ELECTRONIC STRUCTURE OF LIQUID METALS
USING NONLOCAL, ENERGY DEPENDENT

MODEL POTENTIALS

by
TIN CHAN
B.Sc., University of Hong Kong, 1963
B.Sc., Special, University of Hong Kong, 1964

M.Sc., University of Hong Kong, 1967

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the Department
of

Physics

© TIN CHAN 1971
SIMON FRASER UNIVERSITY

August 1971



APPROVAL

Name: Tin Chan
Degree: Doctor of Philosophy

Title of Thesis:

Electronic Structure of Liquid Metals

using Nonlocal, Energy Dependent Model

Potentials
Examining Committee:

Chairman: K.E. Rieckhoff

TL.E. Ballentine
Senior Supervisor

—

“A.8. Arrott

7 E.D. Crozier

B.L.—ﬁones

N.W. Ashcroft
External Examiner
Professor of Physics
Cornell University, USA

Date Approved //

«//-.

e

/l‘-":

i

_ii_



ABSTRACT

The electronic structures of several liquid metals have
been calculated numerically in a weak binding approximation
using nonlocal, energy dependent electron-ion model potentials
and measured liquid structure factors. Two different approaches
are pursued to overcome the difficulties caused by the energy

dependence of the potential.

In the first method, which is a slight modification of
the"éreen function formalism of Edwards (1962), the energy
dependence is approximately taken into account by absorbing the
first order term into a redefined zero-order hamiltonian by
means of an effective mass. This is equivalent to neglecting
the energy dependence of the off-diagonal matrix elements of
the potential. Using this method the densities of electronic
states of liquid bismuth, indium, and mercury are calculated.
The first two are found to be very free-electron-like, but for
mercury there is a dip near the Fermi energy, quite similar to

but less severe than was suggested by Mott.

To include the energy depepdence exactly we have devised
a method by which the total number of electronic states below
an energy E is evaluated. It is based upon an idea of Lloyd
(1967) , which we have extended and developed into a form suit-
able for numerical calculation. Results of calculations for
liquid bismuth are qualitatively similar to those obtained
previously. The bandwidth for five valence electrons per atom

is 1.18 Ry, which corresponds to a bandwidth effective mass of
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0.63 electron mass, compared with the first order perturbation
extimate of 0.87 used in the former method. Possible impli-

cations of this difference are discussed.

The effect of the structure in the density of states on
the frequency-dependent conductivity has been studied by an
" approximate evaluation of the Kubo-Greenwood formula using para-
metrized Green functions which have been constructed to satisfy
the sum rule automatically. We find insignificant departure
_from.the Drude formula unless the density of states has struc-
ture much more drastic than that obtained for mercury. The
~zero frequency limit, however, is roughly proportional to the

square of the density of states.
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INTRODUCTION

Theoretical and experimental studies of liquid metals
can be conveniently classified into four categories: (i) liquid
structure, (ii) electronic states, (iii).electronic transport
properties, and (iv) mass transport properties. The work to
be reported in this thesis is concerned with two of these as-
peéts, namely, the electronic density of states per unit energy

range and its influence on the frequency-dependent conductivity.

A comprehensive review of the entire subject of liquid
metals will not be attempted here. Excellent reviews have
been given by Cusack (1963, 1967), Wilson (1965), March (1968),
and the various contributors to the Proceedings of the Brook-
haven Conference (Adams et al. 1967). We shall only spell out
the motivations and fundamental difficulties pertinent to the

present investigation.

Although experimental work on liquid metals has been go-
ing on for a long time, significant progress in theory has been
made only in the last decade or so with the development of
Green function techniques (Edwards 1958, 1962) and pseudopoten-
tials (see Ziman 1964 and Harrison 1966 for reviews). The main
difficulty is that when a metal melts, its translational perio-
dicity is lost so that Bloch's theorem no longer holds, an
energy-momentum dispersion relation cannot be uniquely defined
and the familiar. methods of calculating band structures in

solids cannot be used. A major revision in the concept of
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electronic structures is necessary. Rather than obtaining a
relation between energy and momentum we describe the electronic
structure of the system by means of a density of states func-
tion, n(E) which always has an exact meaning irrespective of

the degree of disorder of the system.

One reason for studying n(E) is that Ziman's nearly-free-
electron theory has been remarkably successful in explaining
the electronic transport properties of liquid metals (Ziman 1961,
Bradley et al. 1962, Sundstrdm 1965) and it is desirable to see
whether the underlying assumption of the theory is justified
i.e. whether n(E) is approximately proportional to E%. Know-
ledge of n(E) by itself is also important because there are a
number of experiments yielding information related to this
quantity. Some of these are: (i) d.c. transport properties,
(ii) optical conductivity, (iii) Pauli-spin susceptibility,
(iv) Knight shift, (v) soft X-ray emission, (vi) photoelectric
emission, (vii) positron annihilation, and (viii) Compton
scattering of X-rays. Unfortunately most of the properties:
mentioned depend not only on n(E) but also on transition-
probabilities, among other thiﬁgs, so that it is not possible
to extract n(E) directly from the experiments. We shall com-

ment further on this point in the final chapter.

Considerable effort has been devoted recently to study
the electronic structure of disordered systems. As pointed out

by Ziman (1968) there are two essentially distinct aspects of
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disorder; topological or structural disorder -- the loss of
long range order in the arrangement of the atomic sites, and
cellular disorder -- the lack of strict periodicity from cell
to cell in an otherwise almost periodic lattice. Examples of
systems in which structural disorder is present are liquid
metals, amorphous semi-conductors and glasses. In these systems
one can no longer delineate the lines and planes in which the
atoms lie. On the other hand in systems with cellular disorder
such as hot soiids and substitutional alloys the lattice planes,
though deformed or containing different species of atoms, may
still be recognized over large regions of the material. The
latter type of disorder is better understood than the former
because the presence of a periodic lattice simplifies the pro-
blem considerably. At present many sophisticated techniques
for obtaining the electronic structure in systems with cellular
disorder have been developed and applied successfully to the
problems of alloys (see Ziman 1969a for a review, also Cohen*
1971). The same techniques are not directly applicable to
topologically disordered systems. Recently Dy and Wu (1971)
have been able to formally generalize them to topologically
disordered systems. The practicaﬁility of their theory, how-

ever, has still to be tested by numerical calculations.

Results obtained using one-dimensional models (Mott 1967,
Halperin 1968 and references given there), however rigorous
they may be, cannot be generalized to real three-dimensional

systems because all disordered linear chains are topologically

*Preed and Cohen (1971)
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equivalent to a periodic linear lattice, and therefore no

structural disorder can be built into the model.

The brief discussion above should suffice to indicate
the great complexity to be expected in a.theoretical study of
the electronic structure of liquid metals. Most of the pre-
vious work has been concerned with developing formal methods.
Few attempts have been made to carry out guantitative cal-
culations on real liquid metals (see Section.l.l below). The
present work is intended primarily to be a contribution to
£his latter aspect. In the course of so doing we also hope to

be able to shed some light on the general theory.

In a liquid metal the ions do not have a fixed con-
figuration, so one has to calculate ensemble average quantities.
The concept of a wave function is rnot a convenient one. Green
functions ( or equivalently spectral functions, density matrices,
and cumulants ), on the other hand, allow the aver;ging pro-
cedure to be performed in a natural way. The theory of Edwards
( 1962 ) which provides the basis for the present study is

formulated in terms of Green functions.

This thesis consists of two parts. Part I which forms |
the greater part of the thesis deals with the electronic
structure of liquid metals. Two different approaches are used :
and the densitiesof states of several real liquid metals are
worked out. When the electronic structure of a liquid metal

deviates significantly from free-electron behaviour, the
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qgquestion arises as to whether such deviations are strongly re-
flected in the electronic transport properties. In Part II the
effects of n(E) on the frequency-dependent condﬁctivity are
explbred by an approximate evaluation of the Kubo-Greenwood
formula (Kubo 1957, Greenwood 1958) using parametrized models

for the ensemble average Green function.

Throughout this work it is assumed that the conduction
electrons are independent of each other, their interactions
with the ions being represented by a weak effective potential
and the motions of the ions can be neglected. The validity
and limitations of these assumptions will be discussed at

appropriate places,



PART I
ELECTRONIC STRUCTURES OF LIQUID METALS

The number of calculations of the electronic structure
of liquid metals is very small in comparison with the number of
such calculations for solid metals. This fact reflects béth
the greater novelty and the greater difficulty of the problem
for liquids. For example, it is in principle not possible to
classify electron states by a wavevector k or to obtain a unique

energy versus k relation.

In Chapter 1, after a brief survey of previous work
and an account of the Green function formalism, we demonstrate
the inadequancy of the naive method of calculating the density
of states, n(E), of a liquid metal by differentiating the energy-
momentum dispersion relation which has been obtained by means
of ordinary perturbation theory. Next we discuss the simplifying
approximations in Ballentine's (1966) calculations. The re-
moval of these approximations is the initial purpose of the

present investigation.

In Chapter 2 we calculate n(E) numerically for liquid
Bi, In and Hg using nonlocal model potentials and an effective
mass approximation. Bismuth serves as the testing ground of
our calculation. Among the metals considered by Ballentine it
is the only one that shows substantial departures from free-
electron behaviour. By evaluating the density of states for

Bi to successively higher degrees of sophistication we hope to



reveal the extraneous structure introduced by each approximation
and finally single out the inherent characteristic of the metal.
Indium is chosen primarily for experimental reasons. The photo-~
emission data of both Koyama et al. (1967) and Enderby (1969,
unpublished) have indicated pronounced structures. Mercury
being the only metal that exists in the liquid state at room
temperatures is a natural candidate. The electronic transport
properties of pure Hg and its alloys are strikingly different
from those of other liquid metals (see Mott 1966 for a review).
This so-called "mercury anomaly" has been interpreted by Mott
(1966) in terms of a conjectured dip in the density of states
near the Fermi energy. Our calculation should tell us whether

this conjecture is well founded.

The problem introduced by the use of an energy de-
pendent electron-ion model potential is treated in detail in
Chapter 3. A method which remains valid for sucha potential
is presented for calculating the total number of electronic
states below an energy E. As an example, the energy distribution
of the electronic states in Bi is worked out and the results

are compared to those obtained in Chapter 2.




CHAPTER 1
BACKGROUND MATERIAL
§1.1 Survey of Previous Quantitative Calculations

Edwards (1962) showed how the density of electronic
states per unit energy could be otained from a perturbétion
expansion of the single particle Green function averaged over
the ensemble of possible atomic arrangements appropriate to
the liquid state. The first quantitative application of

Edwards' formalism was by Ballentine (1966), who found the

density of states of liquid Al and Zn to be nearly free-electron-

like, but predicted that of liquid Bi to differ significantly
from the free-electron parabola. Ballentine represented the

electron~ion interaction by a local pseudopotential.

If the imaginary part of the sélf-energy is very
small one can, at least approximatley, define a dispersion
relation relating electron energy E to a wavevector k. By
such a method Watabe and Tanaka (1964) predicted a very large
peak near the Fermi energy in the density of states of liquid
Zn. However, their result was shown to be entirely spurious
(Ballentine 1966), due in part to their use of a very crude
approximation (an exponentially screened coulomb potential) to
the electron-ion pseudopotential. Similar calculations have
since been carried out by several groups. Schneider and Stoll
(1967) have obtained the electronic structure of Na, K and Pb
using an empirical local model potential that has been fitted

to experimental phonon dispersion curves. Their conclusion is
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that as the solid melts there is an insignificant change in the
density of states on the Fermi surface. In addition, a blurred
image of the first Brillouin zone can be seen in the liquid.
Shaw and Smith (1969) have performed a similar calculation for
Li, Cd, and In, using a nonlocal energy-dependent model potential.
Their results resemble the densities of states of the corres-
ponding solids but with all van Hove singularities smoothed
out. Only for Li is their result much different from the free-
electron curve. A similar calculation for nine metals has been
reported by Srivastava and Sharma (1969), however, they give
only the density of states at the Fermi level and not the en-
tire curve. Very recently Jena and Halder (1971) have repeated
the work of Shaw and Smith on Cd using a different nonlocal
pseudopotential and found a much 1arger difference between the
densities of states of the liquid and the solid, apparently

in agreement with the Knight shift data (Seymour and Styles
1964, Borsa and Barnes 1966, Sharma and Williams (1967)). The
limitations of this approach are the use of second order per-
turbation theory and the assumption of an E(k) relation for a
liquid. Both become suspect as the electronic structure be-
comes non-free-electron-like, whieh is of course the most inter-
esting case. Although one can artificially define an E(k) for
a liquid such that it yields the correct density of states,
that same E(k) cannot be used for other applications such as
the Boltzmam equation (Lloyd 1968). Furthermore the neglect

of the imaginary part of the self-energy may not be justified

as we will illustrate with a numerical example in Section 1.3.
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The work of Ballentine (1966) and the present thesis
are not strictly perturbation methods since infinite classes
of terms are summed by means of integral equations. Neverthe-

less they are weak binding approximations.

Cyrot-Lackmann (1966) has developed é tight binding
approximation for the moments of density of states function.
It is applicable only to strictly bound bands, since moments do
not exist for free-electron-like bands. LloYd (1967) has de-
veloped an interesting theory which uses the phase shifts of
(assumed) non-overlapping ions rather than a pseudopotential.
No realistic calculations have been done with this method, but
he has shown by means of a simple model that his theory can des-
cribe the formation of a gap between a "free" and a "bound" band
as the potential strength increases. Rousseau, Stoddard and
March (1970) have developed a form of strong coupling theory
based on the density matrix, rather than the Green function, and
have applied their method to Be. They find the density of
states to be qualitatively similar in the liquid and solid phases,
and gquite different from what it would be for a random distri~-

bution of atoms.

