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ABSTRACT 

The purpose of th is  paper is  to provetfrom the point of view of 

ergodic theory, two classification theorems of s ta tes  of discrete 

Markov chains. 

To prove these theorems we f i r s t  indicate several basic definitions 

and prove some elementary theorems from Markov chain theory. Following 

t h i s  w e  develop a basis i n  discrete ergodic theory, as developed by 

E. Hopf. We begin by indicating the connection between the ~ a r k o v  

operators P and T and the related Markov chains. Next w e  define 

the conservative part C , and the dissipative part  D , of the s t a te  

space of a Markov chain, indicating that  the se t s  C and D part i t ion 

the s t a t e  space. We f inal ly introduce the family C of suhsets 

B c C for which P lg  = lg on C , and prove that  C is  a a-algebra 

with atoms Ck = (j:  En pkj = -1 where k E C . We further indicate 

that  th is  development d i f fers  from that  of K i m  [6] only by the choice 

of representation of the atoms of C . This difference, however, 

appears t o  make the argument more clear. 

Using th i s  information we are able t o  prove the two classification 

theorems. F i r s t  we prove that  the s t a te  space of a discrete Markov 

chain can be partitioned into the s e t  of a l l  nonrecurrent (transient) 

s ta tes  and recurrent classes. We then prove the corresponding theorem 

for idempotent Markov chains. 

We conclude the paper by indicating how some idempotent Markov 

chains ar ise quite naturally as a resul t  of taking various l i m i t s .  
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CHAPTER 0 - THE INTRODUCTION 

The purpose of th i s  paper is to examine some of the basic proper- 

t i e s  of Markov chains and the related stochastic matrices. Specifically 

we w i l l  prove, from the viewpoint of ergodic theory, two classification 

theorems of the states of Markov chains: the classification of the 

s ta tes  in to  the s e t  of a l l  nonrecurrent (transient) s ta tes  and recurrent 

classes (Feller [ 31,  Theorem 3, p. 392) , and the corresponding classif i-  

cation for an idempotent Markov chain (Doob [ 21,  Theorem 2, p. 39). 

This argument employs a different  method than that  of K i m  [ 61 and 

appears more transparent. 

A basic knowledge of general probability theory is assumed in  th is  

paper. We begin with a review of the basic concepts of Markov chain 

theory following the outline of Chung [ 11 and Feller [ 31.  After 

defining the Markov property and indicating its importance we define 

the transition probabilities and transition matrices associated w i t h  

Markov chains. From here we examine the properties of reducibility 

and recurrence of Markov chains. Then we shall  use the weakly doubly 

stochastic matrices as defined by ~6v6sz  [ 81 t o  expand the notion of a 

stochastic matrix. 



I n  Chapter I1 we develop a d i s c r e t e  vers ion  of the  ergodic theory 

due t o  E. Hopf and e s t a b l i s h  use fu l  f a c t s  which a r e  needed i n  Chapter 

111, W e  begin by ind ica t ing  the  r e l a t i o n s h i p  between Markov chains 

and Markov opera tors .  We de f ine  t h e  conservative p a r t  of C and d i s -  

s i p a t i v e  p a r t ,  D, of S, t h e  state space of a d i s c r e t e  Markov chain. 

Then, we introduce the  family C of subse t s  B c C f o r  which 

Plg = lg on C . We next  show t h a t  C is  a a-algebra with atoms 

n 
Ck = {j: 'n k j  = 00)  where k E c . 

I n  Chapter I11 w e  w i l l  a c t u a l l y  prove t h e s e  two c l a s s i f i c a t i o n  

theorems re ly ing  constant ly  on t h e  information set down i n  Chapter 11. 

After  noting the importance of idempotent Markov chains i n  the  

second c l a s s i f i c a t i o n  theorem w e  devote Chapter I V  to examining how 

these  idempotent Markov chains  arise. W e  e x h i b i t  t h e  s imples t  example 

of an idempotent t r a n s i t i o n  matrix,  show how idempotent t r a n s i t i o n  

matrices a r i s e  q u i t e  n a t u r a l l y  and conclude by showing how such idem- 

po ten t  matrices may be constructed.  



CHAPTER I - DISCRETE PARAMETER MARKOV CHAINS 

51.1 The Markov Property 

Following the approach of Chung [l], Feller [3], and Doob [2] 

we will outline the basic concepts of Markov chain theory. 

We consider an abstract space R , called the probability space 

(or sample space), with the generic element o , called the elementary 

event (or sample point), a Bore1 field F of subsets of n, called 

measurable sets or events, and a countably additive probability measure 

P defined on F. We call the triple (Q,F,P) a probability triple. 

A discrete parameter stochastic process is a sequence of discrete 

random variables (measurable functions) 

defined with respect to some probability triple (52,F,P). If all the 

random variables Xn 
are discrete, the union of all possible values 

of all Xn is a denumerable set S called the (minimal) state space 

of the process. Each element of S is a state. 

For the following we may assume without loss of generality that 

S = {1,2,3,. . . I  



Definition 1.1 A discrete - time parameter Markov chain is a sequence - 
of discrete random variables {xn: n 2 01 possessing the following 

property: for any integer n 2 2, 0 C t, <...< tn and any states 

l,2,...i in the state space S we have 
n 

This property is referred to as the Markov property. 

The Markov property is equivalent to the apparently weaker con- 

di tion 

An important consequence of the Markov property is that for any 

n l  2, 0 5  t, <...< t <... < tn+m and any il,i2,...,in+m in S , n 

we have 

This result is obtained by induction on m . (Chung [l]). 



One may therefore verbally describe 

following statement: The probability of 

at several previous moments, is the same 

the Markov property with the 

an event, knowing the states 

as the probability knowing 

only the last given state. 

91.2 Transition Probabilities and Transition Matrices 

A discrete time parameter Markov chain x is said to have 

stationary transition probabilities if 

P X ~ W  = j: xn-, (w) = i} = pi for all n I 1 and 

all i,j E S for which this conditional probability is defined. 

Unless otherwise specified, all Markov chains considered in this 

paper will be stationary (have stationary transition probabilities). 

The probability p is called the (one step) transition prob- ij - 
ability from i to j . The matrix ( p . . )  i,j E S is called the 

13 

(one step) transition matrix of the related Markov chain. 

Definition 1.2 The distribution {pi: i E S) , pi = P{x~(w) = il , 

where i € S is called the (initial) distribution of the Markov 

chain {xn}. 

The following relations are clearly satisfied by the initial and 

transition probabilities of a Markov chain. 

pi L 0 and Zi pi = 1 for all i E S 



and pij 2 0 and 1 p = 1 for a l l  i , j  E S . 
j ij 

We now s ta te  without proof two fundamental theorems. 

Theorem 1.1 (Kolmogorov) (Chung [ l ] ,  Theorem 1, p. 7 ) .  Given 

{pi1 15i<w and {pij: i j = 1 2 . .  such that  

pi 2 0 and Zipi = 1 for a l l  i E S = {1,2....} 

and pij 2 0 and C .  p = 1 for a l l  i G S = {1,2,.. .] . 
J i j  

Then there exists a probability space ( Q , F , P )  and a Markov chain 

{xn) with s ta te  space S . i n i t i a l  distribution { p . )  and transition 
1 

matrix (2 ,) . 
i 1 

We c a l l  P { x ~ + ~ ( u )  = j: X k h )  = i] = , for n z 1. k Q 
'i j 

the n-stee transition probability from i to j . The matr ix  

n = (pij) is similarly called the n-step transition matrix. In 

the future we w i l l  denote p (n) n 
i j 

by pij . Thus we s ta te  the other theorem. 

Theorem 1 .2  (Chapman - Kolmogorov Fquation) 

m+n - m n 
pij - Ekes pik pkj for a l l  m,n t 0 . 

51.3 Classifications 

We classify the s ta tes  of a s ta te  space S with regard to their 

basic transition properties. We say i leads to  j , i + j , i f  -- 



there exists  a positive integer m such that  pm > 0 . The states i j 

i and j are said to  communicate i f  i -+ j and j + i , then we 

write i j  . I t  is obvious that the relation "*" is symmetric 

and transitive. I t  is  also clear that  i f  i j for same j Men 

i * i , however, it is not true i n  general that i i . Thus the 

relation "*" partitions the s ta te  space into subsets (equivalence 

classes) as follows. 

