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ABSTRACT

A theorem by Golod and Safarevi® with annlication
to nil algebras and periodic groups is clearly nroved
in this thesis. The apolications settle nepatively
Xuros's question: Is a finitely generated alpebraic
algebra, finite-dimensional? and Burnside's question®
Is a finiﬁely generated perlodic group finite?

Remarks and theorems on subjects related to the
main theorem are in Chapter 1, the proof of the theorem
is in Chapter 2, and the abplications of it are in

Chanter 3.
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INTRODUCTION

The purpose of this thesis is to give a clear exposition of a
theorem of Goiod and gafatevig [6] and some of its consequences.

The theorem, pﬁblished in 1964, is a remarkable result. Its proof
is rather short, but it provides the answer to many guestions. Two
of the questions which this paper will discuss are more clpsely
related than originally appeared. The problems referred to are the
Kuro& Problem [15], and the general Burnside Problem [1] and the
construction of examples which solve these problems is fairly
straight-forward (given the main theorem of Golod-8afarevid).

This thesis has an example of an infinite dimensional nil algebra
with a finite number of generators over a countable field. This is
a negative answer to the Kuros question which was asked in 1941: Let
A be a finitely generated, algebraic algebra. Is A finite-dimen-
sional (as a vector space)? The history of the question is very
interesting. Kuros discussed several special cases [15}, all with
affirmative answers, Jacobson and Levitzki [13],[16],[17] settled
the question affirmatively for algebras of bounded degree. In the

,méantime, many special cases had been studied. Then, in 1964, Golod
announced that the answer to the Kuro$ question was negative. At
the same time, he gave a negative answer to the Burnside problem:

Let G be a finitely gensrated periodic group. Is G finite?



Burnside [1] considered the following three cases with affirmative
ansvers. '

(1) G of exponent 2,

(2) G of exponent 3,

(3) G of exponent 4, and G with two generators.

In 1940, Sanov [22] obtained an affirmative answer for exponent
4 and an arbitrary (but finite) number of generators; Marshall Hall
Jr. [9] gave an affirmative answer for exponent 6. The answer is
sfili unknown for G of exponent 5.

Then Novikov, in 1959, announced [20] that the answer is no, if
the exponent of G n272 and the number of generators is at least 2.
(The proof of [20] appeared in 1968 by P.S. Novikov and S.I. Adyan-
{21}, where n=72 has been replaced by odd n>4381.)

In 1964, Golod constructed a finitely generated group which is

periodic and infinite, which settled negatively the original Burnside

problem.



CHAPTER 1.

This chapter is to make the reader familiar with a few terms
and some symbols which are closely related to the main part of
this thesis. 1In addition, some definitions will be given, while
it will be assumed that the reader is acquainted with the most

basic ones.

1.1 Free Semigroups and Generators

Let X = {xl,xz, cees xd} be a set of d noncommuting inde-

terminates, and let S, consist of all finite sequences of elements

X
of X,
S, = {x, x, ...x, |¥/ E x}.
X 174, i1y
Define a binary operation, that is, a multiplication on SX’
as follows: TFor any two elements of SX’ say s, = xixx12 v x1n

and 8, = X, , their product s,'s, 1s the product

X, X; s
| 3y 3, In 2
obtained by juxtaposition of s, and s, :
8.°8, = X, X, see X, X, o+0s X, .
17 %2
11 12 in j1 jm
For examp?l s = X X, n = X hen s _:s_ = x . =
ple, if s, I d s, ,X,» then s -s =X X X X X,
X X XgXgXye

With this definition of multiplication SX becomes a semi-

group; we call it the free semigroup on X. Note that the binary

operatibn which we just defined is associative. For example:

(xlxlxé-x.sz)-xlx“x3 = (xlxlxaxsxz)-xlxbx3
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= xlxlxs .(x3x2xlxbx3)

= xlxxxa'(xsxle'xuxa)
The elements of SX are often called "words' but in this

thesis, they will be called monomials. We may say that the element

Xy of X has length 1 if we consider X, as a word. However,

talking in terms of monomials x, has degree 1. Now we are ready

i
to define the degree of a monomial which is simply the number of

occuring xi's. For example, the monomial x,x x.x  is of degree 4.
If in a2 word we have a succession of indeterminates all the

same, say xixi veo xi’ (m times), then we write x?.

We let 1 be a symbol not in X(we call 1 the "empty word" or

the "monomial of degree 0"), and defime 1l's = s'1 = s for all seSy.

Thus we have a semigroup {l}qu, the free semigroup with identity

on X,

Remark: 1.1.1 The number of distinct monomials of a given degree n

is the number of ways of choosing (in order) n indeterminates from

the set X. This number in this case is dn.

Example: Assume that X = {xl,xz,xs,x“} is the set of four non~-
commuting indeterminates. Then the number of monomials of degree
3 18 43 = 64.

The monomials of degree 2 are 16 in number and they are the

following:
X X b X X X X X X X X X X X X
11 12 13 " 271 272 273 2y
X X X X X X X X X X X X X X X x



The elemerits of SX’ that is the monomials, are of the form

n
g b 4 = X, X eee X %, EX.
k=l ik i1 i2 in i,

We say that X is a set of generators of § It is often

xl

convenient to work with S; = {thSX rather than S We index

X.

1 o, 1
Se by the index set Q: S, = {sw|wsﬂ} .

1.2 Vector Spaces Over a Field F and Algebras Over a Field F.

1
Let T be the vector space over a field F with a basis SX'

Denote T by F[xl,xz, ey xd]. Then T = F{xl,xz, veey xd] = {EfwswlaweF

and a # 0 for only finitely many weQ}, Each element of T is
1

uniquely expressed as a linear combination of elements of SX over
the field F. (Note that si#Sj if i#3).
Define addition in T by
Sawsw + gbwsw = 5(aw+bw) s, aw,bWEF.
Addition 1s obviously well defined since aw+bW€F.
Define scalar multiplication by
a(éawsw) = g(aaw)sw a,aweF.

Note that éawsw = gbwsw if and only if a_ = bW for all wefl,

Then O = J0s  and Za s =0 dimplies a = 0 for all wef.
Qg w QwWw W

Example: Let S§ be the semigroup {e,a,a’}, where ea = ae = a,

ea? = ale = az, aa’® = a’a =e. Then T = {xe + ya + zazlx,y,z eF}

is a vector space over the field F. Let xe + ya + za® and

- x'e + y'a + z'a? be any two elements of T. Then it is natural

to write:
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(xe + ya + za?)(x'e + y'a + 2'a?) = xx"ee + xy'ea + xz'ea?

+ yx'ae + yy'aa + yz'aa® + zx'a’e + zy'ale + zz'aZa?

2 2

= xx'e + xy'a + xz'a’ + yz'e + yz'a + yy'a? + zy'e + zz'a + zx'a?

= (xx' + yz' + zy'de + (xy' +yx' + zz")a + (xz' + yy' + 2x")a?

Definition 1.2.1 An Algebra A 1s a ring which is a vector space

over a field F. In addition, the following holds:
a(uv) = (au)v = u(av) for all aeF, u,vEA,
Now let us define multiplication on T over F. Let u,vel, where

u= Ya,s,and v= L b.,s

ieQ 173 jeQ 3737
Then

uv = ZQaisi j§ bjsj = j (a b ) (s Sj (*)

i,

The above multiplication is clearly well defined since s are

1294

1
elements in SX where multiplication is already defined.

Theorem 1.2.2 With the multiplication defined in (*), T is a ring

with identity,

v =Eb,s,, w=2Lc, s, be elements of T. Then

Proof: Let u = Eaisi, 484 1Sk

the multiplication (*) is associative, since

= ' Z
(uv)w : (éa s ijsj)Zc éaibj(sisj)gcksk
= é(a b )ck(siéj)sk = Za (bj k)s (sj 10 (*%)

= éaisitﬁbjck(sj 8) = é (Zb 5% écksk) = u(vw).

(**) since s> Sy 8 € sl



The distributive law holds also, since

u(v +w) = (Ebjsj + chsj) = Zaisi(Z(bj + cj)sj)
= )]ai(bj + cj)sisj = Z(a b + a cj)s
=Z(ai jsisj + a 4S5 sisj = Zaibjsisj + Ziaicjsisj

Za Sy Zb s + Za.s,fc,s, = uv + uw

17177373
Similarly (u + v)w = uw + vw.
The identity of T is the monomial of degree 0 denoted by 1. Hence

T 1is a ring with identity.

Theorem 1.2.3 T 4is an algebra over F , called the free semigroup

algebra on S; over F,

Proof: Let a, a;, bj eF, us= Xaisi and v = ijsj T. Then:

aluv) = aZaisiijsj = aZaibjsis = I(aa )bj

= Xaa,s,Ib.s,
i1 7373

1%

it

(aZaisi) Zb'i S5 = (aqu)v

= Zaaisiijsj = Z(aai)bjsisj = zai(abj)si?j

= Za ) (Zabjsj) Zaisi(aijsj) = u(av)

Hence T 41is an algebra over F .

