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§0 Introduction and Terminology

Most of this thesis is concerned with countable
complete theories having only infinite models., A theory T
is categorical in power A if all models of T which have
povwer A are isomorphic. %Hos focused attention<n1§l-categor-
ical theories with his conjecture [5] that a countable theory
was ul-categorical if and only if it was categorical in every
uncountaeble power. Vaught suggested another property of
R ,-categorical theories. 1In [21], he conjectured that an

1

Rl

exactly RO isomorphism types of countable models. Morley [T7]

Lcategorical theory was either Ro-categorical or had

proved the Tos conjecture. In the course of the proof he

attached an ordinal &, to each countable complete theory T

=

end conjectured that if T wvere &l—categorical then o, would
be finite. In his thesis [6] Marsh introduced the notions of
"algebraic closure" and "strongly minimal set."

This thesis investigates the properties of'Ri—categori-
cal theories. The principal tools of this investigation are
the notion of sBtrongly minimal set, Vaught's two cardinal
theorem, and two of Morley's theorems. The theorems of
Morley state that a theory categorical in any uncountable
power is totally transcendental [7; 3.8] and that if X is a
subset of the universe of a model of a totally transcendental

theory there is a model of T prime over X.

Section 1 of this thesis exhibits the basic properties



of algebraic closure and strongly minimal sets. The simplest
sorts of Rl-éategorical theories, strongly minimal theories,

are studied in Section 2. In Section 3 the notion of strongly
minimal is combined with the idea of Vaught's two cardinal
theorem [9] to reprove the ¥os conjecture. A slightly more
complicated sort of Rl-categorical theories, those which are
almost strongly minimal, is considered in Section L. Vaught's
conjecture is proved in Section S. Morley's conjecture is proved
in section 6. Section 7 deals with a problem in definability.
Section 8 summarizes some related results.

Sections 1, 3 and 5 are from [1]. To the best of the
author's knowledge those results in Sections 2, 4, 6 and T not
explicitly credited elsewhere are new.

The notation used here combineg, that of Morley [7] and .
Shoenfield [20]. We deal with countable first order languages.
For convenience, we will assume that each such language L con-
tains only relation symbols and constaﬁts. L has vafigbles

Vg» Vys +-+. Following [20; p. 17] we let A"o' coe W

e the formula obtained by replacing each

[=N

(a ., .., a_)
b O: > nl

eno

- ~

occurrence of the variable w; by the term ai for 0 =1 = n,
Whenever such an expression occurs we assume no variable has
become bound by the substitution. We omit the subscripted

variables Vs eee W if they are clear from context. For each

<
natural number k we admit quantifiers BIkv and H“kv which mean

intuitively "there exist exactly k elements v" and "there

exist at most k elements v" respectively. 1If ¢ is a constant



in L and ¢ is an L-structure then the value of ¢ in & is
denoted as in [20] by (ch/%.

We may extend the language L in several ways. If&@ is
an L-structure there is a natural extension L(& ) of L
obtained by adj)Joining to L a constant a for each a € Id |
(the universe of &). For each sentence A(al, ceoy an) e L(A)
we say @ satisfies A(al, cee an) and write d;:A(al, cens an)
if in Shoenfield's notation a(A(al, ce e an))= T [20; p. 19].
If 4 is an L-structure and X is a subset of | @& | then L(X) is

the language obtained by adjJoining to L a name x for each

o

x € X (&,X) is the natural expansion of & to an L(X)-struc-

ture. A structure B is an inessential expansion [20; p. 1k1]

of an L-structure ¢ if B = (@ ,X) for some X ¢ |@|. We also
extend a language L by adding additional relation symbols.

If L' extends L and &'¥is an L'-structure the rsduct, denoted
a'|L, of 7' to L is the L-structure obtained from @' by
omitting those relations .and constants which occur in L' but
not L. Shoenfield calls this concept "restriction" [20;

p. 43].

Sn(L) denotes the set of formulas of L with free
variables among Voo ...,'vn_l. If A is a formulas such that
gy vees u in the natural order are the free variables in A,
then A(& ) is the set of n-tuples b,y .¢¢y, b such that
Aul’ ooy u (bl, oo bn). If p 13 a unary predicate
synbol we abbreviate pvo(a’) by p{#).If 7 is an L-structure
Y ¢ lal and X ¢ |a|k'then X is said to be definable in



(g ,Y) if there is a formula A in Sk(L(Y)) such that
X =A(@). X is said to be definable in @ if X is
definable in (@, |4]).

A consistent set of L-sentences is a theory in L. IfT
and T' are theories in L then T' extends T if T cT'. If T

is a theory in a language L then T' is an inessential

extension of T if there is a model & of T and a subset X of
| @ | such that T' = Th(&,X) (i.e. the set of all sentences

in L(X) true of (& ,X)). T' is a principal extension of T

if T' is aninessential extension of T by a finite number of
constents and a set of nonlogical axioms for T' can be
obtained by adjoining a finite set of sentences to & set of
nonlogicel axioms for T.

@ < B and @ = B abbreviate "¢ 1is an elementary sub-

structure of B", "@ 1is elementerily equivalent tc B"

respectively [20; pp. T2-T4]. Suppose ¢ and B are L-struc-
tures, X ¢ || end f is a 1 - 1 map of X into |B|. Let Br
be the L(X)-structure obtained by setting (x)B|-= f(x) for

each x € X. Then f is an elementary monomorphism (elementary

embedding) of X into |B| if (4 ,X) = B'. The cardinality of

e set X is denoted by k(X); we abbreviate x(|g |) by x(@ ).
Let T be a subset of Sk(L)’ Then I is a k-type in T if
there is some model ¢ of T and elements a)s o0 8 € @ |
such that a;:A(al, cen ak) if and only if A e '. Ifd is a
model of T and X ¢ |4 | then & k-type I is realized in X if

there exist x x, € X such thatg tA(xl, ce xk) for

l’ e k



each A € I'. A k-type T is a principal k-type in T
if there is a formula A € Sk(IJ @)) such that for

each formula B in I' & EVY s e Vv (A > B). Since T is
complete there Jsc<3xe O-types, truth, asadfsisshosd.
Following Morley [7] we assume that each T = I*for some
Z and thus that each n-ary formula ¢ is equivalent in T to
an n-ary relation A. N(T) is set of all substructures of
models of T. The following summarizes with slight changes in
no;;gfbn the second paragraph of §2 in [7]. If & is an
L-structure B( &) is the set of all open sentences in L(&@ )
which are true in (4 ,|A|). If @ e N(T), T(4 ) =5 (@ JUT is
a complete theory in L(d ). Let Sk( d) denote the Boolean
algebra whose elements are the equivélence classes into which
Sk(L( d)) is partitioned by the relation of equivalence in
T( &), and whose operations of intersection, union, and
complementation are those induced by conjunction, disjunction
and negation respectively. The Stone space of Sl( a), the
set of dual prime ideals of 81(67), is a topological space
denoted S(& ). A dual prime ideal of Sk(G’) is a k-type of
T(& ). This is a special case of the definition of x-type in
the preceding paragraph. Note that if p € S(d ) and &' is
an inessential expansion of & p is naturelly a member of

s(ath.



§1. Algebraic Closure and Strongly Minimal Sets

This section contains the definitions used, and the
basic theorems proved, by Marsh [6]. For completeness, the
results are reproved in a manner similar to that used by
Marsh.

Let @ be an L-structure and X a subset of |&@|. The

algebraic closure of X, denoted by cl(X), is the union of all

finite subsets of |7 | definable in (& ,X). This notion was
explored by Park as "obligation" in [11]. X spans Y if

Y ¢ cl1(X). X is independent if for each x € X, x € c1(X-{x}).

X is a basis for Y if X is an independent subset of Y which
spans Y.» If every basis for Y has the same cardinality u, we
define the dimension of Y to be u and write dim(Y) = u.

Let @ be an L-structure. A subset X of |?| is minimal
in @ if X 1is infinitg@efinable in ¢, and for any subset Y
of | @] which is definable in ¢ either Y N X or X - Y is
finite.

If D ¢ Sl(L( @)) and X = D( @) then X is strongly
minimal in ji if for any elementary extension B of & D(B) is
minimal in B. Let do and di be models of a complete theory
T. ©Since up to isomorphism any two models of T have a common
elementary extension, D(&’O) is strongly minimal inc?oif and
only if D(d]) is strongly minimal in 413 Thus, without
ambiguity we define a formula D € Sl(L) to be strongly

minimal in T if there is a model & of T such that D(& ) is



strongly minimal in &.
We now exhibit some of Marsh's results. It is trivial

that X ¢ cl(X) and that cl(X) ¢ cl(Y) if X ¢ Y.
Lemma 1. cl(cl(X)) = c1(X)
Proof. Let @ be an L-structure and X ¢ |@|.
Suppose X € cl(cl(X)). Then there exist elements 81 +es
a in cl(X) and a formula A € Sn+l(L) such that for some

k
k ?’ EFA(x, cees an) ~ 37V, A(vo, 815 o an). But

&1,

then for each i, 1 < i < n, there exists a formula B, in

A

Sl(L(X)) and an integer k, such that 4 FBi(a i)

k

T

Vo Bi(vo). Let A, be the formula 3v,, ..., 3v

1

n k
(A =1 Bi (vi). A, A, A, I v A). Then Al

€ Sl(L(x))’
Al(d) is finite, and @ Al(x) so x € cl(X).
The next lemma asserts that within strongly minimal

sets the "exchange principle" holds,

Lemma 2. Let D be in Sl(L) and & bé an L-structure.
Suppose D(& ) = X is strongly minimal in ¢ . If Y c X, a
and b are elements of X, a € c¢1(Y), b € cl1(Y), and

b e cl((Y U{al}) - c1(Y)) then a € cl(Y U {b}).

Proof. We suppose that Y is empty since if that case
is proved the general case may be deduced by adjoining
names for the members of Y to L. Since b € cl1({a}) there

exists an A € SZ(L) such that d’f A(a ,b) « 3!kvl A(a,vl)
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for some positive integer k. If (A(vo,b) ~D)(@) is finite
the lemma is profed. If not, since D( &) is .strongly minimal,
for some positive integer m (-~ A(vo,b) ~ D)( @) has

. . . m
cardinality m. Write C(vl) for D(vl) ~ 31 v0(~A(v0,vl) ~
D(vo)). Then@ |~ C(b) and b ¢ cl(p), so C(@) is infinite.
. k )
Write B(vo) for D(vo) ~ 31 le(vo,vl). Since & .B(a) and
a € cl(@), B(4) is infinite. Let by, ..., b Dbe chosen from

o AN o~ IR A . (N A I - - ~
w ). olnce \U\vol A~ A\Vo,oi)) \« ) nNas caralnalliy m IOor

o
each i < k, and B(® ) is infinite and contained in D(& ), for
some\a;' € B(d) @ A(a.',bi) for i = 0, ..., k. But this
contradicts the definition of B so the lemma is proved.
The proof we have just given differs from Marsh's in
that we did not invoke an elementary extension of ¢ . The
following is proved from the exchange principle just as the
corresponding result is proved in the theory of vector spaces.
Lemma 3. Let X be strongly minimal in & and let Y c X.
If Z is an independent subset of Y then Z can be extended to
a basis for Y. Moreover, any two bases for Y have the same
cardinality.
The relationship betﬁeen strongly minimal sets and
elementary monomorphisms is expressed in the following lemma,
Lemma 4., Let D be strongly minimal in a complete theory
T and let @ and B be models of T. Let f be a 1 - 1 map from
X ¢ D(@) into D(B) such that X, f(X) are independent in &, B

respectively. Then f is en elementary monomorphism.

Proof. By using the device of adjoining names it



suffices to treat the case in which X is a singleton, say

{x}. Let A be any formula in Sl(L). Since D is strongly
minimal, just one of (D .~ A) (@), (D ~ ~ A) (@) is infinite,.
Without loss of generality we may suppose (D . A) (&) is
infinite. Then (D . A) (B) is infinite since T is complete.
Since {x} is independent in @and x € D(& ) we have x € A(Z).

Similarly f(X) € A(B); since A is arbitrary f is an elementary

o~ T 4
DOnNCHNoIpiiish.

One may easily obtain the following slight variant on
Proposition 4 of [6].

e

Lemma 5. Let @ and B be L-structures, X ¢ |4 | and f
mapping X into B an elementary monomorphism. Then f can be

extended to an elementary monomorphism of c¢l(X) into B. The

image of this extension is cl(f£(X)).
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§2 Strongly Minimal Theories

A theory T is said to be a strongly minimal theory if

the formula Vo = Vo is strongly minimal in T, that is if the
universe of each model of T is strongly minimal. The
following result is due to Marsh [6].

Theorem 1. If T is a countable strongly minimal theory

then T is categorical in every uncountable power.

Proof. Let ¢ and B be models of T each with power

XY

A D> RST Let X be a basis for | ¢| and Y a basis for |B].
Then k(X) = k(Y) = A since for each X a subset of a model of
T x(cl(X)) = xk(X) + RO. Then there exists a 1 - 1 map f
from X onto Y. Then by Lemma 4 4 is an elementary mono-
morphism. By Lemma 5 f extends to an isomorphism of & and
B.

If we drop for the moment the assumption that L is
countable we could still prove in the same way Lemmas 1
through 5. Then, similarly to the proof of Theorem 1, we
obtain

Theorem 1', If T is a strongly minimal first order
theory in a language L for each A > x(L), T is categorical
in power A.

We return to countable languages. & is a prime
model of T if for each model B.of T there is an elementary

embedding of ¢ into B.
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Theorem 2. If T is & strongly minimal theory and & is
& prime model of T then T is No-categorical if and only if

for every finite X ¢ | @ | cl(X) is finite.

Proof. Suppose for some finite X ¢ | @ | c1(X) is

infinite. Let T, = Th( & ,X). Then T, is R -categorical if

0
and only if T is Ro—categorical. Let T be the set of
formulas of the form ~ (A . Blkvo A) as k ranges through the
positive integers and A through Sl(L(X)). ' is consistent

because cl1(¢) in (& ,X) is infinite. If B ¢ Sl(L(X))
genex_-\ated ' then both B(& ) and ~B( &) would be infinite

-
which is impossible since |d| is strongly minimal. T is
therefore not principal; thus by Ryll-Nardjewski's theorem
(20, p. 91] T, and hence T is not Ro—categorical.

