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ABSTRACT

Let (Q,F,u) be a probability space, C ¢ F be a sub-o-algebra. A
generalized version of the Lebesgue dominated convergence theorem (GLDCT)
was given by J. Doob in his book [4]. More precisely, if {Xn , n=1,2,...}
is a sequence of non negative random variables converging almost surely to
| » then for any sub-c-algebra CcfF,a

sequence of conditional expectations (Riddon-Nikodym derivatives),

a r.v. X and sup X el

{E[Xn|C], n=1,2,...} converges almost surely to E[XIC] . D. Blackwell
and L. Dubins [2], Theorem 1, have shown that the condition sup Xn € L1
cannot be weakened. That is, in a "certain sense”, the condition

is not only a sufficient condition but is also a necessary

sup xn € L1

condition.
The purpose of this paper is to establish a condition on (&,F,u) under

which sup Xn € L. is a necessary condition. We prove that if (Q,F,u)

1

is atomic then the condition sup X €L is not a necessary condition

1
for the GLDCT except for the case E[Xn]++ E[X] . In our final theorem,

we establish our main objective by stating that if (Q,F,u) is nonatomic,

then sup xn € L. 1is a necessary condition for the GLDCT. We devote

1
chapter 3 to the proof of these theorems.
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INTRODUCTION

For many yea}s, probability theory was mainly concerned with the
study of independent random variables but from the beginning of this
century, dependent random variables were seriously examined, chiefly by
Markov and Lévy. Such an investigation resulted in the consideration of
an abstract notion of conditional probability.

In probability theory, the conditional probability of an event A ,
given that an event B has already occurred, is introduced as a ratio
P(A N B)/P(B) , where P(B) is assumed to have a positive probability.
With the development of measure theory by H. Lebesgue, A.N. Kolmogorov
formulated the axiomatic model of probability theory in 1933. In his
development of probability theory, the conditional probability of an event
A given a o-algebra C c F, u(A|C) , (definition 2.1.4), and the condition-
al expectation of a r.v. X given a og-algebra C C f , E[X|C] , (definition

2.1.5), are characterized as the Riddon-Nikodym derivatives with respect

to certain measures.
It is well known that if {X , n = 1,2...} 1is a sequence of integrable
functions on a measure space (Q,F,u) , Xn + X Y almost everywhere,

|Xn| <Y uy-a.e. for each n, Ye Ll(Q,F,u) , then the Lebesgue dominated

convergence theorem (LDCT) asserts that andﬂ > fXdﬁ . For his character-




jzation of certain conditional expectations (theorem 9, page 27, [4]),
J. Doob has shown that the LDCT can be generalized to the convergence of a
sequence of conditional expectations. Specifically, let (Q,F,u) be a
probability space, {Xn’ n=1,2...} a sequence of non-negative random
variables in Ll(Q,F,u) such that Xn + X € Ll(Q,F,u) B almost surely,
then sup X € L; implies that for any sub-c-algebra C c F , E[XHIC] >
E[X|C] U almost surely, [4], page 23. We shall refer to this theorem as
the generalized Lebesgue dominated convergence theorem (GLDCT). It is
clear that the LDCT is a special case of Doob's result since andu =
E[xn‘|{¢,9}] and [Xdu = E[X]|{9,0}].

With this result in ﬁind, D. Blackwell and L. Dubins have shown that
in "some sense" sup Xn £ Ll(Q,F,u) is not only a sufficient condition but
also a necessary condition. More precisely, theorem 1, [2], if Xn >0,
X, > X u almost surely, X , Xe L (@F , sup X ¢ L, (@,F,u) , there

n

are, on a suitable probability space (*,F*,u*) , random variables

>{Xn*, n=1,2,..} , X* and a sub-o-algebra C* c F* such that X*, Xl*,...

have the same joint distribution as X, Xl, X2 ... and

we({ur: BIX *[C*](w*) > E[X*[C*](@")}) = 0 .

In view of such a result, it is interesting to investigate the proper-
ties required by a probability space (R,F,u) to conclude an "exact

converse' to J. Doob's result. Namely, how rich must the structure of

p.s. (2,F,u) be, to conclude that there exists a g-algebra C ¢ F such
that E[Xn|C](w) PE[X|C] (w) with probability one, when sup X, ¢

LI(Q,F,u) . (i.e. the converse statement holds on the original space.)



The purpose of this thesis is 'to establish conditions under which
sup X € Ll(Q,F,u) is a necessary condition for the generalized LDCT.
We will show that if (R,F,u) 1is assumed to be a nonatomic probability
space, then sup Xn > L1 is a necessary condition, theorem 3.3.1.  How-
ever, if (Q,F,u) is purely atomic, then sup Xn € Ll(Q,F,u) is shown to
be not a necessary condition. (theorem 3.2.2 and corollary 3.2.1.)

Chapters one and two are of an introductory nature. We begin by
stating the basi; definitions and theorems from general measure and
probability theory following P.R. Halmos [7], and M. Lééve [9], respectively.
A conditional probability is first introduced from an elementary point of
view. If a g-algebra C is generated by a partition of a sample space Q
then we encounter no difficulties in defining E[X|C] or wu(A|F) , AeF,
explicitly (definition 2.1.2). However, in general, we cannot give an

explicit characterization of conditional probabilities and expectations.

With the help of the Ridon-Nikodym theorem, a general characterization of

conditional probabilities and expectations is given in chapter 3. We

also discuss Rényi's model of conditional probability space and note that

A.N. Kolmogorov's model of probability theory is a special case of Rényi's
model.

In chapter 3, we give a proof of our main result. We first note that
if E[X] +E[X] then we have E[an{¢,9}] + E[X|{$,0}] u-almost surely,
but if E[Xn] + E[X] and (f,F,u) is purely atomic, then for any
6—algebra C between {¢,2} and F , we have E[anC](w) + E[X]C] (w)
u-almost surely. A proof of our main result is similar to D. Blackwell
and L. Dubins' with more restriction on construction of the sub-g-algebra

C since we work only in the original space. Thus we are able to show



that the result of D. Blackwell and L. Dubins applies to the original

probability space if it is a nonatomic space.



CHAPTER 1

- RESULTS FROM MEASURE AND PROBABILITY THEORY

In this chapter we shall discuss some basic and important results from
general measure and probability theory. We refer the readers to the basic
texts by P.R. Halmos [7], H. Royden [14], and J. Doob [4] for proof and

details.

§1 Notations and definitions

In a probability theory, by a set Q (a sample space), we mean a
collection of certain events called elementary events and denote each of
these elements by the Greek letter w . The members of the set § are
considered to be outcomes from a certain experiment, that is, elementary
events are minimal events which are disjoint and one of these events is.
bound to occur in the experiment. We denote a set of these outcomes by
the symbols A, B,... and call them the events A, B,... . It is clear
from such an identification of events with sets that the ¢,2 are
special events, and we shall refer to them as the impossible event and the
sure event respectively. With each event A we associate the complement-

ary event, denoted by AS , such that an event A occurs if and only if



an event A does not occur.
Before we state the axiomatic definition of the probability theory
formulated in its present form by A.N. Kolmogorov in 1933, we shall intro-

duce a few definitions.

Definition 1.1.1 An algebra of sets or a Boolean algebra is a collection

F of subsets of which satisfies the following conditions:

i) AUB e F whenever A,Be F .
ii) A® € F whenever A€ F .

A o-algebra (Borel field, o-field) is an algebra F with the following

additional condition.
- o ® w 3
iii) If {An}n=1 is a sequence of members of F then ngl An e F.

