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ABSTRACT 

This t he s i s  shows the  equivalence of the  hyperarithmetical s e t s  

and the  t r u t h  s e t s  defined i n  a spec ia l  language, t he  language of 

Ramified Analysis. In  the  Introduction, t he  basic  re levant  notions, 

such a s  formulas, recurs iv i ty ,  and ordinals ,  a r e  discucsed. Chapter I 

covers recursive ordinals  and 8, a s e t  of notations f o r  recursive 

ordinals .  In  Chapter 11, we apply knowledge of recursive ordinals ,  

notat ions ,  and the  language of Ramified Analysis t o  the  de f in i t i on  

of o rd ina l  rank, va l i d i t y ,  and s e t s  , which w i l l  be shown i n  the 

l a s t  two chapters t o  contain precisely  the  hyperarithmetical s e t s .  

The s e t s  i n  each % a re  reduced, i n  Chapter 111, t o  t r u t h  s e t s  
T~ 

which a r e  then shown t o  be hyperarithmetical. The converse is  shown 

i n  Chapter I V ,  and depends upon the  Recursion Theorem. Final ly ,  

Chapter V provides a f u l l  and a p a r t i a l  r e l a t i v i za t i on  of the pre- 

ceding r e su l t s .  
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INTRODUCTION 

The purpose of t h i s  paper is  t o  characterize the hyperarithmetical 

s e t s  i n  terms of the language of Ramified Analysis. The Language of 

Ramified Analysis has the following symbols: 

(a) variables - x, y,  z ,  ... 
xa, ya, za, ... (a c N) 

X ,  Y ,  z ,  ... 
f f  sf hf  j, k t  ... 

Variables may be subscripted, primed, o r  modified i n  any reason- 

able way f o r  notational convenience. However, there a re  only a 

denumerable number of variables. Capital  l e t t e r  variables a re  called 

s e t  variables;  lower case variables a re  cal led number variables. 

(b) predicate symbols - pi fo r  i € {Of 1, ... 1. 

Among these symbols are  , =, and <. It  is implici t  t ha t  en t r ies  

i n  predicate symbols a re  res t r ic ted  to  cer tain so r t s  of terms; for  

example, x € X is allowed, but X € x is not. 

(c) function syrnGols - 
'i 

fo r  i € 0 1 . } Among these 

symbols a re  + and . 0-ary function symbols a re  cal led constants 

- - - 
and we expl ic i t ly  r e fe r  t o  them as  0 1 2 ,  . . When x i s  a 

- 
natural  number, we write x for  the corresponding constant. 

(d) logical  symbols - -,! V ,  and 3 (and symbols definable i n  

terms of , , V and 3) and punctuation - (, ,) . 
The concept of inductive defini t ion is very useful. Generally, 

an inductive defini t ion of a s e t  S is  a collection of laws each of 

which s t a t e s  tha t  an object x is an element of S i f  x meets 



ce r t a in  c r i t e r i a .  Additionally, no object  may be an element of S 

unless it follows from the  laws t h a t  it is i n  S. I n  p rac t ice  the  

laws may be in te r re la ted .  For example, 

This cons t i tu tes  an inductive def in i t ion  of the  s e t  of non- 

negative i n t eg ra l  powers of 2. Later we w i l l  use t he  s t ruc ture  of 

inductive def in i t ions  a s  a base f o r  proof by induction, e i t h e r  on the  

na tura l  numbers o r  the  ordinals .  

We define terms and formulas by the  following inductive 

def in i t ions  : 

(i) a var iable  is  a term 

(ii) i f  ul, ... , u a r e  terms and f is  an n-ary function n 

symbol, then f (u l ,  ..., un) i s  a term. 

By (ii), a constant is a term. 

I f  p is an n-ary predicate  symbol and u . . . , u a r e  terms, n 

then p(ul, ..., un) i s  an atomic formula. 

The following four ru l e s  a r e  an inductive def in i t ion  of a formula: 

(i) an atomic formula i s  a formula. 

(ii) i f  u is a formula, then - , u  i s  a formula. 

(iii) i f  u and v a r e  formulas, then u V v i s  a formula. 

(iv) if u i s  a formula, and v a ( s e t  or number) var iable ,  

then 3v u is a formula. 

The concept of an ordinal  number is  fundamental t o  t h i s  t he s i s ;  
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our exposition here is  based on [su.,  CH. v]. Ordinal numbers (or  

ordinals)  have the foll.owing inductive def ini t ion:  

1.) 0,  the  empty s e t ,  is  an ordinal 

2.) i f  x  is  an ordinal so  is  x U {x} 

3 . )  i f  S  is  a  s e t  of ordinals ,  then U S 

( = {x I ( 3 ~ ) ( x  € B & B E s)}) is  an ordinal.  

Thus, the f i r s t  three ordinals  a r e  0  , {o} , {o, {o}}. 

A s e t  A is well-ordered by a  r e l a t i on  R (cal led a  well- -- 

ordering of A) i f  

W e  i n t e rp re t  "x is an R-least element of B" t o  mean "x € B & 

(Vy) (y € B -t ,R(yt XI ) " .  

By the  Axiclm of Choice [SU, Chapter 81 , the  above conditions a re  

equivalent t o  there  not ex is t ing  any i n f i n i t e  descending chains f o r  

R i n  A. By [SU. 5 3 . 2 ,  Thm. 621 these conditions a l so  suf f ice  t o  

insure  t h a t  R is asymmetric and t r a n s i t i v e  i n  A. 

For any two ordinals  a and 6 e i t h e r  a € 6 ,  a = B or  8 E a; 

and i f  6 is an ordinal  and a € then a is an ordinal.  We have 

the  following two important f a c t s  about ordinals  and well-orderings: 

(we s h a l l  henceforth say a < 6 when a € 6 ) :  

1. ) Each ordinal  is well-ordered by <. 

2.) [su., 5 7 . 4 ,  Thin. 811 Each well-ordering of a  s e t  

may be represented by an ordinal which we s h a l l  c a l l  the  order type of 
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the  well-ordering. 

We can s t a t e  2. ) m r e  c lear ly  with the help of two def ini t ions:  

Definition: < A ,  R > ,  where A is  a s e t  and R is a re la t ion ,  

is a simple order s t r u c t w e  i f  

Definition: <A, R >  i s  s imilar  t o  <B, S> i f  there  is  a function 

f such t h a t  

(1) f i s  one - one 

Then we may r e s t a t e  (2 )  as " I f  R well-orders A,  then there  

is a unique ordinal  a such t h a t  (A,  R > i s  s imilar  t o  <a ,  < > " . 
Our concept of induction may be extended t o  ordinals  [SU. , 5 7.11 . 

" I f ,  f o r  every ordinal  a I (V$) ($ < a -t $ ( 6 )  ) -t $ (a) , 

then f o r  every a, 4 (a) . " 
Using t h i s  " t r ans f in i t e  induction", o r  equivalent statements, and 

recursion schemas it is possible t o  define addition and multiplication 

of ordinals  and, indeed, qu i te  a number of other  operations analogous 

to those of ordinary arithmetic. For example, ordinal addit ion may be 

defined by the following recursion scheme: 

(i) (i) a + 0 = a 

(ii) a + S$ = s(a  + B )  



(iii) i f  B i s  a l i m i t  ordinal  

where sf! is  t h e  successor of B ,  and a l i m i t  ordinal  is  an ordinal ,  

f 0, which i s  not the  successor of any ordinal .  The successor 

operation is defined by SB = B U (6). Note t h a t  an i n f i n i t e  ordinal  

is siuiply one with an i n f i n i t e  number of elements. 

This t he s i s  i s  concerned with a pa r t i cu l a r  s o r t  of ordinal ,  the  

recursive ordinal .  Thus we need the  important notion of recurs ivi ty .  

We accept as bas ic  the  Turing machine character izat ion of recursive 

functions [ R ,  51.51. That is ,  a p a r t i a l  recursive function is  one 

which i s  defined by a l is t  of ins t ruc t ions  f o r  a Turing machine. When 

a p a r t i a l  recursive function i s  t o t a l  (i. e. , when the  Turing machine 

executes only a f i n i t e  number of s teps  when supplied with any integer  

argument) then we simply c a l l  the function recursive. 

Logicians a s s e r t  t h a t  there  is an i n t u i t i v e  concept of calcula- 

b i l i t y  of functions and have label led a connection between the  

i n t u i t i v e  concept and recursion,  ca l led  Church's Thesis. I n  e f f e c t ,  

Church's Thesis s t a t e s  t h a t  calculable,  o r  computable, functions a r e  

recursive,  and vice  versa. We w i l l  use t h i s  p r inc ip le ,  usually 

without reference,  t o  a s s e r t  t h a t  obviously computable functions a re  

indeed recursive. 

A r e l a t i on  P is recursive when there  is  a Turing machine T 

which w i l l  compute the  representing function of P. That is: 

P (x) c-+ T, when supplied with x ,  y ie lds  0. 

One can list a l l  the  possible s e t s  of ins t ruc t ions  f o r  unary 



Turing machines [ cf. R. , 5 1.81 . ~ h u s  we may l i s t  a l l  the  unary 

p a r t i a l  recursive functions,  which we s h a l l  c a l l  $. (i = 0, 1, ... 1 .  
1 

A common a l t e rna t ive  notation fo r  4 i is  i i l .  

We can a l so  l is t  the  ranges of the  p a r t i a l  recursive functions. 

Define Wx = range @x (or y c W * (30) ( $ x ( ~ )  = y) ) . The Wx ' s 
X 

a r e  ca l led  t he  recursively enumerable s e t s .  These comprise a natural  

c l a s s ,  a s  shown by [R., 5.2, Cor ~ ( b ) ]  : 

"There e x i s t  recursive functions f and g such t h a t  

range %(x) 
= domain @x 

and domain = range 
@g(x) @X. 

It is useful  t o  be able t o  e f fec t ive ly  code sequences of in tegers  

i n t o  s ing le  in tegers ,  and t o  be able t o  e f fec t ive ly  decode them. A 

simple example of such a coding i s  T (x, y) (found i n  [R. , 5 5.3 1 , 
2 

where r ( x ,  y )  = 1/2(x + Z X ~ + ~ ~ +  3 x + y ) .  r isknown t o  b e a  

one - one recursive map of N x N onto N. ( N  x N = ( (v, w) I v € N ,  

w € N). There a r e  two recursive functions, T and T which serve 
1 2' 

as  inverses t o  r : i . e. , r ( z , T 2  (0) ) = z .  More powerful coding 

is described i n  [ ~ h .  86.41. Suppose (al , . . . , an) i s  a sequence. 

Then there  i s  a function <> which has the  following two in te res t ing  

properties:  

(i) f o r  each f ixed n, <al, ..., ar) is a recursive 

function of al, ..., a . n 

(ii) < al, . . . , a > determines n and al, . . . , a v i a  
n n 

recursive functions. That is, there  a r e  two recursive functions f ( x )  

and g(x ,  y) such t h a t  i f  a = (al, ..., an) then f (a) = n and f o r  



1 5 i Z n 1  g(a ,  i) = a .  Wewrite A h ( a ) f o r f ( a )  and (a) fo r  
i i 

g (a ,  i). The de f in i t i on  of recursive r e l a t i ons  may be extended t o  

n-ary r e l a t i ons  e i t h e r  d i r ec t l y  or v i a  codings; [R.,  55.31 shows these 

two approaches t o  y ie ld  the  same c lass  of recursive re la t ions .  

Similar ly ,  a s e t  A is  recursive i f  there  is  a recursive function 

f such that 

and 

I n  o ther  words, f allows us t o  decide, f o r  any x, whether 

F ina l ly ,  we define reduc ib i l i ty  between se t s :  

A is  many - one reducible t o  B (A Sm B) 

i f  there  is  a recursive function f such t h a t  (Vx) (x E A tt f ( x )  € B ) .  

I n  t he  case where f is one - one, we say A i s  one - one reducible 

W e  may extend the  notion of recursive functions t o  "functions 

recursive i n  a s e t  X I  of  integers".  Several equivalent def in i t ions  

of r e l a t i v e  recursiveness are  given i n  [R. , 99.23. In tu i t i ve ly ,  f is  

recursive i n  X i f ,  i n  addit ion t o  the  usual components of a Turing 

machine, there  may a l so  be s teps  which "interrogate" X,  i .e .  , which 

inquire  i f  some in teger  is i n  X. A unary r e l a t i on  R i s  recursive 

i n  X i f  and only i f  there  is a recursive r e l a t i on  S such t h a t  

R ( a )  * S(a ,  X ) .  O r ,  (as i n  [R., •̃ 9.2]), R is recursive i n  X i f  

- 



and only i f  the  representing function f o r  R is recursive i n  X. 

