THE MISSING PART OF A PROOF
OF THE UNSOLVABILITY
OF THE WORD PROBLEM

FOR GROUPS

by

MARTIN SEBASTIAN GERSON

B.A., McGill University, 1967

A THESIS SUBMITTED IN PARTIAL FULFILLHMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
In the Department
of

Mathematics

©) MARTIN SEBASTIAN GERSON 1970
SIMON FRASER UNIVERSITY

JULY, 1970

Name: Martin Sebastian Gerson

Degree: Master of Science

Title of Thesis: The Missing Part of a Proof of the
Unsolvability of the Word Problem

for Groups

EXAMINING COLMITTEE APPROVAL

Senior Supervisor

(T. C. Brown)

Examining Comnmittee

(B. Alspach)

Examining Ccmmittee

(D. . Eaves)

Examining Committee
(K. E. Rieckhoff) External Examiner

Department of Physics

Date Approved: July 28, 1970

S

Abstract

Joseph J. Rotman, in his group theory textbook, The

Theory of Groups, An Introduction, gives a partial proof of

the unsolvability of the word problem for groups. The com-
plete proof can be broken into two parts. The first part is
a proof of the unsolvability of the word problem for semi-
groups and the second part is a proof that the unsolvability
of the word problem for semigroups yields the unsolvability
of the word problem for groups. Rotman gives only the second
part of the complete proof. This thesis, then, gives the
first part of the proof.

Two problems are presented in the thesis, the weak and
the strong word problems for finitely presented groups. In
Chapter I the two problems and the use of Church's thesis to
prove them both unsolvable is described. Chapter II deals
with the concepts of Turing Machines and computable functions.
Chapter III is devoted to defining recursive functions and
proving them to be computable, 1In Chapter IV the unsolva-~
bility of the weak halting problem for Turing machines is
proved and in Chapter V the unsolvability of the strong
halting problem for Turing machines is proved. Chapter VI
is devoted to showing how the results of Chapters IV and V
yield the unsolvability of the weak and strong word problems
for semigroups, respectively, and introducing Rotman's com-

pletion of the proof of the weak and strong word problems

- ii -

for groups.

In Appendix A a few solutions for word problems for
special classes of groups are mentioned, and in Appendix B
we show the equivalence of recursive and computable functions

. . R . .
and the existence of the universdl Turing machine.

- iii -

TABLE OF CONTENTS

Introduction
A. A Brief History
B. ilathematical Prerequisites
C. ©Notation and Terminology

Chapter I: The word Probkleia ana Church's Taesis
Chapter II: Turing idachines
Chapter III: Computable and Recursive Functions

Chapter IV: The Weak Halting Problem for
Turing iiachines

Chapter V: Ilore Recursive Functions and the
Strong Halting Problem for
Turing !Machines

Cnapter VI: The Weak and 5trong Word Problems
for Semi Groups

Bibliography
Further References
Appendix A
Appendix o

Index of Some Notation and Definitions

- iv -

page

15

24

58

65

99

111
112
116
121

ACKNOWLEDGMENT

I wish to take this opportunity to express my
appreciation to Dr. T.C. Brown for his advice, suggestions,
and encouragement during the preparation of this thesis.

I would also like to thank Dr. H. Gerber for suggesting
one of my major references, and Mrs. Margaret Kelley for

doing the typing.

The support received from Dr. Brown's N.R.C. grant

No. A-3983 is also appreciated.

Introduction

A. A Brief History

It is known that every group, G, can be defined by
means of a presentation, (S;R , where S is a set of genera-
tors of the group, and R is a set of defining relations or
relators. A relation is of the form W, = W,, where W, and
W2 are words on the symbols in S and their inverses, and a
relator is a single word W on the symbols in S and their
inverses., The group G defined by the presentation (S;R)‘is
obtained in the following manner. If we replace each defin-
ing relation, W, = Wy, in R by the relator Wlwz-l to obtain
the set R' of relators and then take the factor group,

F/N, where F is the free group generated by S and N is the
normal subgroup of F generated by R', we have G is isomor-
phic to F/N.

Speaking very imprecisely, then, G is (or is isomor-
phic to) the largest group generatad by S in which all the
defining relations in R hold and in which all the defining
relators in R are equal to the identity. It is also known
that anything whichk "“looks like" a presentation for a group,
no matter how large nor how strange the defining relations,
always determines, in the manner described above, a unique
group (up to isomorphism).

We shall employ what many algebraists consider to be

an abuse of language, and shall say, if G is a group given by

the presentation (S;R), that the elements of S are, in fact,
elements of the group G, and that all the elements of G are
words in the symbols of S and their inverses.

We said that every presentation defines a group, but
there may arise great difficulties as soon as we wish more
specific information about the group; e.g., is it Abelian?
is it finite? 1is such-and-such a word in the group equal
to such-and-such another word in the group? etc.

In 1911, Max Dehnl’J formulated the following three
decision problems for a group, G, given in terms of a pre-
sentation, called the "word problem", the "conjugacy" or
"transformation problem", and the "isomorphism problem"
respectively.

(I) For an arbitrary word W in the generators of G,
decide in a finite number of steps whether W is equal to the
identity element of G, or not.

(II) For two arbitrary words Wl, W2 in the generators
of G, decide in a finite number of steps whether Wy and W2
are conjugate elements of G, or not.

(III) For an arbitrary group G' defined by means of
another presentation, decide in a finite number of steps
whether G is isomorphic to G', or not.

We say that one of these problems is solved when an
"effective procedure" for making the required decision is
found. It is the case, however, that none of thesas problems

has been solved in general, and, in fact,; none of these

problems can be solved in general. In other words, there is
a group, G, for which none of the above tliree problems can
be solved.

This thesis deals only with the first of the tiree
problems, the word problem, and the only mention that will
be made of the other two problems, the conjugacy and isomor-
phism problems, will ke to show that if the word problem for
G is unsolvable, then the conjugacy problem for G .is also
unsolvable. The isomorphism problem is considerably more
difficult to deal with, and so no further mencion will be
made of it here.

Suppose that G has unsolvable word problem; i.e.
suppose that there exists no decision process which will in
a finite number of steps determine, for an arbitrary word
W in the generators of G, whether or not W is equal to the
identity element of G. If the conjugacy problem for G
were solvable then there would be a decision process which
would finitely determine whether or not W and any given
word in G are conjugate in G. In particular we could de-
termine whether W and the identity of G are conjugate. But,
of course, any conjugate of the identity is equal to the
identity, and so we could determine where or not #W is equal
to the identity in G, contradicting our supposition.

In 1937, A. k. Turing [20] showed the unsolvability

of what we shall call "the strong halting problem for Turing

machines."” Emil L., Post [13], in 1947, used Turing's result
to show the unsolvability of our "strong word problem for
finitely presented semigroups." Tine unsolvability of the
word problem for finitely presented groups was finally proved
independently by W. W. Boone [26] and P. Novikov [12] in the
mid 1950's. Boone's revised proof of 1959 [27] was considera-
bly shortened by J. L. Britton in 1963 [5]. Both Boone's and
Britton's proofs start from Post's semigroup result.

In Chapter 12 of his book The Theory of Groups: An

Introduction, Rotman [15] gives an exposition of the unsol-

vability of the word problem for groups. The complete

proof can be divided into two parts; the first part is the
proof of the unsolvability of the word problem for finitely
presented semigroups based on the work of Turing and Post,
and the second is the proof of the construction, from the
semigroup of the first part, of a finitely presented group
with unsolvable word problem. While Rotman roughly describes
some of the notions involved in the first part of the proof.
he only rigorously gives the second part in his book.

The purpose of this thesis, then, is to give a
complete, detailed, rigorous proof of the unsolvability of
the word problem for semigroups required by Rotman, so that
a student of group theory with a good knowledge of the
important concepts of basic group theory, but with no ad-

vanced mathematical knowledge outside the area of group

theory, except for a small amount of number theory, can read
and follow a complete proof of the unsolvability of the

word problem for groups by first reading this thesis, and
then reading Rotman's proof of the second part, starting in
the middle of page 265 of his book, without requiring outside
reference material.

Turing's methods have been altered and revised con-
siderably by a number of people, including Post, and the
sections of this thesis on Turing machines and recursive
functions (Chapters II, III, and V) although rearranged con-
siderably and adapted more specifically for our own pur-
poses, are based heavily on the exposition in Martin Davis's

text, Computability and Unsolvability, [6]. The main

theorem of Chapter VI is based directly on Post's original

paper [13].

B. Mathematical Prerequisites

The only mathematical prerequisite for the under-
standing of this thesis, other than a basic knowledge of
group theory, elementary set theory, and the definition of
a semigroup, is some knowledge of the basic concepts and
results of the Theory of Numbers; including the concept of
divisibility, the definition of a prime number and the fact
that there are infinitely many primes, the Fundamental

Theorem of Arithmetic, and the Chinese Remainder Theorem.

C. Notation and Terminology

Numbers. The only numbers that will be used in this
thesis will be the natural numbers. 8y "natural numbers" we
will mean the positive integers including 0 (zero). Thus,
unless it is clearly specified otherwise, the term "number”
will always mean "natural number”, as will the term "integer"”
(no negative integers will be used).

n-tuples. We will be frequently referring to n-tuples
of numbers and will use the notational convention that the
n-tuple (xl,xz---,xn) may be denoted by (X(n)) and the

),

n-tuple (yl,yz,---yn) may be denoted by (¥ This con-
vention will only be employed for n-tuples of x's or y's.
We will however often denote the (nt+2)-tuple (z,xl,xz,---,xn,y)

by (z,x(n)

,y) or the (n+l)-tuple (x,yl,yz,---,yn) by
(x,Y(n)), etc..

Functions. All functions used will be functions
whose domains are contained in the natural numbers, or are
contained in the set of n-tuples of natural numbers, for
some n. A function whose domain is contained in the set of
n-tuples will be called "n-ary" or “"n-place". (A one-place
function will be called singulary; a two-place, binary;
and a three-place, ternary.) We shall usually employ the
"abuse of language® whereby an n~ary function f..is written

f(xl,xz,-~-xn) or f(X(n)), etc.. All functions shall be

functions into the natural numbers. We shall adhere to the

convention that a necessary condition for two functions to
be equal is that they have the same domain, 'i.e. if one of
the functions is not defined for a particular n-tuple of
numbers, neither is the other. An n-ary function whose
domain is the set of all n-tuples of numbers will be called
"total”.

Characteristic Functions. Given a set S of n-tuples

we define the characteristic function of S, written

cs(xll"'lxn)l by

Cs(al,az,--'an) 0 if the n-tuple (al,az,"',an)es

and Cs(al,a2,~-'a)

n 1l if (al,az,---,an)¢S.

Ends of Proofs: The symbol [I will be used to

denote the end of a proof.

CHAPTER I

THE WORD PROBLEii AND CHURCH'S THLSIS.

Let G be a group with generators, S, and defining rela-

tions, R. Tne word problem for G is tne problem of determining

whether an arbitrary word in the generators of G is or is not

equal to the identity in G. We say that the word problem for

G is solvable if there exists an effective procedure for

determining whether or not any given word in the generators
of G is equal to the identity in G, and we say that the word

problem for G is unsolvable if no such effective procedure

exists. If U and V are words in the generators of G then
clearly U = V if and only if UV™Y = 1. Thus the word problem
for G could also be said to be the problem of determining
wnhether two arbitrary words in the generators of G are or are

not equal. If H is a semigroup witn generators T and defining

relations E, then the word problem for H is the problem of

determining whether two words in the generators of H are or
are not equal.

There are two problems which we can call the word problem
for finitely presented groups. The first, which we shall refer

to as the weak word problem for finitely presented groups, or

simply the weak word problem, is the problem of determining

whether in an arbitrary group G with a finite set, S, of gene-
rators and a finite set, R, of defining relations, an arbitrary
word in the generators of G is or is not equal to the identity
in G, or whether two arbitrary words in G are or are not

equal in G. Thus the weak word problem for finitely presented

groups is the problem of solving the word problem for G for
all finitely presented groups G simultaneously. We say that

the weak word problem is solvable if there exists an effective

procedure for determining whether in an arbitrary finitely
presented group G, two arbitrary words in the generators of G

are or are not equal. We say that the weak word problem is

unsolvable if no such effective procedure exists. The impor-

tant thing to note here is that we are looking for one single
effective procedure that can be applied to any finitely pre-
sented group to solve the word problem for that group.

The other problem, which we shall call the strong word

problem for finitely presented groups, is the problem of finding,

for each finitely presented group, G, an effective procedure
which will solve the word problem for G; i.e. which can be
used to determine wnether or not two arbitrary words in the
generators of G are equal. Tine important thing to note here
is that we are not looking for one single procedure that can be
applied to any finitely presented group, but are asking whether
or not for each group we can find a procedure to fit that
group. The strong word problem would be unsolvable, then, if
we can find a group, G, such that G has unsolvable word
problem,

It is immediately clear that a solution to the weak
problem yields or includes a solution to the strong problem,
and so it might at first seem that the terms “weak" and “strong”

should be applied the other way around.

10

Now suppose that tnere were no solution to the first,
i.e. weak, word problem. Then there is no uniform effective
procedure which can be applied to any finitely presented group
to solve the word problem for that group. But there are in-
finitely many finitely presented groups, and it is conceivable
that for each one there is an effective procedure which will
solve its word problem, but that these procedures are all dif-
ferent and there is no way of determining which procedure to
use for an arbitrary group so that there is no single proce-
dure which can be applied to all finitely presented groupé.
Thus the unsolvability of the second problem is a stronger
result that the unsolvability of the first; and since we will
show that both problems are, in fact, unsolvable, this is why
the terms "weak" and “strong" are applied as they are here.

Similarly, wé define tie weak and strong word problems for
finitely presented semigroups. The problem which most authors

refer to as simply the word problem is our strong word prooblem

for finitely presented groups.

Since both word problems are unsolvable, and since the
unsolvability of the strong implies the unsolvability of the
weak, and since we shall be proving the unsolvability of the
strong word problem, there might seem to be no reason to in-
clude a separate proof of the unsolvability of the weak word
problem., However, a major portion of the proof of the unsolva-
bility of the weak problem is so much simpler than that part
of the proof for the strong problem that a separate portion

giving the weak result is included in this thesis, if only for

11

the reader who wishes a proof of tne weak result without
having to read the considerably longer portion for the strong
result.

There is one basic difficulty in proving the word problems,
both weak and strong, unsolvable. We have only an intuitive
idea of what an effective procedure is. The notion of an "effec-
tive procedure to solve a problem" is described by Boonélas
"a uniform set of directions whnicih, wnen applied to any one
of the questions constituting the problemz, produces the correct
answer after a finite number of steps, never at any stage of
the process leaving the user in doubt as to what to do next.”
This seems to be a precise enough description of what we would
all expect an effective procedure to be, and, in fact, if we
were trying to prove the solvability of the word problem and
someone were to propose a certain procedure and argue reason-
ably that the procedure was effective, there would be no prob-
lem in accepting that. The difficulty arises when we are trying
to prove that no effective procedure exists. Our description
of an effective procedure is sufficient to let us recognize
that we have an effective procedure when we do have one, but
it doesn't tell us anytning about what kind of situation must
arise when we don't have one.

If we are trying to show that there is no effective pro-

cedure for solving a problem P, we might start by showing that

lSGG itein [2] of Bibliography, p. 211.

“In our case tie questions are those of the form, "Is the
word W in the group G with generators S and defining relations
R equal to 1?°"

12

an effective procedure for solving the problem Pl can be
transformed into an effective procedure for solving some problem
P2 and that any effective procedure for solving the problem
P, can be transformed into an effective procedure for solving
some proplem P3, and so on. But clearly any proof must be
finite in length and so we must eventually come to some prob-
lem Pn for winich we must show directly that no effective pro-
cedure exists. So we can transfer the difficulty of showing
lack of an effective procedure from one problem to another,
but eventually we have to deal with this difficulty direcﬁly.
Let us consider the following proposal for handling this
difficulty. Suppose we have a problem whose solution consists
of finding an effective procedure for answering a countable
set of questions, gach of which admits only a yes or no answer,
Since the number of guestions is countable, we can list the
guestions in a saquence: Ql' Qz, Q3, ***. We define a functionm,
f, on the natural numbers by £(n) = 0 if the answer to guestion
Qn is yes and f(n) = 1 if the answer to guestion Qn is no.
We say that a function is calculable if an effective procedure
exists for determining the value of that function at any given
point. It is immediate, then, that our function f is calculable
if and only if our problem is solvable. We don't seem to be
any further ahead, however, because if we are to show the
problem unsolvable we must siiow the function f uncalculable
and this again means we must show that no effective procedure

exists. But this difficulty can be taken care of by accepting

a proposal generally accepted by logicians and known as

13

“Church's Thesis". Church's thesis, in the form that we shall

employ, is the claim that every calculable function is recur-

sive. The converse of this claim will be immediately okvious

upon the definition of a recursive function because, as with
effective procedure, there is no problem in recognizing a
calculable function when faced with one. Church's thesis has,
of course, no proof since there is no way that one could for-
mally prove anytning awout a notion as loosely described as
that of a calculable function. However, if we accept Church's
thesis, and we shall, we find tunat we have dealt successfﬁlly
with our difficulty, for the notion of a recursive function is
a well defined one, and there exist methiods, sufficient for
our purposes, of determining whether or not a function is
recursive,

We shall now define a device, called a Turing machine,
which can be used to compute certain numerical functions. If
a function f can be computed by some Turing machine we call it
computable. We will go on to show that a function is recursive
only if it is computable, and then produce a function which is
not computable, hence not recursive, hence uncalculable. Thus,
we will have a problem (the calculation of this function) for
which no effective procedure exists. Since, as was said before
the difficulty of showing no effective procedure exists can be
transferred from one problem to anotner we will be well on our
way to a proof of the unsolvability of the word problem.

Thne initial problem, or problems, whose unsolvability we

shall prove by this metnod are called the weak and strong

14

halting problems for Turing machines. We then snow that the

solvability of the weak or strong word problem for finitely
presented semi-groups would imply the solvability of the weak
or strong, respectively, halting problem for Turing macnines,
showing that the weak and strong word problems for finitely
presented semigroups must be unsolvable. Rotman shows that
the unsolvability of the strong word problem for finitely
presented semigroups yields the unsolvability of the strong
word problem for finitely presented groups, and we shall show
how Rotman's proof can pe adapted to do the same thing for

the weak problems.

15

CHAPTER II

TURING MACHINES.

This chapter will deal with "calculable functions®. As
we noted in Chapter I, the term "calculable function" is not
really properly defined and we will first make an appeal to
intuition and say simply that what we mean by a calculable
function is a function on a subset of the natural numbers or
a set of n-tuples of natural numbers for which an algorithm
exists that can be used to determine the value of the function
at any given point in its domain. Without attempting to de-
fine "algorithm" we will note that it seems intuitively clear
that if an algorithm exists for doing a certain job then that
job can be done by some kind of “calculating machine”,

Our plan of attack will ba as follows. We will define

a certain kind of "machine", specifically a Turing machine,
Y

and will show how this machine can be used to calculate certain
functions. We will then define a "computable function" to be
any function on a subset of the natural numbers, or a set of
n-tuples of natural numbers, for which there exists a Turing
machine that will compute the value of this function at any
given point in its domain.

