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ABSTRACT 

The purpose of this paper is to describe and discuss the Central 

Limit Theorem for compact topological semigroups, In the process of 

discussing the Central Limit Theorem, we exhibit some of the stable 

laws on a compact topological senigroup and briefly discuss the "Domain 

of Attraction" problem. 

. It turns out that the stable laws on a compact topological semi- 

group are the limit laws of the n-fold convolution of a probability 

measure on a compact topological semigruup. These limit laws are in 

fact the idempotent probability measures on the compact topological 

semigroup. These idempotent probability measures have as their support 

a completely simple semigroup and as a result we can identify the idem 

potent probability measures. Every completeiy simple semigroup can be 

written as a disjoint union of groups or as the Rees product of a group 

with two index sets. (These two structure theorems are actually the 

same.) As a simple compact semigroup is completely simple, the group 

components are compact. Thus we can write the idempotent probability 

measure as the product of the normalized Haar measure on the group with 

two probability measures defined on the two index sets. Finally, the 

limit law of the n-fold convolution of a probability measure can be 

determined by just considering the support of the probability measure 

and the structure of the simple compact semigroup. Some examples are 

then discussed using the above results. 
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CHAPTER 0 - THE INTRODUCTION 

The problem we want to consider is what happens when we take the 

limit of the n-fold convolution of a probability measure on a compact 

semigroup. This problem can be thought of to be a special case of the 

Central Limit Theorem. So we will give a quick survey of how these 

two problems are actually the same. 

Suppose S is a measurable semigroup having a Borel field, where 

the binary operation is measurable. Furthermore suppose y and v are 

Borel measures on S. Then we can define an operation on the set of 

all measures on the Borel field of S called convolution and written 

p * 3 .  It is defined as follows. Let E be a Borel set, then 

p x v (E) = y x v(<(a,b)lab E E 1). 

Notice that convolution is associative as the semigroup is associative. 

Also convolution is commutative if the semigroup is commutative. 

Let .(a, F, P) be a probability space. Then X is a random 

variable on S or a random element of the semigroup (S, B) if 

x: ( Q ,  F, PI -+ (SY8) 
I 

is measurable. As P is a probability measure, so also is POX-', where 

POX-' is said to be the probability distribution of the random variable 



X. X1 and X2 a r e  s a i d  t o  be i d e n t i c a l l y  d i s t r i b u t e d  random var iab les  

over a  semigroup (S,B) i f  and only if Pox " = pox2- ' . 
1 

Let X and Y.be two iden t i ca l?y  d i s t r i b u t e 3  w r i a b l e s  on t h e  seaigroup 

( ~ , 8 )  ; t h a t  is,  suppose they a r e  both defined on the  same s e t  Q .  Then 

we def ine  

XY: R -t s 

as  fol lows:  Let w E Q,  then 

XY (w) = X(W) ' Y (w) and X(w) ' Y (w) E S. 

We can def ine  another  opera t ion  with X and Y ,  namely (X,Y). The Elorel 

f i e l d  on S x S i s  j u s t  t h e  product Borel f i e l d  8 x 8. 

Define 

where S x S has t h e  Borel f i e l d  B x B a s  fol lows:  

Two random vzr iab les  X and Y a r e  independent i f  and only i f  

P 0 (x,Y)- '  = (P 0 x-') x (P 0 Y - l )  

where t h i s  i s  the  product measure. Let X1, ..., X be i d e n t i c a l l y  d i s t r i b u t e d  
n 

random v a r i a b l e s  on t h e  semigroup (S,B). For a r b i t r a r y  n ,  (XI, ..., Xn) 

is  defined s i m i l a r l y  a s  (X , X  ) ,  and independence i s  a l s o  defined 1 2  

s i m i l a r l y ,  t h a t  is  {x1,. . . , X  i s  independent i f  and only i f  n 

P 0 (X,, ..., xn)-l = (P 0 x l - l )  x.. .X(P 0 xn-'), - 
where we j u s t  have t h e  product measures and P o ( X I .  . . ,Xn) - ' i s  defined 

on t h e  Borel f i e l d  B x ... x 8. If the  semigroup opera t ion  i n  S is  
'n t G  

w r i t t e ~ ?  + (as with t h e  r e a l  l i n e  under a d d i t i o n ) ,  then we w i l l  w r i t e  

X + Y f o r  XY and t a l k  about sums r a t h e r  than (semigroups) products .  

Now t h a t  we know what independence i s ,  given random var iab les  X ,  Y ,  

w e  can ask what P o (xY)-' looks l i k e .  So suppose X , Y  a r e  independent 



random var iab les ,  then it can be e a s i l y  shown t h a t  

P 0 (xY)-' = (P 0 x - l )  x (P 0 Y - I ) ,  

where x i s  the  convolution of P o X- '  and P o Y". S imi lar ly  i f  

X1, ..., X a r e  independent random var iab les  then n 

P 0 (X xn)-l = P 0 xl-l  .. . % P O X n  - 1 , 

I f  X1, ..., X a r e  independent and i d e n t i c a l l y  d i s t r i b u t e d  random var iab les ,  n 

then P o xl- l  = . . . . = P o x and hence 

P 0 (X x -  = P 0 x - ... * P 
0 X,  

- 1 

\ 1 

n times 

= (P 0 X1 - T)n 

Consider f o r  the  time being, the  r e a l  l i n e  under addi t ion .  To s t a r t  

with we w i l l  consider random var iab les  on t h e  r e a l  l i n e .  So suppose 

t h a t  X i s  a random var iab le  and f o r  every k > 0 and X I , .  Jk 

independent with t h e  same d i s t r i b u t i o n  as  X ,  t he re  a r e  constants  ak>O, 

b such t h a t  the  p r o b a b i l i t y  d i s t r i b u t i o n  of X1 + ... + Xk coincides k 

with t h a t  of akX + bk. Then X i s  s a i d  t o  have a s t a b l e  law. - 
On t h e  r e a l  l i n e ,  i f  X1, X 2 ,  ... i s  an independent and i d e n t i c a l l y  

d i s t r i b u t e d  sequence of  random var iab les ,  an > 0,  b r e a l  and suppose 
n n 

t h a t  the  p r o b a b i l i t y  d i s t r i b u t i o n  of 1 (akXk + b ) converges t o  
k = l  

some p r o b a b i l i t y  law, then t h e  l i m i t  law i s  s t a b l e .  (Here t h e  conver- 

gence is  on t h e  weak topology.) This i s  known a s  t h e  Central  L i m i t  

Theorem. What do t h e  s t a b l e  laws look l i k e  on t h e  r e a l  l i n e ?  They 

a r e  a s  follows: Let X have a s t a b l e  law. Then e i t h e r  X has a normal 

d i s t r i b u t i o n  o r  the re  is  a number a ,  0 < a < 2, c a l l e d  t h e  exponent of 

t h e  law and constants  m > 0, m2 2 0, B such t h a t  1 - 
log fx (u) = iuB + ml 11 (eiux - 1 -- iux  dx 

~ + a  
1 + x 2  X 

iux  iux 
+ m 2 r 0 ( e  - I - -  1 - dx . 

,cQ 1 + x2 1 x 1 1 ~  



This is found in Leo Breimanls book, Probability, [22] (Theorem 9.27, 

page 200) . The original work was done by Levy [24] . 
Now we want to restate the Central Limit Theorem in more mathematical 

language. Let Q be a probability function, an > 0, b real. Suppose 
n 

lim WQ, exists, 
n- ntlmes 

where \(E)=Q(anE+bnl, then the limit probability measure is a stable 

probability measure. These two statements are the same as we already 

have observed as for any random variable, Po X-' is a ?robability 

measure. 

Now that we know that any limit of the n-fold convolution of a 

particular sequence of probability measures (in the reds when it exists) 

is a stable probability function, we want to turn the question around 

and ask the "Domain of Attraction" question. Given a stable probability 

measure R, the set of all possible probability functions Q such that 

there exists an > 0, bn real such that 

pl x ... pl 9 R, 
'd_ E where a (E) - Q(anE + bn) , is called the Domain of Attraction for the - 

probability measure R. The question is, given a stable R, what is the 

Domain of Attraction of R ? Consider the real case. One answer to the 

above problem is as follows given by Leo Breiman,[22], (Theorem 9.34, 

page 207). The original work here was done by Doeblin, [23]. "F(x) 

is in the domain of attraction of a stable law with exponent a < 2 if 

and only if there are constants M+, M- s 0, M+ + M- > 0, such that as - 

(i) Lim F (-y) = M- - 
1 - F(y) M+ 



(ii) For every 5 > 0, 

M- > 0 =>lim F(-cy) = 1 . s  

F(-Y) S a  
Here is another special type of probability measure. Q is said 

to be an idempotent probability measure if and only if Q x Q = Q. This 

is a special case of Q being stable. (We just let ak = 1 and bk = 0.) 

Now we want to consider the Central Limit Problem for any semigroup 

S. Suppose we have a probability measure Q, and a sequence {b n n = l  

in S. Assume also that the lim Qn x ... x exists where 
n, 

Qn(E) = QW,) VE . 
The question or central limit problem is, what kind of limits can occur? 

I 

The first thing we do is restrict ourselves to a compact semigroup 

S. Then all we need to show a limit is idempotent is that the b 's n 

commute with every element of S. In the case of commutative compact 

semigroups, this is immediate as everything commutes with everything. 

In the case of non-commutative semigroups, this is a little more difficult. 

So in some cases of non-commutative compact topological semigroups, we 

ask a simpler question. Let Q be a probability measure. Assume that 

lirn Q m . . . x  Q 
n -t -iiTimes 

exists, What kinds of limits exists? The answer in this case is that 

the limit probability measure is idempotent. Thus we will be discussing 

idempotent probability measures in more detail. In this context, the 
I 

"Domain of Attraction" question is, if R is an idempotent probability 
I 
I 

measure, what are the possible probability measures Q such that for 1 

some sequence b in S lim \ x ... X \ = R where s ( E )  = Q(Eb,) or in 
n n- 



the non-commutative case, what are the possible probability measures Q 

such that lim Q rc x x Q = R .  
n- 

n times 

One ~ossible such Q is trivial and that is R itself. Whether or 

not there exist less trivial probability measures is a more difficult 

question. 

In order to study these problems, we would therefore like to know 

what the idempotent (non-trivial) probability measures look like on a 

compact semigroup. However, we need only consider simple compact 

semigroups, as once the idempotent probability measures are characterized 

on simple compact semigroup, they can easily be extended to compact 

semigroups. If one considers a compact group, then the one idempotent 

(non-trivial) measure on that group is just the normalized Haar measure 

on the group. (The normalized Haar measure is just the two-sided 

invariant measure.) So the question arises as to whether this carries 

over to compact simple semigroups, and the answer is yes, in a sense. 

In order to make this idea precise, we will study the structure of semi- 

groups, in particular completely simple semigroups, in detail. One 

fact that we use immediately is that a compact semigroup, which is not 

a group (algebraically) , has at least one non-identity idempotent. 

J. G. Wendel makes use of this fact to prove the very useful result, 

that any non-trivial, non-identity idempotent probability measure on a 

compact group, (and such a thing exists on each compact grcup) is the 
, 

normalized Haar measure. It is this result that enables us to get 

some results on the structure of non-identity idempotent probability 

measures on compact semigroup. 

This paper will be divided into two major sections. The first 



section is divided into three subsections. In the first subsection we 

introduce some preliminary definitions and results. 

The second subsection studies the structure of semigroups and 

introduces the notions of a simple semigroup and a completely simple 

semigroup. We observe that any completely simple semigroup with identity 

is actually a group. This result is used several times. As simple 

compact semigroups are completely simple we find that a simple compact 

group can be written as a union of its component subgroups. These 

groups in turn are compact. We also find that any compact semigroup 

has a completely simple subsemigroup, which is compact, and this is 

called the kernel of the compact semigroup. 

In the second subsection, we study the structure of idempotent 

probability measures on compact semigroups. The first thing we note 

is that the support of an idempotent probability measure on a compact 

semigroup is always a completely simple subsemigroup. Conversely, if 

we have a compact semigroup and and idempotent probability measure 

defined on a simple compact subsemigroup, then this idempotent 

probability measure can be extended to the compact semigroup. So we 

will then consider only simple compact semigroups. 

As mentioned above, the compact simple semigroup S can be written 

as a union of its compact group components. The number of group 

components is the same as the number of idempotents of S. If S has 

a countable number of idempotents, then every idempotent measure on S 

is a convex combination of the extended normalized Haar measures of the 

various group components. This completely characterized all the 

idempotent probability measures on any compact simple semigroup with 



at most a countable number of idempotent elements. However, there do 

exist completely simple semigroups with an uncountable number of 

idempotent elements. If we were to approach this problem of identifying 

all or at least some of the idempotent probability measures as we did 

in the case where the completely simple semigroup had only at most a 

countable number of idempotents, we immediately have a problem of 

addition. This brings us to the final section in part one. 

In this section, we study the structure of completely simple 

semigroups in another way, so that we can eventually describe idempotent 

probability measures on a simple compact semigroup. This is done 

through the Rees-Decomposition Theorem. It turns out that every 

completely simple semigroup is a direct product of a group G with 

two arbitrary set X and Y and a particular type of multiplication. The 

multiplication is defined with the aid of a "sandwich matrix". If the 

completely simple semigroup is a compact semigroup, then G is a compact 

group and X,Y are compact Hausdorff spaces. Conversely, if G is a 

compact group and X,Y are compact Hausdorff spaces, then the Rees Product 

is a compact simple semigroup. 

So now we have apparently different structure theorems for completely 

simple semigroups. We will compare these two approaches. 

Now we are in a position to study the structure of possible 

idempotent probability measures on any compact simple semigroup, partl- 

cularly those that have uncountable number of idempotent elements. And 

so some idempotent probability measures on G x X x Y,'where G is a 

compact group and X, Y are compact Hausdorff spaces, are of the form 

p x a x 8 ,  where p is an idempotent probability measure on G and a, B 



are probability measures on X, Y respectively. Notice that y is the 

normalized H,aar measure on G. In this way we can desribe some idempotent 

probability measures on a compact simple semigroup with an uncountable 

number of idempotents. 

As this is discussed in all generality, we again compare this 

result, of the product measures, to the convex combination of the 

normalized Haar measures on the group components of a compact simple 

semigroup, where the semigroup only has at most a countable number of 

idempotents. 

In the second major section of this paper, we discuss the 

convergence of probability measures on compact semigroups. As was 

noted earlier, this is in a sense a part of the Central Limit Problem. 

We are considering two types of limits involving a fixed probability 

measure on a compact semigroup. First we consider the sequence 

{ E  i=l - di)l n E w where y is a probability measure on a compact n 

semigroup S. This sequence,as we shall see, always converges, regard- 

less of what probability measure we pick. The probability measure to 

which this sequence converges will be shown to be an idempotent 

probability measure. This idempotent probability measure can be 

thought of by our earlier discussion as a stable law. 

Next and the other type of sequence we want to consider is the 

sequence (n) , where l~ is a probability measure on a compact 
{ n E u  

semigroup. This sequence need not converge. However, if y is a 

regular probability measure ( and this is what we are assuming in this 

paper) on a compact semigroup, then we need only to study the properties 



o f  t h e  ke rne l  of t h e  compact semigroup and i t s  r e l a t i o n s h i p  t o  t h e  

p r o b a b i l i t y  measure p t o  determine whether o r  n o t  t h e  sequence 
, . 

(n) 
'p 'n=l w i l l  converge. This  r e s u l t  is  due t o  M .  Rosenbla t t ,  [12] 

and we r e l y  on t h e  f a c t  t h e  every completely s imple semigroup can be  

w r i t t e n  a s  a Rees Product .  A f t e r  t h i s  we cons ide r  a few examples, 

f i r s t  o f  which i s  t h a t  o f  a compact group i t s e l f .  We s e e  t h a t  

M. Rosenb la t t ' s  r e s u i t  i s  an  ex tens ion  o f  a p r i o r  r e s u l t  on compact 

groups by Ulf Grenander. 

The nex t  s e t  o f  examples cons iders  a s p e c i a l  type  of  completely 

s imple semigroups. Reca l l  t h a t  by t h e  Rees decomposition o f  a completely 

s imple semigroup, t h e  semigroup is  a product  of  a group and two 

a r b i t r a r y  Hausdorff spaces .  In  t h e s e  examples t h e  Hausdorff spaces a r e  

a r b i t r a r y ,  b u t  t h e  groups t h a t  we w i l l  cons ide r  a r e  c y c l i c  groups 

and s imple groups. Then i f  we a r e  given a p r o b a b i l i t y  measure on a 

s imple  compact semigroup, such t h a t  t h e  group i n  t h e  Rees Product i s  

e i t h e r  c y c l i c  o r  s imple ,  we can immediately determine whether o r  no t  

t h e  l i m i t  o f  t h e  n- fo ld  convolu t ion  of a p r o b a b i l i t y  measure on t h a t  

semigroup e x i s t s  o r  does n o t  e x i s t .  

A l l  through t h e  paper  we w i l l  have r e s t r i c t e d  ou r se lves  t o  compact 

semigroups. I n  t h e  f i n a l  s e c t i o n  we want t o  t a k e  a b r i e f  look a t  j u s t  

t opo log ica l  semigroups and s e e  what problems t h e r e  e x i s t  t h e r e  and w11y 

compactness i s  necessary .  We f i n d  t h a t  we have t o  p u t  s t r o n g e r  

cond i t i ons  on t h e  semigroup and t h e s e  c o n d i t i o n s  a r e  immediately 

s a t i s f i e d  by compact semigroups. This  way we can g e t  a somewhat o f  

an ex tens ion  i n  t h e  r e s u l t s  o f  convergence o f  t h e  n - fo ld  convolut ion 

o f  a p r o b a b i l i t y  measure on a t opo log ica l  semigroup. So what we know 



11 I 

f o r  compact groups can  somewhat be extended t o  compact semigroups 

and t h a t  can be  extended somewhat t o  t opo log ica l  semigroups. 
, . 



\ . 

CHAPTER I - PRELIMINARIES 

I t  w i l l  b e  necessary  f i r s t  t o  e s t a b l i s h  a few conventions and t o  

g ive  a few d e f i n i t i o n s .  Let S be  a s e t  wi th  an ope ra t ion  o :  S x S -+ S 

s o  t h a t  f o r  a l l  s l ,  s2, s3, E S, (S os ) o s3 = s l  o ( s20s3) .  Then S 1 2  

w i l l  b e  c a l l e d  a s e m i g r o u ~ .  Henceforth o w i l l  j u s t  be denoted by jux ta -  

p o s i t i o n ,  t h a t  is  s o s  
1 2  = s1s2, where s l ,  s2  E S .  Furthermore, i f  S 

has  a topology de f ined  on i t ,  which i s  Hausdorff and such t h a t  o i s  

j o i n t l y  cont inuous from S x S t o  S,  then  S w i l l  be  a t opo log ica l  

Hausdorff semigroup, o r  simply a t opo log ica l  semigroup. ( In  t h i s  paper  

we w i l l  on ly  cons ide r  those  topo log ica l  semigroups whose topologies  

a r e  Hausdorff . )  A t opo log ica l  semigroup S is  a compact t opo log ica l  

Hausdorff semigroup o r  a compact t opo log ica l  semigroup i f  t h e  topology 

on S i s  bo th  Hausdorff and compact and m u l t i p l i c a t i o n  i s  cont inuous.  

Now we need a few d e f i n i t i o n s  from measure t h e o w  so  t h a t  we can 

d e f i n e  an ope ra t ion  c a l l e d  convolut ion on a p a r t i c u l a r  s e t  o f  func t ions .  

Let (S,T) be  a t opo log ica l  semigroup wi th  topology T. Let 8 denote t h e  

Borel F i e l d  over  (S,T).  (See any book on Measure Theory f o r  t h e  de- -- 
f i n i t i o n  o f  a Borel F i e l d ,  a s  an  example, Halmos.) The Borel F i e l d  

over  (S,T) i s  a l s o  r ep re sen ted  by B(S). 

Let S be a compact t opo log ica l  Hausdorff semigroup, E(S) t h e  

Borel F i e l d  on S. Denote t h e  s e t  o f  a l l  r e g u l a r  p r o b a b i l i t y  measures 

on S by M (S) , t h a t  i s  

M(S) = ( v: B(S) + [0,1] I v is  a r e g u l a r  measure and v(S)  = 1 ) .  
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We define a multiplication on (S) called convolution, which wil1,be 

denoted by x, as follows: Let v,r E M(S), then v x I': B(S) + [0,1] 

with v x I' (B) = v x r { (x,y) I xy E (8) 1 ,  where v x r is the product 

measure on B(S) x B(S). u x r(S) = v x r (S x S) = v(S) x r(S) = 1. 

Hence v x r eM(S). As S is a semigroup and hence associative, it follows 

immediately that for v,r, p E M (S) , (v x r) x p = v x (r x p) and hence 

M(S) is a semigroup. We would further like to know whether or not M(S) 

is compact when S is compact. We need to know this to derive some 

properties of the probability measures on a compact semigroup and in 

particular on a compact group. If (S,T) is a compact topological 

Hausdorff semigroup, then M(S) is also a compact topological Hausdorff 

semigroup with the weak star topology where the operation on MIS) is 

convolution (See Hille and Phillips [25] for details). 

Now we are going to leave M(S) and consider some other properties 

elements of semigroups could have. Let S be a semigroup, s E S, then s 

is said to be idempotent if s s = s. Numakura [2], has proven that 

if S is a compact topological semigroup, then S must possess idempotent 

elements. Furthermore if S contains an identity; that is, if there 

exists a 1 E S such that 1 s = s 1 = s for all s e S and if S is 

not a group, then S has at least one other idempotent element besides 

the identity element. This claim will be proved later in the paper. 

Consider, however, a few examples. Define R = { x I - < x < 1. 

i) Let S = [0,1] with the induced topology of R and ordinary 

multiplication for the semigoup operation. S is not a 

group since 1/2, for example, does not have an inverse 

in S. The inverse is 2 and 2 $ [O, 11. So S must have at 

least one idempotent element. One idempotent is 1 which 

is also the identity element and there is also a second 



idempotent element, namely 0. 

ii) Let S = A  E (Q2 I I IAl I - < 1 1, where (QZ is the ring 

of all 2 x 2 matrices over the reals. The norm is the usual 

operator norm [22]. Give S the induced topology from (QZ,  

which has the usual matrix topology. Then S with matrix 

multiplication is a compact topological semigroup. Since 

for A, B E S, ~ I A B [ [  - < ( ( ~ ( 1 ~  I ~ B [ (  - < 1, S is closed under 

multiplication. Therefore S must have idempotent elements. 

It has four idempotent elements, one of which is the identity 

element, and they are as follows: 

iii) Let S-  = [ 1,a ) with the induced topology from R and with 

ordinary mu1 tiplication . S- hzs only one idempotent and 

that is 1, which is also the identity element of S - .  S-, 

however, is not a group, but only a semigroup and the semi- 

group is not a compact topological semigroup. This shows 

us that in the absence of compactness there may not exist 

idempotents other than the identity. Now define 

S = S- U ( 1 with the one point compactification and 

multiplication as follows: 

Now S is a compact semigroup which has two idempotents 

namely 1 and . Notice that [0,1] and [l,~] are homeomorphic 
and semigroup isomorphic ( if we define 1/w = 0 ) by the 

transformation f: [l,~] -+ [0,1], f(x) = l/x. 



iv) Let S- = [a,~), where a > 1, with the induced topology 

from R and with ordinary multiplication. In this case S- 
\ . 

has no idempotent. Now define S = $- U {a) with the one 

point compactification and multiplication as follows: 

Now S is a compact semigroup which has one idempotent 

namely a. Notice that [O,l/a] and [a,.;)] (where a > 1) 

are homeomorphic and semigroup isomorphic by the same 

transformation as in Example (iii). Observe that a is not 

an identity as a =  b co = b # b for any b, 1 < b < 

v) Let X be any non-empty compact space. Then X becomes a 

compact topological semigroup with the multiplication 

(x,y) -t x. Every element is an idempotent element. (Note 

that if X has two or more elements, no element is an identity 

element . 
vi) Consider the following semigroups Zn: 

{O,l, ..., 11-11 if n is not a prime number. 
zn = { 

{1, . . . ,n-1) if n is a prime number. 
Give Zn the discrete topology and the following multipli- 

cation. Let a, b E Zn then 

ab if ab E Zn 

c if ab j? Zn and c E Zn 
where ab 5 c (mod n) . 

From group and ring theory, we know that if n is a prime 

number, then Zn is a group and Zn in that case has only one 

idempotent element and that element is the identity 1. If 

n is not a prine number, then Zn is not a group and clearly 



0 and 1 are idempotent elements of Zn and 1 is still the 

identity of Zn. , . 

These examples, then illustrate'that a compact semigroup 

always has an idempotent element and if one idempotent 

element is an identity, then the semigroup has at least 

one idempotent element. These examples are just examples 

of the above statement. A proof will not be given of the 

above claim. 

We will see that while M(S) is a semigroup, it-is 

almost never a group ( ie. there exists an element v E M(S) 
1 

such that V- does not exist). First of all, if S has just 

one element (then S is a group), we can immediately conclude 

that M(S) also has just one element, namely unit mass on 

the one element of S and hence M(S) is a group. On the 

other hand if S has more than one element, then M(s) has 

more than one element. (eg. unit mass at each element of S). 

Before we can go on, we must define the notion of an 

inverse element. Let S be a semigroup and a, b E S; then 

a, b are inverse of each other if and only if aba = a and 

bab = b. Now let G be a group and s, t E G; then s, t are 

X 
inverse of each other if and only if st = ts = e, where 

e is the identity of G. The question that arises is, as G 

X 
is also a semigroup, are inverses and inverses the same? 

W .  
First of all suppose s, t are inverse , then that means 

st = ts = e. Therefore sts = se = s and tst = et = t. 

X 
Therefore, inverse are inverses. Now suppose s, t are 

inverses. That is, sts = s and tst = t. As G is a Group, 



X 
s and t have inve r se  s ay  s t  and t 1  r e s p e c t i v e l y .  There- 

f o r e  s t s s l  = ss l  and hence we g e t  s t e  = e  and t h e r f o r e  

s t  = e .  Also t s t t l  = t t l  and hence t s  = e .  We can thus  

X conclude t h a t  s t  = e  = ts and s and t a r e  i n v e r s e  . Also 

from group theory  we know t h a t  i n v e r s e  a r e  unique and hence 

s = t t  and t = s l .  Thus we can conclude t h a t  i nve r se s  and 

X; 
i n v e r s e  a r e  t h e  same i n  a  group and t h e  d e f i n i t i o n  o f  

i n v e r s e  has  been p rope r ly  extended'from groups t o  semi- 

groups.  I t  should be mentioned t h a t  i n  a  semigroup, i n =  

v e r s e s  need no t  e x i s t .  An example of t h i s  is t h e  semi- 

group [ a , ~ ) ,  a  > 1 and us ing  o rd ina ry  r e a l  number mu l t i -  

p l i c a t i o n .  Also i f  i nve r se s  do e x i s t  t hen  no t  every 

element need have an inve r se  a s  i n  t h e  example [a,..] a s  

de f ined  i n  a  prev ious  example. 

