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In modern industrial plants, large numbers of process measurements are stored 

in historical databases providing a potentially valuable source of process 

information. One potential use for historical plant data is as an aid in fault 

diagnosis. However, information contained in these databases has been 

underutilized for several reasons. First, the volume of data that must be analyzed 

is enormous. Second, the data are multidimensional. Third, the variables are 

interrelated and need to be considered simultaneously in the analysis. 

In this thesis, a new data mining framework combining principal component 

analysis (PCA) and modern data mining techniques (k-Means clustering and 

decision tree induction techniques) is developed to exploit multivariate process 

data to detect and identify process faults. 

An extensive simulation study for a three-tank benchmark system demonstrates 

that this strategy is more effective than existing PCA methods in detecting 

system faults. It can also successfully distinguish between 20 different system 

faults. 
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CHAPTER 1: 

INTRODUCTION 

Fault detection and diagnosis is an important problem in process engineering. 

Early detection and diagnosis of process faults while plant is still operating in a 

controllable region can help avoid catastrophic failures and reduce productivity 

loss. To improve the efficiency, reliability and safety of modern complex systems, 

advanced methods of supervision, fault detection and fault diagnosis have 

become increasingly important for many technical processes. Since the 

petrochemical industries lose an estimated 20 billion dollars every year, they 

rated abnormal event management (AEM) as their number one problem that 

needs to be solved [36]. 

The discipline of process control has made tremendous progress in the last three 

decades with advances in the computer control of complex systems. However, 

process fault detection and diagnosis, a very important control task in managing 

process plants, still remains largely a manual activity, performed by the human 

operators. This task has become increasingly difficult due to the broad scope of 

the diagnostic activities and size and complexity of modern process plants. For 

example, in large scale process plant there may be as many as 1500 process 

variables observed every few seconds leading to a massive amount of historical 

data 1371. Furthermore, the task of fault diagnosis is made difficult by the fact that 

the process measurements may often be insufficient, incomplete and unreliable 

due to a variety of causes such as sensor biases or failures. Thus, the current 

challenge for control engineers is the automation of process fault detection and 

diagnosis. 

Fault diagnosis methods can be broadly classified into three general categories: 

quantitative model based methods, qualitative model based methods, and 



process history based methods. The information needed to effectively detect and 

diagnose fault situations is based on knowledge of the process and analysis of 

the process data. Two of the main components in a diagnosis classifier are: (1) 

the type of knowledge and (2) the type of diagnostic search strategy. Diagnostic 

search strategy is usually a function of knowledge representation scheme and is 

influenced by the type of a priori knowledge available. Hence, type of a priori 

knowledge used is the most important distinguishing feature in diagnostic 

systems. The basic a priori knowledge that is needed for fault diagnosis is the set 

of failures and the relationship between the observations and the failures. A 

diagnostic system may have them explicitly (as in a table lookup), or it may be 

inferred from some source of domain knowledge. The a priori domain knowledge 

may be developed some fundamental understanding of the physics of the 

process, which is referred as model-based knowledge. On the other hand, it may 

be gleaned from past experience with process, which is called process history 

based knowledge. In contrast to the model-based approaches (either quantitative 

model based or qualitative model based) where a priori knowledge about the 

model of the process is assumed, in process history based methods only the 

availability of large amount of historical process data is assumed [36]. 

In process operation and control, modern distributed control and modern data 

logging systems allow enormous amounts of data which contain valuable 

information about both normal and abnormal operations to be routinely collected 

and stored. There is also product quality, production, and maintenance data 

which are stored less frequently. Thus, a massive amount of process data (past 

and present) is available for analysis. Despite industrial interest and significant 

potential benefits of the historical plant data, the information contained in these 

databases has remained elusive due to the challenges encountered trying to 

extract it. It is a well-known fact that industrial plants are "data rich, but 

information poor". The largest obstacle to using historical data is simply finding 

relevant patterns in such a vast sea of data. In a typical large scale industrial 

plant there can be thousands of measured variables with measurements being 



made as frequently as every fraction of a second. In order to use such a large 

database as an aid in fault diagnosis, proper techniques must be used which 

require minimal computer time while still revealing the unique characteristics of 

the process data. 

Multivariate statistical techniques such as principal component analysis (PCA) 

have received a great deal of attention in recent years for their ability to 

successfully determine when a fault has occurred. However, diagnosing the fault 

has proven to be much more difficult and often requires process knowledge (e.g. 

expert systems) or a set of reference data for each possible fault (pattern 

recognition or supervised learning). 

In recent years, there have been significant developments in extracting 

information from large databases and in automating data analysis. A research 

community has been developed under the label of data mining and knowledge 

discovery in databases (KDD). The goal of data mining is to discover previously 

unknown but potentially useful patterns or relationships in a database. Data 

mining techniques have been successfully applied to databases in space, 

telecommunication, business, and marketing industries. However, there appear 

to be very few, if any, applications of data mining to fault detection and isolation 

problems. 

The major challenge in developing a fault diagnosis system arises from the 

characteristics of operational data, which are summarized as follows: 

Large volume: Large volumes of data demand large computer memory 

and high speed. 

0 High dimensionality: The behavior of a process is usually defined by a 

large number of correlated variables. Dimension reduction is required to 

visualize the process behavior. 



0 Process uncertainty and noise: Good data pre-processing techniques are 

required to clean the data. 

0 Process dynamics: Many data mining and knowledge discovery tools are 

mainly designed to handle categorical values such as temperature being 

high or low. They are not effective in dealing with continuous-valued 

variables. It is very important to design tools or techniques that are able to 

handle variables that take values as dynamic trends 

Complex interactions between process variables: Many techniques require 

attributes to be independent. However, many process variables are 

interrelated and therefore need to be considered simultaneously in the 

analysis. 

There has been a significant progress in automating data analysis for process 

monitoring and fault diagnosis by successful applications of the machine learning 

techniques in data mining process. These methods can be roughly divided into 

two categories: supervised and unsupervised [Z]. Supervised techniques are 

associated with assignment of a set of unknown data to previously known 

classes according to a similarity measure. Supervised methods need a large 

number of data sets with known classes as training data to train the models. A 

typical example would be the feedforward neural network (FFNN). Though they 

can generally give accurate results, supervised methods are not applicable when 

training data are not available. Unsupervised approaches, which can learn from 

unknown to predict unknown, can be used in this situation. Widely studied 

unsupervised learning methods include nonlinear principal component analysis, 

adaptive resonance theory (ART), and Bayesian automatic classifications. 

However, the main limitation of supervised and unsupervised approaches 

mentioned above is that they give predictions but are not able to give causal 

explanations about the root cause of the fault. 



Besides the ability to identify the source of malfunction, a diagnostic system 

should also provide explanations on how the fault originated and propagated to 

the current situation. This is a very important factor in designing on-line decision 

support system. This requires the ability to reason about the cause and effect 

relationships in a process. A diagnostic system has to justify its 

recommendations so that the operator can accordingly evaluate and act using 

hislher experience [36]. 

The objective of this research project is to develop an integrated data mining 

framework for fault detection and isolation (FDI) using historical process data. It 

combines the multivariate statistical process monitoring (SPM) technique with 

modern data mining methods. The approach presented in this research is able to 

not only detect and isolate faults using training data set, but also generate causal 

knowledge indicating the variables that are responsible for the malfunction. The 

approach described in this thesis utilizes a technique developed by Wang and Li 

(1999), which uses PCA to process dynamic time series data. Then, an 

unsupervised learning technique, k-Means clustering, is used to conceptualize 

the process data for subsequent supervised learning, decision tree classification. 

Here, decision trees are employed to detect and identify various faults of a 

multivariate process. 

The remainder of the thesis is organized as follows: A brief introduction to data 

mining and knowledge discovery in databases is provided in Chapter 2. The 

proposed data mining framework is also introduced in Chapter 2. Principal 

component analysis (PCA), concept formation from dynamic trend signals using 

PCA and k-Means clustering technique are provided in Chapter 3. The decision 

tree classification algorithm used in this research is introduced briefly in Chapter 

4. The performance of the developed framework is compared with the 

conventional monitoring technique in a detailed simulation study. The 

implementation of the data mining framework and the results of the simulation 

are presented in Chapter 5. Finally, the research is summarized along with 

recommendations for future research in Chapter 6. 



CHAPTER 2: 

AN OVERVIEW OF DATA MINING 

AND KNOWLEDGE DISCOVERY 

2.1 Definition of Knowledge Discovery in Databases 

The fast development and widespread application of information and database 

technologies has created many new opportunities for those working on 

engineering, science, and business. In the last decade or so, there has been an 

explosive growth in our capabilities to both generate and collect data. Advances 

in data storage technologies and database management systems have allowed 

us to create mountains of stored data. The field of data mining (DM) and 

knowledge discovery in databases (KDD) has emerged as a new discipline in 

engineering and computer science due to advances in data collecting 

technologies and high speed computing. 

With the increasing use of databases the need to be able to exploit large 

volumes of data being generated has become very critical to be competitive. The 

large volume of data and high dimensionality of databases have made traditional 

manual methods of data analysis a very difficult and time-consuming task if not 

impossible. A significant need exists for a new generation of techniques and tools 

with the ability to intelligently and automatically assist humans in analyzing the 

mountains of data for nuggets of useful knowledge. The aim of data mining and 

KDD is to develop tools and methodologies to automate data analysis process 

and find useful information and knowledge from data to help in decision-making 

process. 

A widely accepted definition of KDD is given by Fayyad et. al. [3] as: 



"the non-trivial process of identifying valid, novel, potentially useful 
and ultimately understandable patterns in data." 

Fayyad et. al. (1996) also define the process of data mining in this context as: 

"a step in the KDD process by which patterns are extracted and 
enumerated from the data." 

The analysis of these definitions shows that KDD is a very complicated process 

comprising a number of steps, and data mining is one step in the process. Since 

data mining is the central theme to the process of knowledge discovery, these 

terms are often used interchangeably in the literature. The key aspects of this 

definition are that the whole KDD process discovers knowledge in the form of 

patterns from the existing data. These patterns should be understandable and 

potentially useful to the organizations so that decision makers or domain experts 

are able to understand the knowledge and use it. Data mining is a process 

concerned with uncovering meaningful patterns, association, anomalies and 

statistically significant structures in the data. 

Data mining generally refers to the case where the data is too large or too 

complex and heterogeneous in content to allow either manual analysis or 

analysis by means of simple tools and queries. In general, one can summarize 

that for a typical data mining case [14]: 

The data set can be quite large, 

The problem generally challenging and is often not well defined, 

There are missing and faulty data, 

There are redundancies in the data fields, but the redundant fields do not all 

have the same quality. 

Data mining is an interdisciplinary science whose domain area ranges from 

statistics to data warehousing, database systems, pattern recognition, machine 



learning, artificial intelligence, high performance computing, signal and image 

processing, computer visualization, etc. As data mining has been applied to new 

problem domains, this technology mix has grown as well. Data mining and KDD 

borrows methods, algorithms, and technologies from these diverse fields to 

extract knowledge from data, develop means of classifying the data, and 

discover patterns in the data. The idea behind it is to look at data in a different 

way and to use innovative and effective data visualization techniques so that we 

can obtain a novel or deeper understanding of it. 

Data mining and KDD are potentially valuable in virtually every industrial and 

business sector where database and information technology is used. Data mining 

techniques are being applied for the analysis of data in a variety of fields 

including medical imaging, astronomy, bio-informatics, web mining, text mining, 

customer relationship management, market-basket analysis, fraud detection, 

portfolio trading, manufacturing process analysis, experiment result analysis and 

scientific data analysis. Recently, some researchers have applied data mining 

techniques in control engineering for fault detection and identification problem. 

[ I  5, 161. Scientific data mining distinguishes itself in the sense that the nature of 

datasets is often very different from traditional market-driven data mining 

applications. The datasets now might involve vast amounts of continuous data, 

and accounting for underlying system nonlinearities can be extremely challenging 

from a machine learning point of view [14]. 

2.2 The KDD Process 

The KDD method is interactive and iterative, involving numerous steps with many 

decisions made by the user. When it is applied to real world problems, these 

tasks can be very complex. A typical KDD process can be broken down into the 

following steps [3]: 

1. Developing an understanding of the application domain, the relevant prior 

knowledge and the goals of the end-user. 



2. Creating a target data set: selecting a data set or focusing on a subset of 

variables or real world data on which discovery is to be performed. 

3. Data pre-processing and cleaning: basic operations such as the removal 

of noise or outliners if appropriate, collecting the necessary information to 

model and deciding on strategies for handling missing data fields, and 

accounting for time sequence information and known changes. 

