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ABSTRACT 

Policymakers committed to inducing technological change need information 

about the Likely effects of alternative policies, potential adoption rates of clean 

technologies, and costs to society in the long run. My goal was to use a "hybrid energy 

economy model (CIMS), which combines a degree of behavioural realism, technological 

explicitness, and economy-wide feedback capabilities, to develop policy-relevant 

information about dynamics in consumer preferences for hydrogen fuel cell vehicles 

(HFCVs) . 

I designed a survey to investigate whether people's valuations of HFCVs change 

with increased market penetration (the "neighbour effect"). I used the survey results to 

build discrete choice models, which showed capital cost and refuelling convenience as 

key influences on consumers' choices and the importance of stated attitudes towards 

new technologies. However, I found no evidence of the neighbour effect. Rather than 

rule out this factor in consumer decisions regarding HFCVs, I attribute the result to 

limitations of the experimental design. 
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CHAPTER 1 INTRODUCTION 

1.1 Sustainable Policymaking in the Face of Uncertainty 

Canada has committed to reducing greenhouse gas (GHG) emissions within the 

international policy framework, but, based on current trends, Canadian GHGs are 

forecasted to increase by 32% above 1990 levels by 2010 (Natural Resources Canada 

1999). Transportation is among the most GHG intensive sectors, accounting for 25% of 

national emissions, and projections indicate it will remain that way (Jaccard et al. 2002). 

On average, transportation accounts for about half of personal GHG emissions, the 

majority of which come from single occupancy vehicle travel (Home 2003). Emissions 

from passenger cars and light trucks in urban centres are on the rise, and studies 

indicate that trends in vehicle sales and person kilometres traveled are outweighing and 

will likely continue to outweigh any gains in fuel efficiency in the near future (Natural 

Resources Canada 2002). 

Effective government policies directed at the transportation sector could have 

dramatic effects on vehicle and fuel demand, yielding considerable environmental 

benefits. At present, the balance of policy responses to reduce GHG emissions, in 

general, and in the urban passenger transportation sector, specifically, rely on 

information and subsidies to encourage and facilitate sustainable personal 

transportation choices. These policy responses do not require government coercion on 

producers or consumers, and have not caused visible negative responses from the 

supply or demand side, thereby minimizing political risk. However, the administrative 



costs the federal government incurs to finance these policies are not insigruficant 

(Government of Canada 2003). More importantly, some researchers indicate that 

transforming urban passenger behaviour warrants strong policy intervention if GHG 

emissions reduction goals are to be achieved (see for example, Jaccard et al. 2003; Greene 

and Plotkin 2001, Ewing and Sarigollii 2000). 

Researchers stress the importance of technological change and policymaking in 

attaining sustainability goals (Grubler et al. 1999, Azar and Dowlatabadi 1999, Duke and 

Kammen 1999, Toman 1998). First, the stock of technologies in an economy determines 

its impact on the environment. Technology choices can evolve in a way that exacerbates 

this impact or constrains it. Second, policymaking can stifle or create incentives for 

innovation and diffusion of clean technologies, depending on the choice of policy 

instrument (Kerr and Newell 2001). The right policy design can help clean technologies 

reach a critical threshold of market penetration or consumer acceptance, and, in this way 

reduce the economic impact of meeting an environmental goal. Experiences in 

industrialized countries with voluntary policy instruments indicate that, unless the 

threat of mandatory policies exists, volunteerism generally provides weak incentives for 

technological change or changes beyond what would have occurred anyway 

(Organization for Economic Cooperation and Development 2003). Researchers suggest 

that inducing technological change would require the use of more coercive policy 

instruments, such as market-based instruments, fiscal policies, and regulations (Moxnes 

2004, Kerr and Newell 2001, Jaffe et al. 2001, Pilkington 1998). 

In the context of Canadian climate change policy, the federal government might 

play a role in creating a market for less GHG emitting vehicle technologies and fuels 

(Government of Canada 2002). However, taking part in market transformation 



dynamics would require substantial and sustained investment, which carries sigdicant 

political and economic risk. These risks relate to the highly uncertain dynamics 

associated with new technologies, both on the producer and on the consumer side. Also, 

the federal government would require some understanding of the non-financial costs 

consumers might face as a consequence of policy implementation. In sum, policymakers 

committed to inducing profound technological change need a better understanding of 

what the appropriate policies are, what the potential adoption rates of clean 

technologies are, and how much these policies will cost society in the long run. 

Models that simulate the interaction between energy and the economy can be 

useful tools to evaluate the social costs and expected outcomes of alternative policies. 

However, definitions of costs, representation of consumer behaviour, technological 

explicitness, and economy-wide feedback capabilities vary among model specifications, 

leading to different results to the same policy problem (Jaccard et al. 2003). Instead of 

being useful to decision-makers, results from different simulation exercises can further 

confuse them. In the next section, I provide a brief discussion on the differences among 

approaches to energy-economy modelling to clarlfy the reasons behind the discrepancies 

in their modelling outcomes. The discussion concludes with a description of an 

approach to energy-economy modelling that can assist policymakers in designing 

policies aimed at inducing technological change. 

1.2 The Challenge of Energy-Economy Modelling 

Two traditional approaches to energy-economy modelling exist: top-down 

modelling, grounded in a macroeconomic framework, and bottom-up modelling, which 

is highly disaggregated and explicitly represents a series of technologies. The 



philosophies underlying the two approaches differ; that is, these models were 

historically designed to address different questions (Jacobsen 1998). However, analysts 

today use both types of models to assess the costs of reducing GHG emissions from the 

economy. Traditionally used by economists, top down models use a series of equations 

to depict aggregate relationships between costs, market shares of economic inputs 

(energy, materials, labour, and capital), and sectoral or economy-wide outputs, all 

within a macroeconomic setting. Analysts estimate these relationships from time series 

of data for energy prices and demand. Top-down modelling uses two indices to 

represent the evolution of technologies in an aggregate way. "Elasticities of substitution" 

(ESUB) capture the price-driven substitution between inputs and between energy forms. 

The "autonomous energy efficiency index" (AEEI) captures improvements in an 

economy's energy efficiency that are not induced by price changes. Because both indices 

are based on revealed market information, top-down models contain a degree of 

behavioural realism, i.e., they implicitly incorporate changes in consumer preferences. 

The costs of reducing GHG emissions from energy intensive activities amount to the 

price signal (e.g., carbon tax or upstream cap and trade system) needed to attain a given 

GHG emissions target. Since the assumption is that firms and consumers would have 

already optimized their position in the reference case, any other action implies a cost, 

which partly explains why GHG abatement costs resulting from top-down modelling 

exercises tend to be high in comparison to results from bottom-up models (Weyant and 

Hill 1999, Jacobsen 1998). 

Critics question the validity of top-down models' behavioural parameters to 

apply to a future defined by GHG constraints, and how this might affect these models' 



capacity to portray technological change (Grubb et al. 2002, DeCanio and Laitner 1997). 

Top-down models assume that consumers make decisions based on past and current 

information and not expectations about the future. Thus, traditional top-down models 

cannot accommodate for the impacts of widespread commercialization of new low-GHG 

emitting technologies or the possibility that preferences for these new technologies 

might change in the long run. In response to this criticism, a few modellers have made 

attempts at endogenizing technological innovation and diffusion of new energy 

technologies (Loschel2002, Jacobsen 2001, Carraro and Galeotti 1997). Their approaches 

have focused on incorporating spill-over effects from subsidies to research and 

development (R&D), subsidies to known best available technologies, and economies-of- 

learning. 1 

Engineers, planners, and environmental advocates are the primary users of 

bottom-up models. They use these tools to assess the levels of GHG emissions 

associated with alternative constraints regarding energy efficiency, fuel use, equipment, 

and land use (Jaccard et al. 2003). Bottom-up models can simulate sector or technology- 

specific policies, as specified by these constraints. Bottom-up models are detailed in 

their portrayal of energy technologies, and often include both present technologies and 

expectations about future technologies in their simulations. Often, differences in 

discounted financial costs alone determine the market shares for competing 

technologies, which means that bottom-up models assume that two technologies that 

provide the same service are perfect substitutes except for their financial cost (and 

1 An" experience curve" portraying the rapid decline in financial costs of an emerging technology 
as a function of changes in production levels and early operating experience can describe 
economies-of-learning (also called learning-by-doing). As the technology matures efficiencies 
taper off (Grubb et al. 2002). 



emissions). These models cannot characterize the factors inhibiting the adoption of less- 

polluting technologies with lower financial costs than the dominant, polluting 

technology, which is an issue that is widely documented (see, for example, Sutherland 

1996). The costs of GHG emissions reduction policies only include changes in the costs 

of operating the stock of technologies. Thus, bottom-up models do not capture the full 

social cost of switching among technologies, and tend to underestimate the costs of a 

given climate change policy (Jaffe and Stavins 1994). In reality, firms and individuals 

are not simple financial optimizers - their technology choices take into account 

qualitative differences between technologies and perceptions about risk. From a 

consumer's perspective, two technologies that provide the same service are not 

necessarily perfect substitutes. Consumers tend to view new technologies, especially 

those that require long payback periods, as risky in terms of both safety and investment. 

Therefore, consumers might see a value in delaying these risky investments until they 

are better informed. Economists call this "option value" (Pindyck 1991). In addition, 

although clean or less-polluting technologies provide an equivalent quantitative energy 

service, they might not provide the same service qualities that make conventional 

technologies more appealing. For example, even if public transit were reliable, 

convenient, accessible, and inexpensive, consumers might still prefer driving their 

expensive and GHG-emitting cars for the sake of additional comfort and freedom. 

Economists call the value a consumer receives beyond the financial costs of a given 

technology "consumers' surplus". As well, consumers might not have the same level of 

access to or face the same financial costs of a given technology across the economy. All 

these "intangible costs" are important to account for when considering the adoption 

potential of low-GHG emitting technologies in the long run. 



To take advantage of the relative strengths of the two types of energy-economy 

models some analysts have begun using a hybrid modelling approach (Jaccard et al. 

2003, Frei et al. 2003, Jacobsen 1998, Manne and Richels 1994, Manne and Wene 1992). 

Hybrid energy-economy models are technologically explicit, incorporate behavioural 

realism consistent with revealed market behaviour, and capture macro-economic effects 

of alternative policies. This combination of capabilities is particularly useful to analysts 

seeking to evaluate the potential of policy options to cause profound technological 

change in the long run (Jaccard et al. forthcoming). But, unless the model formulation 

recognizes the existence of dynamics in technology adoption, policy modelling exercises 

could underestimate the long-term potential of low GHG emitting technologies to 

achieve sigdicant market shares. Specifically, modellers must address two key sources 

of uncertainty, (1) the way preferences for technologies can change and (2) the way 

financial costs for new technologies can evolve. A better understanding of both 

uncertainties can be useful for policymakers in developing expectations about the 

effectiveness of policies aimed at increasing the market share of low GHG emitting 

technologies in the long run. 

1.2.1 Uncertainties in Technological Change 

For reasons that are beyond the full control of political-economic systems, 

consumers' preferences for emerging and unconventional technologies can change in the 

long run (Jaccard et al. 2003, Macauley et al. 2002 Norton et al. 1998, DeCanio and 

Laitner 1997). This means that consumers' surplus and option values for new 

technologies are not static. Preferences can change for a variety of reasons, some of 

which include: learning from others' experiences with the technology, new information 



about a technology's safety and reliability, increased concern for the environment, and 

changes in availability of the technology relative to the availability of conventional 

alternatives. Policy packages themselves can also influence preferences by making 

certain technologies more or less available to consumers. For example, California's 

vehicle emission standards, launched in 1990, require car manufacturers to produce and 

sell a certain market share of low-emission cars by 2010 (California Air Resources Board 

2001). This policy has made alternative fuel / vehicle technologies viable options for 

consumers in California, as manufacturers market these vehicles aggressively. Hybrid 

modellers can help policymakers by using empirical evidence to explore how consumer 

preferences can influence the adoption rates of low GHG emitting technologies in the 

long run, and whether policies can be designed in a way that increases the market 

penetration of these technologies without causing huge losses in consumers' surplus. 

Uncertainty about technological innovation and commercialization implies that 

future financial costs of new technologies can be under - or overestimated today. For 

example, innovations in the transformation of fossil fuels into hydrogen and subsequent 

storage of by-products in geological media can dramatically reduce the financial cost of 

hydrogen-based technologies like fuel cells. Direct subsidies, tax breaks, and other 

government policies can help drive down the costs of producing new technologies, 

moving them from the innovation stage to the commercial stage. Although such policy 

efforts can reduce near-term uncertainties in technological development, long run effects 

- 20 years or more from now - remain highly uncertain. One approach to incorporating 

the evolution of financial costs of new technologies in hybrid modelling is to use 

"experience curves", which I referred to earlier. Trends based on the commercialization 



and diffusion of conventional technologies, and some studies on emerging technologies, 

indicate that the rate at which capital costs decline in response to learning on the supply- 

side varies (Azar and Dowlatabadi 1999, Duke and Kammen 1999). The variation 

depends on attributes of the technology and on the feedback loop between supply and 

demand. Experience drawn from the first few units of production can reduce financial 

costs to the point of creating a niche market (Adamson 2003). But, further declines in 

capital costs require continued market acceptance, which, in turn, is dependent on the 

ability of producers to make the technology more attractive, and the technology's 

increased visibility (Adamson 2003). 

In sum, hybrid energy economy models that accommodate endogenously the 

dynamics in consumer preferences and the effects of production efficiencies on new 

technologies' financial costs can provide a realistic representation of long-run 

technological change. Policymakers committed to inducing technological change will 

find the results of modelling exercises using these types of hybrid models valuable. The 

goal of the research described in this paper is to use a hybrid energy-economy model 

(CIMS) to look at the dynamics of technological change, with a focus on representing 

long-run changes in consumer preferences for a new vehicle technology. 

1.3 Description of CIMS 

CIMS, housed at the Energy and Materials Research Group (EMRG) at Simon 

Fraser University, is an integrated, technology-specific energy-economy model, 

including components to incorporate behavioural realism. The model simulates the 

interaction between energy flows and representative economic sectors by linking three 

modules: energy demand, energy supply and the macro-economy. The three modules 



can also run individually. A single "simulation run" is complete once energy prices 

resulting from the dynamic interplay among modules converge. The convergence 

procedure repeats for every five-year period of the run (Jaccard et al. 2003). 

CIMS tracks the evolution of technology stocks as a function of changes in the 

demand for services the technologies fulfil. An example of a service is "person 

kilometres travelled," which represents the demand for technologies used for personal 

mobility. In each period of the run, CIMS accounts for technology retirements, retrofits, 

and new purchases. Demand for new stock depends on capital stock turnover, the 

assessment of current stock, and expectations regarding growth in service demand. 

CIMS allocates new market shares for each technology by simulating competition at 

each service node according to the following logistic relationship: 

LCC, * ~ + M c ,  +ECj+ij 
1- l+r 

MS, = 1 Equation 1 

In this equation, MSj is the market share of technology j, CCj is the capital cost, 

MCj is the maintenance and operation cost, and EC, is the energy cost. The equation 

contains three behavioural parameters aimed to capture aspects of decision-making that 

are not directly financial: ij is the intangible cost parameter, which accounts for the fact 

that consumers and firms can attach real or perceived costs to one technology relative to 

another even though the two might provide the same service at similar financial costs; r 



is the private discount rate revealed through empirical research; and v represents 

variance around technology distribution, reflective of the fact that market conditions 

differ across the economy and these differences affect the market penetration of a 

technology even though the technology might be less costly than others when only a 

single point estimate is used (Figure 1.1). A low value of v means that even technologies 

with high costs can capture a portion of the new market share. For example, at a value 

of 1, technology A is able to attain a market share of 40%, even when its Lifecycle cost is 

twice that of technology B. Conversely, if the v parameter takes a high value the least 

cost technology will dominate the competition. At a value for v of 20, we see that 

technology A captures almost 100% of the market, as long as its lifecycle cost remains 

25% less than the cost of technology B. If technology A costs over 25% more than 

technology B, technology A fails to penetrate the market. 

Figure 1.1: Market heterogeneity in CIMS 
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Although CIMS current portrayal of consumers' and firms' decision-making 

behaviour is an improvement over traditional top-down and bottom-up formulations, 

the behavioural parameters associated with many technologies currently lack an 

empirical basis. For the majority of technologies, the discount rate has been derived 

from literature reviews and expert opinion, and non-financial parameters have been 

selected to fulfil market share expectations and external forecasts, as well as from meta- 

analysis (Rivers and Jaccard forthcoming). However, estimating behavioural 

parameters from these sources limits the ability of CIMS to simulate policy alternatives 

aimed at influencing technological change. This is because estimates from these sources 

generally do not differentiate among different types of intangible costs. As a result, 

model outputs regarding policy costs and environmental outcomes are uncertain. 

Recent work at EMRG has focused on addressing this shortcoming by using 

stated preference data from discrete choice experiments. This research has incorporated 

conclusions about what influences consumers' and firms' purchasing decisions 

regarding alternatives in industrial steam generation (Rivers and Jaccard forthcoming), 

residential heating (Jaccard and Dennis forthcoming), and personal urban transportation 

(Home et al. forthcoming). However, the assumption in these studies is that the way in 

which consumers value technologies and choose among them does not change -that is, 

the portrayal of consumer preferences is static. 2 As I mentioned previously, preferences 

can change for a variety of reasons. Therefore, a static representation of preferences in 

CIMS means that the model might overestimate the social cost of switching to low-GHG 

2 Specifically, the intangible costs (i parameter), private discount rate (r), and market 
heterogeneity (v) in CIMS do not change during the simulation. A "dynamic" representation of 
consumer preferences would somehow allow for changes in these parameters during the 
simulation. 



technologies in the long run, especially i f  we are interested in looking at the adoption of 

unconventional technologies. By incorporating dynamic consumer preference 

assumptions, CIMS can simulate these market transformation dynamics. 

1.4 Research Questions 

My research uses the methodology developed by Rivers, Home, and Sadler to 

estimate empirically based behavioural parameters in CIMS, and seeks to extend their 

work by attempting to capture how long-run preferences can change, as new 

technologies evolve and gain market share. To meet these goals I developed a 

methodology to answer the following research questions: 

What are the non-financial costs of adopting hydrogen fuel cell vehicles (HFCVs)? 

Can we expect consumer preferences for HFCVs to change, and if so, on what basis? 

How can we use a hybrid energy economy model (CIMS) to simulate consumer 

preference dynamics for this vehicle technology? 

What are the likely long-term outcomes of policies aimed at shaping the market for 

HFCVs in Canada? 

My research focuses on eliciting preferences for hydrogen fuel cell vehicles, 

while manipulating the conditions surrounding the respondents' decision environment 

in order to trigger changes in these preferences. The hypothesis in this approach is that 

people's value for hydrogen fuel cell vehicles (and hence, their propensity to choose 

them over gasoline cars) will change as the number of people owning this vehicle 

technology increases. I call this phenomenon the "neighbour effect". 



I investigate consumer preferences for hydrogen fuel cell vehicles because (1) the 

widespread adoption of this technology could lead to sigruficant social benefits, and (2) 

little is known about how its adoption might proceed. We often hear or read about 

hydrogen fuel cell vehicles in the context of sustainability goals (Ogden et al. 2004). 

Many call this technology the "car of the future", because of its potential to decrease the 

pollution arising from vehicle use and to reduce our dependence on fossil fuels. For this 

product to reach the market, engineers and analysts from different fields must address 

several technical issues related to the vehicle drive-train itself and the infrastructure 

required to support the vehicle technology (Azar et al. 2000, Ogden et al. 1999). 

However, I am not concerned with hydrogen fuel cell vehicle's development pathway; 

my research concentrates on the conditions required for people to adopt HFCVs. 

Some analysts claim that the adoption of HFCVs could require a paradigm shift 

in the way consumers and producers relate to each other and to the product itself 

(Bower and Christensen 1995).3 Hydrogen fuel cell vehicles are a "disruptive" 

innovation.4 Disruptive innovations "1.. .] shi_ft market structure, represent nezo 

technologies, require consumer [and producer] learning and induce behavioural change" 

(Mackay 2002). Ayres (2000) adds that, although we know very little about the adoption 

path of this type of technology in comparison to the evolutionary kind, the potential for 

profound socio-economic effects from the former is greater. 

Theoretical and empirical evidence shows us that people are resistant to change, 

especially when they are uncertain about the new option (Adamson 2003). Personal 

3 I use the terms "product" and "technology" interchangeably, although Adamson (2003) clarifies 
that what consumers buy is a product, typically made up of one or more technologies. 
4 Other terms for "disruptive" are: revolutionary, discontinuous, really new, and radical 
(Adamson 2003, Schmidt 1998, Freeman 1994). 



attitudes towards new technologies play an important role in regards to the adoption 

potential of HFCVs (Sondermann 2002). Adamson (2003) developed a framework for 

the adoption of fuel cell vehicles in Europe, concluding that the market penetration of 

this technology depends on whether ~lli~nufacturers can meet the needs of three specific 

consumer groups. My objective is to gain an understanding of the values and 

preferences of average Canadians when choosing between a conventional gasoline car 

and a hydrogen fuel cell vehicle. The attitudes and demographics underlying these 

preferences are less of a focus, but could warrant more attention in future research. 

1.4.1 Approach and Structure of the Paper 

The general approach involved in this research consisted of: 

Designing an experiment that would allow me to estimate the "neighbour effect" 

associated with adopting hydrogen fuel cell vehicles; 

Monetizing the intangible (also called non-financial) costs of choosing hydrogen fuel 

cell vehicles derived from the discrete choice models built from responses to a 

survey, and assessing the influence of the "neighbour effect" on the intangible costs. 

Using the results from the discrete choice models to set dynamic parameters in 

CIMS, a hybrid energy-economy simulation model; 

Using the new CIMS configuration to simulate the effects of policies geared at 

accelerating the market for "disruptive" vehicle technologies in Canada. 

The paper begm with a description of the methods I used to implement the first 

three points of my research approach (Chapter 2). Chapter 3 provides details on the 

data collection process and includes the results of the survey. Chapter 4 is an analysis of 



the results pertaining to consumer preference dynamics and their integration into CIMS. 

This section also includes the results of a series of policy simulation exercises. Finally, 

Chapter 5 provides a summary and discusses the implications and limitations of this 

research. 



CHAPTER 2 METHODS 

2.1 Overview 

To answer the research questions I took the following steps. 1) I designed a 

discrete choice experiment and asked a sample of Canadians to choose between a 

conventional gasoline vehicle and a hydrogen fuel cell vehicle based on a list of vehicle 

attributes. 2) To capture the "neighbour effect" I divided the global pool of respondents 

into four segments, each representing a fictional market share of the disruptive vehicle 

technology. 3) I used the results of the discrete choice experiment to estimate discrete 

choice models that quantify the importance of various attributes in decision-making. I 

also tested for differences among consumer preferences in the four market share groups. 

4) 1 used the discrete choice models to estimate behavioural parameters in a hybrid 

energy-economy simulation model (CIMS). 5) Based on the differences among the 

parameter estimates for the discrete choice models and by making assumptions about 

the input variables I attempted to provide an empirical basis to the function currently 

being tested to simulate consumer preference dynamics in CIMS. 

In the text below I give a more detailed explanation of the methods for each point 

and the justification behind them. 



2.2 Building Discrete Choice Models 

2.2.1 Theory 

Discrete choice models (DCMs) describe a consumer's decision-making 

behaviour when faced with a series of competing alternatives, such as technologies, 

products, or policies (Train 2003). These models assume that, given a choice set, the 

consumer selects the alternative that they value the most - that is, it provides the greatest 

utility. DCMs are useful to describe the attributes that contribute to a choice, but they 

do not describe the decision-making process itself. At an aggregate level, DCMs allow 

us to assess the probability of market shares of competing technologies by assessing 

their relative utilities. The utility for technology j, Uj, is defined as: 

Uj = Vj + Ej Equation 2 

Where Vj represents the portion of the consumer's utility that the analyst can 

measure from relating the attributes of the alternatives to the consumer's overall utility. 

Ej, represents the factors in consumer choices that the analyst cannot capture in Vj. 

Vj or the "measurable utility" is determined by a vector of technological 

attributes, Xi, each weighted by its corresponding coefficient, Pi. This coefficient is 

referred to as the taste parameter. Including a constant that is specific to alternative j, 

captures the average effects on utility this alternative has that are not included in the 

model. Since we are only interested in comparing relative utilities, given 1 alternative 

technologies, one of the alternative specific constants (ASCs) is normalized to zero. By 

definition, when the model includes ASCs, Ej has a mean of zero. Thus, the portion of 

utility for technology j that we can measure takes the form: 



V, = pj"Xj + ASCj Equation 3 

To account for the fact that there are certain elements that an external observer to 

the decision-making process can never fully understand, we can model E, as a random 

variable. In this way, we can use the random variable's joint density distribution to 

estimate technology market shares probabilistically. We denote the probability that 

consumers will choose technology j over technology i as: 

Pi = Prob (Uj > Ui) 
P, = Prob (V, + ~j > Vi + ~ i )  = Prob (V, - Vi > EI - Ej) 
for eve y j Z I 

Equation 4 

2.2.2 Model Assumptions 

We cannot estimate a model or calculate the probability of selecting one 

technology over another without making assumptions about E, and V,. With respect to 

E,, the researcher has to define the term's probability distribution and has to decide 

whether to allow correlation of this error term across alternatives. Previous studies at 

EMRG, and the approach taken in this study, have assumed the simplest and most 

commonly used DCM specification: the multinomial logit model (MNL). The MNL 

model assumes that the random portion of the utility function is independently and 

identically distributed across alternatives in the choice set, following a type I extreme 

value distribution. 5 Integrating the random variable's probability function across all 

values of Ei results in the following market share equation: 

Equation 5 

5 The probability density function of a type I extreme value distribution is similar to the normal 
distribution, but is right-skewed and assumes a closed form (Morgan and Henrion 1990). 



