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ABSTRACT

A finite semilattice ® 1is said to be transferable if whenever it

can be embedded in a semilattice of ideals, J(&*) via ¢ there is an
embedding Y of & in &* such that xy € y¢ if and only if x < y.
In Chapter 1 we prove in a constructive manner that every distributive
semilattice is transferable. We then give an application of this result
showing that four classes of semilattices naturally obtained from an
equational class of lattices coalesce to one class for the distributive
case.

In Chapter 2, we give a decidable characterization of transferable
semilattices. Our method is to construct the freest semilattice ©%*
for which © is embeddable in fj( ®*) and to obtain a necessary condi-
tion for transferability from this structure. This condition is then
proved to be sufficient.

In Chapter 3, we define the concept of transferability for lattices
by analogy with the semilattice case. We give a series of four conditions
which taken together imply that a finite lattice S? is transferable.
Using methods similar to those in Chapter 2 we show that three of these
conditions and a slightly weaker fourth condition are necessary. We then
show that for finite distributive lattices these two sets of conditions
are equivalent. An alternate characterization of tfansferable distri-
butive lattices is given in terms of simple conditions on the structure

and width of the lattice in question.
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CHAPTER O

§1. 1In this thesis we explore a small portion of the following
problem first raised by Professor George Gratzer: What properties
pass from a lattice SZ to its lattice of ideals ‘3(52) and
conversely? The first observation which can be made is that an
equation is valid in S? if and only if it is valid in TS(X?).

The next question which naturally arises is: Is it possible to
characterize the class 0O of finite lattices S?' such that,

for every lattice g?, if Sz' is embeddable in (3({?) then 53'
is embeddable in g?. We have termed such lattices S?‘ weakly

transferable, and it is our interest in the class O which motivates

this thesis. The best general result on this question, which is due to
Gratzer, [}] p. 208, is that if SEE O then no point of S?is both join
and meet reducible. In Theorems 10.1 and 10.2 we give a
complete and detailed structural description of those members of 0
which are distributive, based on results in [3].

Since the class of weakly transferable lattices proved very
difficult to work with we have studied several simplifications. 1In
Chapter 1 we investigate weak transferability for distributive semi-

lattices, the notion of weakly transferable as applied to semilattices

is obtained by analogy to the case for lattices. Our methods for



showing that every finite distributive semilattice is transferable
are quite different from our attack on the general problem.
In Chapter 2 we characterize the class of transferable semi-

lattices. A semilattice © is transferable if for every &* and

¢ embedding & in J( &*) there is a Y embedding & in S*
such that for all x and y € S xy € yp if and only if x =< y.
We define transferable lattice by analogy with our definition for
semilattices and the first part of Chapter 3, Sections 8 and 9, is
devoted to our investigation of this class of lattices. Our best

results in this area being Theorems 9.1 and 9.2.

§2. We will need certain preliminary notions before proceeding
to our results. Most of the results in this thesis are of an
algebraic nature and as a general rule our notation for algebras
and algebraic notions will be that of Gratzer {%]. Some of our
results, however, belong more to the domain of logic than algebra
and for these notions we will depend on Shoenfield [Z].

Following Shoenfield, our basic language, which we will
denote by XO will have in addition to the usual logical symbols
only the binary operation symbol i . We note that for symbols
of the formal language we shall place a «~ under the symbol to
represent boldface. For convenience if it is clear that we are

working in the formal language and no confusion can arise, we will



drop the ~ . We will use small Greek letters T, 0, 6 to denote
terms in AO or an expanded language, and ¢, Y to denote
formulas. We will reserve the letters ¢ and Y for homomorphisms

Our basic theory which we denote by AO is the theory of semi-

lattices having as axioms:

®1 (x+y) +z=x+ (y + 2)

®2 X+y=y + X

. s x+ x=x .

~3 ~ N N NN
By a semilattice, we mean a structure & = < S; +> which is a
model of Ao. By a model of a theory r we mean a structure in

the language of T in which each formula of T is valid. If ¥
is a model of I we will write g T . 1If ? is valid in Y
we will write U ® . Further, we will write r | ¢ in case
9 is a logical consequence of T.

Associated with AO is the theory Aé in a language Xé
having one binary relation symbol, ; and satisfying the following

nonlogical axioms:

@1 X < X

o! X<y &Yy £ X .+, X=yYy

[0} < < <
X<y &§y=<z .>» x=2z2

d' : ¥Yx Vy 3z Vw(x = z &

H
A
'y
g}
—
—
2%
A
2%
4
t ]
2IA
;3
+
N
2IA
b
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A model of Aé is called a semilattice ordering system.

known that with any semilattice < S; +> we can associate a unique

semilattice ordering system, «S; => such that for any a and

b€sS, a<b if and only if a + b =

will assume that in any semilattice we have the relation = defined

b.

As a general rule, we

so that < and + satisfy the above relationship.

A structure <&; <> will be termed a guasiordering structure

with least upper bounds provided that it satisfies @i, @é and @A .

If we define = on S by a=b if and only if a=b and b = a,

then = 1is an equivalence relation on

</= by [a]” =/= [b]” if and only if
y € [b]” x <y, then <S$/3; /> is

By a lattice, we mean a structure

S.

for some

a semilattice ordering system.

in the language A, of two

If we further define

i

x € [a] and

1

binary operation symbols which satisfies in addition to ¢. - ¢

the following:

o* (x*vy) * z=Xx
Y

¢ 1 xr y =y x

o* X* X=X

Henceforth we will write xy for x -

~

2+

Y

is a lattice and we define = on L by

then a <b if and only if ab = a. The converse is also valid.

{y + 2z)

~ o~

We note that if <L; +;

ac<hb

1

TN

2 i

if and only if

a

It is well

+

>

b

b,



By an ideal of a semilattice T we mean a non-empty subset I
S such that (i) a and b €I imply a+ b €I and (ii) a €
and b = a imply b € I. We will denote the set of ideals of &
by I(8). It is well known that the structure T(s) = I(S); +

is a semilattice, where

I. +I.=1{a:aé€s and Ebl € Il' 3b2 € 12 and

<
a =< bl + b2} .

Further, if & satisfies

@5 : VxVy 3z (z <

L]

3]
TN
2IA
s

then the structure <I(&); +, N> is a lattice, where [1 1is set
theoretic intersection. For our purposes this structure always
exists, although if ? is not satisfied, then the structure is
a partial algebra, hence not a lattice. For lattices we define
ideals in the same manner. If S3 is any lattice then :j(SZ) =
<I(Q); +, N> is a lattice.

Let K be a class of lattices. If there is some set of
equations A in the language of lattices and K is the class of

all models of A, then K is said to be an equational class. of

particular interest is the class A of all lattices satisfying

the distributive law:

(x + y)z = x2 + yz .

~Ne o~ e

%

Let K be an equational class. We define FK a collection of

I

of



formulas in the languages of semilattices by

FK = {& ; & is valid in each element of K and

is a sentence of the form VYx. ... Vx
NO ~l— l

3y0, cees HXm—lW where g is open }.

~! ~

For any fixed equational class K and positive integer n
there is a lattice {?E, unigue up to isomorphism, satisfying the
conditions that (i) S?E € K and (ii) i?i is generated by elements
{ao, ey an-l} and any map of these generators into an element f
in K has a unique extension to a homomorphism. E?E is the free
K lattice on n generators. For a further discussion of free
lattices we refer the reader to Chapter 4 of [4].

~

By a direct family ¢ we will mean a triple <{(5i ;1 €1},

<I;S>,{¢z:i,j€l&i5j}>where {gi:iel} is a
family of similar algebras indexed by I, <I; => is a directed
partial ordering and {¢3 : i, €I &i =3} is a collection of
homomorphisms such that ¢£ maps Si into Sj and, if i = 3j =k,
k

k _ .3
then ¢i = ¢i¢3

For the direct family &, let S = U{Si : 1 €1}
and define = on S by x =y where x € Si and y € Sj if for

. .. k ,
some k € I with i, j €k we have x¢? = y¢j. It is easy to see

that is an equivalence relation on S, whence let Se T S/=.

For x €5, let [x]” denote the equivalence class of x. If 8, =

i

<:Si;F> and f € F is n-ary let [xo]:,..., [xn_l] € S_. We put
= = k k =
f([xo] t ey [Xn—l] ) = [f(x0¢i sy xn—ld')i )]

0 n-1



.o d i ooy i < k. i
where x0 € Sio, ‘ Xn—l € Sin_l an 10, ' ln-l k It is

easily seen that this definition is independent of our choice of

. X and k. We set
n-1

Umg = 8, =<5, F>

~

and call S the direct limit of the direct family . Note that

i

the map ¢: from ei into -E; defined by x ~ [x] is clearly a
homomorphism. For a complete treatment of direct limits see
Gratzer [%], §21,

Natural numbers are regarded as finite ordinals. We will assume
that for a given ordinal o, a = {8 : B is an ordinal and B < o).
It follows that the empty set denoted by "0" 1is the least ordinal.
Further, if P(n) is any proposition about a natural number n,
then the least natural number for which P(n) is satisfied is given
by un[P(n)]. Lastly, for any set A, 7P (A) will denote the power

set of A. Any other notation will be discussed as it arises.



CHAPTER 1

§3. In this chapter we give a constructive solution to the problem
of characterizing weakly transferable distributive semilattices. A

semilattice is distributive if it satisfies

¢é : Vx Yy Yz Ju 3v[(z

A
2 X
: +

y) > (usx&v<=y

~

z) 1.

~

4]

o
2+
1<
2N

Definition 3.1. Let & be a finite semilattice. & 1is weakly

transferable if & can be embedded in every semilattice &* such

that S is embeddable in “J( &*).

We may now state the problem of this section precisely. What
finite distributive semilattices are weakly transferable? We will
prove that every finite distributive semilattice has this property.

In fact we will prove a stronger result, namely that they are all

transferable.

Definition 3.2. A finite semilattice $ is said to be trans-
ferable if whenever 35 is embeddable in :H(S*) via ¢, there is
an embedding Y of & in ©&* satisfying xy € y¢ if and only if
X =vy.

Thus the definition tells us that the embedding Y 1is well behaved
with respect to the embedding ¢ in the sense that x¢ € x} but
xP £ yp unless x = y. Our proof that every finite distributive

semilattice is transferable will depend on the following result which



was first noticed by Green [5].

Lemma 3.1. Let 8 be any semilattice. Then & is distributive
if and only if J(3) 1is a distributive lattice.

This result is easily seen to imply that every finite distributive
semilattice © is join isomorphic to a distributive lattice S? . In

fact S? may be taken to be X(S). we now have

Lemma 3.2. If © 1is a finite distributive semilattice, then
every element has a unique representation as a join of a join irre-
dundant set of join irreducibles.

This is an immediate consequence of our preceding remarks and the
analogous result for finite distributive lattices, [2, p.58].

Let & be a fixed finite distributive semilattice and &* be any
semilattice such that S is embeddable in "J(S*) via ¢. We let
s, = s¢ CR(3*). Let S, &S, consist of exactly those elements of

<:Sl; +> which are join irreducible.

Definition 3.2. A map y* from S, into S* 1is said to be

admissible if (i) for each x € 82 xP* € x, and (ii) yY* is
order preserving. -

It is an immediate consequence of Lemma 3.2 that each admissible
map has a natural extension to a join homomorphism from *(Sl; +>

into S*. Further we observe that if ¢* and P* are admissible

maps, and we define ¢* v Y* by
x(¢* v Y*) = (x¢*) + (yy*),

then ¢* v $* is an admissible map.
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For the remainder, let s, = {b_,...,b }, where this is a list

in non-decreasing order.

Iemma 3.3. If b € S2 and a € b then there is an admissible

map such that a = by*.

Proof. Let J < n and suppose that we have picked ai € bi for

each i < j such that (1) if b = bi then a = ay and (2) 1if

i1 =s<3j and bi = bS then a; = a_- We choose aj in the following

manner. Let a’j be any element of bj and set

. '+ z a, + a,
. c .
i i bi bj i

where the last term, a, is included only if a € bj. It is trivial
that aj € bj and satisfies (1) and (2). We set biw* = a, and
it is clear that yY* is an admissible map. This completes Lemma 3. 3.

For each J C n such that {bi : 1 € J} is join irredundant and

for each a € .2 bi' let Ai be any set satisfying the following

i€J
s . J . C s Jd
conditions (i) Aa < U{bi : i €3}, (1i) a = I Aa and
‘o J .
(iii) lAa] N bi =1 for each 1 € J. For any such J and a,
Aa must clearly exist.
Lemma 3.4. Let a € b € S.. Then there is an admissible map P*

1

such that its extension Y to a homomorphism satisfies a < by.

Proof. If b € 52 we are done. Otherwise b 1is join reducible.
Then there exists unique J C n such that b = Z{bi 1 €J} and J

. L J . . .
is minimal. We choose Aa and to each i € J an admissible w*i
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J
i isfies b, Y* > A" Nb,. Let yY* =V Y*, i
which satisfies iwi x € N N i e Y '€Jwi Then if

is the extension of ¥Y* to a join homomorphism, we have

J z _
a < ZAa S (biw*) = by,

as desired.
Theorem 3.1. Every finite distributive semilattice is transferable.

Proof. To each x € S pick an a, € S* such that a € yop if
and only if x < vy. Such choices are clearly possible. Now to each

X we can choose a homomorphism wa : Sl -+ S* such that a_ = (x¢)wa .
x x

We now define Y on Sl by

— vV
b= x €S q)a :
x

It is clear that ¥ 1is a homomorphism and the fact that (x{)y € yo¢
if and only if x =y ensures that ¥ 1is 1-1. This completes our

proof that & is transferable since ¢ embeds & in S*,

§4, We will now diverge from our main theme to give an application

of our result for distributive semilattices. One of the most useful
notions of modern algebra is that of equationél class. While this
concept plays a substantial role in lattice theory it unfortunately

is completely trivial for semilattices. However the question still
remains: Is it possible to usefully distinguish classes of semilattices?

Early in our work on this thesis we spent some time considering this
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question.

Definition 4.1. Let K be an equational class of lattices. With

K as follows:

K we associate classes of semilattices KO, Kl, K2, 3

(i) ©¢ Ko if and only if B(s) =<I(8);: +; N>

is a lattice in K.

(ii) &€ K if and only if every formula in FK

1

is valid in 5.

(iii) ®& ¢ K, if and only if every map of the

K . ..
generators of s?n into & extends to a join
homomorphism with the property that the equiv-

K . .
alence relation induced on §211 by this map is

a congruence relation.

(iv) S¢ Ky if and only if & is a direct limit of

lattices in K considered as semilattices.

The classes KO and Kl are due to earlier authors [5][6]

although most take only a finite part of FK to obtain SE The

class K3 was suggested by Lachlan and as far as the author knows

the class K2 was first suggested by Gaskill. It is a conseguence
of our earlier work that for A, the class of distributive lattices,

A = Al = A_ = A_. The most general results known to the author are

Th 4.1. C C C
eorem 1 K2 —-Kl —-KO and K3 —-KO

K
Theorem 4.2. If for each n € w, [S?n| < RO’ then k., = Kk_  CK

1 2= 3"

Since the proofs of these two results do not fit in with our main
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theme, we omit them, and continue with our concern in this section,

namely, proving that
Theorem 4.3. A_= A, = A,  =A

Proof. We first show that Al’ A and A3 CA.. For A, CA

2 - 70 1—- "0

since @é is valid in every distributive lattice, we have @é € FA'

Hence, if & ¢ Al then by Lemma 3.1 &€ Ao.
To see that A2 i-AO we proceed as follows. Let a, b and
.QA.
c € 8 where <5; +>¢€ A2 and a+ b =c. Now if 5 is the free
distributive lattice on three generators, x, y and z, let ¢ be
. . A
any join homomorphism of A.3 into © such that x¢ = a, v¢ = b,
b
zp = ¢ and E¢ is a congruence relation on glé. Now by the distri~

butive law we have

(xz)d + (yz)d = ((x + y)z)¢.

