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Abstract

It is intended in this paper to show the development of

a dislocation approach to solving certain boundary value problems
for an elastic medium. The application of this type of approach
is demonstrated by (1) presenting problems previously solved by
Head and Louat invélving distributions.of dislocations, (2) pre-
senting the solutions of plane and anti-plane strain boundary
value problems forla half space, previously solved by Lardner,
and (3) deriving the solutions for certain axisymmetric boundary

. value problems for a half space, to which this approach has not

been previously applied.



- Introduction

Beginning with the field eqﬁations for a linear, elastic,
isotropic body with prescribed boundary conditions an expression
for the displacement field is found in terms of surface and
- volume integrals involving a Greens function. The Greens func-
‘tion is calculated for an infinite medium. By introducing the
idea of a dislocation and a Burgers vector, the expression

for the displacement field, known as Burgers forﬁula is found.
The expression for the stress field of a dislocation, known as
the Peach-Koehler formula, is then found from the Burgers
formula.

By using an energy consideration, the effects of external
forces and of mutual interactions on dislocations are found,
which leads to the investigation of problems of equilibrium
for dislocations under various external and end conditions.
Here the continuum approximation for the dislocation density
suggested by Head and Louat [1] is introduced, and their
solutions are presented.

The continuum approximafion of Head and Louat, together
with the Burgers and Peach-Koehler formulae are used to solve
a plane and an anti-plane strain boundary value problem for a
half space. The Peach-Koehler formula is used to evaluate on
the boundary that particular component of stress that is
prescribed, giving an integral equation for the unknown disloca-
tion density function. The solution of this integral equation

is well known and hence the rest of the stress field and displace-



ey

ment field can be found. ]

The akisymmetric boundary value problems are solved in
much the same way. The first prdblem is one of the half space
with an axisymmetric normal stress prescribed on the boundary.
The Peach-Koehler formula is used to evaluate the expression for
. the normal stress on the boundary. This expression, which gives
an integral equation for the unknown dislocation density function,
involves elliptic integrals of the first and second kind. The
solution is found by first writing the elliptic iﬁtegrals in
terms of Bessel functions, and then noting the similarity between
the resulting expression and a Hankel transform.

The second axisymmetric boundary value problem considered
is that of pure torsion with an axisymmetric shear stress pre-
scribed on the boundary. It is not possible to begin with the
Peach-Koehler formula since in its derivation it is assumed |
- that the direction of the displacement discontinuity remains
constant everywhere on the dislocation loop. It is necessary
- then to return to the original form of the displacement field
equation. By differentiating this expression for the displace-
ment, evaluating it at a point on the x-axis, and equating it
with the prescribed boundary value of the shear stress, one
obtains an integral equation for the unknown density function.
The solution of this integral equation is found once again by
writing the elliptic integrals in terms of Bessel functions

and treating the resulting expression as a Hankel transform.

il



1. Elastic Boundary Value Problems

The derivation of the Burgers formula for the displacement
field in an infinite linear elastic material subjected to certain
deformations begins with the determination of the displacement
field in terms of a Green's function.

Let a finitefliﬁear elastic body B be in equilibrium under

~given body forces whose components are fi, under given tractions
on a part Sl of its boundary, and under given displacements over

a part S, of its boundary. The field equations are then

S,y o+ it = 0 (1.1)
Since the material is linear elastic,

oij = Cier @xr = Yo Cijuy (Ut +Usk)
\ . \ .

Vo Cite Ui +%CorL W L

Coet Wk

The last step was made possible by Cijkl=-cijlk .

In terms of the displacements the field equations and the

i

boundary values may be written as

CLWQ Lu%-\- AEL =0 m B

(1.2a)

Cijnd Uy = o S\_ (1.2b)
W = Uc on S,

(1.2¢c)

>

To construct a Green's function for this problem, . let '



pe a point in B. With r' as its centre, construct a sphere
£,. with radius €. Let B¢ =B - %, c be the volume outside
%,. and inside B. Finally, let the Green's function u..(r,r')

J
satisfy:

Cl;kk ulm,‘\\l([‘.,‘;‘) =0 '&or n Be (1.3a)

1=

)

C’L'nd \Um,k(v:,_'\“': O for e on 4 (1.3b)

\lxm(r,!‘_') = O gorg on SQ

(1.3c)

fCL)kl \lﬂm,hgf\[’) n.‘\ &S = J'&.m (Q here is The (1.34)
3¢ vaward normal ot Se )

Gl\kgm(r,t,\ — 0 as € -0 {:orﬁ Of\ée (1.3e)

The Green's function u, {r,r') is then the 1th component

of the displacement field at r when the tractions on Sl and
displacements on 82 are zero, and the only body force present is

a unit force in the m direction applied at r'.

Apply the Gauss divergence theorem on ui(£) and ulm(£,£'):

f [ uale) \k{m‘x{ (e )
2B IS - U[m(r,ﬁ')&g,h(t\ ] _ﬂ;CL;nQ dS

= f[u; (o) Wk (e,2")
Be - u;,m(r,_r_'mg,h(alscw dV .



5.
The right hand side of (1. 4) becomes
f [\k.. r\Ulm ) &y (c ')+ Ui \(r) Ulmk (I ‘)
RBe
c T Wi (e W wg (o)
Wim i (e,0) U e L) ]Caghl aV.
From {1.2a) and (1L.3a)
Cipad UWaiw (2) = - f for rW B
(_‘L)'UL \)lm")k (\r_.f_') = 0 _ {:or roa Be
And from the aymmetry  of Cijkl:
Uiy (2) Ula v (e.c') Ciwld
= Wim,j (e e") Uge () Ciud = O .
The right hand side of (1.4) can finally be written:
+ {
[ W 6§ty aV .

Since BB = S_.L+S2 , part of the left hand side of (1.4) may be

j y S_u(ﬂ\llmk(cc)

g\*'g')_

written

= Wim (£,x )\lgh(r)]“ ek 49,

..,..

From (1.3b) and (1.3c):



J - -S‘ \“"\(3\5‘) Uy ()Y 1y Cr\\d d S
S;+Sl S,

4
Su; (£) Utmy (c.2) 1y Ciet 4 S,
52

And from (1.2b) and (l.2c):

g | = - g&um(:,z')tl dS
Sx Sy v -

' J.UL (£) Cijus Ua (eoe) 0y S
k (1.6)

The integral remaining on the left hand side of (1.4) is

over 526:
= S \k‘t ((_‘.) u&m'\l ([\[') ﬂj C‘L's\tD. dg
e e
- 5 € Uin (e, e Ugn () 0y Cijig dNL
ﬂ X

Since uy k(r) is boundgd, the second integral over (). tends to
Jk 'L ‘

zero as € tends to zero because of (l.3e). Also, since uy (r)

are continuous, u,(x) — u,(r') as & — 0. Using (1.3d),

as € — 0, the integral over Dﬁe finally becomes



7.
J - S Wi () Utan (e,e”) Gina ny dS
S ¢ dS.e
= Wi () Jim = Wm (). (1.7)

Combining (1.5), (1.6) and (1.7)

Un () jmmtg,;m DAV
+§\Mm (¢ te dS

W W ) m G dS.

52

If we have a traction boundary value problem, 52 is empty and

Sl= oB; then

+§ Utim ([.r') tx dS

wl(e) = Sul“‘ :g g (YaV
d

(1.9)

B



However, in deriving (1.9) the procedure must be modified.
With 52 empty therelare no longer boundary tractions in
equations (l.3a) - (l.3e) to balance the point force at r'.
To provide a balance, an equal and opposite force must be
placed at some other point r, as well, as a point couple
which will cancel the torqu;-Ereated by the two point forces.
See Appendix A for details.

If the medium ektends to infinity, some rest;ictions on
the displacements and the Green's function must be imposed.
In addition to the requirement that ulm(£,£') satisfy equations
(1.3a) - (l.3e) we must also require that the integral of the
tractions, Cijkl ulm,£(£'£') nj , over the surface of a large
sphere of radius R must be bounded and must balance the unit
force at r'. It is sufficient if we suppose ulm(£,£'bw 0 (l/r)
and ulm'k(gjgl)fv 0 (l/rz) as r—>o ., Using again the Gauss
divergence theorem applied to that part of B¢ which lies inside
a large sphere égR of radius R and centered at, say, the origin,

(9B is the part of the boundary inside the sphere éﬁR), we

have that

[ Wi () Utmy, (")
BB "'BSR ‘\'B E‘E.

- Wim (£,6") UL e () ]Ciihﬁ. ny ds

= J[u;(r)u;zm‘k(n.ﬁ
Re , |
* Wi (e,2") Ugg (o) 1) Cand 4V .



9.
In order thatbf — 0 ags R—» oo r we must add the
g,
following two conditions on ui{r) and uy k\(r)v:
1} ufr} —- 0 asr —
2} r ul,k r} — o as r — o
These two additional conditions are reguired since there
is an r2 contribution from dS. Then as R— o ; and as
€ — O we have again equation (1.8).
An equaticn analagous to (1.8} may be derived for a
subvolume V of the body B. Let the surface of the subvolume
be 9 V. Then (1.8) becomes
\1"\(33 = 5'Ll[m (r‘gq gﬂ (r\ d Vv
vV
V
Ui () Wy \l(z‘ﬁl) Ci;\d n; dS |
V (1.10)

provided that r' is restricted to lie within V. In (1.10]
G 1j{£) is the stress field corresponding to ul(;:__) .

If in the case of an infinite body B, V also extends to
infinity, the surface integral over Bé‘_\({ tends to zero
because of the restrictions imposed before on ui(g) and
o (EETD .

The conditions, then, on ulm(;,rg_‘) are that it is of



| 10.
order 1/r at infinity and satisfies equations (1.3a} and
(1.3d}. We may combine equations (1.3a) and (1.3d) into
one equation in the following way.

Apply the divergence theorem to equation (1.3d}:

J Cind Upnn (¢.¢'Vn;d S
0%, !

