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ABSTRACT

The purpose of this paper is to describe and discuss the Central
Limit Theorem for compact topological semigroups. In the process of
discussing the Central Limit Theorem, we exhibit some of the stable
laws on a compact fopological semigroup and briefly discuss the '"Domain
of Attraction' problem.

It turns out that the stable laws on a compact topological semi-
group are the limit laws of the n-fold convolution of a probability
measure on a compact topological semigroup. These limit laws are in
fact the idempotent probability measures on the compact topological
semigroup. These idempotent probability measures have as their support
a completely simple semigroup and as a result we can identify the idem-
potent probability measures. Every completely simple semigroup can be
writteh as a disjoint union of groups or as the Rees product of a group
with two index sets. (These two structure theorems are actually the
same.) As a simple compact semigroup is completely simple, the group
components are compact. Thus we can write the idempotent probability
measure as the product of the normalized Haar measure on the greup with
two probability measures defined on the twe index sets. Finally, the
limit law of the n-fold convolution of a probability measure can be
determined by just considering the support of the probability measure
and the structure of the simple compact semigroup. Some examples are

then discussed using the above results.
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CHAPTER O - THE INTRODUCTION

The problem we want to consider is what happens when we take the

limit of the n-fold convolution of a probability measure on a compact

semigroup. This problem can be thought of to be a special case of the
Central Limit Theorem. So we will give a quick survey of how these
two problems are actually the same.

Suppose S is a measurable semigroup having a Borel field, where
the binary operation is measurable. Furthermore suppose U and Vv are
Borel measures on S. Then we can define an operation on the set of
all measures on the Borel field of S called convolution and written
U ¥ Vv, It is defined as follows. Let E be a Borel set, then

W%V (E) = ux v({(a,b)|ab € E }).
Notice that convolution is associative as the semigroup is associative.
Also convolution is commutative if the semigroup is commutative.

Let (R, F, P) be a probability space. Then X is a random

variable on S or a random element of the sémigfoup (s, B) if
X: (,F, P) > (§58) »

is measurable. As P is a probability measure, so also is PoX"!, where
(PoX™ 1) (E) = P ({weR|X(w)eE}).

PoX™! is said to be the probability distribution of the random variable




X. X1 and X2 are said to be identically distributed random variables

-1 _ -1
1 = PoX2 .

Let X and Y be two identically distributed variables on the seaigroup

over a semigroup (S,B) if and only if PoX

(S,B); that is,suppose they are both defined on the same set Q2. Then
we define
XY: @+ S
as follows: Let w € Q, then
XY (W) = X(w) *" Y and X(w) * YW) € S.
We can define another operation with X and Y, namely (X,Y). The Borel
field on § x S is just the product Borel field B x B.
Define
X,Y): Q@=+SxS§,
where S x S has the Borel field B x B as follows:
X,Y) (W) = (X(w),Y(w)).
Two random variables X and Y are independent if and only if
Po (X,Y) '=(@RPoXx!Hx ®PoY?}
where this is the product measure. Let X

1°°

random variables on the semigroup (S,B). For arbitrary n, (Xl,...,X

..,X be identically distributed
n

)

n
is defined similarly as (XI’XZ)’ and independence is also defined
similarly, that is {Xl,...,Xn} is independent if and only if
-1 _ -1 -1
Po (Xl,...,Xn) = (Po X1 ) x...x(P o Xn ),
where we just have the product measures and P o (Xl,...,Xn)-lis defined
on the Borel field B x ... X B. If the semigroup operation in S is
n times
written + (as with the real line under addition), then we will write
X + Y for XY and talk about sums rather than (semigroups) precducts.

Now that we know what independence is, given random variables X, Y,

we can ask what P o (XY) ! looks like. So suppose X,Y are independent



random variables, then it can be easily shown that
Po (XY) ™' = (oX!)x (oY !,
where ¥ is the convolution of P o X! and P o Y'!. Similarly if

xl,...,xn are independent random variables then

-1 _ -1 -1
P o (Xl...Xn) =Po X1 ¥ ... * Po Xn

If xl,...,xn are independent and identically dJistributed random variables,

then P o x1'1 =....=Po xn‘l and hence
Po (xl...xn)’1 =Po xl'lx .. X¥Po X!
n times
= ¢ o x DN

Consider for the time being, the real line under addition. To start
with we will consider random variables on the real line. So suppose
10 e Xy

independent with the same distribution as X, there are constants ak>0,

that X is a random variable and for every k > 0 and X

bk such that the probability distribution of X} + oo ¥ Xk coincides

with that of akX + bk' Then X is said to have a stable law.

On the real line, if X is an independent and identically

10 Xpse--
distributed sequence of random variables, a, >0, bn real and suppose
n
that the probability distribution of Z (akxk + bk) converges to
’ k=1
some probability law, then the limit law is stable. (Here the conver-

gence is on the weak topology.) This is known as the Central Limit

Theorem., What do the stable laws look like on the real line? They
are as follows: Let X have a stable law. Then either X has a normal

distributicn or there is a number &, 0 < a < 2, called the exponent of

the law and constants my >0, m, > 0, B such that
log £ (u) = iuB + m /o (&% . q AU 4y dx
X 1 2 1+0L
1 +x X
+m, fo (elux_ ] - dux 25 .
- 1+ x2 lelﬂw



This is found in Leo Breiman's book, Probability, [22] (Thecrem 9.27,
page 200). The original work was done by Levy [24].
Now we want to restate the Central Limit Theorem in more mathematical

language. Let Q be a probability function, a, >0, bn real. Suppose

lim 8 *..:¥ Qn exists,
n>e n times

where Qn(E)=Q(anE+bn), then the limit probability measure is a stable
probability measure. These two statements are the same as we already
have observed as for any random variable, Po X ! is a probability
measure.

Now that we know that any limit of the n-fold convolution of a
particular sequence of probability measures (in the reals when it exists)
is a stable probability function, we want to turn the question around
and ask the "Domain of Attractién" question. Given a stable probability
measure R, the set of all possible probability functions Q such that
there exists a > 0, bn real such that

Q % ... *Q 3R,

' VE .
where Qn (E) = Q(anE + bn), is called the Domain of Attraction for the

probability measure R. The question is, given a stable R, what is the
Domain of Attraction of R ? Consider the real case. One answer to the
above problem is as follows given by Leo Breiman, [22], (Theorem 9.34,
page 207). The original work here was done by Doeblin, [23]. '"F(x)

is in the domain of attraction of a stable law with exponent a < 2 if

and only if there are constants M', M >0, M + M > 0, such that as

y+oo:
(i) Lim F(-y) = B

Fly) M
1 - F(y) Mt



(ii) For every & > 0,

M >0 =>1im 1 - F(&y) = 1 ,
1 - F(y) ga
M >0 =>lim F(-§y) =1

F(-y) &¢
Here is another special type of probability measure. Q is said

to be an idempotent probability measure if and only if Q ¥ Q = Q. This

is a special case of Q being stable. (We just let a, = 1 and bk = 0.)

k

Now we want to consider the Central Limit Problem for any semigroup

S. Suppose we have a probability measure Q, and a sequence {bn}: -

1
in S. Assume also that the lim Qn X ... X Qn exists where
N e
Q,(E) = Q(Eb ) VE.

The question or central limit problem is, what kind of limits can occur?
The first thing we do is restrict ourselves to a compact semigroup

S. Then all we need to show a limit is idempotent is that the bn's

commute with every element of S. In the case of commutative compact

semigroups, this is immediate as everything commutes with everything.

In the case of non-commutative semigroups, this is a little more difficult.

So in some cases of non-commutative compact topological semigroups, we
ask a simpler question. Let Q be a probability measure. Assume that

lim Q% ...x Q
N st
n-—>x n times

exists. What kinds of limits exists? The answer in this case is that
the limit probability measure is idempotent. fhus we will be discussing
idempotent probability measures in more detail. In this context, the
"Domain of Attraction" question is, if R is an idempotent probability
measure, what are the possible probability measures Q such that for

some sequence bn in S ;12 Qn ¥ .. % Qn = R where Qn(E) = Q(Ebn) or in




the non-commutative case, what are the possible probability measures Q

such that lim Q x x x«Q = R,
n->ce
n times
One possible such Q is trivial and that is R itself. Whether or
not there exist less trivial probability measures is a more difficult
question.
In order to study these problems, we would therefore like to know

what the idempotent (non-trivial) probability measures look like on a

compact semigroup. However, we need only consider simple compact

semigroups, as once the idempotent probability measures are characterized

on simple compact semigroup, they can easily be extended to compact
semigroups. If one_considers a compact group, then the one idempotent
(non-trivial) measure on that group is just the normalized Haar measure
on the group. (The normalized Haar measure is just the two-sided
invariant measure.) So the questioﬁ arises as to whether this carries
over to compact simple semigroups, and the answer is yes, in a sense.
In order to make this idea precise, we will study the structure of semi-
groups, in particular completely simple semigroups, in detail. One
fact that we use immediately is that a compact semigroup, which is not
a group (algebraically), has at least one non-identity idempotent.

J. G. Wendel makes use of this fact to prove the very useful result,
that any non-trivial, non-identity idempotent probability measure on a
compact group, (and such a thing exists on each compact group) is the
normalized Haar measure. It is this{result that enables us to get

some results on the structure of non-identity idempotent probability
measures On compact semigroup . | |

This paper will be divided into two major sections. The first



section is divided into three subsections. In the first subsection we
introduce some preliminary definitions and results.

The second subsection studies the structure of semigroups and
introduces the notions of a simple semigroup and a completely simple
semigroup. We observe that any completely simple semigroup with identity
is actually a group. This result is used several fimes. As simple
compact semigroups are completely simple we find that a simple compact
group can be written as a union of its component subgroups. These
groups in turn aée compact. We also find that any compact semigroup
has a completely simple subsemigroup, which is compact, and this is
called the kernel of the compact semigroup.

In the second.subsection, we study the structure of idempotent
probability measures on compact semigroups. The first thing we note
is that the support of an idempotent probability measure on a compact
semigroup is aiways a completely simple subsemigroup. Conversely, if
we have a compact semigroup and and idempotent probability measure
defined on a simple compact subsemigroup, then this idempotent
probability measure can be extended to the compact semigroup. So we
will then consider only simple compact semigroups.

As mentioned above, the compact simple semigroup S can be written
as a union of its compact group components. The number of group
components is the same as the number of idempotents of S. If S has
a countable number of idempbtents, then every idempotent measure on S
is a convex combination of the extended normalized Haar measures of the
various group components. This completélyVCharacterized all the

idempotenf probability measures on any compact simple semigroup with



at most a countable number of idempotent elements. However, there do
exist completely simple semigroups with an uncountable number of
idempotent elements. If we were to approach this problem of identifying
all or at least some of the idempotent probability measures as we did

in the case where the completely simple semigroup had only at most a
countable number of idempotents, we immediately have a problem of
addition, This brings us to the final section in part one.

In this section, we study the structure of completely simple
semigroups in another way, so that we can eventually describe idempotent
probability measures on a simple compact semigroup. This is done
through the Rees-Decomposition Theorem. It turns out that every
completely simple semigroup is a direct product of a group G with
two arbitrary set X and Y and a particular type of multiplication. The
multiplication is defined with the aid of a ''sandwich matrix". If the
completely simple semigroup is a compact semigroup, then G is a compact
group and X,Y are compact Hausdorff spaces. Conversely, if G is a
compact group and X,Y are compact Hausdorff spaces, then the Rees Product
is a compact simple semigroup.

So now we have apparently different structure theorems for completely
simple semigroups. We will compare these two approaches.

Now we are in a position to study the étrﬁcture of possible
idempotent probability measures on any compact simple semigroup, parti-
cularly those that have uncountable number of idempotent elements. And

so some idempotent probability measures on G x X x Y, where G is a

compact group and X, Y are compact Hausdorff spaces, are of the form

U X a X B, where u is an idempotent probability measure on G and a, B



are probability measures on X, Y respecfively. Notice that u is the
normalized Haar measure on G. In this way we can desribe some idempotent
probability measures on a compact simple semigroup with an uncountable
number of idempotents.

As this is discussed in all generality, we again compare this
result, of the prodﬁct measures, to the convex.combination of the
normalized Haar measures on the group components of a compact simple
semigroup, where the semigroup only has at most a countable number of
idempotents.

In the second major section of this paper, we discuss the
convergence of probability measures on compact semigroups. As was
noted earlief, this is in a sense a part of the Central Limit Problem.
We are considering two types of limits involving a fixed probability

measure on a compact semigroup. First we consider the sequence

{igl EE;?}n € w where u is a probability measure on a compact
semigroup S. This sequence,as we shall see, always converges, regard-
less of what probability measure we pick. The probabiiity measure to
which this sequence converges will be shown.to be an idempotent
probability measure. This idempotent probability measure can be
thought of by our earlier discussion as a stable law.

Next and the other type of sequence we want to consider is the

sequence {u(n)} , where u is a probability measure on a compact
new

semigroup. This sequence need not converge. However, if u is a
regular probability measure ( and this is what we are assuming in this

paper) on a compact semigroup, then we need only to study the properties
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of the kernel of the compact semigroup and its relationship to the

probability measure up to determine whether or not the sequence

[

{u(n)}:=l will converge. This result is due to M. Rosenblatt, [12]
and we rely on the fact the every completely simple semigroup can be
written as a Rees Product. After this we consider a few examples,
first of which is that of a compact group itself. We see that

M. Rosenblatt's result is an extension of a prior result on compact
groups by Ulf Grenander.

The next set of examples considers a special type of completely

simple semigroups. Recall that by the Rees decomposition of a completely

simple semigroup, the semigroup is a product of a group and two
arbitrary Hausdorff spaces. In these examples the Hausdorff spaces are
arbitrary, but the groups that we will consider are éyclic groups

and simple groups. Then if we are given a probability measure on a
simple compact semigroup, such that the group in the Rees Product is
either cyclic or simple, we can immediately determine whether or not
the 1limit of the n-fold convolution of a probability measure on that
semigroup exists or does not exist.

All through the paper we will have restricted ourselves to compact
semigroups. In the final section we want to take a brief look at just
topological semigroups and see what probleﬁs there exist there and why
compactness is necessary. We find that we have to put stronger
conditions on the semigroup and these conditions are immediately
satisfied by compact semigroups. This way we can get a somewhat of
an extension in the results of convergence of the n-fold convolution

of a probability measure on a topological semigroup. So what we know



for compact groups can somewhat be extended to compact semigroups

and that can be extended somewhat to topological semigroups.

.

11
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CHAPTER 1 - PRELIMINARIES

It will be necessary first to establish a few conventions and to
give a few definitions. Let S be a set with an operation 0o: S xS -+ S

so that for all s € S, (slosz) 0SS, =5

3 1 © (52053). Then S

1’ 52’ 53!
will be called a semigroup. Henceforth o will just be denoted by juxta-

position, that is s,os, = s.s_,, where s., s, € S. Furthermore, if S

1772 172 12 72
has a topology defined on it, which is Hausdorff and such that o is
jointly continuous from S X S to S, then S will be a topological

Hausdorff semigroup, or simply a topological semigroup. (In this paper

we will only consider those topological semigroups whose topologies

are Hausdorff.) A topological semigroup S is a compact topological

Hausdorff semigroup or a compact topological semigroup if the topology

on S is both Hausdorff and compact and multiplication is continuous.
Now we need a few definitions from measure theory so that we can
define an operation called convolution on a particular set of functions.

Let (S,T) be a topological semigroup with topology T. Let B denote the

Borel Field over (S,T). (See any book on Measure Theory for the de-
finition of a Borel Field, as an example, Halﬁos.) The Borel Field
over (S,T) is also represented by B(S).

Let S be a compact pbpblogical Hausdorff semigroup, B(S) the
Borel Field on S. Denote the set of all regular probability measures
on S by M(S), that is

M(s) = { v: B(S) » [0,1] | v is a regular measure and V(S) = 1}.
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We define a multiplication on (S) called convolution, which will be
denoted by ¥, as follows: Let v, € M(S), then v x T: B(S) > [0,1]
with v x T(B) = v x T { (x,y) | xy € (B)}, where v x T is the product
measure on B(S) x B(S). v ¥ T(S) = v xT (S§x8) =v(S) xI(S) =1.
Hence v ¥ T eM(S). As S is a semigroup and hence associative, it follows
immediately that for v,T', p € M(S), (v *T) x p = v ¥ (I' ¥ p) and hence
M(S) is a semigroup. We would further like to know whether or not M(S)
is compact when S is compact. We need to know this to derive some
properties of the probability measures on a compact semigroup and in
particular on a compact group. If (S,T) is a compact topological
Hausdorff semigroup, then M(S) is also a compact topological Hausdorff
semigroup with the weak star topology where the operation on M(S) is
convolution (See Hille and Phillips [25] for details).

