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ABSTRACT

This tﬁesis is a survey of applications of topologi-
cal methods to summability., We also review and discuss
some of the results ohtained by A, VWVilansky and K. Zeller,

Chapters 1 and 2 are of introductory nature. In Chap-
ter 3 we discuss the classification of conservative matric-
es as co-null and cq-regular matrices. In Chapter I, we
study the inclusion relations of c¢c and 1, and gi#e a de-
tailed proof of a result due to Wilansky and Zeller. In

Chapter 5, we study perfectness and type M for different

classes of matrices.
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INTRODUCTION

This thesis is a survey of applications of topological
methods to the theory of infinite matrix summability. We
also review and discuss some of the results obtained bylA.
Wilansky and K. Zeller. Most of the materials are from
t71, (81,109} and [10].

Chapter 1 is of introductory nature; it consists of
results of the theory of topological vector spaces, a
sketch of the theory of FK spaces and some important re-
sults on infinite matrices (Theorem l.22,, Theorem 1.23.,
Theorem 1.25., and Proposition 1.27.). An example 1is given
to show that multiplication of infinite matrices is, in
general, not associative.

In Chapter 2, the general form of continuous linear
functionals on the summability field Cxa is given. This
identification has numerous applications to the theory.

In Chapter 3} we define co-null and co-~regular mat-
rices in terms of the matrix entries. Also, we point out
that co=-nullity and co-regularity can be regarded as pro-
perties of the summability field rather than the matrix.
In the second part of this chapter, we study the 'size' of
summability fields of co-null and co-regular matrices. The
construction of the matrix in Example 3.e. is based on the
proof of Theorem 73 of [10].

In Chapter 4, we consider the inclusion relation be-
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tween c¢ and lA. in the secong part of this chapter, a de-
tailed proof of part of Theorem 1 in [10] is given; the
original proof in that paper is very precise. Theorem 4.73.
and Proposition 1.12. assure that a co-null matrix must sum
a bounded divergent sequence. This result was also obtain-
ed originally by K,Zeller.

In Chapter 5, perfectness and type M are studied for
different classes of matrices in terms of different sub-
sets of their summability fields. Concrete examples are
given to show that these conditions are in general not

equivalent.
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A LIST OF SYMBOLS
infinite matriées with complex entries
the infinite matrix whose element at the nth
row and kth column is aj;
sequences of complex numbers
sequence of sequences
the sequence (1,1,1l,°°°*)
the sequence whose kth coordinate is 1 and
others are zero
{1j0i8 1k=1,2, "}
the space of all sequences
the space of all convergent sequences
the space of all sequences converging to zero
sequences such that ;r'_llxnkco
the closure of the subset X in some topological
space
the set of all continuous linear functionals
on cy
complex numbers
vectors in sume linear space

linear spaces over the complex numbers



CHAPTKER I
SOME DEFINITIONS AND GENERAL RESULTS
l.1., Topological vector spaces

In what follows we will state some definitions
and results from the theory of topolegical vector spaces.
The details may be found in (3] and [7).

Definition : A seminorm on a vector space V is a map q
from V to the non-negative real numbers satisfying |
i) q(av)=t1a1q(v) , for all complex numbers a and veV.
ii) q(vi+vo)g a(vy) + a(vy).

It is known that given a family (qc)LeI of
seminorms on V, a locally convex linear topology can be
defined on V with the sets é&&ﬁl{vbk as a fundamental
system of neighborhoods of o, where 51‘7 o and Vckz‘
{v'qbk (v)sl}.

When the family of seminorms (qL)LéI is
countable and total , that is, if v # o, there exists q,
such that qb(v) # o, we have the following result :
Theorem 1.1. If the locally convex topology on a vector
space V is generated by a countable and total family of

seminorms (qL)LeN , then

q(v) :w 1 rn(v)
vw|§h 1+rnivi ’ (1.1)

where rp(v) = P3x q;(v), satisfies

n



a) lal¢ 1l implies q(av)g q(v).

b) a0 implies q(a v)-o.

¢) q(v)=o if and only if v=o.

d) a(-v) = a(v). |

e) a(vy+vy)g a(vy)+a(ve).

Furthermore, the metric d(vl,vz)g q(vl-v2) defines the lin-

ear topology on V.,

Proof : See Theorem 1 on p.ll1l] and Proposition 2 on p.llk
of [3].
Definition : A paranorm on a linear space V is a non-

negative real function P satisfying
i) P(o)=o0,
ii) P(-v)=P(v).
111)P(vy+vp)& P(vy)+P(vy).
iv) If {a,} is a sequence of scalars with a;»a and {vp}is
a sequence of vectors such that I'(vp-v)->o,then P(a,v,-av)do.
A paranorm is total if P(v)=o implies that v=o. It

can easily be seen that q(v) in Theorem 1.1. is a total
paranorm where iv) is justified by

q(anvn-av)¢ a(apvn-avn)+q(avp-av)=a((an-a)vy)+a(a(va-v)).
The term q((a,-a)v) tends to zero as n increases by b). As
for q(a(vp-v)), we may assume {al>1l, otherwise a) assures
that qla(vp-v))y0,as nyo; now lal»1 implies that q(a(v,-v))

oo
<Zl
NL2

n= lerp(vp-v)

1aj rp(vp-v) =lal q(vn-v), hence q(a(vp-v)) tends to

Zzero as n increases.



Definition : A linear metric space is a linear topologi-
cal space, the topology being generated by a metric d
that arises from a total paranorm, that is, d\x,y):P(x—y)
for some total paranorm P,

For linear metric spaces, we say that §;V’ converges

n
to v if for any £ >0, there exists integer N such that

nNo
ny>N implies P( 5 vp-v)<€f.

n=1
Definition : A sequence of vectors jvp}is said to be a
Schauder basis for a linear metric space V if, for every
vector v in V, there is a unique seguence of scalars {an§
such that v= %anvn.

If the locally convex topology on V is defined by a

countable and total family of seminorms (qL Yie N, then it

clearly is a linear metric space.

Theorem 1.2, If the locally convex topology on V is

generated by a countable and total family (q )(eN of
seminorms and {vpt is a sequence of vectors in V such

that for every v in V there is a unique secquence of

scalars [ a,} such that qi(k}:l:lakvk-v)r-l-}o , for i=1,2,3,*°,

then | vpl is a Schauder basis.

. ] - b3 1

Proof : For anyf > o, choose integer N; so that YNyl D
£ . .

<5. Consider ql,--co,qu, Choose Ny so that for n » N, we

have ql(v-kglakvk)<‘§8b—d s 80 000 0 0y
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qu(v- i akvk)< , where M=

N
+

o .For ny»>No ,
(v, 21 E 1 _mnlv-Fac)
d(v, a, vy )=& n ~ iy N
éél k'k/“n=1 2 1+ rn(v-églakvk)

)
N .
Z’_ 1 rn(v-Z agvy) ( L €4, 8 _uE , E
5 % + = <'nz=1 22 2M 2 2M T 2
n=1 1 ' Z ) 2
+rn(v—k=lakvk

Theorem 1.3, If the locally convex linear topology on

a vector space V is generated by a countable and total
family of seminorms (qL )CeN and q is a seminorm not in
(qL )LeNothen the following conditions are equivalent.,
i) q is discontinuous at the origin.
ii) gq is discontinuous on V.
1ii) The topology generated by {q}U{qLILeN}is strictly
stronger than the topology generated by {qL!LeNS.
iv) For any positive real number M, any (Ll,°",Ln),
there exists v in V such that q(v)”> M m?§< qck(v).

n
v) For allt >o, and integer N;,there exists veéV such
that q(v)=1 and.qb(v)<£ for allt< N,
Proof: i) clearly implies ii). If q is continuous at
the origin and v; is any vector in V, then

vl+§,v|q(v)<2.'5 = {vl+v|q(v)<2§§ q_l(N(q(Vl),i ))

implies that q is continuous at v;. Hence i) and ii) are
equivalent, 1f q is discontinuous at the origin, then
for some&>~o,§vlq(v)<£§ does not contain any open set

of the topology generated by (qb)uN' Hence the topology

generated by {qlUfy [ten} is strictly stronger, iii)



clearly implies i). The fact that iii) and iv) are equi-
valent is proved on p.98 of'l3). Now suppose iv) holds
and for any¢»o let M= %.,then there exists vj in V such

v
that Q(Vl))Ml?ﬁ§nqu(vl) for any (l7,+++,l).Let v=—aT$ITT
then q(v)=1 and QLk(V)<£' Conversely assume v). For any
positive real number M and any (bl,°~~Lk), choose integer
N; so that Nj2max(l;,*-<,lp) and let € = %,then there exists
vy in V such that q(vi)=1 and q¢(vy),***,qip(vy) are all

1

smaller than¢ . Hence Q(V1)=l>ﬂﬂ2% qok(vl)=Ml?§§qu(vl).