This brief review is believed to cover all quantitative
calculations of the electronic density of states for liquid
metals which have been published (excluding one dimensional

models and disordered lattices).
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§l1.2 The Green Function Formalism

In Edwards'. (1962) Green function formalism of the
liquid metal problem an independent-electron model was used.
The effects of electron-electron interaction can be included,
at least formally (Langer 1961), but in the present state of
knowledge such complication is not expected to be very reward-
ing and, in an actual calculation, the interaction is accounted‘
for only in the screening of the electron-ion potential by an
electron gas. The ionic motions may also be neglected because
the electronic motions are much more rapid. This is just the
analog of the Born-Oppenheimer approximation in solid state
theory (see Ziman 1965 section 6.10). Thus we consider the
motion of a single electron under the influence of the potential

V due to a disordered system of ions in a "frozen" liquid.

The Green operator is defined as

Ge) = (e-H)" .
EAXEA -1
Z - £,

}]

where H = H_ + V is the single electron hamiltonian, and lw;>
and E_ are its eigenvectors and eigenvalues. We refer to its
diagonal matrix element in the momentum representation as the

Green function,

G (%,8) = klGgce)|t) |
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In terms of G(E) we can define the spectral operator

9= 4 () fecerm) - <ceun)

= 2. XY & (F-En)

(1.2)

Its diagonal matrix element in the momentum representation,the

spectral function

P (2 E)= Lk | 20e) I4)
i O ) Tm { <Rl GlEs 214 ))
Z | &IN5 ez-2a)

i

(1.3)

tells us the momentum distribution of electrons with energy E.
For a perfect crystal the Iwn>fs are eigenstates of crystal
momentum and p(k, E) is just a sum of delta functions. From
the completeness of the set of states {wn} we have the sum

rule (Edwards 1965)

(-4
(%,2) 45 =/ .
ai; r = ) (1.4)

The trace of the spectral operator gives us the density of

states per unit energy per spin state,

ivu/o (e) = é? P (% E)

= 2 §(E- E;) (1.5)
n (%) .

i
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Since the trace is an invariant of the operator, (1.4) and
(1.5) hold for any representation. The momentum representation
has been chosen solely for convenience. In particular, it does
not imply ﬁhat we are using the plane wave states |g>vas the

zero-order states for electrons in a liquid metal.

To obtain the ensemble average Green function, we

consider the formal expansion of the Green operator

G(E) = (E-H.=v)"

)}

= Got Ve, +6, Vé. VG, +- - , (1.6)

_ -1 _ 2.-1 . .. . .
where Go (E) = (E-Ho) = (E-k7) in "semi-atomic" units
(b= 2m = %ez = 1). Now introduce the selfeenergy,

Z(f.e)= <4IVIE) +2‘ LEIV %) G (£ EX# (V15 )
K .

+ éicél VI£) (%) EIVIEIE & D@ ey +. ... (1.7)
E‘U;j
If we expand (E - k2 - Ik, E))-l in a power series in I(k, E)

and substitute from (1.7) we get back the diagonal element of
(1.6). Hence

G(4,E) = !

T -4*-2Z(%E) ‘ (1.8)

This result is none other than the solution of the weli known

Dyson eqguation (see e.g. Ziman 1969b section 3.10)

G(5.8) = Go(%,E) 46, (#,E)Z (%,8 ¢ (4 5)

If we further assume the validity of what Edwards (1962) called

the "geometric approximation" in which the average of a product
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like G (k, E) I(k, E) G, (k, E) Z(k, E) Go(k, E) is replaced by
the product of the average of the separate terms, then we obtain

the ensemble average Green function simply as

_ /
<G' (fv E)>dvc - E - ﬁz-(f(flg)>ave ’

Ballentine (1965) has argued that this replacement is actually
exact in the limit of an infinite system with a finite range
of order. A proof of this assertion has been provided by
Taylor (1966) in a more general context. The problem of find-
ing the Green function and hence the spectral function and the
density of states is thus reduced to the calculation of

<;(k, E£>ave' In what follows we shall simply denote the en-
semble average quantities by G(k, E) and I(k, E) when there is

no danger of ambiguity.

§1.3 Calculations with a Model

At the beginning of this chapter we raised some
objections on general grounds against the naive method of cal-
culating the d;nsity of states of liquid metals by first obtain-
ing a dispersion relation using ordinary perturbation theory.
Here we attack the same problem on different grounds. Suppose
we set aside the question of existence of a dispersion relation

and consider a fictitious liquid metal represented by the

parametrized model,

G(%,E)-‘—{E—f(é)-f-zbs'/‘}" i (1.9)
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where .
Et4) = #*+ c{[/1+€ (3-4)/4'Jﬂl-'fl+e’/“]"}

(1.10)
is a model dispersion relation. The parameter a controls the
sharpness of the dip in the density of states, b controls the
width of the spectral function and indirectly the depth of the
dip, c controls the depth of the dip, and g controls the posi-
tion of the dip. The last term in (1.10) ensures that e(0) = 0.
The Green function (1.9) is of a form that automatically satis-
fies the sum rule (1.4) (see Appendix I). This point has also

been confirmed by numerical integration.

In the naive method the density of states per unit

volume per spin state is given by

_ 2EH T
n(e) = 5= % Yl . (1.11)

The correct method is of course to calculate n(E) from the

trace of the spectral function. The question we. ask is whether
these two different apprdaches yield the same or nearly the

same results. Figure 1 shows the density of states calculated
for the model with parameters a = 0,0l; b= 0.05, 0.1, 0.2,

0.5; ¢ = 0.1; g = 0.975 (in units for which # = 2m = kF = 1). As
b gets smaller and smaller, the correct n(E) does seem to
approach the dashed curve obtained by the naive method, but

even for b = 0,05, the naive method gives a dip 40 percent

- deeper than the true one. Similar results have also been ob-

tained with various other values of the parameters. b = 0.05
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n(E)
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.03
02 -
01 :
— — — Eq. (1.11)
/ ‘Correct n(E) using spectral functions

0 L ] | | 1 |

0.2 0.4 0.6 0.8 1.0 1.2

E (units of E. )

Figure 1 Density of states n(E) corresponding to the

model Green functio_n (1.9).

1.4
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means that at the free-electron Fermi energy E_. (E 1 in the

Fo ““Fo
units we are using) the imaginary part of the self-energy ImI
equals 5 percent of the conduction bandwidth. Anticipating

the results of our calculation on liquid Hg in the next chapter,

we find that for E ~ E_,ImZ(k, E) has a maximum value of about

FI
7 percent of the conduction bandwidth. This implies that a
calculation of the density of states of liquid Hg using the

naive method would be in error by more than 40 percent in the

interesting region.

Our numerical investigation in this section should
dispel any doubt that the Green function method is to be pre-
ferred over the naive method in spite of the apparent advant-
age of simplicity of the latter, unless the metal in question
is very free-electron-like--and we have no reliable a priori

criterion to tell us when it is so.

§1.4 Ballentine's Work and its Relation to the Present

Study

In Edwards' weak binding formalism the ensemble aver-
age Green function is obtained from the self-energy, which in
turn is calculated by a partial summation of a perturbation
series in the scattering potential V. The validity of such a
scheme relies on the weakness of the potential. The true poten-
tials due to the ions in a real liquid metal are certainly not
weak. In order to apply Edwards' formalism to perform quantita-

tive calculations, Ballentine (1966) replaced the deep ionic



-~ 18 -
potential by a weak pseudopotential. An extensive discussion

of the theory of pseudopotentials is beyond the scope of this
thesis and we refer to Harrison's book (1966) for details.:

The fundamental idea behind the pseudopotential concept as first
introduced into solid state theory by Phillips and Kleinman
(1959) is quite simple. The conduction electron wave functions
must be orthogonal to the core wave functions and therefore must
oscillate rapidly inside the core regions. The large positive
kinetic energy associated with these oscillations almost com-
Pletely cancels the deep negative potential within the cores,
resulting in a weak net effective potential. Thus Austin, Heine
and Sham (1962) ( hereafter referred to as AHS) have shown that

the Schrdédinger equation for an electron in a metal

HY =(T+v)% =&Y (1.12)

can be transformed into

(T+w) ¢ = E ¢ : (1.13)

so that the true potential V is replaced by a pseudopotential
W which is much weaker in the core region, the true wave func-
tion y is replaced by the pseudowave function ¢ which is smooth
inside the core, and the valence energy eigenvalue E is pre-
served. Depending on its form W is either known as a pseudo-
potential (see AHS for the general form) or a model potential
(Heine and Abarenkov 1964, Abarenkov and Heine 1965) (hereafter

referred to as HA).
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Within the small core approximation the total screened
pseudopotential W can be written as a sum of spherically symmet-

ric terms w centred on each of the N ions,
W (r) = w (2 -Rq)
2) =3 K
and the plane wave matrix element can be factored as

CRIWIED) =4Il Z exp LA L], g

the first term depending only on the properties of a single
ion and the second term being a function of the positions Ro
of all the ions. The nth-order term in the diagonal element
of the expansion (l1.6) of G(E) can be written (in "semi-atomic"

units) as

G.4nZ | (EIWIEDG (4Te) R ...
~ !:*U"- n-1/

o G ik 6, 4,8, (54474, 54" o

where

Ca <ft, fv M -?"):og.z.:we# L: (:'P' "g‘ +’f“£ﬂ #ooe 42" "{'?“")] (1.16)

The ensemble average of G(k, E) is obtained by replacing Cn

with its average,

E" (—?U 1"! st )2"“) E(C"ZV? )

which is related to the n~particle correlation function. It is
convenient to introduce diagrams to represent the various terms.

Some examples are shown in Figure 2. A solid line represents a
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Figure 2 (a) A typical reducible‘diagram in the
expansion of G(k, E).
(b)-(d) Some irreducible diagrams in the

expansion of I(k, E).
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progagator Go(k, E) = (E - kz)_l, an intersection of two solid
lines with a dashed line (a vertex) represents a factorl<#]w|gi>,
and a node connecting n dashed lines represents a factor Eﬁ.

The self-energy I(k, E) defined by (1.7) consists of the sum

of all irreducible diagrams i.e. those that cannot be separated
into two disconnected parts by cutting a propagator line, such

as those in Figure 2 (b), (c), (4d). G(k, E) is the sum of all

reducible diagrams, like the one in Figure 2 (a).

If the pseudopotential is local, meaning that its
matrix element <}@|w|}g‘> depends only on the momentum transfer
qd = k' = k but not on k, then the first-order term in I(k, E)
is just the average potential energy and may be chosen to be
zero, and the simpliest nontrivial contribution is the second-
order term 22 represented by the diagram in Figure 2(b).
Ballentine has found that this "one diagram approximation"
leads to a certain inconsistency which may be removed by "re-
normalizing" the diagram i.e. replacing the zero-order Green
function by the full Gréen function. I(k, E) is now obtained 5

by a self-consistent solution of the integral equation, i

(J-‘l'l')s E-(f(')" 'Z(‘.’E) 4 (1.17)

which sums the infinite set of diagrams illustrated in Figure

2(b) and (d). Here

w(g) = LilkIw i) = fop (og,2) wnay

(1.18)

3. .
is the normaliza- '

is the Fourier transform of the potential, L




/

PP
tion volume, and n = N/L3 is the atomic density. The structure

factor a(g) is equal to the continuous part of N_lE and

27
measured in diffractién experiments.

Ziman (1969c) has argued, on the basis of a calcu-
lation for polycrystalline material, that 22 cannot give the
correct features of the structure. To obtain a reasonable
result a term that he calls 24 has to be included. An inspec-
tion of his expression for 24 reveals that it is just the term
represented by the first diagram in Figure 2(d), which is cer-
tainly included by (1.17). On the contrary, the naive method
which is equivalent to an approximate evaluation of I. is in-

2
deed invalidated by Ziman's argument.

The HA model potential which Ballentine adopted in
his calculations is nonlocal and dependent on an energy para-

meter. Ballentine used an approximate local, energy independent

form derived from its Fermi energy shell matrix elements. This,
together with the assumption that I(k, E) in the denominator of
(1.17) could be replaced by a constant, enabled him to perform
all the angular integrations analytically and greatly simplify
the solution of the integral équation. The work of Shaw and

Smith (1969) mentioned before indicates that retaining the non-

G S« A A

local and energy dependent nature of the model potential will
tend to smooth out some of the structure predicted from a local

pseudopotential. This is not surprising, for Ballentine found

A e

% that the relative position of the zero of the pseudopotential

(in momentum space) and the peak of the structure factor is an
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important parameter, and for a nonlocal pseudopotential the
zero is effectively varying with energy or momentum. To in-
clude a nonlocal pseudopotential and to solve the integral
equation (1.17) without further approximation, as we shall do
in our calculations in the next chapter, we need to take care
of the first order term, perform one of the angular integrations
numerically and solve an integral equation in the two variables.
k and E. Such complications are entirely computational in
nature. The energy dependence of the model potential, however,
causes difficulties in principle for the Green function method.

The solution of these difficulties is the subject of Chapter 3.



CHAPTER 2

EFFECTIVE MASS APPROXIMATION

§2.1 Modification of the Green Function Method to include

an Effective Mass

The HA model potential, like many other pseudopotentials
that are useful in calculating properties of metals, is non-
local and energy dependent. Weaire (1967) has shown that some
of the largest effects of the ¥ and E dependence can be absorbed
into an effective mass. In this chapter we combine a similar
effective mass with the Green function method to obtain the

density of states of three liquid metals.

2

Consider the hamiltonian H = gﬁ + W(E) (units o= 1),

where p is the momentum operator, m is the free-electron mass
and W(E) is the electron-ion model potential containing a para-
meter E such that the computed energy eigenvalue of the model
wave equation is equal to the true energy eigenvalue only when
E is itself set equal to the true eigenvalue to be solved for.
It is customary in perturbation theory to break H up into two

2

1 with the free-electron hamiltonian HO = gﬁ

as the unperturbed part and Hl = W(E) as the perturbation.

terms, H = HO + H

This is not the only possible decomposition. An equally legiti-

mate alternative is the following:

H=u® +ul, (2.1)
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where
v z _ e (2.
H = b+ 5 et iw et 2
and
H'e 2 14t W) [ce|
a4
(2.3)

+ 3 A {alwlg) - AW ) £}
+*

!

= "—le + H,‘ .

