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ABSTRACT

Supercompactness and supercompactifications are related to
types of linked families in the same manner as compactness and compacti-
fications are related to types of filters. The Stone~Cech compactifica-
tion and Wallman compactification are known to be universal constructions
in the sense of category theory. The main result is a supercompactifica-
tion that likewise is universal. To obtain this result the superexten-
sion construction of deGroot is modified by the introduction of Tl—sub-
base spaces and the kinds of morphisms allowed are reduced from

continuous functions to sure functions.
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CHAPTER I

INTRODUCTION

Prior to the formal presentation of our topic, which is
deferred until the next chapter, we feel obliged to discuss briefly and
informally the background and significance of our results. Although
the succeeding chapters are self-contained, the present one presumes
a familiarity with general topology and some category theory. An
effort has been made throughout to use standard notation whenever
possible.

Recall that a pair (Y,h) is called a compactification of a
topological space X whenever Y is a compact space and X is homeo-
morphic with a dense subspace of Y via the function h . By a
compactification for C, where C 1is a category of topological spaces, ‘ {
we mean a collection {(é,rc) : C({g} , where each (é,rc) is a
compactification of C . Several methods for constructing compactifi-
cations are known which seem relatively "natural” and "uniform". More

precisely, we say a compactification of C 1is a universal construction

whenever each C function f : C > B with B a compact space has
associated with it a unique C function g : C > B such that grC = f,
It is well known that the Stone-Cech compactification is a universal
construction for the category of Tychonoff spaces [9, p. 137] whereas
the one-point compactification [9, p. 136] is not one for the more
restricted category of locally compact Hausdorff spaces.

Applications of the concept of unive;sal construction extend
beyond compactifications. In fact, MacLane [7] and others have defined
and studied this concept within the realm of category theory and shown
that instances of it occur throughout»mathematics. So ubiquitous and
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desirable is the universal property, that when a construction for a
particular instance exists which is not universal, often steps are taken
to study the situation further. Traditionally, this might involve a
search for a different construction for the same instance which is more
"natural” and "uniform" and thus possibly universal. Lately, several
investigations, notably by Harris [4][5] and Bentley and Naimpally [1],
have appeared which use a different approach. Since our main result also

employs this new approach, which we call a fur strategy, an example of

its use is mentioned next.
Let TOP1 denote the category of all Tl-spaces and continuous
functions between these spaces, and COMP TOP1 be the full subcategory

of TOP1 containing the compact Tl-spaces. A Wallman compactification

{(Xw,wx) =XE1‘£1} for TOP.

1 exists which seems relatively "natural"

and "uniform", but which is not universal. It was discovered by Harris

[S] that, by considering a fur subcategory of TOP (one which has the

1

same spaces but fewer functions), the problem could be "bypassed".
Specifically, Harris found that the Wallman compactification for the

category WOSEP, a fur subcategory of TOP is a universal construction.

l 14
Supercompactness is a type of compactness which depends upon

the subbase of a topological space. Suppose SUPERCOMP TOPl is the

full subcategory of TOP

1 containing just supercompact Tl—spaces. A

superextension construction, {(Xs,sx) : X € TOPl}, was discovered by

deGroot [3] such that each xs is a supercompact T -space and X is

1

homeomorphic to a subspace of Xs via the map sx . Several map

extension situations have been investigated by Jensen [8, pp. 54 - 57].



our main result is to define a reformulation of the superextension con-
struction which is a universal construction for the category SURE, a
fur subcategory of a category related to 2221 .

Chapter II contains formal definitions of an epireflective
subcategory (a notion stronger than that of universal construction) and
of the fur strategy. In Chapter III is presented a restatement of
supercompactness and of the superextension construction in a form which
allows in Chapter IV our proof that a universal situation exists with

respect to a suitable fur strategy. Chapter V reviews the results of

Jensen mentioned above.



CHAPTER II

EPIREFLECTIVE SUBCATEGORIES

In this chapter, we introduce formally the category-~theoretic

notion epireflective subcategory, which is needed later in our discussion

of the superextension construction of supercompact T,-subbase spaces.

1
pDefinition 2.1 [6, p. 16] A category C is an ordered six-tuple

c= <0bj C , Mor C , dom, cod, ° , id> where
~ (i) Obj C is a class whose members are called objects,
(ii) Mor C is a class whose members are called morphisms,
(iii) dom and cod are functions from Mor C to Obj C ,
(iv) ° is a partial function from Mor C x Mor C to
Mor C , whose value at the pair <f,§> (if this is
defined) is denoted by fg and is called the
composition of g and f , and
(v) id 1is a function from Obj C to Mor C whose
value at an object X is denoted by idX and
is called the identity morphism of X
such that the following conditions are satisfied:
(1) fg is defined iff cod(g) = dom(f);
(2) if fg 1is defined, then dom(fg) = dom(g) and
cod(fg) = cod(f);
(3) if fg and hf are defined, then h(fg) = (hf)g;
(4) for each object X , cod(idx) = dom(idx) =X ;

(5) if cod(f) = X = dom(g) , then ide = f and

gidX =4g;



(6) for any pair of objects (X,¥Y) , the class

homC(X,Y) = {f € Mor C : dom(f) = X and

cod(f) = Y} 1is a set (rather than a proper class).

For example, SET denotes the category for which

(1) Obj SET is the class of all sets,
(2) Mor SET is the class of all functions between sets,
(3) for each function £ € Mor SET , the sets dom(f)

and cod(f) are respectively the domain and

codomain of £ ,

(4) for each set X , the function idX is the identity
function for X , and

(5) the partial function ©° corresponds with the usual
composition of functions,

It is customary to define a particular category, when little
chance for confusion is possible, by merely describing its class of
objects and class of morphisms,

The morphisms (objects) of any category C will be denoted
by lower (upper) case letters. Thus, by f € C and X € C , we will
mean f € Mor C and X € Obj C . For £, X, Y € C , both f : XY
and X £ Y signify that £ € homC(X,Y) .