4. Data reduction and projection: finding useful features to represent the data 

depending on the goal of the task. Using dimensionality reduction or 

transformation methods to reduce the effective number of variables under 

consideration or to find invariant representation for the data. 

5. Choosing the data mining task: deciding whether the goal of the KDD 

process is logical, summarizing, classification, regression, prediction, and 

clustering etc. 

6. Choosing the data analysis algorithms: selecting methods to be used for 

searching for patterns in the pre-processed data. This includes deciding 

which models and parameters may be appropriate and matching a 

particular data mining method with overall criteria of KDD. Most of the 

time, the person who runs the data mining task should investigate several 

analysis models before being able to choose one of them. After method 

selection, the analyst has to select the important parameters of the model. 

7. Data mining: searching for patterns of interest in a particular 

representational form or a set of such representation, including 

classification rules or trees, regression, clustering, sequence modeling, 

dependency, and so forth. The user can significantly aid the data mining 

method by correctly performing the preceding steps. 

8. Interpreting mined patterns, and possible return to any of the previous 

steps. 



9. Consolidating the discovered knowledge: incorporating this discovery 

knowledge into the performance system, taking actions based on the 

knowledge, and reporting it to interested parties. This also includes 

checking for and resolving potential conflicts with previously believed (or 

extracted) knowledge. 

The KDD process can involve significant iterations and may contain loops 

between any two steps. The basic flow of steps is illustrated in Figure 2.1. 

Figure 2.1 An overview of the steps comprising the KDD process 

During the data pre-processing, cleaning and data reduction steps, relevant high 

level features or attributes are extracted from the low level data. To ensure the 

success of the data mining process, it is important that the features extracted 

from data are relevant to the problem and representative of the data. Although 

much of the focus in KDD process is on the data mining step, the other steps are 

of considerable importance for the successful application of KDD in practice. It is 

important to note that often a large amount of effort is required before the data 

can be presented in a format that is suitable for data mining. Data cleaning and 

pre-processing often takes up a large part of the resources committed to a typical 

data mining project and might involve 80 percent of the effort. It is often 

necessary to experiment with different data transformations and dimension 



reduction techniques (e.g. Fourier and wavelet transforms, PCA) in the data pre- 

processing step. 

2.3 Data Mining Methods and Techniques 

A wide variety of methods and techniques are commonly used in data mining 

applications. In general, data mining tasks can be classified into two categories: 

descriptive and predictive [4]. Descriptive mining tasks characterize the general 

properties of the data in the database. Predictive mining tasks perform inference 

on the current data in order to make predictions. 

According to functions and application purposes, data mining methods can 

involve clustering, classification, attribute and feature selection, the formation of 

rules and outlier detection. These techniques can be based on statistics, 

probability theory, Bayesian networks, decision trees, association rules, neural 

networks, evolutionary computation, and fuzzy logic [I, 41. A very brief review of 

the techniques that is used in this research is given in the following section. 

2.3.1 Clustering 

Clustering, which is also called unsupervised machine learning, aims to generate 

a classification scheme for grouping the objects into a number of classes such 

that objects within a class are similar, in some respect, but distinct from those 

from other classes. This involves determining both the number and description of 

the classes. Unlike classification, which analyzes class-labeled data objects, 

clustering analyzes data objects without consulting a known class label. In 

general, class labels are not present in the training data because they are simply 

not known. 

The grouping often depends on calculating a similarity or distance measure. The 

objects are clustered or grouped based on the principle of maximizing the in- 

class similarity and minimizing the interclass similarity. Clusters of objects are 



formed so that objects within a cluster have high similarity in comparison to one 

another, but are very dissimilar to objects in other clusters. Clustering is a useful 

step to look at the data before further analysis is carried out. The data mining 

methods to be applied can be further defined based on the prior knowledge from 

data gathered through clustering. Grouping multivariate data into clusters 

according to similarity or dissimilarity measures is the goal of some applications. 

Examples of the clustering methods are unsupervised neural networks, including 

self-organizing Kohonen neural networks, Bayesian automatic classification, 

partitioning methods (k-Means and k-Medoids). 

2.3.2 Classification 

Classification is the process of finding a set of models (or functions) that describe 

and distinguish data classes or concepts, for the purpose of being able to use the 

model to predict the class of objects whose class label is unknown [4]. 

Classification is also called supervised machine learning because it always 

requires data patterns with known class assignments to train a model which is 

then used for predicting the class assignments of new data patterns. The derived 

model is based on the analysis of a set of training data. The derived model may 

be represented in various forms, such as classification rules (IF-THEN), decision 

trees, mathematical formulas, or neural networks. A decision tree is a flow chart 

like tree structure, where each node denotes an attribute value, each branch 

represents an outcome of the test, and tree leaves represent classes. 

2.3.3 Conceptual Clustering and Classification 

Most clustering and classification algorithms depend on numerically calculating 

some sort of similarity or distance measure, and because of this they are often 

called similarity based methods. On the other hand, conceptual clustering and 

classification develops a qualitative language for describing the knowledge used 

for clustering and is basically in the form of decision trees or production rules. 

The inductive system C4.5 is a typical approach [26, 271, which is able to 



automatically generate decision trees and production rules from the data, which 

is pre-processed and converted into flat file format. Decision trees and rules have 

a simple representation, making the derived model easy to comprehend by the 

end user. However, available approaches were mainly developed for problem 

domains in which variables take only categorical values, such as temperature 

being high and low. They are not effective in dealing with time series or 

numerical data. Discretization of numerical time series variables to categorical 

values is necessary to successfully apply this technique to real world engineering 

domains. 

2.3.4 Mining Time Series Data 

Data mining of historical databases for process monitoring and fault diagnosis 

has started to receive attention in the computer science literature; however 

problems involving time-series databases have been addressed only recently. 

Many industrial and business areas deal with time-series or dynamic data. All 

statistical and real-time control data in today's process monitoring and control 

systems are essentially time-series [I]. However, to make use of continuous 

process data in a computer system, it is required to compress the dynamic data 

in order to reduce dimensions. 

It is very easy for humans to capture features of each dynamic trend and identify 

their differences. However, it is very difficult for computers to do the same task. 

Most KDD techniques cannot account for the time series data. To make the time- 

series data ready for a data mining task, one has to carry out pre-processing of 

the data to use minimum data points to capture the features and remove noise. 

Some of the techniques that have been used to pre-process the dynamic trend 

signals are Kalman filters, Fourier and wavelet transforms, and multivariate 

statistical techniques like PCA and neural networks. 



2.4 Problem Description 

Plant operators have long recognized the value of historical process data and 

have collected vast amount of data using advanced data collection and storage 

systems. In the process industries, interest in collecting and storing process data 

has increased to the point that majority of modem industrial plants use 

commercial data historians to collect and store process measurements in a 

historical database [6]. It would be beneficial if these data could be categorized 

into groups of operating conditions so that the characteristics of these groups can 

be used for decision support in fault detection and diagnosis (Wang and 

McGreavy, 1 998). 

Despite the significant potential benefits of historical process data, it has 

remained very difficult to extract the information contained in these databases 

due to a number of reasons. First the data volume is too large and data is 

multidimensional in nature. Second, the variables recorded in a plant are highly 

correlated and therefore need to be processed simultaneously in analysis. Other 

factors that make data processing a very challenging task are noise, uncertainty 

and dynamics of the system (e.g. nonlinearity). 

Recently there has been a significant progress in applying data analysis methods 

for process monitoring and fault diagnosis. These methods can be roughly 

divided into two categories: supervised and unsupervised [I]. Supervised 

methods need a large number of data sets with known classes to train the 

models. FFNN and decision trees are well known supervised machine learning 

techniques. Although supervised methods can give accurate results, they are not 

applicable for the domains for which training data are not available. 

Unsupervised approaches can learn from grouping data sets into classes based 

on a distance or similarity measure. Unsupervised learning methods which have 

been studied for operational state identification and fault diagnosis are nonlinear 

principal component analysis, adaptive resonance theory (ART), and Bayesian 

automatic classification. 



All supervised and unsupervised approaches mentioned above use the notion of 

similarity to build their models. A major limitation of distance-based clustering is 

that it gives predictions but not casual and qualitative explanations. This means 

that for a process monitoring system it is not able to provide any clues of what 

variables are responsible for the observed fault. 

2.5 Proposed Data Mining Framework 

In this research project, a combined data mining framework is proposed for 

detection and identification of faults for multivariate nonlinear systems. Proposed 

system is able to project the operation of the process over a specific period of 

time to a point in the two-dimensional principal component space identifying fault, 

and generate casual knowledge indicating the variables that are responsible for 

the abnormal situation. If the same type of fault has occurred in the past, then the 

relevant historical data provide a valuable source to detect and identify future 

faults. The ability to give causal explanations, which is easy to understand by 

plant operators, will be advantageous for difficult process diagnosis problems. 

A number of methodologies can be used to create sophisticated fault detection 

and identification models depending on various data mining techniques. The use 

of artificial neural networks creates a complex model that is very accurate in 

terms of predictions and learning the nature of the data sets. However, models 

created using neural networks are not very easy for humans to comprehend. On 

the other hand, decision trees offer a mechanism of creating models of the 

process data that is easy to understand. The proposed system is based on a 

decision tree, which attempts to build a conceptual language for describing an 

object, by drawing inductive inference from a training data set. The focus of the 

algorithm is on deriving rules or decision trees from unordered sets of examples. 

This attribute-based induction method, a formalism where examples are 

described in terms of a fixed collection of categorical attributes, differs from other 

learning methods such as FFNN. Several approaches to inductive learning have 

been proposed, the most successful one being C4.5 (a successor of ID3 



algorithm), a decision tree learning program, developed by Quinlan [26, 271. 

However, the decision tree technique is not useful when we want to make 

predictions for a continuous process variable. 

Proposed data mining framework has been implemented using See5 (which is a 

commercial software package that can run on Windows@ platform and has 

evolved from its early version C4.5) to build a classification model from historical 

process data. In applying this approach, a critical step is to deal with continuous 

process variables. Because for fault detection and identification, we need to deal 

with variables whose values are continuous time series data. One of the major 

limitations of ID3 was that it assumed that the values of all attributes are discrete. 

Although C4.5 was claimed to be able to deal with continuous-valued attributes, 

results are not satisfactory according to many researchers [I, 21. 

2.6 Pre-processing Continuous Process Variables 

Mining time-series data has attracted great attention as data mining and KDD 

techniques have been successfully applied to many engineering application. On 

the other hand not many researches have been done on concept formation from 

dynamic trend signals. Wang and Li [2] described a methodology for concept 

formation from time-series data using principal component analysis (PCA). In this 

approach, the dynamic trends are represented using principal components of the 

data. The datasets are then projected onto two-dimensional plane for concept 

formation using the first two principal components of each variable. Their 

approach relies on the visual examination of this projection to cluster the 

datasets and requires tremendous user input. Although this is an interesting 

technique to extract concept from multivariate time-series data, it can become 

tedious for a large number of process variables. 

In this study, a similar methodology to pre-process multivariate time-series data 

is used by the proposed framework. Rather than visually examining the two- 

dimensional principal component plots of the process data, k-Means clustering is 



applied to automatically extract concept for subsequent classification process. 

Proposed data mining framework does not require a priori knowledge about 

process. The sole purpose of plotting the principal components onto two- 

dimensional plane is to have an interactive KDD process to fully utilize the data- 

mining paradigm. Clustering component can also be developed as a batch 

process without requiring user input, making the framework a viable option for 

very complex systems. This possibility will be discussed in detail in Chapter 6 

when we discuss the future research. 

The overall data-mining framework for fault diagnosis is illustrated by the flow 

chart in Figure 2.2. First, a PCA model of each process variable is built using 

data sets containing both normal operating periods and a wide variety of 

abnormal situations or faults. Next, the result is plotted on a two dimensional 

plane to further cluster process variables by applying k-Means clustering 

techniques. At this point, the framework optionally interacts with the end user to 

identify the optimum number of cluster for each process variable. Thus, concept 

formation from process variables whose values are dynamic trend signals has 

been accomplished. The conceptualized process data can be used in the next 

step to build a classification model of the plant. Then, test data sets can be fed 

into the model to detect and identify unknown faults. It is important to note here 

that the classification model of the system is built iteratively. If the performance of 

the tree is not satisfactory for the given training data set, end user can go back to 

the clustering step to further refine the concept formation process. 

2.7 Conclusions 

The proposed system combines the advantages of both standard multivariate 

SPM methods and modern data mining techniques for fault diagnosis purpose. 

