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Abstract 

Joseph J. Rotman, i n  h i s  group theory textbook,  The - 
Theory of Groups, An In t roduc t ion ,  g ives  a p a r t i a l  proof of 

t h e  u n s o l v a b i l i t y  of t h e  word problem f o r  groups. The com- 

p l e t e  proof can be broken i n t o  two p a r t s ,  The f i r s t  p a r t  i s  

a proof of t h e  u n s o l v a b i l i t y  of t h e  word problem f o r  s e m i -  

groups and t h e  second p a r t  i s  a proof t h a t  t h e  u n s o l v a b i l i t y  

of t h e  word problem f o r  semigroups y i e l d s  t h e  u n s o l v a b i l i t y  

of  t h e  word problem f o r  groups. Rotman g ives  only t h e  second 

p a r t  of  t h e  complete proof .  This t h e s i s ,  then ,  g ives  t h e  

f i r s t  p a r t  of t h e  proof .  

Two problems are presented i n  the t h e s i s ,  t h e  weak and 

t h e  s t rong  word problems f o r  f i n i t e l y  presented groups. In  

Chapter I t h e  two problems and t h e  use of Church's t h e s i s  t o  

prove them both unsolvable i s  descr ibed.  Chapter X I  d e a l s  

with t h e  concepts of Turing Machines and computable funct ions .  

Chapter 111 is devoted t o  de f in ing  recurs ive  func t ions  and 

proving them t o  be computable, In  Chapter I V  t h e  unsolva- 

b i l i t y  of t h e  weak h a l t i n g  problem f o r  Turing machines i s  

proved and i n  Chapter V t h e  unso lvab i l i ty  of t h e  s t rong  

h a l t i n g  problem f o r  Turing machines is  proved. Chapter V I  

is  devoted t o  showing how t h e  r e s u l t s  of Chapters I V  and V 

y i e l d  t h e  u n s o l v a b i l i t y  of t h e  weak and s t rong  word problems 

f o r  semigroups, r e s p e c t i v e l y ,  and introducing Rotman's com- 

p l e t i o n  of t h e  proof of t h e  weak and s t rong  word problems 



for groups. 

In Appendix A a few solutions for word problems for 

special classes of groups are mentioned, and in Appendix B 

we show the equivalence of recursive and computable functions 

and the existence of the univer&~ Turing machine. 



TABLE OF CO-rJTENTS 

I n t r o d u c t i o n  

A. A a r i e f  H i s to ry  

B .  i la themat ical  P r e r e q u i s i t e s  

C. Notat ion and Terminology 

Chapter I: The iJord Problerd an6 Church's  Tnes i s  % 

Chaater  11: Turing i-lachines f*S 

Chapter 111: Coinputable and Recursive Funct ions  24 

Chapter I V :  The Weak h a l t i n g  Probleii f o r  

Turing ~ i a c h i n e s  58 

Chapter V: Pbre Recurs ive Funct ions  and t n e  

S t rong  Ha l t ing  Problem f o r  

Turing Flachines G5 

C i ~ a p t e r  V I :  The Weak anG St rong  $ord Problems 

f o r  Semi Groups 99 

d ib l iog raphy  

Fur the r  References 

Appendix A 

~p2endi .x  ir 

Index of Some  lota at ion and D e f i n i t i o n s  



I wish t o  t a k e  t h i s  oppor tuni ty  t o  express  my 

a p p r e c i a t i o n  t o  D r .  T.C. Brown f o r  h i s  advice ,  sugges t ions ,  

and encouragement du r ing  t h e  p repa ra t ion  of t h i s  t h e s i s .  

I would a l s o  l i k e  t o  thank D r .  H. Gerber f o r  sugges t ing  

one of  my major r e f e r e n c e s ,  and Pxs. Xargaret  Kelley f o r  

doing t h e  typ ing .  

The suppor t  r ece ived  from D r .  Brown's N.R.C. g ran t  

N o .  A - 3 9 8 3  i s  a l s o  apprec ia t ed .  