Now we want t o  go back and show t h a t  f o r  any compact 

semigroup S, M(S) is  almost never  a  compact group, bu t  

j u s t  a  compact semigroup. F i r s t ,  however, we w i l l  cons ider  

a  compact t opo log ica l  group G .  J .  G .  Wendel [l] (Sect ion 2)  

proved t h a t  a  necessary  and s u f f i c i e n t  cond i t i on  t h a t  

v E M(G) have an inve r se  is  t h a t  v be u n i t  mass on an 

element g E G .  Now i f  a  compact group G has  two o r  more 

elements ,  t hen  any p r o b a b i l i t y  measure v on G which has 

p o s i t i v e  mass on a  f i n i t e  number o f  p o i n t s  ( more than  one) 

does no t  have an inve r se  p r o b a b i l i t y  measure, a s  any proba- 

b i l i t y  measurev  t h a t  could be  an  i n v e r s e  t o  v , would be 

noth ing  more than  u n i t  mass on any element of G .  This  how- 



eve r ,  i s  impossible  a s  v t hen  would be t h e  inve r se  of !J and 

and hence v i s  t h e  u n i t  mass of an element of  G ,  b u t  we 

assumed t h a t  v had p o s i t i v e  mass on a f i n i t e  number of 

elements (more t h a t  one) .  Such measures a s  e x i s t  because 

G has  two o r  more elements .  Let g l ,  g be two elements of  
2 

G .  Define y a s  fol lows:  y :  G + G ,  y (g l )  = p(g2)  = 1/2,  

~ ( g )  = 0 f o r  a l l  g E G --. {g1,g2}. Hence p E M(G), p does 

n o t  have an i n v e r s e  i n  M(G) and hence M(G) i s  no t  a group. , 

So i n  t h e  case  where G i s  a compact group, M(G) i s  no t  a 

group b u t  j u s t  a semigroup. Now cons ider  a compact topo- 

l o g i c a l  semigroup S .  I f  S has  an i d e n t i t y  e , t hen  u n i t  mass 

on e i s  t h e  i d e n t i t y  i n  M(S). On t h e  o t h e r  hand, i f  S does 

no t  have an i d e n t i t y ,  then  M(S) does no t  have an i d e n t i t y .  

J .  G .  Wendel proved t h a t  a necessary  and s u f f i c i e n t  condi- 

t i o n  t h a t  y E M(G) have an i n v e r s e  i s  t h a t  p be u n i t  mass 

on an element g E G .  This  r e s u l t  i s  a l s o  t r u e  f o r  semigroups. 

Now we want t o  show t h a t  i f  S does not  have an i d e n t i t y ,  then  

M(S) does n o t  have an i d e n t i t y .  For suppose V ,  p E M(S) a r e  

i n v e r s e s  o f  each o t h e r ,  t hen  by Wendel's r e s u l t ,  v ,  y a r e  

u n i t  masses o f  some element s ,  t of  S such t h a t  s ,  t a r e  

i n v e r s e s  o f  each o t h e r .  I f ,  fur thermore  q i s  an i d e n t i t y  of 

M(S), t hen  v v y = y x v = Q. A s  q i s  an i d e n t i t y  of M(S) 

and a s  is  i t s e l f  an i n v e r s e  o f  q ,  t h e r e  e x i s t s  an element 

e E S such t h a t  n is  u n i t  mass on e .  But a s  v x y = q we 

can  only  conclude t h a t  s t  = e and s i m i l a r l y  t s  = e.  Fur ther -  

more e i s  an i d e n t i t y  i n  S .  ( I t  should be  obvious t h a t  if 



a semigroup S has an i d e n t i t y ,  then  i t  is  unique:  For 

suppose e and e l  a r e  i d e n t i t i e s  o f  S, then  e = ee l  = e l e  = e 1  

and t h e r e f o r e  e = e l . )  But we assumed t h a t  S had no i d e n t i t y  

m d  t h e r e f o r e  M (S) has  no i d e n t i t y .  Therefore  M (S) is  only 

a semigroup and n o t  a group. Observe, i n c i d e n t a l l y ,  t h a t  

S can be  imbedded i n  M(S) by t h a t  mapping t h a t  t akes  each 

element s t o  t h e  p r o b a b i l i t y  measure t h a t  has  u n i t  mass on 

s i n  M(S). This  mapping is  a one-to-one mapping. 

Let G be  a group wi th  a topology T and t h e  topology i s  

Hausdorff .  Then G i s  a t opo log ica l  group i f  t h e  m u l t i p l i -  

c a t i o n  is j o i n t l y  continuous and inve r s ion  i s  cont inuous.  

G i s  a.compact t opo log ica l  group i f  G i s  a t opo log ica l  group 

and t h e  topology i s  compact. From now on, i n s t e a d  o f  saying 

compact t opo log ica l  semigroup (group),  we w i l l  j u s t  say  

compact semigroup (group) meaning compact t opo log ica l  semi- 

group (group) .  The topo log ie s  a r e  always Hausdorff .  

Now cons ider  a compact group G .  M (G) i s  t h e r e f o r e  a com- 

p a c t  semigroup, under convolut ion,  wi th  i d e n t i t y  ( t h e  i d e n t i t y  

be ing  u n i t  mass on t h e  i d e n t i t y  of G ). Hence t h e r e  e x i s t s  

a t  l e a s t  one o t h e r  idempotent measure e i n  M(G). What i s  e? 

In t h i s  paper ,  J .  G .  Wendel [l] proved t h a t  t h e r e  is  exac t ly  

one non-zero, non- iden t i t y  p r o b a b i l i t y  measure on G and t h i s  

measure i s  t h e  normalized Haar measure on G .  Hence a l l  t h e  

idempotent measures on any compact group G a r e  known. For 

a d e t a i l e d  s tudy  o f  Haar measure, s e e  Hewitt and Ross [19] .  

Here z r e  b r i e f  d e s c r i p t i o n  and some p r o p e r t i e s  o f  Haar mea- 

s u r e s :  To s t a r t  w i th  one cons ide r s  Coo(G). where G i s  a 



group and C (G) is t h e  s e t  of  a l l  complex-valued continu- o o 

ous funct ions  f on G such t h a t  the re  e x i s t s  a compzct sub- 

s e t  F of  G (depending on f )  such t h a t  f ( x )  = 0 f o r  a l l  

x E G-F. In  our case ,  a s  G i s  a compact group, Coo(G) i s  

j u s t  t h e  s e t  of  a l l  complex-valued continuous funct ions  

f on G .  On t h i s  s e t  Coo(G), t h e  - Haar I n t e g r a l  is defined 

and from t h i s  i n t e g r a l  we g e t  a s e t  funct ion  X ,  which has 

t h e  fol lowing p roper t i e s :  

( i )  0 < X(U) f o r  a l l  non-empty open s e t s  U i n  G .  

( i i )  A(U) < f o r  a l l  open s e t  U i n  G .  

( i i i )  X(aB) = X(B) = X (Bc) f o r  a l l  B E G and f o r  a l l  ! 
a ,  c E G .  ! 

I 

I f  G is  a conpact group, then h(G) < w.  Let v be t h e  measure 
l~ 

generated by X ( i n  the  sense of  Caratheodory) . I f  v (G) = 

b # 1, then v w i l l  be normalized by def in ing p = l / b  v 1 
and p ii c a l l e d  the  normalized Haar measure on a compact - 

I 
group G and i t s  p r o p e r t i e s  a r e :  

( i )  0 < p(B) < 1 f o r  a l l  Borel s e t s  B. - - 

(ii) p(G) = 1. 

( i i i )  p(aB) = p(Bv) = p(B) f o r  a l l  Borel s e t s  B and 
f o r  a l l  a, v E G .  

( iv)  i s  t h e  unique measure on the  compact group G 
having the  above t h r e e  p roper t i e s .  

There i s  one o t h e r  ques t ion  which w i l l  be given considera t ion  here  

and i ts  importance w i l l  become apparent l a t e r .  Also t h i s  r e s u l t  w i l l  

be a b l e  t o  be t r a n s f e r r e d  t o  l o c a l l y  compact groups. Suppose t h a t  S is  

a group wi th  a topology such t h a t  mul t ip l i ca t ion  i s  j o i n t l y  continuous. 
I 

Then does it follow t h a t  S Is a topologica l  group; t h a t  is ,  t h a t  the  



- 1 inversion map x + x , x E S, is also continuous? If S is a compact 

topological semigroup (that is,S is a topological semigroup and the 

topology is compact) and S is a group, then the inversion map is auto- 

matically continuous and hence S is a compact topological group. More 

generally, if the semigroup of a group S with a topology is a locally 

compact topological semigroup, then S is a locally compact topological 

group. To prove this it is sufficient to show that if U is a neighbor- 

hood of the identity e, then there exists a neighborhood V of e such 

that V-' = {v-' I v E v},: U. Since S is a locally compact semigroup 

we may let 13 1 be the collection of all compact neighborhoods of e 
a a 

(this collection is not empty since S is locally compact). If for one 

- 1 
a, Va C U, then inversion is continuous. So suppose that for every 

- 1 - 1 - 1 
va' va y! U, then Va - U # 4 and - U  # 4 since Va is compact. 

- 1 - 1 
But /JVa - U c V = 16) implies that e $ U which is contradiction. a a 

Hence for every neighborhood U of e, there exists a neighborhood V of 

e such that v'~ c U and therefore the inversion map is continuous. Thsre- 

fore,S is a topological group and hence a compact (locally compact) 

topological group. However, if G is a topological group and the topo- 

logy is not locally com?act, then inversion need not be continuous. For 

example, consider the following example: 

Let G = R, the real line as an additive abelian group. Let 

T be the topology of G whose base is [a,b) I < a < x < b < - 
Define gl: R x R + R as follows: 

Define g R -t R as follows: 
2 : 

Then gl is jointly continuous everphere on R x R(since if [a,b) 



is a neighborhood of a, then [a,b/2) is also a neighborhood 

of a), but g2 is not continuos : Consider the point 0 E R. 

[O,b) with b > 0 is a neighborhood of 0 and there is no 

neighborhood V of 0 such that -V c [O,b). Therefore G is a 

topological semigroup and G is a group, but G is not a topo- 

logical group. Observe that the topology on G is not locally 

compact. 

Following is a slightly different example, whose importance is realized 

when we discuss how a compact topological semigroup can be written as a 

union of compact groups: 

If H is a locally compact, non-compact, topological group, I 

then HO, the one-point compactification of H with the point at 

infinity as a zero, is a compact semitopological semigroup, 

but not a topological semigroup [lo] ( 1.1 (a) page 146 ) .  
1 
I 

(If S is a semigroup with topology T and the multiplication 

is continuous in each variable, then the semigroup is called 

a semitopological semigroup. Hence every topological semi- 

group is a semitopological semigroup.) So consider the set 

S = {x  I 0 < x < w) with the induced topology of the real num- 

bers and having normal multiplication as the operation. Then 

.S is a locally compact, non-compact, topological group. How- 

ever by the last result, if we one-point compactify it, SO is 

a semitopological.semigroup but not a topological semigroup. 

Thus nultiplication is not even jointly continuous, just contin- 

uous in each variable, I 
I 

Consider the Semitopological group R of additive numbers with the I 

topology T defined as follows: U E T if and only if there is a countable 



set C (which may be empty) such that U U C is open in the usual topology 

of R .  R has the following properties [22] (Theorem 9.27 page 200) : 

a) Although a semitopological group, R is not a topological 
semigroup. 

b) R is not completely regular, whereas any topological group 
is completely regular. 

c) Inversion in R is continuous. 
d) The only compact sets in R are finite sets. 
e) I? , the one-point compzctification of R with the operation 

extended by 
~ + m = m + a = c o  

is a quasi-compact semitopological semigroup. 

(A topological space is quasi-compact if and only if each given open 

covering of it contains a finite open subcover.) Notice that inversion 

is continuous, whereas multiplication is only continuous in each 

variable separately. Now we go back to compact groups and idempotent 

probability measures on them. 

Consider a compact group G, J. G. Wendel [l] showed using integrals 

that a compact group G has a unique non-zero idempotent probability mea- 

sure, other than unit mass at the identiy. What about non-compact groups? 

Do they have at least one one other idempotent probability measure, other 

than the above identity measure? For a complete separable metric group 

G, K. R. Parthasarathy [IS] has proved (without reserting to integrals) 

if the group has one or more non-identity idempotent probability measure, 

then the idempotent measures are actually the normalized Haar measure 

of some compact subgroup (that is assigning zero mass to sets disjoint 

from this subgroup). There is another result on another class of topo- 

logical groups. It is a special class of locally compact groups and it 

was proven by Ulf Grenander [17]. The result is as follows: An idempo- 

tent probzbility measure on a commutative, locally compact group has all 

of its mass concentrated on a compact subgroup. 

Notice that for the conclusion of the last two results, we had to 



2 4 

assume t h a t  idempotent p r o b a b i l i t y  measures e x i s t e d  and t h e  conclus ion  

was, t h a t  of  t h e  suppor t  o f  t h e  measure was a c e r t a i n  compact subgroup 

of t h e  o r i g i n a l  group. I n  cons ider ing  t h e  problem o f  what idempotent 
\ 

measures look l i k e  on non-compact t opo log ica l  groups,  we immediately 

l o s e  t h e  ex i s t ence  of  a f i n i t e  Haar measure. However i f  an idempotent 

measure does e x i s t ,  we know t h a t  i t  is  t h e  normalized Haar measure on 

some compact subgroup of t h e  group and hence by t h e  uniqueness o f  t h e  

Haar measure we know t h a t  t h a t  p a r t i c u l a r  subgroup cannot be t h e  suppor t  

o f  another  idempotent p r o b a b i l i t y  measure. 

We w i l l  be  us ing  t h e  foregoing r e s u l t s  on va r ious  groups, t o  d e t e r -  

mine, i f  p o s s i b l e ,  t h e  idempotent p r o b a b i l i t y  measures on semigroups. 

In  o r d e r  t o  s e e  how t h i s  i s  done, we now w i l l  d i s cuss  some of  t h e  pro-  
I 

p e r t i e s  o f  semigroups and how they  can be w r i t t e n .  



CHAPTER I1 - SOME RESULTS ON THE STRUCTURE OF 
COMPACT SEMIGROUPS 

We have briefly considered compact topological groups. We have 

observed that there is one and only one non-zero, non-identity idem- 

potent probability measure on a compact topological group and that this 

measure is the normalized Haar measure. Can we make use of this in 

studying what idempotent probability measures on compact topological 

semigroups look like? We also know that if G is a group and a compact 

topological semigroup, then G is a compact topological group. So now 

we want to consider the structure of compact topological semigroups. 

This turns out to be the union of compact groups. Hence for some 

compact semigroups we will be able to use the normalized Haar measures 

on the compact group, which are the components of this semigroup, to 

determine what the idempotent measures on that particular compact semi- 

group look like. In this section there will also be a few examples to 

illustrate some of the results discussed. For all of this we have to 

introduce some concepts on the structure of semigroups. 

Let S be a semigroup. R is a right ideal of S if RS c R; L is a 

left ideal of S if SL c L; M is a two-sided ideal of S if MS U SMc b:. -- --- 
F is a subsemigroup of S if FFc F. L is a minimal left ideal of S if -- 
$ ZLCS and for any left ideal K, @ # K c  L implies K =  L. Similar 

definitions are understood for minimal right ideals and minimal two-sided -- 
ideals. Notice that a minimal (right, left, two-sided)ideal can be a 

set containing a single element or the whole set. An element s E S is 



c a l l e d  a zero o f  S i f  s t  = t s  = s f o r  a l l  t E S .  An element s E S i s  

c a l l e d  a r i g h t  zero of  S i f  s t  = s f o r  a l l  t E S and s E S i s  c a l l e d  a -- 
l e f t  zero of  S i f  t s  = s f o r  a l l  t E S .  Let 0 be a zero o f  S.  From -- 
now on a zero of  S w i l l  b e  denoted by 0 and it i s  always unique. For 

suppose 0 and 0' a r e  zeros of  S.  Then 0 '  = 00'  = 0 ' 0  = 0. That i s  0 '  = 0.  

Note t h a t  (01 i s  a minimal two-sided i d e a l  of  S; Furthermore, i f  S has  a 

zero, then  (0)  i s  t h e  unique minimal two-sided i d e a l  of S a s  any two- 

s ided  i d e a l  M must con ta in  0,  s i n c e  MS U SM c M and M * 0 = ( 0 )  (as  

0 E S ) .  S i m i l a r l y  i f  a E S i s  a l e f t  ( r i g h t  zero)  o f  S ,  then  {a )  i s  

minimal l e f t  ( r i g h t )  i d e a l  of  S.  Again l e t  R be a l e f t  i d e a l  of S, t h a t  

i s  SR c R .  In p a r t i c u l a r  a E S and hence aR = { a ) .  Therefore ,  a s  above, 

{a) i s  t h e  unique minimal l e f t  ( r i g h t )  i d e a l  of S a s  a belongs t o  every 

l e f t  ( r i g h t )  i d e a l  of  S .  I f  G i s  a group, t hen  G i t s e l f  i s  i t s  only  

( l e f t ,  r i g h t ,  two-sided) i d e a l  a s  t h e  i d e n t i t y  e o f  G i s  i n  every i d e a l  
* 

and hence { e ) ~  = G = ~ { e ) .  

L(S) w i l l  denote t h e  s e t  o f  a l l  minimal l e f t  i d e a l s  o f  S and R(S) 

w i l l  denote t he  s e t  o f  a l l  minimal r i g h t  i d e a l s  o f  S .  Let8 and A be index 

s e t s  such t h a t  

L(S) = { L ~  I B E 8, L i s  a minimal l e f t  i d e a l  o f  S} and B 
R(S) = { R ~  1 a E A, R i s  a minimal r i g h t  i d e a l  of  s}.  a 

Let t E S.  Then t i s  an idempotent element o f  S i f  t t = t .  I f  a 

semigrcup S con ta ins  any minimal l e f t  i d e a l ,  then  S possesses  a minimal 

two-sided i d e a l  which i s  equal  t o  t h e  union o f  a l l  t h e  minimal l e f t  i d e a l s  

of S [3] (Theorem page 184, Chapter V . )  The minimal i ty  of t h e  minimal 

l e f t  i d e a l  i n s u r e s  t h e  e x i s t e n c e  of a minimal two-sided i d e a l  (as  two- 

s i d e d  i d e a l s  e x i s t ,  namely S i t s e l f ) .  S i m i l a r l y ,  i f  S con ta ins  any 



minimal r i g h t  i d e a l ,  S aga in  possesses  a minimal two-sided i d e a l  which 

i s  equal  t o  t h e  union o f  a l l  t h e  minimal r i g h t  i d e a l s  o f  S .  Ljapin has 

a l s o  shown t h a t  every minimal l e f t  i d e a l  and a l s o  every minimal r i g h t  

i d e a l  con ta ins  an  idempotent [3] (Sect ion 3.17 Chapter I V ,  page 156) .  

Moreover, i f  S con ta ins  a minimal l e f t  i d e a l  L and a minimal r i g h t  i d e a l  

R ,  then  G = RL i s  a group where RL = R n L [3] (Theorem under Sec t ion  

3 . 2 ,  page 189, Chapter V). S ince  L i s  a l e f t  i d e a l ,  RL c SL c L and s i n c e  

R i s  a r i g h t  i d e a l  RL c RS c R .  Hence RL c L and RL c R ,  hence RL c R 11 L .  

C lea r ly  R n L c RL and hence R L  = R fl L .  Hence i f  L(S) # $ and R(S) { 4 ,  

t hen  t h e r e  e x i s t s  a minimal two-sided i d e a l ,  and it w i l l  b e  c a l l e d  K ,  

such t h a t  

where G = R n L and t h e  components o f  each union a r e  non-empty and 
aB a B 

poin twise  non in t e r sec t ing  [3] (Theorem under Sec t ion  2.2,  page 153, 

Chapter V). In  t h e  case  of  compact semigroups, Numakura [2] (Lemma 7, 

page 103 and Corol la ry ,  page 107) has  shown t h a t  L(S) # 4 and R(S) # 4 .  

A semigroup S i s  s a i d  t o  be s imple Sf it has no p rope r  two-sided 

i d e a l s .  So any group i s  s imple wi th  t h e  above d e f i n i t i o n  of  s i m i p l i c i t y .  

I f  S i s  a compact t opo log ica l  semigroup, t hen  Numakura [2 ]  (Corol la ry ,  

page 107) has  shown t h a t  every i d e a l  ( l e f t ,  r i g h t ,  two-sided) i s  c losed 

and t h e r e f o r e  compact (remember t h a t  a l l  t opo log ie s  a r e  Hausdorff) .  By 

t h e  comment above, i f  S i s  a compact t opo log ica l  semigroup, i t  conta ins  

minimal l e f t  and minimal r i g h t  i d e a l s  and hence a minimal two-sided 



ideal. Hofman and Nostert showed further that in fact only one minimal 

two-sided ideal exists in a compact topological semigroup. It will be 

called the kernel of S (denoted by K) [4] (Chapter A, Section 1). Hence 

if S is a compact semigroup, K is also a compact topological semigroup, 

since every ideal is closed and a two-sided ideal is a semigroup (as are 

left and right ideals). For every pair (a,@) (a E A and 8 E 8). R x L 
a B 

is compact and multiplication is jointly continuous by the Tychonoff 

Theorem and the fact that multiplication is jointly continuous in S, 

respectively. there fore,^ = R L = R f l  L is a topological semigroup 
aB a B  a B 

whose topology is compact. We then have that G is a group whose topo- 
aB 

logy is compact and multiplication is jointly continuous, and hence by a 

previous remark, the inversion map is also continuous. Thus G is a 
aR 

compact topological group. Hence, if S is a compact semigroup, its kernel 

K is the union of compact topological groups. 

We know that every minimal left ideal and every minimal right ideal 

of a semigroup has an idempotent element. As a compact topological semi- 

group S has minimal left ideals and minimal right ideals and hence each 

minimal left (right) ideal has at least one idempotent, we then know that 

S also has idempotents. So let T denote the set of all idempotents of 

the compact semigroup S. Is it possible to write the kernel K of a compact 

topological semigroup in terms of its idempotents? Yes, and Numakura 

121 (Theorem 2, page 104) has given us the following formula for the ker- 

nel K of a compact semigroup S: 

From this formula it is easy to see that K is compact, for {el is compact 

and hence SeS is compact. Also multiplication is continuous. If S has 



a zero,  t hen  it i s  immediate by t h e  above formula t h a t  K = (0).  

Recal l  t h a t  
K =  u R 

a & A a  

G a ~  
i s  c a l l e d  a group component of  K .  Denote t h e  i d e n t i t y  o f  G by a@ 

e a@ ' I t  w i l l  be  shown l a t e r  t h a t  t h e  G a r e  isomorphic.  I t  i s  
(3 P 

immediate t h a t  e f o r  a l l  a E A ,  fl E 8, i s  an idempotent belonging t o  aB ' 
S.  Recal l  t h a t  i f  L and L a r e  two minimal l e f t  i d e a l s  of S,  than  

8 1 8 2 

e i t h e r  L B1 n L B 2  = @ o r  LB1 = LB2.  This  i s  a l s o  t r u e  f o r  minimal r i g h t  1 
I 

i d e a l s .  I f  S i s  a s imple semigroup, S s t i l l  can have minimal l e f t  
, I 

1 

i d e a l s  o r  minimal r i g h t  i d e a l s  inc luding  i t s e l f .  For example, when S 
/ ' 

I 

is  a group. 

s imple,  t hen  

r i g h t  i d e a l s  

Lemma 1 -- 

Observe, t h a t  i f  S i s  a commutative semigroup and S i s  

S con ta ins  no p rope r  minimal l e f t  and no proper  minimal 

a s  a l l  i d e a l s  ( l e f t ,  r i g h t ,  two-sided) a r e  two-sided i d e a l s .  t 
Let S be  a s imple compact t opo log ica l  (Hausdorff) semi- 

group and x ( +' 1, i f  1~ S) a non-zero idempotent o f  S. Then t h e r e  e x i s t s  

a group component X o f  S, f o r  which x i s  t h e  i d e n t i t y .  

Proof 

S = U LB,  where L B 1 
fl LB2 = "henever fl l#  B 2 .  (S has mini- 

B E E  
ma1 l e f t  i d e a l s  a s  S i s  a compact semigroup. This  was noted e a r l i e r . )  

Hence 

where 

P E A  

X O X  

group 

t h e r e  e x i s t s  a unique y E P such t h a t  x E L . S i m i l a r l y  S = 
Y C X E  A Ra 

Ral Ma2'= $ whenever a 1 

such t h a t  x E 2 S e t  X = 
P 

= x a s  x was an  idempotent 

and t h i s  group con ta ins  an 

# a and hence t h e r e  e x i s t s  a unique 
2 

R n L , x ~ : X a s x ~ ~  a n d x ~ L  and 
Y P Y 

element i n  S.  As noted be fo re  X is a 

idempotent.  A s  a group only  has one 



idempotent,  x i s  t h e  i d e n t i t y  element f o r  t h e  group X .  Hence f o r  every 

idempotent element i n  a compact simple group, t h e r e  i s  one group com- 
, . 

ponent whose i d e n t i t y  element i s  t h i s  idempotent element.  

Suppose 0 E S,  then  (0) c S i s  a minimal two-sided i d e a l  and a s  was 

po in t ed  ou t  be fo re ,  it i s  t h e  unique minimal two-sided i d e a l .  S i s  simple 

impl ies  t h a t  S = (0) a s  S cannot have any propet- two-sided i d e a l s .  Hence 

any s imple semigroup conta in ing  two o r  more elements cannot have a zero 

element.  Suppose S i s  simple and con ta ins  an  i d e n t i t y  element .  The 

ques t ion  t h a t  a r i s e s  i s  what does S look l i k e  i f  S i s  s imple and has an 

i d e n t i t y ?  Before t h a t  ques t ion  can be p a r t i a l l y  answered, we need another  

concept . t l  

I t  

Let S be  a s imple semigroup. S i s  a completely s imple semigroup I 

I 

i f  it con ta ins  a t  l e a s t  one minimal l e f t  i d e a l  and a t  l e a s t  one minimal I 
I 

r i g h t  i d e a l  and has  no proper  two-sided i d e a l  [3] (Lemma 9 ,  page 105 and 
It' 
I1 1 

Theorem 4L and 4R, page 107) .  Let us  cons ide r ,  f o r  example, groups. Let 
I 
I# 

G be a group, s o  t h a t  G has  no proper  two-sided i d e a l s .  The only  mini- 
II 
$ 

ma1 l e f t  i d e a l  and t h e  only minimal r i g h t  i d e a l  o f  t h e  group G i s  t h e  

group i t s e l f .  Therefore  a l l  groups a r e  completely s imple .  One would 

th ink  t h a t  any s imple semigroup ought t o  be completely s imple .  This  how- 

eve r  i s  n o t  t h e  ca se .  S t e f a n  Schwarz g ives  an example [S] (page 229), 

and analogous examples due t o  0. Anderson, can be found i n  t h i s  book [ 6 ] .  