Observe that we can define a second operation A on (L§)¢ so that
A o~ A C . :
8?3/:¢ N’<L3¢; +, A> . This is immediate from the fact that ¢ 1is a
join homomorphism and E¢ is a congruence relation. It follows that
((x + y)2)0 = c. Since (xz)¢ + (yz)$ = c, we have (xz)d + (yz)¢ = ¢
and hence the defining formula for distributive semilattices is valid
in &
To show that A3 E-AO' let a=<{ei : i €1}, <1; =,

{¢2 : j, 1 €I &1 <3}> be a direct family of distributive semilattices.
We show that l£m<7 is a distributive semilattice. Let <8; +> = lim(7 ’

and suppose we have a; b, and ¢ € S such that a + b = ¢. Now there

(o0}
exists 1 € I and x, vy, and z € Si such that x¢i = a, y¢é =D
i
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[e o] (o] (e o]
and z¢i = c. Observe that since ((x + y) + z)d)i = (x + y)¢i, there
exists a k € I such that i =k and ((x + y) + z)¢? = (x + y)¢§.

It follows that z¢§ < (x + y)¢?, and hence since Sk is a distri-

. . . - - - k
butive semilattice we may choose x and y~ € Sk such that x° = x¢i

» - »

k ” k . ” Nt - rd o
y = y¢i and x~ + vy~ = z¢i. Now if a” = x ¢k and b” =y ¢k we

-

have a”" <a, b <b and a” +b = c. Thus S is a distributive
semilattice. Now, since every distributive lattice is a distributive

semilattice we have immediately that A3 E-AO'

To complete the proof we must show that Ao c A, A, and A3.

1’ =2
We first claim that in any distributive semilattice &, if Sl cs

is finite, then for some finite 52 with Sl < 52 € S we have <Sz; +>

is a distributive semilattice. To see this, we proceed as follows, let

¢ be the injection of & in t}(@). Now let 8'2 be the lattice

closure of Sl¢ in :}(6). Since f}(@ ) 1is a distributive lattice

by Lemma 3.1, we have that 5'2 is finite. Now <S'2; +> 1is a dis-

tributive semilattice, whence by Theorem 3.1 we have that it is
transferable. Moreover by Lemma 3.4 we may choose Y embedding

then x¢y = x. Thus <S'2w; + >

2

£S7.; +> in © such that if x € Sl’

has the desired properties.

To see that AO CA recall that every finite distributive semi-

2'
lattice is join isomorphic to a distributive lattice. A glance at the

definition of A2 now yields the result.

C “es . i
For AO —-Al' we let on...Vxn_l 3yo 3ym_l Y € FD Now if
S€ AO then we must show that on...Eym_l Y is valid in © . Let
ag a be any n-element sequence in S. Then there is a finite

s, 2>2{a ,...,a } such that <82; +> is a distributive semilattice.

n-1
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Now form <fs2; +, A>, a distributive lattice. Then

.,an_l] is valid in ‘<82; +, A>, hence in

1 W[ao,...,an_l

3yo...3ym_l W[ao,..

<{S.; +> . 1It follows that Byo...Hy

5 ] is valid in

© . Siince the sequence was arbitrary, the result follows. To obtain

AO E_A3 we actually prove something stronger, which we state as

Theorem 4.2. & is a distributive semilattice if and only if it
is a 1-1 direct limit of finite distributive lattices considered as

semilattices.

Proof. Sufficiency is a consequence of A3 < AO. Now for the
converse, let S be any distributive semilattice. Recall that every
finite subset of S is contained in a finite substructure which is
distributive. It is well known that any algebra is a 1-1 direct limit
of its finitely ge: 2rated subalgebras. Observe that since finitely
generated implies finite for semilattices, we are done since the finite
subsemilattices which are distributive are cofinal in the collection of
all finite subsemilattices, and each such subsemilattice is isomorphic
to a distributive lattice.

This concludes the proof of Theorem 4.1.
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CHAPTER 2

In this chapter we present a characterization of transferable
semilattices. Our procedure will be to build from a given finite
semilattice & a semilattice &* together with a map ¢ embedding
& in _3( =*) such that if & is not transferable then S* and ¢
constitute a counter example to the transferability of &. What we

. . 5 S
actually construct is a relational algebra U whose retract <AT; +>
. . G
is the desired &*. The relations on 9~ are all unary and each one

constitutes an ideal in <AS; +>. These ideals taken together form

an isomorphic copy of & and from them we obtain the embedding ¢.

§5. For the remainder of this Chapter, & =<S; +> will denote a
fixed finite semilattice with K = {ko,...,kn_l} € s its set of join
irreducibles. Further in this Chapter we treat J(S*) =< I(S*); +>

purely as a semilattice.

Definition 5.1. Let p € n and J C n. The pair <p, J> 1is

said to be essential for & provided that

() x < .Z_x.,
1

(ii) for each 1 € J, kp Z k. and,

(iii) i%J ki is join irredundant and minimal over k

in the sense that if J' ¢ J then k % Z, k..
+ o) J i

The inequality kp < L ki will be referred to as an essential

inegualitx.
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=
=1
We construct a relational algebra, 9 whose language consists

of the following: a binary operation symbol +, a unary operation

~

symbol £J for each triple <p, J, i> such that the pair <p, I>

~1,p

is essential for © and i € J, an individual constant ¢, for
each 1 € n, a unary relation symbol Ui for each i € n, and a
unary relation symbol Vs for each s € 8§ ~ K.

G
The construction of U will take place in stages according to

the following program. At stage m, le will be a partial system

J
whose retract <Am; +> is a semilattice, for each m = 1. The fi p
I
will be partial operations with domain Am—l' To obtain mm+l from
. . . J .
ﬂm we will first extend each operation fi to Am, simultaneously

’

extending the universe. Then we extend + and the universe simultane-

ously so as to obtain a new universe Am+l which is closed under +.
Finally we will extend the relations Ui and VS to the universe A
The resultant structure mm+l will be an extension of mm and we will
set mGS= U g |

iew 1

Throughout the remainder of the construction, B = {bo, bl’ b2,...,
bi,...} will be a fixed infinite set with bi = bj only if i = j.

The structure ¥ is defined as follows. A_= {b P o) } and we
0 0 0 n-1

define the O-ary operation ci by ci = bi. All other operations are

empty. We put bi € Uj if and only if ki = kj. For s € S~ K, we
put bi € VS if and only if ki < s. This completes the definition
£ UL
°* %o
Before proceeding to the inductive stage, we define the structure

ul. We put

m+1l’
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F* = U{{fi p} x Up :<{p, J> essential and i € J}
~ 14

and let g be any 1-1 map from F* into B~ A . We set Ai = A U

J
F* d defi £, A b
g an efine i,p on o b¥

(£7 ,b)g if b €U
q gq P

~i,p

b if b fU .
q qa’” p

Now let A*l =7°(A£) ~ {0}. We define =* on Ai as follows: for

* <% i 1 H d
Hl and H2 € Al we put Hl = H2 provided that if a ¢ , an

a f H2 then for some essential pair <p, J> we have a € Up and

J . .
for each 1 € J, f£ € H . We prove that =* 1is a quasi order

i,pa 2

with least upper bounds. We must show <=* 1is reflexive and transi-

tive. The former is obvious. Let Hl =* H2 <* H_, we show Hl <* H_.

3
Let a € Hl. If a ¢ H2 U H3 we are done. Suppose not. Then for some
J .
essential pair <p, J> and each i € J we have £ pd € H,. Since
1

J J .
a € Up we have fi,pa 14 AO, whence fi,pa € H3, since H2 <* H3.

But this implies that Hl =* H3 as desired. Thus =* 1is a quasi

order. Now for any H and H in A*, we claim that H. UH is

1 2 1 1 2
a =* least upper bound. It is clear that Hl U H2 is an upper bound.
N <%k <% . 1
ow let H, be such that H) < H3 and H, =* Hj. Since for a € Hy U
H2, we must either have a € Hl or a € H2 , 1t is easily seen that
Hl U H2 <* H3. Thus Hl U H2 is a <=* least upper bound as desired.
We now define the U and VS on Af. We first extend the U
b
J
and V to A! If b €U, let £, Db be in U or V if and
s 1 q p ipq r s
only if ki = kr or s respectively. For H € AI put H € Up or VS

if and only if H S_Up or VS respectively.
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i = * = i f d ly if H, =* d
We define on Al by Hl H2 if and only 1 ] H2 an
H2 <* Hl. Let [H]: denote the equivalence class of H with respect
to =. As pointed out in the introduction the structure ‘<Ai/£; <k /=D

is a semilattice ordering system. In addition, we claim that if Hl =

H and H., € U \Y% t H U or V respectively. To sece
2 1 r or S hen 2 € r s p Y

this, let H H. € Ur' We fix a € H2 and show a € Ur from which

2 1

the result will follow. Now if a £ H then for some essential pair

1

_ J i J
<p, 3> and each i € J, a € Up N AO and fi’pa € H2. Now fi,pa €

Ur if and only if ki = kr' Since this is valid for each i € J,
and since <p, J> is essential we have kp < L k., <k . Now a=b
for some g whence a € Up if and only if kq = kp. It follows that

kq = kr and hence that a ¢ Ur as desired. Similar reasoning yields

the result for VS.

Let Uj' VS, and =< denote the relations on AE/E induced by

Uj' VS and =* respectively. It is clear from the definitions that

the Ur and VS are ideals. Further note that if [H]™ € AE/E nu

tH

and b € U_ or V_, then [H] T € U or V_ respectively. To see
q r s r s

this for Ur' notice from the construction of MO and the definition

of U on Al that U_ ¢ U_ if and only if b_ € U, if and only if
1 q— r q r

r
bq S b . It follows that (u]™ ¢ u_- Similar reasoning applied to the

case for V
S
Now choose a map g* satisfying the following conditions:
(1) g* : AX/Z > B
(ii) g* 1is 1-1

(iii) [{a}) g* = a for each a € Ai
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To see that such a map exists, it is sufficient to demcnstrate that

if H = {a} then H= {a}. If b € H then either b € {a} or for

some pair <p, J> with b € Up and for each i € J, fi o € {a}.

’
The latter condition is clearly impossible since 1J] > 1 for each
. . . . . . J
pair <p, > and for i and j € J with i # j we have fi pb #
’
J - =
f. b. It follows that H = {a} hence for each a € al, [{a}"] =

J/p 1
{{a}}.
Let A, Dbe the range of g*. We define = on A by [H]Eg* <
[H’]Eg* if and only if [H]E < [H']E. We put [H]Eg* € U or V_
if and only if [H]E € U or V_ respectively. The operations
fi,p remain as defined on Ai. The ci remain the same O-ary opera-
tions as in NO' This completes the construction of the structure Ml

which is easily seen to be an extension of ﬂo. Below is a full state-

ment of the inductive hypothesis, (i) - (ix), and the reader will
have no trouble ascertaining that all parts are valid with J = O.
Now let us suppose we have constructed QIO""'le where n =2 1,

such that if j < m the relations detailed below are satisfied.

(i) Y. is an extension of U..
i+l 3

(1) If a and b €A, then, fi a is defined

t

J . .
Aj+l' fi,pa # a 1f and only if a € Up ,
. J I .
and if f, a = f, b with a € U and
i.,p 3.9 p

in
b € Uq then a=Db, i=3j, I=J, and

(iii) <A. .; +> 1is a semilattice.

(iv) If a € A, then .E fq a>a in 9. ..
J 1€J i,p j+1



(v)

We say b is primitive if b € AO or for some ¢ € U

For each a € Aj+l'

{b : b €n, b =a and b is primitivel.

j+l'

a=2XCa where Ca =

21

. _C
P i.,p
. J
(vi) If b €A, and £f, b € A. ~ A, then
J i,p i+l J
J . .
. b €U or V if and only if k, =k
i,p r s i r
or s respectively.
(vii) If a € A, then a € U or V if and
j+1 r s
only if for each b € Ca, b € Ur or VS
respectively.
(viii) If b € Uu_ N A, and b_ €U or V
r j+1 r jo) S
then b € Up or Vs respectively.
(ix) Each U and VvV is an ideal in <a. _,
r s j+1
We construct Mn&l as follows: Let F~ denote the set of unary
operation symbols. Let g be any mapping from F~ X (A ~ A l) into
m m-

B N’Am—l which satisfies the following three conditions:
1) If b £U then (fJ b)g = b
P ~i,p’ 9 :
2) J

3)

If beU then (f., b)g € B~ A .
P m

~ ’

If b, €U and b_ €U then
1 p 2 q
L J
(£, b.)g= (f. , b.)
~j.q’ T2 E ~i,p 1’9

if and only if i =3, p=gq, J=1L

and bl = b2.
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Let A;+l = Am U Rg(g). We extend the definition of the operation
J ) J J
f, to A by setting £, (b) = (£, , b)g for b €A ~A .
i,p m i,p 1.,p m m-1
J
Clearly this extends each of the operations fi p in such a way that
4

(11) of the inductive hypothesis is satisfied.

We define Ur and VS in A in the following manner. For

m+1

a € Am’ a €u or Vs if and only if a ¢ Ur or VS respectively

r
in 94 . For a €A . A then a = fq b for some b € A N U
m m+1 m 1,p m p
We put a € Ur or Vs if and only if ki = kr or s respectively.
* - ") - . . . .
Let Am+1 '7(Am+l) {0}. Throughout the remainder of this

section, we will consistently decompose H € A;%l as follows, H =

IUI” where I =H0A and 1" =HU (A ., ~ A ). Further if
m m+1 m
IC - -
I —-Am+l Am then
FHIT) ={b : b € A and for some essential
J

pair <p, J> and each i € J, fi pb €17} .

!

We wish to define a semilattice oxder on A;+l' To this end with C
defined as in (v) of the inductive hypothesis with 3j = m-1, we set

C*H=1"U Cr (1 U B5I")),

and then put Hy <* H, if and only if C*Hl < C*H2. It is straight
forward from the definition that =* 1is reflexive and transitive and

hence =* 1is a quasi order. Before proceeding it will be useful to

demonstrate that ©2* C*H =2 *H. We have that
ecx*Cu=1"UCZ I (1UHTH) UbIT].

Now the desired result will follow provided we can show that
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cfe I axUBIHY) UBEIH)]=0c6 I (1UBIY)

Recall that (v) of the inductive hypothesis asserts that a = Ll a.

We therefore have that

TG L (T ULED)) =L (1 UBEI).

From the above result and the semilattice laws, we have

Te (T URIT))UB(IT)I =2z (T UBLCIT)).

These two equations yield

It

C T T (T UIIH)) UB(IH]=CI (I U

which immediately gives ¢G* C*H = C*H as desired.

We now show that Hl U H2 is a =* least upper bound for Hl

and H2. We will dermonstrate that if Hl and H2 <* H3 then Hl U

<* . <% i 1v i * U H C
Hy =¥ Hy. We recall that H, U H, =* H, if and only if C'(Hl ))&

* . - -~ — el — AUI .
@}13 Now we have Hl IlUIl, H2 12U12 and H3 13 3

Our task is to prove the following inclusion:

I U12 Uc (Il U12 Uﬁ(Il UI2)) 513 Ue T (I3 U,B(I3)).

By hypothesis Ii and I hence we have only to show that

3!
cr (1, Ur Ujj(Il U:rz)) cC I (14 U.B(I3)).

- - c - , - - -
Now _&(Il U 12) _JB(I3) since as noted above I U 12 ¢ I,. Further,

-

since c}Hl © C*H it is easy to see that L I, =< L (I3 U ﬁKI3)). A

3 1

similar statement holds for I 12, whence
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z (Il U I, U ﬁ%Il U 12)) = I (I3 U.D(I3))-

Now it follows directly from the definition of & that a = b implies
Ca ¢ Cb. We therefore conclude that the necessary inclusion is valid
and hence Hl U H2 <* H3 as desired.
We have shown that <=* 1is a quasi order with least upper bounds.
We therefore have that <<A*+l/5; =*/=> is a semilattice ordering
m

S = i £ i =* U d <* H . W
ystem, where Hl H2 1f and only if Hl 5 an H2 1 e
will denote the equivalence class of H wunder = by [H];. It is a

consequence of the idempotence of @* that H =Z2*H. We define

U ,. on A* /= b H € U ,_ if and only if G*H C U recall
p/= mt+1 Y [ } p/= 4 - p'
that Up has already been defined on Am+l' Since Hl = H2 implies

that C*Hl = C*Hz, this definition is independent of the choice of H.
In a similar manner, we define VS

Our task now is to obtain a structure which is an extension of U
m

We have two structures with respective universes and A;+l/5.

AI
m+1

The former has the desired properties with respect to the constants,
unary operations and unary relations, but it is not a semilattice.