L}

It is worthwhile to observe that the elements of X do not com-

mute with each other; but they do commute with elements of F.

1.3 Homogeneous Polynomials and Subvector-Spaces of T Over F.

In this section, we will call the elements of T polynomials.

This is why the x, are called non-commuting indeterminates.

i



1

Definition 1.3.1 A homogeneous polynomial of degree n 1s a

linear combination of distinct monomials each of degree n .

If u 1is a homogeneous polynomial of degree 1 we denote
the degree i by 9(u) = i. Here is an example:
Let x x, + x,x, = u. Then u 1is a homogeneous polynomial and

a(u) = 2,

Let x + % x,x, = v. Clearly v 1is not a homogeneous polynomial.

Theorem 1,3.2 Let Tn be the set of all homogeneous polynomials

of T of degree n. Then Tn is a subvector space of T over F.

Proof: At first note that Tn is a subset of T . We need to

show that Tn is itself a vector space over F . Also observe

n

that Tn# @ since xieTn .

low let u = Zaisi and v = EbisieTn where a , b;, ¢ are in F,

i,
It is clear that B(Si) = n for each 8y that appears in u or in v.

Then

cut v = cEaisi + Ebisi = anisi + Zbisi= Z(cai + bi)si

is in T .
n
Note that a basis for Tn consists of all distinct monomials

of degree n , hence dim Tn = d",

Example: Let T = F[xl,xz,xa]. Then

1 2
dim Ty =3"=1,dinT =3 =3, dinT, =3 =9

dim T, = 3" = 27, din T, = 3"

= 81 and so on.
T, has basis {1} (the identity of S%), and may be identified

with the field F .



T, has basis {x ,x%,,%,}

T, has basis { %% ,%%,,% X, X,% ,X,X,,X,%X,,X %) ;X %,,X X ]

and T3 has basis

3 2 2 : 2 2
Uz, %2y, %Xy, X X,%,, X XX, XXX, X X%, XX, XX,

3 2 2 2 2
X
Xys XX, XX g XX X XX K, XXX, XXX, XX, XX,

3 2 2 2 2
Xe, XX, XX XXX , XXX, XXX, XXX, XX, XX}
32 T3y TTt a7y 2717 T3 Tt T’ Tt

3
2 3 2 2 2, B
The polynomial x,x%,X, + XX, + X,x, + X,X; %, 1s a homogen

eous polynomial of degree 4 and hence is in T, .

Definition 1.3,3 Let W, ,W,, ..., wk, ... be subspaces of the

vector space W . We shall say that W is the direct sum of

W oW, «eos W, ... and we write W=V{ﬂ‘>f v, .. .@ Wk @...

if any of the following equivalent conditions hold:

(i) WB‘\TI"'Wz"'oo- +Wk+ s 0 andwlf-...,wk,

pendent. (That is if at ot ...k c = 0,0 W, implies that

... are inde-

i

each o = 0 (for any k).)

(ii) Each vector ¢# 0 in W can be uniquely expressed in the

form O=0, + ...+ O with ¢,€¥W, (for some k) where the
i 1, 1,74,
indices are distinct and o # 0, 1=j<k.
J

i) W=W + W, + ... + W + ... and, for each j=1, the subspace

W, 1is disjoint from (has intersection {0} with) the sum

3

Wy + e F W W+ ).
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Theorem 1.3.4 Let T = Flx,,x,, ..., x be the vector space over

1)
a field F and let T be the subspace of T of all homogeneous

polynomials of degree n , for n = 0,1,2, ... . Then T is the

direct sumof T ,T , ..., T , ... and we write T =T &T & ... T & ...
0" n 0 1 n

Proof: Let Tj be the subspace of T of all homogeneous polynomials
of degree j . Then

Tjn(To + T, + ... F Tj_1 + Tj+1 + ...) = {0}

because the subspaces TosTys eens Tj_l,T «+. have only homo-

g+

geneous polynomials of degrees 0,1, ..., j-1, j+1, ... respectively.

Also, clearly T = Ty + T, + ...+ T+ oo s Hence

T=T &T & ... &T & ... .
0 1 n

Corollary 1.3.5 Each element u€T can be uniquely expressed as a

sum of homogeneous polynomials.

Proposition 1.3.6 Tn =T x& T x &...®T

n-1%1 n-1"2 R LY B

Proof: The elements in Tn—xxi’ (1 =1,2, ..., d) are of degree n,

and clearly

T =T

0 151 + Tn_lxz + ...+ T

X..
n-14d
HMoreover

T XM X+ s + T + .o #T %) =0}

X, +T X
n-1i=-1 n«; i+

because the xi's do not commute. Hence

T =T x &T xXd.,, &T

- X,.
n n-11 n-1" 2 n-p
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Example 1.3.7 Let T = F[x,,x,,x,]. The basia elements for T,
are grouped into the following seté:
{xlxl,xle,xaxl},{xlxz,xzxz,xaxz},{xlxa,xzxa,x3x3}
where T,x, = subspace spanned by {xlxl,xle,xsxl}
T,x,= subspace spanned by {zlxz,xzxz,xaxz}
T,x,= subspace spanned by {xlxs,xzx;,xsxa}

Hence T2 = szl & Tlx2 ;) Trxs’

1.4 Ideals and Quotient Algebras

The following section consists of some definitions and results
which are actually part of (used for) the proof of the main result
in Chapter 2, but are put here to get the reader even more familiar

with the basic structure we shall be working with.

Let H be a subset of T which consists of nonzero homo-

geneous polynomials £, ,f,, ... such that 258(51)58(f2)5 ... and

let a(fi) = n How rewriting, we have anlsnhs e s

T
Let the number of all those fj's which have degree i be
denoted by Ty This number is assumed to be finite (for each 1)
and is possibly zero.
Let 3 be the intersection of all ideals of T which contain

H. 9 is then an ideal, which is in fact the smallest ideal of T

containing the set H. This ldeal is called the ideal generated by H.

In what follows, the subset H which generates the ideal 7. will
always be as described above. 1In particular, H contains only homo-

geneous polynomials of degree 2.
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¥

Theorem 1.4.1 Let T be an algebra, H={ f , £ ,...} and ¥

192

the ideal generated by H imn T . Then the eclements of 2 are

all elements of T which may be represented in the form ié aifibi s

where I 4s a finite set, a; and bi are elements of T and
the f, are elements of H .

n
: = T = eeo L
Proof: Let B {iglaifibi[ai,biEL, f.€H, n 1,2,3,

Then HcBC9.
Now since 9. 1is the intersection of all the ideals of T which
contain H , to get ¥- B it is sufficient to show that B is an

ideal of T . But this is obvious. Hence BC N and %€B, so U=B,

Remark 1.4.2 Consider the element Z aifib of 9. By expressing

each ay and each bi as a sum of homogeneous polynomials, and

then multiplying out, we see that in fact, " is the set of all

elements of this form I a'g.b' , where J is a finite set, a'

jeJ 3733 j
and b; are homogeneous elements of T , and the gj are elements
of H,

Corollary 1.4.3 Let r =1y, +3u + u, + ... F useﬂhwhere uieTi 3

then each uiEQI.

Proof: By preceding remark,

r = jéjajgjbj . where

each ngH and the aj,b are homogeneous polynomials., By col-

3

lecting summands of equal degree, we get

r=veotv o+ .+ Vs wvhere ViETiﬂ o,
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1

But by corollary 1.3.5, r can be expressed uniquely as a sum of

homogeneous polynomials. Hénce (since we assume us#O#vt) we
must have s=t and U=V, WSV, e, us=vs. But Vos <ves vss U,
hence ugy, ..., usem . (Note that since H contains only poly-

nomials of degree 22, this gives us u, =y = 0.)

Remark 1.4.4 Let Ai be the quotient vector space (Ti +9U)/ U

over F ; then A; 1s a vector subspace of the quotient vector

i
space T/ 9f over F.

Theorem 1.4.5 Let A be the quotient vector space T/ ¥ over

F. Then as a vector space, A = A0 & A1 & A2 ® . . . .‘aAn H oeoo

where Ay = (Ti +91 )/ 9.

Proof: Let acA . Then a = u + ¥ where uweT . But then u can

be written uniquely as the sum of u,'s, i.e, u=u, +u, + ...+un,

i 0 1

where uieT i and

a=(u +u + ... +un) + U= (u0 + 0 + (v, + 4+ ...+ (un+'5’.)

where each v +YE ('l‘k +91)/9u= Ak' Hence A = A) + A + ... An I

llow we need to show that a can be written in only one way as

a sum of clements of the different Ai' Hence, suppose that

(1) a= (up +90) + ... + i’un+m) = (Vo +U) + ...+ (vm +9)

ui,viETi

We want to show that uy +90 = v, + % . From (1) we have that

i
(uo + ... +un) +9 = (vo + ... +vm) + %
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hence u + ... +u = (vo+...+vm) (mod 91.)

