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ABSTRACT

In the three editions of Lattice Theory, Birkhoff has

suggested topologies for various types of lattices which he and
others have investigated for lattice-ordered groups. There have
also been several other attempts to topologise lattices in general
and lattice-ordered groups in particular. However, the only
topologies wﬁich have been proved in general to be group topologies
(viz. the class of topologies described by Smarda) fail to reduce
to the usual tcpolcgy on finite cardinal products of the real
numbers. The most general of those topologies which have been
defined by means of convergence is the topology derived from
a—-convergence, as developed by Papangelou, Ellis, and Madell, A
lattice-ordered group has such a topology if and only if it is
completely distributive.

In this dissertation, we define a topology, which we call
the g -topology, on an arbitrary lattice-ordered group G. With
respect to the g -topology, G 1is both a topological group and

a topological lattice. The T -topology on a totally ordered group

(iii)



is the interval topology, and if G 1is a cardinal product of
lattice-ordered groups, then the ¥ -topology on G is the
(Tychonoff) product of the ¥ -topologies on the factors. Hence
the ¢ -topology on any cardinal product of the real numbers is
the usual topology. The ¥ -topology is discrete if and only if
G 1is a lexico-sum of lexico-extensions of the integers. We
derive necessary and sufficient conditions for the ¥ -topology
to be Hausdorff, and construct a lattice-ordered group which has
indiscrete I-topology. Finally, we investigate convergence with
respect to the ¥ -topolegy, and when G 1is completely distributive,
we compare the I ~topology with the topology derived from

a—-convergence.
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1. INTRODUCTION

A. Teuminology and Notation

For the definitions and basic theory of semigroups, groups,

(normal) subgroups, and group isomorphismg,.see Schenkman [55]

"4 for most

‘s .
{(We use the additive notatiocn

they may not be commutative.). For the definitions and basic theory

of partially ordered sets, directed sets, lattices, sublattices,

lattice isomorphisms, topological lattices, partially ordered groups,

lattice-ordered groups (f2-groups), vector lattices, and Banach

lattices, see Birkhoff [8] or Fuchs [30] (except for topological
lattice and Banach lattice) (NB: We do not require a topological
lattice to be Hausdorff.). For the definitions and basic theory of

bases and subbases of topologies and of open sets, closed sets,

interiors of sets, neighborhoods, T. topologies, T2 (or Hausdorff)

1

topologies, completely regular topologies, connected sets,

one-to-one functions,.onto functions, continuous functions,

sequences, nets, cofinal subsets, and filter-bases and filter-

subbases of filters, see Thron [58] (NB: For a net we use the

notation {x8| 8 € B} where B is the domain of the net.). For

the definition and basic theory of topological groups, see Husain [36]

(NB: We do not require a topological group to be Hausdorff.).

Zorn's Lemma may be found in [8], [55], or [58]. We consistently




use totally ordered set (totally ordered group) to refer to a
partially ordered set'(partially ordered group) in which every
pair of elements is related, i.e. in which a < b or b < a
for every pair of elements a,b. We write all functions,except
the projection functions from a product,on the right.

If {AAI A e A} is a collectiqn of sets, then by the product

of the A we mean the set of functions f from A to

v Aty
the disjoint union of the A, satisfying Af ¢ A, for all A e A,

If '{GA[ A € A} 1is a collection of groups, then by the product

of the GA’ AEAGA’ we mean the set AEAGA with group operation

defined by: f + g is the element of satisfying A(f + g)

AEACx
= (Af) + (Ag). We sometimes write finite products of sets (groups)

as Al X A2 X ... X An (Gl X G2

Let G be an f%-group and T a totally ordered group. The

X ... X Gn).

lexico-graphic product of G and T, G X T, is the group G X T

with order defined by: (g,t) < (a,b) if and only if t <b or
t =b and g < a. The lexico-graphic product of an %-group and
a totally ordered group is an %-group. If {GAI X e Al is a

collection of f#-groups, then the cardinal product of the GA’

!chx’ is the group XHAGX with order defined by: f < g 1if
¢ =
Ael

and only if xf < ag for all ) e A. If A 1is finite, we

sometimes denote the cardinal product by Gl |X| G, |X| . |X| Gn'

A

The cardinal sum of the G_, [zlG , is the subgroup of |1|G
A A
Aeh Ael

consisting of those functions which are 0 for all but a finite

number of X ¢ A. The cardinal product and cardinal sum of f&-groups
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t

are {-groups.

Let A{GAI A € A} be a collection of sets with topologies
UA' The product topology on AEAGA is the set consisting of

the empty set and all subsets of which are arbitrary unions

AEAG
of finite intersections of sets of the form UY X XEA\\jy}Gk

where U € U .
Y Y

We denote the lattice operations of join and meet by v and

A respectively. Tn general;, if A 1is a subset of a partially

ordered set P and there exists d € P such that (i) d > a

for all a € A and (ii) d < b whenever b > a for all a € A,

then d is writtem VA or V.a. We define A A and A a
acA acA

similarly. A lattice L is said to be conditionally complete if,
for all subsets S of L which are bounded above, V S ¢ L and
if, for all subsets T of L which are bounded below, AT ¢ L.
A lattice L is said to be complete if, for all subsets S of
L, VS eL and AS e L. A non-trivial #-group cannot be complete,
but there exist f-groups which are conditionally complete [8].
Let L be a lattice. Let L*¥ be L with greatest and least
elements (aajoined if necessary). For Y € L*, let u(Y) =

{2 € L*| for all

{% € L*| for all y e Y, 2>y}l and 2(Y)
yeY, %<y}, Let

L(u(Y))}.

L = {Y| YS L*, Y non-empty, and Y

We order L by set inclusion and call L the completion of L

~

by cuts [8], [42]. We may embed L into the complete lattice L

by taking a € L to &£(u({al})). This map is one-to-one and



preserves order and the lattice operations; thus we may assume

that L 1is a subset of L. The conditional completion, L, of

L is (a) i\{vﬂ,/\ﬁ} if VL,AL ¢1L, (b) I:\{V L} if
VL¢#L but AL eL, (c) i\\{A i} if VL el but AL {#L,
or (d) i if both VL,AL e L. Then L is conditionally
complete and L may be considered as a sublattice of L.

Let L be a lattice. Then L 1is said to be completely

distributive if, whenever {¢ B! o e A, R e B} L for arbitrary
a

indexing sets A and B, the equality

ocA BeB @ feB

holds provided that all the indicated joins and meets exist.

AR
A weA a(of)

A subset S of a partially ordered set P 1is said to be

convex if p € S whenever s < p<r for s,re S and p e P.
An f2-subgroup of an f-group G 1is a subset S of G which
is both a subgroup and a sublattice. Not every subgroup of an
f~group is an f-subgroup; a simple example is the following. Let
G be the cardinal product of the integers with themselves. Let
S = {(m,-m)| m is an integer}. Then clearly S 1is a subgroup of
G. However, since (1,-1) V (-1,1) = (1,1) ¢ S, S 1is not a
sublattice of G. A convex normal f-subgroup of an 2&-group is
called an f#-ideal. If '{GA| A € A} is a collection of %~-groups,
then the cardinal sum of the GA is an %-ideal of the cardinal

product of the G An g-subgroup is said to be prime if its

X
lattice of left cosets is totally ordered (see [17]). A subgroup

N of an %-group G is said to be L-closed if whenever {gal o e A}

S N and exists in G, then V,g €N, and whenever

&éAga



A{ga| o € A}S N and exists in G, then A e N.

aéAga oea8y

Unless otherwise mentioned, we adopt the notation of Birkhoff [8]

(see also Fuchs [30]). In particular, (since the notation varies)

we emphasize that for any f%-group G and any a ¢ G, a+ =aveo

and a =aA0. If G is an f-group, A,B< G, and a,b £ G
with a < b, then [a,b] = {xe G| a<x<b}, (ab)={xce G
a < x <b}; [a] is the f-subgroup generated by a, G(a) is the

n o n e AJ—'R:IV-J-"Ivr- v ~ 11
“F & i b Sy V4 S 53 [0 SR A TP G SR £ 1Y Yy <« uy
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o
+

=
]

{a} +B, -A=1{-al aeA}, AVB={xVy|]xea yeBl,

>
>
o=
it

{x Ayl xeA, yeBY, aVvB={alvB, anB-=1{a}A B;

A" ={xeAl x>0}, and A" = {xe A]l x < 0}. For ACS G,

"
L]

{x € 6| |x] A]a] =0 for all a e A} (read the "polar" of
A) 1is a convex 2%-subgroup of G (see [18], [56]); for g ¢ G,

we let gl = {g}l. We denote the empty set by ¢. We denote the
additive f-group of the real numbers by R, that of the rational
numbers by Q, and that of the integers by Z. We let N denote
the natural numbers. The symbol |[§| at the right hand margin
indicates the end of a proof.

We say that two 2-groups are f-isomorphic if there is a

one-to-one, onto function between them which preserves the group
operation and the lattice operations; i.e. if there exists a
function between them which is both a group and a lattice isomorphism.
We denote f-isomorphism by =,

If Q@ 1s a totally ordered set, we let A(Q) denote the set

of all one-to-one order preserving functions of £ onto itself.



Functional composition in A(Q) is a group operation (which we
write multiplicatively), and the partial order defined by

f < g if and only if wf £ wg for all w e &
is a lattice or?er, with w(f V g) = (wf) V (wg) and w(f A g) =
(wf) A (wg). Under this operation and this relation, A(f) is an
%-group. We denote the group identity by i, and we say that A(Q)

is doubly transitive if for all «,8,y,8 ¢ @ with o < g and 7Y < §,

there exists f € A(R) such that of =y and RBf = §.

If Y is a topological space, we let C(Y) denote the set
of all continuous real-valued functions of Y. Define addition on
C(Y) pointwise, i.e. by

y(f + g) = (yf) + (yg) for all y e Y.
Order C(Y) by
f <g 1if and only if yf < yg for all y e Y.

Then C(Y) is an f%-group with y(f V g) = (yf) V (yg) and

Let {aYI vy ¢ T} be a net in A, a subset of a set Y with

topology U. We say that {aY} converges to a € Y with respect
to U (or U-converges to a) 1if for all U e U with a e U,
there is a B ¢ I' such that whenever o > 8, then a, ¢ u.

Let {AYI y € T} be a filter-subbase. We denote the filter
generated by {AYI y e T} by F({AY! y € T}). For notational
convenience in the proof of Corollary 5.22, we declare that
F(¢) = 4.

We assume that the reader is familiar with the basic properties

of f-groups found in Birkhoff [8, Chapter XIIL], especially those



pox per 3%

described in § XIII.3 and §8 XITI.4, In particular, we will use

. . + -
without comment such observations as |a| =a —-a =aV (-a),

at A (—a)+ =0, a-= at + a, and |a|] A |b] =0 implies
a+b=>b+ a.

The proof that an f-group is a topological group with respect
to the T -topology (to be introduced in Chapter 2) relies on the
following theorem from Husain [36, page 46]:

Theorem A: Let G be a group with a filter-base N(0)
satisfying:

(a) Each H e N(0) 1is symmetric.
(b) For each H e N(0), there is a K ¢ N(0) such that
K+ K < H.
(c) For each H ¢ N(0) and each a e G, there is a
K ¢ N(O) such that a + K - a < H.
Then there exists a unique topology ¥ on G such that, with
respect to X, G is a topclegical group, and FN(0Q)) is

the set of <X-neighborhoods of 0. |8 |

We also use the following result of Husain [36, page 48]:
Theorem B: For a topological group G with group topology U,
the following statements are equivalent:
(a) U 1is Tl.
(b) U is Hausdorff.
(¢) NW = {0}, where W is any filter-base for the

U-neighborhoods of 0. ||
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B. Background

We review here work done on topologising lattices in general
and 2-groups in particular. For views of the roots of the:theory of
2-groups, see [5], [9], and [10], and the references there.

Previous to this dissertation, there have been basically
four methods of topologising various classes of lattices and
lattice~ordered groups: by literally generalising the interval
topology on totally ordered sets; by extrapolating the interval
topology on totally ordered sets; by attempting to relate the
order structure to (topological) convergence; and by considering
filters of subgroups.

The interval topology for a lattice L was introduced by

Frink in [28]. This topology is defined by taking the (lattice) closed
intervals as a subbase for the (topologically) closed sets. Here we

"closed interval" to mean sets of the form (i) {x| x < a}

unders tand
for some a e L, (ii) {xl x > a} for some a ¢ L, (iii) L
itself, or (iv) {x| a < x < b} for some a,b € L. This same
definition is a "closed set" definition of the usual interval
topology on a totally ordered set. The usual definition uses

open intervals as a subbase for the open sets. In the lattice
case, however, the closed set version is preferable because

the '"boundaries" of sets can have more than two points. For
example, in R |X| R, ((0,0), (1,1)) 4dis the unit square without
the points (0,0) and (1,1). Intuitively (i.e. in the usual

topology), the "open" unit square also fails to include the line



segments [(0,1), (1,1)), ((0,0), (0,1)], ((0,0), (1,0)], and
[(1,0), (1,1)). 1In a totally ordered set, these line segments
collapse into the maximum and minimum points of the interval, which
are absent from an "open" interval and present in a "closed"
interval. Abstracting the "open set" definition from a totally
ordered set has proved fruitful, however, as we shall see when we
discuss the open interval topology.

The interval topology defined above has been investigated in
[6] (which relied heavily on Frink's paper), [48] (which proved
most of the results announced in [47]), [2], [13], [46], [44], [62],
[59], [16], [37], [34], and [11].

It is easy to see that a lattice must be Tl in its interval
topology [28]. It was noticed in [6] that the net {(r,—r)] T € R+}
in R le R converges to every element of R IXI R with respect
to the interval topology. Therefore the interval topology on
R |X| R 1is not Hausdorff, and hence by Theorem B, the interval
topology is not a group topology on R [X| R.

Many classes of f-groups have been discovered with the property
that if G 1is an f#-group in the class and if G is Hausdorff
in its interval topology, then G is totally ordered. (See [13],
[62], [16], [37], and [11].) Holland [34] has given an example of
a non-totally ordered f#-group which is a topological lattice and
a topological group (and therefore Hausdorff) in its interval
topology.

In a 1951 address, Frink [29] suggested that a sujtable

generalization of the interval topology would be an ideal topology
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defined as follows: Let P be a partially ordered set. An ideal

of P 1is a subset I of P with the property that if F is a

finite subset of I, then the set of all lbwer bounds of the set

of all upper bounds of F is contained in I. A dual ideal, D, defined
by interchanging "upper" and "lower" in the definition of ideal, is

a filter in the sense of [58, Definition 13.16] if P has a least

element and ¢ # D # P. A (dual) ideal . is completely irreducible if it

ie not the intercection of a ecnllecrt
is not the intersection of a collect

The ideal topology on a partially ordered set P has as a subbase

for the open sets the set of all completely irreducible ideals and
dual ideals. The ideal topology reduces to the usual topology on
R IXI R, the completely irreducible ideals and dual ideals being
the open half planes [29]. With the exception of Ward [59], the
ideal topology has not been further investigated.

In [32], Guillaume defines topologies similar to the ideal
topology as follows: Let P be a partially ordered set. A subset

F of P 1is said to be right-ordered (left-ordered) if for all

xeF, u({x}) € F (#({x}) < F). The open sets of the Td-topology
(Tg-topology) are the right-ordered (left-ordered) sets. A subset

F of P 1is called right-closed (left-closed, dg-closed) if

whenever S 1is a non-empty totally ordered subset of F with
vS (AS, AS and VS) existing in P, then VS (AS, AS

and v S) is an element of F. The closed sets of the right-longitudinal

topology (left-longitudinal topology, longitudinal topology) are

the right-closed (left-closed, dg-closed) subsets of P. Guillaume
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does not consider algebraic structure in addition to the order
structure, and apparently no-one has realized significant theorems
in that direction.

Banaschewski [1] has defined a topology on a partially ordered
group with a base of closed intervals for the filter of neighborhoods
of 0. Let P be a partially ordered group. A set E ¢ P is

called a topological identity if (1) e ¢ E implies e > 0, (ii)

~ ]

for e,e’ € E, thereis a d e E such that d < e,e', (iii) for
e ¢ E, there is a d e E such that d+d < e, (iv) for e ¢ E
and x ¢ P, there is a d e E such that d < x+ e - x, and

(v) AE = 0. The identity topology on P is defined by taking

as a subbase for the neighborhoods of 0 the intervals [-e,e]
for e ¢ E, where E 1is a topological identity of P. Let G
be a finite cardinal product of copies of Z and let E < G+\\{0}.
Then for all e ¢ E, (0,e] is finite. But if E is a topological
identity, then property (iii) implies that for all e ¢ E,
(0,e] contains an infinite descending subset. Hence E 1is not
a topological identity, and therefore G cannot have an identity
topology defined on it.

In [8], the definition of interval topology was modified as
follows: Let L be a lattice. Let C be the set of all intersections
of finite unions of (lattice) closed intervals of L. Here "closed

interval" means only sets of the form [a,b] for some a,b e L

with a < b, A set S is said to be closed in the new interval

topology if C e C implies that SN C e C. (We note that



—

Theorem X.21 of [8] is proven only for the (old) interval topology.)

The new interval topology has the advantage of being the usual
topology on R le R. It is unknown whether an arbitrary f-group
is a topological group in its new interval topology (problem 114
of [8]). The relationship between the new interval topology and
the ideal topology has not been discovered.

Let G be a partially ordered group. The open interval

topology on G Is defined by taking ithe open iniervals as a
subbase for the open sets. Here "open intervals' are taken as
sets of the form (a,b) for a,b e G with a < b. Loy and
Miller [41] have defined a class of partially ordered groups

called tight Riesz groups by requiring that the order on the

group G be directed and that for any elements a,b,c,d € G
with a,b < ¢,d, there exists x ¢ G such that a,b < x < ¢,d.
A non-totally ordered 2-group cannot be a tight Riesz group: if
a,b ¢ G are incomparable, then a A b, a A b < a,b, but there
does not exist an x € G such that aA b<x<a and aaA b

< x < b. However, Wirth [61] and Reilly [52] have investigated
f-groups which permit the existence of a tight Riesz order
"compatible'" with the lattice order. Loy and Miller [41] proved
that the open interval topology on an abelian tight Riesz group
G 1is not discrete and is Hausdorff when G has no pseudozeros

+\ AN
(w € G 1is pseudopositive if w ¢ ¢ but w+ (G \\{0}) c G \\{0};

w € G 1is a pseudozero if both w and -w are pseudopositive.)
In [54] (which is an expanded version of [53]), Rennie defines

the L-topology of a lattice by extrapolating the interval topology

12
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on a totally ordered set as follows: Let L be a lattice. A
base of open sets for the L-topology consists of all sets S
contained in L such that S 1is convex and the intersection
of S with any maximal totally ordered subset of L 1is open
with respect to the interval topology of the totally ordered
subset. A lattice-ordered group is a topoldgical lattice with

respect to the L-topology [54]. Rennie did not consider f-groups

lattices. We will show in a few paragraphs that not every 2-group
is a topological group with respect to its L-topology.

One of Rennie's main concerns was the comparison of the
L-topology with six other topologies. One of these was the interval

topology and the other five were topologies defined by means

of various types of lattice convergence. Let P be a partially

ordered set. A net {XBI B ¢ B} in P 1is said to order-converge
to x £ P 1in case there are nets {asl 8 € B} and {bBl B & B}
in P such that (1) if n <y, then a, ézaY and bn ;:bY,

(2) ag ;:xs ész for all B € B, and (3)

Order-convergence was introduced by Birkhoff in [3] and [4]; see

V = = N
perds = * T geaPp
also Frink [28] and Kantorovich [38]. If L is a lattice, and if a

net {le vy € '} in L order~converges to y € L, then [54]

y V{pl there is a B € I' such that p é:yY for all vy > B},

and

y A {pl there is a B ¢ I' such that p ;:yY for all vy 2 BJ.

We define the order topology on a partially ordered set P by

letting the closed sets be exactly those subsets A of P such

13



that the limit of any order-convergent net in A is itself in A,
Both Birkhoff [6] and Frink [28] incorrectly assumed that convergence
with respect to the order topology was the same as order-convergence.
This led Birkhoff to the conclusions [6] that every partially
ordered set had Hausdorff order topology and that any conditionally
complete f2-group was a topological group in its order topology.
However, Rennie [53,54] gave an example which showed that order-
convergence and convergence with respect to the order topology need
not be the same, and Northam announced in [47] (but did not include
in [48]) an example of a lattice which was not Hausdorff in its
order topology or S L-topology. Floyd and Klee [27] also pointed
out the non-equivalence of the two types of convergence, and in
[26], Floyd gave an example of a conditionally complete vector
lattice in which addition was not continuous in any topology
"compatible' with the order. See also [25].

In particular, the "compatibility" of [26] may be used to
show that for lattice-ordered groups (in fact, vector lattices)
Rennie's L-topology is not in general a group topology. Let P
be a partially ordered set, and let T be a topology for P.

Floyd defined T to be o-compatible with the order on P if

and only if whenever {xl,xz,....} is a sequence in P with
o

X) 2 X, 2 Xq 2 e and {llxi =x¢€P
or
\ =
Xy LX) L Xg S eeen and jE1¥y T X € P,

then the sequence ‘{xi} T-converges to x. He proved that there



exists a conditionally complete vector lattice N in which the
function x -y 1is not T-continuous simultaneously in x and y
for any T, topology T for N which is a-compatible with the
order on N. (N is the lattice of all continuous real-valued
functions on a Stone representation space of the complete Boolean
algebra of all regular open subsets of the unit interval, partially

ordered by inclusion.)

Let 1. be a lattice, We w

-~ Mo & Ao L ea T,

is o-compatible with the order on L: Suppose {xi} is a sequence

in L with
0

X, > 2X,2 +.s. and =x ¢ L,

¥2 = %3
and let S be a basic open set for the L-topology with x € S.

1 i£1%5
By Zorn's Lemma, there exists a maximal totally ordered set C

in L such that {x,xl,xz,x3,....} c C. Since S is a basic open
set for the L-topology, CN S 4is an open set of the interval
topology of C. Clearly x € C N S. Thus there exist a,b € C
such that x ¢ (a,b) € S N C. Suppose that for all i there
exists j > i such that xj ¢ (a,b). Then x

-]

and hence x = /A
i=1"1

1 >2b for all i,
Thus there exists k such that for all i > k,

X, € [x,b) & (a,b) = S.
Therefore {xi} converges to x with respect to the L—t0pology.
The case for increasing sequences follows similarly and thus the
L-topology is a-compatible with the order on L. Any lattice has

T, L-topology [54] and hence by Floyd's theorem stated above, for

X, > b. This contradicts the fact that x e (a,b).

15



vector lattices (and thus f-groups) the L-topology is not in general
a group topology.

Moore [45], Birkhoff [6,7], and Gordon [31] have all studied
relative uniform convergence in vector lattices; but this concept‘
has not been generalized to arbitrary 2-groups. Ward [59] considered
the relations between the interval topology, the ideal topology,
and the order topology, and DeMarr [20,21] classified certain
lattices in which order-convergence and convergence with respect
to the order topology coincide. Birkhoff proved [8, Theorem XIII.26]
that in a conditionally complete f&-group the operations +, V, and
A _are "continuous with respect to order-convergence'. As he noted
later on [8, Theorem XV.14], however, such "continuity" is not
necessarily related to topological continuity.

Rennie [54] mentions two methods of defining topologies based
on order-convergence but different from the order topology. Instead
of using arbitrary nets to define ''closed set', one may restrict
his attemtion to nets with totally ordered domains. Alternately,
one may embed a lattice in one of its completions (see [8], [54])
and consider the topology inherited from the order topology on
the completion. One may also define a new convergence as follows [8]:
Let P be a partially ordered set. A net {xBi 8 ¢ B} star-
converges to x ¢ P if and only if every subnet of '{xB} contains
a subnet which order-converges to x. However, [54] the order
topology on P 1is equivalent to the topology defined similarly

with order-convergence replaced by star-convergence.