Definition 2.2 [6, p. 23] We call S a subcategory of category C

whenever S 1is a category such that
(1) ©obj S cObjC,
(2) Mor S ¢ Mor C , and

(3) the functions dom, cod, id, and ° for S are restrictions

of the corresponding functions for C .



pefinition 2.3 [6, p. 24] A subcategory S of a category C is

called a full subcategory of C if and only if, for any objects

X, Y € §_ ) homs(er) = homC(X,Y) .

-— —

pefinition 2.4 A subcategory S of a category C 1is called a fur

subcategory of C if and only if Objs = ObjC.

pefinition 2.5 [6, p. 35] A morphism f € C is a C-isomorphism

if and only if there exists a morphism g € C such that fg =i

dcod(f)
and; gf = lddom(f)'

Definition 2.6 [6, p. 40] A morphism f € C is a C-epimorphism

if and only if, for all morphisms g, h € C , gf = hf implies g = h,

pefinition 2.7 [6, p. 275][5] A full subcategory S of a category C

is an epireflective subcategory of C with respect to a class

{(x if and only if

, xR)}

X x€c

(1) for each X € c, XR € s and Iy ® X =+ XR is a C~epimorphism,

(2) if X € s, then ry is an S-isomorphism, and

(3) for any objects Y, Z € C and morphism f € homC(Y,Z) '

there exists a morphism fR € homs (YR,ZR) such that



A full subcategory S of a category C 1is called an epireflective

£ wh i i
subcategory of C enever a class {(rX,XR) }XE_C_ exists which

satisfies the three previous conditionms.

pefintion 2.8 Let S be a full subcategory of a category c.

Then a category R is called a successful fur strategy (with respect

to the class {(rX,XR)} if and only if

xec )

(1) R is a fur subcategory of C and
(2) RN S 1is an epireflective subcategory of R (with respect

to the class {(rX,XR) }XEE) . ,



CHAPTER III

SUPEREXTENSIONS

The superextension construction and the property of super-
compactness, close relatives respectively of the Wallman-type compacti-
fication and the property of compactness, have been studied extensively
by deGroot [3], Cs&sz&r [2], Verbeek [8], and others. In this chapter,
we introduce a formulation of these concepts which permits a successful

fur strategy.

Definition 3.1 [9, p. 24] A topology for a set X 1is a collection =T

of subsets of X such that:
(1) any intersection of members of T 1is a member of T ,

(2) any finite union of members of T is a member of T ,

(3) the sets X and ¢ both belong to T .

We call the members of a topology closed sets. A topological space
is a pair (X,T) where T 1is a topology for X . We often will

abbreviate (X,T) , when no confusion is likely, to X .

Definition 3.2 [9, pp. 38-39] Suppose (X,T) is a topological space.

A base for T is a collection B € T such that T={NAa:oa¢ B}.
A€qQ

A subbase for T 1is a collection 0 ¢ T such that B={ UG : \
GEXN

is a finite subcollection of T } 1is a base for T .

Proposition 3.3 [9, p. 39] Any collection 0 of subsets of set X

is a subbase for a topology for X .



Definitioh 3.4 Suppose 0 is a collection of subsets of X ., The

members of @ are said to meet whenever N A # ¢ . We call o an ip
A€o
. (intersection property) family if its members meet, a fip (finite

intersection property) family if each finite subcollection of it

consists of members which meet, and a linked family [8, p.l] if every

two of its members meets.

Definition 3.5 [9, p. 118] A topological space (X,T) is compact if

and only if each collection a & T which is a fip family is also an ip

family.

Definition 3.6 [8, p. 48] A topological space (X,T) 1is supercompact

if and only if there exists a subbase ¢ for the topology T such that

each collection o C ¢ which is a linked family is also an ip family.

Proposition 3.7 [8, p. 48] Each supercompact topological space is

compact.

This result is easily deduced from the Alexander subbase
theorem [9, p. 129]: A topological space (X,T) 1is compact if and only
if there exists a subbase ¢ for the topology T such that each

collection o € 0 which is a fip family is also an ip family.

Definition 3.8 {9, p. 86] A topological space is a Tl-space if and

only if each of its singletons is a closed set.

Remark 3.9 [8, p. 48] It is known that every compact metrizable space
is supercompact. Although compact Tl—spaces exist which are not super-
compact, it is an open question whether there exists a compact Tz—space

which is not supercompact.



In 1967, J. deGroot [3, p. 90] introduced the superextension

construction by which a supercompact T, -space can be constructed from

1

‘any Tl—space. A formulation of the superextension construction is

discussed in detail below.

pefintion 3.10 Suppose f : Xl - X2 is a function and az is a

collection of subsets of X, - Then we let f_[az] ={f (a) : A € az}.

For topological spaces (Xl,Tl) and (X2,T2) , a function

f =?X1 -+ X2 is a continuous function if and only if f_[12] c T1

[9, p. 44]. The function f is an embedding if and only if f is

one-one and continuous and £ is continuous.

Remark 3.11 Suppose TOPl denotes the category whose class of spaces
consists of all Tl-spaces and whose class of functions consists of all

continuous functions between these spaces, and SUPERCOMP TOPl is the

full subcategory of TOP1 whose class of spaces consists of all

supercompact Tl-spaces. For the categories TOPl and SUPERCOMP TOPl

we have not found a satisfactory successful fur strategy with respect
to the superextension construction mentioned above. We have, however,
developed a closely related formulation of this problem for which a

successful fur strategy does exist.

Definition 3.12 [8, p. 44] A collection RX is a Tl-subbase for a

topological space (X,T) whenever
(1) Rx is a subbase for <t which contains X and ¢ ,

(2) for each x € X, {x}

I

N {R: x € R and RERX},

(3) x€X,R€ER_, and x £ R imply there isa T € R

X X

such that x € T and RN T =¢ .

