 

that for all x, not P(x)) when refering to infinite domains. 

Skolem's system is not intuitionistic, however. For in some 

places where intuitionism does admit quantification, the full 

expressionaqstrenqth of the quantifier cannot be acheived prim- 

itive +recursively. This is mainly because bounded quantifiers 

cannot be introduced as abbreviations unless a bound is estab- 

lished within the arithmetic itself. For example, one cannot 

introduce a statement of the neaation of Fermat1s Last Theorem: 

X LxLaTbLc ( X P ~  and ax+bx=c ) . 



The first precise definition of the prim 

1 3  

itive recursive 

functions is due to Godel [12]. Before soinq any further, 

let's see what these functions are, and consider a few of t h e  

more elementary ones. The following formulation is taken from 

Hermes [25]. 

Throughout this thesis, the natural numbers include 0 

(zero). For each natural number x, x i  denotes the next great- 

er, and is called the successor of - x. The primikive recursive 

functions are as follows: 

(i) the successor function S defined by S(x)=xl, the con- 

stant zero function Z defined by Z(x)=O and, for each i and n, 

the n-ary identity function 1: defined by 

are primitive recursive, 

(ii) if G is an m-ary primitive recursive function, and 

H1,...,H are n-ary primitive recursive functions, then 
m 

n 
Sm (G, H1, . . . , Hm) (which is abbreviated S: ( G ,  H ~ )  defined bv 

n Sm(G,Hi) (xlf.. . pxn)=G(H1 (xLf.. . f Kn) r . tHm(xlt tXn) ) 

is primitive recursive, 

(iii) for n'll, if G is n-ary, H is (n+2)-ary, and both are 

primitive recursive, then R" (G ,H) defined by 

The functions listed in (i) are initial functions. The 

n S and R" are respectively the schemata - of definition 5 - sub- m 

stitution and the schemata of - definition primitive recur- 



sion. This way of denoting them is found in Kleene 1281 .  - 
In this thesis, an explicit definition of a function is a def- 

inition of it by means of one of these schemata in terms of 

some other primitive recursive functions which have already 

been so defined. 

In this terminology, x+y has the explicit definition 

1 we have that o+~=R~(I?~.H) (O,y)=I2(oIy)=y and that X'+Y= 

S(x+y)=(x+y)'. In like manner one can devise explicit defini- 

tions for (multiplication) such that O*x=O and xl*y=x*y+x, 

s1 (predecessor) such that 011=0 and xl'l=x, ' ((modified) - sub- 

traction) such that yzO=y and y'x'=(y'x)'l, 1 , 1  (positive dif- - 
ference) such that (xIy ( =  (x'Y) + (Y'x) , and Rt such that ~t (0) =O 

and Rt(xl)=Rt(x)+(l'H(x,Rt(x)))where H(~,y)=(y'*y')~x'. Rt(x) 

2 is the greatest y such that y Zx. 

The characteristic function of a predicate P of n variables 

is the function Kp defined by Kp(x l,...,xn)=O if P(x ll...,xn) 

holds, and Kp(xl,...,xn)=l if not. Godel was also first to 

point out that a primitive recursive predicate is just one 

whose characteristic function is primitive recursive. Thus, 

equality is primitive recursive, since K-(xfy)=1~(1'JxIy/). - 

Since = is primitive recursive, it turns out that every equa- 

tion of primitive recursive functions describes a primitive 

recursive predicate. ~t follows that any P may be viewed 

simply as an abbreviation of certain equations,e.g. Kp(x)=O. 



Some equations for 5 ,  <, r and 7 will appear later on. 

Today, there are several formulations of primitive recur- 

sion. It appears that the most elegant one is due to ~6ter 

[331 where it is proved that one needs only S, Z and the Lnary 

identity function as initial functions, the schemata S: and 

the schema R' of definition by primitive recursion with one 

parameter. Godel's formulation differs from P6ter1s by admit- 

ting recursions in any finite number of parameters. Hermes' 

differs from GBdells by including the 1; among the initial 

functions. Both of Shoenfield [39] and Kleene [28] also in- 

n clude, for each n and q, the n-ary constant function Co de- 

n fined by C (x l,...,xn)=q. Any of [39], [28], and especially 
9 

[ 3 3 ]  are good sources regarding primitive recursion in general. 

Hilbert and Bernays treated Skolem's arithmetic in [26] 

tpg. 307). Their main interest in it was that its woofs are 

'finitary" and hence easily formalized, and that its "construc- 

ti'~e'~0nsistenc~ proof is simple. Excepting some points of 

detail in the following Definition 3.3 ($2.3), their formali- 

zation of this arithmetic is the free-variable theory A .  In 

particular it postulates the sentential calculus (a close rela- 

tive of the propositional calculus in 52.2), the axioms for 

equality ($2.2), the defining equations of the primitive recur- 

sive functions, the formula OfO', and both substitution for in- 

dividual variables (g2.2) and mathematical induction as rules 

of proof. Its quantifier-free language contains the classical 

logical connectives: - (not, negation) , v (or, disjunction) , 



& (and, conjunction) , + (implies, implication) and * (if and 

only if, (loqical) equivalence) . 
In 1121, Godel states that there is a primitive recursive 

function y such that, for all numbers a and b, y(a,b)=O if and 

only if a=b. (y  is the positive difference function.) It fol- 

lows that in Skolem's system, every equation is equivalent to 

an equation of the form t=O, where t is some recursive term 

(see the following). Hilbert and Bernays showed that in their 

formalization, every equation is logically equivalent to an 

equation of this form. By introducing some primitive recur- 

sive analogues of the above logical connectives, this enabled 

them to further prove that every formula of their formalization 

is logically equivalent to such an equation, and subsequently 

to arrive at the first explicit definition of the bounded quan- 

tifiers and the bounded p-operator. A slightly different ver- 

sion of these analogues, the same explicit definitions of the 

bounded quantifiers, and essentially the same explicit defini- 

tion of the bounded p-operator will be discussed. 

In this chapter we shall examine a constructive consis-. 

tency proof which is along the lines of Hilbert, but for a dif- 

ferent system. Let us note here that "verifiability" and its 

related notions, though implicit in [ 4 0 ] ,  are in fact due to 

Hilbert and Bernays. In Theorem 2.4 we shall see what amounts 

to Hilbert's proof for the above system. There this is com~ared 

with a similar, more well-known proot, which is due to ~odel. 

For what is meant by a "constructive" proof, the reader is re- 



ferred there and to the remarks at the end of $2.1. 

[26] summarizes all the major developments out of Skolem's 

treatise prior to 1934. In particular there is Ackerman's [li 

(1928) enumeration of the hierarchy of arithmetical operations 

as an example of a "doubly recursive" function (see the fol- 

lowing) that is not primitive recursive, and P6ter1s work on 

reductions to primitive recursion and the elimination of pa- 

rameters (most recently published in [ 3 3  l .  ) 

In 1941 the first "logic-free" arithmetics were intro- 

duced simultaneously and independently by Goodstein [IS] (prin- 

ted in 1945) and Curry [ 9 ] .  These are significant, not just 

because they demonstrate how the arithmetic can be developed 

without logical considerations, naive or otherwise, but also 

because they show that, to a certain degree, elementary logic 

can be founded in elementary arithmetic. Both [15]and [9] 

present analogues of the logical connectives which differ frorr 

one another and from Hilbert's only with respect to negations. 

It turns out that this difference is crucial. Hilbert needs 

the axiom -,(0=01) for making his definition. In Curry's svs- 

tem the primitive recursive negation of 0 = 0 1  is derivable. 

In Goodstein's system it is not. 

Goodstein's version leaves open another case, and it is 

the only one with which we shall be concerned. For want of a 

better name, we shall follow him in 1161 by calling the ana- 

logues the "logical constants". They are presented in a re- 

view of 1161 to which we now turn. 



The introduction is a short essay on the n ature and defi- 

nition of numbers, the definition and formalization of count- 

ing, and the concept of a formal system. Chapter I introduces 

the aforexpentioned elementary primitive recursive functions, 

and the aforementioned doubly recursive function, provides 

Godel's formulation of primitive recursion, and indicates the 

natural generalization to multiple recursion. To avoid having 

to reformulate the primitive recursive functions in 52.3, let 

us here assume the foregoing due to Hermes. From what follows, 

it becomes clear that, for the purposes of Goodstein's mono- 

graph, this can be done without loss. 

Primitive recursive functions are also called "singly re- 

cursive". In [16], a definition of the doubly recursive func- 

tions is obtained from the definition of the primitive recur- 

sive by replacing "primitive" by "doubly" throughout, and add- 

inq another case (where to conserve space let us assume that 

there are no parameters) 

(iv) if G is unary, H1 is binary, H2 is unary, H 3 is quater- 
0 

nary, H4 is ternary, and all are doublv recursive, then R ~ ( G ,  

0 
H1,. . . ,H4) (which is abbreviated R~ (G,Hi) ) defined by 

R:(G,H~) ( o , ~ ) = G ( Y )  

0 0 R2 (6,Hi) (xu ,O)=Hl (x,R2 (C,,Hi) (x,H2 ( X I ) )  
0 0 0 R2 (G,Hi) (XI ,y1)=H3 (x,y,R2 (G,Hi) (x,H4 (x,y,R2 (GrHi) ( x '  ,Y) I), 

0 
R2 (G,Hi) ( x '  , v )  ) 

is doubly recursive. 

Further such generalizations yield the rest of the multi- 



ply recursive functions. In [ I 6 1  these latter are called sim- 

ply "recursive functions". To avoid confusion, let us note 

with Kleene [281 that these are not likely to include all thosk= 

that are known by that name today. 

Chapter I1 introduces a nonformal equation calculus of 

these recursive functions. It is described completely by a 

definition of "proved equation" which shall be quoted. Before 

doing so, however, let us digress to explain the notion of a 

"sign". This explanation is not in [16i, but is hoped to clar- 

ify what is vague there. It will he of value to us for descrlb- 

ing the formal system R in $2.3. 

The following proceeds by comparing signs with "symbols". 

For what is meant by the latter, the reader can go to the re- 

mark at the end of 52.1. and the first few paragraphs of $ 2 . 2 .  

Suppose that we are given some mathematical object, say 

a function. Then, for the purpose of talking about it, we may 

allot ho it a sign, say I?, and agree that F will "denote" 

that function throughout the context of the discussion. This 

is the informal use of signs that is common thoughout mathemat- 

ics. Usually it would not cause alarm to just say that F "is" 

the function. Yet signs can be found to have a formal aspect. 

To do this, one simply distinguishes them from the objects they 

denote, and considers them as things in themselves, i.e., as 

independently existing. Doing this enables one to speak of 

"concatenating" signs or "strings" of signs, "replacing" signs 

by other signs, and so on. 



On the other hand, symbols are just objects, mere things, 

and hence are *riori formal. In fact, for these, the name 

"symbol" is slightly misleading; for such an object doesn't 

symbolize anything unless, by fiat, one supplies it with some- 

thing. When this is done, the latter object is a "meaninq" 

or "interpretation", and the symbol is said to be "interprete?". 

Moreover, all this applies to any array of signs (or sym- 

bols) considered as a unit, that is, considered as having an 

interpretation (or various interpretations) of its own, which 

may or may not be dependent on the interpretations of its com- 

ponents. It is a practice also to call an array of signs a 

sign, but not to call an array of symbols a symbol. Goodstein 

adheres to this practice, and so shall w e .  

Thus, evidently, a sign is a symbol or an array of symbois 

considered as having an interpretation which remains fixed 

throughout some discussion. Another way of saying this is thct 

a sign is an ordered pair whose first member is a symbol or ar 

array of symbols, and whose second member is an interpretaiticn. 

For example, in [16] the "numerals" denoted 0, SO, SSO, ... arc 
in fact the ordered pairs (0, zero) , (SO ,one) , (SSO ,two) , . . . witk 
S and 0 taken as symbols. 

Notice that the sign S is of the successor function, and 

that the sign 0 is of the number zero, while the sign SO is of 

the value of the successor function for the argument zero. 



In 1161 it further happens that the siqns " and ~ ( x )  

2 '7 

, de- 

note the same function, while ~ ( 0 )  denotes that function eval- 

uated at zero, but not the value. This latter distinction is 

the well-known one of "intention" versus "extension". 

In the following definition of proof the letters I?, G and 

H are metavariables that denote function siqns. (For what is 

meant by a "metavariable" the reader can go to the aforemen- 

tioned discussion of symbols and note that the letters x,y,P,Q, 

etc. are such kinds of variables.) "F is a function" means that 

F denotes either a numeral (viewed as denoting a constant func- 

tion whose value is the interpretation of that numeral), a var- 

iable sign (viewed as denoting the unary identity function of 

the interpretation of that sign), or an expression built up of 

numerals, variable siqns, and function signs that "makes sense", 

i.e., that denotes a specific function of a certain number of 

variables, or such a function evaluated at some arguments. It 

is understood that the same function may be denoted by differ- 

ent signs. 

A 'proof' is a table of equations each of which is either 
(part of) the definition of a function, or an equation of the 
form F=F, or is a 'proved' equation. If F=G is one of the e- 
quations of a proof, then a proved equation is obtained by re- 
placing the function F by the function G at one or more places 
at which F occurs in some equation of a proof. 

Furthermore, the equation formed by replacing a variable 
at all the points at which it occurs in some equation of a 
proof, by another variable, or by a definite numeral or func- 
tion, is a proved equation. 

Finally, F=G is a proved equation if equations of a proof 
are obtained by substituting the function F for a function HI 
and by substituting the function G for H I  in the equations 
which define the function H. [16, p. 271 



This last rule of proof can also he expressed by saying 

that F=G if F and G "satisfy the same introductory equations". 

In effect, this asserts that any function defined by means of 

n 
one of the schemata S: and Rm is unique. For example, the 

equations O+y=y and Sx+y=S(x+y) define addition "so that any 

F(x,y) which satisfies the same equations", namely F(Oly)=y 

and F(Sx,y)=SF(x,y) , "is just another notation for the ame  

function" [l6, p. 281. 

The first project is to establish within this calculus, 

some eleme.ntary properties of +, and 2 ,  and prove "the key 

equation" x+(y2x)=y+(x2y). The proof of this latter equation 

uses the above "equalizing rule" in an application to the de- 

fining equations of a doubly recursive function. It should 

be pointed out that this is the only place in the subsequent 

proofs (Chapter IV) of the fundamental theorem of arithmetic 

and the theorem on least common multiples that anything other 

than a single recursion is involved. Precisely, the equation's 

single use is to establish that, for any functions F and GI 

the equations F=G and /F,GI=O are derivable from one another. 

Once this is done, three functions t p ,  llF and uF are ex- 

plicitly defined and discussed. ZF(n) and ITF(") are the fa- 

miliar finite sum and finite product, sometimes written 
n n 
L (F (x) 1 and (F (x) ) . pF (n) is the least mcn such that 

x= 0 x= 0 
F(m)=O if there is such m, and is O if there is not. Then 

the inequalities r and 5 are introduced by taking xzy as an 

abbreviation of the equation x=y+(x'y), and taking xly as an 



2 3 

abbreviation of x=y'(y'x). The strict inequalities > and < 

are obtained respectively by putting Sy in for y in the for- 

mer, and Sx in for x in the latter. A discussion of their 

properties is followed by a proof of the calculus' "freedom 

from contradiction". 

Briefly, the latter is as follows. The sign of a func- 

tion '(x l,... ) is "totally eliminable" if, for each sequencj 'xn 

N1,...,N of numerals, there is exactly one numeral N such n 

that the equation F(N1,...,N )=N is provable. n Another 

way of expressing this is to say that, for each sequence N1, 

A n t  F(N1, ..., Nn) is "reducible" to a unique numeral. It 

is easy to see that Z and the 12 are eliminable. It is proved 

that the property of eliminability is inherited through the 

processes of definition by substitution and definition by prim- 

itive recursion. Thus the sign of every primitive recursive 

function is eliminable. An equation F=G is "verifiable" only 

if F and G are the same numera1,or if each substitution of num- 

erals for the variables in the equation yields an equation 

F1=G' such that F' and G' are reducible to the same numeral. 

By showing that the axioms are verifiable, and that an appli- 

cation of a rule of proof to verifiable hypotheses yields a 

verifiable conclusion, one has that every provable equation 

is verifiable. Hence the equation SO=O is not provable. 

Without explaining how any contradiction is involved, 

Goodstein stops here, apparently taking this to mean "free- 

dom from contradiction". More correctly, this implies "free- 



C 
I,  dom from contra 
k 

diction" in the sense that no equation is such 

o that both it and its primitive recursive negation (see the 

following) are provable. What remains to be pointed out is 

that, if the calculus were not free from this kind of contra- 

diction, then every equation would be provable. 

Chapter I11 begins by introducing the "logical constants": 

for all equations F=F1 and G=G', 

-,* (F=F ' ) abbreviates 1: 1 F ,F ' I =O 
(F=F1)&* (G=Gt) abbreviates IF,F' J + J G , G ~  l=O 

(F=F1) v*(G=GV) abbreviates JF,F' ( 0  IG,G' I = O  

(F=F ' ) -+* (G=G ' ) abbreviates -)* (F=F ' ) V* (G=G ' ) 
(F=F1)**(G=G') abbreviates ((F=F')+*(G=G'))&*((G=G')+*(F=F')). 

All equations are "formulas". If F and G do not contain 

variables, the formula is a "proposition". Otherwise it is a 

"propositional function". Formulas will be denoted by P or Q, 

or by p, p (x) , p (x ,y) , and so on, according to the number of 

variables. 

Let F=G be a proposition. Then F=G is a "true proposi- 

tion" if IF,GI=O is provable, and a "false proposition" if 

IF,G~>O is provable. Every proposition is either a true or a 

false one. Since every provable equation is verifiable, no 

proposition is both true and false. A formula p(xl, ..., xn) 
is 'true for the values" N1, ... ,Nn if p(N1, ..., Nn) is a true 
proposition, and "false for the values" if not. 

Since, for all F and G, F=G and IF,GI=O are derivable 

from one another, a proposition is true if and only if it is 



provable. Hence, it follows that under this notion of truth, 

the logical constants generate the same truth tables as the 

logical connectives. 

The following things are known: (i) For all F and G, 

F=C+*~F,G~=O is a proved equation. [16] points this out only 

for F and G variable-free, a case which follows by the above 

definition of truth. The fact for all F and G is more compli- 
--- - -.---- --- 

cated. Let H denote the function ) I l 2 I ~ , ~ I , O ) * I I ~ , ~ I , O ~ , 0 ~  

and let H' denote IIlzII~,~I,0I,01*I~,~I,OI. Then the fore- 

going equivalence is H+H8=0. It is certainly the case that 

0+0=0 and I )x,yl,0l=lx,yl are proved equations. So the de- 

sired result follows easily with the aid of (lLx)*x=O, which 

may be found in the problem section for Chapter 111. 

(ii) If P+*P8 and Q+*Q1 are provable, then all of -,*Pa*-.*PI, 

P&*Q+*P1 &*Q1 , Pv*Q+*P ' v*Q1, (P-+*Q)+* (P '+*Q' ) and (P**Q)+* (P I** 

Q') are provable. 

(iii) The principle of "tertium non datur", or "the excluded 

middle", Pv*-,*P, is provable. The principle of "non-contradic- 

tion", -.*(P&*-.*P), is provable. (This latter does not in it- 

self mean that the calculus is free from contradiction in the 

sense we mentioned earlier, but can be used to prove it.) 
- -  -- - 

(iv) All formulas of the form (xl=yl-+**-+* (xn=yn+* (P (xl, 

. . . ,xn) +*p (yl,. . . ,yn) ) ) 0 )  are provable. ( [l6] states this 

for only n=l, but the rest follows by repeated applications.) 

(v) The schema 



of "modus ponens" is valid. That is, if P and P+*O are prov- 

able, then so is Q. 

(vi) The schema 

p (0) , p  (x)-+*p (Sx) 
P (XI 

of "mathematical induction" is valid. 

(vii) The schem (where F is any binar y function) 

of "generalized induction" is valid. 
- .  

(viii) The following "Deduction Theorem": "If the equation 

A=B is derivable...from an hypothesis F=G (i.e. an unproved 

equation) and if the derivation does not involve substitution 

for the variables in the hypothesis, then (F=G)+* (A=B) is de- 

rivable". 

The bounded quantifiers ("limited universal and existen- 

tial operators") are defined by letting A: (F (x)=O) stand for 

the propositional function ZF (n) =O, and letting E: (F (x)=O) 

stand for llF(n)=O. The "minimal operator" is defined by let- 

tins L: (F (x)=o) stand for pF (n) . These operators are now de- 

fined generally simply because every equation is equivalent 

to an equation of the form F(xl, ..., xn)=O. (It is clear that 

the foregoing F may well have additional variables.) 

It turns out that, for each n, the equation abbreviated 

by A~(F (x)=O) is equivalent to the equation abbreviated by 

F(O)=O&**--&*F(n)=O and that the equation abbreviated by 

E: (F (x) =0) is equivalent to the one abbreviated bv F (0) v* 



v*F (n) =O . This fact is interesting, and perhaps useful. How- 

ever, this author finds it strange that Goodstein offers these 

equivalences to "justify" the reading of A: as "for all x from 

0 to n", and the reading of E: as "for some x from 0 to n". 

For surely, if the sum of n numbers is 0, then all are 0, and 

if the product of n numbers is 0, then at least one is 0. 

The logical constants, bounded quantifiers, and the bound- 

ed u-operator, together facilitate defining the notion of a 

prime number, and subsequently proving the two theorems of num- 

ber theory that were mentioned earlier. Chapter IV is devoted 

mainly to this. Even with these abbreviations to aid the in- 

tuition, the proofs are complicated and long. 

The chapter concludes by introducing a new operator, N:, 

called the "counting operator". N: (F (x) =o) is the number of 

solutions of the equation F(x)=O as x varies from 0 to n. The 

given proof that N: does indeed have this property contains a 

proof of the formula (x>n)v*(xzn), which requires an applica- 

tion of the equalizing rule to a double recursion. It becomes 

clear that this is the reason that Goodstein merely presents 

this operator, and does not refer to it in the following pages 

of his book. 