Now if m=n

[}

(uo- vo) + (ul- Vl) + oo+ (u- vn) + (0-vn+'1) + ...+ (O—Vm) 0 (mod9y)

Hence (uo-vo) + ... + (un—vn) + (O--vn

+1) + ... + (O-Vm)eﬂl

wvhere u,~v,€eT and therefore u

474 €Ty i-viEQL, ¥i , by corollary 1.4.3.

So u, + 9 = v, +9% which shows the uniqueness i.e. u; B vy

(mod 9y ) . Consequently, A=A, ®A & ... @An\’ﬁ ,'

Theorem 1.4.6 If u = Tnﬂsl , then Ar&;-z'rn/m_n ,where ¥ and 5, are

regarded as vector spaces over F.

Proof: Consider the vector sﬁace T over F as an additive group.
Then the ideal Y is a normal subgroup of T , and by the Second
Isomorphism Theorem of group theory, we have the following diagram

and isomorphisms.

A = Tn + o Tn = ,_r.-rl ° (i)
n g Ty g
T +Y n n
/ \ Because 9T, = {0}, wfr, = {0}
T % we have the following particular
n \ | / ' cases:
A T &=F (ii)
0 0
TN A =T (11i)

1 1

Remark 1.4.6 Note that QL=9JO ‘F.Bsu_l L @&[n P ,.. where %= {0} = U
. _
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CHAPTER 2.

This chapter is devoted to the proof of the main Golod-8afarevid
theorem. in the first part of the chapter, we will derive some results
which willrﬁe used to give a short proof of the first theorem. The
second paft of the chapter deals with the proof of the first theorem.
We give tﬁd different proofs; one is a re-worked and expanded version
of the proof in the paper by Fisher and Struik [5]. The other proof,
which has to do with homology, 1s a re-worked and expanded version of
a proof from Herstein's book "Noncommutative Rings" [11]. 1In the
same paft, ﬁﬁé moré theorems follow which are re-worked from the
original paper by Golod and Yafarevid [6]1. Finally, the last part

of this chapter deals with some corollaries and special cases [5], [19].

2.1 Some Subspaces and Their Dimensions

In tbié gection before the derivation of the results necessary
for the ﬁroof of the main theorem, let us recall the various notations
we have introduced up to this point.

We have a field F and d noncommutative indeterminates over F,

which are Xis Xpp ey X Also,

d.
T = Flx;, X5 «oos Xy ]

is the free associative algebra over F in the X, and, moreover:

T=T7,06T7, &... 8T & ...
n
where each Tn is the subspace of T consisting of all the homogeneous

polynomials of degree n. Recall that:

RS N
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where each fi is a homogeneous ﬁolynomial of T and
2 = 8(fl) = a(fz) < s
(B(fi) = n, is the degree of f,). o is the ideal of T generated by

H, and r, is the number of pelynomials £, in H which have degree

i
i. The quotient algebra A = T/Y is also of the form:
A=%@A1®”.@%@.“

where A, = (T, +¥)/%. We mentioned that dimT_ = d®. Now let

dim A =D and observe:
n n

0
2.1.1 1=d =dim T° = dim A° = b° and

2.1.2 d = dim T1 = dim A1 = bl.

Proposition 2.1.3 Recall that th Tnnal (by definition), and that

An o Tn/mh' Let S be a complementary subspace of 9, in T ; that

is, T = mh 2] Sn. Then dim Sn = dim An = bn'
Proof: Tn =9 @ Sn gives dim Tn = dim a[n + dim Sn'

Also A~ Tn/mn gives dim T = dimQIn + dim A .

These two equalities give the desired result .

Proposition 2.1.4 Dim 2% < r,, where Y, =T NY and r, is the

number of fj of degree 2.

Proof: Look at 9 as a vector space. Recall that
| u=u2®913ea ...@m,ne...
’where each,mnis a subvector space of 9L

Now %, has a basis of elements of the form mf,n, where m, n are

i

monomials and d(mf n) = 2. If the degree of mf.n is 2, then B(fj)sz.

i
But 3(fj)>l always. Hence J(f

i

) = 2 yhich implies that m, n are con-

3

stants. In other words, a basis for mz is a set of linearly independent
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£, of degree 2. If the f, of degree 2 were linearly independent,

then d:lmm2 would equal r,.

Since the number r, does not necessarily denote linearly in-
de?endent fi of degree 2, we have

dim¥ , < r,.

Definition 2,1.5 Let J = mn_lxl@- e B8 Xy

Note 2.1.6 To prove that the sum J is direct, we need to show that

if gl, B,s neeo 84 € Tn_l, then g x, +.a 4-gdxd =0 implies

Proof: Each 8y is the sum of distinct monomials of degree n-l. There~

fore, By is the sum of distinct monpmials of degree n. If i # k,

i
then the monomials in gx; are distinct from the monomials in 21Xy

Therefore, the set of all monomials involved in g% + ... ¥ 84%4 is a
set of distinct monomials, hence is a set of linearly independent mon-

omials. Therefore, every coefficient in g;x, + ... + 8q4%q T 0 must be

zero. Therefore:

Proposition 2.1.7 dim J = d dim U

Proof: Since J = | b4 coe is a d t d
. 4 _, L @ oYU is a direct sum an

n-1xd
dim mn—lxi = dim un-.l’
it follows that:

dim J = d din®l _,.
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1

Example 2.1.8 Let Bys By coes B be a basis for ﬂn_l. Then we

have the following bases for each o _ % i1=1, 2, ..., 4),

B = {glxl, B, X5 +oe» gmxl} forms a basis for g

32 = {glxz’ B,X,5 +eos gmxz} forms a basis for U %,

Bd = {glxd, 8,%qs ** BpXg } forms a basis for mn-lxd

The elements of the above sets are linearly independent, for

suppose that:

Jglajgj =g | where,ggmh_ICZTn_l, ajeF

write

n
g = iélbiui bieF

-1
where the u, are distinct monomials of degree n-1l. (We have " pos-

sible ui's.) Suppose

0= g% = igl(biui)xk - ig,bi(ui"k)
Then if the u X, are distinct (monomials of degree n), then they are
linearly independent, therefore bi's = 0, therefore g = 0. Let ul, u2
be distinct monomials of degree n~1. Then u X and u x, are distinct
since T is the free associative algebra over F. Thus the set

{glxi, gzxi, cres gmxi} consists of linearly independent elements.

Hence, Biis a basisg for WXy
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Propogition 2.1.9 Prove that dim Tn = dbn_l + dim J

Proof: We know that T = Y ® S5 , where S is the comple-~
— n~-1 n-1 n-1

n-

ment of uh_l in Tn—1' Let 85 8,5 tee, B

b be a basis for Sn_l

n-1

and let Bys Bys crvs B be a basis for'un, . (8

. and are
1 n"’l 2Irl"l

considered as vector spaces over F.) The elements sixj and gk?j’
where 1 = 1, 2, ..., bn_l, j=1,2, ..., d,and k=1, 2, ..., m

form a basis for Tn for the following reasons: The s,x. and gkxj

173
are all of degree n and:
dim T =b d+md=( +md=d"d=4d" (@
n n-1 n-1

n~1

where b +m=dim T = d
n-1 n-1

. Finally the set {sixj}U{gkxj}’

(1,j,k as before) consists of linearly independent vectors, for sup-

pose not, then:

bn—l’d m,d

1?3 333%1%5 = I Pra&iX)

implies
E(Fa,,s,)x., = E(IZb X
Hence for all e=1, 2, ..., d

E(aiesi)xe = E(bkegk)xe

implies

Z(aiesi)xe + Z(-—bkegk)xe = 0

By example 2.1.8, a, = 0= b

ie ke
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Thus the set {sixj}U{gkxj}, (i =1,2, «.., b _,3 3= 1, 2, ..., 4;

1
-and k = 1, 2, ..., m) consists of linearly independent elements, more-
over, it has d" elements all of degree n, therefore:

{syxyduigyx}
is a basis for Tn' So

Tn Sn_lx1 D ees & Sn_lxd & mn_xxl D ooo gg[n_lxd
Hence:

dim T =db__ + ddingl _

or

dim T_ = db + dim J
n n=-1

Definition 2.1.10 Let L be the vector space spanned by all elements

of degree n of the form vifj’ where fj is in the set H and {v} is a
set of homogeneous polynomials of degrees up to n-2, which.forms a

basis for Sﬁﬁ S1 B e B Sn-z

where L is defined above and

Proposition 2.1.11 dim L = E b ,r,
iz, n-1"1

where bn— = dim An—i and r, is the number of those polynomials fi in

i
H of degree 1.