~10-



Proposition 3.13 [8, p. 44] Each Tl—space has a Tl—subbase. If a

topological space has a T, -subbase, then it is a T -space.

1 1

The topology of each T. -space is a Tl—subbase. Conversely,

1
from (2) above it follows that {x} is closed for each x € X .

Definition 3.14 A Tl-subbase space is a pair (X,Rx) where X 1is a

X

topological space and R is a Tl—subbase for X . A supercompact

Tl—subbase space is a Tl—subbase space (X,RX) such that X 1is super-

compact with respect to the subbase Rx .

Let Tl—SUBBASE denote the category consisting of all

Tl—subbase spaces and all continuous functions between these spaces

and SUPERCOMPT Tl-SUBBASE denote the full subcategory of Tl—SUBBASE

consisting of all supercompact Tl-subbase spaces.

Remark 3.15 Tl—SUBBASE and SUPERCOMPT Tl—SUBBASE are the categories

to which we will eventually apply the fur strategy. The functions

considered will be more directly related to the Tl—subbases than are

continuous functions in general.

Definition 3.16 [2, p. 57] Let Rx be a Tl—subbase for X .

An Rx-ultrasieve is a nonempty set ¢ with the properties

1) 0CRy - {¢}
(2) if B, D € o, then BN D # ¢ ,

(3) if B € RX and BN D# ¢ for each D € o, then B € o .

-11-



pefinition 3.17 (cf. [1]) ‘The Rx—bicontiguity relation, denoted by

c or just c , is defined by: for any sets Al,A2 c X,

if ly i £ h i R_,R R ith -
A. C , A2 if and only if, for each pair 1R, € X wit Al C Rl

and A  C R

2 5 Rl N R2 £#é . If A c. A_. , we say A and A_ are

R
1 X 2 1 2

Rx—bicontiguous. We let A_ & A_ mean that A. c A2 is not true.

1 RX 2 1 RX

Definition 3.18 (cf. [1]) An RX—bicontinguitzrcluster is a non-empty

collection O of subsets of X such that
(1) ¢ g o,

(2) if A, B € o , then A cr B,
X

(3) if A C X and A cp B for each B € g, then A € o .
% 3

Defintion 3.19 Let (X,RX) € Tl-SUBBASE , R € RX , and A C X .

We define Rt = {0 : 0 is an RX-ultrasieve containing R} and

R+t = R+
o = {

R € RX} [8, p. 45]. 1In addition, we define

+A = {o : 0 is an Rx-bicontiguity cluster containing A} and

+Rx = {+R : R € RX} (cf. (1]).

Theorem 3.20 (8, pp. 46-48] If (X,RX) € Tl—SUBBASE then (X+,RX+) €

SUPERCOMP Tl—SUBBASE (where Xt has the topology generated by the

subbase RX+).

The function X : (X,R) - (x*,R_*) defined so
Ry X X

XRX(x) = {R: x €R and R € RX} is a Tl-subbase space embedding.

If (X,RX) € SUPERCOMPT Tl—SUBBASE, then XR is a SUPERCOMP Tl—SUBBASE
X

- isomorphism.

-12-



:y-xiw b

Theorem 3.21 (cf. [1]) If (X,RX) € T,-SUBBASE, then (+X,+RX) €
r—————— e et e

SUPERCOMP Tl—SUBBASE (where *+X has the topology generated by the

subbase +Rx).

The function XR : (X,RX) > (+X,+Rx) defined so
X

XRX(x) = {A : {x} cp A and A C X} is a Tl—SUbbase space embedding.
X

If (X'RX) € SUPERCOMP T -SUBBASE, then X is a SUPERCOMP T_ -SUBBASE

1 1

- isomorphism.
+
The function = : (+X,+Rx) »> (X+,Rx+) defined by o =00 Ry

for each o € *X 1is a SUPERCOMP Tl—SUBBASE - isomorphism such that

Our proof of these theorems depends upon the following lemma:

Lemma 3.22 [8, pp. 45-46] Suppose (X,RX) € Tl—SUBBASE and S, T € BX'

Then,
(1) scT if and only if st ¢ Tt and

(2) sNT=¢ if andonly if st Nt =¢.

(1) Clearly, for any set R € RX and Rx-ultrasieve c,

o € RY if and only if R € o . Suppose S CT and o € st . since
S € c and ¢ 1is an RX-ultrasieve, S meets each member of o .
Thus, T meets each member of o and by 3.16(3) T € o . Hence
o € T and, since o was arbitrary, st c 1t .
Now suppose there is an x € X such that x € § and x ¢ T .

We claim that XR (x) = {R € Rx : x € R} is an Rx-ultrasieve such that
X .
X (x) € st and X_ (x) ¢ T'. Note that this would mean s* ¢ T*

R Rx

implies S ¢ T . Obviously, in(x) c Rx—{¢} . If R R, € iRX(x) ,

-13-



then x € Rl 1 R, and hence Rl n R2 # ¢ . Since Rx is a Tl—subbase,

2
if Q € R.x with x ¢ © , then there is an R € Rx with x € R such

~that © l R=¢. Hence, if Q meets each member of XR (x), then

X

x € 0 and thus Q € XR (x). Consequently, XR (x) 1is an Rx—ultrasieve.
X X

Since we know that S € XR (x) and T f XR (x), then N (x) € st and
X X

in(x> ¢ T,

(2) If o€stNT , then S €0 and T € 0 . Since o is an

linked family, SN T # ¢ . Thus, S T =¢ implies stnrt = ¢ .
Suppose S I T# ¢ . Choose any x € SN T . Since

