an exposition of a theorem of gold and Safarevič WITH APPLICATIONS TO NIL ALGEBRAS AND PERIODIC GROUPS by
Tasoula Michael Berggren B. A., University of Washington, 1965
A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE
in the Department of Mathematics
(C) TASOULA MICHAEL BERGGREN ..... 1970SIMON FRASER UNIVERSITY
APRIL, 1970

## APPROVAL

Name: Tasoula Michael Berggren
Degree: Master of Science
Title of Thesis: An Exposition of a Theorem of Gold and Safarevic

With Applications to
Nil Algebras and Periodic Groups

Examining Committee:
(T. C, Brown)
Senior Supervisor
(A. J. DIs)
Examining Committee
(A. L. Stone)
Examining Committee

Date Approved:


TO THE MEMORY OF MY FATHER

## MICHALAKIS SAPARILLAS

(1891 - 1959)


#### Abstract

ABSTPACT

A theorem by Eolod and Safarevic with annlication to nil algebras and periodic grouns is clearly proved in this thesis. The apnlications settle neqatively Kuros's question: Is a finitely generated aloebraic algebra, finite-dimensional? and Burnside's question: Is a finitely generated periodic proup finite? Remarks and theorems on subjects related to the main theoren are in Chapter 1, the proof of the theorem is in Chanter 2, and the applications of it are in Chanter 3.


Page
Approval ..... ii
Dedication ..... iii
Abstract ..... iv
Acknowledgements ..... vi
Introduction ..... 1
Chapter 1: Free-Semigroup Algebras
Over a Field F ..... 3
Chapter 2: Proof of the Theorem ..... 15
Chapter 3: Applications ..... 46
Bibliography ..... 58

## ACKNOWLEDGEMENTS

I would like to thank the following people: Dr. T.C. Brown for suggesting the topic and supervising the research, my husband Dr. J.L. Berggren, for his help during the absence of Dr. T.C. Brown, and Mrs. Arlene Blundell for the typing of the entire thesis.

The financial assistance of the National Research Council of Canada is deeply appreciated.

## INTRODUCTION

The purpose of this thesis is to give a clear exposition of a theorem of Golod and $\mathrm{Y}_{\text {afarevic }}^{\mathrm{V}}$ [6] and some of its consequences. The theorem, published in 1964, is a remarkable result. Its proof is rather short, but it provides the answer to many questions. Two of the questions which this paper will discuss are more closely related than originally appeared. The problems referred to are the Kuros Problem [15], and the general Burnside Problem [1] and the construction of examples which solve these problems is fairly straight-forward (given the main theorem of Golod-Safarevič).

This thesis has an example of an infinite dimensional nil algebra with a finite number of generators over a countable field. This is a negative answer to the Kuros question which was asked in 1941: Let A be a finitely generated, algebraic algebra. Is A finite-dimensional (as a vector space)? The history of the question is very interesting. Kuros discussed several special cases [15], all with affirmative answers, Jacobson and Levitzki [13],[16],[17] settled the question affirmatively for algebras of bounded degree. In the meantime, many special cases had been studied. Then, in 1964, Golod announced that the answer to the Kuros question was negative. At the same time, he gave a negative answer to the Burnside problem: Let $G$ be a finitely genarated periodic group. Is $G$ finite?

Burnside [1] considered the following three cases with affirmative ansvers.
(1) G of exponent 2,
(2) G of exponent 3,
(3) G of exponent 4, and G with two generators.

In 1940, Sanov [22] obtained an affirmative answer for exponent 4 and an arbitrary (but finite) number of generators. Marshall Hall Jr. [9] gave an affirmative answer for exponent 6. The answer is still unknown for $G$ of exponent 5 .

Then Novikov, in 1959, announced [20] that the answer is no, if the exponent of $G \quad n \geqslant 72$ and the number of generators is at least 2 . (The proof of [20] appeared in 1968 by P.S. Novikov and S.I. Adyan [21], where $n \geq 72$ has been replaced by odd $n \geq 4381$.)

In 1964, Golod constructed a finitely generated group which is periodic and infinite, which settled negatively the original Burnside problem.

This chapter is to make the reader familiar with a few terms and some symbols which are closely related to the main part of this thesis. In addition, some definitions will be given, while it will be assumed that the reader is acquainted with the most basic ones.

### 1.1 Free Semigroups and Generators

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$ be a set of $d$ noncommuting indeterminates, and let $S_{X}$ consist of all finite sequences of elements of X ,

$$
s_{X}=\left\{x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}} \mid x_{i_{k}} \varepsilon x\right\}
$$

Define a binary operation, that is, a multiplication on $S_{X}$, as follows: For any two elements of $S_{X}$, say $s_{1}=x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}$ and $s_{2}=x_{j_{1}} x_{j_{2}} \ldots x_{j_{m}}$, their product $s_{1} \cdot s_{2}$ is the product obtained by juxtaposition of $s_{1}$ and $s_{2}$ :

$$
s_{1} \cdot s_{2}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} x_{j_{1}} \cdots x_{j_{m}}
$$

For example, if $s_{1}=x_{1} x_{1} x_{3}$ and $s_{2}=x_{3} x_{2}$, then $s_{1} \cdot s_{2}=x_{1} x_{1} x_{3} \cdot x_{3} x_{2}=$ $x_{1} x_{1} x_{3} x_{3} x_{2}$.

With this definition of multiplication $S_{X}$ becomes a semigroup; we call it the free semigroup on $X$. Note that the binary operation which we just defined is associative. For example:

$$
\left(x_{1} x_{1} x_{3} \cdot x_{3} x_{2}\right) \cdot x_{1} x_{4} x_{3}=\left(x_{1} x_{1} x_{3} x_{3} x_{2}\right) \cdot x_{1} x_{4} x_{3}
$$

$$
\begin{aligned}
& =x_{1} x_{1} x_{3} x_{3} x_{2} x_{1} x_{4} x_{3} \\
& =x_{1} x_{1} x_{3} \cdot\left(x_{3} x_{2} x_{1} x_{4} x_{3}\right) \\
& =x_{1} x_{1} x_{3} \cdot\left(x_{3} x_{2} x_{1} \cdot x_{4} x_{3}\right)
\end{aligned}
$$

The elements of $S_{X}$ are often called "words" but in this thesis, they will be called monomials. We may say that the element $x_{i}$ of $X$ has length 1 if we consider $x_{i}$ as a word. However, talking in terms of monomials $x_{i}$ has degree 1 . Now we are ready to define the degree of a monomial which is simply the number of occuring $x_{1}{ }^{\prime} s$. For example, the monomial $x_{2} x_{2} x_{5} x_{4}$ is of degree 4 .

If in a word we have a succession of indeterminates all the same, say $x_{i} x_{i} \ldots x_{i},(m$ times $)$, then we write $x_{i}^{m}$.

We let 1 be a symbol not in $X$ (we call 1 the "empty word" or the "monomial of degree 0 "), and define $1 \cdot s=s \cdot 1=s$ for all $s \varepsilon S_{X}$. Thus we have a semigroup $\left\{1 \mathcal{U S}_{X}\right.$, the free semigroup with identity on $X$.

Remark: 1.1.1 The number of distinct monomials of a given degree $\mathfrak{n}$ is the number of ways of choosing (in order) $n$ indeterminates from the set $X$. This number in this case is $d^{n}$.

Example: Assume that $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is the set of four noncommuting indeterminates. Then the number of monomials of degree 3 is $4^{3}=64$.

The monomials of degree 2 are 16 in number and they are the following:

$$
\begin{array}{llllllll}
x_{1} x_{1} & x_{1} x_{2} & x_{1} x_{3} & x_{1} x_{4} & x_{2} x_{1} & x_{2} x_{2} & x_{2} x_{3} & x_{2} x_{4} \\
x_{3} x_{1} & x_{3} x_{2} & x_{3} x_{3} & x_{3} x_{4} & x_{4} x_{1} & x_{4} x_{2} & x_{4} x_{3} & x_{4} x_{4}
\end{array}
$$

The elements of $S_{X}$, that is the monomials, are of the form

$$
\prod_{k=1}^{n} \mathbb{I}_{i_{k}}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \quad x_{i_{k}} \varepsilon X
$$

We say that $X$ is a set of generators of $S_{X}$. It is often convenient to work with $S_{X}^{1}=\{1\} S_{X}$ rather than $S_{X}$. We index $S_{X}^{1}$ by the index set $\Omega: S_{X}^{1}=\left\{s_{W} \mid w \varepsilon \Omega\right\}$.

### 1.2 Vector Spaces Over a Field F and Algebras Over a Field F.

Let $T$ be the vector space over a field $F$ with a basis $S_{X}^{1}$. Denote $T$ by $F\left[x_{1}, x_{2}, \ldots, x_{d}\right]$. Then $T=F\left[x_{1}, x_{2}, \ldots, x_{d}\right\}=\left\{\sum_{\Omega_{w}} s_{w} \mid a_{w} \varepsilon F\right.$ and $a_{w} \neq 0$ for only finitely many weת\}. Each element of $T$ is uniquely expressed as a linear combination of elements of $S_{X}^{1}$ over the field $F$. (Note that $s_{i} \neq s_{j}$ if $i \neq j$ ).

Define addition in $T$ by

$$
\sum_{\Omega}^{a} s_{w}+\sum_{\Omega} b_{w} s_{w}=\sum_{\Omega}\left(a_{w}+b_{w}\right) s_{w} \quad a_{w}, b_{w} \varepsilon F .
$$

Addition is obviously well defined since $a_{w}+b_{w} \varepsilon F$.
Define scalar multiplication by

$$
a\left(\sum_{\Omega} a_{w} s_{w}\right)=\sum_{\Omega}\left(a a_{w}\right) s_{w} \quad a, a_{w} \varepsilon F
$$

Note that $\sum_{\Omega} a_{w} s_{w}=\sum_{\Omega} b_{w} s_{w}$ if and only if $a_{w}=b_{w}$ for all wEת. Then $0=\sum_{\Omega} 0 s_{w}$ and $\sum_{\Omega} a_{w} s_{w}=0$ implies $a_{w}=0$ for all we

Example: Let $S_{X}^{e}$ be the semigroup $\left\{e, a, a^{2}\right\}$, where $e a=a e=a$, $e a^{2}=a^{2} e=a^{2}, a a^{2}=a^{2} a=e . \quad$ Then $T=\left\{x e+y a+z a^{2} \mid x, y, z \varepsilon F\right\}$ is a vector space over the field $F$. Let $x e+y a+z a^{2}$ and $x^{\prime} e+y^{\prime} a+z^{\prime} a^{2}$ be any two elements of $T$. Then it is natural to write:

$$
\begin{aligned}
& \left(x e+y a+z a^{2}\right)\left(x^{\prime} e+y^{\prime} a+z^{\prime} a^{2}\right)=x x^{\prime} e e+x y^{\prime} e a+x z^{\prime} e a^{2} \\
& +y x^{\prime} a e+y y^{\prime} a a+y z^{\prime} a a^{2}+z x^{\prime} a^{2} e+z y^{\prime} a^{2} a+z z^{\prime} a^{2} a^{2}
\end{aligned}
$$

$$
=x x^{\prime} e+x y^{\prime} a+x z^{\prime} a^{2}+y z^{\prime} e+y z^{\prime} a+y y^{\prime} a^{2}+z y^{\prime} e+z z^{\prime} a+z x^{\prime} a^{2}
$$

$$
=\left(x x^{\prime}+y z^{\prime}+z y^{\prime}\right) e+\left(x y^{\prime}+y x^{\prime}+z z^{\prime}\right) a+\left(x z^{\prime}+y y^{\prime}+z x^{\prime}\right) a^{2}
$$

Definition 1.2.1 An Algebra $A$ is a ring which is a vector space over a field $F$. In addition, the following holds:

$$
a(u v)=(a u) v=u(a v) \quad \text { for all } a \varepsilon F, u, v \varepsilon A .
$$

Now let us define multiplication on $T$ over $F$. Let $u, v \in T$, where

$$
u=\sum_{i} \varepsilon_{\Omega}{ }_{i} s_{j} \text { and } v=\sum_{j \varepsilon_{\Omega}} b_{j} s_{j} .
$$

Then

$$
\begin{equation*}
u v=\sum_{i \in \Omega} a_{i} s_{i} \cdot \sum_{j \equiv \Omega} b_{j} s_{j}=\sum_{i, j \in \Omega}\left(a_{i} b_{j}\right)\left(s_{i} s_{j}\right) \tag{*}
\end{equation*}
$$

The above multiplication is clearly well defined since $s_{i}, s_{j}$ are elements in $S_{X}^{1}$ where multiplication is already defined.

Theorem 1.2.2 With the multiplication defined in (*), $T$ is a ring with identity.

Proof: Let $u=\Sigma a_{i} s_{i}, v=\Sigma b_{j} s_{j}, w=\Sigma c_{k} s_{k}$ be elements of $T$. Then the multiplication (*) is associative, since

$$
\begin{aligned}
(u v) w & =\left(\sum_{\Omega} a_{i} s_{i} \cdot \sum_{\Omega} b_{j} s_{j}\right) \sum_{\Omega} c_{k} s_{k}=\sum_{\Omega} a_{i} b_{j}\left(s_{i} s_{j}\right) \sum_{\Omega} c_{k} s_{k} \\
& =\sum_{\Omega}\left(a_{i} b_{j}\right) c_{k}\left(s_{i} s_{j}\right) s_{k}=\sum_{\Omega} a_{i}\left(b_{j} c_{k}\right) s_{i}\left(s_{j} s_{k}\right) \\
& =\sum_{\Omega} a_{i} s_{i} \cdot \sum_{\Omega} b_{j} c_{k}\left(s_{j} s_{k}\right)=\sum_{\Omega} a_{i} s_{i} \cdot\left(\sum_{\Omega} b_{j} s_{j} \cdot \sum_{\Omega} c_{k} s_{k}\right)=u(v w) .
\end{aligned}
$$

$(* *)$ since $s_{i}, s_{j}, s_{k} \in S_{X}^{1}$.

The distributive law holds also, since

$$
\begin{aligned}
u(v+w)=\sum a_{i} s_{i}\left(\sum b_{j} s_{j}+\sum c_{j} s_{j}\right) & =\sum a_{i} s_{i}\left(\sum\left(b_{j}+c_{j}\right) s_{j}\right) \\
=\sum a_{i}\left(b_{j}+c c_{j}\right) s_{i} s_{j} & =\sum\left(a_{i} b_{j}+a_{i} c_{j}\right) s_{i} s_{j} \\
=\sum\left(a_{i} b_{j} s_{i} s_{j}+a_{i} c_{j} s_{i} s_{j}\right) & =\sum a_{i} b_{j} s_{i} s_{j}+\sum a_{i} c_{j} s_{i} s_{j} \\
& =\sum a_{i} s_{i} \Sigma b_{j} s_{j}+\sum a_{i} s_{i} \Sigma c_{j} s_{j}=u v+u w
\end{aligned}
$$

Similarly $\quad(u+v) w=u w+w w$.
The identity of $T$ is the monomial of degree 0 denoted by 1 . Hence $T$ is a ring with identity.

Theorem 1.2.3 $T$ is an algebra over $F$, called the free semigroup algebra on $S_{X}^{2}$ over $F$.

Proof: Let $a, a_{i}, b j \in F, \quad u=\Sigma a_{i} s_{i}$ and $v=\Sigma b_{j} s_{j} \in T$. Then:

$$
\begin{aligned}
a(u v) & =a \sum a_{i} s_{i} \sum b_{j} s_{j}=a \sum a_{i} b_{j} s_{i} s_{j}=\sum\left(a a_{i}\right) b_{j} s_{i} s_{j} \\
& =\sum a a_{i} s_{i} \sum b_{j} s_{j}=\left(a \sum a_{i} s_{i}\right) \Sigma b_{j} s_{j}=(a u) v \\
& =\sum a a_{i} s_{i} \sum b_{j} s_{j}=\sum\left(a a_{i}\right) b_{j} s_{i} s_{j}=\sum a_{i}\left(a b_{j}\right) s_{i} s_{j} \\
& =\sum a_{i} s_{i}\left(\sum a b_{j} s_{j}\right)=\sum a_{i} s_{i}\left(a \Sigma b_{j} s_{j}\right)=u(a v)
\end{aligned}
$$

Hence $T$ is an algebra over $F$.
It is worthwhile to observe that the elements of $X$ do not commute with each other, but they do commute with elements of $F$.