These examples hold b a s i c a l l y  f o r  t h e  reason  t h a t  t h e  semigroup, though 

it is  s imple ,  it does n o t  have ail idempotent e lement .  However, a s imple 

compact t opo log ica l  semigroup is  completely s imple [2] (Lemma 7 ,  page 103) .  

There i s  ano the r  d e f i n i t i o n  o f  completely s impie semigroups. I t  has  been 

shown t h a t  t h e  two d e f i n i t i c n s  a r e  t h e  same [3] (Theorem 5, page 107) .  

An idempotent f i s  s a i d  t o  be under another  one i f  e f  = f = f e .  An 



idempotent e is primitive if there are no non-zero idempotents under e. 

A simple semigroup S is said to be completely simple if every idempotent 

element of S is primitive, and for each a E S there exists idempotents 

e and f such that ea = a = af. There is also another characterization of 

simplicity. S is a simple semigroup if and only if for every x of S, 

S S = S. We then get the result, that a conpletely simple semigroup 

S with the identity 1 is a group. For consider any element x. Since S 

is simple we know that there exists elements a and b such that a x b = 1. 

This comes from the above characterization of simplicity. It is imme- 

diate that xba and bax are idempotents as for example 

xba xba = xb(a x b)a = xb la = xba. 

But as S is completely simple, 1 is a primitive idempotent. As xba and 

bax are under 1, we then get that xba = bax = 1. Therefore the inverse 

of x is ab and therefore S is a group. Thus we have a partial answer to 

the question: If S is a simple semigroup and has an identity, what can 

we say about the semigroup? If the simple semigroup is also a completely 

simple semigroup, then it is a group. If the simple semigroup is not 

completely simple, we cannot say anything. In the case of simple compact 

semigroups, we know that they are then immediately completely simple (as 

they have at least one minimal left ideal and at least one minimal right 

ideal) and hence if a simple compact semigroup has an identity, we know 

then that it is a compact topological group, by a previous remark. 

Lemma 2 Let S be a completely simple semigroup and x( # 1, 1 E S) -- 
a non-zero idempotent of S. Then there exists a group component X of S 

for which x is the identity. 

The proof of the above lemma folows identically as for Lemma 1. So 

we have the result that for each idempotent element there is one and 



only one group component of  a completely s imple semigroup. Hence, i f  a 

completely simple semigroup S has more than  one idempotent,  we know t h a t  

S can be  r ep re sen ted  a s  t h e  union o f  groups whose i d e n t i t i e s  form t h e  s e t  

o f  a l l  idempotents o f  S. Furthermore, g iven  2 completely simple semi- 

group S and w r i t i n g  T f o r  t h e  s e t  o f  a l l  idempotents i n  S we have 

R(S) = ( ~ e  I e E TI 

L(S) = { e ~  I e &  TI , 

and t h e  groups o f  S a r e  of  t h e  form e Se with e e E T  [ Z ]  (Lemma 9, 
P Y ' Y 

page 105 and Themem 4L and 4R, page 107) .  

Suppose S i s  a semigroup and L i s  a minimal l e f t  i d e a l .  I s  SL t h i s  

minimal two-sided i d e a l  t h a t  e x i s t s ?  C l e a r l y ,  by a s imple c a l c u l a t i o n ,  I 
SL is  a minimal two-sided i d e a l .  J u s t  no te  t h a t  i f  S a l s o  has  a mini- I 

ma1 r i g h t  i d e a l ,  then  t h i s  i s  t h e  minimal two-sided i d e a l  a s  i t  i s  unique. I 

I 

For compact semigroups we have a more d e f i n i t e  answer. Reca l l  t h a t  
I1 :I 
lit' 

Nwnakura [ 2 ]  (Lemma 7 ,  page 103 and Coro l l a ry ,  page 107) has  shown t h a t  
INS 

any compact semigroup has  a minimal l e f t  and a minimal r j g h t  i d e a l .  He 
I!, 

has a f u r t h e r  r e s u l t  [ Z ]  (Theorem 5,  page 107) : "Let R and L be a r i g h t  

and a l e f t  minimal i d e a l  o f  a compact semigroup S, r e s p e c t i v e l y ,  and K 

be t h e  ke rne l  o f  S. Then LR = K and R L  i s  a group." J u s t  r e c a l l  t h a t  i f  

a semigroup S has  a minimal l e f t  i d e a l  and a minimal r i g h t  i d e a l ,  then 

S has  a k e r n e l .  I n  another  s e c t i o n  we w i l l  be d i scuss ing  i n  f u r t h e r  

d e t a i l  t h e  s t r u c t u r e  o f  completely s imple semigroups. 



CHAPTER I11 - EXAMPLES 

In  t h i s  s e c t i o n  we w i l l  be dea l ing  mainly wi th  examples demonstrat ing 

some of  t h e  r e s u l t s  i n  t h e  previous  s e c t i o n .  Before we g ive  these  exam- 

p l e s ,  another  major concept w i l l  b e  in t roduced .  This  i s  t h e  concept of  

t h e  support  (o r  c a r r i e r )  o f  a  measure func t ion  on a  semigroup S.  

Let S  be  a  t opo log ica l  semigroup and x E S .  A neighborhood of  x, 

denoted by Vx i s  a  s e t  such t h a t  t h e r e  e x i s t s  an open s e t  0, such t h a t  

x  E Ox c Vx. A neighborhood o f  a  p o i n t  need no t  be a  Bore1 s e t .  Let 1 
I 

p be a  measure func t ion  i n  B(S), t h e  s e t  o f  a l l  Bore1 s e t s  o f  S .  The I 
I 

suppor t  o f  p  on a topo log ica l  semigroup S i s  def ined  a s  fo l lows:  I 

C(P) = {x E S I fop al! , u(Vx) > 0 F I I C ~  t h a t  Vx E B ( S )  } . , 
I C 

Recal l  t h a t  M(S) i s  t h e  s e t  o f  a l l  p r o b a b i l i t y  measure p  on a topo- 1 a 

la 
l o g i c a l  semigroup S .  I f  S  i s  a  compact t opo log ica l  semigroup then  M(S) i :rl 

(with t h e  weak-star topology) i s  a l s o  a  compact t opo log ica l  semigroup. 

I f  p  E M(S), then  it i s  easy  t o  show t h a t  C(p) i s  c losed  and hence com- 

p a c t .  J .  S.  Pym [ 7 ]  has  shown t h a t  i f  S  i s  a  l o c a l l y  compact t opo log ica l  

semigroup and p ,  y  E M(S) , then  

= C (p) C (y) ( t he  b a r  denotes  c l o s u r e )  . Hence i f  

S  i s  a  compact t opo log ica l  semigroup and p,y E M (S) ,  then  

C (p X y) = C (1.1) C (y) . This  fo l lows  immediately from t h e  f a c t  

t h a t  t h e  Ca r t e s i an  product  o f  compact s e t s  i s  compact and m u l t i p l i c a t i o n  

i s  j o i n t l y  cont inuous.  Now we w i l l  cons ider  a  few examples. 

The next  few examples j u s t  show o r  v e r i f y  a  few p r o p e r t i e s  us ing  



t h e  support  o f  a  measure when we cons ide r  an a l g e b r a i c  system having 

def ined  on it a  compact topology and t h e  app ropr i a t e  ope ra t ions  be ing  

cont inuous.  

1) Let G be a  compact t opo log ica l  group wi th  g E G and H E B(G). y  
g  

i s  u n i t  mass on g  i f  

C lea r ly  y  i s  a  p r o b a b i l i t y  measure on G .  Reca l l  t h a t  y  EM(G) i s  
g  

i n v e r t i b l e  i f  and only  i f  y  i s  a  u n i t  mass measure y  f o r  some h  E G .  
h  

s o  C(yg X v = C(vg) C(P = {gg-'} = { l }  = C(yl ) .  Hence 
g  - 6 - 

&I * P 1 = 9 a s  each u n i t  mass measure is  uniquely de f ined  by i t s  
g  g- 

suppor t .  

2)  This  example w i l l  g e n e r a l i z e  t h e  above t o  compact t opo log ica l  

semigroup. Let S be a  compact t opo log ica l  semigroup wi th  i d e n t i t y .  

- 1 Let g  E S have an  i n v e r s e ,  s ay  g  . (We say  h  E S has  an  inve r se  i f  

h k = k h  = 1 ) .  Then a s  b e f o r e  we have C(y x y = C(y ) 
g g  g  

Hence y  x yg-l = y l .  
g  

3) Now we want t o  g e n e r a l i z e  t o  m u l t i p l i c a t i o n .  That is  we w i l l  

- show t h a t  f o r  s ,  t E S,  ys x yt - yst.  

{ s t }  = C(ys) C(vt) = C(ys Y ut)  

{ s t )  = C(yst) 

By t h e  uniqueness of  t h e  suppor t  of a  u n i t  mass measure, we then  



deduce t h a t  p  = ps x p t .  
s t  

4 )  This  example w i l l  i l l u s t r a t e  some of t h e  r e s u l t s  on compact 

semigroups. We w i l l  determine i t s  ke rne l , , show t h a t  i t  has minimal 

l e f t  and r i g h t  i d e a l s  of which we a r e  assured .  

Let R be t h c  s e t  of a l l  r e a l  numbers. (R), w i l l  denote t h e  s e t  

o f  a l l  nxfi matr ices  whose e n t r i e s  a r e  from t h e  f i e l d  R .  Let A&(R),, 

then 11 / /  i s  a  fun t ion  from ( R )  t o  !? . I t  i s  c a l l e d  t h e  
2 

ope ra to r  norm. For a  complete d e f i n i t i o n  of t h i s  mrrn s e e  t h e  

book "Real Analysis" by Royden [22] .  I w i l l  be  us ing  some proper-  

t i e s  of  t h i s  norm which w i l l  a l s o  be descr ibed  i n  t h e  above r e f e r -  
? ., 

ence.  The main p rope r ty ,  t h a t  I w i l l  use  i s  t h e  t r i a n g u l a r  inequa- 

l i t y  which says  t h a t  f o r  A,  B E (R),, I (All I / B I  ( 3 I ( A B I  1 .  
Let S  = {A E (R)2 I IIAll < 11 where (R)2 i s  t h e  s e t  o f  a l l  I - 

t he  2  x 2 matr ices  over  t h e  r e a l s .  C l e a r l y  S  i s  a semigroup under 
L 

@- 

matr ix  m u l t i p l i c a t i o n .  Let A , B E S then  I I A B I  I - < I I A I  1 I I B I  I 2 
&I 1 

1 1 = 1. Also,  S  i s  compact. Notice t h a t  S has  a t  l e a s t  one,  in 
5 

f a c t  i t  has an i n f i n i t e  number of  proper  l e f t  i d e a l s  L and a t  l e a s t  

one proper  r i g h t  i d e a l :  namely 

and R = IB E S  I B = ( t  :)I . 

S has a  minimal l e f t  i d e a l  and a  minimal r i g h t  i d e a l  and i n  t h i s  

case  it i s  ( ) a s  S  has  a  zero .  Hence S  has a  minimal two- 

s ided  i d e a l ,  which i s  t h e  ke rne l  o f  S,  and t h a t  i s  

Hence S  i s  no t  s imple.  S  has o t h e r  proper ,  aga in  an i n f i n i t e  number 

o f ,  two-sided i d e a l s .  Let sn {A E S / 1 lAl 1 - < l / n}  where n  i s  

a  s t r i c t l y  p o s i t i v e  i n t e g e r .  Then SS" c S" and S"S c S" s i n c e  



I I A B  1 I 5 I / A /  1 / I B I I f o r  a l l  A, B E (R) Observe t h a t  t h e  mini- 

mal l e f t  i d e a l ,  minimal r i g h t  i d e a l ,  minimal two-sided i d e a l  o r  

ke rne l  i n  t h i s  semigroup a r e  i d e n t i c a l  namely ( )  . L a n d  

R a r e  no t  minimal l e f t  and minimal r i g h t  i d e a l s ,  r e s p e c t i v e l y ,  a s  we 

can d e f i n e  L~ and R" f o r  a l l  s t r i c t l y  p o s i t i v e  i n t e g e r s ,  s i m i l a r l y  

a s  sn. S,of  c o u r s e , i s  no t  completely s imple.  In  t h e  f i r s t  case  

S i s  no t  even s imple ,  b u t  a l s o  t h e r e  e x i s t s  an idempotent t h a t  is  

under ( ) . I n  ma t t e r  o f  f a c t ,  t h e r e  a r e  two idempotents 

under ( ) and t h e s e  a r e  

f o r  example 0 0 0 1 0 0 0 1 0 0 

The ques t ion  a r i s e s ,  does S have a subsemigroup which is  simple? 

(For we a r e  i n t e r e s t e d  i n  completely s imple semigroups.) The reason 

f o r  t h i s  ques t ion  i s  t o  determine whether o r  no t  we can de f ine  an , 

idempotent p r o b a b i l i t y  measure on S and t h i s  ques t ion  w i l l  be  

answered l a t e r .  Consider t h e  fo l lowing  subse t  of S. 

G ={(co' - s i n  ' 8 s i n e ) l  cos 0 0 < 0 < 

Then G c S s i n c e  

0 = ( 'OS 
Sin r o t a t e s  a l l  p o i n t s  i n  t h e  p l ane  around t h e  

- s i n  8 cos 0 

o r i g i n  by t h e  ang le  8 .  The d i s t a n c e  of  t h e  p o i n t  from t h e  o r i g i n  i s  

kept  cons t an t  and hence 1 1 0  1 1 = 1, hence O E S .  By a simple ca lcu-  

l a t i o n ,  it can be shown t h a t  G G = G .  If 0 = 0, t hen  

I cos sin ') = ( l  O )  and therefore ,G has  an i d e n t i t y .  We w i l l  
\ - s i n  8 cos 0 0 1 

show t h a t  G i s  a group 'by showing t h a t  it i s  completely s imple.  As 

( ) ?s t h e  o n l y  idempotent i n  G ,  a l l  ideinpotents a r e  p r i m i t i v e .  

Fu r the r  f o r  any a E G ,  ( i  y ) a = a ( : ) . A l l  we have t o  show 

i s  t h a t  G is  s imple .  Notice t h a t  G is  homeomorphic and isomorphic 



t o  [0, 27~) which has a d d i t i o n  of  t h e  r e a l  l i n e  modulo ZIT. That 

is  f o r  a ,  b E [O, 2 ~ )  

a + b =  a + b  i f O < a + b < Z ~  
a + b  - 2 1 ~ i T 2 1 ~ < a + b  - < 4 ~ .  

I t  i s  immediate t h a t  [0, ZIT) i s  simple (has no two-sided i d e a l s )  and 

therefore  G i s  simple. A s  [0, 27~) i s  commutative, so  is  G .  There- 

fore,G i s  a completely simple semigroup (compact i n  f a c t )  with iden- 

t i t y  (see [2] (Lemma S ,  page 105)) and the re fo re  G is  a group. In 

t h i s  we could have shown t h a t  G was a group simply by showing what 

cos8 -s ine  the  inverse  of sin was and it  simply i s  
cos 8 tcos sin 

This group i s  genera l ly  know a s  t h e  Rotat ion Group. 
f 

-- 
S has another  subsemigroup which i s  a l s o  a group Consider 

H = {A E (R)Z I 1 1 ~ 1 1  - < I and d e t  = 5 1 . Clear ly  H c S and 

I1.H c H. Let A , B  E H, then / I A B I I  5 llAll0llBll r 1 . I f  t h e  condi- 

t i o n  had been t h a t  I / A ~ /  = 1, we would not  be assured t h a t  H is  

c losed under m u l t i p l i c a t i o n .  Furthermore de t  AB = detA -detB = +1 li 

a s  detA = k l  and detB = il . Det ( i y ) = 1 and hence KI 
E H and therefore,HH = H .  H i s  s t i l l  compact and s o  H i s  a proper 

subsemigroup of  S a s  [ : ; I  g H -  Hence it i s  n e i t h e r  a l e f t ,  r i g h t  

o r  two-sided i d e a l  of  S. I n  t h i s  case  it i s  d i f f i c u l t  t o  determine 

whether o r  not  H i s  simple. However it i s  immediate t h a t  H i s  a 

group a s  H H = H and ( ) E H and t h e  determinent o f  a l l  mat- 

r i c e s  i n  H a r e  nonzero and hence i n v e r t i b l e .  Now consider  the  sub- 

s e t  F of  H where: F = G U {el) ,  where G i s  t h e  r o t a t i o n  group as 
- 

-1 0 mentioned above and e = ( ) and e = ( i ) . Clear ly  el  + G ,  1 

so F 2 G .  F is  a compact semigroup a s  G and e G a r e  compact s e t s  
1 

and hence a f i n i t e  union of compact s e t s  is a l s o  compact. Observe 

t h a t  G fl elG = 4 and G i s  a simple semigroup. Therefore F i s  a 



simple semigroup and hence a completely simple semigroup a s  F i s  

compact. [ 2 ]  (Lemma 7 ,  page 103) F a l s o  has an i d e n t i t y ,  namely 

( . Therefore F i s  a group, a s  F i s  a kompletely simple 

semigroup with i d e n t i t y .  Now we w i l l  show t h a t  F i s  a subse t  o f  H .  

F i r s t  observe t h a t  i f  Q E G ,  then  d e t  Q = 1. Let A E F, then 

Q f o r  some E G i f  d e t  A = 1 

e l@ f o r  some @ E G i f  d e t  A  = -1. 

o r  A = = 1 i f  d e t  A =  1. 

Therefore A E H and hence F c H .  

So we have a t  l e a s t  t h r e e  subsemigroups o f  S t h a t  a r e  groups G ,  F ,  

H and they  a r e  r e l a t e d  a s  fo l lows ,  G F c H .  T h e i r  importance w i l l  f 
become apparent  l a t e r  when we i l l u s t r a t e  t h e  theorem on t h e  conver- 

importance l i e s  i n  t h e  f a c t  t h a t  

a b e l i a n .  

Define S  = {A E (R), I I / A  1 

gence o f  sequences o f  p r o b a b i l i t y  measures. Note t h a t ,  t he  groups 
W '  

G and F a r e  bo th  a b e l i a n .  
1. 

6) This  example i s  j u s t  an ex tens ion  of  t h e  above example. The 
i 

t h e  groups de r ived  a r e  no longer  

I - < 11, 

where (R), i s  t h e  s e t  o f  a l l  n x n ma t r i ce s  over  t h e  r e a l s .  Since 

f o r  A E S ,  we have 1 I A  1 1 - < 1, we know t h a t  S i s  compact. Again n o t i c e  

t h a t  S has  a t  l e a s t  one l e f t  i d e a l  L and a t  l e a s t  one r i g h t  i d e a l  N ,  

namely : 

L =: A E S  I A =  i . . ... . 
. . ... 

n columns 



rows 1 
a s  wi th  n = 2 ,  t h e  minimal l e f t  i d e a l ,  t h e  minimal r i g h t  i d e a l  and 

t h e  minimal two-sided i d e a l ,  which a l s o  i s  t h e  ke rne l  of  S,  i s  t h e  

zero mat r ix  so  t h a t  S i s  no t  s imple .  Does S have subsemigroups 

which a r e  s imple? The answer i s  yes and t h e  f i r s t  subsemigroup 

i s  a s  fo l lows:  Let G be t he  s e t  o f  a l l  or thogenal  r e a l  ma t r i ce s  

such t h a t  t h e  determinant  of  each ma t r ix  i s  1. P i s  or thogenal  

- 1 i f  P' = P (P* means t h e  t r anspose  o f  P - s e e  any book on mat r ix  

8 X -1 -1 
theory  f o r  d e f i n i t i o n s  ) . Let P, Q E G ,  then  (PQ)' = Q P = Q P 

= (PQ) -~ . .  Also G i s  a  c losed  subse t  of  S and hence G i s  compact 

wi th  i d e n t i t y  [ 2 1 ]  . Now we w i l l  show t h a t  G i s  s imple .  Let P E G .  

4: X 
Consider G P G .  S ince  P E G ,  P  E G and hence G = G P P c G P G .  

k !  

Therefore G P G = G f o r  a l l  P E G and hence G i s  s imple .  But be- 4. 

cause G i s  compact, G i s  completely s imple and i t  fol lows t h a t  G I 

i s  a  group.  L 

Now d e f i n e  H (as  i n  example 4) a s  fo l lows:  

H = {A E (R), I A - < 1 A 1 .  Then H i s  a  closed 

and hence compact subsemigroup o f  S i s  n e i t h e r  a  l e f t ,  r i g h t , o r  t1v.o- 

s i d e d  i d e a l  of  H .  0 6 H and hence H c S .  Again observe t h a t  H H 
# 

= H and hence H i s  a  compact group. Define F = G u e ,  G where 
-1 0 ... . ,. . 0 

0 1 0  . . . * ,  

... . 0 

... 0 1 

Then d e t  el  = -1. C l e a r l y  aga in  a s  be fo re  F c H and F i s  a l s o  com- 

p a c t .  Furtiiermore F i s  s imple and hence a  group.  Again G F c H 4 



and rleither G nor F in this case ( actually for n < 3) are com- - 

mutative. 

6) The next example just shows us some of the consequence of cer- 

tain properties. Let S be a commutative completely simple semi- 

group without identity. We have considered the general case when 

S had an idcrriity. Then any right or left ideal is a two-sided 

ideal. As S is completely simple, there exists minimal left and 

right ideals, that is there exists at least one minimal ideal in 

S. But by the definition of completely simple, S is automatically 

simple and hence it has no proper ideals, thus S is the only ideal. 
I 

Now S must contain idempotents as S is completely simple (see [3] I 

(Section 3.17, Chapter IV, page 156). Recall that every idempo- 
I 

tent is an identity for one of the group components of S. 

Therefores = U L U R 
B E E  f3 . E A ~  * I  I 

m - '  
= U 

I 

But 4BI= R for some a and some B as S is abelian and furthermore l 

a J 

S = L = R = S for all a E A and B E 8 as S is simple and thus B a 

L(S) = {S) = R(S) and hence G = S. Therefore,S is a group and 
a B 

hence has an identity. Therefore,every commutative, completely sim- 

ple semigroup is a group. Just two more observations, if S is a 

simple commutative semigroup with a zero, then as before S = (0) .  

Also,simple commutative semigroups are completely simple as all 

ideals, left, right, two-sided are all two-sided. As the semigroup 

is simple its only non-empty ideal is itself and hence it has a 

minimal left ideal and a minimal right ideal. Hence every simple 

commutative semigroup is a completely simple commutative semigroup 



and hence i t  i s  a  group. 

7) This  example w i l l  i l l u s t r a t e  a l l  t h e  r e s u l t s  on compact simple 

semigroups. The minimal l e f t  i d e a l s  and t h e  minimal r i g h t  i d e a l s  

and t h e  group components w i l l  be  c l e a r l y  def ined .  The reason f o r  

t h i s  example w i l l  become apparent  l a t e r  when we w j . 1 1  f u r t h e r  s tudy  

t h e  s t r u c t u r e  of completely simple semigroups. 

Let G be any compact t opo log ica l  group with i d e n t i t y  e .  De- 

0 f i n e  G t o  be t h e  semigroup G U ( 0 )  where g  0 = 0  g = 0 f o r  

a l l  g  E GO and glg2 i s  t h e  same a s  be fo re  f o r  a l l  g l ,  g2 E G .  Let 

GO be t h e  s e t  of a l l  3  x 3  mat r ices  whose e n t r i e s  a r e  from GO such 

t h a t  a t  most one e n t r y  i s  non-zero. Define P = e  e e  . Let (3 
A E Go, then  e i t h e r  every e n t r y  i s  zero and we denote A a s  ( 0 ) ,  

o r  exac t ly  one e n t r y  i s  no t  zero,  say  t h e  ( i ,  j )  p o s i t i o n  f o r  some 

i = 1, 2, 3 and j  = 1, 2, 3 .  This  non-zero element i s  some g i n  G .  

Denote A a s  (g) i j  . That i s  ,every ma t r ix  o f  GO w i l l  be  w r i t t e n  a s  

( g ) i j  where g  E G and i = 1, 2, 3  and j  = 1, 2 ,  3 o r  ( 0 ) .  

So GO = { ( g ) i j  I g E G ,  i = 1 , 2 , 3  and j  = 1, 2, 3)  U {(0)}.  

0 
Define a  new m u l t i p l i c a t i o n  0 i n  G a s  fo l lows:  

Let A ,  B E GO then  A o  B = A P B 

where on t h e  r i g h t  hand s i d e  we have o rd ina ry  ma t r ix  mu l t ip? i ca t ion .  

A s  t h e r e  gene ra l ly  i s  no a d d i t i v e  ope ra t ion  i n  t h e  group G ,  we de- 

f i n e  a  formal sum as  fo l lows:  

0 
sequence i n  G . Then 

a  = 0  f o r  a l l  y f p 
C a  . =  Y 
X unde f inedo the rwi se  

I t  should be immediate t h a t  any formal sum i n  t h e  mat r ix  A P B has  

. Therefore A P B a t  most one non-zero term and hence it i s  de f ined  



i s  always def ined ,  and it i s  a l s o  immediate t h a t  A P B E There- 

f o r e  Go i s  a semigroup a s  m u l t i p l i c a t i o n  is a s s o c i a t e  a s  ord inary  

mat r ix  m u l t i p l i c a t i o n  i s  a s s o c i a t i v e .  Define G = @ - {(0)},  where 

(0) i s  zero mat r ix .  G has  no ( r i g h t ,  l e f t ,  two-sided) zero d i v i s o r s  

(a i s  a two-sided zero d i v i s o r  i n  a semigroup G with zero i f  t h e r e  --- - -- 
e x i s t s  a ,  b E S ,  a # 0,  b # 0 such that.  ab = b a  = 0.  S imi l a r ly  

d e f i n i t i o n s  hold  f o r  l e f t  and r i g h t  zero d i v i s o r s . )  Give G t h e  ----- 

induced mat r ix  topology der ived  from G .  Then it i s  immediate t h a t  

m u l t i p l i c a t i o n  i s  cont inuous.  Therefore G i s  a t opo log ica l  semi- 

group. A s  G i s  a compact semigroup, it then  follows t h a t  G i s  a l s o  

a compact semigroup. Recal l  t h a t  

( U 1 1 Y 1 2 U 1 3 )  such t h a t  ( a ) i j  = a22 23 
r a31 a32 a33 

a i f i = l a n d j  = k  
0 o therwise .  

