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A theorer? by Golod and ~nfarevi :  with ann l i ca t ion  

t o  n i l  a lpebras  and ner iodic  p r o w s  i s  c l e a r l y  nxoved 

i n  t h i s  t h e s i s .  The a ~ n l i c a t i o n s  settle negatively 

v ICuros's quest ion Is n f i n i t e l y  pimerated a lpebra ic  

a l rebra :  Eini  te-dimensional? and Burnsfdc ' s cuim t ion ;  

Is a f i n i t e l y  generated per iodic  croup f i n i t e ?  

Remarks and theorems on sub jec t s  r e l a t e d  t o  t h e  

nain theoren a r e  i n  Chapter l p  the proof of the  theorem 

i s  i n  Chanter 2 ?  and t h e  apnl ica t ions  of i t  a r e  i n  
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INTRODUCTION 

The purpose of t h i s  t h e s i s  i s  t o  give a c l e a r  exposit ion of a 

theorem of Golod and xafareviz  [6] and some of its consequences. 

The theorem, published i n  1964, is a remarkable r e s u l t .  Its proof 

is r a t h e r  shor t ,  but  i t  provides t h e  answer t o  many quest ions.  Two 

of the  quest ions which t h i s  paper w i l l  d iscuss  a r e  more c lose ly  

r e l a t e d  than o r i g i n a l l y  appeared. The problems re fe r red  t o  are the  

~ u r o X  Problem [15], and t h e  general  Burnside Problem [I] and t h e  

construction of examples which solve  these  problems is f a i r l y  

straight-forward (given t h e  main theorem of ~olod-Jafarevix) . 

This t h e s i s  !1.as an exa~ple of an i n f i n i t e  dinensional  n i l  algebra 

with a f i n i t e  number of generators over a countable f i e l d .  This is 

a negative answer t o  t h e  ~ u r o x  quest ion which was asked i n  1941: Let 

A be a f i n i t e l y  generated, a lgebra ic  algebra.  Is A finite-dimen- 

s i o n a l  (as  a vec to r  space)? The h i s t o r y  of the  quest ion is very 

in te res t ing .  ~ u r o x  discussed severa l  s p e c i a l  cases  [ U ] ,  a l l  with 

a f f i rmat ive  answers, Jacobson and Levi taki  [13J,[16],[17] s e t t l e d  

the  quest ion a f f i rmat ive ly  f o r  a lgebras  of bounded degree. I n  t h e  

meantime, many s p e c i a l  cases  had been s tudied.  Then, i n  1964, Golod 

announced that: the  answer t o  the  ~ u r o g  quest ion was negative.  A t  

t h e  same t i m e ,  he gave a negative answer t o  the  Burnside problem: 

Let G be a f i n i t e l y  generated per iodic  group. Is G f i n i t e ?  



Burnside 111 considered t h e  following three cases with affirmative 

( I )  G of exponent 2, 

(2) G of exponent 3, 

(3) G of exponent 4, and G with two generators.  

I n  1940, Sanov (221 obtained an  a f f i rmat ive  answer f o r  exponent 

4 and an  a r b i t r a r y  (but f i n i t e )  number of generators,  Marshall Hall 

Jr . E9 ] gave an  a f f i rmat ive  answer f o r  exponent 6. The answer is 

still unknown f o r  G of exponent 5. 

Then Novikov, i n  1959, announced [23] t h a t  the  answer i s  no, i f  

t h e  exponent of G 11372 and t h e  number of generators is  a t  l e a s t  2. 

(The proof of i.203 appeared i n  1968 by P.S. Novikov and S.I.  Adyan 

[ 211 , where n172 has been replaced by odd n ~ 4 3 8 1 .  ) 

I n  1964, Golod constructed a f i n i t e l y  generated group which is 

per iodic  and i n f i n i t e ,  which s e t t l e d  negatively t h e  o r i g i n a l  Burnside 

problem. 



This chapter is to make the reader familiar with a few terms 

and some symbols which are closely related to the main part of 

this thesis. In addition, some definitions will be given, while 

it will be assumed that the reader is acquainted with the most 

basic ones. 

1.1 Free Semigroups and Generators 

Let X = {x, ,x,, . . . , x } be a set of d noncommuting inde- d 

terminates, and let SX consist of all finite sequences of elements 

of X, 

Define a binary operation, that is, a multiplication on SX, 

as follows: For any two elements of SX, say 
sl = Xi,Xi2 ... X in 

and s2 - Xj lXj 2 
. x their product sles2 is the product 

j m 
obtained by juxtaposition of sl and s2 : 

For example, if sl a x x x and s2 - x x then sl0s = x x x OX x = 
1 1 3  3 2 '  2 1 1 3  3 2  

X1XlX3X3X2* 

with this definition of multiplication SX becomes a semi- 

group; we call it the free semigroup on X. Note that the binary 

speratibn which we just defined is associative. For example: 

(klxLx3 *x3x2) *x1x4x3 = ( x ~ x ~ x ~ x ~ x ~ )  * x ~ x ~ x ~  



- X1 L1 X3 (x3 I XI X4 X) 1 

- x x x *(x X X *X4X)) 
1 1 3  . 3 2 1  

The elements of SX are of ten  called "words" b u t  i n  t h i s  

t h e s i s ,  they w i l l  be c a l l e d  monomials. We may say t h a t  t h e  element 

Xi of X has l eng th ,  1 i f  w e  consider xi as a word. However, 

ta lk ing i n  terms of monomials x has degree 1. How w e  a r e  ready 
i 

t o  de f ine  t h e  degree of a monomial which is  simply t h e  number of 

occuring x i ' s  For example, the  monomial x2x2x5xb is of degree 4 .  

If i n  a word w e  have a succession of indeterminates a l l  the  

m same, say x x ... xi, (m t imes),  then we write xi. i i 

We let  1 be a symbol not  i n  X(we c a l l  1 the  "empty word" o r  

the  "monwial of degree OM), and def ine  l * s  = s b l  s f o r  a l l  sGX. 

Thus we have a semigroup { l ) U S X ,  the  free semigroup with i d e n t i t y  

on X. 

Remark: 1.1.1 The  number of d i s t i n c t  monomials of a given degree n 

is t h e  number of ways of choosing ( i n  order)  n indeterminates from 

the  set X. This number i n  t h i s  case is dn. 

Example: Assume t h a t  X = {x1,x2,x3,x4] is the  set of four  non- 

commuting indeterminates. Then the number of monomials of degree 

The monomials of degree 2 are 1 6  i n  number and they a r e  the  

following: 



The elements of SX, t h a t  is  the  monomials, a r e  of t h e  form 
I 

x EX. 
ik 

We say t h a t  X is a s e t  of genera to r s  of S E t  is o f t e n  x ' 
1 

convenient to work with SX 5 {l)VsX r a t h e r  than SX. We index 

1 1 
SX by t h e  index s e t  Q: SX - isW I W E Q ~  . 

1.2 Vector Spaces Over a Fie ld  F and Algebras Over a F i e l d  F, 

1 
Let T be the  vector  space over a f i e l d  F with a b a s i s  SX. 

~ e n o t e  T by F(xl ,x2,  ..., xd]. Then T = F[xl,x,, ..., :cd] = {&k law@ 

and aw # O f o r  only f i n i t e l y  many WEQ). Each element of T is 

uniquely expressed a s  a l i n e a r  combination of elements of s,: over 

the  f i e l d  F. (Note 

Define add i t ion  

m 

t h a t  s #s i f  i # j ) .  
i j 

Addition is obviously well defined s ince  aw+bwEF. 

Define s c a l a r  mul t ip l i ca t ion  by 

a(La s ) * C(aaw) sw 
Q W W  Q 

a,%cF. 

Note t h a t  Za s = Cb s i f  and only i f  aw = bw f o r  a l l  wen. 
Q W W  f i w w  

Then 0 ,208 and Za s = 0 implies aw = 0 f o r  a l l  wen. 
n w  Q W W  

e 2 Example: L e t  SX be t h e  semigroup {e,a,a 1, where ea - ae = a, 

2 2 2 e a 2  = a e = a', a a 2  = a a = e. Then T = {xe + ya + za I X , ~ , ~  EF} 

i s  a vector  space over the  f i e l d  F . Let xe f ya + za and 

x t e  + yla + z f a 2  b e  any two elements of T. Then i t  is n a t u r a l  

t o  write: 



, 
(xe + ya + za2) (x'e -t- y'a + z 'a2)  = xx'ee + xy'ea + xz'ea2 

+ yxPae + yy'aa + yz'aa2 + zx'a2e + zy7a2a + zz'a2a2 

xxqe + xyva + xz'a2 + yz'e + yz'a + yy9a2 + z y " e  f z z ' a  + zx'a2 

= (XX' + yz9 + zyl)e + (xyg +yx' + zzl)a + (xz' + yy' 3. zx')a2 

Definition 1.2.1 An Algebra A is a ring which is a vector space 

over a field F. In addition, the following holds: 

a(uv) = (au)v = u(av) for all ad?, u,v & A .  

Mow let us define multiplication on T over F. Let u,v~T, where 

u =  C a s  a n d v =  C b s  
~ E R  i 3 j ~ n  3 j* 

Then 

The above multiplication is clearly well defined since si,sj are 

1 
elements in SX where multiplication is already defined. 

Theorem 1.2.2 With the multiplication 

with identity. 

Proof; Let u - hisI9 v = Tb s w - 
j j' 

the multiplication (*) is associative, 

(UV)W = (Ca s .Cb s )Cc s 
Q i i Q j j Q k k  

= C(a b )c (s $ )s 
$7 i j  k i d  k 

= Ta s bfb,c (s s ) 
Q i S . R J k  3 k  

I&*) since si, sj , sk E S: . 

defined in (*) , T is a ring 

rCksk be elements of T. Then 

since 



I 

The d i s t r i b u t i v e  law holds a l s o ,  s ince  

u(v + w) = b. s (a s + LC s . )  = Caisi(Z(b. + c ) s . )  
i i  j j  3 J J j J  

= Z a ( b  + c ) s s  = C ( a b  + a c ) s s  
i 3 j i j  i j  i j  i j  

= C ( a b  s s + a  C.S s ) = C a b  s s + Caicjsisj 
1 3 1 3  i ~ i j  i j i j  

= C a s C b s  + C a s C c s  = u v + u w  
i i  j j  i i  J j  

Similarly (u + v)w = uw + w. 