From the above conditions on F , we note that whenever conditions ii,
iii are satisfied then nﬁl An € F from De Morgan's formula.

Let Q be a space, F a o-algebra of subsets of Q@ . If AcCQ
then we say o-algebra {FNA: F € F} is a restriction of the o-algebra F

to A and we denote it by F[A .

Definition 1.1.2 Let § be a space, F a o-algebra of subsets of Q . A

-set function p on F 1is a function which associates an extended real
number to each member of F . A set function u is said to be a countably

additive measure (or simply measure) if it satisfies the following axioms:

i) 0<u(F) <» for all Fe F .



ii) wu(¢) =0 .
iii) u(ngl Fn) = ngl u(Fn) " for all pairwise disjoint sequence

{F_ , n=1,2...} such that F o eF.

Definition 1.1.3 Let C be a sub-o-algebra contained in an o-algebra

F, W beameasure on C , and p be a measure on F . If p° and

p take the same values on sets in C then we say u” is a restriction

of p and denote it by ulc .

Definitions 1.1.4 Let Q be a space, F a o-algebra of subsets of Q .

The order pair (R,F) is said to be a measurable space and (Q,F,u) is

called a measure space if U satisfies definition 1.1.2.

Consider a measurable space (R,F,u) . A partition of Q is a finite
or infinite disjoint sequence '{Fn , n=1,2...} of sets such that
ngl Fn =8 . A measure U on F is called a finite measure if and only

if (@) < ». Ameasure P on F is said to be a o-finite measure if

there is a partition of § such that ﬁ(Fn) < o for each n .

Definition 1.1.5 A measure space (R,F,u) with a o-finite measure pu-

(a finite measure ) is said to be a o-finite measure space (a finite

measure space).
Now we are in a position to statethe axiomatic definition of probability

space formulated by A.N. Kolmogorov,

Definition 1.1.6 A probability space (p.s.) (2,F,u) is a measure space




with u(®) =1 . The members of F are then called events.

§2 Random variables

Definition 1.2.1 Let (,F) and (E,E) be measurable spaces. A

mapping X: @ » E is said to be measurable, or a random variable (hence-

forth abbreviated to r.v.), if and only if X-l(A) e F for all AeE .
Frequently, we will write this as X: (Q,F) > (E,E) .

In this paper we shall only be concerned with a real valued r.v.

Definition 1.2.2 Let ‘{Xi , i€ I} be a family of r.v. The g-algebra

generated by {X;l(A): A e Ei , 1€ 1} is called the o-algebra generated
by the random variables '{Xi , i € I} and is denoted by T({Xi ,ielID)
The existence of such a o-algebra is the consequence of the following

theoren.

Theorem 1.2.3 If C is a class of subsets of Q , then there is a

minimal o-algebra, denoted by T(C) , containing all the sets in C .
Proof P.R. Halmos [7], page 26.

We shall denote the o-algebra generated by all the open intervals of
R by Bl . Hence our r.v. will be in X: (Q,F) - (R,B.)
With these r.v., we associate a function called the probability distri-

bution of a r.v.



pefinition 1.2.4 Let X be a r.v. on p.s. (Q,F,u) . The probability

distribution of r.v. X is a set function, Hy(B) = v({w: X(w) € B) for

all Be B defined on B1 .

1 )
From our definition of Hy it is clear that Uy is a probability

measure on (Q,Bl)

Definition 1.2.5 A discrete r.v. is a r.v. taking at most countably many

different values a,,a,,... with u({an}) =P >0 and TP =1 . A

continuous r.v. has u({a}) = 0 for all aeR .

We note that if a o-algebra C is. generated by a discrete random
variable then it is equivalent to the o-algebra generated by a partition

of Q.

Definition 1.2.6 Let Xl; xz,...,xn be r.v. on a p.s. (R,F,u) . Then

the function uxl,...,xn(Blﬂ...ﬂBn) = t({w: Xl(w) € Bl,...,Xn(w) € Bn})
for Bl""’Bn € B1 is called the joint probability distribution (joint

distribution) of X .,Xn . For the case of (X .) , joint

e 1Xgse

probability distribution is defined similarly.
In our work we do not require the concept of joint distribution but we
have stated the above definition to clarify the statement of D. Blackwell

and L. Dubins' result [2], theorem 1.

§3 Independence

In this section we state the very famous lemma called the Borel-Cantelli

lemma which we need for the proof of our main theorem. Since the statement



o ,,,,1

10

of the Borel-Cantelli lemma involves the idea of sequence of independent
events we shall state a few definitions concerning the notion of an inde-

pendence.

Definition 1.3.1 Let X ,X. be the r.v. on p.s. (,F,u) , then

1° X2""
they are said to be independent if for any Bl’BZ"“’Bn € B

n

n 1’
-1 -1 -1
MOGT (BN .0 XTT(B) = 4l u(X;(B;))

Definition 1.3.2 Let (Q,F,u) be a p.s. and Fl,...,Fn be sub-o-algebras

contained in F . Then they are said to be independent if for any sets

n
F e Fl,...,Fn € Fn u(Fln...nFn) = igl u(pi)

If A,B are events in F , then A,B are said to be independent if and
only if w(A N B) = u(A) - u(B)

From the above two definitions, it is clear that the independence of
r.v. is equivalent to the independence-of o-algebras generated by the r.v.
Xyo0000X

The r.v. of an infinite family are said to be independent if and only

if those in every finite subfamily are.

We now state the Borel-Cantelli lemma.

Theorem 1.3.3  (Borel-Cantelli lemma) If the events '{Fn , n=1,2...}

Fn e F are independent, then u(lim Fn) =0 or 1 according as

ngl u(Fn) < ©® or = ® ,

Proof L. Breiman [3], pages 41-42, J. Doob [4], page 104.
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§4 Convergence

We shall review some of the terminology used to describe the various

convergence concepts of a sequence of random variables.

Definition 1.4.1 If {Xn , n=1,2...} 1is a sequence of r.v. then the

sequence {Xn , n =1,2...} converges pointwise to a r.v. X on @ if

and only if, for any w e @ and € > 0 , there exists an integer n, € N

0
such that for any nzn,, |X (W) - X(w)| <€ . Ifa sequence of r.v.
Xn converges pointwise to a r.v. X for all w e @ except possibly for

those w belonging to a set of probability zero, then X, is said to

converge almost surely (a.s.) or almost everywhere (a.e.) to the r.v. X .

Another important concept in convergence of a sequence of r.v. Xn in

probability theory is convergence in probability or in measure.

Definition 1.4.2 A sequence of r.v. Xn is said to converge in probabil-
ity (in measure) to X if for every € > 0 , I%m U ({w: IXn(w) - X(w)| >e}l) =0
We state the following theorem to show some relationship between the

two concepts of convergence.

Theorem 1.4.3 Let {Xn , n=1,2...} be a sequence of r.v. converging

a.s. toar.v. X, then {Xn , n=1,2...} converges in probability to X .

Proof P.R. Halmos [7], page 92.

However, the converse does not hold. For example, see [8], page 175.
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. Let us denote by LI(Q,F,u) = Ll the space of all r.v. X such that

f|x|du < o A sequence of r.v. Xn € L, 1is said to converge in mean if

1
and only if len -X|du >0 as n-> e,
The following theorem shows some relationship between the convergence

in probability and in mean.

Theorem 1.4.4 If {Xn, n=1,2...} converges in mean to X then it

converges in probability to X .
proof  P.R. Halmos [7], pages 104, 110.

