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ABSTRACT

In this study of lattice-ordered groups, we begin with the fundamental
properties as found in the book '"Lattice Theory" by G. Birkhoff, and then
present Holland's fundamental representation of a lattice-ordered group as
a group of order preserving permutations of a totally ordered set.
Holland's work is essential to the description of a free lattice-ordered
group as given by P. Conrad. P. Conrad's results on free lattice-ordered
groups are also reviewed. This work constitutes the major portion of this

thesis.

If G is an l-group, then G is l-isomorphic to a subdirect product of
l—groups'{Bg: 0#geG} such that each Bg is a transitive l-subgroup of the
l-group of automorphisms of a totally ordered set Sg’ where Sg is the set
of all right cosets of a convex l—éubgroup Mg of G which is maximal with
respect to not containing g. Furthermore, it then follows that G is also
l-isomorphic to an l-subgroup of the l-group of all automorphisms of a

totally ordered set.

On the other hand, every free group admits a total order. From this,
we have that for a free group G, there is a free l-group F generated by
Gm, where m is an o-isomorphism, that is, for every o-homomorphism T from
G into an l-group H; there exists a unique l-homomorphism ¢ from F into

H such that the following diagram

iii



commutes.

Finally, for a po-group G, the following are equivalent:
(1) There exists a free l-group over G.
(2) There exists an o-~isomorphism of G into an l-group.

(3) G+={g:g20} is the intersection of right orders.
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INTRODUCTION

The purpose of this study is to review some of the developments in the
theory of lattice ordered groups closely related to the Holland represen-
tation for lattice ordered groups and P. Conrad's paper on free lattice
ordered groups. In Chapter'i; a detailed discussion of the properties
of regular and prime subgroups of an l-group is presented. A subgroup
H of a lattice ordered group G is regular if and only if there is an
element geG such that H is a maiimal convek l-subgroup of G with
respect to not containing g; a subgroup M of a lattice ordered group
G is prime subgroup if M is the intersection of a chain of regular
subgroups of G or M is a convex l-subgroup of G and a,b€G+\M,implies

aAb#0.

Prime subgroups are of particular importance in obtaining represen-

tation of lattice-ordered groups. If M is prime subgroup of a lattice
]

ordered group G, then the set oflcosets of M can be endowed with
total order, where a+M>b+M, if and only if there exists me€eM such
that atm>b. It follows that if M is both prime and nérmal ( prime
subgroup need not be normal, see Eiample 1.22 ), then the set of
cosets of M is a totally ordered group. The properties of prime
subgroups were utilized by C. Holland in his representation theorem
which is discussed in Chapter 2. Observe that if M is regular then
M is prime ( Corollary 1.19 ), and so we have that every l-group

always contains prime subgroups. In Chapter 2, we present the Holland

representation of a lattice-ordered group G as a subdirect product



of HKB’ where each Kg is a transitive l-subgroup of the lattice ordered
group of order-preserying permutations on some totally ordered set,
where each total order set is the set of cosets of some prime subgroup
of G. This answered a problem originally posed by Birkhoff in the
second edition of his book on lattice theory, it is an invaluable

tool in the study of the nature and occurrence of lattice-ordered
groups. In Chapter 3, our main concern is with the groups admitting

a linear order, which we shall call O-groups. We prove that all free
groups are O-groups, the method is similar to the proof of Simbireva,
Neumann Theorem: If a group G has-a transfinite central series ending
with C;={0} such that all factor groups Cy/Co+1 are torsion free,

then G is an O-group. ( A descending chain G=G,D 61622 ... D 6D 6y g
D+++.., with 0 a variable over ordinals less than a fixed T is

called a transfinite series of G if Gy4 1s a ( normal ) subgroup

of Gy such that the commutator [G; Gy] is contained in Gyyj and for

a limit ordinal a, Gy is the intersection of all Gg with B<a., Clearly,
the G, are normal in G ). In the proof, a theorem of Magnus-Witt

is used; that is, the lower central series of a free group G terminates
at {0} after w steps, where w denotes the first infinite ordinal,

and the factor groups are torsion free. In Chapter 4, let T be an
O-isomorphism of a p o-group G into an l-group F. This means that

both T and 7L preserve order. Then ( F, ™ ) is a free l-group

over G if (i) G7 is a set of generators of the l-group F ( that is;

no proper l-subgroup of F contains Gm ), and (ii) if ¢ is an O-homo-
morphism of G into an l-group L, then there exists an l-homomorphism

T of F such that



commutes.

The following two theorems are the main results.
Theorem 4.14. For a p o—-group G the following are equivalent:
(1) There exists a free l-group over G.
(2) There exists an O-isomorphism of G into an l-group.

(3) GT={geG; >0} is the intersection of right orders.

In particular, there exists a free l-group over a trivially
ordered group G ( that is, Gt={0} ) if and only if G admits a right
order and this is equivalent to G being a subgroup of an l-group.
Thus if G is a free group with S as a free set of generators and
a trivial order, then there eiists a free l-group ( F, m ) over G.
Moreover F is a free l-group with ST as a free set of generators.
That is, ST generates the l-group F and each mapping of ST into an

l-group L has a unique extension to an l-homomorphism of F into L.

Suppose that G is a p o—group such that G+=(]PA, Where.{PAlXEQ}
aenl



is the set of all right orders of G such that PA:>G+. For each
AeQ let Gy be the right o-group (G, Py ) and let‘gng be the natural
isomorphism of G into the l-group A(GX) of all order preserving
permutations of the totally ordered set GA’ where

i;g"éﬂ—g for ail x€eG
The direct product IIA(G)) of the l-group A(G)) with component-wise
order is an l-group, the cardinal product of the A(GA)'S. Now let m
be the natural map of G onto the subgroup of long constants of the 1-
group ITA(G))

g e (. .ghl )
and let F be the l-subgroup of NA(Gy) that is generated by Gm. It

then can be shwon that

Theorem 4.13: (F, m) is the free l-group over G.

Note that in our presentation of the Conrad's Generalization
of the Method used by Weinberg to comstruct free abelian l-groups
is used to construct frée l-groups. The generalization is quite
natural and identical with Weinberg's method if we restrict our
attention to abelian group. Proposition 4.15 is a géneralization

of one of the P. Conrad's propositions.

In our construction of the free l-group over a p o-group the
key concept is tﬁat of a right o—group; In the papers of P. Cohn,
Groups of order automorphisms of ordered sets, Mathematika 4 (1957)
41-50 and P. Conrad, Introduction a la théorie des groups rétinles,

Secretariat Mathematiques Paris (1967) there are necessary and sufficient



conditions given a group G to admit a right order. 1In D. Smirmov
On right ordered groups (Russian), Akad, Nauk, SSSR Siberian Dept.
Algebra and Logic 5 (1966) various right orders of a free group
are investigated.

Notation: Throughout the whole thesis; in general we use additive
notation as group operation, e%cept in permutation group, we use

multiplicative notation.



Chapter One

In this preliminary chapter, we study mainly prime subgroups
of an l-group. The reader is referre? to Birkhoff [1] and Fuchs [5]
for a general theory of lattice~ordered groups. Here we may also
assume that the reader is familar with the basic properties of groups.
Definition: By a partially ordered set is meant a system X in which
a binnary relation xzy is defined; which satisfies
(i) For all x, ﬁZx. ( Reflexive )
(ii) If x2y and y2x, then x=y. ( Antisymmetric )
(iii) 1If x>y and y2z, then x2z. ( Transitive )
Definition: A totally ordered set X is a partially ordered set in
whizh either x2y or y2x, for every x, yeX.
Definition: A partially ordered group (G, <, + ) is such that
(i) (G, <) is a partially ordered set.
(ii) (G, +) is a group.
(iii) x2y implies a+#+b2a+y+b, for all a, b, x, yeG.
We define totally ordered group similarly.
Definition: (G, +, £) is an right ordered group if and only if
(i) G, +) is a group.
(ii) (G, 5) is totally ordered.
(iii) =xZy implies £+a5y+a, for eyery x, y, atG.
We define left ordered gréup Similarly:
Definition: A lattice is a partially ordered set P any two of whose
elements have a greatest lower bound or 'meet" xMy, and least upper

bound or "join" xVy.



Definition: An l-group (G, <, +) is such that

(i) (G, %) is a lattice.

(ii) (G, +) is a group.
(iii) x>y implies atx+bzatytb for all #, y, a, beG.

