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ABSTRACT 

Supercompactness and supercompactifications are related to 

types of linked families in the same manner as compactness and compacti- 

fications are related to types of filters. The ~tone<ech compactifica- 

tion and Wallman compactification are known to be universal constructions 

in the sense of category theory. The main result is a supercompactifica- 

tion that likewise is universal. To obtain this result the superexten- 

sion construction of deGroot is modified by the introduction of T -sub- 
1 

base spaces and the kinds of morphisms allowed are reduced from 

continuous functions to sure functions. 
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CHAPTER I 

INTRODUCTION 

Prior  t o  the formal presentation of our topic,  which is 

deferred u n t i l  the next chapter, we fee l  obliged t o  discuss br ie f ly  and 

informally the background and significance of our resul ts .  Although 

the succeeding chapters are self-contained, the present one presumes 

a famil iar i ty  with general topology and some category theory. An 

e f fo r t  has been made throughout t o  use standard notation whenever 

possible. 

Recall t h a t  a pa i r  (Y,h) is called a compactification of a 

topological space X whenever Y i s  a compact space and X is  homeo- 

morphic with a dense subspace of Y v ia  the f-mction h . By a 

compactification for  - C, where - C is a category of topological spaces, 

we mean a collection {(?,rc) : C C - C) , where each (errC) is a 

compactification of C . Several methods for  constructing compactifi- 

cations are  known which seem relat ively "natural" and "uniform". More 

precisely,  we say a compactification of C is a universal construction 

whenever each - C function f : C + B with B a compact space has 

A 

associated with it a unique - C function g : C + B such tha t  grC = f .  

It i s  well known t h a t  the stone-zech compactification is  a universal 

construction for  the category of Tychonoff spaces [9, p. 1371 whereas 

the one-point compactification [9, p. 1361 is  not one for  the more 

res t r ic ted  category of local ly compact Hausdorff spaces. 

Applications of the concept of universal construction extend 

beyond compactifications. In fac t ,  MacLane [7] and others have defined 

and studied t h i s  concept within the realm of category theory and shown 

tha t  instances of it occur throughout mathematics. So ubiquitous and 

- 1- 



d e s i r a b l e  is  t h e  un ive r sa l  proper ty ,  t h a t  when a  cons t ruct ion  f o r  a  

p a r t i c u l a r  ins t ance  e x i s t s  which i s  not  un ive r sa l ,  o f t e n  s t e p s  a r e  taken 

to study t h e  s i t u a t i o n  fu r the r .  T rad i t iona l ly ,  t h i s  might involve a  

search  f o r  a  d i f f e r e n t  cons t ruct ion  f o r  t h e  same ins tance  which i s  more 

"natura l"  and "uniform" and thus  poss ib ly  universa l .  Late ly ,  seve ra l  

i n v e s t i g a t i o n s ,  notably by Harr is  [41 151 and Bentley and Naimpally [ I ] ,  

have appeared which use a  d i f f e r e n t  approach. Since our  main r e s u l t  a l s o  

employs t h i s  new approach, which we c a l l  a  - f u r  s t r a t e g y ,  an example of 

i t s  use i s  mentioned next.  

Let TOP denote t h e  category of  a l l  T  -spaces and continuous 
-1 1 

funct ions  between t h e s e  spaces,  and COMP TOPl be t h e  f u l l  subcategory 

TOP conta in ing t h e  compact T -spaces. A Wallman compactif icat ion of -1 1 

{ ( 5 , ~ ~ )  : X € TOP } f o r  TOP e x i s t s  which seems r e l a t i v e l y  "natural"  
-1 -1 

and "uniform", b u t  which i s  n o t  universa l .  It was discovered by ~ a r r i s  

151 t h a t ,  by considering a  f u r  subcategory o f  TOP (one which has the  
-1 

same spaces b u t  fewer func t ions ) ,  t h e  problem could be  "bypassed". 

S p e c i f i c a l l y ,  Har r i s  found t h a t  t h e  Wallman compactif icat ion f o r  t h e  

category WOSEP, a  f u r  subcategory of  TOP is a  un ive r sa l  construct ion.  
-1 ' 

Supercompactness i s  a  type o f  compactness which depends upon 

the subbase of a  topologica l  space. Suppose SUPERCOMP TOPl is  t h e  

f u l l  subcategory of  conta in ing j u s t  supercompact T -spaces. A 
1 

superextension const ruct ion ,  {(xS,sX) : X C TOP 1, was discovered by 
-1 

deGroot [3] such t h a t  each X is  a  supercompact T -space and X is  
S 1 

/ homeomorphic t o  a  subspace o f  X v i a  t h e  map s 
S X *  

Several  map 



Our main r e s u l t  is  t o  de f ine  a reformulat ion of t h e  superextension con- 

s t ruc t ion  which is  a un ive r sa l  cons t ruct ion  f o r  t h e  category - SURE, a 

f u r  subcategory of a category r e l a t e d  t o  TOP . 
-1 

Chapter I1 conta ins  formal d e f i n i t i o n s  of  an e p i r e f l e c t i v e  

subcategory ( a  notion s t ronger  than t h a t  of  un ive r sa l  cons t ruct ion)  and 

of t h e  f u r  s t r a t egy .  I n  Chapter I11 is presented  a restatement of 

supercompactness and of t h e  superextension const ruct ion  i n  a form which 

allows i n  Chapter I V  our  proof t h a t  a un ive r sa l  s i t u a t i o n  e x i s t s  with 

r e spec t  t o  a s u i t a b l e  f u r  s t r a t e g y .  Chapter V reviews t h e  r e s u l t s  of 

Jensen mentioned above. 



CHAPTER I I 

EPIREFLECTIVE SUBCATEGORIES 

In  t h i s  chapter,  we introduce formally t he  category-theoretic 

notion ep i r e f l ec t i ve  subcategory, which i s  needed l a t e r  i n  our discussion 

of the  superextensionconstructionof supercompact T -subbase spaces. 
1 

Definit ion 2 . 1  16, p. 161 A category - C is an ordered six-tuple 

c = cObj C , Mor C , dom, cod, O , id> where - - - 

(i) Obj - C is  a c l a s s  whose members a r e  ca l led  ob jec t s ,  

(ii) Mor - C is a c l a s s  whose members a r e  ca l led  morphisms, 

(iii) dom and cod a r e  functions from Mor - C t o  Ob j  C , - 
( iv )  O is a p a r t i a l  function from Mor - C x Mor - C t o  

Mor - C , whose value a t  the  p a i r  <f,g, ( i f  t h i s  i s  

defined) i s  denoted by fg  and is  ca l led  the  

composition of g and f , and 

(v) i d  i s  a function from Obj C t o  Mor C whose - - 
value a t  an ob jec t  X is denoted by idX and 

is ca l led  t he  i den t i t y  morphism of X 

such t h a t  t h e  following condit ions a r e  s a t i s f i e d :  

(1) f g  is  defined i f f  cod(g) = dom(f) ; 

(2)  i f  f g  is defined, then dom(fg) = dom(g) and 

cod(fg) = c o d ( f ) ;  

( 3 )  i f  f g  and hf a r e  defined, then h( fg)  = (hf)g;  

(4) f o r  each ob jec t  X , cod(idX) = dom(id ) = X ; 
X 

(5) i f  cod( f )  = X = dom(g) , then i d  f  = f  and 
X . 



(6) f o r  any p a i r  of objects  (X,Y)  , t he  c l a s s  

horn (X,Y)  = (f  € Mor C : dom(f) = X and 
C - - 

cod(f)  = Y )  i s  a se t  ( ra ther  than a proper c l a s s ) .  