Proof: Let 3(v, ) = i. Then:

h|
A forms a basis for So
1
VsV ...,'v1 form a basis for S1
i 2
b,
v .V ) . V form »~ hasis for Si .

n~2 n-2 e n-2
1 2 bi
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The elements v, , v, , s Vs YV, res Y, , v
1 1 b 1 b
1 2
> s Vv form a basis for § ® s © &s .
n~24 n-—zb 0 1 -2
n-2
Let

where fi has degree 1 (and for some i's , perhaps there are

3
no fi 's.) Let a(Gi) denote the degeree of the elements of G, -
k|
{le, fzz, vees f2r } = 82 where a(GZ) = 2
2
£f ,f ., .., f =G where 3(G.) =n
n n n n n
1 2 r

Now we observe that the following elements are homogeneous poly-

nomials of degree n.

v f v f cee v f
’ 2 i 2 9 b} - :
(népl 1 Gr-ﬂl i2 @ j)1 1r

v&[-—ngi l, v&l—ﬂzfi 3 v e g Vh_j) fir

%h‘iL 'fil, Yn_fg fiz, cees vﬁ“iL fir
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Also they span

+S5gfy t S“‘ifir = 5,464
1

and theilr number is bn—iri . By summing Sn—iGi over 1= 2,

Sn-ifi!

..sy D we get

L =8 Gt 8, 3G + oo + 86\ + 850G,

and hence

dim L < dim (sn_zcz) + dim (Sn_aaa) + ... + dim (SDGn)

=b ,r, +b _r +...+br  +brT,
b

= r
j=2 n-j j

n
Hence dim L < jEzbn_jrj

Proposition 2.1.12 dim mh < dim J + dim L.

Proof: Here J and I are as they have been previously defined by
definitions 2,1.5 and 2.1,10 respectively.
Now we take uemh, and we wish to show that:
u=w+v
where weJ and veL. By proposition 1.4.1, u is the sum of poly-
nomials of the form

aifjbk ai’bk eT

where as, b

nothing about 3(ai)', 3(by), and 3(f,).)

K are homogeneous polynomials and B(aifjbk)= n. (We know

Now if we get simply aifjbkeJ, we have case I, while if we get

= t L
aifjbk w'E, + v fj

3

where w'f,eJ and v'fjeL, we have the case II.

3
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Thus each polynomial aifjbke J + L, and hence, the sum of a lot

of them, namely u, also € J + L.

. 3 - ] 1 m
Case I: Assume 93( by)zl. We can write b, = byx (by € qu , 1f bke+j).
Hov = ' = '
ow aifjbk aifjbkxn (aifjbk)xn eUy _ X J
since aifjbi ey _, n=1, 2, ..., d).

Case II: Assume that B(bk) = (0, that is aifjbk is a homogeneous poly-

romial of the form aifj’ where B(aifj) = n. Now ay is homogeneous and

say has degree k, so:

ay € Tk = wfﬁ@ Sk H
let a; = w' + v, w' Emk , v' € Sk'
therefore
aifj = w'fj + v'fj
First look at w'fj. Now 9(w') = k = B(ai), and a(aifj) = 1.
Say B(fj) = k', so k+ k' =n. Note k! =2 2. Now w'e QE:C ) N
Since J(f

)=2, we can write fj = hxm, where X € {xl, xz, ceey xd}.

3

Then w' € %= w'h ¢, but w'h is homogeneous and

d(w'h) B(W’fj) -1

it

k+k'~1

it

n-1

Therefore w'h € 9N T = 9 . Therefore:
n~1 i~

1 = 1
w'E {w h)xm € ‘un_lxm cJ

k|
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Next, look at v'f Now V' e Sk’c T so v' is a homogen~

3’ k’
eous polynomial of degree k. We still have k + k' = n and k'2 2. So
k=n-2

Since {VI’ V., »..} is a basis

f.e. v' €85 C5 65 @...65 . .

2
of homogeneous polynomials for § s, ® ... O S, Ve can write v'

as a linear combination of some of these basis elements, say v' is a

linear combination of

v, ,V 9 .-.,V .
i, iz ip

i

Since v', Vi s eees v, are all homogeneous, and the Vis eees V
4, p

1 P
are linearly independent, it must be the case that

k= 3(v') = B(Vi ) = ... = B(V:L )
1 P
Thus
vif, =, (v, £,) +c, (v, £)+ ... + ¢, (v, £.);
37 % Mt 117 1,0
But

vilfj’ seey V

f
i
p 3
are among the polynomials which span L. (Each has degree n, and is

of the proper form.) Thus:

v'f, € L.

v
2.2 Golod—Safarevig Theorem and its Proofs

. v
Theorem 2.2.1 (Golod and Safarevil)

€)) bn > dbn_1 - iEzribn_i n

v
[\

(1) byzdb - “1§“b“‘“i n

v
[
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Note: The same notation used previously holds here. Also (i) and
(11) are the same. Because¢ some of the ni's may be equal, (ii) may
be written as follows:

byzdb - I b __
! {ilniSn} i

Proof of (i) : (Fisher and Struick) This proof is using the dimen-

sionality of the various éubSpaces.
Clearly we know that
Tnaﬁtn@sn
And therefore

dim Tn = dim Q% + dim Sn'

(1) Let n = 2. Then we have that

dim T2 = dim o,+ dim s2

a2 2 r_ + b, (by 2.1.4 and 2.1.3)

b 2dd -r «+ 1
2

o
iV

db1 - rzbo (by 2.1.2 and 2.1.1)

which 1s statement (i) for n = 2.

(2) Let n = 2. Then

dim T dim9yy + dim S
n n n

tA

dim J + dim L + bn (*)

IA

+b (%%)

) n
dim J + E ribn-i n

1=,
(%)by 2.1.12 and 2.1.3, (**) by 2.1.11.
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¥

But since, by 2.1,9, we have that
dim Tn = dbn__1 + dim J
we have

E r.b b

<
db 1 = 4k, tybg By

and therefore

n
bn = dbn-l - igzribn-i n=> 2,

Proof of (ii) (Herstein) This proof is using homology which was

used in the original proof by Golod and gafarevig.
Suppose that we can exhibit linear mappings, ¢,V so that the
following sequence is exact

¢
A B .. @A ... A BA_ B, B4 1l’-aﬂ-*o(l)

n-n, n- n-1 n~1 n-1,
\ - ~- nk J —
n, =n d times
Then
dim(a,_ @ ... ®4A ) = rank ¥ + nullity ¥,
or

db__, = din Im ¥ + dim ker ¥

= bn + dim Im ¢
by exactness, so
db = bn+ni§_nbn—ni nx 2.
Hence:
by zdb - nfénbn-ni nz2
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Now our objective is that of defining the ¢ and Y. First we

shall define mappings ® and ¥ for the following sequence

, -0 Yy
T h}llt @T (:Bcnn-*T ‘EB T @un- @T +T -"0 (2)
n-n n—nk n—y n-, n-y n
! J i}
W Y
ni =n - d times

where ¢ and ¥ are linear. We are not interested if the sequence is

exact or not at the T - level. However, we want to induce the proper

¢ and  from the ¢ and ¥ so the sequence will be exact at the A-level.

Define ¥ by:

tt B... Bt t x t x
¥ 1 S T e

+ ... + tdxd'(for tiETn-l)

If ue Tn_1 @ ... @ Tn-1’ then y may be written uniquely as

u=t, D ... B td

is in the ith Tn in the above direct sum. Hence if we
- :

where ti

define
Y(u) = tX, o+ tdxd

¥ is well define and obviously, if a,beF and u,,vt:Tn__1 B e d Tn—l’

we have

Y(au + bv) = a¥(u) + Y (v)

and hence ¥ is linear.

Define ¢ by:
$: s o ®,,, ®&s ®,..+u Bu ®.,.,. Bu
n-n n—nk 1 2 d

1
where
Sn-n &‘.’)... {{'}S n @;n . ETnn @cuo $Tn ‘:‘t’...
1 n k 1 nk
T S, 27 .
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The way we follow to get ¢ is the following: If

s @ ..&s  ®..eT @& ..8T & ..
n—-nl nnk n—nl nnk

then, recalling that 3(fi) = n,;, we see that

g f.eT.

nisn n-—ni i n
(3(sn_ni) + a(fi) =n-n + n, = n). As an element in Tn , we can
write
I _ ¢
n,Sn sn-nifi igluixi

r i i T . Hence is
where the u1 are uniquely determined elements in fey n ¢

well defined and like ¥, ¢ is linear.

Proposition 2.2.2 Let ¥ be defined as above. Then sequence (2) is

exact at T .
n

Proof: To show exactness at Tn’ we need to show that ¥ is an onto
homomorphism. Now if w ¢ Tn’ then w can be written uniquely as
follows:

w = tlx1 + ... + tdxd

where t_, t vrey t, are in Tn and such that
=1

1? T2? d

P ) = =
‘P(t1 - td) tlx + ... tyXq =W

1
Hence ¥ is onto and since ¥ is linear, the sequence
T B o,.,® T - T =+ 0
n-1 n-1 n

— W
d times

1s exact.

