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ABSTRACT

The purpose‘df this paper is to present the ba;ic theory of limit
design and to survey according to the technique of solution all the
problems in plane strain, axial symmetry and plane stress which have
been solved. The paper is divided into five chapters: the first
presenting the basic theory and the other four presenting complete

solutions.

The second chapter is devoted to plane strain problems and is
presehted in three parts. The first part deals with a detailed solution
to the classical pﬁnch problem. The second part is devoted to problems
whose solutions are derivable from the punch solution with minor modifica-
tions and it is the modifications which are emphasized. The remainder
of the chapter deals with problems which are not derivable from the

punch solution.

The third chapter deals with problems in axial symmetry and after
a brief presentation of the basic assumptions, solutions are given for
two types‘of problems. The first type are statically determinate

problems and the second type are kinematically determinate.

Chapter four deals with plane stress problems and the solutions
are presented for problems which utilize constant state stress fields

separated by lines of stress discontinuity. In this chapter a solution

for a thin wedge acted on by a normal load along the base and shear
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tractions along the sides is presented.

The final chapter is devoted to some miscellaneous problems in
which a fully plastic state of stress is assumed and sufficient symmetry
exists so as to reduce the problem to an essentially one dimensional

case.

M e AR TS




ACKNOWLEDGEMENTS

I would like to take this opportunity to
thank the fcllowing people who helped in the
preparation of this thesis:

Dr. W.P. Chen, for his encouragement and
valuable assistance;

Sharon and John Baldwin, for helning my
wife and me type the manuscript;

and ali the other graduate students, for

dropping by to cheer us up while we typed.

I also wish to extend thanks to the
National Rescearch Council of Canada for their

financial assistance.



vi

TABLE OF CONTENTS

Introduction page 1
Chapter 1 Mathematical Preliminaries and Basic Theory 4
Chapter 2 Plane Strain Problems 13
Chapter 3 Problems ip Axial Symmetry 48
Chapter 4 Plane Stress Problems : 63
Chapter 5 Miscellaneous Problems | 72

Bibliography ’ 78



figure

2.

[\

i

o

.6a

.6b

.8
.9
.10a
.10b
.11
.12

.13

vii

LIST OF FIGURES
Surfaces of discontinuity
Stress field for the classical punch problem
Stress field for a layer under pressure

Stress field for a notched bar pulled in
tension

£ A
x <

Fh

A ~1
oo \OF

concave die
Stress field for bending of notched bars

Stress field when notch angle is E_"

 Stress field for acute angle loaded along

one side
Stress field for the bending of beams
Stress field for bending of cantilever beams

Stress type problem

Mixed type problem

Stress field for overall bending type collapse
Stress field for acute'wedge collapse

Stréss field for obtuse wedge collapse'

Fan field solution in axial symmetry

Stress field under a smooth punch in axial
symmetry

Stress field under a rough punch in axial
symmetry

page 16
21

23

31

33

36
38
39
39
40
44
45
54

57

60



figure

3.

4.

4.

4.

4

1

.1b

2

3

viii

Stress field for tube nosing

Stress field for square plate pulled in
tension

Velocity field

Loading and stress field for wedge problem
in plane stress

Breakdown of square plate with.hole into
several wedge problems :

page

61

64

64

66

70



INTRODUCTION

The mathematical theory of plasticity treats the inelastic
behaviour of material bodies. In contrast to the theory of elasticity
which admits unbounded stresses and recoverable strains, and in which
the stresses and strains at any given time are determined completely
by the curtent values of extérnal actions on the body, the theory of
plésticity attempts to present a more realistic model of the physical
response of ductile bodies to applied actions by incorporating the
phenomena of yielding or plastic flow at bounded stresses, and by
allowing non-recoverable plastic strains. Furthermore, (at least in
thé incremental, non-viscous theory) the constitutive equations are
homogeneous in stress-rates. and strain-rates, and in general the stresses
and strains depend upon the entire history of the response of a body to

the applied actions.

Although much work has been done on the foundations of the
theory ([1], [2], [3], [4] and [5])51) many difficulties are encountered
in attempting to obtain solutions to boundary value problems.' In
addition to the usual field equations, the fieid variables must satisfy

the following two inequalities: the yield inequality, f(oi.) = 0, and

J 3

P = 0, where repeated

the inequality of positive plastic work, Oijéij
indices denote summation. Another major difficulty is the determina-
tion of surfaces which separate non-plastic regions where the strict

inequality, f(oijl < 0, is satisfied from the plastic region where

(1) Numbers appearing in square brackets (eg. [1]) refer to the

numbered references in the bibliography.



equality, f(dij)'= 0, holds. The determination of such surfaces forms

an integral part of the solution and cannot be ignored.

One of the most important boundary value problems of plasticity
concerns the quasi-static'collapse" or "impending flowh(l) of bodies
under constant loads: the limit load problem. It is assumed that
prior to collapse, plastic flow is contained and all deformations are
of elastic order of magnitude. Consequently, changes in.geometry are
neglected and all equations are referred to the initial configuration.
Furthermore, the solution to the limit load problem is the same for an
"elastic perfectly-plastic' material as for a "rigid perfectly-plastic"

material. Hence, it is sufficient to consider rigid-plastic bodies.

Purported solutions to many problems were given prior to 1951 when

Prager and Hodge [3] set forth the requirements for a "complete solution'.
Bishop [7] reiterated these requirements in 1953 and concluded that in

some incomplete solutions where the field.equations were satisfied only in

a sub-region of a body where a velocity field could be found, there was no
possible extension of the known fields into the remainder of the boedy without
violating yield. Bishop also developed a technique for extending incomplete
solutions to soﬁe plane strain problems. Since then, many previously
incomplete solutions have been extended and new solutions have been found.

However, even now, few solutions to important problems are known.

The purpose of this thesis is to survey the techniques of

finding complete solutions and to catalogue the problems for which

(1) Terms appearing in quotation marks are defined in Chapter 1.



complete solutions have been found. This thesis is restricted to

quasi-static problems in plane strain, axial symmetry, plane stress
and some miscellaneous problems. Problems in generalized forces in
plates and shells ([7], [8]) are ignored, and only one problem with

a body force term is considered.



CHAPTER 1, Mathematical Preliminaries and Basic Theory

As stated in the introduction, the assumption‘of small deformation
and neglect of changes in geometry lead to the usual rate of strain-velocity
equations and equilibrium equations referred to the initial configuration.

These equations are given in cartesian coordinates by:

- eij = 1/2(1.11,_—] + uJ,i) (1.1)
- Y
Oij,j + Fi - O E
!
? (1.2)
o..n. = T.
1] ] 1 f

F., n; and T; denote strain-rates, material velocities,

where €ijs Ui, Gij’ is Dy

stresses, body forces per unit volume, unit outward normal and tractions
h

respectively. ",j" denotes differentiation with respect to the jt

Coordinate.

The material dealt with is assumed to satisfy Drucker's
Stability Postulate [1] which states that if an external agency A
slowly applies and removes additional stresses to some iﬁitial state
of stress in a material element, and produces non-zero displacements,
then the net work done in application of the additional stresses, or
in the cycle of addition and removal of additional stresses is
non-negative. That is, useful net energy cannof be extracted from the
material element and the initial stresses.

The statenbf the continuum is defined t§ be elastic perfectly-

plastic if for a given stress field, o there exists a function of

ij

the stresses, f(oij),'called the yield function,Or surface, such that:




the material behaves elastically if f(cij) < 0 or if f(oij) = 0

the material behaves plastically if f(oij) = 0 and f(Oij) = 0;

and conditions for which f(Oij) >0 or f(oij) = 0 and f(oij) >0

are inadmissible.

For an isotropic material, the yield function depends only on the

principal invariants of the stress tensor, Jjp, Jo, and J; defined by:

Jip = 011 * 932 *+ 0z3
011 012 022 Op3 011 033
J2 = + +
' 021 922 032 033 Oz1 Ozz

011 012 013
Jz = 1031 02 O3

031 032 033

The total strain-rates, ejj, are assumed to be expressible as the

, and the plastic strain-rates, e}

sum of the elastic strain rates, e i

€
ij

where the elastic strain-rates are defined by Hooke's Law:

.c. '-—' . . _ .
é =1+ Vv Oij —E-Gijckk‘

Any state of stress Oij for which f(Oij) < 0 shall be called
safe and be denotedcij, while apy'sﬁate of stress Oij for which f(Oij) <
shall be called neutrally-safe or ailowable and be denoted‘oij. With
these definitions the stability postulates imply the following

consequences for an elastic, perfectly-plastic material [9]:
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(a) If 0., is a state of stress on the yield surface in which .
1]
. . -P
non-zero plastic strain-rates, ei_, occur, then:
J

s ,.P S
(O‘ij - O‘.lj)eij >0 for all safe states Gij »
(1.3a)
(0.. - o )é?. 20 for all allowable states 0. .
ij ij7 71 1)
(b) If bij are stress-rates corresponding to plastic strain-
P
rates eij’ then:
O
Oijeij Z 0. (1.3b)

(¢) In virtue of (a) and (b) the yield surface is convex and
the plastic strain-rate vector is normal to the yield surface at
"smooth'" points and between adjacent normals at a corner of

the yield surface. (The yield surface is said to be smooth

at a point if it has a continuously turning tangent there.)

" In conscquence of condition {c¢), the plastic strain-rates, Gij’

are given by:

.p =) i = f = ¢
eys =A ag if f(?ij) 0 and f(Oij) 0 (14 a)

at smooth points of the yield surface where X is a positive functien

or by:

at a corner of the yield surface where A, are positive functions of

position, -
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"Thus, the total Straih-rates are expressible as:
[ 1+v S5 - v 850k if £<0 or f=0 and £<0
E E
eij = {. . .
1+\\) Oij -V Gijgkk + )\_Q__f_ if"f=0 and f=0
E E BOij
at smooth points and by similar expressions at a corner of the yield
surface.
The yield functions in most common usage are the von Mises
and Tresca functions. The von Mises Yield function is given by:
' 2 2 .

where Jé is the second invariant of the stress deviator tensor whose

components 5;4 are defined by:

S-. . =Oij -

ij 61 §0kk

L
3

and K is the yield stress in simple shear. The Tresca ¢unction is

given in principal stress space by:

£(01j) = max (Joy - 05|, oy - 03], |og - o;]) - 2k (1.6)

where 015 Oz,and.osdenote the principal components of the stress

tensor and K is the yield stress in simple shear.