Denote t h e  non-zero element i n  t h e  ( i , j )  p o s i t i o n  a s  a i j  Now ob- 

s e rve  t h a t  (a) i  0 (b) l m  = (ab)im f o r  a l l  (a) ih ,  (b) lm E '3 . G has 

no proper  two-sided i d e a l s  a s  G i s  a compact group wi th  no zeros 

and hence G i s  s imple .  A s  S i s  compact, G must have a t  l e a s t  one 

minimal l e f t  i d e a l  and a t  l e a s t  one minimal r i g h t  i d e a l ,  as  G i s  

completely s imple (a compact simple semigroup i s  a completely simple 

semigroup).  Furthermore G must have idempotents.  A s  a ma t t e r  o f  

f a c t ,  G has  3 minimal l e f t  i d e a l s ,  3 minimal r i g h t  i d e a l s  and hence 

9 group components a n d . t h e r e f o r e  9 idempotents .  These a r e  a s  f o l -  

lows: F i r s t  we i d e n t i f y  t h e  idempotent e lements .  These a r e  

j ( e ) i j  1 1 - < i j - < 3 where e i s  t h e  m u l t i p l i c a t i v e  i d e n t i t y  

of  G .  Let us cons ide r  ( e ) i j  ; ( e ) i j  O (e) i j  = ( e ) i j  by t h e  r u l e  

given above. Suppose (g ) i j  is an  idempotent.  Then 



and w i l l  be l a b e l  

f o r  j = 1, 2 

The minimal r i g h t  

( a i j  O ( d i j )  = Wij = W i j ,  

t h a t  is g2  = g and hence g = e a s  G i s  a group. Therefore,  t h e s e  a r e  

t h e  only idempotents o f  G .  The minimal l e f t  i d e a l s  a r e  a s  fo l lows  

l ed  L1, L 2 ,  L3: 

I g E G ,  i = 1, 2, 3)  

, 3.  

i d e a l s  a r e  a s  fol lows and w i l l  b e  l a b e l l e d  R 
1 ' 

f o r  i = 1, 2 ,  3.  
3 3 

Observe t h a t  G = U R = U Li. 
i i=l i= 1 

Also Ri n L = R i L j .  Now R.L. i s  a group and we w i l l  denote it by 
i 1 1  

rw rw 

Gi j 
. G i j  = { ( g ) i j  I g E G I .  I t  i s  immediate t h a t  G = G = G 

i j  l m  

f o r  a l l  1 < i, j ,  1, m < 3 .  Also n o t i c e  t h a t  - - 
3 3 

G =  U U 
i=1 j = 1  G i j  a 

Furthermore ( e ) i j  i s  the  i d e n t i t y  o f  G i j  Hence t h e  s e t  of idempo- 

t e n t s  a r e  t h e  i d e n t i t i e s  of t h e  group components. 

This  example seems t o  have come ou t  of nowhere. I t  w i l l  become 

c l e a r  l a t e r  on why t h i s  example a r i s e s  n a t u r a l l y  i n  t h e  s tudy  o f  

completely s imple semigroups. I t  does demonstrate how a completely 

simple semigroup breaks down i n t o  a union o f  groups. A l l  o f  t hese  

groups a r e  isomorphic t o  each o t h e r  and t o  t h e  o r i g i n a l  group. We 

needed compactness t o  g e t  t h i s  skmigroup completely s imple.  The 

above example can be c rea t ed  o r  extended t o  a l l  p o s i t i v e  i n t e g e r s  n .  

If n = 1, i t  is  no t  necessary t o  a d j o i n  a zero t o  G a s  t h e  s e t  o f  

1 x 1 matr ices  wi th  e n t r i e s  from G i s  j u s t  G i t s e l f .  



Now t h a t  we have considered t h e s e  va r ious  examples, we want t o  

d iscuss  idempotent p r o b a b i l i t y  measures on compact t opo log ica l  semigroups. 
1 .  

Before we d i scuss  t h e  idempotent p r o b a b i l i t y  measures on compact semi- 

groups, we want t o  d i s c u s s  idempotent p r o b a b i l i t y  measures f i r s t  on 

compact s imple semigroups. Recal l  t h a t  on semigroups, idempotent prob- 

a b i l i t y  measures a r e  t h e  s t a b l e  laws on t h a t  semigroup. 



CHAPTER IV - IDEblPOTENT FIEASURES 

We a r e  i n t e r e s t e d  i n  t h e  convergence of  a sequence of  p r o b a b i l i t y  

measures and the  s t a b l e  laws of  a given compact semigroup S .  We f i n d  

t h a t  some sequences of  p r o b a b i l i t y  rceasures converge t o  idempotent prob- 

a b i l i t y  measures and we f i n d  t h a t  t h e s e  p a r t i c u l a r  sequences a r e  i n  f a c t  

s t a b l e  laws. So with t h i s  i n  mind, we want t o  d i scuss  idempotent prob- 

a b i l i t y  measures on a compact t opo log ica l  semigroup. I n  p a r t i c u l a r  we 

want t o  be a b l e  t o  determine what t h e s e  idempotent p r o b a b i l i t y  measures 

look l i k e  on a t opo log ica l  semigroup. I n  t h i s  s e c t i o n  we w i l l  cons ider  

j u s t  compact t opo log ica l  semigroups, and mainly j u s t  s imple ones.  For 

a compact topologica l  group we a l r eady  know t h e  answer. J .  G .  Wendel 

[ I ]  has  proved t h a t  every compact t opo log ica l  group G has  a non-zero, 

non- iden t i t y  idempotent measure, namely t h e  normalized Haar measure. 

A s  some compact semigroups a r e  j u s t  unions of  compact groups,  one would 

th ink  t h a t  a t  l e a s t  some o f  t h e  idempotent p r o b a b i l i t y  measures would be 

some l i n e a r  combination o f  t h e  normalized Haar measures on t h e  var ious  

compact groups. 

From now on f o r  any two measure func t ions  on an a l g e b r a i c  system, we 

w i l l  denote convolut ion simply by j u x t a p o s i t i o n ,  t h a t  i s  i f  p ,y  a r e  two 

measures, then  p W y = py. Let S be a t opo log ica l  semigroup, then  e is 

an idempotent p r o b a b i l i t y  measure i f  e # 0 ,  e # 1, i f  0 o r  1 & S respec-  

t i v e l y  and e e = e .  Now assume t h a t  S i s  a compact semigroup and E e 

M(S) is  an idempotent p r o b a b i l i t y  measure, then  B .  M .  Kloss [8] has  shown 



t h a t  t h e  support  o f  E (denoted by C ( ~ ) ) i s  a c losed  s imple subsemigroup 

o f  S and hence compact. The re fo re , t he  suppor t  o f  any idempotent prob- 

a b i l i t y  measure on a compact semigroup i s  a completely simple compact 

semigroup (as  a simple compact has  minimal l e f t  and minimal r i g h t  i d e a l s ) .  

P w i l l  always denote t h e  suppor t  of  an idempotent measure y on S, s o  

t h a t  it i s  a completely s imple compact semigroup. So t h e  problem of  

determining what idempotent p r o b a b i l i t y  measures look l i k e  on a compact 

semigroup has been reduced t o  t h e  s tudy  o f  completely s imple compact 

semigroups o r  simple compact semigroups a s  both concepts  a r e  t h e  same 

f o r  compact semigroups . 
Suppose p i s  an idempotent measure on a compact semigroup S and 

C(p) = P con ta ins  a f i n i t e  number o f  idempotents.  In  t h e  succeediag 

pages, un le s s  o therwise  mentioned, a l l  s imple compact semigroups w i l l  

con ta in  only a f i n i t e  number of  idempotents.  I f  P con ta ins  only a f i n i t e  
I 

number of  idempotents , then  we know t h a t  P = d b Gi j ,  s and r some 
i=1 j=1  

p o s i t i v e  i n t e g e r s ,  i s  t h e  grou? deconption of ~ , t n e : l  y r e s t r i c t e d  
y i  

t o  t h e  Borel subse t s  of G i s  an i n v a r i a n t  p o s i t i v e  f i n i t e  measure on 
i k  

t h e  group Gik .  We know t h a t  y i s  f i n i t e  a s  G C P and p(P) = 1. 
i k  

(Gik) > 0 a s  Gik i s  conta ined  i n  t h e  suppor t  o f  p and G i s  an open 
i k  

s e t .  y r e s t r i c t e d  t o  G i s  def ined  a s  fo l lows:  Let B be a Borel s e t  of 
i k  

P ,  then BOGik i s  a Borel s e t  a s  G is a Borel s e t  and t h e  i n t e r s e c t i o n  
i k  

of  Borel s e t s  i s  another  Borel s e t .  S i m i l a r l y  any Borel s e t  i n  Gik i s  

der ived  i n  t h i s  manner. S o - c o n s i d e r  any Bore1 s e t  B i n  Gik .  There e x i s t s  
! 

a Borel s e t  B t  i n  P such t h a t  B = B ' f l  Gik.  
Then t h e  r e s t r i c t i o n  of  

t o  Gik w i l l  be denoted by y i k  where p i k  (8) = u(B1nGik). Now we w i l l  

show t h a t  pik i s  i n v a r i a n t .  Let a E G i k .  Then a E P and so  

P .  , (aB) = IJ (a(S1nGik)) =V (ali?Gik) = (B) a s  i s  i n v a r i a n t ,  being 
l k  IJik 



an idempot.ent measure on P. S i m i l a r l y  y is  l e f t  i n v a r i a n t  and hence i k  

'ik i s  i n v a r i a n t  on G i k .  Therefore yik i s  a p o s i t i v e  i n v a r i a n t  f i n i t e  

measure on G 
i k '  Furthermore, i f  P = 8 R = 6 I. with G = R . L  

i=l i 
i =l j i j  1 j 
-I 

where the  R . ' s  a r e  t h e  minimal r i g h t  i d e a l s  and t h e  L ' s  a r e  t h e  minimal 
1 j 

l e f t  i d e a l s  and i f  y i s  an idempotent p r o b a b i l i t y  measure on P, one h a s  

V(R.  ) v (L .) = I-I (R.  L .) = v (G. . ) [9] (Theorem 1.1, page 67 and 
1 3 1 3  11 

Corol la ry ,  page 99) 

Let g be an element of G and l e t  e be t h e  i d e n t i t y  i n  G 
aB ' 

We w i l l  
aP aB 

r e c a l l  t h a t  f o r  a compact simple semigroup P we have 

(and t h i s  holds f o r  a l l  completely s imple semigroups S ) .  Since P i s  

simple and compact ,, we have t h e  fol lowing r e s u l t s  [9] (Page 99) : 

= L . ;  R = R  
a) Lf3ga6 6 h 6  y 3 

b) {eaB, a E h } i s  t h e  s e t  o f  a l l  idempotent elements belong- 
1 

ing  t o  L Each of them i s  a r i g h t  u n i t  of L The s e t  
B ' 8 ' 

{ e a ~ ,  
B E A?} i s  t h e  s e t  o f  a l l  idempotents belonging t o  R a '  

Each of  them i s  a l e f t  u n i t  o f  Ra.  

c) Any two minimal l e f t  i d e a l s  L L a r e  isomorpnic under t h e  
a' B 

mapping x -+ xe The i n v e r s e  mapping i s  y -+ E L  . 
YB ' Yeby Y 

- = G 
L6 - Ga6 ' R y g a ~  yB ' 

- 
. G a ~  gy6= Ga6 J gaBGy6 - 

f GaBGyE = Gar 

g )  Any two groups G and G a r e  t o p o l o g i c a l l y  isomorphic by, 
aB ,Y& 

f o r  example, t h e  mapping 

The inve r se  t o  t h i s  map i s  g iven  by 



For ( a ) ,  g  E G = R L = R fl L and t h e r e f o r e  g  
y6 y6 ~ 6  Y 6  Y s  L6.  Hence 

Lf3gy6 ' a s  L6 i s  a  l e f t  i d e a l .  But L6 i s  a  minimal l e f t  i d e a l  and 

L ~ g y 6  
# 4 and hence L g  = L6.  S i m i l a r l y  g  E R and hence g  R c R 

B ~ 6  ~ 6  Y ~ 6  a Y 
a s  R i s  a  r i g h t  i d e a l  and s i n c e  R i s  minimal g  R = R , I t  i s  easy 

Y Y Y6 a Y 
t o  check t h a t  LBgy6 i s  a  l e f t  i d e a l  and g R i s  a  r i g h t  i d e a l .  Then 

Y6 a 
(b) i s  immediate a s  a re  (c) and (g) s i n c e  t h e  mappings a r e  given.  For 

(e) observe t h a t  G - RaLB and us ing  (a )  we g e t  t h e  d e s i r e d  r e s u l t  a s  aB - 

f o r  example G g  aB y6 = RaLggy6 = R L = Ga6 (Lggy6 = L6 by ( a ) ) .  Now con- a 6  

s i d e r  (d) .  gaB€ GaB = RaLB Henceg  L c R L L  = R L  = G  a s L  
aB Y  BY a y  ay  Y 

i s  a  l e f t  i d e a l .  By t h e  minimali ty  of  a l l  i d e a l s ,  g  L = R L L and 
aB Y  BY 

hence the  d e s i r e d  r e s u l t .  F i n a l l y  f o r  ( f )  observe aga in  t h a t  G = aB 

RaL$ 
Therefore G G = R L R L = R (L R )L6 = RaLyL6 = R (L L ) = 

aB y6 a B y 6  a B Y  a ~ 6  

R L  = G  The f i r s t  b racke t  i s  a  r e s u l t  of (a)  and t h e  second i s  t h a t  
a 6  a6 '  

L i s  a l e f t  i d e a l .  This  proves a l l  t h e  above c la ims .  Now observe t h a t  
6  

ea$ ' ey6 
b u t  i n  genera l  e  e  = e  need no t  ho ld .  1Ve have aB y6 a6 

however t h a t  e  = e  and ea~eyf3 
= e 

aBeay ay Y B '  

Let us  cons ider  example (7)  i n  Chapter 111. Reca l l  t h a t  G i s  t h e  

s e t  of a l l  3 x 3 mat r i ce s  over  t h e  compact t opo log ica l  group G which have 

one and only  one nonzero e n t r y ,  and an element o f  G i s  of  t he  form ( a ) i j  

where a  # 0 and i s  a t  t h e  (i, j )  e n t r y  o f  t h e  3 x 3 mat r ix .  b lu l t ip l ica-  

t i o n  was de f ined  s o  t h a t  (a)  i j  0 (b) lk = (ab)ik With t h i s  d e f i n i t i o n  of  

m u l t i p l i c a t i v e  cond i t i ons  (a)  - ( g ) ,  a s  g iven  above, a r e  immediately 

s a t i s f i e d .  Notice however t h a t  i n  t h i s  p a r t i c u l a r  c a s e  (e)  o (e)y6 = aB 

(e)a6.  Also i n  t h i s  ca se  (e) ~ ( a ) ~ & o ( e ) ~ ~  = (eae)aB = (a)aB because aB 

of  t h e  d e f i n i t i o n  o f  m u l t i p l i c a t i o n  and hence t h e  mapping t o  show t h a t  

two group components a r e  isomorphic is t r i v i a l .  
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Thus we have cons idered  some o f  t h e  p r o p e r t i e s  of an idempotent 

p r o b a b i l i t y  measure y on a s imple compact t opo log ica l  semigroup S .  We 

have shown t h a t  i f  p i s  an idempotent p r o b a b i l i t y  measure on a compact 

semigroup S, then  i t s  suppor t  i s  a s imple compact semigroup and i f  we 

r e s t r i c t  y t o  each group component of C(p) , it s t i l l  i s  a p o s i t i v e ,  

f i n i t e ,  i n v a r i a n t  measure func t ion .  Furthermore, we have looked a t  some 

p a r t i c u l a r  cases  o f  m u l t i p i i c a t i o n  o f  minimal l e f t  and minimal r i g h t  

i d e a l s  and group components by elements o f  t h e  group components. The 

r e s u l t  a s  given above [9] (page 99) a l s o  holds  i n  t h e  genera l  case .  We 

have only considered t h e  case  when t h e  s imple compact t opo log ica l  group 

S conta ins  a f i n i t e  number o f  idempotents.  I t  i s  a l s o  t r u e  f o r  any simple 

compact topologica l  semigroup S .  

Now t h a t  we have some p r o p e r t i e s  o f  an idempotent p r o b a b i l i t y  mea- 

s u r e  on a compact semigroup when r e s t r i c t e d  t o  i t s  group component, we 

would l i k e  t o  go t h e  o t h e r  way. What happens when we cons ider  idempotent 

p r o b a b i l i t y  measures on t h e  group components? Can we extend each mea- 

s u r e  and then add them? What do we g e t ?  This  i s  what we cons ider  now. 

Let S be a simple 

p o t e n t s .  Then S = d 
i= 1 

s u r e  on t h e  group Gik.  

compact semigroup wi th  a f i n i t e  number of idem- 

6 G i j .  Let pik denote t h e  normalized Haar mea- 
j  =1 

Gik i s  compact a s  S i s  a compact semigroup. Let 

gik E G i k ,  then g w i l l  a l s o  denote t h e  p r o b a b i l i t y  measure o f  u n i t  mass 
i k  

on gik. T.he meaning o f  g w i l l  g ene ra l ly  be c l e a r  from t h e  context  of  
i k  

i t s  use .  Convolution i s  j u s t  jux tapos i+ion  a s  was mentioned e a r l i e r .  

Now we extend t h e  normalized Haar measure p on Gik t o  a l l  Bore1 s e t s  
i k  

E o f  S by 

page 100) 

and g j l :  

p u t t i n g  pik(E) = yik(E ll Gik) . Stefan  Schwarz [9] (Lemma 1, 2 ,  

has  proved t h e  fol lowing r e s u l t s  on t h e  measure func t ions  l-lik 



- pik g j l  - p i l a  

b, p i k  p j l  = pil 

c )  I f  S i s  a  compact semigroup and P i s  a  simple (closed)  subsemi- 

group and y E M(S) with C(y) c P then  yik Y Pj l  - - U i l .  

Notice t he  s i m i l a r i t i e s  between these  r e s u l t s  and t h e  r e s u l t s  j u s t  men- 

t ioned  dea l ing  with m u l t i p l i c a t i o n  of  minimal l e f t  and minimal r i g h t  

i d e a l s  and group coinponents by elements o f  t h e  group components. The 

r e s u l t  (a)  he re  i s  s i m i l a r  t o  r e s u l t  (e)  be fo re  and t h e  r e s u l t  (b) h e r e  

i s  s i m i l a r  t o  r e s u l t  ( f )  b e f o r e .  The proof  of  cond i t i on  (a) i s  r a t h e r  

lengthy and can be found i n  [9]  (Lemma 1, 2 ,  page 100) .  For (b) we 

use (a) by observing t h a t  y .  Ik P j l  = (Vik eik) ( e j l v j l )  = lJik (eik e j l )  

1 Denote i k  e j l  = gil j l  J 1  
and we get p i k  p  = pi k  (gi p  * = pik p i l  

Again by (a) and observing t h a t  p i  i s  an idenpotent  p r o b a b i l i t y  mea- 

su re  belonging t o  FI(S), we f i n a l l y  have 

- - V i l a  pik vil - Pik (eil = ()iik ei l )  (pill  = yil pil - 

For (c) , s e e  [9]  ( Lemma 1 ,  2 ,  page 100) . 

We a r e  now i n  a  p o s i t i o n  t o  s t a t e  t h e  r e s u l t  which t e l l s  us  what 

t he  idempotent p r o b a b i l i t y  measures on a  simple compact semigroup P wi th  

a f i n i t e  number of idempotents look l i k e .  This  then  will g ive  us  a  

p a r t i a l  answer t o  what t h e  s t a b l e  laws look l i k e  on a simple compact 

t opo log ica l  semigroup. The r e s u l t  was proven by S te fan  Schwarz [9] 

(Theorem 1 ,2 ,  page 102) and i s  a s  fo l lows:  Let S  be a  compact topolo-  

g i c a l  semigroup and P a  c losed  s imple subsemigroup of  S  t h a t  conta ins  

a  f i n i t e  number of iderrpotents.  Let P = 8 6 Gik  be  i t s  decomposi- 
i=l  k = l  

t i o n  i n t o  i t s  group components. Then every idempotent p r o b a b i l i t y  mea- 

s u r e  E belonging t o  M(S) with C(E) = P i s  o f  t h e  form 



S r 
E =  C b 6i 'lk Pik' 

i=l k = l  S r 
where 6 a r e  p o s i t i v e  numbers s a t i s f y i n g  C 6 = 1 = C 11 and 

i' k 
i=l i k = l  k 

pik i s  t h e  normalized Haar measure extended t o  P and S.  Conversely, 
s r 

i f  6i' Q a r e  p o s i t i v e  numbers s a t i s f y i n g  Z 6 .  = 1 = C Q then  
s kr 1 

i=l k= 1 
k ' 

E = b C 6i \ kik i s  an idempotent p r o b a b i l i t y  measure belonging 
i=l  k = l  

t o  M(S) whose suppor t  i s  e x a c t l y  P .  

So f o r  any compact t opo log ica l  semigroup whose c losed  s imple sub- 

semigroup conta ins  only a f i n i t e  number o f  idempotents,  we can cons t ruc t  

a l l  idempotent p r o b a b i l i t y  measures on t h i s  compact semigroup by sim- 

p l y  cons ider ing  each s imple (closed)  subsemigroup. This  r e s u l t  w i l l  

g ive  us a p a r t i a l  answer t o  what some o f  t h e  s t a b l e  laws a r e  on a com- 

pac t  semigroup. 

We w i l l  g ive  a , q u i c k  ske tch  of  t h e  proof  f o r  t h e  above r e s u l t .  

First we need t h e  f a c t  t h a t  t h e  p ik l s  a r e  completely determined by means t 

i 

o f  a f i x e d  p say  pl l  and t h e  idempotent elements belonging t o  P ,  s i n c e  
i j  I! 
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we have p (E)  = yl l (e lk  Ee ) f o r  any Bore1 subse t  E o f  Gik o r  a l t e r -  
i k  11 A. 

n a t i v e l y  p - i k  - e i k  ' l l e lk  
where t h e  e a r e  t h e  idempotent p r o b a b i l i t y  

i j  ibl 

measures (by condi t ions  (a)  - (g) o f  t h e  f i r s t  s e t  and cond i t i ons  ( e )  

of t h e  second s e t . )  

Write y = p2 E M(s) with  C(y) = P i n  t h e  form 
s r s r 

' =  1 ' t i k  'ik 
( a s p =  U U G i k ) w i t h  

i=l k = l  i=l k = l  

We then  g e t  
S r 

and hence by conditi-on (a)  - (c) above we g e t  
s r s r  s r 



and thus  
r s 
x Z t i k  t j l  = til 

k = l  j = l  , . 
(*I . 

r s 
Se t  E tik = 6 .  and Z t = q1 . Then (*) impl ies  til = 6inl . 

k= 1 1 
j  =I j 1 

s r s r 
C lea r ly  E 6 .  = 1 = C q and j~ = E X 6inlpil . 

1 i=l 1 = 1 1 
i=l  1=1 

S r 
Conversely, l e t  p1 = I: E Ainlvil be an  element of II(S) where 

i=l 1=1 
S r 

6iy "re p o s i t i v e  numbers s a t i s f y i n g  C 6 .  = 1 = i: li 1 1 
i= 1 1 = 1 

1 '  

s r .  s r s r s r  
p I2  = ( E  E 6 i ~ l ~ i l ) * ( C  E b j l i e j k )  = E L L L 6 i ~ l S j ~ k ~ ~ i k  

i=l 1=1 j = 1  k = l  i=1 1=1 j = 1  k = l  

Thus p12 = pl 'and u1 i s  an idempotent p r o b a b i l i t y  measure. 

Consider now t h e  fo l lowing  examples on t h e  a b o v e . r e s u l t .  
I 

( i )  Taking s = t = 3 g ives  u s  example (7) i n  Chapter I11 . 

Suppose we a r e  a l s o  looking f o r  idempotent p robab i - l i t y  measures whose 
7 3 1. 

support  i s  no t  a l l  of G .  Consider G1 = jLJIGij where G i s  sti .11 t h e  
r f l  

same a s  be fo re .  Then any idempotent measure on G whose support  i s  ex- 
3 2 1 

a c t l y  G1 would be of  t h e  form E = E E 6 . q  . j ~  where p i s  t h e  
i=1 j = 1  1 J i j  i j  

3 
normalized Haar measure on G and C 6 .  = " + q c  1. Observe t h a t  G1 

i j  1 i=l  
i s  a simple c losed  subsemigroup of  G .  Tkerefore ,  any idempotent measure 

on G i s  a l s o  an idempotent measure on G ,  bu t  t h e  suppor t  of t h i s  idem- 
1 

poten t  measure i s  s t r i c t l y  conta ined  i n  G.  There of  course  e x i s t  

o t h e r  s imple subsemigroups ( i n  t h i s  ca se  a l l  subsemigroups a r e  c losed  a s  

Gi j 
i s  open and c losed  f o r  a l l  i = 1 , 2 , 3  and j = 1 , 2 , 3 ) .  Some of t h e s e  a r e  

2 2 3 
G = 11 U G i j  G 3 =  U G  f o r  some f i x e d  j  and s o  on. I n a l l  o f  

2 i r l  j -1 i j  i= 1 



t h e s e  cases  we must r e d e f i n e  t h e  mat r ix  P s o  t h a t  n lu l ip l i ca t ion  i s  wel l  

de f ined .  C l e a r l y  t h e  subse t  ff = G l l  U G12 U GZ1 i s  n o t  a subsemigroup 

as G21 G 1 2  
- - G Z Z  and G 2 2  $ tf ( f o r  any ma t r ix  P ) .  Hence ff i s  not  c losed  

under m u l t i p l i c a t i o n ,  b u t  i n t u i t i v e l y  speaking,  any submatrix of t h e  3 x 

mat r ix  i s  a s imple subsemigroup o f  G. In  genera l  i f  a compact senigroup 

S has  a c lo sed  szbgroup, then  one idempotent p r o b a b i l i t y  measure on S i s  

j u s t  t h e  ex tens ion  o f  t h e  normalized Haar measure on t h e  group t o  a l l  of 

S .  

One cond i t i on  t 5 a t  was imposed was t h a t  6. # 0 and Q # 0. I f  how- 
l k 

eve r ,  6 .  = 0 f o r  some i o r  TI = 0 f o r  some k ,  then  t h e  r e s u l t i n g  measure 
1 k 

i s  s t i l l  an idempotent measure on S,  i f  t h e  r e s u l t i n g  subse t  of P by 

e l i m i n a t i n g  those  group components f o r  which 6i = 0 o r  q = 0, i s  s t i l l  
k 

a subsemigroup. This  was demonstrated i n  example (i) above. The suppor t  

of t h e  r e s u l t i n g  p r o b a b i l i t y  measure w i l l  no longer  be P ,  bu t  t h e  co r r e s -  

ponding subsemigroup o f  P .  We have t o  have a subsemigroup, otherwise 
S r 

noth ing  w i l l  make sense  except  f o r  t h e  formal sum C E 6i TIj P i j .  
i=1 j = 1  

We w i l l  make a genera l  i n t u i t i v e  remark he re  which w i l l  make sense  

(o r  more sense)  l a t e r  when we f u r t h e r  d i scuss  completely simple semi- 

groups. Suppose S i s  a compact semigroup. Then S has a Kernel K .  Sup- 

pose t h a t  t h i s  ke rne l  has  a f i n i t e  number of idempatents .  Then 

K has  as many simple c losed  subsemigroups a s  t h e r e  a r e  submatr ices  of an 

s x r mat r ix .  Hence, i f  we want a l l  t h e  idempotent p r o b a b i l i t y  measures 

on S,  we must cons ider  a l l  o f  t h e s e  s imple subsemigroups, bu t  t h e r e  a r e  

j u s t  a f i n i t e  number of  t hese .  