A\

\ -

e &) A
\ 7 > AW

N _
-) \_,\\V)JL L&ﬂm‘\q\l LI UL = v s
Se

=
-
=
[

The minus sign enters since .nj is the inward normal of £ e
. . » ' N
Integrating the term Cl:]kl ulm,kj (r,r') over Be éeand

using equation (1.3a) gives:
J Cijet Upay (c,c) AV
Be+2e

= 5 Cyed Wam v ec)dV (1.12})

e

Equations (1.11) and (1.12) combine to give

S’ C,tsh,t Ulm'k:) .Y\ = "Slm

Be‘ +£(—;
= g - 5\,«\5 (.C"f_') Ck\/ )
Be"ie

where J (x - r') is the three dimensional delta function, So

Gied Wn gy lee) =- dim § (e-5) Q.13



11.
The Green's function must then be of order 1l/r at infinity
and satisfy equation (1.13).
To find the Green's function satisfying these conditions,

[2]

following deWit, we begin by taking a Fourier Transform

on r defined by

- 'Li.\_-_

W (1) = (Uialegde &,

- j-

where dr = dr dr do

(1.14)
The inverse is defined by
Ui (:_L') = %rrﬁ" 5(1&"\ (i,!‘_') eii’r -—f ,
wheee &¢ = df,d {, 4§, .4 (1.15)

The integration here extends over the whole space.

Take the Fourier transform on (1.13) according to (1l.14):

—L ic-‘:'
[

Cijklulm (z.!‘_') {SSK = S’»m e

PN

(1.16)

At this point we assume the material to be isotropic, Then

quﬂ =\ 5;3 Shﬂ +/u (J‘ua S')L N SSL 551) . (1.17)

Equation (1.16) becomes



(\ -»/u\ ATRVETR (S

":f'.'.l

)

bl T (£5) = Sim e

Uokere (12 {\0 f\o, Summe(i over p -

: Multiply (1.18) by Y; and sum over i:

() +/u§ fof S Wy, (g, ')

+/uizgl \1;,.1 (_f_’»_r_') = { g-m e,-lz-r'
{ | T
or a"l ( ' - w &
b e (Mi}x)f"

Substituting (1.19) into (1.18)

i
Do) Tidme o Sifr
T + Wi (L 0" = S e~
()p\-‘)_/u) ,i?. /A_ ) ) € .
— -5
o Tl =% (B
- - (A*r/u\‘fi fm e-liif ]
()wgu) T

Invert (1.20) according to (1.15)

12.

(1.18)

(1.19)



13.

T2 A+'l/u %
if-(_-g')._
e {
(1.21)
Now consider the integral
li‘(i-il')_ .
Jreiq df = -7 lI‘E \ == R . (1.22)
\2 i\ N\ \/1
We write R = \3-£'\ = [(x\-x\) +(.x1"X23 +(x3-x3)] .
Differentiate (1.22) twice to get
Y S e"_{' (r—r')oﬁ
%
axlbxm i
(Lol .
= S‘h fm e df =\ R,Rm. (1.23)
?"l-
In (1.23) let 1 = m. Then _
lf.(,_r‘) —_
e~ T =
J_?T—_ f =T R (1.24)
Using (1.23) and (1.24), equation (1.21) becomes
Uim r() '/8TT}L[BL"\QQ.R- (>\+ \ R (1.25)
(M/u |



2, Dislocation Loops

Having found an expression for the displacement field
um(l_:;') in terms of a Green's function, we are ready to define

a dislocation loop and to calculate the displacement field

due to this loop.

Consider a body B with boundary dB. Let { be a closed

o |

B, and let A be a surface spanning this closed

o

curve
curve. Make a cut on the surface A and displace the two
faces, Let the vector b be the displacement relative to
each other of two corresponding points on the two faces of
the cut. That is, if'At are the two faces of the cut, then
L_k(ﬁf..) - (el) = \3(2') = A__\_L(g'). A direction is imposed on V in
a right handed sense with respect to the unit vectors
pointing from A, to A_ . The tractions on the two faces at
corresponding points are required to be equal and opposite.

The deformation so found is said to be a dislocation loop

~with Burgers vector b (r'). The curve Y is called the line

)f the dislocation.I3]

Now let V be the whole volume of B except for the cut A.
‘hen the boundary of-V, BV consists of B v =DB + A_|_+Aq .
ssume that the body forces f (r') are zero and that the
ractions t(r') on OB vanish., The Green's function satisfies
oth equation (6a) of the Appendix A and the equation

C‘L\kl Uy,m)h (E,g‘) hs =0 For £ on Bg .

(2.

14,

1)



r, 24 - - ' .
. .

#

B

15.
The displacement field, u. (x'}, is given by equation

(1.10} with £, ('} = 0:

u“‘(s) = j‘[ Ulm(_r_,:') tale) -w o) Ugm,k ([,!')CL',\Q “Jdg
OV=3B+A, +A.

The integral over OB vanishes since the tractions there are

assumed to be zero and by (2.1}. So

U () = X[UQH\([,[')GJJ;S - (o) Unm\q(f ¢ )thln] g(z,z)

ArA.
By hypothesis,
and U (o) \A: us (o) \A = b)) = &awlr) (2.3)
Then, since (2.2) may be written
e (x S g, (e300 dS

4

/J>‘—”“\

uh (e, Nyl AS - Xu; (6) Uy (6,6 G 1y 4S

I

S U (o) Ut (e ') CL')M U dS >
- ‘

by equations (2.3), we have



16,

Um (') = - YA e Wi (r,c) G 0y dS.
AY (2.4)

Tt should be remarked that at this point A_k_l(r) is not
yet assumed constant.

We now specialize the above consideration of a dislocation
loop by assuming the infinite body to be isotropic and
linearly elastic. We also assume that in making a cut on the
surface A, the following displacement b of the two faces
relative to one another will be constant. Again we denote
by V the curve enclé;sing the surface A.

Recall that the Green's function for an infinite
isotropic medium was given by (1.25). Substituting the
Green's function given by (1.25) into the expression for the

displacement given by (2.4) and making use of (1.17) we have

m ') = "\3( u - M N
u (_) @ E*P\ SL) R,P?“‘ )\*l/u A St) ﬂ'ﬂsm

A+
+/.L (§3m Q)PPL + S‘uﬂ Q‘PPS ] X_Zf}i R))mLSl ﬂ‘ds

—

- ._QTE&_X‘E S“ Q)ppm ¥ S;m Q,pp\. ¥ S'm\ R.PP'S] ﬂi/'O\S

“b‘u()ﬁ) G w - Rim |
R



!"‘ ~
.
4

17.
We may write the right hand side of (2.5) in terms of a .
1ine integral around f by using Stokes theorem of the
form:
[qTynds = §TdL
A (2.6)

3

where dlp is an element of arc on Y and T is any differen-
tiable function. Since E‘t&\q gbﬁm\: S‘ms‘;m = dim 331 ¢ (2.6)

may be written

§ € e T,
p |

| €nCntn Ty dS

A

g(stl S\m - S‘\m 331)-‘:‘“;({8
A

u

it

S(Jaﬂ',m “Jim LYY M dS . (2.7)
A

Now the second integral in (2.5) was of the form

S[Sis Y\),pp""\ - Q‘LSml nj a5 N
A
and by (2.7) this becomes

S [59.\0 3\.) Q,\‘“PL - 39.& B\P Q)mpl] “:\ AS
Ax
= '{'Ei\\aghph p.mpi N, C}\S

= Thge g €ig Runpt 055 =+ % Evps Rmpdd. (2.8]
Ar

N
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The first two terms of the first integral in (2.5) are of

the form

g [ 54 R, ppa + 3jn R,pp-\] n dS
A

= 5[51; gim‘r\))PPl - Yjm 3 Q»P(’ﬂ] 0y dS
Ay

T e 'f S
= J € tin Enim R,ppg MAS =~ S 1&g, RigeMid
A+ A
= ~§ E-h.lm Q,pp drﬂh. . (2.9)
r

Finally, the last term of the first integral in (2.5) is of
the form

J Sin Ry 0y d S
A+

(2.10)
Now Re="h R -2 (xp-x¢') = Q‘l‘%ﬁ—)—
R pp = 2 R
Ropey = =2 (2;“)
So (2,10) becomes
IEL{A—CS W .

where I\.(';') is the solid angle subtended at r' by the surface A



19.
which is bounded by the curve (‘ . Then combining equations

(2.8), (2.9) and (2.11), equation (2.5} becomes

Um (6) = = b"‘%‘?“ ) +é%§€h{mQ.PP dd.

1 b
AL At K .
i Yo Enpi Rup ddy « 2129
It may be noticed from (2.12)] that the displacement field
depends only upon the curve “ . So for a given curve Y '
the displacement field is unaffected by the particular surface
A on which the cut is made. The equation (2.12) is known as

14]

the Burgers formula.

To derive the stress and strain fields, the derivative

of fl(f)must first be found.Iz] From (2.11),

nle) = f R'\‘.\ n, &9
As
So JLNG)=i§Q:m¢SXN‘

Ax

ohere e dendes &,
n
QL ) o
But = T2 so
-6-;“, BX‘“ !

"n')“' (!‘) =T [(\ fi“'\ ny &g =-f R-:‘\.s n) dg

¥ m Ax

‘Since R;;= O as long as r = r' ,



) - J‘[ % oy 1) a5
(e 3 R - e b Rt S
Lm nl 'p,m h&m\ ,lm nl
As
- +(Ej-jhgkm|\ p-:im “3 d'g
A |
* = Clma {Eiu Q;'mp. n; &S
-1
=T &Ekmn Q‘m dlk
\
= - \/1 § E.n\zm Q.mpp d/Q.k '
y
o W’ (6 - {Enub R Lo

E\I\m ;p(Jr\ )‘*1}& thNL Q,M\on}dlﬁ,

(2,13)

From (2.13):
Ul = %ﬂ(g {g‘kb P&w 'E\m\)‘ R ppn
<o) B\ R g | A,

(h + 2

20,



21.

Un,ale) = %&wg {EM b Rgpp ~ g Rep
T

- (MS
;’:;.i‘ \3 Ebl\ Ql\op}dlk

- , +40)
-Mm b R {1 B2 L

=1 |-
1V§ ELKQ\) Y\)/QPP CL'Qh}

(2.14)
Y\
(78 ke_re. ¥y = __)____
A o)
 Now
e lh = 'h (wiy (&) + v (21)

(2.15)

ubstituting (2.13) into (2.15) gives

emn /8ﬁ§{ (nhﬁB lep Ehm\bs\Q»ﬂ“‘
)

+ Emkﬂ b'n \lep - E'—\o,'m by ‘Qmpp>

- Q(B.Ji) b Eb.\h Qm?ng dik

41/1. (2.16)



22.

