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ABSTRACT

A unified treatment of the direct interband optical absorp-
tion in semicond:r-tors In the pressnoce U exXternal ctatic electric
and magnetic fields, 1s presernted i toe Pramework off the 'effective
mass approximationt!. A general exproscion For the absorption

coefficlent is derived, wnhnich In the appropriate Jimits

reproducesg the following well known results:

Zero field absorption coerficient,
Magnetoabcorption coefticient,

Electroabgorption and Franz-Keldysh effect,
Absorption in crossed electric and magnetic flelds
and

(e) Photon-assisted tunneling In parallel fields.

While investipgating the crossed flelds absorption coefficient,
special stress has been laid on the experimentally favourable
situation of weak electric field. A new perturbation expanzion in
terms of a dimensionless parameter 1is developed in this connection
and is used to obtain the weak electric field 1limit. An alternate
derivation for Franz-Keldysh effect based upon W.K.B. approximation

has also been given.

The eftective mass treatment is also used to study the
phonon-assisted transitions and Urbach's law. The absorption
coefficient for phonon-assisted transitions involving the simultan-

eous absorption of a photon and a longitudinal cptical phonon in



the presence of external electric and magnetic fields igs
calculated using second order perturbation theory. It is
predicted that an experimental frvertieorion o such transi-
tlorn:.. in the presence of exterral [lelc. will show structure
of the valence and conduction bands coparately whicth may
provide the valucs ot eflective magges il aliterent band:w.
The experimental conditions, and the validity criterion for

the perturbation theory, are thorougnly dilscussed.

some attention is pald to the study of magnetic field
induced surface states. Whereas such states have been observed
recently in metals, there i1s no cxperimental or theoretical
evidence as to whether or not these states exlst in semicon-
ductors. We have theoretically predicted that such stateg do
in fact exist even in gemiconductors. The experimental
conditions under which surface states may be detected
experimentally in semiconductors are discussed. The arguments
are supported with quantitative calculationg, where possible,
Ihroughout the entlire presentation we have restricted ourselves

to the study of direct band gap semiconductors.
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TNTRODUCT TOR

1.1 General

The tremendous interect in thne band structure of sol:ids In
recent years hon led Lo oxtonsive invertigation of optical
absorption in colide in the presence of external electris- und
maghetic t'ieldg. In cemiconductors, quantltative intormatio
can be obtained by ctudyirng thoe doependence O the interboard
optical abcorption coctificicnt on the Fregquency of optleal
radliation and on external flelids. In 1te cimplest form the
interband absorption process involves the promotion ol an
electron from @ valence band to o conduction band, accompanied

by the destruction ot « photon and the croation of o hvalo o

the valence band ctate previously cccupicd by the eleoctrorn.

absorpticn 10 very emall for photon encrgles mueh loee s e

correcponding o Lhe one ey gap and increaccer by a factopr of

o 5 ] L I L L ‘
10 or morc at higher pholon ernergles. The bulk of exporiment ]

WOrk reported in the current llteraturec deale with Intertoeard

zbsorption and we cshall restrict ourselves to the ctudy of ti.

absorption coefficient throughout the entire presentation.

The mogt direct way of determining the absorption coo i
is from tranemission measurements, and this is generally thn
procedure used, Experimentally one shines light on a =& ab oo

material of thickners, d, and the ratio of transmitted Inteonoiiv



to the incident intensity gives the value of absorption
coefficient through the relation (it the reflection

coefficient << 1)

Lt L) exl - . (1-1)
where I(d) ie the transmitted intensity through the crystal,

I(o) is the incident intensity and n ig the absorption coetfficlent.

In the region of strong absorption, the radiation cannot
be transmitted through tnick camples, so thin samples of
thicknegs d < 1 chould be usged. Usgually samples of micron
thickness are Sdequate, but if thece are hard to obtain, then
reflection gpectroscopy is much more suitable and then the
absorption coefficient is obtained from the measured retlectivity

through Kramers Kronig relations. The experiments are generally

done at low temperatures using infra-red radiation.

1.2 various Types of Interband Transitions

There are basically two types of Interband transitione.

(1) Direct Transitions: The electromagnetic radiation is

absorbed by a semiconducting crystal due solely to the
interaction between the radiation and the electrons in

the cryruial.



(1i) Indirect Transitions: Thege involve the cimultaneous

interaction of the e¢lectrons with the elcctromagnetic

radiation and with lattice vibrations.

For direcct transitions, an electron in the valence band state

- —
EV(K), absorbs a photon of energy pw and wave vector 5, and

kg + -
ends up in a conduction band state, EC(K'). The transition

is governed by the ftollowing two conservation lawe:

—_ —
(a) Energy concgervatlion, Ec(k') = Ev(k) 4D
— —
(b) Momentum conservation, ¥ =k + 8
For electrons k =0 107 - 108 cm_l (ta' is a unit cell

max a

length) but |8 = 102 em™

(for wavelength = 6283 4) so

K =% and hence the name 'direct' or 'vertical' transitione.
It is quite clear that the direct transitions determine the
absorption edge only in a direct band gap semlconductor, scuch
as InSb, where the valence band maximum and the conduction
band minimum lie at the same polnt 1in E’Space. When the
lowest energy state in the conductlon band does not have the
same value of E>as the highest energy state in the valence
band, direct trancitions may ctill take place, but these are

not the trangitiong corresponding to the lowest value of nw

for which interband transitions are possible.

Direct (und also indirect) transitions are further sub-

divided into "allowed'" and "forbidden'" transitions according



—

to the symmetry property of the energy bands at k = 0, (to be
discussed later). Bardeen, Blatt and Hall<1> flave derived the
following expressions for the absorption coefficients, ascsuming

parabolic bands and ignoring Coulomb effects.

Direct allowed transitiongo:

where O in the bracket indicates the absence of external tlelds.

Direct forbidden trangitions:

where R and R' are constants. It chould be remarked that 1in
actual practice the absorption does not strictly go to zero
at yw = E _, but rather dies out exponentially. This is the :o
called Urbach's law<2> and we will discuge it in Section 1.4

below.

The indirect transitions dominate the abgorption edge Iin
indirect band gap semiconductors like Ge and S1 where the

conduction band minimum and the valence band maximum occur at

~4

different k values. An electron in initial momentum state
— —_ A ;
ends up in a i'inal state k' % kK and the gelection rule for

conservation of momentum 1s satisfied by the participation of a



phonon. Thug an indirect trunsition is a second order transition
through o virtual intermediate state which Involves ccattering
. - ; . . . a3 . L
in k space by the absorption or emission of a phonon in
addition to the usual absorption of an optical photon. The
absorption coefficient for indirect transitions also depends

kg s . . .
on whetner the transition at k = O 1s allowed or not (l.e. indirect
transitiong can be allowed or forbidden). For allowed indirect

transitions, the absorption coefficlent is glven by<*>

When phonon ubsorption processes dominate over phonon emigeion

the indirect absorption coeftficient is temperature dependent

ee/T - 1)—1

through the Bose-Einstein factor ( , where kg is the

e€nergy of the phonons involved.

1.3 Effecte of Static Electromagnetic Fields
on Interband Trancitlons

Externally applied static electric and magnetic fields
Mmodify thne absorption coefficlent. A great deal of information
about the ban: structure of the material can be obtained, once

the rield induced changes 1n absorption coef'tficient are related



to the behaviour of the electrons in the material. It 1s convenlent
to discuss the etfects of electric fleld, magnetic field and croc-
csed electric and magnetic t'ields, on tne optical absorption

s

coefficient ceparately.

(1) Electric Field

The simple theory of the eftfect of an electric field (to
be discussed later) on the a sorption edge of a semiconductor
predicts that the change in the absorption coetrficient,

An = n(g) - n(0) will be exponential-like below the band gap and

oscillatory above it. The former phenomenon 1is often called the
Franz-Keldysh effect and iy due to electron tunneling in the
presgence of an electric field. The conduction and valence band

wave functions extend into the torbldden gap and the overlap
integral for ww < Eg ig non-vanishing. Thus the absorption
coefficient has non-zero values for hw < Eg. The Franz-Keldysh
effect is alternatively termed ag photon-assisted tunneling.
The oscillatory behaviour of the absorption coef'ficient for

ha > Eg follows from the simple theory and will be discusced
later. The exponential-like tail has been confirmed by several
eXperimentg(3’u’5), but no quantitative agreement has been

achieved between theory and experiment above the band gap.

(1i) Magnetic Field

A magnetic field has two striking effects on the interband

absorption spectrum. It shifts the threehold for absorption



to higher photon energies and this shift 1s proportional to
magnetic field strength, B. Secondly, in the presence of a
magnetic field the absorption coefficient is oscillatory in
nature for photon energies greater than that corresponding to
the effrective band gap. These are not too difficult to
understand if one recalls that a magnetic field Introduces a
discrete structure in the energy level spectrum. We will see
later that in the presence of a magnetic fleld, energy levels
in conduction and valence bands are gquantized and direct
interband transitions obey the selection rule An =n' - n = 0O,
where n', n are the Landau quantum numbere for conduction band
and valence band respectively. The discrete energy level
spectrum, coupled with this interband selection rule ig
sufficient to explain both the above effecte. There is an

(21-29)

abundance of experimental data and magneto-optics isg

extensively used in determining band parameters.

(iii) Crosgsed Electric and Magnetic Fields

The application of a transverse electric field, §}
affects the magnetoazbsorption baslcally in two ways; the
energy threshold is reduced by an amount proportional to
(E/B)z and additional small peaks appear increasing in number
and amplitude with &. The first effect is due to the net

motion of the electrons in the E{x E’direction while the latter



signitfies a violation of the selection rule An = 0. A
particularly usetful asituation 1s one where the applied static
electric field is weak (criterion to be discussed later). 1In
this case the selection rule An = O is violated only slightly
and the direct interband transitions obey the selection rule
An = O, 11. The appearance of new peaks can be frultfully
exploited to obtain information about indlvidual band

effective magces. Thiec will be discussed In a later Chapter.

1.4 Urbach's Taw

It was pointed out earlier that the absorption coefficient
does not strictly go to zero at the direct band gap but dies
-
out rather slowly in a manner first reported by F. Urbacn (€,

The observed absorption in the tail region (mw < E_) is

g
temperature dependent and has the form

W?@(O) > E?\/D %(5; (W\(ﬁ“‘ Egibé% % (1-2)

where o, depends upon temperature and material under consideration.
There have been several explanations of Urbach's Law and a complete
Summary of these is to be found in Chapter 9. It is now well
established that the law 1is assoclated with phonon-assisted

optical transition involving the abcorption of one or more optilcal
phonons of energy kg§. In an ilonic cryctal of the direct band gap

type, phonons of interest are thoce ascoclated with the optical



branch and having wave vector'g =~ 0, Dumke<6) calculated the
absorption coefficient for such phonon-assisted transitions

in the range Eg - kg < hw < Eg using perturbation theory and
obtained a good tit with the experimental data on InSb<7>.
Calculationg involving higher-order phoncn processes have been

pefformed(8’9) recently but no guantitative comparison has

been made with the available experimental data.

Very little attention has been pald in the past to the
study of phonon-assisted transitions 1In the pregence of
external electromagnetic fields. In a recent theoretical paper
we studied<1o> the effect of a magnetic field on phonon-assisted
transitions in the region Eg - kg < o < Eg using perturbation
theory. Tt has been shown that the absorption spectrum is
oscillatory in nature and can provide useful information regard-
ing etfective masses of the electrons and holes separately. We
will have occasion to study this in greater detail in Chapter 11.
Also in Chapter 12, we will study the eftfect of gimultaneous
electric and magnetic fields on phonon-assisted transitions. The
study of phonon-assisted transitions in the presence of an
electric field is not very frultful because the absorption edge
is smeared out. Higher order transitions in the presence of
external fields are extremely complex mathematically and the
calculations have not been carried out so far. Throughout the

entire thecsis we will be calculating absorptlon coefficient in



10.

varioug situations. Tt is theretore desirable to outline the
gencral approach for calculating this guantity. This we do in

the following Section.

1.5 Quantum Mechanical Expression for
Absorption Coetticient

Here we express the optical absorption coefticlent iIn terms
of guantum mechanically calculable quantitles and thus establish
a4 general method tor computing the absorptlion coefficient. In
equation (1-1) we stated the relation between Incident and
transmitted radiation intensity in terms of the absorption coef-
ficient for an absorbing crystal. Since the radiation intensity
iS‘proportional to the number of photons per unit volume we can

Immediately write

where ¢ ig the velocity of light in vacuum and no is the
refractive index. The rate of change of photon number ig related
to the transition probablility per unit time, wfi, through the
relation,
N . Rt NSOAAL
At \

where



Vﬂ{; e 20 Fqgig (x <.E;5 | ] >

is the well known result in time dependent perturbation theory.

Hence

54,L{.v (g <\ Ef - Ei> (1-4)

( CNTFV ’/. o
55t

where V is the volume of the crystal and a factor of two has been

included for gpin. For first order transitions,

hkﬁi — {H llﬂl\ L:> (1-5)

is the matrix element of the photon-particle interaction
Hamiltonian between the initial state 1 and the final state f,

For second order transitions,

J a |

Mf.‘! - N LS Ef‘? ><(’ | Hal i) (1-6)
SR T

!'\ /‘

and the particle goeg through a virtual intermediate state, J,

before arriving in the final state f, under the influence of a



second type of interaction H,. Throughout the entire presentation,
<
Hl will stand for the electron-photon interaction Hamiltonian

and H.

5 for the electron-pnonon interaction Hamiltonian.

Thus Lo compute absorption coefflcient, we need to Know
the unperturbed eligenfunctions and the corregsponding eigenvalues
along with the appropriate Interaction Hamiltonians. The
complete Hamiltonian for a particle of mass m and charge 'e' 1In
the precence of static external electric and magnetic ficlds

and the time dependent radiation fleld, 1is

where € is the static electric field and Vp(?3 stands for the

periodic crystal potential. The vector potentlal EX?: t) is

decomposed into two parts in the following manner

T, t) = A (T) + B (T, t)

—
A< o) 1

N — —_— . . A .
The time independent part, Ao(r) describes a static magnetic fleld,
= —_

B = ;bx AO(?3, and the time dependent part describes the external

radiation field. The vector potential is generally so chosen that

-

v R =0 (Coulomb gauge), then
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where
H - ,]I_i Cg? A \/F (1) (1-8)
° 2m
with N s .
_ e A ()
o= P - &AL
and
- 3 - i AN
HJ_ o _.Y,%_,C_‘H /\l(T)t) +2_Y7\ CGQJ.)

We drop the second term of Hl’ since 1t represents simultaneous
two photon absorption and hence the electron-photon interaction

Hamiltonian becomes

(-\l. _ c TT /A\l(?j 1) (1-9)

In the next chapter, the elgenfunctions and eigenvalues of the
Hamiltonian, HO will be calculated iIn the framework of the
'Effective Mass Approximation‘<ll). We then proceed to evaluate
the matrix elements of the electron-photon interaction, H

1

1.6 Scope of the Thesis

As stated above, the entire problem of computing absorption

coefficient hinges around obtaining proper eigenfunctions and
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evaluating appropriate matrix elements. The general n-

particle problem is impossible to solive, therefore we will be
content with the conventional one-pariticle approximation.

Exact solutions are not possible ever for this case especially
in the presence of external fields which do not possess the
periodicity of the crystal lattice; therefore a further
approximation is required. In the theory of optical absorption,
the effective mass approximation<ll) (E.M.A.) 1s widely used.

We discuss thig approximation for tne case of direct band gap
semiconductors in Chapter 2, and in the remaining portion of

the thesis only these will be studied.

In Chapter 3 the matrix elements for the electron-photon
interaction Hamiltonian are evaluated using E.M.A. wave
functions and the distinction between allowed and forbildden
transition is explained. This chapter also presents a unified
treatment of the direct, allowed interband effects where a
general expression tor the optical absorption coefficient in
the presence of arbitrarily oriented eXxternal electric and
magnetic fields is derived, which in the appropriate limits

reproduces the following well kKnown results:

7ero Tield absorption ccefficient,

Magnetoabsorption coeftficient,

Franz-Keldysn effect,
Photon-assisted tunneling in parallel fields,

2)
o)
c) Electroabsorption coefficient,
d)
e)
and )

Crossed electric and magnetic fields absorption.



The task of obtaining these speclal caseg 1s completed in
Chapters 4 to 8, and & briet summary on the experimental
sltuation is included at the end of each chapter. While studying
the crossed fields absorption coefticient in Chapter 8, special
Stress has been laid on the experimentally favourable situation
of weak electric field. A new perturbation expanglon in terms
of a dimensionless parameter ig developed 1n this connection

and is used to obtain the weak electric field limit.

Next we focus our attention on phonon-assisted transitions
in direct-gap semiconductors and on Urbach's law. Chapter 9
contains a critical review of the existing explanations of
Urbach's law and stresses the fact that phonon-assisted transi-
tions are quite successful in explalning the observation.
Chapter 10 gerveg as an introduction to the study of phonon-
assisted transitions. The absorptlion coefficlent for such
transitions is calculated, stating clearly all the assumptions.
In Chapters 11 and 12, the effects of external fields are
investigated and the weak electric field case 1s emphasised.
Some new effects are predicted and the experimental conditions

for observing them are discussed.

Chapter 13 justifiesg the use of perturbation theory in
calculating the absorption coefficient for phonon-assisted
transitions 1. the range Eg - kg < w < Eg. Comparicson is made
between the perturbative and non-perturbative approach and 1t

is shown numerically that for a realistic electron-phonon
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coupling constant in InSb, many-phonon processes change the
absorption coefficient or v by about 2%, in the range where
one-phonon processes are allowed. The range of coupling

constant over which perturbation theory is valid 1s also discussed.

Some atitention is devoted to one of the most recent
developments in the field of magneto-optics, namely magnetic field
induced surface states. These states have recently been observed
€Xperimentally in metals but no corresponding experiments =2xist
in semiconductors. We have theoretically predicted the existence
of such states in semiconductors and have discussed the experimental
conditions under which such states may be detected in semiconductors.
In order to maintain the continulty of presentation, the surface

states are discussed in Appendices (H) and (I).

In the concluding chapter, some general comments and
conclusions are stated. A short summary 1is provided in a tabular
form. Some important, but mathematically involved results are
given in the form of Appendices at tne end of the thesis. The

Gaussian system of units is followed throughout.



CHAPIER 2

BLOCH ELECTRONS IN EXTERNAL FIELDS

2.1 Effective Mags Wave Function for a
Particle in External Fields

In order to study optical absorption in sollids we require

the solutions of the Schrédinger equation

where T = (p -

olo

K;) is the kinetic momentum, (K; is the time
Independent vector potential), Vp(?3 is the periodic lattice
potential and U(?3 another perturbation that can be caused for
example, by a constant electric field, m is the mass of the free
particle and 'e' ite charge. Since no exact solutions are
possible even for idealized models, we will use the effective

1
Mass approximation (E.M.A.)<1 )

for the gpecification of eigen-
functions and energy eigenvalues for electronic states in

solids.

In its simplest form the E.M.A. states that for sufficliently
small external fields such that the electron always remains in
& single band the motion of the electron in the combined field of
the lattice and the external fields can be studied in terms of
the motion of a fictitious particle in the external fields only.

The mass of thig fictitious particle is m* (assumed isotropic)



18.

which is different from m, and the particle i3 described by an
envelope functior F (?3 which gatisfiles the effective masgs
ap

equation (see Appendix (A)).

LR A
om* /

s ? T T TN G

Mhis equation is valid near an energy band extremum, assumed for
simplicity to be at X = 0. The energy E 1s measured from the

, o 1s the band index, and u is a set of quantum

band edge E°
a
numbers characterizing a state in band a. The complete wave

function for an electron in band o is given by (see Appendix (A)

equation (A-18))

%Mﬁ”) = [ Uy 7 +? g () Pus 1T WE"“(” (2-3)

where u is the periodic part of the Bloch function at X =0
o

and

v 3 x — L
b= (2m j O (BT ) WM AT et
{2
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Q) being the volume of a unit cell. The normalization of u's and
the effective mass wave functions 1g¢ discussed in the next
section, the explicit torms for the envelope wave functiong in

various field configurations are obtained in Section 2.3.

2.2 Normalization of Effective Mass Wave Functions

In arriving at equation (2-3) we used the complete set of

Kohn—Luttinger<ll) wave functions

)
e

N e O ‘\auf A (2-6)
From this condtion we can readily derive the orthogonality
property of the Bloch functions at the band edge. We have
> Ny
/ / — L(b- )\> ! -'*_ — - —
V

Slnce u*,o u o has the lattice periodicity, we expand it 1in a
a o

Fourier series as follows
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where the Bg'a are Just numerical coefficlents, and the i% are
the reciprocal lattice vectors. Substituting (2-8) in (2-7),

we obtain

—> — 3 ol =y 3y,

CORMNLEY = my 5B DTS- (eng)
™m
However, since X and XK' are both in the first Brillouin zone,
—
k' - X' = R; is only possible if m = O. Thus
; -~ — -‘»\,) bo(’o( ‘ 3
<d7kld,h> ~ S(k-k o (2m)

1
Using inverse Fourier transform in (2-8), the Bg “ are given by

* K ¥ %
BT = £ j e Uy W A7
Q
o * .
BO( = _'];.—j LLOUO u'oko (‘LT)
2
Hence
—> — T/ 3 *
CORNEY = SEAD o) W Uy A7 ey
O

Thus comparing (2-10) and (2-6) we obtain
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ol

3 —
,Q-j‘_j_)“ J u*o(/o (Tv) {/LO(O(_Y’\')OLY = 60(' <f) ll)

Hence the Bloch functions at the band edge are orthogonal in
the band index. This is perhaps an obvious result but the

factor <2ﬂ)3/Q is not easy to guess without going through the

Calculation.