The second structure has the desired semilattice properties. We will

use the second structure to expand the first to obtain mm+l'

It will facilitate our considerations if we first show that if a
and b € A;+l and {a} = {b} then a =Db. We first observe that if
a € A;+l ~ A, then 2*{a} = {a} since for no essential pair <p, JI>

is J a singleton. Further, if a € A then ¢*{a} c A and we may
- =

therefore assume that a and b € A . Since {a} = {b} we have
m
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c*{a} = {a} = {b} = Cx{b}.
Thus
a=2Ca=xCp =10

by (v) of the inductive hypothesis. It is now clear that a map
g* : A;&l/z -+ B exists which satisfies (i) g* is 1-1 and (ii)

Ta* = - - *
[{a}]qg a for each a € A, Weset A (Am+l

/3)g*.  We

IA

define on A by putting [H] g* = [H'] g* if and only if

m+l

i

[B]” =*/= [H"]7. This is obviously a semilattice order and we define

+ 1in the usual way. We let fi o be that partial operation on Am+l
’

with domain Am and range in A;+l which has already been defined.

i
i

We put [H] g* in u, or Vv, in case [H] is in U, or V_ res-

pectively. We let 5 be that constant operation whose value is bi.

This completes the construction of the partial system <<Am+l; F, R> =
mn&l. It remains our task to verify the inductive hypothesis for
j = n. We treat the various parts in order. First we show that mm+l

is an extensicn of Mm. That the constant and unary operations are
indeed extensions of their counterparts on ﬂm is evident from their

definition on MHH1 and we leave this to the reader. For the remainder

it suffices to show that if a and b are in Am then
(1) 4if c € Am+1 ~ A then ¢ % a,

- . . . < ,
(2) a =b in mnﬁl if and only if a <b in ﬁm and,

. a . .
(3) a ¢ Ur or VS in Jm+1 if and only if a € Ur or

. ' in U
VS respectively in e
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From (1) and (2) mn&l is an extension of mn\ with respect to +.
= . c n”’ < ;
To see (1), let c [H]Tg* where H cal. If c=a in ﬂn&l
and a € AL then H =* {a} whence H E_Am. Since [H]: = [{% Hu}],
= * = < 1 M
we have c [{Z u}lg* =L H € A_. For (2), wehave a =b in am+l

if and only if C*{a} ¢ C*{b}, that is, if and only if Ca ¢ Cb.
From the definition of € and (v), the last statement holds if and

. < . . . .
only if a < b 1in le. For (3), a € Ur in le+l if and only if

c*{al € U_, that is, if and only if Ca C U, which is equivalent

to a ¢ Ur by (vii) of the inductive hypothesis. A similar line

of reasoning yields the result for Vs.
Part (ii) of the inductive hypothesis for Jj = m 1is a matter of

recalling the definition of the extension to A;+l and the resultant

definition of the partial operations on Am+l' It is a direct conse-

+>

quence of the fact that <=*/>= 1is a semilattice order, that <Am+l;

is a semilattice. This brings us to part (iv) of the inductive

D

. . a. Now if
i€J "i,p

hypothesis which states that if a € Am then a =

J
a ¢ Up then f, a = a and we are done. Suppose a £ Up. We must

i,p
show that ¢ *{a} Eﬁj*{fi pa : 1 € J}. Now
I
J J
*{f a :1€J}={f, a:1¢€J3
c*{ i,p } = i,p }

J
U z f. a : i € J}.
Crhif; a:i }
By definition of 4 we have a € ﬁ{fi Pa : 1 € J} and hence
’
C*a} =Ca <C L H{f a: i € J}.
= i,p

This immediately yields (iv) as desired.
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For part (v) we must show that ZCZa = a. We first observe that

for a € A a is primitive if and only if a € Am and a 1is

m+1’
primitive in 4 , or a € A" . ~ A . For arbitrary b € A we
m m+1 m m+1
have b = [H] g* for some H € A$+l' low H = C*H = U{{a} : a €C*H}.

We claim that Zb =C*H. To see this observe that if a €C*H then
a 1is primitive in mm+l' Since {a} S C*H, we have
C*{a} ¢ Cx(C*n) = C*H.

It follows that

a = {{a}}g*

1A
jasi
0
*
1]
oa

Conversely, if a €Cb then g*{a} € C*H. Since a is either primi-
. . . - ~ *
tive in m“\ or an element of Am+l A, we see that a € e*{a}

from the definition of £2*. Thus (*H =C2b as desired. It follows

that

z

Q@

b =2 {a:a¢€CH}=[CH]g* =b

as desired.
Part (vi) of the inductive hypothesis asserts that for each
J J .
a €A and f, a € A ~ A we have f, a €U or V if and
m i,p m+1 m i,p r S

only if ki = kr or s respectively. It is simply a matter of

recalling the relevant definitions to check that this is the case.

For part (vii) we must prove that if a ¢ Am+l then a ¢ Ur or
VS if and only if a S-Ur or VS respectively. We have already
remarked that if [H]) g* = a then Ca = G*H = H. Since a € u_ if

and only if [H]™ € Ur/f, which is equivalent to C*H C U we are
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done. Similar reasoning applies to VS

m+1

We must now show that for each b € A N Ur' if br € Up or VS

then b ¢ Up or VS respectively. This will demonitrate (viii). This

property follows immediately from the corresponding property of A;+l‘

-

For A
w1’

the property comes from (viii) for j = m - 1 and the

-

definitions of U and V on A .
r s 1

+ >,

Lastly we must show that each Ur and VS is an ideal in <<Am+l;

Part (vii) and the definition of (¢ easily yield the fact that a =< b ¢

Ur or VS implies a € Ur or VS respectively. Thus we have only to

show that if a and b € Ur then a + b € Ur' This will follow readily

il

provided that we can show, if {Hl] and [Hz]: € Ur/E then [Hl U H2]: €
Ur' But this is eguivalent to showing that cﬁHl and C*H2 &-Ur imply

that @*(Hl U H2) C U . Recall that
- r

n* - - - e -
Cr(Hy U H) (1 U1 uc (Il U I, U,,B(Il U 1))

- -~ - ~ -t-
where Hl Il U Il and H2 12 U I2 are the standard decompositions
of Hl and H2. By hypothesis

* =1 I s 'd
ey =17 UC T (1, USa)) cu,

and similarly for C*Hz. Thus it is enough to show

cr (1, ur, Uba@ UI)) cu

Since Ur is an ideal in le, it is sufficient to show that each of Il,

I

5 .B(Ii U Ié) is included in u_. From above,

@

zr, o i, ubam cuy
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Since Z C  is the identity by (v), we get I I, cu, and similarly

z I, S U . Thus we have only to show that _B(Ii U I£> € U,. Hence let

b € ﬁ%Ii U I£)° Then for some essential pair <p, J> and each i € J,

7 ber1sUIl. It follows that k =< I k. <k , since f° b €U
1,p 1 2 i r i,p r
I€J
if and only if k. Ck . Now b €U since f., b # b. Since k < k
1= r P 1.p P r
implies hb € Ur' we have b € Ur by (viii). This completes the
proof of (ix) since a similar argument yields the result for Vs.
S
We complete the construction by setting 2% = U 9 . 1t is trivial

16w i
S
that all parts of the inductive hypothesis carry over directly to U7,

S
Before continuing we make some observations about <A  ; +>. The

central observation is that if b € A and a € A -~ Aq then a # b.
q

This was shown for <Am+ +> extending <A ; +> and is easily seen
m

17
to extend to the general case. The notion of primitive extends to U
and we note that a primitive b € Am is minimal in ‘<Am; +> whence it
is minimal in <A€ ; +>. Thus each primitive is join-irreducible. If

b € Am and b is not primitive then b is join reducible, whence join

irreducible is equivalent to primitive. Now from the above we see that

G
we can generalize the definition of 2 to A so that

Ca= {x : x is primitive, x € A and x < a}.

> ®

Further we define £ on the finite subsets of primitives in as

follows:

bH) = {b : for some essential pair <p, I>

b € U and for cach i € J fq b € H}.
p 1,p

!




Lastly we note that if Hl and H2 are sets of primitives Hl, H C
5 =

d I = c o= d
Am+l an Hl z H2 then Il I2 an

T [11 uﬁul)] =3 [12 U_B(Iz)]

where I = H - A I, =H Na I_=H_ -~ A and I] = .
SRR B L T B L S T 2 = Hy Ay
This 1s because in extending <:Am; +> to <:Am+l; +> we ensured
that for H and H_ < A' if H, = H n* = Q3*H_.
1 D 2 A ] 5 then “’Hl C,H2 Together
with (v) , we see that this implies the result above. We conclude this

. . . G .
section with a theorem showing <A~ ; +> has a free mapping property.

To this end we prove the following lemma.

o~
=

Lemma 5.1. If a € A~ is join reducible, then there is a unique
set of primitives Qa which is join irredundant such that (i) Z Qa = a
and (ii) if Z H = a then to each vy € Qa there is an x € H with

y = X.

Proof. Suppose for each j such that 0= J =m+ 1, if a ¢ Aj,
then such a Qa exists. Observe that Qa £~Aj' and by the above remarks

we may confine ourseives in the induction step to looking at <Am +> .

+1'

Let a € A ~ A be join reducible, with I~ =Ca~A_ and I =Ca N
m+1 m m

A . We set
m

-

where
1* = {b : b € Qe and b £ HINY .

Clearly,
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TI*+ L /(1Y =21,

whence I Qa =2Ca=a. Nowlet I H=a for any H C Ailt Again

we note for any J C A if ¥ J=a then J CA ; SO we are dealing

m+1

with the most general case. Now set

H) = {x : x is primitive and x < b € H for some b}.
T LI H. = a, = H ~ A d I.=H NaAa. Since I € A ~
hus 1 a Let Il 1 n an 1 1 n nce 1S A,
A and I” ¢ A - A and a € A we conclude that I = I”. Now

m - "m+l m m+1' 1

I 517y ¢ A and X S(I') < a, whence
TCZL(IT) =L BT
by (v) of the inductive hypothesis. Thus £ £(I”) £ Z I, whence

TI1=3% b)) UI)=2 [fr(zi) U Il]

1]
jsl]

1l
™1
o
o

since I Hl Thus to each x € QZI there is a vy 6.3(11) U

Il with x <vy. For such an x € I* C I, y £ B(17) whence y € Il'
Since Il is a set of primitives and every element is minimal, I* & Il.
Thus Qa < Hl and the result follows.

Theorem 5.1. Let S* be any semilattice such that < can be
embedded in J(Z*) wvia U. Let ¢* be any map such that ¢* : K > s*
and ki¢* € xy if and only if ki < x. Then there is an extension ¢

f._::
of ¢* mapping <AT ; +> into 3* such that ¢ 1is a homomorphism

and for each x € A~ , X¢ € kiw or sy 1if and only if x € Ui or VS

respectively.
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Proof. We define ¢0 < ¢l [ ¢l C ... for each i € w such

that if 1 < i ¢i is a homomorphism of <Ai; +> into &* satisfying
the conditions of the theorem. We let ¢0 = ¢*, Suppose that for each
j such that 0 <j<m+ 1 ¢j is defined and satisfies the above
conditions. Let <p, J> be an arbitrary essential pair, and a € Up N
(Am ~ Am_l). For each 1 € J we pick a<p,J,i> € kiw such that

(i) q<le,i> € xp if and only if ki < x and (ii) a@m < iqu<p,J,£>.
Such choices are possible since Y embeds & in T(S*), and ad)m €

k. We define o™ by

" if b € A_
mt+1
b i = o a A
o) %:p,J,i> if b fi'pa € A, h, and a € m
Wl . .. . .
Z[(Qb)v ] if b is join reducible b € Am+l A .

To see that ¢m+l is a homomorphism, we have only to show that for each

join reducible a € Am+l ~ Am if H 1is a set of join irreducibles and

YHE=a then I (H¢m+l) = a¢m+l. Now join irreducible is the same as

primitive. Further since every primitive is minimal if H 1is a set of

primitives and Z H = a then Qa C H by Lemma 5.1 whence

m+

0™ < 1 @me™1y.

Thus it is sufficient to show that if b €Ca then

b¢m+1 <5 (Qa¢>m+l) a¢m+l.

Let b €ga~Q . Then b €Can A since b €Ca ~ A implies b € Q

as shown in the proof of Lemma 5.1. Now
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I*=9 Na ={d:d€QEI and d I b1}

and I'=@a~Am, whence b < I H(17). Now B(1°) <

=" <z (B = L [Bae™1.

Thus we will be done if we show that for each ¢ € .5(17)

Now if

(A -~ A
m

c € H1y,

m+

o™l o<z (QadJm+l).

then for some essential pair <p, J> c € Up N

) and for each i € J fq c € I”. Now

m-1

cd =

1,p

m J m1l
ch = L c o= I [(f ¢ 7]
iEJ<p,J,1> ieg P

by choice of the q<p 75> for 1 € J. Thus
4 [4

for each

c €517

Cq)m+l <1 @™

whence we obtain that

Dlane™ sz ae™h =5 e™h

and hence that b < I (Qa¢m+l) as desired.

ml .
Thus ¢ is a homomorphism. Now let a € A ~ Am. We show that

ae€uvu
r

a € Am+l

or V if
s

m+1

and only if a¢m+l € krw or sy respectively. If

m+1

~ Am is primitive the result follows by choice of a¢ . For

join reducible a,

if a €U or V then Q <€ U or V respectively
r s a— r s

and the result follows. Now if a £ U or Vs then for some b € Qa'
r
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b #£U, or Vg and again the result follows. If we let ¢ = iU o

we have the desired homomorphism,

§6. We will now present our characterization of transferable semi-

lattices.

Definition 6.1. Let s € S and H ¢ S5, we will say that H is

minimal over s in case s = L H, but if H O H then s 27T H .

f
Further if p € n and J Cn, with |3] = 2, we will say that <p, I>

is a minimal pair in case

(1) {ki : i € 3} is minimal over kp and,
(2) if {ki : i € J*¥} 1s minimal over kp and
to each j € J* there exists an i € J such

that kj = ki, then J* = J.

Definition 6.2. S 1is strictly transferable in case for some linear

order < of the join irreducibles k .+ K every minimal pair

OI n_ll

<p, J> satisfies kp <k, for each i €J.

Theorem 6.1, Let © be a finite semilattice. Then & is trans-

ferable if and only if £ is strictly trarnsferable.

Proof. We prove first that strict transferability implies trans-
ferability. Hence let ¢* be any embedding of 3 in J(3*). wWithout
loss of generality we assume that ki-< kj if and only if i < j, where

=

< is the lincar order witnessing the strict transferability of &, For

each 1 € n choose a; € ki¢* such that for any J ¢ n and s € S,
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z P : ) = - :
16534 € s¢ if and only if iEJki = s. It is easy to see that such
0
choices can be made. For i € n define ki = a; - By induction on j,
we define k], ceey K for 3 € n such that k? € k.¢*. 1In the
0] n-1 i i

. . j+ j . . j+
induction step we let ki 1 = ki for each 1 = j and we choose k§+i,
j+l j+l 1 * Yk * 3

J42 AR SO 4 kj+l¢ . kj+2¢ PN kn—l¢ respectively such

p .
that ki 1 > kz for 1 € n and such that for any J ¢ n, if J N (j+1) =

) j+1
¢ and <j, J> is a minimal pair, then k% < ingi . We can choose

J+1 j+1 , 5 . . T
k- ey .= L ¥, np 1 k.¢p* < k.o*),
41 kn-l suitably because kj A implies j¢ iEJ( l¢ )
since ¢* is an embedding. Define ¢ : K > S* by ki¢ = Z{k? : kj < ki}.
Our first claim is that if <p, J> is a minimal pair then kp¢ =z (ki¢).
i€J

We must show that if k < k then k. < L (k.¢). This is obvious if
q P q i€J i

kq = ki for some 1 € J. Otherwise, we have that there is a minimal

pair <g, J* > such that to each 3j € J* there is an i € J such that

kj = ki. That such a pair <g, J*> exists is a conseguence of the

finiteness of Z . Now

"= s kU< ¥ (x.®)
qa” qe3* T3 T qeg i

by the definition of ¢ which establishes the claim. Clearly ¢
preserves the partial order on K and every inequality kp = ingi
where <p; J> 1is a minimal pair. Let kp < i%Jki be an arbitrary
inequality valid in 3. 1If kp b ki for each 1 € J then we find a
minimal pair <p, J*> satisfying the condition that for each j € J%
there is an 1 € J such that kj = ki. It follows immediately that
ka = igJ(ki¢). Since a, < ki¢ € ki¢* for ecach i € n, ¢ clearly

satisfies =x¢ € yo* if and only if x <y, whence ¢ is 1-1. This

shows that ¢ 1is an cmbedding of & in 3*, and thus & is transferable.
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Conversely, let us suppose that 3 1is transferable. Now & is

embeddable via ¢* in ‘3(3ﬁ3), with soé* = VS and ki¢* = Ui' for

this embedding. By the definition there is an embedding ¢ of & in

(N

U which satisfies x0 € Ui or VS if and only if x = ki or s

respectively. Now let

R, = {x : x € C&kiQ) & x € yo* 1if and only if Ui < yo*}.