Theorem 1.4. (Hahn-Banach) Let V; be a subspace of a

linear space V,q be a seminorm defined on V and f a linear
functional defined on V; such that |f(v)]¢q(v) for all v
in V;, then there is an extension F of f which is a linear
functional on V and |F(v)|¢q(v) for all v in V,
Proof : See p.65 [7].

The following is a corollary of the Hahn-Banach
extension theorem,

Theorem 1l.5. Let V be a seminormed linear space,VIEV be a

linear subspace and v be a vector which does not belong
to the closure of V;, then there is a continuous linear
functional f which vanishes on V,and f(v)#o.
Proof: See p.67 of (7).

It follows from the above theorem that if every

continuous linear functional f that vanishes on V; is

identically zero, then V] must be dense in V., This



argument will be applied very frequently in the following
chapters,
The following theorem contains two forms of the

Banach~Steinhaus theorem.

Theorem 1.6, i) Let (q‘“)“'I be a pointwise bounded family

of continuous seminorms on a complete seminormed space,
then {uqvl L¢ I}is uniformly bounded.

ii) Let {f S be a sequence of pointwise con-
vergent continuous linear functions from a complete
seminormed space to a normed space, then f(x):l%m fn(x)
defines a continuous linear function f.

Proof : See p.l1l7 of (7],
1.2. Sequence Spaces and FK Spaces.

For every sequence x=(Xj;,++-Xp,...) in ¢, define
Ix§ = supix,|, and for every sequence x=(Xy,*ceXpyeee)
in 1,, define Uxl = %Ixnl. It is well~known that c¢ and 13
become Banach spaces with these norms. Also ¢ has F as
Schauder basis where each xéec is represented by

x=(1im x)i+.§(xn-lim x) g™ (1.2)

If £ is a continuous linear functional on ¢, then

f(x)=(1im x)f(f)+ %(xn-lim x) t, (1.3)
where tn=f(§m), n=1,2,¢c... (1.4)
and  Z lty1<e (1.5)

For an arbitrary infinite matrix A=(aij) of complex

numbers, denote a sequence x=(xj,+++Xp,+++) by a column



vector

By Ax we mean the column vector
£21x*%k
%22k ¥k

Eanﬁxk

if iankxk exists for all n,
For an arbitrary matrix A, let dA=ZxIAx exists, that

is, iankxk exists for all n} . On dy define

IPnl(x)=|xn| and hn(x)=sup{|g§lankxk” r=1,2,-—-}
for n=1,2,3,****. From the triangular inequality
IPpl (x4y)=1xp+y 1 ¢ 1Xpl + 1ypl = Pp) (x)+{Pui (y). Also ,
\Pnl (ax)=lal Ixnt =lal Py} (x). Hence {P,l is a seminorm for
any n, For any n, hn(ax)=lalsupi%élankxm|r=l,2,--~}and
sup{ﬁéﬂank(xk+ykﬂk=l,2,~-- isup{kéﬂankxm!r=l,2,-°~}+
supi|£§lankka r=l,2,'°'§implies that h, is a seminorm.
Throughout this paper, the linear topology on d, is
defined to be the locally convex topology generated by
hnln=1,2,:+-}Y U {IPyil n=1,2,+--3.

Proposition 1.7. For an arbitrary matrix 4, igklk=1,2,°°4

is a Schauder basis for du.
i
ky _
Proof: Let x=(x1,---xn,...)edA. For any n, anl(x-éEIst )=o



if i¥n. Hence 1jm 1P (x- ﬁglxksk) is zero. For any n,
%?ﬂkxk exists since xédA. Given any £> o0, choose integer
K so that |k§ilankxk|<a for any kpjkj3k. Let 12K, then
h, (x- kélxksk)=sup{lk;§+1ankxkﬂ r=i+1,1+2,:-+}¢ € . Hence
limhn(x-kgtxkk)=o. By theorem 1.2,{Sk| k=1,2,+++}is a
Schauder basis.

The particular type of topological space known as
an FK space and introduced by Zeller has played an in-
creasingly important role in summability. As examples of
FK spaces We mention the spaces c, and djy. The general
form of continuous linear functionals on c, can be obtain-
ed from the general theory of FK spaces and this has nu-
merous applications in summability theoryv. The details
can be found in 11.3 and 12.4 of L71].,

Definition: A complete linear metric space is called
a Frechet space.

Definition: Let H be a Hausdorff space and s linear
space. An FH space is a Frechet space such that

i) X is a linear subspace of H.

i1) The topology of X is stronger than that o< H,

The special kind of FH spaces when H== with the norm
{1 Xni

n 2 1+ixqi

Definition : Let X,Y be topological spaces and f:X?Y be

fixn= are called FK spaces,
a function, then f is said to be closed if the graph
z(x,f(x))lxexg is closed in XxY with the pvoduct topology,

Theorem 1.8; Let X,Y be topological spaces,f:X-Y be




continuous and Y be Hausdorff, then f is closed.
Proof: See p.1l95 of [71], ’
It is clear that if f is closed and the topology on

Y is replaced by a stronger topology then f remains closed,

Theorem 1.9. (The Closed-Graph Theorem) Let X,Y be Frechet
spaces and f:X%Y‘be a closed linear map, then f is con-
tinuous,

Proof : See p.200 of [7].

Theorem 1.10 . Let X be a Frechet space, Y be an FH space

with respect to some H and f:X=»Y a linear function, then
f is continuous if and only if it is continuous as a
function from X to H.

Proof: If £:X?Y is continuous, then the topology of Y is
stronger and f(X)S Y imply that f:X>H is continuous., Con-
versely, 1if f:X3H is continuous then f is closed, by
Theorem 1.8,, hence f:X?Y is closed, by Theorem 1.9., it
is continuous.,

Corollary 1.11, Let X,Y be FH spaces with respect to the

same H,XcY,then the topology of X is stronger than that
of Y, in particular a linear space of H has at most one
topology that makes it an FH space.

Proof: Let 1 be the inclusion map i:X*H, then i is con-
tinuous since the topology on X is stronger than the
subspace topology on it. Hence by Theorem 1.10., 1i:X3Y
is continuous and the result follows.

Proposition 1,12, In Corollary 1l.1l,the topology on X




is strictly stronger than the subspace topology if and only
if X is not closed in Y, '

Proof: If X is closed in Y then the subspace topology is
complete, hence X is an FH space with the subspace topo-
logy. By Corollary 1.11, the topology on X is the same

as the subspace topology. Conversely, suppose the two
topologies on X are the same, then the'subsﬁace topology

is complete ancd hence X is closed in Y,

Corollary 1.13, Let X be a Frechet space,Y an FK space,

f:X»Y a linear function, then f is continuous if and only
if £f(x)= {fn(x)§ where each f, is a continuous linear
functional on X.

Proof: Recall that the norm on s is defined by ixu=
1 Pnl h th dinat j i Pn(x)

n=l 2" 1+ Ixyl ence e coordinate projections Pnlx)=Xx,

are continuous. Now if f is continuous as a mapping from

X to Y then f:X»s is continuous hence if we let f,(x)=P,of,

we have f(x)={fn(x)} with each f, continuous. Conversely

let d(u,v) be the metric of X, if d(up,u)>o then

= 1 |fi(un‘u)|

i=1 2 1+if, (u -uji

fi(un,u)-)O (i=1'2’3’."),hence —;o’
hence f:X+s 1is continuous.

Corollary l.,14. Let A be an infinite matrix and X,Y be

FK spaces. If for every x€éX, Ax exists and belongs to Y,

then A, considered as a mapping from X to Y, 1is continuous,
o
Proof: Consider gilankxk, the nth coordinate of Ax, by

o

Corollary 1.13. it suffices to show that ,L.,a ;x) is a

continuous linear functional on X. For this we define
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m oo
£.(x)= éflankxk . Then for any xex,%imfm(x)=£21ankxk.

Define f:X9c¢ by f(x):(fl(x),f...,fm(x),~---). Now X is

an FK space , hence convergence in X implies coordinate-
wise convergence, thus it also implies convergence in s,
therefore f:X3s 1s continuous. By Theorem 1.10.,f:X-c

is continuous. Now in (1.3) let t,=o0,(n=1,2,:++¢) and
£(1)=1, then it follows that for every (xj,***xp,*-*) in c,
%im X, 18 a continuous linear functional on c. Thus
é;lankxk is a continuous linear functional on X since it

is the composite of f and %im X

Theorem 1,15. Let X,Y be FK spaces with their topologies

generated by the families of seminorms (q ),e 1 and (r, ),
respectively. Let f:X»s be a continuous linear map. Then
f‘l(Y) with the linear topology generated by(q(})"eI and
(onf)MA is an FK space and f:f'l(Y)éY is continuous,

Proof: f‘l(Y) is clearly a linear subspace of s and the

[ ]

topology generated by (qL)LEIU(rAOflMA is stronger than
the subspace topology relative to X, hence stronger than
that relativé to s. Now let {xng be a‘Cauchy sequence in
f'l(Y),then it is a (qL)LGI Cauchy sequence in X, hence
xN5x in X, on the other hand {f(xn)} is a Cauchy sequence
in Y hence f(x")>y in Y, but f is coentinuous. as a map-
ping from X to s, hence f(xM)»f(x) in s, but the topology
on Y is stronger than the subspace topology, hence
f(xn)qy in s, therefore f(x):y. SO xef"l(Y), hence the

space £~1(Y) is complete.



