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ABSTRACT iy

The purpoge of this study is to review some of the
developments in the theory of lattice—=ordered groups closely
related to the Holland representation for lattice ordered
groups. In Chapter O, basic definitions and results required
throughout this study are reviewed. Chapter 1 contains
a study of regular and prime subgroups of a laftice—ordered
group and concludes with the very important Holland repre-
sentation theorem. In Chapter 2, the Holland representation
is used to derive the very nice result: "Every lattice-ordered
group can be embedded in a divisible lattice-ordered group.
Finally, Chapter 3 contains a study of transitive lattice
ordered groups of order preserving permutations on a totally
ordered set and also a discussion of a class of simple lattice

ordered groups.
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INTRCDUCTION

Tattices and groups seem to provide two of the most
basic tools in the study of Universal Algebra. Also,
algebraic systems endowed with a partial or total order aré
important in many branches of Mathematlcs. Tt is therefore
not surprising that there should be increasing interest in
the study of lattice-ordered groups. Prior to 1941, only
lattice-ordered groups which are abellan or totally ordered
had been studieds; the most notable contribution made up to
that time was probably due to Hahn in 1907 who developed
an embedding for abelian totally ordered groups. This embedding
was later extended to include abelian lattice-ordered groups
by P. F. Conrad, J. Harvey and C. Holland in 1963, 1In 1941,
Garrett Birkhoff published a paper which appeared in the
Annals of Mathematics (1942) and in which he investigated
properties of non-abelian lattice-ordered groups. This,
no doubt, formed the basis for further investigation and,
since then, many of the problems and conjectures listed in
the concluéion of that paper have been resolved.

In the study which follows, some of the more recent
developments in the theory of lattice=-ordered groups have
been reviewed, and an attempt has been made to make this
presentation self-contained as far as possible. However, &
basic khowledge of group thecry has been assumed. Chapter C
contains basic results and definitions which are used throughout
the study with references being given whenever proofs are

omitted. These results, and a general basic theory of
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lattice~ordered groups can be found in Birkhoff's book on
"Tattice theory" and in Fuch's book on "Partially ordered
algebraic systems”.

In Chapter 1, a detailed discussion of the properties
of regular and prime subgroups of an l=group 1s presented.
Prime subgroups are of particular Importance in obtaining
representations of lattice-ordered groups., For,if M is a
prime subgroup of a lattice-ordered group G, then the set
of cosets of M can be endowed with a natural total order.
It follows that if M is both prime and normal, then the set
of cosets of M is a totally ordered group. This property
was utilised by Holland in his representation theorem which
is discussed at the end of this chapter. The Holland
representation of a lattice-ordered group is a representation
of a lattice-ordered groﬁp as a subdirect sum of HKB where
each KB is a transitive l-subgroup of the lattice-ordered
group'of all order=-preserving permutations on some totally
ordered set., This answered a problem originally posed by
Birkhoff in the second edition of his book on latticejtheory.
Though this representation throws little light on thé)internal
structure of a lattice-ordered group, 1t is an invaluable
tool in the Study of the nature and occurrence of lattice
ordered groups. An example of this is given in Chapter 2
when an application of the Holland representation is used
to obtain an elegant embedding theorems "Every lattice-
ordered group can be embedded in a divisible lattice-ordered
group".

Pinally., Chavter 3 contains a study of the lattice-~



ordered group of crder-presorving permutations on a tetally
ordered set, This chapter isbdivided into two sections.
Section I contains a study of lattice=-ordered groups of
order~-preserving permutations on & totally ordered set,
which are transitive on that set, while, in Section 2, a
class of simple lattice=-ordered grcups is discussed. That
knowledge of the properties of the lattice-ordered group of
order~-preserving permutations on a totally ordered set
yields important information about lattice-ordered groups

in general, i1s clear from the Holland representation theorem.
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NOTATTON

lub{x,y}

glb{x,y]

X and y are disjoint

Xx and y are incomparable

The positive cone of a partially ordered group G
The set of all convex l=subgroups of an l-group G

The set of all l-ideals of an l-group G

‘The set’of all right cosets of C

The set of all o-preserving permutations on the
totally ordered set S

The convex l-subgroup generated by g

The convex l=-gubgroup generated by M and a

The cardinal sum of l-groups G and-H

The lexicographic sum of G and H ordered from the
left

G 1s l-isomorphic to H

The normalizer of M in G



For a general theory of lattice~-ordered groups, the reader
is referred to Birkhoff (1) and Fuchs (8). Included here are
some basic definitions and results which are used throughout

this study. In general, additive notation is used unless

otherwise mentioned.

Definition 0,1

A partially ordered group (p,o. croup), &, is a set G such

that

(a) G is a group;

\ (b) G is a partially ordered set (p.o. set) under a relation
<3

(¢) If a, beG and a<b, then c+as<c+b and a+csb+c for every

ceG,

A p.o. group which is totally ordered is an o=-group.

Definition 0,2

(a) A lattice-ordered group (l-group) is a p.o. group which

is also a lattice under the relation <.

(b) If G is an 1-group, then a subset H of G is an l-subgroup

of G 1f and only if H 1s a subgroup of G and H is also
a sublattice of G.
In a lattice, I, if x, yeL, then denote glb{x,y} by xAy

and 1lub{x,y} by xvy.



Definition 0.3% '

(a) ILet G and H be p.o. groups. Then an o-homomorphism 6

from G into H is an isotone group homomorphism., That
i1s to say 6 1s a group homomorphism such that for any
X, yeG if x<y, then x06s<y#.

(b) 6 is an o-isomorphism if 8§ is a 71-1 o-homomorphism.

(c¢c) If G and H are l-groups, then an l-homomorphism 6 from

G into H is an o-homomorphism such that for any x, yeG,
(xvy)6 = X6Vyb (1)
(xAy)8 = XBAYO (i1) .

(d) An l-isomorphism 8 from an I1-group G into an l-group H

is an o-isomorphism from G into H. such that (i) and (ii)
of (c) hold. When G and H are l-isomorphic 1-groups

we write GzﬁiH.
Remark: Clearly if G is an l-group and if H 1s a subgroup
of G such that for each xeH, xVoeH then it follows easily

that H is an l-subgroup of G.

Some elementary properties of l-groups.

L(1) In any 1l-group G, addition is distributive on
meets and joins. That is, 1f a, X, s beG, then,
a+(xvy) = (a+x)v(a+y), (xvy)+b = (x+b)Vv(y+b) (1)
a+(xAy) = (a+x)A(a+y), (xAY)+b = (x+b)A(y+b) (2)
L(2) In an l-group G, if a, beG, then
aAb = -(-av-b) (3)

L(3) As a result of L(2) the mapping 6:6»G, defined on
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an l-group G such‘'that x6 = a-x+b, a, b, xXeG is a
1~1.mapping such that for x, y&G with x<y then
x02y6, Also if x6<y6 then this implies x=zy. Such
a mapping is sometimes termed a2 dual 1somorphism.
In any l-group G, a-(xvy)4t = (2-x+b)A(a-y+b) (1)

this follows from the dual of L(2).

L{4) In any l-group G, the generalisations of (1),
(2) and (%) hold. That is to say
a+(Vx J+b = V(a+xo+b) (5)
a+(Ax }4b —-A(a+xo+b) 4 (6)
a- (Vx Y4b = A(amxo+b) and dually (7)

where ¢ ranges over some finite arbitrary index set.

Definition 0.4

+

If a is an element of an l-group, G, then a’' = avo and

a = aho; a+ is called the positive part of a and a is called

the negative part of a.

Lemma 0.5
Tn any l-group G, VYa, beG, a-(aAb)+b = bva.

Proof: In any l-group, x-(aVvb)+y = (x-a+y)A(x-b+y) for
‘every a, X, y, beG. Therefore setting x = a and y = b, the

regult follows.

Corollary 0,6

In a commutative l-group, G, a+b = avb+aAb ¥a, beg.
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Corollary 0.7 |

-+

Tn any l-group G, ¥acsG, a = a +a .

Proof: For any aeG, by substituting o for b in lemma 0.5,

the result follows.

Definition 0.8

In an l-group G, if aeG, then |a| = absolute value of a = av-a.

Theorem 0.9

In an l-group G, “acG, (i) [a]|=20, moreover |a|>o unless a=o.
(11) ata(-a)T = o
(ii1) Jal= at-a" = avo-anro = avo+(-a)vo.

Proof': See Birkhoff (1).

Lemma 0,10

If ¢ is an l-group, let G = {xeG:x=0}. Then G’ is the
positive cone (or partial order) on G.
(i) If u, v, weG" then uA(v4w)SUAVHUAW.

(ii) If ueG’ then for any v, weG, uv(v+w)s<uvv+uvw.

Proof:
(i) Since u, v, weGT, then ua(v+w)eG'. Applying (2) of
L(1), uAv+uaw = (uAv4u) A(uAv+w)
= 2uA(u+v ) Alutw) Alv+w)
Now uA(v+w)<u, (v4+w). Hence clearly

uA(v4w) <2u, u+tv, udw, V4w,
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Thus UA(v+w)<(uAv)+{utw) .

(ii) Applying (1) of L(1), uvv+uvw (uvv+4u) v(uvv+w)

Il

= 2uv(u+v)V{utw)Vv(v+w)
Since uea’ and 2u, (v4w)<(uvv)+(uvw), then
u,v+ws(uvv)+(uvw). Since G is an l-group, the result

follows.

TLemma 0,11

In an l-group G, |a+b|<|a|+|b|+|a| for every, a, beG.

Proof: In any l-group G, |al = |-a| for each aeG. Hence
lal+|b|+lal = |-a]+|b|+]-a|

avo+aVvo+bVo+-bVo+-avo+avo

z-avo+(a+b)vo+(-b-a)vo+avo by lemma 0.10

il

~avo+| a+b| +avo
z|a+b|.

Similarly it follows that |a-b|<|a|+|b|+|al.

Definition 0.12 .

Two positive elements a and b in an l-group G are called

disjoint (denoted glb) if and only if aAb = o.

Temma 0.13

In any l-group G, disjoint elements are permutable.

Proof: If a, beG such that aAb = o, then clearly

a+b = a-aAb+b = bva from lemma 0.5. But bva=avb=b-bAa+ta=b-+a.



Thus a+b = b+a. '

Lemma‘O.14
Iet G be an 1l-group. If a, beG such that qu, then

avb = a+b.

Proof: If qu, then aAb = o. By lemma 0.5,

avb = bva = a-aAb+b = a+b.

Definition 0.15

A p.o. group, G, is Archimedean if for a, beG, nas<b for every
integer n implies a = o.
The next theorem which is stated without proof is due

to Holder. The proof can be found in Fuchs (8), P.45.

Theorem 0.16 (Holder)

An o-group is archimedean if and only if it is o-isomorphic
to a subgroup of the additive group of real numbers with the
natural ordering. Thus, all totally ordered archimedean

groups are commutative.

Definition 0,17

Iet S be a totally ordefed set. Then a 1-1 order-preserving

mapping from S onto S is called an o-permutation (automarphism).

Now consider the set of all o-permutations on a totally
ordered set S. This set i1s denoted by A(S) and is an

l-group under the following order:
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For feA(S), let fzlexfzx V xeS, where 1 = identity
mapping on S. Verirication that A(S) is an l-group under

this order is routine.

Definition 0.18

- Suppose G and H are l-groups:

(a) The cardinal sum of G and H denoted by GBH is the direct

sum of G and H with the partial order defined by
(g,h)=zoegzo and hzo for geG, heH. To verify that CGHH
is an l-group is routine.

(b) The lexicographic sum of G and H is the direct sum of G

and H with the lexicographic order defined by
(g,h)zo & either h>o or h = o and g=o.
Then GxH 1s ordered lexicographically from the right
and the lexicographic sum 1s denoted by d;ﬁ. Similarly
if ordered lexicographically from the left we denote this
— D
by GxH. Again the verification that GxH is an 1l-group

is routine.
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CHAPTER T

In this chapter, the basic results related to regular
and prime subgroups of a lattice-ordered group (l-group) are
stated and proved. Finally, using the fact that if C is a
prime subgroup of an l-group, G, then G/C is totally ordered,
we discuss representations of l-groups as groups of order-
preserving permutations on a totally ordered set; the main
result being the Holland representatioﬁ. Unless otherwise

mentioned, the results are due to Conrad (5) and (6).

Definition 1.1

A subgroup C of an l-group G 1s convex if for any 0<aeC and

O<x<a thils Implies xeC.

Definition 1.2

(a) A subgroup C of an l-group G is upward directed if for

every a, beC there exists cel such that a<c and b=<c,.