Using the  concepts of recursiveness, o r  computability, and well- 

orderings we w i l l  develop some bas ic  proper t ies  of recursive ordinals  

and hyperarithmetical s e t s .  Then we w i l l  inductively def ine ,  f o r  each 

recursive ordinal  a , a l imited notion of va l i d i t y ,  J, f o r  a 

r e s t r i c t e d  s e t  of formulas i n  the Language of Ramified Analysis. 

Simultaneously, we w i l l  define s e t s  % = { s  1 S = { X  l l=a.&(a 
for  su i t ab l e  formulas J ) ,  Then the  main r e s u l t  of t h i s  t he s i s  can be 

s t a t e d  simply: 

"The c l a s s  o f  hyperarithmetical s e t s  (HYP) equals 

U f7& where a ranges over the  recursive ordinals ."  

I n  p rac t ice  we w i l l  consider a s e t  el which consis ts  of unique 

notations f o r  ordinals ;  t h a t  is ,  f o r  each recursive ordinal  a there  

is  a unique a € el and vice versa. Then we can wri te  the  main 

r e s u l t  a s  "HYP = 
ayel "a" 



CHAPTER I 

RECURSIVE ORDINALS AND ORDINAL NOTATIONS 

1.1 BASIC PROPERTIES OF RECURSIVE ORDINALS 

Definit ion: An ordinal  a is  a recursive ordinal  i f  

(i) a is f i n i t e  

o r  (ii) there e x i s t s  a recursive r e l a t i on  R(x, y) such t h a t  

R well-orders N and such t h a t  a = the  order type of < N ,  R>; 

t h a t  is, a i s  s imi la r  t o  < N ,  R >  . R is  cal led a recursive 

r e l a t i on  fo r  a. 

The following proposition indicates  some basic  f a c t s  about 

recursive ordinals.  

PROPOSITION I 

I ( a ) .  I f  a and 5 are  recursive ordinals ,  then a + B is a 

recursive ordinal.  

Proof: When both a and 6 are  f i n i t e ,  then a + B are  

f i n i t e  and thus recursive. 

When a is  f i n i t e  and B i s  not ,  a + B = 6 and thus a + B 

is recursive. 

Suppose a is not f i n i t e  and 6 is  f i n i t e .  We define R ' :  

where R is a recursive re la t ion  f o r  a ,  and n is  the  natural  

number corresponding t o  B. 

We may now define S: 



v [x  L n & y < nl .  

S is  recursive,  since R ,  <, and 5 a re  recursive. S well- 

orders 'N: For A f g ,  i f  A { , . - } then A i s  - 
f i n i t e  and of course has a < - f i r s t  member. Otherwise, 

A n {X I x I n) has an R-f i rs t  member which is a l so  c lear ly  an 

S - f i r s t  member f o r  A. And a + B = order type of <N, S >  , by 

inspection . 
Suppose nei ther  a nor @ i s  f i n i t e .  Let R1 be a recursive 

r e l a t i on  f o r  a and R a recursive r e l a t i on  fo r  B.  We define 
2 

S(x, y):  

S is recursive s ince R1 and R2 a re  recursive and our 

quant i f ie rs  a r e  impl ic i t ly  bounded. For example, (32) (x = 22 )  

may be replaced by ( ~ Z ) ~ % ( X  = 2 2 ) .  S well-orders N; i f  A # 2, 

then e i t h e r  A c {x 1 (32) (x = 22 + 1) ) and A has an R - f i r s t  - 2 

member which must a l so  be an S - f i r s t  member, o r  otherwise A n 

{x 1 (32) (X = 22) ) has an R - f i r s t  member which must a l so  be an 
1 

S- f i r s t  member of A. Again a + 6 = order type of S. I I 

I ( b ) .  I f  a and B a re  recursive ordinals ,  then a B i s  

a recursive ordinal.  
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Proof: I f  a and 0 a r e  f i n i t e ,  then a f3 i s  a l so  f i n i t e  - 
and hence recursive. 

I f  a i s  f i n i t e  and f3 is  not then a ' f3 = 6. Hence, a ' 6 

is recursive.  

Suppose 6 is  f i n i t e  and a i s  not. Let n be the  in teger  

corresponding t o  6. In tu i t i ve ly  we separate N i n t o  n c lasses  

of in tegers  according t o  t h e i r  remainder upon divis ion by n. To e f f e c t  

t h i s ,  we define S(x,  y ) :  

where R i s  a recursive r e l a t i o n  f o r  a. 

S is  recursive s ince < and divis ion a r e  recursive,  and s ince 

the  quan t i f i e r s  a r e  impl ic i t ly  bounded. Let Si = {x I (3k) (x = kn + i)}. 
n- 1 

Clearly N = U Si, and i < j + ( x E S i  & y € S . S X ,  y .  I f  i=O j 

A - c N ,  e i t h e r  A n Sl # pl so  t h a t  A has an S - f i r s t  element i n  

S1, o r  i f  A n S, = pl, then we t r y  again with S2, e tc .  I n  any 

case it is sure  t h a t  A n S .  # pl f o r  some i < n. Thus S must well- 
1 

order N. 

Suppose both a and 6 a re  i n f i n i t e .  When R1 is  a recursive 

r e l a t i on  f o r  a and R is a recursive r e l a t i o n  f o r  6 we define 
2 

S(x, y ) :  
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Let Sn = {x I b x = n b .  We know N = U Snl 

n =  0. 1, ... and m c  n +  (xm € Sm & xn € Sn & Rl(m, n) .+. S(xm, xn ) ) .  

For any A 5 N there  is  an R - l ea s t  n such t h a t  A r) S # pl, and 
1 n 

A n Sn has an R - l e a s t  element which i s  an S-least  element f o r  A. 
2 

Thus S well-orders N ,  and a 6 has the  order type of < N ,  S). 

I ( c ) .  I f  f3 is  a recursive ordinal  then any ordinal  a l e s s  

than B i s  recursive. 

Proof: I f  a i s  f i n i t e ,  it i s  c lear ly  recursive. Suppose a - 
and @ a re  i n f i n i t e  a c 6 and R i s  t h e  recursive r e l a t i on  

f o r  8.  Then a c B means tLat  there  i s  an n such t h a t  a is  

s imi l a r  t o  @ r e s t r i c t e d  t o  n; t h a t  i s ,  {m ( R(m,  n) ). This s e t  

is  c lear ly  recursively enumerable. Thus it is the range of a recur- 

s ive  function f which, a s  we remarked i n  the  Introduction,  we may 

choose t o  be one - one. Then we define S(x ,  y ) :  

Clearly S i s  recursive,  and must well-order N s ince R does; 

S has the  order type of a . I I 
Finai ly  we a r r i ve  a t  the  most in t e r e s t i ng  property of recursive 

ordinals .  

We need two notions t o  properly s t a t e  I ( d ) .  F i r s t ,  we need 

the  Kleene T-predicate [Sh. , 97.41 ; i n  pa r t i cu l a r ,  t he  f a c t  t h a t  

there  is a recursive r e l a t i o n  T such t h a t  given F, 3f 3 F(x,  y) = 
2 

(2) where z is  the  l e a s t  such t h a t  T2 ( f ,  x,  y ,  z)  holds. We 

say,  i n  this case, t h a t  f is  an index f o r  F. 

W e  a l so  need the  notion of the supremum of a s e t  
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of ordinals .  The supremum of a s e t  of o rd ina l s  is ,  naively,  the l e a s t  

ordinal  g rea te r  than a l l  the  ordinals  i n  t he  given s e t .  For ce r ta in  

s e t s  of recursive ordinals  we can show t h a t  the  supremum e x i s t s  and 

is  a l so  a recursive ordinal .  

I ( d ) .  I f  aO, al, ..., are  recursive ordinals  corresponding 

t o  recurs ively  enumerable r e l a t i ons  R 
0' R1' 

... where Rn(x, y) - 
(32) TZ ( f  (n) , x, y ,  z )  f o r  some recursive f ,  then supremum 

{an I n € N] is  a recursive ordinal .  

Proof: By Prop. I ( c ) ,  it su f f i ce s  t o  - 
recursive ordinal  8 such t h a t  f o r  a l l  n, 

S (n, x,  y) * R (x, y) . S is a recursively 
n 

s ince,  given n, we can e f fec t ive ly  compute 

show t h a t  there  i s  a 

a 5 @. Define 
n 

enumerable r e l a t i on  

f (n) , and hence 

determine the  (recursively enumerable) r e l a t i on  . We now define Rn 

S1 (u, v) : 

S1(uI V) * { R <  m v (n = m & S(n ,  x, y)}  

where u = ~ ( n ,  x) and v = T ( m ,  y ) .  

S1 is recursively enumerable and is  a well-ordering of N s ince 

it breaks N i n t o  segments which a r e  well-ordered with respect  t o  each 

o ther  and each of which is well-ordered s imi la r  t o  the  well-ordering 

of some of the R 's. I n  pa r t i cu l a r ,  f o r  each n we have an order- n 

preserving in j ec t i on  of (N, R > i n t o  (N,  S1> - namely qn(x) = n 

~ ( n ,  x) .  NOW, a recurs ively  enumerable well-ordering of N must be 

a recurs ive well-ordering. For it must be t r u e  t h a t  e i t h e r  Sl(x, y) 

o r  S1 (y I x) i f  x # y , and not both ; SO by simultaneously computing 

S1 (X , y )  and S1 (y , x) we w i l l  f ind which one holds, and hence 



compute whether Sl(x, y) holds o r  not. Then i f  S1 is  the  

recursive r e l a t i on  f o r  some ordinal  8 ,  we have a 5 B ,  as  
n 

required. I I 
An apparently stronger def in i t ion  of recursive ordinal  i s  

possible : 

Definit ion 2: An ordinal  a is  a recursive ordinal  i f  

(i) a i s  f i n i t e  

o r  (ii) there  e x i s t s  a recursive r e l a t i on  R(x, y) such t h a t  

R well-orders some r e c u s i v e l y  enumerable subset  S of N and 

such t h a t  ct = the order type of <s, R I S >, where R I S i s  the  

r e s t r i c t i o n  of R t o  S. 

I t  is  c l ea r  t h a t  i f  an ordinal  is  recurs ive by de f in i t i on  1 

then it is recursive by def in i t ion  2. However, the  converse impli- 

cat ion a l so  holds. Since S i s  recursively enumerable, there  is  a 

one - one recursive function such t h a t  S = f ( N ) .  Define R' (x, y) : 

Clearly R'  is recursive and well-orders N and < N ,  Rn> S (S, R I S) . 
Thus a is recursive by de f in i t i on  1. 

1.2 NOTATIONS FOR FtECURSIVE ORDINALS 

It is necessary t o  have a system t o  r e f e r  t o  recursive ordinals .  

The motivation f o r  t h i s  i s  discussed i n  d e t a i l  i n  [R. ,  511.71. We 

inductively define a s e t  0 ( the  s e t  of o rd ina l  notat ions)  and a 

r e l a t i on  on 8 cal led c O :  
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(i) 0 receives notation 1 

(ii) assume a l l  ordinals  c Y have received t h e i r  notations. 

Then 

(a) i f  y = B + 1, then i f  x is any notation f o r  6 ,  

2X is a notat ion fo r  y ,  and we say t h a t  

(b) i f  y is  a l i m i t  o rd ina l ,  then i f  4 (0) , 4 (1) , ... 
Y Y 

a re  notations f o r  an increasing sequence of ordinals  with l i m i t  y, 

and o y ( i )  s (9QY( j )  f o r  i c  j ,  then 3 5' is  a n o t a t i o n  f o r  y ,  

and z % 3 -5' whenever z 3 $y (m) f o r  some m. 

8 is thus  a p a r t i a l l y  ordered s e t  with ordering <a . Each 

i n f i n i t e  ordinal  may have denumerably many notations. I f  x € 8, 

then we say lxls i s  the  ordinal  f o r  which x is a notation.  8 

has several  i n t e r e s t i ng  proper t ies .  The following two a r e  among the  

most s ign i f ican t .  

(i) {x I x < y) i s  uniformly recursively enumerable. 8 

That i s ,  there  is a recurs ive f  such t h a t  

(ii) there  e x i s t s  a binary recurs ive function +o such t h a t  

fo r  a l l  x and y i n  8 



1 
1.3 Ill SETS 

Both 0 and O1 (a spec ia l  s e t  t o  be defined i n  the  next 

sect ion)  belong t o  a  spec ia l  c l a s s  of s e t s  known a s  t he  1 
111 se t s .  

I 
It  is des i rab le  t o  examine t he  def in i t ion  of s e t s  and a few of 

1 

t h e i r  proper t ies .  

Definit ion: An ar i thmet ical  re la t ion  i s  the  r e s u l t  of pre- 

f ix ing  a  recursive r e l a t i on  by a  f i n i t e  nmber of number quant i f ie r s .  