Theorem 1.1 Let G be a group with identity o. Let PCG be such
that (i) o€P

(1i) P+PE&P

(iii) PU(-P)=G

(iv) PN (-P)={o}
(A) Let £ be defined on G by g<h if and only if h-geP.
(B) Let o be defined on G by gah if and only if -g+heP.
Then the order in (A) is a right total order and the order in (B)
is a left total order. Conversely, let < and 0 be a right total order
and a left total order on G respectively, then P={g; o<y, geG} and
P'={g; oag; geG} satisfy (i) to (iv).
Proof: For A. (i) x-x=oeP, for every xeG,implies x<x for every
x€G.
(ii) 1If xSy and y<x, then y-x, x-yeP. But x-y=-(y-x)e-P. Hence
x-yePMN (-P)={o}. Therefore x-y=o. That is k=y. |
(iii) 1If x<y and y<z, where x, y, 2¢G, then y-x and z-yeP. Hence
(z-y)+(y~-x)eP+PS P. Therefore z-kEP. Consequently, x<z.
(iv) Let x, yeG. Then x-yeG. Therefore i—yEP or x~-ye(-P). So
xSy or ysx.
We have thus shown that "<" is a total order on G. Now suppose xSy
for some x, yeG, consider i+a and y+a for any atcG, we have

(y+a)- (x+a)=y+a-a-x=y-xe€P. Hence x+alyta, for any acG. Consequently



(G, +, <) is a right ordered group.
Similarly, the order in (B) is a left order on G.
Conversely, let "<" be a right order on G and P={g; o<g, geG}. Then
(i) oZ2o implies o€P.
(ii) For any 81s gzeP, we have oﬁgl, thérefore gl+g230+g2=g2>0.
That is g1+g220. Hence P+PLP.
(iii) Clearly PL)(—P)QZG; Let geG. Then g>o or g>o, since "<"
is a total order on G. Therefore geP or ge~-P. Hence geP( J(-P).
That is GEP{J(-P) and hence P {J(-P)=G.
(iv) Let gePM(-P). Then g>o and g<o. Hence g=o (by antisymmetry),
so P(\(~P)={o}. The rest is clear. Similarly,
Theorem 1.2. Let G be a p o—group and let G+¥{g; geG, gzo} be the
set of all positive elements in G. The following three conditions
are equivalent.
(1) a<b
(2) b-aec
(3) —a+beG+
Moreover,

(i) oeG+

(1) chetee’

(iii) a+G+=G++a, for all aeG
av) ¢t ct=lo}
On the other hand, suppose that ¢t is a subset of G which possesses
The properties (i) —— (iv). Then it is easy to see that G becomes

a p o-group if one defines a relation < on G by f<g if and only if

g~f and —f+g€G+.



P roposition 1.3. A p o-group’is an l-group if and only if for all
acG, aVo exists.
Proof: If G is an l-group, then obyiously aVo éxigts for all aeG.
Conversely, let G be any p o-group in which aVo ekists, for all a.
Then (a-b)Vo+b e#ists, it is not hard to see that (a-b)Vo+b is the
least upper bound of a and b;' Similarly alb always ekists in G.
Theorem 1.2 and proposition 1;3 gives
Theorem 1.4. For any l-group G; let G+ be the set of its positive
elements, that is G+={g; g>0, geG}. The following three conditions
are equivalent.

(1) acshb.

(2) b-aeG.

(3) -atbeG’.

Moreover,

(i) oec.

(1) chetect

(i11) a+GT=G'+a, for all acc.

(iv) G+/)(—G+)${o}.

(v) aVo€G+, that is aVo exists, for all aecG.
On the other hand, it is easy to see that if G+ is a subset of G and
has the properties (i) — (v), then G becomes an l-group if one defines
a relation S on G by f<g if and qnly if g-f and —f+g€G+.
Notation: Thereafter, a partial order P or an right order R on G
is meant that P={g>o0, geG} under that particular order;
Definition: A subgroup C of (G, <, +) is convek; provided C contains

along with x>0 also all y's such that x>y>o. Hence C is convex if
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and only if for any cps eC, ¢ jcjcz, we have ceC.

2 1

Lemma 1.5. Let C be a convex subgroup of a partially ordered group
G. Let R(C)={C+g|geG} be the set of all right cosets of C in G.

If we define C+g§C+h.to mean that there exists ceC with c+g<h, then
this defines a partial order on the set R(C).

Proof: (i) C+g<Ctg, for every geG. (Reflexive)

(ii) 1If C+g1_<_C+g2 and C+g25C+gl. Then there eiist ¢ CZEC, such
that cl+g1§g2 and c2+g2§gl. Therefore c2+cl+glfc2+g2§gl. Hence
ofc2+g2—g1—cl-é25gl—gl—cl—02=—cl—c2. Consequently 02+g2—gl~cl—02€C,
by convexity. So gz—glec. Hence C+g2—gl=C. It follows that
C+g2=C+gl (antisymmetric).

(iii) If C+glfC+g2and C+g2§C+g3. Then there exist s 02€C such
that cl+glfg2 and c2+g25g3. Therefore c2+cl+glfc2+g2§g3. So c2+cl+glfg3.
Hence Ctg,<Ctg, (Transitive). Consequently "<" is a partial order on

R(C).

In an l1-group, the féllowing properties are trivially verified:
(i) at@@Vy)=(atx)V(aty) and (xVy)+b=(x+b)V(y+b).
(1) a+(xhy)=(atx)A(aty) and (xhy)+b=(xtb)A(y+b).
(iii) -(aVb)=(-a)A(~b) and -(aAb)=(-a)V(-b).
Definition: A subgroup of an l-group G which is also a sublattice,
is an l-subgroup. A convex l-subgroup is a convex subgroup and also
a sublattice.
Lemma 1.6: In lemma 1.5; if G is an l-group and C is a sublattice,
then R(C) is a lattice with (C+X)V(C+y)=c+£Vy and (C+x)A(Cty)=CtxAy.

Proof: Note that C+xVy>C+x, Cty. Now suppose C+g>Ct+x, Cty. Then
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€C, such that c +g and

there exist ¢y © +x§g,~c7+yfg. Hence xf—c

1 1

2
yi—c2+g. Therefore xVyi(fcl+g)V(ﬁcz+g)=(—cl)V(~c2)+g=c+g, where

c=(—c1)V(—c2)€C, since C is a sublattice. Hence xVy<ctg. Therefore
C+ﬁVny+g. Consequently C+xVy=(C+x)V(C+y). Dually C+xAy=(C+#)A(C+y).
Hence R(C) is a lattice.

Example 1.7: Let C be the set of all complex numbers, then (C, <, +)
is a partially ordered group in which atbi<ctdi if and only if b=d
and a<c. But (C, £, +) is not an l-group.

Example 1.8: Let R be the set of all real numbers, then (R, <, +)

is an 1-group Qith usual order. »

Example 1.9: Let Z be the set of all integers, then (ZHz, <, B is
an l-group with partial order defined by (a, b)<(c, d), if and only

if a<c and b<d.

The following proposition 1.10 is importént in Chapter 2, and also is
an example of non—abelian 1l-group. -

Definition: Let S be a tqtally ordered set, and let G be the group

of all functions f: S —» S such that f is one to one, onto adg the
inequality x<y (x, yeS) implies that $f<yf. We call such a function an
automorphism of S.

Proposition 1.10: If f and g are automorphisms of S, then define f<g
if xfj#g for all xeS. Then this defines a partial order on G under
which G is a lattice-ordered group.

Proof: Let G be the group of all automorphisms of S. Then

(1) f£<f, for every feG.

(ii) If f<g and g<f, then ﬁfjﬁg and xg<xf, for eﬁery xeS. Hence xf=xg,

for every xeS; since S is totally ordered. Therefore f=g.



(iii) Suppose f<g, and g<h. Then xf<xg and xg<xh, for every XES.
Therefore kfixh, for every x€§. Comsequently f<h.

Therefore "<" is a partial order on G, |

Now given any f; geG, we define F by kF=éfog, for every xeS.

Suppose x>y;'x; yeS, then kF=foxg>ynyg=yF, since S is totally ordered.
Therefore F is orderrprescrving; and hence F is one~one. Further-

more, if yeS, then there exist X5 XZES, such that'xlf=y, X, 8=y

Without loss of generarity, say X12X2’ we get x2f<xlf=y=ng.

2 2
Consequently FeG. Note that F>f, g. Now let h>f, g. Then

That is ngzx f. Hence x F=x2fo2g=x2g=y. Therefore F 1is onto.

h(x)if(x) and h(x)>g(x), for every xeS. Therefore xh>xfVxg, for
every x€5. Hence h>F. Consequently F=fVg, Similarly fAgeS.
Hence G is a lattice. Finally, let f>geG. Consider hlfh2 and

h,gh,, where hl’ h,eG. Then xhl=xhl for every xe€S. Therefore

1805 2

xhlfthlg, for every xeS. So xhlfhzthlgh for every xe€S. That

92
is hlfh22hlgh2' Hence G.is an l-group.

Definition: A subgroup H of G is transitive, if and only if for
every X, y €S, there exists heH, such that xh=y.

Notation; F or xeG, and G is an l-group. |x|=xV(-x).

Lemma 1.11: Let G be an l-group and a €G, i, y€G+.

(i) a=aVo+allo.

(ii) (qu)A((—a)Vo)=o.

(iii) [a|=aVo+(fa)Vo.

(iv) =xAy=o implieS‘i+y=y+x.

(v} Let b, C€G+ be such that bAc=o and a=b-c. Then b=aVo, c=(-a)Vo.

In other words, b=aVo, c=(-a)Vo are the unique elements of G such

12
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that bAc=o, a=b-c.
Proof: (i) a-alo=at(-a)Vo=(a-a)V(ato)=oVa. Hence a=aVofaAo.
(ii) (aVQ)A((va)Vo)=(a+ov(«a))A((fa)V§)=((a—(aAO))A(r(aAO))éaAofaAo=o.
(iii) avV(~a)=(aV (za))Vo+(av(-a))lo by (i)
=aV(—a)Vo—((—a)Aa)Voio. Hence aVo+(~a)Vo=(a+(-a)Vo)V{o+(-2a)Vo)
=((a=a)Va)V((-a)Vo)=oVaV(-a)Vo=aV(-a)=]al.
(iv) =xAy=o implies §+y=kfiAy+y=x+(~x)V(—y)+y=(ﬁ-ﬁ+y)V(k‘Y+Y)
=ny=xVy=y+x; since ?Ay=yAx=o. Hence x+y=y+x, if xAy=o.
(v) If a=b—c; then b=a+c. Hence o=bAc=(a+c)Ac=alot+c. Therefore
c=—(aAo)=(—a)Vo; and b=a+c=a+(—a)V6=oVa.
Corollary 1.12: 1If G is an l-group. Let H be a subgroup of G,
such that H:>G+. Then H=G.
Proof: For every aeG; we have aVo, ~(alo)eH. Hence a=aVo+alocH.
That is, H=G.
Lemma 1.13: Let G be an l-group, ‘X, ¥, z€G+. Then xA(y+z)<xAy+xAz.
Proof: xAy+xAz=(x+xAz)A(y+xAz)={(x+x)A(x+z)}A{(y+x)A(y+z)}

={(x+#)A(x+z)A(y+x)}A(y+z)zxA(y+z).