(b) A subgroup C of an l-group G is downward directed if

for every a, beC phe:e exists ceC such that c=<a, cx<b.
(c) A subgroup C of an l-group G is directed if it is both
upward directed and downward directed.
Lemma i.}
For a subgroup C of an l-group G, the following are equivalent:
(1) C is a convex l-subgroup; )

(2) € is a directed convex subgroup. of G;
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(3) ¢ is convex and cv0eC fqr each ceC;

(4) Let R(C) = {C+g:geG}, the set of right cosets of C
in G. IT we define C+g=C+h to mean there exists ceC
with c+g<h, then this defines a partial order on R(C)
which is a lattice with (C+x)Vv(C+y) = C+(xvy) for
x, yeG and duvally;

(5) If ceC, geG and [g|<|c| then gecC.

(1)=(2). Since C is a convex l-subgroup of G, then for
every a, beC, avbeC and aAbeC. Hence C is directed and
convex, l

(2)=(3). Since 0eC, (3) is trivially implied by (2).
(3)=(4). First we show that the order defined on R(C) is

a partial order. Since 0eC, and for each C+geR(C), O+g<g,
then 1t follows that C+gsC+g and < 1s reflexive. Consider
C+g<C+h and C+hsC+g for C+4+g, C+heR(C). Then there exist

Cyos cgeC such that c1+g5h and coths<g. Therefore CQSg-hs—c1.
Since C 1s a convex l-subgroup, then g-heC. Thus,

C+g = C+h and so < is antisymmetric. If now C4+x<C+y and

C+y<C+z, with C+x, C+y, C+zeR(C), then there exist cys CpeC
such that c1+x$yvand 02+ySZ. Therefore,
CotCytXSCotysz

But 02+o1€C and so C+x=C+z and < is transitive. Hence < as

defined is a partial order on R(C). Clearly C+(xvy) is an
upper bound for C+4+x and C+y. Suppose now that C+gzC+x, C+y.

Then there exist Cqs cgeC such that C txs<g and cyt+ysg.
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That is,xsk~c1+g and ys-cy+g. By hypothesis and from remark on page 2, Zcel
such . that -c,<c and =-c,<c. Then x, y<c+g. Thus, XVysc+g.
Hence =-c+xvy<g and since -ceC, we get C+xVvy<C+g and so

C+xvy = (C+x)Vv(C+y). The dual can be shown similarly. Hence
R(C) is a lattice. | |
(4)=(5). If ceC and geG and |g|<|c|, then,

-lc| = cn-c=-|g| = gr-g=g=|g|s|c]. ThuSACA-CSgSCV—C. From
(4), ¢ = CAC = (C+c)A(C-c) = C+cA-c4C+g. But

C+g<C+cv-c = (C+c)Vv(C-c) = CVC = C. Thus C+g = C and geC.
(5)=(1). If O<aeC and O<x<a with xeG, then, x = |x|, a = |a]
and |x|<|al. From (5), we have xeC and so C is a convex

+| _ ZX.+

subgroup. If xeC, then 0s<|x < |x| and so x7eC. Therefore

C is a convex l-subgroup of G.

- Corollary 1.4

If A, Bec(G), where @(G) is the collection of all convex

l1-subgroups of an l-group G and if AcB, then the mapping

A+x-B+x for xeG defines an lattice homomorphism from R(A) onto R(B).
From the definition of the partial order on R(A) and

R(B), such a mapping is well defined. The surjectiveness

follows since A&sB.

Definition 1.5

A convex 1l=subgroup C of an l-group G is an l-ideal 1f C

is also a normal subgroup of G.
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Corollary 1,6 '

Tet Me£(G), where £(G) is the collection of all 1l-deals of G,
then the canonical mapping of the subgroups of G containing M
onto the subgroups of G/M induces a bijective correspondence

between the convex l-subgroups (l-ideals) of G containing M

and c¢(G/M) (respectively 2(G/M)).

Remark: If in particular Ce£(G), then in (5) of lemma 1.3,

R(C) is aml-group.

Notation: Consider aeG+ and S a sub-semi-group of G+ such
that 0eS. Then we denote the sub=semi-group of G+ generated
by S and a by <S,a>.  Thus <S,a> consists of all elements of

the form U tatustat. . . +u +a+un,uies for 1<i<n,

n=-1

Temma 1.7 (Clifford)

If M is a convex l=-subgroup of an l=-group G and if aeG+\M,
then,

C(M,a) = {xeG:|x|< p for some peM,a>}
is the smallest convex 1l-subgroup of G containing M and a.
If a, beGT\M, then Cc(M,a)Ac(M,b) = ¢(M,arb). In particular,

when M = 0, C(a) = {xeG:|x|<na for some positive integer n}.

Proof: If x, yeC(M,a) then |x|<p and |y|<q for some
0, qe<M+,a>. Applying 1emma’0.11, we get
‘X-y|s|x|+|y|+|x|5p+q+pe<M+,a>. Therefore x-yeC(M,a) and

so ¢(M,a) is a group. Now if |gl<lc| for geG and ceC(M,a),
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then thére exists re<M+,a> such that |c|sr. Thus |g|sr

for reM',a>. Hence geC(M,a) and so C(M,a) is a convex
l-subgroup containing M and a and must be the smallest such.
Now, consider 0<xeC(M,a)NC(M,b). Then

X5m1+a+m2+a+...+mh_
X<n,+b+Hns+b. . o4y 44D+

1+a+mn, mieM+, 1<i<h and

+ )
1o g ByeMT, 1<j<k. Thus

XS(m1+a+...+mh)A(n1+b+.,.+nk).

u, Vv, weG+, uA(v+4w) suAv4+uAw. Hence x 1s less than or equal

From Lemma 0,10, for any

to a sum of positive elements of the form miAnj, miAb, aAnj,
aAb. But all such elements belong to C(M,aAb) hence
c¢(M,a)Nc(M,b)sC(M,anb). To obtain the other inclusion,
consider xeC(M,aAb). Then xsm,+anrb+my+aAb+...+m,_,+aAb+m ,
where mieM+, 1<i<r, TFor each u, v, W, eG+,
u+vAw = (ut+v)A(utw). Therefore we get,
xs(m1+a)A(m1+b)+(m2+a)A(m2+b)+...+(mr_1+a)(mr_1+b)+mr.
Therefore XSm1+a+m2+a+...+mr_1+a+mre<M+,a> and also
xsm1+b+m2+b+...+mr_1+b+mre<M+,b>. Therefore xeC(M,a)nNc(M,b).

This completes the proof.

Corollary 1.8

et K = N{cec(q):04{0}}. If K # {0}, then G is an o-group

and K is the convex l-subgroup of G that covers zero.

Proof: If K # {0} and G is not an o-group, then there exists
a, beG such that a and b are strictly positive elements and
ahb = 0. Since C(a), C(b)ec(G), then

KsCc(a)Nc(b) = Cc(aab) = ¢(0) = {0}. This contradicts the
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hypothesis. Therefore G must be an o-group.

~ Qorollary 1,9

If G does not have a proper convex l-subgroup, then G is

o~-isomorphic to a subgroup of the reals, R.

Proof: By corollary 1.8, G is an o—groﬁp with no proper
conﬁex l1-subgroups. Consider a, beG such that na%b for

n =0, 41, 2, ... Then bgC(a). Hence C(a) is a convex
1-subgroup of G and C(a) # G. Thus C(a) = {0} which implies
that a = O, Thus G is archimedean. Hence by Holder's theorem
(Fuch's p.45), G is o-isomorphic to an additive subgroup

of the reals.

Definition 1,10

A convex l-subgroup M of G is called regular if there exists
geG such that M is maximal with respect to not containing

g, and in this case M is said to be a value of g.

Temma 1.11
Each convex 1l-subgroup ofan l-group G is the intersection of
regular convex l-subgroups of G. Each 0 # geG has at least

one value,

Proof: ILet Cec(@). Let geG\C. By Zorn's lemma, EMec(G) such

that M is maximal with respect to containing C and not con-

taining g. For, consider @ = {S:8ec(G), gfsS=C}. Let
Led, £ = {Si:ieI}
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linearly ordered by set inclusion. Then, g%gu 8;2C and

u Siaz(G) by the linear ordering. ThereforéeIU S. is an
iel , iel

upper bound of ¢ in ¢ and so by Zorn's lemma, & has a maximal
element. Tet Mg be a maximal element of g. Then Mg is
regular and is a value of geG\C. Now consider the set of

all such Mg, that is {Mg:geG\CL Then, CSMg for each geG\C
implies that Céﬂ{Mg:geG\C}. If xeﬂ{Mg:geG\CL then X(—:Mg for
each geG\C. Thus x#G\C and so xeC. Hence,

N{M,:geG\C]<C and so N{M,:get\C] = C.

Definition 1.12

An element a of a lattice I is called meet irreducible if

a is not the greatest element in L and if a<Ab(bel and b>a).
This is more resgtrictive than the usual concept of finite

meet irreducible (b,cel, b>a, cda=bAcda).

Theorem 1,13

et Mec(G), then the following conditions are equivalent:

(1) M is regular;

(2) There exists M*er(G) such that MeM¥* and M* is contained
in every convex l-gsubgroup of G that properly contains M;

(3) M is meet irreducible in (@) which is a lattice under
set inclusion.
IT MaG, then each of the above conditions is equivalent

to

() @/M is an o-group with a convex l=-subgroup that covers

Zero.
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Proof: '

(1)=(2). Suppose M is & regular convex l-subgroup and let

M be a value of geG, Let M*¥ = N{Cer(G):McC}. Then M*cc(G)
and M*sC for every Ce{Cec(G):McC}. Since M is regular, for
every Ce{Cec(G):MeC}, geC. Thus ZeM¥\M and so McM¥,

(2)=(3). We have that M*ec(G) such that MeM* where

M¥ = ﬂ{Ca@(G):MC@},‘ It follows immediately from Definition
1.13 that M is meet irreducible in c(G).

(3)=(1). By lemma 1.11, M is the intersection of regular
convex l-subgroups of G. So, 1f M 1s meet irreducible, then
M must be regular,

(4)=(2). TIf MaG, then Me£(G). Assuming (%), let K = M¥/M
be the convex l-subgroup of G/M that covers zero. Then,
M*ec(G) such that MeM* and Zcer(G) such that McCeM¥*. Thus,
M¥* is contained in every convex l=subgroup of G that contains
M,

(2)=(4), If M satisfies (2), then M¥/M = Nn{C/M:cec(G), McC]}.
Since MEM*, M¥/M # M/M. By Corollary 1.8, G/M is an o-group

and M* /M is the convex l-subgroup which covers the zero,

Corollary 1.14

If M is a regular convex l-subgroup of G and a, beG+\M then
‘anbeGT\M.

Proof: From lemma 1.7, C(M,aAb) = C(M,a)NC(M,b)eM. Since
M is regular, EM*ec(G) such that MeM* and M*¥SC for every

ce{Cec(G):McC}. Thus, C(M,anb) = C(M,a)NC(M,b)=2M*, If
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anNbeM, then M = C(M,aAb)=2M* which implies that M = M¥,
This is impossible. So aAbgM and aAbeG*\M.

In the following theorem, the notion of a prime l-subgroup
is introduced and a number of equivalences proved. The
equivalences (4), (5), and (6) have been proved by Holland
while those of (1), (3), (1) and (8} have been proved by

Johnson and Kist (12),

Theorem 1.15

Let Mec(G) then the following are equivalent:
1) If ANBSM where A, Bee(G) then ASM or BeM;
) If McA and MCB where A, Bec(G) then McANB;
2)  Tf a, beGT\M, then aAbeGT\M;
4) If a, beGT\M, then aAb>0;
5) The lattice £(M) of right cosets of M is totally ordered;
6) The convex l-subgroups of G that contain M form a chain;
7) M is the intersection of a chain of regular convex
l=subgroups.
If MaG, then each of the above 1s equivalent to

(8) G/M is an o=-group.

Proof:

(1)=(2). If MSA and Mc B for A,,Bve(@(G), then M& ANB.
If M= AﬂB,'then from (1), A =M or B f}Mv This contradicts
the hypothesis and so McANRB.

(2)=(3). If a, beG+\M, then C(M, aAb) = C(M;a)ﬂC(M,b):M

since McC(M,a) and McC(M,b). Thus aAbgM and so aAbeG \M.
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(3)=(4), This follows trivially.