Here we have expanded the potential operator W(E) in
terms of the complete set of plane wave states {|k>}. The sym-
bols Hé, Hoé denote the diagonal and off—diagona; parts of the
perturbing term Hl, respectively and Ei is the solution of the

equation,

0{4%>'=: Eﬁ léf} . (2.4)

Assuming that W(E) depends linearly on the energy we have

£f = X 4 (AW (ED) %)

+ .’1_

= R AINGED (5 - B) I (R ) 2 s
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which can be solved self-consistently to yield

Lo B+ IV ) -F (), %)

- (2.6)
« -
oW
= <R (58)_[%)
In (2.6) the Fermi energy EL is given by
T, = -/-k-r— -+ <ﬁF{W(EF)I—%F>. (2.7)
F dm

As the parameters (and their derivatives) for the model poten-

tials that we shall be using are tabulated at E = Eps it is a
straightforward matter to evaluate Eko. We can define an effec-

tive mass m” by the equation

0 2
L, = % + E, |, (2.8)

The constant EO can be taken as zero by a suitable choice of

origin. It is convenient to define a dimensionless parameter

/a - ——)-’—'— o (2.9)

This is equivalent to the product uEuk of Weaire (1967) who

differentiated the equation,

A& A L (kW kD
Rm Am : (2.10)
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with respect to k and made use of the relation,

AW 3w
Tk T kT

to obtain

pE
with
E
Me
and
/u'k = (1

4
Ay

[N
@

E IW

X oL

\

R

.

-
).

Here we have abbreviated (k|W(E)|k) by W.

Green function can now be written as

C}-(%; E) =

/

(2.11)

(2.12)

(2.13)

(2.14)

The ensemble average

{ G (%, E)B.' -2 (+F)

(2.15)
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where (in units %(= 2m = %ez

1,

G°(4,5) = (%[ (e-H)"[%)

: (2.16)

The self-energy is given by

(¢4l RO 127D
{
Z('fz,E) =<1§‘H 'é>+4"2*?' _E_(;’%)z_z(ﬁ:z> y (2.17)

to the same order of approximation as Eq. (1.17). The first
order term,

Ch|H' &) = (RIH %D

= (RIW (B IAD ~LEIW(ED %)

is zero if we approximate the parameter E here by Eko. The

second term in (2.17) contains only off-diagonal matrix ele-
ments,

) H a7y = (R D

(kW ()% .
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If we neglect the energy dependence of the off-diagonal part,
we have a hamiltonian of the form H = H® + Hl, where the per-
turbation Hl is independent of energy. Hence the usual Green
func£ion method for calculating the density of states is appli-

cable. The self-energy is now given by

) 2
S (4 )= _;1__3 [ v (%%, 5 acq) a4’ , (2.18)
en) E-@)_7(40E)
2

where

w(k 4’ E) 2 L klwE) 4

4

: -4 k. ki
=H€’ AW e " T ahah (2.19)

Equation (2.18) has the same form as (1.17), but now the model

potential is nonlocal and an effective mass has been introduced.

The neglect of the energy dependence of the off-diagonal
elements can be justified to some extent by perturbation theory.
These matrix elements occur only in the second order of the
perturbation expansion for the energy eigenvalues, whereas the
diagonal elements occur in the first order. Thus the primary

effect of the energy dependence has been taken into account.
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Perhaps we should mention that our formalism does not
preclude the possibility that y may depend on k. Whether or
not we need to use a k-dependent effective mass in our actual
calculations is a question that can be answered by computing
y numerically at different values of k. From Figure 3, in

2

which we have plotted E ° of Equation (2.6) against k“ for

k
liquid Bi, In, and Hg it is clear that the corresponding effec-
tive masses can be regarded as constant for all practical pur-
poses. We have also listed in Table I the various effective
masses defined above and related quantities for future use. The
overall effective mass p which we shall use in Equation (2.18)
is the average value deduced from the slope of the best fitting
straight line in Figure 3. Our effective masses for mercury
are different from Weaire's (shown in parentheses) because we

used Evans' (1970) model potential (see Figure 19, Section 2.5

below) which differs radically from the HA potential he used.
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TABLE I Effective Masses
Bi In Hg
pk 0.93 1.00 1.23
(1.02)
uE 0.93 0.90 0.91
(0.78)
pEyE 0.87 0.90 1.12
(0.80)
u*/uE 1.00 1.10 1.35
(1.30)
y 0.87 0.90 1.12

§2.2 Calculation of the Density of States

The essential step in calculating the density of states
n(E) is to obtain the self-energy L(k, E). Equations (1.8)
and (1.3) then give the Green function and spectral function,
which yields n(E) upon integrating over k. In order to solve
equation (2.18) self-consistently for I(k, E) we first trans-
form the integral into polar éo-ordinates with the polar axis

along the direction of %k so that

" f(k, R E) ()T A4
E- )z

5 4E) = ooy

(2.20)
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The angular integral yields

!

4T = | v wp B lag)ap (2.21

-

with u given by (2.19), B being the cosine of the angle between

iR
‘2 . 2kk'B)Z. It can be tabulated for

k and k' and q = (k2 + k
different values of k and k', and need not be recalculated dur-
ing the solution of (2.20). The numerical solution, though
not trivial, turned out to be quite straight-forward because a
direct iterative scheme converges. This is somewhat fortuitous
since nonlinear integral equations such as (2.20) are not gener-
ally solvable by simple iteration. Some important details of

the numerical procedure will be discussed in connection with

the calculations for bismuth.

In addition to the density of states we shall also cal-

culate the momentum distribution of the conduction electrons,

E
= | F % E)dE
’P ('ﬁ) - (o (~ ’ ) . (2.22)

-0

This gquantity measures the probability that the momentum state

]g) is occupied. The Fermi energy E_ is to be obtained by

F

integrating n(E) up to the energy below which the Z valence

electrons per atom can be accommodated.
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§2.3 Application to Bismuth

The structure factor a(g) of liquid bismuth (at 300°C),

taken from the neutron diffraction data of North, Enderby and

Egelstaff (1968), is plotted in Figure 4. We have used the
nonlocal model potential of Heine, Abarenkov and Animalu (Heine
and Abarenkov 1964, Abarenkov and Heine 1965, Animalu and Heine
1965, to be referred to as HAA). Certain local potential con-
tributions have been treated slightly differéntly from HAA, for

reasons which are not particularly important here (see Ballentine

and Gupta 1971, to be abbreviated BG). For the sake of com-

pleteness we briefly state the potential actually used.

The self-consistently screened model potential in a
metal,

W= \/M"'\/Sc "—\/Xc

(2.23)

is the sum of the bare model potential Vyr the screening poten-
tial Voo due to the redistribution of the conduction electron

charge and the exchange and correlation effective potential Vx

c
of the conduction electrons. VM is a sum of similar model
potentials VM centered around each ion, of the form
o
_ _e )7,
v, (2) = -2 (Z A, BT acky,
(2.24)

i\

- Ze' » A7Rpm |
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where Po is the projection operator for angular momentum quan-
tum number 2. The model radius RM is chosen rather arbitrarily
within the range between the ionic core radius Rc and the Wig-
ner-Seitz radius of the atom in a solid. For & = 2 the depth
parameter Al(E) is adjusted so that for energy E the logafith-
mic derivative of the pseudo-wave function is the same as that
for the true wave function at r = Ry- This is done by fitting
the spectroscopic term values of the single ion and linearly
éxtrapolating to other energies. For £ >2 A, is set equal to

A2° Vsc is related to the screening charge density Pse by

Poisson's equation,

e’
V.. (4) = 4—'—%;; Lo (1) (2.25)

First order perturbation gives

%
AmMm Lat g W (EDAD

(4) = ﬁs Z T T 0 (2.26)
ﬁc ~ L 3(4\“'_‘) M 42 '-(45»*"2)

where the ratio uk/uE of the effective masses enters in the
same way that it does in the case of the structure-dependent
energy (Weaire 1968). BG have obtained ch by applying the
formalism of Hohenberg and Kohn (1964) and Kohn and Sham (1965).
Both Vsc and ch must of course be calculated self-consistently.

The final result for the momentum space matrix element of the
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screened model potential for a single ion is

Cht gl w (BIE) = (R U (DI + Vo (D56

A 4ne 4 [amp® ¢ hialo @) (2.27)
4— — +cp(i) —_— ol VA j M % 3
W 4 ]@")’ ME k- rg*:z):"‘ *.

The inhomogeneity correction potential arises from the fact
that the potential corresponding to an exchange and correlation
charge density CopSC is an overestimate of Voo inside the ion

core. It is approximated by the form

= E_ 47g°
v (= B 2R 50 (2.28)

where x = ch and

2(x) = 3 (s "”‘mx)/ks (2.29)

is the form factor of a uniform spherical charge distribution.
Formulas for evaluating Co(q) and Eic can be found in section 3

of BG. The dielectric function is

z /(A/k
e ()= I+ [%—‘f +C»f‘s>];‘: X,

(2.30)
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where

: Am o’k
X (3) = -(ff,—)sj l
) k< kr

k- (‘!:fj)z

(2.31)

i

e (p v dhet g (ST ]
£ 17 % z”‘r -4

2

I

In (2.30) it has been assumed that the ratio pk/uE is indepen-

dent of k.

Within the framework of our effective mass approximation
we only need to evaluate the model potential at E = EF' To
further simplify the computation we have replaced (k + gIVM(EF)|K>
in the screening term by the Fermi energy shell matrix element
(k + gl vyE) [K)p (I + gl =k =k, for g = 2k, and k = kg,
|k + g| = g - kp for q > 2kp). Equation (2.27) now becomes, after

some manipulation

A WEDIAY = (A1 | (B4 + e 1) 7% (D)

€ (3)
(2.32)
_—..-.._| E é
+ (3 )(’fffjl (EIE)
Here Vooc and V,.g represent the local and nonlocal parts of Yy

respectively. Only the first term in (2.32) is nonlocal.

Values of the model potential parameters for the three
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metals considered are tabulated in Appendix II. Figure 5 shows
our Fermi energy shell form factor for bismuth normalized to

the atomic volume . Shown also are the HAA form factor for
comparison and the position qp of the main peak in a(q). There
is not much difference between the two curves. Ours is in
slightly better agreement with Cohen and Heine's (1970) esti-
mates of the node of the form factor from liquid structure data.
The slight difference in the long wave limits is due to the
different atomic volumes used. Our value is appropriate to the

liquid whereas HAA used the solid state value.

Numerical computation

Throughout our numerical work we have used "semi-atomic”
units so that energies are in rybergs and momenta in ao"l where
2
a = fL is the Bohr radius. The calculations did not 'involve

2
° me

any special techniques of numerical analysis and therefore need
not be described in full. We mention here only those aspects

which are important for accuracy or computational efficiency.

(1) The angular integral f(k, k') in (2.21) was first tabu-
lated at 29 values of k and 58 values of k' in the interval
0 <k, k' = 6.5. The points weré distributed more densely
where the function was more rapidly varying. More points were
needed for k than for k because the structure of £f(k, k') was
more complicated than that of Z(k, E), and the iterative solu-

tion of (2.20) required us to integrate a product involving
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f(kx, k') over k'. A Romberg quadrature (see e.q. section 4.4,
Conte 1965) was used to perform the integration. It has the
advantage of proceeding automatically until the specified ab-

solute or relative accuracy is achieved.

(2) Equation (2.20) was solved by complex integration rather
than separating it into real and imaginary parts. In this way
the interpolation for the real and imaginary parts of the inte-

grand could be done simultaneously.

(3) We can easily estimate the truncation errors AI and An(E)
in I and n(E), which may arise from the use of a finite upper
limit of integration, kM say, in (2.20) and in the final inte-

gration for the density of states. From (2.20) we have

A2 (4F)= ——'—,foofu,fz') (&) a4’
} 477 E - (4’)2_‘2(*;E)
R o

or

/ - £ (4,%) ReJ (%, E) (¢)at’
RQAZ(&'E)? hr? 1 3 2
4r'1‘ ('E-U‘_?—Ref(ﬁ',E)J + [ImZ(435)
™ M |

7 (2.33)
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and

£046,4)TaZ (428) (£)" at’
[z-‘f/“_’)‘_ﬁez&,’e}]‘-f [LIws)] - (239

P
TnoT(49)= 3
m

Our particular choice of km = 6.5 insures that in the denominator

(x')?

>> E for the entire range of E in which we are interested,
and (k')2 >> PeE(k', E), Imz(k', E) (from the results of our

calculations). Equations (2.33) and (2.34) thus reduce to

Re A T (4,E) = ﬁ?&f FLb,ADRT KD
i

G , (2.35)
and
o /
oL A E)INIHIE) .
ImAZ-(",t> ~ 4_”)_}:& -(“\/)2. 4 . (2.36)

m

Consider, for example, the case E = 0.6, k = 0.2. The relevant

quantities have the values ReZ (0.2, 0.6) = -0.092, ImZ (0.2, 0.6)

-4

= ~-0.0858, Rel(6.5, 0.6) = -0.031, ImZ(6.5, 0.6) = -10 °, and
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£(0.2, 6.5) = 0.0113. The asymptotic behaviour of the functions
Rer, Img, and f were estimated by log-log plots. They were

4

found to vary as (k')—z, (k')~%, and (k')"4 respectively. In-

sexting these into (2.35) and (2.36) we obtain
N / —-— =
IRe AZ (KE)x ==, feh, %) 0T (4, D2 (2.37)
28T »Em

and

-f

~” A
[T, AZ 6B = 5 £ (o) T Z (ko )4, -~

In particular,

| &

| ReAZ (0.2,04)] = 226X 10

and

' 'y
| Tm 4 2. (0'2,0'é>| ~ [-$ X o ’ .

These errors are obviously negligible in comparison with the
numerical values for ReZ (0.2, 0.6) and Imz (0.2, 0.6) quoted

above. This is. expected to hold for other values of k and E.
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Similarly, from Equations (1.5), (1.3), and (1.8),

Am(E) = E%T'zjmp (4, E)k"d%

Ko
=~ wa Z(ﬁ ®
2T
R
(2.39)

l o7

< ot (T Z kB, Rmmil

For illustration we quote some numerical results: n (0.06) =

0.0166, ImZ(6.5, 0.6) = -10_4, n (-0.05) = 0.0041, and ImZ (6.5,

-0.05) = -3.3 x 10_6. Evidently An is negligible except at the

very bottom of the band (Eo s =0.09).