For example, - SET denotes the  category f o r  which 

(1) Obj - SET is the  c l a s s  of a l l  s e t s ,  

(2) Mor - SET is the  c l a s s  of a l l  functions between s e t s ,  

(3 )  f o r  each function f C Mor - SET , the  s e t s  dom(f) 

and cod( f )  a r e  respectively t he  domain and 

codomain of f , 

(4) f o r  each s e t  X , t h e  function i d  i s  the  i den t i t y  
X 

function f o r  X , and 

(5) t h e  p a r t i a l  function O corresponds with t he  usual 

composition of functions. 

It is customary t o  def ine  a pa r t i cu l a r  category, when l i t t l e  

chance f o r  confusion i s  possible ,  by merely describing i ts  c l a s s  of 

objects  and c l a s s  of morphisms. 

The morphisms (objects)  of any category - C w i l l  be denoted 

by lower (upper) case l e t t e r s .  Thus, by f C - C and X € - C , we w i l l  

mean f € Mor - C and X € Obj - C . For f ,  X,  Y - C , both f : X -+ Y 

f and X + Y s ign i fy  t h a t  f € homC(X,Y) . - 
Definit ion 2,2 [ 6 ,  p. 231 We c a l l  - S a subcategory of category - C 

whenever 2 is a category such t h a t  

(1) Obj - S E O b j  - C ,  

(2)  Mor S 5 Mor C , and - - 
(3) the  functions dom, cod, id ,  and O f o r  5 are  r e s t r i c t i ons  

of t he  corresponding functions f o r  C . 



cal led a f u l l  subcategory of - C if and only i f ,  f o r  any objects 

X, Y C - S , homS(X,Y) = hom (X,Y)  . - C - 
Definition 2.4 A subcategory - S of a category - C is  ca l led  a - f u r  

subcategory of - C i f  and only i f  obj  - s = Obj - C .  

 finit it ion 2.5 16, p. 351 A morphism f C - C i s  a - C-isomorphism 

i f  and only i f  there  e x i s t s  a morphism g C C such t h a t  fg  = i d  
cod ( f  

and gf = i d  
dom(f) ' 

Definition 2.6 16, p. 401 A morphism f C - C i s  a - C-epimorphism 

i f  and only i f ,  f o r  a l l  morphisms g, h C - C , gf = hf implies g = h . 
~ e f i n i t i o n  2.7 [6, p. 275][5] A f u l l  subcategory - S of a category - C 

is an ep i r e f l ec t i ve  subcategory of - C with respect  t o  a c l a s s  

r X  r XR) lXCC i f  and only i f  - 

(1) f o r  each X C - C , X C S and rX : X + XR is a C-epimorphism, 
R - - 

(2) i f  X C - S , then r i s  an 5-isomorphism, and 
X 

(3) f o r  any ob jec t s  Y,  Z C - C and morphism f C homC(Y,Z) , 
- 

there  e x i s t s  a morphism fR C horn (Y Z such t h a t  
S R' R - 

z - z  
r R z 



A f u l l  subcategory - S of a category C is  called an epiref lect ive 

subcategory of - C whenever a c lass  X ) I  
{(rx'  R XCC 

ex i s t s  which 

s a t i s f i e s  the three previous conditions. 

~ e f i n t i o n  2.8 Let - S be a f u l l  subcategory of a category - C . 
Then a category - R i s  called a successful fur  strategy (with respect 

t o  the c lass  X ) )  ) i f a n d o n l y i f  
{(rX' R XCC - 

(1) - R i s  a fur  subcategory of C and - 
(2) - R n - S is  an epiref lect ive subcategory of - R (with respect 

t o  the c lass  {(rx,XR)}XCC) . 



CHAPTER I11 

SUPEREXTENSIONS 

The superextension construction and the property of super- 

compactness, close re la t ives  respectively of the Wallman-type compacti- 

f icat ion and the property of compactness, have been studied extensively 

by deGroot [3] , Csdszdr [ 2 ]  , Verbeek [8] , and others. In t h i s  chapter, 

we introduce a formulation of these concepts which permits a successful 

fur  strategy. 

Definition 3.1 [9, p. 241 A  topology for  a s e t  X i s  a collection 'T 

of subsets of X such tha t :  

(1) any intersect ion of members of z i s  a member of 7 , 

(2 )  any f i n i t e  union of members of z is  a member of z , 

(3) the s e t s  X and both belong t o  z . 
We c a l l  the members of a topology closed se ts .  A  topological space 

i s  a p a i r  X I  where T i s  a topology for  X . We often w i l l  

abbreviate ( X , z )  , when no confusion is  l ike ly ,  t o  X . 
Definition 3.2 [9, pp. 38-39] Suppose ( X , T )  is  a topological space- 

A  base for  z is a collection B c z such tha t  z = { n A  : C1 G B) . - 
A € a  

A subbase for  z i s  a collection 0 C z such tha t  B = 1 U G : X 
G C 1 

i s  a f i n i t e  subcollection of z ] is  a base for  T . 
Proposition 3.3 [9, p. 391 Any collection 0 of subsets of s e t  X 

i s  a subbase for  a topology for  X . 



Definit ion 3.4 Suppose a is 

members of  a a r e  s a id  t o  - meet 

a col lect ion of subsets  of X . The 

whenever n A # C$ . We c a l l  a an & 
A'& 

- ( in te rsec t ion  property) family i f  i ts  members meet, a fip ( f i n i t e  

in te rsec t ion  property) family i f  each f i n i t e  subcollection of it 

consis ts  of members which meet, and a l inked family [8, p o l ]  i f  every 

two of its members meets. 

~ e f i n i t i o n  3.5 [9, p. 1181 A topological  space (X,T) is  compact i f  

and only i f  each col lect ion a E T which i s  a f i p  family is  a l s o  an i p  

family. 

~ e f i n i t i o n  3.6 18, p. 481 A topological  space ( X , T )  i s  supercompact 

i f  and only i f  there  e x i s t s  a subbase a f o r  t he  topology T such t h a t  

each co l lec t ion  a 0 which i s  a linked family i s  a l so  an i p  family. 

proposition 3.7 [8, p. 481 Each supercompact topological  space is 

compact. 

This r e s u l t  is  ea s i l y  deduced from t h e  Alexander subbase 

theorem [9, p. 1291 : A topological  space (X,T) is  compact i f  and only 

i f  there e x i s t s  a subbase a f o r  t he  topology T such t h a t  each 

col lect ion a E a which i s  a f i p  family is a l so  an i p  family. 

Definition 3.8 [9, p. 861 A topological  space is  a T -space i f  and 
1 

only i f  each of i t s  s ingletons  i s  a closed s e t .  

Remark 3.9 18, p. 481 It is  known t h a t  every compact metrizable space 

i s  supercompact. Although compact T -spaces e x i s t  which a re  not super- 
1 

compact, it i s  an open question whether there  e x i s t s  a compact T -space 
2 

which i s  not supercompact. 



In  1967, J. deGroot [3, p. 901 introduced t h e  superextension 

cons t ruc t ion  by which a supercompact T -space can be  cons t ructed  from 
1 

any T1-space. A formulation o f  t h e  superextension const ruct ion  i s  

discussed i n  d e t a i l  below. 

 finti ti on 3.10 Suppose f  : X + X is a funct ion  and a i s  a 
1 2 2 

c o l l e c t i o n  of  s u b s e t s  of  X 
2 '  

Then we l e t  •’-[a2] = {•’-(A) : A C a 2 )  . 
For topo log ica l  spaces ( X l , z l )  and ( X  T ) , a funct ion  

2' 2 

f : X + X2 is  a continuous funct ion  i f  and only i f  f [ r 2 ]  5 'cl 1 

(9, p. 441. The funct ion  f  is an embedding i f  and only i f  f is 

one-one and continuous and f -  i s  continuous. 