(4)=(5). Consider M+a, M+beR(M) with a, beG\M. Then

a = +aAb, b = b+aAb where aAb = o for then,

aAb = (a+anb)A(b+arb) = aAb+aAb = aAb, Since aAb = o, from
(4), 2eM or beM. Suppose aeM, Then M+a = M+aAbsM+b. Similarly,
if beM, then we get M+bsM+a and so it follows that (M) is
totally ordered,

(5)=(6). Assume (5) then suppose that the convex l-subgroups
of G containing H do not form a chain, Then, 3A,Bec(G)

such that McB and A||B. Consider o<aeA\B and o<beB\A. Then
we can write a = a+aAb, b = b+aAb where aAb = o. Since

p(M) is totally ordered, we have say M+a<M+b. Thus

M = M+aAb = (M+a)A(M+b) = M+a and so aeMcB. But Ber(q)

and o<aAbeB, Therefore a = a+aAbeB. This contradicts the
hypothesis so AJB.

(6)=(7). This follows immediately from lemma 1.11.

(7)=(1). Assume (7) ahd suppose that HA, Bet(G) such that
ANBEM, A®¥M and BEM. ILet {Mi:ieI} be a chain of regular
convex l-subgroups of G such that M = .ﬂ Mi’ Choose aeA+\M
and beBT\M. Then EjeI such that a, b#ﬁi? that is, a, beG \Mj.
By Corollary 1.1L, aAb€G+\Mj, put ANBer(G) and so
o<aAbeAﬂBEMEMj. This yields a contradiction. Hence ANBEM
implies ASB or BeM. Finally, if M3, (5) and (8) are obviously

equivalent.

Definition 1.16

A convex l-subgroup of an l=-group G which satisfiles any of

@
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the conditions (1) through (7} in the preceding theorem is
called prime.

The above definition is certainly equivalent to the
followings An l-subgroup M of ¢ is prime 1f whenever aAb = o
where a, beG then aeM or beM. This definition is analogous
to the ring theoretic definition of prime ideals "An ideal

T of a ring R is prime if abeI=acI or beI".

Remarks (1) It follows immediately from corollary 1.14 and

(3) that every regular convex l-subgroup is prime.

(2) From condition (6), it follows that the partially
ordered set of prime subgroups of G is a root system. [A
p.o. set A is a root system if for each &scd, {aecn:q28} is
totally ordered],

(3) From condition (7), the intersection of a maximal
chain of regular subgroups is a minimal prime subgroup. Thus
every prime subgroup contains a minimal prime subgroup.

(4) Every l-automorphism m of G induces an l-automorphism
on the lattice (@) and so also on £(¢). If M is a prime
subgroup (respectively regular), then Mm is also prime
(respectively regular).

(5) The prime convex l-subgroups of an l-group G can
be used to represent G as a group of o-permutations of a
totally ordered set. The representation of l-groups in this

manner is due to C. Holland (10) and is discussed later.
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Definition 1,17 ,

A subgroup H of a direct sum of groups nG, is a subdirect sum

A

of G, if for any x, &G for its component in

A AT A
That is to say, the prcjection m

deeH having x

GX, X:HﬁGX is surjective,

Definition 1.18

An 1l-group G is representable if there exists an l-isomorphism

0 of G onto a subdirect sum of mnG, where each G, 1is an o-group.

A
The pair (G,HGX) is called the representation of G.

Definition 1.19

A group G is an O-group if G admits at least one total order.
Example: All free groups are O-groups (Neumann (17)).

Elementary properties of representable groups

P(1) If o i1s an l=-isomorphism of & into K, , where each

K., 1s an o=group, then (G,HGX) is a representation of G with

A

G, = pr,Go. [erGo denotes the Ath projection of Gol.

Proof: Since ¢ 1s an l-isomorphism and each K, is an o=-group

A

is an l-subgroup of Kx for each A\

is an l=subgroup of mkK

for each i\, then erGc'= Gx

and hence is an o-group. Also, HGX

and hence (G,HGX) is a representation of G.

A

P(2) Every l-subgroup of a representable l-group is repre-
sentable. Every cardinal sum of representable l-groups is

representable. , N
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Proof: Let & te a represcntable l-group. Let (G,HGK) be a

rebresentation of G, Iat H e any l-subgroup of G. Consider
J:H-G, the inclusion mapping; Then J is an 1l-isomorphism of
H into G. Hence, jc:HwnGx is an 1-isomorphism into nGx. By

P(1), since each 3, is an o—group,-them(jo,on) is a repre-

A
sentation of H with H, = prxH(jo). Tt is easily shown that

a cardinal sum of representable l1-groups is representable,

for if A and B are representable l-groups with respresentations

(ca’"Ax)’ (ob,an) respectively, then (oéyob,nA EWBK) is a

N
representation of AFB, the cardiral sum of A and B.
(P3) A group G (not ordered) admits the structure of a

#
representable group if and only if it is an O-group.

Proof:(«) If G is an O-group, G can be totally ordered and

so admits the structure of a representable group.

(=) If G is representable, let (O’HGX) be a representation

of G¢. Define a well-order on A and then define a lexicographic
order on nG, as follows: g = (.,,,gx,...)>0 if g,>0 where \

is the smallest index in the well-ordering of A. This defines
a total order on nGx and so on Go and since o is an isomor-
phism, then G must be an O-group.

P(4) @ is representable if and only if it admits a class of

prime normal subgroups whose intersection is {o}.

Proof: (&) Let {Mx:xeA} be a class of prime normal subgroups

whose intersection is {o}. Then (o, m G/MX
’ _ rel
is defired by go = (...,Mx+g,...).

) is a representation

of G where o:G~ m G/M

rep M
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Indeed, from theorem 1.15, e&ch G/M is an o-group. If

g0 = o where o denotes the zero for G/M, , then M,+g = M
AEN
for every ieA. But

A

for each AeA. That is ngx

N M, = {o} by hypothesis and so g = o. Thus gis injective.
rEA
Therefore (o,nG/MX} is a representation of .

te a representation of G. If s is the

1s an l-homomorphism

(=) ILet (O,WGX)

projection of mG, onto G,, then, ocem

A A A

of" G onto Gk,
ummm—ma»nG

Iet Ker ger, = MX, G g///
ﬂwnMﬁG. ﬁ‘ M \M
a, beG\MX then X

a( oom b( gom, ) G But G, is an o-group and so a(oem,) and

A AC X)
X) are comparable. Thus, M,+a and M, +b are comparable

for every a, beG. Therefore G/MX is an o-group and so M

oF
b( oom
18
prime, Also the diagram below commutes.

n _ . ] .
o WG/MX where n = ngﬂX 18 canonical,

and B = (oonx)
o T B AEN

WGX

Herce N MXCKerG {o} since 0 is an isomorphism. Thus
AeN
{MX:XeA} is the required famlly of prime normal subgroups of

G,

Theorem 1,20

For an l-group the following are equivalent:
(1) G is representable;

(2) G admits a family of normal prime subgroups whose
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intersection is {o}; '

(3) aA(-xtat+x) = 0 = & = O ¥ oa, xeo;

(4) a, b, xeG, anb = o0 = aA(-x+b+x) = 0}

(5) The intersection of all conjugates of a prime subgroup
is prime;

6) Every minimal prime subgroup is normal;

7) The conjugates of a prime subgroup of G are comparable;

8) Every regular l-ideal of G is a prime subgroup.

An 1-ideal L of G is regular, if there exists geG such that

L is maximal among those elements of Z(@) which do not contain

g) .’

Remark; The equivalences of (1), (3) and (4) are due to
Lorenzen, the equivalence of (1) and (6) due to Sik, (1), (6)
and (7) due to Byrd and (1), (8) due to Conrad.

Before proceeding with the proof of the theorem, two

lemmas on conjugate subgroups of l-groups are stated. The

proofs are routine and are not included. \

Lemma 1.21

If Mec(G) and if, for xeG, M* denotes the conjugate subgroup

of M with respect to x, then M ec(G).

Lemma 1.22

If M 1s a prime l-subgroup of G, then for any xe€G, M= is

a prime l-subgroup of G.
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Proof of theorem 1,20: :

(1)e(2) has already beern established (see P(4) preceding the

theoremn) .
(1)=(3). If G is an o-group, (3) follows immediately since
if an(-x+a+x) = O, either a =0 or =-x+a+x = o which implies

that a = o, Thus, aA (-x+a+x) = 0 = a = c>Va, xeG, If G

is a cardinal sum of o-groups, the result follows easily by
considering components. Similarly, the result follows if G

is a subdirect sum of o-groups. Hence, if G 1s representable,

let (o,mG,) be a representation, and suppose aA(-x+a+x) = o

)
for a, xe€G. Then, acA(-x+a+x)c = 0 = a0 = o because aoc is an
element of the subdirect sum of WGXO Therefore a = o since
0 is an l-isomorphism.
(2)=(L4). Suppose aAb = o. Then a, bzo, Hence, -x+b+x,
x+a=-xz0 YxeG., Thus an(-x+b+x)A(x+a~x)Ab = o. Let
g = aA-x+b+x. Then x+g-x = x+{aAn(-x+b+x)I-x

= (x+a~x)Ab.
Therefore gAx+g-x = aA(-x4+b+x)A(x4+a-x)Ab = o. TFrom (3)

this implies that g = aA(-x4b+x) = o,

e ]

(W)=(5). Iet M be a prime subgroup of G. ILet J = ﬂﬂMX =
intersection of all conjugates of M. Then JoG and ?Z;(G),

for, if Mec(G) then, for all xeG, M er(G) by lemma 1.21.

Thus Je£(G). To show that J is prime, we argue by contradiction.
Suppose J is not prime. Then E a, beG™\J such that aab = o.
Consider that for some MX, b¢MX. Then since aAb = o,

an-g+b+g = o for all geG (from (4)). By lemma 1.22, M

is prime since M is prime. Therefore (MX)g = —g+MX+g is
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also a prime l-subgroup and, since bﬁMX, ~g+b+g¢MX+g.

Therefore aeM &, Thus ac 0N M™% = 7. This is a
contradiction, Therefore Jggg a prime 1l-subgroup of G.
(5)=(6). From (5), every minimal prime subgroup must be

the intersection of all its conjugates and hence must be normal.
(6)=(7). ILet N be a prime subgroup of G. TLet M be

a minimal prime subgroup contained in N. Then,

VgeG, M = -gHM+gs-g+N+g. Since M is prime, the convex .
1-subgroups containing M form & chain. Hence N and -g+N+g |
must be comparable,

(7)=(8). TILet Me£(G) such that M is maximal among the elements
of £(@¢) which do not contain aeG. (M i1s a regular 1l-ideal of
¢.). Then ¥ a value N of a such that MeN. ILet T = N .
Then MST. But Te£(G) and agN=agT. Since M is maximziGin

2(G) with respect to not containing a, then TeM. Thus M = T.
But, from (7), every conjugate of a prime subgroup of G is
comparabtle., Therefore T is the intersection of a chain of
regular subgroups and so is prime. Hence M is prime.

(8)=(2). TLet m be the family of all regular l-ideals of G.
Then by (8), each Me% is a prime subgroup. Also, N M = {o}

Menm
and so (2) is satisfied.

"Corollary 1.23

Every commutative 1l-group is representable.

Proof: This follows immediately from conditions (L) of

theorem 1.20. TFor, if ¢ is a commutative 1l-group, then,
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va, b, xcG, aAb = o=aA(b+x-X) = o=aA-x+b+x = o. Hence G

is representable.

Corollary 1.2%

If G is representable and Ce£(¢) then G/C is representable,
(That is a homomorphic image of & representable l-group is

representable).

Proof: Using condition (4) of the theorem, suppose
C+a, C+beG/C such that C+anC+b = C+aab = C, We can write
a = aAb+a, b = aAb+b where aAb = o. Then,

Cran-(C4+x)+( C4+b ) +( C4x) (C+anb+a ) Al C=x+b+x)

il

( c+aAb+a) A C=x+aAb+b+x)

C+anC-x+b+x (since aAbeC«s)

il

C+{an-x+b+x) = C.
This foliows from (%) since aAb = o=aA-x+b+x = o, G being

representable. Thus G/C is representable.

Corollary 1.25

Let G be a representable group, M a regular subgroup of G,
M* the convex l-subgroup of G which covers M. Then the
normaliser of M in G is also that of M¥*(in particular,
‘MaM* and M¥/M is o-isomorphic to a subgroup of the real

numbers) .

Notation: ©Tor a group G and M or subgroup of G, denote the

normaliser of M in G as NG(M). Then NG(M) = {aeG:atM-acM}.
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Proof: Since M* covers M, then NG

aeNG(M*). Then -a+M#+a = M¥, for M*QNG(M*). By condition

(7) of theorem 1,20, every conjugate of a prime subgroup is

(M)eN,,(M*). Consider
T

comparable, Hence since M is regular, M is prime and so
either -a+M+asM or Mc-a+Mtia. If =atMtacM, then aeNG(M).