The above considerations should not be taken to imply
that our final results for the density of states will be accu-
rate to the order indicated in (2.39). Ultimately the accuracy
of our calculations is limited by the available experimental
data for a(g). The point is that no extraneous numerical error

has been introduced.
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(4) The interval of integration (0, 6.5) for both I and n(E)
was divided into three subintervals (0, ko - 24Ak), (kO - 24k,
ko *+ 2Ak) , qhd (k, + 24k, 6.5) where k_ is the peak position
of the specﬁral function p(k, E) and is given by the solution

of the equation,

E —k?-Re 7 (k,E) =¢ y (2.40)

Ak is the "half-width" of p(k,E) if I were independent of k so
that p(k,E) would be a Lorentzian. Provided that ko >> Ak,
which is satisfied except for E very close to the bottom of the
band, Ak is given to a good approximation by ImZ(ko, E)/ko.

The purpose of this subdivision of the interval is to reduce
the computer time since p(k, E) is a sharply peaked function of
k and the integration in the region outside the peak converges

much more rapidly.

As a test of our programs we have calculated the self-
energy and hence the density of étates for bismuth using free-
electron mass (i.e. pu = 1) and Ballentine's (1966) values of
|u(q)lza(q) in which a local appr9ximation of the HAA model
potential was used. In Figure 9 the n(E) so obtained (case 2)
is compared to Ballentine's (case 1) which he calculated by
making the "complex energy approximation" of replacing Z(k, E)

in the denominator of (1.17) by a constant Z(ko, E). The coin-

‘cidence of the two curves at all points except at the small

peak around k = -0.14 testifies to the general correctness of
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our programs. At the same time it al?o shows that the "complex
energy approximation" did not introduée serious errors apart
from a slight spurious enhancement of the structure. We haye
also plotted on the same graph the results for n(E) with effec-
tive mass correction using 1ocal~(case 3)‘and nqnlocal (case 4)
model potentials respectively. A comparison of cases 2 and 3
shows that the structure is somewhat reduced by the inclusion
of the energy dependence of the potential through an effective
mass. When é nonlocal model potential is usea (case 4) the
structure is further reduced so that the shoulder of the n(E)
curve, which is still quite distinct in case 3, is now barely
visible. Thus we find the density of electronic states of
bismuth to be more nearly-free-~electron-like as the calculations

become more exact. To understand what is happening we need

only consider the origin of the structure obtained with a local,

energy independent model potential. In bismuth it is the large

value of Iu(q)lza(q) at the position of the main peak of a(q)

which gives rise to the structure (Ballentine 1966). For a

nonlocal, energy dependent model potential the position of the
zero of (k|u(E) |k + g) varies with k and E, with the effect of

smoothing out the structure.

The real and imaginary parts of the self-energy I(k, E)
corresponding to case 4 are shown in Figures 6 and 7. These
have about the same amount of structure as found by Ballentine
(1966) but the values are typically smaller by factors of two

and three respectively. By comparing the values of I(k, E) for
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Figure 9 Density of states per unit volume (a.u.) per unit

energy range, n(E) for bismuth.

—&A—— Case 1 " Local, energy independent model

potential, "complex energy approxi-

mation" -- Ballentine (1966)
—@®—— Case 2 Local, energy independent model
potential
—p@}— Case 3 Local model potential, effective

mass correction

Case 4 Nonlocal model potential, effec-

tive mass correction

— — — Free-electron parabola (origin shifted)

—— —— Free-electron parabola corresponding to

u=0.87
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the four cases mentioned above we observe that it is mainly
the use of a nonlocal model potential which is responsible for
the drastic reduction. The smaller vaiues of ImZ(k, E) are
reflected in the narrower width of the spectral function p(k, E)
(Figure 8). Moreover, if we define a thickness of the Fermi

surface, Ak as the distance between the points where a tangent

Fl

to the momentum distribution curve for occupied states (Figure

10) at P(k) = 0.5 intercepts P = 0 and 1, we/bbtain a thickness
P

of 0.087 ao_l, This is much smaller thaﬂ/Ballentine's (1966)

value of 0.205 ao-l. We conclude that the electronic states of

bismuth have nearly-free-electron behaviour.

§2.4 Application to Indium

In their photoemission experiments on indium Koyama et
al. (1967) and Enderby (1969, unpublished) have found a pro-
nounced structure in the energy distributions of the photo-
emitted electrons, which has been tentatively attributed to
structure in the density of occupied states (Koyama et al. 1967).
It is therefore of considerable interest to calculate the den-
sity of states in this metal. The structure factor a(q) for
indium at 170°C (Figure 1ll) was taken from the X-ray diffraction
data of Ocken and Wagner (1966). A nonlocal model potential
(Figure 12) similar to the one for bismuth was used, but in
this case the parameter E;o (see Eq. (2.28)) was adjusted to
make the form factor fit the points deduced from the Fermi

surface data and the pressure dependence of the de Haas-van
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Alphen effect (Cohen and Heine 1970, and references given there).
The best fit was obtained when Eic’ considered as a parameter,
had the value -0.45. The ratio ﬂk/ﬂE = 1.1 in Equation (2.30)
is responsible for the difference between the long wave limit
of our form factor and that of the HAA potential. Figures 13

to 17 display the results of the calculations.
s

Indium is even more free-electron-like than bismuth in
every respect. Both the real and imaginary parts of the self-
energy (Figure 13 and 14) have smaller values and the imagin-
ary part has less structure. The spectral function (Figure
15) is narrower and there is less disorder broadening in the
momentum distribution P (k) (Figure 17). Above all, the density
of states (Figure 16) differs very little from the free-electron
parabola corresponding to the appropriate effective mass. 1In
the light of our presént results the interpretation of the
photoemission data by Koyama et al. (1967) appears dubious.
Shaw and Smith (1969) have come to a similar conclusion on the

basis of their second order perturbation calculation.

§2.5 Application to Mercury

Liquid mercury possesses electronic properties which
are strikingly different from those of other liquid metals.
Some of these are: (a) very high d.c resistivity and thermo-
electric power, (b) sharp decrease in resistivity on alloying

with metals other than the alkalis, and (c) optical conduc-

b
1]

ty
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tivity that cannot be fitted to the Drude formula* (see Mott
1966 for a review). By postulating a dip in the electronic
density of states near the Fermi energy Mott was able to give
a quélitative interpretatibn to a large body of experimental
data, although Adam5/11968) later showed that the resistivity

/ -
of Hg—-Au alloys is“an exception to Mott's model.

The theoretical origin of the dip in n(E), as calculated
either by second order perturbation theory or by the Green func-
tion techniques used in this thesis, is the sharp peak in thg
structure factor a(q). Because a(g) occurs multiplied by the
square of the model potential form factor u(g) (see Eqg. (1.17)),
which according to Animalu and Heine (1965) should be zero o
near the peak position qp of a(qg) for mercury, Mott's hypothesis '

appeared for some time to be poorly founded.

However more recently Evans et al. (Evans et al. 1969,
Evans 1970) showed that the model potential for mercury should
have a considerably different form from the HAA model potential,
and in particular u(g) should not pass through zero near qp.
Using Ziman's theory (Ziman 1961, Bradley et al. 1962, Faber
and Ziman 1965) they obtained reasonable quantitative agreement
with most (though not all)of the resistivity and thermoelectric
power measurements, without employing Mott's hypothesis about

the density of electronic states.

*
Experimental workers are not unanimous regarding this point.

See Part II below.
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The form of the Evans model potential suggests that the
density of states in mercury might indeed have an interesting
structure. Accordingly we have calculated n(E) for mercury
(Chan and Ballentine 1971a) using such a model potential in
conjunction wirh/the structure factor (Figure 18) taken from

the X-ray diffraction data of Kaplow et al. (1965).

Several features distinguish the model potential of
Evans from that of HAA:
(a) the core potential is replaced by a square well of depth

A, only for & < 20, where 20(= 2 for Hg) is the largest angu-

L
lar momentum for which there are core states and the energy
dependence in A, is retained in calculating the screening; for
higher % the true potential is used;

(b) the arbitrariness in the choice of the core radius R'Q is
removed by an optimization procedure to obtain the smoothest

model wave function, which requires that
- 2 .
Ae = —R- J (2.41)

(c) in extrapolating A, from the, free-ion term values to con-
duction band energies a quantum defect method (Ham 1955) is

‘used instead of linear extrapolation.

The first two modifications are due to Shaw (1968) where-
as the last, particularly important for mercury in which the

5d states of the core of the free ion come close to the con-
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duction band, is the contribution of Evans. He also found
that for 2 = 2 Equation (2.41) could not be satisfied and

RZ(E) had to be determined by minimizing IAZ(E) - Z/RZ(E)I.

We hé@e used the bare model potential of Evans (1970)
but have treated the screening and the depletion potential
slightly differently. The matrix element of our screened mod-

el potential has the form

Al w @Y = k44, (O + % (8) +Va(3)
$(%)

(2.42)

* .
L [ 41y () ijw‘ 1 1% BIR 3
Pt T W em) =5 o

The screening was calculated in the same way as described in
Section 2.3.1 except that this time we retained the nonlocal

and energy dependent nature of the model potential in evalu-
ating the integral in (2.42). The depletion potential Va arises
from the difference between the charge density corresponding

to the model wave function and that corresponding to the true
wave function in the core region and is taken to be

w g (x)

vy (4) = s (2.43)

where g(x) is given by (2.29) and -Za is the total depletion

'charge. The latter is related to the effective mass uE by
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(Shaw and Harrison 1967)

A ,)
f = (4= ‘ (2.44)
///'
We have not included Vi because Evans (1970) did not include
it and, moreover, Ballentine and Gupta (1971) found that an

energy shift in E due to Vier tends to cancel the direct con-

Fl

tribution of v, .
ic

Figure 19 shows our model potential form factor calcu-
lated with and without effective mass correction, compared to
that of Evans. The curve for free-electron mass is in general

agreement with that of Evans but differs slightly around the

region g 2k_. The origin of this discrepancy is not clear,

F

for the difference in the treatment of screening and the de-
pletion potential should have little effect for these values of
g. Jones (1970) has fitted Fermi surface data for solid mer-
cury to determine an empirical pseudopotential. He found three
possible solutions, one of which is quite close to the Evans
potential but closer to ours. Using such a pseudopotential he
obtained a conduction bandwidth smaller than the free-electron

value, in conformity with an effective mass p greater than

unity (see Table I above).

The results of our calculations for liquid mercury are
depicted in Figures 20-24. The more complicated structure of
I(k, E), especially in the imaginary part, suggests that one

might expect n(E) to have more pronounced structure in mercury

i v i

R
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than in the other two metals previously discussed. As a matter
of fact we did obtain a dip in n(E) (Figure 23) but its mag-
nitude is much smaller than that estimated by Mott (1966), and
it is not 1likely to have any serious effect on the d.c. trans-
port properties. Taking our results together with those of
Evans (1970), we may say that the structure in n(E) and the
unusual transportrproperties of Hg and its alloys are results
of the same cause (the peculiar shape of the model potential),
rather than one being the cause of the other as Mott had sug-
gested. The depletion in the density of states around E = 0.3
is also manifested as reduced peak height in the spectral
function p(k, E) (Figure 22), or equivalently an increase in
ImX. We can roughly estimate the position in momentum space "
of the relative minimum in n(E). Denoting the bottom of the
band by E, and the energy for the minimum by E we have‘{u(Em -
Eo)}% ~ 0.59 ao_l. This is remarkably close to the first :
spherical Brillouin zone boundary, qp/2 = 0.61 ao-l, consider- i
ing that a unique dispersion relation does not exist for a

liquid and a parabolic E - k relation is a poor approximation

for mercury.

§2.6 Comparison of the Three Metals

We observe that the width of the spectral function
(Figures 8, 15, 22) and the thickness of the Fermi surface, AkF
(Table II) both indicate that the scattering is strongest in

bismuth, weakest in indium, with mercury intermediate. This



TABLE II Some Important Results
Bi In Hg
_ -1
kg (=kp, ) ta,™H 0.8582 0.7850 0.7091
bk, (ao'l) 0.087 0.040 0.055
gy ) (Ry) 0.7365 0.6162 0.5028
g (D) 5 44
ro (Ry) 0.850 0.68 0.448
Eg (Ry) 0.775 0.650 0.422
AE (Ry) 0.861 0.675 0.452
n (E. ) (et a "3y  0.02174  0.01994  0.0180
o "Fo o] ° T °
*w ¥ -1,-3 188 179 - 0.0202
n, " (Eg, ") (e 1 a, ™% 0.0 0.0 .020
=1 =3
n(Eg) (Ry"! a,"3)  o.0185 0.0178 0.0186

(a)
(b)

Subscript o refers to free-electron values.

Asterisk indicates quantities obtained with effective

mass correction.

PEEN
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is in accord with the experimental data for d.c. resistivity

p; (quoted in Cusack 1963) and the values of ]u(qp)l2 a(qp)/
(AE)Z, where AE = EF - Eois the conduction bandwidth:
Bi Hg In
py (1 ohm-cm) 128.1 90.96 33.1
Iu(qp) |2 a(qp)/(AE)z 0.0409 0.0225 0.0131

One may then wonder why it is that the density of states for
mercury has more pronounced structure than bismuth. The answer
lies in the difference in the shapes of the model potentials.
In bismuth the form factor (Figure 5) has a steep slope at qp
and passes through zero nearby so that, as explained in Section
2.3, the use of a nonlocal model potential tends to wipe out
most of the structure in n(E) predicted by a local approximation.
This is much less likely to happen in the case of mercury be-
cause the form factor remains quite stationary over an appreci-
able range of g around qp. As regards the resistivity a local
model potential should give the correct picture since oﬁly

those electrons on the Fermi surface are involved. 8o there

is actually no paradox between the different properties.

Finally we note that the value of k at which the momen-
tum distribution P(k) = 0.5 is practically the same as the free-

electron Fermi momentum for each of the three metals. For in-



dium and mercury we found that we could not reliably calculate
P(k) at small values of k because it was difficult to locate

the bottom of the conduction band precisely.
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CHAPTER 3

INTEGRATED DENSITY OF STATES

§3.1 The Problem of an Energy Dependent Potential

We have seen in Chapter 2 how the energy dependence of
the model potential can be included approximately by means of
an effective mass. Now we investigate in detail the difficulty

introduced by the use of an energy dependent model potential.