Informally, a Turing machine may be thought of as a box
that looks something like a tape recorder. The machine can be
loaded witih a tape, infinitely long in both directions, which
is actually a discrete sequence of squares. A finite number of

these squares may have symbols printed on them, one symbol to

16

a square, the symbols coming from the list s s R

1’ S2v %3¢

At any given moment during its operation the machine is in one
of a finite number of states or "internal configurations"

(the possible internal configurations being denoted by symbols
from the list dyr 9p0 Q30 «»+) and is "scanning" one of the
squares on the tape. The action of the machine is completely
determined by its internal configuration, the symbol, if any,
printed on the scanned square, and a finite set of built-

in instructions, each instruction being of one of the following
forms:

i) When in internal configuration qy scanning a square
with symbol sj(or scanning a blank square) change the symbol on
the scanned square to Si and change to internal configuration d;-

ii) When in internal configuration 94y scanning a square
with symbol sj (or a blank square) move the tape so that
scanned square is now next the one to the right and change to
internal configuration dy

iii) When in internal configuration q; scanning a square
with symbol sj (or a blank square) move the tape so that the
scanned square is now the next one to the left and change to
internal configuration q;.

When the machine changes a symbol sj or a blank to a symbol

s, we say that the machine "prints the symbol sk". At tne

k
beginning of a "computation"” a tape, which may be blank or may
have a finite number of si's printed on it, is placed in the

machine so that the machine is scanning one of the squares on

17

the tape, and the machine is set with an internal configuration,
qj. The machine begins operating by itself following its

built-in instructions. Of course, the built-in instructions

must be such that no two are contradictory. When the machine

finds itself in a certain internal configuration scanning a
square with a symbol (or no symbol) such that none of its in~-
structions correspond to that configuration and symbol (or
blank), the machine stops and we say that whatever is printed
on the tape when the machine stops is the "resultant" in that
machine of whatever was on the tape in the beginning. Notice
that in some cases the machine may start and never stop.

We are now ready to formalize our description of the
Turing machine.

DEFINITION 2.l1. An expression is a finite sequence (pos-

sibly empty) of symbols chosen from the list: dy.dyrd3 i
so,sl,sz,°"; R, L.

We will often write B instead of g and the symbol S (or
B) will be used to denote what we intuitively think of as a
blank square. Because Sy will be a commonly used symbol which
will take on a special significance, we will often simply write
1l for Sqe

DEFINITION 2.2. A guadruple is an expression having one
of the following forms:

(1) qisjskql

(2) qiszql

(3) d;8409,

18

DEFINITION 2.3. A Turing Machine is a finite, non-empty,

set of quadruples that contains no two distinct gquadruples
beginning with the same q; and sj. The qi's and sj's that occur
in the quadruples of a Turing Machine are called its internal

configurations and its alphabet respectively.

The reader will note that the quadruples of types (1),
(2) and (3) correspond to the instructions of types i), ii),
and iii) respectively mentioned in the informal description.
The condition that no two quadruples may have the same first
two symbols corresponds to the informal condition that no two
instructions are contradictory. 1If it is not clear now, this
remark will become clear when the rzader has reached DEFN 2.7.

DEFINITION 2.4. An instantaneous description is an ex-

pression that contains exactly one 95 neither R nor L, and is
such that the q; is not the right-most symbol. If Z is a
Turing machine and a an instantaneous description, then we say

that ‘o is an instantaneous description of Zz if the q; that

occurs in o is an internal configuration of Z and the si's
that occur in o occur in the alphabet of Z.

DEFINITION 2.5. An expression that consists entirely of

the symbols s is called a tape expression. A tape expression

may also be called a word in the si's.

In what follows, P and Q are usually tape expressions.
DEFINITION 2.6. Let 2 be a Turing machine, and let o be
an inst. des. of Z, where d; is the internal configuration that

occurs in o and where sj is the symbol immediately to the right

19

of q; - Then we call q; the internal configuration of Z at g,

and we call sj the symbol scanned by Z at g. The tape expres-

sion obtained by removing q; from o is called the expression on

the tape of Z at a.

DEFINITION 2.7. Let 2 be a Turing machine, and let a,8
be instantaneous descriptions. Then we write "o + g (2)",
or (where no ambiguity can result) simply "a - B", to mean that
one1 of the following alternatives holds:
(1) There exist expressions P and Q (possibly empty)
such that
o 1S Pqisz
B is qust
and qisjskql € Z.
(2) There exist expressions P and Q (possibly empty)
such that
a 1s Pqisjst
B is stqlst
and qiszq1 € Z
(3) There exists an expression P (possibly empty) such
that
a is Pqisj

8 1is stqlsO

and qiszq1 € 2

1By the definition of a Turing machine, at most one of the
alternatives can hold.

20

(4) There exist expressions P and Q (possible empty)
such that
o is Pskqisz
g is qusksz
and qistql € 2
(5) There exists an expression Q (possibly empty) such
that
a 1is qisz
B is qlsosz
and qistql € 2.
The following theorems follow immediately from this de-
finition.
THEOREM 2.1. If o + B (2) and o -+ y (Z), then 8 = y,.
THEOREM 2.2. If o + B (Z), and 2 -« 2', then o =+ g (2').

DEFINITION 2.8. An instantaneous description o is called

terminal with respect to %z, if for no g do we nave o +» B(Z).

DEFINITION 2.9. By a computation of a Turing machine Z is

meant a finite sequence al,az,---ap of instantaneous descrip-
tions such that Oy %i4q (z) for 1 = i = p~1 and such that
oy is terminal with respect to Z., In such a case we write
"ap = Resz(al)" and we call ap the resultant of oy with res-
pect to Z.

EXAMPLE 2.1. The reader will recall that we may write
B for S and 1 for Sy Let Z be the Turing macnine consist-
ing of the following quadruples. (Formally, 2 is the set

whose elements are the following quadruples.)

21

9,189
) BRa,
qleq2
quRq3

q41Bg,
Let @y = qlllBlll. Then the following is a computation of 2.

= qlllBlll
+ qlBlBlll
-+ qulBlll
-+ quzBlll
- Bqu3lll

-+ Bqu3Bll

Note that BlBq,Bll is terminal. Hence Res, (q;11Bl11) =
Bqu3Bll. Also note that 2 has internal configurations d; .
9, and 93 and has alphabet B,l1 (or so,sl). The reader will
note that this particular machine will always perform a com-
putation, i.e. will always stop after a finite number of
steps, no matter what instantaneous description it starts with.
EXAMPLE .2. Let Z be the Turing machine consisting of

the following gquadruples.

9180R9;

9 %5Rqy

938,89,

9153599

Then the following is a computation of 2.

22

$2978,51838, * 555,475,538,
* 528,51491838,
¥ $,8,519,845,

which is terminal since no gquadruple of Z begins with qzso,

Note, however, that if we begin with the instantaneous descrip-

tion o = 8,5.8,8,, we get tae following

S29;

& = S55978,%1525:
>

$25,918:5,%5;

T 8,8,58:9:8,85,;

T 828281895

T 828281825195

T 8252%192%1509159

T 828,818,8180549;5

> s

82%251%2%150%091%0
and the machine "will go on forever". Since no terminal

instantaneous description is reached there is no computation

of 2 beginning with o and we say "Resz(a) is undefined".

We now show how Turing machines can be used to perform
certain numerical computations. If n is a positive integer

. n
we write S5 to denote S;8;°°°8; (n occurrences of si) and

0

we let S; denote the empty expression.

DEFINITION 2.10. With each number n we associate the

. - - n+l
tape expression n where n = 1 .

23

DEFINITION 2.11. With each k-tuple of integers,

(nl,nz,-°°nk), we associate the tape expression (nl,nz,---nk)=
n,Bn,B- " "Bn, .

Thus 3 = 1111 and (Z7;3,0) = 111B1111B1

DEFINITION 2.12. Let 4 be any expression. Then
IMil is the number of occurrences of 1 (or sl) in M.

Thus,Hllq4s 1Bl]l = 4 and lls s_q4soﬂ = 0.

254 255
DEFINITION 2.13. Let Z be a Turing machine. Then, for

each n, we associate with Z an n-ary function

as follows. For each n-tuple (ml,mz,---mn), we set
(n)

a = ql(ml,m2,~"mn). Then we let WZ (ml,mz,o--,mn) =
liRes (o) Il if Resz(d) is defined, i.e. if there is a compu-
tation of Z beginning with o, and we leave Wz(n)(ml,mz,...,mn)

undefined if Resz(a) is undefined. We write Wz(x) for
1
‘PZ()(X).
DEFINITION 2.14. An n-ary function f(xl,°-',xn) is

partially computapble if there exists a Turing machine Z such

that

f(xl,xz,---,x) = WZ

In this case we say that Z computes f£. If in addition,

f(xl,x -'-,xn) is a total function, i.e. has as its domain

2I
the set of all n-tuples of positive integers, then it is

called computable.

CHAPTER III 24

COMPUTABLE AND RECURSIVE FUNCTIONS.

DEFINITION 3.1. The operation of composition

associates with the functions f(Y(m)), gl(X(n)), gZ(X(n)),---:

(7)) | the function h(x‘™) = £(g x ™y, g x™, L.,

I (X
gm(x(n))). This function is defined for precisely those
n-tuples (al,...,an) for which (al,...,an) is in the domain

(n)y,

of each of the functions gi(X i=1,2,...,m, and for

which the m-tuple

(gl(alloo.,an) lg2 (all..‘,an),...,gm(all'..'an))

is in the domain of f(Y(m)).

Its value at (al,...,an) is
f(gl(al,az,...,an), g2 (al,aZ,-.-,an),...,gm(al,az,...,an)).

DEFINITION 3.2. The operation of minimalization

associates with each total function f(y,X(n)) the function

(n) is the least value of

h(x(n)), whose value for given X
y., 1f one such exists, for which f(y,X(n)) = 0, and which is
undefined if no such y exists,

We write h(X(n)) = miny[f(y,X(n)) = 0]

EXAMPLE 3.1. Consider the function
X/2 = miny[(y+y)—x = 0], x/2 is a partial function defined
only when x/2 is even.

DEFINITION 3.3. The total function f(y,X(n)) is called
(n)

regular if miny[f(y,x = 0] is total.

DEFINITION 3.4. A function is partial recursive if

it can be obtained by a finite number of applications of

composition and minimalization beginning with the functions

of the following list:

(1) s(x) = x+1

(2) U-n(xl,"‘,x) =x,,1 =1 =n

i n i
(3) x+y
N =x -y if x =zvy.
(4) x y -0 ify > i.
(5) =xy.

DEFINITION 3.5. A function is recursive if it can be
obtained by a finite number of applications of composition
and minimalization of regular functions, beginning with the
functions of the list of definition 3.4.

The following corollary is immediate from the pre-
ceding definitions.

COROLLARY 3.i. Every recursive function is total and
is partial recursive.

As will be shown in the appendix, the converse of

this is also true.

The remainder of this chapter will be devoted pri-
marily to showing that every recursive function is compu-
table. (We will show in the appendix that every computable
function is recursive.)

To show that every recursive function is computable
we must construct Turing machines to compute each of the
functions in the list of definition 3.4, and for each appro-

priate set of computable functions a machine that will

26

compose them, and for each computable function >a machine
that will minimize it.

THEOREM 3,2. The addition function f(x,y) = x + y is
computable.

PROOF: We must construct a Turing machine Z such
that WZ(Z)(x,y) = X + y. Consider the machine of example

2,1 consisting of the quadruples

9, 1Bqy
9,BR,
Iy 1Ra,
q,BRay

q3qu3

Let o, = ql(ml,mz) = qum,Bm,. Then

m m
_ 1...™

a; = qlll Bll
m m
> qBl 'B1l ?
m m
> Bq,l 'BIL °

+ LN I

m m

+ Bl lq2311

1

> Bl 'Bq,ll 2

ml m

+ Bl Bq3Bl 2

which is terminal. Thus,

27

¥, 2 (m ,m) = [Res,(a)
m
qu3Bl

m
IB1 2))

Lt M. a

m

THEORE1 3.3.” The successor function, S(x) = x + 1,
is computable.

PROOF: Let 2 be any Turing machine with respect to
which qlﬁ is terminal for all m, e.g. let Z consist of the
single quadruple q;BBg;. Then ¥,(m) = [ig;m}l = m + 1. D‘

THEOREH 3.4, The proper subtraction function, f(x,y)=
X * y, is computable.

Let Z be the Turing machine consisting of the following

gquadruples:

q;1Bq,)
91 8Rq,
q1Rq,
q;BRa;
d31Rq;
q3BLa,
q,1Bq,
q,BLg,
q51Lqe
qleq6
qgBL4,

q7qu8

q7BRdg
q81Lq8
qBBqu
dg9BRq; 4
9101Bd
We must show that V¥ (2)(m m,) = m, = m
y/ 172 1
two cases., Let 0 = ql(ml,mz) = qlmle .
my ;;mz, and let k = ml - m,. Then
m,+1l m,+1
0 = qll 1 Bl 2
m m
= q,11 %1% 241
m m
> q,Bl 21kgy 23
m m
> Bg,1 21881 %1
+ > e 9
m m
- Bl 21¥qB1 %1
m m
+ Bl %1¥Bq,1 2
-’l L N B
m m

Bl 21%B1 %1q,8

m
Bl 2

m
Bl

m
Bl 2q4lB

m
2 kg 2q4BB

lk

m
Bl

m
Bl

m
21kBq61 288

m
21581 8B

2

2

23

and we consider

First suppose that

29

> s e

m

m
- qBBl 2,k 2

1"Bl “BB

m

m
+ Bq,1 2.k 2

1"Bl BB=a3

Now, except for initial and final B's, o3 is like oy with
a pair of 1l's cancelled. The process is now repeated.

Eventually

which is terminal. But lupl!= k =m -m,. Hence, if m, =M, ,
(2) = -
TZ (ml,mz) = m m,.

Next suppose that m, < m,, and let k = m, = m. Then

m,+1 m,+1

_ 1 2
al-—qll Bl

which is terminal.

b4

'
Y

+

1

k

m

B “q,lB1 1B

my

k

m

B ~q,BB1 1B

m

k

m

B “Bq,Bl 1B

m

k

B “BBg,l 1B

1

k

B “BBl q,1B

my

k

B "BBl q,BB

my

k

B "Bg Bl BB

my

k

B ~q,BBl BB

m

k

B “BqyBl BB

my

k

l+l

l+l

l+l

ml+l

ml+l

ml+l

ml+l

ml+l

ml+l

ml+l

B “BBq,,l BB

m

B "BBB'q, BB =

k

But HatH =

Z

(2)

10my)

0.

ml+l

%t
Hence, if my, < m,,

0'

30

31

THEOREM 3.5. For each number n = 1 and for each
number i, 1 =i = n, the n-ary function Uin(xl’xz""”xn) is
computable.

Let Z be the Turing machine consisting of the following
quadruples, where j runs over all integers #i such that

l =3 =n,

951Bdpn45

93BRay 4

q2n+jBqu
q;1Bq;
q;BRAH 41

9on+11R9n41

BRA; 41

m,+1 m,+1 m,+1 m +1

Now, ql(mllmzr""m) = qll 1 Bl 2 B**°Bl 1 Be**Bl n

n

DUon+i

ml+l m2+l mi+l mn+l
+ B Bq,l B«-++Bl B+ +*Bl

ml+l m2+l mi+l mn+l
+ B BB B**"Bq;l B*°*Bl

ml+l m2+l m mn+l
> B BB B...Bq Bl "Be*°Bl

m,+1l m,+1 m. m +1
1 2 4., i . .aq N
+ B BB B**°BBq, , 1 "B*-'Bl

m, +1 m,+1 my X m_+1
-+ B BB B+ +BBl qu+l"'Bl

32

> eaos

.. m. m +1
+ B%1 lthnl n

'+ ® 8 @
m, m_+1
s, i.t_'n -
+~ B”1L "B"B Bqn+lﬁ
which is terminal. Hence,
m, m_+1
«+«,m_) = B51 gt ™
n
THEOREM 3.6. The function (similar to the multipli-
cation function) f(x,y) = (x+1) (y+l) is computable.

We shall construct a Turing machine Z such that

v, 3 (x,y) = (x+1) (y+1)

Z

Informally what we do is construct Z such that when given

ml+l m2+l
an initial instantaneous description, a; = qll Bl ’

it duplicates the second block of 1l's my times, each time
erasing a 1 from the first block, thus finishing with ml+l
blocks each with m,+1 1l's,

2
Let Z consist of the following quadruples:

qlqul
9, BRq,
qy18,9;
d38,Rq;
q31Rdy
q3BRa,

q4qu3

(for s,t suitably chosen)

By Bl = Ry

1
iy

33

94BLqg
d51Lqg
95BLag
dgls 39
dgS3Rdy
96BBa; g
971Rd,
9,BRag
dglRag
dgBlag

q91Lq9

dgBLqg
dgS3las

9101%41

Q) oBL

d)0528q;

The introduction of the two symbols, S, and S3s into the
alphabet of Z is to aid in the process of counting and regu-
lating the total number of duplications.
(2) - o
Our proof that Wz (ml,mz) = (ml+l)(m2+l) is induc
tive. It is convenient to prove first a step which will be

repeated many times throughout the proof, i.e. the step of

m2+l

duplicating once the second block of 1's (the block, 1) o

Let a

expression.

m.+1
= pBl 2

Then g -+

>

34

quB, where P is an arbitrary tape

m,

PBl “q 1BB
m,

PBl “q 5,BB
m

PB1
m,

PB1 s3Bq8B
m

PBl

m
PBl

)

PB1l qgs3B1
)

PBl qslBl

mz—l

2
s,9,BB

2
s3Bq91

2
s3q9Bl

PB1 qg11B1

m,=-1

PBl q6s31B1

PBl s

m2-1

31B1q8B

PBl s31qu91

2.2
PBs;1 “Bl “qgl

m m.+1
Pqus31 2Bl 2

m,+1 m,+1
PBq.l 2 Bl °

m.,+1 m,+1

PqgBL > Bl °

m2+l m2+l
> quoBl Bl
m2+1_ m2+l m2+1
qgBB » *** > Pq, Bl Bl
ml m2+1

Now let 0y = qlll Bl ’

Thus PBl

m m,+1

1 2
Then o) > qlBl Bl
m m,+1
> Bq,l 1Bl 2

m,-1 m.+1
> Bq,s,1 © Bl 2

m -1 m.+1 m.+1
1 2 2
-+ Bqloszl Bl Bl

m.-1 m.+1 m.+1
1 "1 2 g1 2
m,-1l m.+1 m.+1

1 312 g12% =4

+ Bq;Bl

-+ BBq21 K

35

(*)

by (*)

Thus the "effect” of the Turing machine is to delete a l

m

from the expression 1 1 and to duplicate 1

. This process

36

occurs again and again until

oy -
m m.+1l m,.+1 m.+1
> B TqyS,Bl 2 BL 2 Br+eBL 2
V—\,w‘
m,+1 times
1
+ . o
m,+1 m.+1l m,+1 m.+1
»B ' qBl 2 Bl2 BcBlS =
s s g i
ml+l times ”
{
But ap is terminal, and HapH = (ml+l)(m2+l). Hence,
wZ‘Z)(x,y) = (x+1) (y+1). 0

THEOREM 3.7. Let £(x™), ¢ x(®)), gz(X(n)),°'=,gm(X(n))

be (partially)} computable. Let h(X(n)) be given by.
hix®)) = £(g x™), g, x g x ™))

Then h(x(n)) is (partially) computable. Thus the class of
(partially) computable functions is closed under the opera-
tion of composition,

Before proving theorem 3.7., let us use it to show
that multiplication is computable.