### 1.3 Homogeneous Polynomials and Subvector-Spaces of T Over F.

In this section, we will call the elements of $T$ polynomials. This is why the $x_{i}$ are called non-commuting indeterminates.

Definition 1.3.1 A homogeneous polynomial of degree $n$ is a linear combination of distinct monomials each of degree $n$. If $u$ is a homogeneous polynomial of degree $i$ we denote the degree $i$ by $\partial(u)=i$. Here is an example:

Let $x_{1} x_{2}+x_{2} x_{2}=u$. Then $u$ is a homogeneous polynomial and $\partial(u)=2$.

Let $x_{1}+x_{1} x_{2} x_{1}=v$. Clearly $v$ is not a homogeneous polynomial.

Theorem 1.3.2 Let $T_{n}$ be the set of all homogeneous polynomials of $T$ of degree $n$. Then $T_{n}$ is a subvector space of $T$ over $F$. Proof: At first note that $T_{n}$ is a subset of $T$. We need to show that $T_{n}$ is itself a vector space over $F$. Also observe that $\mathrm{T}_{\mathrm{n}} \neq \emptyset$ since $\mathrm{x}_{\mathrm{i}}^{\mathrm{n}} \varepsilon \mathrm{T}_{\mathrm{n}}$.

Now let $u=\Sigma a_{i} s_{i}$ and $v=\Sigma b_{i} s_{i} \in T_{n}$ where $a_{i}, b_{i}$, $c$ are in $F$. It is clear that $\partial\left(s_{i}\right)=n$ for each $s_{i}$ that appears in $u$ or in $v$. Then

$$
c u+v=c \sum a_{i} s_{i}+\Sigma b_{i} s_{i}=\Sigma c a_{i} s_{i}+\Sigma b_{i} s_{i}=\Sigma\left(c a_{i}+b_{i}\right) s_{i}
$$

is in $T_{n}$.
Note that a basis for $\mathrm{T}_{\mathrm{n}}$ consists of all distinct monomials of degree $n$, hence $\operatorname{dim} T_{n}=d^{n}$.

Example: Let $T=F\left[x_{1}, x_{2}, x_{3}\right]$. Then

$$
\begin{gathered}
\operatorname{dim} T_{0}=3^{0}=1, \operatorname{dim} T_{1}=3^{1}=3, \operatorname{dim} T_{2}=3^{2}=0 \\
\operatorname{dim} T_{3}=3^{3}=27, \operatorname{dim} T_{4}=3^{4}=81 \text { and so on. }
\end{gathered}
$$

$T_{0}$ has basis $\{1\}$ (the identity of $S_{X}^{l}$ ), and may be identified with the field $F$.
$T_{1}$ has basis $\left\{x_{1}, x_{2}, x_{3}\right\}$
$T_{2}$ has basis $\left\{x_{1} x_{1}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{1}, x_{2} x_{2}, x_{2} x_{3}, x_{3} x_{1}, x_{3} x_{2}, x_{3} x_{3}\right\}$
and $T_{3}$ has basis

$$
\begin{aligned}
& \left\{x_{1}^{3}, x_{1}^{2} x_{2}, x_{1}^{2} x_{3}, x_{1} x_{2} x_{3}, x_{1} x_{3} x_{2}, x_{1} x_{2} x_{1}, x_{1} x_{3} x_{1}, x_{1} x_{2}^{2}, x_{1} x_{3}^{2}\right. \\
& x_{2}^{3}, x_{2}^{2} x_{1}, x_{2}^{2} x_{3}, x_{2} x_{1} x_{3}, x_{2} x_{3} x_{1}, x_{2} x_{1} x_{2}, x_{2} x_{3} x_{2}, x_{2} x_{1}^{2}, x_{2} x_{3}^{2} \\
& \left.x_{3}^{3}, x_{3}^{2} x_{1}, x_{3}^{2} x_{2}, x_{3} x_{1} x_{2}, x_{3} x_{2} x_{1}, x_{3} x_{1} x_{3}, x_{3} x_{2} x_{3}, x_{3} x_{1}^{2}, x_{3} x_{2}^{2}\right\}
\end{aligned}
$$

The polynomial $x_{1}^{2} x_{2} x_{1}+x_{3}^{3} x_{2}+x_{2}^{2} x_{1}^{2}+x_{2} x_{1} x_{3}^{2}$ is a homogeneous polynomial of degree 4 and hence is in $\mathrm{T}_{4}$.

Definition 1.3 .3 Let $W_{1}, W_{2}, \ldots, W_{k}, \ldots$ be subspaces of the vector space $W$. We shall say that $W$ is the direct sum of $W_{1}, W_{2}, \ldots, W_{k}, \ldots$ and we write $W=W_{1} W_{2} \oplus \ldots W_{k} \oplus \ldots$ if any of the following equivalent conditions hold:
(i) $W=W_{1}+W_{2}+\ldots+W_{k}+\ldots$ and $W_{1}: \ldots, V_{k}, \ldots$ are inde pendent. (That is if $\alpha_{1}+\alpha_{2}+\ldots+c_{k}=0, o_{i} \varepsilon W_{i}$. implies that each $\alpha_{i}=0$ (for any $k$ ).)
(ii) Each vector $\alpha \neq 0$ in $W$ can be uniquely expressed in the form $\alpha=\alpha_{i_{1}}+\ldots+\alpha_{i_{k}}$ with $o_{i_{j}} \varepsilon W_{i_{j}}$ (for some $k$ ) where the indices are distinct and $\alpha_{i} \neq 0,1 \leq j \leq k$.
(iii) $W=W_{1}+W_{2}+\ldots+W_{k}+\ldots$ and, for each $j \geq 1$, the subspace $W_{j}$ is disjoint from (has intersection $\{0\}$ with) the sum

$$
\left(W_{1}+\ldots+W_{j-1}+W_{j+1}+\ldots\right) .
$$

Theorem 1.3 .4 Let $T=F\left[x_{1}, x_{2}, \ldots, x_{d}\right]$ be the vector space over a field $F$ and let $T_{n}$ be the subspace of $T$ of all homogeneous polynomials of degree $n$, for $n=0,1,2, \ldots$. Then $T$ is the direct sum of $T_{0,} T_{1}, \ldots, T_{n}, \ldots$ and we write $T=T_{0} T_{1} Q_{n} \ldots \Delta T_{n} \ldots$ Proof: Let $T_{j}$ be the subspace of $T$ of all homogeneous polynomials of degree $\mathbf{j}$. Then

$$
T_{j} \cap\left(T_{0}+T_{1}+\ldots+T_{j-1}+T_{j+1}+\ldots\right)=\{0\}
$$

because the subspaces $T_{0}, T_{1}, \ldots, T_{j-1}, T_{j+1}, \ldots$ have only homogeneous polynomials of degrees $0,1, \ldots, j-1, j+1, \ldots$ respectively. Also, clearly $T=T_{0}+T_{1}+\ldots+T_{n}+\ldots$. Hence

$$
T=T_{0} \oplus T_{1} \oplus \ldots \Leftrightarrow T_{n} \ldots
$$

Corollary 1.3.5 Each element $u \in T$ can be uniquely expressed as a sum of homogeneous polynomials.

Proposition $1.3 .6 T_{n}=T_{n-1} x_{1}{ }^{\Phi} T_{n-1} x_{2} \oplus \ldots T_{n-1} x_{d}$ 。

Proof: The elements in $T_{n-1} x_{i},(i=1,2, \ldots, d)$ are of degree $n$, and clearly

$$
T_{n}=T_{n-1} x_{1}+T_{n-1} x_{2}+\ldots+T_{n-1} x_{d}
$$

Moreover

$$
T_{n-1} x_{i} n\left(T_{n-1} x_{1}+\ldots+T_{n-1} x_{i-1}+T_{n-1} x_{i+1}+\ldots+T_{n-1} x_{d}\right)=\{0\}
$$

because the $x_{i}{ }^{\prime} s$ do not commute. Hence

$$
T_{n}=T_{n-1} x_{1} \oplus T_{n-1} x_{2} \oplus \ldots \Leftrightarrow T_{n-1} x_{d} .
$$

Example 1.3.7 Let $T=F\left[x_{1}, x_{2}, x_{3}\right]$. The basis elements for $T_{2}$ are grouped into the following sets:

$$
\left\{x_{1} x_{1}, x_{2} x_{1}, x_{3} x_{1}\right\},\left\{x_{1} x_{2}, x_{2} x_{2}, x_{9} x_{2}\right\},\left\{x_{2} x_{3}, x_{2} x_{3}, x_{3} x_{3}\right\}
$$

where

$$
\begin{array}{ll}
T_{1} x_{1}=\text { subspace spanned by }\left\{x_{1} x_{1}, x_{2} x_{1}, x_{3} x_{1}\right\} \\
T_{1} x_{2}=\text { subspace spanned by } \quad\left\{x_{1} x_{2}, x_{2} x_{2}, x_{3} x_{2}\right\} \\
T_{1} x_{3}=\text { subspace spanned by } \quad\left\{x_{1} x_{3}, x_{2} x_{3}, x_{3} x_{3}\right\}
\end{array}
$$

Hence

$$
T_{2}=T_{1} x_{1} \oplus T_{1} x_{2} \oplus T_{1} x_{3}
$$

### 1.4 Ideals and Quotient Algebras

The following section consists of some definitions and results which are actually part of (used for) the proof of the main result in Chapter 2, but are put here to get the reader even more familiar with the basic structure we shall be working with.

Let $H$ be a subset of $T$ which consists of nonzero homogeneous polynomials $f_{1}, f_{2}, \ldots$ such that $2 \leq \partial\left(f_{1}\right) \leq \partial\left(f_{2}\right) \leq \ldots$ and let $\partial\left(f_{1}\right)=n_{1}$. Now rewriting, we have $2 \leq n_{1} \leq n_{2} \leq \ldots$.

Let the number of all those $f_{j}{ }^{\prime} s$ which have degree $i$ be denoted by $r_{i}$. This number is assumed to be finite (for each 1 ) and is possibly zero.

Let 2 be the intergection of all ideals of $T$ which contain H. 纤 is then an ideal, which is in fact the smallest ideal of $T$ containing the set $H$. This ideal is called the ideal generated by $H$.

In what follows, the subset $H$ which generates the ideal of will always be as described above. In particular, $H$ contains only homogeneous polynomials of degree $\geq 2$.

Theorem 1.4.1 Let $T$ be an algebra, $H=\left\{f_{1}, f_{2}, \ldots\right\}$ and 9 the ideal generated by $H$ in $T$. Then the elements of $\%$ are all elements of $T$ which may be represented in the form $\sum_{i \in} I_{1} a_{1} f_{1} b_{1}$, where $I$ is a finite set, $a_{1}$ and $b_{i}$ are elements of $T$ and the $f_{i}$ are elements of $H$.
Proof: Let $B=\left\{\sum_{i=1}^{n} a_{i} f_{i} b_{i} \mid a_{i}, b_{i} \varepsilon T_{,}, f_{i} \varepsilon H, n=1,2,3, \ldots\right\}$. Then $\mathrm{H} \subset \mathrm{BCO}$.

Now since 9. is the intersection of all the ideals of $T$ which contain $H$, to get ge $B$ it is sufficient to show that $B$ is an ideal of $T$. But this is obvious. Hence $B C \mathcal{M}$ and $\mathbb{N B}^{2} \mathrm{~B}$, so $\mathfrak{M}=\mathrm{B}$. Remark 1.4.2 Consider the element $\sum_{i \in I} a_{i} f_{i} b_{i}$ of $\pi I$. By expressing each $a_{i}$ and each $b_{i}$ as a sum of homogeneous polynomials, and then multiplying out, we see that in fact, "I is the set of all elements of this form $\sum_{j \in J} a_{j} g_{j} b_{j}^{\prime}$, where $J$ is a finite set, $a_{j}^{\prime}$ and $b_{j}$ are homogeneous elements of $T$, and the $\varepsilon_{j}$ are elements of H .

Corollary 1.4.3 Let $r=u_{0}+u_{1}+u_{2}+\ldots+u_{s} \varepsilon$ Nwhere $u_{1} \varepsilon T_{i} ;$ then each $u_{i}$ ह9.

Proof: By preceding remark,

$$
r=\sum_{j \in J} a_{j} g_{j} b_{j}, \quad \quad \text { where }
$$

each $g_{j} \in H$ and the $a_{j}, b_{j}$ are homogeneous polynomials. By collecting summands of equal degree, we get

$$
r=v_{0}+v_{1}+\ldots+v_{t}, \quad \text { vhere } v_{i} E T_{i} \cap \mathcal{U}
$$

But by corollary 1.3.5, $r$ can be expressed uniquely as a sum of homogeneous polynomials. Kence (since we assume $u_{s} \neq 0 \neq v_{t}$ ) we must have $s=t$ and $u_{0}=v_{0}, u_{1}=v_{1}, \ldots, u_{s}=v_{s}$. But $v_{0}, \ldots, v_{s} \varepsilon$, hence $u_{0}, \ldots, u_{s} \varepsilon_{\mu}$. (Note that since $H$ contains only polynomials of degree $\geq 2$, this gives us $u_{0}=u_{1}=0$.)

Remark 1.4.4 Let $A_{i}$ be the quotient vector space $\left(T_{i}+\Re\right) / थ$. over $F$; then $A_{i}$ is a vector subspace of the quotient vector space $\mathrm{T} / \mathrm{I}$ over F .

Theorem 1.4.5 Let $A$ be the quotient vector space $T / \because$ over F. Then as a vector space, $A=A_{0} \not A_{1}$ \& $A_{2} \oplus . . . A_{n} \ldots$, where $A_{i}=\left(T_{i}+\mathfrak{N}\right) / \mathfrak{N}$.

Proof: Let $a \varepsilon A$. Then $a=u+M$ where $u \in T$. But then $u$ can be written uniquely as the sum of $u_{i}{ }^{\prime}$ s, i.e. $u=u_{0}+u_{1}+\ldots+u_{n}$, where $u_{i} \varepsilon T_{i}$ and

$$
a=\left(u_{0}+u_{1}+\ldots+u_{n}\right)+2 \underline{Q}=\left(u_{0}+2 D+\left(u_{1}+\mathscr{H}\right)+\ldots+\left(u_{n}+0\right)\right.
$$

where each $u_{k}+\mathscr{\mu} \varepsilon\left(T_{k}+2\right) / \mu=A_{k}$. Hence $A=A_{0}+A_{1}+\ldots A_{n}+\ldots$. Now we need to show that a can be written in only one way as a sum of elements of the different $A_{i}$. Hence, suppose that
(1) $a=\left(u_{0}+\mathfrak{1}\right)+\ldots+\left(u_{n}+\mathfrak{X}\right)=\left(v_{0}+\mathfrak{U}\right)+\ldots+\left(v_{m}+\mathfrak{U}\right)$

$$
u_{i}, v_{i} E T_{i}
$$

We want to show that $u_{i}+2=v_{i}+2$. From (1) we have that

$$
\left(u_{0}+\ldots+u_{n}\right)+2=\left(v_{0}+\ldots+v_{m}\right)+2
$$

hence

$$
u_{0}+\ldots+u_{n} \equiv\left(v_{0}+\ldots+v_{m}\right) \quad(\bmod \eta)
$$

Now if $\mathrm{m} \geq \mathrm{n}$

$$
\left(u_{0}-v_{0}\right)+\left(u_{1}-v_{1}\right)+\ldots+\left(u_{n}-v_{n}\right)+\left(0-v_{n+1}\right)+\ldots+\left(0-v_{m}\right) \equiv 0(\bmod 91)
$$

Hence

$$
\left(u_{0}-v_{0}\right)+\ldots+\left(u_{n}-v_{n}\right)+\left(0-v_{n+1}\right)+\ldots+\left(0-v_{m}\right) \varepsilon \text { थ }
$$

where

$$
u_{i}-v_{i} \varepsilon T_{i} \text { and therefore } u_{i}-v_{i} \varepsilon \mu, \forall i \text {, by corollary 1.4.3. }
$$

So $u_{i}+2!=v_{i}+2$ which shows the uniqueness i.e. $u_{i}=v_{i}$ $(\bmod 9)$. Consequently, $A=A_{0} \& A_{1} \ldots \ldots A_{n} \ldots$.

