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ABSTRACT

A topos is a cartesian-closed category with a subobject classifier.
A topos is Boolean if its subobject classifier has a Boolean algebra
structure. Boolean-valued models of set theory are examples of Boolean
topoi. The main result characterizes those Boolean topoi which are
Boolean-valued models of ZFC. In order that the work be fairly self
contained, introductory chapters on category theory and the model theory
of ZFC are included. Also included is an introductory account of the
elementary theory of topoi up to the proof that in any topos the subobject

classifier has a Heyting algebra structure.
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PREFACE

Much work has been done on the use of categorical algebra in the
foundations of foundations of mathematics (e.g. Lawvere [11]-[14] and
MacLane [16] and [17]). The first attempt at a category theoretic
characterization of sets was Lawvere [10]. Mitchell in [19] showed that
categories satisfying Lawvere's axioms were models for a finitely
axiomatizable set theory Zi which is strictly weaker than ZFC (Zermelo-
-Fraenkel set theory with the Axiom of Choice) in that the full axiom
scheme of Replacement does not hold.

Following the suggestion of my supervisor, Dr. Harvey Gerber, I have
tried to make this thesis as self contained as possible. It is assumed
that the reader is familiar with first-order theories and their models
(e.g. Shoenfield [25, Chapters 1-5]). BAlso some acquaintance with basic
terminology concerning lattices and Boolean algebras is desirable for
§I.5, the examples of Chapter II, and §III.6.

Chapter I presents the usual axiomatization of ZFC and demonstrates
the equivalence of another axiomatization which is technically useful in
Chapter IV. Terminology concerning models of ZFC is introduced in §1.4.
In §1.5 the concept of a Boolean-valued model is defined. The treatment
of Boolean-valued models of ZFC is taken from Jech [7], Rosser [24], and
Solovay and Tennenbaum [26].

Chapter II presents an introduction to category theory. The main



references used in its writing were MacLane [18] and Stone [27]; references
which were used to a lesser extent were Freyd [4] and Pareigis [21].

Chapter III is primarily taken from Freyd [5], although some use is
made of Benabou and Celeyrette [1] and Kock and Wraith [8].

Chapter IV is taken from Mitchell [19].

Many results have been obtained beyond these. Lawvere and Tierney
(see Lawvere and Tierney [15] and Tierney [29]) have shown that Cohen's
method of forcing (see Cohen [2], Felgner [3], Jech [7], Mostowski [20],
and Takeuti and Zaring [28]) can be done category theoretically in Lawvere's
Elementary Theory of the Category of Sets [10], by using a category of
sheaves construction. The last part of this construction shows that, as
might be suspected by analogy with Boolean-valued models (see Solovay and
Tennenbaum [26] for instance), one can collapse the appropriate Boolean
topos to a two-valued topos via a category of fractions constuction (see
Gabriel and Zisman [6]).

During the course of preparation of this thesis, the author was
supported by a grant from the President's Research Council of Canada and
teaching assistantships from Simon Fraser University.

The author is grateful to Dr. Arthur Stone for introducing him to
several books and papers that have much influenced this thesis, particularly
[1], [5], [8], [11], [15], [19], and [27]. Acknowledgements are also due
to Dr. Eugene Kleinberg and Professor Alistair Lachlan for managing to

teach the author some set thoery. The author is also much indebted to
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Dr. Harvey Gerber for not only putting up with him but also for paying
the cost of thesis typing.

Last but not least, any readability which this thesis may possess
is not a fault of the author, but a virtue of the typist, Linda Cowan,

without whom the author never could have met his deadlines.
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CHAPTER T

AN INTRODUCTION TO THE MODEL THEORY OF ZFC

I.1 The axioms of ZFC

The formal language £ of ZFC is the first-order language with equality
whose only nonlogical symbol is the binary relation symbol €, which we
shall always write between its arguments, e.g. x€y (read x 15 an element
of y). We suppose# to be formulated so that its primitive logical symbols
are ~{not), v(or), I(there exists), and =(equals). We use both subscripted
and unsubscripted lower case Latin letters x,y,z,u,v,X;,X2,X3,... to denote
variables of £. Terms, atomic formulas, and formulas of &£ are defined in
the usual way. Lower case Greek letters with or without subscripts
¢,9,0,01,02,43,... are used as metavariables ranging over formulas of £

The notation ¢(xl,--.,xn) implicitly denotes the fact that the variables

xl,...,xn occur free in ¢. ¢xl,...,xn[tl""'tn] is used to denote the
formula obtained by simultaneously substituting the terms tl,...,tn for
the free occurrences of the variables x ,...,xn in ¢(xl,...,xn). When no

1

possibility for confusion arises we may write ¢(tl,...,tn) for

X X 1""’tn]' We use the symbols =.. (is defined to be equal to)

introducing abbreviations for terms and formulas, e.g. see (1.1)-(1.7)

below.



$AY =z 0D VA (¢ and V) (1.1)

¢ Y =~V (¢ implies V) (1.2)
b+ Y Saf (o > ) A W > ) (¢ is equivalent to V) (1.3)
Vxd =, ~3x ~ ¢ (for all x ¢ holds) (1.4)
xfy ;df'w(xéy) (x s not an element of y) (1.5)
XAy zdf'v(x=y) (x does not equal y) (1.6)
351x¢(x) Zaf 3xyy(¢(y) > x=y) (there exists at most one x (1.7)

(where y does not occur in ¢(x)) such that ¢(x))

The logical axioms and rules of inference of the first-order theory

of £ we shall take to be those of Shoenfield [25, pp. 20-21] or any

equivalent formulation. The nonlogical axioms of ZFC are listed and
explained below.
AXIOM 1 - The Axiom of Extensionality (abbreviated AXExX)

VxVy (x=y <>V z(z2€x «—>2€y))

A%Ext specifies tﬂe reiationship between the symbols = and € by
asserting that the equality relation is completely determined by the
element relation.

AXIOM 2 - The Axiom of the Null Set (abbreviated AxNufl)
IxVy (v£x)

AxNull asserts the existence of an elementless set. By AXExL there

can be only one such set, hence we may introduce a constant symbol ¢ to

stand for it.

x=( =af Yy (v£x) (x 78 the null set) (1.8)



VxVy3AzVt (t€z +— (t=x V t=y))
AxPain says that given any two sets x and y there is a third set z
whose only elements are x and y. By AxExt for given x and y such a z

is unique, hence the following definitions make sense:

z={x,y} ¢ Tt(t€z <= (t=x V t=y)) (z is the unordered pair  (1.9)
of x and y)

{x} =af {x,x} (singleton x) (1.10)

<Xy >Egp {x,{x,y}} (the ordered pair of x (1.11)
and y)

<x1""'xn >E3f <<X1r-.-rxn_l>,xn> (the ordered n-tuple of (1.12)
(for n=3) Xp7---rX)
AXIOM 4 - The Axiom of Union (abbreviated AxUnion)
Vx3yVz (z€y <= It (t€x A z€t))
AxUnion says that given a set x the collection of elements of elements

of x forms a set y. By AXExt for a given x such a y is unique, hence the

following definitions make sense:

y=Ux =af Vz (z€y <=3t (t€x A z€t)) (y 28 the union of x) (1.13)

XUy =4¢ Ulx, vy} (the union of x and y) (1.14)

{x)s..cox YUl } (the wnordered n-tuple of

df
(for n>2) xl,...,xn) (1.15)

{xl,...,xn} =

AXIOM 5 - The Axiom of Infinity (abbreviated AxIng)

Ix{Bex A Yy (yex — yulyltex))



AxIn{ asserts the existence of an infinite set.
We define subset relations as follows:
yoX =.¢ Vz (z€y — z€x) (y s a subset of x) (1.16)
yOx =0 YEX A y#X (y 18 a proper subset (1.17)
of x)
AXIOM 6 - The Axiom of the Power Set (abbreviated AxPowei)

Vx3yVz (z €y +wzcx)
AxPower says that given a set X, the collection of all subsets of
x forms a set y. By AxExft for given x this y is unique. Hence we define

y=PS (x) af Yz (z€y = zcx) (y 18 the power-set (1.18)
of x)

AXIOM 7 - The Axiom Scheme of Replacement (abbreviated AxRepf)

variables the following formula, which will be referred to as AxRep£¢,
is a nonlogical axiom.
th...Vtk[Vx351y¢(x,Y,t

,...,tk) + YudvVr(rév +—+3s(s€u A ¢(s,r,t ..,tk)))]

1 1’

AXRQPK¢ says that if for fixed tl,...,tk the férmula ¢ determines
a partial functional relation then the image of any set u under the partial
function determined by ¢ is also a set v.
AXIOM 8 - The Axiom of Foundation (abbreviated AxFound)
Vx (x#@ + dy(yex A Yz (z€y -+ z£x)))

The purpose of AxFound is to prevent the existence of sets containing

€~cycles or infinite descending €-chains. This then allows us to describe



the universe of all sets as a hierarchy of sets built up from the null
set @ by the operations of power-set and union (see Theorem II, p.16).
AXIOM 9 - The Axiom of Choice (abbreviated AC)

VYxJEVz (z€x A z#@ > Judy (u€f A u=<z,y> A y€z A VulVyl(uléf A ul=<z,yl> - y=yl)))

This formulation of AC says that for every set x there is a choice
function f which picks out one member y from each nonempty z€x.

This completes the list of nonlogical axioms of ZFC. It should be
noted that the above is not a minimal set of axioms; AXxNwfl, AxPair and
AxUnion are redundant, being easily proved from AxRepf.

We shall sometimes need to consider systems weaker than ZFC; two such
systems are ZF and ZFO which are obtained by deleting respectively from
the above list (i.) AC and (ii.) both AxFound and AC. A theorem
scheme which is often added as an axiom scheme in place of AxRepf to
yield still weaker systems is given by the following.

THEOREM I (Aussonderung): Let W(x,tl,...,tk) be any formula of £ having
ekactly k+1 free variables (where k20). Then

(o)
7ZF Hvtl...vthXHsz(ZEYHZEX A l,l)(z,tl,...,tk)) .

Proof: This is immediate from AxRepK¢ where ¢(x,vy,t ,...,tk) is the

1

formula x=y A Y(x,t ..,tk).D

1"

We next define the notion of a bounded quantifier as a sequence of

symbols of the from 3z€x or Vzéx where

Jz€x¢ (z) =4f Jz (z€x A ¢(z)) and (1.19)

Vz€xd (2) =4f Yz (zex > ¢(z)). (1.20)



A formula of # is said to be limited if it can be written so that
all its quantifiers are bounded.
) lim .
Two systems which are weaker than ZF are Z and Z which are
obtained from ZF by deleting AxRepf and adding respectively

(i.) Aussonderung for every formula P (x,t .,tk) having k+1 free

1’

variables and

(ii.) Aussonderung for every limited formula Y (x,t ,...,tk) having k+1

1

free variables.

I.2 Basic definitions

In Cantor's original conception of set theory it was an accepted
principle that the collection of all objects having a certain property
was a set. However Russell's paradox demonstrated that this viewpoint
was rather too naive. It has since been recognized that an adequate
set theory must provide a means of talking about two different kinds of
collections: sets and classes, a class being a collection of objects
satisfying a certain property. Hence we would like to define in our
language £ an abstraction operator {xl } operating on formulas, where

{x| ¢} is to be read "the class of x such that ¢".

Occurrences of the variable x in {x! ¢} are treated as being bound.

In particular if x does not occur free in ¢ the notation is regarded

as denoting @&. We make the following definitions:

a€{x| ¢(x)} =af ¢ (a) (2.1)



{x! d(x)}¢b = 3y€bVz (z€y -+ (2)) (2.2)

ar
{x] ¢(x)}elx| Vx)} =af 3y (yedx| P} A Vz(zéy 9 (2))) (2.3)
{x[ d(x) }=a S3f aﬁ{xl $(x)} =af Vz(z€a++¢(2)) (2.4)
{x]| ¢x)}={x| v} 245 Vz (z€{x| ¢ (x)}ezelx] V) H (2.5)

In the above, and in general in the following,we usually assume
that variables not mentioned in subformulas such as ¢,¥,..., and which
occur in other parts of a definition involving these subformulas, do
not occur in these subformulas. For example in (2.2) it is understood
that y and z do not occur in ¢ (x).

Formulas involving occurrences of the abstraction operator are
really just abbreviations for formulas of # . An explicit procedure
for reducing a formula ¢ of the language having the operator { | }

to a formula ¢* of £ is given below.

(x€y) * Edf x€y (2.6)
(a€lx| 9 dyx = (9@ * =5 ¢* () (2.7)
x| ¢(x) Yeb) * =qp JyEbYz(z€y < ¢*(2) (2.8)
({x| ¢ (x)Yelx| Py hH* sqp YWY A Vz(zey—¢*(2))) (2.9)
(x=y)* =, x=y (2.10)
(a={x| ¢ (x)H* =.c (x| ¢ }=a)* = Yy (yeas¢*(y)) (2.11)



x| ¢(x) I={x| v h* =q¢ Yz ((ze{x] & (x) H*e(ze{x| V(x)H*) (2.12)

(~p) * =qf ~h* (2.13)
(b v )= =qf o* v P (2.14)
(Ixod) * =qf Ixp* (2.15)

A detailed proof that this reduction procedure actually determines
a unique ¢* may be found in Takeuti and Zaring [28, p.1l1].

When it is reasonably clear that a certain class described by an
abstraction operator is actually a set, we may make use of this fact
without explicit mention.

By a class term we mean either an individual variable symbol or a
class symbol of the form'{xl ¢} where ¢ is a formula of L.
Metavariables ranging over class terms will be denoted by upper case

Latin letters A,B,C,....

Below we list a number of formal definition schemes for some
convenient abbreviations of expressions in £ . For the most part the
notation is either fairly standard or mnemonic. The list is intended
mainly as a reference; for the most part our definitions in the rest
of this work will tend to be more informal, although we will always try
to indicate enough so that it will be clear that our discussion is

explicitly formalizable.

ACB =0 Yx (€A <+ x€B) (A s a subclass of B) (2.16)

=a



ACB AcB A A#¥B

=af

U= {x] x=x}

AXB =3¢ {xl Jadb(a€A A bHEB A x=<a,b>}

-1

(A 18 a proper subclass of B)

(the class of all sets)

(the cartesian product of
A and B)

A =4f {ul IxIy (u=<x,y> A< y,x>€A) }
(the

Ua =3¢ {x, Ay (y€A A x€y)}
aUB =, {x| xea v xeB}

Na =af {xl Yy (y€a > x€y)}
aNnB =df'{x[ X€A A x€B}
alB =, af(@x()

Rel (R) =ar REUXU

Rel (r,A) =4y RERXA

XRy 2,0 <x,y>€R

Re4k (R) 4f Vx (XRx)

Re4k (R,A) Zag Vx (x€A -+ xRx)

xRy =¢ X, YAR

(the

(the

(the

(the

tnverse of A)

union of A)

union of A and B)

intersection of A)

intersection of A and B)

(A restricted to B)

(R

(R

(x

(R

(x

18

18

18

18

18

18

a relation)

a relation on A)

R to y)

reflexive)

reflexive on A)

not R to y)

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

.17}

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)




Te gl (R) =
Tnnegl (R,R)
Symm (R) =af

Symm (R,A) =

Antisymm (R)

Antisymm (R,

RTrans (R) =

RTrans (R,A)
Thich(R) =

d

Thich(r,n) =

PreOnd (R) =

7o)
e
v}
©
~
I~
O

VX .X..l, s
ar (XRX)

th

af Yx (x€A + xFx) (R 18 1rreflexive on B)
VxVy (xRy + yRx) (R 28 symmetric)

af YxVy (x€A A y€A A XRy * yRx)

(R 18 symmetric on R)

= A > X=
=4F VxVy (xRy A yRx =+ x=y)

(R 18 antisymmetric)

A) =qf VYxVy (x€A A YyEA A XRy A yRX > x=Y)

(R Z8 antisymmetric on A)

af ¥YxVy¥z (xRy A yRz + xRz)

(R s relationally transitive)

=af YxVYyVz (x€A A yEA A z€A A XRy A yRz > xRz)

(R 18 relationally transitive
on A)

£ YxYy (xRy V x=y V yRx)

(R satisfies the law of
trichotomy)

af YxVy(x€A A y€A + XRy V x=y V yRx)

(R satisfies the law of
trichotomy on A)

af RLR) A Refl (R) A RThans (R)

(R 28 a preordering)

—
o

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

10

(o8}
o
~—

33)

34)

35)

36)

37)

38)

.39)

40)

41)

42)
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(R 28 a preordering on A)

Equiv (R) =af PreOrd (R) A Symm(R)
(R 28 an equivalence relation)

Equiv (R,R) =af PreOrd (rR,n) A Symm(R,A)

(R s an equivalence relation
on A)

PanOnd (R) =3f PreOnd (R) A Antisymm (R)

(R 18 a partial ordering)

ParnOrd (R,A) %ag PreOnd (R,a) A Antisymm(R,A)

(R is a partial ordering on A)

LinOnd (R) =af ParnOrd (R) A Trich(R)

(R s a linear ordering)

LinOnd (R, n) =af PanOrd (R,B) A Thich(R,A)

(R 78 a linear ordering on A)

Minimal (x,R) =af ~3y (y#x A yRx) (x 728 R-minimal)

Minimal (x,R,RD) =3¢ ~3y (Y€A A y#x A yRx)

(x 28 R-minimal on A)
Maximal (x,R) =af ~3y (y#Zx A xRy) (x 1s R-maximal)
Maximal (x,R,A) af ~3y(y€A A y£x A XRy)

(x 78 R-maximal on A)

7~

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

11

Y

44)

45)

46)

47)

48)

49)

50)

51)

52)

53)



12

Least(x,R) =45 Vy (x#y =+ xRy) (x 16 rR-ileast) {2.54)

Least(x,R,R) Sqf XA A Yy (y€A A x#y > xRy) (2.55)
(x s R-least in A)

Greatest(x,R) =ar Yy (xAy - yRx) (x 18 R-greatest) (2.56)

Greatest (x,R,R) S35 X€A A Vy(y€A A x#y > yRx) (2.57)

(x 18 R-greatest in A)

WellOnd (Rr) a5 LinOrd (R) A vg(xxu)hR}eg + Jy (Leasz (v,R[x,x))) (2.58)
(R 18 a well-ordering)

WellOnd (R,R) =35 LinOnd (R,R) A Yx(x#@8 A xSA > 3y (Least(y,R[x%,x))) (2.59)
(R 28 a well-ordering of B)

Unary (B) =, VxVyVz (<x,y>€R A <x,2DEA > y=2) (2.60)

(A is unary)

Biunanry (n) =ar Unary (B) A Unajtg(A'l) (2.61)
(A Zs biunary)

Fne (n) =4r Rel(n) A Unany(n) (A s a function) (2.62)

One-one (n) a5 Rel (n) A Biunary(A) (2.63)
(A 28 a one-one function)

Dom (n) =, {x]| Iy (x,y>en)} (the domain of A) (2.64)

Rg (n) =af {y[ Ix (<x,y>€A) } (the range of B) (2.65)



A'B =, . Rg (a]B) (the itmage of B under B)

AeB =af {u, Ixy3z (u=<x, 2> A <X, YS€A A Cy,z5€B) }
(a composed with B)

F:aA—>B =, Fne(r) A Dom(F)=a A Rg(F)cB
(F maps A into B)

F:A_———>B=. Fne (F) A Dom(F)=a A Rg (F)=B

(F maps A onto B)

F:2a1lp= _F:an—>B A One-one(r)

(F maps A one-one into B)

F:a12tsp=s FP:2a1LBAF.:A—>38
onto daf onto

(F maps A one-one onto B)

y=F (x) =45 X, YOEF (y Zs F of x)
Xy =a5 {£] £ : x—>y} (the set of all functions from
x into y)

E “af {u! Ixy (u=<x,y> A x€y)}  (the element relation)

Thans (a) 45 VxVy(x€A A y€x > yE€A)
(A 18 transitive)

On(x) = . Thans (x) A Wellord(Efx,x)

=4
(x 78 an ordinal)

X+l =5 xU{x} (x plus one)

(2

(2.