A (x) = {R € RX : x € R} is an Rx-ultrasieve with A_ (x) € st n ot ’

clearly st N T # ¢ . .
Now, we resume our demonstration of Theorems 3.20 and 3.21.
Since R.X+ is a collection of subsets of X , it is a subbase
for a topology of x* . To prove RX+ is a Tl—subbase, first note that
ot = ¢ € RX+ and X' ¢ RX+ since ¢ € R, and X ? Ry . For any
Rx-ultrasieve o, surely o € N {R* ¢ Rx+ :o0 € R} =0N{rt : R € 0},
If & is an Rx-ultrasieve contained in N {R*Y : R € 0}, then o C &
since R € o implies R € 6 . But, if S € 6 , then S meets each
member of o and hence belongs to o . Therefore, {o} =
N {r* ¢ Rx+ : 0 € R*}. Finally, let us next assume o € X+ , Rt € Rx+ '
and o ¢ R* . since R ¢ o , there exists an S € o such that

+
RNS=¢ . BAs aresult, R*NsS* =¢ and o € S . We conclude that

Rt is T -subbase.
X a 1 ub! e

-14=



To show that (xt , RX+) is a supercompact T.-subbase space,

1

consider any linked family composed of members from RX+, say

{Ri"'}iEI . Clearly, {R.,} is a linked family composed of members

i'i€1
from RX . But it is easy to show, using Zorn's lemma, that a class
{6 : 6 ¢ RX and & 1is a linked set} has a maximal member o (with
respect to set inclusion). Further, o 1is an Rx-ultrasieve by 3.16;
for, if R € Rx meets each member of 0 , then R € 0o since otherwise
{V:V €0 or V=R} is a linked set properly containing o . In

particular then, {Ri}iEI is contained in an Rx—ultra51eve, say O .
Since each R, € 0 , then o € N R,* ; that is {R,%}. is an ip
i R i i i€l
i€1
family.

For each x € X , in(x) = {R € Rx : x € R} is an
RX-ultrasieve; so X\ is indeed a function from X to XV . 1If

R

v.2 € X and y # z , then, since R.X is a Tl-subbase, there is an

R € Rx with y € R and 2z £ R; but then P\ (y) # X (z) . Thus

x x

XR is one-to-one.
X
From the fact that x € R iff R € XR (x) iff X (x) € R,
X
we can deduce A_ (R) € RV and ij((R) = Rt N ij((X) . Since ij( is
an injection, X_ ~ is a function. Note A_ ~ (R+ N \_ (X)) = R and,

x x

incidentally, XR -(R¥) = R and A -[RX+] =R _ . Since

X x X

(x+ N XR (x) , {(R*¥NX_(X) : R € Rx}) is surely a T
X

l-subbase space,

: T . + T +n0 3 .
we can conclude the function A .(X,RX) - (xt N XRX(X),{R n XRX(X).RERX})

is a Tl—SUBBASE - isomorphism.

-15-



R S ——

Assume (X,RX) is a supercompact T -subbase space and o € x*.

1

Since o 1is a linked family, it is an ip family. If x € X 1is con-

- tained in each member of o , then o = . (x) by 3.16(3) since o

Rx

and XR (x) are Rx—ultrasieves with o ¢ XR (x) . As a result
X X

< - yt 3 =nt 3 = + X - + r +
A (X X ,XR(R) R" , A [R.] Ry , and X\ .(X,Rx)~*(X,RX)

Rx X R X

is a SUPERCOMP Tl—SUBBASE ~ isomorphism.

We claim XR (x) = {acx: {x} cr A} is an RX—bicontiguity
X X

cluster. Since {x} € \_ (x) , if B is Rx—bicontiguous with each

member of XR (x) , then B € XR (x) . Next, suppose A,B € XR (x)
X X X

R,R _€R_ with A CR d CR_ . i R i - s
and 5 Ry < SR, an B C B Since X is a Tl subbase,

R,A cRx{x} implies x € R.A . Clearly, x € R.A N R.B and hence A c_ B .

+

Consequently, A_ : X - " X 1is a function.

R,
X

Assume o0 € *X and o =0 N R, - Obviously, X € o . If

—) .
Rl,R2 € o , then Rl n R2 # ¢ since Rl cRXR2 . Suppose S € RX meets

-
each R€og . Forany A€o, S Cr A because each set R € RX
X

containing A 1is a member of o . Thus S € o by 3.18(3) and hence
> + C s + + .
o € X* by definition 3.16. Thus - : X =+ X is a function.

Next, we show there is a function + : X' » *X defined by

+ “«
o={AC X :Ac_R for each R € g} . Obviously, X € ¢ . Next

R
X

<
. c c . .
suppose A,B € C and Ra,Rb € Rx with A C Ra and B ¢ Rb Since
A is bicontiguous with every R € o , Ra meets every R € o . Likewise
Rb meets every R € 0 . Hence Ra and Rb each belong to o and thus

meet. Consequently, A co B ; condition 3.18(2) is satisfied. Since
‘_ . 3 ] X . . ‘_ ‘_
0 C o, if a set D 1is bicontiguous with all members of o, then D € O.

-~
Thus o € *X and +« : x* > *X is a function.

-16-



In fact, the function <+ 1is the inverse of -+ . For if

5 , 5 _ +
o €*X , then o =0 by 3.18 since o € o and if o € X , then
- -
<« . + .
=0 by 3.16 since o< o . For any R € Rx , consider -(*R) . 1If

+ - . - + c s .
c € R, then R€ o, R € o, and finally o € R* . Similarly, if

« “«
c€RY , then R€0,R€0, andso o € *R . Thus if o € Rt ,
->

_* > 4 > 4 e B . .
then o =0 € ("R) and consequently (fR) = RT¥ . Likewise if

+—
-
(o2

€

+ +
o € tR , then o = (Rt) and consequently (RY) = *R . Now one

can easily deduce the remainder of Theorem 3.21.

Remark 3.23 From the previous results, we conclude that the construc-

tions (XR ,(X+,RX+)) and (A ,(+X,+Rx)) are essentially the same for
X

our purposes. We call either construction the superextension of the

Tl—subbase space (X’RX)' In addition, we say the morphisms XR and XR
X X
are superextension maps. Our construction (XR ,(+X,+RX)), which is
- %

similar to the Wallman-type compactification investigated by Bentley and
Naimpally {1], has been introduced, as in [1], to simplify certain aspects
of the presentation of a successful fur strategy.