16
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The most successful variation on order-convergence as far as
f2-groups are concerned has been a~convergence. We will discuss the
topological ramifications of this idea in Chapter 8. Here we note
merely that the definition is due to Papangelou [49,50], who cites
a theorem of Lowig [40, Thcerem 42], which characterizes Ldwig's
"interelement" of a sequence as Papangelou's "a-limit" of the
sequence. Using a-convergence, one may construct a topology on
is both a topological group and a topological lattice [50], [22],
[43].

Further results dealing with the types of convergence
mentioned above may be found in [23], [14], and [24].

All the topologies mentioned thus far, except the identity
topology, are intrinsic [8] to the ordered set on which they are
defined, i.e. they are defined only in terms of the order (and
perhaps the lattice operations). The other class of topologies
we wish to describe and the topology defined in this dissertation
do not have this property. These topologies are defined on
2-groups and their definitions require group theoretic concepts.

In [57] Smarda defines a topology for an &-group G as
follows: Let F be a filter in the lattice of all convex %-subgroups
of G such that if H ¢ F, then all conjugates of .H are in F.
Taking F as a base for the neighborhood-filter of 0‘ defines a
topology on G with respect to which G 1is both a topological
group and a topological lattice. Topologies constructed in this

manner, however, have the drawback that if an ultrafilter containing

17
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the filter F contains a convex f#-subgroup which is f~isomorphic
to R, then the topology is not Hausdorff [57]. Thus, on finite
cardinal products of R, the usual topology cannot be constructed
in such a fashion.

In this dissertation, we define a topology, which we call
the I-topology, on an arbitrary f&-group G. We prove that, with
respect to the I -topology, G is both a topological group and
a topological lattice (Chapter 2). Chapter 3 contains descriptions
of the ¥ -topology for particular examples, and in Chapfer 4, we
prove that on totally ordered groups the 3I-topology is equivalent
to the usual (interval) topology. We prove that the I-topology on
a cardinal product of %-groups is the product of the T ~topologies
on the factors in Chapter 5, and we investigate the I -topology
on lexico-graphic products. Chapter 6 is devoted to studying
2~groups with Hausdorff T -topologies: we prove that the ¥ -topology
is discrete if and only if G 1is a lexico-sum of lexico-extensions
of the integers, and we derive necessary and sufficient conditions
for the ¥ -topology to be Hausdorff. Chapter 7 contains more examples,
including two of f-groups with indiscrete ¥ -topology. In Chapter 8,
we characterize convergence with respect to the ¥ -topology, and
when G is completely distributive, we investigate the relationship

of the ¥ -tcpology to the topology derived from a-convergence.
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2. DEFINITION OF THE TOPOLOGY AND BASIC THEOREMS

We first establish some notation for the definition of the
topology. Throughout this chapter, unless otherwise specified,
G will denote an arbitrary 2-group.
For g ¢ G+, let
TN ri. r\+' .1 N LI I | ~ - 1 - - PR | ~
I\g) = 1l € U | Llere exists N € L such that n A nh’ = U
and h vh' =g},
. +
See figures I, II, and III. For g e G \\{0}, let
N(oﬁg) = [_g’g] + gl'

See figures IV and V. Let

{h e G+\{0}| T(h) = {0,h}},

b

P

{h € ¥ | there exist h.,h,, ... € ¥ such that
1*7°2

hy=h,h +h  <h, and h eh I}

We note that if h ¢ Dl’ then there exists & € Dl such that
0<f2<2+2<h and he le: let 2 = h2 in the definition
of Dl'

Proposition 2.1: Let h,% € G+\\{0} be such that h < £,

Then the following statements are equivalent:
(i) 2 ¢ hll.
(ii) 21 = hl.
(iii) 21 =2 hl.
Proof: Suppose (i) holds and let k ¢ hl. Then since £ € hll,
2 Alk|] = 0. Hence k¢ 21. This proves (iii).
Suppose (iii) holds. Since 0 <h <, O < |k] A B < |kl A 2

for all k ¢ G. If ke zl, then |k| A 2 =0, and thus k e nl. By



figure I
G = |n|r
1

T((1,1,1))

= {(1,1,1)a (191’0): (190:1): (031:1)9

(1,0,0), (0,1,0), (0,0,1), (0,0,0)}
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figure II1

G = A(R)

xfl = 13x + 12 if x ¢ [-6,-5) xf2 = {2x if x ¢ [0,1)
-1 if x e [-5,-D) %(x +3) if x e [1,3)
X otherwise X otherwise
xf3 = 12x - 3 if x ¢ [3,9) f = fl \Y f2 \Y f3
X otherwise

T(E) = {f, £, vEy, £,V £, £, Vv E;, £, £y, £, i}
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figure IV
G =R |X| R
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(0,3)
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figure V
G = A(R)

xg = {3x + 8
1
B(X + 12)

2x - 4

if x ¢ [-4,—2)
if x € [—2,3)
if x ¢ [4,w)

otherwise
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hypothesis, ht ¢ g¢+. This proves (ii).

Suppose (ii) holds. Since Zl = hl, then le = hll and hence

L e zll = h“-. This proves (i). |B|

Therefore,

Dl = {h e ¢ | there exist h h,, ... € U such that

Lo h.

1’

h=h,h  +h < h,andh

1° "'n+l 1

Let
Dy = {h ¢ G+\\{O} | there exists a convex %-subgroup C € G such
that (i) for all c € C, ¢ < h, and (ii) if
a<t<b for a,-h+b € C, then t € CU (h+C)}.
Lemma 2.2: Let h ¢ G+\\50}. Let C be a convex {-subgroup of G
such that if ¢ € C, then ¢ < h. Then
(a) for all c¢,d ¢ C, htd > c,
(b) ¢ &[-h,h].
Proof: (a) Since c-d ¢ C, then (c-d) Ah = c-d. Thus
cA (hid) = [(c=d) A h]l +d = (c=d) +d = ¢,
and hence h+d * c. If h+d = ¢, h € C, which contradicts the condition
on C. Hence htd >‘c.
(b) Let ¢ € C. Then ¢ < h. Since C is an §-subgroup, -c & C.

Hence -c < h, i.e. -h < c. Thus C € [~h,h]. |2

Proposition 2.3: Dz c 9,

Proof: Let h € Dz, and let C be a convex §-subgroup satisfying
(i) and (ii) of the definition of DZ' Suppose § ,k ¢ G are such that
2 Ak=0and 4 Vk=h. Thenf{ +k=h=%k+ 4. Since h ¢ C and
since 2+ k‘= h, we cannot have both k ¢ C and 3 € C. Suppose g ¢ C.

Then since ¢ € [0,h], we have by (ii) that g € h+C. Thus there is a
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b € C such that ¢ = h + b. Since h = g + k, this implies that

0=k+b, i.e. k € C. Thus by Lemma 2.2(a), & > k. Therefore,
k=% Ak =0, and £ = £ + k = h. If k ¢ C, we have similarly that
k = h, and thus h ¢ Y. |n|

Proposition 2.4: For h ¢ DZ’ there is a unique C satisfying

conditions (i) and (ii) in the definition of DZ'

Proof: Suppose C and C' are two convex %-subgroups of G
satisfying conditions (i) and (ii) in the definition of DZ' Let
d € C'. Then either d € C or d ¢ C. Suppose d ¢ C. Then either
¥ ¢ cord ¢ C; for otherwise, since d 5 d ;:d+ and C is convex,
dec. 1£d ¢¢c, tleeb=a". 1£ ¢t e, let b=-d". Then b ¢ C',
b#¢#C, and 0O <b < h. Since -h + h =0 ¢ C, then by (ii) b € C y (htC).
Since b ¢ C, b ¢ h+C, i.e. -=h + b € C. Since C is an #&-subgroup, thus
-b+ heC. If -b + h eC', then -b ¢ C' since h ¢ C'. But this
contradicts b € C'. Hence -b + h ¢ C'., Since 0 < b < h, 0 < =b+h < h.
Thus -b +h ¢ C, -b+h ¢ C', and 0 < -b+h < h. Then by (ii) applied to
C', -b+h ¢ h+C'. Thus by Lemma 2.2(a), -b+h > k for all k £ C'. By
Lemma 2.2(b), C' S [-h+b,-b+h]. Since C is convex and -b+h € C,
C'S C. But we assumed d ¢ C'\\C. This is a contradiction. Hence

C'S C. Similarly we may show that C €C'. |8

. For h € DZ’ let the unique convex § -subgroup satisfying (i)
and (ii) be denoted by D(h).

We digress for a few paragraphs to connect the set DZ with
some standard ideas in the theory of lattice-ordered groups. We
note that since we do not use the uniqueness of D(h) in the proof
of Proposition 2.7 (let D(h) in the proof be any f-subgroup

satisfying (i) and (ii)), then Proposition 2.4 is a corollary of

i e e e im s



Proposition 2.7.
Conrad [15] makes the following definitions: Let N be a convex

{¢-subgroup of an &-group G. Then G is a lexico-extension of N if

and only if N is a normal subgroup of G, G/N is a totally ordered
group, and each positive element in G\\N exceeds every element in
N. If g € G, then a convex %-subgroup M of G which is maximal with
respect to not containing g is called a value of g. If g € G has
only one value, then g is called special. Clearly, every g # O has
at least one value.

The following proposition is proven in [17].

Proposition 2.5: For g € G\\jO}, the following are equivalent:

(a) G(g) is a lexico-extension of a proper 2-ideal,
(b) g is special in G(g).
If this is the case and if N is the unique value of g in G(g), then

G(g) is a lexico-extension of N. ||

An element a € G is a non-unit if a > 0 and aA b = 0 for some
b e G+\\{0}. The subgroup generated by the non-units of G, denoted
Lex(G), is an #-ideal and is called the lex-kernel of G.

The following proposition is proven in [18].

Proposition 2.6: For g ¢ G+\\{O}, the following are equivalent:

(a) g ¢ Lex(G),

(b) g is special and gl = {0}. |5 |

If G is an %-group and H is a convex %-subgroup of G, we let
L(G,H) denote the partially ordered set of left cosets of H in G.
(L(G,H) is ordered by x+H < y+H if and only if there exists h ¢ H

such that x £y + h.)

26
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Proposition 2.7: An eleﬁent h e DZ if and only if h satisfies
the following three properties:
(a) h > 0,
(b) h is special in G(h),
(c) if N is the unique value of h in G(h), then in L(G(h),N)

[N,h+N] = {N,h+N]}.

We first prove four lemmas.

Lemma 2.8: Let h ¢ D,. Then for all d e D(h), (h+d)l - nl.

Proof: Let k ¢ hl. Then h A |k| = 0. Since d € D(h), then by
Lemma 2.2(a) h > |d| >0, and h + |d] > h+d > 0. Since h > |d]| > 0,
ld| A |k|= 0. Thus (h + |d|) A |k| = 0. Since h + |d| > R + d > 0,
this implies that (h + d) A|k| =0, i.e. k ¢ (h+d)-|-.

Let k € (h+d)l. Then (h,+ d) A |k| = 0. By Lemma 2.2(a)
h+d>]|-d| > 0 and hence |-d| A |k| = 0. Hence (h + d + |-d]) A |k|=0.
Since |-d| > -d, h+d+ |-d] > h+d+ (-d) =h > 0. Thus hA |k| = 0,

i.e. k ¢ hl. |5

Lemma 2.9: Let h ¢ DZ' Let a € G(h). If h A a € D(h), then
a € D(h).

Proof: Let h A a=c € D(h). Then (h - ¢c) A (a - ¢) =0, and
thus a-c ¢ (h-c)l. By Lemma 2.8, a-c ¢ hl, i.e. hA (a~c) = 0.

Since a ¢ G(h), a-c ¢ G(h). Hence a-c = 0, i.e. a = ¢ € D(h). lﬂl

Lemma 2.10: Let h ¢ DZ' Then D(h) is a value of h in G(h).
Proof: Let k € G(h)+\\D(h). Let H be the convex f{-subgroup of
G(h) generated by {k,D(h)}. If kA h e D(h), then by Lemma 2.9
k € D(h). Thus k A h ¢ D(h), and by (i1) kA h = h + ¢ for some ¢ ¢ D(h).

Thus h = k Ah - c. Since 0 < kA h <k and H is convex, then k A h ¢ H.



Since ¢ € D(h) ¢ H, h =%k A h - c e H. Thus D(h) is a value

of h in G(h). | 2|

Lemma 2.11: If h € D2’ then h ¢ Lex(G(h)).
. +\
Proof: Let a be a non-unit of G(h). Suppose b ¢ G(h) \{0}
is such that a A b = 0. Then (hA a) A(h AD) = 0. If h A a ¢ D),

then h Aa € h+D(h). If hA b e D(h), then h Aa>h Ab by

Lemma 2.2(a), and hence hA b 0. Since b e G(h), this implies
Then hA b e htD(h). If D(h) = {0}, then hA a =h=hA b and
hence aA b > h > 0, which contradicts our choice of b. If D(h) # {0},
there is a c ¢ D(h)+\{0}. By Lemma 2.2(a), h Aa > c and
hA b > c¢c. Then
aANb>2tAa)A(hAD)>c>0.

This also contradicts our choice of b. Hence h A a e D(h).

28

Therefore, D(h) contains all the non-units of G(h). Thus Lex(G(h)) < D(h),

and hence h ¢ Lex(G(h)). |XX|

Proof of Proposition 2.7: Suppose h ¢ 02. Clearly h > 0. By
Lemma 2.1}, h ¢ Lex(G(h)). Hence by Lemma 2.6, h is special in
G(h). By Lemma 2,10, D(h) is a value of h. Since h is special, D(h)
is the unique value of h in G(h). In L(G(h),D(h)), suppose that
d+D(h) € [D(h),h+D(h)]. Then for some a e D(h) and some b e h+D(h),
a<d<b. Since b € h+D(h), =h+b € D(h). Hence by (ii) d e D)V
(h+D(h)). Thus d+D(h) € {D(h),h+D(h)}, and hence [D(h),h+D(h)] =
{D(h),h+D(h) }.

Suppose h satisfies (a), (b), and (c) of the proposition. By

Proposition 2.5, G(h) is a lexico-extension of the f£-ideal N which

EITRN-N SN



is the unique value of h in G(h). Since h € G(h)ﬁ\\N, by definition
of a lexico-extension h > n for all n e N. Suppose that
a<t<b for a, -h+b ¢ N. Then a+N = N and b+N = h+N. We have

that a+N < t+N < b+N and hence N < t+N

A

h+N. By (c), t+N e {N,h+N},

i.e. t ¢ N U(h+N). Thus, h € DZ' |5

This ends our digression; we continue with the development of
the topology. The following example shows that Dl n DZ need not be
Z. Ciearly (0,1) e Dz with D((0,1)) = R X {0}.

Let h1 = (0,1). For n > 1, let hn = (l/2n,0). Then clearly

h.,h <h_, and nl=0-n_1
= n n

. €%, h=(0,1), h_ +h ol

1’ 2’
Hence (0,1) ¢ Dl'

nt+1

Let D* = Dl UD,. By Proposition 2.3, D*S U, If D* # ¢4, let

2"

N (0) = {N(O,g)|geDl}
N, (0) = {D(h)+hl|h902}
Ny(0) = NlrEO) U N, (0)
N@) = {iEHHilHi€N3(O) for all i = 1,2, ...,n}.

If Dx = ¢, let
N() = {G}.
If G =R |X| R |[X| R, then D, = ¢ and

g =D, = D* = {(a,0,0)[a>0} U {(0,b,0)[b>0} Y {(0,0,¢)|e>0},

and if ¢ (a,0,0) for a>0, then
N(0,g) = [~a,a] X R X R.
If g e {(0,b,0)|b>0} and h ¢ {(0,0,c)|c>0}, then

R X [-b,b] X R

N(0,g)

N(0,h) = R X R X [-c,c].

The elements of N(0), therefore, have the form

29
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[-a,a] X R X R, R X [-b,b] X R, RXR X [-c,c],

[-a,a] X [-b,b] X R-= [(-a,-b),(a,b)] X R

R X [-b,b] X [-c,c] = R X [(-b,~c), (b,c)]
[-a,a] X R X [-c,c], or

[~-a,a] X [-b,b] X [~c,c] = [(~a,-b,~-c), (a,b,c)]

where a,b,c > 0. See figures VI and VII.

If G

z |x| z,

]

9 {(a,0)|a>0}y {(0,b)|b>0};

¥2 D,=0%={(1,0,0,1)}; 0 =4
Thus, N;(0) = 4, and
| N,(0) = {z x {0}, {0} X z}.

Hence

N(@) = {z x {0}, {0} X z, {0} X {0} = {(0,0)}}.

If ¢ = (z |X| B) X 2,
9 = {(a,0,0)]a>0} y {(0,b,0)|b>0}y {(a,b,c)|c>0},
0 = {(0,b,0)|b>0},
D, = {(1,0,0)} U {(a,b,1)]|acz, beR};

U =2 D%, but U # D*.
The elements of Nl (0) have the form
N(0,(0,b,0)) = Z X [-b,b] X {0}
for b > 0, and
N,(0) = {{0} X R X {0}, z X R X {0}}.
Hence the elements of N(0) have the form
z X [-b,b] X {0}, {0} X R X {0}, Zz X R X {0},
{0} x [-b,b] X {0} = [(0,-b,0),(0,b,0)]

for b > 0. See figure VIII.
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figure VI 31

¢ = |n|R
1

[-a,a] X R X [-¢,c]

OF
A

a,c >0

figure VII

3
¢ = |n|r
1

[-a’_b9"c] X [a,b,c]

a,b,c > 0




figure VITI
G=(z|x| R) X2z

// /(?b7)7 ////.{4/[ (0,0,0)
AN E ///
IV

v
“

Z X [-b,b] X {0} Z X R X {0} {0} X R X {0}

b>0
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The main lemma in the construction of the topology for G is

the following.
Lemma 2.12: N(0) is a filter-base satisfying:
(a) Each H ¢ N(0) is symmetric.
(b) For each H € N(0), there is a K ¢ N(0) such that K + K € H.
(c) For each H € N(0) and each a ¢ G, there is a K ¢ N(0) such

that a4+ X - a cH.

For the proof of lLemma 2.12, we need the followin
Lemma 2.13: Let g € G+\{0}. Let a ¢ [-g,g] and Db ¢ gJ-.
(a) If a+beG, then an b= 0.
(b) a+b=> + a. "
Proof: (a) Let h ¢ [-g,g] ﬂgl. Since h ¢ [-g,g]l, then
-h ¢ [-g,g] and hence |h| = (h) V(-h) = (g Ah) V (g A (-h))
=g A((h)V (-h)) = g A |h|. Since h e gJ-, In] = |h| Ag=0.
Thus h = 0, and hence [-g,g] N gl- = {0}.
Since a + b >0, a > -b and hence at > (—b)+ > 0. By assumption
b e gJ- and hence (—b)+ € gJ'. Since a ¢ [-g,g], a+ =a V0 e [-g,2].
Thus, (-—b)+ e [-g,glNn gJ-. By the above, (—b)+ =0, i.e. b > 0. Similarly,
a > 0. Thus, a oAb > 0, and hence a Ab ¢ [-g,g]N gJ-. Therefore, a A b=0.

(b) Since a e [-g,g], lal =a V(-a) £ g Vg = g. Thus, since

b|] Ag=0, la] A|b] = 0. Hence a + b =1 + a. | %]

Lemma 2.l4: For all a,k ¢ G,
(a) -a + |k| +a=|-a+k+al,

(b)a+(-a+k+a)J-—-a=kJ-.




3y

Proof:

(a) —a+ |k| +a=-a+ [ky(-k)] + a

(r-a+k+a)y (cka-k+ a)

(r-a+k+ay (-(ca+ k + a))

= l—a + k + al.

(b) kJ- {h| |h| A |x]

0}

{h| (-a + |n| + a) o (-a + |k| + a) = 0}

{hl I—a + h + al Al—a + k + a| = 0} (by (a))

{h -a+h+aec (ca+k+ a)l}

a+ (-a+k + a)l - a lﬂl

Lemma 2.15: For % ¢ G+\\{0} and a e G, k e T(2) if and only
if ~a+k+aeT(-a+ 2+ a). Therefore, ge U 1if and only if
-at+g+acd.

Proof: Suppose k e T(2) and let k; € G be such that k Ao k' =0

and k v k' = &, Then

(r-a+k+a) A(ra+k'"+a)=-a+ (kA k') + a=0,

(ra+k+a) V(~a+k'+a)=-a+ (kV k') + a

-a+ 2 + a.
Thus -a+ k+ ae T(-a+ % +a). Similarly, if -a+ k + a € T(~a + & +a),
then k ¢ TQR).

let ge 8 and let h=-a+ g+ a. If 2 ¢ T(hf\{o}, then
a+%-ac T(g)\\{O} by the above. Since ge % and & > O,
a+% -a=gand thus % = h. Therefore, h ¢ %. Similarly, if

~-a+g+ace Y then ge U. \ | %]

Lemma 2.16: Let h E'DZ and a € G. Then =-a+h+ ace¢ DZ

and -a + D(h) + a = D(-a + h + a).

Proof: Let g -a+h+aand L =-a+ D) +a. If b e L,




then b = -a + b' + a for some b' € D(h). Thus b = -a + b' + a <
-a+h+a= Q. Suppose x <t <y for x, -2 +y ¢ L. Then
x=-a+x"+aand -4+y=-a+y"' +a for x', y' € D(h). Thus

~a+x'+a<t<(-a+h+a)+ (~a+7y'+a).
Hence

x' <a+t-a<h+y'.
Thus, since h € DZ and x', y' € D(h), a+t - ae D(h) y (htD(h)).
Hence

te (ka+Dh) +a) U((-a+h+a)+ (-~a+ D) + a))

=L U@Q@+1L).

Since D(h) is a convex g-subgroup and since L is a conjugate of

D(h), L is a convex g-subgroup. Therefore, & ¢ DZ and D(2) = L. |H|

Proof of Lemma 2.12: If D* = g, then N(0) = {G}, and clearly

the lemma holds for N(0).

For the remainder of the proof we assume that D* # ¢. For all
g € G+\\{0}, 0 ¢ gl c [-g,g] + gl. Hence for all H e N(O), H # 8.
By definition, N(0) is closed under finite intersections. Thus N(0)
is a filter-base.

(a) If H ¢ Nl(O), then H = N(0,g) for some g ¢ Dl' If
p € N(O,g), then p = Py + P, where Py € [-g,2] and P, € gl. By
Lemma 2.13(b) p = Py + Py = Py + Py Thus =-p = “Py ~ Py Clearly
“Py € gl- Since -g <p; < g, then g 2 -p; 2 -g. Thus -p; € [-8,8]
and hence =-p ¢ N(O,g). Therefore H is symmetric.

If He NZ(O)’ then H = D(h) + hl for some h € DZ' Since D(h) ¢
[-h,h], we have by Lemma 2.13(b) that for all p e D(h) + hl there
exist Py € D(h) and P, € hl such that p = Py + Py = Py + Py Thus

P = -P; - Py Clearly “P; € D(h) and “p,y € hl. Therefore

35
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-p € D(h) + hl and thus H is symmetric.
Therefore, for all H ¢ N3(0), H is symmetric, and hence for
all H e N(0O), H is symmetric.

(b) If L ¢ N, (0), then L = N(0O,g) for some g ¢ D.. Since g ¢ D
1 1

there is an h ¢ Dl such that h+ h < g and hi o gl. Let L* = N(O,h).
Since h € Dl’ L* ¢ Nl(O). If pe L*+ L* then p=a+b+c+4d
where a,c ¢ [-h,h] and b,d ¢ hl. By Lemma 2.13(b), p = (a+c) +
(b + d). Since hl g;gl, bP+4de gl,‘and since a,c ¢ [-h,h],
a+ c e [-h-h,h+h] < [~g,g]. Thus p € L and therefore L* + L* ¢ L.

