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ABSTRACT 

A topos is a cartesian-closed category with a subobject classifier. 

A topos is Boolean if its subobject classifier has a Boolean algebra 

structure. Boolean-valued models of set theory are examples of Boolean 

topoi. The main result characterizes those Boolean topoi which are 

Boolean-valued models of ZFC. In order that the work be fairly self 

contained, introductory chapters on category theory and the model theory 

of ZFC are included. Also included is an introductory account of the 

elementary theory of topoi up to the proof that in any topos the subobject 

classifier has a Heyting algebra structure. 
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PREFACE 

Much work has been done on the use of categorical algebra in the 

foundations of foundations of mathematics (e.g. Lawvere [11]-[14] and 

MacLane [16] and [17]). The first attempt at a category theoretic 

characterization of sets was Lawvere [lo]. Mitchell in [19] showed that 

categories satisfying Lawvere's axioms were models for a finitely 

axiomatizable set theory Z1 which is strictly weaker than ZFC (Zermelo- 

-Fraenkel set theory with the Axiom of Choice) in that the full axiom 

scheme of Replacement does not hold. 

Following the suggestion of my supervisor, Dr. Harvey Gerber, I have 

tried to make this thesis as self contained as possible. It is assumed 

that the reader is familiar with first-order theories and their models 

(e.g. Shoenfield [25, Chapters 1-51). Also some acquaintance with basic 

terminology concerning lattices and Boolean algebras is desirable for 

$1.5, the examples of Chapter 11, and $111.6. 

Chapter I presents the usual axiomatization of ZFC and demonstrates 

the equivalence of another axiomatization which is technically useful in 

Chapter IV. Terminology concerning models of ZFC is introduced in $1.4. 

In $1.5 the concept of a Boolean-valued model is defined. The treatment 

of Boolean-valued models of ZFC is taken from Jech [7], Rosser [24], and 

Solovay and Tennenbaum [26]. 

Chapter I1 presents an introduction to category theory. The main 



references used in its writing were MacLane [18] and Stone [27]; references 

which were used to a lesser extent were Freyd [4] and Pareigis [21]. 

Chapter I11 is primarily taken from Freyd [5], although some use is 

made of Benabou and Celeyrette [l] and Kock and Wraith [8]. 

Chapter IV is taken from Mitchell [19]. 

Many results have been obtained beyond these. Lawvere and Tierney 

(see Lawvere and Tierney [15] and Tierney [29]) have shown that Cohen's 

method of forcing (see Cohen [2], Felgner [3], Jech [7], Mostowski [20], 

and Takeuti and Zaring [28]) can be done category theoretically in Lawvere's 

Elementary Theory of the Category of Sets [lo], by using a category of 

sheaves construction. The last part of this construction shows that, as 

might be suspected by analogy with Boolean-valued models (see Solovay and 

Tennenbaum [26] for instance), one can collapse the appropriate Boolean 

topos to a two-valued topos via a category of fractions constuction (see 

Gabriel and Zisman [6]). 

During the course of preparation of this thesis, the author was 

supported by a grant from the President's Research Council of Canada and 

teaching assistantships from Simon Fraser University. 

The author is grateful to Dr. Arthur Stone for introducing him to 

several books and papers that have much influenced this thesis, particularly 

[l] , [5], [8], [ll], [15], [19], and [27]. Acknowledgements are also due 

to Dr. Eugene Kleinberg and Professor Alistair Lachlan for managing to 

teach the author some set thoery. The author is also much indebted to 



Dr. Harvey Gerber for not only putting up with him but also for paying 

the cost of thesis typing. 

Last but not least, any readability which this thesis may possess 

is not a fault of the author, but a virtue of the typist, Linda Cowan, 

without whom the author never could have met his deadlines. 
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CHAPTER I 

AN INTRODUCTION TO THE MODEL THEORY OF ZFC 

1.1 The axioms of ZFC 

The formal language 2 of ZFC is the f irst-order language with equality 

whose only nonlogical symbol is the binary relation symbol E l  which we 

shall always write between its arguments, e.g. xCy (read x is an element 

of y). We suppose% to be formulated so that its primitive logical symbols 

are ~ i n o t ) ,   or), 3(there exists), and =(equals). We use both subscripted 

and unsubscripted lower case Latin letters x,yrz,u,v,xl,x2,x3, ... to denote 
variables of%. Terms, atomic formulas, and formulas of % are defined in 

the usual way. Lower case Greek letters with or without subscripts 

@r$rer@lr$2r@3r.-. are used as metavariables ranging over formulas of % 

The m t s t i o n  $ ( x  ..-.,x 1 implicitly denotes the fact that the variables 
1' n 

xl,...,x occur free in @. [t ll...lt ] is used to denote the 
n @xl,. . . ,x n n 

formula obtained by simultaneously substituting the terms t ..., t for 
1 ' n 

the free occurrences of the variables xl. ..., x in ~(xl1...,x 1. When no 
n n 

possibility for confusion arises we may write $(t ..., t 1 for 
1' n 

@x [tll.. we use the symbols =df (is defined to be equal to) 
I X  n 

and E (is defined to be equivalent to) as metalogical connectives df 

introducing abbreviations for terms and formulas, e.g. see (1.1)-(1.7) 

below. 



(where y does not occur in $(x)) 

(@ and $1 (1.1) 

(+ implies $) (1.2) 

(@ is equivalent to $1 (1.3) 

(for all x @ holds) (1.4) 

(X is not an element of y) (1.5) 

(X does not equal y) (1.6) 

(there exists at most one x (1.7) 

such that @ (x) ) 

The logical axioms and rules of inference of the first-order theory 

o f z  we shall take to be those of Shoenfield [25, pp. 20-211 or any 

equivalent formulation. The nonlogical axioms of ZFC are listed and 

explained below. 

AXIOM 1 - The Axiom of Extensionality (abbreviated AX EX.;^) 

vxvy (x=y -t'z(z€x -zCy) ) 

AX EX^ specifies the relationship between the symbols = and 6 by 

asserting that the equality relation is completely determined by the 

element relation. 

AXIOM 2 - The Axiom of the Null Set (abbreviated Ax~L&) 

3xvy (Y~X) 

AxN& asserts the existence of an elementless set. By A x E d  there 

can be only one such set, hence we may introduce a constant symbol @ to 

stand for it. 

(X is the nu22 set) 



AxP& says that given any two sets x and y there is a third set z 

whose only elements are x and y. By AxExX for given x and y such a z 

is unique, hence the following definitions make sense: 

z={x,~) G Vt(tCz-(t=x v t=y)) (Z is the unordered pair (1.9) 
d f 

of x and y) 

x z (x,x) (singleton x) (1.10) 
d f 

(the ordered pair of x (1.11) 
and y) 

<xl,. . . ,X >= <<xl,. . . ,X >,x > (the ordered n-tuple of (1.12) 
n df n-1 n 

X ..., x ) (for 1-23] 1' n 

AXIOM 4 - The Axiom of Union (abbreviated AxUVU~M) 

Vx3yVz (z€y -3t (tCx A zCt) ) 

AXUVLLOM says that given a set x the collection of elements of elements 

of x forms a set y. By AxExX for a given x such a y is unique, hence the 

following definitions make sense: 

XUY =df U{X~Y~ (the union of x and y) (1.14) 

{x1,.. . ,X n 1 =df Ixl,. . . ,X }U{X I (the unordered n-tuple of n-1 n 
X ..., x ) 

(for 1112) 1 ' n 
(1.15) 

AXIOM 5 - The Axiom of Infinity (abbreviated A x ~ M ~ )  -- 
3x (@€x A Vy (yCx--) YU{Y~EX) 



We define subset relations as follows: 

ysx G Vz (zCy --, zCx) (y i s  a subset of x) 
d f 

(1.16) 

ycx G ycx A yfx d f 
(y is a proper subset (1.17) 
of X) 

AXIOM 6 - The Axiom of the Power Set (abbreviated AxPawm) 

AxPawm says that given a set x, the collection of all subsets of 

x forms a set y. By AX EX^ for given x this y is unique. Hence we define 

the pmer-set (1.18) 
1 

AXIOM 7 - The Axiom Scheme of Replacement (abbreviated AxRepl) 

t 1 nF 17-77; n m  f i v = ~ . t l  T ,  k+2 free F0i. E Z C ~  fiiiXiiirlZi $ (x, l, tl , . . . , Lk, uL .- - -..-- -L1 

@ variables the following formula, which will be referred to as AxRepl , 

is a-nonlogical axiom. 

~ x ~ e p l @  says that if for fixed t . . . .t the formula @ determines 
1 ' k 

a partial functional relation then the image of any set u under the partial 

function determined by $ is also a set v. 

AXIOM 8 - The Axiom of Foundation (abbreviated AxFound) 

The purpose of Axfound is to prevent the existence of sets containing 

C-cycles or infinite descending €-chains. This then allows us to describe 



the universe of all sets as a hierarchy of sets built up from the null 

set @ by the operations of power-set and union (see Theorem 11, p.16). 

AXIOM 9 - The Axiom of Choice (abbreviated AC) 

Vx3fVz(zCx A z#@ + 3ugy(uCf A u=<z,y> A yEz A Vu 1 1  Vy (u 1 Cf A u =<z,yl> -+ y=yl))) 
1 

This formulation of AC says that for every set x there is a choice 

function f which picks out one member y from each nonempty zCx. 

This completes the list of nonlogical axioms of ZFC. It should be 

noted that the above is not a minimal set of axioms; Axhf&, AX?& and 

AxUnLon are redundant, being easily proved from AxRepL. 

We shall sometimes need to consider systems weaker than ZFC; two such 

0 
systems are ZF and ZF which are obtained by deleting respectively from 

the above list (i.) AC and (ii.) both AXFOUM~ and AC. A theorem 

scheme which is often added as an axiom scheme in place of AxRepL to 

yield still weaker systems is given by the following. 

THEOREM I (A~~ondehung) : Let $ (x,tl, ,tk) be any formula of 2 having 

exactly k+l free variables (where k10) . Then 
0 

ZF Vtl. . . VtkVxIyVz (zCy - zCx A $ (z, tl, . . . , tk) ) . 
@ Proof: This is immediate from A~Repl where $(x,y,t l,...,t ) is the 

k 

formula x=y A $(x,t . .. ,t .o 
1 k 

We next define the notion of a bounded quantifier as a sequence of 

symbols of the from 3zCx or VzCx where 



A f c ~ . n ? ; r  ~ ? f  2 is said. to he l _ i r n i . t d  i f  it can be written so that 

all its quantifiers are bounded. 

1 im 
Two systems which are weaker than ZF are Z and Z which are 

obtained from ZF by deleting AxRepl and adding respectively 

(i.) A U A A O M ~ U W T ~  for every formula $ (x,tl,. . . ,t ) having k+l free 
k 

variables and 

(ii. ) Auhnondezung for every limited formula $ (x, tl, . . . , t ) having k+l 
k 

free variables. 

1.2 Basic definitions 

In Cantor's original conception of set theory it was an accepted 

principle that the collection of all objects having a certain property 

was a set. However Russell's paradox demonstrated that this viewpoint 

was rather too naive. It has since been recognized that an adequate 

set theory must provide a means of talking about two different kinds of 

collections: sets and classes, a class being a collection of objects 

satisfying a certain property. Hence we would like to define in our 

language 8. an abstraction operator {XI 1 operating on formulas, where 

1x1 4)  is to be read "the class of x such that @". 

Occurrences of the variable x in {xi $1 are treated as being bound. 

In particular if x does not occur free in $ the notation is regarded 

as denoting @. We make the following definitions: 



In the above, and in general in the following,we usually assume 

that variables not mentioned in subformulas such as $,$, ..., and which 
occur in other parts of a definition involving these subformulas, do 

not occur in these subformulas. For example in (2.2) it is understood 

that y and z do not occur in $ (x) . 

Formulas involving occurrences of the abstraction operator are 

really just abbreviations for formulas of 8 . .  An explicit procedure 

for reducing a formula Q of the language having the operator { I 
to a formula $* of % is given below. 



A detailed proof that this reduction procedure actually determines 

a unique @* may be found in Takeuti and Zaring [ 2 8 ,  p.111. 

When it is reasonably clear that a certain class described by an 

abstraction operator is actually a set, we may make use of this fact 

without explicit mention. 

By a class term we mean either an individual variable symbol or a 

class symbol of the form { X I  $1 where $ is a formula of & . 

Metavariables ranging over class terms will be denoted by upper case 

Latin letters A,B,C, .... 
Below we list a number of formal definition schemes for some 

convenient abbreviations of expressions in % .  For the most part the 

notation .is either fairly standard or mnemonic. The list is intended 

mainly as a reference; for the most part our definitions in the rest 

of this work will tend to be more informal, although we will always try 

to indicate enough so that it will be clear that our discussion is 

explicitly formalizable. 



AcB z 4_cB A A#B 
df ( A  i s  a  proper subcluss o f  B j  

U =  ( X I  x=x) ( the class  of a l l  s e t s )  
d f 

( the cartesian product of 
A and B )  

( the inverse of  A )  

( the union of A )  

( the union o f  A and B )  

( the intersect ion of A )  

( the intersect ion of A and B) 

( A  res t r ic ted  t o  B )  

(R i s  a re la t ion)  

(R i s  a relat ion on A )  

( X  i s  R t o  y )  

(R i s  r e f l ex i ve )  

(R i s  re f lex ive  on A )  

( X  i s  not R t o  y )  



(R .is ii3i?cv ---2-. - ' 1 -  7 - \  jji,t(l"j (N jdf 'V'X ixfij b a ~ ~ u t ; )  ~ L . J L J  

rhtede(R,A) E~~ Yx(xCA + x@) (R is irreflexive on A) (2.33) 

Symm (R) gdf VxYy ( x ~ y  -+ yRx) (R is symmetric) (2.34) 

Symm (R,A) E Yx'dy (XCA A ~ C A  A XRY -+ y ~ x )  
d f 

(2.35) 

(R is symmetric on A) 

AnZh ymm (R) r YxYy ( x ~ y  A y ~ x  -+ x=y) (2.36) 
df 

(R is antisymmetric) 

AntiSymm(~,~) rdf YxYy (XCA A ~ C A  A x ~ y  A ~ F u  -+ x=y) (2.37) 

(R is antisymmetric on A) 

RTtlal?n (R) rdf VxVyVz (xRy A yRz + xRz) (2.38) 

(R is relationally transitive) 

RTham (R, A) z YxYyYz (XCA A y CA A z EA A X R ~  A yRz + x ~ z )  (2.39) 
d f 

(R is reZationaZZy transitive 
on A) 

T h k h  (R) E VxVy (xRy V x=y V yRx) (2.40) 
d f 

(R satisfies the law of 
trichotomy) 

Thich (R,A) E YxYy (xCA A yCA -+ xRy V x=y V yRx) (2.41) 
d f 

(R satisfies the Zaw of 
trichotomy on A) 

PheOhd (R) zdf ReA? (R) A Re@ (R) A RThanA (R) 

(R is a preordering) 



Equiv ( R )  E P n d t r d  ( R )  A S  ymm ( R )  
df 

( 2 . 4 4 )  

( R  i s  an equivalence re la t ion)  

E ~ L L ~ v ( R , A )  r P/teOhd(R,A)  A SLpIm(R,A) 
df 

( 2 . 4 5 )  

( R  i s  an equivalence r e l a t i o n  
on A )  

PmOhd ( R )  E~~ PtreOhd ( R )  A A n t i n  ymm ( R )  ( 2 . 4 6 )  

( R  i s  a par t ia l  o r d e r i n g )  

PahOfid ( R ,  A )  5 PheOhd ( R ,  A )  A A n t i n  ymm ( R ,  A )  
d f ( 2 . 4 7 )  

( R  i s  a par t ia l  o r d e r i n g  on A )  

LinOnd ( R )  E PahOtrd ( R )  A Trtich ( R )  
df 

( 2 . 4 8 )  

( R  is a l inear o r d e r i n g )  

LinOnd ( R , A )  sdf PahOtrd ( R , A )  A Thich ( R , A )  ( 2 . 4 9 )  