COROLLARY 3.8. The multiplication function f(x,y)=xy
is computable.

Let f(xl,xz) =X = Xy gl(x,y) = (x+1) (y+1);
gz(x,y) =y + 1. Then by Theorems 3.4 and 3.6, f and g, are

computable and gz(x,y) = S(Uzz(x,y)) and so is computable

37

by theorems 3.5, 3.6, and 3.7. Thus by theorem 3.7

il

h(x,y) £(g; (x4¥),9, (x,Y)

]

(x+1) (y+1) = (y+1)

(x+1) (y+1)

(y+1)

= Xy + X is computable.

Now taking f(xl,xz) =x *x again and taking gl(x,y)=xy+x

2
and gz(x,y) = Ulz(x,y) = x we have the computability of

k(x,y) = f(g; (x,¥), g,(x,y)) = (xy+x) * x = xy. Thus xy is

computable. g

We will now prove theorem 3.7. We shall adopt the
convention of systematically omitting final occurrences of
B (a blank) in instantaneous descriptions, unless the B is
immediately preceded by a q; - Thus if 2z contains the quad-
ruple q3BLq3 we shall write lls3szlq3B > lls3s2q3l (2).

A check with definition 2.7 will show that there is no prob-
lem in doing this.

DEFINITION 3.6. If 2 is a Turing machine we let 6(Z)
be the largest number i such that a; is an internal confi-
guration of 7.

DEFINITION 3.7. A Turing machine 2 is called n-regular

(n>0) if (1) there is an s>0 such that, whenever

Resz[ql(ml,...,mn)] is defined, it has the form qe(z)(rl,---rs)
for suitable EyetttEgy and

(2) no quadruple of 2z begins with qé(z)'

38

Informally, n-regular Turing machines present the
outputs of a computation in a form suitable as inputs of
a computation by another machine.
DEFINITION 3.8. If 2 is a Turing machine, then z ™
is the Turing machine obtained from Z by replacing each in-
ternal configuration q;, at all of its occurrences in quad-
ruples of Z, by Qi

LEMMA 3.1. For every Turing machine Z, we can find

a Turing machine Z' such that, for each n, Z' is n-regular,

and, in fact,

) = (n) .o
ResZ.qu(ml. 'mn)]‘qe(z') ¥, (m,, m) .

PROOF: In this and in future descriptions of Turing
machines there may be comments appearing in parentheses
at the right of the formal list of quadruples. These
comments are intended only as informal aids to give an in-
tuitive idea of what the machine is "doing".

Let A and pbe the first two symbols in the list
52,53,84,'°’ that are not in the alphabet of Z. Let Zl

consist of the following quadruples:

q1Lqy

q,BXq; (print A on the left)
q; *Ra,

q1Rq;

;

d,BRa; [

d31Rq,
q3BLq4
q,Beay
q4 Phdg
d5lLlgg
458145

U5 Reg

1
|
",

39

(move right until a double
blank is reached)

(print p on the right)

(move left until XA is reached)

It is easy to see that with respect to Zy,

ql(mll‘..lmn) 5> s e +q6(ml'-~-'mn)p
which is terminal. Now set K = §(2®?) = g(z) + 5 and let

Z., consist of all the quadruples of 2

2

(5) i, addition to the

following quadruples, where q; may be any internal configura-

tion of Z(S)

Q3 ABy 43
45 Bl 44
Uok+iBrok+i
ARg

Tok+irR94

9 pBA3k 4y
A3x+1 BRIy 44
Uygai®Plak+i

Ay +i P9y

(erase the marker))

(print X one square to the left)

(return to the main computation)

(erase the marker p)

(print pone square to the right)

(return to the original computa-
tion)

Obviously the effect of Z(s) by itself on the instan-

40

that of Z on ql(ml,...,mn) only with the subscript of each

(3) to work" on the

q raised by 5. But if we were to “put 2
instantaneous description Aq6(ﬁITT7TTE;)p it would get stuck
the first time it scanned A or p since neither A nor p is in
the alphabet of Z and hence of Z(s). It is easy to see, then,
that the addition of the above quadruples allows Z2 to deal
with A and p and perform basically the same computation

that Z(S) would perform if A and p weren't there. Now,

either Resz[ql(ﬁITTTTTE;)] is defined in which case we have, i

with respect to Zz, pr

Aqs(ml,...,mn)p + *** > dap, i,

which is terminal, where {lgll = uResz[ql(ﬁITTﬁzﬁﬁ;)]n, or
Resz[ql(ﬁITTTTTEE)] is undefined, in which case so is
Reszz[xqé(ﬁITTTTTm;)p].

Let i = 5K+1 and let Z3 consist of all the quadruples of
the form qisjsqu1 where q; is any internal configuration of
Z2, where sj belongs to the alphabet of ZZ' and where no
quadruple beginning with qisj belongs to Z,. Clearly, if

APqup is a terminal instantaneous description with respect

to Z2' we have
APQ;Qp » APq;Qp (Z3)

where A\Pq; Qp is terminal in Z,.
Next let Z4 consist of the following quadruples where

sj ranges over all the symbols of the alphabet of Z other

41

than 1 and B (i.e. S and sl)

VR

q,,BLay (move leftward looking for i)
%S 31

Uy Ry41

%1+1538 141

BRq (move rightward looking for a 1)

Ai+1 55941
Ay+1 18942
qrf1+lquM+4 (f e ;]s:e;:?ghgg Zéigggztg) 1
14280942

1Rg (locate the block of 1's)

Qup+2+ 794+ 3

9i+2 R4 3

Qe 3B1 43 (add 1 to the block of 1's)

g+ 31RD41

BLg

In+4°" Y1144

Qps+4 1R 44 (terminate)
D+ aM 45

With respect to 2, \PqQp + ...
> qu+lPQp

-

LI 4

and the process is rercated.

+ AB qm+11Wp whele

42

s> and W is a

tape expression

+
&

present we eventually have + ...

Finally let

vicus observations wit

Lipas 3.2,

* MFBCg 0

1f tnere were originally p l's

+ MFs%,, .B
LT
S TP Sy (in acccrdance with
e . ~ - -
“he convention of
omiteing final 2's.)
. s P+l
Lk+5‘ N

Z1uzzuz3uz4“ Ther,

our present ones,

cocmbining our pro-
we have

o e o

‘lesztril (m-‘ Feouvo y(n)] '+J-

=g W
*g(z') &

(a)

———

(1“] ,..n‘ 29 0 a)Lﬁ) D

Por @&a~h n-~regular Tering wmachine 2 and souh

nsb, there is a (p+n)-regular Turing machine ZP such that

whensver

‘;"' .- ‘. '; hl)]

9oz)(rii;..*r)

43

it is also the case that

Res, [ql(kl,...,kp,ml,...,mn)] =

Tg(z) KyreerrkprTpeeeeiXg)e

whereas, whenever Resz[ql(m171..7mh)] is undefined, so is

Reszp[ql(kl,...,kp,ml,...,mn)].
PROOF: Let §,e be distinct si's not in the alphabet »

of Z. Let Ul consist of the following quadruples.

q,168q, (replace the first 1 by §)
q,6Rq,
qjled; |
q; eRq; r l<izp
ququ+i3(replace 1 by €)
Ap+11€9p47
9p+15R9p41
qp+lB€qp+2

qp+2€qu+3

With respect to U ql(kl,...,k ,ml...,mn)

P
kl k +1 ml+l mn+l
+ q;81 “B...Bl P g1 B...Bl
kl k +1 ml+l mn+l

> 8q,1 "B...Bl P pm B...Bl

kl k
-> 68 B..-BE

k k
+ §e YB...Bg P

kl k

-> 68 Bq-aBE p

which is terminal.
Next, let N = g(zP*2)

(p+2)

guadruples of Z and, in

ruples, where q; may be any

qjeldy,;
i 144

o+1 €M+

U+ BlAy+ 4

A+ 9BdoN+1
Dy n+1 B3N+
A3n+1B693N+1
A3n+i SRAgN+i
AN+1ERIsN+1
g+ 189y

A5 n+i € gN+i
Agn+1 BP9 7n+i

Agn+i TN+

Aen+iC€9gN+i

dgn+iPe9gN+i

44

+1 ml+l mn+l
qp+1Bl B...Bl

+1 m,+1 m_+1
qp+2€l B...Bl

+1

Eqp+3 (mlr o e rmn) ’

), and let Lb consist of all the
addition, the following quad-

internal configuration of Z(pfz):

(interrupt computation)

(search for §)

(copy §)

(resume main computation)

(observing g, prepare to
copy ¢)

(observing B, prepare to
copy B)

(copy ¢€)

45

U7n+1 6By (copy B)
I7n+iBeT7n+i
Ugn+i€R9n+i (repeat)
dgn+iBRAgn+i

If P is any tape expression, then, with respect to Up

kl kp+l kl k +1
-’. 2 0
kl k +1
+qN+iGe B...Bg P p
kl k +1
+dyy4iBE B...Be P p
k k +1
> BBe 1B...Be P 1P
q3N+i E L N Y J E
k k_+1
+q §Be lB Be P 1p
3N+i e
kl kp+l
+6q4N+iBe B...Be 1p

kg k_+1
+8Bdgy 1€ B...Be P 1p

o e

oo

kl k_+1

+8§e ~B...Bg p 1p

A5N+i
ky kK +1

>8¢ “B...Be © eq BP
Thus, under the "action” of U2' all of the ¢'s are moved one
square to the left whenever one of them is encountered, making

room for a computation, equivalent to that which Z would

46

make, to be carried out.

Now, let U3 = U;UU,. Then, with respect to U,

ql(Kl'...’kp’ml’...'m;) > eee

kl kp+l
+ d¢ B-ocBE Eqp+3(m1,¢-o'mn)

+ §¢ "B...Bg EqN(rlr---lrs)

wherever Resz[ql(ml,...,mn)] is defined; otherwise, there is

no computation beginning with ql(Ki,...7kp,ml,...,mn) (i.e.
when starting with this instantaneous description, the machine
will never stop).

Finally, let M = e(U3) and let Zp consist of all the

quadruples of Us in '‘addition to the following:

quLqN

dEBAy4q (erase one ¢)
A +1 B +1

Up+1 €141

e 11941

A+18 1942

Then, using what we have just shown for U3, we have

with respect to Zp, whenever Resz[ql(ml,...,mn)] is defined,

ql(K "-.’kp'ml"lclmn) > s e 0

> L)

47

kl k_+1
> 6€ B.ooBe p EqN(rl'-oo'rs)

Ky k +1
> 8e "Be.uBe Poque (FT ooy

1 k_+1

> GE B.n.Be p qb4+lB(rl'oa-'rs)

ky k_+1
> q1‘4+161 Bo a QBl p B_(rl' . e ,rs) i
k,+1 k_+1 i

11 5,..81P B(E]seeerE)

di1+2

qe (Zp) (kl'.- . ,kp,rl'u- o'rs)

which is terminal. -0
LEMMA 3.3. THE COPYING MACHINES Cp. For each p=0
there exists a Turing machine Cp such that Cp is t-regular

for all t>p and

Resc [ql (Kl'l.-'kp'mlltll'mn)]=)

qp+l6(ml,...,mn,kl...kp,ml...mn).
Informally, the machine Cp recopies on the left all but

the p leftmost arguments. Note that p=0 is permitted.

Let Cp consist of the following quadruples:

919
9,8,
quszq2 (set "marker" sz)

d8,Rdy

Ap+75509p411

Ap+753B9p415

llq

p+8-"Ip+8

BLgq

qp+8 p+8

qp+853Lqp+8’/

>

I

9p+8°254%p+10

Ip+85419p+9
Up+8%5°9p+9

qp+9qu

p+10

48

3=igp+2

(move over p blocks of 1's)

(set "marker" 53)

(hunt for double blank on right)

(scanning 1, replace it by Sy and
prepare to copy 1)

(scanning B, replace it by Sg and
prepare to copy B)

(scanning s,, erase and prepare to
terminate)

(go left)

(finding s, replace it by s,)

2
(replace S4 by 1)

(replace s. by B)

5
(go left one square)

qp BLqp+10

9p+102%49p+10

9p+1054R9p+14

1Lg

9p+11779p+11

BLg

qp+ll p+ll

dp+11 9411
954+115419p+12

dp+1155B9p412

1Lqg

9p+12-9p+13

BLg

9p+12°9p+13

9p+13B859p4+13

9p+1355R9p+14

1Rg

qp+l4 ptl4

BRq

95+14BR9p414

9p+1453R9p+14
95+145419+6

9p+14558%9p+6

1Lg

9p+15-"9p+15

BLg

9p+15°9p+15

954155419416

Now, with respect to CO'

ql(ml,...,mn)

(copy 1,

(go left)
(replace
(replace

(go left

(copy B,

49

temporarily using s4)

s, by 1)

4

s. by B)

5

one square)

temporarily using SS)

(go right)

(restore
(restore

(go left)

1 and repeat)

B and repeat)

(replace s4by 1 and terminate)

50

P> e s e
m

n

> s e

m
n

> q85253(m1,...,mn_l)Bl Sy

m
n

L
> quS4S3(m1,..-,mn_1)Bl 54 f

Foeee i’
mn W
> 5453(m1'...,mn_1)51 q14s4 i

> o e Sty

ify;
i

> e e by
m m_+1 e
> qlls41 s3(ml,...,mn_1)ssl ‘

m +1 m +1 »
-+ q121 s3(ml,...,mn_l)ssl

-’ o o 8
m +1 m_+1

. n n
> q13ssl s3(m1,...,mn_l)551

-’ [I I 1
-’ LI I

m, .
> s41 B(mz,...,mn)q7s3(ml,...,mn)
> e

)

> q15541 B(mz,...,mn)B(ml,...,mn)
>

q16(m1,...,mn,m1,...,mn)

For p>0,

ql(kl,ano,k ,ml,-oo'mn) > LI A

P

g qzsszklluonyk ,ml,...,mn)

P

-»> s o

> SZB(kl" ;t'kp)qp+383(m1,o .o,mn)

51

The computation now proceeds as in the case p=0, working from

the right and copying onto the left until S, is reached.

The terminal instantaneous description is

qp+16(ml'alu,mn'kl,ooolkp'ml ...,mn)- D

LEMMA 3.4. THE TRANSFER MACHINES, Rp. For each p>0

there exists a Turing machine, Rp, which is t-regular for

every t>p and such that Restqu(kl"'"kp’ml’°“"mn)] =

qp+16(ml""'mn'kl""'kp)‘

Informally, the first p arguments ar: interchanged oﬁ
the tape with the remaining arguments.

We note that in the copying operation of Cp' each 1
that occurs in the tape expression (EETTTTTE;), the expres-
sion to be copied, i; replaced by Sy which in turn is again
replaced by 1. Thus, we simply define Rp to act just like
CP only erase these s4's instead of replacing them by 1l's.
Hence we may define Rp to consist of precisely the quad-
ruples of Cp except that the quadruple ql4s4lqp+6 is re-
placed by ql4s4qu+6. Q

LEMMA 3.5. For each n-regular Turing machine 2Z,

there is an n-regular Turing machine 2' such that, whenever

ReSZ ql(ml'oo.'mn) = qe(z) (rl'.‘.'rs)

it is also the case that

Resz.[ql(ml,...,mn)] = qe(z')(rl""'rs’ml""’mn)

i

52

whereas, whenever ResZqu(ml,...,mn)] is undefined, so is

Res, [q; (M, .. m)]

If we first recopy (ml,...,mn) on the left and then

employ lemma 3.2 to get (ml,...,mn,rl,...,rs) and then
transfer (ml,...,mn) with (rl,...,r3) we will have what we

want. Thus let Zn be as in lemma 3.2, i.e. such that

Reszn[ql(ml,...,mn,ml,...,mn)]=qe(zn)(ml,...,mn,rl,...,rs).

Then let 2' = COUZn(ls) (14+6 (2,))

as in lemmas 3.3 and 3.4 respectively. 0

URn where C0 and Rn are

LEMMA 3.6. Let Zl,...,Zp be Turing machines. Let
n>0. Then, there exists an n-regular Turing machine 2'

such that

Resz,[ql(ml,...,mn)]

1
PROOF: by induction on p. For p=1 this is just lemma

- (n) (
= qe(z')(YZ (ml,...,mn),...,Wan)(ml,...,mn))

1. Suppose, then, that the result is known for p=k and

be given Turing machines. Let r.

let 2 i

l,-.-,zk+l

(n)
r, =Y (m
h Zi

l,...,mn) for lsi<k+l. By induction there

exists an n-regular Turing machine Yl such that
ReSYlqu (mll o 'mn)] = qe (Yl) (rl, .-.-.-,rk)

Then by lemma 3.5, there is an n-regular Turing machine Y,

it

Hi gl
Wiy

L™
i
«’wm
Wby
!

-
S

53

such that

ReSYz[ql (mll"‘lmn)]=qe(Y2) (rl’.. .,rk,ml,-.n’mn) .

But by lemma 3.1, there is an n-regular Turing machine Y,

such that

Combining these two results with the use of lemma 3.2, there

is a (k+n)-regular Turing machine Y, such that

ReSY4qu(rl"“’rk’ml"°"mn)]=qe(y4)(rl""’rk'rk+l)‘

(6 (¥2)-1)
4

Now let f(Y(m)), gl(X(n)), gz(x(“)),...,gm(x(n)) and

Thus, let 2Z' = Y, u Y and we're done. g

h(x(n)) be as in the statement of theorem 3.7. By lemma 3.6

there is an n~regular Turing machine Z such that

(n), ~_ (n) {n) (n)
Res,[q, (X)]~qe(z)(gl(x) 19, (XT70) e e g (X))
Choose 2, so that y, ™ ™y = g(xy®™), and 1et z' =
1
zuzl(e(Z)'l). Then with respect to 2',
a ™y sl e gy gy e ™y g)
> 4. > O,
where (o] = f(gl(X(n)),gz(x(n)),...,gm(x(n))) wheua each

gi(x(“)) and f(gl(x(n)),...,gm(x(n))) is defined; otherwise

Resz,[ql(x(n))] is undefined. Hence, ¥ (n)(X(n)) = h(X(n);

Zl

il

i
Mg

i

54

and theorem 3.7. is finally proved. a
THEOREM 3.9. If f(y,x(n)) is computable, then

hx ™y = min CE(y,x ()

= 0] is partially computable.

