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iii 

Let (n,F,u) be a probability space, C c F be a sub-a-algebra. A 

generalized version of the Lebesgue dominated convergence theorem (GLDCT) 

was given by J. Doob in his book (41 . More precisely, if {Xn , n=1,2,. . . I  

is a sequence of noqnegative random variables converging almost surely to 

'a r . v .  X and sup Xn E L1 , then for any sub-a-algebra C c F , a 
n 

sequence of conditional expectations (RQdon-Nikodym derivatives), 

{E[X~~C], n = 1,2,. . . I  converges almost surely to E[X~C] . D. Blackwell 

and L. Dubins [2], Theorem 1, have shown that the condition sgp Xn E Ll 

cannot be weakened. That is, in a "certain sense1', the condition 

sup X c L1 is not only a sufficient condition but is also a necessary 
n 

condition. 

The purpose of this paper is to establish a condition on (n,F,p) under 

which sup X E L1 is a necessary condition. We prove that if (R,F,p) n 

is atomic then the condition sgp Xn E L1 is - not a necessary condition 

for the GLDCT except for the case E[Xn]* E[X] . In our final theorem, . 

we establish our main objective by stating that if (n,F,u) is nonatomic, 

then sgp Xn E Ll is a necessary condition for the GLDCT. We devote 

chapter 3 to the proof of these theorems. 
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INTRODUCTION 

For many ~eirs, probability theory was mainly concerned with the 

study of independent random variables but from the beginning of this 

century, dependent random variables were seriously examined, chiefly by 

Markov and L&y. Such an investigation resulted in the consideration of 

an abstract notion of conditional probability. 

In probability theory, the conditional probability of an event A , 

given that an event B has already occurred, is introduced as a ratio 

P(A n B)/P(B) , where P(B) is assumed to have a positive probability. 

With the development of measure theory by H. Lebesgue, A.N. Kolmogorov 

formulated the axiomatic model of probability theory in 1933. In his 

development of probability theory, the conditional probability of an event 

A given a a-algebra C c F , ~ ( A I c )  , (definition 2.1.4), and the condition- 

al expectation of a r.v. X given a a-algebra C c F , E[X~C] , (definition 

2.1.5), are characterized as the RBdon-Nikodym derivatives with respect 

to certain measures. 

It is well known that if {Xn, n = 1,2.. .) is a sequence of integrable 

functions on a measure space (n,F,p) , Xn + X p almost everywhere, 

lxn 1 9 Y p-a.e. for each n , Y E Ll (Q,F,p) , then the Lebesgue dominated 

Convergence theorem (LDCT) asserts that !Xndp + IXdp . For his character- 



ization of certain conditional ex'pectations (theorem 9, page 27, [4]), 

J. Doob has shown that the LDCT can be generalized to the convergence of a 

sequence of conditional expectations. Specifically, let (Q,,) be a 

probability space, {Xn, n = 1,2.. .) a sequence of non-negative random 

variables in Ll (Q,F,p) such that Xn + X E Ll(Q,F,p) p almost surely, 

then sgp Xn E L1 implies that for any sub-o-algebra C C F , E[xnIC] + 

E[xIC] u almost surely, [4], page 23. We shall refer to this theorem as 

the generalized Lebesgue dominated convergence theorem (GLDCT). It is 

clear that the LDCT is a special case of Doobls result since /Xndp = 

E[x~I{$,Q)] and /Xdp = E[X~{$,Q)]. 

With this result in mind, D. Blackwell and L. Dubins have shown that 

in %ome sense" sup X E L (Q,F,p) is not only a sufficient condition but n n  1 

also a necessary condition. More precisely, theorem 1, [2], if X L 0 , n 

xn -* x p almost surely, xn, x E L~(Q,F,v) , s;p xn 8 L~(Q,F,u) , there 
are, on a suitable probability space (Q*,F*,p*) , random variables 

{xn*, n = 1,2.. .) , X* and a sub-o-algebra C* c F* such that X*, XI*, . . . 
have the same joint distribution as X, X1, X2 ... and 

In view of such a result, it is interesting to investigate the proper- 

ties required by a probability space (Q,F,p) to conclude an "exact 

converse" to J. Doobls result. Namely, how rich must the structure of 

p . s .  (Q,F,p) be, to conclude that there exists a a-algebra C c F such 

that E[x~IC](W) +E[x~c](w) with probability one, when s:p Xn 4 
L1 (Q,F,p) . (i .e. the converse statement holds on the original space.) 



- 
The purpose of this thesis is'to establish conditions under which 

sgp Xn E Ll (f2,F.p) is a necessary condition for the generalized LDCT. 

We will show that if (Q,F,p) is assumed to be a nonatomic probability 

space, then sgp Xn E L1 is a necessary condition, theorem 3.3.1. How- 

ever, if (Q,F,v) is purely atomic, then sip Xn & Ll(Q,F,p) is shown to 

be not a necessary condition. (theorem 3.2.2 and corollary 3.2.1.) 

Chapters one and two are of an introductory nature. We begin by 

stating the basic definitions and theorems from general measure and 

probability theory following P.R. Halmos [7], and M. Lo&e [9], respectively. 

A conditional probability is first introduced from an elementary point of 

view. If a a-algebra C is generated by a partition of a sample space Q 

then we encounter no difficulties in defining E[X~C] or ~ ( A I F )  , A E F , 

explicitly (definition 2.1.2). However, in general, we cannot give an 

explicit characterization of conditional probabilities and expectations. 

With the help of the Eden-Nikodym theorem, a general characterization of 

conditional probabilities and expectations is given in chapter 3. We 

also discuss R6nyits model of conditional probability space and note that 

A.N. Kolmogorovls model of probability theory is a special case of R6nyits 

model. 

In chapter 3, we give a proof of our main result. We first note that 

if E[Xn] +E [XI then we have E [xnl {$,fi)] 9 E[XI  {$,Q}] v-almost surely, 

but if E[Xn] + E[X] and (Q,F,v) is purely atomic, then for any 

a-algebra C between {$,a} and F , we have E[x,IC] (w) -+ E[xIC] ((01 

p-almost surely. A proof of our main result is similar to D. Blackwell 

and L. Dubinst with more restriction on construction of the sub-a-algebra 

C since we work only in the original space. Thus we are able to show 



t h a t  t h e  r e s u l t  of D.  Blackwell and L .  Dubins a p p l i e s  t o  t h e  o r i g i n a l  

p o b a b i l i t y  space i f  it i s  a nonatomic space.  



CHAPTER 1 

RESULTS FROM MEASURE AND PROBABILITY THEORY 

In this chapter we shall discuss some basic and important results from 

general measure and probability theory. We refer the readers to the basic 

texts by P.R. Halmos [7], H. Royden [14], and J. Doob 141 for proof and 

details. 