Proposition 1.16. Under the assumption of Theorem 1.15.

if f is one-one onto Y,then the linear topology generated
by (ngf»hA alone is an FK space.

Proof: If f is one-one onto Y, then f:f~1(Y)>Y is a con-
gruence onto where f‘l(Y) has the topology generated by
(erf»@A. Now Y is an FK space, hence £~ 1(Y) is an FK
space.

Lemma 1.17. d, is an FK space for any matrix A.

oo
Proof : For the mth row of A define Dm=ix|££1amkxk exists},
then D; with the seminorms [Pt and hm=sup{|Q§1amkxk||
r=1,2,»»% is an FK space, for we can let X=s,Y¥=c in Theorem

1.15, and let f be defined by the matrix

amlo.oo.

amlamzotooa
amlam23m300 L
Am= ® & % & & 2 9 0 a0 00 e

® 0 0 0 8 % 0 0 00000 0 0

amllooca'Ot.oc

then f is continuous by Corollary 1l.1l4 but clearly CAm=Dm
and the seminorm hp is just the composite of the usual
norm on ¢ and f,hence Dnpis an FK space by Theorem 1.15.
Now da= @Dy, and {IP,l] n=1,--3Uin,| n=1,2,3+++} generate
the topology on dp hence the topology on djy 1is clearly
stronger than the subspace topology relative to s since

it is stronger than that relative to D, for any m. Let

12
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{x"}be a Cauchy sequence in d, then {x"™} is a Cauchy se-
quence in Dy for each m, let it converge to y, in Dy, also
{x?} is a Cauchy sequence in s, hence it converges to x,
but then x=yj;=y,= ...=ypy, hence xe/gDm, therefore d, is
complete,dA i1s clearly a linear subspace of s,'hence it

is an FK space.,

Theorem 1,18, Let A be a matrix, then cp with the linear
topology generated by the seminorms on d, and the seminorm
P(x)=sup {| E;lankxk” n=1,...} is an FK space.

Proof: In Theorem 1.15., let X=dp,Y=c, f be defined by A,
then f is continuous by Corollary 1,14, ,now cA=f‘1(c) and
P(x) is the composite of f and the usual norm on c hence
by Theorem 1.15.,cp 1s an FK space.

Definition : A matrix A is said to be reversible if it is
a one=-one onto mapping from c, to c.

Proposition 1.19. Let A be reversible, then c, is an FK

o>
space with the seminorm P(x)=5uP[,£;1ankxk” n:l,g,.n.}.
Proof: Follows from Theorem 1,18, and Proposition 1.16.

Lemma 1.20. Let q;,9, be seminorms on a linear space V

and f be a linear functional on V such that
I£(v)I& a3 (v)+as(v)
then there exist linear functionals f;,f, on V such that
If1(v)1€ a3 (v) 4 If2(v)Igaz(v) and £(v)=F1(v)+fa(v).
Proof: Define q:VxV>R¥ (the positive reals) by q(vy,vs)=
q(vi)+q(vo), on the diagonal subspace {(v,v)lvevl of

VxV, define g(v,v)=f(v), then g(v,v) is a linear functional
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and q is a seminorm on VxV, now g(v,v) = f(v)¢qi(v)+as(v)=
q(v,v), hence by Theorem 1.7., g can be extended to VxV
with lg(vi,va)lgq;(vy)+qy(v,), let £i(v)=g(v,0),fa(v)=
g(o,v), then lg(v,0)l=if;(v)iga;(v)+o, similarlylg(o,v)=
If5(v)Igap(v), clearly f(v)=g(v,0)+g(o,v)=f;(v)+f,(v).

Theorem 1,21, Let X,Y be FK spaces with their topologies

generated by the families of seminorms (qt)téI and (%\L&A
respectively. Let f:X>s be a continuous linear map and
f'l(Y) ~has the linear topology generated by (q")u:I
and (5‘°fbih «If g is a continuous linear functional on
f'l(Y), then there exists FeX', Ge¢¥Y' such that g=F+Gof.
Proof: If g is a continuous linear functional, then
le(x)] is a continuous seminorm, hence by Theorem 1.3.1iv)
there exists M and seminorms in (qc)céILKrAOfZMA such
that

lg(x)1¢ Mmaxq(x), - ya,(x),rjof(x), *ryof(x)}
5:M(ql(x)+~--+qn(x)+rlof(x)+°"+rmof(x).

we may assume that M(q1+oo-+qn)€(qt) and M(rlof+...+rmof)6

tel

(rAszwA since adding these seminorms to (qL) and

(eX
(rhofﬂMA does not change the topology on f‘l(Y), hence
[g(x)lsq(x)+rof(x) where qe\qL)LG T and rofe(pAofbwh .
By Lemma 1.20, there exist. FeX' and F€ X' such that
g=F+F; and |Fi<q, |Fjl¢ rof. Define G on f(X)NY by G(y)=
Fy(x) if y=f(x), if y=f(x;)=f(xp), then [Fj(x;)-F1(x,)=
IF1(x;-xp)l¢rof(x;-Xp)=r(0)=0,hence G is well-defined,

by Theorem 1l.4,, G can be extended to Y, by construction
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of G we have g=F+Gof,

l1.3. Infinite Matrices.

Definition : A matrix A is said to be conservative if
c,2¢, that is, it transforms convergent sequences into
convergent sequences.

Theorem 1.22. (Kojima-Schur) A matrix A is conservative

if and only if

oy
1) nan=sup{ 2 layd| n=1,2,«..}<c0 and
11) c, 28 1tUfsk1k=1,2, .-},
Proof : Suppose 1),1i) hold , then lim a =1im A(s¥)
exists for all k. Let ak=1%m ank and WAi¢M then
kgllank\g kgi|ak|for any finite m and Mzkgl'ank‘ imply

that

o

Now if x=(x1,...xk,...) and l&m xkx=a, write xp=a+¢y,

hence for any§» 0,IN(¢) such that k>N(¢) implieleﬂ(éﬁ

NCED
for n&N(Z) choose Nl great enough so thatlégl(ank-ak)gkk

%r for n>N,;, then
=1 \@nk-a eyl £| L 2
[i&z1'@nk=2y JE ) < k=l(ank-ak)£k|+k=Nl(€)+lﬂankl+lak|)|gk|
W< % + (%)E:E , for n2N;

oo
Therefore l%mgglankgk= gilakgk. Now (Ax)n=ézlank(a+£k)=
[= =4

oo [ 2d
aﬁilank+£;lank£k, but 1ecA,hence I%mk=1ank=b exists,
Therefore %ggle)nzab+ Zkakek’ (1.7}
Hence c,2c. To prove the converse, we apply the Banach-

Steinhaus Theorem twice. For any n define a sequence



ifu} of functional on ¢ by

fm(x)=lj21ankxk ’(m=1’2,0000).

Then{f,;} 1is a sequence of continuous linear functionals on

¢ since convergence in ¢ implies coordinate-wise con-
vergence. Now by definition ufmn=sup[|kglankxk” nxug},
hence |If ﬂ“ﬁgﬂankl’ conversely we can let x‘be the se~
quence (e'i%...,e“iem,o,o,o,-.-) where 6y, *0n are the
arguments of apjj,c+¢j,apy respectively, then lixisl and
[fmix)| = k£1|ankpgufmu,thus WEfi= kgl‘ankl' The sequence
{fm' 18 pointwise convergent hence pointwise bounded by
Theorem 1.6, {liif i |m=1,++.] is bounded, hence éillankh:w
for any n; Now for any n,gn(x)z leankxk defines a con-
tinuous linear functional on ¢ by Theorem 1.6., again
tEnll = E;l\ank\’ now{lgnﬂ considered as seminorms on c is
pointwise bounded, hence {Eillanmln=l,2,--°}is bounded.
Definition : A matrix A is said to be regular if for all

x€é ¢, we have 1%m(Ax)n=1%m Xpe

Theorem 1,23. (Toeplitz-Silverman) A matrix A is regular

if and only if

i) WAlcw,

ii) lim app=o, for each k

iii) 1%mkz;lank=l.

Proof : Suppose A is regular then cp2c¢ hence i) follows
from Theorem 1.23., 1im%X=0 for each k hence 1limA§K=
l%m an#=o,.limi=1 hence limAi=1%m2iank=1. ‘The converse

follows from (1.7).

16 |



Definition : Let lx={xes| Axfll}, then a matrix A is said
to be an 1-1 method if 1,21;.

In Theorem 1,15. let X=d,,Y=1l, f be defined by A then 1,

becomes an FK space. Theorem 1,25, concerning %rllmethods
is due to Mears,Knopp and Lorentz.( See Satz 1. of [5]).