As stated previously, it fcllows that the loading parameter for
the special class of problems considered, limit load problems, is the
same for elastic perfectly-plastic materials as for rigid perfectly-

plastic materials and, consequently, the material is henceforth assumed '
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to be rigid perfectly plastic.and, thus, the plastic strain-rates and the
total strain-rates coincide and will be denoted by éij' The material is

further assumed to be incompressible in which case
é,. =ou, =0 - Q.7)

This inequality is identically satisfied for both the von Mises and

Tresca yield functions.

So far it has been implicitly assumed that all field quantities are
continuously differentiable, However, discontinuities in both stress and
velocity are mathematically admissible and are utilized in determining
solutions. They are usually juStified by limitiﬁg physical arguments
and certain restrictions must be imposed on both stresses and velocities
at surfaces of discéntinuity to satisfy physical conservation laws. These

restrictions will be dealt with as they are needed.(l)

The boundary conditions for problems in plasticity may be of
three types: stress type, velocity type, or mixed type. The boundary

conditions are said to be of stress type if at each point of the

boundary, 9B, of the body, the surface tractions are prescribed or

if the corresponding component‘of velocity is preséribed to be zero.

If the components of velocity are prescribed at each point on the boundary
of the body, the bdundary conditions are said to be of velocity type. If

over some part of the bbundary, BBT, the surface tractions are prescribed,
over another portion, BBV, the velgcity components are prescribed and over
the remainder of the boundary, BBTv;Of the body, 3, some components

of the surface tractions are prescribed and the remaining components

(1) For a detailed account of discontinuities see [10], [11], or [12].
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of the velocity are préscribed then the problem is said to be of mixed

type.

For the 1imit load problem, the boundary conditions are prescribed
in a special way. If the problem is stress type, the distribution of
the surface tractions, Ti’ is prescribed but the magnitude is determined
by a monotonicaily increasing Parameter; m, where.the surface tractions
are mT;. A solution to equations (l.1) through (l.g) is sought for which
m is maximized under the condition that a state of unrestricted plastic
deformation or flow should exist for a constant Qalue m* of m, assuming
changes in geometry are neglected. Such a state of impending unrestricted
flow is called a collapse state and m* is called the limit load or the

limiting value of the loading parameter.

If the problem is velocity type or mixed type, a solution to the
differential equations which satisfies the boundary conditions and for
which a collapse state exists is sought. The limit load is determined
by calculating the surface tractions on the boundary from the stresses
inside and equation (1.2b). All mixed type problems congidered are
indenter problems and the limit load is interpreted as a critical or

limiting indenter load P*.

A state of stress, Oij’ which satisfies the equilibrium equations

throughout the body and the stress boundary conditions is called static-

ally admissible. A velocity field which satisfies the velocity boundary
conditions and the incompressibility conditioniﬁi ;4 = 0 is called kine-

N s
matically admissible. If the stresses and velocities are related through

the appropriate flow rule they are called associated.
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With these definitions (and the definitions on page 4) a par-
ticularly simple definition of complete solution can be given. Corre-
sponding to a given set of boundary conditions, a complete solu-
tion to the limit load problem consists of a neutrally—éafe, statically
admissible stress field and an associated kinematically admissible

velocity field.

In attempting to find complete solutions it is often possible
to find statically admissible stress fields of kinematically admissible
velocity fields for whi¢h no associated field can be found. In such
cases, the following theorems which are stated without proof provide
means of finding upper and lower bounds on the limit loadl The theorems
I

apply only to bounded regions and proof of the theorems can be found

in [1], [4] and [5].

Theorem 1.1 (Lower Bound Theorem)

If a safe statically admissible state of stress can be found at any
stage of loading, collapse will not occur under the given loading

schedule,

Theorem 1.2 (Uppéf Bound Theorem)

If a kinematically admissible velocity field for which the rate at
which the prescribed external forces do work 2quals or exceeds the rate
of internal energy dissipation can be found, collapse must impend or

have taken place previously.

Theorem 1.3

Increasing the size of a weightless body by adding weightless material
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or moving a motion free surface outward without change in the position

of applied loads cannot increase the limit load.

Using Theorem 1.1 and Theorem 1.2 the following uniqueness theorem

and corollary can be proven easily:

Theorem 1.4
The limit load calculated for stress type, velocity type or mixed type

problems is unique.

Corollary 1.1

The limit load is the same for an elastic perfectly plasfic material as

/
for a rigid perfectly-plastic material.

For problems specified in unbounded regions, Shoemaker and Chen
[13] have proven restricted uniqueness theorems and have given some
examples of non-uniqueness. Let m* or P* be the limit load corresponding

to a bounded region of plastic deformation within an infinite medium

for which a complete solution can be found and let m” or P* be the limit
load corresponding to an infinite flow region for which a complete
solution with the same boundary conditions can be found. Then the

following theorems and corollaries given in [13] can be proven:

Theorem 1.5 ;
For both the stress type and mixed type limit load problems m* and P*

" are unique provided enly that rigid body motion vanishes outside some

bounded subregion of the infinite region.
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Theorem 1.6
For the stress type limit load problem, provided that rigid body motion

3 . . o0}
vanishes outside a bounded subregion, Im*] > Im l.

Theorem 1.7
For the mixed type frictionless indenter problem P* = Pm, provided that
rigid body motion vanishes outside some bounded region. Here P is

positive if the load acts in the direction of indenter motion.

Corollary 1.2

If the body forces Fi vanish throughout the body and the surface trac-

tions T; are zero on 3BT for the indenter problem, then the limit load
i

in tension P*~ equals minus the limit load in compression P** and

o ' -
P*~ <P < P** where P*~ = -P** are unique.

A more thorough treatment of the material presented here can be
found in the papers and texts listed in the bibliography. Hopefully,
some insight into the problems of limit analysis may be gained and
some new techniques of solving problems may be developed by studying

the techniques presented in the following chapters.
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CHAPTER 2. Plane Strain Problems

In this section, plane strain problems for the Tresca and von Mises
criteria are coﬂéidered. These probléms are characterized by the
existence of a system of rectangular cartesian coordinates (x,y,z)
such that ﬁx and ﬁy are independent of.z and u, = 0. Under the assump-

tion of plane strain the components of the strain-rate tensor are inde-

pendent of z and &, =¢& =¢& =0,
Xz Yz zz

It is clear that for these problems the von Mises and Tresca

criteria are equivalent and have the same representation:
6. -0.)" + 41° £ 4K™° (2.1)

Furthermore, Geiringer [14] has shown that any yield function g@jij)
which is defined for an incompreséible,isotropic material can be
reduced to the form Aﬁjl - 02) = 0, where gy and o,are principal

stresses in the (x,y) plane and A is a function of the indicated variable.

From equations (1.2), (1!4), (1.5) and (2.1} with eﬁuality it follows

that the differential equations of plane strain plastic flow reduce to:

2o, + dT, = 0

ax. oy Y

ot + o0 =0

ax Y ay , .
2 2 2

o, - oy) + v4Txy = 4K

°xx - —eYY ) X(OX ) OY) ‘




) = 2XT
X

Xy Y

where A is defined by equationé (1.3).

Introducing the parameters w and 8 defined by:

W=0_ +0
R
y (2.3)
8 = % Arctan 2T + T
G 7o 4
X =Yy

and eliminating A from equations (2.2), the system reduces to:

ow + 08 cos 20 + 96 sin 20 = 0
9X 09X ay
.(2.4a)
/' Bw + 98 sin 26 - 36 cos 20 = 0
dy 09X oy :
5x. 3y
% (2.4b)
b, 0
ay oX o1
- Xy
T o.-C
au . 3 d
90X ay

It can be shown that the system (2.4) is ultra-hyperbolic with

characteristic directions determined by:

gz_= tan ©
dx
‘ \(2.5)
dy = - étn B
dx

where each chdracteristic is of multiplicity two.
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Noté that w is a measure of the mean pressure at a point and
fhat 6 is the orientation of the characteristics measured counter-
clockwise from the (-y) axis. The characteristics for which dy = tanf
are called fi;st shear-lines and those for which dy =-ctn0 arixcalled
second shear lines. Physically, they are the liniz across which the

maximun shear stress intensity, K, is transmitted.

Furthermore, the characteristics determined by (2.5) are the
characteristics for the two hyperbolic systems (2.4a) and (2.4b).
When the boundary conditions are such that the étress equations (2.4a)
can be solved in the entire flow region, the problem is called
statically determinate. If, in the statically determinate case, a solution
to equatiohé (2.4a) can be found and if this solution corresponds_to the
stress field of the complete solution; then the characteristics of the velocity

field are known and the velocities are easily determined.

Introducing the parameters o and R along the first and second
shear-lines respectively, the following simple integrals for the

equilibrium equations are obtained:

€
1

<
|

= gl(B) along a first shear-line {
((2.6)

w.+ 0 = gz(a) along a second shear-line

where g1 and g, are arbitrary functions of the respective parameters

o and 8.

Before proceeding to problems, the restrictions imposed on the

stresses and velocities at surfaces of discontinuity will be discussed



for plane strain. Let I' in figure 2.1 be a line of discontinuity
separating the regions 1, and 2 in which the stress and velocity

fields are given by 0}., ﬁ% and O?., ﬁ? respectively.
_ ij’? i ij? i

(.

e ;T\\\\

\.\
E

u.“

Figure 2.1 Ssurfaces of discontinuity.

First, the discontinuities in stress are examined. If the

16

fields in 1 and 2 are fully plastic the components of traction acting

on a line element at angle o counter-clockwise from the (-y) axis are

given respectively by:

=z
0

2Kw + K sin 2(0 ~ a)

—3
it

K cos 2(8 - a).

Since the field is assumed to be in quasi-static equilibrium, it f

that the traction must be continuous across I',i.e.

1 2
(Oij - oij)n. =0

J
or
Zmz + sin 2(62 - q) = 2w1 + sin 2(61 - a)
, (2.7)
cos 2(62 - o) = cos 2(61 - o) (
From the second of equations (2.7), it follows that:
92 -0 = 61 - o £ nw ; )
n=1, 2, ... (2.8)
>
92 o = -(61 - o % nm

1low
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The first of (2.8) gives:

These last two conditions implyvthat the stress components are

continuous and are ignored.

