SUMMABILITY-TOPOLOGICAL METHODS

by

Che-Young Lee
Dip. of Sc., Chung Chi College, 1966.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
 in the Department
 of
 Mathematics

(C) Che-Young lee 1969

SIMON FRASER UNIVERSITY
June, 1969

EXAMINING COMMITTEE APPROVAL

J. J. Sember, Senior Supervisor
T. C. Brown, Examining Committee

David M. Eaves, Examining Committee
ABSTRACT
This thesis is a survey of applications of topological methods to summability. We also review and discuss some of the results obtained by A. Wilansky and K. Zeller. Chapters 1 and 2 are of introductory nature. In Chapter 3 we discuss the classification of conservative matrices as co-null and co-regular matrices. In Chapter 4 , we study the inclusion relations of c and 1_{A} and give a detailed proof of a result due to Wilansky and Zeller. In Chapter 5, we study perfectness and type M for different classes of matrices.

TABLE OF CUNTENTS

Page
Introduction \mathbf{v}
A list of symbols vii
Chapter 1 Some definitions and general 1 results
Chapter 2 Continuous linear functionals 20 on C_{A}
Chapter 3 Co-null and co-regular matrices 23
Chapter 4 as a subset of c_{A} 30
Chapter 5 Perfectness and matrices of 37 type M
Bibliography 48

ACKNOWLEDGMENT

The author wishes to express his thanks to Dr.J.J. Sember who has made many helpful suggestions and patiently read the manuscript of this thesis.

The financial assistance of the National Research Council of Canada is deeply appreciated.

INTROIUCTION

This thesis is a survey of applications of topological methods to the theory of infinite matrix summability. We also review and discuss some of the results obtained by A. Wilansky and K. Zeller. Most of the materials are from [7], [8], [9] and [10].

Chapter 1 is of introductory nature; it consists of results of the theory of topological vector spaces, a sketch of the theory of FK spaces and some important results on infinite matrices (Theorem 1.22., Theorem 1.23., Theorem 1.25., and Proposition 1.27.). An example 1 g given to show that multiplication of infinite matrices is, in general, not associative.

In Chapter 2, the general form of continuous linear functionals on the summability field c_{A} is fiven. This identification has mumerous applications to the theory.

In Chapter 3 we define co-null and co-regular matrices in terms of the matrix entries. Also, we point out that co-nullity and co-regularity can be regarded as properties of the summability field rather than the matrix. In the second part of this chapter, we study the 'size' of summability fields of co-null and co-regular matrices. The construction of the matrix in Example 3.e. is based on the proof of Theorem 3 of [10].

In Chapter 4, we consider the inclusion relation be-
tween c and l_{A}. In the second part of this chapter, a detailed proof of part of Theorem 1 in [10] is given; the original proof in that paper is very precise. Theorem 4.3. and Proposition 1.12. assure that a co-null matrix must sum a bounded divergent sequence. This result was also obtained originally by K.Zeller.

In Chapter 5, perfectness and type M are studied for different classes of matrices in terms of different subsets of their summability fields. Concrete examples are given to show that these conditions are in general not equivalent.

	A LIST OF SYMBOLS
A,B,C, ${ }^{\text {, }}$	infinite matrices with complex entries
($a_{n k}$)	the infinite matrix whose element at the nth
	row and k th column is $a_{n k}$
x, y, z	sequences of complex numbers
$\left\{\mathbf{x}^{\mathbf{n}}\right\}$	sequence of sequences
i	the sequence ($1,1,1, \ldots$)
6^{k}	the sequence whose kth coordinate is 1 and
	others are zero
F	$\{1\} \cup\left\{8^{k} \mid k=1,2, \cdots\right\}$
8	the space of all sequences
c	the space of all convergent sequences
c_{0}	the space of all sequences converging to zero
1_{1}	sequences such that $\sum_{n}\left\|x_{n}\right\|<\infty$
$\overline{\mathbf{X}}$	the closure of the subset X in some topological
	space
cA	the set of all continuous linear functionals
	on c_{A}
$a, b, c \cdots$	complex numbers
v	vectors in some linear space
V	linear spaces over the complex numbers

CHAPTER I

SOME DEFINITIONS AND GENERAL RTSULTS
1.1. Topological vector spaces

In what follows we will state some definitions and results from the theory of topological vector spaces. The details may be found in [3] and [7].

Definition : A seminorm on a vector space V is a map q from V to the non-negative real numbers satisfying i) $q(a v)=|a| q(v)$, for all complex numbers a and $v \in V$. ii) $q\left(v_{1}+v_{2}\right) \leqslant q\left(v_{1}\right)+q\left(v_{2}\right)$.

It is known that given a family $\left(q_{\ell}\right)_{\ell \in I}$ of seminorms on V, a locally convex linear topology can be defined on V with the sets $\overbrace{k=1}^{n} \varepsilon_{k} V L_{k}$ as a fundamental system of neighborhoods of o, where $\varepsilon_{k}>0$ and $V_{C_{k}}=$ $\left\{v \mid q_{\iota_{k}}(v) \leqslant 1\right\}$.

When the family of seminorms $\left(q_{l}\right)_{l \in I}$ is
countable and total, that is, if $v \neq 0$, there exists q_{ι} such that $q_{\ell}(v) \neq 0$, we have the following result :

Theorem 1.1. If the locally convex topology on a vector space V is generated by a countable and total family of seminorms $\left(q_{\iota}\right)_{\ell \in N}$, then

$$
\begin{equation*}
q(v)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{r_{n}(v)}{1+r_{n}(v)} \tag{1.1}
\end{equation*}
$$

where $r_{n}(v)=\max _{1 \leqslant 1 \leqslant n} q_{i}(v)$, satisfies
a) $|a| \leqslant 1$ implies $q(a v) \leqslant q(v)$.
b) $a_{k} \rightarrow 0$ implies $q\left(a_{k} v\right) \rightarrow 0$.
c) $q(v)=0$ if and only if $v=0$.
d) $q(-v)=q(v)$.
e) $q\left(v_{1}+v_{2}\right) \leqslant q\left(v_{1}\right)+q\left(v_{2}\right)$.

Furthermore, the metric $d\left(v_{1}, v_{2}\right) \equiv q\left(v_{1}-v_{2}\right)$ defines the 1 inear topology on v.

Proof : See Theorem 1 on p. 111 and Proposition 2 on p. 114 of [3].

Definition : A paranorm on a linear space V is a nonnegative real function P satisfying
i) $P(0)=0$.
ii) $P(-v)=P(v)$.
iii) $P\left(v_{1}+v_{2}\right) \leqslant P\left(v_{1}\right)+P\left(v_{2}\right)$.

1v) If $\left\{a_{n}\right\}$ is a sequence of scalars with $a_{n} \rightarrow a$ and $\left\{v_{n}\right\}$ is a sequence of vectors such that $p\left(v_{n}-v\right) \rightarrow 0$, then $p\left(a_{n} v_{n}-a v\right) \rightarrow 0$.

A paranorm is total if $P(v)=0$ implies that $v=0$. It can easily be seen that $q(v)$ in Theorem 1.1. is a total paranorm where iv) is justified by

$$
q\left(a_{n} v_{n}-a v\right) \leqslant q\left(a_{n} v_{n}-a v_{n}\right)+q\left(a v_{n}-a v\right)=q\left(\left(a_{n}-a\right) v_{n}\right)+q\left(a\left(v_{n}-v\right)\right) .
$$

The term $q\left(\left(a_{n}-a\right) v\right)$ tends to zero as n increases by $\left.b\right)$. As for $q\left(a\left(v_{n}-v\right)\right)$, we may assume $|a|>1$, otherwise a) assures that $q\left(a\left(v_{n}-v\right)\right) \rightarrow 0$,as $n \geqslant \infty$; now $|a|>1$ implies that $q\left(a\left(v_{n}-v\right)\right)$ $\leqslant \sum_{n=1}^{\infty} \frac{1}{2} \frac{\mid a_{1} r_{n}\left(v_{n}-v\right)}{1+r_{n}\left(v_{n}-v\right)}=|a| q\left(v_{n}-v\right)$, hence $q\left(a\left(v_{n}-v\right)\right)$ tends to zero as n increases.

Definition : A linear metric space is a linear topological space, the topology being generated by a metric d that arises from a total paranorm, that is, $d(x, y)=P(x-y)$ for some total paranorm P.

For 1 inear metric spaces, we say that $\sum_{n} v_{n}$ converges to v if for any $\varepsilon>0$, there exists integer N such that $n_{0}>N$ implies $P\left(\sum_{n=1}^{n_{0}} v_{n}-v\right)<\varepsilon$.
Definition : A sequence of vectors $\left\{v_{n}\right\}$ is said to be a Schauder basis for a linear metric space V if, for every vector v in V, there is anique sequence of scalars $\left\{a_{n}\right\}$ such that $v=\sum_{n} a_{n} v_{n}$.

If the locally convex topology on V is defined by a countable and total family of seminorms $\left(q_{l}\right)(\in N$, then it clearly is a linear metric space.

Theorem 1.2. If the locally convex topology on V is generated by a countable and total family $\left(q_{\ell}\right)$ leN of seminorms and $\left\{v_{n}\right\}$ is a sequence of vectors in V such that for every v in V there is a unique sequence of scalars $\left\{a_{n}\right\}$ such that $a_{i}\left(\sum_{k=1}^{n} a_{k} v_{k}-v\right){ }_{n} 0$, for $i=1,2,3, \cdots$, then $\left\{\mathbf{v}_{\mathrm{n}}\right\}$ is a Schauder basis.
Proof : For any $\varepsilon>0$, choose interer N_{1} so that $\sum_{j=N_{1}+1}^{\infty} \frac{1}{2^{j}}$ $<\frac{\varepsilon}{2}$. Consider $q_{1}, \ldots, q_{N_{1}}$, Choose N_{2} so that for $n>N_{2}$ we have $q_{1}\left(v-\sum_{k=1}^{n} a_{k} v_{k}\right)<\frac{\varepsilon}{2 M}$,
$q_{N_{1}}\left(v-\sum_{k=1}^{n} a_{k} v_{k}\right)<\frac{\varepsilon_{k}}{2 M}$, where $M=\frac{1}{2}+\cdots+\frac{1}{2^{14}}$. For $n_{1}>N_{2}$, $d\left(v, \sum_{k=1}^{n_{1}} a_{k} v_{k}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{r_{n}\left(v-\sum_{k=1}^{m_{2}} a_{k} v_{k}\right)}{1+r_{n}\left(v-\sum_{k=1}^{n_{2}} a_{k} v_{k}\right)} \leqslant$
$\sum_{n=1}^{N_{1}} \frac{1}{2} \frac{r_{n}\left(v-\sum_{k=1}^{n_{1}} a_{k} v_{k}\right)}{1+r_{n}\left(v-\sum_{k=1}^{n_{1}} a_{k} v_{k}\right)}+\frac{\varepsilon}{2}<\left(\sum_{n=1}^{N_{1}} \frac{1}{2^{n}} \frac{\varepsilon}{2 M}\right)+\frac{\varepsilon}{2}=M \frac{\varepsilon}{2 M}+\frac{\varepsilon}{2}=\varepsilon$
Theorem 1.3. If the locally convex linear topology on a vector space V is generated by a countable and total family of seminorms $\left(q_{\ell}\right)$ ℓ_{N} and q is a seminorm not in $\left(q_{l}\right)_{l \in N}$, then the following conditions are equivalent. 1) q is discontinuous at the origin.
ii) q is discontinuous on V.
iii) The topology generated by $\{q\} \cup\left\{q_{l} \mid \mathcal{L} \in \mathbb{N}\right\}$ is strictly stronger than the topology generated by $\left\{q_{l} \mid l \in N\right\}$. iv) For any positive real number M, any $\left(l_{1}, \cdots, l_{n}\right)$, there exists v in V such that $q(v)>M \max _{1 \leqslant k \leqslant n} q_{l_{k}}(v)$.
v) For all $\varepsilon>0$, and integer N_{1}, there exists $v \in V$ such that $q(v)=1$ and $q_{l}(v)<\varepsilon$ for all $l \leqslant N$.

Proof: i) clearly implies ii). If q is continuous at the origin and v_{1} is any vector in V, then

$$
\mathrm{v}_{1}+\{\mathrm{v} \mid \mathrm{q}(\mathrm{v})<\varepsilon\}=\left\{\mathrm{v}_{1}+\mathrm{v} \mid \mathrm{q}(\mathrm{v})<\varepsilon\right\} \subseteq \mathrm{q}^{-1}\left(\mathrm{~N}\left(\mathrm{q}\left(\mathrm{v}_{1}\right), \varepsilon\right)\right)
$$

implies that q is continuous at v_{1}. Hence i) and ii) are equivalent. If q is discontinuous at the origin, then for some $\varepsilon>0,\{\mathbf{v} \mid \mathrm{q}(\mathbf{v})<\varepsilon\} \quad$ does not contain any open set of the topology generated by $\left(q_{l}\right)_{l \in N}$. Hence the topology cenerated by $\{q\} \mathbb{U}\left\{q_{l} \mid l \in \mathbb{N}\right\}$ is strictly stronger. iii)
clearly implies i). The fact that iif) and iv) are equivalent is proved on $p .98$ of '[3]. Now suppose iv) holds and for any $\varepsilon>0$ let $M=\frac{1}{\varepsilon}$, , then there exists $v i$ in V such that $q\left(v_{1}\right)>M_{1 \leqslant K \leqslant n} \max _{k} q l_{k}\left(v_{1}\right)$ for any $\left(l_{1}, \ldots, l_{k}\right)$. Let $v=\frac{v_{1}}{q\left(v_{1}\right),}$ then $q(v)=1$ and $q_{\iota_{k}}(v)<\varepsilon$. Conversely assume v). For any positive real number M and any $\left(L_{1}, \cdots l_{k}\right)$, choose integer N_{1} so that $N_{1} \geqslant \max \left(l_{1}, \ldots, l_{n}\right)$ and let $\mathcal{E}=\frac{1}{M}$, then there exists v_{1} in V such that $q\left(v_{1}\right)=1$ and $q l_{1}\left(v_{1}\right), \ldots, q_{n}\left(v_{1}\right)$ are all
 Theorem 1.4. (Hahn-Banach) let V_{1} be a subspace of a linear space V, q be a seminorill defined on V and f linear functional defined on V_{1} such that $|f(v)| \leqslant q(v)$ for all v in V_{1}, then there is an extension F of f which is a linear functional on V and $|F(v)| \leqslant q(v)$ for all v in V. Proof: See p.65 [7].