For the converse statement of the above theorem, we need the following

definition.

Definition 1.4.5 The r.v. X 1is said to be dominated by a r.v. Y if

IX| =Y wu-a.e. and a sequence of r.v. ’{Xn , n=1,2...} is said to be

dominated by a r.v. Y if for each n Y, is dominated by Y .

Theorem 1.4.6 If {Xn ,n=12..1 converges in probability to X and
is dominated by some integrable r.v. Y then {Xn , n=1,2..} converges

in mean to X .
Proof P.R. Halmos [7], page 110.

We state the following theorem which we require for the proof of our

later theorem.
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Theorem 1.4.7 If '{Xn , n=1,2...} converges a.e. to a r.v. X and
Theorem _.2./7

flxn|du + f|X|du . Then flxn -X| >0 as n-> =,
Proof E. Hewitt and K. Stromberg (8], page 209.

We conclude this chapter by stating the following very important

theorem in integration theory.

Theorem 1.4.8  (Lebesgue dominated convergence theorem) Let

{Xn , n=1,2...} be a sequence of r.v. converging p-a.e. to a r.v.
If there exists an integrable r.v. Y such that {Xn ,n=1,2...} is

dominated by Y wu-a.s., then X 1is integrable and 1lim andu = fXdu .
n

Proof P.R. Halmos [7], H. Royden [14], page 229.

X .
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CHAPTER 2

CONDITIONAL PROBABILITIES AND EXPECTATIONS

A conditional expectation is one of the fundamental notions in probabil-

ity theory and is a most frequently used concept.  Before we introduce the
formal definition and its basic underlying ideas, we shall make some comments
about its usefulness and importance in probability theory. The concept of
conditional expectations is used widely in Martingale and Markov theory.
(For definitions, see L. Brieman [3], J. Doob [4].) One can also find some
applicationsof martingale theory in the field of continuous-parameter
stochastic processes, J. Doob [4], pages 190-370.

A Rényi considers that the proper notion of probability theory is con-
ditional probability and he has developed a new model of probability theory
based on conditional probabilities. Although the axiomatic foundation of
probability theory developed by A.N. KolmogoroQ and others was satisfactory
from a purely mathematical point of view, there arose some problems where

Kolmogorov's model did not apply. One of the common features of these

problems was that unbounded measures were used. (A. Rényi [12], pages

38-53.)
Because such an unpleasant situation arose in Kolmogorov's model,

A. Rényi has developed the new model called the conditional probability




B
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space by allowing the usage of unbounded measures. This new model has

Kolmogorov's model as a special case of it (theorem 2,3.1 [12], page 50.)

§1 Definitions and basic ideas

In probability theory, the relationship between the occurrence of an
event A given that an event B has occurred, or the distribution of one
set of r.v. given information concerning the observed values of another
set, is introduced as the conditional probability.

In this section we begin with a conditional probability from an

elementary point of view then characterize it as a Radon-Nikodym derivative

with respect to certain measures.

The basic idea behind a 'conditioning' is that if we have some knowledge
of a sample space, i.e. occurrence of an event B , then we can get some
idea of the occurrence of another event A .

We now state the following definition of conditional probability of
an event A given an event B which involves an idea of taking a ratio

of two numbers.

Definition 2.1.1 Let (2,F,u) be a p.s. then for sets A,B € F such that

u(B) > 0 , the conditional probability of an event A given that B has

already occurred is defined to be a ratio w(A N B)/u(B) and is denoted

by the symbol u(A|B)
For fixed B , u(B) > 0 , we note that wu(-|B) is a set function on F .
The above definition does agree with our discussions and one's intuition

as to what such a probability should be, since if an event B is known to
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occur, then the probability space is reduced to (Q,F,u('IB)) . It is
easy to see that (+|B) defines a probability measure on F . The
integral of a r.v. X ¢ L1 with respect to this probability measure is
said to be the conditional expectation of X given B and is defined as

a point function.

E[X|B] (@) = /X du(-|B) = E%ET [gXdu on B . (2.1.1)

We note that conditional expectation of X given B can also be
defined in the same manner.

Consider a r.v. Y: Q =+ {0,1} . Then from the above discussions we
can consider the conditional expectation of X given Y to be the point

function E[X|Y](w) such that

1

E[X|]Y](w) = E[X|{w: Y(w) = 0}](w) = e Y@= 0})[ L for
{w: YW) = 0}
each we {w: Y) = 0} ,
1
E[X]Y] (@) = E[X|{w: Y() = 1}](w) = e Y@ =15 Xau for
{w: Y(w) = 1}
each we {w: YW = 1} .
Then [  E[X]|Y](w) du =/ X ,i=0,1
{w: Y(w) = i} T {w: %%w) =i}

We can extend the above notion of conditional expectation of X given

Y to the case where Y has a countably many values 315855000 - Specif-
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jcally, for each we {w: Y(w) < an} define

1

EIXIY] () = w(lo: Y() = a 1) {w x%%w) = a }
Then we have
S E[X]Y] (w) = [ Xdy for n = 1,2...

du
{w: YW) = n IT(Y) Hw: Y(w) = an}

Since T(Y) in the above equation is equivalent with the o-algebra
generated by the partition ’{Bn: B ={w: {Y() = an} , n=1,2...1,

we have
IBE[X|Y]du|Fy = /pX du for all B e T(Y)

This means that the above integral equation does not depend on the
value of Y , but depends rather on the information regarding the location
of w in Q.

In view of this we can define the conditional expectation of X given

T(Y) , E[X|T(Y)] , as a point function
E[X|]T(M)] (W) = _TE—T J'an du for each w ¢ B, ,n= 1,2...

We note that if we wish to consider E[X|T(Y)] to be a function

defined on Q then all we need to consider is the following sum,

EX[TM] W) = G /3 X du ) 1, (w)

n

n-l u(B )
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Let B be a o-algebra generated by a partition ’{Bl,Bz...} of Q,

then we have the following definition.

Definition 2.1.2 Let X be a r.v. with X ¢ Ll(Q,F,u) . The conditional

expectation of X with respect to the o-algebra B denoted by E[X|B] is

defined as

E[X|[Blw) = E E[X|B] 1, ()
n

Since many of the interesting r.v. are of a continuous type (information
given by continuous functions), we wish to consider the case when conditional
expectations have a continuous r.v. as its "conditional part'". We can not
define the conditional expectation conditioned by a continuous r.v. in the
same manner as the conditional expectation conditioned by a discrete r.v.
or equivalently conditioned by a o-algebra generated by a partition of { ,
since p({w: Y(w) = a}) =0 for all aeR.

However, let us take a closer look at our discrete case. Let Y be

a discrete r.v. with values , B= T({Bn: Bn = {Y—l(an)}, n =

IO

1,2... ). Then from our discussion on discrete case

E[X|B] () = g X du for each weB , n=1,2...

u(B )

Now let us define the measure v on B by the formula

v(Bn) = fB X du
n
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(B)
Then E[X|B] is a ratio of two measures VI for weB , = 1,2,
U(Bn) v(Bn)n v(Bn)
Let f be a point function on Bn such that f(w) = ETE;)(w) ﬁfﬁ;) for

n=1,2... . Then f is B-measurable and

IB, f(w)dulB = IB Xdu=v(B),n-=1,2..
n n

We shall use these two properties of f to characterize a conditional
expectation of X € L1 given Y or equivalently a conditional expectation
of X given T(Y) , where Y 1is a continuous or discrete r.v.

