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ABSTRACT.

This thesis is, basically, a clear explanation of
B. Kvarda Garrison's non-transformation proof of Mann's

Density Theoren.

Chapter 1 consists of preliminary work which includes
lemmas, observations, and a basic construction. The
theorem is proved in Chapter 2 and in Chapter 3 exanmples
of Garrison's method are presented. Chapter b4 is the con=-
clusion of the paper. Some possible applications of the

method are stated in this chapter.
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INTRODUCTION.

This thesis is based on a new, non~transformation
proof of Mann's Density Theorem. The proof was first given
by B. Kvarda Garrison [ 3 ]J. 1In this paper we generalize
some of the arguments in her proof, creating out of them
several lemmas which may be of independent interest. Be-
fore expanding on. this, we must make some definitions and

provide some notation.

Let P be the set of positive integers. If A and B are

subsets of P, then
A+ B=AUBU {a+b:aehAandd e B}.

If m and n are positive integers such that m £ n, then
[m,n] = {x e P :m< x £ n}. Ifm=1, then [m,n] is

called a fundamental set.

If A and F are subsets of P with F finite, then A(F)
is the number of integers in A N F. When F = [m,n], we
shall omit the parentheses and write A{m,n] for A({m,n]).

If m =1, we shall write A(n) for A{m,n].

Definition. If A is a subset of P, then the Schnirel-

mann Density of A, denoted d(A), is the greatest lower

bound of {A(n)/n : n € P}. That is

d(a) = glv{a(n)/n : n € P}.



Using this definition of density, L. Schnirelmann [ 81}

was able to prove the following lemma: if C = A + B, then
a(c) 2 a(a) + d(B) -~ a{a)a(s).

This is known as the Landau-Schnirelmann Inequality. It
first appeared in 1930. The next}year, Edmund Landesu and
Schnirelmann noted that for every example they had found,
the expression d(A)d(B) could be dropped from this in-
equality, provided that a(A) + a(B) < 1. They conjectured

the following theorem: if d(A) + a(B) ¢ 1, then
a(c) 2 a(a) + d(B).

The simplicity of this conjecture captured the at-
tention of many mathgmaticians in the 1930's with the re-
sult that a considerable amount of research time was spent
on it. A. Khinchin [ 5 ] writes that in 1935 half the
English mathematicians were devoting their full attention
to this problem. Nevertheless, the proof eluded everyone
until 1942 when H. Mann [ 6 ] published his famous theorem

which may be stated in the following form:

Mann's Density Theorem. Let A and B be subsets of P,

let C = A + B, and let R be any fundamental set. Then
either C(R) = P(R) or there exists a fundamental set
W = [1,m] such that m £ C, W < R, and

C(R) > A(W) + B(W).
() ~ P(W)

g



The Landau-Schnirelmann conjecture follows immediately

from this theorem.

Mann attacked the theorem in a completely different
manner from his contemporaries. His proof relies on trans-
forming the sets A and B whereas other mathematicians had
been searching for a "straightforward" proof involving the
counting of elements of the various sets in certain inter-

vals.

Another proof (F. Dyson [ 1 }) has appeared since
Menn's proof. However, although the methods differ,
Dyson's proof also depends on the transformation of A and B.
Neither of the proofs is particularly illuminating as to
what happens when tﬁo sets are added together. Also any
attempt to generalize either proof to two or moré dimen-

sions (in a certein way - see conclusion) has failed.

Until recent months, no new proofs of the theorem had
appeared. Then, in 1968, B. Kvarda Garrison [ 3 } proved a
slightly weaker form of Mann's Theorem without transforming
A or B in any manner. Garrison's Theorem the same as that
of Dyson., The Landau-Schnirelmann conjecture also follows
immediately from this theorem. The theorem is stated in

‘the following form:



Garrison's Theorem. Let A and B be subsets of P, let

C = A+ B, and let R be any fundamental set for which
P(R - C) = k 2 1. Then there exists a fundamental set W

such that

c(n% > A(W) + B(W).
P(R P(W)

Although complicated, Garrison's proof involves only
the counting of elements of A, B, and C in certain inter.
vals and does not involve the transformation of the sets A
and B. Thus, Garrison has finally discovered the proof

that eluded so many great mathematicians in the 1930's.

Originally, Garrison looked for a new proof of Mann'sg
Theorem in the hope that it might generalize, in a certain
way, to the n-dimensional case. However, after she found
the new proof, Garrison constructed an example [ 4 } which
clearly demonstrates that the above theorem is not true in
the certain n-dimensional case. Despite this discovery,
her proof may yet be useful for other applications. There
are othexy more general, systems than the natural numbers
for which it is not known whether the Landau~Schnirelmann
conjecture holds or not (see conclusion). Modifications
.of Garrison's method may provide a proof in some of these

systems.

Garrison's proof is divided into cases. An induction



argument 1is applied to the,cases and the number of cases

is eventually shown to be finite. Much of the work in her
proof is repetious. In this paper this material is
gathered together into more general lemmas and construct-
ions and some of the proofs have been simplified. These
lemmas comprise Chapter 1 of this paper. Although every-
thing in Chapter 1 is applied in the proof of the theorenm
or in other lemmas, a good portion of the material seems to

be interesting in itself.

The proof of Garrison's Theorem appears in Chapter 2.
I have kept Garrison's general format of dividing the
proof into cases. However, more emphasis has been placed
on the induction argument and more detail has been in-

cluded.

In Chapter 3, two examples are presentéd which clearly
illustrate the method of proof. These examples were not
easily found but it is clear now that they are very general
in nature and many more can be found fairly gquickly. No
other examples of Garrison's method have, to my knowledge,
been found and thus I do not know if there exist examples

which are different in nature from the ones presented here.

Chapter 4 is the conclusion of this paper. In it, I
attempt to show in which directions we can go from this
point and to illustrate the research potential of the

thesis.



Although simple cbuhting arguments are used throughout
the paper, the proofs are very complicated. In order to
increase the understanding of the proof it is suggested
that the paper be read in the following order: (1) Chapter
1 (thoroughly), (2) Chapter 2 (1lightly), (3) Chapter 3

(thoroughly), (4) Chapter 2 (thoroughly), {5) Chapter b.



CHAPTER 1.

PRELIMINARY LEMMAS AND OBSERVATIONS.

We shall first prove two basic results that do not

require any further definitions.

Lemma 1. Let R be a non-empty , finite subset of P and
let X , m , and n be positive integers such that m + n = k.
If S and T are two non-empty sets that partition R such that

P(s) > B(T)
m n

then

P(R) - x > P(T) - n.
P(R) = P(T)

P(T) - n.