The i d e n t i t y  of T is  the  monomial of degree 0 denoted by 1. Hence 

T i s  a r ing  with i d e n t i t y .  

Theorem 1.2.3 T is  an a lgebra  over F , c a l l e d  the  f r e e  semigroup 

1 
algebra on SX over F. 

Proof: Let a ,  ai, b E F, u = aisi and v = Eb s e T. Then: - j j j 

a(uv) = aCa.s Cb s = aCa b s s = C(aa )b s s 
l i  j 3  1 3 1 3  i j i j  

= Caa s s = (ahi6i)Ebjsj ( a u ) ~  
i i  j j  

= Caa s Zb s - E(aa )b s s = Zai(ab.)si.sj 
i i  j j  i j i j  J 

= Caisi(Cab s ) = Caaisi(aCb s ) = u(av) 
3 j j 3 

Hence T is  an a lgebra  over F . 
It i s  worthwhile t o  observe t h a t  t h e  elements of X do not  com- 

mute with each o the r ,  but  they do commute with elements of F. 

1 .3  EIomogeneous Polynomials and Subvector-Spaces of T Over F. 

I n  t h i s  sec t ion ,  w e  w i l l  c a l l  the  elements of T polynomials. 

This is  why the  xi a r e  c a l l e d  non-commuting indeterminates. 
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I 

Def in i t ion  1 .3 .1  A homogeneous polynomial of degree n i s  a ---- 
l i n e a r  combination of d i s t i n c t  monomials each of depree n . 

I f  u is  a homogeneous polynomial of degree i w e  denote 

the degree 1 by a(u) = i. Here is an example: 

L e t  x, x2 + x2x2 = U. Then u i s  a homogeneous polynomial and 

= 2, 

Let x, + xlxZxl = V. Clear ly  v is not  a homogeneous polynomial. 

Theorem 1.3.2 Let Tn be the  s e t  of a l l  homogeneous polynomials 

of T of degree n. Then Tn i s  a subvector space of T over F. 

Proof: A t  f i r s t  no te  t h a t  Tn is a subset  of T . We need t o  - 
show t h a t  T is i t s e l f  a vector  space over F . Also observe n 

t h a t  T # f4 s i n c e  X ~ E T ,  . 
n 

IJow l e t  u = Za s and v = & s where ai, bi, c a r e  i n  F. i i i i  n 
It i s  c l e a r  t h a t  a(si) = n f o r  each s t h a t  appears i n  u o r  i n  v. 

i 

Then 
cu + v = cZaPsi + hisi = &aisi + Zbisi= Z(ca. + bi)si 

1 

Note t h a t  a b a s i s  for Tn c o n s i s t s  of a l l  d i s t i n c t  monomials 

of degree n , hence dim T = dn. n 

Example: Let T = F[X I ,x,,x,]. Then 

0 1 2 
dim To 3 3 = 1, dim TI = 3 = 3, dim T2 = 3 = 9 

3 
dim T3 = 3 = 27, dim T+ = 3' = 81 and s o  on. 

1 
To has b a s i s  { 1 )  ( the  i d e n t i t y  of SX) , and nay be i d e n t i f i e d  

with the  f i e l d  F . 



TI has b a s i s  ( 3  ,x2,x3) 

T2 has b a s i s  f xlxl ,xlx2,x,x3 ,x2x1 .x2x2 $x2X3 .Xpl ,x3x2.x3x3} 

and T, has basis 

3 2 2 2 2 
'X~,. X1X2, X 1 X 3 9  X I X 2 X 3 ~  X1X3 X 2 >  X 1 X 2 X 1 9  X1X3q 9 X 1 X 2 9  XlX3 

3 2 2 2 2 
X X X  X X X  X X X  X X  

X 3 9  '~~1' X3X2' X3x1X2' 3 2 1' 3 1 3' 3 2 3 '  3 1' X3X'2' 

2 3 2 2 2 
The polynomial x1x2x1 + x3x2 + x2x, + x2x1 x3 is  a hom0.w- 

eous polynomial of degree 4 and hence i s  i n  T, . 
Defini t ion  1.3.3 Let  W . . . , be subspaces of the  

vector  space W . We shall say t h a t  I? is the  d i r e c t  sum of 

Wl ,W2, ..., Wk9 ... and we w r i t e  W = -83 W2 $3 . . .@ ifk @ ... 
i f  any of t h e  following equivalent  condit ions hold: 

( i )  W = W1 + W, + . . . + Wk + . . . and W .. . . , ITk ,  . . . a r e  inde- 
1 : 

pendent. (That is  i f  a,+ u p  + . . . + cy. = 0 ,  0 cW implies t h a t  i i. 

each a = 0 ( for  any k) .) 
i 

( i i )  Each vector  a #  0 i n  W can be uniquely expressed i n  the  

form a = a + . . . + a wi th  oiWi ( fo r  some k) where the  * ik j 1 
indices  a r e  d i s t i n c t  and a P 0, 1 ~ j T k .  

i 4  

( i i i )  W = 8 + W2 + . . + + Ek + . .. and, f o r  each jX, t h e  subspace 

W is  d i s j o i n t  from (has i n t e r s e c t i o n  {@) with) the sum 
j 

( W 1 +  ...+ W + W  + . * . ) .  
j-i j+ l  



Theoren; 1.3.4 Let T = S?[x1,x2, ...,, x '1 be the  vector space over d 

a f i e l d  F and l e t  T be t he  subspace of T of a l l  homogeneous 
n 

polynomials of degree n , fo r  n = 0,1,2, ... . Then T i s  the  

d i r ec t  sum of T ,,T . . . , 
Tns 

... and we wr i te  T =T W @ ... 8Tn@ ... 
0 1 

ProoE: Let T be the  subspace of T of a l l  homogeneous polynomials - j 

of degree j . Then 

because the  subspaces To, T , , . . T T . . . have only homo- 

geneous polynomials of degrees 0,1, ..., 3-1, j+ l ,  ... respectively.  

Also, c l ea r ly  T = To + T, + . . . + T 4- . . . . Hence 
n 

Corollary 1.3.5 Each element u€T can be uniquely expressed as a 

sum of homogeneous polynornials. 

Proposition 1.3.6 Tn = Tn-,x ,Bt Tn,,x, 6 . . . (9 Tn,,Xd 

Proof : The elements i n  Tn- ,xi. ( i  5 1,2, . . . , d)  a r e  of degree n, - 
and c l ea r ly  

T = T x + T n - I ~ Z  + ... + Tn-lxd. n rr- 1 1 

Eloreover 

because the  x ' s  do not covmute. h n c c  
i 



Example 1.3.7 Let T - I?[xl,x2,,x3]. The basie  elements for  T, 

a r e  grouped i n t o  the following sets: 

{ x p ,  ,*pl , x 3 ~ l ~ . ~ x 1 x 2 , x 2 x 2 , x 3 ~ 2 1 ~ ~ x 1 x 3 Y ~ 2 ~ 3 , ~ 3 ~ 3 ~  

where Tlxl = subspace spanned by (xIxl ,x2x1 , x ~ ~ ~  1 

T,x2= subspace spanned by {x1x2 ,x2x2 ,x3x2 1 

Tlx3* subspace spanned by {xlx3 ,x2x3 ,x3x3 1 

Hence 

1.4 Ideals and Quotient Algebras 

The following sect ion consis ts  of some def in i t ions  and r e su l t s  

which a r e  ac tua l ly  par t  of (used for )  the proof of the main r e s u l t  

i n  Chapter 2, but a r e  put here t o  get  the  reader even more famil iar  

with the basic s t ruc ture  w e  s h a l l  be working with. 

Let H be a subset of T which consis ts  of nonzero homo- 

geneous polynomials •’ , f 2 ,  . . . such t h a t  253 (f , )a3 (•’, )c . . . and 

let a (fi) - n,. Now rewrit ing,  we have 2znl=n2= . . . . 
Let the number of a l l  those f 's which have degree i be 

j 

denoted by ri. This number is assumed t o  be f i n i t e  (for each i) 

and is possibly zero. 

Let % b e  the intersect ion of a l l  idea ls  of T which contain 

H. at is then an idea l ,  which is  i n  f a c t  the smallest ideal of T 

containing the set fI. This i dea l  1s cal led the idea l  generated by B. 

I n  what follows, the subset: I! which generates the idea l  51, w i l l  

always be a s  described above. In  par t icu la r ,  H contains only horn- 

genebus polynomials of degree 52.  



, 
Theorem 1.4.1 Let T be an algebra, H = { f f . and 91 

2 

the ideal generated by fI  in T , Than the elements of %?. are 

all elements of T which may be represented in the form i$Iaifibi 

where I is a finite set, ai and bi are elcnents of T and 

the fi are elements of H . 
n 

Proof: Let 3 = { I: a.f b.lai,b ET, f EH, n = 1,2,3, ... 1 - i r k  1. 1 1 9 i 

Then K B c  8 ,  

19ow since 9J. is the intersection of all the ideals of T which 

contain H , to get 21" 3 it is sufficient to show that B is an 

ideal of T , But this is obvious, I!,ence Bc 91 and 'WE, so %=Be 

Remark 1.4.2 Consider tkc element C a f b of % .  By expressing 
iEI i i i 

each a and each bi as a sum of homogeneous polynomials, and i 

then multiplying out, we see that in fact, ".is the set of all 

elements of this form C alg.be , where 3 is a finite set, a' 
jCJ j J j j 

and b v  are homogeneous elements of T , and thc p are elements 
j j 

Corollary 1.4.3 Let r = uo + s1 + u2 + . . . + u €@where u ET * 
Ei i i 9  

then each ~ ~ € 8 '  . 
Proof: By preceding remark, 

r = C a.g.b , where 
jCJ J J j 

each g.cW and the a.,b are homogeneous polynomials. By col- 
J 3 3 

lecting summands of equal degree, we get 



, 

But by corol lary  1.3.5, tc can be expressed uniquelx a s  a sum 05 

homogeneous polynomials. Kence (since we assume u,#O#vt) We 

must have s=t  and uo=vOI ul= vl, ...$ u 'TV . But V o p  . -, V&E I, 
S 8 

hence uo , . . . , UP q~ . (Note t h a t  s ince  H contains only poly- 

nomials of degree 52 ,  t h i s  gives us u = u 5 0.) 
0 1 

Remark 1.4.4 Let Ai be the quotient  vector space (Ti + V ) / P L  ' 

over F ; then Ai is a vector subspace of the  quotient  vector 

space T/ !& ovcr F. 

