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ABSTRACT 
I 

This thesis is a survey of applications of topologi- 

cal methods to summability. We also review and discuss 

some of the results obtained by A. Wilansky and K. Zeller. 

Chapters 1 and 2 are of introductory nature. In Chap- 

ter 3 we discuss the classification of conservative rnatric- 

e s  as co-null and co-regular matrices. In Chapter 11,  we 

study the incllision relations of c and and give a de- 

tailed proof of a result due to Wilansky and Zcller. In 

Chapter 5, we study perfectness and type M for different 

classes of matrices. 



TABLE OF CONTENTS 

Introduction 

A list of symbols 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Bibliography 

Some definitions and general 
results 

Continuous linear functionals 
on CA 

Co-null and co-regular matrices 

c as a subset of c~ 

Perfectness and matrices of 
type M 

page 

V 

vii 

1 

20 

23 

3 0  

37 

48 



ACKNOWLEDGMENT , 

The author wishes to express his thanks to Dr.J.J. 

Sember who has made many helpful suggestions and patient- 

ly read the manuscript of this thesis. 

The financial assistance of the National Hesearch 

Council of Canada is deeply appreciated. 



INTHO1)UC'l'I ON 
I 

This thesis is a survey of allplications of topological 

methods to the theory of infinite matrix summability. We 

also review and discuss some of the results obtained by A, 

Wilansky and K. Zeller. Most of the materials are from 

173, C81,193 and 1101 

Chapter 1 is of introductory nature; it consists of 

results of the theory of topological vector spaces, a 

sketch of the theory of FK spaces and some important re- 

sults on infinite matrices  h he or em 1.22., Theorem 1.23., 
Theorem 1-25., and Proposition 1.27.). An example is given 

to show that multiplication of infinite tnatrices is, in 

general, not associative. 

In Chapter 2, the general form of continuous linear 

functionals on the sumniability field cjl is given. This 

identification has ntimerous applications to the theory. 

In Chapter 3 we define co-null anti co-rcgular mat- 

rices in terms of the matrix entries. Also, we point out 

that co-nullity and co-regularity can be regarded as pro- 

perties of the summability field rather than the matrix. 

In the second part of this chapter, ue study the 'size' of 

summabili ty fields of co-null and co-regular matrices. The 

construction of the matrix in Example 3.e. is based on the 

proof of Theorem 3 of 1101. 

In Chapter 4, we consider the inclusion relation be- 



tween c and lA. In the second part of this chapter, a de- 
I 

tailed proof of part of Theorem 1 in [lo] is given; the 

original proof in that paper is very precise. Theorem 4.3. 

and Proposition 1.12. assure that a co-null matrix must sum 

a bounded divergent sequence. 'I'his result was also obtain- 

ed originally by K.%eller. 

In Chapter 5, perfectness and type M are studied for 

different classes of matrices in terms of different sub- 

s e t s  of their summability fields. Concrete examples are 

given to show that these conditions are in ceneral not 

equivalent. 



v i i  

A LIST OF SYMBOLS 
I 

infinite matrices with complex entries 

the infinite matrix whose element at the nth 

row and kth column is ank 

sequences of complex numbers 

sequence of sequences 

the sequence (1,1,1,****) 

the sequence whose kth coordinate is 1 and 

others are zero 

{ i \ ~ ! Z I  k=l r 2, ' '3 
the space of all sequences 

the space of all convergent sequences 

the space of all sequences convergine to zero 

sequences such that zlxnl<cn 
11 

the closure of the subset X in solne topological 

space 

the set of all continuous linear functional6 

on cn 

complex numbers 

vectors in some linear space 

linear spaces over the complex numbers 



CHAPTER I 

SOME DEFINITIONS AND G E N ~ A I ,  RESULTS 

1.1. Topolot?ical vector spaces 

In what follows we will state some definitions 

and results from the theory of topological vector spaces. 

The details may be found in [3] and [ 7 3 .  

Definition : A seminorm on a vector space V is a map q 

from V to the non-negative real numbers satisfying 

i) q(av)= la1 q(v) , for all complex numbers a and veV. 

seminorms on V, a locally convex linear topology can be 
n 

defined on V with the sets k%& k ~ t . , k  as a fundamental 

system of neighborhoods of o, where E k ?  o and V c k =  

When the family of seminorms (qL)LE is 

countable and total , that is, if v f o, there exists qL 

such that qb(v) f 0 ,  we have the following result : 

meorem 1.1. If the locally convex topology on a vector 

space V is generated by a countable and total family of 

sert~inorms (qL)LI , then 

where rn(v) = max qi(v), satisfies 1< 1s n 



a) \a14 1 implies q(av),( q(v). 
L 

b) ak+o implies q(akv)c* o. 

c) q(v)=o if and only if v=o. 

e )  q(vl+v2)4 9(v1)+9(~2)* 

Furthermore, the metric d(vl,v2)z q(vl-v2) defines the lin- 

ear topology on V. 

Proof : See Theorem 1 on p.111 and Proposition 2 on p.114 

of C31. 

Definition : A paranorm on a linear space V is a non- 

negative real function P satisfying 

i) ~(o)=o. 

ii) P(-v)=P(v). 

iii)lqv1+v2)s P(V~)+P(V~). 

iv) If (an) is a sequence of scalars with an+a and {vn\ is 

a sequence of vectors such that ll(vn-v) 3 o, then ll(anvn-av)+o. 

A paranorm is total if P(V)=O implies that v=o. It 

can easily he seen that q(v) in Theorem 1.1. is a total 

paranorm where iv) is Justified by 

q(anvn-av)~ q(anvn-av,)+q(avn-avI=q((a~~-aJvn)+q(a(vn-~I)* 

The term q((an-a)v) tends to zero as n increases by h). As 

for q(a(vn-v)), we may assume lal>l, otherwise a) assures 

that q(a(v,-v) )+o,a.s nSm; now \a1 7 1 implies that q(a(vn-v) ) 
00 l a  r r l v n v  = la, q(v,-v), hence q(a(vn-v)) tends to 

n.1 l+r,(v,-v) 

zero as n increases. 



Definition : A linear metric space is a linear topologi- 

cal space, the topology being generated by a metric d 

that arises from a total paranorm, that is, d(X,y)=~(x-y) 

for some total paranorm P. 

For linear metric spaces, we say that b vn converges 
to v if for any&?o, there exists integer N such that 

no 
no7N implies P( ;C v,-v)<E. 

nrl 
Definition : A sequence of vectors Evn] is said to be a 

Schauder basis for a linear metric space V if, for every 

vector v in V, there is a unique sequence of scalars fa,\ 

S U C ~  that V= fianvn. 

If the locally convex topolo~y on V is defined by a 

countable and total family of seminorms ( q L  ) L E N ,  then it 

clearly is a linear metric space. 

'Lheorem 1.2. If the locally convex topology on V is 

generated by a countablc and total family ( q b ) ~ c N  of 

seminorms and [vnJ is a sequence of vectors in V such 

that for every v in V there is a unique sequence of 
n 

scalars f an? such that qi(Lzlakvk-vj2 o , for i=1,2,3, * *  * * .  

then tv,\ is a Schauder basis. 
rO 

z 1 
Proof : For anyE? o, choose integer N1 so that . -. )=hll+l 23 

E <- Consider ql,***e,qN1 2 ' 
, Choose N2 so that for n )N2 we 

- 

have U1 f k - € . . . . . . . . , - 
2M ' 



Theorem 1.3. If the locally convex linear topolog? on 

a vector space V is generated by a countable and total 

family of seminorms (qL ) t e N  anct q is a seminorm not in 

( q L  ) L c  N, then the followine conditions are equivalent. 

i) q is discontinuous at the oricin. 

ii) q is discontinuous on V. 

iii) The topolotry generated by T qlu{qbI L ~ ~ \  is strictly 

stronger than the topology genrratrd by lqLl leNI. 
iv) For any positive real number W ,  any (ll;**,Ln), 

there exists v in V such that q ( ~ ) 7  M m a x  qhk(v). 
1< k5n 

v) For all E 7 o, ant1 inte!:er B l ,  there exists v6V such 

that q(v)=l and ql(v)<& for all L <  N. 

Proof: i) clearly implies ii). If q is continuous at 

the origin and vl is any vector in V, then 

V ~ + ~ V I  p w < t ~  = E V ~ + V J ~ ( V ) ~  G cl-lwscvl) ,E 1)  
implies that q is continuous at vl. Hence i) and ii) are 

equivalent. If q is discontinuous at, the origin, then 

for some & 7 o, {v\ q(v)<~l does not contain any open set 

of tlie topology generated by (qL)lcN. Hence the topology 

- eenerated by {q! u[(-I,[ ~t h\ is strictly s t r o n g e r .  iii) 



clearly implies i). The fact that iii) and iv) are equi- 

valent is proved on p,?8 o f ' t ? ] .  Now suppose iv) holds 

I 
and for anyE.70 let M= .,then there exists vl in V such 'z 

for any 

then q(v)=l and qbk(v)<t. Conversely assume v). For any 

positive real number M and any ( L ~ , * * * L ~ ) ,  choose integer 

N1 SO that ~~>,rnax( cl, , L,) and let & = a, then there exists 
v1 in V such that q(vl)=l and q ~ ~ ( v ~ ) , * * *  tqtn(v1) "re all 

1 smaller than € . Hence q(~~)=l>~$?% qbk(~1)=~1yf@M9k(~1) 
Theorem 1.4. (~ahn-~anach) Let V1 be a subspace of a 

linear space V,q be a seminorm defined on V and f a linear 

functional defined on V1 such that If(v)lsq(v) for all v 

in V1, then there is an extension F of f which is a linear 

functional on V and I~(v)l$ q(v) for all v in V. 

