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ABSTRACT 

The f i r s t  p a r t  of this t h e s i s  presents  a development of the  theory of a 

continuous e l a s t i c  d i e l e c t r i c .  From t h e  most general  c o n s t i t u t i v e  equations 

governing homogeneous, i s o t r o p i c ,  e l a s t i c  d i e l e c t r i c ,  t h e  f i r s t  order approxi- 

mation i s  formulated. 

In t h e  second p a r t ,  t h e  f i r s t  order  theory so developed i s  applied t o  

obta in  so lu t ions  t o  four  boundary value problems. In  these  problems, t h e  

f i n i t e  deformation and t h e  e l e c t r i c  f i e l d  a r e  prescr ibed,  and it is shown 

t h a t  t h e  deformation can be supported without t h e  mechanical body fo rce  and 

t h e  charge d i s t r i b u t i o n  i n  every homogeneous, i s o t r o p i c ,  incompressible 

e l a s t i c  d i e l e c t r i c .  In t h e  end, i t  i s  shown t h a t  only homogeneous deformations 

(iii) 
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INTRODUCTION 

There exists on the one hand the macroscopic theory of elasticity, and on 

the other what may be called the macroscopic theory of electrostatics. In 

recent years much interest has centered on the coupling of these two systems. 

Mostly, the literature in this area considered boundary-value problems in which 

the strains were considered infinitesimal at the outset, and the electric field 

was then superposed. 

The first paper to treat simultaneous electrification and change of shape 

as physical phenomena worthy of exact analysis derived from fundamental laws 

of mechanics came from Toupin [I]. In this paper, Toupin considers a con- 

tinuous deformable elastic dielectric solid subject to the simultaneous 

application of mechanical forces and an electric field. The existence of 

stored energy function is postulated, and with the formulation of a virtual 

work principle, the constitutive equations for a finite deformation theory of 

an elastic dielectric are derived. 

The theory governing finite deformations of elastic dielectrics has also 

been derived by Singh and Pipkin [ Z ] .  In this paper, the authors have 

described various families of controllable states - the states in which a 

prescribed deformation and electric field can be supported without body forces 

or surface tractions in every homogeneous, isotropic, elastic dielectric. 

These states do not impose any restriction on the form of the stored energy 

function. The usefulness of such controllable states is that the comparison 

of theoretical results with measured data can determine the form of the strain 

energy function just what it should be. This feature of these special class 



of deformations has been utilized by Rivlin and Saunders [3] in finite elas- 

ticity theory. However, the experimentation of similar nature for elastic 

dielectrics has not been attempted so far. 

Singh [4] formulated the theory of small but finite deformations for 

homogeneous and isotropic dielectrics. In such an analysis, the stored energy 

is expressed as a polynomial of its arguments which is then terminated after 

retaining the terms in the expansion that are appropriate to the approximation 

desired. In finite elasticity, the approximations of this nature are Mooney- 

Rivlin materials and Neo-Hookean materials. The approximate theories of 

constitutive equations not only provide mathematical simplifications enabling 

one to treat more difficult boundary-value problems but also reduce and 

simplify the response coefficients to make the experimental work for their 

determination possible. From the practical point of view such limitations 

are often a necessity rather than an exception, because the range of 

deformation to which materials can be subjected in the elastic range is often 

1 imited. 

In Sections 2 to 4 is defined the macroscopic model of an elastic 

dielectric solid continuum. 

The basic assumptions, field equations, and constitutive equations for a 

theory governing homogeneous, isotropic, elastic dielectrics are presented. 

In Sections 5 to 9, various approximate theories that can be derived are 

discussed. Their formulation is systematic and is obtained from the general 

constitutive equations. The classical electrostriction theory comes as a 

special case of the first order finite approximation. The first order 

approximation formulated in Section 9 is analogous to Mooney-Rivlin [S] 

approximation in finite elasticity theory. 



The development so far, in Sections 2 to 9, is not new. However, the 

applications of the first order approximation considered in Sections 10 

through 15 are original contributions of this presentation. The boundary- 

value problems solved, by using the constitutive equations of the first 

order approximation for incompressible, homogeneous, isotropic, elastic 

dielectric, are the rotation of a cylindrical tube about its axis in the 

presence of a radial electric field, expansion of a spherical shell in a 

radial field, flexural deformation of a block in a radial field. Within the 

application of the first order approximation, the deformations are controll- 

able in the sense that they can be supported in every homogeneous, isotropic, 

incompressible, elastic dielectric without body forces or distributed charge. 

When the form of the stored-energy function is arbitrary, the flexural 

deformation of the block in a radial field is not controllable [ Z ] .  It is 

shown in Section 13 that such a state is controllable when first order 

theory is used. 

It is well recognized that in some problems, it is more convenient and 

useful to take the dielectric displacement field as the independent variable 

instead of the electric field. The constitutive equations are formally 

equivalent to those when electric field is the independent variable [ Z ] .  In 

Section 14, we have solved the boundary-value problem of the flexural 

deformation of a block in presence of a uniform axial dielectric displacement 

field. This state, which is not possible with arbitrary form of stored-energy 

function is controllable with first order approximate theory. 