Definition 1.3 A class C ( i )  is a subset of the s ta te  space and -- 
a) Consists of a l l  s ta tes  mutually communicating with i 

or  b) Consists of only i i f  i does not canmunicate with any 

s ta te  . 

A property defined for a l l  s tates is called a - class property i f  

i ts  possession by one s ta te  implies i ts  possession by a l l  s tates in 

that  class. 

A s ta te  which communicates with every s ta te  it leads to is  called 

an essential s tate.  Other s ta tes  are called inessential s tates.  We 

may now s ta te  the following theorem. 

Theorem 1.3 An essential s t a te  cannot lead to an inessential s tate.  

Proof. Let i be an essential s ta te  and j an inessential state. 

Suppose i + j . Since j is  an inessential s ta te  there i s  some 

s ta te ,  say k , such that  j + k but j does not communicate with 

k . However, since i + j and j + k then i -+ k by transitivity. 



Moreover i is an essential s ta te  so i t, k so k -+ i . By 

transi t ivi ty it follows that k + j ; the contradiction. o 

Corollary 1.1 The property of being essential (or inessential) is  a 

class property. We ca l l  a class essential or  inessential according 

as its s ta tes  are essential or inessential. 

Proof. Since a l l  s tates in a class mutually communicate and no - 
essential s ta te  can lead to an inessential s ta te ,  the s ta tes  of a class 

must a l l  be essential or  a l l  be inessential. o 

If i + i , then the greatest common divisor of {n: pii > 0 )  

is called the period of i (denoted di). If i does not lead to  

i t s e l f  then we do not define the period of i . On closely examining 

the periods of s tates the following theorem is suggested. 

Theorem 1 . 4  The property of having period equal to d is a class 

property. 

Proof. Suppose i and j are in  the same class, then i * j. Thus 

there are positive integers m and n such that pm > 0 and 
i j 

n s 
'ji 

> 0 . Now i f  for some integer s > 0, pii > 0 then 

n+s+m n s m > 0 . W e  also have > 0 so p n+2s+m 
P j  j 2 Pji Pii Pij > o .  j j 

Thus the period of j (d.) divides both (n+s+m) and (n+2s+m) so 
3 

it also divides the difference, [ (n+2s+m) - (n+s+m) ] = s . 



Therefore f o r  a l l  s such t h a t  pS > 0 ,  d divides s . We conclude 
i i S 

t h a t  d divides d . Exchanging ro les  of i and j we see t h a t  
j i 

di divides d . Hence f o r  a l l  i and j i n  the  same c l a s s  di = d 
j j 

which completes the  proof. o 

Theorem 1.5 (Chung [ 11,  p. 14) I f  di > 0 then there  e x i s t s  an 
nd, 

in teger  1 

Ni such t h a t  pii > 0 f o r  n ? Ni . 

Proof. By the def in i t ion  of period there are f i n i t e l y  many pos i t ive  
n 
s integers  n 1 5  s 5 t such t h a t  pii > 0 and such t h a t  di is  

6 '  

t h e i r  g r ea t e s t  common d iv i sor .  From elementary number theory we see 

t h a t  there e x i s t s  an N such t h a t  n 2 N implies the  existence of 

pos i t ive  integers  c 1 5 s 5 t sa t i s fy ing  
S t  

I t  follows then t h a t  i f  n 2 N 

Thus l e t  Ni = N and the  proof i s  complete. 

This leads immediately to the  following corollary.  

m Corollary 1.2 I f  pij  > 0 , then fo r  su f f i c i en t ly  large n we have 



"di.. 
Proof. By Theorem 1.5 we have p > 0 for sufficiently large n . 

ii 

It follows that, for sufficiently large n , 

If for some state i , di = 1 , then i is called an aperiodic 

state . 

51.4 Reducibility 

We say that a set A , of states, is (stochastically) closed if 

we have 

' j ~  'ij 
= 1 for every i E A 

Clearly then for all n , n 
~ E A  'ij = 1 if A is closed. A set is 

minimal closed if it is closed and has no proper, closed subset. 

Theorem 1.6 A set of states is minimal closed if and only if it is 

an essential class. 

Proof. Since an essential state leads only to states with which it - 
communicates, it is obvious that an essential class is minimal closed. 

Thus any closed set which contains an essential state must consist of 

the corresponding essential class. Now let a closed set C consist 

of only inessential states. Let i be a state of C and 



A = {j & C: i + j and j + i )  . Then A - { i )  is nonempty, closed 

and a proper subset of C . Therefore C is  not minimal closed. o 

Definition 1.4 A Markov chain with a s ta te  space which is minimal 

closed (i.e. consisting of one essential class) is called irreducible. 

A transition matrix P = ( p . . )  is  irreducible i f  the correspon- 
13 

ding Markov chain i s  irreducible. 

Theorem 1.7 Let P = (p. .) be an irreducible transition matrix 
13 

then i) For each i , 3 ji such that p > 0 i j i  

ii) For each j , 3 i such that  p > 0 
j i . j  3 

Proof. i) Since for each i E S , Z j  pij = 1 we have pij > 0 - 
i 

for some ji E S . Thus the assertion holds for a l l  transition 

matrices 

ii) Suppose the assertion fa i ls .  That is  

By the Chapman - Kolmogorov equation, we have 

h+l n 
Pkj Zi Pki Pij = 0 for a l l  k , and a l l  n 2 1 . 

Thus pn = 0 for a l l  k and a l l  n . However, i f  we denote the 
k j 

period by d , then d Z 1 . By Theorem 1.5 we have 

p:: > 0 for sufficiently large n . 



Therefore the supposition leads to  a contradiction, completing the 

proof. o 

W e  notice that  conditions i) and ii) of the previous theorem are 

not sufficient for P being irreducible. For example 

P sa t is f ies  conditions i) and ii) but is clearly not 

A matrix p .  i s  said to be' doubly stochastic 
1 I 

irreducible. 

if C i p i k = l  

for a l l  k and C. p = 1 for a l l  h . W e  notice that  every 
I h j  

f in i t e  doubly stochastic matrix sa t is f ies  conditions i) and ii). 

However, not a l l  f i n i t e  doubly stochastic matrices are irreducible as 

shown by the example above. 

Theorem 1.8 Let P = ( p . , )  be an irreducible matrix. Then 
1 3  

i) Vn, V i ,  3ji such that  $ > 0 
i j i  

ii) Vn, V j ,  3 i  such that pn > 0 
j i . j  3 

Proof. By Theorem 1.7 it is clear that i) is true for n = 1 . - 
Now suppose it is true for n = h 2 1 . Then Vk, 3 such that  

k 

> 0 . It follows from Theorem 1.7 that  31 such that p > 0 . 
'kjr jkl 



Using t h e  Chapman - Kolrnogorov equation, w e  have 

Thus (i) i s  proven by induction on n . 
(ii) is  proven s imi la r ly .  o 

1 5 Recurrence 

Henceforth we s h a l l  l e t  the  event  {w: Xn (w) = i }  denote the 

statement t h a t  the Markov chain {xn) is  i n  the  s t a t e  i a t  the t i m e  

n (or  a t  t h e  nth s t e p ) .  S imi lar ly  t h e  statement "The p r o b a b i l i t y  t h a t  

the  Sarkov chain w i l l  be i n  s t a t e  j f o r  t h e  f i r s t  t i m e  a t  t h e  n th 

s t e p ,  given t h a t  it s t a r t s  from i " w i l l  be denoted by 

where m 2 0 and P{X~(W) = i} > 0 . W e  note t h a t ,  due to the  Markov 

property,  the re  is  no dependence on m , whenever it is defined. Follow- 

i n g  t h i s ,  

p{xm+,(w) = i f o r  some n > 0: Xm(w) = i) = 1 

i f  it is defined,  denotes t h e  statement " i f  Xo(w) = i then Xn(u) = i 

f o r  some n > 0". 

W e  w r i t e  



* co 
and f i j  = fn  . 

i j  

we note that  f is  the probability that  the Markov chain {x,) 
i j  

w i l l  be in  s ta te  j a t - l ea s t  once, given that it s t a r t s  from s ta te  

i . Therefore we can rewrite i t  as 

for some 

We also use the symbol g to denote the probability that the 
i j 

Markov chain w i l l  be in s ta te  j  infini tely often (i.o.1 given that 

it started from s ta te  i . Then we have 

= l i m  P { x ~ ( w )  = j for some n I m: Xo(U) = i) 
mKa 

m * 
= l i m  C p 

m ~ o  k i k  'kj ' 

Suppose i + j  , then pn > 0 for some n z 1 . ~ h u s  
i j * n * 

f i j  Z Pi j > 0 . Similarly i f  f  > 0 then for some n l l i p  
i j 

> o  
i j * 

thus i + j . Hence i + j i f  and only i f  
f i j  

> 0 . It  follows 

* .  directly that i ++ j i f  and only i f  f i j  f j i  > O .  