A. A B r i e f  His tory  

It i s  known t h a t  every  group,  G ,  can be d e f i n e d  by 

means of a  p r e s e n t a t i o n ,  (S; & ,  where S i s  a set of  genera- 

t o r s  o f  t h e  group,  and R is a set of  d e f i n i n g  r e l a t i o n s  o r  

r e l a t o r s .  A r e l a t i o n  i s  o f  t h e  form Wl = W2, where W1 and 

W2 a r e  words on tho symbols i n  S and t h e i r  i n v e r s e s ,  and a 

r e l a t o r  i s  a s i n g l e  word W on t h e  symbols i n  S and t h e i r  

i n v e r s e s .  The group G de f ined  by t h e  p r e s e n t a t i o n  ( S ; R )  i s  

ob ta ined  i n  t h e  fo l lowing  manner. I f  w e  r e p l a c e  each d e f i n -  

-1 i n g  r e l a t i o n ,  W1 = W 2 ,  i n  R by t h e  r e l a t o r  WIWZ t o  o b t a i n  

t h e  s e t  R' of  r e l a t o r s  and then t a k e  t h e  f a c t o r  group,  

F/N, where F i s  t h e  f r e e  group genera ted  by S and N i s  t h e  

normal subgroup of F gene ra t ed  by X I ,  w e  have G is  isomor- 

p h i c  t o  F/N. 

Speaking very  imprec i se ly ,  t hen ,  G is (or i s  isomor- 

p h i c  t o )  t h e  l a r g e s t  group gene ra t ed  by S i n  which a l l  the 

d e f i n i n g  r e l a t i o n s  i n  R hold  and i n  which a l l  t h e  d e f i n i n g  

r e l a t o r s  i n  R are equa l  t o  t h e  i d e n t i t y *  It is a l s o  known 

t h a t  anything whick " looks  l i k e "  a p r e s e n t a t i o n  f o r  a group, 

no matter how l a r g e  nor  how s t r a n g e  t h e  d e f i n i n g  r e l a t i o n s ,  

always de te rmines ,  i n  t h e  manner desc r ibed  above, a unique 

group (up t o  isomorphism). 

W e  s h a l l  employ what many a l g e b r a i s t s  c o n s i d e r  t o  be 

an abuse of  language, and s h a l l  s a y ,  i f  G i s  a group g iven  by 



the presentation (S;R), that the elements of S are, in facti 

elements 05 the group G, and that all the elements of G are 

words in the symbols of S and their inverses. 

We said that every presentation defines a graup, but 

there may arise great difficulties as soon as we wish more 

specific information about the group; e.g., is it Abelian? 

is it finite? is such-and-such a word in the group equal 

to such-and-such another word in the group? etc. 

In 1911, Max Dehn C73 formulated the following three 

decision problems for a group, G, given in terms of a pre- 

sentation, called the "word problem", the "conjugacy" or 

"transformation problem", and the "isomorphism problem" 

respectively. 

(I) For an arbitrary word W in the generators of G, 

decide in a finite number of steps whether W is equal to the 

identity element of G, or not. 

(11) For two arbitrary words W1, W2 in the generators 

of G, decide in a finite number of steps whether W1 and W2 

are conjugate elements of G, or not. 

(111) For an arbitrary group G '  defined by means of 

another presentation, decide in a finite number of steps 

whether G is isomorphic to G', or not. 

We say that one of these problems is solved when an 

"effective procedure" for making the required decision is 

found. It is the case, however, that none of these problems 

has been solved in general, and, in fact, none of these 



problems can be 

a group, G, for 

be solved.  

solved i n  gene ra l .  I n  o t h e r  words, t h e r e  i s  

which none of  t h e  above t h e e  p rob l~ rns  can 

This  t h e s i s  deais only w i t h  t h e  f i r s t  of t h e  tmee 

problems, t h e  word problem, arid t h e  only mention t h a t  w i l l  

be made of t h e  o t h e r  two problems, t h e  conjugacy and isoinor- 

phism problems, w i l l  he t o  show t h a t  i f  t h e  word problem for 

G i s  unsolvable ,  t hen  t h e  canjugacy 2roblern f o r  G .is a l s o  

unsolvable.  The isomorphism problem i s  cons iderably  more 

d i f f i c u l t  t o  deal  wi th ,  and s o  no f u r t h e r  mention w i l l  be 

made of it here .  