The second of equations (2.8) implies:

6? = -61 + 2002nm, n=20,1, 2, ... (2.9)

and substitution for 62 from this equation into the first of

equations (2.7) gives:
W, = w; + sin 2(61 - o). : 4 (2.10)

Equation (2.9) implies that:

and hence, the discontinuity is necessarily non-characteristic and
bisects the angle between the first sheér lines or their extensions
which meet at’ the discontinuity. (2.10) gives the jump in pressufe
across the discontinuity.

'Consiaep now a discontinuity in velocity across [I.(The
following proof is due to Thomas [11].) Assume that I is moving
with normal velocity G. Then from consideration of conservation of

mass it follows that:



18

at -

_ .1 .2 _
&gg_dv - Splun dS1 + p2un d82 + (p1 - pz)G dS = 0
\

S, Su.
where p .denotes density and Pys Py denote the density in the regions

V, and V2 bounded by Sland S, and separated by I'. '"n'" denotes the

1 2

unit normal directed from side 1 to side 2 across I'. Taking the

limit as S1 and S, approach I', it follows that:

2

G- =0 - - (2.11)

since the density is constant throughout the body and since the extent

of T over which the integration is carried out is arbitrary.

Furthermore, it can be shown that discontinuities in velocity can
occur only across characteristics. Cdnsider a finite jump in velocity
across a thin layer of thickness &V containing the median curve T,
throughout which the velocity varies cbntinuously. Assume that the
velocity ﬁi and its first partialbderivatives are continuous on the
boundaries S1 and 82 and outside the transition region. Let ﬁi and ﬁi
be the velocity components on S1 and 82 respectively and let n and t

be coordinates normal and tangential to I'. Then the first partial

derivatives on I' can be represented by:

ol u1 - &? [4.]
o A i_ i
on XY SV
Bﬁi ' : .
5T < M for some M independent of &§V. Taking the limit
as S1 and 82 approach I and assumihg that Eﬁi] is fixed, it follows that

the strain rates on I' are given by:

tt o i, (Iétt| <2M )
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=-&, . = lim n,[u,] where incompressibility has been used.
nn tt SV 0 —&—gv—
and ént = 1im 1 [n, du. + t. [u.j ]
v or 2 't v

where-ni and ti are the cartesian components of n and t.

. . - g . . . L B s . 4
Since € ¢ 18 bounded it follows that ni[uiJ 0 while ti[ui] # 0.

Consequently, é_ _ becomes infinite. Thus I' is a surface of maximum

nt

shear strain-rate. TFurthermore, since surfaces of maximum shear

o+

PP R —— . o n om e o~ e 2 . 1. ~a e
strain-rate must Colnciae witih SuT

o
9
!.J
c
w
s
}
o
=
)
ct
L]
o
)
"
-
et

follows that I' must be a characteristic and the jump in velocity must
be a jump in the tangential component since the normal component 1is

continuous from equation 2.11.

/
Considering the line of discontinuity to lie between a plastic

region and a rigid region, the first restriction (2.7) must still be
satisfied. Howéver; no further restriction is placed on stresses
along the discontinuity. The development of conditions on velocities
at discontinuities is not altered at a rigid-plastic interface and

exactly the same restrictions can be derived in this case.
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2.1 Classical Punch Problem for a Layer or Half-Space.

The half-space problem had been considered by several researchers,
notably Prandtl [15] and Hill [2], but a complete solution was not
given until 1953 when Bishop [6] extended Prandtl's solution. In 1954
Shield [16] gave another extension in the context of weightless soils
with cohesion whose angles of internal friction are less than 75 degrees.
This extension will not be presented here however. Hill [2] also con.-
sidered the problem of indentation of a layer, but a complete solution
was not given until 1967 when Salencon [17] presented his solution.
In the same paper, he provided a proof that yield was not violated any-

where in Bishop's extension [6] of Prandtl's solution to the half-space

problem.

Consider an infinite half-space acted upon over a central portion
of width 2 units by a uniform pressure P per unit length with the remainder

of the boundary traction free and take (x,y) axes as showh in figure 2.2.

The solution is assumed to be symmetric about the y-axis. The
incomplete solution given by Prandtl covers region ABOCDA and its symmetric
image about the. yuaXis. The fields in region ABOCDA are fully plastic
and since the tfactions are constant along the straight lines OB and BA,
the stress fields in OBCvand BDA are constant state fields with slip
lines-at % 45° to the x-axis. The stress field in region BCD is then
determined from the boundary conditions on BC and BD and is found to be
a centered fan field. (See 3] for a description.) Thus the fields iﬁ

.regions OBC, BCD and BDA are given respectively by:
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p— B A g

Figure 2.2

Stress field for the classical punch problem.

where the value of P has been determined by the fully plastic condition

to be P = (2 +.W)K.'
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Bishop's extension utilizes fully plastic fields in‘CDAIFH
and uniaxial compreésion below EGHI which is below yield except at
I. Since CD ‘and CD' are characteristics along which the surface
tractions are known, a type II boundary value problem is specified
to determine the stress:solution in region D'CDGFG' and has been
described analytically by Hill [2]. Then, since DG and AD are also
characteristics along which‘the'surface tractioﬁs are known, another
type II boundary value problem is specified for which Ewing [18]has
developed a series method for constructing the stress fields analytically.
Extending the field to the right of AE is accoﬁplished by utilizing
the characteristic AE and by constructing the stress free surface
AIJ which intersects the x-axis at.an angle of -0° at A. (Hill [2]
has given a description of how to develop the stress free surface
and Ewing [18] has given an analytié solution.) 1In this process
the characteristicé begin to run fogether at E and necessitate the
introduction of a discontinuity EH. In order to construct the field
in EJIH, the characteristic, EJ, and the stress jump across the
discontinuity EH are used and the solution is again extended to the
stress free surface JI. The discontinuity FGIH is conétructed by
requiring that the stress field below should be one of uniaxial
compression. - Salencon [ 17] showed that the magnitude of the
s
» compressive stress increases monotonically with x from the y-axis
to the free surface at I. |
The existence of a statically admissable stress field which
satisfies the Boundary conditions has now been exhibited. This field is
also valid for a layer with zero normal velocity‘and shear tractionv'onvthe
lower edge replacihg;the conditions-at infinity provided h>.8.74. The proof



23
that yield is nowhere violated will be left until after a discussion

of the modifications necessary if h < 8.74.

Figure 2.3° Stress field for a layer under pressure.

In this case the centered fan does not extend
through 90° (see figure 2.3) but through some lesser angle &,
where 1.02& a S}g_- This restricts the distance OF to at
least 5.2 units. The relationship between O and the thickness
of the layer is thO(Zd) + IO(Zd) and the limit load, p js

P = 2K {I.(20) + 20a[I (20) + I. (20)]}
' A;(Za) + (20) + Il(2a)*

where IO and I

p are modified Bessel functions and Ao(x) ;jx Io(t)dt,

o
according to Salencon. The extension of the field is analogous to the
S .

extension when h = 8.74 and hence will not be described again.

It is obvious from the construction of the field that yield
is notviolated anywhere above the discontinuity FGHI. Assume that
line FGHI has the form y=f{x). - Then, the jump conditions across the

line are:



(G = Oy + (tg, - ) =0
(2.12)
A . By
(o = Oy + G -0 = 0

where superscripts A and B denote above and below FGHI respectively.

Furthermore, the material above the line is at yield so that

A A2 A2 2
(ox - oy) + 4Txy = 4K A (2.13)

From the jump conditions {2.12) and the yield conditions, (2.13)

B A2 A 2 A
=g e ;
20 Xy (2.14)

Considering the Mohr's circle, and redefining oi ,Oﬁzuui Ti

in terms of wand O :

Ox = 2wK +K sin 28
A A .

0 = 2wK <K sin 20 : (2.15)
Yy

T A = K cos 26
Xy

and substituting from equations (2.15) into equation (2.14) gives:

OB = -K é - Zw

w + sin 26

B :
It is easy to show thatoy decreases monotonically from F to H and

from H to I by calculating w ‘at points on the arc CD and the change

24

in Oalong the slip lines and utilizing equations (2.6). The stress -
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B B ] B
0), decreases from a value ofCB,=’-1SW( at F toCB,=~2K at I.

Furthermore, at each point along FI the absolute value of dy

. . .- . X
is less than 2K.The jump 1n(%, across the vertical extension of

the discontinuity EH below H is also readily found.to be

o = [w] {w+ K (sin 26 - sin [6]) }2 1 - sin (6 + 6")
y 1T - sin (8 + 6')  (o'+sin 20') (w+sin 260)

where 6and 0'give the directions of the first principal directions
on the two sides of the vertical extension below H, [w] denotes-the jump

in‘w across the discontinuity, and yield is not violated.

Thus since yield is nowhere violated, and the equilibrium
equations and the stress boundary conditions are all satisfied, the
stress field described is statically admissable. Furthermore, for
=T the results are still valid and in that case, the solution is

2
the same as Bishop's solution. Hence, yield is nowhere violated in

Bishop's solution.

The determination of a kinematically admissable velocity
field associated with the stress fields described above is quite
simple. However, it is very differeﬁt for the two cases:  the
layer of thickness less than or equal to 8.74 and the layer of

thickness greater than or equal to 8.74.

In the first case, with the velocity field given by Hill (2,

the entire plastié bulb OFMB and its symmetric image deforms while
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the remainder of the layer moves in the x-direction as a rigid‘
body. It is easily shown that this provideé an associated kinematically
admissable veioqity field for which the plastic work done is
positive. In the second case, the velocity field developed by
Prandtl [5] is used. The region OBC moves as a rigid body
downward with unit velocity. In the fan region, BCD, the velocity
components in polar coordinates arei&;(ﬁ%)zézr while the region ABD
moves as a rigid body with speed ﬁ;in the direction of DA. The
remainder of the layer or halftspéze remains undeformed. This

velocity field contains three lines of discontinuity: BC, CD and

DA.