Eanl b Ritpe - €rim 01 Rppn + € meg n Q,QPP
~ €rin bl R ampp
(thl bm Q,'L - E Rin bl Rm ¥ Emh’;bn R,'L
= E_vun bi YQ..'\ )

i

) PP

N

{bl \Q,s (ghlm Smt Sg B &m Saism;
+ & vim S.\Q S;,‘ - 8,&-“5;1 S“.‘\\i\)PP

= K\Ol Q,'\ (E\Rlne"‘-“’t ECH-S_* Cxin E""‘YEC\?Q}\ °P
= Kbl Q\‘, {2 44 (Snaé’m- S“"\g ““‘\
t &c\,g_‘ (Smc\,S\u\- X‘““S“‘\’\ } -X,pf’

- T Ry oo Eug o+ Eag 3D

/
(2.16) becomes

Cmn (f_’\ = Vgﬂ “i;\an ‘.RvSN’ (-E\{p;jgnm* %}_lg&m&gsn)
P2

1(-;-% Euet Rapn | dhs,



23.

and

) = \/QA by [

] Eug, Ripp dle
f

}L

Since

Smale) = N €ue () Tmn 4 Ls e ()

then

Bmn (._) C%' Smn bﬂ g‘ds Q‘pp th
811 A+97£)

+2)k
<§bi ‘.Q \pp E‘&;S‘““‘ + Cals S
: ¢ 2

%§LSM E“ Riive (')7). ") dd

)
+ Y Rijpp (Eagydla + Engy dla)

/o ) ;gff akpf. ¥z,mm\o d‘Qh ?S

e b - 0 ‘
%V { %%ﬁ) (Bna gy Rier + ExiiRina)

414 Rigp (Eugdla + Eu; d) } ,



24,

or

Sma ([’) = *%%T§ {{ R)iPV (E'\';l dQn\ +€"‘.\l din)

e € (R T Rir) ALY

1-p
(2.17)

This expression for the stress field is known as the Peach

15]

Koehler formula.



3. Energy And Forces of Interaction[G]’[71

It would be possible at this stage, with the addition
of a few assumptions, to investigate some boundary value
problems. However, a deeper insight may be gained if
we were to follow historically the development of the dis-
lbcation considerations that iead to the solution of cer-
tain boundary value problems.

In this chapter we will investigate the effect of
one dislocation on another, or more specifically, the forces
of interaction of one dislocation on another.

Consider first an’ihfinite body B with boundary¢§B.
This body is in equilibrium under body forces fi and sur-
face tractions ti' 'Letikbe a sphere of large radius R, and
Bp be that pért of the body contained Within§;( The strain

energy density for BR is defined as:

u = \/2 S‘C;'\\LQ i €¢y A\
Br

=% fegoydV =4 | Wio d\
27 |

/

) \/ZJ {(u"s"&)f\ i u"dis“)‘% AN

R
If we are to use the divergence theorem, there would

be surface integrals over the whole or part of Zkand an
integral over that part of BBR of the boundary of the body
contained within 21: Taking the limit as Ra»e® gives, if the

integral over“ZR goes to zero and the integrals over Bp and

25.

(3.1)
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d B, converge,

| U = \/:LYULG'L; n*,cLS - A Ui Gy, ) avVv..
B

However, since ti = ay Ny and Oy, :-_-(g ,
W =% ftwedS A fuwdv 3.2)
28 3 h

This result will hold if, as R oo, G’t:!:O(R‘%'-x), W= O(R-yr&)&
and & = O(r\)-%—“), for some X >0,

We now calculate the total ehergy of a system with
tractions applied to its outer surfacé and in which a dis-
location is created.

Let a hody B have an external boundary S. On this
external boundary place tractions JE(Q), anci call the cor-
responding displacement field LA(Q) . In this body B make
a cut and call the two faces of the cut A, and A_. With
the application of equal and opposite tractions J(_a('?= - ’(_.(d_) »
on the two faces, A, and A_ are deformed relative to one
another by an amount \_._Léd)..\_,g(_d\) =4 \._l(d? If we let Auutbe
the work done on B ]?y the external agent on S in causing the
deformation field Q(&) and during the creation of the dis-
location, then the total energy of the system is

t
Utot =0 -2Uu*

(3.3)

where

AUQC( ) ‘/z ﬁ-(d‘ g:le) aS + f t(e). LL(a) dS ,
S S (3.4)
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and
: le) (d) (e) (d)
U = \/Q, S C'\'\\i (ei'\ '-\—ei.i )(Qv& *eu )d\]
8
U is the strain energy of the body. Then,
T le) _ (o) @) () e
3
- | |
= ¥ )({(\“;(el ‘(e))‘ T(L“u%(\u)),. +‘l(“’.‘e)6¢,-(‘“)-
3 ' y ))

L O4,4

& (&) @ () )
- WU G,y ~ U & -'),\ii(d(f G,A d\/
In the absence of body.forces, we finally have that

\ (e)
u = /1 g( ULQGL')[Q) + Ul(o%"-(dl)

)

B
- @ (d)
2 4 ) n; d S
) .
(3.5)
where B = S+a +A_.
Before substituting (3.4) and (3.5) into (3.3), we may
J
simplify equation*/(3.5) further. The first term in the inte-~
gral becomes: .
\ le) (o) oo g @) , (&
/{g\uc i AS = /'L U E AS (3.6)

33 S

€) )
since 4 and C are continuous across A+. The second term

in the integral is
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() ) W
3 § 0 L,mn-,dS - Vz{ 4748
o8 AA.
(A)
=‘/z[5liid)tfd)ok€+§ o\S]
A A-
=“{Hgi°“t‘f“49 ) gu( wolS ]
(
= ‘/2 {Lfd)’Auwdg , (3.7)
A+ |

) (d
since .t+ "t._ and U, —q_) :AQ(OU .

(ey , .
Also since t d):O on S, and LL) is continuous across A,

2w % ds -0

or S\ uke\,

AxA.

b

(d)

|t

= O . (3.8)

It is evident from the Betti reciprocal theorem and from (3.8)

& & @) (o)
Jul 195 - Ju® s -0, '
\0% v 38 (3.9)

that

Then from the second of (3.9)
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or fgwiuug:=_s uu\twds
S AvrA

le) d |
[ ad®dS (3.10
As

i

With the help of (3.4), (3.6), (3.7), and (3.8) equation

(3.3) becomes

U‘coi - /QS\ (@ (e)olg +/ X (oU _\}(&)O\S

_ As

: le e) e 3}

e aes - SSXQ”&S
S S

Finally, using (3.10) we have that

cU (A) (e) (4)
Ut = /1§ s S—- AWTdS
A A,

Having found the expression for the total energy,
~given by (3.11), we may now calculate an expression for the
force on a dislocation line as the line moves a small dis-

[8]

tance. This force is just minus the rate of change of the

total energy of the system with respect to the dislocation
position.

Let us consider again an infinite body B with a cut
A. The surface A is bounded by the curve Y , and the

faces of the cut are displaced relative to one another



(&)

by a constant amount A___

b -

From (3.11) when Y'moves through an amount éf , the
change in (i, is:

TUwe= SUT T[o- §1%ST,
Ax

where
1 T(el)
A

I

9.;(‘5 &-g=}‘g°
Ax

(d)

‘However for an infinite medium, the dislocation energy 1
(d)

30.

(3.12)

is independent of the dislocation position. Hence 5 =0.

Now as Y noves 'througl'i 'Er » it sweeps out a new cut§ A,

so (3.12) becomes:

J Ukt = b (49458
A

Let G again be an external stress tensor. Let n be

the unit normal to SA.(n is pointing from A to A). Then

le) @
on § A, 1 =6 . Let dl be an element of arc on | and

{ be a unit vector along Y‘. See Figure (3.1). Then the

Figure (3.1)

(3.13)



element of area, ds =

31.
a1 13¢l, ana (-5%8r)/15c1 = n.
So on XA+, fe):g_(e).ﬂ =l {§ x§_) , and (3.13) becomes
TEl
Y Uiy = {o@. (5x8r) Al Iyl
5A+« ‘Sr
N 5 5 (1« Se)dl |
)
- AP
or JU{JL = _y(—b- g X 5) 5—" dl (3.14)
y
We specialise now to the case where Y is straight, and
Q_’_(e)is constant along the length of . Then 3¢ is con-
stant, and (3.14) becomes:
L
S Ut = - (b ¢ 9x§)-Te - L
e
or JU’tot/L - (-\3 ‘g x § \ ) 5— - - {3.15)

The force per unit length of V , written F/L, on a

dislocation line as stated before is minus the rate of

change of energy with respect to the dislocation position,
or

'(EA)'&

° U*"t/L (3.16)
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Comparing (3.16) with (3.15) gives

3 g’_‘dx f .

{
N
i
15~

(3.17)

Equations (3.11) and (3.17) may be used to calculate

the effects of two dislocations on one another. A sys-

tem of two dislocations can be pictured in the following

way.
0} ()
Make two cuts, A+ and A+ displacing the faces so that

W W t 2) Q) W ()
on Pl:) A_&L\z.-l& -U. , and AL_lL):O . O‘nA( : AU =LL*-\}.1 '

and A_Li_l\\:_ O . Also on both Am and A(l\, +lx)____ - i.(')

and ‘t?’): - 't_u)

’

. The boundary 0B of the infinite medium

() ()

" consists of § + AY + A, Then equation (3.5) becomes

W0 Q) L) O @)
U = ‘/'1 g (ui Sy M U G'L's ny +'2u;€-tin3)d3,
2B :

From the above equation an expression for the total energy

AN

is found ;ﬁich 'is similar to equation (3.11):

) Q)
ov 4SS

Wy = \/1 (im~é___lx(l)0\3 N gt(‘

()
A;‘ EL\

(L W () ()
Vz yt— )'é—u‘O\S ' g £-au AS'U 18)
0 ) .
A.\. A*

From (3.18) it can be seen that the effect on one dis-
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location By another is the same as if it were acted on by
an external stress. For example, if dislocation (2) were
fixed, the second term in equation (3.18) gives the effect
on dislocation (1l). Then the force on one dislocation by
another is given by equation (3.17) withi§&)being the stress
field due to both external tractions and any other disloca-

[9]

tions.



4. Head-Louat Approximation

Let us now examine a simple application of Burgers for-
mula (2.12). In an infinite medium, beginning on the pos-
itive side of the origin, we make a cut parallel to the z-axis
in the positive direction of the x axis. The upper surface
6f the cut is denoted by A, and the lower by A_. All points
on A, except those close to the origin are dispiaced a dis-
tance %b in the negative z direction, and all points on A_,
except again those close to the origin are displaced a dis-

tance %b in the positive z direction. See Figure (4.1).