Simple examples are:  

(357) (y > x) 

1 
Definit ion 1: A s e t  P is i f  there  is  a  recurs ive r e l a t i on  

1 

S such t h a t  x  € P ct (Vf) (3y)S( f ,  x ,  y) , f o r  unary functions f .  

A n  a l t e rna t ive  def in i t ion  i s  the  following : 

Definit ion 2: A s e t  P is  f i f  there  i s  an ar i thmet ical  

r e l a t i on  S  such t h a t  x € P ct (Vf)S(f ,  x) , f o r  unary functions f .  

1 
Assume P is El by def in i t ion  1. Define S ' ( f ,  x)  u 

1 ( 3 y ) s ( f I  x ,  y ) .  Then S' i s  ar i thmet ical .  so P is  Ill  by 

def in i t ion  2. 

1 
Conversely, assume P is Ill by def in i t ion  2. From [Sh. , 57.81 

we have the  following equivalences: 



In  E2 and E3, ( f )  = Ay[ f (y) ) ,] . (A is Church's Lambda 

Notation [ Sh. , 97.31 ) . E2 appears more obvious when negated: 

There must be an ari thmetic S '  and a recursive S" such t h a t  

1 
X 6 P *  (Wf) S t ( • ’ ,  x) s ince P is  111 

by t he  de f in i t i on  of ar i thmet ical  re la t ions .  
Qi 

may be e i t h e r  3 

By E l  we convert a l l  the  (Vx.) 's  t o  (Vfi) 's.  By E2 we move 
1 

a l l  the  (Yfi) 'S t o  the l e f t  of a l l  the (3x. ) ' s  and we contract  them 
1 

with (Wf) by E3. Final ly  we contract  a l l  t he  ( 3 ~ ~ ) ' s  together by 

E4. I f  S '  contains no e x i s t e n t i a l  quan t i f i e r s  then we i n s e r t  a 

dummy quant i f ie r .  We then ge t  x € P * (Wf) (3y) S"( ...) . The 

contents of the  brackets i s  some composition of recursive functions on 

each entry.  Thus, s ince the  composition of computable functions is 

computable, we know there  is  a recursive r e l a t i o n  S f '  ' such t h a t  

1 
Thus, t h e  two def in i t ions  of ll s e t  tu rn  ou t  t o  be equivalent. 

1 

W e  can imita te  t he  above def in i t ions  of ar i thmet ical  r e l a t i ons  

1 
and Dl s e t s  by using set variables.  A r e s u l t  s imi la r  t o  t h e  above 

c l ea r ly  holds for  the  two def in i t ions  of 
1 

TI1 using s e t  variables.  

W e  wish t o  show t h a t  the  def in i t ions  using s e t  and function variables 

are equivalent. 



Definition: GRAPH f =' { z  I z = <x, y> & f (x) = y} . 

PROPOSITION 2 

Let S ( f ,  X) be an ari thmetical  re la t ion .  Then there i s  an 

ar i thmetical  r e l a t i on  S ' ( X ,  x) such t h a t  

Proof: Suppose p is an n-ary predicate  symbol, and 

t ,  tlr ..., tn are  terms and t h a t  p (tl I . . . , t ) occurs i n  S n 

and moreover t h a t  
ti 

= fit). F i r s t  replace p (t . . . , tn) by 
1 ' 

(32) (z = f (t) & p ( t l ,  ... , ti-l, Z I ti+l I , tn) Then i n  t h i s  

l a s t  expression, replace z = f (t) by <t, z> € X t o  g e t  

(32) (<t. z> € X & p ( t l ,  ..., ti-ll Z ,  ti+l, .--,  tn) ) . A s  a simple 

example, f ( y )  = z is transformed t o  <y, z> € X. Of course, a t  each 

s tage i n  the elimination of f it is necessary t o  introduce d i s t i n c t  

variables.  Rut then it is c lear  t h a t  i f  X = GRAPH f then 

(Vx)(S(fr x) - - S 1 ( X r  X I ) .  ( 1  
Suppose we have a 

1 
re l a t i on  (Vf) S (f , x) . Then we have 

(1) (Vf)S(f,  x) * (VX) (X is  a g r a p h + S 1 ( X ,  x ) )  

where S' is  the r e l a t i on  described i n  Prop. 2. 

So "X i s  a graph" 

Thus the r i gh t  

Z = <x, y> & [<x, w> € X + w = y]) 

is  ari thmetical .  

1 
hand s ide  of (1) is a Ill re la t ion .  
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1 
Conversely, suppose ( W X )  s (x,  x) is nl v i a  t he  new def ini t ion.  

Replace a l l  occurrences of y € x by (12) (y = f (2) t o  g e t  a new 

1 re l a t i on  S ' ( f ,  x) such t h a t  ( V f ) S 8 ( f ,  x) is ill and (Wf)S1(f,  x) - 
1 

( ~ x ) S ( X ,  x ) .  Thus we see t h a t  the def in i t ions  of s e t s  i n  terms 
1 

of functions and s e t s  a r e  equivalent. 

PROPOSITION 3 

I f  A is many - one reducible t o  B and B is 
1 

ill, then A 

Proof: Let f be a recursive function such t h a t  x € A - 
f (x) € B. Since B is  ll; there  i s  a recursive r e l a t i on  S such 

t h a t  x €  B- (Wg)(3y)s(gI y ,  x ) .  Then c l ea r ly ,  i f  S ' ( g ,  y ,  x) - 
S ( ~ I  Y I f (x) ) , S ' i s  recursive and x € A- (Vg) (3y) S '  (g,  y ,  x) . 
~ h u s  A is il:. I I 

W e  can give an example of a IT: - set .  
I 

PROPOSITION 4 

Define W = {e 1 Xxy ( 3 2 ) ~ ~  (e ,  x,  

1 
N}. W is a 5 s e t .  

Proof: 

y ,  z)  is  a well-ordering of 

(non-re f l ex iv i  t y  ) 

(asymmetry and t o t a l i t y )  



(no i n f i n i t e  descending sequences) 

A s  f does not appear i n  the f i r s t  three clauses, we can add 

the dummy quant i f ie r  Wf t o  each of them. Then since fo r  relat ions 

(Qf)pl ( f ,  e )  & (Vf)p2 ( f ,  el , we see t h a t  'N is  a 111 se t .  I I 1 

I n  f a c t  i n  [R.,  ex. 11 - 611 it is  noted t h a t  W i s  one - one 

reducible t o  Q and 8 is one - one reducible t o  W. 

1.4 UNIQUE ORDINAL NOTATIONS 

The s e t  O is called "the s e t  of ordinal notations'' since t o  

each ordinal we may assign a member of 8. There may be many such 

members fo r  each ordinal;  i n  f ac t ,  0 is  "designed" so t h a t  each 

non-finite ordinal  w i l l  receive an i n f i n i t e  number of notations, many 

of which w i l l  be < o  -incomparable. It is  possible t o  define a path 

through 0 which we s h a l l  c a l l  8 the s e t  of unique notations 
1' 

f o r  ordinals. That is ,  each ordinal can be uniquely associated with 

a member of 01, and vice versa. Dl shares some of the properties 

of 0 ; i n  par t icu lar  (y is a II' se t .  Also: 
1 1 

PROPOSITION 5 

There is a recursively enumerable re la t ion  R(x, y) such tha t  

R 1 o1 is a well-ordering of 8 similar  t o  < {a : a is a recursive 
1 

ordinal}, c > and such tha t  
x 6 4 and R ( y  , x) + y C el. 



Proof: This is  noted i n  [G] a .nd shown i n  1~21. In  [G] th 

21 

.e term 

"constructive ordinal"  is used. [R., 911.81 shows t h a t  constructive 

ord ina l s  and recursive ordinals  a re  the  same. 

Note 1. Since R is  a recursively enumerable r e l a t i on ,  we can 

e f fec t ive ly  enumerate { y  I y .cR x). 

Note 2. I f  a € 01, then 1 a 1 is  the ordinal  corresponding t o  

a, by def in i t ion .  

Note 3 .  Without loss  of general i ty ,  we can assume 

C i )  OPcrt, 

(ii) 1 €el and 111 = 0 . 
Note 4. In  a l l  fu r ther  discussions any reference t o  a r e l a t i on  

R w i l l  mean the  R of Proposition 5 ,  and f o r  typographical conven- 

ience we w i l l  replace 
< ~ l  

by <R and 5 by 3. 
Ol 



CHAPTER I1 

ORDINAL RANK AND V A L I D I T Y  

A s  our language 2 has only denumerably many symbols, we can 

associate  a unique prime in teger  with each symbol, and vice versa. 

Assume t h i s  i s  done i n  an e f f ec t i ve  manner; t h a t  is, given any symbol, 

we can compute the  corresponding prime, and given any prime we can 

e f fec t ive ly  determine the  corresponding symbol. 

We can assign,  t o  each sequence of symbols of 2 ,  a unique 

g6del number . Each symbol sequence is  mapped t o  an in teger  

kl. pk2 ... k 2 
n 

P n where 
'n 

is  t h e  nth prime and kn i s  the  prime 

corresponding t o  the nth symbol i n  the  sequence. Also, s ince each 

in teger  has a unique decomposition i n t o  primes, we have an evident 

map from the  integers  onto the  s e t  of sequences of symbols. I f  J' 

i s  a formula we define GN(J)  t o  be the gb'del number f o r  the  symbol 

sequence 3 . 

Definit ions : 

(i) A set var iable  has rank b i f  it is a s e t  var iable  w i t h  

superscr ipt  b. 

(ii) A s e t  var iable  is  unranked i f  it is an unsuperscripted 

set  variable.  

(iii) A var iable  is  a proper var iable  i f  it is a number 

var iable ,  o r  has rank b f o r  some b € Ol. 



( iv )  I f  a l l  the  s e t  variables of 3 are  ranked, then J 

is a ranked formula. I f  a l l  the  variables of 7 are  proper, then 

3 i s  a 

We 

ordinal  

O R b )  

then 

proper formula. 

can define a function OR(n), which is  loosely termed the  

rank of formulas. The def in i t ion  is  by cases. 

(I) I f  n i s  not the  gb'del number of a formula, then 

is not defined. 

(11) Suppose n is  the  ggdel number of a formula 3 ; 

(1) I f  3 has unranked s e t  var iables ,  then OR(n) 

i s  not defined. 

( 2 )  I f  3 has no s e t  var iab les ,  OR(n) = 0. 

(3) I f  3 has only one superscr ipt ,  a ,  then 

i f  a is the  superscr ipt  only of f r e e  var iables ,  

a 
OR(n) = a; e l s e  OR(n) = 2 . 

(4) If  7 has A = {al, . .. , a,}, m > 1, as  

d i s t i n c t  superscr ipts ,  we perform the  following 

procedure. 

A t  each s tage i n  t h e  procedure we perform one computation 

i n  the  calculat ion of R(a a .  f o r  a l l  i, j ,  1 ,  j 5 .  I f ,  
i t  1 

a t  any s tage,  there  is  some permutation of A, {bl, ..., bm} such 

t h a t  R(bi, bi+l ) holds f o r  a l l  i, 1 5 i c m, we say t h a t  "A has 

an apparent R-linear ordering with bm a s  the  g rea t e s t  element". 

If bm is the  superscr ipt  of f r ee  var iables  only, then OR(n) = bm; 
b m 

e l s e  OR(n) = 2 . Of course, i f  we f ind  no such permutation a t  any 



s tage,  OR(n) w i l l  remain undefined. 

There a r e  several  po in t s  t o  note about the  above def in i t ion .  

F i r s t ,  s ince by Proposition 5, R is recursively enumerable, and 

permutation generation is  e f fec t ive ,  OR is a p a r t i a l  recursive 

function. Second, if 3 i s  a proper ranked formula then OR (3) is 

always defined (here OR@) is a convenient abbreviation f o r  "OR(n) 

where n = GN (7) " )  s ince R I Ol is  a well-ordering of 8 But 
1 ' 

the  converse does not hold. Suppose c j! Dl ; "X € xCtl has rank c 

C and by case (11) (3 )  of the  def in i t ion  of OR, OR(x € X ) = c. 

Let la1 be t he  ordinal  associated with a. We reserve t h e  

r i g h t  t o  say ORQ) = 1 a1 ins tead of ORQ) = a whenever t h i s  i s  

convenient; t h a t  is  usually i n  cases where we a re  given an ordinal  a. 

PROPOSITION 6 

There i s  an  e f f ec t i ve  enumeration of a l l  formulas of ordinal  

rank l a l ,  uniformly i n  a. 