If Le NZ(O)’ then L = D(h) + hl for some h € Dz. Let L* = L, i
If pelL*+ L% then p=a+b+c+d for a,c € D(h) and ;
b,d € hl. Since D(h) ¢ [-h,h], by Lemma 2.13(b) p = (a + c) + (b + d). |
Clearly a + c € D(h) and b + d ¢ hl. Thus p ¢ L, and therefore

L* + L*¥c L. (Along with (a), this shows that L is in fact a

subgroup.)
n n
. _ = *
If H e N(O), then H ighLi for L; € N3(0). Let K.n inLi .
= *
Then K € N(0O). If 2 e K+ K, £ 21 + 12 for 21,22 3 inLi .
Since 21,22 € Li* for all i = 1,2, ...,n, we have by the above
that £ + %, e L.* + L.* €L, for all i = 1,2, ...,n. Thus 2 ¢ H.
1 2 i i i
Therefore K + K SH.
(c) Let a e G.
If He Nl(O), then H = N(0,g) for g ¢ Dl' Let h=-a+ g+ a.
Since g € Dl’ there are 81:89s -+ € Y such that g = gys

+ ! l
L i -a + +
B+l 8o+l < 8> and 8ol S 8 - Consider -a g, t+a

-a + 8, + a, ... . By definition, -a + 81 + a = h. For any n

we have the following: By Lemma 2.15, -a + By + a ¢y . Since



+a) + (ra+g

1

Bl 8, @ + En+l
Lemma 2.14(b) (-a + 841 * a)rtc (-a + g, + a)l. Thus h ¢ Dl'

+a) < -a+ g, t a

gn+l + B+l é=gn’ nTl

Since +a c-a+ gn-L + a. Hence by

Let H2 = N(0O,h). Then H e Nl(O). Let p eca+ H® - a. Then

p=a+h +h, -a for hl e [-h,h] and h, ¢ hl. Since h, e [-h,h]

2 1
-‘a¢ [-g,g]. By Lemma 2.14(b)

1 2
-a+ g+ a, then a+h

i

and h 1

gl =a + hl - a. Since h2 € hl, a + h2 - ac¢ gl. Therefore

p=(a+ hy - a) + (a + h,

If He Ny(0), then H

a) ¢ H. Hence a + H® - a cH.

D(h) + hl for h ¢ DZ' Let H® =
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-a+ H+ a. Then H2 = (-a + D(h) + a) + (-a + hl + a). By Lemma 2.14(b)

-a + hl +a=(-a+h+ a)l. By Lemma 2.16 ~-a + h+ a ¢ DZ and

-a + D(h) + a = D(-a + h + a). Hence 1 = D(-a+h+a)+ (-a+h + a)l

e N,(0). Clearly a + H® - a = H.
2 n n

a
Let H e N(O0). Thenn H = ingi for H; € N3(0). Let K= fllHi'

Then K ¢ N(0). Since iglﬂi < Hi for all i = 1,2,...,n,

n n n

- a= n.yg2 - c a _ n = |
a+K-a=a+ 0H -acN(a+H -a)c AH =H 5]

For g ¢ G\{0}, let
N(g) = {g+i|HeN(0)}.
Let
T = {W< G| for all =xeW, WeF(N(x))}.

Theorem 2.17: The 2-group G is a topological group with respect

to the topology T.
Proof: The theorem follows immediately from Lemma 2,12 and

Theorem A. |H|

We call < the g —topology on G.
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We prove that G 1is a topolcgical lattice with respect to its
I —-topology by establishing a criterion for an %-group with a
topology to be a topclogical lattice.

Lemma 2.18: Let G be an g-group, and let U S G. If U is

a convex sublattice of G, then for r,s £ G

(a) (r+U) A (st+U) (r A s)+U,

]

(b) (xt+U) V (st) (r V s)+U.
Proof: (a) Let u ¢ U. Then
(rAs)+u=(r+u) A(s+u)e (r+tU) A (st+U).
Thus ((r A s)+U) S (r+U) A (s+U).

Let u,w ¢ U. Then

(r+ (WAwW) A (s+ (up W)

A
~
H
+

u) A (s +w)

(r+ (uvw) A(s+ (uv w).

Hence

A
o]
<
=

uAwz=(rA s)+ (r+u) A(s+w) <
a convex sublattice of G, this implics that
-(rAs)+ (r+u) A(s+w)elU, i.e.
(r+u) A(s+w) e (rA s)tU.
Thus (r+U) A (s+U) < (r A s)+U. Therefore (a) holds.

Similarly (b) holds. |5

(NB: Lemma 2.18 says that the partially ordered set of left

cosets of a convex f-subgroup of G is a lattice.)

Let L be an f%-group and let U be a collection of subsets of
L. Let
Yy = {w e Ll for all x ¢ W, there exists U ¢ U such that

x + Ug Wi,
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Lemma 2.19: If U is a filter-base, then V(U) is a topology

on L.
Proof: Let {Wa] ae At g V). Let x ¢ agAWa' Then x ¢ Wa
for some o £ A. Since Wa e V(U), there exists U e U such that

. ,wn} Sy,

[ c
x+ U Wa JéAWaA Thus a%hWa e V(). Let {Wl,.

and suppose X € iglwi' Then x e W, for all i =1,...,n. Since
Wi e VW(U) for all i, there exists Ui g I for all i such that
n
x+ U, €W,. Since x + _[]
i i i=1

n c
g1V S i U S0

U, € x+ U, for all i,
i i
x +

n
Since U is a filter-base, there exists U e U such that U < {llui

Hence
n n
c n s N .
x+ U x + i=1Ui i=1wi

n
Therefore iglwi e V(). Clearly ¢ ¢ V(U). Since U is a filter-
base, U# ¢ and hence G ¢ V(U). Thus V(U) 1is a topology

on L. |B|

Proposition 2.20: Let G be an £-group and let U be a

collection of subsets satisfying:

(a) U is a filter-base.

(b) Each U e U 1is a convex sublattice of G.

(c) If U ¢ U, then there is a V ¢ V(U) such that

0eVe&U.
Then G 1is a topological lattice with respect to the topology V(U).
Proof: By (a) and Lemma 2.19 V(U) is a topology for G. Let

W e V() and suppose r,s € G are such that r A s ¢ W. Since

W e V(U), there exists U e U such that (rAs) + U SW. By (c)



there exists V e V(l) such that 0 e VS U, Let W(r) =r + V
and W(s) = s+ V. Since 0 ¢V, r e W(r) and s e W(s). By (b)
and Lemma 2.18(a)
W) AWB) c(xr+U)A (s+U)=(rprs8)+UcW

If x e W(r), then -r + x ¢V and since V e V(l), there is a
Uel such that -r+x+US V., Thus x+ US r + V. Hence
W(r) e V(). similarly W(s) e V(U).

Similarly, if W e V(U) and r,s € G are such that r Vs € W,
then we may construct sets W(r),W(s) € V(U) such that r e W(r),
s € W(s), and W(r) v W(s) ¢ W.

Therefore G 1is a topological lattice with respect to the

topology V(). |2

Using the criterion established in Proposition 2.20, we now
prove that an f-group is a topological lattice with respect to
its g -topology.

Let G be an 2-group and suppose that there is a topology on
G. For all subsets A of G, the interior of A, denoted Int(A),
is the union of all the open sets contained in A.

Let G be an %-group and let ¥ be its I ~topology. In
proving the following proposition, we use only the definition of
N(0), and of T in terms of N(0), and property (b) of Lemma 2.12.

Proposition 2.21: For all A <G,

Int(A) = {r ¢ Gl there exists H € N(0) such that r + HS A}.

Proof: Let S = {r e G] there exists H ¢ N(0) such that
r+ HC A}.. Since 0 e H for all He N(O), SSA. Let re S

and let H e N(0O) be such that r + H SA. Let H* ¢ N(0) be

Lo



LS}
such that H* + H* < H. Then for all h e H%,

r+h+HBcr+ H*+ H*C r + Hg A.
Hence r+h e S, and thus r + HS S. Thus S ¢ ¥, and hence
S €Int(A). If s e Int(A), then there is an H € N(0) such that

s + H& Int(A) €A, Thus s € S. Therefore S

Int (A). | %]

Corollary 2.22: For all H e N(0), O e Int(H), and consequently

Int(H) # 6.

- -~ o - - 11 2,8 - — ) ]
Prooi: For ail H e N(U), U+ H = H. [E]

Lemma 2.23: Let 0 ¢ AS B &G, Suppose A 1is a convex
sublattice of G. Then A + BJ- is a convex sublattice of G.

In particular, each H ¢ N(0) is a convex sublattice of G.

+ [y+
21+ 22 for lleA,lzg(B).

Since A € B, AJ-Q_ BJ-, and hence 21 A 22 = 0. Since A 1is convex,

Proof: Suppose 0 <y

A

|
Y AL € AT Similarly y A%, € (B-L)+. Further
YA AGALY)=yA G A L) =0.

Hence

AR+ GAL=GALY GA L)

_ + | :
Thus y = ¥y + Yy where ¥, € A, ¥y € (B%)'. Similarly, if

y £0 for 21 e A, 22 £ (BJ')_, then y = y1 ty, for

©
+
©
in

¥y € A, Yy € (BJ')—.

let y e G be such that p <y <gq for p,q e A+ BJ'. Then

flA

p=at+b,gq=c+d for a,ceA,b,deBJ-,and

A +b 2p £y 20<y <q cc +d.

fia

Since 0O,a,c ¢ A and A is a sublattice, a ¢ A and c+ e A .
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. - |\- + [+
Similarly b € (BX) and d € (BL) . Therefore

y+ =u-+v for u e A* and Vv ¢ (Bl)+,
y =x+w for x € A and we (Bl)—.

By Lemma 2.13(b) y=u+v+x+w= (u+x)+ (v+w). Clearly
v+we Bl. Since x £ 0 <u, x<u+x2<u and hence, since A
is convex and x,u € A, u + x € A. Therefore y e A+ Bl and hence
A+ Bl is convex.
We note that for a,b,c,d ¢ G,
(anc)+ (ban d) < (@a+b) A(c+d)

<(a+b) V{(c+d)<(@aVve)+ (b vd).
Thus, since A and Bl are convex sublattices of G, then A + Bl
is a sublattice of G.

If H ¢ Nl(O), then H = N(0,g) for g e Dl' Let A = [-g,g] = B.
Then 0 ¢ A S B. Clearly A 1is a convex sublattice of G. Clearly
Bl = gl. Thus H = [-g,g] + gi is a convex sublattice of G.

If H ¢ N2(0), then H = D() + hl for h ¢ 02. Let A = D(h)
and B = [-h,h]. Then 0 ¢ AS B, and A is a convex sublattice.
Since B1-= gl, H is a convex sublattice of G.

If He NO), then H = ialHi for H; € N3(0), or H = G. Since
each Hi is a convex sublattice of G, H is a convex sublattice of

G. Clearly G 1is a convex sublattice of itself. IEI

Theorem 2.24: An g-group G 1is a topological lattice with

respect to its ¥ -topology.
Proof: By Lemma 2.12 N(0) is a filter-base. By Lemma 2.23

each H ¢ N(0) 1is a convex sublattice of G. By Corollary 2.22, for



each H e N(0), O e Int(H) € H. If ¥ 1is the ¥ -topology on
G, then Int(H)eZ¥ . Clearly ¥ = V(N(0)). Therefore by Proposition

2.20, G 1is a topological lattice with respect to I . Inl

In Chapter 6 we will investigate %-groups with Hausdorff
¥ -topology in some detail. Here we wish to use Theorems 2.17
and 2.24 to discover when (lattice) closed intervals and the

elements of N(O) are (¥ -topologically) closed. It turns out

that the key property is that the I~-topology be Hausdorff.
We use the following theorems from topology ([58, page 75],
[58, page 74], and [58, page 96] respectively):

Proposition 2.25: A function f from a topological space

W with topology U to a topological space Y with topology
V is continuous if and only if for every net {XB] B € B} in
W converging to x € W, the net >{x8f| B € B} in Y converges

to xf € Y. |H|

Proposition 2.26: Let Y be a topological space with topology

V and let A Y. Then A is closed with respect to V if and
only if whenever {xBl B € B} is a net in A which converges to

x €Y, then x ¢ A, Iﬂl

Proposition 2.27: A topological space has Hausdorff topology

if and only if all nets in the space which have limits have unique

limits. x|

Our method is to prove the desired result in general and then

derive the result on the ¥ -topology as a corollary.

L3
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Let L be a lattice with topology V with respect to
which L 1is a topological lattice. Recall (Chapter 1) that the
interval topology on L takes the (lattice) closed intervals
as a subbase for the closed sets, where the (lattice) closed

intervals are the sets of the form f{a,b], {x ¢ L| x < al,

fia

{xeLl| x>a}l, and L itself for a,b ¢ L with a <b. Let

J be the interval topology on L.

Proof: Since V is a topology, L 1is closed with respect to

V. Let a¢ L and consider [a,»). Let {x8| 8 ¢ B} be a net
in [a,») V-converging to x € L. Since L 1is a topological
lattice with respect to V, the function taking an element £ ¢ L
to x v ¢ 1is continuous. Thus by Proposition 2.25, {xv XB}
converges to X V x = x, Clearly x < x V xB for all B ¢ B.
Suppose that there exists 2z ¢ L such that x <z < x Vx, for

B

all B ¢ B. Let {ZB} be a net in L defined by zB = z for

all g ¢ B. C(Clearly {ZB} converges to 2z with respect to V.
Since L 1is a topological lattice with respect to V, we must
have that {(ZB) vV (xV XB)} converges to z V X = z, But

z VXVX =2z XV X =X VX for all ¢ B. Thus X X

8 g = 2V 8 : B tx v %)
converges to z. Since V is Hausdorff, by Proposition 2.27

z = x. Therefore AB(x V x ) exists in L and equals x.

Be B

But xB > a for all B ¢ B and thus x V XB > a for all 8 ¢ B.
Hence x = gAB(x V XB) > a, i.e. x ¢ [a,»). Therefore by

e 2
Proposition 2.26, [a,») 1is closed with respect to V. Similarly,

(-»,a] 1is closed with respect to V. Since V 1is a topology,
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[a,b] = (-»,b] N [a,») 1is closed with respect to V. Therefore

Je V. |5]

Let G be an f2-group with a topology U with respect to
which G 1is both a topological group and a topological lattice.
The group structure is enough to give us the converse of
Proposition 2.28.

Proposition 2.29: J < U if and only if U is Hausdorff.

Proof: If U is Hausdorff, then by Proposition 2.28 J c U,
since G 1is a topological lattice with respect to U.

Conversely, suppose that J < U. As we noted in Chapter 1,
J dis T

Thus since J €U, U is T Then by Theorem B,

1° 1

since U 1is a group topology for G, U is Hausdorff. |2 |
Applying Proposition 2.29 to the ¥ -topology, we have the

following result.

Corollary 2.30: Let G be an 2-group with ¥ -topology .

Then the sets [a,b], {x ¢ Gl x >a}, and {x e G] x < al are
closed with respect to ¥ for all a,b ¢ G with a <b if
and only if T 1is Hausdorff.

Proof: By Theorems 2.17 and 2.24, I 1is a group and lattice

topology for G. IRI

We investigate the elements of N(0) with respect to ¥ -closure
by first considering Nl(O) and NZ(O). The case for the elements
of NZ(O) is straightforward, and we can use it to get a theorem
analagous tovCorollary 2.30 (in one direction only) for the sets

D(h) where h ¢ DZ'
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Proposition 2.31: Let G be an f-group with T-topology .

Let h € DZ' Then D(h) + hl is both open and closed with
respect to <.
Proof: In the proof of Lemma 2.12(b) we proved that D(h) + hl
is a subgroup of G. Thus if d ¢ D(h) + hl, then
d + D(h) + hl S D(h) + hl.
Hence by Proposition 2.21, D(h) + hl is open with respect to I .
Therefore by [36, p

is closed with respect to < . [EI

Proposition 2.32: If G 1is an %-group with Hausdorff

¥ -topology ¥, then for all h e 92, D(h) is closed with
respect to <, '

Proof: Clearly D(h) & D(h) + hl. By Lemma 2.2(b), D(h) < [-h,h],
and hence D(h) <« (D(h) + hl)|ﬁ [-h,h}.

Conversely, let d € (D(h) + hl) N [-h,h]l. By Lemmas 2.12(a)
and 2.23, D(h) + hl is a symmetric sublattice of G. Since clearly
[-h,h] 1is a symmetric sublattice of G, this implies that
(D(h) + hl) N [-h,h] is a symmetric sublattice of G. Therefore

|d| = d v(-d) ¢ (D(h) + hJ-) N [-h,h].
Since |d| e D(h) + h-l-, by Lemma 2.13 |d| =a+b=avb for
ace D(h)+ and b ¢ (hl)+. Since |d| ¢ [-h,h], we have that
fd] = |dl Ah=(avb)Ah=(aAah)V (bAb)
= (ap h)vO0O=apah-=a.
Hence |d| ¢ D(h). Since D(h) is a convex ¢-subgroup of G and
since -Id]‘é:d é=|d|, this implies that d e D(h). Therefore

D(h) 2 (D(h) + hl)fW [-h,h] and hence D(h) (D(h) + hl) N [-h,h].
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Since ¥ is Hausdorff, by Proposition 2.30 [-h,h] is
closed with respect to T, and by Proﬂosition 2.31 D(h) + hl
is closed with respect to ¥ ., Therefore, since D(h) =

(D(h) + hl) N [-h,h], D(h) is closed with respect to I. [ﬂl

Example 7.11 shows that in general the converse of Proposition 2.32
fails to hold.

We now turn our attention to the elements of Nl(O). As in the
case of intervals, we first prove a general theorem and get the
result for the I-~topology as a corollary.

Proposition 2.33: Let G be an 2-group with group and lattice

topology U. Let g € G+ and let 0 ¢ A € [-g,g]. Suppose that
A 1s a convex symmetric sublattice of G. If U is Hausdorff and
if A is closed with respect to U, then A + gl is closed
with respect to U.

Proof: Let {XB] B € B} be a net in A + gl converging (with
respect to U) to f € G. Since A is a symmetric sublattice of

G, Ix = (xB) \ (_XB) e A+ gl for all B ¢ B (2.13(b) and 2.23). Thus

|

B| = aB + bB for aB £ A+ and b8 £ (gl)+. Since U is

a group and lattice topology for G, by Proposition 2.25 {|x8|}

|x

converges to |f|. Hence {aB} = {lxsl A g} converges to

l£f| A g. Since {aB} S A and A is closed, by Proposition 2.26

|£] A g e A. Let d=-(|f] A g) + |[f|. Then {bB} = {—a8 + IXBI}

converges to d, and thus '{bB A g} converges to d A g. Let
0, =0 for all B ¢ B; then {08} converges to 0. Since U

B
is Hausdorff and since bB Ag = OB for all B8 ¢ B, by
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Proposition 2.27 d Ag =0, i.e. d ¢ gl. Therefore
€] = [l A g+ dea+ gl
Since A 1is a convex sublattice of G containing O, by Lemma 2,23
A+ gl is a convex sublattice of G. Since A is symmetric,
as in the proof of Lemma 2.12(a) A + gl is symmetric. Hence
-] e A+ gl, and since -|f] < f < |f], feA+ gl. Therefore

by Proposition 2.26, A + gl is closed with respect to U. ||

Corollary 2.34: Let G be an %-group with ¥ -topology X .

If < is Hausdorff, then every H ¢ Nl(O) is closed with respect

to <,
Proof: Let ¥ = U and [-g,g] = A in Proposition 2.33 above,
and apply Corollary 2.30, |%|

Proposition 2.35: Let G be an %-group with ¥ -topology .

If ¥ is Hausdorff, then every H ¢ N(0) is closed with respect
to I,

Proof: Clearly G is closed. If H e N(0)\{G}, then H is
a finite intersection of elements of Nl(O) U N2(0). By
Proposition 2.31 and Corollary 2.34, the elements of Nl(O) U N2(0)

are closed. Thus H 1is closed with respect to I . [Hl

Example 7.11 shows that in general the converse of

Proposition 2.35 fails to hold.



3. SOME EXAMPLES

This chapter is devoted to investigating in some detail two

examples of f-groups and their I -topologies. We do not include the

most obvious examples, cardinal products of the real

imply that an arbitrary cardinal product of the real
its T -topology the usual topology (i.e. the product

topologies on the factors).

numbers, because

numbers has for

of the interval

Example 3.1: The first example we consider is A(R). Intuitively,

the elements of U in A(R) have the form of the functions in

figures IX and X; that is, they have only one '"bump'. We can make

this idea more precise in the general case as follows.

L9

Let Q be a totally ordered set. Let £, @ be the completion of Q

and the conditional completion of Q, respectively, as defined in

Chapter 1. In [35] Holland proves that the map from

A(R) to A(R)

which takes g e A(Q) to the element g e A(R) defined by

ag =V {Bg] BeQ, B <al

for o € Q 1is an f-isomorphism. Clearly ng = g. For f e A(Q), let

S(£) = {n e @ nf # n}

denote the support of f.

The general case of the comment above is then the following

proposition.



figure IX

G = A(R)
xf =x+ 3
xg = {2x + 3 if x ¢ [-3,0)
%x + 3 if x e [0,4)
X otherwise

A §

50



figure X
G = A(R)
xh = %x + 2
X
X = 12x + 4
X

if x e (~=,4]

otherwise
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if x ¢ [4,)

otherwise
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Proposition 3.2: Let Q be a totally ordered set. Then for the

f~-group A(R), f e ¥ if and only if f ¢ A(Q)+\\{i} and there

exist o,B € 2 such that S(f) = (a,B).

We first note the following lemma, whose proof is straightforward.
+ - . » -
Lemma 3.3: Let f ¢ A(Q) . Let a,B ¢ Q\\S(f). Let fl’ f2 be
functions from § to Q defined by
wEy = {o  1f we (o,B)
\(wf otherwise

wf, = {wf if w e (2,B)

W otherwise.

+
Then f,,f, ¢ AQ) . _ | 5|

Proof of Proposition 3.2: Suppose f ¢U. Clearly f ¢ A(Q)+\\{i}.

Let n(f) =VsS(E) and u(f) = AS(E). Clearly n(f),u(f) ¢ 9,
and clearly n(E)E = n(f) and u(f)f = u(f). Therefore, for all
a e 5\\(u(f),n(f)), of = a. Suppose there exists a e () ,n())

such that af = a. Let f f be functions from  to £ defined

1’ "2
by
wfy = [ if w>a
wa otherwise
wf, = [wf  if w > o
LW otherwise.

By Lemma 3.3, fl,f2 £ A(Q)+. We will show that fl >i. If
[u¢),a] = {u(f),a}, then u(f) ;za by definition of u(f). This
contradicts our choice of & and thus (u(f),a) # #. Hence

((£),a) N @ # §. Suppose that for all vy e (u(f),a) N 2, vf = v.
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Then for all ; € (p(f),a), ;f = ;, and hence a < u(f). This

contradicts our choice of o and thus there exists Y € (p(f),a) na
such that yf # y. Hence Yfl # v and therefore fl > i, Similarly

we may show that f2 > i. Clearly fl A f2 =1 and fl \ f2 = f.

This contradicts the fact that f €% . Therefore, for all
a e (u(f),n(£)), of #a, i.e. S(E) = (u(£),n(f).