The following is a corollary of the Hahn-Banach extension theorem.

Theorem 1.5. Let V be a seminormed linear space, $V_{1} \subseteq V$ be a linear subspace and v be a vector which does not belong to the closure of V_{1}, then there is a continuous linear functional f which vanishes on V, and $f(v) \neq 0$.

Proof: See p. 67 of [7].
It follows from the above theorem that if every continuous linear functional f that vanishes on V_{1} is Identically zero, then V_{1} must be dense in V. This
argument will be applied very frequently in the following chapters.

The following theorem contains two forms of the Banach-Steinhaus theorem.

Theorem 1.6. i) Let $\left(q_{l}\right)_{l \in I}$ be a pointwise bounded family of continuous seminorms on a complete seminormed space, then $\{\|q\| \mid L \in I\}$ is uniformly bounded.

1i) Let $\left\{f_{n}\right\}$ be a sequence of pointwise convergent continuous linear functions from a complete seminormed space to a normed space, then $f(x)=1 \lim _{n} f_{n}(x)$ defines a continuous linear function f. Proof: See p. 117 of [7〕。
1.2. Sequence Spaces and FK Spaces.

For every sequence $x=\left(x_{1}, \ldots x_{n}, \ldots\right)$ in c, define
$\|x\|=\sup _{n}\left\|x_{n}\right\|$, and for every sequence $x=\left(x_{1}, \ldots x_{n}, \ldots\right)$ in l_{1} define $\|x\|=\sum_{n}\left|x_{n}\right|$. It is well-known that c and l_{1} become Banach spaces with these norms. Also c has F as Schauder basis where each $x \in c$ is represented by

$$
\begin{equation*}
x=(1 i m x) i+\sum_{n}\left(x_{n}-1 i m x\right) \delta^{n} \tag{1.2}
\end{equation*}
$$

If f is a continuous linear functional on c, then

$$
\begin{equation*}
f(x)=(\lim x) f(1)+\sum_{n}\left(x_{n}-1 i m x\right) t_{n} \tag{1.3}
\end{equation*}
$$

where $t_{n}=f\left(\delta^{n}\right), n=1,2, \ldots$
and

$$
\begin{equation*}
\sum_{n}\left|t_{n}\right|<\infty \tag{1.4}
\end{equation*}
$$

For an arbitrary infinite matrix $A=\left(a_{i j}\right)$ of complex numbers, denote a sequence $x=\left(x_{1}, \ldots x_{n}, \ldots\right)$ by a column
vector

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\dot{x}_{n} \\
\vdots
\end{array}\right)
$$

By Ax we mean the column vector

$$
\left(\begin{array}{c}
\zeta_{k} a_{1 k} x_{k} \\
\sum_{k} a_{2 k} x_{k} \\
\vdots \\
\sum_{k} a_{n k} x_{k} \\
\vdots
\end{array}\right)
$$

if $\sum_{k} a_{n k} x_{k}$ exists for all n.
For an arbitrary matrix A, let $d_{A}=\{x \mid A x$ exists, that is, $\sum_{k} a_{n k} x_{k}$ exists for all $\left.n\right\}$. On d_{A} define

$$
\left|P_{n}\right|(x)=\left|x_{n}\right| \quad \text { and } h_{n}(x)=\sup \left\{I_{k} \sum_{k=1}^{r} a_{n k} x_{k}| | r=1,2, \ldots\right\}
$$

for $n=1,2,3, \cdots$. From the triangular inequality
$\left|P_{n}\right|(x+y)=\left|x_{n}+y_{n}\right| \leq\left|x_{n}\right|+\left|y_{n}\right|=\left|P_{n}\right|(x)+\left|P_{n}\right|(y)$. A1so , $\left|P_{n}\right|(a x)=|a|\left|x_{n}\right|=|a| \quad\left|P_{n}\right|(x)$. Hence $\left|P_{n}\right|$ is a seminorm for any n. For any $n, h_{n}(a x)=|a| \sup \left\{l_{k} \sum_{i=1}^{r} a_{n k} x_{k} \mid r=1,2, \cdots\right\}$ and $\sup \left\{_{k} \sum_{k=1}^{r} \mid a_{n k}\left(x_{k}+y_{k}\right) \|_{r=1}, 2, \cdots\right\} \leqslant \sup \left\{\sum_{k=1}^{r}\left|a_{n k} x_{k}\right| r=1,2, \cdots\right\}+$ $\sup \left\{l_{k=1} \sum_{n k} a_{n k} \mid r=1,2, \cdots\right\}$ implies that h_{n} is a seminorm. Throughout this paper, the linear topology on d_{A} is defined to be the locally convex topology generated by $\left\{h_{n} \mid n=1,2, \cdots\right\} \cup\left\{\left|P_{n}\right| \mid n=1,2, \cdots\right\}$. Proposition 1.7. For an arbitrary matrix $A,\left\{\delta^{k} \mid k=1,2, \cdots\right\}$ is a Schauder basis for d_{A}. Proof: Let $x=\left(x_{1}, \ldots x_{n}, \ldots\right) \in d_{A}$. For any $n,\left|P_{n}\right|\left(x-\sum_{k=1}^{1} x_{k} \delta^{k}\right)=0$
if $1 \geqslant n$. Hence $1 \mathcal{i}^{m}\left|P_{n}\right|\left(x-\sum_{k=1}^{i} x_{k} \delta^{k}\right)$ is zero. For any n, $\sum_{k} a_{n k} x_{k}$ exists since $x \in d_{A}$. Given any $\varepsilon>0$, choose integer K so that $\left|\sum_{k=k_{1}}^{k} a_{n k} x_{k}\right|<\varepsilon$ for any $\left.k_{2} \geqslant k_{1}\right\} k$. Let $i \geqslant K$, then $h_{n}\left(x-{ }_{k} \sum_{i=1}^{\frac{1}{1}} x_{k} \delta^{k}\right)=\sup \left\{l_{k=i+1} \sum_{n k}^{r} x_{k}| | r=i+1, i+2, \cdots\right\}<\varepsilon$. Hence $1 \operatorname{imh}_{1}\left(x-\sum_{k} \sum_{=1}^{i} x_{k}^{k}\right)=0$. By theorem $1.2,\left\{\delta_{k}^{k} \mid k=1,2, \cdots\right\}$ is a Schauder basis.

The particular type of tojological space known as an FK space and introduced by Zeller has played an increasingly important role in sumability. As examples of FK spaces we mention the spaces c_{A} and d_{A}. The general form of continuous linear functionals on c_{A} can be obtained from the general theory of $F K$ spaces and this has numerous applications in summability theory. The details can be found in 11.3 and 12.4 of [7]. Definition: A complete linear metric space is called a Fréchet space.

Definition: Let H be a Hausdorff space and a linear space. An $F H$ space is a Fréchet space such that

1) X is a linear subspace of H.

1i) The topology of X is stronger than that $0^{\circ} \mathrm{H}$.
The special kind of FH spaces when $H=s$ with the norm $\| x_{\|}=\sum_{n} \frac{1}{2} \frac{\left|x_{n}\right|}{1+\left|x_{n}\right|}$ are called $F K$ spaces.
Definition : Let X, Y be topological spaces and $f: X \rightarrow Y$ be a function, then f is said to be closed if the graph $\{(x, f(x)) \mid x \in X\}$ is closed in $X x Y$ with the product topology, Theorem 1.8. Jet X, Y be topological spaces, $f: X \rightarrow Y$ be
continuous and Y be Hausdorff, then f is closed. Proof: See p. 195 of [7].

It is clear that if f is closed and the topology on Y is replaced by a stronger topology then f remains closed. Theorem 1.9. (The Closed-Graph Theorem) Let X, Y be Fréchet spaces and $f: X \rightarrow Y$ be a closed linear map, then f is continuous.

Proof : See p. 200 of [7].
Theorem 1.10; Let X be a Fréchet space, Y be an Fil space with respect to some H and $f: X \rightarrow Y$ a linear function, then f is continuous if and only if it is continuous as a function from X to H.

Proof: If $f: X \rightarrow Y$ is continuous, then the topology of Y is stronger and $f(X) \subseteq Y$ imply that $f: X \rightarrow H$ is continuous. Conversely, if $f: X \rightarrow H$ is continuous then f is closed, by Theorem 1.8., hence $f: X \rightarrow Y$ is closed, by Theorem 1.9., it is continuous.

Corollary 1.11. Let X, Y be $F H$ spaces with respect to the same $H, X \subset Y$, then the topology of X is stronger than that of Y, in particular a linear space of H has at most one topology that makes it an FH space.

Proof: Let i be the inclusion map $i: X \rightarrow H$, then i is continuous since the topology on X is stronger than the subspace topology on it. Hence by Theorem 1.10., i:X \rightarrow Y is continuous and the result follows.

Proposition 1.12. In Corollary 1.11.the topology on X
is strictly stronger than the subspace topology if and only if X is not closed in Y.

Proof: If X is closed in Y then the subspace topology is complete, hence X is an $F H$ space with the subspace topology. By Corollary 1.11. the topology on X is the same as the subspace topology. Conversely, suppose the two topologies on X are the same, then the subspace topology is conplete and hence X is closed in Y.

Corollary 1.13. Let X be a Fréchet space, Y an FK space, $f: X \rightarrow Y$ a linear function, then f is continuous if and only if $f(x)=\left\{f_{n}(x)\right\}$ where each f_{n} is a continuous linear functional on X .

Proof: Recall that the norm on s is defined by $\|x\|=$ $\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|x_{n}\right|}{1+\left|x_{n}\right|}$ hence the coordinate projections $P_{n}(x)=x_{n}$ are continuous. Now if f is continuous as a maping from X to Y then $f: X \rightarrow s$ is continuous hence if we let $f_{n}(x)=y_{n}$ of , we have $f(x)=\left\{f_{n}(x)\right\}$ with each f_{n} continuous. Conversely let $d(u, v)$ be the metric of x, if $d\left(u_{n}, u\right) \rightarrow 0$ then $f_{i}\left(u_{n}, u\right) \rightarrow 0 \quad(i=1,2,3, \cdots)$, hence $\sum_{i=1}^{\infty} \frac{1}{2} \frac{\left|f_{i}\left(u_{n}-u\right)\right|}{1+\left|f_{i}\left(u_{n}-u\right)\right|} \rightarrow 0$, hence $f: X \rightarrow s$ is continuous.

Corollary 1.14. Let A be an infinite matrix and X, Y be FK spaces. If for every $x \in X$, Ax exists and belongs to Y, then A, considered as a mapping from X to Y, is continuous. Proof: Consider $\sum_{k=1}^{\infty} a_{n k} x_{k}$, the $n t h$ coordinate of $A x$, by Corollary 1.13. it suffices to show that $\sum_{k=1}^{\infty} a_{n k} x_{k}$ is a continuous linear functional on X. For this we define
$f_{m}(x)=\sum_{k=1}^{m} a_{n k} x_{k}$. Then for any $x \in X, \frac{1}{m i n f} f_{m}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}$. Define $f: X \rightarrow c$ by $f(x)=\left(f_{1}(x), \ldots, f_{m}(x), \ldots\right)$. Now X is an $F K$ space, hence convergence in X implies coordinatewise convergence, thus it also implies convergence in s, therefore $f: X \rightarrow s$ is continuous. By Theorem l.lo.,f:X \rightarrow is continuous. Now in (1.3) let $t_{n}=0,(n=1,2, \ldots)$ and $f(i)=1$, then it follows that for every $\left(x_{1}, \cdots x_{n}, \cdots\right)$ in c, lim x_{n} is a continuous linear functional on c. Thus $\sum_{k=1}^{\infty} a_{n k} x_{k}$ is a continuous linear functional on X since it is the composite of f and ${\underset{n}{n}}^{11 m} x_{n}$.
Theorem 1.15. Let X, Y be $F K$ spaces with their topologies generated by the families of seminorms $\left(q_{l}\right)_{l \in I}$ and $\left(r_{\lambda}\right)_{\Lambda \in \Lambda}$ respectively. Let $f: X \rightarrow s$ be a continuous linear map. Then $f^{-1}(Y)$ with the linear topology generated by $\left(q_{l}\right)_{l \in I}$ and (r_{λ} of $)_{\lambda \in \Lambda}$ is an $F K$ space and $f: f^{-1}(Y) \rightarrow Y$ is continuous. Proof: $f^{-1}(Y)$ is clearly a linear subspace of s and the topology generated by $\left(q_{\ell}\right)_{\ell \in I} U\left(r_{\lambda} \text { of }\right)_{\lambda \in \Lambda}$ is stronger than the subspace topology relative to X, hence stronger than that relative to s. Now let $\left\{x^{n}\right\}$ be a Cauchy sequence in $f^{-1}(Y)$, then it is a $\left(q_{l}\right)_{l \in I}$ Cauchy sequence in X, hence $x^{n} \rightarrow x$ in X, on the other hand $\left\{f\left(x^{n}\right)\right\}$ is a Cauchy sequence in Y hence $f\left(x^{n}\right) \rightarrow y$ in Y, but f is continuous as a mapping from X to s, hence $f\left(x^{n}\right) \rightarrow f(x)$ in s, but the topology on Y is stronger than the subspace topology, hence $f\left(x^{n}\right) \rightarrow y$ in s, therefore $f(x)=y$. so $x \in f^{-1}(Y)$, hence the space $\mathrm{f}^{-1}(\mathrm{Y})$ is complete.

Proposition 1.16. Under the assumption of Theorem 1.15. if f is one-one onto Y, then the linear topology generated by $\left(r_{\lambda} \circ f\right)_{\lambda \in \Lambda}$ alone is an $F K$ space.
Proof: If f is one-one onto Y, then $f: f^{-1}(Y) \rightarrow Y$ is a congruence onto where $f^{-1}(Y)$ has the topology generated by $\left(r_{\lambda} \text { of }\right)_{\lambda \in \Lambda}$. Now Y is an $F K$ space, hence $f^{-1}(Y)$ is an $F K$ space.