Lemma 1.24, : The space 1; has {8k|k=1,2,3,f"}as Schauder

basis,
Proof : See p.86 of [7].

Theorem 1,25, : A matrix A is an %r;lmethod if and only

if there exists M such that
CLlapil<M yk=1,2,3, 0+

Proof : Suppose 1p21,, then considering A as a matrix
transformation from 11 to 11, it is continuous by Corollary
1.14,, hence there exists M such that WAxU¢Mixi|, where the
norm is the usual norm on 1;, hence HASRH= %\anku;MHSk"=M
for all k.

Conversely, let x=(xy,°*°x_,*+*)el then x= Zx.&"

’ ={x1, " %p, 1 4 Xn6 s
by Lemma 1,24, Now if A is column bounded then annA(Sn)
is convergent in 1. For giveng¢>o, we may choose N(¢) so

(o]

L. £
that n=N(2)|xnr:M where M is the bound of the columns,
then for 1i,JyN(€) lix;A( Si)+-°°xJA(SJ)H$\xi|M+---+|xJ|M<8.
Hence the partial sum of %an(sn) form a Cauchy sequence,
thus it is convergent in 1,. But the nth partial sum is

n
JuSt(kglalkxk’leazkxk""""')’ therefore the limit of

o

@
%an(Sn) must be (kzzlalkxk’kélazkxk’.......) which 1is

Ax, hence Axelj.

17



For any two infinite matrices A=(aij)’B=(bij)' the
product AB is defined to be (cij) where cij=‘§aikbkj’
if each Cij exists. With this definition multiplication
is not associative in general, this can be seen as
follows, let Zhbn be a convergent series which has a re-
arrangement );nrn that converges to a different limit, let
bn=cf(n), where f(n) is the rearrangement. Now let B be
the matrix bij wheré bij=bi if f(i)=j, bij=o if f(i)#j,
let A and ¢ be the matrix whose elements are all equal
to one, then the elements of (AB)C are all equal tof%rn,
whereas all elements of A(B¢) are zibn'
Definition ¢ A matrix A is called a lower semi-matrix if
for j»i a,; .=o0.

1]

Proposition 1.26. Lower semi-matrices are associative.

Proof: Let (ABX::(diJ), ABc )=(eij), a=(ajj), B=(byj)
and(}:(cij), then for j»1 clearly djj=e;j=o since both
(AB)C and A(BC) are again lower semi-matrices., For 1i3j,

i i
we have dij=(géjaikbkj)ij+(k;§+laikbkj)°j+1,j+"‘+aiibii°ijv
this can be re-grouped to form ailbjjcjj+a12(bj+l,fjj+
bj+l.J+1°J+1,j)*'"+aii(bijcjj*"'+bii°ij)=°ij’ hence
(aB)c=A(BC).
Definition : A matrix is said to be row-bounded if there
exists M such that ézllanﬂsbd for all n.

Proposition 1.27. : Row-bounded matrices are associative.

Proof : Let A,B,Cbe row-bounded matrices,(AB)C:(dij),

A(BC)=(eij)’ without loss of generality consider d11 and



e11, now djyj=c;,( %alkbkl)"" cetcpy( %alkbkn)‘*' ce,0117
ay1( Fbaxcy )+ 'c:alm( Zicbmk%l)=a11(b11°11*k§2b1k°k1)+
...+a1m(bm1c11+ E;zbmkck1)+...., “°"Z|bm1°11” m=1,2,...]
is bounded and Zlalmkub therefore ell=c11(§ialkbk1)+

[all( E-oP1kCiy )+ e ety E:z mkck1)+...],this step can

be carried on for any n hence we have e11=c11(zalkbk1)+
...+cm(za1k kn )+ [ 1( _n+1b1k°k1)+"""alm( Z e1P mk°k1)+"'] .
The last term tends to zero since all three matrices are
row-bounded, to see this we can choose m great enough so

that Ialm(éinbmkckl)+...k1% for anvy n, then choose n

great enough using row-boundedness of B so that
co

£
Iall(k—n+1blk°k1)*"‘+alm—1(k§%+1bM~l.kckl)k:E‘ Therefore

all=dllo
Definition ¢ A matrix A is said to be normal if A is a

lower semi-matrix with non-zero diagonal elements.

Proposition 1,28, If A is normal then the equation

Ax=zy with x as unknown has a unique solution.
Proof: We have aj1X1=y;y

e & ¢ 4 00 0 0 0 0 00

hence x1= yl X2= Y2‘i21x1 EEEEEEEE .
411 222

Theorem 1.29. If the terms of a series Z%rn are defined

by series, with rp,= zEcank ,and %ank'_'sk for each k, then
%Ian]d =t, and %tn is cpnvergent imply that ann= fi,{sk.

Proof : See p.24l of T[4].
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CHAPTER II

CONTINUOUS LINbAR FUNCTIONALS ON cp
Lemma 2,1. Let g he a continuous linear functional on
dy for an arbitrary matrix A, then g((xj,...Xpy...))=
%xng(gn) for all (xl,xz...xn,...) in d,.
Proof : By Proposition 1.7. {$%|n=1,2,...1 is a Schauder
basis for dp. Hence nglxnsn-—)x as myom, therefore rglxng( 3'3):
g(n{'::‘lxTl gt)eg(x) as myo, hence g(x)= %xng(sn).

Theorem 2.2. Let A he a conservative matrix, féec}. Then

f may be expressed as
f(x)=dlimpx+ Zf‘tr(Ax)r+ ZBrxy (2.1)
where Zr [tJ<eo and %@fxr converges for all xé€cp.
Proof : By Theorem 1.18. and Lemma 1.17.,c, and d,
are FK gpaces, _ - In Theorem 1.21.,let X=d,, Y=c, then
by the same theorem every continuous linear functional f
on ¢, can be expressed as f=GoA+F with Géc¢' and Fed&. By
(1.3) and Lemma 2.1. we may take G(x)=xXlimx+ Z;.’xrtr and
F(x)= err(sr,where (3n=F(8n), hence GoA=dlim,x+ Zr-‘tr(.t\x)r
and the result follows.
In (2.1) 1let x=8k,(k=l,2,...), then f(sk)=dak+%trark+ﬁk
where ag=1lim a;p. Hence(3k=f(ﬁk)-4ak— %trark and
f(x)=dlimyx+ %tr(Ax)r+ zl-{[f(sk)-p(ak- étrark]xk (2.2).
If A is conscrvative, by Theorem 1.22.‘§|akKao, hence
égk is convergent, We define
X(A)Elimﬁi-%ak= limZa,, - Z1im any (2.3).

In Chapter 3 we will classify the conservative matrices



2]

by means of this number.

)

In Theorem 2.2. if A is also reversible, then by

Proposition 1.19., ¢4 and ¢ are congruent. Let A-l be

the inverse map of A, then foA-1 is a continuous 1linear
functional on ¢ since A_1=cacA is continuous. By (1.3),
let foA l=dlim x+ %xntn, hence

foA"1

OA=f=d1lim x+ Zn(Ax)ntn (2.4).

A is a continuous linear transformation from c, to
¢ by Corollary 1.14., and the functional f(x)=limx is a
continuous linear functional on ¢, hence their composite
limpyx is a continuous linear functional on c,. We also

have the following result,

Theorem 2.3. If cp2cp,then limpx is a continuous linear

functional on c,.

Proof: If cg2cy, then we can consider B as a matrix trans-
formation from cg to ¢, it is linear and continuous by
Corollary 1l.14. Now lim x is a continucus linear functional
on ¢, hence so is the composite limgx. The topology of

cy is not weaker than the subspace topology relative to

cp , hence limpxec).

Definition : A conservative matrix A is said to be multi-
plicative m if for any xec, limyx=mlimx,

Proposition 2.4, A matrix A is multiplicative m if and

only 1if ak=l%m ap =0 for all k.
Proof : By Theorem 2,3. 1imAx is a continuous linear

functional on c¢ where c is considered as cy,then by (1.3)



1myx=(14m, (1) - Z 11m,y (6%) ) 1imx+ X x, 1dmy (8F)=X(A) 11mx+ Zxyay,
but X(A)=m if A is multiplic;tive m, hence ap=o for all k.
Conversely if ayp=o for all k then 1lim,x=(1im,j)limx hence
A is multiplicative.

For any continuous linear functional f on cj where A
is conservative,léflsk) is convergent because we can con-
sider f as a continuous linear functional on c¢ then
{-;lf(sk)kfb by (1.5), we define

X(£) = £(1)- Lr(sk) (2.5).

Proposition 2.5. IXIf A is conservative, f is in ¢4, and f

is represented as in (2.1), then X(f)=2X(a).