Proof. The statement of t h i s  p ropos i t i on , i s  equivalent t o  " the  

s e t  of gb'del numben of formulas of ordinal  rank j( la1 is  recur- 

s ive ly  enumerable uniformly i n  a". Using the  r e l a t i on  R, we can 

e f fec t ive ly  enumerate t he  predecessors of a. A t  the  nth s tage,  we 

do the  next canputation fo r  each of R(0, a ) ,  ..., R(n, a )  and we 

check the  numbers 0 . n t o  see i f  they encode formulas 

involving only number var iables  and known predecessors of a a s  

superscr ipts  f o r  s e t  var iables .  We add a l l  such ggdel numbers t o  our 

enumeration. 



Remark. Suppose we have an e f fec t ive  method fo r  deciding i f  a 

symbol sequence of ;e has a ce r ta in  form. Then we can e f fec t ive ly  

enumerate a l l  such formulas of ordinal  rank 3 a ,  uniformly i n  a. 

This is c l ea r  from Proposition 6 and the f a c t  t ha t  composition of 

recurs ive functions o r  re la t ions  y ie lds  another recursive function o r  

r e  l a t ion .  

2.2 PRENEX NORMAL FORMS 

Given any formula J we may, using ce r t a in  operations,  obtain 

a new formula (perhaps the  same a s  3) cal led the prenex normal form. 

In tu i t i ve ly ,  the  prenex normal form of f has the  same meaning a s  3. 

A formula i s  i n  prenex normal form only i f  it has the  form (Q1xl) -.- 
(Qnxn) B where 

Qi 
is e i t h e r  Vn 3 and x is  a ( s e t  o r  number) 

i 

var iab le ,  and B contains no quant i f ie r s .  The bas ic  method f o r  

computing prenex normal forms is described i n  [ ~ h . ,  53-51, but we 

require  t h a t  s e t  function var iables  be handled the  same way a s  number 

var iables  and t h a t  the method be completely specif ied so t h a t  each 

formula has only one corresponding prenex normal form. Final ly ,  we 

define a recursive function PNF: 

PNF(n) = the  godel number of the  prenex normal form 

of  3 where GN u) = n, i f  n is  the  

godel number of a formula. 

= 0 otherwise . 
W e  say a formula i s  a prenex formula i f  it is i n  prenex normal 

form. 
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A s  an abuse of notation,  we may a l so  wri te  P N F V ) ,  where 

PNF ( J )  = PNF (n) when n = GN Ca) . 

2.3 DEFINITION OF THE CLASSES 

We now wish t o  define cer ta in  s e t s  and va l id i t y ,  f o r  

recursive ordinals  a. F i r s t  we w i l l  devise an i n t u i t i v e  notion of 

va l i d i t y ,  . We assume fo r  t h i s  paragraph t h a t  &(x) represents 

a prenex formula of 2 with j u s t  x f ree .  I f  OR(&x) ) = 0, then 

- b; 8(;) means A n )  is t rue  as  a statement about in tegers .  We define 

6 = {S I There e x i s t s  a f o r m l a  &(x) such t h a t  OR(&(x)) = 0 and 

S = x 1 b0 & . Now, suppose we have defined and VB .c a. 
[3 

Let 1 a1 = a. Then, i f  2 is  a prenex sentence and OR@)  ;1 a ,  

kif i f ,  when we i n t e r p r e t  each superscripted s e t  var iable  of rank b 

as ranking over n* l l and number var iables  a s  ranging over the  natural  

numbers, 2 is  true.  Final ly ,  we define n/ = {S I t he re  e x i s t s  a 
a 

formula 8. (x) such t h a t  OR U ( x )  $ a and S = {x 1 k i  &(TI 11. 

We a lso  need a more formal def in i t ion  of va l id i ty .  Some se t -  

theore t ic  preliminaries a re  necessary, however. 

Let A and B be s e t s  well-ordered by S and S respectively.  
A B ' 

We define t h e  natural  well-orderinp SAxB of A x B ( r e l a t i ve  t o  

SA and SB) by 

'AXB (x, y )  ++ IsA(al, a2) V (al = a2 & SB(blI b 2 ) ) 1  

where x = (al, bl) and y = (a2, b2) a r e  a rb i t r a ry  elements of A x B. 

Now, l e t  P be a subset  of A x B. Then {a I (a ,  b) € PI has 



S - f i r s t  element, a 
A o f  s ince 

S~ 
well-orders A. And s imilar ly  

{b I (ao, b) € P) has an SB-f i rs t  element b Then, c lea r ly  
0 ' 

(ao, b is  an SAXB-first  element of P. 0 

By induction we can define a na tura l  well-ordering of 
A1 

(A2 x . . . x A n ) .  Assume 
'n-1 

(x, y) i s  a na tura l  well-ordering of 

A x ... 2 An . Then define Sn(x, y) by Sn(x,  y) - x = (a - 9 - t  an) 

& y = (bl, ..., bn) & [ s ( a l ,  bl) v (al = bl & Sn-l ( (a2,  . . . an) , 

b . b 1 ,  where S i s  the  well-ordering fo r  A I t  is  easy 
n 1 ' 

t o  see  t h a t  Sn is  indeed a well-ordering of A1 X (A x - - -  
1 X An) .  

Definit ion: To each prenex sentence 3 of & we assign an 

ordered t r i p l e  cal led the R-greatest ordinal  t r i p l e  f o r  2 (a lso 

wr i t t en  TRP Q) o r  TRP (n) i f  n = G N ( J )  ) . The t r i p l e  is  

(OR (n) , p (n) , $ (n) ) where p and $ are  defined a s  follows : 

(a) If OR (n) = 0, p (n) = the  n W e r  of (number) quan t i f i e r s  

i n  3 and $(n) = 0 .  

(b) I f  OR(n) i s  defined and # 0 then, s ince  i s  a 

sentence, there  is a c such t h a t  OR(n) = 2C. p (n) i s  the  number of 

occurrences of  quan t i f i e r s  associated with superscr ipt  c ,  and $(n)  

is the number of quan t i f i e r s  t o  the l e f t  of the  leftmost occurrence 

of a quan t i f i e r  associated with superscr ipt  c. 

( c )  For a l l  o ther  n ,  p (n) and $ (n) a r e  undefined. 

Clearly,  p and $ a re  p a r t i a l  recursive.  

W e  wish t o  see  t h a t  the  proper prenex sentences' t r i p l e s  a r e  well- 

+ + 
ordered. When we define 8 : x € CY1 ++ x € 3 V x = 0, the  t r i p l e s  

1 
+ 

are well-ordered by the  na tura l  well-ordering, ~ 1 ,  f o r  o1 x (N x N). 



+ to1 is well-ordered by R* I d where ~ ' ( x ,  y) (x = 0 & y # 0) V 
1 ' 

R(x, y) 1 .  

I n  sho r t ,  we a r e  ordering proper prenex sentences f i r s t  by ordinal  

rank, and then by the contents of t h e i r  pref ixes:  i . e . ,  by number of 

occurrences of an R-greatest superscr ipt  and f i n a l l y  by the  number 

of occurrences of R-lesser quant i f ie r s  t o  t he  l e f t  of t he  leftnrost 

occurrence of the R-greatest superscript .  

We now define and ba f o r  recursive ordinals  a. 

Let a x )  be a prknex formula of ;e of ordinal  rank 0 with 

j u s t  x f ree .  We say ko I(;) means I(;;) is t rue  a s  a statement 

about in tegers .  Then we define 

no = {S I there  e x i s t s  a prenex formula +(x) of & 

with j u s t  x f r ee  such t h a t  OR (&(x) ) = 0 and 

s = {x 1 ko &3H 

Suppose we have defined f o r  a l l  B < a and have defined B 
la I f o r  a l l  prenex sentences & of 2 which have smaller ( i . e . ,  

i n  the ordering of t r i p l e s )  ordinal  t r i p l e s  than 2 has,  where 

is a prenex sentence of & such t h a t  OR (a ZR a ,  f o r  1 a 1 = a, 

then F a  i f  and only i f  one of the  following f i ve  clauses holds: 

(assume a €O1 3 la1 = a ) :  



We wish t o  see  t h a t  this i s  a proper inductive def in i t ion .  A s  

an i l l u s t r a t i o n ,  we w i l l  examine clause 4. I f  OR(PN'F(&(S w ( x ) ) )  < 
R 

(i) Ibl +- 1 = a. 

I n  t h i s  case,  b is  the  R-maximum superscr ip t ,  and 

PNF (&@ V(x) ) ) has one l e s s  occurrence of it than 3 has. 

or 

(ii) Ibl + 1 < a. 

In  this case,  b is  not the  R-maximum superscr ip t ,  and 

thus the  number of occurrences of the R-maximum superscr ip t ,  c ,  is  

the  same i n  and PNF (&(2 K(x) ) 1. Note t h a t  &(2 U(x) ) is the  

r e s u l t  of replacing a l l  occurrences of t € xb ( f o r  terms t) i n  

&Xb) by V ( t ) .  When we take PNF(&(5?R((x)) note t h a t  no quant i f ie r s  

f r o m  Al a re  moved i n t o  o r  t o  the  l e f t  of t he  p re f ix  of & . We have 

one l e s s  quan t i f i e r  t o  the l e f t  of t he  l e f t m s t  occurrence of the  R- 

m a x i m u m  superscr ipt  i n  PNF Q(2 Mx) ) )  than i n  3. 

Thus, PNF ~ ( 2  V(x) ) ) has indeed a l e s s e r  ordinal  t r i p l e  than 3. 

Fina l ly ,  we define fo r  a = la! ,  ma = {S I there  e x i s t s  a prenex 

formula &(x) with j u s t  x f r ee  such t h a t  OR (&(x) ) < a and S = 
A 



Remark s u r e  ourselves th : We wish t o  as a t  the  formal and 

i n t u i t i v e  notions of va l i d i t y  do indeed coincide f o r  proper prenex 

sentences. The argument is r ea l l y  by induction on ordinal  t r i p l e s .  

C I f ,  fo r  example. 3 = (3xC)&(xC) . then Ca3 * OR(&X $ a ,  

where a = la1 and there  is  a prenex formula K(x) with j u s t  x 

f r ee ,  such t h a t  OR (X(x) ) 5 c and 
R la PNF (&(P Mx) ) ) . Since 

TRP (PNF (&(8 w x )  <R1 TRP (3 . ba PNF ( y ~  M ~ x )  1 1 - C; PW ucn wcx) 1)  . 
It only remains t o  see t h a t  " there  e x i s t s  a formula M(x) of ordinal  

rank 5 c such t h a t  k' &(2 Mx) 1 "  i f  and only i f  F a  (3xC)&(xC). 
a 

Assume the left-hand s ide  ; c lear ly  xC = {x I iC ) . The other  

d i rec t ion  holds from our i n t u i t i v e  i n t e rp re t a t i on  of the  ranked s e t  

var iables .  Arguments f o r  the  other  inductive clauses (of the  defin- 

i t i o n  of ba a re  analogous. 

I n  view of the coincidence of both def in i t ions  of va l id i ty .  we 

w i l l  use only the  symbol Fa. When the meaning i s  c l ea r  (i. e.  . when 

it is obvious what a is)  and when notat ional  convenience is  desired,  

w e  may wri te  )= , and the  correct  subscr ipt  w i l l  be assumed. We w i l l  

employ usual proper t ies  of t r u th  def in i t ions :  f o r  example, " I t  i s  

not possible t h a t  b 2 and PNF( -, .3 , f o r  a proper prenex 

sentence J." Also, f o r  an a rb i t r a ry  proper sentence 3 we have 

that t+ b PNF (3) , so t h a t  our theory does not r ea l l y  depend 

on prenex sentences. This is c lear  from the i n t u i t i v e  de f in i t i on  of 

va l id i ty .  



CHAPTER I11 

EACH SET I N  Ra IS A A: SET 

3.1 TRUTH SETS 

Definition: For each recursive ordinal  a ,  we define T = 
(X 

{GN (3) 1 3 is a prenex formula with no f r ee  variables & O R ( 3 )  SR a & 

3 1 , where a = 1 a 1 . T is  ca l led  t he  " t ru th  s e t  f o r  a". 

Ta j? Rcr f o r  a l l  recursive ordinals  3. 

Proof: Assume a C N 3 1 a1 = a. Let <an (XI > be an e f f ec t i ve  

enumeration of prenex formulas of ordinal  rank TR a ,  with j u s t  x 

f ree .  (The existence of such an enumeration is guaranteed by the  

remark following Proposition 6. ) 

Assume Tcl € r/la . Then there  is  a prenex formula W(x) with 

j u s t  x f r e e  such t h a t  OR (g(x) ) % a ,  and such t h a t  T =' {n I 
(X 

1, .a$}. D e n  S = h 1 la PNP(-,Zn(K))}. Then 

where w' (x) = M(g (x) ) , and g is a recursive function defined by 

SO we see  t h a t  S € mu. But i f  S € then there  is  an m such 
0 



t h a t  S = {n 11 3 1 ,  and then m € s ++F,J, (KO) by the  a m 
0 

0 
0 

above but  m € S c- PNF ( -, b & ) ) by the  de f in i t i on  of S. 
0 m, 0 

Thus we have a contradiction,  and it must be t h a t  Ta P m I I a' 

3.2 THE RELATION BETWEEN Ta AND ma. 

PROPOSITION 8 

(i) S € % * S  is ar i thmet ical .  