Recall that mn*I = 9N Tn—l' Since ﬂn_ = Tn-l’ obviously

1
we have:

%* b9y 8 ... U £T ®,..80 7T
! n-) n-p 0= n-y,

d times d;gés
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If we can show that
‘P@In_l @ ... @ﬂn_l) = {\y(tl D s etd)lti £ an__l} Qﬂln

then we can induce a new homomorphism

given by
ple, @... 0t + 8 S ... 0% ) =¥(t & ... @ty 4,

=t R b b X, U

Proposition 2.2.3 wﬁln_l D wow @ﬂn__l) €Y -

Proof: Take ty,..., t; such that ti is in the :i.ths,{n__2 then

d

‘i’(t1 ® .o eatd) = t,x, + ... + tdxd

tiy s ..o td are in mn_l and hence in 9 ; since Y is an ideal
then tlxi,tzxz, ey tdxd are inY and therefore their sum is in U .

But it is also in Tn' Hence

tlxl 4+ ...+ t X4 e!’ln

d s
and so
‘Y(th_l ® ... @an__l) Sﬂn.
Now if we show that
T, ®...@®T T -
1~ l g ...® 1

Uy ®...0 Uy Uy . Yy

then we c¢an induce the required mapping

YA, 8. @A A
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Proposition 2.2.4

&, 0
Tpr @ ®T T L
i e eu ¥ L

Proof: We need to find an onto map Y such that

Tn—i Tn-l
: — i
Y 'I‘n__lfB...aTn__1 i @...EBQ[,
n=-y n-1

and such that ker vy =%, ®-... @mn_l . S0 define

Yt ... 8t ) =¢ & ...8 t,

=(t, +4 ) @...9 (¢, +% ).

Let t, &... ®t_€ kery , then

d
Y @.0n @) = (t) +8_)O «n® (g +8% )
=(O+y ) &... 80 +Y ).

Since we are working with direct sum, this holds if and only if:

ti +un—1 =0 +“u'n-1’

that is ti € ch_l
so (t; ... &t € @, & ...ed ),
therefore ker ¥ =9,ln_1 [ - an‘__l.

Now if @ is the natural map such that

8 : 1T ®... BT Tn—1 ®...0 Tn—1

n-1 n-1 -+
ﬂn_l &...8 ﬂn_l

then there exists an jsomorphism O such that

Ty® - e®T T T
: Q\ @ .8 $ ’
Up & B U, %
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Thus the mapping ¥ induces

p A & ... A -+ A given by
. N
::' 3 - ;
w{“ﬂ +91n_1)e9 vee @ (td + mn__l)} = (tlxl + ....¢ tdxd) +9!n

where ’i’(tlﬁﬁ* oo B td) =tx) + ...+ EX.

We can now consider $. Suppose that s s S s sesy S
n-nl n—nz n-nk
are in arn_nl, mn—-nz’ ooy g[n_nk, ... respectively. We must show that

ul, uz, ooy Uy defined by an—nifi = Zuixi are in'ﬂn-x' Since ¢

is linear it suffices to do so for each s in 9 . Note that
: n“ni n-ni

;;(sn_n fi) = n-n, + n, = n. Since B(fi) =n

implies that
i

i
£ o= 3
17 3EByY

where gij > Tn - Therefore:

1
d d
"ron,f1 T fnen EaBag®y T sE Cnn Bagd®y T R
where uj = Sn-nigij and a(uj) =n-n + n, - l=n-1. Thus
uj € Tn-l' But‘ uj = Sn—-nigij EY, as s__ . is in the ideal Y .

Therefore, uj e g ’I.‘n_1 =9, Therefore ? induces a map:

¢ A D nnee A ® .., +A ® ... DA
‘[)."'Il1 n-nk n-1 n-1
given by
! B, B = ) ®
¢\<Sn-n1*9‘n-nl)‘ <sn_nkmn_nlzte....) @ @&...0udthy  @... By

= (“1+mn-1) @ ® (g + ¥ ),

where q)('sn—nl B eos @ Sn—nk ®..) =u @... DU,

)s
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Proposition 2.2.5 The sequence

; ¢
fn-nl B ...9 An_nke e s A ® @A RA -0 (D)
—— e
n, =n d times

is exact.

Proof: To show the exactness of (1), we must prove exactness at An and

exactness at A ® ... 8 A .
n- n-

. To show exactness at An’ we need to show

1

that y is a homomorphism onto. So let t +9( be in A , where t¢€ Tﬁ.

We want to find some (t, + 9% ) ® ... & (ty+9U I €A & ...0A .,

where t,$ ..ot € T. &...aT , such that,

d n~1 n-1

e+ =y, +%_Je...o (cg+%_))

=tx ... % tdxd +ﬂln_

171 1

where ’i’(t1 & ... P td) =tx, ®...9 tdxd. But ¥ is onto by 2.2.2.

Hence, Y is onto and the sequence (1) is exact at A .

Now we need to show that the sequence (1) is exact at A _ P.,.PA .

n-1 n-1
That is, we need to show that Im ¢ = ker Y.
G ‘ i = . S LI I )
(1) Im ¢S ker Y , that is oY = 0. So, if sn‘nl’ n-n,’ ’
8 . s ' are elements of Tn—n N Tn—n 5 sees Tn—n ., »+«. respectively, so
k 1 2 k
@O.. . s o = e a9 L]
(sn_nl @’sn_nz ® Sn—nk <] ) ¥ ux, +ux, + + ugXy
= . 3
where igluixi 0 Ensn»n £;5 but the £,'s generate %, thus
i- i%
nigpsn-nifi € 9, and so 1Z194%y €y, But igluixi £ Tn too.
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¥ -
So ¥ maps Tn_nleTn_nzg...eTn_nk@... into & =T n %

and so An-nl @ An—-n2 D oo @ An-nk ® ... 1is mapped into O by ¢y ,

as follows:
Let §n_ ®...d8 @ ... Dbe an element of A _

‘I.'l1 n~n

D e B
k n,

An-nk ® ... » Then:

(sn_nle. . .@En_nk@. . Yo

it

(sn_n-l- ﬂn-nﬁ’ . -@sn_nk"ﬂn_nkea- )oY
(tb(sn_nl@. . .q;sn_nk@. . .)ﬁ),Ln_le. . .@Mh_l)l’
= (ule. . .@ud-!QLn__l@. . .ewh__l)w

‘*P(ulg. . .@ud) +5u,n

[}

i

(uyx; + ... + udxd) +2Ln

0+y,

since ux + ...+ ugx, € ﬂn. Hence Im ¢ Sker V.

(1ii) ker ¥V < Im ¢. Here we want to show that if El@. . .@Edeker v,

then El$...eBEd € Im ¢. That is we want to find some u,, Uys vees u; in

An—l’ where Gl ® ... & Gd € Im ¢ and such that:

(tl6...$td)—(u1@...$ud)=‘0.
That is : t. -u, © ... ®t, -u

or t,-u. =0

(i=1, 2, ..., d) (by the direct sum), or

- -— Y = - %[u
ty ui+g_[n_1=0, or t, uieJn_l QIﬂTn_l, or ¢t u, ¢
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Also El D oee @ Gd € Im ¢ implies that there exist

sn__nl’ Sn_nz) ee ey sn_nk, LY in An“ni, An""nz’.", n—nk’ e e
such that:
ul$"‘®ud=¢(sn—n1$"'$Sn-nk B oees)
= ¢((sn__nl + th_nl) D oor @ (Sn-nk -m’n—nk
=u!®...@ud-!-i'ln_le...@ﬂ.n_!,
=@ +% J)d... &y +A ),
h % ) f f ' s ' i
where _J u.x = s _f., or some S___ 4, ..., _y seee in
i=174171 nisnnnil n-n, nnk

Tn_nl’ coayg Tn_nk’ seo and ui £ ith Tn_,l R

Moreover, if t_:1 @Ez ® o @Ed € kery’ , means that
w(tlg; tz D oon etd) = (
which implies that

‘l’(tl et, ®... Q;td) e&tn = Tn na

Hence ‘i’(tl et, ... @td) € 9%

Conclusion: So we need to show that if Y(tleﬁ...@td)ea, then we ecan find

nts u_, U, ... :
eleme p Uy s Uy in 'I‘n__1 such that

- 4 = 29'o-n9d
-y ey ¢ fori =1,

and such that z“uix 1 ni_zirzsn—nif 1 for some sn-ni in the appropriate

n"ni .

Suppose then, that ¥Y(t,K &... &t ) = .gtx €8, Since is a
1 d i=1711

two-sided ideal generated by the f 5 we have that the elements in g can

)e...)
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be written in the following form and hence:

=fa fb +%cf
i kq q kq ‘qq

1gztix

where the a are homogeneous and where the degree of bkq

b c
kq’ kq’ q
is at least 1. On comparing degree on both sides, we may even assume

that the a fqb

kq

, ¢ f areall in T . Since the b, are of degree
kq” "q'q n kq

at least 1,

bkq N m=1qumxm

where qu is any homogeneous polynomial or constant. Then

Za, £b

kq¥q®kq = k,q,m=1%kq*

qqumxm = mgldmxm
where
2 »
dm = k,qakqfqqum
But since fq € 9 we have that dm € 9, If we write

Zcqfq = igluixi

we then have that

d
1ty = gkdgxg ¥ 1§x“ix1
implies
ti = di + ug i=1, 2, ..., d
‘hence

t:i -u = dieﬂl.