Proof : f(i)=Alimpfi+ };.‘tr( Zkark)+ ;Br» %f(sn)=%dlimA6n+
Z(Zt.a ., )+ X .

k( +r i) rﬁL hence f(])- %f(gn)=dX(A)+ éﬁr(ﬁark)_
%(Z;trark), now A is a conservative matrix hence row-

bounded by Theorem 1,23,, % |t <00, hence by Theorem 1.29,.

vatr( %(ark)'_‘ i( Z%trark) , therefore X(f)=aX{A).
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CHAPTER IIIX
CO~NULL AND CO-REGULAR MATRICES
Definition : A conservative matrix A is said to be co-
regular if X(A)#o,co-null if X (A)=o.
The above definition is due to Wilansky (p.61 of [9]).
Example 3a. The process of taking the arithmetlic mean or

Y
Cesaro mean can be represented by the conservative matrix

l] oo .....
11 00 ...
22
11lo0o0.
333

A: I EEEEEEE

-];..o.tot_];
n n

A is co=regular since Y(A)

1. In fact, A is regular;
and it follows from ii) and 1iii) of Theorem 1.23. that
regular matrices are co-regular,

Example 3.b. The conservative matrix

1 0o O . . e o 28 00000 800000
1

o 2 o o0 oo o 0 e o 0 0 LY .o 0

0 "l % o (] o 6 0 a2 0 060 o8 0 0 0 0 s

0 1 —1 '1} o o L] LI ) s o o LI

® & 6 5 8 0 0 ¢ 00 7 00 s st el e e s

® 6 09 060 0668 0. 008000 00000000




is co—nul; since l%mZkank=o and 1im app=o for each k=1,2,+...

If A is multiplicative zero, then 1imAi=o and limA5k=o
for all k., Hence A is co-null. Thus every multiplicative
zero matrix is co-null,

For a conservative matrix A, we define

WAE{xecAl f(x)= erlxnf(&n), for all fec;ﬂ'

Proposition 3.1. A conservative matrix A is co-null if and

only if jeW,.

Proof: If jeW,, consider f(x)=lim;x. f(j)= %f(&?) implies
that A is co-null, Conversely, if A is co-null, then every
fecl we have f(1)- nf(&"):d%(A):o, hence f(i):inf(sn), thus
1€ W, .

Corollary 3.2. A conservative matrix A is co-null if and

only if for every féc}, f(&%lgn)%f(i) as kd», that is,

Hglér converges weakly to ; in c,.

Proof : This follows immediately from Proposition 3.1.
From Corollary 3.2. it follows that we can regard

coregularity as a property of cu rather than the matrix

A. This was done by Snyder, A.K. (Math.Z.90,1965,376-381)

Proposition 3.3. Xf ¢ is closed in Cp s then A is co-

regular,

Proof : If ¢ is closed in c,, by Proposition 1.12., the
‘subspace topology and the usual topology on ¢ are equi-
valent, if A is co-null then every continuous linear
functional that vanishes on {&'1n=1,2,...} must vanish

at j+ In c consider the subspace Vl generated by

24 Y
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n
{6 tn=1,...} and the vector is clearly d(i,vl)=inf{ui—vﬂvevlg
2>1,hence i&iﬁin cp). Thus by Theorem 1.5., there is a conw
inuous linear functional fecj satisfying the condition f(Yl)
=0 and f(i)#o. This is a contradiction, hence A cannot be
co-null,. '

The converse of the above Proposition is not true, to
see this we consider the arithmetic mean in Example J.a.
This matrix is a reversible matrix by Proposition 1,28,
Hence ¢, and ¢ are congruent under A. Now let {xn}=
i(-1,0,0,...),(-1,1,0,0,...),(-1,1,-2,0,...),...}, then
ix%sc, let x={(-1)"}, then Ax™3Ax but x4c hence Ax§A(c).
Therefore A(c) is not closed in-c hence c¢ is not closed
in cy.

Theorem 3.4. If A,B are conservative matrices and c,=cp,

then both A and B are co-regular or both are co-null,
Proof : By Theorem 2,3., limAxecﬁ andflimeecA , by
Proposition 2.5.X(A)=d;X(B) and X(B)=d27(A) for somea,
oy, hence X(A) and UB) are both non-zero or both zero.
This completes the proof.

The above theorem shows that co-regularity is a
property that depends on the summability field c, alone
and not the matrix A,

Proposition 3.5. If A,B are conservative matrices and

cpscpgy then A is co-null implies that B is also co-null.
Proof : By Theorem 2.3.,nq§cA, by Proposition 2.5.%(B)=

d%(A) hence the result follows.

Z> ]




We now turn to the study of the "size" of the summabi-

lity field cp. We will first assume that A is co-regular,

Theorem 3.6. (Steinhaus) If A is a regular matrix, then

chm.

Proof : By Theorem 1.23. we have 1) §|aij\<M for some M

and for all i, ii) limaij=o for all j and iii) %aij=Ai I:;l.
We will construct a sequence x that consists of o's and 1's

such that Ax is not convergent. By 1ii) choose i; so that

* 1
j:Jl+1‘ailyj'<].—2 '
o>
jélailp‘j+\1§‘jl+1ail,3xj
b3 b3 ), h (A z b
= 5211,4% jFj 41241,3(x5=1), hence 1(Ax)y ) 2l 35 FEAFRS S e

1 .2 s
319 iz = 3 . Now choose 12’11 by ii) so that

‘zjailfﬁ)% , by 1) choose j1 so that

for 1¢ntj; let x,=1 then (Ax)il=

1
J= 1lai Jl r
choose jp>j; so that JZJ w1 12“”(% by i) for jj<nsgj, let

3
xp=0 thenl(Ax);MZlja;, s+ Z_ lay ¢l 1 _ 1  Next
f =1 2,J =jo 2, J1 re J Z =15
we choose i;3>1, so that |§ai3’j|>2 , and j§11+1| ig, J|<

chg;ae J3»J2 so that Jéj +fa13’ﬁ<'lﬂ then \(Ax) =1,812i4, 3+
J2 m

J§J1+1a13w3 JEJ +1%iq, Jl—'J 13,37 J§11+l ig, " J=J3+la13od(xd-

1)} 2 \ia Jz . 1 2 .

bi
13,3 HEj 0 2ig, 50 TiEg el B i il 0 - L -
Continuing in this way we can construct ixnﬁso that {“Ax)d}

is divergent, hence{(Ax)nkmust be divergent.

Theorem 3.7. If A is co-regular then cAQm.

Proof : Let A=(a,, ), consider B=(ank-ak) where ap=1im a,,
then B is a multiplicative matrix, since %lakhﬂb by (1.6),
we have c,Am=cynm, hence it suffices to show °B¥m‘ Now

limyi=1im i-(ank'ak)=1rilm Zank- iak=‘°(A);é o hence B is




X 1
multiplicative P(A), thus B B is regular and °B=°é5B¥n'
by Theorem 3.6,
Example 3.c. Consider the arithmetic mean and the bounded

sequence defined by the following rules

x1=l

Xn=0, l<ng3
xn=1, 3<n$32
Xn=0, 32< l’l'\\B3

The sequence is clearly bounded, but (Ax)lzl,(Ax)3=

5 Wl

ence

3 3

(Ax)32;.2 , (Ax)33$.l,....(Ax)32n;g, (Ax)32n+1$ 1,

the sequence x is not in Cpe ) )
For a co-regular matrix A,cy may be a proper subset

of m, for example if A=T, the identity matrix. However, the

next main result ( Theorem j.lO.) tells us that whenever a

co-regular matrix sums a divergent bounded sequence, Cy is

not a subset of m,

Lemma 3.8, If A is a co-regular matrix, then in cA,EgcAnm.

Proof : Consider c as a linear suhspace of cpynm, by Theorem
1.5, it suffices to show that every continuous linear
functional that vanishes on ¢ must vanish on c Nm. Let
fec] and f(c)=o, then in the representation (2.1),4=o,
because X(A)fo, X(f)=o and W f)=4X(A), also f(&k)=o for
all k, hence by (2.2).

£(x)= %tr(Ax)r' E( Zrtrark)xk

But %ﬂr(Ax)r may be considered as t(Ax) where t is the
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matrix whose first row is {(ty,.. tn.,...) and other rows are

zero, x may be considered as tlhie matrix whose first column

is

”
N

eo o s deeedd
=

and other columns are zero and i( Zrtrark)xk may be con-
sidered as (tA)x in the same way. Now all three matrices
t,A and x are row bounded if xecynm, hence t(Ax)e(ta)x
by Proposition 1.27. hence f(cynm)Zo.
Lemma 3.9. If cycm, then cp is closed in m.
Proof : Recall that sup|xp) is the norm on m. let xecy in
m, to show that x€c, in m it suffices to show that Ax is a
Cauchy sequence. For any £>o, consider N(x,—%ﬁ) where M=
WAl o (for if VAl=o, A is the zero matrix, then s=c,¢m),

£
let YGCA”N(X'Kﬁ) and N(t ) be an integer such that for m,

£ ,

n>N(¢ ) we have '(AY)m‘(AY)n'='§(amk’ank)ykJ<Z° Let xp=
Yk +Ck where Ick|<£%-by the choice of y. Thus we have
Ax )= (Ax )0l = | L (amk-an ) (Yo I S lap=ank ) Vi) +15 (apk-an Mkl
€ {3 '
( Z +2Mcm —6 .
Hence Ax 1is a Cauchy sequence and Xé€cg,.