Figure (4.1)

This type of dislocation is called a screw dislocation, and

has a Burgers vector of -%b-%b =-b in the z direction. So

b =1{0,0,-b). Now the curve V , which encloses the cut will

consist of (1) a straight line lying in the z-x plane, para-

llel to the z axis, running from z=o® to z=-® ; and (2)

r

a semicircle in the z-x plane, centered at the origin and hav-

ing the large radius, a. The path along the semicircle will
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be taken in the clockwise direction. See Figure (4.2). Notice

that the positive unit vectors are pointing from A, to A_,

hence the curve ‘1 is right handed with respect to these unit

vectors.,

“x

e
e
5%
Y
L
Figure (4.2}

Recalling Burgeré‘formula (2.12) for the displacement
field, we have, for the displacement in the z direction:

us(f‘) = BD.(':') - h S—E\Ba RlPP CLQ\‘
e f

b A
bl u ; C s Ri3pd L

- " (f.) b (}‘*}-L) gx' (xyx;,) dx
B XN 2/ L

where C is the semicircle of radius a as shown in Figure (4,2],

and Ro = [ (x ) +x +(x3—x3) ]% . We want to show that the

integral over C vanishes as the radius a goes to infinity. Now

'on C we have %X,= a cos®8, dxl— -a sin@8d6, and x3— a siné, so

=T

(x, (43-%3) dx, = -x, a S (asin®-%3) gin da
3

¢ A R



.o =T
- L Xy { (smt( Xa SmoL) d .
a 2
™ [H i—z (X. cosy + X3 sm@]

Now for large a, the integrand is finite, and the factor
1/a outside the integral causes the whole term to tend

to zero. So we have that

Usle') = + ba(e)
hw

Now Nl)is the solid angle subtended by T at r\- If 6 is the
angle at r' between the vector r'and the z-x plane, then

g = Itan_ly'/xf, and QL (x")= .2tan-ly'/x'. So

') = % bta-";' - b ©
tla(-) _Q%F'L__.LL —?:7\\'\_’

and this is the only non zero component of the displacement,

since uy and u, involve only vanishing integrals around C

A

as above. Then the non vanishing strains are (dropping the

pPrinmes)
oy (£) = BUs =2y
Zx | /'l Wir x-:.‘_\}z. >
GZ\) (!\ :‘/1_ D'U"S = \D ~

36.
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2and the stress field is

3
I

de = 1/} ezx

(4.1)

62\} =2}Legy

fl
|
»

Equations (4.1) then give the stress field caused by
one screw dislocation. We now consider a system containing
én array of dislocations.

Let there be a cut in the x-z plane as described in the
first part of this chapter. Now instead of displacing the
whole of the two faces of the cut by an amount b relative to
eachother, let thgre be an array of displacements in the z
direction, each displacement having a magnitude bi in the
z direction, and each having a position on the x axis as x,.
Let there be n of these displacements. Each of these dislo-
cations produces a force of repulsion on all the other dislo-
cations. (see Chapter 3)

We shall now calculate the force(per unit length) on the

kth dislocation located at xk due to all the other dislocations.

k)
Let <5ﬁ be the stress field due to all the other dislocations.

, ®
h g ()

The force on the k™ dislocation, F'*" /L, due to dﬁ is given

by equation (3.17) as

(R Y N
=b .0 x§
E / L - - -

y

where é(k)f—_(o,,o,_-bk), ! =(0,0,-1).

—
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Then

(x)
g - -bh (d(\‘l\ s (&) (w)

X2, Tz Dax

« (0,0,-1)

= (Bkd(\/\i ) "bhs;‘z(h), O) .

h

So the force in the x direction on the kt dislocation is

(r) :
b, ¢ yz - But from (4.1)
= )

d\’(:) M s b le-xe)

2T i3k (Xg - X}Q_Y‘

=M S by
2w 3w Xe = XQ
> (4.2)

which is just the sum of all the other stress fields due to

all the other dislocations.
th

If kak represents any additional forces on the k ° dis-
location(such as external forces), then for equilibrium:
hS oA 2 ayp =0
. h-__ " ‘l) e ® “
or
MAs M 4@ -0 .
217 [E1Y X %L (4.3)

The problem of finding the equilibrium positions, X,

for an array of dislocations under the influence of certain



prescribed external shear stresses taking into account the
mutual interactions of the dislocations in the array was con-
sidered by Eshelby, Frank, and Nabarro[lo] Their method

of solution of equation (4.3) is exact, However, Head and

[1]

Louat proposed an approximate method for the solution of
the problem of Eshelby, Frank, and Nabarro. This method
is of special interest since it has many other useful appli-
cations as we shall
The approximation of Head and Louat is to replace the
distribution of finite dislocations by a continuous distribu-
tion of infinitesimal dislocations. Then for a small distance
along the x axis there is a displacement of bf(x)dx in the
z direction. The shear stress given by equation (4.2) for
example can be written as an integral rather than as a sum.
The only difficulty in making this approximation is when Xy

is in the neighbourhood of x,;. To solve this, we exclude the

interval between x-€ and x+¢€ and then take the limit as€->0.

39.

So the shear stress at some point x due to all the dislocations

N

except those in the neighbourhood of x is:

x-€
L g‘?’h f(x) 4y’ j‘pb § (x)dx
e‘-!:o _:’v X =X’ éﬁb x+e X-x! )

And this is just a Cauchy Principal Value integral,

672 (X) = 'QX(K )dx

G

(4.

4)
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If the external shear stress at the point x is given by

P(x), then for equilibrium

f b '?(X)dx + P =0

(4.5)

or P(-————H_",?.d"' = Fl) (4.6

_9 Px)
where F(x) 8 — 3%

Equation (4.6) is then the approximate equivalent of equation
(4.3). It is from (4.6) that an integral equation for the

dislocation density, f(x), may be obtained. The solution of

equation (4.6) is known to be, for finite limits of integration,

say (a,b),[ll]’ [12]

{
T = T 1 (T.m

J(x—a)(x -b)
{p ‘1 T TV gy g4 )

(4.7)

The constant, D, is often determined by the conditions on f(x)

at the end points. If f£(x) is to be bounded at x = a, we must

have

2 X“O.

b [}
=1 pg T30 £y’ 0 < g

a



The above equation determines the constant, D, so that (4.7)

becomes

{
‘g(ﬂ J_—W—GS {-—Tlr-; p( ."‘Q)?&);(i“— F(x')dx

b '
+1 P I- T~y (X~ )y F GO OLX}

1 ]
a X -a

=J(xl-ZS(x-ES i—‘fl‘.lp j:(ﬁrt?
“J(x=a) (x'- &) )\F(‘ Vdx }

x_.

If f(x) is to be bounded at x = b, then

b
£l = -k ) pgf?‘:a_ = Gl

‘LJ X-%o x!-x

If f£f(x) is to be bounded at both x = a and x = b, then

from (4.8) we have first that

[ F(U&x =0,
“d

41,

(4.8)

(4.9)
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| F(x') dx' -
o ) Sk

Then (4.8) may be written as:

b'*_ E( Yo'
_ { p X X
‘C(X\ i—ab 1«;— g ,] ' -
b ,
Y E(x)dx' ')(
a J[&, \)(‘o{“v\J D)

——
-

B dx’
6( a-b D g,/( x~a)(x"-by (X '-X) |

_‘_
t‘T
(4.10)

It is now possible to sumarize some particular examples

111 .

- -considered by Head and Louat.

(1) Let there be n positive dislocations under a shear stress
.

P(x)=-Cx. Assume f(x) to be symmetrical about x=0, and is
zero at x=t+a, where a depends upon n. Since f(x) is bounded
at both end points, the solution of equation (4.6) is given

by equation (4.10), with F(x)= 2w Cx :
b

(+ %
9w Cx'dx’
- a*-x* Pf
J}(x\ J MbJomyt (x-x) . (4.11)
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To evaluate the integral in (4.11) we consider the integral,
z dz
(ax2)"2 (z-%) ?

over the contour shown in Figure (4.3). A branch cut is made

pbetween the branch points z=-a and z=a.

cut, the term (az--‘zz)l/2

Because of this branch

will be positive above the branch and

negative below the branch. The large circle DE is centered

at the origin, and has radius R.

g-plane

Figure (4.3)

Then since there are no poles enclosed by the contour,

{ zdx ‘ =
§ (a*-2?) (=) 0

Now the integral evaluated along AB and CC' is just the prin-
cipal value integral

p fq x'dx' .
d Jar T (x'-x)

Integrating along FF' and GH gives
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)(dJ( = pg& x'dx' ..
YJ atx"* (x-x) _aJ oxt (x"-v)

The integrals along C'D and EF' cancel each other, Also, the
integrals along the arcs BC and FG cancel each other, since on

w8
these arcs z = €€ + x, and therefore

I‘ S’(eeﬂ)eté 4.6 L, -ifx

0

t : as
JE e " €e'® Ja*-x* € =0,
{ 5 (e +x§&;e °40 ™ a0
da*- (e ) eeg_ Jor-xt

 There is no contribution from the small circle HA as &—> O,

since o ‘o
S &‘0 (ce -0)ere db&
HA ) T Ja-ce®a)(asee®q) leet® aay)
A 0 L
(ee, i 3.j © 140
Toeeo— (ed®qm) —700s € 0.
8 2

Finally, the integral around DE is

m 1 s
5‘ 3 ( Re'®Rie® d®
DE 0 j a_'l, R-x e“L‘lG' (RCLQ’X\



%40
J J o218 (e"e*l‘-) ?

R

and as R->o» this becomes

Y ie_zL 46

, = AU,
Le

0

Combining these results, we have that

& z d= =0
[o*-27 (2-x)

Ja -x (x'-x)
Y
or X - .
' pLJo}-i‘ (x'-x) m )

Then equation (4.11) becomes

R

{(x\:-{;‘; Ja&-x7 . 2 C ()
M b

= l ’0.1")(1' _(_"__ _ .