Now we are going to leave M(S) and consider some other properties
elements of semigroups coﬁld have. Let S be a semigroup, s € S, then s
is said to be idempotent if s * s = s. Numakura [2], has proven that
if S is a compact topological semigroup, then S must possess idempotent
elements. Furthermore if S contains an identity; that is, if there
exists a 1 € S such that 1 * s =s * 1 =s for all s € S and if S is
not a group, then S has at least one other idempotent element besides
the identity element. This claim will be proved later in the paper.
Consider, however, a few examples. Define R = { x | - ®< x <o},

i) Let S = [0,1] with the induced topology of R and ordinary
multiplication for the semigoup operation. S is not a
group since 1/2, for example, does not have an inverse
in S. The inverse is 2 and 2 £ [0,1]. So S must have at
least one idempotent element. One idempotent is 1 which

is also the identity element and there is also a second
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idempotent element, namely O.

ii) Let S = { A e (R), | [IA]] <1}, where (R, is the ring
of all 2 x 2 matrices over the reals. The norm is the usual
6perator norm [22]. Give S the induced topology from (R)Z,
which has the usual matrix topology. Then S with matrix
multiplication is a compact topological semigroup. Since
for A, Be S, ||AB|| < [|A]]<]|B]]| < 1, S is closed under
multiplication. Therefore S must have idempotent elements.
It has four idempotent elements, one of which is the identity

element, and they are as follows:

(1), (o), (33), (24)

iii) Let 87 = [ 1,* ) with the induced topology from R and with
ordinary multiplication. S~ has only one idempotent and
that is 1, which is also the identity element of S°. S,
however, is not a group, but only a semigroup and the semi-
group is not a compact topological semigroup. This shows
us that in the absence of compactness there may not exist
idempotents other than the identity. Now define

S =8 U{ o} with the one point compactification and

multiplication as follows:

_yab if a, b e [1.»)
aob '"{ ©w if a=®orbs=ow

Now S is a compact semigroup which has two idempotents
namely 1 and « ., Notice that [0,1] and [1,®] are homeomorphic
and semigroup isomorphic ( if we define 1/~ = 0 ) by the

transformation f: [1,*] - {0,1], f(x) = 1/x.
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iv) Let S° = [a,»), where a >‘1, with the induced topology
from R and with ordinary multiplication. In this case S
\Has no idempotent. Now define S = S~ U {e} with the one
point compactification and multiplication as follows:
{db if d, b € [a,»)
dob =
© if d= e« or b =
Now S is a compact semigroup which has one idempotent
namely «. Notice that [0,1/a] and [a,=] (where a > 1)
are homeomorphic and semigroup isomorphic by the same
transformation as in Example (iii). Observe that « is not
an identity as @ =b s © = « b # b for any b, 1 < b < o,
v) Let X be any non-empty compact space. Then X becomes a
compact topological semigroup with the multiplication
(x,y) = x. Every element is an idempotent element. (Note
that if X has two or more elements, no element is an identity
element.
vi) Consider the following semigroups Zn:
{0,1,...,n-1} if n is not a prime number.
- {1,...,n-1} if n is a prime number.
Give Zn the discrete topology and the following multipli-
cation. Let a, b € Zn then
ab if ab € Zn
aobs=
c if ab ¢ Zn and ¢ € ZIn
where ab = c¢(mod n).
From group and ring theory, we know thaf if n is a prime
number, then Zn is a group and Zn in that case has only oﬁe

idempotent element and that element is the identity 1. If

n is not a prime number, then Zn is not a group and clearly
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0 and 1 are idempotent elements of Zn and 1 is still the
identity of Zn.

These examples, then illustrate that a compact semigroup
always has an idempotent element and if one idempotent
element is an identity, then the semigroup has at least
one idempotent element. These examples are just examples
of the above statement. A proof will not be given of the
above claim.

We will see that while M(S) is a semigroup, it is

‘almost never a group ( ie. there exists an element vy ¢ M(S)
such that v_l does not exist). First of all, if S has just
one element (then S is a group), we can immediately conclude
that M(S) also has just one element, namély unit mass on

the one element of S and hence M(S) is a group. On the
other hand if S has more than one element, then M(S) has
more than one eleﬁent. (eg. unit mass at each element of S).

Before we can go on, we must define the notion of an
inverse element. Let S be a semigroup and a, b € S; then
a, b are inverse of each other if and only if aba = a and
bab = b. Now let G be a group and s, t € G; then s, t are
inverse" of each other if and only if st = ts = e, where
e is the identity of G. The question that arises is, as G
is also a semigroup, are inverses and inversesx the same?
Fir;t of all suppose s, t are inverse‘,'then that means
st = ts = e. Therefore sts = se = s and tst = et = t,
Therefore, inverse® are inverses. Now suppose s, t are

inverses. That is, sts = s and tst = t. As G is a Group,
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s and t have inverse" say s' and t' respectively. There-
fore stss' = ss' and hence we get ste = e and therfore

st = e. Also tstt' = tt' and hence ts = e. We can thus
conclude that st = e = ts and s and t are inverse . Also
from group theory we know that inverse are unique and hence
s =t' and t = s'. Thus we can conclude that inverses and
inverse” are the same in a group and the definition of
inverse has been properly extended from groups to semi-
groubs. It should be mentioned that in a semigroup, in=
verses need not exist. An example of this is the semi-
group [a,®), a > 1 and using ordinary real number multi-
plication. Also if inverses do exist then not every

element need have an inverse as in the example [a,~] as

defined in a previous example.

Now we want to go back and show that for any compact
semigroup S, M(S) is almost never a compact group, but
just a compact semigroup. First, however, we will consider
a compact topological group G. J. G. Wendel [1] (Section 2)
proved that a necessary and sufficient condition that
v € M(G) have an inverse is that v be unit mass on an
element g € G. Now if a compact group G has two or more
elements, then any probability measure Vv on G which has
positive mass on a finite number of points ( more than one)
does not have an inverse probability measure, as any proba-
bility measure H that could be an inverse to v , would be

nothing more than unit mass on any element of G. This how-
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ever, is impossible as v then would be the inverse of U and
and hence v is the unit mass of an element of G, but we
assumed that v had positive mass on a finite number of
elements (more that one). Such measures as exist because

G has two or more elements. Let 81> & be two elements of

G. Define p as follows: u: G -~ G, u(gl) = u(gz) =1/2,

u(g) = 0 for all g € G ml{gl,gz}. Hence u € M(G), n does

not have an inverse in M(G) and hence M(G) is not a group.

So iﬁ the case where G is a compact group, M(G) is not a
group but just a semigroup. Now consider a compact topo-
logical semigroup S. If S has an identity e,then unit mass
on e is the identity in M(S). On the other hand, if S does
not have an identity, then M(S) does not have an identity.

J. G. Wendel proved that a necessary and sufficient condi-
tion that p € M(G) have an inverse is that p be unit mass

on an element g € G. This result is also true for semigroups.
Now we want to show that if S does not have an identity, then
M(S) does not have an identity. For suppose v, p € M(S) are
inverses of each other, then by Wendel's result, v, u are
unit masses of some element s, t of S such that s, t are
inverses of each other. If, furtﬁermore n is an identity of
M(S), then v ¥ 4 =y % v =n. As n is an identity of M(S)
and as n is itself an inverse of n, there exists an element
e € S such that n is unit mass on e. But as Vv * ﬁ =N we
can only conclude that st = e and similarly ts = e. Further-

more e is an identity in S. (It should be obvious that if
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a semigroup S has an identity, then it is unique:; For
suppose ¢ and e' are identities of S, then e = ee' = e'e = e!
and therefore e = e'.) But we assumed that S had no identity
end therefore M(S) has no identity. Therefore M(S) is only
a semigroup and not a group. Observe, incidentally, that
S can be imbedded in M(S) by tﬁat mapping that takes each
element s to the probability measure that has unit mass on
s in M(S). This mapping is a one-to-one mapping.

Let G be a group with a topblogy T and the topology is

Hausdorff. Then G is a topological group if the multipli-

cation is jointly continuous and inversion is continuous.

G is a.compact topological group if G is a topological group

and the topology is compact. From now on, instead of saying
compact topological semigroup (group), we will just say
compact semigroup (group) meaning compact topological semi-
group (group). The topologies are always Hausdorff.

Now consider a compact group G. M (G) is therefore a com-
pact semigroup, under convolution, with identity (the identity
being unit mass on the identity of G ). Hence there exists
at least one other idempotent measure e in M(G). What is e?
In this paper, J. G. Wendel [1] proved that there is exactly
one non-zero, non-identity probability measure on G and this
measure is the normalized Haar measure on G. Hence all the
idempotent measures on ahy compact group G are known. For
a detailed study of Haar measure, see Hewitt and Ross [19].

Here are brief description and some properties of Haar mea-

sures: To start with one considers Coo(G). where G is a
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group and COO(G) is the set of all complex-valued continu-
ous functions f on G such that there exists a compact sub-
set F of G (depending on f) such that f(x) = 0 for all

x € G-F. In our case, as G is a compact group, COO(G) is
just the set of all complex-valued continuous functions

f on G. On this set COO(G), the Haar Integral is defined

and from this integral we get a set function A, which has
the following properties:

(i) 0 < A(U) for all non-empty open sets U in G.

(ii) A(U) < « for all open set U in G.

(iii) x(aB) = A(B) = A(Bc) for all B € G and for all !
a, ceG.

If G is a compact group, then A(G) < «, Let v be the measure
generated by A (in the sense of Caratheodory). If v(G) =
b # 1,then v will be normalized by defining u = 1/b « v

and u is called the normalized Haar measure on a compact

group G and its properties are:
(i) 0 < u(B) <1 for all Borel sets B.
(ii) u(@G) = 1.

(iii) p(aB) = u(Bv) = u(B) for all Borel sets B and
for all a, ve G.

(iv) u is the unique measure on the compact group G
having the above three properties.

There is one other question which will be given consideration here
and its importance will become apparent later. Also this result will
be able to be transferred to locally compact groups. Suppose that S is
a group with a topology such that multiplication is jointly continuous.

Then does it follow that S 1s a topological group; that is, that the
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inversion map x > x-l, x € S, is also continuous? If S is a compact
topological semigroup (that is,S is a topological semigroup and the
topology is compact) and S is a group, then the inversion map is auto-
matically continuous and hence S is a compact topological group. More
generally, if the semigroup of a group S with a topology is a locally
compact topological semigroup, then S is a locally compact topological
group. To prove this it is sufficient to show that if U is a neighbor-
hood of the identity e, then there exists a neighborhood V of e such
that V1 = {v! | v e Vic U. Since S is a locally compact semigroup
we may let {Va}a be the collection of all compact neighborhoods of e
(this collection is not empty since S is locally compact). If for one
o, Va—l ¢ U, then inversion is continuous. So suppose that for every
Vs Va-l ¢ U, then Va-l ~ U # ¢ and Qva-l ~ U # ¢ since Va—l is compact.
But Qva_lfw Uc ava~l = {e} implies that e ¢ U which is contradiction. q
Hence for every neighborhood U of e, there exists a neighborhood V of
e such that vilc U and therefore the inversion map is continuous. There-
fore,S is a topological group and hence a compact (locally compact)
topological group. However, if G is a topological group and the topo-
logy is not locally compact, then inversion need not be continuous. For
example, consider the following example:

Let G = R, the real line as an additive abelian group. Let

T be the topology of G whose base is {[a,b) | -» < a <X <b<w®}

Define g: R x R >R as follows:

g, (X,y) = x+y.

Define gy R + R as follows:
g, (x) = -x.

Then g, is jointly continuous everywhere on R x R(since if [a,b)
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is a ﬁeighborhood of a, then [a,b/2) is also a neighborhood
of a), but g9 is not continuos: Consider the point O € R.
[0,b) with b > 0 is a neighborhood of 0 and there is no
neighborhood V of 0 such that -V < [0,b). Therefore G is a
topological semigroup and G is a group, but G is not a topo-
logical group. Observe that the fopology on G is not locally
compact.

Following is a slightly different example, whose importance is realized

when we discuss how a compact topological semigroup can be written as a

union of compact groups:
If H is a locally compact, non-compact, topological group,
then HO, the one-point compactification of H with the point at
infinity as a zero, is a compact semitopological semigroup,
but not a topological semigroup [10] ( 1.1 (a) page 146 ).
(If S is a semigroup with topology T and the multiplication

is continuous in each variable, then the semigroup is called

a semitopological semigroup. Hence every topological semi-
group is a semitopological semigroup.) So consider the set
S = {x | 0 < x < =} with the induced topology of the real num-
bers and having normal multiplication as the operation. Then
.S is a locally compact, non-compact, topological group. How-
ever by the last result, if we one—point compactify it, s is
a semitopological.semigroug but not a topological semigroup.
Thus multiplication is not even jointly continuous, just contin-
uous in each variable.

Consider the Semitopological group R bf additive numbers with the

topology T defined as follows: U € T if and only if there is a countable
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set C (which may be empty) such that U U C is open in the usual topology
of R. R has the following properties [22] (Theorem 9.27 page 200):

a) Although a semitopological group, R is not a topological
semigroup.

b) R is not completely regular, whereas any topological group
is completely regular.

¢) Inversion in R is continuous.

d) The only compact sets in R are finite sets.

e) R, the one-point compactification of R with the operation
extended by

o+ @©@ = ®© 4+ O = @

is a quasi-compact semitopological semigroup.

(A topological space is quasi-compact if and only if each given open

covering of it contains a finite open subcover.) Notice that inversion
is continuous, whereas multiplication is only continuous in each
variable separately. Now we go back to compact groups and idempotent
probability measures on them.

Consider a compact group G, J. G. Wendel [1] showed using integrals
that a compact group G has a unique non-zero idempotent probabilify mea-
sure, other than unit mass at the identiy. What about non-compact groups?
Do they have at least one one other idempotent probability measure, other
than the above identity measure? For a complete separable metric group
G, K. R. Parthasarathy [18] has proved (without reserting to integrals)
if the group has one or more non-identity idempotent probability measure,
then the idempotent measures are actually the normalized Haar measure
of some compact subgroup (that is assigning zero mass to sets disjoint
from this subgroup). There is another result on another class of topo-
logical groups. It is a special class of locally compact groups and it
was proven by Ulf Grenander [17]. The result is as follows: An idempo-
tent probsbility measure on a commutative, locally compact group has all
of its mass concentrated on a compact subgroup.

Notice that for the conclusion of the last two results, we had to
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assume that idempotent probability measures existed and the conclusion
was, that of the support of the measure Qas a certain compact subgroup
of the original group. In considering the problem of what idempotent
measures look\iike on non-compact topological groups, we immediately
lose the existence of a finite Haar measure. However if an idempotent
measure does exist, we know that it is the normalized Haar measure on
some compact subgroup of the group and hence by ‘the uniqueness of the
Haar measure we know that that particular subgroup cannot be the support
of another idempotent probability measure.

We will be using the foregoing results on various groups, to deter-
mine, if possible, the idempotent probability measures on semigroups.

In order to see how this is done, we now will discuss some of the pro-

perties of semigroups and how they can be written.
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CHAPTER II - SOME RESULTS ON THE STRUCTURE OF
COMPACT SEMIGRQOUPS

We have briefly considered compact topological groups. We have
observed that there is one and only one non-zero, non-identity idem-
potent probability measure on a compact topological group and that this
measure is the normalized Haar measure. Can we make use of this in
studying what idempotent probability measures on compact topological
semigroups look like? We also know that if G is a group and a compact
topological semigroup, then G is a compact topological group. So now
we want to consider the structure of compact topological semigroups.
This turns out to be the ﬁnion of compact groups. Hence for some
compact semigroups we will be able to use the normalized Haar measures
on the compact group, which are the components of this semigroup, to
determine what the idempotent measures on that particular compact semi-
group look like. In this section there will also be a few examples to
illustrate some of the results discussed. For all of this we have to
introduce some concepts on the structure of semigroups.

Let S be a semigroup. R is a right ideal of S if RS ¢ R; L is a

left ideal of S if SL ¢ L; M is a two-sided ideal of S if MS U SMc M.

F is a subsemigroup of S if FFC F. L is a minimal left ideal of S if

$ g LCS and for any left ideal K, ¢ # K<€ L implies K = L. Similar

definitions are understood for minimal right ideals and minimal two-sided

ideals. Notice that a minimal (right, left, two-sided)ideal can be a

set containing a single element or the whole set. An element s € S is

f
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called a zero of S if st = ts = s for all t € S. An element s € S is
called a right zero of S if st = s for all t € S and s € S is called a
left zero of S if ts = s for all t € S. Let 0 be a zero of S. From

now on a zero of S will be denoted by 0 and it is always unique. For

‘suppose 0 and 0' are zeros of S, Then 0' = 00' = 0'0 = 0. That is 0' = 0.

Note that {0} is a minimal two-sided‘ideal of S. Furthermore,if S has a
zero, then {0} is the unique minimal two-sided ideal of S as any two-
sided ideal M must contain 0, since MS USM c Mand M « 0 = {0} (as
0 € S). Similarly if a € S is a left (right zero) of S, then {a} is
minimal left (right) ideal of S. Again let R be a left ideal of S, that
is SR ¢ R. 1In particular a € S and hence aR = {a}. Therefore, as above,
{a} is the unique minimal left (right) ideal of S as a belongs to every
left (right) ideal of S. If G is a group, then G itself is its only
(left, right, typ—sided) ideal as the identity e of G is in every ideal
and hence {e}G = G = G{el}.

L(S) will denote the set of all minimal left ideals of S and R(S)
will denote the set of all minimal right ideals of S. LetB and A be index

sets such that

L(S) '{LB | 8 € B, Ly is a minimal left ideal of s} and

R(S) {Ra | o€ A, R, is a minimal right ideal of S}.

Let t € S. Then t is an idempotent element of S if t = t = t. If a
semigrcup S contains any minimal left ideal, then S possesses a minimal
two-sided ideal which is equal to the union of all the minimal left ideals
of S [3] (Theorem page 184, Chapter V.) The minimality of the minimal

left ideal insures the existence of a minimal two-sided ideal (as two-

sided ideals eXist, namely S itself). Similarly, if S contains any
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minimal right ideal, S again possesses a minimal two-sided ideal which
is equal to the union of all the minimal right ideals of S. Ljapin has
also shown that every minimal left ideal and also every minimal right
ideal contains an idempotent [3] (Section 3.17 Chapter IV, page 156).
Moreover, if S contains a minimal left ideal L and a minimal right ideal
R, then G = RL is a group where RL = R L [3] (Theorem under Section

3.2, page 189, Chapter V). Since L is a left ideal, RL ¢ SL ¢ L and since

R is a right ideal RL ¢ RS ¢ R. Hence RL ¢ L and RL € R, hence RL € R N1 L.

Clearly R 1 L € RL and hence RL = R 1 L. Hence if L(S) # ¢ and R(S) # ¢,
then there exists a minimal two-sided ideal, and it will be called K,

such that

= U U G

oecABeB a8

where GaB = Ran LB and the components of each union are non-empty and
pointwise nonintersecting [3] (Theorem under Section 2.2, page 183,
Chapter V). In the case of compact semigroups, Numakura [2] (Lemma 7,
page 103 and Corollary, page 107) has shown that L(S) # ¢ and R(S) # ¢.
A semigfoup S is said to be simple if it has no proper two-sided
idéals. So any group is simple with the above definition of simiplicity.
If S is a compact topological semigroup, then Numakura [2] (Corollary,
page 107) has shown that every idealf(left, right, two-sided) is closed
and therefore compact (remember that all.topologies are Hausdorff). By

the comment above, if S is a compact topological semigroup, it contains

minimal left and minimal right ideals and hence a minimal two-sided
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ideal. Hofman and Nostert showed further that in fact only one minimal
two-sided ideal exists in a compact topological semigroup. It will be
called the kernel of S (denoted by K) [4](Chapter A, Section 1). Hence
if S is a compact semigroup, K is also a compact topological semigroup,
since every ideal is closed and a two—sided.ideal is a semigroup (as are
left and right ideals). For every pair (&,8) (a € A and 8 € B). Ra X LB
is compact and multiplication is jointly continuous by the Tychonoff
Theorem and the fact that multiplication is jointly continuous in S,
respectively. Thérefore,GaB = RaLB = Ra N LB is a topological semigroup
whose topology is compact. We then have that GaB is a group whose topo-
logy is compact and multiplication is jointly continuous, and hence by a
previbus remark, thé inversion map is also continuous. Thus GaB is a
compact topological group. Hence, if S is a compact semigroup, its kernel
K is the union of compact topological groups.

