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ABSTRACT

The first part of this thesis presents a development of the theory of a
continuous elastic dielectric. From the most general constitutive equations
governing homogeneous, isotropic, elastic dielectric, the first order approxi-
mation is formulated.

In the second part, the first order theory so developed is applied to
obtain solutions to four boundary value problems. In these problems, the
finite deformation and the electric field are prescribed, and it is shown
that the deformation can be supported without the mechanical body force and
the charge distribution in every homogeneous, isotropic, incompressible
elastic dielectric. In the end, it is shown that only homogeneous deformations

and uniform electric fields are admissible when the dielectric is compressible.
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INTRODUCTION

There exists on the one hand the macroscopic theory of elasticity, and on
the other what may be called the macroscopic theory of electrostatics. In
recent years much interest has centered on the coupling of these two systems.
Mostly, the literature in this area considered boundary-value problems in which
the strains were considered infinitesimal at the outset, and the electric field
was then superposed.

The first paper to treat simultaneous electrification and change of shape
as physical phenomena worthy of exact analysis derived from fundamental laws
of mechanics came from Toupin [1]. In this paper, Toupin considers a con-
tinuous deformable elastic dielectric solid subject to the simultaneous
application of mechanical forces and an electric field. The existence of
stored energy function is postulated, and with the formulation of a virtual
work principle, the constitutive equations for a finite deformation theory of
an elastic dielectric are derived.

The theory governing finite deformations of elastic dielectrics has also
been derived by Singh and Pipkin [2]. In this paper, the authors have
described various families of controllable states - the states in which a
prescribed deformation and electric field can be supported without body forces
or surface tractions in every homogeneous, isotropic, elastic dielectric.
These states do not impose any restriction on the form of the stored energy
function. The usefulness of such controllable states is that the comparison
of theoretical results with measured data can determine the form of the strain

energy function just what it should be. This feature of these special class



of deformations has been utilized by Rivlin and Saunders [3] in finite elas-
ticity theory. However, the experimentation of similar nature for elastic
dielectrics has not been attempted so far.

Singh [4] formulated the theory of small but finite deformations for
homogeneous and isotropic dielectrics. In such an analysis, the stored energy
is expressed as a polynomial of its arguments which is then terminated after
retaining the terms in the expansion that are appropriate to the approﬁimation
desired. In finite elasticity, the approximations of this nature are Mooney-
Rivlin materials and Neo-Hookean materials. The approxiﬁate theories of
constitutive equations not only provide mathematical simplifications enabling
one to treat more difficult boundary-value problems but also reduce and
simplify the response coefficients to make the experimental work for their
determination possible. From the practical point of view such limitations
are often a necessity rather than an exception, because the range of
deformation to which materials can be subjected in the elastic range is often
limited.

In Sections 2 to 4 is defined the macroscopic model of an elastic
dielectric solid continuum.

The basic assumptions, field equations, and constitutive equations for a
theory governing homogeneous, isotropic, elastic dielectrics are presented.
In Sections 5 to 9, various approximate theories that can be derived are
discussed. Their formulation is systematic and is obtained from the general
constitutive equations. The classical electrostriction theory comes as a
special case of the first order finite approkimation. The first order
approximation formulated in Section 9 is analogous to Mooney-Rivlin [5]

approximation in finite elasticity theory.



The development so far, in Sections 2 to 9, is not new. However, the
applications of the first order approkimation considered in Sections 10
through 15 are original contributions of this presentation. The boundary-
value problems solved, by using the constitutive equations of the first
order approximation for incompressible, homogeneous, isotropic, elastic
dielectric, are the rotation of a cylindrical tube about its axis in the
presence of a radial electric field, expansion of a spherical shell in a
radial field, flexural deformation of a block in a radial field. Within the
application of the first order approkimation, the deformations are controll-
able in the sense that they can be supported in every homogeneous, isotropic,
incompressible, elastic dielectric without body forces or distributed charge.
When the form of the stored-energy function is arbitrary, the flexural
deformation of the block in a radial field is not controllable [2]. It is
shown in Section 13 that such a state is controllable when first order
theory is used.

It is well recognized that in some problems, it is more convenient and
useful to take the dielectric displacement field as the independent variable
instead of the electric field. The constitutive equations are formally
equivalent to those when electric field is the independent variable [2]. In
Section 14, we have solved the boundary-value problem of the flexural
deformation of a block in presence of a uniform axial dielectric displacement
field. This state, which is not possible with arbitrary form of stored-energy
function is controllable with first order approximate theory.

Singh [6] has shown that with arbitrary form of stored-energy function,

the only controllable states in homogeneous, isotropic, compressible elastic

dielectrics are homogeneous deformations combined with uniform elastic fields.



The constitutive equations derived from the stored-energy function of the
ifirst order approximation are much less restrictive. One would, therefore,
expect that certain non-homogeneous deformations may combine with non-uniform
fields to become controllable. However, we show in Section 15 that even in
first order approximate theory, the only controllable states are homogeneous

deformations superposed with uniform fields.



2. Continuum Electrostatics

We consider a deformable elastic dielectric continuum that occupies volume
V bounded by surface 9V . The body is deformed and polarized by applied
mechanical forces and an applied electric field. We use Cartesian coordinates
to describe the deformation; the particle at coordinate position XA(A =1,2,3)
in the initial state is deformed to coordinate position xi(i =1,2,3) referred
to fixed rectangular Cartesian system. In the present paper, we deal only with
the quasi-static case where the deformation takes place so slowly that at any
instant of time the external forces are in equilibrium with the mechanical
and electrical forces inside the dielectric; that is, inertial forces are
negligible.