Theorem 3.10. If a co-regular matrix sums a bounded diver-

gent sequence, it must sum an unbounded sequence.
Proof : Suppose cEScpcm, then by Lemma 3.9. and Proposition
1.12.,, the usual topology on Cp is the same as the subspace

topology. But ¢ is closed with respect to the usual topology



of m, hence ¢ is closed in QA‘ By Lemma 3,8., c=EgcAnm,
that is, ¢ is all the bounded sequences in c,, this con-
tradicts the assumption that A sums a bounded divergent
sequence, therefore cAgm and the result follows.

Example 3.d. The arithmetic mean sums the bounded diver-
gent sequence {(-1)M"}, it also sums the unbounded sequence
(1,-1,8,2,38,...).

There exist matrices that sum unbounded sequences
but do not sum any bounded divergent sequence. It will be
seen in the next chapter that such matrices must be co-
regular. We give now an example of such a matrix,

Example 3.e. We will define a matrix A whose diagonal ele-
ments are all equal to one, Construct a one-one corres-
pondence k from the positive integers into themselves by
the following rules

k(1)=22, k(2)=23, k(3)=25,....,k(n+1)=2"k(n),ec0.. .

Let A be the matrix whose diagonal elements are one
and 8n,k(n)=" E%;T , the other elements are zero, then A
sums the sequence (1,2,3,4,....) since (Ax),=n-n=o. Now
if x is a bounded divergent sequence then Ax is divergent,
for otherwise l%m(Ax)n=l%m[xn’(ETET)xk(nﬂ exists but x
is bounded and l%m ETET =0 hence l%m x, exists, this is a
contradiction.

As for co-null matrices, we will see that every co-
null matrix must sum a bounded divergent sequence hence

an unbounded one in the next chapter.
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CHAPTER U4
c AS A SUﬁSET OF caA

In the first part of this chapter we will study the
conservative matrices that are also 1-1, matrices and
relationships between ¢ and 1,. In the second part we
will assume that ¢ is closed in ¢, and study the con-
sequences,

For a conservative matrix A, the conditions lA;c
and cSl, may or may not hold. For example if A=I, the

identity matrix, then 1A=I£EC=CA. but‘cilA. Ir

100ooooonon

OlO

!
3...‘.."

A ® 8 00 000 00 00 0000

.
OO-o.lO * 9 0
n
® 0 9 6 000 0 00 00 90

® o0 009 00 0 060 00

then (1,2,3,...)€1, but it is not in ¢, hence 1;&c. Also,
it is easy to see that cCl,.

Definition : A conservative matrix is said to be perfect
if ¢ is dense in cj.

Theorem U.1. If A is perfect, an 1l-1 method and A(cp)=c,

then 1,c.

Proof : The matrix A considered as a mapping from c, to
¢ is continuous by Corollary 1.15., hence c=cp implies

A(c)=c since A is onto. Now if 1,2c, then A{1,)=c with

respect to the norm of c, but A\lA)slisince A is an



1~1, method, hence llis dense in c. The last statement is

not true because if we let§ = x=(1,1,...,1,...), then

1
72'9
N(x,g) contains no element of 1.
It is obvious that, for an arbitrary matrix A, if
c€ly, then A is conservative and multiplicative zero.
However for a conservative matrix A which is also an

1-1 method, A multiplicative zero does not imply cslA.

Consider
r

A=

1 4
the matrix A is row-bounded, limASk=o for all k and limAi=o,
hence by Theorem 1.22., A is conservative. Also, A is
column-bounded, hence it is an 131, method by Theorem 1.25.
Now iec and..%J(Ai)nl=l+%+%+....=09, hence 1&1,.

Theorem 4.2, If A is an 1-1 method, then a necessary con-

dition for 1,Sc is that for any subsequence (rl,rz,...,r

cel)

i
of the sequence (1,2,3,...) with r +1<r, , for infinitely
many rjy,

% 'kg;l.rz...ank“:m (4.1)
Proof : Suppose 1lpEc, for any such sequence (rl,rz,...).

Construct a sequence x whose rjth term is 1 and others are

zero, then x is a divergent sequence since r;+1€r; .y for
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infinitely many i. llence xQ;A, that is, (4.1) holds.
‘The condition (4#.1) is not sufficient, for example,
let

-l [o I o) o ® 0 0 0 2 0 0 0
-2 l (o] ® o 8 08 00 s
A.‘-'- (o] -2 l o] e s 00 00

0#0.--0.'210:

then A is column-bounded hence an 1r1, method, let x=
(1,2,4,8,...), then Ax=(-1,0,0,0,...), thus xel,, but
xéc.
In what follows we will study the condition that c¢
is closed in cy, for this we arrange the seminorms that
generate the linear topology on cp in the following manner:
Aot x)EP, (x)=supifan,xk|
an_lﬁx)Ehn(x)=sgp|leankxk|
q2n(x)EH%MX)=lxm . :
Recall that the locally convex linear topology on cy

is generated by

1 Palx)
n=o 20 l+p,(x) , where pp(x)= max q;(x) .

osisn
Also recall that cp is complete; hence a series is con-

vergent if the partial sums form a Cauchy sequence. The
following interesting result is due to Wilansky and
Zeller L[101.

Theorem 4,3, For a conservative matrix A, ¢ is closed in

cp if and only if A sums no bounded divergent sequence,



that is, cpynmzc.
Proof : Suppose c¢c is not clésed in c, and consider the sub-
spaces
vg={xeel xy=o0, k<K} ,K=0,1.2,....
These subspaces are not closed in c,j; for suppose VKO
is closed for some K, and let {XH%SC converge to x in c,,
furthermore, for each xm=(xT,xg,...,xﬁo ‘

y X ,...), let

~-1""Ko

ym=(xT,...,xmo_l,o,o,...) and zm=(o,...o,xEo,x?o+l,....),
then xM=yM+zM and zPeVy « Now g4 (x™-x)30 for all i by
assumption, hence qzn(ym-y)ao; but each y™ has zero co-
ordinate after the K,-lth coordinate, hence q,(y™-y)=0
and q2n_1(ym-y)9o. Now let x=(x1,...xKo_1,xKo,...)=
(xl,...,xKo_l,o,...)+(o,o,...,xKo,xKo+1,...) and let y=
(xl,...xKo_l,o,...), Z=(°’°""xno'xKo+l"")' then x=y+z.
For any i, qi(zm—z)=qi(xm-x)_ + qijly™-y); hence qj(z™-2z)-0.
If vKo is closed in cp, then zeVKo, hence xéc and c is closed
in cpA———  contradiction,

By Proposition 1,12,, the usual topology on Vgeccp
is strictly stronger than the subspace topology relative
to cp , hence the seminorm q(x)Eth:slexn| is discontin-
uous with respect to the subspace topology by definition.
By v) of Theorem 1.3., for any§f> o, any intergers b,K,
there exists xeVg such that

qlx)=1 (4.2)



Case I. If A is a co-regular matrix. We may assume KA)=
l, for otherwise we may consider —§%X7 A; this matrix

has the same summability field as A, also the identity map
is a homeomorphism. Consider limpyx as a continuous linear
functional on c, and let limAx=alime+ %?kxk' where a,=
1imapg sincef(A)=1, by Proposition 2.5.,d=1., By (1.6)
%[akuoo. For any§{> o, choose XK great enough so that
kéklam<5 s by the preceding part, there exists erK such
that (4.2) and (4.3) hold; hence |1im,x|<€ , because

o

Po(x)<f . Therefore Ilime|$IlimAxl+l£§xakxk45uimAX|+

sHpixn|(£zK|ak|), but q(x):sgp|xn\=l, hence 1limpxI$1limyx|+
koé_Klakug +# =28, IfE< -!'-, then\limxl<l. Now 1Ix, <1 for n
sufficiently large, xp=o for n=1,2,...,K-1 and sSup \xpl =1,
therefore there is a finite interval N(x) of natural
numbers such thatixpi<l for néN(x) and B =1 for some
neN(x).