Chapter V presents 8 ,  discusses it, and then reduces it 
to an equivalent system @*. Alternatively, 6 is called a 

"formalization" and a "codification of primitive recursive a- 

rithmetic". In the context of this thesis, the latter is more 

suitable, since (R falls short of being a formal system in 



the sense of $2.3, in that it lacks a precisely described lan- 

guage. 

The definition of q makes use of the notion of a "recur- 

sive term", a notion which, as was said in the introduction, 

is used synonomously in [16] with "recursive function". For 

this reason, the intended meaning has been incorporated into 

the foregoing description of "a function", which should sufficz 

for the present discussion. Precisely, a recursive term is a 

term of the language of the formal system R that is defined in 

$2.3 of this thesis. 

Besides F, G and H, we shall also have A, B and C denote 

recursive terms. F(x) denotes a recursive term in which the 

variable sign x occurs. F ( A )  denotes the term obtained from 

F(x) by replacing the variable sign x bv the term A .  

The axioms of @ are the defining equations of the primi- 

tive recursive functions only. ([lC;] does not say this exactl~~. 

It is clear that does not include the emations F=F. But 

the use of terminology there does not explicitly rule out the 

inclusion of the multiply recursive functions. However, the 

fact that it's called a system of "primitive" recursive arith- 

metic, together with further comments and the work in Chapter 

VIII, imply that indeed it is intended to formalize only the 

i primitive recursive part of the foregoing equation calculus.) 

! The rules of inference are given by the substitution sche- 

I mata 
b 

F (x) =G (x) 
F (A) =G (A)  



A=B 
F (A)  =F (B) 

and the schema of the "primitive recursive uniqueness rule" 

0 where is defined by the primitive recursion H (y) =y and 

H ~ ~ ( ~ ) = H ( X , H ~ ( ~ )  ) . The function H is to be a function of not 

more than two variables, and in Sbl, a term H in which x does 

not occur may be taken in place of G(x) provided it is also 

taken in place of G (A)  . 
About this Goodstein says: "The novelty of this codifica- 

tion lies in the derivation of the key equation a+(b'a)=b+(a'b) 

by means of the primitive recursive uniqueness rule, instead 

of requiring a doubly recursive equalizing rule as before." 

This means that except for the properties of the counting oper- 

ator, all the foregoing proved equations and valid rule schema- 

ta are derivable in &. This requires a verification of course, 

to which the following several pages of [16] are devoted. 

For future reference, let us record here that U is equiva- 

lent to the schema 

where the same agreement is made regarding H. One can show 

that U1 is equivalent to the schema of mathematical induction. 
* 

The system is obtained by some reductions of the schema 



* 
U. Precisely, has, instead of U, the schema 

and the key equation x+(y2x)=y+(x2y) as an axiom, and instead 

of the defining equations of the predecessor function, the ax- 
% 

iom Sx?3y=x'y. The reason for wanting to consider 8 becomes 

clear in Chapter VIII. 

Chapter VI is concerned with reductions to primitive re- 

cursion. Here it is shown that certain kinds of multiply re- 

cursive functions have explicit (primitive recursive) defini- 

tions. 

Chapter VII deals with elimination of the parameters xl, 

..., xn in the schema of definition by recursion. This is done 

2 by first settinq J (u ,v) = (u+v) +u and demonstratinq (i) that J 

assigns a unique number to each pair (u,v), and (ii) that therz 

are primitive recursive U and V such that, if z=J(u,v) for sorn~? 

u and v, then U(z)=u and V(z)=v. Repeated applications of this 

enables the elimination of all parameters but one. Elimination 

of the last requires further tricks which we shall not go into. 

These reductions and eliminations are due to P6ter (see 

[ 3 3 1 ) .  After P6ter, Goodstein uses this material to establish 

the following fact: Given the defining equations of the func- 

tions +, &,  and Rt, all the primitive recursive functions 

can be obtained by means of the schemata S: and S: of defini- 

tion by substitution, and the iteration schema It for defining 

functions of one variable: It (F) (0) =F (0) , It (F) (Sx) =F (It (F) (x) ) 



t 
(in [ 161 the reading is closer to It (F) (X)=F~ (0). 1161 men- 

tions, but does not use what is also due to PtSter, that one 

needs just the functions + and E where E (x) =x' (Rt (x) ) (Rt (x) ) . i 
This result enables one to define a doubly recursive func- 

tion cp (n) that enumerates all the one variable primitive re- m 

cursive functions. Exactly, for each primitive recursive func- 

tion F of one variable, there is an m such that qm (n) =F (n) for 

all n. The complicated definition of ~ ( n )  will be omitted. 

This function is not primitive recursive; for if it were, then 

the function defined by $ (n)=qn (n) +l would be included among 

the qm, which is not the case. 

The main purpose of Chapter VIII is to show that Rat and 
hence the equivalent system R ,  is incomplete in the sense thak 
there is a primitive recursive function G such that the equa- 

tion G (x) = O  is verif i.:ble, but not provable in @. This is to 

be proved along the lines of Godel [12], which requires first 

of all, that the system have a precisely described language, 

and secondly, that there be an assiqnment of "Godel numbers" 

to the elements of this system (signs, sequences of signs, 

terms, formulas, sequences of formulas, proofs) such that the 

predicate Pr(m,n), which holds exactly if m is the Godel num- 

ber of a sequence of formulas, n is the number of the last mem- 

ber of this sequence, and the sequence is a proof, is a primi- 

tive recursive predicate. 

It turns out that the proof in 1161 contains an error, 

but that the error is reparable. A minor point is that the 



same as, the earlier R*. Nor is it an equivalent system, since 
1 

one of the axioms is the defining axiom of a doubly recursive 

function. For clearness' sake let us call this system &+. 

Without making the error of [161, R' is as follows: Its 

language consists of the variable signs m,n,xl,x2, ... , and 
the function signs q,qo,q together with the signs +, 

and ( ' P ~  is the sign of Rt). (The interpretation of the sign 

9 is the function qm(n).) Its axioms are the equation m+(n'm)= 

n+(mLn), the equation Sm'Sn=m'n, the defining equations of +, 

2 and * ,  and the defining equation of the function cm(n) (hence- 

forth written q(m,n)) only. Its proof schemata are just those 

of R*. Since +, ', and the rpm are signs for all of the pri- 

mitive recursive functions, everything derivable in R' is de- 

rivable in 4'. 
The error in [16]\is simply that the sign of the function 

mm(n) was omitted. This has the consequence that in the subse- 

quent Godel numbering, this function, and hence itsdefining ax- 

iom, is not assigned a number. Thus, adding q and writing 

r,(n) as cp(m,n) so that it can be assigned a number, is the 

first step towards a remedy. The remedy is completed by mak- 

img the following alterations in the Godel numbering that is 

already established in [161: Assign Q any unused number, say 0. 

Renumber the signs qO,ql, ... by assigning to each qi the num- 
ber of the expression cp(li,n) where Ni is the Godel number of 

the i-th numeral. Build into the predicates sl(x,y) (which 



Sbl from the equation with number x) and S Z ( x , y )  (which says 

similarly for Sb ) the provision that, if x is the number of 2 

the defininq axiom of cp(m,n), then the object put in for the 

variable sign m must be a numeral. This will ensure that, wit-I 

respect to the Godel nurnberinq, the defining axiom for this 

function can enter into a proof only for the purpose of vield- 

ing the definition of some qi. The reader may check for him- 

self that the "proof predicate" Pr of [16] now becomes what is 

needed for the ensuinq proof. 

It is part of the Godel numbering to define a function St 

such that Ste(v/n) is the number of the expression that is ob- 

tained by substitutinq the n-th numeral for the variable with 

number v in the expression with number e (assuming n, v and e 

are such that this is possible). The following is a slightly 

different rendering of the concluding paragraphs of the incom- 

+ pleteness result (now for ) . 
-*Pr(m,St (19/n)) is a primitive recursive predicate of n 

the two variables m and n. Hence it may be viewed as an abbre- 

viation of some equation of primitive recursive terms, which 

contain the variable signs m and n only. Let p be the Godel 

number of this equation. Then St (19/p) is the Godel number 
P 

of the equation that is obtained from it by substitutinq the 

p-th numeral for the variable siqn with number 19, which is 

the sign n. It follows that this latter equation is abbrevi- 

ated by -*Pr (m,St (19/p) ) . 
P 



Let G be the sign of the characteristic function of 

-*Pr(m,St 1 9 ) ) .  We have pointed out that any primitjvc re- 
P 

cursive predicate is introducible as an abbreviation or an 

equation of primitive recursive terms. At one point the incom- 

pleteness proof in [ I 6 1  uses somethin9 which amounts to: if 

P is a primitive recursive predicate of the variable m (only), 

then one may assume that the equat.i.cn abbreviated by P is 

F (m)=O where the sign P is the pair (F,Kp). 

Note that this is true simply because, for all F and G, the 

equations F=G and IF,G[=O are derivable from one another; for 

j.f P abbreviates F=G, then I P , G /  is %. Let's assume this for 

G. Note that w e  thereby assume that St (19/p) is the ~ o d e l  
P 

number of the equation G(m)=O. 

Suppose that G ( m ) = O  has a proof in Rt. Then on the one 
hand, this proof has a Godel number, say k, and Pr(k,Stp(19/p)) 

holds by the definition of Pr; while on the other hand, the 

equation G(k)=O (with k here the k-th numeral) is derivable 

from G (m) = O  by Sb2 , which means that r\/*Pr (k, St (lg/p) ) holds 
P 

by the definition of "characterj stic function". Hence G (m)=O 

is not provable in Rt. 
Since St (19/p) is the Godel number of G(m)=O, this lat- 

P 
ter fact is expressible by saying that --*Pr(k,St (19/p)) holds 

P 

for all k. So G(k)=O for all k, by the definition of "charac- 

teristic function". This implies that the equation8 G ( C ) = O ,  

G (SO) =0, . . . are derivable in &*; for Rfi is equivalent to , 

and it is known that in @ every variable-free term is reduci- 



ble to a unique numeral, and that only 'rerifiable equations 

are provable. Moreover, since everv equation that is deriva- 

ble in @* is also derivable in R', the equation G(m)=O is not 
* 

provable in @*. Hcnce (and so also 6 ) are incomplete in 

the sense we have described. 

Chapter VIII, and the monograph, concludes bv establish- 

ing Skolem's nonstandard model of arithmetic as a model of 8. 

Here it should be pointed out that (i) (7( is assumed to have a 

precise language, (ii) the signs of this language are extrlca- 

ted from their affixed meanings, and regarded just as symbols. 

We shall have occasion to go into the construction of this mod- 

el in $3.3, where it is construed as a model of the free-var- 

iable theory A .  

Regarding the model, we rust take issue with 1161 on one 

point. There it is asserted that by exhibitinq this model, 

Skolern showed "that not only systems like or R* ,  hut every 

formalization of arithmetic fails to characterize the number 

concept completely and admits as values of the number variables 

a class of entities of which the natural numbers form only the 

initial seqment". If by "only the initial segment1' is meant 

"a proper initial segment1', this assertion is not true. For 

the second-order theory of Peano arithmetic (see r 3 2 1 )  is cate- 

gorical, which means that, up to some isomorphic copies (see 

$ 3 . 3 ) ,  it is modeled by the natural numbers only. 

In the introduction we mentioned that there are some appar- 

ent reasons for Goodstein's use of sians instead of symbols. 



F mathematical reason is that, for the purposes of establish- 

ing the foregoing incon,plet,eness result along the lines of 

Godel, since 4 is a system of prim-i tive recursion, one is 

thereby enabled to dispense with the "representation theorer" 

(similar to Theorem 2.1, c2 .3 )  that accompanies such proofs 

for other systems. For, as was just pointed out, if P(xl,..., 

x ) is primitive recursive, then we may7 assume that it abbre- n 

viates an equation of the form I'(xl,  ..., xJ=O where the inter- 

pretation of the sign F is the function K p .  Hence every pri- 

mitive recursive F is automatically "represented" in . 
A philosophical theme is caught up in the words "a devel- 

opment" in the subtitle of the nonograph. A quick glance 

through reveals that, as a system, Recursive Number Theory is 

taken through four distinct steps. The calculus oF Chapter TI 

is nonformal; that is, the formal aspect of the equations as 

composed of signs, is barely mentioned, so that the proocs in 

the calculus have a particularly intuitive character. Ic Chap- 

ter V the calculus is cut down to one of primitive recursion, 

modified with respect to its rules of proof, and formalized as 

the system R .  The desire is to retain (or recover) proofs of 

the fundamental theorem of arithmetic and the theorem on least 

common multiples in a system 0 5  primitive recursion, to brjna 

out that all the earlier proofs can be formalized, and to den- 

onstrate that most of the proofs carry over directly. One 

notices that at this step, he begins to consider signs formally. 

The next step is taken in Chapter VIII, where a modifica- 



tion (extension) of 8 receives a precise ly determined language. 
Here one explicitly distinguishes the sign from its interpre- 

tation. The fourth step is where Skolem's nonstandard model is 

considered, where, as was pointed out, signs are considered as 

symbols independent of interpretation. At this last step, 

becomes a formal system, precisely in the sense of $2.3. 

Thus encapsulated, and depicted here in the examples of 

symbols and formal systems, is the manner in which a mathema- 

tical concept is arrived at through naive implementation giv- 

inq over to explicit description. In this, there is implicit 

a philosophical assertion which this author would make as fol- 

lows: Beginning with root simple concepts, mathematics evolves; 

and this evolution entails the repeated act of the mathemati- 

cian of formalizing his role in relation to his subject into 

the body of his work. 

This concludes a review of [16]. Works by Goodstein 

that are of related interest are [18] and [191  which consider 

some decidable fragments of R ,  and [17] which shows that, un- 
der a different version of the logical constants, Post's (n+l)- 

valued logics can be modeled in @ .  This modeling has not been 

considered entirely satisfactory, since the deduction theorem 

does not hold in it. 

In [9] Curry showed that with the obvious interpretation, 

via his version of the logical constants, a formula is provable 

in Hilbert and Bernays' formalization of prifiitive recursive 

arithmetic if and only if its interpretation is provable in 



his logic-free equation calculus. In Goodstein (211 there ap- 

pears a system @ which is equivalent to the & of [16], where- 

in, via the foregoing logical constants, there is an interpre- 

tation of the sentential calculus such that a formula is prov- 

able in the sentential calculus if and only if its interpre- 

tation is provable in @, . ([21 1 does not say that the fl there 

is equivalent to the 8 of [161, but this can be proved.) A 

brief summary in 1211  of some recent work on recursive arith- 

metics accounts for the citations in the following paragraph. 

For a system T of "ternary arithmetic", which is equiva- 

lent to 4 ,  Rose [ 3 7 ]  proves both of Godel's incompleteness 

theorems, and shows that its consistency can be established 

+ in an extension T that is obtained by addinq the schema of 

double recursion, or more exactly, the defining equation of 

the function qm(n). The method of the first incompleteness 

result is the one just described for @ .  In terms 

of R ,  the second of these is that, if p is the ~ o d e l  number 
of the equation 1=0, and F is the characteristic function of 

Pr (m,p) , then the equation F (m)=l which says that @ is con- 

sistent, is verifiable but not provable in . Pozsgay [34 ] 

has proved that a weaker system EA of "elementary arithmetic" 

also satisfies the second incompleteness theorem. Cleave [8] 

and Rose [ 3 7 ]  show that the consistency of EA can be proved 

in 4 ,  and in some weaker systems. The possibility of replac- 

ing Sb2 by finitely many of its instances has been studied by 

Heath [23]. The subject of "multiple successor arithmetics", 



which has given rise to the subject of "word arithmetics", 

was introduced by vuckoviE 1451. This work is furthered by 

Goodstein 119 1 . In @ , x+ (y'x) and x' (x+.y) are respectively 

the qreater and lessor of x and y. Partis, a student of Good- 

stein, has shown that the elements in VuckoviE1s system have 

a vector representation, and that there, the two terms are re- 

spectively the least upper bound and the greatest lower bound 

of x and y, so that the system forms a lattice. 

[ 2 2 ]  also notes that Church studied a formalization of 

Skolem's arithmetic as early as 1936 ([4]). We add that he 

took up the subject again in [5] (1955) and 161 and [7] (1957). 

The system presented in 161  is an "equation logic" of arithme- 

tic. That is, it also postulates the propositional calculus 

and some axioms for equality. This system is interesting be- 

cause, instead of having the defining equations of the primi- 

tive recursive functions as axioms, it has only those for the 

initial functions, and incorporates the schemata for definition 

by substitution and primitive recursion into its rules of proof. 

Hence it has only finitely many axioms. [7] examines applica- 

tions of recursive arithmetic to some problems of circuit syn- 

thesis. 

Of course, Skolem has returned to the subject repeatedly. 

The aforementioned nonstandard model appeared in [41] (1933). 

A record of much of his work has been recorded by himself in 

1 4 2 1  (1946). This shall not be gone into, since most of 

it does not pertain directly to the equation calculus as such. 



For much of t h e  h i s t o r i c a l  i n fo rma t ion ,  we a r e  i n  d e b t  

t o  van He i j enoor t  f o r  b i s  work i n  [ 4 4 1 .  Those r e f e r e n c e s  t h a t  

a r e  r e p r i n t e d  t h e r e  have been i n d i c a t e d  i n  t h e  b ib l iog raphy  

of  t h i s  t h e s i s .  I t  i s  worth  mentioning t h a t  a l l  r e a d i n g s  i n  

[ 4 4 ]  are i n  Eng l i sh ,  even though t h e  o r i g i n a l  p u b l i c a t i o n  may 

no t  have been.  References  t h a t  came o u t  of 1211 have been s o  

i n d i c a t e d  i n  t h e  foregoing .  Some were a l s o  found i n  t h e  b ib-  

l i og raphy  of 1161. 



Chapter  - 2 

Free-Variable  Theor i e s  of  Ar i thme t i c  

The f i r s t  two s e c t i o n s  w i l l  s e t  b a s i c  terminology and 

n o t a t i o n s ,  d e f i n e  " f r e e - v a r i a b l e  t h e o r y n  and some r e l a t e d  

n o t i o n s ,  and s t a t e  some well-known theorems. The t h i r d  sec-  

t i o n  u s e s  t h i s  t o  def in ' e  two t h e o r i e s  of a r i t h m e t i c  t h a t  a r e  

t hen  s t u d i e d  a t  l e n g t h .  

$ 2 P r e l i m i n a r i e s  - -  
The set theo ry  employed i n  t h i s  t h e s i s  i s  s t anda rd .  

A well-known r e f e r e n c e  i s  F raenke l  and B a r - H i l l e l r s  book I l l ] .  

But Monk [31], f o r  example, has  t h e  needed in fo rma t ion  and i s  

more r e a d a b l e .  Beyond t h e  u s u a l  "na ive"  set theo ry ,  one w i l l  

r e q u i r e  t h e  n o t i o n  of  a proper  class. Concerning classes, i t  

i s  u s e f u l  t o  know t h a t  every  s e t  i s  a c l a s s  and t h a t ,  i f  some 

s u b c l a s s  X of a p roper  c l a s s  Y happens t o  be a s e t ,  t h e n  t h e  

complement of X w i th  r e s p e c t  t o  Y i s  a l s o  a proper  c l a s s .  

Most of  t h e  r e l e v a n t  n o t a t i o n  and terminology has  been f i x e d  

a s  f o l l o w s  he re .  

The empty set i s  denoted by I$. The Greek le t te r  E and 

t h e  word " i n "  a r e  used t o  i n d i c a t e  ( c l a s s )  membership, c i s  

used f o r  i n c l u s i o n ,  U 5or  un ion ,  fl f o r  i n t e r s e c t i o n ,  - f o r  

complementation (wi th  Y-X f o r  t h e  complement of X w i t h  r e s -  

p e c t  t o  Y), { . . . I }  f o r  t h e  set  of  a l l  ... such t h a t  - I 

f o r  t h e  I . . . )  f o r  t h e  s e t  of a l l  ..., and sometimes{ ...}i=l 

set  of a l l  ... such t h a t  l z i r n .  Sequences a r e  thought  o f  



i n f o r m a l l y  a s  j u s t  l i s t i n g s .  I n  a l m o s t  a l l  c a s e s ,  t h e y  a r e  

indexed  by t h e  n a t u r a l  numbers. (Ordered)  n - t u p l e s  a r e  f i n i t e  

s e q u e n c e s  o f  l e n g t h  n ,  and a r e  d i s t i n g u i s h e d  v i s u a l l y  by 

e n c l o s i n g  p a r e n t h e s e s .  Those n - t u p l e s  c o n s i s t i n g  e x c l u s i v e l y  

o f  t h e  members of  a c l a s s  X a r e  s a i d  t o  b e  from X, and t h e  

c l a s s  o f  a l l  n - t u p l e s  f r o m  X i s  d e n o t e d  by x". An n-ary 

p r e d i c a t e  r e l a t i o n  on  a. s e t  X i s  a s u b s e t  - n-ary 

f u n c t i o n  o r  mappinq from a se t  X - t o  a  se t  Y i s  a n  a s s i g n m e n t  

of  an  un ique  member of  Y t o  e a c h  member of xn.  Where F i s  a 

f u n c t i o n ,  F(x l f . . . , x n ) = y  w i l l  i n d i c a t e  t h a t  F a s s i g n s  t h e  

v a l u e  y t o  t h e  argument  ( x l ,  ..., x,). I n  most p l a c e s ,  t h i s  

w i l l  s e r v e  t o  d e f i n e  F c o m p l e t e l y .  T h i s  c a n  be  e x e m p l i f i e d  

h e r e  w i t h  a n  a p p l i c a t i o n .  I f  F i s  a n  n-ary f u n c t i o n  from X 

t o  Y and if 2cxn,  t h e n  F/Z d e n o t e s  t h e  r e s t r i c t i o n  o f  - F - t o  2 ,  

which is  d e f i n e d  by (F/Z) ( x l , .  . . , xn )=F  (xl  , . . . ,xn)  f o r  a l l  

(X l f . . . f x n ) ~ Z .  I t  i s  wor th  n o t i n g  t h a t  f u n c t i o n s  a r e  d e f i n e c  

on  sets o n l y .  I t  w i l l  o c c a s i o n a l l y  b e  c o n v e n i e n t  t o  t h i n k  of 

a n  n-ary f u n c t i o n  as  a set o f  o r d e r e d  ( n + l ) - t u p l e s .  The words 

"unary"  and " b i n a r y "  w i l l  r e p l a c e  "1 -a ry"  and "2-ary"  a n d ,  

u n l e s s  i n d i c a t e d  o t h e r w i s e ,  " f u n c t i o n "  and " p r e d i c a t e "  s t a n d -  

i n g  a l o n e  mean t h a t  t h e y  are n-ary  f o r  a n  a r b i t r a r y  n .  The 

f i r s t  i n f i n i t e  c a r d i n a l  i s  w r i t t e n  ;\b. 
L e t  X b e  any c l a s s .  An n-ary  -- r u l e  on X i s  a n  a s s i g n m e n t  

o f  a n  u n i q u e  m e m b e r  o f  X t o  e a c h  member o f  some s u b c l a s s  X '  

o f  x n ,  i n  e f f e c t ,  a  s u b c l a s s  o f  x n + l .  N o t i c e  t h a t  

i f  X w e r e  a  set t h e n  t h e  r u l e  would j u s t  be  a n  n-ary  p a r t i a l  



function from X to itself. Most of the above notation and 

terminology for functions extends naturally to rules. In 

particular, if R is an n-ary rule on X that assigns values 

only to arguments in XI, and if YCX", the restriction of - R 

to Y. denoted R/Y, is defined by letting ( R / v )  (xl.....x ) =  - n 

R(xl,....xn) for all ix,, ..., xn)cXtnY. Notice that R/Y is 
also a rule on X. 

