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Abstract 

It is intended in this paper to show the development of 

a dislocation approach to solving certain boundary value problems 

for an elastic medium. The application of this type of approach 

is demonstrated by (11 presenting problems previously solved by 

Head and Louat involving distributions of dislocations, (2) pre- 

senting the soiutions of piane and anti-plane strain boundary 

value problems for a half space, previously solved by Lardner, 

and (3) deriving the solutions for certain axisymmetric boundary 

value problems for a half space, to which this approach has not 

been previously applied. 



Introduction 

Beginning with the field equations for a linear,elastic, 

isotropic body with prescribed boundary conditions an expression 

for the displacement field is found in terms of surface and 

volume integrals involving a GreenS function. The GreenS func- 

tion is calculated for an infinite medium. By introducing the 

idea  of a disiocatian and a Burgers vector, the expression 

for the displacement field, known as Burgers formula is found. 

The expression for the stress field of a dislocation, known as 

the Peach-Koehler formula, is then found from the Burgers 

formula. 

By using an energy consideration, the effects of external 

forces and of mutual interactions on dislocations are found, 

which leads to the investigation of problems of equilibrium 

for dislocations under various external and end conditions. 

Here the continuum approximation for the dislocation density 

suggested by Head and Louat ['I is introduced, and their 

solutions are presented. 

The continuum approximation of Head and Louat, together 

with the Burgers and Pe~h-Koehler formulae are used to solve 

a plane and an anti-plane strain boundary value problem for a 

half space. The Peach-Koehler formula is used to evaluate on 

the boundary that particular component of stress that is 

prescribed, giving an integral equation for the unknown disloca- 

tion density function. The solution of this integral equation 

is well known and hence the rest of the stress field and displace- 



ment field can be found. 

The axisymmetric boundary value problems are solved in 

much the same way. The first problem is one of the half space 

with an axisymmetric normal stress prescribed on the boundary. 

The Peach-Koehler formula is used to evaluate the expression for 

the normal stress on the boundary. This expression, which gives 

an integral equation for the unknown dislocation density function, 

involves elliptic integrals of the first and second kind. The 

solution is found by first writing the elliptic integrals in 

terms of Bessel functions, and then noting the similarity between 

the resulting expression and a Hankel transform. 

The second axisy-hnetric boundary value problem considered 

is that of pure torsion with an axisymmetric shear stress pre- 

scribed on the boundary. It is not possible to begin with the 

Peach-Koehler formula since in its derivation it is assumed 

that the direction of the displacement discontinuity remains 

constant everywhere on the dislocation loop, It is necessary 

then to return to the original form of the displacement field 

equation, By differentiating this expression for the displace- 

ment, evaluating it at a point on the x-axis, and equating it 

with the prescribed bouflary value of the shear stress, one 

obtains an integral equation for the unknown density function. 

The solution of this integral equation is found once again by 

writing the elliptic integrals in terms of Bessel functions 

, and treating the resulting expression as a Hankel transform. 



1. Elastic Boundary Value Problems 

The derivation of the Burgers formula for the displacement 

field in an infinite linear elastic material subjected to certain 

deformations begins with the determination of the displacement 

field in terms of a Green's function. 

Let a finite linear elastic body B be in equilibrium under 

given body forces whose components are fi, under given tractions 

on a part Sl of its boundary, and under given displacements over 

a part S 2  of its boundary. The field equations are then 

Since the material is linear elastic, 

The last step was made possible by Cijkl= Cijlk . 
In terms of the displacements the field equations and the 

boundary values may be written as 

To construct a Green's function for this problem, let - x' 



be a point in B. With - r' as its centre, construct a sphere 
A, with radius E .  Let Be = B - GF be the volume outside 

g E  and inside B. Finally, let the Green's function uij(r,rl) - - 

satisfy: 

C i i k ~  ~ l ~ , \ ~ ( ~ , r _ ' )  = 0 o 1 R R e  (1.3a) 

0 
c ~ ~ ~ ( r , c " I  -+ 0 as E --t 0  for^ (1.3e) 

The Green's function ulm[r,rl) - - is then the lth component 

of the displacement field at - r when the tractions on S1 and 
displacements on S2 are zero, and the only body force present is 

a unit force in the m direction applied at - r'. 
Apply the Gauss divergence theorem on ui(r) - and uh (r,rl - - ) : 



The right hand side of (1.4) becomes 

Cii k J! I ,  - )  r - = O f o r  \R BE 
And from the ayrmnetry'of Cijkl: 

The right hand side of (1.4) can finally be written: 

 since?^ = S1+SZ , part of the left hand side of (1.4) may be 
written 

From (1.3b) and (1.3~): 



And from (P.2b) and ( 1 . 2 ~ )  : 

The i n t e g r a l  remaining on t h e  l e f t  hand s i d e  of ( 1 . 4 )  i s  

Since u i fk ( r )  - i s  bounddd, t h e  second i n t e g r a l  over A tends t o  

zero a s c t e n d s  t o  zero  because of (1.3e). Also, s i n c e  u . ( r )  
1 - 

are continuous,  ui ' (r)  -+ u . ( r '  ) a s  h + 0. Using (1.3d) , - 1 - 
as E -+ 0, t h e  i n t e g r a l  over  asE f i n a l l y  becomes 



- 
- ~ i ( ~ ' ) & m  = Urn c x i )  . 

combining [1 .5) ,  (1.6) and (1.7) 

If w e  have a t r a c t i o n  boundary va lue  problem, S2 is empty and 

S1= 2B; then  



However, i n  de r iv ing  (1.9) t h e  procedure must be modified. 

With S 2  empty t h e r e  a r e  no longer  boundary t r a c t i o n s  i n  

equat ions  (1.3a) - (1.3e) t o  ba lance  t h e  po in t  fo rce  a t  r l .  - 
TO provide a balance, an equal  and opposi te  f o r c e  must be 

placed a t  some o t h e r  po in t  ro as w e l l ,  a s  a po in t  couple 

which w i l l  cancel  t h e  torque c rea ted  by t h e  two po in t  forces .  

See Appendix A f o r  d e t a i l s .  

I f  t h e  medium extends t o  i n f i n i t y ,  some r e s t r i c t i o n s  on 

t h e  displacements and t h e  Green's funct ion  must be imposed. 