Proof. Let us assume that P(R) - k
P(T)

P(R)

<

Then P(R)P(T) - kP(T) < P(R)P(T) - nP(R) implies
kP(T) > nP(R) implies mP(T) + nP(T) > nP(S8) + nP(T)

implies P(T) 5 P(S). This is a contradiction. Therefore,
n m

P(R) - kx > P(?) = n .
P(R) - P(T)




Lemma 2. Let A , B , and X be subsets of P with X

finite. Let g € P - (A + B) such that if x € X , then x < g.

Let Y = {g - x ¢+ x € X}. If P(X) = A(X) + B(X) = u , then
P(Y) 2 A(Y) + B(Y) + u.

Proof. If a ¢ ANX , then g - a ¢ Y - B, Thus

A(X) ¢ P(Y - B) = P(Y) - B(Y). Hence
B(Y) g P(Y) - A(X) = P{(X) - A(X) = B(X) - u

which implies B(X) 2z B(Y) + u. Similarly, A(X) 2 A(Y) + u.
Therefore, A(X) + B(X) > A(Y) + B(Y) + 2u which implies

that
P(Y) = P(X) = A(X) + B(X) - u > A(Y) + B(Y) + u.

The next observation is a very old result first proved
by Schnirelmann using a counting argument. Our proof, how-

ever 1s based on Lemma 2.

Observation 1. If g € P - (A + B) , then

P(g) 2 A(g) + B(g) + 1.
Proof. Suppose that P(g - 1) 2 A(g - 1) + B(g - 1).

Then

P(g) = P(g - 1) + 1

2 A(g - 1) + B(g - 1) + 1



= A(g) + B(g).+ 1 .

Now suppose that P(g - 1) < A(g - 1) + B(g - 1). Then
Plg - 1) = A(g - 1) + B(g = 1) - u , for some u > 0. Note

that [1 , g -1 ={g - x : xe {1, g ~ 1]}. By Lemma 2 ,

P(g - 1) 2 A(g « 1) + B{(g - 1) + u

> A(lg - 1) + B(g - 1).

But this contradicts our sassumption that

P(g - 1) < A(g - 1) + B(g - 1). Therefore ,

P(g) 2 A(g) + B(g) + 1

Before proving any more lemmas }s shall make some

definitions.

Definitior-1., For k € P , let

X
He = Uy 5 vy s con 5 7)€ P03y ¥p< i<y b

Definition 2. Let k¥ € P and let

I = (gl > By 5 cre s gk) € Hk' Then

i < <
(0 if 1 ¢ x 84
i(x , I) =‘js if g, < x < Bopp 804 0 < 8 < k

Wk ifgksx
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If it is clear which T g Hk we are referring to , we

write i, for i(x , T) .

Definition 3. Let I' be as in Definition 2. Let a € P

be such that a £ gy Then

M(a,l') = {xe[a,gk] : Pla,x] > Ala,x] + B[a,x]+ix-5a}

o if a =1
1 ife=* 1.

vhere Ga = {
The previous three definitions are made in order to
clarify the following definition which will prove to be very -

N

useful for the rest of the paper.

Definition 4. If M(a,T') #¢ , let

o = afla,I’) = 1 + max{x : x ¢ M(a,l')}.

Thus a-1 = max{x ¢ [a,gk] : Pla,x} 2 A[a,x]+B[a,x]+ix-Ga}.

Also let s = ia—l and t = k - s . Note that O £ s $ k ,

0 £t <k, and a-1 ¢ 8y =

Now we shall prove some lemmas using the notation we
have developed in Definitions 1 through 4 , in each case

assuming o exists.
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Lemma 3. If o eXdists and a < x ¢ g, » then
Pla,x] s Ala,x] + Bla,x] + i,-8=1.

Proof. From Definition b , we have

Pla,x] Pla,x] - Pla,o-1]

[ 748

Ala,x] + Bla,x] + 1 - a# -1 - Ala,a-1]

- Bla,a~1] - s + 8,

Ala,x] + Bla,x] + i, -8 =-1.

Therefore , Pla,x] ¢ Ala,x] + Bla,x] + i, = s - 1.

Observation 2. If o exists , o0 £ x ¢ 8y and

Pla,x] 2 Ala,x] + Bla,x] + u , then u g i, - s - 1 which

implies 8 + u + 1 g ix .

Lemme 4. Assume o exists and t » 0. If g ¢ AU B,

s+l
then

(1) o < 8., and

(ii) oo € A " B.

Proof of {(i). Since t > 0 , s < k. Clearly o £ g

s+l

since a-1 < Boypw If a =g then i = s+l and

s+l °’

Pla,a] = Pla,a-1] + 1
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2 Ala,a-1)1.+ Bla,a-1] + s -8, +1

= Ala,a] + Bla,a] + ia - 6&

which contradicts the maximality of a-1.

Hence a < Bg+1® Note , therefore , that ia = g,

Proof of (ii). From the definition of a , we get

Ala,a~1] + Bla,a-1] + 5 = 6a + 1

n

Pla,a-1] + 1
= Pla,al

< Ala,a)] + B(a,a}l + s - da

Ala,a~-1] + Ala,al + Bla,0-1] + Bla,a] +65

a

Cancelling on both sides of the inequality , we obtain
1 < Afla,a] + Bla,a)]. Therefore , Ala,a] = Bla,a] = 1 and

thus o € A N B.

Lemma 5. Assume o exists and t > 0. If gs+3é A+ B

for all 3 , 1 £ J s t , then

(i) P(g - a) 2 A(gS+l - o) + B(ss+l - a) + 1

s+l
and

(ii) Boyy — O ¢ AUB for all J , 1 < j < t.
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Proof of (i). Notice that

(1,85, ~ 0] = {g,,; - x : x e [a,g_,; - 1]}. By Lemma 3 ,
Plasgg,y - 11 s Ala,e_,, -~ 1] + Blo,g_,, - 1] - 1.
Therefore ,

1] =1 - u

Pla,g ,,-1] = Ala -1] + Blo,g_ 4~

841

for some u 2 0. PFProm Lemma 2 , we get

P(gs+l-a) 2 A(gs+l-a) + B(gs+l-a) + 1+

2 Alg_,,-0) + Blg_ ,-2) + 1.

s+1

Proof of (ii). Suppose there exists a Jo € [1,t] such

that g - & €A UB. Then since , by Lemma 4 , o« € A n B,

s+Jo

we have 0+ 0 € A+ B, That is € A+ B

Es+go” > Bs+jo
for some jo € [1,t]. This contradicts our assumption that

gs+3 ¢ A+ B forall §J ,1¢ 3 < t. Therefore ,

Bgey = O ¢ AUB for all §J , 1 < 3 S t.

Before proving any more lemmas , we shall make a very
important definition. The definition will involve the con-

struction of a sequence of positive integers , Xys Koy cne

around which the proof of our theorem will be built.



1k

Definition 5. ULet T =.(gl,32,...,gk) € Hk' If o(1,T)

exists , let x, = a(1,I') , s, = i(xl-l,r) »and t; =k - s,.