In some treatments, rules are defined to include those 

taking infinite sequences as arguments. When a distinction 

is made between rules that are infinitary and finitary, the 

methods employing such rulesare correspondingly so called. 

And within the context of a formal system, the rules and 

methods of proof are of concern. This thesis considers only 

formal systems whose rules of proof are firitary. 

If YcZ and p is a set of rules on Z, then a class X can 

be defined by a generalized inductive definition as follows: 

(i) let YCX, (ii) for each R in p, if xl... . , xn are in X and 
R assigns a value to (x~,. . . ,xn) , let R(xl,. . . ,xn) be in X, 
and (iii) let nothing be in X except as required by (i) and 

(ii). Usually, what Z and p are will be determinable from 

the context. The analogue of (iii) will never be written, 

but will always be tacitly assumed. An example of how all 

this can be used was met in Chapter 1 with the definition of 

the primitive recursive functions. A simpler example will 

appear shortly. 

Where X is defined as above, to show that its members 



have some property P, one uses a proof & induction on the -- 
members of X. He shows that: (i) if XEY, then x has the 

property PI (ii) for each R E P ,  if xlt ..., xn€X and R assigns 
a value to (xl, ..., xn) and each xi has the property PI then 
R(xl,...,xn) has the property P. The condition that the 

xl, ..., xn"X and FQssigns a value to (X l,...,~n) and each x i 
has the property P is called the induction hypothesis. 

Example. Let Y={O) and let R be the prime function, , - 
that yields, for each natural number x, the successor of x. -- -- - - --- 

Then a set X of the successors of 0 can be defined by a gen- 

eralized induction: (i) O E X ~  (ii) if XEX, then x'eX. (Notice 

that here it is implicit that Z is the set of natural numbers.) 

In this case, "proof by induction" and "induction hypothesis" 

clearly have their usual meanings. 
Remark. As a(beginning student of mathematical logic and 

having to rely primarily on textbooks for his information, 

this author was more than once distressed by the amount of 

confusion that characteristically surrounds the simplest and 

perhaps most important concept in the subject, that of a 

symbol. To be sure, most writers of textbooks attempt to 

make this concept clear, but usually through a kind of semi- 

mathematical and semi-philosophical heurism that includes 

such words as "concrete" and "abstract", "formalism", "meta- 

language", "syntax", "constructive", "interpretation", and 

so on, and only ends by leaving the reader awe struck or, 

at best, amid a nebulous heap to sort out for himself. 

Others will brush the matter aside on the pretext that the 



idea is obvious and that any one who can't understand it 

should best ply himself to another trade. Now these people 

should be reminded that it was keveral thousand years from 

the time that numerals were first introduced to the advent 

of the variable quantity, and several centuries more before 

the discovery of symbols per se; and thzt no matter how 

simple the concept is in retrospecttit is certainly not one 

that is easily obtained. Still others will begin straight- 

way, saying that what is meant will become clear. But how 

long is it until the student realizes that the idea is in 

fact simple and that much of his trouble could have been 

saved with a few carefully worded paragraphs? After all, 

if the idea is clear to the author, why doesn't he at least 

try to make it clear to the student? 

After some inquiry the difficulties begin to reveal 

themselves. First, although there are volumes of philosoph- 

ical analyses of the nature of ordinary language and its 

multiplicity of uses, there is no~universally accepted 

rendering of this central idea. Apparently, this is because 

any completely comprehensive definition must be self-requisite. 

One cannot define it except by means of itself. Thus, it is 

frequently taken as basic, and generously explained. Carnap 

[ 3 ]  is an example of this, Second, for the purposes of 

mathematics, it is possible to be precise in a definition. 

One merely sets aside a collection of independently existing 

objects and "calls" them symbols. But in doing so he nec- 



essarily 10s e motivation that initially had been sup- 

plied by the philosophical analyses. However, this author 

will contend that the philosophy should he separated from 

the mathematics, so that each may be presented in its own 

light. Further it is claimed that this can be done with suf- 

ficient clarity, and moreover, with profit. 

Concerning the philosophy, suppose we beqin with the 

following nondefinitions: A "statement" is a sentence that 

has meaning; where a "sentence" is a concrete, syntactical 

object that may be thought of as consisting of marks on pap- 

er; while a "meaning" is an abstract, semantical object that 

cannot be written down, but is somehow "bound" to a sentence 

that "asserts" that meaning. Then a"theoryl', considered as 

a body of knowledge, is a collection of statements together 

with a specified subcollection of"acceptablel' statements, 

and in mathematical theories acceptable statements are called 

"theorems". 

By using this as an overview, one can proceed to the 

problem. In both philosophy and mathematics, symbols might 

advantaqeously be thought of as the marks, but "idealized". 

The philosopher's symbols are the letters and punctuation 

of ordinary languages, and are to be distinguished from the 

actual marks on paper that, by common agreement, serve to 

"call up" these symbols. Mathematician's symbols are just 

things, as we have said, that are set aside and called 

symbols; and, in further contrast with the linguistic 



philosopher, when he says that "x is a symbol", he does not 

mean that the letter "x" is being used as a symbol, but that 

it is taken to stand for some member of the collection of 

symbols. One can see that this manner of speaking is no 

more unusual than to say that "x is a natural number", with 

which the student should be familiar. 

The concrete-abstract relationship is relative. It is 

worth mentioning that in linguistics the symbols are the 

second most concrete objects at hand, and that in mathematics 

they are third. 

Since, by analogy, mathematics calls the things made up 

of symbols "linguistic" or "syntactical" objects, it is only 

proper to call the things used to denote these objects "meta- 

linguistic" objects. 

Continuing in this way of drawing parallels (once the 

context in which the parallels live has been described): 

"Closed terms" are like noun phrases. "Formulas" with "free 

variables" are like sentences with empty noun spaces and, as 

such, can have meaning only when these spaces are filled with 

closed terms. "Structures" or "interpretations" consist of 2 

collection ofl'referents" for the closed terms together with t 

prescription for assigning a "truth value" to closed formulas. 

Closed formulas are clearly the only ones of which it can be 

asked whether they are true or false. The logical connectives 

do not have referents in the structures. The method of as- 

signing truth values goes to their usual "truth table" inter- 



pretation and is precise in principle. But to actually 

determine if a given formula is true under a given inter- 

pretation of its terms, in practice one usuallv relies on 

his own understanding of the words, "not" and "implies" 

say, that are associated with the given connectives. The 

meaning of a formula is thus not written down, and to what 

extent it is captured by the interpretation is subject to 

question. "Formal theory", "theorem", "proof", "valid 

formula'' and "mode1"may also be discussed in this way. 

"Constructive" methods are those that deal with syntac- 

tical objects independently of any interpretation. One 

"builds" formulas and proofs, say, out of concrete objects 

in much the same way that a man would build a house of wood 

and stone. And by this analogy, constructive methods are 

usually required to be finitary, for reasons comparable to 

the impossibility of building an infinite house. Infinitary 

constructive methods have been considered however. "Seman- 

tical" methods involve structures,and hence abstract objects, 

and are therefore "non-constructive". And so on. 

One may recall the paradigm: 

Let 1 be a number. 

Let x be a symbol. 

Let x be a number. 

Let 1 be a symbol. 

To ensure having enough symbols, some authors take the 

class of ordinal numbers. Any proper class will suffice. 



$ 2.2 Free-Variable Theories in General 
-7 - - 

Let X be a proper class and call its members symbols. 

Let -- and - denote two distinct symbols and let X1,X2,X3,1, 
X3,2,...,X4,1,... constitute a partition of X-{--,+I into 

mutually disjoint proper classes. Call the members of XI 

(individual) variables and, in some order, denote x, of them 

by )50,&1,... . Call the members of X2 constants and, for 

each nzl, call the members of X and X respectively 
3 ,n 4 ,n 

n-ary function symbols and n-ary predicate symbols. Choose 

a certain member of X 
3,2 

as the equality symbol and denote 

it by =. Let the symbols -) and -+ be the loqical connectives. 

Let strings be finite sequences of symbols and require that, 

as such, they be written without the separating commas, so 

that &O=zo denotes a string, while &O,=,~O does not. 

The letters u and v denote strings, x,y and z denote 

variables, c a constant, f,g and h function symbols, and p 

and q predicate symbols. Also t should be a term, and P and 

Q and (rarely) R should be formulas. Convene that, if u is 

ul...u and v is vl...v where the ui and v are symbols, n m j 

then uv is ul...u v n 1'" .v and is thereby distinguished from m 

the two element sequence u,v. Convene also that some fre- 

quently appearing kinds of strings may be abbreviated as, 

and ->(tpt1) by (ttdt') . omit parentheses when they are not 

required to determine grouping. And in this regard, agree 



that -+ and * have priority over v and & ,  and adopt 

5 3 

a con- 

vention of associating to the right. For example, read 

P*O&R as (P*(Q&R) ) rather than ( (P.9) & R )  , and read PI+= - 
+P as (P1+*-*+ n (Pn-l+Pn) .. * )  

Every string has a finite length. Each member or finite 

sequence of consecutive members of a string is said to occur 

in that string. Observe that a symbol or string may have 

more than one occurrence in the same string. For example, - 
u u u u u contains three occurrences of ul and two of u1u2. 1 2 1 1 2  

The total number of occurrences of -# and -+ in a string is 

called its height. A string in which some variable occurs 

is open. Strings that are not open are closed. 

The expression u(v' ..., v'/vl, ... 1 ,  it being tacit 
1' n lVn 

that vi#v if i#j, denotes the substitution of vi,...,~; for 
j - - 

vl, ..., v in u: the string obtained from u by, for each i, n - 
replacing every occurrence of v by an occurrence of vj as i 
long as this is possible. (For such replacements it is 

understood that the necessary adjustments are made regarding 

length. So a replacement is impossible only if either vi 

does not occur in u, or it happens that an occurrence of vi 

in u shares a symbol occurrence with a distinct occurrence 

of some v in u. Hence the definition implies that, if some 
j 

one of these two conditions holds for every i, then u(vi, 

..., vA/vl, ..., v ) is just u. Note that the substitution may n 

differ from u(vl/v ) *-.(v1/v ) if some v occurs in v 1  for 
1 1  n n i j 



for some j<i.) Such a subst itution in u w 1 be called a 

(substitution) instance -- of u only if each vi is a variable 

and each vj is a term. 

The terms are defined by a generalized induction: (i) 

variables and constants are terms, (ii) if ul, ..., u are n 

terms and f is an n-ary function symbol, then fu l...u is n 

a term. And likewise the formulas; (i) if tl, ..., tn are 
terms and p is an n-ary predicate symbol, then pt l... tn is 

a formula, called an elementary formula, (ii) if u is a 

formula, then --u is a formula, and (iii) if u and v are 

formulas, then +uv is a formula. A sentence is a closed 

formula. 

Unique Readability Theorem. For any term t, either (i) 

t is a variable, (ii) t is a constant, or (iii) t is 

ft l...t for exactly one f and one finite sequence tl, ..., t, n 

of terms; and for any formula PI either (iv) P is pt l...tn 

for exactly one p and one finite sequence t l f - * -  ,tn of terms, 

( v )  P is 4 for exactly one formula Q, or (vi) P is -tQR for 

exactly one pair of formulas Q,R; and these six cases are 

mutually exclusive. 

Shoenfield's proof of the "formation theorem" in [ 3 9 1  

will serve as a proof of this. (The mutual exclusiveness is 

implied by the partitioning of the symbols.) Once and for 

all, this theorem is used in every proof and definition by 

induction on the length of terms or on the length or height 

of formulas. 



Proposition. t(tl,...,t,/xl,...,xn) is a term and 

P (tl,. . . ,tn/xl , .. . ,xn) is a formula. 
This proposition is proved, for an arbitrary n, by in- 

duction on the length of terms and the height of formulas. 

For the sake of notational briefness, assume that n=l. If 

t is a variable (either xl or not) or a constant, then by 

definition, t(tl/xl) is a term. Suppose that t is fti ... t,;l 
for some f and some scquence of terms t' l,...,tA. Then 

t (tl/xl) is fti (tl/xl) . . . tk(tl/xl) . The induction hypothesis 

is that t : ( t l / x i )  isaterm for each i. Hence, by definition. 
1 

t(tl/xl) is a term. Now this proves that, if P is pty ... t i  

for some p and finite sequence ti, ..., tfl, then P(tl/xl) is a 
formula. Suppose that P is -0 for some formula Q. Then P(tl/xl) 

is 4(tl/x1) and the induction hypothesis is that Q(tl/xl) 

is a formula. Suppose that P is +QR, Consider the induc- 

tion hypothesis. Conclude. n 
A free-variable languaqe L has (i) a set of symbols - of L 

consisting of (a) the logical connectives, (b) a set of varia- 

bles that includes E-,,&~,... , (c) a set of constants, (d) fcr 

each nrl, a set of n-ary function symbols, (e) for each nz1, 

a set of n-ary predicate symbols; and (ii) a set of formulas 

of - L consisting of all and only those formulas that can be bcilt 
up from the symbols of L. 

If every symbol of L is a symbol of some language L', then 

L' is an extension of - L. A symbol that is not a symbol of L 



i a  said 

Note. - 
union of 

to be new to L. -- 
The symbols of a language comprise a set, and the 

the members of a set of sets is a set. Hence, giver 

any set of languages, each member of the partition of the 

class of all symbols contains a proper class of symbols that 

are new to every language in this set, 

An n-ary rule (of proof) will be a class of (n+l)-tuples - -  
of formulas. Each member of a rule is called an instance or 

application of the rule, the first n members being the hypo- 

theses of the instance and the last member being the conclu- 

sion. There will be two logical rules: modus ponens, consis- - 
ting of all triples (P,P-+Q, Q), and the substitution rule, - 
consisting of all pairs (P,P(t/x)). All the formulas of the 

forms P+Q+P, (P-Q-+R) -+ (Pa) -+P-+R , (4-P)-tP-CQ, X=X , X1=Y1-+* 
-+x n =y,-fx l...xn=fyl...yn, and xl=yl-+ * *  *+x = y p x  l...~ -+ n n 

py l...yn are logical axioms. Axioms of the first three kinds 

are known as propositional axioms, and the others are the 

axioms - for equality. Any such axioms that are formulas of 

some language L are said to be of - L, and a rule instance 
that consists exclusively of formulas of L is said to be in L. - 

- 
Notation. (For example.) Whenever convenient, u will be 

- 
written for ul, ..., un. Moreover, u t  (say) abbreviates 

ui, ..., u;, and not {ul, ..., un)' say. 

Definition 2.1. A free-variable theory T has: (i) a free- - 
variable language, denoted L(T), (ii) a set of axioms of - T 
consisting of the logical axioms of L ( T )  and (possibly) some 



other formulas of L(T) called nonlogical axioms of - T I  (iii) 

a set of rules of - T consisting of the logical rules and 
(possibly) some further rules called nonloqical rules of - T I  

(iv) a set of theorems - of T that is defined by generalized 

induction: (a) the axioms of T are theorems of TI (b) if 

(FIR($)) is an instance in L(T) of a rule of TI and each Pi 

is a theorem of TI then R(F) is a theorem of T. A finite 

sequence of formulas of L (T) is a eroof -- of a formula P - in 

T if P is Pn and, for each i, either Pi is an axiom of TI or 

there exist i . . ,imci such that (P , . . . ,P. ,Pi) is an 1" il lm 
instance of a rule of T. T ~ P  indicates that there is a proof 

of P in T. Sometimes we just say that T proves P. 

Proposition. A formula P is a theorem of a theory T if 

and only if TIP. 
9: This is proved by an induction on the theorems of T. 

If P is an axiom of T, then the one element sequence P is a 

proof of P in T. Suppose that, for some rule R of T, P is 

R (5) where each Pi has a proof, say Pi , , . . . ,Pi ,k =Pi , in T. 
i 

Then the sequence PlI1,...,PlA I ~ - ~ P ~ , J ~ - ~ , P  =P is a 
1 n ,kn 

proof of P in T. 

c: This is an easy induction on the length of proofs in 

the theory T. D 
Remark. How free-variable theories differ from first-or- 

der theories is evident. In this remark we offer the most 

likely reason that first-order theories should not have non- 



l o g i c a l  r u l e s .  

L e t  T  be a  f i r s t - o r d e r  t h e o r y .  L e t  T '  be o b t a i n e d  from 

T  by a d d i n g  some r u l e  R .  L e t  T" be  t h e  t h e o r y  t h a t  i s  o b t a i n e l  

from T by a d d i n g ,  a s  n o n l o g i c a l  axioms,  a l l  t h e  f o r m u l a s  P i & - - -  

+ (  ' where (P ,R(B) ) i s  a n  i n s t a n c e  o f  R i n  L (TI ) (=L (T) ) , 

and where t h e  p r imes  i n d i c a t e  u n i v e r s a l  c l o s u r e .  Then e v e r y  

theorem o f  T' i s  a  theorem o f  T" .  For  suppose  t h a t  T'IP. To 

c o m p l e t e  a n  i n d u c t i o n  on t h e  theorems  o f  T', w e  need o n l y  show 

t h a t ,  i f  P  i s  t h e  c o n c l u s i o n  i n  a n  i n s t a n c e  ( P , R ( $ ) )  of R 

s u c h  t h a t  T " ~ P ~  f o r  a l l  i ,  t h e n  T n t P .  T h i s  i s  e a s y .  By t h e  

c l o s u r e  theorem,  o u r  h y p o t h e s i s  y i e l d s  t h a t  T'IP; f o r  a l l  i .  

s o  T" p r o v e s  Pi&*"&P1; by t h e  t a u t o l o g y  theorem. I n  t u r n .  

t h i s  and t h e  c o r r e s p o n d i n g  n o n l o g i c a l  axiom y i e l d s  T " ~ P ' .  

Hence T " ~ P  by the  closure theorem.  

Now suppose  t h a t  T' s a t i s f i e s  t h e  d e d u c t i o n  theorem.  

(Note t h a t  t h e  theorem i s  n o t  a u t o m a t i c ,  s i n c e  i t s  p r o o f  i s  

by a n  i n d u c t i o n  on theorems ,  which c a n n o t  be  comple ted  r o r  T '  

w i t h o u t  some f u r t h e r  i n f o r m a t i o n  a b o u t  R . )  Then e v e r y  theorem 

o f  T" i s  a theorem o f  T ' .  For  t h i s  w e  need o n l y  show t h a t ,  

f o r  e a c h  i n s t a n c e  of  R i n  L ( T 1 ) ,  t h e  c o r r e s p o n d i n g  axiom o f  T" 

i s  a  theorem o f  T ' .  Cons ide r  t h e  i n s t a n c e  ( R , R ( P ) ) .  For  any 

fo rmula  P I  i f  T ' ( F )  ( ~ o t a t i o n :  see t h e  f o l l o w i n g )  p r o v e s  P ,  

t h e n  T t ( Y i  ,..., P ' )  p r o v e s  P '  by t h e  c l o s u r e  theorem;  whence n  

T 1 ( P i & -  - . & P 1 )  p r o v e s  P ' b y  t h e  t a u t o l o g y  theorem; so t h a t  T '  n 

p r o v e s  P i & - * * & P 1 + P '  by t h e  d e d u c t i o n  theorem. n  

Today, t h e r e  a r e  no known wor thwhi le  R such  t h a t  a  f i r s t -  



order theory plus R fails to satisfy the deduction theorem. 

Thus, at least for now, when dealing with first-order theories, 

there is nothing to gain by considering nonlogical rules. 

A theory T is consistent if no formula P of L(T) is such 

that both P and -P are theorems of T. Otherwise T is incon- 

sistent. A formula P is decidable in T if at least one of P - 
and -P is a theorem of T. A formula that is not decidable is 

undecidable. A formula P is refutable - in T when some (not 

necessarily closed) substitution instance of -P is a theorem 

Definition - 2.2. A consistent theory T is sententially - com- 

plete if every sentence of L(T) is decidable in T. A consis- 

tent theory T is complete if every formula of L(T) that is not 

a theorem of T is refutable in T. If T is not complete, it is 

incomplete. 

Notes. (i.) Complete theories are sententially complete. 