This equation allows us to calculate the probability of selecting technology j from 

a suite of technologies using P coefficients, values for technological attributes (X), and 

alternative specific constants, if specified. The analyst must have a set of consumer 

choice observations in order to estimate the p coefficients through a technique called 

Maximum Likelihood Estimation (MLE). MLE finds the value of P parameters that are 

most likely, given the actual choices made by the sample under study (Ben-Akiva and 

Lerrnan 1985). 

The MNL model is the most widely used DCM, largely because its assumptions 

allow for simple estimation and interpretation of market share forecasts (Zwerina 1997, 

Train 2003). From the analyst's point of view, the key assumption of independent and 

identical distribution of the random variable across alternatives is not overly restrictive 

if we can specify the model in a way that the measurable portion of utility (Vi) 

sufficiently captures the elements of interest, and the random variable becomes "white 

noise". 

Violations of MNL model assumptions seem to be greater when attempting to 

predict technology substitution patterns and market shares than when trying to estimate 

average (and systematic) preference behaviour (Brownstone et al. 2000). One of the 

goals of my research is to understand aggregate preferences for disruptive vehicle 

technologies and any dynamics in these. By including the attributes found to most 

influence decisions on vehicle choices, and by following techniques aimed at improving 

sample response quality, I have attempted to minimize errors resulting from 

transgressing MNL assumptions. Ultimately, I had to make trade-offs between the 

benefits of using a simple model specification and the implications of violating model 



assumptions. In the rest of this paper, I use Uj to refer to the measurable utility, in order 

to avoid confusing the Vj with the v parameter in CIMS. 

2.2.3 Data Source 

We can build discrete choice models from two data sources. Stated preference 

data result from presenting consumers with a set of hypothetical situations and asking 

them to decide among two or more alternatives based on a list of attributes. In contrast, 

revealed preference data represent actual decisions made in the marketplace. 

Estimating models from either data source has its challenges (Brownstone et al. 2000, 

Hensher 1999). 

Stated preference research has been the preferred approach within EMRG for 

several reasons (Rivers and Jaccard forthcoming, Home et al. forthcoming, Jaccard and 

Dennis forthcoming). 1) Collinearity in revealed preference data can make it difficult to 

identify the attributes that are sigruficant to decision-making behaviour. 2) We can only 

observe market behaviour for technologies, products, services, or policies that currently 

exist. We cannot model demand for new technologies, new attributes, non-market 

goods and services, or innovative policies using revealed preferences. 3) Collecting 

revealed preference data can be difficult for at least two reasons. Respondents might 

find it challenging to recall the attributes that influenced their purchase decisions in the 

past. Or, in cases where data collection does not involve interviews or surveys, the 

analyst might need to approach private data banks, subjecting the analyst to costly fees 

or limiting access to information that might be considered confidential. 

Discrete choice experiments designed to elicit stated preferences provide the 

flexibility to examine a wide range of attributes, customize choice sets faced by each 



consumer, and include unconventional vehicle technologies and policy options that are 

currently unavailable. However, stated preference data can include bias, given the 

hypothetical nature of the survey questions and alternatives, the fact that respondents' 

actual behaviour and their stated behaviour might differ, and because the respondent 

might find the survey task overly complex (Train 2003, Fujii and Garling 2003, DeShazo 

and Fermo 2002, Hensher 1999, Urban et al. 1996). In an attempt to mitigate some of the 

bias related to task complexity and without compromising efficiencies in data collection, 

my colleague and I collaboratively developed a web-based survey to gather stated 

preference data. 6 

2.2.4 Survey Design 

The survey design for my research has two major aspects (1) the choice 

experiment and (2) the treatment of the four market share groups to test for preference 

dynamics. Details on my approach to testing for the "neighbour effect" are in a separate 

section to avoid confusion. The choice experiment involved selecting the vehicle 

attributes and levels that would allow the researcher to estimate, with some degree of 

confidence, the key influences in consumer choices between a conventional gasoline 

internal combustion engine vehicle and a hydrogen fuel cell vehicle. As well, I had to 

decide how many choice situations to give respondents. Several analysts have 

investigated personal vehicle preferences using discrete choice experiments; I show 

some of the attributes in these works in Table 2.1. 

6 Paulus Mau, a graduate student member of EMRG, carried out a companion study focusing on 
preference dynamics for "evolutionary" vehicle technologies, using hybrid-electric vehicles as a 
proxy. 



Table 2.1: Comparison of attributes selected in this and previous studies 

A review of previous studies and consultation with colleagues and experts 

helped determine the attributes to include in my choice experiment: a) vehicle purchase 

price (also referred to as capital cost), b) fuel costs, c) the amount of a subsidy the federal 

government provided as a rebate for purchasing a given vehicle technology, d) warranty 

coverage, and e) refuelling convenience (i.e., the relative proportion of stations with 

proper fuel). The rationale for including these attributes is as follows. Purchase price 

and fuel costs (a and b) were included because most previous studies conclude that they 

are important criteria when deciding on a vehicle to buy. Also, I would later use the 

coefficients derived from these attributes to estimate the personal discount rate for the 

consumer population as a whole. The influence of subsidies could have been 

incorporated as manipulations of the vehicle purchase prices. Instead, I decided to 

explicitly include subsidy (c) as an attribute since research in behavioural economics 

shows that people assess gains with respect to their reference position and not the end- 

point (Kahneman and Tversky 1984). Following this hypothesis, people might value 

receiving money to contribute towards their vehicle purchase more than purchasing the 

vehicle at a discount. Finally, I selected the two non-monetary attributes, refuelling 



convenience (d) and warranty coverage (e), because they represent conditions that could 

be affected by policies of government and vehicle manufacturers. 

Some important attributes from previous studies that I excluded are: a) relative 

emissions, b) range, c) power, d) size, and e) storage capacity. I left relative emissions (a) 

out to minimize respondents' tendency to exaggerate their propensity to choose the 

more environmentally benign option (as in Urban et al. 1996). I assume that consumers 

would not have to trade off range (b) and power (c), because engineering studies and 

technology forecasts indicate that fuel cell vehicles could achieve similar power to 

conventional gasoline vehicles, and slightly shorter range (Row et al. 2002, Thomas et al. 

1998). Size (d) and storage capacity (e) are excluded by some previous studies by asking 

respondents to imagine that the alternative technology or fuel is available in all vehicle 

body types (i.e., in all sizes and shapes). This assumption leads to an optimistic 

portrayal of people's propensity to choose the alternative vehicle technology or fuel. In 

real markets, the availability of different vehicle body types and vehicle makes are 

important decision-making criteria, which puts emerging technologies at a competitive 

disadvantage. My intention was to explicitly include a measure of vehicle make and 

model availability, but could not find a simple way to represent it. 

Next, I selected the number of levels to be presented for each attribute, opting for 

three levels for most of them. In this way, I would be able to investigate whether 

people's incremental utility for a given vehicle attribute changes in a non-linear fashion. 

Greene (1997) reports an example of this in fuel availability. He found that people's 

marginal utility for increases in the percentage of stations with proper fuel was very 

different above and below 25%. Table 2.2 shows the possible levels that every attribute 



could assume in each survey. This configuration yields a 36 full factorial design, 

requiring each respondent to answer 729 choice questions. The design was simplified to 

a fractional factorial, consisting of eighteen choice questions per respondent. This 

design was able to accommodate main effects and was well within respondents7 

cognitive ability (Hensher et al. 2001, Louviere et al. 2000, p. 124). 7 

Table 2.2: Attribute and levels in the discrete choice experiment 

Fuel Cost 
(weekly or monthly) 

Capital Cost 

Stations with 
Proper Fuel 

Warranty Coverage 

Government 
Subsidy on Capital 
Cost 
(as a rebate) 

User FC 
0 110% User FC 

125% User FC 

Gasoline Vehicle 

User FC 

Hydrogen Fuel Cell Vehicle 
(HFCV) 

User cc 
110% Usercc 
120% User cc 

140% User cc 
170% User cc 
190% User cc 

All stations 

0 5 years or100,OOO Km 
(60,000 miles) 

No subsidy 

0 5 years or100,OOO Km 
(60,000 miles) 
8 years or 130,000 Km 
(80,000 miles) 

0 10 years or 163,000 Km 
(100,000 miles) 

5 % of HFCV purchase price 
10% of HFCV purchase price 

0 20% of HFCV purchase price 

I based the fuel cost and purchase price of the two vehicle types on each 

respondent's current situation. User~c is the value in dollars that the respondents spend 

on gasoline on a weekly or monthly basis, and Usercc is the price the respondents paid 

for their current vehicle. Both input variables refer to respondents' primary vehicle, 

7 "Main effects" are the effects of changes in one of the attributes on the dependent variable, 
which, in this case, is choice (Louviere et al. 2000). 



should they own and operate more than one. Variation around gasoline costs reflects 

possible policy-induced increases in gasoline. Fuel costs for the hydrogen fuel cell 

vehicle remain constant, following General Motor's assumption that the cost of 

hydrogen fuel for fuel cell vehicles should be comparable, on a cost-per-driven-distance 

basis, with that for conventional vehicles.8 The premiums selected for the purchase 

price of hydrogen fuel cell vehicles ensured that this vehicle type would always be more 

costly than its conventional counterpart, corresponding to initial market price 

expectations for alternative vehicle technologies. 9 Previous studies have found that 

large differences in purchase price among technology choices can dominate 

respondents' vehicle choices (Ewing and Sarigollii 2000). However, when I pilot-tested 

the levels I initially selected for HFCV's purchase price (110% Usercc, 125% Usercc, and 

140% Usercc), respondents consistently chose the hydrogen fuel cell vehicle. So, I 

adjusted the cost differentials between HFCVs and gasoline cars upwards. I set the 

proportion of stations with proper fuel for HFCVs using the commercialization scenario 

in BevilacquaKnight (2001) as a guide, but kept these numbers below 25% of stations 

with proper fuel. The base warranty coverage (5 years or 100,000 Km) is standard for 

today. The range in levels for HFCVs illustrates policies that manufacturers might 

8 http:/ /g;m.com/company/g;mability/adv tech/400 fcv/fc costs.htm1 
Retrieved on August 9,2003 
Ogden et al. (2004) provide analytical evidence in support of this assumption. They argue that 
fuel costs for fuel cell vehicles per kilometre can be comparable to gasoline costs for conventional 
vehicles, if corrections for efficiency, infrastructure costs, and fuel production costs are made. 
9 At introduction in 1996, the electric battery version of the Toyota RAV4 sold at twice the value 
of the conventional RAV4 (Coup 1999). The 2004 manufacturer's suggested retail price (MSRP) 
for the Honda Civic hybrid electric vehicle was approximately 70% greater than the MSRP 
corresponding to its gasoline equivalent (retrieved in November 2003 from 
http:/ /www.honda.ca). 



undertake to market unconventional vehicle technologies. 10 Finally, subsidy levels were 

chosen using current subsidy programmes and tax incentives for alternative vehicles in 

the United States as references. 

2.2.5 Treatment of Market Share Groups 

A key innovation of my research is the combination of a choice experiment and 

the manipulation of the survey sample to test the assumption of changes in preferences 

for hydrogen fuel cell vehicles as a function of the number of people owning them (the 

"neighbour effect"). The experimental treatment for the controlled manipulation 

consisted of using the ratio of hydrogen fuel cell vehicles to conventional gasoline 

vehicles on the road as a blocking variable ("market share ratio"), and dividing the 

survey respondents into four segments ("market share groups"), based on the value of 

this blocking variable. I describe the values I selected for this blocking variable and the 

way I chose to illustrate each market share ratio to influence respondents' choices in the 

choice experiment in the following paragraphs. 

According to the model in Moore (1999, pp. 11) adoption of innovative 

technologies occurs in discontinuous steps as different segments of the population are 

attracted to the new technology. As illustrated in Figure 2.1, the technology adoption 

curve follows a normal distribution and has five divisions, corresponding to standard 

deviations. Marketing efforts focus on understanding the profile of people representing 

each group and the relationship of each group to the next. The goal is to devise targeted 

10 Trace Acres, Director of Corporate Communications at BCAA, confirmed this assumption 
(personal communication, April 13,2004). 

California's Air Resources Board keeps a searchable database of nation-wide incentive 
programmes targeting the uptake of alternative vehicles. The database is available at: 
http:/ /www.driveclean.ca.gov/en/gv/incentives/index.asp 



marketing campaigns as adoption proceeds from left to right along the adoption curve 

until the new technology achieves mainstream market penetration. Experience in the 

high-tech sector has alerted market researchers to the fact that making the transition 

from one point to the next along the adoption curve is not a seamless process (Moore 

1999, pp. 19). The transition between "early adopters" and the "early majority" is 

particularly critical, and if left unaddressed can stall the diffusion of the new technology. 

Figure 2.1: Technology adoption lifecycle (from Moore 1999) 

Innovators Early 
Majority 

Laggards 

For this research, I focused on the first three groups of the technology adoption 

life cycle, represented by four market share groups (two for early adopters). I assumed 

that hydrogen fuel cell vehicles needed to achieve a 20% penetration rate relative to 

conventional gasoline vehicles in order to be confident that it will become mainstream in 

the future. I selected values for the blocking variable based on the number of passenger 

vehicle sales in Canada in 2002 and the number of hybrid electric-gasoline vehicle sales 

for that same year. Thus, the first value represents the actual market conditions for 

hybrid electric-gasoline vehicles and the last value was set to 20% of relative 



penetration.12 The two intermediate values represent reasonable midpoints. Table 2.3 

shows the values used in  the survey. 

Table 2.3: Values for the blocking variable 

MSl*: Represents "innovators" part of technology adoption curve 

1,703,511 1,703,063 448 

Market share of each technology (percentage of new sales) 99.97 0.03 

Market share ratio (new technology: gasoline ICE) 0.03% 

MS3: Represents early "early majority" part of technology adoption curve 

1,703311 1,560,511 143,000 

Market share of each technology (percentage of new sales) 91.61 9.16 

Market share ratio (new technology: gasoline ICE) 10% 

I used a version of a technique called "information acceleration" to illustrate the 

blocking variables corresponding to the four market share groups. Marketing experts 

use this technique in  stated preference research to estimate the sales potential of 

products in  the design stage. The advent of user-friendly information technologies has 

increasingly allowed researchers to experiment with multimedia for this purpose 

12 I used hybrid electric-gasoline vehicle sales for two reasons. Hydrogen fuel cell vehicles are 
not commercially available yet. However, we (myself and my colleague conducting the 
companion study) tried to anchor our experiments to actual market conditions so that we would 
be able to get an indication of real versus stated propensity to choose a new vehicle technology. 



(Johnson 1988, Urbany 1986). The goal is to provide the test subjects or respondents 

with a realistic portrayal of the purchase environment very early in the new product 

design process, providing insight to producers regarding consumer preferences (Urban 

and Hauser 1993, pp. 326). Simulating the purchase environment might include an 

interactive computer interface, which exposes the respondent to a variety of stimuli, 

such as television advertisements, shopping visits, word-of-mouth experiences, and 

print advertisements. Because respondents have access to product information at a 

faster rate than would happen in reality, marketers call the approach "information 

acceleration" (IA) . 

Urban et al. (1996) used IA in stated preference research to assess the potential 

marketability of a battery-electric vehicle developed by General Motors. The similarities 

between the study by Urban and my own research are straightforward. Both deal with 

assessing people's preferences for a disruptive vehicle technology, of which they have 

little to no prior knowledge. Both look at dynamics in preferences, although Urban 

focuses on dynamics as a function of the information the respondents acquire, whereas 

mine deals with the "neighbour effect". Both studies use interactive computer media. 

Therefore, guided by the treatment of Urban et al., I used a scaled-down version of IA to 

illustrate the blocking variable (market share ratio). I addressed four out of the five 

aspects of IA as follows. 13 1) "Future conditioning" and "full information" were 

addressed collectively by providing respondents two different formats containing 

similar information on hydrogen fuel cell vehicles with an explicit mention of the 

number of these vehicles on the road. The technology-specific information included 

13 The fifth aspect, "user experience", was left out of the experiment, given the budgetary limits of 
this research and the fact that fuel cell vehicle prototypes are not readily available to the public 
for testing. 



references to attributes that are important in decision-making but were left out of the 

discrete choice experiment. These attributes are: maintenance costs, air emissions, 

power, safety, reliability, and servicing convenience. Statements or references to these 

attributes were based on the best available information from manufacturers and 

technology forecasts. The two formats for each market share group were a one-page 

fictional magazine article and five fictional accounts of people's experiences with 

hydrogen fuel cell vehicles. While containing the same technology-specific information 

among sample groups, the personal accounts differed in their tone and emphasis of 

diverse aspects of hydrogen fuel cell vehicles, according to the characteristics of different 

sample segments in the technology adoption lifecycle. For example, respondents who 

received the treatment depicting market share scenario 1 had access to personal 

statements from people with the profile shown in Table 2.4 (see Appendix C for profiles 

corresponding to other points along the technology adoption lifecycle). Positive word- 

of-mouth statements varied among market share groups, whereas negative statements 

were generalized for use across all survey treatments. 

Table 2.4: Profile for "innovators" 

About 500 hydrogen fuel cell vehicles on the 
road across Canada 
Less than 0.1 % MS ratio 

value a new technology for the sake of it being a 
new technology. They love HFCVs for their 
innovative architecture. 
They actively seek new products in order to 
learn about them and test them. Producers or 
manufacturers trust their evaluations. 
They are good critics because they care about 
the technology. Malfunctions are seen as 
opportunities for improvement. 
If the technology works, they spread this 
information to votential consumers. 

Profile adavted from Moore (1999) and Bolton (1999' 



2) "User control" and "active search" were facilitated by the use of a web-based 

survey. My colleague and I chose this survey format, as opposed to a mail-out survey, 

for several reasons, some relating to these aspects of IA. The intention was to make the 

task interactive and engaging for respondents, without imposing a time constraint. The 

survey instrument told respondents that they were "required to read the magazine 

article and at least two word-of-mouth statements. However, satisfaction of this 

condition could not be verified. An example of a word-of-mouth statement appears in 

Figure 2.2. 

The complete experimental design took the structure illustrated in Figure 2.3. As 

previously mentioned, the experiment had two components (1) the information 

acceleration treatment, and (2) the discrete choice experiment. The IA treatment 

provided respondents the opportunity to access technical information about hydrogen 

fuel cell vehicles, and testimonials of fictional users corresponding to hypothetical 

penetration rates of this technology. The technical information was the same across the 

four market share groups, whereas the blocking variable and the emphasis of the 

testimonials differed. Respondents were assigned to the four market share groups at 

random. 



Figure 2.2: Example of "Information Acceleration" 

Section 3: Information on Hydrogen Fuel Cell Vehicles 

T h s  section illuahates a h'jpolliaticill scwinri,:! ,:hre 500 of tlte 1.5 rrlillicm vehicles sold fast year were hydrognr~ Ale/ cell ve!liclks . 
The scgurws belov; conloin ~nfnnv'itio~r al:,out this h:;potl.tetical c4ti1g. 

Please take tlie time to read the btochrtw arid alleast two of f!~e persor~al statements below. Feel free to tlro.:;se for as long ,is you 
1il.e. I~n~rwse yourself into thk h)qx#h?tical wtlin~ to tl~e besf tnf yol.ir ~hl i t j r .  

This seclioli sets Hie stage for the ncxl ilnc 

4 links Wnbv c4l copen up ne pMcw5s. 

Personal Statements 

-'Ellen it caiios to 
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The discrete choice experiment (DCE) followed the IA treatment. The DCE was 

identical for all market share groups, and asked respondents to choose between a 

hydrogen fuel cell vehicle and a gasoline vehicle based on different values of capital 

cost, fuel cost, refuelling convenience (i.e., proportion of stations with proper fuel), 

warranty coverage, and government subsidies. The DCE consisted of 18 choice 

questions. This experimental design would yield four distinct utility functions, 

corresponding to the four market share groups - as influenced by the IA treatment. The 

hypothesis was that, as the market share ratio of hydrogen fuel cell vehicles increased, 

so would the respondents' value for this technology. 



Figure 2.3: Experimental design 
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l4 In the survey version for MS2 two word-of-mouth statements informed respondents that they 
were "proud of being among the first 8,300 Canadians to own hydrogen fuel cell vehicles". The 
last part of these statements should have read "among the first 83,000 Canadians". I do not 
consider this mistake significant because the market share blocking variable was expressed in 
other ways (5 out of every 100 vehicles sold last year were hydrogen fuel cell vehicles) and 
respondents would have had the opportunity to digest this information. 



Although the focus of the survey was the 18 discrete choice questions, the survey 

also included questions related to demographics, an exercise related to respondents 

preferences for makes / models and vehicle body types, questions regarding 

respondents' attitudes towards the purchase of new technologies, and a question 

designed to elicit respondents' willingness to pay to keep driving their conventional 

gasoline vehicle under a new policy regime. Following the approach to conducting 

surveys and writing the content laid out in Dillman (1999), the survey flowed in this 

manner: 

Section 1 contained questions about the respondent's current vehicle. The survey 

web code takes the answers to these questions and customizes other survey 

questions, including the discrete choice experiments. 

Section 2 aimed at gauging the respondent's level of awareness and knowledge 

about hydrogen fuel cell vehicles before the experiment. The section also asked 

respondents to indicate the type of research they engage in prior to buying a car. 

Section 3 consisted of the information acceleration conditioning. The section 

provided respondents information on hydrogen fuel cell vehicles, including a 

fictional magazine article on HFCVs and five fictional word-of-mouth statements on 

this technology, and emphasized the blocking variable (market share ratio). 

Section 4 was the discrete choice experiment containing 18 choice questions. The 

web code made it possible to randomize the order in which the 18 choice questions 

appeared for each respondent. This ensured an equal response quality for all 18 

questions. The attributes in each choice question were listed at random as well. The 

objective of this was to prevent respondents from focusing on attributes because of 
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their position on the list, forcing respondents to pay close attention to each choice 

question. 

Section 5 had questions relating to people's vehicle preferences, including an 

exercise designed to gauge respondents' willingness to switch to vehicle makes / 

models and vehicle body types that are not their preferred ones. 

Section 6 contained questions to gain information on people's attitudes and 

preferences towards new technologies, including an exercise to place respondents on 

the technology adoption lifecycle. 

Section 7 had questions pertaining to demographics. 

See Appendix BAppendix for a sample of the survey for market share 1 and the 

information acceleration treatment for all market share groups. 

2.3 Integrating DCM Information into CIMS 

As already mentioned, researchers at EMRG have developed an approach to 

converting coefficients estimated from discrete choice models into behavioural 

parameters in CIMS (Home et al. forthcoming, Rivers and Jaccard forthcoming, Jaccard 

and Dennis forthcoming). I used this method to transform the information from the 

MNL models into behavioural parameters in CIMS. The approach involves balancing 

the relationship between CIMS algorithm for estimating market shares of new 

technologies (Equation 1) and the MNL market share equation (Equation 5). We can 

calculate the private discount rate ("Y" in CIMS) and the intangible costs ("i" in CIMS) 

directly fromp coefficients derived through MNL model estimation. The private 



discount rate is based on the relationship between the capital cost coefficient and any 

coefficients for annual costs. Equation 6 shows this relationship (Train 1985). 

Equation 6 

In this equation, pee is the capital cost coefficient, net of the contribution to utility 

from government subsidies; is the coefficient for annual operating costs, which only 

includes fuel costs in this study; and n is the technology lifespan. 

To calculate the intangible costs to feed into CIMS we compare each non- 

monetary p coefficient (including the alternative specific constant or ASC) to the capital 

cost coefficient and sum all ratios, according to Equation 7. 

Equation 7 

In this equation, il is the intangible cost consumers associate with technology j 

and N is number of non-monetary attributes;j3, is the coefficient for the non-monetary 

attribute n; X, is the value for the non-monetary attribute n; and ~ C C  is the coefficient for 

capital cost. 15 Thus, we calculate ij, by multiplying the value of each attribute (such as 

10% of stations with proper fuel, or unity in the case of the ASC) by the ratio of each 

non-monetary p coefficient to the capital cost coefficient, and summing all the terms. 

The analyst has to choose the initial values for X,. CIMS' current configuration does not 

allow for changes in X, values and intangible costs during a run (Home et al. 

15 We can also annualize the intangible costs by substituting the coefficient for capital cost with 
the coefficient for annual operating cost in Equation 7. 



forthcoming). In the following section 1 describe the method for changing the intangible 

costs during a simulation. 

We cannot calculate the third behavioural parameter in ClMS, "v", directly from 

the MNL model coefficients (Rivers and Jaccard forthcoming). Instead, we use the 

solver function in MS Excel to find a value for v that makes Equation 1 most closely 

approximate the market share forecast from the MNL model over a range of conditions. 

Finding the v parameter is an important step in translating the results from DCMs into 

ClMS, because this factor dictates the relative importance of the explanatory variables in 

determining the penetration of competing technologies. 

2.4 Estimating Preference Dynamics 

Aside from the algorithm that allocates new market shares of given technologies 

during a simulation (Equation I), two other functions are key to simulating the 

dynamics of market transformation using ClMS. The first, the "declining capital cost 

function" (DCC), relates a technology's financial cost to its cumulative production. The 

function represents "learning-by-doingf1, accounting for supply-side efficiencies 

resulting from a doubling of cumulative production. Equation 8 describes the function. 

Equation 8 

C(t) is the financial cost of a technology at time t; C(0) is the initial financial cost 

of a technology; N(t) is the cumulative production of a technology at time t; N(0) is the 

production level of a technology during the initial year; and PR is the progress ratio. 

The progress ratio defines the relative cost reduction for each doubling in cumulative 



production (Rogner 1998). Empirical evidence on the magnitude of this cost reduction 

exists, with PR values ranging from 0.70 to 0.95 depending on the type of technology 

and its maturity (McDonald and Schrattenholzer 2001, Dutton and Thomas 1984). A PR 

of 0.70 indicates a 30% reduction in costs with a doubling in production. Specific to 

hydrogen fuel cell vehicles, engineering forecasts and lifecycle analyses use progress 

ratios for fuel cell systems between 0.60 and 0.93 (Ogden et al. 2001, Rogner 1998, 

Thomas et al. 1998). 