Specifically, an integrated data mining scheme sequentially adopting the 

techniques of PCA, data clustering, and decision trees is developed. Proposed 

framework is basically a conceptual clustering system based on inductive 



machine learning approach. Commercially available version of famous C4.5 

algorithm is used to build decision trees from historical plant data. 

Build PCA model of each 
process vsriable $ofor all data 

sets in the training 

f Apply k-means dustedriq 
on PCA model of each 

variable 

Build classification model of the 
system in the form of a decision tree 

Send the test; data to the 
generated dassification d e l  

For fault diagnasis 

Figure 2.2 Proposed data mining framework for fault detection and identification 



The schema uses the data pre-processing approach that combines the PCA 

based concept formation of continuous process variables proposed by Wang and 

Li [2] and k-Means clustering, a distance based clustering technique. 

The analysis results of this scheme are very easy to comprehend by the end 

user. It is completely data driven, so it does not require a priori knowledge of the 

system model or process variables. It predicts the given unknown faults using 

known data and produce results in the form of decision trees enabling further 

investigation on faults. The computational load is modest, which allows 

processing of large amounts of process data in very short time. 



CHAPTER 3: 

DATA PREPROCESSING FOR CONCEPT FORMATION 

3.1 Introduction 

This chapter describes data pre-processing for noise removal and concept 

formation from monitored process measurements. The discussion is concerned 

with capturing the features of a dynamic trend signal from continuous process. A 

dynamic trend signal is the visualization of a continuous process variable over a 

time frame and consists of many sample values. However, in order to make 

effective use of continuous process signals in a data mining system, it is 

necessary to compress the data to fewer values by keeping important feature of 

the signal. Many data mining and KDD tools and algorithms have been 

developed only for dealing with discrete-valued attributes and not effective in 

dealing with continuous-valued variables. It is not possible to use variables 

represented by a trend in the inductive machine learning algorithm used in the 

study without pre-processing the data. 

This chapter first introduces principal component analysis (PCA). Next, the 

technique for concept formation from dynamic trend signals using PCA is 

described. Then, the concept formation technique used in this study is introduced 

together with k-Means clustering algorithm. 

3.2 Principal Component Analysis 

The method of PCA was developed in early 1900's, and has now re-emerged as 

an important data analysis technique used to describe the multivariate structure 

of the data [7]. It is a multivariate statistical technique in which a set of correlated 

variables is transformed into a new set of uncorrelated variables. The central 



idea is to reduce the dimensionality of a data set consisting a large number of 

interrelated variables, while retaining as much as possible of the variations 

present in the original data set [I]. The new uncorrelated variables (principal 

components - PCs) are linear combinations of the original variables. PCA uses 

all of the original variables to obtain a smaller set of new variables that can be 

used in place of original variables. The greater the degree of the correlation 

between the original variables, the fewer the number of PCs required. Dimension 

reduction capability of PCA makes it a vital tool in data mining activities. 

3.3 Theory of PCA 

Given a data matrix X(m x n) representing m observations of each of n variables, 

XI, x*, . . .xn, the first principal component, PI , is given by a linear combination of 

the n variables as 

The coefficients (also called weights), Wll ,  W12 can be written as a 

vector 6 , 

To find the coefficients defining the first principal component, the elements of 6 
should be chosen to maximize the variance of PI subject to the normalization 

constraint, 

?qT?q =1 

The variance of the first principal component is then given by 



where S is the covariance matrix of X ( m  x n )  . The solution of 

6 = ((y ,, w12 ,. . ., wl, ) to maximize the variance p, is the eigenvector of S 

corresponding to the largest eigenvalue. Therefore, the problem of calculating p, 

has been reduced to an eigenvalue problem. The eigenvalues of S are roots of 

the following equation: 

The calculation of the jth principal component is identical to the calculation of the 

first except for an additional constraint. Similarly the j" PC is a linear 

combination of the variables 

which has the greatest variance subject to the following constraints: 

This problem can also be solved through the use of covariance matrix of 

X ( m  x n) and it also reduces to an eigenvalue problem. Therefore, for a m x n 

data matrix, X , with Y1 variables and m measurements, the Y1 principal 

components can be solved via an eigenvector decomposition of the covariance 

matrix, 



Spi = Xipi for i = 1 to (3.8) 

The first few eigenvectors are the principal components that can capture most of 

the variance of the original data while the remaining PCs mainly represent the 

noise. 

A useful property of PCA can be given as [7], 

that is, the sum of the original variances is equal to the sum of the characteristic 

roots, which are the eigenvalues. This identity is particularly useful in data 

analysis because it shows that the characteristic roots, which are the variances 

of the principal components, may be treated as variance components of original 

variables. The ith eigenvalue of the covariance matrix, Aj , corresponds to the 

variance in the original data that is explained by the ith principal component, p i .  

PCA is scale dependent, so that principal components must be scaled in some 

meaningful way before PCA analysis. There are two ways of scaling principal 

components, one by rescaling the original data, and the other by rescaling the 

characteristic vectors. Since PCs are generally regarded as "artificial" variables, 

scores having unit variances are quite popular for data analysis and quality 

control applications [7]. In this study, PCs are scaled to unit variance using the 

following equation: 

where pi is the principal components for the ith observation (scores), Aj is the 

ith eigenvalue of the covariance matrix. 



If the eigenvalues are A, , A,, . . . A,, then they can be arranged from the largest 

to the smallest. If they are ordered to satisfy, 

then the first principal component describes the most variance in the data while 

the nth PC describes the least. Usually a large portion of the variance in the data 

can be described by the first k principal components, where k < n. Original data 

can be determined from the PCA model only if all PCs are used in the model. If 

only k < n PCs are used, the model will not describe some of the variability in the 

data, In that case, 

where ti is the ith score vector and E is the matrix of residuals or model error - 

the amount that is unexplained by the PC model. If k is properly chosen, 

E should represent only noise and random errors in the original data. Obviously, 

the larger k is, the better fit of the PCA model; the smaller k is, the simpler the 

model will be [7]. The primary advantage of PCA is its potential ability to 

represent an n-variable data set in k < n dimensions. The important question is: 

what is the optimal value of k? However, there is no standard convention for 

determining the number of PCs to retain in a PCA model. Jackson [7] explains 

many criteria that are in use to determine the optimum k. One of the widely 

adopted rules is based on the amount of explained and unexplained variability. In 

this approach, characteristic roots (eigenvalues) and vectors are obtained until 

the amount of unexplained variability, or the residual, has been reduced to a 

predefined quantity. Individual variance explained by each principal component 

and cumulative variance can be calculated to help determine the number of PC 

that should be retained. 



3.4 Process Monitoring based on PCA 

Process monitoring for the abnormal events using principal component analysis 

typically involves the monitoring of the Q statistic. Q statistic is a measure of the 

amount of variation not captured by the PCA model. If a totally new type of 

special event occurs which was not present in the reference data used to 

develop the in-control PCA model, then new PCs will appear and the new 

observations will move off the plane. Such new events can be detected by 

computing the squared prediction error (SPEx) of the residuals of new 

observations [33]. 

The Q-statistic is calculated from the error term, E l  in the PCA model equation 

A 

(3.14), and simply represents the sum of squares of the distance of x j  -xi from 

the k-dimensional space that the PCA model defines. Using the PCA model and 

the score values for time j, the measurement vector x j  can be estimated. The 

A 

PCA model error or residual, ej , is the difference between this estimate, xj  , and 

the actual measurement vector, xi, as given in the following equation 

where 

The Q-statistic for time j is then given by, 



Jackson (1 991) showed that approximate confidence limits (upper control limits) 

can be calculated for the Q-statistic based on the Chi-squared approximation 

provided that all eigenvalues of the covariance matrix are known. 

Confidence limits are given by equations (3.16) to (3.1 8): 

Where 

and 

In equation (3.18) above, Ct is the significance level (e.g., Ct = 0.01 corresponds 

to 99% significance level); and c, is the normal deviate cutting off an area of Ct 

under the upper tail of the distribution if ho is positive and under the lower tail if 

ho is negative. 8 's are calculated using characteristic roots that correspond to 

the PCs retained for modeling. This distribution holds whether or not all of the 

significant principal components are used for PCA modeling [7]. Letting a = .05 

and c, = 1.645 , the limit for Q-statistic can be calculated for 95% confidence 

limit. Values of Q-statistic higher than this limit, which is denoted by Qo5, are an 

indication that a data vector cannot be adequately represented by PCs that were 

retained . The confidence limit for Q statistic can be used to monitor this value to 

determine when the process has deviated from the normal operating region. 

When the process is in control, Q-statistic (or squared prediction error) 

represents unstructured fluctuations (noise) that cannot be accounted for by the 

model. When an unusual event occurs that results in a change in the covariance 



structure of the system, it will be detected by a high value of SPEX. A high value 

of SPEx means that the projection model is not valid for that observation. The Q- 

statistic with the confidence limits is a very effective multivariate statistical 

process monitoring technique which can detect the occurrence of faults that 

cause the process to move away from the hyperplane defined by the reference 

model. 

Correctly scaling the data is also very important in PCA based process 

monitoring. Some variables exhibit more variability during the course of normal 

operation, and scaling can prevent these variables from dominating the principal 

component model. There are two ways of scaling principal components, one by 

rescaling the original variables, and the other by rescaling the characteristic 

vectors [7]. In this study, the second approach has been employed by scaling the 

PCs to have unit variances. 

3.5 Data Pre-processing using PCA 

In today's modern computer control systems, nearly all important process 

variables are recorded as dynamic trends. Dynamic trends can be more 

important than actual real time values in evaluating the current operational status 

of a continuous process. To make effective use of trends in the subsequent data 

mining process, it is required to compress the dynamic trend data and to use 

reduced dimensions to represent the trend features. PCA for data pre-processing 

is used to serve the following purposes: concept extraction for subsequent data 

mining step, noise removal, and dimension reduction. Wang and Li [2] proposed 

a concept formation technique that uses dynamic trend signals of a continuous 

process variable from all data sets to build the PCA model and then plots the first 

two PCs in a two dimensional plane. The process data were organized as a 

m x n matrix of m observations of n variables. The PCA model of the data was 

created by unfolding the multivariate dataset into a long row vector and then 

using the individual elements as features. Then, the datasets were grouped by 

visually examining the two-dimensional plot of the first two PCs of each variable. 



To illustrate this approach, a nonlinear multivariate dynamic system (three-tank 

benchmark system) was run under different faulty conditions and dynamic trends 

of all process variables were recorded. Detailed description of the benchmark 

system and application of the data-mining framework for fault detection and 

identification can be found in Chapter 5. Here, dynamic trend signals from only 

one variable are being considered to illustrate the dimension compression 

capability of PCA. For each data case, thirteen variables are recorded as 

dynamic responses after a disturbance or fault occurs. Each trend consists of 

1200 sample points. Figure 3.1 shows the trends of a variable for two different 

data cases each representing a different faulty condition. 
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Figure 3.1 Dynamic trends of a variable for two different data cases 

The eigenvalues of all 13 principal components for the sample process variable 

are summarized in Figure 3.2 by plotting the values of the roots (eigenvalues) 

versus the root number (the principal component number). Since the covariance 

matrix formed from the data set containing 13 process variables from the 

benchmark system, we will have 13 eigenvalues whose sum will total to the 

number of process variables. 



Figure 3.2 Eigenvalues of the sample process variable 

The variance explained by each principal component along with the cumulative 

variance is summarized in Table 3.1. It is apparent that the eigenvalues of the 

first two principal components can be used as a concise approximation of the 

original dynamic trend. Therefore, they are used to replace the original 

responses for use in subsequent pattern recognition. 

Since the first two principal components can capture the main feature of a 

dynamic trend, this can be displayed graphically by plotting the eigenvalues on a 

two dimensional plane. Figure 3.3 shows such a plot of eigenvalues of the first 

two principal components of the same variable. A point in the two dimensional 

plane represents the feature of the variable response trend for one data case. 



Table 3-1 Eigenvalues of a process variable 

I2Zr:d I Cumulative 
 umber 

1 
2 

Eigenvalue 
3.2826 
0.5623 

(%) 
77.8257 
13.3324 

Variance (%) 
77.8257 
91 .I581 



Figure 3.3 PCA two-dimensional plane of a variable 

The scatter plot of dynamic trends of a variable on a two dimensional plane, as 

depicted in Figure 3.3 is referred to as concept formation [I]. Concept formation 

(or concept extraction from data) transforms a complicated trend to a concept to 

be used to develop knowledge-based systems. However, this concept formation 

method proposed by [2] has left the last step to a domain expert to visually group 

the variables using PCA scatter plot of each process variable. For complex 

systems with huge number of process variables, the task of grouping based on 

visual examination of the two-dimensional PCA plane can be very tedious and 

time consuming. 