Suppose we take the hamiltonian of an electron in a
liquid metal to be H = p2/2m + W(E) (= H(E), say), the electron-
ion interaction being represented by the energy dependent model i
potential W(E). Its eigenvectors and eigenvalues will be energy

dependent,

He) | ¢,8) = E.(B) | Pn(®) . (3.1)

The true energy levels Eﬁ are obtained when the parameter E in
the model potential is equal to the current eigenvalue, that
is,

Ep= &n (B0 . (3.2)

Now, when we try to calcualte the Green operator, as in Section
1.2, from the equation G(E) = (E - H)"l we obtain results simi-
lar to (1.1)-(1.5) but with en(E) instead of the true eigen-

value En' Thus, in place of (1.5), we obtain



" -l
Z_;_é(E"Zn(E))=hZ { | - 35%, ~ S(E-Evn)

E=E, g (3.3)

which is not equal to the density of states.

Lloyd (1967) showed that one could formally circumvent

this difficulty by calculating the integrated density of states

N(E) using the equation

N(E) = ”',7%‘ T Im (4n {H—(Eﬂh:fq)}) . (3.4)

It is easy to show that (3.4) indeed evaluates the total num-
ber of eigenstates up to the energy E regardless of the energy

dependence of the model potential. Thus, from (3.4), we have

N (E) = - L= Ta[dn {H - (F4ap] ~b {H-(F-2n)]]

A LAOR G {g,00-(z-<7)}]
1 A % (3.5)

il

7,0 E-E(®)



where the step function 6 (x) is equal to unity for x > 0 and

is zero for x < 0.

The last step follows from the fact that the value of
the logarithm changes discontinuously from -im to +irm as one
crosses the branch cut on the negative real axis. Equation
(3.5) says that N(E) is equal to the number of eigenvalues en(E)
of H(E) which are less than E. The true eigenvalues En are
determined from Equation (3.2). The number of these below
energy E will also be given by N(E) provided that Ben/aE is
less than unity, that is as E increases en(E) must not increase

so rapidly that a level €, from just below E rises above E.

If one differentiates the right hand side of (3.5) one H
b
immediately obtains 3 §(E - En), which is just the density of i,
n Iy
states. This leads to the hope that it may be possible to o

calculate n(E) from

S L Ta T [ Y]

The differentiation of a function of an operator with respect
to a parameter is by no means tri;ial because the operator
does not usually commute with its derivative. We have managed
to derive a general formula for this differentiation (see
Appendix III), but unfortunately it turns out to involve mul-
tiple commutators which are too complicated for the present

application. Finding it rather fruitless to pursue this line
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of approach we turn to a direct evaluation of (3.4) (Chan and

Ballentine 1971b) for the less convenient quantity N(E).

§3.2 A Perturbation Expansion

The formalism for the integrated density of states pre-
sented in the last section is similar to that of Edwards (1962)
except that where the Green function occurs in Edwards' for-
malism, we now have the logarithm. It might‘appear from the
similarity that we could employ Edwards' technique of expand-
ing in a formal perturbation series, taking the ensemble aver-
age and resumming the terms. However, an examination of the

diagrammatic expansion reveals that such a straightforward s

fig
analogy with Edwards' method will not work. N

Consider the operator

Ay (H-E) = &{(HD—E)O—GOW)E, (3.6)

_ _ - -1
where H = Ho + W, and Go = (E Ho)

is the free-electron
Green operator. The energy dependence of Go and W is not expli-
citly indicated. Now 2n(AB) # ZnA'+ ZnB, in general, if the
operators A and B do not commute. Nevertheless; one still has

equality of the traces of the operators.

T Lo (AB) = L (et [ABI)

= L (der 4) o (42f13>



¥
=Th&nA + TadnB | (3.7)

From (3.4), (3.6), and (3.7), we then obtain

N(E)"‘"-%—T-]_AIM {A(H,'E)ﬁn&(!’é{,w)}' (3.8)

The first term is just NO(E), the number of energy levels below

E for the free-electron hamiltonian Ho’

To evaluate the second term it is natural to try a for-

mal expansion, ‘ o

— ('—GOW> = G.W + 'i_ G9W49W+ ?G,W@,W@,W%’" ‘(3.9) b

The ensemble average, << k| -%n(l - GOW)IK €>ave' of the diag-
onal matrix element in the momentum representation can be rep-
resented by the diagrammatic series shown in Figure 25. The
notation here is the same as in Section l.4. If the n"1 factors
were not present, we would be able to sum up "propagator re-
normalization" diagrams of all orders. Indeed, since these
diagrams differ from ordinary Green function diagrams only by
thelack of a GO line on their right hand ends, the sum of all

diagrams omitting n‘l factors would be (G - Go)Go—l'

*
We are indebted to Dr. P. Lloyd for pointing out this relation.
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The troublesome n-l factors can be eliminated if we con-
sider instead the expression -A(é%)zn(l - GOAW). This can be
represented by the same diagrams as in Figure 25 except that
now the vertex corresponds to A{k|w|k" rather than &lwlk™
and the n~1 factors are absent. Examining the set of diagrams,
we see that they are those for the ensemble average diagonal

1

matrix element of (G, - G ) Go— , or equivalently of G,AW.

Here we have defined a Green operator

G =[5 H -aWE)]" | (3.10)

Its ensemble average diagonal matrix element can be written in

the form (units ﬁ = 2m = %ez = 1)

(AP - E -T2

where the self-energy function zx(k, E) is defined by this

equation and is formally given by the sum of all irreducible

diagrams (Edwards 1958, 1962; Ballentine 1966; see also Sections

1.2 and 1.4, this thesis).

The result of this diagrammatic analysis is

<—<’fi\)\%\ A (/'GDAW)’@ZN

= (<K (G- 66,7 1R,

(3.12)
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(3.12)

= Z',\(/L,E)[E,gx-z/\ (4.5)] ".

The problem of evaluating (3.8) is thus reduced to the compu-
tation of the self-energy function ZA of a Green operator con-
taining AW as the potential energy, and familiar techniques and

approximations (Ballentine 1966) may be used.

The result (3.12) can also be derived algebraically
without reference to diagrams although it is unlikely that we
would have discovered it without diagrammatic analysis. If
A{)) is an operator depending upon a parameter A, then the

usual rule of calculus

a - A7 dA
ﬂ(/m/’) = A" =+

is valid, in general, only if the two operators A and dA/dA
commute (see Appendix III). For A = (1 - GOAW), this condition
is clearly satisfied.

Hence
A b l—gaw)= A (- GaAW) G W
= (G = aw) A w

e (E-Hy-2WD) AW



It is not convenient to calculate the ensemble average of this

expression because both factors G, and W depend upon the

A
arrangement of the ions. However, with a little manipulation

one obtains

GaAW = G, (6.7-G57")
= (é,\ '6'0) G'o-’ .

This can be averaged directly because only G, depends upon the

A
arrangement of the ions. Equation (3.12) now follows immedi-
ately upon taking the diagonal matrix element in momentum rep-

resentation.

Writing

—_— A
MNE) = =5 (B A (maAWY),

/" (3.13)
we have, from (3.12),
3

L A (*,E) 3

- = A ot
MCI\ /-E) -7 GW)JIM { E ~kI-Z\(4E)

— £ “:M{ A }*z‘“’ (3.14)
- ZTTS E "’kz—z\('('is) )



where L3 is the normalization volume. In terms of M(), E).

equation (3.8) becomes

‘ _
N (2) = Ng (&) -+J, ﬁ(_f\#f_)an\ (3.15)

In (3.15) it is understood that N(E) now represents the ensemble
average number of states. It should be emphasized that, c¢ontrary
to the effective mass approximation in Chapter 2, the present
method of handling the energy dependence of the model potential

is exact.

To gain some insight into our new formalism consider the
simple case of a uniform potential W = WO(E), which is inde-

pendent of position x but depends on the parameter E. Then

Z?\ (’be> = A WO(E)

and, from (3.14),

L ;\VV;(E)
ALE = ITwm
M(/ ) T Z.- 'E"'ftz—}\W,(E)

(3.16)
= '>\W°<E)MG<E-/\WO(E)) ,
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where

is the free-electron density of states. Substituting (3.16}

into (3.15) and performing the integral we have,
N(E) = N, (E- Wo(®)

Thus the effect of a uniform, energy dependent potential is,
as expected, to shift the free-electron energy spectrum by an
amount WO(E) which depends on the energy. The corresponding

density of states is

ol W,
n(E) = Mo (E “Wo(E) (1= FE 5.17)

We may compare this result with standard band structure cal-
culation. Since the potential-does not depend on position we

have a unique E-k dispersion relation,
— 2

from which
3
L d E \-!
nie) = =+ ()



L3 AW,
- 2;;‘ ® ( [= ’;")

- a W,
= M, (- Wo(l:))<l-—- - ) 5

in agreement with (3.17).

Although we have overcome the problem of an energy de-
pendent model potential in calculating the number of states
N(E) , we are now unable to determine any spectral information
about the states. Just as the diagonal matrix element of the
Green operator (1l.1) yields the spectral function p(k, E),
(1.3) whose trace is the density of states per unit energy
(1.5), so the diagonal matrix element of n(H-E) will yield

the quantity

f p(k,E)aE’

But it was necessary for us to replace 2n(H-E) by another oper-
ator with the same trace (using (3.7)) in order to do pertur-
bation theory. Thus we have given up the possibility of obtain-

ing information about the spectral function.



§3.3 Application to Bismuth

To apply Eqgs. (3.14) and (3.15) in a practical calcu-
lation we have to evaluate Zx(k, E) for different values of the
parameter X between 0 and 1. We evaluate Zl(k,E) by solving

self-consistently, as in Chapter 2, the integral equation

E ) <
Z)\(’k,ﬁ) = 71/\1,((:(5’?"5) + r_ﬁ!jluff,f‘,E)l_a(g)o(: ,
@) E‘(‘k'Y*ZA('k:E) (3.18)

~s

where u(k, k', E) is again given by (2.19), but with the argu-
ment EF replaced by E, and the other symbols have the same
meaning as in (2.18) and (1.17). Note that since a nonlocal,

energy dependent model potential will be used, the first order

term depends on k and E, and therefore cannot be set equal to
zero by a shift of the origin. In terms of diagrams we are
approximating the complete series of irreducible‘diagrams by
the partial sum in Figure 26, which is the analog of the series

represented by Figure 2 (b) and (d).

We have used the same model potential and structure

factor for bismuth as in Section 2.3. The numerical solution

of the integral equation for the self-energy function also
proceeded in the same manner, but of course this time both
ul(k, k', E) and the angular integral £ (k, k', E) (See Egqs. (2.19)

to (2.21)) must be evaluated at the appropriate energy. We
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have made use of the assumed linear energy dependence of the
model potential parameters Al(E)’ and hence of u(E), to obtain
the value of f at any energy E from its value at the Fermi
energy. The results for M(A, E)/A and N(E) are shown in Figures
27 and 28. For convenience N(E) has been expressed in number

of electronic states per atom.

The numerical computation becomes inaccurate for very
small values of A. However, the limiting value of M(A, E)/A
as A > 0 can be easily obtained from (3.18) by treating X as
a perturbation parameter. The result for this limiting value

is zero for negative E, and for positive E it is

—4——';znu(1g,7§,1—f)k, wite X=E
/

Because the model potential parameters AQ(E) are tabu-
lated at the Fermi energy (Animalu, 1965), we must first esti-

mate the position of E_, on our energy scale before we can begin

F
the calculation. Using first order perturbation theory, we
estimated it to be 0.246 on the séale of Figure 28. However,

it turns out that N(E) equals 5 electrons per atom at E = 0.146.
In principle, one could correct this inaccuracy of the first
order initial approximation by readjusting Eps the energy for

which we use the tabulated parameters AE(EF)' until it became

self-consitent with the energy value for which N(E) equals 5
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Figure 27 M(A, E)/X (per unit volume) versus A for
several values of E. See Egs.(3.13) and
(3.14) for the definition of this function.
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Figure 28

Number N(E) of electronic states per atom
below energy E, calculated for liquid bis-
muth at 300°C. Solid curve: calculated
result. Dashed curve: best fitting free;
electron curve,‘corresponding to m*/m = 0.63.
Dotted curve: obtained by integrating n(E)
curve (case 4) in Figure 9. Last two curves
shifted so that all three curves coincide

at E = EF‘
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Figure 29 Similar to Figure 28 but N2/3

plotted.
The free-electron (dashed) curve is now

a straight line.
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electrons per atom. Because of the very large amount of com-
puter time needed for this calculation, we have not carried
out this iteration to obtain a self;consistent Fermi energy.
This means that the model potential form factor which was
actually used in the calculation at the point marked EF in
Figure 28 was not the Fermi energy shell form factor shown in
Figure 5, but instead it was the form factor corresponding to
an energy shell 0.1 Ry lower. The difference between these

two form factors is very small (~ 0.005 Ry), and it is not

likely to have a significant effect on the final results.

§3.4 Discussion

The distribution of electron states (Figure 28) calculated
for bismuth has very little structure, and does not differ

greatly from a E3/2

free-electron curve modified by an effective
mass. (The zero of the energy scale has no absolute significance.)
This can be seen more clgarly in Figure 29, where we have plotted
Nz/3 versus E. The lower portion of the curve is well fitted

by a straight line, which we have extrapolated from our lowest
computed point (E = =-0.65) to the bottom of the band. We obtain
a bandwidth of 1.18 Ry; compared with the free-electron band-
width of 0.74 Ry and the bandwidth 0.861 Ry of Chapter 2. The

corresponding bandwidth effective mass here is u = m*/m = 0.63,

compared with the first order estimate of 0.87 of Chapter 2.

The smaller value of the bandwidth effective mass may
be attributed to higher order contributions, and in particular

or
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to the energy dependence of the off-diagonal matrix elements
of the model potential. The fact that E(k) does not really

exist for a disordered system may also be relevant.