Note that a superextension (XR ,(+X,+Rx)) is not, in general,
X

a compactification of (X,Rx) since XR (X) is seldom dense in *X .
X

As an example, Verbeek [8, p. 47] has shown that, for any topological
space (X,T) , which is a Hausdorff space containing at least three
elements, if we consider (X,T) € Tl—SUBBASE, then the set XT(X) is

not dense in (*x,*T) .
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Example 3.24 Let the set X = {a,b} U [0,1] be endowed with a subbase

Ry consisting of ¢, X, and {a} U [0,x]), {a} U [x,1], {b} U [0,x],
and {b} U [x,1] where x € (0,1). It is easy to see Rx is a
Tl—subbase for X .

et Y = [0,1] X [0,1] be endowed with a Tl-subbase SY
consisting of ¢, Y, and [o,x] x (0,11, [x,1] x [O,1], [O,1] X [O,x],

and [0,1]) X [x,1] where x € (0,1) .

Cszazir [2, p. 64] has shown there exists a SUPERCOMP T, -SUBBASE

- isomorphism v : (X+,Rx+) > (Y,Sy) such that

VXR (x) = (x,x) 1if x [0,1]
X
(1,0) if x = a

(0,1) if x

b -

(0,1) (1,1)

(x,x)

(0,0) (1,0)

Note that SY is a subbase for the usual topology on Y .
Clearly, there are an infinite number of continuous functions from

(Y,Sy) to (Y,Sy) that are invariant on the set VXR (X). We can
X

conclude idx:(X,Rx) - (X,Rx) is a morphism in Tl—SUBBASE which does

+
X )

not have a unique corresponding morphism g:(X+,Rx+) ~ (x*,R in

T - A h th A_ id_, = gAR, .

1 SUBBASE such that R 1 v g %

EEEEE— X
Considerations of this example influenced the various fur

strategies which were tried. In the next chapter, we discuss the most

suitable successful fur strategy that was found.
-18-
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CHAPTER IV

THE SURE CATEGORY

In this chapter, a fur subcategory of Tl-SUBBASE is defined and
shown to be a successful fur strategy with respect to the superextension

construction.

pDefinition 4.1 For Tl—subbase spaces (X,RX) and (Y'SY) . let

f : (X'RX) - (Y,SY) be a function. We will call £ a sure map if and

i - C
only if £ [SY] - RX and, for any sets A ¢ X and S € SY , £(B) cS S

v
i

implies A c_ f (S) .

Proposition 4.2 Every identity map in Tl—SUBBASE is a sure map. The
composition of sure maps is a sure map. Each sure map is continous.
The proof of the first statement is trivial.
Let £ : (X'RX) - (Y'SY) and g : (Y,SY) -+ (2,T,) be sure

. - i - c - c .
maps Clearly, (gf) [TZ] c R.X since g [TZ] c SY and £ [SY] c Rx

Suppose gf(A) o T for sets AC X and T € T, . Since g is a
VA

sure map, f(A) cS g—(T) . Further, since f 1is a sure map and
Y

¢ A CRx £ (g (T)) . sSince f (g (T)) = (gf) (T) , this shows

that gf 1is a sure map.

g (T) €5

Quite obviously, each sure map is continuous. For, suppose
f : (X'RX) - (Y,SY) is a sure map and S 1is a closed set in Y .

Since S is a subbase for Y , there exists a subcollection

Y
. .. , dent
{Sjn}jEJ nENj of SY , Wwhere each Nj is a finite index set dependen
on j , such that s = U N S. . Thus, f () = N u f—(S.n)
363 new, n 363 new, ]

is a closed set in space X as each f_(sjn) € RX .
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Definition 4.3 Let SURE be the fur subcategory of Tl-SUBBASE which

has as its functions the sure maps and let SUPERCOMP SURE be the full

subcategory of SURE which has as its spaces the supercompact Tl—subbase

spaces.

Theorem 4.4 SUPERCOMP SURE is an epireflective subcategory of SURE.

Suppose f : (X,RX) -+ (Y’SY) is a sure function and (T,TZ)

is a Tl—subbase space. Define *f so that, for each Rx—bicontiguity

cluster o , *f(o) = {C : for each D € 6 , C c_ £(D)}. Then, our

S
Y

proof proceeds as follows: first, it is shown that the superextension
map XT is a sure map and that, if (T,TZ) is a supercompact
Z

Tl—subbase space, then XT is a SURE - isomorphism; next, it is proven
Z -

that *f : tXx > tY is a set map such that *f XR = XS f ; then, it is
X Y
demonstrated that T*f : (+X,+RX) -+ (+Y,+Sy) is a sure map; and finally,
it is shown that XT is a SURE - epimorphism. By the definition of
Z

epireflective subcategory, completing these steps finishes the proof.

For each Tl-subbase space (Z,TZ) , recall +TZ = {tp.T € TZ},

() = + + -1t =
XTZ (*T) T for each T € TZ , and thus XTZ [ TZ] T

. F
7 or sets

AC2Z and *T ¢ +TZ , suppose A ¢T XT “(*T) or equivalently
Z 2

A g T . Hence, there is a set T € T such that A C T and
TZ a 2 a

T, NT=¢ . Recall this implies +Ta N +r = ¢ . Since

a

c + + A i .
XTZ(A) - XTZ(Ta) C Ta , then XTZ(A) ¢+TZ T and so Tz is a sure map

Now, assume (Z,TZ) is a supercompact T_ -subbase space. It is

1

already known XT is a Tl-SUBBASE - isomorphism, XT (T) = *r  for
Z ————e Z
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+
each TE€T ,and A_ [T.] =% . For BC 2 and T € T, , suppose
Z TZ Z Z Z

B ¢+T (XT -)~(T) or equivalently B ¢+T +T . Thus, there exists a
Z VA Z

€T c® o Nt =g . i
set b 7 such that B C Tb and Tb T ¢ Since

+ + : : = - c -+ =
Tb n +r ¢ 1implies Tb nT ¢ , then XTZ (B) ¢ XTZ ( Tb) Tb

implies A “(B) £, T . 1In other words, A ~ 1is sure map and so
TZ TZ TZ

XT is a SURE - isomorphism.
VA

Note that if A,BC Y, and A g B, then f (A) £ f (B).
Y X

C =
, BC sb € Sy and sa N sb é .