3.6 Data Clustering - Second Step in the Concept Formation 

In this research, concept formation procedure has been converted to an 

automatic process by assigning the grouping task to the computer. This has been 



achieved by employing a clustering algorithm to the concept-extraction process 

to handle grouping. The essential first step in concept formation is to pre-process 

continuous process variables using PCA model as illustrated in the previous 

section. The newly introduced second step is to cluster dynamic trends using k- 

Means algorithm. The aim of this modification to the data pre-processing phase 

is to minimize the intuitive portion of concept formation procedure. This new 

approach greatly increases the rate at which an expert, or even a novice, can 

analyze a large and complex dataset. It requires minimal interaction with the 

domain user to cluster the data using PCA model of the multivariate data set as 

visualization tool. 

3.6.1 Cluster Analysis 

The process of grouping physical objects or data points into classes of similar 

objects is called clustering or unsupervised classification. Clustering involves 

dividing a set of data points into non-overlapping groups, or clusters, of points, 

where points in the same cluster are "more similar" to one another than to points 

in other clusters [8]. The term "more similar," when applied to clustered points, 

usually means closer by some measure of proximity. In clustering, there are no 

predefined classes and no training data set. The objects are grouped together on 

the basis of self-similarity. Each cluster is defined as collections of objects whose 

intraclass similarity is high and interclass similarity is low. When a dataset is 

clustered, every point is assigned to some cluster, and every cluster can be 

characterized by a single reference point, usually an average of the points in the 

cluster. Clustering allows us to replace the original spectral data with an 

appropriate set of representative values to simplify design and implementation. 

As a data mining task, data clustering identifies clusters, or densely populated 

regions according to some distance measurement, in a large, multidimensional 

data set. Given a large set of multidimensional data points, the data space is 

usually not uniformly occupied by the data points. Data clustering identifies the 

sparse and the crowded regions, and hence discovers the overall distribution 



pattern of the data set. Clustering analysis has also been studied extensively as 

a branch of statistics, mainly focused on distance-based clustering [30]. 

3.6.2 k-Means Clustering 

The k-Means algorithm is by far the most popular clustering tool used in scientific 

and industrial applications [4]. The name comes from representing each of k 

clusters Ci by the mean (or weighted average) 9 of its points, the so-called 

centroid. It has the good geometric and statistical sense for numerical attributes. 

The k-Means algorithm groups the points into k clusters such that all the points in 

each cluster are more similar ("closer") to one another than to those in the other 

clusters. The number of clusters k is chosen by a domain expert or data analyst 

by examining the PCA plot of a dynamic trend signal on a two dimensional plane 

and does not require any prior knowledge about process. 

k-Means is an iterative algorithm and begins with a set of k reference points 

whose initial values are usually chosen by the user. First, the data points are 

partitioned into k clusters: A data point x becomes a member of cluster q if q, the 

reference point of cluster q, is the reference point closest to x. The standard k- 

Means algorithm uses the cluster centroids as reference points in subsequent 

partitioning. The positions of the reference points and the assignment of the data 

points to clusters are then adjusted during successive iterations. The error 

measure E is evaluated at each step, and a data point is reassigned to a different 

cluster only if that reassignment decreases E. 

To discuss whether a set of points is close enough to be considered in the same 

cluster, we need a distance measure D(x; y) which tells us how far points x and y 

are. The usual axioms for a distance measure D are: 

1. D(x; y) = 0. A point is distance 0 from itself. 



2. D(x; y) = D(y; x) Distance is symmetric. 

3. D(x; y) 5 D(x; z) + D(z; y). The triangle inequality. 

For a k-dimensional Euclidean space, the distance between any two points, say 

x = [xl, x2, ..., ~ k ]  and y = lyl, y2, ..., yk], is given by: 

2 
Euclidean Distance = Jzk i=l (xi - y i )  

Standard k-Means algorithm can be summarized as: 

Initialize the number of cluster centers selected by the user by randomly 

selecting them from the training data set 

Classify the entire training set. For each data point x in the training set, find 

the nearest cluster centroid q and classify x as a member of Ci. 

For each cluster, recompute its new centroid by finding the mean of the points 

in each cluster. 

Repeat steps 2 and 3 until error measure of the centroids don't change. 

One of the key design parameters in the standard k-Means clustering algorithm 

is the number of clusters. It assumes that the number of clusters in the data to be 

clustered is known a priori. However, this may not be a reasonable assumption in 

many applications. Thus, PCA method used for concept formation serves as a 

visual tool in the proposed data-mining framework to help find optimum number 

of clusters for each process variable. 

An example of clustering using k-Means algorithm is shown in Figure 3.4, Figure 

3.5, and Figure 3.6. The diagrams show the results during two iterations in the 

partitioning of two-dimensional data points of first two PCs of a process variable 



into two well-separated clusters. Points in cluster 1 are shown in blue, points in 

cluster 2 are shown in red; data points are denoted by open circles and reference 

points are denoted by filled circles. Clusters are indicated by dashed lines. It is 

worth mentioning that the iteration converges quickly to the correct clustering, 

even for this bad initial choice of the two reference points. 
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Figure 3.4 Initial setup for k-Means algorithm 

Figure 3.5 Results of the first iteration 
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Figure 3.6 Results of the second iteration 

I I I I I I I 1 

- - 

- - 

- - 

- Cluster 1 - 
/-. 

,t 0 : 
- { t  - 

; * i  - ' , D O  - 
7. #' 

- - 
- - 
- - 

0.; i 1.; i 2.; 4 i 5  i 4; ; 

During the setup shown in Figure 3.4, reference point 1 (filled blue circle) and 

reference point 2 (filled red circle) are chosen arbitrarily. All data points (open 

circles) are then partitioned into two clusters: each data point is assigned to 

cluster 1 or cluster 2, depending on whether the data point is closer to reference 

point 1 or 2, respectively. Next, each reference point is moved to the centroid of 

its cluster. If the reference point closest to the data point belongs to the other 

cluster, the data point is reassigned to that other cluster, and both cluster 

centroids are recalculated. The results of the first iteration are shown in Figure 

3.5. During the second iteration, the process in Figure 3.5 is performed again for 

every data point. The partition shown in Figure 3.6 is stable and will not change 

for any further iteration. 



3.7 Conclusions 

Concept extraction is not an exact process; even a domain expert can be 

inconsistent or make mistakes. But by enabling the computer to approximate the 

domain expert's interpretive skills, concept extraction provides a flexible and 

rapid way to incorporate the expert's perspective into computer based data 

analysis and KDD process. 

The essential first step in data pre-processing is the PCA analysis of the training 

data set. For a specific set of data, the value of a variable represents a dynamic 

trend, consisting of hundreds to thousands sampled points. In the subsequent 

inductive learning process, it is the shape of the trend that matters. When the 

trends of all the data sets are considered and processed using PCA, the first two 

principal components (PCs) can be plotted in a two dimensional plane. Then, the 

user optionally interacts with the framework, selecting the reference points and 

number of clusters to guide the clustering process. The framework can also be 

configured so that no user input is required throughout the concept extraction 

process enabling the analysis of huge data sets from very complex multivariate 

processes possible. 



CHAPTER 4: 

CLASSIFICATION BY DECISION TREE INDUCTION 

Historical databases of industrial plants are rich with hidden information that can 

be used for making intelligent decisions to improve the overall system 

performance and detect faults. Classification and prediction are two forms of data 

analysis that can be used to achieve these goals. Classification falls under the 

category of inductive learning, learning by examples, which attempts to induce a 

general rule from a set of observed instances. Several approaches to inductive 

learning have been proposed, and one of the most influential one is C4.5, which 

was developed by Quinlan [26]. It is a set of computer programs that construct 

classification models in the form of decision tree. 

In this chapter, the algorithm that is used by C4.5 to generate the decision tree 

will be introduced briefly. 

4.1 Decision Tree 

A decision tree is a flow-chart-like tree structure, where each internal node 

denotes a test on an attribute, each branch represents an outcome of the test, 

and leaf nodes represent classes or class distributions [4]. Decision trees are 

powerful tools for classification and prediction. Decision trees can also be 

expressed as production rules that are easier to understand than a complex tree. 

A decision tree is a structure that is either: 

a leaf indicating a class, or 



0 a decision node, or internal node, that specifies some test to be carried out on 

a single attribute value, with one branch and subtree for each possible 

outcome of the test. 

After a decision tree has been created based on training data set, it can 

be used to classify a case from the test set in a process like this: 

starting at the root of the tree and moving through it until a leaf is 

encountered. At each nonleaf decision node, the case's outcome for the 

test at the node is determined based on the case's attribute value and 

attention shifts to the root of the subtree corresponding to this outcome. 

Repeat this process until a leaf node is encountered. The class of the 

case is predicted to be that recorded at the leaf. 

A typical decision tree is drawn with the root at the top and the leaves at the 

bottom. For example, Figure 4.1 shows a decision tree that can be used to 

determine if a customer would be eligible for a loan. The root node of the tree 

defines the test "Age of the customer", so each case will be divided first by 

this test into several groups. The label of a leaf represents the class label. 

Yes or NO is assigned by the tree to any case that reaches this node. It 

represents the concept "loan approvaf', that is, it predicts whether or not a 

customer is likely to get a loan from the bank. 



Figure 4.1 A partial decision tree for the concept of "loan 

approval" 

4.2 Decision Tree Induction 

The common procedure to construct a decision tree from samples is by using 

divide and conquers technique. This process aims to discover sizable subsets of 

the sample that belong to the same class. This technique depends a great deal 

on the choice of appropriate test, that is, to find the best possible question to ask 

at each decision node of the tree. The algorithm summarized below is a version 

of ID3 [Quinlan, 19861, a well-known decision tree induction algorithm that 

constructs decision trees in a top-down recursive manner: 

Let classes be denoted {CI, C2, . . . , C3), and T being the set of training cases. 

There are three possibilities [26]: 



T contains one or more cases, all belonging to a single class Cj: The decision 

tree for T is a leaf identifying class C,. 

T contains no cases: The decision tree is again a leaf, but the class to be 

associated with the leaf must be determined from other information. For 

example, the leaf might be chosen in accordance with some background 

knowledge of the domain, such as overall majority class. C4.5 uses the most 

frequent class at the parent of this node. 

T contains examples that belong to more than one class: In this situation, the 

idea is to divide T into subsets of cases so that each subset seems to be 

heading towards single-class collection of cases. An attribute which has two 

or more mutually exclusive outcomes {O,, 02, . .. , On) is chosen as a test. T 

is partitioned into subsets TI, T2, ... , Tn, where T contains all the cases 

in T that have outcome Oi of the chosen test. The decision tree for T 

consists of a decision node identifying the test, and one branch for each 

possible outcome. The same tree-building process is applied 

recursively to each subset of training cases, so that the ith branch leads 

to the decision tree constructed from the subset T of training cases. 

Any test that divides Tin a way that at least two of the subsets Ti are not empty 

will eventually result in a partition into single-class subsets. However, the tree 

building process is not intended merely to find any such partition that will result in 

single-class subsets, but to build a tree that reveals the structure of the domain 

and so has predictive power. For that reason, we need a significant number of 

cases at each leaf; in other words, the partitioning must result in as few blocks as 

possible so that the final tree is small. 



4.3 Attribute Selection 

Most decision tree construction methods, including the one described above, are 

nonbacktracking, greedy algorithms. Once a test has been selected to partition 

the current set of training cases, the choice is cast in concrete and the 

consequences of alternative choices are not explored. This is the biggest reason 

for making the attribute selection process as effective as possible based on 

maximizing some local measure of progress. 

Since exploring all possible decision trees that are consistent with the training set 

and selecting the simplest is not an option, Quinlan uses a criterion called gain 

ratio to select the best attribute at each partition step in his program C4.5. The 

information theory that underpins this criterion can be given in one statement: 

The information conveyed by a message depends on its probability and can be 

measured in bits as minus the logarithm to base 2 of that probability [26]. So, for 

example, if there are four equally probable messages, the information conveyed 

by any of them is -log2(1/4) or 2 bits. 

Let follow Quinlan's explanation of gain ratio criterion: Suppose for an attribute 

Ai, we have n possible outcomes that partition the set T of training cases into 

subsets TI, T2, . . . , Tn. If this test is to be evaluated without exploring subsequent 

divisions of the T's, the only information available for guidance at the moment is 

the distribution of classes in T and its subsets. Let S be any set of cases, the 

following discussion will use freq(Ci,S) to denote the number of cases in S that 

belong to class Ci. The standard notation I S 1 will be used to denote the number 

of cases in set S. 