(ii) S € c-+ S i s  ar i thmet ical  i n  

Proof: 

(i) This i s  obvious, since a formula of ordinal  rank 0 

has only number quant i f ie r s .  

(ii) Let us assume the  left-hand s ide  of the equivalence, 

- 
i .e. , S f ma+,. Then S = {n I kWl ( Q ~ w ~ )  . . . (Qmwm) T (W1. . . . , Wm, n)  

f o r  a quant i f ie r - f ree  formula T of o rd ina l  rank a' where la'l = 
A 

b a + 1. For each b ,  f i x  ( 3 .  (x) > as  an e f f ec t i ve  enumeration of a l l  
1 

formulas, with j u s t  x f r ee ,  of ordinal  rank < b ( I b 1 I a) .  We 
-R 

may replace number var iables  by s e t  var iables  by an analogue t o  E l  

of Section 1.3; so  we may consider a l l  the  W t o  be s e t  variables 
i 

such t h a t  rank (W. = b and ibiI 5 a. 
1 i 

By the  remark following Proposition 6 ,  we may define a recursive 
b, 



1 m - 
++ (Q1al) . . . (Q,!?,~) b, PNF (T (2 a (x) t , 2 aQ (x) , n) ) 

a 1 m 

S is ar i thmet ical  i n  T 
a' 

The various enumerations a re  needed; f o r  i f  Ibl < a and a 

only xb f r ee ,  then ka ( 3 ~ ~ 1 . 3  ($1 j u s t  i f  (Ilk1) [OR (zg* (x) ) ZR b & 

We w i l l  now show t h a t  i f  we assume 
Ta 6 then we can prove 

r igh t - to - le f t  implication of Proposition 8 - (ii). If *a %+l 

then there  i s  a f o m l a  a (x )  with j u s t  x f r e e  such t h a t  OR (a (x)  ) a 0  

and T = {n 1 ba+l a a(%>. I f  S is  a r i thmet ica l  i n  Ta then there 

is an ar i thmet ical  r e l a t i on  A such t h a t  n € S - A (n, Ta).  But 

then there  is a formula A x ,  X)  with no ranked s e t  var iables  such 

t h a t  A(n,Ta)  ++k &(nt 2 2 ( z ) ) .  Then ~ € S - ~ P N F ( & ( ~ ,  P z ( z ) ) ) .  
a+ 1 

This l a s t  formula has ord ina l  rank 5 a + 1 since OR ( 3  (x) ) cR 

It remains t o  prove Ta €%+1 
. We define the  following 

r e l a t i ons  A,, A ,  A j ,  and A4: 

and there  i s  a prenex formula x(z) with j u s t  z f r e e  such t h a t  



A, (g, x,  X)  - [g = GN (PNF ( ( v x ~ ) & x ~ )  where R(a, x) . 
and f o r  a l l  prenex formulas K(z )  with j u s t  z f r ee  such t h a t  

OR@d(z)) ZR a ,  then GN(PNF(&(g ?+!(z)))) C XI. 

Fina l ly ,  define P (g,  x) : 

(*) P (g,  x) * (3y) (g is  t h e  gzdel number of a prenex 

sentence of ordinal  rank < y where R (y , x) ) . 
-R 

The statement within parentheses on t h e  right-hand s ide  of the  

equivalence is recurs ively  enumerable, from the def in i t ions  of OR 

and R. 

We can now def ine r : 

Lemma 9: I- i s  an ar i thmet ical  r e l a t i on .  

Proof: We s h a l l  examine only A 3 ,  s ince the  proofs f o r  the  

o ther  A ' s  a r e  qu i t e  analogous. 

We define: 

SuB(a, b ,  c) = G N ( P N F @ ( " ~ ( z ) ) ) )  i f  a =  GN(PNF(M(z))) 

and b = GN (PNF ( (3xC) &xC) ) ) 

= 0 i f  a and b a r e  not  gb'del numbers 

of syn tac t ica l ly  su i t ab l e  formulas. 

G(a, c )  ct a i s  the  g6del number of a prenex formula 



which begins with 3xC. 

SUB and G a r e  ea s i l y  computed by ggdel number decoding and symbol 

manipulation, and a re  evidently recursive. 

Also, we define a recurs ive r e l a t i on  Q 

Q(g ,  a )  * g i s  the ,gi;del number of a prenex formula 

of  ordinal  rank TR a ,  with j u s t  z f ree .  

Q is  c l ea r ly  recurs ively  enumerable. 

Q is recurs ively  enumerable, since by Proposition 6 we have an 

e f f ec t i ve  enumeration of a l l  formulas of o rd ina l  rank a ,  uniformly 
-R 

i n  a .  

Thus, by inspection A 3  is ar i thmet ical .  I I 

Definit ion: For any s e t  S we define s[xl ,  ..., xn] = 

{Y I < X I ,  - -  -, Xn. Y> € S). 

This de f in i t i on  can be expressed by a formula with only number 

quan t i f i e r s ,  so we may wri te  it i n  the  language of Ramified Analysis 

a s  well.  We now proceed t o  prove Ta E by induction on 

recursive ordinals  a. (Subscripts a r e  o rd ina l s  and superscr ipts  a r e  

ordinal  notat ions ,  unless otherwise indicated.)  

Case I: CY = 0 . 

Recall  t h a t  11 I = 0. We wish t o  show 

(1) x E To t- b1 (3~') (In)  [{yl[O] = the  s e t  of g6del numbers of t r ue  



1 quant i f ier- f ree  sentences) & (Vy) I' (1, ~ ' [ Y I  yl[y + 11) & x f Y [rill 
Y<" 

Proof : F i r s t ,  we define Y such t h a t  Y (x) = the  s e t  of ggdel - 
numbers of t r ue  prenex sentences with 5 x quan t i f i e r s ,  a l l  of which 

a re  number quant i f ie r s .  Note t h a t  Y(0) is  recurs ive,  s ince it ju s t  

- - 
contains t rue  variable-free ar i thmet ic  statements,  e.g.,  0 = 0, 

Thus Y(n) is ar i thmet ical  f o r  a l l  n by induction. 

It is c l ea r  from the def in i t ion  of I' (A1 and A 2 )  and Y ( ) 

t h a t  Y (n + 1) is the  unique Z such t h a t  r (1, Y (n) , z)  . 
Let x € To. Suppose the sentence whose ggdel number i s  x has 

m quant i f ie r s .  Then the  r i gh t  hand s ide  of (1) i s  s a t i s f i e d  f o r  

1 
x by taking Y = { < v ,  w> I v 5 m & w E Y(v)) and n = m ,  s ince 

Y' ranges over Vl11 = no. 
Now suppose x s a t i s f i e s  the  r i g h t  hand s ide  of (1). Clearly 

1 
Y [0] = Y(0).  We know 1 Y y + 1 f o r  a l l  y and by 

1 1 
hypothesis r ( l ,  Y E y ] ,  Y E y  + 11)  f o r  a l l  y c n, s o  by induction 

1 1 
Y [y]  = Y(y) f o r  a l l  y 5 n. But then x € Y [n]  -+ x E Y(n) - so 

x 6 T o .  Weconclude {x I x € T ~ ]  € 7 2 .  

W e  wish t o  show 



Proof: This case is  very s imi la r  t o  Case I. We def ine Y(x) = 

s e t  of gsdel numbers of t r ue  prenex sentences obtained from formulas 

of o rd ina l  rank 5 Icl by adding a t  most x quant i f ie r s  - these 

quan t i f i e r s  a r e  e i t h e r  number o r  s e t  quan t i f i e r s  on Xa where R(a, c)  . 
Clearly Y (0) = T . By induction we see  t h a t  Y (n) is  ar i thmet ical  I C I  
in f o r  a l l  n. A s  before Y(n + 1) is  the  unique Z such t h a t  

r ( b ,  Y(n) ,  Z ) .  

The proof i s  exactly a s  f o r  Case I: replace a l l  superscr ipt  1's 

by b ' s ,  1 by b i n  r ,  and 0 ( = I l l ) b y e  b i n s u c h s t a t e m e n t s a s  
-R 

"x is a formula of ordinal  rank 0". We conclude {x I x € T 
l b l l  

T b l + l  

Case 111. 1 bI is a l i m i t  ordinal .  

b b 
(3)  ' Tlbl * Clb l+ l  ( 3 X  ) (3m) (m < R b) & {X [l, 01 = t h e  s e t  of 

b 
t rue  quant i f ier- f ree  sentences} & (Vy)(y # 1 & y < m .+. [X [y ,  0] = A 

b 
utxb[z. w l  I 2 cR Y & w c ~ 1 1 )  & (VY) ( V Z )  (y -= A m .+. r (Y.  x [y,  Z] , 

b 
xb[y, z + 1 1 ) )  & x t U{X [m. zl I z c N)) . 

Proof: Let us def ine  X such t h a t  X(d, x) = the  s e t  of gsdel 

numbers of t rue  prenex sentences of ordinal  rank d l  obtained by 
A 

pref ixing a t  most x quan t i f i e r s ,  e i t h e r  number o r  of the  form Q X ~  

where R(a, dl o r  a = d l  t o  a formula of ordinal  rank < d. 
R 

Assume x C Tb. x is  the  g6del number of some t rue  prenex 

sentence of o rd ina l  rank b ,  say a, Since 3 is  a sentence 
A 



38 

and I b/ i s  a  l i m i t  ordinal ,   OR^) = c  f o r  some c  such t h a t  

b 
c  c b. Choose x = { <x, y, z >  I x ZR c  & y € N 6 z  C X(x, y)}. R 

b b 
Note t h a t  w € X I y ,  z] -<y,  z ,  W >  € X - y c  & z  € N & w € X(y, z) . 

b 
Thus X [y ,  z]  = X(y, z) Vy C c  and z  € N. I n  pa r t i cu l a r ,  

$[1, 01 = X ( 1 ,  0) I so  xb[ l ,  01 i s  indeed the  s e t  of gbdel numbers 

of t r ue  quant i f ier- f ree  sentences. 

Assume m 5 c. Then 
R 

is t h e  same as  

But x  € X(yr 0) - x i s  the  gb'del number of a  t r ue  prenex sentence 

of o rd ina l  rank 3 y r  obtained by pref ixing a t  

most 0  quant i f ie r s  t o  formula a of ordinal  

rank c 
R Y -  

tt x is the  gbdel number of a  t r ue  sentence of 

o rd ina l  rank V where R ( v ,  y) , which has w 

quan t i f i e r s  which a r e  number quan t i f i e r s  o r  of 

t h e  form QX', where R ( s ,  v) . 
* ( 3 ~ )  ( 3 ~ )  (X € X ( V ,  W) & R(v, y) & W € N) - x € U{x(z, w) I z <R y & w f N). 

b 
Final ly ,  f i x  m = c. Then x € U X [m, z ] ,  s ince x  € X(c, w) 

z€N 

where w i s  the  number of quant i f ie r s  of the  formula whose gijdel 

nuniber is  x. 
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From the def in i t ions  of I' and X (  , 1 it is  c l e a r  t h a t  

l' ( y I  X(y, x) , X(y, x + 1) ) fo r  a l l  x and y (and a l so  t h a t  

X(Y, x +  1) is the  unique Z such t h a t  r ( y ,  X(y, x ) ,  Z ) ) .  And 

b 
since vy 3 c and a l l  x,  x (y , x) = X (y,  x) , we g e t  f o r  a l l  

b b 
Y 3 C  "d a l l  X I  T(y,  X [y ,  z l .  X [y.  z + 1 1 ) .  

Thus a l l  t h e  clauses of the  r i g h t  hand s ide  of (3)  a re  

s a t i s f i e d .  

To prove the  equivalence from r igh t  t o  l e f t ,  assume we have a 

b b 
su i tab le  X . Clearly xb[ l ,  01 = X ( 1 ,  0 ) .  We have r(1,  X [l. x] ,  

b 
X [l, x +  1 1 )  and ( l X ( 1  x 1 + 1 fo r  a l l  x € N. So 

b 
xb[O, x] = X(0, x ) .  Assume 1 <R y and y $ m and X [z .  w] = 

X(z, w) f o r  a l l  w ,  and a l l  z such t h a t  z <R y. Now 

= X(yI 0) from the de f in i t i on  of X(y, 0) . 
b b 

But s ince Vy $ m and a l l  x. r ( y ,  X [y ,  x]. X [y ,  x + I ] )  and 

b 
r ( y ,  X(y, X) , X(yr x + 1)) f o r  a l l  x ,  we obtain X [ y ,  x] = 

X(y, x) Vy m and a l l  x. Therefore x € U 2 [ m ,  z ]  implies 
zf N 

b 
t h a t  there e x i s t s  a w such t h a t  x € X [ m ,  w] so x € X ( m ,  w). 