We will first demonstrate that Ri # 0 for each 1 € n. First observe
that with each primitive element a we can associate a unigue ia € n

such that a ¢ Uj or VS if and only if ki = kj or s respectively.
a

Hence it is sufficient to find a € clki¢) such that ia = 1i. Now if

R, = 0 then let s = Z{ki :a € 6(ki¢)}. Since k. is join irreducible
a
and ki < ki for each a ¢ 31ki¢) we have s < ki. It is clear from
a

the construction that ki¢ € VS (or Uj respectively if s = k.),
which is contrary to our hypothesis about ¢. Thus Ri # 0 as desired.

We now set

and define < Dby:

k,< k., 1if and only if 1) m, < m, or
i ] 1 J

ii) m, = mj and 1 < j.

We must show that every minimal pair <p, J> satisfies k < k., for
i

each 1 € J.
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For the remainder, we fix a € Rp such that mp = pila € A ]. Now

J

as=Z(UC(kk,¢)). Let H<c U C%ki¢) be such that H 1is minimal over
ieg b i€J

a. Observe that for each b € H there is an 1 € J such that ki =

b

Further we assert that kp =< Z{ki : b € H}. To see this, let s =
b

Z{k, : b €H}. Then a € V.. But a € V_ if and only if U < Vv ,
iy s S p— s

which is equivalent to k_ < s. Now since <p, J> is a minimal pair,

for each 1 € J there is a b € H such that ib = 1., This is an immedi-

ate consequence of the fact that there is an H* C {ki : b € H} such
b

that H* is minimal over kp, and that < p, J> is a minimal pair.
It is immediate from the lemma proved below that mp < u,[b € A.] for
J J

each b € H. But this implies that mp < mi for each 1 € J, whence

kp < ki for each 1 € J. This completes the proof.

Lemma 6.1. Let a, b be distinct primitive elements, and let
a € Am where m = pi[b € A.]. For any set H of primitive elements,
i

if b <Z H, then b =% (H~ {a}).

Proof. We carry out an induction on g where H C A . For g =

g+m

we see from the definition of =* in A*m that b <X H if and only if

b € H., Hence let us assume the result in A . Let a €H CaA .
m+g — mtg+l

Now from the definitions of =* and (C* and the inductive hypothesis

part (v), 1if b = I H, we have

b € c* (i) H® U -, (Z[(H*) UJ}(H‘)]) ’

1

HOU & Elw*) UceE smny,
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where H* = HN A and H” = H ~ H*, Since b £ H7,
q+m

b € c(zfu* Ua@,MH))]gAmq.

Thus,
b < o[u* Ug(l (Fwhy)].
By the inductive hypothesis,
b= ([ux ~ {a}] U 2[Z*G®E)].
It follows that
b€y ([B* ~{a}] UC[Z 5N ]) cC L @~ {a}).

We therefore have b = I (H ~ {a}) as desired.

§7. As pointed out in the introduction, it remains an open guestion
whether transferable and weakly transferable are equivalent for semi-
lattices. We have examined all semilattices having at most three join
irreducibles, and in all cases have found the two notions to be the same.
We now present a proof that a particular semilattice is not weakly trans-
ferable. The construction of * for this case is interesting since

similar techniques work for some larger finite semilattices.

Example 7.1. We consider the semilattice f5l depicted in Fig. 1.
Now it is easily seen that 53 is not transferable. Note however that
a somewhat similar semilattice 32 is transferable. We show that 2

is not weakly transferable. We do this by construction of Sx, see Fig. 1.
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For the construction of &*, let A = {ao, ays a, ...}, B = {bO'
b+ b2,...} and C = {co, a(;, b(;, ai, bi, a2’, b;, ...}. We define

on A so that <a; <> is isomorphic to <w, => in the obvious manner.

Similarly we define = on B and C to form <B; => and <c; =>.

Now consider <a; +> and <B; +> as semilattices. Let A UB =2a x B U

A UB. We define + on A UB by the following rule and the commutative
law:

n
x+y if x and y €A or x and vy € B,

(x + a, b) if x €A and y = (a, b} € A x B,

(a, b+vy) if x= (a, b) € AX B and y € B,

i

(a+ ¢, b+ 4 1if x {a, b) € A x B and

(c, @) € A x B,

i

y

We leave it to the reader to verify that + 1s a semilattice operation.

We now set S* = A UB U C and define + by

r

x+y if x and y € AUB, or x and y € C,

a"+b  + ¢ where x=(a, b ) €A UB and
m n n

L y = ¢ € C.

We note that <S*; +> is a semilattice. It can be shown that @l is
not embeddable in S*, but the ideals A,B and the principal ideal
{co} generate a copy of 51 in J(&*).

In the next chapter we consider the problem of transferability for

lattices. We will show that if -g: {L; 4+, *> is a transferable lattice

then <L; +> 1is a transferable semilattice. Our next example shows that
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the converse of this theorem fails.

Example 7.2. We construct a lattice §?* to show that {?' the free
distributive lattice on three generators, is not transferable as a lattice
S? is transferable as a semilattice may be verified by the reader.

That

Let a, b and c¢ be the three free generators of i?. Let g =

(a +b)(a+ c)(b+ c). Now for each x € L, for which x # 4, let
{ox’ lx' 2x' LY o= @, be a copy of w. For d we have Wq = {Od, Oé’
ld' 15, 2d' 2é’ ...}, also a copy of w. Let L* = ngmX. Order each

® according to the enumeration displayed. We define = on L* as

follows: a <b if and only if (i) a = D b = my' X<y and m<n
or (ii) a = n_ e b = mé, Xx<d and n<m or (iii) a = né , b=m,
d<y and n=m or (iv) a=mn;, b=my and n = m. Now we claim

that < is a lattice order. It is trivial that it is a partial order.

Further it is easy to see that least upper bounds and greatest lower
bound exist. For example the least upper bound of the pair {n_, m }

X Yy
is kX+y where k = max[n, m]. If the map ¢ : 5? into f}({?*) is
defined by x¢ = [wx] where

[wx] = {z : 2z € L* and for some n_, z <n_},
X X

then it is clear that ¢ is an isomorphism. Observe that S? cannot

be transferable since

(namb) + (nakc) + (mbkc) < (na + mb)(na + kc)(mb + kc).
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CHAPTER 3

In this chapter we present some results concerning transferability
of finite lattices. In Section 9 we define the concept of weak stability.
We then prove that a transferable lattice is transferable as a join semi-
lattice, weakly stable, dual weakly stable, and that the set of meet
irreducibles satisfies a linear order condition which is like the dual
of that given in the definition of strict transferability in Chapter 2.
These results are summarized in Theorem 9.1, p. 79. 1In Theorem 9.2,

p- 80, we show that if a lattice satisfies all of the above conditions
and an additional condition which we have termed the "join-meet condition",

then it is transferable. Lastly in Section 10 we give a complete charac-

terization of transferable distributive lattices.

§8. TIn this section we essentially repeat the construction of §6.

However, as we are dealing with lattices instead of semilattices the

construction is much more complicated.

The following lemma will considerably ease the construction. We

note that it is a consequence of Gratzer's observation about weak
transferability.
Q. - . .
Lemma 8.1. If J is a finite lattice and some element of L 1is both

join and meet reducible then &E is not transferable.

Proof. Let a € L with a both join and meet reducible. Let
w' = {0, o', 1, 1', 2, 2', ...} be naturally ordered by the given enumer-

ation. Let

L* = ({a} x ") U L_l {{x} xw : x# a and x € L}.
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Now let b and c¢ € L*. We define = on L* by: b = c if and only
if (1) b =<x, n> c=<y,m and x =y and n=m or (2) b = <a,
¢ =<y, m> and either a<y and n<m oOr a<y and n=m, or
(3) b =<x, n>, c=<a, n'> and x=a and n=m or (4) b = <a, n'>
and ¢ = <a, m'> and n < m. One readily observes that = 1is a partial

ordering. We show in detail that {b, ¢} has a least upper bound. Let

b =<x,y> and c = <z, wW>.

Case 1. y and w € w. Let d=<x+ z, max (y, w)>, then d is
clearly an upper bound. Let <u, v> be any other upper bound. Then

X+ z<u. If v €w we are done. Otherwise v =m' € w' and y and

w <m whence d =< <u, v> 1in either case.

Case 2. y=nm' € ', w € w. Then b =<a, m'>. If c =b we are
done. Otherwise either a< a+ 2z and m=w, or a=2 and m< w.
Let d= {(a + z, max (m, w)). Clearly d 1is an upper bound. Let b
and ¢ < <y, v»>. Then a+ z =u. If v €w then m=v and w = v.

If v=n' €' then a=u, m=n, and w=n. Thus 4 < <u, v> in

either case.

The only other case is that in which y and w are both in ®' and

x = z = a. In this case either b = c or ¢ = b. This completes the
proof that least upper bounds exist. In a similar manner we show the
existence of greatest lower bounds. Let * be the resulting lattice.

We define ¢ : L » (%) by
x¢ = {<z, y> € L* : z < x}.

It is easily seen that ¢ is an isomorphism. Now let H C L with

X }. Consider

Iy = but a £ H. Su H = ceey
a £ ppose {xg: el
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H* = {<XO' y0>' ey <Xn—l' yn_l>}, where Y, € w. Then IIH* = <3,

[min(yo, or yn_l)]'>. Let a £ I= {uo, ey un-l} C L with a = II.
Let I* = {<uo, V>r e SOy vm_1>} where v, € @. Then II* =
<a, max (VO, ceer Vo l)>. It is easy to see that if ZII* = IlH* then

II* < JIu*. Now if Sz is transferable there exists ¥ embedding S?
in i?* such that for each x € HU I, there is an m € w with xy =

<x, m>. Tt follows from the above that I(IYy) < T(HY) whence Y is

not an isomorphism.
For the remainder of this chapter £?= <L; +, *> 1is a fixed finite

lattice with K = {ko, ey kn—l} C L its set of join irreducibles.

is both join and meet reducible.

£

defined in the last chapter augmented by one additional

Further we suppose that no element of L

We construct the relational algebra YU whose language is that of

G
the structure U

binary operation symbol ¢ . As in the construction of mb , we let

B = {bo, ..., b., ... } be a fixed infinite set, with b, # bj if
i

i # j. For the universe of ﬂo we take {bo, ey bn—l}' We put

bi € Uj or Vs provided ki < kj or s respectively. The individual

constant ¢, has value bi. All other operations are empty.

It will be useful to have ﬁl and ﬁz before attempting the induc-
tive step. Let Ai =’P(AO) ~ {0}, and let g be any map from Ai into
B which is 1-1 and such that for any b € AO {b}g = b. We define

< = * .
< on Al Alg by

a=b if and only if bg—l < ag—l.

This obviously a semilattice order. We define * on Al from = so

that <Al; *> 1is a meet semilattice. Now define the operator §: Al > L




45

as follows:

1
H , & i if € A~ A_.
H{ki bl € xg i<n} i x 1 o

We put x € Ui or VS, if 8x = ki or s respectively. The operations

+ and fq remain empty.
i,p

Let F' be the set of unary operation syibols and

J
F* = U{{f, x U : £,
{{~11P} b ~1,P

where U denotes the unary relation on Al. Let g be any 1-1 map

from F* into B~ A,. We set A! = A U F*g, and define fq on A
1 1 1 i,p 1
by
B .
i (f. , b)g if b €U
3 j ~1,pP q q p
£, (x)
i,p !
i b if b £ U
L q q b

We extend the operator § to Ai by setting

J
8 ((f, ¢+ b )g) =k, ,
~1,p q 1
when b € U .
q p
Now let AE =03(Ai) -~ {0}. For H € A;, let H'= Al N B and
H* = H -~ H'. With respect to this decomposition of H, we define the

1
operators ', 2 and (CG* as follows:

Sy = {a : a ¢ Al and for some essential pair <p, J> and

each i € J, fq a € H*},
i,p

14

{x : x €A and for some y € H' U 5@, y < x},

et
’ 1
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Q*(H) = H* Ualm).

Now for Hl and H2 in AE, we put Hl =* H2 in case cj(Hl) Eﬁz*(ﬁ2)-
We claim that =* is a quasi order with least upper bounds. First we

observe that it is obviously a quasi order. We also note that
CrC* (1)) =C*(H).

To see this, observe first that [e*(H)]* = H* since @}(H) c A Thus

1
B(@*(H)) = (H) whence
C}IQZ*(H)) = {x : x €A, and for some y ¢ C}(H) U £)

xy = x} =n31(H).

From this we observe that C*(H) =* H and vice versa. Now we claim

that Hl U H2 is a least upper bound for Hl and H2. It is clearly
an upper bound. Let Hl and H2 =* H3. Then
7% % lax3 77 %
(Hl) uc (112) cC (H3)

It is immediate that

H H*:*
(1U2) HlUHEgHg

whence we have only to show

1 1
¢ UR) ¢ & (Hy)

. 1 1

e
Now if x € C}(Hl u H,) (e (Hl)LJCf(Hz)], then for some vy E,B(Hl U )
xy = x. But p(H U ,) € p(Hy) since HY U HY © 1%, whence x 631(113).
It is now clear that <=* 1is a quasi order with least upper bounds.

We define = by H. = i i =
e de v H2 if and only if Hl =% H2 and H_ =¥ Hl, then

! 2
h that ENeA = . .
we have a Hl C (Hl) and H_, = H2 implies @*(H.) =(3*(H2)- Now

1
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<<A§/E; <*/=> jis a semilattice ordering system.
We claim that there is a 1-1 map g* from AE/E into B such

that for each b € Ai, [{b}]:g* = b. To see this we have only to show that

for bl and b, € A! if {bl} = {bZ} then bl = b2. For such a bl

2 1
and b., c*{b,} =c*b }. Now since [JI =z 2 for each fq
2 1 2 inp’

conclude that ﬁ%{bl}) = ﬁ({bz}) = 0. Now {bl}* = {b2}* and if

we

Il

{b,}' #0 then b} = {p }*={b,}* = {b,} whence b, =b, . 1f

. 5 1
{bl}* = {bz}* = 0, then since bl and b2 € Al, b € c,({bz}), whence
1 -
b. < b, by definition of £&7. Similarly b, =Db, whence b, =b
1 2 2 1 1 2°

It follows that g* exists as desired. For such a g*, let A2 = A*g*
59%.
1

We define = on A, by setting a = b if and only if ag*~l <t/ gk

+ on A. from < in the usual way and extend S to A. as

We define
2 2
follows. For each x € A2, chcose H € xg*_l and let
8x = Z{ 8y : y € cx(m}.
This is independent of the choice of H because Hl = H implies
2
Ole = C*i,. We put x € U, or V_ if 8x = ki or s respectively.
This completes the definition of M2
Below we list an extensive inductive hypothesis. Most of the clauses

have not been verified for ml and %2, however their validity for these

structures will become clear as we proceed through the inductive step of

the construction. Hence suppose that we have the structures Y., ..., U,
0 2m

a

m=>1, that o: Aj + L is defined for Jj = 2m and that the following
conditions are satisfied.

(i) mj+l is an extension of Mj. Further if a + b or ab is
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defined in Y. then a + b 1is the = least upper bound of {a, b}
J

in mj+l and ab is the <= greatest lower bound of {a, b}. We will

term this property the strong extension property.

J . . .
(ii) 1In %Ej, each fi is defined as a partial operation with
L4

J
i A . h . ]
domain A2j—l' and for each a ¢ 24-1 we have fl,pa # a 1f and only

J
if a € U . Further, if a €U_ and b €U and f  a= f? b  then
p b g 1,p J.g

a=b,i=3,I=J and p = d.

(iii) <<A2j+l; +> is a meet semilattice, < Azj; +> is a join semi-

lattice. The domain of + in m2j+l is A2j and the domain of * in

) A, . .
mzj is 2§-1
J
i then = I f, i u o,
(iv) If a ¢ A2j—l e a el 1,pa in 25

An element b € Aj is primitive if b ¢ AO or for some ¢ €U N A,
P J

ion f £ ¢

and unary operation ip’ i,p

:b.