(2

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

13
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67)

.68)

69)

70)

71)

72)

.73)

74)

75)

76)

77)



Suceln(x) =.. On(x) A 3y(On(y) A x=y+1)

(x 78 a successor ordinal)

LimOn (x) =4f On(x) A x#g A ~Succln(x)

(x 28 a limit ordinal)

1

x=y =__. 3f(f : x "1 ) (x and y are equipollent)

“as onto

Cand (x) =3f Qﬂjx) A Vy@n(y) A ;=§ A Xy > x€y)

(x 28 a cardinal)

X=W = .. LimOn(x) A Vy(LimOn(y) A x#y > x€y)

(x 28 W)

From now on we will try to present most of our definitions more

informally, leaving it to the reader to satisfy himself that our definitions

are actually explicitly formalizable in &£ .

Having defined ordinal and cardinal numbers, we will assume, as

14

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

needed, that the reader is familiar with some of their elementary properties:

e.g. simple ordinal and cardinal arithmetic, transfinite induction,

transfinite recursion, the Schroder-Bernstein Theorem, Cantor's Theorem,

etc. We shall usually denote ordinals by lower case Greek letters o,8,Y,...

relying on the context to prevent confusion between these and metavariables

for formulas of £.

Below we simultaneously define the sequences of X and W numbers by

transfinite recursion over the ordinals.

r
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) R = =

i.) 0 “af wo af W (2.83)
. . R — = .
ii.) arl —ar Yotl “af [the least ordinal Y such that
~ . ..Li-y

AE(E = Y onto wa)]
--.. R = w = . .
iii.) A Tar O\ Saf BQXMB for A a limit.

In the above we write B<A for B€A and assume that the reader can

figure out an indexed union. If A is a limit ordinal then the cofinality

of A, ¢4{A),is defined by

eq ) =3f [the least ordinal B such that 3f(f : B—= X A URg (£)=M)].

(2.84)

is said to be regular if gﬁjwa)=wa. Ra is said to

A cardinal Ra

N

: e I, \ G
L ] W

be singular i Hw .

I}

Next we wish to show that AxFound actually allows us to describe the

universe of all sets U as a hierarchy built up from the null set @ by

power-set and union operations.

For each ordinal o we define a set Va as follows:

i) v, =4 @ (2.85)
i) Vg =qf BS0VQ)
iii.) vy =af BQAVB for A a limit ordinal.
Finally, let
(2.86)

v =ge (x| 3o0n(@) A xev )}
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The following propositions about V are easy tou prove.

PROPOSITION 1: For each ordinal q, Va is transitive.o

u)

PROPOSITION 2: If a<f then VaEVB

B.Cl

PROPOSITION 3: If o=<f then =y

Next we define a rank function, hank : v = Qﬂ by

k = i . .
RANR (X) =4 [least ordinal & such that XEVG+1] (2.87)

The following propositions about nank (x) are easy to prove.

PROPOSITION 4: If x€y then rank (x)<nank(y).o

PROPOSITION 5: If xcy then rank (x)<nank({y).o

PROPOSITION 6: If O is an ordinal then iank(a)=0.o

THEOREM II: ZFrv=U.

Proof: The proof is by reductio ad absurdum. Suppose there exisis a
set x€l such that xfV. The first claim is that by AxFound we may assume
without loss of generality that every element of x is in V. To see this

define the transitive closure of x, TransCL(x), as follows:

i) Ty x) =g {x} (2.88)
ii.) Tn+l(x) =af UTn(x)

iii.)y ThansCl (x) =af nngn(x)u

By Aussonderuwng {yl ve€TransCL(x) A yEV} is a set and by AxFound it
has an €-minimal element which has the property that all of its elements
are in V while it is not. Hence we could have taken x to be this element

to begin with.



A
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Now nanklx : x — On and by AxRepl, fuank*x is a set. Hence
p=Unanh"x is an ordinal greater than or equal to the rank of any element of
X. As Vp is transitive this means that for all yé€x, y€Vp. Therefore X;Vp

and x€Vp+l, which is a contradiction.no

1.3 Other axiomatizations of ZFC

The purpose of this section is to introduce some other axiomatizations
of ZFC which will prove to be technically useful in Chapter IV.

First we wish to define what we mean by the relativization of a
formula. Let 6(x) be a formula of £ with exactly one free variable and

let A =df‘{x| B(x)}. 1In (3.1)-(3.5) we define ¢A, the relativization

of the formula ¢ to the class A, by induction over formulas ¢ of £.

iyez)® S (3.1)

(y=2)" = . y=

ymE) Egqp YR (3.2)
A A

P =~ (3.3)

A
(Y1 v ¥2) =af IP}1\ Y wé\ (3.4)
Ayn® = Iviven A v (3.5)

Next, let ¢(xl,...,xn) be a formula of £ with exactly n free
variables. Let W be a class and let wpg€W. We say that wy mirrors

¢(xl,...,xn) in w if (3.6) is provable.
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VXIEWO...VXnEWO(q)WO (xl,...,xn)<——~>d>w(x feex ) (3.6)

1

Finally, if ¢1 and ¢, are any two formulas of £ in prenex normal

form, we say that ¢1 is a truncation of ¢, if ¢; can be obtained from

$2 by deleting some initial segment of the prefix of ¢».

THEOREM IITI (The Generalized Reflection Principle):

Suppose that for every ordinal o we have defined a set Wa such that

i.,) 4if B <y then W, ¢ WY and

B

ii.) if A is a limit ordinal then W, = U W,.
A B
B<A
Let W = {xl Jo(On(a) A x€W )} and let ¢(x.,...,x ) be any formula
af —_ o 1 n
of £ with exactly n free variables, which is in prenex normal form.
Then it is provable in ZF that given any ordinal o, there exists a limit

I PO N Tmd Wl 3
Ao + = W mirrors rﬁ(y

'y mirrors ¢ _l,...,xn) and 211 cof ite truncationg

PR . R |
viuliial

in W.

Proof: The proof is by induction over formulas ¢ of £.

. . . A,
Case 1l: ¢ is quantifier free. 1In this case ¢ is ¢ for any class

term A; hence we take A to be the first limit ordinal above o.

Case 2: ¢ is ~). By the induction hypothesis we can find a limit

ordinal A>0 such that WA mirrors ¥ and all its truncations in W. But

W W
for all x ,...,anWA, I/ X(xl,...,xn)<———"\() (x

1 ,...,xn) is provable if

1

. W \ .
and only if ~4 1(xl,...,xn)‘———’wtp (xl,...,xn) is provable.

Case 3: ¢ (x ,...,xn) is IxPix,x .,xn)

1 1’

Define the functional relation wrank : W —0n by
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whank (w) = a =g WEH 0 A VBEa(wﬁwB+l) (3.7)
for all wew.
Let F¢ be the n-place function defined by
F (xl,...,xn) =df
(3.8)
=__ {x| xew A ww(x X ,...,%x ) A YBewrank (x)Vzew Owww(z X ,..0.,x )}
df 14 ll r n pdafotdeidedind B 14 l’ ’ n
for all xl,...,anW.
From (3.8) it is clear that
W W
IxEwWP (x,xl,...,xn)-6——>3xEF¢(xl,...,xn)w (xl,...,xn) (3.9)
We next define a sequence of ordinal {Ak}kéw as follows:
Ao = [the least limit ordinal above o such that W, mirrors
aft Ao (3.10)

w(x,xl,...,xn) and all its truncations in W]

Let G(Xl,...,xm) be any truncation of ¢ beginning with an existential

guantifier and suppose x ,...,xm to be an exhaustive list of the free

1

variables of 8.

A [the least ordinal above A such that for all

2k+1,0 _af 2k

(3.11)
a ;...,a W, , Fola,,...,a ) €W ]
! m A 0L " Aok+1,6
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and
- . . £ .. .
A2k+l daf U{A2k+1,6l 6 is a truncation of ¢ beginning w1th
an existential quantifier} (3.12)
A2k+2 =af [the least ordinal above A2k+1 such that W
2k+2
mirrors W(x,xl,...,xn) and all its truncations] (3.13)
AO and X2k+2 are well defined by our induction hypothesis.
k2k+1 5 is well defined for each 8 a truncation of ¢ beginning with an

existential quantifier, for if we let

m
ifly =af {z] 3yl€y...3ym€y(z=<yl,...,yh?)} (3.14)
m
then whank Fe"if]WAZk is a set by AxRepf. Since there are only a finite
number of 8's satisfying the conditions posited, 12k+1 is obviously well
defined.
Let A = UA =UAXA_. X is obviously a limit ordinal, so by
daf k 2k
k€W k€w
the continuity hypothesis about W, Wy, = Uw, =UW, . We now claim

Kéw k k€éw 2k

that WA mirrors ¢ and all its truncations in W. We prove this claim by
induction over all truncations 6 of ¢.

Subcase 1: 0 is quantifier free. Same as Case 1.

Subcase 2: 0 is ~f, Same as Case 2.

: B .o i ’ ‘e .
Subcase 3 (xl, ,xm) is Ix& (x xl, ,xm) Suppose that

<
a ...,amEWA. Choose k<w large enough so that al""'amEWA .

1'
2k
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Then

Bw(al,...,am) o Ix (XEW A Ew(x,a ,...,am))

1

o HXEFe(al,...,am)Ew(x,a .,am)

1’

W
< HXEw2k+1,eg ((ray,..00a))

W
E(x,a.,...,a )
Aokl 1 m (3.15)

= Ix€W

= HXGWAEW(x,al,...,am)

= HXGWXEWA(x,a yeeegsd )
m

1

W
o 0 }(al,...,am)

Conversely, if HXGWXEWA(x,a ,...,am) holds, there is an aGWA such

1

that Ewa(a,a ,...,am) holds. By the induction hypothesis this implies

1
W W
£ (a,al,...,am) holds. Therefore 3x(x€W A & (x,al,...,am)) holds.
Thig then completes hoth inductions.n

COROLLARY III.1 (The Reflection Principle, abbreviated RP)

If ¢(xl,...,xn) is any formula in #£ in prenex normal form with exactly
n free variables then given any ordinal o there exists a limit ordinal

A>0 such that VA mirrors ¢(x ..,xn) and all of its truncations in V.noO

1’

By the Bounding Principle (abbreviated BP) we mean the formula

scheme (3.16)

th...Vthx(Vu€x3v¢(u,v,t ,...,tk)<——*'3qu€x3v€y¢(u,v,t t ) (3.16)

1 1777k

where ¢(u,v,tl,...,tk) is any formula in &£ with exactly k+2 free variables.
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lim
THEOREM TV: For all formulas & in#, 7277 +BPF ¢ if and only if ZF+ ¢.

Proof: (=) It is enough to show that ZFt BP. We show in fact something
- which is seemingly stronger.

13
LEMMA 1: 2z "+RP} BP.

Proof: Fix t t. and x. Let o = £ U{nanh(x),nanh(tl),...,nanh(tk)}.

1" "k d

By RP there is a limit ordinal A>0 such that vy mirrors

VuEx3v¢(u,v,tl,...,tk) (3.17)

and all its truncations.

In particular VA mirrors (3.18).

uéx - ¢(u,V,tl,...,tk) (3.18)

So we have (3.19)

' ) A ’ -~ <A ros o AT
preeerl Jl T (uéx el vt t )

k 1 k

\Y
« (uEx -> ¢ (ulvlt Io--ltk))

1
(3.19)
Hence (3.20) holds.
Vi
(uéx =+ (¢ (u,v,tl,...,tk)‘—*'¢(u,v,tl,...,tk))) (3.20)
From the fact that VA mirrors (3.17) we have (3.21)
-~ VX
Vu€x3v¢(u,v,tl,...,tk) VuEvaEVA¢ (u,v,tl,...,tk) (3.21)
which by (3.20) is equivalent to (3.22).
€x3 e i T .
Yuéx v¢(u,v,tl, ,tk) *—>Vu€x3vEVA¢(u,v tl ,tk) (3.22)
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This completes the proof of Lemma 1.0

(¢) To show the converse we have to prove that 1M, Bp AxRepl.
Informally we can see this by noting that any instance of AxRepf may

be replaced by use of BP, to get a bound on the image we want, followed

by a use of Aussonderung, to carve out the exact set we want. The content
of RP is that our use of Aubéandenung may be replaced by a limited
instance of AuAAandenung. To be strictly more formal requires showing

1i

that we can actually prove RP in 2 "+BP, since AxRepf was used in proving

RP.

LEMMA 2: 2z  ™4BP RP.

Proof: The proof simply requires a careful look at the proof of Theorem

IIT in the case W = V. Our key use of AxRepf there was in (3.11), in
which we needed to get a bound on Az n- But BP is all we really need
there. This then proves Lemma 2.0

Our proof of Theorem IV is now complete.n

We may make use of AC and its equivalents without comment in the

following. The most frequently employed equivalent of AC of which we

make use is Cantor's law of trichotomy, which is expressed by (3.23)

Vx3y(y=;) (3.23)

For other equivalents of AC the reader is referred to Cohen [2],
Felgner [3], Jech [7], Krivine [9], Mostowski [20], Shoenfield [25], and

Takeuti and Zaring [28].



T.4 Classical models of 7ZFC

A {(classical) model of ZFC is a structure % = <A,e>, where A is a

set and e < AXA, which is a model of the first-order theory ZFC in the
usual sense. For the definition of a model of a first-order theory the
reader is referred to Shoenfield [25].

We do not allow the universe A of the structure % to be a proper
class because if we did we would not be able to express the fact that
YE=ZFC in a single sentence of £. This is a consequence of the fact
that ZFC is not finitely axiomatizable. However, when we insist that
A be a set we can say that % satisfies the infinite axiom scheme AxRepf{
by saying that A is closed under a finite number of operations, e.g.
GBdel's~?i—é%. See Cohen [2], Felgner [3], Jech [7], Mostowski [20],
Shoenfield [25], or Takeuti and Zaring [28].

A model Y =<A,e>of ZFC is said to be a standard model if e = EfA;

otherwise it is said to be nonstandard. A standard model is called
transitive if its universe is a transitive set. Since this work is
concerned with models of ZFC, the following axioms concerning the

existence of models are of considerable interest to us.

The Model Axiom ({(abbreviated M)

Ix(x is a model of ZFC)

The Standard Model Axiom {abbreviated SM)

Ix(x is a standard model of ZFC)

24
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The Standard Transitive Model Axiom (abbreviated STM)

Ix(x is a standard transitive model of ZFC)

We have already seen that these axioms are formalizable ins.

The following relationship between the axioms is evident

ZFCHSTM > SM > M > [2zFC is consistent]. (4.1)

Hence by Godel's completeness theorem, if ZFC is consistent then
the addition of any of the axioms M, SM, or STM yields a set theory
strictly stronger than ZFC. Also by Godel's completeness theorem we

know that

ZFCF [ZFC is consistent] <— M (4.2)
Also

ZFC F SM «— STM (4.3)
See Corollary V.2. However

ZFPC -~ (M > SM) . (4.4)

A proof of this may be found in Takeuti and Zaring [28, p.243] and
Cohen [2, p.104].

A structure <x,B> is said to be B-extensional if (4.5) holds.

Rel (B,x) A VpVq(p€x A q€x A p#q > 3r(r€x A {(rBp A ~xrBq) V (rBq A ~rBp))))

(4.5)



26

Rel (B,x) A Vz{z < x A z#@ > Jp(p€z A Yalgéx A gBp + gfz))) (4.6)

THEOREM V  (Mostowski's Transitive Collapse Theorem) :

Suppose <X,B> is B-extensional and B-well-founded. Then there
exists a unique transitive set t and a unique function f : x-%%&*-t
such that for all y, z€x, yBz if and only if f(y)€f(z).
Proof: Let g<x,B> denote the B-minimal element of x, which exists by
B-well~-foundedness and is unique by B-extensionality. Define a hierarchy

of pseudo-ranks in x as follows by induction on the ordinals:

Po = Px,m> (4.7)
’ :‘ ->
Pi1 {zex| VYqlq€x A gBz a€p )} (4.8)
Py = UP for A a limit ordinal. (4.9)
a<A
Define a pseudo-rank function Enanh : X ——*-Qﬂ by
= i P
E&anh(z) [the least ordinal a such that z€ 0H_l] (4.10)

LEMMA 1: There exists an ordinal o such that for all ordinals B>o.,

PgNP= £

Proof: Suppose not, i.e. suppose that Ya(On(o) -+ ~x < Pa). By
B-well-foundedness we may assume without loss of generality that x is
B-minimal with this property. But by AxRepl, prank"x is a set, hence

p = U prank"x is an ordinal which is greater than or equal to the
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pseudo-rank of every element of x. Thus x ¢ Pp+1 which contradicts our
4
hypothesis. This proves Lemma 1.0

Define the function £ : x——=V by

(g J4] (4.11)

<X,B>) B
£(y) = {£(2)| z€x A prank(z) < prank(y) A zBy} (4.12)
LEMMA 2: f is injective.