Singh [6] has shown that with arbitrary form of stored-energy function, 

the - only controllable states in homogeneous, isotropic, compressible elastic 

dielectrics are homogeneous deformations combined with uniform elastic fields. 



The constitutive equations derived from the stored-energy function of the 

first order approximation are much less restrictive. One would, therefore, 

expect that certain non-homogeneous deformations may combine with non-uniform 

fields to become controllable. However, we show in Section 15 that even in 

first order approximate theory, the only controllable states are homogeneous 

deformations superposed with uniform fields. 



2. Continuum Electrostatics 

We consider a deformable elastic dielectric continuum that occupies volume 

V bounded by surface a V  . The body is deformed and polarized by applied 

mechanical forces and an applied electric field. We use Cartesian coordinates 

to describe the deformation; the particle at coordinate position XA(A = 1,2,3) 

in the initial state is deformed to coordinate position x.(i = 1,2,3) referred 
1 

to fixed rectangular Cartesian system. In the present paper, we deal only with 

the quasi-static case where the deformation takes place so slowly that at any 

instant of time the external forces are in equilibrium with the mechanical 

and electrical forces inside the dielectric; that is, inertial forces are 

negligible. 

According to the Maxwell-Faraday theory of the electrostatic field, there 

exist in space two vector fields, the macroscopic electric field Ei(i = 1,2,3) 

and the macroscopic dielectric displacement field Di(i = 1,2,3) . In free 

space these fields are assumed to satisfy the integral equations: 

where c is an arbitrary closed curve, S an arbitrary closed surface, Q 

the total electric charge enclosed by S ,  and ni(i = 1,2,3) is the unit 

exterior normal to S . 
We shall assume that (2.1) and (2.2) are also valid inside the dielectric. 



We further assume that on any volume u of the dielectric, the resultant 

force Fi and resultant moment Gi , excluding gravitational or inertial 

moments and forces, are statically equivalent to a stress field ti acting 

on the surface S of the volume. That is, 

The stress vector ti accounts for all electromechanical forces other than 

gravitational and inertial forces. 

Applying Stokes Theorem to (2.1) and utilizing the fact that c is 

arbitrary, we obtain 

where is the electrostatic potential. Here ,i denotes differentiation 

with respect to xi coordinates. 

Across the surface 3V of the dielectric, it follows from (2.1) that 

the tangential component of Ei is continuous: 

where ni is the unit outward normal to the surface 3V ,. E' and E- 
j j 

denote, respectively, the values of electric field outside and inside the 



dielectric surface. 

We are restricting our considerations to the case in which the dielectric 

body and its surface are free of electrical charge. With this restriction 

and the fact that S is arbitrary, the application of divergence theorem to 

( 2 . 2 )  yields 

Furthermore, applying ( 2 . 2 )  to a cylindrical "pill box" that contains the 

boundary of the dielectric, we can show that the normal component of Di is 

continuous across the surface aV of the dielectric: 

where, as before, Df and D; are the values of the field D outside and i 

inside the dielectric surface. 

3. Eauilibrium Eauations 

If V is an arbitrary volume of the dielectric having surface aV, then 

for equilibrium we must have 

and 11 cijkxjtkdS + 111 psijkxjfkdV = 0 . 
av v 



Here, p is the mass density of the body and fi represents the gravitation- 

al or inertial body force per unit mass. We will not consider surface couples 

or body couples. 

If we apply the first of (3.1) to a tetrahedron we can show that the 

stress ti on a surface with outward unit normal ni is given by 

where the quantities oij represent the stress tensor. 

It also follows from (3.1) that if mechanical surface tractions Ti per 

unit area of the deformed body are applied to the surface of the dielectric, 

then 

at the boundary. In the situation where electrical effects are absent, the 

+ 
stress oij in the medium surrounding the dielectric is taken to be zero. 

In this paper, due to the electric field outside the dielectric, there is a 

+ 
stress 'i j , called the Maxwell stress, present outside the dielectric. 

Finally, if we substitute (3.2) into (3.1), apply the Divergence theorem, 

and utilize the arbitrariness of the region V, we obtain the equilibrium 

equations: 



4 .  Constitutive Eauations 

The Maxwell equations ( 2 . 4 )  through ( 2 . 6 )  and the equilibrium equations 

( 3 . 5 )  form an indeterminate system of equations; alone, they do not determine 

the behaviour of the medium. In order to obtain a determinate system, we need 

the constitutive equations which relate the material response with forces 

applied to the medium. 

In the free space surrounding the dielectric body, we shall assume that 

the constitutive equations are simply those of Classical electrostatic theory: 

Here, E is the dielectric constant of free space and M i j  the Maxwell 

stress tensor. Clearly, Mi j satisfies equilibrium equations ( 3 . 4 )  and 

( 3 . 5 )  identically, when body forces are considered zero as we shall in 

the applications to follow. 