Moreover, if f(y,X(n)) is regular then h(x(n)) is computable.
PROOF: The second statement follows immediately from

the first and the definition of a regular function. The

idea behind the proof of the first statement is simple.

We essentially construct a Turing machine which successively

computes f(O,X(n)), f(l,x(n)),..., until a zero is re-

ceived. This machine will compute forever if it never gets

a zero and so, formally, there will be no computation,

which is what we want. The details of this construction are

as follows.

Let U consist of the quadruples

qlqu1 move two spaces
qlBLq2 left and print
q3qu3 a l.

Then with respect to U, ql(x(n)) P e q3(0,x(n)), which
is terminal.

Since f(ny(n)) is computable, there is a Turing ma-
chine which will compute £, and so by lemmas 3.1 and 3.5
there is an (n+l)-regular Turing machine Y such that

(n), (n),

'YX

(2)

ResyLa; (v,X ™)1 = qq () (E(v.X

So if we let N = G(Y(z)), then, with respect to Y

it
L)
it

bl

Wi

LI
eyt
"ty
et

T

55

(n), (n)y .

+qN(f(y,X ,y'X

Now let M consist of the quadruples
AytBay
A BRA41

In+1 1942
I+ 3BRIN+4

Then, with respect to M, if f(y,x(n)) = k>0, we have

X(n)) (n))

qulkB(y,X(n))

I

'YX

-> L]

+ g lkB(y X(n)) which is terminal.
N+2 '

If, on the other hand, f(y,x(n)) = 0, then

qy (£, x ™)y, x®)) = qaB(y,x™)

> g v X)L

Next, let Q consist of the quadruples

Un+21 B4 3

dy+28193

Ay+3BRAN42
Then, with respect to Q,

lkB(y,X(n)) > e
(y+l,X(n))

AN+2

By theorem 3.5 and lemma 3.1, there is an (n+l)-regular

it

56

Turing machine 2, such that

n), - n+l (n)
Res, Lay (v X ’]’qe(zl)”l (y, X7

Let E consist of all the quadruples of Z, in addition to the

quadruple. qe(Z1)qu6(Zl)° Then, with respect to E(N+3),

letting K = e(E(N+3)),

n
qN+4(y,x(S
-> quly

(2) (N+3)

Now, let 2 = U U ¥ UMUQUE . We shall see

that wz‘n)(x(n)) = h(X(n)) = miny[f(y,x(n)) = 0]. Let the
numbers X(n) be fixed; let f(i,X(n)) =r, and suppose that

r, # 0, r, # O,...,r]'{__l #0, r, = 0. Then with respect to Z,
x ™)

> e

q9;

> q4(0, (using U)

(rO,O,X(n)) (using Y(z))

Ay

- qN+2(r0—l,Ozin) (using M)

(1,x®))

> dj (using Q)

> q3(k,th))

(R
L

Fd

el
i

57

> qN(rk,k,x(n)) (using Y(Z))
+ qylB(k,x) (remember, r,=0)
- qN+4(k,X(n)) (using M)
ik
+ q,B1 (using £ ™¥3)y,
and |lq Bl =k = min"y[f(y,x(n)) =07 =hixD)),

Notice that if r, # 0 for all i then the internal con-

figuration 44 is never reached, and so no terminal in-

stantaneous description is ever reached, and so wz(n)(x(n)) o

is undefined, as will be h(X(n)). U
Continuing theorems 3.7. and 3.9. with theorems
3.2, 3.3, 3.4, 3.5, and corollary 3,8, we immediately have

THEOREM 3.10. Every (partial) recursive function is

(partially) computable.

58

CHAPTER IV

THE WEAK HALTING PROBLE}M FOR TURING MACHINES

At this point, we should recall that in the outline
given in Chapter I for a method of proving the unsolvability
of the word problem for groups we noticed that the problem
could be "transferred", i.e. it would suffice to find another
problem for which there was no effective procedure and then
show that this implies that there can be no effective pro-
cedure for solving the original problem. We are now ready
to state such an other problem.

The problem has to do with Turing machines. A good
reason for looking at Turing machines can be found by notic-
ing that the quadruples of a Turing machine are really
just rules for transforming one string of symbols (an
instantaneous description) into another, and as such "do"

a similar thing to that "“done" by the defining relations of
a group presentation. Another reason for considering Turing
machines is this. As we argued before, if we have a problem,
a solution to which consists of finding an effective proce-
dure for answering any of a countable number of questions,
then we can number these questions and consider the function
whose value at a number is 0 if the answer to the question
with that number is yes and whose value at a number is 1

if the answer to the question with that number is no. Then
there is an effective.procedure for answering any of the

questions if and only if the function is calculable. We

Il
&

il
ity

Aty
g,
wiilhy
ity
Flt

g
Y

ey

N

59

also noted that by Church's thesis, a function is calculable
if and only if it is recursive and we have shown that a
function is recursive only if it is computable. Thus if our
function can be shown to be not computable then it will not
be recursive and hence will not be calculable and so our
problem will be unsolvable. If our problem has to do with
Turing machines, then the function we get from the problem
"says something” about Turing machines. If that function is
computable, there must, by definition, be a Turing machine

which will "compute" it. Thus, we will have a Turing

machine which will "say something"” apbout Turing machines;

in particular, it will "say something" about itself,

We know from experience in mathematics, particularly
in set theory and logic, that paradoxes often occur when we
have a statement (or set, or function) which can be applied
to itself. The "Russell Paradox" (Consider the set of all
sets which do not contain themselves as elements, i.e.

S = {x: xéx}, and ask the question, "Is this set an element
of itself, i.e. is S¢S?") is perhaps the most famous
example. Our proof that the function we will get cannot

be computable will be based on a similar paradox.

The theorem we are after is the following.

THEOREM 4.1. (THE UNSOLVABILITY OF THE WEAK HALTING
PROBLEi1 FOR TURING MACHINES). There is no effective proce-
dure for determining for an arbitrary Turing machine Z and

an arbitrary instantaneous description a of Z whether or

iy
[

il
R
ity

ik
sl

60

not there exists a computation of Z beginning with a.

(Recall that if there is no computation, then, when we
"put o into 2", the machine 2z will start computing and never
stop.)

Informally, our proof will proceed as follows. We
will show that there is an effective way of numbering
Turing machines, so that given any machine one can find the
number associated with it and vice versa. We suppose that
there is a solution to the halting problem. Then there is’
an effective procedure for determining for an arbitrary
Turing machine Z and an arbitrary instantaneous description
a of Z whether or not there exists a computation of 2
beginning with a. 1In particular such an effective procedure
will exist when a is of the form qli for some number x.
On the basis of this, we will show that there exists a
Turing machine U such that there is a computation of U
beginning with qli' if and only if in the machine associated
with the number x there is no computation beginning with
qlil We get our paradox by considering what happens when
we "put qlW into U", where w is the number associated with
the machine U. If there is no computation of U beginning
with qlW then, by the way U is constructed, there is such
a computation. On the other hand, if there is such a com-
putation, then there isn't one.

We now proceed formally with the proof. Consider the

following system of numbering the Turing machines.

ik
1

i]

61

If n is any quadruple of the form qisjskql, let §(p)=i+j+k+l
If n is any quadruple of the form qiszql

or qistql let §(p) = i+j+l1
If Z is any Turing machine, and NyeNgrecern, are the guad-
ruples of 2, let §(2) = kzlg(”k)’ and let |Z| = n. Note that
neither §(Z) nor |Z| depend on the order in which the
quadruples of Z are presented. We now order the Turing
machines in a sequence. Assume that all the Turing
machines, Z, such that §(2) < m have been included in the
sequence. We may certainly assume, without loss of
generality, that the quadruples of any machine Z are ordered
lexicographically, taking as the order of the alphabet for
the third symbol of a quadruple R, then L, then 51’52'53""'
and ordering the other symbols by their subscripts. Now
consider all the Turing machines 2 such that §(Z) =m
and |z| = 1 and order them lexicographically. Assume we
have dealt with all machines 2 such that §(Z) = m and
|Z] < r. Then order those such that §(z) = m and |Z| =
lexicographically, considering first the first symbol of
the first quadruple and then the second symbol of the first
guadruple, etc., then the first symbol of the second quad-
ruple, etc.. Since the quadruples of Turing machines are
ordered lexicographically, each machine will appear only
once in the sequence and it is fairly easy to see that each
machine will appear in the sequence. Now for any Turing

machine Z let N(Z) = n where Z is the (n+l)'st term in this

62

sequence. (Then if Z is the first term, N(Z) = 0} We
see immediately that for each Z, N(Z) is well defined and
for each number n there is a machine Z such that N(Z) = n.
If N(Z) = n we will call the machine Zn' Thus if N is
thought of as a one-to-one correspondence, Zn = N-l(n).

It is clear from the description given above that we
have given an effective procedure for constructing the
sequence ZO'Zl'ZZ’Z3”"Zn for any finite number n and
that given any machine Z we can construct the sequence
until Z appears and so find N(Z). Thus given any machine 2
we can find N(Z) and given any number n we can find Zn'

Now define the binary function t(n,x) by t(n,x) = 0
if, in the Turing machine Zn' there is a computation of Zn

beginning with the instantaneous description ql(f) =

+1 x+1
= qll(x) = qlsl()\,

exists.
LEMMA 4.1, t(n,x) is not computable.

Suppose t(n,x) is computable. Then there is a Turing

machine Z such that HResZ[ql(n,x)]H = t(n,x). By lemma 3.1.

there is a Turing machine Y such that Y is 2-regular and

(25(

Resy[q; (MyX)] = qgry) ¥y~ (M,X) = Qgy)tin,x).

Let C. be the copying machine of lemma 3.3. Then,

0
by the same lemma, ResCO [qlij = qu(x,x).

Now let v = 6(Y) + 15 and let i be the Turing machine

consisting of the quadruples

and t(n,x) = 1 if no such computation

(LT

Then with respect to M, qvﬁ

63

qleqv+l

BBqg

Ay+15°9y4+2

1llg

Ay+1 v+2

BBq

qv+2 v+l

q,1

> lqv+lB
> lqv+2B
> 14448

F e

and the machine keeps alternating between these two instan-

taneous descriptions, never reaching a terminal one, and so

there is no computation. Also with respect to M,

which

qu‘= q,11

lqv+ll

lqv+2l

is terminal.

Now let U = COUY(lS)

vee ql6(x,x), by C0
¢ s 0 +qvtzx'x)' by Y(lS)

cee + 1lg

UM. Then with respect to U,

v+2l' which is terminal, if t(x,x) =1

and QX > eee qu(X,X)

* cee * qvt(x,x)

-+ lqv+lB - lqv+2B + ... and never reaches a terminal

instantaneous description, if t(x,x) = 0. Thus there is a

i
e
i,

i
1My

il
e,
it

Uty
gy

64

computation of U beginning with ql§ if and only if t(x,x)=1.
However, t(x,x) = 1 if and only if there is no computation
of the Turing machine Z_ beginning with qlf. Thus

ResU[qIEJ is defined if and only if Reszx[qlij is not.

Finally let w = N(U) so that U = Zw‘ Then we see

that Reszw[qlw] is defined if and only if Reszw[qlw] is

not defined, surely an impossible situation. Thus, t(n,x)
cannot be computable and lemma 4.1 is proved. i
Since t(n,x) is not computable it is not recursive |
and hence, by Church's thesis, uncalculable. Thus, there
can be no effective procedure for determining for an arbitrary
Turing machine Z and an arbitrary number x whether or not
there is a computation of Z beginning with qlf. And so,
obviously, there cannot be an effective procedure for deter-
mining for an arbitrary Turing machine Z and an arbitrary
instantaneous description ¢ of Z, whether or not there exists
a computation of Z beginning with g, and theorem 4.l. is
proved. Thus the weak halting problem for Turing machines

is unsolvable. 1

The reader wishing only the proof of the unsolvability
of the weak word problem, not caring about the unsolvability
of the strong, can now omit Chapter V and proceed immediately

to Chapter VI.

i
L™

65

CHAPTER V

MORE RECURSIVE FUNCTIONS AND

THE STRONG HALTING PROBLEM FOR TURING MACHINES

We have shown that there is no effective procedure
which will determine for an arbitrary Turing machine and an
arbitrary instantaneous description in that machine, whether
or not there is a computation of that machine beginning with
that instantaneous description. We have called this result
"the unsolvability of the weak halting problem for Turing
machines". There is, however, a similar but stronger result
that we can prove.

If Z is a Turing machine, we define the halting prob-

lem for Z to be the problem of finding an effective procedure
for determining for an arbitrary instantaneous description
in %, whether or not there is a computation of Z beginning
with that instantaneous description. Thus the halting prob-
lem for Turing machines is really the problem of finding

a single procedure which will be a solution to the halting
problem for Z for all Turing machines, Z, at once. We will
show that there is a specific Turing machine Z0 such that
the halting problem for Z0 is unsolvable. Thus if we call
the problem of finding for each Turing machine, Z a solution
to the halting problem for Z the strong halting problem for
Turing machines, then we will have shown the unsolvability

of the strong halting problem.

Wit
Mt

Tt
Wit
Dtk iy
sl
Wi

[

¥

.
il

66

This indeed is a stronger result than our previous
one. It could be possible that given any Turing machine we
could find a solution to the halting problem for that
machine, but that, since there is an infinite number of
machines, there is no uniform solution that would work for
all of them. .

i, -

The proof of this stronger result is considerably more '

i,

difficult than that of the weaker result. We must intro- o
duce the notion of predicates, a new numbering system for

Turing machines and expressions, and must do much more work

examining recursive and computable functions and predicates i,
before we can find a computable predicate or function that gt
will be just right for our purposes, i.e. which will be
computed by a Turing machine, ZO’ with unsolvable halting
problem.
An expression that contains lower-case letters of the
Roman alphabet (with or without subscripts) and that be-
comes a statement, either true or false, when these letters
are replaced by any numbers whatever (always assuming that
the same letter, at two different occurrences in the ex-
pression, is replaced by the same number) is called a
predicate. We shall usually employ upper case Roman letters,
such as P,Q,R,S,T, to designate predicates and, as with
functions, denote an n-ary predicate, P, with variables or

(n)).

arguments X)Xy pee e s X by P(xl,xz,...xn) or P(X Now,

if P(xl,xz,...,xn) is an n-ary predicate then the set of all

67

n-tuples of numbers (al,az,...,an) for which P(al,az,...,an)
holds is called the extension of P and is written
(%) Xy sevesx | POty e x) or (x| px(®)yy,

The characteristic function of the extension of P(X(n))
will be called just the characteristic function of P(X(n)) and
will be denoted by cp(x(n)). Thus, C_(a),a,,...,3,) = 0 if
P(al,...,an) is true and Cp(al,...,an) =1 if P(al,...,an)
is false. The connectives Vv (or), A (and), and A (not)
can be applied to predicates to obtain new predicates. Thus,
for example, if P(x,y) and Q(y,z) are predicates, so are
P(x,y)v Qly,z), P(x,y) AQ(y,z), ~P(x,y). P(x,y)VvV Qly,2)
will hold for all triples (al,az,a3) for which either
P(al,az) or Q(az,a3) holds; P(x,y) A Q(y,z) will hold for
all triples (al,az,a3) for which both P(al,az) and Q(a2,a3)
hold; and ~P(x,y) will hold for all pairs (al,az) for which
P(al,az) fails. Note that while both P(x,y) and Q(y,z)
are binary predicates, both P(x,y) v Q(y,z) and P(X,y) A
Q(y,z) are ternary.

Two n-ary predicates are said to be equivalent if
they have the same extension. If P(X(n)) and Q(X(n)) are

equivalent we write P(X(n)) ++Q(X(n)). Thus, if P(x,y)

and Q(y,z) are as before, P(x,y) v Q(y,z) +«+ (VP (x,y) MQ(y,z)).

(Either P or Q holds if and only if it is not true that
both P and Q fail.)

Note that P(x,y)++ aP(x,y).

i
Tt

[

i
ﬂlll‘i
AT
it

68
Now, let P(y,xl,...,xn) (or, as we may write, P(y,X(n)))

be an (n+l)-ary predicate. Then the expression

(n)

p0,x™)y w,x™ywe,z™)v...vp(z,x®))

is another (n+l)-ary predicate, which we may write Q(z,X(n)).

The statement obtained by inserting definite numbers

Cray 485500048 for the letter Z4X) 1 Xy pene X in the expression
is true if and only if there is a number b, 0sbsc, for which
P(b,al,az,...,an) is true. We designate this predicate

by 3 p(y,x™). rhat is, 3 p(y,x™) « 2o, x®)) v
y=0 y=0

p1,x™yy ...y p(z,xM)y,

Similarly we write

2 p(y,x™) o p0,x®) Ap@,x®)a. . ap(z,x),
y20

The symbols " % " and " % " are referred to as a bounded
y=0 y=0

existential quantifier and a bounded universal quantifier,

respectively.

HP(y,x(n)) may be regarded as an abbreviation of the
"infinize expression” P(O,X(n)) vV P(l,x(n))v eee =« Thnis
is of course not strictly speaking kosher since there is not
really any such thing as an infinite expression. More
accurately, 3P(y,x(n)) is an n-ary predicate which holds for

a given n-tuple (al,az,...,an), if and only if there is some

number Y such that P(yo,al,az,...,an) is true. Similarly

e
i

il

fitl=r
s

69

;P(y,X(n)) holds for (a,,a,,...,a), if and only if, for

every number Yor P(yo,al,az,...,an) is true. We may in-

formally think of VP(h,x(n)) as representing the "infinite
y

expression” P(O,X(n)) A P(l,X(n))A eee o "3I" and "V°"

y y
are referred to as an existential gquantifier and a universal

quantifier, respectively.

Note that VP(y,X(n)) > mbP(y,X(n)).
Y Y

DEFINITION 5.1. Let S be a set of n~tuples. Then
we say that S is recursive or computable, accordingly, if
its characteristic function is.

DEFINITION 5.2. The predicate P(X(n)) is called
recursive if its extension, {X(n)]P(X(n))}, is.

Definitions 5.1 and 5.2 immediately yield.

COROLLARY 5.1. A predicate, P(X(n)), is recursive

(n)

if and only if characteristic function cp(x) is recursive.

We are now in a position to say more about the parti-
cular useful computable function mentioned earlier, i.e.
the function that will be computed by a Turing méchine with
unsolvable halting problem.

Now, with each recursive predicate is associated a

recursive function, its characteristic function, and so we

can search for our particular recursive function by searching

for an appropriate predicate. Suppose that P(x,y) is a

binary predicate. Then 3JP(x,y) is a unary predicate.
Y
Suppose further that P(x,y) is recursive but 3P(x,y) is not.
y

i

i
g

70

Now, since P(x,y) is recursive, its characteristic
function, Cp(x,y) is a recursive function. According to the
definition of recursive functions, then, the function
miny[cp(x,y) = 0] is a partial recursive function. Now,
Cp(x,y) = 0 if and only if P(x,y) holds. So if P(x,y) is
a predicate, we write "minyP(x,y)" for'miny[cp(x,y) = 0]",
and we have the result that minyP(x,y) is partial recursive
if P(x,y) is recursive.