Lemma 1.17. A_{A} is an FK space for any matrix A. Proof : For the m th row of A define $D_{m}=\left\{x \mid \sum_{k=1}^{\infty} a_{m k} x_{k}\right.$ exists $\}$, then D_{m} with the seminorms $\left\{\left|P_{n}\right|\right\}$ and $h_{m}=\sup \left\{\left.\right|_{1} \sum_{\sum_{1}^{r}}^{T} a_{m} k_{k} x_{k} \mid\right\}$ $r=1,2, \cdots \cdots\}$ is an $F K$ space, for we can let $X=s, Y=c$ in Theorem 1.15. and let f be defined by the matrix

$$
A_{m}=\left(\begin{array}{l}
a_{m 1} o \cdots \\
a_{m 1} a_{m 2} o \cdots \cdots \\
a_{m 1} a_{m 2} a_{m 3} o \ldots \ldots \\
\cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \\
a_{m 1} \cdots \cdots \cdots o \ldots \\
\ldots \ldots
\end{array}\right)
$$

then f is continuous by Corollary 1.14 but clearly $c_{A_{m}}=D_{m}$ and the seminorm h_{m} is just the composite of the usual norm on c and f,hence D_{m} is an $F K$ space by Theorem 1.15. Now $d_{A}=\overbrace{m} D_{m}$, and $\left\{\left|P_{n}\right| \mid n=1, \cdots\right\} \cup\left\{h_{n} \mid n=1,2,3 \cdots\right\}$ generate the topology on d_{A} hence the topology on d_{A} is clearly stronger than the subspace topology relative to since it is stronger than that relative to D_{m} for any m. Let
$\left\{x^{n}\right\}$ be a Cauchy sequence in d_{A} then $\left\{x^{n}\right\}$ is a Cauchy sequonce in D_{m} for each m, let it converge to y_{m} in D_{m}, also $\left\{x^{n}\right\}$ is a Cauchy sequence in s, hence it converges to x, but then $x=y_{1}=y_{2}=\cdots=y_{m}$, hence $x \in \cap_{m} D_{m}$, therefore d_{A} is complete, d_{A} is clearly a linear subspace of s, hence it is an FK space.

Theorem 1.18. Let A be a matrix, then c_{A} with the linear topology generated by the seminorms on d_{A} and the seminorm $P(x)=\sup \left\{\left|\sum_{k=1}^{\infty} a_{n k} x_{k}\right| \mid n=1, \cdots\right\}$ is an $F K$ space. Proof: In Theorem 1.15., let $X=d_{A}, Y=c$, f be defined by A, then f is continuous by Corollary 1.14., now $c_{A}=f^{-1}(c)$ and $P(x)$ is the composite of f and the usual norm on c hence by Theorem 1.15., c_{A} is an FK space.

Definition : A matrix A is said to be reversible if it is a one-one onto mapping from c_{A} to c.

Proposition 1.19. Let A be reversible, then c_{A} is an $F K$ space with the seminorm $P(x)=\sup \left\{\left|\sum_{k=1}^{\infty} a_{n k} x_{k}\right| \mid n=1,2, \cdots\right\}$. Proof: Follows from Theorem 1.18. and Proposition 1.16. Lemma 1.20. Let q_{1}, q_{2} be seminorms on a linear space V and f be a linear functional on V such that

$$
|f(v)| \leqslant q_{1}(v)+q_{2}(v)
$$

then there exist linear functionals f_{1}, f_{2} on V such that $\left|f_{1}(v)\right| \leqslant q_{1}(v),\left|f_{2}(v)\right| \leqslant q_{2}(v)$ and $f(v)=f_{1}(v)+f_{2}(v)$. Proof: Define $q: V x V \rightarrow R^{+}$(the positive reals) by $q\left(v_{1}, v_{2}\right)=$ $q\left(v_{1}\right)+q\left(v_{2}\right)$, on the diagonal subspace $\{(v, v) \mid v \in V\}$ of $V x V$, define $g(v, v)=f(v)$, then $g(v, v)$ is a linear functional
and q is a seminorm on $V x V$, now $g(v, v)=f(v) \leqslant q_{1}(v)+q_{2}(v)=$ $q(v, v)$, hence by Theorem 1.7., g can be extended to $v x V$ with $\left|g\left(v_{1}, v_{2}\right)\right| \leqslant q_{1}\left(v_{1}\right)+q_{2}\left(v_{2}\right)$, let $f_{1}(v)=g(v, o), f_{2}(v)=$ $g(0, v)$, then $|g(v, 0)|=\left|f_{1}(v)\right| \leqslant q_{1}(v)+0, \operatorname{similarly}|g(0, v)|=$ $\left|f_{2}(v)\right| \leqslant q_{2}(v)$, clearly $f(v)=g(v, o)+g(o, v)=f_{1}(v)+f_{2}(v)$. Theorem 1.21. Let X, Y be $F K$ spaces with their topologies generated by the families of seminorms $\left(q_{\ell}\right)_{\ell \in I}$ and $\left(r_{\lambda}\right)_{\lambda \in \Lambda}$ respectively. Let $f: X \rightarrow s$ be a continuous linear map and $f^{-1}(Y)$ has the linear topology generated by $\left(q_{l}\right)_{l \in I}$ and $\left(r_{\lambda} \text { of }\right)_{\lambda \in \Lambda}$.If g is a continuous linear functional on $f^{-1}(Y)$, then there exists $F \in X^{\prime}, G \in Y^{\prime}$ such that $G=F+G o f$. Proof: If g is a continuous linear functional, then $|g(x)|$ is a continuous seminorm, hence by Theorem 1.3.iv) there exists M and seminorms in $\left(q_{C}\right)_{\mathcal{L} \in I} U\left(r_{\lambda} \text { of }\right)_{\lambda \in \Lambda}$ such that

$$
\begin{aligned}
& \lg (x) \mid \leqslant \operatorname{Mnax}\left\{q_{1}(x), \cdots, q_{n}(x), r_{1} \circ f(x), \cdots r_{m} \circ f(x)\right\} \\
& \leqslant M\left(q_{1}(x)+\cdots+q_{n}(x)+r_{1} \text { of }(x)+\cdots+r_{m} \circ f(x) .\right.
\end{aligned}
$$

we may assume that $M\left(q_{1}+\cdots+q_{n}\right) \in\left(q_{l}\right)_{\iota \in I}$ and $M\left(r_{1}\right.$ of $+\ldots+r_{m}$ of $) \in$ (r_{λ} of $)_{\lambda \in \Lambda}$ since adding these seminorms to $\left(q_{l}\right)_{l \in I}$ and (r_{λ} of $)_{\lambda \in \Lambda}$ does not change the topology on $f^{-1}(Y)$, hence $|g(x)| \leqslant q(x)+\operatorname{rof}(x)$ where $q \in\left(q_{l}\right)_{l \in I}$ and rofe(r_{λ} of $)_{\lambda \in \Lambda}$ • By Lemma 1.20, there exist. $F \in X^{\prime}$ and $F^{\prime} \mathbb{E}^{\prime \prime}$ such that $g=F+F_{1}$ and $|F| \leqslant q,\left|F_{1}\right| \leqslant$ rof. Define G on $f(X) \cap Y$ by $G(y)=$ $F_{1}(x)$ if $y=f(x)$, if $y=f\left(x_{1}\right)=f\left(x_{2}\right)$, then $\left|F_{1}\left(x_{1}\right)-F_{1}\left(x_{2}\right)\right|=$ $\left|F_{1}\left(x_{1}-x_{2}\right)\right| \leqslant \operatorname{rof}\left(x_{1}-x_{2}\right)=r(0)=0$,hence G is well-defined, by Theorem 1.4., G can be extended to Y, by construction
of G we have $g=F+G o f$.
1.3. Infinite Matrices.

Definition : A matrix A is said to be conservative if $c_{A} \supseteq c$, that is, it transforms convergent sequences into convergent sequences.

Theorem 1.22. (Kojima-Schur) A matrix A is conservative if and only if
i) $\|A\|=\sup \left\{\sum_{k=1}^{\infty}\left|a_{n k}\right| n=1,2, \ldots\right\}<\infty$ and
ii) $c_{A} \supseteq\{1\} \cup\left\{\delta^{k} \mid k=1,2, \cdots\right\}$.

Proof : Suppose i), ii) hold, then $\underset{n \rightarrow \infty}{\operatorname{lm}_{n}} a_{n k}=\underset{n \rightarrow \infty}{1} \underset{\rightarrow}{\infty} A\left(\delta^{k}\right)$ exists for all k. Let $a_{k}=11_{n} a_{n k}$ and $\|A\| \leqslant M$ then $\sum_{k}^{m}\left|a_{n k}\right| \rightarrow \sum_{k}^{m} \sum_{1}\left|a_{k}\right|$ for any finite m and $M \geqslant \sum_{k=1}^{m}\left|a_{n k}\right|$ imply that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{k}\right| \leqslant M \tag{1.6}
\end{equation*}
$$

Now if $x=\left(x_{1}, \ldots x_{k}, \ldots\right)$ and $\lim _{k} x_{k}=a$, write $x_{k}=a+\varepsilon_{k}$, hence for any $\varepsilon>0, \exists N(\varepsilon)$ such that $k>N(\varepsilon)$ implies $\left\lfloor\varepsilon \lll \frac{\varepsilon}{3 M}\right.$ for $n \leqslant N(\varepsilon)$ choose N_{1} great enough so that $\mid \sum_{k=1}^{N(g)}\left(a_{n k}-a_{k}\right) \varepsilon_{k} k$ $\frac{\varepsilon}{3}$ for $n>N_{1}$, then
$\left|\sum_{k=1}^{\infty}\left(a_{n k}-a_{k}\right) \varepsilon_{k}\right| \leqslant 1 \sum_{k=1}^{N}\left(a_{n k}-a_{k}\right) \varepsilon_{k}\left|+\sum_{k=N_{1}}^{\infty}(\varepsilon)+1\left(\left|a_{n k}\right|+\left|a_{k}\right|\right)\right| \varepsilon_{k} \mid$

$$
<\frac{\varepsilon}{3}+\left(\frac{2 M}{3 M}\right) \varepsilon=\varepsilon \quad, \text { for } n>N_{1}
$$

Therefore $1 \operatorname{im}_{n} \sum_{k=1}^{\infty} a_{n k} \varepsilon_{k}=\sum_{k=1}^{\infty} a_{k} \varepsilon_{k}$. Now $(A x)_{n}=\sum_{k=1}^{\infty} a_{n k}\left(a+\varepsilon_{k}\right)=$ $a_{k} \sum_{=1}^{\infty} a_{n k}+\sum_{k=1}^{\infty} a_{n k} \varepsilon_{k}$, but $1 \in c_{A}$, hence $1_{n} i_{k=1}^{\infty} \sum_{n k}^{\infty}=b$ exists, Therefore $\lim _{n \rightarrow \infty}(A x)_{n}=a b+\sum_{k} a_{k} \varepsilon_{k}$,
Hence $c_{H} \geq c$. To prove the converse, we apply the BanachSteinhaus Theorem twice. For any n define a sequence
$\left\{f_{m}\right\}$ of functional on c by

$$
f_{m}(x)=\sum_{k=1}^{m} a_{n k} x_{k} \quad,(m=1,2, \cdots)
$$

Then $\left\{f_{m}\right\}$ is a sequence of continuous linear functionals on c since convergence in c implies coordinate-wise convergence. Now by definition $\left\|f_{m}\right\|=\sup \left\{\mid{ }_{k}{\underset{\underline{m}}{=1}}^{m} a_{n k} x_{k}\| \| x \| \leqslant 1\right\}$, hence $\| f{ }_{m}{ }^{\prime \prime} \leqslant \sum_{k} \sum_{1}\left|a_{n k}\right|$, conversely we can let x be the sem quence $\left(e^{-i \theta_{1}} \ldots, e^{-i \theta m}, o, o, o, \ldots\right)$ where $\theta_{l}, \cdots \theta_{m}$ are the arguments of $a_{n i}, \ldots, a_{n m}$ respectively, then $\|x\| \leqslant 1$ and $\left|f_{m}(x)\right|=k \stackrel{m}{\underline{m}}\left|a_{n k}\right| \leqslant\left\|f_{m}\right\|$, thus $\left\|f_{m}\right\|=\sum_{k=1}^{m}\left|a_{n k}\right|$. The sequence $\left\{f_{m}\right\}$ is pointwise convergent hence pointwise bounded by Theorem 1.6. $\left\{\left\|f_{m}\right\| \mid m=1, \ldots\right\}$ is bounded, hence $\sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$ for any n. Now for any $n, g_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}$ defines a continuous linear functional on c by Theorem 1.6., again $\left\|g_{n}\right\|=\sum_{k=1}^{\infty}\left|a_{n k}\right|$, now $\left\{\left|E_{n}\right|\right\}$ considered as seminorms on c is pointwise bounded, hence $\left\{\sum_{k=1}^{\infty}\left|a_{n k}\right| n=1,2, \ldots\right\}$ is bounded. Definition : A matrix A is said to be regular if for all $x \in c$, we have $\lim _{n}(A x)_{n}=1 \lim _{n} x_{n}$.

Theorem 1.23. (Toeplitz-Silverman) A matrix A is regular if and only if
i) $\|A\|<\infty$,
ii) $\lim _{\mathrm{n}} \mathrm{a}_{\mathrm{nk}}=0$, for each k
iii) $1 i_{n} \sum_{k=1}^{\infty} a_{n k}=1$.

Proof : Suppose A is regular then $c_{A} \geq c$ hence i) follows from Theorem 1.23., $1 \mathrm{im} \delta^{k}=0$ for each k hence $1 i m A \delta^{k}=$ $\lim _{\mathrm{n}} a_{n k}=0$, $\operatorname{limi=1}$ hence $1 i m A i=1 i_{n} \sum_{k} a_{n k}=1$. The converse follows from (1.7).

Definition : Let $\mathcal{1}_{A}=\left\{x \in s \mid A x \in 1_{1}\right\}$, then a matrix A is said to be an $1_{1}-1_{1}$ method if $1_{A} \geq 1_{1}$.
In Theorem 1.15. let $X=d_{A}, Y=l_{1}$, f be defined by A then 1_{A} becomes an $F K$ space. Theorem 1.25 , concerning $1_{A}-1_{1}$ methods is due to Mears, Knopp and Lorentz. (See Satz 1. of [51). Lemma 1.24.: The space 1_{1} has $\left\{\delta^{k} \mid k=1,2,3, \cdots\right\}$ as Schauder basis.