The second function, the "declining intangible cost function" (DIC), relates the 

intangible or non-financial costs of a technology to its market penetration in the 

previous simulation period. This function accounts for changes in perceptions of new 

technologies as new information about the technologies' performance becomes 

available. The assumption is that risk perceptions and resistance to adopting new 

technologies change as the technologies gain market acceptability (Jaccard et al. 

forthcoming). 16 Equation 9 describes the dynamics in intangible costs. 

Equation 9 

In this equation, i(t) is the intangible cost of a given technology at time t; i(0) is 

the initial intangible cost of a technology; MSt-I is the market share of the technology at 

16 This approach to modelling consumer preferences is, in some ways, similar to agent-based 
models. The methods I use do not explicitly include a spatial component, which agent-based 
models do. However, both approaches aim to simulate the dynamics of consumer decision- 
making based on changes in market conditions, such as the availability of new information and 
the proportion of neighbours who have adopted the product. For example, Bane rjee (1992) 
developed a model in which agents sequentially make decisions based on previous decisions of 
other agents. The researcher used this simulation model to understand why people tend to 
imitate others' actions even when their own information tells them to do something else. 



time t-1; and A and k are parameters representing the shape of the curve and the rate of 

change of the intangible cost in response to increases in the market share of the 

technology. 

One of my research objectives is to estimate the shape of the declining intangible 

cost function for hydrogen fuel cell vehicles. To do this required the following steps. 

1) I calculated the intangible costs associated with hydrogen fuel cell vehicles 

using the procedure described in Section 2.3. The hypothesis underlying my research is 

that the experimental treatment will result in four discrete choice models, corresponding 

to the four technology adoption sample segments, and yielding distinct intangible costs 

for the non-monetary attributes in the choice experiment (refuelling convenience, 

warranty coverage, and the constant specific to HFCVs). The expectation is that the 

change in intangible costs will follow a trend. The intangible costs for a hydrogen fuel 

cell vehicle estimated from the DCM for the market share group 1 would be higher than 

those for market share group 2, which would in turn be higher than the intangibles of 

market share group 3, corresponding to increases in the circulation of hydrogen fuel cell 

vehicles. Section 4.2 includes a discussion on the validity of these assumptions. 

2) I selected reasonable values for the non-monetary attributes that result in 

changes in intangible costs. Recalling from Section 2.3, monetizing the non-monetary 

attributes requires weighting each coefficient (with the exception of the alternative 

specific constant) by an appropriate attribute value. In this way, one can calculate the 

intangble costs associated with a hydrogen fuel cell vehicle in a world with inadequate 

fueling infrastructure (e.g., only one out of 20 service stations supply the right fuel). As 

well, one can calculate the intangible costs for this new vehicle technology as fuel 



availability increases and if manufacturers offer extended warranty coverage, for 

example. In theory, one could assign any value to the two continuous, non-monetary 

attributes and arrive at intangible costs for a wide range of conditions. However, we do 

not have any information regarding how the marginal utility for HFCVs changes in 

response to changes in fuel availability or warranty coverage beyond the ranges in my 

choice experiment. Even within the ranges in attribute values of the choice experiment, 

the marginal utility might not change in a linear fashion from data point to data point. 

For these reasons, I constrain my selection of the series of attribute values to those 

included in the experiment, further refining the selection based on the results from tests 

for non-linearities performed on the coefficients of the different DCMs. The results of 

these analyses appear in Section 3.4.4. 

3) 1 then matched the intangible costs from the DCMs (Equation 7) to the 

declining intangible cost function (Equation 9). The expectation was that in Equation 9, 

i(0) would be the intangible cost for hydrogen fuel cell vehicles derived from the DCM 

for market share group 1 (in theory, the market share group with the highest intangible 

costs). I would then equate the intangible costs calculated from the DCMs for the 

different market share groups to the costs calculated using the DIC, and I use the solver 

function in MS Excel to estimate the A and k parameters that minimize the squared 

deviation between the two sets of intangible costs. In Section 4.2.1 I describe the 

procedure in further detail. The i(O), A, and k enter CIMS as parameters specific to 

hydrogen fuel cell vehicles, representing the evolution of preference dynamics for this 

disruptive vehicle technology relative to conventional gasoline vehicles. 



The declining capital cost function and the declining intangible cost function 

provide two mechanisms in CIMS that can combine to simulate market penetration by 

emerging technologies over the long-term, even if capital costs are prohibitive at the 

outset of the simulation. I illustrate my extension of CIMS' potential to simulate 

consumer preference dynamics for hydrogen fuel cell vehicles in Section 4.3. The section 

includes a series of sensitivity analyses to explore the implications of uncertainty 

associated with the intangible costs estimated from this research and with the choice of 

progress ratios for the declining capital cost function. 



CHAPTER 3 DATA COLLECTION AND ANALYSIS 

3.1 Collecting Data 

Once the survey design was complete, I determined the sample size that would 

allow for robust discrete choice models by running simulations in LIMDEP version 8.0 

until I obtained parameters that were statistically sigruficant (to 95% confidence). In this 

way, I estimated that building multinornial logit (MNL) models for each market share 

group would require at least 200 completed web-surveys. 

To participate in the web-survey Canadians would have to be 19 or over, own a 

conventional gasoline vehicle (themselves or through immediate family), and commute 

to work or school at least once a week. The first criterion satisfied Simon Fraser 

University's requirements for ethical approval and the other two criteria helped capture 

the actual market participants. Since the survey would be administered via the World 

Wide Web, respondents also required internet access and an e-mail account. 

Participation was also limited to Canadians living in urban centres of a 

population of roughly 250,000 and above. The assumption is that accessibility to new 

vehicle technologies would differ between urban and rural Canadians. The sample was 

stratified by the following regional groups of urban centres: 

Victoria and Vancouver 
Edmonton, Calgary, Winnipeg and Saskatoon 

0 Ottawa-Hull, Kitchener, London, St. Catharines-Niagara, Windsor, Toronto, 
Hamilton and Oshawa 
Montreal and Quebec City 
Halifax and St. John's 



The stratification follows that used by Home (2003), which is meant to increase the 

likelihood that we would adequately capture preferences from Canadians living in 

smaller cities. Table 3.1 shows the distribution. 

Table 3.1: Desired regional distribution of samples 

British Columbia 1 13% 
Prairie vrovinces 1 17% 

I Ontario 138% 1 

Synovate, a marketing firm, managed the recruitment process. The initial 

Quebec 
Atlantic provinces 

approach was to draw a random sample from Canadian urban households and to pre- 

24% 
8% 

screen potential respondents according to the three participation criteria mentioned 

above (also see Appendix D). Canadians who met the criteria and agreed to participate 

in the web-based survey would have to disclose their e-mail address in order to receive 

the survey link. This approach yielded an unacceptable response rate. It seems that the 

average Canadian is less apprehensive about disclosing her or his home address than e- 

mail address. As a result, we tumed to the less desirable approach of using Synovate's 

online panel to fulfil the data requirements. 

Synovate's online panel consists of a diverse membership of Canadians 

representative of all the provinces, official languages, and other socio-demographic 

variables such as age, income, and education, who periodically participate in surveys 

and market studies. The recruitment and survey process took place between November 

22 and December 2,2003. Synovate selected four matching samples of approximately 

250 respondents each, in accordance with the participation criteria and regional / 

metropolitan segmentation. On the web survey, they assigned a different hyperlink to 



each sample group (MS1, MS2, MS3, and MS4). Respondents were recruited to these 

sample groups randomly. 

The panel approach was beneficial in some ways, because it allowed us to 

achieve the regional distribution Listed in Table 3.1 for the four market share groups. 

However, this approach to recruitment introduces coverage error and self-selection bias 

into the research. 17 Although it is difficult to generalize about panel members' 

motivations, people of certain characteristics are more Likely to become panel members 

than others. For example, I observed an overrepresentation of women in our survey 

samples. Of more direct relevance, self-selecting panel members might have different 

attitudes towards new technologies than the average Canadian urbanite. In addition, 

the survey medium itself (the World Wide Web) probably attracted a more technology- 

accepting panel membership, on the whole, than would a simple random sample of the 

entire urban population. In Section 3.3.2 I test for these biases by including respondent 

characteristics as explanatory variables to estimate discrete choice models. 

Despite the potential biases of the sampling method and the survey format, the 

data collection method facilitated reaching a specific response rate and helped minimize 

measurement error. Specifically on the latter point, I was able to refine the survey 

questions for clarity, judging from the results of a pilot test. Panel respondents received 

a version of the survey that was relatively free from ambiguities. 

Coverage error results when the sampling frame excludes units in the population (Griffiths et 
al. 1998, pp. 231). 



3.2 Describing the Survey Sample 

3.21 Sample Characteristics 

The entire survey sample that completed the 18 choice questions consisted of 

1019 respondents. A minimum of 250 respondents composed each market share group. 

Ideally, demographic characteristics among market share groups should match closely, 

so that I am able to attribute possible differences in results to the experimental treatment 

itself, rather than to confounding factors. Table 3.2 shows that subtle differences in 

distribution of age, income, and education levels exist among market shares but the 

differences are not systematic in any way that I detected by simple inspection, and are 

deemed to be negligible when compared to the characteristics for the entire survey 

sample (see Appendix E). 

Table 3.2: Demographic characteristics by market share group 

21-25 
26-30 
31-35 
36-40 
41-50 
51-60 
Over 60 

Household income 
$20,000 or less 
$21,000 to $40,000 
$41,000 to $60,000 
$61,000 to $80,000 
$81,000 to $100,000 
$101,000 and above 
No answer 



Region 
Atlantic provinces 7.6 8.9 7.8 8.7 
Quebec 23.7 23.3 20.5 24.1 
Ontario 36.9 37.7 41.4 35.7 
Prairie provinces 15.3 16.9 17.2 19.1 
British Columbia 16.5 12.7 12.7 12.4 
No answer 0.0 0.4 0.4 0.0 

Gender of respondent 
Male 30.5 36.9 34.8 35.7 
Female 69.1 63.1 65.2 64.3 
No answer 0.4 0.0 0.0 0.0 

Education of respondent 
Grade 9 or less 1.3 1.3 0.8 0.4 
High school 20.3 30.1 19.7 23.7 
College 39.8 35.2 42.2 35.7 
University 38.6 33.5 37.3 39.81 
No answer 0.0 0.0 0.0 0.4 

values i n  percentages. 

Nt,hl= the total number of respondents; Ndmo = the number of respondents that provided 
demographic information 

Similarly, I compared respondents' characteristics regarding vehicle ownership 

across market share groups and with the sample as a whole to gauge the 

representativeness of each market share group. In this way, I confirmed that the 

distribution of vehicle body types and the number of vehicles owned is fairly constant 

across the four market share groups, as illustrated in Figure 3.1 and Figure 3.2. 



Entire sample 
(N=1019) 

van 

Figure 3.1: Distribution of vehicle body types (respondentsf primary vehicle) 
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Figure 3.2: Number of vehicles owned by household 

Further, people's responses to survey questions specific to hydrogen fuel cell 

vehicles, key influences in vehicle purchasing decisions, and attitudes towards new 

technologies were similar across all four market share groups (see Appendix for 

details). Some of the findings from these questions are: 



Respondents claim to value personal experience most when deciding over what 

vehicle to purchase, followed by input from dealerships, and word-of-mouth. It was 

encouraging to see that the latter is an important influence, given my reliance on the 

"neighbour effect1' as a way to capture preference dynamics in the experiment. 

Between 35% and 40% of respondents claim to be unfamiliar with hydrogen fuel cell 

vehicle technologies, whereas 10% of respondents actively seek information on new 

developments regarding this technology. In order of importance, respondents are 

receiving information on hydrogen fuel cell vehicles from radio and television, print 

media, and word-of-mouth. These findings are consistent among the four market 

share groups. 

The bulk of respondents (about 80%) fall into the "early majority" portion of the 

technology adoption lifecycle, about 15% are "laggards", and a minority (about 5%) 

are "innovators". These proportions are consistent across all market share groups. I 

based this categorization on respondents' identification with three statements with 

respect to the adoption of new technologies. Although crude, the exercise was 

useful to idenbfy whether the survey sample groups had typical attitudes towards 

the adoption of new technologies. 18 These attitudes would serve as a basis for 

filtering survey samples for the estimation of discrete choice models. 

About 20% of respondents say that they would not be willing to pay more for a 

technology solely for its environmental benefits, whereas about 60% say that they 

would. When asked if they would pay more for an ecologically friendly technology 

18 In this survey question, I used three out of the five categories of technology adoption described 
in Moore (1999): innovators, early majority, and laggards. I did this to simphfy the response task, 
while giving us some insight into the distribution of attitudes among the two extremes and a 
mainstream measure. 



that provided some personal benefit, about 75% of people said they would, whereas 

about 10% said they would not. 

3.3 Estimating Discrete Choice Models 

3.3.1 Assessment of Choices 

Section 4 of the survey consisted of the discrete choice experiment composed of 

18 vehicle choice questions. The total number was 18,342 vehicle choices (11019 

respondents] X [I8 questions]). The numbers of observations per market share group 

were: 4,500 (MSI), 4,536 (MS2), 4,644 (MS3), and 4,662 (MS4). Estimating multinomial 

logit (MNL) models requires that respondents choose both the hydrogen fuel cell vehicle 

and the conventional gasoline vehicle in a pattern that allows us to capture the vehicle 

attributes' contribution to utility. Respondents preferred gasoline vehicles in over 50% 

of the choice situations, but they selected hydrogen fuel cell vehicles enough times to be 

able to estimate discrete choice models. Figure 3.3 shows the number of times 

respondents chose each vehicle technology, also illustrating that the choice distribution 

across the four market share groups is similar. 



Figure 3.3: Frequency of vehicle technology chosen 
- -  

Distribution of Choices 
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Figure 3.4 allows us to further assess the variability of respondents' choices 

among market share groups. The graph shows the frequency with which market share 

groups chose HFCVs on the y-axis, and the choice sets on the x-axis. l9 Several studies 

document the importance of assessing whether stated preferences change during 

repeated and sequential measurement (DeSarbo et al. 2004). In my experiment, the 

sequence of choice questions was randomized anew for each respondent. Thus, the 

similarities in certain choices among market share groups and the clustering of stronger 

differences for choices 6 through 13 shown in Figure 3.4 are not an artefact of the 

questions' sequencing. The pattern reflects respondents' preferences. 

19 A "choice set" is a particular combination of attributes for hydrogen fuel cell vehicles and 
gasoline vehicles, the values of which are determined by the experimental design. In this 
research, the choice experiment consisted of 18 choice sets or questions. 



Figure 3.4: Variability in respondents' choices 
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Choice set 

Figure 3.5 shows the number of surveys in which the respondents chose the same 

vehicle technology in all 18 questions. This result is important to assess, because if 

respondents frequently choose one technology over the other in all choice situations, the 

alternative specific constant can dominate the utility calculation. In my study, 

respondents chose the same vehicle type in all 18 questions from 14 to 22% of the time, 

depending on the market share group. These frequencies are lower than those in a 

vehicle choice study by Home (2003). 



Figure 3.5: Frequency of choosing the same alternative across all choice sets 
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Home's interpretation of uniformity in vehicle choices by a single respondent 

was that people considered each question independently but selected the vehicle type 

based on an attribute not included in the choice experiment. I agree with his 

explanation, and in a later section I discuss the relative contribution of the alternative 

specific constant to respondents' aggregate utility for the two vehicle technologies in my 

research. 
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3.3.2 Multinomial Logit Models 

As mentioned in Section 2.2.2, I estimated multinomial logit (MNL) models 

yielding the most likely$ parameters given the data set and the utility formulation. I 

used LIMDEP version 8.0 to find the maximum likelihood estimates (MLE) for each 

MNL model. The experimental design accommodated a range of ways of representing 

the utility formulation, which means that different MNL models can be estimated, 

depending on the explanatory variables one includes. 
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31 - 26 
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1) Basic Model: One can estimate a "basic" MNL model for each market share 

group (MS1, MS2, MS3, and MS4) using vehicle attributes only. In this case, the utility 

for conventional gasoline vehicles and hydrogen fuel cell vehicles for each market share 

group results from using Equation 10: 

Where CC is the capital cost; FC is the weekly fuel cost; RC is refuelling 

convenience, which is the proportion of stations with proper fuel; SUB is government 

subsidy; W is warranty coverage; and HASC is the constant specific to hydrogen fuel cell 

vehicles." Except for the alternative specific constant, all the$ coefficients have the 

same effect on utility regardless of the vehicle technology. This model specification and 

the three below treat all attributes as continuous variables, resulting in linearp 

coefficients. 

2) Basic Model with Respondent Characteristics: one can respeclfy the basic 

model to include socio-economic characteristics and attitudes of respondents as 

explanatory variables, in order to test whether personal characteristics influence 

people's responses to vehicle technologies (Ewing and Sarigollo 1998). We do this by 

incorporating interaction terms between respondent characteristics and the alternative 

specific constant, -where respondent characteristics are treated as "dummy variables" 

(i.e., either "1" or "O", depending on whether the respondent has this characteristic or 

does not). Specifically, I tested the following respondent characteristics: income group 

(Y), home region (REG), respondents' stated willingness to pay a premium for 

ecologically-friendly products (ECO), respondents' stated willingness to pay a premium 

20 Since we are only interested in the relative difference between the two vehicle technologies, the 
alternative specific constant for conventional gasoline vehicles is set to zero in all cases. 



for ecologically-friendly products contingent on their provision of personal benefit 

(OWN), and whether the respondent was categorized as an innovator, laggard, or early 

majority (ADOPT). The resulting utility equation for hydrogen fuel cell vehicles for each 

market share group would look like: 

Since we set the alternative specific constant associated with gasoline vehicles to 

zero, contributions to utility as a result of personal characteristics are only assessed 

relative to hydrogen fuel cell vehicles. Thus, the utility function for gasoline vehicles 

would have the same form as Equation 10 but$ coefficients (and, hence, utility) would 

be different. 

3) Chow Test Model: instead of estimating a separate MNL model for each 

market share group, one can also pool the data sets and estimate one model using a test 

proposed by Chow (1960). The test is a type of piecewise regression to estimate$ 

coefficients of subsections of the sample, in which the delineation of subsections are 

known and defined a priori. In this case, we considerJ coefficients for MS1 as the base 

level coefficients. The contribution to utility from the other market share groups enter 

the utility formulation as dummy variables, which interact with the generic vehicle 

attributes. The utility equations for conventional gasoline vehicles and hydrogen fuel 

cell vehicles for the four market share groups are below. As before, the alternative 

specific constant only applies to hydrogen fuel cell vehicles. 



Equation 13 

P M S Z C C ,  for example, is the coefficient for the interaction term between the market 

share variable for MS2 and the contribution to utility from vehicle capital cost. If the 

coefficient is statistically sigruficant at a certain level, then we add its value to that of the 

base model coefficient (in other words, when it comes to capital cost, there is value in 

knowing that 5% of Canadians drive a HFCV). 

4) Chow Test Model with Respondent Characteristics: this specification includes 

socio-economic and personal attitudes as explanatory variables, in the same way as the 

"Basic Model with Respondent Characteristics" but also includes gender (F) and age 

class (AGE). For example, the resulting utility equation for hydrogen fuel cell vehicles 

for MS2 is: 

UHFCII.MSP = PCC . CC + PFC . FC + PRC . RC + PSUB . SUB + PW W + PHASC + 

Equation 16 

In this paper, I focus on the results from the "Basic Model" for the following 

reasons. 1) %s model specification is simple and allows for independent manipulation 



of parameters for different market share groups. 2) Model specifications that included 

personal characteristics exhibited collinearities among income, age class, and home 

region. 3) Aside from a regional sector representation CIMS does not accommodate 

personal attributes, which means that integrating parameter estimates from MNL 

models with personal characteristics would not be a useful exercise. 

Regardless of CIMS' data needs, alternative MNL model specifications provide 

valuable information in their outputs. In particular, some studies on the adoption of 

new technologies suggest that introducing attitudes or values as explanatory variables 

into models with demographics, monetary variables, and technology-specific attributes 

improves models' explanatory power (Arkesteijn and Oerlemans 2005, Mourato et al. 

2004, Sondermann 2002). Sondermann (2002), for example, found that 59% of the 

variation in consumer acceptance of HFCVs was explained by attitude towards air 

pollution, attitude towards HFCVs, personal involvement in reducing air pollution, and 

perceived usefulness of a HFCV. Below is a summary of results from model 

specifications on my study data other than the "Basic Model" (see Appendix E for 

detailed results). This summary only presents information that the "Basic Model" does 

not provide. 

1) Basic Models with Respondent Characteristics: collinearities between home 

region and income precluded the estimation of models containing both variables. 

Therefore, I estimated two models for each market share group, with the only difference 

being the inclusion of home region or income. Three findings stand out from comparing 

the results across all market share groups. All results I mention are based on the 

statistical sigruficance of coefficients at the 95% level. First, the models including income 



as an explanatory variable are a better fit for the data than the models with home region. 

Unexpectedly, income has a negative effect on utility for hydrogen fuel cell vehicles. 

The magnitude of the income effect on the propensity to choose HFCVs is at least as 

important as fuel cost (as indicated by t-ratios). Second, in both types of models stated 

willingness to pay a premium for ecologically-friendly products increases the likelihood 

of choosing a HFCV. The magnitude of the effect varies among market share groups, 

positively contributing to utility for HFCVs as much as the alternative specific constant 

or as little as fuel cost. Third, respondents' stated attitude towards new technologies 

(innovator, laggard, or early majority) has an impact on utility for HFCVs. The 

magnitude and direction of the impact vary among market share groups, but the 

contribution to utility is comparable to that of some vehicle attributes. 

2) Chow Test Model: this model specification results in similar market share 

predictions as those from the "Basic Models". The value of the Chow Test Model is that 

it allows us to verify that there are differences in utility for HFCVs among the market 

share groups. Specifically, market share group 2 (MS2) values capital cost and refuelling 

convenience differently than the baseline (MSl), and MS3 values capital cost and 

government subsidy differently than the baseline. 

3) Chow Test Model with Respondent Characteristics: regarding personal 

characteristics and attitudes, this model specification produces results comparable to the 

"Basic Models with Respondent Characteristics". Gender (which I did not include in the 

"Basic Models with Respondent Characteristics") does not affect the Likelihood of 

choosing a HFCV, which means that the overrepresentation of women in the survey 

sample does not bias the results. Differences in the valuation of vehicle attributes 



between the model that includes home region and the income model are relatively 

small. The former mimics the results for the "Chow Test Model". In the income model 

we see an additional statistically sigruficant component: MS4 values capital cost and fuel 

cost differently than the baseline. The increase in both vehicle attributes contributes 

positively to utility, a result that is difficult to explain. 

The results from models that include respondent characteristics alert us to the 

fact that stated attitudes can help explain the propensity for choosing HFCVs over 

gasoline vehicles. I did not consider stated attitudes when designing the choice 

experiment or recruiting respondents. One way to remove attitudinal bias in favour or 

against HFCVs from the market share groups is to filter out the innovators and laggards 

from the four data sets. I consider this approach necessary in order to be able to capture 

changes in the intangible costs of Canadian urbanites with mainstream attitudes about 

new technologies. Although the application of tlus filter reduces the number of 

observations per group, it improves the explanatory power of the four "Basic Models" 

and it may provide a better portrayal of the average Canadian's preferences for 

disruptive vehicle technologies. I elected to estimate separate MNL models for the early 

majority in each of the four market share groups. From this point on I refer to early 

majority models as "majority", given the broad categorization into three technology 

adoption groups. I also estimated a single model for all laggards, aggregated from all 

market share groups, and I did the same for the innovators. The next section provides a 

detailed look at the results from the "Basic Models". 



3.4 Analyzing the Results from the Basic Models 

Table 3.3 shows the MNL model results from the majority category of 

respondents in each of the four market share groups, including the MLE coefficients @), 

and an indication of their statistical sigruficance (t-ratios). The four market share groups 

correspond to different degrees of fictional market penetration of HFCVs relative to 

gasoline vehicles. For market share group 1 (MSl), market penetration of HFCVs is 

assumed to be 0.03%; MS2 assumes a penetration of 5%, MS3 of lo%, and MS4 of 20%. 

Results from the models for innovators and laggards, each a single group aggregated 

from all market share groups, are in Table 3.4. To test the models' explanatory power, 

we compare the log-likelihood of the full model to (1) the log-likelihood function of a 

model without coefficients, and (2) to the log-likelihood of a model with alternative 

specific constants (ASC) only. These test statistics for each of the six MNL models 

appear in italics, in the two last rows of Table 3.3 and Table 3.4. They indicate that each 

of the six models, as specified, explain the data better than models without coefficients 

or with alternative specific constants only with 99.9% confidence. 



Table 3.3: Best fit statistics for "Basic Models" (majority) 

ASC - Hydrogen 8.10 13.21 
'fuel cell vehicle 

Attribute 

Capital cost 

MS4 model 
(20•‹/0) 

j3 
-1.39E-04 

Observations 
Log likelihood - 
full model (F) 
Log likelihood - 
constants only 
(AS C) 
Log likelihood - 
no coefficients (0) 

Table 3.4: Best fit statistics for "Basic Models" (innovators and laggards) 

MS1 model 
(0.03•‹/o) 

t-ratio 
-17.13 

3,492 
-1,842.09 

-2,275.26 

3,348 
-1,653.57 

-2,056.56 

-2*(L(F) - L(0)) 
-2*(L(F) - 
UASC)) 

$ 
-1 .ME-04 

-2,320.65 

t-ratio 
-18.71 

MS2 model 
(5Yo) 

3,672 
-1,733.71 

-2,193.96 

All coefficients are significant at the 95% confidence level with the exception of f iel  cost for MS2 (**). 