To prove Lemma 1.14, we need the result from Birkhoff [1] P.134

that "A lattice G is distributive if and only if aAx=ally and aVx=aVy
implies x=y, for every a, x, y €G.

Lemma 1.14; Any l-group is a distributive lattice.

Proof; Let G be an l-group, a,‘i; y€G and afix=ally, aVx=aVy.

We know that afaAk+k=a+(va)V(ex)+£=(ava+x)V(aex+x)=xVa. Therefore
x=afx-a+xVa=aly-atyVa by assumption

=y'



The following lemma is useful.
Lemma 1.15 (A. H. Clifford [4]): Let G be an l-group. Let M be a
convex l-subgroup of G. Let a, b€G+. For any x, let G(M, x) denote

the smallest convex l-subgroup of G containing M and x. TIf x>o,

g ' +
then G(M, x)—{g,]glfml+x+m2+x+ ..... +mn+x+mn+l, for some miEM }.
Moreover G(M, a)(\G(M, b)=G (M, alb).

_ o , + '
H =1g; <m_+x+m +xt+..... . .
Proof: Let A {g,]gI;ml+x+m2+x+ +mn+x+@n+l, mleM } Since

G, x) is a subgroup and contains M and x, it is clear that G(M,x)

contains all expressions of the form ml+x+m2+x+ ..... +mn+x+m

Moreover of]gl, for every geG, hence G(m, x)Z»A, by convexity.

tow 1 < ' < Fenn
Now if Igll_ml+x+m2+x+ ..... m hotm L and |g2|_nl+x+n2+x+ +embxin

m, n.eM'. Then (g;Ve,)V(-(8;Ve,))=8, Ve,V ((-8))A(-8)))<(8;V8,)V (-5, V8,)

q+l’

=(glV(—gl)Vg2V(—g2)=Igl|V|g215m1an+x+n2Vm2+x+ ..... +manp+x+ ..... +nq+x+nq
since miVniZmi, n;, and assuming that q>p. This implies glngeA.
Furthermore, suppose 8> gzeA, and-glfgigz, then —ng—gi—gl. Hence
]gl=gV(—g)§g2V(—gl)€A, since —gleA. Therefore geA. Moreover,

|18, 1=(8,8,)V (8,78, ) <8 V(-8 )+8,V (-8,)=g; [+[g,|. Therefore g -g,eA.
Consequently, A is a convex l-subgroup of G containing M and x. That

is G(M, x)=A. Now suppose that a, b€G+; we get o<aAb<a and o<alb<b.
Hence G(M, a):jG(M,‘aAb) and G(M, b)DGM, aAb), by convexity, that is,

GM, a)\GM, bB)DGM, alb). Let g G(M, a)\GM, b). Then

<m.+atm tat..... <n,+b+n. +b+..... +
lg]_ml+a+m2+a+ +mp+a+mp+l and Igl_§1+b+n2+b+ +nq+b nq+l’
where mi, njer, therefore '

< ceen ' ' .
|8 (ml+a+m2+a+. _+mp+a+mp+1)A§p1fp+n2+b+... +nq+b+nq+l)

: A +b+n,,+b+.....
Sml (n1 n2 +nq+b+nq+l)+aA(nl+b+n2+b+ ..... +nq+b+nq+l)+ .....
+m A +b4n_,+b+..... +n +b+tn ., )+alA(n,+b+n, +b+.....

5 (nl 9 q+b+nq+l)+aA(nl+b+n2+b+ +nq+b+nq+l)



+
+mp +1A(n1+b n,+b+.....+n +b+n )<m1+(n1+aAb+n2+aAb+ +nq+aAb+n

2 q q+1 -
+.... .+mp+(n1+aAb+n2+aAb+. e .+nq+af\b+nq+l)+mp+l€G (M, alb).

)

q+l

Hence G(m, a)("\G(M, b)=G(M, alb).

We now consider some properties of prime subgroups of an
l-group, which are important in the respresentation of an l-group
as a transitive l-subgroup of the l-group of automorphisms of an
ordered set to be observed in Chapter 2.

Definition: Let H be a convexyl—subgroup of an 1-group G. TIf
there is an element ge&G such that H is a maximal convex l-subgroup
of G with respect to not containing g, then H is called a regular
subgroup.

Theorem 1.16: For a convex l-subgroup M of an l-group G, the
following are equivalent.

(i) If A and B are convex l-subgroups of G such that A{YBEM,
then either A€M or BEM,

(ii) If A, B are coﬁvex l-subgroups of G, A®M and BRM,
then ANBRM.

(iii) If a, beG'~M, then albeG ~M.

(iv) 1If a, b€G+\\M, then aflbfo.

(v) The lattice R(M) of right cosets of M is totally ordered.

(vi) The set of convex l-subgroups of G which contain M
form a totally ordered set (under inclusion).

(vii) M is the intersection of a chain of regular subgroups.
Proof: We prove that (i) = (ii) 3 (iii) % (iv) = (v) = (vi)

2 (vii) 2 (1).

15
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(1) # (idi). TIf ANB=M, then, by (i), A&M or BSM, contradiction.
HmmeAntM.

(ii) = (iii). Since G(M, a)M, G(M, b)M, we have by (ii)

GM, a)NG(M, b)=G(M, aAb)M. Therefore aAb¢M, and so aAber\~M.
(iii) = (iv) Let a, bEGt\~M. Then aAbEG*;\M, by (iii). Hence
aj\b#o.

(iv) # (v). By way of contrad;ction, if neither M+g<M+f nor
M+f<M+g, then o<g-gAf¢M, since otherwise M+g=M+gAf<M+f. Likewise
o<f-ghf¢M. But (g—gAf)A(f—gAf)=gAf—gAf=o, a contradiction,

Hence R(M) is totally ordered.

(v) » (vi). Let M., M, be convex l-subgroups of G which contain M.

1’ 2
Suppose Ml and M2 are incomparable, then there exist m m2€G+,
such that mIEMli;‘MZ and mzeMzi;\Ml by Corollary 1.12. Without

lost of generality, we may assume that M+m, 2M+m

1 2>M, then there

exist m, m'eM, such that m+m12m22m’. This implies m,eM, , by
convexity, a contradiction. Hence the set of convex l-subgroup

of G which contain M form a totally ordered set.

(vi) % (vii). If M is a maximal convex l-subgroup of G with respect
to not containing some gecG, we are done. For every o#geG and

gfM, there exists a maximal convex l-subgroup of G with respect

to not containing g in the set of (vi). For every g#o, g¢M, we

denote one of such subgroups by!Cg. Then OQ;LG_Cg:DM' Clearly,
g

the set of all Cg's is totally ordered, since Cg's are in the set

of (vi). Let gfM, geG. Then géCg. Hence g# J;;EG Cg. That is,
g¥M
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m C =M.
g

geG
gEM
(vii) ® (i). Suppose M is regular. If there exist a, b such that

aeA’™" M and beB™ < M, then a#b , by hypothesis. Now

G(M, a)NG(M, b)=G(M, alb)=M, since aAbeA\B and ANBEM. Moreover
G(M, a)2M and G(M, b)2M, but then M is not regular. Because
gfM implies that g#¢G(M, a) or gféG(M, b). Consequently, ASM or
B&M.

Now suppose M is an intersection of a chain of a regular subgroups
Cg where Cg is a regular subgroup with respect to not containing

geG. That is, suppose that ANBEM= A Cg' Then ANBEC , for

gEM
geG

4

every such Cg' Therefore A< Cg or BQ_Cg. by previous argument.
If there exist C and C of such type such that AZC , Bi‘C s
g1 g, g 81
and BE&C ., Aé’FC_ , then from AZC "and A%C , we have C_ &C ,
g, g, g g, g g
z 2 1 Z 2 1
since the set of such Cg's are totally ordered. Similarly, Cg %Cg ,
1 2
a contradiction. Hence AE‘-_Cg for every such Cg or BS_Cg for every
such Cy - That is Ag(\cg or BE—L—ﬂCg. Hence ASM or B&M.
Definition: (a) Let G and H be p o-groups. Then an o-homomorphism
© from G into H is an isotone homomorphism: that is to say 0O is
a group homomorphism such that for any x, yeG, if x<y, then x6<y6.
(b) If G and H are l-groups, then an l-homomorphism 6 from G
into H is an o-homomorphism such that for any x, yeG,
(xVy)6=x0Vyb..... (i)
(xMAy)6=x6Ayb..... (ii)

(d) An l-isomorphism 6 from l-group G into l-group H is an o-

isomorphism from G into H such that (i) and (ii) of (c) hold.
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Remark: An o-homomorphism need not be an l-homomorphism. Consider
the l-group G of all continuous functions from [o, 1] into reals.
Let H be the l-group of all linear functions from [o, 1] into
reals. Then H is a subgroups of G. The inclusion mapping from H
into G is an o-homomorphism but not an l-homomorphism.