Suppose t h a t  G has unsolvable  word problem; i . e .  

supposs t h a t  t h a r e  e x i s t s  no d e c i s i o n  p rocess  which w i l l  i n  

a f i n i t e  number of s t e p s  determine,  f o r  an a r b i t r a r y  word 

W i n  t h e  gene ra to r s  of  G ,  whether or n o t  W i s  equal  t o  t h e  

i d e n t i t y  elemmt of G. I f  t h e  conjugacy problem f o r  G 

were s o l v a b l e  then  t h e r e  would be a d e c i s i o n  process  which 

would f i n i t e l y  determine whether o r  n o t  W and any given 

word i n  G a r e  conjugate  i n  G. In  p a r t i c u l a r  w e  could de- 

termine whether W and t h e  i d e n t i t y  of G a r e  conjugate .  But, 

of  cour se ,  any conjugate  of t h e  i d e n t i t y  i s  eqml t o  t h e  

i d e n t i t y ,  and s o  w e  could determine where o r  n o t  W i s  e q u ~ l  

t o  t h e  i d e n t l t y  i n  G ,  c o n t r a d i c t i n g  our  suppos i t ion .  

I n  1 9 3 7 ,  A. Li, Turing [ 2 0 ]  showed the u n s o l v a b i l i t y  

of what we  s h a l l  c a l l  " t h e  s t r o n g  h a l t i n g  problem f o r  Turing 



machines." Emil L. Post C13], in.1947, used Turing's result 

to show the unsolvability of our "strong word problem for 

finitely presented semigroups." The unsolvability of the 

word problem for finitely presented groups was finally proved 

independently by W. W. Boons [26] and P .  Novikov [12] in the 

mid 1950's. i300ne1s revised proof of 1959 [2 ]  was considera- 

bly shortened by J. L. Britton in 1963 [ 5 3 .  Both Boonens and 

Britton's proofs start from Post's semigroup result. 

In Chapter 12 of his book The Theory of Groups: An. 

Introduction, Rotrnan [15] gives an exposition of the unsol- 

vability of the word problem for groups. The complete 

proof can be divided into two parts; the first part is the 

proof of the unsolvability of the word problem for finitely 

presented semigroups based on the work of Turing and Post, 

and the second is the proof of the construction, from the 

semigroup of the first part, of a finitely presented group 

with unsolvable word problem. While Rotman roughly describes 

some of the notions involved in the first part of the proof, 

he only rigorously gives the second part in his book. 

The purpose of this thesis, then, is to give a 

complete, detailed, rigorous proof 05 the unsolvability of 

the word problem for semigroups required by Rotman, so that 

a student of group theory with a good knowleage of the 

important concepts of basic group theory, but with no ad- 

vanced mathematical knowledge outside the area of group 



theory, except for a small amount of number theory, can read 

and follow a complete proof of the unsolvability of the 

word problem for groups by first reading this thesis, and . 

them reading Rotman's proof of the second part, starting in 

the middle of page 265 of his book, without requiring outside 

reference material. 

Turing's methods have been altered and revised con- 

sidsra5ly by a number of people, including Post, and the 

sections of this thesis on Turing machines and recursive 

functions (Chapters 11, 111, and V) although rearranged con- 

siderably and adapted more specifically for our own pur- 

poses, are based heavily on the exposition in Wartin Davis's 

text, Computability and Unsolvability, [6]. The main 

theorem of Chapter VI is based directly on Post's original 

paper C131. 

B. Mathematical Prerequisites 

The only mathematical prerequisite for the under- 

standing of this thesis, other than a basic knowledge of 

group theory, elementary set theory, and the definition of 

a semigroup, is some knowledge of the basic concepts and 

results of the Theory of Numbers; including the concept of 

divisibility, the definition of a prime number and the fact 

that there are infinitely many primes, thz Fundamental 

Theorem of Arithmetic, and the Chinese Remainder Theorem. 



C. Notat ion and Terminoloav 

Numbers. The on ly  numbers t h a t  w i l l  be used i n  t h i s  

t h e s i s  w i l l  be  t h e  n a t u r a l  numbers. By " n a t u r a l  numbers" we 

w i l l  mean t h e  p o s i t i v e  i n t e g e r s  i nc lud ing  0 ( z e r o ) .  Thus, 

u n l e s s  it i s  c l e a r l y  s p e c i f i e d  o the rwi se ,  t h e  t e r m  "number" 

w i l l  always mean " n a t u r a l  number", a s  w i l l  t h e  t e r m  " i n t e g e r "  

(no n e g a t i v e  i n t e g x s  w i l l  be used ) .  

n - tup le s .  W e  w i l l  be f r e q u e n t l y  r e f e r r i n g  t o  n - tup les  

of  numbers and w i l l  u s e  t h e  n o t a t i o n a l  convent ion t h a t  t h e  

n- tup le  (xl ,x2 x  may be denoted by (X(")  ) and t h e  

n- tup le  (y1,y2 , ~y,)  may be denoted by ( Y  ( " I ) .  T h i s  con- 

ven t ion  w i l l  on ly  be employed f o r  n - tup le s  of x ' s  o r  y ' s .  