The deformation of the dielectric body is described by the relations: 

Since the dielectric media that we shall be concerned with are homogeneous 

and perfectly elastic, we therefore assume that there exists in the dielectric 

a stored energy function W , defined as the energy per unit mass, which is a 

function of the electric field E and the deformation gradients i 

* 



The c o n s t i t u t i v e  equations f o r  t h e  homogeneous e l a s t i c  d i e l e c t r i c  t h a t  

we use i n  t h i s  p resen ta t ion  a r e  derived by Singh [ 4 ] :  

and 

where p i s  the  mass dens i ty  measured i n  t h e  deformed body. 

Simi lar  c o n s t i t u t i v e  equations were derived by Toupin through a  p r i n c i p l e  

of  v i r t u a l  work. Our equations d i f f e r  formally from h i s  i n  t h a t  we have 

chosen t h e  e l e c t r i c  f i e l d  a s  t h e  independent v a r i a b l e  ins tead  o f  t h e  po la r -  

i z a t i o n .  

One of t h e  r e s t r i c t i o n s  on W i s  t h a t  it must s a t i s f y  t h e  p r i n c i p l e  of 

ma te r i a l  ind i f fe rence .  This p r i n c i p l e  s t a t e s  t h a t  i f  t h e  d i e l e c t r i c  body i s  

sub jec t  t o  an a r b i t r a r y  r i g i d  r o t a t i o n  toge the r  with t h e  e l e c t r i c  f i e l d  then 

t h e  f o r c e  system w i l l  undergo t h e  same r i g i d  r o t a t i o n .  Under t h i s  r equ i re -  

ment, i t  can be shown t h a t  W must be express ib le  i n  the  form: 

I f  we f u r t h e r  r e s t r i c t  our cons idera t ions  t o  t h e  case  of a  d i e l e c t r i c  

which i s  i s o t r o p i c  i n  i t s  undeformed, f i e l d - f r e e  s t a t e ,  then  t h e  s to red  

energy W has t o  be a  funct ion  of t h e  s i x  s c a l a r  i n v a r i a n t s  Ik(k = 1 , 2 ,  ..., 6 ) :  



where - I1 - gii ' 

IS = d e t  ( g . . )  , 
1 J 

Here g i j  i s  t h e  Finger s t r a i n  tensor  defined by 

Subs t i tu t ion  of  (4.8) - (4.10) i n t o  (4.5) and (4.6) ,  and the  use  of  Cayley- 

Hamilton theorem, reduces t h e  c o n s t i t u t i v e  equations f o r  an i s o t r o p i c ,  homo- 

geneous, e l a s t i c  d i e l e c t r i c  t o  t h e  form 

a w + -  E E . ]  
31,  IgikEkEj * g j k  k  1 



and 

aw 2 + - [g. E E 2~~ + g . g  E E I  
31, 

i k  k  j + g j k  k i ik j p  k p  

L where gi j  = gikgkj . 

Here we have a l s o  used t h e  r e l a t i o n  

where po i s  t h e  mass d e n s i t y  of t h e  undeformed d i e l e c t r i c .  

5. Approximate Theories 

Assuming t h a t  t h e  s to red  energy funct ion  W(I I I I I I  ) can be 
1' 2 '  3' 4' 5' 6 

expressed a s  a  polynomial i n  t h e  i n v a r i a n t s  Ik  , we may w r i t e  

Here A 
a B y W  

represen t  ma te r i a l  cons tan t s ,  and we have used t h e  expression 

B ( 1 ~ - 3 ) ~ ( 1 ~ - 3 )  (13-1)' , r a t h e r  than simply 1~1~1: , so  t h a t  i n  t h e  f i e l d  

f r e e ,  undeformed s t a t e ,  W = 0 . 
The approximate forms of  W may now be obtained by terminat ing  t h e  

s e r i e s  (5.1) ,  r e t a i n i n g  an appropr ia te  number of  terms. Using these  approxi- 

mate forms of  W we ob ta in  t h e  approximate deformation t h e o r i e s  f o r  the  

homogeneous,isotropic, e l a s t i c  d i e l e c t r i c .  



At a point P in the dielectric, let ei(i = 1.2.3) denote the principal 

extensions and let Ei(i = 1,2,3) denote the components of the electric field 

referred to the principal directions of strain at P . Then the invariants 

(4.9) can be written as 

4 2 and I6 = (l+el14~: + (I+~~)~E: + (l+e3) E3 . 

In order to rewrite the series (5.1) in the more purposeful manner, we 

define a new set of invariants Jk by the relations 



J4 = I4 , J5  = Is  - I4 ' 
and 

J  6 = I  6 - 2 ( I - I ) - 1 4 .  5  4  

We note that these relations are invertible and since the Ik are a complete 

set of invariants, so are therefore Jk . 
In terms of the new invariants Jk ' 

a B y 6 A w  J J J J J J  
Baf3y~Au 1 2  3 4  5 6 ' 

where B 
aBy GAP 

once again represent material constants. 