Assuming that for each finite X ¢ | & |, c1(X) is fimite,
ve prnave by contradiction that for each n T has only finitely
many n-types. The theorem then follows by Ryll-Nardjewski's
theorem. There are only two O-types since T is complete.

Let n + 1 be the least natural number such that there are
infinitely many n + 1 types. Then some n-type I has
infinitely many extensions. Since T has only finitely many
n-types I must be principel and hence be realized in & by
<&y, ..., a_>. Since cl({al, cees an}) is finite there is
a formule B ¢ S,(L({a;, ... a })) such that B(Z) =

cl({a.l, a.n}). Then if T' = Th( &, {a.l, cen, an}), ~B
generates a principal 1l-type in T'. For, supposing

C € Sl(L({al, ceey an})) and both BVOGC ~ ~ B) and
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BVO(C ~ ~ B) are consistent with T', then either (C . ~ B)
(&) or (~ C A ~ B)(Z) is a finite nonempty set since | 4|
is strongly minimal. But then B(&d ) = cl(al, ceny an).
Hence there are only k(B(X)) +1 l-types in T' so I has
only finitely many extensions. So for each n T has only
finitely many n-types and T is h{o-categorical.

Although to the author's knowledge this result has
never been published, it has probably been known for some
yYears. A relaeted result, also unpublished and due to Vaught,
as far as we know, states that there are no finitely axiom-
atfédbie, Ro-categorical strongly minimel theories.

In [7] Morley makes the following definition. For each
ordinal a and each ¢ € N(T), subspaces s®*(@) anda Tr%*( @) of

S( &) are defined inductively by

(1) s%(@) =8(@) -y, 1eP(@)

B
(2) p e tr*( @) if (i) P € s*( @) and (ii) for

every map (r*: S(B) » s(d)) where B € N(T) and f is a

monomorphism from & into B, f*-l(p) n s*(B) is a set of

isolated points in S*(B). (See [T; p. 519] for the

definition of f%*,) 1If %73 is an elementary embedding of &

into B then i¥* ag maps S(B) onto S( &). ©Note that
%
i 1

dB
An element p of S(& ) is algebraic if p € Tro(a ); p is

q € g{p) is equivalent to g N Sl(L(d )) = p.
transcendentael in renk a if p € Tr™(d ).
Morley defines T to be totally transcendental if there

is an ordinal B such that if o =2 8 and @ € N(T) s%@ ) = ¢.
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The least such B is called aT. The notion of total trans-
cendence will be discussed in detail in the next section.
However, we wish to note here the value of O for strongly

minimal theories.

Theorem 3. If T is & strongly minimal theory, on = 2.

Proof. For each model & of T there is a unique point

o~
LA NS

the only member of S{ &) which is + realized
in d. The uniqueness is guaranteed by the strong
minimality of | 4.

e

;n example to indicate that the converse of this
theorem is false and a partial converse will both be
exhibited in §bk.

The prototype strongly minimael theory is the theory
of algebraically closed fields of characteristic 0. Other
examples include the theory of infinite, divisible, torsion-
free, abelian groups and the theory of the integers with the
successor relation, Each of these theories has RO
isomorphism types of countable models.

An example of an Ro—categorical strongly minimal
theory is obtained by adjoining nonlogical axioms to the
pure theory of equality asserting that the universe is
infinite., A less trivial example was noticed by %&os [5].
Let 'I'p be theory of infinite abelian groups such that each

element has order p. Then for each prime p Tp is an

RO categorical strangly minimal theory.



§3 th Categorical Theories

A theory T is totally transcendental if for each model &

of T and each countable substructure B of & S(B) is countable
Morley proved in [7] that this definition is equivalent to his
original definition mentioned in §2,

If @ is a model of T, B € N(T), and B c | 4| then & is

prime over B if every elementary embedding of B into a model

C of T can be extended to an embedding of & into C. & 1is a
prime model of T if & is prime over ¢.

ﬁe\vish to show that if T is totally transcendental then
for each X € N(T) there is a model @& of T which is prime
over X. Morley's original proof in [7] depended on his notion
of transcendence rank. To avoid this notion we must prove
from our definition of totally transcendental that for cach
nodel & of T and each X ¢ | # | the principal l-types are dense
in 5(X). That is we must show for each A € S, {(L(X)) such that
(@ ,X): 3v0 A, there is a principal l-type T ¢ S(X) with A € T.
Suppose for contradiction T, & , X and A constitute a counter-
example., Construct a sequence of formulas in Sl(L(X)) as
follows. Let Al be A, 1If An has been chosen with n 2 1 choose
B e Sl(L(X)) such that a;:—lvo(A ~ B) and a{—EIvO(A A~ ~ B). Let
A = A A~ B and A

2n
1l =a < 2, there is a 1l-type I' in S(X) containing A[a]’ A[2G]’

o+l A ~ ~ B, For any real number a,

A[ha]' «ess Let X* consist of all x in X such that x, the name
of x, occurs in some An. Then X* is countable and k(S(X*)) =

Ro

2 which contradicts T being totally transcendental. Now we

i
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may apply 4.3 of [7] to obtain:

Lemma 6. If T is totally transcendental and X € N(T) then

there is a model & of T prime over X.

In his proof of the two cardinal theorem Vaught [21] showed
that if T is a complete theory, D a formula in Sl(T) and &, B
models of T such that @ < B, D(Z ) = D(B) but | & |#|B| then there

exists a model C of T with k(C) =X _ and k(D(C)) = RO' If a

1l
theory T has such models & and B we say T satisfies the hypo-

thesis of the two cardinal theorem. No theory T which satisfies

the”hygothesis of the two cardinal theorem can be Rl categorical.
For in addition to C by the Lowenheim Skolem theorem T has a

model & with k() = x(D(4)) = Rl' An obvious consequence is

Lemma 7. If D is strongly minimal in a complete lecate-
gorical theory T and if & is a proper elementary substructure of

s model B of T then D(& ) is a proper subset of D(B).

We wish to obtain strongly minimal formulas in totally

transcendental theories, Po this end we prove

Lemma 8., ret T be a complete totally transcendental theory
then either some principal extension of T has a strongly minimal
farmula or some inessential extension of T satisfies the

bhypothesis of the two cardinal theoremn.

Proof. Let T be a complete totally transcepdental theory
and ¢ a prime model of T. There is a formula D ¢ Sl(L(d ))
such that D(&*) is minimal in & . Consider all sets

X ¢ | @{ definable in & . The sets X form a subalgebra B of
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the Boolean algebra formed by all subsets of ldl. It is clear
that the Stone space of B is homeomorphic to the space S( &)
described in §81. But then there exists X in B such that X is
infinite and for no Y in B.are XNY and X - Y both infinite.

o

Otherwise there would be 2 ° dual prime ideals of B whence
&

k(s(@)) =2 °. But k(@) =& so x(5(d)) = B since T is
totally transcendental. Choose D ¢ Sl(IJ @)) such that X =
D( ) then D{d ) is minimal in & .

Form L' by adjoining to L the constants which occur in D.
Let dJ_ﬁg an inessential expansion of & to an L'-structure.
It X = D(&) =D(d') is strongly minimal in&d' then D is
strongly minimal in T', The theorem (s then proved. For, T'
is a principal extension of T since any n-tuple from | & |
realizes a principal type.

If X is not strongly minimal in &' then there exists an

inessential expansion B" of an elementary extension B' of &.'

such that for some C ¢ Sl(B") both D(B") n C(B") and D(B")

C(B") are infinite. ©Now C can be written as C'(vo, Cis vee cm)
' ' 3 i
where C' € Sm+1(L ) and cl, . o cm are constants adjoined in
expanding B' to B”". Let L" =L U {cl... cm}. Consider all
possible expansions &" of ' to an L"-structure. Since X is

minimal for each such &" one of D(g ") N ¢c(a") or D(@ ") -

C(& ™) is finite., If as & " varies neither D(&@ ") N ¢(&4:") nor

D(¢") - C(4") can have arbitrarily large finite cardinality then

for some positive integer N the formula 3§NVO(D ~ C") %35NVO(DA~C')

is valid in 4 and hence in B. This contradicts the fact that (D.C)(3')

and (Da~C)(B') are both infinite., Without loss suppose that as & "
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varies D(7 ") N C(4") can have arbitrarily large finite cardinality

Let L* = L' U {p} where P is a unary relation symbol.
Let T be the set of nonlogical axioms of T. Let A be a set
of sentences which are true in an L¥-structure C* just if there
is an elementary substructure Cl of C*|L" such that ICll =
p(C*) and such that (D . C)(C*) = (D . €)(L;). Let A" be a
sentence which is true in @¢" if and only if (D ~ C)(&@") has
cardinality greater than n. Let T*¥ be a theory with nonlogical
axioms I' U A U {A"| n < w }. To show that T" is consistent it
suffices to show for arbitrary k that the set of nonlogical
axi;ﬁS”F Uuau{a® :n = x} Yields a consistent theory Tk*.
To obtain a model of T * choose @" such that (0 ~ C)(&") has
finite cardinality greater than k. Let &" be a proper
elementary extension of ¢". Expand B" to B* by letting
p(B8*¥) = |d"|. <Tnen B¥ is a model of T, *. Hence T¥ is con-
sistent. Let B* now be a model of T* then Th(B*|L") is an
inessential extension of T which satisfies the hypothesis of
the two cardinal theorem,

Our original proof of Lemma 8 used Keisler's result
[ 3; L.26] that an Rl categorical theory cannot have the
finite cover property.

By Theorem 3.8 of [ 7 ] if T is X _ categorical T is

1
totally transcendental. Thus by Lemma 8 if T is &l categor-
ical a principal extension of T has a strongly minimal
formula. We now derive some properties of strongly minimal

formulas in Rl-categorical theories to make use of this fact.

Lemma 9. Let D be strongly minimal in a complete
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theory T. If g is an infinite cardinal there is a model ¢&
of T with (&) = din(D(&)) = u. If & 1is a model of T and
n is finite with dim D(& ) = n then there is a model 6 of T

with dim(D(B)) = n + 1.

Proof. ©Suppose that D, T satisfy the hypothesis,
If w is infinite by the completeness theorem there is
certainly a model C of T with «(C) = aim(D(C)) = u. Let g
be & model of T with dim(D(& )) finite. Let ¢ be a new
congpant symbol and T' the theory obtained by adjoining to
Th(d :ybﬂ7)) the nonlogical axioms D(c) and {c # b |beD(@)}.
Let ¢ ' be a model of T'; by renaming the elements of |@'|,
if necessary we may assume that the interpretation of b in
d' is b for beD( d).; Applying Lemma 4 to Th( &, D(d )) we
see that T' is complete. Again applying Lemma 4 the l-type
I'in L' = L U {c¢} of a point d € D(@') - c1(D(g) U {(ch,})
is independent of the choice of d and &', Suppose [ were
principal and generated by A € Sl(L') then A( & ') would be
contained in D(&') infinite and disjoint from D(& ). This
would contradict the strong minimality of D in T. Thus [ is
not principel and by Ehrenfreuht's theorem there is a model
8' of T' omitting I'. Let B = &'|L then dim D(B) = 1 +
dim D( &) since if X is a besis for D(&), X U {(C)B} is
clearly a basis for D(B).

Let & < ©; then B is a prime extemsion of ¢ if | d| ¢

IBI and every proper elementary embedding f of ¢ into a model
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C extends to an elementary embedding of 8 into C. Let

@< ©; then B is a minimal extension of & if |@|#|B| and

d < ¢< B implies C =d or C = B.

Lemma 10. Let D be strongly minimal in a theory T which
does not satisfy the hypothesis of the two cardinal theorem.
Let ¢ be a model of T and X a basis for D(&4 ) then & 1is
prime over X. The isomorphism type of & is uniquely
determined by the cardinality of X. Moreover «& has a
minimal prime extension B and there exists y € D(B) - D(«@ )

such that X U {y} is a basis for D(B).

Proof. Assuming the hypothesis let (7' be an elementary
submodel of ¢ prime over X then D(g ') = D(@ ) = cl(X).
Hence @' = & or T would satisfy the hypothesis of the two
cardinal theorem. Suppose C is a model of T, that Z is a
basis for D(Z) and that k(Z) = x(X). Let f be a bijection
from X to Z then f is an elementary monomorphism by Lemma L.
Since 7 = @' is prime over X, f can be extended to an
elementary monomorphism g of & into C. By Lemma 5
g(d(@)) = D(C) so g is an isomorphism of ¢ and C;
otherwise T would satisfy the hypothesis of the two cardinal
theorem. To show that ¢ has a minimal prime extension let
C now be a proper elementary extension of & . Since T does
not satisfy the hypothesis of the two cardinal theorem there

exists y € D(C) -~ D(d ). Let Cl be an elementary submodel of

C prime over X U {y}. Then Cl has an elementary submodel Cé
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prime over X and hence isomorphic to ¢ . Since y ¢ cl(X), )
is a proper extension of & . Further if C2 < B < Cl and
]c2|¢|3| then D(Cl) = D(8) by the exchange principle (Lemma 2)
and so Cl = B since T does not satisfy the hypothesis of the
two cardinal theorem. Thus Cl is a minimal extension of C2.
Let f be an elementary embedding of 02 properly into a model
S of T. By Lemma T there exists y' ¢ (D(J& ) - D(f(Cz))).

Let g extend f with domain g = iC U {¥} and g(y) = y'.

ol
Since D is strongly minimal in Th(C2,|C2 ) by Lemma 4 g is an

elementary monomorphism, Since Cl contains a model prime over
N e

o Cl must be

prime over lCzﬂ U {y}. Therefore g extends to an elementary

lCzl U {y} and C, is a minimal extension of C

embedding of Cl in 5. Hence Cl is a prime extension of C2.
Now if h is the isomorphism from C2 onto & then h can be
viewed as an embedding of C2 properly into C. Let hl be the
extension of h which embeds Cl into C. Then hl(Cl) is the

required minimal prime extension of «&.

We now combine Lemmas 8 and 10 to obtain

Theorem 4, Let T be an bﬁl-categorical complete theory;
then
(i) T is y categorical for every uncountable cardinal u.
(ii) there are at mosti<0 isomorphism types of countable
models of T
(iii) each model of T has a minimal prime extension

(iv) every uncountable model of T is saturated

(v) 4if a countable model of T contains a strictly
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increasing elementary chain then it is saturated.
(vi) an elementary extension of a saturated model of T

is saturated.