Theorem 1.4.6 If $\mathscr{R}_{n}=T_{n} \cap \mathscr{A}$, then $A \approx T_{n} / \mathscr{R}_{n}$, where $\mathscr{R}_{n}$ and $A_{n}$ are regarded as vector spaces over $F$.

Proof: Consider the vector space $T$ over $F$ as an additive group. Then the ideal 2 is a normal subgroup of $T$, and by the Second Isomorphism Theorem of group theory, we have the following diagram and isomorphisms.


$$
\begin{equation*}
A_{n}=\frac{T_{n}+2}{2} \simeq \frac{T_{n}}{T_{n} \operatorname{In}_{2}}=\frac{T_{n}}{\mathbb{N}_{n}} \tag{i}
\end{equation*}
$$

Because $\mathscr{H}^{\cap} \mathrm{T}_{0}=\{0\}, \mathfrak{K}_{0} \cap \mathrm{r}_{1}=\{0\}$
we have the following particular cases:

$$
\begin{align*}
& A_{0} \simeq T_{0} \simeq F  \tag{ii}\\
& A_{1} \simeq T_{1} \tag{iii}
\end{align*}
$$



## CHAPTER 2.

This chapter is devoted to the proof of the main Golod-Šafarevid theorem. In the first part of the chapter, we will derive some results which will be used to give a short proof of the first theorem. The second part of the chapter deals with the proof of the first theorem. We give two different proofs; one is a re-worked and expanded version of the proof in the paper by Fisher and Struik [5]. The other proof, which has to do with homology, is a re-worked and expanded version of a proof from Herstein's book "Noncommutative Rings" [11]. In the same part, two more theorems follow which are re-worked from the original paper by Golod and Safarevic [6]. Finally, the last part of this chapter deals with some corollaries and special cases [5], [19].

### 2.1 Some Subspaces and Their Dimensions

In this section before the derivation of the results necessary for the proof of the main theorem, let us recall the various notations we have introduced up to this point.

We have a field $F$ and $d$ noncommutative indeterminates over $F$, which are $x_{1}, x_{2}, \ldots, x_{d}$ Also,

$$
\mathrm{T}=\mathrm{F}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{d}}\right]
$$

is the free associative algebra over $F$ in the $x_{i}$ and, moreover:

$$
T=T_{0} \oplus T_{1} \oplus \ldots \oplus T_{n} \oplus \ldots
$$

where each $T_{n}$ is the subspace of $T$ consisting of all the homogeneous polynomials of degree $n$. Recall that:

$$
H=\left\{f_{1}, f_{2}, \ldots, f_{n}, \ldots\right\}
$$

where each $f_{i}$ is a homogeneous polynomial of $T$ and

$$
2 \leq \partial\left(f_{1}\right) \leq \partial\left(f_{2}\right) \leq \cdots
$$

$\left(\partial\left(f_{i}\right)=n_{i}\right.$ is the degree of $\left.f_{i}\right)$. 2 is the ideal of $T$ generated by $H$, and $r_{i}$ is the number of polynomials $f_{j}$ in $H$ which have degree 1. The quotient algebra $A=T / \mathscr{H}$ is also of the form:

$$
A=A_{0} \oplus A_{1} \oplus \ldots \oplus A_{n} \oplus \cdots
$$

where $A_{i}=\left(T_{i}+\Omega\right) / \mathscr{U}$. We mentioned that $\operatorname{dimT}_{n}=d^{n}$. Now let $\operatorname{dim} A_{n}=b_{n}$ and observe:
2.1 .1

$$
2.1 .2
$$

$$
\begin{gathered}
1=d^{0}=\operatorname{dim} T_{0}=\operatorname{dim} A_{0}=b_{0} \\
d=\operatorname{dim} T_{1}=\operatorname{dim} A_{1}=b_{1}
\end{gathered}
$$

Proposition 2.1.3 Recall that $\mathscr{U}_{n}=T_{n} \cap थ$ (by definition), and that $A_{n} \simeq T_{n} / \mathscr{H}_{n}$. Let $S_{n}$ be a complementary subspace of $\mu_{n}$ in $T_{n}$; that is, $T_{n}=\mathcal{U}_{\mathrm{n}} \propto \mathrm{S}_{\mathrm{n}}$. Then $\operatorname{dim} S_{\mathrm{n}}=\operatorname{dim} A_{\mathrm{n}}=b_{\mathrm{n}}$.

Proof: $T_{n}=\mathscr{A}_{n}$ d $S_{n}$ gives dim $T_{n}=\operatorname{dim} \mu_{n}+\operatorname{dim} S_{n}$.
Also

$$
A_{n} \simeq T_{n} / \mathscr{M}_{n} \text { gives } \operatorname{dim} T_{n}=\operatorname{dim} \mathscr{\mu}_{n}+\operatorname{dim} A_{n}
$$

These two equalities give the desired result.

Proposition 2.1.4 Dim $\mathscr{U}_{2} \leq r_{2}$, where $\mathscr{H}_{2}=T_{2} \cap थ$ and $r_{2}$ is the number of $f_{j}$ of degree 2 .

Proof: Look at $\mathcal{H}$ as a vector space. Recall that

$$
\mathfrak{U}=\mathscr{U}_{2} \oplus \Re_{3} \oplus \ldots \oplus \mathscr{I}_{\mathrm{n}} \oplus \ldots
$$

where each $\mu_{n}$ is a subvector space of 2 .
Now $A_{2}$ has a basis of elements of the form $m f_{j} n$, where $m, n$ are monomials and $\partial\left(m f_{j} n\right)=2$. If the degree of $m f_{j} n$ is 2 , then $\partial\left(f_{j}\right) \leq 2$. But $\partial\left(f_{j}\right)>1$ always. Hence $\partial\left(f_{j}\right)=2$ which implies that $m, n$ are constants. In other words, a basis for $\mathcal{U}_{2}$ is a set of linearly independent
$f_{j}$ of degree 2. If the $f_{j}$ of degree 2 were linearly independent, then $\operatorname{dim} \mathscr{I}_{2}$ would equal $r_{2}$.

Since the number $r_{2}$ does not necessarily denote linearly independent $f_{i}$ of degree 2 , we have

$$
\operatorname{dim} \mathfrak{A}_{2} \leq r_{2}
$$

Definition 2.1.5 Let $J=\mathscr{Y}_{n-1} x_{1} \psi \cdots \mathscr{I}_{n-1} x_{d}$.
Note 2.1.6 To prove that the sum $J$ is direct, we need to show that if $g_{1}, g_{2}, \ldots, g_{d} \in T_{n-1}$, then $g_{1} x_{1}+\ldots+g_{d} x_{d}=0$ implies $g_{1}=\ldots=g_{d}=0$.

Proof: Each $g_{i}$ is the sum of distinct monomials of degree $n-1$. Therefore, $g_{i} x_{i}$ is the sum of distinct monomials of degree $n$. If $i \neq k$, then the monomials in $g_{i} x_{i}$ are distinct from the monomials in $g_{k} x_{k}$. Therefore, the set of all monomials involved in $g_{1} x_{1}+\ldots+g_{d} x_{d}$ is a set of distinct monomials, hence is a set of linearly independent monomials. Therefore, every coefficient in $g_{1} x_{1}+\ldots+g_{d} x_{d}=0$ must be zero. Therefore:

$$
g_{1}=g_{2}=\ldots=g_{d}=0
$$

$\underline{\text { Proposition 2.1.7 }} \quad \operatorname{dim} J=d \operatorname{dim} \mathbb{U}_{n^{-1}}$
Proof: Since $J=\|_{n-1} x_{1} \oplus \ldots \oplus \mathscr{A}_{n-1} x_{d}$ is a direct sum and $\operatorname{dim}{\underset{n-1}{ } x_{i}=\operatorname{dim} थ_{n-1}, ~, ~, ~}_{n}$
it follows that:

$$
\operatorname{dim} J=d \operatorname{dim} \Re_{n-1}
$$

Example 2.1.8 Let $g_{1}, g_{2}, \ldots, g_{m}$ be a basis for $\mathscr{g}_{n-1}$. Then we have the following bases for each $\mu_{n-1} x_{i}(i=1,2, \ldots, d)$.

$$
\begin{aligned}
& B_{1}=\left\{g_{1} x_{1}, g_{2} x_{1}, \ldots, g_{m} x_{1}\right\} \text { forms a basis for } \mathscr{R}_{n-1} x_{1} \text {. } \\
& B_{2}=\left\{g_{1} x_{2}, g_{2} x_{2}, \ldots, g_{m} x_{2}\right\} \text { forms a basis for } \mathscr{I}_{n-1} x_{2} \text {. } \\
& B_{d}=\left\{g_{1} x_{d}, g_{2} x_{d}, \cdots, g_{m} x_{d}\right\} \text { forms a basis for } \mathscr{A}_{n-1} x_{d}
\end{aligned}
$$

The elements of the above sets are linearly independent, for suppose that:

$$
\sum_{j=1}^{m} a_{j} g_{j}=g \quad \text { where } g \varepsilon \ell_{n-1} \subset T_{n-1}, a_{j} \varepsilon F
$$

write

$$
g=\sum_{i=1}^{n} b_{i} u_{i} \quad b_{i} \varepsilon F
$$

where the $u_{i}$ are distinct monomials of degree $n-1$. (We have $d^{n-1}$ possible $u_{i}$ 's.) Suppose

$$
0=g x_{k}=\sum_{i=1}^{n}\left(b_{i} u_{i}\right) x_{k}=\sum_{i=1}^{n} b_{i}\left(u_{i} x_{k}\right)
$$

Then if the $u_{i} x_{k}$ are distinct (monomials of degree $n$ ), then they are 1inearly independent, therefore $b_{i}{ }^{\prime} s=0$, therefore $g=0$. Let $u_{1}, u_{2}$ be distinct monomials of degree $n-1$. Then $u_{1} x_{k}$ and $u_{2} x_{k}$ are distinct since $T$ is the free associative algebra over $F$. Thus the set $\left\{g_{1} x_{1}, g_{2} x_{i}, \cdots, g_{m} x_{1}\right\}$ consists of linearly independent elements. Hence, $B_{i}$ is a basi s for $\sum_{n-1} x_{i}$.

Proposition 2.1.9 Prove that $\operatorname{dim} T_{n}=d b_{n-1}+d i m J$
Proof: We know that $T_{n-1}=थ_{n-1} \oplus S_{n-1}$, where $S_{n-1}$ is the complement of $\mu_{n-1}$ in $T_{n-1}$. Let $s_{1}, s_{2}, \ldots, s_{b_{n-1}}$ be a basis for $S_{n-1}$ and let $g_{1}, g_{2}, \cdots, g_{m}$ be a basis for $\mu_{n-1} .\left(S_{n-1}\right.$ and $\mu_{n-1}$ are considered as vector spaces over $F$.) The elements $s_{i} x_{j}$ and $g_{k} x_{j}$, where $i=1,2, \ldots, b_{n-1}, j=1,2, \ldots, d$, and $k=1,2, \ldots, m$ form a basis for $T_{n}$ for the following reasons: The $s_{i} x_{j}$ and $g_{k} X_{j}$ are all of degree $n$ and:

$$
\begin{equation*}
\operatorname{dim} T_{n}=b_{n-1} d+m d=\left(b_{n-1}+m\right) d=d^{n-1} d=d^{n} \tag{1}
\end{equation*}
$$

where $b_{n-1}+m=d i m T_{n-1}=d^{n-1}$. Finally the set $\left\{s_{i} x_{j}\right\} \cup\left\{g_{k} x_{j}\right\}$, ( $i, j, k$ as before) consists of linearly independent vectors, for suppose not, then:

$$
\sum_{i, j}^{b_{n-1}, d} a_{i j} s_{i} x_{j}=\sum_{k 1}^{m, d} b_{k 1} g_{k} x_{1}
$$

implies

Hence for all $e=1,2, \ldots, d$

$$
\sum_{i}\left(a_{i e^{s}}\right) x_{e}=\sum_{k}\left(b_{k e^{\prime}} g_{k}\right) x_{e}
$$

implies

$$
\Sigma\left(a_{i e} s_{i}\right) x_{e}+\Sigma\left(-b_{k e} g_{k}\right) x_{e}=0
$$

By example 2.1.8, $a_{i e}=0=-b_{k e}$

Thus the set $\left\{s_{i} x_{j}\right\} \cup\left\{g_{k} x_{j}\right\}^{\prime}\left(i=1,2, \ldots, b_{n-1} ; j=1,2, \ldots, d\right.$; and $k=1,2, \ldots, m$ ) consists of linearly independent elements, moreover, it has $d^{n}$ elements all of degree $n$, therefore:

$$
\left\{s_{i} x_{j}\right\} \cup\left\{g_{k} x_{j}\right\}
$$

is a basis for $T_{n}$. So

$$
T_{n}=S_{n-1} x_{1} \oplus \ldots \oplus S_{n-1} x_{d} \oplus \mu_{n-1} x_{1} \oplus \ldots \oplus \mu_{n-1} x_{d}
$$

Hence:

$$
\operatorname{dim} T_{n}=d b_{n-1}+\text { ddimen }_{n-1}
$$

or

$$
\operatorname{dim} T_{n}=d b_{n-1}+\operatorname{dim} J
$$

Definition 2.1.10 Let $L$ be the vector space spanned by all elements of degree $n$ of the form $v_{i} f_{j}$, where $f_{j}$ is in the set $H$ and $\left\{v_{i}\right\}$ is a set of homogeneous polynomials of degrees up to $n-2$, which forms a basis for $S_{0} \oplus S_{1} \oplus \ldots \oplus S_{n-2}$

Proposition 2.1.11 $\operatorname{dim} L \leq \sum_{i=2}^{p} b_{n-1} r_{i}$ where $L$ is defined above and where $b_{n-i}=\operatorname{dim} A_{n-i}$ and $r_{i}$ is the number of those polynomials $f_{i}$ in H of degree $i$.

Proof: Let $\partial\left(v_{i}\right)=i$. Then:

$$
\begin{aligned}
& \mathrm{v}_{0} \text { forms a basis for } S_{0} \\
& v_{1}, v_{1_{2}}, \ldots, v_{b_{1}} \text { form a basis for } S_{1} \\
& v_{n-2}, v_{n-2}, \cdots, v_{n-2} b_{i} \text { form a basis for } s_{i} \text {. }
\end{aligned}
$$

The elements $v_{0}, v_{1}, \ldots, v_{1}, v_{b_{1}}, \ldots, v_{2_{2}}, \ldots$, $v_{n-2}, \ldots, v_{n-2}, \ldots$ form basis for $s_{0} \oplus s_{1} \oplus \ldots \oplus s_{n-2}$.

