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ABSTRACT

This thesis shows the equivalence of the hyperarithmetical sets
and the truth sets defined in a special language, the language of
Ramified Analysis. In the Introduction, the basic relevant notions,
such as formulas, recursivity, and ordinals, are discussed. Chapter
covers recursive ordinals and &, a set of notations for recursive
ordinals. In Chapter II, we apply knowledge of recursive ordinals,
notations, and the language of Ramified Analysis to the definition
of ordinal rank, validity, and sets Wh, which will be shown in the
last two chapters to contain precisely the hyperarithmetical sets.
The sets in each Wh are reduced, in Chapter III, to truth sets Ta
which are then shown to be hyperarithmetical. The converse is shown
in Chapter IV, and depends upon the Recursion Theorem. Finally,

Chapter V provides a full and a partial relativization of the pre-

ceding results.
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INTRODUCTION

The purpose of this paper is to characterize the hyperarithmetical
sets in terms of the language of Ramified Analysis. The Language of

Ramified Analysis has the following symbols:

(a) wvariables - x, y, Z, ...
2, v%, 2%, ... (aenN
X, Y, 2, ...
£, g, h, 3, k, .eo
Variables may be subscripted, primed, or modified in any reason-
able way for notational convenience. However, there are only a

denumerable number of variables. Capital letter variables are called

set variables; lower case variables are called number variables.

(b) predicate symbols - p; for i € {0, 1, ... }.

Among these symbols are €, =, and <. It is implicit that entries
in predicate symbols are restricted to certain sorts of terms; for

example, x € X 1is allowed, but X € x 1is not.

(c) function symbols - fi for i € {0, 1, ... }. Among these
symbols are + and e . O—-ary function symbols are called constants
and we explicitly refer to them as 6; 1; 53 ««s « When x 1is a
natural number, we write x for the corresponding constant.

(d) logical symbols - —, V, and 3 (and symbols definable in

terms of — , v, and 3J) and punctuation - (, = ,) .
The concept of inductive definition is very useful. Generally,
an inductive definition of a set S 1is a collection of laws each of

which states that an object x 1is an element of & if x meets



certain criteria. Additionally, no object may be an element of S
unless it follows from the laws that it is in S. In practice the

laws may be interrelated. For example,

(1) 1l e€s

(ii) x€s if x=2°+<y and y € s .

This constitutes an inductive definition of the set of non-
negative integral powers of 2. Later we will use the structure of
inductive definitions as a base for proof by induction, either on the
natural numbers or the ordinals.

We define terms and formulas by the following inductive

definitions:

(1) a variable is a term
(ii) if ul, ceey un are terms and f is an n-ary function
symbol, then f(ul, ceoy un) is a term.
By (ii), a constant is a term.
1’

If p 1is an n-~ary predicate symbol and u -eer u are terms,

then p(ul, ey un) is an atomic formula.

The following four rules are an inductive definition of a formula:

(i) an atomic formula is a formula.
(ii) if u is a formula, then —u is a formula.
(iii) if u and v are formulas, then u vV v is a formula.
(iv) if u is a formula, and v a (set or number) variable,
then 3v u is a formula.

The concept of an ordinal number is fundamental to this thesis;




our exposition here is based on [Su., CH. V]. Ordinal numbers (or

ordinals) have the following inductive definition:

1l.) 0, the empty set, is an ordinal
2.) if x 1is an ordinal so is x U {x}
3.) if s 1is a set of ordinals, then U §

(={x| (B (x€B&BES)} is an ordinal.

Thus, the first three ordinals are 0, {0}, {0, {0}}.

A set A is well-ordered by a relation R (called a well-

ordering of A) if

(i) (Vx)(Vy)(x, vy €2 & x #y > R(X, y) VR({y, X))
(ii1) (¥x) (- R(x, x))

and (iii) (VB)(B C A & B#¥ 0+ B has an R-least element)

We interpret "x 1is an R-least element of B" to mean "x € B &
(Vy) (y € B> —R(y, x))".

By the Axiom of Choice [Su, Chapter 8], the above conditions are
equivalent to there not existing any infinite descending chains for
R in A. By [Su., §3.2, Thm. 62] these conditions also suffice to
insure that R is asymmetric and transitive in A.

For any two ordinals o and B either o € B, a=8 or B € a;
and if B 1is an ordinal and a € B then @ 1is an ordinal. We have
the following two important facts about ordinals and well-orderings:
(we shall henceforth say o< B when a € B):

1l.) Each ordinal is well-ordered by <.
'2.) [Su., §7.4, Thm. 81] Each well-ordering of a set

may be represented by an ordinal which we shall call the order type of



the well~ordering.

We can state 2.) more clearly with the help of two definitions:

Definition: <A, R>, where A 1is a set and R 1is a relation,

is a simple order structure if

(Vx) (Vy) (Vz2)[x, v, z € A - {(R(x, y) = Ry, X))
& (R{x, v) & R{y, 2) .-~. R(x, z))

& (R(x, y) VR{y, x) Vx =y)}]

Definition: <A, R> is similar to <B, $> if there is a function

f such that

(1) £ is one -~ one
(2) domain (f) = A and f(A) = B

(3) (Wx)(Vy)(x € A &y € A~>RI(x, y) < S({EX), £(y))).

Then we may restate (2) as "If R well-orders A, then there
is a unique ordinal a such that <A, R> is similar toc <a, <>".

Our concept of induction may be extended to ordinals [Su., §7.1].

"1f, for every ordinal a-r (VB)(B < a +> ¢(B)) > ¢(a),

then for every o, ¢{a)."

Using this "transfinite induction", or equivalent statements, and
recursion schemas it is possible to define addition and multiplication
of ordinals qnd, indeed, quite a number of other operations analogous
to those of ordinary arithmetic. For example, ordinal addition may be
defined by the following recursion scheme:

i) (1) a+0=a

(ii) a + sB = s(a + B)



(iii) if B is a limit ordinal

where SR is the successor of B, and a limit ordinal is an ordinal,
# 0, which is not the successor of any ordinal. The successor

operation is defined by SB = 8 U {B}. Note that an infinite ordinal

is simply one with an infinite number of elements.

This thesis is concerned with a particular sort of ordinal, the
recursive ordinal. Thus we need the important notion of recursivity.
We accept as basic the Turing machine characterization of recursive
functions [R, §1.5]. That is, a partial recursive function is one
which is defined by a list of instructions for a Turing machine. When
a partial recursive function is total (i.e., when the Turing machine
executes only a finite number of steps when supplied with any integer
argument) then we simply call the function recursive.

Logicians assert that there is an intuitive concept of calcula-
bility of functions and have labelled a connection between the
intuitive concept and recursion, called Church's Thesis. In effect,
Church's Thesis states that calculable, or computable, functions are
recursive, and vice versa. We will use this principle, usually
without reference, to assert that obviously computable functions are
indeed recursive.

A relation P is recursive when there is a Turing machine T
which will compute the representing function of P. That‘is:

P(x) «» T, when supplied with x, yields 0.

One can list all the possible sets of instructions for unary



Turing machines [cf. R., §1.8]. Thus we may list all the unary
partial recursive functions, which we shall call ¢i(i =0, 1, ... ).
A common alternative notation for ¢i is {il}.
We can also list the ranges of the partial recursive functions.
i = = . Th W'
Define W_ = range ¢x (or y € W, (32)(¢X(Z) y)) e W 's

are called the recursively enumerable sets. These comprise a natural

class, as shown by [R., 5.2, Cor V(b)]:

"There exist recursive functions £ and g such that

range = domain ¢x

% (x)

and domain ¢g(x) = range ¢x.

It is useful/to be able to effectively code seqqgnces‘of integers
into single integers, and to be able to effectively decode them. A
simple example of such a coding is T(x, y) (found in [R., §5.3]),
where T(x, y) = 1/2(x2 + 2xy + y2 + 3x +y). T is known to be a
one - one recursive map of N X N onto N. (N'X N = {(v, w) ] v € N,

w € N}. There are two recursive functions, T and T which serve

1 2’

as inverses to T: i.e., T(ﬂl(z), Wz(z)) z. More powerful coding

is described in [Sh. §6.4]. Suppose (al, e an) is a sequence.
Then there is a function <f> which has the following two interesting
properties:

(i) for each fixed n, <al, cess a&> is a recursive

function of @yr eeer a .

n

(ii) <:al, ceey an> determines n and ayr seer @y via

recursive functions. That is, there are two recursive functions f(x)

and g(x, y) such that if a = (al, cees an) then f(a) = n and for



1=<i=<n, g(a, i) = a, - We write 2h(a) for f(a) and (a)i for
g(a, i). The definition of recursive relations may be extended to
n-ary relations either directly cr via codings; [R., 85.3] shows these
two approaches to yield the same class of recursive relations.

Similarly, a set A is recursive if there is a recursive function

f such that

Il
o

x € A~ £(x)

li
=

x £ A~ £(x)

In other words, f allows us to decide, for any x, whether
X € A.

Finally, we define reducibility between sets:

A is many - one reducible to B (A 5h B)

if there is a recursive function f such that (Vx)(x € A «— f£(x) € B).
In the case where f is one - one, we say A 1is one - one reducible

<
to B (A = B).

We may extend the notion of recursive functions to "functions
recursive in a set X, of integers". Several equivalent definitions

of relative recursiveness are given in [R., §9.2]. Intuitively, £ is

recursive in X if, in addition to the usual components of a Turing
machine, there may also be steps which "interrogate" X, i.e., which
inquire if some integer is in X. A unary relation R 1is recursive
in X if and only if there is a recursive relation S such that

R(a) « S(a, X). Or, (as in [R., 89.2]), R is recursive in X if



and only if the representing function for R 1is recursive in X.
Using the concepts of recursiveness, or computability, and well-
orderings we will develop some basic properties of recursive ordinals
and hyperarithmetical sets. Then we will inductively define, for each
recursive ordinal « , a limited notion of validity, |=a,7, for a
restricted set of formulas in the Language of Ramified Analysis.
Simultaneously, we will define sets Wh = {s | s = {x ' Fa Z(x)}
for suitable formulas £}, Then the main result of this thesis can be

stated simply:

"The class of hyperarithmetical sets (HYP) equals

U Mh where @ ranges over the recursive ordinals."

In practice we will consider a set Oi which consists of unique
notations for ordinals; that is, for each recursive ordinal @ there
is a unique a € Oi and vice versa. Then we can write the main

" = U "
result as "HYP aEOi Wg .