Proof: Suppose z) # z2. We want to show that this implies that

f(z3) # £(z2). The proof is by induction on max (p&ank(zl),pnank(zz)).

By B-extensionality z; # 22 implies 3Jz¢€x((z¢Bz; A ~zgBzp) V
V (z¢9Bza A ~zyBz1)). Suppose we have that zyBz; A ~zyBz,. As
’Bﬂank(zo) < Bhank(zl) we have by our induction hypothesis that
f(z;) = {f(z)| ZEX A g&anh(z) < Ehank(zl) A zBzy} #
(4.13)
# {f(z)l z€x A Ehanh(z) < E&anh(zz) A zBzo} = f(z5)
since f(zg)€f(z;1),whereas f(zy) # £(z2). This proves Lemma 2.0
Let t =af f'"x.
LEMMA 3: t is transitive.
Proof: If u€v and v€f(z) for some z€x, then v = f(y) for some y€x. But
then u = f{q) for some g€x. This proves Lemma 3.0
LEMMA 4: z1Bzs; if and only if f(z;)€f(zs).
Proof: By the definition of £, z;Bz; implies that f(z;) €f(z2). Conversely,
f(z1)€f(z2) implies that f(z;) = f(y) for some yBzs. By Lemma 2 this

implies z; = y. Hence z)Bz;. This proves Lemma 4.0
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LEMMA 5: f is unique.
Proof: The obvious induction on Q&anh suffices to prove Lemma 5.0

This completes the proof of Theorem V.o

COROLLARY V.l: If B = EJX and z & x is transitive then frz is the identity

function of =z.
Proof: Follows from the uniqueness part of Theorem V.o

We will refer to £ : x — >t as the collapsing function of <{x,B>

and to t as the transitive collapse of <x,B>.

COROLLARY V.2: ZFCHSM < STM.o

Remark: Theorem V cannot be used to show that M + STM because the
assertion that <{x,B> is B-well-founded is strictly stronger than the
assertion that <x,B> satisfies AxFound.

A regular cardinal.Ra is said to be (strongly) inaccessible if

0 is a limit ordinal and Vx(x < Ra +j§§?§? < Ra),
The following axiom will often be useful:
The Axiom of Inaccessible Cardinals (abbreviated I)
Ja(On(a) A [Ra is strongly inaccessiblel).
We will usually use 1 to represent an inaccessible cardinal.

PROPOSITION 7: It is provable in ZFC that if 1 is a strongly inaccessible

cardinal then V1 forms a standard transitive model of ZFC. Thus
zfC+ 1 -+ STM.
Proof: See Takeuti and Zaring [28, p.l131l].no

We will denote the system ZFC + I by ZFCI.
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I.5 Boolean valued models of ZFC

Let B be a complete Boolean algebra which will remain fixed through-~
out this section.

A B-valued interpretation of &£ consists of the following:

1.) a set u, called the universe for the interpretation and

2.) two functions Ry : uXu—= B and R; : uXu — B which satisfy
Condition (%) below.

For every closed formula 0 of #u) (the language £ with constant

symbols for elements of u adjoined) we define a truth value in B, [[o],

by recursion as follows:

fla; = az] =47 Ro(ar,az) for all aj,az€u (5.1)
Ha1€a2ﬂ =if Ry (a1,a») for all aj,az€u (5.2)
6] =4¢ ~14] (5.3)
[6 vyl =, (60 v V] (5.4)
[3xd(x)] =4 supB{[¢(a)ﬂ]a€u} (5.5)

B
We say that a sentence 0 of £(u) is B-valid if ﬂ¢ﬂ = 7( ), the

greatest element of B.
For Ry and R; to be part of a B-valued interpretation of # we also
require that they satisfy

Condition (¥): the sentences of &£ asserting that = is an equivalence

relation and € is substitutive with respect to = are B-valid.
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Let M be a model of ZFC. In the rest of this section all of our

considerations will be carried out in M unless indicated otherwise.

(B)

We define the B-valued universe for M, M by induction as follows:
. (B) _
i.) M, _dfﬂ
s (B) (B)
i) Moo =gp {£] Fne(£) A Dom(£) < Mg A Rg(f) = B} (5.6)
(B) u M(B) for A a 1limit ordinal.

iiig) My =
A af ooy B

Finally let

u® =4 (x| 300n(a) A xEMéB)}- (5.7)

There is a natural embedding of the universe M of M into the

(B)

. B . N
B-valued universe M( ). We denote this embedding by : M—>M

which we define by €-~recursion as follows:

(B)
= _M
df 0 (5.8)

= <

<

[the unique constant function {yl yeéx} ———*{7(8)}]

»

Taf

(B)

We now construct a B-valued interpretation of £ with universe M .

(B)

Let Brank : M — 0n be the function defined by

[least ordinal o such xEM(B)]. (5.9)

Brank (x) 1

Tars

We now define [[x=y] and [x€y] by recursion on <Brank (x) ,Brank (y)>,

in the canonical well ordering of QEXQE,



[x=yl =4f infB{X(Z)=[z€yﬂlzéggm(x)} A
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(5.10)
A infB{y(z)=[[zex]]|ze@m(y)}
where
U=V =g Vv (5.11)
for all u,v€B and
[xey] =t supB{y(z) A [z=x]) | z€Dom (y) } (5.12)

Proofs that these interpretations satisfy Condition (%) are straight-

forward and may be found in Rosser [24]_
B
We will denote by M( ) the B-valued structure with universe M

and interpretations of = and € given by (5.10) and (5.12) above.

THEOREM VI: If ¢ is provable in the first-order theory of £ then ¢ is
B-valid in M(B).
Proof: This is proved in Rasiowa and Sikorski [22] and in Rosser [24],
using the formulation of the first order predicate calculus given in
Rosser [23].o

In M we cannot actually prove that M(B) satisfies all the axioms of
ZFC without contradicting Godel's incompleteness theorem. However, in M
we can check that M(B) satisfies each axiom of ZFC. If we work in ZFCI
and assume that M < Vl, where 1 is an inaccessible cardinal, we are able
to look at M(B) "from the outside" and see that the following theorem

is true.
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THEOREM VII: All the axioms of 2ZrC are B-valid in M(B),
Proof: See Jech [7] or Rosser [24].no
(B) . . . (B)
We say that M is separated if and only if for all x,y€M ’

(B) . _ (B)
[x=y]] = 1 implies x=y. The reader should note that M as we have
defined it is not necessarily separated. We would like to construct a

. (B) (B)y . . e

separated version of M'7°, Ms , in M. However there is a difficulty,
namely that the equivalence classes in the equivalence relation

(B) . .
[=1=1 are proper classes in M. To get around this we use the
following trick of Scott's.

Let

(B) (B)
[x] =.. {yem " |[x=y] =1 A
s df (5.13)

A vzeM(B)([x=zﬂ = 1(3) + nank (y)stank (z)) }

|x] is then a set in M, called the Scott equivalence class of x. Further
s

[x]S = [y]S if and only if [[x=y] = T(B). Hence there is a quotient map

T M(Bl—a——»M;B) defined by

- | | . 4

ILICOPPRRE S [[q><w<xl),...,w<xn)>]] (5.15)

(B)

for all closed formulas ¢ with parameters xl,...,anM .
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CHAPTER II

AN INTRODUCTION TO CATEGORY THEORY

I1.1 Categories and metacategories

In this section we shall describe the notion of a category informally
by means of axioms, without recourse to any set theory. Objects of our
intuition which obey the axioms we shall call "metacategories". The term
"category" we shall reserve for realizations of metacategories within set
theory. We shall always be working with categories in order to make our
discussions more concrete to those readers who favor set theory as a
foundation of mathematics, however, it is important to realize that our
set theoretic discussions using categories are logically unneccessary and
that perfectly abstract discussions using metacategories are possible,
and perhaps even preferable to those who favor category theory as a
foundation of mathematics.

It is assumed that the following concepts are intuitively meaningful:

i.) the notion of an object and

ii.) the notion of an arrow from an object to an object.

Regarding the notion of an arrow, it is assumed that we are able to
distinguish which particular object lies at the head and which particular
object lies at the tail of a given arrow.

We shall usually use upper case Latin letters A, B, C, ... to label
objects and lower case Latin letters preceded by a dot .a, .b, .c, ... to
label arrows, though we reserve the right to explicitly deviate from this
notation whenever it is convenient.

We say that two object labels A and B are equal, which we denote by
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A =B, if A and B are both labels for the same object. Similarly, we say
that two arrow labels .a and .b are equal, written .a = .b, if they are
both labels for the same arrow.

A metagraph consists of objects A, B, C, ...; arrows between these
objects .a, .b, .c, ...; and two operators, Domain and Codomdin, assigning
objects to arrows as follows:

i.) the operator Domain assigns to each arrow .a as in Figure 2.1
the object Domain (.a) = A lying at its tail; and

ii.) the operator Codomain assigns to each arrow .a as in Figure 2.1

the object Codomain (.a) = B lying at its head.

A .a B
® M— > @

Figr-e 2.1

We often abbreviate the assertion ".a is an arrow such that Domain (.a) =

.
wa Y 1n - D 1.
y iy Y]

[
\Vecary) —

A metacategory is a metagraph with two additional operators, Tdeniiiy

and Compobiiion, which are described below and which satisfy Axioms I and II:

i.) Identify is an operator which assigns to each object A an arrow

Tdentity (a) =q¢ *1p A7 A and (1.1)

ii.) Composition is a partial operator from pairs of arrows to arrows

which assigns to every pair of arrows (.a,.b) such that Codomain (.a)

= Domain (.b) an arrow

(0 = .ao. = .ae = «aQ. = 1.2
Composition (.a,.b) af "2°b =5 -2 b=, -a.b =4, (1.2)

=3f .ab : Domain (.a) —— Codomain (.b).
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Axiom I (Associativity) For any collection of objects and arrows
in the configuration of Figure 2.2 it is the case that

Composition (Composition(.a,.b),.c) = Composition(.a,Composition(.b,.c))

0»)»———?al——>o»>»——'b——>o>»————'c———>-o
Figure 2.2
Axiom II (Unit Law) For any .a : A— B it is the case that
.lA.a = .a and .a.lB = .a.
The above definitions and axioms can be expressed in the language
of set theory. By a category we shall mean an interpretation of the
category axioms in ZFC or ZFCI. We indicate how such an interpretation

is to be carried out in the following.

By a graph we mean an ordered four-tuple <0bj,Aur,dom,cod> such that

0bj and A%t are sets and dom and cod are functions such that dom : Ann—— 0bf
and cod : Avi— 0bf. For any graph g =<0bj,Aun,dom,cod> we define
the set of composable pairs of arrows of @, denoted by At gAnn or
A A, by the following:
Am%Am =4 {<.a,.p> €AuxAnn] dom(b) = cod(a)} (1.3)

Finally a category ¢ (over a graph ¢ )} is an ordered six-tuple

a = <<Obj,Ahh,d0m,C0d,.ég!.comg> such that

i.) g = <Obj,Akh,d0m,codf> is a graph;

ii.) .4d : 0bj—> Aun is a function such that for all Ae0bys,

dom (.4id(n)) = cod(.4d(n)) = A;
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iii.) .comp : AweAr——> Ann is a function such that for all

<.a,.b> €AeAnn we have that dom(.comp(<.a,.b>)) = dom(.a) and
cod(.comp(<.a,.b>)) = cod(.b);
iv.) BAxiom I holds ing; i.e. for all <.a,.b>, <b,.c> €AoA we
have that .comp(lcomp(<la,.b>), .c>) = .comp(<{.a, .comp.b,.c>>); and
v.) BAxiom II holds in &, i.e. for all .a€Att we have that
eompKla, Ad(cod(.a))> = .a and .comp(<.4d(dom(.a)), .a>) = .a.

Categories will usually be dencted by upper case English script

letters @,B8,C, 5, 8, 7, ..., 1fg =<Objd,Ama,domd,coda,.xid , . COMP >
is a category then
i.) the elements of ObicZWill be called objects (in ) and denoted

by upper case Latin letters A, B, C, ...;

ii.) the elements of Ann _ will be called arrows, morphisms, or maps

(in Z7) and denoted by lower case Latin letters preceded by a dot .a, .b, .c,...;

iii.) if .afAnr  then the object dom (.a) will be called the domain of .a
— J —d

and will also be denoted by dom (a);

iv.) if .a€Anrn  then the object cod _(a) will be called the codomain
M Ject L0% codomain

of .a and will also be denoted by cod (a);

v.) if AEObi" then the morphism .4d _(A) will be called the identity

morphism (arrow or map) on A and will also be denoted by .lA;

vi.) if <a,.b> Ao A ,we will say that <a,.b>is a composable

pair of morphisms (arrows or maps) in ¢ and .comp (<.a,.b>) will be called

the composition of .a and .b and will also be denoted by .ae.b, .asb, .a.b,

or .ab; and
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vii.) if A,BEObf;7then the set

Hom 4n,B) =, {.aeAmzl dom (a) = a A cod (a) = B} (1.4)

Of course we may deviate somewhat from the above notations when we
find it convenient. We shall usually be quite explicit when we introduce
new notations, however we will not always call attention to obvious
simplifications such as the dropping of dots or parentheses in complicated
expressions.

In the following we shall frequently employ diagrams whose vertices
consist of labels for objects and whose directed edges consist of labels
for arrows and pictures of arrows. We say that such a diagram is

commutative (or commutes) if for each pair of vertices c¢; and c,, any

two paths formed by following directed edges from c; to c, yield, via
composition of arrow labels, "equal arrows" (i.e. equal arrow labels).
For example we may rewrite Axioms I and II as follows:

. » .a .b .C .
Axiom I: For all A—— B > C > D, the diagram

a .a.l: > C
(1.5)
.a b .Cc
B .be > D

commutes.

.a .
Axiom II: For all A—— B, the diagram

1.6
\A / \n ( )
A A > B

commutes.
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Examples of categories:

1.) In ZFCI we will denote the inaccessible cardinal by 1 {iota).
V1 is a standard transitive model of ZFC. The category whose objects are
the elements of VI' whose morphisms are ordered triples <x,f,y>EV1 such
that £ : x—> y, and whose notions of domain, codomain, identity, and
composition are defined in the obvious manner, is called the category of
sets and is denoted by S .

Note that we now have two different notations for functions in set
theory. First there is the ordinary set theoretic notation in which
functions are written on the left and compositions are written from the
right to the left. Second, there is the category theoretic notation in §

in which functions are denoted .a, .b, .c, ... and written and composed on

the right. The presence or absence of dots on the function symbols should

a .

ion is beiny used for any given expression.
2.) It will be noted that our definition of category may be carried

out in ZFCI or relativized to V . This then gives us two notions of category.
1

A category in the sense of V1 will be called a small category. Categories

in ZFCI which are not small will be called large categories.

3.) Any partially ordered set (or poset) <x,<> may be made into a

category ((%,5) by letting

- _ o l if Zl EZZ
Qéi—@(x,s)_ x and ﬁgm'@(x,i)(zl'zz) - { 0 otherwise (1.7)

for all z;,z,€x. Define domain, codomain, identity and composition the obvious

manner. Such a category will be called a partially ordered category or

pocategory.
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4.) Let g = @bjd,AMd,domd,coda,._L’_(jd,.comgfbe any category. The

dual category of &, dOP, is the category obtained from & by reversing all

the arrows, i.e. formally aOP =0bj ,Amd,codd,domlj,.L'_da,.comlgf.

5.) Suppose & is a category and B€0bj ;- Then the category of arrows

in (7 over B (or the comma category of ¢¢ over B)is the category denoted

by (¥B whose objects are arrows in ¢ of the form A —E»B and whose arrows
are described by the requirement that the elements of

Hom (A, —245B, n,-tisB)

— @B !

are all commutative triangles in ¢ of the form

.8 -
Ay > Ay
b b
\ / (1.8)
B

Types of morphisms:

1.) A morphism .m : A—>B is said to be a monomorphism (or monic)

if for every pair of morphisms L%?.A, .leA = . fom implies .&; = .%5.
We will also write ".m : A»—>B" or "A>%=B" for ".m : A—>B is a
monomorphism".,

2.) A morphism .e : A—>B is said to be an epimorphism (or epic)
if for every pair of morphisms B%R, .er; = .erp implies .r; = .rs.
We will also write ",e : A—» B" or "A-ﬁ»B" for ".e : A—B is an
epimorphism"”.

3.) A morphism .i : A—=B is said to be an isomorphism (or iso or

invertible) if there exists a morphism .j : B——>A such that .ij = '1A
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and .ji = .lR. We will also write ".i : A==>B" or "A==S>B" for

.1 : A—B is an isomorphism". We say that two objects A and B are

isomorphic, denoted by A =z B, if there exists an .i : A=—B.

4.) A morphism .f : A——>A, whose domain and codomain are the same

object, is said to be an endomorphism (or endo).

5.) An endomorphism which is also an isomorphism is said to be an

automorphism (or auto).

6.) Let .a;y : Aj;—>B and .as, : Ay—>B be two morphisms with common

codomain B. We say .az factors through .a; if there exists a morphism

.f : Ap——A; such that

ot

e ————— P
"

w

(1.9)

g
N

commutes.

Dually, let .by; : A—B; and .bs : A—>B, be two morphisms with common

domain A. We say that .bs; factors through .bj if there exists a morphism

.g : Byj—B, such that

Yt

b=

A

0

(1.10)

»
€« ——————————1g

to
)

commutes.
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7.) An epimorphism

Dhi .h : A—»B is said to be a split epimorphism

(or a split epic or simply to split) if .1B factors through .h, i.e. if

there exists a map .£ : B——»A, called a section of .h, such that

/ (1.11)
’
Bé s

|8
o]

commutes.

8.) A monomorphism .h : A»—>B is said to be a split monomorphism

(or a split monic or simply to split) if 'lA factors through .h, i.e. if

there exists a map .r :

: B—>A, called a retraction of .h, such that

(1.12)
A .1a A

A

commutes.