Suppose we select one case at random from a set S of cases, and announcing 

that it belongs to a class Cj. This message has probability 



and the information it conveys is 

To find the expected information from such a message pertaining to class 

membership, we sum over the classes in proportion to their frequencies in S, 

giving 

When applied to the set of training cases, info(T) measures the average amount 

of information needed to identify the class of a case in T. The quantity found by 

Equation 4.3 is also known as the entropy of the set S. 

After T has been partitioned in accordance with the n outcomes of a test XI the 

expected information requirement can be found as the weighted sum over the 

subsets, as 

IT, I infox( T )  = info( T) .  

So, the quantity 

gain(X) = info( T )  - i n f ~ (  T )  

measures the information that is gained by partitioning Tin accordance with the 

test X. The goal of gain criterion is, then, to select a test to maximize this 

information gain. 



4.4 An Illustration 

As a concrete illustration of the process, consider the small training set of Table 

4.1 in which there are four attributes and two classes [26]. The cases have been 

grouped on the first attribute outlook to simplify the discussion. 

Table 4-1 A small training set 

I Outlook I Temp ( O F )  / Humidity (%) I Windy? 1 Class 

sunny 1 85 1 >odera t ;T fa lse  r ~ o n ' t  Play 

sunny 

sunny 

I sunny 1 72 ( high I false I Don'tplay 

75 

80 

rain 

rain 

Since these cases do not all belong to the same class, the divide-and-conquer 

algorithm attempts to split them into subsets. The successive division of the set 

of training cases proceeds until all the subsets consist of cases belonging to a 

single class. 

low 

high 

- 
rain 

75 

68 

true 

true 

70 

Play 

Don't Play 

moderate 

moderate 

high 

false 

false 

Play 

Play 

false Play 



There are two classes, nine cases belonging to Play and five to Don't Play. The 

average information needed to identify the class of a case in the set T can be 

calculated using Equation 4.3 as: 

info(r) = - 911 4 x log2(9/14) - 511 4 x log2(5114) = 0.940 bits. 

Suppose that the test outlook with three outcomes, outlook = sunny, outlook = 

overcast and outlook = rain, is chosen to divide the data set in Table 4.1 into 

three subsets. The expected information by partitioning the data set T with this 

test is given by 

= 0.694 bits. 

The information gained by this test is then 0.940 - 0.694 = 0.246 bits. Now 

suppose that, instead of dividing Ton the attribute outlook, we had partitioned it 

on the attribute windy. This would have given two subsets, one with three Play 

and three Don't Play cases, the other with six Play and two Don't Play cases. 

The similar computation to find the expected information pertaining to this 

partitioning would be: 

= 0.892 bits 



The information gained would be 0.940 - 0.892 = 0.048 bits, which is less than 

the gain resulting from the previous test. The gain criterion would then prefer the 

test on outlook to the latter test on windy. 

After partitioning the training set of Table 4.1 based on outlook, the middle group 

contains only cases of class Play but the first and third subsets still have mixed 

classes. If the first subset were further divided by a test on humidity, with 

outcomes humidity = low and humidity in {moderate, high), and the third subset 

by a test on windy, with outcomes windy = true and windy = false, each of the 

subsets would now contain cases from a single class. 

For this sample training set of fourteen cases in Table 4.1, it is easy to do 

partitioning intuitively. The success of decision tree building process depends a 

great deal on the choice of appropriate tests on appropriate attributes. The final 

tree must reveal the structure of the domain and have predictive power to 

successfully classify future cases. The decision tree induction algorithm 

employed in C4.5 uses gain criterion (or gain ratio criterion which is explained in 

the next section) to choose a test at each stage of decision tree building process. 

The decision tree corresponding to the training set in Table 4.1 is shown in 

Figure 4.2. C4.5 first splits the training cases into three subsets based on the test 

on attribute outlook. Then, the second and third branches of the tree are further 

partitioned by the tests on attributes humidity and windy, respectively. At this 

stage, each of the subsets contains cases from a single class. Each leaf node is 

labeled with a class value Play or Don't Play. The numbers in parentheses 

following each leaf indicate the number of training cases associated with each 

leaf. 



I Decision tree: 

outlook = overcast: Play (4) 
outlook = sunny: 
:......humidity = low : Play (2) 
: humidity in {moderate, high) : Don't Play (3) 
outlook = rain: 
:......windy = true: Don't Play (2) 

windy = false: Play (3) 

Figure 4.2 Decision tree generated by C4.5 

4.5 Gain Ratio Criterion 

Although the gain criterion gave quite good results, according to Quinlan, this 

criterion has a strong bias in favor of tests with many outcomes. We can see this 

by considering a hypothetical medical diagnosis task in which one of the 

attributes contains a patient identification. Since every such identification is 

intended to be unique, partitioning any set of training cases on the values of this 

attribute will lead to a large number of subsets, each containing just one case. 

Since all of these one-example subsets contain examples of a single class, 

infox(T) = 0, so the information gain from using this attribute to partition the set of 

training cases is maximal. From the point of view of prediction, however, such a 

division is quite useless and should be avoided in practice. 

Quinlan uses a kind of normalization in which the apparent gain attributable to 

tests with many outcomes is adjusted. Consider the information content of a 

message pertaining to a case that indicates not the class to which the case 

belongs, but the outcome of the test. If we use the analogy with the definition of 

info(S), we have 

split info()() = - 



which represents the potential information generated by dividing T into n 

subsets, whereas the information gain measures the information relevant to 

classification that arises from the same division. Then, 

gain ratio(>() = gain(>() / split info(>() (4.7) 

expresses the proportion of information generated by the split that is useful, 

which appears helpful for classification. If the split is near trivial, like the 

illustration given above with the attribute patiencid, split information will be small 

and this ratio will be unstable. To avoid this, the gain ratio criterion selects a test 

to maximize the ratio above, subject to the constraint that the information gain 

must be large - at least as great as the average gain over all tests examined. 

The gain ratio criterion is robust and consistently gives a better choice of test 

than the gain criterion (Quinlan, 1988). 

To illustrate the gain ratio criterion, consider again the training set of Table 4.1. 

The test on outlook produces three subsets containing five, four, and five cases 

respectively. The split information calculated as 

split info()()= -5114~ log(5Il4) -4114~ log(4Il4) -5114~ log(5Il4) 

or 1.577 bits. For this test, whose gain is 0.246 (as calculated before), the gain 

ratio is 0.246 / 1.577 = 0.1 56. 

The decision tree induction algorithm adopted in this study uses the gain ratio 

criterion as it typically gives a constantly better choice of test than the gain 

criterion (Quinlan, 1988). 

4.6 Conclusions 

Classification is a data mining technique that can be used to extract models 

describing important data classes. Since it requires a training data set to model 



the problem domain, it is also known as supervised learning. In a decision-tree- 

based classification method, the learned model is represented in the form of 

decision trees. 

A decision-tree-based classification algorithm, C4.5, which has been influential in 

the machine learning studies, has been introduced in this chapter. The success 

of any decision tree induction algorithm depends on the measure used for 

selecting the attribute that will best separate the samples into individual classes. 

This attribute becomes the "test" or "decision" attribute at the node. The algorithm 

employed by C4.5 uses an entropy-based measure known as information gain 

as a heuristic to select attributes at each decision node. This attribute selection 

algorithm has also been explained in detail. Induction of a decision tree by C4.5 

has been illustrated by a golf example containing fourteen training cases, four 

attributes and two classes. 

The detailed explanation of the C4.5 algorithm can be found in a book by Quinlan 

P61. 



CHAPTER 5: 

DATA MINING FRAMEWORK APPLIED TO THREE-TANK 

BENCHMARK SYSTEM 

This chapter presents the validation of the integrated data mining framework by 

comparing it with traditional multivariate statistical techniques. The proposed 

framework is illustrated by considering the fault detection problem of the three- 

tank benchmark system. First, the three-tank benchmark system is introduced 

briefly along with the various fault types, which are used in this study. Then, a 

well-known multivariate SPM technique based on principal component analysis is 

introduced and applied to the benchmark system to detect system faults. Next, 

the proposed data mining framework is applied to the benchmark system and 

each step of this process is explained in detail. The performance of the proposed 

approach is compared with PCA based monitoring technique. Finally, the 

proposed approach is applied to the benchmark system to demonstrate the fault 

identification capability of the framework to identify single faults. 

5.1 Three-Tank Benchmark System 

Many of the faults in chemical processes such as leaks, clogs, valve blockages 

and sensor faults occur on the level of transport of fluids and raw materials. To 

study the corresponding diagnostic problems a laboratory desktop plant, 

composed of tanks interconnected by various hydrodynamic paths, was 

constructed by the Department of Computer Automation and Control at Jozef 

Stefan Institute [31]. The plant mimics some of the processes that are common in 

the transport of fluids in many chemical plants. The schematic of the process is 

depicted in Figure 5.1 [31]. The three tank system has been adopted recently as 

a standard benchmark problem for fault detection and diagnostic [39, 401. 



Figure 5.1 Schematic diagram of the benchmark process 

The system consists of the three tanks R1, R2 and R3 connected with flow paths, 

which serve to supply water from the reservoir RO. Two of the paths have built-in 

pumps, which are pump P I  and P2, driven with DC motors with permanent 

magnets. 

There are two configurations of active flow paths available. In the first one, flow is 

generated by varying the angular speed of the pump PI.  In the second case, 

pump P2 works at constant speed. Flow is then varied by manipulating the valve 

V5. There are two servo-valves in the plant, i.e. V4 and V5 driven by DC motors. 

Valves V1 and V2 are on-off valves while V3 is manual. The purpose of valve V3 

is mainly to realize real faults, i.e. leakage of the tank R1. Capacity of the 

reservoir RO is much greater than the capacity of the tanks so that its level is 

practically constant during the operation. 



Although the three-tank system is not an equivalent to any of the real industrial 

processes, it can be studied at different configurations and operating modes. In 

the study of benchmark system construction, tanks R1 and R3 take on the role of 

buffers for supplying R2. Contents from R1 and R3 are mixed in R2 and then fed 

back to the reservoir RO. The level in R2, and hence the flow from R2 to RO, is 

controlled by the valve V4. The level in the tank R1 is controlled by manipulating 

the speed of the pump P I  while level in R3 is controlled by manipulating the 

command signal of the valve V5. Proper ratios of flows from R1 into R2 and from 

R3 into R2 are achieved by adjusting the difference of the reference values of 

levels in the tanks. 

The benchmark consists of the Simulink file with nonlinear simulation model of 

the plant. The Simulink module of the system is shown in Figure 5.2 1311. The 

model can simulate 20 different faults in sensors and other components, which 

can be either real or virtual. Some of the real faults are: 

a) leak from the tank R1 (by opening the manual valve V3) 

b) clog in branch with V1 

c) clog in branch with V2 

d) increased friction in the pumps 

e) offsets in sensors 

Faults a, b and c can be programmed using the Simulink model of the system. 

Faults d and e might occur during long-term runs. Virtual faults include: 
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Figure 5.2 Simulink schema of the system 

sensor faults, e.g. biases, change in gain 

0 actuator faults, e.g. blockages in valves 

They can be realized by contaminating the realistic measured values. 



A demo file simulating three system faults (bias in sensor of h3 started at 200 

seconds, leak in tank R1 started at 500 seconds, clog in branch with P2 started 

at 900 seconds and each fault lasted for 100 seconds) is given in Figure 5.3. 

% Data preparation for simulation 

% Definition of the initial conditions for the integrators 
h1-0 = 0.; % level in R1 
h2-0 = 0.; % level in R2 
h3-0 = 0.; % level in R3 

% Definition of the reference trajectories 

% Setting of the on-off valves 

sDV1 = 10; % valve V1 open 
sDV2 = 10; % valve V2 open 

% Definition of the fault channels 

% Start and end of simulation 
Tstart = 0; 
Tend = 1200; 

% Set the controller parameters 
Kp1 =2 ;  
Ti1 = 100; 
Kp2 = 5; 
Ti2 = 100; 
Kp3 =5 ;  
Ti3 = 100; 

% Run the data initialization procedure 

Figure 5.3 A demo simulation file realizing 3 different faults. 



The demo simulation file given in Figure 5.3 prepares the input data (define initial 

conditions, fault signals and reference trajectories). It then runs the initialization 

program ini3tank.m which sets all the constants of the model and adds noise to 

all measurements. Then in Simulink, simulation program of the system operating 

in closed loop is run. Detailed description of the simulation environment 

developed in Simulink to reproduce the system behavior under faulty or fault free 

situations along with the derivation of the nonlinear mathematical model of the 

system can be found in [31]. 