1 1
Agsunme xl . sl , and tl exist. If tl >0 , if
r, = (gsl+l'xl""’ gk-xl) £ Htl,_and if a(l,rl) exists ,
then let x, = a(l,Fl) » S, 1(x2-1,Fl) » 8nd t, = t, - s,.
Let n 2 3 and assume Xy s si , and ti exist , 1 £ i < n.
If t . >0, if
T = (g - sev e s, =X ) e H
n-1 sl+...+sn_l+l n-1 k "n-l tn-l ,
and if a(xn_a,Fn_l) exists , then let x = a(xn-2’rn-l) .
s, = i(xn-l,Fn_l) send t =t . -5 .

Observation 3. 1If X, is defined , i = 1,2,...,n , then

]
[
-
t

2 k ~ 8

Proof. If n 1

implies 54 + tl = k.

Now assume the observation is true for all i , 1< i< n.

Thus ,

But t. =t - s_. Therefore ,
n n n
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n n-1 )

J s, +t_ = s, + 5+t
=1 4" i= v
n-1
= izlsi * tn--l

=k'

We now prove some very important lemmas concerning the

construction in Definition 5.

Lemma 6. Let T = (gl,ga,...,gk) € Hk and assume

g; £A+B ,1<4ig< k. Let na2 3 and assume Xy exists ,
1<i$n-l. Ift . >0, then
P[xn-E’gs tooats +l-xn-l] 2

1 -1

+1 1 n-1

C'+s
n-l

Proof. Recall from the definitions of xn-l and sn-l

that gs n-1 xn-2 2 xn-l 1 gsl+...+s +1

n=1

Also from Definition 5 , we have

T X

ne2 = (B 4. . .45 417Fpopr o 08Xy o) € H

1 n-2 n-2

Thus i(gS = s 4+ 1. From Lemma 3 ,

-X ’r )
l+...+sn_ +]1 "n-2’ n-2

we obtain
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P{x 8 -x_ 1.« Alx
n~1l sl+...+sn_l+l n-2 Ne 1 nel

+ B[xn-l'gs +...+8 +1-xn-2
1 n-1

= A[xn-l’gs +...+%8 +1'xn-2]
1 n-1l

+ B[xn_l,g -X

S.%*,,.+8 +]1 "n-2

1 n-1

oot o+l %popl B

Thus , P[xn_l,gs + nes
1 n-1

A[x ’Y:4 -X ] + B[x »8
n-l sl+...+sn_1+l n-2 n-1 sl+...+sn_1

for some u 2 0. Notice that , [xn-e’gsl+...+s +17%01

{g -x : x ¢ [x 2 &
sl+...+sn_l+l n-1 sl+...+sn_l+l

Therefore , by Lemma 2 , we have

P[xn-e’gsl+...+s +l-xn-l] 2 A[xn-2’gs +...%8 +l‘xn-l]

n-1 1 n-1

+ B[x 8
n-2 sl+...+sn_l

The next lemma tells us exactly when the xi's exist in

the special case when g4 £A+B ,1i=1,2,...,k.

Lemma 7. Let TI' = (81’82""’gk) € H be given. Suppose

that g, ¢ A+B,1<1igk. Ifk>O0, then x, = all,17) ,

5, = i(xl-l,P) , and t. = k - s, exist. Let n > 1. If x

1 1 i
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exists , 1 £ i £ n-1 , and bn > 0 , then X s 8, and tn

-1

exist.

Proof. By Observation 1 , P(g) 2 A(g) + B(g) + 1 ,

and thus g, ¢ M(1,r). Hence a(l,T') exists. Therefore ,

> 0. By Lemma 4(i) , x, < gsl+l' Thus

Suppose tl

>0 and T, ¢ Ht . By Lemma S5(i) ,

s.+1 71 1

l l

- > - -
P(gSl+l xl) 2 A(gs xl) + B(gsl+l xl) + 1.

1t

Thus g -X. € M(l,I) which implies a(l,Pi) exists.

l+l 1

Therefore x, = a(l,Pl) » 8, = i(xg-l,Fl) , and t, = t, - s,
exist.

Let n 2 3 and suppose X, 1 exists and tn-l > 0.
Clearly X, < B 4., .45 +s +1°%po0° Thus

1 n-2 "n-=1
0 < Xp2 < Bs . +...+s +1"%*p-1" Hence I‘n--l € Ht + By
1 n-1 n-1
Lemma 6 , B 4.. .45 +17%,.1 € M(xn-E’rn-l)' Therefore ,
1 n-1

a(xn_z,rnpl) exists and thus x = a(xn-e’rn-l) .
S, = i(xn-l,Fn_l) , and tn = tn—l -8, exist.
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Observation 4. If gi'é A +B ,1<5 1<k , then there

exists an m £ P such that tm 0. Thus the sequence of xi's

is finite.

Proof. If x, exists , then , since 1 ¢ s

1 < £ k , we

1

have 0 £ tl < k.

Suppose X exists , 1 £ 1 £ n~1 , and tn-l > 0. Then

i <
Xo 0 8, o and tn exist. Since 1 ¢ S, < tn-l , We have

8ince k is finite , there must exist an m € P such

that tm = 0, Therefore X1 does not exist and the sequence

of xi's is finite.

In the next two lemmas we assume g, £ A+ B, for all

i,1¢1¢<k.

Lemma 8. Suppose x, = a(l,I') exists and t, > 0. Let

1l 1l
R be any integer such that s, < R $ k and let
Pl = (gsl+1~xl,.;.,gk-x1). Assume
(A + B)(gk) P(gk-xl) - £

Ple,) -  Plgg-xp)
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Proof of (ii). We shall use Lemma 1 for the first

time. Let R = [l,gﬁ—xll , T = [1,22-1] , S = [ﬁe,gﬁ-xl] .

o s %2 , and k = €1. By Lemma 1 ,

=]
]

(A + B)(g,) P(gﬁ-xl) - £

1

v

P(gk) P(gﬁ—xl)

P(ﬁe-l) - 8

tv

2

P(§2-1)

A(X,-1) + B(ﬁz—l)‘

tv

P(£2-1)

Proof of (iii)., Once again , we shall use Lemma 1 ,

with R = [1’8E"x1] , S = [l,§2~l] , T = [§2,gﬁ—xl] , n = €2’

m = 32 , and k = ﬁl. By Lemmsa 1 ,
(A + B)(gk) > P(sﬁ-xl) - €l
P(g,) Plgp-x;)
> Pl%,.8p-x,1 - §,
PIZ,,ep-x, 1
Plx),ep-x,] - £,