Proof : See p.65 L73.  

The following is a corollary of the Ilahn-Ranach 

extension theorem. 

Theorem 1.5. Let V be a scminormed linear space,V1cV be a 

linear subspace and v be a vector which does not belong 

to the closure of V1, then there is a continuous linear 

functional f which vanishes on V,and f(v)#o. 

Proof: See p.67  of C71 . 
It follows from the above theorem that if every 

continuous linear functional f that vanishes on V1 is 

identically zero, then V1 must be dense in V. This 



argument will be applied very frequently in the following 
, 

chapters. 

Tho following theorem contains two forms of the 

Banach-Steinhaus theorem. 

Theorem 1.6. i) Let (qL. be a pointwise bounded family 

of continuous seminorms on a coniple te sern-tnormed space, 

then {11q;1( LO 11 is uniformly bounded. 
ii) Let !fnlbe a sequence of pointwise con- 

vergent continuous linear functions from a complete 

seminormed space to a normed space, then f (x)=l$n fn(x) 

defines a continuous linear function f. 

Proof : See p. 117 of t 7 )  . 
1.2. Sequence Spaces and FK Spaces. 

For every sequence X = ( X ~ , ~ * . X ~ ,  ...) in c, define 

llxll = s2p(xnl, and for every sequence X=(X~,-..X~,~.*) 

in lA, define [lxll r filxn( . It is well-known that c and 4 
become Banach spaces with these norms. Also c has F as 

Schauder basis where each xcc is represented by 

x=(lim x) i+ fi(x,-lim x)zn (1.2) 

If f is a continuous linear functional on c, then 

f(x)=(lim x)f(i)+ &(x,-lim I) t, (1.3) 

For an arbitrary infinite matrix A=(aij) of complex 

numbers, denote a sequence x=(xl,...xn,**.) by a column 



vector 

By Ax we mean the column vector 

if $ankxk exists for all n. 

For an arbitrary matrix A, let d A = t x l ~ x  exists, that 

is, Hank xk exists for all n 1 . On dA define 

defined to be the locally convex topo logy  generated by 

Lhn(n=1,2,m**l U L I P ~ I I  n=1,2, * * * I .  
Proposition 1.7. For an arbitrary matrix  A, 2 skl k=1,2, *I  
is a Schauder basis for d ~ .  

i 

Proof: Let x=(xl,*-axn, ...) t d A .  For any n, Ipnl ( x - x  x t g ) ' ~  
k = l  



if iin. Hence lfln (P,) (x- &xkSk) is zero. For any n, 

5ankxk exists since xed*. ~ i v h  any E>o, choose integer 

k2 x I<& for any k2bklzk. Let itK, then that Ikzkqank k 
k 

h,(x- kilxk~ )=sUp[~~=~+~a,~x~l~ r=i+l,i+2, * * J c  & . Hence 
k limhn(X-k&Xkk)=Ob By theorem 1.2, l b  I k=l, 2, " 'i is a 

i 
Schauder basis. 

The particular type of topological space known as 

an FK space and introduced by Zeller has played an in- 

creasingly important role in summability, A s  examples of 

FK spaces w e  mention the spaces cn and d ~ .  The general 

form of continuous linear ftinctionals on c~ can be ohtain- 

ed from the general theory of FK spaces and this has nu- 

merous applications in summability theory. The details 

can be found in 11.3 and 12.4 of L71. 

Definition: A complete linear metric space ; s  called 

a ~rgchet space. 

Definition: Let H be a Hausdorff space and a linear 

space, A n  FH space is a ~rhchet space such t h ~ t  

1) X is a linear suhspace of H. 

ii) The topology of X is stronger than that or H .  

The special kind of FH spaces when H = r  w 7 t h  the norm 

L h 1 Xnl 
''x''=n 2 I+ \xn\ are called FK spaces. 

Definition : Let X,Y be topological spaces and f:X+Y be 

a function, then f is said to be closed if the graph 

l ( x , f  ( x )  ) 1 X € X ~  is closed in XxY with the prodljct topology, 

Theorem 1.8. Let X,Y be topological spaces,r:X+Y be 



continuous and Y be Hausdorff, then f is closed. 

Proof: See p.195 of T.71. 

It is clear that if f is closed and the topology on 

Y is replaced by a stroncer topolocy then f remains closed. 

Theorem 1.9.  h he Closed-Graph  heo or ern) Let X,Y be ~r&chet 

spaces and f:X+Y be a closed linear m a p ,  then f is con- 

t inuous . 
Proof : See p.200 of C7l. 

Theorem 1.10 ; Let X be a Fr'echet space, Y be an FII space 

with respect to some H and f : X + Y  a linear function, then 

f is continuous if and only if it is continuous as a 

function from X to H, 

Proof: If f:X+Y is continuous, then the topology of Y is 

stronger and f(~)t Y imply that f : X + H  is continuous. Con- 

versely, if f:X+H is continuous then f is closed, by 

Theorem 1.8., hence f:X+Y is closed, by Theorem I.?., it 

is continuous. 

Corollary 1.11, Let X,Y be FH 'spaces with respect to the 

same H,XSY,then the topolocy of X is stronger than that 

of Y ,  in particular a linear space of H has at most one 

topology that makes it an FH space. 

Proof: Let i be the inclusion map i:X+H, then i is con- 

tinuous since the topology on X is stronger than the 

subspace topology on it. Hence by Theorem 1.10., i:X+Y 

is continuous and the result follows. 

Proposition 1.12. In Corollary l.ll.the topology on X 



is strictly stronger than the subspace topology if and only 
8 

if X is not closed in Y. 

Proof: If X is closed in Y then the subspace topology ie 

complete, hence X is an FH space with the subspace topo- 

logy, By Corollary 1.11, the topology on X is the same 

as the subspace topology. Conversely, suppose the two 

topologies on X are the same, then the subspace topology 

is con11)lete and hence X is closed in Y. 

Corollary 1.13. Let X be a Frschet space,Y an FK space, 

f:-X+Y a linear function, t11en f is continuous if and only 

if f(x)= I f , ( x ) l  where each fn is a continuous linear 

functional on X, 

Proof: Recall that the norm on s is defined by MxIl= 

E 1  I Xnl 
hence the coordinate projections Pn(x)=x, n=l F I+ lxnl 

are continuous. Now if f is continuous as a mapping from 

X to Y then f:X+s is continuous hence if w e  let fn(x)=Pnof, 

we hove f(x)=rfn(x)) with each f, continuous. Conversely 

let d(u,v) be the metric of X ,  if d(un,u)+o then 

E 1 \fi(un-u)1 
fi(un,u)+o (i=1,2,7, -.),hence i=l 2 l+ (fi(~,-~)13 0s 

hence f:X+s is continuous. 

Corollary 1.14, Let A be an infinite matrix and X,Y be 

FK spaces. If for every XEX,  A x  exists and belongs to Y, 

then A, considered as a mapping from X to Y, is continuous. 
03 

k,la*xk, the nth coordinate of Ax, by Proof: Consider 

E a  x . i s n  Corollary 1.13. it suffices to show that k=l nk 

continuous linear functional on X. For this we define 



z f,(x) = k=lanhxk . Then for any xe~,~irof,,,(x) =kclank~k. 

Define f:XSc by f(x)=(fl(x),- * - .  ,f,(x),*.**). Now X is 

an FK space , hence convergence in X implies coordinate- 

wise convergence, thus it also implies convcrcence in s, 

therefore f:X+s is continuous. By Theorem l.lO.,f:XSc 

is continuous. Now in (1.3) let tn=o,(n=l,2,****) and 

f(i)=l, then it follows that for every (xl,-**x n , * * * )  in c, 

lim xn is a continuous linear functional on c. Thus 
n 
E a kxk is a continuous linear functional on X since it 
k=l " 
is the composite of f and lirn xn. 

n 

Theorem 1.15. Let X,Y,be FK spaces with their topologies 

generated by the families of seminorms ( q L ) L c  I and (rh)h6,, 

respectively. Let f:X+s be a continuous linear map. Then 

f o l ( y )  with the linear topology generated by(q )Lei and 
L 

(rAof)AeA is an FK space and f :fe1(y)+Y is continuous. 