Given a specific value for x, minyP(x,y) is defined
to be the least value of y such that P(x,y) holds, if such
a value of y exists, and minyP(x,y) is undefined if no such
value of y exists. Since minyP(x,y) is a partial recursive
function it is partially computable and so there is a
Turing machine Z0 such .that WZO(x) = minyP(x,y). Thus there
is a computation of Zg beginning with the instantaneous

description ql§ = qllx+l

if and only if minyP(x,y) is de-
fined, which happens if and only if there is a y such that
P(x,y) holds, which in turn happens if and only if 3P(x,y)
holds. !

Now 3P(x,y) is not recursive and so its characteristic
function isynot recursive. By Church's thesis, then, there
is no "effective procedure" for determining, for an arbitrary
value of x, what the value of the characteristic function
at x will be. Thus there is no effective procedure for

determining, for an arbitrary value of x, whether ot not

Jp(x,y) holds; and hence there is no effective procedure for
y

i
il

i

RN
Ut

71

determining, for an arbitrary value of x, whether or not

there is a computation of Z, beginning with the instantaneous

0

description qli, and the halting problem for Z, is unsolvable.

0
So all we need to do to find a Turing machine 2

0

with unsolvable halting problem is to find a predicate P (x,y)

such that P(x,y) is recursive but JP(x,y) is not recursive.

The greater part of the remainder gf this chapter, then,

will be devoted to first defining a predicate which we think

should work, and then proving that it, in fact, does work.
As was the case with the weak halting problem result,

the predicate we look for will "say something" about

Turing machines. Of course, the only "inputs" that predi-

‘cates will take are numbers or n-tuples of numbers, and

so before we can define a predicate which "says" anything

about Turing machines we must find an "effective" method of

numbering Turing machines. In this case, the numbering

system that we used before is not very satisfactory, so

we will develop a new system.

The symbols used in the discussion of Turing machines
are
R,L
SgrSyrSyrees

qllq2'q3l"' *

With each of these symbols we associate an odd number z3

as follows:

i,
i

72

2 q3 Szrecs

Thus for each i, s, is associated with 4i+7 and q; with
4i+5,

Hence, with any expression M there is now associated
a finite sequence of odd numbers R IR L For example,
the quadruple qlqu2 is associated with the sequence
9,11,3,13, (recall that 1 is S1 and B is so), and the
instantaneous description qllll is associated with 9,11,11,11.
We will now define a method of associating a single number
with each such sequence and hence with each expression.

DEFINITION 5.3. Let M be the expression consisting
of the symbols rl,rz,r3,...,rn. Let al,az,...,an be the
corresponding numbers associated with these symbols. Then

the "G8del number of M" is the number

. a
r = i Pr (k) k ’
k=1

where Pr (k) is defined to be the nth prime number, taking 0
to be the Oth prime. We write gn(M) = r. If M is the
empty expression, we let 1 be its Godel number and we write
gn(d) = 1. If gn(M) = r we also write M = exp(r).

9 .11 .3 .13

Thus gn(qiquz) = 273 577 .

As an immediate consequence of this definition and

of the fundamental theorem of Arithmetic we have

o

73

COROLLARY 5.2. If M and N are expressions such that
gn(M) = gn(N), then M.= N,

DEPINITION 5.4. If Ml,Mz,...,Mn is a finite sequence
of expressions, then the G8del number of this sequence of

expressions is defined to be the number

n gn(Mk)
kjiPr(k) .

Thus, the G8del number of the sequence qlqul,

4;BRq, 1s ,9.311,57 49
S .

COROLLARY 5.3. No number is the G8del number both of
an expression and of a sequence of expressions. (Note that
we make the convention that the empty expression, the expres-
sion with no symbols, is considered an expression, but the
empty sequence of expressions, the sequence with no expres-
sions, is not considered to be a sequence of expressions,

If it was, the two things would have the same G&del number
and ruin this corollary.)

PROOF: Let r be a G8del number., If r = 1 then r is
the G8del number of the empty expression. 1 cannot be the
G8del number of a sequence of expressions because any such
sequence contains at least one expression and the G&del number
of this expression must be 1, and so the G8del number of

the sequence will be éZl = 2,

74

Now suppose rz2. Then by the way G8del numbers are
constructed, r = 2%.m where m is odd, and n>0. How if
2%.m is the G8del number of an expression, n the number asso-
ciated with a symbol and hence is odd and =23. If 2%.m is
the Gddel number of a sequence of expressions, n itself is
the G8del number of an expression and so will be 1 or even.

Corresponding to Corollary 5.2, we have

COROLLARY 5.4. Two sequences of expressions that
have the same G8del number are identical.

Now, a computation of Turing machine is a finite
sequence of expressions, all of them instantaneous descrip-
tions, and thus has a G8del number. A Turing machine, how-
ever, is simply a finite set of expressions, all of them
guadruples, in which order is irrelevant.

DEFINITION 5.5. Let Z be a Turing machine. Let
Ml,Mz,...,Mn be any arrangement of the quadruples of 2
without repetitions. Then, the G8del number of the sequence
My oMy peee M is called a G8del number of the Turing machine
Z.

Note that a Turing machine with n quadruples has n.
distinct G8del numbers, one for each permutation of its
quadruples.

DEFINITION 5.6. For each n>0, Tn(z,xl,xz,...,xn,y)
is the predicate that holds, for given Z Xy reee X Yy
exactly when z is the G&del number of a Turing machine Z,

and y is the G&del number of a computation of Z beginning

0

.
it

it

i

75

with the instantaneous description ql(§177777§;). T, (z,X,y)
will be written simply as T(z,x,y).

We will prove that for all n, the predicates
Tn(z,xl,...,xn,y) are recursive. Then the predicate
T(z,x,y) will surely be recursive. We will then define

the predicate W(x,y) by W(x,y) <> T(x,x,y).
W(x,y) will be the predicate we want, for since T 4

iz

is recursive W will certainly be recursive, and we will be

L0

able to show that 3W(x,y) is not recursive, , i
Y]

Nm‘
w"

We now proceed with the work of showing that for all

n, Tn(z,xl,...,xn,y) is recursive. We begin by listing some
more recursive, and hence computable functions which we

will need to use. Each function is accompanied by a defi-
nition, if necessary; and a formula which shows how it is
constructed by composition or minimalization from functions
in Definition 3.4. and thus proves them to be recursive,
(Minimalization, here, will only be applied to regular

functions.,)

(1) N(x)

N(x) = ull(x) . Ull(x).

0
1 = x ; that is «(0)

(2) a(x) = =1

a(x) = 0 if x>0.

a(x) = S(N(x))LUll(x).
(3) %2 = Ull(x) . Ull(x).

76

(4) [/x], the largest integer =/X.

[VX] = miny[(y+l)2 $x # 0]
- miny[a((S(U22(x,y))21U12(x,y))=0]‘
(5) |x-y| = (x%y) + (y=x)

(6) [x/y]. 1If y#0, [x/y] is the largest integer
less than or equal to the rational number 3. ”
If y=0, [x/y] = 0. We have

[x/y]

]

min,[y=0 y(z+1)>x]

minz[y=0 y(z+l)=x#0]

il

minz[y-a(y(z+l)ix)=0]

(7) R(x,y). If y#0, R(x,y) is the remainder A

i

on dividing x by y. That is X [x/y]+§l§LXL'

~

so R(x,y) = x~y[x/y].
We take R(xX,y) = x = y[x/y], so R(x,0)=x.

Recall that we said that Church's thesis, i.e. the
statement that every function which we intuitively feel
should be calculable is recursive, could not be proved
and that we would have to accept it on faith. The reader
should find that, as we proceed on our course of searching
for the particular useful recursive function mentioned
before, this act of faith will seem to become more and more
valid, as we will be showing the recursiveness of some
quite complicated functions, which we might not have
thought, at first glance, could be derived from the few

simple functions in the definition.

77

We will find it convenient to have the recursiveness,

and hence computability, of such functions as x¥ and x!.
These are certainly functions the values of which we know
how to calculate, and so, if Church's thesis is to be
believed, they must be recursive. When we calculate the
value of x¥ for particular given numbers x and y we must
first calculate xZ for all numbers z such that Osz<y.
Similarly to calculate x!, we first must calculate z: for

all z such that 0sz<x. The processes we use can be repre--

sented by the pairs of equations x =1
x¥+l o - x
and 0! =1
(x+1)! = x!°* (x+1)
respectively.

In general, we know from the Recursion Theorem of
elementary set and natural number theory that if f(X(n))
and g(x(n+2)) are total functions, then there is a unique

(

total function h(X n+l)) that satisfies the equations

n(o,x™y = gx®),

and h(z+1,x™) = g(z,n(z,x™) x?)),

For example, in the case of the function xy, n=1l, £(x)=0,
gly,z,x)=z+x and h(y,x) = xY. In the case of the function

x!, n=0, f=1, g(x,y)=y*'x, and h(x) = x!.

78

DEFINITION 5.5. The operation of primative recursion
(n+2))

associates with the given total functions f(x(n)), g(X

the function h(x(n+l)), where

neo,x™) = gx™,

h(z+1,x™)) = g(z,h(z,x®,x ™))

It would be very convenient, indeed, if we could know
that whenever we get a function by primative recursion from

il

two functions which we know to be recursive, then the new

il
. . , . . . fl
function is also recursive., This is, in fact, the case. b

But before we can prove this result, we must prove some |
results about finite sequences of numbers. ‘
It is a well known fact that there exists a one-to-one
correspondence between the set of natural numbers and the
set of ordered pairs of natural numbers and, indeed, that
such a correspondence can be set up in an "effective”
manner. By Church's thesis, then, we should certainly be
able to set up this correspondence by recursive, and hence
computable, functions, and we will show now how this can
be done.
THEOREM 5.7. There exist recursive functions

J(x,y), K(z), L(z) such that

J(K(z) ,L(2)) = z

K(J(x,y))

i
”“

L(J(x,y))

it
<

79

and if K(z) K(z') and L(z) = L(z'), then 2z = 2",

PROOF: Let J(x,y) = -]22-((x+y)2 + 3x+y). Now

)

(x+y)2+3x+y (x+y) (x+y) + (x+y)+2x = (x+y) (x+y+1l)+2x, which
is always even. Hence, J(x,y) is always an integer, and so
is a well defined function. J(x,y) is recursive, since

) 200, 2 (x,9) 40 2 ()40 2 (k) 40, (3,90)

J(x, =
(x,y) S(S(N(Uy2 (x.v))))

Suppose that z,x,y are numbers such that
- 2 '
2z = (x+y) “+3x+y (1)

Then 8z+1=4(2z)+1=4 ((x+y)2+3x+y)+1=4 (x+y) >+12x+4y+1
= ((2x+2y) 242 (2x+2y) +1) +8x= (2x+2y+1) 2 +8x.
Therefore, (2x+2y+l)2s8z+1= (2x+2y+1)2+8x< (2x+2y+1) 2+4 (2x+2y+1)+4
= (2x+2y+3)2
And so 2x+2y+l 5 /8ZFL < 2x+2y+3.

Hence [v8z¥%1] is either 2x+2y+l or 2x+2y+2.

[/82+1] + 1 is either 2x+2y+2 or 2x+2y+3. Therefore,

[([v/8z+1]+1)/2 = x+y+l

and so x+y = [([v/8z+1] + 1)/2] -1 (2)
Thus by (1), 3x+y = 2z - ([([v82%T + 11)/2] - 1)° (3)

\
Since det Kg i} # 0, equations (2) and (3) show that for a

given z, there can be at most one pair, (x,y), satisfying (1).
If such x and y exist, they can be calculated by

recursive functions. If we write

80

Q, (2) C(Cv8zF1]+ 1)/2] = 1,

QZ(Z) 2z =~ (Ql(Z))2 ’

then, clearly, Ql(z) and Qz(z) are recursive functions, and

1]

(2) and (3) yield x+y = Q,(2)
Ix+y = Qz(z) "
which can be solved to give x = [(Qz(z)lol(z))/ZJ = K(2)
y = Q; (2)*[(Q, (2)*Q; (2))/2] = L(z)

where K(z) and L(z) are recursive functions. Thus if

K(z), ¥y = L(z). Now if x and y

X,¥,2z satisfy (1), then x

are chosen arbitrarily, z J(x,y) satisfies (l1l). And so

if we choose any pair (x,y) there will be a z which will

satisfy our three desired relations; namely

J(K(z), L(z)) = z
K(J(x,y) = x

L{J(x,y)) = Y.

It only remains to show that K(z) and L(z) are total
functions, i.e. that for any natural number value of z,
there exist x and y satisfying (l1). Let z be any number.
Let r be the largest number such that 1l+2+...+r=z. Let
X = 2 - (142+...+r). Then xsr, for if xzr+l, then
142+...+r+(r+l)>z, contradicting our choice of r. Let
y = r-x. Then, z = (l+2+...+(x+y)) + x = 1/2(x+y) (x+y+l)+x.
And so 2z = (xty) (x+y+1l)+2x = (x+y)>+3x+y , and (1) is

satisfied.

8l

We have proved the existence of the three recursive

functions in the theorem. Suppose K(z) = K(z') and L(z)=L(z').
Then z = J(k(z),L(z)) = J(K(2'),L(z")) = 2'. Thus z = 2'
and the theorem is proved. d

Next, we consider the problem of setting up a similar
recursive correspondence between the natural numbers and
the set of all the finite sequences, of whatever length,
of integers.

THEOREM 5.8. Let ag,a;,...,a be any finite sequence
of numbers. Then there are numbers u and v such that
R(u,l+v(i+l)) = a; for i = 0,1,2,...,n. (Recall that R(x,y)
is the remainder on dividing x by y, and is a recursive
function).

We begin with a number theoretic lemma

LEMMA 5.1. Let v be divisible by the numbers 1,2,...,n.
Then the numbers l+v(i+l), i = 0,1,2,...,n, are relatively
prime in pairs.

PROOF. Let m; = l+v(i+l). Since v is divisible by
1,2,...,n, any divisor of m. other than 1, must be
greater than n. Now suppose that d{m; and dlmj and i>j.
Then d| (i+l)mj - (§+l)m;. But (i+1)mj - (G+l)my =
(i+1) (14v(§+1)) - (§41) (1+v(i+l) = ((i+1)+v(i+l) (j+1)) -

((G+L)+v (i+l) (3+1)) = i-j.
Thus d|i-j. But 0<i-jsn. Hence d=l. 0
Proof of Theorem: Let A be the largest of the

numbers agrdyseeerdpy and let v = 2A°'n!. Let m, = l+v(i+l).

82

Then by the lemma, the m; are relatively prime in pairs.
Also a,<vem, for i = 0,1,2,...,n. Now, by the Chinese

Remainder Theorem, there is a number u such that

u =z a. (mod mi) i=20,1,2,...,0.

]
i

That iS, R(u'mi) R(ai'mi)' i 0,1,2,...,n. But ai<mio

Hence, R(ai,mi) = a,. Thus

r(u,l+v(i+l)) R(u,mi) = R(ai,mi) = a,. U

1

THEOREM 5.9. There or: recursive functionSTi(w)

such that, if agr3ysse+0a , are any numbers whatever, there

exists a number W such that Ti(wo) =a,, i=290,1,2,...,n.

ll

PROOF. Define Ti(w) by the equation
Ti(W) = R(K(w), 1+(L(w) (i+l1))).

Clearly Ti(w) is recursive. Let us be given the integers
ao,al,...,an. Then by Theorem 5.2, there exist numbers

u and v such that R(u,l+v(i+l)) = a.,, i =0,1,2,...,n.

l'

Let Wog = J(u,v). Then

Ti(wo) R(K(J(u,v)) ,1+L (I (yu,Vv))* (i+l))

R(u,l+v(i+l))

= a; for i = 0,1,...,n. [

We are finally ready to prove that functions constructed

from recursive functions by primative recursion are themselves

recursive.,

83

THEOREM 5.10. Let h(Xx‘™*1)) be obtained from

(n+2)

f(X(n)), g(X) by primative recursion., If f and g are

recursive, then so is h.

PROOF: By Theorem 5.9., for each choice of X(n)

and y, there exist at least one number Wy such that

Ti(wo) = h(i,X(n)), i=20,1,2,...,y. Hence,

. -

-1
hiy,x™) = 1 min, g =t ™)T, o =

g(z,7, (w),x")))7)

Now, to say that a condition holds for all numbers z less

than y is equivalent to saying that y is the least number

[~ ¥

for which it could fail. That is

hy,x™) = 1 min Crge = £x®))

{y = min [(T_,; (W) # g(z,Tz(W).X(n))) (z=y)1} D).

Let H(y,w,x™) = min [(T_,; nAg(z,7, (1), x®)))v (z=y) .
Then H(y,w,x(n)) = minz[|z—y|-a(sz+l(w)-g(z,Tz(w),X(n))])=0].
(n)

So H(y,w,X) is recursive. But

hy,x ™ =r min £y 0)=£x ™)) y=n y,u,x P)

=Ty(minw[|T0(w)—f(X(n))|+|y-H(y,w,X(n))|=0]).
And so h(y,X(n)) is recursive, 0

COROLLARY 5.11. The functions x¥ and x! are recursive.
PROOF. Let f(x) = S(N(x)) = 1 and g(y,u,v) = uv,
Then clearly f and g are recursive, By Theorem 5.10, so

is h(y,x) which satisfies

84

h(0,x) = £(x) =1

h(y+l,x) = g(y,h(y,x),x) = xh(y,x).

But h(y,x) = x? satisfies this pair of equations, and so
xY is recursive.
Let £(y) = 1 and g(x,u,v) = (x+1)u. Then clearly £ and
g are recursive and so h(x,y) 1is recursive where h(x,y)
satisfies h(0,y) = £(y) = 1
h(x+l,y) = g(x,h(x,y),v) = (x+1)h(x,y).
But h(x,y) = x! satisfies the above equations and so x!

is recursive. 1]

COROLLARY 5.12. If f(k,x(p)) is recursive, so are

gm,x®)) = T £0,x®))
k=0
and hin,xP)y = T £x,x®),

k=0
PROOF. g(0,xP)) = £(0,xP))

g(n+l,X(p)) = g(n,X(p)) + f(n+l,x(p))

h(o,x®)y = £(0,x®)
h(nt1,xP)) = h(n,x®)) « gmer,x®). T

THEOREA 5.13, Let R and S be recursive sets of n-tuples.
Then so are RUS, RNS, and R (the complement of R).