Since f(x) is the density of dislocations between x and x+dx

the total number of dislocations, n, is equal to the integral

of this density oirer' the whole interval [-a,a]:

45.
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Q
J “(X)CLX =N )
2

1
>

or f“zcmm ,
&TB

which gives

2
a

2(

——————— °

TR
LN ]

o] —
i
3

Then we have the relation between the number of dislocations,
n, and the distance from the origin of the last dislocation

in the pileup:

{(ii) Let there be n positive dislocations between blocks at
=+a, with no applied shear stress. Since P(x)=0, F(x)=0.
Requiring f(x) to be bounded at either or both x=+a would give
a trivial solution. The only non zero solution arises if f (x)

is unbounded at both x=+a. Then from equation (4.7),

10,
) =T

w\\ere D \s an afKi*rqr‘ OOnSTaut .

However,
Q

g £(x) dx =0,

-6
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and this gives

Then

|
‘9(1\-‘-"/17"‘-52_75.—— .

(iii) Let there be n positive dislocations between unit pos-
itive dislocations locked at x=t+a. These n dislocations are

in equilibrium under their own mutual repulsions and the re-
pulsion of the two 1og1:éd dislocations at x=+a. We can treat
the shear stress of the two locked dislocations as an external

stress, so

pXiy X-Q X+Qo

P& _ ) [,‘,- +.L_] ,

then

Flo

"

) P
X-0 r+ 0

Now somewhere close to x=+a, because of the repulsion of the

two fixed dislocations, f(x)=0. Let f(x)=0 at points x=tb,

where b ¢a. The solution from (4.10) is

QM + | [ P ~o.] dx’
'hm (x'-x)

. b
_/g* {P Ox + pg d
'n—‘t Jr (x“a) (x-x) 5 [ K ‘*)
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We evaluate the integrals by considering integrals of the type

§ (o*- l)yl (2 o) (z-x)

around the contour as shown in Figure (4.4). The first integral

gives b .
: g dx - _1r
,Ib1 T (x-a)(x'x) Jo=b* (x-a)

The contributions here were from integrals around x=+a. The

second integral becomes

b !
) p( dx :——T-r—-—-——-——
LIPS k) o xea)

The contributions here were from integrals around x=-a. So

we have for the dislocation density

| e | =X -
4&\=ﬁ—1ﬁ°—‘—x {]}T@(M\ Irs (na)] ,



or '((XB = !_bi:&j 2La l
NP ar-x* .

The distance b is determined from
b

§ fddx = n .
~b

Evaluating the integral gives

b
la g J b -x dx = n
o ) o

o -x? g
-b

b = o [nlasw)
h+2)

(iv) Let there be n positive dislocations in the region x % Q.
These n dislocations are forced against a block at x=0 by a
-uniform stress P(x)=-G . So F(x)= 'ET—I G . It is reasonable
. to assume that £(x) is unbounded at x=0 and decreases with x
to a bounded value at some point x=a. The solution for this

case is from (4.7), with the limits of integration from x=0

to x=a:
o

A _ JxJaox Fi') dy
£ - JYFC—'XiJﬂ-‘ P£ X'-% * 0} ‘

For the solution to be bounded at x=a,

49.
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Q
-L.mpfmr_a-x' Fldx' +D =0
1T X'~x

Then, .
S L { 5 Cmrcﬁ" F 0 dx'
Jx Jo-x " R I—x
q A
s p (S Iax Fle) do!

X'-o

)
0

-1 I p(‘/x—' Fle)dx’
m [y % (x'-x) »

0

To evaluate the above integral we consider the integral

Z}"z L2 -5
Ja-z (=2-x)

over the contour shown in Figure (4.5).

z- plane

Figure (4.5)

50.
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There are no contributions around z=0, around z=a above or

below the branch cut. The contributions around z=x above and
below the cut cancel eachother, and the remaining integrals

above and below the cut give twice the principal value integral:

(o)
. y L
S, § 2%ds -0 = mrJIxZ_____o\x 2w
Ji==z (2-x) Ja=x' (x'-x) ’

a
or p{ K dx’ )
Jox' (x'-x) .

o]

Then the expression for the dislocation density becomes

foo =40 (M) () =2 L

e

Again the length a is determined by

.

Jf(x)cl:<=n , -

° b

qQ a

or 2o ((da-xyy =y0 {zr—a-uz du .
b o IX b

k=

°
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So the distance a is given by

a =ubn
o't

(v) Let there be blocks at x=+a and a dislocation source at
x=0. A uniform stress P(x)=G causes the source to generate
équal numbers of positive and negative dislocations which move
off in opposite directions until held up by the blocks. The
source continues to generate dislocations until the net stress
at the source is reduced to zero. Since P(x)= ¢ , then
F(x)=- ‘11%5‘ o . The dislocation density, f({x), will be

unbounded at x=+a. The solution is given by equation (4.7):

Q .
{iy = < {+_l_ T | 1me 4 Q}
’ Jox» (™ P-g x'-x  ub dx +

The principal value integral turns out to be:

q .
A ' 2 [
p“ X7 dx' = .
-0 x'-x

So the dislocation density becomes

’&1_x1 Tf" }Lb _ 0.1“1"

g(x\=16“ X + O |
sl JamoG Ja5-xT | |
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However since the dislocation source generates the same number

of positive and negative dislocations, £(x) should be odd about

x=0. This would require that D=0. So finally,

f0) = 9¢ x .

T

/ub Ja—x

Again the number of positive dislocations is given by

| a
n= ( Q(&) dx

0
a

= 16 g X d.x
/ub Jot-x*
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5. Boundary Value Problems For a Half Space:

The continuum approximation of Head & Louat can be used
to solve certain plane and anti-plane strain boundary value
problems for a half spaceIlo].

We consider an anti-plane strain problem first. Let
there be a half spgée y> O with a shear stress, applied to
the boundary y = 0, given by 6&,(&Cﬁ :'t(x) » The only
u(x).

To begin this problem, we first note that the straight

non zero displacement is uz(x,y). Let uz(x,o)

screw dislocation shown in Fig. (4.1), with a Burgers vector
~b = (0,0, -b) will give a displacement field similar to that
of an antili plane strain deformation. We then find the shear
stress,C&ﬂ , caused by one straight screw dislocation loop.
Then by using the continuum approximation for the dislocation
density; f (x), we may develop an integral eguation for £ (x),.
For the straight screw dislocation shown in Fig. (4.1)
we again take the curve ‘1 to consist of a large semicircle
C and of a line in the z-x plane, parallel to the z-axis,
running from z =wo to z =—0. (See Fig., 4.2).
The stress field due to one straight screw dislocation
is given by the Peach~Koehler formula equation (2.17).
Using this formula, the expression for the shear stress,dij J
at any point r' in the half space is given by
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6'=y () = /ﬁ_l_‘, {{ R)Pp (C:.)gd.lg i—ez,\g,C\,.Q 3

+-Y—-ehs3 R,%l\ dlu}
= o {5 R dls

n

v Ry 4l Romdl) )

We now evaluate the shear on the boundary, y'= O. Because
the stress and displacement fields are independent of z',

we write d*‘j (x*,0] to mean Gz\] (x*) evaluated on y'=0,

(xo\_+ﬁ #(X OR e -1 a2 R s
-y
Y‘
Now, part of \4 consists of the semicircle of radius a centred

at the origin. As a —® , the integrals around C —*O.

'Iy.e other part of V is parallel to the z axis from z = {®©

to z = -® . The shear then becomes
‘ ~C0
6'2\’&',0\ = uh (x ) f dz=
X ) x-x) + -2 1%
-00
- z-2
= %_% ) ((x x)"}(ﬂ’()*(ii)l
.

pb .

2 x-x

This is the shear stress, ¢ zY(x'.O), caused by one straight



56.

screw dislocation. Making the same continuum assumption as
in chapter 4, the shear stress caused by a distributionoof
dislocations along the x axis, of density f (x) can be written

in integral form: ( we switch the notation from primed to

unprimed) .
[ [}
G/éy (X,0§ = -g\o pg %k)‘k)dx

1w J XX . 5.1)

Equation (5.1) is then an expression for the. shear
stress, 6;"(1(,0>caused by a layer of dislocations distributed on
the boundary y=0. Returning to the boundary value problem,
we see that the shear stress, c)’z\’ (x,0) is given by t(x).

So using equation (5.1) and this boundary value we have an

integral equation for the unknown dislocation density, f(x):

-’Apyg‘j‘"‘*" -t x)
L A X' =X :

,/
The solution of this integral equation is;

[13]

bfl) =2 p X tdde (5.2

TH lo XX

Once the dislocation density, f(x)} is known, we may write
expressions for the stress components, We first use the
Peach-Koehler formula (2.17) to find the stress due to one
dislocation loop, and then knowing the dislocation density,

we integrate the product. For example, the shear stress, ¢ 2y
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at any point (x,y) in the half space is given by
G‘zy ()‘\\]) = ,%% ( g(x')‘% {-"l R,PP dﬂ.s
Lo y
'T; (Q‘sudQ. 'Q,zzl dﬁz)% dx
-u&—— ( 'F(K’) Y )‘) d.K (5.3)

LA (S -
Using (5.2) in (5.3) gives: |

© ©

T2y (x,y) = J—[ pf £ ) wx dy'do
T2 _Q("""") (’(“‘)1+\|1

— oo

The integration over x' is performed to give

zy (x )‘) { qt(x“) A’ (5.4)
[ +y2 1

The expression for lez (x,y) is found in a similar way, again

using the Peach Koehler formula.

o ley) = A f b f k) d! {{\ RappdLs

+T_‘§ €ri3 R,m; dﬂ\;g .

The curve Y is as defined before. The integrals around the
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large semicircle go to zero as the radius goes to infinity.
So the only contributions remaining are from the integral
parallel to the z axis from z = +® to z =-®. So evaluating

the integral around T first gives

© ' ds
cax (xy) = —A gbf(x‘)dxg b :
.x- X \’ ) l}.‘-‘. A . [(X‘X‘)l *’1 +(~E‘2’)1]y1

= u ( b\l(x‘)ydx' )
iw L [(x-x')"’f\t"] (5.5)

Again using equation (5.2), this becomes

(o]

‘fzx(f\ﬁ = :l_’-mp[ ")y dx"dx’

Like x*-x' [(x:x‘):l*jl]

“ -60

Performing the x' integration gives

‘ f’ (") £ d®
Mo L) 4y ] (5.6)

dzl(Y)\"v = -

The displacement, uz(x,y) , is found by using the Burgers
formula, equation (2.12). The same contour r ; is used. The

only contribution is from the solid angle . (r}, so
L]

ey = | by ale)d

_a( Y o' L Ay ‘
~_ﬁr Ln b": % }'& =3 d)ﬁ ‘ (5.7)




Using equation (5.2), this becomes:

Uz (y‘\’\ = __L I‘P g ::(x"’) tan l*‘ 4o “(LX'
SRR

Performing the integration over x' gives

(x = 'm : 1
Wy *\D ;\1';; S J_m[(x-x")

"'\) z 1 by dx” .