Next we proceed to ecstaplish the orthonormality of the

functions (2-3). Introducing the notation

J 1}{3:/ (¥ %/“(T> A = <Wﬁ/Lk’\ \Vo«/u> (2-12)
V

and
. “lj =%
R oL ‘o - R
’YY] [ Ed\ - EO(I]
where the last equality follows from the relation Béa' = Ek'a'

The integral (2-12) can then be written as
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-
< q{/@/‘*' ) 1\)'0’\,{)\ > = < u po Fﬁ/u/ 4;%&{‘*4/0 ROU(B'T\ F(S/u’)
ur’(o F_D</M + Z uO‘IO _R)o(’ot? F,.g/u>
KF A .

> Wpo Fep’ | Hao Fo%>

+ Z-—E:(’o(. < u@OF{i/UII llo('ov_—]:]—)] Fo(/u> (2—1&)

o' F X
.—Z RF}D(,-<LLO(/OTT F{),/M’ LLO(D Fo(/,{> _\_O(B)
L%

It the functions F's are slowly varying (as is necegsary for the
E.M.A. to hold) the integration in all the terms of the last
equation can be split into two parts, one over the unit cell and
the other over the entire crystal. For example the first term

can be written as

—

_* X
<LL[30FW/\LLO<OF°%> Ej i'(g/u/ LL(SO l,LO(O F;(/M A Y
V

u % 5
= )| P o Lo P 7
w7
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Since F's are slowly varying, they do not vary much over the

dimensiong ot a unit cell. Therefore
N e r, (w4
~ I ‘ LA s O v
< U(Bo F{ﬁ/,LL/ uono(/L\ / - > |>/" AL j [ S
e o)

Now we use the fact that u's are periodic, so we can take the
integral out of the sum and finally converting the sum into

integral, we get

T

* - *
- c ) Y 2-1
<U‘$5° (5/4" Yoo Lt*,u> = “"éJ Wpo o @ A j pp’ OL (2-15)
[} ‘ vV

It we get

il

3 o ON - -
(U l/O\l W O) . Q—JDJ uﬁou> O W, ,0Hdy (2-16)
o o«
Q o

N

for any operator 0, then equation (2-15) becomes

-3
< Wgo Fapr| Yo PM> = Com (Upo |1V U L Fopr| Fup>
= (Q‘,T_)-:'J <FO</“/ \ FO(,U> 8?‘“

(2-17)

where the condition (2-11) has been used in arriving at the last

equation.
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Similarly

and

__>_ “5 ‘- .
CE R Ew> - Gm) b LT Fd/“>
since T is hermitian. Hence the equation (2-14) gives

-3
<1Hs/u’) Wd/u> = (a2m) <Fo<,u" Fo(/—l> 6(30( = 6/01}1 6(;,g (2-18)

as required. In obtaining the last step, we have used the

following orthogonality condition,

(!
~
1N
o
\; -
<
no
1
i__l
O

x - BN -
J Fd/tx’(” FO(/U(W)OU o,

Vv

In this relation, there is a cumbersome factor of (2n)3. In

future, we will use (?3 FH(?3 dr = & , (i.e. without the

¥
. v M pep
factor (2n)3), when the F's represent discrete states. This would
Mean that while splitting the integral into two parts as in

equation (2-17), (also see Appendix (B)) the factor of (En)_3 will

be left out. ror problems involving continuous states (e.g. electron
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in static electric tield) an alternate normalization involving
the Dirac delta functicn rather than the Kronecker delta
function, is more convenient (sce Sectlon 2.3(a)). Care must

be taken in this case when evaluating sums over energy states.
i

2.3 Solution of the Effective Mass Equation
in External Static Fields

In this section we obtain solutions of the effective mags
equation (2-2) in various configurations of the external
electric and magnetic fields. It should be pointed out that
for equation (2-2) to be valid the potential U(?3 and the
envelope functions Fa (?3 must vary slowly over the dimensions
of a unit cell. The limits of the E.M.A. have been investigated
by Zak and Zawadzki(lg). They conclude that for most semi-

5 gauss and & ~ 5 x louV/cm.

conductors, E,M.A. holds even when B ~ 10
For lower field values the approximation 1is of course applicable.
Throughout our analysis, we will consider the fields to have

values such that the E.M.A. holds. It 1s convenient to discuss

the various ftield contigurations in separate subsections below.

2.3a Arbitrarily Oriented Electric and Magnetic Fields

We wish to solve the effective mass Schrodinger equation
(2—2) for a particle of mass m*, charge 'e' in the presence of

static electric and magnetic fields, where the relative
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orientation of the ftields is arbitrary(13>. Solutions will be
obtained in non-relativistic approximation, the relativistic
(14

generalization has been made by RaJjagopal ) in crossed

electric and magnetic fields.

Suppose the static magnetic tield is along the Z-direction,
described by the vector potential L= (0, Bx, 0) and the
electric field lies in the X-Z plane. DNotice that the electric
field has a component Ez parallel to the magnetic field. Then

suppressing the band indices equation (2-2) becomes

[J_ <F’—— %7;0 >:>"’_ e Exﬁc _ Cg‘zz] F(?) — EF(?)

om*

or

R
| (2-20)

2. SN
B e

(‘)

This equation is readily separable according to the scheme

-

F(r) = F(x,y) F(z) and we obtailn

. 2
[ W oJ45 %<.L eR x 2ww€(g E}FCIM>
2m* dx? 2m* Ay R 2 (2-21)

= E/ F C:x)w)
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and
¥ \ : o~ -22
ﬁ@ +<2meiz>i 7 4+ &z _}F(Z);o (2-22)
d 2% 2 GEZ
where represents the particle's Kinetlc energy in the electric
€ S
z

field direction parallel to the magnetic field.
Solutions for (2-21) are obtained by setting

FCI)H) - cOnﬁantx~exF(}Y%jy>F(x)

when we get N .
2 * 2 7 ® Na_ (x)
_ 2 OL F () + L m Cocc; (I' T T mM*Wce Wcee

2m*  dx2 2. (o-23)

/ * 2 )
= (& 4 L N ?\/Ak}o Fex)

=

-

£ ot s
—_ == -relativistic case
where = ££2 s Vd = —F << ¢ (Non-r )

ce

Equation (2—23) is the equation for linear harmonic

Oscillator centred at

2 o-24)
\2 (
X = -F \2 1 \/"L — }\ b T s s .
° ¥ Cce (J * Wee J (¢

; . (15)
= B neti S
where j = Zh , 1s the mag etic length. hus the elgenvalue
are given as
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1 5 . 3
and the corresponding eigenfunctions<*5> are harmonic oscillator
wave functions o, (x - Xo>’ n==0, 1,2, «.... (see Appendix C).
For a volume of dimensions Lx’ Ly’ LZ the x and y dependent

terms give rise to the normalized eigenfunctions

F (193 > = _.f}'.j__:». ef)\:P <L\Q‘J q1\> CE}“ C* ‘Xo> (2—26)
i

where use has been made of the orthonormality conditions

Ly /2 ) /
tm GJWvL [(\bg“'}23> 3] &H = 6K3ﬂ%
J
~kyfe.

and

0

( djﬂ,(m) @n('x;) Adx = &un/

=
- 00

Equation (2—22) can be solved<l6> by introducing the dimension-

less variable
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Y~

<

~ - A (7 . €z > where [5 - 2£ﬁ¢QA62f> (2-27)

Equation (2-22) then takes the form

e

The solution of this equation which 1s finite for all values of

_d%F(§> 4 ? Ef(?) = O

2z has the form

o AL (- %)

'

F (T

Where

/Xl CV‘> - L C;os<:5§_ + SL;>CLS (2-28)
1%

(e}

is the Airy function(l6>, and 'a' i1s the normalization constant

which will be determined below. The constant, v is taken as
1

n? or ;. It will be left as v in the following so the results

wWill be applicable to either choice. For positive values of u,

Ai<u) decreases rapidly as u increases. For negative values of
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U, Ai(u) is oscillatory in nature, the amplitude of the oscilla-
tions decreases as u becomes more and more negative. As E — - @,
the function F(eg) tends exponentially to zero. The asymptotic

(16)

expression for F(g) for large negative values of g 1is

~ X ' | = 2] & %Q'] -
I

For large positive values of g, the asymptotic expression for

F(g) 15(16)

T
VN
A
~—~"

{
2,
=
VD
;0
3

ST~
.
O
NS
+

=

~

N

H
)
2

According to the well known rule for the normalizatlion of eigen-
functions of a continuous spectrum, we introduce the Dirac

delta function normalization condition

(=)

j Fle) F(g)ds = 0(ez-e) ey

— XD

(16)

We will use a simple but elegant method of determining the
normalization coefficient by means of the asymptotic expression

for the wave functions. The method demands that the asymptotic
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€Xpression for the wave function be represented in the form of
& sum of two plane waves travelling in opposite directions,
the normalization coefficient can then be chosen in such a way
that the probability current density in the wave travelling
towards (or away rrom) the origin is 1/2pn. Following this
method, we represent the function (2-30) as the sum of two

travelling waves:

F(@) :__1_;r__ [ 1 ag/ ex,,.Pi'L(%@BL, _)j
sag ey 9]

(2-32)

. . 2
In order to calculate probablility current density V|F[ , wWe

need to know the velocity, V, which can be obtained from the
relation %m*v2 = Total energy - Potential energy = e, + eEZZ
or

\/ — 2 CEZ + egz Z'> <2_33>

m*—

The quantity V)ﬁ)g calculated from each of the two terms of (2-32),

Must be 1,/2mn;

)

senter whnl v e |,
T VHWh* N 41)2 @J&J 27+
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which gives

e - *lé” ( B‘> <2_34>

where equation (2-27) has been used.

Hence the Z-dependent term gives rise to the normalized

elgenfunction

F(z) - VU (B) 4 _éz (2-35)
Yo e b }

Finally one has, for the eigenfunctions and eigenvalues of the

effective mass equation, the followlng expresslons:

b,\’\
(7) _ Y (B . 1 & @(L }\\? \/CL)
<ﬂ>h,ez - o, T
Ry>€z) T (eg,)” JL, <2_36>
. . e,
Ch e,
E_(ﬂ;h3362> - €, 4 (ﬁ +_%>VCL%Q".§_W$Yj_hkﬁa<g{ﬁ>

The quantum numbers of the electrons in the electric and

magnetic tields are (n, K €Z). Note that only the limit

¥y
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~—

\f.x
T+ — O can formally be taken.

2.3b Crossed Electric and Magnetic Fields
and Magnetic Field Alone

The effective mass Schrodinger equation in crossed electric

and magnetic fields can be obtained from (a) by settinggiz =

= 0 in
€quation (2-20) and we get
2 : o N
‘:‘-GE—- + (- L 2B x %X’.ﬁx e &, x 0&2} FQD
= Ay ok TR ' d 2
o W ! (2-38)
* —
— 2m B F G
t\z*

Solutions of this equation are obtained by the method quite
similar to one used for solving (2-21) and we just state results
E = L expli(khyk,2)
MRy, k) : :

TL, L

~ (2-39)
x @YL C D Gl Ic))
~ 2 2. : N 1 1 * <
[.i(n) }Z‘j)hz> — —g hi_ & (ﬂ+ %I'/%CQQQ "‘;—'m\/(_l"' tb‘)vgl, (2—40)
M W] e o~

The case of magnetic field alone follows from (2-39) and (2-40)

by setting vy = 0.
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2.3¢c Electric Field

The effective mass Schrédinger equation in the presence of
the electric field alone is another interesting problem, whose
solutions can be obtained from (a) by slight modification. It
the electric field is along the Z-direction the motion along this
axls will be governed by (2-22) whose solutlons are given by
(2‘35). The x and y dependent terms would be plane wave states
and the following results are obtained for normalized elgecn-

functions and eigenvalues

Fey - v B 1 expli(ky IQ?JJ
Eaoky k) T (€8, )2 AJ- . ‘ [ (Rt Ry >

(2-41)
/\Ll__ B (2 4 Sz ]
~ \ ( rsgz\>
2
FE Cezokyrky) - €, o jﬁ\z? i f‘? bJ (2-42)
2.m 2 ™

The envelope functions (2-360), (2-39) and (2-41) will be used in

Subsequent chapters.



CHAPTER 3

GENERAL FORMULATION FOR
DIRECT INTERBAND ABSORPTION COEFFICIENT

3.1 Introduction

In this chapter we wish to derive a general expression for
the direct (allowed) absorption coefficient in the presence of
external electric and magnetic fields. 1t was pointed out in
Chapter 1, that the first step in calculating the absorption
coefficient consists of evaluating appropriate matrix elements,
which are subsequently used to calculate transition rates. The
Calculation will be done in two stages in the followlng two
fections, The first section will be devoted to the evaluation of
first order interband matrix elements of electron-photon
interaction using effective mass wWave functions. Here we will
take an opportunity to discuss the various parts of the matrix
€lements and explain which ones are needed for allowed and
forbidden transitions respectively. In Section 3.3, the interband
absorption coefficient will be calculated using only that part
o1 the matrix element which gives rise to direct allowed

transitions.

3.2 Evaluation of First Order Interband Matrix Elements

For first order transitions, the matrix elements of the
electron-photon interaction between an initial state in the

Valence band and a final state 1n the conduction band are needed.
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The unperturbed wavetunctions in E.M.A. (see equation (2-3)) for

the electrons in the conduction and valence bands are
,% ___é
—> — ——p
— 3 -1 - -1
qu> _ [uw(” + % Rodx I |O(/U(1) (3-1)
/i()(

where | denotes the quantum numbers other than the band, O

denotes the band edge, a = (c or v) for conduction and valence

band respectively and ﬁ;,a is defined by equation (2-13).

The electron-photon interaction Hamiltonian was derived

in Chapter 1 (equation (1-9)) and 1s given by

,4_3
H, - _ e T- A G (3-2)
1 L
mcC
where two photon processes have been ignored. The perturbation

tan be described by a time varying field, whose space variation

. . 1 .
can be neglected (dipole approx1matlon< 7>) since the wavelength
(18)

is long compared to the electronic wavelengths involved .

Equation (3-2) can then be written as

: SRR - B
- _ e 2T h . e -
L e [k? g 3-3)

o

Where E i1s a unit polarization vector of the photon (may be taken
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as complex in the case of circular polarization), n_, the index
of refraction (assumed constant) and N 1s the number of photons

per unit volume.

The first order interband matrix elements, M . = < wcy,\H11¢VM>
can now be evaluated. For a process involving photon absorption,

these are given by
N ‘ > . | Vo v k
Y i ‘s ket / t AT \ L‘Jv'u:> <3_4>
Vo T W o AN \QM | - \/

where equation (3-3) has been used for the electron-photon
interaction and tne time dependent factor of modulus unity has
been left out. Using the expression (3-1) for y's we can

— ~ . . .
evaluate the quantity <w0#' ‘ﬂ'%‘ ¢VM> - This calculatlon is

carried out in Appendix (B) and we finally obtain

M, = - e $(Frs) ¢ e (%)
m La
- R . (3-5)
o e B+ T T8,
where
T . o > %_P_ﬁ_@“ . bcacﬁé’v-@jp@_@
R E) ~ Eg B - B
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eB . . _ w0 _ 0
¢ = 7o 1s the cyclotron frequency and Eg E. - E, 1s the

forbiddent energy gap. For most semiconductors the ratio,
o !
+

TEE ~ 10'3 or 107" at B = 104 gauss and hence the term containing

it makes negligible contribution towards the absorption

coefficient. Thus it is sufficient to write

M. o~ < p%}jﬁ' (P 8) L Fewrl Fud
oL » (3-7)
N T, <F%/\ 0| FV/M>

One term of (3-7) will in general vanish if the crystal has a
centre of symmetry and we have two types of direct transitions

which we discuss below.

3.2a Allowed Transitions

It can be shown quite easily that for B;v to be non-
Vanishing, the bands c and v must have different parity. Thus
if uco<?3 - _uco(_?3 (odd parity), then uvo<;3 must have even
parity or else E;v vanishes. However 1f the bands have opposite
parity then ?%v vanishes because any intermediate band g must
have the same parity as either ¢ or v and the corresponding
momentum matrix element must be zero (see eqguation (3-6)). The
vertical transitions between c and Vv in this case are called

"Allowed' and the matrix element for direct allowed transitions
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1s given by

(A) : ) %

=g R (el | B R

3.2b Forbidden Transitions

If the bands ¢ and v have the same parity so that ELV
vanishes, then intermediate states having parity opposite to
C and v may exist so that the second order term, ?%v does not
vanish. The transitions assoclated with this term are called

'Forbidden' and the corresponding matrix element is given by

(F) I, — .—* _ — ~ .
MC\/ [l _g‘__ !E_)l%li". TCV . j T«CM, G _IT F\’u 1) (l Y (3_9>
M N wnsg’ 7

\Y%

If a centre of symmetry does not exist, then the bands c
and v can no longer be classified according to parity and
nonzero contributions may arise from both terms in (3-7).
Such transitions are generally called 'Mixed' but will not
concern us here. We will be mainly concerned with allowed
transitions, a calculation of the absorption coefficient for

forbidden transitions is carried out in Appendix (B).
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3.3 Calculation of Direct Allowed Absorption
Coefficient in Electric and Magnetlic Flelds

Here we compute the optical absorptlion coefflicient, in
semiconductors due Lo direct allowed interband transitions
between simple parabolic valence and conduction bands having
their extrema at the centre of the Brillouin zone (E’: 0),
in the presence of arbitrarily oriented electric and magnetic
fields. We suppose that the magnetic field 1s along the

Z-direction and the static electric field lies in the X-Z
. —_—
plane d.e. E - (&5 0 €

For non-degenerate parabolic bands, the envelope functions

In electric and magnetic fields have been obtained in Section 2.3

and are given by Lk y ~

FC w! (T'> = .,lJ_._ ,.(Sm__\_/ __1;_:_ @ CD(_ >\ \2 4 "éﬁ*)

T 2. = »
/ T g, )" Ly -
' €,
e AL [" p (Z“ + é"é—’“ > 9
. Lky Y
F o D 5 1 e N @ (1;_Ak3+V

a ST (ef \ ’ ey
e (3-10b)

/\L[ﬁ (z + eé >}

"~ eB ] .
wWhere W o= eB and = == are the cyclotron frequencies and
cc ., c cv m,,

mc: mV are the effective masses in the two bands. Further,
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CE; - che'z>l/3 and 5 - (Qm e z>l/3

- In these

n v n

expressions 'e' stands for the absolute value of the charge of
the particle. Tt is assumed that the bands ¢ and v have opposite
Curvature i.e. the sign of BQE/aKQ is opposite flor the two bands.
The energyeigenvalues of the electrons in the conduction and
valence bands are (Section 2.3)

Fouy 2 £°

c+ €2+ <ﬂ/+ %’)twcc- 4—2—- mc\/(} - _v‘sz\/p( (3-11la)

and

- O

2
F‘\/ (/M> = tv + EZ — (ﬂ'{’ ;:)T’TC’O(_V + lZ'mV\/QL _t‘kJ\/A (3"'111})

where E° and g are the energies of the conduction and valence
c v

N o _ O _
bands at ¥ = 0, p o= (n, Kyj €Z) and E | ES = Eg.

The absorption coefrficient for direct allowed transitions

can now be computed using equation (1-4) and we have

NED) - g M Bkt t)ions

TNFEV
/U')/u

where the matrix element ror allowed transitions is given by (3-8).



Substituting (3-8) in (3-12) we obtaln

Lo,

2(; 5) — 2. ,.1)6 ' Pev Es)\ 7\1 (S<F (Mr-E, ™) Tﬁw‘>(3-l3>

T2 V1. GO V

A

where

* —> —_
1T, = FoLv)y b oG dn
Lo = Jv % vt

Our rext task is to gilve an explicit expression tor I#‘

Substituting for F*,

!

and F from (3-10) we obtaln
M

; Ly /2.
I t = _\Z% oc [PV _;1:_ J e X L/‘?J__ bJ)(J Clgj
/‘/LA - TTZ" €§Z L‘Z] ] P

=Ly/2,

or
Tew =(2) Tty () AL[?;;_@} Ok,
AN R !
Where o0 ~ -
;Idﬂ(aﬁ ——JwAi; @WCXJ @nCL+aJ 5
) 2
a = Mooy Vo= A MV M = m, o+ my
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and
3 i~ ) -L
L d e ]
6; = -{; LA 9 i I +- el (3-15Db)
2 14 T\‘ /A’L M v
g is the reduced mass. An explicit form ror Jn'n<a) is given
1n Appendix (C). In arriving at equation (3-14) the integration

limits on x and z have been extended to z ®, (this introduces
negligible error because the integrands fall off rapidly with

distance and are vanishingly small outside a box of large

dimensions.), and use has been made of the result<19).
J}Lt AL(t +9 ) AL (bt + &) = WL_._._%,_V

’ ‘ V(L b)Y
-0

x Al 1%%%;%3773] fov bl

Now substituting (3-14) in (3-13) we obtain
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where
) 2
/_\.. j - Ea_‘hw +<’Y\/+_ J;_._>—hwc <n+ )#\CL) ZM\/“{ (3__17)

The sum over ky in equation (3-16) can be carried out by
converting it into an integral, the limits on the integral are

Obtained by restricting the centre of the orbit to within the

Crystal length. Thus

oRLx
2CH

, LJCL%i. s )iﬁ;&ﬁ“,
e B o
cBrL=x

Ry Ay

Summation over e, e', can be easily carried out by redefining
z zZ
variables and making use of the Dirac delta function occuring in
(3-16). The tactor Ide contributes ee L, and we finally obtain
Z

for the absorption coefrficient

—_— 2. {at Ah N
’7(&&) - K ﬁﬁ%}:- Zj )'A‘ > (3-18)
where
. _ D 2. >/

R _ o6 | (PG| <2/LL>Z‘

o Mo C M ig ?
(3-19)

Q_;.Q = E.B..— = wcc + GOy

b WG
Ve
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and all other guantitieg have been defined previously. The
Magnitude of the absorphion coerrticlent appears to be dependent
ot the value chosgen for v. Actual.iy there 1s no dependence
since this constant merely cancels thne constant implicit in

the definition of the Airy function (see equation (2-28)), to
glve a unique value for the absorption coefficient regardless

0f the value chosen for v.