Theorem 1.4.5 Let A be the  quotient  vector space T/ i!!, over 

F. Then as a vector space, A = A. d.l Al & A ,  @ . . . 8 An C ..* , 
where Ai = (Ti + p ~  ) I  a. 

Proof: L e t  a&k . Then a = u + a  where w T  . But then u can - 
be wr i t t en  uniquely a s  the  sum of ui ls ,  i.e. u = uo + u, 4- ...+ u n 

where u.ET a n d  
1 i 

a = (uo + u, + ... + u +a= (uo + 90 + (ul + u )  + ... + (un+rl) 
n 

where each uk + pl E ('Ik +!&)/a= Ak. Hence A = A, + A, + ... An + . . e e  

Not? we need t o  show tha t  a can be wr i t t en  i n  only one way a s  

a sum of elements of the  d i f f e r en t  A tience, suppose t ha t  
i" 

ui 9 v p i  

We want t o  show tha t  ui +a = vi + PI . Fron (1) we have t ha t  

(u', + ... + u n )  +% = (vo + ... + v m )  + BL 



hence u, + . . . + u E (v0 + . . . + vm) (mod 8.) n 

Now i f  mLn 

Hence (up-vO) + . . . + (un-vn) + ( O - V ~ + ~ )  -k . . . + (0-V& PL 

where u -v ST and the re fo re  u -v E!&, V i  , by c o r o l l a r y  1.4.3. 
i i i  i i 

So ui + N =  v ,  + U  which shows the  uniqueness i . e .  ui e vi 
1 

(modg ) . Consequently, h = A,, @ A l  Q .., .Ji A @ ... . n 

Theorem 1.4.6 I f  PIn = T n p( , then A e  T /PI ,where Pl and a r e  n n n n 

regarded a s  vec to r  spaces over P. 

Proof; Consider t h e  vec to r  space T over F a s  an a d d i t i v e  group. - 
Then t h e  ideal  !&is a normal subgroup of T , and by the  Second 

Isomorphism Theorem of group theory,  w e  have the  following diagram 

and isomorphisms. 
Tn +PI 

A = *n Tn . (i) z-s-- 
n 21 Tn@J gn 

Oecause g n T 0  = {o), i n r l  - {o) 
T we have the following p a r t i c u l a r  

cases  : 

A 2LT T F  
0 0 

( i i )  

( i i i )  

Remark 1.4.6 Note t h a t  91s P l o  9 a*.. @an B ... where PI= {O) = pL1 
1 0 



CHAPTER 2. 

This chapter  is  devoted t o  t h e  proof of the  main ~ o l o d - g a f a r e v i z  

theorem, I n  the  f i r s t  p a r t  of the  chapter ,  we  w i l l  de r ive  some r e s u l t s  

which w i l l  be used t o  g ive  a s h o r t  proof of t h e  f i r s t  theorem. The 

second p a r t  of t h e  chapter  dea l s  with t h e  proof of the  f i r s t  theorem. 

We g ive  two d i f f e r e n t  proofs; one is a re-worked and expanded vers ion 

of the  proof i.n t h e  paper by Fisher and S t r u i k  [S]. The o the r  proof, 

which has t o  do with homology, is  a re-worked and expanded vers ion of 

a proof from Hers te in ' s  book "Noncommutative ~ i n g s "  [ l l ]  . I n  t h e  

same par t ,  two more theorems fol low which are re-worked from t h e  

o r i g i n a l  paper by Golod and Jalafarevi: [6]. Fina l ly ,  the last p a r t  

of t h i s  chapter d e a l s  with some c o r o l l a r i e s  and s p a c i a l  cases  [ 5 ] ,  [19]. 

2.1 Some Subspaces and Their  Dimensions 

I n  t h i s  sec t ion  before t h e  de r iva t ion  of t h e  r e s u l t s  necessary 

f o r  t h e  proof of t h e  main theorem, le t  us r e c a l l  the  var ious  nota t ions  

we have introduced up t o  t h i s  point .  

We have a f i e l d  F and d noncommutative indeterminates over F, 

which a r e  x l ,  x2 ,  ..., xd. Also, 

T a F[xl ,  X2s X d  1 
is  t h e  f r e e  assoc ia t ive  algebra over F in the xi and, moreover: 

T = To (BT1 $ ... @ T 68 *.. n 

where each Tn is t h e  subspace of T consis t ing  of a l l  the  homogeneous 

polynomials of degree n. Recall  t h a t :  

R -  f ,  f , ,  ..., f*, ... I ,  



where each f is a homogeneous iolynomial of T and 
i 

(a(f i)  = ni is t h e  degree of f i ) .  i s  the  i d e a l  of T generated by 

H, and ri is the  number of polynomiels 5 i n  H which have degree 

i. The quot ient  a lgebra  A  = T/91 is  a l s o  of the  form: 

A - A  @ A l @  ... @ A n @  ... 
0 

where Ai = (T +a) /& We mentioned t h a t  dimTn = dn. Now l e t  
i 

dim An = bn and observe: 
0 

2.1.1 - 1 = d = dim To = dim A. = b and 0 

2.1.2 - d = dim TI = dim A l  = b . 
1 

Proposi t ion 2.1.3 Recal l  t h a t  a =  T 0% (by d e f i n i t i o n ) ,  and t h a t  
n n 

An Tn/% Let Sn be a complementary subspace of i n  Tn; t h a t  

is,  Tn = % 9?Sn. Then dim Sn = dim An = bn. 

Proof: T = 81, a Sn gives  dim Tn = dim an + dim Sn. - n 

Also A  ~ ~ 1 %  gives  dim Tn = d i m a n  + dim An. 
n 

These two e q u a l i t i e s  g ive  t h e  des i red  r e s u l t  . 
Proposi t ion 2.1.4 D i m  % 5 r2 ,  where = T n!g and r 2  is  the  

2 

number of f of degree 2. 3 

Proof: Look a t %  a s  a vec to r  space. Recall  t h a t  - 

where e a c h @  is  a subvector space of & n 

Now g2 has a b a s i s  of elements of the  form mf n, where m, n a r e  
j 

monomials and a(mf n) = 2. I f  t he  degree of mE n is  2 ,  then a(f.)z2. 
j J J 

But a ( f . ) > l  always. Hence a(f ) = 2 1,rhich implies t h a t  m,  n a r e  con- 
J j 

s t a n t s .  In  o the r  words, a b a s i s  f o r  8 is a s e t  of l i n e a r l y  independent 
2 



f of degree 2. I f  the f of degree 2 were l i n e a r l y  independent, 
j j 

then dim QLl would equal r2. 

Since t h e  number r 2  does not  necessar i ly  denote l i n e a r l y  in- 

dependent ti of degree 2, we have 

dimU 5 r2, 

Defini t ion  2.1.5 Let J a %,lxl@ ... @!&n-lxd. 

Note 2.1.6 To prove t h a t  the sum J i s  d i r e c t ,  w e  need t o  show t h a t  

if g l ,  g 2 )  . . ., gd E TnW1, then g l n l  -!- .. . + gdxd = 0 implies 

Proof: Each gi i s  t h e  sum of d i s t i n c t  monomials of degree n-1. There- - 
fo re ,  epi is the  sum of d i s t i n c t  monomials of degree n. I f  i f k, 

then t h e  monomials i n  gixi a r e  d i s t i n c t  from t h e  monomials i n  gkxk. 

Therefore, t h e  set of all monomials involved i n  glxl  + ... + gdxd is  a 

set of d i s t i n c t  monomials, hence is a set of l i n e a r l y  independent mon- 

omials. Therefore, every c o e f f i c i e n t  i n  glxl  + ... + gdxd = 0 must be 

zero. Therefore: 

8 ,  = g,  = .., = gd = 0 

Proposit ion 2.1.7 dim J = d dim an-, 

Proof : Since J - % 1 ~ 1  @ . . . axn- ,xd is a d i r e c t  sum and 

dim U,,l~I = dim 

i t  follows t h a t :  

dim J = d d i m a n  - 



Example 2.2.8 Let gl , g2,  . . . , be a b a s i s  f o r  an - . Then we 

have t h e  following bases f o r  each an - lxi ( i  = 1, 2, ..., d l .  

Bl = {g,xl ,  g2x1, ..., g x ) forms a b a s i s  f o r  an - l~I .  
m i 

B = {glx2, g2x2, ..., g x } forms a b a s i s  f o r  ph- x . 
2 2 1 2  

- 
Bd - {g,xd, g2xd, ...,g x } forms a b a s i s  f o r  PhWlxd m d 

The elements of the  above s e t s  a r e  l i n e a r l y  independent, f o r  

suppose t h a t :  

write 

n-1 
where the  ui are d i s t i n c t  monomials of degree n-1. (We have d pos- 

s i b l e  ui's. ) Suppose 

Then i f  the  u x a r e  d i s t i n c t  (monomials of degree n ) ,  then they a r e  
i k  

l i n e a r l y  independent, therefore  b . ' s  = 0, therefore  g = 0. Let u , u 
I. 1 2  

be d i s t i n c t  monomials of degree n-1. Then ulxk and uzxk a r e  d i s t i n c t  

s ince  T is t h e  f r e e  a s s o c i a t i v e  algebra over F. Thus the  s e t  

{glXi, gpxi, ..., g x } c o n s i s t s  of l i n e a r l y  independent elements. m i 

Hence, B i i s  a bas i  r f o r  Oh_ ,xi. 



