
FAULT DIAGNOSING OF MULTIVARIATE PROCESSES

BASED ON DATA MINING

Yildiz Terkesli

B.Sc., Computer Engineering, Istanbul Technical University, 1998

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

In the

School of Engineering Science

O Yildiz Terkesli 2006

SIMON FRASER UNIVERSITY

Summer 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Chair:

Yildiz Terkesli

Master of Applied Science

Fault Diagnosing of Multivariate Processes Based

on Data Mining

Dr. Ivan V. Bajic

Assistant Professor, School of Engineering Science

Date Approved:

Dr. Mehrdad Saif

Senior Supervisor

Professor, School of Engineering Science

Dr. John D. Jones

Supervisor

Associate Professor, School of Engineering Science

Dr. William A. Gruver

Internal Examiner

Professor, School of Engineering Science

SIMON FRASER @ UNIVERSITYl i bra r y u

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

In modern industrial plants, large numbers of process measurements are stored

in historical databases providing a potentially valuable source of process

information. One potential use for historical plant data is as an aid in fault

diagnosis. However, information contained in these databases has been

underutilized for several reasons. First, the volume of data that must be analyzed

is enormous. Second, the data are multidimensional. Third, the variables are

interrelated and need to be considered simultaneously in the analysis.

In this thesis, a new data mining framework combining principal component

analysis (PCA) and modern data mining techniques (k-Means clustering and

decision tree induction techniques) is developed to exploit multivariate process

data to detect and identify process faults.

An extensive simulation study for a three-tank benchmark system demonstrates

that this strategy is more effective than existing PCA methods in detecting

system faults. It can also successfully distinguish between 20 different system

faults.

Keywords:

Fault detection; fault identification; principal component analysis; data mining

iii

l o my parents.

I would like to thank all of the friends, family and staffs of School of Engineering

Science who have, in various ways, helped me complete this thesis. First, I

would like to thank my senior supervisor Professor Mehrdad Saif, for his

guidance and insightful advice in completing my thesis.

I would also like to express my gratitude to Dr. John Jones for serving as my

Supervisory Committee member and Dr. William Gruver for accepting to be my

internal examiner.

I would also like to thank Department of Computer Automation and Control at

Jozef Stefan lnstitute for their permission to use the three-tank benchmark

system in this research. I give special thanks to Dr. Damir Vrancic of Department

of Computer Automation and Control at Jozef Stefan Institute for his extra effort

in providing me Simulink files of the benchmark system.

Most importantly, I would like to thank my family for supporting me during these

years. Regardless of how far away they are, this research couldn't have been

accomplished without their constant support and encouragement.

TABLE OF CONTENTS

. .
Approval ... 11

... .. Abstract 111

.. Dedication iv

Acknowledgements .. v

Table of Contents ... vi
... .. List of Figures VIII

List of Tables ... x

Table of Acronyms ... xi

Chapter 1 : Introduction .. 1

.............. Chapter 2: An Overview of Data Mining and Knowledge Discovery 6
2.1 Definition of Knowledge Discovery in Databases 6
2.2 The KDD Process .. 8
2.3 Data Mining Methods and Techniques ... 11

2.3.1 Clustering .. 11

... 2.3.2 Classification 12

2.3.3 Conceptual Clustering and Classification 12

2.3.4 Mining Time Series Data ... 13

.. 2.4 Problem Description 1 4
2.5 Proposed Data Mining Framework ... 15
2.6 Pre-processing Continuous Process Variables .. 16
2.7 Conclusions .. 17

Chapter 3: Data Preprocessing for Concept Formation 20
3.1 Introduction .. 20

... 3.2 Principal Component Analysis -20
3.3 Theory of PCA .. 21

.. 3.4 Process Monitoring based on PCA 25
... 3.5 Data Pre-processing using PCA 27

....................... 3.6 Data Clustering - Second Step in the Concept Formation 31
.. 3.6.1 Cluster Analysis 32

3.6.2 k-Means Clustering ... 33

.. 3.7 Conclusions 38

Chapter 4: Classification by Decision Tree Induction 39
4.1 Decision Tree ... 39
4.2 Decision Tree Induction ... 41
4.3 Attribute Selection .. 43
4.4 An Illustration ... 45
4.5 Gain Ratio Criterion .. 48
4.6 Conclusions .. 49

Chapter 5: Data Mining Framework applied to Three-Tank Benchmark
System ... 51

5.1 Three-Tank Benchmark System ... 51
5.2 Traditional Approach: PCA Based Fault Detection 58

5.2.1 PCA Model of the Three-Tank System .. 59

5.2.2 Fault Detection based on Q statistic .. 63

5.2.3 Monitoring of the Three-Tank System for Fault Detection 69

.. 5.3 Proposed Approach -75
5.4 Fault Detection Using Data Mining Framework .. 77

5.4.1 Training Database Preparation ... 77

............................... 5.4.2 Data Pre-processing and Concept Formation 78

... 5.4.3 Classification 82

5.5 Fault Identification using Data Mining Framework 88
... 5.5.1 Training Database Preparation 88

5.5.2 Data Pre-processing and Concept Formation 89

... 5.5.3 Classification 89

5.5.4 Previous Work and Discussion .. 94

5.6 Conclusions .. 95

Chapter 6: Conclusions .. 98

Appendices .. 101
Appendix 1 : Q-statistic Charts for a Single Fault with Intensity 0.5 102

............. Appendix 2: Q-statistic Charts for a Single Fault with Intensity 1 106

.. Bibliography 110

vii

LIST OF FIGURES

Figure 2.1 An overview of the steps comprising the KDD process 10
Figure 2.2 Proposed data mining framework for fault detection and

identification .. 18
Figure 3.1 Dynamic trends of a variable for two different data cases 28
Figure 3.2 Eigenvalues of the sample process variable 29
Figure 3.3 PCA two-dimensional plane of a variable ... 31
Figure 3.4 Initial setup for k-Means algorithm .. 36
Figure 3.5 Results of the first iteration ... 36
Figure 3.6 Results of the second iteration ... 37
Figure 4.1 A partial decision tree for the concept of "loan approval" 41
Figure 4.2 Decision tree generated by C4.5 .. 48
Figure 5.1 Schematic diagram of the benchmark process 52
Figure 5.2 Simulink schema of the system .. 54
Figure 5.3 A demo simulation file realizing 3 different faults 55
Figure 5.4 Geometric interpretation of a score vector for a data point

projected on the two dimensional subspace defined by PC1
and PC2 .. 62

Figure 5.5 Scores plot for principal component 1 versus principal
component 2, calculated from nominal data (triangles) and
faulty process operation .. 63

Figure 5.6 Q-statistic plots with 99% confidence limit for fault intensity of
0.2 ... 72

Figure 5.7 Q-statistic plots with 99% confidence limit for fault intensity of
0.2 ... 73

Figure 5.8 Q-statistic plots with 99% confidence limit for fault intensity of
0.2 ... 74

Figure 5.9 Q-statistic plots with 99% confidence limit for fault intensity of
0.2 ... 75

Figure 5.1 0 Model of the integrated framework .. 76
Figure 5.1 1 Results of k-Means clustering of PCs on PCA plane 80
Figure 5.12 Results of k-Means clustering of PCs on PCA plane 81
Figure 5.1 3 Results of k-Means clustering of PCs on PCA plane 82
Figure 5.14 Decision tree generated for training database with fault

intensity 0.2 .. 84
Figure 5.15 Evaluation results of the decision tree on 20 test cases 85

viii

Figure 5.16 Results of k-Means clustering of PCs of process variables on
... two-dimensional plane -91

Figure 5.1 7 Results of k-Means clustering of PCs of process variables on
.. two-dimensional plane 92

Figure 5.1 8 Results of k-Means clustering of PCs of process variable wl 93
Figure 5.1 9 Decision tree generated from 400 training cases 94
Figure 5.20 Confusion matrix generated by the decision tree for the test

... cases -97

LIST OF TABLES

Table 3-1
Table 4-1
Table 5-1
Table 5-2
Table 5-3
Table 5-4

Table 5-5
Table 5-6

Table 5-7

Table 5-8

Eigenvalues of a process variable .. 30
... A small training set 45

Available process measurements ... 56
.. List of simulated faults 57

Variance explained by first five principal components 61
Structure of the control file used by the decision tree
generation tool .. 83
Partial data structure used to train the decision tree 83
Classification results for the test database with fault intensity
0.2 ... 86
Classification results for the test database with fault intensity
0.5 ... 87
Classification results for the test database with fault intensity 1 88

TABLE OF ACRONYMS

AEM:

ART:

DM:

FDI:

FFNN:

KDD:

MSPM:

NLPCA:

PCA:

PC:

SPE, :

Abnormal Event Management

Adaptive Resonance Theory

Data Mining

Fault Detection and Isolation

Feedforward Neural Networks

Knowledge Discovery in Databases

Multivariate Statistical Process Monitoring

Nonlinear Principal Component Analysis

Principal Component Analysis

Principal Component

Squared Prediction Error

CHAPTER 1:

INTRODUCTION

Fault detection and diagnosis is an important problem in process engineering.

Early detection and diagnosis of process faults while plant is still operating in a

controllable region can help avoid catastrophic failures and reduce productivity

loss. To improve the efficiency, reliability and safety of modern complex systems,

advanced methods of supervision, fault detection and fault diagnosis have

become increasingly important for many technical processes. Since the

petrochemical industries lose an estimated 20 billion dollars every year, they

rated abnormal event management (AEM) as their number one problem that

needs to be solved [36].

The discipline of process control has made tremendous progress in the last three

decades with advances in the computer control of complex systems. However,

process fault detection and diagnosis, a very important control task in managing

process plants, still remains largely a manual activity, performed by the human

operators. This task has become increasingly difficult due to the broad scope of

the diagnostic activities and size and complexity of modern process plants. For

example, in large scale process plant there may be as many as 1500 process

variables observed every few seconds leading to a massive amount of historical

data 1371. Furthermore, the task of fault diagnosis is made difficult by the fact that

the process measurements may often be insufficient, incomplete and unreliable

due to a variety of causes such as sensor biases or failures. Thus, the current

challenge for control engineers is the automation of process fault detection and

diagnosis.

Fault diagnosis methods can be broadly classified into three general categories:

quantitative model based methods, qualitative model based methods, and

process history based methods. The information needed to effectively detect and

diagnose fault situations is based on knowledge of the process and analysis of

the process data. Two of the main components in a diagnosis classifier are: (1)

the type of knowledge and (2) the type of diagnostic search strategy. Diagnostic

search strategy is usually a function of knowledge representation scheme and is

influenced by the type of a priori knowledge available. Hence, type of a priori

knowledge used is the most important distinguishing feature in diagnostic

systems. The basic a priori knowledge that is needed for fault diagnosis is the set

of failures and the relationship between the observations and the failures. A

diagnostic system may have them explicitly (as in a table lookup), or it may be

inferred from some source of domain knowledge. The a priori domain knowledge

may be developed some fundamental understanding of the physics of the

process, which is referred as model-based knowledge. On the other hand, it may

be gleaned from past experience with process, which is called process history

based knowledge. In contrast to the model-based approaches (either quantitative

model based or qualitative model based) where a priori knowledge about the

model of the process is assumed, in process history based methods only the

availability of large amount of historical process data is assumed [36].

In process operation and control, modern distributed control and modern data

logging systems allow enormous amounts of data which contain valuable

information about both normal and abnormal operations to be routinely collected

and stored. There is also product quality, production, and maintenance data

which are stored less frequently. Thus, a massive amount of process data (past

and present) is available for analysis. Despite industrial interest and significant

potential benefits of the historical plant data, the information contained in these

databases has remained elusive due to the challenges encountered trying to

extract it. It is a well-known fact that industrial plants are "data rich, but

information poor". The largest obstacle to using historical data is simply finding

relevant patterns in such a vast sea of data. In a typical large scale industrial

plant there can be thousands of measured variables with measurements being

made as frequently as every fraction of a second. In order to use such a large

database as an aid in fault diagnosis, proper techniques must be used which

require minimal computer time while still revealing the unique characteristics of

the process data.

Multivariate statistical techniques such as principal component analysis (PCA)

have received a great deal of attention in recent years for their ability to

successfully determine when a fault has occurred. However, diagnosing the fault

has proven to be much more difficult and often requires process knowledge (e.g.

expert systems) or a set of reference data for each possible fault (pattern

recognition or supervised learning).

In recent years, there have been significant developments in extracting

information from large databases and in automating data analysis. A research

community has been developed under the label of data mining and knowledge

discovery in databases (KDD). The goal of data mining is to discover previously

unknown but potentially useful patterns or relationships in a database. Data

mining techniques have been successfully applied to databases in space,

telecommunication, business, and marketing industries. However, there appear

to be very few, if any, applications of data mining to fault detection and isolation

problems.

The major challenge in developing a fault diagnosis system arises from the

characteristics of operational data, which are summarized as follows:

Large volume: Large volumes of data demand large computer memory

and high speed.

0 High dimensionality: The behavior of a process is usually defined by a

large number of correlated variables. Dimension reduction is required to

visualize the process behavior.

0 Process uncertainty and noise: Good data pre-processing techniques are

required to clean the data.

0 Process dynamics: Many data mining and knowledge discovery tools are

mainly designed to handle categorical values such as temperature being

high or low. They are not effective in dealing with continuous-valued

variables. It is very important to design tools or techniques that are able to

handle variables that take values as dynamic trends

Complex interactions between process variables: Many techniques require

attributes to be independent. However, many process variables are

interrelated and therefore need to be considered simultaneously in the

analysis.

There has been a significant progress in automating data analysis for process

monitoring and fault diagnosis by successful applications of the machine learning

techniques in data mining process. These methods can be roughly divided into

two categories: supervised and unsupervised [Z]. Supervised techniques are

associated with assignment of a set of unknown data to previously known

classes according to a similarity measure. Supervised methods need a large

number of data sets with known classes as training data to train the models. A

typical example would be the feedforward neural network (FFNN). Though they

can generally give accurate results, supervised methods are not applicable when

training data are not available. Unsupervised approaches, which can learn from

unknown to predict unknown, can be used in this situation. Widely studied

unsupervised learning methods include nonlinear principal component analysis,

adaptive resonance theory (ART), and Bayesian automatic classifications.

However, the main limitation of supervised and unsupervised approaches

mentioned above is that they give predictions but are not able to give causal

explanations about the root cause of the fault.

Besides the ability to identify the source of malfunction, a diagnostic system

should also provide explanations on how the fault originated and propagated to

the current situation. This is a very important factor in designing on-line decision

support system. This requires the ability to reason about the cause and effect

relationships in a process. A diagnostic system has to justify its

recommendations so that the operator can accordingly evaluate and act using

hislher experience [36].