Let

$$
H=\left\{f_{2}, f_{2_{2}}, \ldots, f_{2_{2} r_{2}}, f_{3_{1}}, f_{3_{2}}, \ldots, f_{{ }_{3} r_{3}}, f_{4_{1}}, \ldots, f_{4_{4}}, \ldots\right\}
$$

where $f_{i_{f}}$ has degree $i$ (and for some $i^{\prime} s$, perhaps there are no $f_{i}{ }_{j}{ }^{\prime}$. .) Let $\partial\left(G_{i}\right)$ denote the degree of the elements of $G_{i}$.

$$
\left\{f_{2_{1}}, f_{2_{2}}, \ldots, f_{2_{r}}\right\}=G_{2} \quad \text { where } \partial\left(G_{2}\right)=2
$$

$$
f_{n_{1}}, f_{n_{2}}, \ldots, f_{n_{r_{n}}}=G_{n}
$$

where $\partial\left(G_{n}\right)=n$

Now we observe that the following elements are homogeneous polynomials of degree $n$.

$$
\begin{aligned}
& v_{(n-i)} f_{i_{1}}, \quad v_{(n-i)} f_{i} i_{2}, \quad \cdots, \quad v_{(n-i)} f_{i} i_{r_{i}} \\
& v_{(n-1)_{2}} f_{i_{1}}, \quad v_{(n-1)_{2}}{ }^{f} i_{2}, \quad \cdots, \quad v_{(n-j)}{ }_{2} f_{i_{r_{i}}} \\
& \left.v_{(n-i}\right)_{n-i} f_{i}, \quad{ }^{v}(n-1)_{b_{n-i}} \quad f_{i_{2}}, \quad \cdots, \quad v_{(n-1)_{b-i}} f_{i_{r_{i}}}
\end{aligned}
$$

Also they span

$$
S_{n-i} f_{i_{1}}+S_{n-1} f_{i_{2}}+\ldots+S_{n-i} f_{i_{r}}=S_{n-i} G_{i}
$$

and their number is $b_{n-i} r_{i}$. By summing $S_{n-i} G_{i}$ over $i=2$, ..., n we get

$$
L=S_{n-2} G_{2}+S_{n-3} G_{3}+\ldots+S_{1} G_{n-1}+S_{0} G_{n}
$$

and hence

$$
\begin{aligned}
\operatorname{dim} L & \leq \operatorname{dim}\left(S_{n-2} G_{2}\right)+\operatorname{dim}\left(S_{n-3} G_{3}\right)+\ldots+\operatorname{dim}\left(S_{0} G_{n}\right) \\
& \leq b_{n-2} r_{2}+b_{n-3} r_{3}+\ldots+b_{1} r_{n-1}+b_{0} r_{n} \\
& =\sum_{j=2}^{n} b_{n-j} r_{j} \\
\text { Hence } \operatorname{dim} L & \leq \sum_{j=2}^{n} b_{n-j} r_{j}
\end{aligned}
$$

Proposition 2.1.12 $\operatorname{dim} \mathfrak{A}_{n} \leq \operatorname{dim} J+\operatorname{dim} L$.
Proof: Here $J$ and $L$ are as they have been previously defined by definitions 2.1 .5 and 2.1 .10 respectively.

Now we take $u \in \mathfrak{r}_{n}$, and we wish to show that:

$$
u=w+v
$$

where $w \in J$ and veL. By proposition 1.4.1, $u$ is the sum of polynomials of the form

$$
a_{i} f_{j} b_{k} \quad a_{i}, b_{k} \varepsilon T
$$

where $a_{i}, b_{k}$, are homogeneous polynomials and $\partial\left(a_{i} f_{j} b_{k}\right)=n$. (We know nothing about $\partial\left(a_{i}\right), \partial\left(b_{k}\right)$, and $\left.\partial\left(f_{j}\right).\right)$

Now if we get simply $a_{i} f_{j} b_{k} \in J$, we have case $I_{2}$, while if we get

$$
a_{i} f_{j} b_{k}=w^{\prime} f_{j}+v^{\prime} f_{j}
$$

where $w^{\prime} f_{j} \varepsilon J$ and $v^{\prime} f_{j} \varepsilon L$, we have the case II.

Thus each polynomial $a_{i} f_{j} b_{k} \varepsilon J+L$, and hence, the sum of $a$ lot of them, namely $u$, also $\varepsilon J+L$.

Case I: Assume $\partial\left(b_{k}\right) \geq 1$. We can write $b_{k}=b_{k}^{\prime} x_{n}\left(b_{k}^{\prime} \varepsilon T_{j \rightarrow 1}\right.$, if $\left.b_{k} \varepsilon T_{j}\right)$. Now
since

$$
a_{i} f_{j} b_{k}=a_{i} f_{j} b_{k}^{\prime} x_{n}=\left(a_{i} f_{j} b_{k}^{\prime}\right) x_{n} \varepsilon \mathfrak{Q}_{n-1} x_{n} \subset J
$$

$$
a_{i} f_{j} b_{k}^{\prime} \varepsilon \mu_{n-1} \quad(n=1,2, \ldots, d)
$$

Case II: Assume that $\partial\left(b_{k}\right)=0$, that is $a_{i} f_{j} b_{k}$ is a homogeneous polyromial of the form $a_{i} f_{j}$, where $\partial\left(a_{i} f_{j}\right)=n$. Now $a_{i}$ is homogeneous and say has degree $k$, so:

$$
a_{i} \varepsilon T_{k}=\mathrm{Jj}_{\mathrm{k}} \mathrm{~m}_{\mathrm{k}} \text {; }
$$

1et

$$
a_{i}=w^{\prime}+v^{\prime}, \quad \quad w^{\prime} \varepsilon \mathscr{2}_{k}, v^{\prime} \varepsilon S_{k}
$$

therefore

$$
a_{i} f_{j}=w^{\prime} f_{j}+v^{\prime} f_{j}
$$

First look at $w^{\prime} f_{j}$. Now $\partial\left(w^{\prime}\right)=k=\partial\left(a_{i}\right)$, and $\partial\left(a_{i} f_{j}\right)=n$.
Say $\partial\left(f_{j}\right)=k^{\prime}$, so $k+k^{\prime}=n$. Note $k^{\prime} \geq 2$. Now $w^{\prime} \varepsilon$ श. $\subset \mathfrak{Y}$. Since $\partial\left(f_{j}\right) \geq 2$, we can write $f_{j}=h x_{m}$, where $x_{m} \varepsilon\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$. Then $w^{\prime} \varepsilon \mathfrak{g} \neq w^{\prime} h \varepsilon \mathcal{V}^{\prime}$, but $w^{\prime} h$ is homogeneous and

$$
\begin{aligned}
\partial\left(w^{\prime} h\right) & =\partial\left(w^{3} f_{j}\right)-1 \\
& =k+k^{\prime}-1 \\
& =n-1
\end{aligned}
$$

Therefore $w^{\prime} h \varepsilon$ g $\cap T_{n-1}=\mathscr{V}_{n-1}$. Therefore:

$$
w^{\prime} f_{j}=\left(w^{\prime} h\right) x_{m} \varepsilon \mathcal{U}_{n-1} x_{m} \subset J
$$

Next, look at $v^{\prime} f_{j}$. Now $v^{\prime \prime} \in S_{k} \subset T_{k}$, so $v^{\prime}$ is a homogeneous polynomial of degree $k$. We still have $k+k^{\prime}=n$ and $k^{\prime} \geq 2$. So

$$
k \leq n-2
$$

i.e. $v^{\prime} \in S_{k} \subset S_{0} \oplus S_{1} \oplus \ldots \oplus S_{n-2}$. Since $\left\{v_{1}, v_{2}, \ldots\right\}$ is a basis of homogeneous polynomials for $S_{0}{ }^{(+)} S_{1} \oplus \ldots \oplus S_{n-2}$, we can write $v^{\prime}$ as a linear combination of some of these basis elements, say $v^{\prime}$ is a linear combination of

$$
v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{p}}
$$

Since $v^{\prime}, v_{\mathbf{1}_{1}}, \ldots, v_{i_{p}}$ are all homogeneous, and the $v_{i_{1}}, \ldots, v_{i_{p}}$ are linearly independent, it must be the case that

$$
k=\partial\left(v^{\prime}\right)=\partial\left(v_{i_{1}}\right)=\ldots=\partial\left(v_{i_{p}}\right)
$$

Thus

$$
v^{\prime} f_{j}=c_{i_{1}}\left(v_{i_{i}} f_{j}\right)+c_{i_{2}}\left(v_{i_{2}} f_{j}\right)+\ldots+c_{i_{p}}\left(v_{i_{p}} f_{j}\right) ;
$$

But

$$
v_{i_{1}} f_{j}, \ldots, v_{1_{p}} f_{j}
$$

are among the polynomials which span $L$. (Each has degree $n$, and is of the proper form.) Thus:

$$
v^{\prime} f_{j} \varepsilon L
$$

### 2.2 Golod-Safarevic Theorem and its Proofs

Theorem 2.2.1 (Golod and Safarevic)
(i)

$$
\begin{array}{ll}
b_{n} \geq d b_{n-1}-\sum_{i=2}^{n} r_{i} b_{n-i} & n \geq 2 \\
b_{n} \geq d b_{n-1}-n_{i} \sum_{n} b_{n-n_{i}} & n \geq 2 \tag{ii}
\end{array}
$$

Note: The same notation used previously holds here. Also (i) and (ii) are the same. Because some of the $n_{i}$ 's may be equal, (1i) may be written as follows:

$$
b_{n} \geq d b_{n-1}-\left\{_{\left.\left.1\right|_{n_{1} \leq n}\right\}^{\sum} b_{n-n_{1}}, ~}^{\text {and }}\right.
$$

Proof of (i) : (Fisher and Struick) This proof is using the dimensionality of the various subspaces.

Clearly we know that

$$
T_{n}=\mu_{n} \oplus S_{n}
$$

And therefore

$$
\operatorname{dim} T_{n}=\operatorname{dim} \mu_{n}+\operatorname{dim} S_{n} .
$$

(1) Let $n=2$. Then we have that

$$
\begin{aligned}
\operatorname{dim} \mathrm{T}_{2} & =\operatorname{dim} 2_{2}+d i m S_{2} \\
\mathrm{~d}^{2} & \leq \mathrm{r}_{2}+\mathrm{b}_{2} \quad \text { (by } 2.1 .4 \text { and 2.1.3) } \\
\mathrm{b}_{2} & \geq \mathrm{d}^{2}-\mathrm{r}_{2} \\
\mathrm{~b}_{2} & \geq \mathrm{dd}-\mathrm{r}_{2} \cdot 1 \\
\mathrm{~b}_{2} & \geq \mathrm{db}_{1}-\mathrm{r}_{2} b_{0} \quad \text { (by } 2.1 .2 \text { and } 2.1 .1 \text { ) }
\end{aligned}
$$

which is statement (i) for $n=2$.
(2) Let $n \geq 2$. Then

$$
\begin{align*}
\operatorname{dim} T_{n} & =\operatorname{dim} \mu_{n}+\operatorname{dim} S_{n} \\
& \leq \operatorname{dim} J+\operatorname{dim} L+b_{n}  \tag{*}\\
& \leq \operatorname{dim} J+\sum_{i=2}^{n} r_{i} b_{n-1}+b_{n} \tag{**}
\end{align*}
$$

(*)by 2.1.12 and 2.1.3, (**) by 2.1.11.

But since, by $2.1,9$, we have that

$$
\operatorname{dim} T_{n}=d b_{n-1}+\operatorname{dim} J
$$

we have

$$
d b_{n-1} \leq \sum_{i=2}^{p} r_{i} b_{n-i}+b_{n}
$$

and therefore

$$
b_{n} \geq d b_{n-1}-\sum_{i=2}^{n} r_{i} b_{n-i} \quad n \geq 2
$$

Proof of (ii) (Herstein) This proof is using homology which was used in the original proof by Golod and Safarevic.

Suppose that we can exhibit Iinear mappings, $\phi, \psi$ so that the following sequence is exact


Then

$$
\operatorname{dim}\left(A_{n-1} \oplus \ldots A_{n-1}\right)=\operatorname{rank} \psi+\text { nullity } \psi
$$

or

$$
\begin{aligned}
\mathrm{d} b_{n-1} & =\operatorname{dim} \operatorname{Im} \psi+\operatorname{dim} \operatorname{ker} \psi \\
& =b_{n}+\operatorname{dim} \operatorname{Im} \phi
\end{aligned}
$$

by exactness, so

$$
d b_{n-1} \leq b_{n}+n_{i} \sum_{i n n} b_{n-n_{i}} \quad n \geq 2
$$

Hence:

$$
b_{n} \geq d b_{n-1}-n_{i}^{\sum_{s n} b_{n-n}} \quad n \geq 2
$$

Now our objective is that of defining the $\phi$ and $\psi$. First we shall define mappings $\Phi$ and $\Psi$ for the following sequence

where $\Phi$ and $\Psi$ are linear. We are not interested if the sequence is exact or not at the $T$ - level. However, we want to induce the proper $\phi$ and $\psi$ from the $\Phi$ and $\Psi$ so the sequence will be exact at the A-level. Define $\Psi$ by:

$$
\Psi: t_{1} \oplus \ldots \oplus t_{d}+t_{1} x_{1}+t_{2} x_{2}+\ldots+t_{d} x_{d}\left(\text { for } t_{i} \varepsilon T_{n-1}\right)
$$

If $u \in T_{n-1} \oplus \ldots \oplus T_{n-2}$, then $u$ may be written uniquely as

$$
u=t_{1} \oplus \ldots \oplus t_{d}
$$

where $t_{i}$ is in the ith $T_{n-1}$ in the above direct sum. Hence if we define

$$
\Psi(u)=t_{1} x_{1}+\ldots+t_{d} x_{d}
$$

$\Psi$ is well define and obviously, if $a, b \in F$ and $u, v \in T_{n-1} \oplus \ldots T_{n-1}$, we have

$$
\Psi(a u+b v)=a \Psi(u)+b \Psi(v)
$$

and hence $\Psi$ is linear.
Define $\Phi$ by:

$$
\Phi: s_{n-n_{1}} \oplus \ldots \oplus s_{n-n_{k}} \oplus \ldots+u_{1} \oplus u_{2} \oplus \ldots \oplus u_{d}
$$

where

$$
s_{n-n_{1}} \oplus \ldots s_{n-n_{k}} \oplus \ldots \varepsilon T_{n-n_{1}} \oplus \ldots T_{n-n_{k}} \oplus \ldots
$$

and $u_{1} \sigma_{1} \operatorname{u}_{d} \in T_{n-1} \oplus \ldots \theta T_{n-1}$.

The way we follow to get $\Phi$ is the following: If

$$
s_{n-n_{1}} \oplus \ldots \oplus s_{n-n_{k}} \oplus \ldots \varepsilon T_{n-n_{1}} \oplus \ldots \oplus T_{n-n_{k}}^{\oplus} \ldots
$$

then, recalling that $\partial\left(f_{i}\right)=n_{i}$, we see that

$$
\sum_{n_{i}} \sum_{n} s_{n-n_{i}} f_{i} \varepsilon T_{n}
$$

$\left(\partial\left(s_{n-n_{i}}\right)+\partial\left(f_{i}\right)=n-n_{i}+n_{i}=n\right)$. As an element in $T_{n}$, we can write

$$
\sum_{n_{i} \leq n_{n-n_{i}}} s_{i}={ }_{i}^{\sum_{i}} u_{i} x_{i}
$$

where the $u_{i}$ are uniquely determined elements in $T_{n-1}$. Hence $\Phi$ is well defined and like $\Psi, \Phi$ is linear.

Proposition 2.2.2 Let $\Psi$ be defined as above. Then sequence (2) is exact at $T_{n}$.