9.) An endomorphiém .f : A—>A is said to be an idempotent if

LEf = L.

10.) An idempotent .f : A—=sA splits if there exists an object B

-q
and morphisms A"'_".h_. B such that the diagram
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A =l B
.h
.f g
(1.13)
-9
A B
commutes.
11.) Let .a; : Ap> B and .a : A > B be two monics with common

codomain B. We write .a; = .a; i1f .a; factors through .a;, i.e. if there

exists a map .e : Ar>—=A; such that

(1.14)

»

N o -
\/
;

- ek ¥

commutes.
We write .a; =~ .as if .a; < .a; and .a2 = .a;. "=" is then an

equivalence relation on monics with codomain B. The corresponding

equivalence classes of monics are called the subobjects of B. The

collection of subobjects of B also has a natural ordering, the one induced
on it by = above, which we shall also denote by =. It is often convenient
to abuse our language by calling a monic with codomain B a subobject of B
and writing A>l§%-B with the intention that it be read ".a is a subobjegt

of B" (or even "A is a subobject of B").
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I1.2 Functors and natural transformations

Let @, = <Obii,A/ULi,domi,codi,.ﬂi,.comgi> be a category for i = 1,2.

A (covariant) functor :F : Z1—> @2 is an ordered pair of functions
:F = <FM’FM> such that

i) FM ¢ 0bf;—— 0bj,;

ii.) Fﬁ_”ﬂ_: Aml———> A/ULZ

iii.) for all .aE_A__&il dom (F (a)) = FObj(i@—l(a)) and

Ann
cod (F o (@) = F_Qéi(’co—dl(a)); and

iv.) for all < a,.b> EA/ULOA/UL A/UL( .com Bl(a b)) =

= .C()m!_(_)z (FA)UL(a) IFAM (b)).

A contravariant functor :G : @;—— @, is a covariant functor

:6F . gP——a,.

Functors will usually be denoted by upper case script Latin letters
preceded by two dots :A, :B, :C, ..., although we shall occasionally

o ; ; ion. :F = L F ;
explicitly deviate from this convention. If :F <F0b . A/UL> is a functor

as above, we shall normally write A:F  for 0b (A) where AEObjl and

.a:F  for FAM(a) where .aE_A/z_/L_l.

The identity functor :1  on any category & is the ordered pair

a

:Td =af <I1,1,> where I, is the identity function on 0bj  and I, is the

identity function on A/zftd .

1f :F : dy——d, is a functor thend; is called the domain of :F

and @, is called the codomain of :F. However we will usually write simply

:F

F i g1—ds ox diy— 4.
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Flnally if :F = <F0_bi‘_,Fé’_'liL_>: dl——ﬁdZ and

:G =(<GOb"GA&h;> : @y ——> 3, we define the composition of :F and :G to

be the functor

F tFe:G =_ :F:G =_ :FeG =__ :FG. (2.1)

<6 A Taf af ar af

ob7°Fobir e

Note that the functions on the far left hand side of the above equation
are written in the set theoretic notation with the functions on the left.

A functor :F : dy———>d, is called a constant functor if there

exists an A, €0bf_, such that for all A,€0bf , , A1:F = A, and for all
__472 ——JGH

.aGAnhjl, .a:F = 'lAz' :F is then called the constant functor on A, from

@1 and denoted by :A,.

A functor :F : d1—— @, is said to be full if for all A,BEOb{d1
and all .a2€H0m72(A:F, B:F), there exists an .a1€H0m71(A,B) such that
.ay1€Hom  (A,B) such that .a;:F = .as.

—d1

a
A functor :F : @1———>@ > is said to be faithful if for all

.ai1, .aZEA/‘L/‘L?1 .a; # .a, implies .aj:F # .ax:F.
M = , . —— : . . .
A functor :F <:FOb ’FA&&> d1 d> is said to be an isomorphism

of categories if FOb' and FA&A are both bijections.

We say that a category di is a subcategory of the category &2,

denoted @, & d, if

i.) Qéj&ﬁ c 99472 (we denote the inclusion function by

%’.ﬂz :0bj ,—— 0bf, )

2

. - . . .
ii.) éﬁ&jl < A&&72 (we denote the inclusion function by

. 2
iﬂéﬂﬁ .A&ﬂzr—————+ A&&?Z)
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iii.) dom = dom, [Anr s

iv.) gggdl= cod:,zfAmjl;

n

v.) ./(:dﬂl

Ad azr()b f g, and

vi.) .comp = acomp ZfAMdloAmdl.
r G ayrd, . d
&, 2 01Uy 1

Anpp 2 Ay

’dz>is called the inclusion

4, a

The functor :71

functor and it is obviously faithful. If :T 2js also full then we

say that ) is a full subcategory of @,.

Note that there are other definitions of subcategory in the literature.
The definition above coincides with that of MacLane [18, p.15].
Examples: 1.) Let <x, SX> and <y, Sy> be any two posets and let
f : x—> y be any order preserving function. Then f induces in the
obvious way a functor :Pf : Bx, fx)——> Cly, Sy) between the corresponding
pocategories.

2.) Let Og denote the subcategory of 8§ whose objects are

partially ordered sets and whose morphisms are order preserving maps.
Let Oadenote the category whose objects are small pocategories and whose
morphisms are the functors between them. Note that both O’S and O@ are
large categories. From the definition of pocategory it is obvious that
there is a functor :J :Og——> G, that is an isomorphism of categories.

C

) F
Let :F and :G be functors from dl to CZZ, i.e. d;

a;.

A natural transformation from :F to :G :n: :F —— :G is a set of arrows in

> indexed by objects of @y, ::n = {.HAEAMYZIAEObijl} such that
i.) for all AEO_b_jal, @_r_ndz(nA) = A:F and cod 72(nA) = A:G and

ii.) for all A,BGO_b__{dl and all .a€Hom, (A,B), the diagram
1
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A:F A A:G
.a:F .a:6
B: F il >B : G

46

(2.2)

commutes (in ).

The elements of :n = {.nAEA&%j !Aégéij } are called the components
2 1 I —

of the natural transformation :m. The element “Na is called the

A-component of :n and may also be denoted by .A:m.

If :F and :G are contravariant functors, a natural transformation

from :F to :G,:n ::F—— :G is a natural transformation

In general we will denote natural transformations by lower case

Greek letters preceded by two dots :0, :B, :Y, *--.

A natural isomorphism (or natural equivalence) is a natural

transformation whose components are all isomorphisms.

Let :F : ¢g—> B be a functor and let BEQ@jﬁy

Then :B denotes the

constant functor on B from &. A natural transformation :n : :B—> :F

is called a cone on :F from B. B is called the vertex of the cone and

:F is called the base. We also use the notation :p
abbreviate ":n : :B—> :F is a cone on :F from B".

transformation :€ ¢ :F ——— :B ig called a cocone on

B—<>:F to
Dually, a natural

:F to B. B is called

the vertex of the cocone and :F is called the base.

We also use the notation
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:€ : :F—p-»B to abbreviate ":€ : :F ——:B is a cocone on :F to B".

If @1 and ¢, are categories we define the product category

@1 Xd> in the obvious manner:

i.) @Jﬂle = %.Jdl x —b'idz;

ii.) A Xy U{Hom : (a;,By) x Hom 2(A2,Bz)l

I<a1,a>,<B1 ,Bz>eo_bja - 1

iii.) dom Xy (dom L dam f <2

iv.) cod X (cod x cod f X

. . (d .'d;
v.) Ldlxaz LIXLzand

i.) .comp = (.comp . A A
vi.) .comp . o= (.com . X campdz)f 2’ 2,

It is a simple matter to verify that 1 x 2 satisfies the definition
of a category. By the simple iteration of the above construction we may
define the product of the n categories (71, .-.,cZn, which we will

n
denote b X v.. X X U, .
no v && d; or 1=fg;

A functor from a product of n categories is called a multifunctor

(with n-arguments). By looking at dual categories for certain arguments

it is possible to speak of multifunctors'being contravariant in certain
arguments and covariant in others.

If && X .. &7n is ? product of n categories, there exist n special
multifunctors :Pki : d& X ... M7n~———4w7i for i=1, ..., n. These

multifunctors :Pkn will be called projection functors and they are defined

in the obvious manner. We may consider any multifunctor of n-argument to
give rise to functors and multifunctors of less than arguments by holding

certain arguments fixed.
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Example: Let 7 be any small category. Then :t{_o_rnd(__,___) . °Pxaqd — 8
is a multifunctor with two arguments or a bifunctor.

Note that ’ﬂchf_—J——) is contravariant in the first argument and
covariant in the second. To see this let us suppose that A1,A2,B€Q§47
and .f : Aj7 BAj. Then_f{_OLn_d(f,B) : Hom (ap,B) — Hom (a;,B) is the
set theoretic function which sends AZ—L§~+ B to A1~L£+ A2—4§+ B.

Similarly, if A,B1,B2€Qéj&,and .g : By—* By then

.HOmC%A,g) : HomeArBl)“”‘“+ Hom fA,Bz) is the set theoretic function which

.b ) )
sends A—"+ B; to A~ 5,5 5,

For each Aégéja,we obtain the two functors :HomcfA,__) and :Hmwj(_~,A)

by holding A fixed. The functor :HOHI%AW__) is called the covariant Hom-

functor (with A fixed) and :Hom (_+/A) is called the contravariant Hom-

0

functor (with A fixed). A covariant (resp. contravariant) functor

:F : 7 —— & is said to be representable with A as its representing

object if :F is naturally isomorphic to the covariant (resp. contravariant)
Hom-functor with A fixed. It is easy to see that naturally isomorphic
representable functors must have isomorphic representing objects.

A natural transformation of multifunctors is in a sense already

defined since a multifunctor is a special kind of functor. Notice that
a natural transformation of multifunctors is a natural transformation
in each argument.

Let ¢ and 72 be categories. We define the category of functors from

@1 togz, Fune(di.42), to be the category whose objects are functors

:F : @1 ——rd2 and whose morphisms are natural transformations between
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such functors. The domain, codomain, identity and composition functions
are defined in the obvious manner. It is a simple matter to check that

Fune (1 ,02) satisfies the category axioms.

Examples of functor categories: Let 1 denote the category with one

object and one arrow. Let @ denote the category with two objects having
just one arrow between them and whose only endomorphisms are identity
maps. If &7 is any category then Func (1,d) is isomorphic tod. Func(2,7)

is called the category of arrows ind and it is isomorphic to the category

whose objects are arrows .a : Aj—— Az in d and whose morphisms
.f : ay —>ay, where .a; : Aj1—>2Aj12 and .ap : Apy}—> Ay are

arrows in &, are ordered pairs of arrows in &,.f = <h,k>, such that

Ayl > N2
(2.3)
h .k
K
Az, 2 —> Ao >

commutes.
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TI.3 ILimits and colimits

We now formalize our notion of a diagram more precisely; a diagram

in a category 77 is a functor :D : fd —> ¢, where <4 is a small category

called the shape (or index category) of the diagram :D. We think of each

of the elements of Obicﬁ and Aﬂﬂgﬂ as being a label for its image under
:D. Generally we will denote objects in an index category < by a,B,Y,..
and arrows in #¢ by .i, .j, .k,.... We will often write Da for a:D and
.d. for .i:D.
i
Let .a; : Da————+ B and .ap : DB-———+ B be arrows in (7 with common

codomain B. We say that .a, factors uniquely through .a; in the diagram

:D if there exists a unique arrow .i : B— a in # such that

7

QDmm— > 3
a
a

o3}

(3.1)

®
»

™

commutes.

Dually, if .by : A —> Da and .by : A—> DB are arrows in (¢ with common

domain A then we say that .by factors uniquely through .b; in the diagram

iQ'if there exists a unique arrow .i : oo—> B in 4 such that
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Q

X

(3.2)

/
L1
X et

™

commutes.
If :D : 4 ——> 7 is a diagram in & and AE_(_)_(_)_{d then a universal

arrow from :D to A is an ordered pair <a,.a> where OLEOb{Jand .a Da——> A

is an arrow in & such thatfor all BE_(_)_f_)jJ and all arrows .b : DB_—) ind,

.b factors uniquely through.a in :D. Dually, a universal arrow from A

to :D is an ordered pair <d,.a> where aEObf? and .a : A—> Da is an arrow
in @ such that for all BEObi'p and all arrows .b : A— DB in ¢, .b
factors uniquely through .a in :D.

. Func (,q) be the category of diagrams in ¢ of shape

P
uL

Let Diag(4Q) =

4. Define that generalized diagonal functor :V :¢g — Diag(#,g) to be

the functor which
i.) sends each AEQ_f_)_fd to the constant functor from J to A,
:A : J — ¢ and
ii.) sends each arrow .a : A—> B in ¢ to the natural transformation

:N : :A—> :B whose components are all equal to .a.

If DEOb{Dm L) then a limit of the diagram :D ind is a universal

arrow from :V to D in Diag (#,d) and a colimit of the diagram :D ind is

a universal arrow from D to :V in Diag #,4).
Below we give another characterization of limits and colimits in

order to unravel the above definitions slightly.
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Let Conea;A,:D) =af Hompia (Jx7)(A:V'D) (3.3)
and
Coconeax:D,A) =af Hompiag(ij)(D,A:V) (3.4)

where AEO_bjd and :D : 4 —¢.

If Al,Azégééj, we say that :Yp,€Cone (A,,:D) factors uniquely through

|

:Y1€Cone (A;,:D) if there exists an unique arrow .f : A— A; in g

such that
Ay
? N\
I
| .£ :D
| (3.5)
|
Ao Y
commutes.
i.e.
A,
* .oV
|
|
3.6
}.f fh ( )
1
{ PIA
A2

commutes for all OLEObi'Q

Dually, we say that,:YZECOconeZ%:D,Az) factors uniquely through

:Y1€C0con%7(:D,A1) if there exists an unique .g : A;—— A, in ¢ such

that

bt

%

%\
e —
[€s)

N

(3.7)

commutes.
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A universal cone on :D : J——>d 1is an ordercd pair <L, :7> whecre

LEQELQ and :m€Cone (L,:D) such that for every A69947 and every

a

:aECOH%QIA,:D), :0. factors uniquely through :T.

Dually, a universal cocone on :D : £ ——>¢ is an ordered pair

<C,:1> where CEQQLZ and :IECOQOHQQ(:D,C) such that for every 869247 and

every :BECOQOH%Q({D,B), :f factors uniquely through :1.

PROPOSITION 1: <L,:T >is a limit of :D in @ if and only if <L,:T> is

a universal cone on :D.o

PROPOSITION 2: <C,:1> is a colimit of :D in & if and only if <C,:1> is

a universal cocone on :D.o

PROPOSITION 3: Limits are unique up to isomorphism.

Proof: Let <Lj,:T1> and <Ly,:T»> be two limits of :D in@. Then :T,
factors uniquely through :T2 and vice versa, so there exist maps
27 : Ly——> L, and ., : Lo—— IL; such that :m; = :L,T, and

:Mo = :217T) in the diagram below

\%’\.
) /:D (3‘8)
Ly -,

»

I,

The claim is that .2:%» .1 and .%,%2; = .1_. . To see this

I Lo

observe that :2:%,T; = 84,1, :M;, but :m; factors uniquely through

itself as :m1 = :1_ T;, whence .2:% = .1_ . Similarly, .22%; = .1_ .O
L L, - Lo

PROPOSITION 4: Colimits are unique up to isomorphism.o
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Notation and terminology:

Let <L,:T>be a limit of the diagram :0 in¢g. We call L the limit

object and denote it by Lim:D; we call :7 the limit transformation and

refer to its components as projections. If <A,:0> is any pair such that

AGQéig and :a€éCone (A,:D) then the unique .2 : A— L such that :0 = :4rm

a
. D
is called the limit morphism for :d and is denoted by .ﬂ&mc;a) or simply

Lim(oy .
Similarly, should <C,:1> be a colimit of the diagram :D in g, we

call C the colimit object and denote it by Cofim:D, :1 the colimit

transformation and refer to its components as injections. If <B,:B> is

any pair such that BEQQLY and :BECOCOH%Y(:D,B) then the unique .c:C —> B

such that :1c = :f is called the colimit morphism and is denoted by

.QOZLm?JB) or simply .colim(B).
_——-'a rr——————

Types of limits and colimits:

1.) By the empty diagram in a category & we mean the diagram in &

whose shape is the empty category.
If a limit of the empty diagram exists in@, we call its limit object

a terminal object ind . We use the symbol 1 to denote a terminal object.

If a colimit of the empty diagram exists in ¢, we call its colimit

object an initial object in . We use the symbol 0 to denote an initial

object.

The following two propositions are immediate from the above definitions:

PROPOSITION 5: 1 is a terminal object of if and only if Hom #A,;) =1

for all AEQQLQ.D
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PROPOSITION 6: O is an initial object of ¢ if and only if Hom&JQJB) =1

for all B€Obj .o

Examples of initial and terminal objects:

(1.1) In 8, @ is an initial object and any singleton is a terminal
object.

(1.2) 1In any lattice <IL,=> regarded as a pocategory &HL,<), the
least element 0 and the greatest element 1 are initial and terminal objects
respectively.

2.) A category J4 is said to be discrete if all its arrows are
identity arrows. A diagram :D : Jd —— ¢ is said to be discrete if its
shape & is discrete.

Limits and colimits of discrete diagrams are called products and

coproducts respectively. We shall denote the product of :D by u%yvu or

by Dl®...8ﬂn if £ is a discrete category with n elements. Similarly we

hall 4 d : D d...80 i i
sha enote the coproduct of :D by a%@ g OF by D, L if is a
discrete category with n elements. The limit and colimit natural

f i & TPr d :4 i
transformations for a%@vu and ugﬂvu are denoted by :p4 and :4n and their

components are called projections and injections respectively.

Examples of products and coproducts:

(2.1) In S the cartesian product is a product and the disjoint union is
a coproduct.