Calculating the plastic work, the energy dissipation
EO in the material is obtained from the deforming region BCD

and the three velocity discontinuities and is given by

E = K[1] ={K at points of a discontinuity line, while
0 = o
2
0..e. =JX at points in the deforming region BCD. .
1) 1) > .

Since the plastic work done is positivé, the solution is complete

and the limit load is P = (2 +7) K.

Note that if the problem had been considered as a mixed

type problem where the half—spacé or layer was indented by a flat

rigid lubricated punch with unit downward velocity replacing the

uniform pressure across BB' in figures 2.2 or 2.3 and retaining
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the other boundary conditions as shown in the figures, the same stress
and velocity fields as obtained for the stress type problem would
be valid for the mixed type problem. Hence the same value
would be obtained for the 1limit load and the punch would have to

be subjected to a pressure P = (2 +7) K per unit width to provide

a unit downward velocity.

It is easily shown that for the half-space problem the
velocity field is not unique. Hill {2] has given another velocity
field, and consequently a different flow region, which also provides
a complete solution. Hodge, [3]1, has shown that any velocity field
which is obtained by a combination of Hill's solution and
Prandtl's solution and lies between them is also acceptable. All of

these complete solutions yield the same limit load however.

In considering the layer and half-space problems some
conclusions regarding uniqueness can be obtained. From Theorem 1.5
we conclude that Bishop's soiution provides a unique 1limit load
over all possible solutions for which the flow region is bounded.
However, it has not been shown that én infinite flow region does
nét exist and thus there may exist a different limit load which
corr65ponds to an infinite flow region. Salencon's solution

s
does not satisfy all the conditions of Theorem 1.5 but by
imposing the condition of zero .stresses at infinity Theorem 1.5
applies and the limit load found is unique over all solutions

coerresponding to a finite flow region. Again, an infinite flow

region may exist and a smaller limit load could exist.



28

2.2 Problems Directly Solvable by Half-Space Solution

Referring to figure (2.3), it is obvious that the same
solution obtained for the'layer is valid for any truncated wedge
subjected to uniform pressure across BOB' for which the angle
OBA is greater than or equal to IE_+ 1.02) radians, since the
material to the right of RA aﬁd'iis extension is stress free,
prbvided that the wedge rests on a rigid smooth foundation.
Furthermore, by modifying Bishop's solution fan
angle to lie between 1.02 and m, the solution is valid for wedges
of any depth h greater than 8.34. The limit load for these wedges

is dependent upon the fan angle o and is given by P = 2K(1 + o).

/ :
These same solutions are valid for V-notched bars pulled in

tension provided that B8 =7 -y € m - 1.02, D is sufficiently large
2 2 d
and the boundary conditions are specified-as mixed type with zero

shear on A'A and the bar above A'A has unit upward speed.. This

reverses the signs of both stresses and velocities and thus the

J

o b BTN S |
Figure 2.4 Stress field for notched bar pulled in tension.

u
-
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plastic work is still positive at each point. Bishop [6] has shown
that D must be at least 8.67. (For a further discussion of notched
tensign specimens see [19].and [20]). |

Another problem which can be solved directly utilizing Bishop's
stress field is that of direct extrusion through a smooth concave
die whose shape coincides with the traction free surface of figure 2.3
as shown in figure 2.5. Assume that the material enters the die with
~unit speed and exits with speed v. A kinematica1fy admissible velocity
field has been given by Sowerby, Johnson and Samanta [21]. The
material enters the die.and moves as a figid body to the curve EDGJ in
figure 2.5. Then since this curve is a characteristic and since ﬁn =0
across FE and JB, the velocity field can be determined in FCBJGDE.
Region ABC moves as a rigid body in the direction of BC. The field
in the fan region is then determined from the boundary conditions on
AC and FC. Finally the region AOF moves as a rigid body in the direction
of FO as indicated.

ncave die.

~o ';[‘

Figure 2.5 Streps field for direct extrusion through a

|

|
:L

J

ENTRY SPEED 1y
UNITY
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To show that the plastic work is positive, the results.prescnted
by Prager [39] avc utilized. Consider tho,hodogrnph of figure 2.5b.
fho plasfic work 1s positive if the vclocity increases in magnitude as
one procecds in_thg aircction of the velocity. In the hodograph, velocity
is measurcd by the distance from 0. Clearly, as one proceeds from EDGJ

to FLCE in the stress planc or from e,d,g,j to abc or a'"f in the hodo-

graph plane veclocity increascs and hence the plastic work is positive.

Fivsure 2.5D Hedograph to figure Z.5.

2.3 Plastic Bending of Notched Bars

The solutions to bending of single and double v-notched
bars and to bars with single or double circular notches have
been given by Dietrich and Szczébinski [23] who utilized a
modification of Bishbp's solution to the wedge problem. The
single v-notch problem is considered heve and the solutions for

other notches can be found in [23].

Considér a v-notched bar which is subjected to surface tractions

.

which are equivalent to a couple M acting over

°*

the cnds as shown in figure 2.06.



P&io

G’l/‘jpl

_08M
L0681
05207,
" 0475

.. | 0475
G430

[
0380iM 051
03171

Q

Figure 2.6b

Stress field when notch angle is .
' 2

S M0

31



32

The regions of plastic deformation are ABNB Af%gnd PNP,. The stresses

1
in OARGFEN and its symmetric image are determined by Bishop's solution
to the wedge [6]. Onto this field is superimposed the strip M;QiQM of
uniaxial compressive stfess oy = -2K. This provides a statically ad-
missible stress field for which yield is nowhere violated in RGNO since
yield is nowhere violated in Bishop's solution. Furthermore, it can

be shown tha£ yield is not violated in NEFGH provided that the angle

A, which is shown for 60°, is greater than or equal to 60°. IfA is
less than 60°, yield is violated in region NHE. An associated velocity
field can be constructed by considering a rigid rotation of the two
ends of the bar about the point N in the same direction as the acting
momeﬁts. With this velocity field, the authors[23] have shown that the
plastic work is positive. The limit load has been worked out by Green

[24] and is given by M = Ka® (1 + T = 2A) for A 2

2 4 + 1 - 2A

T. For the
3

case A=T, (figure 2.6b) the limit load is M = Ka2 and for A=T
2 2 3

the 1limit load is M = .6075 Kaz.

Green [25] has also éonsidered the bending of notched bars when

A< T, However, he has not shown that yield is not violated and thus
3

the solution can not be called complete.

The remainder of‘this chapter is devoted to problems which have
been solved utilizing fields which are not derivable by modifying the
punch.solution. .Thé problems considered include acute angle wedges,
bending of beams under uniform loads, and the bending of truncated

wedges under uni form loads.
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2.4 Acute Angle Wedges with Normal Pressure on one Edge.

Consider a symmetric wedge of angle 2y < 5 with uniform normal

n
2

pressure, P, acting along one surface as in figure 2.7 and traction free

elsewhere.

)

Figure 2.7 Stress field for acute angle loaded along one side.

This problem was first considered by lee [26] who derived an incomplete
solution which was later extended by Chen and Shoemaker [{27]. From the
normal pressure P acting on AB and the stress free surface BD two con-
stant state plastic stress fields can be constructed which overlap along
BC. This overlapping necessitates the introduction of the stress dis-
continuity BC and from the jump conditions 2.6 together with the bound-

ary conditions, the stress fields can be derived and are given by

o, = -K (1 - cos 2y Ox = -K (1 - cos 2y
o, = -K (1 - 3cos 2¥) in ABC and o= -K (1 + cos 2yJ) In BCD
T = K sin 2¥ T = K sin 2y

Xy Xy
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and P = 2K[1 + sin (2¥ - m)]

2
An extension of this field can be found by extending the constant
state fields to AE and ED which are respectively perpéndicular to AB and
BD and taking a uniaxial stress parallel to AB and BD respectively below

AE and ED.

An associated velocity field can be determined in ABC by assuming a
velocity distribution with zero tangential component and a normal com-
" ponent along AB, ﬁn, which increases frém A to B, Taking coordinates
o and B in the first and second shear directions and N a parameter along
AB where O = B =N the normal velocity can be written as a function of
n, a4 = £(). Lee has shown that this function must take the form

V2 £(n) =¢(éﬁ_ Ycosy + ¢(G - 1§sin Y H(n- 1)
sin ¢ :

cosy
where ¢ (%) is a continuous function which gives the velocity of an
elastic filament at a distance & from C along CB, ¢ (0) =0, ¢'() = 0,
and ¢ ' (%) is a non-decreasing function and where H(E) is the unit step

function.

The components in ABC are then given by

c.
[t

icos Y

¢( @M_a cos

ﬁe = —¢Gl;:_£> sin ¢

sin Y
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By symmetry, the velocity field in BCD can be adapted from that in ABC

leading to the same normal velocity on AB and EB.

The conditiéﬁ of positive plastic work has beenbverified by Lee
and is not repeated here. Considering uniqueness, the limit load obtained
is unique over all solutions obtained for a finite flow region. There
is no guarantee that an infinite flow region does not-exist, however,

and thus there may exist a smaller limit load corresponding to an in-

finite flow region.

2.5a Bending of Perfectly-Plastic Beams.

Consider a simply supported beam of depth h and length 22 which
is subjected to a uniform pressure P applied over a central portion of
the beam of length 2C. Anderson and Shield [28] have given a complete

solution for 9 1 with limit load

~
P

=
0|

' 1
2 N S s HE S I
2c02L o) 22t - Of

_U
i
—~
=

and in the same paper presented an incorrect solution for c . 1.
' h 2

For € (1, the stress field is shown in figure 2.8 where uniform
h 2

sheér is distributed over the ends of the beam of magnitude PC. The

stress fields in regions 1 thrdugh 5 are separated by discontinuities
“AB, AD, ODBE _ and OD'B'G . Regions QCAE and OFG are assumed to be

fully plastic. Then from the boundary conditions on CE, FG and EG
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Figure 2.8 Stress field for hending of bheams.

together with the yield condition and the jump conditiens across OE and
0G it is a simple matter to determine the stress fields and the dis-
continuities. No details of the anziysis are presented here but the stress

fields in the various regions are given reépectively by

Ox = -P - ZL Oy = -P xy = 0 1n region 1
g = = = i ™ 1
X 2K Oy 0 Txy 0 ~in region 2
o. =0 o= —[g'(x)]2 T, = -~g'(x) in 3
X y Xy :
2 2 , 2% .
o, = (p” - P- l)Zk o = -(P"+P)2K Ty = P B_) in 4
1 72 7 7 . Y7 3
o= -2XK ' Oy = 0. ‘ Txy = 0 1in region 5
. .
i pr ™
{[1 S PIL2 + p']}X 0=x=,
where flx) =
- (_l_h - P'c (2 - x))L - P'h A =xsp
4 o 2+P7
| J-il + P1YF(x) 0sxsa
and. g(x) =1 : 1
[~ f(x) - Pth a,=<x=f
AP 2
and, Pt =

E_ .
2K
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while for a.£ x%.a_, f(x) and g(x) can be determined from:

1 2?