But t h i s  j u s t  says x € Tm so x € Tb. 

This ends the  proof of Lemma 9. 1 I 
Note t h a t  we could combine our cases i n t o  one comprehensive case: 



the s e t  of t r ue  quantif ier-free sentences) 

b b 
& Y 101 = U{X [m,  z] I z E N} 

b 
& x f Y [n l .  

When ]bl  i s  a l i m i t  ordinal ,  n =  0. 

Note t h a t  the  r i g h t  hand s ide  of (4) eas i ly  y ie lds  a ranked 

formula 3 ( x )  such t h a t  T = {x 1 k , b l  +l l b l a(:) 3 .  

A t  t h i s  po in t  we digress  s l i g h t l y  t o  make an i n t e r e s t i ng  obser- 

vation about the  union of t r u t h  s e t s .  Define T = {GN (3) I 3 i s  a 

proper prenex sentence 2nd 3a such t h a t  a f 4 and 
Clal a'* 

. . 

Clearly.  T = U T . We can show t h a t  T is  a I: s e t .  x f 
a a  lal 

T ++ [x is  the gb'del number of a proper prenex sentence a] & 

(3y)  OR(^, = y & (VX)  ( ~ [ l ,  01 = the  s e t  of c$del numbers of a l l  

variable-free sentences & ((Vz) (Vn) r ( z ,  ~ [ z ,  u] .  ~ [ z .  u + 11) + 

1 a proper prenex sentence of 3" is  111 s ince it involves examining 

the  superscr ipts  of the  s e t  variables i n  3 f o r  membership i n  
' 

Since OR is  a p a r t i a l  recursive function and r i s  ar i thmet ical ,  

1 
T must be a n1 s e t .  

Definit ion: m = U % f o r  a f recursive ordinals .  We may 



a l te rna te ly  wri te  

Definit ion : 

S such t h a t  x C 
1 

A s e t  P is  E: i f  there  i s  an ar i thmetical  r e l a t i on  - 

s e t s ,  as  was 

P +-t ( 3 ~ )  s (x,  X) . We may make a l t e rna t e  def in i t ions  

done f o r  s e t s  i n  Section and the  anal- 

ogous proposit ions w i l l  hold. 

1 - 1 
Note tha t  i f  a s e t  is  IT1 then i ts  complement, P I  i s  E l ,  and 

vice versa: i . e .  

1 
where S (x, x)  = + (x, X )  is  c lear ly  a l so  ari thmetical .  

Definit ion: A s e t  P is  A i f  it is both E1 and II 1 
1 1 ' 

PROPOSITION 10 

T 
lb 1 is  a 1; se t .  

Proof: I n  (4) above it was shown t h a t  

where (3zb) A (zb, x) is the 

quant i f ie rs  i n  

metical ; a l so ,  

(3zb) A (zb, x) 

t he  r i g h t  hand 

from the proof 

I I  

r e s u l t  of 

x) 

collapsing the e x i s t e n t i a l  

s ide of (4 ) .  Note t h a t  h is ar i th -  

of ( 3 )  , t h a t  i n  f a c t  132) A (2, x) - 



PROPOSITION 11 

If S € m ,  then S is a A: set. 

Proof: Say S € 311. Then there is an a such that S € %I 
Thus there is a formula a(x) of ordinal rank < a such that 

-R - - 
s = C x I  I= . 3 ( x ) l .  Then x ~ s *  37x1 

lal la1 

*GN(a(y)) € T . 
lal 

So S is 1 - 1 reducible to T . By the obvious analogue 
lal - 

to Proposition 3, S is Z . But since ' 'la1 s € 7 4  14 and 
- 

similarly S is 
1 1 Z1. n u s  s is Al . 1 1  

The ultimate significance of A; sets in this thesis lies in the 

Characterization Theorem - [~h., 7.101 - 
1 

A set is Al if and only if it is-hyperarithmetical. 

Thus, we have shown that each set in 7fla is a hyperarithmetical 

set. It remains to show the converse. 



CHAPTER IV 

EACH HYPERARITHMETICAL SET IS IN r/l 

SETS 

L e t  <$.> be a standard enumeration of a l l  unary p a r t i a l  
1 

recursive functions. We define W .  = range , as  i n  the 
1 

Introduction. 

We define H-index and hyperarithmetical s e t  a s  i n  [~h., 97.91. 

Definition: The following three ru les  cons t i tu te  an inductive 

def in i t ion  of H-index: 

I. For a l l  e ,  < O r  e> is an H-index. 

3. I f  each d € We is  an H-index, then < 2 ,  e> is an 

Definit ion : We define the hyperarithmetical s e t s  Ji fo r  

H-indices i t  as follows: 

NOW, l e t  * be a concatenation operator on sequence numbers 

such t h a t  i f  a = <al , . . . , a > and a 
0 1 

= <blI . . . , bn> then 
m 

UO * U1 = <alI ..., am, bl, ..., bn>. This operator has the obvious 

proper t ies  t h a t  (a1 * a2) * a3 = a1 * (a2 * a3) and, i f  IT = .<PI>, 



t h a t  0 * T = T * 0 = a f o r  sequence numbers 0 Ul, U 2 ,  and (3 
3' 

Given any i € N we may define a s e t  8 thusly: 

R u l e  1: <i> € 8i 

Rule 2: i f  (3 * < j >  € Si and j = <i, e> then 

and 

Rule 3: i f  (3 * < j >  E Si and j = <2, e> then, fo r  

each ~ C W  e '  a f < j , k >  c 8 . .  1 

I f  i is not an H-index, then 8. w i l l  not have a s t ruc tu re  
1 

of any i n t e r e s t  t o  us; bu t  there  i s  no reason t o  r e s t r i c t  the  

def in i t ion  of 8 t o  H-indices . 
i 

We can show several  i n t e r e s t i ng  f a c t s  about the  8 's and about 
i 

t h e i r  in ter-re la t ionships .  

Note 1. For a given i, inspection of t he  de f in i t i on  of 8. 
1 

shows t h a t  eacn member of Si i s  of the  form < i >  * p where p is 

some sequence number (perhaps t h a t  of t he  n u l l  sequence). 

Note 2. I f  i = <1, e> and p € ge then <i> * p C Si. To 

see  t h i s ,  consider p = <al, ..., an> where n 2 1. Now since 

p C ge, al = e and <i> * <e> € 8. by Rule 2.  Then <i, e> * <a > € 
1 2 

gi by application of the  same ru l e  ( e i t he r  Rule 2 o r  3) which 

insured t h a t  <e> * <a2> E Se. By induction, <i> * p = 

<i> * <a > * . . . * <a,> € 8 . 
1 i 

Note 3. I f  i = <2, e> and p E Sf where f E We then 

<i> * P C si. The proof is as i n  Note 2 except t h a t  since p (sf, 



a = f and <i> * <f>  € Si by Rule 3 .  1 

Note 4. There a r e  converses of a s o r t  t o  Notes 2 and 3. I f  

i = <I, e> and <i> * p € Sit where p # <(d>, then p € Se. This 

i s  easy t o  see  s ince i = <1, e> , p = <el  a ..., a >. Now 
1 ' n 

<e> € \. <e> * <a > E 8 is  i n  S by application of the same 
1 e e 

r u l e  t h a t  pu t  <i> * <e> * <a > i n  Si. By induction we obtain 
1 

p € 8.. Again, the  " l i m i t  ordinal" case i s  very s imi la r .  When 

i = < 2 ,  e>,  t he  statement of the  Note is : " i f  <i> * p E $ where i ' 
p # <g>, then 3f 3 f E We and p C $ ". The proof i s  the  same; 

f 

s ince i = <2, e> ,  p = < f ,  al,  ..., an> and we can show p E gf 

by induction a s  above i n  this note. 

Note 5. The previous notes imply the  following: 

If i = <2, e> then S. = (a = <i> * p ,  ( 3 f ) ( f  E w & 
1 e 

Let us show only the  second of the  two equations, f o r  it is  

s l i g h t l y  more complex. Note t h a t  <i> i s  i n  both s e t s .  A l l  elements 

of 8 , other  than <i> are  of the  form <i> * p where p # <jD . 
By Note 4 t he re  is an f such t h a t  f E We and p € Sf. Note 3 

shows the  r e l a t i on  i n  the  other  di rect ion.  

W e  now define an ordering of the s e t  of a l l  sequence numbers. 

F i r s t  we s e l e c t  a simultaneous e f fec t ive  enumeration of a l l  the  W . ' s  
3 

w i t h  the  proper t ies  t h a t  a t  each s tage i n  t h e  computation a t  most one 

W gains a member and t h a t  W ge t s  only one new member a t  any stage.  
j j 
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Let 0 and T be sequence numbers. We say a c -r i f  there  

is a sequence number p such t h a t  p # <@> and 0 * p = T. Then 

T i f  O c T  o r  a = T .  - 
Then we define a r e l a t i on  < on N x N: 

0 < 0 ++ 0 and a a re  sequence numbers & 
0 1 0 1 

of the  longest  sequence comon t o  a and a1 & j = <2, e> 
0 

ente rs  

before kl] . 

< is  a recursively enumerable r e l a t i on  since t he  s e t  of sequence 

numbers i s  recursive,  as we have a spec ia l  e f f ec t i ve  enumeration of the  

W 's,  and s ince we can e f fec t ive ly  examine and compare t he  sequence 
e 

associated with each sequence number. 

Let US define < as  the  r e s t r i c t i o n  of r t o  . Again, i t  
i 

is c l ea r  t h a t  < is  a recursively enumerable r e l a t i on ,  s ince each 
i 

3 is a recursively enumerable s e t .  We now wish t o  show t h a t ,  when 

i i s  an H-index, c well-orders . 
i i 

We are  able t o  show the  r e l a t i on  between < and < where m 
i m 

is a "lower" H-index. 

Note 6. Assume U # <i>. 
1 

If i = < l ,  e > ,  0 < and = < i > * p  
0 i 1' 0 O1 = <i> * p 1 ' 

then 

If i = < 2 ,  e> , a < a o i 1"0 
= <i> * p 

0' O 1  
= <i> * p then 1 ' 



such that  p and k enters W before 
0 e 

Only the proof for the case i = <2 ,  e> w i l l  be shown. The 

proof for  the case i = <1, e> is similar but much simpler. If 

al c a 
0 ' then al = <all .... am> and 0 = <alI a > where 0 n 

2 5 m < n  so p l c p o  andthus p c pl. I f  O I P a  i t m a y b e  
O a2 

0 

that  just <i> is common to  a and 0 Then since i = < 2 ,  e> 
0 1 ' 

there exis t  ' kl € W such tha t  <it k > c G1 and ko enters 
e 0 - 

before kl. Clearly p E S and p1 € S by Note 4 and thus we 
O kl 

obtain the l a s t  clause. Let <it all . . . . a > be the number of the 
n 

greatest sequence common t o  and a Now a 
1 ' 

€ We. since i = 

<2, e>; so, po l  pl E Sa . Since a < 0 it must be that there 
1 

O i l  

are to. Rl  € W e  such that <it alI .... a > c o  and 
n l O - 0  

<it all .... a R > c a and R O  enters W before L1. But 
n l l - 1  a n 

this suffices to  insure p < pl, and so clause 1 holds. 
O al 

We have converses to  Note 6. 

Note 7. I f  i = <1, e> and p < p then <i> * po ii <i> * p 
O e l  1 ' 

I f  i = < 2 ,  e> and 3f C We 3 po . p1 C Sf and po <f pl, 

then <i> * p ci <i> * p 
1 ' 

I f  i = C 2 ,  e>. and 3f. g C  We 3 p o  C sf, pl € a .  .and 
9 

f enters W before g then <i> * p < <i> * P 
e 0 i 1 ' 

The f i r s t  and second case of Note 7 are much the same. Let 

i = <2, e> and f C We. I f  p1 C po then the proof i s  obvious. 



If Pl Po then <i> * p c <i> * p is  t rue  by the  same appli- 
0 i 1 

cat ion of Rule 2 o r  3 which insured t h a t  P < p 
0 f 1' 

Let us consider the  l a s t  case. Note t h a t  <i> is a l l  t h a t  

<i> * p 
0 and <i> * p have i n  common s ince <f> is  the  f i r s t  

1 

element of Po and <g> i s  the  f i r s t  element of p Then Rule 3 
1 ' 

immediately gives the  r e su l t .  