CHAPTER I

RECURSIVE ORDINALS AND ORDINAL NOTATIONS

1.1 BASIC PROPERTIES OF RECURSIVE ORDINALS

Definition: An ordinal o is a recursive ordinal if

(i) o is finite
or (ii) there exists a recursive relation R(x, y) such that
R well-orders N and such that o = the order type of <N, R>;
that is, o is similar to <N, R>. R 1is called a recursive

relation for a.

' The following proposition indicates some basic facts about

recursive ordinals.

PROPOSITION I

I(a). If o and B are recursive ordinals, then o + B is a
recursive ordinal.

Proof: When both 0o and B are finite, then o + B are
finite and thus recursive.

When o 1is finite and B is not, o + 8 =B and thus o + B
is recursive.

Suppose O is not finite and B is finite. We define R':
R'(x, y) &+ x2n&y=2né&R(x-n, y-n)

where R 1is a recursive relation for ¢, and n is the natural
number corresponding to B.

We may now define S:
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S(x, ¥) - [x<ns&y<ne&x<y]
V R' (xl y)

V[x=>ns&y<n].

S 1is recursive, since R, <, and = are recursive. S well-
orders N: For A # @, if A< {0, 1, ..., n~-1} then A is
finite and of course has a <-fir$t member. Otherwise,

AN {x | x=n} has an R-first member which is also clearly an
S-first member for A. And o + B = order type of <N, S>, by
inspection.

Suppose neither 0 nor B is finite. Let R, be a recursive

1

relation for o and R2 a recursive relation for RB. We define

S(x, y)s

li
]

Six, v) - [[@2)3w)(x = 2z & y = 2w & Rl(z, w) ]

vi@z) (3w (x=2z2+1sy=2w+1& R2(z, w) ]

v [ (3z) Aw) (x 2w + 1) ]

2z & y

S 1is recursive since Rl and R2 are recursive and our

quantifiers are implicitly bounded. For example, (3z)(x = 22)

may be replaced by (HZ)zEx(x = 2z). S well-orders N; if A # g,

then either A C {x | (3z) (x = 2z + 1)} and A has an R2-first
menber which must also be an S-first member, or otherwise A

{x , (3z) (x = 2z)} has an Rl—first member which must also be an

S~first member of A. Again o + B = order type of S. ll

I(b). If o and B are recursive ordinals, then o ® B is

a recursive ordinal.
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Proof: If o and B are finite, then o * B 1is also finite
and hence recursive.
If o is finite and B is not then & * B = B. Hence, o - B
is recursive.
Suppose B 1is finite and o is not. Let n be the integer
corresponding to B. Intuitively we separate N into n classes
of integers according to their remainder upon division by n. To effect

this, we define S(x, y):

S(x, y} = (k) (3p) (Gm) (32)

x=kn+msy=n+ps&m<né&p<néamc<p)

Vx=kn+mé&y=424n+mé&m<n & R(x, y))

where R 1is a recursive relation for a.
S 1is recursive since <« and division are recursive, and since
the quantifiers are implicitly bounded. Let S, = {x | (3x)(x = kn + i)}.
n-1
Clearly N = igo Sir and i< j -+ (x € S; &y € Sj . S(x, y)). If
ACN, either A Sl # @8 so that A has an S-first element in

Sl’ or if AN Sl = @, then we try again with S etc. In any

2’
case it is sure that A N Si # @ for some i< n. Thus S must well-

order N,
Suppose both a and B are infinite. When Rl is a recursive

relation for o and R2 is a recursive relation for B we define

S(x, Y):
S(x, y) + (Ja) (db) (3c) (3Q)
((x = 1t(a, b) & y = T(c, Q)

& (Rl(a, c) v{a=c& Rz(b’ d))) .
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Let Sn = {x ] (3b)(x = T(n, b))}. We know N = U Sn'
n=0,1, ... and m< n - (xm € Sm & x € Sn & Rl(m’ n) .-. s(xm, *n))'
For any A €N there is an Rl—least n such that A N Sn # 08, and

A h Sn has an Rz—least element which is an S-least element for A.
Thus S well-orders N, and o = 8 has the order type of <N, S>.
I(c). If B 1is a recursive ordinal then any ordinal o less
than B 1is recursive.
Proof: If a is finite, it is clearly recursive. Suppose o
and B are infinite and a < B8 and R 1is the recursive relation

for B. Then 0o < B means tlat there is an n such that a is

similar to B8 restricted to n; that is, {m | R(m, n)}. This set

is clearly recursively enumerable. Thus it is the range of a recur-
sive function f which, as we remarked in the Introduction, we may

choose to be one - one. Then we define S(x, y):
S(x, y) «— R(f(x), £(y)).

Clearly S is recursive, and must well-order N since R does;
S has the order type of a . II

Finally we arrive at the most interesting property of recursive

ordinals.
We need two notions to properly state 1I(d). First, we need
the Kleene T-predicate [Sh., §7.4]; in particular, the fact that

there is a recursive relation Tz such that given F, 3f 3 F(x, y) =

(z) where =z 1is the least such that Tz(f, X, ¥y, 2) holds. We

0

say, in this case, that f is an index for F.

We also need the notion of the supremum of a set
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of ordinals. The supremum of a set of ordinals is, naively, the least
ordinal greater than all the ordinals in the given set. For certain
sets of recursive ordinals we can show that the supremum exists and

is also a recursive ordinal.

I(d). 1If ao, al, ..., are recursive ordinals corresponding

to recursively enumerable relations RO' R., ... Where Rn(x, y) >
(3z) T2(f(n), X, ¥y, 2) for some recursive £, then supremum
{an l n € N} is a recursive ordinal.

Proof: By Prop. I(c), it suffices to show that there is a
recursive ordinal B8 such that for all n, an = B. Define
S(n, x, y) «— Rn(x, v). S 1is a recursively enumerable relation
since, given n, we can effectively compute f(n), and hence

determine the (recursively enumerable) relation Rn' We now define

Sl(u, v):
s, (u, v) {n<mvVv (n=m&sh, x, )}

where u = T(n, x) and v = 1(m, y).

Sl is recursively enumerable and is a well-ordering of N since
it breaks N into segments which are well-ordered with respect to each
other and each of which is well-ordered similar to the well-ordering
of some of the Rn's. In particular, for each n we have an order-
Preserving injection of <N, Rn> into <N, Si> - namely wn(x) =

T(n, x). Now, a recursively enumerable well-ordering of N must be

a recursive well-ordering. For it must be true that either Sl(x, y)

or Sl(y, xX), if x # y, and not both; so by simultaneously computing

Sl(x, y) and Sl(y, x) we will find which one holds, and hence
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compute whether S,(x, y) holds or not. Then if S, is the
recursive relation for some ordinal B, we have an < B, as
required. II

An apparently stronger definition of recursive ordinal is

possible:

Definition 2: An ordinal o is a recursive ordinal if

(1) o 1is finite

or (ii) there exists a recursive relation R(x, y) such that
R well-orders some recursively enumerable subset S of N and
such that o = the order type of <S, R | S> where R | § is the
restriction of R to S.

It is clear that if an ordinal is recursive by definition 1
then it is recursive by definition 2. However, the converse impli-
cation also holds. Since S 1is recursively enumerable, there is a

one - one recursive function such that S = £(N). Define R'(x, y):
R'(x, y) = R(f(x), £(y)).

Clearly R' is recursive and well-orders N and <N, R"™S =S, R l s> .

Thus @ is recursive by definition 1.

1.2 NOTATIONS FOR RECURSIVE ORDINALS

It is necessary to have a system to refer to recursive ordinals.
The motivation for this is discussed in detail in [R., §11.7]. We
inductively define a set (O (the set of ordinal notations) and a

relation on O called <@:
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(1) 0 receives notation 1
(ii) assume all ordinals < Y have received their notations.
Then
(a) if Yy =B+ 1, then if x is any notation for 8§,

2*¥ is a notation for Y, and we say that

z<c>sz=x—>z<O2x
(b) if Y is a limit ordinal, then if ¢y(0) , ¢y(l) ; eee
are notations for an increasing sequence of ordinals with limit Y,
. . . . Yy . .
and (i) (j) for i< then 3 = 5 is a notation for
¢Y © 9,0 3. Y,

and z<03 '5y

whenever z (m) for some m.
< ¢y
O is thus a partially ordered set with ordering <@ - Each
infinite ordinal may have denumerably many notations. If x € (&,

then we say lxl@ is the ordinal for which x is a notation. (§

has several interesting properties. The following two are among the

most significant.
(1) {= l X <4 v} 1is uniformly recursively enumerable.

That is, there is a recursive £ such that

(Vy)(yEO—*{xlxcdy}={z| Gw) ¢ = z})

£(y) (w)

(ii) there exists a binary recursive function +y such that

for all x and y in O

(a) x s ¥ € O
(b) 'x e YIG= ‘xlo + |y|0

(c) y;ll=>x<Gx+Gy.
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1
1.3 Hl SETS

Both @ and O, (a special set to be defined in the next

1

section) belong to a special class of sets known as the Hi sets.
. . . 1
It is desirable to examine the definition of Hl sets and a few of

their properties.

Definition: An arithmetical relation is the result of pre-

fixing a recursive relation by a finite number of number quantifiers.
Simple examples are:

(3y) (y > x)
or

(3z) 3y) y > d>z(x))

Definition 1: A set P is Hl if there is a recursive relation
S such that x € P +— (Yf) (Jy)S(f, x, y), for unary functions £.

An alternative definition is the following:

Definition 2: A set P is Hi if there is an arithmetical
relation S such that x € P « (V£)S(f, x), for unary functions f.
Assume P is Hi by definition 1. Define 8'(f, x) +>
(Iy)s(f, x, y). Then S' is arithmetical, so P is Hi by
definition 2.
Conversely, assume P is Hi by definition 2. From [Sh., §7.8]
we have the following equivalences:
(E1) (Vy)T(y) «> (VE)T(£(0))
(E2) (Ox) (VE)T(f, x) (Vf)(HX)T((f)x, Xx)
(E3) (V) (Vg)T(f, g) + (Vh)T((h)O, (h) ;)

(E4) ((Jy) 3z)T(y, 2) + (HW)T((W)O, (W)l) .
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In E2 and E3, (f)x=xy[f(y))x]. (A is Church's Lambda

Notation [Sh., §7.3]). E2 appears more obvious when negated:
(Yx) (3£) ~T(f, x) = (3If) (Vx) -1T((f)x, x) .
There must be an arithmetic S' and a recursive S" such that

X € P« (Vf) s'(f, x) since P is Hi

l , > (Vf)(lel) .es (ann) S" (£, x, Xps eens xn)

by the definition of arithmetical relations. Qi may be either 3
or V.