Then f (A) € £ (Sa) , £ (B) ¢ £ (Sb), and £ (Sa) n £ (Sb)

For suppose that A C Sa € SY

¢ . Since

f [SY] C Rx , then f (Sa) ¢Rx f (Sb) and hence £ (A) ¢Rx £f (B) .

In particular, if C,D C X and £f(C) ¢S f(D) then C ¢R D ;
Y X

for CC f £(C) , DC £ £(D) , and f £(C) £_ £ £(D).
For each Rx—bicontiguity cluster o , define fo = {f(C):C€c}.
We can conclude fo € tf(o) since, for any sets C,D€o , we know

Cc_ D and hence f(C) c_ £(D).
R S
X Y
To show *f : +Xx > Y is a set map, it is necessary to prove
that, for any Rx—bicontiguity cluster o , the set *f(o) is an
Sy-bicontiguity cluster. Suppose the set A C Y is SY-bicontiguous with
each member of *f(o). Then, since fo C *£f(o) , A is Sy—bicontiguous

with each member of fo and, by the definition of +f(o) , A € +f(o) .

Next, suppose A,B € *f(o) . For any sets Sa'sb € SY such that A C Sa

and A C Sb , clearly Sa'sb € *f(o) . If we assume f‘(Sa),f_(Sb) €o ,
then f (Sa) cR f (Sb) and hence Sa cS Sb . In other words,
X Y
A,B € *£(o) would imply A cq B . Consequently, %f(o) would be an
Y
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an SY—bicontiguity cluster. Thus, we must demonstrate that, for any

set S €8S, , S € *f(o) implies f (S) €0 . Given S € *f£(0) , then

Y

'S CS f(C) , for each C€oc. Because f 1is a sure map, f (S) cx C .
Y X

Thus, f (S) €0 since o is an Rx—bicontiguity cluster.
For each x € X, XR (x) = {Acx: {x} Cp A} and
X X

XS (f(x)) = {BCY: {f(x)}cS B} . Since {x} € XR (x) , then

Y Y X
{f(x)} E:EXR {x) ¢ +f(XR (x)). Because the only SY—bicontiguity cluster
X X
containing {f(x)} is X_ (f(x)), clearly *+f(XA_ (x)) = A, (f(x)) .
S R, )
Y X Y
Therefore, £ = A_f .
Ry Sy

To prove that *f : (+X,+Rx) - (+Y,+SY) is a sure map suppose,

for the moment, that we know %f(*B) ¢ +(£f(B)) for each B C X and

(£ (S))

(*£) (*s) for each S € S, . Since £ (S) € R_ and
Y X

*(£7(s)) = (*£) (*s) for each s € s, , obviously (*f) [*s ] C *R .

X

Now, assume A C *X and *s € *s_ so that A £in (*£) (*s) or

Y

equivalently A ¢+R *(£7(S)) . Thus, there exists a set R € RX such
X

that AC YR and *R M *t(£f~(S)) =¢ . Hence, RN £7(S) = ¢ and so

R ¢ £f(S) . Since f 1is a sure map, then £(R) ¢S S . In other

*x Y

words, there is a set Sr € s, such that f£(R) ¢C Sr and Sr Ns=¢.

Y

Since *s 0 ts = ¢ , ¥(f(R)) C *s_~ would imply t(£(R)) ¢y *s . But,
Y

for any SY-bicontiguity cluster o , if f(R) €0 then SI~60'. Hence,
+(f(R)) = {o € *'Y : £(R) €0} ¢ {o€+Y : s _€o} = +sr . By supposition

+£(*R) ¢ t(£f(R)) . We conclude *f£(a) ¢ *s since *te£(a) ¢ tE(*R) .
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For any set B C X and Rx—bicontiguity cluster o , recall
oc€*B implies B€o . But if B€o , £(B) € fo ¢ *f(0) . This means

*£(o) € *(£(B)) and consequently *e(*B) ¢ Y(£(B)) .
Consider S € SY . Notice +(f~(S)) - (+f)_(+S) if and only
if +£(Y(f (S)) ¢ *s . But, since £(f (S)) € S , then

+e(F (£ (S))) € Y(E(f (S))) ¢ ¥s . oOn the other hand, suppose for some
Sy—bicontiguity cluster o €*s , there is an Rx—bicontiguity cluster &
such that +f(6) = o . Then, it has been demonstrated above that
f‘(S) €85 since S EOTWSY and f is a sure map. Since & € *(f~(S)) ,
we have shown T(f7(S)) = (*£)-(*S). 1In conclusion, if f is a sure
map, then *f is a sure map also.

The proof that each Superextension map is a SURE - epimorphism
requires two stages. In the first, we demonstrate, if
£: (X,R) > (¥,8y) and g : (+X,+RX) - (+Y,+SY) are sure maps so

that g\_ =\X_f , then g = tf .
RX SY

Assuming S € SY , since g (*s) ¢ +RX and g XRX = Xs £,
Y
then f~A_. ~(*s) = A_ “g~(*s) € R_ . Recalling that \_ ~(*s) = s
Sy Ry X Sy

and tY(O\._ “(*r))

*R for each R € Rx , clearly 1T(£7(s)) = g~ (*s) .