Proof: fW1(y) is clearly a linear subspace of s and the 

topology generated by ( q L ) b t  IV(rA ~f),,~,, is stranger than 

the subspace topology relative to X, hence stronger than 

that relative to s. Now lettxnt be a Catzchy sequence in 

fml(y),then it is a ( q L ) L ~ ~  Cauchy sequence in X, hence 

xn+x in X, on the other hand {f(xn)! is a Cauchy sequence 

in Y hence f ( x ~ ) + ~  in Y, but f is continuous as a map- 

ping from X to s, hence f(xn)+f(x) in s, but the topology 

on Y is stronger than the subspace topology, hence 

f(xn)+y in s, therefore f (x)=~. so xErf-l(Y), hence the 

space fel(y) is complete. 



Propos i t ion  1.16. Under the  a s s ~ m p t i o n  of Theorem 1.15. 

if f  i s  one-one onto Y,then t h e  l i n e a r  topology genera ted  

by (rAof)AeA a lone  i s  an F K  space.  

Proof: If f  i s  one-one onto Y ,  then  f :f'l(Y)+Y i s  a con- 

gruence onto where f-'(~) has  t h e  topology eenera ted  by 

(rAof)A,A. Now Y is an FK space,  hence f-'(~) i s  an FK 

space. 

Lemma 1.17. cia i s  an  F K  space f o r  any mat r ix  A. 
Q, 

Proof : For t h e  mth row of A d e f i n e  D,=E Z X I  k=lamkx k e x i s t s j  , 
then D~ with  t h e  seminorms 1 IP,I\ and h,,=sup [(IffLa,hxh~ I 
r = 1 , 2 ,  0 1  i s  an F K  space,  f o r  we can l e t  X=s,Y=c i n  Theorem 

1.15. and l e t  f be de f ined  by t h e  matr ix  

then  f i s  cont inuous by Coro l l a ry  1 .14  bu t  c l e a r l y  cA,=Dm 

and the seminorm hm i s  j u s t  t h e  composite o f  t he  u s u a l  

norm on c and f ,hence  D,is  an F K  space by Theorem 1.15. 

Now d ~ =  OD,, and {lP,ll  n = l , * * * ~ ~ f l ~ , , l  n=1,2,?***] genera te  

t h e  topology on d~  hence t h e  topology on d~ 5s clearly 

s t r o n g e r  than the  subspace topology r e l a t i v e  t o  s s i n c e  

i t  i s  s t r o n g e r  than t h a t  r e l a t i v e  t o  f o r  any m .  Let 



txn)be a Cauchy sequence in dA then txnl is a Cauchy se- 

qucnce in Dm for each m, let it converge to y, in Dm, also 

[xnf is a Cauchy sequence in s, hence it converges to x,  

but then x=y1=y2= -*.=y,, hence x€9Dm, therefore dA is 

complete,dA i s  clearly a linear subspace of s ,  hence it 

is an FK space. 

Theorem 1.18. Let A be a matrix, then c~ with the linear 

topology generated by the seminorms on dA and the seminorm 
rn 

p(x)=sup E 1 E=lank~kl( n=1, .J j s  an FK space. 

Proof: In Theorem 1.15,, 1st X=dA,Y=c, f be d e f i n e d  by A,  

then f is continuous by Corollary 1.14.,now cA=f'l(c) and 

~ ( x )  is the composite of f and the usual norm on c hence 

by Theorem 1.15.,c~ is an FK space. 

Definition : A matrix A is said to be reversible if it is 

a one-one onto mapping from c~ to c. 

Proposition 1.19. Let A be reversible, then cA is an FK 
Ob 

x \ \  n=1,2, m * e w ) .  space with the seminorm ~ ( x )  =sup 

Proof: Follows from  heo or em 1.18. and Proposition 1.16. 

Lemma 1.20, Let q 1 , q ~  be seminorms on a linear space V 

and f be a linear functional on V such that 

If(v)I4 ql(v) +q2(v) 

then there exist linear functionals fl,f2 on V such that 

Ifl(v)l~ ql(v) lf2(v)l\(q2(v) and f(v)=fl(v)+fZ(v). 

Proof: Define q : ~ x ~ - 3 ~ +  (the positive reals) by q(vl,v2)= 

q(~1)+q(~2), on the diagonal subspace ~ ( v , v ) \ v ~ ~ l  of 

VxV, define g(v,v)=f(v), then g(v,v) is a linear functional 



and q ie a seminorm on VxV, now g(v,v) = f ( v ) ~  ql(v)+q2(v)= 
I 

q(v,v), hence by Theorem 1.7., g can be extended to VxV 

with le(vl,v2)16ql(vl)+q2(v2) , let fl(v)=g(v,o) ,f2(v)= 

g(o,v), then lg(v,o)~=lfl(v)~~ql(v)+o, si:oilarlylg(o,v)~= 

If2(v)[< q2(v), clearly f(v)=g(v, ~)+~(o,v)=f~(v)+f~(v). 

Theorem 1.21. Let X,Y be FK spaces with their topologies 

generated by the families of seminorms ( q  L ) LEI and (rA )Acl, 

respectively. Let f:X+s be a continuous linear map and 

fW1(y) has the linear topology generated by (q ) 
t It1 

and (rAof)A,,, .If g is a continuous linear functional on 

fo1(y), then there exists - X I ,  G€Y l such that g=F+Gof. 

Proof: If g is a continuous linear functional, then 

Ig(x)l is a continuous seminorrn, hence by Theorem 1.3.i~) 

there exists M and seminorms in (qL)LcIu(rh~f he,, such 

that 

Ig(x)ls~-fq~(x) ,.-*,qn(x),r1of(x) ,*-*r,of(x)j 

Q M ( ~ ~ ( X ) + - - + ~ ~ ( X ) + ~ ~ O ~ ( X ) + ~ - + I ' ~ O ~ ( X ) .  

we may assume that M ( ~ ~ + * * .  +qn)8(q,),,Iand ~ ( r ~ o f + .  ..+rmof)t 

(r,, of since adding these seminorms to (qL) and 

(rAof)Ac,, does not change the topology on f-l(y), hence 

(g(x)14 q(x)+rof(x) where 4E\q1) L~ I and rof~(r~ofh~,, . 
By Lemma 1.20, there exist Fe X 1  anti PIE X' such that 

g=F+F1 and I F14 q, IF1\< rof. Uefinc G on f(X)nY by ~ ( y ) =  

F~(X) if y=f(x) , if y=f\xl)=f (x2), then ( F1(xl J-Fl(x2)(= 

( ~ ~ ( ~ ~ - ~ ~ ~ l f r ~ f ( x ~ - x ~ ~ = r ( o ) = o , h e n c e  G is well-defined, 

by Theorem 1.4,, G can be extended to Y, by construction 



of G we have g=F+Gof. 
I 

1.3. Infinite Matrices. 

Definition : A matrix A is said to be conservative if 

c ~ c ,  that is, it transforms conver~ent sequences into 

convergent sequences. 

Theorem 1.22. (~ojirna-~chur) A matrix A is conservative 

if and only if 
00 

i) I I A I ~ = S U ~ [ ~ ~ ~ I  - a& I n=1,2, . .j(m and 

Proof : Suppose i) . ii) hold , then lim ank=Afm_ A( $) 
n3m 

exists for all k. Let ak=lim ank and IIAIlSM then 
n 

that 

E hence for any & > o , ~ N ( E  ) such that k>N(€ ) implies [Ed<- 
3M 

f" for n r ~  ( E  ) choose N~ great enough so that l k=l (ank-ak)t k l ~  

for n?N1, then 

E < - 2M 
3 

+ , for n 7 ~ ~  
do a? 

Z a Therefore 1~mk21a,k•’k= nk 
0> Cb 

alf.lank+kclan& k, but lecA,hence l ~ m ~ < ~ a , ~ = b  exists, 

Theref ore lim(~x),=ab+ Cakck, 
n+m 

Hence c,lc. To prove the converse, we a p p l y  the Banach- 

Steinhaus Theorem twice. For any n define a sequence 



Ifm, of functional on c by 
t 

fa ( 1 =,glankxk ,(m=1*2,****). 

Then[f,.& is a sequence of continuous linear functional8 on 

c since convereence in c implies coordinate-wise con- 

verEence. Now by definition llfmll =sup[ 1 $! a kxkl( llxll<lj, k=l n 

hence i l f  ,#@!iankl , conversely we can let x be the se- 
quence t e'ig). . . , e -iQm,o,~,~,*..) ~ h e r e e ~ , * - * 8 ~  are the 

arguments of ani,e.. ,an, respectively, then Ilxlrsl and 

If,,,jis pointwise converp;ent hence pointwise bounded by 
m 

Theorem 1 . 6 .  illfmll \ m=l, - 5  is bounded, hence I Elnk\< D 
on z for any n. Now for any n,g,(x)= k,lankxk defines a con- 

tinuous linear functional on c by Theorem 1.6., again 

f g = a , now {jgnlI considered as seminorms on c is 
Ln 

pointvise bounded, hence 1 Ll larlkl (n=1,2, * ]  is bounded 

Definition : A matrix A is said to be regular if for all 

x 1 C, we have lim(~x)~=l$n n xn. 