We can now prove the following theorem. 

- Theorem 1.9 gij - f i j  g j j  



Definition 1.5 A state i is called recurrent or transient according as 

This gives us the following theorem. 

* 
Theorem 1.10 = f or 0 according as j is recurrent or 

'ij ij 

transient. 

Proof. For m 2 1 let - 

gi j 
(m) = p{xn(u) = j for at least m values of n > 0 :  Xo(w) = i). 



By induction on m w e  have 

Now taking the l i m i t  as m + 00 gives 

* 

which completes the proof. o 

We notice that for any s ta tes  i and j and n L 1 we have 

n v n-v 
by the definition of pij , f i j  and p . .  

3 3 

We may now expand the notion of recurrence as we s ta te  the 

following theorem. 

Theorem 1.11 The following are equivalent. 

* 
i) fii = 1 (i is a recurrent s ta te)  

Proof. I t  i s  clear from Theorem 

4 i i  
= 1. SO (i) i s  equivalent to 

* 
1.10 that fit  = 1 i f  and only i f  



* 
Suppose that fii = 1 I then for all & > 0 there is some N 

such that for k Z N 

Thus for k 2 N and using equation (1.1) we have the following. 

Thus for k 2 N we have 

Hence 
'2k n 

l i m  n=1 'ii 
k-*cok n 2 1 .  

'n-0 Pii 

Since > o 
ii 

z2k pn lim '2k n 
, lim n=l ii k- n=l Pii < 

1, = 
k n lim'k n 

'n-0 Pii k- n=O Pii 

k n co 
a contradiction. Therefore lim ZnZl pii = E pn = - . 

k-*co n=l ii 



= n  On the other hand, if pii = 00 then given K > 0 there 

e x i s t s  N > 0 such that for  m 2 N , 1" n 
n=l  'ii > K . Using equation 

(1.1) we have 

Hence 

But 

Hence 

1 So given € > 0 f ind K > 0 such that - 5 E , choose N as 
K+1 

before. Then for  m I N 

Thus 

CO * 
C pn = *  

n=l ii is  equivalent t o  
ii = 1 .  0 



We s h a l l  now redefine recurrence i n  the  form which we s h a l l  use 

f o r  the  remainder of t h i s  paper. 

Definit ion 1.6 A s t a t e  i is said  to be recurrent o r  t rans ien t  

according a s  

If i is a recurrent s t a t e  and i * j ( i .e .  j s C(3.1) then 

> O  and $ > O .  fo r  some k > 0 and h > 0 , pij 
j i 

0 0 x 1  00 n 00 h n k  Thus Zn=o pj  j ' en=k+h jj ' ma, ji 'ii Pi. j = O 0 .  

On the  other hand, i f  j c C ( i )  and j is recurrent  then c lear ly  

i E C ( j )  = C ( i )  so  a s  above i is recurrent.  Hence we have the  

following. 

Corollary 1.3 Recurrence is a c l a s s  property. 

W e  may a l so  take this opportunity t o  point  out  t h a t  a recurrent 

s t a t e  i may fur ther  be iden t i f i ed  as e i the r  pos i t ive  recurrent  o r  

nu l l  recurrent  according a s  - 

Note t h a t  a posi t ive  recurrent  o t a t e  i with di = 1 (aperiodic) 

is  cal led an ergodic s t a t e .  



Theorem 1.12 The property of a s t a t e  being posi t ive  (or nu l l )  

recurrent  is a c l a s s  property. 

Proof. Suppose i is pos i t ive  recurrent and i * j . Let 

d = d = d . Set  m and n such t h a t  
i j  

> 0 and p?. > 0 . 
31 

Since 

91.6 Stochastic (Markov) Matrices 

Matrix A = (a .  ) is a non-negative matrix i f  a l l  e n t r i e s  a 
L j i j  

are non-negative. A l l  matrices considered throughout t h i s  paper w i l l  

be non-negative. 

An n X in matrix A = (a .  .) is s tochast ic  i f  a = 1 
11 j=1 i j  

f o r  a l l  i = 1 2 , n  . Similarly A i s  column s tochast ic  i f  

x;=1 a i j  = 1 fo r  a l l  j = 1 2 ,  . A matrix which is both row 

s tochast ic  and column s tochast ic  is cal led a doubly s tochast ic  

matrix. 

The following de f in i t i on  is due t o  ~ 6 ~ 6 s ~  (81. 

Definit ion 1.7 An n X m matrix A = (a is sa id  to be row 
i j  - 

(column) weakly doubly s tochast ic  i f  f o r  a l l  i , j  



and 

Therefore an n X n matrix is  doubly s t o c h a s t i c  i f  it is both r o w  

weakly doubly s t o c h a s t i c  and column weakly doubly s tochas t i c .  

The following theorems now become c l e a r .  

Theorem 1.13 Every n X n row (column) weakly doubly s t o c h a s t i c  

matr ix A = ( a , . )  is  doubly s tochas t i c .  
13 

Proof. Suppose A is row weakly doubly s t o c h a s t i c ,  then 

~ l s o  LEI a i j  c 1 f o r  a l l  j = 1.2 ...., n . 

rf f o r  some k = 1.2 ...., n , I:, aik c 1 , 

a = Cn n n then C15i,j5n P1 ai 1 5 Zi;.l aik + Z (1) < 1 + (n-1) = n . 
jfk 

Thus no such k e x i s t s  and the matrix is  doubly s t o c h a s t i c .  Exchanging 

t h e  r o l e s  of i and j we can s i m i l a r l y  prove the theorem f o r  a column 

weakly doubly s t o c h a s t i c  matrix. o 

Theorem 1 . l 4  I f  A = (a. . is  an m X n r o w  (column) weakly doubly 
1 3  

s t o c h a s t i c  matr ix,  then m 5 n (n 5 m) . 



Proof. Let A be a row weakly doubly s t o c h a s t i c  matrix. Then - 
m Cn a = 1  and E i r l a i j 9 1  f o r a l l  i , j  . 

j=1 i j  
n m Thus , a = = j a i j  * CiCl 1 = m . 

Hence n n 
m = C  i , j  a j 1 zm 1 a i j  5 1  j=l l = n  

s o  m 5 n . Once again by interchanging the  r o l e s  of i and j we 

can s i m i l a r l y  prove the theorem f o r  a column weakly doubly s t o c h a s t i c  

matrix. o 

I t  is now obvious t h a t  i f  matr ix A = ( a . . )  is  an m X n doubly 
11 

s t o c h a s t i c  matr ix then m = n . W e  s h a l l  prove the  following s t ronger  

r e s u l t .  

Theorem 1.15 I f  A i s  an m X n row (column) weakly doubly 

s t o c h a s t i c  matr ix ,  then A is  doubly s t o c h a s t i c  i f  and only i f  m = n . 

Proof. (only i f )  This is  an obvious consequence of Theorem 1.12 - 
and t h e  comment t h a t  A is doubly s t o c h a s t i c  i f  and only i f  A i s  

row and column weakly doubly s tochas t i c .  

( i f  Suppose A is  a m X m row weakly doubly 

m s t o c h a s t i c  matrix and is  no t  doubly s tochas t i c .  Then CiPl a i j  5 1 

m 
and ZjZl a i j  = 1 f o r  a l l  i , j  , and f o r  some k = 1.2, ..., n , 

Therefore we have 



contradiction.  Interchanging the  ro les  of i and j we use the sane 

proof fo r  column weakly.doubly s tochast ic  matrices. o 

We a l so  note the following r e su l t .  

Theorem 1.16 Let: P = ( p . . )  be an n X n doubly s tochast ic  matrix. 
1 3  

v Then P is an n X n doubly s tochast ic  matrix for  a l l  V = 1,2, . . .  . 

v V 
Proof. Let p .  represent P fo r  v = 1 , 2 , .  .. . Since P is a - 1 3  

non-negative doubly s tochast ic  matrix, 

0 5 pi j  C 1 for  i I j  = l12 , . . . ,n  . 

Suppose f o r  some m 1 1 

then 

Thus 

m+ 1 m 0 9 min (p ) 5 pij 5 max (p 5 1 . 
k j  k j  

Hence 

0 1 
v 
j 4 1 fo r  v = 1,2 ,  ... . 