Remark 3.11 Suppose TOP, denotes t h e  category whose c l a s s  of  spaces 

c o n s i s t s  of a l l  T -spaces and whose c l a s s  o f  funct ions  c o n s i s t s  o f  a l l  
1 

continuous funct ions  between t h e s e  spaces,  and SUPERCOMP TOP is t h e  
-1 

f u l l  subcategory of  TOP whose c l a s s  o f  spaces  c o n s i s t s  of a l l  
-1 

supercompact T -spaces. For t h e  ca tegor ies  TOP and SUPERCOMP TOP 
1 -1 -1 

we have n o t  found a s a t i s f a c t o r y  successful  f u r  s t r a t e g y  wi th  r e spec t  

t o  t h e  superextension const ruct ion  mentioned above. We have, however, 

developed a c lose ly  r e l a t e d  formulation of t h i s  problem f o r  which a 

success fu l  fu r  s t r a t e g y  does e x i s t .  

Def in i t ion  3.12 18, p. 441 A c o l l e c t i o n  RX is  a T -subbase f o r  a  
1 

topologica l  space (X,T)  whenever 

(1) Rx is  a subbase f o r  T which conta ins  X and $I , 

(2) f o r  each x C X , {x) = n {R : x C R and R C R ~ ]  , 

(3 )  x C X ,  R C R x ,  and x p  R imply t h e r e  i s a  T C RX 

such t h a t  x C T and R f I  T = 4 . 



proposition 3.13 [8, p. 4 4 )  Each T -space has a T -subbase. I f  a 
1 1 

topological space has a T -subbase, then it is a T 
1 l-~pace. 

The topology of each T -space i s  a T -subbase. Conversely, 
1 1 

from ( 2 )  above it follows tha t  {x) i s  closed for  each x C X . 
~ e f i n i t i o n  3.14 A T -subbase space is  a pa i r  (X,RX) where X is a 

1 

topological space and R is  a T -subbase for  X . A supercompact 
X 1 

T -subbase space i s  a T -subbase space ( X , R  ) such tha t  X i s  super- 
1 1 X 

compact with respect t o  the subbase R 
X ' 

Let T1-SUBBASE denote the category consisting of a l l  

T -subbase spaces and a l l  continuous functions between these spaces 
1 

and SUPERCOMPT T1-SUBBASE denote the f u l l  subcategory of T -SUBBASE 
1 

consisting of a l l  supercompact T -subbase spaces. 
1 

Remark 3.15 T -SUBBASE and SUPERCOMPT T1-SUBBASE are  the categories 
1 

t o  which we w i l l  eventually apply the fur  strategy. The functions 

considered w i l l  be more d i rec t ly  related t o  the T -subbases than are 
1 

continuous functions i n  general. 

Definition 3.16 [2, p. 571 Let RX be a T -subbase for  X . 
1 

An Rv-ultrasieve is a nonempty s e t  0 with the properties 

(2 )  i f  B, D C o , then B n D # 4 , 

(3)  i f  B C Rx and B n D # 4 for  each D f o, then B C o . 



o r  j u s t  c  , i s  def ined by: f o r  any s e t s  A A 5 X , 
Rx 1' 2 

i f  and only i f ,  f o r  each p a i r  R R € RX with A1 2 R1 
1' 2 

and A2 5 R2 , R1 n R2 # 0 . I f  A c A , we say A and A2 a r e  
1 Rx 2 1 

5-bicont iguous .  We l e t  A mean t h a t  A c A is  no t  t rue .  
1 Rx 2 

Def in i t ion  3.18 ( c f .  [ I ] )  An R -b icont ingui ty  c l u s t e r  is  a  non-empty 
X 

c o l l e c t i o n  0 of subse t s  of X such t h a t  

( 2 )  i f  A, B € o , then  A c  B , 
Rx 

( 3 )  i f  A S  X and A c  B f o r  each B € o, then A € o .  
R 

X 

Def i n t i o n  3.19 Let  (X,RX) t T1-SUBBASE , R E RX , and A 5 X . 
We def ine  R+ = {o : o i s  an R - u l t r a s i e v e  conta in ing R) and 

X 

R + = {R+ : R 6 R ~ }  [8  , p. 451. In  add i t ion  , we def ine  
X 

+A = {o : o is an R -b icont igui ty  c l u s t e r  conta in ing A )  and 
X 

Theorem 3 . 2 0  [8, pp. 46-48] I f  (X,R ) € T -SUBBASE then ( X + , R ~ + )  € 
X 1 

SUPERCOMP T -SUBBASE (where X+ has  t h e  topology generated by t h e  
1 

subbase R ~ + ) .  

- 
The funct ion  X : (X,RX) -+ ( X + , R ~ + )  def ined s o  

Rx - 
1 ( x )  = {R : x € R and R t R } i s  a  T -subbase space embedding. Rx X 1 

I f  (X,R ) € SUPERCOMPT T -SUBBASE, then XR i s  a  SUPERCOMP T -SUBBASE 
X 1 X 1 

- isomorphism. 



Theorem 3.21 ( c f .  [11) I f  (X,RX) C T1-SUBBASE, 

sUPERCOMP T -SUBBASE (where +X has the  topology 
1 

subbase +RX) . 

then  (+x,*R~)  C 

generated by t h e  

The funct ion  X : ( X I  RX) + ( + x , + R ~ )  defined so 
Rx 

1 (x) = {A : {x)  c A and A 2 X )  is  a T -subbase space embedding. 
fk Rx 1 

1f  ( X I S )  C SUPERCOMP T1-SUBBASE, then h is  a SUPERCOMP T1-SUBBASE 
fk 

- isomorphism. 

-+ 
The funct ion  -+ : (+X,+R ) -r ( x + , R ~ + )  defined by o = 0 fI 

X Ek 
f o r  each o C +X i s  a SUPERCOMP T,-SUBBASE - isomorphism such t h a t  

Our proof o f  these  theorems depends upon t h e  following lemma: 

Lemma 3.22 18, pp. 45-46] Suppose (X,RX) € T1-SUBBASE and S,  T € 5 . 
Then, 

(1) S 5 T i f  and only i f  S+ 5 T+ and 

(2)  S n T = 4 i f  and only  i f  S+ fI T+ = 4 .  

(1) Clear ly ,  f o r  any s e t  R € RX and R X - u l t r a s i e v e  o , 
o C R+ i f  and only i f  R C o . Suppose S 5 T and o € S+ . Since 

S € o and o i s  an R - u l t r a s i e v e ,  S meets each member of  o . 
X 

Thus, T meets each member of o and by 3.16 (3) T C o , Hence 

o € T+ and, s i n c e  o was a r b i t r a r y ,  S+ 5 T+ . 
Now suppose t h e r e  is an x € X such t h a t  x € S and x f T . 