Measurements of the 13 process variables in Table 5.1 were used to generate 

historical process data. The system can be operated either in open loop or 

closed loop. In closed loop, levels in the tanks R1, R2 and R3 are read via 

sensors and fed back to the controllers along with the reference trajectories for 

the tank levels defined at the beginning of the simulation. In this case study, the 

closed-loop model of the system is used under influence of noise and faults. 

Zero-mean Gaussian noise with known standard deviations is added to the 

measured process variables during both normal and faulty operations. 

Table 5-1 Available process measurements 

Process 
Variable 

API / cm H20 I pressure difference on the pump 1 I 

h~ 
h2 
h 2 

Unit Description 

cm 
cm 
cm 

AP2 
Q1 

level in tank R1 
level in tank R2 
level in tank R3 

Q3 

0 1  

S5 

u1 
11 

cm H20 
cm3/s 

u2 

I7 

pressure difference on the pump 2 
flow through the pump P I  

cm% 
- 
- 

V 
- 

flow through the branch with pump P2 
"speed" of rotation of pump P I  
position of the stem of the continuous 
valve V5 
voltage on the DC motor in pump P I  
current to the DC motor in P I  

V 
- 

voltage on the DC motor in pump P2 
current to the DC motor in P2 



There are three feedback loops in the system. The first loop controls the level of 

tank R1 by adjusting the speed a, of pump PI ,  the second loop controls the level 

of tank R2 by adjusting the position of valve V4, and the third loop controls the 

level of tank R3 by adjusting the valve V5. The overall model consists of three 

control inputs and thirteen outputs along with the optional fault signals. Table 5.2 

lists the 20 faults applied to the system during the process simulation. The 

intensity of each fault can be defined in the range of 0 to 1. 

The sirnulink@ model, which was developed by Jozef Stefan Institute, was used 

in Matlab 7@ to simulate the different operation conditions of the system. 

Reference trajectories (tank levels) were kept constant throughout the study. 

Table 5-2 List of simulated faults 

I~ault NO( Fault ~e&ription 
1 bias in sensor of h l  
2 bias in sensor of h2 
3 bias in sensor of h3 
4 leak in R1 

clog in branch with V1 
clog in branch with V2 
clog in branch with V4 

8 clog in branch with P I  
9 clog in branch with P2 
10 friction in P I  
11 clog in branch with V5 

1 12 1 bias in sensor of Q1 
13 bias in sensor of Dpl 
14 bias in sensor of Dp2 
15 bias in sensor of I1 
16 bias in sensor of U1 
17 bias in sensor of Q3 
18 bias in sensor of 12 
19 bias in sensor of U2 
20 bias in sensor of w l  



5.2 Traditional Approach: PCA Based Fault Detection 

Multivariate statistical process monitoring (MSPM) techniques such as principal 

component analysis (PCA) have been successfully employed in many industrial 

applications for abnormal situation detection and fault diagnosis [I I]. In contrast 

to the model-based approaches where a priori knowledge (either quantitative or 

qualitative) about the process is needed, in PCA based method, only the 

availability of historical process data is needed. The primary objectives of PCA 

are data summarization, classification of variables, outlier detection and 

'fingerprinting' for fault identification [I 21. 

Traditional PCA based process monitoring for fault detection requires 

constructing multivariate control charts such as Q statistic. The Q statistic, also 

called as squared prediction error (SPE), describes how far a measurement lies 

from subspace defined by the PCA model. Faults that result in a change in the 

cross-correlation between process variables can be detected by monitoring the Q 

statistic. 

Multivariate process monitoring using Q statistic involves following steps: First, 

an appropriate reference set that defines the normal (routine) operating 

conditions for a particular process is chosen. In other words, a PCA model must 

be built based on data collected from various periods of plant operation when 

performance was good. By projecting new observations of process variables onto 

the plane defined by the PCA loading vectors, the score and the residuals can be 

obtained, and the multivariate process control chart based on Q-statistic can in 

turn be plotted. The Q statistic is calculated and compared to confidence limits at 

each sampling time in order to determine if a measurement has deviated from 

the normal operating region. 

The computation of Q statistic along with the confidence limits was explained in 

detail in Chapter 3. 



5.2.1 PCA Model of the Three-Tank System 

Data from the normal operating conditions were created for the three-tank 

system to provide the nominal (reference) data set. Any periods containing 

variations arising from special events or faults that one would like to detect in the 

future were omitted at this stage. 

To build the PCA model of the three-tank benchmark system, simulation was 

performed under normal operating conditions collecting 200 measurements of all 

13 variables. The data matrix X of size (200 x 13) was used to calculate PCA 

loading vectors. The principal component loading vectors are the eigenvectors of 

the covariance matrix of X .The corresponding eigenvalues give the variance of 

the principal components. 

Let S be the covariance matrix ofX . The characteristic roots can be obtained 

from the solution of the following equation, called the characteristic equation: 

For the three-tank benchmark system, this equation produces a 13th degree 

polynomial in 2 from which the values of A1 ,A, . .. A3 are obtained. Then, the 

characteristic vectors of the covariance matrix can be obtained by solving the 

following two equations: 

and 

for i = 1,2,3 ,.... 13 
titi 



The characteristic vectors or eigenvectors make up the following matrix: 

To calculate the principal components of the data set X , the following 

transformation is used: 

- 
Here X and X are 13 x 1 vectors of observations on the original variables and 

their means. Each of 200 observations (or measurements) is transformed to build 

the PCA model. The individual transformed observations are called z-scores. 

The number of principal components to retain in the PCA model was assessed 

based on the amount of the explained variability. The variance explained by first 

five PCs along with the cumulative variance is summarized in Table 5.3. 



Table 5-3 Variance explained by first five principal components 

Principal I Variance I I Component Described Cumulative 

The first two PCs explain 91 % of the variance in the data providing an adequate 

description of the total variance in the system. Only the first two PCs were 

retained during the calculation of PCA model. The scores which describe where 

the original data points project in the PCA subspace were calculated using the 

first two eigenvectors. 

Number 
1 
2 

One of the observations on the original variables of the three-tank system is: 

and the means of original variables are: 

(%) 
77.83 
13.33 

Substituting in (5.4) produces: 

Variance (%) 
77.83 
91 . I6  

The first two eigenvectors, Ul and u 2 ,  were used to calculate the principal 

components of each observations in the nominal data set. After principal 

components (or z-scores) of each individual observations have been calculated, 

principal component 1 (zl) can be plotted against principal component 2 (z2) on a 

two dimensional plane. 



Figure 5.4 shows the projection of sample process data taken from normal 

operating conditions onto the two dimensional subspace defined by principal 

component 1 (PC 1) and principal component 2 (PC 2). It also depicts the 

geometric interpretation of a score vector for a data point projected in the 

subspace. The score vectors simply define the projection of the sample points 

onto each eigenvector (loading vector) and thus describe the location of each 

observation in the PCA subspace. 

A A 
A t  1.5 - A 

A 

A 

I PC-I 
6 

Figure 5.4 Geometric interpretation of a score vector for a data point projected on 
the two dimensional subspace defined by PC1 and PC2 

Figure 5.5 shows the projection of process data taken from two different modes 

of operation (triangles and circles). Triangles represent the data taken from 

normal process operation and circles from a faulty operation. This score plot 

shows the projection of all the process variables on the first two principal 



components. Score plots also show how each data sample relates to one 

another. Samples which are in close proximity to one another have similar 

characteristics or come from similar modes of operation in the process. 

Figure 5.5 Scores plot for principal component 1 versus principal component 2, 
calculated from nominal data (triangles) and faulty process operation 

5.2.2 Fault Detection based on Q statistic 

Once a PCA model has been built based on historical data, process monitoring 

can be achieved by comparing the factors against this nominal model [22]. 

To compare a new data set containing m measurements of n variables to a PCA 

model, the Q-statistics is calculated for each sample, resulting in an m x I vector 

of Q values. This vector, VQ, in combination with the confidence limit, can be 

plotted to determine whether the PCA model is an adequate description of the 



data set. If a deviation from the system model is detected within the predefined 

limits, this can be an indication that the new observation is the result of 

previously unidentified event, which represents a faulty operation mode. 

5.2.2.1 Preparing the Data Set 

Once the PCA model of the three-tank system was created, each of the faulty 

operations was simulated to generate a test data set. A disturbance or fault was 

introduced using the fault channels defined in the Simulink model. The system 

was run under normal operation mode initially and a fault was introduced into the 

system for 100 seconds. Starting at the time the fault was introduced, dynamic 

responses of all thirteen variables were recorded for 200 seconds. This same 

method repeated for all faults listed in Table 5.2. Faults occurred one at a time 

(no simultaneous faults) in each data case and for the same length of time. The 

resulting data set is a matrix of size (200x 13x20) where the third dimension 

represents the number of faulty operations. 

5.2.2.2 Calculating the Q-statistic 

Once the data set containing data from all faulty operation modes was created, 

the Q statistic values for each operation mode were calculated by projecting each 

data case onto the PCA model and calculating residuals at each sampling point. 

As an illustration, let us assume that the benchmark system is simulated by 

introducing one of the faults listed in Table 5.2. The dynamic responses of all 

thirteen variables are recorded every second for 200 seconds after the fault is 

introduced into the system. For one faulty operation, the data set is a matrix of 

200x 13. Let the vector X , of size (1 3x I ) ,  represent one of the 200 observations 

recorded during the simulation. 



where each row represents the value taken by one of the system variables. 

Since the original variables are in different units, they have to be scaled in a 

meaningful way. In this study, characteristic vectors are scaled in a way that 

scores will have unit variances. This scaling technique is quite popular for data 

analysis and quality control applications [7]. 

To scale the U-vectors (characteristic vectors or eigenvectors), the following 

transformation have been used: 

where L is a diagonal matrix and has characteristic roots (or eigenvalues) of the 

covariance matrix S as diagonal elements. The L matrix has been calculated 

during the PCA model building as: 



Principal components obtained by the transformation: 

will produce PCs that are still uncorrelated but now have variances equal to unity. 

Values of this quantity are called y-scores. The relation between y- and z-scores 

is: 

where li is the Rh characteristic root (or eigenvalue) of the covariance matrix. 

Since we have decided to retain the first two PCs from the PCA model, first two 

columns of W will be used to calculate the y-scores. 



The equation (5.4) may be inverted so that the original variables may be stated 

as a function of the principal components: 

because U is orthonormal and hence u - ~  = u'. This means that, given the z- 

scores, the values of the original variables may be uniquely determined [7]. 

However, X will be determined exactly only if all the PCs are used. If k < p PCs 

are used, only an estimate f of X will be produced. For the three-tank 

benchmark system, these values are k = 2, which is the number of PCs retained 

in the PCA model, and p = 13, total number of PCs. The estimate of X is 

Using the equations (5.5) and (5.7), this equation can be rewritten as 



where V -vectors are defined as 

The predicted test values, given the PCs in (5.8), are calculated using the first 

two columns of V as: 

The residuals are 



and their sum of squares (or Q statistic) is 

Q statistic was calculated for each sampling point generating a vector, VQ, of size 

( 2 0 0 ~  1 ). The same calculation was repeated for each type of faulty operation 

resulting in 20 VQ vectors of size (200x 1). Then, 20 VQ vectors were compared 

to the confidence limits for the Q statistic to determine whether the corresponding 

data set points to a faulty operation. 

5.2.3 Monitoring of the Three-Tank System for Fault Detection 

The Q statistic describes how far a measurement lies from the subspace defined 

by the PCA model. If the number of times that the corresponding VQ vector 

exceeds the 99% confidence limits for the Q statistic, QQ9, is more than 2, the 

current data set is considered to come from a faulty operation. (The current data 

set contains 200 measurements; therefore, the 99% confidence limits should be 

exceeded more than twice.) 

In the three-tank benchmark system, the limit for Q statistic can be calculated 

using the fact that the first two PCs were retained. The last p - k = 11 roots can 

be substituted in equations (3.1 7) and (3.1 8). From these, 6, = 0.3729, 

6, = 0.1 140, 6, = 0.0382, and ho = 0.2689. Letting a = 0.01 and c, = 2.57 , which 

corresponds to a 99% confidence limit, the limit for Q, using the equation (3.1 6), 

is calculated as: 



Values of Q higher than this are an indication that a data vector cannot be 

adequately represented by a two-component model. The Q statistic value for the 

sample observation calculated in (5.13), 114.6969, is significant according to this 

limit, which means a faulty operation is detected. 