Proof: To show exactness at $T_{n}$, we need to show that $\Psi$ is an onto homomorphism. Now if $w \in T_{n}$, then $w$ can be written uniquely as follows:

$$
w=t_{1} x_{1}+\ldots+t_{d} x_{d}
$$

where $t_{1}, t_{2}, \ldots, t_{d}$ are in $T_{n-1}$ and such that

$$
\Psi\left(t_{1} \Leftrightarrow \ldots t_{d}\right)=t_{1} x_{1}+\ldots t_{d} x_{d}=w
$$

Hence $\Psi$ is onto and since $\Psi$ is linear, the sequence

$$
\underbrace{T_{n-1}+\ldots T_{n-1}}_{\text {d times }} \rightarrow T_{n} \rightarrow 0
$$

is exact.

$$
\text { Recall that } \mathscr{\mu}_{n-1}=\Re \cap T_{n-1} \text {. since } \mathscr{M}_{n-1} \subseteq T_{n-1} \text {, obviously }
$$ we have:

If we can show that

$$
\Psi\left(\mathfrak{g r}_{n-1} \oplus \ldots \oplus \mathscr{M}_{n-1}\right)=\left\{\Psi\left(t_{1} \oplus \ldots \oplus t_{d}\right) \mid t_{i} \varepsilon{\mathscr{Q _ { n - 1 }}}\right\} \subseteq \mathscr{M _ { n }}
$$

then we can induce a new homomorphism

$$
\psi: \frac{T_{n-1} \oplus \ldots \oplus T_{n-1}}{\mathscr{M}_{n-1} \oplus \ldots \oplus \mathscr{M}_{n-1}} \rightarrow \frac{T_{n}}{\mathscr{M}_{n}}
$$

given by

$$
\begin{aligned}
\psi\left(t_{1} \oplus \ldots \oplus t_{d}+\mu_{n-1} \oplus \ldots \oplus \mu_{n-1}\right) & =\Psi\left(t_{1} \oplus \ldots \oplus t_{d}\right)+\mu_{n} \\
& =t_{1} x_{1}+\ldots+t_{d} x_{d}+\mu_{n}
\end{aligned}
$$

Proposition 2.2.3 $\Psi\left(n_{n-1} \oplus \ldots \oplus \mathscr{U}_{n-1}\right) \subseteq थ_{n}$.
Proof: Take $t_{1}, \ldots, t_{d}$ such that $t_{i}$ is in the ith $\mathscr{H}_{n-2}$ then

$$
\Psi\left(t_{1} \oplus \ldots \oplus t_{d}\right)=t_{1} x_{1}+\ldots+t_{d} x_{d}
$$

$t_{1}, t_{2}, \ldots t_{d}$ are in $\hat{X}_{n-1}$ and hence in $\mu$; since $\&$ is an ideal then $t_{1} x_{i 1}, t_{2} x_{2}, \ldots, t_{d} x_{d}$ are in $\Omega$ and therefore their sum is in $\mathscr{\mu}$. But it is also in $T_{n}$. Hence

$$
t_{1} x_{1}+\ldots+t_{d} x_{d} \varepsilon \tilde{N}_{n}
$$

and so

Now if we show that

$$
\frac{T_{n-1} \oplus \ldots \oplus T_{n-1}}{\mathfrak{Q n}_{n-1} \oplus \ldots \oplus \frac{T_{n-1}}{2 N_{n-1}} \oplus \ldots \oplus \frac{T_{n-1}}{22_{n-1}} \oplus \ldots\left({ }_{n-1}\right.}
$$

then we can induce the required mapping

$$
\psi: A_{n-1} \oplus \ldots \oplus A_{n-1} \rightarrow A_{n}
$$

## Proposition 2.2.4

$$
\frac{T_{n-1} \oplus \ldots \oplus^{\oplus} T_{n-1}}{\sum_{n-1} \oplus \ldots \oplus_{n-1}} \simeq \frac{T_{n-1}}{\sum_{n-1}} \ldots T_{n-1}
$$

Proof: We need to find an onto map $\gamma$ such that

$$
\gamma: T_{n-1} \oplus \ldots \oplus T_{n-1} \rightarrow \frac{T_{n-1}}{M_{n-1}} \oplus \ldots \oplus \frac{T_{n-1}}{2_{n-1}}
$$

and such that ker $\gamma=\mathscr{A}_{n-1} \oplus \ldots \oplus \mathscr{A}_{n-1}$. So define

$$
\begin{aligned}
\gamma\left(t_{1} \oplus \ldots t_{d}\right) & =\bar{t}_{1} \oplus \ldots \oplus \bar{t}_{d} \\
& =\left(t_{1}+\mathscr{N}_{n-1}\right) \oplus \ldots \oplus\left(t_{d}+\mathscr{A}_{n-1}\right) .
\end{aligned}
$$

Let $t_{1} \oplus \ldots \oplus t_{d} \varepsilon \operatorname{ker} \gamma$, then

$$
\begin{aligned}
\gamma\left(t_{1} \oplus \ldots \oplus t_{d}\right) & =\left(t_{1}+\mu_{n-1}\right) \oplus \ldots \ldots\left(t_{d}+\mu_{n-1}\right) \\
& =\left(0+थ_{n-1}\right) \oplus \ldots\left(0+थ_{n-1}\right)
\end{aligned}
$$

Since we are working with direct sum, this holds if and only if:

$$
t_{i}+\mathfrak{U}_{n_{-1}}=0+\mathfrak{U}_{n-1},
$$

that is

$$
t_{i} \in U_{n-1}
$$

so

$$
\left(t_{2} \oplus \ldots \oplus t_{d}\right) \varepsilon\left(d_{n-1} \oplus \ldots \dot{N}_{n-1}\right),
$$

therefore

$$
\text { ker } \gamma=\mathscr{M}_{n-1} \oplus \ldots \oplus \mathscr{M}_{n-1} .
$$

Now if $\theta$ is the natural map such that

$$
\theta: T_{n-1} \oplus \ldots \oplus T_{n-1}+\frac{T_{n-1} \oplus \ldots \oplus T_{n-1}}{\vartheta_{n-1} \oplus \ldots \oplus \sum_{n-1}}
$$

then there exists an fsomorphism $\sigma$ such that

$$
\sigma: \frac{T_{n-1}}{A_{n-1}} \cdots \cdots T_{n-1} \rightarrow \frac{T_{n-1}}{A_{n-1}} \rightarrow \frac{\sum_{n-1}}{2_{n-1}} \ldots \oplus \frac{T_{n-1}}{\sum_{n-1}}
$$

Thus the mapping $\Psi$ induces

$$
\begin{aligned}
& \psi: A_{n-1} \oplus \ldots \oplus A_{n-1} \rightarrow A_{n} \\
& \left.\ldots \oplus\left(t_{d}+\mu_{n-1}\right)\right)=\left(t_{1} x_{1}+\ldots+t_{d} x_{d}\right)+و_{n}
\end{aligned}
$$

where

$$
\Psi\left(t_{1} \oplus \ldots \oplus t_{d}\right)=t_{1} x_{1}+\ldots+t_{d} x_{d} .
$$

We can now consider $\Phi$. Suppose that $s_{n-n_{1}}, s_{n-n_{2}}, \ldots, s_{n-n_{k}}, \ldots$ are in $\mathscr{R}_{n-n_{1}}, \mathcal{M}_{n-n_{2}}, \ldots, \mathcal{M}_{n-n_{k}}, \ldots$ respectively. We must show that $u_{i}, u_{2}, \ldots, u_{d}$ defined by $\sum s_{n-n_{i}} f_{i}=\Sigma u_{i} x_{i}$ are in $\eta_{n-1}$. Since $\Phi$ is linear it suffices to do so for each ${ }_{s_{n-n_{i}}}$ in $\mathscr{A}_{n-n_{i}}$. Note that

$$
\begin{gathered}
\partial\left(s_{n-n_{i}} f_{i}\right)=n-n_{i}+n_{i}=n . ~ S i n c e \quad \partial\left(f_{i}\right)=n_{i} \text { implies that } \\
f_{i}=\sum_{j} \sum_{1} g_{i j} x_{j}
\end{gathered}
$$

where $g_{1 j} \in T_{n_{i}-1}$. Therefore:

$$
s_{n-n_{i}} f_{i}=s_{n-n_{i}} \sum_{j=1}^{d} g_{i j} x_{j}=\sum_{j=1}^{d}\left(s_{n-n_{i}} g_{i j}\right) x_{j}=\sum_{j=1}^{d} u_{j} x_{j}
$$

where $u_{j}=s_{n-n_{i}} g_{i j}$ and $\partial\left(u_{j}\right)=n-n_{i}+n_{i}-1=n-1$. Thus $u_{j} \in T_{n-1}$. But $u_{j}=s_{n_{n-n_{i}}} g_{i j} \in Y_{1}$, as $s_{n-n_{1}}$ is in the ideal $\mathscr{M}$.


$$
\phi: A_{n-n_{1}} \oplus \ldots \ldots A_{n-n_{k}}^{\oplus} \ldots \rightarrow A_{n-1} \oplus \ldots A_{n-1}
$$

given by

$$
\begin{aligned}
& =\left(u_{1}+v_{n-1}\right) \oplus \ldots\left(u_{d}+\eta_{n-1}\right) \text {, }
\end{aligned}
$$

where

$$
\Phi\left(s_{n-n_{1}} \oplus \ldots \oplus s_{n-n_{k}} \oplus \ldots\right)=u_{1} \oplus \ldots \oplus u_{d}
$$

## Proposition 2.2.5 The sequence

$$
\begin{equation*}
\underbrace{A_{n-n_{1}} \oplus \ldots \oplus A_{n-n_{k}}^{\oplus} \ldots \underbrace{\phi}_{\text {times }} \underbrace{A_{n-1} \oplus \ldots \oplus A_{n-1}}_{n-1} \nsubseteq A_{n} \rightarrow 0}_{n_{i} \leq n} \tag{1}
\end{equation*}
$$

is exact.

Proof: To show the exactness of (1), we must prove exactness at $A_{n}$ and exactness at $A_{n-1} \oplus \ldots \oplus A_{n-1}$. To show exactness at $A_{n}$, we need to show that $\psi$ is a homomorphism onto. So let $t+\mathscr{H}_{n}$ be in $A_{n}$, where $t \in T_{n}$. We want to find some $\left(t_{1}+थ_{n-1}\right) \oplus \ldots \oplus\left(t_{d}+\mu_{n-1}\right) \varepsilon A_{n-1} \oplus \ldots \oplus A_{n-1}$, where $t_{1} \oplus \cdots \oplus t_{d} \in T_{n-1} \oplus \cdots \oplus T_{n-1}$, such that,

$$
\begin{aligned}
t+\mu_{n} & =\psi\left(\left(t_{1}+थ_{n-1}\right) \oplus \ldots \oplus\left(t_{d}+\mu_{n-1}\right)\right) \\
& =t_{1} x_{2} \oplus \ldots \oplus t_{d} x_{d}+\mu_{n-1}
\end{aligned}
$$

where $\Psi\left(t_{1} \oplus \ldots \oplus t_{d}\right)=t_{1} x_{1} \oplus \ldots \oplus t_{d} x_{d}$. But $\Psi$ is onto by 2.2.2. Hence, $\psi$ is onto and the sequence (1) is exact at $A_{n}$. Now we need to show that the sequence (1) is exact at $A_{n-1} \oplus \ldots A_{n-1}$. That is, we need to show that $\operatorname{Im} \phi=\operatorname{ker} \psi$.
(i) $\operatorname{Im} \phi \subseteq$ ger $\psi$, that is $\phi \psi=0$. So, if $s_{n-n_{1}}, s_{n-n_{2}}, \ldots$, $s_{n-n_{k}}, \ldots$ are elements of $T_{n-n_{1}}, T_{n-n_{2}}, \ldots, T_{n-n_{k}}, \ldots$ respectively, so

$$
\left(s_{n-n_{1}} \oplus s_{n-n_{2}} \oplus \ldots \oplus s_{n-n_{k}} \oplus \ldots\right) \Phi \Psi=u_{1} x_{1}+u_{2} x_{2}+\ldots+u_{d} x_{d}
$$

where $\sum_{i=1}^{d} u_{i} x_{i}=\sum_{n_{i}=n} s{ }_{n-n_{i}} f_{i} ;$ but the $f_{i}$ 's generate 2 , thus $n_{i} \sum_{n}^{s} n_{n-n_{i}} f_{i} \varepsilon$ N, and so $\sum_{i=1}^{d} u_{i} x_{i} \varepsilon$ g. But $\sum_{i=1}^{d} u_{i} x_{i} \in T_{n}$ too.

So $\Phi \Psi$ maps $T_{n-n_{1}} \oplus T_{n-n_{2}} \oplus \ldots \oplus T_{n-n_{k}} \oplus \ldots$ into $\mu_{n}=T_{n} \cap \hat{U}$ and so $A_{n-n_{1}} \oplus A_{n-n_{2}} \oplus \cdots \oplus A_{n-n_{k}} \oplus \cdots$ is mapped into 0 by $\phi \psi$, as follows:

Let $\bar{s}_{n-n_{1}} \oplus \cdots \oplus \bar{s}_{n-n_{k}} \oplus \cdots \quad$ be an element of $A_{n_{n} n_{1}} \oplus \ldots \oplus$ $A_{n-n_{k}} \oplus \ldots$... Then:

$$
\begin{aligned}
& \left(\bar{s}_{n_{n-n_{1}}} \oplus \cdots \oplus \bar{s}_{n-n_{k}} \oplus \cdots\right) \phi \psi=\left(s_{n-n_{1}}^{+} \Omega_{n_{n-n_{1}}} \oplus \cdots \oplus s_{n-n_{k}}+1 n_{n-n_{k}} \oplus \cdots\right) \phi \psi
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(u_{1} \oplus \cdots \oplus_{d}+2 u_{n-1} \oplus \cdots\right)_{n-1}\right) \psi \\
& =\Psi\left(u_{1} \oplus \cdots \oplus u_{d}\right)+\mathfrak{u}_{n} \\
& =\left(u_{1} x_{1}+\ldots+u_{d} x_{d}\right)+u_{n} \\
& =0+\mathscr{U}_{n} \text {, }
\end{aligned}
$$

since $u_{1} x_{1}+\ldots+u_{d} x_{d} \in \mathscr{\mu}_{n}$. Hence $\operatorname{Im} \phi s_{\text {ger }} \psi$.
(ii) ger $\psi \subseteq \operatorname{Im} \phi$. Here we want to show that if $\bar{t}_{1} \oplus \ldots \Theta \bar{t}_{d}$ ever $\psi$, then $\bar{t}_{1} \oplus \ldots \oplus \bar{t}_{d} \in \operatorname{Im} \phi$. That is we want to find some $\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{d}$ in $A_{n-1}$, where $\bar{u}_{1} \oplus \ldots \oplus \bar{u}_{d} \in \operatorname{Im} \phi$ and such that:

$$
\left(\bar{t}_{1} \oplus \ldots \oplus \bar{t}_{d}\right)-\left(\bar{u}_{1} \oplus \ldots \oplus \bar{u}_{d}\right)=0
$$

That is

$$
\bar{t}_{1}-\bar{u}_{1} \oplus \ldots \oplus \bar{t}_{d}-\bar{u}_{d}=0
$$

or

$$
\bar{t}_{i}-\bar{u}_{i}=0
$$

(i=1, 2,..., d) (by the direct sum), or
$t_{i}-u_{i}+M_{n-1}=0$, or $t_{i}-u_{i} \varepsilon \sum_{n-1}=\left\{\cap T_{n-1}\right.$, or $t_{i}-u_{i} \varepsilon \mathfrak{A}$.

Also $\bar{u}_{1} \oplus \ldots \oplus \bar{u}_{\mathrm{d}} \varepsilon$ In $\phi$ implies that there exist $\bar{s}_{n-n_{1}}, \bar{s}_{n-n_{2}}$, $\ldots, \bar{s}_{n-n_{k}}, \ldots$ in $A_{n-n_{1}}, A_{n-n_{2}}, \ldots, A_{n-n_{k}}, \ldots$
such that:

$$
\begin{aligned}
& \bar{u}_{1} \oplus \cdots \oplus \bar{u}_{d}=\phi\left(\bar{s}_{n-n_{1}} \oplus \cdots \oplus \bar{s}_{n-n_{k}} \oplus \ldots\right) \\
& =\phi\left(\left(s_{n-n_{1}}+Q_{n-n_{1}}\right) \oplus \ldots \oplus\left(s_{n-n_{k}}+Q_{n-n_{k}}\right) \oplus \ldots\right) \\
& =u_{1} \oplus \ldots \oplus u_{d}+\mathfrak{N}_{n-1} \oplus \ldots \oplus \mu_{n-1}, \\
& =\left(u_{1}+u_{n-1}\right) \oplus \ldots \oplus\left(u_{d}+\sum_{n-1}\right) \text {, }
\end{aligned}
$$

 $T_{n-n_{1}}, \cdots, T_{n-n_{k}}, \cdots$, and $u_{i} \varepsilon$ fth $T_{n-1}$.