The objective of this research project is to develop an integrated data mining

framework for fault detection and isolation (FDI) using historical process data. It

combines the multivariate statistical process monitoring (SPM) technique with

modern data mining methods. The approach presented in this research is able to

not only detect and isolate faults using training data set, but also generate causal

knowledge indicating the variables that are responsible for the malfunction. The

approach described in this thesis utilizes a technique developed by Wang and Li

(1999), which uses PCA to process dynamic time series data. Then, an

unsupervised learning technique, k-Means clustering, is used to conceptualize

the process data for subsequent supervised learning, decision tree classification.

Here, decision trees are employed to detect and identify various faults of a

multivariate process.

The remainder of the thesis is organized as follows: A brief introduction to data

mining and knowledge discovery in databases is provided in Chapter 2. The

proposed data mining framework is also introduced in Chapter 2. Principal

component analysis (PCA), concept formation from dynamic trend signals using

PCA and k-Means clustering technique are provided in Chapter 3. The decision

tree classification algorithm used in this research is introduced briefly in Chapter

4. The performance of the developed framework is compared with the

conventional monitoring technique in a detailed simulation study. The

implementation of the data mining framework and the results of the simulation

are presented in Chapter 5. Finally, the research is summarized along with

recommendations for future research in Chapter 6.

CHAPTER 2:

AN OVERVIEW OF DATA MINING

AND KNOWLEDGE DISCOVERY

2.1 Definition of Knowledge Discovery in Databases

The fast development and widespread application of information and database

technologies has created many new opportunities for those working on

engineering, science, and business. In the last decade or so, there has been an

explosive growth in our capabilities to both generate and collect data. Advances

in data storage technologies and database management systems have allowed

us to create mountains of stored data. The field of data mining (DM) and

knowledge discovery in databases (KDD) has emerged as a new discipline in

engineering and computer science due to advances in data collecting

technologies and high speed computing.

With the increasing use of databases the need to be able to exploit large

volumes of data being generated has become very critical to be competitive. The

large volume of data and high dimensionality of databases have made traditional

manual methods of data analysis a very difficult and time-consuming task if not

impossible. A significant need exists for a new generation of techniques and tools

with the ability to intelligently and automatically assist humans in analyzing the

mountains of data for nuggets of useful knowledge. The aim of data mining and

KDD is to develop tools and methodologies to automate data analysis process

and find useful information and knowledge from data to help in decision-making

process.

A widely accepted definition of KDD is given by Fayyad et. al. [3] as:

"the non-trivial process of identifying valid, novel, potentially useful
and ultimately understandable patterns in data."

Fayyad et. al. (1996) also define the process of data mining in this context as:

"a step in the KDD process by which patterns are extracted and
enumerated from the data."

The analysis of these definitions shows that KDD is a very complicated process

comprising a number of steps, and data mining is one step in the process. Since

data mining is the central theme to the process of knowledge discovery, these

terms are often used interchangeably in the literature. The key aspects of this

definition are that the whole KDD process discovers knowledge in the form of

patterns from the existing data. These patterns should be understandable and

potentially useful to the organizations so that decision makers or domain experts

are able to understand the knowledge and use it. Data mining is a process

concerned with uncovering meaningful patterns, association, anomalies and

statistically significant structures in the data.

Data mining generally refers to the case where the data is too large or too

complex and heterogeneous in content to allow either manual analysis or

analysis by means of simple tools and queries. In general, one can summarize

that for a typical data mining case [14]:

The data set can be quite large,

The problem generally challenging and is often not well defined,

There are missing and faulty data,

There are redundancies in the data fields, but the redundant fields do not all

have the same quality.

Data mining is an interdisciplinary science whose domain area ranges from

statistics to data warehousing, database systems, pattern recognition, machine

learning, artificial intelligence, high performance computing, signal and image

processing, computer visualization, etc. As data mining has been applied to new

problem domains, this technology mix has grown as well. Data mining and KDD

borrows methods, algorithms, and technologies from these diverse fields to

extract knowledge from data, develop means of classifying the data, and

discover patterns in the data. The idea behind it is to look at data in a different

way and to use innovative and effective data visualization techniques so that we

can obtain a novel or deeper understanding of it.

Data mining and KDD are potentially valuable in virtually every industrial and

business sector where database and information technology is used. Data mining

techniques are being applied for the analysis of data in a variety of fields

including medical imaging, astronomy, bio-informatics, web mining, text mining,

customer relationship management, market-basket analysis, fraud detection,

portfolio trading, manufacturing process analysis, experiment result analysis and

scientific data analysis. Recently, some researchers have applied data mining

techniques in control engineering for fault detection and identification problem.

[I 5, 161. Scientific data mining distinguishes itself in the sense that the nature of

datasets is often very different from traditional market-driven data mining

applications. The datasets now might involve vast amounts of continuous data,

and accounting for underlying system nonlinearities can be extremely challenging

from a machine learning point of view [14].

2.2 The KDD Process

The KDD method is interactive and iterative, involving numerous steps with many

decisions made by the user. When it is applied to real world problems, these

tasks can be very complex. A typical KDD process can be broken down into the

following steps [3]:

1. Developing an understanding of the application domain, the relevant prior

knowledge and the goals of the end-user.

2. Creating a target data set: selecting a data set or focusing on a subset of

variables or real world data on which discovery is to be performed.

3. Data pre-processing and cleaning: basic operations such as the removal

of noise or outliners if appropriate, collecting the necessary information to

model and deciding on strategies for handling missing data fields, and

accounting for time sequence information and known changes.

4. Data reduction and projection: finding useful features to represent the data

depending on the goal of the task. Using dimensionality reduction or

transformation methods to reduce the effective number of variables under

consideration or to find invariant representation for the data.

5. Choosing the data mining task: deciding whether the goal of the KDD

process is logical, summarizing, classification, regression, prediction, and

clustering etc.

6. Choosing the data analysis algorithms: selecting methods to be used for

searching for patterns in the pre-processed data. This includes deciding

which models and parameters may be appropriate and matching a

particular data mining method with overall criteria of KDD. Most of the

time, the person who runs the data mining task should investigate several

analysis models before being able to choose one of them. After method

selection, the analyst has to select the important parameters of the model.

7. Data mining: searching for patterns of interest in a particular

representational form or a set of such representation, including

classification rules or trees, regression, clustering, sequence modeling,

dependency, and so forth. The user can significantly aid the data mining

method by correctly performing the preceding steps.

8. Interpreting mined patterns, and possible return to any of the previous

steps.

9. Consolidating the discovered knowledge: incorporating this discovery

knowledge into the performance system, taking actions based on the

knowledge, and reporting it to interested parties. This also includes

checking for and resolving potential conflicts with previously believed (or

extracted) knowledge.

The KDD process can involve significant iterations and may contain loops

between any two steps. The basic flow of steps is illustrated in Figure 2.1.

Figure 2.1 An overview of the steps comprising the KDD process

During the data pre-processing, cleaning and data reduction steps, relevant high

level features or attributes are extracted from the low level data. To ensure the

success of the data mining process, it is important that the features extracted

from data are relevant to the problem and representative of the data. Although

much of the focus in KDD process is on the data mining step, the other steps are

of considerable importance for the successful application of KDD in practice. It is

important to note that often a large amount of effort is required before the data

can be presented in a format that is suitable for data mining. Data cleaning and

pre-processing often takes up a large part of the resources committed to a typical

data mining project and might involve 80 percent of the effort. It is often

necessary to experiment with different data transformations and dimension

reduction techniques (e.g. Fourier and wavelet transforms, PCA) in the data pre-

processing step.

2.3 Data Mining Methods and Techniques

A wide variety of methods and techniques are commonly used in data mining

applications. In general, data mining tasks can be classified into two categories:

descriptive and predictive [4]. Descriptive mining tasks characterize the general

properties of the data in the database. Predictive mining tasks perform inference

on the current data in order to make predictions.

According to functions and application purposes, data mining methods can

involve clustering, classification, attribute and feature selection, the formation of

rules and outlier detection. These techniques can be based on statistics,

probability theory, Bayesian networks, decision trees, association rules, neural

networks, evolutionary computation, and fuzzy logic [I, 41. A very brief review of

the techniques that is used in this research is given in the following section.

2.3.1 Clustering

Clustering, which is also called unsupervised machine learning, aims to generate

a classification scheme for grouping the objects into a number of classes such

that objects within a class are similar, in some respect, but distinct from those

from other classes. This involves determining both the number and description of

the classes. Unlike classification, which analyzes class-labeled data objects,

clustering analyzes data objects without consulting a known class label. In

general, class labels are not present in the training data because they are simply

not known.

The grouping often depends on calculating a similarity or distance measure. The

objects are clustered or grouped based on the principle of maximizing the in-

class similarity and minimizing the interclass similarity. Clusters of objects are

formed so that objects within a cluster have high similarity in comparison to one

another, but are very dissimilar to objects in other clusters. Clustering is a useful

step to look at the data before further analysis is carried out. The data mining

methods to be applied can be further defined based on the prior knowledge from

data gathered through clustering. Grouping multivariate data into clusters

according to similarity or dissimilarity measures is the goal of some applications.

Examples of the clustering methods are unsupervised neural networks, including

self-organizing Kohonen neural networks, Bayesian automatic classification,

partitioning methods (k-Means and k-Medoids).

2.3.2 Classification

Classification is the process of finding a set of models (or functions) that describe

and distinguish data classes or concepts, for the purpose of being able to use the

model to predict the class of objects whose class label is unknown [4].

Classification is also called supervised machine learning because it always

requires data patterns with known class assignments to train a model which is

then used for predicting the class assignments of new data patterns. The derived

model is based on the analysis of a set of training data. The derived model may

be represented in various forms, such as classification rules (IF-THEN), decision

trees, mathematical formulas, or neural networks. A decision tree is a flow chart

like tree structure, where each node denotes an attribute value, each branch

represents an outcome of the test, and tree leaves represent classes.

2.3.3 Conceptual Clustering and Classification

Most clustering and classification algorithms depend on numerically calculating

some sort of similarity or distance measure, and because of this they are often

called similarity based methods. On the other hand, conceptual clustering and

classification develops a qualitative language for describing the knowledge used

for clustering and is basically in the form of decision trees or production rules.

The inductive system C4.5 is a typical approach [26, 271, which is able to

automatically generate decision trees and production rules from the data, which

is pre-processed and converted into flat file format. Decision trees and rules have

a simple representation, making the derived model easy to comprehend by the

end user. However, available approaches were mainly developed for problem

domains in which variables take only categorical values, such as temperature

being high and low. They are not effective in dealing with time series or

numerical data. Discretization of numerical time series variables to categorical

values is necessary to successfully apply this technique to real world engineering

domains.

2.3.4 Mining Time Series Data

Data mining of historical databases for process monitoring and fault diagnosis

has started to receive attention in the computer science literature; however

problems involving time-series databases have been addressed only recently.

Many industrial and business areas deal with time-series or dynamic data. All

statistical and real-time control data in today's process monitoring and control

systems are essentially time-series [I]. However, to make use of continuous

process data in a computer system, it is required to compress the dynamic data

in order to reduce dimensions.

It is very easy for humans to capture features of each dynamic trend and identify

their differences. However, it is very difficult for computers to do the same task.

Most KDD techniques cannot account for the time series data. To make the time-

series data ready for a data mining task, one has to carry out pre-processing of

the data to use minimum data points to capture the features and remove noise.

Some of the techniques that have been used to pre-process the dynamic trend

signals are Kalman filters, Fourier and wavelet transforms, and multivariate

statistical techniques like PCA and neural networks.

2.4 Problem Description

Plant operators have long recognized the value of historical process data and

have collected vast amount of data using advanced data collection and storage

systems. In the process industries, interest in collecting and storing process data

has increased to the point that majority of modem industrial plants use

commercial data historians to collect and store process measurements in a

historical database [6]. It would be beneficial if these data could be categorized

into groups of operating conditions so that the characteristics of these groups can

be used for decision support in fault detection and diagnosis (Wang and

McGreavy, 1 998).

Despite the significant potential benefits of historical process data, it has

remained very difficult to extract the information contained in these databases

due to a number of reasons. First the data volume is too large and data is

multidimensional in nature. Second, the variables recorded in a plant are highly

correlated and therefore need to be processed simultaneously in analysis. Other

factors that make data processing a very challenging task are noise, uncertainty

and dynamics of the system (e.g. nonlinearity).

Recently there has been a significant progress in applying data analysis methods

for process monitoring and fault diagnosis. These methods can be roughly

divided into two categories: supervised and unsupervised [I]. Supervised

methods need a large number of data sets with known classes to train the

models. FFNN and decision trees are well known supervised machine learning

techniques. Although supervised methods can give accurate results, they are not

applicable for the domains for which training data are not available.

Unsupervised approaches can learn from grouping data sets into classes based

on a distance or similarity measure. Unsupervised learning methods which have

been studied for operational state identification and fault diagnosis are nonlinear

principal component analysis, adaptive resonance theory (ART), and Bayesian

automatic classification.

All supervised and unsupervised approaches mentioned above use the notion of

similarity to build their models. A major limitation of distance-based clustering is

that it gives predictions but not casual and qualitative explanations. This means

that for a process monitoring system it is not able to provide any clues of what

variables are responsible for the observed fault.

2.5 Proposed Data Mining Framework

In this research project, a combined data mining framework is proposed for

detection and identification of faults for multivariate nonlinear systems. Proposed

system is able to project the operation of the process over a specific period of

time to a point in the two-dimensional principal component space identifying fault,

and generate casual knowledge indicating the variables that are responsible for

the abnormal situation. If the same type of fault has occurred in the past, then the

relevant historical data provide a valuable source to detect and identify future

faults. The ability to give causal explanations, which is easy to understand by

plant operators, will be advantageous for difficult process diagnosis problems.

A number of methodologies can be used to create sophisticated fault detection

and identification models depending on various data mining techniques. The use

of artificial neural networks creates a complex model that is very accurate in

terms of predictions and learning the nature of the data sets. However, models

created using neural networks are not very easy for humans to comprehend. On

the other hand, decision trees offer a mechanism of creating models of the

process data that is easy to understand. The proposed system is based on a

decision tree, which attempts to build a conceptual language for describing an

object, by drawing inductive inference from a training data set. The focus of the

algorithm is on deriving rules or decision trees from unordered sets of examples.

This attribute-based induction method, a formalism where examples are

described in terms of a fixed collection of categorical attributes, differs from other

learning methods such as FFNN. Several approaches to inductive learning have

been proposed, the most successful one being C4.5 (a successor of ID3

algorithm), a decision tree learning program, developed by Quinlan [26, 271.

However, the decision tree technique is not useful when we want to make

predictions for a continuous process variable.

Proposed data mining framework has been implemented using See5 (which is a

commercial software package that can run on Windows@ platform and has

evolved from its early version C4.5) to build a classification model from historical

process data. In applying this approach, a critical step is to deal with continuous

process variables. Because for fault detection and identification, we need to deal

with variables whose values are continuous time series data. One of the major

limitations of ID3 was that it assumed that the values of all attributes are discrete.

Although C4.5 was claimed to be able to deal with continuous-valued attributes,

results are not satisfactory according to many researchers [I, 21.

