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ABSTRACT

The purpose of thi§ paper is to prove, from the point of view of
ergodic theory, two classification theorems of states of discrete
Markov chains.

To prove these theorems we first indicate several basic definitions
and prove some elementary theorems from Markov chain theory. Following
this we develop a basis in discrete ergodic theory, as developed by
E. Hopf. We begin by indicating the connection between the Markov
operators P and T and the related Markov chains. Next we define
the conservative part C , and the dissipative part D , of the state
space of a Markov chain, indicating that the sets € and D partition
the state space. We finally introduce the family C of subsets
BcC for which Pl, =1, on C, and prove that C is a O-algebra

B

with atoms Ck = {3: Zn pkj = ®} where k € C . We further indicate
that this development differs from that of Kim [6] only by the choice
of representation of the atoms of C . This difference, however,
appears to make the argument more clear.

Using this information we are able to prove the two classification
theorems. First we prove that the state space of a discrete Markov
chain can be partitioned into the set of all nonrecurrent (transient)
states and recurrent classes. We then prove the corresponding theorem
for idempotent Markov chains.

We conclude the paper by indicating how some idempotent Markov

chains arise quite naturally as a result of taking various limits.
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CHAPTER O ~ THE INTRODUCTION

The purpose of this paper is to examine some of the basic proper-
ties of Markov chains and the related stochastic matrices. Specifically
we will prove, from the viewpoint of ergodic theory, two classification
theorems of the states of Markov chains: the classification of the
states into the set of all nonrecurrent (transient) states and recurrent
classes (Feller [ 3], Theorem 3, p. 392), and the corresponding classifi-
cation for an idempotent Markov chain (Doob [ 2}, Theorem 2, p. 39).

This arqument employs a different method than that of Kim [ 6] and
appears more transparent.

A basic knowledge of general probability theory is assumed in this
paper. We begin with a review of the basic concepts of Markov chain
theory following the outline of Chung [ 1] and Feller [ 3]. After
defining the Markov property and indicating its importance we define
the transition probabilities and transition matrices associated with
Markov chains. From here we examine the properties of reducibility
and recurrence of Markov chains. Then we shall use the weakly doubly
stochastic matrices as defined by Révész [ 8] to expand the notion of a

stochastic matrix.



In Chapter II we develop a discrete version of the ergodic theory
due to E. Hopf and establish useful facts which are needed in Chapter
III. We begin by indicating the relationship between Markov chains
and Markov operators. We define the conservative part of C and dis-
sipative part, D, of S, the state space of a discrete Markov chain.
Then, we introduce the family C of subsets B Cc C for which
Pl =1 on C . We next show that  is a 0-algebra with atoms

B~ B
¢, = {j: Z p,. ==} where kec.

nP ki
In Chapter III we will actually prove these two classification
theorems relying constantly on the information set down in Chapter II.
After noting the importance of idempotent Markov chains in the
second classification theorem we devote Chapter IV to examining how
these idempotent Markov chains arise. We exhibit the simplest example
of an idempotent transition matrix, show how idempotent transition

matrices arise quite naturally and conclude by showing how such idem-

potent matrices may be constructed.



CHAPTER I - DISCRETE PARAMETER MARKOV CHAINS

§1.1 The Markov Property

Following the approach of Chung [1], Feller [3], and Doob [2]
we will outline the basic concepts of Markov chain theory.

We consider an abstract space {! , called the probability space
(or sample space), with the generic element w , called the elementary
event (or sample point), a Borel field F of subsets of §, called
measurable sets or events, and a countably additive probability measure
P defined on F. We call the triple (Q,F,P) a probability triple.

A discrete parameter stochastic process is a sequence of discrete

random variables (measurable functions)
{x: n2>o}

defined with respect to some probability triple (Q,F,P). If all the
random variables Xn are discrete, the union of all possible values
of all xn is a denumerable set S called the (minimal) state space
of the process. Each element of $§ is a state.

For the following we may assume without loss of generality that

s ={1,2,3,...}



Definition 1.1 A discrete time parameter Markov chain is a sequence

of discrete random variables {xn: n = 0} possessing the following

property: for any integer n = 2, 0 < t, <...< tn and any states

il'iz""in in the state space S we have

PIX, @ =i X W =i,...x W =i .}
n 1 n-1

p{xt W =i: X (=i }.

n n-1 n-1

This property is referred to as the Markov property.

The Markov property is equivalent to the apparently weaker con-

dition

P{X W) =i : X W =i,...x @ =i .}

-1

}.

P{xn(w) =4 : X W = in_1

An important consequence of the Markov property is that for any

n>2, 0<t, <...< tn <...< tn and any i in §,

i ,...,1
+m 17720 *nam

we have

P{X, (W) =1

P{X, (W) =1, n <V < n+m: X =i .}
t v
Vv n-1

This result is obtained by induction on m . (Chung [1]).



One may therefore verbally describe the Markov property with the
following statement: The probability of an event, knowing the states
at several previous moments, is the same as the probability knowing

only the last given state.

§1.2 Transition Probabilities and Transition Matrices

A discrete time parameter Markov chain {xn} is said to have

stationary transition probabilities if

P{X_(w) = j: X ) =i} = pj; forall n21 and

n-1

all i,j € S for which this conditional probability is defined.
Unless otherwise specified, all Markov chains considered in this

paper will be stationary (have stationary transition probabilities).

The probability pij is called the (one step) transition prob-
ability from i to j . The matrix (pij) i,j €S 1is called the

(one step) transition matrix of the related Markov chain.

Definition 1.2 The distribution {p;: i s}, p, = p{xo(w) =i} ,

where i € S 1is called the (initial) distribution of the Markov

chain {Xn}.

The following relations are clearly satisfied by the initial and

transition probabilities of a Markov chain.

p; Z 0 and Zi p; = 1 for all ics

2



and >0 and L =1 for all i,jes.

Pij 3 Fi

We now state without proof two fundamental theorems.

Theorem 1.1 (Kolmogorov) (Chung [1], Theorem 1, p. 7). Given

{pi}1<i<w and {pij: i,j =1,2,...} such that
p; 2 0 and Zi p; = l for all ies=({1,2,...}
and pij > 0 and Zj pij =1 for all ie S ={1,2,...} .

Then there exists a probability space (,F,P) and a Markov chain
{Xn} with state space S , initial distribution {pi} and transition

matrix (pij) .

(n)

. PR ¢
We call P{xn+k(w) = Jj: xk(w) =i} Pij , for n=>21, k=)

the n-step transition probability from i to 3j . The matrix

(9;2)) = (pij)n is similarly called the n-step transition matrix. In
the future we will denote pi?) by p:j . Thus we state the other theorem.

Theorem 1.2 (Chapman - Kolmogorov Equation)

m+n m

n
= >
pij Zkes Pix pkj for all m,n > 0 .

§1.3 Classifications

We classify the states of a state space S with regard to their

basic transition properties. We say i leads o j ,i-+3, if



there exists a positive integer m such that p?j > 0 . The states
i and j are said to communicate if i+ j and j + i , then we
write i++j . It is obvious that the relation "+*" is symmetric
and transitive. It is also clear that if i +> j for some j then
i+ i, however, it is not true in general that i +> i . Thus the
relation "«+" partitions the state space into subsets (equivalence

classes) as follows.

Definition 1.3 A class C(i) is a subset of the state space and

a) Consists of all states mutually communicating with i
or b) Consists of only i if i does not cammunicate with any

state.

A property defined for all states is called a class property if

its possession by one state implies its possession by all states in
that class.
A state which communicates with every state it leads to is called

an essential state. Other states are called inessential states. We

may now state the following theorem.

Theorem 1.3 An essential state cannot lead to an inessential state.

Proof. Let i be an essential state and 3j an inessential state.
Suppose i * j . Since 3 is an inessential state there is some
state, say k , such that j * k but 3 does not communicate with

k . However, since i+ 3 and j -k then i + k by transitivity.



Moreover 1 1is an essential state so i «+k so k — i . By

transitivity it follows that k + j ; the contradiction. o

Corollary 1.1 The property of being essential (or inessential) is a

class property. We call a class essential or inessential according

as its states are essential or inessential.

Proof. Since all states in a class mutually communicate and no
essential state can lead to an inessential state, the states of a class

must all be essential or all be inessential. 0o

If i -+ i , then the greatest common divisor of {n: pzi > o}
is called the period of i (denoted di)' If i does not lead to
itself then we do not define the period of i . On closely examining

the periods of states the following theorem is suggested.