51 Notations and definitions 

In a probability theory, by a set !d (a sample space), we mean a 

collection of certain events called elementary events and denote each of 

these elements by the Greek letter w . The members of the set $2 are 

considered to be outcomes from a certain experiment, that is, elementary 

events are minimal events which are disjoint and one of these events is. 

bound to occur in the experiment. We denote a set of these outcomes by 

the symbols A, B, ... and call them the events A, B, ... . It is clear 

from such an identification of events with sets that the @,a are 

special events, and we shall refer to them as the impossible event and the 

sure event respectively. With each event A we associate the complement- 

C ary event, denoted by A' , such that an event A occurs if and only if 



an event A does not occur. 
I 

Before we state the axiomatic definition of the probability theory 

formulated in its present form by A.N. Kolmogorov in 1933, we shall intro- 

duce a few definitions. 

Definition 1.1.1 An algebra of sets or a Boolean algebra is a collection 

F of subsets of $2 which satisfies the following conditions: 
- 

i) 'A U B E F whenever A,B E F . 

ii) A' E F whenever A E F . 

A a-algebra (Bore1 field, a-field) is an algebra F with the following 

additional condition. 

iii) If {A 1 a is a sequence of members of F then n!l An E F . n n=l 

From the above conditions on F , we note that whenever conditions ii, 
QO 

iii are satisfied then n" An E F from De Morgan's formula. 

Let be a space, F a a-algebra of subsets of Q . If A c 

then we say a-algebra { ~ f l ~ :  F E F} is a restriction of the a-algebra F 

to A and we denote it by FIA . 

Definition 1.1.2 Let Q be a space, F a a-algebra of subsets of Q . A 

.set function p on f is a function which associates an extended real 

number to each member of F . A set function p is said to be a countably 

additive measure (or simply measure) if it satisfies the following axioms: 

i) 0 I p(F) 5 w for all F E F . 



ii) p($) = 0 . , 

iii) p(n!l Fn) = nrl p(Fn) ' for all pairwise disjoint sequence 

{ F ~  , n = 1,2 . . . I  such that Fn E F . 

Definition 1.1.3 Let C be a sub-a-algebra contained in an a-algebra 

F , p' be a measure on C , and p be a measure on F . If p0 and 
- 

p take the same values on sets in C then we say p' is a restriction 

of p and denote it by pic * 

Definitions 1.1.4 Let $2 be a space, F a a-algebra of subsets of Q . 
The order pair (Q,F) is said to be a measurable space and ( F , )  is 

called a measure space if p satisfies definition 1.1.2. 

Consider a measurable space ( $ 2 , )  . A partition of $2 is a finite 

or infinite disjoint sequence { F ~  , n = 1,2. . . of sets such that 

0 F = 52 . A measure p on F is called a finite measure if and only n=l n 

if p(S2) < . A measure p on F is said to be a a-finite measure if 

there is a partition of $2 such that ( F )  < for each n . 

Definition 1.1.5 A measure space (Q,F,p) with a a-finite measure p ' 

(a finite measure p) is said to be a a-finite measure space (a finite 

measure space). 

Now we are in a position to statethe axiomatic definition of probability 

space formulated by A.N. Kolmogorov. 

Definition 1.1.6 A probability space (p.s.) (Q,F,p) is a measure space 



with ( )  = 1 . The members of F are then called events. 

52 Random variables 

~efinition 1.2.1 Let (52,F) and (E,E) be measurable spaces. A 

mapping X: 52 + E is said to be measurable, or a random variable (hence- 

forth abbreviated to r.v.) , if and only if x"(A) E F for all A E E . 
Frequently, we will write this as X: (52,f) + (E,E) . 

In this paper we shall only be concerned with a real valued r.v. 

Definition 1.2.2 Let {xi , i E I} be a familyof r.v. Thea-algebra 

generated by {X;'(A): A E Ei , i E 11 is called the o-algebra generated 

by the random variables {xi , i E I} and is denoted by T({xi , i E I}) . 
The existence of such a a-algebra is the consequence of the following 

theorem. 

Theorem 1.2.3 If C is a class of subsets of 52 , then there is a 

minimal a-algebra, denoted by T(C) , containing all the sets in C . 

Proof P . R. Halmos [7] , page 26. - 

We shall denote the a-algebra generated by all the open intervals of 

R by B1 . Hence our r.v. will be in X: (52,F) -t (R,B~) . 
With these r.v., we associate a function called the probability distri- 

bution of a r.v. 



Definition 1.2.4 Let X be ar'.v. 0np.s. (Q,f,p) . The probability 

distribution of r.v. X is a set function, pX(B) = p({u: X(u) E B ) for 

all B E B1 , defined on B1 . 
From our definition of p it is clear that pX is a probability X '  

measure on (a, B1) . 

Definition 1.2.5 A discrete r.v. is a r.v. taking at most countably many 

different values al,a2,. . . with p({an}) = Pn > 0 and Pn = 1 . A 

continuous r.v. has p({a}) = 0 for all a E R . 
We note that if a a-algebra C is-generated by a discrete random 

variable then it is equivalent to the a-algebra generated by a partition 

Definition 1.2.6 Let X1, X2, ..., Xn be r.v. on a p.s. (Q,F,u) . Then 

the function 
llxl 

, . . . ,X (Blfl.. .flBn) = p({u: X p )  E B1,. . . ,Xn(u) E Bnl) 
n 

for B1, ..., Bn E B1 is called the joint probability distribution (joint 

distribution) of XI, ..., Xn . For the case of (X1,X2, ...) , joint 

probability distribution is defined similarly. 

In our work we do not require the concept of joint distribution but we 

have stated the above definition to clarify the statement of D. Blackwell 

and L. Dubins' result [2], theorem 1. 

83 Independence 

In this section we state the very famous lemma called the Borel-Cantelli 

lemma which we need for the proof of our main theorem. Since the statement 



of the Borel-Cantelli lemma involv'es the idea of sequence of independent 

events we shall state a few definitions concerning the notion of an inde- 

pendence. 

Definition 1.3.1 Let X1, X2, ..., X be the r.v. on p.s. (Q,F,u) , then n 

they are said to be independent if for any B1,B2, ..., B E B1 , n 

Definition 1.3.2 Let (Q,F,p) be a p.s. and F 1 ,  n be sub-o-algebras 

contained in F . Then they are said to be independent if for any sets 
n 

F~ E F~ ,..., F 
E F~ p(F1n ... nFn) = ,rr1 v(F~) . n 

If A,B are events in F , then A,B are said to be independent if and 

only if p(A fl B) = p(A) p(B) . 
From the above two definitions, it is clear that the independence of 

r.v. is equivalent to the independence of 0-algebras generated by the r.v. 