According to the Maxwell-Faraday theory of the electrostatic field, there
exist in space two vector fields, the macroscopic electric field Ei(i =1,2,3)
and the macroscopic dielectric displacement field Di(i =1,2,3) . In free

space these fields are assumed to satisfy the integral equations:

/ E.dx, = 0 , (2.1)
C
f[Dnds=q , (2.2)
S

where c¢ 1is an arbitrary closed curve, S an arbitrary closed surface, Q
the total electric charge enclosed by S, and ni(i =1,2,3) 1is the unit
exterior normal to S .

We shall assume that (2.1) and (2.2) are also valid inside the dielectric.



We further assume that on any volume u of the dielectric, the resultant
force F. and resultant moment Gi , excluding gravitational or inertial
moments and forces, are statically equivalent to a stress field t, acting

on the surface S of the volume. That is,

F, = [[ tas
(2.3)
6, = fJf €1 i1%5 K4S
The stress vector t, accounts for all electromechanical forces other than
gravitational and inertial forces.
Applying Stokes Theorem to (2.1) and utilizing the fact that c¢ is

arbitrary, we obtain

(2.4)

or Ei=-¢’i’

where ¢ 1is the electrostatic potential. Here ,i denotes differentiation
with respect to X5 coordinates.
Across the surface 0V of the dielectric, it follows from (2.1) that

€. . (E E 3 )n I

where n, is the unit outward normal to the surface oV , E; and E}

denote, respectively, the values of electric field outside and inside the



dielectric surface.
We are restricting our considerations to the case in which the dielectric
body and its surface are free of electrical charge. With this restriction

and the fact that S 1is arbitrary, the application of divergence theorem to
(2.2) yields
D, . =0. (2.6)
Furthermore, applying (2.2) to a cylindrical 'pill box" that contains the
boundary of the dielectric, we can show that the normal component of Di is
continuous across the surface 3V of the dielectric:

+ -
Din. = Din. s 2.7)

where, as before, D; and D; are the values of the field Di outside and

inside the dielectric surface.

3. Equilibrium Equations

If V 1is an arbitrary volume of the dielectric having surface 98V, then

for equilibrium we must have

[[ tds + [[f pfav =0,
v

3V (3.1)

and /] eijkxjtkds + [ peijkxjfkdv =0
oV v



Here, p is the mass density of the body and fi represents the gravitation-
al or inertial body force per unit mass. We will not consider surface couples
or body couples.

If we apply the first of (3.1) to a tetrahedron we can show that the

stress t. ona surface with outward unit normal n, is given by
t. = 0..n, , (3.2)

where the quantities Oij represent the stress tensor.
It also follows from (3.1) that if mechanical surface tractions T, per

unit area of the deformed body are applied to the surface of the dielectric,

then

T, = (o35 - o;j)nj (3.3)

at the boundéry. In the situation where electrical effects are absent, the

stress 015 in the medium surrounding the dielectric is taken to be zero.

In this paper, due to the electric field outside the dielectric, there is a

stress Ozj , called the Maxwell stress, present outside the dielectric.
Finally, if we substitute (3.2) into (3.1), apply the Divergence theoren,

and utilize the arbitrariness of the region V, we obtain the equilibrium

equations:

Oij,j +pf, =0, (3.4)

and O.. = 0.. . (3.5)



4. Constitutive Equations

The Maxwell equations (2.4) through (2.6) and the equilibrium equations
(3.5) form an indeterminate system of equations; alone, they do not determine
the behaviour of the medium. In order to obtain a determinate system, we need
the constitutive equations which relate the material response with forces
applied to the medium.

In the free space surrounding the dielectric body, we shall assume that

the constitutive equations are simply those of Classical electrostatic theory:

D.1 = sEi, “4.1)
_ _ 21
oij = Mij = s[EiEj 'EEkEkdij] . 4.2)

Here, € 1is the dielectric constant of free space and Mi’ the Maxwell
stress tensor. Clearly, M.lj satisfies equilibrium equations (3.4) and

(3.5) identically, when body forces are considered zero as we shall in

the applications to follow.

The deformation of the dielectric body is described by the relations:

xg = x; (X,) . (4.3)

Since the dielectric media that we shall be concerned with are homogeneous
and perfectly elastic, we therefore assume that there exists in the dielectric
a stored energy function W , defined as the energy per unit mass, which is a

function of the electric field Ei and the deformation gradients
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W= Wix; 05 B - (4.4)

The constitutive equations for the homogeneous elastic dielectric that

we use in this presentation are derived by Singh [4]:

3,  9X,
- W J oW
%j T Pax; , a%, T P eE) E; (4.5)
Y
and Di = p -a—-E?L— ’

where p 1is the mass density measured in the deformed body.

Similar constitutive equations were derived by Toupin through a principle
of virtual work. Our equations differ formally from his in that we have
chosen the electric field as the independent variable instead of the polar-
ization.

One of the restrictions on W is that it must satisfy the principle of
material indifference. This principle states that if the dielectric body is
subject to an arbitrary rigid rotation together with the electric field then
the force system will undergo the same rigid rotation. Under this require-

ment, it can be shown that W must be expressible in the form:

X X X
k k )
W= W( ; E.). 4.7
- oX  9X oX P
Q P Q

If we further restrict our considerations to the case of a dielectric
which is isotropic in its undeformed, field-free state, then the stored

energy W has to be a function of the six scalar invariants Ik(k =1,2,...,6):
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W= w(Il’IZ’IS’I4’I5’I6) > (4.8)
where I1 = 855 >
IZ = %(gll gJJ gl] glj) )
I, = det (gij) ,
4.9
I, =E E ,
Ig = E; 8;5 B5 »
and I6 = Ei gij gjk Ek
Here gij is the Finger strain tensor defined by
Bxi 9x.
g.. = N 4.10)
ij 9 A BXA

Substitution of (4.8) - (4.10) into (4.5) and (4.6), and the use of Cayley-
Hamilton theorem, reduces the constitutive equations for an isotropic, homo-

geneous, elastic dielectric to the form

0.. = ESQ_ [QE— I L ] g.. - §-w——gz
ij /T;, 311 1 812 ij 12 ij
awW oW
+ 1, — g.. + E.E.
33 3 ij 314 i7j

4.11)
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oW 2 2
+ o1 [BBiBy + 85iBiBy * 88 BB T
and _
2p
0 Jow oW oW 2
D, = — 4——6.. + L. ..TE. , 4.12
i /ﬂ 814 ij 815 glj 316 gl]} j ( )
where 2 .
8ij = BikBkj

Here we have also used the relation

p
0

p = ;;: s
I3

where is the mass density of the undeformed dielectric.