Now suppose for some m , pm i s  doubly s tochast ic ,  then since P 

was doubly stochastic we have 

and 

Therefore pV is  doubly stochastic for a l l  V = 1 ,2 ,  . . . . o 



CHAPTER 11 - ELEMENTS OF ERWDIC THEORY 

In  t h i s  chapter we w i l l  develop a d i sc re te  version of the ergodic 

theory due t o  E. Hopf and es tab l i sh  useful f ac t s  which are needed i n  

Chapter 111. 

52.1 Markov Chains and Markov Orserators 

In  t h i s  sect ion we s h a l l  indicate  the re la t ionship between Markov 

chains and Markov operators. 

Let S be the s e t  of a l l  posi t ive  integers  and l e t  n = { n ( i )  = nil 

be a s t r i c t l y  posi t ive  probabili ty measure on S . t {xn: n E 01 

be a Markov chain w i t h  the s t a t e  space S , the i n i t i a l  d i s t r ibu t ion  fl , 

and the t r ans i t i on  matrix p ) . T h i s  notation w i l l  remain fixed 
11 

throughout t h i s  chapter. 

By a Markov operator T on L1(s,II) we mean a posi t ive  l inear  

operator from L1(s,n) i n t o  i t s e l f  which preserves the in tegra l  

I, ~f dII = IS i dII , for f c L , ( s , ~ )  . 

That is, 

~f (i) -II ( i )  = EiCS f (i) -n (i) , for i E L,(S,II) . 



W e  w r i t e  L1 f o r  L1(S,n) and L_ f o r  Lw(S,n). I t  is  evident t h a t  

L, is iden t i f i ed  with 1, . 
For each A c S , lA denotes the  indicator  function of the set  A . 

Theorem 2 .1  For each Markov operator T on L there  e x i s t s  a 
1 

unique pos i t ive  l i nea r  operator P from L, i n t o  i t s e l f  such t h a t  

Proof. Fix g € Lao . Then - 

is a l i nea r  functional on L 
1 '  In  view of the Riese Representation 

Theorem there  is a unique i n  L, such that 

f o r  a l l  f E L1 

-, 
Thus fo r  each g E Lw we have a unique E Lw . Let P = g . 

'3 

Since T is  a posi t ive  l inear  operator it follows t h a t  P must be 

posi t ive .  Furthermore we  can show that P is  l i n e a r .  

Let f =  lik) E L1 for  some k E S and l e t  g = g1 + g2 for 

some glfg2 E Lw . Then 



Letting k run through S we have 

* 
Similarly for any real number a , l e t  g = ag E Lw . Then setting 

= '{k~ 
for some k E S we have 

* * 
Thus Pg = Pag = a Pg on S . So P is  a linear operator. 



P is a l s o  unique s i n c e  suppose t h e r e  e x i s t s  another  p o s i t i v e  
1 

l i n e a r  ope ra to r  P from Loo i n t o  i t s e l f  such t h a t  

f o r  a l l  f E L1 and g e La . 

Then by f i x i n g  g c L_ we have t h e  l i n e a r  func t iona l  F on L1 such 

that 

f o r  a l l  f & L 
1 -  

Since i n  equat ion  (2.1) i s  unique 

Hence P is unique. 

NOW w e  need only  show t h a t  P l  = 1 . L e t  f - llkl f o r  any 

k € S . Then 

1 C. T f ( i )  1 n ( i )  = - P1{k~ = n(k) r II(k) l 1  S ~ f d n .  

But from the d e f i n i t i o n  o f  a Markov ope ra to r  T , f o r  a l l  f e L 
1 

Thus 



Definition 2 .1  The lin-ear operator P i n  Theorem 2 .1  is called the 

adjoint operator of T . We ca l l  P a Markov operator on Loo . 

C o r o l l a  2.1 For a l l  k = 0,1,2, ... ; f € L1 and g E Lm 

k ' iES ~~f (i) g ( i )  n ( i )  = xiEs f ( i )  P g ( i )  n ( i )  , 

where P is  the adjoint operator of T . 

Proof. For k = 0 the result  is t r iv ia l .  The result  for k = 1 was - 
proved in  Theorem 2.1. Suppose the result  is  true for some N > 0 . 
Then 

Thus w e  have the desired result  by induction on k . 

Theorem 2.2 For each Markov operator T on L there is a unique 
1 

stochastic matrix p .  . ) such that 
11 



Tf ( j )  j = 1 f i n ( i )  pij for a l l  f E L~ . (2 .2)  

Conversely, each stochastic matrix p . .  defines a unique Markov 
13 

operator T on L satisfying (2 .2) .  1 

Proof. For each Markov operator T and for each j E S we define - 
F .  ( f )  = ZiES Tf (i) l{ jl n ( i )  = ~ f ( j )  ' n ( j )  for f E L1 . 1t is 

3 

clear that F is a positive linear functional on L . we also note 
j 

that 

for f E L1 . 

Thus 1 1 ~ 1 1  5 1 .  

From the Riesz Representation Theorem we have 

- 
and there exists a unique vector p = (pl ,p2 j,. . . ) E L_ such that  

j 

pij I. 0 and 

for f c L1 . 

In particular w e  have 

~1 (j) n ( j )  = pkj n(k) . 
(k) 

Since 



or 
'j 'kj 

= l .  

Thus (p . ) is  a stochastic matrix satisfying (2 .2 ) .  
i 3 

Conversely, for each stochastic matrix p . .  and each j E S , 
13 

defines a positive linear functional F on L1 . F is  also bounded 
j j 

since 

F. ( f )  
- for  EL Let Tf (j) - , ,j, 

1 '  
Then we have 

Thus 1 l ~ f  1 1 5 1 . It  is easy t o  see that T is  a positive linear 

operator. 



3 2 

W e  a l s o  n o t i c e  that  f o r  f  E L1 , us ing  F u b i n i ' s  Theorem 

zi T f ( i )  n ( i )  = Xi ~ , ( t )  = Zi Ej f ( j )  n ( j )  Pji = 

Hence T is a Markov ope ra to r  on L1 . 0 

The Markov opera tor  P on L, s a t i s f i e s  t h e  equat ion  

Xi f  (i) P h ( i )  n ( i )  - 2, T f ( i 1  h ( i )  m i )  

f o r  f E L1 , h E L, . 

L e t t i n g  f  = l{il , y i e l d s  

IktS 
f (k) ' Ph(k)  ' n ( k )  = P h ( i )  ' n ( i )  . 

Thus by equat ion  (2.2) 

Hence we have equat ion  

P h ( i )  = E .  pij  h ( j )  f o r  h E L_ . 
I 



Which proves the  following. 

Corol lary  2.2 For each s t a t i o n a r y  Markov chain {xn} with s t a t e  

space S and i n i t i a l  d i s t r i b u t i o n  and t h e  t r a n s i t i o n  matrix (p. . I  , 
13 

t h e r e  e x i s t s  a unique Markov opera tor  T on L such t h a t  i t s  a d j o i n t  
1 

P is  representable  by the  t r a n s i t i o n  matrix p .  a s  i n  equation 
13 

(2.3). 

Now s ince  each s t a t i o n a r y  Markov chain can be i d e n t i f i e d  with a 

Markov opera tor  T on L , we s h a l l  use  Hopf's theory of Markov 
1 

opera tors  t o  so lve  problems of Markov chains.  

W e  now state without proof t h e  following fundamental theorem of 

Hopf (Neveu 171 Theorem V. 5.2. p. 196).  

Theorem 2.3 For every Markov opera tor  T on L t h e r e  e x i s t s  a 
1 

unique subset  C of  S , f o r  example w e  set 

Q ) k  Q) 
C = { i :  

'k.0 T 1 = and D = {i: 
'k=0 ~ ~ l ( i )  < Q)} 

such t h a t  f o r  a l l  f E L+ 1 '  

Q ) k  
CkzO T f < on D ( the  complement of C) 

For each f E L+ w e  have 
1 

00 00 

ii: 'k=o 8 f ( i )  = Q)) = c n C i :  'k=0 ~~f (i) > 01 . 



In future we may denote = k  + CkS0 T by T, . and for f  E L 
1 '  

Cf = { i :  * k 
E k = ~  T f ( i )  = 001 . 

Definition 2.2 The se t s  C and D in  Theorem 2.3 are called, 

respectively, the conservative and the dissipative parts  of S relat ive 

to  T . 