In order to do this, we require the notion of taking a 'derivative" of
one measure with respect to another measure.

Consider the measure Vv in our discrete case. We note that for any
Be B, if u(B) = 0 then Vv(B) = 0 . We shall state the following

definition to formalize this.

Definition 2.1.3 Let (,F,u) be a g-finite measure space and v a

signed measure on F , then Vv is said to be absolutely continuous with

respect to the measure u if V(F) = 0 whenever ﬁ(F) = 0 . Symbolically,
this is denoted by v << u ,

Note that we have v << ulB in our discrete case.

We state the following theorem which states that if measure Vv is
absolutely continuous with respect to u then under certain conditions

vV can always be defined as an indefinite integral.

Theorem 2.1.4 (R4ddon-Nikodym) Let (Q,F,u) be a o-finite measure space,
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and let v be a o-finite signed méasure on F which is absolutely contin-
uous with respect to u , then there exists a finite valued measurable

function %E— on § such that

V(F) = fF %% du for all F e F .

dv . .
aIl- 1s un1que upto a set of measure zero.

Proof P.R. Halmos [7], page 128.

In view of this result, we see that the function %E has the properties

of f stated earlier.

Let Y be a continuous r.v. on a p.s. (Q,F,u) . If we define v to

be a finite signed measure on T(Y) by

V(F.) = J_. Xdu for each F, € T(Y) , then
y FY Y :

v << u|T(Y) and from the Rddon-Nikodym theorem applied to (R,T(Y), uIT(Y))
we have
VR = [y S diTeyy = fp X for all FpeT(n)
Y T Y |

We now are in a position to state the following general definition of
conditional expectation of an integrable r.v. X conditioned by a sub-o-

algebra C c F .
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Definition 2.1.5 Let (f,F,u) be a p.s., let C be a sub-v-algebra of

F and X an integrable r.v. then the conditional expectation (c.e.) of X

given C , denoted by E[X|C] is any C-measurable r.v. such that
*) J EX[C] () dulc =/ X(w) du for all ceC .

The existence of E[XIC] is assured by the Ridon-Nikodym theorem,
however, E[Xle is unique only upto sets of measure zero since any
C—measurabie function satisfying the equation * can be considered as a
conditional expectation of X given C .

We can define the conditional probability of an event A € F given a

sub-g-algebra € in the same manner.

Definition 2.1.6 The conditional probability (c.p.) of A e F given

sub-g-algebra C e F is a r.v. u(AIC) on a p.s. (Q,F,u) such that
fc u(AlC) du = u(A n c) for all ce C .

By letting X = 1, in our definition of c.e., it is clear that the

A
c.p. of A given C is a special case of c.e.. We also note that c.p.
can be considered as a function on F X Q . That is, for each fixed
w € Q we can consider u(:|C)(w) as a set function on Q from definition
2.1.6.

If for up-almost all we Q , u(-IC) is a probability measure on F ,
then we say the conditional probability is a regular c.p. (definition,
L. Brieman [3], page 77).

If c.p. is a regular conditional probability, then we can define the

conditional expectation of X € L, given o-algebra C ¢ F by the follow-

1
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ing equation '

E[X|C] (w) = /X du(-]C) (w) a.s.

Proposition 4.28, L. Brieman [3], page 77.

§2 Properties of conditional expectations

From the definition of c.e., we observe that the c.e. and expectation
considered as a constant function have analogous properties. We shall
state such properties without proof and refer the readers to J. Doob [4],
and L. Brieman [3].

Let (9,F,u) be a probability space.

Theorem 2.2.1 Let X, Y ¢ Ll(Q,F,u) ,ab,ceR and CCcF bea

sub-g-algebra, then the following properties hold.
i) If X =20 wy-a.s. then E[X|C] = 0 yu-a.s. and

if X =c then E[X|C] =c¢ wu-a.s.

ii) E[aX + bY|C] = aE[X|C] + BE[Y|C] wu-a.s.

iii) If X <Y wp-a.s. then E[X|C] < E[Y|C] wu-a.s.

IA

iv)  |E[X|C] = E[|X][c] wu-a.s.

v) Let Xn >0 and Xn converges monotonically
toar.w. XelL . Then E[Xn|C] converges
u-a.s. to E[X]|C] .

vi) Let Y be an integrable r.v. and X a

C-measurable r.v. such that XY € L; then
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E[XY|C]) = X E[Y|C] ‘u-a.s.

vii) If X =X in p-mean, then E[Xn[C] + E[X]|C]
in p-mean for p =1 .

viii) If a r.v. X 1is integrable and B c C c F are
the sub-c-algebras of F , then E[E[X|C]|B] =

E[X|B] = E[E[X|B]|C] u-a.s.

Theorem 2.2.2 If T(X) and a g-algebra C ¢ F are independent then

E[X|C] = E[X] wu-a.s.

Proof  For every ce C , ch[XIC] dulc = [ X du = E[X1] = E[X] - u(c) =

ICE[X] dulc . The equation E[Xlé] = E[X] < u(c) follows from the

independence of T(X) and C .

By considering the extreme cases of sub-o-algebras {¢,Q} and F ,
we have E[X[{¢,Q}] = E[X] and E[X|F] = X wp-a.s. Clearly, if we let
C = {¢,8} in theorem 2.2.2, then E[E[X|F]|{4,R}] = E[X]{¢,2}] = E[X] .

In the next section we shall give some characterization of c.e. as a
linear transformation by noting similar properties shared by c.e. and

linear transformations of a certain type.

§3 A conditional expectation as a linear transformation

From our characterization of E[X|C] as a R4don-Nikodym derivative in
section one of this chaptér, if we consider E[:|C] to be a mapping from

Ll(Q,F,u) into Ll(Q,F,u) , then we note that E[+|C] is a contractive
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mapping taking a F-measurable r.v.' X into a C-measurable r.v. E[Xx|C] .
Here, we shall briefly give an outline of such a development. One of
the reasons why one considers such a characterization comes from the study
of dynamics of turbulence, where averaging operators are being used,
G. Birkhoff [1].
In her paper, S.C. Moy has given one such characterization of c.e. [10],

page 61, theorem 2.2: Let T be a linear transformation from L, into

L1 such that

i)y TMi=1,
ii) if X 1is bounded, then TX is bounded,

iii) T(XTY) = TX = TY for all bounded X , Y € L1 ,

iv) Tl=1,

then TX = E[X|B] for all X € L, where B = {AcF: T(1,- X) = 1, TX

1 A

for all bounded X} .
The above result of Moy was generalized by G.C. Rota [13], page 58,

theorem 1, M. Olson [11],Z. Sidak [15], and R.G. Douglas [5].
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CHAPTER 3

THE ALMOST SURE CONVERGENCE OF CONDITIONAL EXPECTATIONS

In this chapter we shall investigate the almost sure convergence of a
sequence '{E[Xn|C] , n=1,2...} when a sequence '{Xn , n=1,2...} is

assumed to converge almost surely to a r.v. X .

§1 Introduction

In his text [4], J. Doob has shown that if a sequence of non-negative
integrable r.v. Xn converges u-a.s. to an integrable r.v. X and

sup Xn € L then for any sub-o-algebra C ¢ F , the sequence

1 3
{E[XHIC] ,n=1,2...} converges u|C -a.s. to a r.v. E[X|C] . We shall

refer to this fact as the generalized Lebesgue dominated convergence

theorem (GLDCT).