Attribute 
Vehicle capital cost 
Fuel cost 

) ASC - Hydrogen fuel cell vehicle I 5.041 4.631 4.72) 6.261 

f l  
-1.95E-04 

MS3 model 
(10'Yo) 

3,636 
-1,893.01 

-2,239.59 

-2,420.47 

1,254.55 
693.17 

1,334.18 

806.00 

Government subsidy 
Refuelling convenience 
Warrantv coverage 

t-ratio 
-20.22 

$ 
-1.96E-04 

t-ratio 
-19.98 

-2,545.24 

1,156.76 
866.34 

Innovators 

3.37E-04 
6.210 

8.24E-02 

Number of observations 

\ ,  I I 

Log likelihood - no coeficients (0) 1 -561.45) -1,584.53 

-2,520.28 

1,623.05 
920.50 

Laggards 

P 
-8.84E-05 
8.39E-03 

8101 2,286 
Log likelihood - f i l l  model (F) 
Log likelihood - constants only 
(ASC) 

. .. 

.-z*(L(F) - L(ASC)) 93.461 232.70 
All coefficients are significant at the 95% confidence level with the exception offuel cost (*"). 

P 
-1.20E-04 
7.81E-04 

t-ratio 
-6.60 

0.74** 
6.43 
5.08 
2.23 

t-ratio 
-9.61 

0.06** 

-497.17 
-543.90 

2.33E-04 
6.70 

1.35E-01 

-1,070.29 
-1,186.64 

6.12 
7.85 
4.95 



All coefficients contribute sigruficantly to the fit of each model at a 95% 

confidence level with the exception of fuel cost for (1) the 20% market share group (MS4 

model) of the majority and (2) the models for innovators and laggards. The t-ratios for 

fuel costs indicate that the relative contribution to utility from this attribute is the lowest 

in comparison to the remaining attributes. Capital cost, refuelling convenience, and 

unknown attributes specific to HFCVs not included in the experiment (as indicated by 

the ASC) are the greatest determinants of utility for the four majority market share 

groups and for laggards. For innovators, capital cost and government subsidy are the 

most important attributes in choosing a vehicle, followed by refuelling convenience. All 

coefficients have the expected directions of influence across the six models: increasing 

capital cost and fuel cost decreases utility (fuel cost is not sigruficant in the models for 

innovators or laggards), whereas increasing government subsidies, refuelling 

convenience (i.e., the proportion of stations with proper fuel), and warranty coverage 

increases utility. As hypothesized during the survey design stage, marginal changes in 

government subsidy influence utdity disproportionately in comparison to changes in 

capital costs. All four majority models and the one laggards model value a one-dollar 

increase in government subsidy about twice as much as a dollar decrease in capital cost. 

Innovators value a one-dollar increase in subsidies almost four times as much as a one- 

dollar decrease in capital cost. All else being equal, respondents in all groups value 

hydrogen fuel cell vehicles (HFCV) more than conventional gasoline vehicles, as 

indicated by the high value of the ASC. This is a common finding in vehicle choice 

studies: non-gasoline vehicles seem to have an intrinsic value that makes them more 

attractive than gasoline vehicles ceteris paribus (Home et al. forthcoming, Ewing and 

Sarigollii 2000, and Brownstone et al. 2000). 



3.4.1 The Scale of the Models 1 
Recall from Section 2.2.2, in a "good MNL model specification the random 

variable (or error term) has limited bearing on market share forecasts because the scale 

of model is large in relation to the error. In other words, market share forecasts depend 

on the magnitude of attribute values and altemative specific constants ("measurable" or 

"observed utility). To assess the relative scale of my models, that is the proportion of 

utility I have captured with the attributes relative to the error term, I made comparisons 

with previous vehicle choice studies. I took the commonly specified coefficients for 

capital cost and refuelling convenience as points of comparison. An assessment of the 

type shown in Table 3.5 only gwes us a relative measure of a model's scale; it assumes 

that capital costs and the measure of fuel availability affect respondents' choices in the 

same way across all model specifications. The coefficients for capital cost range from 

2.26 times (Ewing and Sarigollii 2000) greater to 0.46 times less (Home et al. 

forthcoming) than the coefficients for my models. The coefficients for refuelling 

convenience from other studies range in magnitude from 0.12 (Home et al. forthcoming 

to 0.48 (Bunch et al. 1993) times the coefficients of this study. Judging from these figure 

we can say that the scales of the models in this study are within ranges of previous 

studies. The attributes and altemative specific constants in this study have a plausible 

influence on market share forecasts. 



Table 3.5: Comparison of selected attributes 

To further illustrate the capacity of the six models to generate a wide range of 

outputs (market shares from 0% to loo%), I used two extreme scenarios, in which 

vehicle attributes took on values that would result in low utility ("worst case") and high 

utility ("best case"). I estimated market share forecasts for gasoline and hydrogen fuel 

cell vehicles for the models based on both sets of attribute values. Table 3.6 lists the 

attribute values and 

Table 3.7 shows that the models allow both types of vehicle technologies to 

capture a wide range of market shares, although gasoline vehicles cannot reach 100% 

penetration. 

Table 3.6: "Best" and "worst" case values for vehicle attributes 

l Government subsidv ($) 

l ~ a r r a n t ~  coverage (years)l 101 51 



Majority M S ~ I  99.68%) 0.00% 1 100.00% 1 4 
0.32% 

Maioritv ~ ~ 3 1  99.98%1 0.00%1 100.00%1 0.02% 

Model 

Innovators 

Laggards 1 99.32%[ 0.00% 1 100.00% ( 0.68 % 
P(Gas) = probability of choosing conventional gasoline vehicle; 
JP(HFCV) = probabili& of choosing hydrogen fuel cell vehicle ] 

P(Gas) 
Best case Worst case 

96.07%] 0.00% 

Home (2003) found similar capacity and limitations in his vehicle choice model 

P(HFCV) 
Best case Worst case 
100.00% 1 3.93% 

for four vehicle types. He noted that the high value of alternative specific constants 

prevented three out of the four vehicle types to achieve 100% market penetration, whicl 

is a similar situation for gasoline vehicles in my study. 

3.4.2 Dominance of Alternative Specific Constants 

Table 3.3 and Table 3.4 show that both the magnitude of the alternative specific 

constant for hydrogen fuel cell vehicle and its contribution to utility (as indicated by thc 

Table 3.7: Market penetration under "worst" and "best" cases 

I 

1 

t-ratios) in the six models of my study are high. This means that hydrogen fuel cell 

vehicles can achieve sigruficant market shares just by virtue of being hydrogen fuel cell 

vehicles, aU else being equal. The dominance of the alternative specific constant over 

u t i h  is illustrated in two cases, one in which all vehicle attributes assume the same 

values regardless of vehicle technology and the other in which the only difference is the 

relative proportion of stations with proper fuel (Table 3.8 and Table 3.9). 

I 



Table 3.9: Market share forecasts with different values for refuelling convenience 

Table 3.8: Market share forecasts with equal attribute values 

Attribute 

Vehicle capital cost ($) 

Fuel cost ($ / week) 

Government subsidy ($) 

Refueling convenience 

Warranty coverage (years) 

Is it HFCV? (l=yes, O=no) 

Attribute / Gas I HFCV 

Model 
Innovators 

Majority MSI 
Majority MS2 
Majority MS3 
Majority MS4 

Laggards 

Vehicle capital cost ($1 . , I I 

Gas 

17,100 

23 

0 

100.00% 

5 

0 

17,1001 17,100 

Fuel cost ($ / week) 

Government subsidy ($) 

Refueling convenience 

Warranty coverage (years) 

Is it HFCV? (l=yes, O=no) 

Table 3.8 shows that under equal conditions, respondents' propensity to choose 

hydrogen fuel cell vehicles over gasoline vehicles is overwhelming. Gasoline cars do not 

even capture one per cent of the market share. Of course, an equalization of all 

attributes and conditions would probably require radical policy changes to "even the 

playing field". In any case, there will always be a population segment willing to pay for 

familiar, comfortable technologies but even the model for laggards indicates a marked 

preference for the new vehicle technology. This finding differs from Mads 

(unpublished manuscript) companion study on consumer preferences for hybrid electric 

vehicles (HEVs). His models indicate that people value gasoline vehicles more than 

HEVs, all else being equal. But the value for gasoline vehicles decreases as a function of 

market share groups. Although it is encouraging to see the potential market impact of 

hydrogen fuel cell vehicles forecasted by the models in my study, Table 3.9 provides 

P(Gas) 
0.64% 
0.03% 
0.02% 
0.03% 
0.07% 
0.88% 

HFCV 

17,100 

23 

0 

100.00% 

5 

1 

Model 
Innovators 
Majority MS1 
Majority MS2 
Majority MS3 
Majority MS4 
Laggards 

23 1 23 

P(HFCV) 
99.36% 
99.97% 
99.98% 

99.97% 
99.93% 
99.12% 

0 

100.00% 

5 
0 

P(Gas) 
76.38% 
83.15% 
72.19% 
85.34% 
84.91 % 
87.86% 

0 

0% 

5 
1 

P(HFCV) 
23.62% 
16.85% 
27.81 % 

14.66% 
15.09% 
12.14% 



reason to take this optimistic result with caution. The basic models predict that even in 

the absence of stations with the proper fuel for HFCVs, the technology could capture 

between 12 to 28% of gasoline vehicle's market share! 

Since hydrogen fuel cell vehicles are not commercially available I am not able to 

validate the model predictions to observed market conditions. However, results from 

the companion HEV are able to draw on actual market data. Table 3.10 shows the 

results predicted by the basic HEV model using realistic attribute values (Mau, 

unpublished manuscript). The model prediction exceeds the actual market ratio in 2002 

by about 17%. In the discrete choice experiment, we told respondents to select the 

vehicle they would most likely choose as their next vehicle purchase. Therefore, we 

cannot rule out the lag in capital stock turnover as a possible explanation of the disparity 

between revealed market conditions and stated intent. For example, if 17% of 

respondents say that their next vehicle will be an HEV, but on average respondents own 

vehicles for 8 years, then only about 2% would buy an HEV next year, assuming an 

equal distribution of vehicle vintages.21 I discuss other possible reasons below. 

The average vehicle ownership is based on results from my research. However, these numbers 
are likely to match the results from the companion study on HEVs. 



Table 3.10: Predicted versus actual penetration of hybrid electric vehicles (from Mau, 
unpublished manuscript) 

Fuel cost (per week) $23 / $13.301 

Attribute 

Vehicle capital cost 

Gas 
(Honda Civic) 

$17,100 

Government subsidy 

HEV 
(Honda Civic 

brid 
$29,510 

Warranty coverage (years) 
Is it gasoline? (l=yes, O=no) 

P(Gas) = probability of choosing 
conventional gasoline vehicle; 
P(HEV) = probability of choosing 
hwbrid electric-pasoline vehicle 

$0 

P(Gas) 
M S ~  / 83 % 

The model predictions for HEVs and HFCVs obviously include much 

uncertainty, but it is clear that respondents are attracted to both hybrid electric and 

hydrogen fuel cell vehicles for reasons that cannot be fully explained by our basic model 

specifications. However, the influence of the alternative specific constant for the new 

vehicle technology to dominate market share forecasts is unique to the hydrogen fuel 

cell study. Several factors could account for HFCV's dominant appeal; I suggest that 

these three are important: 1) respondents overstating their preference for HFCVs 

because of a perceived "social good aspect; 2) attributes omitted from the discrete 

choice experiment important in decision-making; and 3) respondents' reaction to 

disruptive technologies. 

$0 

5 
1 

P(HEV) 
17% 

Researchers assessing the marketability of environmentally friendly technologies 

or products often find a discrepancy between respondents' stated attitudes towards an 

19 Cruising range (days) 
5 
0 

MS1 represents a scenario i n  
which the market share ratio 
between H E V  and gasoline 
vehicles is 0.03% - reflective of the 
Canadian market i n  2002. 

11 



environmental or social outcome they perceive as desirable (such as improving air 

quality) and their revealed behaviour (buying fuel inefficient vehicles and neglecting 

alternative modes of transport) (Roberts and Bacon 1997). Sagoff (1988) offers the 

explanation that people's preferences vary according to whether, at the moment of 

observation, they perceive their decision to affect their personal utility or society at 

large. During the information acceleration (IA) portion of the survey, respondents 

received information on the low emissions of hydrogen fuel cell vehicles in comparison 

with gasoline vehicles. In this way, the information provided to respondents on HFCVs 

might have placed gasoline vehicles at a competitive disadvantage given that there was 

no mention of advances in conventional gasoline vehicles that could result in substantial 

fuel efficiencies. * Thus, the information might have had a strong effect on respondents' 

frames of mind during the survey, putting the public social / environmental good in the 

forefront, though only temporarily. In fact, the "basic models with respondent 

characteristics" and "Chow test models with respondent characteristics" (Section 3.3.2) 

indicate that the interaction term between respondents' stated willingness to pay a 

premium for a technology that is ecologically friendly and the alternative specific 

constant for HFCVs is statistically signhcant and positive, which means that the stated 

attitude increases the likelihood of choosing HFCVs. 

A second possible explanation has to do with attributes that I did not include in 

the choice experiment. The IA part of the survey gave general statements pertaining to 

maintenance costs, power, safety, reliability, and servicing convenience of hydrogen fuel 

cell vehicles. The intent was to give respondents the sense that hydrogen fuel cell 

2 Engineering studies indicate that load reduction technologies and power train improvements 
could make gasoline internal combustion engines much more fuel-efficient than they are today 
(Bezdek and Wendling 2005, National Research Council 2002). 



vehicles could compete with gasoline vehicles in these respects. The qualitative 

statements given to respondents likely increased the attractiveness of hydrogen fuel cell 

vehicles. However, an attribute that was omitted from both the IA part and the discrete 

choice experiment was the diversity of vehicle makes and models available on the 

market. Some previous studies have concluded that a limited selection of body types 

relative to conventional gasoline vehicles is a key factor preventing alternative fuel / 

technology vehicles from achieving sigruficant market penetration (Leiby and Rubin 

2003). Excluding this constraint might have artificially increased the appeal of hydrogen 

fuel cell vehicles, specifically for respondents that are partial to certain vehicle body 

types or brands. 23 

The two previous explanations could also apply to the almost identical 

companion study on HEVs (Mau, unpublished manuscript), but Mau did not find this 

dominance of ASCs. The final reason that might account for the attractiveness of 

hydrogen fuel cell vehicles relative to gasoline vehicles would also provide a way of 

accounting for the differences in results between this and the companion study. Perhaps 

the difference in dominance of the ASCs between the two studies is related to the 

radically new features of HFCVs - more radically new than HEVs' features. 

Respondents could have reacted favourably to the virtually unknown technology with a 

23 When we asked respondents whether they would consider purchasing a hydrogen fuel cell 
vehicle even if their preferred vehicle body type was not available (Section 5 in the survey) 
between 75 to 90% said "yes", depending on their current primary vehicle body type. Those who 
said "yes" identified which body types they would consider. Respondents whose current 
primary vehicle was a compact highly favoured switching to a mid-size car over other 
alternatives, whereas those owning a mid-size car demonstrated more flexibility. Respondents 
currently owning a full size car showed a preference towards mid-sized vehicles. SUV and pick- 
up truck owners claimed to be willing to switch fairly evenly to all other vehicle body types 
except compacts. Mini-van owners appear more willing to switch to mid-size cars and SUVs 
than other body types. See Appendix for more detail. 



futuristic quality, possessing a "disruptive" drive-train and steering mechanism. It is 

possible that respondents' attraction to hydrogen fuel cell vehicles is based on a 

perceived need to demonstrate a favourable attitude for disruptive technologies. Guerin 

(2003) emphasizes that consumers' desire to maintain status among a given group 

(friends, the panel, the researcher, for example) can determine the preferences they state 

but might have no impact on actual behaviour. As well, respondents' lack of familiarity 

with hydrogen fuel cell vehicle technology might have led to an assumption that all 

potential negative attributes are comparable to or better than the more familiar hybrid 

electric-gasoline vehicles. Thus, in accordance to the advice in Sondermann (2002) that 

marketers emphasize usefulness, convenience, and status factors of HFCVs, my survey 

design might have created a perception of higher status value relative to the companion 

study's HEVs, with little indication of the lower convenience values (with the exception 

of refuelling convenience). 

Finally, the dominance of the ASC for hydrogen fuel cell vehicles could reflect 

the potential for dramatic switches to this vehicle technology, once it has attained a 

given level of development and acceptability. Bower and Christensen (1995) describe 

the commercialization of some disruptive technologies in the computing industry, and 

explain how established companies can fail to predict the mainstream appeal of these 

disruptive technologies, since these technologies tend to satisfy only niche market 



segments at the outset. 24 By definition, disruptive technologies present a set of 

attributes that existing customers might not value initially. However, improvements in 

valued and new attributes of this technology can rapidly match and outpace customers' 

demands, making it possible for the technology to penetrate the primary market. The 

potential for this phenomenon to occur with fuel cell vehicles might explain why 

established vehicle manufacturers, such as Daihatsu, Daimler Chrysler, Fiat, Ford, GM, 

Honda, Hyundai, Mazda, Mitsubishi, Nissan, Peugeot / Citroen, Renault, Toyota, and 

Volkswagen, are currently exploring prototypes of technology alternatives that focus on 

fuel cells (US Department of Energy 2004). 

3.4.3 Assessing Responsiveness to Attribute Changes 

Although the alternative specific constant has an important influence on my 

models' market share forecasts, assessing the role of other vehicle attributes in 

determining consumer choices of technology is important for policy analysis. For 

example, policy analysts might want to evaluate whether a subsidy programme 

targeting (1) consumers directly or (2) a transfer to vehicle manufacturers or fuel 

suppliers (to decrease costs seen by the consumer) would be more effective at -increasing 

the uptake of hydrogen fuel cell vehicles. Table 3.11 shows the change needed in fuel 

cost, refuelling convenience, government subsidy, and warranty coverage to compensate 

for a $5,000 capital cost differential. For example, respondents would be willing to pay 

24 Among other examples, Bower and Christensen (1995) describe the chronology of innovations 
in the hard-disk drive industry that led to improvements in storage capacity, power 
consumption, portability, and cost per megabyte between 1976 and 1992. They point out that no 
one company was able to remain the leader in the transitions between a 14-inch architecture, to 
an 8-inch, to a 5.25-inch, to a 3.5-inch. These transitions represented shifts in market demands 
from mainframe computers, to minicomputers, to personal computers, to portable computers. At 
each stage, advances in the disruptive technology exceeded consumers' demands for storage 
capacity. 



$5,000 more to purchase a HFCV over a gasoline vehicle provided weekly fuel costs 

were about $30 less. A seven to ten percent increase in refuelling convenience 

(percentage of stations with proper fuel) makes up for the $5,000 capital cost differential 

as well, and points to the value people place on convenience. This assessment also 

confirms that providing a direct subsidy to consumers has a greater potential to increase 

the market penetration of HFCVs than an equal reduction in capital cost. Innovators in 

particular value subsidies much more than any other group. A $1300 subsidy equates 

to a $5,000 difference in capital cost. This means that direct subsidies to consumers may 

be most effective at early stages of market penetration. 

Table 3.11: Equivalents to a $5,000 capital cost differential 

Athibute 

Fuel cost (per week) 

Another useful exercise is to assess how the probability of purchasing hydrogen 

fuel cell vehicles or gasoline vehicles can change as a function of changes in vehicle 

attributes (i.e., elasticity or "responsiveness"). This type of analysis allows us to 

compare the relative influence of each attribute on market share predictions. We use 

Equation 17 for this analysis. 25 

Government subsidy ' $1,3l0.03'!$2,920.63'$3,~5.45'$2,684.93'$2,574.07' $2,569.43- 

Equation 17 

Model 

25 The equation results from taking the first partial derivative of the MNL market share equation. 

74 

Innovators 

N/A 

Refuelling convenience (percentage) 
Warranty coverage (years) 
N/A = not a~zllicable because the coefficient for fuel cost was not sfatisticallv si~nificant at the 95% level. 

+lo% 
+5.7 

MS1 
(0.03%) 
426.51 

+7% 
+5.4 

+8% 
+4.5 

MS2 
(5%) 
N/A 

+9% 
+4.4 

+9% 
+5.9 

+lo% 
+8.9 

MS3 
(10%) 
-$30.82 

MS4 
(20%) 
-$26.33 

Laggards 

N/A 



In this equation,$ is the weighting coefficient pertinent to each attribute; Xi is the 

value of the attribute for technology i; and MSi is the initial market share for technology 

i. Figure 3.6 through Figure 3.10 illustrate relative effects of changes in vehicle attributes 

on market share estimates from the models for innovators, majority (MSl), and laggards. 

26 Since the model formulations are linear, elasticities for initial market shares between 

50% and 100% are mirror images to those between 0% and 50%. This means that the 

elasticity estimated for an initial market share of 20% would be identical to the estimate 

for an initial market share of 80%, for example. Figure 3.6 shows the effects on market 

shares from changes in capital costs. Assuming an initial market share of 20%, a $25,000 

decrease in capital costs increases the market share by about 75% for the majority, 

whereas the same change in capital costs increases the market share by 35% and about 

50% for innovators and laggards, respectively. The difference between the trend lines 

for $40,000 and $15,000 represents the $25,000 decrease in capital costs. 

26 I present the results for MS1 to avoid confusion and repetition. Trends are similar for MS2, 
MS3, and MS4. 



Figure 3.6: Capital cost elasticities 
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Figure 3.7: Refuelling convenience 
elasticities 
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Figure 3.7 shows market share elasticities as a function of changes in refuelling 

convenience. Assuming an initial market share of 20%, a 40% increase in refuelling 

convenience increases the market share by about 60% for the majority, whereas the same 

change in refuelling convenience increases the market share by 40% and about 50% for 

innovators and laggards, respectively. The difference between the trend lines for 



refuelling convenience of 10% and 50 % represents the 40% increase in refuelling 

convenience. 

In Figure 3.8 we see the effect of changes in government subsidy on market 

shares. Assuming an initial market share of lo%, a $4,000 increase in government 

subsidy increases the market share by about 10% for the majority. For innovators and 

laggards, the same change in government subsidy increases market share by about 12% 

and 8%, respectively. Using the same initial market share, increasing the warranty 

coverage by five years increases market shares by 7%, 4%, and 6%, for the majority, 

innovators, and laggards (Figure 3.9). Finally, increasing fuel costs by $50 per week 

decreases market shares by about 15% for the majority (Figure 3.10). 

Overall, changes in capital cost result in the largest consumer response, followed 

by changes in refuelling convenience. The order of importance of government subsidy 

and warranty coverage across models varies. I could only calculate fuel cost elasticities 

for the majority models, since fuel cost turned out to be statistically insigxuficant (at the 

95% IeveI) and the wrong sign in the models for innovators and laggards. 
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Figure 3.10: Fuel cost elasticity 
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Differences among the three categories of technology adoption are worth noting. 

Representatives of the majority are more responsive to changes in vehicle capital costs 

and refuelling convenience than innovators or laggards, indicating that the wide 

adoption of hydrogen fuel cell vehicles in Canada is heavily dependent on 

manufacturers and policymakers being able to substantially reduce the upfront costs 

faced by the consumer and increase the fuelling infrastructure. Not surprisingly, 

laggards are not as responsive to changes in the levels of government subsidies as the 

majority and innovators. As well, implementing programmes that increase the 

warranty coverage of new vehicle technologies would likely increase the adoption rate 

of the majority and laggards, but would have less effect on innovators. 

My results are comparable to the elasticity analysis in Horne's (2003) vehicle 

choice study. However, our results differ in the magnitude of elasticities for refuelling 

convenience, in particular. Assuming an initial market share of 20%, a change in fuel 

availability from 25% to 50% produced a 5% increase in new market shares in Horne's 



model, whereas the same increase in fuel availability in my model for majority (MS1) 

produced about a 38% increase in new market shares. Differences in experimental 

design can account for these discrepancies. Horne (2003) tested two levels of fuel 

availability, 25% and 50%, whereas my design included three levels of lower magnitude, 

5%, 10% and 20% for hydrogen fuel cell vehicles. It seems that responsiveness to 

changes in fuel availability is not linear. Greene (1997) reached similar conclusions, 

stating that fuel availability is of key importance until a threshold of about 15% 

(percentage of stations with proper fuel) is reached. It is possible that the market share 

elasticities estimated for refuelling convenience from my models only apply at levels of 

refuelling convenience below 20%, whereas Horne's (2003) results might be more 

appropriate when testing the responsiveness to increases in refuelling convenience 

above 20%. Since one of the goals of my research is to inform CIMS with new 

behavioural parameters specific to hydrogen fuel cell vehicles, selecting an appropriate 

range of values each vehicle attribute can assume is important. This requires testing the 

robustness of results from the discrete choice models. I performed two types of analyses 

for this purpose, non-linearity and uncertainty analyses. In the following section I 

present the results of an analysis designed to test for non-linearities in the vehicle 

attributes from my choice experiment. 

3.4.4 Testing for Non-linearities 

The multinomial logit (MNL) model formulation I used assumes linear and 

additive relationships to estimate utility. Increases or decreases in utility resulting from 

changes in attribute values occur in a linear fashion. However, since all attributes in the 

experimental design have three levels I was able to estimate the effect of each attribute 



level by using dummy coding to treat the vehicle attributes as categorical variables (see 

Montgomery 1997, pp 109-110). I am only interested in assessing the effect of the 

difference in levels; therefore I arbitrarily set a base level for each attribute to zero. Table 

3.12 reminds the reader of the levels used in the choice experiment and indicates which 

level became the baseline. For example, in the discrete choice experiment, the capital 

cost of hydrogen fuel cell vehicles could be 40%, 70%, or 90% higher than the cost of the 

conventional gasoline alternative (i.e., ratios of 1.4,1.7, and 1.9). The baseline capital 

cost of the gasoline vehicle was the dollar amount the respondent stated to have paid for 

their current gasoline vehicle. As indicated on Table 3.12, I set 1.4 as the baseline level 

for the capital cost of hydrogen fuel cell vehicles. Therefore, the analysis I present here 

is intended to show whether changing the capital cost from 40 % to 70 % greater than the 

gasoline option affects utility the same way as changing the costs from 70% to 90%. 