2.6 Pre-processing Continuous Process Variables

Mining time-series data has attracted great attention as data mining and KDD

techniques have been successfully applied to many engineering application. On

the other hand not many researches have been done on concept formation from

dynamic trend signals. Wang and Li [2] described a methodology for concept

formation from time-series data using principal component analysis (PCA). In this

approach, the dynamic trends are represented using principal components of the

data. The datasets are then projected onto two-dimensional plane for concept

formation using the first two principal components of each variable. Their

approach relies on the visual examination of this projection to cluster the

datasets and requires tremendous user input. Although this is an interesting

technique to extract concept from multivariate time-series data, it can become

tedious for a large number of process variables.

In this study, a similar methodology to pre-process multivariate time-series data

is used by the proposed framework. Rather than visually examining the two-

dimensional principal component plots of the process data, k-Means clustering is

applied to automatically extract concept for subsequent classification process.

Proposed data mining framework does not require a priori knowledge about

process. The sole purpose of plotting the principal components onto two-

dimensional plane is to have an interactive KDD process to fully utilize the data-

mining paradigm. Clustering component can also be developed as a batch

process without requiring user input, making the framework a viable option for

very complex systems. This possibility will be discussed in detail in Chapter 6

when we discuss the future research.

The overall data-mining framework for fault diagnosis is illustrated by the flow

chart in Figure 2.2. First, a PCA model of each process variable is built using

data sets containing both normal operating periods and a wide variety of

abnormal situations or faults. Next, the result is plotted on a two dimensional

plane to further cluster process variables by applying k-Means clustering

techniques. At this point, the framework optionally interacts with the end user to

identify the optimum number of cluster for each process variable. Thus, concept

formation from process variables whose values are dynamic trend signals has

been accomplished. The conceptualized process data can be used in the next

step to build a classification model of the plant. Then, test data sets can be fed

into the model to detect and identify unknown faults. It is important to note here

that the classification model of the system is built iteratively. If the performance of

the tree is not satisfactory for the given training data set, end user can go back to

the clustering step to further refine the concept formation process.

2.7 Conclusions

The proposed system combines the advantages of both standard multivariate

SPM methods and modern data mining techniques for fault diagnosis purpose.

Specifically, an integrated data mining scheme sequentially adopting the

techniques of PCA, data clustering, and decision trees is developed. Proposed

framework is basically a conceptual clustering system based on inductive

machine learning approach. Commercially available version of famous C4.5

algorithm is used to build decision trees from historical plant data.

Build PCA model of each
process vsriable $ofor all data

sets in the training

f Apply k-means dustedriq
on PCA model of each

variable

Build classification model of the
system in the form of a decision tree

Send the test; data to the
generated dassification d e l

For fault diagnasis

Figure 2.2 Proposed data mining framework for fault detection and identification

The schema uses the data pre-processing approach that combines the PCA

based concept formation of continuous process variables proposed by Wang and

Li [2] and k-Means clustering, a distance based clustering technique.

The analysis results of this scheme are very easy to comprehend by the end

user. It is completely data driven, so it does not require a priori knowledge of the

system model or process variables. It predicts the given unknown faults using

known data and produce results in the form of decision trees enabling further

investigation on faults. The computational load is modest, which allows

processing of large amounts of process data in very short time.

CHAPTER 3:

DATA PREPROCESSING FOR CONCEPT FORMATION

3.1 Introduction

This chapter describes data pre-processing for noise removal and concept

formation from monitored process measurements. The discussion is concerned

with capturing the features of a dynamic trend signal from continuous process. A

dynamic trend signal is the visualization of a continuous process variable over a

time frame and consists of many sample values. However, in order to make

effective use of continuous process signals in a data mining system, it is

necessary to compress the data to fewer values by keeping important feature of

the signal. Many data mining and KDD tools and algorithms have been

developed only for dealing with discrete-valued attributes and not effective in

dealing with continuous-valued variables. It is not possible to use variables

represented by a trend in the inductive machine learning algorithm used in the

study without pre-processing the data.

This chapter first introduces principal component analysis (PCA). Next, the

technique for concept formation from dynamic trend signals using PCA is

described. Then, the concept formation technique used in this study is introduced

together with k-Means clustering algorithm.

3.2 Principal Component Analysis

The method of PCA was developed in early 1900's, and has now re-emerged as

an important data analysis technique used to describe the multivariate structure

of the data [7]. It is a multivariate statistical technique in which a set of correlated

variables is transformed into a new set of uncorrelated variables. The central

idea is to reduce the dimensionality of a data set consisting a large number of

interrelated variables, while retaining as much as possible of the variations

present in the original data set [I]. The new uncorrelated variables (principal

components - PCs) are linear combinations of the original variables. PCA uses

all of the original variables to obtain a smaller set of new variables that can be

used in place of original variables. The greater the degree of the correlation

between the original variables, the fewer the number of PCs required. Dimension

reduction capability of PCA makes it a vital tool in data mining activities.

3.3 Theory of PCA

Given a data matrix X(m x n) representing m observations of each of n variables,

XI, x*, . . .xn, the first principal component, PI , is given by a linear combination of

the n variables as

The coefficients (also called weights), Wll , W12 can be written as a

vector 6 ,

To find the coefficients defining the first principal component, the elements of 6
should be chosen to maximize the variance of PI subject to the normalization

constraint,

?qT?q =1

The variance of the first principal component is then given by

where S is the covariance matrix of X (m x n) . The solution of

6 = ((y ,, w12 ,. . ., wl,) to maximize the variance p, is the eigenvector of S

corresponding to the largest eigenvalue. Therefore, the problem of calculating p,

has been reduced to an eigenvalue problem. The eigenvalues of S are roots of

the following equation:

The calculation of the jth principal component is identical to the calculation of the

first except for an additional constraint. Similarly the j" PC is a linear

combination of the variables

which has the greatest variance subject to the following constraints:

This problem can also be solved through the use of covariance matrix of

X (m x n) and it also reduces to an eigenvalue problem. Therefore, for a m x n

data matrix, X , with Y1 variables and m measurements, the Y1 principal

components can be solved via an eigenvector decomposition of the covariance

matrix,

Spi = Xipi for i = 1 to (3.8)

The first few eigenvectors are the principal components that can capture most of

the variance of the original data while the remaining PCs mainly represent the

noise.

A useful property of PCA can be given as [7],

that is, the sum of the original variances is equal to the sum of the characteristic

roots, which are the eigenvalues. This identity is particularly useful in data

analysis because it shows that the characteristic roots, which are the variances

of the principal components, may be treated as variance components of original

variables. The ith eigenvalue of the covariance matrix, Aj , corresponds to the

variance in the original data that is explained by the ith principal component, p i .

PCA is scale dependent, so that principal components must be scaled in some

meaningful way before PCA analysis. There are two ways of scaling principal

components, one by rescaling the original data, and the other by rescaling the

characteristic vectors. Since PCs are generally regarded as "artificial" variables,

scores having unit variances are quite popular for data analysis and quality

control applications [7]. In this study, PCs are scaled to unit variance using the

following equation:

where pi is the principal components for the ith observation (scores), Aj is the

ith eigenvalue of the covariance matrix.

If the eigenvalues are A, , A,, . . . A,, then they can be arranged from the largest

to the smallest. If they are ordered to satisfy,

then the first principal component describes the most variance in the data while

the nth PC describes the least. Usually a large portion of the variance in the data

can be described by the first k principal components, where k < n. Original data

can be determined from the PCA model only if all PCs are used in the model. If

only k < n PCs are used, the model will not describe some of the variability in the

data, In that case,

where ti is the ith score vector and E is the matrix of residuals or model error -

the amount that is unexplained by the PC model. If k is properly chosen,

E should represent only noise and random errors in the original data. Obviously,

the larger k is, the better fit of the PCA model; the smaller k is, the simpler the

model will be [7]. The primary advantage of PCA is its potential ability to

represent an n-variable data set in k < n dimensions. The important question is:

what is the optimal value of k? However, there is no standard convention for

determining the number of PCs to retain in a PCA model. Jackson [7] explains

many criteria that are in use to determine the optimum k. One of the widely

adopted rules is based on the amount of explained and unexplained variability. In

this approach, characteristic roots (eigenvalues) and vectors are obtained until

the amount of unexplained variability, or the residual, has been reduced to a

predefined quantity. Individual variance explained by each principal component

and cumulative variance can be calculated to help determine the number of PC

that should be retained.

3.4 Process Monitoring based on PCA

Process monitoring for the abnormal events using principal component analysis

typically involves the monitoring of the Q statistic. Q statistic is a measure of the

amount of variation not captured by the PCA model. If a totally new type of

special event occurs which was not present in the reference data used to

develop the in-control PCA model, then new PCs will appear and the new

observations will move off the plane. Such new events can be detected by

computing the squared prediction error (SPEx) of the residuals of new

observations [33].

The Q-statistic is calculated from the error term, E l in the PCA model equation

A

(3.14), and simply represents the sum of squares of the distance of x j -xi from

the k-dimensional space that the PCA model defines. Using the PCA model and

the score values for time j, the measurement vector x j can be estimated. The

A

PCA model error or residual, ej , is the difference between this estimate, xj , and

the actual measurement vector, xi, as given in the following equation

where

The Q-statistic for time j is then given by,

Jackson (1 991) showed that approximate confidence limits (upper control limits)

can be calculated for the Q-statistic based on the Chi-squared approximation

provided that all eigenvalues of the covariance matrix are known.

Confidence limits are given by equations (3.16) to (3.1 8):

Where

and

In equation (3.18) above, Ct is the significance level (e.g., Ct = 0.01 corresponds

to 99% significance level); and c, is the normal deviate cutting off an area of Ct

under the upper tail of the distribution if ho is positive and under the lower tail if

ho is negative. 8 's are calculated using characteristic roots that correspond to

the PCs retained for modeling. This distribution holds whether or not all of the

significant principal components are used for PCA modeling [7]. Letting a = .05

and c, = 1.645 , the limit for Q-statistic can be calculated for 95% confidence

limit. Values of Q-statistic higher than this limit, which is denoted by Qo5, are an

indication that a data vector cannot be adequately represented by PCs that were

retained . The confidence limit for Q statistic can be used to monitor this value to

determine when the process has deviated from the normal operating region.

When the process is in control, Q-statistic (or squared prediction error)

represents unstructured fluctuations (noise) that cannot be accounted for by the

model. When an unusual event occurs that results in a change in the covariance

structure of the system, it will be detected by a high value of SPEX. A high value

of SPEx means that the projection model is not valid for that observation. The Q-

statistic with the confidence limits is a very effective multivariate statistical

process monitoring technique which can detect the occurrence of faults that

cause the process to move away from the hyperplane defined by the reference

model.

Correctly scaling the data is also very important in PCA based process

monitoring. Some variables exhibit more variability during the course of normal

operation, and scaling can prevent these variables from dominating the principal

component model. There are two ways of scaling principal components, one by

rescaling the original variables, and the other by rescaling the characteristic

vectors [7]. In this study, the second approach has been employed by scaling the

PCs to have unit variances.

3.5 Data Pre-processing using PCA

In today's modern computer control systems, nearly all important process

variables are recorded as dynamic trends. Dynamic trends can be more

important than actual real time values in evaluating the current operational status

of a continuous process. To make effective use of trends in the subsequent data

mining process, it is required to compress the dynamic trend data and to use

reduced dimensions to represent the trend features. PCA for data pre-processing

is used to serve the following purposes: concept extraction for subsequent data

mining step, noise removal, and dimension reduction. Wang and Li [2] proposed

a concept formation technique that uses dynamic trend signals of a continuous

process variable from all data sets to build the PCA model and then plots the first

two PCs in a two dimensional plane. The process data were organized as a

m x n matrix of m observations of n variables. The PCA model of the data was

created by unfolding the multivariate dataset into a long row vector and then

using the individual elements as features. Then, the datasets were grouped by

visually examining the two-dimensional plot of the first two PCs of each variable.

To illustrate this approach, a nonlinear multivariate dynamic system (three-tank

benchmark system) was run under different faulty conditions and dynamic trends

of all process variables were recorded. Detailed description of the benchmark

system and application of the data-mining framework for fault detection and

identification can be found in Chapter 5. Here, dynamic trend signals from only

one variable are being considered to illustrate the dimension compression

capability of PCA. For each data case, thirteen variables are recorded as

dynamic responses after a disturbance or fault occurs. Each trend consists of

1200 sample points. Figure 3.1 shows the trends of a variable for two different

data cases each representing a different faulty condition.

I I I I 1
MO 400 600 800 1000 1;

Sample Points

Figure 3.1 Dynamic trends of a variable for two different data cases

The eigenvalues of all 13 principal components for the sample process variable

are summarized in Figure 3.2 by plotting the values of the roots (eigenvalues)

versus the root number (the principal component number). Since the covariance

matrix formed from the data set containing 13 process variables from the

benchmark system, we will have 13 eigenvalues whose sum will total to the

number of process variables.

Figure 3.2 Eigenvalues of the sample process variable

The variance explained by each principal component along with the cumulative

variance is summarized in Table 3.1. It is apparent that the eigenvalues of the

first two principal components can be used as a concise approximation of the

original dynamic trend. Therefore, they are used to replace the original

responses for use in subsequent pattern recognition.

Since the first two principal components can capture the main feature of a

dynamic trend, this can be displayed graphically by plotting the eigenvalues on a

two dimensional plane. Figure 3.3 shows such a plot of eigenvalues of the first

two principal components of the same variable. A point in the two dimensional

plane represents the feature of the variable response trend for one data case.

Table 3-1 Eigenvalues of a process variable

I2Zr:d I Cumulative
 umber

1
2

Eigenvalue
3.2826
0.5623

(%)
77.8257
13.3324

Variance (%)
77.8257
91 .I581

Figure 3.3 PCA two-dimensional plane of a variable

The scatter plot of dynamic trends of a variable on a two dimensional plane, as

depicted in Figure 3.3 is referred to as concept formation [I]. Concept formation

(or concept extraction from data) transforms a complicated trend to a concept to

be used to develop knowledge-based systems. However, this concept formation

method proposed by [2] has left the last step to a domain expert to visually group

the variables using PCA scatter plot of each process variable. For complex

systems with huge number of process variables, the task of grouping based on

visual examination of the two-dimensional PCA plane can be very tedious and

time consuming.

3.6 Data Clustering - Second Step in the Concept Formation

In this research, concept formation procedure has been converted to an

automatic process by assigning the grouping task to the computer. This has been

achieved by employing a clustering algorithm to the concept-extraction process

to handle grouping. The essential first step in concept formation is to pre-process

continuous process variables using PCA model as illustrated in the previous

section. The newly introduced second step is to cluster dynamic trends using k-

Means algorithm. The aim of this modification to the data pre-processing phase

is to minimize the intuitive portion of concept formation procedure. This new

approach greatly increases the rate at which an expert, or even a novice, can

analyze a large and complex dataset. It requires minimal interaction with the

domain user to cluster the data using PCA model of the multivariate data set as

visualization tool.