The above theorem was noted by Doob in order to give a characterization
of conditional expectation of integrable random variables. More precisely,
(theorem 9.1 [4], page 27) in our notation, if X ¢ L1 and a conditional

probability with respect to C forms a probability measure on F (this was

discussed in chapter 2, page 21), then

E[X[C] = soX (-0 .
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In view of GLDCT result, one may wonder whether the converse to the
GLDCT holds true. With regard to such a question, D. Blackwell and
L. Dubins [2] have shown that in ''some sense' the condition sup Xn € Ll
is not only a sufficient condition for the convergence of a sequence |
'{E[Xn|C] ,n=1,2...} toar.v. E[X|C] ulc -a.s. for all sub-o-algebras
C ¢ F, but is also a necessary condition. More exactly, if Xn >0,
there are, on a suitable

X, > Xu-a.s.,, X ,Xel and sup X * L

1 1°
p-s. (Q*,F*,u*) , r.v. '{X; ,n=1,2...}, X, and a g-algebra
C* ¢ F* such that X*,XI,... have the same joint distribution as
X,X;,X,,... and

H({w*: E[X*[C*] (w*) ~ E[X*|C*] (w9 }) = 0.

In view of D. Blackwell and L. Dubins' result, it is interesting to
investigate characteristics of probability space (Q,F,u) for which we can

conclude that if sup Xn ¢ L then there exists a sub-c-algebra C such

l >
that

H({w: E[X_|C](w) ~ E[X[CI(w)}) =0 .

That is, under what condition is it necessary to construct a new suitable
p.s. in D. Blackwell and L. Dubins' result? In corollary 3.2.6, we show
that if a p.s. (Q,F,n) is atomic and E[Xn] + E[X] then for any c-algebra
CcF, E[XHIC] converges u-a.s. to E[X|C] with probability one, i.e.,

if the probability space (Q,F,ﬁ) is atomic, then the construction of a

new suitable probability space may be necessary in order to obtain the
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g-algebra C for which convergence'does not hold. We also note the

following trivial fact: if E[Xn]-} E[X] then there always exists a
sub-oc-algebra C such that E[Xn|C]++ E[X|C] with probability one by
taking C = {¢,Q} . If the p.s. (Q,F,u) 1is assumed to be a nonatomic
p.s. then theorem 3.3.1 asserts that there exists a o-algebra C ¢ F such
that

n({w: E[X_[C](w) » E[X[C]w)}) =0 .

§2 Atomic and Nonatomic spaces

In this section we shall establish a few useful facts about atomic and
nonatomic spaces. In the following discussion, let u be a probability

measure on a O-algebra F of subsets of a sample space Q .

Definitions 3.2.1 An atom of the measure | 1is a set A € F such that

0. The

W(A) > 0 and if FCA, FeF then W(F) = u(A) or u(E)
o _
probability measure p is called atomic if Q = igl A, A U,Aj £01#j

where Ai are atoms of the measure p . A p.s. (,F,u) 1is said to be

purely atomic or atomic if u 1is atomic measure. _

Definition 3.2.2 The probability measure p is called atomless if u has
no atoms in F . A p.s. (Q,F,ﬁ) is said to be nonatomic if there is no

atoms of py in F .

Theorem 3.2.3 (Decomposition theorem of a p.s. & ) Let (Q,F,ﬁ) be a




28

c8

p.s., then £ =@, ugQ where . '= A; , where A, are atoms of

2 1 i=1"1
FIQ and ulF has no atoms in F|Q .
1 Q2

Proof Hahn and Rosenthal [6], page 5I.

We state and prove the following lemma which will be used to prove

theorem 3.2.5.

Lemma 3.2.4 If a probability space (Q,F,ﬁ) is atomic and X > X in

probability, then Xn > X u-a.s.

Proof  Suppose Xn + X in probability, then from the definition of con-

vergence in probability we have for any € > 0, I%m L({w: Ixn(w) - X(w) |

>2€e}) = 0. Nowif xn-k X up-a.s. then there exists an atom Aio

such that Xn{+ X pointwise anywhere on Ai . Then for some €y > 0
Aio c {w: Ixn(w) - X | = 60} for infinitgly many n , hence

u({w: Ixn(w) - X(m)l > so}) = ﬁ(Aio) > 0 . This contradicts the assump-
tion.

From the above lemma, we have the following theorem which gives a

condition on a p.s. (Q,F,u) for the almost sure convergence of a sequence

E[XHIC] ,n=1,2... toar.v. E[X|C] when Xn + X u-a.s.

Theorem 3.2.5 If (Q,F,u) is a purely atomic probability space and

X = 0,X=0, xn , X¢€ Ll(Q,F,u) s Xn + X y-a.s., and E[Xn] converges
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to E[X] , then E[Xn|C] + E[X|C] ‘'u-a.s. for all sub-g-algebras C c F .

Proof From theorem 1.4.7, if E[*n] + E[X] then Xn -+ X in mean. If

Xn + X in mean, then from theorem 2.2.1 part viii, E[XHIC] + E[X|C] in
mean for all sub-o-algebra C ¢ F . Then E[XHIC] + E[X|C] in probability
from theorem 1.4.1 which implies E[XHIC] + E[X|C] w-a.s. for all sub-o-

algebras C ¢ F by lemma 3.2.4.

Note that if E[X ] » E[X] , then E[XHIC] + E[X|C] in probability on

any probability space. Hence, if C 1is a o-algebra generated by a
partition then E[XHIC] + E[X|C] wu-a.s.

There are sequences of integrable random variables Xn such that
sup X ¢ L, @,F,u) , yet E[X] > E[X] . (e.g. Let X = n1($ Zr_LI]. )
Incidéntally, if E[Xn]{+-E[X] , then it is clear that there exists a
sub-g-algebra C such that E[Xn|C]4+ E[X[C] wu-a.s. by taking

¢ = {¢,0} .

Corollary 3.2.6 Under the same hypothesis as theorem 3.2.5 sup Xn € L1

is not a necessary condition for the GLDCT.

Proof This follows immediately from the above theorem and comments.

Theorem 3.2.5 also follows from the following easy lemma.

Lemma 3.2.7 If a g-algebra F is generated by a countable partition of
subsets of § , then any sub-g-algebra C c F is generated by a countable

partition of subsets of Q .
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Proof Let F = T(An ,n=1,2...1¢ ngl An = Q and Ai n Aj =0 ,1i#3).
Then a proof follows from the fact that any member of F can be written as

a union of An's and the intersection of Ai h Aj =P ,i#tj,and QeC.

1
From the above lemma and E[XHIC](w) = ET?;).an du for all weF_,
(2]
0 =U F_ we have theorem 3.2.5.
n=1 M
We state the following two lemmas which can be found in Hahn and

Rosenthal [6].

Lemma 3.2.8 Let (Q,F,u) be an atomless probability space, then for

any € > 0 there exists a non null set A € F such that u(A) < e .

Proof Proof follows from the fact that for any A € F there exists

A € F such that u(A®) < Xu(A)

We now state the so called "Intermediate-value theorem!" of a measure

which can be found in Hahn and Rosenthal [6}, pages 52-53.

Theorem 3.2.9 Let (Q,F,u) be a nonatomic probability space. Then for

any Q°cQ , u@) >0, if ae (0, u(@@") there exists a set F e F-

and F ¢ Q° such that u(F) = o .

§3 Properties of probability spaces for which sup X € L, is a necessary

condition of the Generalized Lebesgue Dominated Convergence Theorem (GLDCT).

