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ABSTRACT

The classical method of solution to provlems in linear viscoelasticity
is to apply the Laplace transform to the time-dependent field equations and
boundary conditions. If a solution to the transformed problem can be
found then the solution to the original problem is reduced to a transform
inversion. ilowever, if the shape of the body under consideration or the
type of boundary conditions specified at a point, or both, vary with time

then this method no longer works.

In this thesis methods of solution to these problems are investi-
gated. It is showm that, with the help of an alternate form of the
Laplace transform inversion theorem, a method closely paralleling the above
procedure solves problems for regions which ablate. This method reduces
viscoelastic boundary value problems to the determination of elastic
solutions which satisfy certain conditions at the boundary of the ablating
region. For the case vhen the region does not vary with time (which is
considered as a special case of an ablating body), but subregions of the
boundary may be monotonically increasing or decreasing with time, the
above conditions which the elastic solutions must satisfy are simplified.

Ixamples of both cases are given, whose results agree with known solutions.

In the latter part of the thesis’two problems are considered where
although the region occupied by the body remains constant with time, sub-
regions of the boundary may vary. Here it is shown that a solution given
by Graham for the contact problem in viscoelasticity, where the contact

region varies with any number of maxima or minima, can be extended and that
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the extended solution is equivalent to one by Ting. The equivalence is
not at all obvious since the form of the two solutions differs greatly.
AMlso a solution is given to the problem of a plane axisymmetrical crack in
an infinite viscoelastic medium which is opened by normal pressure acting
on its surface where initially the crack is extending and after a period
of time contracts. It is found that while the crack is growing the normal
pressure and surface area of the crack can be prescribed independently,
but when contraction begins only one of these can be given, in order to
keep the normal displacement continuous and null on the boundary of the
crack area. An equation is found which relates the crack surface area
and the normal pressure for times when it is contracting so that if one is
specifiied then the other is determined. The solution while the crack is
extending agrees with one given by Graham, but for the case when it is
extending and then contracting there are no results which can be referred

to.
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INTRODUCTION

The purpose of this thesis is to look at the methods of solution of
boundary value protlems in the linear quasi-static theory of viscoelasticity
and extend these if possible. The problems considered include ones in
which the viscoelastic body ablates, that is material may actually be
removed from the body as time progresses. In general it is found that,
in all the problems considered, the viscoelastic solution was related to
some particular one-parameter family of solutions of corresponding problems
in the linear theory of elasticity. Specifiic results, which have been
found, are discussed in the following outline which begins with the first

two sections.

Section 1 deals with the standard mathematical definitions and resultis
used in the theory of viscoelasticity with one exception. It is a result
which is similar to one derived by Ting [1] and gives an alternative form
of the Laplace *ransform inversion theorem (for more detailed discussion
see page O ). The next section gives the formulation of boundary value
problems in quasi=-static viscoelasticity for bodies wnich ablate. (The
case when the region occupied by the body remains constant for all time is
considered as a special case of an ablating body.) Here the fundamental
system of field equations relevant to the linear theory of thermo-
viscoelasticity is stated as well as mixed boundary conditions which pre-
scribe the surface displacement and surface traction on complementary
subsets of a boundary. These subregions of the boundary vary with time
so that even when the boundary remains constant, the subregions may still
be functions of time. In both of these sections, reference has been made

to the work of Gurtin and Sternberg [2].



The classical method of solving boundary value problems in the linear
quasi-static theory of viscoelasticity is to apply an integral transform
(with respect to time ) to the time~-dependent field equations and boundary
conditions. The transformed field equations then hive the same form as
the Tield equations of elasticity thesory and if z solution to these, vhich
1s compatible with the transformed boundary conditions, can be found then
the solution to the original problem is reduced to a transform inversion,
This method oi' solving viscoelastic stress analysis problems is referred

to as the "correspondence principle” (for ref'erence see Lee [3]).

If the region uhich the body occupies does vary with time and ablates
then the correspondence principle fails since, for problems of this type,
there will be points of the (ablating) body for which the field quantities
will not be defined for all time.  Hence, for this case, methods of
solution have concentrated on special approaches to specific problems with
the exception of Graham [4], who gave a general method of solution, which
was an extension of' the Papkovitch-Neuber solution for viscoelasticity
given by Gurtin and Sternberg [2]. However in section 3 it is shown that,
with the help of the result concerning the Laplace transform inversion
theorem, a method closely paralleling the classical correspondence
principle solves problems for regions which ablate. This method reduces
viscoelastic boundary value problems to the determination of elastic
solutions which satisfy certain conditions at the boundary of the ablating
region. Two applications of this method are given. One recovers
Graham's extension, and the other solves the problem of a large sphere with
a growing spherical cavity at its center. This solution agrees with one

given by Williams [5].



In the case when the region occupied by the body does not vary with
time, this correspondence principle is applicable whenever the type of
boundary condition prescribed is the same at all points of the boundary.

For mixed boundary value problems, the method is still applicable provided
the regions over which different types of boundary conditions are given

do not vary with time. However, for those mixed problems where the regions
do vary with time (particular examples are indentation and crack propagation
problems), the classical correspondence principle is not applicable since
for these problems there will be points of the boundary at which only
partial histories of some field quantities will be prescribed and the
transforms of these quantities are not directly obtainable. To meet this
case, both Graham [6] and Ting [1] gave "extended" correspondence principles
which cover those mixed boundary value problems where subregions of the
boundary may vary with time but must be either monotonically increasing

or decreasing. For the more general case, Hunter [7], Graham [8], (9]

ard Ting [10], [11] have given solutions to the contact problem where the
subregions may have one or more maximum or minimum. None of these used a
formal application of any correspondence principle although Graham has

shown that his solutions are related to a one-parameter family of elastic
solutions for the same problem in elasticity which, in fact, is the spirit

of the correspondence principle.

Section 4 considers mixed boundary value problems where the region
occupied by the body is constant and subregions of the boundary may vary
with time as long as they are either monotonically increasing or decreasing,
The solutions given here depend on the findings of Ting [1] and Graham [6].

In these papers Ting extends Graham's results by removing two conditions



that the latter assumes must hold. This section generalizes and orders
these results such that they link with the previous section. Also an
example of this method is given of a contact problem where the contact
region is monotonically increasing. This is a simple example of the

problem considered in the next section.

One of the contact problems which is most often studied in visco-
elasticity is the boundary value problem arising when a rigid indentor, of
smooth profile, (i.e. a profile which has a unique tangent plane at each
of its points) is pressed against the, initially plane, surface of a linear
viscoelastic half-space. The normal surface traction is assumed zero out-
side the contact area, while inside the contact area the normal surface
displacements must conform to the surface geometry of the indentor. In
general, the contact area will vary with time. This contact problem
provides a meaningful example on which to estimate the value of any method
of solution to the difficult mixed boundary value problems where the boundw
ary has subregions which are functions of time. As a result, many authors
have considered this problem and the fif'th section gives a short history
of these studies. It also looks at the most dii'ficult case when the
contact area varies with any number of maxima or minima. To do this,
three papers are discussed, by Graham [8] and Ting [10], [111]. Their
methods differ so greatly that only for simple cases (i.e. one or two
maxima) can their results easily be seen to be equivalent. In section 5
it is shown that Graham's solution can be extended and that the extended
solution is equivalent to one of Ting's solutions even for the most

general case of "n" maxima and minima.

In the last section a solution is given to the problem of a plane



axisymmetrical crack, in an infinite viscoelastic medium, which is opened
by a normal pressure acting on its surface. Initially the crack is

4

extending and after a period of time contracts. There are not many
results concerning crack problems in viscoelasticity theory. Wwillis [12]
has investigated a steady state dynamic viscoelastic crack propagation
problem. He considered the specific case of an extending crack in anti-
plane strain and solves this problem directly without resort to any
correspondence principle. On the other hand, Graham [13] uses his
extended correspondence principle to solve the extending crack problem
for the symmetrically loaded two dimensional and the axisymmetrically

loaded three dimensional quasi~static cases. The latter is treated as a

specific example in section 6.

The case when the crack extends and then contracts has not been
looked at previously. Thus no reference can be made to the results in
section 6 for this case. It is found that while the crack is growing
the normal pressure and the surface area of the crack can be prescribed
independently, but when contraction begins only one of these can be given,
in order to keep the normal displacement continuous and null on the bound-
ary of the crack area. An equation is found which relates the crack
surface area and the normal pressure for times when it is contracting so
that if one is specifiied then the other is determined. In conclusion, it
is noted that, vhile it might be possible to extend this solution to the
case where the crack surface has "n" maxima and minima, along the lines of

Graham's solution of the contact problem, it would be necessary to show that

the solution generated normal displacements over the crack surface which

were positive, for the solution to have any meaning.




1, Mathematical Preliminaries

Throughout all sections H(t) denotes the Heaviside unit step-function,

of time alone, which is defined through
H(t) =0 - <t <0, H(t) =1 0 <t <oo, (1.1)

In this section f, g and h are sufficiently smooth functions of the
position vector x and time t. Then the Stieltjes convolution [f*dg]

stands for the function defined by
-t 5

[r*ag)(x,t) = £(x,t) &(x,0) +] £(x,t-1) 58 (x,7)ar, 0 < t <o, (1.2)
0

provided the integral is meaningful. Some properties of the convolution

(1.2), which will be needed later, are listed below:

f*dg = g*df
£*d(g*dh) = (f*dg)*dh = f*dg*dh
(1.3)
£*d(g+h) = £*dg + £*dh

£*ad = f.

-1
If £(x,0) does not vanish then f has a unique Stieltjes inverse, f ,

such that
o= -1
£%3f = f *af = H. (1.4)

(Proofs of these properties, (1.3) and (1.4), are contained in Gurtin and

Sternberg [2].)

We shall use the notation

f X,S) = L[f(.},{’t)3 t - 5] =/Ooof<i("t) e—St at, (1 5)

f(?_c’t) = L-1[E<9§,S)§ 5~ t]’



for the Laplace transform with respect to time t, of a function f(x,1t)
and for its inverse Laplace transform. The same notation will be used to
denote the transform (inverse transform) of a vector valued function, with
the agreement that it represents the vector whose components are the
transforms (inverse transforms) of the components of the original vector.
Two relations which are consequences of (1.5) are stated now (for proofs
see e.g. Sneddon [14]). The Convolution Theorem states
e - 't
10 Gs8) Bameds o> #] = |2 ter) a(xmar (1.6)

where the roles of f and g on the right hand side of (1.6) may be reversed.