This completes the solution of the traction boundary value
problem for anti plane strain in a half space.

Notice that if the anti plane strain problem were one
of given displacements on the boundary, i.e., uz(x,0)=u(x),
then since bf (x)=-2du(x), equations (5.3), (5.5), and (5.7)

ax
would become:

({2\’ ()()7\ - ’MB fm Q(\(‘) (X'X')dx'
AT e (xx) Ty
@ A ')
M { (x-x) A x' dx"
™ 1 (x~x')?* vyt

. 59.

(5.8)
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Ax’ Ay

-

These three equations then form the solution of the displace-

ment boundary value problem for anti plane strain in a half

space.

We consider next a plane strain problem for the half space
y > 0. Let the boundary values bedyy(x,0)=0_ and o’x'y(x,O)=S(x) .
In order that we may apply directly the Peach-Koehler and Bur-
'gers formulae to this problem, we first define another type
of dislocation. As in Chapter 4 we make a cut through the
plane y=0. This cut again begins on the positive side of the
origin and éxtends, parallel to the z axis, in the positi?e
direction of the x axis. The two faces of the cut are denoted
by A_ and A_ as before. Now we displace the surface A by
an amount %b in the negative x direction; and the surface A_
by an amount %b in the positive x direction. Again, we exciude

points close to the origin. The Burgers vector of the



displacement will be b = (-b,0,0). See Fig. (5.1).
S

AN, ,
NI x

Figure (5.1)

The dislocation‘shown in Figure (5.1) is called a
straight edge dislocation with Burgers vector (-b,0,0).
The curve, Y , that encloses the surface A of the cut
will be the same as that shown in Figure (4.2). We are
now ready to solve the above plane strain problem.

Let there be a straight edge dislocation with Burgers
vector b = (-b,0,0). Then from the Peach Koehler formula
(2.17) the shear stress, g’ xy’ for any point, r', in the
half space due to one edge dislocation with Burgers vector

b = (-b,0,0) is given by

O‘X\) (1\ = Lb 4 {!2. Q)‘Sf’\o (elj\ dﬂI +6|";AQ1)
H v |

+_\__ e\_h {Q)\z") CLQK} .
i-v
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Again the integrals over the large semicircle vanish as
the radius goes to infinity, so that only the integrals

over z are left:

Gy ) = 2 § R, de
- IMB (X-X')[ olz- ~3/
Y (-V) [(x-x'\"¥\12+(z-z')11 *

- 332
1 y[(y—x) +\’ +(i‘i")1]5/2 :

We switch from primed to unprimed notation on the left

hand side and evaluate the integrals, giving

.6'1(\) yy) = uh o (xx))2 -_2y" (2 1/)
Hre (1-v) x-xl»«\jl [(x 1)7‘+‘1]

= ub  (ex) L bex)~y 3
2 (1-v) Lix-x2ey2]?

(5.9)

Equation (5.9) gives the shear stress, C‘/xy (x,y), due to one
straight edge dislocation at x = x'. At the boundary, y = O,

(5.9) becomes:

(X\) (X)O) = /UL\)
am (1-v) (x-x')

Again making the continuum approximation, the shear, o’xy(x,o) '
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due to a distribution of dislocations of density f(x) per unit

length along the x axis can be written in integral form:

Gylo) = 20 Pl I gy
21r~(\-v) - XK (5.10)

From equation (5.10) we may find the expression for bf(x)[l3]

b = 20 o[ SGends

ﬂ t -
- o (5.11)

Now from equation (5.9) the shear,cfxy(x,y), due to a dis-
tribution of straight edge dislocations with the given Burgers

vector is given by

Gy =a [ B Py o
20(i-v) —o [(xq(‘)’ +\f]

(5.12)
Using equation (5.11) in equation (5.12) gives
o
RN
(’“{) - g(""‘ Y‘*") 2] S Sx") dx” dx’
! A Y_(x»d‘q ] Sy X!

And performing the x' integration gives
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Ty xS da
o Dx—x")" +y Sk

5)/(\’ (K)\IB = -%—

(5.13)

In a similar way the stresses q’xx(x,y) and &y, (x,y), due
to a distribution of straight edge dislocations of density

f(x) along the x axis may be found (numbered subscrips not summed)

.l p b A § o (Endl 1€ dl)

L Eun (R - ve,wmmso\x',

°)xx (’(» y\ = :l'{#(" ( b{"(\(‘) s‘_l_l—; (\Q,').n_ * R,u%)dz o\x'
- -®

el § y L3k +y* ) bftdd’,
o 2-(i-v)

Jo Txa)® +\5’“}1
(5.14)
And from equation (5.11) equation (5.14) becomes
ty % ° w
S [xy) = | | y[z(x-x) sy ] \of Sk9Ydy dx’ .
X'-x

o Lx-x)? +y S

Integrating over x' gives
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® W 3 .
G‘ﬂ‘\(,\}" =1 f & -x") %(x“\d&
L (x- x")"+\1 ] ’ (5.15)

The expression for G’yy(x,y) is found in the same way,

b(x;\ = * A fy LlaxYy 21 b fdx
l‘“’(\-y)_as { (x- x\"-t\”']

(5.16)

&Yy (x,y», = 2 g\ (x-x") y* Skx9dx”
m - [lx—x")l-&-y"]l
® (5.17)

The displacements can be found from the Burgers formula (2.12),

Ueley) = 1= g b &) aledx’

= gwx\otx §{2,\1a2 _
-

(5.18)

Again, N (r') is defined as before in Chapter 2 as the solid
- angle subtended at r'. Using equation (5.11) and integrating

over x' gives
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W, Ixy) = 11!1?/_: f {(\ ) A - x)wq

4+ Yl S(u&i M

(5.19)

Applying this same procedure to the Burgers formula for

the displacement, uy(x,y),_gives,

u‘ (x,y\ 2-&1—" g \9{'(&') gR-‘dz d".
+(\-\>§ (\)?(x) f R ‘—\fﬂ‘g)d%d x;
. —~a @ (5.20)
v (x, ) = | ’
) 13}& J; { \ 1;)t

- ey S dy”

(5.21)

So the equations (5.13), (5.15), (5.17), (5.19),. and (5.21)
'give the complete solution for the plane shear boundary value
problem for the half space y» 0.

If the plain strain problem had the boundary values

‘given as displacement in the x direction, i.e., ux(x,0)=u_(x)
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as well aé o’yy(x,0)=0,'then since bf (x)=-2du(x) , we would
dx
substitute this quantity into equations (5.12), (5.15), (5.16),

and (5.20) to obtain the solutions.

Another plane strain problem for the half space y> 0 that
we may consider is one where the normal traction on the boun-

dary is given, and the shear there is zero. Then we have

— {2 0)Y=P(x
[« ‘ -\

Yy o’ )
we consider an edge dislocation with Burgers vector b=(0,-b,0).

) and & _ (x,0)=0

wAar +hi
S 20X T
Xy

This dislocation is formed by making the same cut in the y=0
plane, but displacing the two faces in the y direction. The
curve, Y_,His again as described before(Figure (4.2)).

If we consider a distribution along the x axis of such

edge dislocations, the Peach-Koehler formula gives an expression

for the normal stress:

Sy by = £ { L Eaia (Riaj - R Jdaoflde

=M rb ¢ ("Y' g E&B_LL

b (i) ) w ' R
- 3(x-x") kdz
R[4 (z-24)2 )
Rl NS e Y
e L2 +\ ] (5. 22)

Again an integral equation may be formed by evaluating c"yy on
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the boundary, y=0, and equating the resulting expression to

the given boundary value:

&Yy (x,0) = ip[ b flYdx' = P(x).

lrr(\-VS Joox'=x

[13]
The solution of the above integral equation is given by

b Fx) - -2 [i-v) PS P(x")dx"

™ B (5.23)

So equation (5.22), with equation (5.23) becomes

Sy (x\\ﬂ = S (x=x) Lnxt® *‘123] f P& A" dy

e [(x-x)"-n’"])’ Jooweexs
Integration over x' gives
Sy le) =2 [ y° P dr"
R ™ f L(x- -yt 1

(5.24)

Once the dislocation density f(x) is known, then the remaining
stresses can be found again from the Peach-Koehler formula:

~

sty (x,y) ﬁ;L b £0¢)dw’ g L (R~ Rg)de
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=1%{: £Yd ! [‘_ [l-l—"@';j

-V

~a@ to

-3 kx') {y2e(2-2"7% ]dz

RE
. (" (-x) L) 42 1 pflcddx”
| am(-v) 1 \’_(,(-,(4)1_‘_\11]1 (5.25)

And using equation (5.23) in equation (5.25), we have

G rpcwi"d,
G;qk (X\\”. - ’“’lj‘ L()L'*l\?-"‘illl —_— AKX .

Integrating over x' gives -

(5.26)

Also, o
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- _}J \lY_(Xx)‘{J b{(X)O{x
aw(i-v) Lo Lix- x)"*-\j"_]

(5.27)
< \ \;[(xx)-\s] dxp{ () dx"
Ux—x )1+\j"‘] oAt =3
cij( 7)~__;(® (x -x )\11 Plx*)dx "
L(X -1 +y ]
(5.28)

The displacements are found from the Burgers formula:

3

U,.(x,\1\~ | g b §x)dx' 5. {R\*pn +R o —-R“]OLZ
-g-f mm{c Rz dx
- L Ymbxc(x')dx'io%: L[4 L) [d

had + 4]

o

=) pfla pgwo\xuja e,

Ty iR @3
Ly A LA BE Z 1=V R

g {(‘ W) 4&4\ o x) + (x-x*) )Sp‘l*“)dx",

l’W/UL Lx-x)2ey>]

(5.29)
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u\} [x‘\l\ :a\_‘;s‘ b £(x) 'tou\“ 3.1' C\X '

. w o
[T - R L |
Zoeml-y) L1 7 -,

=1 (CbE0) tan [y \dn'
2w | ('

‘® Py

+ | gbﬂx')olx'j.(x-x')y dz

P Lotey a2 1%

-@®

=1 gw {(\-V\ An [(x-x")l%’l]
21'r/u

-0

+ (x-x" ) Px*) dx” .
PR

(5.30)

Equations (5.24), (5.26), (5.28), (5.29), and (5.30) form the

solution of the normal traction plane strain boundary value

problem.
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6. Axisymmetric Boundary Value Problems For a Half Space

We now consider two axisymmetric boundary value
problems for the half space z > 0. The first is concerned
with an axisymmetric normal stress given on the bqundary;
the second problem is one of torsion with an axisymmetric

shear stress given on the boundary.