Po

5. Approximate Theories

Assuming that the stored energy function w(11’12’13’14’15’16) can be

expressed as a polynomial in the invariants Ik , We may write

- 2y ® B Yy 87 A7 M
W ::E::::Adsyalu(ll 377 (1p-3) " (1g-1) T T T (5.1)
aBydau
Here A rep}esent material constants, and we have used the expression
aBySAu
(11-3)0‘(12—3)8(13—1)Y , rather than simply I?IEI? , So that in the field

free, undeformed state, W =0 .

The approximate forms of W may now be obtained by terminating the
series (5.1), retaining an appropriate number of terms. Using these approxi-
mate forms of W we obtain the approximate deformation theories for the

homogeneous, isotropic, elastic dielectric.
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At a point P in the dielectric, let ei(i = 1,2,3) denote the principal
extensions and let Ei(i = 1,2,3) denote the components of the electric field
referred to the principal directions of strain at P . Then the invariants

(4.9) can be written as

2 2 2
I1 = (1+e1) + (1+e2) +(1+e3) ,
2 2 2 2 2 2
12 = (1+e1) (1+e2) + (1+e2) (1+e3) + (1+e3) (1+e1) ,
2 2 2
I, = (1+e;) (1+ey) (l+ez)
(5.2)
2 2 2
I4 = E1 + E2 + E3 s
2.2 2.2 2.2
I5 = (1+e1) E1 + (1+e2) E2 + (1+e3) E3 s
4.2 4_2 4.2
and 16 = (1+e1) E1 + (1+e2) E1 + (1+e3) E3 .

In order to rewrite the series (5.1) in the more purposeful manner, we

define a new set of invariants Jk by the relations

[
i)

2 (12'3) - 2(11‘3) ’

(5.3)

[
I

5= (Ig71) - (1,-3) + (1;-3) ,



and

We note that these relations are invertible and since the

set of invariants, so are therefore Jk .

In terms of the new invariants Jk s

where BGBYGKU

With relations (5.2) and (5.3) we observe that the Jk have the

property:

C arR2

J = 0D
_ 2

Je = 0(eEY)
22

Jg = 0(e E))

once again represent material constants.

14

are a complete

(5.4)

(5.5)

where by O(ez) we mean that e? is the lowest power term appearing in the
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expression for the invariants defined in (5.3).
Now we can approximate W to any desired order in the principal exten-
sions and powers of the electric field by neglecting terms above an appro-
priate degree in the polynomial (5.4). Any such approximate form of W
gives a complete theory in the sense that W will be invariant under all
rigid rotations, even finite, of the dielectric and the electric field.
These approximate theories are analogous to the approximate theories of
finite elasticity such as the Mooney-Rivlin materials and the Neo-Hookean
materials. It is apparent that the usefulness of any such approkimate form
of W depends on the magnitudes of the material constants

BaBYGXu )

6. First Approximation

For small principle extensions and weak electric fields, we define the
first approximation by retaining in W all terms involving principle
extensions e, up to second powers, terms involving the electric field to
second powers in components Ei , and product terms of the type eiEi only.
Within this definition, (5.4) with (5.5) gives the following form of the

energy function:

2
W= a0 + alJ1 + a2J2 + 33J1 + a4J4
(6.1)
+ aSJ5 + a6J1J4 s

where a,,81,...,8¢ are material constants.

We would expect that in the field free undeformed state, W = 0 and



hence we set a, = 0. Furthermore, we notice that the expression (4.11)

for Oij contains the term

— g.. or (a1+a6J4) gij

by virtue of (5.3) and (6.1). In the field free undeformed state, this

expression reduces to a G.j and since we want vanishing stresses in this

16

171
state, we set a; = 0 . Hence, (6.1) becomes
W=a,J, + a J2 +aJ, +aJ_+aJ.J, . (6.2)

272 371 474 55 614

We note that when the electric field vanishes, (6.2) reduces to

W=

2
ayl, + azJ;

2

the form used as the first approximation of the stored energy function in
finite elasticity theory [7] .

If we further neglect terms higher than second in the displacement
gradients aui/axj and field components E and product terms of order

s
e , then (6.2) takes the form

. 2
higher than Ek 5?;'

W = 2a2(e ) + 2a,e..¢€,

..e..-€..€e.. .
1173 13 1] 3711 33

+ a E.E. + 2a
11

4 5

J

+ 2age; BiES

eijEiE' (6.3)
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where eij is the strain tensor of classical elasticity given by

1 Bul ou.
e = 26T * WD
J 1
Here u. = x. - X
1 1 1

The W in (6.3) then is the stored energy function of the classical coupled
theory of electrostriction.

The distinction between W given by (6.2) and W given by (6.3) is that
the former allows arbitrary rigid rotations of the dielectric together with
the electric field whereas the latter does not. In this sense, the classical
theory of electrostinction is not a complete theory. In the present paper we
will use the first approximate complete theory furnished by W in (6.2).
Substitution of (6.2) in (4.11) and (4.12) givés the constitutive equations
of the first order finite deformation theory of isotropic, homogeneous,

elastic dielectrics:

20,
Oij = ;§: [a2 + (a2+2a3)J +a J ]g
3
- a,gl. + (a,-a0)E; E, (6.4)
2815 T 84785 .