Moreover, if $\bar{t}_{1} \oplus \bar{t}_{2} \oplus \ldots \oplus \bar{t}_{d} \in \operatorname{ker} \psi$, means that

$$
\psi\left(\bar{t}_{1} \oplus \bar{t}_{2} \oplus \cdots \oplus \bar{t}_{d}\right)=0
$$

which implies that

$$
\Psi\left(t_{1} \oplus t_{2} \oplus \ldots t_{d}\right) \varepsilon \mathscr{U}_{n}=T_{n} \cap \mathscr{I}
$$

Hence

$$
\Psi\left(t_{2} \oplus t_{2} \oplus \ldots \oplus t_{d}\right) \varepsilon \Leftrightarrow
$$

Conclusion: So we need to show that if $\Psi\left(t_{1} \omega_{d}\right)$, elements $u_{1}, u_{2}, \ldots, u_{d}$ in $T_{n-1}$ such that

$$
t_{i}-u_{i} \varepsilon \Omega \quad \text { for } i=1,2, \ldots, d
$$

and such that ${\sum n_{i} x_{i}}=\sum_{n_{i}} \sum_{n} s_{n-n_{i}} f_{i}$ for some $s_{n-n_{1}}$ in the appropriate $T_{n-n_{1}}$.

Suppose then, that $\Psi\left(t_{1} \oplus \ldots \oplus t_{d}\right)=\sum_{i=1}^{d} t_{i} x_{i} \varepsilon$. . Since $\mathscr{H}$ is a two-sided ideal generated by the $f_{j}$, we have that the elements in $\mathscr{A}$ can
be written in the following form and hence:

$$
\sum_{i=1}^{d} t_{i} x_{i}=\Sigma a_{k q} f_{q} b_{k_{q}}+\Sigma c_{q} f_{q}
$$

where the $a_{k q}, b_{k q}, c_{q}$ are homogeneous and where the degree of $b_{k q}$ is at least 1 . On comparing degree on both sides, we may even assume that the $a_{k q} f_{q} b_{k q}, c_{q} f_{q}$ are all in $T_{n}$. Since the $b_{k q}$ are of degree at least 1 ,

$$
b_{k q}=\sum_{m=1}^{d} d_{k q m} x_{m}
$$

where $d_{k q}$ is any homogeneous polynomial or constant. Then

$$
\sum a_{k q} f_{q} b_{k q}=\sum_{k,}^{d}{ }_{q, m=1}^{d} a_{k q}{ }^{f} q_{q} d_{k q m} x_{m}=\sum_{m=1}^{d} d_{m} x_{m}
$$

where

$$
d_{m}=k_{s}^{\Sigma} q^{a_{k q}} f_{q} d_{k q m}
$$

But since $f_{q} \varepsilon \mathfrak{U}$ we have that $d_{m} \varepsilon \mathscr{Q}$ If we write

$$
\sum c_{q} f q=\sum_{i=1}^{d} u_{i} x_{i}
$$

we then have that

$$
\sum_{i=1}^{d} t_{i} x_{i}=\sum_{i=1}^{d} d_{i} x_{i}+\sum_{i=1}^{d} u_{i} x_{i}
$$

implies

$$
t_{i}=d_{i}+u_{i} \quad i=1,2, \ldots, d
$$

hence

$$
t_{i}-u_{i}=d_{i} \varepsilon \Omega
$$

But $\Phi\left(c_{1} \oplus \ldots \oplus c_{k} \oplus \ldots\right)=u_{1} \oplus \ldots \oplus u_{d}$ by the definition of $\Phi$; hence we have proved (ii).

The two inclusions (i) and (ii) give us the desired result, and hence we have proved exactness of (1) at $A_{n-1} \oplus \ldots \in A_{n-1}$. This proves proposition 2.2.5, and hence also Theorem 2.2.1(1i).

Definition 2.2.6 The power series

$$
P_{A}(t)=\sum_{n=0}^{\infty} b_{n} t^{n}
$$

is called the Poincare function of the algebra $A$.
The following two theorems and corollary 2.3.1 are reworked from the original paper by Golod and Safarevic.

Theorem 2.2.7

$$
P_{A}(t)\left(1-d t+\sum_{i=2}^{\infty} r_{i} t^{i}\right) \geq 1,
$$

where inequality between power series is understood coefficient-wise.

Proof: Recall that

$$
\begin{equation*}
A=A_{0} \oplus A_{1} \oplus \cdots \oplus A_{n} \oplus \ldots \tag{1}
\end{equation*}
$$

and that the numbers $b_{n}=\operatorname{dim} A_{n}, n \geq 0$ are all finite. For the dimensions of the subspaces of $A$ we obtained the inequality:
(Theorem 2, 2.1 (ii))

$$
\begin{equation*}
b_{n} \geq d b_{n_{-1}}-n_{i} \sum_{n} b_{n-n_{i}} \quad(n \geq 1) \tag{2}
\end{equation*}
$$

Multiplying this inequality by $t^{n}$ and adding up for all $n \geq 1$, we obtain an inequality for the series:

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} t^{n} \geq \sum_{n=1}^{\infty} d b_{n-1} t^{n}-\sum_{n=1}^{\infty} n_{i} \sum_{n} t^{n} b_{n-n} \tag{3}
\end{equation*}
$$

If we set in the last sum $n-n_{i}=m$, and from the definition of $r_{i}$, we see that:

$$
\begin{align*}
\sum_{n=1}^{\infty}\left(\sum_{i} \sum_{n} t^{n} b_{n-n_{i}}\right) & =\sum_{n_{i}}\left(\sum_{n=n_{i}}^{\infty} t^{n} b_{n-n_{i}}\right)=\sum_{n_{i}} t^{n_{i}}\left(\sum_{n=n_{i}}^{\infty} t^{n-n_{i}} b_{n-n_{i}}\right) \\
& =\sum_{n_{i}} t^{n_{i}}\left(\sum_{m=0}^{\infty} t^{m} b_{m}\right)=\sum_{n_{i}} t^{n_{i}} P_{A}(t) \\
& =\left(\sum_{n_{i}} t^{n_{i}}\right) P_{A}(t)=\left(\sum_{i=2}^{\infty} r_{i} t^{i}\right) P_{A}(t) \tag{4}
\end{align*}
$$

On the other hand

$$
\begin{equation*}
n_{n=1}^{\infty} b_{n} t^{n}=\sum_{n=0}^{\infty} b_{n} t^{n}-1=P_{A}(t)-1 \tag{5}
\end{equation*}
$$

since $b_{0}=1$, and

$$
\begin{equation*}
\sum_{n=1}^{\infty} d b_{n-1} t^{n}=\sum_{n=1}^{\infty} d b_{n-1} t t^{n-1}=d t P_{A}(t) \tag{6}
\end{equation*}
$$

Therefore, the inequality (3) yields:

$$
\begin{equation*}
P_{A}(t)-1 \geq d t P_{A}(t)-\left(\sum_{i=2}^{\infty} r_{i} t^{i}\right) P_{A}(t) \tag{7}
\end{equation*}
$$

hence

$$
\begin{equation*}
P_{A}(t)\left(1-d t+\sum_{i=2}^{\infty} r_{i} t^{i}\right) \geq 1 \tag{8}
\end{equation*}
$$

This proves theorem 2.2.7.

Theorem 2.2.8 (Golod and Safarevic) If the coefficients of the power series

$$
\left(1-d t+\sum_{i=2}^{\infty} r_{i} t^{i}\right)^{-1}
$$

are non-negative, then

$$
\begin{equation*}
P_{A}(t) \geq\left(1-d t+\sum_{i=2}^{\infty} r_{i} t^{i}\right)^{-1} \tag{9}
\end{equation*}
$$

and the algebra $A$ is infinite-dimensional.

Proof: The inequality (9) is obtained from (8) by multiplying both sties by the power sories

$$
\begin{equation*}
F(t)=\left(1-d t+\sum_{i=2}^{\infty} r_{i} t^{i}\right)^{-1} \tag{10}
\end{equation*}
$$

which by assumption has non-negative coefficients. It remains to show that the algebra $A$ is infinite-dimensional. For this purpose, it is sufficient to show that $b_{n}>0$ for an infinite number of values of $n$, and this follows from (10) if we can show that the power series $F(t)$ is not a polynomial in $t$. We set

$$
\begin{equation*}
1+\sum_{i=2}^{\infty} r_{i} t^{i}=U(t) \tag{11}
\end{equation*}
$$

Then

$$
F(t)(U(t)-d t)=1
$$

$$
\text { i.e. } \quad F(t) U(t)=1+d t F(t)
$$

Since both $F(t)$ and $U(t)$ have non-negative coefficients, and $U(t)$ is not a polynomial, then clearly $F(t) U(t)$ is not a polynomial. Hence the left hand side of (12) is not a polynomial. Hence the right hand side of (12) is not a polynomial. Hence $F(t)$ is not a polynomial.

$$
\text { 2.3 Conditions on } r_{i}
$$

Corollary 2.3.1 If the numbers $r_{i}$ satisfy the inequalities $r_{i} \leq s_{i}$, and all the coefficients of the power series:

$$
\left(1-d t+\sum_{i=2}^{\infty} s_{i} t^{i}\right)^{-1}
$$

are non-negative, then $A$ is infinjte dimensional.

Proof: Let

$$
\begin{aligned}
& F=1-d t+\sum_{n=2}^{\infty} r_{n} t^{n}, \\
& G=1-d t+\sum_{n=1}^{\infty} \sum_{2} s_{n} t^{n}, \\
& U=G-F=\sum_{n=2}^{\infty}\left(s_{n}-r_{n}\right) t^{n} .
\end{aligned}
$$

We have then:

$$
\begin{gathered}
F=G-U=G\left(1-U G^{-1}\right), \text { and } G^{-1} \geq 0, U \geq 0, \text { from which we find: } \\
F^{-1}=G^{-1}\left(1-U G^{-1}\right)^{-1} .
\end{gathered}
$$

Now since $U \geq 0$ and $G^{-1} \geq 0$, we have $U G^{-1} \geq 0$, which implies $-U G^{-1} \leq 0$, which implies $1-U G^{-1} \leq 1$, which implies

$$
\left(1-U G^{-1}\right)^{-1} \geq 1
$$

(for if

$$
1-U G^{-1}=1-a_{1} t-a_{2} t^{2}-\cdots
$$

and

$$
\left(1-v G^{-1}\right)^{-1}=1+b_{1} t+b_{2} t^{2}+\ldots
$$

then

$$
\left(1-a_{1} t-a_{2} t^{2} \ldots\right)\left(1+b_{1} t+b_{2} t^{2}+\ldots\right)=1
$$

computing, we get

$$
\begin{aligned}
1 & =1 \\
-a_{1}+b_{1} & =0 \quad b_{1}=a_{1} \geq 0
\end{aligned}
$$

$$
b_{2}-a_{1} b_{1}-a_{2}=0 \Rightarrow b_{2}=a_{1} b_{1}+a_{2} \geq 0
$$

$$
\left.b_{n}-a_{1} b_{n-1}-a_{2} b_{n-2}-\cdots-a_{n}=0 \Rightarrow b_{n}=a_{1} b_{n-1}+a_{2} b_{n-2}+\ldots+a_{n} \geq 0\right)
$$

Hence:

$$
F^{-1}=G^{-1}\left(1-U G^{-1}\right)^{-1} \geq 0
$$

But $F^{-1}=\left(1-d t+\sum_{i=2}^{\infty} r_{i} t^{i}\right)^{-1}$. Hence, by Theorem 2.2.8, $A$ is infinite-dimensional.

Corollary 2.3 .2 If for each $i=2,3, \ldots, r_{i} \leq\left(\frac{d-1}{2}\right)^{2}$, then the algebra $A$ is infinite-dimensional.

Proof: Since $r_{i} \leq\left(\frac{d-1}{2}\right)^{2}$, we need to examine the coefficients of

$$
\left(1-d t+\sum_{i=2}^{\infty}\left(\frac{d-1}{2}\right)^{2} t^{i}\right)^{-1}
$$

and apply Corollary 2.3.1. So we have

$$
1-d t+\sum_{i=2}^{\infty}\left(\frac{d-1}{2}\right)^{2} t^{i}=1-d t+\left(\frac{d-1}{2}\right)^{2}\left(-1-t+1+t+t^{2}+t^{3}+\ldots\right)
$$

But

$$
\begin{aligned}
-(1+t)+1+t+t^{2}+t^{3}+\ldots & =-(1+t)+\frac{1}{1-t}=\frac{-(1+t)(1-t)+1}{1-t} \\
& =\frac{-1+t^{2}+1}{1-t}=\frac{t^{2}}{1-t}
\end{aligned}
$$

To continue the above we have

$$
\begin{aligned}
1-d t+\sum_{i=2}^{\infty}\left(\frac{d-1}{2}\right)^{2} t^{i} & =1-d t+\left(\frac{d^{2}-2 d+1}{4}\right)\left(\frac{t^{2}}{1-t}\right) \\
& =\frac{(1-d t)(4-4 t)+\left(d^{2}-2 d+1\right) t^{2}}{4(1-t)} \\
& =\frac{4-4 d t-4 t+4 d t^{2}+d^{2} t^{2}-2 d t^{2}+t^{2}}{4(1-t)} \\
& =\frac{4-4(d+1) t+(d+1)^{2} t^{2}}{4(1-t)} \\
& =\frac{(2-(d+1) t)^{2}}{4(1-t)}
\end{aligned}
$$

Taking the inverse of the above, we have

$$
\begin{aligned}
\left(1-d t+\left(\frac{d+1}{2}\right)^{2} t^{i}\right)^{-1} & =\frac{4(1-t)}{(2-(d+1) t)^{2}}=\frac{(1-t)}{\left(1-\frac{d+1}{2} t\right)^{2}} \\
& =(1-t)\left(\sum_{n=1}^{\infty} n\left(\frac{d+1}{2} t\right)^{n-1}\right) \\
& =(1-t)\left(1+\sum_{n=1}^{\infty}(n+1)\left(\frac{d+1}{2} t\right)^{n}\right)
\end{aligned}
$$

$$
\begin{align*}
& =1+\sum_{n=1}^{\infty}(n+1)\left(\frac{d+1}{2}\right)^{n} t^{n}-t-\sum_{n=1}^{\infty}(n+1)\left(\frac{d+1}{2}\right)^{n} t^{n+1} \\
& \left.=1+\sum_{n=1}^{\infty}(n+1)\left(\frac{d+1}{2}\right)^{n} t^{n}-\sum_{n=1}^{\infty} \frac{d+1}{2}\right)^{n-1} t^{n} \\
& =1+\sum_{n=1}^{\infty}\left((n+1)\left(\frac{d+1}{2}\right)^{n}-n\left(\frac{d+1}{2}\right)^{n-1}\right) t^{n} \\
& =1+\sum_{n=1}^{\infty}\left(\left(\frac{d+1}{2}\right)^{n-1}\left(\frac{(n+1)(d+1)-2 n}{2}\right)\right) t^{n} \\
& =1+\sum_{n=1}^{\infty}\left(\left(\frac{d+1}{2}\right)^{n-1}\left(\frac{(n+1) d-(n-1)}{2}\right)\right) t^{n} \tag{*}
\end{align*}
$$

Now since $d \geq 1$, we have that $\frac{d+1}{2} \geq 1$, and also $(n+1) d-(n-1) \geq 2$. So (*) has non-negative coefficients. Hence, by Corollary 2.3.1, A is infinite dimensional.

An even stronger condition on $r_{i}$ is the following due to Golod. Corollary 2.3.3 Let $r_{i}$ and $A$ be as previously defined. If

$$
r_{i} \leq \varepsilon^{2}(d-2 \varepsilon)^{i-2}
$$

where $\varepsilon$ is any positive number such that $d-2 \varepsilon>0$, then $A$ is infinite dimensional.