After re-coding the data I re-estimated the six basic MNL models using LIMDEP 8.0, the 

results of which appear in Figure 3.11 through Figure 3.15. In this series of figures, the 

attribute levels are on the x-axis and beta coefficients on the y-axis. Confidence intervals 

are a multiple of the standard error associated with each beta coefficient (S times the 

standard error). 27 

z7 When confidence intervals for a given data point substantially overlap with those of another 
data point, I assume that there is no difference between the two results. 
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Table 3.12: Treatment of vehicle attributes 

Attribute 

Capital cost 
(HFCV) 

Capital cost 
(gasoline) 

Fuel cost (gasoline) 

- - -- 

I Refuelline 1 0.05 (baseline) I Value is a ~ r o ~ o r t i o n  of stations with ~ r o ~ e r  fuel for I 

Level 
1.4 (baseline) 

1.7 
1.9 

Government 
subsidy (HFCV) 

convenience HFCVs. 0.05 = 5% of stations have the proper fuel. 
(HFCV) I 

Explanation 
Value is relative to the capital cost respondents paid for 
their current vehicle. 1.4 = 40% greater than the capital 
cost of respondents' current vehicle. 

1 (baseline) 
1.1 
1.2 
1 (baseline) 
1.1 

Value is number of years of warranty coverage. 
Warranty coverage 
(HFCV) 

Value is relative to the capital cost respondents paid for 
their current vehicle. 1 = the capital cost of 
respondents' current vehicle. 

Value is relative to respondents' weekly fuel costs. 1 = 
respondents' weekly gasoline costs. 

1.25 
0.05 (baseline) 

0.1 

0.2 

Figure 3.11 shows the results for capital costs, with the capital cost ratios used in 

the choice experiment represented on the x-axis. The grey trend lines show the effects 

on utility resulting from capital cost increases of 10% (ratio of 1.1) and 20% (ratio of 1.2). 

The three graphs show that increasing the capital cost by 10% has no effect on utility for 

innovators and the majority, but might have a negative effect on utility for laggards. 

Increasing the capital cost between 10% and 20% has negative effects on utility for the 

three groups. The black trend line shows the effects on utility from changes in capital 

costs between 40% and 90% greater than the capital cost consumers paid for their 

current vehicle. The three graphs show that, within these ranges, a linear relationship 

exists between capital cost premiums and utility. 

Value is relative to the capital cost respondents paid for 
their current vehicle. 0.05 = a subsidy amounting to 5% 
of the capital cost of respondents' current vehicle. 

Figure 3.12 shows the effects on utility from changes in refuelling convenience, 

restricted to the levels used in the choice experiment. In this case, the resdts indicate 



that, increasing the percentage of stations with proper fuel for HFCVs from 5% to 20% 

increases utility in a linear fashion for the majority but not for innovators or laggards. 

For the two last groups, increasing the percentage of stations with proper fuel from 5% 

to 10% has no effect on utility, whereas increasing the percentage of stations with proper 

fuel above 10% has a positive effect on utility. 

Figure 3.11: Non-linearities in capital cost 
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Figure 3.12: Non-linearities in refuelling 
convenience 
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Figure 3.13 shows the effects on utility from different levels of government 

subsidy. In the choice experiment, govement  subsidy could be 5%, lo%, or 20% of the 

capital cost respondents paid for their current vehicle. The results indicate that 



innovators and the majority value subsidies in this range linearly, whereas laggards 

have a greater utility for subsidies between 10% and 20% (of vehicle capital cost) than 

for subsidies below 10%. That is, a subsidy of less than 10% of a vehicle's purchase price 

would not be enough of an incentive for a laggard. 

Figure 3.14 illustrates the effects on utility from the different levels of warranty 

coverage included in the choice experiment. The three graphs show that consumers do 

not seem to value increases in warranty coverage beyond 8 years. That is, increasing 

warranty coverage from 5 to 8 years has a positive effect on utility, but there is little to 

no difference in utility from increasing warranty coverage from 8 to 10 years. 

Figure 3.13: Non-linearities in government 
subsidy 
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Figure 3.14: Non-linearities in warranty 
coverage 
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Figure 3.15: Non-linearity in fuel cost 
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Finally, Figure 3.15 illustrates the effect on utility from the different levels of fuel 

cost included in the choice experiment. The fuel cost ratios are relative to respondents' 

weekly gasoline costs. The graph illustrates that a 10% premium on fuel cost might not 

affect utility for the majority, but an increase between 10% and 20% has a negative effect 

on utility. The size of the confidence intervals for data points in this figure, as well as in 

Figure 3.14 and Figure 3.13, indicate that these results are very uncertain. Therefore, the 

reader should be cautious when drawing any conclusions from the observations I 

present. 

This test for non-linearities helped to determine the range of values for refuelling 

convenience and warranty coverage that I would later use to parameterize the declining 

intangible cost function for CIMS. In Section 2.3, I explained that estimating intangible 

costs from results of discrete choice models requires selecting values by which to weight 

the coefficients for non-monetary attributes (X, in Equation 7). In theory, I could 

estimate the intangible costs associated with hydrogen fuel cell vehicles and gasoline 



vehicles using any value for refuelling convenience and warranty coverage. However, 

the results from these non-linearity analyses and the elasticity analyses I presented 

previously indicate the following. 1) I am most confident about using values for 

refuelling convenience between 0% and 20% to estimate intangible costs. In this range, 

there appears to be a linear relationship between refuelling convenience and utility 

(Figure 3.12 - majority). I have less confidence in the intangible costs I estimate using 

values for refuelling convenience over 20%, given the differences between my elasticity 

results for this vehicle attribute and Home's (2003). To minimize the errors introduced 

into the intangible cost estimates, I avoided using values for refuelling convenience over 

20% for hydrogen fuel cell vehicles. However, refuelling convenience is always 

assumed to be 100% for gasoline vehicles. Thus, the intangible costs or benefits 

associated with this type of vehicle are likely to be overestimates - since we have seen 

that the marginal value of refuelling convenience decreases past 20% of stations with 

proper fuel. 2) To estimate the intangible costs of warranty coverage, I use values 

between 5 and 8 years, as the non-linearity analysis shows that a warranty coverage 

exceeding 8 years has little to no effect on utility (Figure 3.14). 

3.4.5 Assessing the Uncertainty in DCM Coefficients 

The results I have presented so far use the maximum likelihood estimates (MLEs) 

for each vehicle attribute in the DCM, given the stated preference data collected. By 

definition, the MLEs explain the data better than other combinations of j3 coefficients; 

however, alternative combinations of coefficients -- although less likely - could also fit 

the data reasonably well. To determine how confident we are in the MLEs, we need to 

consider a range of alternative combinations of$ coefficients and their probability of 



occurrence. In the following paragraphs, I describe the method and results of my 

analysis to quantdy the uncertainty in parameter estimates. 

The MLEs provided by LIMDEP 8.0 are those that maximize the log-likelihood 

function shown in Equation 18. N is the number of observations, and Pn,.  03) is the 

probability given by the (multinornial logit) model to a choice made by respondent j at 

observation n, given the combination of$ coefficients. LIMDEP finds the best-fit$ 

coefficients by performing an iterative search over a range of$ coefficients, which is 

accomplished by taking the first and second derivatives of the log likelihood function. 

This optimization procedure is efficient, but it does not give us an indication of how 

much confidence we should place on the optimal parameters; we only know that the 

coefficients estimated by LIMDEP are the most likely. 

Equation 18 

To assess the uncertainty in the best-fit coefficients for each discrete choice 

model, I took a Bayesian approach. I solved Equation 18 for the six vehicle attributes in 

the utility function by independently varying each parameter according to a range of 

uncertain values for$. 28 I assumed a uniform prior probability to transform the 

likelihoods associated with the various$ coefficient values into posterior probability 

distributions. The result of this analysis is a series of "conditional" probability density 

functions for the six vehicle attributes. In other words, I examined the Likelihood of a 

given parameter value assuming that the other five parameters were the MLEs. I 

28The six vehicle attributes are capital cost, fuel cost, refuelling convenience, warranty, 
government subsidy, and the alternative specific constant for hydrogen fuel cell vehicles. 
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adjusted the scope of possible parameter estimates until the posterior probabilities at the 

two tails ends of each probability density function were 0% or 1 %, where possible. The 

following figures (Figure 3.16 to Figure 3.21) contain the results of the uncertainty 

analysis for one multinomial logit model (majority - MS3). The trends observed for this 

model are consistent across all models. 

This analysis provides information the t-ratios in Table 3.3 do not convey. 

Capital cost has the highest t-ratio among the vehicle attributes, meaning that we are 

confident that this attribute has the greatest influence on vehicle choices. However, 

Figure 3.16 shows that the range of possible values this coefficient can assume is wide. 

Possible coefficient values are on the x-axis; these values are relative to the MLE, which I 

set to zero. Although this MLE's posterior probability is 20%, possible values range 

from 3 times less to 10 times more than the MLE. 

Figure 3.16: Probability density function - 
capital cost coefficient 
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Figure 3.17: Probability density function - 
refuelling convenience coefficient 

We are more confident in the MLEs for refuelling convenience and the 

alternative specific constant, given the narrower range both coefficients can take on. The 

probabihty density function for refuelling convenience indicates that possible coefficient 



values range from 0.7 times less to about 0.9 times more than the MLE (Figure 3.17). 

Similarly, the value of the coefficient for the alternative specific constant could be could 

be 100% less or about 0.7 times more than the MLE (Figure 3.18). Still, the probability 

associated with the MLEs for both vehicle attributes is less than 10%. 

Figure 3.18: Probability density function - Figure 3.19: Probability density function - 
alternative specific constant (HFCV) government subsidy coefficient 
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Government subsidy and warranty coverage contribute less to utility than capital 

cost, refuelling convenience and the alternative specific constant (Table 3.3). As well, 

Figure 3.19 and Figure 3.20 show that we are very uncertain about the deterministic 

estimate for these two coefficients. The probability of occurrence of both MLEs is less 

than lo%, and the range of possible values could be 10 times less to about ten times 

more than the MLEs. Finally, the probability distribution for fuel cost is so diffuse we 

cannot claim to know anything about its true parameter value (Figure 3.21). 



Figure 3.20: Probability density function - Figure 3.21: Probability density function - 
warranty coverage coefficient fuel cost coefficient 

The parameter estimates from my models are considerably less certain than those 

in Home's (2003) similar vehicle choice model.29 The main differences in design that 

might have affected the response quality are: 1) Home's experiment included five 

vehicle technologies instead of two; 2) Horne divided the choice sets in his experiment 

so that each respondent only answered four questions (versus the 18 in my experiment); 

3) differences among technologies in capital cost never surpassed 20% in Home's 

attribute values, whereas it could reach 90% (85% netting out the subsidy) in mine. 

Although the lower number of altematives described in Points 2 and 3 seems intuitively 

to provide for an increased confidence in Home's study, the higher number of 

altematives described in point 1 seems to provide for the reverse. These are only 

speculations. The main implication of the analysis presented in this section is that the 

uncertainty inherent in the coefficients for capital cost, fuel cost, refuelling convenience, 

government subsidy, and warranty coverage translates into uncertainty in the 

29 The results of Mauls (unpublished manuscript) uncertainty analysis for his study on 
preferences for hybrid-electric vehicles closely match my findings. 



behavioural parameters (for CIMS) I will later estimate. I discuss ways of portraying 

this uncertainty in the next chapter. 



CHAPTER 4 DYNAMIC CONSUMER PREFERENCES 
IN CIMS 

Policymakers require a range of information about the likely market penetration 

of new consumer products and the likely success of policies designed to influence 

consumer behaviour with respect to these products. Some pieces of information include: 

1) how individuals and businesses make decisions in response to policies; 2) what the 

likelihood is of individuals and businesses to behave a given way; 3) whether the way 

individuals and businesses make decisions change (and, if they do, how); and 4) how 

policies targeting one sector of the economy (or one type of behaviour) might affect 

other sectors. Discrete choice models (DCMs) have been used to explore the first two of 

these questions (Ben-Akiva and Morikawa 2002, Hensher 2002, Ewing and Sarigollii 

2000), and Mau (unpublished manuscript) and myself used DCMs to investigate the 

third question. However, the fourth question requires different analytical tools. For 

example, an analyst might want to assess the impact of a subsidy programme designed 

to increase the take-up of low greenhouse gas-emitting passenger vehicles. The subsidy 

programme might have a high probability of increasing the desired take-up, but would 

it also induce an increase in single-occupancy vehicle use at the expense of other, more 

benign modes of personal transport? Or, would the marked penetration of low GHG- 

emitting vehicles result in an increase in GHGs in other economic sectors, such as 

electricity generation, fuel processing, or manufacturing? CIMS, a technology-specific 

energy economy model, can provide the integrative framework required to investigate 

the potential outcomes of alternative policies more fully. When informed by 



behaviourally realistic analysis, CIMS can also keep an account of technology choices in 

the long run, the evolution of these choices, and feedbacks within and among economic 

sectors. 

In this chapter, I apply the methods outlined in Sections 2.3 and 2.4 to transform 

the results of the majority multinomial logit (MNL) models into behavioural parameters 

that are compatible with CIMS. As explained in Section 3.3.2, I limit this study 

component to the results from the majority models on the assumptions that (1) the 

results from these models are representative of the average Canadian urbanite's 

preferences and (2) this population segment is the primary target of policies. The section 

has three main parts. First, I present and discuss the r (discount rate), and v (variance or 

market heterogeneity) parameters resulting from this research. Second, I show the 

intangible costs (i) associated with the two vehicle technologies under different 

assumptions, discuss the success of the experimental treatment in capturing consumer 

preference dynamics for hydrogen fuel cell vehicles, and show the parameters estimated 

for the declining intangible cost function (DIC) in CIMS. Third, I test CIMS' capacity to 

model the market evolution of hydrogen fuel cell vehicles (HFCVs) by simulating 

various policies aimed at increasing the market share of HFCVs relative to conventional 

gasoline cars. Both car technologies are contained within the "new car competition 

node" in CIMS. I ignore the other car technologies that directly compete with gasoline 

cars and HFCVs within this node. 30 A more realistic assessment would activate either 

the declining capital cost function or declining intangible cost function (or both) for all 

vehicle technologies expected to have a long-term presence or have the ability to 

30 The following vehicle technologies / fuels compete under the "new car" node in CIMS: high 
efficiency gasoline, low efficiency gasoline, propane, natural gas, diesel, methanol, ethanol, 
battery-electric, gasoline electric hybrid, and hydrogen fuel cell. 



drastically change the level of greenhouse gas (GHG) emissions from personal urban 

transportation in the long term. 

4.1 Reporting Static Behavioural Parameters for CIMS 

In CIMS the private discount rate (r) and the variance (v) parameter are static, 

which means that neither change during the 30-year simulation period. 31 This implies 

that I had to base the estimation of r and v on the results from only one of the four 

majority models corresponding to the four market share groups. I calculated private 

discount rates (r) for the four majority models first. In the market share 2 model, fuel 

cost was not a sigruticant attribute in decision-making. Discount rates estimated from 

this model are atypically high, which led me to eliminate this model as a basis for 

estimating the two static behavioural parameters. 32 Table 4.1 shows r values calculated 

for the three remaining majority MNL models using Equation 6 over a range of 

technology lifespans. Discount rates estimated from the three models were within 30%. 

I chose the model that yielded the most conservative (lughest) discount rates to calculate 

the v parameter. My assumption in choosing the most conservative outcome was that 

the average Canadian would have a relatively high discount rate when making 

decisions about unknown technologies. The model for market share group 3 gave the 

highest private discount rates, and therefore I used this market share group to calculate r 

and v. 

31 The v parameter establishes the extent to which lifecycle costs determine new market shares. A 
low value indicates that even technologies with relatively high lifecycle costs can achieve some 
market penetration; whereas, a high value means that technologies with the lowest lifecycle costs 
will dominate the competition. 
32 Private discount rates range from 87% to 91%, depending on the technology lifespan assumed. 



Table 4.1: Private discount rates from Majority MNL models 

Private discount rate 
Technology 
lifespan (n) 

(20%) 
11% 

As shown on Table 4.1 the marginal change in discount rates as a function of 

technology lifespan tapers off between 16 and 18 years. Thus, dividing the capital cost 

coefficient by the fuel cost coefficient provides a valid estimate for r, given that CIMS 

assumes a 16-year lifespan for vehicles. Using this simplification and sampling from the 

joint probability distribution for the two coefficients (capital cost and fuel cost), I 

estimated a most likely discount rate for market share group 3 of 27.6%, with 95% of the 

possible estimates occurring between 0.6% and 78.1%. This estimate is consistent with 

those of other vehicle choice studies, both within and external to the Energy and 

Materials Research Group at Simon Fraser University. Horne (2003) reported a discount 

rate of 22.6 %, well within the ranges in Train (1985) and Ewing and Sarigollii (2000). 

Similarly, in the companion study to mine, Mau (unpublished manuscript) estimated the 

most likely discount rate from his vehicle choice study to be 21.8%, the most probable 

values falling between 10% and 30%. Note that Mau did not base his final results for r 

and v on the model yielding the highest private discount rates; instead, he used the 

model for market share group 1 to calculate these. 



The solution for v that most consistently matched the market share forecasts from 

both the DCM for market share group 3 and that group's integration into CIMS is 5.16. 

Recall that a low value of v means that even technologies with high costs can capture a 

portion of the new market share (see Figure 1.1). My estimate for v is lower than the 

factor of 10 that CIMS currently assumes for vehicle choice, but it is higher than the 

value of 2.9 estimated by Horne (2003). It is almost twice as high as the value Mau 

(unpublished manuscript) reports from his hybrid electric vehicle choice study, despite 

almost identical experimental designs. To investigate whether the reason for the 

difference in v values is due to differences among market share groups, I found a 

solution for v that scaled the DCM for market share group 4 to CIMS, using the most 

likely discount rate for that market share group (22.1%). The best-fit value for v 

resulting from this exercise was fairly consistent with my first solution, which indicates 

that consumers make investment differently for hybrid electric vehicles than for 

hydrogen fuel cell vehicles. 33 This difference is expressed in the dominance of the 

alternative specific constant in forecasting the split between hydrogen fuel cell vehicles 

and gasoline vehicles using my MNL models. 

Speaking more broadly, every stated preference study conducted by EMRG 

researchers has suggested that markets are more heterogeneous than CIMS currently 

portrays them (Horne et al. forthcoming, Rivers and Jaccard forthcoming, Jaccard and 

Dennis forthcoming, Mau unpublished manuscript, and this study). However, these 

studies (including my own) do not provide a measure of uncertainty around their 

respective estimates for v, since we do not calculate this parameter directly from the 

MNL models, and other techniques involving iterative sampling are beyond the scope of 

33 The v parameter resulting from the MNL model for MS4 is 5.80. 



our studies. In other words, we have empirical evidence pointing to greater market 

heterogeneity than CIMS assumes for certain technology competitions, but we are 

unsure about the magnitude of the variance. Nor can we extrapolate our findings to 

technology choices outside the contexts or sectors of our respective studies with much 

confidence. 34 

4.2 Accounting for Preference Dynamics in CIMS 

In Section 2.2.5 I explained the use of the market share ratio of hydrogen fuel cell 

to gasoline vehicles as a blocking variable, and I described the type of Information 

Acceleration (IA) respondents were subjected to during the survey in order to 

implement the blocking. The ex-ante assumption underpinning the experimental design 

was that the IA treatment would influence people's responses to the choice experiment. 

The hypothesis was that people's value for hydrogen fuel cell vehicles would increase as 

the market share of that technology, and their awareness of the growing market share, 

grew. However, as we saw in Section 3.4, forecasts resulting from the MNL models for 

the four majority groups (MS1, MS2, MS3, and MS4) do not follow a neat trend. In fact, 

we generally do  not observe a sigruficant difference in forecasts. Nevertheless, we do 

observe differences among the market share groups in the intangible costs associated 

34 For example, Horne (2003) and I both estimated behavioural parameters for CIMS from vehicle 
choice experiments. However, the decision environment of our respective studies differed. One 
aspect that differed was the number and types of alternatives respondents had to choose from. In 
Home's study respondents had to choose among five vehicle technologies. It is likely that 
respondents had very little prior information about two of these technologies, but had been 
exposed to the rest. In my study, respondents chose between two technologies. On average, they 
had no prior knowledge about hydrogen fuel cell vehicles. My experiment forced them to decide 
between a technology they were very familiar with and a completely unknown technology. 
Because these fundamental differences in experimental design between Home's study and mine 
produce different results, I would be cautious in applying my results to other vehicle choices, let 
alone sectors outside personal transportation. 



with hydrogen fuel cell and gasoline vehicles, but not in the way I had expected at the 

outset. The following example shows the market share forecasts (Figure 4.1) and 

intangible costs (Figure 4.2 and Figure 4.3) corresponding to the scenario shown in Table 

4.2 (non-monetary attributes are in italics). For comparison, I also include results from 

the models for innovators and laggards. I calculated the intangible costs using the 

procedure in Section 2.3 (Equation 7) .  In Figure 4.2 and Figure 4.3, negative numbers 

indicate intangible benefits. Figure 4.2 shows that people in all groups attach huge 

intangible benefits to both gasoline vehicles and hydrogen fuel cell vehicles. For 

example, assuming the values for non-monetary attributes in Table 4.2, respondents in 

market share group 4 attach intangible benefits to gasoline vehicles and hydrogen fuel 

cell vehicles of about $70,000 and $67,000, respectively. These intangibles are high 

because the coefficients for refuelling convenience and the alternative specific constant 

(only applicable to HFCV) are four to five orders of magnitude greater than the capital 

cost coefficient. Since we are interested in the intangible difference that people perceive 

between the two vehicle technologies, Figure 4.3 provides a more useful representation 

than the absolute costs. Again, taking market share group 4 as an example, Figure 4.3 

shows that consumers implicitly value gasoline vehicles more than hydrogen fuel cell 

vehicles, perceiving an intangible cost of about $2,600. 



Table 4.2: Vehicle attributes for market share 
forecasts and intangible costs 

Figure 4.1: HFCV forecasts 

Fuel cost ($ / week) I 25 1 25 
Government subsidy I 01 2,000 

I 

Refuelling convenience I 

Figure 4.2: Intangible costs - gas and HFCV 

I I 

Model 

Warranty coverage 

Model 

51 8 

Figure 4.3: Difference in intangible costs 
(HFCV - gas) 

Model 

+ Intangible costs - gas + Inmgible costs - HFCV I 

Instead of observing a declining trend in intangible costs for HFCVs relative to 

gasoline cars from MS1 to MS4, Figure 4.3 shows that respondents in MS2 perceive the 

lowest intangible costs of all the adoption groups, including innovators and laggards. 

This v-shaped pattern is consistent over the range of values for refuelling convenience 

and warranty coverage discussed in Section 3.4.4 (the ASC can only be 1 or 0). As 

previously mentioned, refuelling convenience and the ASC are the two non-monetary 

attributes that dominate the estimate of intangible costs. So, the only way we would see 



the expected trend of declining intangibles for HFCVs from MS1 to MS4 is if the 

contribution to utility from refuelling convenience declined and that for the A X  

increased. Such is the case in Mau (unpublished manuscript), where the difference in 

intangible costs between hybrid electric and gasoline cars decreases from MS1 to MS4 as 

a function of changes in the way market share groups value cruising range and factors 

associated with gasoline vehicles left out of the choice experiment (i.e., the alternative 

specific constant). 35 Mauls monetized estimates for cruising range and the A X  indicate 

that both the value for cruising range and the value intrinsic to gasoline vehicles both 

decline in response to the experimental blocking variable. I propose three explanations 

to account for the difference in intangible cost dynamics between my study and Mau's. 

The three explanations inter-relate. 

First, at present HFCVs are more of a concept than a tangible consumer good, 

increasing the hypothetical nature of the choice experiment. Although advances in this 

vehicle technology are occasionally noted in mainstream media and politician's 

pronouncements in support of "the car of the future", consumers know very little about 

this technology and how its commercialization might proceed. At most, HFCVs 

symbolize the techno-solution to greening the transportation sector without sacrificing 

our personal freedom. For some respondents, the information provided during the IA 

portion of the survey might have been their first exposure to HFCVs, which was 

unlikely to be the case with Mau's study of hybrid electric vehicles. I suggest that my 

choice experiment was too demanding an exercise given respondents' limited 

knowledge of hydrogen fuel cell vehicles. Literature on decision-making under 

35 Mau used cruising range instead of refuelling convenience. He also included a constant 
specific to gasoline vehicles in the utility function. The remaining monetary and non-monetary 
attributes are identical to mine. 
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uncertainty shows that people often devise strategies to simpllfy the decision task 

(Payne et al. 1993). In administering a choice experiment and using a multinomial logit 

(MNL) utility formulation, I assumed that respondents would explicitly make trade-offs 

among the attribute values presented in each question. In practice, respondents might 

have taken a hierarchical approach to deciding between an HFCV or gasoline car, which 

takes less effort than considering all the attributes independently. For example, a given 

respondent's decision rule might have been to choose the gasoline car unless the HFCV's 

refuelling convenience was 20%; another respondent might have chosen HFCVs 

provided refuelling convenience did not drop below 10% and the capital cost differential 

did not exceed 40%. Respondents from the four market share groups could have 

focused on using this type of heuristic irrespective of the blocking variable. 

Second, I propose that the information pieces under the IA portion of the survey 

created high (?) or false (?) expectations with respect to the refuelling infrastructure for 

hydrogen fuel cell vehicles. These expectations could have confounded the effect of the 

blocking variable with respondents' utilities for refuelling convenience. For example, 

the scenario we described to respondents in MS4 was that one out of five Canadians 

owned a hydrogen fuel cell vehicle. Yet, the choice experiment included situations in 

which only 1 out of 20 and 1 out of 10 stations offered the proper fuel for HFCVs, which 

they may have perceived as inadequate given the market conditions described to them 

earlier. This phenomenon could have occurred alone or in combination with the 

hierarchical decision-making strategy I propose above. 

The third possible explanation relates to the uncertainty associated with 

hydrogen fuel cell vehicles, and it is merely speculative. The difference in the trends of 



intangible costs for hydrogen fuel cell vehicles versus hybrid electric vehicles might be 

attributable to the prospect of adopting a disruptive versus an evolutionary technology. 