In  add i t i on  t o  t h e  requirement t h a t  u h ( r , r l )  s a t i s f y  equat ions - - 
(1.3a) - (1,3e) w e  must a l s o  r e q u i r e  t h a t  t he  i n t e g r a l  of t he  

t r a c t i o n s ,  u r ,  ) n , over t h e  su r face  of a l a r g e  ' i j k l  1m.k - - j 

sphere of r ad iu s  R must be bounded and must balance t h e  u n i t  

fo rce  a t  r' . I t  i s  s u f f i c i e n t  i f  we suppose ulm(r , rr  )A. 0 ('/r) - - - 
and u 1 2  ( ) 0 ( /r ) a s  r -2 - . Using again t h e  Gauss b , k  - - 
divergence theorem appl ied  t o  t h a t  p a r t  of BE which l i e s  i n s i d e  

a l a r g e  sphere sR of r ad iu s  R and centered  a t ,  say,  t h e  o r i g i n ,  

( B is  t h e  p a r t  of t h e  boundary i n s i d e  t h e  sphere gR),  w e  

have t h a t  



~n order  t h a t  as R - + m  , we must add t h e  

following two cond i t ions  on u.'(r) and u l tkf r ) :  
3. - - 

11 u S ' f r l ? r O  a s r  j- 
R w 

These two add i t i ona l  cond i t ions  a r e  requi red  s i nce  t5ere 

is an r2 con t r i bu t i on  from dS. Then a s  R - m ,  and a s  

E 3  0 we have a g a h  equat ion (1,8) .  

subvolume V s f  t h e  body Bo L e t  t h e  su r face  of the subvolume 

be a V e  Then (1.8) becomes 

provfded that\rt is r e s t r i c t e d  t o  l ie  wi th in  Y. In UO1Q]  - 
. . 

6 lj'(l) is the stress f i e l d  corresponding t o  u.fr) .  
1 - 

If i n  the ca se  of an i n f i n i t e  body B, V a l s o  extends t o  

i n f i n i t y ,  t h e  su r f ace  i n t e g r a l  over 3 LR t ends  - to  zero 

because of t h e  r e s t r i c t L o n s  imposed before  on u , k )  and 
1 - 

T h e  condi t ions ,  then,  on ulm(g,r_') a r e  t h a t  it is of 



order l/r a t  i n f i n i t y  and sa t f s f  2es equations (1.3a) and 

(1.3d). W e  may combine equations (1.3a) and (1.3d) i n t o  

one equation i n  t h e  fo l loving way. 

Apply the divergence theorem t o  equation (1.3d) : 

The minus s ign e n t e r s  s i n c e  n i s  t h e  inward normal of cE . 
j 

In tegra t ing  t h e  t e r m  C-. ~ j k l  %m,kj ( r r r t )  over B e +  &and 

u s h g  equation (1.3aJ 'gives: 

Equatfons (1.3.1) and (1.12) combine t o  g ive  

where j @ - zt 1 is the t h r e e  dimensional d e l t a  function. So 



The  Green's function must then be of order  l/r a t  i n f i n i t y  

and s a t i s f y  equation (1.13) . 
To f ind  t h e  Greenrs funct ion sa t i s fy ing  these  condit ions,  

following dewit,12' we begin by taking a Fourier  Transform 

on defined by 

T h e  inverse  is defined by 

The in tegra t ion  here extends over t h e  whole space. 

Take t h e  Fourier  transform on (1.13) acco rdhq  

A t  t E s  poin t  w e  assume the ma te r i a l  t o  be i so t rop ic ,  Then 

Equat 2on (1.16 1 becomes 



where f 2 =  Ip I T ,  ~ u r n r n e d  oJeP p 

S u b s t i t u t h g  (1.19) i n t o  (1.18 1 

Invert [$,20) according t o  (1.15) 



Now c o n s z d e r  the integral 

D i f f e r e n t i a t e  (1.22) t w i c e  t o  ge t  

I n  (1.231 let P = xu. Then  

Using ( 1 - 2 3  ): and (1.24 1 , e q u a t i o n  (1.211 becomes 



2,  Dislocation Loops 

Having found an expression f o r  t h e  displacement f i e l d  

C r  in terms of a Green's function, we  a r e  ready t o  define 

a dls locat lon loop and t o  ca lcu la te  the  displacement f i e l d  

due t o  this Poop. 

Consider a body B with boundary 3 B. L e t  f be a closed 

curve Li B, and let A be a surface spanning t h i s  closed 

curve. Make a cu t  on t h e  surface A and displace the two 

faces,  L e t  the  vector - b be t h e  displacement r e l a t i v e  t o  

each other of two corresponding points on t h e  two faces of 

the cut .  That is, i f  'A+ a r e  the  two faces of the  cu t ,  then - 

a r i g h t  handed sense w i t h  respect  t o  t h e  un i t  vectors 

pointing from A+ t o  A . The t r ac t ions  on t h e  two faces a t  - 
corresponding poin ts  a r e  required t o  be equal and opposite. 

Phe deformation so found is  said t o  be a dis locat ion loop - 
vith Burgers vector _b (zt).  The curve f is  cal led the l i n e  - 
)z - the dis locat ion.  13 J 

Now le t  V be t h e  whole volume of B except for  t h e  cu t  A, 

'hen t h e  boundary o f  V ,  > V  cons is t s  of > V = > B  + A++A , 
P 

ssume t h a t  the  body forces f (r ' )  a r e  zero and t h a t  the  - - 
ractlons t (r') on > B  vanish. The Green's function s a t i s f i e s  - - 
Dth equation C6a) of t h e  Appendix A and the  equation 



T h e  displacement f i e ld ,  ui (5 1, is given by equation 

(1.10) with f i ( r t )  - = 0: 

The integral  over > B  vanishes since the t ract ions there are  

assumed t o  be zero and by (2.11. So 

Then, since c2.2) may be writ ten 

by equations (2.3), w e  have 



It should be  remarked that a t  t h i s  po in t  &>his not  

yet assumed constant .  

W e  mow s p e c i a l i z e  t h e  above considera t ion  of a d i s l oca t i on  

loop by assuming t h e  i n f i n i t e  body t o  be i s o t r o p l c  and 

f h e a r l y  elastic. We a l s o  assume t h a t  i n  making a c u t  on t h e  

su r f ace  A, t h e  following displacement @ of t h e  two f ace s  

r e l a t i v e  t o  one another  w i l l  be constant .  Again we denote 

by f t h e  curve enclosing t h e  su r f ace  A .  

Recal l  t h a t  t h e  Green's funct ion  f o r  an i n f i n i t e  

i s o t r o p i c  medium was given by (1.25) . Subs t i tu t ing  t h e  

Green's funct ion  g iven by (1.25) i n t o  the expression f o r  the 

displacement given 

u, (d 

by (2.4) and making use  of (1.17) we have 

= -b; - 1 [h 5% R p,, - A R 
~ V P  A+ 

1 X e 2 .  9 ,ren 



We may write the r i g h t  hand s i d e  of ( 2 . 5 )  i n  terms of a 

line i n t e g r a l  around f by using Stokes theorem, of the 

where d l k  is an element of arc on and T is any d i f f e r en -  
" 

t h b l e  funct ion .  S ince  Eiik Ehhm = &*Jim - I;, ail I ("61 

may be wrzt ten  

N o w  the second i n t e g r a l  b C2,5) was of the form 

A+ 
and by C.2 -7) this becomes 



! 

18. 

The f i r s t  two terms of t h e  f i r s t  i n t eg ra l  i n  (2.5) a r e  of 

tw form 

d4L C2.91 

r' 
P h a l l y ,  t h e  Past t e d  of t h e  first i n t eg ra l  i n  (2.5) is of 

t h e  form 

So (2.10) becomes 

where is  t h e  so l id  angle subtended a t  r - ' by Ule surface A+, 



19. 