(2.2) In any lattice<L,=<> regarded as a pocategory O(L,=<), the meet A
and the join V correspond to the notions of product and coproduct

respectively.
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~

i
3.) A limit of a diagram of the shape d.__?->8 is called an
equalizer and is denoted by<<Egz(di,dj), :egz(di,dj)>. The object

Egz(di,dj) is called the equalizer object, while the morphism

.a:egz(di,dj) is called the equalizer morphism and is denoted by

.eqz(d. ,d.).
qz( i’ J)
.d
A colimit of a diagram of the shape a._fr_,B is called a coequalizer

and is denoted by <Coegz(di,dj), :coegz(di,dj)>. The object Coegz(di,dj)

is called the coegualizer object, while the morphism .B:coeqz(di,dj) is

called the coequalizer morphism and is denoted by .coeqz(di,dj).
The following two propositions are easily established:

PROPOSITION 7: Equalizers are monic.p

PROPOSITION 8: Coequalizers are epic.n

This may all be summarized by the following commutative diagram:

.eqz(d;,d;) -9 .coegz(d;, 4j)
Egz(d, ,d,) P25 p = —zp = cooga(d, ) (3.9)

<53

4.) A limit of a diagram of the shape

(3.10)

..
<
LTS

is called a pullback. Often we shall simply write:

(3.11)

P g |
K Y-
B
Qe
\®

is a pullback.
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Pf g is called the pullback object of .f and .g or just the pullback
) Lo oach

of .f and .q. .%é is called the pullback of .f along .g and .5} is called

the pullback of .g along .f.

Dually, a colimit of a diagram of the shape

-j (3.12)
\

is called a pushout. Often we shall simply write:

7

B
. of
ll (3.13)
)
£ kgf g

is a pushout.

f
E_'g is called the pushout object of .f and .g or just the pushout

of .f and .qg. .f? is called the pushout of .f along .g and .gf is called

the pushout of .g along .f.

PROPOSITION 9: Pullbacks of monics are monic.

Proof: Let

T£,9
l.@~ g (3.14)
A

be a pullback where .g is a monic.

We want to show that .Ef is monic, i.e. we want to show that given
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any two maps

£, —

such that 'QIEE = .225&, .21 = .22. Consider the diagram

.lj — -f_
E P =3 ~— B
L, f,g
.3 -g
t ’ I (3.15)
A £ —> C
1f .ngf = .ngf then
Bf g = 8g.f = Q,G.Ff = ,T .
izfgg 19,.% L2g.f izfgg (3.16)
i .g i ic JA1f = .R,f . Rig. = Rog., Af = Rf
and, since .g is monic £1fg szg So { 19¢ ngf, 21 g ng}

determines a cone :T from E to the diagram

oe)

A -f

(@]

(3.17)

using (3.16) and .£:1 and .%; both play the role of .lim(m). But .lim(m)

is unique. So .%; = .%,.0

PROPOSITION 10: Pushouts of epics are epic.

Proof: Dual to that of Proposition 9 above.no



59
5.) A pullback of the form
K —5  a
jk= lf (3.18)
A - B
is called a kernel pair.
We may also refer to the pair <.ki,.k2> as a kernel pair for .f.
Dually, a pushout of the form
A f > B
f .
'°’ (3.19)
eCy
B C

is called a cokernel pair and <.ci,.cs> is called a cokernel pair for .f.

In different categories limits and colimits of various types may or

may not exist. A category @ is said to be (finitely) complete if every

(finite) diagram :D : 4 —— & has a limit ind. & is said to be

(finitely) cocomplete if every (finite) diagram D : ——d has a

colimit in . @ is (finitely) bicomplete if it is both (finitely)

complete and (finitely) cocomplete.
Proofs of the following two propositions may be found in MacLane
[18, pp.108-109], Pareigis [21, p.85], and Stone [27, pp.11-12b].

PROPOSITION 11: A category ( is (finitely) complete if and only if it

has (finite) products and equalizers.nD

PROPOSITION 12: A category  is (finitely) cocomplete if and only if it

has (finite) coproducts and coequalizers.o
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IT1.4 Adjoint pairs and continuous functors

Let :F : @— 8B and :G : B—@ be a pair of covariant functors.

Such a pair is said to be an adjoint pair, :F being the left adjoint

and :G being the right adjoint of the pair, denoted :F-——:G, if any

of the four following equivalent conditions are satisfied:

i.) there exist a pair of natural transformations

:FG ana :e : :GF'*‘——*:7B, (4.1)

called respectively the unit and counit of the pair, such that

:mFe:Fe = :1 and :6ne:eG = :1

:F :G’

:FG,

ii.) there exists a natural transformation :m : :74

called the unit of the pair, such that for all AEQ_b_fa, BE(_)Q_{B, and

.a€Hom _(A,B:G) there exists an unique .bé&Hom(aA:F,B) such that
LLaUbe LAZUN >

A:me.b:G = .a;

A:FG A:F
| |
. I !
LA | :
|
. |
|
.a ! :
l :
B:G B
iii.) there exists a natural transformation :g€ : :GF —— .1

BI
called the counit of the pair, such that for all AEQQJd, BE(_)_biB, and

.bGH(JmB(A:F,B) there exists an unique .a€Hom Y(A'B:G) such that

.a:Go.B:e = .b;
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»
-t

®
&

B (4.3)

Q) ————— —

w
(]
w
Y

and iv.) there exists a natural isomorphism :6, called the adjunction

isomorphism, such that

.GA,B : Hom (a:F,B) === Hom 7(A,B:G). (4.4)

for all Aégééj and Bégéjﬁ.

By an adjunction we mean an adjoint pair together with a specified
adjunction isomorphism. Proofs that the four definitions of adjoint pair
are equivalent and that an adjunction may be specified by specifying
either the unit or counit may be found in MacLane [18, Chapter IV],
Pareigis [21, Chapter 2], and Stone [27].

Suppose :F : @— B and :G : B—=d are a pair of contravariant

functors. We say that :F and :G are adjoint on the left if there exists

a natural isomorphism :6 such that

.eA'B: ﬂg__rgB(A:F,B)==>Hom ((B:G,A) (4.5)

for all A€0bs_, and B€Qé£8. We say that :F and :G are adjoint on the

right if there exists a natural isomorphism :8 such that

.eA'B : MB(B,A:F)=>HOM V(A,B:G) (4.6)
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for all AGQ_@_{d and B€0bJ ..
Proofs of the following two propositions may be found in Freyd [4],
MacLane [18], Pareigis [21], and Stone [27].

PROPOSITION 13: Left adjoints and right adjoints (adjoints on the left

and adjoints on the right) to a given covariant (contravariant) functor

are unique to within natural isomorphism when they exist.o

:Fs :F
PROPOSITION 14: Suppose ah_ﬁa“%m and :F; ———:G, and
1

:Fp ——:G;. Then :F1F2‘—":Gle.D

The following theorem specifies four special cases of Freyd's
Adjoint Functor Theorem which we shall use frequently.
THEOREM I: Let :F : d—F8 be a covariant functor and :G : d— 13 be
a contravariant functor. Then

i.) if :T has a ieft adjoint then :IF is continuous;

ii.) if :F has a right adjoint then :F is cocontinuous;

iii.) if :G has an adjoint on the left then :G is contracocontinuous;
iv.) if :G has an adjoint on the right then :G is contracontinuous.

Proof: See Freyd [4], MacLane [18], Pareigis [21], or Stone [27].no

A subcategory (7 of B is called a reflective subcategory if the

inclusion functor has a left adjoint :R. Such an :R is called a

reflector. Dually, ¢ is a coreflective subcategory if the inclusion

functor has a right adjoint :C. Such a :C is called a coreflector.
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and
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CHAPTER II1

CARTESIAN-CLOSED CATEGORIES AND TOPOI

ITI.1 Cartesian closed categories

A category C is said to be cartesian-closed if

i.) it is finitely bicomplete and
ii.) for every AEQéjc’the functor :( ®A) has a right adjoint, which
we will denote by : (A4 ).

The counit of the adjunction is called the evaluation natural

transformation and it is denoted by :2vV : :(Ad )o:{( ®A)— :Q}.

There exists a natural isomorphism :¢ : :Homcé_gm,B)——~—+ :Ham(J—JA¢B)
for each A,BEQéjcj hence the set-valued functor :Homcé_gm,B) : @ > 8 is

representable with A4B as its representing object. If CEOb&z and

fEHomi(Cem,B) then f.¢C€H0m2(C,A¢B) is called the cartesian adjoint of f.

Similarly if gEHomz(C,AAB) then g.¢é1€H0m3(C8m,B) is called the cartesian

adjoint of g. We denote passage either way along the adjunction isomorphism

by a superscript "*”, e.g. f,¢c = f* and g_¢61 = g*_

PROPOSITION 1: LetC be a cartesian-closed category; A,B,C€0bj,; and

0 and 1, initial and terminal objects respectively. Then the following
are naturally isomorphic:
i.) 0 = 0®A

ii.) (A®B)RC = (ARC)®(BRC)

I

iii.) AL 1

iv.) C4A(A®B) = (CHA)R(CHB)

|
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vi.) (B&C)»A = (BAA)®(CHA)
vii.) A = 14A
viii.) (C@B)ha = CH(B4A)

Proof: i.) Since 0 is an initial object and for all XEObﬁj’

ﬂgrp_a(_o_@A,x) = Hom ,(0,A%X), we have that
ﬁ_o_fl@(Q@A:X) = Hom,(0,aX) =1  for all xeg@_ga (1.1)

Therefore O8A is an initial object.
ii.) sSince :( ®C) has a right adjoint, it must be cocontinuous.

In particular :(_@®C) preserves coproducts so that
(BPB)BC = (MPB):( ®C) = A: (_QC)@B: (_8C) = (AGC)®(BRC). (1.2)

iii.) sSince 1 is a terminal object,

méx,m_l_) = Hom (X8R, 1) = 1 (1.3)

for all XEObfcﬂ hence A4l is a terminal object.
iv.) Since :(C4_ ) has a left adjoint, it must be continuous. 1In

particular :(C# ) preserves products so that

CH(A®B) = (A®B):(Ct_) 2 A:(Ct_)@B: (Ct_) = (CHA)®(C+B) (1.4)
v.) For all Xégéjc,
Hom ,(x,0a) = Hom +(X80,R) = Hom (08X ,A) = Hom ,(0,3) (1.5)
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and the latter is a singleton, hence the former is also. Thus 0+A
is a terminal object.
vi.) Observe that the contravariant functor :(_yA) is its own

adjoint on the right, for if X1,X2€0bi then
-
Hom (X1,X2tA) =2 Hom (X1Q%5,A) = Hom ,(Xo@X1,A) = Hom (Xp,X11A) (1.6)

= LSS e c

Hence :(_+#A) is contracontinuous. In particular :(_tA) carries coproducts

to products so that
(BEC)hA = (BEC) : (_AA) = B: (_4A)&C: (_+A) = (BMA)Q(CHA). (1.7)

vii.)It is easy to see that there is an isomorphism .i, : ARl =R

natural in A; its cartesian adjoint .iz : A== 14%A is also an isomorphism

viii.) The functor :Hom (ec®B,n) : & — S is representable in two ways

—C
:Hom o(_8C®B,A) = :Homj(__, (C8B)4A) (1.8)
:Homz(_®c®B,A) ] :_Ho_ma(_o;c,BmA) =~ :Hom o(_sCH(BAR)) . (1.9)

Since (C®B)tA and CH(BAA) both function as representing objects

for the same functor, it follows that they must be isomorphic.no

PROPOSITION 2: If there exists a map .f : A—— 0 in a cartesian-

closed category C then AZ0.

Proof:

A=.1 (1.10)
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and

0 ~ A—"—> 0 = .1 .0 (1.11)

PROPOSITION 3: A cartesian-closed category & is isomorphic to the

category 1 if and only if there exist a map 1 — 0 in C.o

PROPOSITION 4: Let ¢ be any small category and C be any cartesian-

~closed category. Then Func(@,C) is a cartesian-closed category.
Proof: First we want to show that Func(@Z,C) is finitely bicomplete.
Let :D : 4 —— Func(Z,®) be a finite diagram in Func (Z,2). For each

AEO_b_{a let D% : 4 —> C be the diagram in ¢ defined by

172 =3f A:Da for each OLE@LQ and (1.12)
.dli‘ =g¢ -B:d, for each .i€Aur,. (1.13)

A
For each .aEHOmd(Al,Az) let :Da : :DAI——* :D7? be the natural trans-

formation defined by .a:D% = .a:Du for all a€0bf,. We construct the

df
limit <L,:7 >of :D as follows:

i.}) :L :d — C is the functor defined by
AL = Lmz:vA for each A€Obf, (1.14)

A ..
and if .a€Hom 7(A1,A2) and if<Aj:L,:T !> and <A2:L,:TTA2> are limitsg of

A
0P and D2 respectively in ¢ then

Aj
a:l = din' (oD%, (1.15)

£




B

i.e. .a:l is thc unique map making

commute; and
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(1.16)

ii.) :m : L —3>:D is the natural transformation whose components

.Wa are natural transformations :ﬂd : L —~—ﬁ-:Da defined for each

daf

aEQéj by .A:ﬂd = .a:ﬂA for each AEQéia where :’ITA : A:L-—<}<>:UA is

the limit transformation.
It is easy to see that<L,:m>is a limit of :D in Funcg.).
construct the colimit of :P by the obvious dual construction.
Product and hom relations are obtained on Fuanjm}) by letting

:F®G be the functor from & to C defined by
a:FeG =af A:Fen:G and
.a:FgG =ar .a:F®.a:6.

and letting :F4G be the functor defined by
A:FaG =af A:F+a:G

.a:F+G =df .a:F+.a:G

We

(1.17)

(1.18)

(1.19)

(1.20)

where :F and :G are functors fromd@ to C, AEObiz, and .aEA&&7. It is
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easy to see that these definitions yicld the required pairs of adjoints
needed to make Func(7,C) cartesian-closed.O
Remark: (The "Kelly view" of full reflective subcategories.)

Let (7 be a full reflective subcategory of £ and let :R : B —— &
be the reflector. Since :R is the left adjoint of the inclusion functor
for all AEO_b_fd and BEO_b_{B there is an isomorphism ﬁ%(B:R,A) o~ _HO_mB(B,A)
(we omit writing applications of the inclusion functor). But since &

is a full subcategory of /5 we have that Homd(B:R,A) ~ Hom (B:R,A). This

(5l
says that up to natural isomorphism we may identify ¢ with the full
subcategory of [ whose objects are the elements of

' {AEO_b_fBIVBEO_b_fB(HomB(B:R,A) =Y HOmB(B,A))}. In the following we shall

make such identifications without further comment.

PROPOSITION 5: Let ¢/ be a full refective subcategory of the cartesian-

closed category & with :R : @ —— ¢ the reflector. Then :R preserves
products if and only if for all AEOb{ and all ceOb{‘ , cmeOb{ .
Proof: (=) Suppose :R preserves products, i.e. for all D€0bj .,

c8D:R =~ C:Re@D:R. By the above remark it is enough to show that

H()mz,(D:R,Cd\A) =~ flom :,(D,C"rA) (1.21)

But we have the following chain of isomorphisms:

Hom E(D:R,C¢A) =~ Hom 2(D:R(zz:c,A) =1 H()ml,((D:R®C) :R,n) & (1.22)
=~ Hom z(D:RR@C:R,A) = Homz(D:R®C:R,A) oy
= fom ,((DEC) :R,a) = flom,(DSC,a) =

~ HomZ(D,cmA) .




(«) Conversly, suppose we have that for all A€0bj_ and CEObi we
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have that C4~A€O_bjd. We want to show that for all DEObi3 , C®D:R =~ c:ReD:R.

It is enough to show that

:HOVH\/(C@D:R,_) o :H()m\/(C:R@D:R,_) (1.23)

for then the representing objects must be isomorphic. But we have the

following chain of isomorphisms natural in A:

Hom (C@D:R,A) = Hom  (C®D,A) = Hom ,(DRC,A) = (1.24)

—C

L

=~ Hom_(D,CaA) =2 Hom (D:R,C+An) =

=~ Hom ,(D:ReC,A) = Hom (c®(D:R),A) =

!

=~ Hom (C,D:R4a) =~ Hom _(C:R,D:RtA)

R

|

>~ Hom .(C:R®D:R,A) .o

Let d be a category and BEObi'a. We are next going to define three

functors. (1) :ZB :dV¥B —> ¢, which is defined for all &;

(2) :XB : d —>@¥B, which is defined for all ¢ having finite products;

and (3) :]'[B : (¥YB —— 7, which is defined for all cartesian-closed ¢&.

(1) :X_ :@V¥B—— ¢ is the forgetful functor defined in the obvious

B

manner by

A A
.b .b .
l :Z =, A for all l eO_meB (1.25)

B B
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and

A = A A = = A, (1.26)
\ / 1L = .a for all \ / EA)Z—de+B'
B df
B B
(2) Xg ¢ d — J¥B is defined by
AGB
. = JpX, { .
A:Xy =g¢ lr— for all AEO_bia (1.2 )
B
-a@le
A,©B —= 1, @B
.8 _
(A1 A2)iXg =qf (1.28)
- p%a
R
v = Y,
for all .a€Hom (a A
7( 1,A2)
(3) :T[B : @¥B— @ is defined by
A
.b =
l Ty =gg P1gapyx 7 (1.29)

B

where .1% : 1—> B#B is the cartesian adjoint of 1@B=—>B and

Pl“b'l: denotes the pullback of .lBﬁb : B4A — B4B and .l;
E:,ﬂ,,z;‘ B+A
l 1,48 (1.30)
g
1 ~ BAB
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Aj————> A2

2
\1: %1 M= L8 (1.31)

1
B

where .% is the limit morphism in (1.32), in which the front and bottom

faces are pullbacks

Pa - BhAa,
x
\\
L dgta
N : (1.32)
\—
P, ——> BhA,;
1440,
1,45,
4 4 y
1 2 > BAHB

PROPOSITION 6: Let ¢ be any category and BEO_bjg. Then
\ i.) :ZB : ¥YB—> (7 preserves and reflects colimits, equalizers,
pullbacks and monomorphisms when they exist;

ii.) if ¢ is finitely bicomplete then :ZB———I:XB and furthermore if

~J ~J
there exists a functor :TIB : d¥YB——> such that :XB——-——i:HB for all

BGQ_b_{d then ¢ is cartesian-closed; and

iii.) if d is cartesian-closed then :ZB 11 Xg ﬁ':HB for all

B€Ob{
Dl
Proof: i.) This part of the Proposition is evident from (1.33)-(1.36)

below, where the whole diagrams are in (¥B and removing the portion with

the dotted arrows (--«---- +) is intended to illustrate the action of :ZB.
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colimits:

‘.“4 (1.33)

equalizers:

(1.34)

pullbacks:

(1.35)

monomorphisms:

M ~A > g

(1.36)




ii.) First we need to show that

A
A l b
Homa l.b L€ gHomw 1CrXg
B B

The required natural bijection is that which associates the map

. A
.c ¢t A—> C in

b .
Homd l :ZB,C with the map

2

Secondly we note that if :XB has a right adjoint :HB then

:Hom ( ®B,R) = :Hom A_iXgIgsB) =

= :H0m7+B (_:XB,A:XB) =

e

:Hom A_rB:Xg o).