Theorem 1.23. (~oe~litz-silverman) A matrix A is regular 

if and only if 

i )  l f t m  ank=o, for each k 
w 

iii) l,+m$==lank=l. 

Proof : Suppose A is regular then cA2c hence I) follows 

from Theorem 1.23.. limsk=o for each k hence limAgk= 

lim ank=o, limi=l hence lim~i=l$n fcank=l. The converse 
n 

follows from (1.7). 



Definition : Let li={xssl Axcll] , then a matrix A is said 
I 

to be an 11-1, method if lA=ll. 

In Theorem 1.15. Set X=dkL,Y=$, f be defined by A then lA 

becomes an FK space. Theorem 1.25. concerning la-\methods 

is due to Mears ,Knopp and Lorentz. ( See S a t z  1. of L 5 ]  ) . 
k Lemma 1.24. : The space l1 has {S (k=l,2,3,***3aa Schauder 

basis. 

Proof : See p.86 of 173. 

Theorem 1.25. : A matrix A is an 5-lLmethod if and only 

if thore exists M such that 

$ I a n k l ~ ~  ,k=1,2,3,**** . 
Proof : Suppose lA?l1, then considering A as a matrix 

transformation from l1 to 11, it is continuous by Corollary 

1.14., hence there exists M such that IIAxll$Ml~xll, where the 

k norm is the usual norm on 11, hence l l ~ % ~ l l =  f, \and< Mllb ll=M 

for all k. 

n 
Conversely, let x=(xl, ***xn, **.)ell, then x= zxnb n , 

by Lemma 1.24. Now if A is column bounded then $xn~(bn) 

is convergent in l1. For givenE70, we may choose N(&) so 

E ' where M is tho bound of the columns, that n=N(e ) lxn l ' z  

then for I, J),N(E) \IX~A( 6 i)+***xj~(~J)~~ $ 1 ~ ~ 1  M + * * * +  lxjl M ~ & o  

Hence the partial sum of 5xn~(bn) form a Cauchy sequence, 

thus it is convergent in ll. Hut the nth partial sum is 



For any two infinite matrices A=(aij),B=(bij), the 

product A 8  is defined to be (cij) where cij= Gaikbkj, 

if each cij  exists. With this definition multiplication 

is not associative in general, this can be seen as 

follows, let znb, be a convergent series which has a re- 

arrangement &rn that converges to a different limit, let 

b,=~~(~), where f(,) is the rearrangement. Now let B be 

theaatrixb where b =bi i f f  =j, bij=o if f(i)#j, 
ij 13 (i) 

let A and C he tho rnatrix whose elements are all equal 

to one, then the elements of (AB)C are all equal to Gn, 
whereas all elements of A ( B C )  are 5bn. 

Definition t A matrix A is called a lower semi-matrix if 

for 371 a .=o. 
i~ 

Proposition 1.26. Lower semi-matrices are associative.. 

Proof: Let ( A B ~  =(dij) , A(BC )=(eij) , ( a  ~ = ( b ~ j )  

andc=(cij), then for j?i clearly dij=e id =o since both 

( A B ) C  and A(BC) are again lower semi-matrices. For i&j, 

Definition : A rnatrix is said to be row-bounded if there 
aJ 

exists M such that &Il l lanh l<~  for all n. 

Proposition 1.27. : How-bounded matrices are associative. 

Proof : Let A,R,Cbe row-bounded matrices,(~~)~=(ci ) ,  
i j 

A(Bc)=(~~~), without loss of ~enerality consider dll and 



be carried on for any n hence we have ell=cll(~allrbkl)+ 

The last term tends to zero since all three matrices are 

row-bounded, to see this we can choose m great enough so 
m e 

that I alm(lf,nbmkckl ) +  ... # h  for any n, then choose n 
great enouch usine row-boundedness of B so that 

%"dl1 

Definition : A matrix A is said to be normal if A is a 

lower semi-matrix with non-zero diagonal elements. 

Proposition 1.28. If A is normal then the equation 

Ax=y with x as unknown has a unique solution, 

hence xl= 3 X 2 =  Y2-a2 , 1x1 . . . . . . . . .  
all 

, 
a22 

Theorem 1.29. If the terms of a series Gr,, are defined 

by series, with rn= Qnk ,and Gank=sh for each k, then 

z lankl =tn and at, is convergent imply that r Hsk. 

Proof : See p.241 of 141. 



CHAPTER I1 
I 

CONTINlJOUS LINEAR FUNCTIONALS ON CA 

Lemma 2.1. Let g be a continuous linear functional on 

dA for an arbitrary matrix A, then e((xl,...x,,.. . I ) =  
&xng(sn) for all (xl,x2.. .xn,.. . ) in dA. 
Proof' : By Proposition 1.7. $snln=1,2,...j is a Schauder 

basis for dA. Hence nf!lxn$jx as m+m, therefore xlxng( 6n)= 

g(n•’lxn c)+e(x )  as m+m, hence g ( x ) =  &xnn( tin) 

Theorern 2.2. Let A be a conservative matrix, fecA. Then 

f may be expressed as 

f(x)=dlimAx+ $t,(~x)~+ $&xr (2.1) 

where 5 ltrl<m and converges for all XECA. 

Proof : By Theorem 1.18. and Lemma 1 ,, 17 , cil and dA 

are F'K spaces. . In Theorem 1.21.,let X = d A ,  Y=c, then 

by the same theorem every continuous linear functional f 

on CA can be expressed as f=GoA+F with G€c' and F€dl. By 

(1.3) and Lemma 2.1. we may take ~(x)rndlirnx+$x~t~ and 

n 
~ ( x )  = $xrpr ,where (3 ,=~(6 ) , hence GoA=ollimAx+ r t r  AX)^ 
and the result follows. 

In (2.1) let x=bk, (k=1,2,. . . ) ,  then f(~~)~(a~+$t~a,~+@~ 

1c 
where ak=lim ank. Hence Pk=f ( 6  ) -dak- f trark and n 

f (x)=dlimAx+ $tr(~~)r+ s[f (bl ' )dak- f trarlc]xl, (2.2). 

If A is conservative , by Theorem 1.22. r f ;  lal$m, hence 

Qh is convergent. We define 

X(A)E limA i-~ak= lim Gnk- G l ~ m  ank 
k n 

(2.3). 

In Chapter 3 we will classify the conservative matrices 



by means of this number, 
b 

In Theorem 2.2. if A is also reversible, then by 

-1 Proposition 1.19., ckl and c are congruent. Let A be 

the inverse map of A, then foA-' is a continuous linear 

functional on c since A-~;c+c~ is continuous. By (1.3), 

let ~OA-la(lim x+ &xntn, hence 

fo~-~oA=f=dlirn~x+ fi(~x),t, (2.4). 

A is a continuous linear transformation from cA to 

c by Corollary 1.14. and the functional f(x)=limx is a 

continuous linear functional on c, hence their composite 

l i m ~ x  is a continuous linear functional on cA. we also 

have the following result. 

Theorem 2.3. If cg?c~,then limgx is a continuous linear 

functional on CA. 

Proof: If c g z c ~  then we can consider R as a matrix trans- 

formation from cg to c, it is linear anci continuous by 

Corollary 1.14. Now lilt1 x is a continucus linear functional 

on c, hence so is the composite limRx. The topology of 

CA is not weaker than the subspace topology relative to 

CD , hence limgxeci. 
Definition : A conservative matrix A is said to hc multi- 

plicative m if for any xe c, limAx=mlirnx. 

Proposition 2.4. A matrix A is multiplicative m if and 

only if ak=lim ank=o for all I < .  n 

Proof : By Theorem 2.3. limAx is a continuous linear 

functional on c where c is considered as cl,then by (1.3) 



but ' ) d ( ~ ) = m  if A is multiplicative m ,  hence ak=o for all k. 

Conversely if ak=o for all k then limAx=(limAi)limx hence 

A is multiplicative. 

For any continuous linear functional f on c~ where A 

lc 
is conservative, L f ( 6  ) is convergent because we can con- lc 

sider f as a continuous linear functional on c then 

% l f ( ~ ' ' ) ~ < m  by (1.51, w e  define 

X(f) E f(ib %fbk) (2.5). 

Proposition 2.5. If A is conservative, f is in cA, and f 

is represented as in (2.1), then % ( f ) = d X ( ~ ) .  

Proof : f(i)=dlinAi+ gt,( Gark)+ FA, sf(6n)=&d~imA6n+ 

%( 5trarl=)+ %(3r hence f(i)- z f ( p ) = d X ( ~ ) +  n ftr({ark)- 

r(5trark), now A is a conservative matrix hence row- 
k 

bounded by Theorem 1.23., 5 I t , l<W,  hence by Theorem 1.29. 

f.tr(%ark)= $( $t,ark), therefore X ( f ) = d x ~ ) .  