We claim t h a t  X (x)  = {R € RX : x C R)  is  an R - u l t r a s i e v e  such t h a t  
Rx X 

- 
XR (x) € S+ and X (x) f T+. Note t h a t  t h i s  would mean S+ 5 T' 

X Rx - 
impl ies  S S T . Obviously, XR (x) 5 RX-141 . I f  R R C (XI  , 

X 
1.2 q( 



then x C R1 n R2 and hence R1 n R2 # 4 . Since R i s  a T -subbase, 
X 1 

i f  Q C RX with x 1 Q , then t h e r e  is an R C RX wi th  x C R such 

t h a t  Q n R = 4 . Hence, i f  Q meets each member o f  1 (x) , then 
R.- 
A 

x C Q and thus  Q C rR ( X I .  Consequently. (x) is an R -u l t ras ieve .  
R 

X X 
X 

- 
Since we know t h a t  S € r (x) and T 1 rR (x), then h (x) C S+ and 

Rx X % 

(2 ) I f  o C S+ n T+ , then S C o and T C o , Since o is an 

l inked family, S fI T # 4 . Thus, S fl T = 4 impl ies  S+ fl T+ = 6 . 
Suppose S fI T # 6 , Choose any x € S n T . Since 

- 
1 (x) = {R C RX : x C R} is  an R - u l t r a s i e v e  with h (x)  € S+ I7 TI , 
Rx X Rx 

c l e a r l y  S+ n T+ # 4 . 
Now, we resume our  demonstration of  Theorems 3.20 and 3.21. 

Since RX+ i s  a c o l l e c t i o n  of subse t s  o f  X , it i s  a subbase 

f o r  a topology o f  X+ . TO prove R + is  a T -subbase, f i r s t  note  t h a t  
X 1 

t$+ = 4 C Rx+ and 9 C R ~ +  s i n c e  4 C Rx and X C RX . For any 

R -u l t r a s i eve  o , s u r e l y  o C n {R+ C R ~ +  : o C R+) = n {R+ : R C o}. 
X 

I f  6 is an R - u l t r a s i e v e  contained i n  I7 {R+ : R C a}, then o 5 6 
X 

s ince  R C o impl ies  R € 6 . But, i f  S C 6 , then S meets each 

member of o and hence belongs t o  o . Therefore,  {o)  = 

n {R+ c R ~ +  : o c R+}. F ina l ly ,  l e t  us  next  assume o c X+ , R+ c R ~ +  , 

and o 1 R+ . Since R 1 o , t h e r e  e x i s t s  an S C a such t h a t  

R n S = 4 . AS a r e s u l t ,  R+ I7 S+ = 4 and o € S+ . We conclude t h a t  



To show t h a t  (x+ , RX+) is a  supercompact T -subbase space,  
1 

cons ide r  any l i n k e d  family composed of  members from R X + I Say 

- { R ~ ~ ] ~ ~ ~  . C l e a r l y ,  l R i ' i ~ 1  i s  a  l i nked  family composed of  members 

from R x -  But it i s  easy  t o  show, us ing  Zorn's lemma, t h a t  a  c l a s s  

{6 : 6 5 RX and 6  i s  a l i n k e d  s e t )  has  a maximal member o (with 

r e s p e c t  t o  s e t  i n c l u s i o n ) .  Fu r the r ,  o is  an R - u l t r a s i e v e  by 3.16; 
X 

f o r ,  i f  R C R meets each member of  o , t hen  R € o s i n c e  o therwise  
X 

{V : V C o o r  V = R) i s  a l i nked  s e t  p r o p e r l y  con ta in ing  o . I n  

p a r t i c u l a r  t hen ,  { R i ' i ~ I  is  conta ined  

s i n c e  each R. C o , t hen  o € n Ri+ ; 
1 

i € I 
family.  

- 
For each x  € X , X (x)  = {R 

Rx 

i n  an S - u l t r a s i e v e ,  say  o . 
t h a t  is  {Ri+IiCI i s  an i p  

R - u l t r a s i e v e ;  s o  i s  indeed a  func t ion  from X t o  X+ . I f  
X Rx 

y , z  C X and y  # z  , t hen ,  s i n c e  R i s  a  T  -subbase, t h e r e  i s  an 
X 1 

R € w i t h  y  C R and z j? R; b u t  t hen  x (y)  # x ( z )  . Thus 

- % % - 
X is  one-to-one. 

Rx 
From t h e  f a c t  t h a t  x  C R i f f  R C (x )  i f f  (x)  C R+ , 

Rx Rx - 
we can  deduce (R)  R+ and X (R)  = R+ fl x (x) . Since x i s  

Rx Rx Rx Rx 
an i n j e c t i o n ,  r - i s  a  func t ion .  Note 1 - (R' n 5; ( X ) )  = R and, 

Rx Rx Rx 
i n c i d e n t a l l y ,  -(R+) = R and x - 

Rx 
[Rx+] = R . Since  

Rx X 

(x+ n x (x)  , {R+ r) x ( X )  : R C R  ))  is s u r e l y  a  T -subbase space ,  
Rx Rx X 1 

we can conclude t h e  func t ion  X : (X,RX) -+ (x+ x ( X )  ,{R+ n ( X )  : R C P \ X H  
% Rx Rx 

is a  T1-SUBBASE - isomorphism. 



b 
6 Assume (X,RX) i s  a supercompact T -subbase space and o C x + .  1 

Since o is a l inked  family, it is an i p  family. I f  x f X is con- 

- 
t a i n e d  i n  each member of  o , then a = X (x)  by 3.16(3) s ince  o 

Rx 
and 1 (x)  a r e  R - u l t r a s i e v e s  wi th  o G 1 (x) . A s  a r e s u l t  

Rx X Rx - 
( X )  = X+ , % (R)  = R+ , 1 [RX] = R +  , and 1 : ( X , R ~ )  -+ ( x + , R ~ + )  

rk X 5 X Rx 
i s  a SUPERCOMP T1-SUBBASE - isomorphism. 

W e  c laim X (x) = {A C X : {x) cR A )  is  an R -b icont igui ty  
R 

X X 
X 

c l u s t e r .  Since {x) € X (x) , i f  B is  R -bicontiguous with each 
% X 

member of (x)  , then B C (x) . Next, suppose A,B C XR (x) 
X X X 

and R , R  C R x  wi th  A E R  and B E R  
B e  

Since R i s  a T -subbase, 
A B A X 1 

R c {x) implies x € R 
A '  

Clear ly ,  x C R; n RB and hence 
A R~ 

Consequently, X : X 4 + X is a function.  
Rx 

4 + 
Assume a € + X  and o = o n R . Obviously, X € a . If 

X 
4 

R , R  € a , then R n R # 4 s i n c e  R c  R . Suppose 
1 2  1 2 

S € q( meets 
1 Rx 2 

-+ 
each R C o . For any A C o , S c A because each s e t  R f RX 

Rx 
conta in ing A i s  a member of  o . Thus S C by 3.18 ( 3 )  and hence 

+ 
a C X+ by d e f i n i t i o n  3.16. Thus + : +X + X+ is  a function.  

Next, we show t h e r e  is  a funct ion  4- : X+ + +X defined by 

4- 4 
a = {A  c_ X : A c R f o r  each R C o) . Obviously, X C o . Next 

Rx 
4- 

suppose A , B  C o and R a t %  f RX with A t  Ra and B 5 % . Since 

A is  bicontiguous wi th  every R € o , 
Ra 

meets every R C a . Likewise 

% m e e t s  every R C a . Hence R and % each belong t o  o and thus  a 

meet. Consequently, A c  B ; condi t ion  3.18(2) is  s a t i s f i e d .  Since 

f Rx 4 C 
o 5 o, i f  a  s e t  D is bicontiguous with a l l  members of o, then D C 0 .  