Except for the difference in the effective masses ob-
tained the results of this chapter are quite similar to those
in Section 2.3 as far as the qualitative hature of structure
is concerned. This is clear from a comparison of the curve
(dotted line in Figure 28) obtained by integrating the previ-
ous n(E) (case 4 of Figure 9) to the present N(E) curve (solid

line in Figure 28). There is no sharp structure in either case.

The curves of M(\, E)/A suggest some structure near

E = -0.55, but it does not show up on the curve of N(E).

The model potential which we have used was considered
to be the best available at the time when the calculation was
begun. Since then it has been demonstrated (Evans et al. 1969,
Evans 1970) that the linear extrapolation of the model poten-
tial parameters Ag(E) from the energies of excited ionic states
to the energies of the conduction band in a metal (as was done
by Animalu and Heine (1965)) may be inaccurate if the highest
core level is a d-state. More reliable values of AE(E) and
dAl/dE at conduction band energies can be obtained by a non-
linear extrapolation using the quantum defect method (Ham 1955).
The work of Evans (1970) and our calculations in Section 2.5
showed that this nonlinear extrapolation has important conse-

quences for mercury, in which the highest core levels are very
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close to the conduction band, but it is not known how impor-

tant these effects would be for bismuth.



PART II

FREQUENCY-DEPENDENT CONDUCTIVITY




CHAPTER 4

FORMAIL THEORY
§4.1 Introduction

The experimental results on the optical conductivity
o(w) of most liquid metals can be fitted adequately to the Drude

formula (see Faber 1966 for a review):
— 2
> () = 0~(0)/( 1+ w? T (4.1)

where w is the angular frequency and 1t is the relaxation time.
The case of mercury is an exception. There are two apparently
contradictory sets of data. Ellipsometric measurements by
Hodgson (1959, 1960, 1961, 1962), Smith (1967a) and Faber and
Smith (1968) have yielded values substantially higher than those
predicted by Eq. (4.1). Taken together with the recent low
frequency determination by Faber and Comins (private communi-
cation), these results indicate a peak in o(w) at fw ~ 0.6 eV
as illustrated schematically in Figure 30. On the other hand,
the reflectivity data of Schulz (1957), Wilson and Rice (1966)
and Bloch and Rice (1969) agreé with the predictions of the

Drude theory to within a remarkable precision.

Several explanations have been advanced for this unusual
optical behaviour of liquid mercury. Smith (1968) suggested
that it may be understood in terms of the predominance of back-

scattering of the electrons in mercury whereas Bloch and Rice
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Figure 30. Schematic frequency variation of the
optical conductivity of mercury as
measured by ellipsometry.
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(1969) surmised that the surface of mercury is not a geometric
boundary, but a transition zone over which the properties of the
system vary from those of the bulk metal to those of the contact
medium and it is the sensitivity to such-surface properties
that give rise to the anomalous results obtained by ellipsometry.
More pertinent to the present work is Mott's hypothesis (1966)
that the abnormal optical properties of mercury, like its high
d.c. resistivity, are due to the low density of states near the
Fermi energy, a peak in o(w) occurring when the photon energy
is sufficient to bridge the low-density region. In Section 2.5
we have found a dip in the density of electronic states n(E) of
mercury, although it is less severe than that suggested by
Mott. It is therefore desirable to carry out an explicit cal-
culation of the influence of n(E) on the optical conductivity.
In this chapter we shall reduce the Kubo~Greenwood formula
(Kubo 1957, Greenwood 1958) to a form suitable for the present
application. In order to make the calculations tractable cer-
tain approximations will be introduced. Various parametrized
model Green functions corresponding to different densities of
states will be used in Chapter 5 to evaluate 9(w) numerically.
The effect of n(E) on the zero-frequency conductivity will also

be studied.

§4.2 Reduction of the Kubo-Greenwood Formula

In the independent-electron model the Kubo-Greenwood
formula for the frequency-dependent conductivity of a metal can

be written (in units f = 1) as
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o () o Ao AL G (B)n (D - f5)
- Mo”7, E, -E, +ew < Ear - Es
NEs (4.2)

The notation is the conventional one: £f(E) is the Fermi-Dirac
distribution function, ju stands for the pth component of the

one-electron current operator, and
(Jhhe = Chl 2l

where l¢£> denotes the eigenvector of the one-electron hamil-
tonian with the eigenvalue Er' Only the absorptive part, which
is equal to the real part in the absence of a magnetic field,
needs to be considered, the imaginary part (corresponding to
the dielectric constant) being related to it through the

Kramers-Kronig relation. Thus

)C(Es)"?((EA)
E, - Es " (4.3)

Ke 0/““'0\)) - % Z (?‘l“zu (}J‘J),A‘s(EA'EK’“")
2,8 A

L2 ¥

Now, if there is no magnetic field, the current operator is
given by

- 2
Porwt

(4.4)

where E is the canonical momentum. Expanding in terms of the
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momentum eigenstates |k) we have

Fdys (B)= S 5 Ak, (BRI A XD |

* &°

sl -

(4.5)

The result of inserting (4.5) into (4.3) and introducing the

operator,
F(E) =2 Iyt £ (BB

is

Re Oy (@) = i:f;jd*&jdl: S kAR | (®) | X%l p ()1

4 47

L

¥ S(E"E/-Q-W) )C(E,) ~][(E>

E~-E’

gmvrf 4,:2 *, »k, 4 |7 (B)]%7<k| pCE-D12)

——
——

f(Ew> fe
w

X

It is convenient to introduce the Green operator

G (E) =

T
= ZZ |1k1><fHK.I ,
A E -En

The matrix elements of p(E) can then be expressed as

(4.6)

(4.7)

(4.8)
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ke (R I4) = -F T (kG He 147

= = Tl G (E) 1) , (4.9)

where

G ) = Lin o G (B2

The formula for Re cuv involves the operator product p(E)p(E'),

which can be related to G*(E) by

PR Y= SR (65 67()-6"®6 (=)

(4.10)

Generalizing the notation of Langer (1960) and Neal (1970) we

introduce,

K= (k58,6 = ( 4 474] 65 EE1G 2NN,

V
” (4.11)

In this notation (4.7) becomes, upon using (4.10),
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Re 0., (w) = 27€ F(E-w) - {(x)
v () PRYR fofE w

+- ++
X 5 L Re (i, (ke B0 S (4 5 50))
6 . L& (,4.12)

For a liquid metal the ensemble averaging ensures isotropy, and

so the conductivity tensor is diagonal,

If we define

+ - t+-
N . ’
K (/.’S)E/E>'~§ K/“/‘(/,’S)E)E) P (4.13)

then (4.12) can be written as

oL = F(e-w) -f(E)
Reo(w)-gﬂ fa“: -
(4.14)

X (Tﬁ‘)z(z"ﬁsj“’* Re{K (4;€, E-w)_/(+?$;;§,5—w)} ’
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Equation (4.14) is the frequency-dependent generalization of the
expression for the d.c. conductivity given by Langer (1960) and
Neal (1970). Our work is more closely related to thaf‘of Neal,
who was also dealing with liquid metals whereas Langer was in-~
terested in the many-body effects on scattering by uncorrélated

impurities.

4.3 Diagrammatic Analysis

Using the expansion for G = (E - H_ - v) "L, where V is
the total electron-ion scattering potential, we can provide a
. . . ++ - +- -+
diagrammatic expansion for each of Kuv’ Kuv' Kuv' and Kuv
defined by (4.11). For example, K:;(h, E, E') is equal to the

sum of all diagrams of the form

%

A~

Y

- x 4,

A

I
)

N
)

1

The notation here is similar to that in Section 1.4: an upper

solid line __§;~represents a free progagator Go+(k, E) = (E +
]

io+ - kz)_l, a lower solid line __%;_ represents Go-(k', E) =

(E + io_-(k')z)-l, an intersection of two so0lid lines with a

dashed line (or vertex) represents a matrix element <h|v|g'> _
of the scattering potential due to a single ion, and a node

connecting n dashed lines represents a factor Nan(gl, [y ...gn),
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the continuous part of C (g, ... g ) defined by (1.16). All

renormalization diagrams may be summed by replacing the free

progagator line _§; by ii= which stands for the full pfo-
pagator G(k, E) = (E - k2 - IL(k, E))_l.' The leading diagrams
which remain are:

\ N N\

* -t T

+ { + b 4+ e ®
[}
y 4 —
< -~

In anology with the byson equation for the one-particle Green
function we may write a Bethe-Salpeter type of equation (see
e.g. Nozidres 1964, section 6.1) for the ensemble average gquan-

tity,

«’f&l6(5>/é'><£’}&(;~))@2m =

o ’
R * & % (4.15)
> o =
- 4 X gﬁ)é 4‘: 'B’ /‘b/
== 4" == )
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where the upper (lower) horizontal line is associated with com-
plex energy z(z'). Here we have introduced the irreducible

interaction part,

¢ £
7= ia (with external
I/‘ ’ -— )
L3 W(~)~ N4 )—' é\’_ ;2 propagator
lines removed) .
T 7 T T T
= 4 + . +}\ + a g .., (4.16)
L oy L LD

the sum of all irreducible interaction diagrams, which by

definition cannot be divided into two by cutting both propagator

lines but without cutting any interaction line. The quantity

K is now represented by

uv
Koo (45480 = 4.7

An iterative solution of the integral equation for ( )K k;

uv
zZ, Z ) would be expressed diagrammatically as:

>)('ku/+ | >)(4y/
+ ‘ ::; X ’k,/ 4 s .

(4.17)
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An integral equation to determine K(k; z, z') of (4.13) can be
obtained from (4.15). Defining a quantity P(k, g'; z, z') by
writing

4 £
= G4 D) P 4138),

4 4’

~

where:g(k, z) denotes the ensemble average of G(k, z), we have

I / p | , .
l </!2v)13 ;3)5): 5—5;3, +é—?).3 JM 54(’ W(:é/ ?S /)' 3)31)
(4.18)

XG4 A) T4, 455,57
By definition,

K(%;3.3)= Z’k ’ké(’fri)‘é*?)F("‘ 255,%). a9

Hence

K('&}S,?/) :/éz'é (4,})4(4)3')4-4(4/5)4(&)}/)
X@'r.“)ijd”* W(4,47% 33 )44 ) (4.20)

Z4M’M,,,,;;)
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For an isotropic system K(k; z, z') will be independent of the
direction of k, W(k, k"; z, z') will depend only on the rela-
tive angle of k and k", and P(k", k; z, z') will depend only
on the relative angle of k" and k'. Choosing k" as a polar

axis in doing the g' sum, we have

% 4T ; =y E)u %)
2t T =2 B F(*,_,sé)

= é'é'j K#%sy), 420
(V4 #,3)503)

Thus (4.20) reduces to

K (#53,8) = (4,30 406:30{ 4+ Gpf Wt 47 3,59

~r e )

Using isotropy again, this can be written as

K(%;3.3)= «5(4:,;)4(42,3'){42+j44f"v/,(&,$";;,;’) (4.22)

X K (475 3.3) o4}



- 114 -

where

W_a (’é)'k”}};}')_@_r)j Wt ,%27:3,% )6059""9”9 (4.23)

with 6 being the angle between k and 5". Equations (4.22) and

(4.23) are the same as (6.10) and (6.11l) of Langer (1960).

§4.4 Approximations

In order to calculate the frequency-dependent conduc-
tivity we must sum all the irreducible diagrams in (4.16) to
otbain W(k, k"; 2z, z'), perform the angular integration in
(4.23) to get Wl(k, k"; z, z') and then solve the integral
equation (4.22) self-consistently for K(k; z, z') which is to
be substituted into (4.14) for Re o (w). Although we know how
to enumerate the successive diagrams formally as in (4.16) and
(4.17), a complete realistic calculation based on this scheme
is obviously impossible at the present state of knowledge*.
First, the evaluation of any diagram other than the simplest
in (4.16) would require a knowiedge of three-particle or higher

correlation functions. Secondly, since the Kubo-~Greenwood

*
See, however, the recent contributions of Ashcroft and Schaich

(1970) , and Bringer and Wagner (1971). They studied only the
d.c. conductivity, trying to sum a suitable set of irreducible
interaction diagrams. In both cases a certain approximate
relation expressing higher order ionic correlations in terms

of the two-body correlation had to be made. The approximation
(and hence the partial sum of diagrams) was different in the
two cases.
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formula (4.2) involves the matrix elements (wrljulws> of the
current operator ju between true eigenstates |¢r>, the one-
electron Green function that enters (4.22) and other equations
is the one corresponding to the true scattering potential,
rather than the pseudopotential. Our attempt to find an explicit
relation between the true and the pseudo Green functions has
not been successful. To be able to carry on we have to do two
things: (1) to introduée an approximation in the irreducible
interaction, and (2) to work with fictitious liquid metals

represented by parametrized Green functions.

If we assume that the scattering is isotropic in k-space,
or equivalently, W(k, k"; z, z ) is orthogonal to the cosine
term, then Wl(k, k"; z, z') will vanish and (4.22) will reduce
to

K(#:3.3)= 4 (R 4(£,3)4°

(4.23)

which merely states that the ensemble average of a product of
two Green functions can be replaced by the product of their
averages. This simplifies the calculation enormously but is
not likely to be realized in practice. However, we may regard
our assumption as defining a model for a liquid metal, the
"isotropic scattering model", say. Calculations based on this
model with parametrized Green functions may still indicate how

much the structure of n(E) will affect Re o (w).
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The evaluation of (4.14) for Re o(w) can be simplified
a little by taking the low temperature limit. This is legiti-
mate since the typical temperature of a liquid metal is still
very low compared with the Fermi temperature TF = EF/kB, kB
being Boltzmann's constant. In this limit the Fermi-Dirac
distribution function f(E) is just a step function and (4.14)
can be written, in the "isotropic scattering" approximation, as

Et o

- | o
de J 44 Re [ K (4 £ E0)- K+M;E,E-w)}

_L 2
Re 00*’)‘47,-5(%)55 (4.24)
E

1

where EFo is the free-electron Fermi energy.