PROOF; C.. . (x™)) = cR(x(n)) . cS(x(n))

RUS

cRnS(x(n’) = a(a(CR(X(n)) + cs(x(n’)))

(n), _ ,(n)
Cx(x'') = a(cp(x™')) . 1

Ap—-

85

THEOREM 5.14. Let P and Q be recursive n-ary predi-
cates. Then so are PvQ, PAQ, and ~P,

PROOF. We note that

H

{X(n)[P(X(n))vQ(X(n))} {X(n)lP(X(n))}u{X(n)|Q(X(n))}'

{X(n)lP(X(n))AQ(X(n))} = {X(n)|P(X(n))}ﬂ{X(n)|Q(X(n))},
1

and (x™ [x®)y = @@ p®)),,

and then apply Theorem 5.13. 0

THEOREM 5.15. 1If P(y,X(n)) is an (n+l)-ary recursive

predicate, then so are

g p(y,x™) ang ¢ p(y,x ™),

y=0 y=0
z
PROOF. Let Q(z,Xx ™) «» 3 P(y,Xx™)). Then we note
(n) z (n¥70
that CQ(z,X) = 1 Cp(y,x), and apply corollary 5,12

to get the first part.
To get the second part, we note that
2

(n) 2
v P(y,X) «> v 3 AaP(y,X
y=0 y=0

(n))

and apply Theorem 5.14 and the first part. g
We should note that the boundedness of the guantifier

is absolutely essential to this result. In fact, as we shall

see later, there exists a recursive predicate P(y,x) such

that 3P (y,x) is not recursive. (The very thing we're looking
Yy

11f s is a set of numbers or of n-tuples, then S denotes
the complement of S.

A

T

86

for!)
DEFINITION 5.6. Let P(y,X(n)) be an (n+l)-ary predicate.

(n)y, _ % (n)
Then, by f£(z,X) = 4 P(y,X) we mean the (n+l) -ary
y=0

total function that satisfies the equation

f(z,x(n)) = miHYEY§ZAP(y,X(n))] i

(n))

where this is defined, and £f(z,X = (0 elsewhere.

THEORE#X 5.16. If P(y,X(n)) is recursive, then so is

£z, x™y = % py,x™)
y=0

PROOF: Claim:

z t
W opy,x™) = a(f ocow,x™y) - T o (y,x™),
y=0 y=0 P t=0 y=0 P

z

If the claim is true then it is clear that M P(y,X(n)) is
y=0

recursive,

Consider the right hand side of the equation in the

claim. Call it R. Assume we are given a specific (n+l)-

(n)). (n))

tuple, (z,X If there is no y=z such that P(y,X

holds, then Cp(y,x(n)) = 1 for all y=z, and so

PA
1.c (v,x™)) = 1. thus o(1 c_(y,x™)) = 0, and so
y=0"p y=0 p

z
R=0= MP(y,x™)y,
y=0
If there is a ysz such that P(y,X(n)) holds, then let
(n), _ z (n),_
Yy, be the least such y. Then C (ynorX) =0, so II C (y.,X)=
0 p“0 y=0 p

z (n)yy, =
y=0 P

87

Now, for all Y<Yqr P(y,x(n)) does not hold, since Yo is

the least y for which it does hold. So for all Y<¥qo

Cp(y,x(n)) = 1., Thus for all t<y0, i.,e. for t=0,1,...,y-1,
ﬁ cp(y,x(“)) = 1, Note that there are Yq such t's.,
y=0 t
However, Cp(yo,x(n)) = 0, and so if tgyo, I cp(y,x(“)) = 0,
y=0
z t
Thus if we consider [nc (y,x(n)) we note that each
t=0 y=0

t<y0 (and there are Yo of them) will contribute 1 to the

sum, and each t%yo will contribute 0. Thus

z z
F Fc (y,x®)y = Yo- Now R = a(I C_(y,x™)) .
t=0 y=0 P y=0 P
Pomc_(y,x®) =1y, =y, = (n) im i
Y.X) = 1 Yo = Yo < P(y,X), and the claim is
t=0 y=0 y=0
proved. {

THEOREM 5.17. The predicates x=y, Xy, X<¥, x=y, and x>y
are all recursive,

PROOF. The characteristic function of xzy is a(a(y*x))
and so it is recursive. The recursiveness of the other pre-

dicatesfollow from the following equivalences:

Xsy <« yzX,
X>y ++ n(xsy),
X<y ++ nv(xzy),

and X=y ++ XSyAx2y. h I

We are now able to list some more recursive functions
and predicates which we will use in our later work. Each

function or predicate is followed by a definition, if

i
w

88

necessary, and a formula which proves it to be recursive.
(1) y|x. y is a divisor of x.

X
y|x =+ 3 (x=yz)

z=0
(2) Prime (x). x is a prime number.
X
Prime (x) ++ (x>1)A ¥V ((z=1)v(z=x)v~(z|x)).
z=0
(3) Pr(x). Pr(x) = the nth prime in order of magnitude

where we arbitrarily take the 0Oth prime equal to 0.

Pr(0) = 0
Pr(n) i+l

Pr(n+l) = M (Prime (y)Ay>Pr(n))
y=0

We are finally ready to prove

THEOREM 5.18. The predicates Tn(z,xl,...,xn,y) are
recursive, for all numbers n.

Proof. We have shown, up to this point, that certain
predicates and functions are recursive, and we have also
shown a number of methods of constructing recursive predi-
cates and functions from predicates and functions which we
already know to be recursive. In this proof, then, we will
show how the predicates Tn(z,xl,...,xn,y) can be constructed
with these methods from known recursive functions and pre-
dicates. The proof simply consists of a list of functions
and predicates, culminating in the predicates
Tn(z,xl,...,xn,y). Each function or predicate is accompanied

by a definition and then a formula which proves the function

<};

89

or predicate to be recursive,

Group I. Functions and Predicates Which Concern Gé&del
Numbers of Expressions and Sequences of Expressions:
(1) n Gl x.
n Gl x is a binary function.

If x gn (M), where M is an expression consisting

of the symbols 61'62""'6p' in that order, then if O<nsp,
n Gl x is the number associated with the symbol Gn, whereas
if n=0orn > p, then n Gl x = 0.

If x is the G&del number of the sequence of expressions
Ml'MZ""’Mp' then if 0<nsp, n Gl x=gn(Mn), whereas if n=0
or n’>p, then n Gl x = 0,

If X is not a Godel number, we don't care how it's

defined, as long as it's recursive.

X
nGlL x= M [Pr(n)y|XAw(Pr(n)y+l|x)].
y=0

(2) £(x).

If x = gn(M), then& (x) is the number of symbols
occurring in M. If x is the G8del number of a sequence of
expressions, then (x) is the number of expressions in the
sequence. If X is not a Gddel number we don't care.

X X
£(x) = M [y GL x>0)A V ((y+i+1)31 x=0)]
y=0 i=0

(3) GN(x).
GN(x) is a predicate which holds if and only if

there exist positive integers a s l=ksn, such that

4«;

W
i
I

;

90

n a
- k
x = [Pr(k)
k=1
Note that it is not necessarily true that x is a G8del number
if GN(x) holds, but it is true that x is not a G&del number

if GN(x) does not hold.

£ (x)
GN(x) «+ ~ 3 [(y Gl x=0)A ((y+1)Gl x#0)]
y=1
(4) Term (x,z)
. n ak
Term (x,z) holds if and only if z = 1 Pr (k) for
k=1 :
suitable a, >0, and x=a, for some k, lzksn.
k k £(x)
Term (x,z) ++ GN(z)a 3 [(x=nGlz) A(n#9)]
n=0

(5) x*y
If ¥ and N are expressions, then gn(MN) = gn(#)xgn(N).
If x and y are G8del numbers of the sequences of expressions
Ml,...,Mn, and Nl"”'Np' respectively, then xxy is the Gddel

number of the sequence Ml,...,Mn,Nl,...,N .

P
mn .
cu(y)_l .
Xxy = x * I Pr(;’;:(x)-l-i+l)(l+l)Gl Yy |
i=0

Group II. Functions and Predicates Which Concern the
Basic Structure of Turing Machines:
(6) 1IC (x)
IC (x) holds if and only if x is a number assigned
to one of the q;-
X

IC(x) ++ 3 (x=4y+9)
y=0

= = e =

91

(7) Al (x)

Al (x) holds if and only if x is a number assigned

to one of the si

X
Al (x) «+ 3 (x=4y+7)
y=0

(8) Re (x)

Re (x) holds if and only if x is the number assigned

to a symbol which may appear as the third symbol in a quad-

ruple, i.e. x is the number assigned to an s; or R or L.
Re () «+ Al(x) v (x=z) v (x=5).

(9) Quad (x)
Quad (x) holds if and only if x is the Gddel
number of a quadruple.
Quad (x) <+ GN(x)A(£(x)=4)AIC(1Gl x)AAl(2 Gl Xx)

ARe (3 Gl x)AIC(4 Gl x).

(10) Inc (x,y)

Inc(x,y) holds if and only if x and y are G&del
numbers of two distinct quadruples beginning with the same
two symbols.

Inc(x,y) <+ Quad(x)aQuad(y)a (1 Gl x=1 Gl y)

A2 Gl x=2 Gl y)A (x#y)

(11) TM(x)

TM(x) holds if and only if x is the Gddel number

of a Turing machine.
£(x) £(x)
TM(x) <> GN(x)A ¥V [Quad(nGlx)h ¥ ™Inc(nGlx,mGlx))]
n=1 m=1

92

(12) MR(n)

+1

+
n l) = gn(sln)

We want MR(n) to be gn(n) = gn(l

MR(0) = 211

MR (n+1) = 211

*MR (n)
(13) ID(x)
ID(x) holds if and only if x is the G8del number
of an instantaneous description
£(x) =1

ID(X) <+ GN(x)A 3 {IC (nGlx)
n=1

£(x)
A ¥ [m=n)vAl (mGlx)]}.
m=1

(14) Inltn(xl,...,xn)
This is a class of functions, one for each value

of n>0. We want Inltn (xl,...,xn) = gn(ql(xl,...,xn))
Tnit_ (x x) = 27 WMR(x.) %2 *MR(X.) %2 %+ . .x2 #MR(X_)
n l’. LI 4 n l 2 o s e n .

Group III. Functions and Predicates which Concern the

Relation "+" in Turing Machines.

(15) Yieldl(x,y,z)
Yieldl(x,y,z) holds if and only if x and y are
G8del numbers of instantaneous descriptions, z is a Gddel
number of a Turing macnine Z, and Exp(x) =+ Exp(y) in 2, under
Case 1 of Definition 2.7.

Yieldl(x,y,z) +> ID(x)AID(y)ATM(z)

93

X X X X % % r s £ _u
A3 3 3 3 [(x=F%x2 %2 %xG) A (y=F*2 %2 *G)
F=0 G=0 r=0 s=0 t=0 n=0

(IC(r) AIC (£) AAL (S) AL (u) pTerm (25 -3%.5%.7%,2)]
(16) Yieldz(x,y,z)

Yield2 is like Yieldl, but deals with case 2 of

Definition 2.7.

Yieldz(x,y,z) «+ ID(X)AID(y)ATM(2)

X X X X X Yy r s .t ;
A E| E| 3 E| 3 d [(X=Fx2" 527 42 *G) ' ;
F=0 G=0 r=0 s=0 t=0 u=0 '

A (y=F#25%2%%2%%G) A IC (£) AIC (n) ARL (8) AAL (t)

3

aTerm(2¥.3%.5 -7u,z)]

(17) Yield,(x,y,z)

Yield., is like Yield but deals with case 3 of

3 1’

Definition 2.7.

Yield3(x,y,z) « ID(X)AID(y)ATM(2)

X X X X ', .S s .t ,7
A3 3 3 3 [(x=F*27#27)A (y=F%2 %2 "%2)
F=0 r=0 s=0 t=0

3

A IC(r)AIC (£)AAL (s)ATerm(25-3%.53.7%,2)]

(18) Yield4(x,y,z)

Yield, is like Yield

4 but deals with case 4 of

ll
Definition 2.7.

Yield, (x,y,z) <> ID(X)AID(y)ATm(z)

94

b 4 b 4 b 4 b 4 b4 Y £ .s -t
A3 3 3 3 3 3 [(x=Fx2 %2 %2 xG)
F=0 G=0 r=0 s=0 t=0 u=0

A(y=F*2u*2r*2t*G)

t. .5

A IC(s)AIC(u)AAL(r)AaAl (t)aTerm(25-3%-52-7%,2)]

(19) Yields(x,y,z)
Yield5 is like Yieldl but deals with case 5 of
Definition 2.7.

Yields(x,y,z) «+ ID(xX)AID(y)ATM(2)

X X x Yy
A3 3T 3 [x=25x25%40)n (y=2%427425%4G)
G=0 r=0 s=0 t=0

5

ATC (r)AIC (£)AAL (s)ATerm(2¥.35.5°.7%,2)]

(20) Yield (x,y,2z)
Yield (x,y,z) holds if and only if x and y are
G8del numbers of instantaneous descriptions, z is a G&del
number of a Turing machine, 2, and Exp(x) + Exp(y) in 2.
Yield (x,y,2) +-» Yieldl(x,y,z)ineldz(x,y,z)
VYieldB(x,y,z)ineld4(x,y,z)

inelds(x,y,z)

(21) Fin(x,z)
Fin(x,z) holds if and only if z is a G8del number
of a Turing machine %z, and x is the G8del number of an

instantaneous description which is terminal with respect to Z.

Fin(x,z) ++ ID(x) TiW(z)
X X X X

A3 3 3 3 {(x=Fa2T2%4G)AIC(x)ABL(S)
F=0 G=0 r=0 s=0

95

£(x)
A 3 [1G61(nGlz)#r) v(2Gl(nGlz)#s) 1}
n=1

(22) Compl(y,2)

Comp(y,z) holds if and only if z is a G&del number
of a Turing machine Z, and y is the G&del number of a compu-
tation of Z.

Comp (y,z) <+ TM(z)AGN(y)

£(y) =1

Ay [ield(n Gl y,(n+l)Gly,z)]1 A Fin(&£(y)Gly,z)
n=1 1

(23) Finally we have
Tn(z,xl,...,xn,y) +> Comp(y,z)A(lG1y=Initn(xl,...,xn)).

Thus Tn(z,Xi,...,Xn,y) is a recursive predicate. U

As we outlined earlier, we now define W(x,y) by
W(x,y) <> T(x,x,y). It follows immediately that W(x,y) is
recursive and hence computable. It remains only to prove
that 3W(x,y) is not computable and hence not recursive and

y

then we can formally define our machine Zg with unsolvable

halting problem.
THEOREM 5.19. 3 W(x,y) is a non-computable predicate.
y

PROOF: Suppose 3 W(x,y) is computable. Then so is its
y

characteristic function. Then there exists a Turing machine,

Z such that

ll

96

¥ (x) = 0 if 3W(x,y) holds.
1 Y

= 1 if 3W(x,y) doesn't hold.

Yy
By Lemma 1 of Chapter III, there is a Turing machine Zi
which is l-regular and such that Res,,[q,(m)] =g W m) .,
Zl 1l G(Zl) Zl

Let 22 be the Turing machine whose quadruples consist of all

the quadruples of Zi in addition to the quadruples:

1R dgq

qe(zi) (2])+1

Ig(z})+1°% Slo(2])41

qG(Z]'_)+lSPB qe(Zi)+l, where p is such that S,

is not in the alphabet of 2j.

Now if m is such that 3W(m,y) doesn't hold, then WZ (m)=1
Y 1

and so, with respect to 2z,

g, (m) > ...

-

9o(z)T
qe(zi)ll

lqe(Zi)+ll

which is terminal.

But if m is such that 3W(m,y) holds, then WZ (m)=0 and so,
Y 1l
with respect to 22

97

ql(x'n') + e
qe(zi)5

9o (z)*
lqe(zi)+1B
lqe(Zi)+lSp

lqe(zi)+1B

and a terminal
instantaneous description is never reached.
Thus, there is a computation of 22 beginning with x if and

only if 3W(x,y) doesn't hold, i.e. if and only if ~3W(x,y)
Yy Yy

holds. Now let z, be & G8del number of Zz. By definition

of the predicate T, T(zz,zz,y) holds if and only if y is
the G8del number of a computation of Z2 beginning with ql(E;).
Thus;aT(zz,zz,y) holds if and only if there is some computa-

tion of Z., beginning with ql(EE). But we argued above that

2

such a computation exists if and only if m3W(zz,y) holds. Thus
Yy

3T(zz,zz,y) - mBW(zz,y).
y y

But by definition of W, W(zz,y) “> T(zz,zz,y). And so

N3W(zz,y) > NBT(zz,zz,y).
y

98

Thus we have

3yT(z2,z2,y)++ w;ﬂ‘(zz.zz.y):

clearly an impossible situation.

Thus 3W(x,y) cannot be computable. d
Y

We now have W(x,y) computable and3 W(x,y) non-compu-

Y
table. Let w(x,y) be the characteristic function of W(x,y).

Then w(x,y) is computable, and so g(x) = miny[w(x,y)=0]
is a partially computable function. Thus, there is a Turing

machine Z, such that ¥, (x) = g(x).

0 0

THEOREM 5.20. The halting problem for Z, is unsolvable.

PROOF: Define the predicate P, (x) to hold if and

20

only if there is a computation of Z, beginning with ql(f).
Then, by Church's Thesis, the halting problem for Z, has a

solution if and only if PZ (x) is recursive.

0
Now PZO(x) holds if and only if Wzo(x) is defined, which
happens if and only if g(x) is defined, which happens
if and only if miny[w(x,y)=0] is defined, which happens if
and only if there exists a number y such that w(x,y)=0,
which happens if and only if there is a y such that W(x,y)

holds, which happens if and only if 3W(x,y) holds.

Y
Thus, P, (x) <+3 W(x,y). But3W(x,y) is not computable
0 Y Y
and hence not recursive. Thus PZ (x) is not recursive and Z0
0

has unsolvable halting problemn.

CHAPTER VI 99

THE WEAK AND STRONG WORD PROBLENMS

FOR SEMI-GROUPS.

In this chapter, we will present a single argument
which will show that both the weak and the strong word prob-
lems for finitely presented semi-groups are unsolvable. The
argument will in fact show that the unsolvability of the
weak halting problem for Turing machines yields thg unsolva-
bility of the weak word problem for finitely presented semi-
groups, and the unsolvability of the strong halting problém
yields the unsolvability of the strong word problem for
semigroups.

More precisely, we show that there is a constructive
correspondence between the set of all Turing machines and
a set of finitely presented semigroups, i.e. we will give an
effective procedure for constructing from each Turing machine,
Z, a finitely presented semigroup, H,, such that any solution
to the word problem for HZ yields a solution to the halting
problem for Z.

Suppose the weak word problem for finitely presented
semigroups had a solution. Then given any Turing machine, Z,
we use the effective procedure to construct the semigroup HZ
and then use our solution to the weak word problem for semi-
groups to get a solution to the halting problem for Z. Thus
we would have a single procedure which could be applied to

any Turing machine to solve the halting problem for that

100

machine, contradicting the unsolvability of the weak halting
problem,

Now, suppose the strong word problem for finitely
presented semigroups had a solution. The unsolvability of
the strong halting problem produces a Turing machine, ZO'
with unsolvable halting problem. We can then construct the

semigroup H and since any solution to the word problem for

Zg

HZ would yield a solution to the halting problem for ZO' there
0

can be no such solution. Thus we have a finitely presented
semigroup with unsolvable word problem and so the strong word
problem for semigroups is unsolvable.