Proof: It is sufficient to examine the coefficients of

$$
\begin{equation*}
\left(1-d t+\sum_{i=2}^{\infty} \varepsilon^{2}(d-2 \varepsilon)^{i-2} t^{i}\right)^{-1} \tag{1}
\end{equation*}
$$

We have that

$$
\begin{aligned}
1-d t+\sum_{i=2}^{\infty} \varepsilon^{2}(d-2 \varepsilon)^{1-2} t^{i} & =1-d t+\varepsilon^{2} t^{2}\left(1+(d-2 \varepsilon) t+(d-2 \varepsilon)^{2} t^{2}+\ldots\right) \\
& =1-d t+\varepsilon^{2} t^{2}\left(\frac{1}{1-(d-2 \varepsilon) t}\right) \\
& =\frac{(1-d t)(1-d t+2 \varepsilon t)+\varepsilon^{2} t^{2}}{1-(d-2 \varepsilon) t}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1-2 d t+d^{2} t^{2}+2 \varepsilon t-2 d \varepsilon t^{2}+\varepsilon^{2} t^{2}}{1-(d-2 \varepsilon) t} \\
& =\frac{1-2(d-E) t+(d-\varepsilon)^{2} t^{2}}{1-(d-2 \varepsilon) t} \\
& =\frac{(1-(d-\varepsilon) t)^{2}}{1-(d-2 \varepsilon) t} \tag{2}
\end{align*}
$$

Taking the inverse of (2), we have (1) which is equal to

$$
\begin{aligned}
\frac{1-(d-2 \varepsilon) t}{(1-(d-\varepsilon) t)^{2}} & =(1-(d-2 \varepsilon) t) \frac{1}{(1-(d-\varepsilon) t)^{2}}=(1-(d-2 \varepsilon) t)\left(\sum_{n=1}^{\infty} n(d-\varepsilon)^{n-1} t^{n-1}\right) \\
& =(1-(d-2 \varepsilon) t)\left(1+\sum_{n=1}^{\infty}(n+1)(d-\varepsilon)^{n} t^{n}\right) \\
& =1+\sum_{n=1}^{\infty}(n+1)(d-\varepsilon)^{n} t^{n}-(d-2 \varepsilon) t-(d-2 \varepsilon) t \sum_{n=1}^{\infty}(n+1)(d-\varepsilon)^{n} t^{n} \\
& =1+\sum_{n=1}^{\infty}(n+1)(d-\varepsilon)^{n} t^{n}-(d-2 \varepsilon)\left(t+\sum_{n=1}^{\infty}(n+1)(d-\varepsilon)^{n} t^{n+1}\right) \\
& =1+\sum_{n=1}^{\infty}(n+1)(d-\varepsilon)^{n} t^{n}-(d-2 \varepsilon) \sum_{n=1}^{\infty} n(d-\varepsilon)^{n-1} t^{n} \\
& =1+\sum_{n=1}^{\infty}(d-\varepsilon)^{n-1}((n+1)(d-\varepsilon)-(d-2 \varepsilon) n) t^{n} \\
& =1+\sum_{n=1}^{\infty}(d-\varepsilon)^{n-1}(n d+d-n \varepsilon-\varepsilon-n d+2 n \varepsilon) t^{n} \\
& =1+\sum_{n=1}^{\infty}(d-\varepsilon)^{n-1}(d+(n-1) \varepsilon) t^{n}
\end{aligned}
$$

Since $d-2 \varepsilon>0 \Rightarrow \frac{a}{2}>\varepsilon \Rightarrow d-\varepsilon>\varepsilon>0$.
Hence all the coefficients of (1) are nonnegative and, by corollary 2.3.1, A is infinite dimensional.

Corollary 2.3.4 Let $d=2$ and $r_{i}=0$ for $i=2,3, \ldots, 9$ and $r_{i}=0$ or 1 for $i \geq 10$. Then $A$ is infinite dimensional.

Proof: Here corollary 2.3.2. does not apply for
(1) $r_{i}=0 \leq\left(\frac{2-1}{2}\right)^{2}=\frac{1}{4}$ but (2) $\quad r_{i}=1>\left(\frac{2-1}{2}\right)^{2}=\frac{1}{4}$

So we use corollary 2.3.3 and we choose $\varepsilon=\frac{1}{4}$. Then

$$
d-2 \varepsilon>0 \quad \text { i.e. } 2-\frac{1}{2}>0
$$

Clearly for $i=2,3, \ldots, 9 r_{i} \leq \frac{1}{16}\left(2-\frac{2}{4}\right)^{i}$. Wow suppose that $i \geq 10$. Then

$$
r_{i} \leq 1 \leq \frac{\left(2-\frac{1}{2}\right)^{8}}{16} \leq \frac{\left(2-\frac{1}{2}\right)^{i-2}}{16}
$$

Expanding $\left(2-\frac{1}{2}\right)^{8}$ using the binomial theorem, we find that the first four terms add to 19 , so $\left(2-\frac{1}{2}\right)^{8}>16$. Hence $\varepsilon^{2}(\mathrm{~d}-2 \varepsilon)^{\theta}>1$. Since

$$
(d-2 \varepsilon)^{i}<(c-2 \varepsilon)^{i+1}
$$

if $(\mathrm{d}-2 \varepsilon)>1$, this is sufficient to prove corollary 2.3.4.
Corollary 2.3.6. below is re-worked from a paper due to Newnan.[19]

Lemma 2.3.5 The following two conditions are equivalent
(i) There exists $0<\varepsilon<d / 2$ such that

$$
r_{i} \leq \varepsilon^{2}(d-2 \varepsilon)^{i-2} \quad \text { for } i=2,3, \ldots
$$

(ii) 'fhere exists $0<k<d$ such that

$$
r_{i} \leq\left(\frac{d-k}{2}\right)^{2} k^{i-2} \quad \text { for } i=2,3, \ldots .
$$

Proof: Set $d-k=2 \varepsilon$. Then $0<\varepsilon<d / 2$ if and only if $0<k<d$, and

$$
\varepsilon^{2}(d-2 \varepsilon)^{i-2}=\left(\frac{d-k}{2}\right)^{2} k^{i-2}
$$

Corollary 2.3.6 There is a positive integer iv such that, if $r_{i}=0$ for $i^{<}$iN and $r_{i} S^{\prime}(--1)^{i}$ for $i \geqslant 1$, then $A$ is infinite dimensional. Proof: Let $N$ be an integer satisfying $N \geq 4 d$ and $\left(1+\frac{1}{2 d}\right)^{N-2} \geq N^{2}$. Put $k=\frac{(N-2) d}{N}$, then for $i \geq 2$, by Lemma 2.3 .5 (ii), we have:

$$
\begin{align*}
\left(\frac{d-k}{2}\right)_{k}^{2} i-2 & =\left(\frac{d}{2}-\frac{(N-2) d}{2 N}\right)^{2}\left(\frac{(N-2) d}{N}\right)^{i-2} \\
& =\left(\frac{d N-N d+2 d}{2 N}\right)^{2}\left(\frac{(N-2) d}{N}\right)^{i-2} \\
& =\frac{d^{2}}{N^{2}}\left(\frac{N-2}{N}\right)^{i-2} d^{i-2} \tag{1}
\end{align*}
$$

Since $\left(1+\frac{1}{2 d}\right)^{N-2} \geq N^{2}$, it follows that $\frac{1}{N^{2}} \geq \frac{1}{\left(1+\frac{1}{2 d}\right)^{N}-2}$ Note that since $N \geq 4 \mathrm{~d}$ implies $\frac{2}{V} \leq \frac{2}{4 \mathrm{~d}}$. Hence

$$
\begin{equation*}
\left(\frac{N-2}{N}\right)^{i-2}=\left(1-\frac{2}{N}\right)^{i-2} \geq\left(1-\frac{2}{4 d}\right)^{i-2} \tag{3}
\end{equation*}
$$

Substituting (2) and (3) in (1), we have that (1)

$$
\begin{align*}
& \geq \frac{1}{\left(1+\frac{1}{2 d}\right)^{1-2}}\left(1-\frac{2}{4 d}\right)^{1-2} d^{i}  \tag{4}\\
& \geq\left(1-\frac{1}{d}\right)^{i-2} d^{i} \tag{5}
\end{align*}
$$

We have (5) because when $i=y_{\text {, }}$ then

$$
\frac{\left(1-\frac{1}{2 d}\right)^{i-2}}{\left(1+\frac{1}{2 d}\right)^{N-2}} \geq \frac{\left(1-\frac{1}{2 d}\right)^{i-2}}{\left(1+\frac{1}{2 d}\right)^{i-2}} \geq\left(1-\frac{1}{d}\right)^{i-2}
$$

provided that

$$
\frac{1-\frac{1}{2 d}}{1+\frac{1}{2 d}} \geq 1-\frac{1}{d}
$$

So

$$
1-\frac{1}{2 d} \geq\left(1-\frac{1}{d}\right)\left(1+\frac{1}{2 d}\right)=1-\frac{1}{d}+\frac{1}{2 d}-\frac{1}{2 d^{2}}=1-\frac{1}{2 d}-\frac{1}{2 d^{2}}
$$

That is

$$
0 \geq-\frac{1}{2 d^{2}}
$$

Now since $\dot{d}^{2} \geq(\mathrm{d}-1)^{2}$ we have that

$$
\begin{aligned}
\left(1-\frac{1}{d}\right)^{i-2} d^{i} & =\left(\frac{d-1}{d}\right)^{i-2} d^{i}=(d-1)^{i-2} d^{2} \\
& \geq(d-1)^{i-2}(d-1)^{2}=(d-1)^{i} \geq r_{1}
\end{aligned}
$$

Hence $A$ is infinite dimensional.

## CHAPTER 3.

In this chapter we will construct some examples of nil algebras and periodic groups. Before this, however, we will state clearly the Kuros problem and the Burnside question adding all the definttions necessary to understand them.

### 3.1 Algebraic and ivil Algebras

Definition 3.1.1 An algebra, $A$, is finitely-generated if there is a finite subset $a_{2}, \ldots, a_{r}$ (called its generators) such that every element of $A$ can be obtained from the generators by a finite number of additions, multiplications, and/or scalar multiplications.

Definition 3.1.2 Let $A$ be an algebra over a field $F$; aeA is said to be algebraic over $F$ if there is a non-zero polynomial $p(x) \varepsilon F[x]$ such that $p(a)=0$. That is

$$
\begin{equation*}
p(a)=k_{n} a^{n}+k_{n-1} a^{n-1}+\ldots+k_{1} a+k_{0}=0 \tag{1}
\end{equation*}
$$

where $k_{i} \varepsilon F$. The equation (1) may differ for different aعA.
Definition 3.1.3 An algebra $A$ over $F$ is said to be algebraic over $F$ if every a\&A is algebraic over $F$.

The following theorem is a very interesting one and we will see soon that it gives us the converse of the Kuros problem.

Theorem 3.1.4 If $A$ is a finite-dimensional (as a vector space) algebra over $F$, then it is algebraic over $F$.

Proof: Let $a \varepsilon A$, and let $n=\operatorname{dim} A$. Then the $n+1$ elements $a, a^{2}, a^{3} ; \ldots, a^{n}, a^{n+1}$, are linearly dependent over $F$. Thus there exist scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}$ in $F$ such that they are not all zero and such that
(1)

$$
\alpha_{1}^{a+\alpha_{2}} a^{2}+\ldots+\alpha_{n} a^{n}+\alpha_{n+1} a^{n+1}=0
$$

Thus $p(a)=0$, where $p(x)$ is the non-zero polynomial

$$
\begin{equation*}
p(x)=\alpha_{1} x+\alpha_{2} x^{2}+\ldots+\alpha_{n+1} x^{n+1} \quad \text { in } F[x] \tag{ii}
\end{equation*}
$$

Hence a is algebraic over $F$. But since a was any element of $A$, we can conclude that every element of $A$ is algebraic and therefore A is algebraic over F.

Definition 3.1.5 Let $A$ be an algebra over $F$; $a \varepsilon_{A}$ is said to be nilpotent if there exists a positive integer $n$ such that $a^{n}=0$. Definition 3.1.6 Let $A$ be an algebra over $F$ such that $A^{n}=(0)$ for some positive integer $n$; then $A$ is said to be a nilpotent algebra over F.

Definition 3.1.7 An algebra $A$ over $F$ is nil if every element of $A$ is nilpotent.

Theorem 3.1.8 If $A$ is a nil algebra over $F$, then $A$ is algebraic over $F$.

Proof: Since $A$ is nil, this implies that for ${ }_{2}{ }^{\varepsilon} A$, there exists a positive integer $n$ such that $a^{n}=0$. Clearly $a$ is algebraic over F since it satisfies the following polynomial.

$$
\begin{aligned}
& 1 x^{n}+0 x^{n-1}+\ldots+0 x+0 \\
& 1 a^{n}+0 a^{n-1}+\ldots+0 a+0=0
\end{aligned}
$$

Hence A is algebraic over F.

### 3.2 Kuros's Problem

First we will define the locally finite algebras. Then we will discuss the Kuros Problem.

Definition 3.2.1. An algebra $A$ over a field $F$ is locally finite if every finite subset of A generates a finite dimensional subalgebra.

We have seen that any finite dimensional algebra is algebraic (Theorem 3.1.4), hence any locally finite algebra is algebraic. Now the following question (an analog to the Burnside's Problem on groups), was raised by Kuros in 1941.

Problem 3.2.2 Is every algebraic algebra locally finite?
In other words, if $A$ is an algebraic algebra over $F$, does a finite number of elements of $A$ generate a finite dimensional subalgebra of $A$ ? Or, is a finitely generated algebraic algebra finite dimensional?

As Jacobson says, "A number of interesting open questions on algebraic algebras seem to hinge on the answer to this problem." Some of these are the following:

Question 3.2.3 If $A$ and $B$ are algebraic, then is $A \otimes B$ algebraic?

It is easy to see that if $A$ and $B$ are locally finite, then $A \otimes B$ is locally finite. Hence an affirmative answer to Kuros's problem would provide an affirmative answer to 3.2.3.

In the coming sections, we shall give some examples of infinite dimensional algebras.

Also, we like to mention that $\operatorname{Kuros}^{\mathrm{V}}$ 's question has an affirmative answer for algebras with a polynomial identity (PI - algebras) and hence for algebras of bounded degree. The results are due to Kaplansky which generalize earlier results by Jacobson and by Malcev.

### 3.3 PI - Algebras and Bounded Algebras

Definition 3.3.1 An algebra $A$ over a field $F$ is said to satisfy a polynomial identity if there is an $f \neq 0$ in $F\left[x_{1}, \ldots, x_{d}\right]$, the free algebra over $F$ in the noncommuting variables $x_{1}, x_{2}, \ldots, x_{d}$ for some $d$, such that $f\left(a_{1}, \ldots, a_{d}\right)=0$ for all $a_{1}, \ldots, a_{d}$ in $A$. An algebra A which satisfies a polynomial identity is called a PI - algebra.

Example 3.3.2 Let A be a nil algebra of bounded index of nilpotency. That is, $x^{k}=0$ holds for every $x$ for some fixed $k$. Then $A$ is a PI - algebra.

Example 3.3.3 Any commutative algebra A over F is a PI - algebra, for it satisfies the polynomial identity $f\left(x_{1}, x_{2}\right)=0$, where $f\left(x_{1} ; x_{2}\right)=x_{1} x_{2}-x_{2} x_{1}$.

We mention the following results to give an idea of what was known regarding the Kuros problem prior to the work of Golod and Safarevic. If $A$ is finite dimensional over $F$, of dimension $n$, then every element in A satisfies a polynomial of degree $n+1$ over $F$. This defines the notion of an algebraic algebra of bounded degree over $F$. Definition 3.3.4 $A$ is said to be an algebraic algebra of bounded degree over $F$ if there exists an integer $n$ such that given a $\varepsilon A$, there exists a polynomial $x^{n}+\alpha_{1} x^{n-1}+\ldots+\alpha_{n} \varepsilon F[x]$ satisfied by a.

$$
\text { i.e. } a^{n}+\alpha_{1} a^{n-1}+\ldots+\alpha_{n}=0
$$

Lemma 3.3.5 If $A$ is algebraic of bounded degree over $F$, then $A$ is a PI algebra. [11]

Theorem 3.3.6 If $A$ is an algebraic algebra over $F$ satisfying a polynomial identity, then $A$ is locally finite. [11]

Theorem 6.4.4 If $A$ is an algebraic algebra of bounded degree over F, then it is locally finite.