We know that every minimal left ideal and every minimal right ideal
of a semigroup has an idempotent element. As a compact topological semi-
group S has minimal left ideals and minimal right ideals and hence each
minimal left (right) ideal has at least one idempotent, we then know that
S also has idempotents. So let T denote the set of all idempotents of
the compact semigroup S. Is it possible to write the kernel K of a compacf
topological semigroup in terms of its idempoténts? Yes, and Numakura
[2] (Theorem 2, page 104) has given us the following formula for the ker-

nel K of a compact semigroup S:

K= 01- SeS
eec T

From this formula it is easy to see that K is compact, for {e} is compact

and hence SeS 1is compact. Also multiplication is continuous. If S has
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a zero, then it is immediate by the above formula that K = {0}.

Recall that

K= ¢y R
o€ A
= U L
B e B 8
= U UG
ocA BeB OB

GaB is called a group component of K. Denote the identity of GaB by
€y * It will be shown later that the GaB‘are isomorphic. It is
immediate that eaé, for all o € A, B € B, is an idempotent belonging to
S. Recall that if LBl and LBZ are two minimal left ideals of S, than
eithe? LBl N LBZ = ¢ or LBl = LBZ' This is also true for minimal right
idealS. If S is a simple semigroup, S still can have minimal left
ideals or minimal right ideals including itself. For example, when S
is a group. Observe, that if S is a commutative semigroup and S is
simple, then S contains no proper minimal left and no proper minimal

right ideals as all ideals (left, right, two-sided) are two-sided ideals.

Lemma 1 Let S be a simple compact topological (Hausdorff) semi-

group and x ( # 1, if 1le¢ S) a non-zero idempotent of S. Then there exists
a group component X of S, for which x is the identity.

Proof

S = A g BLB, where LBl n LBZ = ¢ whengver Bl# 82. (S has mini-

mal left ideals as S is a compact semigroup. This was noted earlier.)

Hence there exists a unique ¥ € B such that x ¢ LY. Similarly S = U AF“
: a €
where Ral n Ra2‘= ¢ whenever 04 # o, and hence there exists a unique

p € A such that x ¢ Rp Set X =R N LY; xeXasxe Rp and x € LY and
X * X = x as x was an idempotent element in S. As noted before X is a

group and this group contains an idempotent. As a group only has one
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idempotent, x is the identity element fér the group X. Hence for every
idempotent element in a compact simple group, there is one group com-
ponent whose identity element is this idempotent element.

Suppose 0 € S, then {0} ¢ S is a minimal two-sided ideal and as was
pointed out before, it is the unique minimal two-sided ideal. S is simple
implies that S = {0} as S cannot have any proper two-sided ideals. Hence
any simple semigroup containing two or more elements cannot have a zero
element. Suppose S is simple and contains an identity element. The
question that arises is what does S look like if S is simple and has an
identity? Before that question can be partially answered, we need another
concept.

Let S be a simple semigroup. S is a completely simple semigroup

if it contains at least one minimal left ideal and at least one minimal
right ideal and has no proper two-sided ideal [3] (Lemma 9, page 105 and
Theorem 4L and 4R, page 107). Let us consider, for example, groups. Let
G be a group, so that G has no proper two-sided ideals. The only mini-
mal left ideal and the only minimal right ideal of the group G is the
group itself. Therefore all groups are complétely simple. One would
think that any simple semigroup ought to be completely simple. This how-
ever is not the case. Stefan Schwarz gives an example {5] (page 229),
and analogous examples due to 0. Anderson, can be found in this book [6].
These examples hold basically for the reason that the semigroup, though

it is simple, it does not have an idempotent element. However, a simple

compact topological semigfoup'is completely simple [2] (Lemma 7, page 103).

There is another definition of completely simple semigroups. It has been
shown that the two definiticns are the same [3] (Theorem 5, page 107).

An idempotent f is said to be under another ome if ef = f = fe. An
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idempotent e is primitive if there are no non-zero idempotents under e.

A simple semigroup S is said to be completely simple if every idempotent

element of S is primitive, and for each a € S there exists idempotents
e and f such that ea = a = af. There is also another characterization of
simplicity. S is a simple semigroup if and only if for every x of S,
S S =S5. We then get the result, that a completely simple semigroup
S with the identity 1 is a group. For consider any element x. Since S
is simple we know that there exists elements a and b such that a xb = 1.
This comes from the above characterization of simplicity. It is imme-
diate that xba and bax are idempotents as for example
xba * xba = xb(a X b)a = xb ¢ la = xba.

But as S is completely simple, 1 is a primitive idempotent. As xba and
bax are under 1, we then get that xba = bax = 1. Therefore the inverse
of x is ab and therefore S is a group. Thus we have a partial answer to
the question: If S is a simple semigroup and has an identity, what can
we say about the semigroup? If the simple semigroup is also a completely
simple.semigroup, then it is a group. If the simple semigroup is not
completely simple, we cannot say anything. In the case of simple compact
semigroups, we know that they are then immediately completely simple (as
they have at least one minimal left ideal and at least one minimal right
ideal) and hence if a simple compact semigroup has an identity, we know
then that it is a compact topological group, by a previous remark.

Lemma 2 Let S be a completely simple semigroup and X( £1, 1 €58)
a non-zero idempotent of S. Then there exists a group component X of S
for which x is the identity.

The proof of the above lemma folows identically as for Lemma 1. So

we have the result that for each idempotent element there is one and
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only one group component of a completely simple semigroup. Hence, if a
completely simple semigroup S has more than one idempotent, we know that
S can be represented as the union of groups whose identities form the set
of all idempotents of S. Furthermore, given a completely simple semi-
group S and writing T for the set of all idempotents in S we have

R(S) {Se | e e T}

L(S) {eS | ee T},
and the groups of S are of the form euSeY with eu, eY aT_ [2] (Lemma 9,
page 105 and Theorem 4L and 4R, page 107).

Suppose S is a semigroup and L is a minimal left ideal. 1Is SL this
minimal two-sided ideal that exists? Clearly, by a simple calculation,
SL is a minimal two~sided ideal. Just note that if S also has a mini- |
mal right ideal, then this is the minimal two-sided ideal as it is unique.
For compact semigroups we have a more definite answer. Recall that
Numakura [2] (Lemma 7, page 103 and Corollary, page 107) has shown that
any compact semigroup has a minimal left and a minimal right ideal. He
has a further result [2] (Theorem 5, page 107): '"Let R and L be a right
and a left minimal ideal of a compact semigroﬁp S, respectively, and K
be the kernel of S. Then LR = K and RL is a group." Just recall that if
a semigroup S has a minimal left ideal and a minimal right ideal, then
S has a kernel. In another section we will be discussing in further

detail the structure of completely simple semigroups.
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CHAPTER III - EXAMPLES
In this section we will be dealing mainly with examples demonstrating
some of the results in the previous section. Before we give these exam-
ples, another major concept will be introduced. This is the concept of
the support (or carrier) of a measure function on a semigroup S.

Let S be a topological semigroup and x € S. A neighborhood of x,

denoted by V. is a set such that there exists an open set 0, such that
X € OX c Vx' A neighborhood of a point need not be a Borel set. Let
U be a measure function in B(S), the set of all Borel sets of S. The
support of u on a topological semigroup S is defined as follows:

Cw = {x € S| for all V., H(V,) > 0 such that V_ € B(S) } .

Recall that M(S) is the set of all probability measure Y on a topo-
logical semigroup S. If S is a compact topological semigroup then M(S)
(with the weak-star topology) is also a compact topological semigroup.

If uw e M(S), then it is easy to show that C(u) is closed and hence com-
pact. J. S. Pym [7] has shown that if S is a locally compact topological

semigroup and u, y € M(S), then

Cu ¥ y) = C(1) =~ C(y) (the bar denétes closure). Hence if
S is a compact topological semigroup and u,y € M (S), then

Clu ¥ y) = C(ﬁ)v? C(Y). This follows immediately from the fact
that the Cartesian product of compact sets is compacf and multiplication
is jointly continuous. Now we will consider a few examples.

The next few examples just show or verify a few properties using
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the support of a measure when we consider an algebraic system having

defined on it a compact topology and the appropriate operations being

[

continuous.

1) Let G be a compact topological group with g € G and H € B(G). ug

is unit mass on g if
1if g e H

u (H) =

& 0 if g ¢ H.

Clearly ug is a probability measure on G. Recall that p eM(G) is

invertible if and only if p is a unit mass measure uh for some h £ G.

It will be shown that Mo X -1 = My Clup) = {1} and in general
C(ug) = {g}. Since G is a compact group,

C(u.g X ug_l) = C(ug)°C(ug_1) ,

Cluy) * Cluy-1) = fgg '},
So C(ug * “g—l) = C(ug) . C(ug_l) = {gg'l} = {1} = C(u;). Hence
ug ¥ Ug—l =Y, as each unit mass measure is uniquely defined by its
support.
2) This example will generalize the above to compact topological
semigroup. Let S be a compact topological semigraup with identity.

Let g € S have an inverse, say gﬁl. (We say h € S has an inverse if

h *»k =%k =h =1). Then as before we have C(ug X ug_l) = C(ug) -

Cug-1) fgg™) = (1} = Cluy).
Hence X = ]
s s
3) Now we want to generalize to multiplication. That is we will
show that for s, t €S, Mo ¥ W, =1
(st}

{st} = C(ust).

st’

Clug) = Clu) = Clug X uy)

By the uniqueness of the support of a unit mass measure, we then

I
1

1'3]

£
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deduce that Mo = W ¥ U

4) This example will illustrate some of the results on compact
semigroﬁps. We will determine its kernel, show that it has minimal
left and right ideals of which we are assured.

Let R be the set of all real numbers. (R)n will denote the set
of all pxnp matrices whose entries are from the field R. Let Ae(R)n,
then || || is a funtion from (R)n to R . It is called the
operator norm. For a complete definition of this norm see the
book '"Real Analysis' by Royden [22]. I will be using some proper-
ties of this norm which will also be described in the above refer-
ence. The main property, that I will use is the triangular inequa-
lity which says that for A, Be (R) , |[A[] « [[B}| = ||AB]].

Let S = {A e (R), | [|A]] < 1} where (R), is the set of all
the 2 x 2 matrices over the reals. Clearly S is a semigroup under
matrix multiplication. Let A , B e S then ||AB|| < ||A]] ||B]] <
1 +1=1. Also, S is compact. Notice that S has at least one, in
fact it has an infinite number of proper left ideals L and at least

one proper right ideal: namely

L={Aes|A=(§g)}
and R=1{BeS |B-= 83)}.

S has a minimal left ideal and a minimal right ideal and in this

case it is g g ) as S has a zero. Hence S has a minimal two-
sided ideal, which is the kernel of S, and that is ( g 8

Hence S is not simple. S has other proper, again an infinite number

of, two-sided ideals. Let S {A g S | ||A]l < 1/n} where n is

. L . a n .
a strictly positive integer. Then ss™ ¢ s™ and s"s ¢ s" since

-
F u

g™
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||AB]| < ||A]] ||B]| for all A, B ¢ (R), Observe that the mini-
mal left ideal, minimal right ideal, minimal two-sided ideal or
kernel in this semigroup are identical namely (8 8 ) . L and

R are not minimal left and minimal right ideals, respectively, as we

can define L" and R" for all strictly positive integers, similarly

n

as S. S,of course,is not completely simple. In the first case

S is not even simple, but also there exists an idempotent that is

under (é ?) . In matter of fact, there are two idempotents
10 (10) (00)
under (O 1) and these are 00 and 01 , as
for example 10),(10)_(10)_ 10)_(10)
P 00 01/ “\oo/ T (o1 00

The question arises, does S have a subsemigroup which is simple?
(For we are interested in completely simple semigroups.) The reason
for this question is to determine whether or not we can define an
idempotent probability measure on S and this question will be

answered later. Consider the following subset of S.

G=(°‘.’Se Si“e)|0<e<2w.
-sin 6 <cos 6

Then G € S since

cos 9 sin 6
@:

: )rotates all points in the plane around the
-sin 6 cos 6

origin by the angle 6. The distance of the point from the origin is
kept constant and hence ll6]] = 1, hence ® € S. By a simple calcu-

lation, it can be shown that G« G = G. If 6 = 0, then

/ cos 6 sin 6)

. = <1 O) and therefore,G has an identity. We will
\-sin 6 cos 6

01
show that G is a group by showing that it is completely simple. As

(é ? ) is the only idempotent in G, all idempotents are primitive.

Further for any a € G, (é 2 ) a=a ( é ? ) . All we have to show

is that G is simple. Notice that G is homeomorphic and isomorphic
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to [0, 27) which has addition of the real line modulo 2m. That

is for a, b £ [0, 2m)
a+p=202* b if 0 <a+b <27
" la+b-2mif 21 <a + b < 4.
It is immediate that [0, 2m) is simple (has no two-sided ideals) and
therefore G is simple. As [0, 2m) is commutative, so is G. There-
fore,G is a completely simple semigroup (compact in fact) with iden-

tity (see [2] (Lemma 8, page 105)) and therefore G is a group. In

this we could have shown that G was a group simply by showing what

cos © sin ©

cosf -sinb )
-sin 6 cos 6 '

the inverse of( .
sinb coso

)was and it simply is <

This group is generally know as the Rotation Group.

S has another subsemigroup which is also a group Consider

H={Ac¢ (R), | Al < | and det = + 1 . Clearly H ¢ S and
HeH € H. Let A,B € H, then ||AB| = [|Al|*]|Bl =1 . If the condi-
tion had been that J/All = 1, we would not be assured that H is

closed under multiplication. Furthermore det AB = detA °*detB = £l

10)_ (10)
+1 . Det ( 01 = 1 and hence 01

€ H and therefore HH = H, H is still compact and so H is a proper

]

as detA = *1 and deth

o

subsemigroup of S as ('0 ) £ H. Hence it is neither a left, right

0

or two-sided ideal of S. In this case it is difficult to determine

o

whether or not H is simple. However it is immediate that H is a

10
01

rices in H are nonzero and hence invertible. Now consider the sub-

~group as H « H = H and ( ) ¢ H and the determinent of all mat-

set F of H where: F =G U {el}, where G is the rotation group as

. -10) _ 10)
mentioned above and e = ( 01 and e = ( 01 . Clearly e # G,
so F ; G. F is a compact semigroup as G and elG are compact sets
and hence a finite union of compact sets is also compact. Observe

that G N e;6 = ¢ and G is a simple semigroup. Therefore F is a

x>
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simple semigroup and hence a completely simple semigroup as F is
compact. [2] (Lemma 7, page 103) F also has an identity, namely
1 . . . .
( 0 ? ) . Therefore F is a group, as F is a completely simple

semigroup with identity. Now we will show that F is a subset of H.

ft

First observe that if ¢ € G, then det & = 1. Let A ¢ F, then

¢ for some ¢ ¢ G if det A =1
he e;® for some ¢ € G if det A = -1.
Also ||A]] < ||e]] [leg 11 = [le]] =1 if det A = -1 when [|e ||= 1.
or ||All = [{¢||= 1 if det A = 1.

Therefore A € H and hence F C H.
So we have at least three subsemigroups of S that are groups G, F,
H and they are related as follows, G;F c H, Their importance will
become apparent later when we illustrate the theorem on the conver-
gence of sequences of probability measures. Note that, the groups
G and F are both abelian.
6) This example is just an extension of the above example. The
importance lies in the fact that the groups derived are no longer
abelian.

befine S = {A ¢ R, | [[A‘I <1},
where (R)n is the set of all n x n matrices over the reals. Since
for A € S, we have ||A]] < 1, we know that S is compact. Again notice

that S has at least one left jdeal L and at least one right ideal N,

namely: . ) 0 ... 0
a, 0...0
L=§AeS | A=
a 0 ...0
JI/—J\/

n columns
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and

a, a a

ol o2 o
N=<BeS | B=f. . ... N TOWS
' O 0 ...0

as with n = 2, the minimal left ideal, the ﬁinimal right ideal and
the minimal two-sided ideal, which also is the kernel of S, is the
zero matrix so that S is not simple. Does S have subsemigroups
which are simple? The answer is yes and the first subsemigroup
is as follows: Let G be the set of all orthogenal real matrices
such that the determinant of each matrix is 1. P is orthogenal
if P* = P-1 (Px means the transpose of P - see any book on matrix
theory for definitions ). Let P, Q € G, then (PQ)x = prx = Q—lp_l
= (PQ)-¥. Also G is a closed subset of S and hence G is compact
with identity [21] . Now we will show that G is simple. Let P € G.
Consider G P G. Since P € G, P* € G and hence G = G P PN c G P G.
Therefore G P G = G for all P € G and hence G is simple. But be-
cause G is compact, G is completely simple and it follows thét G
is a group.

Now define H (as in example 4) as follows:

H={A €'(R)n | |]a]] <1, det A *1}. Then H is a closed

and hence compact subsemigroup of S is neither a left, right,or two-

sided ideal of H. O ¢ H and hence H % S. Again observe that H « H
= H and hence H is a compact group. Define F = G | e, G where
-10 ... ... . 0
010..... .0
0010....0
e; = :
T ¢
0......01
Then det e, = -1. Clearly again as before F ¢ H and F is also com-

1

pact. Furthermore F is simple and hence a group. Again G g FcH

.-
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and neither G nor F in this case (.actually for n < 3) are com-
mutative. |

6) The ﬁéxt example just shows us some of the consequence of cer-
tain properties. Let S be a commutative completely simple semi-
group without identity. We have considered the general case when
S had an identity. Then any right or left ideal is a two-sided
ideal. As S is completely simple, there exists minimal left and
right ideals, that is there exists at least one minimal jdeal in
S. But by the definition of completely simple, S is automatically
simple and hence it has no proper ideals, thus S is the only ideal.
Now S must contain idempotents as S is completely simple (see [3]
(Section 3.17, Chapter IV, page 156). Recall that every idempo-
tent is an identity for one of the group components of S.