With relations ( 5 . 2 )  and ( 5 . 3 )  we observe that the Jk have the 

property: 

k  k 
where by O(ei) we mean that e is the lowest power term appearing in the i 



expression for the invariants defined in (5.3). 

Now we can approximate W to any desired order in the principal exten- 

sions and powers of the electric field by neglecting terms above an appro- 

priate degree in the polynomial (5.4). Any such approximate form of W 

gives a complete theory in the sense that W will be invariant under all 

rigid rotations, even finite, of the dielectric and the electric field. 

These approximate theories are analogous to the approximate theories of 

finite elasticity such as the Mooney-Rivlin materials and the Neo-Hookean 

materials. It is apparent that the usefulness of any such approximate form 

of W depends on the magnitudes of the material constants B 
aBy6h ' 

6. First Approximation 

For small principle extensions and weak electric fields, we define the 

first approximation by retaining in W all terms involving principle 

extensions e up to second powers, terms involving the electric field to i 

second powers in components Ei , and product terms of the type ei~: only. 

Within this definition, (5.4) with (5.5) gives the following form of the 

energy function: 

where ao,al, ..., a6 are material constants. 

We would expect that in the field free undeformed state, W = 0 and 



hence we set a = 0 . Furthermore, we notice that the expression (4.11) 
0 

'ij 
contains the term 

by virtue of (5.3) and (6.1). In the field free undeformed state, this 

expression reduces to a16i j 
and since we want vanishing stresses in this 

state, we set a = 0 . Hence, (6.1) becomes 1 

L W = a2J2 + a3J1 + a4J4 + a5J5 + a6J1J4 . (6.2) 

We note that when the electric field vanishes, (6.2) reduces to 

2 W = a2J2 + a3J1 , 

the form used as the first approximation of the stored energy function in 

finite elasticity theory [7] . 

If we further neglect terms higher than second in the displacement 

gradients aui/aX and field components Ek , and product terms of order 
j 

2 aui higher than Ek , then (6.2) takes the form 
j 



where e is the strain tensor of classical elasticity given by i j 

Here u = x  - X i  . 
i i 

The W in (6.3) then is the stored energy function of the classical coupled 

theory of electrostriction. 

The distinction between W given by (6.2) and W given by (6.3) is that 

the former allows arbitrary rigid rotations of the dielectric together with 

the electric field whereas the latter does not. In this sense, the classical 

theory of electrostinction is not a complete theory. In the present paper we 

will use the first approximate complete theory furnished by W in (6.2). 

Substitution of (6.2) in (4.11) and (4.12) gives the constitutive equations 

of the first order finite deformation theory of isotropic, homogeneous, 

elastic dielectrics: 

and 



7 .  C l a s s i c a l  Theory of  E l e c t r o s t r i c t i o n  

Although t h e  c l a s s i c a l  theory of  e l e c t r o s t r i c t i o n  i s  n e i t h e r  an e s s e n t i a l  

nor an i n t e g r a l  p a r t  of t h i s  paper,  i t  i s  i n t e r e s t i n g  t o  see  how t h i s  theory  

comes out  of the  complete f i r s t  approximate theory developed i n  Section 6 .  

To ob ta in  t h e  c o n s t i t u t i v e  equations of c l a s s i c a l  theory we neg lec t  terms 

i n  (6.4) and (6.5) of order  higher than f i rs t  i n  components e  , quadra t ic  i j 

i n  Ek , and product terms of order  higher t h a t  e  E Then 
i j  k ' 

2 - gi j  - tiij + 4eij , 

g.  E E = E . E  i k k j  i j '  

J = 2e 
1 

J lg i j  = 2esi j  , 

and = E E 6  J 4 g i j  k  k  i j  * 

where e = e  ii 

Subs t i tu t ing  (7.1) i n  (6.4) and (6.5) ,  we obta in  



+ 2p0a4EkEksij + 2 ~ ~ ( a ~ + a ~ ) E ~ E ~  Y 

and 

Di = 2po[a46ij + 2a4e6i + 2a S i j  e ]E j '  

These are the constitutive equations of the classical coupled theory of 

electrostriction. To derive the uncoupled theory, which is used more than 

often in literature, we have to neglect the coupling terms eEi and 

e E in ( 7 . 3 ) .  For such a theory, the constitutive equations are: 
ij j 

+ bEiEj , 'ij = Xekksij + 2peij + aE k E k 6 ij 

and 

Di = kEi 

where X,p,a,b, and k are material constants of the dielectric. 

8. Second Approximation 

We can define a second approximation to W by retaining terms in series 

(5.4) up to and including third powers in the principal extensions and field 

2 2 
components, and product terms up to and including ekEi . The corresponding 

expression for W is 



As before the a's are material constants. In writing (8.1) we have taken 

both W and a. to vanish in the field free undeformed state. 
l j  

We note that when the electric field is absent, (8.1) reduces to the 

Murnaghan [8] form for finite elasticity theory. 