Definition: The Cardinal product of 1l-groups Ai’ ieIl, denoted

I

by [it1

Ai is the direct productiléI Ai with the partial order defined
oo i , > . )

by a0 if and only if a, 2o, for every i€l, where aeiEIAi and aieAi

To verify that%igIIAi is an l-group is routine.

Definition: G is l-isomorphic to a subdirect product of 1-groups

'{Ai; ieI} if &nd only if there is an l-group monomorphism

k:G ————%>-A=l,H

1€I‘Ai such that kﬂi is an epimorphism for all ieI,

where T, tA ————€’-Ai is the ith projection.

Corollary 1.17: Every abelian l-group is a subdirect product

of abelian o~groups.

Proof: Let Cg be a maximal convex l-subgroup with respect to not

containing geG, then C AG and G/Cg=R(Cg). Hence G/Cg is an abelian

o-group. Define f£:G R=J#EJG R(C,) by

xf=(..., Cg+x, .+.), for every xe€G.

Clearly f is an l-homomorphism. Furthermore, o#geG, then Cg+g#Cg.
Hence g¢ ker f. It follows that f is one to one. Moreover fpg

is an epimorphism for all g#oeG, where pg is the -projection from

R onto R(Cg). Consequently, G is a subdirect product of G/Cg’

for every o#geG.

Definition: Any convex 1l-subgroup of an l-group G which satisfies

one of the conditions in Theorem 1.10 is called prime.



Corollary 1.18: 1If A and B are primes, then A/)B is prime, if

and only if A and B are comparable.

Proof: A(VB is prime, then if A ANB and BRA(B, then A(BRA(]B,

by (ii) of Theorem 1.'16-,-'a contradiction. Therefore, A=A(]B or
B=A(\B. Hence A®B or B<A. Conversely, if ADB or B<A, then
ANB=Bor A which is prime.

Cbrollary 1.19: If the convex l-subgroup M is regular, then M
is prime.

Proof: By (vii) of Theorem 1.16,

Corollary 1.20: If A, B, C are regular subgroups with respect
to not containing some g#oeG, and A, B, C are distinct, then
ANB4:C. °

Remark: From Corollary 1.18, we know that the p. o. set of
prime subgroups looks like the roots of a tree in picture, we

call it a root system. The following diagram is a root system.

19



where Bl and 32 are regular, and B covers Bl’ BZ' That is there
is no prime subgroup between B, Bl and B, B2 in the diagram.

Proposition 1.21 For any prime subgroup A of an l-group G,

there exists a minimal prime subgroup M with MCA.

Proof: Let Big}Ai, where‘{Ai: iel} is a chain of prime subgroups. Then
if a,bth\\B we have a,b€G+‘~Ai for some i. Hence aAb€G+‘\Ai

That is all bfA;. Hence al b¢B. Consequently aj beGHB.

That is, every chain of prime subgroups is bounded: below. Hence by
Zorn's Lemma, for any prime subgroup A, thg;e exists a minimal prime M
with MEA.

Example 1.22: Let G be the stablizer of "x" in A(X), the l-group of all
antomorphisms of totally ordered set X. Then if a,bEA(X)t\\G, we have
xa # x # xb. Hence x(ap.b) = xalAxb = xa or xb # x, since X is
totally ordered. That is aAb # i. Therefore G is prime.

We claim that if X is actually the set of real numbers then G is also
regular. Now suppose g#¢G, then xg # x. For any x # aeX, we have

(i) If x>xg>a, then thefe exists go€G such that xggoe= a.

(ii) If x>a>xg, then there exists go€G, such that xggoe= a.

1 L oa>x. '

In either case, there exists‘g6€G, such that xg-lgo = a,

(i33y If a>x>xg, then either a>xg ~>x or xg

(iv) Note that the remaining case is xg>x>a. In this case, we have

either x>xg'l>a or x>a>xg'l. Hence, there exists go€G, such that

¢ U 880G U g 1goG

goEG goEG

xg_lgo = a. Therefore, A(X)

cUgcUg 1c C< ¢,g>

That is, A(X) = <G,g>. Consequently, G is regular.

20
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Remark: Let g€G, feA(X)\G. Then xf # x. Hence xfg # x. Therefore
xfgf™L # x. That is fgf™l £ G. Hence G is not normal.

Proposition 1.23. If every minimal prime subgroup of G is normal, then
G is a subdirect product of o~groups.

Pf: The proof is similar to that of Corollary 1.17. Note that for every
geG, there exists regular subgroup Cg of G withrespect to not containing
g. Hence there exists a minimal prime subgroup MgQECg and M+g # M.
Lemma 1.24: If G is an l-graup, the following are equivalent:

(1) G is totally ordered. :

(2) Every convex lésubgroup of G is prime.

(3) The set of all prime subgroups of G, I'(G) is totally ordered.

Pf: Suppose G is totally ordered and M is a convex l-subgrcup of G.

Let a,bEGt\~M. Then al b = a or b. Hence ah bth\~M. Therefore M is
prime. Conversely, if every convex l-subgroup of G is prime, then

{0} is prime, implies G is totally ordered. This converse also implies
T(G) is totally ordered. Now suppose M'! # {0} is a minimal prime

subgroup of G, let Cé be regular in M' with respect to not containing g,

geM'. Then if C)

g is not regular in G, we have Cg regular in G with

>M', contradiction. That is C/}

respect to not containing g, hence C g

g

is regular in G, éonsequently, C! is prime, contradiction. Therefore

g
M' = {0} . Hence every convex l-subgroup of G is prime.

Example 1.25: Let H = rgR Zps 2Zp = 2. Let G ={ heH, such that the
support of h satisfies asscending chain condition }J{0} .

Let g,heG, h # g, D = {r; rg # rh} & Support of gUJSupport of h

Clearly, Support of g{JSupport of h satisfies asscending chain condition

(A.C.C.). Hence D satisfies A.C.C.



Therefore D has a maximum member r. Then define g>h if and only if
rg>rh. Now 0eG. Let f,geG, then D = {r, rg # rf} satisfies A.C.C.
we have f-geG. G is a group. Furthermore
(i) g>g for every g€¢G. Reflexive.
(i1) Suppose g>h, h>g, then it is immediate that g = h  Antisymmetric.
(iii) Suppose g>h and h>f, then r;g>r;h and ryh>r,f where
r; = max{r; rg # rh} r, = max {r; rh # rf}
Let r3 = max {r; rf # rg}. To show that r3 = max {rl,rg}is routine.
Hence g>f.
Consider any two elements of G which are comparable, that is g>h and
g,heG, let ro = max {r; rg # rh}. Then rog> roh, and note that
ro = max {r; r(f+g+k) # r(f+g+k)} for every f,keG. Hence
ro(f+g+k) = roftrogt+rok

2roft+rohtrok

= ro(f+g+k)
Consequently f+g+k > f+h+k. Therefore, G is totally ordered abelian
group. This implies I'(G) is totally ordered by Lemma 1.24.
Now we are going to discuss I'(G). For every reR, let G, = {h; max.
element of support of h<r, heG}lg}{ 0}. Then OeGr,and if f,geGr,
clearly f—geGr and fVg, ngeGr. If f<g,<g, then g1€G¥; Consequently,
Gr is a regular subgroup of G with respect-to not containing k where k
is any element whose max. element of support is r. On the other hand
r;>rp if and only if Gi;zpfl under inclusion. Conversely, if Cg is
regular with respect tanOtzcontaining g, let r be the max. element of
support of g. Then for every element f in Cg’ the max. element of

support of f is less than r. Hence we have thus shown that there
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exists a one-one order preserving mapping from R onto the set of all re-
gular subgroup of G. Let (0,r) denote Gr and (1,r) denote the intersec-
tion of all regular subgroups Gr'QGr. Then (1,r’)is prime and
(1,r)>(0o,r) for every r. Hence ['(G) = {(i,r), i = 0,1}){6,{0}}.

where (i;,r;)>(i,,#,) if and only if r,>r; or r;=r, and i,>i, and

G>(i,r), (i,r)>{0} for every i, r. The picture of T(G) is as follow:

¥e
ad,r 0\
0,r ) r
@)\ i
(O,rzyl.:n
(1, e, N
(0, tm)/f m

L0}.

We have thus shown that G contains prime subgroups that are not regular

such as (1,r') for every r'eR.
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Chapter Two
4

Lemma 2,1: Let C be a convex l-subgroups of an l-group G, and let
0<aeG. Define C*(a)={xeG:al|x|eC}. Then C*(a) is a convex l-subgroup
of G and C&C*(a).
Proof: aA[0[=0€C. Hence 0eC*(a). Consider dl,dzec*(a), then
OSaA[dl—dZISaA(|d1|+|-d2|)s(al\|dl|)+(a/\|—d2[)€C. Hence aA[dl—dZISC. That
is,dl—dzeC*(a). Consequently C*(a) is a subgroup. Furthermore,
(aA|d1|)V(aA|d2|)=aA(|dl|V|d2|)2aA[d1V d2|20, implies aA|d1V d2|€C. Hence
le d2€C*(a). Therefore dlAdZEC*(a) dually. Consequently, C#*(a) is a
sublattice. Now if d20eC*(a) and xe€G such that d2x20, then
al|d|2al|x|20 implies al|x|eC,that is xeC*(a).Hence C*(a) is a convex
1-subgroup. Finally, if geC, thenlg,eC, but OSaAIglslg]. Hence aA,gleC,
and therefore geC*(a). Consequently CZC*(a).
Lemma 2.2: Let C be a convex subgroup of l-group G, and suppose R(C) is
totally ordered. Then each geG induces an automorphism B(g,C) of R(C)
defined by (C+x)B(g,C)=Ct+x+g.
Proof: Straight-forward.