( i i j  The fol lowing example cons ide r s  a common semigroup of 2 x 2 



matr ices .  A d i r e c t  approach t o  f i nd ing  some idempotent p r o b a b i l i t y  

measures seems almost impossible .  But by using t h e  above r e s u l t s ,  we can 

quickly f i n d  a n o n t r i v i a l  idempotent p r o b a b i l i t y  measure on t h i s  s e t .  We 

have considered t h i s  example be fo re  under t h e  s t r u c t u r e  o f  semigroups. 

Let S = {A E (R) 1 I [ A  I I < 11 wi th  t h e  induced topology from - 

(R)2. Then S i s  a compact semigroup. Define H a s  fo l lows:  

H = { A =  cos 8 s i n  8 
0 < 8 < 2 ) .  (-sin e cos 8) I - 

H i s  a subsemigroup of S and fur thermore H i s  s imple and c losed  and hence 

compact. Therefore H i s  a simple compact t opo log ica l  semigroup with iden-  

N 

t i t y  (Also H = G ( t opo log ica l ly  and i somorphica l ly)  where G i s  t h e  c i r -  

c l e  group.) By t h e  above r e s u l t  we g e t  t h e  fo l lowing .  Let p be t h e  

normalized Haar measure on H ( a s  H i s  a compact group) .  Extend p t o  S 

a s  before ,  t h a t  i s  f o r  a l l  Bore1 subse t s  E o f  S ,  p(E) = p(E n H ) .  Then 

LI E M(s) and p p = u ,  by the  previous r e s u l t .  (Of course ,  t h i s  could 

be v e r i f i e d  d i r e c t l y ,  bu t  i t  i s  much more d i f f i c u l t . )  The r e s u l t  t h a t  

we used above was t h a t  t h e  support  o f  an idempotent p r o b a b i l i t y  measure 

on a compact semigroup S i s  a s imple (c losed)  subsemigroup of S .  A s  H 

i s  a c losed  s imple subsemigroup of S and s i n c e  H i s  a group, we found a 

n o n - t r i v i a l  idempotent p r o b a b i l i t y  measure on S .  The t r i v i a l  one i s  o f  

course u n i t  mass on t h e  i d e n t i t y .  

Now we know what a l l  t h e  idempotent p r o b a b i l i t y  measures look l i k e  

on a simple compact topologica l  semigroup having only  a f i n i t e  number of  

idempotents.  They a r e  namely t h e  convex combination o f  t h e  normalized , 

Haar measures o f  t h e  var ious  group components. We a l s o  know t h a t  i f  S 

i s  a compact semigroup and E i s  an idempotent p r o b a b i l i t y  measure on t h e  

ke rne l  of $, t h e  E can be extended t o  t h e  whole compact semigroups S. 
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However, t h e r e  a r e  many o t h e r  simple compact semigroups o t h e r  than 

those which conta in  j u s t  a f i n i t e  number of idempotents. These a r e  those 

simple compact semigroups which conta in  an i n f i n i t e  number of  idempotents 

and we w i l l  look a t  those now. 

Let S be a compact simple semigroup and P a simple c losed subsemi- 

group o f  S. Then P i s  compact. One ques t ion  t h a t  we want t o  consider 

now i s ,  what can be s a i d  about the  s t r u c t u r e  of idempotent p robab i l i ty  

measures, i f  P conta ins  an i n f i n i t e  number o f  idempotents such t h a t  the  

support of  these  idempotent measure i s  P? F i r s t  we w i l l  consider  the  

case when P conta ins  a countable number o f  idempotents. Therefore: 

(Gij = R.L.) 
1 3  

Here $ # I c w and $ # J c w and a t  l e a s t  one of I o r  J has t o  be equal 

t o  o, where w = (0, 1, 2, ... 1. In  o t h e r  words, one of  t h e  index s e t  
1.11 

can be f i n i t e  o r  i n f i n i t e  countable. We w i l l  consider  t h e  case  when I 

both I and J a r e  countabley i n f i n i t e .  The approach w i l l  follow along ~ f i  

t h e  same l i n e s  a s  t h a t  o f  t h e  f i n i t e  case .  

Suppose t h a t  p is  an idempotent p r o b a b i l i t y  measure on P, then p i k  

(p r e s t r i c t e d  t o  G .  ) is  an invar i an t  p o s i t i v e  measure on the  group G ~k i k  

and furthermore p(Ri) p (Lk) = p(Gik) [9].  

Now l e t  p. denote t h e  normalized Haar measure on the  group Gik. G 
l k  i k  

is  a grou?, i n  f a c t  it is  a topologica l  group a s  P i s  a compact semigroup. 

Recall  t h a t  Numakura has proven t h a t  every minimal i d e a l  ( l e f t ,  r i g h t ,  

two-sided) of a compact semigroup i s  c losed and compact, and hence every 

groGp, being t h e  product of a compact minimal r i g h t  i d e a l  and a compact 

minimal l e f t  i d e a l  is  a l s o  compact [2] (Lemma 7, page 103 and Corollary 



page 107).  Hence by Wendel's r e s u l t  [ I ] ,  a  normalized Haar measure 

e x i s t s  on Gik ,  even though P con ta ins  an i n f i n i t e  number o f  idempotents .  

A t  t h i s  po in t  we should backt rack  a  l i t t l e  t o  t h e  f i n i t e  ca se .  In  t h e  

f i n i t e  case,  a l l  t h e  Gik were open, bu t  i n  t h e  i n f i n i t e  case  t h i s  need 

n o t  ho ld .  In  f a c t  i f  a l l  t h e  G a r e  open, then  P could only have a  
i k  

f i n i t e  number of  group components. This  should become c l e a r e r  i n  the  

s e c t i o n  under t h e  Rees Theorem. The reason  why P would only have a  

f i n i t e  number of  G i f  a l l  t h e  Gik a r e  open i s  t h a t  then t h e  G ' s  a rc  
i k  i k  

open and closed arid p a i r w i s e  d i s j o i n t .  I f  we had an i n f i n i t e  number o f  

open G we would immediately have an open covering of  P which does n o t  
i k  

have a  f i n i t e  subcover and hence v i o l a t i n g  compactness. Hence P \could 

only  have a  f i n i t e  number of  G ' s .  i k  

Coming back t o  t h e  case  when P has an i n f i n i t e  number of idemporrnl-5 

(with t h e  r e s t r i c t i o n s  imposed above),  cons ider  t h e  normalized Haar 

measures p de f ined  on G 
i k  ik .  

Extend t h e s e  t o  a l l  Bore1 subse t s  E o f  S 
/ill 

by s e t t i n g  p (E) = p (Gik n E).  Reca l l  t h a t  S i s  a  compact seiniproqi 
i k  

$11 
i k  

and P cS i s  such t h a t  it i s  simple wi th  a  countably i n f i n i t e  number o f  

idempotents.  By t h e  above remark and s i n c e  
r )  m 

P =  u LI Gik ,  i=1 j = 1  

i f  I-r i s  an idempotent p r o b a b i l i t y  measure E A ~ ( s )  and C (v) = P , then we 
m a3 

n e c e s s a r i l y  have t h a t  p  = C C tikPik wi th  p o s i t i v e  numbers t s a t i s -  
m m i=l  k = l  i k  

fy ing  C C tik = 1. 
i=l  k = l  , 

Again a s  i n  t h e  f i n i t e  case  we know p ik = e ik U l l  eik, where e  i. j 

a r e  t h e  u n i t  mass p r o b a b i l i t y  s e a s u r r s  on e i j  E G i j .  Now l e t  p = pZ B 

m 00 

M(S) , with , C  (]A) = P ,  be i n  t h e  form o f  p = C C tikpik 
i=l k = l  



m a ,  
with  C C tik = 1, tik > 0. Then we have t h e  fol lowing:  

i=l  k = l  

03 03 CO 

njl Wjl) = 
03 a, ' = ( Y C tik pik) ( C C L tik pil = '. 

i=l k = l  j = l  1=1 i=l 1=1 

- CO 

Define ' i - C tik vik 
k= 1 

0 0  

and 1-1 = 
i -z til U i l .  

1=1 
Then 

a 3  CO - 
(  C t i k u i k ) * ( Y  B t . 1 = (  p i ) * ( ?  p j )  
i=l k = l  j = l  1=1 j l  11 1=1 j  =1 

0 0  05 - 
= L .  + C p2 p .  + . . .  

j  =1 J j = 1  J 

0 0  OD 

= C  C 
i=1 j = 1  ' i j  

03 03 

Consider p.  y = ( E tik uik)- ( E t j l  u j l )  
j  k = l  1=1 

a3 CO 

= C t t ' p + L ti2tj1lli2Pjl + . . . 
1 = 1 i l j l i l j l  

03 03 

= C C tik t 
k = l  1=1 j l  'ik ' j l '  

That i s  

03 0 0  0 3 0 3 C O C O  

( I  ~ t ~ ~ p ~ ~ ) ~ ( Y  z t .  u .  ) = L " t i k t j l u i k ~ j l  
i=l k = l  j  1 J J i-1 k.1 j = l  1.1 

But by a  previous remark, - 
'ik ' j l  - 'il . Hence 

i=l k = l  j = 1  1=1 i=1 j = 1  k = l  1=1 

This  equat ion i s  t r u e  f o r  every Bore1 s e t  i n  S.  Therefore t h e  c o e f f i -  

c i e n t s  o f  u a r e  equal ;  t h a t  i s  because 
i 1 

03 03 m 03 EP 77 t i k t j l p i l  = 1 1 til p i l  J 

i=1 j = 1  k = l  1=1 i=l 1=1 

0 0  03 and hence w e  have E Uik tj l  - - til 
j = l  k = l  

(A) 



m w 
S e t  C tik = 6 and E t = q1 then  by (A) we have t h a t  

i k= 1 j =I j  1 

t = 6i n l .  Thus 
i 1 

w w 
p. E C 6 i ~ 1  pil where 6 > O a n d q l  

i=l 1=1 i 

m 00 

Conversely l e t  P 1 = E C 6i n1 wi l  b e  an  element belonging t o  h l ( S )  
i=l 1=1 

w 00 

where 6 n1 a r e  p o s i t i v e  numbers s a t i s f y i n g  Z 6i = L ql  = 1. 1 ' 
i=l 1=1 

We then  have 

The ques t ion  of  convergence of t h e  i n f i n i t e  sums i n  t h e  i n f i n i t e  ti 

case  i s  no problem s i n c e  a l l  o f  t h e  above i n f i n i t e  s e r i e s  converge uni -  rr;' 

formly and abso lu t e ly  (as  a l l  terms a r e  p o s i t i v e ) ,  s o  t h a t  rearrangement 

i n  a l l  t h e  s e r i e s  i s  p o s s i b l e  and t h e  sums remain t h e  same. Hence a l l  

fhe  above ope ra t ions  a r e  wel l  de f ined .  

We have only considered one case  when P contains an i n f i n i t e  num- 

b e r  of  idempotents and t h a t  is  when both t h e  index s e t s  I and J a r e  

countably i n f i n i t e .  The o t h e r  two cases  which a c t u a l l y  i s  j u s t  one case ,  

and t h a t  i s  when e i t h e r  I o r  J i s  non-empty and f i n i t e ,  fo l lows  i n  a  

s i m i l a r  manner and thus  t h e  case  when P has  countably i n f i n i t e  number 

of idempotents,  we g e t  t h e  fol lowing r e s u l t .  We summarize t h i s  r e s u l t  

a s  fo l lows:  



Theorem 

Let S be a compact topological semigroup and P such a closed 

simple subsemigroup of S that contains a countable number of idempotents. 

L e t P =  U 
Gij 

be its decomposition into its group components, where 
iEI j&J 

I and J are non-empty index sets, both subsets of u = (0, 1, 2, ... } 
and at least one equal to w. Let p denote the normalized Haar measure ik 

on G ik' Then every idempotent E E M(S) with C(E) = P is of the form 

q are positive members satisfy- E = B E 6. qk pik where 6i, 
i&I K & J  1 

ing C 6. = L nk = 1. 
1 i€I kEJ 

Conversely, if tii, q are positive numbers satisfying L 6. = 1 = E TI 
k iE1 1 j&J j ' 

then L L 6. n. pij is an idempotent probability measure belong- 
i&I j&J 1 J 

ing to hi(S) whose support is exactly P. 

t 

As in the finite case, we will consider what will happen if 6 = 0 i 
f 

for some i E I. The support of the resulting idempotent probability 
Ci' 

measure will be a subsemigroup of P. Intuitively, we can thin!: (this will 

be made precise in the section "The Rees Theorem") of P as a set of I x J 

matrices. If 6. = 0 for some i E I, then effectively we have a set of 
1 

I - {i} x J matrices. Hence no 6 can be zero as the resulting probabil- i 

ity measure will not have as its support all of P . 
If S is a compact semigroup, whose closed simple subsemigroups con- 

tain at most a countable many idempotents,then we can find all the idem- 

potent probability measures on S by simply using the above result over 

and over again on each simple closed subsemigroup. 

The final case that has to be considered is if P contains an un- 



countably number of idempotents. Suppose we consider the following 

definition of summation of an uncountable number of nonnegative num- 
K 

bers. Define L a = sup { E aai I V {al, . . . 
a k c I ) .  This 

a€ I i=l 
definition then gives us that fact, that if L a < a, then at most 

a€ I a 

a countable number of the a ' s  are non-zero. So consider y = C C 
a 

~ E I  BEJ 

a a ~  'aB' Then p2 = p by the above calculation, where C C a = 1, 
7 ~ E I  BEJ a B 
i 

but C(p) # P since most of the a 's are zero. (4 similar remark was 
aB 

made with regard to the finite and countably infinite cases if some of 

the tik # 0.) This means that we can only consider compact simple 

semigroups P with at most a countably infinite number of idempotents, 

if we want to apply the above result and method of obtaining idempotent 

probability measures. If we do consider compact simple semigroups P 

with an uncountable number of idempotents and we want convex combina- 

tions of the extended normalized Haar measures of the group components 

(which still exist), we immediately return to the case of a compact 

simple semigroup P having at most a countable number of idempotents. It 
p 

is possible to have a compact simple semigroup P with an uncountable of 

idempotents as will be shown later. Furthermore it is possible that such 

compact semigroup, can have idempotent probability measures on them. 

Consider the following example: 

Example 8. Let G be any compact group. We will take example 7 and ex- 

pand the index sets. The index sets will be the set of all positive 

integers. with the multiplication and the particular matrix P extended 

to cover the larger index set, we get a semigroup whose multiplication is 

associative and continuous. Hence G is a topological semigroup. Observe 

however that each G is an open and closed and compact subsets of G. 
i j 



03 
Therefore observe that G is not compact. But E = 1 di vj liij 

i=1 j=1 
03 03 

where C 6. = 1 = C 
1 'j J i j , di, TI. all positive and p is the normal- 

i=l j =1 

ized Haar measure on G r G for a1 1 i and j . Furthermore ,C (E) = G i j 

and all the idempotent probability measures belonging to M(G) are of 

this form. So for some particular locally compact semigroups, the re- 

sult proved earlier also holds. In this case it holds since each group 

component is compact. !!owever,for an arbitrary completely simple lo- 

cally compact group, the group component need not be compact, in fact 

they are generally just locally compact. Furthermore, the only results 

on locally compact groups are on commutative locally compact groups. 

Notice that we had to have a completely simple locally compact semigroup. 

A simple locally compact semigroup need not be a completely simple semi- 

group, but simplicity was all that was needed in compact semigroups to 
1 

get a completely simple semigroup. As a result, locally compact semi- 

groups are more difficult to work with and to find idempotent probabil- 
: P 

ity measures on them, whereas for compact simple semigroups with at 

most a countably number of idempotents, idempotent probability measures 

are relatively easy to characterize. The above example does give us a 

class of locally compact semigroups for which we can quite easily find 

idempotent probzbility measures. 

So now we have considered the case of a simple compact topological 

semigroup containing at most a countable number of idempotents. We 

have been able to characterize all idempotent probability measures on 

such semigroups whose support is the semigroup. Now we want to take 

one step further and consider simple compact topological semigroups 

that contain an uncountable number of idempotents. In order to do this, 



we s h a l l  f i r s t  d i scuss  t h e  Rees-Theorem and how t h i s  r e l a t e s  t o  com- 

p l e t e l y  simple semigroups of which s imple compact semigroups a r e  j u s t  

a p a r t .  I 



CI1APTER V - THE REES THEOREbl 

I n  t h e  l a s t  s e c t i o n  we considered a compact semigroup whose simple 

c losed  subsemigroup contained only a countable  number o f  idempotents .  

We were a b l e  t o  c h a r a c t e r i z e  a l l  idempotent measures on such semigroups. 

But when a compact simple semigroup conta ined  an uncountable number o f  

idempotents,  t h e  .above method f a i l e d  t o  c h a r a c t e r i z e  idempotent prob- 

a b i l i t y  measures on such semigroups. Hence we must r econs ide r  such 

semigroups i n  o r d e r  t o  be ab le  t o  desc r ibe  idempotent p r o b a b i l i t y  mea- 

s u r e s  on s imple compact semigroups conta in ing  an uncountable number of  

idempotents.  I n  o r d e r  t o  do t h i s  we w i l l  f i r s t  cons ide r  t h e  Kees de- 

composition theorem of completely simple semigroups. Then we w i l l  t r y  

t o  r e l a t e  ou r  prev ious  decomposition theorem on completely simple semi- 

groups t o  t h e  Rees decomposition theorem. With t h e  Rees decomposition 
,v 

theorem we then  can g ive  a p a r t i a l  c h a r a c t e r i z a t i o n  of  idempotents 

p r o b a b i l i t y  measures on a simple compact semigroup, and again t h i s  r e -  

s u l t  w i l l  b e  compared t o  t he  previous r e s u l t  i n  t h e  l a s t  s e c t i o n .  

Let G be a group and O $ G .  Define Go a s  fo l lows:  

GO = G U (0)  and 

Then Go i s  c a l l e d  a group with zero. Let S be a semigroup. S i m i l a r l y  -- ' 
d e f i n e  SO i f  S has  no zero. I f  S does have a zero then  SO = S .  Note, 

i f  a semigroup S has  a zero, then t h a t  zero  i s  always unique .  Suppose 

0 ,  0 '  E S a r e  two ze ros ,  then 



That is 0 = 0' and hence there exists only one zero is S. Let A be a 

(left, right, two-sided) ideal of S. A is an 0-minimal (left, right, 

two-sided) ideal of SO if {o} c A is the only (left, right, two-sided) 

proper ideal, respectively, contained in A. A semigroup S with a zero 

element 0 is called 0-simple if s2 # 0 and (0) is the only proper two- 

sided ideal of S. Clearly s2 # 0 implies that s2 = S as (0) is the 

only proper two-sided ideal of S. Observe that if S is a semigroup 

without a zero, then if A is a 0-minimal (left, right, two-sided) ideal 

of SO, then A - (0) is a minimal (left, right, two-sided) ideal of S 

and conversely. A semigroup S with a zero element 0 is called completely 

0-simple if S is 0-simple and S has at least one 0-minimal left ideal and 

at least one 0-minimal right ideal. Clifford and Preston [ll] (pages 

76 to 83) have shown that if S is a completely 0-simple semigroup, then 

S is the union of its 0-minimal left (right) ideals. Furthermore, they 

have shown that S is 0-simple if and only if S a S = S for all a E S, 

a # 0. Also if { R ~  I i E 11 and {L* I h E A} are its 0-minimal right 

ideals and its 0-minimal left ideals, respectively, then for every i E I 

and A E I and A e A, Hih = R. fl L is a (maximal) 0-subgroup of S; fur- 
1 h 

thermore Hip = HiA HjP for every i, j E I and A ,  ~1 E A. They have also 

shown that every completely 0-simple semigroup with identity is a group 

with zero. In other words, a completely 0-simple semigroup has 

" basically " the same properties as a conpletely simple semigroup 

except that a completely 0-simple semigroun has a 0 as one of its 

elemmts. Further~ore, let H. and H be two subgroups derived 
11-1 j A  

from F.: , L and Ri  , LA , respectively, then 
P 



H n 11 = (01. 
i jA 

Let GO be a  group wi th  zero.  Let X be any s e t  and f o r  i E X ,  i -+ a  
i 

0 ( f o r  a  E Go) be n mapping of  X i n t o  G . We d e f i n e  E on GO a s  f o l l o m :  

C a .  = 
a .  i f  a  # 0 and a .  = 0 j f i 

i 
i EX 

o1 i f  ai = 0 f o r  a l l  i X 
undefined i f  a .  f 0 and a  + 0 ,  i # k .  

1 k  
Now l e t  X and Y be any s e t s ,  by an X z: Y ma t r ix  over  GO we mean a  map- 

ping A of X x Y i n t o  G O .  I f  ( i ,  j )  E X 
and a i j  

= A f e ( i , j ) ) ,  then we 

may w r i t e  A = ( a . . )  and speak o f  a  a s  t h e  e n t r y  of A l y ing  i n  t h e  i t h  
1 J  i i 

row and the  th column of  A .  Let X: Y ,  Z be s e t s .  Let A = (a .  . )  be an 
11 

0 X x Y matr ix over  G and l e t  B = ( b .  ,) be a  Y x Z mat r ix  over  G O .  I f  
J h 

f o r  every p a i r  ( i , k )  E X x Z ,  t h e  SUT 
Cik = E a  i j  bik is  def ined ,  

j EY 
0 where a  E GO and b  E G f o r  a l l  i E X ,  j  E Y ,  k  E Z ,  then  we d e f i n e  i j  j  k 

t he  matr ix product  C = AB of A and B t o  be t h e  X x Z matr ix  C = (C ) i k  
0 0 

over G . A ma t r ix  A over  G i s  c a l l e d  row-monomial i f  each row of  A - 
0 

conta ins  a t  most one non-zero element of  G . The s e t  o f  a l l  row- mono- 

mial X x Y mat r ices  over  Go i s  a  semigroup. 
I 

Now we w i l l  cons ide r  a  s l i g h t l y  d i f f e r e n t  type  of  semigroup o f  

0 
mat r ices  over G . Let I and A be a r b i t r a r y  s e t s .  The elements o f  I  w i l l  

be denoted by k ,  j ,  k ,  ... , and those  o f  A by A ,  y ,  y ,  . . .  . By a  Rees 

0 0 I  x A mat r ix  over  G we mean an I  x A ma t r ix  over  G having a t  most one 

non-zero en t ry .  Let A be a  Rees I  x A ma t r ix  over  G o ,  t hen  

(a)iy where a # 0 i n  t h e  ( i ,  y)  e n t r y  
A = 

i f  b  = 0 f o r  a l l  ( i ,  p) E I x A .  
il.l 

0 Now l e t  P = (phi) be  an a r b i t r a r y  b u t  f i x e d  A x I  ma t r ix  over  G . P i s  

c a l l e d  a  sandwich ma t r ix .  Define t h e  b ina ry  ope ra t ion  (o ) ,  us ing  P ,  on 

the  s e t  of Rees I x A mat r i ce s  over GO a s  fo l lows:  



I t  follows immediately t h a t  i f  A ,  B a r e  Rees I x A m a t r i c e s ,  then  so  i s  

A 0 B .  Also (0) i s  a s s o c i a t i v e  a s  
, . 

A 0  ( B O C )  = A P  ( B o C )  = A P  ( B P C )  

0 Therefore , the  s e t  o f  Rees I  x A ma t r i ce s  over  G i s  a  semigroup with 

r e spec t  t o  t h e  ope ra t ion  ( 0 ) .  This  semigroup i s  c a l l e d  t h e  Rees I x A 

matri.x semigroup bver  t h e  group with zero G O  wi.th sandwich mat r ix  P 

and it w i l l  be  denoted by hi0 (G; I ,  A ;  P ) .  G i s  c a l l e d  t h e  s t r u c t u r e  -- 
group of  No.  Notice t h a t  f o r  every d i f f e r e n t  sandwich mat r ix  P' , we g e t  

a  d i f f e r e n t  b inary  ope ra t ion  on t h e  s e t  o f  t h e  Rees I x A ma t r i ce s .  Note 

t h a t  i n  example ( 7 )  and (8) w e  considered an example where I = A which 

were subse t s  o f  t he  i n t e g e r s  and t h e  sandwich mat r ix  had a s  i t s  e n t r i e s  

t h e  i d e n t i t y  element of  t h e  group f o r  a l l  ( i ,  A) E I x A .  

Another approach t o  t h e  Rees ma t r ix  semigroup (as  used by M.Rosen- L 

b l a t t ,  Heble) is  t o  begin wi th  t h e  s e t  GO x I x A c o n s i s t i n g  o f  a l l  

0 
ordered t r i p l e s ,  where G i s  a  group with a  zero and I x A a r e  a r b i t r a r y  

s e t s .  b l u l t i p l i c a t i o n  i s  def ined  by (0) a s  fo l lows  : 

(a ;  i, A) O (b; j ,  14 = (apAj b ;  i, u)  
0 

where P  i s  a  mapping from A x I -+ G , (from hencefor th  0 i s  j u s t  denoted 

by j u x t a p o s i t i o n ) .  

A s s o c i a t i v i t y  i s  e a s i l y  v e r i f i e d .  Let 0  = { (0 ; i, p) I 0 E Go 

(i, p)  E I X A}. I t  i s  immediate t h e  0  i s  t h e  zero df Go x I x A. No- 

t i c e  now t h a t  t h e  p  r ep re sen t s  t h e  sandwich mat r ix  and (a ;  i , A) i s  
Aj 

j u s t  a  Rees I x A ma t r ix .  Hence Go x I x A - hi0 (G; I ,  A ;  P) . 



Now suppose t h a t  P contains no zeros i n  any of  i t s  e n t r i e s ,  then 

M' (G;  I ,  A ;  P) has no proper zero d i v i s o r s  and hence M' - (01 is c a l l e d  

the  Rees I  x A matrix semigroup without zero over t h e  group G with sand- 

wich matrix P and i t  w i l l  be denoted by M(G; I ,  A; P ) .  The ques t ion  we 

want t o  look a t  is f o r  what P w i l l  @(G;  I ,  A;  P) have no proper zero 

d iv isors?  A p a r t i a l  answer, a s  was noted above, is i f  P has no zero 

e n t r i e s .  I t  i s  poss ib le ,  however, t o  g e t  a  complete answer. 