(ii) A consistent theory T whose language contains a constant 

is complete if and only if it is sententiallv complete and a 

formula of L(T) all of whose closed instances in L (T) are theo- 

rems of T is also a theorem of T. (iii) We shall sometimes 

make use of (i) and (ii) without mention. By the way, item (ii) 

shows that Definition 2.2 generalizes the notion of complete- 

ness as found in [ 161 for the system . 
Remark. It is not difficult to see that, when it is stat- 

ed for first-order theories, our definition of completeness 

implies the usual one (every (first-order) closed formula is 



decidable). On the other hand, a complete first-order theory 

containing a constant is complete in our sense, and one with- 

out a constant has a conservative extension that is complete 

in our sense. (This is the corresponding Henkin theory. See 

Shoenfield [ 3 9 ] . )  Thus, it is remarkable that the free-vari- 

able theories of arithmetic, A and A-, whose languages contain 

a constant, are incomplete ($2.3). For this shows that there 

are systems of weaker expressional strength, but with stronger 

rules of proof, than the first-order theory of number theory 

(see [39]),which are nevertheless incomplete in precisely the 

same sense. 

A theory T' is an extension of T if the symbols, axioms, 

and rules of T' include all those of T. Where X is a set of 

symbols, T(X) denotes the extension of T obtained by includ- 

ing the members of X among the symbols of L(T) (by adjoining 

them to T) . Where E is a set of formulas of L (T(X) ) and p 

is a set of rules, T(X,E,p) denotes the extension of T(X) oh- 

tained by adjoining E to the axioms of T(x), and p to its 

rules. If any of XI E or p is empty, it is omitted, and 

sometimes their members are just listed. 

Although not absolutely necessary, it will be convenient 

to have the following well-known theorem. Its proof is the 

same as the one due to Kalmar (1935) as found in Margaris 

[ 3 0  1 , even though its statement here is for theories with a 

free-variable rather then a first-order language. For the 

statement, one requires some further terminology. A truth -- 



v a l u e  ass ignment  ( t v a )  f o r  a  language L i s  a f u n c t i o n  V from 

t h e  e l emen ta ry  fo rmulas  o f  L t o  t h e  set  { 0 , 1 )  where 0 and 1 

a r e  t h e  t r u t h  v a l u e s .  With each  t v a  V t h e r e  i s  an  un ique  

e x t e n s i o n  V* t h a t  maps t h e  fo rmulas  of  L t o  { 0 , 1 )  a c c o r d i n g  

t o :  ( i) i f  P i s  an e l emen ta ry  fo rmula ,  t h e n  V*(P)=V(P) ,  (ii) 

i f  P i s  -.-Q f o r  some 0 ,  t h e n  V* ( P )  = O  i f f  ( i f  and o n l y  i f )  

V* (Q)  =1, (iii) i f  P i s  +QR, t h e n  V* ( P )  =O i f f  V* ( 0 )  =1 o r  v* (R; = 

0. I t  i s  e a s y  t o  see t h a t  e ach  V* acts on a b b r e v i a t e d  f o r -  

mulas i n  t h e  expec t ed  way. A formula  P o f  a language L i s  a 

t a u t o l o g y  i f  V* ( P )  = O  f o r  every t v a  V f o r  L .  If a sequence P 

o f  fo rmulas  o f  L i s  such  t h a t  V* ( P )  =O whenever V* (Pi) =O f o r  

e v e r y  i ,  t h e n  P i s  a t a u t o l o g i c a l  consequence o f  P .  

Now e v e r y  formula  P d e t e r m i n e s  an  un ique  language Lp 

whose symbols are t h o s e  common t o  e v e r y  f r e e - v a r i a b l e  1anguac.e 

t o g e t h e r  w i t h  j u s t  t h o s e  o c c u r r i n g  i n  P ;  and eve ry  l anguage  

de t e rmines  an  unique t h e o r y  hav ing  no n o n l o g i c a l  axioms o r  

r u l e s .  I t  happens t h a t ,  when c o n s i d e r e d  as a formula  o f  any 

e x t e n s i o n  of  L p ,  P i s  a t a u t o l o g y  i f  and o n l y  i f  it i s  a 

i 

t a u t o l o g y  w i t h  r e s p e c t  t o  Lp.  Hence, s i n c e  P i s  a theorem 

of  a t h e o r y  T i f  it i s  a l r e a d y  a theorem o f  a  t h e o r y  t h a t  T 

e x t e n d s ,  it should  be clear what is  meant i n  t h e  f o l l o w i n g .  

Tau to logy  Theorem. Every t a u t o l o g y  i s  a theorem. 

A s  t h e  above c o n s i d e r a t i o n s  a l s o  a p p l y  t o  a sequence 

F , P ,  one  can  a l s o  s t a t e  w i t h o u t  l o s s  t h e  

C o r o l l a r y .  I f  P1, . . . ,Pn are theorems and P i s  a t a u t o l o g -  

i c a l  consequence of  F , t hen  P i s  a theorem. 



In the future, bo 8th the theorem and the corollary will 

be referred to as the theorem. 

Note. - To demonstrate that a formula is a tautology, it 
is usually easiest to argue by contradiction. For example, 

suppose that some tva V is such that VX(Q-+Qv(P&Q))=l. Then 

V* (Q) =O and V* (Qv  (P&Q) ) =1, the latter of which implies that 

17" (Q) =l. 

Note that TI-P and T ~ Q  implies that q-P&Q, and conversely. 

Note also that, for any formula Q, P&--P-4 is a tautology and,, 

hence, a theorem. It follows by modus ponens that T is incon- 

sistent if and only if every formula of L(T) is a theorem of T. 

A rule R is valid - in a theory T if T ( ~ ) ~ R ( F )  for every 

instance (F,R(F)) of R in L(T). The proofs of all the follow- 

ing are but slight modifications of the proofs of their corrcs- 

pondents in Shoenfield [ 3 9 1 .  T is any theory. 

Substitution Rule. The rule consisting of all pairs - - - 
(P,P(t/x)) is valid in T. (In the sequel, it will always be 

clear which substitution rule is being refered to. Note that 

the earlier one is included here as a special case.) 

Symmetry Theorem. Tfx=xl+x'=x. 

Equality Theorem. Let t t  be obtained from t by replacing 

some (any) occurrences of tl,...,tn by ti ,...,tA respectively, 

and let P t  be similarly obtained from P. Then Tktl=ti+*** 

-+tn=tA-+t=tt and ~tt~=ti-*.--+t ,=t,l+P+Pt. 

Equivalence Theorem. Let P t  be obtained from P by replac- 

ing some (any) occurrences of P1, ..., Pn by Pit...,Pt respec- n 



t i v e  l y .  If T ~ P ~ * P ~  f o r  each  i, t h e n  T ~ P * P ' .  

L e t  u s  now see how some o f  t h i s  c an  be  a p p l i e d .  

$ 2.3 The T h e o r i e s  A and A- . - -  - -- -  - -- 

Throughout t h i s  s e c t i o n ,  most of  t h e  f u n c t i o n s  and pred-  

i c a t e s  are number t h e o r e t i c ,  t h a t  i s ,  f u n c t i o n s  from t h e  set 

o f  n a t u r a l  numbers t o  i t s e l f  and p r e d i c a t e s  on t h e  set of  

n a t u r a l  numbers. I n  a d d i t i o n  t o  t h e  n o t a t i o n a l  conven t ions  

a l r e a d y  l a i d  down, w e ' l l  now proceed  t o  mix them. For  example,  

0 i s  used  f o r  bo th  t h e  number 0 and t h e  c o n s t a n t  (symbol) z e r o ,  

and S d e n o t e s  e i t h e r  t h e  s u c c e s s o r  f u n c t i o n  o r  t h e  s u c c e s s o r  

f u n c t i o n  symbol. The t h e o r y  whose sets of  symbols,  axioms,  

and r u l e s  a r e  t h e  un ions  o f  t h e  co r r e spond ing  sets i n  t h e  men- 

b e r s  o f  some sequence TO,T1, ... of  t h e o r i e s  w i l l  be  deno t ed  

by UTi. W e  e x p e c t  t h e  meanings o f  o u r  f u r t h e r  nons tandard  
i 

uses  of  set t h e o r e t i c  n o t a t i o n s  t o  be  c l e a r .  To i n c r e a s e  

t h e  r e a d a b i l i t y  of  c e r t a i n  e x p r e s s i o n s ,  w e ' l l  o f t e n  w r i t e  

f ( x l ,  ..., x n ) ,  s a y ,  i n s t e a d  of  f x  l . . . x  n '  
D e f i n i t i o n  3.3. L e t  f l , f 2 ,  . be  a  sequence of  xo func- - 

t i o n  symbols such t h a t ,  f o r  e ach  n z l ,  i n f i n i t e l y  many of  t h e  

f i  are n-ary.  W e  f i r s t  d e f i n e  a  t h e o r y  A; f o r  e ach  k?O and 

0  O l j z3 .  L e t  A. be t h e  t h e o r y  whose l anguage  c o n t a i n s  t h e  con- 

s t a n t  0  and t h e  f i r s t  two unary  f i  ( h e n c e f o r t h  S  and Z ) ,  

whose s i n g l e  n o n l o g i c a l  axiom i s  Z g O = O ,  and which h a s  no non- 

0  l o g i c a l  r u l e s .  S e t  A ~ = A  f o r  l c j 5 3 .  
0  0  

Now suppose t h a t  w e  have Ak f o r a l l j s 3 .  - 



(i) Let A:=A:-~. 

1 k 0 (ii) Let f , . . . , f  be the first k k-ary f not in L (Ak) and 

set 

1 0 i k Ax(Ak)=Ax(Ak)U{f (51, t&)=si)i=l 

(where Ax(T) is the set of axioms of T). 

k' be a listing of the distinct sequences 4, (iii) Let {Sr),=l 
0 hl,...thm from L ( A k )  such that mck, g is m-ary, and each hi 

is n-ary for some rick. For each r, select fr by: if the hi 

1 
in Sr are s-ary, then fr is the first s-ary fi not in L (Ak) U 

f i r .  Set 

(iv) 

from L 

n5k-1, 

is the 

'" be a listing of the distinct pairs g,h Let I Rr Irzl 
0 (Ak) such that g is n-ary and h is (n+2)-ary with 15 

and for each r, select fr by: if g is s-ary, then fr 
s+ 2 

first &ry fi not in L ( A ~ )  u { f i  1 icr). Set 



This completes the definition of the A;. Henceforth, if 

0 
it is not inconvenient, Ak is shortened to Ak. We may now de- 

fine - the theory A- of - primitive recursive arithmetic as 
(UAk)(I) where I is the induction - rule consisting of all the 
k 
triples (P (O/x) ,P+P (Sx/x) , P )  . By - the theory A of - Peano arith- 

metic we shall mean the theory A-(s~$~#o). 

Notes. (i) In the sequel, it is often said for example, 

that SxfO is an axiom of A, when the formula is actually a 

substitution instance of an axiom of A. 

(ii) For future reference, suppose that for each nrl, 

we have a sequence fntl,fnt2,... of So n-ary function sym- 

bols. Then the sequence that is formed by ordering the fi 
I j 

lexicographically is a listing of the kind we've called for 

in the above definition (where (i , j ) 5 i ' , j ' ) lexicographi- 

cally if either i<it or i=i' and j5j ' 1 .  

Note. It can be shown that, except for the second-order 

induction, all of Peano's axioms have proofs in A ,  and that 

these necessitate a proof of SOfO. However (see 53.11, 

this formula is not a theorem of A- by the validity theorem, 

since A- has a one element model described as follows: let 

the domain of M be 10 )  and, for each n-ary f, let M (f) be 

the n-ary constant zero function. It is immediate that 

the axioms of A- and the induction rule are valid in M. 

Hence it follows that M is a model of A- by an induction on 

theorems. 

Let kx be the numeral S * * * S O  with x occurrences of S. 



Usually 0 and 1 w ill be written for kg and kl. *unction 

symbol f of L(A) is said to represent a number theoretic 

function F - -  in A if, for each choice of numbers xl,...,xnry 

we have that F (xl,. . . ,xn) =y implies that ~ k f  (kxe,. . . ,kx ) =k\,. 
1 n - 

A number theoretic function F is representable - -  in A whenever 

such f exist. 
Theorem 2.1. (Representation Theorem) A number theoretic - 

function is representable in A if and only if it is primitive 

recursive. 

In one direction this is proved by an induction on the 

set of primitive recursive functions. Suppose that F is the 

successor function. Then S represents F in A because, for 

each x, S(kx) and kxt are the same term. Clearly, if 

F is the constant zero function, then Z represents F in A; 

1 and if F is 12 for some i and n, then F ~ E L ( A ~ )  represents F 

in A. Suppose that F is s:(G,H~) where G and H1,. . . ,Hm are 
represented in A by g and hl, ..., h respectively. Then for m 

some r, g,hll...,hm i n  srand, for some least k, Sr is con- 

2 tained in Ak, so that freL ( A ~ )  represents F in A. Similarly, 

if F is R"(G,H) where G and H are represented by g and h 

3 then, for some r and least k, f r c ~  (Ak) represents F in A. 

The other direction should be clear. If f represents F 

in A ,  then the defining axioms for f provide an explicit de- 

finition of F. rl 

Remark. It is evident that the theory A was defined with 

this proof in mind. We merely copied the formulation of the 



primitive recursive functions that was presented in Chapter 1. 

It should be clear, however, that if we had started with a dif- 

ferent formulation of primitive recursion, and then defined A 

by copying that one, we would arrive at essentially the same 

theory. The function symbols would only be introduced in a 

different order, and the defining equations for a symbol rep- 

resenting a specific function would be "written" differently. 

Let us now use Theorem 2.1 to see how the system (3 of 

[16] may be "formalized" as the formal system R of - primitive 
recursive arithmetic that is defined as follows: the language 

of R is L ( A )  less the logical. connectives (so that the formulas 

of R are equations); the axioms of R are iust the nonlogical 

axioms of A-; and the rules of R are just the schemata Sbl, S k 2 ,  

T and U1 written as rules of proof (so that, for example, Sbl 

is now the class of all pairs (f(xl, ...,~~)=g(x~,...~x~), 

•’ (tl , . . . , tn) =g (tl, . . . , tn) ) . (It is worth noting that the tech- 

nically more difficult task of writing the schema U as a col- 

lection of ordered pairs is avoided here by using U1, which, as 

was said in Chapter 1, is equivalent to U.) 

The observation to be made is that instead of the languagz 

of (& provided in 1161, Chapter VIII, we could assume L(R) and 

thereby view k as the ordered pair (R,I) where I is the natural 

interpretation of R. It is obvious that (R and (R,I) have equi- 

valent rules of proof. By inspecting the proof of Theorem 2.1, 

one sees that we could read "R" in place of " A " .  Thus, from 
i 

k 
k the fact that every primitive recursive function is represent- 



? able in R we have that every function and axiom of 2 is in 

(R,I); and the reverse inclusion holds because every function 

symbol of R represents some primitive recursive function. 

These considerations make it clear that any equation that 

is known to be provable in 8 also has a proof in R, and hence 

also in A  and A-. We shall have occasion to make use of this 

fact. 

Theorem 2.2. The theory A- represents R; that is, for - 
each formula (equation) P of L ( R )  , Q ~ P  if and only if A-+P.  

This theorem will follow by three lemmas, of which two 

will make use of the following notational deviae: 

For each formula P of L ( F ) ,  let P* denote 

the equation pO=O, where P O  is defined by an induction on the 

height of P: (i) if P is an equation, say tl=t2, let P O  be 

Itl,t21 (Note. Whenever convenient, the notation for a famil- 

iar primitive recursive function is used to abbreviate expres- 

sions containing a symbol that represents that function in A.), 

(ii) if P is -4 for some Q, let P O  be 1'~' , (iii) if P is Q+R 

for some Q and R, let P O  be (~'QO)*RO. 

Lemma - 1. ~tlt,t'l=o - R kt=t'. 
This was proved in [16]. 

Lenuna - 2. For all formulas P of L(R), R ~ P  - A-IP. 
By the definition of R, all the axioms of R are axioms 

of A - .  So the lemma follows by an induction on the theorems 

of R, once we have that the rules of R are valid in A-. We 

have that Sbl is valid in A- because it is a subclass of the 



substitution rule. Sb2 is valid in A- because A-/-tl=t2- 

f(t )=f(t2) by the equality theorem, which means that given 1 

that A-ttl=t2, it will follow that A-tf (tl)=f(t2) by modus 

ponens. And T is valid in A- because tl=tl and t =t 'tl=t2+ 
1 2  

tl=tl-k2=tj are substitution instances of axioms of A-, 

which means that from ~ - t t ~ = t ~  and A-Ftl=tj it follows that 

A-lt2=tj by modus ponens. Suppose that the formulas f(O)= 

g(0) , f(Sx)=h (x,E ( x )  ) and g(Sx)=h(x,g(x)) are theorems of 

A-. Then h (x, f (x )  ) =h (x ,g (x) ) +f (SX) =g (SX ) is a theorem of A-. 

by the equality theorem, it follows that f (x) =g (x )  +f (Sx) =g (Sx) 

is a theorem of A- by the tautology theorem. Whence f(x)=g(x) 

is a theorem by the induction rule, and A- validates U1. u 
Note. - This also shows that Sbl, SbZ, T and U1 are valid 

in A.  

Lemma - 3 .  For all formulas P of L(A), A - f ~  - RFP*. 
There is a method for transforming any proof of P in A 

into a proof of P* in R, because (i) if P is an axiom of A-, 

then RIP*, and (ii) if (F,R~ (F) ) is an instance in L (A-)  of a 

rule Ro of A-, then R(P) 1 ( R ~  (h) ) *. The assertions (i) and 

(ii) are easily proved, using the results of [16]. 0 
Proof of Theorem 2.2. Let P be a formula of L ( R ) .  =: If -- - 

Rfp, then A-f-P by Lemma 2. e :  If AFP, then RIP* by Lemma 3. 

Hence, supposing that P is t=t', P* is 1t,t1l=0,by the defin- 

ition of P*, and RfP by Lemma 1. U 

This theorem enables one to attribute almost any of the 



known properties of R to A-, and vice versa. In particular, 

we have the following by Rose [ 3 7  I. 

Corollary. A- is incomplete. 

Note. Since R is logic-free, one cannot simply adjoin the 

formula --SO=O to R and then repeat the above proof to obtain 

that A is incomplete. Furthermore, adjoining the correspond- 

ing equation, namely l'l~0,01=0, would not help; for the lat- 

ter is already a theorem of A-. 

The next theorem asserts that every formula of L(A) is 

logically equivalent (in A) to an equation of L(A). Moreover, 

it may be viewed as asserting that within the context of A ,  

the logical constants of [16] are logically equivalent to the 

classical logical connectives. Most of the technicalities 

are absorbed in the following two Lemmas. The lemmas cited 

in the proof of Lemma 1 are the foregoing lemmas for Theorem 2.3. 

Lemma - 1. A-+Jx,~(=o+x=~. 

This amounts to examining Goodstein's proof of Lemma 1 

and showing in certain places that A-/-P*Q where he shows 

that q-P+R~Q.  We'll supply the details. By the symmetry 

theorem, we have that 

~-/-lx,yl=o+o=Jx,yl. (1) 

Since ~ - ~ l ~ ~ = l + ~ = ~ x , ~ ~ + l ~ ~ x , ~ ~ = l  by the equality theorem, 

and since 1'0=1 is an instance of the first defining axiom 

f ~ ~ - - ~ ~ _ - w e ~ - h a v e  that 

~-t~=lx,yl-+l~lx,yl=l ( 2 )  

by modus ponens. It is known that the equation (1' lx,y 1 ) *x 



= (1' / x I y  / ) *y i s  d e r i v a b l e  i n  R. So it i s  a theorem o f  A- 

by Lemma 2 .  By n o t i n g  t h a t  l ~ ) x , y / = l - + ( l ~ / x , y ~ )  *x= 

(1' lx ,y 1 .y+l' lx ,y l = l - + l a x = l  * Y  by t h e  e q u a l i t y  theorem, one 

sees t h a t  

A-1-1: / x  , y  1 =l+l * x = l  *y  ( 3)) 

by modus ponens. F i n a l l y ,  1 -x=x+l .y=y+l=x=l -y+x=y i s  a n  

i n s t a n c e  of  a l o g i c a l  axiom, and one can  s u r e l y  p r o v e l * x = x  

A-11 - x = l  -y+x=y ( 4 )  

by modus ponens.  Hence A-b I X , ~  ~ = O + X = ~  by (1) through  ( 4 )  

and t h e  t a u t o l o g y  theorem. 

SO t h e r e  remains  t o  show t h a t  ~ - ~ x = ~ - + l x , y l = ~ .  T h i s  

i s  done a s  f o l l o w s -  Suppose one h a s  t h a t  

A - ~ X = ~ + X ~ ~ = O .  (1 1 

Then ~ - t ~ = x + y ' x = 0  by s u b s t i t u t i o n ,  and A-tx=y+y=x by t h e  

symmetry theorem, s o  

A - ~ X = ~ + ~ : X = O  ( 2  ) 

by t h e  t a u t o l o g y  theorem. T h e  d e s i r e d  r e s u l t  t h e n  f o l l o w s  

by (1) and ( 2 )  and t h e  d e f i n i n g  axiom fo r  I , 1 . So w e  must 

prove (1). F i r s t  of  a l l ,  A - ~ X = ~ + X ~ X = O + X ~ ~ = O  by t h e  equa l -  

i t y  theorem,  whence ~ - ~ x ~ x = ~ - t x = y - + x ~ ~ = ~  by t h e  t a u t o l o g y  thcc -  

r e m .  W e ' l l  show t h a t  

A-~x'x=o. ( 3 )  

By t h e  i n d u c t i o n  r u l e ,  t h i s  r e d u c e s  t o  showing t h a t  

A - ~ X : X = O + S X ~ S X = O  , ( 4  

s i n c e  w e  a l r e a d y  have t h a t  ALtO'O=O by t h e  d e f i n i n g  axioms 



P-- - 
f o r  :. S i n c e  A - ~ ~ ~ ~ = s ~ ~ s ~ - + o = o - + ~ ~ ~ = o - + s : . : ~ s ~ = o  by t h e  equal i t : !  

theorem,  and s i n c e  0=0 i s  a n  i n s t a n c e  o f  a  l o g i c a l  axiom, 

( 4 )  w i l l  f o l l o w  from 

by modus ponens and t h e  s u b s t i t u t i o n  r u l e .  F o r t u n a t e l y ,  i t  

i s  known t h a t  xry=Sx'Sy i s  a  theorem o f  R ;  so ( 5 )  f o l l o w s  

by Lemma 2 .  0 
Lemma 2 .  At- l~x=O..rx#O. - 

By t h e  e q u a l i t y  theorem,  w e  have  t h a t  ~ ~ 1 ~ 0 = l + l # 0 * + 1 ~ 0 # 0 .  