( R  i s  a l inear o r d e r i n g  on A )  

Uii.Limd ( x , ~ )  r -3y ( y f x  A y ~ x )  ( x  i s  R-minimal) 
df 

U ~ ~ ~ ( X , R , A )  r -3y(yCA A y f x  A y R x )  
d f 

( X  i s  R-minimal  on A )  

Maximal ( x , R )  r -3y ( y f x  A X R Y )  ( X  i s  R-maximaZ) 
d f 



L ~ ~ A ~ ( x , R , A )  r X E A  A t l y ( y E ~  A X+Y + X R Y )  
d f 

( X  i s  R- Zeast i n  A )  

leLt0nd ( R I A )  E~~ LinO~d ( R , A )  A Vx(x#@ A x ~ A  + 3y ( L ~ ~ ~ ( y l ~ ~ ~ , ~ ) ) )  ( 2 . 5 9 )  

(R i s  a w e l l - o r d e r i n g  o f  A)  

BLunmq ( A )  zdf Unmq ( A )  A U ~ ~ ( A - ' )  

( A  is b i u n a r y )  

Fnc(a) 3 R & ( A )  A U m y ( ~ )  ( A  is a f u n c t i o n )  - df - 

O n e - a n e ( ~ )  z R&(A)  A 8iunahq ( A )  ( 2 . 6 3 )  
df - 

( A  i s  a one-one f u n c t i o n )  



At'B =df %(A !B) i the  h u g e  oĵ B under A j  i2.6bj  

F : A - B e Fnc (F) A Dam (F)=A A &(F) =B 
onto df - - 

(F maps A onto B) 

F : A + B sdf F : A ---+ B A One- one(^) (2.70) 

( F  maps A one-one in to  B) 

F : 1-1  , 
A onto 

B =  F : A  
-df 

B A F : A- B 
onto 

(2.71) 

(F maps A one-one onto B) 

X 
y =df I f1  f : x - - + ~ }  ( the se t  o f  a l l  functions from (2.73) 

x  i n t o  y )  

E = (u 1 3 x 3 ~  (u=<x, y> A xEy) I ( the element re la t ion)  - df 
(2.74) 

Trrau (A) E V X V Y  ( X C A  A Y € X  -+ Y E A )  
df 

(A i s  t rans i t i ve )  

x + l  = xulx} 
df 

(X plus one) 



SuccOrz (x) r On (x) A Iy (On (y) A x=y+l) 
df - - 

(X is a successor ordinal) 

LimOn (x) E On(x) A x#@ A -SuccOn(x) 
df - 

(X is a limit ordinal) 

- - - - x=y f 3f(f : x 1-1 , 
df onto Y) (X and y are equipollent) (2.80) 

From now on we will try to present most of our definitions more 

informally, leaving it to the reader to satisfy himself that our definitions 

are actually explicitly formalizable in 2. 

Having defined ordinal and cardinal numbers, we will assume, as 

needed, that the reader is familiar with some of their elementary properties: 

e.g. simple ordinal and cardinal arithmetic, transfinite induction, 

transfinite recursion, the ~chrgder- erns stein Theorem, Cantor's Theorem, 

etc. We shall usually denote ordinals by lower case Greek letters a,B,y ,  ..., 

relying on the context to prevent confusion between these and metavariables 

for formulas of d. 

Below we simultaneously define the sequences of K and U numbers by 

transfinite recursion over the ordinals. 



ii.) *a+l =df w ~ + ~  =df [the least ordinal Y such that 

1 - 1 
-3f (f : Y ontok Wu) I 

In the above we write f3<A for B € X  and assume that the reader can 

figure out an indexed union. If A is a limit ordinal then the cofinality 

of A, &(A), is defined by - 

&(A) =df [the least ordinal such that 3f (f : 6 - A A UQ(f)=A)]. 

(2.84) 

A cardinal H is said to be regular if &(w,)=w 8 is said to a a' a 
be sirigul-r  ;f qJka) "",. 

Next we wish to show that Axfound actually allows us to describe the 

universe of all sets U as a hierarchy built up from the null set @ by 

power-set and union operations. 

For each ordinal a we define a set V as follows: a 

Finally, let 



The following propositions about V are easy Lu pi-ovc. 

PROPOSITION 1: For each ordinal a, V is  transitive.^ a 

PROPOSITION 2: If a<@ then V CV .o 
a f3 

PROPOSITION 3: If arB then V cV - 0  a- B 

Next we define a rank function, m n h  - : V -t - OR by 

tank (x) = [least ordinal a such that xEV ] . - d f a+l 

The following propositions about hank(x) are easy to prove. 

PROPOSITION 4: If xCy then ka~k (x) <hank (y) .o 

PROPOSITION 5: If x a  then h d ~ k  (x) 5hUMk - (y) .o 
PROPOSITION 6: If a is an ordinal then ttanh(a)=a.n 

Proof: The proof is by reductzo ad absurdwn. Suppose there exisis d 

set xEU such that xPV. The first claim is that by AXFOUM~ we may assume 

without loss of generality that every element of x is in V. To see this 

define the transitive closure of x, ThdltbCL(x),as follows: 

i. T~ (XI =df {XI 

ii.) T ~ + ~  (XI =df UT ( 4  n 

iii. ) Thdh5Ct (x) zdf npu ~ n  (x) 

BY A ~ ~ a n d m m g  Iyl y~TmltbCR(~) A Y ~ I  is a set and by Axfaund it 

has an C-minimal element which has the property that all of its elements 

are in V while it is not. Hence we could have taken x to be this element 

to begin with. 



NOW rnni2i.x - : x -3 - h. and by AxRL$, iliidi:'~ is a set. Hence 

p=Umnh18x is an ordinal greater than or equal to the rank of any element of 

x. As V is transitive this means that for all y€x, ycV Therefore S V  
P P ' P 

and x C V ~ + ~ ,  which is a  contradiction.^ 

1.3 Other axiomatizations of ZFC 

The purpose of this section is to introduce some other axiomatizations 

of ZFC which will prove to be technically useful in Chapter IV. 

First we wish to define what we mean by the relativization of a 

formula. Let e(x) be a formula o f k  with exactly one free variable and 

let A = {XI 0 (x) 1. In (3.1) - (3.5) we define $AI  the relativization d f 

of the formula 4 to the class A, by induction over formulas $ of%. 

Next, let $(x l,...,x be a formula o f k  with exactly n free 
n 

variables. Let W be a class and let wo€W. We say that wo mirrors 

(#J (xl,.. . ,X in W if (3.6) is provable. n 



Finally, if $ 1  and $2 are any two formulas o f 2  in prenex normal 

form, we say that $1 is a truncation of $2 if $1 can be obtained from 

$2 by deleting some initial segment of the prefix of $2. 

THEOREM I11 (The Generalized Reflection Principle): 

Suppose that for every ordinal a we have defined a set W such that 
a 

i.) if f3 r Y then W c W and 
8 -  Y 

ii.) if is a limit ordinal then WA = U W 
f3<A B '  

Let W = {x 1 3a (on (a) A xCW ) and let $ (x . . . ,x ) be any formula df - a 1 ' n 

of & with exactly n free variables, which is in prenex normal form. 

Then it is provable in ZF that given any ordinal a, there exists a Limit 

Proof: The proof is by induction over formulas @ of&. 

A Case 1: @ is quantifier free. In this case $ is $ for any class 

term A; hence we take to be the first limit ordinal above a. 

Case 2: @ is -I). By the induction hypothesis we can find a limit 

ordinal X>a such that W mirrors I) and all its truncations in W. But X 

W 
and only if _I~' (xl.. . . ,xn) -$ (x 1" 

..,x ) is provable. 
n 

Case 3: $(x l....,x) n is3xI)(x,x l~-..lX n 1 

Define the functional relation ~ m n h  : W -on - by 



for all wCW. 

Let F be the n-place function defined by 
4 

for all xl, ..., x CW. 
n 

From (3.8) it is clear that 

We next define a sequence of ordinal {A 1 as follows: 
k k€w 

ho =df [the least limit ordinal above a such that W mirrors 
A, (3.10) 

+(x,xl, ..., x ) and all its truncations in W] 
n 

Let 0(x ..., x ) be any truncation of 4 beginning with an existential 
1 ' m 

quantifier and suppose xl, ..., x to be an exhaustive list of the free 
m 

variables of 0. 

%k+l . 0 =df [the least ordinal above A such that for all 
2k 



and 

'2ki-1 =df U'h2k+l, 8 1 8 is a truncation of 4 beginning with 
an existential quantifier) (3.12) 

- [the least ordinal above A %k+2 -df 2k+l such that WA 
2k+2 

mirrors $(x,x .,x ) and all its truncations] 
1' " n 

(3.13) 

'0 and A2k+2 are well defined by our induction hypothesis. 

'2k+1,0 
is well defined for each 0 a truncation of @ beginning with an 

existential quantifier, for if we let 

then whauh F x W is a set by AxRepL. Since there are only a finite 8 
i = l  '2, 

number of 8's satisfying the conditions posited, 
'2k+l 

is obviously well 

defined. 

L e t A =  U X k = U A  
2k ' 

A is obviously a limit ordinal, so by 
dfkEw kEw 

the continuity hypothesis about W, WX = U Wh = U WA . We now claim 
KEW k kEW 2k 

that W mirrors 4 and all its truncations in W. We prove this claim by A 

induction over all truncations 0 of @. 

Subcase 1: 8 is quantifier free. Same as Case 1. 

Subcase 2: 0 is W E .  Same as Case 2. 

Subcase 3: 6(x l,...,x ) is 3x<(x,xlr...,x ) .  Suppose that 
m m 

a ... ,a EWh. Choose k<u large enough so that a ..,a EWA . 
1 ' m 1'' m 

2k 



Then 

Conversely, if ~ X C W ~ S ~ '  (x.al , .. . ,a ) holds, there is an aCWA such 
m 

that gWa (a. all. . . , a ) holds. By the induction hypothesis this implies 
m 

W W 5 (a,a l,...la ) holds. Therefore 3x(xF~ A 5 (x,a ,... ,a ) )  holds. 
m 1 m 

This then ccm.pletes bcth in?ncticns.a 

COROLLARY 111.1 (The Reflection Principle, abbreviated RP) 

If @(xl,...,x ) is any formula in Z. in prenex normal form with exactly 
n 

n free variables then given any ordinal a there exists a limit ordinal 

b a  such that V mirrors @(x ..,x ) and all of its truncations in V . o  h 1' ' n 

By the Bounding Principle (abbreviated BP) we mean the formula 

scheme (3.16) 

where $(u,v,tl, ..., t ) is any formula in &with exactly k+2 free variables. 
k 



1 im 
THEOaFM TIT: For all formrzlas $ i n & ,  Z +Bpi- @ if and only if Z F t  @. 

Proof: (-1 It is enough to show that ZFI- Bp. We show in fact something 

which is seemingly stronger. 

LEM 1: zlim+~pI- RP. 

Proof: Fix t . . .t and x. Let a = Ulnanh (x) .tuizk (tl). . . . ,4ank(tk) 1. 
1' k df - 

By RP there is a limit ordinal X>a such that VX mirrors 

and all its truncations. 

In particular V mirrors (3.18). X 

So we have (3.19) 

Hence (3.20) holds. 

From the fact that V mirrors (3.17) we have (3.21) X 

VuCx3vO (u,v, tl, . . . , tk) - Y U C X ~ V C V ~ O ~ ~  (u,v, tl, . . . , tk) (3.21) 

which by (3.20) is equivalent to (3.22) . 



This completes the proof of Lemma 1.0 

1 im 
( )  To show the converse we have to prove that Z +BPk AxR~pl. 

Informally we can see this by noting that any instance of AxRQ~L may 

be replaced by use of BPI to get a bound on the image we want, followed 

by a use of AUAAOM~ULUM~, to carve out the exact set we want. The content 

of RP is that our use of Aubandaung may be replaced by a limited 

instance of Aubandmung. To be strictly more formal requires showing 

1 im 
that we can actually prove RP in z +BPI since AxRepL was used in proving 

RP. 
1 im 

LEMMA 2 : Z +BP RP. 

Proof: The proof simply requires a careful look at the proof of Theorem 

111 in the case W = V. Our key use of AxRepl there was in (3.11), in 

which we needed to get a bound on A , , _ , ,  .. But Bp is all we really need 
L h T I  , u 

there. This then proves Lemma 2.0 

Our proof of Theorem IV is now comp1ete.o 

We may make use of AC and its equivalents without comment in the 

following. The most frequently employed equivalent of AC of which we 

make use is Cantor's law of trichotomy, which is expressed by (3.23) 

For other equivalents of AC the reader is referred to Cohen [2], 

Felgner [3], Jech [7], Krivine [9], Mostowski [20], Shoenfield [25], and 

Takeuti and Zaring [28]. 



A (classical) model of ZFC is a structure 2l =<~.e>, where A is a 

set and e G AXA, which is a model of the first-order theory ZFC in the 

usual sense. For the definition of a model of a first-order theory the 

reader is referred to Shoenfield [25 ] .  

We do not allow the universe A of the structure to be a proper 

class because if we did we would not be able to express the fact that 

~CZFC in a single sentence of a. This is a consequence of the fact 

that ZFC is not finitely axiomatizable. However, when we insist that 

A be a set we can say that% satisfies the infinite axiom scheme AxR@ 

by saying that A is closed under a finite number of operations, e.g. 

~gdel's al-s. See Cohen [ 2 ]  . Felgner [ 3 ]  . Jech [ 7 ]  , Mostowski [ 2 0 ]  , 

Shoenf ield 1251 , or Takeuti and Zaring [ 28 ]  . 
A model 21 = <A, e ) of ZFC is said to be a standard model if e = 

otherwise it is said to be nonstandard. A standard model is called 

transitive if its universe is a transitive set. Since this work is 

concerned with models of ZFC, the following axioms concerning the 

existence of models are of considerable interest to us. 

The Model Axiom (abbreviated M) 

3x(x is a model of ZFC) 

The Standard Model Axiom (abbreviated Sh!) 

3x(x is a standard model of ZFC) 



The Standard Transitive Model Axiom (abbreviated ST:.;) 

3x(x is a standard transitive model of ZFC) 

We have already seen that these axioms are formalizable in&. 

The following relationship between the axioms is evident 

ZFC kS7-M -t SM -t !h -+ [ZFC is consistent]. (4.1) 

Hence by ~Gdel's completeness theorem, if ZFC is consistent then 

the addition of any of the axioms MI SM, or STM yields a set theory 

strictly stronger than ZFC. Also by ~Gdel's completeness theorem we 

know that 

zFC i- [ZFC is consistent] ++ M (4.2) 

See Corollary V.2. However 

A proof of this may be found in Takeuti and Zaring [ 2 8 ,  p.2431 and 

Cohen [2, p. 1041 . 
A structure <x,B) is said to be B-extensional if (4.5) holds. 



THEOREM V (Mostowski's Transitive Collapse Theorem) : 

Suppose <x,B) is B-extensional and B-well-founded. Then there 

1 -1  exists a unique transitive set t and a unique function f : x .,,.- t 
such that for all y, zEx, yBz if and only if f ( y )  Cf (2). 

Proof: Let pl denote the B-minimal element of x, which exists by 
<x , B> 

B-well-foundedness and is unique by B-extensionality. Define a hierarchy 

of pseudo-ranks in x as follor~-s by induction on the ordinals: 

= U P for a limit ordinal. 
PA a<A 

Define a pseudo-rank function pk~nh : x - - On by 

panh(z) = [the least ordinal a such that ZFP,+~] (4.10) 

LEMMA 1: There exists an ordinal a such that for all ordinals B>a, 

P \P = pl .  B a 

Proof: Suppose not, i. e. suppose that Va (On - (a) -t -x 6 P ) . By a 

B-well-foundedness we may assume without loss of generality that x is 

B-minimal with this property. But by AxRepL, prrankwx is a set, hence 

p = U prranh"x is an ordinal which is greater than or equal to the 



pseudo-rank of every element of x. Thus x i Ppil which contradicts our 

hypothesis. This proves Lemma 1.o 

Define the function f : x- V by 

LEMMA 2: f is injective. 