The expressions for stress 
'i j 

and dielectric displacement Di may 

now be obtained by the substitution of (8.1) in (4.11) and (4.12). 

9. Incompressible Dielectrics 

So far we have been discussing elastic dielectrics which are homogeneous 

and isotropic. We now consider the dielectric which is also incompressible. 

Mathematically, this means I = 1 for all deformations, and so W is a 3 

function of only five invariants: 

In terms of principle extensions, the constraint I3 = 1 implies 

Because of (9.2) , we have J1 = 0 (er ) . We thus introduce a new invariant 



In view of (5.2) and (5.3), we see that 

Thus, for the incompressible dielectric, instead of (5.4), W has the form: 

For the first order complete theory outlined in Section 6, 

where, as before, the bls are constants of the material. 

In a conservative system, a hydrostatic pressure p arises as a reaction 

to the constraint of no volume change. Keeping this in mind, the substitution 

of (9.6) into (4.11) and (4.12) yields the constitutive equations for the 

incompressible, homogeneous, isotropic, elastic dielectric: 

E E. + g E E.) , 
+ C3(gik k 3 jk k 1 

and 

Here p represents arbitrary pressure and the constants c are material 

constants. 



10. Applications 

In this section of the paper we formulate the application of the first 

order theory of finite deformations for a homogeneous, isotropic, incompress- 

ible, elastic dielectric developed in Section 9. 

The usual procedure would be to prescribe initially a set of applied 

mechanical surface tractions and an applied external electric field for the 

undeformed elastic dielectric. Then, using the constitutive equations, 

equilibrium equations, Maxwell equations, and boundary conditions, derive the 

displacement and electric field inside the dielectric. Unfortunately, the 

class of boundary value problems for which closed form solutions have been 

found by following this approach is confined to the classical linear 

uncoupled theory of electrostriction. To handle boundary value problems in 

this manner for the nonlinear elastic dielectric is, to say the least, rather 

complicated. 

In view of this situation, in this presentation we use what is known as 

the inverse method. We prescribe the deformation and the electric field inside 

and outside the deformed dielectric. We then verify that Maxwell's equations 

and the equilibrium equations without body force are satisfied for a homo- 

geneous, incompressible, isotropic, elastic dielectric within the formulation 

of the first order theory of finite deformations developed in previous 

Sections. The surface tractions which must then be applied to support such 

a prescribed deformation are calculated by the use of the boundary conditions. 

We reproduce here the basic equations of the first order theory from the 

earlier Sections. 



Constitutive equations: 

Inside the dielectric: 

Outside the dielectric: 

Balance equations: 

Both outside and inside the dielectric: 

Maxwell equations: 

'ijkEk, j = O .  

Maxwell equations hold both inside and outside the dielectric. 



Boundary conditions at the surface of the dielectric: 

(O) to denote the fields outside the We have used symbols EIO) and Di 

dielectric. 

11. Rotation of a Right Circular Cylindrical Tube about its Axis 
in a Radial Electric Field 

We consider an incompressible, homogeneous, isotropic elastic dielectric 

right circular cylindrical tube rotating with constant angular velocity w 

about its axis of symmetry. Mechanically, it is equivalent to consider the 

2 
tube stationary but subject to a body force rw per unit mass acting in the 

radical direction. 

The deformation we consider is a simultaneous extension and inflation 

of the tube which is described in cylindrical coordinate system by the 

mapping : 

where X is a constant. Here, (r,e,z) denote the coordinates of the 

material particle in the deformed configuration whose initial coordinates 



a r e  ( R , E , Z ) .  

I t  can be ve r i f i ed  t h a t  mapping (11.1) preserves volume. 

From (4.10) and (11.1), the  physical  components of s t r a i n  a r e  

We consider t he  deformation t o  take  place  in a r a d i a l  f i e l d ,  t h a t  i s ,  

= E(') = 0 . In view of (10.10) the re fore ,  Ee = EZ = 0 . Also, E9 z 
-f 

a r e  funct ions  of r alone. s ince  Curl E = 0 , both Er and Er 

By (10.4) and (10.2), t he  d i e l e c t r i c  displacement f i e l d s  a r e  given by 

and 

Equation (10.7) s t a t e s  t h a t  Di must be  solenoidal  everywhere. With 

(11.3), t h i s  means t h a t  

where K and L a r e  constants .  Subs t i tu t ion  i n  (11.3) gives 



and 

Since, according to (lOlO), the normal component of the dielectric displace- 

ment is continuous across the boundary, (11.5) yields 

Let Ra and R,, denote the internal and external radii of the tube 

initially. In the deformed configuration, let these radii be ra and rb 

respectively. 