Now considering the second case, we get Mc-a+tM+ac-a+M¥+4a = M*,
Since M¥* covers M, then M = -a4M4a and so aeNG(M). Hence

M¥*) as required.

Remark: It follows from corolliary 1.25 above that if M is
a maximal convex l=-subgroup of & representable group G,
then MaG. To see this, observe that by corollary 1.25,

NG(M) = NG(G) = Q.

The Holland representation of an l-group as a group of

permutations

TLemma 1.26

Iet ¢ be an l-group and C a prime convex l-subgroup of G.

If we define a mapping m from G into the group of all
permutations of R(C) such that (C+x)gm = C+x+g where

x,c€eG, then for each geG, gmeA(R(C)). Also w is an l-group
‘homomorphism from G into A(R(C)) = the l-group of o-presarving

permutations of R(C).

Proof: By theorem 1.15, since C is a prime convex l-subgroup
of G, #(C) is totally ordered. To show that, for each geG,

gmeA(p(C)), consider any C+x, C+yeR(C). If
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(C+x)gm=(C+y)gmw, then Ct+x+g=C+y+g. Hence C+x = C+y and gn

is injective. For any C+xeR(C), C+x = Cix-g+g = (C4+x-g)gm.
But C+x-geR(C) and so gm is surjective, gm is order-preserving
since if C4x=C+y for C+x, C+yeR(C), then HceC such that
ct+x<y. Hence cix+g<y+g and so C4x+g<C+y+g. That is
(C+x)gms(C+y)gm. Thus gneA(R(C)). To show that m is an
l-group homomorphism, consider g, heG. For any

C+xer(C), (C+x)(g+h)m = Cixtgt+h = (C4+x+g)hm = (C+x)grhrm.

Thus (g+h)m = grhm and m is a group homomorphism. Now, if

1 is the identity in A(R(C)), we must show that for any geG,
gnvl = (gvo)m. Take any (C+x)eR(C). Then

(C4+x) (gmv1) = C+x+gVC4x = CH+(x+g)Vx = C4+x+(gvo) = (C+x)(gvo)m.
Thus gnvl = (gvo)m.. The dual is shown similarly. Hence T

is an l-group homomorphism.

Remark - (1): Gm is transitive on £(C). To see this, con-

sider any C+x, C+yek(C) and notice that C+y = C+x-x+y

(C4x) (=x+y)m.
Thus G is transitive on #(C).

(2) Ker mw = N =-x+C+x, To see this, consider geKer .
xeG
Then (C4x)gm = C+x VC4+xep(C). Then C4+x+g = C+x and so

x+g-xeC. Therefore, ge-x+C+x V¥xeG and so Kermc N -x+C+x,
xXeG
" If ge N -x+C+x, then, WxeQ, c, eC such that g = -xtc +x,
xXeG
and so (C+y)gm = (C+y)(-y+cy+y)n for any C+yeG. Therefore,

(C+y)gm = C+cy+y = C+y. Thus geKerm and Kerm = N -x+C+x,
xeG
(3) If in addition CaG, then Ce£(G) and the diagram

below commutes:
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(@)
~
Q

“Jr

=

(@

where & 1s the canonical l1-homomorphism, i the identity
mapping, G/C~Gm and n¥* is defined by (C4+g)m* = gm. Clearly,
if CalG, G/C is an o-group. Also, for any x, geG,

(C+x) (CHg)m* = (C4x)gsm* = (C4+x)gnm and the diagram commutes.

Theorem 1.27 (Holland) The main embedding theorem,.

An 1-group G is l-isomorphic to a subdirect sum of‘ﬁﬁi where
each Kx is a transitiﬁeml—subgroup of the l-group of =21l

o-permutations of a totally ordered set TX’
Proof: Let M = {Mec(G):M a minimal prime subgroup of G}.
Then, for Mem, G/M = (M) is totally ordered. From lemma 1.26,

nM:GeAGNM)) is an l-homomorphism and Gmy, is transitive on R(M).

So, define ¢:G- m A(R(M)) such that gp = (...,gm,,...). Then
Mem M
¢ is an l-homomorphism. ¢ 1s also injective, for since each
Mem is a minimal prime subgroup, then M = 0 MX. Thus
XeG

M,= Ker Ty Also; for any g, heG, guw = hm@gwM = th,\fMem

=(g-h)e Ker m=M, ¥Menm
s(g-h)e N M
Mem
But N M = {0} = intersection of minimal prime subgroups of G.

Mem L
Therefore gy = hypeg = h. Thus o is an l-isomorphism of G
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into m A(R(M)) and thersfore fulfills the conditions of the
Menm
theoremnm.

Remark (1): For the class M of minimal prime subgroups of ¢

one can take any class of prime subgroups of & having as
their intersection {o}.
(2) 1If G is representable, then every minimal prime

subgroup of G 1s normal. Hence the diagram below commutes.

nG /M —3mA(R(M) )
Cp*
Men
@6M
Mem i
G ' —3 TA(R(M))
©

where SM:G*G/M is the canonical l-homomorphism, i the identity
map, ¢ the mapping defined in theorem 1.27, and o¢* defined by

(vury Mg, 0.)0% = (..., (M+g)m ..) where n*M:G/MaA(R(M))

*
M-

is defined by (M+x)((M+g)m* ) = M+x+g as in remark 3 following

)
lemma 1.26., It is immediate from that remark that the diagram

commutes.

Theorem 1.28 (Holland)
Every l-group is 1-isomorphic to an l-subgroup of A(T)

where T is a totally ordered set.

Proof: Let M = {Mec(G):M-a minimal prime subgroup of G}.

Define a well order < on M. Let T = {M+x:Me, xeG}. Define
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a partial order = on T such that M+x<N+y if M<N or 1f M = N
and M+x<M+y. Then (T,<) is a totally ordered set. Now,
for each geG, define go as follows:

(M+x)go = M+x+g.
Then as in lemma 1.26, it is easily verified that ¢ is an
1-isomorphism of G into A(T).

The following theorem, a reformulation of theorem 3
in Holland (10) answered the question "What l-groups are

transitive groups of automorphisms of totally ordered sets?”

Theorem 1,29

For an 1l-group G, the following conditions are equivalent:

(1) 4 an 1-isomorphism o:G~A(T) where T is a totally ordered
set such that Go is transitive on T;

(2) 4 a prime l-subgroup C of G such that {o} is the only
normal subgroup of G contalned in C;

(3) 9 a prime subgroup C of G such that {o} is the only l-ideal

contained in Cj

Eroof:

(2)=(3). Assuming (2), if #H#{o} such that ¢oHe£(G), then
HaG and this contradicts (2).

(3)=(1). Assume (3). Let w:G~A(R(C)) be the l-homomorphism

LY

described in lemma 1.26. Then Ker m € N ¢ = {o} (by (3)).
XeG
Thus Ker m = {0} and m is an 1l-isomorphism of G into A(R(C)]

and R(C) is totally ordered since C is prime. Also by
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lemma 1.26, Gm is transitiveron R(C). Thus we have (1),
(1)=2(2). Let 0:6-A(T) ke an l-isomorphism such that Go is
transitive on T where T is & totally ordered set. For
tel, let C. = {geG:t(go) = t}. Then Ci is a prime convex

l-subgroup. To see this notice that oc = 1 and so oeCto

Also if a, beC,, then t(a-b)o = t(ao)(b“1o) = %. 8o

t)

a = beCt. Therefore Ct is a subgroup of G. If ceC then

-t)

t{evo)o = t{covl) = t(co)vt = t. Thus cvoeC, and C is an

l=-subgroup of G, Ct is convex: Consgider o<aect, If

o<x<a, then 1<xo<ac and so t<t(xoc)st(ac) = t. Thus t(xo) =t

and xeC ¢ 1s prime: If a, beG+\Ct, then t(aoc) # t # t(bo).

£ C
Also t<t(ac), t{(bo). Therefore, since T is totally ordered,
t

t(aAb)o) = t{acAbo) = t(ac)at(bc) #£ t. Thus aAbgﬁt and so

aAbeG+\Ct and C. 1s prime. To show that {o} is the only
normal subgroup of G contained in Ct’ suppose HaG and HECt.

£ Therefore H= N Ctg. Thus it is
geG

sufficient to show that N ¢® = fo}:s To do this, proceed

ge

as follows: Consider o # ceG. Then co # 1 and so HseT

Then VgeG, H® = HeC

such that s(co) # s. Since G o is transitive on T, 3geG

such that t(go) = s. Then,

t(y+c-g)o = t(go)(co)(go)”" = s(co)(go)™ ' # s(ea™') = t,
therefore gtc-g ¢ C, and c%—g+@t+g = Ctg. Hence N Ctg = {o}l.

geCG
This completes the proof,

Corollary 1,30

Let L be the intersection of all non-zero l-deals of &, If

L # O, then condition (1) holds. In particular, a simple
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1-group 1is l-isomorphic to & transitive i-subgroup of the

group of all o-permutations of a totally ordered set.

Proof: L = NS # {0}, Consider o # ael, and let C be
0#SeL(G) .
a value of a. Then, a £ N C® = {0} since this is an l-ideal
geC

which does not contain L. Also, C being regular is also
prime and hence R(C) is totally ordered and o:G-A(R(C)) is

an l-isomorphism with Go being transitive on @(C).

Corollary 1,31

Iet G be an l=-subgroup of A(T) which is transitive on T.

If G is representable, then G is an o-group.

Proof: From theorem 1.29, ¥ a prime l-subgroup C of G such
that {o} is the only normal subgroup of G contained in C. But
C contains a minimal prime subgroup M of G and since G 1s
representable, then M&G. Hence M = {o} and G = G/M is an

O=group.

Remark: Conversely, we have that if G 1s an o-group, then

G is l=-isomorphic to a transitive l-subgroup of A(T) where T
is a totally ordered set. This is clear for 1f p, denotes

the group of right translations on G, then Pa is an l-subgroup

1
of A(G). Also, pyeG and p, 1s transitive on G.
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CHAPTER 2

Definition 2.1 ‘ ¥

A group G 1is divisitle if', for each gel and each positive

integer n, there exists hcG such that nh = gz
E. H. Neumann (*'6) hass proved that every group can be

embedded in a divisible group. As zn application of his

representation theorem for l-groups, Holiand (10) proved the

analogue to this, namely that "every l1-group can be embedded

in a divisible 1-group”.

However, his proof depended on the
existence, for arbvitrarily large ordinals q, of ﬂ@“SGtS
of power Ra, a set-theoretic restriction. (There exists

an Mo, -gset oI power R exactly when R is 3 regular cardinal

such that 2 Bs& whenever 8<x. For g = 847, this is the
R

form of the generalised continuum hypothesis: 2 8 - RBnﬁ}.
. ’ +
The defect was first rnoticed by Lioyd who, in (13%), descrikted

several classes of l-groups which could be embedded in
divisible l-groups. The proof which is presented here is
due to E. C. Weinberg (20} who proves the existence of such

embeddings using nothing more than the axiom of choice.

Definition 2,2

For & totally ordersd set T, and for A(L), the l-groug of

o-preserving permutations of I, let geA(L). Then for any

xel, an_interval of g, I_(x] is given Ly
{ou]
x) = { Im,n integers such that xg sysxg™)
T (x yeLsdm,n integers such that xg sysxg }.

o

An interval containing more than one point is a supporting

interval of g and the union of supporting intervals 1s the
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support of g, '

From this definition, it is clear that for geA(L) and

any xeL, T_(x) is a convex subset of I and that T _(x)g = I_(x).
o [}

fuy

L]

Also, if yeIg(x), then I _(x) = I_(y). Hence these intervals

& =
determine an eguivalence relation on I defined by:s
A - wp L
x~yel (x) = I(y)
fan] s}

Temma 2.3% (Holland)

Let 8 be a totally ordered set in which any two non-trivial

closed intervals are isomorphic. Then A(S3) is divisible,

Proof: Let geA(S) and consider n an integer such that ndo.
Without loss of generality, we may assume z>T and also that
g has only one supporting interval. By the hypothesis,

if x, yeS and if x<y, then HzcS such that x<{z<y. ILet
ao<aog for some aoes. Choose

ao<a1<a2<,oaa

1;<a = aog<aﬁg = an+1<a2g...

ne= n

Since any two non-trivial closed intervals in S are isomorphic,

4 isomorphisms

o ° " - 1
pi2(a; _q,85)——(a,,a; ,], I<i=n-1,
Define
0,2 (858, J——=s (2 ,2,8] by

-1 =1 -1

Ao = Xp-q Ppop- - P &
Now, let @*:(ao,an]cmmmé(a1,a1g] be the extension of all the
®; for ts<i<n., Then ¢* is an isomorphism. By assumption, the

support of g = Ig(ao)' Define f as foliows:

x 1if x¢T (a_)
Xf = { =

xgmm(x)@*sm(x) if XeId(ao),

<
i}
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where if xelg(ao), then m(x) is the unique integer not
necessarily positive such that 2,8 /<xsaog (2 =a, g
namely the greatest integer such that x>aoﬂm<x). Then,
feA(8) and for Xﬁlg(ao), xf" = % = xg. Also, for X€I¢<ao)’

it can be shown by routine comgutstion that
v

. N
n -m(x n m(x)} . Nel : ;
XTI = xg ( >¢* g () = xg. Hence £ = g and so A(S)

is divisible and the proof is complete.