Proof : See p. 86 of [7].
Theorem 1.25.: A matrix A is an $l_{2}-1_{1}$ method if and only if there exists M such that

$$
\sum_{\mathrm{n}}\left|a_{n k}\right| \leqslant M \quad, k=1,2,3, \cdots
$$

Proof : Suppose $1_{A} \supseteq 1_{1}$, then considering A as a matrix transformation from 1_{1} to 1_{1}, it is continuous by Corollary 1.14., hence there exists M such that $\|A x\| \leqslant M\|x\|$, where the norm is the usual norm on 1_{1}, hence $\left\|A \delta^{k}\right\|=\sum_{n}\left|a_{n k}\right| \leqslant M\left\|\delta^{k}\right\|=M$ for all k.

Conversely, let $x=\left(x_{1}, \cdots x_{n}, \cdots\right) \in 1_{1}$, then $x=\sum_{n} x_{n} \delta^{n}$, by Lemma 1.24. Now if A is column bounded then $\sum_{n} x_{n} A\left(\delta^{n}\right)$ is convergent in 1_{1}. For given $\varepsilon>0$, we may choose $N(\varepsilon)$ so that $\sum_{n=N}^{\infty}(\varepsilon)\left|x_{n}\right|<\frac{\varepsilon}{M}$ where M is the bound of the columns, then for $1, j \geqslant N(\varepsilon)\left\|x_{i} A\left(\delta^{i}\right)+\cdots x_{j} A\left(\delta^{j}\right)\right\| \leqslant\left|x_{i}\right| M+\cdots+\left|x_{j}\right| M<\varepsilon$. Hence the partial sum of $\sum_{n} x_{n} A\left(\delta^{n}\right)$ form a Cauchy sequence, thus it is convergent in 1_{1}. But the nth partial sum is just $\left(\sum_{k=1}^{n} a_{1 k} x_{k}, \sum_{k=1}^{n} a_{2 k} x_{k}, \ldots . ..\right)$, therefore the limit of $\sum_{n} x_{n} A\left(\delta^{n}\right)$ rust be $\left(\sum_{k=1}^{\infty} a_{1 k} x_{k}, \sum_{k=1}^{\infty} a_{2 k} x_{k}, \ldots \ldots\right)$ which is Ax, hence $A x \in 1_{1}$.

For any two infinite matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$, the product $A B$ is defined to be ($c_{i j}$) where $c_{i j}=\sum_{k} a_{i k} b_{k j}$, if each $c_{i j}$ exists. With this definition multiplication is not associative in general, this can be seen as follows, let $\sum_{n} b_{n}$ be convergent series which has a rearrangement $\sum_{\Lambda^{\prime}} r_{n}$ that converges to a different limit, let $b_{n}=c_{f}(n)$, where $f(n)$ is the rearrangement. Now let be the matrix $b_{i j}$ where $b_{i j}=b_{i}$ if $f_{(i)}=j, b_{i j}=0$ if $f_{(i)} \neq j$, let A and C be the matrix whose elements are all equal to one, then the elements of (AB)C are all equal to $\sum_{n} r_{n}$, whereas all elements of $A(B C)$ are $\sum_{n} b_{n}$.
Definition : A matrix A is called a lower semi-matrix if for $j>i \quad a_{i j}=0$.
Proposition 1.26. Lower semi-matrices are associative.
Proof: Let $(A B) C=\left(d_{i j}\right), A(B C)=\left(e_{i j}\right), \quad A=\left(a_{i j}\right), \quad B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$, then for $j>i$ clearly $d_{i j}=e_{i j}=0$ since both ($A B$) C and $A(B C)$ are again lower semi-matrices. For $i \geqslant j$, we have $d_{i j}=\left(\sum_{k=j}^{i} a_{i k} b_{k j}\right) c_{j j}+\left(\sum_{k=j+1}^{\sum_{i k}} a_{k j}\right) c_{j+1, j}+\cdots+a_{i i} b_{i i} c_{i j}$, this can be re-grouped to form $a_{i 1} b_{j j} c_{j j}+a_{i 2}\left(b_{j+1}, f_{j j}+\right.$ $\left.b_{j+1, j+1} c_{j+1, j}\right)+\cdots+a_{i i}\left(b_{i j} c_{j j}+\cdots+b_{i i} c_{i j}\right)=e_{i j}$, hence $(A B) C=A(B C)$.

Definition : A inatrix is said to be row-bounded if there exists M such that $\sum_{k=1}^{\infty}\left|a_{n k}\right| \leqslant M$ for all n. Proposition 1.27. : Row-bounded matrices are associative. Proof : Let A, B, C be row-bounded matrices, $(A B) C=\left(d_{i j}\right)$, $A(B C)=\left(e_{i j}\right)$, without loss of generality consider $d_{l l}$ and
e_{11}, now $d_{11}=c_{11}\left(\sum_{k} a_{1 k} b_{k 1}\right)+\cdots \cdot c_{n 1}\left(\sum_{k} a_{1 k} b_{k n}\right)+\ldots, e_{11}=$ $a_{11}\left(\sum_{k} b_{1 k} c_{k 1}\right)+\cdots+a_{1 m}\left(\sum_{k} b_{m k} c_{k 1}\right)=a_{11}\left(b_{11} c_{11}+\sum_{k=2}^{\infty} b_{1 k} c_{k 1}\right)+$ $\ldots+a_{1 m}\left(b_{m 1} c_{11^{+}}+\sum_{k=2}^{\infty} b_{m k} c_{k 1}\right)+\ldots$ now $\left\{\left.1 b_{m 1} c_{11^{1}}\right|_{m=1,2, \ldots}\right.$ is bounded and $\sum_{m}\left|a_{1 m}\right|<\infty$, therefore $e_{11}=c_{11}\left(\sum_{k} a_{1 k} b_{k 1}\right)+$ $\left[a_{11}\left(\sum_{k=2}^{\infty} b_{1 k} c_{k 1}\right)+\ldots+a_{1 m}\left(\sum_{k=2}^{\infty} b_{m k} c_{k 1}\right)+\ldots\right]$, this step can be carried on for any n hence we have $e_{11}=c_{11}\left(\sum_{k} a_{1 l_{k}} b_{k 1}\right)+$ $\ldots+c_{n l}\left(\sum_{k} a_{1 k} b_{k n}\right)+\left[a_{11}\left(\sum_{k=n+1}^{\infty} b_{1 k} c_{k 1}\right)+\ldots+a_{1 m}\left(\sum_{k=n+1}^{\infty} b_{m k} c_{k 1}\right)+\ldots\right]$. The last term tends to zero since all three matrices are row-bounded, to see this we can choose m great enough so that $l^{a_{1 m}}\left(\sum_{k=n}^{\infty} b_{m k} c_{k 1}\right)+\ldots K \frac{\varepsilon}{2}$ for any n, then choose n great enough using row-boundedness of B so that $\left|a_{11}\left(\sum_{k=n+1}^{\infty} b_{1 k} c_{k 1}\right)+\ldots+a_{1 m-1}\left(\sum_{k=n+1}^{\infty} b_{m-1, k} c_{k 1}\right)\right|<\frac{\varepsilon}{2}$. Therefore ${ }^{-11}=\mathrm{d}_{11}$.
Definition : A matrix A is said to be normal if A is a lower semi-matrix with non-zero diagonal elements.

Proposition 1.28. If A is normal then the equation
$A x=y$ with x as unknown has a unique solution.
Proof: We have

$$
\begin{aligned}
& a_{11} x_{1}=y_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=y_{2}
\end{aligned}
$$

hence $x_{1}=\frac{y_{1}}{a_{11}}, \quad x_{2}=\frac{y_{2}-a_{21} x_{1}}{a_{22}}$,
Theorem 1.29. If the terms of a series $\sum_{n} r_{n}$ are defined by series, with $r_{n}=\sum_{k} a_{n k}$, and $\sum_{n} a_{n k}=s_{k}$ for each k, then $\sum_{k}\left|a_{n k}\right|=t_{n}$ and $\sum_{n} t_{n}$ is convergent imply that $\sum_{n} r_{n}=\sum_{k} s_{k}$. Proof : See p. 241 of [4].

CHAPTER II

CON'IINUOUS LINEAR FUNCTIONALS ON c_{A}

Lemma 2.1. Let E be a continuous linear functional on d_{A} for an arbitrary matrix A, then $g\left(\left(x_{1}, \ldots x_{n}, \ldots\right)\right)=$ $\sum_{n} x_{n} g\left(\delta^{n}\right)$ for all ($\left.x_{1}, x_{2} \ldots x_{n}, \ldots\right)$ in d_{A}.
Proof : By Proposition 1.7. $\left\{\delta^{n} \mid n=1,2, \ldots\right\}$ is a Schauder basis for d_{A}. Hence ${ }_{n=1}^{m} x_{n} \delta^{n} \rightarrow x$ as $m \rightarrow \infty$, therefore $\underset{\sim}{\underset{\sim}{m} \sum_{1}} x_{n} g\left(\delta^{n}\right)=$ $g\left(\sum_{n} \sum_{1}^{m} x_{n} \delta_{1}^{n}\right) \rightarrow g(x)$ as $m \rightarrow \infty$, hence $g(x)=\sum_{n} x_{n} g\left(\delta^{n}\right)$.

Theorem 2.2. Let A be a conservative matrix, feck. Then f may be expressed as

$$
\begin{equation*}
f(x)=\alpha \lim _{A} x+\sum_{r} t_{r}(A x)_{r}+\sum_{r} \beta_{r} x_{r} \tag{2.1}
\end{equation*}
$$

where $\sum_{r}\left|t_{r}\right|<\infty$ and $\sum_{r} \beta_{r} x_{r}$ converges for all $x \in c_{A}$. Proof : By Theorem 1.18. and Lenma $1.17 ., c_{A}$ and d_{A} are $F K$ spaces. In Theorem 1.21., let $X=d_{A}, Y=c$, then by the same theorem every continuous linear functional f on c_{A} can be expressed as $f=G o A+F$ with $G \in c^{\prime}$ and $F \in d_{A}^{\prime} \cdot$ By (1.3) and Leman 2.1. we may take $G(x)=\alpha 1 i m x+\sum_{r} x_{r} t_{r}$ and $F(x)=\sum_{r} x_{r} \beta_{r}$, where $\beta_{n}=F\left(\delta^{n}\right)$, hence $G O A=\alpha 1$ im $_{A} x+\sum_{r} t_{r}(A x)_{r}$ and the result follows.

$$
\text { In }(2.1) \text { let } x=\delta^{k},(k=1,2, \ldots) \text {, then } f\left(\delta^{k}\right)=\alpha a_{k}+\sum_{r} t_{r} a_{r k}+\beta_{k}
$$ where $a_{k}=1 i_{n} m a_{n k}$. Hence $\beta_{k}=f\left(\delta^{k}\right)-\alpha a_{k}-\sum_{r} t_{r} a_{r k}$ and

$$
f(x)=\alpha 1 \operatorname{lm}_{A} x+\sum_{r} t_{r}(A x)_{r}+\sum_{k}\left[f\left(\delta^{k}\right)-\alpha a_{k}-\sum_{r} t_{r} a_{r k}\right] x_{k} \quad \text { (2.2). }
$$

If A is conservative, by Theorem 1.22. $\sum_{k}\left|a_{15}\right|<\infty$, hence $\sum_{k} \mathbf{a}_{\mathbf{k}}$ is convergent. We define

$$
\chi(A) \equiv 1 \pm m_{A} i-\sum_{K} a_{k}=1 i_{n} m \sum_{K} a_{n k}-\sum_{K} 1 i_{n} a_{n k}
$$

In Chapter 3 we will classify the conservative matrices
by means of this number.
In Theorem 2.2. if A is also reversible, then by Proposition 1.19., c_{A} and c are congruent. Let A^{-1} be the inverse map of A, then $f o A^{-1}$ is a continuous linear functional on c since $A^{-1}=C \rightarrow c_{A}$ is continuous. By (1.3), let $\mathrm{foA}^{-1}=\alpha \lim x+\sum_{n} x_{n} t_{n}$, hence
$f_{O A}{ }^{-1}{ }_{O A=f=\alpha} \lim _{A} x+\sum_{n}(A x)_{n} t_{n} \quad$ (2.4).
A is a continuous linear transformation from c_{A} to c by Corollary 1.14. and the functional $f(x)=1 \mathrm{mx}$ is a continuous linear functional on c, hence their composite $\lim _{A} x$ is a continuous linear functional on c_{A}. We also have the following result.

Theorem 2.3. If $c_{B} \supseteq_{A}$, then $1 i m_{B} x$ is a continuous linear functional on c_{A}.

Proof: If ${ }^{C_{B}} \geq_{A}$ then we can consider B as a matrix transformation from c_{B} to c, it is linear and continuous by Corollary 1.14. Now lim x is a continucus linear functional on c, hence so is the composite lim $_{B} x$. The topology of c_{A} is not woaker than the subspace topology relative to c_{B}, hence limBx C_{A}. Definition : A conservative matrix A is said to be multiplicative m if for any $x \in c, \lim _{A} x=m l i m x$. Proposition 2.4. A matrix A is multiplicative m if and only if $a_{k}=1 \frac{1 m}{n} a_{n k}=0$ for all k.

Proof : By Theorem 2.3. $\lim _{A} x$ is a continuous linear functional on c where c is considered as c_{I}, then by (1.3)
$11 m_{A} x=\left(11 m_{A}(i)-\sum_{k} 1 i m_{A}\left(\delta^{k}\right)\right) 1 i m x+\sum_{K} x_{k} 1 i m_{A}\left(\delta^{k}\right)=\chi(A) 1 i m x+\sum_{k} x_{k} a_{k}$, but $\mathcal{X}(A)=m$ if A is multiplicative m, hence $a_{k}=0$ for all k. Conversely if $a_{k}=0$ for all k then $1 i m_{A} x=\left(1 i m_{A} i\right) 11 m x$ hence A is multiplicative.