~o

Hence we can take B A to be A:XE’HB’

closed.

iii.) Observe that :Homa%c,_) is continuous since it preserves

products and equalizers. Hence the pullback diagram (1.30) used to

define :HB gives rise to the pullback diagram (1.40) in §
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(1.37)

(1.38)

(1.39)

so that ¢ must be cartesian-




(10
l l{_{i_fﬂd(c b)
- H
ﬁ_o_rp_a(c,y Hom (c,B+B)
which is isomorphic to the diagram
A
.b
ﬂo_rﬂa Crly 1. Hom (c®B,A)
B
l.ﬁgﬂa(c@ns,b)
1 X Hom (c®B,B)
= ] T ’

where .X is the injection taking 1 to '3)1'_2 : CRB——> B.

B —
that ! !
A
.b B
Homd C, l IIB =
B
CRB—2——p1
= {.gEHom 7(C®B,A) \P-';B‘A commutes} =
O®B A
= Hom 'B l.p_’kz ’ l b =
B B
A
b
= Hom ‘B C:XB, !
B

Therefore : XB——1 : HB .0
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(1.40)

(1.41)

A
If we view Homd c, l'b :II | as a subset of Hom (C®B,A) we have
\ B

(1.42)
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Now let ¢ be any finitely complete category and let .f : By —— B,

be an arrow in ¢. Define the functor :f# : (¥By — (7¥B; by

A Vb
.bj £ = i in the pullback (1.44) (1.43)
af | .3
Bo> B:
P, o A
3 3 (1.44)
B, i Bs
and
Al—-—'-?'————-—>A2 ;1“_i—>-P_2
1.45
\i // Lt - \\T‘ //: in (1.46) 49
o Tat b2 .
\ Bo B3

where the front and bottom faces are pullbacks and .% is the indicated

limit morphism.

A2 (1.46)




[
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Also define the functor :Zf : B —— 4B, by
A A
l.b 3 - L.b
*°f df (1.47)
B B,
l.f
B2
and
Ay —2 oA
! 2 Al ———'a—>A2
by .5, . — bof
\ / zf af \‘11 b, F (1.48)
B,y B2

PROPOSITION 7: Let ¢ be any finitely bicomplete category. Then

. #
i.) .Zf—————ﬁ.f for all .feAn Zand
. # . . . . .
ii.) :f has a right adjoint .Hf for all .f€An if and only if
@+¥B is cartesian-closed for all B62947.

Proof: Consider .f:B;y— B, as an object in @Z+B,. We may define

the functors

g

:Z(B1’;L—* By) : (@¥B2) ¥ (B, > By) > (I¥Bo (1.49)
:X(Bl% Bs) : ﬂ4’Bz ? (d‘l’Bz)‘l’(Bl';-)' Bs) (1.50)
: (C¥B2) ¥ (B 4, By) > AVBs (1.51)

Mg~ 5,)
.f
But ((4B2)¥(By—— B2) =X 7¥B;. Thus :Zf %f:Z(Bl £ B,)’

#

< £ ) In this way

and we may take :Hf =af :H(B1 . By) "

= :X(Bl'_£_+ By)

Proposition 7 reduces to Proposition 6.0
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III.2 Elementary topoil

An (elementary) topos & is a cartesian-closed category with a

subobject classifier, i.e. with an object QEObfé and a monomorphism

.true : 1>—>Q such that for every subobject .m : B>—A in &
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there exists a unique morphism .ch(m) : A—, called the characteristic

function of .m, making (2.1) into a pullback.

ceh (wm) (2.1)

If .a : A—> is an arrow in & we let .[ |a] denote the pullback

of .true along .a, i.e.

| 'a] =3¢ -Lrue (2.2)

Suppose (¢ is any category with pullbacks. Define the set valued

contravariant functor :Sub a4t d—=S by

i.) Aa:Sub =df‘{xl x is a subobject of A} for all Aégﬁéj.
ii. if . , i .a: ot A: b — B:Sub
ii.) if .a€Hom (B,Bn) we define .a:Sub A:Su B:Sub  to be

the function which sends each subobject .m : A'>——> A to its pullback

along .a, i.e.

m.a:Sub_=__ .m (2.3)

— df a
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P B
m,a
l.a,, loa (2.4)
: A

PROPOSITION 8: Let C be a cartesian-closed category. Then ¢ is a topos

if and only if :Sub _ is representable.
Yy e P
Proof: (=) If C is a topos, we want to show that there exists a natural

isomorphism :m : :Subcf———*-:Homz(_!Q). Define :M component-wise by

m.A:N =__ .ch(m) m€a:Sub , Aegg_{a (2.5)

af

.A:M is easily seen to be a bijection. To show that it is natural

we need to show that given any .a : B—=A in(2

A
A:Sub A:Homu(__,ﬂ)
J'a:iﬁhc l‘a:y"_”'c(—,'n‘) (2.6)
.B:n
B.S_u_b@ B:Hom ,(_, )
commutes.
Let mEA:SubZ. Then
m.A no.a:Homz( ) = .aech(m)
and m.a:Sub 2.B:’r] = .ﬂ(ma)

so that we must show that .aech(m) = .ghja;).
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Consider the diagram

I
3
»

4—'-0

\;a'
Ltrae

B
m,a
- Ta
A's—" A .sh (7)) (2.7)
> 0

=

We know that the two inner trapezoids are pullbacks, as is the
outside rectangle, and the left hand triangle commutes. But then .I—n_a
is the pullback of .true along .a.g_}l(rﬁ) as pullbacks of pullbacks are
pullbacks. But .nga) is unique so .a.ch(m) = .gp_(Ha).

(¢} Conversely, suppose there exists a natural isomorphism

Mz :S_U.b.a—’-:Hom3 (). As for each .aEHomc(A,Q), .a: A—Q is the

unique map such that lQ.Homg(a,Q) = a and since :Subn = :Homs( ,Q) it
follows that for each .mEA:Sub@,there exists a unique .a : A—={

such that
(1g-2:n7") .a:Sube = .m (2.8)

Thus 1,.0:07! plays the role of .true and the unique .a : A—0

Q

specified by (2.8) above plays the role of the characteristic function

of .m. By (2.8) .t Q:m : Q'>—=>0 has the property that for all

=ar 1o
.m : A'>— A there exists a unique .a : A— {I such that there exists

an .x : A'—— ' making (2.9) into a pullback

Al e A

l,x LA (2.9)

Q> - >

be]
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In particular if .a factors through .t then (2.10) is a pullback

and the uniqueness condition on .a implies that there can be only one

map from A —— Q'. Therefore ' = 1 and we are done.

z 1a A
< A
X .a (2.10)
.t
Q7> 9 .0

Remark: Note that in any topos é the usual ordering of subobjects of
AG_(_)_b_{(s induces an ordering of Homé;(A,Q) . Further note that if
.f,.gGHomcg(A,Q) then .f < .g if and only if for all XEQ_b_{(g and

.x€Hom g(X,A) (2.11) commutes implies that (2.12) commutes.

>
x
(
b

3 A (2.11)

drue

||_4-4—

.q (2.12)

0>

drue

T

to see this consider the diagram (2.13)

X\\
' AI\ .[lF] ‘A
“‘.‘ ”/
A L3t (2.13)

/ 419
drue
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III1.3 The representability of relations and partial maps

Throughout this section let § be a topos, A,B,C,...GObfcgand
.a,.b,.c,...GAmig.

A relation between A and B is a subobject of ARB.

We define the set valued contravariant functor :Ref (_JB)

by

:Rel (_,B)

: =q¢ *((&B)e:Sub , (3.1)

PROPOSITION 9: :Reﬂ£(_,B) is representable.

Proof: :_@_6_(_’._£(__B) = : (_®B) °:SLLbf

o :(_@B)ozm (__,Q) o~ (3.2)

é

:fk‘)_m(s(__®B,Q) = :ﬁgn_a(_,thQ) o

e

L T . . /4 - 1 - - P I N ~ - —
A partial map .4 from A to B is a map from a subobject of A to B.

More formally it is a pair of arrows of the form

&4 (3.3)

We will denote partial maps by lower case script Latin letters
preceded by a dot .§,.g9,.h,.... The subobject component of .{§ will be
denoted by .{' and the other component by .#". Composition of partial

maps is defined by pulling back i.e. if
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(3.4)

(3.5)

.4 = A' - ¢ > B
[’61
A
and
g = B L .c
l's'
B
then
.49 = A" >B'
I‘jl
Af' }” VB
./'
Y
A

(3.6)

where the top left hand rectangle in (3.6) is a pull back.

Two partial maps .4 and .g as in (3.7) and (3.8)

' '/'

(3.7)

(3.8)
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are said to be equivalent, written .{ o~ .g, if there exists an isomorphism

.i ¢ A"=—=A' such that

Aﬂ .9”
.3' AI ‘3,'
(3.9)
4

commutes.

Let Pat .(n,B) denote the set of equivalence classes of partial maps
from A to B under the equivalence relation “"o" above.

By identifying the morphism .a€Homg(a,B) with the partial map
,

A » B
u"a (3.10)
v
A
we may view Homg(A,B) as a subset of Pa&s(A,B). This identification
determines a natural transformation
20 : :Homg(_,B) —:Parg(_,B) (3.11)
Define the set-valued contravariant functor :Pang(_,B) : ¢ —8 by
A:Pa/l.(g(__,B) =af Pa/‘LS(A,B) (3.12)

and if .aGHom£(A1,A2) then

.a:Parng(_,B) : Patg(n;,B) — Parg(n1,B)
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.aﬁEPa)L S(Al ,B).
For every partial map.éEPang(A,B) there is an associated relation

between A and B, namely
T =qp <8767 ¢ A2, (3.13)

.F6 is a subobject of A®B because .{' is a subobject of A.

Thus there is a natural transformation
:Y : o sParg(,B) —:Relo(_,B) = floma(_, B (3.14)
By composing :0 with :Y we get a natural transformation
:0leY : :ﬂgﬁg(_,B)———*:ﬂgm§(_,B¢Q). (3.15)

The map inducing :0eY is called the singleton map and it is denoted

by ;{_} : B> BM)., It is easily checked that it is a monomorphism.
;{_} may also be described as follows.

The diagonal subobject .A of B®B is the subobject

A =3f .<1B,1B> : B>—>RBRB. (3.16)

The Kronnecker-delta .8 is the characteristic function of .A,i.e.

§ =, .ch(d) : BRB —=Q. (3.17)

{_} : B—B%) is the cartesian-adjoint of .§, i.e. .{_} = .6%.
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PROPOSITION 1C: {Unique existentiation)
Let .a : C——A be given. Then there exists a .q : Q>—A which
factors through .a and such that
g
Q< Q
]'° I 9 (3.18)
C 2 > A
is a pullback
and such that given any .f : X——A which factors through .a and such
that
Ax .
X< 7 X
l" "'r (3.19)
C 2 a
is a pullback,
it is the case .f factors uniquely through .qg.
Proof: Define the natural transformation :0 : :H0m£(_,A)-———»:RQZS(_JC)
by letting .X:0 be the set theoretic function which takes each
.y€Hom é.(X,A) to the relation
, prs°Y
.Tr =3f .eqz(.priey,.przea) = R 'XQIff;FT..A (3.20)

:0 may also be thought of as a natural transformation from :Homs(_,A) to

:Hamg(_,C¢Q), and as such it is induced by the map A= anQ 22 cag.
Let .g : Q>—A be the pullback of .{_} : C— C4 along

A Je.atQ : A —=cQ in (3.21)
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Q> > A
B {Jeasa (3.21)
c A} e CAQ
Since :Hom,(X, ) is continuous (3.22) is also a pullback.
Homg (X, 0) Homs (X, 9) Homg (X, A)
.H_e_m:s(x,c) l'ﬂ 6()(,(_}“&'1\-9-) (3.22)
. Hom , (X, {.1)
Homé(x,c) —-£ Hom ¢ (x,C4Q)

Since .Hom ,(X,q) ia an injection we may take Homg(x,Q) < Hom S(X,A) .

]
Then Hom (X,Q) is described by the requirement that .fGHoms(X,A) may be

é
regarded as an element .f' of Homg(X'Q) if and only if there exists a map
.p : X — C such that .p?{__} = .f?’{_}°a4\9.

X\
\ N

AN o
Y .q
\\ Q gy -N

\!

\\\ .e { }easlL (3.23)

\
|
C

Cchly

\
\
\

P

Now consider (3.24) in which the outside rectangle is a pullback.

.1

X! - ) » X
. ( ro.ﬂ',‘l —
eqz (g7 .y_,"
- - . P
Xec« X (3.24)
L 2.9
C -2 » A
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The existence of .p, which implies the existence of .Fp = .<1X,p>.
implies
va .1x
X << —>X
l_P f (3.25)
C 2 A

is a pullback. The unique factorization property of .q is apparent from

(3.23) .0

PROPOSITION 11: 1In any topos &, :Pa&g(_JB) is representable.

Proof: Let .r : C>—A®B be a relation. Let .a = .r.)gl_g_l and .b = .r.EﬁQ.

Construct .q : Q>—>A from .a as in Proposition 10 above. Then

2O
-y
—~
w
.
19
o
—

is a partial map from A to B. This operation of associating a partial
map with a relation gives rise to a natural transformation

tH ot :Reﬂ£(_,B)———*—:Pa&g(_JB). The natural transformation
YU : :Pu&g(_,B)'———’:Pun (_/B), is the identity natural transformation
since if .6€Pa&££A,B), (3.27) is a pullback with the factorization property

required in Proposition 10.

A

.1 ’ * 4
H A 4 (3.27)
A -4
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Thus :JY : Reﬂé(_JB)-————»:Reﬂg(_JB) is an idempotent natural
transformation. Since :Reﬂé(_,B) o :Homg(_,B¢Q) it follows that :uy
is induced by an idempotent endomorphism .g : BM2 —BA{I. This map

.g may also be described as the cartesian-adjoint of the characteristic

function of .<{_},1Bf>: B— (BMYBB, i.e. .g = .ghﬁ<{_},lB>)*.

Let B =df Egz(leQ,g) and .e =df .egz(leQ,g). Consider the diagram

(3.28).

Nk ///4;/ (3.28)

The existence of the limit morphism .h in (3.28) says that the
idempotent .g splits. This splitting of .g induces a splitting of

:1Y which shows that :Pang(_,B) o :Homg(_!ﬁ).m

PROPOSITION 12: Let

1gan
£ » BHQ .

°§

[oo23
V

BHQ (3.29)

be as in the proof above of Proposition 11. Then .{_} : B>—— B

~

factors uniquely through .e, i.e. there exists a unique map .nB : B>=B

such that

B> - > BA{)
~

e (3.30)

commutes.
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Proof: Consider the diagram (3.31).
B> A o B
I[»ie .{-}913
B Chie | (pag)es (3.31)
l 1,3*._.4‘(<<~3,13>)
1 beue -0

The bottom rectangle is a pullback by the definition of .g. The
top rectangle is a pullback because .{_}GﬂB is a monic. Thus

{8l reg* = .ch(A) = .6. Therefore

é,,,———””’—’——”<B8B
(B*Q)@B\'{j& l-s (3.32)
Q

commutes

and by cartesian-adjointness

4/)/3
BHQ \ l.(-l (3.33)
B

commutes.

Now let 'nB be the indicated limit morphism in the equalizer diagram

(3.34).
- - g4
B e BAQ 3 BAQ
3
N {3 (3.34)
\rB
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PROPOSTTTION 13: Given any partial map .§€Pa% .(A,B) there cxists a unique

~

.§ :A —>B such that

. ‘h

B
¢ l-ns (3.35)
B

is a pullback.
Proof: Let .g be as in Proposition 12 above. Let .I‘6 = <§',4™ : A'">—AGB
be the graph of .f{. Let 'Yé =3f .c_h_(I‘6) : A@— Q and let
.YZ : A—>BM) be the cartesian-adjoint of 'Yﬁ' We want to define Z

as the indicated limit morphism in the equalizer diagram (3.36).

1
~ . e - < 8hLL
B> » BAM) ———— % BAQ)

™
Y
N2 /
. . x
# y
N / '
N

(3.36)

7/

Lemma 1: .Yz = .Yz g.
Proof: By cartesian-adjointness it is enough to show that
.Y6 = .YZ@lBog : A®B — (). To do this it is sufficient to show that

the outside of (3.37) is a pullback.

A’ -Te A®B
-4 .y,*ea 1,
B <EL1O | paoles (3.37)
-3
drue !

=<
]
0
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.g. Hence

But the lower rectangle is a pullback by the definition of
it is enough to show that the top rectangle is a pullback. To do this it

is sufficient to show that (3.38) is a pullback.

.4 A

¥ (3.38)

03 e

So suppose that we have two morphisms .a : X —A and .b : X——B

such that (3.39) commutes.

>
[
S

b (3.39)

{3 BASL

o

X&B > ARB
l®1, l-"f (3.40)
.8
BXB -
Therefore (3.41) commutes
.<a,b>

m;@g

X > X8B

3 bed, l.rf (3.41)
Q

B - > B@B
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But .8 = .ch(A), so .AS factors through .true. Hence .<a,b>oy6
factors through .true. We then take the limit morphism L X—— 2"
in (3.42) to be our limit morphism for (3.39).
YT
W Ty A®B
(3.42)
|
1 true .o
Therefore Lemma 1 is proved.o
Now look at (3.43).
A’ 4 B
4 [.“ & (3.43)
| QY S e BAQ

The outside of (3.43) is a pullback by the proof of Lemma 1 [see

(3.38)] and the fact that .Ze = .YZ. But since .e is monic, this implies

~

that the rectangle is a pullback. This proves the existence of .{.

~ ~

To show that .{ is unique, suppose there exist two maps .fo and §1

each making (3.44) into a pullback.