By E1 we convert all the (in)'s to (Vfi)'s. By E2 we move
all the (Vfi)'s to the left of all the (3xi)'s and we contract them
with (Vf) by E3. Finally we contract all the (3xi)'s together by
E4. If S' contains no existential quantifiers then we insert a
dummy quantifier. We then get x € P <+ (V£f)(dy) s"(...) . The
contents of the brackets is some composition of recursive functions on

i each entry. Thus, since the composition of computable functions is

computable, we know there is a recursive relation S''' such that
x € P+ (VE£)(@y) s''' (£, %, ¥)

Thus, the two definitions of Hi set turn out to be equivalent.

We can imitate the above definitions of arithmetical relations
and Hi sets by using set variables. A result similar to the above
clearly holds for the two definitions of Hi using set variables.

We wish to show that the definitions using set and function variables

are eguivalent.
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Definition: GRAPH f = {z l z=<x, y> & £(x) = y} .

PROPOSITION 2

Let S(f, x) be an arithmetical relation. Then there is an

arithmetical relation S'(X, x) such that
X = GRAPH f - (Vx) (S(f, x) +> S' (X, X))

Proof: Suppose p 1is an n-ary predicate symbol, and
t, tl’ ceey tn are terms and that P(tl' ey tn) occurs in S
and moreover that ti = f{t). First replace p(tl, ey tn) by

(3z) (z = £(t) & p(tl, ceey ti-l’ z, t cees tn))' Then in this

i+l
last expression, replace z = f(t) by <t, z> € X to get

' Z, cees tn)). As a simple

< > ceey .
(3z)(<t, z> € X & p(tl, tl-l

ti+1’
example, £(y) = z 1is transformed to <y, 2> € X. Of course, at each
stage in the elimination of f it is necessary to introduce distinct
variables. But then it is clear that if X = GRAPH f then

(Vx) (S(£, x) «> S' (X, x)). ||

Suppose we have a Hi relation (V£)S(f, x). Then we have

(1) ((VE)S(f, x) «> (VX) (X is a graph - S'(X, x))

where S' 1is the relation described in Prop. 2.
"X 1is a graph" «— (V2) (3x) Gy) (Yw)
{(g €X > z=<x, y> & [<x, w €EX>w=y])
& ((Vx) Qy) (<x, y> € X)) }.

So "X 1is a graph" is arithmetical.

1
Thus the right hand side of (1) 1is a Hl relation.
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Conversely, suppose (VX)S(X, x) is Hi via the new definition.
Replace all occurrences of y € X by (3z)(y = £(z)) to get a new
relation S'(f, x) such that (Vf)s'(f, x) 1is Hi and (Vf)S'(f, x) +»
(VX)s(X, x). Thus we see that the definitions of Hi sets in terms

of functions and sets are equivalent.

PROPOSITION 3

1
If A is many - one reducible to B and B is 1l then A

ll
. 1
is Hl.

Proof: Let f be a recursive function such that x € A «»

i f(x) € B. Since B is Hi there is a recursive relation S such
| that x€ B+ (Yg)(dy)S(g, y, x). Then clearly, if S'(g, y, X) +>
S(g, vy, £(x)), S' 1is recursive and x € A+ (Yg) 3y)S' (g, vy, X).
Thus A is Hi. ||

We can give an example of a Hi - set.

PROPOSITION 4

Define W = {e | lxy(Hz)Tz(e, X, ¥, 2) 1is a well-ordering of

N}. W is a I set.

—

e € W+ (¥Yx) -ﬂ(HZ)Tz(e, X, X, 2)
(non-reflexivity)
& (V) (W) [x # y > {321 (e, x, ¥y, 2) +>
-ﬂ(3z)T2(e, v, X, z)}]

(asymmetry and totality)
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& (Vx) (Yy) (Vw){[(Hz)Tz(e, X, ¥, 2) &
(3z)T2(e, vy, w, 2)] = (32)T2(e, X, w, 2)}
(transitivity)
& (V£) Qy) (Yw)[£(y) = £(w) Vv (3z)T,(e, £(y), £(w), 2)].

(no infinite descending segquences)

As f does not appear in the first three clauses, we can add
the dummy quantifier VYf to each of them. Then since for relations
(Vf)Pl(f, e) and (Vf)Pz(f, e), (Vi) (Pl(f, e) & P2(f, e)) ..
(Vf)Pl(f, e) & (Vf)Pz(f, e), we see that W is a Hi‘ set. ||

In fact in [R., ex. 11 - 61] it is noted that W is one - one

reducible to G and O 1is one -~ one reducible to W.

1.4 UNIQUE ORDINAL NOTATIONS

The set (¢ 1is called "the set of ordinal notations™ since to
each ordinal we may assign a member of (. There may be many such
members for each ordinal; in fact, O is "designed" so that each
non-finite ordinal will receive an infinite number of notations, many
of which will be < -incomparable. It is possible to define a path

through ¢ which we shall call Gl, the set of unigue notations

for ordinals. That is, each ordinal can be uniquely associated with

a member of C shares some of the properties

and vice versa. &

1’ 1

of (O ; in particular Oy is a H]]_' set. Also:

PROPOSITION 5

There is a recursively enumerable relation R(x, y) such that
R l(}l is a well-ordering of Gl similar to <{a : @ is a recursive

ordinal}l, <> and such that x € G, and Ry, x) >y €0,.




Proof: This is noted in [G] and shown in [G2]. 1In [G] the term
"constructive ordinal" is used. [R., §11.8] shows that constructive

ordinals and recursive ordinals are the same.

Note 1. Since R 1is a recursively enumerable relation, we can

effectively enumerate {y | y <R x}.

Note 2., If a € Oi' then Ial is the ordinal corresponding to

a, by definition.

Note 3. Without loss of generality, we can assume
(i) O ﬂ(?l

(ii) 1 €@, and [1] =0.

Note 4. 1In all further discussions any reference to a relation
R will mean the R of Proposition 5, and for typographical conven-

ience we will replace <¢s by <R “and EO' by

SR.
1 1
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CHAPTER II

ORDINAL RANK AND VALIDITY

2.1 GODEL NUMBERS

As our language # has only denumerably many symbols, we can
associate a unique prime integer with each symbol, and vice versa.
Assume this is done in an effective manner; that is, given any symbol,
we can compute the corresponding prime, and given any prime we can
effectively determine the corresponding symbol.

We can assign, to each sequence of symbols of £, a unique
godel number . Each symbol sequence is mapped to an integer
k k2 k

2 1. 3 see pnn where P, is the nth prime and kn is the prime

corresponding to the nth symbol in the sequence. Also, since each
integer has a unique decompositibn into primes, we have an evident
map from the integers onto the set of sequences of symbols. If J
is a formula we define GN(¥) to be the godel number for the symbol

sequence J .

Definitions:
(1) A set variable has rank b if it is a set variable with
superscript b.
(ii) A set variable is unranked if it is an unsuperscripted
set variable.

(iii) A variable is a proper variable if it is a number

variable, or has rank b for some b € Oi'
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{iv) If all the set variables of J are ranked, then J

is a ranked formula. If all the variables of J are proper, then

g is a proper formula.

We can define a function OR(n), which is loosely termed the

ordinal rank of formulas. The definition is by cases.

(I) If n is not the godel number of a formula, then
OR(n) 1is not defined.

(II) Suppose n is the godel number of a formula J ;
then

(1) 1If J has unranked set variables, then OR(n)
is not defined.

(2) If & has no set variables, OR(n) = O.

(3) If J has only one superscript, a, then
if a is the superscript only of free variables,
OR(n) = a; else OR(n) =,2a.

(4) If J has A = {al, ey am}, m>1l, as
distinct superscripts, we perform the following
procedure.

At each stage in the procedure we perform one computation
in the calculation of R(ai, aj), for all i, j, 1 =1i, j =m. If,
at any stage, there is some permutation of A, {bl, ey bm} such
that R(bi’ bi+l) holds for all i, 1 =i < m, we say that "A has

an apparent R-linear ordering with bm as the greatest element".

If bm is the superscript of free variables only, then OR(n) = bm:

b
else OR(n) = 2 m. of course, if we find no such permutation at any
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stage, OR(n) will remain undefined.

There are several points to note about the above definition.
First, since by Proposition 5, R is recursively enumerable, and
permutation generation is effective, OR 1is a partial recursive
function. Second, if JZ 1is a proper ranked formula then OR{) is
always defined (here ORGT) is a convenient abbreviation for "OR(n)
where n = GN()") since R | Oi is a well-ordering of (C;. But
the converse does not hold. Suppose c £ Oi ; "x € Xc" has rank c¢
and by case (II) (3) of the definition of OR, OR(x € Xc) = c.

Let Ial be the ordinal associated with a. We reserve the
right to say OR(J) = lal instead of OR(y) = a whenever this is

convenient; that is usually in cases where we are given an ordinal a.

PROPOSITION 6

There is an effective enumeration of all formulas of ordinal

rank ER |a|, uniformly in a.

Proof. The statement of this proposition is equivalent to "the
set of godel numbers of formulas of ordinal rank ER ]al is recur-
sively enumerable uniformly in a". Using the relation R, we can
effectively enumerate the predecessors of a. At the nth stage, we
do the next computation for each of R(0, a), ..., R(n, a) and we
check the numbers F{O, .., n} to see if they encode formulas
involving only number variables and known predecessors of a as

superscripts for set variables. We add all such godel numbers to our

enumeration.
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Remark. Suppose we have an effective method for deciding if a
symbol sequence of £ has a certain form. Then we can effectively
enumerate all such formulas of ordinal rank fR a, uniformly in a.
This is clear from Proposition 6 and the fact that composition of

recursive functions or relations yields another recursive function or

relation.

2.2 PRENEX NORMAL FORMS

Given any formula J we may, using certain operations, obtain

a new formula (perhaps the same as J ) called the prenex normal form.