W e  w i l l  however o f t e n  deno te  t h e  (n+2) - t u p l e  ( z  .xl,x2 , *  - ,Xnty) 

by ( Z  ,x(") ,y )  o r  t h e  ( n + l )  - t u p l e  y 1  y  * Y by 

Func t ions .  A l l  f u n c t i o n s  used w i l l  be f u n c t i o n s  

whose domains a r e  conta ined  i n  t h e  n a t u r a l  numbers, or a r e  

conta ined  i n  t h e  se t  o f  n - tup le s  of  n a t u r a l  numbers, f o r  

some n .  A f u n c t i o n  whose domain i s  conta ined  i n  t h e  set of 

n - tup le s  w i l l  be  called "n-ary" o r  "n-place".  (A one-place 

f u n c t i o n  w i l l  be c a l l e d  s i n g u l a r y ;  a two-place, b ina ry ;  

and a  t h ree -p l ace ,  t e r n a r y . )  W e  s h a l l  u s u a l l y  emjloy t h e  

"abuse o f  lancjuage" whereby an n-ary f u n c t i o n  f . . i s  w r i t t e n  

f b1 ,X2 , . - . x  n  ) o r  f  (x ' " ) ) ,  etc. .  A l l  f u n c t i o n s  s h a l l  be  

f u n c t i o n s  i n t o  t h e  n a t u r a l  numbers. W e  s h a l l  adhere  t o  t h e  



convention that a necessary condition for two furrctions to 

be equal is that they have the same domain,'i.e. if one of 

the functions is not defined for a particular n-tuple of 

numbers, neither is the other. An n-ary function whose 

domain is the set of all n-tuples of numbers will be called 

"total". 

Characteristic Functions, Given a set S of n-tuples 

we define the characteristic function of St written 

Cs (al t a2 r b o * a  n ) = 0 if the n-tuple (alfa2fv*,an)ES 

Ends of Proofs: The symbol 0 will be used to 

denote the end of a proof. 



CHAPTER I 

THE: NORD PROBLEb9 M D  CkilJHCtl'S Y'I'LSIS. 

L e t  G be a group wi th  g e n e r a t o r s ,  S ,  and d e f i n i n g  r e l a -  

t i o n s ,  R. The word problem f o r  G i s  t n e  problem of  de te rmin ing  

whether an a r b i t r a r y  word i n  t h e  g e n e r a t o r s  of  G i s  o r  i s  n o t  

equa l  t o  t h e  i d e n t i t y  i n  G. W e  say  t h a t  t h e  word problem f o r  

G i s  s o l v a b l e  i f  t h e r e  e x i s t s  an e f f e c t i v e  procedure  f o r  

de te rmin ing  whether o r  n o t  any g iven  word i n  t h e  g e n e r a t o r s  

o f  G i s  equa l  t o  t h e  i d e n t i t y  i n  S, and w e  say  t h a t  t h e  word 

problem f o r  G i s  unso lvab le  i f  no such e f f e c t i v e  procedure  

e x i s t s .  I f  U and V are words i n  t h e  g e n e r a t o r s  of  G then  

c l e a r l y  U = V i f  and on ly  i f  UV-l = 1. Thus t h e  word problem 

f o r  G could a l s o  be  s a i d  t o  be t h e  problem of  de te rmin ing  

whether two a r b i t r a r y  words i n  t h e  g e n e r a t o r s  of  G are o r  a r e  

n o t  equa l .  I f  H is a semigroup w i t h  g e n e r a t o r s  T and d e f i n i n g  

r e l a t i o n s  E ,  t hen  t h e  word problem f o r  H i s  t h e  problem of  

determining whether two words i n  t h e  g e n e r a t o r s  o f  H are o r  

are n o t  equa l .  