"ch i s  bounded by the  curve f Then combining equations 
L 

(2.81,  (2.9) and C2.111, equation (2.5) becomes 

~t may be noticed from C2.12j t-hat t-he displacement f i e i d  

depends only upon t h e  curve So fo r  a given curve , 
the dfsplacement f i e l d  2s unaffected by the par t icular  surface 

A on which t h e  cu t  is made. The equatiion C2.12J is known a s  

the  Burqers formula, I41 

To derive the  stress and s t r a i n  f i e l d s ,  t h e  derivative 

of fi(r') - must f i r s t  be found. 12' From (2.11) , 

Since R~'- o a s  lopg as r = r k  
PP- 





Now 

ubstituting (2,131 in to  ( 2 . 1 5 )  g ives  



B (2,161 becomes 





This expression f o r  the stress field i s  known a s  the Peach 



I 3 .  Energy And Forces of I n t e r a c t i o n  161,  [71, 

It would be p o s s i b l e  a t  t h i s  s t a g e ,  wi th  t h e  a d d i t i o n  

of a  few assumptions, t o  i n v e s t i g a t e  some boundary va lue  

problems. However, a  deeper i n s i g h t  nay be gained i f  

w e  w e r e  t o  fol low h i s t o r i c a l l y  t h e  development of t h e  d i s -  

l o c a t i o n  cons ide ra t ions  t h a t  l ead  t o  t h e  s o l u t i o n  of cer -  

t a i n  boundary va lue  problems. 

En t h i s  chapter  w e  w i l l  i n v e s t i g a t e  t h e  e f f e c t  of 

one d i s l o c a t i o n  on another ,  o r  more s p e c i f i c a l l y ,  t h e  f o r c e s  

of i n t e r a c t i o n  of one d i s l o c a t i o n  on another .  

Consider f i r s t  an' i n f i n i t e  body B wi th  boundary JB. 

T h i s  body i s  i n  equ i l ib r ium under body f o r c e s  f i  and sur -  

f a c e  t r a c t i o n s  t ~ e t < b e  a  sphere of l a r g e  rad ius  R, and i ' 

t h a t  p a r t  of t h e  body contained wi th in  &. 
energy d e n s i t y  f o r  BR i s  def ined  a s :  

The s t r a i n  

I f  we a r e  to -  u s e  t h e  divergence theorem, t h e r e  would 

be s u r f a c e  i n t e g r a l s  over  t h e  whole o r  p a r t  of Elad an  

i n t e g r a l  over  t h a t  p a r t  of 2 BR o f  the  boundary of t h e  body 

contained wi th in  &,. Taking t h e  l i m i t  as R+mgives, i f  t h e  

integral over & goes t o  z e r o  and t h e  i n t e g r a l s  over BR and 



) B~ converge,  

IJ = % { U i E i i  - j d V  * 

2B 

-311 - .C -k- a 
This r e s u l t  w i l l  hold i f ,  as R -a, = O(R ) F ui= 0(9 1: 

W e  now c a l c u l a t e  t h e  t o t a l  energy of a system wi th  

t r a c t i o n s  appl ied  t o  i t s  o u t e r  s u r f a c e  and i n  which a d i s -  

l o c a t i o n  i s  c r e a t e d .  . 
L e t  a body B have an e x t e r n a l  boundary S. On t h i s  

el 
e x t e r n a l  boundary p l a c e  t r a c t i o n s  , and c a l l  t h e  cor- 

(e.) 
responding displacement f i e l d  . I n  t h i s  body B make 

a c u t  and c a l l  t h e  two f a c e s  of t h e  c u t  A+ and A - . With 
(dl , - t (4 t h e  a p p l i c a t i o n  of equal  and oppos i t e  t r a c t i o n s  $+ - - 3 

on t h e  two f a c e s ,  A, and A - are deformed r e l a t i v e  t o  one 

t h e  work done on I3 by t h e  e x t e r n a l  agent  on S i n  causing t h e  
'(d 

deformation f i e l d  and dur ing  t h e  c r e a t i o n  of t h e  d i s -  

l o c a t i o n ,  then  t h e  t o t a l  energy of t h e  system i s  

where 



and 

u is t h e  s t r a i n  energy of t h e  body. Then, 

I n  t h e  absence of body.forces ,  we f i n a l l y  have t h a t  

(el (e )  (A) I d )  
Ui G;j + Ui Gcj 

where 2 B = S+A++A . - 
Before s u b s t i t u t i n g  (3.4) and ( 3 . 5 )  i n t o  (3.31, w e  may 

/ 

s impl i fy  equation-'(3 . 5 )  f u r t h e r .  The f i r s t  term i n  t h e  i n t e -  

g r a l  becomes: 

ce @) 
s i n c e  y and L?- a r e  cont inuous a c r o s s  A+. The second term - 
i n  t h e  i n t e g r a l  i s  



t 'd' 
s i n c e  -+ - ( 4 (oil (dl (4 --t_- a , & + - q .  = a s  . 
Also s i n c e  t(d)= 0 on S ,  and @' is continuous ac ross  A+, - - ? 

It i s  evident  from t h e  B e t t i  r e c i p r o c a l  theorem and from ( 3 . 8 )  

that 

Then from t h e  second of  ( 3  -9) 



With t h e  h e l p  of (3 .4 ) ,  (3.6) , (3.7) , and (3.8) equat ion 

(3.3) becomes 

F i n a l l y ,  using (3.10) w e  have t h a t  

Eaving found t h e  express ion  f o r  t h e  t o t a l  energy, 

given by (3.1;), w e  may now c a l c u l a t e  an expression f o r  t h e  

f o r c e  on a d i s l o c a t i o n  l i n e  as t h e  l i n e  moves a small d i s -  

tance!81 This  f o r c e  i s  j u s t  minus t h e  r a t e  of change of t h e  

to ta l  energy s f  t h e  system with r e s p e c t  t o  t h e  d i s l o c a t i o n  

p o s i t i o n .  