Proposit ion 2.1.9 Prove t h a t  dim Tn = db + dim J 
n- 1 

Proof: We know t h a t  Tn =In_,@ Sn-l, where S is the  comple- - - n- 1 

ment of i n  Tn-l. Let sl ,  s2,  ..., s b be a b a s i s  f o r  Sn - 
n-1 

and let  g, ,  g l ,  ..., g m  be a b a s i s  f o r a ,  . and9,inm1 a r e  
1 

considered a s  vector  spaces over F.) The elements s x and g x 
i j k 3' 

where i = 1, 2, ..., bn-,, j * 1, 2 ,  ..., d, and k = 1, 2, ..., m 

form a b a s i s  f o r  Tn f o r  t h e  following reasons: The s x and g x 
i j k j 

a r e  a l l  of degree n and: 

dim Tn - bn - ,d +md = (bawl + m)d = dn-'d = dn (1) 

where bn - , 4- m = dim Tn - dn-l. F ina l ly  t h e  set {s x )u{gkxj), 
i j 

( i , j , k  as before) c o n s i s t s  of l i n e a r l y  independent vectorg,  f o r  sup- 

pose not ,  then: 

implies 

Hence f o r  a l l  e r 1, 2, ..., d 

Z(a s )X = E(bk,gk)xe i i e i  e 

implies 

C(aiesi)xe + x(-bk,gk)xe = 0 

By example 2.1.8, aie = O m - b  ke 



I 

Thus the set {s x.)U{g x 1 ( i  = 1,2 ,  ..., bn-l; j = 1, 2, o - b ,  d; 
i J  k j  

- and k = 1, 2, ..., m) c o n s i s t s  of l i n e a r l y  independent elements, more- 

over, it has  dn elements a l l  of degree n, therefore :  

{s,x,hJ{g,x, 1 

is  a basis f o r  Tn. So 

Tn = Sn-lxl @ * '  @ Sn-lxd & q-lXl '8 @gwlXd 

Hence : 

dim Tn = db + d d i r ~ ~ % ~ - ~  n- 1 

dim Tn = dbn-l C dim J 

Def in i t ion  2.1.10 Let L be t h e  vector space spanned by a l l  elements 

of degree n of t h e  form v.f  where f . is i n  t h e  set H and {vi) is  a 
j' 3 

set of homogeneous polynomials of degrees up t o  n-2, which forms a 

b a s i s  f o r  So@ S 1  6~ ... 
@ %-2 

Proposit ion 2.1.11 dim L 5 i=2bn-i !? 1: where L i s  defined above and 

where b = dim An-i and r is t h e  number of those polynomials f i n  n- i i i 

H of degree i. 

Proof: Let a(vi ) = i. Then: -- 
j 

vo forms a bas i s  f o r  S 
1 0 

V1 9 V 1  $ g e e ,  V 1  form a basis for S 
1 2 1 

1 

v 1 " ' .  P v  forv r hasis fo r  S 
3- 2 vn-2 n-2bi i *  

1 2 



v , ..., v form a basis for S b S (B ... @ S n - n .  
n-2i n- 2b o 1 

n- 2  

L e t  

where fi has degree i (and for some i's , perhaps there are 
j 

no f i  IS.) Let a(Gi) denote the deyree of the elements of 
j 

Gi ' 

where a ( G 2 )  = 2 

where a(G,) = n 

13ow w e  observe that the following elements are homogeneous poly- 

nomials of degree n. 

2 
f i  

n- i n- i r n-i  i 



Also they span , 

'n-ifi, + 'n-ifi, + ... + sn&fi = s ~ - ~  G i 
ri 

and t h e i r  number i s  bn - iri . By summing Sn-iGi over i = 2, 

. n we g e t  

G + + S1Gne1 L = Sn-2G2+ Sn-3 3 
+ 

and hence 

dim I 2 dim (Sn - 2G,) + dim (S G3) + . . . + dim (SoGn) 
n-3 

n 
Hence d i m L r  C b  r 

j = 2  n-3 j 

Proposition 2.1.12 dim PLn s dim J + dim L. 

Proof: Here 3 and L a r e  as they have been previously defined by - 
def in i t ions  2.1.5 and 2.1.10 respect ively .  

Now we take wan, and we wish t o  show that :  

u a w + v  

where weJ and VEL. By proposit ion 1.4.1, u is the  of poly- 

nomials of the  form 

where a 
i' bk' 

a r e  homogeneous polynomials and a (a  f b )= n. (We know 
i 3 k  

Now i f  w e  ge t  simply a f b sJ, we have case I, while i f  we ge t  
i j k  

aifjbk = w'f  + v'f  
3 j 

where w'f eJ and vl f .eL,  we have the case 11. 
S 3 



Thus - each polynomial a f b c J + L, and hence, the  sum of a l o t  
i j k  

of them, namely u, a l s o  E J + L. 

Case I: Assume a ( bk)Zl. We can wr i t e  bk = bixn (b; E T , if 5 ET .) . 
j 1 k 3 

;;07.7 = a . f  b'x = (a f . b l ) x  E anelxn c 3 a i f jbk  i j k n  i j k  n 

s ince  a.f b' E (n = l9 2, ..., d l .  
l j k  

Case 11: Assume t h a t  a(b ) = 0, t h a t  i s  a f b f s  a homogeneous poly- 
k i j k  

tomial  of the  f o m  a f where 3 ( a .  f . ) n. NOW ai is homogeneous and 
i js 1 J  

say has degree k, so: 

a i E T k r L . k ( c 7 S k ;  

a = w '  + v ' ,  
i 

w '  &ak , V'  E Sk. l e t  

theref  o r e  
a . f  = w l f  + v ' f  
1 j S 3 

F i r s t  look a t  w'f Now a<w') = k - a(& 1, and a ( a  f .) = n. 
$ ' 1 i~ 

Say a ( f j )  = k t ,  so k 4- k t  - n. Note k' 1: 2. Now w' & grkc !!J . 
Since a(• ’  )22, w e  can write f = hxm, where xm E {x , 

3 j 
X2.  * * . ,  X d L  

Then w '  € 9x * TJ 'h  E %I, but  w'h is homogeneous and 

a(wlh) = 8 (wPf .) - 1 
3 

= k + k l - 1  

= n - 1  

Therefore w'h E 91 fl Tnml = Therefore: 



N e x t ,  look a t  v t  f NOW V" E Sk c Tk, SO v f  is a homogen- 
j ' 

edus polynomial of degree k. We st i l l  have k + k' .: n and k' l  2. So 

k c n - 2  

i.e. v' & S k C  S , @ S , d  ... Q S  n-2 * Since {v,, v,, . . . I  is  a ba s i s  

of homogeneous polynomials for So C, S 63 . .. rB Sn-n, we can wr i te  v t  
1 

as a l i nea r  combination of some of these bas i s  elements, say v'  is a 

l i nea r  combination of 

Since v ' ,  vi , ..., v a r e  a l l  homogeneous, and the  vi , ..., v 
1 i~ 1 

i 
P 

are l i nea r ly  independent, i t  must be the  case t h a t  

~ r .  a(+) - a(v, = ... - a(v, 
1 P 

Thus 

But 

a r e  among the polynomials which span L. (Each has degree n, and is  

of the  proper form.) Thus: 

v 
2.2 ~ o l o d - ~ a f a r e v i z  Theorem and i ts  Proofs 

v 
Theorem 2.2.1 (Golod and ~ a f a r e v i z )  

n 
(1) - C r b  bn ' dbn- 1 1.2 i n-i 



Note: The same no ta t ion  used previously holds here. Also ( i )  and - 
(ii) are t h e  same. Because some of the  n 's may be equal ,  ( i i )  mag i 

be w r i t t e n  a s  follows: 

Proof of Ci) : (Fisher and St ru ick)  This proof is using the dimen- 

s i o n a l i t y  of the  var ious  subspaces, 

Clearly w e  know t h a t  

Tn - W Sn 

And therefore  

dim Tn = dim % 4 dim Sn. 

(1) Let n = 2. Then we have t h a t  

dim T, = dim B2+ dim Sz 

d2 I. rZ + bl (by 2.1.4 and 2.1.3) 

b2 2 d2 - r 
2 

b2 Z d d - r . 1  
2 

b2 2 dbl - r2 bo (by 2.1.2 and 2.1.1) 

which i s  statement (i) f o r  n = 2. 

(2) Let n 2 2. Then 

dim Tn = d in% f dim Sn 

5 dim J C dim L + bn (*I 

(*)by 2.1.12 and 2,1.3, (**) by 2.1.11. 



)I 

But since, by 2.1,9, we have that 

dim Tn dbnWl + dim J 

we have 

and therefore 
n 

b 5 db,-, - Z r b n i = 2  i n-i n r  2 ,  

Proof of ( i i )  (Herstein) This proof i s  using homology which was 

used in the original proof by Golod and &farevir(. 

Suppose that we can exhibit linear mappings, $,$ so that the 

following scquence is exact 

A @ ... @ A  @ . . . + A  @ . .. @ An-l 
4 

n-n n- i 
t. n-% I f" 

J 

d t i m e s  

Then 

d i ~ n ( A ~ - ~  @ . . . Iff An-l ) = rank $ + nul l i ty  $, 

db =dimXmJI+dirmker $ n- I 

= bn + dim Im $ 

by exactness, so 

Hence : 



Now our object ive  is  that  ok defining the  4 and 9. F i r s t  w e  

s h a l l  def ine  mappings @ and Y fo r  the  following sequence 

n f n  
i d times 

where Q and Y a r e  l i n e a r ,  We a r e  not in te res ted  i f  t h e  sequence i s  

exact  o r  not a t  the  T - l eve l .  However, we want t o  induce the  proper 

and JI from the  G and Y so the  sequence w i l l  be exact  a t  the  A-level. 