The transform of the time derivative of a function is given by

't =
/\535 (x,8) = s T(x,8) - £(x,0). (1.7)
Further results and their proof's are now given. If we take the

Laplace transform of the convolution (1.2) and note (1.5) and (1.6) we

obtain

Wag) (x,8); ¢ s) = Bars) £(x,0) + Fx,s) (%%) (59)
which, on using equation (1.7), becomes

L[ (f*dg) (f,t); t->s] =s EQE,S) é(g,s). (1.8)
By taking the inverse Laplace transform of (1.8) we get

[f*dg] (x,t) = L—j[s f(x,s) g(x,8); s > t]. (1.9)

Next, let p be a function of x, 7 and s. We define P, a function

of x and t, by
1 " 00
P(x,t) = LT[ / p(x,7,8) e Tdr; s> t], t > O. (1.10)
0



Then, if P is a continuous function of t, we will show that

-t
P(x,t) = lim_ L-1[ / p(x,7,s) e
a>t 0 -

%3 5 s > al. (1.11)

This result corrects an expression which was derived by Ting (471, In

order to verify (1.11), we have from (1.10) for any non-negative "a"
1

-1 -
P(:-l:,a) =L [ / p(E:T:S) e STdT; s > al
0 (1.12)

o0
-1 -
+ L [ / P(}_(,T,S) (S STdT; S = a], a 2 O,
t
where t is any non-negative time. Now if we make the change of variable
T =71"'" 4+ ¢t

then

;00 o0
-5T ~st -7!
] p(x,7,8) e >'ar = e ° / p(x,7'+t,5) e T Sare, (1.13)
t 0
Since the Laplace transform with respect to 7 of H(7-t) is

e—st
L[H(T—t); T > s} = < s (1,14)

equation (1.13) may be written as
0 T
/ p(x,7,s) e Tar = sLlH(7T-t); 7 > s] F(x,s)
t

where

O

- - 1
Px,s) = / p(x,7'+t,s) e 5T are.
(6]

Taking the inverse Laplace transform and using (1.9) and (1.2) we get



r OO
- -
[ / ch,T,s) e S'TdT; s » al
t
a

H(a~-t) F(x,0) +/o H(a—T-—t) F(x T)ar, (1.15)

H

0] a < t
- { F(B_C,a_t> a z t,

where

If we combine equations (1.12) and (1.15) then we obtain the following

result,

e o)

L7 / p(x,7,8) ¢ S'ar; s »al =0, 0<a <t
t
and (1.16)
-1 t -sT
P(g_c,a) =L [ / p(_}_c,T,s) e dr; s » al, 0<ac<t.
0

Now for any particular positive t these identities are valid for every a,

0<acx<t. Therefore, by letting a approach t from the left we find that

- 00

R -
lim L [ / p(x,7,3) e >'ar; s » al =0,
>t L

and (1.17)

-t
P(x, ) = lig 17 [L p(x,7,8) o Tar; s - al
where
P(x,t ) = lim P(x,a) .
a»t”
If the function P defined by equation (1.10) is continuous at t then

P(x,t7) = P(x,t) . (1.18)
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Thus by (1.10), (1.17) and (1.18) we have

~ 0O -t

P(x,t) = L‘Wj p(x7,8)e " ars s > ] = lim, 17| p(x,7,8)e Tar; s - al,
a-» 0

0
(1.19)

which verifies equation (1.11). In the case when p is independent of s,

P X,T:S) = P(B_{’T)s

equation (1.19) reduces to

-t
P(x,t) = p(x,t) = lim_ L 1[/ p(x,7)e Tar; s - al.  (1.20)
' a-»t 0

Another result needed is derived below. Suppose that
p(}f,T’S) = sy(s) Q(B_;’T’S),

where y is some function of s alone, then from (1.10) and (1.9) we see that

oo

P(l{’t) = L-1[Sy(s) /O Q(g_{,T,S)e STdT; 5 - t] = [Y*dQ](z’t)

where (1.21)

v(t) =1 [y(s); s » t,

Q(g,t) = L_1[j2 q(g,T,s)e—STdT; s » t].

If P is continuous at t and @ at all times 7, 7 < t then, by using the

result (1.19), equations (1.21) simplify to give that

t
lim L—1[sy(s) / a(x,T,s)e ST
a»t™ 0

ar; s » al = [Y*aQl(x,t) (1.22)
where Y is given as above and

-t
0(x,t) = lim_ L—1[/ q(x,T,s)e-STdT; s »>al . (1.23)
X ot b



a>t”

In conclusion we observe that

t

- v -
lim L 1[ =§;K55T,s)e sTd.‘r; s>a]

o a

11

Xi a—)t O

4 -1 't -5T
= 5*-{éim_ L [/ p(x,7,s)e ~ dr; s»a]}.

(1.24)
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2. The Formulation of Boundary Value Problems

in Viscoelasticity

Suppose a time-dependent region represented by R(t), with boundary
R(t), 0 < t < oo, 1s occupied by a homogenous and isotropic linear thermo-
viscoelastic solid. We will assume that as time progresses the region
ablates in the sense that R(tZ) is contained in R(t1) whenever t2 z t1,
(R(tz)‘g R(t1), t, 2 t1). Thus material may actually be removed from

the body as time progresses. The case when R(t) remains constant for

all time is therefore a special case of an ablating body.

Let Uss eij’ Gij’ gach of which is to represent a function of the
position vector x and time t where x is a point of R(t) and O < t < oo,
denote the Cartesian components of displacement, strain and stress
respectively. Then the fundamental system of field equations relevant to
the linear theory of thermo-viscoelasticity may be written as follows

(e.g. see Gurtin and Sternberg [2]):

2eij(_>_c,t) = ui,j(_;_c,t) + uj’i(g_c,t), x in R(%), (2.1)

cij’j(_;_c,t) + Fch,t) = 0, aij(gg,t) = Oji(g_c,t), x in R(t).(2.2)

Here (2.2) are the stress equations of equilibrium where Fi denotes the
components of the body force. In stating the accompanying constitutive
equations we first define the following quantities. Let T represent the
temperature which is a function of position x and time t and define the

pseudo~temperature "6" by
T(x,t)
=1 ' -
6(x,t) = “o/ a(T)dr’, oy = a(Ty),

To
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where TO is the constant base temperature and a is the temperature

dependent coefficient of thermal expansion. We denote by G1 and G2 the

relaxation functions in shear and isotropic compression respectively.
These are functions of time t, O € t <o, Then the stress-strain

relation is, using the notation of (1.2),

AG.=G,) .
< [ 2 1 r NN \
oij(z,t) = [G1*deij](§,t) + aij K 3 *dekk—ao(uz-do)} (x,%),

(2.3)

x in R(t),
where Sij is Kronecker's delta.
To complete the formulation of any boundary value problem we need to
specifly certain boundary conditions. If we prescribe the surface dis-

placement and traction, respectively, on complementary subsets 8R1(t),

6R2(t) of the bourdary dR(t) then the boundary conditions take the form

ui()_C,t) = Uib_{,t) ’

UiJ(j,{,t)nJ(E,t) = Ti(éit)’ _},c on aRz(t),

]

on 3R1(t),

where nj(z,t) are the components of the outward unit normal to aR(t) and U
and T are given vector valued functions. Equations (2.1), (2.2), (2.3)
and (2.4) represent a complete formulation of a boundary value problem in

thermo-viscoelasticity.
In the case that we have
G1(t) = 2pH(t) and Gz(t) = 3kH(t),
then, by using equation (1.3), we find (2.3) reduces to

oij(z,t) = 2ueij(§,t) + Sij <<é§%§ﬁ)ekk-3a0k9> (x,t), x in R(t)22 B,
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the stress-strain relation of linear thermo-elasticity. Here u and k are
constants standing for the shear and bulk modules respectively. Equation
(2.5) with (2.1) and (2.2) represent the field equations of thermo-
elasticity. These equations along with the boundary conditions (2.4)
give the complete formulation of a one-parameter family of thermo-elastic

boundary value problems (the parameter is t).
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3. The Correspondence Principle

From section 2 we have for an ablating region, R(t), which is occupied
by a homogeneous and isotropic linear thermo-viscoelastic body, that the
field equations, (2.1), (2.2) and (2.3) and the boundary conditions, (2.4),
represent a complete formulation of a boundary value problem in thermo-
viscoelasticity. To £ind solutions of such problems we first show how a
solution to the field equations in viscoelasticity may be obtained from a
certain family of elastic solutions. Then we state what conditions must
be satisfied in order to meet the boundary conditions. Finally e solve

several problems involving ablating bodies.
We will denote by

[u® Lg t,s), e, (a,t s), ..(

- H

x in R(%), (3.1)

sclutions valid in R(t) of the system of equations, (2.1), (2.2) and (2.5)
in the last of which we have set 2u = s@(s) and 3k = s@(s). Then we shall

see that

;b
ui(g,t) = lim_ L-q[/ ui(z,T,s)e—STdT; s > al,

a»t
e..(x,t) =1lim L 1[/P (x r,8)e 2Tdr; s » al, (3.2)
147 a»t”
o, (x,t) = 1lim L 1[/ o, (x,T,s)e ~ dr; s > al,
1= a-> o)

is always a solution to the viscoelastic field equations valid for x in

R(t) .

To prove this we will show that the equations (2.1), (2.2) and (2.3)

are satisfied by (3.2). Since (2.1), (2.2) and (2.5) are satisfied by
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then they hold at x for every

(1.24) and (1.20)

(3.1) for any time t and position x in R(%)
Then by (3.2),

time T, T € t, as R(t) is ablating.
we have
~1r ] £ £
u., . M(x,t) = 1im L u. . T,8
J:l](“’ ) a»t” [Z)[ ¥ J:l]b'{, ’ )e

u, .+
[us

and
Tar; s » a)

t

(2, t)473(x,%) = Lip_ T [J %3, ch, ,s)
. -1

+ 1lim_ L [j

ast o

~sT
ar; s » al,

1J J
Fi(g,T)e

—STdT; s > al

t
[

- 1ip_ [j Loy ,© (ms9)48 () e
which reduce to (2.1) and (2.2) respectively, when x lies in R(t) Next,
using the fact that (3.1) satisfies (2.5), we have the identity

0 = lim L-1[/ {o,%(x,7,5)= sG, (s)e; (x T,8)
a»t” Jo ij= (3.3)
- (G (s)-C (S))
2 1 € = -5T
- Sij!_s 7 e X,T:S)‘GOSVZ(S)GQE:T)J e ar; s»a]

Breaking up (3.3) we get

when x is in R(t)
- t, £ -
JRUHELIDEANC)
o 1J

t
lim L-1[/ (x, ,8)e STar; s » al = lig L
a~»t~ 0 a~>
(8,(s)-E,(5)) -
- (G -G i
2 ? ! S- e EQE,T,s)—aosﬁz(s)e(g,T)—J}e T; s=al.