There are two problems which w e  can ca l l  t h e  word problem 

f o r  f i n i t e l y  p re sen ted  groups.  The f i r s t ,  which w e  shall r e f e r  

t o  as t h e  weak word problem f o r  f i n i t e l y  p re sen ted  qroups,  o r  

simply t h e  weak word problem, i s  t h e  problem of determining 

whether i n  an a r b i t r a r y  group G wi th  a f i n i t e  s e t ,  S ,  o f  gene- 

r a t o r s  and a f i n i t e  set ,  R ,  of d e f i n i n g  r e l a t i o n s ,  an  a r b i t r a r y  

word i n  t h e  g e n e r a t o r s  o f  G i s  o r  i s  n o t  equa l  t o  t h e  i d e n t i t y  

i n  G ,  o r  whether two a r b i t r a r y  words i n  G a r e  o r  are n o t  

equa l  i n  G. Thus t h e  weak word problem f o r  f i n i t e l y  presen ted  



groups i s  t h e  problem o f  s o l v i n g  t h e  word problem f o r  G f o r  

a l l  f i n i t e l y  p re sen ted  groups G s imul taneous ly .  W e  say  t h a t  

t h e  weak word problem is  s o l v a b l e  i f  t h e r e  e x i s t s  an e f f e c t i v e  

procedure  f o r  determining whether i n  an a r b i t r a r y  f i n i t e l y  

p re sen ted  group G ,  two a r b i t r a r y  words i n  t h e  g e n e r a t o r s  of G 

are o r  a r e  n o t  equa l .  W e  say  t h a t  t h e  weak word problem i s  

unso lvab le  i f  no such e f f e c t i v e  procedure  e x i s t s .  The impor- 

t a n t  t h i n g  t o  n o t e  h e r e  is  t h a t  w e  a r e  looking  f o r  one s i n g l e  - 
e f f e c t i v e  procedure  t h a t  can be  a p p l i e d  t o  any f i n i t e l y  pre-  

s en t ed  group t o  s o l v e  t n e  word problem f o r  t h a t  group. 

The o t h e r  problem, which w e  s h a l l  c a l l  t h e  s t r o n g  word 

problem f o r  f i n i t e l y  p re sen ted  groups,  i s  t h e  problem of  f i n d i n g ,  

f o r  each f i n i t e l y  p re sen ted  group,  G ,  an e f f e c t i v e  procedure 

which w i l l  s o l v e  t h e  word problem f o r  G ;  i .e .  which can be 

used t o  determine wnetner o r  n o t  two a r b i t r a r y  words i n  t h e  

g e n e r a t o r s  o f  G a r e  equa l .  Tne impor tan t  t h i n g  t o  n o t e  h e r e  

i s  t h a t  w e  a r e  n o t  - looking  f o r  one s i n g l e  procedure  t h a t  can be 

a p p l i e d  t o  any f i n i t e l y  p re sen ted  group,  b u t  are a sk ing  whether 

o r  n o t  f o r  each group w e  can f i n d  a procedure  t o  f i t  t n a t  

group. The s t r o n g  word problem would be unso lvab le ,  t h e n ,  i f  

w e  can f i n d  a group,  G ,  such t h a t  G has  unso lvab le  word 

problem. 

It i s  immediately clear t h a t  a  s o l u t i o n  t o  t h e  weak 

problem y i e l d s  o r  i n c l u d e s  a s o l u t i o n  t o  t h e  s t r o n g  problem, 

and s o  it might a t  f i r s t  seem t h a t  t h e  terms "weak" and " s t rong"  

should be a p p l i e d  t h e  o t n e r  way around. 



Now suppose t h a t  t n e r e  were no s o l u t i o n  t o  t h e  f i r s t ,  

i .e .  weak, word problem. Then t h e r e  is  no uniform e f f e c t i v e  

procedure  which can be  a p p l i e d  t o  any f i n i t e l y  p re sen ted  group 

t o  s o l v e  t h e  word problem f o r  t h a t  group. But tnere are i n -  

f i n i t e l y  many f i n i t e l y  p re sen ted  groups,  and it is  conce ivab le  

t h a t  f o r  each one t h e r e  i s  an e f f e c t i v e  procedure  which w i l l  

s a l v e  i t s  word problem, b u t  t h a t  t h e s e  procedures  are a l l  d i f -  

f e r e n t  and t h e r e  i s  no way of  de te rmin ing  which procedure  t o  

u s e  f o r  an a r ~ i t r a r y  group s o  t h a t  t h e r e  i s  no s i n g l e  proce- 

d u r e  which can be a p p l i e d  t o  a l l  f i n i t e l y  p re sen ted  groups.  

Thus t h e  u n s o l v a b i l i t y  of t h e  second problem is  a s t r o n g e r  

r e s u l t  t h a t  t h e  u n s o l v a b i l i t y  of t h e  f i r s t ;  and s i n c e  w e  w i l l  

show t h a t  both  problems are, i n  f a c t ,  unso lvab le ,  t h i s  i s  why 

t h e  terms "weak" and * ' s t rong"  a r e  a p p l i e d  as they  a r e  h e r e .  