Define Y by: 

Y! : tl @ ... I td + t x + t x + ... + tdxd ( fo r  ti&Tn-$) 
1 I 2 2 

I f  u E T ti3 ... (B Tnel,  then u may be  w r i t t e n  uniquely as 
n- I 

where ti i s  i n  the  i t h  T i n  the above d i r e c t  sum. Hence i f  w e  
n- 1 

def ine  

Y(u) = t l X l  + ..' 
+ tdXd 

Y is wel l  def ine  and obviously, i f  a,beF and u,v&T G.J . . .it3 T , 
n-1 n- 1 

we have 

Y (au + bv) = aY (u) + bY (v) 

and hence Y is l i n e a r .  

Define @ by : 

9: s t@ . * *  tt) s . -+ u @ u  'R ... Ud 
n-n n-nk 1 2 

1 

s h) ... ii? s @ . . . E TnWn @ ... 8 T  
n-nl n-n 

k 1 "-9s 



The way we follow t o  g e t  @ is the  following: If 
I 

then, r e c a l l i n g  that a(f  ) = n we see  t h a t  
i i ' 

(a(s ) + a ( f i ) = n - n  + n i = n ) .  A s e n e l e m e n t i n  T , w e c a n  n-n 
i 

i n 

w r i t e  

where t h e  ui a r e  uniquely determined elements i n  T . Hence Q is 
n- 1 

w e l l  defined and l i k e  Y, 4 is l i n e a r .  

Proposit ion 2.2.2 Let Y be defined as above. Then sequence (2) is 

exact a t  T . n 

Proof: To show exactness a t  T we need t o  show t h a t  Y is an onto n' 

homomorphism. Now i f  w E Tn, then w can be w r i t t e n  uniquely as 

follows : 

where t l 9  t2,  ..., td a r e  i n  T and such t h a t  
n- 1 

Hence Y is  onto and s ince  Y is  l i n e a r ,  the  sequence 

T M ...dl T -+ Tn+ 0 
n- i n- 1 

d t x e s  

'is exact.  

Recall  t h a t  = Pl n T . Since PI E Tn-l, obviously 
n- I n- 1 

w e  have: 



I f  w e  can show t h a t  

Y'%- 1 
e ... @ = { y ( t l  B .-. tt3 td )  Iti L Bfi-l) n 

then we can induce a new homomorphism 

given by 

*:tl b . . .  Q t d + %  $... O S - , )  = Y ( t l B * . .  @ t d )  +a, - 1 

= t x  +... + t x  i-g* 
1 1  d d 

Proposit ion 2.2.3 Y(I,~ B) @%n-l) E ( h e  

Proof: Take t,,. .., td such t h a t  ti i s  i n  t h e  i thqln-,  then - 

t,, t,, ... td are i n  %- 1 
and hence i n  &I ; s ince  &I is an i d e a l  

then tlxp,t,x,, ..., t x a r e  i n %  and therefore  t h e i r  sum i s  i n 8  . 
d d 

But i t  is a l s o  i n  Tn. Hence 

tlx, + ... + t x E U  d d n' 

Now i f  we  show t h a t  

then w e  can induce the  required mapping 

q J  : AP1 @ @ Anel+ An 



Proposition 2 .2 .4  
I 

Tn- 1 @ ... @ T  n- 1 
T T 

=F n- 1 
n c ... enn-l 6 ... @- 

n-1 n-i 8 n-1 

Proof: We need to find an onto map Y such that - 

and such that ker y = gn-l (B . . . SO define 

y ( t ,  ie... atd) = ( t ,  8 ( td  + 

= (0 81 * * *  b (0 +PI,1). 

Since we are working with d irec t  sum, t h i s  holds i f  and only i f :  

ti +an-, - +PI n-i ' 

that i s  ti %, 

Now i f  6 is the natural map such that 

then there exists  an gomorphism 0 such that 



Thus the  mapping Y induces 

given by 
n-1 

We can now consider a. Suppose t h a t  s s . r . )  s n-n ' n-n ' 
1 2 "-%' "' 

a r e  i n  PI,-., , , e . 0 .  PI , ... respect ively .  We must show t h a t  n-nk 
1 2 

u t ,  u2,  . . . , u defined by Z s  fi = Zuixi a r e  i n  g,,. Since Q d n-ni 

is l i n e a r  i t  s u f f i c e s  t o  do so  f o r  each s i n  @ . Note t h a t  
n-ni n-ni 

3(sn-n fi) = n-n + n - n. Since il(fi) = ni implies t h a t  
i i i 

d 
'i ' j E l ~ i j X j  

where g 
i j  ' Tni- 1 

. Therefore: 

d d d 
s f i - - 9  
n-n c g . x  = g )x = C U X  

i n-nij=l i j  j jgi(sn-ni i j  j j*l j j 

where u s 
j n-n %j 

and a(uj)  = n - n + ni - 1 = n - 1. Thus 
i i 

u 
j ' Tn-l 

. But u = s 
, j n-nigij E ,  a s  s n-n 

is i n  t h e  i d e a l  ?I , 
i 

Therefore, uj  E ~n Tn-l - . Therefore 9 induces a map: 

4 : An-n 
@ @ 

"U ... 4 An-l @ . . . " An- 
I 

given by 

p* , .:A3 
( ( ~ n - n  *n-n ( ~ n - n  qn-q. .)= (u @ ... @ud)+hln- ,@ ... @2r 1, 

1 k 
n-1 

(u l  +gn-L) $I) . - *  M (ud + % - 

where '( 'n-, a . . .  tt9 s ~ - ~  e ... ) = u e ... t~ ud. 
k 1 



Proposit ion 2.2.5 The sequence 

i s  exact.  

Proof: To show the  exactness - 

d times 

of ( I ) ,  we must prove exactness a t  An and 

exactness a t  An_, @ ... B A To show exactness a t  An, w e  need t o  show n- 1 

t h a t *  is  a hornomorphino onto. So l e t  t + !)$ be i n  An, where t € Tn. 

where Y(tl  % ... B t d )  = t l x l  (8 ... B tdxd. But '4' is onto by 2 . 2 . 2 .  

Hence, jr is onto and t h e  sequence (1) is  exact a t  An. 

Now we need t o  show t h a t  t h e  sequence (1) is exact  a t  A *. . .(aAn-l. n- 1 

That is, we need t o  show t h a t  Im $ = ker jr. 

(i) Im O ker + , t h a t  is $9 = 0. SO, i f  3n-n s n _ n 2 ~  * * * ,  

s ... a r e  elements of T T ..., T , ... respect ively ,  S O  

n-nk' n-n19 n-n2? n-nk 

( S  @ 'n-n, 64 ... a s a ...) QY = ulx l  + u2xz + ... + u x n-n 
n-nk d d '  

where g u x  = Z s  
i i l  i i n 4 n-n f i j  but  t h e  f 's generate %, thus 

i- i i 

f u x €94. But .Z a f i  E PI and s o  iS1 n a n-n too. 
i- i 



So maps T B) ... $ T @ ... i n t o  an = Tn n n-nl 8 T n-n2 

and s o  An_n * An-n, @ . is mapped i n t o  0 by $11 , 
1 

a s  follows: 

= 0 +Illn, 

s ince  u lxl  + ... + u x & % . Hence I m  4 Eker @. 
d d  n 

( i i )  ker $ E I m  4. Here w e  want t o  show t h a t  i f  ;,B. . .(BEdaker 11, 
- 

then El@. . .@zd E Im $. That is we want t o  f ind  some c , ,  c2, . . ., ud i n  

*n- 1 ' where B ... @ Gd E I m  4 and such t h a t :  

( 5 ,  c .. . @ Gl @ . . . B Gd). 0. 

- - - 
That i s  t l  - ul j:.. @ F d  - ud = 0, 

- - 
or  t i - u  = O  

i 

(i = 1, 2, ..., d) (by the  d i r e c t  sum), o r  

ti - Ui + %-1 
* 0 4  o r  t i - u i c f l  = I ~ T  o r  ri - u s a. 

n- 1 n-I ' i 



- 
Also ;, B . . . ud E im 4) implies t h a t  the re  e x i s t  

such tha t :  

Moreover, i f  @ , O . . . @ Ed E k e r e  , means t h a t  
.. - 

Il(tlx, t ,  .B * * *  @ E d )  ' 0 

which implies t h a t  

Conclusion: So w e  need t o  show t h a t  i f  'l(tlb.. .W( )eU, then we  e m  find d 
elements u l ,  u2. . . . , ud i n  T s u c h t h a t  

n- 1 

t i - U  € 8  i , f o r  i = lz 29 . . . ?  d 

and such t h a t  k ix i  - z f f o r  some 8 
n i l  Lh-ni i n-n i n  the  appropr ia te  i 

T n-n 
i b  

Suppose then, t h a t  P(t 8 . . . @ td) = i$lti~i € P1. Since pl i s  a 

two-sided i d e a l  generated by t h e  f w e  have t h a t  the  elements i n %  can 
9' 



be w r i t t e n  i n  the  following form and hence: 

where the  a 
kq2 bkqs Cq 

a r e  homogeneous and where t h e  degree of b 
kq 

is a t  l e a s t  1. On comparing degree on both s ides ,  we may even assume 

t h a t  the a f b c f a r e  a l l  i n  Tn. Since the b a r e  of degree 
k q 9 k q 9  q q  kq 

a t  l e a s t  1, 

where d is any homogeneous polynomial o r  constant .  'l'hen 
kq 

d 
Ca f b  = f a f d  x = x c I x  
kq q kq k,q,m=l kq q kqm m m = l  m rn 

where 

But s ince  f E U w e  have t h a t  dm E ZL If  we w r i t e  
Q 

w e  then have that 

implies 

hence 

ti - Ui = diE 2l . 
But Q(c , @ . . . @ ck @ . . . ) = u (9 . . . 42 ud by the  def inir ion  of 4) ; 

1 

hence w e  have proved ( i i ) .  