+

agle; BB + gjkEkEii} g
and /
2,
D; = — [(ay-ag)8;; + agd;8;; + age;;lEs - (6-%)
3



7. Classical Theory of Electrostriction

18

Although the classical theory of electrostriction is neither an essential

nor an integral part of this paper, it is interesting to see how this theory

comes out of the complete first approximate theory developed in Section 6.

To obtain the constitutive equations of classical theory we neglect terms

in (6.4) and (6.5) of order higher than first in components eij

in E, » and product terms of order higher that eijEi . Then
Bij = %45 * 25
g?. =46.. + de.. ,
1) 1) 1)

J1 = 2e
)
Jlgij = ZeGij s
and J4gij = EkEksij ,
where e = e

Substituting (7.1) in (6.4) and (6.5), we obtain

oij = 4p0(a2+2a3)e6ij - 4p0a2eij

, quadratic

(7.1)
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+ 2p0a4EkEkGij + 2p0(a4+a5)EiEj s (7.2)
and

Di = 2p0[a46ij + 2a4e6ij + ZaSeij]Ej (7.3)
These are the constitutive equations of the classical coupled theory of

electrostriction. To derive the uncoupled theory, which is used more than

often in literature, we have to neglect the coupling terms eE.1 and

e..E. in (7.3). For such a theory, the constitutive equations are:

1) ]

cij = Xekkéij + Zueij + aEkEkGij + bEiEj s

and

where A,u,a,b, and k are material constants of the dielectric.

8. Second Approximation

We can define a second approximation to W by retaining terms in series
(5.4) up to and including third powers in the principal extensions and field

components, and product terms up to and including eiEi . The corresponding

expression for W 1is

2 3
W= a2J2 + aSJ1 + a4J4 + aSJS + a6J1J4 + a7J1

2
+ aleJ2 + agJ3 + alOJ2J4 + allJ1J4 (8.1)
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+ a12J6 + alleJ5 .
As before the a's are material constants. In writing (8.1) we have taken
both W and Uij to vanish in the field free undeformed state.
We note that when the electric field is absent, (8.1) reduces to the
Murnaghan [8] form for finite elasticity theory.
The expressions for stress Oij and dielectric displacement Di may

now be obtained by the substitution of (8.1) in (4.11) and (4.12).

9. Incompressible Dielectrics

So far we have been discussing elastic dielectrics which are homogeneous
and isotropic. We now consider the dielectric which is also incompressible.
Mathematically, this means I3 = 1 for all deformations, and so W 1is a

function of only five invariants:

W= W(I,1,,1,,I,1.) (9.1)
In terms of principle extensions, the constraint I3 =1 implies
2 2 2
(1+e1) (1+e2) (1+e3) =1. (9.2)
Because of (9.2), we have J1 = O(ei) . We thus introduce a new invariant

t.
J2.

Jé = J2 - J; . (9.3)
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In view of (5.2) and (5.3), we see that

J = O(ei) : (9.4)

[
2

Thus, for the incompressible dielectric, instead of (5.4), W has the form:

= G'lBYG)\
W E BaByGX JlJZ J4J5J6 . (8.5)
apy

For the first order complete theory outlined in Section 6,

W= le1 +b J4 +b.J (8.6)

2 35

where, as before, the b's are constants of the material.

In a conservative system, a hydrostatic pressure p arises as a reaction
to the constraint of no volume change. Keeping this in mind, the substitution
of (9.6) into (4.11) and (4.12) yields the constitutive equations for the

incompressible, homogeneous, isotropic, elastic dielectric:

055 = "PSi5 * 1855 * CoF;Fy

9.7

+

Cs(es BBy * g5 BiBy) o
and
(9.8)

Here p represents arbitrary pressure and the constants ¢ are material

constants.
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10. Applications

In this section of the paper we formulate the application of the first
order theory of finite deformations for a homogeneous, isotropic, incompress-
ible, elastic dielectric developed in Section 9.

The usual procedure would be to prescribe initially a set of applied
mechanical surface tractions and an applied external electric field for the
undeformed elastic dielectric. Then, using the constitutive equations,
equilibrium equations, Maxwell equations, and boundary conditions, derive the
displacement and electric field inside the dielectric. Unfortunately, the
class of boundary value problems for which closed form solutions have been
found by following this approach is confined to the classical linear
uncoupled theory of electrostriction. To handle boundary value problems in
this manner for the nonlinear elastic dielectric is, to say the least, rather
complicated.

In view of this situation, in this presentation we use what is known as
the inverse method. We prescribe the deformation and the electric field inside
and outside the deformed dielectric. We then verify that Maxwell's equations
and the equilibrium equations without body force are satisfied for a homo-
geneous, incompressible, isotropic, elastic dielectric within the formulation
of the first order theory of finite deformations developed in previous
Sections. The surface tractions which must then be applied to support such
a prescribed deformation are calculated by the use of the boundary conditions.

We reproduce here the basic equations of the first order theory from the

earlier Sections.
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Constitutive equations:

Inside the dielectric:

O35 = "POy5 + €855 *+ Cof;E;
(10.1)
+ Cqle BBy + g5 BByl s
D, = Cin + C3gikEk . (10.2)
Outside the dielectric:
- = (0)-(0) _,-(0):(0)
Oij = Mij = e[Ei Ej %Ek E Gij] s (10.3)
Dgo) = eEgO) ’ (10.4)
i i
Balance equations:
Both outside and inside the dielectric:
Oij,j + pfi =0 (10.5)
Maxwell equations:
Di,i =0, (10.6)
eijkEk,j =0 . (10.7)

Maxwell equations hold both inside and outside the dielectric.
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Boundary conditions at the surface of the dielectric:
T, = (dij-Mij)nj s (10.8)
(Di(o)—Di)ni -0, (10.9)
eijk[Ej(O)‘Ej]nk =0 . (10.10)
0)

We have used symbols E£ and Dio) to denote the fields outside the

dielectric.