(v) 1f a €A, ~A, , and 2k =3 then a is either primitive

or ‘oin reducible, but not meet reducible in ¥,. If A ~
Jorn e ' 3 2 € Py ™ Pk

and 2k + 1 = 3j then a 1is meet reducible but not primitive or join
reducible in 2%. If a € A2k Ry 2k = j and a is primitive in

m2k then a is primitive in ﬂj and a 1is both join and meet irre-

ducible in ﬂg.

. J
(vi) 1f x and y €A, and x=f' y#y, then x €U or V
J 1.p r s

if and only if ki = kr or s respectively.
(vii) For each x and vy € Aj, the operator & satisfies the following
three conditions (1) x < kr or s if and only if x € U or V _,
r s

(2) if x + Y is defined, then g(x + y) = gx + Sy and (3) if Xy is
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defined then S(xy) =8x8y. Note that (2) and (3) imply that if

x <y then 8x = 8y.

Vv  is an ideal in <A_.; +>.
s 2]

(viii) Each Ur or
In each of the above clauses, the range of values of 3j is the maximum
consistent with the fact that ﬂi is not yet meaningful for i > 2m.

. - i £OUA L x =P -
Our first task is the construction o omtl Let A2m+l /TVAZm) o

{0}. Now for H €A% ., let H'=HNA) , and H*=H~H. We set

mE) = {x : x € A, g0 X 1is meet irreducible in <<A2m—l; o>

and for some y € H* U {IIH'}, vy = x}

]

{x : x €2, - and for some y € H* U

NH) om  Pon-1

{Ilgp(H)} we have vy < x}.

By convention we leave empty products and sums undefined. Thus if

H =0 then {IH} = {ZH} = 0. For H, and H_ € A*

1 2 oo+l we put

Hl <* H2 if and only if (1) W(H2) < W(Hl) and

(2) if 7(H,) # 0 then Wqu) # 0 and I Wqu) = T 70H,)

We show that =* 1s a quasi order with greatest lower bounds. That

=* is a quasi order is clear. Let Hl and H2 be given. We show

that Hl U H2 is a greatest lower bound for Hl and H2. It is easily

seen to be a lower bound. Let H3 be any other lower bound. We show

H, =* H, U H,. Our first task is to show %(H

3 1 > ] U H)) & W(H3). Now if

x € 72(}11 U H2), then for some vy ¢ HI U HE U {H(?’Z’I(Hl U }12)} we have

y < x. Now HjU i3 577(H3) since H} ¢ ) E_?HH3) and similarly
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for H*. Hence the result will follow easily if we can only show that

H??z(H3) < H77((Hl U H2)

when WNHl), WHH2) and WHH3) are all # 0; the other cases are easily

handled. This will be obvious if we show that

i WZ(Hl) II 77<(H2) < I may U H,)

Let x € Wqu U H2). Then x 1s meet irreducible, x € A2m—l and there

is a y = x such that y € H} U n3 U {ll(n; U KB} }. Consider this y.

If y € H;, then
H'/?z(Hl) i 772<H2) < Hm(Hl) < x

since x € M(Hl). If y € H; a similar result is obtained. Otherwise

y = H(Hi U Hé)’ whence

I 7/2(1—11) I 772(H2) < HHl HH2 = H(H:'L U Hé) < x.

Thus for each x € 7(H; U H)) . Il WNHI) II M(H,) = x. This completes
the proof that Il 7(H, Uny = I m) I WHH2) whence Hy =* H, u H,

as desired. It follows that H, U H, is a <* greatest lower bound

for Hl and H2.

We define = on A§m+l by Hy = H, if and only if Hy =* H, and

H2 <* Hl' Let <=*/= be defined on /Z in the usual way.

A*
2m+1
We claim that there is a 1-1 function g : Az +l/5 + B which
m

i

satisfies [{x}] = x for ecach x € A2m. To see that such a function

exists, we have only to show that if x and vy € A2 and [{x}]” =
m

[

[{y}] then x = y. This will be trivial from

Lerma 8.2. If x and y € A2m and {x} =* {y} then x <y.
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Proof. Let x and y € A2m with {x} =* {y}.

Case 1. y € N({y}). Note that this case includes the case when

My} = 0. Now, y € nuyH E_W({x}) whence for some 2z € {x}* U

{I mixhH), =z =y. Now if M{x}) # 0 then it is easy to see that

x < TM({x}). Further if {x}* # 0 then {x}* = {x} whence we conclude

that x =z = y.

Case 2. y £ NU{y}). For this case, we have y € AZm—l whence

I Mm{y}). Since

il

md{y}) # 0 and vy

ITo{xh = Iy =y

b3
IA

we are done. This completes the lemma.

/= > B such that if x € A m then [{x}]g = x

Now fix g : AY .o 2
and g is 1-1. Let A, ., = (A2m+l/5)g. We define a binary relation
. , _ S R |
<* on A2m+l by: a = b 1if and only if ag =*/= bg . We make the

following claims about =’

(1) if a and b € A2m’ then a = b if and only if a = b,

and a = x for each x €I then

. C
(2) if a €A, ., 1S Aonere

a <* HIl where HIl is computed in U and

2m-1"'

. <. C
(3) if a € A2m+l and x = a for each x € I2 C A, then

i1, <" a where ZIZ is computed in U

.

For (1), if a = b then a=b by Lemma 8.2. If a =b where a

and b € A2m it is easy to sec from the definitions of 7 and 7N that

N({p}h < N{a}) and 7({b}) ¢7W({a}). It is now immediate that {a} =*

{b}, whence a = b.

Let I, & A, and a ¢ Bynp1 With a = x for each x € I,. Fix
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H € agnl. Then H <* {x} for each x ¢ I,, whence H =* I, since

Il is a <=* greatest lower bound for {{x} : x € Il}. Now II =0,

from which we can easily deduce that

mi, = il } .

This equality yields N({II,}) = 7M(I;), whence {Hll} £ I,. Thus

ag L <%z [{nr,}] whence a =" M1, as claimed.

For (3), let 12 < A2m’ a € A2m+l and suppose x =< a for

-1 .
each x € 12 Choose H € ag and fix x € I2 and y € H. Now

{x} =* H =* {y} .

By Lemma 8.2 we have x =y whence ZI2 < y. Thus {212} =* {y} for
each y € H whence {ZI2} =* H since H is a =<* greatest lower
bound for {{y} : vy € H}. It follows that ZI2 <’ a as claimed.

From (1) = (3) we conclude that <A2 =" > is a strong extension

m+l;
of <(A2 ; < >. Further we no longer need maintain a distinction between
m

< and <. We define * from = 1in the usual way to obtain a meet

semilattice <:A2m+l; *>. From (3) we have that this extends <2 * >,

2m-1"

All other operations remain as in Y . We extend § to A by
2m 2m+1

. -1 ,
choosing H 1n Xg and letting

1 €A
| x 1f x om

|
{

Sy : € H o7y i -
[,H{ y +y € N VAT M} if x €a, o ooA .

This definition is indepcndent of 1, since iy = H, implies W(Hl) =

H a Iwm) =107 . Ve ,
VA 2) an Ay /L(H2) We extend Ur and Vs to Ql2m+l by

~ A to U or Vv  if and only if Sa =k or s

. A i
adding a ¢ Sl on . < .
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This completes the definition of U

respectively. o1’

We must verify the following clauses of the inductive hypothesis,

(iii), (v), and (vii). We note that we have already treated (i)
and (iii), whence we come to (v). We easily note that if a € A2 1™
m
; i . Further if € A ~
A2m then a is meet reducible urther 1 a ot A2m then a

, _ . : ; imitive. ~
is neither join reducible in m2n&l nor primitive Let b ¢ A2j A2j—l’

3 =m, then b is meet irreducible in m2m from the inductive hypo-

thesis. We claim that b is meet irreducible in m2m+l' To demonstrate

this fact, we have only to show that whenever H S_Azm and IlH = b, that

b € H. This is sufficient since if a ¢ A2m+l then a = IlI for some

I € A, . There are two cases.
— 2m
case 1. j <m. Thus b €A, ., whence we have b = II7({b}) .
Since b is meet irreducible in <A2m—l; “> by (v), b €Mib).

Further =z € N({b}) implies b = z. Now if H C A2m and H = {b} then

b =1 7MAph = 1I7H)

Now since b 1is meet irreducible in yZm—l we have b € 7). Thus
for some z € H* U {IlH'}, =z <b. For such a =z, z=Db since b < x
for each x € H, whence z £ H* CA_ -~ A , whence b = I[IH'. Since
— 2m 2m-1
H' C A2 . e conclude by (v) that b € H' ¢ H. Thus b is meet
= Som- =

irreducible in u2m+l'

Case 2. j=m. Thus b € A_ ~ A whence if H = {b} with

2m 2m-1"

HCA, , then b €N({bh =7, and if NM(b}) exists we have

b < I7({b}) = 1 7mH)

Thus from the definition of 7l we have that for some z € H*, 2z < b,

whence b € H*¥ C H since for each x € H, b = x. Thus again b € H
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which completes the proof that b is meet irreducible in ¢
2m+1°

This brings us to (vii). We must first show that 8x € kx or
r

s if and only if x € Ur or VS This is seen to be satisfied by

definition. Next we must show that 8x Sy = &(xy). For this it is

sufficient to show that if H E_A2m then

s = $([1u]"g) = N(Su),

because every element of A is the meet of elements in A
2m+ 1 2nm- 1 .

We divide the proof into three cases.
M € A2m—l' For this case, let a = II[H. Now we have

a =1l Mm{a}), whence since {a} = H we have

Case 1.

already shown that

I M(d) = a. Now for each x € 7(i1) there exists vy € u* U {Iu'}

with y < x. Further a <y since y = IH'. By the induction hypo-

thesis we have

Sa =8y =8«x
whence
Sa =N 8§w* U {llH'}) =gy .
Applying the induction hypothesis to H' ¢ A2m—l we have S&TH' = [ISH'
whence Il $(u* U {lIH'}) = I8H. Also applying the induction hypothesis

to  (H) &-A2m—l we get

I 8(mm)y) =8(mun) = Sa,
whence SII() = (S H) for this case as desired.
Case 2. Il ¢ A, T B, g Let a= [lH. Since a € A, Ay

a 1is meet irreducible whence a = Ili if and only if a € H and a < y

for each y € H. This clearly yields
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Sa =8{dH) = I(8H),

as desired.

v A . In this case by definition

Case 3. IH ¢ A2m+l ~ A

Sy = NSy : y € @y U {Il 7)1} .

Exactly as in Case 1 we have

I Su* U {IIH'}) < 118 M(H)
and Il S(* U {lln'}) = T(Su). If x € N(H) then for some y € H* U
{T My}, y = x, whence S8y = 8x, whence

T SH) = 16 7wy

Thus

I8 =S (7w U{Tmun)) = 3

A

Conversely H* E_W(H) and Il 27(H) < IlH' from which we see

A

s = 08w U{lxmeEl) =T 8w U {n'}) = NSu
We conclude that §8IlH = II(SH) in any case. This concludes the con-

: U .
struction of ot 1

The task remaining is the construction of ﬂ2 5+ As before, let
mt

F' denote the set of unary operation symbols. Let g* be any mapping

) into B R'AZm—l which satisfies the following

* X rv A
from F'X(Ay01 7 Pon-l
three conditions:

J
1 If b £ U then f * =
) b (f. , b)g b.

~1,p
2) If bl € Up and b2 € Uq then
J J
(f' , b.)g* *
~i,p’ T’ 9 (£),q" 229
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if and only if i =3, p=4qg, J=J' and bl = b2.

J
b * £ B /v .
3) If b € Up then (Ei,p' yg¥* ¢ A2m+l

Let Aém+2 = A2m+l U Rg(g*). We extend the domain of definition of the
i J .
operation fi,p to A2m+l by setting
£ x if x €a
1 i,p 2m-1
f. x = 7
llp J
. * if € A ~
(fl,p' x)g * * 2m+1 A2m—l

Clearly this definition satisfies condition (ii) of the inductive

hypothesis.
We extend the Up and VS to Aém+2 by the following:
v if and only if 1 €A
x €U or Vg % (1) x omey  and x € u_ or

J

tivel or 2y x = £, b Al -
VS respectively, ( ip € B A2m+l and ki <k

4 r

or s respectively.

This definition satisfies (vi) of the inductive hypothesis and each
J J
£, extends the definition of £, on A_ . Now we extend § to
, i,p 2m
' ttin
A2m+2 by setting
Sx if € A S i i
. ( x 1 X oo+l where is defined on A2m+l
x:

k. if X = f. 6 Al ~o
[ i ip?Y © Pom2 7 Pomnr

It is trivial that for each =x¢ Aém+l' x € u_ or v if and only if

8x = k, or s respectively.

We now extend the universe of our structure so as to make it an upper

semilattice. To this end, let A* = Piar _, .
’ St 2 ( 2m+l) {0}, and for H € A2m+2'
let H' =3, . N1 and H* = H~ H'. Now we define the operators 5,
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g and @2m+l as follows:
pH) = {x :x€n . and for some essential pair <p, JI>
J
and each i € J £, _x € H*},
i,p
Q(H) ={x : x € A2m and for some y € H' U £H), x =<y} ,
2m+l N . . .
c H ={x:x€a + X 1is primitive or meet reducible ,

B 2met1

and for some y € H' UJBm) U {Z M)}, x =yl

Set

n*(H) = H* U czmH(H).

(e
Note that J(H) = J(H*).
We claim that (C* 1is idempotent as an operator. Since [C*(H)]* =

H*, it is sufficient to show that

™ exmyy = ™y .

We first observe that SC*(H)) = C(H), whence

glermm) = {x : x € A, and for some y € H* U 8(H) Llcgnﬁl(ﬁ), x vy}

Now let x € g(e*(H)), with witness y. If y € H* U p(H), then

. 2mt+1 .
x € g(H). Otherwise y €C (H). For this case there exists z € H'
H@) U{L g)}} such that y < z. Now if z € H' ULB(H) then x < z
whence x € #(H). Otherwise x = Ig(H). Thus in any case this last

inequality is valid. Thus
IgExH)) <3 g,

Since g(H) < F(C*(H)) is obvious, we can conclude that I glerH)) =

z g (1) and hence that

SHy U{Z M} = plerm)) U {Z g@rm) ).
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. 2m+ . .
Now if x €C m l(H) with witness y € H' then it is clear that

¢ G2l mw )y, since

2m+1 . o
C (er(H)) = {x : x 1is primitive or meet reducible and for some

2m+ 1

g € 7™ a) UB@erm) U{Z Q@ x < y).

2m+ 1

2m+1 ' _
Z m (C*(H)) with witness y € C (H), it is

Conversely, if x €

so2mt+1
trivial that x €< ™). Thus

2mt+ 1 2m+1

e ™ ermy =™ .
1 <%k * .

We now define = on A2m+2 by:

H) =% if and only if C*(H)) g@*(H?_)-

We claim that =* is a quasi order with least upper bounds. That it

i i is trivial. We sh ;
1s a gquasi order 1 show that Hl U H2 is a least upper

bound for 1i; and H2. Let Hl and H2 <% H3. Then c}(Hl) and
* - * * _ * ( /,,2m+l .
e* (i) € Cex(iy) . Now e*x() = H* U (1) . Since H* C A! »
2 —  2m+2
A d 2m+l(H) CA we conclud * -
orp1 2D e C Al onclude that HY U HE < H’3‘ Since
DH(H) =p(u*) we have that S UHn) CB(Hy). Now to complete the

argument, we must show that

2m+1 2m+1
™y Uy <ot ).

Now

2m+ L
C (Hl U H2) = {x : x € A2m+l’ X 1is primitive or meet reducible

and for some y € Hi U Hé U ﬁ{Hl U H2) U {Zg(Hl U HZ)}' x < yl.