4 
Thus o C +X and 4- : X+ -t +X i s  a function.  

-16- 



I n  f a c t ,  t h e  funct ion  + is  t h e  inver se  of + . For i f  
C 4 
-b -b 

o € +X , then  a = o by 3.18 s ince  a 5 a and i f  a € X+ , then 
-+ -b 
t + 

o = o by 3.16 s ince  a S a . For any R € RX , consider  -+(+R) . I f  

+ -+ 
o € +R , then  R € a , R € a , and f i n a l l y  a € R+ . Simi la r ly ,  i f  

+ C 
a € R+ , then  R € a , R € a , and s o  a € +R . Thus i f  a € R+ , 

-+ 
t -+ 

then a = a € (+R) and consequently +(+R)  = R+ . Likewise i f  
t 

4- 
o € +R , then  o = F (R+) and consequently (R+) = +R . Now one 

can e a s i l y  deduce t h e  remainder of  Theorem 3.21. 

Remark 3 . 2 3  From t h e  previous r e s u l t s ,  we conclude t h a t  t h e  construc- 

t i o n s  (r , ( x f , R x + ) )  and (X , (+x,+R ) )  a r e  e s s e n t i a l l y  t h e  same f o r  
Rx Rx X 

our  purposes. We c a l l  e i t h e r  cons t ruct ion  t h e  superextension of  t h e  

T -subbase space (X,RX).  I n  add i t ion ,  we say t h e  morphisms 
1 

XR and XR 
X X 

a r e  superextension maps. Our cons t ruct ion  (X , (+x,+R ) ) ,  which i s  
Rx X 

s i m i l a r  t o  t h e  Wallman-type compactif icat ion inves t iga ted  by Bentley and 

Naimpally [ I ] ,  has been introduced, a s  i n  [ l l ,  t o  s impl i fy  c e r t a i n  aspects  

of t h e  p resen ta t ion  o f  a success fu l  f u r  s t r a t e g y .  

Note t h a t  a superextension (XR , (+x,+R ) ) is  n o t ,  i n  genera l ,  
X 

X 

a compact i f ica t ion  of  (X,RX) s ince  XR (X) is  seldom dense i n  +X . 
X 

A s  an example, Verbeek [8, p .  471 has  shown t h a t ,  f o r  any topologica l  

space (X,T) , which is a Hausdorff space conta in ing a t  l e a s t  t h r e e  

elements, i f  we  consider  ( X , T )  € T -SUBBASE, then  t h e  s e t  XT(X)  is 
1 

no t  dense i n  (+x,+T) . 



F Example 3.24 Let t h e  s e t  X = {a ,b )  U [0,1]  be endowed wi th  a  subbase 

R c o n s i s t i n g  o f  6 , X , and {a) U [O,xl, {a )  U [ x , l l ,  {b) U [O,xl, 
X 

and {b) U [ x , l l  where x  6 ( 0 1 )  I t  i s  easy t o  s e e  R is  a  
X 

T -subbase f o r  X . 
1 

Let Y = [0,1] x [0,1] be endowed wi th  a  T -subbase 
1 s~ 

cons i s t ing  of @ , Y , a n d  [O,x] X [0,11, [ x , l I  X [0111 I [0111 [OIX] I 

and [0,11 x [ x , l l  where x  C (Oil) . 
~ s z & &  [2,  p.  641 has shown t h e r e  e x i s t s  a  SUPERCOMP T -SUBBASE 

1 

- isomorphism v  : ( X + . R ~ + )  -+ (Y,S ) such t h a t  
Y 

Note t h a t  
S~ 

i s  a  subbase f o r  t h e  usual  topology on Y . 

Clear ly ,  the re  a r e  an i n f i n i t e  number of  continuous funct ions  from 

(Y,  Sy) t o  ( Y ,  S  ) t h a t  a r e  i n v a r i a n t  on t h e  s e t  vX (x) . We can 
Y Rx 

conclude idx:(X,RX) -+ (XIRX) i s  a  morphism i n  T -SUBBASE which does 
1 

not have a  unique corresponding morphisrn g  : (x', RX+) - (x+, RX+) i n  

T -SUBBASE such t h a t  X i d  = ~ X R ~  . 
1 Rx X 

Considerat ions of  t h i s  example influenced t h e  var ious  f u r  

s t r a t e g i e s  which were t r i e d .  I n  t h e  next  chapter ,  we d i scuss  t h e  most 

s u i t a b l e  success fu l  f u r  s t r a t e g y  t h a t  was found. 
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CHAPTER I V  

THE SURE CATEGORY - 

I n  t h i s  chap te r ,  a f u r  subcategory of  T -SUBBASE i s  de f ined  and 
1 

shown t o  b e  a  s u c c e s s f u l  f u r  s t r a t e g y  w i t h  r e s p e c t  t o  t h e  superextens ion  

cons t ruc t ion .  

D e f i n i t i o n  4.1 For  T -subbase spaces  (XIRX)  and (Y,Sy) I l e t  
1 

f : (X,Rx) -+ (Y,Sy) be  a  func t ion .  We w i l l  c a l l  f a  s u r e  map i f  and 

only  if f - [ sy ]  5 RX and, f o r  any s e t s  A c X and S F SY , f (A) c  S 
Y 

imp l i e s  A c f - ( S )  . 
% 

propos i t i on  4.2 Every i d e n t i t y  map i n  T -SUBBASE i s  a s u r e  map. The 
1 

composition o f  s u r e  maps i s  a s u r e  map. E a c h s u r e  map i s  cont inous.  

The proof  of t h e  f i r s t  s ta tement  is t r i v i a l .  

- - 
maps. C lea r ly ,  ( g f )  [TZ] 5 RX s i n c e  g ITZ] 5 Sy and f-[sy1 5 Rx . 
Suppose gf (A)  c  T f o r  s e t s  A 5 X and T C TZ . Since  g i s  a 

T~ 
- 

s u r e  map, f  ( A )  cS g (T) . Fur the r ,  s i n c e  f  i s  a s u r e  map and 
Y 

t h a t  gf i s  a s u r e  map. 

Q u i t e  obvious ly ,  each s u r e  map i s  cont inuous.  For ,  suppose 

f  : ( X I % )  -+ (Y,Sy) i s  a s u r e  map and S is a c lo sed  s e t  i n  Y . 
Since  SY is a subbase f o r  Y , t h e r e  e x i s t s  a s u b c o l l e c t i o n  

t S j n ' j ~ J  nCN 
o f  Sy , where each N i s  a f i n i t e  index  s e t  dependent 

j  
j 

on j ,  s u c h t h a t  S =  U n S . Thus, f - ( s )  = n U f - ( ~ . )  
j C J  nCN j n j C J  nCN I n 

j j 

i s  a c losed  s e t  i n  space  X a s  each f - ( S .  ) C RX . 
1 n 



Definition 4.3 Let 

has as its functions 

SURE be the fur subcategory of T -SUBBASE which - .  1 

the sure maps and let SUPERCOMP SURE be the full 

subcategory of SURE which has as its spaces the supercompact T -subbase 
1 

spaces. 

Theorem 4.4 SUPERCOMP SURE is an epireflective subcategory of - SURE. 