We now go ahead with the construction of the semi-

group H, from the Turing machine Z. To facilitate the con-

Z
struction we introduce the concept of semi-Thuc¢ and Thue

systems. A semi-Thue system, T, is a pair (S,B) where S is

a finite set of symbols of generators and B is a finite set of

rules. A word in T is a finite sequence of generators from

S (like a word in a semigroup; note that inverses don't exist
as they do in groups.) Words are multipled by juxtaposition, as
in free semigroups. A rule of T, i.e. an element of B, is of
the form "A+B" where A and B are words in T. If C and D

are words in T, then we write "C+D in T if there are words
A,B,P,Q in T, possibly empty, such that C is PAQ, D is PBQ and
“A+B" is a rule of T. We write "E=F in T," where E and F

are words in T, if there is a finite sequence Cl,Cz,...,Cn

101

of words in T such that E is C,, F is C_ and "C.-+C, in T"
1 n i 7Ti+l
for i=1,2,...,n-1. Where no ambiguity can result, we simply
write "C+D" or "E=F".
If a semi-Thue¢ system, T, has the additional pro-

perty that "B+A" is a rule of T whenever "A+B" is, then T

is a Thue system, and we combine the rules, simply writing

"A«+B", The rule 'B+A"is called the inverse of the rule
"A+B", and vice versa. The following theorems follow imme-

diately from these definitions,

THEOREM 6.1, If T is a semi-Thuc system, then C-+D
in T implies C=D in T.

THEOREM .2, If T is a Thuc system, then C+D in T
if and only if D»C in T; and E=F in T if and only if F=E in
T. 1In these cases we write "C«»D in T" and "Es F in T"
respectively.

The reader may already have noticed that a Thuc
system is, for all intents and purposes, a semi-group. All
we have to do is replace the symbols ++ and « with the symbol
=, We will, of course, make use of this fact in our con-
struction,

An outline of our construction is as follows. For
each Turing machine Z we will construct a semi-Thuc system
T_ with the property that for each instantaneous description

Z

o of Z there corresponds a word Aa in TZ such that if B is

7 77 then B is AB for some

instantaneous description B of Z and o+8 in Z, Also

another word in T. where AG+B in T

102

Aa-»A6 in Tz whenever g+ 1in Z.

Thus, there is a certain class of words in TZ'
corresponding to instantaneous descriptions of Z, such that
T, acts on these words just as Z acts on its instantaneous
descriptions.

We then construct the semi-Thus system Té from T,
by adding one new generator, q, (without subscript) and a
number of new rules to TZ' so that for the word Aa corres-
ponding to an instantaneous description g of Z, we have
A, in Té if and only if AanG in T, for some terminal
instantaneous description § of Z. Of course this latter

occurrence will take place exactly when there is a computa-

tion of Z beginning with a. From Té we construct the semi-

group HZ with the same generators such that Aa = g
in H, if and only if there is a computation of Z beginning
with a.

We proceed formally as follows. Let Z be any
Turing machine. The set of generators of T, will consist of
all symbols appearing in the alphabet of Z, including the
symbol Sg if it does not already appear in the alphabet of Z,
all symbols appearing as internal configurations of Z, and
the symbol Sy where h is the smallest positive integer not
already appearing as the subscript of some s in the alphabet
of Z.

If o is any instantaneous description of Z, i.e.

a finite sequence of sj's with one q; not at the right end,

103

then we associate with @ the word 8y, 08 in TZ’ which we call

Aa‘ A word constructed in this manner from an instantaneous

description of 2 is called a d-word in T,.
The rules of Tz are congtructed in groups, each

group to correspond to a gquadruple of Z. If qistql is a

quadruple of Z, then the rules anisj+qls , one for each

S.
nj

generator of T, of the form S, ¢ excluding Sy (i.e. for each

A
Sh in the alphabet of 2, including so), will all be rules of

TZ.
TZ‘ We recall that the quadruple qistql of Z acts on an

instantaneous description o when o involves q; and q; appears

In addition, the rule shqisj*shqlsosj will be a rule of

immediately to the left of the symbol sj, and has the effect
of moving the g; one space to the left and changing it to d-
Our semi-Thue system rules act on the corresponding d-words
and have the same effect on them. We have the rule shqisj+
shqlsosj instead of the rule shqisj+qlshsj 50 that the Sy
will always remain at the left end of the word. We construct
similar groups of rules from the guadruples of the forms
q.s.qu and qisjskql. If qiszql is a quadruple of Z then

1]

the rules qisjsn+sj

the form S+ excluding Sy, v and the rule qisjsh+squsosh

will all be rules of T,. Finally, if qisjskql is a quadruple

q,8,, one for each generator of T, of

of Z, it will act on an instantaneous description which has
a; immediately to the left of sj and will have the effect of
changing the sj to s, and the q; to d;- So we include the

single rule qisj+qlsk among the rules of T, The rules

104

derived as above from the quadruples of Z are all the rules
of Ty

Now we easily observe that if we apply any of the
rules of T, to a d-word we get another d-word. By simple

induction, then, we derive that if E is a d-word in TZ and

if E=F in T then F is a d-word in TZ. We note even more than

ZI
this, though. From the way we have constructed the rules of
TZ we note that Aa+AB in T, if and only if o+ in Z. Thus

we can define A, to be a terminal d-word in T, if a is a

Z
terminal instantaneous description in Z, and we will have the
result that A is a terminal d-word in 2 if and only if A is

a d-word and there is no word B such that A-B in TZ.

So if we consider the semi-Thue system T, restricted
to d-words, it in a sense "does the same thing" as the Turing
machine Z.

We now construct the semi-Thue system Té from TZ.
The set of generators of Té will include all the generators
of T, in addition to the symbol q (no subscript). The set
of rules of Té will include all the rules of TZ in addition
to the following groups of rules:

(a) qisj+qu for all q, and sj, excluding Sp v

that are generators of T, such that neither qisj, $,,9;8

Z j’
qisjsh, anisj for some n, nor qisjsn for some n, is the left
hand word in a rule of TZ;
(b) squk + q for all generators
(c) $,,98), * 5,4 of TZ of the

(d) squh > qsh' form sj and sk(excludlng sh)

105

and the single rule
(e) Shqsh > d

We note that if E is a d-word in Té to which one of

the rules of (a) may be applied then the effect of applying the
rules of (a), (b), (¢c), (d), and (e) to E wherever possible

is to first change the q; of E to g and then to erase all

the sj's except s, , giving the word S, Sy, / and finally to

erase the sh‘s leaving the word gq. Thus, if we can apply

one of the rules of (a) to the d-word E in Té, we get E=q'

3 t
in TZ.

Next, we note that the rules of (a) are constructed
such that one of them is applicable to the d-word E of Té

if and only if E is a terminal d-word of T,. As we already

observed, E is a terminal d-word of T, if and only if E=A

Z

where a is a terminal instantaneous description of the Turing
machine Z.

Combining the above results with our previous ob-
servations we immediately have the following theorem.

THEOREM 6.3. There is a computation of the Turing
machine Z beginning with the instantaneous description a

if ard only if A = in Té.

Now let TZ” be the semi-Thue system whose generators

are just those generators of Té and whose set of rules consists

of the inverses of all the rules of Té. We notice immediately

that E=F in TZ” if and only if F=E in Té, where E and F are

any words in TZ”.

106

Next, let T_* be the Thue system whose generators

2
are just those generators of Té and whose set of rules
consists of the rules of Té together with their inverses,

i.e, whose set of rules is the union of the set of rules of

Té and the set of rules of TZ”.

THEOREM 6.4, If E is any d-word in T_* then Eo g in

Z

T, * if and only if E=q in T

2 Z
PROOF: Obviously E=g in TZ* if E=q in Té. By
THEOREM 6.2,g=E in TZ* if and only if E=g in TZ*. Thus Ee g
in TZ* if E=q in Té.
On the other hand, E=q in Té if g=£ in T, " Ob-
viously g=E in TZ* if E= g in TZ*. So it suffices to prove that
g=E in TZ” if g=E in TZ*.

First we observe that if C is any d-word of Té,

or any word of T) consisting of s's with exactly one q and an

]
2
s at either end,l then at most one rule of T! is applicable

!
Z
to C. This is because if C is d-word then C is Aa for some
instantaneous description o of Z. If any rule of Té is
applicable to C then either that rule is one of rules of (a)
in which case only one can be applicable or that rule is

one of the rules of T, in which case again only one can be

Z
applicable because the rules of T, all come from the quadruples

of 2z and at most one gquadruple of Z can be applied to «.

lRemember that a word involving g is not a d-word, be-
cause a d-word is of the form S, 08, where ¢ is an instantaneous
description of Z. g

107

Also, from the way the rules of (a) were chosen, none of
them can be applicable to C if a rule of T, is, If C is a
word involving g then the only possible rules of Té that can
be applicable to C are those of (b), (c), (d) and (e), and
it is easy to see that at most one of them can be applicable
to C.

Now suppose g=E in TZ*. Then there is a finite

sequence of words Cl,C Cn such that g is Cl and E is

2,.0"
Cn and Ci+Ci+l for i=1,2,...,n-1, and such that Ci is either

a d-word or a word consisting of s's with exactly one g

and an Sy at either end, for i=2,3,...,n. (Note that C2

must be the word shqsh.) Now let Vl'vz""'vn-l be the se-

quence of rules of T,* such that Vi is the rule Ai+Bi of

Z

S \ .
T, and Ci is the word PiAiQi for Pi and Qi and Ci+l is the

\ . . . *
word P.B.Q., i.e. Vi is the rule used to get Ci+Ci+l in TZ ’

iTixi

for i=1,2,...,n-1. Then for each i, Vi is a rule of either
Té or T, . It is easy to see that no rule of Té can be
applied to g, and so Vl must be a rule of T, . (In fact Vl

will be the rule q+shqsh.) Let m be the least number such

. N ” . .
that Vm is not a rule of TZ . Then Vm is a rule of TZ .
Now Vm is the rule used to get Cm+cm+l° And we saw that Vm
can be the only rule of Té applicable to Cm' and obviously
it can only be applied in one way. Thus if C,”D in Té,

. x . .
m-l+cm in T, and the rule which gives

this is in T, ", soO Ch-1"Cp 10 Ty and thus C*Cn-1

so C _, 1s Cm+l° Thus the words Cn and Ch+l could be omitted

D must be Cm+l‘ Now C

in T), and

108

from the sequence Cl’CZ"‘°'Cn' In this manner we can
eliminate all the steps involving application of rules not

from T and so g=E in T

2 , and the theorem is proved. g

Z

We are now ready to construct our semi-group. Let
T be any Thue. system, Let Hp, be the semi-group with presen-
tation (S;U) where S, the set of generators of HT, is just
the set of generators of T and where U, the set of defining
relations of Heo is such that A=B is in U if and only if A<-B
is a rule in T. Since defining relations of a semi—group.
are applied to words of the semi-group in the same way that
rules of a Thue system are applied to words of the system,

we see immediately that E=F in H,, if and only if E= F in T,

T
where E and F are any two words in HT.

Now we are ready to finish the proof of the unsolva-
bility of the weak and strong word problems for finitely
presented semi-groups.

THEOREM 6.5. Given a Turing machine Z, there exists
a finitely presented semigroup HZ' such that a solution to
the word problem for H, yields a solution to the halting problem
for Z.

PROOF: Let HZ be the semigroup HTE constructed as
described above from the Thue system TE which is in turn
constructed from Z. Let o be an arbitrary instantaneous
7 hence in Té, hence

in T;, and hence in H,. By Theorem 6.3 there is a computation

of Z beginning with o if and only if A, =q in Té. By Theorem

description of Z. Then A, is a word in T

109

6.4., A, =q in T} if and only if A ,=q in T *. We observed

4 Z

that A,=q in TZ* if and only if A,=q in H,. Thus there is
a computation of Z beginning with o if and only if A =q
in H,. But we can apply our solution to the word problem

for H, to determine whether or not Aa=q in Hy holds., Thus
we have an effective process for determining whether or not
there is a computation of Z beginning with o, and so we

have a solution to the halting problem for Z. a

We have essentially accomplished what we set out.to
do. All that remains is to introduce Rotman's part of the
proof of the word problem for groups. The first thing that
we should note is that in a semigroup or group whose genera-
tors are all of the form q; or sj for some number i or j, a

special word is a word I of the form Aq; B where A and B are

words in the s's alone and, in the case of a group, where

L is a positive word, i.e. I is a word in the generators

with no occurrences of the inverses of the generators.

Post's Theorem, as Rotman calls it, is the theorem

which gives the existence of a finitely presented semigroup
with unsolvable word problem. This semigroup is called, by

Rotman, Post's semigroup, and would be our semigroup H,
0

is a Turing machine with unsolvable word problem.

where Z0
Rotman shows that there is a finitely presented

group G, with unsolvable word problem, and constructs this

group from Post's semigroup. Thus Rotman shows the unsolvability

of the strong word problem starting with the unsolvability of

110

the strong word problem for finitely presented semigroups.

The group that Rotman constructs is such that the solvability
of its word problem would yield the solvability of the word
problem for the semigroup from which it was constructed.

As long as a semigroup has a finite number of generators of
the form s; or qj for some number i or j, and a finite number
of defining relations of the form Zi = Fi, where Zi and Fi
are all special words, one can use Rotman's construction to
obtain a group such that the solvability of the word problem
for that group yields a solution to the word problem for that
semigroup. So if the weak word problem for finitely presented
groups were solvable we would have an effective procedure

for solving the weak word problem for semigroups of this form.
Now all the semigroups that we constructed from Turing ma-
chines have this form and so have unsolvable weak word
problem. Thus Rotman's proof actually shows that the unsol-
vability of the weak word problem for finitely presented
groups is obtainable from the unsolvability of the weak word

problem for this class of semigroups.

111
BIBLIOGRAPHY

(1] Boone, W. W.: "An analysis of Turing's 'The Word Problem
in Semigroups with Cancellation'", Annals of Math-
ematics, Vol. 67 (1958), pp. 195-202.

(2] Boone, W. W.: "The Word Problem", Annals of Mathematics,
Vol. 70 (1959), pp. 207-265.

[3] Britton, J. L.: "Solution of the Word Problem for Certain
Types of Groups", Proc. Glasgow Math., Assoc., Vol, 3
(1956), pp. 45-54.

[4] Britton, J. L.: "The Word Problem for Groups", Proc. London

Math. Soc. (3), Vol. 8 (1958), pp. 493-506.

(5] Britton, J. L.: "The Word Problem", Annals of Mathematics,
Vol. 77 (1963), pp. 16-32. -

[6] Davis, iartin: Computability and Unsolvability, McGraw-
Hill Book Co., New York, (1958).

[7] Dehn, Max: "Uber Unendliche Diskontinuierliche Gruppen®,
Mathematische Annalen, Vol. 71 (1911), pp. 1l6-144.

[8] .r.endlinc.r,Martin: "Dehn Algorithm for the Word
Problem", Communications of Pure and Applied Mathema-
tics, Vol. 13 (1960), pp. 67-83.

9] Greendlinger, lMartin: "On Dehn's Algorithms for the
Conjugacy and Word Problems, With Applications”,
Comm, Pure. Appl. Math., Vol. 13 (1960), pp. 641-677.

[10] Higman, G.: "Subgroups of Finitely Presented Groups",
Journal of London iHath. Soc., A, Vol. 262 (196l),
pp. 455-475.

[11] Magnus, Wilhelm; Karrass, Abraham; and Solitar, Donald:
Combinatorial Group Theory: Presentations of Groups
in Terms of Generators and Relations, John Wileyé&Sons,
New York, (1966).

[12] ©Novikov, P. 5.: "On the Algorithmic Unsolvability of the
Word Problem in Groups" (Russian), Trudy Mat. Inst.
Steklov, Wo. 44, Izdat Akad. Navk SSSR, HMoscow, (1955).
Amer. Math. Soc. Translation Series 2, Vol. 9.

[13] ©Post, Emil L.: "Recursive Unsolvability of a Problem of
Thue", Journal of Symbolic Logic, Vol. 12 (1947),
pp. 1-11.

112

[14] Rabin, Michael O.: "Recursive Unsolvability of Group
Theoretic Problems", Annals of Mathematics, Vol. 67
(1958) , pp. 172-194.

(15] Rotman, Joseph J.: The Theory of Groups: An Introduction,
Allyn and Bacon, Boston, (1965).

(16] mTartakovskii, V.A.: "The Sieve Method in the Theory of
Groups" (Russian), Mat. Sbornik, Vol. 25 (1949),
pp. 3-50.

[17] Tartakovskii, V.A.: "Applications of the Sieve Method to
the Solution of the Identity Problem in Certain
Types of Groups" (Russian), iMat. Sbornik, Vol, 25
(1949), pp. 251-274.

[18] Tartakovskii, V.A.: "Solution of the Identity Problem
for Groups with a K~reduced Basis for K>6" (Russian),
Isvestiya Akad. Naut SSSR, Ser. Mat., Vol. 13 (1949),
pp. 483-494.

[16 -[187] English Translation of Above: Russian Translation

Project, Amer., Math. Soc., Vol. 60 (1952).

(197 Thue, Axel; "Probleme tber Verdnderungen von Zeichen-
reihen nach Gegebenen Regeln", Skrifter utgit ar
Videnskapsselskapet i Kristiania, I. Mathematisk-
naturvidenskabelig klasse 1914, no. 10, (1914),

34 pp.

[20] Turing, A.M.: "On Computable Numbers, with an Application
to the Entscheidungsproblem”, Proc. London Math. Soc.
(2), Vol. 42(1937), pp. 230-265.

[(21] Turing, A.M.: "The Word Problem in Semigroups with
Cancellation", Annals of Mathematics, Vol. 52 (1950),
pp. 491-~505.

FURTHER REFERENCES

The following references were suggested by W.W. Boone, and
they, together with the preceding bibliography, form an almost
complete bibliography on the word problem.

[227] Adjan, S.I.: "The Algorithmic Unsolvability of Checking
Certain Properties of Groups" (Russian), Dokl.Akad.
Nauk SSSR, Vol. 103 (1955), pp. 533-535.

23] Artin, Emil: "Theory of Braids", Annals of Math.(2),
vol. 48 (1947), pp. 101-126.

113

[24] Baumslag, Gilbert; Boone, W.W.; and Neumann, B.H.:
"Some Unsolvable Problems about Elements and Sub-
groups of Groups", ilathematica Scandinavica, Vol. 7
(1959), pp. 191-201.

(251 Bokut, L.A.: "On a Property of the Groups of Boone"
(Russian), Algebra i Logika, Seminar, Vol. 5, No.5
(1966), pp. 5-23; and Vol. 6, No. 1(1967), pp. 15-24.
(Reviewed by D.J. Collins, Journal of Symbolic Logic,
Vol. 33 (1968), pp. 470-471.)