S i m i l a r l y ,  w e  d e f i n e  t ~ i e  weak and s t r o n g  word problems f o r  

f i n i t e l y  p re sen ted  semigroups. The problem which most au tno r s  

r e f e r  t o  as simply t h e  word problem i s  o u r  s t r o n g  word problem 

f o r  f i n i t e l y  p re sen ted  groups.  

S ince  bo th  word problems are unso lvab le ,  and s i n c e  t h e  

u n s o l v a b i l i t y  of  t h e  s t cong  imp l i e s  t n e  u n s o l v a b i l i t y  o f  t h e  

weak, and s i n c e  w e  s h a l l  be proving t h e  u n s o l v a b i l i t y  of  t h e  

s t r o n g  word problem, t h e r e  might seem t o  be no reason t o  i n -  

c lude  a s e p a r a t e  proof o f  t h e  u n s o l v a b i l i t y  of t h e  weak word 

problem, However, a major p o r t i o n  of t h e  proof o f  t h e  unsolva- 

b i l i t y  o f  t h e  weak problem i s  s o  much s imp le r  t han  t h a t  p a r t  

of t h e  proof f o r  t h e  s t r o n g  problem t h a t  a s e p a r a t e  p o r t i o n  

g i v i n g  t h e  weak r e s u l t  i s  inc luded  i n  t h i s  t h e s i s ,  i f  on ly  f o r  



t h e  r e a d e r  who wishes a proof of t h e  weak r e s u l t  wi thout  

having t o  r ead  t h e  cons ide rab ly  longer  p o r t i o n  f o r  t h e  s t r o n g  

r e s u l t .  

There i s  one b a s i c  d i f f i c u l t y  i n  proving t h e  word problems, 

bo th  weak and s t r o n g ,  unso lvab le .  W e  have on ly  an i n t u i t i v e  

i d e a  of  what an e f f e c t i v e  procedure  is .  The n o t i o n  of  an ' k f f e c -  

t i v e  procedure  t o  s o l v e  a problem" is  desc r ibed  by i3oondas 

" a  uniform set of  d i r e c t i o n s  which, when a p p l i e d  t o  any one 

of  t h e  q u e s t i o n s  c o n s t i t u t i n g  t h e  p o b l e m 2 ,  produces t h e  c o r r e c t  

answer a f t e r  a  f i n i t e  number o f  s t e p s ,  never  a t  any s t a g e  of 

t h e  p roces s  l e a v i n g  t h e  u s e r  i n  doubt a s  t o  wnat t o  do  nex t . ' "  

This  seems t o  be  a  p r e c i s e  enough d e s c r i p t i o n  of wnat w e  would 

a l l  expec t  an e f f e c t i v e  procedure  t o  be, and,  i n  f a c t ,  i f  we 

were t r y i n g  t o  prove t h e  s o l v a b i l i t y  of  t h e  word problem and 

someone were t o  propose a c e r t a i n  procedure  and argue reason-  

a b l y  t n a t  t h e  procedure  w a s  e f f e c t i v e ,  t h e r e  would be no prob- 

l e m  i n  accep t ing  t h a t .  The d i f f i c u l t y  a r i s e s  when w e  a r e  t r y i n g  

t o  prove t h a t  no e f f e c t i v e  procedure  e x i s t s .  Our d e s c r i p t i o n  

of  an e f f e c t i v e  procedure  is  s u f f i c i e n t  t o  l e t  us  recognize  

t h a t  w e  have an e f f e c t i v e  procedure  when w e  do have one,  b u t  

it d o e s n ' t  t e l l  us  anyth ing  about  what k ind  of  s i t u a t i o n  must 

arise when we d o n ' t  have one.  