S i n c e  l # O  i s  a n  axiom, and 1'0=1 i s  a n  i n s t a n c e  of  t h e  f i r s t :  

d e f i n i n g  axiom f o r  ', it f o l l o w s  t h a t  At1'0f0. Thus *o=o-+ 

1 ~ 0 # 0 ,  so t h a t  

~ t1 '0=0+0#0 ,  

by t h e  t a u t o l o g y  theorem.  W e ' l l  show t h a t  

W e  have t h a t  A ~ S O # O ,  so w e  need t h a t  A ~ S X # O + S S X # O .  By t h e  

t a u t o l o g y  theorem,  t h i s  r e d u c e s  t o  4-SSX=O+SX=O.  S i n c e  

A ~ S S X ' ~ = S X  and A ~ o ' ~ = o  by t h e  d e f i n i n g  axioms f o r  '1, t h i s  

f o l l o w s  by n o t i n g  t h a t  A ~ S S X = O + S S X ~ ~ = O ~ ~  by t h e  e q u a l i t y  

theorem.  Now w e  c a n  o b t a i n  

by t h e  t a u t o l o g y  theorem;  and a n  a p p l i c a t i o n  of  t h e  induc-  

t i o n  r u l e  comple tes  t h e  p r o o f .  

Theorem - 2 .3 .  A ~ P + P * .  

By d e f i n i t i o n ,  P* i s  pO=O. I f  P i s  a n  e q u a t i o n ,  t h e n  

A ~ P * P ~ = O  by Lemma I .  Suppose t h a t  P  i s  -4 f o r  some formula  Q 



The induction hypothesis is that A~WQ*. Hence, since A/--JQ+Q 

by the tautology theorem, it follows by the equivalence theo- 

rem that ~ t 4 4 * ,  i.e., At4+Q0#0. Moreover, since (-4)' is 

lLQo, we have that A/-(--Q)~=O+Q~#O by Lemma 2. Hence A~P*P'=O 

by the tautology theorem. Suppose that P is Q+R for some 

formulas Q and R. The induction hypothesis is that A~WQ* and 

A~R+R*. Hence, by the tautology theorem and the equivalence 

theorem, we have that A~P*(Q*+R*). Thus, we must show that 

A~(Q*+R*)*P*. This result may be sketched as follows: 

A ~ P * +  (GQO) * R O = O  (by the definition of P*) 

+ I ~ Q ~ = O V R ~ = O  ( *  (see the following) 

+QO#OVRO=O (by Lemma 2) 

.CQ~=~+R~=O. 

The verification of ( * )  is best accomplished by showing 

generally that A ~ X  *y=O*(x=O vy=O) , i .e., that A ~ X  .y=04(x#O+y=O) . 
This is an induction on x, wherein, by the equivalence theorem 

and the fact that ~ - y = ~ + ( ~ x # ~  -y= 0) by the tau- 

tology theorem, the induction step reduces to showing that 
- -- 

~t~x*y=O+y=O. That Aty=O-&x*y=O is direct. That A/-Sx*y=0+ 

y=O uses an induction on y, whose induction step amounts to 

showing that &sx-sy#O. Hence the proof is completed via the 

defining axioms for and +, by showing that A~sx-s~=s(sx*~+x) 

and using the fact that A~SX#O. il 
Remark. Suppose that we form the first-order theory Po by 

adjoining the function symbols and nonlogical axioms of A to 

the first-order theory P of Peano Arithmetic. Then we would 



have that every free-variable (quantifier-free) formula of 

L(PO) is logically equivalent (in Po) to an equation, save 

for the fact that L(PO) contains the symbol <, which has no 

defining axiom. More exactly, we can have this property in 

a theory P1 that is obtained from Po by adjoining the formula 

t<tl*St't'=O, or for that matter, by adjoining any free-vari- 

able definition of < in terms of the function symbols. This 

could become of interest when we see in 83.2 that P o  is a 

conservative extension of P. 

Our next task is to show that A and A- are consistent 

theories. Our proof will be along the lines of ~odel's well- 

known proof [14] that P is consistent. More precisely, we 

follow the proof as it is recorded in [ 3 g ] ;  but it is after 

Godel that we call such proofs "constructive". 

In [39] an auxiliary, free-variable language Y for a 

theory offlprirnitive recursive functionals of finite type" 

is established, and then augmented by considering "general- 

ized formulas" consisting of formulas of Y preceded by zero 

or more universal and existential quantifiers. Subsequently, 

each formula of L ( P )  is "interpreted" as a generalized form- 

ula; that is, a generalized formula is assigned to each form- 

ula of P, in such a way that the two formulas "have the same 

meaning"; and it is seen that a generalized formula has in 

turn, a "quantifier-free meaning" in terms of the functionals. 

(By the way, it is worth emphasizing that the idea of meaning 

serves only to guide the intuition, and does not enter explic- 



itly into the proof.) 

Primitive recursive functionals are eliminable in the 

same sense as are primitive recursive functions. Hence one 

can define some "true" a,nd "valid" generalized formulas, 

similarly as we do below for the formulas of L(A). Then, by 

proving that a formula of L(P) is a theorem of P only if its 

corresponding generalized formula is valid (which, indeed, is 

long and difficult), and observing that the interpretation of 

SO=O is not valid, one concludes that P is consistent. Our 

proof is simpler because (i) L(A) does not contain quantifiers, 

and (ii) A is a theory of primitive recursion; for together, 

these mean that L ( A )  already has the properties that one re- 

quires of an auxiliary language. 

In the present terminology, the notion of eliminability 

takes the following form: given a closed term t of L(A), one 

can find, in finitely many mechanical steps, a unique numeral 

kn such that ~tt=k,. This may also be expressed by saying 

that a closed term of L(A) is reducible in A to a unique nu- - 
meral, and this particular instance, by saying that t reduces 

to - kn in A. The fact that every closed term of L ( R )  is reduc- - 
ible in R to a unique numeral has been proved by Goodstein. 

Therefore, this carries over to A-, and hence to A, by Theo- 

rem 2.2. 

The true and false sentences P of L(A) are defined by an 

induction on the height of P. If P is an elementary formula, 

then it is true if the terms on either side of the equality 



Symbol reduce to the same ni ral. 0th~ 

7 9 

vise it is false. 

If P is -4, then P is true if Q is false, and false if not. 

If P is Q+R, then P is true if either Q is false or R is 

true, and false if not. A sentence of the form P(E /x) is 
Y 

called a numeral instance of P, and a formula P is said to 

be valid (verifiable) if all of its numeral instances are 

true. Thus, since every formula is provable in an inconsis- 

tent theory, and since SO=O is not valid, it follows that A 

is consistent if only we have 

Theorem 2.4. If A ~ P  then P is valid. 

That each propositional axiom is valid follows by the 

definition of true. The validity of an axiom of the form 

x=x is obvious. Since each numeral instance of a term re* 

duces uniquely, a formula of the form xl=yl+--*+x n =yn+fx 

x =fx l...x is valid by the definition of true. Since = is n n 

the only predicate symbol, the validity of each formula 

xl=yl+. ' -+x n=yn+pxl...x +px n 1"aYn is clear. It is obvious 
-- 

that SOfO is valid. And for any other nonlogical axiom, each 

numeral instance is a theorem of A; so the axiom is valid by 

the transitivity of equality and the uniqueness of reducibility. 

Suppose that P is inferred from some valid theorems Q 

and Q+P by modus ponens. Then, for each numeral instance 

P (E / X I  of P, we have that Q(E /x) and (Q+P) (E /x) is val- 
Y Y Y 

id, and so P (E /x) is true by definition. Suppose that Q 
Y 

is valid and that P is Q(t/x) . Then P (E /x) is true because, 
Y 

where km is the numeral that t(E /x) reduces to, the sentence 
Y 



P (km/x) (E /z) i s  t r u e .  Suppose t h a t  P ( O / x )  and P+P (SX/X)  a r e  
Y 

v a l i d .  Then t h e  t r u t h  of P(km,E / x ,x )  fo l lows  by t h e  d e f i n -  
Y 

i t i o n  of t r u e  and t h e  t r u t h  of  t h e  formulas  P (k  ,E /x ,x ) -+  
0 Y 

P ( k  1 # E  Y / x , X ) ,  ...,~(k,~,,~~/x,~)+~(k,,~~/x~~). II 

Our nex t  p r o j e c t  i s  t o  e s t a b l i s h  a Godel numbering of 

t h e  t heo ry  A t h a t  w i l l  e n a b l e  u s  t o  prove it i s  undec idab le .  

For  t h i s  i s  r e q u i r e d  some f u r t h e r  in format ion  about  p r i m i t i v e  

r e c u r s i o n  and some more n o t a t i o n s .  

Usua l ly ,  w e ' l l  adhe re  t o  t h e  customary p r a c t i c e  o f  

having "P ( x l f . .  . ,xn) ho lds"  mean t h a t  (x l , .  . . ,xn)  EP ( i . e . ,  

Kp ( x l , .  . . 'xn) "0) and having F (x l , .  . . ,xn) and P (x l , .  . . ,xn)  

s t a n d i n g  a l o n e  deno te  r e s p e c t i v e l y  a f u n c t i o n  and a p r e d i c a t e .  

What fo l lows  h e r e  i s  well-known. For  t h e  most p a r t  o u r  r e f -  

e r ence  i s  [ 3 9 ] ,  b u t  t h i s  may a l s o  be  found i n  [37]. The 

b i n a r y  r e l a t i o n s  =, < and 5 are p r i m i t i v e  r e c u r s i v e .  (For 

example, K- - (x,y) = l A ( l z l x , y  1 ) . ) Given any two ( say  unary)  

p r i m i t i v e  r e c u r s i v e  r e l a t i o n s  P ( x )  and Q ( x )  , t h e i r  complem- 

e n t s  qP(x) and -IQ(x) (w i th  r e s p e c t  t o  t h e  s e t  o f  n a t u r a l  

numbers) , t h e i r  union PvQ (x)  , and t h e i r  i n t e r s e c t i o n  P&Q (x) 

a r e  p r i m i t i v e  r e c u r s i v e .  (For c l e a r l y  K,p (x)  =lZxp (x)  , KpVq ( x )  = 

Kp ( x )  *KQ (x )  and K ( x )  -1- (1- ( K p  ( x )  +KQ ( x )  ) .) 
P&Q 

If P and F 

a r e  p r i m i t i v e  r e c u r s i v e  t h e n  3y5F (x )  (P  (y )  ) ( t h e r e  e x i s t  

y.=F(x) such t h a t  P ( y )  h o l d s )  and V Y Z F ( X )  (P ( y )  ) ( f o r  a l l  

y rF  (x )  , P (y )  ho lds  are p r i m i t i v e  r e c u r s i v e  r e l a t i o n s ,  and 

C L y 5 ~  ( x )  ( P  (Y) ) ( t h e  smallest y5F (x )  such t h a t  P (y )  h o l d s )  

i s  a p r i m i t i v e  r e c u r s i v e  f u n c t i o n .  Due t o  Godel w e  have a 



binary primitive recursive function p such that p(x,i)rx'l 

for all x and i, and such that, for any sequence xo, ..., x n-1 ' 

there is a number x such that p (x, i) =xi for all icn. For 

each sequence xl, ..., xn, <xl, ..., xn> denotes the smallest x 
such that P(x,O)=n and fl (x,i)=xi for O<i5n; and for each n, 

< > is primitive recursive when it is considered as a func- 

tion of xl, ..., xn. This least x is known as the Godel (or 

sequence) number of the sequence. It happens that <$>=O. 

It is convenient to define lh (x) =p (x ,  0) and (x) i=p (x ,  i+l) 

no that, in the preceding case, lh (x) =n and (x) isxi for 

Ot isn. 

With these as tools we can begin. What we'll do is list 

all the required steps but,to dispense with uninformative de- 

tails, only be precise enough in crucial places, so that the 

reader can go to [27] or [ 3 9 1  for the necessary means to fiil 

in the gaps. 

1. A function SN from the set of symbols of L ( A )  to N is 

defined as follows: (i) SN (%)=an for all n, (ii) where f - , 
I -- 

f2,1f % , 2 ,  ... is the listing noted at the end of Definition 
2.3, and where OP is the ordered pair function defined by 

OP (x,~) = (x+y) (x+y) +x+l, SN (fi . ) =3-OP ( i, j) +1, (iii) SN (-) = 2 ,  
1 I 

SN ( + ) = 5 ,  SN (=) =8 and SN(O)=11. For each u, SN (u) is its 

symbol number. 

2. To each term t and formula P we assign the expression 

r i numbers 't' and P as fallows : rh'=c~~ (&) X .  'o'=<sN (0) > , 



3 .  Let Vble (x) hold if and only if x=< (x) 0>&3y5x ( (x) 0= 

3y) holds, so that Vble=={x for some n ) .  

4. Let Fn(x) hold if and only if 3ycx(x=3y+l&3iry(3j'y 

(y=OP(i,j)))) holds, so that I?n={xlx=~N(f~ . for some i 
1 3  

and j). 

5 .  Let Fnn(x) hold if and only if 3ysx(x=3y+l&3jly(y= 

OP(n,j))) holds, so that ~n~={xlx=~N(f) for some n-ary f). 

6. By some fairly routine combinatorics, one can find 

a binary primitive recursive function Mn(k) such that, for 

each k, Mn(k) is r all the numbers of the n-ary function 

symbols in L(Ak). (Recall that necessarily nck.) It fol- 

lows that the predicate Fn (x), which holds if and only 
n,k 

if x=SN (f) for some n-ary f in L (Ak) , is primitive recursive. 
r 1 

7. Let Termk(x) hold if and only if Vble(x) vx= 0 v3Mk 

(X=<SN (f) , (x) l,.. . , (x) .>&Fn (SN (f) ) &Vi<n (Termk ( (x) i+l) 
n,k 

holds, so that Termk={x lx='tl for some term t of L ( A ~ )  ) . 
8 .  Let Tenn(x) hold if and only if 3kzx (Termk(x) ) holds. 

The binary predicate Termk(x) is primitive recursive: 

r 1 
and for all t, t is greater 

than the least k such that Termk('tl) holds. Hence Term(x) 

is primitive recursive, and holds exactly if x='tl for some t. 

Finding primitive recursive definitions of the followin? 

should now be straightforward. 

9. EFor= { r ~ l  I P  is an elementary formula of L (A) 1. 

10.  or= I $'l I P  is a formula of L (A)  1 .  



12. LAX={ 'P' I P  is a logical axiom of A). 

13. MP= { ( 'pll , r~2' , 'pJ1 ) I (PI ,P2 ,P3) is an instance in L (A) 
of modus ponens 1. 

14. Subst= { ( r~l' , r ~ Z 7  ) I (Pl ,P2) is an instance in L (A) of 
the substitution rule). 

1 r 1  1 
15. Ind={ ( r ~ l  , P2 , r ~ 3  ) I (PI ,P2 ,P3) is an instance in L (PA) 

of the induction rule). 

Now suppose we are given NLAX={~P'~P is a nonlogical 

axiom of A ) .  Then we can define: 

r 1 
17. Prf= {x lx=c p1 , . . . , r~n'> and Pl , .. . ,P is a proof in A ) ,  n 

r i 
18. Pr= { (x, P ) Ix is the GtSdel number of a proof of P in P 1; 

and it follows that, if NLAx is primitive recursive, then so 

is Pr. We will produce the needed definition of NLAx. 

First note that by further refinements of the kind made 

in 6, there is a 4-ary primitive recursive predicate Fn . (x) 
n,k,1 

which holds if and only if x=SN(f) for some n-ary f in $. No- 

tice also that there is a primitive recursive function V such 

that V(i)=SN(xi). Define as follows: 

1. Let NLAxo (x) hold if and only if x= 'Z~~=O' vx= r - ~ ~ = ~ - '  

holds. 

Assume that some k is given. 

2. Let NLAx (x) hold if and only if x=(sN(=) ,SN ( • ’ 1  , 
k,l 



1. k ) ,V (i) >&lrick&Fn k,k,l 
(x) holds. (Recall 

1 that the new f in L (Ak) are k-ary.) 

3. Let NLAx (x) hold if and only if 3nzk(3mrk(x= 
k, 2 

2 ( ~ 1 1  new f in L(Ak) are 5 k-ary.) 

4. Let NLAx (x) hold if and only if . . . . (Left to 
kt3 

the reader.) 

5.  Let N L A X ~ + ~  (x) hold if and only if NLAxk (x) vNLAx (x) v krl 
NLAx (x) vNLAx (x) holds. 

k 12 k13 

Then so defined for each k, NLAxk is the set of Godel 

numbers of the nonlogical axioms of Ak; and we have shown 

that the binary predicate NLAxk(x) is primitive recursive. 

Thus, since, for each nonlogical axiom PI .P- is strictly 

greater than the least k such that NLAxk ( 'P' ) holds, it fol- 

lows that NLAx (x) holds if and only if 3k5x (NLAx~ (x) ) holds: 

so this is the required definition. 

For a first application of this Godel numbering, and to 

help motivate our undecidability proof, we have the following. 

Theorem 2.5. The theory A is incomplete. - 
Once and for all, let us observe that, if f is a symbol 

that represents the characteristic function of an n-ary pred- 

icate P in A ,  then, for each choice of numbers xl, ... ,xn, we 
have that P(xl, ..., xn) holds if and only if ~ t f ( k ~  ,..., kx )=O. 

1 n 
The "only if" part is immediate by the definition of "represen- 



table in A " .  Suppose that P(x l,...,xn) does not hold. Then 

~ f - f  (kx , . . . ,kx ) =1 by the definition of "representable in A " .  
1 n 

But then 1 is the unique numeral to which the closed term 

f (kx , . . . ,kx ) is reducible in A, so it follows that PP•’ (kx 
1 n 1 

..., kx )=O. To avoid burdensome circumlocutions, this fact 
n 

will henceforth be regarded as part of the definition of "rep- 

resentable in A". 

By the representation theorem, let g be a symbol that 

represents the characteristic function of the binary predicate 

i P r  (x0 ,.Sub (xl , 'k , rzl' ) ) in A. Let p= rg (so ,xl) =0' and con- x , 
sider the formula g ( &  k )=O. Let q be the Godel number of 

0' P 
1 r  -, this formula, and notice that q=~ub(p,rk , z1 ) .  13 

We have that ~tg(k~,k )=0 for every n. For suppose not. 
P 

Say that ~yg(k~,k )=O. Then, on the one hand, it is certainly 
P 

the case that AP~(& ,k )=Or for otherwise we would have a con- 
0 P 

tradiction by the substitution rule. Hence lPr(n,q) holds for 

all n by the definition of Pr, so that, in particular, 7Pr (m,c:) 

holds. But on the other hand, the symbol g is such that ~~r(rn, 

Sub (p, 'k ' , ) ) , i . e . , 1Pr (m ,q) , does not hold by the def ini - 
P 

tion of "representable in A". 

Hence, since every closed term of L ( A )  is reducible in A 

to a unique numeral, we now have that every closed instance 

of g(jxo,kp)=O is a theorem of A .  Yet ~pg(x~,k~)=O. For oth- 

erwise, a proof of it would have some Godel number, say r, and 

Pr(r,q) would hold by the definition of Pr, while Pr(r,q) would 

not hold by the definition of "representable in A". Thus L ( A )  



-- - 

contains an irrefutable formula which is not a theorem of A, 

and A is incomplete. [1 

The recursive functions may be defined as follows (see 

Shoenf ield [39 1 ,  Chapter 6, Problem 1) : (i) primitive recur- 

sive functions are recursive, (ii) if F is recursive and, for 

each choice of numbers xl,...,xn, there exist y such that 

F(x l,... , xn ,y) =O , then py (F (xl , . . . ,xn ,y) =O) is recursive (where 
p is the least number operator). If a predicate P is such that 

F is Kp, one normally writes the latter function py~(xl,..., 

X,IY) A predicate P is a recursive predicate if Kp is a re- 

cursive function. Intuitively, a function F is recursive if 

there is a uniform mechanica~rocedure M such that, for each n, 

the application of M to n yields ~ ( n ) .  Common phraseology is 

that a recursive function is "effectively computable", and t h ~ t  

one can "effectively determine whether a given sequence is in', 

a recursive predicate, or that a recursive predicate is "deciL- 

able". 

Suppose we have a standard enumeration of a formal systen: 

S, that is, an ennumeration such that, given any number, we ccn 

effectively determine if it is a number of mething in S ,  and 

in case it is, we can effectively determine what it is a number 

of. Then S is decidable if the set of Godel numbers of its 

theorems is recursive, and undecidable if not. 

Theorem 2.6. The theories A and A-, and the system R are - 
undecidable. 

We shall prove only that A is undecidable. The proof for 



- 
A is exactly the same, once the Godel numbering of A is modi- 

fied so that the number of -S0=0 is not in NLAx. The proof fcr 

R is essentially the same, once further modifications are made :.,, 

obtain a numbering for R.  It is worth mentioning that, in thc 

latter case, Theorem 2,3 is of considerable value for adaptins 

the following proof, but is by no means necessary. 

For a primitive recursive function F, i is an A-index of 

F if i=SN(f) for some function symbol f that represents F in A. 

Lemma - 1. The set of A-indices of the unary primitive recur- 

sive functions F for which there exist n such that F(n)=O is 

not recursive. 

We assume some familiarity with the beginning chapters of' 

Rogers [36], and as well, with Kleene's primitive recursive 

predicates Tm as they are found in [ 3 9 ]  or [27]. In particul~r, 

the reader should know two things: (i) A "partial recursive 

function" is a function for which there is a mechanical proce- 

dure M such that, given n, M applied to n either yields F (n) in 

finitely many steps, or continues indefinitely; or less precise- 

ly, it is a function whose domain is a subset of the natural 

numbers, and which is recursive on its domain. (ii) An m-ary 

ftinction F is partial recursive if and only if there is a num- 

ber e such that F and (~zT,(e,~~,...,~~,z)) have the same do- 0 

main and are equal on that domain. Such a number e is called 

an "index" of F, but to avoid confusion with the above, we will 

call it a "K-index" of F. It is clear that every e is the K- 

index of a unique m-ary partial recursive function, namely, the 



function just defined in terms of Tm. 