XE(O) + g(x) = - (x - apPT () - £a)o ()

xfz(x) + gz(x)'= (x - al)zcy(al) + 2(x - al)A + B

where A Ox(al)f(al)f'(a1 + 0) f g(al)g'(al)

o}
H

o (a)f% @) + g°(a)).

This stress field is statically admissible provided that:

P = .808K
and C h .
Z 5P ¢tn (g_— 8)

An associated kinematically admissible velocity field can be
constructed by considering the plastic yield hinge where deformation
takes-place, bounded by the lines y = %x passing through 0 with the
remainder of the bar rotating rigidly as in the bending of notched
bars for the case A = m., With this velocity field it is.easily shown

2
that the plastic work is positive.

For C < 1 the solution given by Anderson and Shield [25] is
h 2
incorrect since the plastic work is negative.

2.5b Cantilever Beams under End Shear.

Chen and Shoemaker [29] have considered the problem of canti-
lever beams under end shear and have found a complete solution, figure

2.9, when the length L over the minimum thickness t of the beam, satisfies
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t

When L_is less
ot
bounds.

> 1 (sin 26-cos 26) tan 26, 571= 6 < T.
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than this value, they have found close upper and lower
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> 1 (sin 29-cos 29) tan 20 the stress solutien is split

o}

ions, CPC', ABPC, BDPB', and A'C'PB'. Region CPC' is stress
ABPC is a region of uniform tensile stress parallel to AB

ude 2K. Region BPB' is in a state of uniform shear of
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magnitude 2K sin 26 Finally, region A'C'PB' is a region of uniform

compressive stress parallel to A'B' of uniform compressive stress par-

allel to A'B' of magnitude 2K, The limit load Pt =

= 2K sin 28.

An associated kinematically admissible velocity field is con-
structed by considering the rigid rotation of BRPR'B' about P in the
direction of the applied end shear and a yield hinge'of shearing de-

formation in region QRPQ'R' and the plastic work is positive.

- 2.6 Truncated Wedges. [30]

Complete solutions are obtained for the family of symmetric
wedges of arbitrary geometry (0= P =

1

In

o =L, < ©} for stress

type and mixed type boundary conditions shown in figure 2.16.

L
2

2.10h. Mixed type problem.

28
p P
AV Y ¥ 9 ¢ &
A
Ly
Y
e ———o
%
1

For the stress type problem, three modes of collapse are necessary

while for the mixed problem, one mode is sufficient to obtain solutions
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spanning the entire range of the parameters o and B.

For the stress type problem the three modes of collapse are
(a) overall bending type collapse,
(b) 1local acute wedge type collapse,

and (c) 1local obtuse wedge type collapse.

(a) Overall Bending Type Collapse.

e | e
L e p . . ' ’
Figure 2.11 Stress field for overall bending type collapse.
APy y8 8 , ,
v . " . : .
o yi @/ iB - S
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N } :
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One expects collapse to be associated with rigid rotation of
some Segment BB'OCC about some point 0 on AD shown in'figﬁre 2.11, and
the superposition of constant shear flows in the regions AB'O and ODC'.
Any solution must satisfy two conditions: the cross section of maxi-
mum moment should be AD, and the net shear force on AD should be zero.
An incdmplete stress field can be determined in regions 1 and 2 by
vintfoducing constant state stress fields in both regions where 7 x is
compressive in ABO and tensile‘iﬂ 0CD. Tﬁe location of O and the
pressures on AB and CD are obtained from the conditions of overall

equilibrium of the right half of the wedge, Thén; from the jump

conditions (2.7), the stresses in region 3 can be determined.
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: ' s o e
In what follows assume that® is 45°. From overall equilibrium

in the y-direction and from the boundary conditions prescribed on
AB and CD, the stresses in region 1 and region 2 are given resnectively
v

byf

6_=-P «~ 2k, g=-P . T =0
X Y Xy
(2.16)
S =-P+2Kk,0= =P T =0
X E y a— > Xy
From overall equilibrium in the x-direction,
«b (P + 2K)+ {(0-1) L - b}2K - P = 0 (2.17)

s
o

and from the moment condition, taking moments about O,

2 2 22 2
-b"(P + 2K)+ {(a~1)L -b} (2K - P) # L“0°P - L“P = 0. (2.18)
. (63 .

Solving equations (2.17) and (2.18) for the unknowns o and b

gives the position of O and the critical pressure in terms of a:

P= (a0 - 1)K
(2.19)

b =2Ka (o~ 1) - P (a - 1)
4Ka + P (o - 1)

where negative values of P have been neglected. Substituting

from (2.19) into .(2.16) now gives the stresses:
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in region 1
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(2.20)

-

. o = 1l-a T =0 in region 2

Q
1t
—
ES
e
-~

To find the stresses in region 3 assume that the discontinuity
lines OB and OC are given respectively by the functions y = f(x) and
y = g(x) and that the stresses in region 3 have the form

o_ =0 s g = -y T(x) + o(x) g1 = T(x) (2.21)
Y

Vv
~J

From the jump conditions (2.7) across OB and OC and the boundary
conditions on BC, there are 6 equations to determine the five

unknowns f(x), g(x), o, o(x), and T(x). However, the six

o
equations are not independent since overall equilibrium has

already been satisfied and the system reduces to five independent

equations in five unknowns. The solutions to these equations are

given by:

f(x) = -g(x) = a-1x
o+1

T(x) = (a-1) (a+l) K

o
(2.22)
ox) = 2(l-qllK
(1+a)
2
g = 1l-a” K
© 2o

Substituting from (2.22) into (2.21) gives the stresses in region 3:

g =0 =V—T = 1-0" K (2.23)

s
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Finally, substituting from (2.23) into the yield inequality (2.1)

gives

az— 1 .5

1 but ¢ =1 so that
20 '

yield is not violated provided that 1 S as 1 + V2 1 (2.24).

An associated kinematically admissable velocity field for

which the plastic work is positive is given by:

N
-x y >o Qy y >0
[:1 = . 'l:l = (2.25)
X LX-Q y <0 Y -y y <0

where Q >§,

(b) Local Acute Wedge Collapse.

For local acute wedge type collapse ‘the velocity field of

F1gure 2. 12 Streos f1e1d for

acute wedge collapse.
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Lee ‘?4] for acute angle wedges given in section 2.4 is utilized
together with the following stress fields to give a complete solution

' 2

for tan (7 B) <a < tan” (7 + B) with limit load P = 2 (1 - sin B) K.

4 2 4 2 '

The stress field is calculated for B = T:

4
Region 1 o, = -2K(sin (%.—26) + 26 sin(gi26)) Gy’=qx_2K Txy = Q0
‘Region 2 0O = 2K ’ cy =- (2-f2)K Ty =0
Region 3 0, = -K . , o, = -K Ty =»K L
Region 4 5 o _g {1-sin(w - 28) + (3w + 28 _ 28-sin 20) sin(m+ 28)}
: x . 7 4 4
o = ¥K {1+sin(m - 28) + (3w + 2§ - 206+sin 26) sin(m + 28)}.
Y oo . i 4
= -K sin (m + 28) <cos 26
N Xy 7
O = K Fl(e)
Region 5 Oy = (/2 - ) K
TXY = 0.
2 Lo 2 - | *
where Fl(e) = sin” (4 +28)cos’ 8 : -"H{@, & + sin 2g sin (7 +28)
\ 4

Y2 - 2+H(g,8)+ sin 2g sin(g +Zg)
- ' 4
The lines of stress discontinuity separating the various regions

Co . are given by:
- . ¢ d RQ: y = L sec 6 sin (§F+6)

0C; y =~ tanm X
4 i

PQ: 1 (8) = J(8) - P+ 26 + tan CT - 8)

J(6) - 20 + tan O

L sec ©

where  J(g) = V2 - Lesin Go28)

sin (3 + 26) 4
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(c) Local Obtuse Wedge Type Collapse.

" For local obtuse wedge type collapse the stress fields are

given in figure\2.13¢ The velocity field is the same as that for

T8 N

_D’ »v . . A 3 AC'

Figure 2.13 Stress field for'obtuse wedge type collapse.

local obtuse wedge type collapse and can be found in (3], The

stress field is given in the respective regions for p= 7 by:

Region 1 o = -%’K . o— = -2K(1+%8 , Txy =0
.‘ C2K(L + m/4) . =2K(1+1/4) B
Region 2 GX T o A+ /4) Gy R *ATxy 0
Regioﬁ 3 g = 2K Y g = -K s T =20
‘ - X o y _ Xy
6 = -K(L + T - 26 - sin 20) "
. - ' =.—, . e
Region 4 o . Txy K cos 2
o = -K(1 « 7~ 26 + sin 20) ‘
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. o _ =2K(1 + b/4) s T =0
Reglon 5 o, = KM(0) , Gy\_ 3 v Xy
c0526
where M(8) = 37T F/A) 5 1+ - 20 % sin 20 1 +m~ 20 - sin 26

o

The lines of stress discontinuity PQ, RQ and CQ are given as

follows:

PQ: re) = gt 2 m/2)L sec § where 0,=-2(1+1/4)
Oy ¥ I +m-28 + tan 0O al
RQ: y = r(1/2)
CQ: y = -x tan n + r(m/2)
where | -1
n = tan o - 2(1 + m/4)
( - )}
This solution is valid for Zéi:ii%lﬂl. g o < o and the limit load

is P = 2(1 + w/4)K.