Let us  cons ider  aga in  an i n f i n i t e  body B with a c u t  

A. The su r face  A i s  bounded by t h e  curve f , and t h e  

f a c e s  of t h e  c u t  are d i sp laced  r e l a t i v e  t o  one another 



(a) 
by a cons tan t  amount A U = b - - 

From (3.11) when f moves through an amount Jr , t h e  - 
change i n  Utot is : 

where 

(A) 
However f o r  an i n f i n i t e  m e d i u m ,  t h e  d i s l oca t i on  energy 11 

kh 
is independent of t h e  d i s l o c a t i o n  pos i t ion .  Hence 8 u = 0 . 
Now as moves through J r  , it sweeps o u t  a  new c u t  A+, - 
s o  (3.12) becomes: 

0 
L e t  again be an external. stress tensor .  Let n be - 

the  u n i t  normal t o  $ ~ + ( n  - i s  po in t ing  from A+ t o  A ). Then - 
(4, b 

on 8 A+, t - = 6 - n L e t  d l  be an element of a r c  on and 

be a u n i t  vec to r  along . See Figure (3.1) . Then t h e  

Figure  (3.1) 



We specialise noG to the case where r is straight, and 
- (4 is constant along the length of f . Then - 6r is con- 

stant, and (3 - 1 4 )  becomes : 

The force per unit length of r , written F/L, on a - 
dislocation Pine as stated before is minus the rate of 

change of energy with respect to the dislocation psition, 

or 



comparing (3 16) with (3.15) gives 

Equations (3.11) and (3,17) may be used to calculate 

the effects Q•’ two dislocations on one another. A sys- 

tem of two dislocations can be pictured in the following 

way - 
(1) (1) 

Make two cuts, A+ - and A+ - displacing the faces so that 
(1) ) I t )  (4 13 W W (2) 

on A: AU - = &  -$. , and A u"' - = 0 . O n A  : AU - =U+ - -U- - r 

and t l3 = - t 'a) The boundary 3 I3 of the in•’ inite medium ,+ - - 
(11 (1) consists ~f S + A + A , Then equation (3.5) b e c e s  

From the above equation an expression for the total energy 
- 

is found which is similar to equation (3.11): 

From (3,18) it can be seen that the effect on one d i s -  
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location by another is the same as if it were acted on by 

an external stress. For example, if dislocation (2) were 

fixed, the second term in equation (3.18) gives the effect 

on dislocation (1). Then the force on one dislocation by 
(e) 

another is given by equation (3.17) with6 being the stress - 
field due to both external tractions and any other disloca- 

tions, b l  



4. Head-Louat Approximation 

L e t  us now examine a simple app l ica t ion  of Burgers for-  

mula (2 .12) .  In  an i n f i n i t e  medium, beginning on the pos- 

i t i v e  s i d e  of t he  o r i g i n ,  we  make a c u t  p a r a l l e l  to the  z-axis  

i n  t h e  pos i t i ve  d i r ec t ion  of the  x ax i s .  The upper surface 

of t h e  c u t  i s  denoted.by 

on A+ except those c iose  

tance %b i n  t he  negative 

except again those c lose  

tance +b i n  the  p o s i t i v e  

A+ and the  lower by A - . A l l  points  

to  t i e  o r i g i n  a r e  dispiaced a dis-  

z d i r ec t ion ,  and a l l  points  on A - , 
t o  the  o r i g i n  a r e  displaced a dis-  

z d i r ec t ion .  See Figure (4.1). 

1 - 

Figure (4 .1 )  

This type of d i s loca t ion  is ca l l ed  a screw dis locat ion,  and 

has a Burgers vector  of -%b-+b =-b i n  t he  z di rec t ion .  So 

b = [ O .  0 ,-b) . Now the  curve , which encloses the cu t  w i l l  - 
cons i s t  s f  (1) a s t r a i g h t  l i n e  ly ing i n  t he  z-x plane, para- 

l l e l  t o  t h e  z ax i s ,  runninc~ from z= oo t o  z= -w ; and (2) 

a semicircle i n  the z-x plane, centered a t  t h e  o r ig in  and hav- 

b g  the l a rge  rad ius ,  a.  The path along the  semicircle w i l l  



be taken in the clockwise direction. See Figure (4.2). Notice 

t h a t  t h e  pos i t i ve  u n i t  vec to r s  a r e  pointing from A+ t o  A_, 

hence the curve 7 is r i g h t  handed w i t h  respect  t o  these u n i t  

vectors.  

Recalling ~ u r ~ e r k  formula (2.12) f o r  t h e  displacement 

f i e l d ,  w e  have, f o r  t h e  displacement i n  the z d2rectLon: 

where C 2s  t h e  semLcikcle of radius  a as shown in Fsgure C4.21, 

2 and % = [ (xl-i) +xi2 + ( x , - x : ~ ~ ] ~  . W e  want t o  show t h a t  the 

h t e g r a l  over C vanzshes 
= = 1  

a s  the radius  a goes t o  infinxty.  Now 

on C w e  have xl= a cose, dxl= -a sined0, and xg= a sine,  so 
:TT 



Now for large a, the integrand is finite, and the factor 

l/a outside the integral causes the whole term to tend 

to zero, So we have that 

Now n(t'jis the solid angle subtended by at r! If 9 is the - 
angle at r' between the vector r'and the z-x plane, then - - 

-1 9 = tan y@/x', and (r - ' ) = 2 tan-'</x". So 

and this is the only non zero component of the displacement, 

since ul and u2 involve only vanishing integrals around C 
1 - 

as above. Then the non vanishing strains are (dropping the 

primes) 



Bnd the stress field is 

Equations (4.1) then give the stress field caused by 

one screw dislocation. We now consider a system containing 

an array of dislocations. 

Let there be a cut in the x-z plane as described in the 

first part of this chapter. Now instead of displacing the 

whole of the two faces of the cut by an amount b relative to - 
eachother, let there be an array of displacements in the z 

direction, each displacement having a magnitude bi in the 

z direction, and each having a position on the x axis as xi. 

Let there be n of these displacements. Each of these dislo- 

cations produces a force of repulsion on all the other dislo- 

catisnk.(see Chapter 3) 

kth 

Let 

The 

We shall now calculate the force(per unit length) on the 

dislocation located at xk due to all the other dislocations. 

Gii be the stress field due to all the other dislocations. 
(k) 

force on the kth dislocation, F(~)/L, due to dii is given - 
by equation (3.17) as 



Then 

SO the force in the x direction on the kth dislocation is 
04 

b k d y ,  . But from (4.1) 

which is just the sum of all the other stress fields due to 

all the other dislocations. 

If b P represents any additional forces on the kth dis- 
k k  

location(such as external forces), then for equilibrium: 
- 

The problem of finding the equilibrium positions, xkC 

for an array of dislocations under the influence of certain 
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prescribed external shear stresses taking into account the 

mutual interactions of the dislocations in the array was con- 

sidered by Eshelby, Frank, and Nabarro. [lo Their method 

of solution of equation (4 .3 )  is exact, However, Head and 

Louat [I1 proposed an approximate method for the solution of 

the problem of Eshelby, Frank, and Nabarro. This method 

is of special interest since it has many other useful appli- 

The approximation of Head and Louat is to replace the 

distribution of finite dislocations by a continuous distribu- 

tion of infinitesimal dislocations, Then for a small distance 

along the x axis there is a displacement of bf(x)dx in the 

z direction. The shear stress given by equation (4.2) for 

example can be written as an integral rather than as a sum. 