' ' I  



CHAPTER I11 
I 

CO-NULL AN11 CO-REGULAR MATRICES 

Definition : A conservative matrix A is said to be co- 

regular if I)C(~)#o,co-null if X(A)=O. 
The above definition is due to Wilansky (p.61 of f 9 ] ) .  

Example 3a. The process of taking the arittiruetic mean or 

\ 
Cesaro mean can he represented by the conservative matrix 

-4 is co-regular since X ( A ) = ~ .  In fact, A is regular', 

and it follows from ii) and iii) of Theorem 1-23. that 

regular matrices are co-regular. 

Example 3.b. The conservative matrix 



is co-null since l$n%ank=o apd lim a,k=o for each k=1,2,.*- n . k 
If A is rmltiplicative zero, then limAl=o and limA6 =o 

for all k. Hence A is co-null. Thus every multiplicative 

zero matrix is co-null. 

For a conservative matrix A, we dsrine 

Proposition 3.1. A conservative matrix A is co-null if and 

only if i c ~ ~ .  

Proof: If ]'€Ya4, consider f (x)=limAx. f(i)= &f (5") implies 

that A is co-null. Conversely, if A is co-null, then every 

Corollary 3.2. A conservative matrix A is co-null if and 
k 

only if for every fEcA, f(n&n)f() as k+m, that is, 

k " 
X 6 converges weakly to i in cA. n=l 

Proof : This follows immediately from Proposition 3.1. 

From Corollary 3.2. it follows that we can regard 

coregularity as a property of cA rather than the matrix 

A. This was done by Snyder, A . K .  ( ~ a t h . ~  .90,1?65,376-Wl) 

Proposition 3.3. If c is closed in cA, then A is co- 

regular. 

Proof : If c is closed in cA, by Proposition 1.12., the 

subspace topology and t h e  usual topology on c are equi- 

valent, if A is co-null then every continuous linear 

functional that vanishes on {bn1 n=1,2, . . .I must vanish 
at i. In c consider the subspace V1 generated by 



~ 6 1  n=1,. . .) and the vector 5 ,  clearly d(i,vl)=inff i l i - v l ~ ~ e ~  J 

)l,hence i+K(in cA). Thus by Theorem 1.5., there is a con- 

inuous linear functional fecA satisfying the condition f(vl) 

=o and f(i)+o. This is a contradiction, hence A cannot be 

co-null. 

The converse of the above Proposition is not true, to 

see this we consider the arithmetic mean in Example 3.a. 

This matrix is a reversible matrix by Proposition 1.28. 

Hence CA and c are congruent under A. Now let f x n ~ =  

E(-l,o,o,. . .) ,(-1,1,0,0,. ..),(-1,1,-1,0,.. . ) , . . . I ,  then 
txn)sc, let x=i(-l)"!, then Axn+lx but x 4 c  hence AX~A(C). 

Therefore ~ ( c )  is not closed in -c hence c is not closed 

in CA. 

Theorem 3.4. If A,B are conservative matrices and cA=cg, 

then both A and B are co-regular or hoth are co-null. 

Proof : B y  Theorem 2.3., limAxac$ and limgxscA , by 
Proposition 2.5. W A ) = ~ $ B )  and X ( D ) = ~ ~ % ( A )  for somedl, 

d2, hence X ( A )  and WB) are both non-zpro or hoth zero. 
Thie completes the proof. 

The above theorem shows that co-regularity is a 

property that depends on the summability field cA alone 

and not the matrix A. 

Proposition 3.5. If A , B  are conservative matrices and 

cAscg, then A is co-null implies that B is also co-null. 

Proof : By Theorem 2.3. ,li%ecA, by Proposition 2 . 5 .  WB)= 
~ T ( A )  hence the result follows. 



We now t u r n  t o  t h e  s tudy of t h e  n s i z e w  of t h e  summabi- 
I 

l i t y  f i e l d  cA. W e  w i l l  f i r s t  assume t h a t  A i s  co-regular .  

Theorem 3.6. ( s t e i n h a u s )  If  A i s  a r e g u l a r  ma t r ix ,  then 

C A W *  

Proof : By Theorem 1.23. w e  have i) 5 lai j\ c M f o r  some M 

and f o r  a l l  i ,  ii) l$mai j=o f o r  a l l  j and iii) za =A -4 1. j  i j  i i+ea 

We w i l l  c o n s t r u c t  a  sequence x  t h a t  c o n s i s t s  of 0 ' s  and 1 's  

such t h a t  A x  i s  n o t  convergent.  By iii) choose il so  t h a t  

)*  , by i) choose jl so t h a t  ?i 1 

4 - 1 '  i 1 E 
t ' + z f o r  l s n s J l  l e t  xn=l  then ( A X ) I ~ =  j , l a i l , j  j= j l+ la i l ,  j x j  

00 

E: 
w 

= 5ai1,~+ j= j l+ l  ail 9 J ' ( ~ ~ - 1 )  hence l ( ~ ~ ) ~ ~ l  31zai110 J jGjl+$ail 
J l  * Now choose i2)il by i i )  so t h a t  jsl l a  .I< 1 

i 2 v ~  t 

w e  choose i3>i2 so t h a t  I aig, ,j\ >2 , and .f f 
rn 5 4 , ~ = , , ~ + ~ ~ ~ i h j ~ ~  i*z 

U I 

choose J37j2  so t h a t  2 la , jl< 1 then \ (Ax) .  I = l j ~ l a i 9 , ~ +  
3 2  

J = j 2 + l i 3  g j 2  l3 

E: e r 
J=J1 

E 
+lai3,.j+j=j3+lai3, jX j I  = ~ ~ ~ i ~ , j - ~ = , ~ ~ + ~ ~ i ~ ,  J* j=j3+~ai3 , J ( ~ J -  

j2 a - "5 111 315ai3,j~-Ijfj1+1 i 3 , j l  j = j  + I ) a i 7 , j 1 3  2 . 
3 

Continuing i n  t h i s  way we can cons t r i lc t  ixnj so t h a t  D ( A X ) #  

i s  d i v e r g e n t ,  hence I(Ax),.,\ must be t l ivergent .  

Theorem 3.7. If A i s  co-regular  then c l&m.  

Proof : L e t  A = ( a n k ) ,  cons ider  13=(ank-ak) where a k = l i n i  n ankt  

then B i s  a m u l t i p l i c a t i v e  ma t r ix ,  s i n c e  5 lak14m by ( 1 . 6 ) ,  

w e  have c4,nrn=cBnmr hence i t  s u f f i c e s  t o  show c&m. Now 

l i m , i = l $ n  $(ank-ak)=lyi)m%ank- % a k = P ( ~ ) #  o hence H i s  



1 multiplicative P ( A ) ,  thus .m B is regular and c g = c ~  
r*A, B? 

by Theorem 3.6. 

Example 3.c. Consider the arithmetic mean and the bounded 

sequence defined by the following rules 

The sequence is clearly bounded, hut (AX)~=~,(AX)~= & s 
'a 
2 

 AX)^^ ,2 ,  AX)^?^ 1,. . . . (~x)?2n,2 (~x)?2n+lg 1 , hence 
3 3 '5 ' 3 

the sequence x is not in c ~ .  

For a co-regular matrix A,CA may be a proper subset 

of m, for example if A=I, the identity matrix. However, the 

next main result ( Theorem 3.10. ) tells us that whenever a 

co-regular matrix sums a divercent bounded sequence, cA is 

not a subset of m. 

- 
Lemma 3.8. If A is a co-regular matrix, then in cg,czc~m. 

Proof : Consider c as a linear suhspace of c,pri, hy Theorem 

1.5. it suffices to show that every continuous linear 

functional that vanishes on c must vanish on ciifl~q. Let 

f ~ ~ l j  and f(c)~o, then in the representation (?.l) ,d=o, 

because X(A)fo, X(f)=o and % ( f ) = d X ( ~ ) ,  also f(bk)=o for 

all k, hence by (2.2). 

Rut %t,(~x), may be considered as  AX) where t is the 



matrix whose first row i s  (tl,.. tr, ...) and other rows are 
I 

zero, x may be considered as the matrix whose first column 

and other columns are zero and %( ft,ark)xr may he con- 

sidered as (t~)x in the same way. Now a l l  three matrices 

t,A and x are row bounded if xecprn, hence t(~x)c(t~)x 

by Proposition 1 . 2 7 .  hence f(cAnm)~o. 

Lemma 3 . 9 .  If cAsm, then CA is closed in rn. 