2+l . .
Let a €¢ (Hl U H2) with witness b, If b € Hi’ then a €
2mt+1 o 2m+l
e (Hl) cC (H3) and we are done. Similarly if b € Hé' 1f

b E,B(Hl U H2) E,B(H3) we arc done by the definition of (32m+l(H3),
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Thus let b = % g(nl U H2). We will show that if c¢ € g(}{l U H2) then

c =5z 9(113). Now for such a ¢ there is a 4@ € H) U H, U_B(Hl U H,)

1A

with ¢ < d. Now if d € _5(Hl U H2) then d € _5(113) whence ¢ 5 (9<H3)-

Hence let d € Hl such that for no dl € ﬁ(Hl) E_ﬁ(ﬁl U Hz) is it the

case that d =d,. Now if d ¢ HY C HY then c =1 JH;) . Thus we may
assume that d € LSS If 4 € A, el By then by (v), 4 ¢
2m+l(Hl) £ﬁ32m+l(H3) whence for some dj € Hé U.B(H3) U {z Q(H3)}

A

we have d = di. Now ¢ € A2m whence we again conclude that ¢

) g(H3). Lastly suppose d € A, For such a d, we obtain

d=TI{x: x € A2m X 1is primitive or meect reducible and x < 4}.

This is a consequence of the inductive hypothesis part (v) and the fact
that <(A2m; +> is a semilattice. For dl =d, with d1 primitive or

. 2mt+1
meet reducible, dl €C (H3) whence for some d2 € H3 U.B(H3) U

{z g 0{3)}, dl = d2. Thus from the definition of § we conclude

dl = ZCQ(H3). We therefore have
c<d=IZ{x :+ x € A, & X is primitive or meet reducible & x < d}
=z H
§ 1))

This completes the proof that if ¢ € OQ(Hl U H2) then ¢ = ¥ Q(H3). We

conclude that
b=Zg<HlUH2) 52{;2(}{3)

It follows that

2m+1 2m+1
C (Hl U H2) cC (}13)

as desired, whence Hl U H2 is a least upper bound for Hl and H2

with respect to =*.
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by H, T H if and only if Hl =* H

» = *
We define = on A2m+2 1 2 5
and H2 <% Hl' The following are immediate: (1) Hl = H2 if and only
if Cf(Hl) = Cﬁ(Hz), (2) H =¢*(H) and (3) <A§ +2 /7 /5> is a

join semilattice ordering system.

We will now show that if a and Db € Aé iy and {a} = {b} then

a =b. First observe that g({a}) = p{{b}) = 0, since I{a}*l and

|{b}*[ < 1. Now by hypothesis (*({a}) =C*({b}) whence {a}* = {b}*

ana ™1 ah =™ (b)) . Now if {a}* # 0 then

{a} = {a}* = {b}* = {b}

whence & = b. Similarly if {b}* # 0. Hence, we suppose a and

. Now we consider two cases, first a € A o A
b€ A ’ om+1 7 Aoy @nd

second a € A2 In the first case a 1is meet reducible, whence
m

2m+l({ }). 1In the second case, since <<A2m; +> is a join semi-

lattice, and since by (v) join irreducible is equivalent to "primitive

2m+1

or meet reducible”" in M2m, we have a = L[z ({a}y N A2m]’ Since

2m+1 2m+1 !
e {a} cC {b} ¢ {x: x¢ A, ., and x =Db},

we have in either case that a = b follows from {a} =* {b}. We
isolate this fact as
Lemma §.3. If a and b € A2m+l and {a} <* {b} then a < b.

Thus from Lemma 8.3 and our preceding remarks, if {a} =z {b}

with a and b € Aé Y we have a = b as claimed. It follows that

1

there is a 1-1 function g from AE +2/: into B such that [{a}]

for each a € A! Fix such a g and let A = (A* _/3)g.

2m+2’ 2m+2 2m+2

. . +
We definc a bina relation = on A :
Ty omeo SO that g 1s order
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. . +
We make the following assertions about =

preserving.
- . . +
(1) if a and b € A2m+l then a =b 1if and only if a < b,
+
; d = b h C
(2) if a € A2m+2 an X a for cac x € Il —-AZm’ then
+ . .
ZIl < a, where ZIl is computed in mzm, and,
+
; d a= for each € 1_C
(3) if a €A, ., an x * 8y D Aypeyr then
+ : : p)|
. t .
a = H12 where H12 is computed in ot 1
For (1) recall the observation made above that if a and b ¢ A2 ‘1
m
and {a} =* {pb} then a = b. Conversely let a and b € A2m+l with
2m+l .
a <b. Then ¢c*({al) ({a}). Further by (i) we have that
2m+1
I g({a}) = a, whence for each x €C ({a}) x = a, whence x < b,
whence x € @*({b}). Thus C*({a}) € ¢*({b}) whence {a} =* {b}.
For (2), let a ¢ A2m+2 and Il E_A with x = a for each
x € I - Let H € ag_l. Then {x} =* H for each x € I,- Since
= U{{x} : x € Il} is a =* least upper bound for {{x} : x ¢ Il}
we have I, <* H, Hence it is sufficient to show that {ZIl} =1,
Now Ii =0 = {71 }* whence by definition of g we have I (1

X ﬂ{ZIl} = ZIl. It follows that

2m+l(Il) _ 2m+l {ZI H

whence Il = {ZIl}. This completes the proof of (2).

+
A ] < -
For (3), let a ¢ ombo With a = x  for each x ¢ I, E-A2m+1'

Fix H € ag_l- Then for each x ¢ I2 and y € H we have

{y} =* H =* {x}.

Now y £ A ?m+2 ’ A2m+l since if this were the case we would have

y € {x}* = 0 since x € A . Thus y € A

omt+ 1 and by Lemma 8.3 we

2m+1
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have y = x. We conclude that for each y € H, y < H12 whence by

(1) we have {y} =* {HI2}. Since H is a =* least upper bound for

+
{{y} : vy € H} we have H =* {HIZ} whence a = HI2 as claimed.

+ .
From (1) - (3) above we see that <<A2m+2; => 1is a strong

) +
Since = agrees with < on we

extension of <A ;<> A
2m+1 2m+1

cease the distinction. We define + on A2m+2 from <= in the usual

way and it is clear that <A2m+2; +> is an extension of <A2m; £ . The

[y}

partial operation * remains as on é%m+l' as do the constant operations.

The unary operations remain as in the construction of A with

2m+2’

€ we choose H € ag_l and set

. . A y 1
domain A, ... For a ome2  Pomen

Sa=3{8b : b € a*H)}.

This definition is independent of our choice of H and extends the

to A . ~
definition of & o) ek 2 For a € A2m+2 Aém+2 we add a to

. : @ .
Ur or V if and only if <a = kr Oor s respectively. This completes

. Q . .
the construction of J2m+2 and it is clear that m2m+2 is a strong

i )|
extension of ombl”

We now verify the various clauses of the inductive hypothesis. We
have already dealt with (i) - (iii). For (iv) if a € (A nNu) ~
2n+1 P
A2m—l' then

a E.B({fq a:i €3}
1.,p

for the essential pair <p, J> . Thus
J
{a} =* {£] a : i € J}
i,p

whence a = Z fJ a If agfgu th J
= iéati p® f b en fi,pa = a and the result
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follows. If a € A2m—l , we have the result from the inductive

hypothesis.

i i a A ~ ;
For (v), we note first that if € ot A2m+1 then a 1is
either primitive or join reducible but not meet reducible since the

and A is closed under this operation.

domain of * is A2m+l om+ 1

Further if a is primitive, then {a}* = {a} C H* whenever {a} =* §
whence it is immediate that a is not Jjoin reducible. We will be done

if we show that if a 1is primitive or meet reducible in u2m+l then a

is not join reducible in 25m+2' Fix such an a ¢ A2m+l' Recall that

if a 1is join reducible in 32m+2 then there is an H E_Aém+2 such

that H = {a} and a £ H. Fix such an H. Now {a}* = 0, whence

2m+1 . .
cx({ah) <™ T ({a}) €A, .- It follows that H* = 0, since H* C
* * Th HCA whence C*(H) _(}2m+l
c*(H) =C*({al). us S Ayl = (H). Further,

we note that if x € H then

{x} =* H =* {a} ,

whence since x and b € A2m+l we conclude that x = b by Lemma 8.3.

Next observe that since H* = 0, B(H) = 0, whence if y € J (1) then
for some x € H U JB(H) =H, we have y = x < a. Thus if Q(H) # 0 then
g < a

by (i) of the inductive hypothesis. There are two cases.

Case 1. a ¢ A2m' Now a is either primitive or meet reducible
2m+1 2m+1
in 9 , whence a € _C ({a}) =¢C m (H). Thus for some
2m+ 1
z € U U{Z g} =uuU {Iga} ,

a<z. If z=2uxgWM), then a=1 (i), since as noted above
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% g(n) < a, whence since Q(H) < AZm and a 1is join irreducible in

(<A2m+l; +>, we have that a € §(H). Now by our abov: remarks, a €

§ (H) implies that for some X € H a = x, whence a =X gince x < a.

; is join irreducible i bl c Al
Thus if a € A2m and a is join irreducible in ol and H ¢ A2m+l
with H = {a}, then a € H, whence a is join irreducible in ﬂ2 e

m
~ . Si € A ~ A i
Case 2. a € A2m+l A2m tnee a 2m+1 2m’ a 1s meet
. Lomtl

reducible by (v) whence again a € C ({a}). Thus as above we

’

conclude that for some z € H U {z Q(H)}’ a = z. Since a ¢ A2m+l N'AZm
by (i) and our remarks above, we conclude that Z 4 < a. Thus

a<gz €H for some 2z. Since z = a for such a 2z, we conclude that

1 ~ C =
a € H. Thus if a € A2m+l A2m and H _.A2m+2 and H = {a} then

a € H whence a is join irreducible in ﬂ2m+2. This completes the

proof of (V).

We have already shown (vi) hence we consider (vii). Since no
new meets are defined we have only to show that &x +3y = &(x + v) .
. L Coar ‘ ) o
Since for each a € A2m+2 there exists H C A2m+2 with ZH = a it is

sufficient to show that if O E_Aém+2 then &(XH) = Z(8H). If IH is
join irreducible the result is trivial. Hence suppose IH = a is join
reducible.

Case 1. a € A, . Let ZH = a. Now {a}ZH, whence 2%({a}) =

e*(H). Since {a}* = 0, we have H* = 0. Thus,

2
crifay = 2™ ey =™ m).

Now if x € H, then =x =< a by Lemma 8.3 whence X <=8a. Thus

28H <8a=38(H).
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Now if x € (i), then since L) = 0, there is a y € H = H' such
a [a} .
that x <vy. Hence 8 g(H) = Zo (H). Since (1) € A, , by the induc-
tion hypothesis S(IZ gy = (8 g(H)). It is now immediate from the
gefinition of ¢ ™71 tnat
2m+
$ 8" l(H)) = % 8(u).
.+_
Since a = Z(C?m l(H) 0 A2m> we have
2m+1
Sa=:8E ™ ) Na,) = L8,

which concludes this case.

Case 2. a ¢ A2m+2 ro A2m+l' a join reducible. Choose H € ag-l

We must show that Sa = L(8H). Now

Sa = L[Scrw) ] = & sm*),

G2m+1

since H* g_Cf(H). Further, if b € H' ~ A_ , then b € (H)

2m
since b is meet reducible, whence Sb =8a. If b € H' N A then
2m’ '

2m+1

{b} =* H whence C ({bh < 2m+1

Lemtl .
e (H). 1In this case 8b = I3 ({b}))

by Case 1. Thus

2m+1

T(SH') = I §(& ) =8a.

We therefore obtain that Z8H =< 3(zH) = Sa.

To see that Sa = L(S H) we first note that if b € H(H), then for

some essential pair <p, J> and each i € J, fq b € H*, with b € U
i,p p

From this we have

Sb = k S'Ek. = I 8(u*) = Sa

1A

It is immediate that if y € g(H) then Sy (S8 H) whence
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(g g@H)) =L ). Since y(H < A o’ by the induction hypothesisg
S(ZQ(H))=Z(Sg(H))SZ(8H).
. 2mt1 .
Now if x €O (1), then for some y € H' U {Z g()} x <y, whence
8§x =8y = ¥ 3 (). Thus

sea”™lun = s ).

Since H* ¢ H we have
2m+1
Sa=r3@m*UC (H)) = Z(SH) =8a
which concludes Case 2. Thus for all H C Aé Y L38H =8 IH. This
completes the verification of  (vii).
Lastly we come to part (viii). Let ¢ = a + b, with a and

b €U . Then Sc <Sa +38b. Since 8a and 8b < kr we have 8c < k
r r

whence ¢ € U, by (vii). Thus U, is an ideal. A similar argument

shows Vg is an 1ideal.

We conclude the construction by setting U = U g It is
5 i€w i
trivial that <& ; +, *> 1is a lattice. 1In our work with semilattices
we were able to generalize the operator (¢ to act on A6 . This is

not possible with 7, 7, Q,.B and (£&%*, since their natural extensions
yield infinite sets. However, we have these operators defined in each
structure Q& and since at any given time we are only interested in a

b
finite part of ¥ we can relativize our arguments to an ﬁi and make

full use of the appropriate operators. We conclude this section with

2
Theorem 8.1. Let ¢ be the map of i? into <f3(AL); +, *> defined

by
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c
e
H
X
]
o

v if x=s € L ~ K,

then ¢ is an isomorphism.

. Y
Proof. First recall that if x € A then x € Ur or V if and
s

only if 8x <k or s respectively. We restate this as: for any

a €L and x € Ai), x € ap if and only if 8x < a. Let a «nd

b € L. We show that (ab)¢ = ap 1 bd. Now x € ap N by if and only

if S$x <a and 8x = b, that if, if and only if Sx < ab which is

equivalent to x € (ab)¢. We must also show that (a + b)¢ = ad + bé.
Now it is sufficient to show that if H C L 1is a set of join irreducibles
with IXH = s join reducible, then s¢ = L(H$). Note that IL(H}) refers

to the sum in J(< AE?; +>). Fix H. Without loss of generality we

may assume that H 1is join irredundant. Since s¢ D L(H¢) 1is clear,

it is sufficient to prove by induction on Jj that VS N Aj E.Z(H¢)-

Hence we suppose that for each j < m 1if a € A2j+2 n V. then a € I(H¢).
Let a € A . We first assume that m =0 and a € A_. Then a = b

2 k =s and J = {i : k, H}.
where kp < €3 kv P ’ { ; € }. Now suppose kp 7

k. for each 1 € J Dbecause the other case is trivial. Then there is an
1

essential pair <p, J*> such that to each j € J* there is an 1 ¢ J
k f h j € J* d 1 ¢ * b 8]
i < k.. Now for such a an 1 J £,
with k, = i J ' 5.p °p € S whence

we easily conclude from the construction of U that b ¢ I (k )
2 p o i€r it
For the remaining cases we drop the assumption that m = 0, and suppose

> A . Now without loss of generality we may assume that

that a € A2m+2 g om

a is join irreducible, since VS is an ideal and for each x € v
S

x = L{y : y £x and y is join irreducible}.
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Case 1. a € A2m+l - A2m' Since a 1is meet reducible, there is an

I CA such that HI = a. If x € VS for some x € I then the induc-

2m

tive hypothesis yields the result. Hence suppose that for each x ¢ 1,

x £ VS. Now N(S1) =8(l1) <= s whence

M(s1I) =k < IH = s,
p

since by assumption i? has no member which is both join and meet

reducible. Let J = {i : kg € H} as above. If k <k, for some
p i

i € J it is obvious that III € iEJ ki' Otherwise we obtain J* as

before, and since II € Up we obtain that III € I (k,$) in the same
. i
i€J

manner as for kp above.

Case 2. a € A2m+2 o A2m+l' Since a 1is join irreducible, we have

. . *
by (v) that a 1is primitive, whence a = f; pb for some essential
4
*

pair <p, J*> , some g € J* and some b € U . Since fJ b ¢€v
P q.p s

we have k_ <= L k,. If kq Z k, for each i € J we proceed as above

g  ieg 1
to obtain a € 2 (k,¢) as desired.
ieJg 1t
We conclude that V_ € Z(H¢). The reverse inequality is an imme-

£

diate consequence of (vii) which asserts that if x and y € A

then 8Sx +8y = 8(x + y), and that x € Ur or V if and only if
s
Sx < kr or s respectively. From the definition of MO, we easily

conclude that the restriction of ¢ to the join irreducibles is an

order isomorphism. Thus ¢ 1is a 1-1 homomorphism. This completes the

proof of Theorem 8.1.
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§9. In this section we examine the properties of U™ . oOur object is

to obtain as much information about transferability as possible.

Lemma 9.1. Let S? be a transferable lattice. Then <L; + > is

a transferable semilattice.