Theorem 4 (i) and (iv) are due to Morley [7]. Morley
proved Theorem 4 (ii), (iii), and (v) in [8]. Marsh proved

Theorem 4 (vi) in [6].

Proof. If T is an Nl-categorical complete theory then
no inessential extension of T satisfies the hypothesis of
the twp cardinal theorem. By 3.8 of [7] T is totally
transcendental. Hence by Lemma 8 there is a principal
extension T' of T which has a strongly minimal formula D. For
any model &' of T' the isomorphism type of &' is determined
by dim(D( ¢')). Thus T' is categorical in every uncountable
power., A fortiori, so is T. Parts (ii) and (iii) are proved
similarly.

To prove (iv) consider a model & of T with k(&) =

> R Let X be any subset of | @| with x(X) < p. We must

O.
show for any p € S(X) that p is realized in & . Let 8 be an

elementary submodel of ¢ prime over X. Then k(B) =

K(X) + NO < u. By the Lowenheim Skolem theorem any point

p € S(B) and hence any point p € S(X) is realized in an
elementary extension B' of B with k(B') = k(B). By (iii)
there exists a strictly increasing elementary chain

<B_ | vy = 6> such that By = B, By vy

By, 5, = U {36 | 8 < a} if a is a limit ordinal, and Bg = B'.

is a prime extension of
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Again by (i1ii) using induction on Yy, for each y = 6, since
K(BY) < k( ¢7) there is an elementary embedding of BY into «
which preserves inclusions and is the identity on B. Thus p
is realized in & proving (iv).

Since k(S( @)) = k( 4) for any model & of T, there

exists an elementary chain & . < dl € ... of countable models

0

realizes every point of S( &_) for each

of T such that «
n n

+1

n <w. Then d =U{d | n<uwl is clearly ssturated. To
n
prove (v) let B, C be two countable models of T each containing

a strictly increasing elementary chain; it suffices to show B

i

.
and C are isomorphic. Expand B and C to models B' and C' of

T' by interpreting the new constants in the first member of
the chain in B, C respectively. The strictly increasing

chains force dim(D(B')) = aim(D(C')) = R Hence B' = C' and

0*
therefore B = C. Note that (vi) is now immediate.

We wish to produce a proof of Morley's theorem that a countabl
first order theory ig categorical in power Rl if and only it is
categorical in every uncountable power which does not depend
on the notion of transcendence rank. In this endeavor we use
two results from Morley. In Lemma 6 we showed that 4.3 of
[7] whose proof does not depend on the notion of transcendence
rank could be applied without reference to the notion of
transcendence rank. We also use 3.8 of [T] but Morley's

original proof 4id not employ the notion of transcendence

rank.,

Lemma 11. Let & be a model of a totally transcendental
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theory T. Let X ¢ |C7| have cardinality = Rl. There
exists an elementary extension B of & and a subset Y of |Bl
which properly contains X such that each n-type in T which is

realized in Y is realized in X.

Proof: By essentially the same argument that was used
in the first paragraph of the proof of Lemma 8 there exists
X' ¢ X with k(X') = ¥, such that for each 2 ¢ | @| definable
in some inessential expansion of @ Just one of X' N1 Z and
X' - Z has power Rl. (Instead of considering all subsets of
| dl‘é§ in Lemma 8 consider subsets of X and replace "infinite"
by "of cardinality Rl".)

We now construct a theory T' such that the required B and
Y can be obtained from a model o' of T', Let L' be the lan-~
guage obtained by adjoining & new constant ¢ to L(&). Let T

have nonlogical axioms A where:

A=1mn(a, |4]) U {ale) | 32(2 c [ @] & «(2) < R .

A e Sl(L(Z)) ~ k{ala e X' . (@ ,2) A(a)} = al}.

To show A is consistent consider fixed finite Z, 5y|<7l and
A € 5,(L(2;)) such that A(c) € A. By choice of X' there are
at most RO members a of X' such that ( &,Z) .~ A(a). Since
there are only RO formulas A € Sl(L(Z)) we have for all
but R, members a of X' and for each A ¢ Sl(L(Z)) such that
A(c) e A (4d,2) - A(a). This shows A is consistent. Let

B' be a model of T' and B = 8'"|L. Without loss, since B'

n

Th( &, | @|), we may suppose B is an elementary extension of 4&.
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Let Y be (¢),, and Y = X U {y}. Then B and y satisfy the

B!
conditions of the theorem. For, let T be an n-type realized

in Y by x x Y. Then for each A' € Sl(L(xl"" ))

1> *°° Tn-.l? n-1

where A' = A(vo, X ceay Xn-l) either A'(c) or ~ A'(c) is in

l’

A. Moreover A(v, ... vn) e T is equivalent to A"(c) € A which

1
is in turn, equivalent to k({a e X' | (&, {xl’ ce Xn_l})!:
A'(a)}) = I(l. But then since there are only countably many
A' € Sl(L(Xl, ces Xn)) some % € X' must be such that

<X » X> realizes T.

1o cr X g
.fareful examination of the proof of 4.3 of [T] yields the
following: 1let & be an L-structure with subset X such that
d is prime over X and constructed as in L.3 [7] then for each
n, every n-type in Th{ & ,X) realized in (¢ ,X) is prinecipal.
With this observation we can reformulate the last lemma to
read: if Th(& ) is totally transcendental and k{ g ) = Rl
then @ has a proper elementary extension C such that for each
n each n-type in Th{ & ) realized in C is already realized in

d . To see this first apply Lemma 10 with X = | & | to obtain

B and Y. Then let C be prime over |& | U {y}.

Theorem 5. Let T be u-categorical for some y > tto then

T is Rl-categorical.

Proof. Assume the hypothesis and for contradiction that
T is not Rl-categorical. By 3.8 of [T] T is totally
transcendental. Then by Lemma 8 there is an inessential

extension T' of T in a language L' extending L which satisfies
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the hypothesis of the two cardinal theorem. Hence there
exists a model C of T' and a formula D € Sl(L') such that
k(€C) = R, and k(D(C)) = R,. Let C' = (C , p(C)).
Applying Lemma 11 and Tarski's lemma we obtain an elementary
extension B' of C' and an X with x(X) = u, and

[c'] ¢ x ¢ [B'| such that every n;type from Th(C') realized
in X is realized in C'. Lemma 11 can be applied because
D(C') is countable. Now we use the idea in the reformulation
of Lenmma 11. Let &' < B' be prime over X. Suppose for
contradiction there exists d in D{(& ') - D(C) then there
exists A € Sl(L'(X)) generating the l-type in L'(D(C))
realized by d. Now A has the form A(vo, 81, «e- am) where

B ' *
&1, ++. 8 € X and B € Sl(L (D(C))). Choose (cl, cee cm) in

n
I¢|™ realizing the same Th(C') type in C' as (al, o am)
does in B'. Then B(vo, Cly one cm)(C') n (n(c') - p(C)) *'Q“
which is absurd. Hence D(& ') = p(C). But tnen @il is a
model T of power U in some inessential expansion of which is
definable a set of cardinality N o+ But using the
completeness theorem and Tarski's lemma it is easy to
construct a model of T of power U such that any set definable
in an inessential expansion of it has power u. Hence T is not
U-categorical contrary to hypothesis.

This completes our development of the main results known
concerning theorems categorical in power. The spirit of our

approach is‘captured in the following observation which is

obvious from the proof of Theorem 4: &a theory is categorical
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in uncountable power if and only if it is totally transcend-
ental and no inessential extension of it satisfies the

hypothesis of the two cardinal theorem,

SRR, .. 1 uay - B
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§4 Almost Strongly Minimal Theagxies

A theory T is almost strongly minimal if there is a
principal extension T' of T with strongly minimal formula D'
such that for each model 7' of T' |@'| = c1(D(#')). 1In this
section we prove a theorem characterizing such theories. We
also make use of this concept to prove the prgmised partial
converse to Theorem 3.

If T is almost strongly minimal then T is Rl categorical.

For, et @ and B be models of T with k(@ ) = «x(B) = R;. Let
@' and B' be inessential expansions of ¢ and B which are
models of T'. Then by Theorem 1 and Lemma 5 &' is isomorphic

to B'. Hence @ 1is isomorphic to B,

Let T be Rl-categorical and ¢ a model of T. We prove
some technical lemmas about the structure of s(Z ). 8%(7 )
and Tr®( @.) are defined in Section 2, just before the statement
of Theorem 3.

If T is an Rl-categorical theory we can associate with
any model @ of T a strictly increasing elementary chain
a = dao < ay < °°° by letting An+l be & minimal prinme
extension of an for each n, Note that by Lemma 10 this chain
is unique up to isomorphism. If p is an element of S( &) we

say p is first realized in dn if p is realized in dn but p

is not remlized in & p for each m < n. For.esch n we take
{dl, dn} to be a subset of D an) - D( @) which is

algebraically independent in L( d). Thus by Lemma 10 c?n is
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prime over |g| U faj, ... a ).

Lemma 12. Let T be an gl-categorical theory, with
strongly minimal formula D, & a model of T and p € S( @).
There exists a natural number n such that

(i) p is first realized in ¢,

ﬁ.
(ii) There exists a formula A € Sn+l(L( d)) such that
vy, «.. 3v_A is in p and if B is an elementary extension of

@ end y;, ..., ¥y, b are elements of |8| such that B!
A(b, xlf ey yn) and b realizes p then y,, ..., y  are
algebraically independent in L( @) but {yl, coes yn} c

ci(| al u {v}).

Proof. (i) Let B be an elementary extension of &
such that p is realized in B by b. By Lemma 10 B is prime
over | @| U Y where Y is a subset of D(B) - D( &) which is
algebraically independent in L( &). Then for some n there is

a formula B € S (L( 4)) and elements ¥ys +++ ¥, in Y such

m+l

that B(vo, Yis voo yn) generates the principal type in
Th(B, | 7| U Y) realized by b. Let n be chosen as small as
possible., Then dn is isomorphic to the model prime over
| @] U {v}. Hence p is realized in & Dbut not in @  for
m < n.

(i1) Let p be first realized in & by c and

suppose d ... & are a basis for D( an) in L( ). Let

l’

Ale, v ces vn) generate the principal n-type in

l’

Th( @_, |#y| U {cD realized by d;, ..., 4, . Clearly
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Iv, ... 3VnA is in p.

1

For i =1, ... n there is a formula Ay € SZ(L(G )) and
an integer N such that

‘. <N
an } Ai(c’di) ~ 3

lei(c,vl)

For let Ai( é,vl) generate the principal type in

Thi &, lg | U {c}).realized by d4; and suppose A (c,v,)(z )
is infinite. Then since D is strongly minimal and Ai(c,v )
(g n) c D{ &h> there is an element c¢' € D(y ) such that

a. FBvl(Ai(c,vl) avyoE c'). But then for each element e of
Ai(c,v%)ﬂq n) @, # e = ¢c', This is absurd so esach
Ai(c,vl)( an) is finite and we may assume each of these sets
has less than N elements. Note that in Th( g, lzl U {c})
A(c,vl, ces vn) »> ? Ai(c,vi).

Suppose B is an elementary extension of , and

Yy’ oo ya, b are elements of |B| such that B}:
A(b, Fys cees yn) and b realizes p. Since b realizes p
T™h(B, |g] U {v}) = Thig o la | U {c}). Then since

Ale, v coe vn) generates the principal type realized by

l’

d dn vhich are algebraicelly independent in

1‘ .."
L{ ), Yys +oe ¥, are algebraically independent in L(gz ).
Similarly, since each d, € el(lz | U {c}) eamcn ¥y

€ cl(]| g| U {ecl}).

Lemma 13. Let T be an Rl-categorical theary with strongly
minimal formula D and ¢ & model of T. If p is an element of

S(z ) which is not realized in g for k < m then
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pes™ag).

Proof. The proof is by induction onm., If m = 0, the
result is evident. BSuppose the lemma holds for each model
of T and each m < s. Let & be a model of T and p € S(&@ )
such that P is pot realized in a; for m < s,
Then by Lemma 12 (i) p is first realized in QL for some
n =2 8., Choose A € Sn+l(L(ﬂ )) satisfying Lemma 12 (ii). Let
B be an elementary extension of & such that D(B) - D(& ) is
are a

infinite., Let Bn B and suppose Yis ceen ¥

-1l
basis in L(B) for D(Bn_

D(B) - D(4 ),

n-1

). Let b b

12 Pp e enumerate

1

Let £, be an isomorphism of a; into Bm-

J
fJ(di) =y, forl =4 =n-1and td(dn) = b

1 determined by

. Let
J
aJ = fJ(C ). Let q be the element of S(B) realized by aj'
Then qJ iz not realized in Bk for any k < n-l1.For suppose

B' »B and aj € B' realizes qy- Then if BJ is prime over

|B] U {aj} there is an isomorphism of 8 into B'. But by

Lemma 12 (ii) {Yl: cer Ypaa

{yl, .o yn—l} c D(BJ). Thus D(BJ) and hence D(B') contain at

} e er(!a] U {a;1) so

least n - 1 elements algebraically independent in L(B). So
1 is not realized in any Bk with k < n - 1 and in particular
with kK < s - 1 so qJ € Ss-l(B) by induction. Since each aJ
realizes p each q, € i} B'l(p). Moreover there are infinitely
many distinct qj. For if not there exsits an elementary
extension C of B and ¢ € |C| such that c realizes infinitely

many of the g Then C F.Bn(c,ba) for infinitely many b

3 J

g e BRR B ENd &

. 4
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in D(B) - D( g). But since ¢ realizes p Bn(c,vl)(C) is
finite.
=1 S.1 8
Thus i* (p) n s (B) is infinite so p € S8 (B) which
aB

wvas to be proved.

Lemma 14. Let T be an X l—categorical theory with strongly
minimal formula D and prime model 7' such that for each model
g of T |a | =ci(D(@ ) U | @'|). For each model @ of T if

P € S( @) is first realized in & o then p € ™=@ ).

Proof. The proof is by induction onm. If m = O the
lemma is Elearly true. Suppose the lemma holds for m < n and
let & bve a model of T and p € 5(¢ ) such that p is first

realized in & n by c.