The physical components of stress are furnished by substituting (11.2) 

and (11.4) into (10.1): 

1 
(Jzz = -p + - 

X4 ' 

In cylindrical coordinates, the equilibrium equations are: 



which in this case reduce to 

From the last two of these equations we see that the pressure is a function 

of r alone: 

Substituting for arr age from (11.7) and fr = rw2 in the first of the 

equilibrium equations (11.9), we obtain 

Integration yields: 



where A i s  an a r b i t r a r y  constant .  Comparing t h i s  with the  expression fo r  

'rr i n  (11.7), we f ind  

The s t r e s s  outs ide  the  d i e l e c t r i c  body i s  given by (10.3): 

The surface  t r a c t i ons  t h a t  must be applied on t he  ex t e r i o r  surface  of the  

tube can now be calcula ted with use of (10.9): 

We may s e t  T r ( r  = r b )  = 0 . This then y i e ld s  an expression f o r  the  a r b i t r a r y  

constant  A : 



or, substituting for K from (11.6) , 

9 

The surface tractions that must be applied on the inner surface of the 

tube are once again given by (10.8) as: 

Substituting for A from (11. Is), and K from (11.6), 

9 

12. Expansion of a Spherical Shell in a Radial Field 

We consider a spherical shell of incompressible, isotropic, homogeneous 

elastic dielectric material. Initially the shell has internal radius Ra 

and external radius R,, . The particle initially at the point (RYE:,@) in 

a spherical coordinate system occupies the position (r,e,c)) in the deformed 

state, given by 



The constant  ra i s  t h e  i n t e r i o r  r ad ius  of t h e  deformed s h e l l  and, i n  l a t e r  

ana lys i s ,  we w i l l  l e t  rb be t h e  e x t e r i o r  r ad ius  of t h e  deformed s h e l l .  I t  

i s  c l e a r  t h a t  t h e  deformation (12.1) preserves  volume. With (12.1), t h e  

physical  components of s t r a i n  a r e  furnished by (4.10): 

d r  
whereas r 1  = - dR ' 

We consider t h e  deformation t o  take  p lace  i n  a  r a d i a l  f i e l d .  That i s :  

('I = E(') = 0 . By v i r t u e  of boundary condit ion (10.11), we obta in  
0  4 

-P 
Ee = Eg = 0 . Also, s ince  Curl E = 0 both i n s i d e  and ou t s ide  t h e  d i e l e c t r i c ,  

E:') and Er w i l l  be funct ions  of  r alone.  

The d i e l e c t r i c  displacement f i e l d s  a r e  given by (10.4) and (10.2): 

2  
and Dr = [C2  + C3(r1) ]Er , D o  = D = 0 . 

4 

In spher ica l  coordinates ,  equation (10.6) becomes 

a 2  a a s i n  0  - ( r  Dr) + - ( r  s i n  0  De) + 3 (rDg) = 0 , ar ae 



which i n  our case y i e l d s  

and 

Since t h e  normal component of t h e  d i e l e c t r i c  displacement has t o  be contin-  

uous across  t h e  boundary, K = L . In accordance with t h e  usual  conventions 

of e l e c t r o s t a t i c s ,  we s e t  

so t h a t  t h e  d i e l e c t r i c  displacement f i e l d  both i n s i d e  and outs ide  t h e  

d i e l e c t r i c  can be wr i t t en  a s  

The e l e c t r i c  f i e l d ,  outs ide  and i n s i d e  t h e  d i e l e c t r i c ,  i s  the re fo re  given by 

upon s u b s t i t u t i o n  of (12.5) i n  (12.3). 



The physical components of stress are now obtained by substituting (12.2) 

and (12.6) into (10.1): 

where 

2 2 s rr (r) = ~ ~ ( r 1 ) ~  + C ~ E ~  + 2c3(r1) E~ 

The equilibrium equations in spherical coordinates are: 

- +  1 a%e 1 3% + -- 
ar r sin 0 a$ r a8 

1 - [2urT - uee - u6$ + 2oT0 cot 81 + pfr = 0 , r 

- +  1 a%+ lao98 + - -  
ar r sin 8 a$ r 30 

1 
+ - r [30re - u $4 ) cot 01 + pfg = 0 , 



which in this case reduce to 

From the last two of equations (12.9), we see that the pressure is a 

function of r alone: 

Substituting (12.7) into the first of (12.9), 

which on integration yields 



The s t r e s s  outs ide  the  d i e l e c t r i c  i s  given by (10.3): 

with other  M i j  = O .  

The surface t r a c t i o n s  t h a t  must be applied t o  the  i n t e r i o r  surface  of the  

s h e l l  can now be calcula ted from (10.6)'  (12.7)' and (12.10) : 

We can s e t  Tr(r = r a )  = 0 , and i n  doing so obta in  

The t r a c t i ons  t o  be applied t o  the  ex t e r i o r  surface  a r e  once again 

furnished by (10.6), (12.7), and (12.10): 



We note  t h a t  we can s e t  Tr(rb) = 0 and hence ob ta in  a r e l a t i o n  between 

Q and ra . 