Here, we will give some properties of probability spaces such that



31

GLDCT will hold if and only if sup-X € L, .
The proof of our theorem is similar to the proof given by D. Blackwell
and L. Dubins on theorem 1 of their paper [2]. However, the generators

of the sub-c-algebra C are subject to more restrictions since we are con-

structing the o-algebra C on the original probability space (Q,F,u)

Theorem 3.3.1 Let Xn =0, Xn , X € Ll(Q,F,u) , Xn + X wp-a.s. and

sup X ¢ Ll(Q,F,u) . If the probability space (£,F,u) is atomless then

there exists a sub-g-algebra C € F such that

H({w: E[Xn|Cl W)+ E[X[CI @} =1 .

Proof By following the reduction method employed by D. Blackwell and
L. Dubins in their proof, we can reduce the above theorem to the case

where each Xn has only two values, O , vn > 0 and at every sample point

w exactly one Xn has a positive value v, - Thus, if ﬂ({w: Xn(w) =
v} =P, we have 0< P <1, ngl P =1,X=0, Efsyp X ] =
ngl pnvn =2
To attain this reduction, let Fn(w) = max ((Xn - X (w), 0) ,
Gn(w) = min ((Xn - X)(w), 0) . Then Fn >0, Fn > Ll(Q,F,u) ,

Sup F_(w) = Syp X - X ¢ L, @,F,u) , F +0 u-a.s.

Sup IGn(w)IE X(®) , 6 (w) >0 u-a.s., sup |Gn(w)| € L.

For any sub-o-algebra C C F , E[GnlC] + 0 u-a.s. for the GLDCT. Thus,
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u({w: E[X [C1w) > EX|Cl @)}

u({w: E[X - X|C] (w) » 0})

p{w: E[F_ + GHIC](w) > 0}

H{w: E[Fn|C](w) + 0})

Hence, if we produce a 0-algebra C ¢ F such that wu({w: E[Fn|C] -0} =0,

n

then u({w: E[Xn]C] > E[X|C]}) = 0 . Thus we have reduced the theorem to
the special case of the Fo» i.e. to the case X =0 .
Before we continue with our reduction, we state the lemma which we

require for our reduction.

Lemma 3.3.2 Let Xn , Y_ non negative r.v., Xn -0 u-a.s., Yn -+ 0 p-a.s.

n

Then for any sub-o-algebra C ¢ F , if Y =X for each n and

p({w: E[YHIC](w)-P 0}) = 1 we have u({w: E[XHIC](w)++ 0}) =

Proof This follows immediately from theorem 2.2.1 part iii which implies

0 =< E[Yn|C](w) < E[XHIC](w) .

We now construct a sequence {Sn , n=1,2...} of simple functions
such that 0<S <X and sup S ¢ L, whenever sup X ¢ L,

Let A = {w: X (w) z8up X -1, X; <S8up X -1 for i< K} ,
then from the defining properties of '{Ak , k=1,2...} they are disjoint

and since Q - AC U Ak s k 1 u(Ak) , where A is a null set.
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Choose a simple function Sk such that 0 = Sk = Xk s SklA; = 0 and
1 =

E[Sk] Ed fAka dy - ;E . Then stp S, = kgl S, and we have

E[k§1 s, ] =, E[5] =1, fAkxk du-121 /f,

E[SEP S sup X du-2-=

i)
E[sgp Xn]

k
2 = >, Hence, sgp Sn ¢ L1 whenever sup Xn ¢ L1 . From

the above lemma, since Sk = Xk for each k we have

n({w: E[SRIC](w) +0}) = 0 implies

i
o

n({w: E[XkIC](w) > 0})

for any sub-o-algebra C ¢ F . Therefore, we have reduced the theorem to
the case of Sk , i.e. if the theorem holds for Sk then it holds for Xk .
We now consider the Sk to be a sum of finite number non negative functions,
each having only two values, one of which is 0 , and no two of which are
simultaneously positive. .

We now rearrange these functions into a single sequence. If any of
these functions are zero with probability one then we omit them from the
sequence. If there exists the set B on which all of these functions
vanish has positive probability, then we add the indicator IB as an
additional member of the sequence. (This is done for the technical reason,
and it is clear that we can do this, for example, we could let 1B as the
first member of our sequence.) Then we have a sequence which we will
denote henceforth as X X, with the properties stated at the beginning
of the section and this completes our reduction.

We now prove the theorem in the above ''special' case. For the con-

struction of our o-algebra C , we shall make a frequent use of theorem



3.2.9 (an intermediate-value theorem). Let us now assume we have this,

ie. X =v 1y, , 0<v <1, u(Dn) =p,»0<p, <1, Lp =1,X=0

n
and E[s%p Xn] =X

nPan¥n =7 ,
Define:
n+k0
For, n = 1,2... In = {i: i is an integer, i >2 and 2 <
n+1+k0 ko
V. < 2 } , where ko is a positive integer such that 1 < 2 P, 2 .
Let I = {i: i is an integer, i =22, i ¢ I ,n= 1,2...} and
U
=08 1o
Th © iéI Py - 1 1,2 ’
n
- (k0+n)
tn = rh + 2 , h=1,2, s
-k
-] 0
t=ak 4t igl Py * 2

Note that {1,2...} = {1} U I, UTI and the cardinality of I~ is less than

or equal to b(o , and that there does not exist a number noeN such that

In = ¢ for all n = n,

dominated which means sup X € L.

otherwise a sequence {Xn , n=1,2...} is

By applying theorem 3.2.9, we next construct a sequence of events
A € F as follows.

Let
c
A, © (131 D.)” be such that u(Ap)) =1-t.

For n=1,2... , let
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A* = U D, , and let '
n 1eIn i

c
*
A, < (A0 U (igI Di)) be such that

- (k0+n)
M(*A ) = 2

For n=1,2... , then let

= *
Ah = A; U An .

. . W - - * - =
Then since u(*An) = u(igln Di) = rn and u(An) u(An) + u(*An)
- (k0+n)

vn+2 = tn , we have u(An) =t ,n=1,2... , and also

n

- _
Q= ngo An UM, where u(M) = 0 .

1,...} . We shall refine this "partition" sequentially

in order to generate the O-algebra C .

A ...}

The first refinement of P ='{A0 » A

We shall "partition' each member of P into ﬁo events, where

Ng =1+ the cardinality of Iy - By emplgying theorem 3.2.9, we can

i
construct for each n = 0,1,2... events An0 » ig € {1} v I, as follows.

For each 1

0 € {1} v I, jel ,n=12.., let



i
AOco, , :
Jjn J
i/ k . . . : .
j A n j A = 6 if i#k,ike {1} U I, , with measure
X
0
1y P12 D d
u(j A) = —u( j) an
1 -t
iy Pio
u(jAn )_=:u(DJ.) » 1 € I0 s J € In ,n=1,2...

For each ig e {1} U Ip, n=12.., let

iO
*An € F, be such that

eal o Ak _ . . :
ANA = 6 ,i#k,ike {1} U Iy »
-k
0
-9 Py - 2
U(*A)) = u(*A)) and
1-t
. P
1 1 .
0 0
H(*A 7) = —u(*A ) .
n l_t n

For each i, e {1} U Ip»n=1,2..., let

0
i i i

A= U A%U*AC%, then we have
n JeIn j n n

AYn D, = _A' and Al *A_ = *Al,
n j jn n n n

36



37

=k
1 p1 - 2 0 '
U(An) = U(An) »
1 -1t
. P
. 1 1 .
ua %) = —2uc) , and
1-t

for each io e {1} U1 let

0’
i0
A0 € F , be such that
.
0
AO CAO,
-k
4. Py - 2 0
u(ay) = H(A)
1 -1t
i Pio |
u(A,") = —u(A,) . Then
0 0
1-t
for each n = 0,1,2...