3.6.1 Cluster Analysis

The process of grouping physical objects or data points into classes of similar

objects is called clustering or unsupervised classification. Clustering involves

dividing a set of data points into non-overlapping groups, or clusters, of points,

where points in the same cluster are "more similar" to one another than to points

in other clusters [8]. The term "more similar," when applied to clustered points,

usually means closer by some measure of proximity. In clustering, there are no

predefined classes and no training data set. The objects are grouped together on

the basis of self-similarity. Each cluster is defined as collections of objects whose

intraclass similarity is high and interclass similarity is low. When a dataset is

clustered, every point is assigned to some cluster, and every cluster can be

characterized by a single reference point, usually an average of the points in the

cluster. Clustering allows us to replace the original spectral data with an

appropriate set of representative values to simplify design and implementation.

As a data mining task, data clustering identifies clusters, or densely populated

regions according to some distance measurement, in a large, multidimensional

data set. Given a large set of multidimensional data points, the data space is

usually not uniformly occupied by the data points. Data clustering identifies the

sparse and the crowded regions, and hence discovers the overall distribution

pattern of the data set. Clustering analysis has also been studied extensively as

a branch of statistics, mainly focused on distance-based clustering [30].

3.6.2 k-Means Clustering

The k-Means algorithm is by far the most popular clustering tool used in scientific

and industrial applications [4]. The name comes from representing each of k

clusters Ci by the mean (or weighted average) 9 of its points, the so-called

centroid. It has the good geometric and statistical sense for numerical attributes.

The k-Means algorithm groups the points into k clusters such that all the points in

each cluster are more similar ("closer") to one another than to those in the other

clusters. The number of clusters k is chosen by a domain expert or data analyst

by examining the PCA plot of a dynamic trend signal on a two dimensional plane

and does not require any prior knowledge about process.

k-Means is an iterative algorithm and begins with a set of k reference points

whose initial values are usually chosen by the user. First, the data points are

partitioned into k clusters: A data point x becomes a member of cluster q if q, the

reference point of cluster q, is the reference point closest to x. The standard k-

Means algorithm uses the cluster centroids as reference points in subsequent

partitioning. The positions of the reference points and the assignment of the data

points to clusters are then adjusted during successive iterations. The error

measure E is evaluated at each step, and a data point is reassigned to a different

cluster only if that reassignment decreases E.

To discuss whether a set of points is close enough to be considered in the same

cluster, we need a distance measure D(x; y) which tells us how far points x and y

are. The usual axioms for a distance measure D are:

1. D(x; y) = 0. A point is distance 0 from itself.

2. D(x; y) = D(y; x) Distance is symmetric.

3. D(x; y) 5 D(x; z) + D(z; y). The triangle inequality.

For a k-dimensional Euclidean space, the distance between any two points, say

x = [xl, x2, ..., ~ k] and y = lyl, y2, ..., yk], is given by:

2
Euclidean Distance = Jzk i=l (xi - y i)

Standard k-Means algorithm can be summarized as:

Initialize the number of cluster centers selected by the user by randomly

selecting them from the training data set

Classify the entire training set. For each data point x in the training set, find

the nearest cluster centroid q and classify x as a member of Ci.

For each cluster, recompute its new centroid by finding the mean of the points

in each cluster.

Repeat steps 2 and 3 until error measure of the centroids don't change.

One of the key design parameters in the standard k-Means clustering algorithm

is the number of clusters. It assumes that the number of clusters in the data to be

clustered is known a priori. However, this may not be a reasonable assumption in

many applications. Thus, PCA method used for concept formation serves as a

visual tool in the proposed data-mining framework to help find optimum number

of clusters for each process variable.

An example of clustering using k-Means algorithm is shown in Figure 3.4, Figure

3.5, and Figure 3.6. The diagrams show the results during two iterations in the

partitioning of two-dimensional data points of first two PCs of a process variable

into two well-separated clusters. Points in cluster 1 are shown in blue, points in

cluster 2 are shown in red; data points are denoted by open circles and reference

points are denoted by filled circles. Clusters are indicated by dashed lines. It is

worth mentioning that the iteration converges quickly to the correct clustering,

even for this bad initial choice of the two reference points.

Cluster 2

P C - I

Figure 3.4 Initial setup for k-Means algorithm

Figure 3.5 Results of the first iteration

After the step# I
5 I I I I I I I I I

4.5 - -

4 - -

3.5 - -

3 - -
C.l

& 2.5 - -
a

2 - -

1.5

1

0.5

- -
- -

- -

Oo 0's 1.; 2; 4 3; 4; 5
PC-1

P C - 1

5

4.5

4

3.5

3
Pl

C; 2.5
n

2

1.5

1

0.5

Oo

Figure 3.6 Results of the second iteration

I I I I I I I 1

- -

- -

- -

- Cluster 1 -
/-.

,t 0 :
- { t -

; * i - ' , D O -
7. #'

- -
- -
- -

0.; i 1.; i 2.; 4 i 5 i 4; ;

During the setup shown in Figure 3.4, reference point 1 (filled blue circle) and

reference point 2 (filled red circle) are chosen arbitrarily. All data points (open

circles) are then partitioned into two clusters: each data point is assigned to

cluster 1 or cluster 2, depending on whether the data point is closer to reference

point 1 or 2, respectively. Next, each reference point is moved to the centroid of

its cluster. If the reference point closest to the data point belongs to the other

cluster, the data point is reassigned to that other cluster, and both cluster

centroids are recalculated. The results of the first iteration are shown in Figure

3.5. During the second iteration, the process in Figure 3.5 is performed again for

every data point. The partition shown in Figure 3.6 is stable and will not change

for any further iteration.

3.7 Conclusions

Concept extraction is not an exact process; even a domain expert can be

inconsistent or make mistakes. But by enabling the computer to approximate the

domain expert's interpretive skills, concept extraction provides a flexible and

rapid way to incorporate the expert's perspective into computer based data

analysis and KDD process.

The essential first step in data pre-processing is the PCA analysis of the training

data set. For a specific set of data, the value of a variable represents a dynamic

trend, consisting of hundreds to thousands sampled points. In the subsequent

inductive learning process, it is the shape of the trend that matters. When the

trends of all the data sets are considered and processed using PCA, the first two

principal components (PCs) can be plotted in a two dimensional plane. Then, the

user optionally interacts with the framework, selecting the reference points and

number of clusters to guide the clustering process. The framework can also be

configured so that no user input is required throughout the concept extraction

process enabling the analysis of huge data sets from very complex multivariate

processes possible.

CHAPTER 4:

CLASSIFICATION BY DECISION TREE INDUCTION

Historical databases of industrial plants are rich with hidden information that can

be used for making intelligent decisions to improve the overall system

performance and detect faults. Classification and prediction are two forms of data

analysis that can be used to achieve these goals. Classification falls under the

category of inductive learning, learning by examples, which attempts to induce a

general rule from a set of observed instances. Several approaches to inductive

learning have been proposed, and one of the most influential one is C4.5, which

was developed by Quinlan [26]. It is a set of computer programs that construct

classification models in the form of decision tree.

In this chapter, the algorithm that is used by C4.5 to generate the decision tree

will be introduced briefly.

4.1 Decision Tree

A decision tree is a flow-chart-like tree structure, where each internal node

denotes a test on an attribute, each branch represents an outcome of the test,

and leaf nodes represent classes or class distributions [4]. Decision trees are

powerful tools for classification and prediction. Decision trees can also be

expressed as production rules that are easier to understand than a complex tree.

A decision tree is a structure that is either:

a leaf indicating a class, or

0 a decision node, or internal node, that specifies some test to be carried out on

a single attribute value, with one branch and subtree for each possible

outcome of the test.

After a decision tree has been created based on training data set, it can

be used to classify a case from the test set in a process like this:

starting at the root of the tree and moving through it until a leaf is

encountered. At each nonleaf decision node, the case's outcome for the

test at the node is determined based on the case's attribute value and

attention shifts to the root of the subtree corresponding to this outcome.

Repeat this process until a leaf node is encountered. The class of the

case is predicted to be that recorded at the leaf.

A typical decision tree is drawn with the root at the top and the leaves at the

bottom. For example, Figure 4.1 shows a decision tree that can be used to

determine if a customer would be eligible for a loan. The root node of the tree

defines the test "Age of the customer", so each case will be divided first by

this test into several groups. The label of a leaf represents the class label.

Yes or NO is assigned by the tree to any case that reaches this node. It

represents the concept "loan approvaf', that is, it predicts whether or not a

customer is likely to get a loan from the bank.

Figure 4.1 A partial decision tree for the concept of "loan

approval"

4.2 Decision Tree Induction

The common procedure to construct a decision tree from samples is by using

divide and conquers technique. This process aims to discover sizable subsets of

the sample that belong to the same class. This technique depends a great deal

on the choice of appropriate test, that is, to find the best possible question to ask

at each decision node of the tree. The algorithm summarized below is a version

of ID3 [Quinlan, 19861, a well-known decision tree induction algorithm that

constructs decision trees in a top-down recursive manner:

Let classes be denoted {CI, C2, . . . , C3), and T being the set of training cases.

There are three possibilities [26]:

T contains one or more cases, all belonging to a single class Cj: The decision

tree for T is a leaf identifying class C,.

T contains no cases: The decision tree is again a leaf, but the class to be

associated with the leaf must be determined from other information. For

example, the leaf might be chosen in accordance with some background

knowledge of the domain, such as overall majority class. C4.5 uses the most

frequent class at the parent of this node.

T contains examples that belong to more than one class: In this situation, the

idea is to divide T into subsets of cases so that each subset seems to be

heading towards single-class collection of cases. An attribute which has two

or more mutually exclusive outcomes {O,, 02, . .. , On) is chosen as a test. T

is partitioned into subsets TI, T2, ... , Tn, where T contains all the cases

in T that have outcome Oi of the chosen test. The decision tree for T

consists of a decision node identifying the test, and one branch for each

possible outcome. The same tree-building process is applied

recursively to each subset of training cases, so that the ith branch leads

to the decision tree constructed from the subset T of training cases.

Any test that divides Tin a way that at least two of the subsets Ti are not empty

will eventually result in a partition into single-class subsets. However, the tree

building process is not intended merely to find any such partition that will result in

single-class subsets, but to build a tree that reveals the structure of the domain

and so has predictive power. For that reason, we need a significant number of

cases at each leaf; in other words, the partitioning must result in as few blocks as

possible so that the final tree is small.

4.3 Attribute Selection

Most decision tree construction methods, including the one described above, are

nonbacktracking, greedy algorithms. Once a test has been selected to partition

the current set of training cases, the choice is cast in concrete and the

consequences of alternative choices are not explored. This is the biggest reason

for making the attribute selection process as effective as possible based on

maximizing some local measure of progress.

Since exploring all possible decision trees that are consistent with the training set

and selecting the simplest is not an option, Quinlan uses a criterion called gain

ratio to select the best attribute at each partition step in his program C4.5. The

information theory that underpins this criterion can be given in one statement:

The information conveyed by a message depends on its probability and can be

measured in bits as minus the logarithm to base 2 of that probability [26]. So, for

example, if there are four equally probable messages, the information conveyed

by any of them is -log2(1/4) or 2 bits.

Let follow Quinlan's explanation of gain ratio criterion: Suppose for an attribute

Ai, we have n possible outcomes that partition the set T of training cases into

subsets TI, T2, . . . , Tn. If this test is to be evaluated without exploring subsequent

divisions of the T's, the only information available for guidance at the moment is

the distribution of classes in T and its subsets. Let S be any set of cases, the

following discussion will use freq(Ci,S) to denote the number of cases in S that

belong to class Ci. The standard notation I S 1 will be used to denote the number

of cases in set S.

Suppose we select one case at random from a set S of cases, and announcing

that it belongs to a class Cj. This message has probability

and the information it conveys is

To find the expected information from such a message pertaining to class

membership, we sum over the classes in proportion to their frequencies in S,

giving

When applied to the set of training cases, info(T) measures the average amount

of information needed to identify the class of a case in T. The quantity found by

Equation 4.3 is also known as the entropy of the set S.

After T has been partitioned in accordance with the n outcomes of a test XI the

expected information requirement can be found as the weighted sum over the

subsets, as

IT, I infox(T) = info(T) .

So, the quantity

gain(X) = info(T) - i n f ~ (T)

measures the information that is gained by partitioning Tin accordance with the

test X. The goal of gain criterion is, then, to select a test to maximize this

information gain.

4.4 An Illustration

As a concrete illustration of the process, consider the small training set of Table

4.1 in which there are four attributes and two classes [26]. The cases have been

grouped on the first attribute outlook to simplify the discussion.

Table 4-1 A small training set

I Outlook I Temp (O F) / Humidity (%) I Windy? 1 Class

sunny 1 85 1 >odera t ;T fa lse r ~ o n ' t Play

sunny

sunny

I sunny 1 72 (high I false I Don'tplay

75

80

rain

rain

Since these cases do not all belong to the same class, the divide-and-conquer

algorithm attempts to split them into subsets. The successive division of the set

of training cases proceeds until all the subsets consist of cases belonging to a

single class.

low

high

-
rain

75

68

true

true

70

Play

Don't Play

moderate

moderate

high

false

false

Play

Play

false Play

There are two classes, nine cases belonging to Play and five to Don't Play. The

average information needed to identify the class of a case in the set T can be

calculated using Equation 4.3 as:

info(r) = - 911 4 x log2(9/14) - 511 4 x log2(5114) = 0.940 bits.

Suppose that the test outlook with three outcomes, outlook = sunny, outlook =

overcast and outlook = rain, is chosen to divide the data set in Table 4.1 into

three subsets. The expected information by partitioning the data set T with this

test is given by

= 0.694 bits.

The information gained by this test is then 0.940 - 0.694 = 0.246 bits. Now

suppose that, instead of dividing Ton the attribute outlook, we had partitioned it

on the attribute windy. This would have given two subsets, one with three Play

and three Don't Play cases, the other with six Play and two Don't Play cases.

The similar computation to find the expected information pertaining to this

partitioning would be:

= 0.892 bits

The information gained would be 0.940 - 0.892 = 0.048 bits, which is less than

the gain resulting from the previous test. The gain criterion would then prefer the

test on outlook to the latter test on windy.

After partitioning the training set of Table 4.1 based on outlook, the middle group

contains only cases of class Play but the first and third subsets still have mixed

classes. If the first subset were further divided by a test on humidity, with

outcomes humidity = low and humidity in {moderate, high), and the third subset

by a test on windy, with outcomes windy = true and windy = false, each of the

subsets would now contain cases from a single class.

For this sample training set of fourteen cases in Table 4.1, it is easy to do

partitioning intuitively. The success of decision tree building process depends a

great deal on the choice of appropriate tests on appropriate attributes. The final

tree must reveal the structure of the domain and have predictive power to

successfully classify future cases. The decision tree induction algorithm

employed in C4.5 uses gain criterion (or gain ratio criterion which is explained in

the next section) to choose a test at each stage of decision tree building process.