A matrix P over a  group with zero is regu la r  i f  and only i f  each 

row and each column of P conta ins  a t  l e a s t  one non-zero en t ry .  The Rees 

I  x A matrix semigroup MO(G; I ,  A; P) over a  group with zero and with 

sandwich matrix P is  regu la r  i f  and only i f  P i s  a r egu la r  A x I  matr ix 

[ l l ]  (Lemma 3.1, page 89) .  Recall t h a t  a  semigroup S i s  regu la r  i f  f o r  

every a E S, the re  e x i s t s  a  b E S such t h a t  a  b a  = a .  A f u r t h e r  r e s u l t  

i s  t h a t  a  Rees matrix semigroup i s  0-simple i f  and only i f  it i s  regu la r  
L ' 
h; 

and i f  so ,  i t  i s  completely 0-simple [ l l ]  (Theorem 3.3 ,  page 90) .  Notice 

t h a t  a  Rees matrix semigroup has b u i l t  i n  i t  minimal l e f t  i d e a l s  and 
li 

minimal r i g h t  i d e a l s .  A minimal l e f t  i d e a l  i s  j u s t  t h e  subsets  o f  t h e  

form of Rees I  x matr ices  and a minimal r i g h t  i d e a l  i s  j u s t  t h e  sub- 

s e t s  of the  form of  Rees {i) x A matrices.  The no ta t ion  is  not  t echn ica l -  

l y  co r rec t ,  but  we use t h e  subsets  of  the  Rees I  x A matr ices  whose i so -  

morphic copies look l i k e  t h e  above. 

Let M0 be r egu la r .  Then 

where L : { (a)iX I a E G, i E I and a l s o  



where R = {(a)iA I a E G and A B A ) .  Iuotice t h a t  t h e  0-minimal l e f t  i 

i d e a l s  a r e  L U {0} and t h e  0-minimal r i g h t  i d e a l s  a r e  R U ( 0 )  and 
A i , . 

L A  fl LAl = {o }  (A # Al)and s i m i l a r l y  Ri fl Ri = {O} ( i  # i l )  There- 
1 ' 

0 0 
fore,M i s  completely 0-simple i f  A4 i s  r e g u l a r .  Furthermore G = 

i X 

R .  fl L i s  a group and i s  isomorphic t o  G .  I n t u i t i v e l y  
1 X 

The important theorem t h a t  was proven by Rees is a s  fo l lows .  A 

semigroup S i s  completely 0-simple i f  and only i f  it i s  isomorphic with 

a r e g u l a r  Rees-matrix semigroup over  a group wi th  zero [ l i ]  (Theorem 

3.5,  page 9 4 ) .  

0 
Suppose now t h a t  we have a completely simple semigroup S ,  then  S 

i s  a completely 0-simple semigroup. I t  i s  t h e r e f o r e  isomorphic with a 

r e g u l a r  Rees mat r ix  semigroup over  a group wi th  ze rc . .  S i s  then  i s o -  

morphic t o  a Rees mat r ix  semigroup over  a group a s  t h e  zeros o f  each 

" l i n e  up". In  some d i s c u s s i o n s , t h e  w r i t e r  s t a t e s  t h a t  a completely 

s imple semigroup S i s  isomorphic t o  t h e  Rees Product G x X x Y ,  where 

t h e  m u l t i p l i c a t i o n  i s  def ined  i n  t h e  same manner a s  was descr ibed  i n  

t h e  a l t e r n a t i v e  way of cons t ruc t ing  Rees mat r ix  semigroups (as  men- 

t i oned  e a r l i e r ;  t h a t  i s ,  t h e  Rees products  and Rees mat r ix  semigroups 

over  a group a r e  t h e  same), where G i s  a group and X ,  Y a r e  a r b i t r a r y  

s e t s ;  sometimes X x G x Y i s  w r i t t e n  i n s t e a d  of  G x X x Y. Everything 

i s  s t i l l  t h e  same, j u s t  t h e  f i r s t  and t h e  second coord ina tes  have been 

in te rchanged.  Both ways o f - w r i t i n g  w i l l  b e  used throughout t h e  remain-. 

i ng  p a r t  o f  t h i s  paper .  Furthermore, i f  G i s  a compact t opo log ica l  

group, I ,  A compact Hausdorff spaces and P a r e g u l a r  A x I sandwich 

mat r ix ,  then  h i [ G ;  I ,  A; PI i s  a compact t opo log ica l  semigroup which i s  



simple [12] (page 430 t o  432).  A s  IV i s  j u s t  G x I  x A ,  M i s  immediately 

compact. has t h e  corresponding ma t r ix  topology and a s  m u l t i p l i c a t i o n  

i s  mat r ix  m u l t i p l i c a t i o n  with a sandwich ma t r ix ,  it then  becomes reason-  

ab l e  t h a t  m u l t i p l i c a t i o n  i s  cont inuous.  Hence i s  a compact t opo log ica l  

semigroup. 

Now we w i l l  show t h a t  ou r  prev ious  decomposition i n t o  groups of  

completely s imple semigroups i s  t h e  same up t o  isomorphism t o  t h e  Rees 

mat r ix  semigroup. Let us f i r s t  cons ider  a completely s imple semigroup 

S conta in ing  a f i n i t e  number of  idempotents.  Then 

In t h i s  ca se ,  t h e  s e t  I = (1 ,  2 ,  . . . , S)  and t h e  s e t  A = (1 ,  2, . . .  , r} 
and t h e  group i s  G 

11' 
The sandwich mat r ix  i s  then  e a s i l y  determined by 

observing t h a t  GaB Gyd = Gas So cons ide r  p 
aB ' 

Take G I B  and G a l ,  l e t  

and g such t h a t  g 0 - 
gli3 G 1 ~  a 1 Gal 16 g a l - g l l '  But S 1 p  g l l ,  gal , 

E G 

and so  g - 
16 P ~ a  'a1 

- g l l  f o r  some p 
Ba ' 

Hence we can s o l v e  f o r  p a s  
Ba 

a va lue  i n  G a s  G i s  a group. Thus we have determined t h e  sandwich ma- , 

t r i x  P .  We can ,  of  course ,  heav i ly  r e l y  on t h e  f a c t  t h a t  f o r  a l l  i ,  A ,  

j ,  p, G i A  % G Then G x I x A with  t h e  m u l t i p l i c a t i o n  ( a ;  i ,  A) 
j p '  

(b; j ,  p) = ( a  pAj b;  i ,  p) i s  a completely s imple semigroup. Now 

( a ; i , A ) € G i A a n d ( b ;  j , p ) & G  a n d ( a p  g i ) G i  Then 
j  p Aj 

c l e a r l y  S ' ?  G X I  x A .  Hence a completely s imple semigroup conta in ing  

a f i n i t e  number o f  idempotents is  a Rees product .  S i m i l a r l y  a completely 

simple semigroup con ta in ing  a countable  number o f  idempotent can a l s o  

be w r i t t e n  a s  a Rees product  o r  a Rees I x A mat r ix  semigroup without  

zero over  t h e  group G wi th  sandwich mat r ix  P .  

I f  S i s  a s imple compact semigroup and hence a coinpletely s imple 

semigroup, then  because S i s  a completely s imple semigroup, S can be 



w r i t t e n  a s  a  Rees Product G x I: x Y .  But s i n c e  S i s  compact we know 

t h a t  G i s  compact and fur thermore t h a t  X and Y a r e  a l s o  compact and 

Hausdorff,  a s  S i s  Hausdorff. This  then  g ives  us  a  complete cha rac t e r -  

i z a t i o n  of  t h e  s t r u c t u r e  of completely s imple semigroups and simple 

compact topologica l  semigroups. 

One of  t h e  ques t ions  we a r e  looking a t  i s  what a r e  t h e  idempotent 

p r o b a b i l i t y  measures on compact t opo log ica l  semigroups. We have an 

answer i f  t h e  simple compact t opo log ica l  semigroup con ta ins  only a  

countable  number b f  idempotents.  \Ye now kno\i t h a t  a  compact simple 

semigroup S i s  i sonorphic  t o  t h e  Rees product  G x X x Y (o r  t h e  Rees 

X x Y mat r ix  semigroup without  zero over  t h e  group G with sandwich ma- 

t r i x  P) and S i s  compact i f  and only i f  G ,  X ,  Y a r e  compact (Hausdorff) 

and G is a topologica l  group. Then E = u x y x 6 i s  an idernpotent prob- 

a b i l i t y  measure where u i s  t h e  normalized 14aar measure on G ,  y and 

a r e  p r o b a b i l i t y  measures on X and Y r e s p e c t i v e l y  and E i s  t h e  product  
I 

measure of  p,  y,  @[I21 (pages 430 t o  432).  I 

Now, conversely,  suppose S i s  a  s imple compact semigroup, so t h a t  

S = G x X x Y ,  \<here G i s  a  compact t opo log ica l  group and X, Y a r e  con- 

p a c t  Hausdorff spaces .  Let p  be  a  r e g u l a r  idempotent p r o b a b i l i t y  mea- 

s u r e s .  What can we say  about l ~ ?  Since u i s  r e g u l a r  we know t h a t  1-1 = 

E x a x 13, where E i s  t he  normalized Haar measure onG and a ,@ a r e  

r e g u l a r  p r o b a b i l i t y  measures on X ,  Y r e s p e c t i v e l y  [12] (pages 430 t o  

4 3 2 ) .  So f o r  any r e g u l a r  idempotent p r o b a b i l i t y  measures on a  conpact 

semigroup we khow i t s  decomposition wi th  regard  t o  t h e  Rees product .  

Note t h a t  i f  t h e  simple compact seinigroup con ta ins  only a  countable  

number of idempotents,  t h a t  i s ,  t h e  c a r d i n a l i t y  of X and Y i s  a t  most w ,  

then  a l l  idenlpotent p r o b a b i l i t y  measures on t h e  s imple compact topologi -  



c a l  semigroups a r e  r e g u l a r  measures. Now how does t h e  above r e s u l t  com- 

pa re  t o  our  e a r l i e r  r e s u l t ?  

Consider a compact s imple semigroup S wi th  a f i n i t e  number of 

idempotents.  Then a s  shown be fo re ,  any idempotent p r o b a b i l i t y  measure 
s l- s r 

on S can be w r i t t e n  a s  E = C E n8 pa@ where S = U U GaB 
a=l B = 1  a=l 8=1 

and 1 6a = 1 = I: n and 6 1? a r e  p o s i t i v e  numbers. Recal l  t h a t  
a= 1 B= i B 0' 3 

I"a8 
i s  the  normalized Haar measure on G and can a l t e r n a t i v e l y  be 

aB 

w r i t t e n  a s  

(where jux tapos i t i on  i s  convolut ion and e i s  t h e  u n i t  mass measure).  
a j  

Denote y = 
1 &a and y = C e we have r a= 1 B= 1 B 1 B  

wi th  C(yl) = { s e t  of  a l l  idempotents i n  L ~ }  

and C(y ) = { s e t  of  a l l  idempotents i n  Rl}and pll i s  t h e  normalized Haar r 

measure on the  compact group G 
11' 

Observe t h a t  t h e  c a r d i n a l i t y  of C(yl) 

i s  s and t h a t  of C(y ) is r and so  i f  S has  a f i n i t e  number o f  idempotents,  r 

t h e  idempotent p r o b a b i l i t y  measures t h a t  we get '  on S a r e  t h e  same whether 

we w r i t e  S as  a union of  i t s  group components o r  w r i t e  S a s  a Rees mat r ix  

semigroup over a .g roup  without  zero and sandwich mat r ix  P .  We can f i n d  

a l l  idempotent p r o b a b i l i t y  measures e a s i e r  by cons ider ing  t h e  group de- 

compostion of S, b u t  it should be c l e a r  what t h e  p r o b a b i l i t y  measures on 

t h e  s e t s  I = (1 ,  ... , s }  and A = (1 ,  . .. , r }  have t o  be .  



There i s  one comnent t h a t  i s  approps i a t e  h e r e .  Consider a completely 

simple semigroup S = 8 6 G Recal l  t h a t  e - 
aB' a6  G ~ y  ey6 

- G a 6 .  S .  
a=l B = l  

Schwarz makes a s ta tement  t h a t  e = e need no t  ho ld .  When we 
a@ eBy ey6 a6 

f j r s t  d i scussed  t h i s ,  t h i s  was not  expla ined ,  bu t  with t h e  Rees mat r ix  

semigroup over a group G without  zero and sandwich mat r ix  P, M = 

= M(G; I ,  A; P ) ,  t h i s  s ta tement  can now be expla ined .  ,W i s  a completely 

simple semigroup i f  and only  if P i s  r e g u l a r  ( t h a t  i s  P has a t  l e a s t  one 

nonzero element i n  each row and column o f  P ) .  This  sandwich ma t r ix  P 

w i l l  determine t h e  m u l t i p l i c a t i o n  o f  t h e  elements o f  M. This  sandwich 

mat r ix  need n c t  t ake  two idempotent elements i n t o  another  idempotent 

element a s  t h e  e n t r i e s  of P a r e  a r b i t r a r y  so  long a s  each row and column 

has one non-zero e n t r y .  For example, i f  P j u s t  has  t h e  i d e n t i t y  element 

of  t he  group on t h e  d iagonal ,  t h a t  i s  P = pii A A = e ,  then  e e = e  i j  i k  i k '  

Otherwise anything could happen. 

Now we know t h a t  every compact simple topo log ica l  semigroup S can 

be w r i t t e n  a s  t h e  d i r e c t  product  of a compact group G and two compact I 

Hausdorff spaces X and Y [12] (page 430 t o  page 432) and thus  some of  

t h e  idempotent p r o b a b i l i t y  measures of such a semigroup S can then  be 

e a s i l y  desc r ibed .  Let 1-1 be t h e  normalized 1Iaar measure of G and a,@ r e -  

g u l a r  p r o b a b i l i t y  measures on X and Y .  Then t h e  product  measure 

v x a x B . i s  an idempotent p r o b a b i l i t y  measure on S [ l l ] .  A s  u i s  unique 

and f ixed ,  t h e  idempotent p r o b a b i l i t y  measures on S of  t h e  above form 

depend only on t h e  p r o b a b i l i t y  measures a and B on X and Y ,  r e s p e c t i v e l y .  

And of course  we saw t h i s  when we considered simple compact t opo log ica l  

semigroups S con ta in ing  an  f i n i t e  nunber of  idcmpotcnts a s  t h e  only 

cond i t i on  pn t,he c o e f f i c i e n t s  of  pi j  was t h e  6 and q. be p o s i t i v e  f o r  
i 3 



s r 
a l l  i and j  and C 6 .  = 1 = C n . Notice t h a t  a l l  t h i s  says  i s  t h a t  

1 
i=l j = l  j  

a i s  a p r o b a b i l i t y  ( d i s c r e t e )  measure on t h e  s e t  (1,  2 ,  ... , s }  and 

B i s  a p r o b a b i l i t y  ( d i s c r e t e )  measure i n  t h e  s e t  (1 ,  2 ,  . . .  , r ) .  Hence 

E = a x IJ :: 8 i s  an idempotent p r o b a b i l i t y  measure on 

For a r b i t r a r y  compact Hausdorff spaces X and Y and t h e  compact group 

G ,  t h e r e  i s  no cond i t i on  t o  t e l l  us  t h a t  a l l  t h e  i-dempotent p r o b a b i l i t y  

measures on S a r e  o f  t he  form p x a x 6. Ste fan  Schwarz makes the  f o l -  

lowing s tatement: '  [ IS]  (pages 121 - 122) 

" I f  T i s  a c losed  simple subsemigroup o f  S,  t h e r e  need 

no t  e x i s t  i n  general  an idempotent E E M(S) with C(E) = 

T. But such an idempotent. always e x i s t s  i f  T con ta ins  

only a f i n i t e  number of  idempotent e lements ."  

Thus we have been a b l e  t o  determine idempotent p r o b a b i l i t y  measures 

on some simple compact topologica l  semigroups. Now t h a t  we can determine 

some idempotent p r o b a b i l i t y  measures on a simple compact semigroup, we 

a r e  i n  a p o s i t i o n  t o  determine some idempotent p r o b a b i l i t y  measures on 

compact semigroups. hTe f i r s t  de t e rmi l~e  t h e  ke rne l  o f  a compact semigroup. 

This always e x i s t s  a s  every conpact semigroup has a t  l e a s t  one minimal 

l e f t  i d e a l  and a t  l e a s t  one minimal r i g h t  i d e a l  and thus  we a r e  assumed 

of  a minimal two-sided i d e a l  which i s  unique.  Then we determine t h e  

idempotent p r o b a b i l i t y  measures, i f  t h i s  i s  p o s s i b l e ,  on t h e  k e r n e l .  Then 

we can extend t h e s e  measures t o  t h e  whole semigroup. They w i l l  s t i l l  

be idempotent p r o b a b i l i t y  measures and t h e  suppor t  will always be t h e  

kerne l  of t h e  semigroup. Furthermore, i f  we can f i n d  any o t h e r  c losed 

simple subsemjgroups of t he  conipact semigroup, then  we can a l s o  d e f i n e  



74 

idcmpotcnt p r o b a b i l i t y  measures on t h e s e  semigroups and extend them t o  

t h e  whole s e m i g r o q ~  and these  a s  wel l  w i l l  b e  idempotent p r o b a b i l i t y  

measures on t h a t  semigroup. 

Now t h a t  we know what some o f  t h e  idempotent p r o b a b i l i t y  measures 

look l i k e ,  we aga in  t u r n  our a t t e n t i o n  t o  t h e  ques t ion  of  t h e  convergence 
n 

o f  t he  fol lowing sequences {u ( 4  1 and { l / n  L (i) 1 where 
n ~ w  

i=l  
y. i s  any p r o b a b i l i t y  measure on a compact group. By studyi-ng t h e  con- 

vergences of t h e s e  type  of sequences we w i l l  g e t  a p a r t i a l  answer t o  

t h e  ques t ion  o f  s t a b l e  laws on a compact semigroup. 



CIi4PTEK \/I - CON\'ERGENCE OF PROBABILITY MEASURES 

F i n a l l y  we a r e  ready t o  desc r ibe  t h e  Cent ra l  L i m i t  Theorem f o r  com- 

p a c t  semigroups. As was mentioned i n  t h e  i n t r o d u c t i o n ,  i n  one case  we 

cons ider  a  p r o b a b i l i t y  measure p  on a compact t opo log ica l  semigroup S 

and we asked whether. o r  not  t h e  sequence {p (n) 1 converges.  \Ye now 
~ E W  

want t o  d e s c r i b e  . t he  condi t ions  under which t h i s  sequence will converge. 

If i t  converges,  then  i t s  l i m i t  i s  a  s t a b l e  law. In t h i s  s e c t i o n  a s  wel l  

we will d e s c r i b e  some of  t h e  s t a l ~ l e  laws o f  an a b s t r a c t  compact seini- 

group. 

Let S be  a  compact semjgroup and p  a p r o b a b i l i t y  measure on S.  Then 

p(n) w i l l  be  def ined  induc t ive ly  a s  fo l lows:  

= p + p("). Note t h a t  convolut ion i s  an a s s o c i a t i v e  ope ra t ion .  

(This can be thought  of a s  tak ing  t h e  average of t h e  p r o b a b i l i t i e s  of  

var ious  samples,  o r  i f  we compare t h i s  t o  t h e  convergences o f  a  sequence 

o f  r e a l  numbers, t h i s  would be a  Cesaro Sum.) Rosenbla t t  [13] (Theorem 

7, page 193) has proven t h e  fol lowing amazing f a c t .  I f  lJ i s  any prob- 

a b i l i t y  measure on a  compact topologica l  semigroup, then  t h e  averages 

y converge i n  t h e  weak s t a r  topology t o  an idempotent measure y ( Y ( ~ ) =  y) 
II 

which a l s o  s a t i s f i e s  t h e  re la t i -on  

p K y = y " p = y "  

Furthermore ( R o s e ~ ~ ~ l c t t  [13] Lemma 13  and Theorem 8 ,  page 194) t h e  mass 

o f  t h e  sequence of t h e  p r o h a b i l i t y  measures y concen t r a t e s  on t h e  kerne l  
n 



K (every compact semigroup S  has a  kerne l  a s  every compact semigroup S 

has a t  l e a s t  one minimal l e f t  i d e a l  and a t  l e a s t  one minimal r i g h t  i d e a l  

and hence a  minimal two-sided idea l  which i s  completely s imp le ) .  As 

n  -t rn; t h a t  i s  g iven  any open s e t  G w i th  K G and any f ixed  E > 0 ,  

t h e r e  i s  an m s u f f i c i e n t l y  l a rge  so t h a t  f o r  n > m ,  yn(G) > 1 - E 

There fo re , t he  support  o f  t he  idempotent p r o b a b i l i t y  measure y = 
I1 

l i m  l / n  C p( i )  i s  t h e  kerne l  of  S .  I f  t h e  kerne l  K of S  con ta ins  a  
n- i = 1 
f i n i t e  o r  countable  number of idempotent elemcnts , we then  know exac t ly  

what t h e  idempoteilt p r o b a b i l i t y  measures look l i k e  a s  was shown i n  

Chapter I V .  We a l s o  know exac t ly  what K looks l i k e .  

Before we cont inue  we would l i k e  t o  r e t u r n  t o  compact groups.  Ulf 
, 

Grenander [2]  (Corol la ry ,  page 107) proved t h a t  f o r  a  given non- t r iv i a l  

p r o b a b i l i t y  d i s t r i b u t i o n  U, t he  l i m i t  o f  v(n) as n -+ e x i s t s  i f  and 

only  i f  C(p) i s  no t  contained i n  any c o s e t  o f  any c losed  proper ,  normal 
I 

subgroup of  G .  The limit of p(n) i s  t h e  normalized Haar measure on G .  a 

i 

Let G be a  group and H a  subgroup, then  gH i s  a  l e f t  c o s e t  of  G f o r  any . i 

g E G h . H .  Notice t h a t  i f  l~ and y  a r e  p r o b a b i l i t y  measures on G s a t i s -  

fy ing  t h e  above cond i t i on ,  then lirn ,JI(") = l i m  y(n)  i s  t h e  normalized 
n- n- 

Haar measure on G a s  G i s  a  compact group and t h e  normalized Haar mea- 

s u r e  i s  t h e  on ly  n o n - t r i v i a l  idempotent y r o b a b i l i t y  measure on G .  So 

any number o f  p r o b a b i l i t y  measures s a t i s f y i n g  t h e  above cond i t i on  ~ c i l l  

have t h e  same l i m i t .  This  then gives u s  an easy cond i t i on  t o  check f o r  

p r o b a b i l i t y  measures t h a t  will comerge  on a  compact group. So what a r e  

t h e  n o n - t r i v i a l  s t a b l e  laws on a  compact group? They a r e ,  t h e  norlnalized 

Mzar measure on t h e  compact group, and t h e  t r i v i a l  idempotent p r o b a b i l i t y  

mezs:nrc on t h e  compact group. (Nore will bc: s a i d  l a t e r  about t h e  Domain 



o f  A t t r a c t i o n  q u e s t i o n . )  

Up t o  now, we have been succes s fu l  i n  extending r e s u l t s  from compact 

groups t o  s imple compact semigroups, a s  s imple compact semigroups a r e  

j u s t  t h e  d i s j o i n t  union of  isomorphic compact groups.  Can we extend t h e  

above r e s u l t  t o  compact t opo log ica l  semigroups? Rosenbla t t  1131 (Jmma 

14,  Theorem 9 and Coro l l a ry ,  pages 194 t o  196) has  g iven  us  a  necessary  

and s u f f i c i e n t  c o n d i t i o n  f o r  11'") t o  converge, where 11 i s  a  p r o b a b i l i t y  

measure on a  compact semigroup. First,  however, we i i~ust  c l a r i f y  a  few 

n o t a t i o n a l  convent ions t h a t  he  u s e s .  Recal l  t h a t  a  compact semigroup S 

has  a  unique ke rne l  K and K = G x X x Y ,  where G i s  a  compact group and 

X and Y a r e  compact Hausdorff spaces .  b l u l t i p l i c a t i o n  i s  def ined  as  

fo l lows  f o r  s = (g; x ,  y) and t = ( g ' ;  x ' ,  y ' ) :  

s t = (g; x ,  y )  ( g ' ;  x ' ,  y ' )  = (g ( x ' y )  g ' ;  x ,  y ' )  

where (xy) i s  a  cont inuous mapping o f  X x Y i n t o  G .  This  cont inuous map 

i s  j u s t  t h e  (xy)th e n t r y  i n  t h e  sandwich ma t r ix ,  which was nienrioned i n  

t h e  c o n s t r u c t i o n  o f  t h e  Rees mritrix groups.  Now we can s t a t e  t h e  r e s u l t  

o f  Rosenbla t t  [13] (Lemma 14,  Theorem 9 and Coro l l a ry ,  pages 194 t o  196) 

a s  fo l lows:  "Let y be a  r egu la r  p r o b a b i l i t y  measure on S whose suppor t  

gene ra t e s  S .  The sequence o f  measures y(n)  will n o t  converge i n  t h e  

weak s t a r  topology i f  and only i f  t h e r e  i s  a  proper  c lo sed  normal sub- 

group G '  o f  G such t h a t  XY c G'  and t h e  suppor t  of y i s  conta ined  i n  

( G t  x X x Y)-I (gGt x X x Y) where g e G and g $ G t  .I1 Above we mentioned 

t h a t  (xy) i s  a  cont inuous mapping i n t o  G .  Ac tua l ly  t h e  mapping i s  

@ :{x x Y -t G and we j u s t  write (xy) i n s t e a d  of  @ (x, y ) .  So XY = 

- - {xy I x E X and y E Y ] ,  XY c G '  j u s t  means t h a t  @ (A x Y) =(@( (x, y)) 1 
(x, y )  c X x Y 1 i s  conta ined  i n  G I .  La t e r  on we will show t h a t  t h i s  r e -  



s u l t  by Rosenbla t t  is an ex tens ion  from compact groups, a s  shown by 

Grcnandcr, t o  compact semigroups. 

Now we want t o  d e r i v e  s e v e r a l  p a r t i c u l a r  r e s u l t s  from t h e  main 

r e s u l t  mentioned above. Consider t h e  c a s e  where G t  = { e )  and $(X x Y) = 

= { e l  ( t h a t  i s  Q((x,y))=e f o r  a l l  (x, y )  E X x Y) . In o rde r  t o  g e t  

- 1 another  r e s u l t ,  we must expla in  what (G' x X x Y) i s  and we must 

r e c a l l  a  few d e f i n i t i o n s .  Two clements a  and b  of  a  semigroup S  a r e  

s a i d  t o  be inve r se s  of each o t h e r  i f  

a b a = a a n d b a b = b .  