Let B € Sn+l(L(a ) and suppose B(r&, diy eeey dn) generates
the principal type in Th(Z, |4 | U {4, ... d_}) realized by

¢. Then by hypothesis B(vo, a e dn)(d n) is finite, say

‘ 1°
with cardinality k. Let A be chosen as in 12 (ii). Let

C=A . B. Clearly 3vl, ceey 3vn C is in p. Let B be an elementa-
ry extension of @ and SUPPOBE Yy, «esy ¥, is a basis in L(B) for

D(Bn). Then C(v ceas yn)(Bn) has cardinality k so there

0 1o
at. most k types in S(B) which are realized in C(vo, Yys +ees yn)
(Bn)' Let q € it?B-l(p)‘ Let B' =2 B and suppose q is

realized in B' by b. Since b realizes p there exist yi, e yé
in D(B') such that 3' kC(v, Yis oees y') and by Lemma 12 (ii)
yi, ceey yé are algebraically independent in L(Z ). Moreover
b e cel(la | u {yi, Ve yﬁl). Thus if y{, ..., ¥} are not

algebraically independent in L(B) q is realized in Bk for some

E i &

=



\

32

k < n and q ¢ s™a ). 1t yi, ce yé are algebraically
independent in L(B), let f map ¥ to yi. Then f extends to an
isomorphism taking a model prime over yi, e yé into Bn’

Then f£{(b) is in C(v Ceey yn)(Bn) so g is one of the at

0! yl)

most k types in S(B) which are realized by a member of
C(vo, Fis soes yn)(Bn). Thus for every B> & i*aB-l(p) n

s®(B) is finite so p € Tri(g ).

Lemma 15. Let T be R j-categorical with strongly minimal
formula D, Let ¢ be a model of T and p € S(¢ ) such that

p is first realized in ¢ n+ Let C be the formula in 8§ l(L(d))

+

associated with p in the proof of Lemma 1k, Suppose

C(vo, dis v dm)(d m) is infinite. Then p € Sm+l(d ).

Proof. The proof is by induction onm, Let m = 1. Let

B # d and suppose D(B) - D( &) is infinite. Let LI P

enumerate D(B) - D(g ). Since C(v ; dl)(d l) is infinite, for

each J < w C(v bJ)(B) is infinite. Thus for each j there is

0’

& type ay ¢ sls) with Clvy, b0 gj4s in Lemma 13 infinitely

many q, are distinet., Each a € i* -l(p) so p € Sz(d ).
aB

Suppose the lemma holds for each m < n and 7 1is a model
of T with p € S(¢ ) such that p is first realized in @, and

C(vo, dyy e dn)(d n) is infinite. Let B> @& such that

D(B) - D( @) is infinite. Let Yys vo- be a basis in L(B)

Yn-1

for Bn-l and let bl, b2 ... enumerate D(B) - D( ¢).For each }

consider C(vo, Yys oo Ypoo1o bj)(B ) which is infinite

n-1

since C(vo, a . dn)(61n) is. Consider the types in

l’

Th(Bn, |B| U {y s oo yn_l}) of elements of C(VO’yl""yn-l’bj)
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(B -1)' If some such type q is realized infinitely often in
(q)
4% ' =
Bn-l let qJ = iBB' L where Bn B U {yl, beoy yn } . Then by

induction qde s®73). 1If each type in S(B;)is realized at

most finitely often in C(vo, Yy voes yn) (8 n) then
there are infinitely many such types in S(B;) so there exists
h | '
] 3 ' =
q) € S (Bn) with C(vo, Yoo see Vo1 bj) in a - Let C B
and ¢, € |C] such that cy

over |Bj U {c,} the dimension in L{B) of D(C*) is e for some

J

realizes q'. Then if C' is prime

8 2 n.

betqu be the type in S(B) realized by c Construct

5
CJ € S§+1(L(B)) from qy just as C is constructed from p. Then
as in Lemma 12 (ii) any B8' # B which realizes q, must contain
a set of s elements in D(B') which is algebraically
independent in L(B). So q, is first realized in Bs' Since

$4 2 n by Lemma 13 a, € S®(B). As in Lemma 13 infinitely many

of the a, are distinct. Hence p € sn+l(d').

Lemma 16. If T is ¥, categorical and for some model

1
of T, p € S(@) is first realized in dm implies

p € Tr™(g) for every m, then T is almost strongly minimal.

Proof. Since T is R, categorical, by Lemma 8 there is a

1
principal extension T' of T in a language L' with a formula
D e Sl(L') which is strongly minimal in T', For each model
of T let ' be the natural expansion of & :to an
L-structure. Let & be as in the hypothesis. We may assume

for contrediction that there is an elementary extension B' of @'

and an element b € ¢1{(D(B')U] @|). Let p be the element of
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8(d ) realized by b, By Lemma 12 (i) p is first realized in
cTn for some n. Choose C as in the proof of Lemma 1lk. If

C(vo, d dn)(ax'x) is finite,mapping & ! into B' yields a

l!
contradiction. Hence p satisfies the hypothesis of Lemma 15.

Thus p € Sn*l(d '). But p is realized in ax'x s0 by hypothesis

P € Tr®(@ '). From this contradiction we conclude that for each

B'> &' and each b € |B'| there are natural numbers n and k,

' ]
e formula A, € Sn+l(L(C7 )) and elements dyy <-0y @ € D(B')

b

k
]
such that B' | A (d;, ..., & , k) ~ 31V A, (d), ooy a, Vo),

But then by the compactness theorem Th(&Z ', |7 '|) models

P
Vv, 3vl, oo BVN( iZl(Ai(vl, coes Vo vo) ~

<k N
3 vOAi(vl, vees Vo vo)) - ; D(vi))
for some natural numbers N and k. But then if B is a prime
model of T, B must model that sentence with the constants from
| @ | replaced by names of members of |B|. If the set of these
constants is X, Th(B,X) is the required principal extension of
T.

Let T be an fﬁlécategorical theory, d a model of T and
P an element of S(Z ). Let T' be a principal extension of T
with strongly minimal formula D, For each model B of T let B'
be the natural expansion of B to a model of T. Then p is
naturally a member of S(Z '). Moreover p is first realized in

dm if and only if as & member of S(g& ') it is first realized

in g 'm' Furthermore for each a Sa(a) = 8% a).

With this observation we can collect the preceding results

Y 4

s gy

[ =

-
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as

Theorem 6. Let T be an Rl_categorical theory. The
following are equivalent:

(i) T is almost strongly minimal

(ii) For some model & of T and every natural number m,
if p is first realized in g  then p € ™2 (g ).

(iii) For every model ¢ of T and every natural number m

p e Tr(¢ ) if and only if p is first realized in a.-

By Lemma 12 and Theorem 6 (iii) if T is almost strongly
minimalNaTmis finite. From Theorem 6 we can further deduce the

following partial converse to Theorem 3.

Corollary. If T is Rl-categorical and Oq = 2 then T is

almost strongly minimal.

Proof. on = 2 implies that for each model & of T each

p e S(g) is in Tro(ﬂ) or Trl(d). Thus for each natural
number n, if p € Tr®( @) then p is first realized in a,.

Hence by Theorem 6, T is almost strongly minimal.

The following construction shows that for each positive
integer n there is an almost strongly minimal theory T with

(IT = n.

Let T be a totelly transcendental theory in a first order

language L which has only reletion symbols and constants. For

(k)'

each positive integer k we construct a theory T The

(x)

‘language L is formed by adjoining to L a unary relation

>
k4
s
w
L

iU
ik

Yo
P

Lt
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f Let 4 bYe a

(k)

symbol p and binary relation symbols £1s ooey T

pPrime model of T. We will construct a prime model B for T
Let |B] = |@| U |A|¥. wWithout loss we may assume

@l n |@|* = 9. Following Shoenfield [20; p. 18[ if q is &
symbol in L and & is an L-structure (q)d' denotes the
interpretation of q in -ah Define (g)B to be |@|. Each (fi)B
is the graph of the ith coordinate function mapping Ialk onto

id]. If q is an n-ary relation symbol in L then (q)B = (q)

(k)

If ¢ is & constant in L (c)B = (c)d . Let T be Th(B).

(k)

Then B is a prime model of T and il is easy to verify

s

Lemma 1T7. If k is a positive integer and T is totally
transcendental
(1) T(k) is a totally transcendental theory-
(ii) If T is Rl categorical so is T(k)
(i1i) If T is & strongly minimal theory then for each
k T(k) is an almost strongly minimal but not a strongly minimal

theory. Moreover o (k) =k + 1,
T

Applying Lemma 17 (iii) with k = 1 shows that the corol-
lary to Theorem 6 could not be strongthened to: if T is

.Rl categorical and @; = 2 then T is strongly minimal,

In each of the particular Rl-categorical theories T that
we have considered so far there has been a strongly minimal
formula. This is not always the case, There is no strongly

minimal formula in the theory of algebraically closed projective

planes of characteristic zero formulated in a language
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containing unary relations picking out points and lines and the
incidence relation. But if a principal extension is formed
naming & line and two points not on the line, not only is this
set strongly minimal but its closure is the entire model.

We now exhibit an Rl—but not Ro-categorical theory T#
which is not almost strongly minimal. For cogvenience in
presenting the next set of examples we will consider languages
which have function symbols. We first define a structure
for the language L whose only nonlogical symbol is a ternary
function symbol f: let Q denote the set of rationa;s and let
|¢ | consist of all pairs (q,1-q), q € Q. Define F = (£),,
by:

F(O,¥,x) = ¢ + ¥ + x; ¢, v, x ¢ |@]

whe:e addition in | dl is point-wise, We show that every n-ary

relation definable in & is a Boolean combination of relations

(1) R(sl, ey sn) > q & *+ ... *+q E =0,

where Qs oves q are all in Q@ and El qJ = O, We first

£J =n

show that if A € Sn(L) is an arbitrary atomic formula s = t
then the n-ary relation defined by A in ¢ has the form (1).
This is easily accomplished by showing that for any term s

containing at most the variables Zys eeey 2 there exist

Sys +ve 8 € Q with L

n 1< j < n 8 = 1, such tk*i if i, is the

J J

name of a, for 1 = J = n then

J

n
™

(S[il, v ey 'in]:) 1 < J <n SJaJ.

For the rest suppose that the relation defined in ¢ by B is a
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Boolean combination of relations of the form (1) for all B in L
with length less than that of A. It is sufficient to show that
A defines the same kind of relation. The only case which is not
obvious is that in which A has the form 3 z B, Without loss

+1° From the induction

hypothesis, using disjunctive normal form, we may suppose that

assume that B € s (L) and that z is 2
n+l n

R Jefines an (n+l) -any relation S of the form:

(2) s{ey, vos Bppy) = s ¥ e b e s m,
{qr,S,l€l+ tee +qr.8,n+l£n+l = O}

. - 1 <&S < m| {q| E + +ql # O}]
- - Tr r,s,1°’1 °*°° r,s,n+l i

where for each pair (r,s) we have Zl <3 s n+1qr,s,3 =

L = 0, We have to show that the n-ary relation

q|
l =3 < n+l*r,s,)

T on |@ | defined by

T(Eys wvvs E) o 36,0 S(E1, «ovy £ £ y0)

is a Boolean combination of relations of the form (1). Since
J and v commute we need only examine (2) whenm = 1, i.e. we

may suppose that

(3) S(El, e 0y En+l) Lo d M
1 S&s =m (qs,1€1+ v +qs.n+l€n+1 =0) .&.
1 ]
1 s&s =m' (qs,l€l+ v +qs,n+l§n+l #0).
If Qg pe1 = O for each s there is nothing to prove, beceuse
9
T(El, v En) is clearly equivalent to the r.h.s. of (3) with

all the conjuncts in which qé # 0 deleted. Otherwise we

,n+l

may suppose that Q, # O in which case:
]

n+l
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T(gl’ LA AR ] g ) g 3£n+l [€n+l = (-ql,lgl T e '-ql’ngn)/Ql’n+l
& > < g <m (qs’l£l+ . +q8,n+lEn+l = 0) .&.
1 < g < m'(Q's’lEl*‘ eese * q's,n+l£n+l # O)]

i<t on ({qs,l_(ql,lqs,n+l/ql,n+l)}£l+ v

*la) 1% 41/ ey ) 1E, = 0) L.

% P . .
18 =m0 ttag 1709y 190 14179 pep )P, e
T '
- +{qs,n (ql,nqs,n+l/ql,n+l)}£n #0).
Since I, _ j = n(ql,J/ql,n+l) = -1, in each conjunct the sum of

the coefficients is zero so the induction is complete.
From (2) we now see that if B € Sn+l(L) then for some

positive integer k the formula

<k <k :
E| Z 41 B .v. 3 Z 41 ~ B

is valid in &. 1In fact we can take k = max {m,m!, ..., mé}.
This proves that | dl is stfongly minimal in ¢, and hence by
Theorem 1 that Th( &) is Rl-categorical. Since | @ | has
dimension two Th( &) is not R -categorical. It is essential
to the construction of T# below that & have the following
properties: for any ¢ , Y e |ad| AEF (¢ ,¥,E) is an
automorphism of & mapping ¢ into ¥, and if XE F (¢ , ¥, &),
AE F (¢ ', ¥Y', &) agree at one point they are identical.

These properties may be easily verified from the definition of

F given above, Their necessity below is implicit rather than
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explicit.

Let L#, the language of T#, have as its nonlogical symbols
& binary predicate symbol g and a ternary function symbol f.
The axioms of T# are to be such that if B is any model of T#
then the following conditions are satisfied:

(1) Let ¢ = {v |ve|B| & B(3v0qbv0) = T} and

c, = {e |ce|B| & B(q b c) = T} then C # § and C, = @ Just
itbv ¢ cC.

Also,

cn u {Cblbec} = @, Cy N Cpy = @ b,b' € C.

(i1) ‘Phere is a substructure C of B such that |[C] = C ana

C|L = @, end for each b € C there is a substructure C, of B

such that |cb| = C, and cblL : q .

b
(111) If b € C and c € C, then Axfg(b, c, x)|C is an
isomorphism of C|L and CbiL taking b into c¢. Further if
c' € Cb then

(&) fB(b, ¢', x) = fB(c, c', fB(b, ¢, x), x € C.

(iv) For all x, y, z € |B| (x, vy, z) ¢

3

c’ v U{Cglbec} U u{{v} x ¢, x C|vecC}

b
implies fB(x, Y, z2) = z.
Since (i) - (iv) are all elementary properties, to show that
the axioms of T# can be chosen it's sufficient to exhibit B
satisfying (i) - (iv). Let |B] = || U (Ja]| x | @]) and
define

QB(X, y) «+ 1 x¢e |ag| &y e {x}x |agl|.