With the help of first (1.22) and then (1.5), (3.2) and (1.20), equation
Thus the field equations of viscoelasticity are

(3.4) reduces to (2.3)
satisfied by the quantities defined through (3.2)
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Now in order that (3.2) meets the boundary conditions (2.4) we must

have the following conditions satisfied

it
lim L-1[/ ui x,T,s)e > dr; s » a] = Ui(ﬁ,t), X on 8R1(t),
a»t” o
(3.5)
. -~/ £ -sT . .
lim L [j o, (x,Tys)e dr; s » aln (x,t) = T.(x,t), x on dR_(t),
a~»t" o Y J- 1 2

where 8R1(t) and aRZ(t) are complementary subsets of dR(t) and nj(g,t) is
the unit normal to dR(t). Thus if the family of elastic solutions (3.1)

is chosen to satisfy (3.5) then (3.2) is a solution to a boundary value
problem in viscoelasticity represented by the field equations, (2.1), (2.2),

(2.3) and the boundary conditions (2.4).

If 9R(t), 6R1(t), aRz(t) do not vary with time, then the conditions
(3.5) reduce to
£
u (x,%) = U, (x,t), xondR,
€
Oij(g,t)n;(g,t) = Ti(g,t), x on 3R2.
Purther, in this case we see, by using (1.19), .that equations (3.2) can be

written as

oo
ui(_}f,t) = L—1 [J[ ui(.’ﬁ, T’S)e—STdT:' s > tl,
0

o0
-1 € -ST
eij(g,t) =L [O eij(g,r,s)e ar; s » tJ, (3.7)
0. %(x,t) = L—1[’d30.§(x,T,s)e_STdT; s » t],
1)~ ) 1=

where x lies in R. Equations (3.2), (3.6) or (3.7), (3.6) reduce the

solution of this class of linear viscoelastic boundary value problems to
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the solution of linear elastic boundary value problems. The relation
given by (3.7), (3.6) has been known as the "correspondence principle".
Note that we cannot use equations (3.7) in place of (3.2) when R(t) is
decreasing since, for example, ui(g,r,s) will not be defined for some x in
R(t) and all T, 0 &€ T <o, (For further discussion on the "correspondence

principle", see the Introduction and Lee [3]).

One well knovm general solution to the field equations of elasticity

is the Papkovich-Neuber solution (for a derivation, see Sokolnikoff [15]),

ui(xt,s) = 12 D0t 0am " (2, 0) 1s(8, (8)428 ,(5)) =9 (35, £) (78, (5)428 (s)),

03 ts) = (8§ thnyy T (6 0)]1s%(6, (s)+28,(3))E, (5) G

- 6555 (a)Yy (0040, 56, () (B, (2)F ())%.° (%),

£ € .
Q,jj(é’t) = \pi,jj(ﬁst) =0, xin R(t):

where we have replaced 2{,3k by s§1(s),s§2(s) respectively and taken the
body force Fi and the pseudo-temperature "0" as being zero. Here the
functions 8% and Wi are unknown functions to be determined through the
boundary conditions. We find, from above, that if (3.8) is substituted
into (3.2), then (3.2) is the solution to the boundary value problem given

by (2.1), (2.2), (2.3) and (2.4), provided we satisfy the following
¢ — * — 3
(@’i+xk\pk,i) d(G1+2G2)(_3_c,t) v, d(7G1+2G2)(3__c,t) = Ui@_c,t), x in 8R1(t),
b I % —ht b
G, d[(é,ijﬁuxkAk,ij) d(G1+2G2) 64Ji,j ac, (3.9)

K - = .
+ 28ij\pk,k%d((}1 Gz)](_}g,t)nj(g_c,t) Ti(g_c,t), X in aRz(t),

where

8(x,t) = lim L-1[j QEQg,T,s)e—STdT; s > al,
a~t” 0



19
and

t
¥(x,t) = lim L7 v (x,7,8)e STdr; s - al. (3.10)

Thus the solution of the viscoelastic boundary value problem reduces to
finding harmonic functions & and Wi vwhich satisfy the equations (3.9).
This result, which was previously derived by Graham [4], is an extension

of an earlier result by Gurtin and Stermberg [2], where R(t) was constant.

In the same way as the Papkovitch«Neuber solution of elasticity was
extended, we could extend the general solutions of the field equations in
plane elasticity given by complex variable theory to cover the case of an
ablating viscoelastic body. This idea will not be expanded any further

here,

Now consider the case when the viscoelastic problem has stress

boundary conditions only. Then (2.L) can be written as

UiJ(}E’t)nJ(')’(,t) = Ti(ﬁ:t): 35 on aR(t)' (3'11)

el

In this case, i’ we can find elastic solutions, (3.1), where the stress
field meets the boundary conditions (3.11) and is independent of s
(i.e. elastic constants), then by (1.18) we see that the condition (3.5)

is satisfied immediately since it reduces to
£
cij(gg,t)nj(g,t) = Ti(g,t), x on JR(t). (3.12)

Therefore if these elastic solutions are substituted into (3.2), then (3.2)
is the solution to the viscoelastic boundary value problem represented by

(2.1), (2.2), (2.3) and (3.11).
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If instead we have displacement boundary conditions, only then we

write (2.L4) as
uiQE:t) = Ui<§:t)’ X on @R(t). (3-13)

Now if we can find elastic solutions, (3.1), that have a displacement
field which both meets (3.13) and is independent of s, then the same
argument as above follows and these elastic solutions provide, through

(3.2), the viscoelastic solution to the problem.

As an example of the above cases, consider the problem of a large
viscoelastic sphere with a growing spherical cavity at its center. In
terms of spherical co-ordinates, (r,¢,0), the boundary conditions are

given as:

o (a(t),t) = £,(%), o 4(a(t),t) = o (a(t),t) =0,

(3.14)
Grr<b’t) = f2<t): Gr¢<b,t) = Gr9<b,t) = 0,
where the field quantities are independent of 6 and ¢, and f1,f2 are
arbitrary prescribed functions., The inner and outer radii are represented

by a(t) and b, respectively, where a is an increasing function of time.
Here the body force, Fi’ is zero and the pseudo-temperature 6 is a function

of time only,
6 = 6(t).

If we solve the elastic problems which have the boundary conditions (3.14),
then we get the following stress and displacement fields:
3 3 3
. £,(£)-(a”(£)/e7)f, (£)  [£,(1)-£,(%)]a"(%)
Opp(Trt) = 53 - SIS
[1-a”(t)/b”] [1-a”(t)/p" Ir
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£,(£)~(a”(£)/p7)e, (£)  [£,(+)-£, (£)]a”(+)

o S(r,t) = o, (r,t) = , (3.15)%
a9t ) = o) (0] D-a(0)p0)er )
[£,(6)=(=2(8)/0)2 (8)]r  [£,(8)=F, (£)]a7(x)
u (I‘,‘t,S = 3 7 = 1 + 3 3 - +a09r,
r [1-a”(t) /b ]st(s) [1-a"(t)/b ]25G1(s)r
(3.16)
u¢ = ue = 0.

Since the equations (3.15) satisfy the boundary conditions (3.14) and are
independent of s, then if (3.15) and (3.16) are substituted into (3.2)

the resulting equations represent the solution to the viscoelastic problem
which has the boundary conditions (3.14). The viscoelastic stresses are
given by (3.15) while the only non-zero displacement is

o <o () T [ ()

(3.17)

This result was obtained by Williams [5] (when G(t) is null for all
time t) but he obtained it by formally using equations (3.7) which are not

valid for ablating bodies.

Now if we had specified displacement boundary conditions only, instead
of (3.14), then we would find that the displacement field which met the
new boundary conditions was also free of elastic constants. An analysis
anslogous to that outlined above gives the viscoelastic solution, with the

viscoelastic displacements the same as the elastic.
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Lo The Special Case "hen R(t) is Constant

In this section we will consider the particular case when R(t)
(in future just R) remains constant. Here it will be showm that boundary
conditions which the elastic solutions (3.1) satisfy are related to the

boundary conditions of the viscoelastic problem. Then a problem will be

solved using these relations.

First, we rewrite the boundary conditions (2.4). We will denote by
u  and u (On and Os) the vector components of the displacement vector
(traction vector) normal and tengential to 9R respectively. In this way
u s us, Un and Os are vector valued functions of both x and t. Then
boundary conditions which prescribe the normal (‘tangential) components of

the displacement ond traction vectors on complementary subsets of 9R are

given by,
u(xt) = Ax,t) , xon 2R, (1),
un<3§:t) = B(‘.}S:t) ’ X on 3R2<t), (4 1)
GS<§,t) = C(g,t) sy X on 6R-6R1(t),
on(g,t) =D(x,t) , x on 6R—6R2(t),
where A,B,C and D are prescribed vector valued functions and 6R1, 6R2

vary with time t.

Now the analysis of the last section is still valid and (3.2) satis-
fies the field equations of viscoelasticity, (2.1), (2.2), (2.3), but since

R is constant the equations (3.2) can be rewritten as

00
ui(z,t) = L-1[/ ui(g,T,s)e Tar; s » t], x in R,
o]

o (4.2)
e. (x,t) =17 e.%(x,7,s)e %Tdr; s > t], x inR,
153 o i =



23

~00
=1 €
oij(g_c,t) =L [/0 cij(g_c,'r,s)e

STd1’; s » t], x in R, (4.2)

by equation (1.19). We will assume 3R1 and 3R2 are monotonically
increaging functions of time . Then for each x on 9R we define ti’
(a function of‘g), the time at which the particle at position x changes

from 6R—6Ri(t) to 6Ri(t) where i = 1,2, Thus we have

1]

on dR,(t) if t> t,,
* * (43)

i

on 0R-5Ri(t) if t>t, 1=1,2.