P[xljgﬁ-xe}
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By Observation 2 , s, + §n < i(ﬁn-l,rn_s) =i , say , and
g A =X < g -x < X -1 which
sl+.. +sn_2+sn -3 sl+ . +sn_3+i n-3 n
implies
»
P[xn—2’xn—l] 2 P[xn-E’gs +...+8 +8 'xn-3]
n-2 n
= P[x yE - l.
n-3 Syt ts  +S n-2
Now suppose (i) holds. Then 0 = gn-l - §n‘which
n . ¢ n-1 n-1 .
implies s = € .. Thus =.X s, + 8 .= ) s; + s, vhich
i=1 i=1
implies Qn-l = 8%, 1- Therefore , we have
(A + B)(gk) > ‘P[xn-E’gﬁ'xn-l] - thoa
Pley) Plx,_p285=%p ]
) P[xn-Q’xn'l] -5
P[xn_z,xn-l]
PIx, 3285 4. .. 4a 48 ~Xp.2l - 5y
> 1 """ "n-2 "n .
Plx g A =X ]
n-3 sl+...+sn_2+sn n-2

Now suppose (ii) holds. Then , by Lemma 1 ,

(A + B)(g,) Plx _,.8p=x, ;1 - ¢%

> n-1
P(g,) Plx 8 =% ;]
> Plx 2’xn_l] - Sn




A =X

P{X ‘s &
n-3 ,sl+'f'+sn—2+sn‘ n-~2 n

tv

Plx N LA =X
n“3 Sl+...+Sn_2+$n n"'2

Corollary. Let n = 3 and let all other hypotheses be

the same as in the previous lemma. Then

(A + B)g,)  Plg, .z -x;) - 55
> 1l 73
P(g,) Plg .~ ~-x.)
k sl+s3 1

Proof. Use the same proof as in Lemma 9 , letting

Xy = 0 and p{o,b] = P(b) , for any b € P.
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CHAPTER 2.

PROOF OF THE THEOREM.

Before going on with the proof we shall state the

theorem to be proved once more.

Theorem. Let A and B be subsets of P, let C = A + B,
and let R be any fundamental set for which P(R - C) = k 2 1.
Then there exists a fundamental set W < R such that

C{(R) > A(W) + B{(W).
P(RY -~ P(w)

Thus in order to prove the theorem we must find a
fundamental set W which satisfies the conditions of the
theorem. The proof will consist of a systematie search

for such a W.

Proof of the theoren.

Let {gl,g2,...,gk} be the k elements in R - C
listed in the usual order so that T = (gl,ge,...,gk) € H.
Clearly R = [1,N] for some N 2 g, end thus, if N > g , ve

have
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¢(R) _ P(R) - kK _ P(g,) + Plg, +1,8] - k
P(R) P(R) P(gk) + P[gk+l’N}
., Plg) -k
P(g, )
C(gk).
P(gk)

Therefore, it is sufficient to assume R = [l,gk].

By Lemma 7, x. = a(1,T), s, = i(xl-l,r), and

1 1

t, =k - 54 exist. Clearly 1 s 4 € k and 0 ¢ tl < k.

Case 1.1. Suppose tl = 0. Then s, = k and xl—l = g

vhich implies P(R) > A(R) + B(R) + k or C(R) 2 A(R) + B(R).

Thus we have

C(R) > A(R) + B(R).
P(R) ~ P(R)

Therefore, let W = R and we are done.

Case 1.2. Suppose t, > 0 and P(xl"l) < P[xl’gk].
1 )

Then, by Lemma 1 and the choice of Xy, Ve have

R(xl-l) - s A(xl-l) + B(xl—l) .

Q
o~
2]
~—
tv

1 >

4

P(xl—l) P(xl—l)
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Therefore, let W = [1,x1~1] end we are done.
Case 1.3. Suppose t, > 0 and P(xl'l) S P[xl’gk].
1 ¥
Then, by Lemma 1, we get
C(R) S P[Xl,gk] - tl
P(R) ~
P[xl,gk]
) P(gk-xl) +1 -t
P(gk~x1) + 1
§ Plgy-%x1) -ty

P(g, -x,)

We cannot immediately find a W that satisfies the
theorem. Therefore, we must divide case 1.3 into three
subcases: 2.1, 2.2, and 2.3. From this point on in the
proof we are under the assumptions in case 1.3, although
they will not be stated with each case.

By Lemma T, X, = a(léPl), s, = i(xz-l,Pl), and

= - i < <
t2 t 5, exist. Clearly 1 £ s, % tl and

0 £ ¢, < t, < k.

Case 2.1. Suppose t2 = 0. Then, by Lemma 8,

(r) > Algg-x) + Blg -x))

P(R) ~

Q

g+ ]

P(g, ~%,)



Therefore, let

Case 2.2.

Then, by Lemma

Q
——
oy )
e

9

Therefore, let

Case 2.3.

Then, by Lemma

b l1e]
i

W = [l,gk—le

Suppose t2

8,

and we are done.

> 0 and

P(x2-l)

Plx

228y
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~x 1

S

A(xz-l) + B(Xz-l).

v

P(xz—l)

W = [1,x2-1]

and we are done.

Suppose t2 > 0 and
8,
S P[xl,gk—xz] -t

s

2.

P[xl’gk-le

2

P(xz-l)

2

>

s

P[x2’gk—xl].

t

2

Just as in case 1.3, we cannot immediately find a W

that satisfies the theoren.

2.3 into three subcases:

3.1,

3.2, and 3.3.

Since t2 > 0, we may apply Lemma 7 to show that

X, = a(xl,P

3 5

Clearly 1 € s

3

8 =

3

€t and Q

2

i(x3“l,P2), a

t3 <

nd

¥

Therefore, we subdivide case

Using the lemmas from Chapter 1, we will be able to

handle case 3.1 and 3.2 together.
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Case 3.1. Suppose t3 = 0.

or

Case 3.2. Suppose t3 > 0 and

P[xl,x3—1] < P[x3,gk-x2].
53 ts3

Using the corecllary to Lemma 9, we obtain

P(g -X,) - s
C(R) N Sl+83 1 3.
PZR5
P(gs +3 —xl)
173
]
Clearly 54 < s, * S 3 < k. Let k' = s, + s3 and we have
C(R) : P(gk,—xl) - sg.
P(R)

Plg, ,-x;)

Before proceeding with this case, we shall look at our
sequence of xi's under k' instead of k. Let
' = (gl, Bos +res gk,). Clearly T' e H.,. Since

g, € M(1,7'), x} = a{1,T'), s! = i(xi—l,P'), and,

ct
]

k' - eXiS‘t'

1
%7

Note that x,-1 € [l,gk,] and thus x,-1 € M(1,T'")

which implies x! 2 x

't < ' <
1 1t However k k. Thus xl £ X

Therefore, X! = x

1 1’
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! = - ¥ .« e 0 - . i
Clearly T} (gsl+l X0 - xl) € Hti Since
LI | - 1 ! = 4 L '
tl 53 > 0, x2 a(l,l’l), 52 l(X2 l’rl)’ and
1 = L. ' s . ' 1
t2 tl S5 exist Clearly 1 g 8, S tl and

' '
0 gt <tlst2<tl<k-

We now subdivide the combined cases, 3.1 and 3.2, into

three subcases: 2.1', 2.2', and 2.3'.