Al 4" =B
[-&' [.\13 (3.44)
-fo Y
A B
27
Let '6i = .(Z{e)* : A®B —{! for 1 = 1,2, By symmetry and the fact

that .e is monic it is enough to show that .f§o < .{§1 in order to prove
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the uniqueness of .§. We apply the Remark at the end o
(3.45) commutes

.<a,b>

X ARB
l fo (3.45)
_1-_’ cdeme > )
Now
<a/b> fo = <1 ,b>. (a8l .fo) = Ll b (@afh* =
= .<1X,b>.(azoe)* = .<1X,b>. (azoeg)* =
- % % _ % ¥ _
= .<1X,b>.(aéog) = .<1X,b>.a®lB.6o®lB.g =
= .<a,b>.6’§®1B.g* = .<a.{t,b>.g* =
= .<a.§3,b>.ch(<{_},1.>. (3.46)
So we have the situation pictured in (3.47) which commutes.
X 45 h
\L La gl b
L3, 1> s B40)eB
- (3.47)

.3*:.,:_._L (<f_'§,18)

1+ —————— )
-~
bl
£
L

L

Therefore .a.§3 = .b.{ _}. Now consider the diagram (3.48).

(3.48)
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Since the inner quadrilateral with lower right hand corner B is
a pullback by (3.44) and since .e is monic, the inner quadrilateral with
B4 in the lower right hand corner is a pullback also. Therefore there
exists a map .a' : X ——A"' such that .a'f' = .a and .a'f" = .b. From
(3.44) we conclude that .azl = .an. Multiplying on the right by .e

we get

.af} = .af1e = e = .b.{_} (3.49)
Looking at cartesian adjoints yields
.a®lB.61 =.b®1B.6 (3.50)

which implies

.<a,b>.$1 = .qx,bs.amB.él = yrb> 1816 - <b,b>:$ {3.51)
But the outside of (3.52) obviously commutes.
b B>
X —3»
N e —
B . (3.52)

1> -~ — Q

Thus .fo < .§1. By symmetry .f1 < .fo. Therefore .40 = .41 and by

cartesian-adjointness .f§ = .{¥. Since .e is monic we have .o = .41-.

This then completes the proof of Proposition 13.o
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IIT.4 The fundamental theorem of topoi

Let &; and §, be topoi. A functor :L : §;——>&, is called a

logical-morphism if

(i.) :L is finitely bicontinuous,
(ii.) (4 )e:l %4:(_5L*_;L), and
(iii.) %L =2,
THEOREM I (The fundamental theorem of topoi):
Let & be a topos and BEQéj£; then 8¥B is a topos. Furthermore, if
.f : Byj——B;, is an arrow in & then the functor :f# : §¥B; — 8B,

(see III.l) is a logical morphism.

Proof: First we wish to show that §¥B is cartesian-closed. So given

A C A C
. £ .g . . .£ .g
objects and in £+B, we wish to construct A
\
B \B \B/ \B/

Let .k : BRA ——>B be the unique map making

A - B
LF1 l.ns (4.1)
K ~
BRA B
into a pullback.
Let .kx* : B——> AdB be the cartesian-adjoint of .k. Let .E-be the
pushout of .g along .nc.
-9
e (4.2)

Y ————— ()

R
~
o

]
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\

Then define .b / to be the pullback of .Adg along .k¥.

H-<——1d|

BRI B ¢ o R RIS NS

B -2 - AAS
b LAMG
J J (4.3)
k*
B : —» AAB
Then define
g —
‘ A C P
l.f rh l.g =af l.b (4.4)
g B B B
X
Now suppose that we are given 1.h . Consider the diagram (4.5) below.
B
AN (x,3)
- .He X,a
Hem,,, 1"" l~‘ > Hom (X, F) B oy (X, ANE)m B (X®AC)
8 B £ e -|3 !
]
t
;’ {4.5)
¥
 Hom (X, 1) Hom (X, A47) IE
I | i
i Ha-.E(x,,a) - Hom g (x,K) ﬁ_k‘_;(x,Ad\E)z_‘P}_rﬁ(X@A,B)

The left-hand square is a pullback by the definition of &¥B and the middle

square is a pullback by the definition of P and the continuity of

:Hom o(x,_) .

Note that on the bottom line of the diagram, the map l;———-Pahg(x®A,B)

ho1 .k

he
corresponds to X®a “-» BRA

B, i.e. it is the element of Pa&@(m&A,B)

obtained from the pullback (4.6)

|



Q — A
ls [.f
X h = B

A
which is the product of .h| and 1.f in VB,
B

B
X A Cc
ﬂﬁﬂ. l'h 4 l £ 4\ l'g = ﬂ9T£+B
B B

and 8¥B is cartesian-closed.

Thus
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(4.6)

(4.7)

(4.8)

Next we show that &¥B has a subobject classifier, by Proposition 8

it is enough to show that the functor SubS+B is representable.

note that
A
~ 8 o
l.f :Subﬂ —ASubé,_AHom,,( 0 =
B
A
= Hom ¢ Q‘s gHomS+B l.f ,Q£:x
B

B

Simply

(4.9)
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B é
Hence = 0 Xy

Next we wish to show that :f# is a logical morphism. First by

Proposition 7 we have that :Zf 1:f# %:Hf. Hence :f# is finitely

bicontinuous.

Next by using the technique employed in the proof of Proposition 7
we can see that it is sufficient to show that :XB preserves exponentiation.
We will do this by showing that (A@C):XB and A:Xé\C:XB function as

representing objects for the same functor. First we note that given any
D
l.d we have that
B

D
DA l.d ® A:Xg :Z_. (4.10)
B

This is because both (4.11) and (4.12) are pullbacks.

D
.r:‘&

l.d ea:x, | <3 ikt ABB
B

| s (4.11)

By

D <4 ~B

D@lp g:‘zﬂ’;f_(“.l,\oa *A@B

j-m pea (4.12)
D

= B
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Hence we have tha

D D
Homg o l.d P (AC) 2 X = Hom o Q) 22o,AMC |
B B

D
gHomé; l.d €n: Xy I ,C| =
B
D (4.13)
=3 HomNB l.d QA X CiXg| =
B
D
= HomNB £.d ,A:XBd«C:)(B .
Finally the  condition on :f# follows easily for
Q£+B2:f#g Q‘S:x o £ Qé:x =~ Q&BI.D (4.14)
B2 B

I1I.5 Morphisms in a topos

Throughout this section let & be an elementary topos, A,B,C,...€0bJ

and .a,.b,.c,...GAﬂAg.

PROPOSITION 14: Monomorphisms are equalizers in §.

Proof: Let A>"—+B be a monomorphism in &. Let .c : B —1 be the unique

such map. Consider the diagram
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(5.1)

| ve——— 3

The outside part is a pullback and the whole thing commutes. Hence
A = Eqz(.cetrue,.ch(m)) and .m = .2qz(.cetrue,.ch(m)).m

PROPOSITION 15: Monomorphisms which are also epimorphisms are isomorphisms

in §.
Proof: Suppose that A-2+B is both monic and epic. By Proposition 14

it is an equalizer, so suppose

A 2 —>B - R (5.2)
is the relavent equalizer diagram. As .a is epic we have that .ar; = .arj
if and only if .r; = .rz. So we may denote the map .r; = .r; by .r and

the relavent diagram now becomes

— B >~ R (5.3)

The fact that this is an equalizer diagram says that given any .d : D—>=38

such that

D : B . >R (5.4)

commutes, there is a unique limit morphism .4 : ' D——A such that




101

w

\:
w
b
o

™~

7d (5.5)

S

commutes. In particular, taking D = B and .d = .1B we define .a"! to

be the limit morphism in (5.6)

(5.6)

et

If A —2>B is an arrow in & then the equalizer of the cokernel pair

of .a is called the image of .a and is denoted by lm}a)>£521—>B.

PROPOSITION 16: For every arrow A-—ﬁ~—>B, lm}a)riﬂﬁﬂ>B is the smallest

subobject of B through which .a factors.

Proof: We must show that

o
i.) there exists a unigque morphism A—ii—AOImja) such that

N L im (@) (5.7)

commutes and

ii.) given any subobject S>=%—~B through which .a factors (into

A ——> 8>——B say) then there exists a unique morphism

1m}a)-4£+>s making
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(5.8)

commute.

ey

i.) is obvious, given the cokernal pair of .a is BT——XC we define

Wy

.a to be the indicated limit morphism in the equalizer diagram (5.9) below:

Lim (D -C1

Im(a)y———B C
— x .C,
\-3.0 €} (5.9)
N
N
A

.5
If S>~—B is a subobject of B and B-—IT:C' is the cokernel pair

of .s then .a factors through .s if and only if .acy = .ac; . The only
if part is easy to see, as .ac; = .a'sc; = .a'sc; = .acé . Conversely,
if .ac} = .acj then as .s is the equalizer of its cokernel pair the

required map A %45 is the limit morphism in the equalizer diagram (5.10)

below.

P

N4 ‘a (5.10)

So if we are given an S>~—>B through which .a factors we have that
.ac} = .acj . Now note that .im(a)ec] = .4M(a)sc] . To see this look

at the diagram (5.11)
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C
]
A 2’ (5.11)
\\\\\\\ﬁl\\\*~v
A ok

as .ac) = .ac, there exists a colimit morphism .2' : C ——C' making
appropriate things commute. Hence .émja)°c1 = .ém}a)ecz implies that
.émja)ocl = .Am(a)ecye L' = .dm(a)ecye L' = .émja)oc; . But this now

implies the existence of a limit morphism .%& : lmja)>-——>s in the equalizer

diagram (5.12) below.

S . el
[ +Ca
\
.4
- (5.12)
N\
0
PROPOSITION 17: Let .a and .2° be as in Preopocitieon 16 above., Then
8
A > B
o
.a . -
i (2) (5.13)
Im(a)

commutes, and

(4
i.) A —fLe—lmfa) is epic, hence every morphism .a has an epic-

monic factorization;

ii.) 1if A —2 »g—">B is a epic-monic factorization of .a then

there exists a unique isomorphism .i : Im(a) ===-s; and
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ijii.) Given that

b .d (5.14)

commutes, there exists a unique .e : 1mja)————>1mjc) such that

A & >_I_7_n_(a) Lim (a) B

RE e d (5.15)

c . > (C) Liwmg () D

-

commutes.

Proof: 1.) First note that lmja) = B if and only if .a is a epimorphism.

-
Let B-——Tr—LG be the cokernel pair of .a. If .a is epic then
b §

.acy = .acy implies that .c; = .cp. llence 'AB equalizcs the cckernel pair
of .a. Conversely, suppose that Im(a) = B. Look at
4
. et} —
A B > D (5.16)
Ldy

then we want .adi; = .ad; implies .dy = .dz. Let .2£ be the colimit morphism

in the cokernel pair diagram (5.17) below where .ad; = .ad;.

kg
»
}
w
Yy
=

(5.17)

)

Then .d; = .c;% and .d2 = .c2f. So Im(a) = B implies .c; = .c2
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whence .d; = .c12 = .c2f = .d,.
Now to show i.) it suffices to show that'lm(ao) = Im(a). But this

follows from Proposition 16.

ii.) Let A —*» 5> B be an epic-monic factorization of A B.
By Proposition 16 there is a morphism lmja)-4l~>s such that
A B
\\\\\\s 1:29;//”
%N
I
@ (5.18)

j

m<-—-

commutes.

As .a’ and .e are epic and * commutes, .i is epic. As .émfa) and
.c are mono and ** commutes, .i is mono. Hence by Proposition 15 .i is
an isomorphism.
iii.) Let D ::ﬁ?:: F be the cokernel pair of .c. Consider the following

S

diagram

A >

Lim(@)

(5.19)

:/

'3@)

|
i
!
! tlﬂ(c)
|
’e
v
Im(c

c:<—————-m

.Am(c) is the equalizer of .d; and .d2. Thus .b.co.émfc)d1 =

= .bc’dm(c)dz, which implies
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.a’{m(a)dd; = .add; = .bcd; = .bc’dm(c)dy = .belim(c)d, =

= .bedz = .add; = .a’im(a)dz.
(5.20)

As .a® is epic, this implies .émja)ddl = .émja)ddz. Hence there is a
limit morphism .e from 1mja) into the equalizer of .d; and .d;, namely

Im(c), and this limit morphism .e makes the diagram (5.19) commute.O

I1T.6 Heyting algebra valued functors and Boolean topoi

A Heyting algebra is a partially ordered set <H,<> such that for any

two elements a,b€H
i.) the greatest lower bound of a and b, denoted by (aAb)€H, exists;
ii.) the least upper bound of a and b, denoted by (aVb)€H, exists;
iii.) the pseudo-complement of a relative to b, defined to be the
greatest x€H such that aAx < b and denoted by (a = b)€H, exists; and
iv.) a least element O exists.
Recalling Example 3 of II.1l where we established a 1-1 correspondence
between partially-ordered sets and partially-ordered categories, we have
the following propositions.

PROPOSITION 18: A partially-ordered set<H,=<> is a Heyting algebra if

and only if the corresponding partially-ordered category G(H,<) is cartesian-
closed.
Proof: Take aAb = a®b, avb = a#b, a=b = atb, and 0 = 0. That A,V,=, and

0 have the right properties is easily seen.o
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Now suppose we have a topos & and lﬁgéj£ is a terminal object. Let
A>~fL*l_and B>43—jl be subobjects of 1. Using the fact that we can talk
about images in & (Propositions 16 and 17) there is a natural way to
define greatest lower bounds, least upper bounds, and pseudo-complements
on the partially-ordered set lﬁ§5§ , namely take .aAb to be .émja&b),
.avb to be .émja@b), and .a=b to be .émja*b). Under this interpretation
l;§gé_£becomes a Heyting algebra with the map 0 —1 as least element.
Thus we have established

PROPOSITION 19: If & is an elementary topos and 1 is a terminal object

in &8 then l;Sub(ghas a natural Heyting algebra structure.o
B
Next we note that if B€0b{£, then since l.lB is the terminal
' B

object in &¥B, &¥B is a topos, and B:Su.bg = (.lB):SU.bNR we have

PROPOSITION 20: If & is an elementary topos and B€Q§J§ then B:SubS

has a natural Heyting algebra structure.o

As the operations of B:§g§£ are preserved by pulling back, we may
naturally view :§g§£ as a Heyting algebra valued functor.
THEOREM ITI: If & is an elementary topos and  is the subobject classifier
in & then § has a natural Heyting algebra structure in 8.
Proof: We must show that there exist mappings Q%Q—JA—*-Q, 9%0—4!—*-9,
M0 —=—Q, and 1:—£L*'Q, which satisfy the properties of the Heyting
algebra operations. Let .false : 1 —{ be the characteristic function
of 0 1. Take .0 to be .false. Let

(i.) .A be the characteristic function of lj4g:éii—-ﬁﬂﬁ
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(ii.) .V be the characteristic function of

Am (. <1q,trued®(true,1o7)

(iii.) .= be the map '<E’_L_1'A>°6 where .8 is the Kronnecker-delta.

It is now easy to directly verify that fact that these maps satisfy
the required conditions.o

In a Heyting algebra <H,<> for any a€H we define ~a to be the element

a=0. We say that a Heyting algebra is a Boolean algebra if and only if

for all a€H, ~va = a.

An elementary topos 4 is said to be a Boolean topos if and only if

its subobject classifier 2 is a Boolean algebra. We define the map
o~ : 8—>§ to be the characteristic function of .false.

A Boolean topos is said to be a two-valued topos if {.true,-false} =

= Hom£(l,9) .
The following proposition is fairly easy to prove.

PROPOSITION 21: Letd& be a topos and let { be the subobject classifier

in 4. Then the following are equivalent:
i.) @& is a Boolean topos
ii.) .truedfalse : 181 —{ is an isomorphism

iii.) o~~~ = .10 2 0.0

Q
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CHAPTER IV

TOPOI AND SETS

Throughout this chapter 6-<‘=V1 is a Boolean topos and all objects and

morphisms are in § unless otherwise specified.

IV.1 The language £'(§) and its interpretation

We now describe a language #£'(g) which is an extension by definitions
of the language ﬂvl) (i.e. £ with constant symbols for elements of V1
adjoined) and indicate how £'($) is to be syntactically interpreted in
V).

Variables: #£'(8) has three sorts of variables:

1.) Object variables, denoted A,B,C,..., which are to be interpreted

as ranging over O_bjé;;

2.) Arrow variables, denoted .a,.b,.c,..., which are to be

interpreted as ranging over WS; and

3.) Typed variables of type A (for each AEObi&) , denoted xl;,xg,...,

which are to be interpreted as ranging over Pa)zs-(_]_._,A) .

Terms: Object constants and object variables are object terms; arrow

constants and arrow variables are arrow terms. Typed terms are defined

inductively as follows:
a.) constants in PM6(£,A) and typed variables of type A are terms

of type A;

b.) if tA is a term of type A and .fEHomé,(A,B) then tA.f is a term

of type B; and
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c.) if t? is a term of type A and t? is a term of type B then
(t?,t?) is a term of type A®B. Typed terms are then interpreted in the
obvious manner. (Note: we may occassionally abuse our language by
referring to a term of type A as an "element of A".)

Relations and atomic formulas:

1.) There are two arrow relation symbols:
i.) the binary relation symbol - T __and

ii.,) the 3-ary relation symbol — A —°—

which are to be interpreted as the relations of equality

and composition of arrows respectively. Atomic formulas

are formed from arrow terms as follows:

a.) 1if .ty and .t; are arrow terms, By o=y, ot is an

atomic formula; and

b.) it .ti1,.ts, and .t3 are arrow terms then

.t = .ts°.t3 is an atomic formula.
2.) There are relat;;;-symbols of type A for each AEQ§j£ as follows:
i.) a binary relation symbol -3 _and
ii.) for each subobject .m : B>*A, a unary predicate _ﬁmB,
which are to be interpreted as equality restricted to
ngé(l,A) and factorization of elements of E§££(EJA) through
.m respectively. For example if .66E§£6(1,A) then .6EmB

holds if and only if there exists a map .a : A' —A such

that (1.1) commutes.
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N (1.1)

Atomic formulas are formed from typed terms as follows:

.- LA A A . .
a.) if t; and t? are terms of type A then t; =a ts is an atomic
formula and
. A, . .
b.) if t is a term of type A and .m : B>—A is a subobject of

A . .
A, then t EmB is an atomic formula.