An element a  i n  a  seinigroup S  i s  r e g u l a r  i f  a  E a  S a ,  i n  p a r t i c u l a r ,  a  

r e g u l a r  element b  o f  S a l s o  has an i n v e r s e  namely c  = x b  x  where b = b  

b  x b s i n c e  

b  c  b  = b(x  b  x)b 

= (b x  b) (x b) 

= b x b  

= b  

and a l s o  c b  c  = (x b  x) b  (x b  x) 

= x(b x  b) (x b  x) 

= x  b(x  b  x) 

= x(b  x  b)x 

= x b x  

= C .  

S ince  by d e f i n i t i o n  any c o n p l e t e l > ~  simple semigroup S i s  a  s imple seini- 
, 

group, we observe t h a t  f o r  any a  E S, S  = a  S a  and hence we inmediately 

deduce t h a t  S i s  r e g u l a r .  (A semigroup S i s  r e g u l a r  if every element i n  

S  i s  r e g u l a r . )  T h c r e f c r s , w c r y  element i n  S  has an i n v e r s e  ( i f  S i s  s i m -  

p l e ) .  In  gene ra l ,  an inve r se  i s  no t  unique.  But a  completely siinple 



semigroup, t h a t  i s  n o t  a  group, does n o t  have a n  i d e n t i t y ,  a s  a complete- 

l y  s imple semigroup with i d e n t i t y  i s  a  group.  Let T  be  a  subsemigroup 

'- 1 o f  S,  ;herl T  i s  t h e  s e t  of  a l l  inverses  o f  a l l  elements i n  T. Coming 

back now t o  t h e  above, we have t h e  fo l l owing .  By t h e  Rees Theorem 

(and where G '  < G and i s  c l o s e d ) ,  G '  x X x Y i s  a  co~i lp le te ly  s imple 

- 1 semigroup, hence a  r egu la r  semigroup and hence (GI x X x Y) e x i s t s .  

Now suppose Q( (x ,y ) ) se  f o r  a l l  (x ,  y.) E X x Y .  Now G f  j u s t  has  

t o  be a  proper  normal c lo sed  subgroup of G .  Consider  ( G I X  X x Y)- '  

(gG' x X x Y) f o r  some g r G cv G I .  I f  $(X, Y )  = { e l ,  then  f o r  s  = 

What however i s  (G1 x X X Y)-'? The c la im i s  t h a t  

-1 -1 - 1 
( ( x ' y )  g (xy ' )  ; x l , y ' )  i s  an i nve r se  o f  (g ;x ,y)  where $ ( (x ,y ) )=xy  . 

Recal l  t h a t  i f  a , b ~ S  and S i s  a  semigroup then  a  i s  an i nve r se  o f  b i f  I 

I 
and only i f  aba = a  and bab = b . 

A 1  s o  
-1 -1 -1 -1 

( ( x ' Y )  g (xY')  
-1 ; , ~ * ( g ; x , y ) * ( ( x ' y )  g ( x y ' ) - l  ; x ' , y t )  = 

-1 -1 -1 -1 
= (CX'Y) g (xy '1- l  (xY')  g ( X ' Y )  (x Y) g ( x Y 9 - l ;  x ' ,  Y O  

-1 -1 
= ( ( x ' y )  g ( x y ' ) - l ;  x', y ' ) .  

-1 -1 - 1 
Therefore  (g; x, y)  and ( ( x ' y )  g ( x ) ~ ' )  ; x f  , y ' )  a r e  i nve r se s  o f  



each o t h e r .  R e c a l l  t h a t  i n  a  semigroup w i t h o u t  i d e n t i t y ,  an  e lement  can 

have many i n v e r s e s ,  i f  it h a s  any i n v e r s e s .  I n  t h i s  c a s e  (g ;  x ,  y )  h a s  

a s  many i n v e r s e s  a s  t h e  c a r d i n a l i t y  of  X x  Y .  R e c a l l  t h a t  XY c G '  and 

- 1 -1 -1 hence ( x ' y )  ( x ' y )  E G '  and t h e r e f o r e  ( ( x t y )  g  ( x y ' ) ;  x t ,  y ' )  E 

G '  x  X x  Y .  That  i s  a l l  i n v e r s e  o f  e lements  o f  G '  x  X x  Y a r e  e lements  

o f  G t  x  X x  Y .  T h a t  i s  (GI x X x  Y)" c G t  x  X x  Y .  But s i m i l a r l y  f o r  

-1 -1 - 1 
any (g;  x ,  Y)  E G x  X x  Y ,  ( ( x ' y )  g  ( x y ' )  ; x ' ,  y ' )  E G I  x  X x  Y .  

-1 -1 
Hence (g; x ,  y )  i s  t h e r e f o r e  a n  i n v e r s e  f o r  ( ( x  y )  g  ( x y l ) - l ;  x l ,  y)  

and t h e r e f o r e  (g;- x ,  y )  c (G '  x  X x  Y) . Hence G t  x  X x Y c ( G ' X  X x  Y ) - I  

and t h u s  ( S t  x  X x  Y) = (G x X x Y)- ' .  T h i s  means t h a t  

(GI x X x Y ) - ' * ( ~ G '  x  X x  Y) = (GI x  X x  Y)*(gG1 x X x Y )  . 

and t E (gG' x X x  Y) we have t h e  f o l l o w i n g  where s = ( g t ;  x ,  y) and I 

ii 
t = (gh ; x '  , y ' )  : 

s t = ( g ' ;  x ,  y) (gh; x ' ,  y ' )  

= (s'C"'Y) gh;  x ,  Y') 

= (g 'gh;  x ,  y ' )  . 
But G '  i s  a normal subgroup o f  G and hence gG' = G'g and hence 

f o r  some g" E G I .  

Thus 
s t = (g 'gh ;  x ,  y ' )  

= (gg '  ' h ;  x ,  y ' )  . 

Hence we can conc lude  t h a t  s t E gG' x X x  Y and s o  ( C t  x  X x  Y)' 

(gG' x X x Y) cgG'  x  X x  Y . But e  E G t  and (e ;  x ,  y )  * (gh; x ,  y ' ) =  

So k o ; ; c n b l a t t t s  r e s u l t  [13] (Lemma 7 and Theorem 8 and C o r o l l a r y ,  



pages 194 t o  196) f o r  t h e  case  $(x, y) 5 e ( f o r  a l l  (x, y)  E X x Y )  i s  

as fo l lows:  Let y  be a  r e g u l a r  p r o b a b i l i t y  measure on a  compact topolo-  

g i c a l  semigroup S whose suppor t  gene ra t e s  S .  The sequence of  measures 

of y(n)  w i l l  n o t  converge i n  t h e  weak s t a r  topology i f  and only i f  t h e r e  

i s  a  proper  c lo sed  normal subgroup G I  o f  G such t h a t  t h e  suppor t  of y 

i s  conta ined  i n  (gGt x X x Y) f o r  some g r G - G t  . I f  t h e  only proper  

c losed  normal subgroup G 1  of G i s  G I  = { e ) ,  then  t h e  suppor t  o f  y must 

be conta ined  i n  ({g)  x X x Y) f o r  some g r G, g # e .  

Another ques t ion  we want t o  d i s c u s s  i s  whether o r  no t  Rosenb la t t ' s  

r e s u l t  i s  an  ex tens ion  of Ulf Grenander 's r e s u l t  [17] (Theorem 3 . 2 . 4 ,  

page 6 ; ) .  One cond i t i on  Grenander d id  no t  mention was t h a t  t h e  prob- 

a b i l i t y  measure on t h e  compact group d i d  no t  have t o  be r e g u l a r .  I f  

we no te ,  however, t h a t  any p r o b a b i l i t y  measure on a compact group i s  n l -  

ways a  r e g u l a r  measure, we immediately have t h a t  cond i t i on .  So the  

above r e s u l t  i s  a n  ex tens ion  of Ulf Grenander 's  r e s u l t  a s  f o r  compact 

groups,  @ ( { X I ,  {y) )  ( i f  one th inks  i t  t h i s  \\ray) i s  always t h e  i d e n t i t y .  
I 

Thc group G x {x) x {Y) ,  when G i s  a  compact group, i s  isomorphic and 

homeomosphic w i th  t h e  ccxpact  group G .  Unfor tuna te ly  Q (x, y )  need not  

be equal  t o  e  a l l  t h e  t ime; i . t  can assume o t h e r  va lues  i n  G .  The r e s u l t  

however i s  an ex tens ion  of Ulf Grenanderls r e s u l t .  

I n  t h e  genera l  ca se ,  j u s t  s o  t h a t  Rosenb la t t ' s  r e s u l t  i s  s t a t e d  i n  

p o s i t i v e  terms,  t h e  r e s u l t  i s  a s  fo l lows .  Let y  be a  r e g u l a r  p r o b a b i l i t y  

measure on S whose suppor t  genera tes  S .  Then t h e  sequence of  p r o b a b i l i t y  

Inensures S(n)  r r i l l  converge i n  t h e  weak s t a r  topology if and only i f  

t h e r e  i s  no proper  c lo sed  normal subgroup G I  of G w i t h  XY ( G I  such t h a t  

t h e  support o f  y  is  contained i n  (GI x X x Y)-' (gG1 x X x Y) where g 

i s  some clement o f  G no t  i n  G I .  



A little while ago we compared the convergence of probability mea- 

sures to summing sequences of real numbers. One major result is that 

every summable sequence is Cesaro summable and the two sums are the same. 

For probability measures we have a similar result. Not all probability 

measures y have the property that the sequence y(") converges, but for 
n 

all probability measures p, the sequence y = l/n L u(~) does con- 
n i=l 

verge. The limit measure for this case is an idempotent probability mea- 

sure. The sequence p(n) need not converge, but if it does converge then 

lim y(") = lim yn [13] (Paragraph #2, page 195). That tells us that if 
n- n- 
the sequence of probability measures p n  converges, the limit is an 

idempotent probability measure. 

So what are the Stable Laws on compact topological semigroup? They 

are simply the idempotent probability measures. By the previous work on 

idempotent probability measures, we know what these idempotent probabil- 

ity measures look like by considering the Rees product of any closed sim- 

ple subsemigroup of the compact topological semigroup. 

We are considering one other question and that is the Domain of 

Attraction question. This question deals with the problem of determining 

all probability measure y on a given compact semigroup S such that the 

sequence of probability measures y will converge to a given stable 

law or idempotent probability measures. To state which probability mea- 

sures y yield p(")converging to a given stable law is rather difficult, 

but we can determine whether or not il(n) for a given probability measure 

will converge to some stable law. This is the main part of Rosenblatt's 

result [13] (Lemma 14, Theorem 9 and Corollary, pages 194 to 196) which 

gives us a condition on the convergence of a sequence of probability mea- 

sures v(i'), given the probability measure . 
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We w i l l  now i l l u s t r a t e  t h i s  r e s u l t  by cons ider ing  a  f e ~ z  examples. 

Tlms we will g e t  a  c l a s s  of groups (compact groups) such t h a t  i f  we 

form t h e  Rees product  us ing  compact r e g u l a r  spaces X, Y and p i s  a  prob- 

a b i l i t y  measure defined on G x X x Y ,  then  t h e  sequence {y (n)  ) w i l l  
n ~ w  

a l s o  converge. 

There i s  one o t h e r  p o i n t  t h a t  should be rnade be fo re  we d i scuss  

t h e s e  examples and that has t o  do with t h e  ques t ion  of  Domain of  At t rac-  

t i o n  on Compact Groups. A s  t h e r e  e x i s t s  only one n o n - t r i v i a l  idempotent 

p r o b a b i l i t y  measure o r  s t a b l e  law, any p r o b a b i l i t y  m a s u r e  y t h a t  s a t -  

i s f i e s  Ulf Grenander 's r e s u l t  i s  an element o f  t h e  Doiliain o f  A t t r a c t i o n  

of t h e  normalized Haar measure. So f o r  Compact Groups, t h e  Domain of 

A t t r a c t i o n  ques t ion  i s  f u l l y  amicered, bu t  t h i s  appears  d i f f i c u l t  t o  

answer i n  t h e  case  we have compact t opo log ica l  semigroups. 



CIIAI'TER VI I - EXAblPLES: O N  TI 1E CONVERGENCE TI-IEOIIEbl 

Nohi t h a t  we have t h e  r e s u l t  by M .  Rosenbla t t ,  we want t o  cons ider  a  

few exa~nples ,  t o  s e e  what i t  means f o r  s p e c i a l  examples. l h e  r e s u l t  was 

a s  fo l lows:  Let y  be a r c g u l a r  p r o b a b i l i t y  measurc on S whose support  

genera tcs  S .  Then y(") w i l l  convergc i n  t h e  v c l k  s t a r  topology i f  and 

only  i f  t h e r e  i s  no proper  c losed  normal subgroup G '  o f  G wi th  X'f c G '  

such t h a t  t h e  suppor t  of y i s  contained i n  

(G' x X x Y ) - '  (gGt x X x Y) 

where g i s  some element of G no t  i n  G I .  ( K  = G x X x Y) where K i s  t h e  

kerne l  o f  S ) .  

Let T be a  subse t  of a  semigroup Q .  The semigroup generated by T 

i s  the  s e t  of a l l  products  of  a f i n i t e  number o f  elements of T. 

a a a i e .  T = {al  1 -a 2 . . . a n / a i  E T ,  ai E { I ,  2 ,  . .  . 1 ,  i=l ,  . .. n ) .  
2 n  

In  t h e  f i r s t  example we s t a r t  wi th  an a r b i t r a r y  compact topo - 

l o g i c a l  Nausdorff group and a r b i t r a r y  X and Y compact Hausdorff spaces .  

We d e f i n e  t h e  func t ion  Q1: X x Y -t G by @ ( ( x , y ) ) r e  ; we want t o  cons ider  

what happens i f  we cons ider  t h e  c losed  norinal subgroup G t  = { e l .  We will 

use  t h e  convention t h a t  f o r  (x, y) E X x Y ,  xy = @ ( ( x , y ) )  . Thus 3s xy = e 

f o r  a l l  (x ,  y) E X x Y ,  XY = { e l  and hence XY c G ' .  This  w i l l  l ead  us 

t o  a p a r t i c u l a r  c l a s s  of  compact groups f o r  which, f o r  every r e g u l a r  prob- 

a b i l i t y  measure Y, t h c  sequence y(") will converge. I t  will a l s o  g ive  us 

a c l a s s  of compact groups f o r  ~ h i c h  t h e  oppos l t e  i s  t r u e  t o  a c e r t a i n  de- 

g ree .  Then we w i l l  r e s t r i c t  ou t  a t t e n t i o n  t o  t h e  s imple groups.  We w i l l  
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s t u d y  t o  s e e  what w i l l  happen t o  a  p r o b x b i l i t y  measure y on a  s imple  

group. The answer i s  not. q u i t e  as  s imple  a s  one would expec t  and we w i l l  

show why. F i n a l l y  we will c o n s i d e r  a  c o n c r e t e  example o f  t h e  above.  

Example 1 -- - 

Let  G be a compact l lausdorff  group and X and Y compact Haus- 

d o r f f  s p a c e s .  Define t h e  m u l t i p l i c a t i o n  on G x X x Y a s  f o l l o m :  

(g l ;  X1, y l )  (82; X 2 ,  y 2 )  = (gl X Z  Y1 82.; y2) 

where $ ( ( x , y ) ) =  xy = e f o r  a l l  x  E X and y E Y and e  i s  t h e  i d e n t i t y  o f  

e r a t e s  G x  X x  Y .  Let  G '  = { e l ,  t h e n  G '  i s  normal and c l o s e d  i n  G .  I 

4" 

E 
Consider  t h e  f o l l o w i n g  : 

= ice; x, y = {(e; x l ,  y )  1 x1 E X }  

s i n c e  (e; x ,  y l )  ( e ;  x l ,  y )  = (e2;  x ,  y )  

= (e ;  x ,  Y)  

- 1 Hence (GI x X  X Y ) - '  = { ( e ;  x ,  y )  I x E X ,  y E Y }  

= {(e ;  x ,  y) I x E X ,  y  E Y )  

= G '  x X  x Y .  

Lct g E G "  G ' ;  t h a t  i s ,  g  # e ,  

t h e n  gG1x X x Y  = {g)  x X  x Y  

= {(g; x ,  y) I x E X ,  y  E Y )  

There fore  (G' X X x  Y ) - I  ( x X x Y )  = (G' x X x  Y) (ig} X X x Y) 

= i g )  x X x y.. 

Suppose now t h a t  t h e  s u p p o r t  of i s  {g)  x  X x Y = gGr >: X x Y .  \$%at 

s e t  docs {g)  x  X x  Y g e n e r a t e ?  The s e t  ig} x X x  Y g e n e r a t e s  t h e  s e t  

<g> x  X x  y = { ( g ( n ) ;  x ,  y )  I n = 1, 2,  . . .  , x E X ,  y E Y}, R e c a l l  



t h a t  @ ( ( x , y ) ) = e  f o r  a l l  x E X and f o r  a l l  y E Y .  Recal l  t h a t  t h e  sup- 

p o r t  o f  y genera tes  our  compact semigroup which i s  G x X x Y .  Therefore 

G x X x Y = <g> x X x Y. I f  two completely s imple semigroups a r e  equal 

having t h e  same X and Y then t h e  groups a r e  a l s o  equal ,  t h a t  i s ,  G = <g> 

[13] (#  (Gd),  page 195) . 
n 

< g > =  {g 1 n = I ,  2 ,  3 ,  . . .  1. 

Due t o  t h e  compactness of  G ,  t h e r e  e x i s t s  a p o s i t i v e  i n t e g e r  n such t h a t  

gn = e ,  s o  t h a t  G i s  a f i n i t e  c y c l i c  group and hence i t  has t h e  d j s c r c t e  

topology. What does t h i s  mean? Let X ,  Y be a r b i t r a r y  compact Hausdorff 

spaces and 1-1 a p r o b a b i l i t y  measure on t h e  Rees Product G x X x Y wi th  
L 

E 

m u l t i p l i c a t i o n  a s  above, such t h a t  t h e  suppor t  o f  y gene ra t e s  G x X x Y .  

Then i f  t he  support  of p i s  contained i n  {g} x X x Y f o r  some g E G ,  

g # e ,  y (n)  w i l l  no t  converge t o  an idempotent probnbil  i t y  measure on 

G x X x Y. This  g ives  us a c l a s s  of  compact semigroups f o r  which t h e  

sequence (1-1 (n) 1 w i l l  no t  converge. Notice t h a t  X and Y could have 
~ E W  

been any compact IIausdorff space .  G however had t o  be c y c l i c .  Notice 
ill 

though t h a t  t h e  support o f  11 had t o  be {g) X X X Y wi th  g genera t ing  G .  

Suppose 1-1 i s  a p r o b a b i l i t y  measure on G x X x Y and t h e  support  of y,  
1 

i s  {gl} x X x Y and g does no t  gene ra t e  G ;  then  y does n o t  s a t i s f y  t h e  1 

cond i t i ons  of bl. Rosenb la t t ' s  r e s u l t  and we cannot conclude anything 

about t h e  convergence of  t h e  sequence {y (n) 1 
1 

J u s t  one o t h e r  con- n E w '  

c l u s i o n  can be drawn and t h a t  i s  t h e r e  do not  e x i s t  compact groups which 

a r e  i n f i n i t e  c y c l i c .  
r 

Now suppose t h a t  G i s  a compact t opo log ica l  group wi th  a p r o b a b i l i t y  

mcasvre 1-1 de f incd  on G X X x Y whose sup,mrt  g e n e ~ a t e s  G x X x i', where 

X and Y a;z a r b i t r a r y  compact Hausdorff spaces Furthermore suppose t h a t  



t h e  support  o f  p i s  contained i n  gG'x X x  Y ,  where G t  = { e l  and g E G ,  

g  # e .  I f  t h e  suppor t  of p gencra tcs  G x X x Y ,  then  a s  noted above, G 

i s  f i n i t e  c y c l i c .  I f  G i s  n o t  c y c l i c  and not  f i n i t e  then,  t h e  normal 

c losed  subgroup G '  = { e l  does n o t  s a t i s f y  t h e  conditj .ons o f  bf. Rosenblat t  

theorem. This  means f o r  any compact group ~ h i c h  i s  no t  f i n i t e  c y c l i c ,  rse 

do no t  have t o  check t h e  c losed  normal subgroup G '  = { e l .  We can a l s o  

conclude t h a t  i f  G i s  not  a  f i n i t e  c y c l i c  group bu t  s t i l l  a  compact topo- 

l o g i c a l  group and y i s  a  p r o b a b i l i t y  measure on G x  X x Y whose support  

genera tes  G x  X x- Y ,  then  t h e  normal subgroup G t  = { e )  conta in ing  X Y  

does n o t  s a t i s f y  t h e  cond i t i ons  t h a t  t h e  support  of p i s  contained i n  

(G' x X x Y)" (gG1 X X x Y), f o r  any g E G ,  g  # e .  For o thenuise  G 

would be c y c l i c  and i f  t h e  support  o f  y i s  contained i n  (Gt x X x Y)- '  

(gGt x X x Y) f o r  some g E G h. { e ) ,  t h e  sequence {y (n) 1 w i l l  no t  
11 E W 

converge. 

Let G be a group. G i s  simple i f  and only i f  G has only  t h e  - 
It 

two t r i v j a l  normal subgroups namely { e l  and G rchere e  i s  t h e  i d e n t i t y  o f  

G .  Consider f i r s t  t h e  groups t h a t  a r e  f i n i t e  and c y c l i c .  Scme of t h e s e  

groups a r e  si-mple and they  a r e  those  groups of prime o r d e r .  'The o t h e r s  

a r e  no t  s imple s i n c e  they  have subgroups. As f i n i t c  c y c l i c  groups a r e  

Abeli.an, a l l  subgroups a r e  normal. We d iscussed  t1:is c a s e  jn t h e  l a s t  

exarnple. We saw t h a t  i f  t h e  support  of a  p r o b a b i l i t y  measure was 

{g} x X >: Y f o r  some g # e then t h e  sequence {u (n) } d id  no t  converge. 
n ~ w  

Now suppose t h q t  t h e  suppor t  of i s  ({g } x X x Y)  U ({g2} x X x Y) 
1 

where gl # e and g2 # e and g , ,  g2  E G a  f i n i t e  c y c l i c  group of  p r i n e  ... 

o r d e r .  Then t h e r e  does no t  e x i s t  an eleinent g  E G such t h a t  t h e  support  



o f  p is  c o n t a i n e d  i n  {g)  x X x Y. Hence t h e  normal c l o s e d  subgroup { e l  

does  not. work and t h e  sequence{p ("1 1 converges  a s  { e )  i s  t h e  o n l y  
n E W  

normal c l o s e d  subgroup p r o p e r l y  c o n t a i n e d  i n  G .  

Cons ider  now a l l  s i m p l e  compact groups  which a r c  n o t  f i n i t e  c y c l i c .  

Then by exaniple 1 and t h e  conclus ior i  i n  Example 1 ,  t h e  normal c l o s e d  sub-  

group G '  = { e l  does n o t  s a t i s f y  t h e  c o n d i t i o n s  i n  R o s e n b l a t t ' s  r e s u l t .  

But G '  = { e l  i s  t h e  o n l y  normal c l o s e d  subgroup o f  G n o t  equa l  t o  G 

s i n c e  G i s  s i m p l e .  T h e r e f o r e  i f  X and Y a r e  compact Hausdorff  spaces  and 

u i s  a  r e g u l a r  p r o b a b i l i t y  measure on t h e  Rees p r o d u c t  G x X x Y f o r  

some con t inuous  niap xy -+ G and t h e  s u p p o r t  o f  p g e n e r a t e s  G x X >: Y t h e n  

t h e  sequence {p (n) 1 does converse  t o  a  p r o b a l ~ i l i t y  measure s a y  E .  n ~ w  
E i s  t h e r e f o r e  an  idempotent  p r o b a b i l i t y  measure.  T h i s  t h e n  e ~ i a b l e s  us 

t o  desc . r ibe  a  b i g  c l a s s  o f  compact t o p o l o g i c a l  semigroups and r e g u l a r  

p r o b a b i l  i t y  measures p on t h e s e  seiii groups  f o r  which t h e  sequences  

(n> 
{ I n  e w 

converges .  The conipnct t o p o l o g i c a l  semigroups \ihic11 r:e can 

have a r e  g e n e r a t e d  by a l l  s i m p l e  compact groups  \ thicl l  a r e  n o t  f i n i t e  
I I 

c y c l i c  and any a r b i t r a r y  compact I iausdorff  spaces  X alld Y t o p c t h e r  w i t h  

any r e g u l a r  sandwich m a t r i x .  J u s t  n o t e  t h a t  a 1  1 r e g u l a r  probnbi  1 i t y  mea- 

s u r e s  p on t h e s e  coinpact semigroups whose s u p p o r t  g e n e r a t e s  t h e  v:llole 

semigroup a r e  i n  t h e  Donlain o f  A t t r a c t i o n  o f  some s t a b l e  law (which a r e  

t h e  idenipotent p r o b a b i l i t y  measures) . 
Example 3 

Let G b e  a compact group and X = Y = { X I .  T h e r e f o r e  t h e  map- 

p i n g ,  mapping X x X -+ G d e f i n e d  by @ i s  con t inuous  s i n c e  Q(x, y )  = 11 f o r  

some h r G .  We t h e n  g e t  t h e  fo l lowjng  Rees p r o d u c t ,  G x {x) x {x) w i t h  

t h e  fo l lowing  m u l t i p l i c a t i o n :  

(g l ; '>  X) ( s ~ ;  ' J  X) = (gl  ( >  '1 g2;  X y  X )  = (g,  h g 2 ;  X >  



Notice that G is homeomorphic to G x {x) x {x) but is not necessarily 

homomorphic to G x {x) x {x) unless +((x , x))=e. To show that G is not 

homomorphic to G x 1x1 x {x) we just use the following natural map: 

8(g) = (g; x, x) for all g E G. 

= (h-' (x, x)g; x, x) 

= - x, x) (g; X, x) 

= (h g; x, x) 

= echg) 

Since 8(g) # 9(h g), 8 is not homomorphic unless h = e. 

So let us consider the case when $(x,x)=e. Then G is homeomorphic I 

and isomorphic to Gx{x)x{x). For this example Rosenblattts result takes 

the following form: Let p be a regular probability measure on G x{x)x{x) 

whose support generates G x { x } x { x ) . The sequence of measures 

p(n) will not converge in the weak star topology if and only if there 

is a proper closed normal subgroup (proper indusion) of G such that 

{x} {x) = {xx), {@CX,X)} c Gt and the support of p is contained in 

(Gt x x {x})-l (gGt x {XI x {x)) for some g E G .v GI. However 

(GI)-' gG'. As G t  is a subgroup (G')'~ = Gt we see that 

( ~ ) - l  gG' = G'gGt 

= g ~ t g - l g ~ '  (as G t  is normal in G) 



So we f i n a l l y  replace  the  l a s t  statement of  t h e  r e s u l t  a s  fol lows:  

"the support of  y i s  contained i n  gGt f o r  some g E G .̂ G t . "  

Put t ing  a l l  t h i s  together  f o r  t h e  s p e c i a l  case  when $(x, x) = e and 

X = Y = {XI we g e t  the  following r e s u l t .  I f  p i s  a r egu la r  p r o b a b i l i t y  

measure on a compact topological  group G whose support  genera tes  G ,  

then the  sequences of  measures p n  w i l l  no t  converge i n  t h e  weak s t a r  

topology i f  and only i f  t h e r e  i s  a proper closed normal subgroup G' of 

G such t h a t  t h e  support  o f  F( i s  contained i n  gGt f o r  some g E G " G I .  