XI,. . . ,X . n 

The r.v. of an infinite family are said to be independent if and only 

if those in every finite subfamily are. 

We now state the Borel-Cantelli lemma. 

Theorem 1.3.3 (Borel-Cantelli lemma) If the events {Fn , n = 1,2 . . . I  
- 

Fn E F are independent, then p(1im Fn) = 0 or 1 according as 

Proof L. Breiman [3], pages 41-42, J. Doob [4], page 104. - 



54 Convergence 

We shall review some of the terminology used to describe the various 

convergence concepts of a sequence of random variables. 

Definition 1.4.1 If {Xn , n = 1,2.. .I is a sequence of r.v. then the 

sequence {xn , n = 1,2.. . 1 converges pointwise to a r.v. X on fl if 

and only if, for any w E fl and E > 0 , there exists an integer no E N 

suchthat for any n ~ n  Ixn(w) -x(w)I < E .  If asequenceof r.v. 0 '  

xn converges pointwise to a r.v. X for all w E fl except possibly for 

those o belonging to a set of probability zero, then Xn is said to 

converge almost surely (a.s.) or almost everywhere (a.e.) to the r.v. X . 
Another important concept in convergence of a sequence of r.v. 'n in 

probability theory is convergence in probability or in measure. 

Definition 1.4.2 A sequence of r.v. Xn is said to converge in probabil- 

ity (in measure) to X if for every E > 0 , lim ~ ( h :  IXn(w) - X(O) I 2 €1) = 0 
n 

We state the following theorem to show some relationship between the 

two concepts of convergence. 

Theorem 1.4.3 Let {xn , n = 1,2.. .) be a sequence of r.v. converging 

a. s. to a r .v. X , then {xn , n = 1,2. . . 1 converges in probability to X . 

Proof P. R. Halmos [7] , page 92. 
.c-. 

However, the converse does not hold. For example, see [8], page 175. 



Let us denote by L1(D,F,v) = Ll the space of all r.v. X such that 

~ I ~ l d p  < * . A sequence of r.v. Xn E L1 is said to converge in mean if 

and only if llxn - ~ l d p  + 0 as n + o. . 
The following theorem shows some relationship between the convergence 

in probability and in mean. 

Theorem 1.4.4 If {Xn, n = 1,2 . . . I  converges inmean to X then it 
- 

converges in probability to X . 

Proof P.R. Halmos [7], pages 104, 110. - 

For the converse statement of the above theorem, we need the following 

definition. 

I x I 5 Y p-a. e. and a sequence of r .v . {xn , n = 1,2. . . is said to be 

dominated by a r.v. Y if for each n Yn is dominated by Y . 

Theorem 1.4.6 If {Xn , n = 1,2. . . ) converges in probability to X and 

is dominated by some integrable r .v . Y then {xn , n = 1 , 2 .  . . I  converges 

in mean to X . 

Proof P.R. Halmos [7], page 110. -.-- 

We state the following theorem which we require for the proof of our 

later theorem. 



Theorem 1.4.7 If {Xn, n =  1,2:..) converges a.e. to ar.v. X and 

d -+ x . Then llxn - X I  -+ 0 as n -+ . 

proof E. Hewitt and K. Stromberg [8], page 209. - 
We conclude this chapter by stating the following very important 

theorem in integration theory. - 

Theorem 1.4.8 (Lebesgue dominated convergence theorem) Let 

{Xn , n = 1,2. . . be a sequence of r .v. converging u-a.e. to a r .v. X . 
If there exists an integrable r.v. Y such that {xn , n = 1,2. . .) is 

dominated by Y p-a.s., then X is integrable and lim lXndp = lXdp . 
n 

Proof P. R. Halmos [7], H. Royden [14], page 229. - 



CHAPTER 2 

CONDITIONAL PROBABILITIES AND EXPECTATIONS 

A conditional expectation is one of the fundamental notions in probabil- 

ity theory and is a most frequently used concept. Before we introduce the 

formal definition and its basic underlying ideas, we shall make some comments 

about its usefulness and importance in probability theory. The concept of 

conditional expectations is used widely in Martingale and Markov theory. 

(For definitions, see L. Brieman [3], J. Doob [4].) One can also find some 

applicationsof martingale theory in the field of continuous-parameter 

stochastic processes, J. Doob 141, pages 190-370. 

kR6nyi considers that the proper notion of probability theory is con- 

ditional probability and he has developed a new model of probability theory 

based on conditional probabilities. Although the axiomatic foundation of 

probability theory developed by A.N. Kolmogorov and others was satisfactory 

from a purely mathematical point of view, there arose some problems where 

Kolmogorovls model did not apply. One of the common features of these 

'problems was that unbounded measures were used. (A. ~e'n~i [12], pages 

38-53 .) 

Because such an unpleasant situation arose in Kolmogorovls model, 

A. ~ 6 n ~ i  has developed the new model called the conditional probability 



space by allowing the usage of unbounded measures. This new model has 

Kolmogorov's model as a special case of it (theorem 2.3.1 [12], page 50.) 

Definitions and basic ideas 

In probability theory, the relationship between the occurrence of an 

event A given that an event B has occurred, or the distribution of one 

set of r.v. given information concerning the observed values of another 

set, is introduced as the conditional probability. 

In this section we begin with a conditional probability from an 

elementary point of view then characterize it as a RQdon-Nikodym derivative 

with respect to certain measures. 

The basic idea behind a "conditioning" is that if we have some knowledge 

of a sample space, i.e. occurrence of an event B , then we can get some 

idea of the occurrence of another event A . 
We now state the following definition of conditional probability of 

an event A given an event B which involves an idea of taking a ratio 

of two numbers. 

Definition 2.1.1 Let ( F , )  be ap.s. then for setsA,B& F such that 

p(B) > 0 , the conditional probability of an event A given that B has 

already occurred is defined to be a ratio y(A fl B)/p(B) and is denoted 

by the symbol ~ ( A I  B) . 
For fixed B , p(B) > 0 , we note that ~ ( . I B )  is a set function on F . 
The above definition does agree with our discussions and one's intuition 

as to what such a probability should be, since if an event B is known to 



occur, then the probability space is reduced to (62,F,p(* IB)) . It is 

easy to see that ( a  I B) defines a probability measure on F . The 

integral of a r.v. X E L1 with respect to this probability measure is 

said to be the conditional expectation of X given B and is defined as 

a point function. 

We note that conditional expectation of X given BC can also be 

defined in the same manner. 