13. Flexural  Deformations of a Block i n  a Radial F ie ld  

We consider a rec tangular  block of  homogeneous, i s o t r o p i c ,  incompressible, 

e l a s t i c  d i e l e c t r i c  mater ia l  which has been deformed i n t o  a s e c t o r  of a tube 

wall .  Without t h e  e l e c t r i c a l  e f f e c t s ,  t h i s  deformation has been considered 

by Riv l in  [g] .  For the  e l a s t i c  d i e l e c t r i c  with a r b i t r a r y  form of s to red  

energy funct ion,  Singh and Pipkin [2] have discussed t h i s  deformation 

combined with t h e  Helical  E l e c t r i c  F i e l d .  In t h i s  sec t ion ,  we show t h a t  

within the  formulation of f i r s t  order complete theory,  t h i s  deformation can 

a l s o  be supported with a r a d i a l  f i e l d .  

Under t h i s  deformation, t h e  p a r t i c l e  having Car tes ian  coordinates 

(X,Y,Z) i n i t i a l l y  moves t o  the  p o s i t i o n  ( r ,8 ,z)  i n  a c y l i n d r i c a l  system 

such t h a t  



where A , B , C  a r e  any constants.  

From (4.10), the  physical  components of s t r a i n  a r e  

The e l e c t r i c  f i e l d  t h a t  we combine ~ i t b . . ~ l 3 . 1 )  i s  r a d i a l :  

In view of the  condit ion (10.7), 

where L i s  any constant .  

With (10.4) and (13.3), 

Because of t he  requirement of cont inui ty  of t he  t angen t ia l  component of the  

e l e c t r i c  f i e l d  and normal component of the  f l u x  across  the  boundary, 



Using the constitutive equation (10.2), we get 

It can be readily verified that Maxwell equations (10.6) and (10.7) are met 

by Ei and Di both inside and outside the dielectric as given by (13.4) 

to (13.7). 

From (10.1), the stresses are 

Substituting the stress distribution (13.8) into the equilibrium equations 

(10.5) without the body forces, we obtain 

and 



where K is an arbitrary constant. 

Substitution of (13.9) into (13.8) then gives the stress distribution oij , 
whereas Maxwell stresses Mij are furnished by substituting (13.3) into 

(10.3). The surface tractions that must be applied at the boundary can now 

be calculated by the relations 

14. Incompressible Dielectrics. Flux as Independent Variable 

In the problems we have considered so far, the electric field was taken 

as the independent variable. In some problems, it may be more convenient 

and practical to consider the dielectric displacement field as the 

independent variable. Following a development similar to one outlined in 

Sections 4 through 9, the field equations governing the complete first 

order theory for an imcompressible, homogeneous, isotropic, and elastic 

dielectric are: 

Inside the dielectric medium: 



- - -p 6ij + K1 gij + K D. D. + K3[gikDkDj + gjk D k D.] , (14.1) 'i j 2 1 ~  

and 

Outside the medium: 

and 

Inside and outside the medium: 

Across the 

and the normal 

and 

boundary of the dielectric, the tangential component of Ei 

component of 
i need to be continuou.s. 

Flexural Deformations of a Block in a Uniform Axial Field of Flux 

The flexural deformation of a block in a radial field of flux has been 

discussed by Singh and Pipkin. In fact, it is shown there that if the 

general constitutive equations, using arbitary form of the stored energy 



function,are used, then the only way to support the flexural deformation with- 

out body forces or charge distribution would be to superpose a radial field 

of flux. In this Section, we show that if the first order complete theory is 

used, then we can support flexural deformation with a uniform axial field of 

flux. 

The deformation we consider is described by the mapping 

where A and B are any constants. 

In this family of deformations, the particle initially at the point 

(X,Y,Z) in a Cartesian system is brought to the position (r,e,z) in 

cylindrical coordinates. 

Both Rivlin and Ericksen have discussed this deformation and its physical 

description in finite elasticity. 

It can be easily verified that the deformation (15.8) preserves volume. 

The physical components of strain in the cylindrical system are given by 

(4.10): 

2 2 2 2 
gee 

= B r , g z z =  (7) 
A B 

On the deformation (14.8), we superpose the uniform axial field: 



where L i s  constant .  

By v i r t u e  of ( l4 .4 ) ,  

Since t h e  t angen t i a l  component of  t h e  e l e c t r i c  f i e l d  and normal components 

of f l u x  have t o  be continuous ac ross  t h e  boundary, we must have i n s i d e  t h e  

d i e l e c t r i c ,  

With (14.8) and ( l4 .2) ,  

Using ( l4.12),  equations (14.13) g ive  

2  2  
where A = K + K (-) . 

3 ~ 2 ~  



It is easily observed that fields (14.10), (14.11), (1414) and (14.15) 

satisfy the equations (14.6) and (14.7). 

From (14. l), 

2 2 L 2  + K (LI2 + 2K (7) 9 
'zz 

= -p + K (-) 
A'B 2 EA A ~ B  

The last two of the equilibrium equations (14.5) require 

for stress distribution (14.16) whereas the first of equilibrium reduces to 

or with (14.16), 

Upon integration, we obtain 



Substitution of (14.18) into (14.16) yields the stresses oij , and (14.4) 

inserted into (14.3) gives the Maxwell stress 
Mij . 