For any continuous linear functional f on c_{A} where A is conservative, $\sum_{k} f\left(\delta^{k}\right)$ is convergent because we can consider f as a continuous linear functional on c then $\sum_{k}\left|f\left(\delta^{k}\right)\right|<\infty$ by (1.5), we define

$$
\chi(f) \equiv f(i)-\sum_{k} f\left(\delta^{k}\right)
$$

Proposition 2.5. If A is conservative, f is in $c A$, and f is represented as in (2.1), then $\chi(f)=\alpha \chi(A)$. Proof : $f(i)=\alpha l i m_{A} i+\sum_{r} t_{r}\left(\sum_{k} a_{r k}\right)+\sum_{r} \beta_{r}, \sum_{n} f\left(\delta^{n}\right)=\sum_{n} \alpha 1 i m_{A} \delta^{n}+$ $\sum_{k}\left(\sum_{r} t_{r} a_{r k}\right)+\sum_{r} \beta_{r}$ hence $f(i)-\sum_{n} f\left(\delta^{n}\right)=\alpha \chi(A)+\sum_{r} t_{r}\left(\sum_{k} a_{r k}\right)-$ $\sum_{k}\left(\sum_{r} t_{r}{ }^{2}\right)$, now A is a conservative matrix hence rowbounded by Theorem 1.23., $\Sigma_{\mathrm{r}}\left|\mathrm{t}_{\mathrm{r}}\right|<\infty$, hence by Theorem 1.29. $\sum_{r} t_{r}\left(\sum_{k} a_{r k}\right)=\sum_{k}\left(\sum_{r} t_{r} a_{r k}\right)$, therefore $\chi(r)=\alpha \chi(A)$.

CHAPTER III

CO-NULL ANI CO-REGULAR MATRICES

Definition $: \Lambda$ conservative matrix A is said to be coregular if $\chi(A) \neq 0$, co-null if $\chi(A)=0$.

The above definition is due to Wilansky (p.61 of [9]). Example 3a. The process of taking the arithmetic mean or Cesàro mean can be represented by the conservative matrix

$$
A=\left(\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & \cdots & \cdots & \cdots \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{1}{n} & \cdots & \cdots & \cdots & \cdots & \frac{1}{n} & \cdots
\end{array}\right)
$$

A is co-regular since $\chi(A)=1$. In fact, A is regular, and it follows from ii) and iii) of Theorem 1.23. that regular matrices are co-regular.

Example 3.b. The conservative matrix

is co-null since $1 i_{n} \sum_{k} a_{n k}=0$ and $1 i_{n} a_{n k}=0$ for each $k=1,2, \ldots$ If A is multiplicative zero, then $1 i m_{A} i=0$ and $\lim _{A} g^{k}=0$ for all k. Hence A is co-null. Thus every multiplicative zero matrix is connull.

For a conservative matrix A, we define

$$
W_{A} \equiv\left\{x \in c_{A} \mid f(x)=\sum_{n} x_{n} f\left(\delta^{n}\right), \text { for all } f \in c^{\prime}\right\}
$$

proposition 3.1. A conservative matrix A is co-null if and only if $i \in W_{A}$.
Proof: If $i \in W_{A}$, consider $f(x)=1 i m_{A} x . f(i)=\sum_{n} f\left(\delta^{n}\right)$ implies that A is co-null. Conversely, if A is co-null, then every $f \in c_{A}^{\dot{A}}$ we have $f(i)-{ }_{n} f\left(\delta^{n}\right)=\alpha \chi(A)=0$, hence $f(j)=\sum_{n} f\left(\delta^{n}\right)$, thus $i \in W_{A}$.

Corollary 3.2. A conservative matrix A is co-null if and only if for every $f \in c_{A}, f\left(\sum_{n=1}^{k} \delta^{n}\right) \rightarrow f(i)$ as $k \rightarrow \infty$, that is, $\sum_{n=1}^{k} \delta^{n}$ converges weakly to i in c_{A}. Proof : This follows dmmediately from Proposition 3.1.

From Corollary 3.2. it follows that we can regard coregularity as a property of c_{A} rather than the matrix A. This was done by Snyder, A.K. (Math. $2.90,1965,376-381$) Proposition 3.3. If c is closed in c_{A}, then A is coregular.
Proof : If c is closed in c_{A}, by Proposition 1.12., the subspace topology and the usual topology on c are equivalent, if A is co-null then every continuous linear functional that vanishes on $\left\{\delta^{n} \mid n=1,2, \ldots\right\}$ must vanish at i. In c consider the subspace V_{1} generated by
$\left\{\delta^{n} \mid n=1, \ldots\right\}$ and the vector i, clearly $d\left(i, v_{1}\right)=\inf \left\{\| i-v_{\|} \mid v_{\in} V_{1}\right\}$ $\geqslant 1$,hence $i \notin \bar{v}_{1}\left(\ln c_{A}\right)$. Thus by Theorem 1.5., there is a coninuous linear functional $f \in C_{A}$ satisfying the condition $f\left(V_{1}\right)$ $=0$ and $f(i) \neq 0$. This is a contradiction, hence A cannot be co-null.

The converse of the above Proposition is not true, to see this we consider the arithmetic mean in Example 3.a. This matrix is a reversible matrix by Proposition 1.28. Hence c_{A} and c are confruent under A. Now let $\left\{x^{n}\right\}=$ $\{(-1,0,0, \ldots),(-1,1,0,0, \ldots),(-1,1,-1,0, \ldots), \ldots\}$, then $\left\{x^{n}\right\} \subseteq c$, let $x=\left\{(-1)^{n}\right\}$, then $A x^{n} \rightarrow A x$ but $x \notin c$ hence $A x \notin A(c)$. Therefore $A(c)$ is not closed in c hence c is not closed in c_{A}.

Theorem 3.4. If A, B are conservative matrices and $c_{A}=c_{B}$, then both A and B are co-regular or both are co-null. Proof : By Theorem 2.3., $1 \mathrm{im}_{A} \mathbf{x \in c} \mathrm{C}_{\mathrm{B}}$ and $\lim _{\mathrm{B}} \mathrm{x} \in \mathrm{c}_{\AA}$, by Proposition 2.5. $\chi(A)=\alpha_{1} \chi(B)$ and $\chi(B)=\alpha_{2} \chi(A)$ for some α_{1}, α_{2}, hence $\mathcal{X}(A)$ and $\mathcal{X}(B)$ are both non-zero or both zero. This completes the proof.

The above theorem shows that co-regularity is a property that depends on the summability field c_{A} alone and not the matrix A.

Proposition 3.5. If A, B are conservative matrices and $c_{A} \subseteq c_{B}$, then A is co-null implies that B is also co-null. Proof : By Theorem 2.3., 1in $\notin c_{A}^{\prime}$, by Proposition 2.5. $\chi(\mathrm{B})=$ $\alpha \chi(A)$ hence the result follows.

We now turn to the study of the "size" of the summability field C_{A}. We will first assume that A is corregular. Theorem 3.6. (Steinhaus) If A is a regular matrix, then cat.

Proof : By Theorem 1.23. we have i) $\sum_{j}\left|a_{i j}\right|<M$ for some M and for all i, ii) 1 if ma $_{i j}=0$ for all j and iii) $\sum_{j} a_{i j}=A_{i} \underset{i \rightarrow \infty}{\longrightarrow} 1$. We will construct a sequence x that consists of o's and $l^{\prime} s$ such that $A x$ is not convergent. By iii) choose i_{1} so that $\left.\left|\sum_{j} a_{1_{1}}, j\right|>\frac{3}{4}, b y i\right)$ choose j_{1} so that $\sum_{j=j_{1}+1}^{\infty}\left|a_{i_{1}}, j\right|<\frac{1}{12}$, for $1 \leqslant n \leqslant j_{1}$ let $x_{n}=1$ then $(A x)_{i_{1}}=\sum_{j=1}^{j} a_{i_{1}}, j+\sum_{j=j_{1}+1}^{\infty} a_{i}, j x_{j}$ $=\sum_{j} a_{i}, j+\sum_{j}^{\infty} j_{1+1} a_{i}, j\left(x_{j}-1\right)$, hence $\left|(A x)_{i 1}\right| \geqslant\left|\sum_{j} a_{i 1}\right|-\sum_{j=j_{1}+1}^{\infty} a_{i}, j \mid$ $\geqslant \frac{3}{4}-\frac{1}{12}=\frac{2}{3}$. Now choose $i_{2} \geqslant i_{1}$ by $\left.i i\right)$ so that $\sum_{j=1}^{j 1}\left|a_{i_{2}, j}\right|<\frac{1}{6}$, choose $j_{2}>j_{1}$ so that $\sum_{j=j_{2}+1}^{\infty}\left|a_{i_{2}}, j\right|<\frac{1}{6}$ by i) for $j_{1}<n \leqslant j_{2}$ let $x_{n}=0$ then $\left|(A x)_{i_{2} k} \sum_{j=1}^{j} \frac{1}{1}\right| a_{i_{2}}, j\left|+\sum_{j=j_{2}}^{\infty}\right| a_{i_{2}, j}, \frac{1}{6}{\underset{j}{j}}_{2}^{\frac{1}{6}}=\frac{1}{12}$. Next we choose $i_{3}>i_{2}$ so that $\left|\sum_{j} a_{i 3}, j\right|>\frac{3}{4}$, and $\sum_{j=1}^{j} j_{1}+1 a_{i, 3}, j \left\lvert\,<\frac{1}{24}\right.$,

 $1)\left|\geqslant\left|\sum_{j} a_{i}, j\right|-l_{j} \sum_{j_{1}+1} \mathrm{j}_{\mathrm{i} 3, j}\right|-\sum_{j=j_{3}+1}^{\infty}\left|a_{i_{3}}, j\right| \geqslant \frac{3}{4}-\frac{1}{24}-\frac{1}{24}=\frac{2}{3} \cdot$ Continuing in this way we can construct $\left\{x_{n}\right\}$ so that $\left.\{\| A x)_{n}\right\}$ is divergent, hence $\left\{(A x)_{n}\right\}$ must be divergent.

Theorem 3.7. If A is co-regular then $c_{A} \neq$
Proof : Let $A=\left(a_{n k}\right)$, consider $B=\left(a_{n k}-a_{k}\right)$ where $a_{k}=1 i_{n}{ }^{n} a_{n k}$, then B is a multiplicative matrix, since $\sum_{k}\left|a_{k}\right|<\infty$ by (1.6), we have $c_{i} \cap m=c_{B} \cap m$, hence it suffices to show $c_{B} \notin m$. Now $1 i m_{B} i=1 \lim _{n} \sum_{k}\left(a_{n k}-a_{k}\right)=1 \operatorname{im}_{n} \sum_{k} a_{n k}-\sum_{k} a_{k}=\rho(A) \neq 0$ hence B is
multiplicative $P(A)$, thus $\frac{1}{P(A)} B$ is regular and $c_{B}=c \frac{1}{\left.\beta_{A}\right)} B^{\neq m}$ by Theorem 3.6.

Example 3.c. Consider the arithmetic mean and the bounded sequence defined by the following rules

$$
\begin{array}{ll}
x_{1}=1 & \\
x_{n}=0, & 1<n \leqslant 3 \\
x_{n}=1, & 3<n \leqslant 3^{2} \\
x_{n}=0, & 3^{2}<n \leqslant 3^{3}
\end{array}
$$

The sequence is clearly bounded, but $(A x)_{1}=1,(A x)_{3}=\frac{1}{3}$, $(A x)_{3} 2 \geqslant \frac{2}{3},(A x)_{3} 3 \leqslant \frac{1}{3}, \ldots(A x)_{3}^{2 n \geqslant \frac{2}{3},(A x)_{3} 2 n+1} \leqslant \frac{1}{3}$, hence the sequence x is not in c_{A}.

For a co-regular matrix A, c_{A} may be a proper subset of m, for example if $A=I$, the identity matrix. However, the next main result (Theorem 3.10.) tells us that whenever a co-regular matrix sums a divergent bounded sequence, c_{A} is not a subset of m.

Lemma 3.8. If A is a co-regular matrix, then in $c_{A}, \bar{c} \supseteq c_{A} \cap m$. Proof : Consider c as a linear subspace of $c_{\Lambda} \cap n$, by Theorem 1.5. it suffices to show that every continuous linear functional that vanishes on c must vanish on $c_{A} n$. Let $f \in c_{A}^{\prime}$ and $f(c) \equiv 0$, then in the representation (2.1), $\alpha=0$, because $\chi(\mathrm{A}) \neq 0, \chi(f)=0$ and $\chi(f)=\alpha \chi(\mathrm{A})$, also $f\left(\delta^{k}\right)=0$ for all k, hence by (2.2).

$$
f(x)=\sum_{r} t_{r}(A x)_{r^{-}}-\sum_{k}\left(\sum_{r} t_{r} a_{r k}\right) x_{k}
$$

But $\sum_{r} t_{r}(A x)_{r}$ may be considered as $t(A x)$ where t is the
matrix whose first row is ($\left.t_{1}, \ldots t_{r}, \ldots\right)$ and other rows are zero, x may be considered as the matrix whose first column is

$$
\left(\begin{array}{c}
x_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\dot{x}_{r} \\
\vdots
\end{array}\right)
$$

and other columns are zero and $\sum_{k}\left(\sum_{r} t_{r} a_{r k}\right) x_{k}$ may be considered as (tA)x in the same way. Now all three matrices t, A and x are row bounded if $x \in c_{A} \cap m$, hence $t(A x)=(t A) x$ by Proposition 1.27. hence $f\left(c_{A} \cap m\right) \equiv 0$.

Lemma 3.9. If $c_{A} \subseteq m$, then c_{A} is closed in m.
Proof : Recall that $\sup _{\boldsymbol{n}}\left|x_{n}\right|$ is the norm on m. Let $x \in \bar{c}_{A}$ in m, to show that $x \in c_{A}$ in m it suffices to show that $A x$ is a Cauchy sequence. For any $\varepsilon>0$, consider $N\left(x, \frac{\varepsilon}{4 M}\right)$ where $M=$ $\|A\| \neq 0$ (for if $\|A\|=0, A$ is the zero matrix, then $s=c A \neq m$), let $y \in c_{A} \cap N\left(x, \frac{\varepsilon}{4 M}\right)$ and $N(\varepsilon)$ be an integer such that for m, $n>N(\varepsilon)$ we have $f(A y)_{m}-(A y)_{n}\left|=\left|\sum_{k}\left(a_{m k}-a_{n k}\right) y_{k}\right|<\frac{\varepsilon}{2}\right.$. Let $x_{k}=$ $y_{k}+c_{k}$ where $\left|c_{k}\right|<\frac{\varepsilon}{4 M}$ by the choice of y. Thus we have $\left|(A x)_{m}-(A x)_{n}\right|=\left|\sum_{k}\left(a_{m k}-a_{n k}\right)\left(y_{k}+c_{k}\right)\right| \leqslant\left|\sum_{k}\left(a_{m k}-a_{n k}\right) y_{k}\right|+1 \sum_{k}\left(a_{m k}-a_{n k}\right) \| c_{k} \mid$ $<\frac{\varepsilon}{2}+2 M \cdot \frac{\varepsilon}{4 M}=\varepsilon$.