If C is a convex l-subgroup of G and if R(C) is totally ordéred, we
let AR(C) denote the l-group of all automorphisms of R(C).
Lemma 2.3: If C is a convex l-subgroup of G and if R(C) is totally ordered,
then the mapping a(C):G——AR(C) defined by ga(C)=8(g,C) is an l-group
homomorphism of G onto a transitive l-subgroup of AR(C).
Proof: The only non-trivial part of the proof is to show that the lattice

operation are preserved. We must show that (gV0)a(C)=B(g,C)Vi, where i

denotes the identity function in AR(C). In other words, if we can show
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that for any right coset C+x, (C+x){gV0)=(C+x+g)V(C+x), we are done. But
this follows immediately from Lemma 1.6.
Example 2.4: Let G=R[*#]R, then if H is a convex l-subgroup of G,then
He{{0} @ {0},R 11 {0},{0} BB R,RE R}. Note that REAR2R H {0}2> {0} {# {0}
and R B R2{0} @ RD{0}{#] {0}. Moreover R {0} and {0} (H]R are maximal
convex l-subgroups with respect to not containing (0,a),(b,0), respectively,
where a#0#b.
Theorem 2.5(Holland [6]): If G is an 1l-group, then G is l-isomorphic to a
subdirect product of l-groups {Bg:O#gEG} such that each Bg is a transitive
1-subgroup of the l-group of automofphisms of a totally ordered set Sg'
Proof: For each 0#geG, by Zorn's Lemma, there exists a convex l-subgroup
Cg of G which is maximal with respect to not containirg g. By Theorem 1.16
and Corollary 1.19, the set of convex l-subgroups of G which contains Cg
form a tower. Let Sg=R(Cg). Then by Theorem 1.16, Sgis totally ordered.
By Lemma 2.3, the mapping OLg:G—+A(Sg), where (Cg+x)0Lg(k)=Cg+x+k,k€G,is
an l-homomorphism of G onto a transitive l-subgroup Bg of A(Sg). Let
0:G—>B= 1 B defined by o(k) =0 (k);keG. Clearly,since each a_1is an
g#0 g g 8 g
geG
1-homomorphism,0 is an l-homomorphism. Furthermore, if 0#geG, then
C +g#C . Hence g¢Kera , that is g¢ n Kera_=Kero. Consequently O is one
& & & 0#xeG
to one. Note that o"ng is an epimorphism for all g#0eG, where 'ng:B—e-Bg
is a projection. Hence the proof is complete.
Example 2.6: The maximal convex 1-subgroups of Z ElZ without (a,b),where
a#0or b#0 are {0} @ 2z, 2@ {0}. A transitive l-subgroup B, »of AR({0} 1 H 2)

is {OLZ= zeZ, ({0} @ Z)OLZ={Z} (8 z} and a transitive l-group B, of AR(z & {0})

is {B, :z€Z, (Z 5 {0})BZ=Z B {z}}. Define £:2{@ z—>=B,XB, by
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(zl,z?_)f=(0Lz ’Bz ). Then f is an l-monomorphism and 7. is an epimorphism,
1 2

where . is the i™" projection of B XB,.

Example 2.7: The convex l-subgroup of (Z B Z)X Z are;
(i) {o}@ {o}x {o} (ii) (z @ {o})X{o}
(iii) ({0} @ z)x {0} (iv) (z @ z)x {0}
v) CEXZ

The regular subgroups are;

(1) zmEzx{o} (ii) {o}@H zX{o}
(iii) z @ {oix {0}

A transitive l-subgroup B, of AR({0} Ezx{o}) is

{OLZ z 121,2262,({0} EHZX{O})OLZ z =({zl}EE’Z))<(-{23}}, which is o-isomorphic
173 172

to ZXZ, and B. of AR(z & {0} X{0}) is

2

{8 , :zz,z3ez,(z&] {0}><{o})€>z ,

2 =(Z & {Zz});—( {23}}, vhich is also
273 273

o-isomorphic to ZS-(Z, and B, of AR(ZE zX{0}) is

3
{Yz :z3€Z,(Z Hz X{O})YZ =z 3 Z);-({ZB}} which is o-isomorphic to Z.
3 3

Define £:(2 @ 2)X 2 — (B, & B,)X B, by £(zy52,029)=( 5B, 5Y ).

123 %2%3 %3

Clearly z [H Z;(Z is l-isomorphic to a subdirect product of B_,B_,B

1°72°73°
If H is the direct product of l-groups BOL and if BOL is the l-group of
automorphisms of an ordered set Sa where Sa('\SB=¢ for o#f , then we may

totally order the set USOL as follows: first order the collection of sets

Sa in any way; for example, it may be well-ordered. Then for x,yeUSa,

let x<y if x,yeSa and x<y as elements of Sa,or if xe(Sa and ye:SB where
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Sa<S If ¢cH,then ¢ induces an automorphism of the ordered set(J)Sa in

8’
the following way: x¢'=x¢a, where xESa and ¢a is the ath component of ¢.
From this and Theorem 2.5 we have the following theorem.
Theorem 2.8: If G is an l-group, G is l-isomorphic to an l-subgroup of
the l-group of all automorphisms of an ordered set.
Definition: By an 1-ideal of an l-group G is meant a normal subgroup of
G provided it contains any a, then also all x with Ix[§|a|.
Theorem 2.9: An l-group G is l-isomorphic to a transitive l-subgroup of
the l-group of all automorphisms of an ordered set if and only if there
exists a convex l-subgroup C of G such that;

(1) the set of convex l-subgroups of G containing C is totally ordered
under inclusion,and

(2) the only 1l-ideal of G contained in C is {0}.
Proof: If G is a transitive l-subgroup of the l-group of automorphisms
of an ordered set L, and if xeL, then C={geG: xg=x} is clearly a convex
1-subgroup of G. C contains no l-ideals of G. For if O#geC,then yg#y,
for some yeL. Hence, as G is transitive, there exists feG such that #f=y.
Therefore xfgf_l=ygf—l#yf—l=x and so fgf_l¢C. The convex l-subgroups of
G containing C form a tower, for otherwise, by Theorem 1.16, there exists
a,b¢C, such that aAb=1. That is, xa#x#xb, and yet x=xl=x(alb)=xalxb,
which is impossible since L is totally ordered.

Conversely, if C is such a subgroup of G, then by Theorem 1.16, R(C)
is totally ordered, and by Lemma 2.3, the mapping a(C) is an l-homomorphism
of G onto a transitive subgroup of AR(C). If g is in the kermel of a(C),
then C+g=C; thus the kernel is contained in C. As the kernel is an l-ideal

of G, the kernel is {0} and a(C) is one-to-one.



Corollary 2.10: If there exists an l-ideal K#{0} of G such that every
1-ideal (#{0}) of G contains K, thén G is a transitive l-group of auto~
morphisms of an ordered set.

Proof: Let 0O#geK, and let Cg be a convex l-subgroup of G maximal without
g. Then Cg satisfies conclusions (1) and (2) of the above theorem.
Corollary 2.11: A simple 1-group (without proper 1l-ideal) is a transitive
1-group of automorphisms of‘an ordered set.

Corollary 2.12: 1If G is abelian and is a transitive 1l-group of autoc-
morphisms of an ordered set, then G is totally ordered.

Proof: Any such C in Theorem 2.8 ié an 1-ideal. Hence C={0} , and G is

isomorphic as an ordered set to R(C), which is totally ordered.



Chapter Three

Let S(al,éz, ..... ,an) denote

that is generated by the elements

t
S (al,a ,an) as S(al,a

2’ 22

normal subsemigroups will play an

extensions partial orders P, that

29

the normal subsemigroup of a group G

ooooo

,an(EG), and define

..,an) with 0 adjoined. These

important role in dealing with

is, for some partial order "<"

on G, P={g>0, geG}. This is due to the fact that they obey the

following rules:

(a) aeP implies S'(a)&P;

(b) aeP, a$0, implies PNS(-a)=9;

(c) S'(al,az, ..... ,an)=S'(a1)+S'(a2)+ ...... +S'(an);
(d) —S(al,az, ..... ,a )=S(-a1, Bysenens ,—an)

The next result has numerous consequences.

Theorem 3.1 [Fuchs (5)]. A partial order P of a group G can be extended

to a full order of G, if and only if, it has the property:

signs € €

1’92’

PAS((-1)%a, (-1)%%a,,

Proof: If P can be extended to a full order Q, then let € be chosen

€

such that ﬁ(‘l)eiaiEQ. Now —S((*l)elal,{fl)ezaz, ..... , (1) nan)

=S(-(-1)€1a1,-(—1)€2a2, ,—(-1)Enan)§;Q, and so

PASCED e, (12, (1) ) SQAS(CD) T ay, (1) %2, ., (1) T, )

=

For the proof of the sufficiency we need the following lemma.

Lemma 3.2. If P satisfies (*) and aeG, then either P+S'(a) or P+S'(-a)



defines a partial order P' in G which again satisfies (*).