11. Rotation of a Right Circular Cylindrical Tube about its Axis
in a Radial Electric Field

We consider an incompressible, homogeneous, isotropic elastic dielectric
right circular cylindrical tube rotating with constant angular velocity
about its axis of symmetry. Mechanically, it is equivalent to consider the
tube stationary but subject to a body force rwz per unit mass acting in the
radical direction.

The deformation we consider is a simultaneous eitension and inflation
of the tube which is described in cylindrical coordinate system by the
mapping:

Z

> s (11.1)

>

where )X 1is a constant. Here, (r,0,z) denote the coordinates of the

material particle in the deformed configuration whose initial coordinates
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(3]

are (R,%®,Z).

It can be verified that mapping (11.1) preserves volume.

From (4.10) and (11.1), the physical components of strain are

2 1
=A:g ==

2
g...=A ,
z2 A4

rr » Bpp
(11.2)

gez S Brg T Brz T

We consider the deformation to take place in a radial field, that is,

6 = EZ =0 . Also,

0 , both Er and Eio) are functions of r alone,

Eéo) = Eio) =0 . In view of (10.10) therefore, E

. ->
since Curl E

By (10.4) and (10.2), the dielectric displacement fields are given by

p(@) . g0 @ _ @ _ ¢
T T e yA
(11.3)
- 2 - _
and Dr = [C2 + A CS]Er s De = DZ =0 .

Equation (10.7) states that Di must be solenoidal everywhere. With

(11.3), this means that

g =X g0 _L (11.4)
T T

where K and L are constants. Substitution in (11.3) gives

2. X
Dr - (CZ * A CS);"
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(0) _ €L
and Dr == - (11.5)
Since, according to (10.10), the normal component of the dielectric displace-

ment is continuous across the boundary, (11.5) yields

K = el

c T 2
[C2 + A C3]

(11.6)

Let Ra and Rb denote the internal and external radii of the tube
initially. 1In the deformed configuration, let these radii be T, and Ty,
respectively.

The physical components of stress are furnished by substituting (11.2)

and (11.4) into (10.1):

2
_ 2 - 2.K
O.. =P+ Clk + [C2 + ZCSA ];7 s
. 2
Tgg = P * G2,
11.7)
C
0zz = -p + —%-,
A
°ie = 0pz T 0ez =0

In cylindrical coordinates, the equilibrium equations are:

aorr aore aorz 1

+l + + = [o - O,n) + of
or r ab oz T ‘“rr 06 Pty

=0,
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- Toj 90 hTo]
- 10 1 06 0z 2 _
st ' r 50 9z 1ot P =0 (11.8)
9 90 P:Toj
zrlze zz 1 _
55 "r 30 9z Tr Oz tPle=0
which in this case reduce to
acrr 1
3 ?'[Orr - 066] ref =0,
30
_§g§_= 0, (11.9)
BoZZ
3z 0.

From the last two of these equations we see that the pressure is a function

of r alone:
p=rp() .

Substituting for 9. * %p from (11.7) and fr = rwz in the first of the
equilibrium equations (11.9), we obtain
a0 2

T 2-K
= - [C2 + 2C3A ];3-—prw

_Ir 2
or :

Integration yields:
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g _ = E&,&i + C AZ EE—-QEEEE-- A
rr 2 r2 3 r2 2 ’

where A 1is an arbitrary constant. Comparing this with the expression for

o__ in (11.7), we find
rTr

p=CA% + Lc +2c12]1(-2-+ rz“’z-A (11.10)
1 272 371 27 P ' ‘

The stress outside the dielectric body is given by (10.3):

2
- E (0,2 e L
Mrr = > [Er 17 = > r2 , (11.11)
Mee - Mzz = Mre = Mrz = Mez =0

The surface tractions that must be applied on the exterior surface of the

tube can now be calculated with use of (10.9):

Te(r = rb) =T (r = rb) =0,
Tr(r = rb) = crr(r = rb) - Mrr(r = rb) (11.12)
2 2 2
1 2, K 2 e L
=3lC, + X S opry v A7
b b
We may set Tr(r = rb) = 0 . This then yields an expression for the arbitrary

constant A

2

W 1 2 2,.,2
A=prb—§'+ 2[€L—[C2+2C3)\]K].
Zrb
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or, substituting for K from (11.6) ,
2 2 €L2 C2 + 2C3)\2
A=t s B 1 -~e—+]. (11.13)
b2 2 K, + C.A%°
b 2 3
The surface tractions that must be applied on the inner surface of the
tube are once again given by (10.8) as:
Te(r = rb) = Tz(r = ra) =0,
Tr(r = ra) = Mrr(r = ra) - Orr(r = ra) (11.14)
2 2 2
_ell1 20 K, 2wl
=773 2[C2 + 2C3k ] 7+ T, 3 A .
r T
a ., a
Substituting for A from (11.13), and K from (11.6),
m2 2 2 eLz C2 + 2C3)\2 1 1
Tr(ra)=——2_[ra-rb] + p) [1 - % +C)\2]2][.17—;2_]
2 3 a b

12.