Let 8r=2'r‘3, r=1,2,3,... and b=r; for each r choose
xTeVy  satisfying (4.2) and (4.3), furthermore, for each
r,K..1 is chosen in such a way so that N(xT) r=1,2,....
are pairwise disjoint and that infinitely many natural

numbers are not in any N(xr). We claim that :%;r is a

convergent series in cp.For anyf > o, choose r so that

- 1, ¢
= =
=5 < 3 then for j-i»r,

1 Pp(xi+.  4xd)

. : i-
“x1+ou¢+xJ"= Z +

1
£Zo 2 1+pn(xi+..+xﬂ



i J -
o1 Polxleeerxd) Ao (xb) e epg(xd)] e
n=i 2 1l+p (x*+..+xJ) =0 ,2

i-1 - i-1
£ lr,-i-3 -j-37. ¢ 1 i-3 1 1
=< = L3 = - = S
> S 2',[2 toeet+2 ). > < 2. o [2 (14'2 *eotoyor)
n=o n=o
i-1 ..
£ 1 -1 £ -i+1 €
=< = -1, = <
2 (néo 2" 2 + 2<2 + 2\&

therefore the partial sums form a Cauchy sequence, hence
err is convergent to, say, x,in Cp- The sequence }%xr
is bounded by construction; in fact, I1xXpigi+ ;glg-r—B for
all n, furthermore, it has a subsequence tending to ] and
a subsequence tending to zero, hence éxr is a divergent
sequence; this completes the proof for co-regular matrices.
Case II. A is co-null. We first notice that ¢, cannot be
closed in cp, for otherwise there exists fec)] such that
flc,)20 and f(1)#0 by the Hahn-Banach Theorem. But A is co-
null. Hence f{c, )=o implies f(i)=o, therefore such f does
not exist. Hence ¢, cannot he closed in c,. In the first
part of this proof if we consider

VR:{xecolxk=o,k<K}, K=0,1,2)00cecass
instead of VK, then the Vk (K=1,2,....) are not closed.The
proof is exactly the same as the preceding one. Hence by
v) of Theorem 1l.3. for every £>o0, positive integers b,K,
there exists xeVK such that (4.2) and (4.3) are satisfied.
Now limx=0, hence the argument used in Case 1 can be appl-

ied to show that there is a bounded divergent sequence in

CAo



Corollary 4.4, A co-null matrix must sum a bounded divergent

sequence.

Proof : By Proposition 3.,3.,, ¢ is not closed in c, if A is
co-null; by Theorem 4.3., A must sum a bounded divergent
sequence. |

Corollary 4.5. A co-null matrix must sum an unbounded se-~

quence.

Proof : Suppose cpcm, then c4 is closed in m by Lemma 3.9.,
hence by Proposition 1.12., the topology of ¢, is the same
as the subspace topology relative to m. ¢ is complete with
the usual topology,'hence c is closed in c,, thus A is co-

regular

contradiction., Therefore c,4m, hence A sums an
unbounded sequence.

Corollary 4.6, If A sums a bounded divergent sequence, then

¢ is not closed in Cpe

3o



CﬂAPTER v
PERFECTNESS AND MATRICES OF TYPE M
Definition : Let A=(aj,,) be an arbitrary matrix. Any se-

quence{dé in 1, satisfying

%&nan](:o fOI‘ k=1,2, ¢ o 00 (501)
is said to be orthogonal to A, If the only sequence or-
thogonal to A is the zero sequence, A is said to be of

type M. : .

All diagonal matrices with non-zero diagonal elements

are of type M, For certain classes of matrices, perfectness

and type M are closely related. In this chapter we will
study these concepts for different classes of matrices.
The concept of type M will be applied to consistency.
Definition : Let {&,} be orthogonal to a conservative
matrix A and let f(xﬁ:é#n(Ax)n. We call f(x) an ortho-
gonal functional on cu.

Proposition 5.1. If A is conservative, then every ortho-

gonal functional vanishes on c,nm.

Proof : Let f= %dn\Ax)n%\(Ax) be an orthogonal function-

al, ‘then by Proposition 1.27.,d(Ax)=(*A)x for every xecnm,

hence A(Ax)=(dA)x=o0x=0.

Proposition 5.2. Let A=(a,y) be conservative and rever-

sible, then cjAm=c, implies that A is of type M.

Proof : Suppose Exﬂm=cA, then by Theorem 1.5., any con-

tinuous linear functional that vanishes on cAﬂm is identi-

37!



cally zero on cy. Let¢k=(d;,d2,...)ell and %ﬂnank=° for
all k. Suppose dnfo for some n, and let Ay:ﬁpo. Such y
exists because A is reversible, and clearly yecy. Now

the continuous linear functional %@n(Ax)n is identically
zero on canm by Proposition 1.27., hence %&ln\Ax)n is
identically zero on cj by assumption. But %ﬁn(AY)n=
&no#o and this is a coﬁtradiction. Henced =0 and A is of
type M.

Proposition 5.3. If A is co-regular, then C=c nm.

Proof : Clearly Ccéanm. To show that c2Canm it suffices

to prove that cccynm, for then ¢=c=cpAm. Let f be a con-

tinuous linear functional on cj that vanishes on c, we
show that f{cynm)=o. By (2.2), f(x)=dlimgx+ %tn(Ax)rﬁ
%[f(sk)-iak— Ztnapnk)xk and recall that A(£)=aX(A). Now
£f(i1)=o0 and f(3K)=o0 for all k, hence X(f)=o, but A is co-
regular thus %(A)#o, henced =o. Also, the representation
of f(x) is reduced to f(x)= %tn(Ax)n- E(Ztnank)xk, hence
f(x)=t(ax)-(tA)x, where t=(t;,ts,...t ,...). By Proposit-

ion 1.27. f(x) vaniches on c nm.

Theorem 5.4. A reversible, co-regular matrix A is perfect

if and only if it is of type M,
Proof : If A is perfect, then T=c,. Thus, by Proposition
5+.3. cp=Canm. Hence by rroposition 5.2., A is of type M.

Conversely, suppose A is of type M, 1t suffices to

show that every continuous linear functional that vanishes

on ¢ wust vanish on c¢;. By (2.&), f(x):dlimAx+ %tn(Ax)n.



In exactly the same way as in the proof of Proposition
5.3., we obtain f(x)= %tn(AxBn. Now f vanishes on ¢ and
f(Sk)=.§tnank;o, hence by assumption t=(tl,t2,...tn,...)
=0, thus fso. This completes the proof.

In general, perfectness and type M are not equivalent

conditions.For example the matrix

0O 00 ...
A= ol o ...,
ool o ..
ooo01l ..

is not of type M, since (l,0,....)A=0, but cp=c, hence it
is perfect., On the other hand, consider the matrix in
Example 3.e., that is, the matrix A whose diagonal ele-
ments are 1, an,k(n)=- E%H)’ where k(1)=22, k(2)=23,....,
k(n+l)=2nk(n) and other elements are zero. This matrix
does not sum any bounded divergent sequence, hence c=c

in ¢, but (1,2,3,....)cp, hence cp#c, therefore the
matrix is not perfect. The matrix is of type M. ‘lThis can
be seen as follows : Supposed =(d1,....,dps+.) and dA=o,
then d1=d2#d3=o, also Ak(1)=dh=°’ because dh.l+d1'alk(l)=o
but d1=0, hence Ak(l)=ah=°’ Similarly, we have dj=do=...=
dk(2)-1=47=° and d8+d2-a28=o hence olg=o. Continuing in
this way we have d={0,0,+.4.0,...), hence the matrix is of
type M.

Now we will consider a different class of matrices,

A

i

i




that is, the reversible and multiplicative matrices. It
is a different class from the reversible co-regular ma-

trices because the matrix

O ceoscnsscaes
O O covesnanse
2 0
o 2

o N
©o 0o N o

o
o
S 606 6060 8 006 0060080 0

l oo ...20 0 ..

is co-regular, reversible but not multiplicative since the

first column does not tend to zero. On the other hand, the

matrix in Example 3.b. is reversible, multiplicative and
co-null.

Definition : A maximal subspace of a linear space is a
subspace whose complementary subspace has dimension one.
Lemma 5.5. let V] be a linear subspace of a linear space
V. If there exist two independent linear functional f,,f,
such that £1(V;)=f,(V;)Zo, then V; is not a maximal sub-
space.

Proof : Suppose V; is maximal in V and let v span the
complementary subspace. Let fj(v)=d; and f,(v)=dy, then
-{}% fz(V)+f1(V)Eo and this contradicts the assumption,

hence Vl is notvmaximal.

Theorem 5.6. Let A be reversible and multiplicative.Then

A is of type M if and only if co is a maximal subspace of

CA.
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Proof : Suppose A is of type M. 1t suffices to show that
So is the kernel of some linear functional on cj. Let
xlﬁao, by Theorem 1.5., there exists f€éc}] such that f(co)=0
and f(xj3)#0. By (2.4), we may let ‘f(x)=ollimAx+ %tn(Ax)n.
Now f is multiplicative and of type M, hence f(Sk)=o+
%tn(ank)=o, therefore tp=o for all n, hence f(x):dlimAx.
By assumption f(x;)#o, hence limpxj#o0. Now consider the
continuous linear functional h(x):limAx on cp. Since A is

multiplicative, we have limAx=o for all xec,, hence kerh(x)

2¢,. By the preceding part of this proof, h(x)#o for all

xk€,, hence kerh(x)=c,, thus ¢, is a maximal subspace.
Conversely, suppose A is not of type M. Let t=
(t1seeestyre..)€1l) be non-zero and dA=o. Consider f;(x)=
alAx) and f,(x)=limax; both f)(x) and f3(x) vanish on c,.
By Lemma 5.5., if fl(x) and fz(x) are independent, then
c

o 1s not a maximal subspace. lLet aj,a, be two scalars

such that f(x):allimAx+(a2't)(Ax)Eo on ¢, and suppose

A
tn#o. Let xj€c, be such that Axl=sn, then f(x;)=o+ast =o,
hence aj=o. Let x5€c, satisfy Axp= j , then f(x,)=aj+l=o,
hence aj=o, thus fl and f, are independent.