Proof: Suppose that G contains elements CINLVVRRREE ,an,bl,bz; ..... b

(#0) such that for every choice of the signs Ei’nj one has

Pf\S(a,(—l)elal,(fl)ezaz, ..... ,(-1)€nan)¢¢, and
P{\S(—a;(—l)nlbl,(—l)nzbz, ..... ,(—l)nmbm)#¢; then the intersection of
P with S((fl)ea,(al)elal, ..... ,(-1)€nan,(a1)“1b1,(-1)“2b2,...,(-1)”mbm)

is never void, contrary to (*). Thus either (i) to every finite set

FLISRRRR ,an(#O) in G there are signs e],ez, ..... ,en»such that
P(\S(a,(~l)€1al,(-l)ezaz, ..... ,C—l)enan)=¢; we then put P'=P+S'(-a);
or (ii) to every finite set R PPRETR sa (#0) in G there are signs
€ € €
€1sEsnennn ,€ such that P()S(-a,(-1) 1al,(_l) 2a2, ..... ,(-1)"Ma_)=¢;

in this case we put P'=P+S'(a). (If both (i) and (ii) are true, we

can choose either.) Now in case (i) for example, P' is evidently a
normal subsemigroup with "0'", which moreover satisfies (*); for

(P+8' (-a))NS((-1) T2, (-1) 28y, e, (-1)a )40 implies

PNS(a, (-1)"a , (-1)%%a,,. .. .. , (-1)%Ma_)#6.

Property (*) of P' shows that, for all b(#0) in G, P'(1S((-1)°b)=¢

for €=0 or 1, that is, either bgP' or -bgP'. Thus P' is a partial
order of G. |

To complete the proof of Theorem 3.1, let Q be a maximal element in the
set B of all partial orders of G which are extensions of P and satisfies
(*). Such Q exists, by Zorn‘Lemma; for (*) is satisfied by union of

an ascending chain of partial orders provided it is satisfied by the
member of the chain. By the Lemma 3.2, for every aeG, either Q+S'(a)
or Q+S'(xa) also belong to B. Therefore Q+S'(a) or Q+S'(-a) coincides

with Q, that is aeQ or -aeQ, proving that Q defines a full order on G.
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Our main concern now is with the group admitting a linear order.
Following Neumann [5] we shall call these groups O-groups (orderable
groups). A necessary and sufficient condition for having this property
can read directly from Theorem 3.1.

Theorem 3.3 [Los', Ohnishi (5)]. A group G is an O-group if; and only

if, given a >3, in G with ai#O, for at least one choice of

128p30ceee
the sign €i=0 or 1, one has

o¢5((-1)€1a1,(-1)€2a2',.'....;(-1)€na ).

In a group G, the intersection of the 2nsubsemigroups
€ € € .
S{({-1) 1al,(wl) 2a2, ..... , (<1) nan) with fixed 315855000 s

varing the signs € € is either a subgroup or void, therefore

1°
another formulation of the Theorem 3.3 is

Theorem 3.4 [Lorenzen(5)]. A necessary and sufficient condition for
a group G to be an O-g;oup is that, for every finite set 35585500052
in G (ai#O), the intersection of the 2" subsemigroup

S((-l)slal,(—l)ezaz, ..... ,(-l)enan) taken from all choices of signs

Ei=0 or 1 is void.
Corollary 3.5 [Neumann (5)]. In order that G be an O-group it is
necessary and sufficient that every finitely generated subgroup of G

be an O-group.

Assume that H is a finitely generated abelian group. If H is
an O-group, then it must be torsion-free. If it is torsion-free,
then it is a direct sum of n copies of its generators, hence it can

be given a lexicographic order, that is, it is an O-group.
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Corollary 3,5 implies

Corollary 3.6 [Levi (5)] An abelian group is an O-group if and only if
it is torsion free.

Definition: F is free abelian group oh{kk} in case F is a direct sum
of infinite cyclic group Zk; where Zk=[xk].

Definition: Let X be a set and F a group containing X; F is free on X

if, for every group G, every function f:X——>=-G has a unique extension

to a homomorphism of ¥ into G.

Proposition 3.7 For every free group F, F/[F,F] is a free abelian
group.
Pf: Let M be the free set of generators of free group F and free abelian

group G, that is

commutes, where f, is the unique homomorphism from F to G such that

2
xif2=xfl, for every xgM. Since F and G have the same free set of generators
,it is immediate that f,1s onto. Therefore there exists NAF, such that

2
F/N=G. We know that x+y+N=y+x+N, for every x,ycF. Hence -x-y+x+ty+N=N, so

~x~-y+x+y N, for every x,ycF. Therefore [F,F]J&N. Now consider the
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diagran D
—i s pC e /[, F]
1 |f2 £3
G = F/N

where O is the natural mapping, and f3 is a homomorphism from G to F/[F,F],
such that gfyf3 = (gtN)f3 = g+[F,F] for every geF, and g¢N.
Note that mfy = mify, mf1fy = mi®. Hence mifyf3 = mfif4 = miO, that is

gfof3 = g0 for every geF. Consequently fof3 = ©. Therefore [F,F] =

Ker © = Ker fof 42N, Hence [F,F]2N, that is [F,F] = N.

Recall that the members of the lower central series of group G are
defined by Go = G, G g = [G,G,].
Theorem 3.8: Let G be a free group, for each total order of the free
abelian group G/[G,G], there is a total order of G so that the natural
map of G onto G/[G,G] is an o-homomorphism.
Proof: Note that all the factor Gn/Gn+l , 0 =0,1,2,*** of the lower
central chain of a free group G are free abelian groups [9], and hence
G,/Gp+1 1is an O-group. Thus by corollary 3.6, there exists a total order
P,on G /Gy . For 0 # g €G, if n is the integer defined by gEGﬁ\\Gn+l
(such an integer exists, because by a theorem of Magnns-Witt[8], the
lower central series'{Gn} of a free group G is such that (ﬂ\Gn ={01},
where w denotes the first infinite ordinal), let Pjp be then;iVen order
on G/[G,G], we define P in G, PoCP and P consists of 0 and all such

8€G, where gtGh4g € Pn. Then for each g€G, either geP or -geP, but not
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both unless g = 0. If g,heP and m,n are the integers with geGy~Gpyq

then g+G

and h€Gﬁ~\G m+1€Pm’

n+1’ h+Gn+l€Pn. Without loss of generality,
we assume that m>» n. Then we have g+h€Gﬁ~\Gn+l and g+h+G41€P,. Hence
g+h€P. In the same way, we also get h+g€P; Finally, if g is as before
and xX€G is arbitrary, then —§+g+§ = g+Ig;k]€g+Gn+l, that is -xtg+x again
belongs to P. Consequently, P defines a full order on G.

Now consider the natural map f from G onto G/[G,G] under order P.
Then if x,yeG and k>y; then -y+x>0. Therefore there exists an n, such that
-y+x+G,11EPy. Hence —y+x+[G;GlzIG,G], for otherwise if -y+x+[G,G]<[G,G],
then -x+y+[G,G]>[G,G], that is -xty>0, in other words, y>x, a contradiction.
Hence we have x+[G,G]>y+[G,G]. We have thus shown that f is an

o—homomorphism.

Let G be a free group, and KAG, let G/K be totally ordered. We define
a total order on K as in theorem 3.8, that is, let Gg, Gi, G2,°*" Dbe
lower central series of free group G, say kePy if kEGE‘~Gn+1 and
k+Gn+l€Pn, where Pn is soﬁe fixed order on Gn/Gn+1- Now define g>h if
and only if g+tK>htK in G/K or gK = hK and -htgePy. Then
(i) Let P consists of 0 and all g with the property: gEPk or g+K>K in G/K.
Then geP or -geP, for every g€G, but not both, unless g=e.
(ii) Let h,geP.
(A) If h,gek, then htg, g+hEPk. Hence htg, g+heP.
(B) Without loss of generality, let heK and g#¢K, then g+h+K = g+K>K.
Hence g+heP and h+g+K = g+K>K (by normality) Hence htgeP.
(C) 1If h,g¢K, ﬁithout loss of generality; we may assume that h+K>g+K.

Hence g+h+K>g+g+K>g+K>K, that is g+heP and g+K>K implies
!"I
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h+g+K>h+K>K, that is htg+K*K. Hence h+g€eP.
(iii) Let gEP; for any xeG, if g€K implies g€Py and x+g-x€K, but in
theorem 3.8; x+g—i is a positive element, hence x+g-xeP; . That is
x+g-xeP . If g¢K; then g+K>K; Hence %+g-#+K>K, Consequently xt+g-xcP.
We have thus shown that G is totally ordered. Furthermore, g>h implies g+K>
h+K, for otherwise if g+K<h+K; then -h+g~K<KX implies -h+g<0 in P, that is g<h

Therefore the natural map of G onto G/K is an o-homomorphism.



Chapter Four

Definition: Let 11 be an o-isomorphism of a p o-group G into an l-group
F. This means that bothvﬂ and ﬂ—l preserve order. Then (F,m) is a free
l-group over G if
(i) Gm is a set of generators of the l-group F (that is,no proper l-sub-
group of F contains Gm),and
(ii) if o is an o-homomorphism of G into an 1l-group L, then there exists

an l-homomorphism T of F into L such that the diagram

G Ll > F

|

Proposition 4.1: In any distributive lattice and hence in any l-group

comnutes.

VIAJaij=AJIVIaif(i) ,for T and J finite sets and dually.

Proof: Let J be arbitrary finite set, we prove the statement by induction
on III. If |I|=l, the proposition holds clearly. Suppose it is true if

a, .) ,where I'=I-{i }.
+
J i lJ ntl

)), by induction

|I]=n. Now if |I|=nt+1,then VIAJaij=(VI,AJaij)V(A

Thus V. A_a,,=(A _,V_,a,_,. )V ;. a, .
rJ%iy I if (i) J{ln+l} 1n+lf(1n+l

=/

))
3 )

I'((VI'aif(i))V(AJ{in+l}a'

1n+lf(

1n+l

=h_, (A

7 J{in+l}((ai f(in+l))V(VI'aif(i))))

n+l

=AJI'LjJ{in+l}VIaif(i)



=AJIVIaif(i)

=A .
Hence, VIAJaij JIVIaif(i) and dually

Proposition 4.2: If S is a subgroup of an l-group L, then
T={VAABSaB:SaBES’asA’BEB’ and A and B are finite sets} is the l-subgroup
of L that is generated by S. If S is abelian, then so is T. Now either

s={0} or ]Sl is infinite and so S and T have the same cardinality.