I f  w e  a r e  t r y i n g  t o  show t h a t  t h e r e  i s  no e f f e c t i v e  pro- 

cedure  f o r  s o l v i n g  a problzm Pl w e  might s t a r t  by showing t h a t  

L ~ n  o u r  c a s e  t h e  q u e s t i o n s  are t h o s e  of  t h e  form, " I s  t h e  
word W i n  t h e  group G wi th  g e n e r a t o r s  S and d e f i n i n g  r e l a t i o n s  
R equa l  t o  l ? "  



an e f f e c t i v e  procedure  f o r  s o l v i n g  t h e  problem P can be 1 

t ransformed i n t o  an e f f e c t i v e  procedure  f o r  s o l v i n g  some problem 

P2 and t h a t  any e f f e c t i v e  procedure f o r  s o l v i n g  t h e  problem 

P2 can be t ransformed i n t o  an  e f f e c t i v e  procedure  f o r  s o l v i n g  

some problem P3, and s o  on. But c l e a r l y  any proof must be 

f i n i t e  i n  l eng th  and s o  w e  must e v e n t u a l l y  come t o  some prob- 

l e m  Pn f o r  which w e  must show d i r e c t l y  t h a t  no e f f e c t i v e  pro- 

cedure  e x i s t s .  So w e  can t r a n s f e r  t h e  d i f f i c u l t y  of showing 

l a c k  o f  an e f f e c t i v e  procedure  from one problem t o  ano the r ,  

b u t  e v e n t u a l l y  w e  have t o  d e a l  w i t h  t h i s  d i f f i c u l t y  d i r e c t l y .  

Le t  us cons ide r  t h e  fo l lowing  proposa l  f o r  handl ing  t h i s  

d i f f i c u l t y .  Suppose w e  have a problem whose s o l u t i o n  c o n s i s t s  

o f  f i n d i n g  an e f f e c t i v e  procedure  f o r  answering a countab le  

set o f  q u e s t i o n s ,  each o f  which admits on ly  a yes  o r  no answer. 

S ince  t h e  number of  q u e s t i o n s  i s  coun tab le ,  w e  can l i s t  t h e  

q u e s t i o n s  i n  a sequence: Q1, Q2, Q3, ... . W e  d e f i n e  a  f u n c t i o n ,  

f ,  on t h e  n a t u r a l  numbers by f ( n )  = 0 i f  t h e  answer t o  ques t ion  

Qn is  y e s  and f ( n )  = 1 i f  t i le  answer t o  q u e s t i o n  Qn i s  no. 

W e  say  t h a t  a f u n c t i o n  i s  c a l c u l a b l e  i f  an e f f e c t i v e  procedure 

e x i s t s  f o r  determining t h e  v a l u e  of t h a t  f u n c t i o n  a t  any given 

p o i n t .  I t  i s  imrn2diate, t h e n ,  t h a t  ou r  f u n c t i o n  f  i s  c a l c u l a b l e  

i f  and on ly  i f  our  problem i s  so lvab le .  We d o n ' t  seem t o  be 

any f u r t h e r  ahead,  however, because i f  w e  a r e  t o  show t h e  

problem unso lvable  w e  must show t h e  f u n c t i o n  f  unca l cu l ab l e  

and t h i s  aga in  means we must show t h a t  no e f f e c t i v e  procedure  

e x i s t s .  But t h i s  d i f f i c u l t y  can be taken  c a r e  of  by accep t ing  

a  p roposa l  g e n e r a l l y  accep tad  by l o g i c i a n s  and known a s  



"Cllurch's Thes i s" .  Church 's  t h e s i s ,  i n  t h e  form t h a t  w e  s h a l l  

employ, i s  t h e  claim t h a t  every  c a l c u l a b l e  f u n c t i o n  i s  r ecu r -  

s i v a .  The converse  of  t h i s  claim w i l l  be inmedia te ly  obvious - 
upon t h e  d e f i n i t i o n  o f  a r e c u r s i v e  f u n c t i o n  because,  as with  

e f f e c t i v e  procedure ,  t h e r e  i s  no problam i n  recogniz ing  a 

c a l c u l a b l e  f u n c t i o n  when f aced  wi th  one. Church's  t h e s i s  h a s ,  

of  cou r se ,  no proof s i n c e  t h e r e  i s  no way t h a t  one could f o r -  

mally prove anytrling awout a n o t i o n  as l o o s e l y  desc r ibed  as 

t h a t  of  a c a l c u l a b l e  func t ion .  However, i f  we a c c e p t  Church's  

t h e s i s ,  and w e  s h a l l ,  w e  f i n d  t r i a t  we have d e a l t  s u c c e s s f u l l y  

wi th  our  d i f f i c u l t y ,  f o r  the  no t ion  o f  a r e c u r s i v e  func t ion  i s  

a w e l l  de f ined  one,  and t h e r e  e x i s t  metilods, s u f f i c i e n t  f o r  

ou r  purposes ,  o f  de te rmin ing  whether o r  n o t  a f u n c t i o n  i s  

r e c u r s i v e .  