This monitoring technique was evaluated for the 20 possible types of faulty 

operations described in Table 5.2. A process fault with intensity of 0.2 was 

introduced into the system at 0 second and lasted for 100 seconds. The process 

was monitored based on Q statistic with 99% confidence limits for 200 seconds. 

The results from the simulation of each 20 types of faults are given in Figure 5.6 

to Figure 5.9. The dotted red line on each figure shows the 99% confidence limit 

that has to be exceeded. 

This simulation study shows how PCA model of the three-tank system does in 

detecting single faults occurring under normal operating conditions. The results 

show that PCA based model detects 14 faults out of 20 at this intensity level 

corresponding to 70% success rate. It cannot detect the following faults given 

this confidence level: leak in R1, clog in branch with P2, clog in branch with PI ,  

increased friction in P I ,  bias in sensor of 11, and bias in sensor of 12 (see Figure 

5.6 (2,3), Figure 5.7 (7,8), and Figure 5.8 (1 4,18)). 

The same simulation was also run for fault intensity 0.5 and 1. The Q statistic 

plots of these simulations are given in Appendix 1 and 2. When the intensity of 

the faults increased to 0.5, the PCA based model can detect 15 faults out of 20 

faults increasing the success rate to 75% by detecting the fault "leak in RI", 

which was missed when the fault intensity was at 0.2. When the intensity of the 

fault is increased to 1, the performance of the traditional approach gets a little bit 

better reaching to 80% success rate by detecting 16 out of 20 faults. The new 

fault "clog in branch with PI"  gets detected in addition to those already detected. 

The traditional PCA based monitoring and fault detection worked quite well for 

detection certain types of faults when fault intensity was high. However, the 



performance of the PCA model degrades very quickly as we lower the intensity of 

the faults. The poor performance can be largely attributed to differences in the 

variance from one fault to another; so that data sets with smaller variances will 

appear to fall within the confidence region of the PCA model, regardless of 

differences in the covariance structure. 
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5.3 Proposed Approach 

The technique proposed in this thesis combines modem data mining techniques 

and PCA in an integrated framework for fault detection and identification of 

multivariate processes. The system can quickly and intelligently process huge 

amounts of data without requiring considerable computational effort for complex 

systems. 

The proposed model of the integrated framework consists of the following 

components as shown in Figure 5.10: 

1. Multivariate process. 

2. Data Repository. 

3. Data pre-processing Component. 

4. Data mining component (decision tree). 

Data from dynamic processes is inherently dynamic. This implies that the 

relationships in the data are subject to change. Therefore, any system that 

supports decision-making based on these data should dynamically update the 



models to reflect current states of the process. Othewise, users run the risk of 

making decisions on process data that does not reflect the true characteristic in 

the current environment. In the proposed system, the data mining component is 

responsible for the maintenance of the classification model of the system and 

must constantly evaluate these models based on new data. 

Figure 5.10 Model of the integrated framework 

The data repository stores multitudes of data from measured process variables. 

All data mining and machine learning techniques rely heavily on the availability of 

sufficient volumes of "good" data to develop models of processes in sufficient 



detail to diagnose the system faults. It is critical to have a data-cleaning step to 

process conditions such as data loss in transmission due to a malfunctioning 

data collection device. An additional data-preprocessing step is to normalize all 

raw data to a common scale to allow for further processing. All necessary data- 

preprocessing steps are handled by "Data pre-processing component" before 

building PCA model from data sets. 

The system needs to learn the patterns that have historically led to failure by 

using data mining techniques. Data mining component is responsible for creation 

and maintenance of the classification models associated with the process. Pre- 

processed and conceptualized data are fed to the data mining component, and 

based on these training data the decision tree is trained and stored. The result of 

the training process is a classification model of the system for the detection and 

identification of future faults. Details of building a decision-tree-based 

classification model of the three-tank system are given in section 5.4.3. 

Data pre-processing component used in the integrated data mining framework 

was built in MATLAB@ version 7.0 development environment. Then, it has been 

integrated with the decision tree building application developed by Quinlan [26]. 

Concept formation technique from continuous process measurements using PCA 

and k-Means clustering was introduced in Chapter 3; and C4.5 algorithm used to 

create decision trees for classification was described in detail in Chapter 4. 

5.4 Fault Detection Using Data Mining Framework 

5.4.1 Training Database Preparation 

Preparing the data mining framework for fault detection requires the training of 

the decision tree component. A training database for the three-tank system was 

generated by simulating the process via sirnulink@ in s at lab@ 7. Measurements 

of the 13 process variables in Table 5.1 were included in the database. 



The training database was generated in the following manner. For each 

consecutive 1200-second period, the mode of operation (normal or faulty) to be 

simulated was chosen randomly using a uniform random number generator. The 

normal and faulty operations occurred equally frequently. If the mode of 

operation selected was a faulty operation, a fault was generated using the fault 

number following the order in Table 5.2. Then, the selected fault was introduced 

into the system at 1000 seconds and lasted for 200 seconds. Dynamic responses 

of each process variable were recorded for 200 seconds when the process was 

operating in fault. Faults occurred one at a time (no simultaneous faults) and for 

the same length of time. The same intensity level was used for each fault type 

during the preparation of the training data sets. 

Using this simulation method, four hundred data sets were generated. For each 

data set, the thirteen variables were recorded as a dynamic trend consisting of 

200 sampling points. Therefore, for each variable the data size is a matrix of 400 

(number of data sets) x 200 (number of data points representing a dynamic 

trend). 

Test data cases were also created to test the effectiveness of the framework for 

fault detection. In order to create the test database, another set of observations 

was generated by simulating the process for each fault listed in Table 5.2. The 

test database contains 20 observations (one for each fault case); and for each 

observation in the test database, 200 sample points were recorded as in the 

training cases. Therefore, for each variable the data size in the test database is a 

matrix of 20 x 200. 

5.4.2 Data Pre-processing and Concept Formation 

Principal component analysis is applied to the data matrix of 400 x 200 x 13 

which contains the data cases from training database. The first two PCs from the 

PCA model are used to replace the dynamic trends of the process variables for 

subsequent k-Means clustering. 



First two PCs of each process variable are plotted in a two-dimensional PCA 

plane. This reduces the dimension of the time series process data while retaining 

its essential character. The k-Means clustering technique is then applied to group 

PCs into clusters in this two-dimensional plane. Figures 5.1 1, 5.12 and 5.13 

show the results of such clustering for concept formation on a two dimensional 

PCA plane. This permits a dynamic trend to be abstracted as a concept such as 

variable h2 in Cluster 3. 

After the concept formation has been done on training cases, test database of 20 

cases is pre-processed by applying the PCA. The two PCs of each process 

variables in the test database are projected onto the same PCA plane used for 

the concept formation of the training set. Each PCA plot from the test database 

then become a member of the cluster to which it is in closest proximity. PCs from 

the test data set are shown in red in Figures 5.1 1, 5.12 and 5.13. 

Figure 5.1 I (a) shows the plotting of the first two principal components of the 

variable Dpl. It shows that dynamic trends of Dpl for 400 training cases are 

grouped into three clusters. This means that the dynamic trends of the variable 

Dpl are conceptualized into a value space of three, Cluster 1, Cluster2, and 

Cluster3. PCs of the same variable from 20 test cases are also partitioned into 

these clusters as illustrated by red dots. This technique lets us extract concept 

from dynamic trend signals of any given unknown (or test) data set. 
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5.4.3 Classification 

Once the concept formation from dynamic trend signals is completed, the next 

step is to learn to generate knowledge correlating operational modes and 

extracted concepts. 

After the data sets are pre-processed and conceptualized using the steps 

explained above, the output of the concept formation process is sent to the 

decision tree component. This requires generating a control file as shown in 

Table 5.4 to be used by the decision tree generation tool. 



Table 5-4 Structure of the control file used by the decision tree generation tool 

1 h3 I Cluster 1. Cluster 2 I 

Variable name 
h l  
h2 

Q 1 l~luster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 51 

Value space 
Cluster 1, Cluster 2 

Cluster 1. Cluster 2. Cluster 3 

D P ~  
U 1 

Cluster 1, Cluster 2, Cluster 3 
Cluster 1, Cluster 2, Cluster 3 

I1 

I U2 I Cluster 1. Cluster 2 I 

Cluster 1, Cluster 2 

Q3 
s5 

D D ~  

w 1 I Cluster 1. Cluster 2 
Cluster 1, Cluster 2, Cluster 3 
Cluster 1, Cluster 2, Cluster 3 
Cluster 1, Cluster 2. Cluster 3 

Conceptualized process variables in each data set are expressed in a file as 

illustrated in Table 5.5. Each row in Table 5.5 shows the cluster number which 

each process variable is grouped into. Class label value is used for training data 

set only as it is used to train the decision tree. For the test cases; this column will 

be left blank since predicting the class labels for unknown cases is our ultimate 

goal in building decision tree. This data structure together with the control file 

shown in Table 5.4 is used to generate the decision tree classification model. 

12 

Table 5-5 Partial data structure used to train the decision tree 

Cluster 1, Cluster 2 



A decision tree is generated and saved using known data cases from the training 

database. Once the decision tree has been created using 400 training cases, test 

cases can be classified using this decision tree. In other words, class labels of 

each data case in the test database can be predicted to detect faults if there is 

any. The decision tree developed from the training database is shown in Figure 

5.14. 

43 = 1: faulty (10) 
43 = 3: faulty (31) 
43 = 2: 
:. . .h2 = 3: normal (0) 

h2 = 1: faulty (20) 
h2 = 4: faulty (10) 
h2 = 2: 
:...Ql in 1,2: normal (0) 

Q1 = 4: faulty (11) 
Ql = 5: faulty (10) 
Q1 = 3: 
:. . .I1 = 2: faulty (10) 

I1 = 1: 
: . . .wl = 2: faulty (10) 

wl = 1: 
: . . .U2 = 2: faulty (10) 

u2 = 1: 
:. . .I2 = 2: faulty (10) 

I2 = 1: 
:...h3 = 3: normal (0) 

h3 = 2: faulty (10) 
h3 = 1: 
:...Dpl = 1: normal (0) 

Dpl = 3: faulty (10) 
Dpl = 2: 
:...Ul = 1: normal (0) 

U1 = 3: faulty (10) 
u1 = 2: 
:...Dp2 = 1: normal (0) 

Dp2 = 2: normal (228/30) 
Dp2 = 3: faulty (10) 

Figure 5.14 Decision tree generated for training database with fault intensity 0.2 



Evaluation on test data (20 cases) : 

Decision Tree 
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S i z e  Errors 

(a) : class normal 
3 17 (b) : class faulty 

Figure 5.15 Evaluation results of the decision tree on 20 test cases 

The numbers in parentheses appearing after a leaf indicates the number of the 

training cases associated with each leaf and the number of them misclassified by 

the leaf. For example, the leaf (Dp2 = 2) with class label normal has 228 cases 

associated with it and it misclassifies 30 faulty cases out of 228 as normal. 

The decision tree shown in Figure 5.14 misclassifies 30 of the 400 training cases, 

which is equivalent to 7.5% error rate. Once the tree has been built, the file of 20 

test cases is processed and each case classified by the tree. The decision tree 

misclassifies only 3 test cases out of 20 as normal, achieving a success rate of 

85%. Under the same conditions, the traditional PCA method had a success rate 

of 70%. 

The decision tree component also generates a confusion matrix as part of the 

output on the test cases, showing how the misclassifications were distributed. 

Figure 5.1 5 shows the confusion matrix created on the test cases. There are 20 

test cases of class faulty, 17 of which are correctly classified as faulty while 3 are 

misclassified as normal. Table 5.6 shows all data cases in the test database 

along with the predicted class label for each case. The proposed framework 

cannot detect the following faults with intensity 0.2: clog in branch with PI ,  clog in 

branch with P2, and increased friction in PI. 



Table 5-6 Classification results for the test database with fault intensity 0.2. 