Proof: C(Clearly, T is a sublattice. On the other hand, Delr. Let tl,tzeT,

that ls’tl=VAABSaB’t2=VA'AB'Sa'B" Then ty —t2=VAABSaB_VA'AB'Sa'B" Thus

tl_t2=VA(ABSaB-VA'AB'Sa'B')

=VA(AB(SaB‘VA'AB'Sa‘B'))

Y hg (Byg Ay Vg (-550g1))

=Vl ghar SogtVpr (<551g1))
=VAABAA'V3'(SGB—SG'B') € T,by Proposition 4.1.

Hence T is a subgroup. Finally for any x,yeT and x2y, we have

> . . > .
tl+x+t2_tl+y+t2 in L, for any tl,tZST Hence tl+x+t2_tl+y+t2 in T, for
any tl,t2€T. We have thus shown that T is an l-subgroup of L. Now if S
is abelian, then -

VA'AB'SOL'B'+VAABSOLB= VA'(AB'Sa'B'+VAABSaB)
= Var (U (MgeSgrgithySye))
= Vo (U (Ap (81 githp80)))
= V1 (V, Ao (A5 (S0 0048,0))))
= VA'(VA(AB'(AB(SdB+Sd'B'))))
= V1 (Vy (Ag(Apy (S 048, 151))))
= VA(VA'(AB(SaB+AB'Sa'B')))

= VA(VA' (ABSGB-H\B'SG'B'))

37
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VA(ABSaB+VA'AB'Su'B')

= VAABSaB+VA‘AB'Sa'B"
Let (F,m) be a free l-group over the p o-group G.
Proposition 4.3: If G is abelian, then so if F. If S is a set of genera-
tors for the group G, then St is a set of generators for the 1-group F.
Proof: G is abelian, implies F is abelian by Proposition 4.2. Let S be
a set of generators of G. Then Sm is a set of group generators for Gm
and Gm generates F (as an l-group). Hence ST generates F.
Proposition 4.4: If o is an o-homomorphism of the group G into an l-group

L, then there exists a unique l-homomorphism T of F into L such that the

diagram

commutes.
Proof: Suppose that Tl and T2 are two such l-homomorphisms and consider
f=VAAB(gaBﬂ)€F,where 0€A,BeB and A and B are finite sets. Then
£T)= (Vg (8,gMITy = Vyhp(8,6™1)= Valp (e g0)= Vyllye 6T,y

= (U hpeng™MTy= T,
Proposition 4.5: If (Fl,ﬂp and (FZ,EQ are free l-groups over the p o-group
G, then there exists a unique l-isomorphism of F1 onto F2 such that the

diagram
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m

—— F
\\\\\\\>\\\\\ ]
Proof: By Proposition 4.4, there exist l-homomorphisms T, and T2 such

1

commutes.

that

G F

l .
commutes.
\\\\\\\\\\\‘:.1 T2
m2 .

Fy

eF where A and B are finite sets, otcA, BeB.

Consider f=V ABg B

£T T,= (VAABg P l)T (V 88 mIT, = VAAB(g 8" T,) = Bg g™ = f.

Thus T1T2 is the identity on F1 and similarly T

Therefore Tl is an l-isomorphism.

leis the identity on F,.
Proposition 4.6: If (F,ﬁ) is the free l-group over the trivially ordered
free group G and S is a free set of generators for G, then F is a free
1-group with ST as a free set of.generators. |

Proof: By Proposition 4.3, ST is a set of generators of the l-group F.
Let n be a mapping of‘Sﬂ into an l-group L. Then 7n is a map of S into

L and since S is a free set of generators of G there exists a unique
homomorphism ¢ of G into L such that smn=s0 for seS. Since G is trivially
ordered 0 is an o-homomorphism and hence there exists a unique l-homo-

morphism T of F into L such that smn=sO=smT for all smeST.

Proposition 4.7: If L is an l-group, then L+={g€L:g20} is the intersection
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of right orders on L, that is, L+=(\1% , for some Q, where PAis the set of
positive elements of some right orggg on L.

Proof: By Theorem 2.8, we may assume that L is an l-subgroup of the l-group
A(T) of all o-permutations of a totally ordered set T. Let e denote the
identity in A(T). Well order T and for each e#uacA(T), let f(a) be the
first element in this well ordering such that f(a)o#f(a). Define ¢ to be
positive if f(a)a>f(a). Let B(T)' be the set of all such positive elements
then B(T)+=B(T)'Lj{e} is a subset of A(T) satisfying;

(1) een(T)”

(ii) 1If x,yEB(T)+, then clearly’f(xy)=Min;{f(x),f(y)}, since

Min. {f(x),f(y)} is moved by xy, and also if z<f(x) and f(y) in this well

order, then zxy=zy=z.

Therefore
>f (xy)y=£f (xy) if £(x)<E(y)
f (xy)xy ‘=f(xy)y>f(xy) Cif £(x)>£(y)
>f (xy)y>f (xy) if £(x)=£(y)

Hence xy>e. That is xyEB(T)+ and consequently B(T)+B(T)+§;B(T)+.

(1i1) Clearly, B(NTUBMH ICAT). Now consider efgea(T), if geB(D)",
fine; if not, then f(g)g<f(g) by hypothesis. But f(g)=f(g-l), thus
f(g-l)<f(g_1)g~1. Hence g_leB(T)+ and therefore ge(B(T)+)-l, with the
consequence that B(T)+LJ(B(T)+)—1=A(T).

(iv) Consider e#gEB(T)ﬁ/\(B(T)+)—l. That is f(g)g<f(g) and £(g)g>f(g).
This is impossible, hence B(T)+r\(B(T)+)—1#{e}. Furthermore, let '"<" be
defined on A(T) by g<h if and only if hg—leB(T)+. Then "<" is a right total
order on A(T) by Theorem 1.1. Finally, let a€A(T)", then taxt,for all t.

+
Then 0€B(T) , for every such B(T)+. Hence ae(}right order of this type on
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A(T). That is A(T)'©(Yright order of this type on A(T). Now let
ae{r\right order of this type on A(T). Suppose there exist teT such that
ta<t, then there exist a right order B(T)+of this type such that aiB(T)+,
a contradiction. (For instance, we can let such t to be the first element
of T in this particular well order). Hence tazt, for every teT. That is
aEA(T)+. Therefore,A(T)+=fﬁ\right order of this type on A(T). Thus
L+=L(\A(T)+= LO(() right orders of this type on A(T))

= V(L right orders of this type on A(T))

=mright orders on L.
Example 4.8: Consider the l-group G=R R, the cardinal sum of reals. Let
+

=R @R and 6, =R @ R with lexiographic orders. Then G+=G>\+('\G>\

G
A1 A2 1 2

Furthermore, let Py =G+L){(x,y):x50,y20,Ix]fy}L){(x,y):xzo,ySO,ly|<x}.
3
Define a new relation in G, let a<b in G if and only if b-a PA . Then G

is also a totally ordered group under PA . Note that G+=GA+[\2A+f)GA+
3 1 2 3

holds also.
Proposition 4.9: A p o-group G is o-isomorphic E? a subgroup of an l-group
if and only if G+is the intersection of right orders.
Proof: We may assume that G is a subgroup of an l-group L with the order
of G induced by the order of L. We know that L+=/1PA; where PA are right
orders of L. Thus G+=G(7L+=G(W((WPA)=(7(G(]PA) and each G{]PA is a right
order for G. | |

Conversely, if G+=[\PA, where PA'S are right orders for G,let GA be
the right ordered group.under the'right order PA on G,and let g-ﬁ;gx be
the right regular respresentation of G in A(GX), which is a one-one

homomorphism, where ng=x+g,for every xeG. If g€G+,then x+gzx, for every

x€G. Hence x+g2x for every x in GA and for each A. Therefore ngZX for



every X in GA and for each A. That is gA is positive, for each A. If
each gA is positive, then eSegA=g in G ,and so gE{\PA=G+. Thus the map
g._l.(...,gk,...)is an o-isomorphism of G into the l-group HA(GA).
Proposition 4.10: If VAABaaB#O in the l-group L,where A and B are finite
sets,0€A,BeB, then there is a right order of L which extends the given
lattice-order and such that VAABaaB#O in this right o-group L.
Proof: We may,by the Holland embedding theorem,assume that L is an l-sub-
group of an l-group A(T) of all o-permutations of a totally ordered set T
and VAABaaB#e in A(T).
Case I; There exists an g such that ABaaBie' Then t<t(ABaaB)=Min'{taaB:BEB}
for some t€T. Now well order T so that this t is the first element in the
well ordering. This determines a right order of A(T), (see the proof of

Proposition 4.7),that extends the given lattice order and so that ABaaB>e

and hence VAA a_,>e in the right o-group A(T).

B aB
. <e. < i
Case II; For each a’ABaaB e Then.vAABaaB e,since VAABaaB#e, and so
> =Min. : .
t>t(vAABaaB) for some teT. Thus for each o,t t(ABaaB) Min {taaB ReB} Let

t be the first element in a well ordering of T. Then in the corresponding

right order of A(T) we have VAABaaB<e in the right o-group A(T).

Proposition 4.11: 1If G is a right o—grOup,VAABaaB#O in G,where A and B

0"

are finite sets,0€A,BeB, and g—» g 1is the right regular representation
n

of G in A(G),then VAABaaB#O in the l-group A(G).