With a disruptive technology consumers have to learn how to use and maintain the 

product, which imposes sigruficant transaction costs. Perhaps this transaction cost 

greatly outweighs potential technology-specific benefits, and people will only consider 

making the investment once the product's attributes reach some threshold level of 

development or the product attains a crucial milestone of market acceptance. 

The three explanations above are the most obvious, but many more might exist. 

I conclude that the experimental treatment did not achieve the intended effect of 

depicting preference dynamics in response to market penetration dynamics. However, 

this does not mean consumers might not be susceptible to the "neighbour effect" when it 

comes to switching to HFCVs; my experiment just failed to provide the empirical 

evidence for it. Indeed, intuition and a wide range of literature on decision-making 

under uncertainty tell me that imitation is likely to be a valid influence in the adoption 

of this disruptive vehicle technology (Janssen and Jager 2001). In Section 5.3.1, I 

recommend improvements to the experimental design in my research to facilitate the 

success of future research in EMRG on preference dynamics for disruptive vehicle 

technologies. 

For reasons explained above, I cannot directly use the intangible cost estimates 

from my four majority discrete choice models to estimate the declining intangible cost 

(DIC) function. But, at the very least, two reasons exist for illustrating how this might be 

done. First, future EMRG researchers might benefit from alternative descriptions of the 

same method, as I benefited from comparing among Home's (2003), Rivers' (2003) and 



Sadler's (2003) explanations. Mau and I use the same method to convert intangible cost 

estimates from discrete choice models into dynamic intangible parameters in CIMS, yet 

our descriptions and level of detail are different. Second, one of my research objectives 

was to be able to simulate the long term outcomes of policies aimed at increasing the 

adoption of HFCVs in Canada. Currently, information of this type that is grounded in 

empirical research is unavailable. The intangible cost estimates from my research are 

"ball-park" figures, and provide and indication of (1) the magnitude of intangible costs 

associated with switching from gasoline cars to HFCVs and (2) the magnitude of the 

difference in these perceived intangible costs among groups of people subjected to 

different market conditions. In the next section I describe the assumptions and values I 

used to illustrate the estimation of parameters for the declining intangible cost function 

in CIMS. 

4.2.1 The Declining Intangible Cost Function 

Once I decided on the data points I would use to illustrate the estimation of the 

parameters for the declining intangible cost function (DIC), I followed the procedure 

described in Section 2.4. Prior to presenting these parameter estimates and the 

assumptions behind them, I briefly discuss the uncertainty associated with the DIC 

derived from research of this type. The discussion would be equally relevant had my 

research design yielded empirical evidence in support of the "neighbour effect". 

Uncertainty comes from two major sources (1) the DCM coefficients and (2) the 

experimental treatment. 

Recalling from Section 3.4.5, the probability distributions for the coefficients from 

the four models for majority are fairly diffuse. In the best of cases the maximum 



likelihood estimate (MLE) is only 20% probable. Since the intangible cost estimates 

derive from comparisons between the coefficients for non-monetary attributes and 

capital cost, our confidence in these estimates depends on our confidence in the DCM 

coefficients. For example, Figure 4.4 shows the probability distributions corresponding 

to the estimates for intangible costs for gasoline and hydrogen fuel cell vehicles from the 

DCM corresponding to market share group 4. These distributions for both vehicle 

technologies were constructed by simultaneously sampling from the posterior 

probability distributions for refuelling convenience, warranty coverage, and the ASC, 

which I discussed in Section 3.4.5. I held the capital cost coefficient constant at its MLE, 

thereby admitting more certainty than actually exists. Despite this simplification the 

graphs below show the high degree of uncertainty around the intangible cost estimates. 

The probability distributions of intangible cost estimates for gasoline vehicles and 

hydrogen fuel cell vehicles assume 100% refuelling convenience for gasoline vehicles 

and 0% for HFCVs, and the same warranty coverage for both (5 years). Both probability 

distributions show that the most likely intangible cost estimate is only about 3% 

probable (circled regions on the graphs). In the case of gasoline vehicles, intangible costs 

can deviate from the most likely estimate by factors of 0.1 to 2. In this example, the most 

likely intangible benefit associated with gasoline vehicles is $74,000. However, the value 

of these benefits could range from about $7,400 to as much as $148,000. In the case of 

HFCVs, the graph the range of possible values is even greater. The most likely 

intangible benefit associated with HFCVs is about $60,000. But, these benefits could 

range from $500 to $116,000. Thus, the intangible costs of HFCVs relative to gasoline 

vehicles could also range widely. 



Figure 4.4: Uncertainty in intangible costs for gasoline and hydrogen fuel cell vehicles 

o? o?, o!J g ,? ,?, ,!J g Cf' $' ,FS' , %Cf' 
0. 

Intangible cost - Gasoline Intangible cost - H W  
(ratio of most probable value) (ratio of most probable value) 

For gasoline vehicles refuelling convenience = 100%. For HFWs refuelling convenience 
= 0%. Warranty coverage for both technologies = 5 years. 

Further, building the DIC requires at least two points, each estimated 

independently. In this way, the uncertainty introduced by each DCM is compounded in 

the DIC. Figure 4.5 illustrates this point. The probability distributions outlined in black 

correspond to HFCV costs and those in grey pertain to gasoline cars. Note that in 

estimating the parameters for the DIC I am assuming that this function represents how 

consumers1 preference for hydrogen fuel cell vehicles change as a function of their 

increased market penetration, given a competition between gasoline cars and HFCVs. 

Thus, each data point for the DIC is the intangible cost attached to HFCVs relative to 

that of gasoline cars. Quantifying the joint uncertainty and propagating it through to the 

outputs from CIMS policy simulations is a formidable task in itself. Yet, the task is 

incomplete if we neglect to consider that a researcher's characterization of preference 

dynamics might not be representative of Canadian consumers' actual preferences, due to 

sampling biases discussed previously and possible limitations of experimental 



treatments. I consider that these sources of uncertainty are likely to be important, and 

warrant careful attention in future research. 

Figure 4.5: Illustration of the uncertainty in the declining intangible cost function 

DCM 1 I HFCV - 1 - 
DCM 3 

DCM 4 

Cost 

Regardless of the confidence in the declining intangible cost function estimated 

for HFCVs, this function might have a relatively small influence on CIMS outputs by 

comparison with other functions and parameters already in CIMS. In particular, the 

choice of a progress ratio (PR) for the declining capital cost function is an important 

factor to assess, given that the initial capital costs for HFCVs effectively removes them 

from the competition and a favourable PR alone could increase the market share ratio of 

this technology during the simulation period. For this reason, along with propagating 

the uncertainty that I was able to quantify from my research through to CIMS outputs, I 

conducted a sensitivity analysis on the PR, which I explain in the next section. 

The following DIC parameters resulted from matching the function defined in 

Equation 9 to the relative intangible costs for HFCVs estimated as the average values 

given by the DCMs for the four market share groups. As I explained previously, 

intangible costs estimated from the four DCMs did not show declining trends consistent 

with the expected influence of the "neighbour effect". That is, the intangible costs 



associated with HFCVs for respondents in market share group 1 were not always the 

highest among the four market share groups, nor were the intangible costs estimated for 

respondents in market share group 4 always the lowest. Still, I consider it important to 

show what might be reasonable estimates for the DIC function in CIMS, and in order to 

do this, I made two assumptions. First, instead of directly equating the intangible cost 

estimate from each DCM to its corresponding market share (in Equation 9), I used 

average values, and assumed that these values declined with increasing penetration of 

HFCVs. For example, Table 4.3 shows the intangible costs estimated from the four 

DCMs for a case in which refuelling convenience increases from 0% to 20% and 

warranty coverage stays constant at 5 years. At each value of refuelling convenience, I 

averaged the intangible costs derived from the four DCMs. I based the initial intangible 

costs (lo in Equation 9) on the average estimate for 0% refuelling convenience, and fitted 

the curve using the three other average values, assuming the market share ratios shown 

on Table 4.3. 



Table 4.3: Example of assumptions for the DIC function 

Refuelling convenience (RC) 1 Model I oO/o 5% 10% 20% 

I ~ o t e :  warranty coverage IW) stays constant at 5 years. I 

MS3 (10%) 
MS2 (5%) 
MSI (0.03%) 
Average cost 

Second, in cases where the attribute value is the same across the four market 

share groups, I assumed that intangible costs decline as a function of increased HFCV 

market shares. I based the difference in these costs among the four market share groups 

on the average difference. Table 4.4 shows the intangible cost estimates for HFCVs for a 

case in which refuelling convenience is 0% and warranty coverage is 5 years. I averaged 

the intangible costs derived from the four DCMs, at these attribute values, and set this 

average as the initial intangible cost (lo in Equation 9). To estimate the remaining three 

data points, I sequentially subtracted one-third of the average difference in intangible 

costs from the previous intangible cost, as shown on Table 4.4.36 I used these values to 

fit the curve, assuming the same market share ratios as in the previous example. 

$9,006 
$4,909 
$8,701 
$8,766 

Market share HFCV 

36 I used one third of the average difference instead of simply the average difference to err on the 
conservative side (i.e., leading to a lower rate of decline). 
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Intangible costs 
(RC = OO/o, 5%, 1O0/o1 20•‹; 

W = 5 \  

$6,477 
$2,454 

$6,059 
$6,048 

$3,948 
$4 

$3,419 
$3,332 

-$1,110 
-$4,895 
-$1,865 
-$2,106 



Table 4.4: Example #2 of assumptions for the DIC function 

Model 

MS4 (20%) 
MS3 (10%) 
MS2 (5%) 
MS1 (0.03%) 
Average cost 
Average difference 
Average difference / 3 

Each combination of intangible costs required a re-estimation of DIC parameters. 

Table 4.5 shows the parameter combinations and assumptions about attribute values I 

used for the reference case and policy cases. 37 In the reference case, the intangible cost 

estimates correspond to a situation where there are no  stations with proper fuel for 

HFCVs and that the warranty coverage is today's standard (5 years). "Incremental R C  

is a case where refuelling convenience increases incrementally, but the warranty 

coverage remains at 5 years. "Constant R C  means that the intangible cost estimates 

from the DCMs assumed a n  input value of 20% for refuelling convenience. Warranty 

coverage remains at  5 years. Finally, "incremental RC and warranty programme" 

Refuelling 
convenience = 

0% 
$12,447 
$9,006 
$4,909 
$8,701 
$8,766 

$3,777 
$1,259 

Market share 
HFCV 

0.03% 

37 The CIMS transportation database already contained (static) intangible costs for the 10 vehicle 
types represented in the single-occupancy vehicle competition. Since the focus is on the 
competition between HFCVs and gasoline I only made alterations to data specific to HFCVs, but 
considered the pre-existing intangible costs for gasoline vehicles in fitting the DIC. More 
specifically, the database ascribes an intangible cost of $6,555 to high efficiency gasoline vehicles, 
which I added to the average intangible costs for HFCVs estimated from my models. 

Note: warranty coverage 0 stays constant 
at 5 years. 

Intangible costs 
(RC = OO/o; W = 5) 

$8,766 



assumes the same input values for refuelling convenience as in the "incremental R C  

case, but the intangible cost estimates are different because warranty coverage is 

extended to 8 years. 

Table 4.5: Parameters for the declining intangible cost function 

Constant RC I R C  = 20%; w = 5 1 $4,4491 0.2393000281 16.64946911 

Case 
Reference 
Incremental RC 

10 
$15,321 

Assumption 
RC=O%;W=5 

4.3 Simulating Policies 

RC =O%, 5%, lo%, 20%; 
W=5 

Incremental RC and warranty 
programme 

To illustrate CIMS new potential to represent preference dynamics, I simulated 

A 

0.099122476 

four types of policies on the Ontario transportation sector. All simulations assume a 

k 
12.13492448 

$15,321 

RC = refuelling convenience; W = warranty coverage (years); lo = initial intangible cost; A and k dejne 
the shave of the curve and the rate of chanpe 

RC = 0%, 5%, lo%, 20%; 
W = 8  

progress ratio of 0.75. Although I cannot draw definitive conclusions from these 

simulation exercises, it is interesting to explore what causes the differences among 

0.173754635 

$12,779 

modelling outputs. If we were confident in the representation of preference dynamics 

25.63275202 

for HFCVs, we could extend the results of these simulations to the rest of the regions, as 

0.19677429 

CIMS models transportation technology competition similarly across Canada. In terms 

30.66609368 

of vehicle competition, regions only differ in their levels of base stock. Except for an 

emissions tax, which would apply to the economy in general, the simulated policies 

focus on accelerating the adoption of HFCVs. A brief description of these policies 

follows. 



Policy set # I  - Incentives to accelerate the comnzercialization of hydrogen fuel cell vehicles. 

These include subsidies targeting fuel infrastructure development and supporting 

increased warranty coverage on HFCVs. The first in this series of policies assumes 

infrastructure development in a phased fashion - refuelling convenience increases 

from 5% to 20% during the simulation period (Policy #la - "Incremental RC"). The 

second assumes an increase in refuelling convenience to 20% (Policy #lb - "RC 

20%"). The third combines phased-in infrastructure development with a warranty 

programme (Policy #lc - "Incremental RC + WB"). 

Policy #2 - A greenhouse gas (GHG) emissions tax. The tax rate was set to $50/tonne of 

GHGs, which translates to a 12 cent / litre increase in gasoline prices (assuming a 

year 2000 average). 

Policy #3 -A greenhouse gas (GHG) emissions tax plus incentivesfbr the comnzercialiuztion 

of HFCVs. This policy combines Policy #2 (emissions tax) and Policy #lc (subsidies 

towards a phased-in infrastructure development and an extended warranty 

programme). 

Policy #4 - Strict emissions restrictions plus incentives for the comnzercialiuztion of HFCVs. 

This policy modelling exercise is meant to simulate such sector speci€ic rnarket- 

oriented regulations as the vehicle emission standards in Cali€ornia, in conjunction 

with incentives speci€ic to HFCVs. In this policy, the federal government 

implements strict emissions restrictions and works with vehicle manufacturers to 

introduce cost-competitive HFCVs in 2010. The acceleration in development results 

in a HFCV that is only 30% higher in capital and operating cost than the equivalent 

high efficiency gasoline vehicles. The policy design also includes subsidies aimed at 



phasing in hydrogen refuelling infrastructure and an extended warranty 

programme. This is Policy #4. 

Figure 4.6 shows the outcomes of the first three sets of policies for the year 2035. 

Figure 4.7 represents the outcomes of the fourth simulation exercise. Of the first three 

sets of policies, Policy #lb (refuelling convenience increased to 20%) achieves the 

greatest penetration of the target technology by 2035, surpassing the number of HFCVs 

in the reference case by about 7,761 (about 2.3 times greater than the reference case). 

This policy design results in a new market share of HFCVs relative to gasoline just 

under 1% (about 0.3% total market share ratio). The GHG tax plus incentives for HFCVs 

(Policy #3) achieves the second highest penetration of HFCVs, increasing the take-up of 

HFCVs by about 1.9 times compared to the reference case. Not surprisingly, the GHG 

tax (Policy #2) alone does little to improve the penetration of HFCVs, as new market 

shares are distributed among vehicle types with lower capital cost than HFCVs yet with 

better fuel efficiency than the average gasoline car. All sets of policies are effective in 

reducing single occupancy and increasing walking / cycling, transit, and high 

occupancy vehicle use compared to the reference case. 



Figure 4.6: Results of policy simulations (#I to #3) 

Scenario in 2035 

Scenario in 2035 

Refaence; PR = 0.75 

Policy # la  - "lnaunmtal RC" 

Policy #I b - "RC 20%" 

BPolicy #lc-  "IncrementalRC+W" 

E l  Policy #2 - 50Monne GHG tax 

W Policy #3 - 50Monne GHGtax+ "Incremental RC + W "  

"Incremental RC" = improved refuelling conveniencefrom 0% to 20%; "RC 
20% " = refuelling convenience set at 20%; W8 = extended warranty coverage 
(8 years) 
Values i n  percentages listed above each column are the ratio of HFCVs to 
gasoline vehicles (total market share). 

Regarding the evolution of capital costs for HFCV in the policy simulations, the 

following observations are worth noting. In the reference case, the capital cost declines 

from $139,988 in 2005 to $60,672 in 2035. In Policy #3, the capital cost is $52,884 in 2035. 

Policies #la, #lb, #lc, and #2 bring the capital cost down to $58,746, $55,520, $57,680, 

and $56,061, respectively. Although the difference in magnitude among these 



deterministic outputs is relatively minor, these results could illustrate the importance of 

incorporating preference dynamics in the modelling exercise. Except for Policy #2 (the 

GHG tax), all policy cases have a different representation of preferences towards HFCVs 

than the reference case, and all cases assume the same progress ratio for the DCC. Thus, 

we can likely attribute differences in policy outcomes to the different representation of 

consumer preferences, allowing the analyst to test feedbacks between changes on the 

supply side (DCC) and changes in the way people make decisions regarding HFCVs 

(DIC) .38 

However, because Policies #1 to #3 all assume an extremely unfavourable initial 

capital cost for HFCVs, we see limited penetration of HFCVs over the reference case 

(producing only small reductions in GHG emissions), and we do not manage to 

reproduce more optimistic forecasts by other researchers for HFCV capital costs. For 

example, based on mass production assumptions and depending on the fuel pathway 

chosen, one study forecasts the cost differential between fuel cell vehicles and 

comparable gasoline cars to range between $2,000 and $7,000 in 2020 (Greene and 

Plotkin 2001). 

The results of simulating Policy #4 give a more accelerated view of the 

commercialization of HFCVs than the previous simulation exercises. The first graph in 

Figure 4.7 shows the total stock of HFCVs resulting from the policy imposing strict 

emissions restrictions combined with incentives for HFCVs (Policy #4). This figure also 

shows the evolution of the market share ratio (%) of HFCVs relative to gasoline vehicles 

38 "Representation of consumer preferences" in this context refers to differences in intangible 
costs for HFCVs resulting from variations in attribute values. 
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(see the secondary y-axis). Table 4.6 displays the total stocks of HFCVs resulting from 

the implementation of Policy #4 compared with the equivalent reference case. 

Figure 4.7: Results of policy simulations (#4) 

2005 2010 2015 2020 2025 2030 2035 

Period 

I I-- HFCV (# cars)- HFCV:Gas (market share ratio) I 

Table 4.6: Evolution of HFCV stocks under Policy #4 

Policy #4 successfully increases the adoption of HFCVs. Their market share 

relative to gasoline cars increases from 0% to 9% during the simulation period. In fact, 

the policy mix improves the competitive advantage of the target technology to such a 

degree that single occupancy vehicle use increases at the expense of walking and 

cycling, transit, and high occupancy vehicle use. The results of this policy run are 

probably on the optimistic end of the spectrum. In this case, the dynamic between the 

DIC and the DCC combine to reduce the capital cost of HFCVs from $31,872 to $18,915 

during the simulation period. A further refinement to this type of policy modelling 

Case 
Reference 
Policv #4 

2010 
332 

30,205 

2015 
522 

57,150 

2020 
823 

100,774 

2025 
1,519 

180,433 

2030 
2,939 

276,817 

2035 
5,870 

435,049 



would be to have the capacity to (1) spec* a minimum capital cost a given technology 

could drop to during the run, or (2) change the progress ratio (PR) once the emerging 

technology reached a certain production level. As an example of the latter case, Thomas 

et al. (1998) in their fuel cell vehicle forecasts switch from a PR of 0.819 to 0.93 when fuel 

cell production units surpass 300,000. This means that, prior to a cumulative production 

of 300,000, each doubling in production results in an 18% cost reduction. But, once 

cumulative production of fuel cell units exceeds the threshold quantity, each doubling in 

production reduces costs by only 7%. The sensitivity analyses below show the 

importance of this parameter in determining HFCV market shares. 

To compare how these modelling exercises correspond to other scenarios for the 

future we can turn to the National Energy Board's (NEB'S) characterizations of the 

composition of Canada's passenger vehicle sub-sector between 2000 and 2025 

(Government of Canada 2003). "Canada's Energy Future" considers two scenarios, one 

in which gasoline vehicles continue to dominate the passenger vehicle fleet ("supply 

push),  and the other which assumes that Canadians become aware of the magnitude of 

the environmental costs associated with gasoline cars and are willing to pay for cleaner 

alternatives ("techno-vert"). Both scenarios focus on the competition among three 

vehicle types: gasoline internal combustion engine, hybrid gasoline-electric, and 

hydrogen fuel cell vehicles. In the "supply p u s h  scenario HFCVs do not manage to 

penetrate the market at all. The reference case I present above shows a 0.04% market 

share for HFCVs relative to gasoline vehicles for 2025. Given the degree of uncertainty 

in my estimates, I consider the two results comparable. In contrast, HFCVs achieve 

about a 50% market share relative to gasoline cars in the NEB'S "techno-vert" scenario, 



which is clearly optimistic in comparison to the results in Figure 4.7. Despite the crude 

nature of these comparisons, they are instructive in reinforcing the message that 

gasoline cars are likely to remain the dominant technology in the long-term in the 

absence of policy interventions. 39 These interventions could range from awareness 

campaigns, if we believe that information provision will be enough to incite a drastic 

and sustained change in consumer behaviour (as the "techno-vert" case assumes), to 

more forceful regulatory and fiscal policies. 

4.3.1 Sensitivity Analyses on CIMS parameters 

To give an idea of the uncertainty introduced into CIMS' outputs through 

parameters in the declining capital cost function and the declining intangible cost 

function, I conducted a series of sensitivity analyses on the reference case used in the 

previous policy simulations. Figure 4.8 illustrates the changes in total stocks of HFCVs 

in the year 2035 that result by varying the progress ratio in the reference case (0.75) by 

10%. Not surprisingly, a shift in PR to 0.675 causes a dramatic difference in the uptake 

of HFCVs by 2035, in comparison with the reference case and with a PR of 0.825. Recall 

that a PR of 0.675 means that each doubling in cumulative production decreases 

production costs by 32.5%; whereas, a PR of 0.825 reduces costs by 17.5% per doubling 

of cumulative production. In 2035, HFCV stock for a PR of 0.675 is 18.2 times greater 

than in the reference case, whereas a shift to a PR of 0.825 decreases the reference case 

vehicle stock by a factor of 0.72. Based on these analyses, I recommend that future 

exercises in policy modelling use a PR no greater than 0.75. That is, cost efficiencies per 

doubling of cumulative production should not exceed 25%. Also, to improve CIMS' 

39 A fair comparison of modelling outputs normalizes the basic economic assumptions 
underlying the modelling framework to a common standard. 
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portrayal of technological change the model should have the capacity to switch to a 

higher progress ratio once a threshold level of stock is attained during a run. Otherwise, 

the production efficiencies CIMS simulates are likely to be overly optimistic, specifically 

for technologies with very low levels of initial stock and very high capital costs. 

Figure 4.8: Results for sensitivity analyses - progress ratio 

The second series of sensitivity analyses focuses on intangible costs. Here, I 

compare the reference case to the following scenarios: 1) a declining intangible cost 

function estimated with the highest intangible costs for HFCVs relative to gasoline cars 

from the discrete choice models (DCMs) for the four market share groups. These costs 

are two standard deviations to away from the most likely estimates for HFCVs and 

gasoline. I used averages to estimate the initial intangible cost and the difference among 

the four market share ratios. 2) A declining intangible cost function estimated with the 



lowest intangible costs for HFCVs relative to gasoline cars from the models for the four 

market share groups. These costs are two standard deviations away from the most 

likely estimates for HFCVs and gasoline. I used the same approach as in point 1. 3) A 

static representation of intangible costs, using the same initial intangible cost as the 

reference case, input into CIMS as a one-time cost. Table 4.7 shows the new DIC 

parameter estimates for scenarios 1 and 2. Although it is preferable to propagate 

uncertainty using a probabilistic representation, scenarios 1 and 2 are confidence 

intervals that show possible upper and lower ranges of CIMS outputs, informed by the 

uncertainty analyses in previous sections. 

Table 4.7: Parameters for the DIC function - sensitivity analyses 

Case 
Sensitivity analysis - high intangible 
costs 
Sensitivity analysis - Iow intangible 

Two main observations emerge from this sensitivity analysis on the DIC. 

Compared to the progress ratio, differences in CIMS' outputs resulting from variations 

in intangible costs for HFCVs are likely to be more modest. In this analysis, the stock of 

HFCVs corresponding to the low dynamic intangible cost scenario is 1.4 times greater 

than in the reference case in 2035. For the same year, using high dynamic intangible 

costs or static intangible costs decreases the reference case vehicle stock by factors of 0.29 

and 0.18, respectively. The other interesting observation is that the evolution of HFCV 

stocks using a static representation of consumer preferences is most similar to the case 

with high but dynamic intangible costs. This observation could point to the importance 

Assumption 
RC = 0%; W = 5 

costs 
RC = 0%; W = 5 

I 

10 
$27,675 

RC = refielling convenience; W = warranty coverage (years); lo = initial intangtble cost; A and k define 
the shape of the curve and the rate of change 

$10,376 

A 
0.23271670 

k 
16.3707242 

0.11969501 12.6599925 



of modelling consumer preferences dynamically. In this example, a static intangible cost 

of $15,321 is similar to using intangible costs at the high end of the probability 

distributions to estimate the DIC function, in which the initial intangible cost is $27,675. 

In other words, using static intangible costs could underestimate the market penetration 

potential of emerging technologies in the long run. 

Figure 4.9: Results for sensitivity analyses - intangible costs 
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CHAPTER 5 SUMMARY AND CONCLUSIONS 

The general goal of this research was to improve the capacity of CIMS, a hybrid 

energy-economy simulation model, to simulate technological change in the long run. 

Specifically, the aim was to improve the behavioural parameters in CIMS to be able to 

capture how long-run preferences for unconventional technologies might be influenced 

by government policy. Previous work within the Energy and Materials Research Group 

(EMRG) has developed a methodology to use the results of discrete choice models to 

inform CIMS with behavioural parameters that describe decision-making in personal 

urban transportation, residential heating, and industrial steam generation. My research 

is an extension of these previous efforts, which assume a static representation of 

consumer preferences. My research focused on trying to understand the evolution of 

consumer preferences for hydrogen fuel cell vehicles (HFCVs), and translating this 

understanding to behavioural parameters in CIMS. The focus was on personal vehicle 

choice and on HFCVs specifically because of (1) the sigdicance of personal greenhouse 

gas emissions from single occupancy vehicle use in Canada and (2) the potential for 

(environmental and social) change that the technology represents. 