Formulas:

1.) If ¢ is an atomic formula then ¢ is a formula.

2.) If ¢ i; a formula then ~ is a formula.

3.) If ¢ and P are formulas then ¢ Vv Y is a formula.

4.) If ¢ is a formula and A is an object variable then
Jad is a formula.

5.) If ¢ is a formula and .a is an arrow variable then
J.a¢ is a formula.

6.) If ¢ is a formuia and xA is a variable of type A then
3xA¢ is a formula.

Sentences 0 of #£'(§) are given a truth value [0]] in B, the completion

of the Boolean algebra l;Subg, according to the following inductive scheme:




1.)

2.)

3.)

4.)

5.)

6.)
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.1l if .t, and .t, are arrow constants

Lt = .t = -
[-t1 A 2] daf denoting the same arrow in &

.0 : 0>—1 otherwise.

.1. if .t, denotes the composition of

1
[-tl =i .ts -tsﬂ =df the arrows denoted by .t; and .ts3
.0 : 0—=1 otherwise.
[f? =A t?ﬂ =df .1:y : C>——1 where <C,:Y> is the colimit of

the solid part of (1.2)

A
. i :
i ix
|
:
Ale—m—mmmmmmm- G A" (1.2)

|
1.1
] ’

B ! L4
v
1

EtAGmBﬂ =4 .E;M°tA i.e. the pullback of .m : B>>—A along

A . !
.t composed with .tA as in the left hand edge of (1.3)

— TR

P b B
;'t" l-m

E 2 An

A t >A (1.3)
.tAI

d

1

4] =, ~16]

I6 v ol =4 D61 v [v]
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7.) [Pad ()] =4 supB{[[d)(T)]] l TE_O_EL{é.}
8.) [B3.a¢(.a)] =3f supB{[[d)(.t)]] l .tEA/ULS}
9.) [[3xA¢ (xA)_'[] =af supB{[[d)(tA)]] | tAEPa)LS(_l__,A)}

We say that a sentence 0 is true in the external interpretation if

o] = .1_1—.

IV.2 The language #(§): external and internal interpretations.

Let £(8) be the fragment of #'(4) obtained by deleting object variables,

arrow variables, and the relations _ =M — and _ =, _o_.

By the external interpretation of £(§), we shall mean its B-valued
interpretation as a fragment of £'(§) above.

The internal interpretation of £(§), which we define below, assigns

to each formula d)(xlih,...,xi ) of #8), having exactly n free variables

of types A ,...,A , a truth value .||¢|| which is an arrow in &,

1
Jdlell « A©...€n — Q. .

¢]| is defined inductively as follows:

1) W% =

A -_— — -
A %2l =g¢ -ch(d) = .8 : aGA—0

2.) If .m : B——A is a subobject of A then

"¢ Bl =, .chtm) : A—0

3.) If f : A——B is an arrow in & and ll)(xB) is a formula of £(&)
with a free variable of type B then .|[[{ (xA.f) | = .f.llll)(xB) It.

4 Il =g Il

v el =g o< sl ol

5.) .
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A A a pran ke
6.) Let Y(x ,x 1,...,xn ) be a formula of #(¢) with exactly n+l free

1

variables of types A,A ,...,An. Let .1 =af .[l [$l]1 be the

1

subobject of A@ml®...@mn whose characteristic function is .[[{|l.

Let D denote the domain of .i. Let .p& : AGA.®...GA —= A Q...QA
1 n 1 n

be the obvious natural projection map. Now define

A A

.“3xA (x 1Ky aee X ) =3£ .ch({m(i p4)) where .Am(ioph) is the

monic part of .iept as in III.5, Propositions III.16 and III.1l7.

See (2.1)
D 3! > A®A ®. .
. Lim (iepr)
Im(iepr) ——— = A®- eh(iy=lvil (2.1)
/ ) 1“31 '4'" \
1 Aoet 20

A formula ¢ of #£(8) is said to be valid in the internal interpretation

£ .

abbreviate "¢ is valid in the internal interpretation”.

¢l factors through .true : 1> Q. We shall write [¢]| = T to

The following three propositions, which are proved by Mitchell in
[19), relate the external and internal interpretations of £(&).

Define 3!x¢(x) by (2.2) in &£.
Ix¢ (x) Saf Ix(d(x) A Vy(d(y) = (x=v))) (2.2)

PROPOSITION 1: If “VXAB!yB¢(xA,yB)H = T then there exists a unique morphism

.g ¢+ A—— B such that ”¢(xA,xA.g)” =T.o
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B . .
PROPOSITION 2: If ||3ly ¢(yB) il =T then there exists a morphism .g : 1 —B

such that HVzl(b(zi.g)H = T where z-J-'- is a variable of type 1 which does not

occur free in ¢.o
Let WC denote the following axiom:
WC : Let .a : A —1 and let A —i—+>1ﬁ(a)>—';‘:’—(2—"\-—>l be the epic-monic
factorization of .a (see Proposition III.17). Then .a’ splits.

We say that a sentence 0 of £(8) is &-absolute if |o|| = T if and
only if 0 is vtrue in the external interpretation.

. . A
PROPOSITION 3: Let & be a Boolean topos satisfying WC, d)(xil,...,xn )

be a formula of £(§) with exactly n free variables of types Al""An'

and .piEPa)Lcs(}_,Ai) for all i=l1,... yn. Then ¢ (pl reos ,pn) is 8-absolute.o

IV.3 Boolean ZFC topoi and two~-valued ZFC topoi

A natural numbers object in a topos & is an object NEO_b_{é., together

with maps
1 0 NS N

such that for any object X€0b{f, together with maps
U1 g

1 B3 X K > X

there exists a unique map .h : N——=X such that (3.1) commutes.

1— -
L

N
{
1
I
'l
]
i’( .k

M€= mmm e
E

?

A topos & is said to satisfy the category form of the Axiom of

Choice (abbreviated CAC) if all coequalizers split in &, or equivalently

(3.1)
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(by the dual of Proposition ITI.1l4) if all epimorphisms split in &.

A topos & is said to satisfy the category form of the Bounding

Principle (abbreviated CBP) if for every formula ¢ of £'(8) with

parameters in 4 and every Aégéiﬁ, & satisfies (3.2).

V<2386 (x,B) — JoVx3BI.b(.b : B—=C A ¢ (x,B)) (3.2)

A topos 6 is said to be a Boolean ZFC topos if
i.) & is Boolean
ii.) & has a natural numbers object
iii.) & satisfies CAC, and
iv.) & satisfies CBP.

A topos & is said to be a two-valued ZFC topos if it is both a two-

In Iv.4 and IV.5 we construct two functions:

i.) €

(Boolean-valued models of ZFC) — (Boolean ZFC topoi)

ii.) M

(Boolean ZFC topoi) —— (Boolean~valued models of ZFC).
One should think of these constructions as taking place in ZFCI
and referring to Boolean-valued models of ZFC which, though they are

contained in VI' may not be sets relative to VI'

iV.4 The construction of'@[M(B)J

B
Let B be a complete Boolean algebra and let M( ) be a B-valued

model of ZFC. Then S[M(B)] is the category whose set of objects is
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B
the universe of M( ) and whose arrows are ordered triples <x,£f,y> such
B .
that Ef : x-——+-jﬂ = 7( ), the maximal element of B. Domains, codomains,
composition of arrows, and identity arrows are defined in the obvious
fashion.
(B) By, .
THEOREM I: If M is a B-valued model of ZFC then &[M"' '] is a Boolean
B)

crm’

ZFC topos and {2 (] ~ B.
B .

Proof: S[M( )] is easily seen to be finitely bicomplete. Products and

M(B) Co1f

coproducts are cartesian products and disjoint unions in
f:®x——>yand g : x——y, the role of the equalizer of f and g is
played by {zl z€x A £(z) = g(z)} and its inclusion in x and the role of
coequalizer is played by y/~ and the projection from y to y/~, where ~
is the smallest equivalence relation on y such that for all z€x,
f(z)~g(z).

Exponentiation in G[M(B)] is given by exponentiation in M(B), i.e.
xty is xy. The counit of the cartesian adjunction is given by ordinary

evaluation, i.e. it is the function e : (xy)xx-——+>y defined by

e(f,z) =af f(z) for all fExy‘and z€x.

B obviously plays the role of { with .true : 1>—>Q being the
1 (B)

function which sends @ to

B
w is the natural numbers object of Q[M( )]. The map .0 : 1>—W

is the canonical inclusion and .s : w—> W is the ordinary successor function.
. B
In order to check that epimorphisms split in G[M( )] let e : X —>y
. . . (B) . . . . (B)
be an epimorphism in §[M" "']. Then e is a surjection in M "', By AC

there exists a choice function f : y ——x picking out a single element
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-1 . . .
of e "(z) for every z€y. £ is the rcgquircd section of e.

(B)

Finally, BP in M translates exactly into CBP in S[M(B)].D

COROLLARY I.l: If M is a classical model of ZFC then G[M] is a two-

valued ZFC topos.n

IV.5 The construction of M[4]

A partially ordered set <t,<>is called a Scott tree if

i.) forv all x€t the set X =af {zl z€x A z=x} is well-ordered by <;
ii.) t has a greatest element *t;
iii.) <t,£> is =~well founded and<t,>> is =-well founded (see I.4); and
iv.) <t,=>has no order automorphisms other than the identity.

If x€t let Ix%t denote the set of immediate predecessors of x in t.

In any model of ZFC we can then define the set represented by the Scott

tree <t,=> recursively by insisting that <t,=<> represents a set z if and
only if the elements of z are exactly the sets represented by the Scott
trees of the form<§,5r§ Swhere aEHﬁ:i.

Now let & be a Boolean topos. If .s : B>—>A®A is a relation from

. A A A A .

A to A we can interpret a; SS az to mean (a1,a2)€SB. In this manner we
may express the statement "< A,ES> is a Scott tree" as a single sentence
ST(a,s) of £(8) with parameters A and .s. We then can say that <A,SS>

is a Scott tree in § if |IST(a,s)|| = T. 1If 8 also satisfies WC then by

Proposition 3, ST(A,s) is also externally true in4&. By clause ii.) in

the definition of Scott tree and Proposition 2 there is a maximal element

'XS- : I>—=A in & and the subobject .i-)gi of A is well defined. If aA
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is a term of type A, let S, denote the Scott subtree of<fA,fs> obtained
. . A A A A A
by restricting Ss to .[b lb Ss a], the pullback of .true along .[b~ = a"J,
—_— s
It is easy to see that if((A,SS> and<<B,§lj>are two Scott trees in &
. 4B 4
and if fA is a term of type A%B, we may express the statement "fA B is
an order isomorphism from A onto B" in #&) by employing the counit of
. . . fA’\‘B .
the cartesian adjunction :pv to use as a function from A to B.
Let B denote the completion of the Boolean algebra Homg(ljﬂ). Then
W8] is the B-valued structure specified by the following:
i.) the universe of M[€] is the set f<A,S;>|§IjA,s)}
s 8 — AB AB .
ii.) [<A,Es> =<<B,St (4] =3¢ HBfA (fA is an order isomorphism
from <A,$s> onto <B,St>)”.
s é A+B B, . .
iii.) [<A,Ss>>E‘<B,S£>ﬁm[ ] =3¢ II3£ (" is an order isomorphism
from‘<A,Ss> onto t, for some term b of type ié%i)”.
If <A,Es> is a Scott tree in § and B is an object in &, we say that

<A,Sé> structures B if B&#%%i in &. BAn object B is said to be structured

if there exists some Scott tree<iA,Ss> in § which structures B. Note that
the category of structured objects in & and arrows between them is a full

subcategory of &.

PROPOSITION 4: If & satisfies CAC then every object of &4 is structured.

Proof: If 8 satisfies CAC then every object A can be well ordered in
the sense that there exists a subobject .w : B>—>ARA such for any two
terms of type A, a? and a?, a? Sw a? if and only if ”(a?,aé)EwBH =T,
and .w is a well ordering. The proof of this in ¢ is just the imitation

of the usual proof in sets.



120

Informally we let<C,<. > be the set of strictly descending sequences
. . A A A A
in A ordered by the requirement that <al, Seera ><j< bl' - 'bm> if andg
only if m<n and ai=bi for all i=1,...,m.
More formally if OA denotes the Sw-minimal element of A we define
AA A A, A A 4A A
c =g [N Vb = ot — @M e =000 5.1

A, A, A A A 42 A 4A A
A Va1 Vas (a1 <w as <w a - ()‘:'A raz).ev <w (fA (a1).ev)]

and .j : Y >—>CRC is the subobject specified by

AMA A ®A A A A
< = <
(f1 " ,a1) 5 (55", a3) =qf 32 <, a1 A
A, A A 4A A AA A
A aszf(as <w az — (f21\ ,a3).0V = (fé ,a1).ev) (5.2)

It is now fairly easy to check out that<C,Sj> is a Scott tree in §

which structures A.O

THEOREM II: Let & be a Boolean ZFC topos and let B denote the completion
of the Boolean algebra %(L,Q) . Then M[§]is a B-valued model of ZFC.
Proof: It is sufficient to show that M[f] satisfies AxExt, AxIng, AxPower,
AxFound, Limited Aussonderung, BP, and AC.

; (B)

AxExt: 1If H:<A,Ss> =<B”<‘1_>:U = .true = then if we let x =<A,$?

and y =<B,St>, we have "that

L
”3fA B(f is an order isomorphism from x to y)ll = T (5.3)

 (B)

This implies ||Vz(z€x < zEy):[] = ,true = . Conversely if [Ix#y]] = ,true

then since< A,= is not order isomorphic to<B,= there must exist either
P
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an af€t *Si such that saﬁy or a bEi%ié:i such that tbﬂx. Since CAC implies
WC, Proposition 3 tells us that there exists a Scott tree z such that
M(z€x <« z€y)[| = T. For this z, [z€x <> z¢y] = .false = O(B).
AxInf: 1t is easy to check that in the proof of Proposition 4 the Scott
tree <C,Sj> which structures the natural numbers object N is an ordinal
of order type =w.
AxPower: Let <A,Es> be a Scott tree. The power set of <A,Ss> will be
the Scott tree <B,St> constructed as follows:

B will be a subobject of (AR(% -)gi'f‘Q))@(i-X;i’f‘Q)@_}_. We will let the

single element of 1 be *t' Let 19‘1'21 = i-)(éi'i‘ﬂ. If a is an element of

af
A and a#i*si, let a be the unique element of i*si such that a Es a. an
element (a,f) of A®(¢9§¢4‘Q) is in B if and only if (f,;) .ev factors
through .true. For such an (a,f) we will define (a,f) St g, where g is
an element of ¢—)(-s¢4‘§2, if f=g. Finally if b€A, define (a,f) St (b,g) if
f=g and a SS b.

The part of the above definition which makes <B,St> the power set
of <A,Ss> is that :t—x{:tt = i—);i'f‘ﬂ. The rest of the construction simply
makes sure <B,=<> is a Scott tree with a maximal element *t and appropriate
structure below iﬁi.
AxFound: This follows i£nmediately from the well foundedness of Scott
trees. We use the fact that CAC implies WC again in order to use
Proposition 3 as we did in the proof of AXEXZL.

Limited Aussonderung: Limited formulas in £LM[8]) may be translated into

formulas of (&) by identifying limited variables with typed variables.
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If ¢(x) is a limited formula with one free variable x in LM[E]) 1let ¢+
denote its translation into £(8). Then'{x€<A,Sé>'¢(x)} is the subobject
.[xA l ”¢+(XA)”] of A together with the induced ordering. That this is
the right set then follows from Proposition 3.

BP: Follows immediately from CBP and Proposition 3.

AC: As remarked in the proof of Proposition 4, we may use CAC to well-
order any object in . It then follows from Proposition 3 that we can
well order any set in M[&].

This completes the proof of Theorem II.O

COROLLARY II.1l: If & is a two-valued ZFC topos then M[8] is a classical

model of ZFC.D
THEOREM III: If & is a Boolean ZFC topos then §[M[E]] is equivalent as
a category to 4.
Proof: We use the fact that by Proposition 4, every object of 8 is
structured. Define the functor :K : €R[E]] —> & as follows:

i.) 1If <A,SS> is an object of GR[4E]] let<A,SS> :K = 3£ Hg:.

ii.) If f+ =<x,£,y> is a morphism in G[R[§]], where x =<iA,SS>

and y = <B,SE>, then f is a set of ordered pairs inM[é], whence there
is a formula Y(a,b) of i“ﬁ), with free variables a and b of types i%%i
and iﬁ%i respectively expressing “(sa,tb>£f" and such that
IIVa3ipy(a,b)|| = T. Then by Proposition 1 we may define
.f+:K : ¢9§¢ ——*'¢9€¢ to be the unique morphism such that
HVa¢(a,a.f+:K)” =T.

:K is obviously surjective on objects and faithful. It is also
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full for 1if <A,Es> and <B,St> are Scott trees and .hEHom,(iagi,i-)%t)
then if we let f = {<sa,tb>la€¢—)§¢ A b = a.h}, we have that

.er =<¢*S¢,f,¢agct> is a morphism in G fR{8]] and .er:K = .h.o

Mitchell in [19] proves

PROPOSITION 5: There is no way to define M[&] so that

i.) M[F] is separated and
ii.) there is an equivalence of categories :K : €[£]] — & which
is definable in 8.0

Hence we cannot insist that M[£] be separated. We say that two

B-valued models M(E) and M(S) are weakly isomorphic if (M(f)) =

o (M(g))S (see I.5).

THEOREM IV: If M(B) is a B-valued model of ZFC then m[(s:[M(B)]] is
weakly isomorphic to M(B) .
Proof: We need to define a function f:M(B)——>‘IR[(S,[M(B)]] which

(B)

preserves ||_= ]| and || € || and such that for every y in M[E[M " ]] there

exists an X in M(B) such that |ly=f(x)]| = 1(B) in fDl[(Sj[M(B)]]. It is
provable in ZFC that for every set x there exists a Scott tree <t,=
which represents x and that every Scott tree represents a set. If x
is a set in M(B) , let <;:,S> be the Scott tree representing x and let
f(x) be the Scott tree <t,_<_i> in (S[M(B)] where

i= <{<a1,aDEtXtIaJSaz},h,AXA> and h is the inclusion function. This

f is the required function.n
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