Remark: TIf in a totally ordered seft S any two non-trivial
closed intervals are isomorphic, then this is equivalent to
saying that A(S) is doubly transitive (o=-2-transitive) on
S. (Fdr the derinition of o~28transitive see Chapter 3,
Definition 3.1.3(k)). Hence we have that if A(8) is doubly

transitive on a totally ordered set, S, then A(3) is divisible.

Lemma 2.4
If F is a totally ordered field, then A(F), the o-group of

o-preserving permutations, is doukly transitive on F.

Proof: Consider any z, b, ¢, deF with a<t and c<d., Then
b-a, d-c¢>0., Define a mapping o such that

Xo = (x—a)(dfc>(b=a)al+c.
Then aeA(F) for if x, yeF and xo = yo, this gives
(x-2) (d-c) (b-a)"'4+c = (y-3)(d-c)(b-a)” '+c. Therefore x = y
and so a is 1-1, If x<y, then x-a<y-a. Hence,
(x—a)(d~c)(b—a)~1s(yma)(dwc)(b=a)_1 since d-c, b-a>o,
Therefore, xaﬁya and so a 1s o-preserving. Also, aa = C

and ba = d. Thus, ZacA(F) such that ag = ¢, ba = d and so
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A(F) is doubly transitive on F,

To complete the proof of the maln theorem, we need only
show that every totally ordered set S can be embedded in &
totally ordered field F in such a way that A(S) is l-isomorphic
to an l-subgroup of A(F). Ther, since A(F) 4is doubly
transitive by lemma 2.4, lemma 2,3 yields that A(F) is
divisible. An application of the Holland embedding theorem
then completes the proof., The rext lemma yields the required

embedding.

Definition 2.5

For a partially ordered set S, the subset ¢ of § ia

&

y 1deal

of § if and only if . xcc, t=x=tec.

Remark: If § is a totally ordered set, then the set of all
ideals is comgplete and is totally ordered by set inclusion
since for c,, C2€C<S) = the set of all ideals of S, then

gither 01302 or CESCW,

Lemma 2.0
Iet S be a subset of & totally ordered set T. If every
o-permutation of S can be extended to an o-permutation of

T, then A(S) is l-isomorphic to an l-subgroup of A(T).

Proof: Let C(S) be the complete totally ordered set of ideals
of S partially ordered by inclusion. Identify the elemen%s
of S with the principal ideals of S (for any aeS, a={seS:s<a}

is the principal ideal generated by a). If ceC(8), define
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c

Now, for any teT, tGIO where ¢ = {seS:s<t}, then consider

any c#c,cC(8)., Since C(8) is totally ordered, we have

ccCe

{IGZCGO(S)} formg & decompositior. of T.
o on C(8) as foliows: for c,,

to Ic . Then p defines an equivalence relation on c(s).

2

each equivalence class E, we choose & representative c say.

Iet ec c denote the identity map on L.

2

isomorphism of IC onto T

below commutes, that is,
-1

8 = B8 8 .. Then

CqsCo c,Cq C,Cs '

if CypCo and 02905’ it
follows naturally that
0 = 8 S .

CysC C1sCp CpsCs
Let @eA(S) and let ¥

be the unique automorphism or

c(8) which extends ¢ such

that co* = V {sp:sec} = {spssecl.
3:A(S)=—> A(C(8)) defined by o? = ¢* is an

of A(8) into A(C(8)). For each ccC(S), we have cp(co*),

‘for clearly I, and Icm* are lsomorphic since ¢ can be extended

to an o=1lsomorphism of T.

off T which extends ¢, then Y maps L. onto IC@*.
consider teIC and suppose that S1€Cm*, sgicm*.

-1 » =1 - -1 -1
s,0 €c and syp gc. Therefore, s;p <t=s 0 E

, or c,cc, It is easily seen that t%Ic .
1

and let ©
c,c

"L v P
c, c?,cch define 8

Hence,

1

CqsC
! 1272
in the natural way such that the upper section of the diagram

Tn fact,

Then the mapping

Then

Hence,

I, = {teT:s, <tss, whensver s, sc and spfc, s;€8,1si<2}.

Define the relation

(3), c,pcy®I, is isomorphic
' 1

be an

sIC «—sylc

1

=isomorphism

if ¥ is any automorphilsm

To see this,

o
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s1<tYs32 which gives'thIcY*ﬂ Therefor= ¥ maps Ic into

IC@* and since cpce*, it follows that ¥ maps I, onto Ic¢*'

Define ¢ cA(T) such that te' = t6_ copt if tcI,. Then the
Uy

mapping a:A(S)=A(T) defined bty ga = ¢’ is the required

l-isomorphism of A(S&) into A(T}., To show this, consider

w YeA(S). TIf xeT_,

X((@Y)a)=x(wY)lzxec,c(ww}* e lov)”
:XGG’CQ*Y* 9
B co*,c(o¥)*
=X 0 c, ch{d}- 0 thp* s ccpce\i,at ® ®

=xep ¥ "=x(pa) (Ya)
Thus o is a homomorrhism. If row, @=Ker a, then,
Vxcs, x(pa) = xp' = x. But if xal_, then, xp' = X8, opr =
Hence cp* = ¢ and so xp = ¥. Thus a is & group isomorphism.
Now, let e ke the identity automorrhism on 3. Consider
peA(8). We must show that (gvela = @'ve’. Take XéIC. Note
that xo sxeco*sc., Thus, if xe¢'sx, then,

= X =x =x(p've'). If xd>x¢’, then,

x(pve) " = Xec,c(mVe)* c,c

x(pve) ' = x8 =xp' = x(p've’). Thus,

c,c(pve)* = Xec;cm*
| e = w've'. Hence g is an l-isomorrhism and the proof is
(gpve) ' = o ©

complete.

Notation: If G is a totally ordered groupr and F is a field,
the group algebra of G over F is given by the set of all

formal sums 2 c_g where c_cF and c _#o0 for at most a finite
geG = g
number of geG. Define addition such that

Scg+ Sdg= Z (c+d)g. Also, if AcF, then
geg & geG ~ gec & &

A3 c.g = ZG(Xcg)g. Multiplication is defined such that
geG ge '
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(chg)(Zdhh) = chdhgh. Then F(G), the group algebra of G
over F is an integral domain., To see this, suppose
chg, ZdhheF(G) such that chg%o%Zdhh. Then let

G, = {geG;cg%o} and Gy = {heG:dn%o}. Pick g'eG, and h'eG2

%
such that for every geG1, gsg' and for every h€G2, h<h’.
Then, for every geG1 with g<g' and every heG2 with h<hl,
gh<g'h’. Also cg/dh/g'h'¢b. Hence chdhgh¥o. Thus F(G)

is an integral domain.

Lemma, 2.7
Any totally ordered set S may be embedded in a totally

ordered field F in such a way that each automorphism

of S may be extended to an o-preserving automorphism of F.

Proof: Let G(S) denote the free abelian group on-S as the
set of free generators. The order on S may be extended to
G(S) as follows:

Sn,ss>0 Af ny>o and at most finite number of ni%o
where sy = V{si:ni#b}. Let F be the quotient field of the
group algebra Q[G(S)] of G(S) over the field of rational
numbers. Order Q[G(S)] lexicographically such that:

> qug>o if

U
geG(s) °
has a unique extension to an order on F (Fuchs P.109 Theorem

>o when h = V{geG(S):q_#0}. This order

3). Then the canonical extensions of an automorphism ¢ of
S first to G(S), then to Q[G(S)] and finally to F are

certainly o-preserving whenever ¢ 1s.
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Theorem 2.8

Every l-group can be embedded in a divisible l-group.

Proof: Applying the Holland representation theorem,
every l-group can be embedded in an l-group A(T) of
o-permutations of some totally ordered set T. By lemmas
2.3, 2.5 and 2.6, we may assume that T is ddubly trans-
itive. Then by lemma 2.2 due to Holland, A(T) is a

divisible l-group. This completes the proof.

Remark: The above construction can also be used to embed
any l-group in the l-subgroup of bounded o-permutations -
of a totally order field. Hence the result: !'Every

l-group can be embedded in a simple 1-group.'
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CHAPTER IIT

2

As mentionéd in the introduction, the set A(S) of order
preserving permutations (c-permutations or autcmorrhisms) of
a totally ordered set S becomes an l-group if the group
operation is taken as composition'and the partial order is‘
defined as follows: |

for fehA(S), 21 if and only if . xf 2x V¥ xe&S.

Then, for f,geA(S) and YxeS,

x(fveg) = xfvxg and x(fAg) = xFAXg,

In this chapter, a theory of transitive o-permutation
groups is first developed. This was due to C. Holland (11)
and the theory 1s somewhat analogous to the general theory
of permutation groups. In section 2, a class of simple
l-groups each containing an insular element (defined later)
is shown to be Jjust the simple 1l-groups which can be repre-
sented as o~permutétions of a totally ordered set with bounded
support. In conclusion, examples of such groups are given.

The theory here is due to C. Holland (9).

Section T,

In this section, unless otherwise stated, G is an l-subgroup
of A(S), the l-group of o-permutations on a totally order
.set 8, Multiplicative notation is used in discussions of

l1-permutation gfoups.

Definition 3.1.1

Tet G be an l=-subgroup of A(S). A convex congruence on 8 (with
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respect to G is an equivalence relation ~ on S such that
(1) =x~y=xg~ye  Veet
(ii) 4if x<y<z and x~z, then x~y,

A convex congruence is non-trivial if one of the equivalence

classes contains more than one element and is not all of g,

Temma 3.1.2

If ~ 1s a convex congruence on S,‘ﬂxm\S/Q is totally ordered
by letting (x~)<(y~) if x<y or x~y. There is a natural
1-homomorphism of G into A(S/~) such that for geG, geg’ehA(S/)

with (x~)g' = xg~.

Proof: < as defined above is reflexive for clearly X~xX and
so (xv)=(x~). Now, if (x~j<(y~) and (y~)<(x~), then, either
x<y and y<xX or X~y or y~x. In any of these cases, it follows

that (x~) = (y~) and so < is antisymmetric. If (x~)<(y~)

and (y~)<(z~), then consider the following cases:

case (1): x<y and y<z which implies x<z and so (x~)=(z~).

case (2): x<y and y~z which implies (y~) = (2z~) and so
(x~)=(2z~).

Case (3)s x~y énd y<z which implies (x%~) = (y~) and so
(x~)=(z~).

case (U4): (x~y) and y~z which implies %~z and so (x~)<(z~).

Hence < is transitive and therefore a partial order. Since

S is totally ordered, for any (x~), (y~)e S/~, either

x<y, y<x or x =y and so either (x~)<(y~), (y~)s(x~) or

(x~) = (y~). Thus S/~ is totally ordered by < as defined in
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the lemma. Now, consider 03G=A(S/~) defined such that
7 7 ° °

g6 = g where (x~)g = (xg)~. 6 is a homomorphism, for,

consider any g,heG then (x~)gbh® = ((xg)~)h® = (xgh)~=(x~)(gh)®.

Therefore (gh)0 = gbhf. Consider the identity permutation

4

b
L
0q

<

D

il
b

o)

<

?
|
>

Q

<
>

¢

It
&

3
L

<

b
2

i

(x~) g8V (x~)1

(x~)g8V1’

{
Therefore (gVv1)6 = govi’ = 2'vi'where 1 is the identity in

A(8/~). Similarly (gA1)6= g'A1" and so 8 is an 1-homomorphism.

Definition %,1.3

(a) @ is transitive on S if for each x,yeS there exists

geG such that xg = y.