Conversely, suppose that f > i and that there exist &,E € §
such that S(f) = (a,B). Let £,%' € A(R) be such that 2 A &' =1
and 2V &' = f. Then clearly S(E)LJ S(ET) c S(f). Suppose that
ve S NsSGENH. 1f £ = G(E)_l \% G(ET)_l, then E < v. Clearly
therc exists « € [E,u) N Q. But then

k(ALY = (k) A (') 2 BR) A (BZT) = v > k.
This contradicts our choice of the pair £2,%'; thus S(E) N S(ET) = g.
Suppose % # i and &' # i. Then there exist y € S(2) and
§ ¢ S(27). Without loss of generality, we may assume that y < 8.
We have v,8 € S(2) U s(&") < S(f), and thus, since S(f) = (a,8),
,8) < s@). Following [33], we let

I(v,2) = {7 ¢ §| there exist integers m, n such that

Y2 < T < ¥t

Clearly I(;,E) is convex and since ;E > ;, T2 > 1 for all

TeI(R,2). Since & ¢ S(X') and SQ@) NSQ@™) =4, 3§ ¢ s).

Thus 6 is an upper bound for I(y,%2) and hence v I(y,2) ¢ Q.
Let o =VI(Y,R) ¢ (¥,8). Clearly p = p. Suppose that YA 3
Then E(ET)—I <p<pl'y since &' > i. Let o =7y V (S(ET)—l)

Then o € I(;,E) S s@2). However, since o (2T §=5 < pt',

g < pd' ;:52‘2'. Hence o € S(2'). This contradicts the fact that
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S() N S(27) = 4. Therefore p&' = p, and hence pf = p(LV 2T) = p.
But we chose 5 € (;,E) € S(f). This is a contradiction, and hence

fed. [z

With another assumption about A{(Q) we can describe Dl

exactly (Proposition 3.5).

Proposition 3.4: If G 1is a divisible f%-group, then Dl =AU,

Proof: By definition % 2 0;. Conversely, let a e¢¥. Then
there exists b ¢ G+ such that b + b = a. Clearly b > 0. Suppcse
b £9. Then there exist h,% > 0 such that h A £ =0 and
hVeg=>b.Then hVLg=h+ 4% =2+ h. Hence

a=b+b

(h Vo) + (hV 2) h+2+h+2=(h+h)+ (& +21).

But since h A & 0, (h+h) AL =0 and hence (h+ h) A (8 + &) = 0.
Thus a £¢%. This contradicts our choice of a. Hence b e U

Since 0 < b < a, le al. Let k ¢ bl. Then |k| A b = 0. Hence

|k| A a=]k| A(+Db)=0. Thus k¢ al. Hence bl = al.

Therefore, for all a € U, there exists b e ¥ such that b+ b = a

and bl = al. If a e, define a sequence ‘{bl,bz, oo 3 U by
a=b, and b ¥ is such that b +b =b , and bnl =b I

for n > 1. Thus a € Dl' Therefore ¥ = Dl' |5

Proposition 3.5: Let Q be a totally ordered set. If A(Q)

is doubly transitive, then U = Dl.
Proof: By [33], since A(Q) 1is doubly transitive, A(Q) is

divisible. By Proposition 3.4, ¥ =D,. ||

In A(R), clearly DZ = ¢. Hence the sets of N3(O) = Nl(O) are of

the form of those in figures XI and XII.



figure XTI
G = A(R)

Xg = 12x + 3

>x + 3

N(i,f)

if x [-3,0)
if x [0,4)

otherwise

N(i,g)
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figure XII

G = A(R)
1 .
xh = |5x + 2 if x e (~=,4] h
X otherwise

]P

N(i,h)

XL = 12x + 4 if x e [4,)
X otherwise
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In R |X| R, if h,2 e U= Dl’ there always exists k € ¢t

such that
N(0,h) N N(0,8%) = N(0,k).

See figure XIII.

However, in A(R), it may happen that for f,g €¢¥, there
does not exist an h e A(R)T such that N(0,f) N N(O,g) = N(O,h).
Let f,g bé as in figure XIV. Suppose that such an h exists
(cf. figure XV). Since 12k = 12 for all k € N(O0,f), 12h = 12.
Since 15k = 15 for all k € N(0,g), 15h = 15. Suppose rh > r for
some r € [12,15]. Then 12 # r # 15. If =z ¢ (12,15), let

%, € A(R) be defined by

[1{z - 6 z - 15 R

Xlz = §-E~:TEE-X + 8 7 = 12 if x e {12,2)
-31-x + 10 if x e [2,15)
\x otherwise.

Then xlz =xg 1if =x e [z,15), and cleariy for z e (12,15),

lz e N(0,f) N N(O,g). If =z e (12,15) dis such that =z < zh < zg,

then lz ¢ N(O,h). Hence,since we are assuming there exists r e (12,15)
such that r < rh, we have that =zh = zg for all 2z ¢ (12,15).

Therefore

14 = 12g = (A{z] z € (12,15))g = A{zg| z ¢ (12,15)}

anlzh| z € (12,15)} = (Alz] z ¢ (12,15)})h = 12h = 12.
This is a contradiction, and hence zh = z for all 2z ¢ [12,15]. Let
2 ¢ A(R) be defined by

x2 = {5.x -~ 48 if x ¢ [12,12%)

56
5

%—x + if x € [12%,15)

otherwise.

»



figure XIII
G =R |X| R

58



figure XIV
G = A(R)
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fJ- N AN 1
Lo N
NN )|
£ S
y NENELS
Vi ™ ~
xf = 12x - 5 if x e [5,8) xg = 12x - 10 if x e [10,12)
%x + 9 if x e [8,12) %x + 10 if x e [12,15)

X otherwise X otherwise
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figure XV 60

G = A(R)

)

xh = |2x - 8 if x ¢ [12,13%)

lo+10  if xe [13%,15)

X otherwise
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Then & ¢ N(O0,g), but since xf = x if x ¢ [12,15], % A h = i.
Thus %2 € h &£ N(O,h). Therefore, for all h ¢ A(R)+
N(0,g) N N(O,f) # N(O,h).

However, even though such an h does not exist, we do have

the following: Let h ¢ A(R) be defined by

xh=1{2x - 5 if x e [5,7)
%x + —:2;—0— if x e [7,10)
2x - 10 if x ¢ [10,%§0
Fx + 9 if x e [12,12)
2x - 12 if x e [12,13)
3x + 22 if x e [13,15)
(X otherwise.

Then for f,g as in figure XIV,
N(0,f) N N(0,g) 2 N(O,h).
Here N(0,h) 1is a finite intersection of elements from Nl(O)
and hence N(O0,h) € N(0). See figure XVI.
Example 3.6: Our second example is of an f-group G which
contains positive elements f,g such that for all h ¢ G+,
N(0,£) N N(0,g) ¥ N(0,h);
f,g will be elements of ¥ and of Dl; DZ will be empty.
First we note the following standard result.

Proposition 3.7: Let A be a subgroup of an f2-group G. Let

[A] be the %~subgroup of G generated by A. Then

[A] = {ﬁéK D akgl a, €A forall keX and % e L;

and K and L are finite}.



figure XVI
G = A(R)

L J

xh

- 10

if

if

if

if

if

if

X

X

[y]

ctherwise
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Proof: An f-group is a (finitely) distributive lattice and addition

distributes over joins and meets. Conrad [19] notes that repeated

applications of these two properties prove the proposition.

The 2-group we will construct is an 2-subgroup of C(R), the

f-group of all continuous functions from the real numbers to

themselves. Compare what follows with figure XVII.

For n ¢ Z+, define hn £ C(R)+ by

-x + 2(5 + 4n)
0
. +
Also define Qn e C(R) by
Xln = {x + 2(5 + 4n)
-x = 2(1 + 4n)
0
and let H = G(h_ ) and L
n n n
generated by hn

and 2%
n

f, e C(R) b
p?8p (R) by

+ 8n, 6 + 8n)

™o

if xe |
if x e [6 + 8, 10 + 8n)

otherwise.

if x ¢ [-10 -~ 8n, -6 - 8n)
if x ¢ [-6 -8n, -2 - 8n)

otherwise,

G(Qn), the convex %-subgroups

respectively. For p € Q, define

= -E- 1)— 1 -
xfp ;X + 5 if x ¢ [-2,2]
P if x > 2
0 if x < -2,
[
= _E E 1 -—
xg, Xt 5 if x e [-2,2]
P if x < -2
0 if x> 2.

Let F = {fpl p € Q} and
P are f&-subgroups of C(R)

o
H = Li£ H, L =

P = {gp| p € Q}. Then clearly F and

n

which are ¢~isomorphic to Q. Let

N ™8

| *_.
1 n
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figure XVIT
G = C(R)

U - | 2
s ot
£y E ®2
— ‘ = =
k=f,+g, +2,+hy+h, N(k) =2 M(k) = 4
k /\\/\ /\'
V() O

N(0,g,) N N(O,£,)
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Finally, let G = [H,L,F,P], the 2-subgroup of C(R) generated
by H, L, F, and P. We note that (2)fp = p and (—2)gp = p.
For k e C(R), let

S(k) = {r ¢ R| rk # 0}

denote the support of k. Then if k ¢ HU L, S(k) is bounded
above and below. Thus, since [H,L] = H ]XI L, S{(k) is bounded

above and below for all k e [H,L]. Let k ¢ G. By Proposition 3.7,

m(i,]j ..

VN (Z,J) EEN
iel jeJd n=1 n

where a;J e BU LU FUP for all i, j, n and where I and

J are finite. Since C(R) is commutative,

m(i,j) .. m(i,}) m(i, )

Iy =
(n£1 ®n ) = (nél fpi + (ngl gri + aij

. rn € Q for all n=1,...,m(i,j).

where aij e [H,L], and P,

By the comment above, S(aij) is bounded above and below. Let

Uk) = V({tl t e S(aij) for some 1i,j} U {2}),
Vk) = A({tl t e S(aij) for some 1i,j} U {-2}).
m(i,j) m(i,j)
Let n,, = E. p and m,, = I r . Then by the construction
ij n=l “n ij n=l "n
of F and P,
m(i’j) m(i’j)
nk1 fp © fn.. and I, g, = Bm,  *
n ij n ij
Let
= A
NG = Yy fog @y
= .V
M(k) = Yy 23 (mij)'
Then for all i eI and j e J, if u > U(k), then (u)aij =0
and (u)gm = 0, and if v < V(k), then (v)aij = 0 and (v)fn = 0.

ij ij
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Suppose u > U(k). Then

n

\V; A
Wk = ¥y 4oy (E  +g, + a5)

ij ij

Y
e JEJ ()£ nys + (U)gmij + (u)aij)

(u)f

ieI JEJ 1j

(),

iel JEJ fn
ij

= (u)fN(k)'

Similarly, if v < V(k), then
Wk = gy -

Since aij e [H,L], (2)aij = (0 = (—2)aij and by construction, .

(2)gm.. =0 = (—2)fn K Thus, as above,
ij ij
@k = @y
(_z)k = (—z)gbi(k) .

Suppose k ¢ gy Since k 1is continuous, (2)k = 0. Hence

(z)fN(k) = 0, i.e. N(k) = 0. Therefore, if u > U(k), (u)k = (u)fN(k)
= 0. Thus S(k) is bounded above by U(k). If k ¢ [—gz,gz],
then clearly S(k) is bounded above by 2. Hence if k ¢ N(O,gz),
S(k) 1is bounded above by U(k). Similarly, if k € N(O,fz), then
S(k) 1is bounded below by V(k).
Let k ¢ N(O,gz) N N(O,fz). Then S(k) 1is bounded above by
U(k) and below by V(k). Hence HU(k) - kl and LV(k) c kl. But

clearly HU(k) £ N(0,f,) and LV(k)§¥ N(O,gz). Therefore, if
k e (N(O,£,) ﬂN(O,gz))+\{0}, then
N(,k) FN(0,£,) N N(0,g,).
Suppose’ k ¢ G+\\{0}, and N{0,k) S N(O,fz) n N(O,gz). Since

0 ¢ kl, k ¢ N(O,k). Hence k ¢ N(O,fz) N N(O,gz). But this



67
contradicts the above argument. Hence for all k e G+\\{0},
N(O,k) ¥N(0,£,)) N N(O,g,).
-+ .
Let p e Q \\ﬁO}. Suppose that fp ¢ 9 . Then there exist

k,2 ¢ GT\{0} such that k A%

0 and k Vv L = fp. Let
r e S(k) € S(fp) and s & S(R) € S(fp). Then without loss of
generality we may assume that r < s. Let t = V (S(k) [r,s]).
Since R 1is conditionally complete, t € R. Since k is continuous,
tk = 0. If tR # 0, then there exist a,b € R such that t ¢ (a,b)
S S(2). But by definition of t, §S(k) N (a,b) # é. This contradicts
the fact that k A 2 = 0, and thus t& = 0. Therefore tfp =
t(k V&) = 0, and since r,s ¢ S(fP), this contradicts the
definition of fp._ Therefore fp e U, Similarly g, e 4 for all
p € Q+\\{0}. Therefore (F U P)+\\{0} S 9.

Clearly H, L, F, and P are divisible. Therefore G is
divisible, and hence by Proposition 3.4 and the above

U\t e u =0,

s U =
We conclude that f,,g, € Dl and that DZ é.

Let
n
N%(0) = {N(0,g)| & = iglg% for g; e D;},
N5(0) = {D(h) + hll h = ,y;h; for hy e 0,1,
N%(0) = N%(0) U N%(0).

If G =R |X| R, N§(0) is a filter-base which generates F(N(0))
(see figure XIII). If G = A(R), this is also the case. For example,
in figures XIV and XVI, we exhibited an element h € A(R) such

that N(0,f) N N(0,g) 2 N(O,h) and N(O,h) € N§(0). However,



Example 3.6 shows that in general N§(0) will not be a
filter-base.
In Chapter 7 (Example 7.8) we show that the f2-group of

Example 3.6 has Hausdorff ¥ -topology.
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4. TOTALLV ORDERED GROUPS

Let T be a totally ordered group. Let L denote the interval
topology on T. Then U e L if and only if for all x e U, there
exist a,b ¢ T such that x ¢ (a,b) € U. The main result of this
chapter is that the ¥ -topology on T is equivalent to the interval
topology, L.

The proof of this equivalence requires the fact that if
g € T+\\\{0} is such that (0,g) # ¢, then there exists a
g' e T such that 0 < g' < g' 4+ g' < g. This "semi~divisibility"
is straightforward for totally ordered groups. As a prelude to the
theorem that ¥ = L on T, we will investigate this "semi-
divisibility" in an arbitrary 2-group.

Lemma 4.1: Let G be an fL-group. Let g e G+\\{0}. Then there
exists h € G such that 0 <h <h+ h < g if and only if there
exists h' ¢ G such that 0 <h' < g <h' +h'.

Proof: Suppose h € G 1is such that 0 .< h<h+hz<g. Let
h* = g-h. Then O <h' <g and since h+h<g, 0<-h+g-h.
Thus g<g=-h+g-h=nh'"+h'". Conversely, suppose that h' e G
is such that 0 <h' <g<h'+h'. If h=g-h', then 0<h<g
and since g <h' +h', -h' + g~ h' < 0. Thus

g-h'"+g-h"=h+hs<g. |%|
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Proposition 4.2: Let G be an f-group. Let g ¢ G+w\{0}. Then

there exists h € G such that 0 <h<h+h < g if and only if
[0,8] # T(g).

Ezggﬁ:‘Suppose h € G is such that 0 < h <h +h < g. Since
h+h<g, hsg-h. If heT(g), then h A(g-h) =0, and
hence h = 0. This contradicts our choice of h and hence h ¢ T(g).
Thus [0,g] # T(g).

Conversely, if [0,g] # T(g), let 2 ¢ [O,g]\\T(g). (Such an
% exists since [0,g] 2 T(g).) Then let h =2 A (g~ 2). If h =0,

2 A(g=-2) =0 and hencé (g-2)Vvae=g-2+2=g. Thus
2 € T(g), which contradicts our choice of &. Thus h > 0. Furthermore,

h+h=2A(g=-2)+2A(g-2)<g-2+2-=g. | 5|

In many 2-groups [0,g] # T(g) for all g ¢ G+\\{O}. For
. < <«
instance, R IXI R, A(R), and R X Z, but not Z or 2Z X R. If
ge¥ and [0,g] # T(g), then Proposition 4.2 indicates that the
important criterion that g must fulfill to be a member of Dl is
that some 0 < h < g must be '"big enough" to have hl = gl as well
as h+h<g. Let G be the L-group of Example 3.6. Let L be
the %-subgroup of G generated by H and G(fz). Then if 0 < k < f2,
by an argument similar to that in the discussion of Example 3.6,
kl F le. However, T(fz) ='{O,f2} and [O,fz] is uncountable.
We return to the investigation of totally ordered groups.
Lemma 4.3: If T 1s a totally ordered group, then T+\\{O} = U
+ +
Proof: Clearly U & T \\{O}. Conversely, let t e T \\{O}.
If s g T(t), then there exists s' ¢ T such that s Vs' =t and
1

s As' = 0. Since T is totally ordered, s As' =sor s As' =s".

If sps'"=s, s=0; 1if s As'=s', s=+t. Hence t e¥U. |&]

T}



Proposition 4.4: Let T be a totally ordered group. Let

t e T+\\{O}. Then there exists h e T such that 0 <h <h+h <t
if and only if (0,t) # ¢.

Proof: By Proposition 4.2, there exists such an h if and only
if [0,t] # T(t). By Lemma 4.3, [0,t] # T(t) if and only if

[0,t] # {0,t}. Clearly [0,t] # {0,t} if and only if (0,t) # 4.

Theorem 4.5: If T is a totally ordered group, then the

—-topology on T is equivalenit Lo the inierval Lupology.

Proof: (a) Suppose there exists h e T+\\{O} such that
[0,h] = {0,h}. Then clearly h ¢ DZ with D(h) = {0}. Hence
D(h) + hl = hl > N2(O). But if g ¢ (hl)+\\{0}, then g is not
comparable to h. Since T is totally ordered, no such g exists
and hence hl = {0}. Thus {0} € N(0), i.e. the ¥ -topology is
discrete. Also, (~h,h) ¢ L, the interval topology. Thus, since
(-h,h) = {0}, {0} e L and L is discrete. Therefore ¥ = L.
(b) Suppose that for all ¢t e T+\\{0}, 0,t) # 4. 1If

t e T+\\{O}, then by Proposition 4.4 there is a ty e T such that

0<t, <t,+t, <t. By Lemma 4.3, tyty € U. As in (a),

tl = {0} = tzl. Therefore, since (0,t) # ¢ for all t ¢ T+\\{O},

then for all t ¢ T+\\{O} there exist E1stys oo € U such that

t =t t t, and t L. tnl. Thus T+\\{0} <D

17 fn ot S n+l
, + + .
Since T \\{0} 2 Dl’ T \\{0} = Dl' Hence, if T # {0},

{I-t,t]] t e TN \{0}}.

N(0)

Let U ¢ L. Let u ¢ U. Then there exist a,b ¢ T such that

u e (a,b) SU. Let c (-u +b) A(-a+u). Since a # u # b,
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c # 0. Since a<u=<b, c > 0. Thus there is a c¢' € T such
that 0 < ¢' < c. Then

ue f[lu-c',u+c'] S@uU-c, u+c).
But u+c<u+ (-u+b)=>b and u=-c 2u+ (-u+a) =a. Thus

ueu+ [~-c',e'] S(a,b) € U.
Since c¢' >0, c" ¢ Dl' Hence u + [-c',c¢'] € N(u). Since u was
an arbitrary element of U, U e ¥.

Let Ue¥. Let ue U. Then there is a g € T+\\{0} such

that u e u+ [-g,g] S U. Hence ue (u-g, u+g) SU. Since u

was an arbitrary element of U, U e L.

If T={0}, T = {{0}} = L. |5



5. PRODUCTS OF £-GROUPS

In this chapter we characterize the ¥ ~topology on cardinal
and lexico-graphic products of 2-groups in terms of the fz—topologies
on the factors. We first prove the result for cardinal products:
Theorem 5.1: Let {GAI X € A} be a collection of &-groups. For

Ae A let X ) be the I-topology on G Let G be an 2=-subgroup

X
of |m|G, which contains |Z|G,. Let ¥ be the T -topology on
A A
Aeh el
G and let P be the topology on G inherited from the product

topology on IH]GA. Then ¥ = P.
Aeh

We will use the notation introduced in the statement of

Theorem 5.1 throughout the proofs of the theorem and the preceding
lemmas. Additionally, we let p :[H[G -+ G_  denote the yth

Y el A Y
projection. Then U € P if and only if for all 4 € U there exist

n
i = N -1 o
UYi € I§i, i=1,...n, such that 4§ ¢ i=1(pYi(UYi NG < u.

To denote the sets 9, Dl’ D,, D%, Nl(O), N2(0), NB(O)’ and

2’

N@©) in G we use U

A’ 4

x* Piye sz, etc. To denote them in G,

we use 4, D 02, etc. Then U e < if and only if for all { e U

1’
there exists H € N(0) such that § ¢ § + HS U. The notation "l"

will refer to |N|G,. Thus if A = |mjc,,
l Aeh Aeh
Al = (4] 4 ¢ [H]GA and |§|A |a] = 0 for all a e A}.
Aeh
Hence if A G, the polar of A in G will be

Al NG=1{4 §eG and |§| Ala] =0 for all a e A}.
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For h_ e G, let h_e |I|G, € G be defined by
Y Y Y A
Ael
“ah_ = {0 if A4y
h if A=
Y .
If L <G, let
Y Y
L_=1{h| helL}.
Y
If LY is a convex &-subgroup of Gy’ then clearly f; is a convex
2~-subgroup of G.
Lemma 5.2: Let A.Y and BY be subsets of GY. Then
(A +BYl)n G =4 +(BY N G).
Proof: Let { € p_ (A + B J') N G. Then y§ =h_+ k_ for
- Y Y Y Y
h, e A and k_¢€B l. Let 4' € ]H|G be defined by
Y Y Y Y Aeh

At = {k if x=yv
g Y

A if A # .
Then if Yy # X € A, A6=0+>\6=>\q+>\6', and v§ = h+k

= 'Y.]-.’l:'f' v4'. Thus § = +4', dice. 4" = § - E—Y—' Since 6,hY e G,

h_
¥

then §' € G. Let b ¢ ﬁ;' Then b =7Yb and vb ¢ BY. Since

kY € BYJ', |kYI A |yb] = 0. Since Ab =0 when X # y, this implies

that |A§'| A |Ab] = 0 for all A e A. Hence |§'| A |b] =0 and

thus {' € 3;1 N G. Clearly ﬁ;'e‘z; and therefore since { = E; +4',

T+ @1 ne.
g+ a@lne

Conversely, suppose that § € K;'+ (ﬁ;l N G). sSince ]

K;'EQG. Thus § € G. Also §=h+ 4L for h e K;' and l € B I

Then Yh ¢ A, and |[£] A |b_| =0 for all b_e B . Thus
Y Y Y v

|v2] A IbYI = 0 for all bY € BY’ i.e. v£ € BYl. Hence

vy§ = vyh + v ¢ AY + BYl. Therefore § e p—l(AY + BYl) N G. | %]



h = hl' Since hn € Qly, hn €9 by Lemma 5.3. Since hn+ + h <h I
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Lemma 5.3: If h_ €% , then h_ e u.
A v Y Y

Proof: Let 4§ € T(F;)\{O}. Since 0 < § ;h—Y-, ng = 0 for

all n# vy, i.e. —Y—E‘= §. Since 4§ ¢ T(HY—)’ there exists {' ¢ G

such that § A 4" =0 and §V ' =h . Thus (y§) V (y§') = h

Y Y

0. Th Tth ). si h A = 0
en Y4 € (Y) ince h el , Y4

or Y = hY. If y4 =0, then § = 0 which contradicts our choice

and (Y§) A (v§")

of {. Thus Y6=hY and hence 6=h_Y- {x|

Lemma 5.4: If h e D, , then h_ e D..
T T e Y 1Y Y 1
Proof: Since hY € DlY, there exist h,,h,, ... €%  such

h + h <h , and hl;h l Since h_=h
n n n+

that h =h;, b +h 4y 2 1 y - Py

1 n+tl = n?

h o, +h_ ,<h. If §eh & then |5|Ahn+l=0. Hence

Y§ € hn+ll and since hn+1l = th-, Y§ € hn-l-. Thus, since AT; =0

for all X # v, |4 A B; = 0. Hence 4§ € ﬁl. Thus hn+l-l-§ hn-l-.