But o®(c, 9 ... ey ®...) = u @...&% u, by the definition of 9 ;

hence we have proved (ii).

d
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The two inclusions (i) and (ii) give us the desired result, and
hence we have proved exactness of (1) at An__1 D sao &;An_l. This

proves proposition 2.2.5, and hence also Theorem 2.2.1(ii).

Definition 2.2.6 The power series

- n
PA(t) ;iobnt
is called the Poincare function of the algebra A.

The following two theorems and corollary 2.3.1 are reworked from

the original paper by Golod and $afarevil.

Theorem 2.2.7

; i
PA(t)(l - dt + i=2rit )y =1,

where inequality between power series is understood coefficient-wise.

Proof: Recall that

A=A A 9 ... A & .,, (L
0 1 n
and that the numbers bn = dim An’ n=>0 are all finite. For the

dimensions of the subspaces of A we obtained the inequality:
(Theorem 2,2.1 (ii))

bn > dbn_1 - “ignbn_“i (n> 1) (2)
Multiplying this inequality by t" and adding up for all n > 1, we

obtain an inequality for the series:

n o n et
ng;bnt z gdb ¢ - g nizSnt“bn_ni (3)

If we set in the last sum n - n

4 =W and from the definition

of r s we see that:



[}
o]
~
™
oF
A
[}
bﬂ
(a3
~
(n g
e
[~
A

ozt )

n=l n,<n n-n n n=n n-n, n n=n n—ni

n n
i m i
Let(E ™) =z ¢t

i i
Cehr ()= (Frthp, (4)
nit AE) = (L rit) By
On the other hand
T n_q= - (5)
nz;'lbnt n‘éobnt 1 PA(t) 1
since bo = 1, and
® n © n-1
- - t . (6)
AL o, b, tt dt P, (t)

Therefore, the inequality (3) yields:

-]
i
P,(t) - 1= dt P,(t) - (L, t) PA(t), (7)
hence
PA(t) (1 -dt + 1Z=2rit )= 1 (8)

This proves theorem 2.2.7.

Theorem 2.2.8 (Golod and Safarevil) If the coefficients of the power

geries

ot i,-1
@ -dt+ greh

are non-negative, then
o i"l
PA(t) 2 (1 -dt + 1Z=2rit ) {9)
~and the algebra A 1is infinite-dimensional.

Proof: The inequality (9) is obtained from (8) by multiplying both
sides by the power series

T (10)
() = (L-dt+ g reh™,
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which by assumption has non-negative coefficients. It remains to
show that the algebra A 1is infinite-dimensional. For this purpose,
it is sufficient to show that bn > 0 for an infinite number of
values of n, and this follows from (10) if we can show that the power

series F(t) is not a polynomial in t. We set

14 grth =y (e | (11)
Then

F(t)(u(t) - dt) = 1
i.e. F(E)U(t) = 1 + dtF(t) , (12)

Since both F(t) and U(t) have non-negative coefficients, and U(t)
is not a polynomial, then clearly F(t)y(t) is not a polynomial., Hence
the left hand side of (12) is not a polynomial. Hence the right hand

side of (12) is not a polynomial. Hence F{(t) is not a polynomial.

2.3 Conditions on ri

Corollary 2.3.1 1If the numbers ri satisfy the inequalities ri§si,

and all the coefficients of the power series:
ooi__l
- +
1 ‘dt igzsit )
are non-negative, then A 1is infinite dimensional.
Proof: Let
*® .n
F=1~-dt+ Lrt,
n=2n
1-dt+ 1 gt®
G - at ngzsnt ’

UsG-F = % n
- N n=3(sn - rn)t ‘
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We have then: '
FsG~-U=¢ (1L ~ UG-I), and G ! > 0, U 20, from which we find:
F'=6'Q-uMH.
Now since U 20 and G '20 , we have UG !2 0, which implies
-u¢™' =0, which implies 1 ~ UG > =1, which implies

(L -uehH™?t =1,

1

<f01‘ if . 1 - UG- = 1 - alt - aztz = ses
-1, =1 2
and (L -uc ) =1 4 blt + bzt + oo
then (L - ajt -a,t? ..)(L+bt+b,t?+...)=1;

computing, we get
1=1
~a8, +b=0= Db, =a, 20
b, ~a,b, -3, =0= b, =ab, +a,> 0

- ~ab =-.,.= = + +...+a_20 ).
L L L N 2,=0 L o TS )

Hence:
F'l=c¢l@-uvehHtzo
-1 b i,~1 ;
But F = (1 - dt + igzrit ) . Hence, by Theorem 2.2.8, A is

infinite-dimensional.

2
Corollary 2.3.2 If for each 1 =2, 3, ..., ry 5<Q%L)’ then the

algebra A is infinite-dimensional.
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2 )
Proof: Since ri s(%), we need to examine the coefficients of

2 | -1
(1—dt+ T 51-“—1->t1>
i=3 2

and apply Corollary 2.3.1. So we have

2 2

® - -
l1-dt + iL2<§§l->ti = 1 ~ dt +(-95l )(-1—t+1+t+tz+t1+...)

But

1 _ -(1+t) (1-t)+1
1-t l1-~-¢t

—(L+t) 1+t 2t 24, o= - (14t) +

I G A
1-t = 1-t

To continue the above we have

_ g:_;)z 1 _ d2—2d+])< t?
1 dt+i§2(2 € =1 -de+ (55 1_t>

_ (1-dt) (4~4t) + (d%-24+1)t?
) 4(1-t) ’

#

4-bdt-bt+hdt Hd2t2-2de2+t2
4(1-t)

44 (d+1)t + (d+1)%t?
4(1-t)

o (2-(a+1)t)*®

4(1-t)
Taking the inverse of the above, we have
- a1 ¥ i)“‘ __4-t)  _ _(1-t)
(1 dt+z< 2 /" = 2@+ )? ETSIRY]
: 1~ ==t
(2-%%)
-3
e a49™)
n=1

it

(l-t)( 1+ %o (n+1)(9—;—1—t>n )

n=3
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. n
=1+ L (n+1)<%— -t - & (n +1)<d+1) £
n=1 n=1 -/

\n-t "
-1+ 2’(+1)(d+1) - fn@il/“ o~
n=1 n=p 2

v S e @)

1+ z <<d+1) ((n+l)(d+1) 2n)>

1
_ ,d+1)“ (n+1)d- (n—l))) .
1+ n§1<\ ( 2 ( )
Now since d=], we have that E§l>'l and also (n+l)d-(n-1l)= 2.

So (*) has non-negative coefficients. Hence, by Corollary 2.3.1, A
is infinite dimensional.

An even stronger condition on ry is the following due to Goloed.

Corollary 2.3.3 Let ry and A be as previously defined. if

r, S€ (d-2€)
whére £ is any positive number such that d-2e>0, then A is

infinite dimensional.

Proof: It is sufficient to examine the coefficients of

-1 .
(1—dt+2e (a-2¢)17%¢ 1) (1)
We have that
-2
1-dt+ Yer@-20) ¢ =1 - ae +Ezt2<1 + (d=28)t + (d-2¢)%t? + )

i=3

=1 - 2/ 1

1 dt + €%t Q-(d ZE)t)

o (1-dt) (1 - dt + 2et) + e%t?
1 - (d-2¢e)t
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_ L1 - 2dt + d2t%+ 2t - 2det?® + €?¢?
1 < (d-2€)t

_l-2(d-€)t + (d-€)?¢?
1= (d-26)t

2
(1 - (d-€)t)
= T @ (2)

Taking the inverse of (2), we have (1) which is equal to

'(%-:%:%% = (1 - (d-Ze)t>(1 = (dis)t)’“ = (1 "(d-2€)t)(Eln(d-fi)n_ltn—l)

(1 - (d-ze)t)<i + 5 (1) (d-) " )

i

1+ 5 (nt+1) (d—e)ntn—(d»Ze)b—(d—Zs)t ozo (n+1) (d-¢)"t"
n=y n=

1+ §I(n+1)(d-e)“t“-(d~26> @ + fl(n+1)(d-e)“t“+1)
n=

n=

1+ T (nhl)(d-g)™t™ ~ (d-2¢) ¥ n(d-g)™"1e"
n=) n=1

=1+ T (d-—e)n"1<(n+1)(d—€) - (d—Ze)n)tn

=1

® n-1 n
=14+ I (d-g) (nd +d ~ng ~¢ - nd + 2ng)t
n=1

2] -l
=1+ % (d-€)" (d + (n-—l)e)tn
Shme&aoo=% >g=d~g > g>0.

Hence all the coefficients of (1) are nonnegative and, by corollary

2.3.1, A 1is infinite dimensional.