Equation (3-18) is a unified result for direct allowed
absorption coefficient. Most results known in the theory of
direct optical transitions can be derived as various limiting
“ases of the equation (3-18). In particular, it will be
shown in the next five chapters that the equation (3-18) in
the appropriate limits reproduces the following well known

results:

(1) Zero field absorption coefficlent,
(i1) Magnetoabsorption coefficlient,
(1i1i) Electrombsorption and Franz-Keldysh effect,
(iv) Absorption in crossed electric and magnetic fields

and  (v) Photon-assisted tunneling in parallel fields.

The formal expression (3-18) has recently also been
Obtained by Spector<l3> who has considered only one of the

limiting case- outlined above (Case V). His general expression
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differs from our equation (3-18) by a factor of m, (Equation (2-8)
of the reference (13) should be diviged by a factor of ) which
appears to be the result of an error in the expression for the
density of states employed by Spector. Other apparent differences

disappear when Spector's notation 1s translated intc our own.



CHAPTER 4

ABSORPTION IN ABSENCE OF
EXTERNAT, ELECTRIC AND MAGNETIC FIELDS

4.1 Derivation of Abgsorption Coefricient in Absence
of External Fields from tne General Result

The expression for field free absorptlon coefficient can
be obtaineg as a special case of the general result if in

Squation (3-18) we first let the electric field E{—»O and then

take the 1imit B — 0. The order is important because if we
c&y
first let B — 0, then the drift veloclity, Vd = -5 approaches

Infinity and the non-relativistic approximation is no longer
valld. However the order in which the different components
Of the electric tield are set equal to zero is quite immaterial

and Iin the following we first set,EX;: O and then let Sz — 0.

Setting;gx,z O implies that V, = a = 0 and hence J , (a) =
S

6n' n (see Appendix (D). Substituting these in egquations (3—17)
3

and (3-18) we obtain

D - R (V)Y gy e

eyQ il / RO

where

*
AN - E3 _Fo oy (ny Ly R, (4-2)
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Next we want to take the linﬂi;gz — O which means b =0

and thus for finite values of Dy on the argument of the Alry
E) 1
functior becomes large. This suggests the use of Asymptotic

(19)

forms for the Airy function which are given by

: 4 2L
b A ~ FoT T exp Q%;t ), (4-3a)
1> 0 2V "
.Y y /2.
b ALCD = T T Sm(3T7 0 L) e
4 =0 Vv ’

Since the asymptotic forms depend upon the sign of the
argument, we split the sum over n in eguation (4-1) in the

following fashion:

-~

AL R

7= Rk ()] LING

F n
(Doyn>0) (Anp LO)

Now using appropriate asymptotic form in each of the sum above

for eF = 0, we obtain

~ R (ho¥) [
o2tV

(AY}n ¥) >0) -5/2
; B 1 4 S\/ﬂ A A_l“‘\ >
YO B 2 T\ Te,

(DAnn< O\)'

7' Q£-«~w—elp%_ﬂ._émﬁa%f
2 (Dnym)2 5\ K ¢

S

(4-5)
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b ! hi and in
h 0 the firs sum does not Contllbute anythlng
n e s L sul
e i e = .dly for arge
h second sum he 8in function ObCll]itbS rap

hen
The above result t
argument and averages out to zero. The

reduces to

*
—F\CO > Ea 4 <ﬂ 4 1;__> -F o <4_7>

rt the sum over n in
3 ¢ imit B — O, wWe conve
To obtain the limit
the relation
€quation (4-4) into an integral through the
Hoo - F g

<ﬁai>z_ _— J‘ =

[}

. . .
and cax 1t the Sjmp e 'n(egratlon we obtair he expression
n TYiDg ou
or the zer 11 sSOY I ici follows:
; h o field abso P 1o coefficient as

/o
“?(o) — RCCL)_,COSJ) for W > g

(4-8)
O for OJ‘S OJq
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where wg = E /3. The above result agrees with the result obtained
g

by Bardeen, Blatt and Hall. (D)

h.2 EXperimental Verification

The dependence of the above optical absorption coefficient
O°n the energy of the incident photons has been tested in many
Materials like Ge, InSb<20) and has been found to be accurately
Droportional to the square root of the experimental frequency for
w > wg as demanded by the theory. However, the other prediction
that n(o) = 0 at w = wg is hard to verify experimentally due to
the uncertainty involved 1n the measurement of the energy gap
itselr, Further the broadening of the energy levels due to
Impurity and phonon scattering tend to smear the absorption

©dge, making the experimental task even more dirfficult,

For a quantitative fit it 1s necessary to take this
broadening into account. Since this is generally difficult,
One usually does this only phenomenologically by introducing a
damping time. We will not go into the details of this and

shall restrict ourselves to 'pure' materials where scattering,

€tc. is small.



CHAPTER 5

MAGNETOABSORPTION

5.1 Derivation ot thec Magnetoabsorptlion
Coefficient from tne General Resulf

The case of the magnetoabsorption 1s extremely important
and has been thoroughly investlgated both theoretically and
eXperimentally, during the last decade. We will first give a
theoretical expression, for the absorption coefficient in a
Magnetic field, n(B) starting from the fundamental equation
(3—18), and then briefly review the experimental situation.
We should be able to obtain n(B), by setting& =% =0 in

€quation (3-18) in either order. This was in fact done in

Chapter 4 where we obtained (see equations (4-6) and (4-7))

X o )
72 (e, - }§fjwh)() i} o \'JEvN (r)A,J‘>t(:(\ (5-1)

"

Where the sum over n is to be carried out in accordance with the

condition

hw > Ej 4 (W_‘_%)ﬁmﬁ (5-2)

In Obtaining (5-1) we set a = O which implies that Jn’,n<a> =

énf,n (see Aprendix (D)) and the optical transitions in the
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bresence of a magnetic field satisfy the selection rule n' = n.
The above result agrees with the recults reporned in the

literature.(21_29>

Tt ie obvious from the condition (5-2) that there is no

absorption until

* o
‘h@ > E_a + _é_-?\(,&)c = [_J(B) (5_3)
o - B, (B)
and n takes values from O to Max ( *g ) where Max (u) =
c

Maximum integer < u. E_(B) can be thought of as the efrective
€nergy gap in the presence of a magnetic field. The effect

Of a magnetic field is to increase the true energy gap of the
material by an amount equal to the sum of the zero point

energies of the valence and conduction bands (Fig. 1). This
magneto~optical band gap effect was first seen experimentally in
InSb<21) and InAS(gg). The result (5-1) has been derived by
Other methods<9’23’2u) before and has been the subject of several

reviey articles.<25—29)

In the limit of zero magnetic field, equation (5-1) reduces
U0 the expression for field free absorption coefficient obtained
in the 1agg¢t chapter (equation 4-8). The energy dependence of the
flagnetoabsorpt wn coefficlent, n(B) has been displayed schemafically

N Fig., (2). Also on the same graph we have plotted n(o) using
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Flgure 1. Energy bands for a semiconductor in the absence
and presence of a magnetic fleld, B. (a) B = 0,
(b) B % 0.
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€quation (4-8) for comparison. The zero field absorption coeffic-
lent starts out with value zero at wb = E_ and increases as the

Square root of the frequency in accordance with equation (4-8).

A magnetic field hag two striking effects on the absorption

Spectrum

(1) The energy gap shifts towards shorter wavelength (see
equation (5-3) and Fig. 1), and there 1s no absorption
until yp = E_ + spw¥. Notice that by plotting the

g

threshpld for absorption as a function B, one can obtain

the value of Eg by extrapolating to B = O.

(11)  The absorption is oscillatory in nature for nw > Eg(B),
and the separation, between the absorption peaks, is

hwé which involves the reduced mass for the two bands due

to the selection rule 4 , , = 0.
S

In the theoretical curve for n(B), there is a singularity
at y = Eg<B) + nhwg which results from the quantization of the
Magnetic levels and also because the density of states at the
bottom of each of the magnetic subbands has a singularity. This
singularity will not occur in a real physical system, and a
bfoadening or relaxation parameter 1s generally introduced, to

Obtain quantitative agreement between the theory and experiment.

The expected separation between the absorption peaks is
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fw

Eg

Figure 2.

O and B # O as a function of photon

Schematic representation of the interband absorption

spectrum for B

energy.
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0 = hw. - eB o~ Lléxio_ B _ ev

- ome (M)

where B is in gauss and m is mass of the free electron. If

M= %5 mand B = 5 x 10u gauss, then § = 0.0l eV. If the applied
Magnetic field is very small, the separation between the absorbtion
Deaks would not be measurable. No oscillatory absorption has so
far been detected below several kilogauss and in the next section,

the condition governing the lower limit on the magnetic field

Will bpe discussed.

5.2 Comparison of Theory and Experiment

The theory of magnetoabsorption has been tested by
Several<23,30,31,32) experimental groups on materials like german-
lum, indium atimonide, indium and cuprous oxide, etc. Below we
discuss the results of the magnetoabsorption in a single crystal
of germanium by Zwerdling et a1<32>- They displayed their
€Xperimental findings in the form of a graph by plotting, the
ratic of the transmitted intensity with a given magnetic field
Lo that gt zero magnetic rield, as a function of photon energy
(Fig. 3). It follows from the definition of the absorption

Coefficient that

(Y= d
LB _ e (5-4)
T (B0
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20 |-

Flgure 3. Oscillatory magnetoabsorption in Ge. The ratio of
the transmitted signals with and without a magnetic
field versus mw for two d%gs‘irent values of magnetic
field. (Zwerdling et al. )
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brovided the reflection losses can be ignored, and where d is

the sample thickness. The minima of this ratio, then essentially
Correspond to those photon energies for which the differential
&bsorption coefricient [n(B) - n(0)] has maxima. These maxima
Correspond to the eclectron transitions between the quantized
Magnetic or T,andau levels from the valence to the conduction bands.
The above ratio nas been plotted for two different values of the
Magnetic field in Fig. (3). One can clearly see the oscillatory

behavior, as expected and the separation between maxima = u.015 eV

N accord with the theory.

Further, from the theory, one expects that the ratio,

I . .
I(B :BO goes through a minimum whenever

TSOJ = Eia 4+ <WW+ %i) FCAE

Thus if one plots the position of the various transmission

Minimg p = O, 1, 2, veuen in terms of photon energy, as a function
of Magnetic field, straight lines should result, which when
€Xtrapolateq to B = 0, should yield the value of Eg. Zwerdling

et g114(32) experimental results for the position of the minima

8% & function of B for Ge at 298°K are shown in Fig. 4 and one
S€e8 that the functional dependence 1s indeed linear and that the
lineg converge to the energy gap of' the transition. For Ge, the
®nergy gap values obtained are 0.803 # 0.001 eV at ~ 298°K. Also
from Fig. 4 one can clearly see the shift in the absorption edge

QUe to presence of the magnetic field (see n = O line).
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0.830

Eg—e
o'8000 5 10 15 20 25 30 35
B(kG)

of the transmission minima versus
Flgure b noton eneTEY o ok e e 5080 K o i
coﬁverge to a photon energy corresponding to the
energy gap of the transition. For Ge, Eg = 0.803
£ 0.001 eV at 298° K. (Zwerdling et al. (32))



59.

Thus both aspects of the theory are supported by experiment.

A necesgary condition for observing well derfined structure

18 that the spacing between the Landau levels (twce) be greater

than the broadening Q%) of the levels, where g representg some
average scattering time due to phonons and impurities. Hence
the condition W, T > 1 must be satisfied for each band if the
Structure of both bands is to be seen. I only one band
satisfies this criterion only its structure will be seen. This

tondition can be satisfied only by using high magnetic flields

)
(~ 107 gauss) and by working at low temperatures.



CHAPTER 6

ELECTROABSORPTION AND FRANZ-KELDYSH EFFECT

6.1 Derivation of the Electroabsorption
Coefticient from the General Recult

To obtaln the optical absorption coettficient in the presence
of an electric field from the general cxpression (3-18), one

cannot proceed by setting B = O directly because then the drift
i

X
B

no longer valid. However, 1f we first set Eix = 0 and then take

speed Vd = = ® and the non-relativistic approximation is

the 1limit B — O, we arrive at the desired expression which contains
only electric field, directed along the Z-direction, and we have
not violated any valldity conditions in doing so. We follow

thnis scheme here. Setting EEX = 0 in equation (3-18), we obtain

* Py ‘ 2
7 - RE @) NG

(see equation 4-1)). Now we let B = O and thus convert the sum

t

over n into Integral, giving

_ R v L (Esrx-RwN |
70 = £y HHJO e | AL (Forzore)

By a simple change of variable we can rewrite the above result
in the following form

o0

meey = RO®(L2) jﬁ AL )| A (6-3)

!

F ™
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unere p oo Eahw
Ko

The integral over 't' can now be completed using the resu1t<19>

- 2 ! 2 : 2
j | Au(] dt = ‘AL(@)Z — Pl AU®)
P

where prime denotes differentiation with respect to the argument.

Substituting the above result in (6-1) we obtain
(&) Re [ (12 | AuE T BlAL W[ e
Mo = R&T | (Y] 1Ap | - BlAGE

This result 1s valid for nw > Eg and was first obtained by

<
(33)

using exciton notation. A similar expression

34)

Tharmalingam
has been obtained by Callaway( and the case of an anisotropic
50lid has been investigated by Aspnes<19). It is convenient to
discuss the effect of electric field on the absorption spectrum
in the regions nw > Eg and o < Eg, separately.

6.1a Electroabsorption above the Edge

It is convenient to start with equation (6—1) which for

ho > Eg (implies g < O) can be written in the form

Vo, 9, _$ . o ‘
””Z(E) = R@F/ (Pﬁ) [j lAL(-t)\zoLt + j\AL(mQCLt} (6-3)

o
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- 2
The integral I ’Ai(t),mdt can be evaluated approximately
O
by breaking the region of integration into two carts asg follows:

oa 1 o
J,mmﬁ A= [ e s ] el

(&) i

The integral from O to 1 can be evaluated numerically and the
Integral from 1 to « can be completed by replacing Ai(t) by
ite asymptotic form (4-3a) and using Appendix E(ii). According

to this procedure we obtain

A dt o~ 0o3 (O
J 1A (=)
Hence the equation (6-3) becomes
~ L, 12 i _ 2
?LE) = KO [(1% )j [ALCD)) ds o o-z%J (6-1)

[

The upper limit on the first integral (-8 > 0) depends upon W
and this term makeg an osclllatory contribution to the absorption
spectrum. The second term 1s Independendent of pw and contributes

only a small enhancement associated with glz(zfé).

In the limit of zero electric field, - g »>> 1, and we can
use the asymptotic expression (M—Bb) for the Airy function in

the integral (6-4) to obtain
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_B
, e o 2 S S
LRSIV RO A Sim (217, )ALy 0zeKeg
v t\/z 3 4
(o]
The above integral has been evaluated Lo Appendix E(1L) aad
we have
\/.24 \/{?‘

ey = R (w-wgd) 4 025R6,

When the electric field 1g setl equal to zero (eF - 0), the
above equation reduceg to

\/-2
?(_o) - R Cw - (.Qﬂ) , >,

J

which 1s the expression tor field free absorption coefficient

in the region w > Dy and was obtalned earlier (Chapter 4).

6.1b Electroabsorption Below the Edge
or Franz-Keldysh Effect

Once again we start with equation (6-1) and note that
B > 0O for b < Eg and thus the argument of the Airy function
1s positive throughout thne integration range. Experimentally
the conditllion g >> 1 Is generally satlisfied because even for
E,-::lo3 volts/cm., hép, is only about 0.00H eV and so we can
replace the Airy function in (6-1) by its asymptotic form (4-3a)

Lo obtain
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]
2 : 2
o = ROE[ L epat) a
g 4 t%z 2
Substituting the value for Intepral frow Appendix E(i), we
obtain
: 3
?(8) - R @F o Glri{mﬂ; Ly (O J(} <, (6-5)
R(L0, = @) AN

The absorption coefticient vanishes for b < Eg it the electric
fleld is set equal to zero. The effect of the electric field
1s to smear the otherwise sharp absorption edge and make the

-

absorption possible for mw < Eg (Fig. 5). This is called the
Franz-Keldysh(%5’36> ef'fect or photon-assisted tunneling atter
the two theorists who independently predicted it in 1958. In
Appendix (F) the F-K effect is also derived using an alternate

(37)

method similar to one uged by Haering and Adams .

In Fig. 5 we have schematically displayed the variation
ot n(€) and n(0) with the energy of the incident photon using
equations (6-2) and (4-8. n(8) is oscillatory above the edge
and exponential like below it whereas n(0) attains non-vanishing

values only for nw > Ep.

)

Since the experimental results are almost always given

in terms of the field induced ditfferential absorption coefficient



Figure 5.

Energy dependence of the interband absorption
coefficient for €= 0 and € 3 O. Note the
exponential decay of n(€ ) into the forbidden
gap..
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An = (&) - n(0), 1t 1s instructive, to ghow the theoretical

behiaviour of such o quantity. From (6-2) and (4-8), we have
4 Y \ :

]

AN = R@f‘ [{A/L(@)]Z__ p\/\i,(p)\zﬁ [ H(_{%}—J (6-6)

whnere H(x) i1s unit step function defined as follows:

H{x) = 1 X > 0
The schematic variation of An with the photon energy is shown
in Fig. 6. The simple theory described above predicts that the
change in the absorption, An will be exponential-like below

the edge and oscillatory above it.

6.2  The Experimental 3Situation

There are a largc number ot experjments(3’u’5’38’39> avail-
able, which only gualitatively support the above theory. The
results o all these experiments are in good agreement with the
simple theory below the edge, but there 1s disagreement around
the edge.  The experlment on GaAs tirst performed by MOSS<3>
showed an exponential decay of the absorption coefficient below

the edge, but failed to record any oscillatory behaviour above

the edge.
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*£3asus uoqoyd Jo uogfioung ®
w7 = [(o)b - (3)4] sjustoTyyaco uc13daosqe Jo 80ULI8JITQ *g 9an3Td
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The experiments of Frova et al.(38) are much more con-
clusive 1in nature because of the improved resolution and the
wider range of incident radiation energy. Apart from measuring
the change, An for the direct absorption edge in germanium,
their experiments also explored the indirect absorption edges
of silicon and germanium, which will not concern us here, as

we are only Interested in direct transitions. They detect the
change in the absorption coefficient due to an electric field,
by passing a monochromatic light beamnormally through the plane
of' a p-n Jjunction across which both a large d.c. reverse bias
and a small a.c. voltage have been applied. The d.c. voltage
determines the maximum value of the electric field in the
Junction, while the a.c. voltage, by changing the field, modulates

the light passing through the Jjunction. This modulation AI of

the light by the electric field and the total intensity I are

measured simultaneously. Then
_ AT £ 5
AT = T d (w,8) (6-7)

where AV is the peak-to-peak value of the modulating a.c.

voltage and ~ is the maximum electric tield. The function
¢ 1s very close to unity, and is determined by the shape of

the Jjunction.

Thelr experiments confirmed the characteristic exponential-
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like behaviour for pw < Eg’ the slope of the curves
decreasing with increasing electric tield, as expected from
the theory (see equation (6-5)). Furthermore at pn = Eg’

the field induced change in absorption goes through zero and
reaches a negative peak. This is in agreement with equation
(6-5) (see Fig. 6). However, according to this equation the
peak varies with the electric field as éil/B. It is this
feature of the theory that is not being supported by the
experiment, which favours a very weak dependence on E,. This
disagreement is apparently caused by the effects of an

(39)

excliton and thermal broadening, which are not included in

the simple theory.



CHAPTER 7

ABSORPTION IN CROSSED ELECTRIC AND
MAGNETIC FIELDS AND WEAK FIELD APPROXIMATION

7.1 Derivation of the Crossed Fields Absorption
Coetficient from the General Result

In order to obtain results for the crossed flelds situation,
we ftind it convenient to split the sum in (3-18) into two parts

as rfollows:

—y —% x* 2
7?(8;5) - R @ /1 (o) | AL ,4}23_*_‘,)
@VZ . LT OS¢
£ -
nin
(Av\',%>o) (7_1>

2 A 2.

+Z Jh', h((k) ) /-\L <-'1;29:> j

(A< 0D

Now 1f in each of the above two terms we set E,Z = 0, the result-

ing expression would contaln an electric field along the
X-direction and a magnetic t'ield along the Z-direction, the
configuration we are interested in. So letting Eﬁz—»o ($>9F - 0)
and replacing the Airy functions in (7-1) by their asymptotic

rorms (4-3) we obtain
- = 2
77(8 B) ~ WN;E&% J% W(a) @1*) Ann E
’ 2he (A (A2

(Ahn 7
*Z, f"'gf}@ iL N sw( (- L > )2@
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When bp = O, the first sum does not contribute anything and in

the second sum the Sine function oscillates rapidly for large

argument and averages out to zero. Then substituting for Ah' n
2

from (3-17) we obtain

VZ(?X?) — R(Jﬁc;c)
Zn (7-2)

2.
X :J-’Y\/,’)’\ (CL)
% g 22T ST e Y
nn [F@‘ Ef} —"ﬁwcc(vw %)‘Fwﬁv(n+_§)+%[\4\/&}/z
where n and n' are restricted by the relation

2
Who, 4y nho,, <ho_E Reoe, — R, ¢ LMV (7-3)

1
1Tz

This restriction implies that there is no absorption until

2. N _
R > By 4 L+ Loheo - LMY = B @xe)(7-4)

The right-hand side of this equation can be thought of as the
eff'ective energy gap in the presence of crossed electric and

magnetic fields.