Next suppose we have elastic solutions (3.1) which satisfy the

following boundary conditions,

u (x t) = a1(§,t) , X on 6R1(t),
u (x,t) = b, (X, y Xon ’

“(x,t) = b,(z,t) , x on IR,(H) )
o x,t) = C(x,t) , x on dR-0R (%),

o (xt

D(x,t) , Xxon 6R—6R2(t),

where C,D are given in (4.1) and a,,b, are certain prescribed vector valued

functions. Then by az,bz, c, and d2 we shall denote the functions which

result from the above elastic solutions such that

ui(g,t,s)
€
un(c}fs t, s)

€
o (%,t,8) = ¢ (x,1,5)

az(g,t,s) y X on 6R-6R1(t),

bz(gg,t,s) , X on 6R—6R2(‘t),

i

(4.5)

-

X on 3R1(t),

x,t,s) , X on 6R2(‘t);

i

-

€
Gn x,t,s) d2

Then, in order that (4.2) meets the boundary conditions (4.1), we

require that the elastic solutions (3.1) must satisfy the boundary condit-

ions (4.4) where a, and b1 are given through the solution of
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a1(§,t) + L-1[/ az(g,T,s)H(t1—T)e—STdT; s»>t], x on dR1(t),
0]
(4.6)

ge.l
3(x,t) = b,(x,t) + L-1[/ bz(z_;,T,s)].{(tz—T)e—STdT; s»t], x on aR,(%).
0

A(x,t)

n

Since az,bz are related to a1,b1, (4.6) represents integral equations in

a1 and b1.

To prove this, we assume that we have elastic solutions (3.1) which
satisfy (4.4) and (4.6). Now if we use (4.4), (4.5) and (4.3) and sub-
stitute the result into (4.2), we obtain, with the help of (1.5), (1.16),
(4.3), (4.6), the equations (4.1) and

t

1
u(x,t) = L 1[] az(g_c,T,s)e—STdT; s » tl, x on 9R-0R, (%),
0
1,
o (x,4) = L-1[/ bz(g_c,T,S)e_STde s > t], x on aR-aRz(‘t),
JO
(4 7)
os(z,t) = L—1[/ c, x,T,s)e-STdT; s> 1t], xon 8R1(t),
t
-1 -sT
o (x,t) =1L '[] a(x,7,8)e ~dr; s » t], x on R, (t).
n'= L 2= <= 2

2
The condition (4.6) simplifies for two particular cases. The first

is, if 8, is independent of s,

a‘z(,}__c’.r,s) = az(g_c’.r)’ (4'8)
then the equation containing a, in (4.6) reduces to

Alx,t) = a1(_§,t) , X on 8R1(‘t). (4.9)
Next, if a, can be vritten as follows,

a,(%,758) = £(s) &(x,7) (4.10)
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then, by (1.6), the equation containing a, in (4.6) simplifies to

2
t

1
A(x,t) = a,(x,t) + /O F(t-7)e(x,v)ar, (4a11)

where

P(t) = L7 [(s); s > t). (4.12)

In both of these cases, the same relationships hold for b2.

Our choice tnat both 6R1(t) and 8R2(t) are monotonically increasing
is arbitrary in that we can consider different cases where 8R1(t) and
aR2(t) are, independently or together, either monotonically increasing or
decreasing. To find the solutions for these other cases we need only
replace the elements of the group (us, U Os, On) on the left hand side of
(4.1), (4.4), (4.5) and (4.7) by the elements of one of these groups,

R un), (os, u s U, Gn), or (u, 0, 0, un), and keep our

o, 0, u
( s’ 'n’ n’ s

s
assumption that 031(t) and aRz(t) are monotonically increasing functions

of time.

These results can be extended to thermo-rhelogically simple visco-
elastic media if the temperature field is either purely position-dependent
or time-dependent. A generalization to anisotropic and inhomogenous

materials is also possible.

This method of solution of boundary value problems in viscoelastieity
was given by Ting [1] in the case that the pseudo-temperature e(g,t) is

zero and
8R1(t) = 0. (4.13)

One problem with his result was thsat he used a form of equation (1.11)
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which is not valid.
If, along with (4.13), e assume that

D(é:t) =0

and (4o 14)

bz(g,t,s) = bz(g,t)

in (4.1) and (4.5), then this result is the same as the one given by Graham
[6]. He also vroved that his result held when the material is thermo-

rhelogically simple, [16].

As an example of this method, suppose that the region R is the half'-
space z 2 O with the boundary JR given by the plane z = O, We consider,
in terms of circular cylindrical co-ordinates (p,0,z), the axisymmetric

problem governed by the following boundary conditions:

sz(p,O,t) = Goz(p,o,t) =0, p =20,
u (£,0,t) =D(t) =8(p) , 0<p<a(t), (4.15)
GZZ(P,O,t) =0 s P2 a(t),

where the field quantities are independent of 0 and a is an increasing
function of time. We assume that the body force Fi and the pseudo-~
temperature 6 are zero. Equation (4.15) is a particular case of (L.1)

when 6R1(t) = O and, as a result of this and (4.15), (4.6) takes the form

D(t) - 5(p) =Do,(p,t) + L_1[«/o H(ty=1)b,(p,7,5)e " dr; s > t],

(ZF016)
0 <p < a(t).

If we assume that b1 is of the form

b, (p,t) =D'(t) - p'(p) (2.17)
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where D'(t) and 4'(p) are as yet unknown functions, then (4.L4), for this

case, is given by

£ g

apg(p,o,t) = 05 (8,0,) =0, p >0,

u(py0,t) =D'(t) ~5'(s) , O<p < alt), (4.18)
e

azz(p,o,t) =0 , 0= a(t).

In this instance, the elastic solutions (3.1) which satisfy (4.18) are

given by Sneddon [17], in particular,

a(t)
ui(p’o’t) = F%x‘%izi dy , p > a(t), (4-19)
N 0 (p"=y")Z
where
ot) =2 (pice) = v |~ B8/
g(y,t) =% {D (t) yaL) (yz—pz)% dp} (4.20)
and
= = = al t
ooy - TGN 0 o
2z 2(C(s)+26,(s)) P Ul (3°-p°)7
(ko21)
0<p <alt).
Then from (4.19), (4.20), (4.8), (4.17) and (4.16) <e find that
D'(t) = D(¢t)
and (4.22)
B'(p) =5(p)

Thus (4.2) is the solution to the viscoelastic boundary value problem
represented by (2.1), (2.2), (2.3) and (4.15) if the elastic solutions
(3.1) satisfy the boundary conditions (4.18) with (4.22). In particular,

the normal stress for P < a(t) is given, with the help of (4.20), (4.21),
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(4.22), (&.7), (1.9), (1.3) and (1.4), as

o (0,0,%) = (x*a)(p,t) , 0 <p < a(t),

where
K(t) = [c.1*d(c;1+2c,2)*d(2G1+G2)“1](t) (4.23)
and
H( t-1,) a(t)
M(p,t) = —meml 2 lﬁ%ﬁ%@%’ .

Note that with (4.3) we heve that
H(t-t,) = H(a(t)-p). (4.24)

The above solution agrees with the one given by Graham (6]. This problem
is known as the contact problem and a discussion of it follows in the next

section.
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5. The Contact Problem

In this section we will consider the contact problem of a rigid
indentor pressed against the surface of a viscoelastic half-space where
the contact area varies with time such that it may have any number of max-
ima or minima. To do this we will examine three papers, by Graham [ 8]
and Ting [10], [11]. I% will be shown that Graham's solution can be
extended and that the extended solution is equivalent to eitlier of Ting's
solutions. RBut first we will give a short history of the contact problem

in viscoelasticity.

Lee and Radok [18] solved the contact problem of a rigid sphere
pressed into a viscoelastic half-space when the contact area increases
monotonically vith time. They used a technique due to Radok [19] which
has also been used by Al-Khozaie and Lee [20] to study the two dimensional
problem of the contact of a rigid cylinder and viscoelastic half ~-space.

A theory, which includes ageing effects, of the contact of two axisymmetric
viscoelastic bodies, was given by Predeleamu [21] who recovered Lee and
Radok's solution (for non-ageing materials) as a special case. The
corresponding plane problem was studied by Prokopovici [22]. Hunter [ 7]
subsequently rederived Lee and Radok's solution, using dual integral
equations, and extended it to the case where the contact area increases to
a single maximum and then decreases. The results of Hunter's solution
were recovered by Graham [9] using a simpler analysis. Graham also con-
sidered an indentor of asymmetric surface and the Hertz contact problem of

two viscoelastic bodies with quadratic surfaces. The latter was also

studied by Yang [23] with the restriction that the contact area is only

monotonically increasing.
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Expanding on these earlier solutions, Ting [10] studied the problem
of an axisymmetric rigid indentor on a viscoelastic half-space where the
contact area has any number of maxima or minima, In this paper, the
continuity of the solutions at the time when the contact area is a maximum
or minimum is not clear and the procedure for obtaining these solutions
becomes unwieldy as the number of maxima and minima increases. More
recently, Graham [8] extended his earlier results to the case considered
by Ting with the restriction that minima of the contact area are null and
each new maximum must contain all previous maxima. In this case the
continuity of the solutions is satisfied. Following this, Ting [11]
gave a solution to the problem considered by Graham with the restrictions
on the contact area removed and which meets all continuity requirements,
In this last paper Ting points out that the current pressure and dis-
placement distributions, over the contact area, are not dependent on the
entire loading history. The pressure is independent of those previous
intervals of time when the associated contact regions contain the current
region, whereas the displacement is independent of those intervals of
time when the associated regions are contained by the current region.

One gquestion that remains in these last three papers is whether the normal
pressure over the contact area remains positive for n maxima and minima.

If it does not, then the problem solved might not be realistic.