Case 2.1'. Suppose té z 0. By Lemma 8

c(r) s A(gsl+s3-xl) + B(gsl+83-xl)
P(R) ~
P(gsl+33"xl)

Therefore, let W = [l,gs -x.] and we are done.

185 1
' ' -
Case 2.2'. Suppose t) > 0 and P(x}-1) < Plxs,gy =%, 1
L 1
°2 ts
By Lemma 8
L L
c(r) > A(xe-l) + B(x2-l).
P(R)

P(xé-l)
Therefore, let W = [l,xé-l] and we are done.

Case 2.3'. Suppose té > 0 and
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[} V-

P(xé"‘l) P[xeigk! xl].
T .

2 2

By Lemma 8
i ! - t

C(R) ?_ P[xlsgkt xz] tz‘
P(R)

—x!
Plx,,8, x2]

Just as in case 2.3, we cannot immediately find a W
that saetisfies the theorem. Therefore, we subdivide case

2.3'" into three subcases: 3.1', 3.2', and 3.3'.

Let T} = (gs vl XDs o gk,-xé). Since t. > 0, we
2

1 2

may apply Lemma T to show that =xj = alx,,TL),

! = ! . 1] (] = (] - ] 2 8
83 i(x3 l,Fz), and t3 t5 s3 exist. Clearly

! € ! < ! <t < < <
1l s 53 < t2 and 0 K t3 t2 t2 tl k.
Just as we did with cases 3.1 and 3.2, we state cases

3.1' and 3.2' together and handle them simultaneously.

Case 3,1'. Suppose té = 0.

or

Case 3.2'. Suppose té > 0 and

Pix!,g -x']

é-l] < 3 sl+s3 2
] - []

S3 t3

P[xi,x
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Using the corollary to Lemma 9, we obtain

P(g ,-X.) - 8!
C(R) R Sl+S3 1 3‘
P{R;
Plg V=X )
5,%83 1
Ciearly 5, < 8y ¢ sé <s, *+ 83 <k, Let k" = sl+s§. Then
- - 1
Pst

P(gk"‘xl)

Once again, before proceeding with this case, we shall

look at our sequence of xi's under k" instead of k', Let

r" = (gl, Bos +ovs gk")- Clearly T" € H .. Since

g, € M(1,T"), x] = a(1,T"), sy = i(x7-1,T"), and

t" = k" - s; exist.

Note that x,-1 € [l,gk"] and thus x.-1 € M(1,T")

1
which implies x; 2 xq. However, k¥" < k'. Thus x; < X,
1" " L 1" ]
Therefore, X) ¥ Xy, 8) = 8., and tl = kK - s, = 53-
|1 B
Clearly I] = (gs #1"F10 cres gk"-xl) € How. Since

t; = sé > 0, x3'= a(l,rg), sg = i(xg-l,ri), and

th = t; - sg exist. Clearly 1 % sg < t; and

0 2t <t £ tL <t

' < < <
2 1 2 1 - t t k.

2 1
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If we continue on in this manner, assuming we never
arrive at any form of case 3.3, it is easy to see that
either we finish in some form of cases 2.1 or 2.2 or there

exists a positive integer m such that tém)= 0. Using Lemma

8, we obtain

Alg -x.) + B(g -x.)
c(R) > S1*%3.m 1 1**3.m *,
FiR P(gs +5 —xl)
l1 "3,m
where s = s(m“l) Therefore, let W = [1,g -x. ]
3,m 3 ' ’ ’C5_+3 1

1 "3,m

and we are done.

We have been tacitly assuming that we never arrive at

case 3.3(1), 0 £1i < m., Thus either we finish or we arrive
(i) '

at case 3.3 , for some i, 0 £ i < m,

Case 3.3(i). Suppose tgi) > 0 and
(i) (1)
P[xl,xgi)-l] S P[x3 ’ sl+s3’;x2 ].
sgi) tgi)

Since case 3.3(1) is in exactly the same form as case

3.3, it is sufficient to assume we are in case 3.3.

Case 3.3. Suppose t3 > 0 and

P[xlsx3"l] 5 P[x3’gk‘x2]-
83 t3
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Then, from case 2.3 and from Lemma 1, we obtain

c(r) Plx,,g -x,] - t,
B(R)
P[xl,sk-x2]
P[xB,gk-xgl

Plxy,g -x5] - tg

Plx,,8,~%;]

Once again, we must divide this case into three sub-

cases in order to find the proper fundamental set W.

By Lemma T, since t, >0, x), = a(x2,P3),

3

) = i(xh-l’FB)’ and th = t3 - 8y exist., Clearly

< < < < < .

Instead of going through cases 4.1, 4.2, k.3, we shall

make our induction assumption.

Let n 2 4 and assume that for every i, 3 £ i £ n-1,
either we have finished or we are in some form of case i.3.
Thus either we have finished or we are in some form of case
(n-1).3. It is sufficient to assume we are in case (n-1).3,

(3)

since we are dealing with decreasing sequences of ti S.



Case {n-1).3. Suppose 't 4 > 0 end
P[xn-B’xn—l—l] 5 P[xm-»l’gk"xn--z‘].
®n-1 tha1

Then, from case (n-2).3 and Lemma 1, we have

c(R) > Plxy 328 %4p] = thoo
P(RS
P[xn-B’gk-xn—E]
> Plx, .8 -x o) -t
P[xn-l’gk—xn—Q]
- P[xn-2’gk-xn—1] - th.1.
P[xn-2’gk-xn-l]

34

In order to continue our search for a fundamental set

W that satisfies the theorem, we subdivide case (n-1).3

into three subcases: n.l, n.2, and n.3.