CHAPTER 5

NUMERICAL CALCULATION WITH MODELS

§5.1 The Lorentzian Model

Before introducing any model we note that, in the approxi-
mation of Section 4.4, (4.24) can be expressed in terms of the

spectral function p(k, E) (Eg. (1.3)) as

ﬁ,;m «74
Re 0 (w) :_I%K}Lza"j AE | 4 (0(4,5‘)(0('&)5—«:)446 ,
E

(5.1)
E o

which is equivalent to the formula that Faber (1966) obtained
using Kramers-Heisenberg dispersion theory in the form quoted
by Smith (1967b). Similarly, the zero-frequency limit obtained

directly from (4.14) can be written as
4
Re 7(0) = 37; )] % r “(&, E) A4 ’ (5.2)

which is equivalent to the formula given by Edwards (1958).

Hence one only needs to model for the spectral function.

The simplest model to use is to choose a constant self-

energy,

%= A+ 4T
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In this case the real part A corresponds only to a constant
energy shift and may be conveniently taken as zero. The Green

function is then given by

-

t /
’% (+.E) = E -4*tAT ’

and the spectral function is a Lorentzian,

,E) =L A
pAE =T (E-4)+T"

The calculation of the real part of the frequency con-
ductivity (hereafter denoted simply by o(w)) is now a matter of
straightforward computation. We have cut off the k-integration
in (5.1) at 10 kF and evaluated od(w) from w = 0 to the free-

electron Fermi energy E for the following values of T: 0.005,

Fo

0.01, 0.05, 0.1, 0.2, 0.4 (in units of E The results have

Fo)'

almost exactly the same frequency dependence as predicted by
the Drude formula, and the product I'c(0) remains constant for
the various values of T. Defining a relaxation time T such

that o(w) = %0(0) at w = 1/t we find that T is proportional

to 1/I'. Thus all features of the free-electron theory are
reproduced. It is suspected that it might be possible to prove
analytically that evaluating the Kubo-Greenwood formula with
the Lorentzian model would lead to the Drude formula, but we
have not attempted to do this since complicated contour integ-

rals are involved.
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We cannot draw any definite conclusion regarding the
effect of n(E) on the frequency-dependent conductivity from
our calculations with the Lorentzian model because the deﬁsity
of states corresponding to this model is not at all sensitive

to the value of I'. Simple integration gives

A E %
n (E):g—z (‘E'2+T‘2) <I + —————-—E2+~r‘l) (5.3)

For example, even when I' = 0.4 EFo’ n(EFO) from (5.3) differs

from the free-electron value only by 2%.

§5.2 A Parametrized Model

The parametrized model introduced in Section 1.3 (Egs.
(1.9) and (1.10)) is suitable for studying the influence of
the density of states n(E) on the frequency-dependent conduc-
tivity because different n(E) can be generated by varying the
parémeters a, b, ¢, and g. As is shown in Appendix I, this
model automatically satisfies the sum rule for the spectral
function. This is confirmed by numerical integration of p(k,E)
with respect to E, which yields 0.97 for an upper limit of
10 E and 0.99 up to 40 E

Fo Fo'
meters. We have calculated ¢ (w) from this model for a = 0.01

for typical values of the para-

tO Ocl’ b = 0-05. tO 0.5, C = -0.5 and O-l tO 0.5’ and g = 006

to 1.2 (in units for which 4 = 2m = kF = 1). Typical results are



!

o
(3]
~

- poztxjsuwexed bursn (J)u so3e3s Jo A3Tsusg g danbig

‘POTIRA B ‘UOT3IOUNIF USDIH TOpouw

(©43 jo syun) 3

L 'L 0L . 80 9’0

T

I | I ]

81606 ‘1’08 ————

§£6'0=6 ‘10°0 =@

10

0’

€00

(F)u




. *JWT3 UOoTjIEXeToX
:1 ¢tAousnboxy :m {1¢ 9anbtg Jo (F)u o3 burpuodssizod
A3TAT3O0NpPUOD TedoT3do pozTTPWIOU JO aduspusdsp Aousnbaag

Z€ Lanbtg
am
14

- 121 -

apnig

— 8L6°0:6 ‘L'0=e

G16°0:=6 ‘L0’0:®

7 -]
S0°0:9

(o)o
(m)o




*poTaIeA d ‘sSUOT3OUNI USDIH TOSPoW

pozTtajswered Hursn (H)u so93zelxs Jo A3Tsusd €€ oInbTJg
(°#3 jo syun) 3

80 90 - A) 0

1 i

122

L0

-
o= commpm"”
-

o
-

GL6°0=6
10:yB:9 l
10°0=¢®

(Fu



*9WT3] UOTIEXRIaI

:1 {Aouanbaagy :m Igg oanbT3y Fo (F)u 03 Hurpuodsaxzod

A3TAT30npUOO TeoT3do pazTiewIOU JO souspuadep Aousanboag pg 2anbrg
am
b € c l 0

123 ~

{o)o
(m)o




*pPaTIRA O ‘SUOT3OUNI UIDIDH

Topouw pozTxjswexed bursn (F)u so93els Jo A3Tsuad GE 2anbta
(%43 jo syun) 3
v cl o'l 80 9°0 vo 0 0
| | | 1 I

G670 b ‘L°0=z3 -mmeemeet -
@@N-Q um \mnono Em——

(Fu

124

1'0:9
P 20°0 =2
- o




( *BwT3y uoTjexeysx :1 {Aousnb
-313F :m !{Ggg 2anbTg JO (I)u 03 burpuodsaxxod XITATI
-onpuod TedT3do pezITPwIOu JO souspuadsp Aousnboxg

AM

9¢ @anbtg

— | apmiQg
GLE'0:6 'L'0*D ~errcmeeeer
998°0:6 ‘G'0:9 ———

1°0=q
20°0-¢

2
2

0L

{™M)o




0°¢C

*POTIRA b ‘SuoT3iouny ussaIn

Topou paztijsuwered bursn (F)u so3ze3s Jo X3Tsusq /¢ 2anbta
(°43 jo spun) 3
0L 80 9'0 v0o . zo 0

9l vl rAll

8L
| i |

126

| | | | l |

Py
PEL e lll'
L -

L

8016 ———

@-Qnm cseasanncaa

(3)u




*2uwT3} uUoT3IexXeTax :1 !Aousnbaiajz
tm i€ aanbrg Jo (F)u 03 bHBurpuodsaaxod muﬂ>wuoﬂﬁ
-uUod TeoT3do pozTTewaou Jo aouspusadop Aousnbaxg g¢ danbra

am
b £ z l 0
1 T _ [ I [ _ ] 0
N T -
N
~
_ X
ajs
)
apni ———— N
prug N\
=3 / a——
0L:b -—-—- /
\
e m.o =9 Ix 7
‘1 ef  ceomeeanne .
9'0:b 1'0:q X,
10°0:e .
*Q
1 ! _ _ _ [ _ ot




*(d)u poduryud SSATH O
aAT3EbOU JBY3 S3ON

*potaea b ‘suoTrjoung usaIo
Topou peztajoweaed bursn (F)u ss3e3xs Jo A3Tsusq

6€ @anbtya
(°340 syun) 3

128

(3)u



- 129 -

*SWT3 UOT3exeTox

*1 !ZXousnboxy :m ‘g¢ 2InbTa 3O ("A)u 03 HBurpuodseixos
0y ®anbtg

A3TAT30NPUOD TeOT3dO pPazTTewIou jyo souspusadep Xouonboxg

e 6'0-:9
1'0:9
10’0 -e .

{o)o
{m)o

o't



- 130 -
shown in Figures 31-40. The corresponding n(E) and o¢(w) curves
are shown in consecutive figures. We have plotted the fre-
quency dependence of the conductivity as normalized o (w)/c(0)
versus WwT curves in order that several curves can be displayed
on the same scale. It may appear at first glance that the sum

rule for o(w) due to n_ electrons per unit volume,

t

2M

Ter ) T(wde = (5.4)
(4

has been violated in some cases. This is not so because the
sum rule (5.4) applies only to the absolute values of ¢ (w) and
w, and the values of 0(0) and T are different for the different
curvés. The particular parameter varied is a in Figures 31 and
32, b in Figures 33 and 34, c in Figures 35 and 36, and g in
Figures 37-40. For the cases in Figures 31-36 the values of g
were obtained by numerically solving the equation

Fay-1) _
E@) =g+t —r )= (5.5)

so that the dip in n(E) is located near Epoe

In general, the structure in n(E) is not very strongly
reflected in the frequency dependence of ¢0(w). For wt < 1 the
values of 0 (w)/0(0) are in close agreement with the Drude curve

fitted at the two points w = 0 and w = 1/71; for wt > 1 the model
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curves are slightly above the Drude curve, the discrepancy
increasing with the depth of the depression in n(E). The only
cases that show substantial deviations from the Drude curve
are thoserepresented by the two solid lines in Figures 36 and
38, respectively. These correspond to very drastic structures,
a wide region of severely reduced density of states at (solid
line, Figure 35) or very close to (solid line, Figure 37) EFo'
From our experience in Part I of the thesis, the density of
states in a simple liquid metal is not expected to exhibit a
sharper structure than the solid curve in Figure 31, much less
probable anything like the two extreme cases just mentioned.
In fact, the calculated n(E) for mercury can be fitted with the
parameters a = 0.04, b = 0.1, ¢ = 0.2, g = 0.8 which yield a
o(w) in better agreement with the Drude formula than the dashed
curve in Figure 34 because the dip in n(E) for Hg does not
occur exactly at EF (nor EFO). For all cases where there is
a dip in n(E), o (w)/0(0) either falls slightly below or is
practically identical with the Drude curve at frequencies
w < 1/1t. Even for the unrealistic cases in which there is a
region of immensely enhanced density of states (Figure 39) o(w)
/o(0) rises only slightly above the Drude curve (Figure 40).
In none of the cases considered did we find a frequency vari-
ation anywhere near the one illustrated in Figure 30. We
conclude that within the framework of our model and approxi-
mations the optical conductivity of real liquid metals is
quite insensiti?e to the structure of the electron density of

states. It is not likely that n(E) could affect o(w) in any

o F
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other way more important than directly through the product of
the Green functions, which we have included in our calculations.

An explanation for the anomalous optical properties of liquid

meréury must be sought elsewhere.

E. D. Crozier (private communication) has measured the
optical conductivity of Hg by ellipsometry using different inter-
faces and found the results to be almost independent of the
interface material but results for the absolute reflectivity at
oblique incidence depend on the nature of the interface and
differ from both the ellipsometric and normal incidence reflec-
tivity (Drude) results. These results are consistent with a
surface transition region similar to the moael of Bloch and
Rice (1969). He proposes that the surface would produce an
enhanced backscattering which would provide a mechanism for

Smith's (1968) somewhat ad hoc hypothesis.

§5.3 Zero-Frequency Conductivity and Density of States

The dependence of the d.c. conductivity of a liquid
metal on the density of states has been a subject of debate
for some time. If one writes Ziman's (1961) nearly-free-
electron formula in the form

A * 2
Oy = 5@ Vit nlE) (5.6)

where Ve is the velocity of an electron on the Fermi surface,

n(EF) is the density of states at that energy, and T, is the
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relaxation time calculated by lowest order perturbation theory,
one expects that the conductivity a, should vary as [n(EF)]-2

because T, is proportional to l/n(EF) and v, is given by

F
(aE(k)/ak)F which is proportional to l/n(EF), if an E-k dis-
persion relation is assumed to exist. Edwards (1962) and.

later Ziman (1967) argued that the d.c. conductivity of a liquid
metal should not depend on n(EF) because in a liquid the factor

ev,, in (5.6) should be replaced by the 'Fermi current' which

F jF
they argued should be approximately equal to e kF/m. (In a
solid one can show by Bloch's theoremthat the expectation value
of the current is equal to e.times the gradient of the energy
(see e.g. Wilson 1953).) Faber (1966) agreed that the d.c.

conductivity should not involve the density of states effective

mass, defined as

io= %(E;)/no(s&) (5.7)

with n _(E

o 0) being the free-electron value but he included

F
some other correction factor. Mott (1966) expressed the opi-
nion that there should be no dependence on n(EF) if it differs
only slightly from no(EFO), but 1f n(EF) <<11JEF0) then the

conductivity should be reduced, although he did not give an

explicit functional dependence.

We have evaluated the expression (5.2) for the zero-
frequency conductivity o (0) using the same parametrized model

Green function as in Section 5.2, 1In Table III, the results
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are compared with the density of states at EF for different
sets of parameters. The free-electron conductivity Opp Was

obtained from

m (5.8)

where 1 is the relaxation time deduced from the frequency-
dependent conductivity curves, e, m the free-electron charge
and mass, and n, the number of valence electrons per unit
volume, consistent with our choice of unit kF = 1. For all
cases that correspond to the kind of n(E) that one can reason-
ably expect in simple liquid metals (all sets above the case
a=20.02, b=20.1, c=01,g = 0.975, inclusive) the ratio of
the zero-frequency conductivity to the free-electron d.c. con-
ductivity, & = o(O)/cFE, is approximately proportional to the
square of the ratio of densities of states, § = n(Eg ) /n, (Eq ) .
Moreover, the relaxation time Tt varies roughly as the recip-
rocal of n(EFO), as expected from Ziman's theory and, of course,
also as the reciprocal of the linewidth parémeter b. The fact
that the ratio 8/ﬁ2 is not equal to 1 may indicate that a re-
laxation time slightly differént from the optical T or an
effective number of valence electrons (see Faber 1966) should
be used for the d.c. conductivity. The most serious discre-
pancy among this group occurs for the set a = 0.01, b = 0.05,

c = 0.1, g = 0.975 which is associated with the sharpest struc-
ture in n(E), with a dip more severe than the one we obtained

for mercury. For those cases at the bottom quarter of the table,
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which correspond to drastic structures, the dependence of 1
and ¢(0) on n(E) seems more complicated, but we can be quite

sure that o(0) is not the same as Opp*

Let us compare our results with solid state theory and
the arguments of the aforementioned authors. In a solid we
have, from (5.6) and (5.8)

o(e) n

Pa) _ 2 m
= Trg =3 % e &) . (5.9)

As Ve is inversely proportional to n(EF), (5.9) predicts that
0 is also inversely proportional to n(EF), which is obviously
not what we found (c.f. the columns 1 and 6 in Table III).