For wedges of arbitrary angle B the complete solutions
corresponding to the three different modes of collapse and the

associated ranges of o are given by the following:



for overall bending collapse:

47

2 A4 e -
P =(2 «(1—01,)2ctn28)-~(40L"’+-(1--0L)ctn46)“ g - 0=BsT 1= stan(n+f)

v (1 chcZB g

for acute wedge type collapse:

4 2

P = 2¢(l-sin QX 0<psm,tan(m+B)=o=_ 1+ B
o 2 42 1-sinB
and for obtuse wedge type collapse:
P = 2(1+B)K O<f<m, 1+ B =a=

2 1-sin B

For the mixed type boundary value problem for wedges, the
obtuse wedge type mode of collapse is sufficient to cover the
entire range of 8, 0=Bsm and & , 150 < *® and the collapse
: 2

pressure is P = 2Ka(l +B). (For justification of this statement

see PO} .)
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CHAPTER 3. Problems in Axial Symmetry

In this section, cylindrical polar coordinates (r,g,z) will be
considered. The material body and the boundary conditions are assumed
to be symmetric about the z-axis. It can be shown that if the von Mises
criterion is used, the differential equations governing stress and
velocity are elliptic and considerable difficulty is encountered in
detérmiﬁing solutions. (Hill [2], Parsons [31]) In contrast, by using
the Tresca criterion and associa ‘
stress and velocity are hyperbolic and are either statically or

kinematically determinate. (Shield [32], Lippmann [33])

The statically determinate case arises when the Haar and von Karman

hypothesis is utilized. This states that the circumferential stress, g ,

: - . 8
which is a principal stress, is equal to one of the principal stresses in

the meridional plane. The statically determinate case is dealt with first.
The case of kinematically determinate problems is dealt with later in the

chapter.

Denoting the principal stresses by g , ¢ and ¢ where, for
1 2 3
the statically determinate case, g 1is assumed to correspond to Og and 0g=97s

o =0, the Tresca yield condition and associated flow rule simplify to:
1 2

g, =g, + 2K at yield

o)
|

1.0 .3 "2 i
&, =1
(3.1)
é2 = -p-X where A,u are positive functions of position
e, =\
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Here 66 is assumed to be equal to the maximum principal stress in the meridional

plane. Similar equations result if g is the minimum principal stress.

In cylindrical polar coordinates with 0g= Oz, @ stress distribution
which is radially symmetric involves only four non-zero stresses. These
are 0., Jg, O, and Trg® Calculating the principal stress components

in the (r,z) plane, o, and ¢ afe'given by:

1 2
, 2 2 L
01 =0 +0 + {(0,. - oz)z + 4TTZ}_2_
- ¢ 2, 4% )2 ;
02 =0, +0, (0,-0,)"+ 4T 1% (3.2)

2 2

% = 0g

The equilibrium equations (1.2) reduce in cylindrical polar coordinates to:

30y + 3Ty, + Gpn9p = O
or 9z T
KS.S)
OTrz + 30 *1yz = 0
ar- 9z T

é = 31'11-

o5

¢g = Uy

r
>(3.4)

& = du

S v

& = 4(3u, + 3p)

Tz 3Er " or
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‘and the principal strain-rates are given by:

. . . 32 29 0%

ey = k(e + &) + hl(ey - &))" + 4ép,} i

& = %6 + &) -h{(e. - &) + agx ¥ (3.5
2 - 2%y z e, z rz -5)

Equations (3.1) and (3.3) provide two algebraic equations and
two differential equations to determine the four unknown stresses.
After substituting from (3.1) into (3.3), there remain two differential

equations in two unknowns: The system is hyperbolic and has

two orthogonal sets of characteristics. Denoting .by -P and K the normal

and shear components of stress at a point, it follows that:

Or

-P - K sin 2¢
g, = -P + K sin 2¢
Tpz = K cos 2¢

and Og = -P + K

where ¢ is the inclination of a first shear line to the r-axis.

.Substitution into the equilibrium equations referred to the characteristic

directions s; and yields:

52
dP + 2K d¢ + K(sin ¢ + cos ¢) ds; = 0 on a 1-line.
T
and dP - 2K d¢ - K(sin ¢ + cos ¢) dsp = 0 on a 2-line.
. _ =
The velocity components are determined by the incompressibility

- condition and isotropy condition given by:
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i, +. U, + du_ =0
3 T 3
3y + 2u, 2(3.6)
9z ar
= -ctn2¢
o6, - 08,
dz or
The restrictions éz =0, é3 Z 0 require that:
6. >0, (s0 a )2 + (a0 o+ a2 > 52
rz 0, (@ - 29, (qup + 2uz)” 2 4y (3.7)
or oz ¥4 ar T

The system of equations (3.6) is also hyperbolic and the characteristics

coincide with the stress characteristics. Equations (3.6) can be written:

cos ¢ duy + sin ¢ du, + 6 dsy

0 on a 1-line
2r '

(3.8)

sin ¢ di. - cos ¢ di, - Uy ds;

0 on a 2-line.

The maximum shearing strain-rate, ', in the (r,z) plane is given by:

' = (-QET + Ju,) sin ¢ + (Qu, + égr) cos ¢
9s] 852 A 9s]  9s2

and the condition (3.7) can be replaced by:

0 4 _ - (3.9)

o |
v
e
Lo}
v

So far all field quantities have been assumed to be continuous.
However, discontinuous states are possible and are utilized in the
circular punch problem. The restrictions on stress and velocity discon-
tinuities are determined just as in plane strain and will not be repeated

here.
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Considering now the case of kinematically determinate problems,

the governing equations are given by (Lippmann [33]):

i i
90y + 0Tpy + Oy - Oy =
or oz T
yg * 39z * Iy =0
or oz T
¢, = 2%

oT
ég = U

T
éz = du,
, 9z
e, = %(Bﬁr + 3u,)

z or

(3.1)°

+(3.3)1

Y3.4)"

The transformation equations from (r,6,z}) coordinates to the principal

coordinates where e, denotes a unit vector in the i-direction are:

—
i

o
[ 8]
!

= cos wer - siny &,

= siny &, + cosy e,

L(3.10)

If the three principal stresses are pairwise different and

.01 >0y > 03 0r 07 < 0, < 0g, then the principal strain-rate corresponding

‘to 02 is identically zero. This, together with (3.10) and (3.4)' gives

the following system of equations for the velocity:
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3y = -cos™y i

ar T

3a, = -sin®p uy 4 L (3.11)
3z T

dy + 3, = sin2) §

9z ar T

Since o, is the intermediate stieés, the yield condition (3.3)' reduces

to either:
03 >0y > 01, 0z - a3 = 2K if 4y >0

OI‘O'1<O'2<O'3,O'1-O'3=2K if'l..lr<0-

Introducing cdgrdinates g and n in the principal directions

corresponding to o; and g, leads to the characteristic system:

du,. + q ctny dr = 0

Uy oL
) 13
U,0P+ raq = 0
I -13
dup+ (4, - q tany)?r = 0 - - ((3-12)
an T an
. - r3q - (Uptand + q)3r = 0
an on T an
where q = %(3u, - Qﬁr)
or az

Note that there are only five unknowns, ., ﬁz, r, q, and ¥, ‘in this

system of equations. Equations (3.11) provide three equations to
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determine three unknowns, u., ﬁz, and W, in terms of the dependent
variables r and z. Redefining r and z in terms of &€ and N introduces
two equations and the resulting system of five equations in five unknowns

reduces to (3.12) with q replacing z as the fifth unknown.

Lippmann [33] has investigated several special cases of equations
(3.12) in order t o find simple bfototypes of principal line fields by
assﬁming each of the following conditions in turn:
yp=0, 3y=0, @QT =0, 3g=0, and 3 =20
13 an ) 9 13 | an
and has found that only the first one seems to give a reasonable solution. , ﬁ
In the first case, 3y = 0, the solﬁtion is a "fan"'field shown in figure

og

3.1 where . y=n, r, = 0. Then, T, q, u,, and ﬁz are given by:

r = gsinnp

q=_8
sinn

>(3.13)

u,. = (C -BEcosn)
sin n

=D+ Bg+C ln(tanD)
2
where B, C, and D are constants of integration,
‘\'4 N
W

v A

Figure 3.1 Fan field solution

ot
|
|
|

in axial symmetry.
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Taking B and D equal to zero in (3.13), the material velocities in the

directions & and n then simplify to:

1
o

L]

u u_ sin n + U, cos n
s Z (3.14)

-B

sin n

Ce
i)

n = Up €0S n - u, sin q

This characterizes a circular flow in the (r,z) plane and will be

utilized later.

Considering now thq problems of axial symmetry, the solutions
will be given for the statically determinate problems of tension of a
circular bar, indentation of a half-space by a ciréular punch. Only
one sdlution to a kinematically determinate problem has been developed;

the problem of tube nosing.

3.1 Tension of a Cylindrical Bar [32]

Consider a circular cylinder stressed by uniaxial compression
to the yielding point. Then the stress throughout the cylinder is
o, =-2K with 411 oéher stresses zero. The slip lines are straight lines
inclined at 45° to the axes. The boundary conditions may be specified as

stress type with uniform tension over the ends or as mixed type \«[ith_\'x.Ii given.

The velocity equations (3.6) simplify to:

. +u + du, =0
astute,y —_—Z
. arr ™ 9z
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A simple solution to these equations isgiven by:

up =k
h
ﬁz =1- 2z
h

where h is an arbitrary constant.

In order to satisfy the condition (3.7) it is sufficient to require that
h be positive. Thus a complete solution to the problem of compression
of a circular cylinder has been found.

it

Other velocity fields are discussed by Shield [32] and will not

be given here. They involve limiting deformation to small areas of
the cylinder and can be used to solve the problem of necking of circular

cylinders in tension.

3.2Indentation of a Half-Space by a Circular Punch

As in the case of plane strain, the problem to be considered can
be stated as a stress type problem or as a mixed type problem. It will

be stated here as a mixed type problem.

Assume that a flat lubricated circular punch indents the surface
of a half—spéce with the origin of a cylindrical polar coordinate
.system situated on the surface of the half-space at the center of the
punch. (See figure 3i2)'Then the boundary conditions are ﬁy =‘—} and the

shear tractions are zero under the punch and the remainder of the boundary

is traction free.