Intuitively, the prenex normal form of J has the same meaning as I g
A formula is in prenex normal form only if it has the form (lel) cen
(ann) B where Qi is either Vn 3 and X is a (set or number)
variable, and B contains no quantifiers. The basic method for
computing prenex normal forms is described in [Sh., §3.5], but we
require that set function variables be handled the same way as number
variables and that the method be completely specified so that each
formula has only one corresponding prenex normal form. Finally, we

define a recursive function PNF:

PNF (n)

it

the godel number of the prenex normal form
of 7 where GN(J) = n, if n 1is the

- godel number of a formula.

0 otherwise .

We say a formula is a prenex formula if it is in prenex normal

form.
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As an abuse of notation, we may also write PNF(J), where

PNF(J4) = PNF(n) when n = GN(J).

2.3 DEFINITION OF THE CLASSES 7)za

We now wish to define certain sets mot and validity, ]=a for
recursive ordinals a. First we will devise an intuitive notion of
validity, |=(; We assume for this paragraph that g(x) represents
a prenex formula of £ with just x free. If OR(x)) = 0, then
|=6 &(;1_) means &n) is true as a statement about integers. We define
7/6 = {s | There exists a formula &(x) such that OR(H(x)) = 0 and
s = {x | |=o &(x)}}. Now, suppose we have defined }=é and 776 VB8 < a.

Let lal = a. Then, if J 1is a prenex sentence and OR({F) =_ a,

R
I:&J if, when we interpret esach superscripted set variable of rank b
as ranking over ml'bl and number variables as ranging over the natural
numbers, J is true. Finally, we define 7}(& = {s | there exists a
formula .#(x) such that OR(Z(x)) ER a and S = {x l |=& ,&(;)}}.

We also need a more formal definition of validity. Some set-
theoretic preliminaries are necessary, however.

Let A and B be sets well-ordered by SA and SB, respectively.

We define the natural well-ordering SAXB of A X B (relative to

SA and SB) by

Saxg (Xr ¥) +> {S,(a;, a,) v (a; = a, & S5(b;, b))}

where x = (al, bl) and y = (a2, b,) are arbitrary elements of A X B.

2
Now, let P be a subset of A X B. Then {a | (a, b) € P} has
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S_~first element, a

A since sA well-orders A. And similarly

0’
{b | (ao, b) € P} has an Sg-first element b . Then, clearly

(ao, bo) is an SAXB—flrst element of P.

By induction we can define a natural well-ordering of Al X

(A, x ... x An). Assume Sn_l(x, y) 1is a natural well-ordering of
A X ,,. X An. Then define Sn(x, y) by Sn(x, y) «— x = (al, ey an)
&y= (b, -.., b) & [s(al, b)) vV (a, =by &s ,(a,, ..., a),

(b ooy bn)))], where S 1is the well-ordering for A It is easy

1°
X X eoes
(Al X An).

2’
to see that Sn is indeed a well-ordering of Ay

Definition: To each prenex sentence J of £ we assign an

ordered triple called the R-greatest ordinal triple for J (also

written TRP(¥) or TRP(n) if n = GN(¥)). The triple is

(OR(n), p(n), P(n)) where p and P are defined as follows:

(a) If OR(n) = 0, p(n) = the number of (number) quantifiers
in J, and Y(n) = 0.

(b) If OR(n) is defined and # O then, since J is a
sentence, tﬁere is a ¢ such that OR(n) = 2°. p(n) is the number of
occurrences of guantifiers associated with superscript ¢, and yY(n)
is the number of quantifiers to the left of the leftmost occurrence
of a quantifier associated with superscript c.

(c) For all other n, p(n) and P(n) are undefined.

Clearly, p and Y are partial recursive.
We wish to see that the proper prenex sentences' triples are well-
ordered. When we define OI : x € O{ +> x € Oi V x = 0, the triples

+
are well-ordered by the natural well-ordering, R1l, for C}l X (N X N).
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(OI is well~ordered by R” ] @I, where R7(x, y) <> (x=0&y # 0) V
R(x, y)).

In short, we are ordering proper prenex sentences first by ordinal
i‘ank, and then by the contents of their prefixes: i.e., by number of
occurrences of an R-greatest superscript and finally by the number
of occurrences of R-lesser quantifiers to the left of the leftmost
occurrence of the R-greatest superscript.

We now define Wza and }:a for recursive ordinals o.

Let &x) be a prznex formula of # of ordinal rank O with
just x free. We say |=0 Z(1.) means &(n) is true as a statement

about integers. Then we define

7]10 = {s | there exists a prenex formula &(x) of £
with just x free such that OR(Z(x)) = 0 and

s = {x |, &1}

Suppose we have defined |=B for all B < a and have defined
,=a & for all prenex sentences & of ¥ which have smaller (i.e.,
in the ordering of triples) ordinal triples than J has, where J
is a prenex sentence of £ such that OR(J) =R ar for lal =,
then |=a.7 if and only if one of the following five clauses holds:

(assume a € Ol ) |a] = a):

1./ () (R(b, a) & |=|b| F)
2./ J= (3x04(x) & OR(&(x)) <, a & &n) for some n €N

=
3./ T = (Vx)&(x) & OR(&(x)) SR as |='d$(-r;) for all n € N
4./ T = (3Xb).&(xb) & OR(,&(xb)) SR a & R(b, a) & for some

prenex formula &(x), with just x free and OR® (X)) = b,
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b b b
5./ F= (¥X)2(X") &« ORW(X)) =, a & R(b, a) & for all
prenex formulas #(x) with just x free and OR(¥(x)) = b/

{=a PNF (& (X ¥(x)) .

We wish to see that this is a proper inductive definition. As
an illustraticn, we will examine clause 4. If OR(PNF(&(X¥ (x))) <
R

OR(J), then TRP (PNF(&(X ¥(x)))) <g TRP (fH. If the ordinal ranks

1
are equal then either

(1) |b] +'1 = a.

In this case, b is the R-maximum superscript, and
PNF(,&(?: #(x))) has one less occurrence of it than J has.
or

(i1) |p| + 1< a.

In this case, b 1is not the R-maximum superscript, and
thus the number of occurrences of the R-maximum superscript, ¢, is
the same in J and PNF(&(X ¥(x))). Note that &(X ¥(x)) is the
result of replacing all occurrences of t € Xb (for terms t) 1in
_g(xb) by #A(t). When we take PNF(&(R ¥(x)) note that no quantifiers
from % are moved into or to the left of the prefix of % . We have
one less quantifier to the left of the leftmost occurrence of the R-
maximum superscript in PNF(&(X ¥(x))) than in J.

Thus, PNF(&(X ¥(x))) has indeed a lesser ordinal triple than J.
Finally, we define for o = Ial, 'ma = {s I there exists a prenex
formula 4%(x) with just x free such that OR(2%(x)) < a and S =

s
{x | Pa Z(x)}}.
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Remark: We wish to assure ourselves that the formal and
intuitive notions of validity do indeed coincide for proper prenex
sentences. The argument is really by induction on ordinal triples.
if, for example, J = (HXC),&(XC), then |=a,7 g OR(_&(XC)) ER a,
where o = lal and there is a prenex formula A(x) with just x
free, such that OR(¥(x)) SR ¢ and #a PNF (&(X Mx))). Since
TRP (PNF (H(X ¥(x))) <m1 TRP () » |=a PNF (X ¥(x))) +> |=& PNF (&(X ¥ (x))) .
It only remains to see that "there exists a formula X (x) of ordinal
rank < c such that |7 &(% Mx))" if and only if |Z 3x%)2x°).
Assume the left-hand side; clearly Xc = {x | chlmf;)}. The other
direction holds from our intuitive interpretation of the ranked set
variables. Arguments for the other inductive clauses (of the defin-
ition of Fa ) are analogous.

In view of the coincidence of both definitions of validity, we
will use only the symbol Fa' When the meaning is clear (i.e., when
it is obvious what a is) and when notational convenience is desired,
we may write F , and the correct subscript will be assumed. We will
employ usual properties of truth definitions: for example, "It is
not possible that F‘? and F PNF( -4 ), for a proper prenex
sentence J." Also, for an arbitrary proper sentence 4 we have
that FQ' Mg F PNF (), so that our theory does not really depend

on prenex sentences. This is clear from the intuitive definition of

validity.
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CHAPTER III

' 1
EACH SET IN ma IS A Al SET

3.1 TRUTH SETS

Definition: For each recursive ordinal o, we define Ta =

{aN@) | F is a prenex formula with no free variables & OR() <_ a &

R
l"a J}, where o = |a]. T, 1is called the "truth set for a".
PROPOSITION 7
Ta £ ma for all recursive ordinals 4a.
Proof: Assume a € N D la] = a. Let <Jn(x)> be an effective

enumeration of prenex formulas of ordinal rank ER a, with just x
free. (The existence of such an enumeration is guaranteed by the
remark following Proposition 6.)

Assume Ta 6?7(a . Then there is a prenex formula H{(x) with
just x free such that OR(®¥(x)) =g @r and such that T = {n |
|=0L F()}. Define s = {n | }:a PNF(—\Jn(n))}. Then

n €S+ | PNF(~T (M)

+> GN(PNF(<J (n)) € T
n o

| F ¥ (N(ENF (=T (M)
= k¥ (n)
where ¥7(x) = ¥(g(x)), and g is a recursive function defined by
g(n) = GN(PNF (— yn(ﬁ)).

So we see that S € 77{1 But if S € 7/(a then there is an m, such
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that s = {n H=a3mo(n)}, and then mj € S ‘_’F’aymo(mo) by the

above but m, € S +> Fa pNF(_jg:n d;o)) by the definition of S.
0

Thus we have a contradiction, and it must be that Ta Z?na. ll

3.2 THE RELATION BETWEEN Ta AND 7na.

PROPOSITION 8

(1) s € W% <+ S is arithmetical.

(ii) s € Wh+l <+ S is arithmetical in Ta'

Proof:

(i) This is obvious, since a formula of ordinal rank O
has only number quantifiers.