In detail, the problem considered in these last three papers is that
of determining the displacement and stress fields set up in a viscoelastic
half-space, occupying the region z 2> O, where boundary z = o(B) is
deformed by a rigid indentor, It is assumed that over the contact area,

Q(t), the normal surface displacement must conform to the surface geometry
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of the indentor. The boundary conditions to this problem are given by:

Gyz(X,y,O,t) = ze(x,y,O,‘t) =0, (X,y) on B,
u (x,5,0,%) =D(%) - 8(x,3)u(t), (%) ona(t), (5.1)
GZZ(X,y’O,t) =0 ’ (X’y) on B - Q(t)’

where 8 is prescribed by the surface of the indentor and D(t) is the

depth of penctration, at time t, of its tip into the half-space. It turns
out that this problem reduces to finding the distribution of normal surface
traction, p(x,y,t), acting over Q(t) (p is zero outside of Q(t)) and the

relationship between D(t) and Q(t).

We will denote by tzin the time when the contact area is at a mini-

mum and has already had (n-1) maxima occurring at times t;ax

(r =1,2,...,n-1) and (n-2) minima occurring at times t;in
(r = 2,3,...,0-1). The times t. _ and t . are labelled in order of
max min
1
increasing magnitude and we define tmin = - o, We therefore have
r-1 r r
top St <t T=2,3.0.0.,0, (5.2)

Graham and Ting consider the above problem for two cases,
t > t%, (t 3> t" ) where the contact area, Q(t), is monotonically
min max
increasing (decreasing) with time and it is assumed that the history of

displacement and stress fields is known for times up till tn, (tn ).
min = max

In the first paper we shall look at, Graham makes the restrictions
that all minima of the contact area are null and each new maximum must

contain all previous maxima, that is,

r

Q) = 0 and A1) SOl ), *=1,2,..0n. (5.3)
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For the case when t > tgin’ n > 2, and Q(t) is monotonically increasing,

his method of solution is to note that from an earlier work [9] the normal

surface displacement is related to the pressure distribution p(x,y,t) act-

ing over Q(t) through equation,

-t
4 (% | k(4e0)2 p(&,n,0)dédn .
(%,7,0,%) L k(4 9)@"(1{4[@-@%@_@2]5 2, (5.4)

where K is an auxiliary response function defined by
T -, =1
K(t) =[ —=(26,+ G.)*d(G,+ 26.)  *de (). (5.5)
A 2 1 2 1

He then considers the one-parameter family of corresponding elastic
problems. For this case, the corresponding equation to (5.4) is written

as

U.B(X, ,O,'t) - i K P(§,77,t)d§d71l s (5.6)
2 Q/({) [(x-¢)%4(y-n)°12

where

1 (Lus3k)

© = b w(eesk)

He supposes the pressure distribution which generates through equation

(5.6) normal surface displacements consistent with (5.1) is given by
p(%,y,t) = alx,y,t), (%) onw(t), (5.7)
with D related to w through the equation
(%) = £(w(t)), (5.8)

where f is a given function of positive slope. The solution given

through equations (5.7), (5.8) involves the time t as a parameter only
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and w(t) is always a member of the one-parameter family of elastic contact

areas.

Now he lets the viscoelastic pressure distribution over w(t),

t s tn.n be given by

mi
p(x,y,t) = r(x,y,t), (x,y) onw(t), t < t;in’
where r is extended so that
r(x,y,t) = 0, (x,y) onw(t), ts t;in'
Similarly, the depth of penetration for times t < tZin is

n

D(t) = a(t), ¢ nin

N
t

He then writes (5.4) as

3
u (%,7,0,1)- ul(x,y,t) = /ﬂ K(t-8) 5, j p(£,n,0)dgdn a8,
4n

2 L) [xe) ()12

where
n

© min
u'(x’y’t) =/

-0

R(x,y,t) = /]) r(£,n,t)dgan

> 21_'
x=£) “+(y-n)"1?
St [(x=€)"+(y-n)

. n . - + -
Next, for times t > t_; , he defines to(t), tr(t), tr(t),

3
K(t-0) 5, R(x,y,0)d5,

(r =1,2,...,0=1) s0 that

£5() = (8) = 4 w(t) 2u(t ),

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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t_(8) = £(8) = £, af (e, ) Du(t),

(5.15)
w(t:(t)) = w(t;(t)) = w(t), t;ins t:(t) < t;axs t;(t) < t;Zl ,

r = 1,2,.--,11"'1’

where for times t > tgin w is prescribed and at first strictly monoton-

ically increasing, It is immediate from (5.15) that
t;_1(t) < t:(t) < t;(t), r=1,2,00.,(n=1). (5.16)

In future we shall refer to ta(t), t;(t), t;(t) as tg, t:, t;, keeping in

mind that they depend on t.

With the aid of the quantities introduced so far, and the identity,

a 2]
R(t) = /‘K(t-e)d j K-1(6-T)dR(T) (5.17)
where for simplicity we write
R(X,y,t) = R(t): (5-18)

the author succeeds in reducing (5.13) to

u'<x:y:9)' N(x,y,G,t) = // m(finﬁ;t)dédn (5-19)

2 2%
: [(x=¢)"+(y-n)°]

where N is given by the recurrence relation

1'_1:_,1‘ t;'g . i t;2 1
N(6;t) = Z / . K(6-6,)d { Z / . K™ (6,70, Jalk*ar](6,)
i t ] -t
r1=1 T4 r2=1 o)
rq t+

. 2 10,0 )an_ (0, 5%)
- 2 1 I'2 1’ ’

2
r531 r2-1
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i 2m+1

1
2n+ r
L omed Tome2 L P

m = 1,2’,,,,(1’1_3)’

t
r

T =1t r
211—4- I‘2n_3 21’1_"3

e = —
al0i9) = ) )|
r =1 % r =1 £
2n=3 r2n—3 2n-2 oo

Similarly m(0,t) is given by the recurrence relation
+

t
=1 Cp

r,. .
- ZZ /+ 2m+1 (6-0,)a ZI / 2m+2K (0,0 yatxeax)(o

(5.20)

2n=2 -
K (92-91)d[K*dR](91)}_

% j 1 K(6—91)dr(01)

D
m(0;t) =] K(0-6,)ar(6,) + Z{ |
4= (r1-1

1

Y(n=1) _
n
— 1
+ giﬁ / K(9—61)er (q;t),
+ 1
I‘1= tr
1
+ +
T o1 tr Tom tr
R - 2m R o
| -1
4 09 ) | ead ) ] e
2 _ 5
2m=-1 I‘;é1 _t'(" 1) r;_. -1 t.(_r —1)

"’ Fom” 2m+1

r_ =1 ot

Cgm ’r2m+1 “

+ ) | /ﬂ K(0,=6, ) (61;t)j ,
— =1 't+ 2m+1
r

2m+1 r2m+1

m = 1,2,...,(n—2),
+

+
+
2n-1 2n—1

- o /_rzn-z “V6-0 )d{ ZZJ j
Ton-1~ (r

2n-=3
r =1 t
20-2"" (ry o)

-91)dr(91)

(5.21)

K(92—61)dr(01).

o)
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From (5.19) he finds the depth of penetration D(t) and the pressure

p(x,y,t) acting over w(t) while using the assumption
w(t.. ) =0, r=1,2,...,n0.

It is from this point that we cun diverge from Graham's solution and find

D(t) and p(x,y,t) without the above assumption.

Now if we use (5.19), (5.21), (5.10), (5.6), (5.7) and the facts
that w(t) is monotonically increasing and the pressure p is zero outside

the contact area, then equation (5.12) becomes

g
UZ(X’Y’O’t) - uz(x,y,O,t) - N(X’y’t;t)

.t (5.22)
e m(€,m,t5t)-kq(€,m,t) + j.tn. K(t-6)dp(&,n,6)

-JIL i } aen

w(t) [(x~¢)"+(3-n)"1%

If (x,y) lie on w(t) then from (5.1), (5.8) and (5.10), (5.4), (5.1) and

(5.11) the left hand side of (5.22) becomes
D(t) = £(w(t)) - n(t;t), (5.23)

a function of t alone, where n(t;t) is given by (5.20) if we replace
[K*aR](t) by a(t). Now if we consider (5.6) when uz is a constant (or a
function of time) over the contact area, then this refers to the case when
a flat-ended cylindrical punch presses into an elastic half-space and the
pressure will be discontinuous at the edge of the contact area. If the
pressure is contimuous then the displacement must vary over the contact
area or be zero. Combining (5.22) and (5.23) we see that the result takes
the same form as (5.6) and here, what refers to uz is a function of time

and what refers to the pressure is continuous at the edge of w(t). Thus
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we deduce that

D(t) = £(w(t)) + n(t;t) (5.24)
and
t
/ K(t'a)g'@ P(x’yye)dE) = KQ(X’y’t) - m(X:Yyt;t)’ (5-25)
£,

(%,5) on w(t).

We can solve (5.25) for p(x,y,t) and get

t
p(x,7,t) = p(%,y,% . ) +/ K™ (4-0)al kq(x,7,0) - n(x,5,0;t)],
n
*nin (5.26)

(x,¥) on w(t).

These results give the same answer as Graham's when we use the assumption

(5.3).

Next Graham looks at the case when t 2 tzax and w(t) is monotonically

decreasing. In solving this problem he invokes his second assumption,

r-i r
w(tmax) - w(tmax)’ r =1,2,,..,n,

n

in order to meet the continuity requirements of p(x,y,t) at time t = tmax'

This assumption is not necessary if we use the following analysis.

We first note that the author defines the function P by the equation

tn

P(X’y’t) - / - K—1(t'6)d[K*dR](9), (X:Y) on B. (5-27)

0
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From (1.4) and (5.14) we see that this simplifies at t = tzax’ to
r(&,n,t> )agdn
P(x,5,t, ) —// —=——, (xy) on B.  (5.28)
L L) 2 (yn) B
w(t )
max
Graham then writes the equation
t
P(x,y,t) + / K_1(t—6)§% u (x,5,0,0)a
2 J
max (5.29)
_ || (&, t)agan n
= // 5 5T (x,y) on B, t > oo
[(x=€)%+(y-n)°]

w(t)

where w(x,y,t) is the viscoelastic pressure at time t acting over w(t).
But if we let t > t;ax in (5.29) then, from (5.28) and the fact that u,

is continuous at £ , we find
max
r(x,y, ) = w(x:y, X)’ (X,y) on B,

Next we will give a recurrence relation that we will need later.