Proof: Suppose zl # 22. We want to show that this implies that 

f (zl # f (22 . The proof is by induction on max (pha~k (zl) ,phanh (z2) ) . 
By B-extensionality zl # 2.2 implies ~zoEx((zo~zl A N ~ ~ B ~ 2 )  V 

V (zoBz2 A vzoBzl)). Suppose we have that zoBzl A ~zoBz2. As 

ptrank (zo ) < panh (21 ) we have by our induction hypothesis that 

since f (20) Cf (zl), whereas f (zo) f f (22) . This proves Lemma 2.0 

L e t t =  f"x. 
d f 

LEMMA 3: t is transitive. 

Proof: If uEv and vEf(.z) for some zEx, then v = f(y) for some yEx. But 

then u = f(q) for some qEx. This proves Lemma 3.0 

LEMMA 4: zlBz2 if and only if f (zl) Ef (z2). 

Proof: By the definition of f, ZIBZ~ implies that f(zl) Ef(z2). Conversely, 

f (zi Ef ( ~ 2 )  implies that f (21) = f (y) for some yBz2. By Lemma 2 this 

implies zl = y. Hence zlBz2. This proves Lemma 4.0 



LEMMA 5: f is unique. 

Proof: The obvious induction on p a n h  suffices to prove Lemma 5.0 

This completes the proof of Theorem V.o 

COROLLARY V.1: If B = - E ~ X  and z x is transitive then f rz is the identity 

function of z .  

Proof: Follows from the uniqueness part of Theorem V.o 

We will refer to f : x -t as the collapsing function of <X,B> 

and to t as the transitive colla~se of<x.~>. 

COROLLARY V .2 : ZFC I- SM +-+ SThl. q 

Remark: Theorem V cannot be used to show that M -t STM because the 

assertion that <x,B> is B-well-founded is strictly stronger than the 

assertion that <x ,B) satisfies A X F O U M ~ .  

A regular cardinal* is said to be (strongly) inaccessible if a 

a is a limit ordinal and VX(; < K + PS(x) < Ka). a - 
The following axiom will often be useful: 

The Axiom of Inaccessible Cardinals (abbreviated 1 )  

&(on (a) A [Ha is strongly inaccessible] 1 . - 

We will usually use 1 to represent an inaccessible cardinal. 

PROPOSITION 7: It is provable in ZFC that if I is a strongly inaccessible 

cardinal then V forms a standard transitive model of ZFC. Thus 
I 

ZFC I- 1 -+ STM. 

Proof: See Takeuti and Zaring [ 2 8 ,  p.131l.o 

We will denote the system ZFC + 1 by ZFCI. 



B=olean valued models of ZFC 

Let 8 be a complete Boolean algebra which will remain fixed through- 

out this section. 

A 8-valued interpretation o f 8  consists of the following: 

1.) a set u, called the universe for the interpretation and 

2.) two functions Ro : uxu-8 and R1 : uxu-8 which satisfy 

Condition (+el below. 

For every closed formula 0 of &u) (the language % with constant 

symbols for elements of u adjoined) we define a truth value in 8, bD I 

by recursion as follows: 

a = a23 =df Ro(alIa2) for all al,a2Cu 

We say that a sentence 0 of &u) is B-valid if = I (B), the 

greatest element of 8. 

For Ro and R1 to be part of a 8-valued interpretation of 2 we also 

require that they satisfy 

Condition (*):  the sentences of &asserting that = is an equivalence 

relation and € is substitutive with respect to = are 8-valid. 



~ c t  M be a model of ZFC. In t h e  r e s t  of t h i s  s e c t i o n  a l l  of our 

considerations will be carried out in M unless indicated otherwise. 

(B) 
We define the B-valued universe for M, M , by induction as follows: 

- U M'B) for A a limit ordinal. iii.) MA -df 
B<A 

Finally let 

There is a natural embedding of the universe M of M into the 

B-valued universe M(B). We denote this embedding by ' : M-M (8) 

which we define by C-recursion as follows: 

V V 

x =df [the unique constant function {y 1 y~x} - 11 (B) I 

(8) 
We now construct a %valued interpretation of 2 with universe M . 

~ e t  Bmnk : M(~)- - On be the function defined by 

Bmnh(x) =df [least ordinal cx such xCM(~)]. a+l 
(5.9) 

We now define [[x=yJ and [rxCyJ by recursion on (Bmnk (x) , Bftank ( y ) ) ,  

in the canonical well ordering of -- OnxOn. 



where 

f o r  a l l  u,v€B and 

Proofs t h a t  these  i n t e r p r e t a t i o n s  s a t i s f y  Condition (c) a r e  s t r a i g h t -  

forward and may be found i n  Rosser [ M I .  

We w i l l  denote by M ( ~ )  t h e  B-valued s t r u c t u r e  wi th  universe  M (8) 

2nd. i n t e r p e t a t t o n s  nf = and F given by (5.10) and (5.12) above. 

THEOREM V I :  I f  $ i s  provable i n  t h e  f i r s t - o r d e r  theory of  z t h e n  $ i s  

(B)  &va l id  i n  M . 
Proof: This i s  proved i n  Rasiowa and Sikorski  [22] and i n  Rosser [24], 

using t h e  formulation of the  f i r s t  order  p r e d i c a t e  ca lcu lus  given i n  

Rosser 1231 .o 

(B) I n  M we cannot a c t u a l l y  prove t h a t  M s a t i s f i e s  a l l  t h e  axioms of 

ZFC without  con t rad ic t ing  ~ G d e l ' s  incompleteness theorem. However, i n  M 

(B) we can check t h a t  M s a t i s f i e s  each axiom of ZFC. I f  we work i n  ZFCI 

and assume t h a t  M c V where I is  an inaccess ib le  c a r d i n a l ,  we a r e  a b l e  
I ' 

t o  look a t  M ( ~ )  "from t h e  outside1' and s e e  t h a t  t h e  following theorem 

i s  t r u e .  



(8) 
THEOREM VII: All tile axioms of ZPC are %valid in !d . 

Proof: See Jech [7] or Rosser [24]  .n 

(m (B) We say that M is separated if and only if for all x,yCM , 
(B) 

[[x=~] = 1 implies x=y. The reader should note that M @ )  as we have 

defined it is not necessarily separated. We would like to construct a 

( B )  M ( ~ )  , in M. However there is a difficulty, separated version of M , 
S 

namely that the equivalence classes in the equivalence relation 

( B )  k=J = 1 are proper classes in M. To get around this we use the 

following trick of Scott's. 

Let 

lxJs is then a set in hi, caiieci tne Scott equivaiarlue v i i l s s  of x. FtirtYiex 

[xis = [yIS if and only if ~[X=~J = 1 ('I. Hence there is a quotient map 

n : M @ L -  M(B) defined by 
S 

which satisfies 

(8) for all closed formulas 4 with parameters x ..., x CM . 
1 ' n 



CHAPTER I1 

AN INTRODUCTION TO CATEGORY THEORY 

11.1 Categories and. metacategories 

In this section we shall describe the notion of a category informally 

by means of axioms, without recourse to any set theory. Objects of our 

intuition which obey the axioms we shall call "metacategories". The term 

"category" we shall reserve for realizations of metacategories within set 

theory. We shall always be working with categories in order to make our 

discussions more concrete to those readers who favor set theory as a 

foundation of mathematics, however, it is important to realize that our 

set theoretic discussions using categories are logically unneccessary and 

that perfectly abstract discussions using metacategories are possible, 

and perhaps even preferable to those who favor category theory as a 

founciai;ion or' rnai;ilernatics . 
It is assumed that the following concepts are intuitively meaningful: 

i.) the notion of an object and 

ii.) the notion of an arrow from an object to an object. 

Regarding the notion of an arrow, it is assumed that we are able to 

distinguish which particular object lies at the head and which particular 

object lies at the tail'of a given arrow. 

We shall usually use upper case Latin letters A, B, C, ... to label 

objects and lower case Latin letters preceded by a dot .a, .b, .c, ... to 

label arrows, though we reserve the right to explicitly deviate from this 

notation whenever it is convenient. 

We say that two object labels A and B are equal, which we denote by 



A = B, if A and B are both labels for the same object. Similarly, we say 

that two arrow labels .a and .b are equal, written .a = .b, if they are 

both labels for the same arrow. 

A metagraph consists of objects A, B, C, ... ; arrows between these 

objects .a, .b, .c, ... ; and two operators, Domain and Codomain, assigning 

objects to arrows as follows: 

i.) the operator Domain assigns to each arrow .a as in Figure 2.1 

the object Domaijz (.a) = A lying at its tail; and 

ii. 1 the operator Codomain assigns to each arrow .a as in Figure 2.1 

the object Codomain (.a) = B lying at its head. 

We often abbreviate the assertion ".a is an arrow such that Domain (.a) = 

A metacategory is a metagraph with two additional operators, Tdevlk.c'ky 

and Cornpabidion, which are described below and which satisfy Axioms I and 11: 

i.) 1den;ti;ty is an operator which assigns to each object A an arrow 

I d e m y  (A) =df .lA : A- p ;  and (1.1) 

ii.) C o m p u d ~ o n  is a partial operator from pairs of arrows to arrows 

which assigns to every pair of arrows ( .a,. b) such that Codomain ( .a) = 

= pumain ( .b) an arrow 

- - 
d f 

.ab : Domain (.a)+ Codomain (.b). 



Axiom I (Associativity) For any collection of objects and arrows 

in the config~?r.a+inn of Fi gi.?re 2 . 2  it is the case that 

ComponLt/io~ ( C o m p o n ~ o ~ .  ( .aI .b) , . c) = C o m p o ~ ~ o ~  ( .a, ComponiLion ( .bI . c) ) 

.a 
W B  

.b 
z a%' 

Figure 2.2 

Axiom I1 (Unit Law) For any .a : A- B it is the case that 

.1 .a = .a and .a.l = 
A B .a- 

The above definitions and axioms can be expressed in the language 

of set theory. By a category we shall mean an interpretation of the 

category axioms in ZFC or ZFCI. We indicate how such an interpretation 

is to be carried out in the following. 
\ 

By a graph we mean an ordered four-tuple < ~ , A ~ , d o m ,  --- cod ) such that 

and - cod : - Am+ w. For any graph g = <w, A m ,  dom. cod> we define --- 
the set of composable pairs of arrows of g, denoted by krtrt &A or - 5- 

AWL, by the following: -- 

Finally a category' (over a graph 5 is an ordered six-tuple 

a = (Obj,Am, --- dom, cod, .id,. - camp> such that 

i.) g = <~,Alrh,dum,~~d) --- is a graph; 

ii.) .id - : Obj---+ - Am is a function such that for all A E X ,  



iii.) .CUmp : AtzhoAhh----+ Atzh is a function such that for all -- - 

<.a,.b> CAtr/t0Atzh -- we have that - rfom(.comp(<.a,.b))) = - d~m(.a) and 

cod(.comp(<.a,.b))) = cod(.b); - - 

iv.) Axiom I holds ind; i.e. for all <.a,.b),<.b,.c>CA/rhoAhh -- we 

have that . camp ( <. camp ( <.a, . b)) , . c)) = . camp (<. a, . camp (( . b, . c ) )  >) ; and 

v.) Axiom I1 holds in d ,  i.e. for all .aCA/rh - we have that 

.comp(<.a, ..id(~~d(.a))>) = .a and .camp(<.id(dom(.a)), -- .a>) = .a. 

Categories will usually be denoted by upper case English script 

letters a. 8 , C. B ,  8 ,  7 ,  . . . . rf a = < Ob+.,At~n,,dom_, codd, .%,. campd) 
is a category then 

i.) the elements of Obj will be called objects (in 0 )  and denoted a -- 

by upper case Latin letters A, B, C, ... ; 
ii.) the elements of AtLn will be called arrows, morphisms, or maps 

CA 
(in?) and denoted by lower case Latin letters preceded by a dot .a, .b, .c,...; 

iii.) if .a€Atzh then the object dam (.a) will be called the domain of .a 
L( -a 

and will also be denoted by dom (a) ; 
Q 

iv.) if .a~AtLn then the object cad (a) will be called the codomain 
U * 

of .a and will also be denoted by cod (a); - 
v. ) if A€% then the morphism . i d  (A) will be called the identity 

--72 

morphism (arrow or map) on A and will also be denoted by .IA; 

vi. if <.a, .b> ~Ahho Atzh we will say that <.a, .b> is a composable 
--Q__Q 

pair of morphisms (arrows or maps) in ff and .cam P,( <- a,. b>) will be called 
the composition of .a and .b and will also be denoted by .aO.b, .aeb, .a.b, 

or . ab; and 



vii.) if ~,~CLlbi,then the set 

W ~ A , B )  = df {.aC*l %(a) = A A -4 cod (a) = B) (1.4) 

Of course we may deviate somewhat from the above notations when we 

find it convenient. We shall usually be quite explicit when we introduce 

new notations, however we will not always call attention to obvious 

simplifications such as the dropping of dots or parentheses in complicated 

expressions. 

In the following we shall frequently employ diagrams whose vertices 

consist of labels for objects and whose directed edges consist of labels 

for arrows and pictures of arrows. We say that such a diagram is 

commutative (or commutes) if for each pair of vertices c l  and c2, any 

two paths formed by following directed edges from cl to c2 yield, via 

composition of arrow labels, "equal arrows" (i.e. equal arrow labels). 

For example we may rewrite Axioms I and I1 as follows: 

a b 
Axiom I: For all A- B--t C----+ . C 

D I  the diagram 

commutes. 

a 
Axiom 11: For all A- B, the diagram 

commutes. 



Examples of categories: 

1.) In ZFCI we will denote the inaccessible cardinal by 1 (iota). 

V is a standard transitive model, of ZFC. The category whose objects are 
I 

the elements of V whose morphisms are ordered triples <x,f,y>EV such 
I I 

that f : x- y, and whose notions of domain, codomain, identity, and . 

composition are defined in the obvious manner, is called the category of 

sets and is denoted by S .  - 
Note that we now have two different notations for functions in set 

theory. First there is the ordinary set theoretic notation in which 

functions are written on the left and compositions are written from the 

right to the left. Second, there is the category theoretic notation in S 

in which functions are denoted .ar .b, .c, ... and written and composed on 
the right. The presence or absence of dots on the function symbols should 

;*a;  "-+e ... L: ..I. - - J - - L Z  -- 
lvrrlbll I I " L Q L l ~ ~ ~  IS &illy used for any given expression. 

2.) It will be noted that our definition of category may be carried 

out in ZFCI or relativized to V . This then gives us two notions of category. 
I 

A category in the sense of V will be called a small category. Categories 
I 

in ZFCI which are not small will be called large categories. 

3 . )  Any partially ordered set (or poset) <x,5)may be made into a 

Obj 1 if zl 52, 
= x and ffom 

O(xr5) 
(21 122 = - 0(xt5) 0 otherwise 

(1.7) 

for all z1,,z2€x. Define domain, codomain, identity and composition the obvious 

manner. Such a category will be called a partially ordered category or 

pocategory . 



4.) Let a = db ' AWL dom cod id . comp be any category. The 
41-21-u1-71.*1 2 

dual category of L7 , aoP, is the category obtained from 0 by reversing all 

op - the arrows, i.e. formally ff - < ~ , ~ , c o d _ , ~ , . ~ , . c o m p ~  

5. ) Suppose Q is a category and BeOb . Then the category of arrows 4 
in Q over B (or the comma category o f 0  over B)is the category denoted 

by Q+B whose objects are arrows in 0 of the form A&B and whose arrows 

are described by the requirement that the elements of 

are all commutative triangles in 0 of the form 

Types of morphisms: 

1.) A morphism .m : A-B is said to be a monomorphism (or monic) 

.a, 
if for every pair of morphisms L ~ A ,  .Rlm = .R2m implies .R1 = .I2. 

. A ,  

We will also write ".m : A-B" or "A-B" for ".m : A---B is a 

I monomorphism". 

2.) A morphism .e : A-B is said to be an epimorphism (or epic) 

.r 
if for every pair of morphisms B-R, .erl = .ern implies .rl = .rn. 