The decision tree corresponding to the training set in Table 4.1 is shown in

Figure 4.2. C4.5 first splits the training cases into three subsets based on the test

on attribute outlook. Then, the second and third branches of the tree are further

partitioned by the tests on attributes humidity and windy, respectively. At this

stage, each of the subsets contains cases from a single class. Each leaf node is

labeled with a class value Play or Don't Play. The numbers in parentheses

following each leaf indicate the number of training cases associated with each

leaf.

I Decision tree:

outlook = overcast: Play (4)
outlook = sunny:
:......humidity = low : Play (2)
: humidity in {moderate, high) : Don't Play (3)
outlook = rain:
:......windy = true: Don't Play (2)

windy = false: Play (3)

Figure 4.2 Decision tree generated by C4.5

4.5 Gain Ratio Criterion

Although the gain criterion gave quite good results, according to Quinlan, this

criterion has a strong bias in favor of tests with many outcomes. We can see this

by considering a hypothetical medical diagnosis task in which one of the

attributes contains a patient identification. Since every such identification is

intended to be unique, partitioning any set of training cases on the values of this

attribute will lead to a large number of subsets, each containing just one case.

Since all of these one-example subsets contain examples of a single class,

infox(T) = 0, so the information gain from using this attribute to partition the set of

training cases is maximal. From the point of view of prediction, however, such a

division is quite useless and should be avoided in practice.

Quinlan uses a kind of normalization in which the apparent gain attributable to

tests with many outcomes is adjusted. Consider the information content of a

message pertaining to a case that indicates not the class to which the case

belongs, but the outcome of the test. If we use the analogy with the definition of

info(S), we have

split info()() = -

which represents the potential information generated by dividing T into n

subsets, whereas the information gain measures the information relevant to

classification that arises from the same division. Then,

gain ratio(>() = gain(>() / split info(>() (4.7)

expresses the proportion of information generated by the split that is useful,

which appears helpful for classification. If the split is near trivial, like the

illustration given above with the attribute patiencid, split information will be small

and this ratio will be unstable. To avoid this, the gain ratio criterion selects a test

to maximize the ratio above, subject to the constraint that the information gain

must be large - at least as great as the average gain over all tests examined.

The gain ratio criterion is robust and consistently gives a better choice of test

than the gain criterion (Quinlan, 1988).

To illustrate the gain ratio criterion, consider again the training set of Table 4.1.

The test on outlook produces three subsets containing five, four, and five cases

respectively. The split information calculated as

split info()()= -5114~ log(5Il4) -4114~ log(4Il4) -5114~ log(5Il4)

or 1.577 bits. For this test, whose gain is 0.246 (as calculated before), the gain

ratio is 0.246 / 1.577 = 0.1 56.

The decision tree induction algorithm adopted in this study uses the gain ratio

criterion as it typically gives a constantly better choice of test than the gain

criterion (Quinlan, 1988).

4.6 Conclusions

Classification is a data mining technique that can be used to extract models

describing important data classes. Since it requires a training data set to model

the problem domain, it is also known as supervised learning. In a decision-tree-

based classification method, the learned model is represented in the form of

decision trees.

A decision-tree-based classification algorithm, C4.5, which has been influential in

the machine learning studies, has been introduced in this chapter. The success

of any decision tree induction algorithm depends on the measure used for

selecting the attribute that will best separate the samples into individual classes.

This attribute becomes the "test" or "decision" attribute at the node. The algorithm

employed by C4.5 uses an entropy-based measure known as information gain

as a heuristic to select attributes at each decision node. This attribute selection

algorithm has also been explained in detail. Induction of a decision tree by C4.5

has been illustrated by a golf example containing fourteen training cases, four

attributes and two classes.

The detailed explanation of the C4.5 algorithm can be found in a book by Quinlan

P61.

CHAPTER 5:

DATA MINING FRAMEWORK APPLIED TO THREE-TANK

BENCHMARK SYSTEM

This chapter presents the validation of the integrated data mining framework by

comparing it with traditional multivariate statistical techniques. The proposed

framework is illustrated by considering the fault detection problem of the three-

tank benchmark system. First, the three-tank benchmark system is introduced

briefly along with the various fault types, which are used in this study. Then, a

well-known multivariate SPM technique based on principal component analysis is

introduced and applied to the benchmark system to detect system faults. Next,

the proposed data mining framework is applied to the benchmark system and

each step of this process is explained in detail. The performance of the proposed

approach is compared with PCA based monitoring technique. Finally, the

proposed approach is applied to the benchmark system to demonstrate the fault

identification capability of the framework to identify single faults.

5.1 Three-Tank Benchmark System

Many of the faults in chemical processes such as leaks, clogs, valve blockages

and sensor faults occur on the level of transport of fluids and raw materials. To

study the corresponding diagnostic problems a laboratory desktop plant,

composed of tanks interconnected by various hydrodynamic paths, was

constructed by the Department of Computer Automation and Control at Jozef

Stefan Institute [31]. The plant mimics some of the processes that are common in

the transport of fluids in many chemical plants. The schematic of the process is

depicted in Figure 5.1 [31]. The three tank system has been adopted recently as

a standard benchmark problem for fault detection and diagnostic [39, 401.

Figure 5.1 Schematic diagram of the benchmark process

The system consists of the three tanks R1, R2 and R3 connected with flow paths,

which serve to supply water from the reservoir RO. Two of the paths have built-in

pumps, which are pump P I and P2, driven with DC motors with permanent

magnets.

There are two configurations of active flow paths available. In the first one, flow is

generated by varying the angular speed of the pump PI. In the second case,

pump P2 works at constant speed. Flow is then varied by manipulating the valve

V5. There are two servo-valves in the plant, i.e. V4 and V5 driven by DC motors.

Valves V1 and V2 are on-off valves while V3 is manual. The purpose of valve V3

is mainly to realize real faults, i.e. leakage of the tank R1. Capacity of the

reservoir RO is much greater than the capacity of the tanks so that its level is

practically constant during the operation.

Although the three-tank system is not an equivalent to any of the real industrial

processes, it can be studied at different configurations and operating modes. In

the study of benchmark system construction, tanks R1 and R3 take on the role of

buffers for supplying R2. Contents from R1 and R3 are mixed in R2 and then fed

back to the reservoir RO. The level in R2, and hence the flow from R2 to RO, is

controlled by the valve V4. The level in the tank R1 is controlled by manipulating

the speed of the pump P I while level in R3 is controlled by manipulating the

command signal of the valve V5. Proper ratios of flows from R1 into R2 and from

R3 into R2 are achieved by adjusting the difference of the reference values of

levels in the tanks.

The benchmark consists of the Simulink file with nonlinear simulation model of

the plant. The Simulink module of the system is shown in Figure 5.2 1311. The

model can simulate 20 different faults in sensors and other components, which

can be either real or virtual. Some of the real faults are:

a) leak from the tank R1 (by opening the manual valve V3)

b) clog in branch with V1

c) clog in branch with V2

d) increased friction in the pumps

e) offsets in sensors

Faults a, b and c can be programmed using the Simulink model of the system.

Faults d and e might occur during long-term runs. Virtual faults include:

Clock

-
h l ref w l b 3 1

Reference for h l s u m -
PID-1

-
h2ref U 4 ?4, C

Reference for h2 Sum2 A

PID-2

-
h 3 ref

U 5
I b 3 C

Reference for h3 Sum1 -
PID-3

Fault1 #

Faultl

-cEl
Flow1

*-3q
essure diff. on p l

Level in TANK3 * s5 I
Valve5 - position

-+ DP2 1
Pressure2 * U2 I
Voltage2

------w 12 1
Current2

Figure 5.2 Simulink schema of the system

sensor faults, e.g. biases, change in gain

0 actuator faults, e.g. blockages in valves

They can be realized by contaminating the realistic measured values.

A demo file simulating three system faults (bias in sensor of h3 started at 200

seconds, leak in tank R1 started at 500 seconds, clog in branch with P2 started

at 900 seconds and each fault lasted for 100 seconds) is given in Figure 5.3.

% Data preparation for simulation

% Definition of the initial conditions for the integrators
h1-0 = 0.; % level in R1
h2-0 = 0.; % level in R2
h3-0 = 0.; % level in R3

% Definition of the reference trajectories

% Setting of the on-off valves

sDV1 = 10; % valve V1 open
sDV2 = 10; % valve V2 open

% Definition of the fault channels

% Start and end of simulation
Tstart = 0;
Tend = 1200;

% Set the controller parameters
Kp1 =2 ;
Ti1 = 100;
Kp2 = 5;
Ti2 = 100;
Kp3 =5 ;
Ti3 = 100;

% Run the data initialization procedure

Figure 5.3 A demo simulation file realizing 3 different faults.

The demo simulation file given in Figure 5.3 prepares the input data (define initial

conditions, fault signals and reference trajectories). It then runs the initialization

program ini3tank.m which sets all the constants of the model and adds noise to

all measurements. Then in Simulink, simulation program of the system operating

in closed loop is run. Detailed description of the simulation environment

developed in Simulink to reproduce the system behavior under faulty or fault free

situations along with the derivation of the nonlinear mathematical model of the

system can be found in [31].

Measurements of the 13 process variables in Table 5.1 were used to generate

historical process data. The system can be operated either in open loop or

closed loop. In closed loop, levels in the tanks R1, R2 and R3 are read via

sensors and fed back to the controllers along with the reference trajectories for

the tank levels defined at the beginning of the simulation. In this case study, the

closed-loop model of the system is used under influence of noise and faults.

Zero-mean Gaussian noise with known standard deviations is added to the

measured process variables during both normal and faulty operations.

Table 5-1 Available process measurements

Process
Variable

API / cm H20 I pressure difference on the pump 1 I

h~
h2
h 2

Unit Description

cm
cm
cm

AP2
Q1

level in tank R1
level in tank R2
level in tank R3

Q3

0 1

S5

u1
11

cm H20
cm3/s

u2

I7

pressure difference on the pump 2
flow through the pump P I

cm%
-
-

V
-

flow through the branch with pump P2
"speed" of rotation of pump P I
position of the stem of the continuous
valve V5
voltage on the DC motor in pump P I
current to the DC motor in P I

V
-

voltage on the DC motor in pump P2
current to the DC motor in P2

There are three feedback loops in the system. The first loop controls the level of

tank R1 by adjusting the speed a, of pump PI , the second loop controls the level

of tank R2 by adjusting the position of valve V4, and the third loop controls the

level of tank R3 by adjusting the valve V5. The overall model consists of three

control inputs and thirteen outputs along with the optional fault signals. Table 5.2

lists the 20 faults applied to the system during the process simulation. The

intensity of each fault can be defined in the range of 0 to 1.

The sirnulink@ model, which was developed by Jozef Stefan Institute, was used

in Matlab 7@ to simulate the different operation conditions of the system.

Reference trajectories (tank levels) were kept constant throughout the study.

Table 5-2 List of simulated faults

I~ault NO(Fault ~e&ription
1 bias in sensor of h l
2 bias in sensor of h2
3 bias in sensor of h3
4 leak in R1

clog in branch with V1
clog in branch with V2
clog in branch with V4

8 clog in branch with P I
9 clog in branch with P2
10 friction in P I
11 clog in branch with V5

1 12 1 bias in sensor of Q1
13 bias in sensor of Dpl
14 bias in sensor of Dp2
15 bias in sensor of I1
16 bias in sensor of U1
17 bias in sensor of Q3
18 bias in sensor of 12
19 bias in sensor of U2
20 bias in sensor of w l

5.2 Traditional Approach: PCA Based Fault Detection

Multivariate statistical process monitoring (MSPM) techniques such as principal

component analysis (PCA) have been successfully employed in many industrial

applications for abnormal situation detection and fault diagnosis [I I]. In contrast

to the model-based approaches where a priori knowledge (either quantitative or

qualitative) about the process is needed, in PCA based method, only the

availability of historical process data is needed. The primary objectives of PCA

are data summarization, classification of variables, outlier detection and

'fingerprinting' for fault identification [I 21.

Traditional PCA based process monitoring for fault detection requires

constructing multivariate control charts such as Q statistic. The Q statistic, also

called as squared prediction error (SPE), describes how far a measurement lies

from subspace defined by the PCA model. Faults that result in a change in the

cross-correlation between process variables can be detected by monitoring the Q

statistic.

Multivariate process monitoring using Q statistic involves following steps: First,

an appropriate reference set that defines the normal (routine) operating

conditions for a particular process is chosen. In other words, a PCA model must

be built based on data collected from various periods of plant operation when

performance was good. By projecting new observations of process variables onto

the plane defined by the PCA loading vectors, the score and the residuals can be

obtained, and the multivariate process control chart based on Q-statistic can in

turn be plotted. The Q statistic is calculated and compared to confidence limits at

each sampling time in order to determine if a measurement has deviated from

the normal operating region.

The computation of Q statistic along with the confidence limits was explained in

detail in Chapter 3.

5.2.1 PCA Model of the Three-Tank System

Data from the normal operating conditions were created for the three-tank

system to provide the nominal (reference) data set. Any periods containing

variations arising from special events or faults that one would like to detect in the

future were omitted at this stage.

To build the PCA model of the three-tank benchmark system, simulation was

performed under normal operating conditions collecting 200 measurements of all

13 variables. The data matrix X of size (200 x 13) was used to calculate PCA

loading vectors. The principal component loading vectors are the eigenvectors of

the covariance matrix of X .The corresponding eigenvalues give the variance of

the principal components.

Let S be the covariance matrix ofX . The characteristic roots can be obtained

from the solution of the following equation, called the characteristic equation:

For the three-tank benchmark system, this equation produces a 13th degree

polynomial in 2 from which the values of A1 ,A, . .. A3 are obtained. Then, the

characteristic vectors of the covariance matrix can be obtained by solving the

following two equations:

and

for i = 1,2,3 ,.... 13
titi

The characteristic vectors or eigenvectors make up the following matrix:

To calculate the principal components of the data set X , the following

transformation is used:

-
Here X and X are 13 x 1 vectors of observations on the original variables and

their means. Each of 200 observations (or measurements) is transformed to build

the PCA model. The individual transformed observations are called z-scores.

The number of principal components to retain in the PCA model was assessed

based on the amount of the explained variability. The variance explained by first

five PCs along with the cumulative variance is summarized in Table 5.3.

Table 5-3 Variance explained by first five principal components

Principal I Variance I I Component Described Cumulative

The first two PCs explain 91 % of the variance in the data providing an adequate

description of the total variance in the system. Only the first two PCs were

retained during the calculation of PCA model. The scores which describe where

the original data points project in the PCA subspace were calculated using the

first two eigenvectors.

Number
1
2

One of the observations on the original variables of the three-tank system is:

and the means of original variables are:

(%)
77.83
13.33

Substituting in (5.4) produces:

Variance (%)
77.83
91 . I6

The first two eigenvectors, Ul and u 2 , were used to calculate the principal

components of each observations in the nominal data set. After principal

components (or z-scores) of each individual observations have been calculated,

principal component 1 (zl) can be plotted against principal component 2 (z2) on a

two dimensional plane.