Further, fg is to be the unique function satisfying (iv) and
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fgl la | =F, £53(6,(6,¥),x) = (6,F(¢,¥,x))
£e((¢',4), (¢',¥), (¢*,x)) = (¢',F(¢,¥,x)).

for all ¢, ¢', ¥, x € | |. The reader will easily verify

that (i) - (iv) are satisfied.

#

To show that T  is R j-categorical consider two models

Bo; Bl of T# both of power R 1 Whose universes are disjoint.

We carry over all the notation developed for B adding

atao cauinaragamnwintos
- W N - [ N L]

» Q3ma
wp el [~ 43

2 n o
P ce for J =0, 1

183 = ¢ vute | v e cd

and since K(CJ) = K(C%) for each b ¢ CJ, wve have K(CJ) = R,.

Hence C0|L, Cl[L are isomorphic, by G say, since both are
models of Th(&Z ). For J = O, 1 and each b ¢ ¢d choose

cy € C%. We extend G to all of |Bo| as follows. Recall from
J

(1i1) that for v e ¢J, o = Mafgy (b, ey, x) | ¢ is an
f-isomorphism of CJ ana C%. For any ¢ € |BO| - ¢% 1et b ve

the unique member of Co such that ¢ € C0 define

'b’
1

1
GG(b

Gle) = G (b

) 6(2)"1(e). clearly G(Cg) = C5(p) for each

b € Co, whence G is a g-isomorphism of B0 and Bl. To show
that G is an f-isomorphism we must show that

(t) a(r C,(x, ¥, 2)) = £ 1 (¢(x), G(y), G(z)).
B B

This is immediate from the choice of G if x, y, 2z € C0 or if
for some b € Cg we have x, y, 2 € Cg. Suppose that

X =D € Co, y € Cg, and z € Co, then using our last remark

and (&) we have:
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G(fﬁo(x. vy 2)) = 6(f (e, v, fBo(b, cpr 2)))

B
= fBl(G(cb), G(y), G(fBo(b,cb,z)))
= fBl<cg(b)ete§>‘l<cb), ol(y),

Gé(b)G(Gg)_l(Gg(z)))
= fBl(cG(b), G(y), fBl(G(b), e (b)* G(z))

f l(G(b), G(y), G6(z)).
B

There only remains the case in which (x, y, z) satisfies (iv)

with rsspect to BO, in which cese f o(x, Y, z) = z. But since
B : .
G is.a q-isomorphism (G(x), G(y), G(z)) satisfies (iv) with

respect to Bl, whence £ _(G(x), G(y), G6(z)) = G(z). Thise

1
completes the proof of ?5) and shows that T# is indeed an
R p-categorical theory.

The particular model B of T# constructed above is prime,
because it has no proper elementary submodels. This follows
immediately when one observes that the strongly minimal subset
Id | of B has dimension two, and that for any a in
|@ |, ci({a}) = {&}. By naming a point in |&@ | we obtain a
structure (B, {a}) which has two strongly minimal sets | ¢| and
Ca of different dimensions,.

In [10] Morley conjectured that if T, I characterize
A< ERO then T has infinitely many algebraic types, (i.e. types
realized by only a finite number of points). T, L

characterize A if L is a set of l-ary formulas consistent with

T and there is a model of T in each cardinal less than A which

omits I but every model of T with power A realizes I. Several



43

people, including Shelah [16] have indicated the conjecture is
false in general. However we may note the following special
case, If T is h§l~categorical and T, L characterize btl then
T has a principal extension T" with infinitely many algebraic
types. For, let T' be a principal extension of T with strongly
minimal formula D and let ¢ ' be a prime model of T', Since

T, Z characterize bll T and hence T' is not X , categorical.

0
Hence D(‘; ') has finite dimension. Let T" be Th( 7 ,X) where
X is a basis for D(&'). Lachlan has pointed out that the
weakening of the conclusion to ellow a principal extension is
nece;safy with the following example.

Let ¢ be the structure we constructed above whose
language contained a single unary function symbol £ end whose
univergse was {(g, 1-q) | @ € Q}. Define a structure J by
letting |#| = | x k|, and interpret two nonlogical symbols

over this set: f again a ternary function symbol, and p a

binary predicate symbol. We define By by %((8'0’ al),
= ' '
(8‘2’ a.3)) &, a,, and £, by t:&((a.o, a.o), (al, a.l),
= ' ! ! = =
(a2, aé)) ((ao, F(ao, a!, 32) if a5 = a; = &5,
]
1(&1, F(al, &, 32)) otherwise.
Intuitively B is obtained by replacing each point in & by
a copy of ¢. Th(.8) is Rl—categorical.
Let /' be obtained from 5 by adjoining unary relations
naning two equivalence classes of p. B' is b(l-categorical.

There are infinitely many l-types in Th( 5') so Th(.8"') is not

b{o—categorical. But there are only two algebraic types.
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§ 5 Proof of Vaught's Conjecture

In this section we prove Vaught's conjecture that modulo
isomorphism an Rl-categorical theory has either Jjust one

or exactly RO models of power RN It was shown in Morley

0°
[8] that the number of isomorphism types of countable models
is always = &0 for Rl—categorical theories. Thus we have
only to demonstrate the impossibility of an Rl~but not
“o-categorical theory having only a finite number of
isomorfhism types of countable models. In this endeavor we
rely on the results of Sections 1 and 3 and Lemma 17 from
Section k.

Let T be an Rl-but not Ro-categorical theory in a
countable first order language L. Let L' be an extension of
L by constants cl, ey ¢® and suppose T' is a principsal
extension of T in L' which has a strongly minimal formula
D'. Then D' has the form D(vo, cl, ve., cT) where

Sm+l(L).

If ﬂo';' is a prime model of T' then dim(D'( 70+)) is

D e

finite for otherwise by Lemma 10 T' and hence T is Ro-cate—

gorical. By forming a principal extension of T' if
necessary we may assume dim(D'( ﬂo')) = 0, For each

positive integer n let <7n' be a minimal prime extension of

a: and let & = @'|L. By Lemma 10 for each n
n-1 n n

dim(D'(d'&)) = n. An unsaturated model B of T can be

expanded to an unsaturated model B' of T'. Clearly B' = ar‘x
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for some n whence B dn’\'. Conversely each dn is an
unsaturated model of T.

We now assume that T is a counter example to Vaught's

conjecture. Thus we may choose N such that every unsaturated

a

model of T is isomorphic to one of do, a Clearly

120 Ay
for each n there exists an elementary embedding fn of 4
into <1ﬁ. For each n let X be a basis for D‘(C7£) and let
Y = {(él)’7,, ceny (™) 1} Fix n and let M be an
arbitrary psgitive integer.n When we write "cl" we shall
mean closure with respect to L rather than L'. We show

that fM(XM) c. ¢1(Z) where Z = XN[JYN U fM(YM). Suppose for

contradiction that x € fM(X - cl(Z)., Notice that dN is

"
prime over Z because some elementary submodel C of ‘7N is
prime over Z and if |C|$k7N|then T' gatisfies the hypothesis
of the two cardinal theorem. Hence the type p in s(z)

realized by x in <7N is a principal type. If c; is the name

i 2 > i - i SRy e
of £.((c k?ﬁ) in dy, i.e. if fM((c )dti (cy) ay than
then clearly D(vo, cﬁ, veey c;) is in p. Let X be the set of all
members of laNI which realize p. Then X is infinite since
1 n '
Cy» * o cM)(d N)' Recall that by
1l m
> 1 1 ]
the choice of T cl(YM) 2D (d’é). Hence D(vo, Cye v cM)

x ¢ c1l(2) and X ¢ D(vo,

(a'N) - X, being & superset of fM(D'(d 6)), is infinite.
Consider the expansion & § of d’N obtained by letting
(ci)ai;= (c;)d for 1 =i =m. Clearly, a’ﬁ is a model of
T', X ?s definabge in aﬁ, and both D'(di\'l) N X and

D'(C?&) - X are infinite. This contradicts the strong
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minimality of D' in T'; hence £ (X,) ¢ c1(2). Now £ (X

M M)

is an independent subset of D'(4 ﬁ) and the members of
fM(YM) are named in ¢ y. Hence, now with respect to L',
cl(XN U YN) contains an independent subset of D'(C?&) of

power M, Note that the cardinality of X, 6 U YN ism + N and

N
does not depend on M.

Let k = m + N and apply the construction of Lemma 17
to T'. Let T''®) be T". Let B be a model of T" such that
p(B) is isomorphic to ¢7§ by an isomorphism g. Let b be
thewelgment of ~ p(B) whose components are the elements in

™S

p(B) which are identified with the elements of X U Y, by &.

N

Then in B, cl({bv}) > cl(g(x, U YN)) contains an independent

N
subset of D"(B) of power M where D" is the relativization of

D' to p. Thus we have established

Proposition. If Vaught's conjecture is false there
exists an Eil-but not ﬂo-categorical theory T" and a
formula D" strongly minimal in T" such that for every M
there exists - a model B of T" and b € |B| with c1({b})
containing an independent subset of D"(B) with M elements
while b § D(B).

We now show no theory T" can satisfy the conclusion
of this proposition. We again exploit Vaught's two cardinal
theorm, Let T be & complete theory in a first order
language L and p a unary predicate symbol in L such that if
d 1is a modél of T p(#) is infinite. Let T be extended

to T' in a language L' by adjunction of a new;constant c
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but no new axioms. Introduce special (Henkin) constants one
for each closed instantiation exactly as in [20], Chapter 4.
Let A, B, B' be the least subsets of the set of Henkin
constante satisfying the following conditions where C
denotes A U B U B':

(i) 1r BVOA is closed and contains only symbols from

L' and C esd 1f 4 has the form
PVg eae 3vo(pv0 ~ B) + 3
then the constant for BVOA is in A,
7 {ii) If 3v A is closed and contains at most symbols
from L and AUB, and if A has the form

~ PVy sa- 3vo (~ PV, A B) + B

then the constant for BVOA is in B.
(iii) 1Irf BVOA is closed and contains at most symbols
from L' and C, end if A has the form

~ PVg «as 3V (~.pvo ~ B) + B

then the constant for BVOA is in B' if it is not in B.

It is easy to check that A, B, B' are indeed well
defined by redefining them in terms of the "levels" where
the constants are introduced. Let I' be the set of nonlogical
axioms of T. Let A be the special axioms for all the special
conatants in C. Let ©® be the set of formulas

I UBU {~pc} U {~c = r|r ¢ B}.

Suppose that T( 0), (the set of logical consequences of ©)

is consistent and C* is a model of T(@ ). It is easily shown

that there are substructures B, B' of C such that
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18] = {(z),s | r € AUB} and |B'] = {(r)py | r e A UB'}.
It is further easily shown that B < B' < C, that (c), ¢

|B*| - |B], and that p(B) = p(B') = {(r)c | r € A}. Thus irf
T(6) is consistent T satisfies the hypothesis of the two
cardinal theorem. The converse is almost immediate so we

have shown

8, Let T be 2 complete theory in a language L

Lenma 1 0T
and p & unary predicate symbol in L such that p( &) is
infinite for eech model «# of T. Then T satisfies the
hypothesis gf the two cardinal theorem with p for D if and

only if:T(0) is consistent.

Below we shall apply lemma 1§ to an ‘Rl—categorical

theory T in which p is strongly minimel. Before we can do

this werneed the following technical lemma.

Lemma 19. Let T be a complete theory in a first order
language L. Suppose D is in Sl(L) and D is strongly
minimal in T. Let & be a model of T, Byy e+ey 8 E lal,

and X ¢ D( &) such that <a ..+, & > realizes a prinmcipal

l,
type in Th( &,X). If X ¢ X' ¢ D( d), X' - X is finite, and
D( @) N c1(@g) is infinite then the type in Th( ¢,X') which

is realized by <a seey B > is also a principal type.

l’
Proof. By &adjoining names it suffices to consider the

case where X is empty. By induction we may further Suppose

X' - X is a singleton, say {a}. There are two cases

P

i
h

o
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depending on whether or not a € cl(9@).
Suppose a § cl(f) and let A € Sn(L) generate the type
in T realized by <&y, eeey &, > in 4. We claim that A
also generates the type in Th(g , {al}) realized by
<al, ceey an:>. If not, the theory T' obtained by

adjoining to L({l) the constants a a, and extending

1 e
T by the nonlogical axiom A(al, ceey an) is incomplete.
Thus there exists a formula B € Sn+l(L) such that

B(a, 815 +ees an) is neither provable nor refutable in T'.
WithWout loss of generality assume B(vo, Bys ey an) ~

D( @) is infinite. D(4 ) N 21(@) 4is a disjoint union of
sets Ai(d ), each of which is finite and minimal in the
sense that there is no formula C € Sl(L) such that

(C - Ai)(C?) is a proper nonempty subset of Ai(<7). For

each formula Ai either

(1) rT.VvO Vvys eeey YV
((A(vl, cony vn) - A#vo)) -+ B(vo, Vs Lo vn) a D(vo))
or
(ii)hJVvl, cees WV (A(vl, cees vn) -+

BVO (Ai(vo) ~ ~ B(vo, Vs cees vn) ~ D(VO)))

Since (B(vo, Bps eees an) ~D)(@) is ipfinite and D(@ ) is
strongly minimal there can be only finitely many Ai such that
(ii) holds. Thus for each k

Sk
*T' 3 v VVvis e Vv, (A(vl, cees vn) + B . D).

Since D is strongly minimal, for some m
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’T. BvaO 3v1, cens 3vn(A(vl, ceey vn) ~ ~B L. D).

Since a ¢ cl(p) by assumption A(al, cee an) ~

~ B (a,a an) ~ D(a) is refutable in T', whence

1 e
B(a, 2 a ).