Let there be a half space z >0 with the z = 0 plane
as the boundary. Let the nofmal stress on the boundary
be given aS‘G‘zz(r,e,o),=_g(r). Since éfzz is independent
of 8, we shall omit w£iting "e" and use the notation < 4z (Xr2)
to mean cjzz(r,e,z). So using this notation, céz(r,o) = g(r),
where r2‘= b4 :+,y . For this axisymmetric problem we consider
the closed curve, Y' , to be a circle of radius r lying in
the z = O plane. A cut is made throughout the inside of
the circle ‘“ and the two faces are displaced by an amount
b relative to each other in the z direction. This dislocation
loop then has a Burgers vector of b = (0,0,b). We may find
an expression for the normal stress due to one of these dis-

location loops by making use of the Peach-Koehler formula (2.17):

walrid) - v T“‘; Em@ﬁ!s -Ryjee)d i
)

(6.1)



If we then assume that there is a distribution of such di_s-
locations in the z = O plane of density f£(r), the normal stress,

G — due to these dislocations will be, with the help of

equation (6.1),
e () sy [ORO G [
° v
. \ .8
" Riep )d_lh (6.2)

Equation (6.2) may be simplified further to

conlee)« o (s j{@m—v{.“\db ‘

pr(v-vy )
N (Rlu + Q,zn.\ iﬁ\} .

We notice that on the curve, Y i

X, =r cosé, .dxl = _dll = -r sinede ,
X, =T sin@, _dx2 = _dl2 = r cosede ,
x3 = 0 ’
and that
2 _ _ W 2 _ 2 2
R™ = (xl X, )T+ (x2> xz'_). +x3' .

So we have

BJZ:E("Q-I) = QAT Sob%(fydf % Y_@,\n‘\ Rm 3 (s ©
hw(1v) ° 7

v (Qua + Ran)sin8 ]d
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- o [bEe 6R7 [huaddine

Hrel-v) J
V
+(x--‘k")cose i\ de

(6.3)

We may now evaluate the normal stress on the boundary, z'= O:

®
(vetrva [n-3c v - o
G’azkr 0) )DTW‘)QF?K, L(x,,-x,_)smﬁ
lkn(\-v A T
"-(X‘ ’X\)COSelde ) (6.4)
2 _ T2 _ 2
where Ro = .(xl xl') + (x2 . xz'b). .
When z' = O, r'2= _x1'2+ x2'2, where xl' =r' cos{).,
x,' = r'sing . Then if we let =96 - ¢ , dd = de , for a

fixed angle ¢ ’ equation (6.3) becomes

Caa (v O\ =+ Qr b‘?(r\dr§R { rsm. (a+g)- rsn\‘#]
e 1-v)

V
 sin@te§) . ‘f m(¢+¢)-r'cm¢]°“ (¢+¢)} da

so ez (r)0) = rpur gbﬁf}dr &R;s (r-rlesse) dat
yr{-v) ]

) )

(6.5)
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2 .
where Ro can now be written as

Rg =r? + r'? - 2rr'cos o

]
If we let m = %;%;—,)—2 , then (6.4) becomes

[, <3
22 (¢/0) = tur § N TOY

H.'ﬂ'(\-V) °
(7““ (r -r'cosol) det
z (.!'.";:)%UL* ‘lm§—2mu)sd-yl" - (6.6)

Now elliptic integrals of the first and second kind are
respectively.
. 1%_

K(m) = 5“;4%?

T
J Sl am)-mesd O

E(m) = Jé(\ ~msin 63(1.9

where 20 =«

- 7.,‘ g [( % -'lm) -Lmos \k}y”d\a(

Integrating (6.5) by parts over K gives,

J e-r msot\d.o( ~
(P4 [(4-2m)-1mecst [ B

(-""Y" Elm) - r{(—-"‘{m 2.n) E %Ktm)]}

(\ m. 2m 4 "\)
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So after combining terms, (6.5) becomes

as (r10) = sf (£t + (n3 K )

* % §l) dr

r-v'

EARE | (6.7)

Notice that a small displacement on the boundary in the
z direction, duz(r,o), is given by %b f(r)dr. Then, since

g zz(r',o) = g{r'), equation (6.6) becomes

ez (r'0) = dug (ro) |Em)
Sun n’-&mg [

+ (1-m)2 K(mﬂ'}l.‘;-dr
=9 () | (6.8)

The solution of (6.8) for‘duz(r,o) and hence for b f£f(r) is not
' r

readily found as in the previous half space problems
(chapter 5). However, the elliptic integrals of equation (6.8)

may be written in terms of Bessel functions.[l‘l‘.|

S AT IR GO




5o f LEO T 6146 -

V4 T
_%_ db =ig dR3
) f*-:r"ws"(ﬁ ™ orh_%!"“—'—;s'nzﬂ
' - a Wl A _
= LR\ , Where p=¢
e v

By a Landen transformation: 131

K(p) = VmK(m\ [\ + (\—m\"‘\
= v K (m)

Then [ TOTL04g = 2K (6.9)
° w r-\—r')

Differentiating (6.9) with respect to r gives

j S;(r'(h'. (¢€) §d§
=i§—K(m) + (N—r AKU& d‘l dm
T { (esc)? Ak dm dr )

where d K(m\ E(m) - K (h\)
ak REY &

~J
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&17_= \__Qq. )
dk .
dm lnyi ?
m =k
dm - Wr'(\r"f)
dr (rav)3
S | jm (+0)§4€
o
= -m K(m_ +E(.m
S {\ VoK) x%,
o EOTL01S

- m {(\-MWIK(M) + Elm\} . (6.10)

With the help of (6.10), equation (6.8) may be written

@ 0O

_A_ dui (T‘.O\ To (I';)_j\ (ff)rfdr‘df = (r.)
ik W e
If the Hankel transform of order n and its inverse
are def.ined by
%T() = X (),("\_S;\(Ylf)r'dr' y
0 (6.12)

3(\'\ = rc_ﬂ—() Ietdf (6.13)
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then we may write equation (6.11l) as

2 5 Ay (¢,0) T () T, (v, S e dS

-y A

o ¢

f T (v'8) §45 .

Comparing terms on both sides of the above equation, we

have that

alf) = ( duele®) T.(0) rdr .
Y LS'{{F‘ Or (6.14)

Inverting (6.14) according to equation (6.13) gives

duz(n®) v v
el 73 a8 T f)fdf .

(6.15)

Equation (6.15) is then the solution of the integral equation
(6.8). This solution may be simplified further by noting that

the Hankel transform of g(r') is given by equation (6.12).

Then (6.15) becomes

dUe (r0) _ wg i%u'm(«m GO rfdrdf .
dr M)

Integration over { , with the help of (6.10) gives

ro) = |- ol )2 K () +E o). A’
dug (v o) Lv grog )i—(\ Y2 K () +E( )l dr

L >
dr v r-v (6.16)



From (6.16) the dislocation density, f(r), is known, since

B'Hv) = -2 dus (V,(ﬁ
dr

Then the complete stress and displacement fields may be
found using the Peach-Koehler formula (2.17) and Burgers

formula (2.12).

Next we consider an axisymmetric torsion problem for
the half space, z > 0. Let there be an axisymmetric shear
stress given on the boundary as <& _.(r,0) = S(r).
{Again we have dropped yriting"e“ in the argument). Let
Y‘ be a circle of infinite radius in the z = O plane,

and slice the material inside this circle. The two faces

of the cut are then rotated relative to each other. We

notice that here the relative displacement, 4 u will not
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be constant around a closed curve, Yf . Since the Burgers
;formula, equation (2.12), was derived assuming the relative
displacement to be constant around a closed curve ﬂ' , We must
~go back to equation (2.4) to find the expression for the

displacement field.

Recall that equation (2.4) was written

W (e) = ‘g A () W Ly (e,e") Ci'ml y dS
A

 where AL is the top surface of the cut, covering the whole

z = O plane. Then the displacement in the y direction, u_(r')
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is written as

Uy (e} = { G AU (2) Ugy (e,2) dS .

*

Notice that the positive unit normal as defined in Chapter 2
is pointing in the negative z direction.
| To evaluate this displacement on the boundary of the
half space, we set i’ = 0. Also, if the relative displacement
of the two faces at any point (r,®,0) is denoted by A u(r),
then the components of displacement in the x and y directions
are:

A ul'(f,e,d),--_ -Aulr)sine,

AN u, (r,0,0)= D u(r)cose,

A u, (r,8,0)= 0,

12 + xz2 . See Figure (6.1).

Yyi

- 2
where r~ = x

r :S:(P)
N

x Y

Figure (6.1)
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so uy, evaluated on the boundary can be written as
o MY '
u\’ (T: 0) = 5 J {‘ C“hl A“(T) S\}\. e
0 ©
* ot AUl cos 8]-
Upay (el rdOdr .
{(6.17)

We notice that on the x' axis, at the point (r',0,0) the shear

stresses, © and dzy are equivalent. Then,

20

Gze (r'.o,()) = 6‘*‘) (r',0,0\

= 1#6\}\3(?*,0,03 = S(e') .
oz’

Fraom equation [6.17) we have(writing uy (r',0) to mean uy(r' ,0,0)),

. o LW
}_\._))_'(r‘i) = —J j ( C\ghl s.\“'e
o2 l1

- (13\9.9. Cos 9>A W) UQ,_'\,_.:,' (".f') rdOdr R

U.)\Q.V'C. LL[‘L'Ka' = B uli v
z' {6.18)

In order to perform the © integration, we must first sim-

plify equation (6.18). From equation (1.25) Green's function

H\:J\HWH!
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for an infinite medium is:

9\ - \2, ')""’_}__ K -\_L\' ‘X
[T L L g XIMR,““ A-\—')_}L R,Lm )

Uty (g,0) 2 ) [&QOa - Q,ﬁmk]

gﬂ}k A+%P. (6.19)

The only non zero components possible with C and C

“ | 13k1
(for a linear, elastic, isotropic material) are

23kl
(.\3\3 = C‘\as\ = an = Cz%%l = M .