Since tn-l > 0, we apply Lemnma 7 to show that
Xn © 0L(xn--Q’Pn—l)’ 8p F i(xn‘.l’rn-l)’ and
exist. Clearly 1 £ sn < tn—l and
< < < ,.. < < < k.
0 < tn tn-l t2 tl k

We shall state case n.l and case n.2 at the same time

in order to make use of the material that was developed in

the first chapter.
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Case n.l. Suppose t_ = 0.

or

Case n.2. Suppose tn > 0 and

P[xn_z,xn-l] < P[xn,gk~x ].
s - t
n n

n-1

Using Lemma 9, we can deal with these two cases to-

gether. We get

c(r) > P[xn~3’gsl+...+sn“_2+sn-xn--2 n
PRy P[xn 3°8g5 4+...+5_ . +s -xn-2]
Sy t..ats _ots)
Let k' = s, *+ ... +5s5 , +5s. (Note: this k' is just a

notational convenience; it is not to be confused with the

k' that we defined in the combined case 3.1 and 3.2). Thus

we have
C(R) > P[xn--B’gk'-'xn-z‘] ~ ®h
P(R;
P[xn—3’gk‘—xn-2]
L -

If we had started the whole process with k' instead of k,

then our sequence of xi's would have been exactly the same

up to x Therefore, let

n-2"’

T = (g
n-2 sl+...+sn_2+l

—Xn_e,-..,gk,-xn_e).
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1 : N ] !
Clearly T! , e Hsn. Since °s >0, x' . = u(xn_3,rn_2),

1 = ' - ? ' = - ' : .
s: 1 i(xn~l l’rn-2)’ and LA 5, s! 1 exist

Thus we are now just in some form of case (n-1).1, (n-1).2,
or (n~1).3. By our induction hypothesis, either we are
finished or we are in some form of case (n-1).3. It is
sufficient to assume we are in case (n-1).3'. Clearly

l1 g s!

£ s and 0 £ ¢! <58 £t < ... <%, < k.
n-1 n N

1 n n-1

Case {n-1).3'. Suppose t! y >0 and

1 - 1] -
P[xn-3’xn-1 1] > P[xn-l’g’k‘ xn-2].

) 1
sn—l tn-l

Then, just as in case (n-1).3, we obtain

t t
R) > PIX, oo8pa-xp o1 - t) o
R)

o~

gja

Plxy o8k =%p1]

Once again we subdivide into three subcases: n.l',

n.2', and n.3'. By Lenma 9, since té 1 > 0,

[ ' 1 = s({v'o1 T 1 = ¢t - at
x| a(xn_e,rn_l), M 1(xn l’rn-l)’ and t LA s
exist. Clearly 1 £ s' £ ¢! and

, n n-1
< ' < g < < < <
0 £ tn tn-l tn-l . tl k

We shall state case n.l' and case n.2' together.
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Case n.l', Suppose t£,= 0.

or

Case n.2'. Suppose té > 0 and

(I ' e
P[xn~2’xn 1] < P[xn’gk' xn-l].

g! t!
n n

Using Lemma 9, we can deal with case n.l' and n.2'

simultaneously. From Lemma 9, we have

Plx .2 , =X ] - 8!
¢(R) > 9—3 sl+...+sn_2+sn n-2 n
P(R) P[xn_3’gs +...+8 +5' " *no2
1 n-2 n

Using the same argument as in cases n.l and n,2, wve

are finished or we are in some form of case (n-1).3. It is

sufficient to assume we are in case (n-1}.3". Clearly
" ! " < ¢! < < ... < < k.
1s Sn-1 S 5n and 0 < tn-l tn-l tn-l tl k
Note that
(i) (i) 1 1"
< < el < < < g' < t' _< < <
1 s Sp S tn-l < ®n = tn--l Sp = tn-l sn = tn-l ks

for all i. Therefore if we continue on in the same manner,

we will eventually either be finished or there will exist

(m) _
n = 1,

an m € P such that s It is sufficient to assume
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- . '
Thed, since s =1>0, x' . =alx oI 5),

sh_l = 1(x;_1Lr£_2), and t! , #s - s!' , exist. Clearly
Sﬂ-l = 1 and t;_l = 0. Therefore we must be in case
(n-1).1"'.

Since S£~l =1 >0, xé_z = a(xn_h,rﬁ;3),
55_2 = i(xé_z—l,r£_3), and t£-2 = s;-l - sé_z exist.
Clearly 1 = s'_2 and t£—2 = 0.

i
(=)

Continuing on in this manner we eventually get t.

which, by Lemma 8, implies that we are done.

We have been working under the tacit assumption that
we are never in any form of case n.3. It has been shown
that, if we work under this assumption, we are done, that
is, we are able to find a fundamental set W which satisfies
the theorem. Thus, let us assume we have arrived at some
form of case n.3. Because of the decreasing nature of the

's, it is sufficient to assume we are in case n.3.

(9
1

By the work which we have Jjust completed, we know how
to handle cases (n+l).1 and (n+l).2. Therefore, we are

either finished or in case (n+l).3. We have the inequality
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Since kX is finite, there exists a positive integer m

such that ¢t = 1. If t = 1, then t = 0 and we
m n m+l

arrive in case (m+1).1, Since t 41 = 0» it is impossible

to be in case (m+1).3. We may as well assume that m+l = n
and we know how to handle case n.l, Therefore, we will
be able to find a fundamental set W < R such that

C(R) > A(W) + B{wW).

P(R) P(W)

and the proof is complete.
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CHAPTER 3.

EXAMPLES : ILLUSTRATIONS OF THE METHOD OF PROOF.

We now present two examples which may help to clarify
the process that has been desceribed in Chapter 2. Each
example will be divided into cases and followed to its

termination. The first example can be described by the

following flowchart

Case_3.1

5

T——
Case 2.1 Case 2.2 aase 2.3
)
Case 1.1 Case 1.2 Case 1.3

where the cases referred to represent either the original

cases or some form of themn.

Example 1. Let A = {1} U [5,11])] u [15,21]) U [25,31]
u {35}.

.
and B = {1,10,11,20,35}. Then

¢ = (1,21 u [5,12]) u [15,22] u [25,32] U {35}.
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Let R = [1,34]. Then k:= 8 and

r' = (gl,82,un.,g8)

= (3,4,13,14,23,24,33,34) € Hg.

Now M(1,r) = {2,3,4,5,6,7,8,9} and thus x, = a(1,I') = 10,

s, = 1(x1-1,r) = i(9,I') = 2, and t, =k - s, = 6.

Cese 1.1. Suppose t, = 0. We have t, = 6 > 0.

Therefore example 1 does not fall into this case.

Cese 1.2. Suppose t, > 0 and P(xl_'l) < P[xl’gk].
1 5
We have t, = 6 > 0 but
P(xl-l) _9 25 . P[xl,gk].
2
51 y
Therefore exampleldoes not fall into this case.
Case 1.3. Suppose t, > 0 and Plx,-1) > P[xl’gk].
51 tl
:

Since we are not in case 1.1 or case 1.2, we must be in

case 1.3 which, from the theorem, leads to

C(R) >' Plgy=x1) =t p(an) - 6.
P(R) " P(2k)

P(gk—xl)



097 sn spEIT SIYL ‘£°¢ 288D

UT 2q 3SNW 3M Z°'Z SSBO UT JI0 T'g 2SBO UT 30U SIB OSM4 SOUIS

c e
s
T H pm < F)
[ "x=-"8° x}d (T-"x%)d
PU®R 0 < mp asoddng *£°*g ©8B)

*988BO STY3 ©3UT TTIBJ 20U S30p T aT7dwexd 9x0JaI3Yyy

. q oL o2 . mm _ Cs
[Tx-T3<Cx]q $T 6 (8)d (1-Cx)a
30q 0 < f = %3 sa®my °p
2, 2

Hﬁx:xm.mxum > Aanmxvm

PuUB 0 < mp osoddng *g2°g @8e)