Hence $A x$ is a Cauchy sequence and $x \in c_{A}$.
Theorem 3.10. If a co-regular matrix sums a bounded divergent sequence, it must sum an unbounded sequence.

Proof: Suppose $c \in c_{A} \subseteq m$, then by Lemma 3.9. and Proposition 1.12., the usual topology on c_{A} is the same as the subspace topology. But c is closed with respect to the usual topology
of m, hence c is closed in c_{A}. By Lemma 3.8., $c=\bar{c} \supseteq c_{A} \cap m$, that is, c is all the bounded sequences in c_{A}, this contradicts the assumption that A sums a bounded divergent sequence, therefore $c_{A \neq} m$ and the result follows. Example 3.d. The arithmetic mean sums the bounded divergent sequence $\left\{(-1)^{n}\right\}$, it also sums the unbounded sequence $(1,-1, \sqrt{2},-\sqrt{2}, 3, \sqrt{3}, \ldots)$.

There exist matrices that sum unbounded sequences but do not sum any bounded divergent sequence. It will be seen in the next chapter that such matrices must be coregular. We give now an example of such a matrix. Example 3.e. We will define a matrix A whose diagonal elements are all equal to one. Construct a one-one correspondence k from the positive integers into themselves by the following rules

$$
k(1)=2^{2}, k(2)=2^{3}, k(3)=2^{5}, \ldots, k(n+1)=2^{n} k(n), \ldots .
$$

Let A be the matrix whose diagonal elements are one and $a_{n, k(n)}=-\frac{n}{k(n)}$, the other elements are zero, then A sums the sequence $(1,2,3,4, \ldots)$ since $(A x)_{n}=n-n=0$. Now if x is a bounded divergent sequence then $A x$ is divergent, for otherwise $\lim _{\mathrm{n}}(\mathrm{Ax})_{\mathrm{n}}=\lim _{\mathrm{n}}\left[\mathrm{x}_{\mathrm{n}}-\left(\frac{\mathrm{n}}{\mathrm{k}(\mathrm{n})}\right) \mathrm{x}_{\mathrm{k}(\mathrm{n})}\right]$ exists but x is bounded and $\lim _{\mathrm{n}} \frac{\mathrm{n}}{\mathrm{k}(\mathrm{n})}=0$ hence $\lim _{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$ exists, this is a contradiction.

As for co-null matrices, we will see that every conull matrix must sum a bounded divergent sequence hence an unbounded one in the next chapter.

CHAPTER 4

c AS A SUBSET OF CA
In the first part of this chapter we will study the conservative matrices that are also $1_{2}-1_{1}$ matrices and relationships between c and 1_{A}. In the second part we will assume that c is closed in c_{A} and study the consequences.

For a conservative matrix A, the conditions $l_{A} \subseteq c$ and csid may or may not hold. For example if $A=I$, the identity matrix, then $1_{A}=1_{1} \subseteq c=c_{A}$, but $c \neq 1_{A}$. If

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & \ldots & \ldots \\
0 & \frac{1}{2} & 0 & \ldots & \ldots & \ldots \\
0 & 0 & \frac{1}{3} & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

then $(1,2,3 \ldots) \in 1_{A}$ but it is not in c, hence $1_{A}{ }^{\ddagger} c . A l s o$, it is easy to see that $c \subseteq 1_{A}$.

Definition : A conservative matrix is said to be perfect if c is dense in c_{A}.

Theorem 4.1. If A is perfect, an $l_{1}-l_{1} \operatorname{method}$ and $A\left(c_{A}\right)=c$, then 1_{A} ?

Proof : The matrix A considered as a mapping from c_{A} to c is continuous by Corollary 1.15 ., hence $\bar{c}=c_{A}$ implies $\overline{A(c)}=c$ since A is onto. Now if $1_{A} \geq c$, then $\overline{A\left(l_{A}\right)}=c$ with respect to the norm of c, but $A\left(1_{A}\right) \subseteq 1_{1}$ since A is an
$1_{1}-1_{1}$ method, hence l_{1} is dense in c. The last statement is not true because if we let $\varepsilon=\frac{1}{2}, x=(1,1, \ldots, 1, \ldots)$, then $N(x, \varepsilon)$ contains no element of 1 .

It is obvious that, for an arbitrary matrix $A, i f^{f}$ $c \subseteq 1_{A}$, then A is conservative and multiplicative zero. However for a conservative matrix A which is also an $1_{\perp}-1_{1}$ method, A multiplicative zero does not imply $c \subseteq 1_{A}$. Consider
the matrix A is row-bounded, $1 i m_{A} \delta^{k}=0$ for all k and $1 i m_{A} \dot{i}=0$, hence by Theorem 1.22., A is conservative. Also, A is column-bounded, hence it is an $1_{1}-1_{1}$ method by theorem 1.25. Now $i \in c$ and $\sum_{n}\left|(A i)_{n}\right|=1+\frac{1}{2}+\frac{1}{3}+\ldots=\infty$, hence $i \notin 1_{A}$. Theorem 4.2. If A is an 1-1 method, then a necessary condition for $1_{A} \subseteq c$ is that for any subsequence ($r_{1}, r_{2}, \ldots, r_{i}$,) of the sequence $(1,2,3, \ldots)$ with $r_{i}+1<r_{i+1}$ for infinitely many r_{i},

$$
\begin{equation*}
\sum_{n}\left(l_{k=r_{1}}, r_{2} \ldots a_{n k} \mid\right)=\infty \tag{4.1}
\end{equation*}
$$

Proof: Suppose $l_{A} \subseteq c$, for any such sequence (r_{1}, r_{2}, \ldots). Construct a sequence x whose r_{i} th term is 1 and others are zero, then x is a divergent sequence since $r_{i}+l<r_{i+1}$ for
infinitely many i. Hence $x \notin 1_{A}$, that is, (4.1) holds. The condition (4.1) is not sufficient, for example, let

$$
A=\left(\begin{array}{ccccccc}
-1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots \\
-2 & 1 & 0 & \cdots & \cdots & \cdots & \cdots \\
0 & -2 & 1 & 0 & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & -2 & 1 & 0
\end{array}\right)
$$

then A is column-bounded hence an $1_{1} l_{1}$ method, let $x=$ $(1,2,4,8, \ldots)$, then $A x=(-1,0,0,0, \ldots)$, thus $x \in 1_{A}$, but $\mathbf{x} \notin \mathrm{c}$.

In what follows we will study the condition that c is closed in c_{A}, for this we arrange the seminorms that generate the linear topology on c_{A} in the following manner:

$$
\begin{aligned}
& q_{o}(x) \equiv P_{o}(x)=\sup _{n}\left|\sum_{k} a_{n k} x_{k}\right| \\
& q_{2 n-1}(x) \equiv h_{n}(x)=\sup _{\mathrm{m}}\left|\sum_{k=1}^{m} a_{n k} x_{k}\right| \\
& q_{2 n}(x) \equiv\left|P_{n}\right|(x)=\left|x_{n}\right| .
\end{aligned}
$$

Recall that the locally convex linear topology on c_{A} is generated by

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}} \frac{p_{n}(x)}{1+p_{n}(x)} \text {, where } p_{n}(x)=\max _{0 \leqslant i \leqslant n} q_{i}(x)
$$

Also recall that c_{A} is complete; hence a series is convergent if the partial sums form a Cauchy sequence. The following interesting result is due to Wilansky and Zeller [10].

Theorem 4.3. For a conservative matrix A, c is closed in c_{A} if and only if A sums no bounded divergent sequence,
that is, $c_{A} \cap m=c$.
Proof : Suppose c is not closed in c_{A} and consider the subspaces

$$
V_{K}=\left\{x \in c \mid \quad x_{k}=0, \quad k<K\right\} \quad, K=0,1,2, \ldots
$$

These subspaces are not closed in c_{A}; for suppose $V_{K_{0}}$ is closed for some K_{o} and let $\left\{x^{m}\right\} \subseteq c$ converge to x in c_{A}, furthermore, for each $x^{m}=\left(x_{1}^{m}, x_{2}^{m}, \ldots, x_{K_{0-1}}^{m}, x_{K_{0}}^{m}, \ldots\right)$, let
 then $x^{m}=y^{m}+z^{m}$ and $z^{m} \in V_{K_{0}}$. Now $q_{i}\left(x^{m}-x\right) \rightarrow 0$ for all i by assumption, hence $q_{2 n}\left(y^{m}-y\right) \rightarrow 0$; but each y^{m} has zero coordinate after the $K_{o}-1$ th coordinate, hence $q_{0}\left(y^{m}-y\right) \rightarrow 0$ and $q_{2 n-1}\left(y^{m}-y\right) \rightarrow 0$. Now let $x=\left(x_{1}, \ldots x_{K_{0}-1}, x_{K_{0}}, \ldots\right)=$ $\left(x_{1}, \ldots, x_{K_{0}-1}, 0, \ldots\right)+\left(0,0, \ldots, x_{K_{0}}, x_{K_{0}+1}, \ldots\right)$ and let $y=$ $\left(x_{1}, \ldots x_{K_{0}-1}, 0, \ldots\right), z=\left(0,0, \ldots x_{K_{0}}, x_{K_{0}+1}, \ldots\right)$, then $x=y+z$. For any $i, q_{i}\left(z^{m}-z\right)=q_{i}\left(x^{m}-x\right)+q_{i}\left(y^{m}-y\right)$; hence $q_{i}\left(z^{m}-z\right) \rightarrow 0$. If $V_{K_{0}}$ is closed in c_{A}, then $z \in V_{K_{0}}$, hence $x \in c$ and c is closed in c_{A} contradiction.

By Proposition 1.12., the usual topology on $V_{K \subseteq C_{A}}$ is strictly stronger than the subspace topology relative to c_{A}, hence the seminorm $q(x) \equiv\|x\|=\sup _{n}\left|x_{n}\right|$ is discontinuous with respect to the subspace topology by definition. By v) of Theorem 1.3., for any $\mathcal{E}>0$, any intergers b, K, there exists $x \in V_{K}$ such that

$$
\begin{align*}
& q(x)=1 \tag{4.2}\\
& p_{k}(x)<\varepsilon \quad \text { for } k<b \tag{4.3}
\end{align*}
$$

Case I. If A is a co-regular matrix. We may assume $\chi(A)=$ 1, for otherwise we may consider $\frac{1}{\chi(A)} A$; this matrix has the same summability field as A, also the identity map is a homeomorphism. Consider $\lim _{A} x$ as a continuous linear functional on c, and let $\lim _{A^{x=\alpha 1 m}} I^{x+} \sum_{k} a_{k} x_{k}$, where $a_{k}=$ 1ima nk ; since $\chi(A)=1$, by Proposition 2.5., $\alpha=1$. By (1.6) $\sum_{k}\left|a_{k}\right|<\infty$. For any $\varepsilon>0$, choose K great enough so that $\sum_{k=K}\left|a_{k}\right|<\varepsilon ;$ by the preceding part, there exists $x \in V_{K}$ such that (4.2) and (4.3) hold; hence $\left|1 i m_{A} x\right|<\varepsilon$, because $p_{o}(x)<\varepsilon$. Therefore $\left|1 i m_{I} x\right| \leqslant\left\|1 i m_{A} x\left|+1 \sum_{k=K}^{\infty} a_{k} x_{k}\right| \leqslant\right\| 1 i m_{A} x \mid+$ $\sup _{n}\left|x_{n}\right|\left(\sum_{k=K}^{\infty}\left|a_{k}\right|\right)$, but $q(x)=\sup _{n}\left|x_{n}\right|=1$, hence $\left|1 i m_{I} x\right| \leqslant 11 i m_{A} x \mid+$ $\sum_{k=K}^{\infty}\left|a_{k}\right|<\varepsilon+\varepsilon=2 \varepsilon$. If $\varepsilon<\frac{1}{2}$, then $\mid 1$ imx|<1. Now $\left|x_{n}\right|<1$ for n sufficiently large, $x_{n}=0$ for $n=1,2, \ldots, K-1$ and $\sup _{n}\left|x_{n}\right|=1$, therefore there is a finite interval $N(x)$ of natural numbers such that $\left|x_{n}\right|<1$ for $n \notin N(x)$ and $\left|x_{n}\right|=1$ for some $n \in N(x)$.