: 5 >0 4 . < =Min. : .
Proof Casg I; VAABaaB 0 in G. Then for some a,0 ABaaB Min {aaB BeB}

N Ny .
Thus O(ABaaB)—Mln.{aa :BeB}>0 and so O(VAABaaB) is the largest element in

B
a finite subset of G, where at least one element in this subset is

ictl iti Thus V. A m¥
stric Yy positive. us A Baas e.

3 <0 i <0 i i : <0.
Case 113 VAABaaB 0 in G. Then for each OL,/\BaOLB 0 in G, Mln'{aaB ReBR}<0

42
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N . ] . I3 .
Thus O(VAABaaB) is the largest element in a finite set of strictly negative

element in G and so it is strictly negative, since VAABaGB#O in G,

v

Therefore VAABaGB#e.

Throughout the following let G be a p o-group with G+=(A\PA,Q the set
of all A,such that PA is a right order on G,and PA;2G . nggeach Ae let
GA be the right o-group (G’PA) and let g—ﬁ>.gx be the right regular repre-
sentation of G as a subgroup of the l-group A(GA),where ng=x+g for all
x€G. Let LA be the l-subgroup of A(GA) generated by the imége of G under
this isomorphism.

Lemma 4.12: If 0 is an o-homomorphism of G into an l-group L and V 0#0

AABaaB
for {aaBEG:aeA,BEB and A and B are finite set}, then VAABaaé¥e in some LA'
Proof: By Proposition 4.10 we ca; extend the lattice-order of L to a

right order so that VAABaaBO#O in right o-group L. Now G/K(0)= subgroup of
L, where K(0) is the kernel of 0,K(0)+g—>g0 and this isomorphism defines
a right order on G/K(g). Let Pa be one of the right orders of G such that
Pa;2G+. Then K(O)f\Pa is a right order for K(o) that extends the given
partial order of K(0). Define geG to be positive if g¢K(O) and K(o)+g is
positive in the right o-group G/K(0),or geK(0) and g is positive in the
right o-group K(0). By using Theorem 1.1, it is not hard to prove that
this is a right order for G that extends the given partial order and hence
it is one of the PA' Also the natural map of G into G/K(0) is an o-homo-
morphism with reﬁpect to this right order PA' Thus K(O)#VAAB(K(O)+aaB)

=K(0)+V,A_a _ and hence V,A_a .#0 in G Now embed G in A(GA)' Then by

A B af A"B aB

. Ay
Proposition 4.11,VAABaaB¥e in L

3"

3"
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Now let T be the natural map of the p o-group G onto the subgroup of
long constants of HLXCLHA(GA),g.__>(...,gA,...). Then T is an o-isomorphism
(see the proof of Proposition 4.8)
Theorem 4.13: The l-subgroup F of HLA generated by GTm is the free l-group
over the partially ordered group G.
Proof: Suppose that 0 is an o—homomorphism of G into an l-group L. Consider

V.,A_a _TeF and define (VAAB(aaBﬂ))T=VAAB(aaBO). If VAABkaBO¥VCA 0, then

A B oB

0#VAABkaBO—VCADgY60=VAABkaBO+ACVD(—gY60)=VAABVDCAC(kaB—gyf(Y))o

Dgy6

=V A (k . -g Jo. By Lemma 4.12 there exists an L such that
AU@C)B BUC 0B Pyq(B) A
in L,,V A (k_,- )A¥e Therefore V,A_k A#V A g A in L, and
MYy UCyB BUC a8 8yq(B) ‘e VA Bap” ¢ DBYS A

hence,VAAB(kaBﬂ)¥VCAD(gY6ﬂ). Therefore T is single-valued. Next consider

k=VAABkaBﬂ and g=VCADgY6ﬂ in F. Then(k-g)t=(V,A_k ﬂ—VCA mT

A B oB Dgyd

=(V (k Yo

aB7Eyq(8) M"Y

ALJ(DC)BABLJC AIJ(DC)BABLJC(kaB_gYQ(B)

=VAABkaB°"VCADgy6

(kvg)T=(VAABVCAD(kaB“ngdﬂ))T=(VPAQCpq“)T=VPAQCpqO=(VAABkaBO)V(VCADgyéO)

Therefore T is an l-homomorphism of F into

O=kT-gT. Thus T is a group homomorphism. Furthermore,

=kT =k
ktVgT,where cpq g °T 8

0. vé*

L and TT=0,
Theorem 4.14: For a p o-group G, the following are equivalent;
(1) There exists a free l-group over G.
(2) There exists an o-isomorphism of G into an l-group.
(3) G+={g€G:gZO] is a intersection of right orders.
Proof: By Proposition 4.9,(2) and (3) are equivalent and clearly (1)
implies (2). It follows from Theorem 4.3 that (3) implies (1).

Proposition 4.15: If K is a free l-group with S a free set of generators,
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then S is a free set of generators for the subgroup [S] of K generated by
S.

Proof: Let G be a free group with S as a free set of generators. Let
H=HA(GA) and let g._é.&...,gx,...) be the o—isomorphism of G into the long
constants of H. Then the 1-subgroup F of H generated by Gm is the free
l-group with ST as a free set of generators. Clearly, there exists an
l-isomorphism T of F onto K such that sTT=s for all seS and hence (Gm)T=[S].
Since ST freely generates GTm is follows that S freely generates [S].
Proposition 4.16: Let G be a free group with S as a free set of generators
and let H=HA(GA). Let Kn bé the 1l-subgroups of H generated by the long
constants from Gn(where G0=G,Gn+l=[G,Gn]). Let Cn be a free set of
generators for Gn' Then Kn is the free l-group (really (Kn,WlGn)) over

Gn with Cnﬂ as a free se; of generators.

Proof: Let —a—b+a+b€[G,Gn_l],b€Gn_ ,acG and let xeG. From

1
x-a-b+a+b-x=(x-a-x)+ (x-b-x)+(x+a-x )+ (x+b-x) ,we have anﬂG. Furthermore,
x+y+[Gn_1,Gn_1]=y+x+[Gn_1,Gn_l],for every x,yeGn_l. Hence

x+y+[G,Gn_l]=y+x+[G,Gn_l],31nce [G _l]CZ[G,Gn_ ]J. It can then be

n-l’Gn 1

shown that Gn_l/[G,Gn_l] is free abelian, by a theorem of Magnus-Witt.[R].
Now suppose that O is a homomorphism of [G’Gn—I] into an l-group L and

VAAB(aaBO)#O in L. By Lemma 4.12, there exists a right order for [G,Gn_ ]

1
so that in the l-group A(Gn),VAAB(aaE)#e, where x._4_xm is the right regular
representation of Gn in A(Gn). Pick a total order for Gn—l/Gn’ then the
lexicographic extension of the right o-group Gn by the o-group Gn_l/Gn is
a right order for Gn—l' Therefore by induction we get a right order for

G(which induces the right order on Gn_l), say‘PA. For each aaBEGn’aag maps

Gn onto itself. Thus there is a teGn such that tVAAB(aag)#t and so



Ay A

VAABaaB#e in the l-subgroup of P(G%) generated by G . Thus by the proof

of Theorem 4.13 it follows that K is the free l-group on the free set of
n

generators Cnﬂ.

We are now going to give some conditions for an l-group G to be free.

Let (F,m) be the free l-group over the l-group G constructed as in Theorem *

4.12. 1f G is not an o-group, then there exists right orders PA #PA ,0f G
1.

such that_PXl(\PAé:)G . If gePA*\\PA » then Ogl _g>o and ogA =g <Q. Thus
A A A

0(g "Ve)=g and 0(g “Ve)=0 and so gmVen=(...,g Ve,...)#(gV0)T because
0(gVv0) l=gV0>0 and 0(gV0) 2=gV0>0. Thus T is an o-isomorphism of G into
F, but not an 1-isomorphism and so GTWCF.
Theorem 4.17: Let (F,m) be the free l-group over l-group G. Then the
following are equivalent;

(1) Gr=F.

(2) G is an o-group.

(3) Each o-homomorphism of G into an l-group is an l-homomorphism.
Proof: We have shown that (1) implies (2) and clearly (2) implies (3).
(3) = (1). T is an o-isomorphism of G into l-group F and so T is an l-is-

omorphism. Thus GT is an l-subgroup of F and hence GT=F.

Proposition 4.18: Let G be an l-group and (F,T) be the free l-group over

G. For every element a,beG, (aVb)T=amVbm if and only if a,b are comparable.

Proof: Clearly if a,b are comparable, (aVb)T=amVbm.
Conversely, it is trivial if G is an o-group. Now suppose G is not an
+ .
o-group. Then G ={;EPA for some index I,and PA is a right order on G,

1
such that P, > G'. Let h=a-b. (i) If h|]o, then hd (Vp, ,that is,
i iel i

46



h¢P>\ ,for some i€l. If heP, for some jeI,then heR, ™ P, .. Therefore,
1 . 3 i
A, A AL A,
0h I=h>0 in G, and Oh 1_h<0 in G, . Thus O(h IVe)=h, and O(h "Ve)=0 and
j i

so hﬂVeﬂ=(...,hAVe,...) # (hVe)T, because O(hVe)A=hVe>0 for all A. Hence

(aVb)T#anmVbT in this case. On the other hand, if h¢PA for all iel, then
i

ehEPA for all ieI. Hence —h€G+,that is ~h20. Therefore h<0,contradiction

o1
Consequently, if h]]O,then (avVb)m#anVbm. The proof is complete.
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