Therefore S = U LB s U R

BeB ae A
= U U RL, =1U U G ,.
aeABeBaBaEABeBaB

But LB*= R, for some a and some B as S is abelian and furthermore
S = LB =R, =5 forall ae A and B € B as S is simple and thus
L(S) = {S} = R(S) and hence Ga = S. Therefore,S is a group and

B
hence has an identity. Therefore,every commutative, completely sim-
ple semigroup is a group. Just two more observations, if S is a
simple commutative semigroup with a zero, then as before S = {0}.
Also,simple commutative semigroups are completely simple as all
ideals, left, right, th—sided are all two-sided. As the semigroup
is simple its only non-empty ideal is itself and hence it has a

minimal left ideal and a minimal right ideal. Hence every simple

commutative semigroup is a completely simple commutative semigroup
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and hence it is a group.

7) This example will illustraté all the results on compact simple
semigroups. The minimal left ideals and the minimal right ideals
and the group components will be clearly defined. The reason for
this example will become apparent later when we will further study
tﬁe structure of completely simple semigroups.

Let G be any compact topological group with identity e. De-
fine G° to be the semigroup G U {0} where g « 0 =0 =« g = 0 for
all g € G° and 8185 is the same as before for all 81> 85 € G. Let
G° be the set of all 3 x 3 matrices whose entries are from G° such
that at most one entry is non-zero. Define P = (2 2 : ). Let
A € G°, then either every entry is zero and we deioieeA as (0),
or exactly one entry is not zero, say the (i, j) position for some
i=1,2, 3and j =1, 2, 3. This non-zero element is some g in G.
Denocte A as (g)ij . That is,every matrix of G° will be written as
(g)ij where g e Gand i =1, 2, 3 and j =1, 2, 3 or (0).

So G° = {(g)ij | geG, i=1,2,3and j =1, 2, 3} U {(0)}.
Define a new multiplication O in G° as follows:

LetA,BeGOthenAoB;APB
where on the right hand side we have ordinary matrix multiplication.
As there generally is no additive operation in the group G, we de-

fine a formal sum as follows:

Let'{ax}>be a sequence .in G°. Then
' {au}if a, = 0 for all v # ¢
L a,.=
A A undefined otherwise

It should be immediate that any formal sum in the matrix A P B has

at most one non-zero term and hence it is defined. Therefore A P B



42

is always defined, and it is also immediate that A P B € G° There-
fore G° is a semigroup as multiplication is associate as ordinary

matrix multiplication is associative. Define G = 6° - {(0)}, where
(0) is zero matrix. G has no (right, left, two-sided) zero divisors

(a is a two-sided zero divisor in a semigroup G with zero if there

exists a, b € S, a # 0, b # 0 such that ab = ba = 0. Similarly

definitions hold for left and right zero divisors.) Give G the

induced matrix topology derived from G. Then it is immediate that
multiplication is continuous. Therefore G is a topological semi-
group. As G is a compact semigroup, it then follows that G is also

a compact semigroup. Recall that

%11 %12 %13
(a)ij = 221 322 323) such that
31 32 733
o = aifi=1and j =k
1k 0 otherwise.

Denote the non-zero element in the (i,j) position as aij' Now ob-
serve that (a)ij 0 (b)lm = (ab)im for all (a)ih, (b)lm € G . G has
no proper two-sided ideals as G is a compact group with no zeros
and hence G is simple. As G is compact, G must have at least one
minimal left ideal and at leasf one minimal right ideal, as G is
completely simple (a compact simple semigroup is a completely simple
semigroup). Furthermore G must have idempotents. As a matter of
fact, G has 3 minimal left ideals, 3 minimal right ideals and hence
9 group components and therefore 9 idempotents. These are as fol-
lows: First we identify the idempotent elements. These are

.{(e)ij | 1 <i, j < 3} where e is the multiplicative identity
of G. Let us consider (e)ij; (e)ij 0 (e)ij = (e)ij by the rule

given above. Suppose (g)ij is an idempotent. Then

|
l
|
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(o} = =

(g)ij (8);;) (g8),; (&)
that is g? = g and hence g = e as G is a group. Therefore, these are
the only idempotents of G. The minimal left ideals are as follows

d will :

and will be labelled Ll’ L2, LS'

L, = . eG,i=1,2,3

j= L@y le }

for j = 1, 2, 3.

The minimal right ideals are as follows and will be labelled R

l)
RZ’ R3:
R, = {('g)ij | ge6G,j=1, 2, 3}
for i =1, 2, 3. .
3 3 N
Observe that G = U R, = U L.,.
. i . i
: i=1 i=1
Also R, ML, =‘RiLj. Now RiLj is a group and we will denote it by :
J ¥
Gij' Gij = {(g)ij | g € G}. It is immediate that Gij = G1m = G
for all 1 <i, j, 1, m < 3. Also notice that »
3 3 "
G= U U G... b8
i=1 j=1 Y ‘

Furthermore (e)ij is the identity of Gij' Hence the set of idempo-
tents are the identities of the group components.

This example seems to have come out of nowhere. It will become
clear later on why this example arises naturally in the study of
completely simple semigroups. It does demonstrate how a completely
simpie semigroup breaks down into a union of groups. All of these
groups are isomorphic to each other and to the original group. We
needed compactness to gét this sémigroup completely simple. The
above exampie can be created or extended to all positive integers n.
If n =1, it is not necessary to adjoin a zero to G as the set of

1 x 1 matrices with entries from G is just G itself.
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Now that we have considered these various examples, we want to

discuss idempotent probability measures on compact topological semigroups.

Before we discuss the idempotent probability measures on compact semi-
groups, we want to discuss idempotent probability measures first on
compact simple semigroups. Recall that on semigroups, idempotent prob-

ability measures are the stable laws on that semigroup.

ol
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CHAPTER IV - IDEMPOTENT MEASURES

We are interested in the convergence of a sequence of probability
measures and the stable laws of a given compact semigroup S. We find
that some sequences of probability measures converge to idempotent prob-
ability measures and we find that these particular sequences are in fact
stable laws. So with this in mind, we want to discuss idempotent prob-
ability measures on a compact topological semigroup. In particular we
want to be able to determine what these idempotent probability measures
look like on a topological semigroup. In this section we will consider
just compact topological semigroups, and mainly just simple ones. For
a compact topological group we already know the answer. J. G. Wendel
[1] has proved that every compact topological group G has a non-zero,
non-identity idempotent measure, namely the normalized Haar measure.
As some compact semigroups are just unions of compact groups, one would
think that at least some of the idempotent probability measures would be
some linear combination of the normalized Haar measures on the various
compact groups.

From now on for any two measure functions on an algebraic system, we
will denote convolution simply by juxtaposition, that is if u,Y are two
measures, then W ¥ Y = UY. Let S be a topological semigroup, then e is

an idempotent probability measure if e # 0, e # 1, if 0 or 1 € S respec-

tively and e = e = e. Now assume that S is a compact semigroup and € e

M(S) is an idempotent probability measure, then B. M. Kloss [8] has shown
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that the support of € (denoted by C(€))is a closed simple subsemigroup
of S and hence compact. Therefore,the support of any idempotent prob-
ability measure on a compact semigroup is a completely simple compact
semigroup (as a simple compact has minimal left and minimal right ideals).
P will always denote the support of an idempotent measure u on S, so
that it is a completely simple compact semigroup. So the problem of
determining what idempotent probability measures look like on a compact
semigroup has been reduced to the study of completely simple compact
semigroups or simple compact semigroups as both concepts are the same
for compact semigroups.

Suppose u is an idempotent measure on a compaét semigroup S and
Cw - P contains a finite number of idempotents. In the succeeding
pages, unless otherwise mentioned, all simple compact semigroups will
contain only a finite number of idempotents. If P contains only a finite
number of idempotents, then we know that P = _ﬁ -ﬁ Gij’ s and r some
positive integers, is the group decomption of};}taZi U restricted
to the Borel subsets of Gik is an invariant positiv¢ finite measure on

the group Gik' We know that p is finite as Gik C P and u(pP) = 1.

(Gik) >0 as Gik is contained in the support of U and Gik is an open

set. W restricted to Gik is defined as follows: Let B be a Borel set of

P, then BﬂGi is a Borel set as Gik is a Borel set and the intersection

k
of Borel sets is another Borel set. Similarly any Borel set in Gy is
derived in this manner. So -consider any Borel set B in Gik' There exists
a Borel set B' in P such that B = B'(] Gik' Then the restriction of

) 7 A = V f i
to Gik will be denoted by M where uik(B) | u(B nGik). Now we will

show that uik is invariant. Let a ¢ Gik' Then a ¢ P and so

_ Ny rain _ .. . .
Uik(aB) = p(a(B ﬂGik)) =u (B8 uGik) = uik(B) as y is invariant, being
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an idempotent measure on P. Similarly Hs is left invariant and hence

uik is invariant on Gspe Therefore e is a positive invariant finite

measure on G.,. Furthermore, if P = 0 R. = 0§ L, with G., = R,L,

ik i=1 i j=1 i i’j

where the Ri‘s are the minimal right ideals and the Lj's are the minimal

left ideals and if p is an idempotent probability measure on P, one has
H(R,) u(Lj) = u(RiLj) = u(cij) [9] (Theorem 1.1, page 67 and
Corollary, page 99)

Let g . be an element of G__, and let ¢ Dbe the identity in G_,. We will
af aB ap af

recall that for a compact simple semigroup P we have

P= ugA1Ru = BgAZLB - agAl BgAZGuB

(and this holds for all completely simple semigroups S). Since P 1is .

simple and compact, we have the following results [9] (Page 99):

a) Logys = Ly s8Ry = Ry i
b) {eaB’ o€ Al} is the set of all idempotent elements belong-

ing to LB. Each of them is a right unit of LB. The set '
{eaB’ B e A?} is the set of all idempotents belonging to Ra' ‘

Each of them is a left unit of Ra'
c¢) Any two minimal left ideals La’ LB are isomorpnic under the

mapping x - xe The inverse mapping is y > ye, € LY.

Y8’ By
4 £ L5 - Gaé’ RygaB B GYB'
©) Gog 8y6™ Cus 8aglys = Cas:
£) Gchyé B Gaé’
g) Any two groups.GOLB and Gch are topologically isomorphic by,

for example, the mapping

ach € GY6 > eaB aYa eYB ; GaB'

The inverse to this map is given by

baS € GaB > eYB baB eaé e Gyé'
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For (a), G = L. =R L .
(a) gY6 € ” RY 5 y n 5 and therefore Bys € L6 Hence

LBgY5 c Lé as L6 is a left ideal. But L6 is a minimal left ideal and

L - - -
BgY5 # ¢ and hence L LG' Similarly ng € RY and hence ngRa c R

BgYG - %

as R is a right ideal and since R is minimal R =R, It i
. g y gY6 o y t is easy

to check that LBgYG is a left ideal and gyGRa is a right ideal. Then
(b) is immediate as are (c¢) and (g) since the mappings are given. For
(e) observe that GaB = RdLB and using (a) we get the desired result as
for example GaBgYG = RaLBgYG = RaLG = Gad (LBgY5 = LG by (a)). Now con-
sider (d). gaBe GaB = RaLB' Hence gaBLY C.R L,L =R L =G __as LY

o By oY oy

is a left ideal. By the minimality of all ideals, R L,L_ and

L =
gaB Y a By
hence the desired result. Finally for (f) observe again that GaB = R
RdLB.‘ Therefore GGBGYé = RaLBRYL5 = Ra(LBRY)L5 = RaLYL5 = Ra(LYLG) =

RaLG = GaG' The first bracket is a result of (a) and the second is that iy
Ldis a left ideal. This proves all the above claims. Now observe that

e "e s € Ga6 but in general €8 eY(S = €5 need not hold. We have

of Y

however that e e and e e = e

aBay = oy aB Y8 YB° y
Let us consider example (7) in Chapter III. Recall that G is the

set of all 3 x 3 matrices over the compact topological group G which have

one and only one nonzero entry, and an element of G is of the form (a)ij

where a # 0 and is at the (i, j) entry of the 3 x 3 matrix. Multiplica-

tion was defined so that (a)ij o (b)lk = (ab)ikf With this definition of

multiplicative conditions (a) - (g), as given above, are immediately

satisfied. Notice however that in this particular case (e)aB 0 (e)yé =

(e)ad' Also in this case (e)dBo(a)YGO(e)YB = ‘(eae)OL8 = (a)aﬁ because

of the definition of multiplication and hence the mapping to show that

two group ¢omponents are isomorphic is trivial.
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Thus we have considered some of the properties of an idempotent
probability measure p on a simple compact topological semigroup S. We
have shown that if p is an idempotent probability measure on a compact
semigroup S, then its support is a simple compact semigroup and if we
restrict y to each group component of C(u) , it still is a positive,
finite, invariant measure function. Furthermore, we have looked at some
particular cases of multipiication of minimal left and minimal right
ideals and group components by elements of the group components. The
result as given above [9] (page 99) also holds in the general case. We

have only considered the case when the simple compact topological group

S contains a finite number of idempotents. It is also true for any simple

compact topological semigroup S.

Now that we have some properties of an idempotent probability mea-
sure on a compact semigroup when restricted to its group component, we
would like to go the other way. What happens when we consider idempotent
probability measures on the group components? Can we extend each mea-
sure and then add them? What do we get? This is what we consider now.

Let S be a simple compact semigroup with a finite number of idem-
potents. Then S = '61 '61 Gi" Let W denote the normalized Haar mea-
sure on the group G;;. Jéik is compact as S is a compact semigroup. Let
gy € Gik’ then ik will also denote the probability measure of unit mass
on g., . The meaning of gk will generally be clear from the context of
its use. Convolution is just juxtaposition as was mentioned earlier.

Now we extend the normalized Haar measure uik on G to all Borel sets

ik
E of S by putting uik(E) = uik(E N Gik). Stefan Schwarz [9] (Lemma 1, 2,

page 100) has proved the following results on the measure functions M

and gjlz
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a) g5y Hyy = iy 851 7 Mype
BY My i1 = Mg

c) If S is a compact semigroup and P is a simple (closed) subsemi-
group and vy € M(S) with C(y) ¢ P then Mg Y ujl = W

Notice the similarities between these results and the results just men-
tioned dealing with multiplication of minimal left and minimal right
ideals and group components by elements of the group components. The
result (a) here is similar to result (e) before and the result (b) here
is similar to reéult (f) before. The proof of condition (a) is rather
lengthy and can be found in [9] (Lemma 1, 2, page 100). For (b) we

use (a) by observing that Hig Ujl = (Uik eik) (ejlujl) = Hiy (eik ejl)
Mjpe Demote eyy eyy = gyq and we get wg, iy = gy gy Myp) = Mgy By
Again by (a) and observing that Miq is an idempotent probability mea-
sure belonging to M(S), we finally have

Mik Mip T Mo (egp My )= (egpoeqyd Goyqd = mgq My = Wy
For (c), see [9] ( Lemma 1, 2, page 100).

We are now in a position to state the result which tells us what
the idempotent probability measures on a simple compact semigroup P with
a finite number of idempotents look like. This then will give us a
partial answer to what the stable laws look like on a simple compact
topological semigroup. The result was proven by Stefan Schwarz [9]
(Theorem 1,2, page 102) and is as follows: Let S be a compact topolo-
gical semigroup and P a cloéed simple subsemigroup of S that contains
a finite numbe} of idempotents. Let P = '61 kﬁl Gik be its decomposi-

i=1 k=

tion into its group components. Then every idempotent probability mea-

sure € belonging to M(S) with C(g) = P is of the form

M



s r
€= X I 8. 1M Uivs
i=1 k=1 1+ X K s r
where §,, n _ are positive numbers satisfying I &, =1 = I 7, and
i’ 'k s 1 k=1 k
Mg is the normalized Haar measure extended to P and S. Conversely,
s T
if 6., n, are positive numbers satisfying Z &, =1 = I n,, then
i? 'k . i k?
s 'r i=1 k=1
e= ¥ I Gi M Mg is an idempotent probability measure belonging

i=1 k=1
to M(S) whose support is exactly P.

So for any compact topological semigroub whose closed simple sub-
semigroup contains only a finite number of idempotents, we can construct
all idempotent probability measures on this compact semigroup by sim-
ply considering each simple (closed) subsemigroup. This result will
give us a partial answer to what some of the stable laws are on a com-
pact semigroup.

We will give a -quick sketch of the proof for the above result.
First we need the fact that the uik‘s are completely determined by means
of a fixed Uij say U and the idempotent elements belonging to P, since
we have uik(E) = ull(elk Eell) fo? any Borel subset E of Gik or alter-
natively Wip = eik.ullelk where the eij are the idempotent probability
measures (by conditions (a) - (g) of the first set and conditions (e)

of the second set.)

Write u = u? € M(S) with C(u) = P in the form
v s T s T
U= I t. W (as P= U U G., ) with
j=1 k=1 KK j=1 k=1 K
s T
I £ t.. =1,t.. >0.
=1 k=1 K 1k
We then get v
s T s T ; s T
(Z I t.p Be)e(Z Z t.;M.q) = Z I t.. U.q,
im1 k=1 ROIRT Ry g 3L g i T
and hence by condition (a) - (c) above we get
s r s T s T :
L L L t., t., Hu,= L I t.. W
i=lk=1j=11=1 K 1 7EL 5oy g i1 7L

51
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and thus
T s
b L t., t., =t. ™)
k=1 j=1 ik "j1 il
T 3 ,
L t., = 0. .. = *y ] i ., = 6.
Set L t1k 61 and .§ tJl nl Then (*) implies t11 Glnl
k=1 j=1
s T s T
Clearly £ 6. =1=5%n, and u = I L 8.n,y.
j=1 1=1 1 j=1 121 + 141
[ T :
Conversely, let u, = I % 8.n,u., be an element of M(S) where
1 . 11711
1i=1 1=1
s T
§., n, are positive numbers satisfying Z &, =1 = I n
1 1 . i 1
i=1 1=1
) s T s T s T s T
=2 Zdénu.J)*(r Zd&nu.,)= Z I L Zd8.n.6.n .
oo Nay am P VAL Ny g TROR oy oy o ker BT ROEK
T [ s T
=( Zn,)*(Z68.) X L 6.n M., =1
1=1 1 5= 37 4ep gy P RO

Thus plz = ul‘and Uy is an idempotent probability measure.
Consider now the following examples on the above result.
(i) Taking s = t = 3 gives us example (7) in Chapter III

Suppose we are also looking for idempotent probability measures whose
3 2

support is not all of G. Consider G, = .U .U.G.. where G is still the
1 i=1l j=1"1j

same as before. Then any idempotent measure on Gl whose support is ex-
3 2

actly Gl would be of the form € = E jilﬁinjuij where uij is the

1

™M

normalized Haar measure on Gi' and Gi =N
i=1
is a simple closed subsemigroup of G. Therefore, any idempotent measure

m, = 1. Observe that Gl

H

- on G1 is also an idempotent measure on G, but the support of this idem-

potent measure is strictly contained in G. There of course exist

other simple subsemigroups (in this case all subsemigroups are closed as
G.. is open and closed for all i=1,2,3 and j=1,2,3). Some of these are

27 2 3

G,= U UG.. G, = UG.. for some fixed j and so on. In all of
2 . . ij, 3 R
i=1 j=1 1=1
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these cases we must redefine the matrix P so that muliplication is well

defined. Clearly the subset H = G,, U 612 U is not a subsemigroup

11 Go1

as = G, and 622 ¢ H (for any matrix P). Hence H is not closed

G21 G12 22

under multiplication, but intuitively spcaking, any submatrik of the 3 x 3
matrix is a simple subsemigroup of G. In general if a compact semigroup

S has é closed subgroup, then one idempotent probability measure on S is
just the extension of the normalized Haar measure on the group to all of
S.