(ii) Let us assume the left-hand side of the equivalence,

i.e., SE€M_ .. Then s=1{n|F QW) T(W, ..., W, m)}

o+1 (Ql Tt

for a quantifier-free formula T of ordinal rank SR a” where |a'l =

a+ 1l. For each b, fix <3??(x)> as an effective enumeration of all
formulas, with just x free, of ordinal rank = b (Ibl =0). We
may replace number variables by set variables by an analogue to EI1
of Section 1.3; so we may consider all the Wi to be set variables
such that rank (W,) = b, and |b,| = a.
i i i
By the remark following Proposition 6, we may define a recursive
b
function £ by f£(f.s --es &, n) = GN(ENF(T(RF ;5 (%) s «-.,
1 m 21

R -7 (x), n))). Then

Y

ne€s -+ }=a+l(Qlwl) (Qme) T(W p -y W, n)
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b b
~ 1 A~ m -
= QL) ... Q%) |=a+1 PNF(T(xle(x), lem(x), n))

b b
) A 1 A m -,
< (lell) e (2 l=a PNF (T (X Jll(X)’ cees lem(X), n))

> (Qlll) (szm) [f(,Q,l, zm, n) € Ta]

or, S is arithmetical in Ta'
The various enumerations are needed; for if Ibl <a and J
b b b . X T
has only X  free, then Fa AX)F(X7) Fjust if (32,1) [or ¢ 2 (x)) =z b &
1

l:lbl J(szl(x))'

We will now show that if we assume Ta € Wla+l then we can prove
the right-to-left implication of Proposition 8 - (ii). 1If Ta € Wla+1
then there is a formula J(x) with just x free such that OR (< (x) ) ER a”
and T = {n | Fa+l F(n)}. 1f s is arithmetical in T, then there
is an arithmetical relation A such that n € s «— A(n, Ta)' But
then there is a formula .Xx, X) with no ranked set variables such
that A(n, Ta) > l=a+l Z(n, 2 (z)). Then m € S «> E PNF (F(m, 2 Z(z))).
This last formula has ordinal rank <a + 1 since OR(S (x)) fR a’.

It remains to prove Ta /! We define the following

a+l’

relations A A and A4:

1’ 2' 3'
A (g, X) +>g = GN (PNF ( (Ix)&(x))) &
(3n) (GN (PNF (¥(n))) € X).
Ay(g, X) +> g = GN(PNF ((¥x}¥(x))) &
(Yn) (GN (PNF (&(n))) € X).
Aylg, %, X) > g= GN (eNF (3% (x%))) where R(a, x),

and there is a prenex formula #(z) with just =z free such that
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OR& (Zz)) ER a, where lal = o, and GN(PNF(&(Z ¥(z))) € X].

and
BAyg, x, X) > [g = GN(NF((VXT) X)) where R(a, x),
and for all prenex formulas & (z) with just =z free such that

OR (¥(z)) sp a, then GN (PNF (&(Z ¥(z)))) € X].
Finally, define P(g, x):

(*) P(g, x) > (Jy) (g is the godel number of a prenex

sentence of ordinal rank ER y where R(y, x)).
The statement within parentheses on the right-hand side of the
equivalence is recursively enumerable, from the definitions of OR

and R.

We can now define 1T':

I'(x, X, ¥) « (Vg){g € Y .«>. P(g, X)
& [gexviilg, ¥ vAalg X

v Aaslg, x, X) VA g, %, X) ]

Lemma 9: I is an arithmetical relation.
Proof: We shall examine only A3, since the proofs for the
other A's are quite analogous.

We define:

SUB(a, b, c) GN(PNF (&(Z ¥(z)))) if a = GN(PNF(¥ (z)))

and b = 6N (BNF (3x5)2(x%)))

0 if a and b are not godel numbers

of syntactically suitable formulas.

G(a, ¢) «++ a is the godel number of a prenex formula
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which begins with 3x°.

SUB and G are easily computed by godel number decoding and symbol
manipulation, and are evidently recursive.

Also, we define a recursive relation Q

Q(g, a) +> g is the 'godel number of a prenex formula

of ordinal rank SR a, with just =z free.

Q 1is clearly recursively enumerable.
Then, A3(g, x, X) + (Ja) (R(a, x) & G(g, a) & (3h) (Q(h, a)

& SUB(h, g, a) € X)).

Q is recursively enumerable, since by Proposition 6 we have an
effective enumeration of all formulas of ordinal rank ER a, uniformly
in a.

Thus, by inspection A3 is arithmetical. ]l

Definition: For any set S we define S[xl, eens xn] =

{y |<xl’ --er X, y> € S}

This définition can be expressed by a formula with only number
quantifiers, so we may write it in the language of Ramified Analysis
as well. We now proceed to prove Ta Ejma+l by induction on
recursive ordinals 0. (Subscripts are ordinals and superscripts are

ordinal notations, unless otherwise indicated.)
Case I: a=0.
Recall that lll = 0. We wish to show

(1) x €T  +> Fl (HYl)(Hn)[{Yl[O] = the set of godel numbers of true
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quantifier~free sentences} & (Vy)y<n I'(1, Yl[Y], Yl[Y + 1) s x € Yl[n]]'

Proof: First, we define Y such that Y(x) = the set of godel
numbers of true prenex sentences with = x quantifiers, all of which
are number quantifiers. >Note that Y(0) is recursive, since it just
contains true variable-free arithmetic statements, e.g., 6'= 6)

T-+ T.= 5: Now

g€Y(n+1l) «[g=06N((3x)S(x)) & (Im)

GN(S(m)) € Y(n)]

v [g=06N((Vx)S(x)) & (Vm)

GN(S(m)) € Y(n)]

Thus Y(n) is arithmetical for all n by induction.

It is clear from the definition of F(Al and Az) and Y()
that Y(n + 1) is the unique Z such that TI(1, Y(n), 2).

Let x € TO. Suppose the sentence whose godel number is x has
m quantifiers. Then the right hand side of (1) is satisfied for
X by taking Yl = {<v, w ] v<m&w€Y(w}) and n=m, since
Yl ranges over mlll = 7720.

Now suppose Xx satisfies the right hand side of (1). Clearly
Yl[O] = Y(0). We know I'(1, ¥Y(y), Y{y + 1)) for all y and by
hypothesis I'(1, Yl[y], Yl[y + 1]) for all y < n, so by induction
Yl[y] = Y(y) for all y < n. But then x € Yl[n] + x € Y(n) - so

X €T We conclude {x | x € To} € W&.

o
Case II: |b] = |c| + 1 .

We wish to show
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b b _
(2) x ¢ le' — |='bl+l(3Y ) 3n)[{¥ [0] = TICI}

b b b
& (vy)y<n T, Y[ yl, Yy +1]) &« x € Y [n]].

Proof: This case is very similar to Case I. We define Y(x) =
set of godel numbers of true prenex sentences obtained from formulas
of ordinal rank = Icl by adding at most x gquantifiers - these
quantifiers are either number or set quantifiers on x*  where R(a, c).
Clearly Y(0) = TICI. By induction we see that Y(n) is arithmetical
in %c‘ for all n. As before Y(n + 1) 1is the unique Z such that
I'(b, Y(n), 2).

The proof is exactly as for Case I: replace all superscript 1l's
by b's, 1 by b in I, and 0 (= ll]) by SR b in such statements as

x is a formula of ordinal rank O0". We conclude {x ] x € lel} €

7’jb|+1 -

Case III. |bl is a limit ordinal.

(3) x€T > }=|bl+l(3xb) (3m) (m <g b) & {xb[l, 0] = the set of

[b]
true quantifier-free sentences} & (Vy)(y # 1 & y S m [Xb[y, 0] =
U=l 2, w] | z <gp Y & w € N}]) & (Yy) (Vz2) (y <p m > Ty, Lly, zl,

Xb[y, z+ 1])) & x € U{Xb[m, z] | z € N} .

Proof: Let us define X such that X(d, x) = the set of godel

numbers of true prenex sentences of ordinal rank ER d, obtained by

prefixing at most x gquantifiers, either number or of the form Qxa
where R(a, d) or a=4d, to a formula of ordinal rank <z d.
Assume x € Tb. x is the godel number of some true prenex

sentence of ordinal rank ER b, say J. Since < is a sentence
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and |b| is a limit ordinal, ORF) = c for some c¢ such that

. b

¢ <p b. Choose X = {<x,y, 2> | x S, ey €N&z€X(x, v)}.

Note that w € Xb[y, z] —<y, z, w>€xb<—»y$Rc &z €EN&w € Xy, 2) .
Thus Xb[y, z] = X(y, z) ¥y =< g © and z € N. 1In particular,

Xb[l, 0] = X(1, 0), so Xb[l, 0] 1is indeed the set of godel numbers

of true quantifier-free sentences.

Assume m ER c. Then

Vy) [Xb[y, 0] = U{Xb[z, wl | =z <R Y & W € N}]

<
1 <R y =R m

is the same as

(Vy) n [x(y, 0) = U{X(z, w) | = <R Y &W € N} .

<
l<gy {

But x € X(y, 0) ++ x is the godel number of a true prenex sentence
of ordinal rank SR y, obtained by prefixing at
most O quantifiers to formula J of ordinal
rank <R Y-

++ X 1is the godel number of a true sentence of
ordinal rank V where R(Y, y), which has w
quantifiers which are number quantifiers or of
the form st, where R{(s, V).

+— (Av) (3w) (x € X(v, W) & R(V, y) & w € N)

«— x € U{x(z, W) I Z<p Y &W € N}.

Finally, fix m=c. Then x € U Xb[m, z], since x € X(c, w)
ZEN

where w is the number of quantifiers of the formula whose godel

nurber is X.
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From the definitions of T and X( , ) it is clear that
Fly, Xy, x), X(y, x + 1)) for all x and y (and also that
X(y, x + 1) is the unique 2 such that I'(y, X(y, x), 2)). And
since Vy ER c and all x, X(y, X) = xb(y, X), we get for all
Y= ¢ and all x, T(y, Xb[y, z], Xb[y, z + 1]).

Thus all the clauses of the right hand side of (3) are
satisfied.

To prove the equivalence from right to left, assume we have a
suitable X . Clearly xb[l, 0] = X(1, 0). We have T (1, xb[l, x],
Xb[l, x + 1]) and T(1, x(1, x), X(1, x + 1)) for all x € N. So
xb[o, x] = X(0, x). Assume 1 <g Y and y 5 m and xb[z, w] =

X
X(z, w) for all w, and all =z such that =z <R y. Now

Ly, o]

Z<U U Xb[z, w)
Ry wEN

i

U U x(z, w

z<Ry wEN

X({y, 0) from the definition of X(y, 0) .

But since Vy g and all x, Ty, xb[y, x], Xb[y, x + 1]) and
I'(y, x(y, x) , X(y, x + 1)) for all x, we obtain Xb[y, x] =

Xy, x) Vy = ™ and all x. Therefore x € U Xb[m, z] implies
2EN

that there exists a w such that x € xb[m, w] so x € X(m, w).