*288O BTY3 O3UI TT®J 20U saop T a1duwexs ax0Jax9ayg

‘0 < o= Np 9ABY BM Q0 = mp gsoddng *T'g 88®)

T 4

‘= 78 = "3 = Y3 pue ‘g = Aﬁp.mvﬁ = “s ‘pT = Aﬂp.ﬁva = %x

ch

suu3 pu® {6°GCL9°C n E e} = (LIT)W sA®y 3y

.mm 3 (hefe2RI‘ETR‘E)

T T
HN|W+ mw a...nHNIN? mw mHNI

T+'8g) = T moy



43

C(R) Plx).gp-xz) - ¢, p{10,24] - b,

> =
P(R) Plx, .8, -x,] P[10,24]

Now I, = (g “X,gece sk -X,)
2 sl+s2+l 2 sl+s2+h 2

(1391hs2392h) € Hh.
We have 24 = By =X, € M(xl’r2) and thus Xg = a(lO,P2) = 25,

= i(2h,P2) = L4, and t_ = t, - s3 = 0.

€3 3

Case 3.1. Suppose t3 = 0. We have t3 = 0.

Therefore example 1 falls into this case. This leads us to

P(ssl+33—xl) -~ 54

P(g

Q
~—~
oy}
S
v

o

-X.)
sl+s3 1 a

In order to continue our search for a fundamental set
W that satisfies the theorem we go to cases 2.1', 2.2',

and 2.3'.

_xl)

A
Now Pl (gs

l+1“x1""’gsl+h

(3,4,13,14) € H .

We have M(l,Fi) = {2,3,4,5,6,7,8,9} and thus

! = 1) = v Ve 1) = ' - 5! =
x} = a(l,Pl) = 10, s} 1(9,Pl) 2, and t) = 85 - 55 = 2.

Case 2.1'. Suppose té = 0. We have té =2 > 0.

Therefore example 1 does not fall into this case.
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Our next example is illustrated by the following

flowchart:

5.1

h.1 §.2 4.3

l’ |

3.1 3.2 3.3

| |

2.1 2.2 2.3
a4\

1.1 1.2 1.3

where each case represents either itself or some form of it.
It is a more complicated example since it goes to case 5.1

before coming back to some form of case 2.1 and ending.

Example 2. Let

A = {1} v [10,21] U [30,41] U [51,61] u [70,81] u [90,101]
u {110,121) v [130,141] U [150,161) u {170},

B = {1,20,21,40,60,61,80,81,100,120,140,160,170}. Then

¢ = [1,2]) U [10,22] U [30,42] U [50,62] U [70,82]

u {90,102} U [110,122} U [130,142} U [150,162]
u {3I70}.

Let R = [1,169]. Then k = 63 and
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1+ 2 if'1¢icg 7,

i +15 if 8 ¢ i g 14,
i+ 28 1if 15 ¢ i g 21,
i+ 41 if 22 ¢ i g 28,
g. = < i+ 54 4f 29 ¢ i g 35,
i+ 67 if 36 < i g k2,
1 + 80 if 43 g1 < b9,
i+ 93 if 50 s i g 56,

63.

A
[N
A

\ i + 106 if 57

We have M(1,T) = (2,19]) U {50,59]. Thus x; = 60,

5, = 21, and t, = ho.

Case 1.1. Suppose t, = 0. We have t, = k2 > . 0.

Therefore example 2 does not fall into this case.

Case 1.2. Suppose tl > 0 and

P(xl—l) < P[xl’gk].

51 Yy

We have tl = L2 > 0 but

P(59)

59 110 _ P[60,169].
51 21 - "Lz ° b2

=

Therefore example 2 does not fall into this case.



Case 1.,3. Suppose t., >0 and

1
81 t

Our previous wcrk shows us thaet example 2 falls into this
case. Following the same pattern as the proof of the
theorem we obtain

C(R) Pleg-x1) = &, p(199) . o,
P(R - P(109)

P(gk-xl)

Now Fl = (gsl+l-xl,...,gk-xl) where

fi+2 if1<ic<T,

i + 15 if 8 € i ¢ 14,
i +28 ir 15 ¢1i < 21,

€s. +i"*1 ° <
1 i+ bkl if 22 ¢ i < 28,
i+ 54 4if 29 € i ¢ 35,
i+ 67 if 36 i < ko.

\

We have M(1,r1) = [2,19] U [50,59]. Thus x, = 60,

s2 = 21, and t2 = 21,
Case 2.1. Suppose t2 = 0. We have t2 = 21 > 0.

Therefore example 2 does not fall into this case.



Case 2.2. Sup

P(x2-l)
s

2

We have t2 = 21 > 0

P(59)
21

pose t2 > 0 and

< Plxphg-x)1
2
but
59 , 50 _ pl60,109].
1 21 21

Therefore example 2 does not fall into this case.

- Case 2.3. Sup

P(xe-l)

5o

Qur previous work h

pose t2 > 0 and
, Plxpegy-x 1,
t2

as shown us that example 2 falls into

ds us to

Plxy,g -x,1 - £,

case 2.3, This lea
c(r) >
P(R)

P[Xl sgk"‘x2]

P[{60,109] - 21,

Now F2 = (gsl+

'P[60,109]
82+l-x2,...,gk-x2) where
i+ 62 iflSiSTs
x2 = i+ 75 if 8 s i g 14,

i+ 88 if 15 € i < 21.
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Now ry = (g xB,...,gk~x3) where

S.+s.+3. +1"

17%27%3
i+ 62 if 1 g i/s T,
g -x, =
By*sptegtl 73 1+ 75 if 8 g i < 1k,
We have M(60,F3) = {60} U [62,79]. Thus x) = 80, s, =T,

and th = T.

Case L.1l. Suppose t, = 0. We have t;, =7 > 0.

Therefore example 2 does not fall into this case.

Case 4.2. Suppose t, > 0 and ‘ P

P[xz,xh-l]‘ < P[xh,gk—xB]. %

Sy ty

We have th = T > 0 but

P[60,79] _ =20 10 _ P[80,89].
= ——— > — =
T 7 T T

Therefore example 2 does not fall into this case.

Case 4.3. Suppose t), > 0 and

P[xz,xu-l] P[xh,gk—x3 )

>
5), )

Our previous work has shown us that example 2 falls into

this case. Following the pattern of the proof of the



theorem, we obtain :

c(R) > Blxq,g,-x)] - t)
PiR,
P[X3,gk-xh]
- P[80389] - To
" P 80,89]

Now T) = (gsl+52+53+sh+l-xh""’gk-xh) where
gsl+52+53+sh+i'xh =1+82,151<T7. Wehave
M(BO,Fh) = {80} u [82,89]. Thus Xg = 90, 55 = 7, and
ts = Q.