Figure 5.4 shows the projection of sample process data taken from normal

operating conditions onto the two dimensional subspace defined by principal

component 1 (PC 1) and principal component 2 (PC 2). It also depicts the

geometric interpretation of a score vector for a data point projected in the

subspace. The score vectors simply define the projection of the sample points

onto each eigenvector (loading vector) and thus describe the location of each

observation in the PCA subspace.

A A
A t 1.5 - A

A

A

I PC-I
6

Figure 5.4 Geometric interpretation of a score vector for a data point projected on
the two dimensional subspace defined by PC1 and PC2

Figure 5.5 shows the projection of process data taken from two different modes

of operation (triangles and circles). Triangles represent the data taken from

normal process operation and circles from a faulty operation. This score plot

shows the projection of all the process variables on the first two principal

components. Score plots also show how each data sample relates to one

another. Samples which are in close proximity to one another have similar

characteristics or come from similar modes of operation in the process.

Figure 5.5 Scores plot for principal component 1 versus principal component 2,
calculated from nominal data (triangles) and faulty process operation

5.2.2 Fault Detection based on Q statistic

Once a PCA model has been built based on historical data, process monitoring

can be achieved by comparing the factors against this nominal model [22].

To compare a new data set containing m measurements of n variables to a PCA

model, the Q-statistics is calculated for each sample, resulting in an m x I vector

of Q values. This vector, VQ, in combination with the confidence limit, can be

plotted to determine whether the PCA model is an adequate description of the

data set. If a deviation from the system model is detected within the predefined

limits, this can be an indication that the new observation is the result of

previously unidentified event, which represents a faulty operation mode.

5.2.2.1 Preparing the Data Set

Once the PCA model of the three-tank system was created, each of the faulty

operations was simulated to generate a test data set. A disturbance or fault was

introduced using the fault channels defined in the Simulink model. The system

was run under normal operation mode initially and a fault was introduced into the

system for 100 seconds. Starting at the time the fault was introduced, dynamic

responses of all thirteen variables were recorded for 200 seconds. This same

method repeated for all faults listed in Table 5.2. Faults occurred one at a time

(no simultaneous faults) in each data case and for the same length of time. The

resulting data set is a matrix of size (200x 13x20) where the third dimension

represents the number of faulty operations.

5.2.2.2 Calculating the Q-statistic

Once the data set containing data from all faulty operation modes was created,

the Q statistic values for each operation mode were calculated by projecting each

data case onto the PCA model and calculating residuals at each sampling point.

As an illustration, let us assume that the benchmark system is simulated by

introducing one of the faults listed in Table 5.2. The dynamic responses of all

thirteen variables are recorded every second for 200 seconds after the fault is

introduced into the system. For one faulty operation, the data set is a matrix of

200x 13. Let the vector X , of size (1 3x I) , represent one of the 200 observations

recorded during the simulation.

where each row represents the value taken by one of the system variables.

Since the original variables are in different units, they have to be scaled in a

meaningful way. In this study, characteristic vectors are scaled in a way that

scores will have unit variances. This scaling technique is quite popular for data

analysis and quality control applications [7].

To scale the U-vectors (characteristic vectors or eigenvectors), the following

transformation have been used:

where L is a diagonal matrix and has characteristic roots (or eigenvalues) of the

covariance matrix S as diagonal elements. The L matrix has been calculated

during the PCA model building as:

Principal components obtained by the transformation:

will produce PCs that are still uncorrelated but now have variances equal to unity.

Values of this quantity are called y-scores. The relation between y- and z-scores

is:

where li is the Rh characteristic root (or eigenvalue) of the covariance matrix.

Since we have decided to retain the first two PCs from the PCA model, first two

columns of W will be used to calculate the y-scores.

The equation (5.4) may be inverted so that the original variables may be stated

as a function of the principal components:

because U is orthonormal and hence u - ~ = u'. This means that, given the z-

scores, the values of the original variables may be uniquely determined [7].

However, X will be determined exactly only if all the PCs are used. If k < p PCs

are used, only an estimate f of X will be produced. For the three-tank

benchmark system, these values are k = 2, which is the number of PCs retained

in the PCA model, and p = 13, total number of PCs. The estimate of X is

Using the equations (5.5) and (5.7), this equation can be rewritten as

where V -vectors are defined as

The predicted test values, given the PCs in (5.8), are calculated using the first

two columns of V as:

The residuals are

and their sum of squares (or Q statistic) is

Q statistic was calculated for each sampling point generating a vector, VQ, of size

(2 0 0 ~ 1). The same calculation was repeated for each type of faulty operation

resulting in 20 VQ vectors of size (200x 1). Then, 20 VQ vectors were compared

to the confidence limits for the Q statistic to determine whether the corresponding

data set points to a faulty operation.

5.2.3 Monitoring of the Three-Tank System for Fault Detection

The Q statistic describes how far a measurement lies from the subspace defined

by the PCA model. If the number of times that the corresponding VQ vector

exceeds the 99% confidence limits for the Q statistic, QQ9, is more than 2, the

current data set is considered to come from a faulty operation. (The current data

set contains 200 measurements; therefore, the 99% confidence limits should be

exceeded more than twice.)

In the three-tank benchmark system, the limit for Q statistic can be calculated

using the fact that the first two PCs were retained. The last p - k = 11 roots can

be substituted in equations (3.1 7) and (3.1 8). From these, 6, = 0.3729,

6, = 0.1 140, 6, = 0.0382, and ho = 0.2689. Letting a = 0.01 and c, = 2.57 , which

corresponds to a 99% confidence limit, the limit for Q, using the equation (3.1 6),

is calculated as:

Values of Q higher than this are an indication that a data vector cannot be

adequately represented by a two-component model. The Q statistic value for the

sample observation calculated in (5.13), 114.6969, is significant according to this

limit, which means a faulty operation is detected.

This monitoring technique was evaluated for the 20 possible types of faulty

operations described in Table 5.2. A process fault with intensity of 0.2 was

introduced into the system at 0 second and lasted for 100 seconds. The process

was monitored based on Q statistic with 99% confidence limits for 200 seconds.

The results from the simulation of each 20 types of faults are given in Figure 5.6

to Figure 5.9. The dotted red line on each figure shows the 99% confidence limit

that has to be exceeded.

This simulation study shows how PCA model of the three-tank system does in

detecting single faults occurring under normal operating conditions. The results

show that PCA based model detects 14 faults out of 20 at this intensity level

corresponding to 70% success rate. It cannot detect the following faults given

this confidence level: leak in R1, clog in branch with P2, clog in branch with PI ,

increased friction in P I , bias in sensor of 11, and bias in sensor of 12 (see Figure

5.6 (2,3), Figure 5.7 (7,8), and Figure 5.8 (1 4,18)).

The same simulation was also run for fault intensity 0.5 and 1. The Q statistic

plots of these simulations are given in Appendix 1 and 2. When the intensity of

the faults increased to 0.5, the PCA based model can detect 15 faults out of 20

faults increasing the success rate to 75% by detecting the fault "leak in RI",

which was missed when the fault intensity was at 0.2. When the intensity of the

fault is increased to 1, the performance of the traditional approach gets a little bit

better reaching to 80% success rate by detecting 16 out of 20 faults. The new

fault "clog in branch with PI" gets detected in addition to those already detected.

The traditional PCA based monitoring and fault detection worked quite well for

detection certain types of faults when fault intensity was high. However, the

performance of the PCA model degrades very quickly as we lower the intensity of

the faults. The poor performance can be largely attributed to differences in the

variance from one fault to another; so that data sets with smaller variances will

appear to fall within the confidence region of the PCA model, regardless of

differences in the covariance structure.

@)Clog in branch M h P2
5

4.5 -
4 -

3.5 -
3 - .y .. --.-..............

5 .-
'di 2.5 -
tz I

Bdmpls Number

- m- #'xu

Sample Number

lYf f lil
Sample Numhr

Sam& Number

Figure 5.6 Q-statistlc plots with 99% confidence limit for fault intensity of 0.2

OClog In branch wilh P1

OICloa in branch wilh V5

4

3 5

3
.y

% 2 5 -

(1O)Bias in sensor of hl

-
-
-

Sample Number

15 -
1 -

I

0 20 40 80 80 1W 120 140 160 180 2m '0 20 40 60 80 lm 120 tlo la 180 2m
Sample Number Sample Number

(1 1)Bias in sensor of h2

3 5

Sample Numbs1

Sample Number

(l2)Bias in sensor of01

'0 20 40 60 80 100 120
Sample Number

Figure 5.7 Q-statistic plots with 99% confidence limit for fault intensity of 0.2

(13)Eks in sensa blDp1

4.5 -

'0 20 40 60 BO 1M 120 140 160 180 200 OO 20 40 60 W 100 120 la 160 160 2Ol
damplr Number Sample Number

Sample Number Sample Numbat

Figure 5.8 Q-statistic plots with 99% confidence limit for fault intensity of 0.2

(l9)Bias in sansor dV1 QO)Bior in sensor dwl
5 5

4.5 - 4.5 -
4 i 7 4 - I

Figure 5.9 Qlstatistic plots wRh 99% confidence limit for fault intensity of 0.2

5.3 Proposed Approach

The technique proposed in this thesis combines modem data mining techniques

and PCA in an integrated framework for fault detection and identification of

multivariate processes. The system can quickly and intelligently process huge

amounts of data without requiring considerable computational effort for complex

systems.

The proposed model of the integrated framework consists of the following

components as shown in Figure 5.10:

1. Multivariate process.

2. Data Repository.

3. Data pre-processing Component.

4. Data mining component (decision tree).

Data from dynamic processes is inherently dynamic. This implies that the

relationships in the data are subject to change. Therefore, any system that

supports decision-making based on these data should dynamically update the

models to reflect current states of the process. Othewise, users run the risk of

making decisions on process data that does not reflect the true characteristic in

the current environment. In the proposed system, the data mining component is

responsible for the maintenance of the classification model of the system and

must constantly evaluate these models based on new data.

Figure 5.10 Model of the integrated framework

The data repository stores multitudes of data from measured process variables.

All data mining and machine learning techniques rely heavily on the availability of

sufficient volumes of "good" data to develop models of processes in sufficient

detail to diagnose the system faults. It is critical to have a data-cleaning step to

process conditions such as data loss in transmission due to a malfunctioning

data collection device. An additional data-preprocessing step is to normalize all

raw data to a common scale to allow for further processing. All necessary data-

preprocessing steps are handled by "Data pre-processing component" before

building PCA model from data sets.

The system needs to learn the patterns that have historically led to failure by

using data mining techniques. Data mining component is responsible for creation

and maintenance of the classification models associated with the process. Pre-

processed and conceptualized data are fed to the data mining component, and

based on these training data the decision tree is trained and stored. The result of

the training process is a classification model of the system for the detection and

identification of future faults. Details of building a decision-tree-based

classification model of the three-tank system are given in section 5.4.3.

Data pre-processing component used in the integrated data mining framework

was built in MATLAB@ version 7.0 development environment. Then, it has been

integrated with the decision tree building application developed by Quinlan [26].

Concept formation technique from continuous process measurements using PCA

and k-Means clustering was introduced in Chapter 3; and C4.5 algorithm used to

create decision trees for classification was described in detail in Chapter 4.

5.4 Fault Detection Using Data Mining Framework

5.4.1 Training Database Preparation

Preparing the data mining framework for fault detection requires the training of

the decision tree component. A training database for the three-tank system was

generated by simulating the process via sirnulink@ in s at lab@ 7. Measurements

of the 13 process variables in Table 5.1 were included in the database.

The training database was generated in the following manner. For each

consecutive 1200-second period, the mode of operation (normal or faulty) to be

simulated was chosen randomly using a uniform random number generator. The

normal and faulty operations occurred equally frequently. If the mode of

operation selected was a faulty operation, a fault was generated using the fault

number following the order in Table 5.2. Then, the selected fault was introduced

into the system at 1000 seconds and lasted for 200 seconds. Dynamic responses

of each process variable were recorded for 200 seconds when the process was

operating in fault. Faults occurred one at a time (no simultaneous faults) and for

the same length of time. The same intensity level was used for each fault type

during the preparation of the training data sets.

Using this simulation method, four hundred data sets were generated. For each

data set, the thirteen variables were recorded as a dynamic trend consisting of

200 sampling points. Therefore, for each variable the data size is a matrix of 400

(number of data sets) x 200 (number of data points representing a dynamic

trend).

Test data cases were also created to test the effectiveness of the framework for

fault detection. In order to create the test database, another set of observations

was generated by simulating the process for each fault listed in Table 5.2. The

test database contains 20 observations (one for each fault case); and for each

observation in the test database, 200 sample points were recorded as in the

training cases. Therefore, for each variable the data size in the test database is a

matrix of 20 x 200.

5.4.2 Data Pre-processing and Concept Formation

Principal component analysis is applied to the data matrix of 400 x 200 x 13

which contains the data cases from training database. The first two PCs from the

PCA model are used to replace the dynamic trends of the process variables for

subsequent k-Means clustering.

First two PCs of each process variable are plotted in a two-dimensional PCA

plane. This reduces the dimension of the time series process data while retaining

its essential character. The k-Means clustering technique is then applied to group

PCs into clusters in this two-dimensional plane. Figures 5.1 1, 5.12 and 5.13

show the results of such clustering for concept formation on a two dimensional

PCA plane. This permits a dynamic trend to be abstracted as a concept such as

variable h2 in Cluster 3.

After the concept formation has been done on training cases, test database of 20

cases is pre-processed by applying the PCA. The two PCs of each process

variables in the test database are projected onto the same PCA plane used for

the concept formation of the training set. Each PCA plot from the test database

then become a member of the cluster to which it is in closest proximity. PCs from

the test data set are shown in red in Figures 5.1 1, 5.12 and 5.13.

Figure 5.1 I (a) shows the plotting of the first two principal components of the

variable Dpl. It shows that dynamic trends of Dpl for 400 training cases are

grouped into three clusters. This means that the dynamic trends of the variable

Dpl are conceptualized into a value space of three, Cluster 1, Cluster2, and

Cluster3. PCs of the same variable from 20 test cases are also partitioned into

these clusters as illustrated by red dots. This technique lets us extract concept

from dynamic trend signals of any given unknown (or test) data set.

. .
'. (a) ~lustetin'g of PCs onto PCAI~O-dimmaional plane for Dpt

150

im
50 - Cluster 1

,--I.
Cluster 3 -

Ckrsfrart ,<-, - 1.' _ i " c + i % - ; 9. 40- ..J a "I., (m) .
(mr * I \,-/ -1m .
%

-150 - -L.-

20 - Cluster I ,---
' ~luster 2

0 P

-20 -

(d) Cwuing of PC8 onto PCAlwodimwionrl plane for N

I

Cluster 3
r- \

I \ .