To express the rocult (7-2) In a standard form we use the

cloced form expression tor J (a) which nhas been derived in

n',n

Appendix (C).  According to equation (C-4) of the Appendix (C)
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-(1/4?5‘2>
J. (a) = €
(2 e )

‘mmih y\} Q / Q YH‘\\/_. > Q, (7‘5)
y Z (- 1) mimy 2y
(n-0)\ (n/ =)
where
¥ - & - SExh
A FQ.
d, W
1s a dimensionless quantity, Q. = ehb _ _cc eV . The summa-
C Mc Woe T Day
tion over g extends to n or n' whichever is smaller. Substituting
(7-5) in (7-2) we get
.. ~ (%)
?cixﬁ) - R(hewo) e
Z-HVZ‘ (2n+v\’h\ ’Yl’\. >
nin
min $n.n'y / 20 2, -1 (7-6)
X’ > (nn') ¥ l (?u),_n“)
t-o0
where
n-Q , 4
‘)churv) _ 1y mimi2 (7-7)

01 (m-)1 (n )

and



first obtained theoretically by Aronov

E

n,n

The result (7-6), apart from some numerical factors was

(40

corrected for some factors by Vrehen<ul>. The result (7-6)

has also been obtained by Spector(u£>,

transitions as well.

are as follows:

(1)

The location of the absorption maximum 1s a function of
the magnitude of the electric field and all transitions

are shifted 1o lower photon energles by an amount

L2 e
s C= ¢ R .
5 = & Mva =% (m_ + m_) -——gﬁ-, with respect to the
= d C A% BLA
magnetoabsorption spectrum (see Chapter 5).

Aronov(uo> proposed the measurement of this shirft,
which should yield a value for the sum of the masses of
hole and electron. As we saw earlier that the magneto-
absorption measurementsg provide us with the reduced
mass u, the two experiments combined should yield the
values of m,s o mo separately. The order of magnitude of

the shift for M = 10‘28 om. ig

/= E.Ld + T\ (OC_L,<H/+ :EJ) + JR(L)C\/ <-‘1\ 4 —\. —I i\/“\‘/[ (7‘8)

) and wag subsequently

who considers forbidden

The main implications of the above result
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where E = Ex is in volts/cm. and B is in gauss. The
quantity (& /B) << 1 for the non-relativistic approximation

to hold and thug the shift cannot be very large.

(ii) The selection rule An = 0, valid for direct magneto-
absorption case (discussed in Chapter 5) breaks down in
the presence of a transverse electric field and the
transitions corresponding to An = 41, +2, %3, .... have a
finite transition probability. Such transitions will be

called electric field induced transitions<u3>.

It is quite clear that a strong electric field would give
rise to a large shift which is easier to observe experimentally.
On the other hand, a strong electric fileld complicates verification
of the second aspect of the theory by making very many transitions
possible. A weak electric field breaks the selection rule, An = O
only slightly (See Section 7.3) but does not give rise to a
measurable shift. Thus to test the two predictions of the theory
we require somewhat opposite experimental conditions. 1In the
next section we compare the theoretically predicted shift with
the experimental value observed 1in strong electric field. The

theory for weak electric field 1s developed in Section 7.3 and



5.

is compared with experiment in Section 7.4.

7.2 Comparison of the Theory with the Experimental
Results In Strong Electric Field

Some aspects ot the crossed field absorption theory have

been contirmed experimentally by Vrehen<ul) and by Vrehen and Lax(uu)
for the case of relatively low electric fields, and by otners<u5’u6)
at higher field values. For the present we would consider the
experiments involving large electric flelds, a discussion of the
weak electric field case will be postponed untll the next section.
The parameter of interest in determining whether we are in the
weak or strong field limit is y. The explanation for this choice

-28
g

ie¢ given in Section 12.2. For M = 10 m., we have

¢ ~2 x 103 &/83/°

where again B is measured 1n gauss and E in volts/cm. When y << 1,
we are in the weak field 1limit, and vy >> 1 implies the strong
field 1limit. This means that for a magnetic field of 1OA £auss,
we are in the weak field limit when & << 500 volts/cm and in

the strong field limit when & s> 500 volts/cm.

In the strong fields experiment of Vrehen“@> on Ge, the
values of y were In tre range 1.6 to 2.6, In Fig. (7), we have
reproduced the curve obtained by Vrehen for, n(%i X Eﬁ - n(o)

versus the energy of the incident radiation. The experiment was
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o—o—o0—6 £:2.79x10" Vem'
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Figure 7. Electric field-induced optical absorption
below the direct gap 1n Ge for crossed electric
and magnetic fileld case for B = 96kG, and for
various values of € (Vrehen(45)).
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conducted on a thin sample of germanium at 6° C in the presence of
a magnetic field of ~ J05 gauss and an e - ctric tield of ~ 10“
Volts/cm in the crossed electric and magnetic fields contigura-
tion. A resonance in the optical absorption, several milli
electron volts below the direct band edge in germanium, was

observed, which was not present when the electric field was

turned off or it it was parallel to the magnetic field.

From equation (7—8) the energy mw for the transition
between the zeroth Landau levels 1s given by
C2;2

Feo = E g + %E,T%CL% - 5 (m_y m, ‘ng' (7-9)

*
Thus if (pw - QC) is plotted as a function of (E,/B)g, straight

line should result whose slope is related to the value of

+ mv). Vrehen<u5) carried out such an analysis, obtaining
the value of pw from the experimentally determined energy of
resonance (Fig. ?) and found that the experimental points lie on
a straight line in accordance with equation (7-9) and from the
slope he estimated (m_, + m ) = (0.074 £ 0.015) m where m is the
electron mass. Taking m, = 0.036 m<32) one deduces

mo = (0.038 4 0.015) m which is of the order of magnitude of the

light hole mass 0.041 m<32). Thus there is a reasonable agree-

ment between the theory and the experiment.
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Thus the shift of the edge in the presence of crossed electric and
magnetic fields can be used as a toocl for obtaining the sum
of effective masses it the sample can stand high clectric fields
(~ 3 x 10“ volts/cm) without considerable heating. Since this
ig not possible in general, we develop a weak field approxima-
tion in the next section and show that the same information can
be obtained, in principle at least from a study of the optical

absorption above the gap in relatively low electric fields.

7.3 Weak Field Approximation for Optical Absorption
in Crossed Electric and Magnetic flelds

In the last section it was pointed out that in the presence
ot crossed electric and magnetic tields, the threshold for
absorption shifts to Jlower photon energies by an amount 5 MVS
and from the study of this shift, coupled with the knowledge
of the reduced mass, one can obtain the values of ML, M
separately. However, to obtaln conveniently measurable shifts,
fairly high electric rields (~ 3 X lOu V/cm) are needed. High
electric fields introduce unpleasant features in the absorption
spectroscopy, since the absorption lines are usually broad,
even in the zero electric field. In the presence of high
electric fields, many more transitions become possible and it
becomes more difficult to resolve the lines, and the net

effect of the electric field 1s then to wash out the structure

completely. Furthermore, the effect 1is hard to observe in
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high electric fields because of heating and possibly impurity
ionization at low temperatures where these experiments are
usually performed. Thus it is desirable to work with low
electric fields and somehow still obtain the values of me s

m . It is the purpose of this section to show that this is

indeed possible.

It will be shown below that for emall electric fields,
field induced trancitions (An = 1 k, k =1, 2, ...) have a
strength proportional to E;gk, so that only An = 41 need be
considered. Such field induced transitions can be readily

Ml)-

obeerved experimentally( Since, for these low electric
fields, the electric field induced shif'ts can be neglected, the
values of M., W, can then be obtained from the positicns of

A = O and An = 41 transitions.

Vrehen(al) has worked out the weak field approximation in
a rather simple way. He started with the exact result (7-6)
and for small electric fields i.e. y << 1, expanded it in powers
of YQ and retained terms of order YQ and lower. His approach is
quite correct but relies on the knowledge of the result (7—6).
We present below an alternative method which does not involve
the use of the result (7-6), but starts out with equation (7-2).
The usefulness of our method will become much more transparent

when we employ it to study phonon-assisted transitions in crossed

electric and magnetic fields.
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In Appendix (D) it is shown that for vy << 1

\ , 3
/2 Ve )

jﬂ’m () =~ énjn n (75)% <w+¢) N <E‘)“("\“/‘””T

V /e

, Y o
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Squaring this and retaining terms up to order Yg we have

L2
T (@) = &
2 n+J % (7-10)
+(X >3< > Y]YH—_L ‘\"(“‘“) nml-K"+L;\) “n’},,j
Substituting this in (7-2) we get, for the low field limit,
— < — Y A
W?(E ~ K (Fc) ) P <F<’O ) (7-11)
n,m
where
I 2 C . 22 )
Pﬂ’ﬁ/ = %_l - <’2—2‘—’l> ’ j g“"i"" + }&< 9_\\6 J (Sn)'n—l
(7-12)

RN e L IR

and En . is given by (7—8), the sum over n, n' is restricted by
the relation (7-3). Thus we see that 1n the weak field
approximation, Pn -~ is different from zero only for

3

An = n' - n =0, £ 1. The above result agrees with the result

obtained by Vrehen(ul).
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7.4 Results and Discussion

We have numerically plotted the weak field absorption
coefficient (7-11) for vy = 0.3. Two cases involving different
ratios of valence to conduction band band masses are considered,
namely ;X = 1 (Fig. 8) and ;X = 2 (Fig. 9). Since the electric
'ield inguced shift of the bgnd gap is small, the interband
absorption starts at pw = Eg 4 %h@é- Whenever ww 1s increased
by an amount h@é, there 1s resonant absorption because more
levels satisfying the An = C selection rule become accessible.

If there is no breaking of this selection principle the absorption
will continue to fall steadily when »w 1s increasing in the range,

E_ + (g 4 ;;)mg< wo < B4 (g 43/2) mwX, g = 0, 1, ... In Figs.

£ g ¢’
(8) and (9), the sudden increase in the absorption signfies the

'ield induced transitions An = +1.

It is clear from Fig. 8 that for equal masses (m, = mv) the
peaks lie at the mid points. For unequal masses (Fig. 9), the
peaks due to field induced transitions (An = 4 1) lie on each
side of the n = 0 line. Thus we see that the position of the
peaks (An = 4 1) in the range h@é depends upon the ratio of the
two masses whereas the geparation between successive An = O
lines 1is h@é, which involves the reduced mass. Hence it 1is

possible to deduce the values of m m, separately. The above

(41,44)

C)

theory hasc been supported by experiments on germanium.
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Vrehen(ul> has observed some additional peaks due to field
induced transitions which were not progent In the magneto-
absorption spectrum. However further cxperiments are needed
before a quantitative fit between the theory and experiment

can be attempted.



CHAPTER 8

ABSORPTION IN PARALLEI, ELECTRIC AND MAGNETIC FIELDS

8.1 Derivation of Parallel Field Absorption
Coefficient from the (General Result

Once again we can start with equation (3—18) and obtain
the absorption coefficient in the present tield configuration,
by setting E}X = 0, which implies that both Vd and 'a' vanish.
From Appendix (D), we have then Jn',n = én',n and with this

equation (3-18) reduces to

)

WER = R NS RGN

i :, o, NihA \ »‘1
=X ,

)

n

where

n

The quantum number n takes values, from O to Max ( o
w
C

whe re Eg(B) - B4 %h@é: as in the magnetoabsorption case. The

g
magnetic field gives rise to Landau level structure and band
shift, and the electric field results in tilting the bands and
making the phenomenon of photon-assisted tunneling possible.
Interband transitions take place between pailrs of Landau levels

subject to the usual magneto-optical selection rule An = O,

The above recult, ror the absorption coefficient was first
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(h7,48)

Recently the same result has

/‘49)

reported by Relne et al.

been obtained using a different method<

The expressiorn (8—1) is valid for photon energies both
below and above the direct gap. For »nw > Eg one obtains the
well known magnetoabsorption spectrum, slightly modified by
the electric field and this region will not be discussed any
further. However, the electric fleld induces absorption for
photon energies less than the direct gap (photon-assisted
tunneling), and the effect of a magnetic field on the absorption
spectrum, in this region is of some interest. Thig phenomenon
has been called photon-assisted magneto-tunneling in the recent

47, 48)

literature< for obvious reasons. The tunneling process
can be easily visualized by looking at the band diagram, (see
Fig. 10) where the solid sloping lines represent the conduction
and valence bands in the presence of parallel fields and the
dotted line shows the position when B = 0. A valence electron
of energy EV tunnels from ZV to Zm’ absorbs a photon and then
tunnels to ZC. The effect of the magnetic field 1s to reduce
the tunneling by increasing the effective energy gap. We
indeed show this, by deriving an expression for the absorption
coefficient in the region »w < Eg, both in the presence and

absence of the magnetic field.

If yw < Eg’ then En > pb and for —————— >> 1 we can use

hép



Figure 10.

Photon-assisted tunneling in parallel fields.
The sloping solid lines represent the conduction

and valence band levels quantized by the magnetic
fileld.
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the asymptotic approximation (4-3a) for the Airy function, when

(8-1) reduces to

23 “

Y](é‘n‘{‘%) - K oi* L (%r) exﬁ_fg(ﬁ:g;@?:.?)"f} (8-2)

i

Tn the 1imit of a small magnetic field, the sum over n in (8-2)

can be replaced by an integral; for B = 0 we get

“ '/2 ~) o
V2(53 ~ R& j L Eﬁmkcmﬂqtfé).ﬁ
i 8 4-t Vo, 4
where
Fam ko w5 ) (8-3)
FO -

This integral has been evaluated in Appendix E(1) and we obtain

i
o o, N ]
?(8) = R;§Zd%:733_ exp {_?g< é:w ) j (8-4)

This result for photon-assisted tunneling or Franz-Keldysh effect

is the same as we obtained earlier in Chapter 6.
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The equations (8-2) and (8-4) both predict an exponential
decay of the absorption coefficlent into the forbidden gap.
The application of a magnetic field parallel to the electric field
in the region tw < Eg (see equation (8-2)) reduces the absorp-
tion compared with the case when electric fleld 1is present alone

(equation (8-4)).

8.2 Experimental Verification

The optical absorption in the presence of parallel fields
in the region »w < Eg has recently been Investigated experiment-
ally(a7’A8). Fig. 11 is an experimental(a7) plot of the
quantity U(E{\IEZ no < Eg) as a function of photon energy below
the direct gap, for a fixed é? , and different values of the
magnetic field. It can be seen that the main effect of the
magnetic field is to decrease the absorption. This corresponds
to the increase in the energy separation between valence and
conduction bands with increasing magnetic field. The exponential
decrease of absorption with photon energy below the gap, which
is characteristic of the Franz-Keldysh effect, i1s still present

even at the highest values of magnetic field applied. This is

consistent with equation (8-2).
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Figure 11. Experimentally determined absorption coefficient
of germanium due to an electric field € = 2.8 x 10
V/cm. in the presence of a parallel magnetic
field B, as a function of pEotBn energy below
the direct gap. (Reine et al.(47))



CHAPTER 9

OPTICAT, ABSORPTION BELOW THE BAND GAP IN
DIRECT-BAND SEMICONDUCTORS

9.1 Urbach's Law

ntil now we were concerned with the absorption of light
of frequency w greater than that corresponding to the direct
band gap frequency and our theory predicted vanishing absorption
below that fregquency in all situations, except 1n the presence
of an electric field which tends to smear the otherwise sharp
absorption edge. However, the experimental study of the optical
absorption spectra has revealed that nearly all direct gap
semiconductors have finite absorption coefflcient for photons
with energies below that corresponding to the energy gap, even
when no external electric field 1s present. Further in most
polar semiconductors, the observed absorpticn tall for yw < E

2)

is temperature dependent and has the form

- Rl

b o exp ) G, (he r..?,i\ﬁ( (9-1)
r k2 //‘)

where E_ is the energy gap, KT 1s the thermal energy, and o

is a numerical parameter which depends on the material and on
temperature. Equation (9-1) is known as Urbach's law<2> and

(8,9,50-55)

has attracted congiderable attention .

In strongly ionic crystals like alkall halides and II-VI

compounds, it is well known that the Urbach tail is associated
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with phonon-assisted optical transitions. Several attempts to
explain this phenomenon in III-V semiconducting compounds have
only regulted in partial success. Below we outline briefly some

such attemptes.

9.2 Some Attempts to Explain Urbach's Rule

The study of the absorption edge has turned out, perhaps
rather surprisingly, to be quite complicated. This 1s because
in the narrow energy range around absorption threshold, various
processes like exciton absorption, impurity absorption, internal
electric fields due to charged defects<51> and phonon-assisted
transitions<6> can all play an important role. The exciton
and impurity states usually give rise to a relatively sharp line
spectrum, and thus cannot account for the observed exponential
edge. The internal electric fields arising from charged
defects can in fact smear the band edge and give rise to an
exponentially decaying absorption coefficient into the forbidden
gap. Thus the Urbach tail may be an internal analog of the
Franz-Keldych effect which was discussed earlier (Chapter O,

equation (6-5)).

r -
In a recent experiment<)6> on GadAs, the Urbach taill has
been interpreted on the basis of internal electric fields.
Although the results seem to be consistent with the hypothesis

of internal clcctric rieclds, there are several inherent
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difficulties with this proposed explanation. First of all, it 1is
quite hard to see why one should expect a temperature dependent
absorption coefficient. Secondly, for observing the Franz-
Keldysh effect by applying external flelds, one needs to apply
fields “105 V/cm., Now if the internal electric fields of such
magnitude exist (as 1s postulated in the above explanation) and
give rise to macroscopic effects, there 1s no reason why these
electric fields should not modify the absorption spectrum above
the edge. To our knowledge, no one has observed any effect of
internal electric fields on optical absorption above the gap.
Thus we don't believe that the "internal Franz-Keldysh'
mechanism i1s the correct explanation for Urbach's law but there
is no doubt that the internal electric filelds due to charged

defects will have some effect on the observed absorption edge.

A more commonly accepted mechanism ig one involving phonon-
assisted transitions. By a phonon-assisted transition we mean a
second-order transition through a virtual intermediate state
which involves scattering in momentum space by the absorption or
emission of a phonon in addition to the usual absorption of an
optical photon. In semiconductors like Ge and Si where the abgo-
lute extrema in conduction and valence bands are at widely
separated points in the Brillouin zone, the phonon-assisted
transitions are very well known<57). In such semiconductors the

absorption processes and the corresponding band gap are called

"indirect" and absorption is forbidden unless assisted by the



simultaneous emission or absorption of one or more phonons of
wave vector comparable to the difference between the wave

vectors at the two band extrema.

We are interested in direct band gap semiconductors,
where the extrema are at or very near the same point in the
Brillouin zone e.g. InSb and InAs. The possible existence of
phonon-assisted transitions in direct band semiconductors was
first suggested by Dumke<6>. It was subsequently shown that
absorption processes assisted by phonons of small or zero
wave vector are in fact allowed for a direct gap.(58’59’6o>
InSb(7’61> and InAs<60> displayed absorption below the band

gap which was consistent with the 1ldea of phonon-assisted

transitions in direct gap semlconductors.

It is now clear how one can use this concept to explain
Urbach's law‘in direct gap semiconductors. 1If we consider
only second order processesg involving the absorption of a
single (optical) phonon, the model predicts a threshold of
absorption which is lower than the threshold for direct transi-
tlons by an amount equal to one phonon energy. Since the
probability of absorbing a phonon depends upon temperature
through Bose-Einstein factor, the optical absorption coefficient
for phonon-assisted transitions 1s expected to be temperature
dependent. The absorption coefficient for one phonon processes

was calculated by Dumko<6> and we will discuss Dumke's result in
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detail in the next chapter. Higher order phonon processes
extend the threshold to even lower energies and 1t has been

9)

8 . . ) :
shown< ? that one indeed obtains an exponential edge if higher
order phonon processes are included. We will have occasion to

discuss this in Chapter 13.

Apart from the fact that phonon-assisted transitions can
provide some insight towards an understanding of Urbach's law,
there is some intrinsic interest in these studies. For
example, we will see in Chapters 11, 12 that the study of phonon-
assisted transitions in the presence of external static fields
can give useful information about the effective masses. We will
restrict ourselves to allowed phonon-assisted transitions in
direct band semiconductors in the framework of effective mass

approximation (E.M.A.)<1l).



CHAPTER 10O

PHONON-ASSISTED OPTICAIL, ABSORPTION IN
DIRECT-BAND SEMICONDUCTORS

10.1 Model of the Phonon-Assisted Transitlon Process

It was pointed out in the last chapler that phonon-assisted
transitions in direct-band semiconductors can shift the threshold
for optical absorption to lower photon energies and thus modify
the absorption edge. 1In this chapter we will compute the absorp-
tion coefficlient for such transitions using second-order time
dependent perturbation theory. Most results in this chapter are
not new<6), however, we derive them from a somewhat different
point of view, providing a useful introduction to the theory of
phonon-assisted transitions. Also the physical and mathematical
assumptions of this chapter will provide a basis for extending

the theory to include external static fields.

Consider a direct-gap semiconductors whose valence-
band maximum and conduction-band minimum are at the centre of
the Brillouln 2zone (E’: 0). Below the threshold for direct
transitions, the dominant electron transition will be a second-
order process involving the absorption of a single optical
phonon of energy kg and the absorptlon spectrum may be calculated
using second-order perturbation theory as was first done by Dumke<6l
Higher phonon processes make a negligible contribution in the

energy range where second-order processes are allowed 1f the

electron-phonon interaction is not too strong. This will be
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shown quantitatively in Chapter 13.

The two types of second-order btransitions which contribute
to the above absorption are shown in Fig. 12. 1In case (a) an
electron initially in a state 1 absorbs a photon of energy ww,
makes a virtual transition to an intermedlate state J in the
conduction band, and subsequently arrives in the final state f
via the electron-phonon interaction. In case (b) an electron
is optically excited from e to f rollowed by the transition
of the electron at 1 to the hole at é. In either case, energy
is conserved only in the overall process so that Ef - Ei = hw + kag.
The energy conservation principle need not be fulfilled in the
intermediate state because of the uncertainty principle. The
absorption therefore occurs via two groups of intermediate
states lying near the bottom of the conduction and near the
top of the valence band respectively. It is sufficient to
consider only processes of type (a), the calculation for type
(b) processes proceeds in exactly identical fashion and does
not change the shape of the absorption spectrum in any important
way. For example if the electron-phonon interaction in the two
bands are different, type (b) processes would simply alter the

scale. Thuse we will only discuss processes of type (a)

The phonons of interest have small wave number and only

phonons of small wave number having a significant energy are

those associated with the optical modes. Furthermore in ionic



Figure 12.