The only difficulty in making this approximation is when x 
k 

is in the neighbourhood of xl. To solve this, we exclude the 

interval between x-E and x+E and then take the limit asE+O, 

So the shear stress at some point x due to all the dislocations 
L-- -- 

except those in the neighbourhood of x is: 
X-fs 

f i x ' )  dw' - f (dl dx' 
i- L\.h - 

2 x - x '  0 ,, e+Q x+e 

And this is just a Cauchy Principal Value integral, 
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I f  t h e  ex t e rna l  shear  stress a t  t h e  po in t  x is given by 

p ( x ) ,  then  f o r  equi l ibr ium 

a0 

where F (x) a 
- 2 n  p(4 

r - b  
Equation (4.6) is then t h e  approximate equ iva len t  of equation 

( 4 . 3 ) .  I t  i s  from (4:6) t h a t  an i n t e g r a l  equat ion f o r  the 

d i s l o c a t i o n  dens i t y ,  f ( x ) ,  may be obtained. The so lu t ion  of 

equat ion (4 .6 )  i s  known t o  be ,  f o r  f i n i t e  l i m i t s  of in tegra t ion ,  

The cons tan t ,  D ,  i s  o f t e n  determined by t h e  condit ions on f (x )  

a t  t h e  end poin ts .  I f  f ( x )  i s  t o  be bounded a t  x  = a ,  we must 



The above equation determines t h e  constant ,  D,  so that (4.7) 

f f-_ f (x) is t o  be bounded a t  x = ,b, then 

. I% f (x) is  t o  be bounded a t  both x = a and x = b,  then 

from (4 .8 )  w e  have f i r s t  t h a t  



Then (4.8) may be writ ten a s  : 

now possible t o  sumarize some particular examples 

by Head and Louat. 111 

(i) Let there be n posit ive dislocations under a shear s t ress  
i. 

P(x)=-Cx. Assume f (x) t o  be synrmetrical about x=O, and is 

zero a t  x=+a, where a depends upon n. Since f ( x )  is bounded - 
a t  both end points, the solution of equation ( 4 . 6 )  is given 

byequation (4.101, w i t h F ( x ) = 2 ' i ~ C ~  : 
rcb 
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TO evaluate  the  i n t e g r a l  i n  (4 .11)  we consider the  i n t eg ra l ,  

over t he  contour shown i n  Figure ( 4 . 3 ) .  A branch cut is  made 

between the  branch po in t s  z=-a and z=a. Because of t h i s  branch 

cu t ,  t he  term (a2-z2)1'2 will be pos i t i ve  above the  branch and 

negative below the  branch. The la rge  c i r c l e  DE i s  centered 

at the or ig in ,  and has rad ius  R. 

. t- p l a n e  

Then s ince  t he re  a r e  no poles enclosed by the  contour, 

NOW the i n t e g r a l  evaluated along AB and CC' i s  ju s t  the  prin- 

c i p a l  value i n t e g r a l  

In tegra t ing  along FF' and GH gives 



The integrals  along CrD and EFt cancel each other. Also, the 

in tegra l s  along the  arcs  BC and F G  cancel each other, since on 
L 8  

these arcs  z = € e t- x,  and therefore 

* 

There is  no contribution from the  small c i r c l e  HA as C j  0, 

since 

Finally, the  h t e g r a l  around DE is 



and as R + c a  this becomes 

combining these results, we have that 

Then equation (4.11) becomes 

Since f(x) is the density of dislocations between x and x+dx 

the total number of dislocations, n, is equal to the integral 

of this density over the whole interval 1-a,a]: 



which 'g ives  

Then w e  have the  r e l a t i o n  between the  number of d is locat ions ,  

n, and the dis tance  from t h e  o r i g i n  of t he  l a s t  d is locat ion 

i n  the  pi leup:  

(ii) L e t  t he re  be n p o s i t i v e  d i s loca t ions  between blocks a t  

x=+_a, with no applied shear  stress. Since P(x)=O, F(x)=O, 

Requiring f ( x )  t o  be bounded a t  e i t h e r  o r  both x=+a would give - 
a t r c v i a l  solut ion.  The only non zero solut ion a r i s e s  i f  f ( x )  

is unbounded a t  both x=+a, Then from equation (4.1)  , 

However, 



md this gives 

Then 

(iii) Let there be n positive dislocations between unit pos- 

itive dislocations locked at x=+a. These n dislocations are - 
in equilibrium under their own mutual repulsions and the re- 

".. 
pulsion of,the two locked dislocations at x=+a. We can treat - 
the shear stress of the two locked dislocations as an external 

stress, so 

then 

Now somewhere close to x=fa, because of the repulsion of the 
L- 

two fixed dislocations, f (x)=O. Let f (x) =O at points x=+b, 

where b C a, The solution from (4.10) is 



We 'evaluate the integrals by considering integrals of the type 

around the contour as shown in Figure (4.4). The first integral 

gives b dx' - - Q , -b (x!.a)kl-d I - z  (x-a) 

The contributions here were from integrals around =+a. The 

second integral becomes 

The contributions here were from integrals around x=-a. So 

we have for the dislocation density 



The distance b is determined from 

~valuating the integral gives 

(iv) Let there be n positive dislocations in the region x>O. 

These n dislocations are forced against a block at x=O by a 

uniform stress P (x) =- d . So F (x) = a G . It is reasonable 
s b  

to assume that fCx) is unbounded at x=O and decreases with x 

to a bounded value at some point x=a. The solution for this 

case is from ( 4 . 7 ) ,  with the limits of integration from x = O  



Then, 

To evaluate the above integral we consider the integral 

over the contour shown in Figure (4.5) . 
P- p l a n e  
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There a r e  no con t r i bu t i ons  around z=0, around z=a above o r  

below t h e  branch cu t .  The con t r ibu t ions  around z=x above and 

below t h e  c u t  cancel  eachother ,  and t h e  remaining i n t e g r a l s  

above and below t h e  c u t  g ive  t w i c e  t h e  p r inc ipa l  value i n t e g r a l :  

Then t h e  expression f o r  t h e  d i s l oca t i on  dens i ty  becomes 

Again the l eng th  a i s  determined by 



So the distance a is given by 

(v) Let there be blocks at x=+a - and a dislocation source at 

x=O. A uniform stress P (x) = a' causes the source to generate 

equal numbers of positive and negative dislocations which move 

off in opposite directions until held up by the blocks. The 

source continues to generate dislocations until the net stress 

at the source is reduced to zero. Since P(x)= d , then 

F (x) =- 2pkb d The dislocation density, f (x) , will be 
unbounded at x=+a. - The solution is given by equation (4.7) : 

The principal value integral turns out to be: 

So the dislocation density becomes 



However since the dislocation source generates the same number 

of positive and negative dislocations, f ( x )  should be odd about 

PO, This would require that D=O. So finally, 

Again the number of positive dislocations is given by 



5, Boundary Value Problems For a Half Space: 

T h e  continuum appraxhation of Head & Louat can be used 

to solve certasn plane and anti-plane s t r a in  boundary value 

problems for  a half space 1103 

W e  consider an anti-plane s t r a in  problem f i r s t .  L e t  

there be a half space y > O  with a shear s t ress ,  applied t o  

the  boundary y = 0, given by Gy (x,o) = tb) The only 

non zero displacement i s  uZ (x, y) . Let uZ (x ,0) u (x) . 
To begin this problem, we f i r s t  note tha t  the s traight  

screw dislocation shown i n  Fig. ( 4 . 1 )  , with a Burgers vector 

'b = (O,O, -b) w i l l  give a displacement f i e ld  similar t o  tha t  
C 

of an a n t i  plane s t r a in  deformation. We then find the shear 

s t ress ,d+  caused by one s t ra ight  screw dislocation loop. Y 
Then by using the  continuum approximation for  the dislocation 

density, f (x) , we may develop an integral  equation for  f b) . 
For the  s t ra ight  screw dislocation shown i n  Fig. C4.1) 

re h a i n  take the  curve f t o  consist  of a large semicircle 

C and of a l i ne  i n  the  z-x plane, para l le l  t o  the z-axis, 

running from z = ao t o  z =- a. (See Fig. 4 .2)  . 
The s t ress  f i e l d  due t o  one s t ra ight  screw dislocation 

i s  given by the Peach-Koehler formula equation (2.171. 