From (5.20) we note that, when (x,y) lies on w(t),

Nn(G;t) = n(6;3t) . (5.30)

With (5.30) and equations (5.20) we obtain the relation

£ n-1 t
N (6 t) = N (0 t) + /w 1K(a-e )d 214 L_/h K'1(e -0 )da(9 )
‘t+
+1 (5.31)
t B
o | KT(6,m0,)aN (6,5t) | |,
[ e ogao |

r-1
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Then if we define Di such that,

Dn_1(6;t) = Nn(O;t) + f(w(t)), n2>2, (5.32)

we have from (5.31) that

€

-1 -

N1 gk O 1
Dn_1(0;t) = Dn_Z(O;t) + / K(G—@Z)d{ 22# ( / K (92-61)da(61)

+ L.d+

t = t

n=-1 r

o (5.33)

- _1 i ! s

+ / K (02—01)dDr_1(U1;t) [, nz2,

- L

t

r~1
where from (5.31) and (5.30),

Do(05t) = £(u(t)). (5.34)

Since the viscoelastic and elastic displacements are the same for time

t < t;ax’ and cs a result of equotions {5.11), (5.15), (5.8), we have

a(t)) = £(a(t]))
(5.35)
= flw(t)). V
The last point to note here is that from (5.32), (5.30) and (5.24),
n
Dn_1(t;t) =D(t), t = b (5.36)

In discussing Ting's paper, [41], we note his assumptions do not

include (5.3). Following a straightforward procedure, using the boundary
conditions (5.1) and an identity, Ting soon reduces (5.4) so that he may

deduce the depth of penetration D’(t) and the pressure distribution
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p'(x,y,t) in the contact area, to be

n-1 £~
- r
- | RPN (5.37)
] —_ - . -
D'(t) = a(t ) Z_ /+ Fn—1,2r(t’0)d9°‘(”d9
r=1 tr
and
% n-1 ¢+
p'(x,y,t) = r(x,y,t_ ) - K_1(t—0)2 \ rF (t;0,)dr(x,y,9,)
I 79 "n- _ a0 _ n=1,2r-1% 771 R
tn r=1 Yoy
(5.38)
where t 2 t:lin’ n > 2 and we define F by the equations
t A
Fn_1’2n_2(t;9) =/_ 1«:(1;-01)5-011x ((}1.-0)d01,
t
n-1
t 0
by (t;0) = '— K(t-6 )-‘2 .17'"1(0 -0_)
n-1,2n-3" "’ “] M50 AT
4 Ty
n-1 n-1
. §G I{(02—9)d62d61,
2 (5.39)
t 0
.F (£;0) = | K(t-0 )2 ‘ 1K_1(0 -6._)
n-1,2n-4" 7" 7 1700 / 1720 "
4 Ty
n~-1 n-1
0
g 2K(0 -6.)2 x7(0,-6)a0, a0 a6
'@02/_ 2 3603 3 32717
n-2

[Note that for the sake of clarity, here and throughout this discussion,

we will transform Ting's notation into the one already introduced. ]

In showing that this result is the same as Graham's extended version,

we will make the following simplification of the above notation such that
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T 0 0
o | - 9 |2
/ K(r-01)5-91 / K (0,70,) 5, / K(0,-6,)
- o+ 2 L
n-1 n~1 n-2
03 92(n 1=r)
3 j -1,. ) 2 T
. T E (03=0,)5, ees = / K(0 -6 )
393 L+ 3 4-304 aO2(n-1—r) _ 2(n~1-r)  2(n=-2-r)
t
n=2 r
4+
.2 ] rK-1(0 -6) 2 4(6)a04a0 ve. d0,_d0
aOZ(n—Z—r) )+ 2(n-2-r) /a0 2(n=2-r) 21
i i} (5.50)
/T O2(n-1-r) tr -
= !:j s e / / (T;t)
t t £
n-1 r r
where r € n-2, If we use (5.40) then we can define Df and W as
D£_1(T;t) = a(t;_1) + Wn_1(T;t), nz 2, (5.41)
and
T t ]
T o (r;t) = - K(7-0 )9 - K'1(a -G)Q?a(G)dO
"n-1M"? T 1790 1 /40
+ Tt
n=2 -
i 62(n-1-r) tr -
- [ j oo / /’ ”}(T;t), nz 2.
e e N t
We can see that, with (5.37), (5.41) and (5.42),
D! (£5t) =D'(%), +t> t;in' (5.43)

Next we give two identities which are similar to the one used by

Ting,
+ 0
v(t) = v(b) + 1; K(t—O)g%qé K-1(0-T)§;V(T)de0, (5.44)
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and

b g 19 2
/ﬁ K(t-0)5=9 /a K (G-T)-a-Tv(T)deG

ot b (5.45)
= v(b) - v(a) -]b K(t-G)aQO/ K-1(0-T)a-QTv(T)deG,

a<b < t,

Te will now rewrite W _, in a form similar to (5.31). If we add

-1
and subtract the same quantity to (5.40), we can find, after some

rearranging,
T t-_1
W, (r3t) = -] K(r-0 )2 ; K—1(0 -o)-‘?-a(e)dOde
"n-1t 2T 1790 1 a0 1
- Tt
n=-1 n=-1
n-3 0 - -
L R . Yo(nm1-r) fr 2 tpeo
A R AR
+ I+ P - - + - +
tpet net T tn—2 ty b, Yo tn-p (5.46)
n-2 = -
T n=1 91 62 OZ(n-1—r) ﬁr -
+ {/ / / / / }(T;t)
9+ + - - +
r=1  th tn-_-1 tp-o t b
Using (5.45), the first integrals can be written as
+ - . 2 -1 _ 6040) ‘
a(tyy) - alt ) */ K(r-01)56 / K (0,-0)F5a0a0, . (5.47)
+ 19+
t t
n-1 n-1

Comparing the first series of integrals in (5.46) and equation (5.42), we

can see that they are equal to
T 0

1
5 2 1o 0 )2 4 .
_/+ K(T_o1)ao1 /+ K (u1 02)302 »Jn_z(Oz,t)d02d01, (5.48)

n-1 tn--1
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which by using (5.44) reduces to

o), (5.49)

- Wn_2(-r;t) + w(tn_1 ;

For convenience we will refer to the last series of integrals as I. If

we add and subtract the same quantity to I we can get

n-2 - : -
= e %1 % Yperr) B
) UL T e
+ - - - *
r=1 tn_1 tn_2 tn—2 tr tr
- + =3 - -
Pt Pper s 2 90 '02(n-1-r) t. 0, * .-
[ P e
+ -~ - - + - J+
thi o T 0 tr t theo theo

Here if we use (5.44) on the first series and note (5.42) when consider-

ing the second, then I simplifies to

Nn=- - -
- e -03 '02(n-1-r) t,
I=> {/ / ] / }(‘r;’c)
L . - +
r=1 t;—1 t;—Z by t
ES N 9
+/ K(T-6,) 5 ] K (6,-0)5,(0)d0a0, (5.50)
t+ 1 t+
n-1 n-2
- +
'.tn"1 9 tn-1 - 3
+/ K(‘r-61)5-6 / K (61—6)5'91:’11_2(0;t)d61d62
+ 1=
t t
n-1 n-2

The same procedure used on I can be applied to the series in (5.50) and

this process can be repeated (n-4) times finally giving,



n-z2 4= +”
N o [T - 2
I = ;iJ / K(T-01)5b /% K (61-6)5ba(9)d6d61
+ 14+
r=1 by by
(5.51)
n=1 4~ t7
[ n=1 P ro 5
+ QZJ /+ 3(1-91)5b1 /; K (91-9)5-6Wr_1(6;t)d9d91
r=2 Yy b
Substituting (5.47), (5.49) and (5.51) into (5.46) we obtain
W (T5t) =W _(r5) =7, (8 45t) + o(t]_)) - alt )
n-1 ¢~ £~
T n-1 P r o4
+ QEJ /ﬁ K(T-0,)5, { /n K (61—0)aea(6)dﬁ (5.52)
+ 1 +
r=1 Yy t
‘t+
T )
+ /_ K (01-6)5bwr_1(0;t)d0}dﬂ1, n: 2,
t
r—1

Wwhere WO(T;t) is independent of T. It follows directly from (5.41) that

(5.52) implies that

n-1 "
s n-1 P
D'-1(T;t) = Dé_z(r;t) + QZJ /; K(T-81)5-61 .
r=1 t -
n-1 (5.53)
t £
- 9 d
. { /+ K 1(91‘9)5b“(9)d9 + /_ (e e)ae (e t)d@}d g0 nz2,
t
-1

where we have used the fact that from (5.41), (5.42), (5.37) and (5.11),

1 + - +
Dn 2 JCn—‘l’t) - a(tn-1

From (5.51), (5.45), (5.41) and (5.42) it is also seen that
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DA(75%) = Wo(75t) = a(+]). (5.55)

Now for both solutions, (5.24) and (5.37), we assume that a(t) is
the same for t € tzin. Thus, after considering (5.33), (5.36) and (5.53),

(5.43), we can see that it is only necessary to show that
pi(75t) =D (751),

in order to prove that the depths of penetration for the two solutions

are the same. From (5.41), (5.42) and (5.45) we have

t 6

oA -
t(r:4) = + a9 =10 o\ @
D1(T,t) = a(t1) + /ﬂ k(7 e)ae / K (91 G)aea(e)d6d61.
+ 1 J+
t] t

The same expression is found for D1(T;t) if we combine equations €5.32),
(5.31) and (5.35). Therefore since the displacements over the contact
region are the same for both solutions and they both use (5.4), then the

pressure distributions over the contact area must be the same also,

If we consider the case when t 2 tzax and w(t) is monotonically
decreasing then we can also show that the two solutions are equivalent.
To do this, we follow the same analysis as above, only considering the
pressure distributions first and then show that as a result of these being

the same, the depths of penetration are also equivalent.