The two inc lus ions  (i) and ( i i )  give us the  des i red  r e s u l t ,  and 
I 

hence we have proved exactness of (1) a t  A @ . . . + Anl . This 
n-1 

proves proposi t ion  2.2.5, and hence a l s o  Theorem 2.2.1(i i) .  

Def in i t ion  2.2.6 The power series 

is ca l l ed  t h e  Poincare funct ion of the  algebra A,  

The fol loving two theorems and corol lary  2.3.1 a r e  reworked from 

t h e  o r i g i n a l  pager by Golod and xafarevie.  

Theorem 2.2.7 

where inequa l i ty  between power series is understood coefficlent-wise. 

Proof: Recall t h a t  

A 3 A Y3 A 9 ... (a An CQ ..' 
0 1 

and that the numbers b = dim An, n 2 0 a r e  a l l  f i n i t e .  For t h e  n 

d i m m s b n s  of the  subspaces of A we obtained the  inequal i ty :  

(Theorem 2,2.1 ( i i )  ) 

b r d b  - 
n b n-I n$n n-n (n 2 1) 

i 

Multiplying t h i s  inequa l i ty  by tn and adding up f o r  a l l  n 2 1, we 

obta in  an inequa l i ty  f o r  the  series: 

I f  we set i n  the  l a s t  sum n - ni = m, and from t h e  d e f i n i t i o n  

of r we see t h a t :  
i 



E"( Z tnb ) = $  ( f '  t% ) = I .  tni(? tPni'b 
n=1 n c n  n-ni i n=n n-n i n i 

n=n i 
n-n 

i- i i 

n n 
i( F trnb ) a 1 t i~A(t) * m q  m 

ni ni 

On the other hand 

since b = 1,  and 
0 

Therefore, the inequality (3) yields: 

hence 

This proves theorem 2.2.7. 

Theorem 2.2.8 (Golod and &farev$) If the coeff lcients of the power ------ --- 

series 

are non-negative, then 

and the algebra A is infinite-dimensional. 

Proof: The inequality (9) is obtained f rom (8) by multiplying both - 



which by assumption has non-negatllve coef f i c ien t s .  It remains t o  

show t h a t  the  a lgebra  A is infinite-dimensional.  For t h i s  purpose, 

i t  is s u f f i c i e n t  t o  show t h a t  bn > 0 f o r  an i n f i n i t e  number of 

values of n, and t h i s  follows from (10) i f  w e  can show t h a t  the  power 

series F ( t )  i s  not  a polynomial i n  t. We s e t  

1 + t = u ( t )  

Then 

i .e ,  F( t )U(t )  e 1 + d t F ( t )  (12) 

Since both F( t )  and ~ ( t )  have non-negative c o e f f i c i e n t s ,  and ~ ( t )  

is not  a polynomial, then c l e a r l y  F ( t ) u ( t )  is not a polynomial. Hence 

the  l e f t  hand s i d e  of (12) is  not  a polynomial. Hence t h e  r i g h t  hand 

s i d e  of (12) is not a polynomial, Sence F ( t )  i s  not  a polynomial. 

2.3 Conditions on r, 

Corollary 2.3.1 I f  the numbers r s a t i s f y  the  i n e q u a l i t i e s  ri5si, 
i 

and a l l  t h e  c o e f f i c i e n t s  of t h e  power se r i es :  

are non-negative, then A is in f in j - t e  dimensional. 

Proof: Let 



We have then: I 

F = G - U G (1 - UG-'1, and dl 2 0, u 20, from which we find: 

F-' e G-l (1 -. uG-l 1-I . 
Now since U 2 0 and G-' l 0 , we have UG-I 2 0, which implies 

-1 
-UG . LT 0, which implies 1 - UG-' S 1, which implies 

-1 -1 
( 1 - U G  ) 31, 

(for  if 2 - V G -  1 = I - a t - a t  2 -... 
1 2 

-1 -1 2 
and (1 - UG ) = l +  blt +b2t + ... 

then (1 - a,t - a2t2 ...)( 1 + blt +b2t2 + ... ) = 1; 

computing, we get 

1 = 1  

- al + bl= 0 9 b, = a, 3 0 

b, - a l b l  - a2 = 0 - b2 = albl + a 2 2  0 

4 

. . 
bn-albn-l-a2b,-t-...-a "0 - b =albn-l+a2bn-2 +. . .+anso ). n n 

Hence : 

-1 -1 
F - ~  =G-'(~-uG ) 5 0  

43 i - 1  But F-I = (1 - dt + ig2rit ) , Hence, by Theorem 2.2.8, A is 

infinite-dimensional. 

2 
Corollary 2.3.2 If for each 1 = 2, 3, . . ., ri 5(%'), then the 

algebra A is infinite-dimensional. 



- Proof: Since ri 5 (d;l - j9 tie r&d to  eramine the c o e f f i c i e n t s  of 

and apply Corollary 2.3.1. So we have 

But 

To continue the above we have 

Taking the inverse of the above, we have 



d+l Now s ince  d z l ,  we  have t h a t  -1-21, and a l s o  ( n + l ) d - ( n - 1 ) ~  2 .  

So (*) has non-negative c o e f f i c i e n t s .  Hence, by Corollary 2.3.1, A 

is  i n f i n i t e  dimensional. 

An even s t ronger  condi t ion  on r is  the  following due t o  Golad. 
i 

Corollary 2.3.3 l e t  ri and A be a s  previously defined.  I f  

where E i s  any p o s i t i v e  number such t h a t  d - 2 ~ 9 ,  ther: A is 

i n f i n i t e  dimensional. 

Proof: It is s u f f i c i e n t  t o  examine the  c o e f f i c i e n t s  of 

We have t h a t  



Taking the inverse of (21, we have (1) which is equal to 

a Since d - 2 0 0  = - 2 > E - d - c  > E > O .  

Hence all the coefficients of (1) are  nonnegative and, by corollary 

' 1  A is infinite dimensional. 

Corollary 2 . 3 . 4  Let d = 2 and r = 0 f o r  i = 2 ,  3 ,  ..., 9 
i 

and ri = 0 or 1 fo r  E10. Then A is in•’ inite dimensional. 



Proof: iiere c o r o l l a r y  2 .3 .2 .  does not apply f o r  

k1I2 Z 2 1 2  1 (1) ri = o c - = --- but  (2)  ri = 1 >(+) = i; 

So we use  co ro l l a ry  2 . 3 . 3  and w e  choose E = Then x- 

Clearly f o r  i = 2 ,  3,  ..., 
t h a t  i E 10. Then 

Expanding (2  - $) * using the  binomial theorem, we f ind  t h a t  t h e  

8 
*. 

f irsr four terms add t o  19, s o  ( 2 - $) > 16. kence c2 ( d - 2 ~ )  ' > 1. 

Since 

(d -- 2 d i  c ( 2  - ZE) 
i-t 1 

if (d - 2 ~ )  > l, t h i s  is s u f f i c i e n t  t o  prove coro l l a ry  2 .3 .4 .  

Corollary 2 . 3 . 6 ,  below is re-worked from a paper  due t o  Newman. [ l 9 J  

Lemma 2 . 3 , s  The following two condi t ions  a r e  equivalent  

(i) There exists O < ~ < d / 2  such t h a t  

r 5 E2(d - 
i 

f o r  i = 2 ,  3 ,  ... * 

( i i )  There e x i s t s  0 < k < d such t h a t  

f o r  i = 2 ,  3 ,  ... . 
Proof: Set  d - k * 2 ~ .  Then O<c<d/2 i f  and only i f  O<k<d, and 

~ ~ ( d - 2 ~ ) ~ ~ ~  - 



Corol lary  2.3.6 There i s  a pos i t ive  integer i4 such t h a t ,  i f  ri=O 
I 

f a r  icB and ri5(d-1)i f o r  i Y i ,  then A is  i n f i n i t e  dimensional. 

Proof. Let r\i be an ir~teger s a t i s f y i n g  N&td and 

then for  id, by Lemma 2 . 3 . 5  ( i i )  , we have: P u t  k 
IJ 

A+ 2 
1 Since ( 1 c &) 2 LM 21 it follows t h a t  r;r e 1 

(2)  

3 3 
L I 

Note t h a t  s ince  $1 2 4d implies ;J c_ a. Hence 

Subst i tu t ing (2)  and (3)  i n  (I), w e  have t h a t  ( I )  

We have (5) because when i 3 i p  then 

provided that 



1 1 1 1 1  1 -  (1 ( 1  ) = 1 - -  +--=d--- 1 
1 1 

d 2d 2d 2d' 

That is 

Now since d2 q (d-112 we have that 

i 2 (d - 1 p w 2 ( d  - 1j2 = (d - 1) 2 ri 

Iieilce A is in€ inire dimensional. 



In  t h i s  chapter  we w i l l  cons t ruct  some examples of n i l  a lgebras  

and pe r iod ic  groups. Before t h i s ,  however, w e  w i l l  s t a t e  c l e a r l y  

the  ~ u r o x  problem and t h e  Burnside quest ion adding a l l  the  d e f i n i t b n s  

necessary t o  understand them. 

3.1 Algebraic and H i 1  Algebras 

Def in i t ion  3.1.1 An algebra,  A, is f in i te ly-genera ted  i f  the re  is 

a f i n i t e  subset  a ,..., a (ca l led  i t s  generators)  such t h a t  every 
1 r 

element of A can be  obtained from the  generators  by a f i n i t e  nu* 

be r  of  add i t ions ,  mul t ip l i ca t ions ,  and/or s c a l a r  mul t ip l i ca t ions .  

Def in i t ion  3.1.2 Let  A be an algebra over a f i e l d  F; aEA is s a i d  

t o  be a lgebra ic  over F i f  the re  is a non-zero polynomial p ( x ) ~ F f x ]  

such t h a t  p(a)  = 0. That is 

(a) = k an+kn lan- '+. . . +kl a+ko = 0 
n - 

where ki&l. The equation (1) may d i f f e r  f o r  d i f f e r e n t  aEA. 