We noticed t h a t  Ulf Grenander [17] has proved the  same r e s u l t  

j u s t  using compact groups. H i s  r e s u l t  is  a s  fol lows:  

!!For a given p r o b a b i l i t y  d i s t r i b u t i o n  P the  l i m i t  of P(") n + a 

e x i s t s  i f  and only i f  the  support of  P i s  not  contained i n  any coset  of  

any closed proper, normal subgroup of G .  The l i m i t  of P(") i s  t h e  

normalized Haar measure on G." Hence t h e  r e s u l t  by M. Rosenblatt  i s  

a genera l i za t ion  of the  r e s u l t  by Ulf Grenander. 

We now give  some examples of t h i s :  

Example 4 

Let us  consider  a concrete example of a f i n i t e  c y c l i c  group 

G o f  prime order  and a l s o  compare t h e  convergence (or  divergence) o f  
n 

a p r o b a b i l i t y  measure p of  p(n) and E p(i) /n.  
i= l 

Let G = a (3 )  ( the  group of  order  3 under add i t ion  a s  a (3 )  is a f i e l d ) .  

= (0, 1, 2 1  

The addi t ion  t a b l e  is  a s  fol lows:  



Let G have t h e  d i s c r e t e  topology and d e f i n e . a  p r o b a b i l i t y  measure on 

( g ;  x ,  x )  + (g l ;  X ,  x) = (g + g ; x, x ) .  Hence we will only cons ider  G .  
1 

The support  of u = ( 2 ) .  The support  o f  11 gene ra t e s  G .  G 1  = ( 0 ) .  Thew-  

- 1 
f o r e ,  G '  = G' and hcnce 

= G t  + (g + G ' )  

= g + G '  

= (61. 

I f  we l c t  (,g} = (21, then  t h e  suppor t  of 1-i = ( G 1  x X  x Y) -' + (gGf x X X Y )  

= i 21 .  

(2) (3)  (4) Now we will c a ! f u l a t c  y , p , , . . . . Recal l  t h a t  f o r  any two 

probabi l i ;y  lncasurcs A ,  y on a  compact sernigroup, t h e  convolut ion of  A ,  



= 0 

2) Therefore ,  y ( 2 ) { ~ ~  = p (  {2} = 0  and p ( 2 ) { l )  = 1. 



Clea r ly  then  by induc t ion  

1 i f  n 5 0 (mod 3) 
0 o therwise  

1 i f  11 E 2 (mod 3) 
0 o t h e r ~ < i s e  

1 i f  n 5 1 (mod 3) 
0 o therwise  

n 
C lea r ly  t h e  sequence il(n) does not  converge. Define y = P p ( i ) / n .  " j..-l 

We necd cons ider  on ly  one Bore1 s e t ,  namely 8 = ( 0 ) .  

3 k + 2  
Case 3. y 3k + 2 ( 0 )  = Z k/(3k+2) -t 1 /3  a s  k + ~ ,  k = 1, 2, . . .  . 

i=l  

Hence l i ~ c  y ( 0 )  = 1 /3 .  
I1 n- 

S i m i l a r l y  l i m  y ( 1 )  = l in y (2 )  = 1 / 3  and t h e r c f o r c  lin; y = y ,  n n->.o n 11 n- n- 

Notice t h a t  y i s  an idempotent measure and i s  t h e  only n o n - t r i v i a l  

n = 1 ,  2 ,  3, . . . , does not converge i n  t h e  usua l  convergence, bu t  does 



converge i n  t h e  Cesaro method. 

So i n  a f i n i t e  c y c l i c  group we can g e t  measures p such t h a t  p (n > 
does not converge, even i n  a f i n i t e  c y c l i c  group of  prime order .  ( t h a t  

is ,  a simple c y c l i c  group). However,as mentioned before ,  f o r  a simple 

group which i s  not  f i n i t e  and c y c l i c ,  f o r  a l l  measures p whose support  

generates t h e  group, w i l l  converge and the  l i m i t  i s  an idempotent 

p robab i l i ty  measure ( t h a t  is ,  a s t a b l e  law). 

Example 5 

Let G be t h e  u n i t  c i r c l e ,  wi th  c e n t e r  a t  t h e  o r i g i n ,  with t h e  

induced topology of  the  plane.  Let g be a point  on the  u n i t  c i r c l e .  

I t  w i l l  be represented by the  angle  between the  l i n e  joining g and t h e  

o r i g i n  and t h e  p o s i t i v e  x-axis.  Addition is then defined as  fol lows:  

Let e ,  o1 E G  e a el = {  e + O 1  i f 8 + 8  < 2 n  
1 8 + 8 1 - 2 n i f 8  + O  2 2 ~  . 1 1 

(With t h e  above represen ta t ion  G = { 8 1 0 < x < 21~1). The add i t ion  is - 
j u s t  8 B el  = 0 + el (mod 2n). With t h i s  a d d i t i o n  G i s  a compact topolo- 

g i c a l  group. Furthermore it i s  an abe l i an  group, s o  t h a t  any subgroup 

of  G i s  immediately normal. 

Let us consider  a l l  subgroups of  G .  F i r s t  we w i l l  consider  a l l  

f i n i t e  groups. Let G ' n  be a f i n i t e  group, having a t  l e a s t  two members, 

then  G I n  = {O, 2n/n, 2/n 2n, . . . , (n-l)/n '21~1 f o r  some p o s i t i v e  i n t e -  

g e r  n .  These subgroups a r e  a l l  c y c l i c  ( t h a t  is ,  each subgroup has a t  

l e a s t  one element, namely 2r/n f o r  a l l  n, t h a t  w i l l  genera te  t h e  sub- 

group). Suppose X = Y = {x}. Then G t n  x {I) x {x) i s  i n  1 - 1 corres-  

pondence wi th  G I n  a s  mentioned e a r l i e r .  Consider (Gfn x {?I x{x})-l 

(gG x {x) x {XI) where g E G - G'n. Since X = Y = 1x1, then XY is  a 

s ing le ton  where XY C G f I 1 .  The re fo re , i t  is easy t o  s e e  t h a t  



(gG1, X {x) x{x)) can have only a f i n i t e  number of  elements a s  G 1  i s  
n 

f i n i t e .  Suppose now t h a t  y i s  a p r o b a b i l i t y  measure on G x {x) x {x) 

such t h a t  t h e  support  o f  y genera tes  G x 1x1 x {x) and t h e  support  i s  

contained i n  (GI x {x) x { x I ) ' ~ * ( ~ G ~ ~  n x 1x1 x {x)) f o r  some g E G G I n ;  

then we immediately g e t  a con t rad ic t ion .  The support o f  y has only a 

f i n i t e  number of  elements and t h e  s e t  generated by t h e  support  o f  y 

s t i l l  only has a f i n i t e  number o f  elements, but  G has an i n f i n i t e  num- 

be r  of elements. Therefore,no such y a s  described above e x i s t s .  We 

the re fo re  must cons ider  i n f i n i t e  subgroups. But t h e r e  a r e  no i n f i n i t e  

ordered subgroups of  G t h a t  a r e  c losed.  

Thus we have shown t h e  following. Let y be a p r o b a b i l i t y  measure 

on G x {x) x {x) whose support generates G x {x) x {x), then the re  e x i s t s  

no proper c losed normal subgroup G t  of  G with {xx) c G '  such t h a t  t h e  

support of  ,J i s  contained i n  (Gt x {x) x {x)) ' l * ( g ~ t  x {x) x x )  where 

g is some element of  G no t  i n  G I .  Therefore,  f o r  any p r o b a b i l i t y  mea- 

s u r e  p on G x {x) x {x) whose support  genera tes  G x {x) x {x), t h e  se-  

quence {p (n) w i l l  converge t o  a p r o b a b i l i t y  measure i n  the  weak 
In c u 

s t a r  topology. This  measure w i l l  be  an idempotent measure whose support 

is  G x {x) x {x) (as  t h e  support  o f  an idempotent measure i s  the  kernel  

o f  t h e  semigroup G x {x) x {x) which i s  G x {x) x (x)) .  Also note  t h e  

idempotent measure w i l l  always be  t h e  ilormalized Haar measure a s  

G x {x) x {x) is  a group. 

Now consider  t h e  case  when X and Y a r e  a r b i t a r y  compact Hausdorff 

spaces. Recall t h a t  G x X x Y can be thought of a s  a matr ix  (Rees mat- 

r i x ) .  If w e  cons ider  t h e  f i n i t e  subgroups of G (as be fo re ) ,  then t h e  s e t  



w i l l  have only a  f j n i t e  number of elements i n  each xy coordina te  com- 

pared with an i n f i n i t e  nur;tber of elements i n  each xy coord ina t e  of  

G x X x Y rchere XY c G I .  The i n f i n i t e  subgroups o f  G a s  noted e a r l i e r  

a r e  not  c lo sed .  Hence, a s  be fo re ,  i f  i s  a  p r o b a b i l i t y  measure on 

G x X x Y d l o s e  suppor t  gene ra t e s  G x X x Y ,  then t h e r e  e x i s t s  no 

proper  normal c losed  subgroup G' of  G with XY G '  such t h a t  t h e  suppor t  

o f  i s  contained i n  (Gt x X x Y) - I *  (gGt x X x 1.) where g  i s  some 

element of  G no t  i n  G t  . Therefore ,  f o r  any p r o b a b i l i t y  measure 11 on 

G x X x Y whose suppor t  gene ra t e s  G x X x Y, t h e  sequence {;1 In) } 
n  E U  

will converge t o  a  p r o b a b i l i t y  neasure i n  t h e  v:eak s t a r  tol)olog).. 

Let G be t h e  u n i t  c i r c l e  a s  above and >[ and Y two a r b i t r a r y  com- 

p a c t  IIsusdorff spaces .  The ques t ion  a r i s e s ,  what arc  some of t h e  sub- 

s e t s  of G x X x Y t h a t  will gene ra t e  G x X x Y? (Let S be  a  topologi -  

ca l  s e m i g r o ~ ~ p  and T  a subse t  of S;  then  t h e  sen i  group i s  

U = T" where t h e  b a r  r e p r e s e n t s  c l o s u r e  and 
n= 1 

T" = 1x1* x ...OX I X ~ E T  i = 1, . . .  , n  1 .) 2 n  

To p u t  it ano the r  way, what does t h e  subse t  of  G x X x Y genera ted  by 

T  x X x Y ,  g iven some T  c G ,  look l i k e ?  F i r s t  we w i l l  show t h a t  a  s e t  

T  x X '  x Y c  genera tes  n s e t  T  x X '  x Y '  where X '  c X and Y '  c Y .  
1 

Consider f i r s t  G x X t  x Y r  where X' X and Y '  Y. # 
Then X '  x Y '  X x Y s 

and t h e r e  i s  no p o s s i b i l i t y  o f  X t  x Y '  g cne ra t ing  X x Y .  Let s ,  t E 

G x X '  x Y r  where s - (g; x ,  y )  and t = (p . y 1,. Then 
1 5, 1 

s t  = (g;  x ,  y)  ' Cq; x l ,  Y1) 

= (g $ (x l ,  Y) g l ;  X, y l )  . 

A s  s  E G x X '  X Y '  we g e t  t h a t  x  X' and s i m i l a r l y  y  Y '  a s  1 



t E G x  X '  x  k" .  Therefore,  (x ,  y ) E X t  x  Y t  and hence 
1 

( g $ ( x l , y ) g l ; x , y  ) E GxYrxYr. S i m i l a r l y  t s  E GxX1xY1 . Hence, i f  
1 

S 1 , S 2 ,  . . . ,  s E GxXrxY', s s - * * s  F: GxX1xY1. T h e r e f o r e ,  a s  we c o n s i d e r  n 1 2  n  

GxX'xY I ,  i t  i s  immediate t h a t  GxX'xY will o n l y  g e n e r a t e  GxX'xY' a s  X'xy' 

" g e n e r a t e s "  o n l y  X1xY ' . T h e r e f o r e ,  t h e  o n l y  p o s s i b l e  s u b s e t s  o f  GxXxY 

which w i l l  g e n e r a t e  GxXxY a r e  s e t s  of  t h e  form TxYxY where  T c G . 
Note,  however,  t h a t  i n  g e n e r a l  if T i s  a  s u b s e t  o f  G and X I  c X ,  

Y '  c Y t h e n  [T x X 1  x  Y ' 1  f IT] x X 1  x Y 1  , where [A] i s  t h e  s e t  gcner -  

a t e d  by A .  Cons fdcr  t h e  f o l l o w i n g  compact semigroup.  

Let  G = [0 ,  2n) w i t h  o r d i n a r y  a d d i t i o n  modulo 27~. Le t  X = Y = {x) 

and $ X x  Y -+ G b e  a s  f o l l o w s  

$ ( x , x )  = 2n/5. 

L e t  T = { 2 ~ / 7 } .  [TI = { 2 ~ / 7 ,  47r/7, 67~ /7 ,  8 n / i ,  1 0 ~ r / 7 ,  1 2 ~ 1 7 ,  0) .  

Coilsider [T x  X x  Y]. 

Le t  t - 2n/7 and h = 2n/5.  

Then ( t ;  x ,  x )  + (t; x ,  x)  = t + h + t; x, x) 

t + 11 + t - 21,/7 + 2n/5 + 2 ~ / 7  = 3 4 ~ / 3 5 .  

I-Ience i t  i s  s i r ~ p l e  t o  show t h a t  

[T x  x x Y ]  = {(2nn/35;  x ,  >o ( n = 0 ,  1, 2 ,  . .. , 3 4 ) .  

L e t  [T x  X x  Y] = T t  x  X x  Y ,  t h e n  

TI = .{2nv /35  1 n = 0 ,  1, 2 ,  . .. , 3 4 ) .  

[TI = { 2 n ~ / 7  I n = 0 ,  1, . . . , 6 ) .  

T h e r e f o r e ,  T' jr [TI and hence [T x  X x  Y] jc: [TI x  X x  Y .  

Now what arc some of t h e  s u b s e t s  T o f  G ,   here G i s  d e f i n e d  above,  

s o  t h a t  f o r  c o ~ p c t  Hausdurff  s p a c e s  X and  Y,T x  X x  Y w i l l  g e n e r a t e  

G x X x  Y7 To do t h a t  L C  l ~ i l l  f j r s t  c o n s i d e r  G x  {x) x { y ]  f o r  x  c X 

and y E Y and suppose  @ ( s ,  y )  = h t  v:helc 11' E G a n d  (P:X X Y  -> G is  n 



con t inuous  f u n c t i o n .  Let  s = (g ;  x ,  y )  and t = (h;  x ,  y )  be e lements  

o f  G x {x)  X {Y) .  

S + t = (g;  x, Y) + (h;  x ,  y )  

= (g + Q ( x y  y )  + h; x ,  y)  

= (g + h '  + 11; x ,  y ) .  

g + h '  + h & G a s  G i s  a  group and hence s + t E G x  { x )  x  iy) .  Mcncc 

we know t h a t  G x  { X I  x ( y )  i s  c l o s e d  under  m u l t i p l i c a t i o n .  F u r t h e r -  

m o r e , $ ( ~ ,  y)  i s  j u s t  a  t y p e  o f  s h i f t  o p e r a t o r  i n  t h e  group and i s  f i x e d  

f o r  t h e  c h o i c e  {XI and { y ) .  F i r s t  r e c a l l  t h a t  G i s  3 c o m r n u t ~ t j v e  group 

s o  (g + h t +  h;  x ,  y )  = (g + 11 + 11'; x ,  y ) .  IIence ji' a  s u b s e t  T of G 

g e n e r a t e s  G,then T x {x) x{y) will g e n c s a t e  G x {x} x ( 7 ) .  The r e a s o n  

i s  t h a t  i f  T g e n e r a t e s  G and t h e n  Q ( x ,  y )  s h i f t s  G ,  b u t  G i s  a group 

and s o  G sta1.s t h e  same. Kc had t o  u s e  t h e  conniuta t ive  p r o p e r t y  t o  be 

a b l e  t o  i n t e r c h a n g e  g e n e r a t i n g  and s h i i ' t i n g .  Thescf 'ore,  a l l  \:e need t o  

c o n s i d e r  a r e  s u b s e t s  o f  G t h a t  w i l l  g e n e r a t e  G .  Any s u b s e t  'I' o f  G t h a t  

h a s  p o s i t i v e  Lebesque mensure w i l l  g e n e r a t e  C .  So v h a t  does a l l  t h i s  

mean? 

I t  mean? t h a t  f o r  any r c g x l a r  p r , b a b i l i t y  m e a s w e  ki on G x X x  Y 

whose s u p p o ~ r  i s  T x X x  Y ,  where T i s  o f  t t ie  above form, t h e  seopence 

v (n)  will converge Po an i d e n p o t e n t  ilicasurc on G x X x  Y. The suppor t  

o f  t h i s  idempotent  measure will b e  G x  X x  Y .  Fur thcrniore ,  i f  X and Y 

a r e  a t  nios t c o u n t a b l e ,  t h e  i denipotcnt measure r q i  11 b e  a  convex conhin-  

a t i o n  o f  t h e  na rmal jzcd  IIaar measures on each 01 t h e  groups  o f  t h e  form 

G x { x )  x  { y ) .  I f  X and Y a r e  uncountab le ,  t h e n  t h e  idenipoteni measure 

w i l l  b e  of t h e  form t x a x B ~ h c r e  E i s  t h e  nornla l ized IInar measure on 



G  and a and f3 a r e  p r o b a b i l i t y  measures on X  and Y r e spec t ive ly .  Hence 

i n  t h i s  case ,  any p r o b a b i l i t y  measure whose support  genera tes  G x X  x Y 

i s  i n  the  Domain of  At t r ac t ion  of some idempotent p r o b a b i l i t y  measure 

Example 6 

Let us consider  t h e  following group H. Let G be  t h e  group of  

2 x  2 matrices of  the  form ( :),where 0 - c f3 < Z I T ,  and l e t  H 

be the  group generated by G and ( -  ) . A s  was shown before ,  t h i s  is  

a group. Furthermore, H i s  a compact abe l i an  group and G i s  a  c losed 

normal subgroup of H. Let X  = Y = {XI.  Let Q: X  x Y -t H be defined a s  

follows : 

1 0  
Q(x, Y) = e = ( 0  f o r  a l l  x and y.  

Then c l e a r l y  H x  X  x Y r H. (&means isomorphic).  H x X  x Y  and H a r e  

a l s o  homeomorphic. The mapping showing isomorphism is  f ;  H -t H x  X  x  Y ,  

defined as  follows: 

f ( h )  = (h; x, y ) .  Thus 

f(hht) = (hhl;  x, x) 

= (h e h l ;  x,  x) 

= ( h Q ( x ,  x) h ' ;  x, x) 

= (h; x, x) ( h l ;  x, x) 

= f ( h )  f ( h C ) .  

Let y be a r egu la r  p r o b a b i l i t y  measure on [ ) G ,  whose support  

is (-: ) G  hen c l e a r l y  ( -  y ) G genera tes  H a s  

= ( t  ) E G .  Remember X = Y  = {XI. Since H x X  x Y r H, we s e e  t h a t  

f o r  any subset  S cH, S x  X x  Y r S.  (where Q(x, x) = ( ) ) . Hence 

( G x X x Y )  r G  andgG x X x Y r + g G  f o r  s o m e g s H - G .  A s  G i s  a g r o u p  



- 1 - 1 G-I = G and t h e r e f o r e  (G x X x Y) - G . Thus 

- 1 (G x X x  y)''-(gG x X x Y) 2 G g  G 

~ - l g G z G g G  

= g G G  s i n c e  G i s  a b e l i a n .  

T h e r e f o r e ,  (G x X x Y ) - '  (gG x X x  Y) = gG x X x Y 

t h e n  we have g  E H - G .  Thus by R o s e n b l a t t l s  r e s u l t  1131 (Lemma 1.3 and 

Theorem 8 ,  page 1 9 4 ) ,  t h e  sequence y(") w i l l  n o t  converge i n  t h e  weak 
I 

s t a r  topo logy .  

Now l e t  us  c o n s i d e r  a r b i t r a r y  compact t i ausdor f f  s p a c e s  X and Y 

u s i n g  t h e  s a n e  group H a s  above.  Le t  11 b e  a  r e g u l a r  p r o b a b i l i t y  measure 

whose s u p p o r t  i s  ( -  y )  G X X x  Y .  Le t  @ :  X Y + H  be  a  con t inuous  

f u n c t i o n .  Cons ider  t h e  f o l l o w i n g :  

Let  ( s ;  x , y )  E G x  X x  Y and ( t ;  x ' ,  y ' )  E ( -  ; ) G x X x Y .  

For convenience l e t  g  = ( -  ) . Then 

( s ;  C ,  y )  * ( t ;  x ' ,  y ' )  - ( s  ,$(xt ,  y )  t ;  X ,  y t ) .  

+ ( x ' ,  y )  = r E G .  

So c o n s i d e r  s @ ( x r ,  y)  t = s r t .  t = g t '  f o r  some t.' E G .  

Then s r t  = s r g t l  = g s r t '  s i n c e  I I  i s  a b e l i a n  and s i n c e  s r t '  E G ,  

g ( s r t l )  E G . T h e r e f o r e ,  ( s @ ( x t , y ) t  ; x , y l )  E gGxXxY . We know t h a t  r E G 

- 1 
and hence r E G .  It can  e a s i l  y  be s h o ~ n  t h a t  (GxXxY) (gGxXxY)=gGx);xY . 

- 1 
Furthcrnlore ,  s i n c e  [GxXxY) = GxXxY , 

(C x  X x .Y)- . l0(gG x :: x  Y) = (G x X x  Y)*(gG x X x Y) . 
- 1 

For s i x p l i c i t ~ r  d e n o t e  Q(x,y) E G a s  xy. I 'hen ( (xy)  ; x , y )  be longs  t o  

- 1 
G : :  X x Y a n d  ((xy)  ; x , y ) * ( g h ;  x , y )  f o r  a r b i t r a r y  i l ~  G i s  equa l  t o  

- 1 
((xy) [r>.)gh ; x , y )  = (gh ; x , y )  . T h i s  i s  tr:ie f o r  a l l  (x,y)rXxY and 



T h i s  r e s u l t  i s  t r u e  f o r  any a r b i t r a r y  group.  The c o n v e r s e  is not always 

t r u e .  I n  t h i s  p a r t i c u l a r  c a s e  G i s  a  normal a b e l i a n  subgroup o f  H,  and 

t h e r e f o r e  we immediate ly  s e e  t h a t  

gG x X x Y  = (G x X x Y )  (gG X X  X Y ) .  

T h e r e f o r e ,  i f  XY c G  and u i s  a  r e g u l a r  p r o b a b i l i t y  measure on H x X x  Y 

whose s u p p o r t  i s  gG x X x Y, t h e n  a g a i n  t h c  sequence ( )  will n o t  con- 

v e r g e  i n  t h e  weak s t a r  topo logy .  

Now we would l i k e  t o  t a k e  a look a t  why, o r  a t  l e a s t  one r e a s o n  why 

i t  i s  t h a t  f o r  a  y r o b a b i l j  t y  measure p  i n  I4 o f  t h e  above t y p e ,  t h e  s e -  

q p n c e  {u (n)  1 does  n o t  converge.  To do t h i s  we w i l l  look a t  t h e  
n  E 

s u p p o r t  o f  11'~) f o r  a r b i t r a r y  posi t i1 .e  i i i t encvs  n .  i a e o  n  i s  1 ,  t h e  

s u p p o r t  o f  p i s  t h e  ' s e t  
0 1 ( O C .  Let  F O )  G. A ~ S O  l e t  t l i r  

-1 0 

s e t  of a l l  Bore1 s u b s e t s  of F b e  denotcd by C , l e t  t h e  s e t  o f  a l l  Borcl  
1 

s u b s c t s  o f  G be denotcd by  B Now what i s  the s u p p o r t  o f  u ( * ) ?  
2 ' 

Let G E i3 t h e  s e t  o f  a l l  Borcl  s u b s e t s  o f  1 1 .  

IVhat does il look l i k e ?  Claim t h a t  B C G  and hence B E R For suppose 
2 

B n F # 0. l e t  R = B n r and r. g Z 1  1 1 
Then xy E BI . The o n l y  way xy 

E B1 i s  i f ,  wj-thout l o s s  of g e n e r a l i t y ,  n E F and y F. G. But u(F) = 1  

and u(C) = 0, a s  t h e  s u p p o r t  of p i s  F .  So li x u ( R )  .: 0 u n l e s s  

{(x, ) 1 . x ~  E D ) C F  x F.  But i_l x 11 (F x F)  - 1 and hence B E R  x 8 
1 1 

and Irencc B E R t h a t  i s  t h e  s u p p o r t  of \i(*) c G. 
2 

( 3 )  Now c o n s i d e r  t h e  s u p p o r t  of , 

Tho s u p ~ o ~ . t  o f  i_l(*) i s  con ta ined  i n  G and t h e  suppor t  of  11 i s  cnn ta inod  

i n  F and hence t h e  suppo r t  of  11(3) i s  i n  P .  Thus by i n d u c t i o n  t h e  s q l p o r t  



of u(") i s  c o n t a j n e d  i n  F js n i s  odd and t h e  s u p p o r t  of  u ( n )  i s  con- 

t a i n e d  i n  G i f  n i s  even.  Thus t h e  s u p p o r t  a l t e r n a t e s  between I: and G 

(F  n G =$) and hence t h e  sequence p(") cannot  converge.  So f o r  t h i s  

r e a s o n  f o r  t h e  p r o b a b i l i t y  measure p whose s u p p o r t  i s  gG x X x Y t h e  s e -  

qucnce u(") w i l l  n o t  convergc i n  t h e  weak s t a r  t o p o l o g y .  

The above examples i l l u s t r a t e  some o f  t h e  u s e f u l n e s s  o f  t h e  r e s u l t  

by M .  R o s e n b l a t t .  Ide a l s o  n o t i c e d  t h a t  t h e  r e s u l t  o f  bl .  K o s e n b l a t t  

was a  g e n e r a l i z a t i o n  o f  t h e  r e s u l t  by Ulf  Grenander or! compact g roups .  

In  f a c t ,  a l l  th rough  t h i s  paper  we have used r e s u l t s  on compact groups  

and were a b l e  t o  g e n e r a l i z e  t h e n  t o  s i m p l e  compact t o p o l o g i c a l  g r o u p s .  
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