In looking at Ting's other paper [10]}, which is an earlier paper
to the one discussed, we first notice that the indentor is axisymmetric.
For the case when t > tgax and w(t) is monotonieally increasing, he finds

the depth of penetration D(t) to be
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tn-1 P w(61)
D(t) = £(u(t)) +/ 11(1:-61);3-61 /O 3(0,2)¢p(C,0,)aras,

w(t) Q(61)

e o (M e o Vards an
+z) [02(1) 2] arlo K(t 61)391 Z) I3(r,¢)ep(L,0,)aae,

where p(r,t) is the pressure acting over w(t). After quite a lengthy
discussion this expression can be reduced to Graham's. Any further
discussion of this solution would have little value since either of the

two papers previously mentioned presents a clearer and more general

solution.
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6. A Three Dimensional Crack Problem

Which Extends and Then Contracts

In this section we will give a solution to the problem of a plane
axisymmetric crack in an infinite viscoelastic medium which is opened by
a normal pressure acting on its surface. The distribution of stress and
displacement for this problem is the same as that in a semi-infinite body,

z 2 0, when its surface, B, is subject to the boundary conditions:

Oxz(x:y,O,t) = 'yz(x’yxo’t) =0, (X:Y) on B,
o (1,7,0,8) = - B(%) , (o) onw(t), (6.1)

uz(x,y,O,t) =0 ’ (X,Y) on B'w(t)’
and the conditions at infinity,
oij(z,t) > 0 as xx. >, for all i,j. (6.2)

Initially the crack surface, w(t), is monotonically increasing till some
time tm when it begins to decrease. Here we assume that the body force,
Fi’ and the pseudo-temperature, 6, are both zero. With the above
conditions, the problem is to solve the field equations (2.1), (2.2) and
(2.3) with the boundary conditions (6.1). 1In order to do this we first
solve the viscoelastic problem with the following boundary conditions

replacing equations (6.1):

Ozx(xyy’oyt) = Ozy(x,y,O,t) =0, (X,Y) on B,

u(xyy:t) ’ (X;Y) on w(t), (6-3)

uz(X’y’O:t)

0 s (x,y) on B-w(t).

UZ(X’Y:O,t)
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From the results of section 4 we can see immediately that the
elastic solutions (3.1), which satisfy the boundary conditions (6.3),
substituted into (4.2) give the solution to the equations (2.1), (2.2),
(2.3) and (6.3). The viscoelastic displacements and stresses are given

as follows,

u (x,t) (Zgjjz)q*d{}e *q ( >+ 2(6,+26,)*d (axazy (x,t),

uy(g_c,t) (%2) *d{}(} *d< >+ z(C— +2G )*d( )} (x,t),

Z}{ -2 «-; + z(26 +G2)_1*d(G1+2G )*d <a2121>} (x,1),

Jdz

uz(_J_C, t)

G
1 " 07U _ ] U
on@,t) =T *d(2G1+C—2) *d{}(} d< 2> + 2(6, Gz)*d< >

ox 3z

+ 2(6,+26,)*a <;3U2>} (x,t),

zd X

(6.4)

2U 32U
&) = ,._ *d(2G1+G2) *d{BG " <6y2> + 2(6,6,)*a <-a-:2>

+ z(G1+2G2)*d <azay >} (x,t),

2
-1 91U
ozz(_J_c,t) = *d(2G1+G2) *d(G1+2G2)*d[- -—-azz + z --az } (x,t)

PR
1 . ch
Oy &) = *d(2G1+G2) d{}(} *q <a > >+ 2(G,+26,)*d <6x6 6z>} (x,t),

o (x,1t) --G—1 *4(26,46,) 7 *d(C, +26,)*d -—‘?-3-‘-1- (x,t)
xz &Y =g 172 (e -3

fep!
N

o (x,t) = Tjr *d(2G1+G2)_1*d(G1+2G2)*d{ ayaz } (x,t)
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where U is given by

U(z,t / u(§ U,t)dﬁdn r . (6.5)

o) (=62 (rm) 242712

A result which can be used here is that

- Zﬂu(xyy’t) s (X,Y) on w(t):

U
£ ( ,y,O,t) (6.6)
= O , (x,y) on B-w(t).

[The solutions to these elastic problems are based on the Papkovitch-Neuber

stress function solution. ]

Now we compare our original problem with the second and see, that if
we can find a displacement distribution u(x,y,t), (x,y) on w(t), such that
Gzz(x,y,o,t) given by (6.4) satisfies (6.1) then we will have a solution

to the first problem.

From (6.4) we note that the normal stress on B is related to the

normal displacement acting over w(t) through the equation

o (x,5,0,t) {;ﬁﬂ*d{ // P-%gﬂ)dédn} (%,5,1t), (6.7)

where K and p are given as
K(t) = [G1*d(G1+2G2)*d(2G1+G2)—1](t) (6.8)
and
2

p° = (x=€)% + (y-n)°.

For the corresponding elastic problems, (6.7) is written as



Gzz(x’y’o’t) = L1 / M@ (6.9)

where

K = ﬂ%%ff%ig . (6.10)

Now we prescribe for the elastic case the normal stress acting over w(t)

to be given as
£
Uzz(x,yyo’t) =-P (t)’ (X’Y) on w(t)’ (6-11)

where P (t) will be determined later in terms of the known function P(t).
We cen combine equations (6.9) and (6.11), and invert the result to find
the elastic normel displacement acting over w(t). Suppose, therefore,

that at any time t the elastic displacements which through (6.9) satisfy

(6.11) are given by
u(x,y,t) = v(x,y,t), (x,y) onw(t). (6.12)
At this point we define the function t1(t) through

t.(t) =t if t <t
! m’ (6.13)

w(t1(t)) = w(t), t1(t) <t if t>t.
We also extend the domain of v(x,y,t) by defining that
v(x,y,t) = 0, (x,y) on B=w(t). (6.14)

Then by (6.9), (6.12) and (6.14) we find that

| ¥(6n,t)déan
0 2(%,5,0,t) = 5, j/’v ; d (6.15)
P
B
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which by (1.3) and (1.4) can be written as

e 1L e
o *(x,7,0,%) = é‘-‘ﬁ*d{// at *d"ié’”)d’gd”} (%,5,%) . (6.16)
2

Breaking up (6.16) we get

4 6
0 5(%,3,0,t) - [ K(t-6)a [ K(6-1) "’@”7 AN (1,5, 1)
gl Ko ¥50, Z)_Kted/t1(91)<2 6 dlz // J ¥,
t ft1(9) 1 (6.17)
/ k[ K (9-1)dv(&,n,T)
- .2177 é_K(t- )dQ/ /o _ av(€,m dédn} .

(In (6.17) we make a notational change from equation (1.2).) Since

w(G)_g w(t) whenever 6 < t1(t), we have, by (6.14), that

£, (4)

K—1(t—9)dv(x,y,9) =0, (x,y) on B-w(t). (6.18)

Then by using (6.13), (6.15) and (6.18) we obtain

t 7]
& ( -1 & \
OZZ(X’y,O,t) "./ K(t-@)d./ K (9—T)dUZZ(X,y,O,T)

t t1(9)
£ (9) (6.19)

t

_ -2177 /_K(t-e)d{ // K/-o K (e-r)dv(g,r; T)dé'dn} .

0 2(0) 0’

However if (x,y) belongs to w(t) then (x,y) also belongs to w(T) whenever

t1(6) sT <6, tm < 0 < t, Thus by (6.11) we see
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t 6
c%%ym¢>-/Ku$mj' k™ (9-1)a0 °(x,5,0,7)
zZZ A A (9) VA
m 1 (6.20)
t 0
=-fu»+/xuwmj K (0-r)a%(7), (x,y) on w(t).
tm t1(6)

Now from (6.19) and (6.20) it is seen that the normal viscoelastic dis-
placement u defined by

t, ()
u(x,y,t) = & j' K7 (4 )av(x,y,7), (x,3) on w(), (6.21)

0

acting over the crack surface w(t) generates through (6.7) the normal

pressure P(t) related to the function P*(t) through the equation

t 6
P(t) = P°(t) - / K(t-6)d / K-1(6—T)dP8(T) (6.22)
t t1(6)
R +,(6)
_ / K(+-6)a ] k1 (6-r)ap® (7). (6.23)
0~ 0

From (6.21) and (6.23) we see that u and the viscoelastic solution are
determined by a knowledge of P°(7) (and hence v(x,y,7)) for times T < t1(t),

From (6.22), it is clear that if t < t_ then
P°(t) = P(t), t< t . (6.24)

In summery, if we can find a one-parameter family of elastic solutions
which meets (6.1) for all times 7 < t1(t) then through (6.21) and (6.4)
we have a solution to the viscoelastic problem represented by (2.1), (2.2),

(2.3) and (6.1) at time t. The basics for this technique of solution were
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developed by Graham [9] for the contact problem,

Next we look at equation (6.23). This equation is a condition
imposed on the viscoelastic solution when the crack surface is contracting,
by the fact that we require the normal displacement to be null and con-
tinuous on the boundary of the crack area. From it, we can see that,
for times t > ¢ , if either the crack surface area, w(t), or the normal
pressure, P(t), is specified, then the other is determined from this
equation. [Recall that t1(9) is related to w(8), 6 > t, by (6.13).]
However if we choose to prescribe P(t) then it can be seen that a(t) will
not begin to contract until P(t) is negative. There exists a problem here
since it may be possible that (6.23) can never generate negative P(t).

In this case, the above solution would only be valid if we prescribe a(t)

and determine P(t).

We will now briefly consider the problem that arises when an
infinite viscoelastic medium contains a crack in the plane z = 0, (x,y) on
w(t), which is opened up by the action of stresses at infinity. Consider

the viscoelastic problem governed by the boundary conditions:

O‘ l_.(x,y,O,t) = GZX(X:Y:O’t) = Uzy(x’Y:O:t) = 0, (x,y) on w(t)
0,2(Et) » P(2), 0 (x,t) > a(t), o (x,t) » R(¥) (6.25)

as xkxk—>°°,

szb'{’t) » 0, Ozyb_{,t) - 0, ny(‘}_{,t) -+ 0 as XX oo

It is easy to verify that a solution to this problem is obtained by super-
imposing on the solution given by (6.4), (6.21) and (6.23), the following

solution to the field equations (2.1), (2.2) and (2.3):



5

Q
(]

P(t), o a(t), cryy = R(t),

22

g =0 =0 =O,
ZX 2y Xy

ey = 3 [PHa(e; 4267 )1(8) + 3 [(er)*a(e;' 7)) (),

e =<[qra(e 42T 1(t) + % [(Per)*a(c e 1(1) (6.26)
XX 3 2 1 3 2 1 4 ‘

e == [R*a(e 4267 1(t) + = [(P+)*a(c "M 1(4)

vy =3 2 T *3 : 2 ’

e = e = 6 = 0,

zX zy Xy

u =ze ,Uu =Xe. , uy =y eyy'

As an example of this method we will consider the problem of an
infinite linear viscoelastic medium containing a plane circular crack which
is opened by a normal pressure acting on its surface. In terms of circ-

ular cylindrical co-ordinates (p,0,z) the boundary conditions are given as:

ozp(p,o,t) = oze(p,o,t) =0, p=0,
o (Py0,t) = - P(%) , 0<p <a(t), (6.27)
UZ(P’O,t) =0 s P> a(t)’

and equation (6.2). Here a(t), which gives the radius of the crack at
time t, is initially monotonically increasing and after some time tm

decreasing. [Note that the field quantities are independent of 6.]