Theorem 1.4 The property of having period equal to d is a class

property.

Proof. Suppose i and j are in the same class, then i +* j. Thus

there are positive integers m and n such that ij > 0 and

p?i >0 . Now if for some integer s > O, pii > 0 then

n+s+m n ] m 2s n+2s+m

s > . P:: P.. > . L. 2 Y. > .
pJJ 2> pjl P plj 0] We also have Py 0 so 33 0

Thus the period of j (dj) divides both (n+s+m) and (n+2s+m) so

it also divides the difference, [(n+2s+m) - (n+s+m)] = s .



Therefore for all s such that pii > 0, dj divides s . We conclude

that dj divides di . Exchanging roles of i and j we see that
di divides dj . Hence for all i and j in the same class di = dj

which completes the proof. o

Theorem 1.5 (Chung [1], p. 14) if di > 0 then there exists an
nd,

. i

integer Ni such that Py > 0 for n > Ni .

Proof. By the definition of period there are finitely many positive

n
S

integers n l = s =t such that Pis > 0 and such that di is
their greatest common divisor. From elementary number theory we see
that there exists an N such that n > N implies the existence of

positive integers Cy l =s <t satisfying

It follows then that if n = N

ndi - zs=lcsns > Ht {p

Pii ii s=1
Thus let Ni = N and the proof is complete. a

This leads immediately to the following corollary.

Corollary 1.2 If ij > 0 , then for sufficiently large n we have

nd,+m
A

pij >0
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nd,
Proof. By Theorem 1.5 we have piil'> 0 for sufficiently large n .

It follows that, for sufficiently large n ,

If for some state 1i , di =1, then i is called an aperiodic

state.

§1.4 Reducibility

We say that a set A , of states, is (stochastically) closed if

we have

ZjeA pij =1 for every i € A

Clearly then for all n , S, 1 if A is closed. A set is

n
jea Pi5

minimal closed if it is closed and has no proper, closed subset.

Theorem 1.6 A set of states is minimal closed if and only if it is

an essential class.

Proof. Since an essential state leads only to states with which it
communicates, it is obvious that an essential class is minimal closed.
Thus any closed set which contains an essential state must consist of
the corresponding essential class. Now let a closed set C consist

of only inessential states. Let i be a state of C and
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A={jeC: i~3j and j+ i} . Then A - {i} is nonempty, closed

and a proper subset of C . Therefore C is not minimal closed. n]

Definition 1.4 A Markov chain with a state space which is minimal

closed (i.e. consisting of one essential class) is called irreducible.

A transition matrix P = (pij) is irreducible if the correspon-

ding Markov chain is irreducible.

Theorem 1.7 Let P = (pij) be an irreducible transition matrix
then i) For each i , 3 ji such that pij >0
i

ii) For each j , 3 i, such that Py j >0

: j

Proof. i) Since for each 1 ¢ S , Zj pij = 1 we have pij >0
i

for some ji £ S . Thus the assertion holds for all transition

matrices

ii) Suppose the assertion fails. That is

pkj =0 for all k .

By the Chapman - Kolmogorov equation, we have

h+1 n
pkj = Zi Pyi pij =0 for all k , and all n=>1 .

Thus P:j = 0 for all k and all n . However, if we denote the

period by d , then d 21 . By Theorem 1.5 we have

p:;i > 0 for sufficiently large n .
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Therefore the supposition leads to a contradiction, completing the

proof. 0

We notice that conditions i) and ii) of the previous theorem are

not sufficient for P being irreducible. For example

Let P =

P satisfies conditions i) and ii) but is clearly not irreducible.

A matrix (pij) is said to be doubly stochastic if Zi Pik =1

for all k and Zj Phj =1 for all h . We notice that every
finite doubly stochastic matrix satisfies conditions i) and ii).
However, not all finite doubly stochastic matrices are irreducible as

shown by the example above.

Theorem 1.8 Let P = (pij) be an irreducible matrix. Then

i) Vn, ¥i, 33, such that p'i‘j >0
i

ii) V¥n, V3, Bij such that pg 3 >0
B

Proof. By Theorem 1.7 it is clear that i) is true for n =1 .

Now suppose it is true for n=h >1 . Then Vk, Bjk such that

p:. >0 . It follows from Theorem 1.7 that 31 such that Py 1 >0.

3k k
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Using the Chapman - Kolmogorov equation, we have

htl oy b h

b . . P:., 2P.. °* P,
kl i “ki il k]k Iy

>
1 0

Thus (i) is proven by induction on n .

(ii) is proven similarly. o

§1.5 Recurrence

Henceforth we shall let the event {w: xn(w) = i} denote the
statement that the Markov chain {xn} is in the state i at the time
n (or at the nth step). Similarly the statement "The probability that

th

the Markov chain will be in state j for the first time at the n

step, given that it starts from i " will be denoted by

P{xm+v‘“’ £3,0<v<n, X W =3 X W= i}

where m > 0 and P{Xm(w) = i} > 0 . We note that, due to the Markov
property, there is no dependence on m , whenever it is defined. Follow-

ing this,
P{xm+n(w) =i for some n > O: xm(w) =i} =1

if it is defined, denotes the statement "if xo(w) = i then xn(w) = i
for some n > 0O%.

We write

n : . sl o
fij = P{Xv(w’ #3,0<V<n; X (W =3: X, (W) i}



14

a £, =21 £
and £y = ina iy

»
ij

will be in state 3j at_least once, given that it starts from state

We note that f is the probability that the Markov chain {Xn}

i . Therefore we can rewrite it as

Fh
]

= 3 > 0: = 3
i3 P{Xn(w) j for some n > 0: xo(w) i}

&0
p{Unzl[w: X (W) = 3l: X (W) = i}

We also use the symbol gij to denote the probability that the
Markov chain will be in state j infinitely often (i.o.) given that

it started from state i . Then we have

P{xn(w) =3 i.o.: xo(w) =i}

Q
[}

ij

lim P{x_(w) = j for some n=Tm: X (W = i}
Moo n 0

*
lim &, po E . .
meo K ik Tkj

Suppose i *+ j , then p:j >0 for some n=>1 . Thus

* *
£.. 2 p?. >0 . Similarly if £,, > 0 then for some n > l,p? >0
ij ij ij ij
*
thus i+ 3j . Hence i+ j if and only if fij >0 . It follows
* »
directly that i «* j if and only if fij * fji >0 .

We can now prove the following theorem.

*

Theorem 1.9 gij = fij gjj
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Proof. Certainly

955 = Zn=1 P{xn(w) #3,0<v<n; X, (W =3; X (W =3 i.o. for

s > n: xo(w) = i}

(-]
= 2n=1 P{Xn(w) #3,0<Vv<n; X W =3: X W) i} - p{xs(w) = j

i.o. for s > n: Xn(w) = j}

oo fn f*
n=1 “ij %33 7 Mij 93

Definition 1.5 A state i is called recurrent or transient according as

»* *
£f..=1 or f£,, <1.
ii ii

This gives us the following theorem.

L
Theorem 1.10 g,. = f or 0 according as j 1is recurrent or

ij ij

transient.

Proof. For m =21 let
gij(m) = P{Xn(m) = j for at least m values of n > 0O: xo(w) = i}.
Th m+l) = £, (m)
en .. (m¥l) = -
913 13 933"

*
and gij(l) = fij
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By induction on m we have
(mtl) = £, (£..0"
PR 914} = . . .
i3 13 33

Now taking the limit as m + ® gives

* *
(ﬂ;.. if f,. =1
ij 33

which completes the proof. o

We notice that for any states i and j and n =2 1 we have

n n V  n-v
pij = ngl fij pjj (1.1)

. n v n=-v
by the definition of . f.. and AP
o Pij * %13 P33
We may now expand the notion of recurrence as we state the

following theorem.

" Theorem 1.11 The following are equivalent.

i) £,.. =1 (i is a recurrent state)

ii
. ©w n _
) Eoy Py =

iii) g.,. =1

*
Proof. It is clear from Theorem 1.10 that fii =1 if and only if

9 = 1. So (i) is equivalent to (iii).
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*

Suppose that fii 1l , then for all € > 0 there is some N

such that for kX =2 N
-z £, > 1-¢,

Thus for k =2 N and using equation (1.1) we have the following.