Corollary 2.3.4 Let d = 2 and r, = 0 fori=2, 3, ...

and ri = 0 or 1 for i210. Then A 1is infinite dimensional.

s 9




Proof: Here corollary 2.3.2. does not apply for

- 2--1)2 1 (2—-1)2 1
= L) = 2 = —_— Pra——
(1) T, 0 _< 5 i but (2) r, 1> 5 A

So we use corollary 2.3.3 and we choose ¢ =-£. Then

4
d-2¢>0 f.e. 2 --% >0
. 1 2\1i
Clearly for i = 2, 3, ..., 9 r, < 16 2 ~-=)", low suppose
that 1 = 10. Then
41\ 8 )
(-3 (-9
e R 13

o .
Expanding (2 - %) using the binomial theorem, we find that the

first four terms add to 19, so ( _‘%)a > 16. Hence g2(d-2g)f>1.
Since

(@ - 29% < (¢ - ze)™!
if (d ~ 2¢) > 1, this is sufficient to prove corollary 2.3.4.

Corollary 2.3.6. below is re-worked from a paper due to iHewman.[19]

Lemma 2.3.5 The following two conditions are equivalent

(i) There exists (<e<d/2 such that

r, < €2 - 26) 172 for 1 = 2, 3, ...

(11i) There exists 0 < k < 4 such that

“k\? j-2
r, 5(§§5) Kt for i = 2, 3, ...

Proof: Set d - k = 2e. Then 0<e<d/2 if and only if 0<k<d, and

2
- - -2
e2(d-2¢)% = (-sz)ki
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Corollary 2.3.6 There is a positive integer i such that, if ri=0

for i<y and ri«ﬁ’d-l)i for 1>, then A is infinite dimensional.

-2 .
Proof: Let N be an integer satisfying N=4d and (l + i%) z N2

Put k = igﬁglg , then for 122, by Lemma 2.3.5 (ii), we have:

(d=k Vi~ -@- (m-z)a)zr(nwz)d)i'z
\Tg Y 3 w /U on

1.2
(dN_Nd+2d) 2 ((N-—2) d)l
21 M

a2 N—z)l" 2d1~ 2

“WAE D
lN—z ' 1 1
Since ( 1 +-§E) > W? it follows that 7z 1\8-2 (2)
X I <1 - EE)
Note that since N = 4d implies -% s-f%. Hence
i~-2 i-2 -2 '
T Y2
( 5 =\l-5 =zU-74g (3)
Substituting (2) and (3) in (1), we have that (1)
i-2
1 2 i .
megl— ’Ed—) d (4)
(%)
1N-2.4
3(1“(1) d ()
We have (5) because when i3, then
i-2 i-2

()08

1\N-2" 1 \i=2 ~
<l+2d) <l+i‘a">

K
=

provided that

v

[

'
[aNTes}



So !

1 1, 1
- i"* - )(1 T s l-gta-
That is
1
02 -757

Now since 42 2 (d-1)? we have that
(- izl ( d - 1) at = (@ -

>@- % -12a

Hence A ig infinite dimensional.

ni2g2

45

@-nts
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CHAPTER 3.

In this chapter we will construct some examples of nil algebras
and periodic groups. Before this, however, we will state clearly
the Kurod problem and the Burnside question adding all the definitions

necessary to understand them.

3.1 Algebraic and Nil Algebras

Definition 3.1.1 An algebra, A, is finitely-generated if there is

a finite subset 8 5eeay (called its generators) such that every
element of A can be obtained from the generators by a finite num-

ber of additions, multiplications, and/or scalar multiplications.

Definition 3.1.2 Let A be an algebra over a field F; acA is said

to be algebraic over F if there is a non-zero polynomial p(x)eF{x]

such that p(a) = 0. That is

- n n-
(1) p(a) kna +kn-1a

+...4kyotky = 0
where kieF. The equation (1) may differ for different atA.

Definition 3.1.3 An algebra A over F is said to be algebraic

over ¥ if every acA is algebraic over F.
The following theorem is a very interesting one and we will

see soon that it gives us the converse of the Kuro$ problem.

Theorem 3.1.4 If A is a finite-dimensional (as a vector space)

algebra over F, then it is algebraic over F.



47

Y

Proof: Let acA, and let n = dim A. Then the nt+l elements

a,az.aS; ceoy an,an+l, are linearly dependent over F. Thus there

exist scalars o , <€, cees Oy in F such that they are not all
1 .

zero and sucli that

n+l -

2 n =
(1) a1a+a2a + ... +ana +an+1a 0

Thus p(a) = 0, where p(x) is the non-zero polynomial

n+l

n+1x in F{x]

(i1) p(x) =alx+a2x2+ cer 0L

Hence a is algebraic over F. But since a was any element of A,
we can conclude that every element of A is algebraic and therefore

A is algebraic over F.

Definition 3.1.5 Let A be an algebra over F: a€A is said to be

nilpotent if there exists a positive integer n such that a" = 0.

Definition 3.1.6 Let A be an algebra over F such that A" = (0) for

some positive integer n; then A is said to be a nilpotent algebra

over F.

Definition 3.1.7 An algebra A over F is nil if every element of A

is nilpotent..

Theorem 3.1.8 1If A is a nil algebra over F, then A is algebraic

" over F,
Proof: Since A 1s nil, this implies that for afA, there exists a
.positive integer n such that a" = 0. Clearly a is algebraic over

F since it satisfies the following polynomial.
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I+ 0™ . +o0x+0

i.e. 1a" + 0™ 4 .. 4 0a+0=0

Hence A is algebraic over F.

3.2 Kurod's Problem

First we will define the locally finite algebras. Then we will

discuss the Kuros Problem.

Definition 3.2.1. An algebra A over a field F is locally finite if

every finite subset of A generates a finite dimensional subalgebra.

We have seen that any finite dimensional algebra is algebraic
(Theorem 3.1.4), hence any locally finite algebra is algebraic. Now
the following question (an analog to the Burnside's Problem on groups),

was raised by Kuros in 1941,

Problem 3.2.2 1Is every algebraic algebra locally finite?

In other words, if A is an algebraic algebra over F, does a
finite number of elements of A generate a finite dimensional sub-
algebra of A? Or, is a finitely generated algebraic algebra finite
dimensional?

As Jacobson says, "'A number of interesting open questions on
. algebraic algebraé seem to hinge on the answer to this problem."

Some of these are the following:

Question 3.2.3 If A and B are algebraic, then is A®B algebraic?
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)

1t is easy to see that if A apd B are locally finite, then A®3B
is 10caily finité. Hence an affirmative answer to Kuro3's problem
would provide an affirmative answer to 3.2.3.

In the coming sections, we shall give some exémples of infinite
dimensional algebras.

Also, we like to mention that Kuro3's question has an affirma-
tive answer for algebras with a polynomial identity (PI - algebras)
and hence for algebras of bounded degree. The results are due to
Kaplansky which generalize earlier results by Jacobson and by

Malcev.

3.3 PI - Algebras and Bounded Algebras

Definition 3.3.1 An algebra A over a field F is said to satisfy

a polynomial identity if there is an f#0 in F[xl, cees xd], the

free algebra over F in the noncommuting variables X1 Koy veos Xy

for some d, such that f(al, voey ad) = 0 for all a in A,

1° *cs 8y
An algebra A which satisfies a polynomial identity is called a

PI - algebra.

Example 3.3.2 Let A be a nil algebra of bounded index of nilpotency.

That is, xk = 0 holds for every x for some fixed k. Then A is a

PI ~ algebra.

Example 3.3.3 Any commutative algebra A over F is a PI - algebra,

for it satisfies the polynomisl identity f(xl,xz) = 0, where

f(xl,xz) = XXy = KXo
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We mention the following results to give an idea of what was
known regarding the Kuro$ problem prior to the work of Golod and
gafarevig. If A is finite dimensional over F, of dimension n, then
every element in A satisfies a polynomial of degree ntl over ¥, This

defines the notion of an algebraic algebra of bounded degree over T,

Definition 3.3.4 A is said to be an algebraic algebra of bunded

degree over F if there exists an integer n such that given a € A,

n-1

there exists a polynomial X" +ox + ..,'+0%€F[X] satisfied by a.

-1

i.e. a + alan + ... + an = 0.

Lemma 3.3.5 If A is algebraic of bounded degree over F, then A is

a PI algebra. ({11}

Theorem 3.3.6 If A is an algebraic algebra over F satisfying a

polynomial identity, then A is locally finite. [11}

Theorem 6.4.4 If A 1is an algebraic algebra of bounded degree over

F, then it is locally finite. [11]

3.4 Periodic Groups and Locally Finite Groups

Definition 3.4.1 A group G 1is said to be a periodic or torsion

group if every element in G is of finite order.

- Definition 3.4.2 The order of an element b is the smallest pos-

itive integer n such that b" = 1, if it exists. If there is

such an n, we say that b has finite order.
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Definition 3.4.3 If b = 1, with n fixed, for all b ¢ G, and

n 1s the smallest positive integer for which this is true, then

n is called the exponent of G.