Proof : Hecall that suplx,} is the norm on m. Let xscA in n 

m, to show that x€cA in m it suffices to show that A x  is a 

& Cauchy sequence. For ally €70, consider N(X,=) where M= 

IIAII fo (for if UAII=o, A is the zero matrix, then s=c&rn), 

let yecA/7~(x,&) and N(E ) be an integer such that for m, 

€ 
n 7 ~ ( ~  ) we have 1 \AY),-(AY)~~ =lfi(amk-ank)yrlcZ. Let xk= 

E 
y +ck where I c k l < ~  by the choice of y. Thus we have 
k 

I(~*)~-(b)n\ = I f,(amk-ank) \ ~ ~ + c ~ ) ( 6 ) c ( a ~ ~ - ~ n k 1 ~ ~ 1  +lk(a,k-ank)~lckl 

€ & ' r  +2M.= = €  . 
Hence A x  is a Cauchy sequence 

Theorem 3.10. If a co-regular 

gent sequence, it must sum an 

and x€cA. 

matrix sums a bounded diver- 

unbounded sequence. 

Proof t Suppose crc~sm, then by Lemma 3.9. and Proposition 

1.12., the usual topology on cA is the same as the subspace 

topology. But c is closed with respect to the usual topology 



of m, hence c is closed in cA. By Lemma 3 . 8 . ,  c=c?c,pm, 
I 

that is, c is all the bounded sequences in cA, this con- 

tradicts the assumption that A sums a bounded divergent 

sequence, therefore cA$m and the result follows. 

Example 3.d. The arithmetic mean sums the bounded diver- 

gent sequence f(-l)"J, it also sums the unbounded sequence 

(l,-l96,-E,3$,...). 

There exist matrices that sum unbounded sequences 

but do not sum any bounded divergent sequence. It will be 

seen in the next chapter that such matrices must be co- 

regular. We give now an example of snch a matrix. 

Example 3.e. We will define a matrix A whose diagonal ele- 

ments are all equal to one. Construct a one-one corres- 

pondence k from the positive integers into themselves by 

the foll owing rules 

k(1)~2~, k(2)=23, k(3)=25 ,...., k(n+l)=2nk(n) ,..... . 
Let A be the matrix whose diagonal elements arc? one 

n 
and an,k(n) =- - 

k(n) 
, the other elements are zero, then A 

sums the sequence (l,2,3,4,.. . . )  since (A~)~=n-n=o. Now 

if x is a bounded divergent sequence then Ax is divergent, 

n 
for otherwise l ~ m ( A x ) ~ = l & m l x ~ - ( ~ ) x ~ ( ~ ) ]  exists but x 

k(n 
n 

is bounded and lkm =O hence lim x, exists, this is a 
k n n 

contradiction. 

As for co-null matrices, we will see that every co- 

null matrix must sum a bounded divergent sequence hence 

an unbounded one in the ncxt chapter. 



CHAPTER 4 
I 

c AS A SUBSET OF CA 

In the first part of this chapter we will study the 

conservative matrices that are also 1,-l1matricee and 

relationships between c and lA. In the second part we 

will assume that c is closed in c , ~  and study the con- 

sequences. 

For a conservative matrix A, the conditions lASc 

and cEIA may or may not hold. For example if A=I, the 

identity matrix, then lA=lL,!c=c,~, but ~ $ 1 ~ .  If 

then (1.2.9,. ..)el* but it is not in c, hence 1&c. Also, 

it is easy to see that cGIA. 

Definition : A conservative matrix is said to be perfect 

if c is dense in CA. 

Theorem 4.1. If A is perfect, an 1,-Illnethod and A(c~)=c, 

then 1 & c .  

Proof : The matrix A considered as a m a p ~ ~ i n g  from cA to 

c is continuous by Corollary 1.15., hence c=cA implies 

~7S)lc since A is onto. Now if lAzc, then A K ) = c  with 

respect to the norm of c, but A(lA)Sllsince A is an 



lrl, method, hence li is dense, in c. The last statement ie 

1 not true because if we letE = - x l l ,  . 1 , )  then 
2' 

N ( x , € )  contains no element of 1. 

It is obvious that, for an arbitrary matrix A, if 

c S l ~ ,  then A is conservative and multiplicative zero. 

However for a conservative matrix A which is also an 

lrllmethod, A multiplicative zero does not imply c41A. 

Consider 
I 

the matrix A is row-bounded, limAbk=o for all k and limA;=o, 

hence by Theorem 1.22., .A is conservative. Also, A is 

column-bounded, hence it is an 1,-1,method by l'haorem 1.25. 

1 1  .... Now i6c and BI(A~)~(=~+F+T+ =a,, hence i41A. 

Theorem 4.2. If A is an 1-1 method, then a necessary con- 

.... dition for lAGc is that for any subsequence (rl,r2, ri..J 

of the sequence (1,2,3,. ..) with ri+l<ri+l for infinitely 

Proof : Suppose lnGc, for any such sequence (rl,r2, ...). 

Construct a sequence x whose rith term is 1 and others are 

zero, then x is a divergent sequence since ri+l<ri+l for 



infinitely many i. llence x a ~ ~ ,  that is, (4.1) holds. 

The condition (4.1) is not sufficient, f o r  example, 

let 

then A is column-bounded hence an lrljmethod, let x= 

(1,2,8,..), then AX=(-l,o,o,o, ...), thus ~ € 1 ~ .  but 

In what follows we will study the condition that c 

is closed in c ~ ,  for this we arrange the seminorms that 

generate the linear topology on CA in the following manner: 

is generated by 
Ur, 

1 P,W z 
n=o l+pn(x) , where pn(x)= rnax qi(x) . 

Also recall that c~ is complete; hence a series is con- 

vergent if the partial sums form a Cauchy sequence. The 

following interesting result is due to Wilansky and 

Theorem 4.3. For a conservative matrix A, c is closed in 

c~ if and only if A sums no bounded divergent sequence, 



that is, c,@mSc. 
I 

Proof : Suppose c is not closed in c~ and consider the sub- 

spaces 

VK= [XE c I xlr=o, kc ~f ,K=o , 1 .2, . . . . 
These subspaces are not closed in c ~ ;  for suppose V 

KO 

is closed for some KO and let txrnJ~c converge to x in c ~ ,  

furthermore, for each xm=(xT,xF, .... x m xm ,...), let KO-1' KO 
m 

ym=(xf, ..., xg ,o,o,...) and zm=(o,...o,x 
0-1 Ko,~I;o+l"." 1 '  

then xm=ym+zm and em&vK . Now qi\xm-x)+o for all i by 
0 

assumption, hence q2n(ym-y)-jo; but each ym has zero co- 

ordinate after the KO-lth coordinate, hence qo(ym-y)+0 

and q2n-l(ym-y)+~. Now let X=(X~,...X~~-~,X~~,...)= 

(xl,. . . . x ~ ~ - l  ,o, .. . ) +(  o,o, . . . ,q0 ,x1c0+1, . . . and let y= 

( X ~ , ~ . X K ~ - ~ , O ,  ...), z=(o,o, ... X ~ , , X K ~ + ~ ,  ...), then x=y+z. 

For any i, qi(zm-z)=qi(xm-x) + qi(ym-Y); hence qi(zm-z)+o. 

If VK, is closed in c ~ ,  then zeVKo, hence xec and c is closed 

Pn CA contradiction. 

By Proposition 1.12., the usual topology on V K ~ C A  

is strictly stronger than the subspace topology relative 

to c~ , hence the seminorm q(x)~llxll=su~~x,~ is discontin- n 

uous with respect to the subspace topolocy by definition. 

By v) of Theorem I.?., for any&, o, any intereere b,K, 

there exists x€VK such that 

qlx)=l ( 4 . 21  

pk ( 2' b E  (4 .3 )  for ktb 



Case I. If A is a co-regular matrix. We may assume g ( A ) =  
I 

1, for otherwise we may consider 
3c( A 1 

A ;  this matrix 

has the same summability field as A ,  also the i d e n t i t y  map 

is a homeomorphism. Consider limAx as a continuous linear 

functional on c, and let limAx=dlimIx+ %akxk, where ak= 

limank; i n c ~ ) l ,  by Proposition 2 . 5 . , d = l .  By (1.6) n 

fi lakl<ra. For any 6 > o, choose K great enough so that 

I lak/<& ; by the preceding part, there exists x c V K  such k=K 

that (4.2) and (4.3) hold; hence ilimAxlCE, because 
m 

po(x)<f . Therefore IlimIxl B llimAxl + I & a x \$llimAxl + k-K k k 
w 

sgp IxnJ Iakl ) , but q(x)=sgp lxn\ =1, hence ilirnIx1611imAxl + 

sufficiently large, xn=o for n=1,2,...,K-1 and sup\xn( =1, n 

therefore there is a finite interval N(x) of natural 

numbers such that\x,\< 1 for n&~(x) and Ixd -1 for some 

~ e t  ~,=2-~-3 , r=1,2,3,... and b=r; for each r choose 

xrbVKr satisfying (4.2) and ( h . ? ) ,  furthermore, fur each 

rtKr+l is chosen in such a way so that N(xrJ r=1,2,.... 

are pairwise disjoint and that infinitely many natural 

numbers are not in any ~ ( x ~ ) ,  hfe  claim that Exr is a r 

convergent series in c,\.For any&> o, choose r so that 
d) 

then for j?irr, 
Z r z  2' 



therefore the partial sums form a Cauchy sequence, hence 

z x r  is convergent to, say, x,in cA. The sequence qxr r 
00 

Z 2"-3 for is bounded by construction; in fact, Ixnlil+ 

all n, furthermore, it has a subsequence tending to and 

a subsequence tending to zero, hence Exr is a diver~ent r 

sequence; this completes the proof for co-regular matrices. 