2k ZZk [zn V n-\)] = ZZk [ n-1l _n-v \)]

z no= £
n=1 Pii = “n=1'%v=1 %ii Pij n=1'“v=0 “ii Pij
2k-1 Vv 2k n-~-v 2k~1 Vv 2k-v _n
= L p.. ., = L P, . .
v=0 ii n=w+l Tii v=0 ii "n=l ii
k \% k n k \Y
> > - .
2 (Z o Pig) G g £55) > E 4 py;) 1€
Thus for k > N we have
2k n
zn=1 pii > 1-g
zk \Y
v=0 pll
sz n
Hence lim “n=1 Pig |
k* _k n ~—°°
z
n=0 *ii

0

n
K+ p.. .
= p11

. k
Now suppose 1lim Zn=1 Py

= K <« then lim Zk_o p?.
K-»c0 k4o DT

11

Since pgi >0

2k n lim _2k n

L < lim ne1 Pii _ josw Lnml Pig <1
= koo zk n 1lim ok n
n= ii k+o "n=0 “ii
s . . k n o n
a contradiction. Therefore 1lim I = I

. Pis = =1 Pss = ®.
; n=1 “ii n=1 “ii
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On the other hand, if Zn:l p?. = © then given K > 0 there

11l

exists N > 0 such that for m = N, Z:;l p:i > K . Using equation

(1.1) we have

m n m-l n m-n _V m-1l n m AV
= = .
n=1 Pii = “n=0 Pii Zve1 fii = Zneo Py Tyao fig
Hence
m n
anl pii < zm \V
- < £. .
m-1l n v=0 “ii
n=0 pii
m n m-1 n m n
< < .
But Ta=1 Py S Lo Py STy Pyy t+ 1
Hence
m n m n
Lnel Pig | Iney Pyj > K _ 1
m-1 n m n *
Zn=0 1) zn=l 1 +1 K+l K+1

So given € > 0 find K > 0 such that L =€, choose N as

K+l
before. Then for m > N
1zzﬁgof‘.’i>1-—l—zl—e.
. K+1
. m \V *
Thus lim Ev=0 fii = fii = 1.
biinatd

So
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We shall now redefine recurrence in the form which we shall use

for the remainder of this paper.

Definition 1.6 A state 1 1is said to be recurrent or transient

according as

@ n L n
Io=1 Pjg =@ of I )Py <%

If i is a recurrent state and i ++ j (i.e. j € C(i)) then

for some k > 0 and h>0,pl;j>0 and pgi>0.

® n L] n G h n pk = ®

Th > >
s Lhe0 P53 Z Prnaken P33 Z Zneo Pji Pig Pij

On the other hand, if j € C(i) and j is recurrent then clearly
i € C(j) =C(i) so as above i is recurrent. Hence we have the

following.

Corollary 1.3 Recurrence is a class property.

We may also take this opportunity to point out that a recurrent

state i may further be identified as either positive recurrent or

null recurrent according as

ndi
lim Py >0 or =0.
n-

Note that a positive recurrent state i with di = 1 (aperiodic)

is called an ergodic state.
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Theorem 1.12 The property of a state being positive (or null)

recurrent is a class property.

Proof. Suppose i 1is positive recurrent and i <> j . Let

d = di = dj . Set m and n such that

n

m
> 0 and
Pij Py

. > 0.
i

. mvd+n Z n  vd m
S : s T p.. b.. P
ince PJJ le L Pij

. vd . m+vd+n
lim p.j = lim p,_ .
Voo J Voo 33

v

n m . vd
P.:. P,, limp,. =2, p
ji Fij ii

§1.6 Stochastic (Markov) Matrices

Matrix A = (a,,) 1is a non-negative matrix if all entries aij

i}
are non-negative. All matrices considered throughout this paper will

be non-negative.

m

An n Xm matrix A = (a,.,) is row stochastic if I a,, =
1] j=1 "ij

for all i=1,2,...,n . Similarly A is column stochastic if

Z?Fl aij =1 for all j =1,2, e . A matrix which is both row

stochastic and column stochastic is called a doubly stochastic

matrix.

The following definition is due to Révész [8].

Definition 1.7 An n X m matrix A = (aij) is said to be row

(column) weakly doubly stochastic if for all 1i,j
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j=1 "ij
n < -
and j=1 344 = 1 (=1).

Therefore an n X m matrix is doubly stochastic if it is both row
weakly doubly stochastic and column weakly doubly stochastic.

The following theorems now become clear.

Theorem 1.13 Every n X n row (column) weakly doubly stochastic

matrix A = (aij) is doubly stochastic.

Proof. Suppose A is row weakly doubly stochastic, then

n n n
1<t szn 233 = Lim Bym 2450 = B =0
n
Also zi=l aij <1 forall j=1,2,...,n .
- n
If for some k 1,2,...,n , Zi=1 aik <1,

n n y <20 a, o+ z.

then L ., ye<n 255 = 25 21Fia) 244 i=1 %k 7“5

Thus no such k exists and the matrix is doubly stochastic. Exchanging
the roles of i and j we can similarly prove the theorem for a column

weakly doubly stochastic matrix. n]

Theorem 1.14 If A = (aij) is an m X n row (column) weakly doubly

stochastic matrix, then m <n (n <m) .

(1) <1+ (n-1) =n.
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Proof. Let A be a row weakly doubly stochastic matrix. Then

n - m < ..
zj:l aij 1 and zi=l aij <=1 for all 1i,j .
_ el n _ gl -
Thus Zi,j aij —\zi=l zj=l aij zi=l l=m.
Hence m=Z a,, =z " 1=n

c o . a,. =
i,3 1) j=1 "i=1 "ij j=1

SO0 m =n . Once again by interchanging the roles of i and j we
can similarly prove the theorem for a column weakly doubly stochastic

matrix. o
It is now obvious that if matrix A = (aij) is an m X n doubly
stochastic matrix then m = n . We shall prove the following stronger

result.

Theorem 1.15 If A is an m X n row (column) weakly doubly

stochastic matrix, then A is doubly stochastic if and only if m = n

Proof. (only if) This is an obvious consequence of Theorem 1.12
and the comment that A 1is doubly stochastic if and only if A is
row and column weakly doubly stochastic.

(if) Suppose A is a m X m row weakly doubly

stochastic matrix and is not doubly stochastic. Then z? =1

i=1 aij

and Z?zl aij =1 for all i,j , and for some %k =1,2,...,n ,

m

i1 %k <1 -

Therefore we have

(1) =m



m m m
= = <
SO m Z'J a.j ZJ lzi la.j _Z. 1 k

contradiction. 1Interchanging the roles of i

proof for column weakly doubly stochastic matrices.

We also note the following result.

Theorem 1.16 Let P = (pij) be an n X n doubly stochastic matrix.

Then P is an n X n doubly stochastic matrix for all

Proof. Let (pY.) represent p’ for v=1,2,... .

1]

non-negative doubly stochastic matrix,

0<p..=1 for i,j =1,2,...

1]

Suppose for some m =1

a,, +1Z,

j#k

and

,n .
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(1) <Xm, a

j we use the same

v=1,2,...

Since P

<m<
0= pij 1l
then
m+1l n m . L
pij = Zk=1 pkj Pix for m=1,2,...; 1,5 =1,2,...,n .

Thus

m+l m

O <min (p,.) <p.. <max (p,.}) =1.

k pk) plj X ij

Hence

0<p,.=1 for v=1,2,...

is

a
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m . .
Now suppose for some m , P is doubly stochastic, then since P

was doubly stochastic we have

n (m+l) _ n n_m _ oh n m - v . -
j=1 Pij = Tye1 Bpai Py Pygd = Zpag Dyay Prg Py = Tyay 1Py =1
and

n (m+l) _ .n n m _ ¢h n m _ ¢h . -
Li=1 Piy = Zja1 ey Pyy Prg) = Loy Zyo) Pyg Py = Ixap 17Pyy = 1

Therefore Pv is doubly stochastic for all v =1,2,... . o
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CHAPTER II - ELEMENTS OF ERGODIC THEORY

In this chapter we will develop a discrete version of the ergodic
theory due to E. Hopf and establish useful facts which are needed in

Chapter III.

§2.1 Markov Chains and Markov Operators

In this section we shall indicate the relationship between Markov
chains and Markov operators.

Let S be the set of all positive integers and let II = {ll(i) = Hi}
be a strictly positive probability measure on S . Let {xn: n = 0}
be a Markov chain with the state space S , the initial distribution IT ,
and the transition matrix (pij) . This notation will remain fixed

throughout this chapter.