Finally, the surface tractions that must be applied at the boundary can 

now be calculated from the relations 

15. Deformations Possible in Every Homogeneous, Isotropic, Compressible 
Elastic Dielectric Within the First Order Theorv 

Certain deformations in elastic dielectrics are called controllable. The 

deformation and the electric field are prescribed at the outset. It is then 

verified that such a state can be supported without body force or distributed 

charge for all arbitrary forms of the stored energy function of a homogeneous, 

isotropic elastic dielectric. Singh and Pipkin [ 2 ]  described all such possible 

states for incompressible elastic dielectrics. However, Singh [6] proved that if 

the dielectric is ~compressible, the only controllable states are the homo- 

geneous deformations combined with uniform electric fields. 

In this Section, we try to find out those states that are controllable 

in every compressible, homogeneous, isotropic elastic dielectrics which obey 

the constitutive equations of the first order complete theory as developed 

in Section 6. 

Suppose we are given a symmetric and positive definite tensor field g i j 

which is twice continuously differentiable. In order that gij be derived 

from a possible deformation xi(XA) of the body, it is necessary and 

sufficient that g meet the compatibility conditions: i j 



- 1 where gij denotes the inverse of the matrix gij and where 

Suppose a field satisfying (2.4) is prescribed inside the dielectric medium. 

If the given gij and Ei are to provide a controllable deformation, then 

i calculated from (6.5) and aij calculated from (6.4) will satisfy (2.6) 

and (3.4) (with zero body forces) no matter what the constants of the material 

in (6.4) and (6.5) are. 

To seek restrictions on possible 
gij 

and Ei , we substitute (6.4) 

into (3.4), and (6.5) into (2.6) to obtain 

i g. .E. - 
1 

and a4 (-j-1 ,i + as ( : JIE i Ei), i + a (-),i = 0 . 
6 J  

axi o 
Where the Jacobian J = det. (-) = - - - ( I3)  rr 

ax 
j P 



Necessary and s u f f i c i e n t  t h a t  condi t ions  (15.3) and (15.4) be s a t i s f i e d  f o r  

any choice of  t h e  ma te r i a l  cons tants  a l ,  ..., a6 , t h e  c o e f f i c i e n t  of  each of  

a ' s  should separa te ly  vanish:  

Besides, t h e  f i e l d  Ei has t o  be conservat ive :  

Necessary and s u f f i c e n t  f o r  a  p o s i t i v e  d e f i n i t e  symmetric t ensor  
gij 

and 

the  f i e l d  Ei t o  combine t o  form a  c o n t r o l l a b l e  s t a t e  i s  t h a t  t h e  condi t ions  



(15.6) - (15.14) as well as compatibility conditions (15.1) are all satisfied. 

Equations (15.8) and (15.11) give 

which with (15.14) yields 

(E. E.),i = 0 . 
J 3 

From (15.15) and (15.10), we obtain 

When re-written, (IS. 16) becomes 

a , axi ax 
o = -  (- - -1 j 

ax J ax, ax, 
j 

ax axi a axi ax 
a A )  - + - -  = -  (-I 3 
ax j (T ax, ax, J ax j ax, ax, 

a ax 
Since - 2) is identically zero, and J # 0 , from (15.17) we get ax (7 ax, 

j 

Also, with (lS.l6), equation (15.17) gives 



Because t h e  matrix 
g i  j  

i s  p o s i t i v e  d e f i n i t e ,  (15.19) y i e l d s  

o r  t h a t  J1 and hence I1 i s  constant .  

The Laplacian of I1 i s  t h e r e f o r e  zero. That i s  

X + X 
i , A A B   xi,^ i , A B  ' ~ , A B  

= o .  

With (15. l 8 ) ,  equation (15.22) g ives  

X = o ,  i , A B   xi,^^ 

which, being t h e  sum of squares ,  thus  fu rn i shes  

The funct ions  xi(XA) a r e  the re fo re  l i n e a r  i n  arguments X~ ' thereby 

implying t h a t  gi j  has t o  be a cons tant  t ensor .  
a xi 

From ( l5 .23) ,  it a l s o  follows t h a t  J = d e t .  1-1 i s  a cons tant .  
a X~ 

Using t h i s  with (15.11), we ob ta in  



From (IS. l4), (lS.lS), and (IS. 24) now 

0 = (E. E.),ii = E E. + E. E. 
J 3 j,ii J J Y ~  ' 

thus implying that Ei is uniform. 

It is now readily seen that with 

conditions (15.1) , (15.6) to (15. 14) 
gi j and Ei both constant, the 

are satisfied identically. Hence, the 

only controllable states for compressible elastic dielectrics, when first 

order complete approximation is used, are homogeneous deformations combined 

with uniform electric fields. 
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