-G 
e 

We will also write ".e : A->B" or " A C > B "  for ".e : A-B is an 

I epimorphism". 

3.) A morphism .i : A-B is said to be an isomorphism (or - iso or 

invertible) if there exists a morphism .j : B-A such that .ij = . lA 



and . ji = -1 . We will also write I1.i : A-B" or " A A B "  for 
R 

".i : A-B is an isomorphism". We say that two objects A and B are 

isomorphic, denoted by A 2 B ,  if there exists an .i : A-B. 

4.) A morphism .f : A-A, whose domain and codomain are the same 

object, is said to be an endomorphism (or endo). 

5.) An endomorphism which is also an isomorphism is said to be an 

automorphism (or - auto) . 
6.) Let .a1 : A1-B and .a2 : A2-B be two morphisms with common 

codomain B. We say .a2 factors through .a1 if there exists a morphism 

.f : A2-A1 such that 

A 1 

~ 2 -  
commutes. 

Dually, let .bl : A-B1 and .b2 : A-B2 be two morphisms with common 

domain A. We say that .b2 factors through .bl if there exists a morphism 

.g : Bl-B2 such that 

commutes. 



7.) An ~pimorphism .h : A->R is said to he a split epimorphism 

(or a split epic or simply to split) if -1 factors through .h, i.e. if B 

there exists a map . k  : B-A, called a section of .h, such that 

commutes. 

8.) A monomorphism .h : A-B is said to be a split monomorphism 

(or a split monic or simply to split) if -1 factors through .h, i.e. if 
A 

there exists a map .r : B-A, called a retraction of .h, such that 

commutes. 

9.) An endomorphism .f : A-A is said to be an idempotent if 

10.) An idempotent .f : A-A splits if there exists an object B 

-9 
and morphisms A- B such that the diagram 

.h 



commutes. 

11.) Let .a1 : A1-B and .a : A -B be two monics with common 

codomain B. We write .a2 5 .a1 if .a2 factors through .all i.e. if there 

exists a map .e : A2-Al such that 

commutes. 

We write .a1 CY .a2 if .a1 5 .a2 and .a2 5 .al. "-'I - is then an 

equivalence relation on monics with codomain B. The corresponding 

equivalence classes of monics are called the subobjects of B. The 

collection of subobjects of B also has a natural ordering, the one induced 

on it by 5 above, which we shall also denote by 5. It is often convenient 

to abuse our language by calling a monic with codomain B a subobject of B 

a 
and writing A ~ B  with the intention that it be read ".a is a subobject 

of B" (or even "A is a subobject of B"). 



11.2 Functors and natural transformations 

Let Qi = < ~ i l A ~ i l l " m i l c ~ d i l . ~ i . . C O ~ p i >  be a category for i = 1.2. 

A (covariant) functor : F : ff 1- 0 2  is an ordered pair of functions 

: F = <F F ) such that Obj' Am --  

ii.) FAN, : Am- AM ; 
- -1 -2 

iii. for all . a ~ A m  durn (F (a) = Fob; (durn (a) ) and 
-1' -2 Am -1 

A contravariant functor :G :dl-d2 is a covariant functor 

:GOP : II~~----+C~~. 

Functors will usually be denoted by upper case script Latin letters 

preceded by two dots :A, :8, : C ,  ..., although we shall occasionally 
explicitly deviate 

as above, we shall 

.a: F for FAm (a) 

from this convention. If :F = < FObirFAm> is 
normally write A:F for Fobi (A) where ~ € O b j  

-1 

where .a€Am . 
-1 

a functor 

and 

The identity functor :Idon any category d is the ordered pair 

: 7 = <11,12> where 11 is the identity function on 06 and is the a af 4 
identity function on Am -a. 

If :f : 01-0~ is a functor thendl is called the domain of :F 

anda2 is called the codomain of :F. However we will usually write simply 

: F :F : al--a2 oral-d,. 



F >:  f f l - - - + f f 2  and F i n a l l y  i f  : F = <Fw, 
- 

:G = < G ~ , G A m >  : d2-fQnr we de f ine  t h e  composition of :F and :G t o  
- 

be t h e  functor  

Note t h a t  t h e  funct ions  on the  f a r  l e f t  hand s i d e  of the  above equation 

a r e  w r i t t e n  i n  t h e  s e t  t h e o r e t i c  no ta t ion  wi th  the  funct ions  on t h e  l e f t .  

A functor  : f  : dl--+a2 i s  c a l l e d  a  cons tant  functor  i f  t h e r e  

e x i s t s  an A2 c % ~  such t h a t  f o r  a l l  A 1  C i  A1  : F = A2 and f o r  a l l  al 
. a € s l .  .a:F = .1 . :f i s  then c a l l e d  the  cons tant  functor  on A2 from 

A 2  

dl and denoted by :A2.  

A functor  :F : d l d d 2  i s  s a i d  t o  be - f u l l  i f  f o r  a l l  A , B € O ~ ~  a 1 

and a l l  .a2C&2 (A:F. B :F ) ,  t h e r e  e x i s t s  an .alC& (A,B)  such t h a t  
1 

.a lCff~m (A,B) such t h a t  . a l :F  = . a 2 .  
-a1 

A functor  :F : ~71-d~ i s  s a i d  t o  be f a i t h f u l  i f  f o r  a l l  

. a l ,  .a2 CAttrt .a1 f .a2 impl ies  .a1 :f f .a2 :f. 
-1 

F > : a 1 Q2 is  s a i d  t o  be an isomorphism A functor  :F = < F o b i t  Am 

of ca tegor ies  i f  f a r e  both b i j e c t i o n s .  
- 

We say t h a t  a  category dl i s  a  subcategory of  t h e  category Q g ,  

denoted 01 a2 i f  

O b j  r xd2 (we denote t h e  inc lus ion  funct ion  by i . 1  -a1 

ii. ) +&la, ANln2 (we denote the  inc lus ion  funct ion  by 



iii.) dam = dom 1 A ~ t  ---a1 -u2 -al; 
iv.) cad = COdn21ANinl; 

-Q1 

v.) Al= &a2~ ~ Q l ;  and 

vi.) .camp = .camp A oAmal. al a2 -al - 
a, , a 

The functor : I  2= <.inobi >is called the inclusion 
_. - 

functor and it is obviously faithful. If :~'l'~~is also full then we 

say that dl is a full subcategory of d2. 

Note that there are other definitions of subcategory in the literature. 

The definition above coincides with that of MacLane [18, p.151. 

Examples: 1.) Let <x, 5 ) and <y, 5 > be any two posets and let 
X Y 

f : x -  y be any order preserving function. Then f induces in the 

obvious way a functor :Pf : b ( x .  E )&  b(y, 5 between the corresponding 
X Y 

pocategories. 

2.) ~ e t Q  denote the subcategory of B whose objects are 8 

partially ordered sets and whose morphisms are order preserving maps. 

Let 0 denote the category whose objects are small pocategories and whose c 
morphisms are the functors between them. Note that bothQg and 8 are e 
large categories. From the definition of pocategory it is obvious that 

there is a functor :J :og-8 that is an isomorphism of categories. 
(3 

:F 
Let :F  and :G be functors from a to a , i.e. dl:GE~2. 

1 2 

A natural transformation from :f to :G :n: :f ----+ :G is a set of arrows in 

d2 indexed by objects of 0,. :7l = .n  FA^ I A F ~  1 such that 
A 4 2  1 

i.) for all ~ ~ ? b j ~  , dam (n ) = A:F and cod (q ) = A:G and 
I -a2 A ------Q~ A 

ii.) for all A , B € ~  and all .a€ffam (A,B), the diagram 
a1 -4 



commutes (in d2). 

The elements of :q = {.qAtA~ I A C ~  > are called the components -a2 a, 
of the natural transformation :q. The element 

*"A 
is called the 

A-component of :q and may also be denoted by .A:q. 

If :F and :G are contravariant functors, a natural transformation 

from :F to :G,:q : :F----+ :G is a natural transformation 

-0P. -fop.--_ : I 1  . . . n0P 
i . u  . 

In general we will denote natural transformations by lower case 

Greek letters preceded by two dots : a ,  :B, :Y, - a - .  

A natural isomorphism (or natural equivalence) is a natural 

transformation whose components are all isomorphisms. 

Let :F : Q'--+ B be a functor and let ~t(3bj Then :B denotes the 
I 9  

constant functor on B froma. A natural transformation :n : :B-----+ :F 

is called a cone on :f from B. B is called the vertex of the cone and 

: F is called the base. We also use the notation :q : B& : F to - 
abbreviate l1:v : :B ---f :f is a cone on :F from B". Dually, a natural 

transformation :E : :F ---t :B is called a cocone on :F to B. B is called 

the vertex of the cocone and :F is called the base. We also use the notation 



:E : :F ---U+B to abbreviate " : E : :F ---+:B is a cocone on :F to B". 

If d l  and Q 2  are categories we define the product category 

d l  X Q 2  in the obvious manner: 

i.) Wglw2 = wdl x - a21 
ii.) A m  

-1 u 2  
= UIHam ( A ~  , B~ ) x Hum ( A ~ ,  B2 I 

-1 -2 

]<A1 ,A& ,<B1 r~2)fObj a1 xa, 1 ; 

iii.) dam = (dom x durn ) !AWL 
1 2  1 ---a2 - U l . a 2 '  

iv.) cad  = ( c a d  x cod  ) f A m  
M 1 q 2  1 - 3 2  - 7 2 1 ~ 2 '  

= id x id ; and 
4 l V 2  '--a1 -a2 

vi.) .camp = (.camp x .comp )  AWL o A W L  
0 1  xa:! 0 1  ff2 +1@2 - U 1 = 7 ' 2  

It is a simple matter to verify that d l  x 0 2  satisfies the definition 

of a category. By the simple iteration of the above construction we may 

define the product of the n categories all .... an. which we will 
n 

denote by a: . . . Xdn or x ff . 
i=l i 

A functor from a product of n categories is called a multifunctor 

(with n-arguments). By looking at dual categories for certain arguments 

it is possible to speak of multifunctors being contravariant in certain 

arguments and covariant in others. 

lfdlX ... X? is a product of n categories. there exist n special 
n 

multifunctors :?h : Q1X ... fl -a. for i=ll .... n. These 
i n 1 

multifunctors :Ph will be called projection functors and they are defined 
n 

in the obvious manner. We may consider any multifunctor of n-argument to 

give rise to functors and multifunctors of less than arguments by holding 

certain arguments fixed. 



Example: Letd be any small category. Then :%( , ) : aoPx f f -  8 

is a multifunctor with two arguments or a bifunctor. 

Note that :ff0m -d- , - ) is contravariant in the first argument and 

covariant in the second. To see this let us suppose that A~,A~,BC% a 
and .f : AI-+ A2. ~hen.ffom f,B) : ~ ~ O ~ , $ A ~ . B ) L  Horn A1,B) is the -a( a '  

.a f 
B to ~ 1 -  A2- 

.a set theoretic function which sends A2 B. 

Similarly, if AIB1 , ~ 2  CObj and .g : B1----4 B2 then a 
.ff~m ~ , g )  : ff0m (A,B1) -----+ ff0m (A,B2 is the set theoretic function which -d -a __a 

b b 
sends AL B1 to AL B1 a B2. 

For each A C ~  we obtain the two functors :ffomd~, ) and :%(-,A) a - - 

by holding A fixed. The functor :ffom (A, 1 is called the covariant Hom- __a - 
functor (with A fixed) and :Horn ( ,A) is called the contravariant Hom- +- 
functor (with A fixed). A covariant (resp. contravariant) functor 

:f : 0 ---+ 8 is said to be representable with A as its representing 

object if :F is naturally isomorphic to the covariant (resp. contravariant) 

Hom-functor with A fixed. It is easy to see that naturally isomorphic 

representable functors must have isomorphic representing objects. 

A natural transformation of multifunctors is in a sense already 

defined since a multifunctor is a special kind of functor. Notice that 

a natural transformation of multifunctors is a natural transformation 

in each argument. 

Let Q1 andd2 be categories. We define the category of functors from 

Ql toQz, FUMC(~~,Q~), to be the category whose objects are functors 

: F : dl- C(2 and whose morphisms are natural transformations between 



such functors. The domain, codomain, identity and composition functions 

are defined in the obvious manner. It is a simple matter to check that 

Func(al,d2) satisfies the category axioms. - 

Examples of functor categories: Let denote the category with one 

object and one arrow. Let2 denote the category with two objects having 

just one arrow between them and whose only endomorphisms are identity 

maps. If C7 is any category then FUMC (1 ,Q) is isomorphic to ff . FUMC (;Era) 

is called the category of arrows ind and it is isomorphic to the category 

whose objects are arrows .a : Al-A2 in d and whose morphisms 

.f : al-az, where .a1 : All-Alz and .a;! : A21-A22 are 

arrows in d, are ordered pairs of arrows in d,.f = <h,k>, such that 

commutes. 



11.3 1,imits and colimits 

We now formalize our notion of a diagram more precisely; a diagram 

1 ,  in a category 5' is a functor :D : ==Q ----+a, where J is a small category 
I 

called the shape (or index category) of the diagram :D. We think of each 

of the elements of 3 and && as being a label for its image under 2 

:D. Generally we will denote objects in an index category d by a,@,~,... 

and arrows in $ by .i, . j, .k,. . . . We will often write D for a:D and a 
I .d. for .i:D. 

1 

Let .a1 : D -----t B and .a2 : Dg. B be arrows in 0 with common 
i a 

codomain B. We say that .a2 factors uniquely through .a1 in the diagram 

:D if there exists a unique arrow .i : B ---+ a in $ such that - 

commutes. 

Dually, if .bl : A d  D and .b2 : A--+ Dg are arrows in a with common a 

domain A then we say that .b2 factors uniquely through .bl in the diagram 

:D if there exists a unique arrow .i : a- 6 in J such that - 



commutes. 

If :D : $ ---+a is a diagram in a and A€% then a universal a 
arrow from :D to A is an ordered pair <a,.a> where a C w J a n d  .a : D a F  A 

is an arrow in 0 such thatfor all B€Obj and all arrows .b : J DB- in (7, 

.b factors uniquely through-a in :D. Dually, a universal arrow from A 

to :D is an ordered pair <a, . a> where a€$ and .a : A - 0 is an arrow a 

in a such that for all B c ~  and all arrows . b : A - Dg in a, . b 
factors uniquely through .a in :D. 

Let Q&g(J,Q) =,, Furzc(d,a) be the category of diagrams in Q of shape 
U L 

d. Define that generalized diagonal functor :V : a ----f D.idg ($,a) to be 

the functor which 

i.) sends each A C O ~ ~  to the constant functor from 4 to A, a 
:A : $ ---+ a and 

ii.) sends each arrow .a : A d  B in a to the natural transformation 

: T l  : :A- ,:B whose components are all equal to .a. 

then a limit of the diagram :D ind is a universal 

arrow from :V to D in v.idg(d,a) and a colimit of the diagram :D ins is 

a universal arrow from D to :V in Dk.9 (-Q,ff). 

Below we give another characterization of limits and colimits in 

order to unravel the above definitions slightly. 



Let 

and 

where A€% and :o : $ a 

If A 1  ,A2 €a we say that : y 2  € C o n e  ( A 2 ,  :D) factors uniquely through 
d ' __a 

: y l € C ~ n e  ( A ~ , : D )  if there exists an unique arrow .f : An----+ A 1  in Q 
__a 

such that 

commutes. 

commutes for all a€Ob A 
Dually, we say that : Y ~ € C O C O ~ ~  ( : D , A ~ )  factors uniquely through a 

:yl € C O C O ~ ~  ( : D , A ~ )  if there exists an unique . g  : A 1  -----t ~ 2  in such a 
that 

commutes. 