So equation (6.19). becomes

[ 1] ® zﬂ
}_.a\éj_(r V2 ) = { g- {S\.ne (uag’\;’ (","') '\'uu’;;‘(ﬂf'))
2

- 050 (U3 (¢

s a9 (r‘r') 3 }A u(r) vrdOdr
(6.20)

Evaluating equation (6.20) on the x' axis, with y'=z'=0,

x'=r', x,=0, _x1=r_cose', and x2=rsine, we have:

3
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, _a_\h_ Y 0\ = - g [ { >\+E Sme[g(rcos B-¢ rs;neéf]
oz’ A +Lp

(-

- C,OSe Ki R;z - IM (’irls'mte
AvIp

'3)]75 VALY L. O

where = R:. (X\-X\ ( Ko
= (ru)se r) Frismt®

ti et cdrr'cos B

Simplifying further gives

BU(\'LV"O) = -\ gm
oz’ gw j

rhig

"2_}4 RO.BCOSS
}wl/u.

- L,() -\—& ersin® \Q.g }A \,\(r)rde dr

)\ -\-1/&

The integration over © may now be performed. By integration
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by parts, and by using the results of the integrals evaluated

in the first axisymmetric problem we have that:

ur

c0s8d0 _ /m AT -w)E(w - Klm) = _’L‘_,%
5 R? (“\"') \1m (1-m) m &rr) I »
and that:
kAl d
S s 840 = (_Lq_\/t ;S____ .
Rs re! Im
S.o b Ll, (T’O\ = - S” {.;2-&— (n\ 3[11
o=’ Ry H A*l}u rel
g
bre'fa) dw _I_.}AU@ cdr
rr /. }\_\_1/" 3m

Algebraically simplifying gives,

Blk;(r"o\ = *\ gw \ X(r"-}r"’)E\m}
0z’ ) er/(ear') L (rer)t

- K{m) XA WYY\

=—;}S(*"-
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So we have an integral equation for A u(r):

Se) = ﬁ 2B - ]2t de,

wre' (r-e)? ra+y'
°

(6.21)

Again the solution of the integral equation (6.21) for Au(r)
can be found by expressing the elliptic integrals in terms of

Bessel functions. Recall that from equation (6.10)

§ 30T 0548 =

) T (r-\’ )

{0 -m)h Klm) +E(m\i

Then differentiating equation (6.10) with respect to r' gives

rfnyn («') 7, (V'{K 1&% = =\ Y""' K (wm) +E(m)]

o lr-r)? e

- - K (m) rE W
L o e

b panel| TS0 QY

= = (vrar'2) Elm) _ \((myx

re'(ear) (r=-e)?

(6.22)

Then, using equation (6.22) in equation (6.21), we have
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Sleh = oo [Tl TN T auldds

o 0O

(6.23)

Recall that the inverse Hankel transform of §Ti) is defined

by equation (6.13). So from (6.13), equation (6.23) becomes:

o oo

-»Y grT.(f'f)_)-.(r()flﬁ\kk"\dii“

6 @

ORI

(6.24)

Comparing terms in equation (6.24) gives

g—({) = " Smr eHaudn) dr

(4]

(6.25)

Inverting equation (6.25) according to equation (6.13) gives

Aumv\_gg‘amrn af .
M

2 ,
(6.26)
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Then, since the Hankel transform of S(r') of order one is

defined by equation (6.12), equation (6.26) becomes

Auw(r)- ;‘2 /(r)J(rY)J(rs) p'dvde’
or,
Aufey =L [S [Jﬂ ) (rs) dY (6.27)
/ojo ‘!

Equation (6.27) is then the solution of the integral equation
(6.21). However by using the following result we may simplify
equation (6.27) further.

ag "o
fJ.(r'f) J.(rg)dS = ” Scne dd

[}‘- r cos‘{]lé

where « = ¢/2 .  Let P2=r'2/r2, then

fd.(r’s) 3.(r§)ol§=r,—'_:[K(P)‘E(P)] .

Q

And equation (6.27) becomes

Auér\):..;/:-'_/s (r‘)[.K(P)- E(P)] a“". (6.28)




Then with the relative displacement known from equation
(6.28), the displacement field is known through equation
(2.4) , and hence the axisymmetric torsion boundary value

problem for a half space is solved.

89.
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Aggend ix g}_

Suppose that we have a boundary value problem in which

$4 in equation (1.2b) is the whole boundary of B, so that
equation (1.2c) is absent. Then with a point force at r'
the Green's function satisfies the inhomogeneous field equation

~given by

Cr,u Wtn e () = Bim $er)  forrwn®B,

(a.1)

and satisfies the boundary condition

(_L“\LQ ulm‘k (.':‘_tl} = O on BB= S;

To balance the point force at r' it is necessary to place
another point force of magnitude -1 at r_ . To balance the

torque created by the point forces at r' and it is necessary

I,
’
to place a force F at £o+g ~F at £o—§ WF' at £o+§ , and -F'
N , ,
at Eo-é , making F parallel to € and making F' parallel to€ .

See Figure (A.l).

F F’
e -
-6 Yo
< €
-_E' -F

Figure (A.1l)
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- The forces F and F' are chosen as to contribute equal torques.

So, , .

ex b =§"E ’
and

ex b +§,'»<E' ="/9_ [+ r)x 1
or

where 1 is a unit vector representing the point forces at I,

and at r'. Then equation (A.l) becomes:

Qa"kll Wam ik le.c') = Sim ;'S (e-¢') + S(x-g\]

-F L; le-g-€) - Jlens g\]

. Fc'[ﬂr-&‘é‘)’ $egs g‘\] .
(A.2)

Expanding to first order terms gives,

S(r—ro-& \ = S(g -r:e\ - &\o %—xfs (v-ﬁ,\ -~ e
3 (!'V‘o*é\ = Sle-e) s €p %‘Ps (g-r_._\+ ----- .




92.

So to first order, we have

et -€) - dle-epve)=-2€pd Yler)

Mg

Then equation (A.2) becomes

Qa;h.ﬁ. Wim 1y (e ')

= Sim [S(E-g,\' B(Q‘I:W]
*U{Rep vFiey ) Skow),g

(A.3)

- . ‘ ‘ - - . ‘
Since F “ € and F' \\_e_ , then Fi=C_l€-\ and F:'i_=C2 €. . Also,

' P
since € xF=€xF’', Erme B = {-‘-‘hé', ¥.. Combining these two conditions

~gives:
Can €3G ey = e € Gg,
or - Eis\\ v G CS = &g\ € Go&
= (.\‘-"cl
So

Fi’Qea' and Fc'=-C. el
(A.4)
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Now

TuvFe = Lqu By 6o

= -1 | P

M Cipe (' -mg) B
So
ga“\l Fi Eg ¥ %L'\k Fg €w
= “/u‘ E-L\\o. (e -fou )y - ‘/W&\k ('i"“’i“k .

or

o
"

El:\\l ‘_F‘ e\l ¥ F\ Gk

=y o= My + 1y L)) ik\x

Taking the antisymmetrical part of the above term in brackets

~gives

0 = F).eu - Fu € + Fj‘éé - F\v: e’i‘
v} | 1
Y e i+ My - ) S
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Using equation (A.4), we have

O= \A). (C; GS'E“ “C\'eh:c‘-s 'Cl G‘E':_ ‘\'C\é\o.e;) |

- Yy (e AN A URACIR T

[} [} ’
0= Cejee -Geee; =Y i-rn)Sim

+ ‘/‘i- (T{' ’ro'\\ §km | ?

or again from (A.4)
! ¢ \ f
F‘e\g . F‘ eb. = /\,‘ (j‘" "Tos\Skn\
A\
B /‘4 (“kl’rok\sgm
(A.5)

Using (A.5) in (A.3) gives

Coed Utm 3 () = i[5 e ) - Tleme) |
+ ‘/1 X(T;"foa\g\m - (rP"“P)SPm-XS (!'Q))p )

(A.6)

%or:GB.
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Now we are ready to apply the Gauss divergence theorem on

u,(r) and u; (r,r') as before. In addition to equation (A.6)

Green's function, ulm(£,£') satisfies the equation

C.. i Yn; =0
C,_\\J Uy, - (i,w‘. ) ’ 'gorr Q“BB"Sx . (A

We follow the same pfocedure as in the mixed case except now

we use all of B as the integration region :

f [ Wi (o) Ut v, ") -UWtale,¢) uz,k(ﬂln;&;hﬂds
S\

- -

= [ K\h(ﬂ U ele ') - U e \lim(‘-’ﬂ»i Giee AV,
B (A.8)

The right hand side of equation (A.8) is

J‘[ We () Wom i (r,r') + Wi () Ulm, Q,g')
B
~ Ut e, ') uz,\mg(ﬂ

" U (cc") Uu,k(r\]Cc;u av .

Because of the symmetry of Cijkl' and by using the field equa-
‘tions and boundary values for u,(r), the right hand side of

equation (A.8) becomes:
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f[uu () Uknky (c.c) +Utale) Ql(r)] Ci}hl a\ .
B

Using (A.7), the left hand side of (A.8) becames

- S Ui Le,e) Wik (e) 1y Ciyue d S

Sy

= - S Wim Lo eVt (Y AS

C.
i

Combining the left and right hand side gives

[ e eV ea (0 AS
Sy

= f ‘.U‘i(-'-\ Uln ey f,6") + Ut (r,¢") &&)]G;ud\l,
n

Then using (A.6) we have

j Wi (e e') £y () A S + Y uum(;,«;')ﬂ(ﬂ d\

S, B
= - u.t(_r_'\ {Sim ‘_S (!'C"\ - X (I .rl))

S 3 I/Q {(n-l-m’spm - (rPI- r‘f\sf“}s(t&\"}
-dV

= U e, U le)- v‘p roM_Um oles) - “Oipm (r.\] (.9]

" Notice that the terms involving I, represent a rigid trans~
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lation and‘rotation about r,- That is, the traction (Neumann)
boundary value problem is unigue up to an arbitrary rigié
displacement. So regaiding the terms involving r, as arbitrary
constants that can be specified independently from the rest

of the problem, equation (A.9) becomes

Ualr) =

\
9

W eV E2 dS 4 S.m.l o) §edV.
B

e
=31
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