Def in i t ion  3.1.3 A n  a lgebra  A over F is said  t o  be a lgebra ic  

over F i f  every a&A is a lgebra ic  over F. 

The following theorem is a very i n t e r e s t i n g  one and we w i l l  

see soon t h a t  i t  g ives  us the  converse of the  ~ u r o x  problem. 

Theorem 3.1.4 If  A is  a f ini te-dimensional  (as  a vector  space) 

a lgebra  over F, then i t  is  a lgebra ic  over F. 



, 

Proof: Let aCA, and l e t  n = dim A. Then the  n+l elements - 
2 3 n a,a ,a , . . . , a ,an+', a r e  l i n e a r l y  dependent over F. Thus the re  

e x i s t  s c a l a r s  a , a ,  ..., %+I i n  F such that they are not a l l  
1 2  

zero azad eucl~ t h a t  

Thus p(a)  = 0, where p(x) is the  non-zero polynomial 

p (x) =alx+a x2+ . . . n+l 
2 +%+lX 

Hence a is  a lgebra ic  over F. But s ince  a was any element of A, 

we can conclude t h a t  every element of A is  a lgebra ic  and the re fo re  

A is  a lgebra ic  over F. 

Def in i t ion  3.1.5 Let A be an algebra over F; a U  is s a i d  t o  be 

n i lpo ten t  i f  t he re  e x i s t s  a p o s i t i v e  in teger  n such t h a t  an = 0. 

Def in i t ion  3.1.6 Let A be an algebra over F such t h a t  A" = (0) f o r  

some p o s i t i v e  in teger  n; then A i s  s a i d  t o  be a n i lpo ten t  algebra 

over F. 

Def in i t ion  3.1.7 An a lgebra  A over F i s  - n i l  i f  every element of A 

is  n i lpo ten t ,  

Theorem 3.1.8 If A i s  a n i l  a lgebra  over F, then A is a lgebra ic  

over F. 

Proof: Since A i s  n i l ,  t h i s  implies chat f o r  aEA,  t he re  e x i s t s  a 

pos i t ive  in teger  n such t h a t  an = 0. Clear ly  a is a lgebra ic  over 

F s ince  i t  s a t i s f i e s  the  following polynomial. 



12 + oxn-l + . . . + ox + 0 

l a n  + Oa n-1 + i.e. ... + Oa + 0 = 0 

Hence A is a lgebra ic  over F. 

3.2 ~ u r o g ' s  Problem 

F i r s t  w e  w i l l  de f ine  t h e  l o c a l l y  f i n i t e  a lgebras .  Then w e  w i l l  

d i scuss  the  ~ u r o x  Problem. 

Def in i t ion  3.2.1. An algebra  A over a f i e l d  F is l o c a l l y  f i n i t e  i f  

every f i n i t e  subset  of A generates a f i n i t e  dimensional subalgebra. 

We have seen t h a t  any f i n i t e  dimensional a lgebra  i s  a lgebra ic  

(Theorem 3.1.4), hence any l o c a l l y  f i n i t e  a lgebra  is  a lgebra ic .  Now 

t h e  following quest ion (an analog t o  the    urn side's Problem on groups), 

was r a i s e d  by ~ u r o g  i n  2941. 

Problem 3.2.2 Is every a lgebra ic  a lgebra  l o c a l l y  f i n i t e ?  

I n  a t h e r  words, i f  A i s  an a lgebra ic  a lgebra  over F, does a 

f i n i t e  number of elements of A generate a f i n i t e  dimensional sub- 

a lgebra  of A? O r ,  is  a f i n i t e l y  generated a lgebra ic  a lgebra  f i n i t e  

dimensional? 

A s  Jacobson says,  "A number of i n t e r e s t i n g  open ques t ions  on 

a lgebra ic  a lgebras  seem t o  hinge on t h e  answer t o  t h i s  problem," 

Some of these  a r e  t h e  following: 

Question 3.2.3 I f  A and B a r e  a lgebra ic ,  then is Am algebra ic?  



L 

ft is easy t o  sge that if A and B a r e  l o c a l l y  finite, then A @ B  

is l o c a l l y  f i n i c e .  Hence an  a f f i rma t ive  answer t o  ~ (u rox ' s  problem 

would provide an a f f i rma t ive  answer t o  3.2.3. 

I n  the  coming sec t ions ,  we s h a l l  give some examples of i n f i n i t e  

dimensional algebras.  

Also, w e  l i k e  t o  mention t h a t  ~ u r o z ' s  quest ion has an affirrna- 

t i v e  answer f o r  a lgebras  with a polynomial i d e n t i t y  (PI  - algebras)  

and hence f o r  a lgebras  of bounded degree. The results a r e  due t o  

Kaplansky which genera l i ze  e a r l i e r  r e s u l t s  by Jacobson and by 

3.3 PI._l._Algebra~ and Bounded Algebras 

Defini t ion  3 . 3 . 1  An algebra  A over a f i e l d  F is s a i d  t o  s a t i s f y  

a polynomial i d e n t i t y  i f  the re  is an f # O  i n  F[xl, ..., xd], t h e  

free algebra over F i n  t h e  noncommuting v a r i a b l e s  x 1~ X28 - 0 9  Xd 

f o r  some d, such t h a t  f (a l .  ..., ad) = 0 f o r  a l l  alp ..., ad i n  A. 

An algebra A which s a t i s f i e s  a polynomial i d e n t i t y  i s  c a l l e d  a 

P I  - algebra.  

Example 3 . 3 , 2  Let A be a n i l  a lgebra  of bounded index of ni lpotency.  

That is, xk = 0 holds f o r  every x f o r  some fixed k. Then A i s  a 

P f  - algebra .  

Example 3 . 3 . 3  Any commutative a lgebra  A over F is  a P I  - algebra ,  

f o r  i t  satisfies t he  polynomial i d e n t i t y  f(xl,x2) = 0, where 



SO 

, 

We mention t h e  following r e s u l t s  t o  g ive  an idea  of what was 

known regarding the  ~ u r o g  problem p r i o r  t o  the  work of Golod and 

v 
xafarevic .  I f  A is f i n i t e  dimensional over F, of dimension n,  then 

every element i n  A s a t i s f i e s  a polynomial of degree n+l over F, This 

def ines  the  not ion  of an a lgebra ic  algebra of bounded degree over P. 

Defini t ion  3 . 3 . 4  A is s a i d  t o  be an a lgebra ic  a lgebra  ofbounded 

degree over F i f  t h e r e  exists an in tege r  n such that given a E A, 

t he re  e x i s t s  a polynomial xn -bqxn-l + . . +aoF[xl s a t i s f i e d  by a. 
r, 

n n- 1 i . e .  a + a , a  + . * .  + an = 0. 

Lemma 3 . 3 . 5  I f  A is a lgebra ic  of bounded degree over F, then A is 

a PI a lgebra ,  1111 

Theorem 3 . 3 . 6  If A is an a lgebra ic  a lgebra  over F s a t i s f y i n g  a 

polynomial i d e n t i t y ,  then A is  l o c a l l y  f i n i t e .  [ l l ]  

Theorem 6.4.4 I f  A is  an a lgebra ic  a lgebra  of bounded degree over 

F, then i t  is l o c a l l y  f i n i t e ,  [ I l l  

3.4, Pe r iod ic  Croups and Locally F i n i t e  Groups 

Def in i t ion  3.4.1 A group G is  s a i d  t o  be a per iodic  o r  to r s ion  

group i f  every element i n  G is of f i n i t e  order ,  

Def in i t ion  3.4.2 The o r d e r  of an element b i s  the  smal les t  pos- 

i t i v e  in tege r  n such t h a t  bn = lq i f  i t  e x i s t s .  I f  the re  is  

such an  n, w e  say t h a t  b has f i n i t e  order .  



Defini t ion  3 . 4 . 3  If bn = 1, h i t h  n f ixed,  f o r  a l l  b E G,  and 

n i s  the  smallest: p o s i t i v e  in tege r  f o r  which t h i s  is t r u e ,  then 

n is ca l l ed  the  exponent of G. 

a e f i n i r i o n  3.4.4 A group G is  s a i d  t o  be l o c a l l y  f i n i t e  i f  every 

f i n i t e l y  generated subgroup of G i s  f i n i t e .  

Oef in i t ion  3.4.5 G is a f i n i t e l y  generated group i f  G conta ins  

a f i n i t e  s e t  of elements el, g2, . . . , g ( ca l l ed  i t s  genera tors)  r 

such t h a t  every element can be expressed a s  a f i n i t e  product of 

the  genera tors  and t h e i r  inverses .  

Theorem 3.4.5 Every l o c a l l y  f i n i t e  group i s  a t o r s i o n  group. 

Proof: Let G be a l o c a l l y  f i n i t e  group. We want t o  show t h a t  

every elemeat of G has f i n i t e  order .  That i s ,  the  subgroup gen- 

era ted  by t h a t  element is  f i n i t e .  But the  subgroun ~ e n e r a t e d  by 

a given element i s  c e r t a i n l y  f i n i t e l y  generated, hence is  f i n i t e ,  

wnich implies t h a t  the  given element has f i n i t e  order .  

lience G i s  a to r s ion  group. 

Example 3 . 4 . 6  The group 2+ of i n t e g e r s  i s  not  a t o r s i o n  group 

s i n c e  a s i n g l e  element does not  have f i n i t e  order .  Hence Z+ is  

not  l o c a l l y  f i n i t e .  

Example 3 . 4 . 7  This is an e x a m ~ l e  of an i n f i n i t e  group which is 

l o c a l l y  f i n i t e .  Take an i n f i n i t e  dimensional vec to r  space V over 

the  f i e l d  of i n t e g e r s  module p,  Zp.  Then V is  an abe l i an  group. 

dow take  any f i n i t e  subset  of V ,  a19a2$ ..., a , then the  subgroup 
n 



&I 
generated by t h i s  subset  is  j u s t  the  set of a l l  L where SiCZp. 

id 

There a r e  only f i n i t e l y  many choices of each Ei .  Hence, only a f i n i t e  

number of elements of the  subgroup generated by the  a 
i* 

Hence t h a t  f i n i t e l y  generated subgroup is  f i n i t e .  Hence the  

group is  l o c a l l y  f i n i t e .  