! 1* *°°° n

Now suppose that a € cl{(@¢) and choose C ¢ (L) such

Sn+1
that C(vo, ajs ++.y 2 )(&) = C and is the smallest

definable subset of |4 | containing a. Clearly C is finite

nd C is contained in D{d). Extend L to L' by adjoining

~
[~ 12

constants sa, 81 +ees 8 to L. Form T' by adding the

nonlogical axiom A(a ceey an) ~ Cla, Bys +en an) to

Th(4 ,{a}). It suffices to show T' is complete. To show

this let B(a, 815 oo an) be an arbitrary sentence in L'

E, be the formulss

wvhere B € Sn+1(L)' Let Ey, E;, E,

3y (C .
A(vl, ce vn) - BVO(C ~ B) - v, (C .

to
N’

A(vl, cees vn) -+, C=+ B
A(vl, cees vn) +C=+> . B

Since A(vl, “ee vn) generates a principal type in T one of

E E E, is a theorem of T'. Now C is the least subset of

1* 72

|d| definable in (&4 , {al, e an}) which contains a. Hence

O’

,EO cannot be a theorem of T'. Thus either E1 or E2 is a

theorem of T' so either B(a, 815 +ees an) or its negation

is afﬁaqremof T' so T' is complete. This proves the lemma.
We are now in a position to apply Lemma 18 to an

R ,-categoriceael theory which has a strongly minimal

1

formula.
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Lemma 20, Let T be a complete :Rl-categorical theory

in which pv,. is strongly minimal., There exists a positive

0
integer N such that if B is a model of T, b € |B|, and
D(B) N c1(@) is infinite, then there exists ¢ < B and

X ¢ p( @) such that b € |@ ], k(X) = N and ¢ is prime

over X.

Proof. Assume that T, B, b are given satisfying the

....... v

hypothesis of the lemma. Assume also that b § p(B)

because otherwise the lemma is trivial. By Lemma 18 T(© )

is inconsistent. By the compactness theorem there is a
finite subset Ao of A such that replacing A by AO in the
definition of © would leave T(Q ) inconsistent. Choose
such a Ao with the additional property that if the special
constant r appears in a member of Ao then the special
axiom for r is in Ao. Let r

r.. be the special

l, e« o @ N
constants occurring in AO so that if ry is in a lower level
than r, then i < J. We expand B to C by interpreting c and

J

Tis +ees Ty in |B| so that all the sentences in A, are true

in C. We first 1et(dc be b and then we choose (ri)C for

i=1, ..., N in that order. 1In choosing (KJ)C when r, €

J

A U B' we are concerned only to ensure the truth in C of

the special axiom for r However, if r, € B we choose

3’ J
(r,), not only to satisfy the special axiom for r, but also
jJ’C

J
such that the type of (rj)c in Th(B, zj) is principal where

zJ = {(ri)c | r, € AUB . 1=1=,3}. This is possidble

because, as we pointed out in the proof of Lemma 6, in any
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model & of a totally transcendental theory the principal
types are dense in S(¢ ). From Lemma 19 it is clear that if
we let X = {(ri)C | r, €A .1=1isN}, Y= {(ri)C |

r. €B .1=sis N}, and if b,, ..., b, is an enumeration of

k

Y, theggthe k-type of by, ..., by in Th(B,X) is principal.

Let & < B be chosen prime over X U Y and & ' < B be chosen
prime.over X. ©Since principal types are always realized in

models there exists b', ..., bi in Id'] such that

<bi, ceey b£> and <bl, o vy bk> realize the same type in

Th(B,X). Since « is prime over X U Y there is an elementary

embedding f of ¢ into &' which takes bi to bi l =i = k and

is the identity on X. Hence & 1is prime over X since & !
1

is, Also, since the special axioms in AO are a sufficient

subset of A to make T( ©) inconsistent not all of the axioms

;40 T3 € Band 1 =i = N, are true in C. Thus b € Y

eand since Y ¢ |@ | the lemma is proved.

We can now prove Vaught's conjecture.

Theorem 7. If T is an Rl—but not Ro—categorical

theory then there are RO isomorphism types of models of T

of power RO'

Proof. If not, from the proposition proved at the
beginning of this section there must be an Rl-but not
Ro—categorical theory T" such that for every M there exists

a model B of T" and b € |B| such that cl({b}) contains an

independent subset of D"(B) of power M, where D" is strongly
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minimal in T". Without loss we can suppose that D" is PVo,
and that in any model B of T", p(B) N cl(g) is infinite.
This follows because dim(p(B°)) is finite if B® is the

prime model of T". Now we apply Lemma 20 to T". Suppose
the value of N for T" is N". Choose M > N" and correspond-
ing B, b so that c¢l({b}) contains an independent subset of
p(B) of power M. Then there exist & < B and X ¢ p( &)
such k(X) = N", b €|@| and ¢ is prime over X. Since

p(B) N ¢c1(P) is infinite any principal l-type in Th(B,X)
vhich~contains the formulsa PV, is realized by only a finite
number of members of |B|. Otherwise PV, would not be
strongly minimal in T". Thus p( &) ¢ c1(X) which shows

that dim(p( d)) = k(X). But cl({v}) contains an independent
subset of p(B) of power M so p( &) contains an independent
subset of power M. Hence M = x(X). Since k{(X) = N" we

have contradicted the choice of M.

Theorem 8. If ¢ is a model of an MN.-categorical

1
complete theory T, then & is homogeneous.

-

Proof. By Theorem 4 (iv) and (v) it suffices to

consider an unsaturated model of T. Let a a, and

l, « 50y k

a.', ... a' be elements of | 4| such that a a

l, LI Y k

and ai, veay ai have the same type in T. We shall show
there is an automorphism f of & such that f(ai) = a{ for
1l =i = k. Since any model of T of power Rl is saturated

it is easy to see that Th( &, {al, ce ak}) is N_-categor-

1
ical. Let T* be principal extension of Th( & , {al, ceos ak})

Il
-
L

s

ot
il

[ LT

-JL}N
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in which D is a strongly minimal formula. Without loss we
may assume that T* comes from Th( & , {al, cees ak}) by

a for a e |a |

adjoining names Bpgl® "t Bpan K+1°® *°° Bke4m

and a nonlogical axiom A(al, +m) which is true in &.

vy By
Let B = (4 , {al, ces ak+m})’ then B is a model of T¥*,

Since principal types are always realized in models we can

choose a! € |@ | such that @ ~aA(a!, ...,

k+1®* °"°? a'1':+m a1':+m)'
Hence & can be expanded to a model B' of T* by letting

(ai) ; = ai for 1 £ i £ k+m. Now let X, X' be bases of
D(BY, D(B') respectively. Let f be a 1-1 map of X into X'
and onto if possible. Since B is prime over X by Lemma 10,

f can be extended to an elementary embedding g of B into B'.

Now if f is onto and B" is the image of B under g then

D(B") = D(B), whence |B"| = |B| by Lemma T, so g is the
required automorphism. If g is not onto & is isomorphic
to a proper elementary submodel of & . Let

< Cn | n <w/> be a sequence of models of T such that CO
is a prime model and Cn is a minimal prime extension of

Cn—l' Let h, be an elementary embedding of CO in g(4d).

For each n > O such that hn-l(cn—l) is a proper elementary

submodel of g(& ) we extend hn to an elementary embedding

-1
h of Cn in g(d ). Since g(& ) is not saturated by Theoren 4

(v) we have, for some N, hN(C = g(& ). We now extend h

N) N

a
of CN+1 into 1 and so on.

Again ty Theorem U (v) since & is unsaturated there must

to an elementary embedding hN+l

exist M > N such that hM(CM) = ¢, Since CM o CN it follows
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that CM+J o CN+J for all J > 0, That is at most M of
CO, Cl’ ... are nonisomorphic, But Just as we proved that
g{ @) is isomorphic to some C, we can prove each unsaturated

J

model is isomorphic to some Cj' Since modulo isomorphism
there is only one countable saturated model it naw follows
from Theorem T that T is Ro-categorical. Hence & is
saturated contrary to hypothesis so g must be onto. This

completes the proof.

w’I‘Iotice that the reasoning given is adequate for a
stronge; result in that we may replace "homogeneous" by
"countably homogeneous", i.e. the finite sequences
(al, cee ak) and (a!, ... ai) by sequences of length w.
Theorem 8 is more or less equivalent to Theorem T since
each can be deduced from the other purely on the basis of
Marsh's results.

Morley has observed [6; p. 16] that if some 1l-type is
not realized in a model¢ of an Rl—categorical theory then

‘A cannot contain an infinite set of indiscernibles., We

can sharpen this to: a model f an R _-categorical theory

-2 ="

is saturated if and only if it contains an infinite set of

——

indiscernibles. The "only if" part is immediate. For the

"if" part we continue the line of reasoning begun in the
last proof where it was shown that CO’ Cl’ ... are all
distinet and that none of them is isomorphic to a proper

submodel of itself. Let X ¢ | 4| be an infinite set of

indiscernibles. Without loss suppose X is maximal in the
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sense that there exists no proper superset of X which is a
set of indiscernibles. Let XO be any proper subset of X with
K(X) = K(XO). Let B < & be prime over X and h a 1-1 map

from X onto XO. Since B is prime over X h can be extended

to an elementary embedding h' of B in itself, Since X is
maximal h'(|B|) n (X - XO) = ¢§. Thus B is isomorphic to one

of its elementary submodels. Hence B is saturated whence,

by Theorem 4 (vi), & is saturated.
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§6 Proof of Morley's Conjecture

In this section we prove Morley's conjecture that for
an Rl-cgtegorical theory T, aT igs finite. Our first step
;n this project is to introduce a concept of the rank of a
5formula in a model of a theory. We will compare this notion
with two other sorts of rank.

If @ is an L-structure and A is an element ©
then in §1 we defined A to be minimal in & if A(QJ )
infiniﬁf and for each formula B € Sl(L(a')) B A~ A(@) or
~B . A(&) is finite. We will define a notion of rank of
a formula in a model such that minimal formules have rank
one.

Well order the class X consisting of {-1} and the
direct product of the class of all ordinals with the
positive integers by placing -1 first in the order and then
following the natural lexiocographic order. For each L-

5, (L(@))
structure & define f4 : X * 2 by induction
£7(-1) = {a e s (L(@)) | a(@) = ¢}

A e fa(< a,k> ) if and only if A § fa(x) for any

l’ LI ) Bk+l

x << o,k> and if for any set of k + 1 formulas B
from Sl(L(CY)) such that the'SEts“Bi(d) partition A( &)

there exists an x < <a,}> with one of the B, € f(x).

i
Let T be totally transcendental, ¢ & model of T, and
A€ Sl(L(d )). Call a formula A rankless if A not in the

range of %7. Let A be a rankless farmule and let<'Ba>'u<A

& e B B A B = B
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list the formulas in §,(L(&)) such that B,(@)and ~B (d)partition

At

A(g@) where A = k(@) + » There exist an x € X such that

0.
if B is not rankless B ¢ Qx(y) for y <X , because A is not
cofinal with the class of all ordinals. For some & < A both Ba
and ~B ~must be rankless; otherwise A would be in §7(x).

Now by an argument similar to that in Lemma 6 it can be deduced
that if there is a rankless formula A in a model of T
then T is not totally tramsceandental.

Thus ifd is a model of a totally transcendental
theory we may define for each A € Sl(L(<7)) the rank of
A(}j) (the rank of A in &) which we denote by RQ(A).

Ra(A) is -1 if A € f,(-1). Rq(A) is<a,k> if A €
27(<a,k> ).

In [6], Morley introduced for a countable first order
theory T, X € N(T), and p € S(X) the concept of the
transcendental rank of p. 1In [4] Lachlan interprets this
notion in terms of the rank of a formula A in Sl(L(C7)) as
follows

/ -1 if A(a) = ¢
ra(A) =9

L sup{a|(3p) p € Uy ~pE Tr%(a)} otherwise

We relate ra;A) to R, (A) in the following theorem.
1%

Theorem 9. Let & be a model of a totally transcend-

ental theory T and A € Sl(IA ad).

(i) r,(A) 2 sup {fa | 38 3k B » Rg(hA) = <o, k»)}
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(ii) For some B an elementary extension of ¢ and some

integer k, RB(A) = (rd(A).k)

(iii) For some B an elementary extension qf A

RB(A) = sup {RC(A) | ¢ » @}

To prove this theorem we need the following extension

of a lemma in [L4].

Lemma 21. Let T be a first order theory, & a model of
T, A € Sl(IK @)) and suppose Qj(A) = o then for each B < a

there“exist an elementary extension B of &« such that

i®

dB'l(UA) n TrB(B) is infinite.

Proof. If the lemma is false there exists a model
of T and a formula A € S1(IA d)) with §7(A) = o and some

B < a such that for each B » & it73-1 (UA) n TrB(B) is

B+1(B)

finite. Suppose q € Tr . Then for each C # B,

i*BC-l(q) n s (C) is a set of isolated points in S

But then if A € q, i*BC'l(q) n sB(C) is a set of isolated
points in SB(C) since iﬂjc_l(UA) = i*Bc_l(UA) and
i*ﬂc-l (U) n trP(C) is finite. Thus q € Tr®(8) but q was

B+1(B) so this is impossible. Hence

B+1

chosen in Tr
iﬂ73‘1 (UA) n Tr (B) is empty and by induction for each
Y28 + 1, for each C> @ Tr'(C) N iﬂyc-l(UA) is empty

So rgz(A) # a.

Proof of Theorem 9,

(i) The proof proceeds by induction on r(A). If
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qj(A) = - 1 then FT ~ BVOA and so the theorem holds.
Suppose,as the induction hypothesis, the theorem holds for
a formula A if q7(A) = v is less than a., We first prove

that for each B » & RB(A) < (o + 1, 1). If not, there

v

is some Bl > d with Rg (a) (o + 1, 1). Then there
1

exists a sequence of formulas (Ai) each A, € Sl(L(Bl))

i<w
such that A, (B,) ¢ A((B)), (A, 4 AJ)(Bl) = ¢ if 1 # J, and

Rp (Ai) = (a,1). Now we show that for each natural number
1

i there is a l-type p; € U, N Sa(Bl).
i

oy

- Case 1) o is a successor ordinal, say o = X + 1.

Since Rg (Ai) = (A + 1, 1) there exists a sequence of
1 .
formulas (Aij)3<w each Aij € Sl(L((Bl)), such that

AiJ(Bl) c Ai(Bl), (AiJ ~ Aik)(Bl) = @ if §J # k, and

( \
RBl\AiJI
> A so there exists pij e U

= {A,1). Then by induction for each rg (AiJ)
1

A n TrA(Bl). Then for each i,

iJ

since S(Bl) is compact and U, is closed, there exists
i

Py, an accumulation point of the pij,such that

A+l
p; € UAi n s (Bl).