Using this formula, the expression for  the shear stress,  6 

a t  any point st  i n  the  half space i s  given by 
3Y ' 



W e  now evaluate the shear on t h e  boundary, yt=  0. Because 

the  stress and dbplacement f i e l d s  a re  independent of z', 

we write  6 ( ~ " 0 1  t o  mean & ( ~ ' 1  evaluated on yt=O. 
1 Y 

Mow, part  of consis ts  of the  semicircle of radius a centred 

a t  the  origin.  A s  a -+a, , the  integrals  around C 40. 

The other part  of 7 is  para l l e l  t o  the z axis from z = +a 

t o  z = -a> . The shear then becomes 

-0 

T h i s  is the shear stress, 6 N.0) caused by one straight  
ZJ? 



screw d i s loca t ion ,  Making t h e  same continuum assumption a s  . 
i n  chapter  4 ,  t h e  shear  stress caused by a  d i s t r ~ t i o n o o f  

d i s loca t ions  along t h e  x a x i s ,  of dens i ty  f  (x) can be wri t t en  

i n  i n t e g r a l  form; C we s w i t c h  t h e  nota t ion from primed to 

Equation (5.1) is  then an expression f o r  t h e  shear  

stress, & 0)caused by a  layer  of d i s loca t ions  d i s t r i bu t ed  on 
1 

t h e  boundary y=O. Returning t o  t h e  boundary value problem, 

we see t h a t  t h e  shear' stress, d (x ,O)  is given by tb). zY 
So using equation (5.1) and t h i s  boundary value  we have an 

i n t e g r a l  equation f o r  t h e  unknown d i s loca t ion  densi ty ,  f O r ]  ; 

,' 
The so lu t ion  of this i n t e g r a l  equation is;  1131 

Once the d i s loca t ion  dens i ty ,  f (x) is known, w e  may write 

expressions f o r  t h e  stress components. W e  f i r s t  use  t he  

Peach-Koehler formula C2.17) t o  f i nd  t h e  stress due t o  one 

d i s loca t ion  loop, and then knowing t h e  d i s loca t ion  densi ty ,  

we i n t e g r a t e  t h e  product. For example, t h e  shear stress,& 
ZY' 



at any point (x,y) i n  the  half space is given by 

using C5.2)  i n  (5.31 gives: 

The integration over x t  is performed t o  give 

The expression for  d ,, (x ,y) is found i n  a similar way, again 

using the Peach Koehler formula. 

The curve 7 is as  defined before. The  integrals around the 



l a r g e  s e m i c i r c l e  go t o  zero  as the r a d i u s  goes t o  i n f i n i t y .  

So the o n l y  c o n t r i b u t i o n s  remaining a r e  from t h e  i n t e g r a l  

p a r a l l e l  t o  t h e  z a x i s  from z = +a t o  z =-a. SO evalua t ing  

Again us ing  equat ion (5.2) , t h i s  becomes 

TEE displacement ,  uZ (x, y) , is found by using the Burgers 

formula,  equat ion  (2.121 . The same contour  r , is used. The 

o n l y  c o n t r i b u t i o n  is from the s o l i d  a n g l e  A ( r ] ,  - s o  



Using equat ion  (5.2) , t h i s  becomes : 

Performing t h e  i n t e g r a t i o n  over  x' gives  

This  completes t h e  s o l u t i o n  of the t r a c t i o n  boundary value 

problem f o r  a n t i  p lane  s t r a i n  i n  a ha l f  space. 

Notice t h a t  i f  t h e  a n t i  plane s t r a i n  problem were one 

of given displacements on t h e  boundary, i.e., u,(x,O)=u(x), 

t hen  s i nce  bf (x) =-2du (x) , equat ions  (5.3) , (5.5) , and (5.7) 
dx 

would become: 



These th ree  equations ' then form t h e  so lu t ion  of the  displace- 

ment boundary value problem f o r  a n t i  plane s t r a i n  i n  a half 

space. 

Me consider  next a plane s t r a i n  problem f o r  the half space 

y 7 0. L e t  the  boundary values  be @ (x, 0) =O and d.. (x, 0) =S (x) . 
YY xy 

I n  o rder  t h a t  we may apply d i r e c t l y  the  Peach-Koehler and Bur- 

ge r s  formulae t o  t h i s  problem, w e  f i r s t  de f ine  another type 

of d i s loca t ion .  A s  i n  Chapter 4 w e  make a c u t  through the 

plane y=O, This c u t  again begins on the  p o s i t i v e  s i d e  of t he  

o r i g i n  and extends, p a r a l l e l  t o  t he  z ax i s ,  i n  the  pos i t ive  

d i r ec t ion  of the  x axis .  The two faces  of t h e  cut a r e  denoted 

by A+ and A a s  before. Now w e  d isplace  t he  surface A+ by - 
an amount +b i n  t h e  negative x d i r ec t ion ,  and the  surface A- 

by an amount +b i n  t he  p o s i t i v e  x di rec t ion .  Again, w e  exclude 

po in t s  c lose  t o  t h e  o r ig in .  The Burgers vector  of the 



displacement w i l l  be b - = (-b,O,O) . See Fig. (5.1). 

Figure (5.'1) 

The d is loca t ion  shown i n  Figure (5.1) is cal led a 

s t r a i g h t  edge d is loca t ion  with Burgers vector (-b,8,0). 