1 Fault 1 I Given I Predicted 
No 
1 
2 
3 

I 10 I friction in P I  1 faultv I normal 

Fault Description 
bias in sensor of h l  
bias in sensor of h2 
bias in sensor of h3 

4 
5 
6 
7 
8 
9 

faulty 
faulty 
faulty 
faulty 
faulty 
faulty 

leak in R1 
clog in branch with V1 
clog in branch with V2 
clog in branch with V4 

clog in branch with P I  
clog in branch with P2 

11 
12 

1 15 1 bias in sensor of I1 I faultv I faultv 

Class 
faulty 
faulty 
faultv 

fault; 
faulty 
faulty 
faulty 

normal 
normal 

13 
14 

Class 
faulty 
faulty 
faultv 

clog in branch with V5 
bias in sensor of Q1 

The framework was also tested using the process data generated by running the 

bias in sensor of Dpl 
bias in sensor of Dp2 

three-tank system with faults at intensity levels 0.5 and 1. The results of these 

simulations are given in Table 5.7 and Table 5.8, respectively. All misclassified 

- 
faulty 
faulty 

16 
17 
18 
19 
20 

fault types are shown in bold font in all tables. 

faulty 
faulty 

faulty 
faulty 

faulty 
faulty 
faulty 
faulty 
faulty 

bias in sensor of U1 
bias in sensor of Q3 
bias in sensor of 12 
bias in sensor of U2 
bias in sensor of w l  

As seen in Table 5.7, when the intensity of the faults is increased to 0.5, the 

faulty 
faulty 

fault; 
faulty 
faulty 
faulty 
faulty 

performance of the framework does not improve. These represent very similar -if 

not the same- results, that previously seen in the simulation performed with the 

intensity level of 0.2. 

When we increase the fault intensity to 1, the system has a success rate of 90%: 

only 2 out of 20 faulty cases are misclassified as normal (see Table 5.8). 



Table 5-7 Classification results for the test database with fault intensity 0.5. 



Table 5-8 Classification results for the test database with fault intensity 1. 

5.5 Fault Identification using Data Mining Framework 

Fault No 
1 

5.5.1 Training Database Preparation 

Preparing the data mining framework for fault identification also requires a fault 

training database. In this case study, a database of 500 data sets was obtained 

by carrying out various tests on the simulator. Each data set consists of thirteen 

variables, which are listed in Table 5.2. Each variable represents a dynamic trend 

consisting of 200 sample points. Therefore, for each variable the data size is a 

matrix of 500 (number of data sets) x 200 (number of data points representing a 

dynamic trend). 

Fault Description 
bias in sensor of h l  

The intensity of the fault in the training database was picked randomly using a 

uniform random number generator that ranged from 0.5 to 1. The simulation 

studies have shown that the performance of the clustering component degrades 

quickly for the faults whose severity is lower than 0.5. Since this affects the 

Given Class 
faulty 

Predicted Class 
faulty 



performance of the framework as a whole, only faults whose severity is between 

0.5 and 1 are introduced into the system during the simulation. Possible 

improvements that can be done on the clustering component are discussed in 

the Chapter 6. 

Once the relative fault size was selected, the simulation ran for 1200 seconds for 

each of the 20 fault types before a new fault size was selected. All fault lengths 

were 200 seconds in duration; therefore, the process was given 1000 seconds to 

return to the original steady state before each period of faulty operations started. 

Using this simulation method, faults in the training database were constructed 

with various intensity levels, which makes the training database resemble the 

historical database of a real life multivariate system as much as possible. 

5.5.2 Data Pre-processing and Concept Formation 

The training database is preprocessed to prepare the time-series process data 

for subsequent concept formation step. 

First, principal component analysis (PCA) is applied to a matrix of 500 (number of 

data cases) x 200 (number of sample points recorded for each process variable) 

x 13 (number of process variables) to reduce the dimension of the data set. The 

first two PCs of each process variable are plotted on a two-dimensional PCA 

plane to replace the dynamic trends. Then, k-Means clustering algorithm is 

applied to conceptualize variables into clusters. Each process variable takes 

discrete values from a region (or cluster) of the two-dimensional PCA plane. 

Figures 5.16, 5.17 and 5.18 shows the results of k-Means clustering applied to 

the PCs of each process variable for concept formation. 

5.5.3 Classification 

After pre-processing the training database and extracting the concept from 

continuous process variables, the results were sent to the decision tree 



component to identify the unknown faults. 400 cases in the training database 

were used to train the decision tree while 100 cases were kept aside to test the 

effectiveness of the data mining framework for fault identification with unknown 

fault records. Test cases contained faults with various intensity levels as the 

faults in the training cases. 

The decision tree built by the decision tree component is shown in Figure 5.1 9. 

The root node is Q3, which is the flow flowing to tank R3. This indicates that it is 

the most important variable that distinguishes operational modes representing 

the 400 training cases. Once the decision tree is built and saved, test cases can 

be processed by the tree to identify the fault type. 

The confusion matrix, which shows the results of the classification on the test 

cases, is given in Figure 5.20. The confusion matrix is the final part of the output 

generated by the framework and it shows how the misclassifications were 

distributed. There are 100 test cases in the test database, 10 of which are 

misdiagnosed. There are 5 test cases representing each faulty operation and 

only the test cases generated from fault types 'clog in branch with PI '  and 

'increased friction in DC motor of P I '  are misclassified as 'clog in branch with 

P2'. 

This test shows that data mining based fault identification system performs 

accurate identification of single faults in the tree-tank system. It can be seen from 

the final output of the data mining component that the proposed data mining 

framework can identify the unknown faults occurred in the system with an 

accuracy of 90%. 
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:. . . h 2  = 3 :  clogV2 ( 0 )  
: h2 = 1: c l o g v a  (20 
: h2 = 2 :  clogV4 (20 
Q3 = 2:  :. . .Q1 = 2 :  l e a k R l  (20  

Q1  = 3 : b i a s Q l  (20 
Q1 = 1: 
: . . . U l  = 1: biashl 

U1 = 3 :  biasul 

. . 

h 2  = 1: 
:. . .Dp2 = 2:  c logP2  ( 0 )  

Dp2 = 3 : b iasDp2  (20 )  
Dp2 = 1: 
: . . . D p l  i n  1 , 3 :  c l o g P 2  ( 0 )  

Dpl = 4 :  b i a s D p l  (20 )  
D p l  = 2 :  
: . . .U2 = 2 :  b i a sU2  (1) 

U2 = 3 :  b i a sU2  (19 )  
u2  = 1: 
: . , .I1 = 2 :  bias11 ( 4 )  

I1 = 3 :  bias11 ( 7 )  
I1 = 4:  bias11 ( 9 )  
I1 = 1: 
: . . . w l  = 1: cl0gP2 (60 /40 )  

w l  = 2 :  b i a s w l  ( 4 )  
w l  = 3 : b i a s w l  ( 7 )  
w l  = 4:  b i a s w l  ( 9 )  

Figure 5.19 Decision tree generated from 400 training cases. 

5.5.4 Previous Work and Discussion 

In a recent study, Li [5] has developed an automated framework for fault 

diagnosis based on nonlinear principal component analysis (NLPCA) neural 

network, and tested it on the three-tank benchmark system. Her approach was 

successful to diagnose single faults only if the training data set used to train the 

neural network contained the faults with the same intensity level as in the test 

data set. She has trained the neural network with the faults created at two 

severity levels, 0.1 and 0.5. The framework diagnoses the faults correctly if their 

intensity is at 0.1 or 0.5. When a fault with different intensity level from those in 

the training set occurs, the performance degrades significantly. The success rate 



of the framework degrades to 55% in some cases for the faults whose intensity 

varies from the training set. 

Neural network approach requires extensive amount of training data cases to 

successfully represent a complex real life system and it is computationally 

expensive. A major limitation of neural-network based approach is that it gives 

predictions but not causal and qualitative explanations. This means that in 

process operational decision support, it is not able to indicate to operators what 

variables are responsible for the diagnosed fault and provides no clues for 

operational adjustment [2, 291. 

The proposed data-mining framework addresses this limitation of the neural 

network based approach by using a training database that contains faults whose 

intensity was randomly picked. The case study has showed the system's ability 

to accurately diagnose randomly generated faults. The proposed approach also 

gives causal explanations of various faults in the form of decision trees. 

5.6 Conclusions 

In this chapter, the implementation of data mining framework was tested on the 

tree-tank benchmark system. First, traditional PCA based monitoring technique, 

Q-statistic, was used to detect single faults occurring in the system. The highest 

success rate that was achieved by this technique was 80% with fault intensity 1. 

Then, the framework has been compared to the Q-statistic technique to 

demonstrate the fault detection capability of the proposed approach. The test 

results show that proposed approach outperforms the traditional PCA based fault 

detection technique in all fault intensity levels. 

Second, the framework was used as fault identification system to correctly 

identify single faults. In this case study, the training database was created with 

faults whose intensity was selected randomly. Test cases were also created in 

the same manner to demonstrate the fault identification capability of the 



framework regardless of the fault size used in the training data set. For the three- 

tank benchmark system, the results show that the proposed data mining 

framework identifies faults accurately in many cases. 





CHAPTER 6: 

CONCLUSIONS 

In large industrial plants, modern distributed control and automatic data logging 

systems collect large amount of data that contain valuable information about both 

normal and abnormal operations. A data mining system has considerable 

potential in extracting knowledge from such data that can be used for fault 

detection and identification. The objective of this research was to exploit 

historical process data by applying well known data mining techniques to gain 

insight into the behavior of a complex multivariate process. An integrated data 

mining framework combining statistical methods with modern data mining 

techniques has been developed. 

There are numerous techniques in data mining and machine learning, which 

have proved to be very successful. The way of making use of data depends on 

the type of learning: Supervised (e.g. neural-network based machine learning, 

decision tree) or unsupervised (e.g. clustering). Although supervised learning 

normally gives more accurate predictions, there are often difficulties in finding 

training data. However, dynamic simulators have proved to be an effective way to 

generate training cases. Another problem with supervised learning is that 

supervised training is not effective in dealing with new cases that are beyond the 

range of training patterns. Unsupervised learning methods would require no 

training data but tend to give less accurate results. In the proposed framework, 

both supervised and unsupervised techniques have been used to take advantage 

of both approaches. 

The most critical step in building such data mining system was extracting 

concepts from multivariate time-series process data. To be able to extract 

knowledge from dynamic signals was the key to the success of the framework. 



For this purpose, an approach using principal component analysis proposed by 

Wang and Li [2] was adapted. The adapted PCA method works as a 

visualization-based analysis tool to help the user lead the subsequent clustering 

process, which is an unsupervised learning. The PCA and clustering together 

comprise the data pre-processing step of the KDD process which proposed data 

mining framework employs. The output of the data pre-processing component is 

then fed to the decision tree component, which is a supervised learning 

technique. 

The approach was illustrated on a three-tank benchmark system, which is a 

highly nonlinear multivariate process. It has been showed that the proposed 

data-mining based fault detection and identification scheme can detect and 

identify single faults very accurately. 

Although the approach is well founded, there are some limitations to be 

addressed. One of the key assumptions made during concept extraction from 

dynamic trend signals is that the first two PCs can represent most of the variation 

of the variable. This assumption may not be true in some practical industrial 

processes in which case a further analysis should be run to determine 

appropriate number of principal components during data pre-processing step. 

Another limitation of this framework comes from the use of k-Means clustering. k- 

Means clustering is a very fast and effective technique and employed in many 

data mining tools, yet it cannot recognize the non-spherical clusters, which might 

pose some limitations during concept formation process. 

Because the field of data mining and its application to fault detection and 

identification is so new, the possibilities for future research are enormous. A few 

suggestions are given here. 

Evaluating clustering techniques 

Future improvements to the data pre-processing component can be done in 

several directions. Standard k-Means clustering algorithm can be modified to 



detect the true number of clusters automatically for each variable. The end user 

can choose either to lead the concept extraction process iteratively by interaction 

with the system through user interface or to have a completely automatic KDD 

process. 

When clusters are not neatly expressed as Gaussian noise around a central 

point many things can go wrong in a k-Means approach. Newer clustering 

algorithms such as CURE and CHAMELEON can be employed to be better able 

to handle clusters of arbitrary shapes and sizes [38]. These new clustering 

techniques can significantly improve the framework's overall fault detection ability 

even under the faults occurring at a very low intensity level. 

Background Knowledge 

It is also important to include the role of background knowledge and a model of 

the domain in the KDD process. Much of that is resident only in the mind of the 

domain expert, but principal component analysis technique can take advantage 

of formally represented knowledge in the course of fitting data to the model. The 

proposed system can be modified to allow the user to define a threshold to be 

used for finding optimum number of principal components during the PCA 

modeling of the process variables for concept extraction. 

Graphical User Interface 

This research explores the integration of a heterogeneous suite of data mining 

techniques in an integrated framework. The current system has been made up of 

several scripts that run asynchronously and requires user interaction to lead the 

KDD process. In order to have a better understanding of the problem domain, an 

effective graphical user interface can be incorporated into the system. The output 

generated by the decision tree component is given in text format. Data 

visualization techniques can be applied to the output to visualize complex 

decision tree structures and rule sets. 
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Appendix 1 : Q-statistic Charts for a Single Fault with Intensity 0.5 
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Appendix 2: Q-statistic Charts for a Single Fault with Intensity 1. 
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