One condition that was imposed was that 61 # 0 and Ny # 0. If how-
ever, 61 = 0 for some i or My = 0 for some k, then the resulting measure
is still an idempotent measure on S, if the resulting subset of P by
eliminating those group components for which 61 =0 or n = 0, is still
a sﬁbsemigroup. This was demonstrated in example (i) above. The support
of the resulting probability measure will no longer be P, but the corres-
ponding subsemigroup of P. We have to have a subsemigroup, otherwise
s T

nothing will make sense except for the formal sum X X 6i n. uij'
i=1 j=1

We will make a general intuitive remark here which will make sense
(or more sense) later when we further discuss completely simple semi-
groups. Suppose S is a compact semigroup. Then S has a Kernel K. Sup-

pose that this kernel has a finite number of idempatents. Then

K= 8 U G, ..

i=1 j=1 Y
K has as many simple closed‘subsemigroups as there are submatrices of an
s X r matrix. Hence, if we want all the idempotent probability measurcs
on S, we must consider all of these simple subsemigroups, but there are
just a finite number of thesec.

(ii) The following example considers a common semigroup of 2 X 2
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matrices. A direct approach to finding some idempotent probability
measures seems almost impossible. But by using the above results, we can
quickly find a nontrivial idempotent probability measure on this set. We
have considered this example before under the structure of semigroups.

Let S = {A € (R)2 LAl ] < 1} with the induced topology from

(R)z. Then S is a compact semigroup. Define H as follows:

_ _f cos 6 sin ©
H"{A‘(~sinecose)|oie<2}'

H is a subsemigroup of S and furthermore H is simple and closed and hence

compact. Therefore H is a simple compact topological semigroup with iden-
tity (Also HZ G (topologically and isomorphically) where G is the cir-
cle group.) By the above result we get the following. Let P be the
normalized Haar measure on H (as H is a compact group). Extend u to S
as before, that is for all Borel subsets E of S, p(E) = p(E N H). Then
p € M(S) and p ¥ u = 4, by the previous result. (Of course, this could
be verified directly, but it is much more difficult.) The result that
we used above was that the support of an idempotent probability measure
on a compact semigroup S is a simple (closed) subsemigroup of S. As H
is a closed simple subsemigroup of S and since H is a group, we found a
non-trivial idempotent probability measure on S. The trivial one is of
course unit mass on the identity.

Now we know what all the idempotent probability measures look like
on a simple compact topological semigroup haviﬁg only a finite number of
idempotents. They are namely the convex combination of the normalized
Haar measures of the various group components. We also know that if S
is a compact semigroup and € is an idempotent probability measure on the

kernel of S, the € can be extended to the whole compact semigroups S.
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However, there are many other simple compact semigroups other than
those which contain just a finite number of idempotents. These are those
simple compact semigroups which contain an infinite number of idempotents
and we will look at those now.

Let S be a compact simple semigroup and P a simple closed subsemi-
group of S. Then P is compact. One question that we want to consider
now is, what can be said about the structure of idempotent probability
measures, if P contains an infinite number of idempotents such that the
support of these idempotent measure is P? First we will consider the

case when P contains a countable number of idempotents. Therefore:

P=U L = U R
jed el ‘
- U U G, G.. = R.L, 1
iel jeJ 9 i3 7 Bty

Here ¢ # I € w and ¢ # J € w and at least one of I or J has to be equal
to ¢y where w = {0, 1, 2, ... }. In other words, one of the index set .
can be finite or infinite countable. We will consider the case when |
both I and J are countabley infinite. The approach will follow along #
the same lines as that of the finite case.

Suppose that u is an idempotent probability measure on P, then Mspo
(u restricted to Gik) is an invariant positive measure on the group Gik

and furthermore u(Ri) u (Lk) = u(Gik) [9].

Now let uikdenote the normalized Haar measure on the group Gik' Gik
is a group, in fact it is a topological group as P is a compact semigroup.
Recall that Numakura has proven that every minimal ideal (left, right,

_two-sided) of a compact semigroup is closed and compact, and hence every

group, being the product of a compact minimal right ideal and a compact

minimal left ideal is also compact [2] (Lemma 7, page 103 and Corollary



page 107). Hence by Wendel's result [1], a normalized Haar measure
exists on Gik’ even though P contains an infinite number of idempotents.
At this point we should backtrack a little to the finite case. In the

finite case, all the Gik were open, but in the infinite case this need

not hold. In fact if all the Gi are open, then P could only have a

k

finite number of group components. This should become clearer in the
section under the Rees Theorem. The reason why P would only have a

finite number of Gi if all the Gik are open is that then the G,y 's are

k k

open and closed and pairwise disjoint. If we had an infinite number of
open Gik we would immediately have an open covering of P which does not
have a finite subcover and hence violating compactness. Hence P would

only have a finite number of Gik‘s.

Coming back to the case when P has an infinite number of idempotents

(with the restrictions imposed above), consider the normalized Haar m

[

Extend these to all Borel subsets E of S

measures uik defined on Gik' L

by setting u., (E) = u,  (G., N E). Recall that S is a compact semigroup gl
ik ik = ik :
and P ¢S is such that it is simple with a countably infinite number of

idempotents. By the above remark and since

v igl jgl Pk
if Y is an idempotent probability measure € M(S) and C(u) = P, then we
. [e 0} <«
necessarily have that u =2 2 toHik with positive numbers toy satis-
¢} e} i=1 k=1
fying 151 kEl toy = 1.

Again as in the finite case we know uik = €5 Myp S where eij

are the unit mass probability measures on eij £ ij. Now let p = u? ¢

M(S), with .C(u) = P, be in the form of u = b b

o tokMik
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with ¢ ¥ t.k =1, t,. > 0. Then we have the following:

i=1 k=1 ik
2= (% Fotowd- ¥ % ot.uw) ¥ T ot u
= . 1) . . = A TP R U N
i=1 k=1 1K IOy 31Tl =] 1=1 1k 1l
Define y. = b t.. W,
i Kol ik Tik
and 4. = b t., W...
1 1=1 il "1l
(2 2 t. ow.)e(2 2 t.ow.)=(2 i (L u)
i=1 k=1 ROIKT g0 91 TE 121 * j=1
HERTRRT § w0
= .+ H. +
j=1 b g 2
=% ¥ ..
i=1 j=1 %)
' =% ) (¥ .
Consider ui uj (kil tik ulk) (1=1 tj1 qu)
= OZO t. t. . L, * OZO t.,t. . ..+
1=1 il Jlullujl 1=1 i2 JlU12u31
- FOF et w u
k=1 1=1 JEork)
That 1is
(s ¥ (¥ ¥ y= % F 0% FTtot.uop
t.o M. ) ti M, ) = I SR TN T R
i=1 k=1 T oy o IVIY g ke e 1 TROITEKL
But by a previous remark, Hige ujl = Hiqe Hence

(8 Foe oy (¥ Fe ouy=% F F OF%oe ot ou..
i=1 k=1 ik ik J=1 1=1 Jl Jl i=1 J=1 k=1 1=1 ik ik 11

This equation is true for every Borel set in S. Therefore the coeffi-

cients of M., are equal; that is because

1
o) [ne) © o t t. ) - R oy . .
151 jE1 kfl 151 ik j1 Hil izl 151 i1 M1

and hence &e have f Y
' j=1 k=1

Lk Y51 F tip- (&)

+
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Set X t., = 6i and % t .. = Ny then by (A) we have that

t.. = 6. n,. Thus
i

= X )
8! S 6i Ny Wiy where 6i > 0 and n > 0 and

s =% %t =1=%
. i ik -

n, .
i=1 k=1 3 1

o] ©
L ot,, = 1L

i=1 14=1 1 121

Conversely let My = ¥ ¥ 6i Ny My be an element belonging to M(S)

i=1 1=1
where §., n. are positive numbers satisfying $ 5. = ¢ n, = 1,
1 1 . i 1
i=1 1=1
We then have
p2=(% % o6 m w)( % £ 5. n )
= . L) . iy
1 s=1 1=1 1 1 711 2] k=1 9 k Tjk
T E ¥ T 5
=t i M1 %5 Tk Mik

i=1 j=1 1=1 k=1

[es] [s,0] [ee]
= (2 n)e(2 802 2 ny M ) =M.
1=1 1 j=1 i i=1 k=1 i "k ik 1

The question of convergence of the infinite sums in the infinite
case is no problem since all of the above infinite series converge uni- o
formly and absolutely (as all terms are positive), so that rearrangement
in all the series is possible and the sums remain the same. Hence all
the above operations are well defined.
We have only considered one case when P contains an infinite num-
ber of idempotents and that is when both the index sets T and J are
countably infinite. The other two cases which actually is just one case,
and that is when either I or J is non-empty and finite, follows in a
similar manner and thus the case when P has countably infinite number
of idempotents; we get the following result. We summarize this result

as follows:
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Theorem
Let S be a compact topological semigroup and P such a closed

simple subsemigroup of S that contains a countable number of idempotents.

Let P = U U G.. be its decomposition into its group components, where
. . ij
iel jed

I and J are non-empty index sets, both subsets of w = {0, 1, 2, ... }

and at least one equal to w. Let s g denote the normalized Haar measure
on Gik' Then every idempotent E € M(S) with C(E) = P is of the form

C = ... . R
z z Gi nk Map where Gi, n, are positive members satisfy

iel KeJ
ing X §. = % n, =1.
iel ' keJ k
Conversely, if Gi, n, are positive numbers satisfying I 6i =1= Zn,,

iel jeJ J
then .Z .Z 6i n. uij is an idempotent probability measure belong-
iel jeJ
ing to M(S) whose support is exactly P.

As in the finite case, we will consider what will happen if Gi =0
for some i € I. The support of the resulting idempotent probability
measure will be a subsemigroup of P. Intuitively, we can thinlt (this will
be made precise in the section "The Rees Theorem") of P as a set of I x J
matrices. If Gi = 0 for some i € I; then effectively we have a set of
I - {i} x J matrices. Hence no §, can be zero as the resulting probabil-
ity measure will not have as its support all of P .

If S is a compact semigroup, whose closed simple subsemigroups con-
tain at most a countable many idempotents,then we can find all the idem-
potent probability measures on S by simply using the above result over

and over again on each simple closed subsemigroup.

The final case that has to be considered is if P contains an un-
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countably number of idempotents. Suppose we consider the following
definition of summation of an uncountable number of nonnegative num-
K
bers. Define I a = sup { Ioa | v {al, cee 0 k} c I}. This
ael 1=1
definition then gives us that fact, that if £ a < «, then at most
ael
a countable number of the aa's are non-zero. So consider p= I z
: ael Bed
aaB uaB. Then p? = u by the above calculation, where I z aaB =1,
c acl Bed
but C(u) 4 P since most of the a _'s are zero. (A similar remark was

af

made with regard to the finite and countably infinite cases if some of
the tiy # 0.) This means that we can only consider compact simple
semigroups P with at most a countably infinite number of idempotents,
if we want to apply the above result and method of obtaining idempotent
probability measures. If we do consider compact simple semigroups P
with an uncountable number of idempotents and we want convex combina-
tions of the extended normalized Haar measures of the group components
(which still exist), we immediately return to the case of a compact
simple semigroup P having at most a countable number of idempotents. It
is possible to have a compact simple semigroup P with an uncountable of
idempotents as will be shown later. Furthermore it is possible that such
compact semigroup, can have idempotent probability measures on them.

Consider the following example:
Example 8. Let G be any compact group. We will take example 7 and ex-

pand the index sets. The index sets will be the set of all positive

integers. With the multiplication and the particular matrix P extended
to cover the larger index set, we get a semigroup whose multiplication is
associative and continuous. Hence G is a topological semigroup. Observe

however that each Gij is an open and closed and compact subsets of G.
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Therefore observe that G is not compact. But E = g F Gi Ns Wy
i=1 j=1 ]
where b §.=1= ¥ n,, 6., n., all positive and u.. is the normal-
i=1 1 j=1 ) =

ized Haar measure on Gij'g G for all i and j. Furthermore,C(E) =G

and all the idempotent probability measures belonging to M(%) are of
this form. So for some particular locally compact semigroups, the re-
sult proved earlier also holds. In this case it holds since each group
component is compact. Ilowever,for an arbitrary completely simple lo-
cally compact group, the group component need not be compact, in fact
they are generally just locally compact. Furthermore, the only results
on locally compact groups are on commutative locally compact groups.
Notice that we had to have a completely simple locally compact semigroup.
A simple locally compact semigroup need not be a completely simple semi-
group, but simplicity was all that was needed in compact semigroups to
get a completely simple semigroup. As a result, locally compact semi-
groups are more difficult to work with and to find idempotent probabil-
ity measures on them, whereas for compact simple semigroups with at

most a countably number of idempotents, idempotent probability measures
are relatively easy to characterize. The above example does give us a
class of locally compact semigroups for which we can quite easily find
idempotent probability measures.

So now we have considered the case of a simple compact topological
semigroup containing at most a countable number of idempotents. We
have been able to characterize all idempotent probability measures on
such semigroups whose support is the semigroup. Now we want to take
one step further and consider simple compact topological semigroups

that contain an uncountable number of idempotents. In order to do this,



we shall first discuss the Rees-Theorem and how this relates to com-
pletely simple semigroups of which simple compact semigroups are just

a part.
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CHAPTER V- THE REES THEOREM

In the last section we considered a compact semigroup whose simple
closed subsemigroup contained only a countable number of idempotents.
We were able to characterize all idempotent measures on such semigroups.
But when a compact simple semigroup contained an uncountable number of
idempotents, the above method failed to characterize idempotent prob-
ability measures on such semigroups. Hence we must reconsider such
semigroups in order to be able to describe idempotent probability mea-
sures on simple compact semigroups containing an uncountable number of
idempotents. In order to do this we will first consider the Rees de-
composition theorem of completely simple semigroups. Then we will try
to relate our previous decomposition theorem on completely simple semi-
groups to the Rees decomposition theorem. With the Rees decomposition B
theorem we then can give a partial characterization of idempotents
probability measures on a simple compact semigroup, and again this re-
sult will be compared to the previous result in the last section.

Let G be a group and 0 # G. Define G° as follows:

° =6 U {0} and

. - g. * g, if g, G
& " & {01 2ifg}=80rg2=0.

Then G° is called a group with zero. Let S be a semigroup. Similarly

define S° if S has no zero. If S does have a zero then S° = S. Note,
if a semigroup S has a zero, then that zero is always unique. Suppose

0, 0' € S are two zeros, then
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That is 0 = 0' and hence there exists only one zero is S. Let A be a

(left, right, two-sided) ideal of S. A is an 0-minimal (left, right,

two-sided) ideal of S° if {0} c A is the only (left, right, two-sided)

proper ideal, respectively, contained in A. A semigroup S with a zero
element 0 is called O-simple if S? # 0 and {0} is the only proper two-
sided ideal of S. Clearly S%? # 0 implies that S? = S as {0} is the
only proper two-sided ideal of S. Observe that if S is a semigroup
without a zero, then if A is a O-minimal (left, right, two-sided) ideal

of So

, then A - {0} is a minimal (left, right, two-sided) ideal of S

and conversely. A semigroup S with a zero element 0 is called completely
O-simple if S is O-simple and S has at least one 0-minimal left ideal and
at least one O-minimal right ideal. Clifford and Preston [11] (pages

76 to 83) have shown that if S is a completely O-simple semigroup, then

S is the union of its O-minimal left (right) ideals. Furthermore, they
have shown that S is O-simple if and only if S a S = S for all a € S,

a # 0. Also if {R, | i € I} and {L, | A € A} are its 0-minimal right
ideals and its O-minimal left ideals, respectively, then for every i € I

A
Hju for every i, j € I and A, u € A. They have also

and A € I and A € A, Hi = Ri n LA is a (maximal) O-subgroup of S; fur-

thermore Hiu = Hix
shown that every completely O-simple semigroup with identity is a group
with zero. In other words, a completely O-simple semigroup has

" basically " the same properties as a completely simple semigroup
except that a completely O-simple semigroum has a © as one of its
elements. Furthermore, let Hiu and ij be two subgroups derived

from Ri , L]J and Ri , L respectively, then

x 3
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H N, = {0),

Let G° be a group with zero. Let X be any set and for i ¢ X, i ~» a,

(for a £ G°) be a mapping of X into G°. We define I on G° as follows:

_ a. if a. # 0 and a. = 0 j# i
iéx 45 7Y ot if a; = 0 for al1 i X
undefined if a; # 0 and a 0, 1 # k.

Now let X and Y be any sets, by an X X Y matrix over G° we mean a map-

ping A of X X Y into G°. If (i, j) € X X Y and aj; = AU(1,5)), then we

may write A th

.. as the entry of A lying in the i

1]
row and the jth column of A. Let X, Y, Z be sets. Let A = (aij) be an

(a..) and speak of a
1]

X X Y matrix over G° and let B = (bjk) be a Y X Z matrix over G°. If

for every pair (i,k) € X x Z, the sum C.x =j§Y ¥ b,y is defined,

where aij e 6° and bj e G° for all i ¢ X, j Y, k € Z, then we define

k
the matrix product C = AB of A and B to be the X x Z matrix C = (c

ik)

o . o . . .
over G . A matrix A over G  is called row-monomial if each row of A

contains at most one non-zero element of G°. The set of all row- mono-
mial X x Y matrices over G° is a semigroup.