[26] Boone W.W.: “Certain Simple Unsolvable Problems of
Group Theory", Koninkl. Nederl, Akademie van
Wetenschappen, Amsterdam, Series A

Part I, Vol.57 (1954), pp. 231-237;

Part II, Vol.57 (1954), pp. 492-497;

Part III, Vol.58 (1955), pp. 252-256;

Part IV, Vol.58 (1955), pp. 571-577;

Part V, Vol.60 (1957), pp. 22-27 (last line
p.24 read "and 7" after *6", and "their"
for "its");

Part VI, Vol.60 (1957), pp. 227-232.

Note: these papers also appear in Indagationes

Mathematicae, Vols. 16 (Parts I and II),

17 (Parts III and IV), and 19 (Parts V and

VI) with the same page numbers as above.

[27] Boone, W.W.: "Word Problems and Recursively Enumerable
Degrees of Unsolvability", Annals of iath.,
A First Paper on Thue Systems, Vol. 83 (1966),
pp. 520-571; A Sequel on Finitely Presented Groups,
Vol. 84 (1966), pp. 49-84.

[28]1 Boone, W.W.: "Decision Problems about Algebraic and
Logical Systems as a Whole and Recursively Enumerable
Degreces of Unsolvability", Contributions to Math-
ematical Logic, Proceedings of the Hanover Collo-
qulum, North Holland Publishing Company, Amsterdam
(1968), pp. 177-197.

[29] Boone, W.W.; Haken, W.; and Poénaru, V.; "On Recursively
Unsolvable Problems in Topology and their Classifica-
tion", Ibid..

[30] Boone, W.W, and Rogers, Hartley Jr.: "On a Problem of
J.H.C. Whitehead and a Problem of Alonzo Church",
Mathematica Scandinavica, Vol, 19 (1966), pp. 185-
192,

[31] Ceitin, G.S.: "An Associative Calculus with an Insoluble
Problem of Equivalence" (Russian), Trudy Mat., Inst.
Steklov, (1952), pp. 172-189.

114

(321 Church, Alonzo: "A Note on the Entscheidungsproblem",
Journal of Symbolic Logic, Vol., 1(1936), pp. 40-41
and 101-102.

[33] Church, Alonzo: "An Unsolvable Problem of Number Theory",
American Journal of Mathematics, Vol, 58 (1936),
Pp. 345-363.

(34] Clapham, C.R.J.: "An Embedding Theorem for Finitely
Generated Groups", Proceedings of the London Math.
Soc., Vol. 27 (1967), pp. 420-430.

[35]1 Collins, D. J.: "Recursively Enumerable Degrees and the
Conjugacy Problem", Acta iMathematica, Vol. 122 (1969),

(36] Evans, Trevor: "The Word Problem for Abstract Algebras",
Journal of the London Math. Soc., Vol. 26 (1951),
Pp. 64-71.

[37] Fridman, A.A.: "Degrees of Unsolvability of the Problem
of Identity in Finitely Presented Groups"” (Russian),
U.S.S.R. Academy of Sciences--Central »Mathematics-
Economics Institute, Science Publishing House,
Moscow, (1967).

(38] Fridman, A.A.: "On the Relation between the Word Problem
and the Conjugacy Problem in Finitely Defined
Groups" (Russian), Trudy Moskov., Mat. Obsc., Vol. 9
(1960), pp. 329-356.

[39] Friedberg, R.M.: "Two Recursively Enumerable Sets of
Incomparable Degrees of Unsolvability (Solution of
Post's Problem, 1944), Proceedings National Academy
of Sciences, U.S.A., Vol. 43 (1957), pp. 236-238.

[40] Jockusch. Carl G. Jr.: "Supplement to Boone's 'Algebraic
Systems'", Contributions to Mathematical Logic,
K. Schiitte, editor, North-Holland, Amsterdam, 1968.

(411 Lyndon, Roger: “On Dehn's Algorithm", Mathematische
Annalen, Vol. 166 (1966), pp. 208-228.

42] Magnus, Wilhelm: "Das Identitdts Problem fdr Gruppen mit
Einer Definierenden Relation", Mathematische Annalen,
vVol. 106 (1932), pp. 295-307.

431 HMarkov, A.A.: "Impossibility of Certain Algorithms in
the Theory of Associative Systems" (Russian), Dokl.
Akad. Nauk SSSR, Vol.55 (1947), pp. 587-590, Vol.58
(1947), pp. 353-356.

115

(447 Markov, A.A.: "Insolubility of the Problem of Homeomorphy",
Proceedings of International Congress of Mathama-
ticlans, Cambridge University Press, 1958, pp. 300-
306'

(45] Matijasevic, J.V.: “"Simple Examples of Undecidable Asso-
ciative Calculi", Soviet Mathematics, Vol.8 No.2
(1967), pp. 555-557. (Reviewed by D.J. Collins,
Journal of Symbolic Logic, Vol. 33 (1968) pp. 469~
470.)

[46] Miller, Charles F. III: "On Britton's Theorem A",

(47] Mostowski, A.: "On the Undecidability of some Problems
in Special Classes of Groups", Fundamenta Mathematlcae,
vol. 54 (1966), pp. 123-135,

(48] urskii, V.L.: "Embedding of Recursively Presented
Semigroups in Finitely Presented Semigroups",
Mathematical Notes, Vol. 1 No.2 (1967).

[49 1] Novikov, P.S.: "Unsolvability of the Conjugacy Problem
in the Theory of Groups" (Russian), Izv. Akad. Nauk
SSSR, Ser. HMat., Vol, 18 (1954), rp. 485-524.

[s0] Post, Emil L.: "Recursively Enumerable Sets and their
Decision Problems”", Bulletin of the Am. iath. Soc.,
Vol. 50 (1944) pp. 284-310.

[51] sanov, I.I.: "A Property of a Representation of a Free
Group" (Russian), Doklady Akad. Nauk SSSR (N.S.),
vol. 57 (1947), pp. 657-659,

[52] ©&Schizk,Helmut: "Ahnlichkeitsanalyse von Gruppenrelationen”,
Acta Mathematica, Vol. 96 (1956), pp. 157-252,

{53] Schupp, Paul E.: "On Dehn's Algorithm and the Conjugacy
Problem"”, Mathematische Annalen, Vol. 78 (1968),
pp. 119-130.

[54] Scott, Dana: "A Short Recursive Unsolvable Problem (ab-
stract), Journal of Symbolic Logic, vol. 21 (1956),
pp. 111-112,

[55] Tarski, Alfred: "A Decision Method for Elementary Algebra
and Geometry", The Rand Corporation, Santa Monica,
California, 1948.

116

APPENDIX A

In this appendix we shall take a brief and by no means
either complete or rigorous look at some special classes of
groups for which the word problem has been solved. When we
say that we are given a finitely presented group, G, we
assume that we are in fact given a particular finite presenta-
tion for G, and we ask the gquestion, "for what sorts of
finite presentations does tnere exist an effective procedure
for determining whether or not an arbitrary word in the
generators is equal to the identity?" We have already seen
that the answer is not “for all sorts”.

We will first look at the simplest type of group
presentation: that with no defining relations, namely the
free group presentation. Given a free group on a finite
set (or, for that matter, an infinite set) of given genera-
tors we know that each word is equal to a unique reduced word
and we know that there is a very straightforward effective
procedure for finding that unique reduced word for any given
word. Since the empty word, which represents the identity,
is reduced, the solution for tine word problem is clear.
Given an arbitrary word W, we simply reduce W until we find
the reduced word W' such that wW=wW'., If W' is empty we know
that W=1; if not, W#l. Thus all free groups have solvable

word problem.

s o S,

P

117

In 1912, Dehn showed that the word problem is solvable
for the fundamental group of a closed two dimensional mani-

fold of genus gz2. This is the group with presentation

{al,az,...,azg; (al,ag+l)(a2,ag+2)...(ag,a2g)}

where (a.,a.) is tne commutator of a., and a., a.—la.-la.a..
i 3 1 J 1 3 13

Dehn's proof was a geometric one and has since been general-
ized considerably.

Next, suppose that Gy and G2 are disjoint finitely
presented groups with solvable word problems. We will show
that the free product Gl*G2 has solvable word problem.

We define the free product, * G , of a set,

{GY=Y€T}: of pair wise disjoint gzégps (note that any set

of groups can be "made” pairwise disjoint by "painting their
elements different colors') such that {SY;RY} is the presen-
tation of.GY; for each v€TI, to be the group with presenta-
tion { US_; UR_}.

veT Y veT Y

Thus, an element of Gl*G2 is a word in the symbols of

SlUS2 and their inverses. Let W be a word in G, *G,. Then
the following effective procedure can be used to determine
whether or not W=1 (the empty word) in G *G, .
Step 1. If W is empty, write "W=1", and stop.
If not go to step 2.
Step 2. Apply parentheses to W to write W as a product

of subwords of W such that each subword is a word in either

Gl or G, and no two adjacent subwords are both in Gl'or both

118

in G2.

Step 3. Apply the solutions of the word problems for

Gl and G2

subword is equal to 1 in either Gl or G2, delete it from

W. After making all possible deletions, we get a new word

to the subwords obtained in Step 2 and if a

which will be equal, in Gl*Gz’ to W and which we will also
call W. Go back to Step 1 if at least one deletion was
made., If no deletions were made, write "W#l", and stop.

We can obviously perform step 1 in a finite number of
steps.

Now, since G, and G, are both disjoint and have a

1 2

finite number of generators we can surely perform step 2

in a finite number of steps. Since W is only finite in
length, we must always eventually come to a point, after

a finite number of repeated applications of steps 2 and 3,
where either W is empty, or no more deletions can be made.

So the described procedure is certainly effective, and so
the word problem for Gl*G2 is solvable.

By induction, then, the word product for any finite free
product of finitely presented groups is solvable, if the
word problem is solvable for each of the groups whose free
product is being taken.

It can be shown that if G is the free product of G,
and G2 with isomorphic subgroups H1CG1 and H, <G, amalgamated,

we can again solve the word problem in G if the word

problems for Gl and G2 are both solvable and if in Gl and G2

119

we can decide whether a given element belongs to Hl or H,

respectively, and if we can solve the word problems in

Hl and Hz, and also if the isomorphism between H, and H

1
is constructive, i.e. if given an arbitrary element of

2

Hl we can effectively determine tiie element of H2 onto which
the element of Hl is mapped, and vice versa.

Using some of these results, it has been shown that the
word problem is solvable for any group G which is finitely
generated and which has one defining relation. This is
a generalization of Dehn's result, for Dehn's group has
exactly one defining relation.

Suppose, now, that G is a finitely presented group such
that no two of the defining relators have any symbols in
common ; i.e. if R, and R2 are any two defining relators

such that Ry is a reduced word involving the generators

a. ,+..,a: of G and R, is a reduced word involving the

i, i, 2
generators a, ,...,a. of G, then the sets {a, ,...,a; }
J1 Im 1 n
and {aj ,...,aj } are disjoint. Then G is the finite free
1 n

product of disjoint groups each with one defining relation
and, perhaps, a free group, and as such has a solvable word
problem. In this case G is such that any two of its defining
relators have no subwords in common.

In 1949, Tartakovskii [18] managed to extend this
result somewhat by solving tiie word problem for groups in
which any two defining relators have only very small, com-

pared to their lengths, subwords in common. However,

120

Tartakovskii's solution depends on knowing beforehand the
orders of all the generators of the group, and this may not
be readily available knowledge from the presentation,
and, in fact, may not be available at all, Tartakovskii's
results are combinatorial in nature and are so elaborate
that it would be impossible to describe them without lengthy
preparation.

Finally, the word problem has been solved for groups,
G, where for each pair, a,b, of generators, ab=ba is among
the defining relations or can be effectively derived from
the defining relations; i.e. if a group can be shown to be
abelian, it has solvable word problem. A proof of this
result can be found in Section 3.3 of Kagnus, Karrass,
and Solitar, [11].

Much more work than that described above has been
done on the word problem. A slightly more detailed outline
of this work is given in Section 6.1 of Magnus, Karrass,
and Solitar, and detailed proofs of some of the results
can be found throughout the book. Other proofs can be found
in some of the original papers listed in the bibliography
of this thesis and in the bibliography of Magnus, Karrass,

and Solitar.

121

APPENDIX B
More on Computable and Recursive Functions

and the Universal Turing HMachine,

In Chapter III we showed that all recursive and partial
recursive functions were computable or partially computable,
respectively. It was not necessary in our proof of the
existence of a Turing macuaine, ZO' witi unsolvable halting
problem, to show the converse, namely that every partially
computable or computable function is partial recursive or’
recursive, respectively, and so this was not shown. However
we came very close to showing this, and so, if only for
aesthetic reasons, we include the proof in this appendix.

We also show the existence of another Turing machine with
unsolvable halting problem.

In the proof of Theorem 5.13, we presented a list of
recursive predicates and functions. We now extend that list

with the following functions:

(1*) CU(n,x)
CU(n,x) = 0 if nGl x # 11
CU(n,x) =1 if nGl x = 11

CU(n,x) is the characteristic function of

the recursive predicate nGL x # 11 and, as such, is recursive.
(2%) Corn (x)

If x = gn(i1), tnen Corn(x) = ||[M|| (the number

of 1's or sl's in M). If % is not the G&8del number of an

122

expression, then we don't care what Corn(x) is.
£(x)
Corn(x) = I CU(n,x)
n=1

(3*) Ul(y)
If y is the G8del number of the sequence of ex-

pressions il WMy ree s M, then U(y) = HMnH. Otherwise, we

1
don't care what U(y) is.

U(y) = Corn (£(y)Gln).

THEOREHM Ap. 1. Every (Partially) computable function
is (Partial) recursive.

PROOF: Suppose that f(X(n)) is partially computable.
(n)(x(n))

0
f(X(n)). Now let z, be a G8del number of Z,. Now the pre-

0 0
(n),y) is recursive and so the function

(n)

Then there is a Turing machine Zo suci that WZ

dicate Tn(zo,x

min_ T (zO,X(n) ,y) = 0] is partial re-

¥y n
cursive. Now, minyTn(zo,X(),y) is tie G&del number of the

Y) = mlny[CT (zo,x

computation of Z0 beginning with ql(xl’XZ""’Xn)’ and 1is

defined exactly whean ¥Z n(xl,...,xn) is. Thus

(n) 0

U(minyTn(zo,X ,Y)) is partial recursive and

. n n n n .
U(mlnyTn(zo,X().y)) = ¥ZO (X()) = f(X()) and so f 1is
partial recursive,

Now suppose that f is computable. Then f is total and
so for all n-tuples, (xl’XZ""’Xn) there is a computation

of Z_., beginning with ql(xl'XZ""’xn)' Thus for every

0
(n))' (n)

n-tuple (X there is a Yo such that Tn(ZO’X ,yo)

123

(n)

holds. Thus Tn(zo,X /Y) 1s a regular recursive predicate

and so minyTn(zo,X(n),y) and hence U(minyTn(zo,X(n),y))

are recursive. Thus f(x(n)) is recursive.

Thus, the terms "computable” and “recursive" are inter-
changable, as are "partially computable" and "partial recur-
sive", and so, by Church's thesis, a function is calculable
if and only if it is computable (or partially computable,
if it is not total).

Now, we obtain as a corollary to Theorem 1, the pro;
mised converse to Corollary 3.1.

COROLLARY Ap. 2. Every function which is total and
partial recursive, is recursive,

PROOF: Suppose f is total and partial recursive.

Since it is partial recursive, it is partially computable.
Since it is partially computable and total, it is, by
definition, computable. But then by Theorem 1, it is

recursive. 0

Now consider the partial recursive binary function
¢(z,x) = U(minyT(z,x,y)). This function is partially
computable, and so there is a Turing machine U such that

YU(Z)(z,x) = ¢(z,X). We call U the "universal Turing

machine” since it can be employed to compute any partially

computable singulary function as follows.

Suppose f(x) is partially computable. Let Zg be the

Turing machine which computes f, i.e. such that YZ (x)=f (x).
0

124

be a Godel number of Z.. Then we have

Then let 2, 0

Vulzg,x) = ¢(z2,5,%) = U(mlnyT(zo,x,y)) = Yzo(x) = £(x).
The machine, U, can also be employed to compute n-ary
functions. Suppose f(xl,xz,...,xn) is an n partially
computable function. With the n-tuple (xl,xz,...,xn)

we associate the single number

x—
x = I Pr(k) k .
k=1

In other words we define the computable n-ary function
g(xl,xz,...,xn) by

X
Pr (k) k .
1l

=3

g(xl,xz,...,xn) = .

ijow define hn(x) by hn(x) = £(1G1lx,2Glx,...,nGlx). Then

for any n, hn(x) is partially computable and we have

For each n, there is a Turing macihine Zn’ with G8del number

2., such that WZ (x) = hn(x). And thus we have
n

£x M (gx™y)=r, @ ™))y @) z_,g ™)),
n

And since g is recursive and hence calculable (in fact,
g can be calculated easily) the machine U can be used to

(n)

calculate £ (X).

THEOREM Ap.3. The universal Turing machine, U, has

unsolvable halting problem.

125

PROOF: Near the end of the proof of Theorem 4.1 we found
that "... there can be no effective procedure for deter-
mining for an arbitrary Turing machine Z and an arbitrary
number x whether or not there is a computation of Z be-
ginning with qli." Since the system of Gddel numbering is
certainly effective, i.e. given a Turing machine we can
effectively determine its G8del number and vice versa,

and since WU(z)(z,x) = Wz(x), where z is the G8del number
of the machine 2, if the halting problem for U had a solu-
tion, then we would simply find the G8del number for the
machine 2 and use the solution to the halting problem for U
to determine whether or not there was a computation of U
beginning with ql(ETQ), which would tell us whether or

not there was a computation of Z beginning with ql§. This,

however, would contradict our previous result.

Index of some Notation and Definitions

alphabet of a Turing machine
bounded existential quantifier
bounded universal quantifier
characteristic function, Cs(xr...,xn)
Church's Thesis

composition

computable

computation

existential quantifier

extension of a predicate

G8del number of an expression
G8del number of a sequence of expressions
instantaneous description
internal configuration
minimalization

n-regular Turing machine
partially computable

partial recursive function
predicate

primitive recursion

Prime (X)

guadruple

recursive function

recursive predicate

126

Page
18

68

68

13
24
23
20
69
67
72
73
18
16,18
24
37
23
24
66
78
88
17
25
69

recursive set
regular function
resultant

scanned symbol
strong word problem
tape expression
terminal instantaneous description
Thue system

total function
Turing machine
universal quantifier

weak word problem

(x ™))
a+B(Z)
Resz(a)

n

(nl,nz,...,nm)

(n)
¥ (xl'XZ""’Xn)
miny[f(y,x(n)) = 0]
S(x)

n
us (xl'X2’°"’xn)
x>y
8(z)

Z(n)

127

Page
69
24
20
19
9
18
20
100,101
; :
15,18
69

8

19
20
22
23
23
23

24

25
25
37

38

g <
Ha N Il LWUN -
L >

-

by

i
[

128

Page
67
68

68

68

69

72 -
72
72,88
75

75

716

76

76

86

88