Expansion of a Spherical Shell in a Radial Field

We consider a spherical shell of incompressible, isotropic, homogeneous

elastic dielectric material.

and external radius

Rb .

a spherical coordinate system occupies the position

state, given by

r®R) = [R®

Initially the shell has internal radius Ra

The particle initially at the point (R,Z,%) in

(r,6,9)

in the deformed

3 3 1/3
- R” + 7] ,
a a
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6=5,6¢=0. (12.1)

The constant T, is the interior radius of the deformed shell and, in later
analysis, we will let Ty be the exterior radius of the deformed shell. It
is clear that the deformation (12.1) preserves volume. With (12.1), the

physical components of strain are furnished by (4.10):

2 2
8o = (F') 1 8gg = 84y = [

(12.2)

gr¢ = gre = g6¢ =0,

dr
t T e—
whereas T IR -

We consider the deformation to take place in a radial field. That is:

Eéo) = Eéo) = 0 . By virtue of boundary condition (10.11), we obtain
Ee = E¢ = 0 . Also, since Curl E =0 both inside and outside the dielectric,
Eﬁo) and Er will be functions of r alone.

The dielectric displacement fields are given by (10.4) and (10.2):

NOREN OIS

0) _ <(0)
D’ = €E;’ , Dy ¢ ,

2 - -
and Dr = [C2 + Cs(r') ]Er s De = D¢ =0. (12.3)

In spherical coordinates, equation (10.6) becomes

sin 6 g%-(rznr) + =2 (r sin 6 Dg) + 2 (D

3 =0

¢
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which in our case yields

0 _ K
Dr -T2
T
and (12.4)
L
Dr == -
T

Since the normal component of the dielectric displacement has to be contin-
uous across the boundary, K = L . In accordance with the usual conventions

of electrostatics, we set

so that the dielectric displacement field both inside and outside the

dielectric can be written as

(12.5)

The electric field, outside and inside the dielectric, is therefore given by

0 . Q 1 (0 _ (0 _
By T ame 7 Eg * = By 0,

(12.6)

Ep = - 2 L E
[Cy + Ca(r')7] 4mr

9=

upon substitution of (12.5) in (12.3).
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The physical components of stress are now obtained by substituting (12.2)

and (12.6) into (10.1):
2 2 2.2
- _ [ [
O, =P+ Cl(r )° o+ C2Er + 2C3(r ) Er

= -p + Srr(r) s (12.7)

T,2
Ogg = o¢¢ = -p + Cl[i' ,

ore = 06¢ = o¢r =0 .
where
2 2 2.2
—_ ] 1
Srr(r) = Cl(r ) +‘C2Er + 2C3(r ) Er
2 C2 + 2C3(r')2 Q2
= Cl(r') + T

2,2
[C2 + Cs(r') 17 lém°r
The equilibrium equations in spherical coordinates are:

acrr 1 30r¢ 1 aore

ar T sin 6 3¢ T T 30

1
+ ;-[20 -0

rr oo ~ ©

o0 + 20 4 cot 8] + pfr =0,

Boer 1 Boe¢ . l_Boae (12.8)
or r sin 6 3¢ r 36

1 -
+ ;—[30re + (oee - o¢¢) cot 0] + pfe =0,

30'64)

ao¢r 1 80¢¢ )
39

ar r sin § 3¢

+

1
T
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+ ‘1—" [30r¢ + 20¢e cot ¢] + pf¢ =0 )

which in this case reduce to

33

T 1
or ¥ —-[zcrr %o ~ 0¢¢] 0,
90
06 _
0= 0, (12.9)
]
%60 _ o
Yy

From the last two of equations (12.9), we see that the pressure is a

function of r alone:

p =p(r)

Substituting (12.7) into the first of (12.9),

which on integration yields

T

2
- 1 ¢ -
p(r) = Srr * %J.n [Srr(n) CIRZ( )] - p(ra) Srr(ra)
T n
a
or
4
1Ry g? Ra R
P =Syt 201{4[7 R I FaY
I‘a r a
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T, 2
C,+ 2C,(x") 2
+ ir 2 3 Q

[Cz ) Cs(r')z]z o ns dn - ¢ 1_(ra) . (12.10)

T
a

The stress outside the dielectric is given by (10.3):

2
0),2 _ 1
R <, (12.11)

M =-§-[E
32n T

IrT

with other M.. = 0 .
1]

The surface tractions that must be applied to the interior surface of the

shell can now be calculated from (10.6), (12.7), and (12.10):

Te(r = ra) = T¢(r = ra) =0
Tr(r = ra) = Mrr(r = ra) - Grr(r = ra) (12.12)
2
= 12 97 -0 = ) -
32me r
a
We can set Tr(r = ra) = 0 , and in doing so obtain
1 ¢
orr(ra) = >~ "5 (12.13)
21e r,

The tractions to be applied to the exterior surface are once again

furnished by (10.6), (12.7), and (12.10):

Tplr=1) = o..(5) - Mrr(rb)
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4 4 N
R R R R {

- lea b 2.2
a

r4 ra T
b J
’ (12.14)
Ty 2
C., + 2C, (") 2
2 3 Q
"2 [C. + C.(r')%1% 16n%7° on
r byt LT mn
a
+ QZ ["L“"% s
2m°e rb

We note that we can set Tr(rb) = 0 and hence obtain a relation between

Q and T,

13. Flexural Deformations of a Block in a Radial Field

We consider a rectangular block of homogeneous, isotropic, incompressible,
elastic dielectric material which has been deformed into a sector of a tube
wall. Without the electrical effects, this deformation has been considered
by Rivlin [9]. For the elastic dielectric with arbitrary form of stored
energy function, Singh and Pipkin [2] have discussed this deformation
combined with the Helical Electric Field. In this section, we show that
within the formulation of first order complete theory, this deformation can
also be supported with a radial field.

Under this deformation, the particle having Cartesian coordinates
(X,Y,Z) initially moves to the position (r,0,z) in a cylindrical system

such that
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r=AX", 8 =BY, z=—12+CY, (13.1)

where A,B,C are any constants.