Therefore -h: € Dl' | 8]

2

Proof: As noted above, D(hY) is a convex f-subgroup of G.

Lemma 5.5: If h e D, , then h ¢ D, and DC(h ) = D(h ).
— Y 2y Y Y Y

Let 4§ € D(hY). Then A{ =0 if X # vy, i.e. § = y{. Further,

Y§ € D(hY) and thus v{ < hY. Hence £ = v§ < q Suppose that

h <t<b for h,-h_Y+beD(hY). Then M1 =0=0+ b if X # v,

and hence 0 = At if A #y. Thus yh = h, yE =%, and yb = b.

Further, vh, —hY + vb € D(hY)’ and yYh < y£ < yb. Hence

vt e D(h.Y) U (hY + D(hY)). Therefore Y% € D(hY) U (hY + D(hY))

and hence 1’: & D(hY) U (hY + D(hY)). Thus hY € 02 and

D(h ) = D(h). | g
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Lemma 5.6: If H ¢ N3Y(0)’ then p—l(H) NGe N3(0).
Proof: Suppose H € NlY(O)' Then H = N(O’hY) for hY € DlY'
By Lemna 5.4 E; € Dl' By Lemma 5.2 p;l([—hY,hY] + hYl) NnGs=

[—hY,hY] + (E;l n G). Since [—hY,hY] = [-h ,h ] and since the

vy .
polar of F; in G is B:l N G, then p;l(N(O,hY)) neG = N(o,’ﬁ:).
Hence p;l(N(O,hY)) NG e Ny (0).

Suppose H € NZY(Q)' Then H = D(hY) + hYl for some hY £ DZY'
By Lemma 5..'|5 E: e D,. By Lemma 5.2 p;l(D‘(hY) + hYl) r? G =
Fth + (’h;l N G). Thus, by Lemma 5.5, p;l(D(hY) + hY-l-)ﬂ G =
D(E;) + (H;l N G), and since the polar of E;' in G is E;l neG,

then p;l(D(hY) + hY-I-)ﬂ G e N,y(0). | 5|

Lemma 5.7: Let {Hl,...,Hn} be a finite collection of subsets

of G. Let h e G. Then
Y n

h+ N [p;l(Hi)ﬂ G].

i=1

_l n
P, (yh + iQlHi) nG

Proof:

n n
le(Yh + ingi) NG=1{§ § G and v§ e yh + iEHHi}

%

{§] § €G and -vh + v§ ¢ H; for all i}

]

{4l §eG and -h+ § ¢ p;l(Hi) for all i}
Since h e G, -h € G and thus ~h + { € G if and only if § € G.

Thus

i

n
-1 -1 ,
pY (yh + fllHi) ne {6] -h + § € gY (Hi) NG for all i}

"

gl f e h+ DTy N6
¢ |

h+ 0 @) N 6] |5]
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Lemma 5.8:If h €%, then there is a y € A such that yh = h

and vh .
Y EQIY
Proof: Suppose that there exist a,B € A such that o # 8

and oh # 0 # Bh. Let h' ¢ |H|G

Aeh
A = {xh if 2%«

3 be defined by

0 if A = a.
Then as in the proof of Lemma 5.2, we have that if A # a,
A= A+ 0=2h" + 2ol and oh = 0 + oh = oh' + aah. Thus
h=h"+0ol and since ah,h € G, h' € G. Clearly h' A oh =0 and
h' Voh = h. Since oh # 0, oh # 0, and since Bh # 0, h' # 0.
This contradicts the assumption that h €Y. Hence there is a y € A
such that Ah =0 for all A # vy, i.e. YA =h. Let h e T(Yh)\\{O}.
Then there is an h' ¢ GY such that h Ah' =0 and h V h' = yh.
Then hA h* =0 and RV Hh' = Yh = h. Since h e ¥ and h # O,

h=~h., Thus h=+vh and +h e MY. | 5]

Lemma 5.9: Let h ¢ D,. Then there exists a y e A and an
-1
hY € Dly such that P, (N(O,hY))fW G = N(0,h).

Proof: Since Dl S 9, by Lemma 5.8 h = yh for some v e A.

Let hY yh. Since h e Dl’ there exist h,,h,, ... €9 such

L l -
hl’ hn+1 + hn+1 §=hn and hn+1 NG < hn N G. Since

I’ll = h, Y/’Ll = h_Y. Since 0 < I’Ln < h and since h = -YT, hn = —'Y—E-;'

that h

Since hl,hz, «.. €%, this implies by Lemma 5.8 that yhl,yhz,... € MY-

Since hn+1 + hn+1 é=hn’ Yhn+1 + Yhn+1 é=Yhn° If f ¢ (yhn+1) s

then |E| A YHn+1 = 0, and hence f ¢ En+1 NG. Since

hn+1-|-ﬂG ;hnln G, ‘fghnlnc;. Thus |£| A Yh =0 and

n
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hence f ¢ (yhn)l. Thus (Yhn+l)l s (yhnil and hence hY £ Dly'
~1 —|
Furth by L 5.2 ~h_,h ] +h NG=1-h ,h ]+ (h_10NG).
urther, by Lemma ) Py (I Y’ Y] y ) [ hY’ Y] ( y )

Thus pTM(N(O,0 ) N6 = [-h,k] + (bl 1 6) = weo,y. x|

Lemma 5.10: Let h ¢ 02. Then there exists a y € A and an
. -1 1 - 1
hY € 02 Sguh that Py (D(hY) + hY ) NG =Dh) + (ht N G).
Proof: By Proposition 2.3, h ¢ ¥, and thus by Lemma 5.8,
h = yh for some y ¢ A. Let hY = yh. Let D' = {y§| § ¢ D(h)}.

Then clearly D' is a convex f&-subgroup of G and since h = E;

and D(h) € [-h,h], then D' = D(h). If d e D', then

“HHl

d=v§ < yh = hY since § € D(1). Suppose a <t <b for m
a, --hY +beD'. Then a<t<b and a, —E; + b ¢ D'. Hence
a, -h +b € D(h) and thus t e D(h) y (h + D(h)). Then

— e 1 | r
t =yt e D'y (hY + D'). Therefore hY € DZY and D' = D(hy).
bl

By Lemma 5.2 p;l(D(hY) + hYl) neGs= + (E;l N G). Thus

~1
P, (D(h) + hY1> N G=0h + (kln o) e 0. ||

Lemma 5.11: Let H ¢ N3(0). Let { & G. The there exists a

y € A and an HY € N3y(0) such that p_l(yﬁ + Hy) NG={+H.

Proof: If H ¢ Nl(O), then H = N(0,h) for some h ¢ Dl'
| By Lemma 5.9, there exists a y ¢ A and an hY € DlY such that
‘ -1
N(O,t NG=H. Let H = N(0O,h ). Since h D

Py (N( IY)) y ( Y) y & Y1y
HY € le(o)' If He N2(0), then H = D(h) + (hl N G) for some
h e D,. By Lemma 5.10, ther exists a y e A and an hY > DZY
such that p_l(D(h ) +h l)f) G=H. Let H =DCth )+ h l. Since

Y Y Y Y Y

—1 _

hY € DZy’ HY € NZY(O)' Then by Lemma 5.7, Py (y§ + Hy)fl G =

6 + (P;l(Hy) N G). Hence p;l(yﬁ + Hy)fW G=4§¢+H. 'Hl
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Proof of Theorem 5.1: Let U e P, and § ¢ U. Then there

n
exist {Yl"‘f’Yn} S A such that { € igl[p;l(UY) N Gle U for
i i
|
. GYi for g11 i =1,...,n, then igle-(UY?

1]

U € . 1f U

= IHIG and thus .0 [p—l(U )N G] = GS U, Hence U =G, and
i=1""y, "y
Aeh i i

thus U € ¥. Therefore we may assume that UY # G for at least
i i
one i. But then if U = GY for some £, 1 £ %2 £ n, we have that
L L
Pr_l;U.,G-=I.}—"1.AﬁG]
fpip, WO N €1 = ;0yip, (V) .
i Ti Yi Vi
i#2
Therefore, we may in fact assume that UY # GY for all i =1,...n. ‘
i i i
no_ !
Since § ¢ igleYi(UYi n aGJl, Yiﬁ € UYi for all i. Since
UY esz for all i, then for each i there exists an integer
i i
m(i) > 1 such that Hij € NBY(O) for j=1,...m(i) and
m(i)
n Sy
Yiﬁ € Yiﬁ + 55 Hij in.
Thus
m(i) -1
§ep, <Y6+._ ) 06<p ()06
=1 Yi Y3
By Lemma 5.7
m(i) -1
§ e+ ﬂl [p (Hij) NGy s pYi(UYi(W G.
By Lemma 5.6 p; (Hij) NG e N3(0) for all j =1,...,m(i) and
i
n m(i)
all i=1,...,n. Thus _N .0 [p—l(H ) N G] ¢ N(0). Therefore
5 ’ ’ i=l j=l .Yi ij . ’
since
n m(i) 1
- < n -
6€6+1_1 Jﬂl [PYi(Hij) G] ﬂl[p (U) Gl< U,

and since { was an arbitrary element of U, U € Z.



Let Uex, and §eU. If U=G, then U e P. Otherwise,

there exist an integer 'n > 1 and an Hi £ N3(0) for 1i=1,...,n
n
such that § e § + fllHiE; U. By Lemma 5.11, for each i there

exist a vy, € A and an H e N (0) such that
i Y. 3y,
i i
P l(v,§+H YNG=§+H
y; 1 Y i

Thus by Lemma 5.7

n

n
-1 N g =
§ € igllei(yiﬁ + HYi) N6 =4+ ingi < u.

Let Ui = Yié + Int(HYi). By Corollary 2.22, 0 ¢ Int(HYi) efIYi
Thus yiﬂ el ¢ IQi, and hence
AR n ! n
c - c
f e i=l[pYi(Ui) G) i=1[pYi(yié + HYi) 61 < u.

Since { was an arbitrary element of U, U e P.

Therefore ¥ = P, which proves Theorem 5.1. IEI

Another natural topology on a product, AEAK\’ of topological

spaces KA may be defined as follows: For each X £ A 1let KA

have topology UA' Define a topology P' on by: Ue P

ARy
if and only if pA(U) € UA for all A € A. For an arbitrary L-group
G, let

N'(0) = {,H,] By e Ny(0) for all & e 4}
where A may be infinite. For g e G {0}, 1let

N'(g) = {g+ H| He N'(O)].
Let

¥ ={WSG| forall xeW, We FNN'x))}.
Similarly to the proofs in Chapter 2 we can show that ¥ is a

group and a lattice topology for G. Call ¥' the ¥ '-topology.
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I1f, in Theorem 5.1, we let ¥, be the ZX'~topology and take P'

A
defined above in place of P, then T' = P' where ' 41is the
¥ '-topology on G.

Combining Theorem 5.1 with Theorem 4.5, we have the following

corollaries.

Corollary 5.12: Let G be an 2-group and suppose there exists

an {-isomorphism of G into a cardinal product of totally ordered groups.
If the sum of the totally ordered groups is contained in the image of

G, then the F-topology on G 1is equivalent to the topology that

G inherits from the product of the interval topologies on

the factors. | %|

In particular, we have:

Corollary 5.13: The g -topology on any cardinal product of the

real numbers is the usual topology (i.e. the product of the interval

topologies on the factors). |R|

We now turn to consideration of lexico-graphic products. Let
G be an arbitrary f2-group and let T be an arbitrary totally

ordered group. To denote the sets 9, Dl’ DZ’ D*, Nl(O), NZ(O)’

N3(O), and N(0) in G, we use e DlG’ DZG’ etc. To denote

them in T we use Urrs D DZT’ etc., and in G = G X T we use

1T’
Aa, Dl’ DZ’ etc. We denote the ¥ -topology on G by fIG; on T
by 3&; and on G by L. Then U eI 1if and only if for all

§ € U there exists H e N(0) such that e §+H SU. We let
pG:G X T > G denote the projection of G onto G, and

pT:G § T > T denote the projection of G onto T. We sometimes

Rl



write the elements of G as ordered pairs; thus if g ¢ G,

g = (pG(g),pT(g)). We note that Py Ppreserves order, but that P

does not. For instance, in R X Z, (0,1) < (-100,2), but 0 > -100.

Both Pr and Peo of course, preserve the group operation.

We prove a theorem (5.21) that characterizes F(N(0)) in
terms of NG(O), DlT’ and DZT' The proof of the theorem is
straightforward but somewhat long to write out. We prove seven
preliminary lemmas characterizing Dl and 92 in terms of their
projections to G and T. A case~by-case argument proves the
theorem. We then prove two corollaries (5.22 and 5.23) which give
extremely simple characterizations of F(N(0)). One of the two
corollaries applies to any G = G X T.

Lemma 5.14: If g e G X (T+\\{0}), then gl = {0}.

+
Proof: Suppose g e G X {t} for t e T \\{0}. Suppose

h e GT is such that & ng=0. If pT(h)

]

0, then since
pT(g) =t>0-= pT(h), g > h and hence h = 0. Suppose pT(h) > 0.

Then h > £ for £ ¢ G X {0}. Since pp(g) >0, g > 4L for

£ € GX {0}. If G # {0}, then there exists an element p ¢ G+\\50}-

Then (p,0) ¢ 6 X {0} and (p,0) > 0, and hence hA g > (p,0) > 0.
This contradicts our choice of h. Thus G = {0}. Then G is
totally ordered and thus hA g=h or h Ag =g. These
contradict .our choices of ¢ and h. Thus pT(h) =0, i.e. h=0.

Hence gl = {0}. |m]

Lemma 5.15: Let g ¢ G. Then g e¢¥ if and only if pT(g) >0

or pT(g) =0 and pG(g) € ﬂG.
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Proof: Suppose g € ¥, since g >0, then pT(g) >0 or
pT(g) = 0 and pG(g) > 0. Thus suppose pT(g) = 0, and let
L€ T(pG(g)f\\{O}. Then there exists &' € G such that ¢ A &' =0
and 2V 2' = p.(g). Thus (2,0) v (230) = (p;(9),0) = g and
(2,0) A (£',0) = (0,0). Since 2 # 0, (£,0) # 0 and hence
(2,0) =g, i.e. pG(g) = 2. Therefore pG(g) €U
Conversely, suppose that pT(g) = 0 and pG(Q) eQIG. Let
h ¢ T(gf\\{O}. Let h' ¢ G be such that hv h' =g and hA h' = 0.
Then since pT(h) =0 = pT(h'), pG(h) A pG(h') = 0 and pG(h) Y, pG(h')
= pG(g). Since h # 0, pG(h) # 0 and thus since pG(g) e Ups
pG(h) = pG(g). Therefore g = (pG(g),O) = (pG(h),O) = h and hence
g ¢ 4. Suppose that pr(g9) > 0. Let h,h' € G be such that
h AR*' =0 and h Vh' =g, Then h+ h' =g. If both h,h' ¢ G X {0},
then as in the proof of Lemma 5.14, hA h' > 0. Hence we may assume
that h € G X {0}. Then pT(h) = 0. But since h + h' = g,
pp() + prp(h') = prp(9). Thus pi(h') = pr(9) > 0 = p(h). Hence

h' > h, Therefore h

0 and h' =g. Hence g ¢ Y. | 5]

Lemma 5.16: Let g ¢ G and suppose pT(g) > 0. Then g ¢ Dl
if and only if pT(g) € DlT or there exists f ¢ DlG such that
fl = {0}.
Proof: Suppose that there exists f ¢ DlG such that fl = {0}.
f

Then there exist  f.,f eQIG such that f, = f, £ . +

10520 1 nt1 ¥ far S 5
and f l = f l. Hence f l = {0} for all n. Since f, = £,
n n+l n 1
(fl,O) = (£,0). Since fn+1 + fn+l < fn, (fn+1,0) + (fn+l,0) < (fn,O)-

Suppose [(a,b)| A (£,0) = 0. If |b] > 0, then | (a,p)| > (£ ,0).
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0. Then (Ja],0)A (£_,0)

Since (f_,0) > 0, thus p] = 0, i.e. d
= 0 implies |a| A £, =0 and hence, since fnl = {0}, a=o0.
Thus (fn,O)l = {0}. Since pT(g) >0, g> (f£+f£, 0) = (£,0) + (£,0).

Let g, =g, and g = (£ 0) for n > 2. Then 91 ¥ 9n41 §=gn,

n-1°
and by Lemma 5.14 gll = gl = {0} = gnl for all n > 2. Thus
g € Dl. 1f pT(g) € DlT’ then there exist hl’h2’ ese E ﬁT

such that h1 = pT(g), hn+1 + hn+1 ;:hn, and hn = hn+l . Let

g1 =9 and g = (O,hn) for n > 2. Then ¢ and

ntl T 841 =9y

by Lemma 5.14, since pT(gn) =h >0, gnl = {0} for all n.

Therefore, g € Dl'
Conversely, suppose that g ¢ Dl and that for all f ¢ DlG’

fJ- # {0}. Let 91999 +-+ € % be such that 91 =95 8,49 Y 9,4 S 9,

and in =9 l- since pp(g) > 0, by Lemma 5.14 gl = {0}. Thus

n+l

gnl = {0} for all n. Suppose there exists m such that pT(gm) = 0.

Then since Gty < 9y for all k, pT(gk) =0 for all k > m. Let

Hh

f for all n > 1. Clearly + £ < fn. If

n pG(gnﬁn~l) n+l ntl =

x| A £ =0, then (Jx|,0) A (£,,0) = 0 and hence |(k,0)| A b1
= 0., Thus (k,0) ¢ gm+n—ll and hence k = 0. Thus fnl = {0} for
all n. We conclude that £, e DlG and fll = {0} which contradicts
our assumption on G. Thus pT(gn) >0 for all n. Clearly

pT(gn+l) + pT(gn+l) §=pT(gn) and since T 1is totally ordered,
PT(gn+1)l = {0} = pT(Qn)l- Thus since p.(9) = pp(9),

Lemma 5.17: Let g € G and suppose Pp(g) > 0. Then g e DZ

if and only if p.{g) € DZT' In this case, D(g) = G X D(pT(g)).



Proof: Suppose g € DZ' Clearly pT(D(g)) is a convex
f2-subgroup of T. Let 4d ¢ pT(D(g)). Since T 1s totally ordered,
pT(g) >d or pT(g) < d. Suppose pT(g) <d, and let k € G be
such that (k,d) e D(g). Then (k,d) < g. Thus d = py(g). But
(k,d) + (k,d) = (k + k, d+d) e D(g). Thus d+d <py(9), i.e.
pT(g) %2 0. This contradicts our choice of g. Thus pT(g) > d.
Suppose a <t <b in T with a, —pT(g) +b ¢ pT(D(g)). Let
a',b' € G be such that (a',a), =-g + (b',b) € D(g9). Then
(a',a) < (0,t) < (b',b) and hence (0,t) € D(g)U (g + D()).

Thus t e pp(D(8)) U (pp(9) + pp(D(9)). Hence pr(g) e D,.

Conversely, suppose pT(g) € DZT and let D' =G X D(pT(g)).
Clearly D' 1is a convex %-subgroup of G. Let d ¢ D'. Then
pp(d) € D(pp(g)). Hence pr(d) < pp(g) and thus d = (pg(d),p(d))
< (pg(9)spp(9)) = g. Let a <t < b in G with a, -g+ b e D'.
Then p,(a), -pp(9) + pp(b) € D(py(9)), and pr(a) < p (4 < pr(b).
Since p(g9) e V), then po(£) e D(pp(9)) U [p(9) + Dlpy(a))].
Therefore £ = (pG(t),pT(t)) e D' U(g+ D'). Hence g ¢ DZ and

D(g) = D' = G X D(py(9)). 2|

Lemma 5.18: Let h ¢ G+\\{0}. Then N(0,(h,0)) = N(0,h) X {0}.
Proof: If g ¢ [-(h,0),(h,0)], clearly pT(g) = (0 and

0. 1If

pg(9) € [-h,h]. If Le (h,O)l, then [£] A (h,0)
lpT(£)| >0, £ > (h,0). Hence |pT(£)| =0, i.e. pT(Z) = 0.
Hence |pG(£)|/\ h=0, i.e. pG(Z) € hl. If k e N(0, (h,0)),
then kR=g+ £ for g e [-(h,0),(h,0)] and £ ¢ (h,O)l. Then
pp(R) = p(g) + pp(£) = 0 and pg(R) = py(g) + pg(€) e N(O,h).

Thus k e N(O,h) X {0}. Conversely, suppose that p ¢ N(O,h).
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Then p=r+s for r e [-h,h] and s ¢ hl. Hence (p,0) =

(r,0) + (s,0) and clearly (r,0) ¢ [-(h,0),(h,0)]. Also

[(s,0)] A (h,0) = (]s],0) A (h,0)

(|s] A h,0) = 0. Thus

(s,0) € (h,O)-I-. Hence (p,0) € N(0,(h,0)). | x|

Lemma 5.19: Let g € G be such that pT(g) = 0. Then g ¢ Dl
if and only if pG(g) € le'
Proof: Let g € Dl. let g,,94,, -+- € ¥ be such that g, =g,
Gpp1 t 9ppy £ 9,0 and gn+ll c gnl. Then since pT(g) = 0, we
have by Lemma 5.15 that pG(gn) eQIG for all n. Clearly
Pg(dy) = p(8) and pe(g, ) +Pg(G,yy) LRGlay). If fe Pc(gn+1)l’
then (£,0) e gn+ll fou gnl and hence f ¢ pG(gn)l. Thus pG(g) € le'
If pG(g) € le’ let hy,h,, ... EZMG be such that h, = pG(g),
+ h

hn+1 n+l = 1
all n. Clearly (hl,O) =g and G

hn’ and hn+ c hn . By Lemma 5.15, (hn,O) e Y for

0) + (h_,.,0) < (h ,0). If

n+l? n+i?

k e (h 0)l, then as in the proof of Lemma 5.18,

n+l’ l l
and pT(k) = 0. Thus pG(h) e h ~ and since pT(k) =0, ke h *.

Hence g € Dl. | %]

Lemma 5.20: Let g ¢ G be such that pT(g) = 0. Then g ¢ 02
if and only if py(g) ¢ D,y. In this case, D(g) + gl =
[D(pg(g)) + pglg)tl X (0}.

Proof: Suppose g e D,. If h e p;(D(g)), then (h,2) e D(g)
for some g ¢ T. Then (h,2) < g and since pT(g) = 0 and
D(g) < [—g,g], g = 0. Thus g = pT(g) and pG(g) > h. Suppose
a<t<b for a, -p.(g) +b e py(D(g)). Then (a,0) < (t,0) < (b,0)

and (a3,0), -g + (b,0) ¢ D(g). Hence (t,0) € D(g)U (g + D(g)),



and thus t = p,((t,0)) € po(D(g)) U [p,(9) + P;(D(g))]. Hence
Pg(9) & Dyqe

Suppose p(g) € Dy. Let D' =D(p,(9)) X {0}. If LeD',
then pg(£) € D(pc(g)) and hence p,(L) < py(g). Thus
L= (pg(D),0) < (Pg(9),0) = g. Let a<it<b for a, -g+beDd.
Then pG(a) < pG(z) < pG(b) since pT(a) =0 = pT(I) = pT(b), and
Pg(@s -pp(8) + p.(b) € D(p,(9)). Thus p (1) e D(py(g)) U
[pg(9) + D(p;(9))] and hence £ = (pg(1),0) € D' y (g +D").
Therefore g e D, and D(g) = D(py(g)) X {0}.