Next consider Ziman's (1967) idea of replacing evp by S;— in
(5.9), then G would be proportional to n(EF). The values of
6/ we obtained are not as constant as those of G/ﬁz. This
means that our findings are at variance with solid state theory
and the opinions of various previous workers. Recalling that
the density of states n(EF) is given by the integral of kzp(k,
EF) (Eq. (l1.5)) and the zero-frequency conductivity o¢(0) is
given by the integral of k4p(k, EF) (Eg. (5.2)), our results
sound quite plausible. 1In fact, if the spectral function

p(k, E) were a rectangular pulse, then o(0) would be exactly
proportional to [n(EF)]z. Of course p(k, E) is not a rectangﬁ—

lar pulse in the actual case, only an approximate proportionality

is to be expected.
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There is one unnecessary approximation in our calcula-
tions. We have evaluated o0(0), n(E) and t by using the free-

electron Fermi energy E instead of the true Fermi energylE

Fo P
to be determined by integrating the density of states up to

the energy which will accommodate the n, valence electrons.

For the work in the preceeding section this does not matter
since we are only interested in the frequency dependence of

the normalized optical conductivity--replacing Eqn by EFo corres-
ponds only to choosing a different energy scale. But when we
want to compare the absolute value of 0(0) with that of Opp?
the results may be affected. It is hoped that in the near

future some of the work in the present section can be repeated

using the correct Egp.



CHAPTER 6

COMMENTS AND CONCLUSIONS

The calculations on liquid Bi, In, and Hg in this the-
sis, together with Ballentine's (1966) work on Zn and Al,
suggest that the electronic structure of simple liquid metals
(i.e. those other than transition or noble metals, which we
have not treated) is nearly-free-electron-like (NFE). NeQer—

theless, solid state formulas should not be applied without

caution. For instance, the density of states n(E) calculated
from (VkE(k))—} is not accurate, as we have illustrated by
model calculations (Section 1.3). Another example is that

g n(E) of liquid mercury is much more free-electron-like than
Mott (1966) conjectured by analogy with the small band-

2 overlapping in the solid (see Section 2.5).

We have made several different calculations for bismuth.
Using the same local, energy independent model potent-
ial as Ballentine (1966) , but without making his numerical
approximations, we obtain a very similar electronic structure,
except that the peak region which he found is slightly smoothed
out. This structure is furthef reduced by an effective mass
correction and by the use of a nonlocal model potential, the
largest change occurring in the last step. The final n(E) differs
little from the free-electron parabola corresponding to the
appropriate effective mass. This shows that the nonlocal and
energy dependent nature of the model potential is of some

significance. Calculation of the integrated density of states
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(Chapter 3) by a method which remains exactly valid for energy
dependent model potentials gives qualitatively similar structure,
but a wider band indicating that the energy dependence of

higher order terms may not be negligible.

Indium is found to be very free-electron-1like (Séction
2.4), but mercury has a substantial structure in n(E) (Section
2.5). If one used the Heine-Abarenkov-Animalu (HAA) model potent-
ial for mercury, one would expect very little structure in n(E)
because the first zero of the form factor coincides with the
main peak of the ionic structure factor resulting in very weak
perturbation. However it has.been shown (Evans 1970) that the
linear extrapolation method used by HAA to obtain the model
potential depth parameters is not valid for mercury because of
the proximity of the d-states to the conduction band. Using the
Evans model potential in which the depth parameters are cal-
culated by the quantum defect method (Ham 1955) we are able to

obtain some nontrivial structure for mercury.

It would be desirable to compare our results with ex-
perimental measurements. Unfortunately, no experiment to date
determines the density of states directly. In soft X-ray
emission from metals the intensity involves not only the
density of states in the valence band but also the transition
probabilities from the valence band to the vacant core levels.
In fact, the analysis by Harrison (1968) suggested that the
structure observed in the spectra reflects the variations in the

transition probability (oscillator strength) more than in the
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density of states. To make things worse the hole in the vacant
core level interacts strongly with the electrons so that the
measured intensity does not correspond to the unperturbed
valence states. The situation is simila; in the case of positron
annihilation (Stewart and Roellig 1966), the electron momentum
distribution being strongly perturbéd by the positron. The
major complication in the interpretation of photoemission data
(see e.g. Berglund and Spicer 1964) is that one may need a
detailed understanding of the possible energy losses of an
electron leaving the metal. The Knight shift (Knight 1956) de-
pends on two factors: the spin paramagnetic susceptibility of
the conduction electrons, which is proportional to the density
of states, n(Ep) at the Fermi energy, and the penetration fact-
or, PF = lth(O)[2 ave ' the average probabilityvdensity, at the
nucleus, of electrons on the Fermi surface. The second factor
PF is more difficult to calculate than n(EF), so it is difficult
to extract n(Ep) from the Knight shift. One kind of experiment
that appears promising is Compton scattering of.X—rays
(Eisenberger and Platzman 1970, also Platzman 1969, unpublished).
Since the photon interacts only weakly with electrons, the ex-
periment measures effectively the unperturbed momentum dis-
tribution. So far no such experiment has been done on a liquid

metal.

Optical properties are even more difficult to interpret

than the experiments mentioned above because, in addition to the
problem of the transition probability, there are a large number

of possible transitions for a given photon energy. Furthermore,

¥
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our model calculations in the "isotropic scattering" approxi-
mation (Section 5.2) suggest that the frequency dependence of
the optical conducti&ity does not deviate significantly from the
Drude formula even if n(E) is quite different from the NFE form.
This result is in agreement with most experimental observations,
but it means that little information about n(E) can be expected
from optical spectra. On the basis of our model calculations the
anomalous results for mercury obtained by ellipsometric methods
do not seem to be caused by structure in n(E). Perhaps they are

due to surface effects.

We found the zero-frequency conductivity to be approxi-
mately proportional to the product of the free—electron conduct-
ivity and the square of the density of states at the Fermi energy
(section 5.3), in disagreement with semi-intuitive arguments
based on the Boltzmann equation. This is another example showing
that uncritical application of solid state theory to liquid

metals may be misleading.

The current situation in liquid metals is not unlike
solid state band-structure calculations in the "pre-Fermilogy"
era. Perhaps some experiments-radically different from those
discussed above need to be conceived before the electronic

structure can be measured unambiguously.



APPENDIX I

THE ENERGY SUM RULE FOR THE GREEN FUNCTION

The Green function corresponding to a hamiltonian H

that describes a physical system is defined as

G (%,E) = {4|E-H)" %)

Z M , (1.1)

n E'—:Eh

where Iwn>and E designate the eigenstates and eigenvalues of H.

The spectral function

"

P E) = ~F Tn {ChIG (240D 18]

\

Z K&I¥>l? s (E-E) (I.2)
-

must satisfy the sum rule,

j e (/f; E)AE = [ . (I 3)

-

This is a consequence of the completeness of the set of states

'{|wﬁ>}. Thus from (I.2) we have
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The sum rule is also a physical condition since it says that
the total probability for a momentum eigenstate |k to have

any energy is equal to unity.
In a practical calculation the ensemble average Green

function is usually expressed in the form,

/
E-4-Z(E) (x-4

G (*,E) =

where the self-energy I (k, E) may be obtained either by per-
turbation theory as we did in Chapter 2 or from a parametrized
model as in Chapter 5. We shall prove that the sufficient con-
ditions for the Green function (I.4) to satisfy the sum rule

(I.3) are:

(1) It is analytic in the complex E-plane except for a number
of poles on the real axis (for an infinite system these
poles may coalesce to form a cut);

(2) G(k, z*) = G*(k, z) where z denotes a complex energy and
the asterisk denotes complex conjugation; and

(3) ZI(k, E) is an analytic function of E and tends to infinity

more slowly than E.

Consider .the integral of G(k, E) in the complex E-plane

around the contour shown.
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Here we have assumed that there exists a finite lower bound Eo
to the energy eigenvalue spectrum of H. Since G(k, E) is

analytic within the whole region enclosed by the contour

C = Cl + C2 + C3, we have

T ;Jéécc.‘,(/gs)a/z:o

. (I.5)
: From condition (3),
T, ’:"j G (%,E) d E
2
_..J‘ _'é_ A E (1.6)
(s
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From condition (2),

L, = jc*,GM’E)dE —+£ G (%,E)4E

E, >
= f G (#,E+<07)dE *| Gk E+ict)ac
o0 E,
oo +
— ouf T 6 (#,E+<0")de
Eo '
= —er,(:f w (%, EYdE ,
EO
But
I, +I, = I=o )
therefore

Eo

jw/a(/k)z'>ﬂ/(&: = |

which is the reguired sum rule.

Note that the parametrized model,

(1.7)



|
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<§(&,§)=- ! ,

E-E(#)tx bET

where

E(£) =k "+ < {(:-/—e(ﬁ-ﬂ/“,?i/f/reg’@-/}

satisfies all the conditions (1) to (3) and hence the sum rule.

On the other hand, the Lorentzian model,

G(ﬁ)E> -— / . )

T -42+4+0

with T independent of E, does not satisfy condition (2), there-
fore the above proof for the sum rule does not apply. However,
in this case it can easily be proved by direct integration that

(I.3) is still satisfied.



APPENDIX II

TABLE IV MODEL POTENTIAL PARAMETERS (a)
Bi In Hg

Ao (a.u.) 2.38 1.32 1.05
Al (a.u.) 2.58 1.46 1.27
A2 (a.u.) 0.25 1.10 0.98
RM(b) (a.u.) 2.0 2.4 3.4
Q (a.u.) 234.2 183.6 l66.1
y/ 5 3 2
Rc (a.u.) 1.4 1.74 2.12
o (a.u.) 0 0 0.0781
E;, (Ry) 0.597 -0.45 0
dAo
aE— (a.u.) -0.57 -0.45 -0.42
dA1 '
I (a.u.) -0.62 -0.21 -0.40 .
dA2
& (a.u.) 1.12 0 -0.30

(a) These quantities are defined in Section 2.3 or Section 2.5
and are evaluated at the Fermi energy EF

(b) R, in the case of Hg.



APPENDIX III

DIFFERENTIATION OF A FUNCTION OF AN

OPERATOR WITH RESPECT TO A PARAMETER

Let F(A) be a function of an operator A, which in turn
is a differentiable function of a continuous parameter {. We

wish to derive an expression for the derivative of F(A) with

respect to §{. For simplicity we assume that F(A) can be ex-
panded in a power series,

FA) =2 A" .

(Ir1.1)

Since the operator A does not in general commute with its deriva-
tive, it is important to keep track of the order during differ-
entiation. For instance, in the notation
A/__ dA'
= 7z
A At ’ d
: A= A4 +AA

s7% (111.2)
= 2/4//4 —*EA /A/J )

where we have introduced the commutator,

[A)BJEA@'BA . (III.3)

Continuing to derivatives of higher powers of A in this way one

readily arrives at the general formula for any integral power,
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L A A AT e [AAAT AR ATIA e

%
A LA
(I1T.4)
-
= nAAT 2 (AT AN A
S=e
Hence
7z F(A) = A 2 GA +ZCZ[A”' )4’
“ hze hze
(I11.5)

— A/ﬁ{?(ﬂ),_}. S ,

where, for convenience, the notation

S = Z CaZ (A WM; A/JAS (III.6)
noe $:e

has been introduced.
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Now, by repeated application of the commutation rule,

LA B)C]:AES)CJ4CA;C]B) (III.7)

for any three operators A, B, and C, one can show

oy
- -l
(A m) B—J =;0 A (A, BJ A? J (III.8)

Inserting this into (III.6) we have

= Z Ci'h Z A”'h—z [A) AIJ A/L (III.9)
neoe gzo RS
o0 n-2 -2 ) n
] - T, 2 AT (AATA
oo Ao

In order to simplify (III.9) we again use (III.3) to
shift all powers of A from the left to the right of the

commutator, thus

A[A, A'] = [a, A"]Aa + [A, [A, A'1],
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aZ[a, a') = [, A'1a% + 2[A, [A, A']1 A + [A, [A, [A, A']],

Let us adopt the following notation:

A(O){B} = B,

A(l){B} = [A, B],

at?) (B} = [a, I, B,
alth gy = [a, att"D(my;.

Then we can write

2)

AR, A'] = aBa"a + al (2"

A2 (A, A'] = A(l) {A'}Az + 2A(2){A'}A +A(3){A'},

In general, as can be shown by mathematical induction,

A0

% %
; 4 , +) g
é A (A A J ’Z (:)AM {/-] ’} a* 4‘) (III.10)
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where (ﬁ) is just the binomial coefficient,

(42) _ Ak ) (K72) L. (k-4 t1)
* 4! :

Equation (IITI.9) now becomes

- +22622 ("7 M){A}A“%

h:o /‘x—.o co

he2 ')L'l

With the aid of the combinatorial relation,
/]
Z ( < ) H+I)
~ N\ me
C=m ™ 2

Equation (III.1l) simplifies, after some algebra, to

S=4 Z—nc ZAW';’A (oA

heo 4eo

But

gzj_h Ca (fﬁf‘));é M2

oc
—1 Z C,l’h(n-l)(m-2) . e (%,’{-I)Ah’%'z
hig

A}

0{—&+1

T A2 (A) )

1l

4 A

(II1.11)

(II1.12)

(I1Ir.13)
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therefore we finally have

(A> d—&ﬂ

/‘1
S AZ; 2 Q/i ) W -F(A). (III.14)

Putting (III.l4) back into (III.5),

/dF(A) +) e(
grm = A - Z/I { 4}

ey 2 (,{1 '1) d ,44.“ -F-oq)) (III1I.15)

which is the general formula we set out to derive.

If A(t){B} = 0 for t = &, then it is also equal to zero

]
for all t > . For example, if [A, A ] = 0, then

2 _ A’ A4F(4) .
F(A) = A BTy

(ITI.l6)

if [A, [A, A']] = 0, then

d .
_C/% /_(A>~A’ﬂ7:(f’)+4[/4 A’] Fm (III.17)

and if [A, [A, [A, A 111 = 0, then

/dFA L fﬁ% / 45
i 64) A () [’4 /4] )’ 4 (”IEA/'“]; 75_[;) .
(II1.18)

2
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