From (4.10), the physical components of strain are

Al
I — = = 0
Srr 2 807 Bpg ?
4r
(13.2)
2.2 2 2 .2
g9 = BT . gg, = BCT, gy, = Ol
A"B
The electric field that we combina with../13.1) is radial:
(0) _ (0) (0) _ (0) _
E.’ =E '(x) ,E =0,E" " =0. (13.3)
In view of the condition (10.7),
0y _ L
EI‘ - T ’ (13'4)
where L 1is any constant.
With (10.4) and (13.3),
p@ _ L 0 _p 4, (13.5)
T T v 2z

Because of the requirement of continuity of the tangential component of the

electric field and normal component of the flux across the boundary,

(13.6)
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Using the constitutive equation (10.2), we get

T

E = 4¢lL
A% . 4C2r2

. D, =D=0 (13.7)

6 z

It can be readily verified that Maxwell equations (10.6) and (10.7) are met
by Ei and Di both inside and outside the dielectric as given by (13.4)
to (13.7).

From (10.1), the stresses are

4 4
Opr = P * G Az + (G, + Gy Az) ( 24€Lr 2)2 ;
4r 2r A"+ 4C2r
_ 2.2
Ogg = P * ClB r o,
o _=-p+C [C2 b (== )2] , (13.8)
y A/ 1 2
A"B
Oy, = ClBCr',
Grﬁ = 0rz =0

Substituting the stress distribution (13.8) into the equilibrium equations

(10.5) without the body forces, we obtain

-a_Rz—Ra =0
06 0z ?
and
4 2
A A 4elr
p=p()=C + (C, + C ) ( )
14r2 2 3 2r2 A2 + 4C r2
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2 2
B° 2 A
+ C1 (-71' + ——2-)
8r
2 2 2C.r
2L e , 2+ 1) tan~! (—-—-2--—;:) (13.9)
AC,Ce) 7 C A A(C,C,)
_ \2L2€2 T + K
3 2 2 ’
A%C, {Czr + C A )

|

where K is an arbitrary constant.

Substitution of (13.9) into (13.8) then gives the stress distribution Gij ,
whereas Maxwell stresses M.1j are furnished by substituting (13.3) into
(10.3). The surface tractions that must be applied at the boundary can now

be calculated by the relations
T. = (0., - M..)nj . (13.10)

14. Incompressible Dielectrics. Flux as Independent Variable

In the problems we have considered so far, the electric field was taken
as the independent variable. In some problems, it may be more convenient
and practical to consider the dielectric displacement field as the
independent variable. Following a development similar to one outlined in
Sections 4 through 9, the field equations governing the complete first
order theory for an imcompressible, homogeneous, isotropic, and elastic
dielectric are:

Inside the dielectric medium:



O35 = P 85 * Ky g5 + Ky Dy Dy + Kylgy DDy + gy Dy 1, (14,
and Ei = K2 Di + K3 gik Dk (14.
Outside the medium:
- _1 () (0 1 .(0) (0)
O35 = Mj5 = gDy "Dy -z DT DT 85 (14.
and p{® - 0 | (14.
1 1
Inside and outside the medium:
.. =0, 14.
93, (
D. . =0, | (14.
i,i
and E. . -E. . =0. (14.
1,) J,1

Across the boundary of the dielectric, the tangential component of E.1

and the normal component of Di need to be continuous.

Flexural Deformations of a Block in a Uniform Axial Field of Flux

The flexural deformation of a block in a radial field of flux has been
discussed by Singh and Pipkin. In fact, it is shown there that if the

general constitutive equations, using arbitary form of the stored energy

39

1)

2)

3)

4)

5)

6)

7)
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function,are used, then the only way to support the flexural deformation with-
out body forces or charge distribution would be to superpose a radial field

of flux. In this Section, we show that if the first order complete theory is
used, then we can support flexural deformation with a uniform axial field of

flux.

The deformation we consider is described by the mapping

2

> Z, (14.8)
A"B

where A and B are any constants.

In this family of deformations, the particle initially at the point
(X,Y,Z) 1in a Cartesian system is brought to the position (r,G,z) in
cylindrical coordinates.

Both Rivlin and Ericksen have discussed this deformation and its physical
description in finite elasticity.

It can be easily verified that the deformation (15.8) preserves volume.

The physical components of strain in the cylindrical system are given by

(4.10):
g =._A.4_ g =g =g =0
T 4r2 0 TZ 0z ?
(14.9)
2.2 2.2
gopn =BT, g =(=) .
60 zZ AZB
On the deformation (14.8), we superpose the uniform axial field:
0y _ H(0) _ o) _
Dr = De =0, Dz =L, (14.10)
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where L 1is constant.

By virtue of (14.4),

0) _ -(0) _
E;’ =Eg =0,

0 _ 1
E, 7 =¢cL. (14.11)
Since the tangential component of the electric field and normal components
of flux have to be continuous across the boundary, we must have inside the

dielectric,

1 -
Ee =0, Ez = E—L, Dr = 0 . (14.12)
With (14.8) and (14.2),
B 2,, 2
Er = K2 Dr + KS(A /4r )Dr s
E,. = (K, + K Bzrz)D (14.13)
0 2 3 6’ )
2 .2
E =[K, + K, () ]D_ .
z 2 3 AZB z
Using (14.12), equations (14.13) give
E =E, =0, E = l—L {14.14)
r 6 7z g7’ )
=D = 1L
and Dr = De =0, Dz =Tx (14.15)
2 .2

where A=K + K (=)
2 3 AZB
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It is easily observed that fields (14.10), (14.11), (14.14), and (14.15)
satisfy the equations (14.6) and (14.7).