By a Markov operator T on Ll(S,H) we mean a positive linear

operator from Ll(S,H) into itself which preserves the integral
Jgredl =/, fal , for fe L (s .
That is,

2ies TE£(i) *lI(1) = 2155 £(i)-l(1) , for f ¢ Ll(S.H) .
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We write Ll for Ll(S,H) and L for g”(s,H). It is evident that

L, is identified with 1_ .

For each A CS , 1 denotes the indicator function of the get A .

A

Theorem 2.1 For each Markov operator T on L1 there exists a

unique positive linear operator P from L into itself such that

i) Zi TE(i) - g(i) - NN() = Zi £(i) - Pg(i) - NI(i) for £ € Ll and

ii) Pl =1.

Proof. Fix gevL . Then
F(f) = Zi TE£(i) - g(i) - ()

is a linear functional on Ll . In view of the Riesz Representation

Theorem there is a unique g in L_ such that
F(f) = I, TE@) - g(d) * M) =X, £(1) - g(i) « () (2.1)

for all f ¢ L1

Thus for each g € L we have a unique g e L_ . Let Pg =g .
Since T 1is a positive linear operator it follows that P must be
positive. Furthermore we can show that P is linear.

Let £ = l{k} € Ll for some k € S and let g = 9, + 9, for

some gl,g2 €L . Then
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Pg(k) = H(k) Z TE(L) - g(i) - M)
= H(k) (Z TE(1) - gl(i) - M) + Zi TE(L) - gz(i) - (1))
1l . . . . . .
= T (Zi £(i) - Pgl(l) - () + Zi £(i) - sz(l) < TH(1))

1 .
Ty (Pg, (k) - Mk) + sz(k) (k)

W

Pgl(k) + sz(k)
Letting k run through S5 we have
Pg = P(gl+gz) = Pgl + sz .

*
Similarly for any real number a , let g = ag € L, . Then setting

£ = l{k} for some k € S we have

Pg (k) 'n(k) Iy TEW) C g(d) - ()
*
=n(i) L, T£(i) * g (i) - T (i)
* 3 .
= H(k) Z f(i) ° Pg (i) " NI (1)
= H(k) (pg* (k) * TI(x))
*
= a Pg (k)
* *

Thus Pg = Pag on S5 . So P is a linear operator.

L]
[+
o

Q
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P is also unique since suppose there exists another positive

4

linear operator P from L into itself such that
Zi TE(1) * g(i) - (i) = Zi £(i) * P g(i) - M(i)

for all f ¢ L1 and g € L

Then by fixing g ¢ L, we have the linear functional F on Ll

that
F(£) = I, TEW) * gl) - T =L £() * P g(i) * 1)

for all f ¢ Ll .

Since g in equation (2.1) is unique

Pg-= 6 = Pg .

Hence P 1is unique.
Now we need only show that Pl =1 . Let f£f = l{k} for any

k €S . Then

L. TF() -1 - NI(1) = f T 4l .

Plegy = n(k) i H(k)

But from the definition of a Markov operator T , for all f ¢ Ll
fs Tf dll = fs £ 4l .

Thus

such
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1 .
—mzi f(l) H(i) =1, g

Definition 2.1 The linear operator P in Theorem 2.1 is called the

adjoint operator of T . We call P a Markov operator on L_ .

Corollary 2.1 For all k = 0,1,2,... ; f € L1 and g € L

I, TE() " gli) s M) =L,  £(i) - Pog(i) * M) .

ies ies

where P is the adjoint operator of T .

l was

n

Proof. For k = 0 the result is trivial. The result for k
proved in Theorem 2.1l. Suppose the result is true for some N = 0 ,

Then

5. ™) - (i) - M)

N 2 L] - (]
ies Zieg T(TE) () * gW) - TA)

1€

N_, . R . .
Zies T £(i) Pg(i) ° I(1)

: - N . 3
Zies £(1) P (Pg) (1) M)

.y < RN+ .. . .
zies £(i) * P “g(i) ° II(i)

Thus we have the desired result by induction on k . a

Theorem 2,2 For each Markov operator T on L there is a unique

1

stochastic matrix (pij) such that
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TE(j) ~I(3) = Zi £(i) < (i) = pij for all f € Ll . (2.2)

Conversely, each stochastic matrix (pij) defines a unique Markov

operator T on L. satisfying (2.2).

1

Proof. For each Markov operator T and for each j € S we define

F. = 4, TE(i) - i) = T£(j) ° € L . ti
J(f) Licg TEG) 1{]} (i) £(j) " (3) for £ It is

ic 1

We also note

clear that Fj is a positive linear functional on L1 .
that
]Fj(f)l = |T£(§) - (5] = £ e} - M) = |jelfy
for f € Ll .
Thus ]IFII =1.

From the Riesz Representation Theorem we have

and there exists a unique vector pj = (plj'ij"") € L, such that

pij > 0 and

Fj(f) = Zi £(i) - pj(l) * i) = zies £(1) pij * (1)
for £ € Ll .
In particular we have

Tl{k} (5) < I35 = pkj = (k)

Since



r, . Tl

ies "“{k}
then
or
Thus (Pij)

c M) =%, Tl

ies Tlix} 1 IIi) =%

z * (1) = (k) ,

ies 1k}

; .t k) = IT(k
ZJ Pyj M(k) = (k)

R . =
j Pxj

ies 1{k}
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" Pl - [I(1)

is a stochastic matrix satisfying (2.2).

Conversely, for each stochastic matrix (Pij)

defines a positive linear functional Fj on L

Fj(f) = Eiss £(i) - M) - pij

L -
since
le(f)l = lzi £(1) * pyy Tw| =z, |ew] - Py
zilf(i)l ") = [|g]]; for f¢ L -
F.(f)
Let T£(j) = —1—7— for £ € L. . Then we have
HEE)) 1
||TfH1 = zj]Tfl(j) * N(j) = Zj lzi £(i) - Pij

1A

L L le@y] e iy M) = g le@| -

Llemy] - ma) = el -

and each j e s,

Fj is also bounded

* (i) =

* M) |

i) - (X, p,.
(i) ( 5 Plj)

Thus ||Tf||l =1 . It is easy to see that T is a positive linear

operator.
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We also notice that for f € L1 , using Fubini's Theorem

Zi TE£(i) =~ II(i) = Zi Fi(f) = Zi Z, £(3) ~II(3) “p, =

3 ji

Ej £(i) * (3 - (Zi P

ji) = Zj f£(3) ° I(3)

Hence T 1is a Markov operator on L1 . D

The Markov operator P on L satisfies the equation
Zi f£(i) * Ph(i) -~ TI(1) = Ei TE() = h(i) = (1)

hekwL

for f € Ll ’ o *

Letting f = l{i} » vields
z f(k) * pPh(k) ° II(k) = Ph(i) - II(i)

keS

Thus by equation (2.2)

R . . _ 1 . Ly e
TE(j) = T35 Zkes f (k) (k) pkj = ﬁTET. ni) pij .
Therefore
. pgsy e T4 = ) O
Zjes TE(3) - h(3) * T(3) Zjes TG M) Pij h(j) * I(3)
(i) Ej Pij + h(j)

Hence we have eguation

Ph(i) = Zj Pij = h(j) for heL, . (2.3)
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Which proves the following.

Corollary 2.2 For each stationary Markov chain {Xn} with state

space S and initial distribution II and the transition matrix (pij) ,

there exists a unique Markov operator T on L. such that its adjoint

1
P is representable by the transition matrix (pij) as in equation

(2.3).

Now since each stationary Markov chain can be identified with a
Markov operator T on L1 + we shall use Hopf's theory of Markov
operators to solve problems of Markov chains.

We now state without proof the following fundamental theorem of

Hopf (Neveu [ 7] Theorem V. 5.2. p. 196).

Theorem 2.3 For every Markov operator T on L there exigts a

1
unique subset C of S , for example we set
. © K., . o k
c={i: Zk=0 1(i) = ©} and D = {i: Zk=0 T1(i) < =}
+
such that for all f € L1 R
£ e =0 c
= o0
k=0 T £ or + on

o k
zk=0 Tf <o on D (the complement of C)

For each f ¢ LI we have

L N Lo ko
{i: L7 TE() ==} =cn li: Lo T > o} .
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o0
In future we may denote I Tk by T_ , and for f ¢ ot ’
k=0 © 1
c, = {i: zk:o Ke(i) = } .