Recall (Definition 1.6) that  a s t a t e  i i s  said t o  be recurrent 

or transient according as 

we w i l l  show that  the conservative pa r t  C of - s consists of a 

recurrent s ta tes ,  or ,  equivalently the dissipative part  D consists of 

a l l  transient s tates .  W e  note that  from ( 2 . 2 )  

We now prove the  following. 

Theorem 2.4 i) C = { i :  * n 
'n=o 'ii 

= 00) 



Proof. Recall 

D = { j :  T 1 C = j Zi n ( i )  (En  P" c w) . 
1 j 

Thus fo r  j € D we have 

LO' pn < m 
n=O i j  for each i s S . 

So i n  pa r t i cu l a r  

Therefore 

or  equivalently 

However, fo r  j E C 

i :  Tw (i) = -1 = C fl { i :  Tm lij1 (i) > 03 

o r  equivalently 

{ i :  zO' pn ==)  = c n {i: zW n-0 - j i  > o )  . n=O 'ji 

0 00 
s ince 1 = p j j  5 mZO p;j we have j E f i r  Z:=o pji = -1 . 
Thus 

w n w 
C = {j: Znz0 p j j  = = I  and D = { j :  ZnZo p j j  < = I .  o 



5 2 . 2  I n v a r i a n t  S e t s  

I n  t h i s  s e c t i o n  w e  s h a l l  f i r s t  d e f i n e  s u b s e t s  Ck c s 

where k E C . 

Next w e  s h a l l  i d e n t i f y  a family C c o n s i s t i n g  o f  a l l  s u b s e t s  

B c C such t h a t  Plg = lB on C . W e  s h a l l  f u r t h e r  prove t h a t  C i s  

the 0-algebra genera ted  by t h e  p a r t i t i o n  {ck) . Hence C is the family 

o f  i n v a r i a n t  s e t s  a s  i d e n t i f i e d  by Hopf. 

n (k) Reca l l  that Tl{k) ( j ) = - n ( j )  'kj ' 
Thus f o r  a l l  n  

~ ~ ' { k l  
n (k) ( j )  L. - * 
n ( j )  pk"j 

Therefore we have 

This  set con ta ins  {k) if and only  i f  k E C . I n  p a r t i c u l a r  we d e f i n e  

the set 

n  
Ck = {j: 

'n 'kj 
= 00) where k E C . 

Lenuna 2.1 The sets Ck and C are s t o c h a s t i c a l l y  c losed .  That  is 



Proof. We shall f i r s t  prove for fixed i E Ck we have 

Pl{il(j) = pji = 0 for a l l  j E Ck . ( 2 . 5 )  

Thus P 1  ( j )  = 0 for a l l  j & C k .  i Z C k  . 
{ i )  

Similarly, for each i E D we have 

PI f i ]  ( j )  = pji = 0 for a l l  j s C . 

Since for i E D we have, as above 

Thus P1 ( j )  = O  f o r a l l  j e C ,  i p ( C .  
{ i l  

From equations (2 .5 )  and (2.6) it i s  clear that 

x 0 for each j E C . 

and 



Pl,,(j) = 0 f o r  each j a C . 

By induction on n we a l s o  have f o r  a l l  n 2 0 

and 

n 
P 1 c ( j )  = 0 f o r  j E Ck 

Ck 

n 
P l D ( j )  = 0 f o r  j E C . 

Consequently 

1 = I:,, Pjh = I: 
h€Ck 'jh 

= P1 (j) f o r  each j E C 
Ck k 

and 

1 = C 
hES Pjh = xhEC Pjh = P I C ( j )  f o r  each j a C . 

+ 
Corol lary  2.3 I f  f E L1 is  such t h a t  f = 0 on D then 

Too f ( i )  = 0 f o r  i a D . 

Proof. By t h e  formula 

' i e ~  ~ " f  (i) II (i) = ZiEs ~~f (i) lD (i) J I ( i )  

- n 
- ' iEC 

f ( i )  . P lD(i) Il(i) 

and equation (2.8 1 ,  we have ~ " f  = 0 on D f o r  a l l  n, so  t h a t  



Tm f ( i )  = 0 on D . o 

Lemma 2.2 The following equa l i t i es  hold on C . 

Proof. We see tha t  PIC 2 lck on C , since P1 ( j )  = 1 = 1 ( j )  
k Ck Ck 

for j E Ck and P1 ( j )  L 0 = 1, ( j )  otherwise. Let f = lC ; then 
Ck Lk 

by Corollary 2 .3  we have 

= ziEs (zr=o ~ " f  (i) (PIC - 1 ) (i) TI (i) 
k Ck 

( m + l )  ' 1 ( 1  i 5 5 1 , fo r  m =  1,2 ,... . 
Ck 

Hence we have 

But Tw 1, = on C so pic = 1 on C . we have Pic = lc on c 
k Ck k 

from Lemma 2.2. 

Now c lear ly  

so by Theorem 2.1 and the above P1 c = 1 - PIC =lee on C . o 
Ck k k 



4 0  

Using induction on n we arrive at the immediate corollary. 

Corollary 2.4 The following equalities hold on C . 
n n n 
lck = 1 , P 1 c = 1 c , P lC = lC for n n  1,2,... . 

Ck Ck Ck 

We may now take a closer look at 
Ck 

and prove the following. 

n Lemma 2.3 Ck = {j: % Pkj > 0) = {j: k -+ j) where k € C . 

= c n {j: In 
pkj 

> o l  , 

n we have Ck C {j; In 'kj > 0) . 
n However, 'Or ' * 'kj = 0 for all j j?! Ck and n = 1,2, ... . 

n so { j : In pkj > 0) c Ck . '(oreover 

>0)= (j: k .* j) 

and the proof is complete. 0 

Lemma 2.4 Ck = C for each j € C . 
j 

Proof. We shall first show that Cj c Ck . Since j E Ck we have 



k + j , thus fo r  any i E S , if j + i then k + i . 
Therefore C = i :  j + i )  c { i :  k +  i }  = 

j Ck 

Now t o  show t h a t  Ck c C it i s  su f f i c i en t ,  on observing the 
j 

above, t o  show t h a t  k E C . Suppose k $ C j  , then by Corollary 2.4, 
j 

pnl  (k) = 0 f o r  a l l  n . = 0 which contradicts  
C; 

Thus \ pkj 

W e  can now s t a t e  several  immediate consequences of the previous 

two lemmas. 

n Lemma 2.5  (i) pij = w for  i , j  E Ck . 

n 
(iii) En pij = 0 whenever i E Ch , j E Ck , C n Ck = fl . h 

( i v )  Ck = { j :  k" j} i .e .  Ck is a recurrent c lass .  

Proof. (i) If i , j  E Ck then by Lemma 2.4  i , j  E Ck = C = C 
i j f  

= and Tnp; i  =o. . s o  En Pij 

(ii) Suppose C. f l  C ,  # 9 then f o r  some k E S , k E Ci f l  C . 
1 1  j 

~ h u s  Ck = C i =  C by Lemma 2.4. 
j 

(iii) Take i E Ch , j E Ck where C I-I Ck = jd . Then C = Ch 
h i 

and C = Ck so we have 
j 



n Hence 'n 'ij 
3 0 .  

( i v )  From Lemma 2.3 w e  have C = {j: k -* j) . k 

Now by Lemma 2.4 ,  f o r  a l l  j E C we have C = C = i :  j + i) . 
k j k 

Since k E Ck = C w e  have j + k f o r  a l l  j E Ck . 
j 

Thus Ck c {j:  j + k) s o  Ck = { j :  j + k j :  k + j = j k w j }  o 

Having s e t s  Ci and C defined i n  Lemma 2 . 5 ( i i )  we may assume 
j 

without l o s s  of  genera l i ty  that {ckIk denotes a countable p a r t i t i o n  

of C . We s h a l l  now consider  t h e  measure t h e o r e t i c  aspects  o f  t h e  

family (cklk  . 