Now, if o is an Rx—bicontiguity cluster such that S € g(o) , then
g(o) € *s . This implies o €g~(*s) = *(£f7(S)) and so £ (S) €0 .
Since fT(8S) ¢ R.X , £7(s8) €onN R.X . In summary, that S € g(o) N SY
implies f£~(S) €ofl R.X requires only the assumptions gA =A_f

xSy

and g'[+SY] - +RX .
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Suppose C€0 and S € g(o) ﬂsy. Since f’(S)EoﬂRx ,

clearly C g £7(S) . Recalling fo ¢ *f(o) , obviously
X

" £(C) g f(£7(S)) and hence £(C) Cq S . since f(C) is Sy-bincontiguous
Y Y

with each set S € g(o) N SY , we can conclude £f(C) € g(o) . In other
words, fo € g(o) . But, this means g(o) ¢ *f(o) , since, if A € g(o),

then A is Sy-bicontiguous with each set D € fo . Because g(o) and

+f (o) are Sy-bicontiguity clusters, g(o) *f(0o) . In summary, the

sure map Yf is the unique sure map g for which gXR = Xs f .
X
The second part of the proof that each superextension map is

a SURE - epimorphism follows by a strictly categorical argument from the

result just proven. Let X\ : (x,Rx) -+ (+x,+Rx) be a superextension

% _

map and f,g : (+x,+Rx) - (Y,Sy) be sure maps so that fXR = gXR .
: X X
A
RX
(X,R.) > (*X, "R )
A

4y + +
("X, Rx) (Y'SY) (fXR )
X
A
f g SY
XSY
(¥,s) ) (*y,*s )
Since fXR = gXRx is a sure map, we now know that YN )
X
is the unique sure map such that A_ (fA_ ) = FEA_ )N = A (g\_ ).
SY Rx Rx SY Rx

But obviously XS f and Xs g are also sure maps such that
Y Y

(Xs f)XR =\ (fXR ) and (Xs g)A_. =X, (gh_ ) . Therefore,

Y X Sy X Y}S( SY}S(
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XS f = +(f)\R ) = XS g . Since the superextension map XS is one~to-one,
Y X Y Y

it is easy to see f = g . Thus, for each space (x,Rx) ., the map XRX

is a SURE - epimorphism.

It should be noted the previous categorical result is subsumed
by the following simple proposition [6,p.276]: If S is a full mono-
reflective subcategory of C , then S is an epireflective subcategory

of C.

Remark 4.5 The proof of 3.4 can, of course, be argued in terms of
ultrasieves rather than bicontiguity clusters. For example, we would
call £ : (X'RX) - (Y,SY) a "sure map" whenever f'[SY] c Rx and,

for sets R € Rx and S € Sy "such that RN £7(S) = ¢ , there exists

a set Sr € SY such that R C f—(Sr) and S; Ns=¢ . Also, for each
Rx—ultrasieve o , we would define the map £t . (X+,RX+)-+ (Y+,SY+) by
ft(o) = {s ¢ SY : £ (S) €c0}. Further details may be verified by the
interested reader. As justification of our approach, we note the

natural formulation of the sure maps and the function *f and cite the

methods used by Bentley and Naimpally in [1].

Proposition 4.6 If f:(x,Rx) > (Y,Sy) is a set map, g:(+x,+Rx)-*(+Y,+SY)

is a sure map, and gXRX = XS f , then f is a sure map and so g = *f .
Y

: -+
In the previous proof, we have shown that g [ SY] c +RX and

g\, = XS f imply f'[SY] € R, and, for each S € sy , g—(+S) = +(£7(S)).

% X

- + -
Assume A C X , S € S, , and A ¢Rxf (s) . Then, )\RX(A) ¢+RX (£7(s))

or equivalently XA_ (A) ¢ g (ts) . Since g 1is a sure map,
+R

*x X

gh_ (B) ¢+S *s and so XS £(a) ¢+S *s . Finally, we have f£f(A) ¢S S.
Y

Ry Y Y Y
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Thus, f 1is a sure map. Since f 1is a sure map, we know

from 3.4 that g = *f .

proposition 4.7 Let £ : (X,Rx) - (Y'SY) be a sure map. The map £

is a SURE - epimorphism if and only if *f is a SURE - empimorphism.
I1f f is a SURE - isomorphism, then *f is a SURE - isomorphism.
Also, if f is a surjection, then *f is a surjection.

Suppose f is a SURE - epimorphism and g,h : (+Y,+SY) -

(Z,TZ) are sure maps such that g *f = h *f . Then, gXS f=g +fXR =
Y X

R

=h teN_ = hXS f . Since f and XS are SURE - epimorphisms, g = h.
X Y Y .

Thus, ¥f is also a SURE - epimorphism.
Next, suppose *f is a SURE ~ epimorphism and g,h : (Y’SY) -

(Z,TZ) are sure maps such that gf = hf . Since f , g, and h are

sure maps, then *f, *g, and *h are sure maps such that

Y =A_.f, %G =X g, and *hA_ =X_h . Thus, *g*f and
RX S S T S T
Y Y Z Y Z
th*f are sure maps such that *g*fA_ =X gf = A\ hf = *htf .
RX TZ TZ RX
Since X\ and ‘Yf are SURE - epimorphisms, then +g = *h . This

means XT g = XT h and so g=h . Thus, f 1is a SURE - epimorphism.
Z Z

Notice that the preceding proof uses a strictly categorical
argument. Likewise, via a trivial categorical proof, it can be shown
that +f_ is a SURE - isomorphism if £ is.

Finally, assume f is a surjection and o €*Y . Consider
d={f"(s) : s€a N SX} . Since each pair of members from d has a
nonempty intersection, clearly d 1is contained in some Rx—bicontiguity
cluster, say 5. For each D€8 and S €0, recall D Cp f7(s) implies

X
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£(D) Cq S since f(f (S)) € S . Hence, f(D) €0 or equivalently
Y

f6Co. We can conclude %f(8) = o since +£(5§) and o are

SY—bicontiguity clusters.
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CHAPTER V

JENSEN'S RESULT

In this chapter, we present a mapping result due to G. A.
Jensen (8, p. 56]. The situation Jensen describes was not motivated
by nor is it particularly compatible with the notion of epireflective

subcategories.