Consider a r.v. Y: 62 -t {0,1) . Then from the above discussions we 

can consider the conditional expectation of X given Y to be the point 

function E [X  IY] (w) such that 

each w E' {w: Y(w) = 0) , 

each w E {w: Y(w) = 1) . 

for 

for 

We can extend the above notion of conditional expectation of X given 

Y to the case where Y has a countably many values al,a2, ... . Specif- 



Then we have 

Since T(Y) in the above equation is equivalent with the 0-algebra 

generated by the partition {Bn: Bn = { w: {Y (w) = an} , n = 1,2. ..I , 

we have 

IB E [ x I Y I ~ P ~ ~ ~  = jBX dp for all B E T(Y) . 

This means that the above integral equation does not depend on the 

value of Y , but depends rather on the information regarding the location 

of w in !J . 
In view of this we can define the conditional expectation of X given 

T(Y) , E[xIT(Y)] , as a point function 

I Xdv foreach w & B n , n = 1 , 2  ... . (u) = B 
n 

We note that if we wish to consider E[xIT(Y)] to be a function 

defined on Q then all we need to consider is the following sum, 



Let 8 be a o-algebra generated by a partition { B ~  ,B~. . .) of L? , 

then we have the following definition. 

~efinition 2.1.2 Let X  be a r.v. with X E Ll(P,F,p) . The conditional 

expectation of X  with respect to the a-algebra B  denoted by E [ x I B ]  is 

defined as 

Since many of the interesting r.v. are of a continuous type (information 

given by continuous functions), we wish to consider the case when conditional 

expectations have a continuous r.v. as its "conditional part". We can not 

define the conditional expectation conditioned by a continuous r.v. in the 

same manner as the conditional expectation conditioned by a discrete r.v. 

or equivalently conditioned by a a-algebra generated by a partition of fl , 

since p({w: Y(w) = a)) = 0 for all a E R . 
However, let us take a closer look at our discrete case. Let Y be 

- 1 a discrete r.v. with values 
al'a2" , 8 = T({Bn: Bn = IY (a,)}, n = 

1 2  . Then from our discussion on discrete case 

1 E [ X I B ]  (w) = - I X  dp for each w 6 Bn , n = 1,2 ... . v@,) Bn 

Now let us define the measure v on B  by the formula 



(B 1 v n  
Then E [ X I  B] is a ratio of two measures - for w E Bn , n = 1,2 ... . 

IJ (Bn) (B (B 1 v n 
Let f be a point function on B such that f (o) = = - n for v (Bn) IJ (Bn) 
n = 1,2. . . . Then f is B-measurable and 

We shall use these two properties of f to characterize a conditional 

expectation of X E L1 given Y or equivalently a conditional expectation 

of X given T(Y) , where Y is a continuous or discrete r.v. 

In order to do this, we require the notion of taking a llderivativel' of 

one measure with respect to another measure. 

Consider the measure v in our discrete case. We note that for any 

B E 8, if p(B) = 0 then v(B) = 0 . We shall state the following 

definition to formalize this. 

Definition 2.1.3 Let ( F , )  be a a-finite measure space and v a 

signed measure on F , then v is said to be absolutely continuous with 

respect to the measure p if v(F) = 0 whenever p(F) = 0 . Symbolically, 

this is denoted by v << p . 
Note that we have v << u in our discrete case. 

18 
We state the following theorem which states that if measure v is 

absolutely continuous with respect to p then under certain conditions 

v can always be defined as an indefinite integral. 

Theorem 2.1.4 (Rgdon-Nikodym) Let ( p )  be a a-finite measure space, 



and let V be a 0-finite signed measure on F which is absolutely contin- 

I uous with respect to p , then there exists a finite valued measurable 

1 function - dv on 0 such that 

I 
I 
! V(F) = lF g d p  for all F & F . 
1 
i 

! 
I 

dv is unique upto a set of measure zero. aTs 
1 - 

1 

Proof P.R. Halmos [7] ,  page 128. 

t 

In view of this result, we see that the function - dv has the properties 
dv 

of f stated earlier. 

Let Y be a continuous r.v. on a p.s. (Q,F,p) . If we define v to 

be a finite signed measure on T(Y) by 

v(Fy) = I X dp for each Fy E T(Y) , then 
F~ 

v << F.l IW) and from the Rgdon-Nikodym theorem applied to (R,T(Y), p~~(~)) 

we have 

We now are in a position to state the following general definition of 

conditional expectation of an integrable r.v. X conditioned by a sub-a- 

algebra C c F . 



Definition 2.1.5 Let ( f , )  be a p. s., let C be-a -sub-a-algebra of 

F and X an integrable r.v. then the conditional expectation (c.e.) of X 

given C , denoted by E[xIC] is any C-measurable r.v. such that 

(*> ICE[xIC](w) dplC = IcX(w) dp for all c E C . 

The existence of E[X~C] is assured by the ~gdon-Nikodym theorem, 

however, E [xIc] is unique only upto sets of measure zero since any 

C-measurable function satisfying the equation * can be considered as a 

conditional expectation of X given C . 
We can define the conditional probability of an event A E F given a 

sub-a-algebra C in the same manner. 

Definition 2.1.6 The conditional probability (c.p.) of A E F given 

sub-a-algebra C E F is a r.v. ~(AIC) on a p.s. (Q,F,p) such that 

1, U(A~C) dp = p(A fl c) for all c E C . 
By letting X = lA in our definition of c.e., it is clear that the 

c.p. of A given C is a special case of c.e.. We also note that c.p. 

can be considered as a function on f X S2 . That is, for each fixed 

o E S2 we can consider p(. Ic) (w) as a set function on Q from definition 

2.1.6. 

If for p-almost all w E 52 , p(. IC) is a probability measure on F , 
then we say the conditional probability is a regular c.p. (definition, 

L. Brieman 131, page 77). 

If c.p. is a regular conditional probability, then we can define the 

conditional expectation of X E L1 given a-algebra C c F by the follow- 



ing equation 

E[XIC] (w) = jX dv(. (C) (w) a.s. 

Proposition 4.28, L. Brieman [3], page 77. 

52 Properties of conditional expectations 
- 

From the definition of c.e., we observe that the c.e. and expectation 

considered as a constant function have analogous properties. We shall 

state such properties without proof and refer the readers to J. Doob [4], 

and L. Brieman [3]. 

Let (Q,F,v) be a probability space. 

Theorem 2.2.1 Let X , Y E L1(Q,F,p) , a,b,c E R and C c F be a 

sub-a-algebra, then the following properties hold. 

i) 

ii) 

iii) 

iv ) 

v 1 

vi) 

If X >  0 u-a.s. then E[XIC] E 0 v-a.s. and 

if X =  c then E[X\C] = c u-a.s. 

E[aX + ~ Y I c ]  = ~E[X]C] + ~E[Y~C] v-a 

If X 5 Y p-a.s. then E[XIC] I E[Y 

IE[xlC] r ~[lxl lc] v-a-s. 