57

~ 150
PR ’.63

BT

e~ 048
~ 088

Figure 3.2 Stress field under a smooth punch in axial symmetry

The entire region OABCD is assumed to be fully plastic. Then
the field in region ABC is genefated by the stress free surface AB.
‘The normal stress P and the first shear direction are determined

by the equations:

-1
X =20 -2y  where y = tan z,
: - . T

NTE
tA
<~
IA
(S

X' sin ¥ + 1 +# 3sin X + cos X tan § = O

P = A+ sin x - In(cos ¥X) + S(3cos X - sin X-tan Y )
K

where A is an arbitrary constant of integration.

Shield [32] has given a solution to these equations in his paper and
the lines AC and BC are first and second shear lines respectively. The
field in QAD is determinedby the condition of zero shear on OA. Then the

" field in ACD is determined as the solution of a type I boundary value

I
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problem with the stresses prescribed on AC and AD and is given as a

fan field of ang1e<j . The extension into ths rest of the region
OABGEE is determineé in the éame way as was Bishop's extension in

the classical punch problem. The description of how this extension is
developed is not repeated here. Shield has determined the distribution

of normal pressure acting on OA and has found that the average value

of the pressure at collapse is:
P =5,69 K

and the ratio of OA to AB is 1.58 units.

Consider now the velocity field. The field of flow is assumed
to be confined to OABCD.  An associated velocity field has been given
by Shield by assuming that the velocity of the punch is unity. The
normal velocity across ODCB is ééro éhd a solution to equations (3.6)

on ODCB yield:

U, cos ¢+ 0, sind =0

_—ur’51n¢ +u, cos ¢ = %%

where A is arbitrary.

However, since this implies that U. and ﬁz are infinite at the origin

T
for A # 0, A is taken to be zero. The velocity field near the origin,
in ORS, can be determined from the requirement that the characteristics
are at 45° near the origin, the normal velocity on OA is one and the

velocity is identically zero across 0S. The solution at a point Q is

given by:
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. - ‘L
U, = 2 tan 1 (cos2 2y
L sin Y where y = angle between the

r-axis and the line through 0Q.

The velocity is now known on SD and SR and there is a type one
problem defined for equations t3.8). Solving this problem then yields
another type one problem for the defermination of the velocities in
SDAR for which the solution is easily obtained. The boundary condition
on BCD and the known velocity on AD then defines the solution to
another type one problem in the region ABCD. Shield has given
numerical solutions for the velocity fields and has shown that conditions
(3.7) are ;atisfied at.a'sufficient nunber of points. The velocity field

-is an associated kinematically admissible field and hence the solution is

"complete and the limit load is an average value of 5.69K.

Eason and Shield [34] have considered the indentation of a
half-space by a rough punch and have derived a complete solution with
a limit load of avefage pressure P = 6.05K. This solution is valid
provided that the coefficient of friction between the punch and the
half-space is gréater'than .159. The technique used in the solution
is similar to the technique used in the smooth punch problem.
However, the boundary‘conditions on OA are changed. The solution is
not presented here butvthe slip line field.is shown in figure 3.3 for
the left half of the half-space. The solution can Ee found in Eason and

" Shield [34].

il
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Figure 3.3 Stress field under a rough punch in axial symmetry.

Considering uniqueness of the solution, the same conclusion
applies heée as for the punch problem in plane strain. There is no
. guarantee that an infinite flow region cannot exist. Hence the
solution can only be considered as giving a unique value for the limit

load over all solutions with finite flow field.

As in the punch problem in plane strain, by modifying the
fields, it should bé possible to obtain solutions to other problems.
Certainly, by reducing the fan angle, the solution to an axially
symmetric wedge problem can be found, and:the solution to the problem
of uniformly notched circular bars can be found. Since the basic
fields for the plane strain punch problem anc the axially symmetric
punch problem are so similar, it is expected that wire drawing problems
can also be solved by utilizing a similar velo;ity field to that used

in plane strain extrusion although no such solution has been presented.



3.3 Tube Nosing

[33]

Consider a cylindricai tube of outer radius R and inner radius
R-S acted upon over the end by pressure P which forces the tube into
a smooth spherical die as shown in figure 3.4. The interior surface
of the tube is élso acted upon by uniform pressure P, below the surface

of the die. The solution, and hence the boundary conditions are determined

by an inverse t

echnique?~_-ﬁ :

s K

e

Figure 3.4 Stress field for tube nosing.

The velocity field is given by equations (3.14). Taking 0, =

and 02 = Gg and

Yield condition

Oz = Og where OE -is the intermediate stress., the

(3.1)"' becomes:

The stress solution is given by:

Q
]

Q
Y
]

sin T]O)

2K ln(
sin N

(sin nQ)]}
sin n
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0g = 2K(1n (sip No)* 1).
sin n

The limit load for this problem is:

\ .

P = -2K In (sin ng).

For & such that R-S = £ = R, o, is indeed the intermediate
stress provided that Pg is bounded by the following ihequalities for

equal thickness nosing:

ln(s%n Ny < Ps < (1 + ln(s?n ny J. (3.15)
sin N, 2K sin no

An extension of this field for z > 0 is given by‘considering uniaxial
compression o, = -2K 1n (sin ng) which is below yield. Thus, a
complete solution has been given for tube nbsing with limit load

P = -2K 1n (sin ng) and pressure acting upon the inmer surface of

the deformed nose Ps‘which is bounded by equation (3.15) to guarantee

that ogis indeed the intermediate stress.

62
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CHAPTER 4. PLANE STRESS PROBLEMS

In this chapter only the Tresca criterion is considered. The
z-axis is taken perpendicular to the plane of the material body. The
generalized plane stress problem is characterized by taking o o g
xz = yz = 2z =20

while in the plane stresses are averaged through the thickness. Thus,

o and 0_  are independent of z. The problems considered involve

xx’ “xy’ ¥y

thin sheets and, hence the assumption of generalized plane stress is

In all problems considered, the boundary conditions and geometry

are such that all stress fields are constant state fields for which

equilibrium is automatically satisfied. Utilizing superscripts to denote
the stresses on opposite sides of the discontinuity,the stress intensities
are determined by the yield condition and the stress jump conditions

across discontinuities given by:

1 2
g.. - o..)n. =0 4.1
(035 - .9 ;) (4.1)

Once a sfress distribution is determined, the velocity distribution
is determined by assuming that there is sliding out of the plane along
discontinuities within plastic regions with rigid body motion elsewhere.
Finally, the plestic power dissipation is shown to be-non-negative

throughout the flow region.

4.1 Square Plate with a Slit Under Uniaxial Tension [35]

Consider a thin square plate with sides of length 2a and thickness
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h, with a slit centered in the square parallel to the sides pulled in

tension. The slit is of length 2ab, o<b<1, and having zero width as

shown in figure 4.1,

J——2a ———3
1\ ) K 'P 1-.
N
léT ; . //q&
§l = 3 v
g 3 € Y sy Y- /‘\‘t?
-3 X ./{‘ .
f L .
¥ o =L, % -
! v l l l v . ‘ * 4.1b Velocity field.

Figure 4.1 Stress field for a square plate pulled in tension.

i

Assuming that regions 3 will become plastic while the remainder of

the plate remains rigid, and introducing regions 4 where distance 0G is
called a% t6 isolate the gtress free slit from the loaded edges AB and CD,
the stresses in each region can be determined from the yield condition,
the boundary conditions and the jump c&nditions across the boundariesv
separating the regions. Since the edges AD and BC of the plate are stress

free, the yield criterion in regions 3 is given by:

jo, - 0,1 = lo, - o, = 2x

The stress fields in the four regions are given as follows utilizing

a numerical superscript to denote in which region the stresses are defined:

S 1 SR

6. = Pb g =P .. =0

S T ’ y ? Xy

ci = gp , o2 = Pb(1-b) 72 = _Pb
bFrE@-b) Y B+ea-b) ¥ ¥ EQA-D)

. . o (4.2)
- , ) 3 |

% = 0 »ooo =K L Ty O

ot = -pb =0 R

X —é ® Yy Xy
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and the critical value of P is:

P = 2K(1-b).

Calculating the principal stresses in region 2 gives:

oi = P[E& - b(1 -b) + {[& + b(1 -b) z, 4b2}1/2]
2[b + £(] - b)]
. o] = P[E - b(1 -b) - {[£ + b(1 -b) 2 & b2}

2[b + &(] - b)]

It can easily be shown that yield is not violated in regions

1,2 and 4 provided that the following three inequalities are satisfied: i

b(l -b) =1-¢&
/ ' 2 2
(1 -b){[g +b(1-Db)]"+4Db"}=b + E(1 - Db)

b(l —,b) < E.

All three inequalities can be satisfied simultaneously by taking:

E=1-b + b2, (4.3)

An ;ssociated vglocity field can be determined by assuming that
there is sliding out of the plane along HE and FK at 45° to the plane
as Shown in figure 4.1b. If the block is pulled in tension, sides
DC and AB move apart with relative velocity v. .Calculating the internal

energy dissipation across the discontinuity gives:

¥

2Kv cos 1 h csc 1 = Kvh : S
2 4 4 ® :

which is positive provided that v is positive.



Hence, the complete solution is given by the stress field
Of (4.2) subject to the restriction on £ given by (4.3) with the

velocity field described above, and the limit load is:

P= 2K(1 - b)

4.2 Wedges in Plane Stress [36]

Consider a symmetric wedge with dimensions and loading as

indicated in figuré 4.2, Assume that the solution is symmetric about

A , vh R
S . P A A prarsards s

B T
AE ,é
1 R ]
h &
?
0
x|
AR S EANNTS
| ¥

Figure 4.2 Loading and stress field for g—a—D

wedge problem in plane stress.