Proof. Let & =<L; +> . We form the structurec ﬂg as in the

frod

= s C .
preceding chapter. To A  we adjoin the distinguished element & to

G S
form 2% U {0}, and put O = x for all x € A~ . Now we claim that
<(A6 U {5}; => is a lattice ordering structure. It is clearly a join
semilattice ordering structure. In the construction of <:Am+l; +>

< A then for each a € a ,
m m

from <A ; +> we showed that if c € A -
m’ m+1

c Za, seep. 25> . Thus if b€ a® ~A and a €A then b £ a

. . S _
whence A is an ideal in <A~ ; +>. We obtain then that <a U {&}; + >
m m
is a join semilattice with A U {&} a finite ideal in <a°> U {G}; + >.

Now for a and b € Am let

c=12I{x : x<a and x < b}.

Since & =a and O =Db, c exists and is easily seen to be the greatest
lower bound for {a, b}. It follows that <A6 LJ{@}; <> is a lattice
ordering structure as claimed.

Now define VY : L > A by

4

Il
=
™
~

U U {o} if «x
r

Xy =

s € L~ K .

Vs U {G} if «x

We claim that Y 1is a lattice isomorphism. It is trivial that
(x + Y)Y = xp +yy for each x and y € L. Let X,y and z € L

with z = xy. Now if a € zy then a € x and yy whence zy ¢ xp N yi.
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The reverse inclusion, that xP N yyP € zP, will follow if we show that
if a € xp and b € yY then ab € zy. Fix such an a and b € A ‘1 U
m

{0}. For such an a and b if either is O then ab = (O and we are

done. Thus we assume a and b € Am+l' Now from the construction of
A , we have that a € U or V if and only if ca C U or Vv
mtl r s = “r S
respectively by (vii) p.21 . For d € Am+l' d=a and d=Db if
and only if 2d €Ca NCb by (v) p.21 . Since d=I@d, again

by (v), it is easy to see that
ab = X[ (ca N Cb) U {0}]

Further, from the above, we have that if ab ¢ An&l' then Ca NCb =
{ab). Thus we have only to show if a € xy and b € y¥ and 4 €
Ca NCh then d € zY. Now d 1is primitive. From the definition of
the Ur and VS on AO, p.17 and (vii) p.21 , we see that for some
unique k_, 4 ¢ Ur or VS if and only if kp = kr or s respectively.
Thus d € xP N y¢ if and only if for the unique kp given above, kp = x
and k < y. Since gj is a lattice kp < xy whence 4 € zy as desired.
Thus ¢ is a lattice isomorphism.
Since i? is transferable, we obtain ¢ embedding &3 in
8 .
<A U {G}; +, *> satisfying x¢ € yy if and only if x < y. Now if
L € AG , then <L; +> is transferable. If L¢ Z Ae;, then we con-
clude that ko, the least element of L, satisfies k0¢ = (. No other
element can be mapped to & Dby the condition that ¢ is 1-1 and order
preserving. Now K is join irreducible, whence b_ € AO nu Also

0] 0 0

bO € Ur and VS for each kr and s € L. Define ¢' by

x¢' = x¢ + .
¢ ¢ + by,
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Then ¢' is a join homomorphism and satisfies x¢' € yy if and only

G .
if x = y. Since L' < AT, <L; +> is transferable. This concludes

the lemma.

Definition 9.1. A semilattice <L; *> is said to be weakly stable

if for each meet reducible x € L there exists a Tx € L such that

(i) T is a meet irredundant set of meet irreducibles, (ii) IIT = x
X

and (iii) if H 1is any set of meet irreducibles such that JH = x

then for each vy € TX there is a z € H with 2z <y,

1%

Lemma 9.2. <A™ ; +, *> 1is weakly stable.

Proof. We proceed by induction. For our induction hypothesis, we
assume that for each j < m, 1if b is meet reducible and b € A2'+l ~
J
A2. then Tb C A2j exists and satisfies (i)-(iii) of Definition 9.1.
i =

Thus let b € A2m+l &/AZm—l with b meet reducible. By (v) p.48 ,

we have b € A, . ~ A, . We calculate 7 and 7l as in the construction
of m2m+l' Now from the construction of ‘<A2m+l; *> there is an H <
A such that IIH = b. Fix such an H and let H* = H ~ A and
2m 2m-1
H' = H N A, 1 We treat the case when 71(H) # 0, the proof for the

other case being similar. We also assume that m > 0, the case m= 0

being easily checked. Let b_ = 1), then b. € A . If b is
0 0 2m-1 o
meet irreducible, let T, = {bo}, and otherwise let T, be given as
0 0
in the induction hypothesis. In either case (i), (ii) and (iii) are

satisfied when x = bo. Also, Tbo E-A2m-2’ by (v) if bo is meect
irreducible, and by the induction hypothesis otherwise. Let

Tg = {x : x € H*, bO Z x and if =z € H* then =z « x}
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and
Tg = {x : x € Tb and for each vy € Tg, vy & x}.

0]
We set Tb = TB U Tﬁ' Before proceeding, we note that for the case
when NM(H) = 0, we simply set

Tb = {x : x € H* and for each z € H*, z « x}.
To continue, we first claim that Tb Z H. First note that if x € Tb
0

then either x € Té or for some z € Tg z < x. Thus M(Tb) E_TbO by

definition of M and (v), whence

II WKTb) = HTbO = 1T (H) .

Now if x € M(H), then for some y € H* U {IlMH)}, v < x. 1If by = 7 (H) <

x then HWNTb) < x , whence x € ﬂ(Tb) by definition of 7l. Other-
wise y € H* and 2z <y = x for some 2z ¢ Tg, whence again x ¢ W(Tb).
Thus () < 7AUT) whence T, =*Il. Conversely, if x € T, then either
x € H* or x € Tbo. For such an x it is easily seen that H <* {x}
whence we obtain H =* U {{x} : x € Tb} = Tb. Thus Tb = H. It is

immediate that HTb = b, which establishes (ii).

For (i) we must show that T, 1is a meet irredundant set of meet

i ducibles. If x € T then x € T or €A .
irreduci b bo % - A2m—1 If tho

former then x 1is meet irreducible by the induction hypothesis. If the

latter then x 1is meet irreducible by (v) p. 48 . To obtain that T,

is meet irredundant, we have only to show that Tb is a set of pairwise

incomparables whence the meet irredundancy of Tb will follow from the

fact that Tb satisfies (iii). From their definitions, it is easy to
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see that Tg and Tg are sets of incomparables, the former requiring

(i} of the inductive hypothesis. Now let a. € T*

an application of N *

€ T'., If a, = a then a2 [4 Tg. If a2 = ajs then bO < a

and a2 b 1 2 1

a, 14 Tg. Thus T is a set of pairwise incomparables.

whence b
For (iii) let Hl be any set of meet irreducibles such that
) = T . Fi t te that N(H = -
Hy A, and H, = T irst note that 7( 1 W(Tb) and ﬂfm(Hl) =
IIWUTB) = bo. From the definition of Tg and the definition of 7] it
is immediate that Tg S_Hi. Now let ¢ € Tg. Then ¢ € Tb . Now
0
I7M#H,) = b, whence to each x €T there is a z € 7M(H.) with
1 0 bO 1

z < x by (iii) of the inductive hypothesis. Since x is meet irre-

ducible it follows from (v) p. 48 and the definition of 9| that

x € quhﬁ. Thus ¢ € Tbo E.Wqu) whence for some =z € Hi U {HHi},

z<c. If z €H] we are done, whence suppose HHi = c¢c. Now if x €
H! bO < x, whence 1if
H, = {y : v € A, g0 Y 1s meet irreducible and =z <y for some =z € Hi}
then
b =1 .
o = Az, ~ {ch Un,l.
0
Thus for some vy € H2 Yy = ¢, since c¢ € Tbo. It follows that for some
' < e s . .
z € H] z =c. Thus T, satisfies (iii) in <A2m+l’ > . Now let
H € A2q' g > m, be a finite set of meet irreducibles such that H = {b}.
Further assume that if m =k =d then Tb satisfies (iii) in
;o . W h that T i 1 i ..
<:A2k+l > e show a b satisfies (iii) in <iA2q+l' > . Note
that if H 1is any set of meet irreducib i
y cibles in A2q+l then by (v) H <
A_ . We calculate 71 and 7 as in the construction of ¥ . Since
29 2q+1
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since H = {b}, we have that I 7)) =T Mib)) = b since b ¢ By 1°
q-
Now (i) C A2 1 is a set of meet irreducibles whence toc each z ¢ Tb
= "2g-
there is a y € M(H) with y = z. Thus to each =z € Tb there is an

x € H* U {llH'} such that x < z. If x € H* we are done. If x = [0’
let

H2 = {w : w is meet irreducible, w € A2q—l and y =w for some y € H'}

Then b = H[(Tb ~ {z} U H2] = HTb. As above we conclude for some vy € H',

y < z. Thus <A +> satisfies (iii). This completes the proof of

2g+1°

Lemma 9.2.

Lemma 9.3. If i?is transferable, then <L; *> 1is weakly
stable.

Proof. Since g? is transferable, there is an embedding Y of

4

g? in <AQ ; +, *> such that xy ¢ u. or Vg if and only if x = kr
or s respectively. This is a consequence of Theorem 8.1 and the defin-
ition of transferable. Note that for such a Y, 8{yy) =y for each
y € L by (vii) p.48. Let x € L meet reducible. We must show that

there is a TX € L such that (i) TX is a meet irredundant set of

meet irreducibles, (ii) HTX = x and (iii) if H 1is any set of meet

1l

irreducibles and IIH x then for each y ¢ TX there is a =z € H

with z S y. Let a = xyY. Then by Lemma 9.2 Ta exXists satisfying

(i) - (iii) above with x replaced by a. Set

Tx ={y :1y € gTa and for each =z € STa, z 4y}l

since Sa = x, we conclude by (vii) p.48 that HTX = x. Thus (ii)

is satisfied. For (iii), 1let H S L be a set of meet irreducibles
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such that [IIH = x. Fix vy € TX, then y = Su  for some u € Ta. Since

N(HY) = a, for some Vv € H), Vv = u since Ta satisfies (iii). Now
Sy €g(Hy) = H and Sv =8u=y by (vii). Thus Tx satisfies (iii).
Now T is a set of pairwise incomparables by definition whence it is

X

immediate that since TX satisfies (iii) it is meet irredundant.
Further if some y € TX were meet reducible then Tx could not

satisfy (iii). Thus TX satisfies (i) which concludes the proof of

Lemma 9.3.

For the remainder let ﬁ? be weakly stable and let
T* = {y :+ y € L and for some meet reducible x, y € T }.
X

We list T* as tO,...,tm_l. Let x € L and H C L. We will say that

H is minimal under x if JH <= x but if H' 3 H then IH' Z x. Let

p €m and JC M, we say that <p, J> is a dual minimal pair in case

(1) {ti : 1€ J} is minimal under tp and,
(2) if {tj : 1 € J*} is minimal under tp and to each

j € J* there is an 1 € J with ki = kj, then J = J%*,

Lemma 9.4. If S? is transferable then there is a linear order <

of T* such that for each dual minimal pair <:p, J>, if i € J then

t, < t .
1 b

Proof. Since i? is transferable, there is an embedding Y of i?
in <:A£?; +, * > such that x¢ € Ur or VS if and only if x < k or
r

s respectively. We define the rank of x € T* as follows:

Rk(x) = p,[(A, N x¢ N x¢) # 0]

where x¢ = {y :Sy = 8(xd)} and x¢ = {y : xp = y}. Let <p, I be a
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dual minimal pair; we claim that for each 1 € J Rk(ti) < Rk(t ). To
p

see this, let Rk(tp) =n, and let a ¢ Ano n tp¢ Nt ¢&. Further set

m = uj[H(Aj n (U{tid) 11 €J})) = al.

Since |A.| < RO for each Jj € w this product exists, whence m exists.
J

since <p, J> is a dual minimal pair, we have for each i € J that

t.d N t,d N A # 0. Suppose otherwise. Let
i i m

b =T{a n (U{_t_if :ieahl .

Then T, € A (U{ti¢ : i € J}). Now 8b <8a = tp. Further ¢ STb) =

S b by (vii) p.48, and to each x ¢ STE there is a j € J with

tj < x. Let J' = {i : t, € T‘Sb}, then to each 1 € J' there is a
j € J with tj = ti. Now we easily obtain J* C J' such that

{t, : i € J*} is minimal under tp. We conclude that J* = J since

<p, J> is a dual minimal pair. Thus for each i € J, there is an

x € T with Sx = ti' For such an x, x € Am n EZ$ N ti¢. Thus for

b
each i €J A n ki¢ n ki¢ # 0 as claimed. It is immediate that

Rk(ti) <m for each 1 € J.

We now claim that m < no. Suppose not, then nO =m. Let H be
any meet irredundant set of meet irreducibles such that IIH < a and
HCA N U t.,¢. Such an H exists by choice of m above. Observe

m ey A

that IH € A . -~ A, otherwise H C A contradicting the choice of

-1

Thus there are meet irreducibles in Am o\ 1 wheiice m = 2m
m= 0

for some m, by (v} p.48. We calculate % and N as in the

m.

construction %2mo+l. Recall that we have assumecd for proof by
contradiction that Do £ m. Since a was chosen in A , a € A = A
n

0 0
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Thus from the definition of =%* and since Il < a we have 1] <% {a},
that is N({a}) < Nw) and if 7M({a}) # 0 then I7M(H) = I7N ({a}).

Now we claim that N7 (H) Z a. Suppose not. Then let

H = {x : x € A2m0_1 and for some y € H, y < x}.

Now

mH) ¢ {x : x €A and for some y € H* U {llH'}, vy < x}.
— 2mo—l

It is easily seem from the lattice postulates that

HHl < I (1)

Thus if [ @) < a then IH, < a. Since H, € A N U t.¢6 the
1 1= m-1 " je5 1

choice of m 1is contradicted. It follows that a € A ~ A
since otherwise

Omm < I7mi{alh)

1!
)

Thus a € N({a}) < Nu), whence for some x € uH* U {lIn (1)}, x < a.

Such an x must satisfy x € H*. Now if x < a, then 8x <8a =t
p

by (vii) p.48. Since for some i € J, x € ti¢ whence t, < x, we
i

conclude that ti= S(ti¢) = tp. This contradicts the choice of <p, I
as a dual minimal pair. We must therefore have that m < n, as claimed.
To complete the lemma, recall that this yields Rk(t,) < Rk(t )

i

p

for each 1 € J. If we now define < on T* by:

t, < t, if and only if (i) Rk(t.) < Rk(t.) or
1 J 1 j

(i1) Rk(ti) = Rk(tj) and 1< j,

then < satisfies the conclusion of the lemma.
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Lemma 9.5. If i? is transferable then 5? is dual weakly stable.

Proof. By Lemma 9.1 and Theorem 6.1 <L; +> is strictly trans-

ferable. Let < be the linear order of K witnessing the strict
transferability of <L; + >. We assume ko‘< kl < ... < kn—l' Let

. « . -l_ 0 . i l—l
s € L be join reducible. Set Q_ '= 0. For i € n, Ilet Qs =9y Uik}

. i -1 )
if (1) Dbelow is satisfied, Q; = Q; otherwise.

(1) Every join irredundant H C K which is contained in Ql— U
s

{k. : 1 =3} and sums to s contains {ki}.

n-1 L . o i
We set QS = Qs . Now Qs C K and by definition is join irredundant.

Further it is clear that ZQS = s. To see this we first note that if
k, € O then kj < s. Thus 2Q_ = s. The reverse inequality will follow

J
if we can show that for each 1 € n

sEZ(Q;U{kj i< 3h).

0 then

0
Consider QS. If QS # 0 then we have s < IK. 1If Qg

there is an H € K~ {ko} such that ZH = s, whence s < 5(K -~ {ko})

as claimed. Now suppose that

s =< Z(Q: U {kj tm< ).

+1
If km+l € Q: the result follows by the inductive hypothesis. If
m+1 m . .
Qs = Qs then the result is a consequence of the failure of (1) for

the case 1 = m. Thus ZQS = s as desired.

Lastly let H ¢ K be join irredundant such that ¥H = s. Further
suppose that for some kp € QS there is nc x € H such that kp < x.
Then we can obtain J ¢ n such that for each j € J there is an x ¢ H

with k., = x and <p, J> is a minimal pair. Now k < x for each
P
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j € J whence by choice of Q_, kp £ O, This is a contradiction.
Thus to each kp € Qs there is an x € H with kp = X. This completes
the proof that S? is dual weakly stable.