Let Xn E 0 and Xn converges monotonically 

to a r.v. X E L1 . Then E[xnIC] converges 

p-a.s. to E[xIC] . 
Let Y be an integrable r.v. and X a 

C-measurable r .v. such that XY E L1 , then 



E[xYIC] = XE[YIC] 'p-a.s. 

vii) If Xn + X in p-mean, then E [x, IC] + E [xIC] 

in p-mean for p 2 1 . 
viii) If a r.v. X is integrable and B c C c F are 

the sub-a-algebras of F , then E [E [xIC] I B] = 

Theorem2.2.2 If T(X) anda a-algebra C c F are independent then 

Proof For every c E C , icE[xIC] dp IC = IcX dp = EIXlc] = E [XI . p(c) = 

ICE [XI dp l c  . The equation E [Xlc] = E [XI p(c) follows from the 

independence of T(X) and C . 

By considering the extreme cases of sub-a-algebras {$,n) and F , 

we have E[xI{$,Q)] = E[X] and E[xIF] = X p-a.s. Clearly, if we let 

C = {$,Q} in theorem 2.2.2, then E[E[xIF]I{$,Q}] = E[x~{$,Q}] = E[X] . . 

In the next section we shall give some characterization of c.e. as a 

linear transformation by noting similar properties shared by c.e. and 

linear transformations of a certain type. - 

93 A conditional expectation as a linear transformation 

From our characterization of E[xIC] as a Rgdon-Nikodym derivative in 

section one of this chapter, if we consider E[* IC] to be a mapping from 

Ll(Q,F,p) into L1 (Q,F,p) , then we note that E[* Ic] is a contractive 



mapping taking a F-measurable r.v.' X into a C-measurable r.v. E [xIc] . 
Here, we shall briefly give an outline of such a development. One of 

the reasons why one considers such a characterization comes from the study 

of dynamics of turbulence, where averaging operators are being used, 

G. Birkhoff [I]. 

In her paper, S.C. Moy has given one such characterization of c.e. [ lo] ,  

page 61, theorem 2.2: Let T be a linear transformation from L1 into 
- 

L1 such that 

i) IlTll 5 1 , 

ii) if X is bounded, then TX is bounded, 

iii) T(XTY) = TX TY for all bounded X , Y E L1 , 

iv) T 1 = 1 ,  

then TX = E[xI~] for all X E L1 where 8 = {A E F :  T(lA* X) = lA TX 

for all bounded X) . 
The above result of Moy was generalized by G.C. Rota [13],page 58, 

theorem 1, M. Olson [ll],Z. Sidak [IS], and R.G. Douglas [S]. 



THE ALMOST SURE CONVERGENCE OF CONDITIONAL EXPECTATIONS 
- 

CHAPTER 3 

In this chapter we shall investigate the almost sure convergence of a 

sequence {E [x, I C] , n = 1,2. . . } when a sequence {xn , n = 1,2.. . I  is 

assumed to converge almost surely to a r.v. X . 

51 Introduction 

In his'text [4], J. Doob has shown that if a sequence of non-negative 

integrable r.v. X converges u-a.s. to an integrable r.v. X and n 

SEP Xn E L1 , then for - any sub-a-algebra C c F , the sequence 

{E[x~(c] , n = 1,2 . . . I  converges P I C  -a.s. to ar.v. E[xIC] . We shall 

refer to this fact as the generalized Lebesgue dominated convergence 

theorem (GLDCT) . 
- 

The above theorem was noted by Doob in order to give a characterization 

of conditional expectation of integrable random variables. More precisely, 

(theorem 9.1 141, page 27) in our notation, if X E L1 and a conditional 

probability with respect to C forms a probability measure on F (this was 

discussed in chapter 2, page 21), then 



In view of GLDCT result, one mdy wonder whether the converse to the 

GLDCT holds true. With regard to such a question, D. Blackwell and 

L. Dubins [2] have shown that in tlsome senset1 the condition sup Xn E L1 
n 

is not only a sufficient condition for the convergence of a sequence 

{E[x~Ic] , n = 1,2 . . . I  to a r.v. E[XIC] ulC -a.s. for all sub-o-algebras 

C c F , but is also a necessary condition. More exactly, if X 1 0 , n 

X + X p-a.s., Xn , X E L1 and sup Xn L1 , there are, on a suitable n n 

P.S. (Q*,F*,p*) , r.v. {x* , n = 1,2.. . I  , X* , and a a-algebra n 

C* c F* such that X*,Xi,. . . have the same joint distribution as 

X,X1,X2,. . . and 

In view of D. Blackwell and L. Dubins1 result, it is interesting to 

investigate characteristics of probability space ( , F ,  for which we can 

conclude that if sup X 4 L1 , then there exists a sub-o-algebra C such 
n n 

that 

That is, under what condition is it necessary to construct a new suitable - 
p.s. in D. Blackwell and L. Dubins1 result? In corollary 3.2.6, we show 

that if a p.s. (R,F,p) is atomic and E[Xn] + E[X] then for o-algebra 

C c F , E[x~~c] converges p-a.s. to E[xIC] with probability one, i.e., 

if the probability space (Q,F,u) is atomic, then the construction of a 

new suitable probability space may be necessary in order to obtain the 



a-algebra C for which convergence'does not hold. We also note the 

following trivial fact: if E[X,] E[X] then there always exists a 

sub-U-algebra C such that E [xn I C] E [X I C] with probability one by 

taking C = { I  . If the p.s. (Q,F,p) is assumed to be a nonatomic 

p.s. then theorem 3.3.1 asserts that there exists a a-algebra C c F such 

that 

92 Atomic and Nonatomic spaces 

In this section we shall establish a few useful facts about atomic and 

nonatomic spaces. In the following discussion, let p be a probability 

measure on a a-algebra F of subsets of a sample space Q . 

Definitions 3.2.1 An atom of the measure p is a set A E F such that - 

probability measure p is called atomic if $2 = U Ai , Ai fl A .  # 0 i # j i=l J 

where Ai are atoms of the measure p . A p.s. (n,F,p) is said to be 

purely atomic or atomic if p is atomic measure. 

Definition 3.2.2 The probability measure p is called atomless if p has 

no atoms in F . A p.s. (Q,F,p) is said to be nonatomic if there is no 

atoms of p in F . 

Theorem 3.2.3 (Decomposition theorem of a p.s. $2 ) Let (Q,F,p) be a 



00 

p.s., then Q = f$ U Q2 , where 4'= U Ai , where Ai are atoms of i=l 

F and p has no atoms in F lfl . 
1% lFln* 

Proof Hahn and Rosenthal [6], page 51. - 

We state and prove the following lemma which will be used to prove 

theorem 3.2.5. 
- 

Lemma 3.2.4 If a probability space (P,F,p) is atomic and Xn + X in 

probability, then Xn -+ X p-a.s. 