As in the proof of Lemma 5.18, glg; G X {0}. Thus

gl = pG(g)l X {0} and hence

D(g) + gl = [D(p;(9)) + pG(g)l] X {0}. |5|

Theorem 5.21: Let G be an f2-group, T a totally ordered

group, and let G = G X T. Then
F(N(O)) = F({V X {0}] V e N (O)\{6}}
U {[-3.9]] pp(9) € D)
U {6 XDh)| h e Dyl
U {G}).

Proof: If D% = ¢, N() = {G}. By Lemmas 5.19 and 5.20,
Ng(0) = {6} and thus {V X {0} V e N;(0O)\{G}} = 4. By Lemma 5.16,
{[-g,9]] pp(9) € Dip} = 6. By Lemma 5.17, {G X D(h)| he Dyl = 4.
Thus the right side of the equation in the statement of the theorem
is F({G)).

Therefore we may assume that D* # §. Clearly G ¢ FIN(Q)).

I1f pT(g) € DZT’ then by Lemma 5.17 D(g) = G X D(pT(g)). Since
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PT(Q) € DZT’ PT(Q) >0 and by Lemma 5.14, gl = {0}. Hence
D(g) + gl =G X D(pT(g)). Therefore, if h ¢ DZT’ G X D(h) ¢ N(O).
If pT(g) € DlT’ then by Lemma 5.16 g ¢ Dl and thus N(0,g9) € N(0).
But by Lemma 5.14, gl = {0}. Thus [-g,9] € N(0). Suppose that
Ve NG(O)\\{G}. If VeN(0), then V=N(0,h) for h e D
By Lemma 5.19, (h,0) ¢ Dl and hence by Lemma 5.18, V X {0} =
N(0,(h,0)) € N(0). If V ¢ NZG(O)’ then V = D(h) + hl for
h e DZG' By Lemma 5.20, (h,0) € DZ and V X {0} = D((h,0)) + (h,O)l

n
enN(O). 1f V=, H for H eN;.(0), then VX {0}=
iQl(Hi X {0}) e N(0) since by the above H e NSG(O) implies

i

Hy X {0} € N(0). Therefore F(N(0)) contains the right side m
il

of the equation. i

Let H e N(0). If H e Nl(O), then H = N(0,3) for g ¢ Dl' o
If pp(g) > 0, then by Lemma 5.16 pn(9) € DlT or there exists
f e D, such that el = {0}. If pg(g) € Dyp, then by Levma 5.14
gl = {0} and hence H = [-g,q] € {[-g,q]] PT(g) € DlT}' If f ¢ DlG
is such that fl = {0}, then (f,0) <g since pp(g) > 0, and
hence [-f,f] X {0} = [-(f,0),(f,0)] < [~g,g]. Since gl = {0}
and £l = {0}, this implies that N(0,f) X {0} € N(0,g). Thus
He F({V X {0}] Ve Ny(0O)\1{6}}). If pg(g) = 0, then by Lemma 5.19
Po(9) € D), and by Lemma 5.18 H = N(0,p,(9)) X {0} e {V X {0}
Ve NG(O)\\{G}}. Suppose that H ¢ N2(0). Then H = D(h) + hl
for some h ¢ Dz' If pT(h) > 0, then by Lemma 5.17 pT(h) € DZT
and by Lemma 5.14 hl = {0} so that D(h) + hl = D(h) = G X D(pT(h))

e {GXDM)| he Dyp}e If pp(h) = 0, then by Lemma 5.20



po(h) € D, and D(h) + Wl - Ip(p, (h)) + pG(h)J‘] X {0} ¢ {V X {0}]
Ve NG(O)\\jG}}- Suppose H = filHi for Hi £ N3(0). Since by
the above each Hi is a member of the right side of the equation
in the statement of the theorem and since the right side of the
equation is a filter, H must be a member of the right side of the
equation. If H =G, then H e {G}.
Therefore
FIN(0)) = FUIV X {0} V e NL(O)\{G}}
U1{l-g,81| pp(@) e Dy}
U{c X Dh)| h ¢ Dyt

U {GhH. ||

Theorem 5.21 characterizes the ¥ ~topology on a lexico-graphic
product. This characterization can be simplified depending on the

structures of G and T.

Corollary 5.22: Let G be an f2-group, T a totally ordered
group, and let G = G XT. If (a) Dé # 4, or if (b) there exists
t e T+\\{0} such that the closed interval [0,t] = {0,t}, or if
(¢) T = {0}, then

F(N(0)) = F({V X {0}] V e N (O)}).

Proof: Clearly if (c) T = {0}, then F(N(0)) = F({V X {0}]
Ve NG(O)}).

If Ve NG(O), then clearly V X {0} € [-9,9] € G. when
pp(g) > 0. Suppose h ¢ DZT' Since V G and {0} < D(h)

then V X {0} SG X D(h). Hence by Theorem 5.21 (with the

convention that F(g) = ¢)

F({V X i0}]| V ¢ Ng(0)}) 2 F(N(0) 2 FUV X {0}] Ve NG(O)\{G}}).
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If (a) Di#4, {VXI0} VeN,(@}=1VXI{0} VeN,0)\ic,
and hence F(N(0)) = F(IV X {0}] V ¢ Ne (01
Suppose that (b) there exists t ¢ T+\\{0} such that the
closed interval [0,t] = {0,t}. If Dé # ¢, then by (a) the
corollary holds. Thus, suppose that D% = 4. Then N,(0) = {G}.
Hence {V X {0}| V ¢ Ng(0)} = {6 X {0}}. Clearly t e D,p and
D(t) = {0}. Thus G X {0} ¢ {6 X D(h)| h ¢ D,p}. Thus by Theorem 5.21

F(N(0)) =2 F({6 X D(h)| h € D,p}) 2 F({6 X {0}1}).

9]

Then by the above

F({V X {0}|V ¢ N,(0)}) 2 F(N(0)) = F({G X {0}})

U

F({V X {0} V e Ny(OO}).

Therefore F(N(0)) = F({V X {0} V e N (O)]). | 5]

In case the hypotheses of Corollary 5.22 are not satisfied
we may apply the following corollary.

Corollary 5.23: Let G be an %-group, {0} # T a totally ordered

group, and let G =G X T. If Di=¢ and for all te T \{0)
the closed interval [0,t] # {0,t}, then
FN(O)) = F({[-g,91] py(g) e TW\{0}D).
Proof: By the proof of Theorem 4.5, under the conditions on
T in the corollary, T \{0} = D, - Thus by Theorem 5.21
FIN)) 2 F({[-g,9] py(@) & Dyp}) = F(1I=g,91] py(@) e T \{0}D).
Since D% = ¢, {VX {0} Ve N (0)\ {6}

¢. If he DZT’ there
exists 2 € T such that 0 < 2 <h., Then £, h - % ¢ T+\\{0}. If
2 € D(h), then [-2,2] SD(h). If & ¢ D(h), then 2 ¢ h + D(h),

i.e. -h + 2 € D(h). Hence h - & = -(-h + %) € D(h) and thus



[-(h - 2),h - 2] € D(h). Since T # {0}, G e F({[-g,q1| g ¢ T+\\{0}}).

Thus by Theorem 5.21
F({l-g,91| g ¢ T+\{0}}) 2 F(NWO)),
and hence F({[-g,91| g ¢ TH \{0}}) = F(N(0)). | %]

The generality of the definition of DZ comes into play in
the case of lexico-graphic products. Instead of DZ we could have

defined

Dg {h] h ¢ 6"\{0}, and [0,h] = {0,h}}

{h| h e D,, and D(h) = {0}},

and then for x ¢ G+\{O}

1 : i
N, (0) {h1| he Dy},

1 _ 1
N3(0) = NliO)LJ N, (0,

N o) {fllnil H e Ng(O) for all i = 1,...,n},

N = (x + 1| 5 e N (O],

Iﬂ = {WS G| for all xe W, WEe F(Nﬂ(x))}.

The theorems in Chapters 2, 3, and 4 as well as the theorem on
cardinal products would have remained true [51). However, if G
is an g-group such that D* = ¢ (we will construct two in Chapter 7),
then the topology I'.“ is indiscrete on G X z. More naturally,
the filter of I—neighborhoods of 0 1is, by Corollary 5.22,
F({c x {0}}).
In {51] the £ ﬂ—topology is discussed in more detail. As an example
of the close relationship between the I -topology and the Iﬂ-—topology,

we note the following proposition, which is proved in [51]:

Proposition 5.24: If D(h) N (Dl U Dg) # ¢ for all h e Dz\Dg,

then T = l‘ﬂ lnl
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6. GROUPS WITH HAUSDORFF % -TOPOLOGY

In this chapter we investigate the Hausdorff separation axiom
on f-groups with € -topology. We first characterize those f-groups
with discrete <-topology; and then derive necessary and sufficient
conditions for an f-group to have a Hausdorff ¥ -topology. In

7 we construct an R-group with indiscrete ZI-topology.

iapier
Recall (Conrad [15] and Chapter 2) that an f-group L is
a lexico~extension of an %-group S if and only if S is an 2-ideal \
of L, L/S 1is a totally ordered group, and every positive element
in L\\S exceeds every element in S. If Al""’Ah are totally
ordered groups, then by a finite alternating sequence of cardinal
summations ‘and lexico—-extensions, we can construct 2-groups from
the Ai’ in which each ’Ai is used exactly once to make a cardinal
extension and in which the lexico-extensions are arbitrary. Such
2-groups are lexico-sums of the Ai' In forming a lexico-sum the
first operaticn must be cardinal summation. Thus, if n = 3, there
are two ways of constructing lexico-sums of Al’ A2, and A3 in
this order, namely <A, |X| <a, |x] Ag>> and <<A x| A> |X] Ay,
where <L> denotes a lexico-extension of the f#~group L.
The first theorem of this chapter characterizes those %-groups

with discrete I-topology as lexico-sums of lexico-extensions of

the integers.
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Let G be an arbitrary &-group. As in the preceding chapter,

let

DS
=
]

{h] n e 6"\{0}, and [0,h] = {0,h}}

]

{h] h ¢ D,, and D(h) = {0}}.

Lemma 6.1: Let h ¢ Dz\\Dg' Let ke G. If kAd=0 for
all de D), then k Ah = O.

Proof: Since D(h) # {0} and k Ad =0 for all d e D(h)",
then k > 0. Hence 0 <k Ah <h. Thus k Ah e D(h) U (h + D(h)).
If k Aheh+ D(h), then by Lemma 2.2(a) kA h>d for all
deD(). Thus d=kAhAd=kAd=0 forall de Dh) .
Since D(h) is a subgroup, this implies that D(h) = {0}, i.e
h ¢ Dg. This contradicts our choice of h. Thus kA h e D().

Then k Ah=kAk Ah= 0. | 5]

Therefore, if h ¢ Dz\\Pg and k A h > 0, then there exists

d e D(h)+ such that k Ad > 0. We denote the meet of k with
+

one such d e D(h) by d(h,k). Thus d(h,k) € D(h) and
k A d(h,k) = d(h,k) > 0.

Lemma 6.2: {0} € N(0) if and only if there exist'{hl,...,hn} = Dg
such that ( 3 h )ll =G

i¥1% .

such that

Proof: Suppose there exist {h ,...,hn} c?

_— 1 2

n
(.V"h.)ll = G. Then for all i=1,...,n, h, € D, with D(,) = {0}
i=1"1 ﬁ l i 2 n l i n l
and hence hil £ NZ(O)' Thus i=1(hi ) € N(O). But fll(hi ) = (iilhi)

Vil vl o
and since (i;&hi) = G, (iglhi) = {0}. Thus {0} e N(O0).

Suppose that for all finite subsets '{hl,...hﬁ} = Dg,

n _ n
(i\élhi)“- # G. Then for all {h,...n} S 0}, ((i\__{lhi)-l-)+\{0} 4 4.



n

Let '{Hl,...,Hn} s NB(O) and consider iglﬂi' In the most general

= hl for h =
i

n<-o

case, we may assume that H; by where {hl,...hp}
c gl

. T
by for i=2,...,m, m<n, H = D(g;) + gil for g, ¢ Dz\\DZ;
and for i =mtl,...,n, H; = N(0,f;) for £, € Dl' 1f

Dy N {hy,...,h } = g, (vz\vz) N {hy,esh 3 =6, or D 0 {hj,.yh }

n

= ¢, then the following argument may be appropriately simplified.
Let 2, € (hl)+\\{0}, and define 4%,,...,% as follows:
8, = {d(gi,zi_l) if 2, Ag >0
21 if 2,  Ag =0
for 2 <1 £m and d(gi,li_l) as defined preceding the statement

of the lemma, and

li = li—l A fi if li—l A fi >0
li—l if li-l A fi =0
for mtl £ i < n. Clearly O < ln §=ln—1 Loeee 28y 248, Thus
ln £ Hl. Suppose 2 <i <sm. If 2i~1 A8y > 0, then

L. = d(gi,li_l) € D(gi). If 2

i Ag. =0, then li = L.

i-1 i

Thus £ € H,. Suppose mtl < i <n. If 2, ANf., > 0, then
n i =" = i i

li = li—l A fi € [—fi,fi]. If li—l A fi = 0, then li = li_ € fi .

Hence % € H,. Thus & € H, for all i=1,...,n, 1i.e.
. i n i
€ iEHHi‘ Since & > 0, igﬁHi # {0}. Therefore

{0} ¢ N(O). | x|

Corollary 6.3: G has discrete ¥ -topology if and only if

h}lc?D

. T
there exist {hl,... 0 )

vnll
such that (jY,h, )+t = G. |5

Lemma 6.4: If h e Dg, then hll is a lexico-extension

of [h] = Z.
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Proof: Let % € hll. Then £ + h - £ ¢ hll, and thus
(¢ +h-8)Ah>0. Since h e Dg, this implies that (8 + h - 2) A h
=h. Hence £ +h-22>h, i.e. h2-2+h+ 2 But -2+h+2>0
and thus h=-2+h+ 4%, i.e. -2 +h + & ¢ [h]. Therefore [h] 1is
a normal subgroup of hll.

Z. Let k,% ¢ hll. If

R

Since h & D;, clearly [h]

(2 -x)">0, then @ -0 'Ah=h and if (-2 -xNT >0,

+ + +
then (-(2 - k)) A h =h. Thus, since (8 - k) A (- -k)) =0,
either (& - k)+ =0 or (-0 - k))+ =0, i.e. either 2 <k or
k < 2. Hence hll is totally ordered. Thus G(h) 1is totally

ordered, and hence if k € G(h), then nh <k < (ntl)h for some
neZ Thus 0 <k -nh<h, i.e. k =nh. Hence G() = [h],
and thus [h] is convex.

Therefore [h] 4is an f-ideal of hll, and since hll is
totally ordered, every element 0 < a ¢ hll\\[h] exceeds every

element of [h]. Hence by [15, Lemma 1.1], hll is a lexico-

extension of [h]. | B]

n
T .
Lemma 6.5: If {hl,...,hn} c DZ’ then (iglhi)ll is a

lexico~sum of hlll, hzil, e hnll.
Proof: If x ¢ ((iglhi)ll)+\\j0}, then clearly x A hi >0

for at least one hi. Hence x ;:hi for at least one hi' Thus
n
(izlhi)ll cannot contain more than n disjoint elements; for
otherwise there would exist x, y, 1 such that xA y =0 but x ;:hi
vonyll
and y >2h,. Also {hl,...,hn} c (iglhi) is disjoint since

{hl,..,hn} Q'Dg. For each i = 1,...,n, let A, be the subgroup

i



of ( 3 h )-LL generated by {x e ( 3 h )lll xAbD

1217177 - 12174 A
Then by [15, Theorem 1], (]._\__{lh]._)-'--L is a lexico-sum of the totally
ordered groups Al""’An'

1+ g

If x ¢ (hi ) , then x A hj =0 for all j # i. Hence
x € A, and thus h.-u-g A, .

i i i

If xA hj =0=y A hj for all j #1i, then E+ y) A hj =0

n
for all j # i. Thus {x ¢ (iglhi)ll' X /\hj =0 for all j # i}
n

is a convex subsemigroup of positive elements of (iilhi)ll that

contains O and hence by [15, Lemma 2.3], A:

{xe (iglhi)lll
lhi)llf\\IO}, then

clearly |y| A hj >0 for some j # k. Hence Ay n hil = {0}.

(R =T ]

_ g s ln
x A hj 0 for all j # i}. If y e (hk (G

Let x € A:. If x ¢ (hill)+, then there exists k ¢ hil such
that kA x > 0. Since AI is convex, kA x ¢ Ai' But

k AxA hi = 0 and hence kA x & hil' Thus k A x = 0, which
contradicts our choice of k. Thus hill 2 Ai'

Therefore Ai = hill for all 1. IHI

Theorem 6.6: An f-group G has discrete <I-topology if and
only if G 1is f%-isomorphic to a lexico-sum of lexico-extensions
of the integers.

Proof: Suppose that G 1is 2~isomorphic to a lexico-sum of
lexico-extensions of Z. Then for i = 1,...,n, there exists
Ai & G such that Ai is f~isomorphic to a lexico-~extension of
Z and G 1is the lexico-sum of Al""’Ah' Let hi € Ai correspond
to 1 e Z under the %-isomorphism. Then hi € Dg for all
[ - Vol = vonoyll -
i=1,...,n and clearly (izlhi) = {0}. Hence (i:&hi) =G

so that by Corollary 6.3 G has discrete I -topology.
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Suppose that G has discrete ¥ -topology. Then by Corollary 6.3,

= r\l/h 11 c Pl LI
G = (i=1 i) for {hl,...,hn} <D,. By Lemma 6.4, each hi
is f~isomorphic to a lexico-extension of Z. By Lemma 6.5, G is

a lexico-sum of h ll,...,h ll. |H|
1 n

We now turn our attention to criteria for the ¥ ~topology to
be Hausdorff.
Theorem 6.7: If G is an g-group with ¥ -topology ¥, then
the following statements are equivalent:
(a) ¥ 4is Hausdorff.
(b) N N(O) = {0}.
(c) For all g ¢ G+\\{0}, there exists H ¢ N3(0) such that
g ¢ H.
Proof: By Theorem B, (a) is equivalent to (k). Suppose (b)
holds, and let g ¢ G+\\{0}. Then g ¢ (VN(0), and hence there

n
exists H e N(O) such that g ¢ H. Since He N(©), H= [l _H

i=1"1
for H; e N3(0). Since g ¢ H, g ¢ H; for at least one i. Thus
(c) holds. Cbnversely, suppose that (c) holds and let g ¢ n N(0).
If g#0, |g| > 0. Hence by (c¢), |g| ¢ NN,(0)2 N N(O). But
by Lemmas 2.12 and 2.23, every H e N(0) is a symmetric sublattice
of G. Hence since g e NN(0), |g| =g V (-g) €N N(0). This

is a contradiction. Therefore g = 0 and (b) holds. lﬂl

Corollary 6.8: If D* Nl [0,g] # ¢ for all g ¢ d+\\{0}, then

G has Hausdorff < -topology.




;,
‘
\
|
:
l
:

Proof: Let g € G+\\{0}. Let h' e D* N [0,g]. If h' e Dl’
let h e Dl be such that h+ h s h' and h' e hll, and let

H = N(O,h) € N;(0). If h' e D,\D,, let h=h' and H=D(h) + nl
€ N3(0). Then by our choice of h, g ¢ H. Thus by Theorem 6.7,

G has Hausdorff ZI-topology. [ =]

Example 7.10 in Chapter 7 shows that the converse of Corollary 6.8
fails to hold in general. In the remainder of this chapter, we
derive a condition which is similar in character to that in
Corollary 6.8 and which is necessary and sufficient for the
T-topology to be Hausdorff. We have to find a larger set to replace
[0,g] in the hypothesis of Corollary 6.8.

Let g ¢ G+\\{0}. For h e T(g), we adopt the notation h'
for the element h' ¢ G such that h Ah' =0 and hV h' =g,
and we let

M(g,h) = ¢ \I(h,=) N (w'h1.
Clearly {0,g} € T(g) and
<G+\<g1>> U {0} = G+\[(gl)\{0}],
"\ (g,=).

We note that d+\\M(g,h) = (h,=*) N (h'l) and hence

M(g,0)

M(g,g)

N\ N M) = U [ nabl
heT(g) heT (g)

Thus N M(g,h) is intuitively those elements of G+ which
heT (g)

are not "directly above'" some "factor" of g. See figures XVIII
through XXII as elaborated below.
In all the figures XVIII through XXII, the shaded areas include

all points on the boundaries except the 'base" points, i.e. the

98



99

point "h" is not included in the set G+\\M(g,h). Compare figures

XVIII and XIX with figures VI and VII respectively. In figures XX,
XXI, and XXII, the shaded areas are to be interpreted as follows:
to be an element of the set depicted by a shaded area, a function
must have its graph lying within the shaded area; the boundary of
the shaded area is to be interpreted as above. Thus a function is
in the complement of a set depicted by a shaded area if some point
of its graph lies outside the shaded area or if it is a "base" point
of the set. In figure XXII, the dashed lines are meant as reference
lines for the other figures; they are not involved in interpreting
the shading of the figure. For instance, the function k e A(R)
defined by xk = xh, + 1 1is in the shaded area of figure XXII; the

1

function k € A(R) defined by xk = xh, + (1/2) is not in the

1

shaded area. The "base" points i, g, hl’ h2 are not in the shaded

area; however, functions such as £ defined by

x% = 1x if x e (-=,3)
2% - 3 if x e [3,4)
x+1 if x e [4,x)

are.
The set which successfully replaces [0O,g] in the hypothesis

of Corollary 6.8 is i M(g,h). The theorem corresponding to
heT (g)

Corollary 6.8 is Theorem 6.15; we prove six preliminary lemmas.
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figure XIX
3
¢ = |n|R
1 +
I ¢ \M((a,b.), (a,b,c))
" M '/—“\
. //// [t
///\ —
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¢\ M((a,b,¢), (0,0,0)) = 4
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figure XX

G = A(R)

N\ ,
NN

xh1 = %x + 6 if x e [-4,-2)
1 3 . +
x5 if xe [-2,2) , ¢ \M(g,hz)
Lx otherwise
xh, = fox - 3 if x e [3,4)
%x + 3 if x e [4,6)
Lx otherwise

Y
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figure XX1

G = A(R)

G+\M(g,i)




figure XXTT 10%

G = A(R)

A

¢"\( N Mg,h))
heT(g)
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Lemma 6.9: Let g e GT \{0}. If D¥1 ( N M(g,h)) # 4,
heT (g)

then there exists H ¢ N3(0) such that g ¢ H.

Proof: Let & ¢ DN ( N M(g,h)). If L ¢ Dl’ let h e Dl
heT(g)

be such that h+h s & and ht = 2. Let H = N(O,h) € Nl(O).

If % ¢ 02, let h=24%2 and let H = D(R) + ll € N2(0). Suppose
g € H. By Lemma 2.2(b), and since hl = ll, HES [-2,2] + ll.
By Lemma 2.13(a), since g > 0, g=a+b for ace [0,] N H

and h ¢ {0-|-\+ N u Cinerco
ana [S BN SEN @ Y N+ %Y SANCC

I\b:n

2 n o~
[ SAY vy a o

Tl and al = K

T(g) and =2 b.
Since by construction of H £ £ H, a< &, i.e. £ ¢ (a,®).

Since b ¢ ll, L e bl. Thus 2 € (a,») N (a'l), i.e. 2 £ M(g,a).

This implies that £ ¢ M(g4h), which contradicts our choice
heT (g)

of 1. Inl

Lemma 6.10: Let % ¢ 02. Then for all k € 2 + D(R), k ¢ 02
and D(k) = D(R).

Proof: By Lemma 2.2(a), k > d for all d e D(&). Suppose that
a<t<b for a, -k+b e D(L). Since ke L +DQR), k=2+4d
for d € D(8). Then -k +b =-d - 2 + b and thus, since
-k +beD®), -2+bed+DR). Thus t € DA)U (& + D(R)).