### 3.4 Periodic Groups and Locally Finite Groups

Definition 3.4.1 A group $G$ is said to be a periodic or torsion group if every element in $G$ is of finite order.

Definition 3.4.2 The order of an element $b$ is the smallest positive integer $n$ such that $b^{n}=1$, if it exists. If there is such an $n$, we say that $b$ has finite order.

Definition 3.4.3 If $b^{n}=1$, with $n$ fixed, for all $b \varepsilon G$, and n is the smallest positive integer for which this is true, then $n$ is called the exponent of $G$.

Definition 3.4.4 A group $G$ is said to be locally finite if every finitely generated subgroup of $G$ is finite.

Definition 3.4.5 $G$ is a finitely generated group if $G$ contains a finite set of elements $g_{1}, g_{2}, \ldots, g_{r}$ (called its generators) such that every element can be expressed as a finite product of the generators and their inverses.

Theorem 3.4.5 Every locally finite group is a torsion group. Proof: Let $G$ be a locally finite group. We want to show that every element of $G$ has finite order. That is, the subgroup generated by that element is finite. But the subgroup generated by a given element is certainly finitely generated, hence is finite, which implies that the given element has finite order.

Hence $G$ is a torsion group.

Example 3.4.6 The group $\mathrm{Z}+$ of integers is not a torsion group since a single element does not have finite order. Hence $z+$ is not locally finite.

Example 3.4.7 This is an example of an infinite group which is locally finite. Take an infinite dimensional vector space $V$ over the field of integers module $p, Z p$. Then $V$ is an abelian group. Now take any finite subset of $V, a_{1}, a_{2}, \ldots, a_{n}$, then the subgroup
generated by this subset is just the set of all $\sum_{i=1}^{n} \xi_{i} a_{i}$, where $\xi_{i} \in Z p$. There are only finitely many choices of each $\xi_{i}$. Hence, only a finite number of elements of the subgroup generated by the $a_{i}$.

Hence that finitely generated subgroup is finite. Hence the group is locally finite.

### 3.5 Burnside Problem

The converse to Theorem 3.4.5 is the Burnside Problem which originally was asked in 1904. We state two versions of the Burnside Problem.

1. Original Burnside Problem. Is every torsion group locally finite? An equivalent version of this guestion is: Is a finitely generated periodic group finite?
2. Burnside Problem for Exponent $N$. Let $G$ be a torsion group in which $x^{N}=1$ for all $x \in G, N$ a fixed positive integer. Is $G$ then locally finite?

These problems have answers now and they are as follows:

1. As a result of the work of Golod and Safarevic, the origInal Burnside problem is answered in the negative. In the following section, we will exhibit a finitely generated periodic group which is infinite.

However, for matrix groups, Burnside himself settled the original Burnside Problem in the affirmative, by the following:

Theorem 3.5.1 (Burnside) A torsion group of matrices over a field is locally finite.
2. Novikov in 1959, announced the existance of an infinite group $G_{N}$ generated by two elements in which $x^{N}=1$ holds for all $\mathbf{x} \varepsilon G$. This is true for any odd $\mathbb{N} \geq 4381$. The proof done by induction appeared in 1968 in paper nearly 300 pages long, which gives an actual construction.

Regardless of the answer to the Burnside Problem, for exponent N , the following problem is still an interesting one.

Restricted Burnside Problem for Exponent N: Among all the finite groups on $K$ generators with exponent $N$, is there a largest one?

The answer is "Yes", if N is prime, done by Kostrikin.
If N is prime and $\geq 4381$, we have two results:
(a) There is a largest finite group of exponent N in two generators (Kostrikin).
(b) There is an infinite group of exponent $\mathbb{N}$ in two generators (Novikov and Adyan).

### 3.6 Settling the Kuros Problem and the Original Burnside Problem in Negative

In this Section, we are ready to apply the Golod-Safarevic theorem to construct a finitely generated nil algebra which is infinitendimensional and a finitely generated infinite periodic group.

This settles the Kuros and Burnside problems negatively.

Theorem 3.6.1 If $F$ is any countable field, there exists an infinite dimensional nil algebra over $F$ generated by two elements. Proof: Let $T=F\left[x_{1}, x_{2}\right]$. Then

$$
T=F \oplus T_{1}+\ldots \& T_{n} \oplus \ldots
$$

where the elements of $T_{i}$ are homogeneous of degree $i$. Let

$$
\mathrm{T}{ }^{\theta}=\mathrm{T}_{1} \notin \mathrm{~T}_{2} \Leftrightarrow \ldots \Leftrightarrow \mathrm{~T}_{\mathrm{n}} \oplus \ldots
$$

$T^{\prime}$ is an ideal, since if $u E T T^{\prime}$ and $r \in T$, then ruET' and urモT', because $\partial(r u)$ and $\partial(u r)$ are always $\geq 1$ since $\partial(u) \geq 1$. Also, $T$ is a vector space with a countable basis since the basis of each $T_{i}$ is finite. Hence, by Lemma 3.6.2, $f$ ' is countable. Now let

$$
s_{1}, s_{2}, \ldots, s_{n}, \ldots
$$

be the elements of $T^{2}$. Fict $m_{1}=10$ and raise $s_{1}$ to the $m_{1}$ power so

$$
s_{1}^{m_{1}}=s_{11} \text { (f) } s_{12} \Leftrightarrow \ldots s_{1, k_{1}}
$$

$$
s_{1 j} \varepsilon T_{9+j}, \frac{1 \leq j \leq k_{1}-9 .}{} \text { and } s_{1}^{m_{1}} \varepsilon T_{10} T_{11} \ldots \& T_{k_{1}}
$$

Choose $m_{2}>0$ so that

$$
s_{2}^{m_{2}}=s_{2, k_{1}+1} s_{2, k_{1}+2} \ldots s_{2, k_{2}}
$$

$$
s_{2, k_{2}+j} \varepsilon T_{k_{1}+j}, 1 \leq j \leq k_{2}-k_{1} \text { and } s_{2}^{m_{2}} \varepsilon T_{k_{1}+1} \oplus T_{k_{1}+2} \oplus \ldots T_{k_{2}}
$$

Having chosen $m_{1}, \ldots, m_{n-1}$, with corresponding $k_{1}<k_{2}<\ldots<k_{n-1}$,
choose $m_{n}>0$ so that

$$
s_{n}^{m_{n}}=s_{n, k_{n-1}+1} \not s_{n, k_{n-1}+2} \not \ldots s_{n, k_{n}}
$$



Clearly $k_{1}<k_{2}<\ldots<k_{n}<\ldots$.
Now let 2 be the ideal of $T$ generated by all the $s_{i j}$. Notice that for that choice of the $s_{i f}$ 's, we have $r_{k}=0$, $2 \leq k \leq 9$. and $r_{k}=0$ or 1 for $k \geq 10$, by construction. Hence, by corollary 2.3.4, we have that $T /$ थis infinite dimensional. Now since $\mu \xi_{T}$; we form the quotient algebra $T^{\prime} / थ$ which is obviously infinite dimensional. But $T^{\gamma} / \mathscr{N}$ is a nil algebra by construction, for if $\bar{s}_{i} \varepsilon T^{\prime} / \mathcal{Q}$ then $\bar{s}_{i}=s_{i}+थ$, and $\bar{s}_{i}=\left(s_{i}+2\right)^{m_{i}}=$ $s_{i}^{m_{i}}+\mathfrak{U}=\mathbb{Q}$, hence, $\bar{s}_{i}^{m_{i}}=\overline{0}$. Hence the algebra $T^{\prime} / \mathfrak{U}$ is the required finitely generated algebraic algebra (in fact, a nil algebra) which is infinite dimensional.

Lemma 3.6.2 Let $V$ be a vector space with a countable basis over a countable field $F$. Then $V$ is countable.

Proof: Let $B=\left\{v_{1}, v_{2}, \ldots, v_{n}, \ldots\right\}$ be a countable basis for $V$, and let $B_{n}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a subset of $B$. Now let $\bar{B}_{n}$ be the subspace of $V$ spanned by $B_{n}$. Then $\bar{B}_{n}$ is countable since there is a natural one to one correspondence between $\bar{B}_{n}$ and $\underbrace{F x \ldots x}_{n \text { times }}$

But then

$$
V=\bigcup_{n=1}^{\infty} \bar{B}_{n}
$$

is the countable union of countable sets and hence countable.

Let $F$ be a finite field with $p$ elements and let 9 be the ideal in $T=F\left[x_{1}, x_{2}\right]$ as in Theorem 3.6.1 and let $T^{\prime}=T_{1} \otimes T_{2} \oplus \ldots \in T_{n} \oplus \ldots$ If $A=T / \mathscr{H}$ then $a_{1}=x_{1}+\mathcal{M}$ and $a_{2}=x_{2}+\mathscr{H}$ is the generating set for T / \%

Definition 3.6.3 A group $G \neq\{1\}$ is a p-group if every element of $G$ except the identity has order a power of the prime $p$.

Lemma 3.6.4 Let $G$ be the multiplicative semigroup in $A$ generated by $1+a_{1}, 1+a_{2}$. Then $G$ is a group, and is in fact, a p-group.

Proof: Obviously $G$ is the subset of $A$ consisting of all finite power products of the elements $1+a_{1}, 1+a_{2}$, (with non-negative exponents). Hence:

$$
G \subset\left\{1+a \mid \text { for some } a \in T^{\prime} / \mathfrak{2}\right\}
$$

But the algebra $T^{\prime} /$ is is a nil algebra (Theorem 3.6.1) and therefore, each $a \varepsilon T^{\prime} /\left\{\right.$ is nilpotent, $i$. e. for some $n$ we have $a^{n}=\overline{0}$. Now take $n$ large enough that $p^{n}>_{n}$. Then

$$
a^{p^{n}}=a^{n} a^{n}-n=\overline{0} \quad\left(a^{n}=\overline{0}\right)
$$

and

$$
(1+a)^{p^{n}}=1+p^{n} a+\frac{1}{2}\left(p^{n}-1\right) p^{n} a+\ldots+p^{n} a^{n}-1+a^{p^{n}}=1+a^{p^{n}}=1 .
$$

This is because all the coefficients are 0 , since they are divisible by $P$ and $F$ is the finite field with $p$ elements. Hence $G$ contains a multiplicative identity 1 . Hence $G$ is a semigroup with identity. Also, since powers of the same element commute, we have

$$
1=(1+a)^{p^{n}}=(1+a)(1+a)^{p^{n}-1}=(1+a)^{p^{n}-1}(1+a)
$$

that is $1+a$ has a multiplicative inverse $(1+a)^{p^{n}-1}$, which is clearly in $G$.

Therefore, $G$ is a group. Moreover, $G$ is a p-group.

Lemma 3.6.5 Let $A$ be an algebra over a field $F$ and let $G$ be a finite subset of $A$ which is a group under multiplication. Then the linear combinations of the elements of $G$ form a finite dimensional subalgebra $B$ over $F$.

Proof: Let $G=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite subset of $A$ and moreover, let $G$ be a multiplicative group. Then the elements of the subalgebra generated by $G$ are of the form

$$
\begin{equation*}
\sum_{i=1}^{n} \xi_{i} a_{i} \tag{i}
\end{equation*}
$$

The subalgebra looked at as a vector space is spanned by $a_{1}, \ldots, a_{n}$. Therefore, it has a finite basis and hence is finitedimensional.

Theorem 3.6.6 If $p$ is any prime, there is an infinite group $G$ generated by two elements in which every element has finite order a power of $p$.

Proof: Let $G$ be the group in Lemma 3.6.4. Then $G$ is a p-group, and it remains to show that $G$ is infinite. Assume that $G$ is finite. Since $G$ is finite, the linear combinations of the elements of $G$ form a finite dimensional algebra $B$ over $F$, as in Lemma 3.6.5. Since $1,1+a_{1}, 1+a_{2}$, are in $G$, then the elements

$$
\begin{aligned}
& a_{1}=\left(1+a_{1}\right)-1 \\
& a_{2}=\left(1+a_{2}\right)-1 \\
& 1=\left(1+a_{1}\right)-a_{1}=\left(1+a_{2}\right)-a_{2}
\end{aligned}
$$

are in $B$. Observing that $1, a_{1}, a_{2}$ generate the algebra $A$, we get $A=B$, contradicting that $A$ is infinite-dimensional over $F$. Therefore, $B$ is infinite dimensional and hence $G$ is infinite.

## BIBLIOGRAPHY

[1] Burnside, W., On an unsettled question in the theory of discontinuous groups, Quart. J. Pure and Applied Math., 33 (1902) $230-238$.
[2] Cartan, H., Elementary theory of analytic functions of one or several complex variables, ed. by Addison-Wesley Publish-ing Company, Inc., 1963.
[3] Chevalley, Fundamental Concepts of Algebra, ed. by Academic Press Inc., New York, 1956.
[4] Curtis, Charles W., Linear Algebra, Fourth printing 1967, ed. by Allyn and Bacon Inc., Boston.
[5] Fisher, I., and Struik, R., Nil algebras and periodic groups, The American Nath Month1y, 75 (1968), 611-623.
[6] Golod, E.S., and Safarevic, I.R., On class field towers, Izv. Akad. iJauk SSSR. Ser. Mat., 28(1964) 261 - 272, AMS Translations, Ser. 2, 48(1965) 91-102.
[7] Golod E.S., On nil-algebras and finitely-approximable p-groups, Izv. Akad. Nauk SSSR. Ser.Mat., 28(1964) 273 - 276. AilS Translations. Ser. 2, 48(1965) 103-106.
[8] Hall, Marshall Jr., Generators and Relations in Groups - The Burnside Problem, Lectures on Modern Math, Vol. II, ed. by T.L. Saaty, 1964.
[9]. Hall, Marshall Jr., Solution of the Burnside problen for exponent 6, Illinois J. of Math., 2(1958), 764-786.
[10] Hall, Rarshall Jr., The Theory of Groups, (Third printing 1962) ed. by The Macmillan Company, New York.
[11] Herstein. I.N., Noncommutative Rings, ed. by The Mathematical Association of America, 1968.
[12] Hoffman and Kunze, Linear Algebra, third edition, ed. by Englewood Cliffs, W.J.,
[13] Jacobson, $\mathrm{IV}_{\mathrm{N}}$, Structure theory for algebraic algebras of bounded degree, Ann. Math., 46(1945) 695-707.
[14] Jans, James P., Rings and Fomology, ed. by Holt, Rinehart, and Winston,
[15] Kuros, A.G., Problems in ring theory connected with Burnside problem in periodic groups, Izv. Akad. Nauk SSSR. Ser. Mat., 5(1941) 233 - 241.
[16] Levitzki, Jakob, On the radical of a general ring, Ball, 49(1943) 462-466.
[17] Levitzki, Jakob, On a problem of A. Kuros, Ball AMS, 52 (1946) 1033-1035.
[18] McCoy, Neal K., The Theory of Rings, ed. by The Macmillan Company, New York, 1964.
[19] Newman, M.F., A theoren of Golod and Safarevic and an application in group theory, Canberra, A.C.T., Australia.
[20] Novikov, P.S., On periodic groups, Dokl. Akad. Nauk. SSSR., 127 (1959) 4, 749-752. AMS Translations, Ser. 2, 45 (1965) $19-22$.
[21] Wovikov P.S., and Adyan S.I., On infinite periodic groups, I, Izv. Akad. Nauk $\operatorname{SSSR}$, Ser. Mat. $32(1968) 212-244$.
[22] Sanov, I.N., Solution of Burnside's problem for exponent 4, Leningrad State University Ann., 10(1940) 166-170.