3.5 Burnside Problem 

The converse t o  Theorem 3.4.5 is the  Burnside Problem which 

o r i g i n a l l y  was asked i n  1904. We s t a t e  two vers ions  of the  Burnside 

Problem, 

1. Original  Burnside Problem. Is every t o r s i o n  group l o c a l l y  

f i n i t e ?  An equivalent  ve r s ion  of t h i s  question is: Is a f i n i t e l y  

generated pe r iod ic  group f i n i t e ?  

2. Burnside Problem f o r  Exponent Let G be a t o r s i o n  groug 

i n  which xN = 1 f o r  a l l  xEG, N a f ixed p o s i t i v e  in tege r .  Is G then 

l o c a l l y  f i n t t e ?  

These problems have answers now and they a r e  a s  follows: 

v 
1. A s  a r e s u l t  of the  work of Golod and ~ a f a r e v i g ,  t h e  or ig-  

i n a l  Burnside problem is answered i n  the  negative.  I n  the  f o l -  

lowing sec t ion ,  we w i l l  e s h i b i t  a f i n i t e l y  generated per iodic  group 

which i s  i n f i n i t e .  

However, f o r  matr ix  groups, Burnside himself s e t t l e d  the  o r i g i n a l  

Burnside Problem i n  the  a f f i rma t ive ,  by the  following: 



5 3 

I 

Theorem 3.5.1 (Burnside) A tors ion  group of matr ices  over a f i e l d  

is l o c a l l y  f i n i t e ,  

2.  Novikov i n  1959, announced the  exis tance  of an i n f i n i t e  

group G generated by two elements i n  which xN = 1 holds f o r  a l l  N 

X E G .  This is t r u e  f o r  any odd 1424381. The proof done by induc- 

t i o n  appeared i n  1968 i n  paper nearly 300 pages long, which gives 

an a c t u a l  cons t ruct ion .  

Regardless of the  answer t o  the  Burnside Problem, f o r  exponent 

N, t he  following problem i s  s t i l l  an i n t e r e s t i n g  one. 

Res t r i c t ed  Burnside Problem f o r  Exponent N: Among a l l  the  

f i n i t e  groups on K genera tors  with exponent N, i s  the re  a l a r g e s t  

one? 

The answer is "Yes", i f  N is  prime, done by Kostr ikin.  

I f  N is prime and 24351, we have two r e s u l t s :  

(a) There is a l a r g e s t  f i n i t e  group of exponent N i n  two 

genera tors  (Kostr ikin) .  

(b) There is an i n f i n i t e  group of exponent N i n  two gener- 

a t o r s  (Nwikov and Adyan) . 

theorem t o  cons t ruct  a f i n i t e l y  generated n i l  algebra which is 

i n f  inite-dimensional and a f i n i t e l y  generated irf !rite periodic group 
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Theorem 3.6.1 I f  F is  any countable f i e l d ,  the re  e x i s t s  an in- 

f i n i t e  dimensional n i l  a lgebra  over F generated by two elements. 

Proof: L e t  T = F[x,, x21. Then 

T = F cv Tl ifi .*. I% Tn C ..* 
where the  elements of Ti a r e  homogeneous of degree i. Let 

" 1 f = T 1 W 2 t r ?  

T' i s  an i d e a l ,  s ince  i f  ucT9 and 

because a ( ru )  and a(ur)  are always 21 

a vector space with a countable b a s i s  

is f i n i t e .  Hence, by Lemma 3.6.2, T '  

r€T, then ruETF and ur€Tq, 

since a(u)=l. Also, TF is 

s ince  the b a s i s  of each Ti 

is countable. Now l e t  

Choose m2>0 s o  t h a t  
m, 

a E T. m2 
29k +j k l f j  15j5k2-kl and s E Tkl+l (6 Tk1+2 @ ... +B Tk2.  

1 
2 

Laving chosen 
m 1 9 * * 0 9  

with corresponding k <lc < . . .<k 
11- 1 1 2  R - ~  

choose run* so  t h a t  

G1 
s +j, lzjS$-k,- ,  and s n ~ ~ k  
n,k +j kRml 

& T ca ... s T . 
n- 1 * n-1 kn.. kn 



I 

Clear ly  kick,< ... < k c . , .  . n 

Now l e t  81 be the  i d e a l  of T generated by a l l  t h e  sij. 

Notice t h a t  f o r  t h a t  choice of t h e  s ' s ,  we have rk = 0, 
i! 

2skz9. and rk = 0 o r  1 f o r  kaO,  by construction.  Hence, by 

coro l l a ry  2.3.4, w e  have t h a t  T/ U i s  i n f i n i t e  dimensional. Now 

s i n c e  %ST; we form the  quotient  algebra T1/ a, which is  obviously 

i n f i n i t e  dimensional. But T f / g  is a n i l  a lgebra  by construc- 
m m 

t ion ,  f o r  i f  :$ET'/ a then si - si +a, and sii = (si +a) - 
m i - m 
ei + @,=a , hence, i 

= 6. Hence t h e  algebra T f / %  is t h e  

required f i n i t e l y  generated a lgebra ic  algebra (in f a c t ,  a n i l  

algebra)  which is i n f i n i t e  dimensional. 

Lemma 3.6.2 Let V be  a vector  space with a countable b a s i s  over a 

countable f i e l d  F. Then V is countable. 

Proof: Let B = {v,, v,, . . . , vn, . . . }  be  a countable b a s i s  f o r  - 
V, and l e t  Bn = v ,  v2, . . . , v 1 be a subset  of 8. Now l e t  En be n 

the  subspace of V spanned by Bn. Then 5 is countable s ince  the re  n 

is  a n a t u r a l  one t o  one correspondence between and F x F x . . . x F n -..A n ti- 

But then 

is t h e  countable union of countable sets and hence countable, 

Let F be a f i n i t e  f i e l d  with p elements and let 91 be the  

i d e a l  i n  T = F[xJ,x2] a s  i n  Theorem 3.6.1 and l e t  T v  = T1@T2@ ... $Tn$ ... 
If A = T/1( then a l  = x l  +Rand a2 = x + X i s  the  generat ing set f o r  

2 

Tq/ a. 



Definit ion 3 . 6 . 3  A group G # {I) is a  p-group if every element 

of 6 except the  i den t i t y  has order a power of the  prime p. 

Lemma 3 . 6 . 4  Let G be the  mul t ip l i ca t ive  semigroup i n  A gen- 

erated by 1 + a , 1 + a . Then G is  a group, and is  i n  f a c t ,  a 
1 2 

p-group . 
Proof: Obviously G is  the  subset of A consist ing of a l l  f i n i t e  

power products of the  elements 1 + a l ,  1 + a,, (with non-negative 

exponents) . Hence : 

G c {1 + a1 f o r  some a & ~ ' / %  1. 

Bur the  algebra T I / %  i s  a  n i l  algebra (Theorem 3.6.1) and there- 

n  - fore, each a € ~ ' / a  i s  n i lpo ten t ,  i.e. fo r  some n we have a x 0 .  

Now take n  l a rge  enough tha t  pn>n. Then 

and 

n  n  n  n 
n  p  -1 ( 1 + a j P  = l + p n a + 4 ( p n - l ) p n a  + . . . + p a  + a P  = i + a p  = I .  

This is because a l l  t he  coef f ic ien t s  a r e  0, s ince  they a r e  d i v i s i b l e  

by p  and F is  the  f i n i t e  f i e l d  with p  elements. Hence G 

contains a mul t ip l i ca t ive  i den t i t y  1. Hence G is a semigroup 

with iden t i ty .  Also, s ince  powers of the  same element commute, we 

have 

n  
1 = (1  + alp = (1  + a ) ( l  + a) pn-l * (1  + alpn- l (1  + a ) ;  

n 
t ha t  is 1 + a has a  mul t ip l i ca t ive  inverse (1 + a l p  -I, whish 

is  c l ea r ly  i n  G. 

Therefore, G i s  a  group. Moreover, G is  a  p-group. 



Lemma 3.6.5 Let b be a n  algebra over a f i e l d  F and let G be 
I 

a f i n i t e  subset  of A which is !a group under mul t ip l i ca t ion .  Then 

the  l i n e a r  combinations 0% t h e  elements of G f o m  a f i n i t e  dimen- 

s i o n a l  subalgebra B over F. 

Proof: L e t  G = ( a l ,  a 2 ,  ..., an) be a f i n i t e  subset  of A and 

moreover, l e t  G be a m u l t i p l i c a t i v e  group. Then t h e  elements of 

the  subalgebra generated by G a r e  of t h e  form 

The subalgebra looked a t  as a vector  space is spanned by 

a l ,  ..., an. Therefore, it  has a f i n i t e  b a s i s  and hence is  f i n i t e -  

dimensional. 

Theorem 3.6.6 I f  p is  any prime, the re  is an i n f i n i t e  group G 

generated by two elements i n  which every element has f i n i t e  order 

a power of p. 

Proof: Let G be t h e  group i n  Lemma 3 . 6 . 4 .  Then G is a p-group, - 
and i t  remains t o  show t h a t  G is  i n f i n i t e .  Assume t h a t  G is 

f i n i t e .  Since G is  f i n i t e ,  the  l i n e a r  combinations of t h e  elements 

of G form a f i n i t e  dimensional algebra B over F, as i n  Lemma 3.6.5. 

Since  1, 1 + a l , l  + a * ,  are i n  G,  then t h e  elements 

1 = ( l + a l )  - a l  = ( 1 + a 2 )  - a  
2 

a r e  i n  B. Observing t h a t  1, a , a generate the  a lgebra  A, we ge t  
1 2  

A = B, contradic t ing t h a t  A is infinite-dimensional over F. There- 

fo re ,  B is  i n f i n i t e  dimensional and hence G is i n f i n i t e .  
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