(a) (b)

hw+ko

Energy diagram showlng two different types
of phonon-assisted optlcal transitions.
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¢crystals in which we are interested the electrons interact
strongly only with the longitudinal outical phonons. For the
wavelengths of dnterest these phoror: tave essentially a
constant, energy kg, Although indirect transitions may occur
which involve acoustic mode phonons, av long wavelengths these
phorions have too little energy to take part In Indirect
transitions. The effect of higher bands can be neglected
because urcertainty in energy 1o large for such virtual

transitions.

10.2 Caloulation of the Absorptilon Coefficlient

In order to calculate the absorption coefficient we
need to know the eigenvalues and eigentunctions for electrons
in conduction band and valence band. It was shown in Chapter 2
that the wave function for the electrons In the band a is

given according to E.M.A.

.L)J <?> _ A (?> F (1’> 5 A - ( oY V) (lO—l)

- A0 oK A4
a(/M *
where u (?3 is the periodic part of the Bloch function of band

Qo
a at, K = O and p, the quantum number characterizing a state in

band a. The wave function given by (10-1) ie sufficient to
caleulate allowed trancsitions (see Chapter 3) in which we are

interested. For the field free situation, the gquantum number u
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is simply the propagation vector X and we have
RV

RS B 1 S b 4oy )
Fck o) f{/: A 1) Ceh

AN (10—2)
F\/—}Z ( 1>) = _‘L . ‘ Q( -

JV

For parabolic energy bands of opposite parity, the corresponding

energy eigenvalues are

and | (10-3)

where ES - E$ = E, iz the energy gap; m is the free electron mass

and a, a, are the ratios of m to the conduction and valence
band effective masses regpectively. The absorption coefficient

for phonon-assisted transitions in second order perturbation

theory is (see Chapter 1),

2 ¢ 5, , o

—2 7

R, k'

with

i, o LTl T
B M R

T
"Q/

(10-5)
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where Hl and H2 are the Hamiltoniang for the electron-photon
and electron-phonon interactions respectively, N is the
photon-number state and f is the phonon-number state. The
matrix elements involving photon-interaction were worked out in

detail in Chapter 3 where for allowed transitions we obtained

(see equation (3-8))

., * i
<C?7N‘1\H1IN)V—E> = iiﬂhl\i- <Pcv § (:C\;// F\/Z LY)

Substituting from (10-2) the expressions for the envelope

functions and completing the integral we have

<c‘5”, N-1]H | N,}vif> S ‘E—I”*N . <)> bgn i (10-6)

Yy O MG~

With the help of (10-5) and (10-6), the expression for the

absorption coefficient becomes

- ) i A =
77 (0) = 2 (uny e’ | (P f")\
o cm w1V
(10-7)

S(Ey+ €+ €0 —hro-k9)
4Uk\[f {(L+ﬁ,)€(t —Fo]l

<
1
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where
,:7 ! "
o { _ ’ '\

gv(yx) - %V

and | / (10-8)

(1( (k‘u> ~ O(( T\‘,‘ }\,-’-
i T2

and HE”E’ is the electron-phonon interaction matrix element.

In evaluating equation (10-7), 1t 1s necessary to know tne form

of the electron-phonon interaction. Two cases may be distinguished:
(a) optical phonon scattering 1n nonpolar materials or scattering
by transverse phonons in polar materials, and (b) scattering by
longitudingal optical phonons in ionic materials. 1In case (a),

the electron-phonon matrix element 1s essentially independent of

- -
kK and k' and we may put

c - o _l

2 €/
S N L R B

In case (b), the magnitude of the electron-phonon interaction
depends strongly on the phonon wave vector, a: and diverges for
a’—*O. If electron screening effects are included, the matrix
element again approaches a constant value for E’wave vectors
smaller than the reciprocal of the screening length. Throughout
this presentation we shall assume the form of HE5E>given by
equation (10-9). Dumke<6) has shown that this assumption is in
excellent agreement with the experiments on weakly ionic materials

—— —— . .
such as TnSb. Further the summations over k and k' in equation
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(10-7) can be replaced by integrations through the density of

state factors, namely

“/'_/' \ |
o N > j SN e (10-10)
A{/MJ ‘,17‘“/, N Xy 1\’ o
,‘é»

and similarly for the conduction band

[>'s]
— , 2 e )
> sV _%ﬁ;> e ) d 0D (10-11)
a ’ FEIESANE S
37 o
g

Substituting (10-9), (10-10) and (10-11) in (10-7) we get

[#.S]
'O (O) - A»m i_ \) J elc/Z (‘l:’/ ; l (:C(E,/)
e ( o l> lO 12)
7 - -
J €y 6( By + € B+ €, ()R 13)) de i
A — e 2
o [ e By o+ == }
where
2 2 WLy 2
Aoy el )
= ”fl.“ CT\G‘Y]O E9 (‘\/;‘w“\’ \ BT r‘l'
and (10-13)
— o(b
T - 1 4 2
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In the expression for A, we took w = Eg/h, The average
scattering probability is proportional to the number of
phonons in each vibrational mode through the Bose-Einstein
factor (ee/T - l)—l. Introducing

heo (kO By = A

s — b _ 4 s (10-18)

r

i

-

and carrying out the integration over QV(K) with the help of
the delta function in (10-12), we find
AN v,
A | oa- 2P
r[ (o) = o <4:-> A~ L7 7 5
6 (1) . [ L]

Notice that this integral vanishes 1if A = 0. For positive

non-vanishing values of A and d, the integral can be readily

completed to obtain

72 (o) — AL 2,__1_4 - i] for N> 0O
Q -

Thus there is no absorption until pw + kg > Eg The absorption

coefficient is zero at ww + Ko = Eg because the Joint density of
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states in the valence and conduction bands vanishes at the edges
of three-dimensional energy bands. Since 'd' 1s a positive
quantity for phonon-assisted transitions under consideration,
the magnitude of the absorption coefficlient for A > O is always

real.

We have plotted the absorption coefficient (10-15) as a
function of the incident photon energy. Two cases involving
different ratios of conduction to valence band masses are
considered, namely ac/av = 1 and ac/av = 2 (Fig. 13). The
absorption coefficient starts out with the value zero at
ho = Eg - kg and increases smoothly as pw 1s varied 1in the
range Eg - Kg < 1o < Eg' I higher order processes were included
the cut-off would shift to lower photon energies and some
absorption would persist for nw < Eg - kp. The infrared
absorption data on InSb<7) has been analysed by Dumke<6) with
the help of the above theory. The agreement is found to be
quantitative if in our theoretical expression (10-15) we choose
g = 290° K and ac/av = 5, Experimentally the magnitude of
ee/T - 1)-l

the indirect absorption in InSb closely follows an (

law, reflecting its dependence on the number of optical

phonons.
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Figure 13. Phonon-assisted absorption spectrum as a function
of photon energy for two different values of

ac/av.



CHAPTER 11

PHONON-ASSISTED MAGNETOABSORPTTION TN
DIRECT BAND SEMICONDUCTORS

11.1 Calculation of the Magnetoabsorption Coefficient

In this chapter we extend the calculations of the previous
chapter to study the effect of the magnetic field on phonon-
assisted transitions. Once again we congider a semiconductor
whose valence and conduction bands are 'simple', 1.e. the
bands are nondegenerate, have their extrema at X = 0, and the
dependence of energy on crystal momentum, }RZ is spherically
symmetric and quadratic. 1In the framework of effective mass

approximation (E.M.A.), the wave function for the electrons in

band o is (see Chapter 2)

oAt

_ - —
\Jylx/“m) = W Ty 0 (11-1)

If the magnetic field is directed parallel to the Z-axis, then

p stands for a set of guantum numbers (n, ky, KZ) and we have

from equation (2-39)

Fc’ ! (T) - _-J_—_,,_- C x.i» L ( b/y }j 4 ‘2/2 Z> @'y / Cl — /\)é ’.D
4 ,, Ly Lz ] ‘ \ | (11-2)
Fry = A expl(rdR,z) §, (e Ny

where n, the Landau magnetic guantum number, is a positive



108.

integer or zero and ) = é%- is the magnetic length.

The energy levels of the charge carriers are given by

(see equation (2-40))

F (v k) = ‘ %Ct“fiﬁﬁ‘%* A ﬁp“

AN

; . s (11-3)
E,Cngky) = B ok, (ny LZ)*R O, R

2m

We notice that the energies of the carriers are quantized in
the plane perpendicular to the magnetic field but remain
quasi-continuous in the direction of the fileld, thus forming a
series of 'one-dimensional sub-bands' (Fig. 1) Chapter 5. The
minimum of the lowest sub-band of the conduction band occurs at
an energy %achwc above the energy band minimum in zero field
and the maximum of the highest sub-band in the valence band
occurs at an energy %avhwc pelow the valence band maximum in

zero field, thus increasing the band gap by %(ac + av) o

it
]

C

(Fig. 1).

The T.andau levels are highly degenerate with respect
2

to the choice of the 'orbit centre', x = )k

o (The degenerate

v’
states differ from one another in the value of the third
quantum number kK , not appearing in the energy expressions). This

25 . .
degeneracy can be estimated( 5) by considering the system to be
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contalined In a box of sides LX, Ly, LZ. The number of possible

values of Ky in a small interval AKy is

L., ARy (11-1)

2M

The maximum value of Ky is determined by the requirement that

X the oruit centre lies inside the box i.e.

The number of states in a single Landau level 1s then using

(11-4)
> L
LAH A;ES, = léigfigf (11-5)

One frequently encounters statements in the literature that the

degeneracy per unit area of the sample transverse to the magnetic
field is given by 2 The meaning of this statement 1is quite
o
1A
transparent from equation (11-5).
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Possessing the wave functions and the energy eigenvalues,
the magnetoabsorption coefficient for phonon-assisted transi-

tions can be computed in a standard fashion (see Chapter 1)

c

2~
7 2 — 4—‘“7}0 L 4 _bA _
e L N AL 9) (11-6)

/(l"/l’

where

on" Ry = By Ry ) - RO

M., = 7 et s TR o >SN v (11-7)
— -

In Chapter 3 equation (3-8) it was found that for allowed

transitions the matrix element 1is given by

/C/'U"/7 N‘l( Hl r N7V/“> = JQW%N\ \/ l:v * L“ ) I t“,//,u

~N m rong N

and the overlap integral for the present case from (11-2) is

, 4 Lz/z. Y
Lifa, L (Ry= Ry Y ’ L kK502
Lo - L1 dy e x 1| dz e
/,u ‘, /(A — T_ L 2
| R ~lzp

[ B (x- Ak P, Ca_ Aky)

E 5\4’, 5»5;7 O

ko n“m



111.

Notice that the electron-photon interaction does not change
the magnetic gquantum number n. Substituting this value for

the overlap integral above, we obtailn

(b \> & iip (11-8)

<C/U/; N-1 \Hl( N9 \//,LL> = - %

The delta function in (11-8) enables us to complete the
summation over intermediate states in (11-7) and the expression

for the absorption becomes

—> 2,
nE) - 2y [(he B |
5

CmEi, w V |
. (11-9)
3 [l plamee i o)
| /M/U i < n —_
ot | £, (&) + (i-+“ )e Cn, k) tco]
where
Eﬁ<6> = Eﬂ + ,é’z <O<c+ O<V>—§'\(_QC (ll—lO)
and
2 2 )
€,(mky ) = X, 3§2}54_*_ nt(@(§
(11-11)

. s
2 !
Ec(ngkz) = ACENF Rz + h’F@cj
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Following the discussion in the last chapter, we
approximate the electron-phonon interaction by a constant

namely

< L N !
\HMN\ ~ i_/ P [L_ -4 (11-12)

To carry out the summations over Ky, K&, KZ, Ké in equation
(11-9) it is convenient to convert them into integrations
through the density of state factors. While calculating the
density of states, the degeneracy (il—5) of each state is

taken into account and we have

< V <‘z.,_m 32 (4P )

ya i 4774 ~y h? 2.
Ry kz o (11-13)
\/.-/Lev ( "o ‘\)Z,>
'\/ — s e s . L. . . ,,,\,7,{,,,‘.
) [\*f-,v(‘mfez) - M AV‘F\:(\,(} o
and
2/,
> V(s m---) (Lo )
T e U w oz
Ry» &y ~o o (11-14)
) l E . (rs Rz )
X e et TS
5 [ 6,,(”) R, ) — n’ V¢ J/



Substituting (11-12), (11-13) and (11-14)

T (B) — ___/L\,h- <n(“/ (‘/)
o (Czﬂ/-y o ] > AW

' o CLE:V Ny L
L. Yo+ AT )8 oy - Al

M,T)/

% E(. n /) \’\7/2,‘ 7 - )

where A and r are as defined in (10-13),

113.

in (11-9) we get

) . (11-19)

IRy,

/a-‘;
’ E

X J _,—J,,(‘i_‘ {. .n/" K;'> 6( EV(Y\ ’\’fé E l/\ N "/'\,'“ )> . ]
o

hev 4 kO By ED N
RN ho - Al s o 5
! (11-16)
Ao, = AL 5 v SR
M’ A vy Ny = b

and carrying out the integration over €c

the help of the delta function, we obtain

Y) (B) - fé\_..._. (, (ﬁéf: __)iv<>
o ( e<3/T 1 ) 4T

o’

o AE k) . o
KZ_;J Xﬂ Té;(ﬂ,hy)+ LK‘JZ [Qv(n,byj - Q. }l/"?' LL\_U)— A= €0 ky;)] Yo

(for fixed n,n') with
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The above 1ntegral vanishes if A(B) = a_  + a For

n n'’
A(B) > N The integral can be evaluated by standard
methods and the final expression for the absorption coefficient

is given by

T 1) 8
(11-17)
X>” i 2d® + AR+ Oy = A
Sy S Y5
L Ui (e~ aY(am s am - )7
with the restriction a, ta < A(B). This restriction implies

that there is no absorption until

o + kO > E,OCB)

Thus Eg(B) can be interpreted as the effective energy
gap in the presence of a magnetic field. The summation is over
all non-negative integers n, n' consistent with the above
restriction and the usual magnetoabsorption selection rule
An = 0 is not obeyed. Thus we would expect the phonon-
assisted magnetoabsorption spectrum to display the structure of
the valence and conduction bands separately. The result (11-17)
was first reported by Batra and Haering<63), the details of
the calculations and other implications have since then been

published<lo)”
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11.2 The Zero Field Limit

In the limit of zero magnetic field the summations
over n, n' in equation (11-17) can be replaced by integrations

through the conversions

and

<
I
L

N2

N

where x and y are restricted by the condition x + y <« A and

we have
A A=Y
Tilo) = A <L> [dzjj A 2l vy Y
) <€H/T _L) i {(cl\ x)(r{“\’ﬂ H)] /2.
AN é\:‘y
_ A ~“_<L\\ g _dy J R
(1) L (Avb-y)2 ) (i x %
A Al
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The integrals involved are elementary and the final expression

can be immediately written down

(0) = A __ {4+ 2t+s Ao (11-18)

This limiting result agrees with the result obtained in the

last chapter (see equation (10-15)).

11.3 Results and Discussion

We have numerically plotted the absorption coefficient for
nonzero and zero values of the magnetic field, using equations
(11-17) and (11-18) respectively. Three cases involving different
ratios of conduction to valence band masses are considered,
namely ac/av =1 (Fig. 14), ac/av =2 (Fig. 16), and a, =0
(Fig. 18). For all these cases the zero magnetic field absorption
coefficient ne(O) starts out with the value zero at pw = Eg - ka

and increases smoothly as yw 1s varied in the range Eg - kg < o < Eg'

In the presence of the magnetic field, the energy gap of
the material increases (equation (11-10)) and the absorption
remains zero so long as wo < E_(B) - kg. At ww slightly greater

2)
than E _(B) - kg, n . (B) suddenly rises to a value higher than the
& 8
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corresponding value of qe(O) at that point. As ww 1is variled in

the range Eg(B) - kg < nw < E_(B), photons can be absorbed by

g
carriers in low-1lying Landau levels in the valence band and can

be promoted to Landau levels situated at higher energies in
the conduction band. Whenever an additional Landau level of the
conduction band or valence band 1is permitted by energy conserva-

tion to take part in the absorption process, 71 (B) Jjumps

8
discontinuously from a value below ne(O) to a value above

ne(O). Usually a' (= «a nw,) 1s of the order 0.1 kg or

C,V C,V

0.2 kg and one would see several steps in the range
Eg(B) - kg < o < Eg<B>' (In fact we will show that the necessary
condition to see phonon-assisted magnetoabsorption is that

Qa Vhwc < ke.) We have also plotted the difference
3

@}

[ (B) - ne(O)] = Ane(B) for the three cases discussed above

g
(Figs 15, 17, and 19).

It is to be noted that the absorption curves in Figs.1l4 -
19 display the Landau level spectrum of the valence and
conduction bands separately. This is 1n contradistinction to
normal direct interband absorption, which only involves the
reduced mass for the two bands because of the selection rule
An = O. Thus if we extend the usual magneto-optics experiments
to the region below the direct gap, the conduction band and
valence band masses can be determined individually. In the
next section we suggest the experimental conditions for studying

the phonon-assisted magnetoabsorption.
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Figure 14, 1Interband absorption spectrum for B = O and B 4 O
as a function of photon energy for the case « /o‘v =1
and Eg(B) = Eg + 0.2 kag. ¢
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FPigure 15. Difference of absorption coefficients
[ne(B) - ne(O)] = Ane(B) as a function of photon
energy for the case ac/a.v = 1.
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Figure 16. Interband absorption spectrum for B = O and B % O

as & function of photon energy for the case ac/av = 2
and Eg(B) = Eg + 0.15 kg.
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Difference of absorption coefficients
[ng(B) - ng(0)] = Ang(B) as a function of
photon energy for the case ac/av = 2.
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Figure 18. 1Interband absorption spectrum for B = O and B % O
as a functlon of photon energy for ay — O, Eg (B) =
E, + 0.05 kag. A' = A(ct.v/ac)3/2 r2, where A is given
by equation (10.13).
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11.4 Numerical Estimates and Practical Considerations

In order to study the magnetoabsorption spectrum discussed
above, the semiconductor chosen must have a direct band gap
because we worked out the theory corresponding to this case.

A necessary condition for observing well defined structure 1is
that the spacing between the Landau levels be greater than the
broadening of the levels and therefore the product of the
cyclotron frequency (involving the effective mass for the band
under consideration) and the scattering time (r7) must be
greater than unity in each band. If this condition holds only
for one band, the structure of the other band will not be
resolved. Below, we restrict the discussion to the conduction
band, similar considerations are also valid for the valence

band.

The use of low temperatures to increase t should clearly
be advantageous for observing detailed structure. However, we
have shown that ne(B) is proportional to the number of phonons
present [ee/T - l]_l and hence decreases quickly at temperatures
below the Debye temperature , resulting in a negligibly small
absorption at low temperatures. Hence, it 1s necessary that the
condition AW, T = W,,T > 1 Dbe satisfied at temperatures where a
significant absorption below the energy gap is observed. A

emall effective mass and a large magnetic fileld will, of course,

help to achieve this condition. However, the magnetic field must
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not be so large that Qo kg, since no oscillations will be
observed for fields larger than this value. The maximum number

of osclllatlons that may be seen is kg/a, mw, .

Materials which exhibit normal interband magneto-
optical oscillations above the band gap and an Urbach absorption
tail below the band gap are potential candidates to display
phonon-assisted magnetoabsorption below the band gap. InSb
and GaAs are 1in this category and their relevant properties
along with the suggested experimental conditions are listed in
the Table I. It appears that both substances should display the

(10)

structure predicted in this chapter.



TABLE I

12

Properties of InSb and GaAs

6.

Property InSh Gals
Energy bands Direct gap6u Direct gap65
n, = -OE:_ 0.013m® 0.078m°7
\k; 0.02L evP8 0.036 ev??
2From mobility data) 5 x 10713 sec. 4 ox 10713 sec.

at 300° KTO at 300° K71

6w, = W, 1.3 x 1073 gec. ™t 1.1 x 1013 gec.”?
at B = lOu G at B =5 x lOu G

e ————

@ W, T o= W7 ~ 7 at43OO K and ~ 5 at 3004 K and
B =10 G B=5x10 &

" k . ! N B 4

e/achwc E'E—ﬁ— ~ 3 at B =10 G bat B=5x 10" @




CHAPTER 12

PHONON-ASSISTED ABSORPTION IN CROSSED ELECTRIC
AND MAGNETIC FIELDS IN DIRECT-BAND SEMICONDUCTORS

12.1 Calculation of the Absorption Coefficient

The analysis in the presence of crossed electric and
magnetic fields proceeds in a manner very sgsimilar to the
magnetoabsorption case in principle, but the actual computa-
tion is enormously tedious. Some additional assumptions will
be required and the weak electric fileld approximation will be
invoked. The validity conditions and the experimental
implications of such an approximation will be thoroughly

discussed.

When an electric field E': (&, 0, 0) and a magnetic field
B = (O, O, B) are present the wave function for the electrons

in band a is given by (see Chapter 2)

/ )

where uao(?3 is the periodic part of the Bloch function of band
a at ¥ = 0 and the envelope functions for the conduction band and

the valence bands are,

/

- Lk k) N
F“/(” s = @nf (x—nby VU ) (12-2a)

- ~ P
g f

and
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~ P /tkmf) B .
PSP R N o (e a by ) (1e-2n)
leyL,
& . .
respectively. Here Vd = 5 is the drift speed in crossed

electric and magnetic fields and pu denotes a set of guantum

numbers (n, Ky’ kz). The corresponding energy eigenvalues of

the carriers are

‘. )
- / Q . N 1\;"' \.'w Yt i )
Ly = By (o B ey
(12—3>
0 z N . vyt .
F\/ (/U) - EV _ ('y‘ ¥ 1 ) (Jt-‘.‘r! o(v, ‘F\r)L'Z‘ J —l} )lw \/J ¥ l\’J \J"L

The absorption coefticient is given by (Chapter 1)

. 2
VCEXRED = ATNe N M S(E M Fivs o k) (12-14)
o cNhYV . :

t, u’

where

M, = Lot e dan Ny g

Py =B, 0 —=ho

PA—
/“ Va4



129.