; m :
I '..-' -

(e) Clustering ofPC8 onto PCA Wdimenstonal plane for h l
r 1

(f) Clustering of PCs onto P C A ~ d i m m s i o n a l plans for I1

. .
0 1

Cluster I cluster 2 i I Cluster I

Figure 5.1 1 Results of k-Means clustering of PCs on PCA plane

(I) Cluslering of PCs onto PCAIwo-dlmensronal plana for 01

40 '1

(k) Clustering of PCs onto PCAtwo-dimens~onal plane for M

r - - - - ' ~

Ih)Clustenng dlPCs onto PCAhubdimensionaI plane lor s5

Cluster 2 __-----_
+rC

--- E-3
El - i . m''; 2 I*-*\ -

"U +*, -*.- \

81 5 . ; ' :------*4-*-'

(rn
p; r): -

I, ,
-.-.LI*

-10 - '\-,l

Cll~ster 1

45 60 45 -50 -45 -40 -35 .I -25
PC- 1

(/) Clustering of PCs onto PCAtwo-d~mensional plane far U1

''1

(1) Clustering of PC8 onto PCAtwo-dlmans~onal plane for 112

4 -
Cluster 1

2 - ,-.
2 P 0 - I rn';

-2 - ' C d '

Figure 5.12 . Results of k-Means clustering of PCs on PCA plane

(m) Chtstenng of PC1 onto PCAtWo.diiensional pbne for wl
I

Cluster 2

Figure 5.1 3 Results of k-Means clustering of PC8 on PCA plane

5.4.3 Classification

Once the concept formation from dynamic trend signals is completed, the next

step is to learn to generate knowledge correlating operational modes and

extracted concepts.

After the data sets are pre-processed and conceptualized using the steps

explained above, the output of the concept formation process is sent to the

decision tree component. This requires generating a control file as shown in

Table 5.4 to be used by the decision tree generation tool.

Table 5-4 Structure of the control file used by the decision tree generation tool

1 h3 I Cluster 1. Cluster 2 I

Variable name
h l
h2

Q 1 l~luster 1, Cluster 2, Cluster 3, Cluster 4, Cluster 51

Value space
Cluster 1, Cluster 2

Cluster 1. Cluster 2. Cluster 3

D P ~
U 1

Cluster 1, Cluster 2, Cluster 3
Cluster 1, Cluster 2, Cluster 3

I1

I U2 I Cluster 1. Cluster 2 I

Cluster 1, Cluster 2

Q3
s5

D D ~

w 1 I Cluster 1. Cluster 2
Cluster 1, Cluster 2, Cluster 3
Cluster 1, Cluster 2, Cluster 3
Cluster 1, Cluster 2. Cluster 3

Conceptualized process variables in each data set are expressed in a file as

illustrated in Table 5.5. Each row in Table 5.5 shows the cluster number which

each process variable is grouped into. Class label value is used for training data

set only as it is used to train the decision tree. For the test cases; this column will

be left blank since predicting the class labels for unknown cases is our ultimate

goal in building decision tree. This data structure together with the control file

shown in Table 5.4 is used to generate the decision tree classification model.

12

Table 5-5 Partial data structure used to train the decision tree

Cluster 1, Cluster 2

A decision tree is generated and saved using known data cases from the training

database. Once the decision tree has been created using 400 training cases, test

cases can be classified using this decision tree. In other words, class labels of

each data case in the test database can be predicted to detect faults if there is

any. The decision tree developed from the training database is shown in Figure

5.14.

43 = 1: faulty (10)
43 = 3: faulty (31)
43 = 2:
:. . .h2 = 3: normal (0)

h2 = 1: faulty (20)
h2 = 4: faulty (10)
h2 = 2:
:...Ql in 1,2: normal (0)

Q1 = 4: faulty (11)
Ql = 5: faulty (10)
Q1 = 3:
:. . .I1 = 2: faulty (10)

I1 = 1:
: . . .wl = 2: faulty (10)

wl = 1:
: . . .U2 = 2: faulty (10)

u2 = 1:
:. . .I2 = 2: faulty (10)

I2 = 1:
:...h3 = 3: normal (0)

h3 = 2: faulty (10)
h3 = 1:
:...Dpl = 1: normal (0)

Dpl = 3: faulty (10)
Dpl = 2:
:...Ul = 1: normal (0)

U1 = 3: faulty (10)
u1 = 2:
:...Dp2 = 1: normal (0)

Dp2 = 2: normal (228/30)
Dp2 = 3: faulty (10)

Figure 5.14 Decision tree generated for training database with fault intensity 0.2

Evaluation on test data (20 cases) :

Decision Tree
- - - - - - - - - - - - - - - -
S i z e Errors

(a) : class normal
3 17 (b) : class faulty

Figure 5.15 Evaluation results of the decision tree on 20 test cases

The numbers in parentheses appearing after a leaf indicates the number of the

training cases associated with each leaf and the number of them misclassified by

the leaf. For example, the leaf (Dp2 = 2) with class label normal has 228 cases

associated with it and it misclassifies 30 faulty cases out of 228 as normal.

The decision tree shown in Figure 5.14 misclassifies 30 of the 400 training cases,

which is equivalent to 7.5% error rate. Once the tree has been built, the file of 20

test cases is processed and each case classified by the tree. The decision tree

misclassifies only 3 test cases out of 20 as normal, achieving a success rate of

85%. Under the same conditions, the traditional PCA method had a success rate

of 70%.

The decision tree component also generates a confusion matrix as part of the

output on the test cases, showing how the misclassifications were distributed.

Figure 5.1 5 shows the confusion matrix created on the test cases. There are 20

test cases of class faulty, 17 of which are correctly classified as faulty while 3 are

misclassified as normal. Table 5.6 shows all data cases in the test database

along with the predicted class label for each case. The proposed framework

cannot detect the following faults with intensity 0.2: clog in branch with PI , clog in

branch with P2, and increased friction in PI.

Table 5-6 Classification results for the test database with fault intensity 0.2.

1 Fault 1 I Given I Predicted
No
1
2
3

I 10 I friction in P I 1 faultv I normal

Fault Description
bias in sensor of h l
bias in sensor of h2
bias in sensor of h3

4
5
6
7
8
9

faulty
faulty
faulty
faulty
faulty
faulty

leak in R1
clog in branch with V1
clog in branch with V2
clog in branch with V4

clog in branch with P I
clog in branch with P2

11
12

1 15 1 bias in sensor of I1 I faultv I faultv

Class
faulty
faulty
faultv

fault;
faulty
faulty
faulty

normal
normal

13
14

Class
faulty
faulty
faultv

clog in branch with V5
bias in sensor of Q1

The framework was also tested using the process data generated by running the

bias in sensor of Dpl
bias in sensor of Dp2

three-tank system with faults at intensity levels 0.5 and 1. The results of these

simulations are given in Table 5.7 and Table 5.8, respectively. All misclassified

-
faulty
faulty

16
17
18
19
20

fault types are shown in bold font in all tables.

faulty
faulty

faulty
faulty

faulty
faulty
faulty
faulty
faulty

bias in sensor of U1
bias in sensor of Q3
bias in sensor of 12
bias in sensor of U2
bias in sensor of w l

As seen in Table 5.7, when the intensity of the faults is increased to 0.5, the

faulty
faulty

fault;
faulty
faulty
faulty
faulty

performance of the framework does not improve. These represent very similar -if

not the same- results, that previously seen in the simulation performed with the

intensity level of 0.2.

When we increase the fault intensity to 1, the system has a success rate of 90%:

only 2 out of 20 faulty cases are misclassified as normal (see Table 5.8).

Table 5-7 Classification results for the test database with fault intensity 0.5.

Table 5-8 Classification results for the test database with fault intensity 1.

5.5 Fault Identification using Data Mining Framework

Fault No
1

5.5.1 Training Database Preparation

Preparing the data mining framework for fault identification also requires a fault

training database. In this case study, a database of 500 data sets was obtained

by carrying out various tests on the simulator. Each data set consists of thirteen

variables, which are listed in Table 5.2. Each variable represents a dynamic trend

consisting of 200 sample points. Therefore, for each variable the data size is a

matrix of 500 (number of data sets) x 200 (number of data points representing a

dynamic trend).

Fault Description
bias in sensor of h l

The intensity of the fault in the training database was picked randomly using a

uniform random number generator that ranged from 0.5 to 1. The simulation

studies have shown that the performance of the clustering component degrades

quickly for the faults whose severity is lower than 0.5. Since this affects the

Given Class
faulty

Predicted Class
faulty

performance of the framework as a whole, only faults whose severity is between

0.5 and 1 are introduced into the system during the simulation. Possible

improvements that can be done on the clustering component are discussed in

the Chapter 6.

Once the relative fault size was selected, the simulation ran for 1200 seconds for

each of the 20 fault types before a new fault size was selected. All fault lengths

were 200 seconds in duration; therefore, the process was given 1000 seconds to

return to the original steady state before each period of faulty operations started.

Using this simulation method, faults in the training database were constructed

with various intensity levels, which makes the training database resemble the

historical database of a real life multivariate system as much as possible.

5.5.2 Data Pre-processing and Concept Formation

The training database is preprocessed to prepare the time-series process data

for subsequent concept formation step.

First, principal component analysis (PCA) is applied to a matrix of 500 (number of

data cases) x 200 (number of sample points recorded for each process variable)

x 13 (number of process variables) to reduce the dimension of the data set. The

first two PCs of each process variable are plotted on a two-dimensional PCA

plane to replace the dynamic trends. Then, k-Means clustering algorithm is

applied to conceptualize variables into clusters. Each process variable takes

discrete values from a region (or cluster) of the two-dimensional PCA plane.

Figures 5.16, 5.17 and 5.18 shows the results of k-Means clustering applied to

the PCs of each process variable for concept formation.

5.5.3 Classification

After pre-processing the training database and extracting the concept from

continuous process variables, the results were sent to the decision tree

component to identify the unknown faults. 400 cases in the training database

were used to train the decision tree while 100 cases were kept aside to test the

effectiveness of the data mining framework for fault identification with unknown

fault records. Test cases contained faults with various intensity levels as the

faults in the training cases.

The decision tree built by the decision tree component is shown in Figure 5.1 9.

The root node is Q3, which is the flow flowing to tank R3. This indicates that it is

the most important variable that distinguishes operational modes representing

the 400 training cases. Once the decision tree is built and saved, test cases can

be processed by the tree to identify the fault type.

The confusion matrix, which shows the results of the classification on the test

cases, is given in Figure 5.20. The confusion matrix is the final part of the output

generated by the framework and it shows how the misclassifications were

distributed. There are 100 test cases in the test database, 10 of which are

misdiagnosed. There are 5 test cases representing each faulty operation and

only the test cases generated from fault types 'clog in branch with PI ' and

'increased friction in DC motor of P I ' are misclassified as 'clog in branch with

P2'.

This test shows that data mining based fault identification system performs

accurate identification of single faults in the tree-tank system. It can be seen from

the final output of the data mining component that the proposed data mining

framework can identify the unknown faults occurred in the system with an

accuracy of 90%.

CluMetmg of PCA lw-dimans~onal plot of Dp2

1 I

Clustering of PCA~dimansional p k dh2

a

Cluater2 Cluster3 Cluster 4 .---_ <=:-.=..; '.G-3 I:-:+

1 .

0.5

-9.5.

-0.5 0 Q 5 1 F.5 2 2.6 3 3.5
PC- 1

.
Cluster 1

Figure 5.16 Results of k-Means clustering of PCs of process variables an two-
dimensional plane.

-im

-XI -2so -m - 1 9 - i m a o xi im is, im
P C - 1

Chstering of PCAtwpdimemwnal p b ~ dl2

Clustering d PC& two-dimensional plot of Ut

50 1

1

0.5

0

::
0 . 5

I . -1m a0 ao -40 -a 0 zo I
PC- 1

D ,

.

. Cluster 1 Cluster 2 ,/-..* -
. G j
\.d

- 8 .)
'-..--2

-

Figure 5.17 Results of k-Means clustering of PCs of process variables on two-
dimensional plane.

Cluctenng of PCA two-dimensional plot of wl

T------

Cluster 4

Figure 5.18 Results of k-Means clustering of PCs of process variable w1

:. . . h 2 = 3 : clogV2 (0)
: h2 = 1: c l o g v a (20
: h2 = 2 : clogV4 (20
Q3 = 2: :. . .Q1 = 2 : l e a k R l (20

Q1 = 3 : b i a s Q l (20
Q1 = 1:
: . . . U l = 1: biashl

U1 = 3 : biasul

. .

h 2 = 1:
:. . .Dp2 = 2: c logP2 (0)

Dp2 = 3 : b iasDp2 (20)
Dp2 = 1:
: . . . D p l i n 1 , 3 : c l o g P 2 (0)

Dpl = 4 : b i a s D p l (20)
D p l = 2 :
: . . .U2 = 2 : b i a sU2 (1)

U2 = 3 : b i a sU2 (19)
u2 = 1:
: . , .I1 = 2 : bias11 (4)

I1 = 3 : bias11 (7)
I1 = 4: bias11 (9)
I1 = 1:
: . . . w l = 1: cl0gP2 (60 /40)

w l = 2 : b i a s w l (4)
w l = 3 : b i a s w l (7)
w l = 4: b i a s w l (9)

Figure 5.19 Decision tree generated from 400 training cases.

5.5.4 Previous Work and Discussion

In a recent study, Li [5] has developed an automated framework for fault

diagnosis based on nonlinear principal component analysis (NLPCA) neural

network, and tested it on the three-tank benchmark system. Her approach was

successful to diagnose single faults only if the training data set used to train the

neural network contained the faults with the same intensity level as in the test

data set. She has trained the neural network with the faults created at two

severity levels, 0.1 and 0.5. The framework diagnoses the faults correctly if their

intensity is at 0.1 or 0.5. When a fault with different intensity level from those in

the training set occurs, the performance degrades significantly. The success rate

of the framework degrades to 55% in some cases for the faults whose intensity

varies from the training set.

Neural network approach requires extensive amount of training data cases to

successfully represent a complex real life system and it is computationally

expensive. A major limitation of neural-network based approach is that it gives

predictions but not causal and qualitative explanations. This means that in

process operational decision support, it is not able to indicate to operators what

variables are responsible for the diagnosed fault and provides no clues for

operational adjustment [2, 291.

The proposed data-mining framework addresses this limitation of the neural

network based approach by using a training database that contains faults whose

intensity was randomly picked. The case study has showed the system's ability

to accurately diagnose randomly generated faults. The proposed approach also

gives causal explanations of various faults in the form of decision trees.

5.6 Conclusions

In this chapter, the implementation of data mining framework was tested on the

tree-tank benchmark system. First, traditional PCA based monitoring technique,

Q-statistic, was used to detect single faults occurring in the system. The highest

success rate that was achieved by this technique was 80% with fault intensity 1.

Then, the framework has been compared to the Q-statistic technique to

demonstrate the fault detection capability of the proposed approach. The test

results show that proposed approach outperforms the traditional PCA based fault

detection technique in all fault intensity levels.