(b) G is o-2-transitive on S if for each x,y,z,weS, if

x<y and z<w then there exists geG such that xg = z

and yg = W,

Example: (a) If G is a totally ordered group, the group Pe
of right translations of G is an l-subgroup of A(G) and is
transitive on G. Notice that for any x,yeG, xpmx+yzx—x+y:y.
Notice also that G is not o-Z2-transitive

(b) An o-2-transitive l-group: If C is a totally

ordered field, then A(F) is o-2-transitive (Lemma 2.1).

Definition 3.1.4

G is o-primitive on 8 if there exist no non-trivial convex

congruences on S.
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Remark: It is shown later 'that any o-2~-transitive l-group is

o-primitive,

Definition 3.1.5

G 1s weakly o-primitive on S if, whenever ~ is a non-trivial

convex congruence on S,d 1#geG such that x~xg VxeS (i.e.
the natural l-homomorphism 8 of lemma 3.1.2 fails to be

injective). In this case 8 is said to be minimal for &.

Remark: If G is not weakly o-primitive. Then for some

convex congruence 9 is injective and we say S can be reduced’

to S/~.

Definition 3.1.6

C is a representing subgroup of G if C is a convex prime

l=-subgroup ©of G which contains no 1-ideal of G other than
{11.

At this point recall Theorem 1.29 which can be restated
ags follows: an l-group G has a representing subgroup if and
only if @ an l-isomorphism ¢ of G into A(T) where T is a

totally ordered set and such that Go acts transitively on T.

‘Temma 3.1.7

There exists a one-to-one l-homomorphism i A(S)-A(S) where S

denotes the completion of S by Dedekind cuts (without

g

end-points).
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Proof: TFor geA(S) and a3, ,define i, such that
a(gis).=’v{xg:xes, x<a}., Then clearly giSeA(g). Also,
any two elements of A(§§ which agree on S must agree on 3
also (from the definition above) and so must be equal.

iS is injective for consider g=Ker iS, Then gis = 13'
For every aeS, agis = a = V{xg:x=S, x=<a}

= ag since g préserves order.
Hence g = 1S and so iS is one~-to-one. To éhow that iS is
an l-homomorphism, take any xeS and g,heA(S). Then,
x(gis)(his) =X gh = x((gh)is). Therefore (gis)(his) and
(gh)iS agree on S and hence must %e equal. Also,
x((th)iS) = x(gVvh) = xgVxh = x(giS)Vx(hiS) = x(giévhis).
Again (gvh)iS and (giSVhiS) agree on S and therefore must
be equal. Similarly, (g/\h)iS = giAhi_ and so 1  is a
1-1 1-homomorphism. |

Notation: For xeS, geA(S) instead of x(gis) one usually

writes xg and it is assumed that A(S)cA(S).

Remark: It is clear that for every oqecA(S8) T zeA(S) such
thatELS==a. However, the converse of the lemma does not
hold. That is to say there does not exist a 1-1 function
mapping A(S)~A(S). To see this, consider the totally ordered
set of all rational numbers Q and the dedekind completion of
the rationals to the reals, Q. Then HqcA(Q) defined such

that
v{x/_x Vv x 20

X YV x<o
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However, q cannot e restri¢ted to Q since alil positive
rational numbers which are not perfect squares are mapped

to irrational numbers.

Temma 3.1.8

Iet G be transitive on S, and E e a convex subset of S,
If a€E issuch that if geG, ageE then Eg = E, then E determines.
a convex congruence ~ on S defined by x~y if for some

geG, x,ycEg,

Proof: TFor each geG, Eg is convex since E is convex. Since

G is transitive, S = U Eg. ©Now, if xeEgNEf, then ZecE
such that eg = Xx. Bu%eé%is transitive on 8. Hence TheG
such that ah = e. Then, ahgf | = egf | = xf ™ ¢E since
x€Ef. Thus, Ehgf_1 = E which gives Ehg = Ef. But since

ah = ecE, then Eh = E. Therefore Ehg = Eg = Ef, 8o ~ is
an equivalence relation on S.

Finally, if x,yeEg, then for any feG, xf, yfzEgf. Since
for every geG, Eg is convex, then ~ is a convex congruence

on S.

Notation: Consider G an l-subgroup of A(8) for some totally

'ordered set 8. Then for any assS, Ga = {gcA(S):ag = a},

Lemma 3.1.9

If ~ is a convex congruence on S, a totally ordered set, if

aeS, and if C = {geG:ag~a}, then C is a convex prime l-subgroup
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of G and Ga;C, Converselyy if G is transitive on S and C
is a convex l-subgroup of G containing Ga’ then the relation

X~y if for some geG, xg, ygeaC is a convex congruence on S,

Proof: Clearly C<G. For any g,heﬁq then ag~a~ah. Since ~
is a convex congruence, then aghmlﬁa and so gh:1€C, Therefore
C is a subgroup of G. For any geC, a(gVl) = agvVa~a and

so gv1l eC. Similarly, gAl €C and so C is an l-subgroup of G.
C is convex, for consider 1<geC. If heG such that 1<h<g,
then a<ah<ag and since ~ is a convex congruence and since
geC implies ag~a, then a~ah., Therefore heC. € is a prime
l-subgroup for, suppose f,geG such that fAg = 1, then

afAhag = a and since S is totally ordered, either af = a

or ag = a., Thus either feC or geC and C is prime. Since

G. = {geG:ag = a} then clearly G =C.

Conversely, let B = aC. Then, for f,geC, af, agealC.
Therefore, if for some X€S, afsx=ag, then since G is trans-
itive, ZheG such that x = ah. Thus a((fVh)Ag) = a((fAg)v(gAh))=x.
Also, gaf=(gaf)v(grh)<g. 8Since C is convex, then (fvh)ageC
and so xeaC. Therefore E is a convex subset of S, To show
that ~ is a convex congruence, we apply lemma 3.1.8. Hence
it must be shown that if for some geG, ageE then Eg = E.
Suppose for some geG, ageaC = E, Then gheC such that
ag = ah., Therefore agh~1 = a and so gh_1eGagC. Since heC,
then geC. Hence Eg = aCg = aC = E, Therefore E determines
a convex congruence ~ on S defined as stated in the lemma.

Also, C ={ geG:aga~a}. This is easily verified,
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Remark: It follows easily 'from the fact that the convex
l-subgroups of G containing a prime l~subgfoup C form a
chain (Theorem 1,15), that if G is transitive on 8, then the
convex congruences on S form a tower, This is proved in

detail later.

Corollary 3.1.10

For each xeS, Gx is a convex prime l-subgroup of G.

Procf:. Replace S by S and assume as earlier mentioned that

A(S)cA(S). Then define ~ on 3§ such that x.y if and only if

[

X =y. Clearly ~ is a convex congruence on 3. But
GX ={ geG:xg = x}. ‘Hence by lemma 3.1.9, Gx is a convex

prime 1-subgroup of G.

Temma 3.1.11

Iet aeS, and let K be a convex subgroup of G containing Ga

and such that for any xeS E¢K with x<af., Then K = &,

Proof: We have KcG. Let 1<geG and let feK such that
aggaf. If h = (gvf)f'1, then ah = aff™ ' = a and so heG, <K.
Thus gvf = ((gvf)f™ )f = hfekK and also i=g<gVfeK. Since K
"is convex, then geK. Hence K=G.

In the following definitions, S is a totally ordered set

and T is a subset of 8.



Definition 3%.1.12 '

For x,yeS, x and y are T-connected 1f for every geG elther

xg, ygel or xg, yggT.

Definition 3.1.13

T is bounded 1f Ha,beS such that azt<b for all teT.

Definition %.1.14

T is dense in S 1if whenever a<b<c with a,b,ceS FteT such

that a<t<b.

Theorem %,1.15

If G is transitive on 8, the following are equivalent:

1 G is o-primitive on S;

N

For each aesS, Ga is a maximal convex l=subgroup of G;

(1)
(2)
( ) For each acS, Ga is a maximal convex l-subgroup of Gj
(4) If xeS, xG is dense in S;

(5) If T is 5 convex bounded subset of S, then no two

different elements of S are T-connected.

Proof

(1)s(2). Iet aeS. By Corollary 3.1.10, ¢, is a convex prime
" l-subgroup of G. Let C be a convex l-subgroup of &G such

that G c C. ILet 1<geC\Ga. Then a<ag. Hence EbeS such that

asbsag. Let 1sfeG . Then af<bf = bsag. 8o afg=1sa, Hence
1

. Therefore 1<f<fvg = (fgf1v1)geGaC§C. Since C

(£g” 'V1)eG,.

i convex, then reC and so G, cC. By lemma 3.1.9, C determines a

b
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convex congruence ~ On S such that C = {geG:bg~b}. Since
b<bg~b and since G is o-primitive on S, then for every ye&S,
b~y. Therefore, for every yeS, #heC such that bh = y.

Thus, by lemma 3.1.11, C = G. Hence Ga is maximal.

(2)=(3). This is immediate.

(3)o(4). Tet xeS. Define _ on 8 by z~y if ZzeG such that

xg lies between z and y. Then ~ 1s a convex congruence on

S, for it is easily verified that ~ 1s an equivalence relation
and, if g~¥y, suppose for some heG Zh%yh, then EgeG such that
xg lies between zh and yh. We may assume without loss of
generality that zh<xg<yh. Then Z<Xgh—1<y and gh=1eG which
‘contradicts z~y. Hence for every heG, zh~yh. Also, 1if

for Vi Yoo yBGS, yﬁgngyB and yrwy3 then ﬁgeG such that

xg lies between y, and Ve Ir yf¢y2, then #heG such that
y<¥hsy,. But VpsYs hence %‘sxhgygamd yf¢yé; a contradiction.
Therefore V~Yo and ~ is a convex congruence.

Now, let aeS. By lemma 3.1.9, C = {geG:ag~a} is a
convex l=subgroup of G containing Ga' If G = C, then since
G is transitive on 8, aC = S and all elements of S are
equivalent. But xeS so this is impossible. Hence G#C and
80 Ga = (C, If a~beS, then since G 1s transitive, FgeCG
such that ag = b and so geC = Ga“ Hénce a = b. Therefore
" xG is dense in S.

(4)=(5). Let T be a convex bounded subset of S. ILet
x = glbTeS. If a, beS and the open interval (a,b)#d, then,
since xG is dense in §, HgeG such that a<xg<b. Then

ag_1<x<bg_1. Hence #teT such that t<bg—1. Since G 1s
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transitive, EreG such that.f<! and t = bg™ 'f. Thus

ag”1fsag_1<xst = bg'1f<bg_1. Since x = glb T, then ag_1f¢T
but bg_1f = teT and so a and b are not T-connected. If now
a<b and %ExeS strictly between a and b, then, since G is
transitive on S #ceS such that a<b<c and FyeS strictly
between b and c. Since xG is dense in §, for some geG,

xg = b. Since no element of S lies strictly between X = “bgf1
and ag_1, then xeT. But agm1<x = bg—1. So agm1¢T and

again a and b are not T-connected.

(5):(1). Suppose G is not o=-primitive on S. Then ¥ a non-
trivial congruence on S, and there are at least two congruence
classes say T and Q where q<t'VgeQ and teT. Thus, any qgQ

is a lower bognd for T. Since G i1s transitive, for some

g€l and geG,'égeT. Hence qg2 is an upper bound for T. Thus

T is a bounded convex subset of S. Since Z some congruence
classes with more than one element, by transitivity ¥ a,beT
with agb. But, for every reG, either af, bfeT or af, bFfgT,

Hence a and b are T-connected and this contradicts (5).

Therefore G must bé o-primitive. This completes the proof.

Corollary 3,1.16

If G 1is o—2-transitive on S, then G is o-primitive on S.

Proof: Suppose G is not o-primitive on S. Then from con-
dition (5) of theorem 3.1.15, if T is a convex bounded subset
of S such that for x,yedS\T, x<t<y for each teT, then & some

a,beS with a<b such that a and b are Tféonnected.
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Case §1) If for every geG, ag, bgeT, then x<agsbgly \1yeG. But
| G 1s o-2-transitive on S and so #heG such that xh=ag
and bgh=y. But then, x<xh=aglagh<bgh=y and so agheT
but bgh#T. This is a contradiction. Now, if for
every geG. ag. bggT, consider the following:

Cagse (2 ag<bglx<t<y for each geG and teT. Then #heH such that
agh = t and bgh = y (since G is o=2-transitive). Thus
agheT, bgh#T and again this is a contradiction.