Suppose f : (X,RX) -+ (y,Sy) is a sure function and (TITZ) 

is a T -subbase space. Define +f so that, for each R -bicontiguity 
1 X 

cluster o , +f(o) = {C : for each D C o , C c f(~)). Then, our 
S~ 

proof proceeds as follows: first, it is shown that the superextension 

map h is a sure map and that, if (TIT ) is a supercompact 
Tz z 

T -subbase space, then 
1 AT is a SURE - isomorphism; next, it is proven 

z 
that +f : +X -+ +Y is a set map such that +f h = X f ; then, it is 

Rx S~ 

demonstrated that +f : (+x,+R~) -+ (+Y .+sy) is a sure map; and finally, 

it is shown that h is a SURE - epimorphism. By the definition of 
z 

epkeflective subcategory, completing these steps finishes the proof., 

For each T -subbase space (Z, TZ) , recall +TZ = {+T:T C TZ]. 
1 - 

X (+T) = T for each +T C +TZ , and thus h -[+TZ] = TZ . For sets 
Tz Tz 
A Z and +T C +TZ , suppose ' (+T) or equivalently 

A kT T . Hence, there is a set T C TZ such that A S T and 
z a a 

Ta " = 4 . Recall this implies +T n +T = . Since 
a 

AT (A) G A T  (Ta) C _ + T ~  , then hT (A) dh, +T and so h is a sure map. 
z z z z Tz 

Now, assume (ZIT ) is a supercompact T -subbase space. It is z 1 

already known h is a T -SUBBASE - isomorphism, 1 (T) = +T for 
Tz 1 Tz 



+ 
each T f TZ , and X [T ] = + T ~  . For B 5 Z and T f TZ , suppose 

T~ 
z 

B p!+T (AT -)-(T) o r  equ iva len t ly  B b+T +T . Thus, t h e r e  e x i s t s  a 
z Z Z 

s e t  + T ~  C TZ such t h a t  B S and +T fI +T = 4 . Since Tb b  

+T n +T = 4 implies T fl T = 4 , then X - ( B )  G XT -(+Tb) = Tb 
b  b  Tz Z 

impl ies  - ( B )  +T T . I n  o t h e r  words, - i s  s u r e  map and so  
T~ z 

is  a  SURE - isomorphism. 
z 

Note t h a t  i f  A ,B  c - Y , and A bS B , then  •’-(A) bR f - (B) .  
Y X 

- 
f [Sy] 5 Rx , then  f-(Sa) bR f - (S  ) and hence f - (A)  $? f - ( ~ )  . 

X 
b  Rx 

I n  p a r t i c u l a r ,  i f  C,D 5 X and f ( C )  bS f (D)  then C bR D ; 
Y X 

f o r  c 5 f-f (c) , D 5 f-f (D) , and f-f (c) b f-f ( D ) .  
ISr 

For each R -b icon t igu i ty  c l u s t e r  o , def ine  f o  = { ~ ( c ) : c  Co). 
X 

We can conclude f o  5 +f (o) s i n c e ,  f o r  any sets C, D f a , we know 

C c D and hence f  (C)  c  f ( D ) .  
Rx S~ 

TO show +f : +X + +Y i s  a  

t h a t ,  f o r  any R -b icon t igu i ty  c l u s t e r  
X 

S  -b icon t igu i ty  c l u s t e r .  Suppose t h e  
Y 

s e t  map, it is necessary t o  prove 

o , t h e  s e t  +f (o) is  an 

s e t  A Y i s  S -bicontiguous with 
Y 

each member of +f (0). Then, s ince  f o  5 +f (o) , A i s  S -bicontiguous Y 

with each member of  f o  and, by t h e  d e f i n i t i o n  of  +f (o) , A f +f (o) . 
Next, suppose A , B  f +f (0) . For any s e t s  S  ,S f Sy such t h a t  A S Sa a b  

and A 5 S c l e a r l y  S  , Sb C +f (o) . I f  we assume f-(Sa) , f - (sb)  C o , 
b a  

then f- (Sa) c f -  (S ) and hence S  c  b  
Sb . I n  o t h e r  words, 

Rx a S~ 

A,B F +f (o) would imply A c  B . Consequently, +f (a) would be an 
Y 

-21- 



set S C Sy , S C +f (o) implies f-  (S) C o . Given S C +f (o) , then 

S c f ( C )  , f o r  each C C o .  Because f  i s  a s u r e  map, f - (S)  c  C . 
S~ Rx 

~ h u s ,  f -  (S) C o s ince  o i s  an R -b icont igui ty  c l u s t e r .  
X 

For each x C X , X (x) = {A 5 X : {x) c  A )  and 
Rx Rx 

X ( f  (x)  = {B 5 Y : { f ( x )  )c B)  . Since {x) C X (x) , then 
S~ S~ Rx 

{ f ( x )  1 C f  hR (x)  C +f ( h  (x) ) . Because t h e  only S -b icont igui ty  c l u s t e r  
Rx Y 

X 

conta in ing { • ’ ( X I )  is X ( • ’ ( X I ) ,  c l e a r l y  +•’(AR ( x ) )  = X ( f ( x ) )  . 
S~ X S~ 

Therefore, +f X = f  . 
RX Sy 

To prove t h a t  +f : ( + X , + R ~ )  -+ (+Y ,+sy) is a s u r e  map suppose, 

f o r  t h e  moment, t h a t  we know +f ('B) c + ( f  (B) ) f o r  each B 5 X and 

+(f- ( S f )  = (+f )-(+s) f o r  each S C Sy . Since f-(S) C RX and 

+ ( f - ( ~ )  = (+f ) - (+s)  f o r  each S F Sy , obviously (+f)-[+sy J C _  + R ~  . 
NOW, assume A 5 +X and +S C +Sy SO t h a t  A d (+•’I ' ('s) o r  +a 
equivalent ly  A g!+R +( f - (S)  ) . Thus, t h e r e  e x i s t s  a  s e t  R C RX such 

X 

t h a t  A & +R and +R fl + (f' (s) ) = 4 . Hence, R n f' (S) = 4 and s o  

f' (S) . Since f  is  a s u r e  map, then f  (R) g! S . I n  o t h e r  
s~ 

words, t h e r e  is  a s e t  S C Sy such t h a t  f  (R)  5 Sr and Sr fI S = 4 . r 

Since +Sr f l  +S = 4 , + ( f ( R ) )  +Sr would imply + ( f  ( R ) )  #+ +S . But, 
s~ 

f o r  any Sy-bicontiguity c l u s t e r  o , i f  f (R)  Co then S Co . Hence, 
r 

+ ( f ( R ) )  = {o C +Y : f ( R )  Co) S { ~ C + Y  : S € 0 )  = + s  . By supposi t ion 
r r 

+f (+R) E +(f (R)  ) . W e  conclude +f (A)  6 +S s i n c e  +f (A)  c +f (+R) . 
'k 



For any s e t  B X and R -b icont igui ty  c l u s t e r  o , r e c a l l  
X 

a C +B impl ies  B C o . But i f  B € o , f  (B) C f o  2 +f (o) . This means 

+f (a) C + ( f  (B) ) and consequently +f (+B) 2 + ( f  (B) ) . 

i f  + f ( + ( f - ( S )  1 C +S . But, s ince  f  ( f - ( S ) )  5 S , then  

+f ( ' ( f-(S))  1 2 +(f ( f - (S)  ) )  +S . On t h e  o t h e r  hand, suppose f o r  some 

S -b icont igui ty  c l u s t e r  ~ C + S  , t h e r e  is  an R -b icont igui ty  c l u s t e r  6 
Y X 

such t h a t  ' f (6)  = o . Then, it has been demonstrated above t h a t  

f - (S)  C6 s ince  S C o n S y  and f  i s  a  s u r e  map. Since 6 C + ( f - ( S ) )  , 

we have shown + ( f -  (S) ) = (+f ) -  (+s) . I n  conclusion,  i f  f  i s  a  su re  

map, then +f is  a  s u r e  map a l so .  