Case 5.1. Buppose t5 = 0. We have ts = 0. Therefore

example 2 falls into case 5.1 from which we get

Plx,_,g -x,] - s
R) 2 2 51+52+S3+55 3 5' S

Q
o~

o

X

S +s, . +s. +s_ 3]

17273 75

P[60,69] - 7.
P{60,69]

Following the pattern of the proof of the theorem, we

go to a new form of case 4.l.

Now T! = (g “X_ys e 8 -x,) where
3 $l+s2+s3+l 3 sl+52+s3+s5 3
gsl+32+s3+i'x3 =3i+62,151<5 7. We have

M(60,Pé) = {60} U [62,69]. Thus xﬂ = 70, sﬂ = 7, and
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-x, =1 + 2 ,1¢<1ig 7. We have M(l,ri) = [2,9].

= T, and té = 0,

Case 2.1'. Suppose té = 0. We have té = 0. There-

fore example 2 falls into case 2.1'. Hence

/C R) > A(Xé-l) + B(Xé-l)

P(R -

P(xé-l)

A(9) + B(9).
P(9)

Therefore, since [1,9] is a fundamental set, let W = [1,9]

and we are done.

This completes our two illustrations of Garrison's
method of proof. It may be interesting to note here that I
have not yet found an example that falls into any form of
case i.2 for i > 2, However, I believe that some small
refinement of the previous two examples or similar examples
which will fall into cese 1.2 for some 1 > 2 will solve the

problem.
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CHAPTER 4.

CONCLUSION.

The basic aim of this paper has been to demonstrate
ciearly Garrison's non-transformation proof of Mann's Dens-
ity Theorem which, of course, immediately yields the Landau-
Schnirelmann conjecture. 1In order to illustrate the pos-
sible cbnsequences of Garrison's new proof, we shall make
some definitions which generalize the concepts that were
defined in the Introduction. The development of the follow-

ing ideas is due to A. Freedman [ 2 ].

Let S be a non-empty subset of an abelian group (G,+).
If x and y are elements of G such that y - x € S, then we

write x < y. If x € 8, then

L{x) = {y e 8 : y <x or y = x}.

Definition. S is a S~semigroup if

(i) S is closed under +,
(i1) o ¢ s,

(1ii) L(x) is finite for each x € S.
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Let X be a subset of a' §-semigroup S and let x g X.

If, for every y ¢ X - {x}, x ¢ L(y), then x is a maximal

element of X. Let
max(X) = {x € X : x is a maximal element of X}.

Let <F be a family of non-empty, finite subsets of S
and let x e FedF. If P = {x} or F - {x} ¢ & then x is

called a corner element of F. Let

F* = {x ¢ F : x i1s a corner element of F}.

Definition. Let S be a S-semigroup. Let (F be a non-

empty family of non-empty, finite subsets of S. Then F is

a fundamental family of S if

(i) for every x € S, there is an F € F with
x € F,

(i1) if F, eF, 1 s 1 S n, then ;U F, e,

n
(1) if F, ef, 1 €4 S n, then OF, e,

1=

ir O F #9 ,
i=1 1

(iv) if F € F, then max(F) C F¥,

An ordered pair, (S,F), where S is a S-semigroup and

is a fundamental family of S, is called a density space.
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If A and B are subsets of S, then
A+B=AUBU {a+b :acAandbdbec B}.
If A and X are subsets of S with X finite, then A(X)

is the number of elements in A (1 X.

Definition. If A is a subset of 8, then

d{A) = glb{A(F)/S(F) : P e},

where F is a fundamental family. d(A) is called the

density of A with respect to &

With these definitions in mind we examine the follow-

ing statement:

Statement 1. Let (S,¥F be a density space. Let A and

B be subsets of S, let C = A + B, and let F €F be such
that S(F - C) = n 2 1. Then there exists a G € (F such

that @ < ¥ and

c(F) > A(G) + B(G).

(r) -~ s(aG)

w0
e

This statement is not true for arbitrary density
spaces, However, there are many special cases for which
Statement 1 holds and other cases for which its validity

is, as yet, unknown. We now examine some of these special
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cases. '

Example 1, Let 8 = (P U {0})k - {(0,0,...,0)} and
let F ={FCS : F is finite, F # ¢, and for every x ¢ F,
L(x) < F}.

It is easily verified that (S,JF) is a density space.

When k = 1, (S,F = (P,F is just the positive integers
together with the fundamental sets, [1,n], that we defined
in the Introduction. Thus, for this example, Statement 1
is identical with Garrison's Theorem which we have proved

in Chapter 2,

When k > 1, Garrison [ 3 ] has shown that Statement 1
is false. However, this does not negate the possibility
that the Landau-Schnirelmann Conjecture (generalized in the
obvious way) still holds for this case., In order to
circumvent Statement 1 and still prove the Landau-Schnirel-

mann Conjecture, it is necessary to prove the following:

Statement 2. Let the hypothesis be the same as in

Statement 1. Then there exists a G € ¢Fand an H € F such

that G CF , HCF , and

If this statement is false then the Landau-Schnirelmann
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Conjecture is also false for.this case. Since Statement 2
is an unsolved problem for k > 1, it may be a worthwhile
project to attempt to generalize Garrison's method to

prove Statement 2 for this case.

Before giving another example, it is necessary to make

some more definitions.

Definition. If Jis & fundamental family on S, then

(x1 = N F
xeFe F

Definition. Let (fbe a fundamental family of S. Let

X and y be any elements of S such that x ¢ [y] and

vy £ [x]. 1If [x] Nly)l = ¢, then Fis said to be separated.

Definition. A fundamental family(}<n1a,6-semigroup s

is singularly discrete of order n if

(i) <Fis separated,

(ii) for every x € 8, S([x]) & n with equality
holding for some y € S,

(11i) sS([x]) = i for at most one x € S, where

i=2,3,...,n.

Example 2. Let (S,F) be a density space where Fis

singularly discrete of order n.
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Ifn=1o0or n= 2, Stat.ement 1 is very easily proved.
A. E. Olson [ 7 ] nas proved Statement 1 for the special

cage n = 3 and conjectured it for all n.

I have mentioned these two examples here because they
appear to be susceptible to some kind of simple counting
argument such aerarrison's method. In the case of example
1 when k > 1, both Mann's and Dyson's method of proof have

been looked at with no success.

Besides Garrison's method, there may be other research
possibilities for this paper. As I mentioned in the Intro-
duction, some of the lemmas and observations in Chapter 1

may be of independent interest.

Referring to Chapter 3, one unsolved problem is to
find examples which illustrate Garrison's method beyond
case 2.3 and which are different in nature from the ones
presented in Chapter 3. Alternatively, if this is impos-

sible, prove it .
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