Definition 2.2 The sets C and D in Theorem 2.3 are called,

respectively, the conservative and the dissipative parts of S relative

to T .

Recall (Definition 1.6) that a state i is said to be recurrent

or transient according as

n
X .. =% or I L, <@,
n Pii ° n Piji

We will show that the conservative part C of S consists of all
recurrent states, or, equivalently the dissipative part D consists of

all transient states. We note that from (2.2)

n . . s — : - : . n
T £(3) T II(3) = Zi £(i) - N(1) pij for £ € Ly s
g n iy . o= 7 . A
and Zn=0 £(3) - T(3) Zn=0 Zi £(i) - I(i) Piy

oy . n +
= Zi £(i) - TI(1) (Zn pij) for feL, .

We now prove the following.

Theorem 2.4 i) C = {i: 7 n = w)

ii) p={i: . _p" <} .
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Proof. Recall

. : ®} = . . . n o0
D={j: T 1(5) <=} = {§: L, M) » (X Piy) < } .

Thus for j € D we have

Z < i
[ )
0 pij for each i€ s,

So in particular

o0 n
Zn=0 pjj < @
Therefore
. @ n
D c {j: zn=0 P55 <=

or equivalently

However, for j e C
{i: T, Ly ==t =cn fi: 1, 1r4y (i) > o}

or equivalently

CO n L n
i - o = i: > -
{i: Zn=0 pji o} = cN {i: zn=0 Pji 0}
. _ .0 @ n . o = o
Since 1 = Pyy S L =0 Pyj we have 3 € {i: L =0 Py; } .
Thus
o0 n . o
c={3: En=0 Py = w} and D = {j: Zn=0 pjj <o} . g



36

§2.2 Invariant Sets

In this section we shall first define subsets C S

K €
: n _
C, = {j: DI Py = ©} where ke C.

Next we shall identify a family C consisting of all subsets
B € C such that PlB = lB on C . We shall further prove that C is
the O-algebra generated by the partition {Ck} . Hence C is the family

of invariant sets as identified by Hopf.

. M) _
Recall that Tl{k}(J) TG ~ Pxy Thus for all n

n o _ (k) . n
Tl 3 =75y " Py -

Therefore we have

3. n = - 3. n =
{5: ZnTl{k}(j) w} = {5: ankj } (2.4)

This set contains {k} if and only if k € C . 1In particular we define

the set

. n
C, = {j: Zn Pyy = o} where k € C .

Lemma 2.1 The sets Ck and C are stochastically closed. That is
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Proof. We shall first prove for fixed i ¢ Ck we have

Pl{i}(J) = pji =0 for all j € ¢, - (2.5)

Recall for j € Ck ¢ T l{k}(j) = , but for i g Ck

ZjECk Ty, l{k}(j) . Pl{i}(j) * I3 = Zjes T, l{k}(j) : Pl{i}(j) " I3

n X . . .
= zjes(znzl T l{k}(J)) l{i}(J) (5

S Ty L) " ) <=

Thus Pl{i}(J) = 0 for all j ¢ Ck , 1 ¢ Ck .

Similarly, for each i € D we have
1 (3) = = j . 2.6
Pl{l}(j) pji 0 for all jecC ( )

Since for i € D we have, as above

1A

L T 1(3) - Pl{i}(j) *II(3) =2

sec T 13) - Pley(3) - T3

T
jES @

=L, (&

ot n sy e .
jes ey T 113 7 1p44(3) - T

5° no_,. G o
n=1 T 1(i) - M) < .

Thus Pl{i}(j) =0 forall jecCc ,igcC.

From equations (2.5) and (2.6) it is clear that

PlC;(j) = ZieCi pji = 0 for each j € C .

and
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PlD(j) =0 for each jecC.

By induction on n we also have for all n = 0

Pnlcc(j) =0 for jecC

k
k
and

n . .

P lD(J) =0 for jecC.

Consequently
l= Zhes pjh = ZheCk pjh = Plck(j) for each j € Ck
and
1= Zhes Pjh = Xhec Pjh = PlC(j) for each j e C . ]

Corollary 2.3 If f ¢ LI is such that £ = 0 on D then

?m £f(i) = 0 for ieD.

Proof. By the formula

Ny vemgs n_,.. .. N e Tr g
EieD T f(i) (i) zies T f£(1i) lD(l) )

]

S o . .
zies £(i) P 10(1) M(i)

., . .n e e L
zieC f(i) P lD(l) M(i)

and eguation (2.8),we have T™f =0 on D for all n, so that

(2.7)

(2.8)
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T, £(1) =0 on D . @

Lemma 2.2 The following equalities hold on C .

Pl, =1 » Pl =1 ,Plc=1c,
Ck Ck C C Ck Ck
Proof. We see that Pl 21 on C , since Pl (j) =1 =1_ (3)
—_— C C C C
k k k k
for jecC and Pl  (j) 20 =1_ (j) otherwise. Let £ =1_; then
k Ck Sk C

by Corollary 2.3 we have

m n_.. . . . .
Ziec(zn=0 T £(1)) (Plck(l) - lck(l)) (i)

m n_... . .
= EieS(En=o T f(l))(Ple - lck)(l) M)

. n Sy ,
Eies £(1i) En=0 P (F‘lCk - lck) (1) * M)

(m+1) . X . .
Eiec(P 1Ck(1) - lck(l)) HEED)

<I.. p‘m+1’1ck<i) M) <T(C) <1, for m=1,2,... .

Hence we have

Biee T T (Bl () = 3¢ (1) - G =1

But Tw lC =®© on C so PlCk = lck on C . We have PlCk = lC on C

from Lemma 2.2.

Now clearly Plcc = Pl - PlC ’
k k

SO0 by Theorem 2.1 and the above Pl c=1-P1 =1c¢
Ck ck k



40

Using induction on n we arrive at the immediate corollary.

Corollary 2.4 The following equalities hold on C .

Pl =1 s, Plc=1c¢c , P 1C = 1C for n=1,2,... .

We may now take a closer lock at Ck and prove the following.

: n .
Lemma 2.3 C, = {5: L Py 5 >0} = {j: kx * j} where keC.

Proof. Since C, = {j: Zn p;j =} = {j: T 1 = ®}

cn{j: T,1440) >0}

n
= i 2 >
cn{j Zn pkJ o} ,
. n
we have C, © {5: Zn Pyy > 0} .

However, for k e C , pij =0 for all j ¢ Ck and n=1,2,... .

n
j 2 > .
so {3 L Py 5 0} ¢ C Moreover

{3: >0} = {3: k+ 3}

n
Z:n pkj

and the proof is complete. o

Lemma 2.4 Ck = Cj for each j e C K °

Proof. We shall first show that Cj C Ck . Since j ¢ Ck we have
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k=+3, thus for any i€ S , if j=> i then k -+ i .

Therefore cj = {i: §+i} < {i: x =+ i} = c, -

Now to show that Ck C Cj it is sufficient, on observing the

above, to show that k € Cj . Suppose k g Cj ., then by Corollary 2.4,

PnlC (k) = 0 for all n . Thus Zn pﬁj = 0 which contradicts

J

We can now state several immediate consequences of the previous

two lemmas.

Lemma 2.5 (i) Zn pij =« for 1i,j ¢ Ck .

ii C . = . . .
(ii) i N CJ g or C1 = CJ

s n _ . -
(iii) Zn pij = 0 whenever i ¢ Ch , JjE Ck ’ Ch N Ck g .

iv) ¢, = {3: x = 3} i.e. C, is a recurrent class.

Proof. (i) If i,j € C then by Lemma 2.4 i,j € C,_=C, = C, ,

k k 1 J

n

so Zn p.. =% and Zn pji = o
(ii) Suppose Ci n Cj # @ then for some ke S, k¢ Ci n Cj .

Thus C,_ =C, = Cj by Lemma 2.4.

(iii) Take i € Ch r J € Ck where Ch n Ck = @ . Then Ci = Ch

and C. =C so we have
3 k

. n
C, cs - =S - .
igC cs C, =S cj {x zn pjx o}

{x: I o} .

)
]

. c o - e e -
jec,cs-C =8s-¢C;
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Hence En p?j =0 .
(iv) From Lemma 2.3 we have Ck = {5: x=+3} .
Now by Lemma 2.4, for all j ¢ Ck we have Cj = Ck = {i: 4§ -1} .
Since k € Ck = Cj we have j + k for all j € Ck .
Thus C, ¢ {3: 3+ x} so C, = {3: 3+x}n {3: x+ 3} = {5: k+>3}

Having sets Ci and Cj defined in Lemma 2.5(ii) we may assume
without loss of generality that {Ck}k denotes a countable partition
of C . We shall now consider the measure theoretic aspects of the

family {ck}k .