Case 11. A is co-null. We first notice that co cannot be 

closed in c ~ ,  for otherwise there exists frch such that 

f(c0)2o and f(i)#o by the Hahn-Uanach Theorem. But A is co- 

null. Hence f(co)zo implies f(i)=o, therefore such f does 

not exist. Hence co cannot he closed in cA. In the first 

part of this proof if we consider 

~ i =  fxecO( xk=o, k(KJ, K=o, 1,2,. . . . . . . . 
instead of VK, then the v;( 1 , 2 ,  are not closed.The 

proof is exactly the same as the precedin~ one. Hence by 

v )  of Theorem 1.3. for every&>o, positive integers b,K, 

there exists X E V ~  such that (4.2) and ( 4 .3 )  arc satisfied. 

Now limx=o, hence the argument used in Case 1 can be appl- 

ied to show that there is a bounded divergent sequence in 



Corollary 4.4. A co-null matrix must sum a bounded divergent 
I 

sequence. 

Proof : By Proposition 3 . 3 . ,  c is not closed in cA if A is 

co-null; by Theorem 4.3., A must sum a bounded divergent 

sequence. 

Corollary 4.5. A co-null matrix must sum an unbounded se- 

quence. 

Proof : Suppose CAGrn, then c~ is closed in m by Lemma 3.9., 

hence by Proposition 1.12., the topology of c~ is the same 

as the subspace topology relative to m. c is complete with 

the usual topology, hence c is closed in c ~ ,  thus A is co- 

regular-contradiction. Therefore ci1$m, hence A sums an 

unbounded sequence. 

Corollary 4.6, If A sums a bounded divergent sequence, then 

c is not closed in c ~ .  



CIUJJTER V 

PERFECTNESS AND PIA'L'HICES OF TYPE M 

Definition : Let A=(EI,~) be an arbitrary matrix. Any se- 

quence{dA in ll satisfyinc 

@nank=o for k=1,2,.... (5.1) 

is said to be orthogonal to A. If the only sequence or- 

thogonal to A is the zero sequence, A is said to he of 

type M. 

All diagonal matrices with non-zero diagonal elements 

are of type M. For certain classes of matrices, perfectness 

and type M are closely related. In this chapter we will 

study these concepts for different classes of matrices. 

The concept of type M will be applied to consistency. 

Definition : Let {d,\ be orthogonal to a conservative 

matrix A and let f(x)=%,,(~x)~. We call f(x) an ortho- 

gonal functional on c ~ .  

Proposition 5.1. If A is conservative, then every ortho- 

gonal functional vanishes on cAfim. 

Proof : Let f=5dn\Ax),=d(Ax) be an orthogonal function- 

al, 'then by Proposition l.%7.,d(~x)=(d~)x for every xec~nm, 

hence d(~x)=(d ~)x=ox=o. 

Proposition 5.2. Let A=(ank) be conservative and rever- 

- 
sible, then c ~ l \ m = c ~  implies that A is of type M. 

Proof : Suppose cFm=cA, then by Theorem 1,5., any con- 

tinuous linear functional that vanishes on chnm is identi- 



cally zero on c ~ .  Let d=(dl,d2,...)€11 and $,dnank=o for 
I 

all k. Suppose d fo for some no and let ~y.6~0. Such y 'b 

exists because A is reversible, and clearly YECA. Now 

the continuous linear functional fpL,(~x)~ is identically 

zero on cAnm by rroposition 1-27., hence fP(,(Ax), is 

identically zero on c~ by assumption. But Ed (Ay),= n n 

dno#o and this is a contradiction. Hence4 =o and A is of 

type M. 
- 

Proposition 5.3. If A is co-regular, then E=cAnm. 

--  
Proof : Clearly T Z c m .  To show that czc~nm it suffices 

- - -  
to prove that i5scAnm, for then c=FsAnm. Let f be a con- 

tinuous linear functional on c~ that vanishes on c, we 

show that f(cAnm)qo. By (2.2), f(x)=dlirngx+ &t,(~x),+ 

5 lf (bk)-&ak- fitnank]xk and recall that x ( f ) = d X ( ~ ) .  Now 

k f(i)=o and f(8 )=o for all k, hence X(f)=o, but R is co- 

regular thus X(A)#O, henced=o. Also, the representation 
of f ( x )  is reduced to f (x)= &tn(~x),- z(Zt,,ank)xk, hence 

f(x)=t(~x)-(tA)x, where t=(tl,t2, ... tn, ...). By Proposit- 
ion 1.27. f(x) vaniches on c@m. 

Theorem 5.4. A reversible, co-regular matrix A is perfect 

if and only if it is of type M. 

Proof : If A is perfect, then Z=cA. Thus, by Proposition 

- 5.3. cA=cAnm. Hence by Proposition 5.2., A is of type M. 

Conversely, suppose A is of type M. It suffices to 

show that every continuous linear fiinctional that vanishes 

on c iimst vanish on c Ry (2.4), f(x)=dlimAx+ fitn(Ax),. 



I n  e x a c t l y  t h e  same way as i n  t h e  proof  o f  P r o p o s i t i o n  

5 . 3 . .  w e  o b t a i n  f ( x ) =   AX)^* Now f v a n i s h e s  on c  and 

f ( b k ) =  k tnank=o .  hence by assumption t = ( t l , t p ,  ... tn,  ...) 

=o,  t h u s  f50. T h i s  comple tes  t h e  p roof .  

I n  g e n e r a l ,  p e r f e c t n e s s  and type  M a r e  n o t  e q u i v a l e n t  

c o n d i t i o n s  .For  example t h e  m a t r i x  

i s  n o t  of t ype  M ,  s i n c e  ( l , o ,  ....) A=o, b u t  c ~ = c ,  hence i t  

i s  p e r f e c t .  On t h e  o t h e r  hand,  c o n s i d e r  t h e  m a t r i x  i n  

Example 3 . e . .  t h a t  i s ,  t h e  m a t r i x  A whose d i a g o n a l  e l e -  

n  
ments a r e  1, a n , k ( n ) = -  -1, where k ( l ) = z 2 ,  k ( 2 ) = 2 ?  ,...., 
k ( n + l ~ = 2 ~ k ( n )  and o t h e r  e lements  a r e  z e r o .  'I'his m a t r i x  

does  n o t  sum any bounded d i v e r g e n t  sequence ,  hence E=c 

i n  CA, b u t  ( l , 2 , 3 ,  ....) eel-, hence cA#c,  t h e r e f o r e  t h e  

m a t r i x  i s  n o t  p e r f e c t .  The m a t r i x  i s  of  type  M .  ' l 'his can 

be  s een  as f o l l o w s  : S u p p o s e 4 = ( d l ,  ...., dn,  ...) and d A = o ,  

t h e n  dl=d2=+=o, a l s o  d k (  )=dl,=o, because  4 4 .  l+d l  *a lk (  ) = o  

- b u t  d l = o ,  hence A k (  )=dl,=o, S i m i l a r l y ,  we have d l  =d2=. . . - 
dk(2)-1=d7=o and d8+d20a28=o hence d8=0. Cont inu ing  i n  

t h i s  way we have d = ( o , o ,  ... o ,  ...), hence t h e  m a t r i x  i s  o f  

t ype  M. 

Now we w i l l  c o n s i d e r  a d i f f e r e n t  c l a s s  of  m a t r i c e s ,  



that is, the reversible and multiplicative matrices. It 
I 

is a different class from the reversible co-re~ular ma- 

trices because the matrix 

. O  0 e . . . . . . . . .  

2 0 0 ........ 
...... 0 2 0 0 

0 0 2 0 o..... 

is co-regular, reversible but not multiplicative since the 

first column does not tend to zero. On the other hand, the 

matrix in Example 3.b. is reversible, multiplicative and 

co-null. 

Definition : A maximal subspace of a linear space is a 

subspace whose complementary suhspace has dimension one. 

Lemma 5 . 5 .  Let V 1  be a linear subspace of a linear space 

V. If there exist two independent linear functional fl,f2 

such that fl(Vl)=f2(V1)~o, then V1 is not a maximal sub- 

space. 

Proof : Suppose V1 is maximal in V and let v span the 

complementary subspace. Let fl(v)=dl and f2(v)=d2, then 

-- d l  f2(V)+fl(V)Po and this contradicts the assumption, 
4 2  

hence V1 is not maximal. 