Second, the framework was used as fault identification system to correctly

identify single faults. In this case study, the training database was created with

faults whose intensity was selected randomly. Test cases were also created in

the same manner to demonstrate the fault identification capability of the

framework regardless of the fault size used in the training data set. For the three-

tank benchmark system, the results show that the proposed data mining

framework identifies faults accurately in many cases.

CHAPTER 6:

CONCLUSIONS

In large industrial plants, modern distributed control and automatic data logging

systems collect large amount of data that contain valuable information about both

normal and abnormal operations. A data mining system has considerable

potential in extracting knowledge from such data that can be used for fault

detection and identification. The objective of this research was to exploit

historical process data by applying well known data mining techniques to gain

insight into the behavior of a complex multivariate process. An integrated data

mining framework combining statistical methods with modern data mining

techniques has been developed.

There are numerous techniques in data mining and machine learning, which

have proved to be very successful. The way of making use of data depends on

the type of learning: Supervised (e.g. neural-network based machine learning,

decision tree) or unsupervised (e.g. clustering). Although supervised learning

normally gives more accurate predictions, there are often difficulties in finding

training data. However, dynamic simulators have proved to be an effective way to

generate training cases. Another problem with supervised learning is that

supervised training is not effective in dealing with new cases that are beyond the

range of training patterns. Unsupervised learning methods would require no

training data but tend to give less accurate results. In the proposed framework,

both supervised and unsupervised techniques have been used to take advantage

of both approaches.

The most critical step in building such data mining system was extracting

concepts from multivariate time-series process data. To be able to extract

knowledge from dynamic signals was the key to the success of the framework.

For this purpose, an approach using principal component analysis proposed by

Wang and Li [2] was adapted. The adapted PCA method works as a

visualization-based analysis tool to help the user lead the subsequent clustering

process, which is an unsupervised learning. The PCA and clustering together

comprise the data pre-processing step of the KDD process which proposed data

mining framework employs. The output of the data pre-processing component is

then fed to the decision tree component, which is a supervised learning

technique.

The approach was illustrated on a three-tank benchmark system, which is a

highly nonlinear multivariate process. It has been showed that the proposed

data-mining based fault detection and identification scheme can detect and

identify single faults very accurately.

Although the approach is well founded, there are some limitations to be

addressed. One of the key assumptions made during concept extraction from

dynamic trend signals is that the first two PCs can represent most of the variation

of the variable. This assumption may not be true in some practical industrial

processes in which case a further analysis should be run to determine

appropriate number of principal components during data pre-processing step.

Another limitation of this framework comes from the use of k-Means clustering. k-

Means clustering is a very fast and effective technique and employed in many

data mining tools, yet it cannot recognize the non-spherical clusters, which might

pose some limitations during concept formation process.

Because the field of data mining and its application to fault detection and

identification is so new, the possibilities for future research are enormous. A few

suggestions are given here.

Evaluating clustering techniques

Future improvements to the data pre-processing component can be done in

several directions. Standard k-Means clustering algorithm can be modified to

detect the true number of clusters automatically for each variable. The end user

can choose either to lead the concept extraction process iteratively by interaction

with the system through user interface or to have a completely automatic KDD

process.

When clusters are not neatly expressed as Gaussian noise around a central

point many things can go wrong in a k-Means approach. Newer clustering

algorithms such as CURE and CHAMELEON can be employed to be better able

to handle clusters of arbitrary shapes and sizes [38]. These new clustering

techniques can significantly improve the framework's overall fault detection ability

even under the faults occurring at a very low intensity level.

Background Knowledge

It is also important to include the role of background knowledge and a model of

the domain in the KDD process. Much of that is resident only in the mind of the

domain expert, but principal component analysis technique can take advantage

of formally represented knowledge in the course of fitting data to the model. The

proposed system can be modified to allow the user to define a threshold to be

used for finding optimum number of principal components during the PCA

modeling of the process variables for concept extraction.

Graphical User Interface

This research explores the integration of a heterogeneous suite of data mining

techniques in an integrated framework. The current system has been made up of

several scripts that run asynchronously and requires user interaction to lead the

KDD process. In order to have a better understanding of the problem domain, an

effective graphical user interface can be incorporated into the system. The output

generated by the decision tree component is given in text format. Data

visualization techniques can be applied to the output to visualize complex

decision tree structures and rule sets.

APPENDICES

Appendix 1 : Q-statistic Charts for a Single Fault with Intensity 0.5

Bias in sensor of Dpl Bias in sensor of h2

Sample Number Sample Number

Sample Number Sample Number

Bias in
5

4.5 -
4 -

3.5 -
3 -

25 -
2 -

1 5 -

1 -

sensor of hl Bias in sensor of I1
5 I

Sample Number
-- .- .-- ..- .- .- m

Sample Number

Figure A1 . I Q-statistic plots with 99% confidence limit for a single fault of
intensity 0.5

Bias in sensor of t2

'0 20 40 60 W 100 120 140 160 I& 200
Sample Number

Bias in sensor of Ql

Sample Number

Bias in sensor of M

Bias in sensor of U1

Sample Number

I
20 40 60 80 100 la 140 160 la, m

Samule Number

Sample Number

Bias in sensor ofwl -
20 40 60 60 100-120 140 160: 1

Sample Number

Figure A1.2 Q-statistic plots with 99% confidence limit for a single fault of
intensity 0.5

Clog m branch with PI

Samole Number

Clog in branch with P2

Sample Number

Clog in branch W h W

Clog i w h with W

3 5

3 p "! 2.5 2 - ..-...-.......-..-

1 5 -

: I li 0.5

20 40 60 80 100 120 140 160
Sample Number

Clog in branch with V4 r
Sample Number

Cloa in branch with V5

20 40 so rn im 120 140 rm im
Sample Number

Figure A1.3 Q-statistic plots with 99% confidence limit for a single fault of
intensity 0.5

Increased friction ~n P1 Leak in R1
5 1 5 I

Sample Number Sample Number

Figure A1.4 Q-statistic plots with 99% confidence limit for a single fault of
intensity 0.5

Appendix 2: Q-statistic Charts for a Single Fault with Intensity 1.

Blar in sensor of Dpl Bias in sensor of h2

UI UI IW I L Y 1 4

Sample Number

Bias in h3

Sample Number Sample Number

Bias in sensor of hl

Figure A2.1 Q-statistic plots with 99% confidence limit for a single fault of
intensity 1

Bias in sensor of U1 B~as m sensor of 12
5 , , 8 s * , 4 m - 8

45 -
4 -

35 -
3 - ,y ..-.-.-. U

1
% 2 5 -

'! 2':

1 5

1

0 5

OO a0 4" 6u w Sample 100 Number 1;u 14" lw Itu nU igg OO 2 0 4 0 W W T U J I - ~ Sample Number

Bias in sensor ofQ1 B~as in sensor of U2

5r---

0.5

OO 20 40 m 80 100 120 140 160 180 i
Sample Number Sample Number

Bias In sensor of Q3 Bias in sensor ofwl

0.5 0.5

Oo 20 4" - - 8, E, 8 , ,, a,

Sample Number Sample Number

Figure A2.2 Q-statistic plots with 99% confidence limit for a single fault of
intensity 1

Clog in branch with PI Clog in branch with V2

Sample Number Sample Number

Clog in branch with P1 Clog m branch vnth V4 -

Sample Number Sample Number

Cloa in branch with W Clog in branch with V5

Sample Number Sample Number

Figure A2.3 Q-statistic plots with 99% confidence limit for a single fault of
intensity 1

Sample Number

Figure A2.4 Q-statistic plots with 99% confidence limit for a single fault of
intensity 1

X. Z. Wang, "Data Mining and Knowledge Discovery for Process
Monitoring and Control," Springer, London, 1999.

X. Z. Wang and R. F. Li, "Combining conceptual clustering and
principal component analysis for state space based process
monitoring ," Ind. Eng. Chem. Res., Vol. 38, pp. 4345-4358, 1 999.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
Advances in Knowledge Discovery and Data Mining, The MIT Press,
1996.

J. Han and M. Kamber, Data Mining: Concepts and Techniques,
Academic Press, 2001.

X. Li, "Statistical Monitoring and Fault Diagnosing of Multivariate
Processes Based on Nonlinear Principal Component Analysis,"
M.A.Sc. Thesis, Simon Fraser University, 2004.

M. C. Johannesmeyer, "Abnormal Situation Analysis Using Pattern
Recognition Techniques and Historical Data," M.Sc. Thesis, University
Of California, Santa Barbara, 1999.

J. E. Jackson, A User's Guide To Principal Components, John Wiley &
Sons, Inc., 1991.

V. Faber, J. G. Hochberg, P. M. Kelly, T. R. Thomas, and J. M. White,
"Concept extraction - a data-mining technique," Los Alamos Science,
Number 22, 1994.

A. K. Conlin, E. B. Martin, and A. J. Morris, "Confidence limits for
contribution plots," Journal Of Chemometrics, 2000, Vol. 14, pp. 725-736.

[lo] R. L. Mason and J. C. Young, "Multivariate tools: principal component
analysis," Quality Progress, February 2005, Vol. 38, No. 2, pp. 83-85.

[I I] T. Kourti, "Process analysis and abnormal situation detection: from theory to
practice," IEEE Control Systems Magazine, October 2002, Vol. 22, No. 5,
pp. 10-25.

[I21 E. B. Martin, A. J. Morris, and J. Zhang, "Process performance monitoring
using multivariate statistical process control," IEE Proc. of Control Theory
and Applications, March 1 996, Vol. 143, No. 2.

[I31 E. Cantu-Paz and C. Kamath, "On The Use Of Evolutionary
Algorithms In Data Mining," Idea Group Publishing, 2001.

[I41 M. J. Embrechts, B. Szymanski, and K. Sternickel, "Introduction to scientific
data mining: Direct kernel methods and applications," Chapter 10 in
Computationally lntelligent Hybrid Systems, W iley Interscience, pp. 31 7-
363,2004.

[I51 C. Fan, R. Guo, A. Chen, K. Hsu, and C.Wei, "Data mining and fault
diagnosis based on wafer acceptance test data and in-line manufacturing
data," IEEE International Symposium. on Semiconductor
Manufacturing, October 2001 , pp. 171 -1 74.

[I61 P. Yang and S. Liu, "Fault diagnosis for boilers in thermal power plant by
data mining," Control, Automation, Robotics and Vision Conference,
December 2004, Vol. 3, pp. 21 76-21 80.

[I71 A. Singhal and D. E. Seborg, "Matching patterns from historical data using
PCA and distance similarity factors," Proceedings o f the American
Control Conference, June 2001, Vol. 2, pp. 1759-1 764.

[I81 C. Zhang, L. Di, and Z. An, "Welding quality monitoring and management
system based on data mining technology," IEEE Proceedings o f the
Second International Conference on Machine Learning and
Cybernetics, November 2003, Vol. 1, pp. 13-1 7.

[I 91 C. Gertosio and A. Dussauchoy, "Knowledge discovery from industrial
databases," Journal o f Intelligent Manufacturing, February 2004, Vol. 15,
NO. 1, pp. 29-37.

[20] A. Singhal and D. E. Seborg, "Clustering multivariate time-series data,"
Journal o f Chemometrics, 2005, Vol. 19, No. 8, pp. 427-438.

[21] M. C. Johannesmeyer, A. Singhal, and D. E. Seborg, "Pattern matching in
historical data," AIChE Journal, September 2002, Vol. 48, No. 9, pp. 2022-
2038.

[22] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, "A
review of process fault detection and diagnosis Part Ill: Process history
based met hods," Computers and Chemical Engineering, 2003, Vol. 27,
pp. 327-346.

[23] P. R. Goulding, B. Lennox, D. J. Sandoz, K. J. Smith, and 0. Marjanovic,
"Fault detection in continuous process using multivariate statistical
methods," International Journal o f Systems Science, November 2000,
Vol. 31, NO. 11, pp. 1459-1 471.

1241 B. M. Wise, N. L. Ricker, and D. J. Veltkamp, "Upset and sensor failure
detection in multivariate processes," AlChE Annual Meeting, San
Francisco, CA, November 1 989.

[25] M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno, "Fault detection and
identification based on dissimilarity of process data," Preprints o f
European Control Conference (ECC), Porto, Portugal, September 200 1,
pp.1888-1893.

[26] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauffman,
1993.

[27] J. R. Quinlan, hft~://www.rulequest.com, 2006.

[28] R. Kohavi and J. R. Quinlan, "Decision Tree Discovery," Handbook o f Data
Mining and Knowledge Discovery, Chapter 16.1.3, pages 267-276,
Oxford University Press, 2002.

[29] X. Z. Wang and C. McGreavy, "Automatic classification for mining process
operational data," Industrial & Engineering Chemistry Research, June
1998, Vol. 37, pp. 2215-2222.

[30] M. Chen, J. Han, and P. S. Yu, "Data Mining: An overview from a database
perspective," IEEE Transactions on Knowledge and Data Engineering,
December 1996, Vol. 8, No. 6, pp. 866-883.

[31] G. Dolanc, D. Juricic, A. Rakar, J. Petrovcic, and D. Vrancic, "Three-tank
benchmark test", Copernicus project, CT94-02337, Jozef Stefan Institute,
October 1 996.

[32] A. Singhal and D.E. Seborg, "Pattern matching in historical batch data using
PCA," IEEE Control Systems Magazine, October 2002, Vol. 22, No. 10,
pp. 53-63.

1331 J. F. MacGregor and T. Kourti, "Statistical process control of multivariate
processes," Control Engineering Practice, March 1995, Vol. 3, No. 3, pp.
403-41 4.

[34] G. M. Frey, "Multiresolutional Partial Least Squares and Principal
Component Analysis of Fluidized Bed Drying," M.Sc. Thesis,
University Of Saskatchewan, Saskatoon, Saskatchewan, March 2005.

[35] R. Singh, "A model to integrate Data Mining and On-line Analytical
Processing: with application to Real Time Process Control," Ph.D.
Thesis, Virginia Commonwealth University, Richmond, Virginia, June
1999.

[36] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, "A
review of process fault detection and diagnosis Part I: Quantitative model-
based methods," Computers and Chemical Engineering, 2003, Vol. 27,
pp. 293-31 1.

[37] S. J. Bailey, "From desktop to plant floor, a CRT is the control operators
window on the process," Control Engineering, 1 984, Vol. 31 , No. 6, pp.
86-90.

[38] P. Berkhin, "Survey of clustering data mining techniques," Accrue
Software, San Jose, CA, 2002.

[39] L. Berec and L. Tesaf, "Testing fault detection methods via three-tank
system," Technical Report Issue A, Copernicus Project CT94-0237, 1997.

[40] J. Lunze, "Laboratory three tanks system - benchmark for the
reconfiguration problem," Technical report, Tech. Univ. of Hamburg,
Hamburg, Inst. of Control. Eng., Germany, 1998.