Theorem 2.5 Let ( be the class of subsets B C C such that

PlB = lB on C . Then C is the O-algebra generated by the partition

{ck}k .

Proof. The class ( 1is not empty since by Lemma 2.2 it contains the

partition {Ck} and set C . The o-algebra B generated by the

consists of all unions of sets C, . Thus if B e B

partition {C K

"

then U ¢ =B and the C are pairwise disjoint, so
t kt kt

Plg(3) =Ply o ) =L,y ¢ Py = Le Tiec Pyi
t Tk, t ok, t

Hence if j ¢ B then j ¢ C for exactly one r ¢ {t} , and

r

P1o(§) = L _Pl, (§) =Pl, (3) =1 by Lemma 2.2
kt kr

w}
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On the other hand, if j € (C - B) then 3§ € C , but for all t ,

jEgC and
kt

Pl. =1 on -C, and B ¢ C by Lemma 2.2

Thus

Pl =1 on C, and B c C.

It remains only to prove that B = Ut Ck for all B ¢ C . Since
t
{Ck} is a partition of C we have B = U (BN C) . Sowe shall
prove that if B 0 Ck # # then Ck C B . If this is not the case then

for j € Ck ~B and i e BN Ck , then recalling PlB = lB on C we

have p?i = 0 for all n , or equivalently Zn pgi = 0 . This con-
tradicts Lemma 2.5(i) so C, € B . Thus C ¢ B and the proof is

complete. o

Using the terminology of Hopf as used by Neveu [ 7] we call a set

B &€ C an invariant set.

In view of Lemma 2.5(iv) it is clear that Ck is a recurrent

class in the Markov chain sense, and Ck is also the atom of the

o-algebra C , containing the state k .
It was pointed out by Neveu ( 7], Corollary 2, p. 200) that the

atom of C containing a recurrent state k could be identified by

cnf{j: L pjk =w} =cN {§: & > 0} (2.9)

n n pjk

We conclude this section by proving that the set defined by

equation (2.9) is the atom C Thus the proofs of the classification

k
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theorems in this paper differ from those given by Kim [ 6] only by the

choice of representation of atoms of the O-algebra C .

Lemma 2.7 For each k g C ,

. n _ _ . n _
{3: Zn Py = o} =c N {i: Zn Pix = w} |

Proof. Let C = {j:

. n
K = ®} and Bk =cN {i: En Py = ©} . For

n

zn ij
- — n -—

each j € Cy recall k € Cy = Cj S0 Zn P =% -

Thus C, ¢ B, . On the other hand, {Cj} is a partition of C so

k
if i eB then ieC, for some j, say C, . Since I p? = o ,
k ]i n “ik
it follows that Cj = Ck . o

1

Similarly it is clear that

n

.. >0} for kecC.
ik

. n - .
Ck = {j: Zn pkj >0} =cn {i: Zn p

Thus we have

Theorem 2.6 For all k € C

- 1 . n = 2= . n
c =ch {i: En Pix }=cn {1i: zn Py > 0} .

By the following example we realize that the set DN {i: ‘I

where k € C is not necessarily void.

Example 2.1 Let a,b,c be in[0,1] such that ¢ #1 , and a+ b+ ¢c = 1.
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Let I = {1,2,3} and let (pij) for i,j € I be such that
P;; =Py, ™ 1, Py; = @ Py, = b, pyy = ¢ and other pij = 0 . Then
C= {1,2}, D = {3} are the conservative and dissipative parts of I .

For each n 2 1 we have

n _ a(l-cn) n _ b(l—cn) n _ cn
31 1-c¢ ' P32 1-c ' P33 ’

n n n
Py = Pyy = 1, pij = 0 otherwise.

So Zn pgl =® or 0 accordingas a> 0 or a=0
pn =% or 0 according as b> 0 or b=20.
n " 32

Hence

i{1,3} if a> o0

i z n Bw =§
{i: n Pi1 }
{1} if a=20

and

{2,3} if b> 0
i X = 0f =
ti: T pjy ==}

{2} if b

it
o
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CHAPTER III - TWO CLASSIFICATION THEOREMS OF STATES

We will consider the Markov chain {xn: n = 0} with state space
s = {1,2,3,...}, strictly positive initial distribution I, and trans-
ition matrix (pij) as previously defined, Let T be the Markov
operator corresponding to Markov chain {xn} in the sense of Corollary
2.2. We will prove two classification theorems of the states of Markov
chaing from the viewpoint of ergodic theory as developed in Chapter II.

It is worth noting that the two classification theorems involve
only transition matrices and are independent of the initial distribution
of the Markov chain {xn} . Thus our restriction of a strictly positive
initial distribution is not a serious restriction on the generality of

the theorems.

§3.1 Classification Theorems

We shall first show that S can be divided into a set consisting
of all transient states, and a family of recurrent classes. (Feller

[3), Theorem 3, p. 392). We restate this theorem as

Theorem 3.1 Let {xn} be a discrete Markov chain.
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Then the space S has a unique partition {D,Cl,C } such that D

PUARY

is the set of all transient states and Ci is a countable family of

recurrent classes.

We then prove the corresponding theorem for idempotent discrete
Markov chains. (Doob (2], Theorem 2, P- 39). An idempotent Markov
chain is a Markov chain which has an idempotent transition matrix.

Before restating this theorem we notice that every substochastic
matrix may easily be enlarged to a stochastic matrix by adding a top
row (1,0,0,...) and a column whose entries are the deficiencies of
the appropriate rows of the original matrix. We may now restate this

second classification theorem as

Theorem 3.2 Let {Xn} be an idempotent Markov chain.

Then the state space S can be partitioned uniquely into the set D
of all nonrecurrent states (or equivalently all inessential states)
and a countable family of positive recurrent aperiodic classes {Ci}

such that

:

i) j €D if and only if pij = 0 for all ie S

ii) if x ¢ Ci and y € C, then pxy ad§,, v, (y)

) ij 3

where vj is a probability measure with support Cj

iii) there are nonnegative numbers {pti} such that

Zi pti = ] and
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ptx = pti vi(x) for te€D, x¢€ Ci .

§3,2 Proof of Theorem 3.1

In view of Corollary 2.2, we shall henceforth denote the unique

Markov operator on L., corresponding to the Markov chain {xn} by

1
T. Let C and D be the conservative and dissipative parts of S
relative to T . Then {Ci} as defined in Chapter II is a family

of recurrent classes, as proven in Lemma 2.5. The dissipative part
of S, set D consists of all transient states as proven in Theorem
2.4. From Lemma 2.5 we clearly see that {Ci} partitions C and
therefore the family {D,Cl,cz,...} partitions S . This partition

is unique by virtue of the uniqueness of the recurrence classes. Thus

the proof of Theorem 3.1 is complete. a)

§3.3 Proof of Theorem 3.2

For this section we assume that the Markov chain {xn} is idem-
potent, that is, its transition matrix (pij) is idempotent. Hence
the Markov operators T and P are also idempotent. If we set u=T1,
then Ty =y and it is easily seen that u(x) > 0 iff T, H(x) > 0

iff T°° Hi{x) = o ., So we have
{x: p(x) >0} = {x: T u(x) =«}ecC.

Since we have C = {x: T_1(x) ==} , if i € C then T, M) =

I, T L) 2T, 1(1) -1l==. Thus C={x: ux) >0} .
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Proof of Theorem 3.2

(i) We notice from the remark above that D = {j: u(j) = 0} .

Since u(3j) = TL(§) = IT(—lezi Py Ty + then

j e D if and only if pij =0 for each ies.

This proves (i). 1In particular PlD(i) = 0 for all § € S, thus we

have
l1=Pl= ?1C + PlD = PlC . (3.1)

(ii) Recall Zn p:y = ® for x,y € Ck as in Lemma 2.5, but for

all n , p:y = p so p >0 for x,y€eC Also by Lemma 2.5 we

Xy xy k °
see that pxY = 0 for x € Ci s Y E Cj if i #53 .
We shall now show that for a given € C, for all
g b4 i ny = Pyy
X € Ci . Since P2 = P , letting g = Pl{y} we have

Pg = P(Pl{y}) = Pl{y} =g .