Case 2) o is a limit ordinal. o has cofinality

w since a < 0y [4]. Then there exists a sequence of
ordinals (aj)3<w and a sequence of formulas (AiJ)J<w’ each
AiJ € Sl(L(Bl)), such that AiJ(Bl) c Ai(Bl),

(AiJ ~ Aik)(Bl) =@ if J # k, RBl(AiJ) = (aJ, 1) for each

J, and the aj increase monotonically to a. Then by

induction rg (Ai ) = 0, so there exists a type

¥ 3

o
J .
Pij € UAiJ n Tr (Bl)' Since UAi is closed and S(Bl) is
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compact there exists p; an accumulation point of the pij for
each i. But p, ¢ TrY(Bl) for any Y < @ so p; € UA n
i
o
57(8,).
Since UA is closed there exists p, an accumulation point of

o+l ;
the p,.and p € UA ns (®,) since each p; € UA n Tra(ia). But

then r 4A) > o +1 so i) is proved.’

(ii) Now we show that there exists B » & such that for
some k RB(A) = (a,k). By Lemma 22 since ra(A) = o, for each
¥ <o there exists an elementary extension d& of d such that
itzy;ll‘iuA) N TrY( dy) is infinite. Hence there exists a

sequence of formulas (aY each AYi € Sl(L( dy)), such

i)i<w’
Y Y = ; Y
that (A7, ~ A J)( ay) g.iri# 3, A (@ Y) c Al Y) and

rg (AYi) = y. So by induction there exists & v.i such that
Y ]

for each Y and i %jy,i(AYi? = (y,k) for some k. Without
loss of generality we may assume (Id,Y,i]-ICI) n
(ld’G,JI—ICI) = ¢ if (y,i) # (8,)). There exists a model C
such that for each y, i C>» d v.i by the compactness
theorem. Then for each Y < o and each i < w there is a k
such that RC(AYk) > (y,k) and (AYi R AYJ)(C) =@ if 1 # 3.
So RC(A) > (0,1). Since for each B 2 & RB(A) < (o0 + 1, 1)
by i), for some k RC(A) = (a,k) and C is the required

model.

(11i) 1t remains to find B » & such that RB(A) =
sup{R.(4) | C>a@ }. It suffices to show that the set of
k such that for some C»da RC(A) = (a,k) is bounded. If

not there exists a sequence of models Bi such that for each
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k < w there exists i <w with RBi(A) = (6,k). We may assume’
(lBiI-la |) n (lBJl-lﬂl) = ¢ if i # J. By the compactness
theorem there exists a model B of T which extends each of
the B,. Then RB(A) 2 (o + 1, 1) contrary to ii).

Note that § (i) and 4 (ii) together imply that
r,(A) = sup {a]|38, 3k (B> @ . RB(A) = (a,k))}.

Wg no# restrict our atfention to lﬁl-categorical
theoriés. In particular, we will deal with an hil-categor-
ical theory T with a specified strongly minimal formula D
such "that for each model B of T D(B) N cl(¢) is 4infinite.

For each  natural nuhber 2, for each A € Sz+1(L) end to

- 1 and each natural number n assign a set of formulas as

follows

r{=1) = (L 3voal

¢§O) = {3v A . BSkVOA | 0 < x < w}

o{®) o (3v,, ., ..., 3v, (¥vo(ae> v, (C 4 D(v,, ) ~ C¥))

~ (¥vy (&> 3Py 0 (CAD(V,,;))))

(35ka 3VO(D(V A C a (~Av ~ C*))) |

+1 k+l)

(L), and C* ¢ Pén-l)}

O<p<w, £k =w, Ce¢ Sk+2

el(xn) R 3vk(V¥0(A¢a-(Al,'...v Ag)

~ A o .As*) | 2 =k = w, A, € (L), 8 < w each

1 1 € Ska1

A e U ri‘) u ¢£n) and some A% ¢ oin)}
r<n i i i
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(n) _ ,(n) (n)
PA N ¢An U eAn

Note that if A € S, . (L) and A* ¢ ri“) for some n then

A* has free variables v cee Voo Thus when we write

l’
A*(al, .o al) we mean the result of substituting &y for vy
for i =1, 2 ..., 2. In this section we abbreviate
Avi’ vy (al, “es az) by A(al, .o al). Thus A(al, ces al)
e 8, (L(ta;, ... &apl).

Theorem 10, Let T be a theory of the kind described

above, ¢ a model of T, m € {-1} Uw A € 8 (L), and

L+1
81y +eey By E ]dl. The following two propositions are

-

equivalent.

(m)

i) There exists a formula A¥* ¢ PA

such that g7i=
A*(al, ce s az).
ii) For some k BZ(A(VO’al’ ceny al)) = (m,k) ifm = 0,

Ifm= -1, %7(A(vo,al, cen al)) = =1.

Notice thet there is no loss of generality in this
theorem because of our assumption that T has a strongly
minimal formulea D and that for each model B of T
D(B) N c1(®) is infinite. For, let T be an arbitrary
Rl-categorical theory in a first order language L. Then
there is a principal extension T' of T with a strongly
minimal formula D'. Let & be a prime model of T'. Let
X be an infinite subset of D'(& '). Then Th(& ',X) = T"
is a theory of the specified kind. Suppose B is a model

of T", A € S (L), A% ¢ Fim) for some m, and

L+1
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By +eey By E |B|. Then B [ A*(al, ey az) if and only if
BlL A*(al, ceny az). Moreover RB[L(A(VO’al’ ceey Bg))

n » ' [is) (o 2 \FY ' T
Rg (A(voy al?""""gy))' Thus it suffices'td nrove the theorem for T'".

Proof of Theorem. The proof proceeds by induction on
m. Ifms= -1 c?LA*(al, Cee az) for some A% ¢ Fi-l) if and
only if A(vo,al, ey az)(d') = ¢ which is equivalent to
%Z(A(VO’al’ cee az)) = -1, We assume the theorem is true
for m < n and prove (i) implies (ii) for m = n. Then we
prove a lemma. Finally we assume the theorem holds for

m < n and prove (ii) implies (i) for m-.= n.

To prove (i) implies (ii) consider a formula

A €S (L) and a formula A¥* ¢ rgn) such that 7}

L+1

A*(al, cos al) with a vo. 8y € |@|. Notice first that

l’
it suffices to prove the case in which A¥ ¢ ¢£n). For,

suppose the (i) implies (ii) has been shown for each integer

(n) (n)
L+1 A A

Then since dg:A*(al, con al), A(vo,al, . az)(d) =

2, each A € S (L) and each A* ¢ ¢ and that A* € 0O

s
igl(ai(vo,al, cee ak) (2)) for some 8pg1s ¢+ 8 in | @ |
and some A,, ..., As. Moreover for each i & satisfies
n-1
A* (a., ..., a,.) and each A* ¢ U F(n-l) U ¢(n) and some
i 1 k i A A
i=1 i i
A%* ¢ ¢(n). So for each i there exists n, = n and a k., such
i Ai i i
that %7(Ai(v0,al, cee az)) = (ni’ki) and for some i there

exists k such that %Y(Ai(al, ce al)) = (n,k), by induction
and the assumption that the theorem holds for each

B* € ¢£n)' But then %z(A(al, “es al)) = (n,m) for some
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integer m.
Thus to prove (i) implies (ii) when m = n, let

A e Sz+1(L) and supposed [ A*(al. ey az) where

A* ¢ ¢£n). Letting A' A(vo,al, ey az) we wish to prove

that for some g B, (A') (n,q). From the definition of

¢£n) we see A% has the form

) ~C A (~2, ~CH*)))
where p‘is a positive integer, £ = k <w ¢ is in Sk+2(L)
and C* is in Pén-l). Since at:A*(al, N al) there exist

p41r ~ves By E |z | such that for all but p elements b of

D(g ) aF C*(aj, ... &, b). Thus for any ay» a end

k’

d € D(g l) - D(g ) ay E C*(al, cees By, d) since D is
strongly minimal. By induction for some s R_ (C'v (a)) =
ai k+1
- Vo= . !
(n-1, s) where C C(vo, Bis eee By, vk+l)' Then Rng )

is £ (n,s). For, if not there exist L-formulas B ce.y B

l’
with the

s+l

where each Bi has free varieables VorVpsns co0 Y

following properties. There exist constants akiz, ey
i i

. i
a € | @] such that if B = Bi(vo,ak+2, cees a),

B{(d') c A'(a ), Bi(” ) N Bj(a ) =@ if i # §, and
Rd(Bi) > (n,1). We will show that this condition implies
for each elementary extension g 1 of 7 , each

d e d(7 ,) - D@ ), and each i that R_ (B! . C! (a)) =
1 dl i vk+1
(n-1, 1). This in turn implies R_ (C! (d)) = (n-1,s)
a1 V41
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which is a contradiction allowing us to conclude that
Rd(A') < (n,s).
Suppose Rd(Bi'-) > (n,1) and for some d, ®a and some

denlay) -2(@) g (3 ~c'  (2) < (nla). By

k+1
induction there exists a formula (Bi ~ C)* € Pér)c for some
_ . » i i
r < n-1 such that @,k (BiAC) (al, cee By, 4y 80, ...am).

Since D is strongly minimal, there exists P, €W which may
be assumed larger than p such that for all but Py members of

D(d) le (Bi ~ C)* (al' ¢

i

Ps Byepo

i
8y ceo am). Consider

the fé}mulas

F = (D(v

Vil ) ~ (Bya ©) & (B ~ C)%)

k+1

Py

<
(Vo (Fe F)) (Vv (F » 37 “vp )

(D(vy 41 )~(B; A c)))

k+1l

<P
A3 N I Dy g) ~ (By A €) a (Fun(By A C)¥))

k+l k+l

Now F* ¢ P§r+l) and 4k F*(al, coe By akiz, cee ai) so if F'

is the formula F(v cee ai) by induction

i
0281 *+rs Bps Byl
there is an integer q such that R(JF') = (r+l,q) < (n,l). For

each element ¢ € Bi(a) there exists an element b in D( &)

such that 7 f:Bi(c) ~ C'(b,e) A C*(al, “en b) since

ak,
Bi(@) cA'(g) and @ F a*(a), ... 8, ). Let by, ...

an enumeration of the elements b € D(&Z ) such that

b be
q

a't;C*(al, cees ak,b) ~ ~ (Bi ~ C*)

1
sy b, & )

ak k+1°® °°° ak+2

We know there are only finitely many such b from above.

(al, “oe

Then 37(3{ ~ C; (b)) = 57(0' (b)) = (n-l,u) for some u < W
k+1l
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q
by induction. Butd L Vv. (B! e F' vy (B, ~ C (v,)).

So Bi(d’) is the union of a finite number of definable sets
each with rank less than (n,l) and thus 57(35) < (n,l1)
contrary to assumption. Thus we conclude as outlined above EQ(A')

b
<(n,s8). Since VVOBS 1 (C'),Ra(Al) > (n,1). Therefore

Vk+1
there exists an £ 1 = & < § such that Ra(A') 2 (n,R). We

have shown (i) implies (ii) when m = n.

Lemma 22. Let qFT A €5, (L) o8y € |2,

8.1,

A' = A(vo,a cos al) and @ <= w. Suppose the Theorem holds

l)
for each m < o and that for each B>»7 there is some k such
that RB(A') = (a,k) then there exists r < a and

r+l ‘
A% ¢ ri ) such that & h.A*(al, ceeoBp).

Proof: Adjoin a new unery predicate symbol q to L to
form L' and a new constant symbol f to L' to form L'. Let
A be the set of L' sentences which are true in an L'
structure C' Just if there is an elementary substructure
C* of the reduct of C' to L such that |[C*| = q(C'). Let
D® be the L' sentence BvaO(D ~ ~ Q). Let Fl be the set of
sentences

{elementary diagram of @} U & U {D%|n < w}.

If k < w and F € S (L) consider the following

k+2

formulas.
Let m = £ + k.

Let Fl € Sm+2(L) be the formula

F(vo, Vo+1r ccr Vpo vm+l) ~ A.



1

* = *
Let G(F,Fl ) 3vm+l(D(vm+l) ~F, ~F
Let G¥*(F,F

Let F.* be in 821 (L).

1 ).
l“’ P) be

(Vvo(G(F,Fl*) <> G(F,Fl“)))

~ (¥g(a(F,F %) » 3%Pv L (D(v ) ~ Fp))

<
=p
A 3%y 3vy (D(v,)) ~ (<G(F,Fy®) v ~Fi %)),

Then 1f Fl* is in Fés), G*(F,Fl“, p) is in T

(s +1
nle 1 ®#)°
1 LA X ’
Let I‘2 be the set of sentences
rou far(e) ~ - a(£)} U
{.(6(F, F{)(f, 8 s o By Dgoas ees bm) ~
G* ( EFl*’p)(al, vee Boy Boas e bm))]mfor k € w let

(w
F e Sk+2(L), F¥elU U Tp

9
w<o 1

Dgyrs +or s € la |}

Now we show that P2 is inconsistent by finding for
each L" structure C" such that C" F Pl, for each element

f e (A' ~ ~ q)(C') formulas F and F

constants Co+p?® °°° e such that

l” an integer p, and

(o E'G(F,Fl*)(f,al, ree Bpy Cplay een C )

~G*(F, Fl*, p)(al, cee By Cply e cm).

Let C" [z T, and |Bl = q(€"). Let C = (C"|L. B:is an

L-structure. Let C, be an L-structure prime over |zl u {£}.