Let $\varepsilon_{r}=2^{-r-3}, r=1,2,3, \ldots$ and $b=r$; for each r choose $x^{r} \in V_{K_{r}}$ satisfying (4.2) and (4.3), furthermore, for each r, K_{r+1} is chosen in such a way so that $N\left(x^{r}\right) r=1,2, \ldots$ are pairwise disjoint and that infinitely many natural numbers are not in any $N\left(x^{r}\right)$. We claim that $\sum_{r} x^{r}$ is a convergent series in c_{A}. For any $\varepsilon>0$, choose r so that $\sum_{n=r}^{\infty} \frac{1}{2}<\frac{\varepsilon}{2}$, then for $j>i>r$,

$$
\left\|x^{i}+\ldots+x^{j}\right\|=\sum_{n=0}^{i-1} \frac{1}{2} \frac{p_{n}\left(x^{i}+\ldots+x^{j}\right)}{1+p_{n}\left(x^{i}+\ldots+x^{j}\right)}+
$$

$\sum_{n=1}^{\infty} \frac{1}{2} \frac{p_{n}\left(x^{i}+\ldots+x^{j}\right)}{1+p_{n}\left(x^{i}+\ldots+x^{j}\right)} \leqslant \sum_{n=0}^{i-1}, \frac{1}{2}\left[p_{n}\left(x^{i}\right)+\ldots+p_{n}\left(x^{j}\right)\right]+$
$\frac{\varepsilon}{2} \leqslant \sum_{n=0}^{i-1} \frac{1}{2^{n}}\left[2^{-i-3}+\ldots+2^{-j-3}\right]+\frac{\varepsilon}{2} \leqslant \sum_{n=0}^{i-1} \frac{1}{2^{n}}\left[2^{-i-3}\left(1+\frac{1}{2}+\ldots+\frac{1}{2^{j-i}}\right)\right]+$
$\frac{\varepsilon}{2}<\left(\sum_{n=0}^{1-1} \frac{1}{2^{n}}\right) 2^{-i-1}+\frac{\varepsilon}{2}<2^{-1+1}+\frac{\epsilon}{2} \leqslant \varepsilon$ therefore the partial sums form a Cauchy sequence, hence $\sum_{r} x^{r}$ is convergent to, say, x_{0} in c_{A}. The sequence $\sum_{r} x^{r}$ is bounded by construction; in fact, $\left|x_{n}\right| \leqslant 1+\sum_{r=1}^{\infty} 2^{-r-3}$ for all n , furthermore, it has a subsequence tending to \ddagger and a subsequence tending to zero, hence $\sum_{\mathbf{r}} \mathbf{x}^{r}$ is a divergent sequence; this completes the proof for co-regular matrices. Case II. A is co-null. We first notice that c_{o} cannot be closed in c_{A}, for otherwise there exists feck such that $f\left(c_{0}\right) \equiv 0$ and $f(1) \neq 0$ by the Hahn-Banach Theorem. But A is conull. Hence $f\left(c_{o}\right) \cong 0$ implies $f(i)=0$, therefore such f does not exist. Hence c_{o} cannot be closed in c_{A}. In the first part of this proof if we consider

$$
V_{K}^{\prime}=\left\{x \in c_{0} \mid x_{k}=0, k<K\right\}, \quad K=0,1,2, \ldots \ldots
$$

instead of V_{K}, then the $V_{K}^{\prime}(K=1,2, \ldots)$ are not closed. The proof is exactly the same as the preceding one. Hence by $v)$ of Theorem 1.3. for every $\varepsilon>0$, positive integers b, k, there exists $x \in V_{K}^{\prime}$ such that (4.2) and (4.3) are satisfied. Now limx $=0$, hence the argument used in Case I can be applfed to show that there is a bounded divergent sequence in c_{A}.

Corollary 4.4. A co-null matrix must sum a bounded divergent sequence.

Proof : By Proposition 3.3., c is not closed in c_{A} if A is co-null; by Theorem 4.3., A must sum a bounded divergent sequence.

Corollary 4.5. A co-null matrix must sum an unbounded sequence.

Proof: Suppose $c_{A} \leq m$, then c_{A} is closed in mby Lemma 3.9., hence by Proposition l.12., the topology of c_{A} is the same as the subspace topology relative to m. c is complete with the usual topology, hence c is closed in c_{A}, thus A is coregular ——contradiction. Therefore $c_{A} \neq m$, hence A sums an unbounded sequence.

Corollary 4.6. If A sums a bounded divergent sequence, then c is not closed in c_{A}.

CHAYTER V

PERFECTNESS AND MATRICES OF TYPE M
Definition : Let $A=\left(a_{n k}\right)$ be an arbitrary matrix. Any sequence $\left\{\alpha_{n}\right\}$ in 1_{1} satisfying

$$
\sum_{\mathrm{n}} \alpha_{n} a_{n k}=0 \quad \text { for } k=1,2, \ldots \quad \text { (5.1) }
$$

is said to be orthogonal to A. If the only sequence orthogonal to A is the zero sequence, A is said to be of type M .

All diagonal matrices with non-zero diagonal elements are of type M. For certain classes of matrices, perfectness and type M are closely related. In this chapter we will study these concepts for different classes of matrices. The concept of type M will be applied to consistency. Definition : Let $\left\{\alpha_{n}\right\}$ be orthogonal to a conservative matrix A and let $f(x)=\sum_{n} \alpha_{n}(A x)_{n}$. We call $f(x)$ an orthogonal functional on c_{A}. Proposition 5.1. If A is conservative, then every orthogonal functional vanishes on c_{A} nm.

Proof: Let $f=\sum_{n} \alpha_{n}(A x)_{n}=\alpha(A x)$ be an orthogonal functional, then by Proposition 1.27., $\alpha(A x)=(\alpha A) x$ for every $x \in c_{A} \cap m$, hence $\alpha(A x)=(\alpha A) x=0 x=0$. Proposition 5.2. Let $A=\left(a_{n k}\right)$ be conservative and reversible, then $\overline{C_{A} A^{m}}=c_{A}$ implies that A is of type M.
 tinuous linear functional that vanishes on $c_{A} \cap m$ is identi-
cally zero on c_{A}. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \epsilon_{1}\right.$ and $\sum_{n} \alpha_{n} a_{n k}=0$ for all k. Suppose $\alpha_{n} \neq 0$ for some n_{0} and let $A y=\delta^{n_{0}}$. Such y exists because A is reversible, and clearly $y \in c_{A}$. Now the continuous linear functional $\sum_{n} \alpha_{n}(A x)_{n}$ is identically zero on $c_{A n m}$ by rroposition 1.27 ., hence $\sum_{n} \alpha_{n}(A x)_{n}$ is identically zero on c_{A} by assumption. But $\sum_{n} \alpha_{n}(A y)_{n}=$ $\alpha_{n_{0}} \neq 0$ and this is a contradiction. Hence $\alpha=0$ and A is of type M.
Proposition 5.3. If A is co-regular, then $\bar{c}=\overline{c_{A^{n m}}}$. Proof : Clearly $\bar{C} \subseteq \overline{C_{A} / m}$. To show that $\bar{C} \supseteq \overline{C_{A} n m}$ it suffices to prove that $\bar{c} c_{c_{A}} \cap m$, for then $\bar{c}=\overline{\bar{c}} \bar{c}_{A \cap m}$. Let f be a continuous linear functional on c_{A} that vanishes on c, we show that $f\left(c_{A} \cap m\right) \equiv 0$. By (2.2), $f(x)=\alpha l i m_{A} x+\sum_{n} t_{n}(A x)_{n^{+}}$ $\sum_{k}\left[f\left(\delta^{k}\right)-\alpha a_{k}-\sum_{n} t_{n} a_{n k}\right] x_{k}$ and recall that $\chi(f)=\alpha \chi(A)$. Now $f(i)=0$ and $f\left(g^{k}\right)=0$ for all k, hence $\chi(f)=0$, but A is coregular thus $\chi(A) \neq 0$, hence $\alpha=0$. Also, the representation of $f(x)$ is reduced to $f(x)=\sum_{n} t_{n}(A x)_{n}-\sum_{k}\left(\sum t_{n} a_{n k}\right) x_{k}$, hence $f(x)=t(A x)-(t A) x$, where $t=\left(t_{1}, t_{2}, \ldots t_{n}, \ldots\right)$. By Proposition 1.27 . $f(x)$ vaniches on $c_{A} \cap m$.
Theorem 5.4. A reversible, co-regular matrix A is perfect if and only if it is of type M.

Proof: If A is perfect, then $\bar{c}=c_{A}$. Thus, by Proposition 5.3. $c_{A}=\overline{c_{A} \cap m}$. Hence by froposition 5.2., A is of type M. Conversely, suppose A is of type M. It suffices to
show that every continuous linear functional that vanishes on c must vanish on c_{A}. By (2.4), $f(x)=\alpha \lim _{A} x+\sum_{n} t_{n}(A x)_{n}$.

In exactly the same way as in the proof of proposition 5.3., we obtain $f(x)=\sum_{n} t_{n}(A x)_{n}$. Now f vanishes on c and $f\left(\delta^{k}\right)=\sum_{n} t_{n} a_{n k}=0$, hence by assumption $t=\left(t_{1}, t_{2}, \ldots t_{n}, \ldots\right)$ $=0$, thus fso. This completes the proof.

In general, perfectness and type M are not equivalent conditions. For example the matrix

$$
A=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & \cdots \\
0 & 1 & 0 & \cdots & \cdots \\
0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 1 & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\ldots & \cdots & \cdots & \cdots
\end{array}\right)
$$

is not of type M, since $(1,0, \ldots) A=0$, but $c_{A}=c$, hence it is perfect. On the other hand, consider the matrix in Example 3.e., that is, the matrix A whose diaponal elements are $1, a_{n}, k(n)=-\frac{n}{k(n)}$, where $k(1)=2^{2}, k(2)=2^{3}, \ldots$, $k(n+1)=2^{n_{k}}(n)$ and other elements are zero. This matrix does not sum any bounded divergent sequence, hence $\overline{\mathrm{c}}=\mathrm{c}$ in c_{A}, but $(1,2,3, \ldots) \in c_{A}$, hence $c_{A} \neq c$, therefore the matrix is not perfect. The matrix is of type M. this can be seen as follows : Suppose $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}, \ldots\right)$ and $\alpha A=0$, then $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$, also $\alpha_{k(1)}=\alpha_{4}=0$, because $\alpha_{4} \cdot 1+\alpha_{1} \cdot a_{1 k(1)}=0$ but $\alpha_{1}=0$, hence $\alpha_{k(1)}=\alpha_{l_{1}}=0$. Similarly, we have $\alpha_{1}=\alpha_{2}=\ldots=$ $\alpha_{k}(2)-1=\alpha_{7}=0$ and $\alpha_{8}+\alpha_{2} \cdot a_{28}=0$ hence $\alpha_{8}=0$. Continuing in this way we have $d=(0,0, \ldots, \ldots, \ldots)$, hence the matrix is of type M.

Now we will consider a different class of matrices,
that is, the reversible and multiplicative matrices. It is a different class from the reversible co-repular matrices because the matrix

1s co-regular, reversible but not multiplicative since the first column does not tend to zero. On the other hand, the matrix in Example 3.b. is reversible, multiplicative and co-null.

Definition : A maximal subspace of a linear space is a subspace whose complementary subspace has dimension one. Lemma 5.5. Let v_{1} be a linear subspace of a linear space V. If there exist two independent linear functional f_{1}, f_{2} such that $f_{1}\left(V_{1}\right)=f_{2}\left(V_{1}\right) \equiv 0$, then V_{1} is not a maximal subspace.

Proof: Suppose V_{1} is maximal in V and let v san the complementary subspace. Jet $f_{1}(v)=\alpha_{1}$ and $f_{2}(v)=\alpha_{2}$, then $-\frac{\alpha_{1}}{\alpha_{2}} f_{2}(V)+f_{1}(V) \equiv 0$ and this contradicts the assumption, hence V_{1} is not maximal.

Theorem 5.6. Let A be reversible and multiplicative. Then A is of type M if and only if c_{o} is a maximal subspace of c_{A}.

Proof : Suppose A is of type M. It suffices to show that \bar{c}_{o} is the kernel of some linear functional on c_{A}. Let $x_{1} \neq \bar{c}_{0}$, by theorem 1.5., there exists fecA such that $f\left(c_{0}\right)=0$ and $f\left(x_{1}\right) \neq 0$. By (2.4), we may let $f(x)=\alpha \lim _{A} x+\sum_{n} t_{n}(A x)_{n}$. Now f is multiplicative and of type M, hence $f\left(\delta^{k}\right)=0+$ $\sum_{n} t_{n}\left(a_{n k}\right)=0$, therefore $t_{n}=0$ for all n, hence $f(x)=\alpha l i m_{A} x$. By assumption $f\left(x_{1}\right) \neq 0$, hence $1 i m_{A} x_{1} \neq 0$. Now consider the continuous linear functional $h(x)=-\lim _{A} x$ on c_{A}. Since A is multiplicative, we have $1 \mathrm{im}_{\mathrm{A}} \mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{c}_{\mathrm{o}}$, hence kerh(x$)$ $\supseteq \overline{\mathbf{c}}_{\mathrm{o}}$. By the preceding part of this proof, $\mathrm{h}(\mathrm{x}) \neq 0$ for all $\mathbf{x} \notin \bar{c}_{o}$, hence $k e r h(x)=c_{o}$, thus \bar{c}_{o} is a maximal subspace. Conversely, suppose A is not of type M. Let $t=$ $\left(t_{1}, \ldots, t_{n}, \ldots\right) \in 1_{1}$ be non-zero and $\alpha A=0$. Consider $f_{1}(x)=$ $\alpha(A x)$ and $f_{2}(x)=1 m_{A} x ;$ both $f_{1}(x)$ and $f_{2}(x)$ vanish on c_{o}. By Lemma 5.5., if $f_{1}(x)$ and $f_{2}(x)$ are independent, then \bar{c}_{o} is not a maximal subspace. Let a_{1}, a_{2} be two scalars such that $f(x)=a_{1} l i m_{A} x+\left(a_{2} \cdot t\right)(A x) \equiv 0$ on c_{A} and suppose $t_{n} \neq 0$. Let $x_{1} \in c_{A}$ be such that $A x_{1}=\delta^{n}$, then $f\left(x_{1}\right)=0+a_{2} t_{n}=0$, hence $a_{2}=0$. Let $x_{2} \in c_{A}$ satisfy $A x_{2}=i$, then $f\left(x_{2}\right)=a_{1} \cdot l=0$, hence $a_{1}=0$, thus f_{1} and f_{2} are independent.

We have seen that in general the concepts of perfectness and type M are not equivalent. In what follows, we will look at some subsets of c_{A} and study some sufficient conditions on these subsets for A to be perfect or to be of type M .

```
For a conservative matrix A, we define
```

$B_{A}=\left\{x \in c_{A}\right\}$ there exists $M>0$ depending on x such that

$$
\begin{aligned}
& \left.\left|\sum_{k=1}^{m} a_{n k} x_{k}\right|<M, \text { for } m, n=1,2, \ldots\right\} \\
L_{A}= & \left\{x \in c_{A} \mid(t A) x=\sum_{k}\left(\sum_{n} t_{n} a_{n k}\right) x_{k} \text { exists for all } t \in l_{1}\right\} \\
P_{A}= & \left\{x \in c_{A} \mid(t A) x=t(A x) \text { for all } t \in 1\right. \text { such that (tA)y } \\
& \left.\quad \text { exists for all } y \in c_{A} \cdot\right\}
\end{aligned}
$$

In general the subset B_{A} does not fill up c_{A}. For example, let A be the matrix in Example 3.b. and $x=\left(1,1+\frac{1}{2}\right.$, $\left.1+\frac{1}{2}+\frac{1}{3}, \ldots, 1+\frac{1}{2}+\frac{1}{3} \ldots \frac{1}{n}, \ldots\right)$, then $(A x)_{n}=\left(1+\frac{1}{2}+\ldots+\frac{1}{n-2}\right)-$ $\left(1+\cdots+\frac{1}{n-1}\right)+\frac{1}{n^{2}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=-\frac{1}{n-1}+\frac{1}{n^{2}}\left(1+\cdots+\frac{1}{n}\right)$, hence $\lim _{\mathrm{n}}(\mathrm{Ax})_{\mathrm{n}}=0$ and $x \in c_{A}$, but $x \notin \mathrm{~B}_{\mathrm{A}}$ because $\left|\sum_{k=1}^{n-2} a_{n k} x_{k}\right|=$ $\left|1+\cdots+\frac{1}{n-2}\right|$ which tends to infinity as n increases. Theorem 5.7. If A is co-regular then $P_{A}=\bar{C}$.