But this just says x € Tm so x € Tb.

This ends the proof of Lemma 9. ||

Note that we could combine our cases into one comprehensive case:

4 x€T %) YY) (3m) An) [Rm, b) & (°[1, 0] =

b| = |=[lo|+1
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the set of true quantifier-~free sentences)

& (Vy)l < m(Xb[y, o] = U{Xb[z, wl | Z<p Y &w € N}
R

<R Y

b
& (Vy)y < m (Vz) Ty, Xb[y, z], X ly, z + 1])

& Yb[O] = U{Xb[m, z] I z € N}

& x € Yb[n].

When |b| is a limit ordinal, n = O.

Note that the right hand side of (4) easily yields a ranked
formula J(x) such that lel = {x | Flbl+l.7(§)}.

At this point we digresé slightly to make an interesting obser-
vation about the union of truth sets. Define T = {GN(J) I J isa
proper prenex sentence and da such that a € Oi and Flal.y}.

Clearly, T = U Tlal. We can show that T is a Hi set. x €
aG}i

T «+ [x is the godel number of a proper prenex sentence J) &
Gy)[oR(H =y & (¥x) (x[1, 0] = the set of godel numbers of all

variable-free sentences & ((Vz)z <

R
x € U{X[u, w] | u <R Y &w € N})]. Now, "x is the godel number of

y(Vn) P(Z, X[zl u]l X[zl u + l]) *

. 1 . A .
a proper prenex sentence of 4" is Hl since it involves examining

the superscripts of the set variables in J  for membership in Oi'

Since OR 1is a partial recursive function and T is arithmetical,

T must be a Hi set.

3.3 q AND Ai SETS

Definition: 4 = U W@x for a € recursive ordinals. We may
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alternately write 71 = U anl .
aéoi

Definition: A set P is Zi if there is an arithmetical relation

S such that x € P > (3X)s(x, X). We may make alternate definitions

1
of Zl sets, as was done for Hl Sets in Section 1.3, and the anal-

1

ogous propositions will hold.

. . 1 . = .
Note that if a set is II7 then its complement, P, is I

1 X and
vice versa: 1i.e.
x € P« - (3X)S(x, X)
+— (¥X) 7s(x, X)
1
> (VX)S (xl X)
where Sl(x, X) =S(x, X) 1is clearly also arithmetical.
e . 1 ..., . 1 1
Definition: A set P is Al if it is both Zl and Hl.

PROPOSITION 10

isa X set.
Jo| )

Proof: In (4) above it was shown that

x €T @z®) AP, x)

b
b b . . . .

where (327) A(Z7, x) is the result of collapsing the existential

quantifiers in the right hand side of (4). Note that A is arith-

metical; also, from the proof of (3), that in fact (32) A(Z, x) +—

az®) A, 0 - ||
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PROPOSITION 11

If s €M, then S 1is a Ai set.

Proof: Say S € 7. Then there is an a such that S € anl .
Thus there is a formula J(x) of ordinal rank <R a such that

s = {x | Flal F(x)}. Then x € S «» Flal J(x)

— GNZ (x)) € Ty

So S 1is 1 -1 reducible to Tlal. By the obvious analogue

to Proposition 3, S is Z} . But since s € anl, 3 anl and

similarly S is Zl

1+ Thus s is Ai -

The ultimate significance of Ai sets in this thesis lies in the

Characterization Theorem - [Sh., 7.10] -

A set is Ai if and only if it is-hyperarithmetical.

Thus, we have shown that each set in My is a hyperarithmetical

set. It remains to show the converse.
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CHAPTER IV

EACH HYPERARITHMETICAL SET IS IN

4.1 HYPERARITHMETICAL SETS

Let <¢i> ke a standard enumeration of all unary partial
recursive functions. We define Wi = range ¢i, as in the
Introduction.

We define H-index and hyperarithmetical set as in [Sh., §7.9].

Definition: The following three rules constitute an inductive
definition of H-index:
l. For all e, <0, e> is an H-index.
2. If e 1is an H-index, <1, e> 1is an H-index.
3. If each 4 € We is an H-index, then <2, e> is an

H-index.

Definition: We define the hyperarithmetical sets Ji for

H-indices i, as follows:

1.) if i

0, e>, I, =W,
2.) if i J

<1l > J. =
v &7 i e

3.) if i =<2, e , Ji = U Jx, x € We.

Now, let * be a concatenation operator on sequence numbers

such that if 0_ = <a

o 17 e am> and O, = <b., ..., bn> then

1 1

. *0, =<a,, «.., a ., b

0 1 1 m 17t bn>' This operator has the obvious

i * * = * * : =
properties that (Gl 02) 03 Gl (02 03) and, if T <@>,
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and O_.

that o * " =7 * 0 = ¢ for sequence numbers 0, 01, 02, 3

Given any i € N we may define a set S& thusly:

Rule 1: <i> ¢ Si

Rule 2: if 0 * <j> € Si and j <i, e> then

g * <j, e> € S&

Rule 3: if O * <j> € Si and j <2, e> then, for

each k €W , O *<j, k> € §,.
e i

If i 1is not an H-index, then Si wili not have a structure
of any interest to us; but there is no reason to restrict the
f definition of si to H-indices.
We can show several interesting facts about the Si's and about

their inter-relationships.

Note 1. For a given i, inspection of the definition of S&
shows that each member of Si is of the form <i> * p where p is

some sequence number (perhaps that of the null sequence).

Note 2. If i =<1, e> and p € Sé then <i> * p € Si. To

see this, consider p = <a ceor an> where n = 1. Now since

1’
p €3 , a, =e and <i> * <e> € § by Rule 2. Then <i, e> * <a > €

e 1 i 2
Si by application of the same rule {(either Rule 2 or 3) which

insured that <e> * <a2> € Se. By induction, <i> * p =

<i> * <a,> * .., *<a> €8, .
1 n i

Note 3. If i = <2, e> and p € 8f where £ € We then

<i> * p € Si. The proof is as in Note 2 except that since p € Sgr
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a = f and <i> * <f> ¢ Si by Rule 3.

Note 4. There are converses of a sort to Notes 2 and 3. If
i =<1, e and <i> * p € Si, where p # <@>, then p € Se- This
is easy to see since i =<1, e> , p = <e, al' oo an>. Now
<e> € Se. <e> * <a1> € Se is in Se by application of the same
rule that put <i> * <e> * <a1> in Si. By induction we obtain
p € Se. Again, the "limit ordinal" case is very similar. When
i = <2, e>, the statement of the Note is: "if <i> * p ¢ Si, where
p # <@>, then 3f 3 f € We and p € 3f". The proof is the same;

since i =<2, e>, p =<f, a ey an> and we can show p € Sf

lI

by induction as above in this note.

Note 5. The previous notes imply the following:

If i

<1, e> then 8§, = {0 | 0 =<i>*p, pes}U{<i>h

If i

<2, e> then s,i {o =<i> * p, (Af) (£ € W, &

p € Sf)} U {<i>}.

Let us show only the second of the two equations, for it is
slightly more complex. Note that <i> is in both sets. All elements
of Si , other than <i> are of the form <i> * p where p # <@> .
By Note 4 there is an £ such that f € We and p € sf. Note 3
shows the relation in the other direction.

We now define an ordering of the set of all sequence numbers.
First we select a simultaneous effective enumeration of all the Wj's
with the properties that at each stage in the computation at most one

wj gains a member and that Wj gets only one new member at any stage.



46

Let 0 and T be sequence numbers. We say O C T if there
is a sequence number p such that p # <@§> and o * P = T. Then
gcT if 0 CT1 or 0 = T.

Then we define a relation < on N X N:

For 0_, C

0 € N,

1

Go < 01 > 00 and 01 are sequence numbers &

[Gl C 00 V. (3p) (35, e)(3ko, kl){p * <§> 1is the number

of the longest sequence common to 00 and 01 & j =<2, e

& p * <j, ko S 05 & P * <3, k> C 0. & k. enters W,

0 1 1 0

before k.].
1
< 1is a recursively enumerable relation since the set of sequence
numbers is recursive, as we have a special effective enumeration of the
We's, and since we can effectively examine and compare the sequence
associated with each sequence number.

Let us define <; as the restriction of <« to Si' Again, it

is clear that <i is a recursively enumerable relation, since each

Si is a recursively enumerable set. We now wish to show that, when
i is an H-index, < well-orders gi'
We are able to show the relation between <3 and <m where m

is a "lower" H-index.

Note 6. Assume 01 #F <i>.

i = < > = <jij> * = <i> *
If i 1, e, Go <5 Gl' and 00 i po, Ol i pl,

then po <e pl.

i = < > = <ji> * = <i> *
If i 2, e , Go <3 ol, 00 i po, 0’1 i Pyr then
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(3m) (m € we, Por P € 8.’ Po <m pl) v (3k0,3 kl) (ko, k., € We

1

such that po €8 € Sk and k enters We before

r P
kO 1 1 0

k).

Only the proof for the case i = <2, e> will be shown. The
proof for the case i = <1, e> 1is similar but much simpler. 1If

g, €o_., then 0O, = <a

= <
1 0 1 IRERY am> and 0 a

eesy a > where
0 1’ " “n

< C .
2<m<n so pl po and thus po <a2 pl. If 01 4 00 it may be
that just <i> is common to 00 and Ol.

€ We such that <i, k

Then since 1i = <2, e>

there exist k., k

> Cg and k enters W
0 - e

1 0 1 0

before k Clearly po ESk and pl € Sk by Note 4 and thus we
0 1

obtain the last clause. Let <i, al, ceos an> be the number of the

1°

greatest sequence common to OO and 01. Now al € We’ since i =

<2, e>; so, Por Py € Sa . Since 0. <, O it must be that there

1 0 i1
<i .ee ) > C
are 20, 21 € We such that i, a, pay 20 __00 and
<ji een > C .
i, a, ra s 21 €0, and 20 enters Wan before 21 But

this suffices to insure po < pl, and so clause 1 holds.
1

We have converses to Note 6.
. i = < > <i> * <i> * .
Note 7 If i l, e and po <e pl then i po < i pl
i = < >
If i 2, e and 3f € We 3 po, pl € Sf and po <¢ pl,
<i> * <i> * .
then i po <; <4 pl

If i=<2, e>, and 3f, g € We 3 p

0 € sfl Dl € sg' and

f t <i> * . <i> * .
enters We before g then i po < i pl

The first and second case of Note 7 are much the same. Let

i=<2,e> and £ ¢ We' If Py <Py then the proof is obvious.
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If p1 Z po then <i> #* pO < <i> * p1 is true by the same appli-
cation of Rule 2 or 3 which insured that po <g Pq-

Let us consider the last case. Note that <i> is all that
<i> * Po and <i> * pl have in common since <f> is the first

element of Po and <g> 1is the first element of Py- Then Rule 3

immediately gives the result.