As I describe in the following discussion, trying to meet the research objectives 

was an adaptive process. In contrast to the companion study on preferences for hybrid 

electric vehicles (HEVs), the actual results from my study did not correspond to the 

results I had expected to achieve at the outset of the research. I suggest that the 

challenges I encountered related to the uncertainty around HFCVs, respondents' 



reactions to this uncertainty, and flaws in the experimental design. In any case, 

differences in results between the two studies offer interesting lessons to future 

researchers at EMRG. Section 5.1 is a summary of my research findings on consumer 

preferences for hydrogen fuel cell vehicles. Section 5.2 summarizes how I incorporated 

these preferences into CIMS and illustrate CIMS new simulation potential. Finally, 

Section 5.3 discusses possible improvements to the experimental design to further our 

understanding of consumer preference dynamics for disruptive technologies, and 

recommends ways to improve CIMS portrayal of decision-making in personal vehicle 

use. 

5.1 Canadians' Preferences for Hydrogen Fuel Cell Vehicles 

The experimental design for the survey in this research had two components (1) 

the use of a blocking variable and a technique called Information Acceleration (IA) to 

treat the global pool of respondents, and (2) a discrete choice experiment (DCE). The 

first component was designed to capture the "neighbour effectJ'.40 For this purpose, I 

randomly divided the global pool of respondents into four groups, and gave each group 

information corresponding to fictional market shares of HFCVs. The second component, 

the DCE, was identical across the four market share groups, and asked respondents to 

choose between a HFCV and a gasoline car based on a list of changing vehicle attributes. 

The survey was administered to an online panel of respondents recruited by a 

marketing firm. It is likely that the survey format and the sampling method introduced 

40 The hypothesis behind the "neighbour effect" is that people's value for hydrogen fuel cell 
vehicles (and hence, their propensity to choose them over gasoline cars) will change as the 
number of people owning this vehicle technology increases. 



self-selection and coverage biases in the survey results. However, these biases were a 

necessary trade-off to attain the response quality and efficiency needed for this research. 

I used the survey responses from the four market share groups to estimate a 

series of multinomial logit (MNL) models, some of which included personal 

characteristics and stated attitudes as explanatory variables. I found that stated attitudes 

about the adoption of new technologies could help predict the propensity for choosing 

HFCVs over gasoline vehicle. Since my objective was to understand the preferences of 

average Canadian urban car drivers, I removed the potential attitudinal bias by filtering 

the innovators and laggards from the four data sets. I estimated separate MNL models 

for the respondents categorized as (early) majority in each of the four market share 

groups. Also, I estimated a single model for all innovators and one for all laggards. 

With the exception of fuel cost, all attribute coefficients are statistically sigruficant at the 

95% level and have the appropriate sign across the six MNL models. This means that 

the attributes included in the choice experiment were relevant to decision-making. The 

resulting models also show that (1) all else being equal, consumers value HFCVs much 

more than gasoline vehicles, as indicated by the alternative specific constant (ASC); (2) 

capital cost, refuelling convenience, and government subsidy are the most important 

vehicle attributes in choosing between a gasoline car and an HFCV; and (3) consumers 

value a one-dollar increase in government subsidy about twice to three times as much as 

a dollar decrease in capital cost - innovators, in particular, highly value government 

subsidies. 

Although validating market share forecasts from the MNL models to observed 

market conditions is not possible, one finding common to all MNL models is 



noteworthy. Market share forecasts are dominated by the constant specific to hydrogen 

fuel cell vehicles (the ASC). In other words, the models predict a sigruficant penetration 

of HFCVs, even under conditions unfavourable to this technology. For example, models 

predict that HFCVs can capture a 12% to 24% market share relative to gasoline vehicles 

even in the absence of stations with proper fuel for HFCVs. Previous research has 

identified several possible reasons for the dominance of the ASC. The two most 

common reasons are (1) the discrepancy between stated preferences and respondents' 

revealed behaviour, and (2) the omission of attributes that are important to decision- 

making in the choice experiment. However, both reasons could apply to Mau's (2004) 

almost identical study on hybrid electric vehicle preferences, and he did not find the 

same dominance. I suggest that the dominant appeal of HFCVs relative to gasoline 

vehicles relates to the radically new features of HFCVs. People might be attracted to the 

radical newness of this vehicle type - the disruptive drive train, the fly-by-wire 

technology, for example. Perhaps people like the status this vehicle technology would 

confer. At the same time, people's lack of familiarity with HFCVs could have led them 

to assume that the potential negative attributes were negligible, whereas in the 

companion study respondents might have had some information on the negative 

attributes associated with hybrid electric vehicles. 

Regardless of the dominance of the ASC in model forecasts, I found interesting 

differences in response to changes in attributes among the three categories of technology 

adoption (innovators, majority, and laggards). Representatives of the majority are more 

responsive to changes in vehicle capital costs and refuelling convenience than the other 

two groups. This means that the adoption of hydrogen fuel cell vehicles in Canada is 



heavily dependent on manufacturers and policymakers being able to substantially 

reduce the upfront costs faced by the consumer and increase the fuelling infrastructure. 

Changes in the levels of government subsidy are more sigruficant to innovators and the 

majority than to laggards. Changes in warranty coverage have more of an effect on the 

adoption rate of laggards and the majority than on innovators. 

I further assessed the robustness of my models by (1) testing whether the vehicle 

attributes in the choice experiment had non-linear effects on utility, and (2) quantifying 

the uncertainty in parameter estimates for the six models. These analyses confirmed 

that some attributes have a non-linear effect on utility, and the effect of these differ 

among the three categories of technology adoption. The results helped me to select the 

range of attribute values in calculating the intangible costs for HFCVs relative to 

gasoline vehicles. The results of the uncertainty analyses showed that the parameter 

estimates from my models are considerably less certain than those in Home's (2003) 

vehicle choice study, but closely match the uncertainty in the results of Mau's (2004) 

HEV study. 

The assumption in the experimental design was that the treatment of the four 

market share groups would influence people's response to the choice experiment 

through the "neighbour effect". The expectation was that people in market share group 

1, who received information about a world where HFCVs captured 0.03% of the gasoline 

vehicle market, would value HFCVs less than those in market share group 2, where 

HFCVs capture 5% of the gasoline vehicle market. In turn, people in market share 

group 2 would value HFCVs less than those in market share group 3, where HFCVs 

attain 10% of the gasoline vehicle market. Finally, people in market share group 4 



would value HFCVs the most, corresponding to the fictional HFCV penetration of 20%. 

However, market share forecasts do not differ sigrufrcantly among the four majority 

models, neither do the differences in the relative intangible costs associated with HFCVs 

follow the declining trend I had anticipated. Despite the lack of empirical evidence for 

the "neighbour effect", given the experimental design in this research, I consider that the 

results from my models provide usable "ball park" values. The next section summarizes 

the approach I took and the assumptions I made in order to incorporate preference 

dynamics for HFCVs in CIMS. The remaining discussion is restricted to the four 

majority discrete choice models. 

5.2 Simulating Preference Dynamics in CIMS 

Using the methods previously developed by EMRG researchers, I translated the 

results of one of my discrete choice models (market share group 3 - MS3) into two static 

behavioural parameters for use in CIMS (1) the private discount rate for new vehicle 

choices and (2) the heterogeneity in this market. I chose to fit CIMS to the MS3 discrete 

choice model because this DCM yielded the most conservative (highest) estimates for 

the discount rate, which, I assumed, would be appropriate for investment decisions 

about unknown technologies. In case this assumption was wrong, I verified that the 

solution for market heterogeneity could equally apply to discrete choice models that 

gave lower discount rates. My point estimate for market heterogeneity is almost twice 

as high as the estimates for new vehicle choice in Home (2003) and Mau (2004). A low 

value for market heterogeneity means that even technologes with high costs can capture 

a portion of the new market share. Therefore, using Home's and Mauls estimates for 

market heterogeneity in CIMS would allow technologies with higher costs to penetrate 



the market more sigruficantly than if we were to use my estimate, all else being equal. 

This could mean that consumers make investment decisions differently for disruptive 

vehicle technologies than for conventional or evolutionary technologies. The 

uncertainty in my estimates for the private discount rate and market heterogeneity is 

large, and I caution readers to consider this factor in drawing any conclusions. 

I estimated the intangible costs of hydrogen fuel cell vehicles relative to gasoline 

vehicles by comparing the coefficient estimates for intangible attributes (refuelling 

convenience, warranty coverage, and the alternative specific constant) to the coefficients 

for capital cost from my four (majority) DCMs. I expected to see a declining trend in 

intangible costs from MS1 to MS4, but I did not. Instead, I observed a consistent v- 

shaped pattern, over a wide range of plausible values for refuelling convenience and 

warranty coverage. In contrast, Mau (unpublished manuscript) did find the expected 

trend in intangible costs for hybrid electric vehicles relative to gasoline vehicles. This 

difference in outcomes led to my conclusion that the experimental treatment did not 

achieve the intended effect in my study for reasons specific to hydrogen fuel cell 

vehicles (disruptive technologies). I propose three explanations to account for the 

differences in preference dynamics in our two studies. First, I suggest that the choice 

task was too demanding for respondents, triggering the use of simplified heuristics in 

decision-making rather than explicitly trading off attribute values. These simplifications 

in the choice experiment could have applied equally across the four market share 

groups, giving importance to the blocking variable. Second, expectations about the 

fuelling infrastructure, corresponding to the hypothetical market scenarios depicted 

during the Information Acceleration part of the survey, could have confounded the 



effect of the blocking variable with respondents' utilities for refuelling convenience. 41 

Third, adopting a disruptive technology could require that the technology reach some 

threshold level of development, convenience, or consumer acceptance. My conclusion is 

that the blocking variable was not strong enough to overcome the effect of these three 

factors (and possibly others) on respondents' choices. 

Despite the variance in expected outcomes, I remain convinced that "the 

neighbour effect" is likely to influence consumers' purchasing decisions about HFCVs. 

For this reason, and because very little information exists about the long-term adoption 

potential of HFCVs in Canada, I decided to use the results from my models to estimate 

parameters for the declining intangible cost function (DIC) anyway. I could not directly 

match the intangible cost estimates from my four DCMs to the DIC curve equation. 

Instead, I used average intangible costs calculated from the four discrete choice models 

for given values for refuelling convenience and warranty coverage, which I assumed to 

correspond to the four adoption levels of HFCVs in the experiment (0.03%, 5%, lo%, 

20%). In cases where I had to set the magnitude of the differences in intangible costs 

among assumed adoption levels, I based it on average differences from the DCMs. By 

changing the values for refuelling convenience and warranty coverage, new average 

intangible costs were estimated, corresponding to a series of DIC parameters in CIMS. 

In this way, I was able to use CIMS to simulate policies specific to hydrogen fuel cell 

vehicles that change the intangible cost for this technology during the simulation period. 

I illustrated CIMS' new potential to incorporate preference dynamics by simulating 

41 I tested whether removing refuelling convenience as an explanatory variable in estimating 
DCMs resulted in the expected trends in intangible costs. Although this DCM specification 
attenuates the dominance of the alternative specific constant in market share forecasts, the v- 
shaped pattern in intangible costs remains. 



policy mixes that increased the fuelling infrastructure for hydrogen fuel cell vehicles and 

introduced extended warranty programmes for this vehicle type. I explored the 

uncertainty in the DIC function by doing a series of sensitivity analyses on this function 

and the declining capital cost function. I found that the choice of progress ratio is likely 

to have more influence on CIMS outputs (stock of hydrogen fuel cell vehicles) than 

variations in intangible costs. However, the influence of the DCC would be lessened in 

cases where initial technology stocks were higher and initial capital costs were lower 

than current values for HFCVs in CIMS database. I also found that using a static 

representation of consumer preferences could result in similar outcomes as using a 

dynamic representation estimated from average intangible costs at the high end of the 

range. In other words, the assumption of static consumer preferences could overvalue 

the intangible costs consumers actually perceive, and underestimate their propensity to 

switch to new technologies in the long run. 

5.3 Recommendations for Future Modelling Efforts 

Previous EMRG researchers identified the need to incorporate preference 

dynamics into CIMS, in order to improve the simulation model's capacity to depict 

decision-making over the long term, and to provide a useful tool for policymakers to 

assess their role in major technology transformations for sustainable policymaking. My 

research responds to this recommendation. As I described above, my research was not 

without challenges. These challenges led me to use my empirical results as a basis for 

the estimation of declining intangible cost functions for HFCVs. Thus, I have low 

confidence in the realism of these declining intangible cost functions and consider my 

results as approximations. Despite the uncertainty in my results, a survey of current 



literature indicates that very few researchers and energy-economy modellers have 

successfully addressed preference dynamics for emerging technologies. And, in the case 

of (hydrogen) fuel cell vehicles, commercial deployment of this technology is not 

expected to take place until 2010 or 2020 (Greene and Plotkin 2001, Weiss et al. 2000, and 

Azar et al. 2000) - even with stringent carbon constraints (Azar et al. 2000). Therefore, 

my research addresses two issues that are inherently uncertain, for which very little 

information useful to policymakers exists. As long as policymakers and other users are 

aware of the range of uncertainty in CIMS' outputs, we can use the declining intangible 

cost functions estimated for hydrogen fuel cell vehicles in competition with gasoline 

vehicles from my research to explore how governments can assist in transforming the 

market for hydrogen fuel cell vehicles. In the following discussion I provide 

recommendations for future research in behaviourally realistic hybrid modelling. I 

divide these recommendations into three topics (1) improving the experimental design 

to capture preference dynamics for disruptive vehicle technologies; (2) continuing to use 

stated preferences; and (3) making improvements in CIMS to ensure consistency and 

transparency in the way it models new car competition. 

5.3.1 Capturing Preference Dynamics 

If EMRG were to continue to study preference dynamics using a similar 

approach to Mads (unpublished manuscript) and mine, I would recommend the 

following changes to the experimental design: (1) ensure that the blocking variable is 

sigruficant to respondents and is not confounded by attributes in the choice experiment; 

(2) consider whether different attitudes towards new technologies in the survey sample 

might influence the results; (3) use a type of discrete choice model that allows for 



correlation among alternatives in the choice experiment; and (4) speclfy the DCM 

formulation to account for non-linearities in parameters. The first point seems obvious 

to me now, but was not apparent prior to analyzing the data. As mentioned previously, 

I suggest that the blocking variable in my research did not achieve the desired effect, 

because other factors had a stronger influence on respondents' value for hydrogen fuel 

cell vehicles. These factors pertained to the four market share groups. Future studies on 

disruptive technologies might consider blocking survey groups using a more tangible 

and familiar market condition than the relative proportion of people driving the 

alternative technology. For example, if I were to re-design my study, I would use a 

measure of refuelling infrastructure as the blocking variable. In the choice experiment, I 

would substitute refuelling convenience for some measure of car size, such as cargo 

space. 

In a given survey sample, it is likely that respondents will have different 

attitudes towards new technologies. This is not an issue if we want to estimate 

aggregate market share forecasts of new technologies from DCMs, because these 

differences in attitudes exist in the population at large. However, differences in 

attitudes do matter if the goal is to estimate behavioural parameters in CIMS. It matters 

because these parameters result from comparisons among DCM coefficients. For 

example, as my research indicates, innovators and laggards value capital cost and 

refuelling convenience differently, hence, the intangible cost for a given technology for 

these two groups differ as well. Future work in EMRG might consider ways to screen 

out respondents whose attitudes about new technologies might deviate from the 

mainstream. 



The third issue that became apparent in analyzing the data was that, in uncertain 

situations, people are likely to use heuristics to make decisions. For example, they might 

focus on a single attribute to choose among options, or they might apply elimination 

rules. The use of these mental simplifications can imply that respondents' choices in the 

experiment are correlated, which calls into question the appropriateness of using the 

multinomial logit (MNL) model. This type of random utility model assumes that the 

unobserved or random portion of utility (q in Equation 2) is of equal variance and 

independent among alternatives. But, if we violate these model assumptions and 

respecdying the model fails to capture the correlation within the observed portion of 

utility (V, in Equation 2), a different model assumption is needed. Other model 

assumptions, such as the general extreme value, the probit, and the mixed logit models 

are more flexible but are also more complex (Train 2003). Despite the added complexity, 

future studies should consider using a more flexible type of discrete choice model, in 

order to achieve a better representation of consumer preferences. 

The discrete choice models I used to estimate a series of declining intangible cost 

functions assume linear and additive relationships of attributes in the utility function. 

However, the analyses I performed on the results of my DCMs revealed that certain 

attributes have non-linear effects on utility. Specifying the DCMs to account for any 

non-linearities is important for the estimation of behavioural parameters in CIMS. In 

this study, I identified that non-linearities existed but did not respecify the functional 

form of the DCMs, this could be an extension in future studies. 



5.3.2 Using Stated Preferences 

Throughout this paper I have emphasized the uncertainty in the results of my 

DCMs, which propagates through to the parameters estimated in CIMS and to outputs 

in the policy simulation exercises. Because of the uncertainty involved in capturing 

stated preferences for emerging technologies and the substantial financial costs of 

collecting stated preference data, EMRG research should consider using other data 

sources. If financial costs of data collection are a concern, expert opinion, literature 

surveys, or meta-analysis might provide a satisfactory indication of intangible costs and 

private discount rates for emerging technologies. Taking this approach might increase 

the breadth of technologies that EMRG researchers can cover. If the objective is to 

reduce the uncertainty in DCM coefficients, building DCMs that combine revealed and 

stated preference data has the potential to capture complex behavioural characteristics 

(Hensher et al. 1999). 

Models estimated from joint stated and revealed preference data sources tend to 

outperform models estimated from revealed preferences (Adamowicz et al. 1997) or 

stated preferences (Brownstone et al. 2000) alone. Specifically, revealed preference data 

provides important information on the scale of the model, existing attributes, and 

alternative specific constants, whereas stated preference data is crucial for describing 

preferences for attributes outside the market arena (Brownstone et al. 2000). However, 

there are several issues to consider in combining preference data, and the methods 

involved can be quite demanding. For a start, using combined preference data 

precludes the use of the MNL model specification, which tends to be too restrictive to 

allow for the combination of different data sources (Hensher et al. 1999, Brownstone et 



al., 2000). In any case, research of this type would likely require guidance from experts 

in random utility modelling. 

5.3.3 Ensuring Consistency and Transparency in CIMS 

The focus of my research was to portray the evolution of the competition 

between hydrogen fuel cell vehicles and gasoline vehicles. I did this by estimating a 

series of declining intangible cost functions in CIMS that exclusively applied to 

hydrogen fuel cell vehicles relative to high efficiency gasoline vehicles. Thus, the policy 

simulations in this research are not actually representative of the current or potential 

vehicle market. A more comprehensive analysis would include a dynamic 

representation of consumer preferences and / or supply-side efficiencies for all vehicle 

technologies in CIMS - perhaps even conventional gasoline cars. 42 Because the results 

of my study are very specific to fuel cell vehicles, extending these results to other 

disruptive technologies, such as battery electric vehicles, might not be appropriate. 

Thus, I suggest that EMRG continue to try to understand consumer preference 

dynamics, but in a way that is inclusive of vehicle types with the potential to change the 

characteristics of Canada's urban vehicle fleet. Although the recent focus on the 

personal urban transportation sector is warranted, EMRG should explore preference 

dynamics in other types of decisions. 

Finally, the sensitivity analyses on the policy simulations in this research showed 

that small changes in the progress ratio of CIMS' declining capital cost function led to 

42 Macauley et al. (2002) emphasize the importance of including technological advances in 
defending technologies in modelling competitions among technologies. The most obvious way 
CIMS can incorporate advances in defending technologies (e.g., light-weighting in conventional 
gasoline vehicles) is by activating the declining capital cost function. As well, consumers' 
preferences for these defending technologies can change in response to technological advances. 



more sigruficant variations in hydrogen fuel cell vehicle stocks than changes in the 

parameters of the declining intangible cost function. This is because the initial capital 

cost of hydrogen fuel cell vehicles in CIMS' database is very high, and initial production 

levels are very low. These two factors represent considerable opportunities for supply- 

side efficiencies. However, the potential for learning-by-doing in the case of this vehicle 

technology would decrease as the technology matures. As other engineering 

assessments have done (see Thomas et al. 1998), I suggest adding a feature in CIMS that 

allows the user to change the progress ratio during a simulation once the emerging 

technology attains a certain production level. 

I base my previous recommendations on the assumption that policymakers are 

interested in reducing the uncertainty in forecasts as much as possible. As I have 

explained, several sources of uncertainty are pervasive in behaviourally-realistic hybrid 

modelling - particularly when the modelling exercise involves technologies under 

research and development. Thus, we might not be able to recognize the benefits of 

efforts aimed at reducing these uncertainties, yet the costs are likely to be high. My final 

recommendations are that EMRG (1) evaluate the expected value of obtaining "perfect 

information1' for selected technology competitions in CIMS, (2) take stock of the 

preference data acquired to date and ensure that results have been incorporated into the 

working version of CIMS, and (3) systematically update the technology data in CIMS' 

database. 



APPENDICES 

Appendix A 

Description of Survey Design for 36 Fractional Factorial 

Number of profiles (i.e., choice sets): 18 
Main effects: not independent 
Degrees of freedom: 5 
Two factor interactions accommodated: 0 

This design plan will not allow the estimation of any two-factor interactions 
independent of main effects and each other. 

Correlation Coefficients 

a (Order 1) 1 
a (Order 2) 0 1 
b (Order 1) 0 0 
b (Order 2) 0 0 
c (Order 1) 0 0 
c (Order 2) 0 0 
d (Order 1) 0 0 
d (Order 2) 0 0 
e (Order 1) 0 0 
e (Order2) 0 0 
f (Order 1) 0 0 
f (Order 2) 0 0 

Eigenvalues 

a (Order 1) 1 
a (Order 2) 1 
b (Order 1) 1 
b (Order 2) 1 
c (Order 1) 1 
c (Order 2) 1 
d (Order 1) 1 
d (Order 2) 1 
e (Order 1) 1 
e (Order 2) 1 
f (Order 1) 1 
f (Order 2) 1 



All the Eigenvalues are equal to 1, therefore the design is orthogonal. 

Design Matrix 

Choice Sets 

Where levels 1,2 and 3 correspond to O,1, and 2 in the design matrix, respectively. 

Gasoline Car 

Alternative Fuel Car Alternative Fuel Car 



Alternative Fuel Car Alternative Fuel Car 

Alternative Fuel Car Alternative Fuel Car 

Alternative Fuel Car Alternative Fuel Car 
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Appendix C 

Profiles of Early Adopters and Early Majority used to construct fictional word-of-mouth 
statements. Adapted from Moore (1999) and Bolton (1999). 

Market Share Scenario 2: Early Adopters 
Value for blocking variable 

Number of hydrogen fuel cell passenger 
vehicles (HFCVs) is 83,000 
HFCVs represent 5% of new market share in 
Canada relative to conventional gasoline cars 

Characteristics of reference people 
"Early adopters" are attracted to products with 
unique features and applications but the 
product must have a new benefit. 
They are visionaries and perceive themselves as 
"agents of change", which means that they do 
not rely on well-established references to adopt 
a technology and tolerate imperfections in the 
new technolow. 

Number of hydrogen fuel cell passenger 
vehicles (HFCVs) is 143,000 
HFCVs represent 10% of new market share in 
Canada relative to conventional gasoline cars 

trio 3: Early Majority 
People in the "Early Majority" adopt a new 
technology based on the expectation that it 
represents a productivity improvement over the 
incumbent technology. 
They like continuity and evolution rather than 
revolution. 
They will not purchase a new technology 
without good references, but are witling to learn 
how to use the new technology if required. 

Market Share Scenario 4: Early Majority (stage 2) 
Number of hydrogen fuel cell passenger 
vehicles (HFCVs) is 249,000 
HFCVs represent 20% of new market share in 
Canada relative to conventional gasoline cars 

Successful and sustained penetration of the new 
technology is contingent on it becoming 
increasingly user friendly. 
People in this sub-segment (and in Late 
Majority) wait until an industry standard is on 
the market and expect a lot of technical support. 



Appendix D 

Scripts for Telephone Recruiting and Pre-Screening 

English Version 

Hello, my name is calling on behalf of Simon Fraser University. We 
are conducting a survey to learn about Canadians' attitudes and preferences toward 
new vehicle technologies. Your answers will contribute to the development of future 
transportation policies across Canada. 

The survey consists of a three-minute phone interview, and a fifteen to thirty minute 
Internet survey. For each completed Internet survey, we will donate one dollar to 
UNICEF. 

I am not selling anything, and all of your responses will be kept confidential. 

Part A - Recruitment 

1. Are you, or someone else in your household who is over19 years of age interested in 
participating in this survey? 

1. Yes 
2. No SKIP TO Q8 

2. Thank you. Before we continue, may I confirm that you are over 19 years of age? 
1. Yes 
2. No THANK AND TERMINATE WITH REJECTION REASON 1 

Part B - Vehicle Ownership 
3. Do you (or your family) own a vehicle? 

1. Yes 
2. No THANK AND TERMINATE WITH REJECTION REASON 2 

4. Does your vehicle run on gasoline? 
1. Yes 
2. No THANK AND TERMINATE WITH REJECTION REASON 3 

Part C - Commuting 
5. Do you commute to work or school at least once per week? 

1. Yes 
2. No THANK AND TERMINATE WITH REJECTION REASON 4 

Part D - Internet Access 
6. Do you have access to the Internet? 
1. Yes 
2. No THANK AND TERMINATE WITH REJECTION REASON 5 



Part E - Prepare for Internet Survey 
That completes the phone portion of this survey. You will complete the second half of 
the survey on the Internet. 

7. May I please have your e-mail address to send you the website and login ID to 
access the Internet survey? 

Thank you very much for your time. Have a great day/night. 