Cagse (3) ag<x<t<y<bg for each geG and teT. Then since G is

| o-2-=transitive, #heH such that agh = t and yh = bg.
Then ag<x<t=agh<y<bg=yh<bgh and again agheT but
bgh#T. Thus thils contradicts the hypothesis. Hence

G 1s o=primitive on S.

Remark: The converse of this corollary is false as the

example following the next corollary shows.

Corollary %.1.17

If S =8 and G is transitive on S, then G is o-primitive on

Sl

Proof: G is transitive on S and so for x€S, xG = S. Hence,
xG is dense on 8. It follows immediately from theorem

%,1.15 that G is o=primitive on S.

Remark: G is o-primitive on S %4 G is transitive on S. To

see this, consider the following examples Consider the totally
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ordered group of real numbers R under addition. Let

G = {kheA(R):qu = x+q, XcR and q a rational number}

Then G is o~-primitive. However, G 1s not transitive on R
for given x,yeR with x rational and y irrational, there
exists no pqeG such that xfh =¥, Clearly since G is ggg
transitive, then G is not doubly transitive; Hence this

example also shows that G is o-primitive G is doubly

transitive.

Corollary 3.1.18

If G is transitive and o-primitive on S, then for every xéﬁ,
Gy is a representing subgroup of G.
Proof: By corollary 3.1.10 for each xeg, GX is a convex
prime 1-subgroup of G. Therefore we needwonly show that ﬂ
1-ideal of GX except {1}. Prom Theorem 3.1.15, for each
x€S, xXG is dense in S. Now, if 1#geC, , then HaeS such that
a#ag. Since xG is dense in S, for some fe@, xf lies between
a and ag, say asxfsgag. Then asxf<agsxfg and so xf#xfg or
x%kfgf-1. Hence fgf_1¢GX. Therefore G contains no normal
subgroup of G except {1} and Gx is a representing subgroup

" of G.

Lemma 3.1,19

Let ~ be a convex congruence on S and let
H = {geG:x~xg Vxes} .

Then_H is an 1-ideal of G.
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Proof': Clearly H is & subgrdup of G. For any heH, x~xh ¥V xeS.
In particular, since xgeS 'VgeG, then xg~xgh. Thus x&xghg—1
and so ghg” el for every geG and heH. Hence HaG., Also

for all xeS, x(hV1) = xhVx~x since heH. Therefore hVieH.
Similarly, hA1e€H and so H is a sublattice of G. H is convex,
for if 1<heH and geH with 1<g<h, then xsxgsxh. But ~ 1is
convex and X~xh. Therefore x~xg. Hence geH. Thus H is an

1-ideal of @.

Theorem 3.1,20

Let G be transitive on S. Then the following are equivalent:

(1) G is weakly o-primitive;

(2) TFor each aes, G, is a maximal representing subgroup of
G; |

(3) 1If xeS and xG is not dense in S, then H1#geG such that

yeXG, yg = ¥;

(4) If T is a convex bounded subset of S, and if Ha, beS,

a#b, with a and b T-connected, then T 1#geG s VY xe8, x

and xg are T-connected.

(1)=(2). Since ¢ is transitive on S, and GcA(S), then by
Theorem 1.29, G contains a representing subgroup. Also,
from the proof of that theorem, Ga = {g:ag = a} is a repre-
senting subgroup of G. It remains only to show that Ga is
maximal. TLet C be a convex l-subgroup of G and GaQC, and

let ~ be the convex congruence on S determined by C as in
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lemma 3.1.9. If ~ is trivial, then as in the proof of theorem
3.1.15, either C = Ga or C = G. If ~ is non-trivial, then
A1#geG such that x~xg for every xeS. Therefore
{1340 = {geCG:x~xg VY xeS}. But by lemma 3.1.19, H is an
l-ideal of G. Moreover HeC. Thus C is not a representing
subgroup of G. Therefore Ga is a maximal representing subgroup.
(2)=(3). If xeS and xG is not dense in 3§, let aeS and define
~ on S8 such that z~y if ﬂgeG such that xg lies between z and
y. Then, as in part (3) of the proof of 3.1.15, A is a |
convex congruence on S and Gac C = {geG:agna} where C is a
convex prime l-subgroup of G. Since Ga is a maximal repre-
senting subgroup, C contains an 1l-ideal H#{1} of G. Consider
1<geH. If for some xfexG, xfg#xf, then HbeS such that
b<xf<bg. Since G 1s transitive on S, #keG such that bk = a.
Then, aK_1gk = bgk>xfK>bk = a. Hence K_1gkéc. This contra-
dicts the existence of H¥{1}- Therefore xfg = xf VY xfexG.
(3)=(4). Tet x = glbTeS where T is a convex bounded subset
of S. Suppose a, beS, a<b and a and b are T-connected.
Since G is transitive, #feG such that af = b. Then b and
bf are T-connected and so a and bf are T-connected, Also,
a<b = af<bf. By Theorem 3.1.15, Z£xgexG such that a<xg<bf.
In particular xG is not dense in S. Therefore from (3)
A#£g€eG such that for all yexG, yg = y. Without loss of
generality, g>1. Let zeS. Clearly Z feG such that z<xf<zg,
for if there exists such an feG, then since xfg = xf, this
gives z = zg. Hence if zgheT for some heG, then zheT for

otherwise zhSxs<zgh which gives zsxh-1szg and xh” ' exG.
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Similarly if x = 1ubT, a similar argument shows that zgheT
whenever zheT. Hence z and zg are T=-connected.

(4)=(1). Let ~ be a non-trivial convex congruence on S.

As in the proof of part (5) theorem 3.1.15, there are at
least two congruence classes say @ and T where g<t V¥geQ

and teT. Thus T is bounded below by some geQ and since G
is transitive,-for some QeQ and geG, qgeT. Hence qg2 is an
upper bound for T. Thus T is a convex bounded subset of S
and since ~ is non-trivial Ha, beT with a¥b. Thus a and b
are T-connected. TFrom (4), H1#geG such that Vxes, xg and x
are T-connected. Now, since G 1s transitive, for any Xe€S,
q £eG such that xfeT. Hence xfgeT and so xfgng. Therefore

x~xg. Thus G 1s weakly o-primitive. —~

Definition 3.1.21

The support of an element heA(S), denoted g(h), is given by
o(h) = {xeS:Xh%x}.

The lemma which follows gives a necessary condition
for the l-group of all o-permutations on a totally ordered

set S 1f transitive on S, not to be totally ordered.

Lemma %.1.22

If A(S) is transitive on S, a totally ordered set, and not
totally ordered, then A(S) contains an element g#1 of bounded

support.

Proof: Suppose #feA(S) and a, b, ceS with a<b<c and
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af = a, bf#b, and cf = ¢, Défine a mapping g such that

il

xg = xf if asxsc and xg = X otherwise. Then 1#geA(S) and

g has bounded support. If no such f exists, then since A(S)
is not totally ordered, Hf1,f2€A(S) such that fAf, = 1

and f,#1#f,. Then, FaeS such that'a(f1Vf2) = a, 1In fact,
the fixed points of f1vf’2 form a closed bounded interval
with respect to the interval topology say [y,yf]gg. Suppose
o(f1)g{ke§:x<y} and dfz)g{Xeggy <x}, As A(S) is transitive

on S, TheA(S) 3 y h<y. Let ﬂé = h_2f2h2. Then

o(ﬂé ) = {Xégzy'h2<x}, Therefore 0(f1Afé )={xe§:y'h2<x<y}.

Clearly y’heo(f1Afé ). Hence df}Afé V#4. Thus 1%f1Afé

has bounded support.
The next theorem generalises the following fesults:

(1) "If S is a Dedekind complete totally ordered .set, if S
is not discrete, and if A(S) is transitive on S, then
A(S) is o-2-transitive on S". This result is due to
Treybig.

(2) "If S is a totally ordered set and if A(S) is transitive
on S and if A(S)X is a maximal convex l-subgroup of

A(S), then A(S) is totally ordered or A(S) is doubly

transitive on S". This result is due to Lloyd (15).

Theorem 3,1.2%

If G is an l-subgroup of A(S), if G is transitive and
o-primitive on S, and if G contains an element 1<g whose
support is bounded below (or above) then G is o-2-transitive

on S.
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Proof: Consider 1<geG such that o(g) is bounded below. Let
a = glbo(g) € 5. First it is shown that if x, c, deS and
x<c=<d, then EﬂgeGX such that cf’2d. It follows that since
G 1is transitive on S, F1<f’eG such that cf? = d. Now, let
£ = 8'Af", Then cf = cf¥acf” = d and also feG . Hence, |
for x, ¢, deS and x<csd, then EfeGX such that cf = d. Since
G 1s transitive on 8, it follows easily that G is o-2-trans-
itive on S.

To prove the assertion that "if x, c, deS and x<c<d,
then EfVeGX such that cfl’>d", we proceed as follows:
Suppose yeS and x<y. By theorem 3.1.15, aG is dense in B.
Therefore, dfeG such that Xx=2f<y. Now, af = glbo(f_1gf);
for, if not, then @beS such that af<b<s for all sec(f_1gf)-
But'b¢c(f'1gf) implies that bf_1gf = b, Therefore

art™! = a<or™! = bl Thus b~ T¢o(g) which contradicts

0}

a = glbo(g). Hence af = glbc(f_1of). Since x=af<y, then

-1
xf 'gf = x € olf” 1gf‘) and also @weS, af<w<y such that

w<wt 1gf. Now yeS and so yG is dense in S. Hence HheG,

-1

12h such that w<yh<wf 'gf. Let k = hf 'gfh™'. Then it

follows that Wh-1<y<wf_1gfh_1 = wh™ 'k, Since xhsxsaf, then
- - } L

xk = xhf " 'gfn”™! = ™! - x.  In particular, y<wh kg yk.

Now, let U = cG,. If U has an upper bound, let
y = lubeG . As before, #KeG, such that y<yk. Then,
x<yk{1<y. Since y = lubceG,, EreG, such that yEf1<CP- Then,
rkeG, and y<crkecGX, a contradiction. Thus cG, has no

upper bound and so the proof is complete.
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Remark: TIf ~ and = are convex congruences on S with respect
to G and if we define~=~if é”b:a&%, then the set Cof all
convex congruences on S forms a lattice in which the maximal
and minimal elements o and I respectively are the two trivial
-congruences on S.

The proof of this is routine and is not done here. Tt
follows from the above remdrk that G is o-primitive on §

exactly when the cardinality of ¢ is 2.

Definition %,1.2L

G is locally o-primitive on S when there is a unique minimal -

non-0 element of @, the lattice of all convex congruences on

S with respect to G.. -

Definition 3%.1.,25

The congruence classes of a unique minimal non-0 convex

congruence are called the primitive segments of S.

Temma 3.1.26

If G is transitive on S, the convex congruences on S form

a tower.

Proof: If aeS, by Corollary 3.1.10, Ga is a convex prime
1-subgroup of G. Therefore by Theorem 1.15, the set of
convex 1l=-subgroups of G containing Ga form a tower under
inclusion. Hence it is necessary only to show that the

correspondence established in lemma 3.1.9 between the convex
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congruences on S and the corvex l=subgroups of G containing
Ga is 1-1 and order preserving.
Let O and pbe any two convex congruences on S with

respect to G. Let Cgs and C, be convex l-subgroups of G

o
each containing C—a and determined by Ga' Ifx;#b, suppose
Co = Cpe Then &x,yeS such that xoy let xgy. But then

ZgeG such that xg, ygeaCo= aCp. Hence xpy. This yields a
contradiction. Therefore Co#Cp.

On the other hand, if C and ¢’ are convex l-subgroups
of G containing G, and such that C and ¢’ determine the same
congruence, then, for each geC, Zfe¢’ such that af = ag.
Therefore gf—1eGé$C' and so ged'. Thus c<C’ . Similarly it
follows that ¢'s¢ and so C = ¢’. That the correspondence
preserves order is clear. For, if c,pecand if ox GCp,
then o<p and conversely.

Definition 3.1.27

A convex l-subgroup K of G 1s said to cover the convex l-subgroup
H of G if K properly contains H and there is no other convex

l-subgroup of G between K and H.

Theorem 3.1.28

Let G be transitive on S. The following are equivalent:

(1) G is locally o-primitive on S;

(2) For each aeS, Ga is covered by a convex l-subgroup
K(a) of G;

(3) @ aeS such that G, 1s covered by a convex l-subgroup K(a)
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Of G'. ‘ )

In (2) and (3), the subgroup K(a) is unique.