Note 8. By combining the results of Notes 6 and 7 we get the

following:

. i = < >
I./ If i 1, e then Oo <i cl

= <i> <i>
> [cl i> and 9y # <i>]

= <i> * = <i> *
v [co i Py’ 91 i Py1r Py P € Se

& Py <, 0]
II./ If i = <2, e> then Oo < 01

= <ji> <i>
> [cl i> and % # <i>]

vV [ (3m) (m € W, &0, = <i> * Por Oy = <i> * Py

& Pyr Py €8 &P, < pl]

= <i> * = <i> *
V[(@3Bm, n)(m, n € We & 00 i P o, i Pyr
&P, € Sm & pg € Sn and m enters W, before

n].

PROPOSITION 12

If i is an H-index, let o(i) = the order type of <Si, <f>.

Then each 0(i) is a recursive ordinal.
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Proof: First, we wish to note that the definition (definition 2,
Ch. I, see 1l.1) of a recursive ordinal may be weakened by requiring
only that the well-ordering R be a recursively enumerable well-
ordering of a subset ofr N. We shall refer to the new definition as
definition 3. It is obvious that an ordinal recursive by definition 2
is recursive by definition 3. Conversely, suppose a recursively
enumerable relation R(x, y) well-orders a recursively enumerable
subset S of N, Then either S is finite (and <R, S> is the
order type of a finite, and hence recursive, ordinal), or there is a
one - one recursive function such that S = f£(N), and we may define
R”(x, y) +* R(f(x), £(y)).. Now R” can be seen to be a recursively
enumerable well-ordering of N, so we know that for_any X,y €N
x#y>*R(x, y) VR (y, x), so that R” must indeed be recursive.
And since <R, s>~ <R”, N>, <R, 5> must be the order type of an
ordinal recursive under definition 2.

This is precisely the case we have; < is a recursively enumer-
able relation, and each 3i is a recursively enumerable set. It
suffices now to show that < well-orders Si' We proceed by induc-
tion on H-indices.

If i

<0, e>, then Si = {<i>} and the result is obvious.

If i

<1, e>, 1let o be the recursive ordinal for which O(e)
is the order type, by induction hypothesis. Part I of Note 8 shows
that the ordinal associated with 81 is the successor of that associ-
ated with Se since <i> * p <; <i> for all p € Se.

Suppose i = <2, e>. Let fl, £ ..+ be the members of We as

2!
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they arise in computation. Then, by Part II of Note 8, 0(i) =
( O(fl) + o(fz) + ... ) + 1, and this ordinal is again recursive.
We now state a general lemma concerning the embedding of

recursively enumerable sets in & .

LEMMA 13. If M is a recursively enumerable set well-ordered
by a recursively enumerable relation T, then there exists a partial

recursive function £ such that

(i) x €M~ £f(x) €6
and

(i) x, y € M= [T(x, y) + £(x) 5 £ ].

Proof: We first consider the special case where M = N. Note
i
that we define m§O am, where the addition operator is 3 » as

follows (for the purpose of this proof):

and

Then, there exist functions k and £ such that

n
k@}m ~ I dalm 4 a)

where a 1is the notation for the ordinal 1, and

{2, x}(n) >~ 1 if x=n Vv T(x, n)

~ {e}ln) if T(n, x) .

In particular, we may fix k and £ to be unique recursive
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functions since their definitions consist of instructions for the

effective computation of indices of recursive functions.

Now, by the Recursion Theorem, there is an integer b such that

{b}(x) = k((b, X)). Let us define £(x) = 3 * S{b}(x); we wish to
show that £ 1is the desired function. First, we redefine £:

£2(x) = (b, x); so f(x) =3 » Sk(l(x)).

Fix s, and let P = {t I T(t, s)} ; assume that we know

t€P—>f(t) € O, and tl'

t, €P [T(tl, t)) > f(t)) <5 f(tz)].
From the definitions of O and < we have that f(s) € O +>
tYn) [{k(2(s))}(n) €O & {k(&(s))}(n) <g kRN + D] .

But it is clear from the definition of k, and from the
property of +, that y # 1 + x < Xty ¥ (provided x, y € )
that {k(R(s))}n) <5 {k(&(s))}(n + 1) (provided they are € O).
It remains to show {k(&(s))}(n) € ¢, Vn. Now {k(%(s))}(n) =

n

m§0 2 (s)} m) *y a). Either {2(s)}(m) € @ since T(s, m) Vs =m

and thus {2(s)}l(m) = 1€ o, or T(m, s) and {R(s)}m) = £(m),
and f(m) € O by the induction hypothesis. Note that at this point
we used the aésumption that M = N.

and + that

O
k(z) € G only

5k(z)

It is clear from the definitions of O, <«

GI
{z}(n) <y 3° Sk(Z), when k(z) € 3. For 3 = 5

if {k(2)}(n) € & for n = 0,1, ..., and {k(z)}(n) < 3 -

=1}

from the definitions of (¢ and <5 * But {k(z)}(n) = mgo({z}(m) *y @)

and then {z}(n) < {k(z)}(n), since for x, vy €3, y#1—>

x<O x+G y. Now, if T(t, s), then £(t) = {2(s)}(t), and then

letting n =t and z = L(s) we get:




£(t) = {2¢(¢s)}(t) < 3 ¢ gk (2)

o = g(s).

That is, T(t, s) > g(t) <O

We now prove the lemma for the case M # N. If M 1is finite,

g(s).

the result is evident, so let us assume M is infinite. Since M
is recursively enumerable, there is a one - one recursive function

h such that h(N) = M. We can define an inverse, in a sense, tok RH:
to calculate h“l (x), we compute h(0), h(l), ... until we find a
y such that h(y) = x. Of course if x £ M, then no such y will
be found; clearly, h—l is partial recursive. Now define

T (x, y) + T(h(x), h(y)); T  1is a recursively enumerable relation
since T 1is recursively enumerable and h is partial recursive.

We then have x, y € M+ [T(x, y) + T'(h‘l(x), h_l(y))]: By the

case when M = N, we have an f such that (¥x)(£(x) € @) and

(Vx) W) [T (%, v) + £(x) <5 f{y)]. Then, for x,y €M,

(%, y) + T (h (%), hly))
> (%) <5 fh"l(y)

Define fl as fh—l, and we have

X,y € M~> [T7(x, y) > fl(x) < fl(y)]

o

and of course x € M-»fl(x) € & , since £(N) C . ||

With the aid of Lemma 13 we can prove the following important
proposition. Assume g satisfies Lemma 13 for <Si’ <i> for some

H~index.
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PROPOSITION 14

There exists a partial recursive k : Si -+ N such that for each
g * <3> ¢ Si,k(O * <j>) = the godel number of a formula J(x) with
only x free such that Jj = {n I F 3153} and OR(F) ER w, where

w 1is the notation for Ig(<i>)! +1 .

Proof: Let § be a formula which expresses membership in the
range of unary partial recursive functions. That is, ¢ is a formula
of ordinal rank O with just x and y free such that for all m

and n € N,

me€wW «— [k &m, n.

Note that, by the remarks following Lemma 9, we have an
explicit form for the Ta's. In particular we can display a formula

#{x) such that

n €

To<i>) E ().

¥(n) has ordinal rank = lg(<i>) ] + 1.

We now define a partial recursive function ¥ :

X(p, ¥, n) = GN(&(n)) if p,(0 * <y>) = GN(g(x))
divergent otherwise (i.e., if ﬂp(O * <y>)
is not the godel number of a suitable

formula) .

Then there is a formula X , of rank O, such that X(p, y, n)
m*—>|=7((;, ;I ;1-1 I-II)-

Finally we define kO:
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ko(p, q) diverges if g is not a sequence number, or if
q=0 * <j> and j 1is neither <0, e>, <1, e>, nor <2, e> for

some e € N.

(a) if j = <0, e>, then kO(P’ 0 * <3>) = GN(&(x, e))

GN 1 &(x))

(b) if 3 <1, e>, then ko(p, g * <j>)

where ﬂp(c * <j, e>) = GN(&(x))

(c) if 3j = <2, e>, then ko(p, g * <j>)

GN (dy) (3z) K (p, v, x, 2) & ¥(z) & &(y, e)) .

ko is evidently partial recursive. By the Recursion Theorem
there is an f such that Gf = )\xko(f, x). It remains to show that
we can indeed take k = Ax ﬁf(x). We define a new Y : x(y, n) =

X(£, Y, n). That is,

x(y, n) = GN(&(n)) if k(O * <y>)= GN(&(x))

divergent otherwise .

Then we define a formula X of rank O such that X(y, n) =

m <+ FK(;I ;, -I'H)-

If j =<0, e, J, =W, and W, ={x| k g%, e} and
k(o * <j>) = GN(&(x, e)) .
If =<1, e>, Jj = Ee and k(0 * <j>) is the godel number

of the negation of the formula &(x) whose godel number is
k(0 * <j, e>), and by the induction hypothesis we know Iq = {x |
EF&x)}.

If j=<2,e> 1let 2(x) = (Qy)Qz) Ky, x, 2z) & ¥(z) & §(y, e)),

where Z(x) is the formula with godel number k(0 * <j>). We must
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show 2{x) is such that Jj = {x I ‘= z(x) }.

Ezm < |- @G @2)(Xty, n, 20 & ¥z2) & 8(y, e))
+«> (Jy) (Qz) (there exists a prenex formula .&Hx)
with just x free whose godel number is z =
k(@ * <j, y>) and [ &n) and y € W)
«— (Ay) (y € W,&n € Jy) by the induction hypothesis

<+ n € J, since J, = Uy J.

#(z) insures that 2Z(x) has the appropriate ordinal rank. H

PROPOSITION 15

M 1includes the class of hyperarithmetical sets.

Proof: If i = <0, e>, then Ji

WeE 7/{0.

we and we know that

i = < > J >J .
If i 1, e>, then Ji Je apd JeE ma JeE 77(a

If i =<2, e, then J. U J. when J €M
1 X X

x&w

e
for each x € We, we apply Proposition 15 with Jj = i and get a
ranked formula J(x) such that Ji = {n | |=a J(;)} for some Q.

so J, € M, , i.e., J €N I

COROLLARY 16. M = the class of hyperarithmetical sets.