Theorem 2 .5  Let  C be the  c l a s s  o f  subsets  B c C such t h a t  

Plg = lB on C . Then C i s  the  0-algebra generated by the  p a r t i t i o n  

k k I k  

Proof. The c l a s s  C is no t  empty s ince  by Lema 2.2 it conta ins  the - 
p a r t i t i o n  (Ck} and s e t  C . The u-algebra B generated by the  

p a r t i t i o n  (C ) c o n s i s t s  of a l l  unions of  s e t s  
k Ck . Thus i f  B E 8 

then U C = B and the Ck a r e  pairwise d i s j o i n t ,  s o  
kt t 

= C t  P1 (j) . 
C k t  

Hence i f  j E B then j E Ck f o r  exact ly  one r e ( t }  , and 
r 



On the  o t h e r  hand, i f  j E (C - B) then j € C , bu t  f o r  a l l  t , 

j $? Ck and 
t 

Plg = lB on -C , and 8 L C by Lemma 2.2 

Thus 

PIg = lg on C , and 3 i C . 

It  remains only t o  prove t h a t  B = U C f o r  a l l  B E C . Since 
kt 

{ck) is  a  p a r t i t i o n  of C we have B = Uk (B fl Ck) . So we s h a l l  

prove t h a t  i f  B n Ck # j2 then Ck c B . I f  t h i s  i s  not  the  case  then 

f o r  j E C - B and i E B Ck , then r e c a l l i n g  
k Pig = lg on C we 

n 
have pn = 0 f o r  a l l  n  , o r  equivalent ly  In pji  

j i = 0 . This con- 

t r a d i c t s  Lemma 2 . 5 ( i )  s o  C c B . Thus C c 8 and the  proof is  
k 

complete. o 

Using the  terminology of Hopf a s  used by Neveu [ 71 we c a l l  a  s e t  

B E C an i n v a r i a n t  s e t .  - 
I n  view of Lemma 2 .5( iv)  it is c l e a r  t h a t  C i s  a  r ecur ren t  

k  

c l a s s  i n  the  Markov chain sense,  and 
Ck 

is a l s o  t h e  atom of the 

0-algebra C , containing the  s t a t e  k  . 
It was pointed out  by Neveu 6 71 , Corollary 2, p. 200) that the  

atom of C containing a  r ecur ren t  s t a t e  k  could be i d e n t i f i e d  by 

We conclude t h i s  s e c t i o n  by proving t h a t  the s e t  defined by 

equation (2.9) is  the  atom 
Ck . Thus t h e  proofs of the c l a s s i f i c a t i o n  



theorems i n  t h i s  paper d i f f e r  from those given by K i m  [ 61 only by the 

choice of representation of atoms of the a-algebra C . 

Lemma 2.7 For each k E C , 

n 
j :  E n  pkj = -1 = c n { i :  En p e  = -1 . 

n n Proof. Let Ck = {j: Z n p k j  ="I and Bk = C  fl {i: Znpik = a )  . For 

n each j E Ck r e c a l l  k E Ck = C j  so Zn pik = . 
Thus Ck C Bk . On the other hand, c is a pa r t i t i on  of C so 

n i f  i o Bk then i E C fo r  some j , say C . since Z n  pik 
j 

= w 

j i 
it follows t h a t  C = Ck . o 

j 

Similarly it is c lear  t ha t  

n ck = {j: > 0) = c n { i :  n 
'n 'kj 'n 'ik > 0 )  for  k E c . 

Thus we have 

Theorem 2.6 For a l l  k € c - 

11 By the  following example we r ea l i ze  t h a t  the  s e t  D fl { i :  En pik = -1 I 

where k E C i s  not necessari ly void. 

Example 2.1 Let a ,b ,c  be i n [ 0 , 1 ]  such t h a t  c # 1 , and a + b + c = 1 .  



Let  I n {1,2,3) and l e t  (p ) for i , j  € I be such that 
i j 

Pll PZ2 11 P3i  = at P32 br P33 = c and other p = 0 . Then i j  
C - { 1.2). D - { 31 are the conservative and dissipative p a r t s  of I . 
For each n L 1 w e  have 

n n n 
Pll a2 P22 P 1 . Pij = 0 otherwise. 

So En p:l = 00 or 0 according as a > 0 or a - 0 

= or 0 according as b > 0 or b = 0 . 
'n '32 

Hence 

and 



CHAPTER I11 - TWO CLASSIFICATION THEOREMS OF STATES 

We w i l l  consider the  Markov chain {x,: n 2 0 )  with s t a t e  space 

S = ( l ,2,3,  . . . I ,  s t r i c t l y  posi t ive  i n i t i a l  d i s t r i bu t ion  , and trans- 

i t i o n  matrix (p. ) a s  previously defined. Let T be the Markov 
lj 

operator corresponding t o  Markov chain {x ) i n  the sense of Corollary n 

2.2.  We w i l l  prove two c l a s s i f i ca t i on  theorems of the  s t a t e s  of Markov 

chains from the viewpoint of ergodic theory as developed i n  Chapter 11. 

It  is worth noting t h a t  the  two c l a s s i f i ca t i on  theorems involve 

only t r ans i t i on  matrices and a r e  independent of the  i n i t i a l  d i s t r ibu t ion  

of the  Markov chain {xn} . Thus our r e s t r i c t i o n  of a s t r i c t l y  posi t ive  

i n i t i a l  d i s t r ibu t ion  is not a ser ious  r e s t r i c t i o n  on the general i ty  of 

the theorems. 

53.1 Class i f ica t ion  Theorems 

We s h a l l  f i r s t  show t h a t  

of a l l  t r ans i en t  s t a t e s ,  and a 

S can be divided i n t o  a s e t  consist ing 

family of recurrent c lasses .  (Feller 

[3 ] ,  Theorem 3, p. 392). W e  r e s t a t e  t h i s  theorem a s  

Theorem 3.1 Let {X } be a d i s c r e t e  Markov chain. n 



Then the space S has a unique pa r t i t i on  {D,C~,C*, . . . I  such tha t  D 

is the s e t  of a l l  t rans ien t  s t a t e s  and C is a countable family of i 

recurrent c lasses .  

We then prove the corresponding theorem for  idempotent d i sc re te  

Markov chains. (Doob [ 21 , Theorem 2, p. 39) . An idempotent Markov 

chain is a Markov chain which has an idempotent t r ans i t i on  matrix. 

Before res ta t ing  t h i s  theorem we notice that every substochastic 

matrix may eas i ly  be enlarged to a s tochast ic  matrix by adding a top 

row l , O , O , . .  . and a column whose en t r i e s  a r e  the def ic iencies  of 

the appropriate rows of the or ig ina l  matrix. W e  may now r e s t a t e  t h i s  

second c lass i f ica t ion  theorem a s  

Theorem 3.2 L e t  {X } be an idempotent Markov chain. n 

Then the s t a t e  space S can be parti t ioned uniquely i n t o  the s e t  D 

of a l l  nonrecurrent s t a t e s  (or equivalently a l l  inessen t ia l  s t a t e s )  

and a countable family of posi t ive  recurrent aperiodic c lasses  {ci} 

such t h a t  

i) j c D i f  and only i f  p = 0 fox all i E S 
i j  

and then 

where V is  a probabili ty measure with support C 
j j 

iii) there a r e  nonnegative numbers {pti) such t h a t  

'i 'ti = 1 and 



V (XI f o r  t € D , x € C  'tx * 'ti i i *  

53.2 Proof of Theorem 3.1 

In  view of Corollary 2.2, we s h a l l  henceforth denote the  unique 

Markov operator on LI corresponding to the Markov chain {xn} by 

T . Let C and D be the  conservative and diss ipa t ive  parts of S 

r e l a t i v e  to  T . Then {c.) as defined i n  Chapter I1 is a family 
1 

of recurrent c lasses ,  a s  proven i n  Lemma 2.5. The d i ss ipa t ive  p a r t  

of S , set D consis ts  of a l l  t r ans i en t  s t a t e s  a s  proven i n  Theorem 

2.4. From Lemma 2.5 w e  c l ea r ly  see that {C pa r t i t i ons  C and 
i 

theref o re  

is unique 

the  proof 

the family { D , c ~ , c ~ ,  . . .) pa r t i t i ons  S . This pa r t i t i on  

by v i r t ue  of the  uniqueness of the  recurrence c lasses .  Thus 

of Theorem 3.1 is complete. o 

9 3 . 3  Proof of Theorem 3.2 

For t h i s  sect ion w e  assume t h a t  t he  Markov chain x is idem- 

potent,  t h a t  is ,  its t rans i t ion  matrix . is idempotent. Hence 
13 

the  Markov operators T and P a r e  a l so  idempotent. I f  w e  set 1.1 = T 1  , 

then Tp = 1.1 and it is eas i l y  seen t h a t  v (x) > 0 i f f  T, 1.1 (x) > 0 

i f f  Ta 1.1(x) = - . So we have 



Proof of Theorem 3.2 

(i) W e  notice from the remark above t h a t  D f j: p (j) = 0)  . 
1 Since p ( j )  = T l ( j )  = n(j) C p ij II , then 

j € D if and only i f  p = 0 f o r  each i e s . 
i j 

This proves (i). I n  par t icu la r  PID(i)  - 0 f o r  a l l  i E S , thus we 

have 

(ii) Recall 1 pn - - f o r  x,y E Ck as i n  L-a 2.5. but for  
n XY 

n 
1 n t Pxy y-p Pw M) pq > 0 fox x,y E Ck . A l s o  by Lemma 2.5 we 

see t h a t  p - 0 f o r  x E Ci , y E C j  
xy 

i f  1 2 3 .  