68
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Then D(Cl) - D(B) # ¢§. For, suppose D(Cl) c D(B) and let Bl

be prime over D(Cl). (Bl’ C, exist by 4.3 of [T].) Then

1l

- s = -
C, = B, for if not Bl+ C. while D(Bl) = D(Cl). But then Bl

1 1 1
and Cl are models of T which satisfy the hypothesis of the two
cardinal theorem so, as in-section 3, T is not ¥ 3 categorical.
Thus there exists 4 € D(Cl) ~ D(B). Let C € Sk+2(L) and

¢1s ++o ¢ €]/@ | such that C(f,c ) generates the

1* Sk Ykl
principal l-type in Th(C,|d|U{f}) reelized by d. Then

c(r, Cys wvv Cps vk+l)(C) is finite. For if not, since D is
strongly minimal and contains infinitely many algebraic points
there exists an algebraic point b € |& | such that CF

c(r, Cis ooe cg, b). Since b is algebraic there exists a

formule B € S,(L) and an integer t such that CF

B(v) . BStvo B. But since C [k C(f, Cys wvs C b),
]
c(r, Cys ser Cpos vk+l) generates a principal type and
c(r, Cis wov Cps Vk+1)(c) is infinite, B(C) is infinite. So

for some q < w

- <
C {'C(f, cl, e 0 0 9 ck, d) A 3 qvk+l C(f, Cl, « e 0 Ck, vk+l)l
Let C, be the following member of Sm+2(L).
c (v s sesy V ) A
Vi, ool Vel MM m+l
<
A . 379 c (v oo V )
m+l Vis cee Vi 2+1° m+1l
Let Ci be obtained fron Cl by substituting al, ce. 8y for
Vis ¢e0 Vg and Cia v+ Oy for Voerr o0 Vg For any
b € D(C) - D(B) RC(Ci (b)) = RC(Ci (d)) since any such
v

m+1 vm+l

b realizes the same l-type in Th(C,{al, vee B, Cyy oaes ck})
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as d and C is homogeneous by Theorem 8. Since D(C) - D(B)

: - =q v, -
is infinite q- Vv03 vm+lC ; therefore
if RC(Ci (4)) z (a,1) then R (A') = (a+l, 1) contrary to
Va1 1
hypothesis. So for some u < a and some k RC(C1 (a)) =

m+l
(u,k). Thus by hypothesis, there exists a formula c} e Péu)
1
such that C I- CI(al, ees By Cpy nee Coy d). Let p be the
maximum of q and the cardinality of
; * ] .
™~ Cl(al, vee Boy Cpy e ck)(C ) which is & finite subset of

D(C“)v Then

€t AT(E) & - alf) & G(C, CHI(E, By uiymgy €gp cee €y)

~ G*(C, cs, p)(al, cee Bgy Cpy ees ck)

so C" does not model P2 but C" was an arbitrary model of Pl

80 P2 is inconsistent. By the compactness theorem there

Sy
. (t,)
exists k € w Fd, ..., F> in 8, .. (L) enda FX" e T 1 for
K+2 1 Pt
1

some ti < o such that

S .
I, b (W (AT (vg) ~ ~ alvg) » va(F!, FH¥)(aag,eq,nnie)))

1
S i i#
»
A(QG (F ’ Fl" pi)(al, P az, cl, “ o ck)).

Cys coey Cy list the constants occurring in some Fi and are
assumed to occur in each Fi for notational convenience,
S »
Let B' = V G(Fi, Fi )(vo, Bl s ceey Bgy Cop eeey ck).
1
If (A' A~ ~ B')(¢7') is infinite then there are models of T of
arbitrarily large cardinality with (A' . ~ B')(B) -
(A' ~ ~ B'")( @) # ., Thus there is a model C of Pl with

(A' A~ ~ B'")(C) - q(C) # ¢. But this is impossible. So



71

. 8 i i#
a k (VVO(A'*+ (1v1(G(F » Fy )(al, cee Bps Cra s ck)) .

(A" ~ ~ B))))

1l

8 { i < So(pl ol (U+1)
AL AGHET, T, py))) - (3 JVO(AA~(i:§(F L FIN) eT,

where u = max(ui) < a.

We return to the proof of Theorem 10. The induction
hypothesis asserts that (i) is equivalent to (ii) if m < n.
We have already proved (i) implies (ii) if m = n and now we
wish to show (ii) implies (i) if m = n. Suppose A € sl+l(L)’

&), ... 8 € |Q], A' = A(a;, ... ;) and for some k

l ] ‘u
%7(A') = (n,k). The definition of Gin) allows us to assume a
[
that ¥k = 1, We will find a formula A* ¢ Pin) such that ;m
- by,
¥
— *
a - A (al, . 32)'

We first assert that there is an elementary extension
B of ¢ and a formula B' € Sl(L(B)) such that B'(B) c A'(B)
RB(B') = (n,1) = sup {RC(B') | ¢ B}, To see this construct
the following sequences of formulas and models. Let BO = U

= A
and B, A', Given Bm end B¢ Sl(L(Bm)) choose Bm+l by

theorem 9 such that RBm+1(Bm) = sup {R,(B_) | ¢> .},

Choose Bm+l such that Bm+l(Bm+l) c Bm(Bm+l) and RBm+1(Bm) =

{r,2) > (n,1) for each C Bm+1 RC(Bm+1) < RBm+l(Bm).

For, suppose not, then there exists C such that RC(Bm+l) >

.RBm+1(Bm) ) RC(Bm); 1.e., since Bm+1(c) =4 Bm(C). RCGBm+1)

RC(Bm) = (A,2). Hence there exists u < A, there exists q such
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that RC(Bm ~A ~ ) = (u,q). But then since R8m+ (BmA~B

1l

(u,q) and(n,1) < (A,2) R (B_.) < (A,2) which is a
Bm+l m
contradiction. Since there is no finite descending sequence in

Fm+l m+1) =

a well ordered set, for some k R (B,) = (n,1). Let B, be
By, K k

| R—
the formula B' = B(bl, oo bs) where b,, ... b_ € IBkl and let
B, be B. Then as desired RB(B') = (n,1) = sup {RC(B') | ¢> B}.
Now B’ and B satisfy the hypothesis of Lemma 22 so there exists
for some k < n such that B;;B*(kl, coo bs). If
k < n-=- 1 by the induction hypothesis RB(B') < (n,1) so k = n - 1.
# 1
BE B (bl, cen bs) AVVO(B(bl, cee bs) + A') and B is an
1s see C € lal, gk
* ' » (n)
B*(cy, vvv e ) A¥v(Bley, ovv e ) » A'). Since B* € I'y™’, and

elementary extension of ¢ so for some ¢

we have proved (i) implies (ii) for m = n, for some &%
%7(B(cl. co cs)) = (n, . & must equal 1 since B(cl. “eo cB)QZ)

c A'(g) and RZA') = (n,1). If C' = c(vo, Bis +oe Bg,

Cis oos cs) = A' . - B(vo, c cee cB) then R (C') < (n,1). So

l.

by induction there exists C* € nﬁl Féj) such that
y=-1

d}iC*(al, cee Bgy €y aus cs). Hence letting
IYSRIREE 3vs((Vv0(A - B(vo, Voe1s o vs) v C))
A B® A C¥%)

A* is in Fin) and J LAﬁ(al. ces az) proving the theorem.

Recall from Section 2 that aT is defined to be the least

a
ordinal such that for all &€ N(T) and B > o S T( a) = SB(d)-

! +
0y

T

In [7] Morley proved aT exists and is less than (2 for

every complete theory. In [4] Lachlan shows that ap < w, for



73

each complete theory. We apply Theorem 10 to prove the

following conjecture of Morley.

Theorem 11, If T is htl categorical then aj is finite.

Proof. If for some 7 and some B = w there exists

P E SB(CZ), then since T is totally transcendental for some

Y2 B, pe Tr'(g) and by lemma 21 there exists B 7> d,q € T (B)N

a1 .
a;g (p)so there is a formula A' = A(vo, 81y oes az) in

S,(L(B)) with rB(A') = w, By Theorem 9, there exists C > B
and an integer k such that for every elementary extension Cl

of ¢ Rpla) = (w,k). Now by lemme 22 with & = w, there exists

an n < w and a formula A% ¢ F£n+l) such that C !;A*(al, cos az).
By theorem 10 for some k RC(A') = (n+l, k). This is a

contradiction so there is no & &and no B =2 w and no p with

T € SB(ﬂ ). Hence an < @,
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§7T A Note on Definability

Let L be a first order language containing a unary
predicate p, ¢ an L structure, and B = p(&Z ). Recall that
it Aes . (L(g)) end aj, ..., & ¢ |a | Aley, ...y 8 )(a)

denotes the set of k-tuples b b, such that & |-

l’ LN k

Wa ~Anl11 anlh walas+d w R A
LA =) o O oda ode - Ad - ke O A 44 et oA

[¢]
O
[+
O

A(al, vees By By, auey bk).
the form A(al, cenvs an)(a') N B an A-relation. We prove
under certain conditions on Th( 7 ) each A-relation is definable
by naming a finite number of constants from B. There is no
assumption in this section that L is countable,

For simplicity in notation we assume n = k = 1.
Each. . . A relation on an infinite set B can be represented
by a pair (A,n) where A is a bijective map of x(B) into B
and n € 2K(B). Thus A(i) is in the A relation if and only if
n(i) = 1 where i < k(B)., There is a natural equivalence
relation on such representations produced by calling two
representations equivalent if they represent the same relation
on B, Ambiguously we denote both the equivalence class
containing (A,n) and the relation (A,n) represents by
[(A,n)]. We also consider pairs (%,h) where & & B" and
h € 2% for some n < w, (%,h) is a partial representation of
[(A,n)] if some (A',n') € [(A,n)] extends (£,h).

To simplify notation in the following formulas we assume

that in addition to the sequence of variables Vos Yy e L

contains an infinite set of variables Zaln where o € 2w and
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a n is the initial segment of a of length n. We order such
finite sequences by length and among those of the same length
lexiocographically. If q is the last sequence of length n

under this order the prefix 3z 32q will indicate that

o ¢ o 0
m = n is being existentially guantified.
a(i) _

each variable za|m’

If A is a formula and o ¢ 2w then A

PN . . Lo(i) .
a{i) = 1 and A = .A if

Aif
a{i) = 0.
Let Cn be the formula 3zo, ey BZq
n-1

L tpn 3ol n ) alvo, Zali)a(l)) where g is the last sequence
ae2 i=0

of length n in the order described above. Then if Cn is true
in T for each model of (¢ of T there is a complete tree of
length n of distinct A-relations.

Let & be an element of Bk, X = range £ and h € 2k

for some positive integer k. Define H?z n) € Sen(L(X)) to be
9

k-1
h(J)
320, oo BZq (ngn(Bvo(J:o A(vo, 2(3)) ~
n-1
a(i)
120 Alvy, zali) )

where q is the last sequence of length n.

Define [(A,n)] to be in class 1 if ¢ h~n%£,h) £or some
partial representation (&,h) of [(A,n)]). For n > O, define
[(A,n)] to be in class n if [(A,n)] is not in class n-1 and

n .
a r"H(Z,h) for some partial representation (&,h) of [(A,n)].

Lemma 23. If [(A,n)] is in class n for n € w then

[§x,n)] is definable in (g , X) for some finite X ¢ B.
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Proof. Let (2,h) be the partial representation of

[(A,n)] suen that<7§:~H?2 n) Suppose that 2 € Bk and
]

h € 2k. Let X = range £, If n = 1 let G be the formula
k-1
A

i=0 l(i))h(i). If n > 1 let G be the formula

A(vo,

k-1 |
A hlvg, 2P e (A, vy

i=0

3zo, eee 3z, ( A

a0, 3vO(A(vo,vl) ~

n-1l

k-1
A

’ -2
A(vo,z(i))h(i) o
0 3

Alv J)“‘“)1

>

0°%a|

i 0]

~ Vv, [~A(vo,vl) + 325, ... 3z

(A nel 3vo(~A(vo,vl) ~ A A(v
ae2 i=

k-1
A A(v
J=0

O’zalj)a(J))]

where q' is the last sequence of length n.
Since [(A,n)] is not in class n-1 if [(A n)] =
A(e)(g ) N B clearly ¢| G(a). Thus, if we can show there
is but one A-relation [(A',n')] such that [(A',n)] =
A(a")(Z) N B and @ G(e') we can define [(A,n)] by
3vo G(vo) ~ A(vo,vl) ~ p(vl).
Suppose there exist A-relations [(Al,nl)] and

[(Az,nz)] and elements a,, &, € | @] such that [(Al, nl)] =

Ala)(g) N B, [, # [(A,,n,)], endg cla)) - Glay).



Then there is some element b € B such that 9k A(a,,b) .

1 .
~A(a2,b). Then czhﬁ(k,h) which is a contradiction if n = 1.

If n > 1 let ll = £ U<k,0> and hl = h U <k,l> . Let
2, = 2 U <k, and h, = h U <k,0> . Since & i:e(al),
- nl : n-l
a L-H . Since g = G(a,), @ - H . But then
(2,,h,) : 2 " P(8,,h,)

gF? H?k n)* This contradicts our hypothesis and the lemma
?

and M 2~ A - -~
ULvilLiliCu owvuve.,

m
Q

&

[/}

L PN
LOW

._J

fo
In [19] Shelah defines a complete theory T to be stable

if for each n + l-ary predicate R the following set of formulas

-

is inconsistent.

z(‘a)"l a(i)
Ip = {3vo(i:o R(vo, (yl, cees yn)dl i) ) L(a)<w} U T

2 () denotes the length of 7 , & sequence of zeroes and ones.
(y,, o0 v.) is an n-tuple of variables indexed by @ | 1.
1 n'al 1
In our context we can conclude that if T is stable T A
is inconsistent where
2(a)-1

r =13 vo( A Alvy, z

R i N (@) <wlu T
i=

afi
Theorem 12. Let 47 be a model of a stable theory in a

language L and B be a subset of |d | definable in L. Any

relation on B which is definable in (4 ,|@ | ) is also

definable in (& ,B).

Proof. Since T is stable T A is inconsistent. By

the compactness theorem for some n<7j:~ Cn. But then for
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every ( %,h) 4 |- . H? L »h)" Hence each [ (A ,n)] has class = n
?
and the theorem follows from Lemma 23.
We can invoke the compactness theorem once more to

produce the following uniformization of Theorem 12.

Corollary. If T is a stable theory in a language L, p is
& unary predicate in L, and A a binary predicate in L such that

FTB vy ¥ vl(A(vo,vl) + p(v,) there exist integers N, M and

formulas C,, ... Cy in SN+1(L) such that
. M
Fo Vv ((Vv A(vo,v,) * p(v.))+ (v 3v, , ...3V,
T 0] 1l 0’1 1l 1=1 i, iy
(v Vel (A(vo,vn+l)+4-ci(vi s oeee Vi o vﬁ+l))'

1 N
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§8 Related Results

In this section we list some recent results on problems
related to the subject of this thesis.

A natural generalization of the Hos conjecture is: if T
is a complete theory having infinite model in & language L such
that there are K sentences in L then T is categorical in k¥
if and only if T is categorical in every A > k . Special cases
of tbis theorem have been proved by Rowbottom [15] and
Ressayfé [13]. The general theorem has been proven by
Shelah [17].

In [4] Morley conjectured that if K(T) =A> Nb and T is
categorical in A then T has a model with power lessb§han A,
Shelah [18] has proven this conjecture in the case A 0 2 .

Harnik and Ressayre [14] prove the following theoren.

T is categorical in Kk > K (T), if and only if every set C

of power K 0° which is a proper subset of a model (¢ , has a
prime extension which is an elementary submodel of ¢& .
The notion of stability and many other concepts related

to categoricity are explored by Shelah in [18].
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