Let WO,W1,. . . be a standard enumeration of the recursive- 
ly enumerable sets. We is the range of the unary function v i : b  

K-index e. We make use of the well-known fact that ~ = { e  1 O E W ~ }  

is not recursive. 

For each e, set F~ (n)= ( 

(Tl(eI (n)oIw)))))o. F~ is a 

enumerates the members of We 

, primitive recursive function that 

U{1). By virtue of this definition, 

there is a uniform mechanical procedure by which one can compute 

an A-index of Fe for any e: or more exactly, there is a recur- 

sive function 9 such that, for all e, q(e) is an A-index of the 

function F ~ .  

Now let Fe denote the function whose A-index is e (assum- 

ing that e is indeed an A-index), and set ~={el3n~~(n)=O). 

Then we have: etP iff OcWe iff 3n~~(n)=(l iff 3nFo(,) (n)=O if: 

c p ( e ) ~ U ;  which means that, if U were recursive, then P would a:.- 

so be recursive. Hence U is not recursive. 0 

Let F be a unary primitive recursive function. Define F' 

by Ft(0)=l, Ft(Sx)=SSx if F(x) and Ft(x) are both nonzero, an6 

Ft(Sx)=O if not. Then F t  (x)=O if there exist ycx such that 

F(y)=O, and F1(x)=Sx if not. It is easy to see that F' is prim- 

itive recursive. Let f' be a symbol that represents F' in A .  

Let g be a symbol that represents the characteristic function 

7 r of the binary predicate ,Pr (F (xO) , Sub (xl, 'k , , ) ) in A ,  
X1 

and set p = r g ( f '  (E~) ,B~)=O~. 

Lemma - 2. ~f F is a unary primitive recursive function, and f '  



a symbol which represent F '  in A, then w g (  

and only if there exist n such that F(n)=O. 

Suppose we have a proof of g(f'(z0),k )=0 in A .  Then 
P 

where q is the number of this formula, and r is the number of 

the proof,Pr(r,q) holds by the definition of Pr. Note that 

every numeral instance of the formula is a theorem of A by the 

i t -  i substitution rule, and observe that q=Sub (p, 'k , . By 
P 

the definition of "representable in A " ,  it follows that 

1Pr (F' (F' (n) ) ,q) holds for all n, by which it is immediate 

that there is no n such that F ' (F' (n) )==r. By the definition 

of F', this means that there is no n such that F'(n)=r21, 

which in turn, means that there exist n<rLl such that F(n)=O 

provided that r>l. To see that r#O, note that 0 is the number 

of the empty sequence, and hence is not the number of a proof, 

To see that r#l, note that the number of a sequence is strictly 

greater than each of its members, so that: since 0 is the num- 

ber of the empty sequence, it is not the number of a formula, 

and 1 also is not the number of a proof. 

Now suppose that n is such that F(n)=O. Without loss of 

generality, n is least. Then F' (n+l)=O and F' (q)=q+l for all 

qzn by the definition of F'. Whence q-f'(kn+l)=O and ~ b f '  (k ) =  
q 

kq+l for all qcn by the definition of "representable in A " .  

Let P be the formula f' (gO)=kov- *vf' (x -0 )=k n+l0 We claim that 

A ~ P .  For the moment, let us assume that this is proved. Let 

Q be the formula g (f ' (x0) ,k ) 10, and suppose for a contradic- 
P 

tion that AYQ. Then lPr(q,'~~) holds for all q by the defini- 



r 1 tion of Pr, so we certainly have that ?Pr(F1 (q), Q ) holds for 

r 1 all q. Since Q =Sub (p, 'k ' , 'x ' ) , it follows that A/-g (k ,k > = O  
P 1 9 P 

for all q by the deFinition of"fepresentab1e in A". We have 

that ~ t k  =f'(go)+g(kq,kp)=O+Q by the equality theorem. Hence 
q 

~ t g ( k ~ , k ~ ) = O - + f ' ( ~ ~ ) = k ~ - + Q  by the symmetry theorem and the tau- 

tology theorem. So Atfl(zO)=kq+Q by modus ponens. Since this 

is for each q , At (f ' (so) =ko+Q) & & (f ' (zo) =kn+l+~) by the tau- 

tology theorem. But then A~P+Q by the tautology theorem, so 

our claim implies that A ~ Q .  

Proof of claim: For each q, let k* be the term that is 
q 

obtained from k by replacing 0 by zO. We begin by showing 
9 

that ~ t f  ' (kA+l)=O. We already have that AC (F' (k:+,)=O) (O/sO) , 

since this is just another way of writing ~kf'(k~+~)=O. One 

may assume that the defining axioms for f' are f' (O)=SO and 

f ' (SzO) = (SS&o) oh (ao) where h represents the characteristic 

function of i{x I F  (x)=0 and F' (x)=O} in A. Without writing the 

definition of h in detail, it should be clear that Atfl(x)=O+ 

h ( x )  =O and that Ath (x)=O+f ' (Sx) =O. Then ~ k f  ' (x) =O+f ' (Sx) =O 

by the tautology theorem, so that At•’ ' (kA+l)=O- (f ' (ki+l) =O) 

(SS~/&~) by the substitution rule. Hence ~tf'(k;l+~)=O by the 

induction rule. 

Using this one can easily show, via the tautology theoren;, 

that A/-P(~:+~/E~). From this the claim follows by a series of 

n+l applications of the induction rule, of which we shall sup- 

ply only one as an example (strictly speaking, of course, we 

are inducting on n.): It followed by our first hypothesis thst 



f ' (kn) ~k,+~ is a theorem of A. So A ~ P  (ki/ro) (O/zO) b! 

9 1  

the tau- 

tology theorem. We have that P (kE/s0)   SIC^/^^) is a theorem of' 

A ,  since this formula is just P (kt+l/zO) . Whence A / ~ P  (k;/z0)-+ 

P (kA/sO) (SZ~/E~) by the tautology theorem. Hence A ~ P  ( k i / ~ ~ )  by 

the induction rule. 0 

Proof of - Theorem 2.6. Exactly as in Lemma 1, let U be the - 
set {el3n~~(n)=O}. Let G be the set of Godel numbers of the 

formulas g(fl(zO),k )=0. Let T be the set of Godel numbers of 
P 

the theorems of A. Then U=GnT by Lemma 2. Since G is clearl17 

recursive by virtue of the Godel numbering, and since the intcr- 

section of recursive sets is recursive, this means that T is re- 

cursive only if U is recursive. Hence, by Lemma 1, T is not re- 

cursive, and A is undecidable. 0 



Chapter - 3 
Semantic Analysis of Vree-Variable Theories - 

In the first section of this chapter, we introduce termin- 

ology, and define the notions of "model" and "strong model" for 

free-variable theories. The second section begins by showing 

that the chosen definition of "model" provides andwadequate se- 

manticas" for free-variable theories in general. Then a class 

"admissible theories" is described, and it is proved that strong 

models are adequate for admissible theories. As an application, 

we have that the strong semantics is adequate for A and A-, the 

primary motivating examples. In section three, further appli- 

cations reveal interesting facts about provability in open first- 

order thecxies, and in first-mder systems with nonlogical rules. 

Ej 3.1 Structures, Models and Strong Models 
-7 - 

Most semantical notions for free-variable theories are nat- 

ural counterparts of corresponding notions for first-order theo- 

ries; exceptions arise from the need to consider nonlogical rules. 

A structure S for a free-variable language L consists - 
of a nonempty set dom(S), called the domain.of S, together - 
with a function, also denoted by S, that satisfies: (i) for 

each constant c of L, S (c) is in dom(S) , (ii) for each func- 
tion symbol f of L, if f is n-ary, then S(f) is an n-ary 

function from dom(S) to itself, (iii) for each predicate 

symbol P of L, if P is n-arY, then S(p)  is an n-arv predicate 

on d o m W  and, in particular, S ( = )  is { (s,s) 1s is in dom(S) ). 



Members of dom(S) are individuals of - S. If L' is an exten- 

sion of L and S' is a structure for L', then the (unique) 

structure S such that dom(S)=dom(S1) and such that the func- 

tion S is the restriction of S' to the set of constants, 

function symbols and predicate symbols of L is called - the 

restriction of S '  - to L and - is denoted by And in this 

case, S' is called an expansion of - S - to L'. 

Let L be a lanquage and D be a set. For each s in D, 

we may choose a new (to L) and distinct constant s - 
as the name of s. L(D) will denote the extension of L that -- 
is obtained by adjoining the names of the members of D to L. 

When D is the domain of a structure S, one normally writes; 

L(S). With each structure S there is a function S* mapping 

the closed terms of L(S) to dom(S) and the sentences of L(S) 

to {0,1) that is defined inductively as follows: 

(i) if t is a constant of L, then S* (t)=S(t), 

(ii) if t is a name, say g ,  then S* (t)=s, 

(iii) if t is ftl.. . tn (say) , then S* (t)=~ (f) (s* (tl) , . . . , 
St (tn) 1 ,  

(iv) if P is ptl.. .tn, then S* (P)=O iff (S* (tl), . . . ,S* (tn) ) 
is in S (p) , 

(v) if P is 4, then S*(P)=O iff S*(Q)=l, 

(vi) if P is Q+R, then S* (P)=O iff S* (Q)=1 or S* (R) =O. 

As long as confusion will not result, the function S*, 

and the structure for L ( S )  consisting of dom(S) and S*, is 

henceforth denoted simply by S. The reader may easily verify 



at the fu ncti acts on formulas abbreviated b V, & and + 

in the expected way. 

Proposition - 3.1. Let be the name of S(t), where t is a 

closed term of L (S) . If t' is a term of L (S) and no variable 

other than x occurs in t ' , then S (t ' (t/x) ) =S (t ' (s/x) ) . If P 

is dformula of L(S) and no variable other than x occurs in P, 

This is proved by induction on the length of terms and 

the height of formulas. The reader may supply the details. 

Thc proposition will readily extend to finite sequences of 

terms and variables. 

Suppose that P is a formula of a language L and that S 

is a structure for L. An S-instance of P is any sentence 
- - 

of the form P(s/x) - where the - siare the names of individuals 
of S. We say that the formula P is valid - in S (or that S 

models P) (Notation: SPP) if S(P1)=O for every S-instance P' 

of P. We adopt the following convention on - names: If L' is 

an extension of L, S' and S are structures for L' and L re- 

spectively,and if s is in dom(S')ndom(S), then the same con- 

stant is used as a name for s in both L' (S ' )  and L (S) . The 

following is immediate. 

Proposition - 3.2. Let P be a formula of L, and let L' be 

an extension. If S is a structure for L' such that S ~ P ,  thec 

S/L models P. If S is a structure for L such that S ~ P ,  then 

any expansion of S to L' models P. 

Since whenever S is a structure for L, and L' is an ex- 



tension of L, then there is an expansion S' of S to L', it 

follows that a formula P is valid in every structure for a 

given language L that contains P if and only if it is valid 

in every structure for the language determined by P. We say 

that P is logically valid when either of these conditions 

holds. 

A rule R is valid in a structure S for a language L - 
( S  models R) if, for every instance ( F , R ( F ) )  of R in L, we 

have that s/=F implies that s/=R(F). Proposition 3.2 asserts 

that S and S' validate the same formulas of L, so it follows 

that they also validate the same rules. Thus,while R is said 

to be logically valid if it is valid in every structure for 

every L, one notes that, for each instance of RI he can re- 

strict his view to any L such that the instance is in L. 

Proposition - 3.3. The logical axioms and logical rules 

are logically valid. 

We prove this only for the axiom P+Q+P, the axiom x=x, 

and the instance (P,P(t/x)) of the substitution rule. This 

will cover the various methods involved in proving the rest. 

Let L be a language that contains these formulas and let S 

be a structure for L. Suppose that, for some S-instance 

P1-+Q'+P', we have S(Pt+Q'+P')=l. Then S(P1)=O and S(Qt-+P')=l, 

which implies that S(Qr)=O and S(PV)=1. Since this is impos- 

sible, it follows that P+Q-+P is valid in S. To see that an 

S-instance s=s of x=x is valid in S, only note that (s,s) is - - 
in S(=) for every individual s of S. Suppose that S/=P and 



let xl, ..., x be the distinct variables occurring in P(t/x). n 
- - 

Consider the S-instance P(t/x) (s/x). - Now let t' denote 

t(a/x) - and let s '  be the name of S(tl). Then P(t/x) 

and P(tl/x) (s/x) - are just two ways of writing the same for- 

mula. Since t' is closed, the latter is just P(t',$x,x) 

and, since x is not one of the xi, this may also be writ- 

ten P (:/;) - (t '/x) . Furthermore, since x is not one of the 

x P (s/x) (s1/x) may be written P ( 2 '  ,g/x,x) . By proposition i ' - - 
- - 

3.1, it follows that S (P(t/x) (s/x) - )=s (P (s' ,g/x,x) )=o. C] 

By an induction on theorems, this proposition implies 

that every structure for the language of a theory having no 

nonlogical axioms or rules is a model, in fact a strong model, 

of that theory, in the sense of the following. 

Definition 3.1. Let T be a free-variable theory. A struc- - 
ture S for L(T) is a model of T if S validates every theorem - 
of T. If S is a model of T, and S furthermore validates the 

rules of T, then S is a strong model of T. - A formula of L(T) 

that is valid in every model of T is said to be valid in T. - 
The following is immediate. 

Validity Theorem. Every theorem of T is valid in T. 

And we also have the 

Corollary. If T has a model, then T is consistent. 

If T is inconsistent, then ~txfx. 0 

Note. By the standard model of arithmetic we shall mean - - 
the structure N having dom(N) as the natural numbers, N ( 0 )  as 

the number zero, and for each f in L(A), N(f) as the function 



that is represented by f in A. It is easy to see that N is 

a model of A. First observe that, for each n, N(kn)=n. This 

makes it obvious that the axioms of A are valid in N. The in- 

duction rule is valid in N by the principle of mathematical 

induction (whose truth we of course assume). Hence, if A ~ P ,  

then N ~ P ,  by induction on the theorems of A. 

Remark. It is worth mentioning that there is a stronger 

notion of "model" for free-variable theories. This is where 

each rule instance (F,R(F)) has the property: if xl, ..., xm 
are the distinct variables in that instance, then s(R(F)(~~, 

...t~m/xl,...,xm))=O whenever S(Pi(gl, ..., s /xl, ..., xm))=0 -m 

for all i. Now, every logical rule has this property in every 

structure; but it turns out that the induction rule does not 

have the property even in N. For in N it is certainly not the 

case that the validity of P (O/x) and P (SO/x)+P (SSO/x) , say, 
implies the validity of P(SO/x). Thus, this notion of "mo- 

del" is in fact too strong for our interests, and shall not 

be considered any further in this thesis. 

We conclude this section with a list of examples that will 

be called upon in the section to follow. The reader may refer 

to that section now for statements of the theorem on constants 

and the deduction theorem. 

Let T be the minimal theory. Select distinct constants 

c and c ' .  By Proposition 3.3 and an induction on the theorems 

of T, every structure for L(T) is a model of T. T satisfies 

the theorem on constants by Theorem 3.2. This means that every 



expansion of a model of T to a structure for the language of 

T1=T (c,c' ) is a model of that theory. Hence every structure 

for L(T1) is a model of T '  by Proposition 3.2. Let T"=T1 (R) 

where R= { (c#c I , c#c) , (e=e, e#e) } and e is a constant new to L (T ' ) . 
The formula e=e is clearly not a theorem of T'. Let So be any 

structure for L(T1) such that So (c)=So (c') . Then So is a model 

of T' in which c#cl is not valid. So c#cl is not a theorem of 

T' by the definition of "model". Thus T' and T" have the same 

theorems, and every structure for L(T") 

T". 

(i) T" does not satisfy the theorem 

obvious, since T"(e) is inconsistent. 

(=L(T1) ) is a model of 

on constants. This is 

(ii) T" does not satisfy the deduction theorem. We have 

that T"(c#cl)~c#c. Let S1 be any structure for L ( T W )  such thac 

S1 (c) +sl(c ' ) . Then S1 is a model of T" and SlPc#c 'cfc. So 

~"~c#c'+cfc by the definition of "model". 

(iii) S o  is a strong model of T"; S1 is not. Both of c#cl 

and c#c are false in SO. In S1, c#cl is true. 

(iv) c#cl+c#c is a nontheorem of T" that is valid in every 

strong model of T". Firstly, the formula is not valid in the 

model S1 of TI'. Secondly, if S is a strong model of T", then 

c#cl must be false, making the formula true. 

(v) Let R'={(c=c',c#c)}. It is easy to see that every 

structure for L(T"(R1)) is a model of T"(R1), and that no suck 

models are strong. 



j- 3.2 The Main Results - -- 
For discussing systems with more than one kind of model, 

it is convenient to speak in terms of a "semantics" for a sys- 

tem or class of systems. This avenue is taken by Thomason in 

his recent papers on modal logics, starting with [ 4 3 ] .  To be 

precise, one could say that a semantics - for the systems is a 

class of structures for the languages of the systems, together 

with a specified subclass of models. A semantics is said to 

be adequate - for a system if, for each formula of the language 

of the system that is not a theorem, there is a model in that 

semantics in which the formula is not valid. Since each notion 

of model naturally induces a notion of validity in systems (cf. 

Definition 3.1), one readily sees that this is equivalent to 

saying that we have a "completeness theorem" (if P is valid in 

the system, then it is a theorem of the system) under that no- 

tion of validity. In this thesis, the semantics provided by 

the notions of 'model' and 'strong model' are correspondingly 

called the usual semantics and the strong semantics for free- 

variable theories, and the main semantical results are two such 

completeness theorems, the first of which we are now in a posi- 

tion to state. 

Theorem - 3.1. The usual semantics is adequate for all free- 

variable theories. 

Remark. A t  first, this theorem seems to be an immediate 

consequence of the first-order completeness theorem; for each 

free-variable theory T has exactly the same models as a corres- 



ponding first-order theory T*, where T* has the same nonlogical 

axioms as T, and L(T*) is L ( T )  plus quantification. However, 

on further examination, one sees that the result does not follow 

in this manner unless it is known that, for all P in L(T), *P 

implies that T*~P, which, it turns out, is essentially what we 

are trying to prove. 

Motivation. Our proof of Theorem 3.1 is along the lines of 

Henkin's well known proof of the completeness theorem for firsc- 

order theories [ 2 4 ]  in that we build models out of syntactical 

materials. Thus it is in order to brufly sketch Henkin's proof, 

and then see how our proof compares. The reader may go to [39: 

for all undefined terminology and unstated theorems. 

Let T be a first-order theory and suppose that Q is a form- 

ula of L(T) that is not a theorem of T. We exibit a model of T 

in which Q is not valid, as follows. An extension TH of T, cal- 

led a "Henkin theory", is established such that, for each form- 

ula of L (TH) of the form 3xP, L(TH) contains a distinct constant 

e and the formula 3xP-+P(ep/x) is an axiom of TH. It is proved P t  

that TH is a "conservative extension" of T - e.i., no new form- 
ulas of L(T) are theorems of TH - which implies that Q is not a 
theorem of TH. Then the closure Q' of Q is not a theorem of Tt, 

by the closure theorem: and TH("Q1) is thus consistent, by the 

corollary to the reduction theorem for consistency (or equivalent- 

ly, by the deduction theorem). Then, by Lindenbaum's theorem, 

T (4) has a complete simple extension, say T'. We may observe H 

that the canonical structure exists for T' - i d . ,  has a nonempty 



domain - , since T' contains a constant; and in fact, that the 
canonical structure fo T' is a model of TI, since TI is a com- 

plete Henkin theory. It follows that the restriction of this 

structure to L(T) is a model of T; and since it validates a ' ,  

it invalidates Q, as required. 

Now, a direct modicication of the above proof fails for 

for free-variable theories on several counts. Of primary impor- 

tance are (i) if T has nonlogical rules, then the deduction 

theorem may fail for TI so that T will not necessarily have a 

complete simple extension, and (ii) if T furthermore is devoid 

of constants, then the canonical structure does not exist for 2 ,  

and the theorem on constants may fail, so that T will not neces- 

scsarily have a conservative extension for which the canonical 

structure does exist. 

However, we have found a way to build something like the 

canonical structures for theories that do not necessarily contain 

constants, and it turns out that for one of these to be a mode; 

it is sufficient that T is consistent. Briefly, this is done by 

allowing an ultrafilter in the Lindenbaum-Tarski algebra for T 

to take the part of a complete simple extension of T. 

So much for the motivation. Let us begin by listing some 

needed information about Boolean algebras. 