Note 8. By combining the  r e s u l t s  of Notes 6 and 7 we ge t  the  

following: 

I./ I f  i = <1, e> then 0 < a 
O i l  

* [a1 - <i> and a. # < i > ]  

II./ I f  i = < 2 , e >  then a < a 
O i l  

i+ [a1 = <i> and Go # < i > ]  

V [ ( I m ,  n)(m, n € W & a = <i> * p 
0 Ul = <i> * p , e 1 

& PO € Sm & p1 € 8 and m en te rs  W before 
n e 

PROPOSITION 1 2  

I f  i is an H-index, l e t  o ( i )  = the  order type of <Sit ci>. 

Then each O ( i )  is  a recurs ive ordinal .  
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Proof: F i r s t ,  we wish t o  note t h a t  the  de f in i t i on  (def in i t ion  2 ,  - 
Ch. I ,  see  1.1) of a recursive ord ina l  may be weakened by requiring 

only t h a t  the  well-ordering R be a recurs ively  enumerable well- 

ordering of a subset  of N.  We s h a l l  r e f e r  t o  the new def in i t ion  a s  

def in i t ion  3.  It is obvious t h a t  an ordinal  recursive by de f in i t i on  2 

is  recursive by de f in i t i on  3.  Conversely, suppose a recurs ively  

enumerable r e l a t i on  R(x, y) well-orders a recurs ively  enumerable 

subset  S of N , Then e i t h e r  S is f i n i t e  (and a, S >  is the 

order type of a f i n i t e ,  and hence recurs ive,  o rd ina l ) ,  o r  there  is  a 

one - one recursive function such t h a t  S = f ( N ) ,  and we may define 

R' b, y) t* R(f (x) , f (y) ) . Now R- can be seen t o  be a recursively 

enumerable well-ordering of N ,  s o  we know t h a t  f o r  any x,  y € N 

x # y + ~ ' ( x ,  y) V R' (y ,  x)  , so t h a t  R* must indeed be recursive.  

And s ince <R, S> n- <R-, N>, <R, S > must be the  order type of an 

ordinal  recursive under de f in i t i on  2. 

This is prec i se ly  the  case we have; c is  a recursively enurner- 
i 

able r e l a t i on ,  and each 8 is a recursively enumerable s e t .  I t  
i 

su f f i ce s  now t o  show t h a t  < well-orders Si. We proceed by induc- 
i 

t ion  on H-indices . 
I f  i = <O, e > ,  

If i = (1, e>,  

is the  order  type, by 

then Si = {<i>)  and t h e  r e s u l t  is obvious. 

l e t  a be the  recursive ordinal  f o r  which O(e) 

induction hypothesis. Pa r t  I of  Note 8 shows 

that 

a ted  

the  ordinal  associated with Si is the  successor of t h a t  associ- 

with Se s ince <i> * p ci <i> f o r  a l l  p € Se. 

Suppose i = (2 ,  e>. Let f l ,  f 2 ,  . . . be the  members of W as  e 



they =ise  i n  computation. Then, by Part  I1 of Note 8, O ( i )  = 

( 0 (f l )  + o(f2)  + . . . ) + 1, and this ordinal i s  again recursive. 

We now s t a t e  a general lemma concerning the embedding of 

recursively enumerable s e t s  i n  3 .  

LEMMA 13. I f  M is  a recursively enumerable s e t  well-ordered 

by a recursively enumerable re la t ion  T I  then there ex i s t s  a p a r t i a l  

recursive function f such tha t  

Proof: We f i r s t  consider the special  case where M = N. Note - 
i 

tha t  we define 1 a where the addition operator i s  +D , as  
m=O m' 

follows (for  the purpose of t h i s  proof): 

and 

Then, there e x i s t  functions k and 2 such tha t  

where a is the notation f o r  the ordinal 1, and 

In par t icu lar ,  we may f i x  k and !?, t o  be unique recursive 



functions s ince  t h e i r  def in i t ions  consis t  of ins t ruc t ions  f o r  the  

e f f ec t i ve  computation of indices  of recursive functions. 

N o w ,  by the  Recursion Theorem, there  is an integer  b such t h a t  

{b} (x) = k (R (b,  x) . Let us define f  (x) = 3 5 {b' ; we wish t o  

show t h a t  f  is  the  desired function. F i r s t ,  we redefine R :  

R(x) = R(b, X I ;  SO f ( x )  = 3 5 k (R (XI 

F ix  s, and l e t  P = i t  I T ( t ,  s ) }  ; assume t h a t  we know 

t E P -+ f  (t) f 0, and t t2 C P -r [T (tl. t2) -+ f  (tl) c f  (t2) 1. 1 O 

From the def in i t ions  of 3 and < o  we have t h a t  f ( s )  € 8 - 
But it is c l ea r  from the  def in i t ion  of k ,  and from the 

property of +O t h a t  y  # 1 -+ x 3 x +8 y (provided x,  y  € 8) 

I t  remains t o  show { k ( R ( s ) ) ) ( n )  E 0 ,  Wn. Now { k ( k ( s ) ) ) ( n )  = 
n 

t{g(s)}(m) +8 a ) .  Ei ther  {g(s)}(m) € 8 since T ( s ,  m) V s = m 
FO 

and f(m) E O by the  induction hypothesis. Note t h a t  a t  t h i s  point  

we used the assumption t h a t  M = N. 

It i s  c l ea r  from the def in i t ions  of 8. and + t h a t  
O 

{zI(n) 3 3 s ~ ( ~ ) ~  when k (z )  € 6.  or 3 s ~ ( ~ )  € o only 

i f  {k(z)}(n)  € O f o r  n  = 0 .  1, .... and {k(z)}(n) c 3 5k(Z) 
8 
n 

from the  def in i t ions  of (9 and c . But {k(z) 1 (n) = so ({z) (m) +O a )  
8 

and then {z}(n) < {k(z)}(n) ,  s ince f o r  x ,  y  E 0 ,  y # l +  
8 

<a x +O y. Now, i f  T ( t ,  s ) ,  then f ( t )  = { R ( s ) } ( t ) ,  and then 

l e t t i n g  n  = t and z = R ( s )  we get: 



We nowprove the  lemma f o r  the  case M # N .  I f  M i s  f i n i t e ,  

the  r e s u l t  is  evident,  so l e t  us assume M i s  i n f i n i t e .  Since M 

is recurs ively  enumerable, there  is  a one - one recursive function 

h such t h a t  h(N) = M. We can define an inverse,  i n  a sense,  t o  h: 

- 1 
t o  calculate  h (x) , we compute h 0 , h 1 , . . . u n t i l  we f ind  a 

y such t h a t  h (y)  = x. Of course i f  x f M I  then no such y w i l l  

-1 
be found; c l ea r ly ,  h is p a r t i a l  recursive.  Now def ine 

T " (x, y) * T (h (x) , h (y) ) ; T ' is  a recursively enumerable r e l a t i on  

s ince T is recursively enumerable and h i s  p a r t i a l  recursive.  

- 1 -1 
We then have x, y € M + [ ~ ( x ,  y )  ++ ~ ' ( h  ( x ) ,  h ( Y ) ) ] :  BY the  

case when M = N ,  we have an f such t h a t  (Wx) ( f  (x) € 0) and 

(Vx) (Vy)[T'(x, y )  + f ( x )  < f ( y ) ] .  Then, f o r  x,  y € M I  
8 

Define f1 a s  fh- l ,  and we have 

1 
and of course x € M + f (x) € 0 , s ince f (N) c 8. [ I 

With t he  a i d  of Lemma 13  we can prove the  following important 

proposition. Assume g s a t i s f i e s  Lemma 13  f o r  <Si , ci> fo r  some 



PROPOSITION 14 

There e x i s t s  a p a r t i a l  recursive k : Si + N such t h a t  f o r  each 

U * <j>  t Sirk(O * <j>) = the  ggdel number of a formula J ( x )  w i t h  

only x f r ee  such t h a t  J = {n I 2 (g) 1 and OR (;T) ZR W ,  where 

w is the  notat ion f o r  1g(<i>) 1 + 1 . 
Proof: Let 8 be a formula which expresses membership i n  the  

range of unary p a r t i a l  recursive functions. That i s r  6 i s  a formula 

of o rd ina l  rank 0 with j u s t  x and y f r e e  such t h a t  fo r  a l l  m 

and n C N ,  

Note t h a t ,  by t he  remarks following Lemma 9 ,  we have an 

e x p l i c i t  form f o r  the  T 's. In  pa r t i cu l a r  we can display a formula 
a 

Mx) such t h a t  

n C T  
g 

t-. mK1. 

( 1  has ordinal  rank = Ig(<i>) I + 1. 

W e  now define a p a r t i a l  recursive function x : 

X(P, Y I  n) = GN(&(;)) i f  9 (0 * <y>) = GN(J,(X) 
P 

divergent otherwise ( i .e . ,  i f  $(d 

is not  the  ggdel number of a su i t ab l e  

formula) . 
Then there  is  a formula 3( , of rank 0, such t h a t  X(pl y ,  n) = 

Fina l ly  we define ko : 



ko(pI q )  diverges i f  q is  not a sequence number, o r  i f  

q = a * <j>  and j i s  ne i ther  50, e> ,  <1, e>,  nor <2, e> f o r  

some e E N. 

ko is  evidently p a r t i a l  recursive. By the  Recursion Theorem 

there  i s  an f such t h a t  Bf = Xxko(fl x) . I t  remains t o  show t h a t  

we can indeed take k = Ax $ff (x) . We define a new x : ~ ( y ,  n) = 

X ( f ,  y ,  n ) .  That i s ,  

X(Y, n) = GN (&(;) ) i f  k (u * <y>) = GN @(x) ) 

divergent otherwise . 

Then we def ine a formula P( of rank 0 such t h a t  ~ ( y ,  n) = 

m ~f b~((yr K, S .  

I f  j = < O ,  e> ,  
J3 = we 

and W = {x I & (x, ) and 
e 

k (0  * <j>)  = G N ( ~ ( x ,  e ) )  . 
- 

If j = d l  e>,  J = J and k(0  * < j > )  is  the gb'del number 
j e 

of the negation of the  formula &(x) whose gb'del number is  

k(U * < j ,  e > ) ,  and by the  induction hypothesis we know Je = { X  I 
~ & ( Z ) I .  

If j = <2, e>, l e t  ~ ( x )  = (3y) (32) (P((y, X,  Z )  & Mz) & & (y, e )  1 

where Z ( x )  i s  the  formula with gb'del number k(0 * <j>) .  We must 



show Z ! X )  is such t h a t  J = {x I z&) I .  
j 

w i t h  j u s t  x f r ee  whose gb'del number is  z = 

k(0 * < j ,  y>) and ( 1  and y C W ) 
e 

c* (3y) (y C We & n € J 1 by the  induction hypothesis 
Y 

H z )  insures  t h a t  z(x) has the appropriate ordinal  rank. I I 

PROPOSITION 15 

includes the  c l a s s  of hyperarithmetical s e t s .  

Proofi I f  i = < O ,  e>,  then Ji = We and we know t h a t  - 
"e nb* - 

then Ji = Je and J 
e Wm, + J, C ma- 

then Ji = U Jx. When Jx € Q 
xC w 

e 

f o r  each x C W we apply Proposition 15 with j = i and g e t  a 
e ' 

ranked formula a ( x )  such t h a t  J = i n  I bCL a(;;) 1 f o r  some CL. 
i 

SO J~ € 7 l & ,  i .e . .  J. c 74. 1 1  
1 

COROLLARY 16. r/l = the  c l a s s  of hyperarithmetical s e t s .  

Proof: This follows immediately from Proposit ion 12 (and the  - 
Characterization Theorem) and Proposition 16. 1 I 



CHAPTER V 

THE RFLATIVIZED THEORY 

This f i n a l  chapter presents a r e l a t i v i za t i on  of the  r e s u l t s  of 

previous chapters and w i l l  provide a c l ea re r  re la t ionsh ip  between 

t h i s  t he s i s  and [GI. As these r e s u l t s  a r e  not cen t ra l  t o  t h i s  t he s i s ,  

a more loose approach i s  taken t o  def in i t ions  and proofs. 

5.1 BASIC ELEMENTS OF RELATIVIZATION 

Let us f i x  X a s  d s e t  of na tura l  numbers. I n  t he  Introduction, 

we defined the  notions of a function p a r t i a l  recursive i n  X and a 

r e l a t i on  recursive i n  X. Relative recursiveness i s  fur ther  discussed 

i n  [R. ,  59-21. We continue with more def in i t ions .  