But k+ D(2) = 2 +d+ D) =2+ D). Thus t e D(2) U (k + D(R)).

Thus k e D, and D(k) = D(R). ||

Lemma 6.11: Let &,h € 92 and suppose that h < &. Then
D(h) < D(R).

Proof: Since 0 < h <%, heD@®)U (2 +D()). If he 2+ DA,
by Lemma 6.10 D(h) = D(2). Thus suppose h e D(2). By Lemma 2.2(b),

D(h) € [-h,h]. Since D(&) is convex, D(h) c D(R). |x|
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Lemma 6.12; Let G have Hausdorff g —~topology. If 2 ¢ Dz\\Dg,
then D% n (1N (6 y b1 U D) # 4.

Proof: Let g e D(£)+\\{O}. Since G has Hausdorff ¥ -topology,
by Theorem 6.7 there exists L ¢ N3(0) such that g ¢ L. If
Le Nl(O), then L = N(O,h) for h ¢ Dl' If h e El, then
2 e hl S N(O,h) = L. Since ge D(R), 0 <g <2 and thus ge L,
which contradicts our choice of L. Suppose that h e G(2). If
h A% ¢ D(2), then hA 2 ¢ & + D(2) and by Lemma 2.2(a) hA £ > g.
Hence g € [O,h A 2] € N(O,h) = L, which contradicts our choice of
L. Thus h A £ ¢ D(2) and by Lemma 2.9, h e D(1).

Suppose that L ¢ NZ(O)' Then L = D(h) + hl for h ¢ Dz. If
h e zl, then £ € hl € L and as above this implies that g e L,
which contradicts our choice of L. Thus suppose that h e G(&). If
h A& ¢D(R), then hA 2 ¢ 2 + D(L) and by Lemma 6.10,
h AL e DZ and D(h A 2) = D(R). Since h A2 and h ¢ DZ’
by Lemma 6.11 D(h A 2) S D(h). Thus g e D(2) < D(h) ¢ L,
which contradicts our.choice of L. Hence h A 2 € D(R) and

by Lemma 2.9 h e D(&). | m|

Lemma 6.13: Let g € G+\\{0}. If he¥ NT(g), then
(0,h) NT(g) = 4.

Proof: Suppose that k € (0,h) NT(g). Then there exists
k' € T(g) such that k Ak' =0 and kv k'=g. Thus (h o k') Ak=0
and (h Ak') Vk=(thV k) A('V k) =ha g=h. Hence k e T(h),

which contradicts the fact that h e 9. | 5]



Lemma 6.14: Let g € G+\{0}. If a,b ey N T(g) and
a#b, then a Ab = 0.
Proof: Let a',b' € G be such that aa a' =0=b Ab'

and a Va' =g=bV b'. Then

(aADB)A (a' Vb (aAbAa') V{aAaba b') =0,
and

(aAb) VvV (a' vVb")

(avaVvb')yA (bv a'v b') = g.
Thus a/\bE'l_'(g). Since a €% NT(g), by Lemma 6.13 ap b =0
or aAb=a. If aA b=a, then aaA b # 0 and applying
Lemma 6.13 to b €Y N T(g), we have that a = apa b = b, which

contradicts our choice of a and b. IHI

Theorem 6.15: An %-group G has Hausdorff g -topology if and

only if for all ge G \{0}, D*n ( N M(g,h)) # 4.
heT (g)

Proof: Suppose that for all g ¢ G+\{O}, D*n (. n M(g,h)) # 4.
heT(g)

By Lemma 6.9 and Theorem 6.7 G has Hausdorff I -topology.
Conversely, suppose that G has Hausdorff ¥ -topology. Let

g € G+\{O}. Then by Theorem 6.7 there exists L € N3(0) such

that g¢ L. If L e Nl(O), then L = N(0,%2) for 2 ¢ Dl' If

2 ¢ N M(g,h), then 2 ¢ M(g,h) for some h e T(g). Thus
heT (g)

2 e (h,»)N (h'J-). Since 0 <h < &%, he [-2,2]. Since £ e h'J-,
h' ¢ EJ-. Thus
g=h+h"¢e [-2,2] +2J-=L,

which contradicts our choice of L. Thus £ ¢ n M(g,h).
heT (g)



108

If L e NZ(O)’ then L = D(R) + 21 for g ¢ 02' Suppose that

L € Dg and suppose further that 2 ¢ N  M(g,h). Then & ¢ M(g,h)
heT(T)

for some h e T(g). Thus & € (h,») N(h'L). Since 2 ¢ Dg and

since h < %, then h =0 and thus h' = g. Since 2% ¢ h'l,

g =nh'e 21 {0} + 2* = L,
which contradicts our choice of L. Hence 2 ¢ I M(g,h).
heT(g)
Suppose that 2 ¢ Dz\\Dﬁ. If 2¢ N M(g,h), we are done.
2
heT (g)
Thus suppose that £ ¢ 1 M(g,h). Then 2 ¢ M(g,p) for some
heT(g)

p € T(g), and hence 2 ¢ (p,») N (p' l) Since 0 <p < &,
pe D) U+ D). Since 2 ¢ p'l, p' e 21. Thus if p e D(R),
g=p+p'eDQ)+ ll =1,
which contradicts 6ur choice of L. Thus p € % + D(&). By
Lemma 6.10, p e Dz and D(p) = D(X). Hence by Proposition 2.3,
pe W. By Lemma 6.12, there exists k e D% (1 ([G\(G(R) U 21)][J D(L)).
Suppose that k € D(2). Then k € D(p) and k ¢ (0,p) < [0,g].
If k f M(g,h) for some h e T(g), then k e (h,») N (h'l) and
thus
=h+h'"<k+h'"=kVh <gvg=g,

which is a contradiction. Thus k € N M(g,h). Suppose that
heT (g)

ke 6N\(6(2) U ey, 16 k¢ N M(g,h), then k ¢ M(g,h) for
heT(g)

1
some h € T(g). By the arguments above we must have k € Dz\\Dz
and h e k + D(k). By Lemma 6.10 and Proposition 2.3, h ¢ ¥U.
Thus by Lemma 6.14, since h # p, hA p =0. By Lemma 2.8, hl = kl

and pl = 21. Thus k AL =0, i.e. k ¢ 21, which contradicts our

choice of k. Thus ke N M(g,h). IEI
heT (g)
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Let T2(G) be the convex f%-subgroup of G generated by

fge GTN\IO} D*n ( 0 M(g,h) = ¢} U {0}
heT(g)

Then clearly Theorem 6.15 implies the following:

Corollary 6.16: An &-~group G has Hausdorff <-topology if

R

and only if T2(G) = {0}. Rl

The next three propositions give some basic information about
T2(G).

Proposition 6.17: T,(G) 2 N N(0).

Proof: By Lemmas 2.12 and 2.23, each H ¢ N(0) 1is a symmetric

sublattice of G. Hence N N(0) is a symmetric sublattice of G

and thus g e NN() if and only if Igl e NN(0). Since 0 ¢ T2(G),

it therefore suffices to show that 0 N(0)+\\{0} € T,(6). Let

g € N(0)+\\{0}. If 2 ¢ Dl’ then there exists 1% ¢ Dl such that
9% + 2% < ¢ and l*l = ll. Since g e N N(0), g € N(0,2*) and
hence by Lemma 2.13(a) g=a+b for a e [0,2%] and b ¢ l*l.
Since L* < &, & ¢ (a,»). Since z*l = ll, b e ll, and hence

% € bl. Since a Ab=0, aeT(g) and b = a'. Thus

L

[y]

(a,=) N (a'l), i.e. 2 ¢ M(g,a). Suppose that k € DZ' Since
g e NN@O), ge Dk)+ kl. Then by Lemmas 2.13(a) and 2.2(b),
g=a+b for ace D(k)+ and b ¢ (kl)+. Since a e D(k),

k € (a,») and since b € kl, k € bl. Since aA b =0, aceT(g)
and b = a'. Thus k € (a,»)N (a'l), i.e. k ¢ M(g,a). Therefore

Dx N (n M(g,h)) = ¢,
heT(g)

and hence g e {g¢ G+\\{0}| DxN (N Mg,h)) =g}s T2(G). | m|
heT (g)




We note that Proposition 6.17 could be used in place of
Lemma 6.9 in the proof of Theorem 6.15. That is, if for all

g € G+\\{0}, DN ( N M(g,h)) # ¢, then T2(G) = {0}. By
heT (g)

Proposition 6.17, N N(0) & T2(G) and hence NN() = {0}. Thus
by Theorem 6.7, G has Hausdorff I-~topology.
Let N be a convex &-subgroup of G. Conrad [17] defines
N to be regular if N is a value of some g e G, di.e. if there
exists g € G such that N is maximal with respect to not
containing g (cf. Chapter 2). Let
T%(G) = {N| N 1is a regular convex 2-subgroup of G and for

all ge G \N, DxN ( N M(g,h)) # ¢}
heT (g)

Similarly to [17, Proposition 3.5], we have the following:

Proposition 6.18: T2(G) = N N.
NeT#(G)
2
Proof: Clearly N N 1is a convex Z-subgroup of G which
NET;(G)

contains {g ¢ G+\\{O}i DxN ( N M(g,h)) = ¢}. Hence TZ(G)
heT (g)

c n N. On the other hand, suppose that h ¢ T2(G). Then
NeT%(G)

by Zorn's Lemma, there exists a convex %£-subgroup N which is
maximal with respect to containing T2(G) but not containing h.

Then clearly N is regular and since T2(G)€; N, N ¢ TE(G).

Thus T,(G) 2 N N. |2

2 NeTg(G)

Proposition 6.19: T2(G) is an &-ideal of G.

110
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Proof: It suffices to show that

fge ¢P\I0}| D% 0 ( N Mg,h) = ¢}
heT (g)

is a normal subset of G. By Lemmas 2.15 and 2.16 and the proof
of Lemma 2.12(c), D% is a normal subset of G. Let a e G and

suppose that g ¢ G+\\{O} is such that D*n ( n M(g,h)) = ¢.
heT(g)

Let p e D*, Since D* 4is normal, -a + p + a € D*. Thus there
exists h e T(g) such that -a +p + a ¢ M(g,h), i.e. —a+p + a

€ (h,=) N (W'=). Then clearly pe (a +h -~ a, «), By Lemma 2.14(b),
since p e a + h'l -a, pefa+h'- a)l. By Lemma 2.15,
a+h-ac T(a + g - a). Clearly (a+h -a)'=a+h'- a.

Thus pe (a+h-a, °) N {((a+h- a)')l, i.e.

p¢Ma+g-a, a+h-a). Since p was an arbitrary element

of D%, we conclude that D*N ( N M(a + g - a, k)) = ¢.
keT (atg-a)
+ .
Clearly a+g=-2a¢eG \\{0}, and hence
fg e 6 \{0} D*xN ( N M(g,h) = ¢}
heT (g)

is a normal subset of G. |n[
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7. MORE EXAMPLES

In this chapter we look at some examples of the ¥ -topology
with regard to the Hausdorff separation axiom.

Example 7.1: In this example we show that A(R) has Hausdorff
¥ -topology. As in Example 3.1, this result follows from the same
result for A(Q) where Q is a totally ordered set and A(Q) is
doubly transitive.

Proposition 7.2: Let & be a totally ordered set. If A(Q)

is doubly transitive, then A(Q) has Hausdorff ¥ -topology.
Proof: Let g ¢ A(Q)+J\{i}. Similarly to Example 3.1, for
we 2, we let
I(w,g) = {1t ¢ Q] there exist integers m,n such that
8" < 1 < 1"}
Clearly I(w,g) 1is convex for any w € Q. Since g > i, there
exists T € @ such that 1tg > 1. Let w € I(t,g). Since 1g > T,
wg > w. Clearly vI(t,g), A I(t,g) € é\\I(T,g). Thus, since
I(t,g) 1is convex,
( AI(T,8)5 VI(1,8)) N 2 = I(1,8).
Define a function £:Q > Q by
wf = {wg if we I(t,g)
w otherwise.
By Lemma 3.3, f € A(Q)+. Since tg > 1, £ > i. Since

(AI(t,g), Vv I(t,g)) N @ = I(t,g), we have that



S(f) = ( AL(t,g), VI(r,g)). Thus by Proposition 3.2, f ¢ 9.

By Proposition 3.5, since A(Q) 4is doubly transitive, U = Dl'

Clearly f ¢ [i,g], and thus Dl NJ[i,g] # . Since g was

an arbitrary element of A(Q)+\\{i}, we have by Corollary 6.8

that A(Q) has Hausdorff <I-topology. Alternately, we note that

if 2 ¢ [i,g]\\M(g,h) for some h e T(g), then & > h and

2A h' = 0 so that, as in the proof of Theorem 6.15,
g=h+h'<2+h'=2Vh'=<gvg-=g.

This is a contadiction, and hence [i,g]l ¢ N M(g,h). Thus
heT (g)

by Theorem 6.15, A(Q) has Hausdorff ¥ -topology. Iﬁl

Thus A(R) has Hausdorff I-topology.

Corollary 7.3: Every f-~group is f-isomorphic to an f£-subgroup

of an 2-group with Hausdorff I -topology.
Proof: The corollary follows from Proposition 7.2 and the Holland

representation of an f-group [33]. |El

Example 7.4: In this example we show that G(R) has Hausdorff
I ~topology.

Let Y be a connected topological space with topology U.
Let C(Y) be the set of all continuous functions from Y to R.
Recall (Chapter 1) that C(Y) may be considered as an abelian
fL~group with addition defined pointwise, i.e. by

x(f + g) = (xf) + (xg),

and a partial order defined by

f s g 4f and only if xf 5 xg for all =x e Y.
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Then x(f A g) = (xf) A (xg) and x(fy g) = (xf) V (xg).
Let
+
Q* = {f e C(Y)| xf =q for all x e Y and for q e Q \\{0}}.
Lemma 7.5: Q% S Dl.
+.
Proof: Let f € Q*. Let q € Q \\{0} be such that xf = q.

0.

Suppose that h,% € C(Y) are such that hvVv 2 f and hAa 2

xf = x(h VQ)

If xe Y 1is such that xh = 0 = x%, then ¢ 0,
which contradicts our choice of q. Thus (O)h'-l n (0)2_l = ¢. If
x € YN U (0)¢™Y), then xh >0 and x¢ > 0. Thus
0 < (xh) A (x2) = x(h AL) =0, which is a contradiction. Hence
Y = (O)h_lU (0)2_1. Since h and & are continuous and since
{0} is closed in the interval topology of R, (O)h'-l and (0)2—l
are closed with respect to U. Thus, since Y is connected,
either (002X = ¢ or (O)h™' = ¢, i.e. either & =f or h = f.
Therefore f € ¥, and hence Q* & .

Let f e C(Y). For n e N, let g :Y > R be defined by

x(ﬁ)

(%)(xf). Clearly E € C(Y) and n(g) = f. Thus
C(Y) 1is divisible and by Proposition 3.4, U = Dl' Therefore

Q* < D,. |5

Proposition 7.6: Let Y be a connected topological space. Then

C(Y) has Hausdorff ¥ -~topology.

Proof: Let g € C(Y)+\\{0}. Let r € R+\\{0} be such that
ug = r for some u e Y. Since r > 0, there exists q € Q such
that 0 < q < r. Define q* ¢ C(Y) by =xq* = q for all x e Y.

Clearly g* € Q*¥, and hence by Lemma 7.5, q* ¢ Dl' Suppose that



q* ¢ M(g,h) for some h ¢ T(g). Then q* € (h,®) f\(h'l).
Clearly q*l = {0} and thus h' =0, i.e. h =g. Since
ug* = q < r = ug, q*¥ ¥ g. This contradicts our choice of h. Thus

q*¥* ¢ N M(g,h), and hence D*n ( N M(g,h)) # ¢. Therefore
h T(g) h T(g)

by Theorem 6.15, C(Y) has Hausdorff g -topology. Alternately,
since q*l = {0}, N(0,q*) = [-q*,q*] and thus since q* ¢ (g,°),

g ¢ N(O,q*). Thus C(Y) has Hausdorff g-topology by

-
/

;_

™oL
incoieil O.

Corollary 7.7: C(R) has Hausdorff <-topology. ||

Example 7.8: Let G be the f-group constructed in Example 3.6.
We show that G has Hausdorff € -topology; the method we use is
similar to that used to prove Proposition 7.6.

In Example 3.6, we proved that (P U F)+\\j0} €7D Let

1
g € G+\\j0}, let r € R be such that rg > 0, and let q ¢ Q+\\{0}
be such that rg > q > 0. If r < -2, let k = gq; if r > -2,

let k = fq. Then k ¢ Dl' Suppose that h e T(g) and that h' ¢ G
is such that hA h' =0 and hV h' = g. If ke h'l, then

S(h') NS(k) =¢, and since rk >0, r ¢ S(h'). Thus r ¢ S(h)

and rh = rg > q > rk > 0. Therefore k ¢ (h,»). Hence

k € N M(g,h), and since g was an arbitrary element of
heT(g)

G+\\i0}, by Theorem 6.15 G has Hausdorff I-topology. Alternately,

we have the following: If g e N(O,k), then g=h + h' for

h e [-k,k] and h' ¢ kl. Since rk > 0, rh' =0 and thus rh = rg.

But rg > q > rk, which contradicts our choice of h. Therefore

by Theorem 6.7, G has Hausdorff <~topology.

115



116

Example 7.9: In this example we construct an f-group which is
a (non-convex) f%-subgroup of a cardinal product of totally ordered

groups and which has 9 = g.

[}

Let G = |N|R. Let
1

{f ¢ G| there is an n € N such that for all i

=
L]

(i +n)f = (1)f}.
Let f,g e L. and let n,m €¢ N be such that (i + n)f = (i)f and

(i +mg

(i)g for all 1i. Then clearly (i + n)(-f) = (i)(-£),

GA+m)(f+g)=({{)(E+g), A+mm)(fvg) =) vg), and

(L +nm)(£A g)

(1)(f A g) for all i, Thus L is an f-subgroup
of G. Let fe L \{0} and let ne N be such that (i + n)f = (i)f.

Define h,% € G by

(i)h = {(4)f if 2kn < i < (2k + 1)n for some k e Z'

0 if (2k + 1)n < i < (2k + 2)n  for some ke Z',
(1)2 = {0 if 2kn < i < (2k + 1)n for some k e Z'

((1)f if (2k+ 1)n< i< (2k + 2)n for some ke Z .

Since f > 0, we must have h > 0 and & > 0. Clearly (i + 2n)h
= (i)h and (1 + 2n)% = (1)%. Thus h,% € L. It is also clear that
h+2=f and hA & =0. Hence f ¢ U. Therefore Y = ¢ and

hence L has indiscrete T ~topology.

Example 7.10: The f-group of this example has Hausdorff

I -topology and an element g such that D% N [0,g] = 4. It is
similar to the f2~group constructed in Example 3.6.
Let L be the &-group of Example 7.9 and let C(R) be the

%~-group of all continuous functions from R to R (cf. Example 7.4).



Define a function wiL -+ C(R) as follows: for £ ¢ L, &m e C(R)

is the function defined by

(A1) = {2(12) (x - i) if x e (i, i+ %]
2(48)(~x + i + 1)  if x e (i + %, i+ 1)
0 otherwise

where 1 =1,2,3, ... . See figure XXIII. If 2 € L, then
-(4m) = (~2)7m e L . Let &,g € L, and suppose £ # g. Then

clearly &v # gm, since (i + %)(hﬂ) = ih for all h € L. Further

x(Am + gm)

= {2(12) (x - 1) + 2(ig)(x - 1) if x € (i,i43]
2(12) (~x + 1 + 1) + 2(ig)(—x + i + 1) if x ¢ (i+%,i+1]
0 otherwise

= 12(1)2 + g)(x - 1) if x ¢ (i,i+%]
2(1) (& + g)(=x + i + 1) if x € (i+%,i+1]
o, otherwise

= x[(2 + g)n].

Thus L is group isomorphic to L . Also
x(41 v gm)
= [[219) & - 1)1 v [2(ig) (x - 1)] if x & (1,145]
[2(i8) (-x + 1 + 1)1V [2(ig)(~x + 1 + 1)] 1if x e (i+>,i+1]
Y otherwise.
If xe (4, 1 +%], then x - i > 0, and thus
[2¢ig)(x - 1)] v [2(ig)(x - 1)] = 2[(i8) v (ig)](x - i).
If xe(i+3, i+1], then —x+4i+1>0, and thus
[2(i8)(~x + i + 1)] vI2@ig)(~x + i + 1)]

= 2[(12) v (g i{=+1+ 1).



figure XXIII

G = C(R) k e |I|R
1
(Dk = if i=2n-1 for neN

NI =

2n for n € N

=
=
]

(5)*




Therefore
x(r v gr) = {2() (@ v g) (x - 1) if xe (4, 1+3
2(1) (8 Vg)(=x + i+ 1)  if xe(i+%,i+l]
0 otherwise
=x[(2 Vv gl

Similarly x(@mA gr) = x[(A A g)T]. Thus L is lattice
isomorphic to L .

As in Example 7.4, let

Q* = {f e C(R)| tf = q for all t ¢ R, for some q ¢ Q+\\{O}}.

Let F be the f~subgroup of C(R) generated by (Lm) U (Q*). Let

p € L be defined by (i)p =1 for all i. Let g = pm. For the

remainder of this example, intervals refer to F rather than C(R).

]

If f e [0,g], then 1f

= V
f o g;l(haB + Qaeﬂ)

1
where ha e Q¥%, Qa e L for all o« and B. If x € R, then

0. Since f ¢ F,

B B
n m
xf = o BQl(XhaB + x(%asﬂ))
Since 1f = 0,
n m n m
0 = a¥1 ggl(lhae + 1(za8w)) = aQﬁ Béilhas'
n m n m

it A % \% = 0.
Since azl B=lha6 € Q*%, then for all x € R, X(a=l d;lhas) 0
For 1 <a<n, 1<8<m let nog € N be such that

(i + naB)QaB = (1)2a8. Let d be the least common multiple of

€ L be defined by

{naBl l1<a<mn, 158 é:m}. Let K&B, 2&8

(1)2&8

= {9, if 2kd < i < (2k + 1)d for some k € Z©

B

0 if @k + 1)d < i< (2k + 2)d for some k € Z

+



”
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- tr
(1)SL0LB
=10 if 2kd < 1 < (2k + 1)d for some k ¢ Z+
()2, if Gk +1)d <1ig (2k+2)d for some k ¢ Z'.
Let
n‘ m
L. \V} ]
B2 = 021 glr(hgg * 2gpms
n m
"o \V; " .
B2 = a1 gl (g + 2™

If xe (1V (2kd), (2k + 1)d] for some k € Z', then for all a,8,

(" 7Y = 0 and hence
RAN 7 >
n m

" o_ v -
xf x(a 1 g2 lhaB) 0.

' — (-
Also x(lasﬂ) = x(lasﬂ), and hence xf xf > 0. If
x e ((2k + 1)d, (2k + 2)d] for some k € Z+, then for all «,B,

X(Q&B

m) = 0, and hence
n m

alBl s)_

x(lasﬂ), and hence xf" ==xf > 0. If x <1,

xf' = x( V 0.

"
Also x(laeﬂ)

It

\
then x(lasﬂ)

xf' = x( V.