Part F - Rejection Information 
8. Before you go, could you please tell me why you aren't willing to participate in this 

study? 
1. Just not interested, 
2. Don't have time, 
3. Dislike Internet surveys, 
4. Other, 
5. Prefer not to say/ REFUSED 

Reject Reason 1: I'm sorry, but Simon Fraser University guidelines indicate that we can 
only survey people over 19 years of age. Thank you for your time. 

Rejection Reason 2: I'm sorry, but because you don't own a vehicle you don't quahfy for 
the remainder of this survey. Thank you for your time. 

Rejection Reason 3: I'm sorry, but because your vehicle does not run on gasoline you 
don't quahfy for the remainder of this survey. Thank you for your time. 

Rejection Reason 4: I'm sorry, but because you do not commute to school or work more at 
least once a week you don't qualify for the remainder of this survey. Thank you for 
your time. 

Rejection Reason 5: I'm sorry, but because you do not have access to the Internet and the 
follow-up survey consists of an Internet questionnaire you don't qualify for the 
remainder of this survey. Thank you for your time. 

French Version 

Bonjour, mon nom est --------- . Je vous appelle de la part de l'Universit6 Simon 
Fraser. Nous etudions l'attitude et les preferences des canadiens face aux nouvelles 
technologies automobiles. A travers cette enquste, vous contribuerez au developpement 
des futures politiques de transport canadiennes. 

L'enquete se compose d'un questionnaire par telephone d'environ 3 minutes, suivi d'un 
questionnaire sur Internet qui devrait vous prendre entre 15 a 30 minutes. 



Rassurez-vous, je ne veux rien vous vendre et toutes vos reponses seront gardees 
confidentielles. 

Part A - Recrutement 
1. Etes-vous, vous ou quelqu'un d'autre dam votre menage age de plus de 19 ans, 

interesse(e) a participer a cette enqu@te? 
1- Oui 
2- Non (Passer directement a la question 8) 

2. Merci. Avant de continuer, puisse-je m'assurer que vous @tes bien age(e) de plus de 
19 ans? 

1- Oui 
2- Non (Merci. Terminer le questionnaire avec "Rejet Raison 1") 

Part B- Possesseur du vehicule 
3. Possedez-vous (vous, ou votre famille) un vkhicule? 

1- Oui 
2- Non (Merci. Terminer le questionnaire avec "Rejet Raison 2") 

4. Est-ce que c'est un vkhicule au gazoil? 
1- Oui 
2- Non (Merci. Terminer le questionnaire avec "Rejet Raison 3") 

Part C- Trajets 
5. Faites-vous les trajets de votre domicile a votre lieu de travail, ou a votre kcole, au 

moins une fois par semaine? 
1- Oui 
2- Non (Merci. Terminer le questionnaire avec "Rejet Raison 4") 

Part D- Acces a Internet 
6. Avez-vous acces a Intemet et une addresse de courriel? 

1- Oui 
2- Non (Merci. Terminer le questionnaire avec "Rejet Raison 5") 

Part D- En preparation de l'enquete klectronique 
Cette premiere partie du questionnaire touche a sa fin. Vous allez maintenant pouvoir 
terminer la seconde partie de l'enquete directement sur Internet. 

7. Pourrais-je avoir votre adresse electronique afin de vous envoyer l'adresse du site 
Intemet ainsi que le mot de passe qui vous permettra d'acceder a l'enquete 
klectronique? 

Merci beaucoup de votre collaboration. Je vous souhaite une trks bonne joumke/fin de 
soiree. 

Part E- Information rejetke 



8. Avant de raccrocher, pourriez-vous me dire pourquoi vous ne voulez-vous participer 
A cette etude? 

1) Pas intkr@sse(e), 
2) Pas le temps, 
3) N'aime pas les enquetes electroniques, 
4) Autres, 
5) Pref&re ne pas repondre/ REFUS 

Rejet Raison I :  Je suis desole(e), mais les directives d'universite de Simon Fraser 
indiquent que nous pouvons seulement examiner des personnes sur 19 am. Merci du 
temps que vous avez bien voulu nous accorder. 

Rejet Raison 2: Je suis desole(e), mais n'ayant pas de v6hicule, vous ne repondez pas aux 
critPres requis pour participer a cette enquete. Merci du temps que vous avez bien voulu 
nous accorder. 

Rejet Raison 3: Je suis dksole(e), mais votre vehicule n'etant pas un gazoil, vous ne 
repondez pas aux crit&res requis pour participer a cette enquete. Merci du temps que 
vous avez bien voulu nous accorder. 

Rejet Raison 4: Je suis desole(e), mais comme vous faites ces trajets moins d'une fois par 
semaine, vous ne repondez pas aux critkres requis pour participer a cette enquete. Merci 
du temps que vous avez bien voulu nous accorder. 

Rejet Raison 5: Je suis desol&(e), mais comme vous n'avez pas acch A Internet et que la 
seconde partie de ce questionnaire se fait sur Internet, vous ne repondez pas aux critkres 
requis pour participer a cette enquete. Merci du temps que vous avez bien voulu nous 
accorder. 



Appendix E 

Lge of respondent 
20 or below 
21 -2.5 
26-30 
31-35 
3640 
41-50 
51-60 
Over 60 

lousehold income 
$20,000 or less 
$21,000 to $40,000 
$41,000 to $60,000 
$61,000 to $80,000 
$81,000 to $100,000 
$101,000 and above 
No answer 

Legion 
Atlantic 

QC 
ON 
Prairies 
BC 
No answer 

;ender of respondent 
Male 
Female 
No answer 

lducation of respondent 
Grade 9 or less 
High school 
College 
University 
No answer 

Ill values in percentages. Ntotal= the total number of respondents; Ndemo = the number 
~f respondents that provided demographic information 



Appendix F 

Question to gain insight into key influences in people's decisions regarding vehicle 
purchases 

(From Section 1: Characteristics of Your Current Vehicle) 

Hozo important zoere the following sources of information when you or yourfamily decided to 
purchase this vehicle? Please indicate the importance you place on each source of information. 

Dealerships: Talking to experts and going for test drives 
Magazines or other publications: Reading Consumer Reports, Automotive News, etc. 
Word-of-mouth: Tallung to your family, friends, and acquaintances 
Your own past experience 

1 = Not at all important 
2 = Somewhat important 
5 = Very important 
0 = Don't know or does not apply 

Dealerships 

MSI MS2 MS3 MS4 
(N=250) (N=252) (N=258) (N=259) 

Market Share Croup 

Publications 

MS1 MS2 MS3 MS4 
(N=250) (N=252) (N=258) (N=259) 

h r k e t  Share Croup 

' k r k e t  ~ h a ; e  C r k p  ' 

Personal Experience 

MS1 MS2 MS3 MS4 
(N=250) (N=252) (N=258) (N=259) 

Market Share Croup 

Question to elicit respondents' general awareness of hydrogen fuel cell vehicles 
(HFCVs) 

(From Section 2: Knowledge of Hydrogen Fuel Cell Vehicles) 



What is your current state of knowledge regarding hydrogen fie1 cell vehicles? Please check all 
statements that apply to you. 

A = I keep up to date with developments regarding this technology. 
B = I have read articles about this technology in newspapers and/or magazines. 
C = I have heard about h s  technology on the radio and/or television. 
D = I have heard about this technology from friends and/or acquaintances. 
E = I am unfamiliar with this technology43. 

Familiarity with HFCVs 

Market Share Goups 

Question to categorize respondents (albeit crudely) into points along technology 
adoption lifecycle. 

(From Section 6: Views on New Technologies) 

Please indicate your views on purchasing new technologies. "New technolops" include items 
such as mobile phones (cellular phones), DVD players, alternativefuel vehicles, etc. Please check 
the statement that best describes your case. 

I would buy the new technology when most people have made the switch and it 
becomes inconvenient to own the old technology. (If respondent checks this 
statement they are classified as "laggard.) 

I would buy the new technology when it has proved itself and maintaining it is not 
problematic. (If respondent checks this statement they are classified as "early 
majority".) 

43 Here, "unfamiliar" could mean that the respondent has never heard of hydrogen fuel cell 
vehicles or that the respondent has some knowledge of hydrogen fuel cell vehicles but might not 
understand engineering aspects of the technology, for example. The statement was ambiguous to 
prevent respondents from reacting negatively to a statement implying complete ignorance of the 
vehicle technology (e.g., "I have never heard of hydrogen fuel cell vehicles"). 



I want to be the first person in my neighbourhood, in my family, or among my circle 
of friends to buy the new technology. (If respondent checks this statement they are 

- ~ 

classified as "&novator".) 

-- 

Adoption o f  n e w  technologies 

1000/o 

80% 

f 60% 

9 W ?  8 
2 2OOh 

O O ?  
MS1 MS2 M S ~  MS4 

(N=236) (N*36) (N=244) (N=242) 
Market Share Group 

) Laggard 8 Early Majority 8 Innovator / 

Question to assess people's willingness to pay a premium for a product with public 
good aspect. 

(From Section 6: Views on New Technologies) 

Please indicate ifyou agree/disagree with the following statements, or ifyou don't know or the 
statements don't apply to you. 

A) I would be willing to spend a bit more money to buy a technology that is ecologically 
friendly. 

B) I would be willing to spend a bit more money to buy a technology that is ecologically 
friendly provided the new technology benefited me in some way. 

r A) WTP Premium for Ecofriendly P r o d u y l  B) WTP Premium for Ecofriendly Product with 

I Don't know 

Disagree 

Market Sbare Groups (OF= 

Benefit 



Question to assess people's loyalty to vehicle body types 

(From Section 5: Views on Vehicle Preferences) 

Assume that your prima ry vehick has reached the end of its lifi. You and your family are now 
considering buying a new vehicle that will sene the same purpose @r example, ifyou use your 
primary vehicle to go to work, this new vehicle will also be used to take you to work). You and 
yourfamily have decided to buy a hydrogen fuel cell vehicle to replace your primary vehicle. 
Unfortunately, you havefound out that hydrogen fuel cell vehicles are not available in the body 
type of the vehicle you are replacing. 

Please indicate yyou would consider switching to the following (check all that apply): 

Compact Car 
Mid-Size Car 
Full-Size Car 
Truck 
SUV 
Mini-Van 

(Note: the respondent's current vehicle body type would not appear on the list of 
options.) 

Willingness to switch body types in future 
purchase (current vehicle = compact) 

N=3 19 

100.00% , i 

Would consider Would not consider 

Willingness to switch body types in future 
purchase (current vehicle = mid-size) 

N=27 1 

inn nnoh 

Would consider Would not consider 

Distribution of other body types considered 
(current whicle  =compact) 

N=285 
100.00% , 1 

mi&size full-size pick-up SUV van 
truck 

Distribution of other body types considered 
(current whicle  = mid-size) 

N=255 

compact full-size pick-up SUV van 
truck 



Willingness to switch body types in future 
purchase (current vehicle = full-size) 

N=83 

Would consider Would not consider 

Willingness to switch body types in future 
purchase (current vehicle = SUV) 

N=82 

Would consider Would not consider 

Willingness to switch body types in future 
purchase (current vehicle =van) 

N=154 

Would consider Would not consider 

Distribution of other body types considered 
(current vehicle = full-size) 

compact rni&size pick-up S W  van 
truck 

Distribution of other  bodv tvpes considered - - -  
(current vehicle = SUV) 

N=77 

compact rni&size full-size pick-up van 
truck 

Distribution of other body types considered 
(current vehicle = van) 

N=142 
80.00% 

compact mi&size full-size pick-up SLTV 
truck 



Appendix G 

Results for the Basic Model with Respondent Chaiacteristics 

The initial model specification included the following personal characteristics: 
Income group (Y), where income groups were entered as mid-points: 10 000,17 500, 
22 500,27 500,32 500,37 500,45 000,55 000,65 000,72 000,87 500, and 100 000. 
Home region, ATL (Atlantic provinces), PRA (Prairie provinces), QC (Quebec), ON 
(Ontario) and BC (British Columbia). 
Respondents' willingness to pay a premium for ecologically-friendly technologies, 
yes (YEC) or no (NEC) 
Respondents' willingness to pay a premium for ecologically-friendly technologies 
that provide personal benefit, yes (YOW) or no (NOW). 
Whether the respondent was categorized as an innovator (INN), laggard (LAG) or 
early majority (EMA). 

Because of collinearities among explanatory variables I was not able to estimate MNL 
models with all the personal attributes at the same time. So, I estimated two kinds of 
models for each market share group, one containing the home region and the other with 
income (8 models in total). 



Attributes j3 parameter t-ratio j3 parameter t-ratio 

CC -0.000162 -19.7* -0.00016 -19.6236 
FC -0.022706 -2.54273* -0.02548 -2.88334 
SUB 0.000314 11.6477* 0.000315 11.7617 
RC 10.1767 16.3903* 10.0951 16.336 
W 0.154537 8.15445* 0.153564 8.12206 
HASC 8.81567 15.2795* 8.16585 14.7204 
HxEMA -0.472231 -1.66248 
HxLAG -1.09488 -3.64952* -0.70777 -6.19052 
HxINN -0.873606 -2.77692* -0.45198 -2.20309 
HxYOW -0.534468 -3.26896* -0.51346 -5.17009 
HxNOW -0.358527 -1.74625 
HxYEC 1.41234 9.10312* 1.33395 14.3827 
HxNEC -0.001747 -0.00978 
HxON -0.827718 -4.15645* -0.73319 -8.34932 
HxATL -1.37152 -5.3742* -1.27706 -7.09769 
HxPRA -0.048933 -0.23427 
HxBC -0.204242 -0.97076 
HxQC -0.219749 -1.08809 
Log likelihood - full model (base) -2082.79 (reduced) 

-2095.56 
Log likelihood - constants only -2711.47 -2711.47 
Log likelihood - no coefficients -3119.16 -3119.16 
*Parameter is sigruficant with 95% confidence. CC = vehicle purchase 
price; FC = fuel cost; SUB = government subsidy; RC = refueling 
convenience; W = warranty coverage, HASC = hydrogen fuel cell 
vehicle alternative specific constant; HxZ = interaction term between 
HASC and personal attribute. 

Basic Model with Respondent Characteristics (Region) 
Market Share 1 (Nobs = 4500) 

Base Model Reduced Model 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 



Basic Model with Respondent Characteristics (Region) 
Market Share 2 (Nobs = 4536) 

Base Model Reduced Model 
Attributes j3 parameter t-ratio j3 parameter t-ratio 
CC -0.00019 -21.5645* -0.00019 -21.6268 
FC -0.01464 -2.01546* -0.01381 -1.92065 
SUB 0.000291 10.0324* 0.000292 10.0912 
RC 8.91073 15.03F 8.88992 15.0233 
W 0.117277 6.58243* 0.116886 6.56734 
HASC 7.58703 13.8404* 7.56992 13.8291 
HxEMA -0.763 -2.48054* -0.6415 -3.85122 
HxLAG -1.65243 -5.08623* -1.53832 -7.80484 
HxlNN -0.7l256 -2.07601* -0.66303 -2.79943 
HxYOW -0.01517 -0.07956 
HxNOW -0.11124 -0.48411 
HxYEC 0.945754 6.48372* 1 .02884 11.6464 
HxNEC -0.12553 -0.7358 
HxON 0.275465 1.32061 
HX ATL -0.05994 -0.25067 
HxPRA 0.313266 1.40769 
HxBC 0.918559 4.07784* 0.68032 5.94676 
HxQC 0.830525 3.89618* 0.61377 6.78196 
Log likelihood - full model (base) - (reduced) 

2256.03 -2260.25 
Log likelihood - constants only -2889.99 -2889.s 
Log likelihood - no coefficients -3144.11 -3144.11 
*Parameter is significant with 95% confidence. CC = vehicle purchase 
price; FC = fuel cost; SUB = government subsidy; RC = refueling 
convenience; W = warranty coverage, HASC = hydrogen fuel cell 
vehicle alternative specific constant; HxZ = interaction term between 
HASC and versonal attribute. 



Attributes J3 parameter t-ratio $7 parameter t-ratio 

CC -1.85E-04 -21.66* -1.86E-04 -21. 
FC 
SUB 
RC 
W 
HASC 
HxEMA 
&LAG 
HxINN 
HxYOW 
HxNOW 
HxYEC 
HxNEC 
HxON 
HxATL 
HxPRA 
HxBC 
HxQC 8.67E-01 4.11* 6.61E-01 7. 
Log likelihood - full model (base) -2222.07 (reduce 

-2233. 
Log likelihood - constants only -2831.58 -2831. 
Log likelihood - no coefficients -3218.97 -321 8. 
*Parameter is sigdicant with 95% confidence. CC = vehicle purchas 
price; FC = fuel cost; SUB = government subsidy; RC = refueling 
convenience; W = warranty coverage, HASC = hydrogen fuel cell 
vehicle alternative specific constant; HxZ = interaction term between 
HASC and personal attribute. 



ode1 with Respondent Characte 

FC 
SUB 
RC 
W 
HASC 
HxEMA 
HxLAG 
HxINN 
HxYOW 
HxNOW 
HxYEC 
HxNEC 
HxON 
Hx ATL 
HxPRA 
HxBC 
HxQC - 3.59E-01 
Log likelihood - full model (base) -2190.98 (reduced) 

-2199.33 
Log likelihood - constants only -2782.69 -2782.69 
Log likelihood - no coefficients -3231.45 -3231.45 
*Parameter is significant with 95% confidence. CC = vehicle purchase 
price; FC = fuel cost; SUB = government subsidy; RC = refueling 
convenience; W = warranty coverage, HASC = hydrogen fuel cell 
vehicle alternative specific constant; HxZ = interaction term between 
HASC and versonal attribute. 



CC -1.74E-04 -18.37* -1.74E-04 -18.40 
FC -3.56E-02 -3.57* -3.60E-02 -3.61 
SUB 3.21E-04 10.62* 3.21E-04 10.63 
RC 1.02E+01 15.43* 1.02E+01 15.43 
W 1.59E-01 7.87* 1.59E-01 7.87 , HASC 8.37E+OO 13.08* 8.17E+OO 13.70 

' HxEMA -9.93E-02 -0.43 
HxLAG -6.86E-01 -2.75* -6.00E-01 -5.14 
HxYOW -5.39E-01 -3.18* -5.2OE-01 -4.W 
HxNOW -4.99E-02 -0.23 
HxYEC 1.34E+00 8.65* 1.43E+00 14.37 
HxNEC -1.31E-01 -0.73 
HxY -6.65E-06 -4.16* -6.67E-06 -4.18 
Log likelihood - full model (base) -1844.08 (reduced) 

Log likelihood - constants only 
Log likelihood - no coefficients 
*Parameter is sigruficant with 95% confidence. CC = vehicle purchase 
price; FC = fuel cost; SUB = government subsidy; RC = refueling 
convenience; W = warranty coverage, HASC = hydrogen fuel cell 
vehicle alternative specific constant; HxZ = interaction term between 
IHASC and personal attribute. 



HxY -7.22E-06 -4.70* -7.04E-06 -4.63 
Log likelihood - full model (base) -2009.34 (reduced) 

-2012.02 
Log likelihood - constants only -2613.76 -2613.76 
Lon likelihood - no coefficients -2832.19 -2832.19 





Basic Model with Respondent Characteristics (Income) 
Market Share 4 (Nobs = 4338) 

Base Model Reduced Model 
Attributes j3 parameter t-ratio j3 parameter t-ratio 

CC -1.38E-04 -16.8F -1.38E-04 -16.8; 
FC 4.62E-04 0.05 
SUB 3.08E-04 11.02* 3.08E-04 11.0: 
RC 9.93E+00 15.5F 9.93E+00 15.5: 
W 1.73E-01 8.8F 1.73E-01 8.81 
H A X  7.60E+00 12.39* 7.41E+00 12.7: 

I HxEMA -1.76E-01 -1.00 
HxLAG -1.13E+00 -4.94* -9.64E-01 -6.1: 
HxYOW 5.09E-01 3.34* 5.44E-01 4.91 
HxNOW -8.51E-02 -0.41 
~ Y E c  7.98E-01 5.92* 7.92E-01 5.9; 
HxNEC -7.78E-01 -4.74* -8.OOE-01 -5.01 
HxY -3.12E-06 -2.14* -3.28E-06 -2.2 
Log likelihood - full model (base) -1962.56 (reduced 

-1963.05 
Log likelihood - constants only -2510.14 -2510.1' 
Log likelihood - no coefficients -2882.10 -2882.1( 
*Parameter is sigruficant with 95% confidence. CC = vehicle purchase 
price; FC = fuel cost; SUB = government subsidy; RC = refueling 
convenience; W = warranty coverage, HASC = hydrogen fuel cell 
vehicle alternative specific constant; HxZ = interaction term between 
HASC and personal attribute, representing the effect of Z personal 
attribute on respondents' utility for hydrogen fuel cell vehicles. 



Results for the Chow Test Model 

Chow Test Model (Nobs=18J42) 

Base Model Reduced Model 
1 Attributes l3 parameter t-ratio l3 parameter t-ratio 

FC 
SUB 
RC 
W 
HASC 
c c m 2  
FCMS2 
SUBMS2 
RCMS2 
WMS2 
CCMS3 
FCMS3 
SUBMS3 
RCMS3 
WMS3 
CCMS4 
FCMS4 
SUBMS4 
RCMS4 
WMS4 6.50E-03 0.26 
Log likelihood - full model (base) -9449.81 (reduced) - 

-9459.08 
Log likelihood - constants only -11231.79 -11231.79 
Log likelihood - no coefficients -12713.70 -12713.70 
*Parameter is significant with 95% confidence. CC = vehicle purchase 
price; FC = fuel cost; SUB = government subsidy; RC = refueling 
convenience; W = warranty coverage, HASC = hydrogen fuel cell 
vehicle alternative specific constant; CCMS2 for example = interaction 
term between contribution to utility from capital cost and belonging to 
market share group 2 (in other words, whether belonging to market 
share group 2 has an effect on the value of vehicle purchase price in 
decision-making).. 

Chow Test Model with Respondent Characteristics 

The initial model specification included the following personal characteristics: 
Income group (Y), where income groups were entered as midpoints: 10 000,17 500, 
22 500,27 500,32 500,37 500,45 000,55 000,65 000,72 000,87 500, and 100 000. 

a Age (AGE), where age groups were entered as midpoints: 24 and under = 20; 25-34 = 
30; 35-44 = 40; 45-54 = 50; 55-64 = 60; over 65 = 70. 
Gender (M or F) 

a Home region, ATL (Atlantic provinces), PRA (Prairie provinces), QC (Quebec), ON 
(Ontario) and BC (British Columbia). 
Respondents1 willingness to pay a premium for ecologically-friendly technologies, 
yes (YEC) or no (NEC) 



Respondents' willingness to pay a premium for ecologically-friendly technologies 
that provide personal benefit, yes (YOW) or no (NOW). 
Whether the respondent was categorized as an innovator (INN), laggard (LAG) or 
early majority (EMA). 

As was the case in the "Basic Model with Respondent Characteristics", collinearities 
among explanatory variables prevented me from estimating an MNL model with all the 
personal attributes at the same time. So, I estimated two models, one containing the 
home region and the other with income and age. 



Attributes j3 parameter t-ratio j3 parameter t-ratio 
PC 

FC 
SUB 
RC 
W 
CCMS2 
FCMS2 
SUBMS2 
RCMS2 
WMS2 
CCMS3 
FCMS3 
SUBMS3 
RCMS3 
WMS3 
CCMS4 
FCMS4 
SUBMS4 
RCMS4 
WMS4 
HASC 
HxEMA 
HxLAG 
HxINN 
HxYOW 
HxNOW 
HxYEC 
HxNEC 
HxON 
HxATL 
HxBC 
HxPRA 
HxQC 
HxF 0.25 
Log IikeIihood - full model -8962.91 -8976.3: 
Log likelihood - constants only -11231.78 -11231.7t 
Log likelihood - no coefficients -12713.70 -12713.7( 
*Parameter is sigruficant with 95% confidence. *Parameter becomes 
insignificant with re-estimation. CC = vehicle purchase price; FC = 

fuel cost; SUB = government subsidy; RC = refueling conve~ence; W = 

warranty coverage, HASC = hydrogen fuel cell vehicle alternative 
specific constant; CCMS2 for example = interaction term between 
contribution to utility from capital cost and belonging to market share 
group 2 (in other words, whether belonging to market share group 2 
has an effect on the value of vehicle purchase price in decision- 
making). HxZ = interaction term between HASC and personal 
attribute, representing the effect of Z personal attribute on 
respondents' utility for hydrogen fuel cell vehicles. 



FC 
SUB 
RC 
W 
CCMS2 
FCMS2 
SUBMS2 
RCMS2 
W MS2 
CCMS3 
FCMS3 
SUBMS3 
RCMS3 
WMS3 
CCMS4 
FCMS4 
SUBMS4 
RCMSlZ 
WMS4 
HASC 
HxEMA 
HxLAG 
HXYOW 
HxNOW 
HxYEC 
HxNEC 
Hx AGE 
HxY 
HxF 
HxM 

(Nobs = 18,342; 1890 skipped) 
(Income and age) 

Base Model Reduced Model 
Attributes j3 parameter t-ratio j3 parameter t-ratio 
PP 

Chow Test Model with Respondent Characteristics 

, 

I 

-7.44E-01 -1.42 
Log likelihood - full model -7972.76 -7983.2; 

1  LO^ likelihood - constants only -10117.12 -10117.1: 
Log likelihood - no coefficients -11403.65 -11403.e 
*Parameter is sigruficant with 95% confidence. **Parameter becomes 
insigruficant with reestimation. CC = vehicle purchase price; FC = 
fuel cost; SUB = government subsidy; RC = refueling convenience; W = 

warranty coverage, HASC = hydrogen fuel cell vehicle alternative 
specific constant; CCMS2 for example = interaction term between 
contribution to utility from capital cost and belonging to market share 
group 2 (in other words, whether belonging to market share group 2 
has an effect on the value of vehicle purchase price in decision- 
making). HxZ = interaction term between HASC and personal 
attribute, representing the effect of Z personal attribute on 
Irespondents' utility f i r  hydrogen fuel cell vehicles. 
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