Proofs

(1)=(2). By lemma 3.1.26, the convex congruences on S form
8 toWer. From (1), @! minimal non-0 element'of the lattice
of all convex congrueﬁces on S with respect to G. From the
proof of 3,1.26, it follows that for aeS, G, is covered by a
convex l-subgroup K(a) of G.

(2)=(3). This is immediate. Also K(a) must be unique as the
proof of 3.1.26 indicates. - |
(3)=(1). If ZaeS such that Ga is covered by a unique convex
l-subgroup K(a) of G, then it is immediate from the proof of
3.1.26 that 3! non-0 minimal convex céﬁgruence on S

corresponding to K(a). Thus G is locally o-grimitive.

Remark: If G is an l-group, let 1£geG. and let C he a
regular l-subgroup of G not containing g. Then C is prime.
If K = N{S: Sec(q) such that ¢u{glssS), then K covers C.
Theorem 1.27 can now be restated as followss:

"An l-group G is l~-isomorphic to a subdirect sum of

K, where each K_ is a transitive locallv o-primitive

B B
1-subgroup of A(SB) where each SB= KB/CB’ CB being a

regular l-subgroup of KB".
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In conclusion, we presemt a diagram of implications

together with some examples,

o-2-transitive

transitive and

31<geG such that ' transitive
a(g? is bounded
below S - S

o-primitive

\

Weakly o-primitive Locally o-primitive

Examples

(1) An o-primitive 1-group which is not o-2-transitive:
The example which follows Corollary 3.1.17 is sufficient.
Also the o-group of right traﬁélations of a totally ordered
abelian group which is "full" in the sense of Cohn (%) is
also o=-primitive but not o-2-transitive.

(2) A weakly and locally o-primitive l-group which is not
o-primitive: Let S be the totally ordered set of reals
with the integeré removed. Then A(S) has the desired
properties.

(3) An 1-group which is locally o-primitive but not weakly
o-primitives: Let G be a non-archimedean totally ordered
1;group without 1-ideals. That such l-groups exists is
clear from the example given by A. H. Clifford (3). Let
1#4geG, C the regular 1-subgroup not containing g, and K
the minimal convex subgroup containing g. Then C and K are

both representing subgroups of G, and K covers C. Hence by
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theorem 3.1.28, ¢ is locally‘'o-primitive on the set of right
cosets G/C, but by theorem 3.1.20, G is not weakly o-primitive.
(4) An 1-group which is weakly.o—primitive but not locally
o-primitive: ILet G be a totally ordered abelian group which
has no smallest proper convex subgroup. Then {1} is a
representing subgroup, and by Theorem 3.1.20, d is weakly
o-primitive on G/ {1} , but by Theorem 3.1.28, ¢ is not locally .
o-primitive, \

(5) An 1l-group which is neither weakly nor locally o-primi-
tive: TLet G be the 1l-group of example 3. Every convex
subgroup of G not equal to G 1s a representing subgroup,

and & no smallest proper convex subgroup. Hence by 3.1.20

and %.1.28, ¢ is neither weakly nor locally o-primitive on

G/ {1} .

Section IT.

An 1l-group is simple if it has no non-trivial 1-ideals.

Definition %.2.1

-

Iet G be an 1l-group. For {<f, geG, f i1s right of g if for all

1<heG, gAn” fh = 1.

Definition 3%.2.2

An element geG is insular if for some conjugate g* of g,

g*¥ is right of g.
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Definition %.2.3 '

If G is an 1-group of o-permutations of a totally ordered
set S, then for feG, f 1s bounded if its support, o(f) lies

in a closed Interval of 8.

Temma 3.2.4

Let G be a transitive l-group of o-permutations on a totally

ordered set S. An element 1<geG 1s Insular e g is bounded.

Proof: (&) Suppose for 1<geG, g(g) lies in the closed

interval [a,b] of 8. Since G is transitive on S, Z1<heG

such that ah = b. Let g% = h_1gh. Then, for every xel[a,b]

1 -1 a. Hence wa1h_1¢0(g) and

1h_1ghK = X.

n” ' exn™  <on
1

and 1<keG, xk

P PR

so xK Thus ﬁ§-1g*K = xk
Hence o(Kf1g%g) lies completely outside [a,b] for every
1<KeG.  Therefore gAkf1g*K = 1 for all 1<KeG. Hence g is
insular,

(®) Conversely, suppose 1<g is an insular element. Let
g* = kf1gK be right of g. It may be assumed without loss
of generality that Kz1. There exists xeS such that x<xzxg¥,
If dyed such that x<y<yg, then since G is transitive,
g@1<feG such that xf = y. It follows then that

yr~'Z*f = xg*f>xf = y which implies y(gAf” |

g*f)>y. Therefore,

gAf_1g*f>1. This contradicts the insularity of g. Hence

AyeS such that x<y<yg and so o(g) is boundedigggzg by X.
Similarly, @zeS such that z<zg. Let wszK‘1. Then

wKks<z. . S0 H1<heG such that wkh = z. Since gAh_1g*h = 1, then,



_65_

Z = zh*1g*h = wgkhawigh = z. ,[Hence wgkh = wkh and so w = wg,

Therefore o(g) is bounded below by zkK- ..

Remark: Clearly, if g:G=A(S) is an l-isomorphism of an

l-group G onto a transitive l-subgroup of A(S), then 1<geG -

is insular & gpeGpis insular egp is bounded,

ILemma 3.2.5

If G is an l-group of o-permutations of a totally ordered

set S, then the set H = {geCG:g 1s bounded} 1s an 1l-ideal of G.

Proof: Clearly, if 1 = identity of G, then ¢(1) = ¢ and so
1eH. If g, heH, gh#1, then suppose g(g) and o(h) are contained
in the closed intervals [a,b] and [c,d] of S respectively.
Then singe o(gh)gc(g)Luih), it follows that

olgh) ela,b] ule,d] sbBAac, bvd] .
Therefore gheH, Clearly if gh = 1, then gheH. Thus H is

a_subgroup of G. For any heH, o(hvi) ={ xeS:x(hv1)#x }

= { xeS:xh>xlco(h)
Since h 1s bounded, then hyl is bounded and so hV1eH,.

Similarly o(hal)co(h) and so hAleH. Therefore H is a sublattice

of G. Suppose for 1<heH HgeG such that 1<g<h. Then
o(g) = { xeS:xg#x } = { xeS:xg>x}co(h)., Therefore geH and

H is convex. For any heH and geG, o(g—1hg)={x682xg_1h%ng1},

Thus Xeo(g—1hg)=xg—1ecﬂh)axeo(h)g. Theretore, if o(h)ela,b]

a closed interval of S, then o(h)gclag,bg]. Thus

g(g_1hg)g[ag,bg] and so g'1hgeH. Thus H 1s an 1l-ideal of G.



Theorem 3%.2.6

G is a simple l-group containing an insular element & ¢
is a transitive o-primitive l-group of bounded o-permutations

of a totally ordered set, S.

Proof: TILet g be an insular element of the Simple l-group G.
By corollary 1.30, G is l-isomorphic to a transitive l-group
of o-permutations of a totally ordered set. By lemma 562.4,
‘since geG is insular, then g 1is bounded. By lemma 3%.2.5,

if H ={ geG:g is bounded}, then H is an l-ideal of G. Since
1#geH énd since G is simple, then H = G. That is, every
element of g 1s bounded and so G is a transitive 1l-group

of" bounded o-permutations of S. Now, G may not be o=primitive,
so let ~Dbe any convex congruence on S, Then from lemma
3.1,19, H'= { geG: x~xg Yxes } is an 1-ideal of G. Since G

is simple, the H = {1} or H = G, For 1#fe@, let o(f) lie

in the closed interval [a,b] of S. Then if for any non-
trivial congruence ~, a~b, then feH and so H = G. But this
is impossible since G is transitive on S. Tt follows that the
union of any tower of proper convex congruences on S 1s a
proper convex congruence. Therefore, by Zorn's lemma,

there is a maximal proper convex congruence p on S. Also,
S/, is totally ordered as in lemma 3.1.2. Let B:G A(S/p)

be the natural l-homomorphism of lemma 3.1.2. Then, for

geG and xeS, (xg)p = (xp)gp. Also, since H = {1},

H1#FeG such that ¥ xeSs, xpxf and so g is 1-1, Tt follows

that G is o-primitive on S8/, and so is a transitive o-primi-
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tive l-group of bounded o-pérmutations on S/p.

Conversely, let G be a transitive o-primitive l-group
of bounded o-permutations on a totally ordered set S. Let
{1}#N be a 1-ideal of G. Define .. on S such that for x,yeS,
éqyaﬂ1<feN'such that x<yf and ysxf. Then it is easily seeh
that ~ is an equivalence on S. Also ~ is a‘convex congruence.
To see this, notice that 1f x~y, let 1<feN be such that
x<yf and ysxf. Then, for any geG, xggyfg and ygsxfg.

Take £ = g-1fg. Then since N 1s an l-ideal, 1<t! en. Also,

! and ygsxfg = xgfl’. Thus xg~yg for every geG.

xg<yfg = ygfl
Now, if x,y, zeS, X<sy<z and X~zZ, then g1<feN such that

x<zf and z<xf. Therefore, ysz=<xf and x<y<yf since 1>1.

Thus x~y. Therefore ~ 1is convex. Tt follows immediately
from the definition of ~ that WfeN, x~xf Vxes. - Since
N#£{1} , then ¥ at least one congruence class E containing more
thén one element, But G is o-primitive, therefore E = S

and must be the only congruence class. ILet 1<geG. By
assumption g is bounded. So let o(g) lie in some closed
interval [, of 8. Since a~b, then ¥1<feN such that

b<af. Hence, for any x€ B,b] , xgsbsaf<xf, For any
xeS\[a,p], xg = XSXf. Thus g<f. But N is convex and so

geN. Therefore G = N, and G is simple. By lemma 3.2.%4,
every positive element of g 1s insular. This completes the

proof.

Corollary 3.2.7

If G is a simple l-group with an insular element, then every
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positive element of G is insular.
Proof: This 1s immediate from the theoremn.

Corollary 3%,2.8

If G is a simple l-group with an insular element, then for
every 1<geG there i1s an infinite collection of pairwise

disjoint conjugates of g.

Proof: By Corollary 3.2.7, every 1<geG is insular. The
result follows immediately from definitions 3.2.1 and 3.2.2.

In conclusion two examples of simple l-groups are given.

Examgle%
(1) If F is a totally ordered field, then A(F) is doubly

transitive. Hence A(F) is o~primitive. Therefore if G 1is
the 1-group of bounded o-permutations of F, then by theorem
3,2,6, G is simple. In particular this is true if the field
is the field of real numbers, a result obtained originally
by Holland (10),

(2) A non-totally ordered simple l-group which does not
contain an insular element: ILet G be the l-subgroup of
'A(R), where R 1s the totally ordered field of real numbers,
such that G = {aeA(R):xa+1 = (x+1)a VxeR}. Then G is
transitive on ﬁ for given any x, yeR with x<y, let py—x

denote the right translation (additive) by y-x. Then
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Xoy_x=y and also py_xeG. Then by Corollary 3.1.17, G is
o-primitive. That G is not totally ordered is clear. Also,
for each ge@, o(g) is not a bounded subset of G hence G
contains no insular elements. That G is simple follows from
the following: For geG, o(g) is anfbpen set with respect to
. the interval topology on R. Also, for any 1,<geG, a(g)nlo, 114d -
where [0,1] denotes the closed intervalvbetwéen o and 1€R. It
is easily seen that if xelo,1] and xg=x,.then Hg¥* some
conjugate of G with xg¥*#x that is, xeo(g*). For each x select
such a g*, Then [o0,1]cUo(g*). Since [0,1] is compact, then I

a finite number of conjugates {gi} of g such that

i 1
i=
[0,1]C.S o(gi)go( 3 gi). Let h=,v,g;. Then it follows that h
has nol;;xed\poin%:1in lo,1] and so none in R by definition of
G. Therefore, for any’1R<feG, ! éome integer K such that
1f<o(h)k. Thus, for each xelo,1], fo1f<o(h)ksx(h)k. Hence
for every yeR, yfsy(h)k. Thus, 1R<'fs(h)k and so any l-ideal of
G which contains g must also contain any such f. Hence G is
simple.

Using the results of section I, C. Holland also showed
in (11) that under suitable but rather-general‘conditions,
if an l-group G is l-isomorphic to a transitive 1l-subgroup
of A(S) and to a transitive 1l-subgroup of A(T), where S and
T are totally ordered sets, then TS where § is the
completion of § by Dedekind cuts (without end-points) and

the action of G on T is obtained by first extending the

action of G on S to an action on § and then cutting back to T.
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