A universal cone on :D : $-.-- '- d is an ordcrcd pair <L, :T). whcrc 

L C  and :IT€COne (L, :D) such that for every A€% and every 
Q -a 

:~CCVMG? (A,:D), :a factors uniquely through :IT. 
-d 

Dually, a universal cocone on :D : 4 ----+a is an ordered pair 
<C, : 1 > where cC0bj and :I CCOCUMC ( :Of C) such that for every B C O ~ ~  and a a 4 

every : ~ € C V C O M ~  (:D,B), :B factors uniquely through :I. a 
PROPOSITION 1: <L,:IT>is a limit of :D in a if and only if <L,:IT> is 
a universal cone on :V.o 

PROPOSITION 2: <C,:l> is a colimit of :v in a if and only if <C,:I> is 
a universal cocone on :D.o 

PROPOSITION 3: Limits are unique up to isomorphism. 

Proof: Let <Ll,:IT1> and <L2,:IT2> be two limits of :Z) ina. Then :IT1 

factors uniquely through :T2 and vice versa, so there exist maps 

.R1 : L1- L2 and .R2 : L2-3 Ll such that :IT1 = :Rlr2 and 

: ~ 2  = :RIIT1 in the diagram below 

The claim is that .R1R2 = .1 and .R2R1 = .1 . 
L1 L2 

observe that :RlR2n1 = = : T ~ ~  but :rl factors un 

To see this 

iquely through 

itself as :TI = :1 X I ,  whence .Eli2 = .1 . Similarly, .R2R1 = .1 .O 
L 1 L 2 L2 

PROPOSITION 4: Colimits are unique up to isomorphism.o 



Notation and terminology: 

Let<L,:~>be a limit of the diagram :D ina. We call L the limit 

object and denote it by fh:D; we call :IT the limit transformation and - 

refer to its components as projections. If <~,:a> is any pair such that 

A€W and :QCCOM~ (A,:D) then the unique .E : A- L such that :a = :EIT a -a 
fi 

is called the limit morphism for :a and is denoted by .fiY a) or simply -6 

Similarly, should <c,:I> be a colimit of the diagram :D ina, we 

call C the colimit object and denote it by C0fi:D, : I  the colimit 

transformation and refer to its components as injections. If <B,:8> is 

any pair such that B€W and : BECUCUMQ ( :D,B) then the unique . c:C ----+ B a a 

I 
such that :Ic = :f3 is called the colimit morphism and is denoted by 

i D . ~ ~ f i _ l B )  or simply .co~(B). 
I CI( 

I Types of limits and colimits: 

1.) By the empty diagram in a categorya we mean the diagram in Q 

I whose shape is the empty category. 

If a limit of the empty diagram exists ina, we call its limit object 

a terminal object inff. We use the symbol - 1 to denote a terminal object. 

If a colimit of the' empty diagram exists ind, we call its colimit 

object an initial object in a. We use the symbol - 0 to denote an initial 

object . 
The following two propositions are immediate from the above definitions: 

PROPOSITION 5: - 1 is a terminal. object of if and only if am (All) = 1 H-a - 



FROPOSITION 6: - 0 is an initial object of 0 if an.? cnly if WQ(l,E) = 1 

Examples of initial and terminal objects: 

(1.1) In 8, @ is an initial object and any singleton is a terminal 

object. 

(1.2) In any lattice a ,5) regarded as a pocategory @L,3 , the 

least element 0 and the greatest element 1 are initial and terminal objects 

respectively. 

2.) A category $ is said to be discrete if all its arrows are 

identity arrows. A diagram :D : $ ---+a is said to be discrete if its 

shape d is discrete. 

Limits and colimits of discrete diagrams are called products and 

coproducts respectively. We shall denote the product of :D by @,D or 
Ut.2 C1 

by Dl@. . .@On if $ is a discrete category with n elements. Similarly we 

shall denote the coproduct of :D by D or by Dl@ ...@ if is a 
a J a  n 

discrete category with n elements. The limit and colimit natural 

transformations for aC&Da and D are denoted by :E and :in and their 
aQ a 7 

components are called projections and injections respectively. 

Examples of products and'coproducts: 

(2.1) In 8the cartesian product is a product and the disjoint union is 

a coproduct. 

(2.2) In any lattice < L I Z >  regarded as a pocategory O(L,~) , the meet A 

and the join V correspond to the notions of product and coproduct 

respectively. 



.I 

3.)  A limit of a diagram of the shape 8 -6 is cail~ed an  
*J 

=(di,dj) is called the equalizer object, while the morphism 

.a:a(d. ,d . ) is called the equalizer morphism and is denoted by 
1 3  

. i - 
A colimit of a diagram of the shape a 6 is called a coequalizer 

-j * 

is called the coequalizer object , while the morphism . B: c o e y  2 (dip d . ) is 
7 

called the coequalizer morphism and is denoted by . CoeyZ (di , d . ) . 
3 

The following two propositions are easily established: 

PROPOSITION 7: Equalizers are m0nic.o 

PROPOSITION 8: Coequalizers are epic.0 

This may all be summarized by the following commutative diagram: 

4.) A limit of a diagram of the shape 

is called a pullback. Often we shall simply write: 

is a pullback. 



- 
P is called the pullback object of .f and .g or just the pullback 
f I 9  

- 7 

of .f and .g. .f is called the pullback of .f along .g and .g is called 
g f 

the pullback of .g along .f. 

Dually, a colimit of a diagram of the shape 

is called a pushout. Often we shall simply write: 

is a pushout. 

pfrg is called the pushout object of .f and .g or just the pushout - 

of .f and .g. .fg - is called the gushout of . f along .g and .gf - is called 

the pushout of .g along .f. 

PROPOSITION 9: Pullbacks of monics are monic. 

Proof: Let 
- 

be a pullback where .g is a monic. 

We want to show that .gf is monic, i.e. we want to show that given 



- - 
such t h a t  .Rigf = .R2gf, . R I  = . R 2 .  Consider the  diagram 

- - 
If .kigf = .g2gf then 

- - - - - 
and, s ince  .g is  monic . -e l fg  = .R2fg. So Ulgf = .k2gf1  . e l f g  = .e2r 1 

g 

determines a cone :T from E t o  t h e  diagram 

using (3.16) and . R 1  and . R 2  both p lay  t h e  r o l e  of . l i m ( n ) .  - But . l i m ( ~ )  - 

i s  unique. SO .R1  = .R2.o 

PROPOSITION 1 0 :  Pushouts of ep ics  a r e  ep ic .  

Proof: Dual t o  t h a t  of Proposi t ion 9 ab0ve.o 



5. ) A pullback of the form 

i s  called a kernel pair .  

We may also refer  t o  the pa i r  <.kl , .kq)as  a kernel pair  for . f .  

Dually, a pushout of the form 

i s  called a cokernel pa i r  and < . c l , . c n > i s  called a cokernel pa i r  for . f .  

In dif ferent  categories l i m i t s  and colimits of various types may or  

I may not ex is t .  A category ais said t o  be ( f in i t e ly )  complete i f  every 

I ( f i n i t e )  diagram :D : $ - C7 has a l i m i t  i n d .  i s  said t o  be 

( f in i t e ly )  cocomplete i f  every ( f i n i t e )  diagram :D : $----+a has a 

colimit in  ff. Q i s  ( f in i t e ly )  bicomplete i f  it i s  both ( f in i t e ly )  

complete and ( f in i t e ly )  cocomplete. 

Proofs of the following two propositions may be found i n  MacLane 

[18, pp. 108-109], pareigJis [21, p.851, and Stone [27, pp.11-12b] . 
PROPOSITION 11: A category a i s  ( f in i t e ly )  complete i f  and only i f  it 

has ( f i n i t e )  products and equa1izers.n 

1 PROPOSITION 1 2 :  A category ais ( f in i t e ly )  cocomplete i f  and only i f  it 

1 has ( f i n i t e )  coproducts and coequa1izers.o 



11.4 Adjoint pairs and continuous functors 

Let :F : a-L3 and tG : k k a  be a pair of covariant functors. 

Such a pair is said to be an adjoint pair, :F being the left adjoint 

and :G being the right adjoint of the pair, denoted :f----+:GI if any 

of the four following equivalent conditions are satisfied: 

i.) there exist a pair of natural transformations 

: : : : G  and :E : :GF-: 'B , 

called respectively the unit and counit of the pair, such that 

:VFO:FE = :I and :G~o:EG = :I 
: F :G; 

ii.) there exists a natural transformation :V : :Icl-:FG, 

called the - unit of the pair, such that for all A€%, B € W ~ .  and 

.a€!f~rn,(A,B:G) -- there exists an unique .b€t(OmR(A: F, B) such that 
u .- 

.A:rle.b:G = .a; 

iii. ) there exists a natural transformation : E : :GF - : It31 

called the counit of the pair, such that for all A C ~  B € w B I  and a 
.b€ffom (A:F,B) there exists an unique .a€ffom (A,B:G) such that -B __Q 

.a:GO.B:c = .b; 



and iv.) there exists a natural isomorphism : 0 ,  called the adjunction 

isomorphism, such that 

Horn (A:F,B) - Horn (A,B:G). -I3 --0 

for all A€W and B€W*. 
d 

By an adjunction we mean an adjoint pair together with a specified 

adjunction isomorphism. Proofs that the four definitions of adjoint pair 

are equivalent and that an adjunction may be specified by specifying 

either the unit or counit may be found in MacLane [18, Chapter IV], 

Pareigis [21, Chapter 21 , and Stone [27]. 

Suppose :f : ff-a and :G : B-d  are a pair of contravariant 

functors. We say that :f and :G are adjoint on the left if there exists 

a natural isomorphism :8 such that 

Horn (A:F,B) -Horn (B:G,A) .'R,B: -B --Q 

for all A(% and B C ~ .  We say that :F and :G are adjoint on the 

right if there exists a natural isomorphism :8 such that 



for all ~ ~ 0 0  ' and ~ ~ 0 0 ;  4 '-2 R - 
Proofs of the following two propositions may be found in Freyd 141, 

MacLane 1181, Pareigis [21], and Stone [27]. 

PROPOSITION 13: Left adjoints and right adjoints (adjoints on the left 

and adjoints on the right) to a given covariant (contravariant) functor 

are unique to within natural isomorphism when they exist.0 

: F* : F 
PROPOSITION 14: Suppose Q l - 2  Q24s as and : F1 + :G2 and 

:G, 

F - : Then :FIFZ +:GIG2 .O 

The following theorem specifies four special cases of Freyd's 

Adjoint Functor Theorem which we shall use frequently. 

THEOREM I: Let :F : d--B be a covariant functor and :G : CI-B be 

a contravariant functor. Then 

r i. j if :r has a ieft acijoini then : is coniinuous; 

ii.) if :F has a right adjoint then :F is cocontinuous; 

iii.) if :G has an adjoint on the left then :G is contracocontinuous; and 

iv.) if :G has an adjoint on the right then :G is contracontinuous. 

Proof: See Freyd [4] , MacLane [18] , Pareigis [21], or Stone [27] .n 

A subcategory Qof B i s  called a reflective subcategory if the 

inclusion functor has a Peft adjoint : R .  Such an : R  is called a 

reflector. Dually, d i s  a coreflective subcategory if the inclusion 

functor has a right adjoint :C. Such a :C is called a coreflector. 



CHAPTER I11 

CARTESIAN-CLOSED CATEGORIES AND TOPOI 

111.1 Cartesian closed categories 

A category @is said to be cartesian-closed if 

i.) it is finitely bicomplete and 

ii.) for every A€% the functor : ( @A) has a right adjoint, which 
c5 - 

we will denote by : ( ~ h  ) . - 

The counit of the adjunction is called the evaluation natural 

transformation and it is denoted by : C v  : : (A4 ) 0 : ( @A) + : 1'. - - - 

There exists a natural isomorphism :4 : :Horn ( C Q A , B ) V  :Horn ( ,AhB) 
-@ - -@ - 

for each A , B € O ~ ~  hence the set-valued functor :Hum ( @A,B) : @ -+ $ is e' -e - 
representable with A+B as its representing object. If C C ~ ,  and 

fCffom (C@A,B) then f.4 (C,A*B) is called the cartesian adjoint of f. 
__@ C ---4 

Similarly if gGfom (C,A*B) then g.@-'~ff~m (C@A,B) is called the cartesian 
__@ C ---4 

adjoint of g. We denote passage either way along the adjunction isomorphism 

by a superscript "*", e.g. f .oC = f * and g.$ * - L g .  
C 

PROPOSITION 1: ~ e t O  be a cartesian-closed category; A,B,c€%~; and 

0 and 1, initial and terminal objects respectively. Then the following - - 

are naturally isomorphic: 

ii.) (AaB)@C Z2 (A@C)@(B@C) 



viii.) (C@B)~A 2 Ca(B+A) 

Proof: i.) Since - 0 is an initial object and for all X E ~  @ ' 

Horn (WAIX) E Horn (0 A+x), we have that 
-@- __@ -I 

= 1 for all X C % ~  

adjoint, it must be cocontinuous. 

OQPA is an initial object. - Therefore 

ii. 1 Since : ( W )  has a right - 

In particular : (  - W) preserves coproducts so that 

iii.) Since - 1 is a terminal object, 

Hum (X,A41) = Horn (xQ~A,~) = 1 
-@ - ---@ - 

for all X C W  hence Aal is a terminal object. 
el 

- 

iv.) Since :(C+ - ) has a left adjoint, it must be continuous. 

particular :(Ch - ) preserves products so that 

For all 

Horn (X,O+A) z Horn (XCS~,A) 2 -(C@X,A) r Horn (o,A), 
__@ - __@ - w- 4- 



and the latter is a singleton, hence the former is also. Thus - OaA 

is a terminal object. 

vi.) Observe that the contravariant functor : (  - +A) is its own 

adjoint on the right, for if X I  , X 2  ~Obj, then 
1 

Hence : (  - +A) is contracontinuous. In particular : (  - hA) carries coproducts 

to products so that 

vii. )It is easy to see that there is an isomorphism .i : ~81-A 
A - 

natural in A; its cartesian adjoint .i* : A-14~ is also an isomorphism 
A - 

n = t ? r v 3 1  i n  a 
....-u-&.* -A. LA. 

viii.) The functor :Horn ( €Z@B,A) : @ --+ S is representable in two ways ---c- 

Since (C@B).t\A and Cb(B4A) both function as representing objects 

for the same functor, it follows that they must be 

PROPOSITION 2: If there exists a map .f : A- - 0 in a cartesian- 

closed categorye 

Proof : 

A .f 



and 

PROPOSITION 3: A cartesian-closed category@ is isomorphic to the 

category 3 if and only if there exist a map l------f - 0 in @.n 

PROPOSITION 4: Leta be any small category and@ be any cartesian- 

-closed category. Then FUMC (a,@) is a cartesian-closed category. - 
Proof: First we want to show that - Func(d,@) is finitely bicomplete. 

Let :D : $ ----+ FUMC (00) be a finite diagram in Func (a,@) . For each - - 
A 

A C ~  let :D : J.----t@ be the diagram in @ defined by a 

=df A:V for each a€%& and (1.12) a 

A .d. = .A:d. for each .i€%. 
1 df 1 

A 
For each .aCffom A1 ,A21 let :Qa : :$I& :D be the natural trans- a '  

a 
fom~ation defined by .a:D = .a:Qa for all aC&. We construct the 

d f 

limit<f,:n>of :D as follows: 

i. ) : L : C7 ---+ @ is the functor defined by 

A: I!. = f h  -9 for each ~ d b  
d f ----45- -47 

A 
and if .aFffom (A1 ,A2) and if <A1:f, :IT '> and<~z:f. :TIA2> are limits of _.a 

:$' and :din respectively in C then 



i.e. .a:L is thc unique map making 

commute; and 

ii.) :IT : L*:D is the natural transformation whose components 

. are natural transformations :IT : :L ----+- :D defined for each a a a 

a~0bj by .A:T a =df .a:? for each A C ~  where :? : A:L+ :fl is a 
the limit transformation. 

It is easy to see that<L,:~>is a limit of :v in - FUMCUC). We 

.n cwiis iriic'i L i k e  cvii , i~i  i o1 : v by  ihe o b v i u u s  d u d  c o r ~ s  i r u c t i o n .  