Proof Suppose Xn + X in probability, then from the definition of con- 

vergence in probability we have for any > 0 , 1 ( :  I xn(w) - X(W) I n 

2 €1) = 0 . NOW if x,+ X p-a. s. then there exists an atom Ai 0 
such that X $* X pointwise anywhere on Ai . Then for some E~ > 0 n 0 
Ai c {w: (xn(u) - x(w)[ 2 co} for infinitely many n , hence 

p(Iw: Ix,(w) - X(u) I E c0}) 2 p(A. ) > 0 . This contradicts the assmp- 
lo 

From the above lemma, we have the following theorem which gives a . 

condition on a p.s. (Q,F,p) for the almost sure convergence of a sequence . 

E[x,Ic] , n =  1,2 ... t0ar.v. E[X~C] when X n + X  p-a.s. 

Theorem 3.2.5 If (Q,F,p) is a purely atomic probability space and 

X t 0 , X t 0 , Xn , X E Ll(Q,F,p) , Xn + X p-a.s., and E[Xn] converges 
n 



to E [XI , then E [xn Ic] + E [X Ic] lv-a. s. for all sub-o-algebras C c F . 

Proof From theorem 1.4.7, if E [Xn] + E [XI then Xn + X in mean. If - 
Xn + X in mean, then from theorem 2.2.1 part viii, E[xnIC] + E[xIC] in 

mean for all sub-a-algebra C c F . Then E [xn IC] + E [XI C] in probability 

from theorem 1.4.1 which implies E[x~~c] + E[X~C] p-a.s. for all sub-a- 

algebras C c F by lemma 3.2.4. 

Note that if E[Xn] + E[X] , then E[x~~C] + E[X~C] in probability on 

any probability space. Hence, if C is a a-algebra generated by a 

partition then E [xn IC] + E [xIC] p-a.~. 

There are sequences of integrable random variables 
'n such that 

sup Xnt ~~(fi,F,v) , yet E[Xn] +E[X] . ( e . g .  L e t X n = n l  1  1 (m 51 
Incidentally, if E[X ] St E[X] , then it is clear that there exists a n 

sub-a-algebra C such that E [xn 1 C] E [XI C] v-a. s. by taking 

c = {$,1;21 . 

Corollary 3.2.6 Under the same hypothesis as theorem 3.2.5 sup X E L 
n n  1 

is not a necessary condition for the GLDCT. 

Proof This follows immediately from the above theorem and comments. 

Theorem 3.2.5 also follows from the following easy lemma. 

Lemma 3.2.7 If a a-algebra F is generated by a countable partition of 

subsets of R , then any sub-a-algebra C c F is generated by a countable 

partition of subsets of fi . 



Proof Let F = T(An , n = 1,2 ... I 0 A = 0  and A i n A  = p , i # j ) .  n=l n j 

Then a proof follows from the fact that any member of F can be written as 

a union of A 's and the intersection of A. n A = p , i # j , and 0 E C . n 1 j 

From the above lemma and E [x, I c ]  (0) = - lxndp forall O E F ~ ,  
w 

LI (Fn) 
0 = U F we have theorem 3.2.5. 

n=l n 
We state the following two.lemmas which can be found in Hahn and 

Rosenthal [6]. 

Lemma 3.2.8 Let ( F , )  be an atomless probability space, then for 

any E > 0 there exists a non null set A E F such that p(A) < E . 

Proof Proof follows from the fact that for any A E F there exists 

A' E F such that p(A') < h(A) . 

We now state the so called "Intermediate-value theorem" of a measure 

which can be found in Hahn and Rosenthal [6], pages 52-53. 

Theorem 3.2.9 Let (Q,F,p) be a nonatomic probability space. Then for 

any 0' c Q , p(0') > 0 , if a E (0, p(Q#)) there exists a set F E F . - 

and F c 0' such that p(F) = cx . 

53 Properties of probability spaces for which sgp Xn E L1 is a necessary 

condition of the Generalized Lebesgue Dominated Convergence Theorem (GLDCT). 

Here, we will give some properties of probability spaces such that 



GLDCT will hold if and only if sgpbXn E Ll . 
The proof of our theorem is similar to the proof given by D .  Blackwell 

and L. Dubins on theorem 1 of their paper [2] .  However, the generators 

of the sub-a-algebra C are subject to more restrictions since we are con- 

structing the a-algebra C on the original probability space (Q,F,p) . 

Theorem 3.3.1 Let X t 0 , Xn , X E L1(P,F,p) , Xn + X p-a.s. and n 

s ~ p  Xn 4 Ll (P,F,u) . If the probability space ( F )  is atomless then 

there exists a sub-a-algebra C C'F such that 

Proof By following the reduction method employed by D. Blackwell and 

L .  bubins in their proof, we can reduce the above theorem to the case 

where each X has only two values, 0 , Vn > 0 and at every sample point n 

o exactly one X has a positive value n 'n . Thus, if p({w: Xn(w) = -  
Q) 

v,}) = Pn , we have 0 < Pn < 1 , Z P = 1 , X Z 0 , E[sgp Xn] = n=l n 
00 

C P V  = m .  
n=l n n 

To attain this reduction, let Fn(w) = max ((X - X) (w) , 0) . n 

Gn(o) = min ((Xn - X)(o), 0) . Then F n t  0 , Fn E Ll(P,F,p) , 



= ( w :  E[Fn + G,[~](W) + 0)) 

Hence, if we produce a 0-algebra C c F such that v ({w: E [F,~C] -+ 01) = 0 , 

then ~({w: E [Xn 1 C] + E [xIC] 1 )  = 0 . Thus we have reduced the theorem to 

the special case of the Fn , i.e. to the case X = 0 . 
Before we continue with our reduction, we state the lemma which we 

require for our reduction. 

Lemma3.3.2 Let X n ,  Yn non negative r.v., Xn -+ 0 V-a.s., Yn + 0 p-a.s. 

Then for any sub-a-algebra C c f , if Y - n < Xn for each n and 

( :  E [yn 1 C] (w) 0)) = 1 we have ( w :  E [x, IC] (w) 0)) = 1 . 

Proof This follows immediately from theorem 2.2.1 part iii which implies 

0 5 E[ynlC] (w) 5 E[xnlC] (w) . 

We now construct a sequence {S , n = 1,2. . . ) of simple functions n 

such that 0 5 Sn 5 Xn and s;p Sn 4 L1 whenever sup Xn 4 L1 . 
Let Ak = {w:  Xk(w) 2 S;p Xn - 1 , X. < Sup Xn-1 for i < k} , 

I. n 

then from the defining properties of {Ak , k = 1,2.. .) they are disjoint 

00 

and since 52 - A c k!l Ak , kC1 u(Ak) = 1 , where A is a null set. 