Definition 3.4.4 A group G 1is said to be locally finite if every

finitely generated subgroup of G 1is finite.

Pefinition 3.4.5 G 1is a finitely generated group if G contains

a finite set of elements 12 Bps +evs B (called its generators)
such that every element can be expressed as a finite product of

the generators and their inverses.

Theorem 3.4.5 Every locally finite group is a torsion group.

Proof: Let G be a locally finite group. We want to show that
every element of G has finite order. That is, the subgroup gen-
erated by that/element ig fipnite. But the subgroup generated by
a given element is certainly finitely generated, hence is finite,
which implies that the given element has finite order.

Hence G 1is a torsion group.

Example 3.4.6 The group 2+ of integers is not a torsion group
since a single element does not have finite order. Hence 2+ is

not locally finite.

Example 3.4.7 This is an example of an infinite group which is

locally finite. Take an infinite dimensiomal vector space V over
the field of integers module p, Zp. Then V is an abelian group.

dow take any finite subset of V, al,az, ..+, & , then the subgroup
n
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n
generated by this subset 1s just the set of all Zl Eiai, where EiGZp.
1=

There are only finitely many choices of each Ei. Hence, only a finite
number of elements of the subgroup generated by the a,.
Hence that finitely generated sﬁbgroup is finite. Hence the

group is locally finite.

3.5 Burnside Problem

The converse to Theorem 3.4.5 is the Burnside Problem which
originally was asked in 1904. We state two versions of the Burnside

Problem.

1. Original Burnside Problem. 1Is every torsion group locally

finite? An‘equivalent version of this questlon is: Is a finitely
generated periodic group finite?

2. Burnside Problem for Exponent M. Let G be a torsion group

in which xN = 1 for all xe€G, N a fixed positive integer. Is G then
locally finite?

These problems have answers now and they are as follows:

1. As a result of the work of Golod and gafarevig, the orig-
inal Burnside problem is answered in the negative. 1In the fol-
lowing section, we will exhibit a finitely generated periodic group
which is infinite.

However, for matrix groups, Burnside himself settled the original

Burnside Problem in the affirmative, by the following:
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Theorem 3.5.1 (Burnside) A torsion group of matrices over a field

is locally finite.

2. Novikov in 1959, announced the existance of an infinite
group GN generated by two elements in which xN = 1 holds for all
% €G. This is true for any odd N>438l. The proof done by induc-
tion appeared in 1968 in paper nearly 300 pages long, which gives
an actual construction,

Regardless of the answer to the Burnside Problem, for exponent
N, the following problem is still an interesting one.

Restricted Burnside Problem for Exponent N: Among all the

finite groups on K generators with exponent N, is there a largest
one?

The answer is "Yes', if N is prime, done by Kostrikin.

If N is prime and 24381, we have two results:

(a) There is a largest finite group of exponent N in two
generators (Kostrikin).

(b) There is an infinite group of exponent N in two gener-

ators (Novikov and Adyan).

3.6 Settling the Kuros Problem and the Original Burnside Problem
in Negative

' v
In this Section, we are ready to apply the Golod~§afarevic

theorem to construct a finitely generated nil algebra which is

YYOUP w
infinitesdimensional and a finitely generated infinite periodic group

This settles the Kuro$ and Burnside problems negatively.
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Theorem 3.6.1 If F is any countable field, there exists an in-

finite dimensional nil algebra over F generated by two clements.
Proof; Let T = F[xl, x2]. Then

‘1 aF*V’ -\.l '3}4' R kﬁTnéjont

where the elements of Ti are homogeneous of degree i. Let

TV

= Tl w TZ kﬁ’ L I ‘3‘:} Tn (_F) LI

T' is an ideal, since if u€l'and re€T, then rutT' and urel’,
because 3(ru) and 9(ur) are always =1 since d(u)=l. Also, T' is
a vector space with a countable basis since the basis of éach Ti
is finite. Hence, by Lemma 3.6.2, T' is countable. Now let

819 529 90y Sn, * e

be the elemonts of T'. Pieck n = 10 and raise s, to the m power so

m
8 =S HSE @ ... BS
1 1 T8y, ¢ T ULk,
1<k -0 o
s ,e T =<j<k ~-9. and s T 7T eseo & T .
137 T94+1° J'j 1 , €101 % k

Choose m2>0 so that
my

2 S29k1+1 &

@ ...
s Sz,k1+2 2,k

m
€T 1sjsk -k_and s > €T & T @...oT .
2 1 2 k

2.k
2,k +] 1 1 2

i s
: k 1+j

Having chosen ml,..,, m . with corresponding k1<k2< "'<kn~1”

. choose mn>0 so that
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Clearly k1<kz< RS kn <ivs o

Now let 9 be the ideal of T generated by all the Ss4°

Notice that for that choice of the sii's’ we have r

k=0

2<k<9, and r, = 0 or 1 for k=10, by conétruction. Hence, by

k
corollary 2.3.4, we have that T/ %is infinite dimensional. Now

since Y&T} we form the quotient algebra T'/ 9 which is obviously

infinite dimensional. But T'/Y is a nil algebra by construc-
m m

tion, for if EigT'/QL then s, = s; +%, and Eii = (si +9%) 1.

i
m m

8y + 9,=9 , hence, s 1. 0. Hence the algebra T'/9l is the

i
required finitely generated algebraic algebra (in fact, a nil

algebra) which is infinite dimensional.

Lemma 3.6.2 Let V be a vector space with a countable basis over a

countable field F. Then V is countable.

Proof: Let B = {Vz’ Vs eees Voo ...} be a countable basis for

2’

V, and let B_ = v, v, ooy vn} be a subset of B. Now let En be

2’

the subspace of V spanned by Bn' Then En is countable since there

is a natural one to one correspondence between B_ and F X F X ... X F
n T times

But then

.,
V= ngl Bn

is the countable union of countable sets and hence countable.
Let F be a finite field with p elements and let ¥ be the
ideal in T = F[xl,xZ] as in Theorem 3.6.1 and let T' = T &T.® ...@Enﬁ ces

If A= T/9 then a =x +Yand a, = x + % is the generating set for

T/ AU
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Definition 3.6.3 A group G # {1} is a p-group if every element

of G except the identity has order a power of the prime p.

Lemma 3.6.4 Let G be the multiplicative semigroup in A gen-
erated by 1 + al, 1+ az. Then G 4is a group, and is in fact, a

p-group.

Proof: Obviously G is the subset of A consisting of all finite
power products of the elements 1 + a, 1+ a,, (with non-negative
exponents). Hence:

G ¢ {1 + al for some acT'/9 }.
But the algebra T'/ 9 is a nil algebra (Theorem 3.6.1) and there-
fore, each a€T'/yy is nilpotent, i.e. for some n we have a®=0.

Now take n large enough that pn>n. Then
np’n _ = n_ =
aP = a"P = 0 (a” = 0)

and

1+ pn n Lo n n pn-l " ot
a)* =l+pa+Xb(p-lpa +...+pa +a3° =1+2a" =1,

This is because all the coefficients are 0, since they are divisible
by p and F is the finite field with p elements. Hence G
contains a multiplicative identity 1. Hence G is a semigroup
with identity. Also, since powers of the same element commute, we

have

n n_l n__l
1=@1Q+a)f =@+a)@+a)P " =@Q+a)f Q@+ a);
n
that is 1 + a has a multiplicative inverse (1 + a)p -1, which
is clearly in G.

Thereforé, G 1is a group. Moreover, G 1is a p-group.
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Lemma 3.6.5 Let A be an algebra over a field F and let G be
a finite subset of A which is & group under multiplication. Then
the linear combinations of the elements of G form a finite dimen-

ﬂmﬂa%ﬂ@ﬁaB over F,

Proof: Let G = {al, A, cea, an} be a finite subset of A and

2
moreover, let G be a multiplicative group. Then the elements of

the gubalgebra generated by G are of the form

ig.lgiai (EeF)

The subalgebra looked at as a vector space is spanned by
By vasy an. Therefore, it has a finite basis and hence is finite-

dimensional.

Theorem 3.6.6 If p 1is any prime, there is an infinite group G

generated by two elements in which every element has finite order

a power of p.

Proof: Let G be the group in Lemma 3.6.4. Then G 1is a p-group,

and it remains to show that G 1is infinite. Assume that G 1is

finite. Since G 1is finite, the linear combinations of the elements
of G form a finite dimensional algebra B over F, as in Lemma 3.6.5.

Since 1, 1 + a .l + a,, arein G, then the elements

a

1l+a)-~-1
1 1

as (l+a2)—l

1

1 + a]) -a = a1 + az) - a,
are in B. Observing that 1, al, a2 generate the algebra A, we get
A = B, contradicting that A is infinite-dimensional over F. There-

fore, B 1is infinite dimensional and hence G is infinite.
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