>

the y-axis and that the right half of the wedge can be split into
threé regiéns with 1 and 3 plastic and 2 rigid. The position of the
érigin, 0, is determined by the parameter b. (See figure 4.2b.)
Caiiing the principal stresses in the plane o, and 0, with the third

principal stress g, = 0, the Tresca criterion reduces to:
max {|o; - opf , log], loal}i= 2k

Utilizing the boundary‘condifions and &ié}d equality, the

stresses in regions_l»and 3, denoted by superscripts, can te. calcu-

lated ihmediately and are given respectively by:
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1. 1 _ 1
Og = 2K , oy =P, 0, =0 P, < 2K
. : , 4.5)
3 3 3 (
ox-—ZK,oy~0,oxy—0

From overall equilibrium of the right half of the wedge, three

equations can be derived to determine P

o> P1 and b. The solutions

are:

- v 1‘

b=ctnB {l-2a+[(1-a)+a?)
2
- - r or- \7 211/21 I B
Po=ctnp i-a+ [(1 -a)" +aj7s Pl4.0)
2K
1

Py =-ctn 8 {a- [(1- a)2 + 32]1}
2K 1-a

{
To find the stress in region 2, the jump conditions (4.1) across

OB and OD are utilized and give four equations of which only three are

independent:

2 2
g% = -T a - 2K

X xy &

2 2
O, = =Tyy D

Yy XYE

>(4.7)
17, = -4Kb{(1 - @) ctn € - b}
(1 - a)(actn B + b)"

Pp = 2b {(1 - a) ctn B - b}
2K a .

- The fourth of equations (4.7) is the same_as the moment equation used

in finding (4.6) and is identically satisfied.

Since overall equilibrium has already been satisfied, the

.
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solution to équations'(4.7) automatically satisfies the boundary
conditions on BD and the stresses in region 2 are given by:

L
o2 ={1+a%- [(1-a)?+ 2]
(1-a)°
L
05 = ctnzB {1 - 2a + 3a% - zaf(l - a)2 + a2]2}2K (4.8)
(1-2a)"
Ty = Ctn B {1 -a+2a%- (1+a)]Q- 3)2 + a?] 22K
(1-a)

Having calculated the stress fields in the three regions, it
is necessary to check that yield is nowhere violated. In equations

(4.5a), P, was restricted to be less than 2K. this implies that:

/
i

tan B <-a+ [(1 - a)2 +,a2]€. (4.9)

A further restriction is imposed‘by the condition that region 2 remain

rigid. The principal stresses in region 2 are:

, 2 2 1
Oi =0y + g, + [(O% - 03)2 + 4T§y2]2
2 7 T2

| 2 2.1

o3 =0f + ol + [(0F - o? + 4r, P

2 C2 ’
2 2 ‘ '
but since 0y = 0 and Oy Z 0 for 0 =a =1, the yield inequality simplifies

: ) .
to lol - Gzl < 2K. Calculating (07 - _05) gives the following implicit
. 4 k .

restriction on a and B:

- 02)21= {ctn®8 (1 - 2a + 322 - 2ac)? +(2ctn?B)"

' :(0 4K2 :

(3 - 6a + 12a - 102> + 9a* - 2c - 2ac + 2a%c-6a%¢)

s @ra? o207 a-ats1 (4

|
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2 2%
where ¢ = [(1 - a)” + a“]”?

By taking particular values of B, the restriction on a
implied by the above inequality was calculated on an IBM 360 computer

and the results are presented in table 4.1,

Table 4.1 The restriction on a for fixed values of B.

B 3 6 15 30 45 60 75

X xx<ac< 1l .9513 .9058 .7858| .6224 .4823 . 3474 . 2000

Furthermore, it was found that if a and B satisfied the restriction

(4.10), the previous restriction (4.9) was automatically satisfied.

An associated velocity fiéld is obtained by considering a rigid
rotation with speed %_within the plane of the right half of the wedge
about the point of intersection of the x-axis and side BD,Q.The left
half rotates counterclockwise about the symmetric point on side B'D' at
the same speed. The direction of the rotation has been chosen to make
the plastic’work positive if P, is tensile along B'AB and must be
reversed if P  1s compressive. This rotation introduces a discontinuity
in velocity across a plane through AE inclined at 45° to khe (y,z)
plane. For the purposé of computing the internal energy dissipation,
only the relative jump in Gy across the discontinuity is needed

explicitly. This is given by:

[0, = Q.
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B |

Calculating the internal energy dissipation due to the.
discontinuity in velocity at a point P on AE a distance d from Q
gives: : : E

I = 2KhQ2dv
The internal energy dissipation is positive provided that Q is

positive; that is if @ has the direction specified.

Thus the stress fieclds (4.5) and (4.7) subject to the restrictions
(4.9) and (4.10) together with the Ve]ocity descrihed above provide a

complete solution with the limit load given by:

p

i

o=2Kk{a- [ - a?+aTletn?s v

i

-2kfa - [(1 - )% + a®Thetmn g | i
1-a. r

Py

4.3 "Problems Solvable by the Wedge Solution

Consider a square plate with either a square hole or

circular hole centered within the plate as shown in figure 4.3.

Figure 4.3 Breakdown of sqﬁare plate with hole into several wedge problems.

P
f)
S
P Tt
ey T At
K i "X
~D .{,\g ' / mi‘ hfen
. e “ i e
. ! %
e @ e o
Y |
Pl — . ilﬁ . T’\
- Lasad
N G
By \H C Lt
% Y
Bl Y = e



71

The plate is loaded in tension in one direction and in compression in
the other direction. By utilizing the stress fields obtained in the
wedge problem for the  four wedges shown in figure 4.3 and taking for
‘a velocity field rigid rotations about the points E, F,‘G, and H which
correspond to Q in figure 4.2, a complete solution is obtained provided
that a > .4823 to satisfy the restrictions 4.9 and (4.10).. If the hole
is circular, then the regions marked 1 in the figure a?e all stress free
and do not affect the solution. This prohlem was first solved by
Gaydon (37) who split the square into four regions as shown by the vertical
énd horizontal lines passing through the middle of the plate. It was

by studying Gaydon's solution that the author came by the idea for his

solution to the wedge problem.
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CHAPTER 5. Miscellaneous Problems

The problems consideréd in this section include those for
whiéh a fully plastié state exists at the limit load. This situation
is restricted to problems where sufficient symmetry exists. In these
cases, the problem becomes one dimensional and the solution can be
found by substituting directly from the yield equality into the
equilibrium equations and solving the resulting ordinary differential
equations. Determination of an assoclated kinematically admissible

velocity field is also quite simple in the one dimensional problems.

5.1 Spherical Shell under Internal Pressure [2]

Consider a spherical shell under internal pressure with inner
radius a and outer radius b. Choosing spherical polar coordinates
and assuming that the solution is independent of both angular

coordinatesthe equilibrium equations and Tresca criterion reduce to

do, + 2 0y - 0= 0 (5.1)
dr T ' :
Og = Op £ 2K (5.2)

Sg = 4= U - | b (5.3)
T - N

ey <o |
and incompressibility implies:
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do, +u. = 0. ‘ (5.4)
dr T

The boundary conditions are:

-P

or(a)
(5.5)

8
o

Ur(b) =

The complete solution to the problem consists of the stresses:

~ = A T .
vy T N J.ll(

) .

T -4

og = 2K {1~ 2 ln(b )l

2]

the velocity field:

Uy where A is taken positive to satisfy 1.3.

= A,
T
and the limit load:

P = 4K Ingby.
\al

5.2 Hollow Cylinder under Internal Pressure [14]

Consider a cylinderical shell in cylindrical polar coordinates
with inner radius a and outer radius b subjected to internal pressure,
P. Assume a plane strain solution with the stresses independent of

both z and 6.

The equations of equilibrium, yield and incompressibility then
reduce to the same form as in the case of a spherical shell under

internal pressure but with different constants:




The boundary conditions on stress are:
qr(b) =0, op(a) = -P
Thus, the stress and velocity solutions are:

op = -¥3 K Inby
T

o, = K(1 - V3 ln(b\}
T

> where A is taken positive to satisfy 1.3.

c
]
i}
i

P = V3K ln(b%

Note that no consideration has been given of the boundary
conditions at the end of the tube. Howevér, the solution is valid
for closed end conditiqn and for an open end condition if it can be |
shown that o, =_0x + Oy is always.the intermediate stress, and if the
‘Tresca criterion iszused. If the-von Mises criterion is used, the
solution to the problem is dependenf upon the end condition, but some

results have been obtained for open, closed end and plane strain end

conditions. (For comments and references see Geiringer [14].)

74
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5.3 Critical Speed of a Rotating Solid Disc [38]

Consider a disc of radius b rotating at constant speed w.
The equilibrium equations must be modified for this problem since there
is a body force term present here%,. Shoemaker [38] has shown that
no complete solution exists if the Tresca criterion is used since no
non—trivial aﬁsociated velocifyvexists. Consequently, a solution is

sought using a modified Tresca criterion.

Considering the problem in cylindrical polar coordinates, the
field quantities are assumed to be independent of z and 6. The
equilibrium equations, the modified Tresca criterion and the associated

flow rule are given by:

doy + 0, - 0. = -pr w? where p denotes density and w
dr T 0 .

denotes angular velocity.
Og = (V3K +0) -0g where ¢ >0 is arbitrary

. /3K and 0 = 0. = V3K where K is
the yield stress in simple tension.
éij = A93f
] BGij
The boundary conditions are:

or(b) =0, 0,.(0) < M for some finite constant M.

Solving f(oij) = 0 for Ty and substituting into the equilibrium

equations gives:

+ Op (1 + 0y - 3K+ 0 = -pwzr
T

V3K T

jaRgen
ate
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for which the solution which is bounded at the origin is:

V3K (1 - pwPr? )

g =
T
3/3K + 0
og = V3K + 0 - o(1 -_pwir? )

3/3K + O

Applying the other boundary condition and solving for w gives:

P
(3/3K +0)72

W =.l
b 0

From the flow ruie, the strain-rates are found to be:

é°=>\=£1_r.
T

Hence, eliminating A, the differential equation for ﬁr becomes :

di,. + 0 up =0
duy Ur
dr /3K T

Solving for the velocity ﬁr gives:

5 = AW) ro//sx

which automatically satisfies u, = 0 and the energy dissipation is

T
positive provided that A(w)> O.

Thus a comﬁlete solution has been givenbwith limit
load, interpreted as the critical speed, givenhbyf‘

w = l.(SJSK + 0y
b P
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Note that as ¢ + 0 the solution is still valid and that the
resulting limit load agrees with the lower bound previously obtained
ﬁsing the Tresca criterion. 'Shoemaker [38] has also shown existence
of é complete solution using the von Misés criterion gnd obtains the

critical speed by a numerical method.
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