We s h a l l  now s h w  t h a t  for a given y c c i 8 PW * Pw f o r  all 

x E ci . Since p2 = P , l e t t i n g  g = PI {YI w e  have 

Hence, by the argument of 17, pp. 198-1991 the function 

g(z)  a P l y  (2) - pzy is C-measurable. Ci is an atom of the a-algebra 

C , s o t h e s e t  B = C  n { z :  
i i Pry < pWJ is e i t h e r  C o r  jil . If 

i 

Bi = Ci then p 
YY < pm so Bi = B . Similarly the set 

Ci "z: pey > pWj is empty. Thus given y E C P i ' pw PW fo r  

a l l  x E Ci . In  par t icu la r  p xy = ,oiy fo r  a l l  x,y E Ci . 
Let us associate  the  mapping 

Vi: S + [0,1] with Ci , for  

i E C , a s  follows. 



Vi(z) = piZ for z E S . 

Now v is a probability measure on S with support Ci , since 
i 

vi(z) = pi, is positive or zero according as z E Ci or z ji? Ci and 

by Lemma 2.2 we have 

This completes the proof of (ii). 

(iii) For t E D and x c C, simple calculation yields 

If We set pti = Pl (t) , then ptx = pti vi(x) and 
'i 

So in view of (3.1) 

which establishes (iii) . 
n 

Since pxx = pXX > 0 for all x € Ci , n 2 1 , each Ci is 

obviously a positive recurrent class of period 1. We note however 

from part (i) that each state in D which is transient, is an in- 

essential state. 

From part ( i l  it is clear that for state x E Ci , if x + y 

then y 6 C . Then by Lemma 2.3 y E Ci . But, by Lemma 2.5 it is 

clear that x ++ y . Thus for all i , each state of C is essential. 
i 

Hence each state of C is essential. 

Therefore D consists of all inessential states. o 



CHAPTER IV - LIMITING PRDPEFtTIES OF STOCHASTIC MATRICES 

4 . 1  Construction of Idempotent Stochastic Matrices 

In  Chapter 111 w e  noted an important r e s u l t  which holds f o r  

idenpotent Markov chains (Theorem 3.2), which can be represented by 

idempotent s tochast ic  matrices. W e  now show how these idempotent 

s tochast ic  matrices a r i s e  qu i t e  natural ly  and how they can be con- 

structed.  

We s h a l l  f i r s t  g ive the simplest example of an idempotent s tochast ic  

matrix, then l is t  two spec ia l  cases which r e s u l t  i n  idempotent s tochast ic  

matrices. 

Example 4.1 The simplest example of an idempotent s tochast ic  matrix 

is one of the following type. 

such t h a t  ai 2 0 f o r  a l l  i and Zi ai = 1 . 



This matrix is c l e a r l y  s tochas t i c  and it is a l s o  idempotent. Let  

AA = B - (bij) . Then 

bij = Zkk,l(q,*aj)-= - aj(Zkzl ak) = aj  f o r  a l l  i , j  . 

Hence B 3 A SO A is idempotent. 

Theorem 4.1 L e t  P be an i r reduc ib le  recur ren t  aper iodic  (ergodic) 

Markov chain. Then 

l i m  pn = A = (a  1 e x i s t s ,  t h a t  is, such t h a t  f o r  each j , 
i j 

a with ' j a j  = 1 8 i f  P is p o s i t i v e  recurrent  

if P is  n u l l  recurrent .  

If P is pos i t ive ,  a = (al,a2, ... ) is a unique invar ian t  p robab i l i ty  

measure f o r  P . That is 

a = Z a p 
i i j  

f o r  j = 1 ,2 ,  ... . (4.1) 

Proof. It i s  w e l l  known (Chung [ I ] ,  Theorem 1, p. 28; Karl in 141, - 
Theorem 6-38, p. 153) t h a t  

lim P" A e x i s t s ,  t h a t  is 
rr- 

l i m  pn = a .  > 0 f o r  a l l  i , j  = 1 ,2 ,* . .  
rr+ao i j  3 

n 
Since, f o r  each n , 1 a Ij Pij , Fatou's Lemma y i e l d s  



Hawever we also have 

n+l = 
'ij Zk p;k pk j 

for n = 1,2,. . . . 

Again using Fatou's Lenuna we have 

It follows that 

n 
aj 2 Lk 4, pkj j = 1.2 ,... i n = 1.2 .... . 

However the inequality reduces to equality. Otherwise we have 

n 
0 

a > C k % p k  for some jo and no . 
'0 

j 0 

This gives us 

which is a contradiction. Thus we have (4.1). This equation implies 

that 

n a = E. a.  pij 
j 

for j = 1,2,... ; n = 1,2, ... . 
1 1  

and by the Lebesque Bounded Convergence Theorem, 

Hence 



Furthermore 

measure for P , 

a = (alra2, ..., a ...) is an invariant probability 
n ' 

that is, a P = a . In fact a is the only invariant 

probability measure for P . If $ = $P , that is Bj = C .  Bi p 
1 i j 

then 

n B j  = Z. B .  pij 
1 1  

and 

n B = Zi Bi lirn pij = Zi Bi 
n+w 

It is readily seen that the limit matrix 

2 matrix and AP = PA = A = A . o 

A is an idempotent stochastic 

Definition 4.1 A sequence of matrices {A~} - { (am, ) ) is said to 
i 3 

converge to B = (b. 1 if it converges coordinatewise. That is 
lj 

m 
lim aij = bij for all i,j . 
m*oD 

Theorem 4.2 If P = (p ) is 
i j 

is a stochastic matrix Q = (qi j 

an N X N stochastic matrix, then there 

1 such that 

or equivalently, 

- l m  k 
lim m Ckxl Pij a qij , i,j = 1,2,..., N . 
mKa 

2 
Moreover, QP = PQ 5 Q and Q = Q . 



1 m Proof. Let denote m C w l ~ v  for m 1 1 . 2  ,... and l e t  - 
(qm ) denote g . 
i j 

I t  is obvious that 

- m - l m  v 
0 5 qij - m zvPl pij 5 1 for i l j  = l . . . . , ~  . 

m Q) For every pair (i , j 1 , the sequence fq. . I  m=l c [0,1] has a con- 
m 13 

v vergent subsequence q such that 
i j 

5 - 
l i m  qij - qij 

mv- 

2 By repeating this process N -times a l l  entries converge. Thus we 

have a subsequence of matrices which converge. Call th is  subsequence 

We shall now show that  Q = (q . . )  i s  stochastic. Recall 
1 3  

mk 1 m - 
qi = l i m  = l i m  k v 

mk- 
qi j mk 'v=l Pij 

%- 

N 
= zN l i m  q ="k = l i m  z N j,l qij m~ 'j=1 q i j  jn l  

"Ik- 
i j 

%- 



Thus Q is  stochastic. 

Furthermore PI! = Q = QP since for a l l  mk we have 

Hence 

PQ = lirn PQ 

mk4" 

Moreover, for a l l  "k 

='k+l 
But pij E [0,1].  and pij E [0.1] for a l l  rnk and i , j  - 1.2 ,..., N . 
Thus 

1 - 1 %+l 
lirn \ pij = 0 and lirn % P i j  3 0 .  

mk+* mk+oo 

So we conclude that 

1 - 1 %+l - 
mk P + l i m  mk P = Q .  ( 4 .2 )  

% "k 

Similarly we see that for any m = 1.2. ... we have 



I f  {Q is  a subsequence of such that 
"h 

l i m  Q = Q' 
'h+" "h 

then from (4.3) it is clear that 

Now interchanging the roles of Q and Q' we have 

2 
Thus Q = Q , and we conclude that every convergent subsequence of 

1%) converges to Q . Therefore converges to Q which 

completes the proof. o 

W e  would l ike t o  be able to generalize Theorem 4.1 to include 

infini te  stochastic matrices. With th is  end in  mind we shall  prove 

the following. 