Proof: This follows immediately from Proposition 12 (and the

Characterization Theorem) and Proposition 16. H
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CHAPTER V

THE RELATIVIZED THEORY

This final chapter presents a relativization of the results of
previous chapters and will provide a clearer relationship between
this thesis and [G]. As these results are not central to this thesis,

a more loose approach is taken to definitions and proofs.

5.1 BASIC ELEMENTS OF RELATIVIZATION

Let us fix X as a set of natural numbers. In the Introduction,
we defined the notions of a function partial recursive in X and a
relation recursive in X. Relative recursiveness is further discussed

in [R., 89.2]. We continue with more definitions.

X X . .
1. Wn = range ¢§, where <($n>> is an enumeration of the
unary functions partial recursive in X. The sets Wi are called

the sets recursively enumerable in X.

2. A set A 1is recursive in X if there is a function £

recursive ih X such that x € A=+ f(x) = 0 and x £ A -+ £f(x) = 1.

3. A relation P is arithmetical in X if it is the

result of prefixing a relation recursive in X with a finite number

of number quantifiers.

4. A set P is Hi in X if there is a relation S

recursive in X such that x € P « (V£f) (3y)S(f, x, y) for unary

functions f.

5. A set P is Ai in X if P and P are Hi in X.
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It is somewhat more difficult to relativize the notion of a

hyperarithmetical set.

First we define H, X-indices.

(a) For all e, <0, e> is an H, X-index.

(b) If e is an H, X-index, then <1, e> is an H, X-index.
X . . .

(c) If each n € We is an H, X-index, then <2, e> 1is an

H, X-index.

Then we define the sets hyperarithmetic in X as follows:

i = < > = wx
(a) If i 0, e> , then J.,X
i =< > =
(b) If i 1, e> , then J.’X J X
i = < > = wx
(c) If i 2, e> , then J.'X UJf,x , f € .

By [Sh., §7.10] we are assured that a set is Ai in X if and

only if it is hyperarithmetical in X (that is, by the relativized

Characterization Theorem).

5.2 RELATIVIZATION OF PREVIQUS RESULTS

Let us define the notion of an ordinal & recursive in X:

(1) o is finite
or
(2) there exists a relation S(x, y) recursive in X such
that S well-orders N and such that o = the order type of <N, SD.
We let wl be the least non-recursive ordinal. In [R., §11.7,

Cor. XVI] it is noted that the recursive ordinals form a denumerable

initial segment of ordinals, so W, exists and is unique. Similarly,

1
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X |, . ) . .
wl is defined as the least ordinal not recursive in X.
Having described relativized ordinals, we can now meaningfully
detail relativized notations. It is simple to copy the definitions
X X
of O and Gl to create the sets @& and @&, , and the
relation RX (or < X ). RX is an analogue of R; thus RX is
64
1

recursively enumerable in X and we can effectively enumerate,

relative to X, {y [ Y < x} uniformly in x. If a € G)](_ then

RX

]alx is the ordinal corresponding to a, by definition. Without

loss of generality we may assume O £ O)l( r 1 € GX , and |1lx = 0,

Finally we define ORX, the ordinal rank relative to X, which is

specified in the same way as OR, except RX is used in place of R.
Clearly ORX is partial recursive in X. We can now properly define
X '=0. , truth relative to X,- and sets ma(x) . Let £(S) Dbe the
laﬁguage of Ramified Analysis augmented with the set constant symbol S.
S participates in the construction of formulas in the same way as set
variables, but cannot be quantified. The defintions of OR and ORX
"ignore" the presence of $§ in a formula, so it is easy to modify our
definition of [, to X |=a . First we define (noting that X is a
fixed set) X |= 0 n € S «+ n € X. Then, in general for &(x) a
prenex formula of #£(S) with just x free and ORX(%(x)) = O,

X FO &(n) means &(n) is true as a statement about integers and
membership in X. Suppose we have defined X FB for all B < a

and have defined X Fa,& for all prenex sentences which have "smaller"
ordinal triples than J, where J is a prenex sentence of £(S)

such that ORX(J) =__ a, for Ialx =a , then X FaJ if and only

RX

if one of the following five clauses holds:
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X

2. 7 = 3@x)&(x) & ORX(&x)) Spy @ & X |=0t &(n) for some n € N
3. J = (¥x)&(x) & ORX(&(x)) =gy @ & X |=0L &(n) for all n € N
4. 7 = be),g(xb) & ORX(.&(Xb)) SRX a & RX(b, a) & for some

prenex formula A (x), with just x free and ORX¥(x)) <rx b,
X |=a PNF(Z(R ¥ (x)))
b b b
5. 7= (¥X)&(X") & ORW(X))) =, a & ORX(b, a) & for all
prenex formulas A(x) with just x free and ORX® (x)) <rx b,
X |=Ol PNF(&(R A(x))).

Then the following formulation for the ma(x) 's 1is evident:

mlal (x) = {u I there exists a prenex formula g(x) of £(S)
with just x free such that ORX(&(x)) SRX a and U =
{x | x l=|a| (&(x) }} .
X
Let us proceed through the results of Chapters III and IV. Define
Ta(X) = {aN(J) | 7 is a prenex formula with no free variables &

ORX(J ) < a & X |=aJ}, where q = ]alx; Ta is the truth set

for q relative to X.
PROPOSITION 17

(i) Ta(X) £ Wla(X).
(ii) U € 7/(0 (X) « U is arithmetical in X.
(iii) U ¢ ma+1(X) ++ U 1is arithmetical in Ta(x) .

(iv) Ta(X) emwl(x).

These proofs are direct relativizations of previous results;

however, the "set of true quantifier-free sentences” is now those 7
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of £(S) such that XFOJ .

PROPOSITION 18

@ T® =UT, a€0d isaset ni in X.
X

®) Let M0 = UM, @), ac¢ 0%, Then if s €MX), s
X

1°

1
is a set Hl in X.

PROPOSITION 19

T (X) is a set Zl in X.
(s 1

This completes the relativization of Chapter III's results;
Chapter IV is almost as simple. We use H, X-indices, the sets 31
are now recursively enumerable in X, and each G(i) | is an ordinal
recursive in X. Problems arise with the analogues to Lemma 13 and
Proposition 14, which use the Recursion Theofem. The formulation of
the Recursion Theorem used in this thesis is [R., §11.2, Thm. I] ,
and by inspection of the proof there the relativized Recursion Theorem

can be proven. Its statement is

"Let f be any function recursive in X. Then
there exists an n such that ¢X = qu "
n f(n) ~

Then the analogue of Corollary 16 states that #(X) is exactly

the class of sets hyperarithmetical in X.

5.3 RESTRICTED RELATIVIZATION

In this last section of the thesis we will assume that X is
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such that X = W

1 B Under this assumption we will show that a

partially relativized class, m&(x) , 1is equal to ma(x). To define
X |=& F, for JF € £(S), and WG(X) we copy the definitions of

X |=0!. J and My, (X) but with OR instead of ORX and Ol instead
of OX. our goal is then to show that M X) =MEX)  for all a <

1

wl' Assume U € Wza(x) and define a function f = {(a, 0) I af O};} U

{(a, v | a EO}i and b € Ol and ]alx = |b|}. 1t is clear that

f(O)f) = Ol' f(O;_() = {0} and f is order-preserving (since a <

B ++ R(a, b), for a, b € Ol and a < B RX(al, b') for al, bl €
X 1 1

Ol' where Ia] = Ia IX= o and lbl = Ib IX = B).

We employ f to map formulas in such a way that if J if a
formula which is proper ranked relative to O}; (i.e., all its super-
scripts are members of O};) then f£J4, the unique formula resulting
from the replacement of each superscript a in J by f£f(a), is a
formula proper ranked relative to Ol. Thus we need only show that if
U= {x I X |=0!. F(x)} then U= {x I X Fa £(F(x))}; we will prove this

by induction.

When o = 0 we have X I=a<7 — X F& fd since F=£fJ (as T

has no set variables). For d > 0 we need an "inverse" function for

f. Define g = {(a, 0) I af@l}U{(a, b) | aéol, bEO}; and

X

la] = 'blx}- Then g(0,) = 01, g(—5I) = {0} and g is order-

preserving, and a € Ol -+ f(g(a)) = a and b € O); -+ g(f(b)) = b.

And, if all the superscripts of J* are in Ol' then we have that

g7 * 1is a proper ranked formula relative to Ox. The following note
1

on substitution is important: f£S(RA*(x)) = £(HR qW*(x)))),
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in other words the result of substituting into a transformed formula
is the same as transforming a formula into which a reverse-transformed
formula has been substituted; this is easy to verify mentally. Our

induction hypothesis is that for any formula J where TRPX( .72)

2

(the greatest ordinal triple, relative to X, of .72) is less than
TRPX(<Z ), then X |=a-72 > X |=c*! £ J,. Let ¥*(x) be any proper

prenex formula with just x free such that OR(¥(x)) ER a. Then

clause 4 (of the definition of X F&) states that X l=a I >
X |=a (% g®&*(x))), and the induction hypothesis yicids

X |=c’; F(MX g@* (;c-)))) . But, by our note on substitutions, chis is

Xf(b)

Xkt £HR ¥*(0)) and thus X k2 £7, since £7 = (v ) £ X0).

The other clauses of the definition of X I=a are similarly simple
to prove and, in fact the whole proof may be obviously modified to
show that X |=& I+ X l=a g(JF), and we immediately obtain ma(x) =
m&(x) for all a < w (7)& has no meaning for a =2 w.).

1 1

Define 7M*(X) = Um&(x) r G < W We can summarize our results

as follows:

m x) al<le ma () on.l<Jml M )

1
< wama(x) mx) = A1),

Oty

the set of sets Ai in X .

X _ - _ ' .
Note that w] = wy osl<Ju) W(a(x) = U x My X), since T (X) £ (X).
1 G<U)l

and Ta(x) EW(OH_l(X).
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CONCLUSION: We have obtained our main goal, that of showing that the
hyperarithmetical sets have a formulation in the language of Ramified
Analysis, a result that is almost as surprising as the Characterization
Theorem. The last chapter relates this thesis to [G], since the sets

Wh(x) referred to in [G] are in fact the sets ME(X) in this thesis.
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