We have seen that in general the concepts of perfect-
ness and type M are not equivalent. In what follows, we
will look at some subsets of Cy and study some sufficient
conditions on these subseéts for A to be perfect or to be

of type M.

For a conservative matrix A, we define




BA={xecA|there exists M>o depending on x such that
m
'kélankxk‘< M,fOI‘ ln,n--l'z,.-o}

Ly=ixecpl (tA)x= Z( X tpany)xy, exists for all t€l,}
Py={x€c,| (tA)x=t(Ax) for all t€l such that (tA)y
exists for all yecAJ
In general the subset B, does not fill up cp. For ex-

ample, let A be the matrix in Example 3.b., and x=(1,1+

i 1 i1 1

2 3 2 3°°°n?
i

(14 coe4 y+rf(1+ % + coed %):-

= N
1| .
N

e

!

1+ ,ooo,l+

1
n-1

eee)y, then (Ax)p=(1+ % + ceet

1
n-1

1 1
+ ;z(l*' et ;)l
n-2
hence lﬁm(Ax)n=o and xec,, but x§B, because lﬁglankxk|=
L
n-2

Theorem 5.7. If A is co-regular then P,=C.

|l+ sy which tends to infinity as n increases.

Proof : lLet f be a continuous 1linear functional vanish-
ing on c. In the proof of Theorem 5.3. we proved that f(x)
is of the form t(Ax)-(tA)x, hence by the definition of P,
we have f(x) vanishes on P,therefore PpSc. "
Conversely, it is clear that cEPA, hence it suffices |
to show that P, is closed. Let F=1t€¢ll (tA)x exists for all
xec,} and for every t€r define fi=(tA)x-t(Ax). Fach f  is
a continuous linear transformation from Cu to s by Corollary
1.14,, hence the kernel of f  is closed. Now PA=égbker iy
hence P, is closed. Therefore PAQE and hence Pj=c.
The above theorem characterizes ¢ in case A is co-
regular. Notice that P2c does not depend on the co-

regularity of A. The following corollary follows trivially



from Theorem 5.7.

Corollary 5.8, A co-regular matrix A is perfect if and

only if PA=°A'
Corollary 5.8. is not true for co-null matrices, for

example, consider the matrix

1
00 .. =0 .
n

Clearly P,=c, and the sequence xo=(1,2,3,*°**)€c,.
Recall that for normal matrices the topology is defined by

the norm uxu:sgﬂ(Ax)d for all x€cy. Let E:l

5 then N(x,,t)

does not contain any element of ¢, thus A is not perfect.

Proposition 5.9. By=L,

Proof : Let x€B, and t=(tj;,t,,***t,,+++)€l;. For any k,

(%tnénk)xk exists because t€l; and {apkin=1,2,----1 is

bounded. Let

sl=(%tnan1)xl’ 52=(%tnanl)xl+(%tnan2)x2= %tn(anlx1+an2x2),..

ceevany Sk=(%tnan1)x1+"'+(§tnank)xk= %tn(anlx1+'°'+ankxk)""
Let S=tj\ ‘i}-(alkxk)nz(%(azkxk)f---- . We claim that

Sk tends to S. For any€>o, choose N(£) so that 55:

f% , and for n=1,2,++¢,N(g),choose K great enough so that

ko>K implies

\tﬂl(an1x1+'°+ankoxko)-(kalkxk)l+"+|tNuyﬂl(amwnx1+"*aN&koxko)'



Ean e )i l< %

Then for k>K, we have
0 o0

IS =8I fz““n‘:%.(e)u Itollan) X1+ * * +anxk| +n§(e )el [tnl|2E2nK*x |

< % + % + % =€

Hence E(%tnank)xk=%L£ankxk)tn and thus (tAj)x exists.
Conversely, let x=(x1,x2,---)el. Nefine a sequence of

linear functional {fm}on 1; by
fult)=tilajjxg+-cetaimxy)+tolag)xy+ecosappXpltecce.

Each f, 1s well-defined since A is conservative. Recall that

the norm on 1; is defined by lith= thA , hence it is easy

to see that each f is a continuous linear functional on 1,.

Now uf Vl=sup {'Ztl‘l(anlxl+ ce +anmxm)” % 'tn'S\}f SHP| ApipXy+cec-+

a, Xmle On the other hand, let t=8p, then Hf}NZSRpIanlxl+...

+anpmXx hence we have Hfmu=s%pla Xyp+erc+a nXnt. By defini-

m‘ 14 nl

tion of fm we also have

fm(t)=(t1all+t2a21+°-o)x1+°-°+(tla1m+t232m+--o)xm
Since xeLA,lg.‘mfm(t)= ?}_-‘( Z{-Itnank)xk exists for each tel. By
Theorem 1,6. {Hfﬂl|m=1,2,--'-} is uniformly bounded, hence
there exists M such that s%planlxl+~--+anmxmngm for all m,
hence xeB,.

Theorem 5,10, If a conservative matrix A has a right in-

verse whose columns belong to By except for a finite num-
ber of them, then A is of type M,
Proof : Recall that in the proof of Proposition 5,10,

we actually proved that (tA)x=t(Ax) for all xéB, and tel.

4q




Suppose x is the nth column of A‘1 belonging to B, tel
and t is orthogonal to A, then (tA)x:o:t(Ax):t(5n)=tn=o,
but all except a finite number of the columns of A—1 be=-
long to Bp, hence tp=0 except for a finite number of them,

Let t=(tj,***,th40,0,0,+:++) and let Wy, Up, e nr be the

n
first n columns of A~l, then (tA)uy=o=(t;,0,0,++++) hence
tyj=o,similarly tp=tg=...=tp=o0.

Definition ¢ A conservative matrix A is said to have the

mean value property if Bp=c,.

Corollary 5.11. A reversible matrix that has the mean

value property 1is of type M.

Proof: Since A is reversible,there exists x¥X such that

Axk=sk. Let D be the matrix whose kth column is xk, then
D=A"l, If A has the mean value property, then xkecA=BA .
By Theorem 5,10.,A is of type M.

Proposition 5.12. A co-regular matrix that has the mean

value property is perfect.

Proof : In the proof of Proposition 5.9., we proved that
for all xeB, and tell,(tA)x=t(Ax), hence BySP,. By Theorem
5.7., when A is co-regular PA=E, hence if A has the mean
value property B,=c,SP,=¢, thus cp=C. Therefore A is per-
fect.

Definition : Two matrices A and B are said to be con-
sistent if limyx=limgx for all xecpNcp.

Lemma 5.13. Let A be a reversible conservative matrix,




L6

then feci if and only if f(x)=1limpx for some B such that
CB2C4
Proof : If ¢p2¢,» then by Theorem 2.3., limgxec) . Con-
versely, if fec) , let f(x):&limAx+‘%tn(Ax)n as in (2.4).
Define a matrix B=(b,x) where bok=tiajpttoag+ee+tn_jan_7 K+
dan,k, then
m-1

(Bx)m=a(%kamkxk)+ Agltn‘Ax)n'

hence limpx=f(x).

Theorem 5.14. Let A be reversible and co-regular, then a

necessary and sufficient condition for A to be type M is
that A is consistent with every matrix B such that

i) Cp2C,

i1) 1limgx = limax for all xe{sKik=1,2, . Julil=rF.
Proof : We will first prove that A is consistent with
every B satisfying i) and ii) is equivalent to the con-
dition that A is perfect. then the theorem will follow
from Theorem 5.4, Suppose A is consistent with every B

satisfying 1) and ii). Let f c] satisfy f(¥)=o and con- i

sider f+1imAx=fl. Obviously flecA s, by Lemma 5,13., we |
can let fy(x)=limgx , then i) and ii) are satisfied.
Hence limAx=fl(x) for all xe€c, and f(A)=o. Now Fcc, thus
any continuous linear functional that vanishes on ¢ must
be identically iero on c,. Hence by Theorem 1l.5., c is
dense in c,, thus A is perfect. Conversely, let 4 be per-

fect and B be a matrix satisfying i) and ii), then f=




limpx-1limgx is in ¢} and f ﬁanishes on F, Now I is a
Schauder basis for ¢ with the usual topology and this
topology 1is stronger than the subspace topology relat
to cp, hence f also vanishes on c. But A is perfect,
c=c, and thus f(ca)So. Therefore limpx=1limpx for all

and A,B are consistent.

ive
hence

xXecp
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