The curve, , t h a t  encloses the  surface A of the cut 

w i l l  be the  same a s  t h a t  shown i n  Figure ( 4 . 2 ) .  W e  a r e  

now ready t o  solve t h e  above plane s t r a i n  problem, 

Let there  be a s t r a i g h t  edge dis locat ion with Burgers 

vector - b = (-b,O,O). Then from the  Peach Koehler formula 

(2-17) the  shear s t r e s s ,  & 
XY ' f o r  any point ,  - r ' ,  i n  the 

half  space due t o  one edge d is loca t ion  with Burgers vector 

b - = (-b,O,O) i s  given by 



Again the integrals over the large semicircle vanish as* 

the radius 

over z are 

We switch 

hand side 

goes to infinity, so that only the integrals 

left: 
-a 

from primed to unprimed notation on the left 

and evaluate the integrals, giving 

Equation (5.9) gives the shear stress, C: (x,y) , due to one XY 
straight edge dislocation at x = x'. At the boundary, y = 0, 

(5.9) becomes : 

Again making the continuum approximation, the shear,d ( x , O ) ,  
xy 



due to a distribution of dislocations of density f(x) per unit 

length along the x axis can be written in integral form: 

From equation (5 -3.0) we may find the expression for bf (x) 1131 

b R x )  = S(P)  dx" 
" P  -a 

0 

Now from equation (5.9) the shear, (x,y), due to a dis- 
XY 

tribution of straight edge dislocations with the given Burgers 

vector is given by 

Using equation (5.11) in equation (5.12) gives 

And performing the x' integration gives 



In a similar way the stresses dxy(x,y) and dyy(x,y) , due 
to a distribution of straight edge dislocations of density 

f (x) along the x axis may be found (numbered subscrips not summed) 
8 

-p [ b f [%I) f {I 2 R , iep (&, +fib dli] 
4-n- 

'i' 

And from equation (5.11) equation (5.14) becomes 

Integrating over x' gives 



 he expression f o r  d (x ,y)  i s  found i n  t h e  same way,  
YY 

The displacements can be found from t h e  Burgers formula (2.12), 

A g a i n , n ( r g )  - i s  defined a s  before  i n  Chapter 2 as t h e  s o l i d  

angle  subtended a t  - r ' .  Using equat ion (5.11) and i n t eg ra t i ng  

over x' gives  



Applying t h i s  same procedure t o  the Burgers formula for  

So the equations 15.13) , (5.15) , (5 .17)  , (5.19) ,. and (5.21) 

give the complete solut ion for  the plane shear boundary value 

problem for  the half  space y )  0 .  

I If the plain  s t ra in  problem had the boundary values 

given a s  displacement i n  the x direct ion,  i . e . ,  u x (x,~)=u(x) 
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as well as d (x, 0) =O , Chen since bf (x) =-2du(x) , we would 
YY dx 

substitute this quantity into equations (5.12), (5.15), (5.16), 

and (5.20) to obtain the solutions. 

Another plane strain problem for the half space y>O that 

we may consider is one where the normal traction on the boun- 

dary is given, and the shear there is zero. Then we have 

d y y ! . r f " ! = P ! x )  a d  2 (x,Q!=Q. v-- - 1 - - -  -L--2- ----*-- 
" XY r vr. crrra prralltl D L L a l l l  j+CJDl€ZlIL 

we consider an edge dislocation with Burgers vector b=(O,-b,O). - 
This dislocation is formed by making the same cut in the y=O 

plane, but displacing the two faces in the y direction. The 

curve, r , is again as described before(~igure (4.2)). 
If we consider a distribution along the x axis of such 

edge dislocations, the Peach-Koehler formula gives an expression 

fo r  the normal stress: 

- 3 1x-u') 

RS t i - 0  + (a-a')'] 

Again an integral equation may be formed by evaluating< on 
YY 



the boundary, y o ,  and equating the resulting expression to 

the given boundary value: 

[I31 
The solution of the above integral equation is given by 

So equation (5.22) , with equation t5.23) becomes 

Integration aver x' gives 

Once the dislocation density f{x) is known, then the remaining 

stresses can be found again from the Peach-Koehler formula: 



And using equation (5.23) in equation (5.25), we have 

Integrating over x' gives 

Also, @ -a 



The displacements are found from the Burgers formula: 



m 

b f ( t l l  t a n  4w1 u Y Y  x i = i [  
Z n  -m 

-' I J  

Equations (5 .24))  (5.261, (5.281, (5.291, and (5.30) form the 

s o l u t i o n  of the normal t r a c t i o n  plane s t r a i n  boundary value 

problem. 
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Axisymmetric Boundary Value Problems For a Half Space 

W e  now consider two axisylmnetric boundary value 

problems f o r  t h e  half  space z 7 0 .  The f i r s t  i s  concerned 

with an axisymmetric normal s t r e s s  given on the  boundary; 

t h e  second problem i s  one of to rs ion  with an axisymmetric 

shear stress given on the  boundary. 

L e t  there  be a half  space z > 0  with the  z = 0 plane 

as t h e  boundary. L e t  the  normal s t r e s s  on the  boundary 

be given a s  6 Z Z  (r ,8,0) = g (r) . Since d zz is independent 

of 8, we  s h a l l  omit wr i t ing  "8" and use the  notation d z z ( r , z )  

t o  mean d zz ( r  ,8, z) . SO using t h i s  notat ion,  dZz (r ,0) = g (r) , 
2 2 2 where r = x + y . For t h i s  axisymmetric problem we consider 

t h e  closed curve, r , t o  be a c i r c l e  of radius r lying i n  

t h e  z = 0 plane. A c u t  i s  made throughout the  ins ide  of 

t h e  c i r c l e  T and t h e  two faces  a r e  displaced by an amount 

b r e l a t i v e  t o  each o ther  i n  t h e  z di rec t ion .  This dis locat ion 

loop then has a Burgers vector of b - = (O,O,b). We may f ind  

an expression f o r  the  normal s t r e s s  due t o  one of these dis-  

loca t ion  loops by making use of t he  Peach-Koehler formula (2.17): 



I•’ we then assume that there is a distribution of such dis- 

locations in the z = 8 plane of density f(r), the normal stress, 

zzr due to these dislocations will be, with the help of 

equation (6-1) , 
m 

Equation (6.2) may be simplified further to 

We notice that on the curve, ; 

xl = I COS~, dxl = dll = -r shed9 

x2 = L- sine, dx2 = dl2 = r cos6de , 
x 3 = 0  , 

and that 

So we have 



We may now evaluate the normal stress on the boundary, zl= 0: 

2 = (xl - x ' ~ ) ~  + (x2 - XZ1) . where 3o 
1 

When z' = 0, r 1  2 = x1 ,2 + x2 ,2 , where xll = r1 cos$ , 

x2' = rlsin$ . Then if we let d =  9 - 4 , d d  = ,de , for a 
fixed angle 4 , equation (6.3) becomes 



where R: can now be written as 

= r2 + rI2 - 2sr1cos d . Ro 

4 rrl If we let m = (r+t')z , then (6.4) becomes 

Now elliptic integrals of the first and second kind are 

respectively: 