Choose a simple function Sk such tKat 0 C Sk 5 \ , S 1 c = 0 and 

1 [Ski fAkXk d~ - T . Then s p Sk = krl Sk and we have ! 
E[szp Sk] = E[kzl Sk] = Zk E[Sk] ? Ck fAkxk dp - 1 5  1 k f Ak sup n Xn dp - 2 = 

E[sfp Xn] - 2 = . Hence, s;p Sn f) L1 whenever SLIP Xn 4 L1 . From 

the above lemma, since Sk 5 Xk for each k we have 

v({w: E[S~]C] (w) + 0)) = 0 implies 

for any sub-a-algebra C c F . Therefore, we have reduced the theorem to 

the case of Sk , i.e. if the theorem holds for Sk then it holds for Xk . 
We now consider the S to be a sum of finite number non negative functions, 

k 

each having only two values, one of which is 0 , and no two of which are 

simultaneously positive. 

We now rearrange these functions into a single sequence. If any of 

these functions are zero with probability one then we omit them from the 

sequence. If there exists the set B on which all of these functions 

vanish has positive probability, then we add the indicator lg as an 

additional member of the sequence. (This is done for the technical reason, 

and it is clear that we can do this, for example, we could let lg as the 

first member of our sequence.) Then we have a sequence which we will 

denote henceforth as X1, X2 with the properties stated at the beginning 

of the section and this completes our reduction. 

We now prove the theorem in the above "specialff case. For the con- 

struction of our a-algebra C , we shall make a frequent use of theorem 



3.2.9 (an intermediate-value theorem). Let us now assume we have this, 

and E [SLIP Xn] = En p v = 00 . 
n n 

Define : 
n+ko 

For, n = 1,2 ... I = i :  i is an integer, i t 2 and 2 5 
n+l+k 

v. 4 2 0 , where ko is a positive integer such that 1 < 2 pl s 2 . 
1 

Let 10= {i: i is aninteger, i 2 2  , i 4 I n ,  n =  1,2 ...) and 

Note that 1 , 2  = 1 U I U I and the cardinality of In is less than 

or equal to H o  , and that there does not exist a number nO&N such that 

In = 4 for all n E no , otherwise a sequence {xn , n = 1,2 . . . I  is 

dominated which means s;p Xn n L . 
By applying theorem 3.2.9, we next construct a sequence of events 

An E F as follows. 

Let 

C 

A. C (ilI Di) be such that p(Ao) = 1 - t . 

For n = 1,2 ... , let 



A* = U Di , and l e t  
I 

n id, 

*An c ( A ~  U D ~ ) ) '  be such t h a t  

For n = 1,2 ... , then l e t  

Then s ince  il (*An) = v ( ~ & ~  Di) = r n  and p(An) = v(Ai) + v(*An) = 
- (kg+") 

vn+2 = t , we have u(An) = tn , n = 1 ' 2  ... , and a l s o  
n 

00 

Q =  U A U M ,  where v(M) = 0 .  n=O n 

Let P = I A ~  , A1,. . . I  . We s h a l l  r e f i n e  t h i s  I1partitionV1 sequen t ia l ly  

i n  order  t o  generate the  0-algebra C . 

The f i r s t  refinement of P = {Ao , A1.. . I  

We s h a l l  "part i t ionI1 each member of P i n t o  no events,  where 

"0 = 1 +  the  ca rd ina l i t y  of I O  . By employing theorem 3.2.9, we can 
i 0 

const ruct  f o r  each n = 0,1,2 ... events An , i0 E (1) U I O  as  follows. 

For each i0 E {l} U IO , j E In , n = 1 ,2  ... , l e t  



Ai " = @ if i # k , i , k  E 111 U I O  , with measure 
j n  j n  

P1 - 2 
( D . )  and 

1 - t  J 

For each i0 E 111 U I O  , n = 1 ,2  ... , l e t  

i 
*Ano E F , be such that  

- 

For each i E 111 U I O  , n = 1 , 2  ... , l e t  0 

i i i 
o =  IJ 

An j & I n j A n  O U * A ~ O  , then we have 

A i " ~  = and A: n *An = *An i , 
n j j  



i P i  
p (An ) = ""A,) , and 

1- t  

for each i0 E 111 U  IO , let 

i  
AO0 E  F , be such that 

for each n = 0,1,2 ... 

= U U  Mn , where u(Mn) = 0 . 
An ~ E { I I U I ~  fi 

i i 
The following calculation shows that the measures of A O  and An 

0 

i j i 
are compatible with the measure of An O  and the measure of is 

compatible with the measure of An . 



Pio Pio - - - ,l(Dj) + - v(*An) 
j'In 1-t 1-t 

Pio 
= - [v(A;l) + v(*An)l 
l-t 

Pi 0 = - ( A )  , n = 1,2.. . . 
l-t 

If i0 = 1 , then let the coefficient be I 

l - t  

Pi p1 - 2 
= x - p(An) + P (An) 
iO&IO l-t 1 - t 

since + PI Pio = l - t .  
io 0 

Therefore, from the construction of A; , (A:: - i E u 1 ~ 1  , 

constitute a "partition" of An . Let us denote the collection of all 

I0 
A: , i E {l} U IO n = 0,1,2.. . by P , the refined "partition" of S2 . 

The second I1refinement" of P 

We now "partitiont1 each member 

"1 
= 1 + the cardinality of I1 . 

$. 

I 0 of P into n1 events, where 



f i i 

For each i0 E 111 U IO , il E {l}  U ' I ~  , n = 1,2. .. , l e t  Ano' ' IZ F 

be such t h a t  

i i 

For each i O &  {l}  U 1 0 ,  il E {I} U I1 , n = 2,3 ... , l e t  *A:' E F 

be such t h a t  

i0J 2-  (kO+l) i 
v(*An 1 = p(*An0) and 

. i i  P i  
v (*An 

io O' l )  = -p(*An ) . Then l e t  

io,il i i io,il - 
An - ( j Y ~ n  j An 

O' l )  U *An for  n = 2,3 ... . 