11 — -
x(za m) = x(lasﬂ) 0, and hence
n m
a=l B 1 B) xf xf 0.
Thus f' A f" =0 and f' V f" = f. Therefore f ¢ U. Since f
was an arbitrary element of [0,g], ¥ N [0,g] = ¢. Thus
D* N [0,g] = é&.
+

We now show that F has Hausdorff I -topology. Let g € F \\{0}.
Let r € R be such that rg > 0. Let q € Q be such that
rg > q > 0. Let g* ¢ (Q*)+\\{0} < F+\\{0} be defined by
xq* = q for all x € R. Clearly q*l = {0}. If h' e T(g)

and q* € h'l, then h' ¢ q*l and hence h' = 0. Thus q* ¢ M(g,h)

for all h ¢ T(g)\ {g}. Since rg > q = rq*, q* ¢ (g,») and



A\nr=]
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thus q* ¢ M(g,g). Therefore q* ¢ [ M(g,h). If U(C(R)) is
heT (g)

the set U for C(R) and ¥ is the set ¥ for F, then
A€CR))NF < U, By Lemma 7.5, Q*< U (C(R)). Thus, since
Q*= F, Q* & Y. C(Clearly L is divisible and Q* is divisible.
Thus F is divisible. By Proposition 3.4, U = Dl' Thus

q* € Q*S p], Therefore D* N ( N M(g,h)) # 4. We conclude
: heT (g)

that, by Theorem 6.15, F has Hausdorff X -topology. Alternately,

apply Theorem 6.7 as in the proof of Proposition 7.6.

Example 7.11: In this example we construct an f-group with

non-Hausdorff Z-topology such that D% = DZ and for all h € DZ’
D(h) 1is closed with respect to the T-topology.

Let L be the.z—group constructed in Example 7.9. Let
G=L3X2z ByLema 5.15, o =1L X (z \{0}). By Lemma 5.16,

Dl = ¢, Thus D* = UZ' Let h € DZ' Then by Lemma 5.17, h

(£,1)
for some % € L. Then clearly D(h) = L X {0}. By Lemma 5.14,
hl = {0}. Thus D(h) = D(h) + hl which is closed with respect

to the I-topology by Proposition 2.31.

Example 7.12: This is an example of another f-group with

indiscrete X -topology. Let Q be the rational numbers with usual
topology and let C(Q) be the &-group of all continuous real-valued
functions of Q. (We are indebted to Norman Reilly for pointing
out that 9 = ¢ in this example.)
+ ,
Let g e C(Q) \I0}. Then there exists q € Q such that

qg > 0. Since g 1is continuous and {0} 1is a.closed set of R,
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(O)g—l = Q\S(g) is a closed set of Q, i.e. S(g) is an open
set of Q. Hence there exist x,y € Q such that q e (x,y) ¢ S(g),
i.e. there exists p e Q such that p # ¢ and pg > 0. Without
loss of generality we may assume that q < p. Let r ¢ R\Q be

such that q < r < p. Let a,b:Q > R be defined by

Xa = |Xg if x>r
0 if x3r,
xb = {0 if x2>r
g if x < r.

Let u,v € R be such that u< v. If 0 > v, then (u,v)a_l =

(u,'v)b-l =¢. If 0 e (u,v), then (u,v)a_l = (u,v)g—l U (-=,r]

and (u,v)b_l = (u,v)g_l Ulr,). If 0 < u, then (u,v)a'-l =
S(g) N (r,») and (u,v)b_1 = S(g) N (-»,r). Since r ¢ R\\Q,
[r,») = (r,») and (-»,r] = (-»,r) are open sets of Q. Since
g 1is continuous, (u,v)g-l and (as above) S(g) are open

sets of Q. We conclude that (u,v)anl and (u,v)b_l are open
sets of Q, and hence that a,b e €(Q). Clearly a Ab =0 and
av b =g. Thus g ¢ 9. Since g was an arbitrary element

of C(Q)+\\{0}, U= @. Therefore C(Q) has indiscrete ¥ -topology.
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§. T -TOPOLOGY CONVERGENCE

In this chapter we inyestigate convergence with respect to
the I:---topology and the relationship between the £ ~-topology and
the topology derived from a-convergence.

Lemma 8.1: Let G be an f-group. Let g € G+ﬂ\{0}. Suppose
that A S [-g,g] 1is such that A + g+ 1is a symmetric sublattice
of G. If heA+gJ-, then g A || e T¢(Ju])n A.

Proof: Let h e A+ gl. Since A + gl is a symmetric
sublattice of G, ]hl =hv{(-h) ¢ A+ gl. Since A ¢ [~-g,g]
and |h] e (A + gl)+, then by Lemma 2.13(a) |h| = a +b for
ace A+ and b e (gl)+. Thus, since aA b =0, ace T(lhl)

and

]

IhjAg=(GVvb)Aag=(apng)v(barg =anprg-=a.

Therefore |h| A g e T(|h]|) n A. |8]

Theorem 8.2: Let {x.| B € B} be a net in an 2-group G.

!
Then {XB} converges to x € G with respect to the T -topology
on G if and only if (a) for all g e D*, there is an o € B
such that whenever B8 > a, |-x + xBI Age T(-x+ xBI), and
(b) for all g ¢ DZ’ there is a vy € B such that whenever B8 > vy,
l-x + XBI A g e D(g).

Proof: Suppose that {XB} T-converges to x ¢ G. Let
g e D* and if g ¢ Dl’ let H = N(0,g); if g ¢ DZ’ let

H = D(g) + gl. Then there is an a € B such that whenever
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B > a, XB e x + Int(H) € x + H. Hence =x +uxB e H for all
B > a. By Lemmas 2.12 and 2.23, H is a symmetric sublattice of
G. We wish to apply Lemma 8.1 to H: if g e Dl’ we let A = [-g,g]
and conclude that g A l—x + xBI € T(|<x + xBI); if ge DZ’
by Lemma 2.2(b), D(g) & [~-g,g] so that letting A = D(g), we
may conclude that g A |-x + XBI e T(|—=x + XBI) n D(g). This
proves (a) and (b).

Conversely, suppose that {x } dis a net in G such that
there is an x ¢ G satisfying (a) and (b). Let H e Nl(O). Then
by (a) there is an o ¢ B such that whenever 8 > a, [-x + XB' e H.
By Lemmas 2.12 and 2.23, H 1is a symmetric and convex. Hence
-x +x, e H, i.e. x

B B

Then by (a) and (b), there is an o € B such that wnenever 8 > a,

e x+H for all B >a. Let He N2(O).

|—x + XB' e H. As above, this implies that Xg € X + H for all

B >a. Let I be the F-topology on G and let U e g Dbe
such that x € U. Then there is an H € N(0) such that
n
s = N
x € x + H €U. By definition of N(0), H joqHy for H, e N3(O).
As shown above, for each i there is an a, € B such that

whenever B8 za,, X €x+t H.o Let o2 o, for all i. Then

B

n
whenever 8 > a, Xp € iDl(x + Hi) = x + H. Therefore {x,}

B

¥ -converges to Xx € G. IE[

We shall need the following standard result from topology.
Lemma 8.3: Let Y be a set with topologies Ul and U2. Then
Ul ) U2 if and only if every net converging to x with respect to Ul

converges to x with respect to Uz. |E|




Let L be a lattice. Papangelou [49,50] defined a-convergence
in L as follows: A net {XBI B € B} is said to a-converge to
to x € L 1if and only if x 41s the only element of L satisfying

X = B\é:a(xB A X) = ng(xB Vv X)

for all o e B. Papangelou investigated a-convergence in abelian
2-groups. Ellis [22] showed that there is a topology S on an
f-group G such that convergence with respect to S 1is equivalent
to o-convergence, if and only if G 1is completely distributive.
When such a topology S exists, Ellis noted that it must be
Hausdorff. Madell [43] proved that with respect to S, any
completely distributive f-group is a topological group and a
topological lattice. He also showed that any Hausdorff topology
on a completely diétributive f—group G with respect to which
G 1is both a topological group and a topological lattice lies
between S and the discrete topology. Therefore we have the
following result:

Theorem 8.4: Let G be a completely distributive %-group.
If S 1is the topology derived from oa-convergence on G and if

¢ 1is the ¥ -topology, then the following statements are

equivalent:
(a) S ¢ .
(b) T is Hausdorff. |8

Concerning inclusion the other way, we have the following

theorem.
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Theorem 8.5: Let G be a completely distributive &-group
with T-topology ¥ and topology S derived from a-convergence.

Then ¥ & S if and only if for all nets {x,| B € B} ¢ d+\\{0}

B
such that 6QAX6 = 0 for all cofinal subsets A of B, and for
all g e D*\\Dg, there is an o« ¢ B such that whenever B8 > o,

g AXg € T@BL

Papangelou [50] proved the following lemma in the case when
G 1is a completely distributive abelian %-group. Madell [43] noted
that the lemma remained true when the assumption of commutativity
was removed.

Lemma 8.6: If G is a completely distributive %-group and
{XBI 8 ¢ B} is a net in G, then the following statements are
equivalent:

(a) {XB} a-converges to 0.

(b) For each cofinal subset A of B, ggA|x6| = 0. ||

Proof of Theorem 8.5: If ¥ < S, then by Lemma 8.3 every net

which a-converges to x € G converges to x with respect to <.

Let {xel B e B}S G+\\{0} be a net such that = 0 for all

A
§er™s
cofinal subsets A of B. By Lemma 8.6 {XB} a-converges to 0.
Hence {XB} converges to O with respect to <. By Theorem 8.2,
for all g ¢ Df\\Dg, there is an @ € B such that whenever B > a,
T .
8 A Xg € (XB)
+
Conversely, suppose that for all nets {XB| B e Bl cG \\iO}

such that éles = 0 for all cofinal subsets A of B, and for

all g e D*\\Dg, there is an a € B such that whenever 8 > a,
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g NXg € T(xB). Suppose further that '{xsl 8 € B} 1is a met in

G which a-converges to x € G. Then {-x + x_} a-converges to

B

0, and by Lemma 8.6 A |-=x + x,| = 0 for all cofinal subsets

Sed
4 of B. Hence, by our assumption, for all g e 05\\02 there

5|

is an o € B such that whenever B > a, gA |[-x + XBI e T(|-x + XBl)'
Let g ¢ Dz\\Dg. Let 2% € D(g)+\\§0}. Suppose that for all o ¢ B,

there is 2 B ¢ B such that B >a and gA |-x + XBI ¢ D(g). Since

/ANN]

O;g/\|—x+x6!<g, g_r\_!-x+xslsg+D(g). Thus by
Lerma 2.2(a), g A |-x + XBI >%. Let A=1{peB|gnl|=x+ XBI
¢ D(g)}. Then A 1is a cofinal subset of B, but

A = -

shpl=x + XGI ;=5%A(l x + xdl A8 >4 >0.

This contradicts Lemma 8.6 and thus there is an o ¢ B such that

whenever B > a, g A |-x + XBI e D(g). Llet ge Dg. Suppose that

for o € B, there is a B € B such that B8 > o and

g N |—=x+ xB] >0. Then g A|-x+ x8| = g, i.e. |-x + x8| > g.
Let A={feB| gn|-=x+ XBI > 0}. Then A is a cofinal subset
of B, but

GQAI—X + x6| ;=6QA(|-X + XGI A8)2g>0.
This contradicts Lemma 8.6 and thus there is an a € B such that
whenever £ > a, g A I—x + XBI = 0. Hence for all g ¢ Dg, there
is an o € B such that whenever B > a, g A|-x + xBl e T(|-x + xB[).
Further, for all g ¢ DZ’ there is an o € B such that whenever
B >a, gA|=x+ xBI e D(g). Therefore, by Theorem 8.2, {xB}

converges to X with respect to T, and hence by Lemma 8.3,

¥ <S. | 2]
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We now apply Theorems 8.4 and 8.5 to two particular situations.
These applications show that, at least in certain circumstances,
the criterion established in Theorem 8.5 is a convenient one to
use,

Proposition 8.7: Let {TA|‘A € A} be a collection of totally

ordered groups. Suppose that G 1is a completely distributive
2-subgroup of IHITA which contains ]ZITA' Then S = ¥ on G.
Aeh Aeh
Proof: By Theorem 4.5, the I~-topology on each T, 1is the

interval topology and hence is Hausdorff. By Theorem 5.1, the
T -topology on G is the topology inherited from the product of

the Z-topologies on the T Therefore G has Hausdorff

x
< -topology and hence by Theorem 8.4, Scz.

Let {XBI B € B} & G+\\{0} be a net such that =0

A
sen*s
whenever A 1is a cofinal subset of B. Let g e D# Dg, and
suppose that for all o € B, there exists B > o such that

XB >g. If A={Bc¢ B[ XB > g}, then A is a cecfinal subset

of B, but > g > 0. This contradicts our choice of

A
seb*s
{XB} and hence there is an o € B such that whenever 8 > a,

Xg # g. Since g ¢ D*\\Dg, g € Y and hence by Lemma 5.8,

there is a y € A such that yg = g. Then AxB > 0=12ag for

all B e B, for all X # vy, and hence, since TY is totally

—

ordered, Yg ;:YxB for all B > a. Thus g A XB = YXB for all

be defined by

B 2o Let ¢ ||,

Aeh

A68= AX if A #y

8
0 if A=y
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Then 68= Xg = YXg s and hence, since YXg € G, we have 686 G.
Clearly 68\/Yx8 = Xg and 68A'YXB = (0. Hence g A Xg =YX € T(xB).

Thus by Theorem 8.5, S < ¥. Therefore S =X . - ||

Example 8.8: The second situation that we investigate is A(R):
we show that for A(R) the T -topology properly contains the
topology derived from a~convergence.

In [39] Lloyd proves that A(Q) is completely distributive
for any totally ordered set Q. Let S be the topology derived
from a-convergence on A(R); let ¥ be the T -topology on A(R).
By Example 7.1, I is Hausdorff; thus Theorem 8.4 implies
that S € X.

Let g e A(R) be defined by

Xg = {2x if x e [0,1)
1 3 .
5 X + 3 if x e [1,3)
X otherwise.

See figure XXIV. Clearly g > i and S(g) S(g) = (0,3). Hence
by Proposition 3.2, ge %, and by Proposition 3.5, g ¢ Dl'
Define a net {fn] n e N} in A(R)+\\i0} by
xf = {@+DHx-2  if xe [1,2)
n n n 2
(1-3x+2  if xe [2,4)
2n n ’
X otherwise.
Clearly fn > i and S(f;) = S(fn) = (1,4) for all n. Hence
by Proposition 3.2, fn e ¥ for all n. Since 0 < fn A g < fn
for all n, fn Agé T(fn) for all n. Clearly ANf =1 for

SeA™§
any cofinal subset A of N, and hence by Theorem 8.5, S ;! T.
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figure XXIV
G = A(R)
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Xg =

if x e [0,1)

if x e [1,3)

otherwise

xf
n

1+ DHx -
n
1
(l _Z)x-*-
X

1

2

n

v

if x e [1,2)
if x e [2,4)

otherwise
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Using [12], Ellis [22] proves the following: (Madell [43]

gives a somewhat different proof) Let G be a completely distributive

f£-group and let {NB, g € B} be any collection of L-closed prime

convex {-subgroups of G with BQBNB = {0}, For B e B let

G/NB denote the chain of left cosets of N, and give G/NB

B

the interval topology. Let IHIG/N be given the product topology.

BeB

Then the topology derived from o-convergence is equivalent to the

B

~

topoiogy ithat G lulierits [

rom

monomorphism m:G > |I|G/N
BeB

g
In A(R), letting {er r £ R} be the collection of prime
subgroups
N o={fe A(k)] rf = r},

we have typical S-neighborhoods of i depicted in figures XXV

and XXVI. Compare these with figures XI and XII.

Example 8.9: Let Y be a completely regular connected topological
space, and suppose that Y does not have a dense set of isolated points.
Then Weinberg [60] has shown that C(Y), the %-group of all
continuous functions from Y to R, is not completely distributive.
Thus C(Y) has no topology of a-convergence. However, by

Proposition 7.6, C(Y) has Hausdorff I-topology.



figure XXV
G = A(R)
xf =x+3
-1
([£f N—l’fNj
xg={2x+3
%x + 3

-1 N
([8 Nl, gNll X ( 1

1]

X (I em oyt

reRN\ {-1}

if x e [-3,0)

if x e [0,4)

otherwise

reR\ {1}

A

G/Nr))ﬂ_l
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figure XXVI 133
G = A(R)
1 .
xh = -ix+2 if x e (-=,4]
X otherwise

\ N

-1 -1
([h N—l’hN—l] X ( G/Nr))TT

rE:R\{-l}

x) = 12x + 4 if x e [4,») &

X otherwise

N

QNl] X (

i G/N )7
reRN\ {1} g '?

-1
(27N,




|z| END |m]

13y




135

BIBLIOGRAPHY

1. B. Banaschewski, "Uber die Vervollstdndigung geordneter Gruppen',
Math. Nach. 16 (1957), 5 -71.

2. R.M. Baer, "A characterization theorem for lattices with Hausdorff
interval topology', Jour. Math. Soc. Japan 7 (1955),

3. G. Rirkhoff, '"Moore-Smith convergence in general topology',
Annals of Math. 38 (1937), 39-56.

4. , Lattice Theory, Amer. Math. Soc. Coll. Pub. 25,
1940.

5. , "Lattice-ordered groups', Annals of Math. 43 (1942),
298-331.

6. , Lattice Theory, Amer. Math. Soc. Coll. Pub. 25,
second (revised) edition, 1948,

7. , "Uniformly semi-primitive multiplicative processes',

Amer, Math. Soc. Trans. 104 (1962), 37-51.

8. , Lattice Theory, Amer. Math. Soc. Coll. Pub. 25,
third (new) edition, 1967.

9. N. Bourbaki, Eléments de mathématique, II, Algébre, Chapitre 6,
Groupes et corps ordonnés, Hermann, Paris, 1964.

10. , Eléments d'histoire des mathématiques, Hermann, Paris,
1969.

11. R.D. Byrd, "Archimedean closures in lattice-ordered groups",
Can. J. Math. 21 (1969), 1004-1012.

12, and J.T. Lloyd, "Closed subgroups and complete
distributivity in lattice-ordered groups", Math.
Zeitschr. 101 (1967), 123-130.

13. T.H. Choe, "The interval topology of a lattice-ordered group",
Kyungpook Math. J. 12 (1959), 69-74.

14. L.W. Cohen and C. Goffman, "The topology of ordered abelian groups',
Amer. Math. Soc. Trans. 67 (1949), 310-319.




15. P. Conrad, "The structure of a lattice-ordered group with a
finite number of disjoint elements', Mich. Math. J.
7 (1960), 171-180.

16. , "'"Some structure theorems for lattice-ordered groups",
Amer. Math. Soc. Trans. 99 (1961), 212-240.

17. » "The lattice of all convex f-subgroups of a lattice-
ordered group', Czech. Math. J. 15 (1965), 101-132.

18. , "'Lex-subgroups of lattice-ordered groups', Czech. Math.
J. 18 (1968), 86-103.

19. » "Free lattice-ordered groups', J. of Algebra 16 (1970),
191-203.

20. R.A. DeMarr, '"Order convergence in linear topological spaces',
Pac. J. Math. 14 (1964), 17-20.

21, , ''Order convergence and topological convergence",
Amer. Math. Soc. Proc. 16 (1965), 588-590.

22, J.T. Ellis, "Group topological convergence in completely
distributive lattice-ordered groups', doctoral
dissertation, Tulane University, 1968.

23, C.J. Everett, "Sequence completion of lattice moduls', Duke
Math. J. 11 (1%944), 109-119.

24, J. Flachsmeyer, '"On Dini convergence in a function space'", Soviet
Math. Dokl. 4 (15i-153) (1963), 1516-1519; translated
by J.A. Zilber from the Russian, Dokl. Akad. Nauk SSSR
152 (1963), 1071-1074.

25, ,» "Einige topologische Fragen in der Theorie der
Booleschen Algebren', Arch. Math. 16 (1965), 25-33.

26, E.E. Floyd, "Boolean algebras with pathological order topologies",
Pac. J. Math. 5 (1955), 687-689.

27, and V.L. Klee, "A characterization of reflexivity by
the lattice of closed subspaces', Amer. Math. Soc.
Proc. 5 (1954), 655-661.

28. 0. Frink, "Topology in Lattices", Amer. Math. Soc. Trams. 51
(1942), 569-582.

29, , "Ideals in partially ordered sets", Amer. Math. Monthly
61 (1954), 223-234.

136




30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41,

42,

43,

44,

45,

137

L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press
(Addison-Wesley), 1963.

H. Gordon, "Relative Uniform Convergence', Math. Annalen 153
(1964), 418-427.

M. Guillaume, "Sur les topologies définies a partir d'une
relation d'ordre'", Acad. Roy. Belg. Cl. Sci. Mém.
Coll. in-8°% 29 (1956), no. 6, 42 pages.

C. Holland, "The lattice-ordered group of automorphisms of
an ordered set", Mich. Math. J. 10 (1963), 399-408.

» '""The interval topology of.a certain f#-group",
Czech. Math., J. 15 (1%65), 311-314.

» '"Transitive lattice-ordered permutation groups",
Math. Zeitschr. 87 (1965), 420-433.

T. Husain, Introduction to Topological Groups, W.B. Saunders Co.,
1966.

J. Jakubik, "The interval topology of an f%-group', Coll. Math.
11 (1963), 65-72.

L.Kantorovich, "Lineare halbgeordnete R¥ume', Math. Sb. 2 (44)
(1937), 121-168.

J.T. Lloyd, "Complete distributivity in certain infinite
permutation groups', Mich. Math. J. 14 (1967),
393-400.

H. Lowig, "Intrinsic topology and completion of Boolean rings",
Annals of Math. 42 (1941), 1138-1196.

R.J. Loy and J.B. Miller, "Tight Riesz groups' (to appear).

H.M. MacNeille, "Partially ordered sets", Amer. Math. Soc. Trans.
42 (1937), 416~460.

R. Madell, '"Complete distributivity and c-convergence', unpublished
paper, Amer. Math. Soc. Notices 16 (1969), 239.

Y. Matsushima, '"Hausdorff interval topology on a partially ordered
set", Amer. Math. Soc. Proc. 11 (1560), 233-235.

E.H. Mocre, "On the foundations of the theory of linear integral
equations", Amer. Math. Soc. Bull. 18 (1912), 334-362.




46.

47.

48,

49.

53.

54.

55.

56,

57.

58.

61.

T’

Naito, "On a problem of Wolk in interval topologies", Amer.
Math. Soc. Proc. 11 (1960), 156-158.

E.S. Northam, "Topology in Lattices'", Amer. Math. Soc. Bull,

59 (1953), 387.

» "'The interval topology of a lattice'", Amer. Math.

F.

Soc. Proc. 4 (1953), 824-827.

Papangelou, "Order convergence and topological completion
of commutative lattice-groups'', Math. Annalen 155
(1964), 81-107.

» ''Some considerations on convergence in abelian

lattice-groups'", Pac. J. Math. 15 (1965), 1347-1364,

R.H. Redfield, "A topology for a lattice-ordered group'", (to

appear).

N.R. Reilly, "Compatible tight Riesz orders and prime subgroups”,

(to appear).

B.C. Rennie, "Lattices", Lon. Math. Soc. Proc. 52 (1951),

386-400.

, Lattices, Foister & Jagg, Cambridge, 1952.

E. Schenkman, Group Theory, D. Van Nostrand Co., Inc., Princeton,

F.

B.

W.

1965.

Sik, "Zur theorie der halbgeordnete Gruppen", Czech. Math. J.
6 (1956), 24-25 (German summary of Russian article,
1-23).

Smarda, "Topologies in f-groups", Arch. Math. (Brno) 3 (1967),
69-81.

Thron, Topological Structures, Holt, Rinehart & Winston,
New York, 1966.

A.J. Ward, "Intrinsic topologies in partially ordered sets",

Camb. Phil. Soc. Proc. 51 (1955), 254-261.

E.C. Weinberg, "Higher degrees of distributivity in lattices

Aﬂ

of continuous functions", Amer. Math. Soc. Trans.
104 (1962), 334-346.

Wirth, doctoral dissertation, Monash University, Melbourne.

138



62. E.S. Wolk, "On the interval topology of an f%-group", Amer.
Math. Soc. Proc. 12 (1961), 304-307.