Now we will consider a slightly different type of semigroup of
matrices over G°. Let I and A be arbitrary sets. The elements of I will
be denoted by k, j, k, ... , and thoée of Aby A, u, v, ... . By a Rees

. o . o} .
I X A matrix over G~ we mean an I X A matrix over G  having at most one

non-zero entry. Let A be a Rees I X A matrix over GO, then
(a)iY where a # 0 in the (i, Y) entry
0 if biu = 0 for all (i, u) € I x A,

Now let P = (pki) be an arbitrary but fixed A X I matrix over G°. P is

called a sandwich matrix. Define the binary operation (0), using P, on

. o)
the set of Rees I X A matrices over G as follows:

AODB=AP B,
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It follows immediately that if A, B are Rees I x A matrices, then so is

A O B, Also (0) is associative as

AO (BOC)=AP (BoC)=AP (BP C)

(AP B) (PO

i

(AOB)PC

I

(AoB)OC.
Therefore,the set of Rees I X A matrices over ¢° is a semigroup with
respect to the operation (©). This semigroup is called the Rees I x A

matrix semigroup over the group with zero G° with sandwich matrix P

and it will be denoted by M (G; I, A; P). G is called the structure

group of M®. Notice that for every different sandwich matrix P', we get
a different binary operation on the set of the Rees I x A matrices. Note
that in example (7) and (8) we considered an example where I = A which
were subsets of the integers and the sandwich matrix had as its entries
the identity element of the group for all (i, A) € I x A.

Another approach to the Rees matrix semigroup (as used by M.,Rosen-
blatt, Heble) is to begin with the set GO x I x A consisting of all
ordered triples, where 60 is a group with a zero and I x A are arbitrary
sets. Multiplication is defined by (©) as follows:

(a; i, A) © (b; j, w) = (ap, 5 b; i, W
where P is a mapping from A x I - G°, (from henceforth O is just denoted
by juxtaposition).

Associativity is easily verified. Let 0 = {(0; i, n) l 0¢e G°
(i, w) € I x A}. It is iﬁmediate the 0 is the zero of G° x I x A, No-
tice now that the Paj represents the sandwich matrix and (a; i, A) is

just a Rees I X A matrix. Hence G x 1 x A oM (G; I, A; P).
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Now suppose that P contains no zeros in any of its entries, then
0
M” (G; I, A; P) has no proper zero divisors and hence M° - {0} is called

the Rees I X A matrix semigroup without zero over the group G with sand-

wich matrix P and it will be denoted by M(G; I, A; P). The question we

want to look at is for what P will MO(G; I, A; P) have no proper zero
divisors? A partial answer, as was noted above, is if P has no zero
entries. It is possible, however, to get a complete answer.

A matrix P over a group with zero is regular if and only if each
row and each column of P contains at least one non-zero entry. The Rees
I x A matrix semigroup MO(G; I, A; P) over a group with zero and with
sandwich matrix P is regular if and only if P is a regular A x I matrix
[11] (Lemma 3.1, page 89). Recall that a semigroup S is regular if for
every a € S, there exists a b € S such that a b a = a. A further result
is that a Rees matrix semigroup is O-simple if and only if it is regular
and if so, it is completely O-simple [11] (Theorem 3.3, page 90). Notice
that a Rees matrix semigroup has built in it minimal left ideals and
minimal right ideals. A minimal left ideal is just the subsets of the

form of Rees I x {u} matrices and a minimal right ideal is just the sub-

sets of the form of Rees {i} x A matrices. The notation is not technical-

ly correct, but we use the subsets of the Rees I x A matrices whose iso-
morphic copies look like the above.
Let M° be regular. Then

M° = U L. U {0}
Ael A

where L, = {(a1ik | a€G, i eI} and also

M = U R, U {0}
iel
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where Ri = {(a)ik l aeGand A € A, Notice that the O-minimal left
ideals are LA U {0} and the O-minimal right ideals are Ri U {0} and
LA n L>\1 = {0} () # A)and similarly R; N Ril = {0} (i # i), There-

fore M is completely O-simple if M°

is regular. Furthermore Gix =
Ri N LA is a group and is isomorphic to G. Intuitively
Gy = (@, | & ecl.

The important theorem that was proven by Rees is as follows. A
semigroup S is completely O-simple if and only if it is isomorphic with
a regular Rees-matrix semigroup over a group with zero [1i] (Theorem
3.5, page 94).

Suppose now that we have a completely simple semigroup S, then s®
is a completely O-simple semigroup. It is therefore isomorphic with a
regular Rees matrix semigroup over a group with zere.. S is then iso-
morphic to a Rees matrix semigroup over a group as the zeros of each

"line up'". In some discussions,the writer states that a completely

simple semigroup S is jsomorphic to the Rees Product G x X x Y, where

the multiplication is defined in the same manner as was described in
the alternative way of constructing Rees matrix semigroups (as men-
tioned earlier; that is, the Rees products aﬁd Rees matrix semigroups
over a group are the same), where G is a group and X, Y are arbitrary
sets; sometimes X X G X Y is written instead of G X X x Y. Everything

is still the same, just the first and the second coordinates have been

interchanged. Both ways of writing will be used throughout the remain-

ing part of this paper. Furthermore, if G is a compact topological
group, I, A compact Hausdorff spaces and P a regular A x I sandwich

matrix, then M[G; 1, A; P] is a compact topological semigroup which is
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simple [12] (page 430 to 432). As M is just G x I x A, M is immediately
compact. M has the corresponding matrix topology and as multiplication
is matrix multiplication with a sandwich matrix, it then becomes reason-
able that multiplication is continuous. Hence 1is a compact topological
semigroup.

Now we will show that our previous decomposition into groups of
completely simple semigroups is the same up to isomorphism to the Rees
matrix semigroup. Let us first consider a completely simple semigroup

S containing a finite number of idempotents. Then

s=0 U c...

i=1 j=1 *J _
In this case, the set I = {1, 2, ... , S} and the set A = {1, 2, ... , r}

and the group is Gli' The sandwich matrix is then easily determined by

observing that GaB Gyé = G5+ So consider Pog Take G18 and Gt let

.o -
818 € GlB and 841 € Gal such that ng 841 = %171° But 818> 811° 8q1 € G

and so g18 for some Pgy’ Hence we can solve for Py as

Peo Ba1 = 811
a value in G as G is a group. Thus we have determined the sandwich ma-
trix P. We can, of course, heavily rely on the fact that for all i, A,

I, M, Gik =2 G, . Then G x I X A with the multiplication (a; i, A)

A JH
“(b; 3, W (a p>\j b; i, u) is a completely simple semigroup. Now

(a; i, A) € Gix and (b; j, W) € Gju and (a pkj g; 1, W) ¢ Giu' Then
clearly S'=¢ G x I x A, Hence a completely sihple semigroup containing
a finite number of idempotents is a Rees product. Similarly a completely
siﬁple semigroup containing a countable number of idempotent can also
be written as a Rees product or a Rees I X A matrix semigroup without
zero over the group G with sandwich matrix P.

If S is a simple compact semigroup and hence a completely simple

semigroup, then because S is a completely simple semigroup, S can be
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written as a Rees Product G x X X Y. But since S is compact we know
that G is compact and furthermore that X and Y are also compact and
Hausdorff, as $ is Hausdorff. This then gives us a complete character-
ization of the structure of completely simple semigroups and simple
compact topological semigroups.

One of the questions we are looking at is what are the idempotent
probability measures on compact topological semigroups. We have an
answer if the simple compact topological semigroup contains only a
countable number of idempotents. We now know that a compact simple
semigroup S is isomorphic to the Rees product G x X x Y {(or the Rees
X x Y matrix semigroup without zero over the group G with sandwich ma-
trix P) and S is compact if and only if G, X, Y are compact (Hausdorff)
and G is a topological group. Then E = u X vy x B is an idempotent prob-
ability measure where Y is the normalized Haar measure on G, y and 8
are probability measures on X and Y respectively and E is the product
measure of u, vy, B[12] (pages 430 to 432).

Now, conversely, suppose S is a simple compact semigroup, so that
S =6 xXxY, where G is a compact topological group and X, Y are com-
pact Hausdorff spaces. Let p be a regular idempotent probability mea-
sures, What can we say about ﬁ? Since p is regular we know that u =
E x a x B, where E is the normalized Haar measure on G and d,B are
regular probability measures on X, Y respectively [12] (pages 430 to
432). So for any regular idempotent probability measures on & compact
semigroup we know its decomposition with regard to the Rees product.
Note that if the simple compact semigroup contains only a countable
number of idempotents, that is, the cardinality of X and Y is at most w,

then all idempotent probability measures on the simple compact topologi-
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cal semigroups are regular measures. Now how does the above result com-

pare to our earlier result?
Consider a compact simple semigroup S with a finite number of

idempotents. Then as shown before, any idempotent probability measure

s T s T
on S can be writtenas £ = £ I & mn, u,whereS= U U G
a=1 =1 & £ 0B o= B=1 OF
s T
and £ & =1= I n,and 6_, n, are positive numbers. Recall that
a=1 ¢ g=1 ° e

uaB is the normalized Haar measure on GuB and can alternatively be

written as

Hog ©

(where juxtaposition is convolution and eaj is the unit mass measure).

®o1 M11 €18

Then s T , s T
E= % £ &§ nu,= 52 I & n,e, U, e
o<1 g=1 © B TaB a1 g1 © B "ol "11 T1R
s T
=(z & p. )y, (Z n,e ).
o=1 oo 11 8=1 B T1R
s T
Denote Y, = a§1 6u €.l and Y, = 351 nB elee have

E=vivn Yy
with C(Yl) = {set of all idempotents in Ll}
and C(Yr) = {set of all idempotents in Rl}and Hyq is the normalized HaaT
measure on the compact group Gll' Observe that the cardinality of C(Yl)
is s and that of C(Yr) is r and so if S has a finite number of idempotents,
the idempotent probability measures that we gef on S are the same whether
we write S as a union of its group components or write S as a Rees matrix
semigroup over a.group without zero énd sandwich matrix P. We can find
all idempotent probability measures easier by considering the group de-
compostion of S, but it should be clear whaf the probability measures on

the sets I = {1, ... , sl and A = {1, ... , r} have to be.
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There is one comment that is appropriate here. Consider a completely
simple semigroup S = 8 U G _. Re 1 tl = . .
P group o1 pol b ecall that €08 GBY eyé Gaé S

Schwarz makes a statement that e e need not hold. When we

aB Sy Svs T Cus

first discussed this, this was not explained, but with the Rees matrix
semigroup over a group G without zero and sandwich matrix P, M =

= M(G; I, A; P), this statement can now be éxplained. M is a completely
simple semigroup if and only if P is regular (that is P has at least one
nonzero element in each row and column of P). This sandwich matrix P
will determine the multiplication of the eiements of M. This sandwich
matrix need not take two idempotent elements into another idempotent
element as the entries of P are arbitrary so long as each row and column

has one non-zero entry. For example, if P just has the identity element

of the group on the diagonal, that is P,, =

T Pid = 85

= e, then eij €k ik

Otherwise anything could happen.

Now we know that every compact simple topological semigroup S can
be written as the direct product of a compact group G and two compact
Hausdorff spaces X and Y [12] (page 430 to page 432) and thus some of
the idempotent probability measures of such a semigroup S can then be
easily described. Let u be the normalized laar measure of G and «,B re-
gular probability measures on X and Y. Then the product measure
U X a x B.is an idempotent probability measure on S [11]. As u is unique
and fixed, the idempotent probability measures on S of the above form
depend only on the probability measures o and B on X and Y, respectively,
And of course we saw this when we considered simple compact topological
semigroups S containing an finite number of idempotents as the only

condition on the coefficients of uij was the éi and nj be positive for
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s r

all i and j and % Gi =1= 2 n,. Notice that all this says is that
i=1 j=1

o is a probability (discrete) measure on the set {1, 2, ... , s} and

B is a probability (discrete) measure in the set {1, 2, ... , r}. Hence

E=aXxyu:xBis an idempotent probability measure on

{1, 2, ..., s} xGx{1,2, ... ,r} [15].

For arbitrary compact Hausdorff spaces X and Y and the compact group
G, there is no condition to tell us that all the idempotent probability
measures on S are of the form U X o X B. Stefan Schwarz makes the fol-
lowing statement: [15] (pages 121 - 122)

"If T is a closed simple subsemigroup of S, there need

not exist in general an idempotent £ e M(S) with C(E) =
T. But such an idempotent always exists if T contains

only a finite number of idempotent elements."

Thus we have been able to determine idempotent probability measures
on some simple compact topological semigroups. Now that we can dectermine
some idempotent probability measures on a simple compact semigroup, we
are in a position to determine some idempotent probability measures on
compact semigroups. We first determine the kernel of a compact semigroup.
Thiszalways exists as every compact semigroup has at least one minimal
left ideal and at least one minimal right ideal and thus we are assumed
of a minimal two-sided ideal which is unique. Then we determine the
idempotent probability mecasures, if this is possible, on the kernel. Then
we can extend these measures to the whole semigroup. They will still
be idempotent probability measures and the support will always be the
kernel of the semigroup. Furthermore, if we can find any other closed

simple subsemigroups of the compact semigroup, then we can also define
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idempotent probability measures on these semigroups and extend them to
the whole semigroup and these as well will be idempotent probability
measures on that semigroup. ?

Now that we know what some of the idempotent probability measures
look like, we again turn our attention to the question of the convergence

| . (n) 7 LW
of the following sequences {u- °} and {1/n I } where
new i1 new

i is any probability measure on a compact group. By studying the con-

vergences of these type of scquences we will get a partial answer to

the question of stable laws on a compact semigroup.
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CHAPTER VI - CONVERGENCE OF PROBABILITY MEASURES

Finally we are ready to describe the Central Limit Theorem for com-
pact semigroups. As was mentioned in the iﬁtroduction, in one case we
consider a probability measure U on a compact topological semigroup S

and we asked whether or not the sequence {u(n)} _converges. We now

neEw
want to describe "the conditions under which this sequence will converge.
If it converges, then its 1limit is a stable law. In this section as well
we will describe some of the stable laws of an abstract compact semi-

group.

Let S be a compact semigroup and y a probability measure on S. Then

U(n) will be defined inductively as follows:

T L TN T ARV R TRV DTG B D

= | ¥ u(n). Note that convolution is an associative operation.
Now consider the following sequence Y, = 1/n igl p(i), n=1, 2, 3,

(This can be thought of as taking the average of the probabilities of
various samples, or if we compare this to the convergences of a sequence
of real numbers, this would be a Cesaro Sum.) Rosenblatt [13] (Theorem
7, page 193) has proven ;he following amazing fact. If W is any prob-
ability measure on a compact topological semigroup, then the averages

2. 1

Y, converge in the weak star topology to an idempotent measure y (Y
which also satisfies the relation

Xy =y ¥ W=7,
Furthermore (Rosenblatt [13] Lemma 13 and Theorem 8, page 194) the mass

of the sequence of the probability measures 1, concentrates on the kernel
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K (every compact semigroup S has a kernel as every compact semigroup S
has at least one minimal left ideal and at least one minimal right ideal
and hence a minimal two-sided ideal which is completely simple). As

n - «; that is given any open set G with K © G and any fixed € > 0,
there is an m sufficiently large so that for n > m, yn(G) >1 -€
Therefore, the support of the idempotent probability measure vy =

n .
lim 1/n % u(l) is the kernel of §. If the kernel K of S contains a

>0 i=
ginite oi iountable number of idempotent elements, we then know exactly
what the idempotéﬁt probability measures look like as was shown in
Chapter IV. We also know exactly what K looks like,
Before we continue we would like to return to compact groups. Ulf
Grenander [2] (Corollary, page 107) proved that for a given non-trivial

(n)

probability distribution y, the limit of u as n »> o exists if and
only if C(u) is not contained in any coset of any closed proper, normal
subgroup of G. The limit of u(n) is the normalized Haar measure on G.
Let G be a group and H a subgroup, then gH is a left coset of G for any

g € G ~H. Notice that if y and y are probability measures on G satis-

fying the above condition, then 1im_u(n) = lim Y(n)
N nro

is the normalized

Haar measure on G as G is a compact group and the normalized Haar meca-
sure is the only non-trivial idempotent probabilitf~measure on G. So

any number of probability measures satisfying the above condition will
have the same limit. This then gives us an easy condition to check for
probability measures that will converge on a compact group. So what are
the non-trivial stable laws on a compact group? They are, the normalized
Haar measure on the compact group, and the trivial idempotent probability

measure on the compact group. (More will be said later about the Domain
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of Attraction question.)

Up to now, we have been successful in extending results from compact
groups to simple compact semigroups, as simple compact semigroups are
just the disjoint union of isomorphic compact groups. Can we extend the
above result to compact topological semigroups? Rosenblatt [13] (Lemma
14, Theorem 9 and Corollary, pages 194 to 196) has given us a necessary
and sufficient condition for u(n) to converge, where U is a probability
measure on a compact semigroup. First, however, we must clarify a few
notational conven£ions that he uses. Recall that a compact semigroup S

has a unique kernel K and K = G x X X Y, where G is a compact group and

X and Y are compact Hausdorff spaces. Multiplication is defined as

(g;vx, y) and t = (g'; x', y'):

]

follows for s

+

s =t= (g x,y) = (g x",y)= (¢ &y)egxvy)

where (xy) is a continuous mapping of X X Y into G. This continuous map
is just the (xy)th entry in the sandwich matrix, which was mentioned in
the construction of the Rees matrix groups. Now we can state the result
of Rosenblatt [13] (Lemma 14, Theorem 9 and Corollary, pages 194 to 196)
as follows: "Let Y be a regular probability measurc on S whose support

(n)

generates S. The sequence of measures Y will not converge in the
weak star topology if and only if there is a proper closed normal sub-
group G' of G such that XY ¢G' and the suppoft of vy is contained in

(G x X x Y)'l (gG' x X x Y) where g € G and g ¢ G'." Above we mentioned
that (xy) is a continuous mapping into G. Actually the mapping is

p:{X xY~>G and we just write (xy) instead of ¢ (x, y). So XY =

= {xy i x e Xand y € Y}, XY ¢G' just means that ¢ (X x Y) ={¢( (x, y))[

(x, y) € X x¥Y }is contained in G'. Later on we will show that this re-
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sult by Rosenblatt is an extension from compact groups, as shown by
Grenander, to compact semigroups.