Definition 5.1 {8, p. 511 A Tl—subbase R.X for space X 1is normal

. . s . c _c
if, for any disjoint sets Rl,R2 € RX , there exist sets Rl,R2 € RX
(o4 C (o] C

such that Rl n R/ =¢ , R, n R, = ¢ , and R/ U R, = X . A

Tl—subbase space (X,Rx) is called normal if RX is normal.

Proposition 5.2 {8, p. 52] 1I1f RX is a normal T -subbase for X ,

1
then Rx generates a Hausdorff topology.

Let X) and X, be different points in X . Since RX is

a Tl—subbase, we know there exist sets Rl’RZ € Rx such that x1 € R1 ‘

, c _c
X, € R2 , and Rl n R2 = ¢ . Thus, there exist sets Rl'RZ € Rx such
c

C C

= R

that R1 U R2 X, R1 N 1
C

X - R and X - R_ are open sets such that. (x - R;) N x - R;)

= ¢ , and R2 n R; = ¢ . Clearly,

N Q
1]
©

c c
X - R d € - R_ .
xl € 1 an x2 X N

Lemma 5.3 {8, p. 13] Suppose (X,Rx) € Tl—SUBBASE and S,T € Rx .
Then, S UT = X if and only if st U Tt = xt .

Assume x € X and st U Tt = x* . Obviously, XR (x) € x*
X

and so, without loss of generality, A_ (x) € st . Hence, S € XR (x)

Rx X

and x € S. Thus, s UT=X.
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Next, suppose S UT =X and o € x* . If o gstUrT+,

then S,T £ 0 . Hence, there exist RS’RT € o such that

R_N =R M
S S T T

¢ . Since RS N RT € complement S 1l complement

T = ¢ , we have a contradiction. Thus, S U T = X implies st U Tt = xt.

Theorem 5.4 [8, p. 56] Let (X,RX) be a Tl—subbase space and (Y,SY)

be a normal Tl—subbase space. If f : (X,RX) - (Y'SY) is a map for

which f_[SY] c Rx , then there exists a continuous closed map

g: (xt,R.*) » (¥¥,s,¥) such that g\, =\ £ .
X ¥ Ry Sy

For each RX—ultrasieve o , consider the sets

£ = {s ¢ 5, £ (s) €0} and £(0) = {S € 5, : for each s_ € £,

s N Sc # ¢} . Clearly, fc is nonempty since at least Y € fc .

. o . - -
Also, if Sa,S € £, then Sa N Sb # ¢ since f (Sa) nf (Sb) A ¢ .

b

Thus, fo - E(o). Consequently, if a set S € SY meets each member of

f(o) , then S € f(o) .

Now consider sets S_,S. € f(o) . Let us suppose Sl Ns.=2¢.

1"72 2

Since S is normal, we have sets S

c
v ,82 €s such that

Y

= Q0

1 1

. - C - C
Recall this and £ (Sl) , F (Sz) € RX

Cc - CC.= - C —C=
s Ns. =¢, 52 n 52 ¢ , and sl»U 52 Yy . Thus, f (sl) Urf (Sz) X.

imply that either f_(Si) € o or

c
1

Similarly, if f_(S;) € o , then 82 n S; # ¢ . The contradiction is

f—(S;) € 0. But, if f_(Si) € o, then s € £2 and so s, N si £ .

resolved only if Sl N 82 #¢ . Thus £(o) is an SY—ultrasieve and
£f: xt >yt is a set map.

et z € X . Recall A_ (z) = {R: 2z € R € RX} and

A (£(2)) = {s : f(z) € s €s,} . But, if s € A\, (£(z)) , then

Y Y
_ XRX(Z)
f (s) € A_ (2) . Thus, since XS (£(z)) € £ , clearly
Y
A, (£(2)) = £ (2)).

SY X
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To prove f is a continuous map, it is sufficient to show

£ (Sl+) is a closed set in space X for any Sl € SY . Suppose

c €xt and o £ f-(sl+) . Then E(o) £ Sl+ . This implies there is

a set 82 € f(o) such that Sl Ns.=¢ . Since (Y,SY) is normal,

2

. c ¢ c _ o _
there exist sets Sl'SZ € SY such that Sl Ns ¢ 82 N 82 ¢

c
2

?’(sl+) c (f'(sg))+ and o £ (f"(sg))+ . since £ [S,] € R, , this

. - + .
and S: US. =Y . We claim the set (f (Sg)) has the properties that

—

would imply f—(Sl+) is a closed set in X :

First, note since 82 € £(o) and S; nNs ¢ , then

2
c - . -, C -, C. .+
82 £ £f(o). In particular, £ (Sz) £ o and hence o £ (f (Sz)) .

(o] - . . Ci+ + _
Next, Sl N Sl ¢ implies (Sl) N (Sl) ¢ and

ETsDHH NE (5,9 =6 . Then, (£ (ST NET (5,1 = ¢ if we can

show (f'(sfl:))+ c £° ((s‘l:)") . But, & € (f-(si))’f iff f_(s:) €6

only if si € E(6) iff E(8) € (sfl:)+ iff & € £ (S§)+ . Moreover,
since Si U S; =Y , then f_(Si) U f—(Sg) = X and hence
(£ (5] U (£ (s5))* = x* . Consequently, £ (sl+) < (£ (st .
Recall, for any Sa'sb € SY , that Sa - Sb implies
+ C + = i 1 + + = =
Sa c Sb , Sa N Sb ¢ implies Sa N Sb ¢ , and Sa U Sb Y

implies Sa+ u Sb+ =y . Hence, since (Y,SY) is normal, clearly

(Y+,SY+) is normal. Thus, £ o (X+'RX+) - (Y+,SY+) , being a continuous
map from a compact space into a Hausdorff space, is a closed map
[9 , p. 123].

Letting g = £ , the theorem is proven.
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