Product and hom relations are obtained on FuMc@,@) by letting 

: F€& be the functor from 0 to @ defined by 

A:F@ =df A:F@A:G and 

and letting :F+G be the functor defined by 

where :F and :Gare functors fro ma to^.^^^, and .a€& It is __a. 



easy to see that these definitions yield the required pairs of adjoints 

needed to make Func (a,@) cartesian-closed. - 
Remark: (The "Kelly view" of full reflective subcategories.) 

Letd be a full reflective subcategory of and let :R : B h Q  

be the reflector. Since :R is the left adjoint of the inclusion functor 

for all A€% and B C ~ ~  there is an isomorphism Horn (B:R.A) G Horn (Bra) a 3 __a -B 

(we omit writing applications of the inclusion functor). But since ff 

is a full subcategory of B we have that - Horna(~:R,~) 2 Horn (B:~,A). This 
-B 

says that up to natural isomorphism we may identify a with the full 

subcategory of 13 whose objects are the elements of 

IACO~&~VBCW (ffm (B:R,A) Y Horn B,A))l. In the following we shall B -n -$ 
make such identifications without further comment. 

PROPOSITION 5: Letd be a full refective subcategory of the cartesian- 

closed category @ with :R : @ ----+ff the reflector. Then :R preserves 

products if and only if for all A€% and all c€%, C ~ A C ~ .  

Proof: ( Suppose :R preserves products, i .e. for all DC%, 

C%D:R c:RBD:R. By the above remark it is enough to show that 

But we have the following 

Horn (D,c+A) 
__@ 

chain of isomorphisms: 

Horn (D:Rw,A) z Horn ( (D:Rw) :R,A) E 
__@ 4 (1.22) 



( Conversly, suppose we have that for all AC% and CF% we 

have that C+A€Obj We want to show that for all DCOb , CBD: R % c:R@D:R. a* 4 
It is enough to show that 

for then the representing objects must be isomorphic. But we have the 

following chain of isomorphisms natural in A: 

r Ham (D,c*A) G Ham (D:R,C~A) r 
__@ __@ 

E f fom (D:Rw,A) z Ham (~(D:R),A) 
_I@ __@ 

E f fam (c,D:R+A) 2 Ham (c:R,D:R+A) r 
__@ __@ 

Let a be a category and B C ~  We are next going to define three a* 
functors. (1) :IB : a - 1 ~  a, which is defined for alld; 

(2) :XB : ~---+Q$B, which is defined for all a having finite products; 
and ( 3 )  :ITB : &B dQ, which is defined for all cartesian-closed Q. 

(1) :IB :Q-~B-- ff is the forgetful functor defined in the obvious 

manner by 



and 

( 2 )  :XB : 0 ' f f 4 ~  is defined by 

for all .a€ffom (A1,Ae) 
__71 

( 3 )  :]IB : GI+B -----+ a is defined by 

where 1 : - 1---+ B*B is the cartesian adjoint of - 1@B-B and 

- 
P 1 8 b b . ~ b  denotes the pullback of .l$b : BnAd BlB and -1; 

- 



where .R is the limit morphism in (1.32), in which the front and bottom 

faces are pullbacks 

- 
p2 ; B6A2 

PROPOSITION 6 : Let 0 be any category and B C ~ ~ .  Then 

i.) :IB : O+B---+~ preserves and reflects colimits, equalizers, 

pullbacks and monomorphisms when they exist; 

ii.) i f 0  is finitely bicomplete then :CB*:xB and furthermore if 

N N 

there exists a functor :nB : a t ~ d a  such that :X 1 : n  for all B B 

B€% then 0 is cartesian-closed; and 

iii.) if 67 is cartesian-closed then :EB+:XB+:n B for all 

Proof: i. ) This part of the Proposition is evident from (1.33) - (1.36) 
below, where the whole diagrams are ina4B and removing the portion with 

the dotted arrows ( .. ...... c) is intended to illustrate the action of :IB. 



equalizers: 

pullbacks: 

monomorphisms: 



ii.) First we need to show that 

Horn 
-Q 

The required natural 

.c : A- C in 

bijection is that which associates the map 

ffOt7l [r.b]:zB,c) with the map -a 

ry 

Secondly we note that if :X has a right adjoint :II then 
B B 

ry 

Hence we can take B A to be A:X o n  so that CI must be cartesian- 
B B' 

closed. 

iii.) Observe that :Horn (C, ) is continuous since it preserves 
-0 - 

products and equalizers. Hence the pullback diagram (1.30) used to 

define :II gives rise to the pullback diagram (1.40) in 8 
B 



which is isomorphic to the diagram 

where .x is the injection taking - 1 to .e : CQB- B. 
2 

that 

Therefore :xB- : nB. 



Now l e t 0  be any f i n i t e l y  complete category and l e t  .f : B1- B~ 

be an arrow i n  a. Define the  functor  : f #  : 0 t B 2  3 OtBl by 

and 

P 1 iSb) f =df 12; i n  t h e  pullback (1.44) 

where t h e  f r o n t  and bottom faces  a r e  pullbacks and . k  i s  t h e  ind ica ted  

l i m i t  morphism. 



Also define t h c  functor :Zf 

B2 

and 

PROPOSITION 7: Let0 be any finitely bicomplete category. Then 

# i.) :Zf-:f for all . f € h  and 
__a 

# ii.) :f has a right adjoint :nf for all . f € h  if and only if * 
L~+B is cartesian-closed for all ~€Obj a- 
Proof: Consider .f:B1-----+ B2 as an object ina+~2. We may define 

the functors 

# :f % :x f and we may take :n = :TI . f  . In this way 
f df (B1- (B1 - B2) B2 1 

Proposition 7 reduces to Proposition 6.0 



111.2 Elementary topoi 

An (elementary) topos 6 is a cartesian-closed category with a 

subobject classifier, i.e. with an object R c % ~  and a monomorphism 

.true : 1 R such that for every subob ject .m : B - A in 6 - - 

there exists a unique morphism .ch(m) - : A-!d, called the characteristic 

function of .m, making (2.1) into a pullback. 

If .a : A- fi is an arrow in 6 we let . [ la] denote the pullback 
of .true along .a, i.e. 

. [ 1 a] =df . true a 

Suppose d i s  any category with pullbacks. Define the set valued 

contravariant functor :Sub -a: 0-s by 

i.)  sub , = ,, Ixl x is a subobject of A] for all A€W 
0'. 

ii.) if .a€Hom (B,A) we define .a:Sub .  sub -  s sub to be 
__L7 __CI- __a * 

the function which sends each subobject .m : A'-A to its pullback 

along .a, i.e. 



PROPOSITION 8: Let@ be a cartesian-closed category. Then @is a topos 

if and only if :Sub is representable. 
__@ 

Proof: (a) If @ is a topos, we want to show that there exists a natural 

isomorphism :q : :Sub - :ffom ( , R )  . Define :q component-wise by 
-@ __@- 

.A:q is easily seen to be a bijection. To show that it is natural 

we need to show that given any .a : B -A in@ 

commutes . 

Let m € ~ : s .  Then ' 

and m.a:Sub B : n  = .ch(m ) 4 - a 
so that we must show that .a ech - (m) = . - ch (ma) . 



Considcr the diagrmi 

We know that the two inner trapezoids are pullbacks, as is the 

- 
outside rectangle, and the left hand triangle commutes. But then .m 

a 

is the pullback of .true along .a.ch(m) as pullbacks of pullbacks are - 
- - 

pullbacks. But . - ch (m ) is unique so .a .&(m) = . ch (m ) . 
a - a 

( 1  Conversely, suppose there exists a natural isomorphism 

:17 : :xC-:@(-,R). As for each .a€b(~,R), .a : A-fi is the 

I 
unique map such that 1 Horn (a,R) = a and since :&E :&(-,R) it n -2 

I 

follows that for each .m€~:Sub :7. there exists a unique .a : A- fi - 
such that 

Thus ln. R :TI-' plays the role of .true and the unique . a : A f2 - 
I 

specified by (2.8) above plays the role of the characteristic function 

of .m. By (2.8) .t =df Jn:R:ll : R ' R  has the property that for all 

.m : A'-A there exists a unique .a : A- such that there exists 

an .x : A'-R' making (2.9) into a pullback 



and the uniqueness condition on .a implies that there can be only one 

map from A -a'. Therefore n' - 1 and we are done. 

Remark: Note that in any topos 6 the usual ordering of subobjects of 

ACW~ induces an ordering of - ff~m~(~,n). Further note that if 

.f,.gCt(amg(~,n) then .f 5 .g if and only if for all x€Objd and 

.xfffOmg(x,~) - (2 -11) commutes implies that (2.12) commutes. 

to see this consider the diagram (2.13) 



i 111.3 The representability of relations and partial maps 

Throughout this section let 6' be a topos. A. B. C.. . . €x6 and 

A relation between A and B is a subobject of ABB. 

We define the set valued contravariant functor : R &  (-,B) : - 

PROPOSITION 9: :I?& ( ,B) is representable. 4- 

Proof: :Kd(-B) = : ( BB) o :% -- - 

A par t i a l  lliap - 6  Iruu~ A to B is a map from a subobject of A to ti. 

More formally it is a pair of arrows of the form 

We will denote partial maps by lower case script Latin letters 

preceded by a dot .d, .g,. h, .  . . . The subobject component of .d will be 
denoted by . d l  and the other component by .d". Composition of partial 

maps is defined by pulling back i.e. if 



then 

where the top left hand rectangle in (3.6) is a pull back. 

Two partial maps . d  and .g as in (3.7) and (3.8) 



are said to be equivalent, written .a cl . g I  if there exists an isomorphism 

. i : A" -A' such that 

A 
commutes. 

Let ~ ( A , B )  denote the set of equivalence classes of partial maps 

from A to B under the equivalence relation "~2' above. 

By identifying the morphism .a€*(A,B) with the partial map 

we may view *(A.B) as a subset of %(A,B). This identification 

determines a natural transformation 

Define the set-valued contravariant functor :Pdtr($(-,~) - : 6 -  8 by 

~:Patt ( ,B) = P a h  (A,B) (3.12) -8 - df -4 

and if . aCt(Om$~~ ) then 

a : B  : =(A2,B) - rB) 



is the set theoretic functions which scn2s . $ ~ P f l %  PI to 'w'"L I-'  

.adf%(~, ,B) . 
For every partial map.b€Pah (A,B) there is an associated relation -8 

between A and B, namely 

.r6 is a subobject of AEPB because .d' is a subobject of A. 

Thus there is a natural transformation 

By composing :a with :Y we get a natural transformation 

The map inducing : a q  is called the singleton map and it is denoted 

by . { - 1 : B - B~S?. It is easily checked that it is a monomorphism. 

.{-I may also be described as follows. 

The diagonal subobject .A of B@B is the subobject 

The Kronnecker-delta -6 is the characteristic function of .A,i.e. 

.6 = .&(A) : E@B -R. 
df - (3.17) 

. (-1 : B-Ban is the cartesian-adjoint of . 6 ,  i .e. . (-1 = .6*. 



FRGPGSITIGN 10: (Unique existenticiti~n) 

Let .a : C-A be given. Then there exists a .q : Q-A which 

factors through .a and such that 

is a pullback 

and such that given any .f : X-A which factors through .a and such 

that 

is a pullback, 

it is the case .f factors uniquely through .q. 

Proof: Define the natural transformation :O : :ffam ( ,A) -:R& ( , C )  -8 - 4- 
by letting .X:O be the set theoretic function which takes each 

. yCff0m - &x,A) to the relation 

:G may also be thought of as a natural transformation from :Hum ( ,A) to 4- 
:ffatn -P ( , c ~ R ) ,  and as such it is induced by the map A ~ A ~ R  * 

w - chQ. 

Let .q : Qw A be the pullback of .I 1 : C - c K ~  along - 
.{ - )o.a+R : A-c+R in (3.21) 



Since :Horn ,(XI is continuous (3.22) is also a pullback. 4 - 

Since .ff0m (X,q) ia an injection we may take ffom (X,Q) LZ ff0m (X,A) . 
-6 4 -4 

Then ff0m (X,Q) is described by the requirement that .fCff~m (X,A) may be 
-6 4 

regarded as an element .f' of ff0m (X,Q) if and only if there exists a map 4 
.p : X - C such that . p a (  - = .fa( - )'=a~fi. 

Now consider (3.24) in which the outside rectangle is a pullback. 



The existence of .p, which implies the existence of .r = .<lX 
P 

,P>- 

implies 

is a pullback. The unique factorization property of .q is apparent from 

(3.23) .o 

PROPOSITION 11: In any topos 6 ,  :Pan ( ,B) is representable. 4- 
Proof: Let .r : C-A@B be a relation. Let .a = .r.E and .b = .r.E2. 

1 

Construct .q : Q-A from .a as in Proposition 

is a partial map from A to B. This operation of 

10 above. Then 

associating a partial 

map with a relation gives rise to a natural transformation 

:u : : R d  ( ,B) - - P O L  ( ,B )  . The natural transformation 
-6 - -4 - 

:w : :Pan ( ,B) -:Pan ( ,B), is the identity natural transformation 4- -4- 

since if . ~CPCUL (A,B) , (3.27) is a pullback with the factorization property 
-6 

required in Proposition 10. 



~ h u s  : py : R d  ( ,B) - : R d  ( ,B)  is an idempotent natural -6 - 4- 
transformation. Since : R d  ( ,B) E :Horn ( ,B.~\Q) it follows that : p Y  -8 - 4- 
is induced by an idempotent endomorphism .q : B+R -B/l\R. This map 

.g may also be described as the cartesian-adjoint of the characteristic 

* function of .<{-IllB>: B-(B~.R)@B, i.e. .g = .&{<l,lB>) . 

Let =df &(lB.nQlq) and .e =df .z(lB,+,Q,g) . Consider the diagram 

(3.28). 

The existence of the limit morphism .h in (3.28) says that the 

idempotent .g splits. This splitting of .g induces a splitting of 

:yY which shows that - P a h  ( ,B) 2 :Horn ( ,ii) .o -4 - 4- 
PROPOSITION 12: Let 

be as in the proof above of Proposition 11. Then . { - ) : B B ~ Q  

- 
factors uniquely through .el i.e. there exists a unique map . "B : B-B 

such that 

commutes. 



Proof: Consider the df a g r a ~  (3.31) . 

The bottom rectangle is a pullback by the definition of .g. The 

top rectangle is a pullback because . {  - h l B  is a monic. Thus 

.I  - h l g  g* = . - ch ( A )  = .6. Therefore 

comrnut e s 

and by cartesian-adjointness 

commutes. 

Now let .?l be the indicated limit morphism in the equalizer 
B 

diagram 



is a pullback. 

Proof: Let .g be as in Proposition 12 above. Let . rd = .<d ' ,d'> : A'-Am 

be the graph of .a. Let .Y6 =df .ch - (rd) : A@'- .Q and let 

.y: : A-B~.Q be the cartesian-adjoint of .y We want to define . a d ' 
as the indicated limit morphism in the equalizer diagram (3.36). 

Lemna 1: .yl = .Y! g. 

Proof: By cartesian-adjointness it is enough to show that 

.Yb = . y P B 0  g : A@B -n. To do this it is sufficient to show that 

the outside of (3.37) is a pullback. 



But the Inwer rectangle is a pullback by the definition of .g. Hence 

it is enough to show that the top rectangle is a pullback. To do this it 

is sufficient to show that (3.38) is a pullback. 

So suppose that we have two morphisms .a : X -A and .b : X-B 

such that (3.39) commutes. 

I By cartesian-adjointness (3.40)commutes. 

Therefore (3.41)  commute,^ 
.<a,&) 



But - 6  = . - ch ( A )  so . A6 factors through .true. Hence .<a ,b>oy 
d 

factors through .true. We then take the limit morphism .R : X-A' 

in (3.42) to be our limit morphism for (3.39). 

Therefore Lemma 1 is pr0ved.o 

Now look at (3.43) . 

The outside of (3.43) is a pullback by the proof of Lemma 1 [see 

w 

(3.38) ] and the fact that .6e = .yi But since .e is monic , this implies 
- 

that the rectangle is a pullback. This proves the existence of .6. 
.., - 

To show that . j  is unique, suppose there exist two maps .do and 

each making (3.44) into a pullback. 