Now we want to derive several particular results from the main
result mentioned above. Consider the case where G!' = {e} and ¢(X x Y) =
= {e} (that is ¢((x,y))=e for all (x, y) € X x Y). In order to get
another result, we must explain what (G*' X X X Y)-l is and we must
recall a few definitions. Two clements a and b of a semigroup S are
said to be inverses of each other if

aand b ab =b.

aba
An element a in a semigroup S is regular if a € a S a, in particular, a
regular element b of S also has an inverse namely ¢ = x b x where b = b
b x b since

bechb

b(x b x)b

{b x b) (x b)

b xb

=b

and also ¢ b ¢ (xbx)b (xbx)

x(b x b) (x b x)

x b(x b x)

1

x(b x b)x

X b x

]

= C.

Since by definition any completely simple semigroup S is a simple semi-
group, we obscrve that for any a € S, S = a S a and hence we immediately
deduce that S is regular. (A semigroup S is regular if every element in
S is regular.) Therefere,cvery element in S has an inverse (if S is sim-

ple). In general, an inverse is not unique. But a completely simple

e
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semlgroup, that is not a group, does not have an identity, as a complete-

ly simple semigroup with identity is a group. Let T be a subsemigroup

of S, then T‘-1 is the set of all inverses of all elements in T. Coming

back now to the above, we have the following. By the Rees Theorenm

(and where G' < G and is closed), G' x X X Y is a completely simple

semigroup, hence a regular semigroup and hence -(G' x X X Y)_l exists.
Now suppose &((x,y))=e for all (x, y) € X x Y. Now G' just has

to be a proper normal closed subgroup of G. Consider (G'* X x Y)—l

(gG" x X X Y) for some g € G~ G'. If ¢(X, Y) = {e}, then for s =

(g; x, y) and t = (g'; x', y")

s «t=(g; x,y) (g x',y")

(g x', ylg's x, ¥y")

(gg's x, ¥y").

What however is (G' x X X Y)_l? The claim is that

((x'y)—lg_l(xy‘)_l ; X',¥y') is an inverse of (g;x,y) where ¢((x,y))=xy .

Recall that if a,beS and S is a semigroup then a is an inverse of b if
and only if aba = a and bab = b .

-1 -1 -1
So we have (g; x, y) « ((x'y) ~ g = (xy") "5 x', y') « (g; x, y) =

ey) (' e ey h g xo M)

(g; x, ¥).

Also
() Loyt 5 Xy ey, ) () g ey T xty ) =
e I O R D I e UM RO R S C D I a)
N I S A I SR

Therefore (g5 %, ¥) and ((x'y) ™% g% ()% x', y') arc inverses of
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each other. Recall that in a semigroup without identity, an element can
have many inverses, if it has any inverses. In this case (g; x, y) has
as many inverses as the cardinality of X X Y. Recall that XY ¢ G' and
hence (x'y)“1 (x'y) € G' and therefore ((x'y)_l g_l (xy'); x', y9) ¢

G' x X x Y. That is all inverse of clements of G' x X x Y are elements
of G' x X x Y. That is (G' x X x Y) ' ¢ G' x X x Y. But similarly for
any (g; x, y) € G x X xY, ((x'y)_l g—l (xy')_l; x', y') e G' x X x Y.

Hence (g; x, y) is therefore an inverse for ((x y)_l g_l (xy')—l; x', y)

and therefore (g;-x, y) € (G' x X x Y). Hence G' x X x Y < (G'x X x Y)_1

and thus (G' x X xY) = (G' x X x Y)—l. This means that
(6! % X x Y) le(gGt x X x ¥Y) = (G' X X X Y)+(gG' X X X Y)

Now we are assuming that ¢(X x Y) = {e}. This if s ¢ G' x X x Y
and t € (gG' x X x Y) we have the following where s = (g'; x, y) and
t=(gh; x",y")

s =t = (g'; x,y) * (gh; x', y")

(g'(x'y) gh; x, y")

(g'gh; x, y')

But G' is a normal subgroup of G and hence gG' = G'g and hence
g'g = gg''

for some g'' € G'.

Thus

wn
.

+
1

(g'gh; x, ¥')

(gg''h; x, y').

Hence we can conclude that é t e g x X XY and so (G' X X X Y)*
(gG' x X x Y) <éG' Xx X x Y. But e e G' and (e; x, y) * (gh; x, y')=
= (gh; x, v') and hence (G' x X x Y) (gG' x X x Y) = G' x X x Y.

So Rosenblatt's result [13] (Lemma 7 and Theorcm 8 and Corollary,
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pages 194 to 196) for the case ¢(x, y) = e (for all (x, y) ¢ X x Y) 1is
as follows: Let y be a regular probability measure on a compact topolo-
gical semigroup S whose support generates S. The sequence of measures
of Y(n) will not converge in the weak star topology if and only if there
is a proper closed normal subgroup G' of G such that the support of vy

is contained in (gG' x X x Y) for some g € G ~ G'. If the only proper
closed normal subgroup G' of G is G' = {e}, then the support of y must
be contained in ({g} x X x Y) for some g ¢ G, g # e.

Another question we want to discuss is whether or not Rosenblatt's
result is an extension of Ulf Grenander's result [17] (Theorem 3.2.4,
page 67). One condition Grenander did not mention was that the prob-
ability measure on the compact group did not have to be regular. If
we note, however, that any probability measure on a compact group is al-
ways a regular measure, we immediately have that condition. So the
above result is an extension of Ulf Grenander's result as for compact
groups, ¢ ({x}, {y}) (if one thinks it this way) is always the identity.
The group G x {x} x {y}, when G is a compact group, is isomorphic and
homeomorphic with the cecmpact group G. Unfortunately ¢ (x, y) need not
be equal to ¢ all the time; it can éssume other values in G. The result
however is an extension of Ulf Grenander's result.

In the general case, just so that Roseunblatt's result is stated in
positive terms, the result is as follows. Let y be a regular probability
measure on S whose support generates S. Then the sequence of probability
measures Y(n)will converge in the weak star topology if and only if
therc is no proper closed normal subgroup G' of G with XY <G' such that
the support of y is contained in (G' x X X Y)*l (gG' x X x Y) where g

is some clement of G not in G!'.
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A little while ago we compared the convergence of probability mea-
sures to summing sequences of real numbers. One major result is that
every summable sequence is Cesaro summable and the two sums are the same.
For probability measures we have a similar result. Not all probability
measures U have the property that the sequence y(“) converges, but for
all probability measures y, the sequence Y, = 1/n g u(i) does con-

i=1
verge. The limit measure for this case is an idempotent probability mea-

(n)

sure. The sequence u need not converge, but if it does converge then

lim u(n) = lim My [13] (Paragraph #2, page 195). That tells us that if

N0 n-oo
the sequence of probability measures u(n) converges, the limit is an
idempotent probability measure.

So what are the Stable Laws on compact topological semigroup? They
are simply the idempotent probability measures. By the previous work on
idempotent probability meésures, we know what these idempotent probabil-
ity measures look like by considering the Rees product of any closed sim-
ple subsemigroup of the compact topological semigroup.

We are considering one other question and that is the Domain of
Attraction question. This question deals with the problem of determining
all probability measure U on a given compact semigroup S such that the

(n)

sequence of probability measures u will converge to a given stable

law or idempotent probability measures. To state which probability mea-
sures y yield u(n)converging to a given stable law is rather difficult,
but we can determine whether or not g(n) for a given probability measure
M will converge to some stable law. This is the main part of Rosenblatt's
result [13] (Lemma 14, Theorem 9 and Corollary, pages 194 to 196) which
gives us a condition on the convergence of a sequence of probability mea-

()

sures Y- °, given the probability measure
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We will now illustrate this result by considering a few examples.
Thus we will get a class of groups (compact groups) such that if we
form the Rees product using compact regular spaces X, Y and u is a prob-
ability measure defined on G x X x Y, then the sequence {u(n)}n € W will
also converge.

There is one other point that should be made before we discuss
these examples and that has to do with the question of Domain of Attrac-
tion on Compact Groups. As there exists only one non-trivial idempotent
probability measure or stable law, any probability measure u that sat-
isfies Ulf Grenander's result is an element of the Domain of Attraction
of the normalized Haar measure. So for Compact Groups, the Domain of
Attraction question is fully answered, but this appears difficult to

answer in the case we have compact topological semigroups.

..Eﬁ -
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CHAPTER VII1 - EXAMPLLES ON THE CONVERGENCE THEOREM

Now that we have the result by M. Rosenblatt, we want to consider a
few examples, to see what it means for special cexamples. The result was
as follows: Let y be a regular probability.measure on S whose support
generates S. Then Y(n) will converge in the weak star topology if and
only if there is no proper closed normal subgroup G' of G with XY ¢G!
such that the support of y is contained inv

G' x X x )b (g6t x X x Y) ‘

where g 1s some element of G not in G'. (K = G x X x Y) where K is the
kernel of S).

Let T be a subsct of a semigroup Q. The semigroup generated by T
is the set of all products of a finite number of elements of T.

o

. B o, . o o
ie. T = {al 1 +a,"2 ... a™n | a, €T, a, € {1, 2, ...}, i=1, ... n}.

In the first example we start with an arbitrary compact topo-
logical Hausdorff group and arbitrary X and Y compact Hausdorff spaces.
We aefine the function ¢: X x Y » G by ¢((x,y))=e ; we want to consider
what happens if we consider the clesed normal subgroup G' = {e}. We will
use the convention that for (x, y) € X x Y, xy = ¢((x,y)) . Thus as xy = e
for all (x, y) € X x Y, XY = {e} and hence XY <G'. This will lead us
to a particular class of compact groups for which, for every regular prob-

(n)

ability measure Y, the sequence Y will converge. It will also give us
a class of compact groups for which the opposite is true to a certain de-

greec. Then we will restrict out attention to the simple groups. We will



study to see what will happen to a probability measure y on a simple
group. The answer is not quite as simpie as onc would expect and we will
show why. Finally we will consider a concrete eiample of the above.

Example 1

Let G be a compact Hausdorff group and X and Y compact Haus-

dorff spaces. Define the multiplication on G x X x Y as follows:

(15 x5 ¥q) = (85 X505 ¥y) = (g1 X, ¥y 855 Xy ¥y)
where ¢((Xx,y))= xy = e for all x ¢ X and y € Y and e is the identity of
G; that is, (g;3 X, y,) * (855 X55 ¥,) = (88,5 X5 ¥,). lLet ubea
regular probability measure on G X X X Y such that the support of u gen-
erates G X X x Y., Let G' = {e}, then G' is normal and closed in G. "
Consider the following:

G''x X xy ={e} xXxY

{(e; x, v) | xe X, y ey}

fe; x, 71 = {(e; X5 Y) | x; e x}
since (e; x, y;) (e; x, y) = (e x, ¥)

= (e; X, ¥) '

-1

Hence (G' x X x Y) {(e; X, y)-l | xeX, y € v}

Hle; x, y) | xeX, yeY}
= G!' x X xY.
Let g ¢ G~ G'; that is, g # e,

then gG'x X xY = {g} xX xY

{(g; x, y) | xeX, yeY}

H

Therefore (G' x X X Y)‘l gl x X xy) = (G' x X xY) ({g} xXxY)

X

gl x X x ¥,

1)

Suppose now that the support of u is {gl x X x Yy = gG' x X x Y. What
set does {g} x X x Y generate? The set {g} x X x Y generates the set

<g> x X x Y ='{(g(n); X, y) | n=1, 2, , x € X, y € Y}. Recall



that ¢((x,y))=e for all x € X and for all y € Y. Recall that the sup-
port of U generates our compact semigroup which is G x X x Y. Therefore
G x X xY=<g>xXxY. Iftwocompletely simple semigroups arc equal
having the same X and Y then the groups are also equal, that is, G = <g>
[13] (#(64), page 195).

<g> = {g" | n=1,2, 3, ...}.
Due to the compactness of G, there exists a positive integer n such that
gn = e, so that G is a finite cyclic group.and hence it has the discrete
topology. What does this mean? Let X, Y be arbitrary compact Hausdorff
spaces and Y a probability measure on the Rees Product G x X x Y with
multiplication as above, such that the support of p generates G x X x Y,
Then if the support of p is contained in {g} x X x Y for some g ¢ G,

gt e, u(n)

will not converge to an idempotent probability measure on

G x X X Y. This gives us a class of compact semigroups for which the
sequence {u(n)}n cw will not converge. Notice that X and Y could have
been any compact Hausdorff space. G however had to be cyclic. Notice "
though that the support of 1 had to be {g} X X x Y with g generating G. |
Suppose Hy is a probability measure on G x X x Y and the support of y,

is {gl} x X x Y and g1 does not generate G; then p does not satisfy the
conditions of M. Rosenblatt's result and.we cannot conclude anything

about the- convergence of the sequence {ul Just one other con-

(n)}
n

€ w

clusion can be drawn and that is there do not exist compact groups which

are infinite cyclic.
Now suppose that G is a compact topological group with a probability

measure M defined on G X X X Y whose support generates G X X X Y, where

X and Y are arbitrary compact Hausdorff spaces. Furthermore suppose that



the support of u is contained in gG'x X x Y, where G' = {e} and g € G,

g # e. If the support of W gencrates G x X X Y, then as noted above, G
is finite cyclic. If G is not cyclic and not finite then, the normal
closed subgroup G' = {e} does not satisfy the conditions of M. Rosenblatt
theorem. This means for any compact group which is not finite cyclic, we
do not-havc to check the closed normal subgroup G' = {e}. We can also
conclude that if G is not a finite cyclic group but still a compact topo-
logical group and u is a probability measure on G x X x Y whose support
generates G X X x Y, then the normal subgroup G' = {e} containing XY

does not satisfy the conditions that the support of i is contained in

(G' x X x Y)_1 (gG'" x X xY), for any g € G, g # e. For otherwise G

would be cyclic and if the support of U is contained in (G' x X x Y)'1
(gG' x X x Y) for some g € G~ {e}, the sequence {u(n)}n ¢ Will not
converge.

Let G be a group. G is simple if and only if G has only the
two trivial normal subgroups namely {e} and G where e is the identity of
G. Consider first the groups that are finite and cyclic. Scme of these
groups are simple and they are thosé groups of prime order. The others
are not simple since they have subgroups. As finitp cyclic groups are

Abelian, all subgroups are normal. We discussed this case in the last

example. We saw that if the support of a probability measure u was

{g} x X x Y for some g # e then the sequence {ﬁ(n)}n e w did not converge.

Now suppose that the support of p is ({gl} x X xY) U ({gz} x X % Y)
where gy # e and £, #eand g, g,eGa finite cyclic group of prime

order. Then there does not exist an element g € G such that the support
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of u is contained in {g} x X x Y, Hence the normal closed subgroup {e}
does not work and the sequcnce{u(n)}n e, comverges as {e} is the only
normal closed subgroup properly contained in G.
Consider now all simple compact groups which are not finite cyclic.

Then by example 1 and the conclusion in Example 1, the normal closed sub-
group G' = {e} does not satisfy the conditiéns in Rosenblatt's result.
But G' = {e} is thc only normal closed subgroup of G not equal to G
since G is simple. Therefore if X and Y are compact Hausdorff spaces and
W is a regular probability measure on the ﬁecs product G x X x Y for
some continuous map xy -+ G and the support of p generates G x X x Y then
(n) }

n

the sequence {u does converge to a probabiility measure say C.

E is therefore an idempotent probability measure. This then enables us
to describe a big class of compact topological semigroups and regular
probability measures p on these semigroups for which the sequences
{u(n)}n o comverges. The compact topological semigroups which we can
have are generated by all simple compact groups which are not finite
cyclic and any arbitrary compact Hausdorff spaces X and Y together with
any regular sandwich matrix. Just note that all regular probability mea-
sures W on these compact semigroups whose support gencrates the whole
semigroup are in the Domain of Attraction of some stable law (which are
the idempotent probability measures).
Example 3

Let G be a compact group and X = Y = {x}. Therefore the map-
ping, mapping X X X » G defined by ¢]is continuous since ¢(x, y) = h for
some h € G. We then get the following Rees product, G x {x} x {x} with

the following multiplication:

(gp3%, x) = gy X x) = (g 6(x, x) gy5 x, X) = (g, hgys x, x).
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Notice that G is homeomorphic to G x {x} x {x} but is not necessarily
homomorphic to G x {x} x {x} unless ¢((x , x))=e. To show that G is not
homomorphic to G x {x} x {x} we just use the following natural map:
6(g) = (g; x, x) for all g € G.
O(eg) = (eg; x, x)

-1
(h hg; x, x)

0! x, g x, x)
(ﬁ'l; X, X) + (g; X, X)
oth™l) - 6(g)

B(e) - 6(g)

(e; x, x) * (g; X, x)

(e o(x, x) g; x, X)

= (e h g; x, x)
= (h g; X, X)
= 0(hg)

Since 6(g) # 9(h g), 6 is not homomorphic unless h = e.

So let us consider the case when ¢(x,x)=e. Then G is homeomorphic
and isomorphic to Gx{x}x{x}. For this example Rosenblatt's result takes
the following form: Let p be a regular probability measure on G x{x}x{x}
whose support geﬁerates Gx{x}x{x} . The sequence of measures
u(n) will not converge in the weak star topology if and only if there
is a proper closed normal subgroup (proper indusion) of G such that

{x} {x} = {xx}, {¢(x,x)} ¢ G' and the support of y is contained in
(G' x {x} X'{X})_l (gG' x {x} x {x}) for some g € G ~ G'. However
G =6 x {x} x {x}. Consider (G' x {x} x {x})™! (g6* x {x} x {x}) =

(G')_1 gG'. As G' is a subgroup (G')'1 = G' we see that

6)™! gG6' = G'gG!

gG'g-lgG' (as G' is normal in G)
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gG'G!*

= gG'.
So we finally replace the last statement of the result as follows:
""the support of u is contained in gG' for some g € G ~ G'."

Putting all this together for the special case when ¢(k, k) = e and

X =Y = {x} we get the following result. If u is a regular probability
measure on a compact topological group G whose support generates G,

(n)

then the sequences of measures U will not converge in the weak star
topology if and only if there is a proper closed normal subgroup.G' of
G such that the support of u is contained in gG' for some g € G ~ G*'.

We noticed that Ulf Grenander [17] has proved the same result
just using compact groups. His result is as follows:

"For a given probability distribution P the limit of P(n) n->
exists if and only if the'support of P is not contained in any coset of
any closed proper, normal subgroup of G. The limit of P(n) is the
normalized Haar measure on G." Hence the result by M. Rosenblatt is
a generalization of the result by Ulf Grenander.