Theorem 5.6. Let A be reversible and rnultiplicative.l'hen 

A is of type H if and only if co is a rnaxilaal subspace of 



Proof : Suppose A is of type M. It suffices to show that 
I - 

co is the kernel of some linear functional on c ~ .  Let 

xlki~o, by 'rheorem 1.5., there exists fdch such that f(co)=o 

and f(xl)#o. By (2.4), we may let f(x)=dlirnAx+ %tn(i\x),. 

k 
Now f is multiplicative and of type M, hence f(6 )=o+ 

t n n o  therefore t,=o for all n, hence f (x)=dlimAx. 

By assumption f(xl)fo, hence limAxlfo. Now consider the 

continuous linear functional h(x)=limAx on c ~ .  Since A is 

multiplicative, we have limAx=o for all x€co, hence kerh(x) 

L 

=co. By the preceding part of this proof, h(x)fo for all 

x&zo, hence kerh(x)=co, thus Fo is a maximal subspace. 

Conversely, suppose A is not of type M. Let t=  

(t lr...,t,,...)ell be non-zero and dA=o. Consider fl(x)= 

 AX) and f2(x)=limAx; both fl(x) and f2(x) vanish on c,. 

By Lemma 5.5.. if fl(x) and f2(x) are independent, then 

- 
co is not a maximal subspace. 1,et al,a2 be two scalars 

such that f(x)=allimAx+(a2*t)~Ax)~o on cA and suppose 

t,#o. Let xlt cA be such that  AX^=&^, then f (xl)=o+a2t,=o, 
hence a2=oe Let xpecA satisfy Ax2= i , then f(xg)=al*l=o, 
hence al=o, thus fl and f2 are independent. 

We have seen that in general the concepts of perfect- 

ness and type M are not equivalent. In what follows, we 

will look at some subsets of cA and study some sufficient 

conditions on these subsets for A to be perfect or to be 

of type M. 

For a conscrvativ~ matrix A, we define 



B ~ = ~ X E C ~ I  there exists M>o depending on x such that , 

LA= I X E C ~ I  \ t~)x= $-( Stnank)xk exists for all tell) 

pA={x6cAJ (tA)x=t(~x) for all tEl such that (tA)y 

exists for all Y€C*.~ 

In general the subset BA does not fill up CA. For ex- 

I ample, let A be the matrix in Exa~lple 3.b. and x=(l,l+ - 
2 ' 

1 1  1 1 1 ...), then (AxIn=(1+ 1 + ...+ -)- n-2 

n-2 
hence lim(Ax),=o and xecii, but X+B* because I&ankxkJ = n 

1 !I+ * * * +  -1 which tends to infinity as n increases. n-2 

Theorem 5.7. If A is co-regular t h e n  PIL=T. 

Proof : Let f be a continuous linear functional vanish- 

ing on c. In the proof of Theorem 5.3. we proved that f(x) 

is of the form t(~x)-(t~)x, hence by the definition of PA 

we have f(x) vanishes on P,therefore PASF. 

Conversely, it is clear that cE1lA, hence it suffices 

to show that PA is closed. Let F=Ettll(tA)x exists for all 

xccgl and for every t€h' define ft=(tA)x- AX). Fach ft is 

a continuous linear transformation from cA to s by Corollary 

l.l4., hence the kernel of ft is closed. Now pA=&ker ft, 

hence PA is closed. Therefore Pii2E and hence P A = c .  

The above theorem characterizes c in case A is co- 

regular. Notice that P z  does not depend on the co- 

regularity of A. The following corollary follows trivially 



from Theorem 5.7. 

Corollary 5.8. A co-regular matrix A is perfect if and 

only if YA=cA. 

Corollary 5.8. is not true for co-null matrices, for 

example, consider the matrix 

Clearly PA=cA and the sequence xo=(1,2,3,****)ecA. 

Hecall that for normal matrices the topoloey is defined by 

does not contain any element of c, thus A is not perfect. 

Proposition 5.9. Bl1=LA 

Proof : Let xEBA and t=(tl,t2,***tn,. e * ) ~ l l .  For any k, 

(fitnank)xk exists because tell and [ankln=1.2,0*** 3 is 

bounded. Let 

Sk tends to S. For anyE>o, choose ~ ( 6 )  so t.hat nz(s)+l I tnb  
E , and for n=l,2,***,N(e),choose K great enough so that 

ko)K implies 



Then for k>K, we have 

Hence fi (5 tnank ) xki&(sankxk tn and thus (tA)x exists. 

Conversely, let x x l , x 2 , € .  llefine a sequence of 

linear functional [fm?on 11 by 

x )+t2(a21xl+***+a2mxm)+...... fm~t)~tl(allxl+*-+alm m 

Each f, is well-defined since A is conservative. Recall that 

the norm on l1 is defined by lltll= GltJ , hence it is easy 
to see that each fm is a continuous linear functional on ll. 

x )I1 lt,l<\)<s~planlxl+-* - +  NOW tffmll =sup ~l~tn(anlxl+* *+a,,, ,, 
anmXm 1 Un the other hand, let t=S", *hen ilfmlt&s#p lanlxl+- 

+anmxml , hence we have Ilf,ll =s,uplanlxl+ *+anmxn 1 .  ny defini- 

tion of f, we also have 

fm(t)=(tlall+t2a21+-**)~1+***+ (tlalm+t2a2m+"')xm 

Since xb~,l$nf,(t)= %( mtnank)xk exists for each ttl. By 

Theorem 1.6. {llfdll m=l,2, * * )  is uniformly bounded, hence 

there exists M such that ~~pla,~x~+~**+a~,x,(bM for all m, 

hence x6BA.  

Theorem 5.10. If a conservative matrix A has a richt in- 

verse whose columns belong to UA except for a finite num- 

ber of them, then A is of type M. 

Proof : Recall that in the proof of Proposition 5.10. 

we actually proved that (t~)x=t(~x) for all xEBn and tel. 



Suppose x is the nth column of A-I belonging to BA, tel 
I 

and t is orthogonal to A, then (t~)x=o=t(~x)=t(s~)=t ro, n 

but all except a finite number of the columns of A-' be- 

long to BA, hence tn=o except for a finite number of them. 

Let t=(tl,*** ,tn,o,o,o,ea*-) and let ul,u2,-*ta n be the 

first n columns of ~'1, then (tA)ul=o=(tl,o,o,****) hence 

tl=o,similarly t2=t3=...=tn=o. 

Definition : A conservative matrix A is said to have the 

mean value property if BA=cA. 

Corollary 5.11. A reversible matrix that has the mean 

value property is of type M. 

Proof: Since A is reversible,there exists xk such that 

A X ~ = S ~ .  Let D be the matrix whose kth column is xk, then 

k DZA-'. If A has the mean value property, then x €cA=ati . 
By Theorem 5.10.,A is of type M. 

Proposition 5.12. A co-regular matrix that has the mean 

value property is perfect. 

Proof : In the proof of Proposition 5 . 9 . ,  we proved that 

for all x6BA and t€ll,(tA)x=t(~x), hence HASPAe By Theorem 

- 
5 . 7 . ,  when A is co-regular PA=c, hencc if A has the mean 

- 
value property DA=cAEPA=c, thus cA=F. Therefore A is per- 

fect. 

Definition : Two matrices A and B are said to be con- 

sistent if limAx=lirngx for all x e c ~ n c ~ .  

Lemma 5.13. Let A be a reversibltl conservative matrix, 



then f€ci if and only if f(x)=limBx for some B such that 

c8-2 c~ 

Proof : If cgzcA, then by Theorem 2,3., limgx€cA . Con- 
versely, if fEcA , let f(x)=dlimAx+ f,tn(~x), as in (2.4). 

Define a matrix ~=(b,~) where bnk=tlalk+t2a21c+**+tn-lan-l,~+ 

hence limgx=f(x). 

Theorem 5.14. Let A be reversible and co-regular, then a 

necessary and sufficient condition for A to be type M is 

that A is consistent with every matrix R such that 

Proof : We will first prove that A is consistent kith 

every i3 satisfying i) and ii) is equivalent to the con- 

dition that A is perfect. 'l'hen the theorem will follow 

from Theorem 5.4. Suppose A is consistent with every B 

satisfying i) and ii). Let f cA satisfy f(J!')=o and con- 

sider f+limAx=fl. Obviously fl€ctj , by Lemma 5.13., we 

can let fl(x)=lirnDx , then i) and ii) are satisfied. 
Hence limAx=fl(x) for all xecn and f ( ~ ) r o .  Now FEC, thus 

any continuous linear functional tt~at vanishes on c must 

be identically zero on cA, Hence by Theorem 1.5., c is 

dense in c ~ ,  thus A is perfect. Conversely, let X be per- 

fect and I3 be a matrix satisfying i) and ii), then f= 



l i m ~ x - l i m ~ x  is in cA and f vanishes on F. Now Y is a 
I 

Schauder basis for c with the usual topology and this 

topology is stronger than the subspace topology relative 

to CA, hence f also vanishes on c. But A is perfect, hence 

c=cA and thus f(cA)50. Therefore lim~x=limgx for all x s c ~  

and A,B are consistent. 
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