= Al -
An ie{l}UIOAh U Mn , Wwhere u(Mn) 0.
i0 i0
The following calculation shows that the measures of j An and An
i i
0 0

are compatible with the measure of An and the measure of An is

compatible with the measure of An .

i i
0 0

. A" U *A
U(ngn j on n )

i
0
u(An )

i i
0 0
( Ag )+ HCAD)

Looq
J€In
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piO v P::lo
= —— u(D,) + — u(*A
JeI_ 1ot u( 5) ” H(*A )
Pig
2 e—— * *
=1 HAD + el
piO
=-I—€LI(AH) , n=1,2,..
P - Z-ko
If iO = 1 , then let the coefficient be 1
- 1 -1t

. i i i
WA = u(ie{?}UIoAn) - “(ie{Y}UIO(jgln jAa UMY
K
Pj Py - 2 0
H(A)

n
~
7~
E™
j—

> +
10610 1-t n 1-t

n
~
+

-kO
since p, - 2 + . & P
1 10.,10 10

Therefore, from the construction of A; , {A;: ie{1}u I},

constitute a '"partition" of A . Let us denote the collection of all
. I
A; , i€ {1} U I0 n=20,1,2... by P 0 , the refined "partition” of .

The second "refinement' of P

I
We now "partition" each member of P 0 into n, events, where

n; = 1 + the cardinality of I1 .
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For each ig e {1} U1

be such that

io,il c

0 2

i

i, € {1} U I, ,n=12.., let

A A,
i'n j 'n
ig,1 ig,k . o) U

j A j A =¢ if igk,ike{1}UI,,

i1 ,-%o™)
U(j Ay )= : WA, ) , and

1

< P:

1 1 1 .

ool N i )
u(j An ) = tl u(j An) H n= 2’3"'

For each i, € {1} U I,, 1€ {11 U I, , n=23..., let

be such that

i,i i
*Ano’ 1.4y 0
i,i - ig.k _
*A N *A =¢ ,ifk,ike {1} U I
g1 2-(ko+1) i
U(*A ) = u(*A_ ") and
n t n
1
g Pi) i, )
u(*A ) = ——u(*A_") Then let
n t n
1
i.,i i.,i i,i
Ao cu A Huaa®l for n=2,3
n JEIn jn n
For n= 1, let
i,,i i
0’71 _ . 0
A1 =1, A1 s
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gl 2'(ko*1) i
u(An ) = u(An ) , and
t
i i i i
0’1 1 0 ’
U(An ) E—U(An ) , 10 € {1} U IO
g ; P; P; P; P -
Note that u(Alo’ll) = pd Alo) = —ig-u(D ) = 0171 u(AlO)
1 1M 1t "oy I-t t 17
. -k
. . i~ 3 Pp-? °
iy € I0 » i) € I1 and u(A1 ) = u(11 Al) = . u(Dil) =
“*o P ko P
FL- 2 i pp -2 T
—) p; = ( Ju(Ay) = — u(A])
1 -t 1 04 1 -t t)
For each i, € {1} v Ip, i€ {1} v I, , let
igsi,
AO e F be such that
i i
0’71 0
AO c AO
il dg.k
Ay, NAy =¢ , ifk,ike{l}UI,
ig,l 2'(k0*1) i
U(AO ) = U(AO ) and
1
i i i i
0’71 1 0 : .
o011

The following calculation shows that the measures of An are
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. i ‘ ,
compatible with the measures of An0 , ip€ {1} u I,, 1€ {1} u I .

i,l , i1 S P |
0t _ 0° s 0°
wA," ) = u(jgln j A, ) +u(A ")
- (kg*1) i, -l i
T A - I e
n ot j t)
= H(A_ ") , similarly,
t n
- 1
. P .
LoiLi i i :
0’71 1 0 .
uf.An ) -t—l-—LI(A ) ’ 10 € {1} U IO
i, ip.1 2'(k0+1) i, Pi io
Then w(A_ ) = u(. ) = wA ") + . L —u(A ") =
n 118{1} I,'n 1 n ijel; ¢
- pX :
%ot t g e P g
" H(A_7)
1
io’il
Therefore, from the construction of A » ig€ {1} u I, >
iLi
i e {1} U I, An0 1 form a partition of A (i.e. within a null set).
i
Let us denote the collection of all An0 1 , ig€ {1} u I s

101
i e {1} U I, and the second "refinement" of P by P 0°1

The £'th "refinement'" of P

seeesly
For the £-1“th refinement of P , let Pno £-2 be the collection
of events which '"partition" A, - Let np = 1 + the cardinality of IK s
I.,o0d
we shall "partition' each member of Pn 0 £-2 into np events as follows:

For each ije {1} u Igseeesip € (1} u Ip,jel ,n=12..,n1f Z,

let
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: A |
. A 0° vt € F be such that
j 'n
i,...,1 i,...,1
0’ L 0°°° 2 L-1 .
jAn CjAn ,1£€{1}UI£,
i i . i i
0’ »R-1,i1 0’ *7L-1,k .
5 A n ;A =¢,if i#k,ike{1}UI,.
s : - (k. +£) ;
i,.0..,1 0 i i
0° 21p-1,1 2 0’ TR-1
u(j A, ) = : u( An ) , and
- L
- i i i i i i
0° >7p-1,72 L 0’ *7L-1 .
u(j A ) ;—u(j A ), i, e,
L
For each i, e {1} v IO""’IL e {1} U IL , n=1,2..., n-14 , let
i,e..,1
*Ano £ € F be such that
in,..e,l i i
0’ > ‘e ) 0°"°"? £_1 .
*
An C *An Iy 1£ € {1} U IL >
*Alo,-.-,1£_1,1 n *Alo’...’1£°l’k = ¢ s i # k R i’k € {1]’ U IL ’
n n
. . - (kL) . .
i,,...,1 51 0 i,.,..0.,1
L0 £-1°7) _ 2 (A0 &1y g
n tK n
igseeaip poi Pi£ igseersip ™
u(*An ) = —=u(*A )
tL n
For n~1#4£,n=1,2... let
i.,. i i i i i
0’ b £ _ U 0"’ ’ £ * 0’ 3 £
A = GY A, ) U *A and
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for n-1 =42, let

i i i oyi
(| A 4 0’ " L-1 .
AZ =i, AZ » 1p € IL , and
i ,1 1 in,0005ip
Azo’ £-1, *A,° £-1 Then

. 1., ,12_ i£_1 B 10, ,iz_z
H (1!. AACO 1) = " ].1(12 A£ )
£-1
pi i i, ,i
t t
-1 -2
P, P; ps
= 1£_l 12_2 10
' u(Dlz)
tee1 Y-2 1-t
Pi, Pi P; i,eee,ip o i
" 1!"1"‘._1_0_%_:11(1\“0 1
te te 1-t

The above calculation shows that when im =1 for m=0... of .

i i i i -
[ 4 . 0’7 L1 . . .
A and i, Ap are compatible. If any of _;0,...12_1
is equal to 1 , then change the coefficient p; to P, - 2 0,...,pi
—(k0+£) 0 £-1
to 2 , and the compatibility still holds.
The reason we have a special case when the subscripts of An-l are the

same as the stages of our '"refinement'" is so that we can easily recover the

sets D .
n
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I,...1
Thus, we have partitioned each 'member of Pno £-1 into n,
events. The verification of the other statements concerning the compatibil-
ity of the measures of events is similar to the previous stages. In this

manner, we "refine" the partition P sequentially.