We summarize these results as

Theorem 9.1. If ij is transferable then the following conditions
are satisfied:
(i) <L; +> 1is a transferable semilattice.
(ii) SZ is weakly stable.
(iii) If T* = {XO' ey xn—l} is the set of meet irreducibles
witnessing the weak stability of S?, then there is a linear order <

of T* such that for each dual minimal pair <p, 3> and each i € J
’

Definition 9.2. A lattice S? satisfies the join-meet condition

if for any a, b, ¢, d € L if cd = a+b then one of the following

four conditions is satisfied: cd = a, ¢d <b, ¢ =< atb or d < a+b.
In Theorem 9.2 we show that the join-meet condition together with

(i) - (iii) above are enough to ensure transferability. The example

i; of Figure 9.1 shows that conditions (i) - (iii) together with the

added condition that no point is both join and meet reducible are not

sufficient for transferability. We note however that the proof that

i; is not transferable is somewhat difficult.
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Theorem 9.2. Let S? be a finite lattice. S?is transferable
provided that the following conditions are satisfied:
(i) <L; +> is transferable.
(ii) Sz is weakly stable.

(iii) If T* = {xo,...,xm_l} is the set of meet irreducibles witnes-
sing the weak stability of S?, then there is a linear order < of T*
such that for each dual minimal pair <p, J> and each i € J, x. < x .

i 7p
(iv) S? satisfies the join-meet condition.
Proof. Let S?* and ¢ Dbe such that ¢ embeds S? in f}(Q*).
Since <L; +> 1is transferable, let wO be an embedding of <L; +>
in <L*; +> such that xwo € y¢ if and only if x < y. We define

maps wl,...,wm where m = ]T*l as follows. For 1 =3j<m, if x

is meet reducible we set

ij = H(waj_l).

If x is meet irreducible we put

ij = ij-l + Z{ywj: y 1is meet reducible and y < x}.

Without loss of generality we assume that T* = {xo,...,x l} and

m-—

that X, < ...< X 1 We claim that wm =y 1is a meet isomorphism.

To see this, we first note that if x, < x, the <
' 5 3 n Xiwk =< ijk for

0 <k <m. This follows from the fact that xiwo < xjwo by choice of

wo. Further if y is meet reducible and y < x, then y < x. whence
i 3
by the definition of wk we easily conclude x.wk = X.wk if 0<k =m
i j =

Our next assertion is that if i <k <m, then x. Yy = x
i’k iTk+1"

For i = 0, we must show that XOwk = Xowk+l' or equivalently that
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x = xowk + Z{yy : ¥y 1is meet reducible and y < xo}.

Owk k+1

i t reducible and = x then for some x € T x < .
If y is mee 0’ b v’ o X
Otherwise there is a dual minimal pair of the form <J, 0> . But from

(iii) of the hypothesis each 1 € J satisfies 0 < i <0 which is

impossible. It follows that if y 1is meet reducible and = Xy then

Wy = TAW) = % = gl

This makes it clear that the assertion is true for k = 0.
We now suppose that for some g such that 0< g <m, 1if i< g
and i £k < m then Xiwk =XV Consider a particular k, q <k <

m. Now

v

= +Z : i i
1 quk {yV¥ y 1is meet reducible and y < xq}.

*q k+1

Let y < x_ with y meet reducible. If x, = x for some x, € T
q 1 q i y

< ) 3 <
then ka+1 = Xqvk just as ka+1 =< xowk above. Now suppose Xy Z xq

for each xi € Ty' Then there is a dual minimal pair <{q, J> such that

<< <
SRR

and such that to each i € J there is an x € T with x = x,. That
i
such a pair exists is a consequence of the finiteness of &?_ Now from
iii i< for each i € J whe = . -
(iii) q ' nce Xiwk—l Xiwk Now let b
I xi. Since <:q, J> is a dual minimal pair, we conclude that

T = {xi : 1 € J}. By the induction hypothesis

b = = ! = .
O P

Since we have already shown that x, < x. implies x.wk = x.wk for 0 =k =
i J 1 J

m, we obtain

]
=
+
—

IA

2
-
+
—

"

2
~

A

%
<
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Further since we have shown that ka+1 = xqwk for every meet reducible,

y = Xq’ we have x U x U, . Thus, Xiwk = Xiw whenever i < k < m.

! =

q k+l q'k k+1

Let ¢ = wm. We saw above that if x and y are meet irreducible
and x <=y then xwm = ywm. Let H be any set of meet irreducibles
such that JIH = z is meet reducible. Then from the definition of ¥ ,

m
zwm < H(me) and zwm = H(Tzwm_l). From the weak stability of 5? for
each x € T, there exists y € H such that y < x. Thus II(Hy ) <
m
H(Tzwm). But since we have shown that Xiwk = Xiwk+l for each k,
i <k < m, we have H(Tzwm) = H(Tzwm_l). It is now clear that zwm =
II(HY ) whence ¥  1is a meet isomorphism.
m m

We wish to show that ¥ is a join isomorphism. Suppose for proof
by contradiction that ¥ is not a join isomorphism then for some 2y
and z, in L we have zy # zow + zlw where z = zy + 2;. Since P
is order preserving we may assume that =z § {zo, zl} whence 2z 1is join
reducible. Further, zow + zlw < 2z whence zy ¥ zow + zlw' Consider
the least 3j such that zwj Z zow + zlw. Note that j > 1 since wo

is a join embedding. By the join-meet condition =z, being join reducible,

is meet irreducible. Recall from the definition of Y, that
J

zy,

5 zwj—l + Z{ywj : Y 1is meet reducible and y < z}.

. . < + ]
By choice of 3, zwj_l =z + z, 0. Thus ywj £z + 2y for some
meet reducible y = z. Fix such y. By the join-meet condition there
are two cases.
Case 1. x < z for some x € Ty then ywj < xy, < z{, .. This
3 $

contradicts the choice of j.

Case 2. y =2, or y = z,. In this case since ¥ is order pre-

serving ij syy = ZOW + le- Thus the choice of y 1is contradicted.
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This completes the proof that ¥ is a join isomorphism. The theorem

is now immediate.

§10. In this section we give a complete description of those distri-

butive lattices which are transferable. For the remainder of this

section let 53 be a finite distributive lattice. From Lemma 3.2,
we see that if {a} UH 1is a set of join irreducibles and a < JH
then for some b € H, a = b. Suppose for the moment that S? is
transferable. By Lemma 8.1 no point of L is both join and meet
reducible whence if d is any meet reducible point then d is join

irreducible. Thus, if d = a + b, let
H={x:x €L, x is join irreducible and x < a or x< b}.

Thus, d =< IH and the above result yields d<a or d=<b. Thus
the join-meet condition is satisfied. Since the dual of the above
condition on joins is valid it is trivial that (ii) and (iii) of
Theorem 9.2, p.80, hold for any finite distributive lattice S? . In
Chapter 1 we showed that every finite distributive semilattice <L; +>

was transferable. We therefore have

Theorem 10.1. g? is transferable if and only if no point of 52

is both join and meet reducible.

We will now give some very precise structure conditions which
will give a much better picture of those finite distributive lattices

which are transferable. These results, Lemmas 10.1 - 10.4 were first

shown by Galvin and Jénsson in {3].

~

Lemma 10.1. Let 53 be transferable.
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If a, b and c¢ € L are mutually incomparable then the sub-
lattice generated by a, b and ¢ is the eight element Boolean

lattice %8 of Figure 10.1.

Proof. Let a, b and c¢ € L Dbe mutually incomparable, generating

a sublattice S3l' Now since S? is distributive,
a"c

588 ms

n-runged diagonal ladder

Figure 10.1
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(a+Db)(a+c)(b+c) =2ab+ ac+bc=4d

By Lemma 8.1 we have that d is not both join and meet reducible. By

duality, we may assume d is not join reducible. Hence assume that

ab + ac + bc = bz, whence we have

ab = ac = bc

Now a + bc = (a+ b)(a+ c). Since no element is both join and meet

reducible, one of these inequalities

a<bc, bc<a, a+b=za+c¢c a+c=<a+bd
holds. If a+b=a+ c, then b = a+ c¢ whence,
b= (a+ c)b=ab + ¢cb=bec,

yielding b < c¢. Similarly, if a+ c=<a+ b then ¢ =<b. Thus we
must have bc = a or the pairwise incomparability of a, b and ¢

is upset. It follows that ab = ac = bc = abc. This suffices for the

proof of the lemma.

We define the width of a lattice S? as follows;

WGE) = sup{]ﬂ] : HC L, H 1is a set of pairwise incomparables}.

Lemma 10.2. If §3 is a transferable distributive lattice then
wilh = 3.

Proof. Let a, b, ¢ be a set of three pairwise incomparables.
We claim that for all d € L, d is comparable with at least one of
a, b and c¢. For proof by contradiction, suppose that a, b, ¢ and
d are pairwise incomparable. As in the previous lemma, by duality

we may assume that ab = ac = bc. We look at the sublattice generated
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by d, a and b. Since a, b and 4 are pairwise incomparables

and generate ﬂ38, there are two cases.

Case 1. a, b and d are join reducible. For this case we

already know that a and b are meet reducible from above. Thus
this case is ruled out.

Case 2. ad = ab = bd. For this case, applying the distributive

law, we obtain a + cd = (a+ c)(a+ d). Now if a+ c=<a+ d then

c=cla+ d = ac + bc = bc

since ac = bc whence ¢ = b, contrary to assumption. Similarly

a+dc<a+c. Since a # cd we obtain cd = a whence by distri-

butivity,

((a+b) +c){(la+b) +d)=(a+b) +cd=a+b

Since a + b is join reducible, one of a + b + ¢ and a + b + d is
a + b. Thus either ¢ < a+b or d=< a+ b, both of which are

contrary to assumption. This completes the proof of the lemma.

Lemma 10.3. Let §3 be transferable. If a, b and ¢ € L are
three pairwise incomparables and d € L such that d is not in the

sublattice generated by a, b and ¢, then either d =< abc or

a+ b+ c=d.

Proof. By duality we again assume that ab = ac = bc. For proof
by contradiction we assume that there is a 4 € L which is not in the
sublattice generated by a, b and c¢ satisfying a + b + ¢ Z d and
d £ abc. By Lemma 10.2 d 1is comparable with at least one of a, b

and ¢, and d is comparable with at least one of a + b, a + ¢ and
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b + c. By symmetry and duality only the following three cases need be

examined.

Case 1. abc < d< a. Now bd =ad whence b+ d< a+ b, for
otherwise d, a, b, ab and a + b would form 915, see Figure 10.1,
and no distributive lattice contains ms as a sublattice. Further,
b+c<b+c+d< a+b+ c, since otherwise a + b, b + d and

b + ¢ generate a copy of mS' We therefore obtain

(a+Db)(d+ c+Db) ({a+ b)d+ (a+ b)c+ (a+ b)b

1

d + abc + b

=Db + d

Since b + d is join reducible we conclude that one of a + b and

d+c+b is 4+ b contrary to assumption. This completes Case 1.

Case 2. a< d< a + b. For this case we obtain abc < bd < b
since otherwise a, b and d generate a copy of ms. Thus we are

now in a situation which is symmetric to Case 1. This concludes Case 2,

Case 3. abc ¥ d <« a. For this case we have abc < 4 + abc < a.
Thus either a is both join and meet reducible or we are in Case 1.

Either possibility yields that §2 is not transferable.

Lemma 10.4. If g? is transferable of width 2 and for each
x € L~ {0,1}, where O and 1 are the least and greatest elements
of L respectively, there is a y € L such that x and y are

incomparable, then S? is an n-runged diagonal ladder for some n > 2.

Proof. We proceed by induction on the order of S?. Since f? has
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width 2 the order of S? >4, If I? has order four, then S? is the
diamond which is the 2-runged diagonal ladder. We suppose that if
has order i where 4 =i < m and S? satisfies the hypothesis of
the lemma, then it satisfies the conclusion.

For the remainder of the proof, let g? be fixed such that
satisfies the hypothesis of the lemma and has a minimal ocrder = m.
Since an n+l-runged diagonal ladder has only 2 more elements than
an n-runged diagonal ladder, and every diagonal ladder satisfies the
hypothesis of the lemma, we have that the order of E? is at most mt+l.
Now there are exactly 2 elements of L which cover 0. To see this,
note that the width condition implies there are at most 2, while the
order condition together with the fact that for each x € L ~ {0,1}
there is a y € L ~ {0,1} with x and vy incomparable imply there
are at least 2. Fix a and b covering 0. Suppose a and b are
both meet reducible. We show that this leads to a contradiction.
Clearly we can choose distinct x and y covering a. Similarly,
choose z and w covering b, Now X, y and z are not pairwise
incomparable. Without loss of generality assume x < z. Similarly

x, y and w are not incomparable. Sinc: w comparable with x

yields a contradiction either w <y or y S<w. If y = w then
a=xy =wz=>5>,

contrary to hypothesis, whence we have w <y. Now if x < z then
since 2z covers b and b covers O we have that a, b and x
generate RS' We must therefore have that x = z. Similarly we obtain

y = w, whence a = xy =wz=>b contrary to hypothesis. Thus one of
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a and b is meet irreducible.

Let a be meet irreducible. We now assert that a + b covers a.
Suppose for contradiction that there is a d such that either a < d <
a+b or b<d<a+b. Since a and b are the only elements
covering 0, we conclude that a, b and d would generate ms
whence i? would not be distributive. Thus a + b covers a and
so must be the unigue cover of a since a 1is meet irreducible. Let
[b, 1] = L ~ {0,a}. Then <[b, 1]; +, *> is a distributive lattice
of width 2, since |[b, 1]| 2 4. Further if x € [b, 1] ~ {b,1}
then for some y € L x and y are incomparable. Also if y = a
then x and a + b are incomparable, because x < a + b implies
x € {0,a,b} and x 2 a+ b implies x =y both of which are contrary
to hypothesis. Since we can not have x = a + b, we are done. Lastly,
no point of [b, 1} is both join and meet reducible. Thus <[b, 1]; +, *+>
satisfies the hypothesis of the lemma. Now |[b, 1]| < m whence

<[b, 1]; +, *> is an n-runged diagonal ladder for some n. We now

have two cases.

Case 1. n = 2. For this case it is clear that S? is the 3-runged

diagonal ladder.

Case 2. n Z 3. For this case we obtain that S? is one of the
lattices pictured in Figure 10.2. Since only the n+l-runged diagonal

ladder is transferable we are done. This completes the lemma.
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Figure 10.2

(@]

Theorem 10.2. S? is transferable if and only if for some positive

integer n there is a function, £, such that

g
(1) for each 1 € n f(i) 1is a sublattice Si of S: such that

S:i is either 338 or an m-runged diagonal ladder cor the l-element lattice,

(3) if i< j €n and x € Li and vy € Lj then x < y.

Proof. It is easy to see that if such a function exists for i?
then no point of i? is both join and meet reducible whence X? is
transferable,

For the converse we proceed by induction on the order of i?.
Clearly the result is valid if g? has order 1. We suppose that if

l1=<1i<m and S? is transferable of order 1 then the result is
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valid for S?. Let S? be fixed of order m with g? transferable.
such an i?exists since the m-element chain is transferable. Let a
be the least element of L other than 0 such that for all x € I,
either x =< a or a =< x. Since 1 satisfies this condition such
an a must exist. If a =1 we are done since it is easy to see
from Lemmas 10.1 -~ 10.4 that K? is either the 2-element chain or ﬂ38
or a k-runged diagonal ladder. Thus suppose a < 1l. Since g? is
transferable, a is either join or meet irreducible. If a is join
reducible then let b the the unique element covering a. Were b
not unique a would be meet reducible. Then <[b, 1]; +, *> has
order < m and is transferable. Further <[0, al; +, *> is trans-
ferable and as shown above <[0, al; +, *> is either 588 or a
k-runged diagonal ladder. Let f have domain n and satisfy (1) - (3)
for <[b, 1]; +, *>, we define g on n + 1 by

<[o, al; +, *> if i =0
g(i) =
f(i - 1) if i >0.
It is clear that g satisfies (1) - (3) for Sz.

We now consider the case when a is join irreducible. Then a
covers 0 by choice of a. We then apply the induction hypothesis to
< [a, 1]); +, *> and proceed as above. This completes the proof of
the theorem.

The results given above also serve to characterize weakly trans-
ferable distributive lattices. To see this we have only to recall

Gratzer's observation that if S?' is weakly transferable then no point

of {" is both join and meet reducible. We therefore obtain,
]



Theorem 10.3. :? is transferable if and only if j? is weakly

transferable.
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