The proof t h a t  each superextension map i s  a  - SURE - epimorphism 

requ i res  two s t ages .  I n  t h e  f i r s t ,  we demonstrate, i f  

f  : (x,nx) -+ ( Y , s ~ )  and g  : ( + x , + R ~ )  -+ ( + Y l f s y )  a r e  s u r e  maps so  

t h a t  g  h = X f  , then g  = +f . 
R 

X Y 

Assuming S C Sy , s i n c e  g-(+S) C +RX and g  X = 1 f , 
% s~ 

- 
then f-\ - (*s) = X g-(+S) C RX . Recall ing t h a t  X -(+s) = S 

Y Rx Y 

and '(1 - ( + R ) )  = +R f o r  each R C Rx , c l e a r l y  + ( f - ( S ) )  = g-(+s)  . 
RX 

Now, i f  o i s  an R -b icon t igu i ty  c l u s t e r  such t h a t  S  C g ( o )  , then 
X 

g (o) C +S . This impl ies  o C g- (+s) = + (f' (S) ) and s o  f -  (S) C o . 
Since f -  (s) C R~ , f -  (s) C o ll RX . I n  summary, t h a t  S C g (o) fl sy 

implies f - (S )  Con Rx r equ i res  o n l y t h e  assumptions gX = X f  
RX 



Suppose C C a  and S C 

c l e a r l y  C c f - (S )  . Recall ing 
Rx 

f ( C )  cS f ( f - ( S ) )  and hence f ( C )  
Y 

wi th  each s e t  S € g ( a )  fl Sy , we 

g ( a )  n s y  . Since f - (s )  Fa fl RX , 

f a  G +f (a) , obviously 

c S . Since f ( C )  i s  Sy-bincontiguous 
S~ 

can conclude f (C) € g (o) . I n  o t h e r  

then A i s  S -bicontiguous wi th  each set D € f a  . Because g ( o )  and 
Y 

+ f ( o )  a r e  S -b icont igui ty  c l u s t e r s ,  g ( o )  = + f ( o )  . In  summary, t h e  
Y 

s u r e  map +f is  t h e  unique s u r e  map g f o r  which gXR = h S f .  
X 

The second p a r t  of t h e  proof t h a t  each superextension map i s  

a SURE - epimorphism fol lows by a s t r i c t l y  c a t e g o r i c a l  argument from t h e  

r e s u l t  j u s t  proven. Let  X : (X,Rx) + (+x,+RX) be a superextension 
Rx 

map and f , g  : + + 
( X I  Rx) + ( Y l s y )  be s u r e  maps s o  t h a t  f X  = gXR . 

Rx X 

Since fX = g l R  i s  a s u r e  map, we now know t h a t  +(fX ) 
Rx X Rx 

i s  t h e  unique s u r e  map such t h a t  X (fXR ) = + ( f h  ) X = X (gX ) . 
S~ X Rx Rx S~ Rx 

But obviously X f and X g a r e  a l s o  su re  maps such t h a t  
S~ S~ 

(1 f ) X  = X  (fX ) and (1 g)X = X (gX ) . 
S~ Rx 

Therefore,  
S~ Rx S~ Rx Sy Rx 



it is easy to see f = g 

Since the superextension map X is one-to-one, 
s~ 

. ~hus, for each space (X,RX) , the map X s 
is a SURE - epimorphism. 

It should be noted the previous categorical result is subsumed 

by the following simple proposition [6,p.276]: If - S is a full mono- 

reflective subcategory of - C , then - S is an epireflective subcategory 

of C . - 

Remark 4.5 The proof of 3.4 can, of course, be argued in terms of 

ultrasieves rather than bicontiguity clusters. For example, we would 

call f : ( R X )  -+ Y S  a "sure map" whenever f-[Sy1 5 RX and, 

for sets R C RX and S € Sy such that R n f-(S) = 4 , there exists 

a set S C Sy such that R 5 f-(S,) and S n S = 4 . Also, for each 
r r 

R -ultrasieve o , we would define the map f+ : (x+,R~+) -* (Y+,Sy+) by 
X 

f+(o) = {S C Sy : f- (S) C 0). Further details may be verified by the 

interested reader. As justification of our approach, we note the 

natural formulation of the sure maps and the function +f and cite the 

methods used by Bentley and Naimpally in [ll. 

+ + Proposition 4.6 If f:(X,R) -t (Y,S ) is a set map, g:( XI RX)+ 
X Y 

is a sure map, and 
g X ~  = 

, then f is a sure map and so g 

- + 
In the previous proof, we have shown that g [ Syl 5 + R ~  

(+Y .+s,) 

= +f . 
and 

= 1 f imply f-ISy] C_ Rx and, for each S C Sy , g-(+S) = +(f'(S) ). 

?r 
Assume A G X , 

or equivalently 

S C S, , and A g! f-(S) . Then, X (A) g!+ +(f-(s)) 
Rx Rx Rx 

g- (+s) . Since g is a sure map, 
+Rx 

h f (A) #+s +S . Finally, we have f (A) g! S. 
Y Y S~ 



Thus, f is a sure map. Since f is a sure map, we know 

from 3.4 that g = +f . 

proposition 4.7 Let f : (X,RX) -+ (Y, Sy) be a sure map. The map f 

is a - SURE - epimorphism if and only if +f is a SURE - empimorphism. 
I•’ f is a SURE - isomorphism, then +f is a - SURE - isomorphism. 
~lso, if f is a surjection, then +f is a surjection. 

Suppose f is a SURE - epimorphism and g,h : (+Y + 

(ZIT ) are sure maps such that g +f = h +f . Then, gh f = g +fh = 
Z S~ Rx 

= h +fhR = hh f . Since f and h are SURE - epimorphisms, g = h . 
S~ S~ 

- 
X 

~hus, +f is also a - SURE - epimorphism. 

Next, suppose +f is a - SURE - epimorphism and g,h : (Y ,Sy) -+ 

(ZIT are sure maps such that gf = hf . Since f , g, and h are 
Z 

sure maps, then +f , +g, and +h are sure maps such that 

+ + fh = hS f , ghS = h g , and'hh = X h . Thus, +g+f and 
5 Y Y Tz S~ T~ 

+h+f are sure maps such that +g+f h = 1 gf = h hf = +h+f XR . 
Ek T~ T~ X 

Since h and +f are SURE - epimorphisms, then +g = +h . This 
5 

means hT g = h h and so g = h . Thus, f is a - SURE - epimorphism. 
z T~ 

Notice that the preceding proof uses a strictly categorical 

argument. Likewise, via a trivial categorical proof, it can be shown 

that +f is a SURE - isomorphism if f is. - 
Finally, assume f is a surjection and o€+Y . Consider 

d = If- (S) : S C o n SX] . Since each pair of members from d has a 

nonempty intersection, clearly d is contained in some R -bicontiguity 
X 

cluster, say 6. For each D €  6 and S €0, recall D c •’-(s) implies 
Rx 



f (D)  c S s i n c e  f ( f - ( s ) )  E S . Hence, f(D) € 0  o r  e q u i v a l e n t l y  
S~ 

• ’ 6 5 0 .  W e  can  conclude + f ( 6 )  = a s i n c e  + f (6 )  and o a r e  

S - b i c o n t i g u i t y  c l u s t e r s .  
Y 



CHAPTER V 

JENSEN ' S RESULT 

~ n t h i s  chapter ,  w e  p resen t  a mapping r e s u l t  due t o  G. A. 