We are now in position to produce g-algebra C ¢ F such that
n({w: E[xn|C](w)++ 0}) =1 (3.1)
Let J_ = {1} v I X ({1} U 1)) x...x ({1} U1 ) . Then for

ie In ,n=20,1,2...

Consider the event

i i .
i@ 0" 2 1na1,i
Cn - kgo( ) U . )é} ) and let
(10""’1n-1 ed 1

C = T(Ci: iel
on

i.e. C 1is a o-algebra generated by the sets C; ,ielI_ ,n=0,1,2...

We now claim that C has the property (3.1).

We have
i,. i
PS5 FO 0’ ’n-1,1i
15 ’ln—l)eJn-l
g i0’ ’in—l,i
=i (U Ax )
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v

o)

S Fi _fi . . s
= kEO E;.u(Ak) = ;;- , since i,,.0.51) 4 run through
) : io,...,im_1 i
all of their respective index sets and M(Aj *) =
: pi . io,...,im_1 io,...,im_1 . o
f;'u(An ) and A, is a partition of A_ .
We first note that C is independent of {AO, Al""} . To show this,

consider the intersection of generators '{C;: n=20,1,2...,1ic¢€ In}

of the 0-algebra- C and An ,

) i ,.0.,i i
i 0°° " *tm-1
A NC = “ u . ‘j\“J ’
0’ *'m-1'%m-1
Then
. i ,000,i o i
i, _ 0o 0’ ’"m-1,
u(A N c) = u@ 0, U , U . A)\]éJ )
0’ In-1/%m-1
_ i,,000,1 i
-1
=u U Ay by
(Lgse-enip ) €30 4
B = uEh - oua)
L HiA,
m
i,eeepi i do,...,i o i
since A, m-1,7 0 0 m-1," _ 4 if Xk #4£, and
1,000, i p. dp,...,i
0 ’m-1,", _ 71 0 m-1
HA, ) = ;;'U(An ) .

The pairwise independence of C; and An's impliés that C is

independent of A from Logve [ 9], page 224.

For ie In , n=1,2,.. , we have
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. R PYPRRS SN o
D, = {w: X. =v.} = aANU A * =A_NC (3.2)
1 1 1 (i i )nJ n n

0’°° '’ n-1’¢"n-1

(This is the reason why we have taken such care in partitioning An+1 in

the n'th refinement.)

We now show that for i ¢ In ,n=1,2... E[XiIC](w) = vitn IC; .

E[X, [C](w) = E[v; 1; [C1(w)
- 1

vy E[lDiIC](w) by (3.2)

v; Ell, g cilel@
n n
Then v, E[1, | CilC](m)
= v, 1. E[1, 1C] (w)
n n

from theorem 2.2.1, but then by independence and from theorem 2.2.2

=}

v, 1.1 E[1, |Cl(w) = v, 11 E[1, 1= v, 1. =t
n n n n n

Thus E[Xi[C](w) = vt lc; ,iel ,n=1,2...

We now proceed to show that E[XiIC](w) > 1 for infinitely many i
with probability one. To achieve this, it suffices to show that the events
C; occurs for infinitely many n with probability one, since if the events

C; occurs for i € I, then E[XiIC](w) ='xﬁtn >1 . To show that the



47

C; occurs for infinitely many n with probability one, we shall make a use
of the famous lemma called Borel-Cantelli lemma theorem 1.3.1.

Consider the events .U. C2 , M =1,2,,. .,
leln n r
We now claim that they are independent and have the measure ;E-.
T n

It is easy to see that .U c! has the measure since

_n
iel n t ?
€l n

-(k0+n)

t

2 =1--2 and the complement of ¢t ois U .
t n iel_ ™n

1
u(Cn) =
n n n

For the independence of C; , n=12,,, , consider the following events

-(k,+n) -(k,.+m)
0 0
1 1 . 2 2
C ,C ,n>m with s
n m t t
n m

respectively. Then

el 1
u(Cn n Cm)

. igseeesiy ) 1 igseeesip 101
Io (U A "Sync o A D)
k=0 """ i )k (i i )k
0’°°"*’>"'n-1"%n-1 0°° " "*"m-1"%p-1

1
)

© i R | 1,1 i +1""in 1°
= .3 .z S > uo( m-27 . m '
k20 i g(tury il efidur M G

- (k +n) . . . . .

i f . - 2 0 U(A;p,...1m_1,1,1m+1,...1n_1)

k=20 1Oe{l}UI0 . 1n_le{1}UIn_1 t

H - (k +n)
= Lo i Loyur iZ e(13UI “(A;O, .,1m-1’1) i d
=Y 19 0" 'm-1° m-1 n

o - (ky*n) -kgtm) 5L

= kLo 1 F(1}ur. *** iE _e{1}UI T i uia” "
0 0 1m--lE m-1 n m
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-(k,+n) - (k,+m)
@ 2 0 2 0 4( y
—k=0 t t uAk
n m
- (ky+n) - (ky*m)
_2 0 Y 0
t t
n m

Since this can be extended to any finite number of events, we have the

independence of Ci , i =1,2... which implies the independence of
Ut ,n=1,2..., . The independence of .U c' follows from the
1eIn n iel, n

fact that if an évent A is independent of an event B then AC is
independent of B .

To satisfy the hypothesis of the Borel-Cantelli lemma, it only remains
o T

to show that n§

1
1t

= o ,

We shall consider the following two cases.

H

- (n+ko) n_1
Case 1) If T,z 2 for infinitely many n , then - for
- (n+k,) -?ﬂ+k0-1)
infinitely many n , since T,z 2 >t = 2 which
imply
-(n+k,)
-r—ll>2 ° =.];
t, 7 -(ne 0-1 2
Consequently, we have
? r—n =
n=1 'n
-(n+k0)
if T,z 2 for infinitely many n .
~(n+k,)

Case ii) If T < 2 for sufficiently large n , say nzn,, then
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where T={i=22: v. =2

The first inequality follows from the fact that if

_(n+k0) -(n-1+k0)
T < 2 for n 2 n, > then t < 2 for n = n, ,
r n-1+k T n+l+k T
n . 0_'n 0. n
E——Zrn 2 -Tz —4\’i
n
and p: =r_ . From .§ p.V.: =« and I p.v. =
1eIn i n i=l i1 i¢T i’i
n.+k n_+k
2 00 Ip; = 2 00 we have
I p.v, =®,
ier * !
Therefore,
n=1 th
For both cases, we have
T
Ezﬂﬂ, -
n=1 n
and these two cases exhaust all the possible cases. Then from the Borel-

Cantelli lemma
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More intuitively, let 4{An , i.0.} = {w: we A for an infinitely

many n} then u({ U ct i.o0. }) =1 . Then since we U ct =

. iel n 1€In n

weC' for some icel , we have for some i€ I_ .
n n n

C; occurs for an infinitely many n with probability one.

Therefore,

izl

E[Xi|C](w) = vt 1Cn

for infinitely many times with probability one. Thus, we have
u({w: E[X [Clw)y+ 0}) =1 .

This completes our investigation of establishing a condition on a

p.s. (8,F,u) under which sup Xn ¢ L. is a necessary condition for the

1
GLDCT.
We note that if (Q,F,u) is not an atomless probability space, then

by theorem 3.2.1 we can consider the convergence of a sequence of r.v.

on atomic and non atomic parts of the space, separately.
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