A Boolean algebra is a set r that is closed with respect 

to the two binary operations, U and n, and the one unary opera- 

tion, -, which satisfy: (i) aUP=PUa, (ii) aU (PUy)=(aU$) Uy, 

(iii) (aflp) Up=p , (iv) an (Buy)= (aflp) U (any) , (v) (an-a) U$=p , 



and ( v i )  t h e  e q u a l i t i e s  ob t a ined  by exchanging U f o r  fl and 

v i c e  v e r s a  i n  (i) through ( v ) .  A nonempty s u b s e t  A of  I' i s  

a f i l t e r  i n  r i f  f o r  a l l  a , P ~ r  w e  have: (i) a,P€A i m p l i e s  

a n p c ~ ,  and (ii) ash i m p l i e s  ~ U P E A .  A f i l t e r  A i n  r i s  p rope r  

i f  ~ # r .  A proper  f i l t e r  i s  maximal o r  an u l t r a f i l t e r  i f  f o r  

eve ry  proper  f i l t e r  A '  such t h a t  A"A w e  have A ' = A .  A s  f a r  

a s  w e  know, Rasiowa and S i k o r s k i  [351 i s  t h e  on ly  s i n g l e  p l a c e  

t h a t  one can f i n d  p r o o f s  of a l l  of  t h e  fo l lowing  f a c t s :  

(i) r c o n t a i n s  t h e  u n i t  e lement ,  denoted 1, c h a r a c t e r i z e d  by 

aUl=l and alll=a, and t h e  - z e r o  e lement ,  denoted 0 ,  c h a r a c t e r -  

i zed  by aUO=a and aflO=O. ( I n  f ac t ,  l=aU-a and O=an-afor a l l  

acT.) (ii) Every s u b s e t  A o f  r g e n e r a t e s  a f i l t e r  i n  r ,  t h e  

i n t e r s e c t i o n  of  a l l  f i l t e r s  c o n t a i n i n g  A .  (iii) A f i l t e r  i s  

p rope r  i f  and on ly  i f  it does  n o t  c o n t a i n  0. ( i v )  I f  A i s  a 

p rope r  f i l t e r  and a$A, t h e n  t h e  f i l t e r  gene ra t ed  by AU{-a) 

i s  proper .  (v )  Every p rope r  f i l t e r  i s  con ta ined  i n  a n  u l t r a -  

f i l t e r .  ( v i )  An u l t r a f i l t e r  A i s  c h a r a c t e r i z e d  by t h e  f a c t  

t h a t  f o r  a l l  U E ~ ,  e x a c t l y  one o f  aEA and -aEA. ( v i i )  A sub- 

s e t  A of  r i s  a f i l t e r  if and o n l y  i f  ~ E A  and a,a=flEA impl ies  

pcA, where a=$ deno te s  -aUP, t h e  complement of - a  r e l a t i v e  - t o  

6 .  ( v i i i )  A nonempty s u b s e t  A of  r i s  a  f i l t e r  i f  and on ly  if 

aflB~A e x a c t l y  when a,pcA. 

Note. Not a l l  t h e  above are r e f e r r e d  t o ,  b u t  a l l  w i l l  be - 
needed. One can s e e  ( v i i )  once he has  (a)  aflp=afl (a=P) , (b) 

a- (p=mflp) =1, and (c) a-aUp=l. Proof :  I n  one d i r e c t i o n :  i f  

A i s  a f i l t e r ,  w e  have t h a t  l=aU-~EA ( f o r  any acA) and,  by 



hypo thes i s ,  t h a t  an (a-p) € A .  BY ( a )  r t h e  l a t t e r  y i e l d s  that 

a(lpcA, s o  it fo l lows  t h a t  p=(an$)Up~A.  I n  t h e  o t h e r  d i r e c -  

t i o n :  a , p ~ A  impl i e s  t h a t  aflp&A by (b)  and t h e  hypo thes i s ,  s o  

t h a t  ~ E A  imp l i e s  t h a t  aU$cA by (c) and t h e  hypo thes i s .  

L e t  T be a  t h e o r y  and,  f o r  formulas  P and Q of  L ( T ) ,  

l e t  P-Q mean t h a t  T~P*Q.  Def ine  [P]={QIP-Q}, TT={[P]lP i s  a 

formula of  L ( T )  }, and A ~ = { [ P ]  ITtP). Each of  t h e  fo l lowing  

may be v e r i f i e d  by means of t h e  t a u t o l o g y  theorem: (i) - i s  

a n  equ iva l ence  r e l a t i o n  on t h e  set  of formulas  o f  L ( T ) ,  (ii) 

TT is  a  Boolean a l g e b r a  w i t h  r e s p e c t  t o  t h e  o p e r a t i o n s  U,fl 

( T h i s  i s  well-known. rT i s  c a l l e d  t h e  Lindenbaum-Tarski a l -  - 
gebra  f o r  T .  ) , (iii) A T  i s  a l f i l t e r  i n  TT ,  ( i v )  AT i s  a pro- 

p e r  f i l t e r  i n  TT ( i n  f a c t ,  AT={l)) i f  and o n l y  i f  T i s  con- 

s i s t e n t .  Note t h a t  eve ry  f i l t e r  c o n t a i n s  1 by f a c t  ( v i i ) .  

D e f i n i t i o n  3 . 2 .  (Due t o  S .  8 .  Thomason) Let  T be a  con- - 
s i s t e n t  t h e o r y ,  and l e t  A be  an  u l t r a f i l t e r  i n  rT. The 

A-canonica l  s t r u c t u r e  f o r  T ,  denoted by S A t T t  - i s  d e f i n e d  as  

fo l lows  : 

(i) dom(S ) = { [ t ]  ( t  i s  an (open o r  c l o s e d )  t e r m  o f  L ( T )  } 
A IT 

where I t ] - { t ' ] [ t = t ' ] ~ ~ ) ,  - 

(ii) S (c )=[c l  f o r  e v e r y c o n s t a n t c  i n L ( T ) ,  
A,T 

( i v )  ( I t l ]  ,..., [ t n 1 ) c S  (p )  i f a n d o n l y i f  [ p t  l . . . t n ] ~ ~ .  
A IT  

As a n o t a t i o n a l  convenience w e  l e t  deno te  t h e  name of  t h e  

equ iva l ence  c l a s s  [ t ] .  



Note. It is *outine matter to verify that [t=tt1€A de- - 
scribes an equivalence relation on the set of terms of L(T), 

and that the definition of S ( f )  and SbrT(p) do not depend 
A ,T 

on the particular representatives ti chosen from each [t.]. 
1 

For example: Suppose that Itil=[tjl for i=l, ... ,n. By the 

equality theorem, ~Ct~=ti-+*--- tn=tA+~tl-.*tn 3 pti.-.tl* so the 
n' 

class [tl=ti]e**m-[tn=tA]o[ptl. .. tn+ti ... tA] which is [t =tr 
1 - 

+ *  .+ptl.. .t .+p ti ... t;] is in A. Since [ti]=[tj] means that 

Iti=t!1~dr it ~ O ~ ~ O W S  that [pt l...tn+pti...t']€~ by fact 
1 E 

(vii). Since the latter is equal to ([pt l...tn]=[pti...tl;]) 

n ([pti.. .t;ll=[ptl.. .tnl , facts (viii) and (vii) show that 

[pt l...tnlcA if and only if [pti ... ~ A I E A .  Hence ([tl] ,..., 
Itnl)~S (p )  if and only if ([tiI,...I[t;lI)~S ( p ) .  

A ,T A IT 

Lemma. Let T be a consistent theory, and let A be an ul- 

trafilter in rT. For every S -instance ~ ( 9 ; )  of a formula 
A IT 

P of L(T) , Sd (P(~:))=o if and only if [P(E/~)]EA. 

This is proved by induction on the length of terms and tne 

height of formulas. We begin by showing that S (t)=SAIT(t) A IT 
for every closed term t of L(T). If t is a constant, then 

S (t)e[t] by the definition of SAIT. If t is ft l...tn and 
A,  T 

the ti are closed terms, then one can show that S (t)=[t] b : ~  A i T  

means of the induction hypothesis and the methods described i.1 

the above note. The desired equality follows, since & names [t]. 

Now, in order to apply the present notion of truth, we 

want to know that, for an open t, if t(U2) is a closed term 



of L (T) (SA , then S (t (us) )=[t ( f /x)  1 .  If t is a variab;e, 
A ,T 

then we are done by the definition of name. Suppose that t 1 s  

Suppose now that P is an elementary formula; say P is 
- - 

pti ... t;. We have the following: SAIT ( (pti . . . tk) ($/XI ) =O 

iff (SA ,T (ti (UX) ) , .. . ,S (t' ($s) ) eSA ,T (p) AIT m 

iff [ (pti.. . t;) (E/x)  I ES* (p) . 
Given this, the rest of the induction is easily completed. 

Where P is 4, merely observe that, since A is maximal, fact 

(vi) yields [Q (u:) ]$A i f  and only if [P (ux) 1 &A. And when 

P is Q+R, note that [~(ux) ]$A or [ R ( Q X )  I E A  implies IQ(~;)-+ 

definition of filter; and conversely by the maximality of A 

and fact (vii). 0 

Remark. We are now in a position to prove Theorem 3.1. 

One will notice that the use of fact (v) in obtaining an ul- 

trafilter circumvents the need for considering a complete 

simple extension, and hence subsumes Lindenbaumvs Theorem. 

Fact (iv) plays the part of the reduction theorem for consis- 

tency and, since it also applies whether Q is open or closed, 

it also subsumes the case that the theory in question does 



not contain constants. It is worth emphasizing that one may 

have this proof algebraically, not just because this method 

duplicates the desired metamathematical phenomena, but more 

because it disregards many of the strictly metamathematical 

properties that are not directly involved. 

Proof of - Theorem 3.1. Suppose that some formula Q of L(T) - 
is not a theorem of T. Then T is consistent; and so aT is a 

proper filter in TT. Hence, by fact (iv), the filter generated 

by A~U{[-Q]} is also proper in TT. Let A be an ultrafilter 

containing this latter, and consider the A-canonical structure 

for T. By the lemma, a formula P of L(T) is valid in SAfT if 

and only if [P']EA for every substitution instance P' of P. 

Since, for every such P', we have T ~ P '  whenever T ~ P ,  it follows 

that S is a model of T. Clearly, S~ ,T (Q (3x1 ) =l . Hence 
AtT 

Q is not valid in T. 0 

Corollary. Every consistent theory has a model. 

Just take the A-canonical structure, where A is any ultra- 

filter in rT. fl 

So much for the usual semantics for free-variable theories. 

We now turn to the problem of establishing a completeness theo- 

rem with respect to the strong semantics, which is more diffi- 

cult. The situation is this: Examples (iv) and (v) at the end 

of the preceding section show that the strong semantics is not 

adequate for every free-variable theory. Thus, what we want is 

a characterization of those theories for which the strong seman- 

tics is adequate. Furthermore, we want a characterization that 



b 
is useful; that is, it should enable us to determine readily 

whether a given theory is of the kind so characterized. Since 

the adequacy of the strong semantics clearly depends on the 

nature of the nonlogical rules of a theory, this means that 

the best possible result would be a purely syntactical charac- 

terization of those rules which a theory for which the strong 

semantics is adequate may have. 

In what follows we present a partial solution to the above 

problem. The method of attack, and the final results, have been 

more or less as follows: (i) Since the strong semantics is ade- 

quate for the two theories of arithmetic, A and A-, (which is es- 

tablished in the following by Theorem 3 . 6 ) ,  an examination of the 

induction rule yields the notion of an "admissible" free-vari- 

able theory, together with a set of "conditions" on the nonloyi- 

cal rules of a theory that, in various combinations, will ensure 

that the theory is admissible. (ii) In view of the above men-- 

tioned "conditions", it is believed that the notion of "admis-- 

sibility" encompases any reasonable theories that might eventu- 

ally be discovered. (iii) While we do not know if the strong 

semantics is adequate for any nonadmissible theories, it shoul-d 

be pointed out that, other than such elementary examples as 

were mentioned above, we know of only one nonadmissible theory 

(to be discussed). (iv) Of the "conditions" on nonlogical 

rules, few are purely syntactical, while the rest entail the 

concept of provability in a given theory. Thus clearly, while 

we have made some gains, it is likely that further gains are 



to be made. 

However, at this point we may rightly be reminded that, 

so far, the induction rule is our only example of a nonlogica:. 

rule that cannot be replaced satisfactorily by a set of axioms, 

thus making A and A- our only really interesting applications, 

and so, the worthwhileness of such a general investigation as 

is described above may surely be questioned. Thus, to counter 

this, the author would like to say here that the study began 

simply because there are two very interesting examples, and 

the study was carried on, partly in the belief that more such 

examples would appear, but mainly because he felt that some 

questions had been posed which should be answered to some degree 

of satisfaction. And since no new interesting examples have 

appeared, the author consoles himself for the time being, in 

that we at least have a semantical analysis of some theories cjf 

the arithmetic of the natural numbers, and he believes that ar.y 

contribution to our knowledge of something as fundamental to 

mathematics should be able to stand on its own merit. 

Since the notion of "admissible" entails some of the "cor.- 

ditions", it is convenient to present all of these first, and 

while at it, to provex-Theorem 3.2, a technical result which will 

eventually be used to show how the "conditions" serve the ac- 

claimed purpose. 

Condition - 1. Each instance of a nonlogical rule of T is 

in L (T) . 
Condition - 2. For each set C of constants that are new to 



1' . P is an instance in L (T (C) ) of a nonlogica:. 

rule of TI and if 6 consists of the distinct constants in C 

that occur in the P then, where y is a distinguished sequence 
j 

of variables of L(T) that do not occur in any P and where P- 
j 1  - 

is the formula of L(T) that is obtained from P by replacing 
j 

each ei by yi, P t . . . , P )  is an instance of that same rule of 

T. (The sequence y is distinguished if y.=y only when i=j.) 
1 j 

Condition - 3. T satisfies the Theorem on - Constants: For 
every set C of constants that are new to L(T), and for every 

formula P of L(T), the following are equivalent: (i) TIP, (ii) 
- - 

T(c)/~P (e/x) for every sequence e of constants in C, (iii) T (C)I- 
- - 

P(e/x) for some distinguished sequence of constants in C. (No- 

tice that our notational conventions do not imply that P(Z/%) 

need be closed.) 

Condition - 4. (i) For each formula Q of L(T), and for each 

instance (P1,...tPm,R(P1t...tPm)) in L(T) of a nonlogical rule 

of T, we have that T~Q+R(P~,...,P~) whenever T/-Q+P~ for all i=. 

l,...,m. (ii) For each sequence e of constants that are new 

Condition - 5. Same as Condition 4 (i) except for Q a sentence. 

Condition - 6. T satisfies the Deduction Theorem: For senter-ces 

and formulas P of L (T) , T (Q)~P if and only if T~Q+P. 

Condition - 7. For every set C of constants, the deduction 

theorem holds for T (C) . 
Condition - 8. (Uniformity Condition) There exists a constant 



c (where c is in L ( T )  if T contains some constants ) such that, 

for any extension 'I" of T(c) whose nonlogical rules are exactly 

those of T, and for any instance (P, R ( P )  ) in L (T ' ) of one of 

these rules, if E is the set of closed L(T(c))-instances of the 

Pi, then we have that every closed L(T (c) )-instance of R ( F )  is 

a theorem of T1(E). (An L(T)-instance of P is a formula of the 

form P (E /G)  where the ti are terms of L(T) . )  

Theorem - 3.2. 152, 2-3, 4=5, 5*6, 1 & 6 - 7 ,  3&4=7. 

1-2: This is clear, since Condition 1 means that no instance 

of a nonlogical rule of T contains a symbol that is new to L(T). 

2-3: We always have (i) - (ii) by the substitution rule, 
and it is trivial that (ii)=(iii). Thus we need only show that 

- - 
(iii) -(i) . Suppose that PI,. . . ,Pk is a proof of P (e/x) in T ( c )  , 

where e is a distinguished sequence of members of C. Let be 

a distinquished sequence of variables of L(T) that do not occur 

in any of the P . Then, where P' is the formula that is ob- 
j j 

tained from P by replacing each ei respectively by yi, P i ,  ..., 
j - - 

Pi is a proof of P(y/x) in T. For consider any P . If this 
j 

formula is an axiom of T(C), then P' is clearly an axiom of T, 
j 

since such a replacement in a logical axiom yields an axiom of 

the same form, and the nonlogical axioms of T(C) are just those 

of T, which do not contain symbols that are new to L(T). If E; 

is the conclusion in some instance (P , ,  ) of some rule 
jl jm 

R of T, then either (i) R is a logical rule, in which case we 

clearly have that (P! , . . . , P I  ) is an instance in L ( T )  of the 
'1 'm 

same rule, or (ii) R is a nonlogical rule of T, and we have the 



- -  - -  
y Condition 2. Since P is just ~(y/x)(x/y), it follows 

that T ~ P  by the substitution rule. 

4-5:  This is trivial. - 
5-6 and 1&6-7: These are similar to 3&4=7. - 
3 & 4 - 7  : 0 : If T (c) ~Q-+P, then certainly T (C) (Q) ~Q+P, so that 

T(C)(Q)~P by modus ponevs. So in this direction we are done. 

-: Suppose that TIC) (Q)t-P where Q is a sentence of L(T(c)). 

We induct on the theorems of T(C) (Q). If P is an axiom, then 

either it is an axiom of T(C), or it is Q, and in either case, 

T(C)~Q+P by the tautology theorem. Suppose that P is the con- 

clusion of an instance (Plf...,PmfR(P,...,Pm)) of some rule F 

of T, where the Pi are theorems of T(C)(Q). If R is modus po- 

nens, then this instance has the form (Pt,P'+P,P), and the in- 

duction hypothesis is that T(c)~Q+P' and T(c)~Q+P'-+P. It fol- 

lows that T(C)~Q+P by the tautology theorem. If R is the sub- 

stitution rule, then the instance has the form (P1,P' (t/x)), 

and the induction hypothesis is that T(c)~Q+P'. Then T(c)~ 

(pPt)(t/x), and since Q is a sentence, this is just another 

way of writing T(C)I-Q+P1(t/x). Suppose that R is a nonlogical 

rule of T. Let Q1,Pi, ..., P;,P1 be some formulas of L(T), and 

e the members of C, such that Q is Q' ( e / x ) ,  each P is P! ( e / a  
- - j J 

and P is P' (e/x). Then the induction hypothesis is that T ( C ) ~  
- - 

(Qg+P!)(e/x) for each j, so it follows that T~Q'-+P! for each j 
3 3 

by Condition 3. Hence T~Q'-+R(P~, ...,PT;I) by Condition 4 (i), 

which means that T~Q'+,P' by Condition 4(ii). Then T(C)~Q'+P', 

so that T(c)~Q+P by the substitution rule. 



Definition 3.3. A theory T is a weakly admissible theory - 
if either (i) T is complete, or (ii) T satisfies the uniformity 

condition, and where c is the constant of that condition, we 

have that (a) T(c) satisfies the deduction theorem, and (b) 

T ( c )  is consistent provided T is consistent. A theory T is ac 

admissible theory if either (i) T is complete, or (ii) T satis- 

fies the uniformity condition, and where c is the constant of 

that condition, we have that there exists a set C of so constsnts 
that are new to L(T(c) ) such that (a) T (jc)UC) satisfies the GP- 

duction theorem, and (b) the three conditions of the theorem on 

constants are equivalent when CUic) is taken in place of C. 

Notes. (i) For T to be an admissible theory, it is suffic- 

ient that it satisfy Conditions 3 , 7  and 8. Hence Theorem 3.2 

shows that it is sufficient that T satisfy Conditions 1,4 and 

8, or Conditions 2 , 4  and 8. In particular, this makes it tri- 

vial that theories without nonlogical rules are admissible. 

(ii) If T is admissible, then T is weakly admissible. 

For let c be the constant of the uniformity condition. To see 

that T(c) satisfies the deduction theorem, let Q be a sentence 

and P be a formula of L (T (c) ) such that T (c) (Q)~P. Then, where 

C is as hypothesized in the definition of "admissible theory", 

T({c}UC) (Q) IP, so that T({C)UC) ~Q+P by (a) of the definition. 
T (c) ~Q+P then follows by (b) . To see that T(c) is consistent 

if T is, suppose otherwise. Then T({c)UC) is inconsistent, 

so that T({c}uc)~P&-P for some formula P of L(T), which implies 

that TIP&--P by (b) . 



We shall consider the following as lemmas for Theorem 3.5. 

Theorems 3.3 and 3.4 are dealt with first, simply because they 

also are direct consequences of the lemmas, and lead up to our 

main theorem in a natural way. 

An extension of the form T(E), where E is a set of formulas 

of L(T), is a simple extension of T. It is a sentential exten- -- 

sion of T if every formula in E is a sentence. - 
Lemma 1. If T satisfies the deduction theorem, then so docs - 

every sentential extension of T. 

We have already seen that for any T, if T~Q-+P then T(Q)~P 

by modus ponens. Hence, what we want to show is that, if T(Q)~P 

implies TI-Q+P, then this implication also holds when T is re- 

placed by one of its sentential extensions. 

Let E be a set of sentences of L(T), and furthermore let Q 

be a sentence and P a formula of L(T) such that T(E) (Q)~P. Su?- 

pose that Q1, ...,Qn are the members of E that appear in some 

the tautology theorem. Hence TtQl& *RQ~&Q+P, since T satis- 

fies the deduction theorem by hypothesis. Then TbQ1+*=*+Qn-+ 

Q+P by the tautology theorem, so that T(~)~Q-+P by n applications 

of modus ponens. Hence T(E) ~Q+P. 0 

Lemma - 2. If T satisfies the deduction theorem, then it sa 

isfies: For sentences Q of L(T), T ~ Q  if and only if T(-4) is 

inconsistent. 

It is clear that for any T, if T ~ Q  then T(4) is inconsis- 

tent. Suppose that T(4) is inconsistent and that T satisfies 



the deduction theorem. Then T (4) +P and T (4)k-P for some forn- 

ula P of L(T), and it follows that T~--Q-+P and ~t4-+-p- But 

then T ~ Q  by the tautology theorem. C 

Lemma - 3. If T satisfies the uniformity condition, c is the 

constant of that condition, C is any (possibly empty) set of 

constants, and E is any (possibly empty) set of formulas of 

L (T ({c)lJC) such that T1=T ({c)UC,E) is consistent and satisfies 

the deduction theorem, then T' has a complete simple extension. 

Sublemma. If T is consistent and satisfies the deduction 

theorem, then T has a sententially complete sentential exten- 

sion. 

We shall use the method of . [ 3 9 ]  for proving ~indenbaum's 

Theorem. A set J of subsets of a set A has finite character 

if, for every subset B of A, we have that B is in J if and only 

if every finite subset of B is in J. A member B of J is maxi-. - 
ma1 - if, for every member B' of J ,  we have that B'3B implies 

that B'=B. We borrow from set theory the Teichrnuller-Tukey 

Lcrnrna: If J is a nonempty set of subsets of a set A and has 

finite character, then J has a maximal member. 

Let J={E~T(E) is a consistent sentential extension of T). 

Then J has finite character. For, if some E has a finite sub- 

set E' not in J, then T(E) is an extension of an inconsistent 

theory, and E is not in J. And if some set E is not in J, by 

letting E' be the set of formulas in E that appear in a proof 

of some contradiction P&-P in T(E), we see that T(E') is in- 

consistent, and hence that E' is a finite subset of E that is 

not in J. 



Now, since T is consistent, J contains the empty set. 