Let .6. = . (ale)* : A @ B - ~  for i = 1,2. By symmetry and the fact 
1 

that .e is monic it is enough to show that .do  5 . d l  in order to prove 



.., 
the uniqueness of . d .  We apply the Remark  at t he  end of 111.2. Suppose 

(3.45) commutes 

So we have the situation pictured in (3.47) which commutes. 

Therefore .a.6$ = .b.( - ). Now consider the diagram (3.48). 



Since the inner quadrilateral with lower right hand corner is 

a pullback by (3.44) and since .e is monic, the inner quadrilateral with 

B M  in the lower right hand corner is a pullback also. Therefore there 

.., 
(3.44) we conclude that .a61 = .bTiB. Multiplying on the right by .e 

we get 

Looking at cartesian adjoints yields 

which implies 

But the outside of (3.52) obviously commutes. 

Thus .do 5 .dl. By symmetry .dl 5 .do. Therefore .do = . d l  and by 
- * * 

cartesian-adjointness . d o  = .67. since . e is monic we have . d o  = . 6 
This then completes the proof of Proposition 13.0 



111.4 The fundamental theorern of topoi 

Let dl and 6 2  be topoi. A functor :L : 81-62 is called a 

logical-morphism if 

(i.) :L is finitely bicontinuous, 

(ii.) : ( - a - ).:I!- E : ( :L* : I ! - ) ,  and - - 
6 82 

(iii.) L? :L r S2 . 
THEOREM I (The fundamental theorem of topoi): 

Let ij be a topos and BeObj then 8J.B is a topos. Furthermore, if 8 ; 
# 

.f : B1-B2 is an arrow in 8 then the functor :f : ~ . C . B ~ - ~ . C . B ~  

(see 111.1) is a logical morphism. 

Proof: First we wish to show that C$+B is cartesian-closed. So given 

objects I f  \ and \ in &B, we wish to construct 

Let .k : B%A---+E be the unique map making 

Let .k* : B ----t A+E be the cartesian-adjoint of .k. Let .; be the 

pushout of .g along . % 



1 '  \ 
Then define 1 .b 1 to be the pullback of .A~F along .kX. 

Then define 

e 

Now suppose that we are given . Consider the diagram (4.5) below. 

The left-hand square is a pullback by the definition of d + ~  and the middle 

square is a pullback by the definition of P and the continuity of 

:@&(x,-) . 
Note that on the bottom line of the diagram, the map - 1 -Pat  (X@A,B) 4 

.hOIA  . k 
corresponds to X@A WA- g, i.e. it is the element of Patr (X@A,B) 

-8 
obtained from the pullback (4.6) 



But this is determined by the pullback 

and 6 . b ~  is cartesian-closed. 

Next we show that &B has a subobject classifier, by Proposition 8 

it is enough to show that the functor :Sub is representable. Simply 
4 . B  

note that 



Hence 
&B 

= n :xB. 
# Next we wish to show that :f is a logical morphism. First by 

# # Proposition 7 we have that :Zf+:f -l:nf. Hence :f is finitely 

bicontinuous. 

Next by using the technique employed in the proof of Proposition 7 

we can see that it is sufficient to show that :X preserves exponentiation. 
B 

We will do this by showing that (A4C):xB and A : x ~ C : X ~  function as 

representing objects for the same functor. First we note that given any 

we have that 

mA 2 

This is because both (4.11) and (4.12) are pullbacks. 



Hence we have that 

z ffum (D,AIC) G Hum (E@A,C) s -6 -8 

# Finally the R condition on :f follows easily for 

111.5 Morphisms in a topos 

Throughout this section let 8 be an elementary topos, A,B,C, . . . Cm 
and .a,.b,.c,...Ckrr/t . +. 
PROPOSITION 14: Monomorphisms are equalizers in 8. 

Proof: Let A -B be a monomorphism in 8 .  Let . c : B - - l be the unique 
such map. Consider the diagram 



The outside part is a pullback and the whole thing commutes. Hence 

A = *(. c- - -  true,. ch (m) ) and .m = .=(. ca - -  true, . ch (m) ) . 
PROPOSITION 15: Monomorphisms which are also epimorphisms are isomorphisms 

in 8. 

.a 
Proof: Suppose that A-B is both monic and epic. By Proposition 14 

it is an equalizer, so suppose 

is the relavent equalizer diagram. As .a is epic we have that .arl = .arz 

if and only if .rl = .rz. So we may denote the map .rl = .r2 by .r and 

the relavent diagram now becomes 

The fact that this is an equalizer diagram says that given any .d : D-B 

such that 

commutes, there is a unique limit morphism .k : D-A such that 



- 1 commutes. In particular, taking D = B and .d = .1 we define .a to 
B  

be the limit morphism in (5.6) 

.a 
I f  A + B  is an arrow in 6 then the equalizer of the cokernel pair 

. (a) 
of .a is called the image of .a and is denoted by - lm(a)> * B. 

a .&(a) PROPOSITION 16: For every arrow A-B, &(a)z-----t~ is the smallest 

subobject of B through which .a factors. 

Proof: We must show that 

i.) there exists a unique morphism A  - 7m (a) such that 

commutes and 

ii.) given any subobject SAB through which .a factors (into 

.a' 
A-S-B say) then there exists a unique morphism 

.I  Trn (a) ---+ S making - 



commute. 

.ci 
i.) is obvious, given the cokernal pair of .a is B=C we define 

.=a 

.a to be the indicated limit morphism in the equalizer diagram (5.9) below: 

.c; 
If S-B is a subobject of B and B y C 1  is the cokernel pair 

of .s then .a factors through .s if and only if .aci = .ac; . The only 

if part is easy to see, as .aci = .arsci = .alsc; = .ac; . Conversely, 

if .aci = .ac; then as .s is the equalizer of its cokernel pair the 

required map A S is the limit morphism in the equalizer diagram (5.10) 

below. 

.-s 
So if we are given an S-B through which .a factors we have that 

.aci = .acJ . NOW note that .h - (a). ci = .h(a)oc; - . To see this look 

at the diagram (5.11) 



as .ac; = .ac; there exists a colimit morphism .I' : C-C' making 

appropriate things commute. Hence .h - (a). cl = .&(a) 0 c2 implies that 

.h(a)ec; - = .h(a)oclail - = .h(a)oc2*i1 - = .h(a)ac' - . But this now 
2 

implies the existence of a limit morphism .& : - Im(a)-s in the equalizer 

diagram (5.12) below. 

commutes, and 

.ao 
i.) A -'lm(a) - is epic, hence every morphism .a has an epic- 

manic factorization; 

ii. ) if A '' * S' " >B is a epic-monic factorization of .a then 

there exists a unique isomorphism .i : - 'lm(a)===zs; and 



iii.) Given that 

commutes, there exists a unique .e : - 'Im(a) -'lm(c) such that 

commutes. 

Proof: i.) First note that - zm(a) = B if and only if .a is a epimorphism. 

. f i  - Let B-G be the cokernel pair of .a. If .a is epic then 

.acl = .ac2 implies that  .cl  = .e2. :I.sr;ce ' zquzlizzs t hz  c=)-,ernel p a i r  
L~ 

of .a. Conversely, suppose that - 'lm(a) = B. Look at 

then we want .ad1 = .adz implies .dl = .dn. Let .R be the colimit morphism 

in the cokernel pair diagram (5.17) below where .adl = .adz. 

.a . C j  A-B ~ ~ 1 .  ,l 

D 

Then .dl = . c ~ R  and .d2 = .c2R. SO - lm(a) = B implies .CI = .c2 



whence .dl = .clR = . c ~ R  = .d2. 

Now to show i. ) it suffices to show that &(ao) = &(a) . But this 

follows from Proposition 16. 

.a 
ii.) Let A --A s AB be an epic-monic factorization of A-B. 

By Proposition 16 there is a morphism - 1m(a) A s  such that 

commutes. 

0 As .a and .e are epic and * commutes, .i is epic. As .h - (a) and 

.c are mono and " commutes, .i is mono. Hence by Proposition 15 .i is 

an isomorphism. 

.dl 
iii.) Let D-F be the cokernel pair of .c. Consider the following 

,d,  

diagram 

..&I - (c) is the equalizer of .dl and .d2. Thus .b.c".&(c)di = 

= .bcO.&I - (c) d2 , which implies 



As .ao is epic, this implies .h(a)ddl - = .h(a)ddn. - Hence there is a 

limit morphism .e from - 7m(a) into the equalizer of .dl and .dz, namely 

h(c), and this limit morphism .e makes the diagram (5.19) c0mrnute.o - 

111.6 Heyting algebra valued functors and Boolean topoi 

A Heyting algebra is a partially ordered set<H,T> such that for any 

two elements a,bEH 

i.) the greatest lower bound of a and b, denoted by (aAb)EH, exists; 

ii.) the least upper bound of a and b, denoted by (aVb)CH, exists; 

iii.) the pseudo-complement of a relative to b, defined to be the 

greatest xCH such that aAx 5 b and denoted by (a =, b)€H, exists; and 

iv.) a least element 0 exists. 

Recalling Example 3 of 11.1 where we established a 1-1 correspondence 

between partially-ordered sets and partially-ordered categories, we have 

the following propositions. 

PROPOSITION 18: A partially-ordered set<H,Z)is a Heyting algebra if 

and only if the corresponding partially-ordered category Q(H,z) is cartesian- 

closed. 

Proof: Take aAb = aQb, aVb = a&, a-b = abb, and 0 = - 0.  That A,V,=, and 

0 have the right properties is easily seen.0 



Now suppose we have a topos 8 and - l(W8 is a ternifial object. Let 

.a A +--+ - 1 and B A 1  - be subobjects of - 1. Using the fact that we can talk 

about images in 8 (Propositions 16 and 17) there is a natural way to 

define greatest lower bounds, least upper bounds, and pseudo-complements 

on the partially-ordered set -- 1:S~b , namely take .aAb to be .&(a~b), 

.aVb to be .&I - (a%) , and .a-b to be .&I - (a4b) . Under this interpretation 

l:%b &becomes a Heyting algebra with the map 2-1 as least element. -- - 

Thus we have established 

PROPOSITION 19: If 8 is an elementary topos and L is a terminal object 

in 6 then 1:Sub has a natural Heyting algebra structure.0 - -6 
B 

Next we note that if B€Obj then since 8 ' is the terminal 

B 

object in &B, 6J-B is a topos, and B : s  = (. lB) we have 

PROPOSITION 20: If 8 is an elementary topos and B€W then B:Sub, 
8 

has a natural Heyting algebra structure.o 

As the operations of B:% are preserved by pulling back, we may 

naturally view :Sub, as a Heyting algebra valued functor. 
THEOREM 11: If 6 is an elementary topos and a is the subobject classifier 

in 8 then a has a natural Heyting algebra structure in 8. 
A .V 

Proof: We must show that there exist mappings Sb862-a, f%l-a, 
. * .o m-62- a, and - 1-a, which satisfy the properties of the Heyting 

algebra operations. Let .false - : - 1-S-2 be the characteristic function 

of 2 -1. - Take .O to be .false. Let 

.t-e A 
(i.) . A  be the characteristic function of - 1> m6-2 



(ij.. . V be the characteristic function of 

.&I - ( . cl,, - true)@(true, in>) 

(iii.) .=, be the m a p , < ~ l , ~ > ~ 6  where .6 is the Kronnecker-delta. 

It is now easy to directly verify that fact that these maps satisfy 

the required conditions.~ 

In a Heyting algebra<H15>for any aCH we define -a to be the element 

a=O. We say that a Heyting algebra is a Boolean algebra if and only if 

for all a c ~ ,  -a = a. 

An elementary topos 6 is said to be a Boolean topos if and only if 

its subobject classifier fi is a Boolean algebra. We define the map 

.- : fl-S-2 to be the characteristic function of .false. 

A Boolean topos is said to be a two-valued topos if (.true, .false) = 

The following proposition is fairly easy to prove. 

PROPOSITION 21: ~ e t 6  be a topos and let n be the subobject classifier 

in . Then the following are equivalent: 

i. ) 6 is a Boolean topos 

ii.) .true@false : 1@1 -fl is an isomorphism -- -- 

iii.) .-= .lQ : n- Q. 



CIIAPTE?. IV 

TOPOI AND SETS 

Throughout this chapter 8WI is a Boolean topos and all objects and 

morphisms are in $ unless otherwise specified. 

IV.1 The language 3 (8) and its interpretation 

We now describe a language Z'($) which is an extension by definitions 

of the language &V ) (i.e. dwith constant symbols for elements of V 
I 1 

adjoined) and indicate how & ( d )  is to be syntactically interpreted in 

&v, 1 . 
Variables: %'(d) has three sorts of variables: 

1.) Object variables, denoted AlBICf..., which are to be interpreted 

as ranging over 8; 

2.) Arrow variables, denoted .a,.b,.c,..., which are to be 

interpreted as ranging over &; and 
A A 

3 . )  Typed variables of type A (for each A€@~), denoted xl,x2,..., 

which are to be interpreted as ranging over w ( 1 , ~ ) .  - 

Terms: Object constants and object variables are object terns; arrow 

constants and arrow variables are arrow terms. Typed terms are defined 

inductively as follows: 

a.) constants in ?CUZ (1,A) and typed variables of type A are terms -4 - 
of type A; 

A 
b. ) if tA is a term of type A and . f €Horn (A,B) then t . f is a term -8 - 

of type B; and 



A B 
c.) if tl is a term of type A and t2 is a term of type B then 

A B 
(tlrt2) is a term of type Am. Typed terms are then interpreted in the 

obvious manner. (Note: we may occassionally abuse our language by 

referring to a term of type A as an "element of A".) 

Relations and atomic formulas: 

1.) There are two arrow relation symbols: 

i.) the binary relation symbol - =& - and - 
ii.) the 3-ary relation symbol -=h-~-, 

- 
which are to be interpreted as the relations of equality 

and composition of arrows respectively. Atomic formulas 

are formed from arrow terms as follows: 

a.) if .ti and .tp are arrow terms, .tl =& .tl is an - 
atomic formula; and 

b.) it .tlr.t2, and .t3 are arrow terms then 

.ti =h .t20.t3 is an atomic formula. - 
2 .  ) There are relation symbols of type A for each A C ~ ~  as follows: 

i.) a binary relation symbol - =A - and 
ii.) for each subobject .m : B-A, a unary predicate ,CmB, 

which are to be interpreted as equality restricted to 

&(L,A) and factorization of elements of 3 (1 - ,A) through 
.m respectively. For example if .~€&(L,A) then . ~C,B 
holds if and only if there exists a map .a : A' -A such 

that (1.1) commutes. 



Atomic formulas are formed from typed terms as follows: 

A A A A 
a.) if tl and t2 are terms of type A then tl = t2 is an atomic 

A 

formula and 

A 
b.) if t is a term of type A and .m : B-A is a subobject of 

A 
A, then t € B is an atomic formula. 

m 

Formulas : 

1.) If 4 is an atomic formula then 4 is a formula. 

2.) If is a formula then* is a formula. 

3.) If 4 and $ are formulas then 0 V $ is a formula. 

4 . )  If 4 is a formula and A is an object variable then 

3 ~ 4  is a formula. 

5.) If 4 is a formula and .a is an arrow variable then 

3.a4 is a formula. 

6.) If 4 is a formula and xA is a variable of type A then 

A 3x 4 is a formula. 

Sentences 0 of (4) are given a truth value in B, the completion 

of the Boolean algebra 1:Sub according to the following inductive scheme: - 4, 



if .t, and .t, are arrow constants 
1.) l.tl =h .t*] =df - denoting the same arrow in 6 

t.0 : 0-1 otherwise. - - 

.1 if .tl denotes the composition of 
1 - 

2.) C.tl =h .t2 .tr] =df the arrows denoted by .t2 and .t3 
- 

0 : 0 - 1 otherwise. - - 

A A 
3.) [rtl = t21 = .L:y : C- 1 where <C, :Y) is the colimit of 

A df - 

the solid part of (1.2) 

A - A ' 
4.) [[t C~BJ =df .m 2 t i.e. the pullback of .m : B-A along 

t 
A" 

.t composed with .tA' as in the left hand edge of (1.3) 



We say that a sentence 0 is true in the external interpretation if 

[ol] = .Il. - 

IV.2 The language L(,$):  external and internal interpretations. 