Hence, by the argument of {7, pp. 198-199] the function
g(z) = Pl{y}(z) = Py is C-measurable. C, is an atom of the 0-algebra

C , so the set B, =C, n {z: Py < pyy} is either C, or g . 1If

i

Bi = Ci then pYy < pyy so Bi = @ . Similarly the set

c, N{z: p,_> pyy} is empty. Thus given y e C, , Pey = Pyy for

i In particular pxY a piy for all x,y € Ci .
Let us associate the mapping v;: S [0,1] with c, . for

zy
all xe¢C

i eC, as follows.
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vi(z) = Py, for z €8S .

Now vi is a probability measure on S with support Ci s Since

vi(z) = Py, is positivé or zero according as z € Ci or 2z ¢ Ci and

by Lemma 2.2 we have

ZzE:C vi(Z) =1L

. Pl (i) = 1c (1) =1 .

zec, Piz ™ Fic
i i i

This completes the proof of (ii).

(ii1) Por teD and x ¢ Ci simple calculation yields

=5 =F P, = PlC (t) Ui(x).

2
ptx = Ptx 2€S ptz pzx zeCi ptz zX i

If we set pti = Plci(t) , then Py ™ pti vi(x) and 0 < pti <1l.
So in view of (3.1)

z = L, Pl (t) = Plc(t) = Pl(t) =1

P, .
i Tti i C(i)

which establishes (iii).

Since p:x = pxx >0 for all x ¢ Ci , n 21, each Ci is
obviously a positive recurrent class of period 1. We note however
from part (i) that each state in D which is transient, is an in-
essential state.

From part (i) it is clear that for state x ¢ Ci , if x -+ y
then y € C . Then by Lemma 2.3 y € Ci . But, by Lemma 2.5 it is
clear that x «* y . Thus for all i , each state of Ci is essential.

Hence each state of C is essential.

Therefore D consists of all inessential states. fa]
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CHAPTER IV -~ LIMITING PROPERTIES OF STOCHASTIC MATRICES

§4.1 Construction of Idempotent Stochastic Matrices

In Chapter III we noted an important result which holds for
idempotent Markov chains (Theorem 3.2), which can be represented by
idempotent stochastic matrices. We now show how these idempotent
stochastic matrices arise quite naturally and how they can be con-
structed.

We shall first give the simplest example of an idempotent stochastic
matrix, then list two special cases which result in idempotent stochastic

matrices.

Example 4.1 The simplest example of an idempotent stochastic matrix

is one of the following type.

% %

al az a3oooanooo

a s a e e o
3 an

such that ai >0 for all i and Zi ui =1 .
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This matrix is clearly stochastic and it is also idempotent. Let

AA = B = (bi ) . Then

3

bij = zkzl(ak.aj)\g aj(zkzl o) = aj for all i,j .

Hence B = A so A is icdempotent.

Theorem 4.1 Let P be an irreducible recurrent aperiodic (ergodic)

Markov chain. Then

limP " = A = (ai ) exists, that is, such that for each j ,

3

>0 with L, a,=1,; if P is positive recurrent
aij = Q. 3 3

= 0 if P is null recurrent.

If P is positive, o = (ul,a ) is a unique invariant probability

2,.--

measure for P . That is

a, =2, a for j =1,2,... . (4.1)

b) ii pij
Proof. It is well known (Chung [1], Theorem 1, p. 28; Karlin (4],
Theorem 6-38, p. 153) that

1lim P = A exists, that is
e

lim p?j =a,>0 for all i,j =1,2,... .
w1 J

Since, for each n , 1 = Zj pz , Fatou's Lemma yields

3

n
12Z limp, =1L a, .
i, Piy T %3 %
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However we also have

n+l =T

n
13 Kk pik pkj for n=1,2,...

P

Again using Fatou's Lemma we have

n+l n
aj a lim pij > Zk lim Piy pkj = Zk o pkj e 3 =1,2,...

It follows that
a, 2 I Py » 3 =1,2,e.. 5 n=1,2,...
j--kak kjl [ A 4 . [ 4
However the inequality reduces to equality. Otherwise we have

n
o .
ajo > Zk o Py for some I and ng -

Io

This gives us

"o "o
Zj aj > Zj Zk oy pkj = Zk o Zj pkj = Zk oy

which is a contradiction. Thus we have (4.1). This equation implies

that
ay = I, o pgj for j=1,2,... ;n=1,2,... .
and by the Lebesque Bounded Convergence Theorem,
uj = Zi o, aj = (Zi a,) aj .
Hence

Zi ai =1 .
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Furthermore o = (01,02,...,an,...) is an invariant probability
measure for P , that is, a P=a . In fact o is the only invariant
probability measure for \P . If B =8P, that is Bj = Zi Bi Pyy
then

n
Bj = Zi Bi Pij and

B. =%, B, limp", =L, B, a, = . -
j i’ rr o ij i7i 3 b]
It is readily seen that the limit matrix A is an idempotent stochastic

matrix and AP = PA = A = A2 . o

Definition 4.1 A sequence of matrices {Am} = {(aTj)} is said to

converge to B = (bij) if it converges coordinatewise. That is

Llim a‘; =D for all i,5 .

o 13 ij
Theorem 4.2 If P = (Pij) is an N X N stochastic matrix, then there

is a stochastic matrix Q = (qij) such that

or equivalently,

= m k
limm2 . p..=q,.,1i,J=1,2,..., N.
k=1 “ij ij

Moreover, QP = PQ = Q and Q2 =Q .
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1

= .m \Y
Proof. Let Qm denote m Zv=l P for m=1,2,... and let
m
(qij) denote Q .
It is obvious that\
m _fam v
< q = < 1 .4
0= qij m szl pij <=1 for i,j=1,...,N .

o0
For every pair (i,j), the sequence {qu} mal © [0,1] has a con-
m
vergent subsequence qi; such that

lim q., = q..
m, ;e 1] 1]

By repeating this process Nz-times all entries converge. Thus we

have a subsequence of matrices which converge. Call this subsequence

{ka} such that

1i =0= (q..) .
m;zm Q 0 (qu)

We shall now show that @ = (qij) is stochastic. Recall

1

™

L. = 1li .. = 1li
qu m qu Llim M v=1 “1ij

My "
So
2?_1 q.,. = Eg_l lim qu = 1lim Zg 1 qﬁk
j=1 “ij i= m ij m > j=1 “ij
1 1
N ™ v = ™ N v
= lim I L . p,.=1lim m I L. 4 P..
o J=1 T “v=1 ij o K V=1 73=1 7ij
=1lim 1 =1.
m, >
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Thus Q is stochastic.

Furthermore PQ = Q = QP since for all m we have

Pka P(mk :tl Pv) = mk ::1 v+l = kaP .

Hence

PQ = lim PQ = 11m P =
n > oy

Moreover, for all mk

L m
— V+1
Pka = My z\)=1 P
1 +1
= E; (P2 + P> +...+ Pmk )
1 1 +1
=m (P +P +...+ Pmk) - E; (p - Pmk )
1 mk+1
= ka -m (P-P )
mk+1
But pij e [0,1], and pij e [0,1] for all m and i,j =1,2,...,N .
Thus
1 1 mHl
lim m Ppis = 0 and lim m P =
mk+°° 13} “‘](+°° 1)
So we conclude that
1 1 m+l
PQ = lim Pka = lim Q- lim m P+ lim m P =0 . (4.2)
M M M M
Similarly we see that for any m = 1,2,..., we have
1 1
o=o0mzI™ . pY) =nc™ . pV)g . (4.3)
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If {g_ } is a subsequence of {0 } such that
n “m

lim 9 = @'
nh->w

then from (4.3) it is clear that
Q=00 =0'0.

Now interchanging the roles of @ and Q' we have

Q =00=0Q so Q=0 .

Thus Q2 = Q , and we conclude that every convergent subsequence of
{Qm} converges to Q . Therefore {Qm} converges to Q which

completes the proof. o

We would like to be able to generalize Theorem 4.1 to include
infinite stochastic matrices. With this end in mind we shall prove

the following.

Theorem 4.3 If P = (pij) is an jinfinite stochastic matrix, there

is a substochastic matrix Q = (qij) such that

1 Kk
mm I’ P =0 .
nooeo =

Moreover, QP = PQ = Q = 92 .