Theorem 4.3 I f  P = ( p . . )  is an infini te  stochastic matrix, there 
13 

is a substochastic matrix Q = (q..) such that  
13 

2 
Moreover, QP = PQ = Q = (3 . 

Proof. We may consider the matrix P to be an inf in i te  dimensional 

real  vector. If M = {B: B i s  a real inf in i te  matrix), it is clear 



that j.1 i s  an inf in i te  dimensional vector space. We can topologize 

hi with what we w i l l  ca l l  the coordinatewise l i m i t  topology, which 
aD 

corresponds w i t h  the usual topology on R . Now 

is compact by the Tychonoff Theorem. 

I t  now follows by simple calculation that  pV i s  stochastic for 

- m 
a l l  v = 1.2 . .  .. . For each m l e t  Qm = m ZvIl pV = (q. ) . Thus 

1 j 

for m = 1 2 . .  w e  have 

Therefore % is stochastic for a l l  m , and the sequence 

has a convergent subsequence, c a l l  it {%I . So we have 
k 

l i m  Om = Q for Some matrix Q . 
mk"a k 

We further note that  

since for a l l  mk 

Thus 

PQ = l i m  PQ = l i m  Q P = OP . 
= Y O 3  "k %+" mk 

I t  i s  also clear that  PQ = Q since 



It follows that 

1 
P Q =  lim PQ = lim $ - lira (< (P - P ?++I 1 )  = Q . 

mk"" 'R %+' k ""k+O' 

We also have 

Now if {Q is a subsequence of {Q~] and lim p = Q* , then by 
"h "h'" % 

(4.2)  we have 

Interchanging the roles of Q and Q' it follows that 

2 So Q = Q , and every convergent subsequence of QI converges 

to Q . 
Hence lim Q = Q . 

m m 

It remains only to prove that Q is substochastic. We have 

previously shown that for all m 



i s  s tochast ic ,  and 

Recall t h a t  

Thus fo r  each i , 

A. - m v 
'v=l Pi j f o r  a l l  i and j . 

l i m q m  f o r  i , j  = 1 , 2  ,... . 
nt+oo 

i j  

by Fatou's Lemma we have 

Hence Q is  substachastic.  

I t  is  now straightforward to prove the following. 

Theorem 4.4 I f  P = (p .) is  an i n f i n i t e  ( f i n i t e )  substochastic 
i 1 

matrix then there  is a substochastic matrix Q = (q..) such t h a t  
13 

- m 2 
lim m Lkpl pk = Q and QP = PQ - Q = Q . 
m-=' 

To s e t  out  necessary and su f f i c i en t  conditions fo r  t he  substochastic 

matrix Q i n  Theorem 4.3 being s tochast ic  we prove the following. 

Theorem 4.5 Let P = ( p . . )  be a s tochast ic  matrix and l e t  
1 13 - m k  - l m  k m 

Q = l i m  m Ck-l - P . Let Q = ( q . . )  and let  qi j  = m ZkSl p i j  . Then 
m-=' 1 1 

Q is a s tochast ic  matrix i f  and only i f ,  f o r  each i , the  s e r i e s  



in  j  converges uniformly with respect t o  m . 

Proof. ( I f )  Suppse that,  for a fixed i , the series m 
'j-l q i j  

in j  converges uniformly with respect to rn . We notice that 

For E > 0 , l e t  j  be such that 

C m - 1 - C  m 
j>jE 'ij j'jE % j  < E for a1 m . 

I t  follows that 

l i m  C m 
= 1 - l i m  C m 

j>jp  'ij S E .  m-~a ~ + O J  jCjE 'ij 

Since 

l i m  C m = C 
jzjE 'ij l i m  qm i j = c jZjE qij I 

m-wp jSjE mMD 

from (4.6) we have 

Hence Q is a stochastic matrix. 

(Only i f )  Suppose that Q is  a stochastic matrix. Since 

z T = ~  qij = 1, for each i and a given E > 0 , there i s  a 
j1 

such 

that 

Then we have 



lirn C m m = 1 - lim C = l - C  
j>jl qij jSj, 'ij j5j1 'ij j>jl qij < c .  = C 

In+"' m" 

It follows, for some m , that -1 

C m 
j>jl qij < E for m > m 1 '  

However, we also have 

00 m 
zj=l qij = I  for m 5 m l ,  

so there is j2 such that 

C m 
j>j2 qij C & for m 5 ml . 

Setting jo = rnax(jl,j2) we have 

uniformly with respect to m , which completes the proof. a 

54.2 Euler-summability of Irreducible Stochastic Matrices. 

Recall (Theorem 4.1) that for P , the transition matrix for an 
n irreducible recurrent aperiodic Yarkov chain, the lirn P exists. 

n- 
This limit on the other hand need not exist in the case of a Markov 

chain with period d > 1 . For example if P = (! 3 then 

lim P~~ = ) and lirn P 2n+l . However, it is known (Kemeny, 
rr+a, n-Ka 

~nell [5] , Theorem 5.1.1, pp. 99, 100) that for each irreducible 

positive recurrent finite Markov chain, the sequence of powers of its 



transition matrix, P" , is Euler-s-able to a limiting matrix 

A = ( a , , )  . That is for 0 < < 1 
1 3  

where I is the identity matrix. 

Moreover, for each j , 

a = a  > O , i = 1 , 2  ,... and C . a  - 1 .  
ij j J j 

We should now l ike to see what analogs of the above facts hold for 

an irreducible inf in i te  Markov chain. We shall  therefore prove the 

following theorem. 

Theorem 4.6 I f  P is a stochastic matrix for an irreducible Markov 

chain then the sequence (pn) i s  Euler-summable, that i s  

l i m  (XI + (1 - x ) P ) "  = A = (a.  .) 
n- 13 

exists for 0 < h < 1 . 
Moreover, for each j 

0 with C a = 1 i f  Q = ( X I  + (1 - X ) P )  i s  positive 
j j recurrent. 

[= 0 otherwise. 

Proof. We shall  begin by proving for each 0 < X < 1 that 

Q = (XI + (1 - X ~ P )  is  an irreducible aperiodic Markov chain. 



For 0 < < 1 , l e t  Q = (q . . )  = XI + (1 - X ) P  , then 
13 

% j  = h d i j  + (1 - Alpij and C j q i j  = 1 .  

where di is  Kronecker's delta. 
j 

Thus Q is  a stochastic matrix. For each n 2 1 we have 

n nbk n-k 
qij = EksO ( 1  1 -  pij . 

Since P is  irreducible, that  is, for each pair ( i , j )  , there 

are m and n such that pn 
i j  

> 0 and pyi i, 0 , we have 

and 

Hence Q is  irreducible. Furthermore it is clear that  0 < h 5 
911 

so Q is  aperiodic. 

Now w e  shall prove the following relation. 

We come upon (4 .7)  by the following calculations. 



co L L  

where Sk = k hn-k . 
It remains then t o  prove 

' 1 
f o r  k = 1,2, . . .  . 

W e  prove (4.7) by induct ion  on k . It  is easy t o  see t h a t  

S1 = Now suppose (4.7) holds f o r  an a r b i t r a r y  k . Then 
(1-h) 

' 

Thus Sk+l = which proves 
(1-A) k+2 

Now (4.7) fol lows d i r e c t l y  from (4.8) and (4.9) .  Hence w e  have 

Thus P is  r e c u r r e n t  i f f  Q is recur ren t .  

Suppose P i s  i r r e d u c i b l e  r ecur ren t ,  then  i s  i r r e d u c i b l e ,  

r e c u r r e n t  and aper iodic .  A w e l l  known theorem of  Kolmogorov (Theorem 

4.1) s t a t e s  t h a t  f o r  an i r r e d u c i b l e  aper iodic  r e c u r r e n t  Markov chain 

with t r a n s i t i o n  matr ix Q 

l i m  Q~ = A = ( a , , )  
rr+ao 13 



exists, and for each j 

(; 0 with C. a = 1 , if Q is positive 
J j 

if Q is null recurrent. 

Thus the theorem holds in case P is recurrent. 

Now suppose P is transient; then Q is also transient. Then 

lim Q" = 0 (Chung [ 11 , Theorem 5, p. 24) . This completes the proof. o 
n- 
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