Jensen [8, p. 561. The s i t u a t i o n  Jensen desc r ibes  was no t  motivated 

by nor i s  it p a r t i c u l a r l y  compatible with t h e  not ion  of  e p i r e f l e c t i v e  

subcategories.  

Def in i t ion  5.1 [8, p. 511 A TI-subbase R f o r  space X i s  normal 
X 

i f ,  f o r  any d i s j o i n t  sets R , R  € 
1 2  

\ , t h e r e  e x i s t  sets RC RC € R 
1 ' 2  X 

C C C 
such t h a t  R n R~ = 4 , R~ n nC = 4 , and R u n2 = x . A 

1 2 1 

T -subbase space (X,R is  c a l l e d  normal i f  R is  normal. 
1 X X 

Proposi t ion 5.2 [8, p. 521 If \ i s  a normal T -subbase f o r  X , 
1 

then RX genera tes  a Hausdorff topology. 

Let xl and x be  d i f f e r e n t  p o i n t s  i n  X . Since 
2 

Rx is  

a T -subbase, we know t h e r e  e x i s t  s e t s  R R € Rx such t h a t  xl 
1 1' 2 Rl , 

C C 
x € R2 . and R n R2 = Q . Thus, t h e r e  e x i s t  sets R , R  C Rx such 

2 1 1 2  
C C 

t h a t  Rc u Rc = X , R n R1 = Q , and R ll R2 = Q  . Clear ly ,  
1 2 1 2 

C C 
X - RC and X - R2 a r e  open s e t s  such t h a t  (X - <) f l  ( X  - R2) = Q , 

x € X - R C ,  and x E X - R C  
1 1 2 2 -  

Lemma 5.3 [8, p. 131 Suppose ( X , R )  € T -SUBBASE and SIT € R X .  
X 1 

Then, S U T = X i f  and only  i f  S+ U T+ = X+ . 
Assume x € X and S+ U T+ = X+ . Obviously, h (x) C X+ 

Rx 
and so,  without l o s s  of g e n e r a l i t y ,  X (x) € S' . Hence, S € (x) 

Rx Rx 
and x € S. Thus, S U T = X . 



Next, suppose S U T = X and o C X+ . I f  a j? S+ U T+ , 

then SIT j? a . Hence, t h e r e  e x i s t  R R C o such t h a t  
S' T 

R fl s = R n T = 4 . Since R fl R E complement S n complement 
S T S T 

T = Q , we have a con t rad ic t ion .  Thus, S U T = X implies S+ U T+ = X+ . 

Theorem 5.4 [8, p. 561 Let (X,RX) be a T -subbase space and ( Y I s y )  
1 

be  a normal T -subbase space. I f  f' : (X,RX) -+ (Y,Sy ) is  a map f o r  
1 - 

which f [SJ 5 RX , then  t h e r e  e x i s t s  a continuous c losed map 

g : (x+,RX+) + (Y+.s,+) such t h a t  gXR = h f . 
X S~ 

For each R - u l t r a s i e v e  o , consider  t h e  s e t s  
X 

o - 
f = {S C Sy : f - (S)  C o) and f ( o )  = {S C Sy : f o r  each S C f o  , 

o 

S fl So # $1 . Clear ly ,  fo  is  nonempty s ince  a t  l e a s t  Y C P . 
~ l s o ,  i f  s ,S C P . then  Sa fl Sb f 4 s i n c e  f-(sa) "- (Sb) # 0 

a b  

Thus, P C_ ? (0). Consequently, i f  a set S C Sy meets each member of 

- 
f (o) , then S C f (0) . 

Now consider  sets S1,S2 C f (o) . Let. us suppose S1 fl S = Q . 
2 

C C 
Since Sy is  normal, we have s e t s  S S C Sy such t h a t  

1, 2 
C C C C - C sp n s = , s2 n s = 4 , and s u s = Y . Thusl f - ( s l )  u F (s2) = X .  

1 2 1 2 
- C 

Recall  t h i s  and •’-(s:) , f (S2) C Rx imply t h a t  e i t h e r  •’-(ST) C o o r  

f- (s;) C o . But, i f  f -  (s;) C o , then sC C f o  and s o  S1 n S: # 4 . 
1 

Similar ly ,  i f  f'(~:) C o . then S fl S; f 4 . The con t rad ic t ion  is 
2 

resolved only i f  Sl n S2 # 4 . Thus f ( o )  i s  an S - u l t r a s i e v e  Y 
- 
f : x + +  Y+ i s  a s e t  map. 

Let z C X . Recall  h ( z )  = {R : z C R C R ~ )  and 
% 

hS ( f ( z ) )  = {S : f(z) C S C sy) . But, i f  S C X ( f ( z ) )  , then 
Y 

XRX(z 
S~ 

f - ( ~ )  C 1 (2)  . ThusI s ince  1 ( f ( z ) )  G f 
5c 

, c l e a r l y  
S~ 

and 



- 
To prove f is a continuous map, it i s  s u f f i c i e n t  t o  show 

- - 
f (sl+) is  a c losed set i n  space X f o r  any S C Sy . Suppose 

1 

0 € x+ and o j? T - (sl+) . Then T(o) j? sl+ . This implies t h e r e  is 

a s e t  S2 C T(o) such t h a t  S fI S2 = Q . Since (Y,Sy) is  normal, 
1 

C 
the re  e x i s t  s e t s  sC sC C Sy such t h a t  S n S = Q , S; n S2 = Q , 

1' 2 1 
C C and S1 U S = Y . We claim t h e  s e t  ( f - ( s ~ )  ) +  has t h e  p r o p e r t i e s  t h a t  

2 - 
f-(sl+)  5 (f-(s;) ) +  and o j? (•’-(s;) ) +  . Since f-[syl  C_ % , t h i s  

would imply f - (s l+)  i s  a closed s e t  i n  X : 
C 

F i r s t ,  note  s ince  S2 C ?(o) and S2 n S = Q , then 2 

s (0) . I n  p a r t i c u l a r ,  f -  (sC) j? o and hence o j? (f' (s;) ) +  . 
2 

Next, sC n S = Q implies (s:)+ n (sl)+ = 4 and 
1 1 

- - 
f ((s:)') n 7 -  (sl+) = 4 . Then, ( f - ( ~ T ) ) + n  T -  (sl+) = Q i f  we can 

show ( f ' ( s T ) ) + ~  7-((s;)') . B U ~ ,  6 C ( f - ( ~ ; ) ) +  i f f  f - ( ~ i )  C 6 

- 
only i f  ST C z ( 6 )  i f f  f ( 6 )  C (s;)+ i f f  6 C ? - ( s ; ) + .  Moreover, 

C C s i n c e  Sl U S = Y , then  f - ( s C )  U f - ( ~ i )  = X and hence 
2 1 - - + 

( f - ( s y ) ) +  U ( f - ( s ; ) )+  = X+ . Consequently, f (S1 5 ( f - ( ~ q ) ) +  . 
Recal l ,  f o r  any S ,S C Sy , t h a t  Sa 5 Sb implies a b  

sa+ G sb+ , S n sb = Q implies + fl sb+ = Q , and S U Sb = Y 
a 'a a 

+ implies S U sb+ = Y+ . Hence, s ince  ( Y  ,S ) is  normal, c l e a r l y  
a Y 

- 
(Y+,s +) i s  normal. ~ h u s ,  f : ( x + , R ~ + )  + ( Y + . s ~ + )  being a continuous 

Y 

map from a compact space i n t o  a Hausdorff space,  i s  a c losed map 

Le t t ing  g = 7 , t h e  theorem is proven. 
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