The electron-photon interaction matrix element is given by

(see Chapter 3)

N , : v
t\,] , \/,' t \/\ » B < :‘V'—;_ﬁwl\hl“ (/ \\‘ - < > \
S N loang R

<f7‘% N-4 |

where ftor the precent case the envelope tfunctions are given by

(12-2) and the overlap integral is then

{ " - v’
‘L/u”}\ = } r‘ o Cv ) rr\/u (v . Ly
\l\.‘v i
b LRy ) ;.
i ,‘L. i1‘ /13 o : N |‘I '
I l ’
o 0 N
7
‘ xa/\""\“ | C A N -
X S ?X\_, < oy > g (\ | N o(>
- 8 l/( " b, é\\“/ o E ESM\]// ( ) d 4 \ { \ ‘ \} /il L
- /’/ \'\ i \ " [
- l\ kf, b L <k v ~

where

- S o
kJ"i i) = ) @HU\ Coop el (12-6)
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and

Hence

. - - Sy = ’\ ) _
<C_/u_”? N-J l HJ\ R \/,4'\ - 7 \,:l,i\h_N S P \R "’K \_)_,',g 9 (1e-7)

)
,/
7

Substituting (12-7) in (12-5) and simplifying we obtain

2 P W N
I S A R LR L
i <€9/,T o ) e

Y

;"7 :[ rr//, I (“(k /‘

SoETITIrL, N , N ik - . ! 1
- [E(.%,m-) F el ke T PO G B O L L \‘f
" - J Lo ) - -

where we replaced electron-phonon interaction matrix elements

by a constant and

(ExE) - T T G S A S MV (12-8)
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If we set
Fg <~. _é’).)(-é’> —" ,.<l "‘\ : 5 « . 3 T'}\‘» , P : ‘ 1 (12_9)
then
I I N /| \ o (12-10)
{7 __\ ;} AN )].J‘ \/
where

R4 4 -~ a ‘ ) ’ / z
A e e A S (12-11)

We cannot proceed any further until the summation over n"
is completed. If we substitute the closed form of Jn”,n(a>
(see Appendix (C)) in (12-11), it is impossible to sum the
resulting expression over all values of n". Thus it is
necessary to introduce some approximation which would enable us
to simplify (12-11). It is at this stage that we specialize to
the weak electric field case. The d.c. field will be called
weak when the dimensionless parameter %(E y) << 1. The validity

of this criterion is discussed 1n Section 12.2. 1In the remaining

portion of this chapter we restrict ourselves to the case yv << 1.
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When y << 1, a power series expansion for Jn” n(a) gives
3

(see Appendix (D))

ﬁfh \/ 7 N I s /« / 4 4 ’
(U)ol e (e ) 0 (12-12)
Y N2 )
+ < H V‘\ll. \/W‘T_L ) (S \\l ¥y~ (v” \ S \ >
NS
Substituting (12-12) in (12-11) we get
3 N+ 1 a2 N )
+ N } N -
xS/ = y_::L_-,,.v.m,_a, + (%) 7 - ( < J — T EREE ’ \
D+ M LoD Ol X Oy
t/ , N
. R
~2 (n4 7, ( ET ) >
G(ER o |
2, [RAC TN SN ’A DR} Cny o , &'\

-~

Squaring this and retaining terms up to order Ya, we obtain
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T~ 1
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1 2 j&ﬂ'r?)w_*_J_) Joncn 1

(b4 J C;', R 0( ) (J/ 4 (- >(‘,\> .) _f
Replacing D by the complete expression (12-9) and then substi-

tuting the above value of ]S|2 in (12-10) we get

2. . =
M7 = 2N W’v,i A
. ( (: /r J ) (L) no \/ yz «ti{.
L3 - ,_@l_i oy .
L GRS VD) Lot b)) %
s (07 y o (ned) I
'»,/} <¢ i RO ) R NI R
2 f(r\-;(—w—u—;;l;\. ) oM 1)
T T )\T—-?\ 2
_[( AR )Z;TI.) ‘,I(H)\ V- I j\
+ - - 4 - e
t(t+ J\&n) Lot~ ‘ 1
= 2ThNS ('-}CEL;§Zrl R (12-14)
- <(“{ /7 . _‘ /‘ ,4,‘:.“ D) I'}ﬁ" \/’A Y < J '
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where

€ v oL )\;‘. ) - /,7<v 3 }_\)n)zﬁ | I h (% c 3
/

/ . \, 2 L JJ ]
eg C ”/) kz) o ERS j 1\. hf - H/ A\\ (O( i )
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= - = B 3
ArExey o BlExp) b o (12-15)
Y

t = 6 NV ( ‘)’l) ,"{L ) ,*A w)\ “ % X B > 9
/ . -

Ao = ED - h

Y M <

Substituting (12-14) in (12-4) and replacing the summations over
!

ky, k&, kz, kz in (12-&) by integrations, and taking into account

the density of state factors (see equations (11-13) and (11-14))

we find

7 (ExB) = A __ C(H AL
2]

(\?é.)/’v\' — 1 ) ATT
<3
X [ 3D e (12-16)

WA -[L) é Evinskz) — (., ‘e
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where we set

%z<\ N SEDERS F;€%x<€) o szgva 5

(12-17)

other symbols have been defined previously. Our next task is
to complete the many integrals involved in equation (12-16).
This 1s a rather straight forward but a very long process. In

order to save us a great deal of writing we set

2 (xR
- l N X b ) + \1 . 5
(12-18)
Gz A ERED) AR Loy
In terms of P, and Q, the final expression for the absorption

coefficient becomes
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— — o
with the restriction a + a , < A(E x B). This restriction

n t

implies that there is no absorption until

T oy kRO >, TRk D

Thus Egﬁ}%x:ﬁﬁ acts as the threshold for absorption in the
presence of crossed electric and magnetic fields. The effect

of the electric field is to reduce the threshold for absorption.
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If in equation (12—19) we retain only the zeroth order
term in the expansion parameter Vs the absorption coefficient

to this order is

ey , s
R LA )
o A &
< # ) (12—20)
3 > l K‘>+A\txb)+ U= T
* ' (LX) -+ /\ o \'"- (1 >7‘/)
N o \ Ln { - <y -+ AN ) v
Yr;;, i( WEnE) + >(A\,,.><k) (

On comparing this with the phonon-assisted magnetoabsorption
case (equation (11-17)) we find that the only effect of the

—_ — .
electric field is to replace E_(B) —*Eg(f X B). Hence if the

g
electric field is very weak such that the zeroth order term is
most dominant, the full effect of the electric field 1s to shift
the threshold of absorption to slightly longer wavelengths. The
whole structure will shift to the left without altering the

magnitude of the magnetoabsorption effect. Notice that the

magnetoabsorption coefficient 1s readily reproduced from (12-20)

if we let & — 0.

Higher order terms in y tend to break the selection rule
An = 0 and make the transitions An = 1, #, ... possible.
However this will only change the magnitude of the phonon-

assisted magnetoabsorption and 1is not expected to produce any

additional structur~, because electron-phonon interaction does

not obey the An = 0 selection rule anyway (see Fig. 20). Such

an effect of the electric field can be fruitfully exploited in



Md 988D 9Yy3 J0J ABasus ucjouyd jJo
)

L wnagoads uopzdaosqe pueqQIsquUIl (g2 J3InBTJ

*h*0 = 4 pus Ap

6 8 S
i ¢
) U pue (4) (g x3

uotzoung 8 s® (Q
©

9% z°0- 63 My 0%90-63 0%-63

0% -(9)63 7599
0%-(gx3)P3

-

(0)°u o—o
() -o—o

S 50
(gx3)l

U9 Lseo



139.

identifying the magnetoabsorption structure because an
application of the electric field shifts the magnetic structure.
Tn Fig. 20 we have numerically plotted the absorption coefficient,
in the presence of crossed electric fields (equation (12-19)),
magnetic field alone (equation (11-17)) and no field at all
(equation (11-18)), for the case ac/av = 1. As stated above
neC§ x-§> is indeed shifted to the left (lower enegy) and the
magnitude is different from ne(B). As the structure is very
similar to ne(B), we do not draw any more figures here and one
can refer back to the previous chapter to visualize ne(gfx 33
curves for other ratios of g and o, - The experimental
considerations and the choice of material etc. discussed in the

last chapter are also valid here.

12.2 Weak Electric Field Criterion

Tt was stated above that the d.c. electric field will be
considered weak if the condition y << 1 1s satisfied. Since we

can write

¥y - €ZA

0 (12-21)

the condition y < 1 physically implies that the energy picked up

1
by the carriers, over a distance of magnetic length ) = C%%)Z

from the electric field should be small compared with the

eB

splitting of the levels. (Recall that Q. = ME)' Thus it appears
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that v is a reasonable parameter to choose. Let us see what
electric fields are implied by the low electric field limit.

We know that

N . . - © . .
where B is measured 1n gauss. If 7. 1s measured in volts/cm.,

‘'we can write

Choosing M = 10_28 gm. We obtain

:5 S
X oo X 10O

For a magnetic field of lOu gauss, we are in the weak field

limit when & << 500 volts/cm. Thus to observe the effects
predicted in this chapter, one should not exceed the 500 volts/cm
limit. However, small effective masses and higher magnetic
fields will permit still higher electric fields, which would

eventually be limited by the current density that a given

sample can tolerate.



CHAPTER 13

HIGHER-ORDER PHONON PROCESSES AND
VALIDITY RANGE OF THE PERTURBATION THEORY

13.1 Introduction

It was shown in Chapter 10 using perturbation theory that
the processes involving the absorption of one longltudinal
optical phonon of energy kg produce an absorption coefficient
which 1s non-zero to one phonon energy below the edge. A
process involving n phonons would extend the threshold of
absorption to n(ksg) below the edge, but would not readily
lend itself to a perturbation treatment. Thus to investigate
the absorption in the region many phonons below the edge it
is essgential to use a non-perturbative treatment which contains
the electron-phonon interaction to all orders. This calculation
has recently been carried out by Dunn<8> and his result for the
absorption coefficient contains energy and temperature dependences
which are in agreement with Urbach's law (see equation (9-1)).
No such calculations exist in the presence of external fields

due to mathematical complications.

In the previous three chapters, we calculated the
absorption coefficient for one-phonon processes in the energy
interval, Eg - kg < W < Eg in the absence and presence of
external static fields using perturbation theory but did not

take into account many-phonon processes. Since in a real
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crystal higher-order phonon procegses are always present,

it is not obvious as to why the perturbation theory should be
applicable even for photon energies pw iIn the interval

(Eg - kg, Eg). In this chapter we wish to show that for weak
electron-phonon coupling constant such as in InSb, the
perturbative and non-perturbative calculations give identical
results in the energy range Eg - kg < w0 < Eg and the
contribution of the higher order processes can be neglected
in this interval. This will be done by comparing the
numerical values of the absorption coefficlient in the absence
of external flelds obtalined by perturbation theory with the
values obtalned through a non-perturbational method in the
region Eg - K < o < Eg for different values of the electron-

(62)

phonon interaction coupling constant .

In the next section we state the theoretical expressions
for the absorption coefficient calculated by two different
prescriptions. The first method is a perturbative one which
takes into account only one-phonon processes, the second
being a non-perturbative method takes into account many-phonon
processes. The actual numerical comparison is carried out in
Section 13.3. We find that for the (weak) interaction involved
in InSb the two methods give essentially the same results 1n
the energy interval Eg - Kpg < 0 < Eg' For stronger interactions

the perturbation results are nowhere applicable.
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13.2 Expressions for Absorption Coefficlent

It has been shown by Dunn<8) using a non-perturbative
method that the phonon-assisted optical absorption coefficient
which contains the electron-phonon interaction to all orders
is given by

,]AN.P. ) o o T 1
W) = ALY M| e T e 13-1
/e ¢ J J Y [y(u e ) Ea—-ho + Z(“wl(_—ﬁw)} ( )
O

s

where m,, m, are effective masses and Moo Hy are origins for
measuring energlies of conduction and valence bands such that

the forbidden gap Eg = pe topye In deriving (13-1) the group

of intermediate states lying near the top of valence-band have
been considered (see Chapter 10 where such states have been
called type (b)). The superscript N.P. on 7 indicates that it is

the non-perturbative result. The constant D 1s given by

. —_— N2 . /2.
D :<:_l____ 6’)(*)“/‘@” (~ c)_ (13-2)

™/ R, By Mm%

)

. 8) .
and the self energy zJaccordlng to Dunn( ) is
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1
,
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where F = 1/(ee/T - 1), 1s the Bose-Einstein factor, 82
determines the strength of the electron-phonon interaction, n,

. ~ . . hnd . 3 .
is the refractive index, Poy 18 interband matrix element and

g stands for the unit polarization vector of the photon. It
has been assumed in writing (13-1) and (13-3) that yw ~ Eg >> kT

and E ~ By >> KT.

It is convenient to rewrite equation (13-1) in terms of

a dimensionless parameter, p and we obtain

(2 N)

Vi .
[ X Ll s 1:‘\;\/ > + SJ 4+ U L SD> ( 3 )

0

N.;:(, _ CQ
?Z ()

where
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() OB~

The perturbation expression for the absorption coefficient
was obtained in Chapter 10, equation (10-15), by considering
the group of intermediate states near the bottom of the
conduction band (type(a) intermediate states). The results
valid for type (b) intermediate states can be obtained from

(10-15) by interchanging a, *oa, (or m, «—»mv) and thus we

obtain
FJ L k—\
Doy = (&) B 2 ]
R Choo (ke <0 D7 (ha [ i
=4 . ~
(13-6)
) {\ L 1 \f) ‘ ,'\ R N L o }',J

).J ______:_,}](k) Fﬁ ~ f'\_("j 1 4)'\/(\ A {Z_(j j /:
+ f“ Y

In the notation of the present chapter, we can wripe (13—6)

in the form



146.

P 4
(w) = . Q G} _n —— F
o (e )
(13-7)
29
ot ) (i,
- m vac - >3
g T NI
where the coupling constant
2. 3 Yo
q = b fﬂf“) | (13-8)
2 kO :

It can be shown quite easily that in the limit G — O,
equation (13-4) reduces to equation (13-7) and the perturbative
and non-perturbative results are identical. However in any
real material where the Urbach tall is seen experimentally, the
ébupling constant is not zero and then the two results may differ
bonsiderably, In the foilowing section we compare (13-4) and

(13-7) for different values of G, choosing InSb .as an example..

13.3 Comparison of n%‘Pf(w)’and ng'(w) for Different Values of G

N.P.(

We have numerically evaluated the values of ne w) and

P. - o 1 . .
My (w) for g =T = 290° K, m_ /m = 35 (which is very nearly the

~ situation in InSb) for different values of the coupling constant
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3. For InSb, the value of G lies in the range 0.01 to 0.03.
This has been estimaﬁed from the experimental data(6) for the
absorption coefficient,\the E?-'?Ttheory has been used to

‘ (72)

estimate the interband matrix elements For ease of
comparison we have plotted the guantity ne/QG vs hw. This
gives.just one curve for ni' since ni”/QG is independent of G
(see equation (13:?@3 whereas n§°P’/QG depends on the value
chosen for G. We{see from Fig. 21, that for realistic values

of coupling constant for InSb, the perturbative results and

non-perturbative results are hardly distinguishable.

In Fig. 22 the quantity

N.P. R
Te (o) =7 T, 100
7@N'p'('koo - Bg- 0-1 k@)

has been plotted as a function of w for different values of G.
This quantity is a measure of the percentage difference between
the two results normalized in terms of the non-perturbative
value of the absorption coefficient at »w = Eg - 0.1 kg. For

G < 0.06 the difference between the two results is negligible
and we have not shown the corresponding curve. For G > 0.06
the difference between ng’P’ and nz° becomes much more apparent
and for G ~ 0.1 the two results differ by 15% at some points.

The perturbative result goes to zero at yw = E_ - kg and the

g
norni-perturbative result drops to about 1% of its initial value

even for G = 0.2 which is ten times larger than the value of G

[
o

il
e

il

o
I
|\]m\|1lll‘
i
[
LT

&
b



Ng
QG

10

05

0.0

148.

Figure 21.

| .
Eg

Absorption spectrum calculated using perturbative and
non-perturbative technlques as a function of photon

energy for different values of G. For G < 0.05, the
two approaches give identical results,
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201
100.{“8NP'(W)‘HOP'(W) }
neN-P(hw= Eg—0.1k6)
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Eg- k@ ‘D\ Eg
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—o— G=020
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-20|— —_— 0.06
5
— 40—
Figure 22. Percentage difference between non-perturbative and

perturbative values of the absorption Cgefficient
normalized in terms of the value of NePo gt o =
E - 0.1 kg, &8 & function of yw for 8 different

values of G.
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for InSb. Thus the perturbation theory is strictly valid in
the energy range Eg - kKg <« 0 < Eg'

13.4 Conclusion

It has been shown that for values of the electron-
phonon interaction coupling constant G < 0.05 the perturbative
and non-perturbative results are In excellent agreement with
each other and we are justified in ignoring higher_-order
processes in Chapters 10, 11 and 12. For InSb, G = 0.02 and
we would expect that other weakly lonic compounds also fall
into the above range. However the experimental data for
absorption below the gap 1s not available for many such compounds
and without this we cannot make reliable estimates of G.
Strongly ionic materials l1ike alkali halides may show considerable
deviation due to large coupling constants involved. Such
conclusions have been arrived at earlier in the literature by

(62)

us.



CHAPTER 14

DISCUSSION AND CONCLUSION

During the entire presentation we calculated the absorption

coefficient ror direct allowed transitions and for phonon-assisted

transitions in the framework of Etfective Mass Approximation.

table of the cases discussed, along with the reasons for not

discussing certain fields configurations is shown below.

TABLE II - Summary

Absorption Coefficient
ffor Phonon-Assisted

Transitions

External Static Absorption Coefficient
Fields Present tor Direct Allowed
Trangitions

NO Fields Chapter 4

E’ Chapter 5

< Chapter 6

—

g x T Chapter 7

'(é: x B Chapter 7
(weak )

- | B Chapter 8

? and B Chapter 3
(arbitrary
orentation)

Chapter 10
Chapter 11

Due to smearing of
the edge this case
is experimentally
uninteresting, so
not discussed.

Chapter 12

Chapter 12
Experimentally
uninteresting (see
= field case).
Mathematically

involved, not
illuminating.
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The phonon-assisted transitions are responsible for tfinite
absorptlon coefficlient for w < Eg and give rise to the Urbach
tail in the absorption spectrum. The expression for the
absorption coefficient for the phonon-assisted transitions
involving many phoncns in the absence of external fields has
been reported in the literature. The calculation involving
more than one phonon in the presence of external fields is
extremely difficult and has not been attempted. In our
presentation we included only one phonon-processeg in the
presence of external static fields, but showed rigorously
that the effect of higher-order phonon processes 1is
ngligible in thig region of the absorption spectrum, provided

the electron-phonon interaction is not too strong.

We have shown that the effect of a magnetic fileld on phonon-
assisted transitions in the energy range Eg - Kg < hw < Eg
is to make the absorption oscillatory in nature. 1In contrast
to the normal interband absorption coefficient, the phonon-
assisted magnetoabsorption spectrum reflects the Landau level
structure of valence-band and conduction-band separately. The
application of a small electric field shifts the magneto-
absorption structure and can assist in identifying it. Such
effects may be observable in InSb and GaAs at room temperature
by applying magnetic field =~ 105 gauss and an electric field

~ 500 volts/cm. We have also predicted the existence of

magnetic surface states in semiconductors and have discussed the
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experimental conditions under which these may be detected.

The structure in the optlcal avsorption coefficlent
(not involving phonons) due to external filelds has been tested
experimentally and hag provided us witn gquantitative data for
the band parameters of solids. The structure in the phonon-
assisted absorption coefficient due to the effects of external
fields, predicted by us, hasg not been so far confirmed experi-
mentally. 1t is hoped that such experiments would be conducted
in near future and would lead to a slightly better understanding

of the band structure of solids.
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APPENDIX A

EFFECTIVE MASS APPROXIMATION WAVE FUNCTIONS IN
EXTERNAL FIELDS

TLet ug start with Schrodinger equation for a particle of
mass m, charge 'e', in a periodic potential Vb(?ﬁ, a constant
magnetic field of magnitude B in a Landau gauge, K; = (-By, 0, 0),

and another perturbation U(?3 due to a constant electric field:
- — — ) e . 3 - =
[ < b ¢ A,)('«"‘)) + () 4 U(HJWH) - B (A-1)

In the special gauge, the Hamiltonlan of equation (A-1) can be

written ag follows

(O> 2 ) L,

- fis ?52>L“ ) ;
e 1T (B v (B2 YT - 2
where s = %% and H<O) is the Hamiltonian of the electron in the
periodic potential (Bloch Hamiltonian). The eigenfunctions of

H<O) are the Bloch functions ¢ > and the corresponding eigen-
valueg are EG(EB, a labelling the band and ETwandering through

the first Brillouin zone of the crystal. Thus possessing,

HY B = B, B, (a-3)

R

we want to solve lcr wave function y, In external field, from the

Schrodinger equation
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—
|
i
o=
I
=

In order to proceed further, 1t 1s necessary to choose some
complete set of functions in which to expand y. Here we use
, : . (11) . . .

the Kohn-Luttinger representation and accordingly chooge

- for the complete set the wave functions,

where u (?3 is the Bloch function at the band edge which has

- . kvad - .
been chosen for convenience at kK = 0. An expansion in terms

of the functions (A-5) may be made in the form

1 < ( -y PR . Lk
\Ef o= J PN K W, e (A-6)

Substituting this back into the original equation (A-L), one

. 1) ., .
can immediately derlve<1 / the equation

.;:‘)' - l-k// ( . i‘.’z i }1 } < L/’> ;LA\ e ‘\ /] - '! /‘\"c _» ' ‘,)
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where

(G RIHIGED = H(E: PEE) SR

5
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m L 2 Q\J zm 2 kf J
S j N — / ., ,\ K (A—‘8>
L2 Fiks b, N(k-k) 4 R Loanle L)
R, PRl 2R
,«.1) — ’ ,__),, N
L ok R UGH |, R >J
[n the last expression, EZ is the energy at the bottom of
band o and
_)3 _ (;,‘,Tr)i\ ? u—x— (?) /-F V2 > u (;_*7) d-? (A—9)
[y e =0 K‘I‘ 4 Pye

Q

where ) 1is the volume of a unit cell and the integration is

over a unit cell.