Proof : Let f be a continuous linear functional vanishing on c. In the proof of Theorem 5.3. we proved that $f(x)$ is of the form $t(A x)-(t A) x$, hence by the definition of P_{A} we have $f(x)$ vanishes on P, therefore $P_{A} \subseteq \bar{c}$.

Conversely, it is clear that $c \subseteq l^{p}$, hence it suffices to show that P_{A} is closed. Let $F=\{t \in 1 \|(t A) x$ exists for all $\left.x \in c_{A}\right\}$ and for every $t \in f$ define $f_{t}=(t A) x-t(A x)$. Nach f_{t} is a continuous linear transformation from c_{A} to s by Corollary 1.14., hence the kernel of f_{t} is closed. Now $P_{A}=\bigcap_{t \in F}$ ker f_{t}, hence P_{A} is closed. Therefore $P_{A} \supseteq \bar{c}$ and hence $P_{A}=\bar{c}$.

The above theorem characterizes c in case A is coregular. Notice that $P \supseteq \bar{c}$ does not depend on the coregularity of A. The following corollary follows trivially
from Theorem 5.7.
Corollary 5.8. A co-regular matrix A is perfect if and only if $P_{A}=C_{A}$.

Corollary 5.8. is not true for co-null matrices, for example, consider the matrix

$$
\left(\begin{array}{cccccc}
1 & 0 & \cdots & \cdots & \cdots & \cdots \\
0 & \frac{1}{2} & 0 & \ldots & \cdots & \cdots \\
0 & 0 & \frac{1}{3} & 0 & \ldots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \frac{1}{n} & 0 & \cdots \\
\ldots & \ldots & \ldots & \cdots & \cdots & \ldots
\end{array}\right)
$$

Clearly $P_{A}=c_{A}$ and the sequence $x_{0}=(1,2,3, \cdots) \in c_{A}$. Kecall that for normal matrices the topology is defined by the norm $\|x\|=\sup _{n}\left\|(A x)_{n}\right\|$ for all $x \in c_{A}$. Let $\varepsilon=\frac{1}{2}$, then $N\left(x_{0}, \varepsilon\right)$ does not contain any element of c, thus A is not perfect. Proposition 5.9. $\quad B_{A}=L_{A}$
Proof: Let $x \in B_{A}$ and $t=\left(t_{1}, t_{2}, \cdots t_{n}, \cdots\right) \in 1_{1}$. For any k, ($\sum_{n} t_{n} a_{n k}$) x_{k} exists because $t \in 1_{1}$ and $\left\{a_{n k} \mid n=1,2, \cdots\right\}$ is bounded. Let

$$
\begin{aligned}
& S_{1}=\left(\sum_{n} t_{n} a_{n 1}\right) x_{1}, S_{2}=\left(\sum_{n} t_{n} a_{n 1}\right) x_{1}+\left(\sum_{n} t_{n} a_{n 2}\right) x_{2}=\sum_{n} t_{n}\left(a_{n 1} x_{1}+a_{n 2} x_{2}\right), \ldots \\
& \ldots \ldots, S_{k}=\left(\sum_{n} t_{n} a_{n 1}\right) x_{1}+\cdots+\left(\sum_{n} t_{n} a_{n k}\right) x_{k}=\sum_{n} t_{n}\left(a_{n 1} x_{1}+\cdots+a_{n k} x_{k}\right) \ldots
\end{aligned}
$$

Let $S=t_{1}\left(\sum_{k} a_{1 k} x_{k}\right)+t_{2}\left(\sum_{k} a_{2 k} x_{k}\right)+\cdots$. We claim that
S_{k} tends to S. For any $\varepsilon>0$, choose $N(\varepsilon)$ so that $\sum_{n=N}(\varepsilon)+1\left|t_{n}\right|<$ $\frac{\varepsilon}{4 M}$, and for $n=1,2, \cdots, N(\varepsilon)$, choose K great enough so that $k_{o}>K$ implies

$$
\left|t_{1}\right|\left|\left(a_{n 1} x_{1}+\cdots+a_{n k_{0}} x_{k_{0}}\right)-\left(k_{k} a_{k} x_{k}\right)\right|+\cdots+\left|t_{N(\varepsilon)-1}\right| \mid\left(a_{N(\varepsilon) 1} x_{1}+\cdots+a_{N(\varepsilon)} k_{0} x_{k_{0}}\right)-
$$

$\left(\sum_{k} a_{N}(\varepsilon) k_{k}\right) \left\lvert\,<\frac{\varepsilon}{2}\right.$.
Then for $k>k$, we have
$\left|S_{k}-S\right|<\frac{\varepsilon}{2}+\sum_{n=N}^{\infty}(\varepsilon)+1\left|t_{n}\right|\left|a_{n 1} x_{1}+\cdots+a_{n k} x_{k}\right|+\sum_{n=N(\varepsilon)+1}^{\infty}\left|t_{n}\right|\left|\sum_{k}^{\infty} a_{n k} x_{k}\right|$
$<\frac{\varepsilon}{2}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}=\varepsilon$
Hence $\sum_{k}\left(\sum_{n} t_{n} a_{n k}\right) x_{k}=\sum_{n}\left(\sum_{k} a_{n k} x_{k}\right) t_{n}$ and thus (tA)x exists.
Conversely, let $x=\left(x_{1}, x_{2}, \cdots\right) \in L$. Define a sequence of linear functional $\left\{f_{m}\right\}$ on l_{1} by

$$
f_{m}(t)=t_{1}\left(a_{11} x_{1}+\cdots+a_{1 m} x_{m}\right)+t_{2}\left(a_{21} x_{1}+\cdots+a_{2 m} x_{m}\right)+\ldots .
$$

Each f_{m} is well-defined since A is conservative. Recall that the norm on l_{1} is defined by $\|t\|=\sum_{n}\left|t_{n}\right|$, hence it is easy to see that each f_{m} is a continuous linear functional on l_{1}. Now $\left\|f_{m}\right\|=\sup \left\{\left|\Sigma t_{n}\left(a_{n 1} x_{1}+\cdots+a_{n m} x_{m}\right) 1\right| \sum_{n}\left|t_{n}\right| \leqslant \mid\right\} \leqslant \sup _{n} \mid a_{n 1} x_{1}+\cdots+$ $a_{n m} x_{m} \|$. On the other hand, let $t=\varepsilon^{n}$, then $\left\|f_{m}\right\| \geqslant \sup _{n} \mid a_{n} x_{1} x_{1}+\cdots$ $+a_{n m} x_{m} \mid$, hence we have $\left\|f_{m}\right\|=\sup _{n} \mid a_{n 1} x_{1}+\cdots+a_{n m} x_{n} l$. By definition of f_{m} we also have

$$
f_{m}(t)=\left(t_{1} a_{11}+t_{2} a_{21}+\cdots\right) x_{1}+\cdots+\left(t_{1} a_{1 m}+t_{2} a_{2 m}+\cdots\right) x_{m}
$$

Since $x \in L_{A}, \operatorname{limf}_{m}(t)=\sum_{k}\left(\sum_{n} t_{n} a_{n k}\right) x_{k}$ exists for each $t \in l$. By Theorem 1.6. $\left\{\left\|f_{m}\right\| m=1,2, \cdots\right\}$ is uniformly bounded, hence there exists M such that $\sup _{n} \operatorname{la}_{n 1} x_{1}+\cdots+a_{n m} x_{m} \mid \leqslant M$ for all m, hence $x \in B_{A}$.
Theorem 5.10. If a conservative matrix A has a rieht inverse whose colums belong to B_{A} except for a finite number of them, then A is of type M.

Proof : Recall that in the proof of proposition 5.10. we actually proved that ($\mathrm{tA} \mathrm{f}=\mathrm{x}(\mathrm{Ax})$ for all $\mathrm{x} \in \mathrm{B}_{\Lambda}$ and $\mathrm{t} \in \mathrm{l}$.

Suppose x is the nth column of A^{-1} belonging to B_{A}, tel and t is orthogonal to A, then $(t A) x=0=t(A x)=t\left(\delta^{n}\right)=t_{n}=0$, but all except a finite number of the columns of A^{-1} belong to B_{A}, hence $t_{n}=0$ except for a finite number of them. Let $t=\left(t_{1}, \cdots, t_{n}, 0, o, o, \cdots\right)$ and let $u_{1}, u_{2}, \cdots u_{n}$ be the first n columns of A^{-1}, then ($\left.t A\right) u_{1}=0=\left(t_{1}, o, o, \ldots\right)$ hence $\mathrm{t}_{1}=0$, similarly $\mathrm{t}_{2}=\mathrm{t}_{3}=\cdots=\mathrm{t}_{\mathrm{n}}=0$.

Definition : A conservative matrix A is said to have the mean value property if $B_{A}=c_{A}$. Corollary 5.11. A reversible matrix that has the mean value property is of type M. Proof: Since A is reversible, there exists x^{k} such that $A x^{k}=\delta^{k}$. Let D be the matrix whose k th column is x^{k}, then $D=A^{-1}$. If A has the mean value property, then $x^{k_{\in}} c_{A}=B_{A}$. By Theorem 5.10., A is of type M. Proposition 5.12. A co-regular matrix that has the mean value property is perfect.

Proof : In the proof of Proposition 5.9., we proved that for all $x \in B_{A}$ and $t \in 1_{1},(t A) x=t(A x)$, hence $H_{A} \subseteq P_{A}$. By Theorem 5.7., when A is co-regular $P_{A}=\bar{C}$, hence if A has the mean value property $B_{A}=c_{A} \subseteq P_{A}=\bar{c}$, thus $c_{A}=\bar{c}$. Therefore A is perfect.

Definition : 'Two matrices A and B are said to be consistent if $\lim _{A} x=\lim _{B} x$ for all $x \in c_{A} \cap c_{B}$.

Lemma 5.13. Let A be a reversible conservative matrix,
then $f \in c_{A}^{\prime}$ if and only if $f(\underset{l}{x})=1 m_{B} x$ for some B such that $c_{B} \geq c_{A}$.

Proof : If $c_{B \geqslant c_{A}}$, then by Theorem 2.3., $1 i m_{B} x \in c A$. Conversely, if $f \in C_{A}$, let $f(x)=\alpha 1 i m_{A} x+\sum_{n} t_{n}(A x)_{n}$ as in (2.4). Define a matrix $B=\left(b_{n k}\right)$ where $b_{n k}=t_{1} a_{1 k}+t_{2} a_{2 k}+\cdots+t_{n-1} a_{n-1, k}+$ $\alpha a_{n, k}$, then

$$
(B x)_{m}=\alpha\left(\sum_{k} a_{m k} x_{k}\right)+\sum_{n=1}^{m-1} t_{n}(A x)_{n}
$$

hence $\lim _{B} x=f(x)$.
Theorem 5.14. Let A be reversible and co-regular, then a necessary and sufficient condition for A to be type M is that A is consistent with every matrix B such that
i) $\quad c_{B} \supseteq c_{A}$
ii) $\lim _{B} x=\lim _{A} x$ for all $x \in\left\{\delta^{k} \mid k=1,2, \ldots\right\} \cup\{i\}=F$.

Proof : We will first prove that A is consistent with every B satisfying i) and ii) is equivalent to the condition that A is perfect. Then the theorem will follow from Theorem 5.4. Suppose A is consistent with every B satisfying 1) and ii). Let f cA satisfy $f(\mathcal{F})=0$ and consider $f+\lim _{A} x=f_{1}$. Obviously $f_{1} \in c_{\dot{A}}$, by Lemma 5.13., we can let $f_{1}(x)=1 i m_{B} x$, then $\left.i\right)$ and ii) are satisfied. Hence $\lim _{A} x=f_{1}(x)$ for all $x \in c_{A}$ and $f(A) \equiv 0$. Now $F \subseteq c$, thus any continuous linear functional that vanishes on c must be identically zero on c_{A}. Hence by Theorem l.5., c is dense in c_{A}, thus A is perfect. Conversely, let d be perfect and B be matrix satisfying i) and ii), then $f=$
$\lim _{A} x-11 m_{D} x$ is in c_{A}^{d} and f vanishes on F. Now F is a Schauder basis for c with the usual topology and this topology is stronger than the subspace topology relative to c_{A}, hence f also vanishes on c. But A is perfect, hence $c=c_{A}$ and thus $f\left(c_{A}\right) \equiv 0$. Therefore $1 i m_{A} x=1 i m_{B} x$ for all $x \in c_{A}$ and A, B are consistent.

BIBLIOGHAPHY

1. Cooke, Richard G. Infinite Matrices and Sequence Spaces. New York, Dover (1955).
2. Copping, J. "Inclusion Theorems for Conservative Summation Methods". Indagatones Mathematicae, Vol. 20 (1958), pp.485-499.
3. Horvath, Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, 1966.
4. Knopp,Konard. Theory and Application of Infinite Series. London and Glasglow, Blackie and Son, 1963.
5. Knopp, Konard and Lorentz,G.G. "Beitrage zur absoluten Limitierung". Archiv Der Mathematik, Vol.2 (1949-50)pp. 10-16.
6. Macphail, M.S. "On Some Recent Developments in the Theory of Series". Canadian Journal of Mathematics.vol.6 (1954), pp.405-409.
7. Wilansky, Albert. Functional Analysis. New York,Blaisdell, 1964.
8. Wilansky, Albert. "Distinguished Subsets and Summability Invariants". Journal ${ }^{\prime \prime}$ 'Analyse Mathematique. Vol. $12(1964)$, pp. 327-350.
9. Wilansky, Albert. "An Application of Banach linear Functionals to Summability". Transactions,American Mathematical Society, Vol.67(1949),pp.59-68.
10. Wilansky, Albert and Zeller,Karl. "Summation of Bounded Divergent Sequences, Topological Methods". Transactions, American Mathematical Society,Vol.78(1955),pp.501-509.