We now give some examples of this:
‘Example 4
Let us consider a concrete example of a finite cyclic group
G of prime order and also compare the convergence (or divergence) of
a probability measure ﬁ of ﬁ(n) and 2 !

i=1
a(3) (the group of order 3 under addition as o(3) is a field).

(i)/n.

Let G

= {0, 1, 2}

The addition table is as follows:




+ 0 1 2
0|0 1 2
1 1 210
21210 1
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Let G have the discrete topology and define.a probability measure on

G as follows:

H(0) = 0 = p(1)
p(z)y =1
Let X =Y =

{x} Qith ¢(x, x)

0.

Then G == G % {x} x {x} where multiplication in G x {x} x {x} is

(g5 %, x) + (g3 x5 x) = (g + gy3 %, X),

The support of U ='{2}. The support of u

fore, G' = 61 and hence

Gt x {x} x {x}) + (g + &' x {x} x {x})

If we let {g} = {2}, then the support of M

Now we will calculate \

(2)

u

(3) (4)

s H s

Hence we will only consider G.

g

enerates G. G' = {0}. There-

G7 + (g + GY)
Gt + (g + G")

g + G!
gl

= (Gt X X X Y)’l + (gG' X X xY)

{2}.

Recall that for any two

probabili%y measures A, Y on a compact semigroup, the convolution of A,

vy is defined as follows, where B is a Borel set:

A+ Y(B)
@) {(x, y) |
M) {(x, y) |
() {(x, ) |

>~ b |

e

0}
1}
2}

H

1

{(x, y) |'x +y e B}

{0, 00, O, 23, (2, 1}

o, 1), (1, 0, (2, 2)}

{(0, 23,

2

., 0), (1, 1}



Hence u * p{0}

wxou{(, 0, (1, 2), 2, 1}

ux u{(, 0)F + wxu{(l, 2+ uxu{(2, 1}

0+0+0

= 0,
woxop {1} = uxp {0, DY+ uxu{QA, 0O+ uxu {2, 2)}

=0+ 0+1

wxp {2 = uxp {0, 22} + uxpu{ @2, Ok pxyp{d, D}
=0+0+0
=0

Therefore, u(2){0} = u(z){Z} = 0 and u(2){1} =1,

Now,
b w10 = 0@ i t, 01+ w® <t 91+ 0 < i,
=0+ 1+0
=1
u(z) xp {1} = u(z) xu {(0, 1)} + u(z) xp {(1, 0)} + u(z) x u{(2,2)}
=0+ 0+0
=0
W 23 = 0@ on o, 23« 0P wu (2, 03 0@ xuta,
=0+ 0+0
=0
Therefore 1 {13 = 123 = 0 ana 1 {0} = 1.
o u® oy = w® w0, 01 1@ xu L 291+ 0@ uie,nd

0+0+0

1

=0



(3) (3)

i

x u {1} xu {00, D} + u® xy {(1, 0)} + u(s) x u{(2,2)}

H 9l
=0+ 0+0
= 0

WS xu2r 2w uto, 23 0B <t o) « 1@ xouta, )
=1+0+0
-1
Therefore, 1" {2} = w{2} = 1 and
w0 = Wy -0 = w1 = wlo).
Clearly then by induction

L 10 :_{ 1ifn =0 (mod 3)

otherwise

o

Y

u(n){l}

1 if n =z 2 (mod 3)
0 otherwise

(n) _ 1 ifnz1 (mod 3)
w2k - 0 otherwise
(n) e @)
Clearly the sequence U does not converge. Define Y, = I w7 /n.
i=1
We need consider only one Borel set, namely B = {0}.

N €D
v, {0} = = w {o}/n.

i=1
3k
Case 1. YSk{O} = ¥ k/3%k=1/3, k =1, 2,
1=l 5
Case 2. Yoy 1{0} = ¥ k/(3k+1) » 1/3 as k »w, k =1, 2,
i=1
3k+2
Case 3. Y 2{0} = % k/(3k+2) > 1/3 as k >, k =1, 2,
i=1

Hence lim y {0} = 1/3.

-0

Similarly lim Yn’{l} = lim T, {2} = 1/3 and thereforc lim Y, =Y

n->o n-eo n-ro
where Y{g} = 1)3, g € 0(3).
Notice that y is an idempotent measure and is the only non-trivial
idempotent probability measure on G (= 0(3)). Observe that Y(n){O},

n=12,3, ..., does not converge in the usual convergence, but does
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converge in the Cesaro method.

So in a finite cyclic group we can get measures U such that u(n)
does not converge, even in a finite cyclic group of prime order. (that
is, a simple cyclic group). However,as mentioned before, for a simple
group which is not finite and cyclic, for all measures u whose support

(n)

generates the group, u will converge and the limit is an idempotent

probability measure (that is, a stable law).
Example 5
Let G be the unit circle, with center at the origin, with the
induced topology of thé plane. Let g be a point on the unit circle.
It will be represented by the angle between the line joining g and the

origin and the positive x-axis. Addition is then defined as follows:

6+6, if 6 +0_ < 2w

Let 6, 6, € G 9991={e+el-2nifei+elzzﬂ

(With the above representation G = { 6 | 0 < x < 2r}). The addition is
just 6 @ 61 = 6 + 61 (mod 2m). With this addition G is a compact topolo-
gical group. Furthermore it is an abelian group, so that any subgroup
of G is immediately normal.

Let us consider all subgroups of G. First we will consider all
finite groups. Let G‘n be a finite group, having at least two members,
then G = {0, 2n/n, 2/n-2m, ..., (n-1)/n<27} for some positive inte-
ger n. These subgroups are all cyclic (that is, each subgroup has at
least one element, namely 27/n for all n, that will generate the sub-
group). Suppose X =Y = {i}. Then G'  x {x} x {x} is in 1 - 1 corres-
pondence with G' as mentioned earlier. Consider (A x {x} *{x})’l’
(gG'n X {k} X {k}) where g € G~ G'n. Since X = Y = {x}, then XY is a

singleton where XY CG'n. Therefore ,it is easy to see that
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(N x {x} x xh7! = Gt x {x} x {x}. 1In any case G x {x} x{x} L.
(g6' X {x} x{x}) can have only a finite number of elements as G'_ is
finite. Suppose now that p is a probability measure on G x {x} x {x}
such that the support of p generates G x {x} x {x} and the support is
contained in (G' X {x} x {x})-l-(gG'n x {x} x {x}) for some g € G ~G' s
then we immediately get a contradiction. The support of p has only a
finite number of elements and the set generated by the support of u
still only has a finite number of elements, but G has an infinite num-
ber of elements. Therefore,no such u as described above exists. We
therefore must consider infinite subgroups. But there are no infinite
ordered subgroups of G that are closed.

Thus we have shown the following. Let ﬁ be a probability measure
on G x {x} x {x} whose support generates G X {x} x {x}, then there exists
no proper closed normal subgroup G' of G with {xx} <G' such that the
support of | is contained in (G' x {x} x'{x})-l‘(gG' x {x} x {x}) where
g is some element of G not in G'. Therefore, for any probability mea-
sure jy on G x {x} x {x} whose support generates G x {x} x {x}, the se-
quence'{u(n)}rl - will convefge to a probability measure in the weak
star topology. This measure will be an idempotent measure whose support
is G x {x} x {X} (as the support of an idempotent measure is the kernel
of the semigroup G x {x} x {X} which is G x {x} x'{x}). Also note the
idempotent measure will always be the unormalized Haar measure as
G x {x} x {x} is a group.

Now consider the case when X and Y are arbitary compact Hausdorff
épaces. Recall that G x X x Y can be thought of as a matrix (Rees mat-

rix). If we consider the finite subgroups of G (as before), then the set
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(G' x X><Y)—l (gG" x X x Y)
will have only a finite number of elements in each xy coordinate com-
parcd with an infinite number of clements in each xy coordinate of
G X X XY where XY <G'. The infinite subgroups of G as noted earlier
are not closed. Hence, as before, if w is a probability measure on
G x X XY whose support generates G X X X Y, thén there exists no
proper normal closed subgroup G' of G with XY <G' such that the support
of W is contained in (G' x X x Y)—l'(gG' x X x Y) where g is some
element of G not in G'. Therefore, for any probability measure | on
G X X XY whose support generates G X X X Y, the sequence {u(n)}n -
will converge to a probability measure in the weak star topology.

Let G bé the unit circle as above and X and Y two arbitrary com-
pact Hausdorff spaces. The question arises, what aré some of the sub-
sets of G ¥ X x Y that will generate G X X X Y? (Let S be a topologi-

cal semigroup and T a subset of S; then the semigroup is

U= U T" where the bar represents closure and

T = X Xyt atx | x. €T i=1,...,n}.)
To put it another way,what does the subsect éf G X X X Y generated by
T x X xY, given some T <G, look like? First we will show that a set
T x X' x Y' generates a set Tl x X' x Y' where X* <X and Y' ¢ Y.
Consider first G * X' x Y' where X! ; X and Y! ; Y. Then X' x Y! ; X xy
and there is no possibility of X' X Y' generating X x Y. Let s, t €
G x X' x Y where s = (g; x, y) and t = (gl s Xl’yl)" Then

st = (g5 x, ¥y) * (g5 xp» ¥p)

= (g olxy ¥) gy X, ¥y)

As s € G X X' X Y' ye get that x € X' and similarly ylC Y' as
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teGx X' xY'., Thercfore, (x, yl) € X' X Y' and hence
(g¢(x],y)g1;x,y1) £ GxXM'xY'. Similarly ts € GxX'XY', Hence, if

<S8 E GXX'XY!, RN GxX'xY'. Therefore, as we consider

S 1254 15,
GXX'XY', it is immediate that GXX'XY' will only generate GXX'xY' as X'XY'
"generates' only X'xY' . Therefore, the only possible subsets of GXXXY
which will generate\GXXXY are sets of the form TxXXY where T € G

Note, however, that in general if T is a subset of G and X' <X,
Yt <Y then [T x X' x Y'] # [T] x X' x Y', where [A] is the set gener-
ated by A. Consider the following compact semigroup.

Let G = [0, 2m) with ordinary addition modulo 2m. Let X = Y = {x}
and § X XY = G be as follows

p(x,x) = 2m/5.

Let T = {2u/7}. [T] = {2w/7, 4n/7, 6n/7, 8n/7, 10w)7, 12m/7, O}.

Consider [T x X X Y].

Let t 2n/7 and h = 271/5.

Then (t; x, x) + (t; x, x) =t +h + t; x, x)

t +h+t= 2%/7 + 27/5 + 27/7 = 347/35,
Hence it is simple to show that
[T x X x Y] = {(2n7/35; x, x) | n=20,1, 2, . , 34}

Let [T X X X Y] = T* x X xY, then

Tt = {2nm/35 | n

HY
o

-
—

-
[\

-

-
W
-
(]

[(T] = {2n7/7 | n

i
(]
—

, 6}.
Therefore, T' # {T] and hence [T x X x Y] # [T] x X X Y.
Now what are some of the subsets T of G, where G is defined above,
so that for compact Hausdorff spaces X and Y,T x X x Y will generate
G x X x Y? To do that we will first considcr G x {x} x {y} for x ¢ X

and y € Y and suppose ¢(s, y) = ht where h' € G and ¢:X XY > G is a
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continuous function. Lets = (g; x, y) and t = (h; x, y) be elements

of G x {x} x {y}.

s +t=(g; x,y)+ (h; x, ¥5)

(g + ¢(x, y) + h; x, y)

1

(g + h" +h; x, ¥).

g +h'" +heGas Gis a group and hence s + t € 6 x {x} x {y}. Hence
we know that G x {x} x {y} is closed under multiplication. Further-
more,$(x, y) is just a type of shift operator in the group and is fixed
for the choice {x} and {y}. First reccall that G is a commutative group
so (g + h'+ h; x, y) = (g + h + h'; x, y). Hence if a subset T of G
generates G,then T x {x} x{y} will generate G x {x} x {y}. The reason
is that if T generates G and then ¢(x, y) shifts G, but G is a group
and so G stays the same. We had to use the commutative property to be
able to interchange generating and shifting. Thercfore, all we need to
consider are subsets of G that will generatc G. Any subset T of G that
has positive Lebesque measure will generate G. So what does all this
mean?

It means that for any rcgular probability measure pton G x X x Y
whose support is T x X x Y, where T is of the above form, the sequence
u(n) will converge to an idempotent measure on G x X x Y. The support
of this idempotent measure will be G x X X Y. Furthermore, if X and Y
are at most countable, the idempotent measure will be a convex combin-
ation of the normalizcd Haar measures on cach of the groups of the form
G x {x} x {y}. If X and Y arc uncountable, then the idempotent measure

will be of the form £ x o x B where E is the normalized llaar measure on
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G and a and f are probability measures on X and Y respectively. Hence
in this case, any probability measure whose support generates G x X x Y
is in the Domain of Attraction of some idempotent probability measure
on G X X XY,

EXamnle 6

Let us consider the following group H. Let G be the group of

cos 6 sin 6
-sin 0 cos 6
-1 0

0 1

a group. Furthermore, H is a compact abelian group and G is a closed

2 x 2 matrices of the form ( ),where 0 <6 < 2m, and let H

be the group generated by G and ( As was shown before, this is
normal subgroup of H. Let X =Y = {x}. Let Q: X x Y >~ H be defined as

follows:

Qlx, y) =e = (é 2‘> for all x and y.

Then clearly H x X x Y =2 H. (= means isomorphic). H x X x Y and H are
also homeomorphic. The mapping showing isomorphism is f; H+H x X x Y
defined as follows:

f(h) = (h; x, y). Thus

f(hh") (hh'; x, x)

(h e h'; x, x)

(h Q(x, x) h'; X, X)

(h; x, x) = (h'; x, X)

f(h) =« £(h').
L1 -1 0
Let y be a regular probability measure on ( 0 1
. [-1 0 -1 0 -1 o). -1
is ( 0 1) G. Then clearly ( 0 1) G generates H as ( 0 1 ( 0

01

2

)G, whose support

2)-

=(1 0) € G. Remember X = Y = {x}. Since H x X x Y = H, we see that

for any subset S ¢H, S x X x Y = S. (where Q(x, x)

10)
( 0 1 }. Hence

(G x X x Yj =G and g6 X X X Y g G for some g € H~ G. As G is a group
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G-1 = G and therefore (G x X x Y)-l ;ﬁG—l. Thus
(GXXXY)'I.(ngXXY)’:‘—: _1gG
¢! gG=0ggG
=g GG since G is abelian.

g G

Therefore,(G x X X% Y)-l (gG x X xY) = gh X X XY, So let g = (—(::l) (:i):

then we have g € H~ G. Thus by Rosenblatt's result [13] (Lemma 13 and

(n)

Theorem 8, page 194), the sequence ¥y will not converge in the weak

star topology.
Now let us consider arbitrary compact Hausdorff spaces X and Y

using the same group H as above. Let W be a regular probability measure

-1 0
0 1

function. Consider the following:

whose support is ( ) G XX xY., Let ¢: X XY » H be a continuous

Let (s; x,y) € G x X x Y and (t; x', y') ¢ (-é ) G x X x Y.

-1 0
( 0 1 ) . Then

(s; ¢, y) = (t; x', y') = (s ¢(x", y) t; x, y").

0
1

i

For convenience let g

¢(x', y) = r e G.
So consider s ¢(x', y) t =s r t. t;gt' for some t' e G.
Then srt = srgt' = gsrt' since H is abelian and since srt' € G,
p(srt') € G . Therefore, (so(x',y)t ; x,y') € gGXXxY . We know that r ¢ G
and hence rnl € G. It can easily be shown that (GxXXY) (gGxXxXY)=gGxXxY .
Furthermore, since (GXXXY)_l = GxXXY ,
(G x X% Y) Fe(gl x Y xY) = (GxXxY) (g6 x X xY)
For simplicity denote ¢(x,y) € G as xy. Then ((xy)—l ; X,y) belongs to
G %X X %Y and ((xy)~1 ; X,y)*(gh ; x,y) for arbitrary h € G is equal to

((Xy)_l(xy)_h 5 x,y) = (gh ; x,y) . This is true for all (x,y)eXxY and

hence gG X X x Y ¢ (G x X x Y)* (g6 x X X Y)
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This result is true for any arbitrary group. The converse is not always

true. In this particular case G is a normal abelian subgroup of H, and
therefore we immediately see that

g6 X X XY = (G XX xY) (g6 xX xXY),
Therefore, if XY <G and y is a regular probability measure on H x X x Y
whose support is gG x X x Y, then again the sequence u(n) will not con-
verge in the weak star topology.

Now we would like to take a look at why, or at least one reason vhy
it is that for a ﬁrobability measure u in H of the above type, the se-
(n) }n .

quence {u . does not converge. To do this we will look at the

W
support of u(n) for arbitrary positive integers n. When n is 1, the
. : 0 1 ) 0 1
support of u is the set 1 0 G. Let F = 10 G. Also let the
set of all Borel subsets of F be denoted by 81,1ct the set of all Borel
subsets of G be denoted by 82. Now what is the support of u(z)?
Let B € 8 the set of all Borel subsets of H.
pxu (B) = wxu{(x, y) | xy e B}

What does B look like? Claim that B <G and hence B ¢ 82 For suppose

BNF# ¢ Let B, = B NT and Bl £ Bl Then xy € B

1 The only way xy

K
£ B1 is if, without loss of generality, x ¢ F and y € G. But u(F) =1
and y(G) = 0, as the support of pis F. So u x u (B) = 0 unless

{(x, ¥) | xy e B}cF xF. But ux yu (F xF) =1 and hence B E.Bl x B

. 1
and hencc B ¢ 52 that is the support of u(z) cG.
Now consider the support of u(3)°
3 . (2
U( GO

The support of u(z) is contained in G and the support of u is contained

(3)

in F and hence the support of U is in F. Thus by induction the support
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(n) (n)

of y is contained in F is n is odd and the support of u is con-

tained in G if n is even. Thus the support altcrnates between F and G

' (n)

(F N G =¢) and hence the sequence u cannot converge. So for this

reason for the probability measure u whose support is gG x X x Y the se-
quence u(n) will not converge in the weak star topology.

The above examples illustrate some of the usefulness of the result
by M. Rosenblatt. We also noticed that the result of M. Rosenblatt
was a generalization of the result by Ulf Grenander on compact groups.

In fact, all through this paper we have used results on compact groups

and were able to generalize then to simple compact topological groups.
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