Proof. We may consider the matrix P to be an infinite dimensional

real vector. If M = {B: B is a real infinite matrix}, it is clear
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that M is an infinite dimensional vector space. We can topologize
M with what we will call the coordinatewise limit topology, which

o
corresponds with the usual topology on R . Now

A= {B

(b,.): Vi, j=1,2,... ;0=<bD 1}

i3 ij

1A

is compact by the Tychonoff Theorem.

X . v, .
It now follows by simple calculation that P is stochastic for

1
— oIt \Y
all v=1,2,... . For each m 1let Qm =m Zv=1 P = (qij) . Thus
for m=1,2,... we have
1 1
oo m Q- m \Y - <m oo \Y
Tia1 3 = Dyoy ™ Lyay Py =™ Ipny By Pyy = 1

(o]
Therefore Qm is stochastic for all m , and the sequence {Qm}m=l

has a convergent subsequence, call it {O } . So we have
q m
k

lim Q@ = @ for some matrix Q .

m.k-r [ =} k

We further note that

PQ =0 = QP (4.4)

since for all mk

1 mk 1 mk
— AV} [ v+1
Pka = P(mk Zv—l P) =m Zv 1 P =Q P .
= = mk

Thus

PO = lim PQ = lim Q P = QP .

mk*m mk mk»m n&

It is also clear that PQ = Q0 since
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It follows that

_l_ mk+l
PQ = lim Pka=liQO-lim (%(P—P )) =0 .
mk+00 mk-boo k mk+m
We also have
L v fa v
Q=0(m ngl P)=(m Eval P)YQ . (4.5)

nﬁ+w

Now if {th} is a subsequence of {Qm} and lim @Q = Q' . then by

(4.2) we have

Interchanging the roles of @ and Q' it follows that

Q=20

So Q2 = Q , and every convergent subsequence of Qm converges

to Q .

Hence lim Qm =Q .
me

It remains only to prove that ¢ 1is substochastic. We have

previously shown that for all m

1
- <M m
O =M By P o= gy
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is stochastic, and

m _I%zm v
ij v=1 Pij

for all i and 3j

Q
i

Recall that

[}

lim q? for i,j =1,2,... .

q, . .
oo J

ij

Thus for each i , by Fatou's Lemma we have

2., 9, = I, lim o, < lim I, 1.

m
S b i £ B

Hence @ is substochastic. o
It is now straightforward to prove the following.

Theorem 4.4 If P = (pij) is an infinite (finite) substochastic

matrix then there is a substochastic matrix Q = (qij) such that

limm Z P =¢Q and QP =PQ = Q = Q" .

k=1

To set out necessary and sufficient conditions for the substochastic

matrix Q in Theorem 4.3 being stochastic we prove the following.

Theorem 4.5 Let P = (pij) be a stochastic matrix and 1let
1
.= oM k m m k
Q=limmZ . P . Let Q= (g..) and let q,. = <1 P
k=1 ij ij k=1 *ij
Q is a stochastic matrix if and only if, for each i , the series

1
m

z Then
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in j converges uniformly with respect to m .

Proof. (If) Suppose that, for a fixed i , the series E;;l q?j
in j converges uniformly with respect to m . We notice that
1 1 1
o m ®  — .m k = m o k = m
= Y - = l = l .
Lis1 949 "Ly M oy Py =L Lisp Pig =™ Ly
For € > 0, let j€ be such that
m m
L., L. =1=-I, . .. <€ foral m .
3. i3 jsie Y3
It follows that
imZ, . g, =1-1lmZ,_. g <¢€. (4.6)
> <
Since
LmI . q. =L, lmgq, =Z._. q,.,
< < <
e 353g i3 IS e 13 353, i3
from (4.6) we have
5 1
=1 %3 T °
Hence Q 1is a stochastic matrix.
{Only if) Suppose that Q 1is a stochastic matrix. Since
Z;=l qij =1, for each i and a given € > 0 , there is a j1 such
that

‘s -
J 3, 1]

Then we have
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mI . q;, =1-1linl T.=1-ZL . q.. =L

.. <: 4. . <= o e q < € .
o 373y 1) e 3537 713 353, i3 3>3, 713

It follows, for some ml , that

X m
>4 < >
3 3, qij € for m>nm

However, we also have

=1 <
=1 qij = for m =< ml '
so there is j2 such that
m
< < .
Zj>j2 qij € for m =< my

Setting jO = max(jl,jz) we have

qm =7 qm
j=3, %3 T 7323, U

<€

uniformly with respect to m , which completes the proof. o

§4.2 Fuler-summability of Irreducible Stochastic Matrices.

Recall (Theorem 4.1) that for P , the transition matrix for an
irreducible recurrent aperiodic Markov chain, the 1lim p" exists.
noe
This limit on the other hand need not exist in the case of a Markov

01
chain with period 4 > 1 . For example if P = (l O) then

10
lim P2n = (5 l) and 1lim P2n+l = P . However, it is known (Kemeny,
b9 gacd o

Snell [5], Theorem 5.1.1, pp. 99, 100) that for each irreducible

positive recurrent finite Markov chain, the sequence of powers of its
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n . s e
transition matrix, P , is Euler-summable to a limiting matrix

A= (aij) . That is for 0 < A <1

lim AT + (1 - ) =2
n—)co

where I is the identity matrix.

Moreover, for each j ,

a,, =, >0 ,1i=1,2,... and Y. a. =1.
1) J 3 3

We should now like to see what analogs of the above facts hold for

an irreducible infinite Markov chain. We shall therefore prove the

following theorem.

Theorem 4.6 If P is a stochastic matrix for an irreducible Markov

chain then the sequence {Pn} is Euler-summable, that is

lim AI + 1 -A0)p) " = A = (a, ;)
no J

exists for 0 < A < 1.

Moreover, for each j

>0 with I, aj =1 if Q= (AI + (1 - A)P) is positive
J recurrent.

=0 otherwise.

Proof. We shall begin by proving for each 0 < A < 1 that

© = (AI + (1 - A\)P) is an irreducible aperiodic Markov chain.
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For 0<A<1, let Q= (qij) = A + (1 - A)P , then

q.. = A 6ij + (1 - )\)pij and I =1 .

ij 5 U5

where Gi is Kronecker's delta.
3
Thus Q is a stochastic matrix. For each n > 1 we have

n
n _ .n (- ) k n=-k n-k
qij = Zk=0 kZ AT (1 - ) pij .

Since P 1is irreducible, that is, for each pair (i,j) , there

are m and n such that p?j > 0 and p?i > 0 , we have

n

v

n _n
- >
(1L-2 pij 0

and

v

m
qji

m_m
- > .
(1-x0 pji 0
Hence Q is irreducible. Furthermore it is clear that 0 < A < q,,

so Q 1is aperiodic.

Now we shall prove the following relation.

o n A 1 > n
Znel 91 = To% * TX Zpe1 P11 (4.7)
We come upon (4.7) by the following calculations.
A S g L (2) AP @ - ok gk (4.8)
n=1 911 ¥ “p=1 “k=0 P11 y
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o0
where Sk = zn=k k A .

It remains then to prove

"1
S, = w=~———0— for k=12,... . (4.9)

We prove (4.7) by induction on k . It is easy to see that

S1 = -——l—E . Now suppose (4.7) holds for an arbitrary k . Then
(1-))
_ k+l+m } .m ® k+l+m} sm+l
e e zm=o( K+l ) - Lo ( K+1 ) A
_ 0 k+1+m) m L k+m m
=1+ ( k+1 /2 7 Ipma (k+1) A
0 k+m m
=1+ zm=1 ( k ) A
n
G ( ) n-k
= Znsk kKl A = sk .
Thus S =i hich pro (4.9)
s k+1 (1-A)k+2 which proves .9).

Now (4.7) follows directly from (4.8) and (4.9). Hence we have

© n )

L q,, = —l—-Z pn .
n=0 "11 1-A "n=0 “11
Thus P 1is recurrent iff Q is recurrent.

Suppose P is irreducible recurrent, then 0 1is irreducible,
recurrent and aperiodic. A well known theorem of Kolmogorov {Theorem
4.1) states that for an irreducible aperiodic recurrent Markov chain
with transition matrix Q

1im 0" = A = (a..)
oo 1
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exists, and for each j

> 0 with Zj aj =1, if Q is positive

=0 if @ is null recurrent.

Thus the theorem holds in case P is recurrent.
Now suppose P is transient; then ¢ 1is also transient. Then

1im Q" = 0 (Chung [1], Theorem 5, p. 24). This completes the proof.
no
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