So J has a maximal member, say E, by the Teichmuller-Tukey 

lemma; and clearly, T ( E )  satisfies the deduction theorem by 

Lemma 1. Suppose that, for some sentence Q of L (T) , T ( E ) ) ~ Q .  

Thcn Lemma 2 says that T(E)(-0) is consistent. Since E is 

maxima1,this means that -4 is in E. Thus T(E)~--4, and T(E) 

is sententially complete. 0 

Proof of - Lemma - 3: The theory T' has a sententially com- 
plete sentential extension T" by the sublemma. Let E' be the 

set of formulas P of L (T") such that every closed L (T") -in- 

stance of P is a theorem of T". Then, by Note (ii) immediately 

following Definition 2.2, T"(E') is the required extension of 

T', if it is consistent. Since T" is consistent by the defini- 

tion of "sententially complete", it is sufficient to show that. 

every closed L(T(c))-instance of a theorem of T" (E') is a theo- 

rem of T". 

We induct on the theorems of T"(E1). Suppose that P is 

an axiom. If P is an axiom of T", then we are done by the sub- 

stitution rule. If P is a formula in E l ,  then we are done by 

the definition of E l .  Suppose that P is the conclusion of ar. 

instance (P l,...,Pm,R(P1,...,Pm)) of a rule R of T I  where each 

'i is a theorem of T"(E1). The induction hypothesis is that 

every closed L(T(c))-instance of each Pi is a theorem of T". 

Consider a closed L(T(c))-instance P (t/G) of P. If R is modus 

ponens, then the rule instance is (Q,Q-+P,P) for some Q. Since 
- - (a*)  (5/2) is just Q (t/c) -9 (c/x) , it is immediate that (Q (t/x) , 



- - - - 
(WP) (t/x) , P  (t/x) ) is an instance of modus ponens, and hence 

that P(E/~) is a theorem of T" by modus ponens. If R is the 

substitution rule, then, in an analogous manner, P ( t / x )  is a 

theorem of T" by that same rule. Suppose that R is a nonlogi- 

cal rule. Let E" be the set of closed L(T(c))-instances of 

the Pi. Since T" is an extension of T(c) with nonlogical ruLes  

exactly those of TI it follows that T"(E")FP(~/~) by the unifor 

ity condition. Hence T"~P(E/~), for the induction hypothes~s 

implies that the theories T" and TU(E") have precisely the sane 

theorems. 0 

Note. - In the proofs of the following Theorems 3.3, 3.4 and 
3.5, the easy case - that T is (weakly) admissible because T is 
complete - is omitted. 

Theorem - 3.3. A consistent weakly admissible theory that con- 

tains a constant has a complete simple extension. 

If T is a consistent theory that is weakly admissible then, 

where c is the constant of the uniformity condition, the hypo- 

theses of Lemma 3 are satisfied by taking C and E empty, so that 

T1=T (c) . Hence, bv that lemma, T(c) has a complete simple ex- 

tension. And since T further contains some constants, the un 

formity condition says that T(c)=T. 0 

A model S of a theory T is a complete model of T if, for 

for every formula P of L(T), P is valid in S exactly if TIP. 
Complete models are necessarily strong models. For suppose that 

(P,R(P)) is a rule instance in L(T) such that each Pi is valid in 

in some complete model S of T. Then T ~ P ~  for each i, by the 



definition of "complete model"; so T~R(F) by the definition oE 

"theorem"; and this implies that R is valid in S, because S is 

a model of T. 

Theorem 3.4. A consistent weakly admissible theory has a - 
strong model. 

It is clear from the preceding proof that under these 

conditions, a theory T that does not contain a constant has a 

complete extension, though not necessarily a simple one. Thac 

is, we have a complete simple extension of Tt=T(c) where c is 

the constant of the uniformity condition. 

Let T" be a complete extension of T. Then 7'" is consis- 

tent, and therefore has a model by Theorem 3.1. It is easy to 

show that a model of a complete theory is complete. And we 

have just seen that complete models are strong. Hence, since 

the rules of T "  are the rules of T I  there is a (strong) model 

of T" whose restriction to L(T) is a strong model of T. 1 

Theorem 3.5. The strong semantics is adequate for all admis- - 
sible theories. 

Let T be an admissible theory, and suppose that P is a 

formula of L(T) such that T ~ P .  Then T is a consistent theory, 

Let c and C be as in the definition of "admissible", and let 

e be a distinguished sequence of constants in C such that 
P ( + )  is closed. Since the theorem on constants holds when 

C is replaced by {c)UC, T({c)UC) is consistent and does not con- 
- - 

tain a proof of P(e/x) ; and since T({c)UC) satisfies the deduc- 
- - 

tion theorem, the theory T'=T({c)UC,--P(e/x)) satisfies the de- 



duction theorem by Lemma 1, and that T' is consistent by Lem- 

ma 2. Hence we are in the conditions of Lemma 3, so that, as 

in the proof of Theorem 3.4, T' has a complete simple extensi3n 

T", which in turn has a complete model S such that S/L(T) is a 

strong model of T. Since an instance of the formula -P is an 

axiom of T", it is clear that s/L(T)~P. 1 

Notes. (i) If T does not satisfy the deduction theorem, 

then not only is T not admissible, but the strong semantics 

definitely is not adequate for T. For assume that the strong 

semantics is adequate for T, and suppose that T(Q)~P, where Q 

is a sentence and P a formula of L(T). If T~Q+P, then there 

is a strong model S of T such that S(Q)=O and S ~ P .  But then 

S models the nonlogical axioms of T(Q), so it follows by induc- 

tion on the theorems of T(Q), that S does model P. This con- 

tradiction shows that T~Q+P, and hence that T satisfies the 

deduction theorem. 

(ii) We have not been able to determine if the theorem 

on constants is also needed in this same sense. It is clear, 

however, that at least something like the theorem on constants 

must be called upon for the purposes of the foregoing proof: 

and that there is a method of oroaf which completely b p a s s e s  

an assumption of this kind seems doubtful. 

Theorem - 3.6. The theories of arithmetic, A and A-, are ad- 

missible theories. 



~t is sufficient to deal only with A ,  since the proof fox 
- 

A is exactly the same. We show (i) that A satisfies Condition 

2, (ii) that, for any set C of constants, A ( C )  satisfies Condi- 

tion 5, and (iii) that A satisfies the uniformity condition. 

The theorem will then follow by Theorem 3.2. 

(i) Consider an instance (P (O/x) ,P+P (Sx/x) ,P) of the in- 

duction rule in L(A(C)), where C is a set of constants that are 

new to L(A). If e are the distinct constants in C that appear 
in this instance, and is a distinguished sequence of variables 

of L ( A )  that do not appear in it, then clearly,the triple that 

is obtained from it by replacing each ei respectively by yi, is 

an instance of the induction rule in L(A). 

(ii) Consider an instance (P (O/x) ,P+P (Sx/x) ,P) of the in- 

duction rule in L (A(C) ) ,  where C is any set of constants. Sup- 

pose that Q is a sentence of L(A(C)) such that A(C)~Q+P(O/X) 

and A(c)~Q-+P+P(sx/x). Then, since Q is a sentence, the former 

can be written A(c)~(Q+P) (O/x). And by the tautology theorem, 

the latter yields that A (c) (Q+P) -+ (Q+P (SX/X) ) , which, since Q 

is a sentence, can be written A (c) (Q+P)+ (Q+P) (Sx/x) . Hence 

A(C) ~ Q + P  by the induction rule. 

(iii) Since L (A) contains the constant 0 (and no others) , 
we must show that A satisfies the uniformity condition when 0 

is taken as the constant of' that condition, i .e. , when L (A (c) ) = 

L (A) . Consider the instance (P (O/x) , P+P (Sx/x) ,P) of the induc- 

tion rule in L(A) . Let E be the set of closed L(A) -instances 

of P (O/x) and P+P (Sx/x) , and suppose that P (c,t/x,x) is a closed 



I,(A)-instance of P. We need that A(E)~P(E,~/~;,x . Recal 1 thet, 

since t is a closed term of L(A), it is reducible in A to a 

unique numeral, say kn. It follows that we only need that A ( I : ) L -  

~(E,k~/;,x). Since E contains all the formulas P(E,o/~,x), 

~ ( E , ~ / i i , x ) + ~ ( f , k ~ / ~ , ~ ) ,  . . .,P(EIkn-l/~,~)+~(~,kn/~,x). we have it 

by n applications of modus ponens. 1 

The general theory of lattices (two good references are 

Lattice Theory by G. Birkoff and Lattice Theory by T. Donnellan) - 
also provides some examples. By Lattice Theory we shall mean 

the free-variable theory L whose language contains the binary 

function symbols n and I,J, and whose nonlogical axioms are the 

formulas of L (L) having the forms (i) xny=yflx, (ii) xfl (ynz)= 

(xny) nz  , and (iii) xfl (xUy) =x, together with their duals, where 

the dual of an equation is the equation that results from re- - 
placing each occurrence of n by an occurrence of 0, and vice 

versa. By Lo we shall mean the theory with L(L~)=L(L), whose 

nonlogical axioms are those of the forms (i), (ii) and (iii) 

only, and which has as its single nonlogical rule, the duality 

rule, consisting of all pairs (P,P*) where P* is the dual of F .  

It is clear that L and Lo have the same theorems. 

The duality rule is the formal expression of the well-known 

"Duality Principle" which asserts that an equation is a theorem 

of (general) lattice theory if and only if its dual equation 1-s 

also a theorem. It is worth emphasizing that, while this prin- 

ciple allows us to infer that LIP iff LIP*, it does not tell us, 
what is usually false, that L~P*P*. 



Now, the theory L is admissible, simply because it has no 

nonlogical rules. On the other hand, it is easy to see that 

Lo satisfies Condition 2 and the uniformity condition; and since 

L(LO) does not contain sentences. it is trivial that Lo satis- 

fics the deduction theorem. However, there is no infinite sez 

C of constants such that LO(C) satisfies the deduction theorem. 

To see this observe that (i) every lattice is a model of L, 

(ii) L and Lo have the same theorems, and hence the same  mode;^, 

and (iii) since Lo satisfies the theorem on constants, given 

any set C of constants, any expansion of a model of L to a 0 

structure for L (LO (C) ) is a model of LO (C) . It follows that 

the four-element lattice R defined by a.?a2.a3; a2 and a3 are 
unrelated; and a2,a3>a4; together with the assignments of all 

a2,aj respectively to some distinct constants c1.c2,cJ in a 

given infinite set C, is a model of LO(C). Let Q be the sen- 

tence c Uc =c P be c2nc3=c1, 2 3 1' and note that Q+P is not valid 

in m . Then LO (C) (Q) FP by the duality rule, while L~ ( c ) ~ Q - . P .  

Hence, by Note (i) following Theorem 3.5, this shows that 

the strong semantics is not adequate for LO(C) where C is any 

infinete set of constants; and since Lo satisfies the theorem 

on constants, it follows that the strong semantics is also not 

adequate for Lo. Thus we have two theories, L and Lo, such 

that the strong semantics is adequate for one and not the other, 

even though both theories have exactly the same theorems. 

Of course, none of this should be too surprising to anyone 

familiar with lattices. For first of all, the duality principle 



is not meant to apply to statements involving named elements 

of a particular lattice, but only to free-variable statements 

about lattices in general; and secondly, a strong model of Lo 

would have to be a lattice that is self-dual, and one would 

certainly expect that there are unprovable statements that 

are nevertheless true about every such lattice. Also, it 

should not be surprising that Lo is weakly admissible. We'll 

omit the proof (that the deduction theorem holds for Lo(c), 

for any constant c), and merely point out that Lo has the one 

element lattice as a strong model. 

Regarding the definition of "rule of proof", there are two 

things that deserve mentioning. Both of them are tied up 

with Conditions 1 through 8, Theorem 3.2, and the definition 

of admissibility. First, by now it should be clear why we 

have not followed the customary practice of describing a rule 

by means of a "schema", i.e., a law which tells how one may 

infer a formula of a certain form from some formulas having 

certain other forms. If one wishes to isolate those charac- 

teristics of the rules of a theory which ensure that somethinq 

about the theory is true, it is best to begin with the most 

general notion of a rule that is available. Surely, restric- 

tion of one's self to only rules that are "schematic" could 

severely cripple the ensuing investigation. 

However, it happens that any "reasonable" rule that one 

can imagine is describable by means of some schema or set of 

schemas. Hence, the conditions sought after, once they are 



found, miqht well be reduced to some conditions on a rule 

schema. 

Through formalizing the metalanguage one can arrive at 

a precise and fairly comprehensive notion of a schenatic 

rule. And in the case of the foregoing conditions, he can 

proceed to describe some "admissible" rule schemas; that is, 

he can supply some descriptions of schemas 

such that, if all the rules of a theory are schematic, and 

moreover, have schemas of certain of these descri~tions, then 

that theory satisfies certain of Conditions 1 through 8. Con- 

dition 2 is certainly amenable to such a description. A theo- 

ry TI and every extension T(C) of T I  satisfies Condition 4, 

if every nonlogical rule R of T has the property that, for 

sentences Q, if (F,R(F) ) is an instance of R, then so is 

(Q+PII...IQ+PnrQ+R(F)). And a theory T satisfies the uni- 

formity condition if every nonlogical rule R of T has the 

property that, for sequences of terms E I  if (P~,...,P,, 
- - 

R(P l,...,Pm)) is an instance of RI then so is (pl(t/x), ..., 
- - 

P / R P  l,...,~m)t/x)). So in these two cases, one can 

obtain descriptions which would at least imply the corres- 

ponding conditions. 

However, although such descriptions might be a conven- 

ience in some cases, they appear to take us too far from the 

goal, i.e., the characterization of admissible theories; for 

our main example, the induction rule, does not have either 

of these latter two properties. In fact, this is as good 



reason as any why we should qive up lookirq for a purely syn- 

tacticnl conditions which are necessary for admissibility. 

(The reader has probably noticed that all of Conditions 4, 5 

and the uniformity condition are couched in terms of provabil- 

ity in T.) Surely, any purely syntactical property of a rule 

should be expressible in terms of a rule schema. 

The second point is that, in general, the rules of a 

theory can take as arguments, or values, formulas outside the 

language of that theory. Why not, one might ask, just assume 

that all theories satisfy Condition l? For the we would 

have, for all T, that T satisfies the theorem on constants, 

and that, if T satisfies the deduction theorem, then so does 

every extension T(C) of T. Thus to show that T is admissible, 

it would be sufficient to show that T satisfy the deduction 

theorem and the uniformity condition. 

In reply we can say that this is a feasible approach for 

theories containing a constant. But it might happen that the 

strong semantics is adequate for some theory T not containins 

a constant, and that we are unable to verify this simply be- 

cause the rules do not apply to formulas containing a constant, 

that is, because T might not satisfy the uniformity condition. 

Of course, one could compensate for this by building into the 

definition of "extension" of a theory, a provision for extend- 

ing its rules. But then there is a question of how these rules 

are to be extended, so that one would eventually have to go 

back to the conditions we succeeded in eliminating, and replaze 



with some conditions governing extensions; and this would 

not be very different from having things as they now stand. 

$ 3.3 Some Applications - - 
We have already applied Theorem 3.2 to obtain Theorem 3.5; 

and we applied Theorem 3.5 to show that the strong semantics is 

adequate for the theories of arithmetic A and A-. In this sec- 

tion we study some relationships between free-variable theori$?s 

and first-order theories, we show that "extensions by primitive 

recursion" are "conservative", and we derive an interesting 

fact about provability in first-order Peano arithmetic P. 

A first-order language and a free-variable language will 

be called correspondents (or corresponding)if they differ only 

in that the former contains quantifiers; and a first-order 

theory and a free-variable theory will be similarly called if 

their languages are correspondents and they have the same non- 

logical axioms. A first-order theory and a free-variable theory 

will be associates if their languages are correspondents and 

the nonlogical axioms of the former are the theorems of the lat- 

ter. A sequence of formulas is an open proof if it is a proof 

in a free-variable theory which, until further notice, is as- 

sumed to have no nonlogical rules. We shall consider the re- 

mark that appears with the statement of Theorem 3.1, where it 

was pointed out that that result would follow by the first- 

order completeness theorem if only we had the following. 

Fact. For any free-variable theory TI if VP then T*~P, 
where T* is the associate of T. 



Now it is clear that this fact follows by Theorem 3.1. 

It happens that, recently, by following a renewed age old 

suggestion by his supervisor, this author has finally seen 

that the fact can be established through an application of 

the methods laid down in Problem 2, Chapter 4 of [ 3 9 ] .  In- 

stead of writing out this proof, let it only be said that the 

proof is aided by making the following observations: (i) In 

a free-variable theory, a formula is a theorem if and only if 

it is a tautological consequence of some substitution instan- 

ces of the nonlogical axioms, (ii) in an extension T(c) of a 

first-order T I  where c is a constant that is new to L(T), if 

a formula P of L(T) is not a tautological consequence of the 

substitution instances of the axioms of TI then the closed 

instance P(c, ..., c/x) of P is not a tautological consequence 
of the substitution instances of the axioms of T ( c ) ,  (iii) if 

E is a tautologically consistent set of formulas, and P is 

not in E, then EU{-P) is tautologically consistent, and (iv) 

if E is a subset of a tautologically complete set El, then 

all the tautological consequences of formulas in E are in El. 

Once and for all, let us record this fact in the follow- 

ing way. 

Theorem - 3.7. In an open first-order theory, every open theo- 

rem has an open proof. 

Let T be an open first-order theory; let TI be the corres- 

ponding free-variable theory; and let T" be the associate of TI. 

It is obvious the T and T" have the same theorems. Thus, given 



that TFP, we have T " ~ P ;  and TI/-P, i.e. that P has a open proof, 

follows by the fact's contrapositive. 0 

Corollary. The open theorems of an open first-order theory 

are exactly the theorems of the corresponding free-variable 

theory. 

We just saw that, if TIP then T'IP. The converse state- 

ment holds because the substitution rule is valid in all first- 

order theories, so that proofs in T '  are transformable into 

proofs in T. 1 

Note. - The above corollary makes it obvious that, given the 

theorem, we can derive the fact. 

We turn now to an application of Theorem 3.5. We consider 

formal systems F consisting of an open first-order theory, pos- 

sibly with nonlogical rules, where by an n-ary rule for such a 

system is understood a class of (n+l)-tuples of formulas in 

which no two (n+l) -tuples have the same (n+l) -st member. An 

example of such a system is the system P' of Peano arithmetic,, 

which is described in [39], p. 214. P' has first-order induc- 

tion as a rule of proof. 

It is clear that by reading "closed first-order formula" 

in place of "sentence", all of Conditions 1 through 8, and the 

definition of "admissible" make sense for such formal systems F. 

For the purposes of the following theorem, an "open proof" 

might be a proof in a free-variable theory which does have non- 

logical rules. The Q-instances of a first-order rules are those 

instances in which some member contains quantifiers. 



Thcorcm - 3.8 .  An open theorem o f  an a d m i s s i b l e  sys tem F h a s  

a n  open proof i f  it h a s  a  p roof  w i t h o u t  Q - i n s t a n c e s  o f  t h e  nor-- 

l o g i c a l  r u l e s  o f  F.  

L e t  T, b e  t h e  f r e e - v a r i a b l e  t h e o r y  w i t h  L(T,)  t h e  cor- 

r e s p o n d e n t  of  L ( F ) ,  w i t h  n o n l o g i c a l  axioms t h o s e  of  F ,  and 

w i t h  n o n l o g i c a l  r u l e s  t h o s e  o f  F  less t h e  Q - i n s t a n c e s .  Then 

T, i s  a n  a d m i s s i b l e  f r e e - v a r i a b l e  t h e o r y .  I t  i s  s u f f i c i e n t  

t o  show t h a t ,  i f  a n  open theorem of  F  h a s  a  proof  t h a t  d o e s  

n o t  i n v o l v e  Q - i n s t a n c e s ,  t h e n  it h a s  a p roof  i n  T,. 

For  e a c h  i n s t a n c e  ( F , R ( F ) )  o f  a  n o n l o g i c a l  r u l e  o f  F ,  

l e t  t h e  a s s o c i a t e d  formula be P ~ & - - . L P ' + R ( F )  n  ' where t h e  p r imes  

i n d i c a t e  t h e  u n i v e r s a l  c l o s u r e .  Then l e t  T* be t h e  f i r s t - o r -  

d e r  t h e o r y  w i t h  L ( T * ) = L ( F ) ,  and w i t h  n o n l o g i c a l  axioms t h o s e  

of F ,  t o g e t h e r  w i t h  t h e  f o r m u l a s  a s s o c i a t e d  w i t h  t h e  non-Q- 

i n s t a n c e s  of t h e  n o n l o g i c a l  r u l e s  o f  F.  I t  i s  clear t h a t ,  

i f  P i s  p r o v a b l e  i n  F w i t h o u t  Q - i n s t a n c e s ,  t h e n  it i s  prova-  

b l e  i n  T*. Thus it remains  t o  show t h a t  a n  open theorem o f  

T* i s  a  theorem o f  T,. S i n c e  e v e r y  s t r o n g  model o f  T, i s  a 

model of  T*, t h i s  f o l l o w s  by Theorem 3.5. 0 



Concluding Remarks 

In conclusion here it is worth noting the following things. 

(i) Even though we have found some fairly "nice" theorems 

about free-variable theories, it is clearly not worth our while 

to pursue the semantical analysis any further in this generality 

unless some more free-variable theories with "interesting" no:l- 

logical rules are first discovered. 

(ii) However, over and above this, there is one question 

that deserves attention: 

Can a free-variable theory for which the strong semantics 

is adequate have a model that is not strong? 

For in application to the two theories of arithmetic, A and A-,  

this is to ask if there is a structure for the language of A in 

which the tlworems of either theory are valid, but the induct~on 

rule fails. 

(iii) The answer to the analogous question about first-order 

systems F as described in $ 3 . 3  is "no". For, if the strong se- 

mantics is adequate for F, then F satisfies the deduction theo- 

rem, which, in thic case, implies that the formulas associated 

with the nonlogical rules of F are theorems of F, so that a mo- 

del of F is a fortiori a strong model. 
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