Let &dl be the fragment of &($) obtained by deleting object variables, 

arrow variables, and the relations - and = - -Am - - -O-- - - 
By the external interpretation of 2 ( 8 ) ,  we shall mean its 8-valued 

interpretation as a fragment of %' (8) above. 

The internal interpretation of %(&), which we define below, assigns 

A 1 A to each formula $(xl ,..., x ) of a&, having exactly n free variables 
n 

of types A . . . ,A , a truth value .11$(1 which is an arrow in 8, 
1' n 

. (101) : ~~€4.. .@A - Q. .11@11 is defined inductively as follows: 
n 

2.) If .m : B-A is a subobject of A then 

B 
3 . )  If f : A-B is an arrow in 8 and $(x ) is a formula of L(6) 



A A 1  A 
6.) Let $(x ,xl ,... ,x ) be a formula of &(&I with exactly ntl free 

n 

variables of types A,A1 , . . . ,A . Let . i = . [ I ll$ll] be the n df 

subobject of A@A @. . .@A whose characteristic function is . I)$II. 
1 n 

Let D denote the domain of .i. Let .PfL : A m  63. ..@A-A @...@A 
1 n 1 n 

be the obvious natural projection map. Now define 

A A A1 A 
.1(3x (X ,xl , . . . ,X ) 1) =df . ch (h (i PfL) ) where . h l  (iopl) is the 

n -- - 

manic part of .ioE as in 111.5, Propositions 111.16 and 111.17. 

See (2.1) 

A '  formula $ of a& is said to be valid in the internal interpretation 
if . II$II factors through .true - : - 1- Q. We shall write I1$1) = T to 

abbreviate "$ is valid in the internal interpretation". 

The following three propositions, which are proved by Mitchell in 

[19], relate the external and internal interpretations of g(8). 

Define 3!x$(x) by (2.2) in 2. 

B A B  
PROPOSITION 1: If 1[vxA3! y $ (x ,y ) (1 = T then there exists a unique morphism 

A A . g : A - B such that I ] @  (x ,x .g) 11 = T.0 



t 
! B 

PROPosrTrON 2: If I;;! i$ iyBj I /  = T then there exists a ncrphisrz .q : - 1 - 8 

1 1  1 
such that ( ( t /~ -@(z- .~) l (  = 7 where z- is a variable of type Lwhich does not 

occur free in 4.0 

Let WC denote the following axiom: 

WC : Let .a : A-1 and let A *>->7m (a)> .&la3 . 
- - -1 be the epic-monic - 

factorization of .a (see Proposition 111.17) . Then .a0 splits. 

We say that a sentence 0 of L(6) is &-absolute if )~cIII  = T if and 

only if 0 is true in the external interpretation. 

A 
PROPOSITION 3: Let 8 be a Boolean topos satisfying WC.  (xA1 , . . . ,x ) 1 n 

be a formula of with exactly n free variables of types All ... A , 
n 

and .p. CPah (1,A. for all i=l, . . . ,n. Then 4 (pl.. . . .pn) is 6-abso1ute.o 1-6- 1 

IV.3 Boolean ZFC topoi and two-valued ZFC topoi 

A natural numbers object in a topos 6 is an object NEW together 6' 

with maps 
 ON - ."N 

such that for any object X C ~  together with maps 8 
i 

1 . X x  'k + - X 

there exists a unique map .h : N-X such that (3.1) commutes. 

A topos 6 is said to satisfy the category form of the Axiom of 

Choice (abbreviated CAC) if all coequalizers split in 8, or equivalently 



(by the dual of Proposition 111.14) if all epimorphisms split in 8. 

A tops 8 is said to satisfy the category form of the Bounding 

Principle (abbreviated CBP) if for every formula @ of 2' (6) with 

parameters in 6 and every A€W 6 satisfies (3.2). 8'  

A topos 6 is said to be a Boolean ZFC topos if 

i.) 8 is Boolean 

ii.) 8 has a natural numbers object 

iii. ) 6 satisfies CAC, and 

iv.) 8 satisfies CBP. 

A topos 8 is said'to be a two-valued ZFC topos if it is both a two- 

valued t c p s  and a Feolezn ZFC t o p s .  

I 
I 

In IV.4 and IV.5 we construct two functions: 

i.) & : (Boolean-valued models of ZFC) - (Boolean ZFC topoi) 
ii.) : (Boolean ZFC topoi) - (Boolean-valued models of ZFC). 
One should think of these constructions as taking place in ZFCI 

and referring to Boolean-valued models of ZFC which, though they are 

contained in V may not be sets relative to V 
I ' I '  

IV. 4 The construction of G [M@) ] 

Let B be a complete Boolean algebra and let M(~) be a B-valued 

model of ZFC. Then g[M is the category whose set of objects is 



(8) the universe of M and whose arrows are ordered triples<x,f,y)such 

that gf : x - ya = I I the maximal element of B. Domains. codomains. 

composition of arrows, and identity arrows are defined in the obvious 

fashion. 

THEOREM I : If M(%) is a B-valued model of ZFC then B. [M is a Boolean 
(8) w 1 , B. ZFC topos and a 

(8) Proof: Q[M ] is easily seen to be finitely bicomplete. Products and 

coproducts are cartesian products and disjoint unions in M('). If 

f : x-y and g : x-y, the role of the equalizer of f and g is 

played by (zl z€x A f (z) = g(z) and its inclusion in x and the role of 

coequalizer is played by y/- and the projection from y to y/-. where - 
is the smallest equivalence relation on y such that for all z€x, 

I f (z)y(z) . 
Exponentiation in &[M (8) (8)] is given by exponentiation in M , i.e. 
X 

xhy is y. The counit of the cartesian adjunction is given by ordinary 

evaluation, i. e. it is the function e : (Xy) xx + y defined by 

X 
e(f,z) = f(z) for all f€ y and z € x .  

df 

8 obviously plays the role of with .true - : - 1-a being the 

(8) function which sends fJ to 7 . 
w is the natural numbers object of Q[M(~)]. The map .O : 1- U 

is the canonical inclusion and .s : w d U  is the ordinary successor function. 

In order to check that epimorphisms split in C[M(~)] let e : x -y 

be an epimorphism in &[M(~)]. Then e is a surjection in M(~). By AC 

there exists a choice function f : y +x picking out a single element 



-1 
of e (2) for every zEy. f is the rccpircd section of e. 

(B) Finally, BP in M(~) translates exactly into CBP in G[M ] .o 

COROLLARY 1.1: If M is a classical model of ZFC then G[M] is a two- 

valued ZFC topos . o 

IV.5 The construction of a[%] 

A partially ordered set <t,5>is called a Scott tree if 

i.) for all x€t the set 2 = {zl z€x A 2%) is well-ordered by 5; 
df 

ii.) t has a greatest element ; Z 
iii.) <t,T> is 5-well founded and<t,2> is 2-well founded (see 1.4); and 

iv.) <t,~>has no order automorphisms other than the identity. 

If xFt let SxS denote the set of immediate predecessors of x in t. 

In any model of ZFC we can then define the set represented by the Scott 

tree <t,5> recursively by insisting that <t,l> represents a set z if and 

only if the elements of z are exactly the sets represented by the Scott 

trees of the form < 2,518 >where act%$. 

Now let 6 be a Boolean topos. If .s : B-A@A is a relation from 

A A A A 
A to A we can interpret a1 5 a* to mean (alra2)€ B. In this manner we 

S S 

may express the statement "<A,<> is a Scott tree" as a single sentence 

E(A, s) of g(d )  with parameters A and . s . We then can say that < A > -s. 

is a Scott tree in 6 if IJST(A,S) - 11 = T. If 6' also satisfies WC then by 

proposition 3 ,  - ST (A, s) is also externally true in 6' . BY clause ii. ) in 

the definition of Scott tree and Proposition 2 there is a maximal element 

.* : 1-A in 6' and the subobject .S*S of A is well defined. If a 
A 

S - S 



is a term of type A, let s denote the S c o t t  suktree of<A,S ) obtained 
a s 

A A A A 
by restricting 5 to . [b 1 b Cs a ] . the pullback of .true along . 1lbA 5 a 11 

S - S 

It is easy to see that i f < ~ , 5  > and<B < )are two Scott trees in d 
s ' -t 

and if PhB is a term of type AhB, we may express the statement , , p B  is 

an order isomorphism from A onto B" in by employing the counit of 

the cartesian adjunction : - ey to use P I B  as a function from A to B. 

Let B denote the completion of the Boolean algebra ff0m (1.9). Then 4- 
%[dl is the B-valued structure specified by the following: 

i. ) the universe of W[8] is the set (<A 0 ]ST - (A, s) 
ii.) I[6,5$ = <B TO'] = 113PhB (PhB is an order isomorphism 

'-t df 

from <A,Z~> onto <B. st> ) 11. 

iii. ) [[-+i155 > C < ~ , 5 ~ ~ [ ~ ~  =df 113fAhB (P** is an order isomorphism 
from <A,%> onto +D for some term b of type * q*) 11. 

If <A.S~> is a Scott tree in 4 and B is an object in 6 .  we say that 

<A,> structures B if e - X S  in 6 .  An object B is said to be structured 
S 

if there exists some Scott tree(A.5 )in 6 which structures B. Note that 
S 

the category of structured objects in 8 and arrows between them is a full 

subcategory of 6. 

PROPOSITION 4: If 6 satisfies CAC then every object of 6 is structured. 

Proof: If 6 satisfies CAC then every object A can be well ordered in 

the sense that there exists a subobject .w : B-Am such for any two 

A A A A A A 
terms of type A, a1 and a2, a1 5 a2 if and only if 11 (al ,a2) C Bll = T I  

W W 

and .w is a well ordering. The proof of this in 8 is just the imitation 

of the usual proof in sets. 



Informally we l e t < : : ~ , 5 . ) h e  the set of strictly descending sequences 
3 

A A A 
in A ordered by the requirement that <al . . . I a > < . < b:, . . . ,b > if and 

n 3  m 

only if m<n and a.=b for all i=l,...,m. 
1 i 

More formally if 0 denotes the 5 -minimal element of A we define 
A w 

and .j : Y - U X  is the subobject specified by 

It is now fairly easy to check out  that<^ >is a Scott tree in 8 
' -j 

i which structures A.o 

THEOFtEM I1 : Let 6 be a Boolean ZFC topos and let B denote the completion 

of the Boolean algebra ff0m (1,n). ~hen%[d]is a B-valued model of ZFC. 4- 

Proof: ~t is sufficient to show that D[6] satisfies AXE&, Axln~, AXPOWUL, 

Ax found, L M e d  Aunn andung, BPI and AC . 
Ax€&: If b . 5 )  =<B,Z>] = .true - = 1 then if we let x = <A,- '2 
and y = < B , z ~ >  we have-that 

113P'~ (f is an order isomorphism from x to y )  11 = T (5.3) 

This implies ~)VZ(ZCX tr zcy)] = .true = 1 ('). conversely if [[xfy] = .true 

then  since<^,% is not order isomorphic to<~.St> there must exist either 



an act*$ such that s f y  or a b€*r* such that tbFx Since CAC implies 
s a 

WC, Proposition 3 tells us that there exists a Scott tree z such that 

(B)  Ilt-.(zFx c-, z€y) (1 = 7. For this z ,  KZFX c-, zcy] = .false = 0 . 
Ax7na: It is easy to check that in the proof of Proposition 4 the Scott 

tree <C ' >which structures the natural numbers object N is an ordinal 
' -j 

of order type 3. 

AXPOWUL: ~ e t < A  < >  be a Scott tree. The power set of<A >will be 
I -s I -s 

the Scott tree GIst> constructed as follows: 

B will be a subobject of (A@(* +$*'%!) )@(***CR)@l. We will let the 
s - 

single element of - 1 be X Let *Ct* = $ ~ * + n .  If a is an element of 
t' df s - 

A and a#*% *, let a be the unique element of *** such that a C a. An 
S S S 

element Ia,f) of A@(*%**R) is in B if and only if (f ,g) .ev  - factors 
through .true. - For such an (a,f) we will define (a,f) 5 g, where g is 

t 

an element of ** *l+\R, if f=g. Finally if bcA, define (a,•’) (b,g) if 
s -t 

f=g and a 5 b. 
S 

The part of the above definition which makes <B > the power set ' -t 
of <A c >is that *?$ = ****n. The rest of the construction simply ' -s S 

makes sure<~,5>is a Scott tree with a maximal element* and appropriate 
t 

structure below * TS . 
Axfound: This follows immediately from the well foundedness of Scott 

trees. We use the fact that CAC implies WC again in order to use 

Proposition 3 as we did in the proof of AYE&. 

Limi;ted Aumondemng: Limited formulas in Z@[c$] 1 may be translated into 

formulas of %(&) by identifying limited variables with typed variables. 



If 4 (x) is a limited formula with one free variable x in &%[dl ) let 4 t 

denote its translation into Z(8) . Then {xF<A,~> I (#I (x) 1 is the subobject 
A -t A . [x I (x ) 111 of A together with the induced ordering. That this is 

the right set then follows from Proposition 3. 

BP: Follows immediately from CBP and Proposition 3. 

AC: As remarked in the proof of Proposition 4, we may use CAC to well- 

order any object in 6 .  It then follows from Proposition 3 that we can 

well order any set in 'JX[d]. 

This completes the proof of Theorem 11.0 

COR.OLLARY 11.1: If 8 is a two-valued ZFC topos then %[dl is a classical 

model of 2FC.o 

THEOREM 111: If 8 is a Boolean ZFC topos then aw[r$]] is equivalent as 
a category to 8. 

Proof: We use the fact that by Proposition 4, every object of 6' is 

structured. Define the functor :K : ~[rm[d] ] --+ 6 as follows: 

i.) If <A,S > is an object of 6lm[d]] let <AIZs> :K iidf $**. 
S S 

t 
ii.) If f = <xIf ,y> is a morphism in epJt[6]], where x =< A,Es> 

and y = <B,5>, then f is a set of ordered pairs inm[&], whence there 

is a formula $(arb) of k ( 8 ) ,  with free variables a and b of types S X S  
S 

and SjcS respectively expressing '<s tbXf" and such that 
t a' 

l(Va3!b~l(a,b)ll = 7. Then by Proposition 1 we may define 

t 
.f :K : *** - * * S  to be the unique morphism such that 

S t 

:K is obviously surjective on objects and faithful. It is also 



full for if <A> j dnd (E ' j are Scott trees and .hffl@m ( * - X s i * * * )  
S '-t ' s t 

then if we let f = (<s ,t >la€*+* A b = a.h), we have that 
a b  s 

.F t 
.f =<***,f,*%*> is a morphism in~v[d]] and .f :K = .h.o 

s 

Mitchell in [19] proves 

PROPOSITION 5: There is no way to define m[6] so that 

i.) a[$] is separated and 

ii.) there is an equivalence of categories : K  : &D[&]]-B which 

is definable in 6.0 

Hence we cannot insist thata[&] be separated. We say that two 

(B) (8) B-valued models M(~) and M are weakly isomorphic if (M ) 2 
1 1 s 

(8) 
S (M 1 (see 1.5). 

2 s 

THEOREM IV: If M(~) is a B-valued model of ZFC then ~[Q[M(~)]] is 

(B) weakly isomorphic to M . 
Proof: We need to define a function f :M !Ill[& [M '" ] ] which 

(8) 
preserves I/-=-II and /I-CII and such that for every y in B[5[M I] there 

(8) exists an x in M such that lly=f (x) 1) = 1 (B) in l~[b[~(~)]]. It is 

provable in ZFC that for every set x there exists a Scott tree<t,5> 

which represents x and that every Scott tree represents a set. If x 

is a set in M(~) let <its> be the Scott tree representing x and let 

f (x) be the Scott tree <t ,s. > in &[M where 
1 

i = <(6~,a2)€txt~al5a~),hI~x~>and h is the inclusion function. This 

f is the required functi0n.o 
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