Prom Sneddon [25], we can write (for this problem) the equations

corresponding to (6.#). In order to do this, we will use the notation

0

fU00,%) = #[200,) 5 0+ €] = | 200,113, 08)e (6.28)
0

for the Hankel transform of order v of the function f, The inverse is

given by the inversion theorem



55

oo

I3

2o,8) = &[5(6,8) 5 € » 0] = [ &8,(6,0)7,(p)at (6.29)
0

(for reference see Sneddon [14]). If, for clarity, we make the further

notation that
T - \
V= u(€,4)e? (6.30)

then the equations replacing (6.4) for this case are given as:

(2G1+G2)-1
u, = - = *%}g%wJV;ﬁ»p]+(g+%2ﬁngV;é»pi},
u_ = #[V; € > t] +-§- (G1+2G2)*d(2G1+G2)‘1*dieo[§V; &= pl,
e
- - PN z RPN
Opp = = KFABL(1-€2)EV; & > p] + = & [£V5 ¢ > p]
-1
--2- G1*d(G1+2G2) *dﬂ€1[V; £ > p]} ,
| » (6.31)

0o = K*d{2(G1~G2)"‘d(G1+2G2) *aB [ £V; € > p)

+fﬁﬂﬂ;é»ﬂ-%Gfﬁﬁﬁ%Y“MJW€+p@,
Ozz = K*d%o[(1+§z)§v; £ > P],
Tp = zK*dJ€1[§2V; & - pl,
ue = Upe = UZO = 0,

where we have made use of (6.8). [Note that from (6.29), (6.30), and

(6.31), when z = O,

u,(p,0,t) =u(p,t).] (6.32)

From the previous analysis we see that we must find a one-parameter
family of elastic solutions which meet the boundary conditions (6.27) for

times T € t1(t). Such a family of solutions is given by Sneddon [24].
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In particular, two quantities of interest are

w(5,0,4) = LI o (1) o2() %12 (a(t)-), (6.33)
o ® =2 alt - sin_1 E&E) > a . 6.
1e(p0,0) = & 20—t (H)], oo ae. (6
From (6.10), (6.21) and (6.34) we find that
1, () 1 :
ao,) =2 [ & (w0 o) 2(0) 071 m(ae)-0) | (6.35)
|

With (6.35) it is possible to generate through (6.31) viscoelastic dis-
placement and stress fields which satisfy the equations (2.1), (2.2), (2.3)
and (6.27) where a(t) can increase to a maximum and then decrease. For

example, the normal stress Uzz is given by

oolprmrt) = - (B (e )eug(£)e%; € o 01 (r,5,0)
B . +,(60)

_.%.[ K(+-6)a / K—1(9-T)dP(T) . (6.36)

i

. {%O[1+§z)§fg(§,r)e-§r; & > p]} (p,z,t)
where

£(p,t) = [a2()-p]1Z H(a(t)-p), (6.37)

fg(é,t) = §_BSin(a§) - a§-zcos(a§). (6.38)
Using the result,

£ (£,t) 5 &> p)
#lefo(€,%) 5 &> p. (6.39)

- u(a(0)p) - [ tfhn - san™ (59 ) soma(e)

p%-a?(1) 12 P
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we have that when z = 0, (6.36) reduces to

t +,(6)
o (P,0,8) = - j K(-0)a [ K(e-r)ap(r) -
0 0 (6.40)

{H(a(r -) - 2[1—-5-52%;—{] - sin”] <3%1):[iH(p-a(r))}

One quantity of interest in the analysis of crack problems is the stress

intensity factor, N(t), which is defined by
1
- 1i - z
N(t) = pii’&“t)”" a(t)]? o (p,0,1)] (6.41)

Making use of (6.13) and the fact that a is increasing for times t < &

and strictly decreasing afterwards, we find that

!_I.

N

¥(8) = KOO (-8, ()Rt (0)) (2591, (6.12)

which, for times t < tm’ is the same as would be obtained from the analysis
of the corresponding elastic problems. The fact that N is positive when

a(t) is decreasing seems unrealistic.

For times t € t_we have from (6.13), (6.35) and (6.40),

t
2 [ .~
uz(p,O,t) =—7-T/1\

(t-r>a{P<r>[a2<r>-p2]% H<a<r>-p>} (6.43)

0
o (%,0,%) = 2 B( )—--_-j-(%-]: - sin” <i§£)>} > a(t).  (6.44)

These latter results agree with those given by Graham [13].

The above example, of course, can be extended to the case where the
crack surface is free of normal tractions and stresses are applied at

infinity. We can find a solution to this problem if we superimpose on
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the above solution the following solution to the field equations (2.1),
(2.2), (2.3),

g :P(‘t)’ g =O'99=Q<‘t), O'Zp=0'za=0' =0,

22 pp po
o, =-;- P*d(G;+2G1_1) + -% Q*d(G;-Gf),
©p = ©gg =13 P*d(G?-Gf) +13 Q*d(2G£1+G1-1), (6.45)
®0 T %20 T ®po T 0,
u =ze , up =p epp, Uy = 0.

The possibility of extending the present case where the crack surface
has only one maximum to the case where it can have "n" maxima and minima
has been considered. TWhile there exists a technique for doing this
(similar to Graham's solution of the contact problem [8]), it is not
evident that the normal displacements over the boundary B would always be
positive or mull. Thus, to solve this problem, a method must be found to

show that the normal displacement on B is never negative.



(1]

[2]

{3]

[4]

[5]

(6]

[7]

L8]

T.C.T. Ting,

M.E. Gurtin and
E. Sternberg,

E.H. Lee,

G.A.C. Graham,

M.L. Williams,

G.A.C, Graham,

S.C. Hunter,

G.A.C. Graham,

59

BIBLIOGRAPHY e

A mixed boundary value problem in viscoelastici ty

with time-dependent boundary regions, Department
of Applied Mechanics, Stanford University,
Technical Report No. 191, Contract Report No. 15
1968,

On the linear theory of viscoelasticity, Arch. Rat.
Mech. Anal., 11, (4), 291-356, 1962.

Some recent developments in linear viscoelastic
stress analysis, Proceedings of the Eleventh
Intermational Congress of Applied Mechanics, Munich,

Springer-Verlag, 196k.

On the use of stress functions for solving problems
in linear viscoelasticity theory that involve moving
boundaries, Proceedings of the Royal Society of
Edinburgh, 67, A, 1-8, 1963-6L.

Initiation and growth of viscoelastic fracture,

International Journal of Fracture Mechanics, 1,

(&), 292-310, 1965.

The correspondence principle of linear visco-
elasticity theory for mixed boundary value problems
involving time~dependent boundary regions. Quart.
Appl. Math., 26, (2), 167-174, 1968.

The Hertz problem for a rigid spherical indentor
and a viscoelastic half-space, J. Mech. Phys. Solids,
8, (&), 219-234, 1960.

The contact problem in the linear theory of visco-
elasticity when the time-dependent contact area has
any number of maxims and minime, Int, J. Engng,

Sci., 5, L95-51L, 1967.



[E I,

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

G.A.C. Graham,

T.C.T. Ting,

T.C.T. Ting,

J.R. Willis,

G.A.C. Graham,

I.N, Sneddon,

I.S. Sokolnikoff,

G.A.C. Graham,

I.N. Sneddon,

E.H. Lee ard
J.R.M. Radok,

J.R.M. Radok,

60

The contact problem in the linear theory of visooe
elasticity, Int. J. Engng. Sci., 3, 27-46, 1965,

The contact stresses between a rigid indentor and a
viscoelastic half-space, J. Appl. Mech., 33, (L),
845-854, 1966.

Contact problems in the linear theory of visco-

elasticity, J. Appl. Mech., 35, 248-254, 1968.

Crack propagation in viscoelastic media, J. Mech,

Phys. Solids, 15, 229-240, 1967.

Two extending crack problems in linear viscoelast-
icity theory, Quart. Appl. Math., 27, (4), 497-507,
1970.

Pourier transforms, McGraw-Hill, New York, 1951.

Mathematical theory of elasticity, McGraw-Hill,
New York, 1956.

On the solution of mixed boundary value problems
that involve time-dependent boundary regions, for
viscoelastic bodies with temperature-dependent
properties, Archiwum Mechaniki Stosowanej, 5, (19),
771-785, 1967.

The relation between load and penetration in the
axisymmetric boussinesq problem for a punch of
arbitrary profile, Int. J. Engng. Sci., 3, 47-57,
1965.

The contact problem for viscoelastic bodies,

J. Appl. Mech., 27, 438-LL), 1960.

Viscoelastic stress analysis, Quart. Appl. Math.,

15, (2), 198-202, 1957.



61

[20] S.M. Al-Khozaie Influence of material compressibility in the visco-
and E.H, Lee, elastic contact problem, The Division of Applied
Mathematics, Brown University, 1962.

[24] M. Predeleam, On spatial contact problem in the linear creep
theory, Bull. Math. de la Soc. Sci. Math. Phys. de
la R.P.R., 6, (54), 3-4, 219-229, 1962.

[22] E.v. Prokopovici, On the plane contact problem in viscoelasticity
theory, Prikladnaia Matematika i Mekhanika, 20, (6),
680-687, 1956.

[23] W.H. Yang, The contact problem for viscoelastic bodies, J. Appl,
Mech., 33, (2), 395-401, 1966,

[24] I.N. Sneddon, A note on the problem of a penny-shaped crack,
Proceedings of the Cambridge Philosophical Society,
61, 609-611, 1965.

[25] 1I.N. Sneddon, The use of transform methods in elasticity, Applied
Mathematiocs Research Group, North Carolina State
University, Raleigh, 196L.