X 
1. wX = range $' where < $I > is  an enumeration of the  

n n ' n 

unary functions p a r t i a l  recursive i n  X. The s e t s  W' a re  cal led 
n 

the s e t s  recursively enumerable i n  X. 

2. A s e t  A is recursive i n  X i f  there  is a function f 

recursive i n  X such t h a t  x E A -+ f ( x )  = 0 and x j! A + f (x)  = 1. 

3. A r e l a t i on  P is  ar i thmet ical  i n  X i f  it is the  

r e s u l t  of pref ixing a r e l a t i on  recursive i n  X w i t h  a f i n i t e  number 

of number quant i f ie r s .  

1 
4. A s e t  P is  111 i n  X i f  there  i s  a r e l a t i on  S 

recursive i n  X such t h a t  x E P * (Vf) (3y) s ( f ,  x, y )  f o r  unary 

functions f .  

1 
5. A s e t  P is Al i n  X i f  P and P a re  

1 TI1 i n  X. 
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It is somewhat more d i f f i c u l t  t o  r e l a t i v i z e  the  notion of a 

hyperarithmetical s e t .  

F i r s t  we define H ,  X-indices. 

(a)  For a l l  e ,  <0,  e> is  an H ,  X-index. 

(b) I f  e i s  an H ,  X-index, then <1, e> i s  an H,  X-index. 

X 
(c)  I f  each n E W is an H ,  X-index, then <2, e> is an 

e 

Then we define the  s e t s  hyperarithmetic i n  X a s  follows: 

(a)  I f  i = < O , e >  , t h e n  J = $  
i ,X e 

(b) I f  i = < l , e >  , t h e n  J = J  
i ,X e ,X 

i = <2, e>  , then 

By [ ~ h . ,  •˜7.10] we are  assured t h a t  a s e t  is  1 
dl i n  X i f a n d  

only i f  it is hyperari thmetical  i n  X ( t h a t  is ,  by t he  re la t iv ized  

Characterization Theorem) . 

5.2 RELATIVIZATION OF PREVIOUS RESULTS 

Let us  define the  notion of an ordinal  a recurs ive i n  X: 

(1) a is f i n i t e  

(2) there  e x i s t s  a r e l a t i on  S(x,  y) recursive i n  X such 

t h a t  S well-orders N and such t h a t  a = t he  order type of < N ,  S>. 

W e  l e t  Ul be the  l e a s t  non-recursive ordinal .  In  [R. , 511.7, 

Cor. XVI] it is noted t h a t  the  recursive ordinals  form a denumerable 

i n i t i a l  segment of o rd ina l s ,  s o  w e x i s t s  and i s  unique. Similarly,  
1 



Ox is defined as  the  l e a s t  ordinal  not recursive i n  X. 1 

Having described re la t iv ized  ordinals ,  we can now meaningfully 

d e t a i l  r e l a t i v i zed  notations.  ~t is simple t o  copy the  def in i t ions  

X 
of 8 and t o  c rea te  the s e t s  8' and 0 , and the  

r e l a t i on  RX (or < ) RX i s  an analogue of R; thus RX is  
8: 

recursively enumerable i n  x and we can e f fec t ive ly  enumerate, 

X r e l a t i ve  t o  X ,  ( y  I y <RX x) uniformly i n  x. If a 6 O1 then 

l a lX  is the  ord ina l  corresponding t o  a ,  by def in i t ion .  Without 

X 
l o s s  of general i ty  we may assume 0 P 0 , 1 6 O1 , and 1 llX = 0. 

Final ly  we define ORX, t he  ordinal  rank r e l a t i v e  t o  X ,  which is 

specif ied i n  the  same way a s  OR, except RX i s  used i n  place of R. 

Clearly ORX i s  p a r t i a l  recursive i n  X. We can now properly define 

X Fa , t r u t h  r e l a t i v e  t o  X ,  and s e t s  m a ( X ) .  Let &(g) be the  

language of Ramified Analysis augmented with the  s e t  constant symbol 2. 

S pa r t i c ipa t e s  i n  the  construction of formulas i n  t he  same way as  s e t  - 
variables ,  but cannot be quantif ied.  The def int ions  of OR and OFU 

"ignore" the  presence of 2 i n  a formula, so  it i s  easy t o  modify our 

def in i t ion  of ba t o  X la . F i r s t  we define (noting t h a t  X is a 

- 
f ixed s e t )  X 1 n 6 - S c r n  C X. Then, i n  general f o r  &(x) a 

prenex formula of &(S) with j u s t  x f r e e  and ORX (&x) ) = 0, 

- 
X kO &;) means &n) is t rue  a s  a statement about in tegers  and 

membership i n  X. Suppose we have defined x bB f o r  a l l  6 < a 

and have defined X .& f o r  a l l  prenex sentences which have "smaller" a 

ordinal  t r i p l e s  than , where 3 is  a prenex sentence of & (2) 

such t h a t  O R X ( ~ )  -RX < a ,  f o r  la lX = a , then X i f  and only 

i f  one of the  following f i v e  clauses holds: 



2. 3 = Qx)&(x) & ORX(&(x) sRX a & X a(;) f o r  some n € N a 

3.  3. = (Vx)B.(x) & ORX(.&(X)) snx a & X &(;) f o r  a l l  n € N a 
b b  b 

4. 3 = QX )&(X ) & oRX@(X ) sRX a & RX(b, a )  & f o r  some 

prenex formula K (x) , with j u s t  x f ree  and ORX &(x) ) 5% b , 

X Fa PNF@(~? Y (x) 1 )  

b b  b 
5. 3. = (VX )&(x & OR U ( X  1 )  & a & ORX (b,  a )  & f o r  a l l  

prenex formulas K(x) with j u s t  x f r ee  and ORX (x) ) sRX b , 

X PNF(&(Q X(x) 1 ) .  a 
Then the  following formulation f o r  the m a ( X ) ' s  is  evident: 

( X I  = {U I t he re  ex i s t s  a prenex formula &(x) of &(g) 

with j u s t  x f ree  such t h a t  ORX(&X) ) 5% a and U = 

Let us proceed through the  r e s u l t s  of Chapters I11 and I V .  Define 

T (XI  = { G N ( ~ )  1 is a prenex formula with no f r ee  var iables  & a 

O R X ( ~ )  a & X / } ,  where a = la lX;  T i s  the  t r u t h  s e t  a 

f o r  a r e l a t i v e  t o  X. 

PROPOSITION 17 

(i) Ta(X) t m , ( X ) .  

(ii) U € m,(X) - U is  ar i thmet ical  i n  X. 

( i i i )  U € !n (X) - u is ar i thmet ical  i n  Ta(X) . a+l 

These proofs a r e  d i r e c t  r e l a t i v i za t i ons  of previous r e su l t s ;  

however, the " se t  of t r ue  quant i f ier- f ree  sentences" i s  now those 3 



of d(s-1 such t h a t  x 1 3 . 
0 

PROPOSITION 18 

X 1 
(a) T(x)  ( = U T  ( x ) ,  a € O 1 )  i s a s e t  TI1 i n  X. IdX 

A 
(b) Let R ( X )  = u R (XI , a € Ol. Then i f  s € R(x)  , s 

la lx  

is a s e t  TI: i n  X. 

PROPOSITION 19 

Ta(X) is  a s e t  
1 L1 i n  X.  

This completes the r e l a t i v i za t i on  of Chapter 111's r e su l t s ;  

Chapter I V  is  almost as  simple. We use H ,  X-indices, the s e t s  
'i 

a re  now recursively enumerable i n  X I  and each B(i)  is  an ordinal  

recursive i n  X. Problems a r i s e  with the  analogues t o  Lemma 13 and 

Proposition 14, which use the  Recursion Theorem. The formulation of 

t he  Recursion Theorem used i n  t h i s  t he s i s  is  [ R . ,  511.2, Thm. I]  , 

and by inspection of the  proof there  the  r e l a t i v i zed  Recursion Theorem 

can be proven. Its statement is  

"Let f be any function recursive i n  X. Then 

there  e x i s t s  an n such t h a t  x - x  I, 

'n - @f(n)  

Then the  analogue of Corollary 16 s t a t e s  t h a t  r/l(X) is  exactly 

t he  c l a s s  of s e t s  hyperarithmetical i n  X. 

5.3 RESTRICTED RELATIVIZATION 

I n  t h i s  l a s t  sec t ion  of the  t he s i s  we w i l l  assume t h a t  X is  



X such t h a t  wl = o Under t h i s  assumption we w i l l  show t h a t  a  
1 ' 

X , f o r  2 € &@I , and % ( X I  we copy the  def in i t ions  of 

X Fa 2 and ma (XI  but  with OR ins tead of ORX and 8 instead 
1 

of ox Our goal is  then t o  show t h a t  (XI  = mi (x) f o r  a l l  a < 
1 ' 

Assume U € % ( X I  and define a  function f  = { ( a ,  0) I a  f U 1 

{ ( a ,  b) I a  €0: and b f Ol and l a l X =  Ibl}. I t  is  c l ea r  t h a t  - 
X X 

f (B1)  = O,, f ( 01) = {o} and f is order-preserving (since a < 

1 1 1  B ++ R(a, b) , f o r  a ,  b  € o1 and a <  B*RX(a , bi) f o r  a  , b € 

We employ f  t o  map formulas i n  such a way t h a t  i f  J' i f  a  

formula which is  proper ranked r e l a t i ve  t o  ox (i .e., a l l  i ts  super- 
1 

X s c r i p t s  a r e  members of Dl)  then • ’ 2 ,  the  unique formula resu l t ing  

from the replacement of each superscr ipt  a  i n  by f  ( a ) ,  is  a  

formula proper ranked r e l a t i v e  t o  0 Thus we need only show t h a t  i f  1 - 
u = {x I X Fa ~ ( x ) }  then U = x 1 X 1 f ;  we w i l l  prove this 

by induction. 

When a =  0 we have x k a a  + + X  1; • ’ 3  s ince a =  • ’ 2  (as 2 

has no s e t  var iab les ) .  For a > 0 we need an "inverse" function fo r  

f .  ~ e f i n e  g  = { ( a ,  0) I a f  ol} U { ( a ,  b) I a €ol, b €8: and 

X - 
la1 = lb lXl .  Then g(CY1) = Dl, g  ( 01) = {o} and g i s  order- 

X preserving,  and a  € O1 -r f ( g ( a ) )  = a and b f o1 + g ( f ( b ) )  = b. 

And, i f  a l l  t he  susersc r ip t s  of a* a re  i n  ol, then we have t h a t  

X ga* is  a  proper ranked formula r e l a t i ve  t o  0 . The following note 
1 

on subs t i tu t ion  is important: f  ,& (2  W* (XI ) = f (1(8 g W* (2) 1 )  1 , 



i n  o the r  words the  r e s u l t  of subs t i tu t ing  i n t o  a transformed formula 

is t h e  same a s  transforming a formula i n t o  which a reverse-transformed 

formula has been subs t i tu ted ;  t h i s  is  easy t o  ver i fy  mentally. Our 

induction hypothesis is  t h a t  f o r  any formula where TRPx( J2) 

( the  g rea t e s t  ordinal  t r i p l e ,  r e l a t i ve  t o  X ,  of J2) i s  l e s s  than 

T R P X ( J ) ,  then x C a J 2  + x f z2. Let M* (x) be any proper 

prenex formula with j u s t  x f r ee  such t h a t  O R ( ~ ( ( X ) )  3 a.  Then 

clause 4 (of the  def in i t ion  of X 1:) s t a t e s  t h a t  X ba 7 + 

X &(P g N* (T) ) ) , and the  induction hypothesis y i ~ i d s  

X 1; f (&(P g Y* (2) ) ) ) . But, by our note on subs t i tu t ions ,  chis is 

x 1; f&P l(* (z) ) and thus x /=: fal s ince • ’ 3  = ) f ,&($) . 
The o ther  clauses of the  def in i t ion  of 

X Fa are  s imi la r ly  simple 

to prove and, i n  f a c t  the  whole proof may be obviously modified t o  

show t h a t  X C; J+ X Fa g (  3 ) ,  and we immediately obtain  (XI  = a 

Q;(X) f o r  a l l  a < w 
1 

(% has no meaning fo r  CL 1 w l ) .  

Define m*(X) = U m t ( X ) ,  a < w We can summarize our r e s u l t s  
1' 

as follows: 

the  s e t  of s e t s  
1 Al i n  X . 



CONCLUSION: We have obtained our main goal, that  of showing that  the 

hyperarithmetical se ts  have a formulation i n  the language of Ramified 

Analysis, a result that  is  almost as surprising as the Characterization 

Theorem. The l a s t  chapter relates th i s  thesis t o  [GI, since the se ts  

%(XI referred to i n  [GI are in fact  the s e t s  f l *  (XI i n  th is  thesis. a 
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