For n = 1, l e t  



Then f o r  n = 1,2  ... 

i i i p i  P i  Pi 
0 0 0 

Note t h a t  (A~O'  l )  = v ( i l  A1 ) = - "Di ) = - 
1-t 1 1 - t 

1,i - 2 
i0 E IO , i 1 p1 

1 I1 and v(A1 l )  = v ( i l  A1) = v(Di ) = 
1 - t  1 

-kg 

(Pl - P i l  p1 - 2 P i  1 

> P i  
= -  ( )p(Ai) = - v 

1 - t  1 1 - t 1 

For each i0 E 11) U I O  , il E {l} U I1 , l e t  

i i 

*o E f be such t h a t  

i i 
The following ca lcu la t ion  shows t h a t  the  measures of A ~ O '  a r e  



comp 
io 

atible with the measures of An , i0 E' {I} U IO , il E {11 U I1 

-(ko+lI i 
- - 2 V(A, 0 ) , similarly, - 

i ,il 
Therefore, from - the construction of 'no , i0 E {I} 

i0Jl 
i E {I} U I1 , An 1 

form a partition of An (i.e. within a null set). 
i i 

Let us denote the collection of all An 
0' 1 , i0 E 111 U .r 10,,, 

i E {l} U I1 and the second llrefinementll of P by P 10'11 1 

The L1th "refinement" of P 

'09 " . 
For the t-l'th refinement of P , let Pn be the collection 

of events which "partition" An . Let ne = 1 + the cardinality of It , 
10' IL-2 

we shall "partitionll each member of Pn into ne events as follows: 

For each i0 E {l} U Io,. . .,it E {I} U Ie , j E In , n = 1,2.. . , n-lf 1, 
let 



io, ..., 
A it E F be such that 

j n 

For each i E {I}  U Io, ..., i E 11) U I L ,  n = 1.2 ..., n-l#L , l e t  0 t 

io,. . . ,i 
*An ' E F be such that 

For n - 1 # L ,  n = 1,2 ... l e t  

io,. . . ,it io, . . . ,i io,. . . ,i 
An = ( u  An el U *An ' and 

j &In 



k 
? 

for n-1 = 1 , let 

i,,. ..,it . io,. . . ,i 
= it At 

1-1 
a it E It , and 

1 10, - ,It-1, io, ,iL1 
*a = *Aa 

. Then 

if im # 1 for m = 0,1,2.. .,a 

The above calculation shows that when i- = 1 for m = 0.. .t of , 

Ill 
io, . . .it io,. . . ,i - 

A and it At are compatible. If any of iO,. . . 
-k, u is equal to 1 , then change the coefficient pi to pl - 2 ,...,pi 

- (kO+O 0 t- 1 
to 2 , and the compatibility still holds. 

The reason we have a special case when the subscripts of An-l are the 

same as the stages of our "refinement" is so that we can easily recover the 

sets Dn . 



10, " 
Thus, we have partitioned each'member of Pn into rlt 

events. The verification of the other statements concerning the compatibil- 

ity of the measures of events is similar to the previous stages. In this 

manner, we "refine1' the partition P sequentially. 

We are now in position to produce a-algebra C c F such that 

Let Jn = (11) U 10) x ({I) U 11) x...x ({I) U In ) . Then for 

i E In , n = 0,1,2 ... 
Consider the event 

i 
io,. . . ,i 

u n-1,i 
Cn = k!O( ) and let 

i 
i.e. C is a a-algebra generated by the sets Cn , i E In , n = 0,1,2.. . . 

We now claim that C has the property (3.1). 

We have 

- 



a " Pi Pi 
= C - p(%) = - , since i o, . run through 
k = ~  tn tn 

io,. ..,i i m-1, 
all of their respective index sets and p(An I = 

p. . i0, ,i io,. ..,i 
1 - V (An and An is a partition of An . 
tm 

We first note that C is independent of A ,  A,. . 1 . To show this, 

consider the intersection of generators {c:: n = 0,1,2. . . , i E 1 ~ 1  

of the 0-algebra- C and An , 

Then 

The pairwise independence of C: and Ants implibs that C is 

independent of An from Lobe [ 91, page 224. 

For i E In , n = 1,2 ... , we have 



(This i s  t he  reason why we have taken such ca re  i n  pa r t i t i on ing  An+l i n  

t he  n l t h  refinement.) 

We now show t h a t  f o r  i E In , n = 1,2 ... E [ x ~ ~ c ] ( ~ )  = vitn 1,; . 

Then 'i E [ ' ~  n c i I C I  (w) n n 

from theorem 2.2.1, but then by independence and from theorem 2.2.2 

vi 1,i E [IA I C] (w) = vi lCi E [lA ] = v.  1 lCi 
n n n n n 

Thus E [ x ~ ~ c ] ( ~ )  = vitn lCi , i E In  , n = 1,2 ... . 
n 

We now proceed t o  show t h a t  E I X i l C ]  (w) 2 1 f o r  i n f i n i t e l y  many i 

with p robab i l i ty  one. To achieve t h i s ,  it suf f i ces  t o  show t h a t  the  events 

i Cn occurs f o r  i n f i n i t e l y  many n with p robab i l i ty  one, s ince  i f  t he  events 

occurs f o r  i E I then E [Xi 1 C] (w) = vitn 2 1 . To show t h a t  the  n '  





Since this can be extended to any finite number of events, we have the 

1 independence of Cn , n = 1,2 ... which implies the independence of 
U ci , n = 1,2.. . . The independence of JIn C: follows from the ieIn n 

fact that if an event A is independent of an event B then A' is 

independent of B' . 
To satisfy the hypothesis of the Borel-Cantelli lemma, it only remains 

O3 rn- to show that ngl - 03 . 

We shall consider the following two cases. 

- (n+ko) r n 1 
Case i) If r e 2 for infinitely many n , then - e for ' n t 

- (n+ko) -vn+ko-1) 
infinitely many n , since r n > 2 , t n 5 2  which 

imply 

Consequently, we have 

- (n+ko) 
if rn 2 2 for infinitely many n . 

- (n+ko) 
Case ii) If rn < 2 for sufficiently large n , say n 2 no , then 



where T ='{i 2 2: 

The first inequality follows from the fact that if 
- (n+ko) - (n-l+ko) 

rn < 2 for n e n , then tn < 2 
0 for n 2 no , 

- and pi - 5 . From i=l f? PiVi = 00 and C piVi 5 
itf~ 

2 n ~ + k ~  CPi = 2 nO*kO we have 

Therefore, 

For both cases, we have 

and these two cases exhaust all the possible cases. Then from the Borel- 

Cantelli lemma 



More intuitively, let ' { A ~  . i.0.1 = {w: w E An for an infinitely 

i many n} then ( U Cni.o. 1) = 1 . Then since U E  U c:- 
icIn i&In 

w E C: for some i E I n '  we have for some i E In . 
occurs for an infinitely many n with probability one. 

Therefore, 

for infin 

Nxil 

itely many times wit 

li({w: 

CI (0) 

h prc 

= v t  l i r l  i n  C n 

have ~bability one. Thus, we 

This completes our investigation of establishing a condition on a 

p.s. ( F )  under which sup Xn E L is a necessary condition for the 
n 1 

GLDCT . 
We note that if (n,F,p) is not an atomless probability space, then 

by theorem 3.2.1 we can consider the convergence of a sequence of r.v. 

on atomic and non atomic parts of the space, separately. 
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