The equation (A-7) is not yet of the desired form, since
it still contains terms involving E;aﬂ’ which represent a
coupling between bands. (The requirement, that the fractional
change of the perturbation potential U(?3 be small over the dimen-

sion of a unit cell, makes U diagonal(11> in the band index.)
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The nondiagonal terms are proportional to either kK or s. In
. | -1 T _
either case these are small because k and ) = VgR are much

larger than the interatomic spacing when k ~ O close to the
band edge and R ~'J_Ou - 105 gauss. Now in the effective mass
theory one works correctly up to order k2 only, so by making a
sultable transtformation A, can be made diagonal to first order

in k and %ﬁ and the cross terms neglected. This trancsformation

is glven by(ll)

e EAS I ES]

ATy = ) AR e B, (a0

Ak’

The operator S 1g chosen such that the equations for the
B a(E3 contain no interband elements. This, along with the

Y .
assumption that we are considering wave function for electronsg
in band a only, implies that

%Xd <C ) ~ B(XO((E> 55/\ (A-11)

substituting (A-11) in (A-10) we get

[ K S 150K ]
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where(ll)
(RSS2 B (s faw)
m [ E:’ F;}
| . (A-13)
b S (K=K) _Leb b, ¢ (K=K
\ ’ c% ~ Ok,

To first order in S,
/ '_—7/ ; ‘? ~ ~ Vﬂi,/.4 v . ‘)»/ g
pxpl@x | S| K >j ~ Sd,,o(c%(iu U LGRS D
and hence, the equation (A-12) becomes, using (A-13)

AL (R o b, B (B o RG-S

X
- ] m el - E ]

gl ) (eB p AR B (Fy oS5O0
x[ k B (kD ,_<LC§; Bu) B(e) a)%}

(A-14)

- . . .
The integral over k in the last expression can be carried

out by partial integration to obtain
” Ak, dk, §(k-k.)E(R- ?})j dky By, (K i Ny =Ry

2B (K1)

.
H
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Thus equation (A-114) becomes

RY - N, ¥
AL By = N B GRS
£ O, { = > ‘ .,
4 L 'l “‘)T t') tp{j/x )‘,‘{’X (W) (A-15)
(B
. Leb P pPac (KD

‘.
¢ K ek

) ke
o k) |

where E’: -iﬁ?) Now we substitute this equation in (A-6) to

obtain

ity
Y

’ -7 Lk .
1}{((?) = )j AR’ on(,(k) € LL\_(T')

= , R M
+ ”,!iﬁﬁlﬁwﬂ” jcfg F&&(LU < \,/.\) (A-l6)
2 m(FES ~ B0 | i

. € - - vy { \\ " T’

o K
Dk

Carrying out the partial integration and then transforming back

to coordinate space through the following relation

T e d

Fam - J TS SR S (a1

wheriequation (A-16) becomes
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Y = R oD

L %7<[‘*~ t{)

W (77 Falr ) 5 N T ‘f 4
4 7 IR AT ? r\\ . - . (\__r y > r\ . g

ok )
or
S 1
W = w0y V e, (7 F Lo (a-18)
* " Lo AR
o(/:{:o( d
where
mo= b e A

B (?3 can be shown<ll) to be the solution of the differential
04

equation
- = / : N 7 v l: (]" - "i - N . —

~ 1= _ (£ X ] is an expression that is obtained b
where E_ [ (£ ©) <Ch) o] Y
expanding E (E3, the Bloch energy, up to quadratic terms, re-

a
’ . g € = ] i g
placing E’by (1/1) v - CES) Ao' In the main text, the symbol

T tas been used for compactness. Equation (A-19) is called the
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effective mass equation. It is dImportant to point out that tne

results obtained are gauge-independent.



APPENDIX B

FORBIDDEN TRANSITIONS

We wish to evaluate the matrix elements of the operator
In the gauge

using the E.M.A. wave functlons (3-1)

—
TT a® g
A (T) =% (E xT), we nave
ez, N =y LN - A\ N
<« » S el
. _ <. < ! ’
g P e AT ) (B-1)
Then the matrix element we wish to evaluate is
2 QB g o

Y| T

The first term on the right-hand side involves a differential

i) = el PRI + 2.

operator, and the second term contains a multiplicative one

using (3-1) becomes

The first term

- > ‘ c
B = w YRS
B TR (B3)

+ZR Leo q«(\#u lu“w

|

_R -

where
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Now

Qi Fow | s 15 T

- N

AN QISR IR A IV TG R L) S W S D QAN R R R

where the notation (2-16) has been used and the factors of
(QH)j have been omitted in accordance with our normalization
convention. The second term in the last expression vanishes

due to the condition (2-11) and we finally obtain

Similarly

A . - , ) . P N TNy
P{') (_{POTF }'»//U> = ( p\;(*x. 5 ) AN E/"\ w F‘f/“\/JF ‘ c[5< FC,:\ b 4T \FV/“ (B—6>

<“‘t: ol FC}A/

and

~ “,OVT?E/‘A/'F.%}(uvo FV/N>:/ <F ?(><F‘/“ lTr\’:v/u>4 8 /' /\T r hl>(B_7)
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—_ —
where, the hermiticity of 1 has been used. The order of 7

— .
and p 1s important, since these operators do not commute.

Using equations (B-4) through (B-7), the equation (B-3) can be

transformed into

+ .rcvn ’<Fc/u' ‘TT \ “:.V/L‘> <B—8)

L _7_*_[3; R | 1T, o ] Fe>

—

h inc =0
where (since pBB )
- — > A - —> 2
T, = éw,>7 b ( P &) Per ( Pov- 5D ;9
m /. E:) _ Eo E?_ _ F‘» J
B¥ Gv B ( (B_9>
Fg = FC— F, 5 [CL,b] - ab-— b

T order to simplify the third term of equation (B-8), we need

t.o know the commutator [ﬂj, pi] which can be evaluated as

follows:
- —_— ——>
T - P — & A
c
— — —
With the special gauge A = 2 (B x r)

"Wj = PQ — ,r«(j§X?>3
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Introducing the Levi-Civita antisymmetric symbol

N = j -1 it J Vo ool Lo (B—IO)

{I
[ o otherwise

we can write, using the summation convention

-“‘-ﬂ]-.‘(j = K : - e : 7 ;f ’:- b ,;) ¢ ’) e (B_ - >

Thus

L (B-12)

The desired term

J’ -
b{v ; . Fuo B LL#TE)Q‘ >) j'
miy WAl bl - u;?—a;{*eauh T TS
g E E—\") <? )(Ht;') \/ | “ !r\/( (B 13)
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Hence (B-8) can now be written as

/‘,\ (\/él,\/l i")b ff\ i‘l«(l-* /\ - ? < F"' &5 an Z F; t“ . i {\J)j
(B-14)
SN > T, < RTINS

Next consider the second term of B-2), where we evaluate elements

of a mulitiplicative operator. As before

AN o . =N T :
<UCU Fc,u/ l B-( fg XY )‘Ll,P(JT‘ \5/> = (&,C% <\(—'.\’ \ B-( AT yT \F—-M>9

(/\ U []JO:‘"‘? Fc/u/ \E’, ( %; )\t(:’> \ Wy L—\//(\ > ~ (S(?’V < Vc/\/ \ 1‘”’ ( ’_; Ki"). —} \ Foe /\

Herice
PRI RT, c “i, P\ F [ DUy
:Qj_ <A<PC/W [J)( %j XY )\ q}\{,u> - ;TY,)__.E;L— < ct,\/\ H,\' 9 ( g )&Y)a H F\,(,u>

3
"(-\/ B)é YN ) / oy .
c Tq;;%'EQEWME;” <:F}}A .l IFIR \Fyu>>
} i (_C]
. —> A ) -
= LJBF_CUL C(Erpy) LR | Fue > (B-15)
- 5J

Finally —5 4 . 2 | ‘f?" . .
O TRy = [HE S Lk (e

9

o =
) )+ Tar LR TV RS (g
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Y il , e -4, . . _

For B = 10 Gauss, i ~ 10 if Eg = 1 eV. Thus the term
ho, & = _l

involving —X qiffers from 1 by 10 3. 10 N for most semi-

By
conductors and hence is negligible in absorption process.

Thuis 1t 1s suffricient to write
) N - o e
< qjc/u’ ‘ - }J \ LP\{,u> — ( Pcv ")> Ve ) bve >

—_——,

b T Lo (T

| (B-17)

1 \ F\,ﬂ’u )

— — A ‘
Fo: ] = 0, we have th as g
For p., ¢ 0 and T., 5 e case of allowed
transitions. Throughout the main text, we only considered such

Lransitions.

b d - 4
When p.. = O and 1., 4 O we have the case of forbidden
cv ey —

trangitions. The absorption coefficlent s for forbidden

transitions can be calculated by a method very similar to the

one used for allowed transitions, (see Chapter 3). 1In the

absence of magnetic fleld,

z (Z&i)g/z [im) - Fyq JE/:\" (B-18)

7/) (0) = _gﬁfjf__.ﬁ ‘ T( v ¥z

F 3n, micw

Notice that, this has quite a different energy dependence and

ig easy to distinguish tfrom allowed transitions. For calcula-

tions, involving tne effect of a magnetic field, the reader is

(23,73)

referred to the literature.



APPENDIX C

THE TWO-CENTRE OVERLAP INTEGRAL
(A_CLOSED FORM)

We wish to evaluate

where 'a' is a real constant and

is the nth level (n = 0, 1, 2, ...) simple harmonic oscillator

wavefunction normallized In X and centred about x = 0. The

1
parameter g 1s a dimensionless number since ) = (g%)z is tre
magnetic length, and Hn(g) is the Hermite polynomial defircd

by (1557H)
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From (C-1), (C-2) and (C-3) we get

= Voo N VA
Y+ Y\,’ Lae . .
x/ [ ( 2‘ m > J n l) " ( o ,[}1 ‘:) . J
/ /
’ Jor
'Y]I) RARES)
- p2 P .
= {\A ENGES DR P28 by 2t (& ) ot ,é_;
- 2, )
s
where y = % 1s a dimensionless gquantity. Completing the square

on g in the exponent of the right-hand side we get

\C’\\D wy o Ve j no..mn
7 [ (= ) Ty ) Lo ]
SR J/))! 1l

o, o . c 2
- € t[ ﬁ} LR S P .H/J X J(CI t (u};,[ DL(E" “?’4*45—2);( }

-

The integral on the right-hand side is, by change of variables,
00 2

equal to f e™ M du = sy , and expanding the terms containing s,
- 00

L we get
] 1)+'1')I '/::: N [
- “ N n <
} ] ) <a / Fj:i::::ti% T 2 = e F ( -}4 ! )
n/,-’;l (8] & n! m l‘
oQ "'O ~ hi f
} [ S (et [ NP H S () (A
e p b Jhgn

: nn' : .
Equating the terms of order t s on both sides we get

) _ (?S 2/4 ) ™ANL ir‘” y\j " {‘ " _ e
T ay = HAnini e % (<?5 )G
mm <2n+“’)/@ € 2y (n- RN CIENDE
o

or



171,

—(¥7/4a) min g

J—’»(J} - Elwmmﬁm 377”01) M[ﬁKEQW}WA | oo
0 (2711—7\’ﬂl’n’\.>\/_2, L Ql (Y;’m Q)\ /\«m/_‘ (/\\
. P-o .

This 1s the form in which it 1s sometimes used. For n > n'

S — __<62’/4V ) m-n’ n’ Y]// w- L
Ty - Ao e LD R G~ N
l N 1'\’ ~.\! “/;.1. e g } \ ; \ ( N ‘- S k
(= J (o Q‘.\h LA
Letting n' - g = u in the sum we obtailn

(3¥a) ' M -

W
Jo @y = e (L) () e ) CrAY

Lo Wi(ntuy (r-wmhudl
or

n-n’ —(“62/4> l -

/e )
T, oy <ﬂ@) <§ > e ) Nzn’
LN i I ; , ‘ y . !" s - n P 9

where qu(x) is the assoclated Laguerre polynomial defined

by (74)

q/

SIS _
(P ) 2 S— (6-6)

V-o

H

P
L% Cx?)

where p > -1, q and u are integers though p need not be in

which case gamma functions are used where necessary. To obtain
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the Laguerre polynomial occuring in (C-4), make the identifica-

tions n!' = g, n = p 1 q. By following a very similar nmethod

we have for the case n' > n

7y non _(?52/4> nhm
@ = (LY (L) e LU e (o)

J,

niyn

For n = n', both (C-5) and (C-7) give the same result.



APPENDIX D

TJIE_TWO-CENTRE OVERLAP INTEGRAL
(A _POWER SERIES EXPANSION)

We wish to derive a power series expansion for Jn',n<a)’
for small values of real constant 'a'. The overlap integral
was defined in Appendix (C) in terms of the harmonic oscillator
wave functions. For the purposes of making a Taylor series

expansion, we introduce two dimensionless quantities

(. A -
L S VA A

in terms of which

{ f
—
=
<
~
—
~
-
1t
C
L
ikt
b
o~
L,-’,‘(t
~
D
~
=
TN
Lot
_1"
o=
~
N
P
|
=
1
[
-

where

(/b (%) = '“T:"';—tL"“",,_;_:.f::.\ = H"’ ( <f) (D"E)

Am -
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i
-
{ - ‘(52/.’

2N ez ¥ o8 & _l
+ (0 1) b, K o 25 Ha (5 (D-14)
SR A
- ﬁf/;,)) ;
L i — %{Z (&) i O C3)
e PR
RIPAR ST 2

the prime over, HH(E), denotes differenciation with respect
to its argument. Substitute (D-4) into (D-1) and split the

integral into three parts, then

(0) (1> (@)
\III i € = T)\i?? k o + ]“‘)H <D—5>
where
(]
() - .

Jon = J( b, 5 b (&) Ay (D-6)
(D . - |
\_,J”j.n — <_, h > J' %4 ‘j‘jﬂ/ <E-f) @M<}§> rl sz

- 52y (D-7)
+ MMNVM:T>’ Qﬁ @ﬂﬂf) mef {5 .

t
fz mimTe
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and '
(2 Lo ‘ e
Tod )] B Codg ()] 5 Bapdest
- ) =D
R \"F e () HOCE) A D-8
< ) <7—17’,—'T-T.'/“ ) J f }n/ S A S j ( )
,_(x_),% }_'/
v -5 . " o i
U A — © D oEY o () A+
+ (4 .:{ﬁ";';_‘"r;w;;‘> J . L

In order to carry out the various integrations involved above,
we need to know a few properties of Hermite polynomials and the
integrals involving them. For convenience we list some useful

(15)

properties of Hermite polynomials below -

/
For n>o H; (%) = 2n Hooi (B0 H, (%)= o (D-9)
For n > 1,
HOCg) = 4n B Huy (8) 2 L (5)
and (D-10)

further

{é?f Mo §) HL g = (27 m ) S (0
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H

anﬁ)Hmﬁﬁ)Jéj %'iwtﬂ+1>[m”2%5

) A+ L

-~
-

(D-12)

N n-1 Vo £ C
+ 3 (ﬂ>! h } (S‘m)w‘)—l

and

PR A

QO y

~& ., .
E e H D L) Ly 2§ (e e S,
~ (D-13)
+ iQ >2(Y\)[ vazf ;3“\)”_2 + % 2" QYH ";ii)ﬂvzj (\g‘m/ﬂ

We now proceed to evaluate (D-6), (D-7) and (D-8) using the
above properties. Integral (D-6) can be completed immediately

using the orthonormality condition (D-3) and we get

(0)
- SN (D-14)

’
“non Y,

Next, from (D-7) and (D-2) we have

Ii? i} <_<J_,__~ B > J § Ha (8 H, (%) 43

_(Qw)j e le(§)Ftﬂ(§)A§
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where in the second integral above, we employed the relation
(D-9). The integrals can now be completed by using (D-11)

and (D-12) and we flnally obtain

(1)

. I/‘Z ‘ \/‘_),
jn’)y) = (5\) E <rﬂ;‘_£> g”‘l»,ﬂf_l -+ (N{l‘> é“’ﬁ — j (D_l5>

The second delta function gives zero 1f n = O. Substituting

(D-9), (D-10) and (D-2) into (D-8) and simplifying we get

2) o T | o o .
J—n;-yz — <”§: ) - 2(”“‘:&) j (Pn/ (‘%> (‘_i_.)n (?‘\7> A j
S , .
PR S j S5 8T He () ML) g
jzﬁﬂ nimi T
or -
S A I N [ X e

(D-16)

P
4
-y

e 5,0, J

where we used (D-3) and (D-13) to arrive at the final result. The
last delta function in (D—l6) makes no contribution if n = 0 or 1.
Substituting (D-14), (D-15), (D-16) in (D-5) the power series

expansion for I n<a) up to second order in the expansion para-

3
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meter v 1is,
7 | vz Yz, /

2 [Cnr2y(ma 1)
+ (E: ) %,_ < R i:j> 8 nhn A L”iﬁ;.l‘fiﬂ (g ,y\;%_‘z (D-l?)

rl(ﬂ)(vwi)ﬁ \
toE O e



APPENDIX E

APPROXIMATE EVALUATION OF TWO IMPORTANT INTEGRALS

(1)

We wish to evaluate the definite integral
T T
where B >> 1.

Following the procedure used by Fritsche<75)

b
for evaluating similar integrals,

we Introduce a new variable
y» through the relation

Sl 2
t - ﬁ g 1 ﬁ A

Then

. 2@ 7
and

n

12 = p”*

1
where the second term in the expansion of t2 has been neglected
Thus

/2 3 — N ‘
I, = ?i"ﬁ” cxp (-4 P )Joe A

By a simple change of variables, we immediately arrive at the
final result:

~ x. _4 5-%4
L enp (%)
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(ii) Next, we want to evaluate approximately the integral

b
- < - 4.3/ SN
. = 1 owm = Ty ﬂ : TJ

where b >> 1. Writing the sine function as cosine of

double the
angle and splitting the resulting expression iInto two parts we
get

C

b b
I, = i ]d4 o éuj Lo Cos( AT ) At
- 2 s _t|/_2 2 _ts/z ) J

- b” *4;Sb SMQéét?Q At
e} _t./—‘

. 1
To complete the remaining integral, define a new variable x = te
and extend the upper limit to infinity, thus

/2, oo , b -
b n j St (A2 Y A
5 2

Yo, ,
= b7 L T SW(W/6>/3(4/3>V3
where we made use of the standard integral

B o)

g Sin (a x.b) A x

b (a)’F
Now
Ty ~ 2679
)
T, = b (14094
bY2
- Yo
Hence iB ° = b



APPENDIX F

DERIVATION OF FRANZ-KELDYSH EFFECT
USING TUNNELING METHOD

Here we wish to derive an expression for the electro-
absorption coe ‘icient, for photon energies below the band gap.
Tn the main body of the thesis, we discussed this phenomenon
using a different method, here we find 1t instructive to view
this as a tunneling process. A strong electric field tilts
the energy bands and makes photon-assisted tunneling [the Franz-
Keldysh (F-K) effect] possible, (see Fig. 23). We will follow

(37)

the method used by Haering and Adams and work in the one-
band effective mass approximation. These authors used the W.K.B.
treatment, since 1t provides a good physical picture of the

tunneling process, and we will employ the same in our subsequent

calculations.

In Fig. 23 we have taken the electric field along the
7_direction and measure energles from the conduction band edge.
The valence electron tunnels from the turning point ZV to Zm

and finally tunnels to ZC by absorbing a photon energy w <« Eg.