From (14.1)},

4

A 2.2
Opp = P+ Kj —5, Ogg = -P + KB,

4r

2 .2 L.2 2 .2 L.2
6 =-p+ K=+ KD+ 2K D (14.16)
zz 1A2B 2'elA SAZB el
0r6=062=0rz=0

The last two of the equilibrium equations (14.5) require

8p _ 9 _ (14.17)

or with (14.16),

4
9P.=:711( f\_—KBzr.
4 3

ar 1 1
r
Upon integration, we obtain
3 4 _1 2.2
pr) = --8-1<11_\_2_-7K18r . (14.18)
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Substitution of (14.18) into (14.16) yields the stresses cij , and (14.4)
inserted into (14.3) gives the Maxwell stress Mij
Finally, the surface tractions that must be applied at the boundary can

now be calculated from the relations
T. = (c.j - M. .)n. . (14.19)

15. Deformations Possible in Every Homogeneous, Isotropic, Compressible
Elastic Dielectric Within the First Order Theory

Certain deformations in elastic dielectrics are called controllable. The
deformation and the electric field are prescribed at the outset. It is then
verified that such a state can be supported without body force or distributed
charge for all arbitrary forms of the stored energy function of a homogeneous,
isotropic elastic dielectric. Singh and Pipkin [2] described all such possible
states for incompressible elastic dielectrics. However, Singh [6] proved that if
the dielectric iS§gﬁcompressible, the only controllable states are the homo-
geneous deformations combined with uniform electric fields.

In this Section, we try to find out those states that are controllable
in every compressible, homogeneous, isotropic elastic dielectrics which obey
the constitutive equations of the first order complete theory as developed
in Section 6.

Suppose we are given a symmetric and positive definite tensor field gij
which is twice continuously differentiable. In order that gij be derived
from a possible deformation xi(XA) of the body, it is necessary and

sufficient that gij meet the compatibility conditions:
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R T T R ST,
ijk1 = “t8i1,kj T &jk,i1 T Bik,j1 T &j1,ik
(15.1)
* 8o Aikm Ain ~ Ayim Aknd 00
where gi; denotes the inverse of the matrix gij , and where
_ -1 -1 -1
Ajjk = 8ik,j * Bk,i  Bij,k (15.2)

Suppose a field satisfying (2.4) is prescribed inside the dielectric medium.
If the given gij and Ei are to provide a controllgb}e deformation, then
D.1 calculated from (6.5) and Uij calculated from (6.4) will satisfy (2.6)
and (3.4) (with zero body forces) no matter what the constants of the material
in (6.4) and (6.5) are.

To seek restrictions on possible gij and Ei , we substitute (6.4)

into (3.4), and (6.5) into (2.6) to obtain

2

g;: * J.g.. - g.. J
j 1°ij 1y . 1 .
a, ( 3 )3+ 2a3(7 g55)]
E.E, g. E E. + g. . E E. - E.E_
i3, . ikk"j jkk1 i35, .,
*a,(=5),5 + agl 3 ),3  (15.3)
J.g. .
+a ()5 =0,
Ei gi.E. - Ei JlEi
and  a,(5),i + a (L —3), i +a (5,i=0, (15.4)
xX; Py 3 (15.5)
Where the Jacobian J = det-(—i—a = 7; = (13) . , ‘

3
J
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Necessary and sufficient that conditions (15.3) and (15.4) be satisfied for
any choice of the material constants O EEEEFL P the coefficient of each of

a's should separately vanish:

)
g:: - g..
[ B . 1 ),j =0, (15.6)
J
‘1 o (15.7)
J glJ)’J = 0 >
EiE. (15.8)
—=b,j=0,
J
g.. E E. + g. EE,
LI LS P (15.9)
J, g..
55 =0, (15.10)
E.
(7%9,1 =0, (15.11)
gi.E.
o—f%él ,bi=0, (15.12)
J |
5,i=0. (15.13)

E. .=E, . . (15.14)

Necessary and sufficent for a positive definite symmetric tensor gij and

the field Ei to combine to form a controllable state is that the conditions



46

(15.6) - (15.14) as well as compatibility conditions (15.1) are all satisfied.

Equations (15.8) and (15.11) give

1,j 3
which with (15.14) yields
E. E.}),i =0 . 15.15
(J J) ( )
From (15.15) and (15.10), we obtain
1 .
78330, =0 (15.16)
When re-written, (15.16) becomes
o - 88 (l-axi 8xj)
xj J 8XA 8XA
X, 9X. 9x. 9x
3 1°%Y i 19 i %7
= * ) + = (=) (15.17)
axj J 8XA 8XA J axj 8XA 8XA
3 1 X,
Since =— ————10 is identically zero, and J # 0 , from (15.17) we get
ox. J 8XA ‘
xi,AA =0 (15.18)
Also, with (15.16), equation (15.17) gives
Lo 5 . =0 (15.19)
T 815 1,5 7 '
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Because the matrix gij is positive definite, (15.19) yields

J. . =0, (15.20)

or that J1 and hence 1 is constant.

1
The Laplacian of I, is therefore zero. That is
Bxi Bxi
= =\, =0, (15.21)
BxB axB AA
or
xi,AAB xi,B + xi,AB xi,AB =0 . (15.22)
With (15.18), equation (15.22) gives
X; AB Xi,a = 9
which, being the sum of squares, thus furnishes
X AB © 0. (15.23)
The functions xi(XA) are therefore linear in arguments XA , thereby
implying that gij has to be a constant tensor.
93X,
From (15.23), it also follows that J = det.lgiiJ is a constant.
A

Using this with (15.11), we obtain
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E, .=0. (15.24)

From (15.14), (15.15), and (15.24) now

o
n

(E. E.),ii=E, ,, E, +E, . E. . ,
i j,ii 73 .1 73,1

. .. E. .. E. .,
i,ij 73 7.1 5,1
E. . E. .,

j,i j,i

thus implying that Ei is uniform.

It is now readily seen that with gij and Ei both constant, the
conditions (15.1), (15.6) to (15.14) are satisfied identically. Hence, the
only controllable states for compressible elastic dielectrics, when first
order complete approximation is used, are homogeneous deformations combined

with uniform electric fields.
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