Integrating (6.5) by parts over d gives, 



So after combining terms, (6.5) becomes 

Notice that a small displacement on 

z direction, duz (r,O), is given by 

d Z, f r '  ,O) = g k' ) . equation (6.6 
Q) 

the boundary in the 

+b f (r) dr. Then, since 

becomes 

The solution Q•’ (6,81 for du (r ,O) and hence for b f (r) is not 
drz 

readily found as in the previous half space problems 

(chapter 51, However, the elliptic integrals of equation (6.8) 

may be written in terms of Bessel functions. [I41 



~ e t  6 = - $) , then 

By a Landen transformation: I151 

Then 

Differentiating (6.9) with respect to r gives 

where 



With the help of (6.10) , equation (6 .8)  may be written 

If the Mankel transform of order n and its inverse 

are defined by 



then we may write equation (6 -11) as 

Comparing terms on both sides of the above equation, we 

'nave that 

Inverting (6.14) according to equation (6.13) gives 

Equation (6.15) is then the solution of the integral equation 

(6.8). This solution may be simplified further by noting that 

the Hankel transform of g (r' ) is given by equation (6.12) . 
Then (6.15) becomes 

Integration over f , with the help of (6.10) gives 



~~ (6.16) the dislocation density, fb), is known, since 

Then the complete stress and displacement fields may be 

.found using the Peach-Koehler formula (2.17) and Burgers 

formula (2.12) , 

Next we consider an axisymmetric torsion problem for 

the half space, z > 0. Let there be an axisymmetric shear 

stress given on the boundary as 6 Z,(r,O) = S (r) . 
1Agai.n we have dropped writing "9" in the argument). Let 

f be a circle of in•’ inite radius in the z = 0 plane, 

and slice the material inside this circle. The two faces 

of the cut are then rotated relative to each other. We 

notice that here the relative displacement, A - u will not 
be constant around a closed curve, . Since the Burgers 

formula, equation (2.12), was derived assuming the relative 

displacement to be constant around a closed curve 7 , we must 
go back to equation (2.4) to find the expression for the 

displacement field. 

Recall that equation (2.4) was written 

where A+ is the top surface of the cut, covering the whole 

z = 8 plane, Then the displacement in the y direction, u (r8) 
Y 



Notice that the positive unit normal as defined in Chapter 2 

is pointing in the negative z direction. 

To evaluate this displacement on the boundary of the 

haiF space, we set z '  = 0. Also, if the relative displacement 

of the two faces at any point (r,8,0) is denoted by d u(r), 

then the components of displacement in the x and y directions 

are : 

+A ul[r,e,o.)= -AuIr)sine, 

u2(r,8,O)= Au(r)cose, 

A u3 (r,e,O)= 0, 
2 2 where r = xl + x2 . See Figure (6.1) . 

Figure (6.1) 



so u evaluated on the boundary can be written as 
Y' 

We notice that on the x' axis, at the point (rB,O,O) the shear 

stresses, d zO and dzy are equivalent. Then, 

From equation 16.17) we have(writing u (r' ,O) to mean u (r' ,B,o)), 
. Y Y 

Xn order to perform the 8 integration, we must first s b -  

plify equation (6.181. From equation (1.25) Green's function 



for an infinite medium is: 

The only non zero components possible with C13kl and C2-3kl 

(for a linear, elastic, isotropic material) are 

So equation C6-19) becomes 

Evaluating equation (6.20) on the x' axis, with ya=z'=O, 

xt=r', x2=0, x,=rcose, and x,=rsine, we have: 



where 

S b p l i f  ying further gives 

The in tqrat ion  over 8 may now be performed. By integration 
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by parts, and by using the results of the integrals evaluated 

in the first axisymmetric problem we have that: 

and that: 

Algebraically simplifying gives, 



So we have an integral equation for 4 u(r) : 

nr' 
0 

Again the solution of the integral equation (6.21) for Au(r) 

can be found by expressing the elliptic integrals in terms of 

Bessel functions. Recall that from equation (6.10) 

Then differentiating equation (6.10) with respect to r' gives 
I 

Then, using equation 16-22) in equation (6.21), we have 



. , 

k 
X:. 
,. , 

Recall that the inverse Hankel transform of xf) is defined 
by equation (6.13). So from (6.131, equation (6.23) becomes: 

Comparing terms in equation (6-24) gives 

Inverting equation (6 25) according to equation (6.13) gives 



Then, since the Hankel transform of S(r8) of order one is 

defined by equation (6.121, equation (6.26) becomes 
- 

Equation 

(6.21). 

equation 

(6-27) is then the solution of the integral equation 

However by using the following result we may simplify 

(6.27) further. 

where * = # / x  Let p2=rr2/r2, then 

And equation (6.27) becomes 



Then w i t h  the relative displacement known from equation 

(6.281, the displacement field is known through equation 

(2.4, and hence the axisymmetric torsion boundary value 

problem for a half space is solved. 



Appendix A - 

Suppose that we have a boundary value problem in which 

S1 in equation (1.2b) is the whole boundary of B, so that 

equation (1.2~) is absent. Then with a point force at r' - 
the Green's function satisfies the inhomogeneous field equation 

given by 

and satisfies the boundary condition 

To balance the point force at r' it is necessary to place - 
another point force of magnitude -1 at 5. To balance the 
torque created by the point forces at r' and it is necessary - 

8 
to place a force F at %+€ ,-F at r -( ,F9 at s+r , and -F' - - - 4 . -  - 

I 
at %-t', making F parallel to 6 and making F' parallel to € . - - - - 
See Figure (8.1) , 

Figure (A.1) 



The forces - F and - I?' are chosen a s  t o  con t r i bu t e  equal torques,  

where - 1 is  a u n i t  vec to r  r epresen t ing  t h e  po in t  fo rces  a t  5 
and a t  - r' . Then equat ion (A.1) becomes: 

Expanding t o  f i r s t  o rde r  terms g ives ,  



So to first order, we have 

Then equation (A. 2 )  becomes 

I 

Since - F \\ E' - and F' \\ E , then Fi=CIGi and F!=CZ 6; . Also, - - 
I ' 1 

s i n c e  E - xF= _ LXF ' , Gjk€ = Fb Combining these  t w o  conditions - 
g i v e s  : 



Now 

Taking the antisyrmnetrical part  of the above term i n  brackets 

gives 
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Using equation (A.4) , we have 

or again from (A.4) 
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Now we are ready t o  apply t h e  Gauss divergence theorem on 

U .  (r) and uU( r ,  r '  ) a s  before.  I n  add i t ion  t o  equation (A. 6) 
1 - - - 

Green's funct ion ,  uh r - r - s a t i s f i e s  t h e  equat ion 

W e  fol low t h e  same procedure as i n  t h e  mixed case  except now 

w e  use  a l l  of B a s  t h e  i n t eg ra t i on  region : 

8 (A. 8)  

The r i g h t  hand s i d e  of equat ion (A.8) is  

Because of t h e  symmetry of Cijkl, and by using the  f i e l d  equa- 

t i o n s  and boundary va lues  f o r  u i ( r ) ,  - t h e  r i g h t  hand side of 

equat ion (A.8) becomes: 
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l a t ion  and rotation about r+,. That i s ,  the traction(lepann) . 
boundary value problem i s  unique up t o  an arbitrary rigiir 

displacement. So regarding the t e r m s  involving & a s  arbitrary 

constants that can be specif ied independently from the rest 

of the problem, equation ( A . 9 )  becomes 
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