The motion of electrons and holes In the presence of a potential
‘v(z) - - egzzj(wheref; = E,is electric field), is governed by

(in E.M.A.)

b, F () (F-1)

’._.
n
—~
N
<
P
<~
—
TN
~
p—
—
-
[a]
r~
=}
) _—y
i
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Figure 23. Photon-assisted tunneling in the .
r
an electric fileld. presence of
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and

N

\_ L. f;:m ~ By w2 Py = FLUF(r (F-2)

In equations (F-1) and (F-2) m, and m are the effective masses
for the two bands. The equation (F-1) has a solution of the

f'orm

Uk + Ry Y)

where ¢(z) 1s the normalized solution of

ol
Lo,

1l —
, (2)
E:PC (7’> + <‘):)C_FZ.-> @CKZ,> - Q) (F—M)
with
5 .
P‘(z) - 2,m [ N V(z)[
and
o 2
- Bl ke oy Ky |

The normalized solution of (F—M) in the W.K.B. approximation<l6>

1s given by
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Z
l/_& |
(z) = 2(™m_ " L1 Cos .é_j pozydz T (F-5a
¢ (TL b The i 417 )
<
2> 2
Ze¢

where TC is the classical period of the motion and ZC is the
classical turning point obtained from pC(ZC) = 0. The wave
function FV(?3 for the valence band 1s similar and can be
obtained from the expression for Fc(r) by replacing P. —*pv,

where

SN (2'mv)% Vez) - Eg - By - Euj (F-6)

The turning point, Zv, for the valence band 1s obtained by
setting pv(z) ~ 0. Notice that E - E, is the kinetic energy
along the field direction and will be denoted by €, where
required. From our previous analysis (see for example,

equation (3_13))3 we can write the expression for absorption

coefficient gs follows:
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7 o semFe? (R ')
] 2. (F-7)
v j lT) SCe. — 1, ~Fw)
by

where y',u stand for the quantum numbers of the final and

M

initial states respectively (u

EV’ kxy ky ) and
1 J o BTy AT
ny = ‘N v o
s ;o 2
From (F-3) we can write
© %
B \/ \\ /
/ - ) A —
‘LM,“ - ‘ koo ke Ry, ky X § @C ! E_XE (z) d7
[ v
The integral
o0
, *
— z, > , -
T - J G (2> b, cz) dz (F-8)
— XD

nas been evaluated in Appendix G, by the method of steepest

descent, and thus we have

A/Z _1_/
T o= S Se (ZE) (Al Y
/u/u — t‘xp\()i kyv) t\j TLTVC?& ES—— tov

pem ] 9

where
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5
P (zw) = (24) [ E 4 —FReo o By (F-10)

and
5 5 ° #(/L?
F. - L b = ‘F (k. 3 k. ) A
1 cy ¥ Vi 2 o N/ o
p being the reduced mass. Substituting (F-9) in (F-7) and

including the density of initial and final states we get

o o -y o 2 .
y oo zGnel (ke B (T
Z/ ) ¢ Mm% Mo w V T CE
vy ¢elzfa
24 Te H_IV_‘,.M> J A €
. - T&"«7T5'> SR > zmh T
-e&lz/y
~ W} 2,
ob L dRe i Ly e 1, 2 _pCze) ]
(27D 27T 2 fueé

3

1/

3
R__F g 2k, dky exp[-2 RSN }
Bt (cod—co) 2

[3)

where

Koo . ?%)\l < 2 M - F o F
X\ o o ! ,;2_.;._,_.. . T\V 9 . 3 - _2

Feoy ne ¢
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To complete the integral, we expand

3' . 'I//Z ~I‘/2 \J . E 2’
b (zw) 2 (2pmy (Egmhew) oL 4o Lh o
L 2. (Ea—-T\oJ> /\}
and redetining varlables, we finally obtaln
2, - s
)/ . K Qfdﬁ___-_,._ Cx "; M‘ ‘F ( 23 (F-17)
/ F( - ) I
where
¢ 2 ‘1/3
~2 e =
o, - (£
oF ( zMh

This is the expression we were after and, agrees with earlier

results.



APPENDIX G

THE EVALUATION OF THE TUNNELING INTEGRAL, BY
THE METHOD OF STEEPEST DESCENT

We wish to evaluate the integral

O x

i = E p (2 (1! (2 Az 51

| e fv (u-1)

where the functions o, and @V have been defined in previous
Appendix F. From the disucssion given there 1t should be
quite clear that the product, @é @V is quite small in the
regions Z < ZV and 2 > ZC (see Fig. 23 of the Appendix F).
Thus we need to evaluate the above integral carefully only iIn
the region ZV <7 < ZC, where the product of two wave functions

is still appreciable. In this region of space

Z
@SCCZJ\) = <f¥f‘_>2_:£, . FXP [_ —%T j

= ch(z)\ ;lz,] ) 242 (G-2)
L b 2

and
__ Vo, z
{ - /m i ) I )
{)v 23 = \ﬂv_) e ‘?XF[— "’E'] }PVW!)‘U..}/ 2> 2, (G-3)
j]pvnz)l 'y
The turning points Zo’ ZV satisfy the relations 1pc(zc)| = 0
and lpV(ZV)[ = 0, respectively, where

. /0,
\ ‘ ) \ <fj)_yhc ) - [ Viz) _ ( E~~c - i Cl) } 9 (G—b’)
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'PV(Z)l = (2, ) [ Eg + By Eyr V<Z)‘ (G-5)

and

Furthermore the integral (G-1) i1s required only for

B, = EV + nw, because of the delta function in the equation
(F-7). Now the method of steepest descent consists in writing
the integrand in an exponential form and making the Taylor

series expansion in the exponential. Substituting (G-2) and

(G-3) in (G-1) we get

. /2 £(2)
T - <1Wj)ﬂ{) 1 j A7 e (G=7)
Tkl TR

where
Z, Z

eI L R S XD

Z.: Z-V
and the slowly varying guantities have been evaluated at the

matching point Zm’ to be determined from the relation fx(zm)

Now
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setting £1(Z2 ) - 0 and using (G-U), (G-5) and (G-6), we get

o
1
7 ] | | U (i o) (G-9)
- L et B
and
L Y N S B G A L SR I It
with
P e G SV T R (G-10b)
DA )

One can easily convince oneself that ZV < 4. <« ZC and thus the

m
point 7. liew in the forbldden gap as shown in Fig., 23 of

Appendix I,  Further

I _oE Omer ) (G-11)
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Now Taylor expanding the exponential In (G-7) about the point

Z, and paking Use of equations (G-8) through (G-11) we get

Vs % ’/»: m) ! //

L | ¥

where
5 [ e

We can extend the limits of integratlion on z to g ®, without
making any serious errvor and then the Gausslan distribution
1

integral contributes unity. Also 1f we take p(zm> o (2p)fx

1
(k= pw)® , we get

T =~ (" (o L (G-11)

4

Tt is lengthy, but rather stralgnt forward calculation to

evaluate f(Zm), and one can show that

L
1 ooyl Vol
__E(Zw) - ) \1 ( /,,E . \
| ' "y
. >
‘l AR b
L)
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[ ) Yooy )
T = /o E, mw Lo

wher p(lr_./.m) is given by the eqguation (G-10).



APPENDIX H

A RECENT DEVELOPMENT IN MAGNETO-OPTICS

H.1l Introductic;

The magnet! -optic experiments that we have discussed so
f'ar were restricied to semiconductors, wiere olle typlcally
shines infra-red or visible radiation to promote the carriers
across the forbidden gap. High magnetic fields (~ lOLL gauss )
are required to satisty the condition W, > 1, as no structure
can be resolved otherwlse. In any case no structure is
expected below several kKilogauss even 1f one goes to the
lowest achievable temperatures, This certainly does not appear
to be the cage in metals, where lots of structure has been
obuerved<76’77’v8’vg> in the microwave region for magnetic
fields less than one hundred gauss. In this chapter, we
theoretically analyse the observed low field ~tructure in
metals and also investigate the possiblility of observing

similar etffects in gsemiconductors. It 1s convenient to discuss

the cases of metals and semiconductors separately.

H.?2 Tow Field Structure in Metals

The experimental conditions for wnich the low fileld effects
are observed in metals are basically the following. One shines
microwaves onto o o.ingle crystal of a pure metal and also applies

a small magnetic field (~ 0.1 to 100 gauss) parallel to the
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surface, The geometry is similer to the ore used in studying
Azhal-Hmer{Eﬂj eyclotron resonarce. The experiment is done at
low temperatures (1 to 20° K) and the microwave frequencies
rangs from 10 to 7O GHz. The conditions are always such that
wr > 1 and w,r « 1 (because low magnetic field), where @ and
w, &re the miernwaﬂa_and cyclotron frequencies respectively,
and r, the relaxation time for the electrons. The absorption
lines cbserved were exceedingly narrow end for a given peak

B = mﬂfe. Until recently no theory could explain the cause of
this weak fileld structure 1£t metals.

Slnce the microwave field can penetrate only a very
short distance § (~ 10-5 ém.} in metale, it became quite clear
that the effects were essentially due to the electron Lrajectories
in the skin layer, because it is only those electrans whose
orbits pass through the skin layer, can interact with the
incident mierowave and cause absorption. For electrons moving

with the Fermi wvelocity Fﬁ
: 2
m¥e = Fky = 10 % (o) (-1

the cyclotron radius

™,
or using (H-1)
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At B = 10 gauss, RP ~ 1 cm., which 1Is very much greater than
Lhe penetration depth §. A gingle traversal of the skin layer

by the electrons in a skimming trajectory (Fig. 24) (RC ~ 1 cm.)
could not possibly account for the observed narrow lines. On

the other hand, the electrons could not be expected to make
several traversals and still stay in phase with the microwave
field, because this would regulire tne condition w.T > 1, which

is certainly not fulfilled at trne low filelds, under consideration.
Tus we need a mechanism that would confine the electrons in

the surface layer for considerable time, even when W, T < 1.

A convincing explanation in terms of magnetic field induced

(81,82)

surface quantum states has been pul forward by Nee and Prange

The surface states can be visuallzed 1In terms of a skipping orbit
trajectory (Fig. 24). In the presence of a magnetic field, an
electron striking the surface, if specularly reflected, will
continue to move parallel to the surface in successive bounces.
Such a skipping traJjectory describes an electron bound to the
surface region. It 1s trapped it a potential well formed on one

side by tne vacuum-metal interface potentlal, on the other by the
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Skipping orbit x B
|

Skimming orbit

Rc

Figure 24. Electrons in skimming and skipping orbits in the
X-Y 'plane, when the magnetic field 1s directed
parallel to the Z-axls. The skipping orbits give

rise to the magnetic fileld-induced surface quantum
states.
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magnetic field confining it to within the classical turning points
off the circular mobtion. The guantum mechanics of an electron

in this potential well, leads to a discrete energy level spectrum
tor the surface quantum states 1if RC > 5 (See Appendix I). We
have worked out tne energy level spectrum ror Rc > § 1n Appendix

T and have shown that the transitions among these discrete sets

of levels successfully account for the microwave impedance
oscillations in metals. If Rc < §, the energy spectrum is
continuous and the structure due to surface states cannot be

seen. For the details of the calculations and the theoretical

explanation of the observed low field structure in metals, we

refer the reader to Appendix I.

H.3 TLow Field Structure in Semiconductors

Now, we are ready to discuss the possibility of observing
impedance oscillations in semlconductors at low magnetic fields.
In semiconductors we could use infra-red or visible radiation to
create Tree carriers and then study the absorption of microwave
radiation by these carriers, in an ettempt to see surface statesg.
Alternatively we can study the interband absorption as a function
of frequency and under high absorption condition, this curve may
chow structure due to surface states. It will be found below,
{hat the microwave (xperiments in semiconductors will not show

any structure at low filelds (w 7 <« 1) because microwave absorption
c
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requires the condition w.T > 1.(83) Thus there 1s not enough
absorption to satisty the condition Rc > § which is essential
for the observation of surface states. The structure due to

surface states ray exist in the interband absorption spectrum

under high absorpuion conditions. We discuss these two types

of experiments below.

(1) Microwave Absorption

It is pointed out in Appendix I, that for surface states
to be observable, the condition Rc > § must be satisfied. We
will argue in this sub-section that such a condition cannot be
satisfied for the microwave absorption in semiconductors. TLet
us assume that the carriers in the conduction band are thermal-
. , , . , -4 o
ised and possesgs energy, KT = 2.5 x 10 eV, at 3° K. The
cyclotron radius for an electron of effective mass m_ and

C

cyclotron frequency W is given by

RT - L omo b o
or
L P
. R
I ’Y]‘( A

where

(L)( T P 'l:\

' 12478

Alternatively we can write
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f ZRT A (H-3)
C
; _S\ T e ¢
Bl s - - u
Now for kT = 2.5 x 10 eV ,
mc < ] - T 5 D - Cy )
1)
T»OJ;’ - 11 X0 & (ev) = 10 ~i  V for above values
) (i )
N R L
and N - w2 XTO [* Corw ) e ... for above valuesc
Hence
K =~ 1-& X lo -
G«

The microwave absorption coeffliclent under the condition W, < 1
is very small (< 102 cm—l) and thus the penetration depth is quite
large. So the essentlial condition R, > § cannot be fulfilled and
hence no structure can be observed at low magnetic fields at

microwave freguencies.

(i1) Interband Abgsorption

It was derived In Chapter I that the interband absorption

coefficient increases proportional to the square root of the
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Creguency, measured from the direct band-gap frequency. Even
wner we apply a magnetic field of about ten gauss, there is
o Jdoubt that such a relationship will be obeyed, because the
magretoabsorpt.ion structure does not appear until the magnetic
Fredd aricses up to several kKilogauss. Thus at high frequencies,
thiee absorption would be gquite strong (~ l05 cm_l) and 1t may be
pocaible o et into the region § < RC. We can take over the
critire formalism as developed for metals in the Appendix I,
1 we replace the Ferml energy EF’ by e, the energy of the
carrier measured from the conduction band edge (i.e. excitation
erergy of the electron in the conduction band). The energy .,

Can Lo related to the measureable quantities in the following

fasnion.  We know

ANTe!
Ev (E> - F;' w__t‘WJ (H-5)

The chiorey, wo, OfF the external photon which raises an electron

From crherey state, Ev’ into a conduction band state, Ec’ can be

wrlthon s,

J N l— r/ [\’ ) . F‘/ ’\ L’ ) - { Yy - (H-6)

N

o) - .- . -
y oy



Now, the deslred quantity

S k> | - T‘ B |

2,

_L/_(‘.L . { % i i ‘/i

~
B2

2 . ,
where we used (H-6) for k™. Finally

For ¢ = 0.2 eV, the absorption coefficlent is of the order of

-1 5

. R . -
10- em and hence the penetration depth 1s only 10 cm. The

cyclotron radius can be determined from the relationship

°,
&

c # ™. RC e
or
Ly~
R [(zE N A
) K hoOce /}

With ¢ = 0.2 eV, and the values of the other parameters being

the same as in part (1), we discover that

-2
R\‘ o “, 1O M.

<

Thus the cyclotron radius is about a thousand times more than
the penetration depth and it appears that the surface state

effects might be observable. Now let us see what the experiment



demands by the way of resolutlion,

In Apperndix 1, 1t is estilmated that lhe cnergy separation

between surface states 1s

R -/
[_\I’L ,\/ < r ¢ ) 1 ;‘xﬂ\‘ /\
For the present case
: ) L1/3 -
AN ~ ey (hoa )
It = 0.2 eV anc 1.1 0_6 i
If ¢ = 0.2 eV and  po,, =~ 1.1 X 1 eV, imply
. =
AN S ~ 0
PRI
Cwowe s probing the spectrum with typically one electron volt

priotons and this demands a resolutlon of one part in ten thousand
or nigher, which is not hard to obtain experimentally, especially
if a single mode, stabilized laser is used. The resolution
condition can be made a slightly less severe by choosing a
cemiconductior with low effective mass e.g. InSb for which

m., ==y M and using a slightly higher field value. ¢ cannot be
[ pal

increased very much because for € > 0.5 eV, the non-parabolic
effects become important and the energy relation (H—M) is no

longer valld.

Further the condition Eq s >-b'must be satisfied because
[ . 'T

the structure would be smeared otherwise. It implies that the

, . ) -11 R oo . A
relaxation time ¢ > 10 sec. This requirement can be gatlstfied
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by a relatively pure sample of InSb at low temperatures.
Unfortunately we have not been able to estimate the magnitude

of the effect and are thus unable to say as to whether or not

the structure will be smeared out due to phonons and non-
monoenergetic ingjection of the electrons in the conduction band.
However, by analogy with the metals case we expect such influernces
o be small and expect that the structure due to surface states

should be obgservable in semlconductors under the experimental

conditions discussed above.



APPENDIX [

MAGNETLC SURFACE STATES IN METALS

Here we wish to understand theoretically the observed
structure in the curface lmpedance of metalg abtlow magnetic
PFlelds. 'The t ory of Azbel-Kaner cyclotron rosonance doeg
not. allow for any structure below 200 gauss. However, 1t has
now becn eatablished beyond doubt that some unucsual structure

appears in the microwave impedance of metals at magnetic

f'ields well below 100 gauss. 'The efrect consists of 4 com-

(i dR _d_)é
" daB dB °

R and X are real and imaginary parts of surface impedance

plicated oscillatory pattern of peaks where
reppectively) and the magnetic fleld value for a given peak
i the pattern 1s accurately proportional to the 3/2 power of

3/2
)

Lhe experimental frequency (B « w

81,82)

Nee  and Prange< nave successfully =ccounted for the
oboerved siructure on the basis of a magnetic field induced
quantum surtface states which Is quantum analogue of skipping
trajectory. 'The quantum mechanical treatment of the skipping
trajectory leads to a discrete energy level spectrum and the
transitions among tnese levels are responsible for the observed
structure. We calculate the energy level spectrum using the
Bonr-Sommer{eld quantization rule. Suppose the magnetic field
B, directed along the Z-direction 1s described by the vector

potential Zf; (O, Bx, 0). The electrons would then execute
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a circular motlon in the X-Y plane. An electron on the Fermi

X . i , N -1 .
surface naving energy hF and momentum K., ~ 107 <cm has a
. s

cyclotron radius R() :x—l—g-, Thus for a magnetic fileld B ~ 10

Zauss, Rp ~ 1 cm, which is very muchh greater than the microwave
o C =5 Cen e e
penetration depuhr § ~ 10 cm.  Wlth the avove cholce of gauge ,

the expression for the Hamlltonian can be written as
H o= —L </ { — /\

or detf'ining

where

S (1-2)

is the centre of the parabolic potential well and the X-directed
motion of the particle is simple harmonic motion (Fig. 25a). Those
electronsg for which X lies well inside the metal cannot take part
in the absorption (Fig. 25a) and will not be considered any more.
only those orbits which penetrate a distance X, ~ & are effective
in abgsorbing and for such orblts the centre of the potential well
due to the magnetic fileld, and hence the centre of circular

motion is at a di.fance less than the cyclotron radius Ro from

the surface. These electrons suffer specular reflection at the

surface (because thelr X-directed momentum is small and the
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corresponding wavelength is large) and they go wandering oft in
the negative Y-direction at nearly the Ferml velocity. (T am
considering particle of charge tel) (See Fig. 25b.) Such electrons
do Indeed encounter microwave radiation for considerable length

ot time and are responsible for the observed spectrum.

In microwave transitions the cenlre of the orbit is not
moved, butl the electron moves to an orvlt of higher energy and
consequently larger radius. This means that we need to derive
the energy level scheme for a fixed value of py, and hence for
a paravolic well flxed relative to the surface. Further we

ascume that the small portlon of the parabola that lles inside

Lhe metal can be approximated by a straight line. Then
t - . r/-*f ) ;L- N (’ﬁ;: "" . M COV,. <

Remembering in this case that X 1s negative, we write

As stated above, the particle moves parallel to the Y-direction

at nearly Fermi veloclity, so we fix py = Pp- For this

particular cholce of py, the centre of the well moves out to
_£)1 )

X = I and intercccts the surface x = O at an energy E = E

o mw, ok
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The energies of levels measured from EF appear as

\z
S N
’v"r!’! (I—LL)
| CVe
. Lo
Clearly at x - O, " =V O and hence ¢ == 0. As we shine

microwave radiation yw, the electron moves higher up in the
t.riangular potential well (Fig. 26). We will show below that
the particle can only possess a dlscrete set of elgenvalues.
We will restrict ourselves to very small values of ¢, so that
the whnallow trajectory approximation holds. 'This is not a
restriction, since the microwave energy nw << EF’ and all

transitiong occur in the vicinity of E I'rom (I-M)

Fe

T T TN

PRSI A O D, (1-5)

We note that pX(o) = p._(x = 0, indicating that the classical

(%)

turning points of the motion are x = 0, XO and the particle

executes periodic motion along the X-direction. Further p (x)
X

ig positive for the outward journey from O to X and negative

for the return motion. Applying the Bohr-Sommerfeld quantiza-

tion condition to thig periodic X-motion we have<79>
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A SURFACE POTENTIAL
V (x) ~4 eV

E=E_+hw

Figure 26. Portion of the parabola approximated by a
stralght line so that the particle is in a
triangular potentlial well.



bk , " .-,;.‘ L i
Completlng the iniegrel we obtain
T >z,
‘:‘7;' _& ¥ g imn i i I
3 PeeB
F, = E o § BT o Ne . B g, (I-6)
1 o g '(-— i ':. F
where
PF = L VF - -1 | |'{ I
and
f.-. E T_- | i ! L I— 7 |

The misrowave radiaticon of energy, wo Will be absorbed
rescnantly if it can promote a particle Trom level n ta m.
This cccure gt the magnetic field wvalue satisfying the

equasicn
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In actual practice nowever, one kKeeps, w fixed and varies the
magnetic field. The resonances appear at tield values
satisfying the relationship

R S A
2 = (cwmCa) Pheizke (1-9)

AN YY
MY G

Thus the resonant Kk values are characterized by the value of

n, the lower of the two states between which tae absorption takes
place. lHence, we expect a serles of transitions starting at
the n = 1 ground state, going to successively higher states, at

field values B12’ 313, Blﬂ’ etc., Similarly there will be other
series beginning at n = 2, 3, 4, etc. The agreement between

theory and experiment is excellent as shown in Fig. 27. Also

equation (1—9) predicts, B « w3/2 which 1is in accord with the

experimental findings. Recently the concept of magnetic-field

(84)

induced surface states has been extended to superconducting

phase, but we will not go into that.

T,et us compare the separatlon between surface state levels
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(AES < ) with the cyclotron separation (AEC R ). For this
purpose we write (I-6) in the form
- = _[//,_ . . -ﬂ
T S AR A (I-10)
Then
. — l/" "!/_‘3
At ’ P (I-11)
Now AE R = M and hence the relative separation
,l/r'::
fQEm&i; =~ <,f_“. » =L (I-12)
AF, het

Thus the surface states are widely spaced as compared with the

cyclotron resonance separation and the condition AES r > can

.S

be easily satisfied. Incidentally, 1t should be noticed that

, -4
at 10 gauss, AES <~ 10 eV. Hence a resonance will be observed
at 10 gauss fleld only 1if we shine 30 GHz microwave radiation.

This indeed c¢hecks with the eXxperiment,

In the end it must be emphasized once again that the
surface states can be observed if Rc > 5. If R, < &, the energy
spectrum 1s continuous and thus there is no structure due to

surface states.
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