W e  s h a l l  now d e f i n e  a dev ice ,  c a l l e d  a Turing machine, 

which can be  usea  t o  compute c e r t a i n  numerical  f u n c t i o n s .  I f  

a  f u n c t i o n  f  can be computed by some Turing machine w e  c a l l  it 

computable. W e  w i l l  go on t o  show t h a t  a func t ion  is  r e c u r s i v e  

on ly  i f  it i s  computable, and then  produce a f u n c t i o n  which i s  

n o t  computable, hence n o t  r e c u r s i v e ,  hence unca l cu l ab l e .  Thus, 

w e  w i l l  have a problem ( t h e  c a l c u l a t i o n  of  t h i s  f u n c t i o n )  f o r  

which no e f f e c t i v e  procedure  e x i s t s .  S ince ,  a s  was s a i d  be fo re  

t h e  d i f f i c u l t y  of showing no e f f e c t i v e  procedure  e x i s t s  can be  

t r a n s f e r r e d  from one problem t o  anotner  w e  w i l l  bd w e l l  on ou r  

way t o  a proof of  t h e  u n s o l v a b i l i t y  of tile word problem. 

Tne i n i t i a l  problem, o r  problems, whose u n s o l v a b i l i t y  w~ 

s h a l l  prove by t h i s  method are c a l l e d  t h e  weak - and s t r o n g  



h a l t i n g  problems f o r  Tur ing machines. W e  t hen  snow t h a t  t h e  

s o l v a b i l i t y  of  t h e  weak o r  s t r o n g  word problem f o r  f i n i t e l y  

p re sen ted  semi-groups would imply t h e  s o l v a b i l i t y  of t i le  weak 

o r  s t r o n g ,  r e s p e c t i v e l y ,  h a l t i n g  problem f o r  Turing machines, 

showing t h a t  t h z  weak and s t r o n g  word problems f o r  f i n i t e l y  

p re sen ted  semigroups must be  unso lvab le .  Rotman shows t h a t  

t h e  u n s o l v a b i l i t y  o f  t h e  s t r o n g  word problem f o r  f i n i t e l y  

p re sen ted  semigroups y i e l d s  t h e  u n s o l v a b i l i t y  of t h e  s t r o n g  

word problem f o r  f i n i t e l y  p re sen ted  groups,  and w e  s h a l l  show 

how Rotman's proof can be adapted t o  do t h e  same t h i n g  f o r  

t i le  weak problems. 



CHAPTER II 

TURING WICHINES . 
This  chap te r  w i l l  d e a l  w i th  " c a l c u l a b l e  f u n c t i o n s " .  As 

w e  no ted  i n  Chapter  I ,  t h e  term " c a l c u l a b l e  f u n c t i o n "  is  no t  

r e a l l y  p rope r ly  d e f i n e d  and w e  w i l l  f i r s t  make an appea l  t o  

i n t u i t i o n  and say  simply t h a t  what w e  mean by a  c a l c u l a b l e  

f u n c t i o n  is  a func t ion  on a  s w s e t  of t h e  n a t u r a l  numbers or 

a set o f  n - tup les  of  n a t u r a l  numbers f o r  which an a lgo r i t hm 

e x i s t s  t h a t  can be  used t o  de te rmine  t h e  va lue  o f  t h e  func t ion  

a t  any g iven  p o i n t  i n  i t s  domain. Without a t t empt ing  t o  de- 

f i n e  "algor i thm" we w i l l  n o t e  t n a t  it seems i n t u i t i v e l y  c l e a r  

t h a t  i f  an a lgo r i t hm e x i s t s  f o r  doing a c e r t a i n  job t h e n  t h a t  

job can be done by some k ind  o f  " c a l c u l a t i n g  machine". 

Our p l an  of a t t a c k  w i l l  bz as fo l lows .  W e  w i l l  d e f i n e  

a  c e r t a i n  k ind  of "machine", s p e c i f i c a l l y  a Turing machine, 

and w i l l  show how t h i s  machine can be used t o  c a l c u l a t e  c e r t a i n  

func t ions .  W e  w i l l  t h e n  d e f i n e  a  "computable f u n c t i o n "  t o  be 

any f u n c t i o n  on a s u b s e t  o f  t h e  n a t u r a l  numbers, o r  a set of  

n - tup les  o f  n a t u r a l  numbers, f o r  which t h e r e  e x i s t s  a Turing 

machine t h a t  w i l l  compute t h e  va lue  of  t h i s  f u n c t i o n  a t  any 

given p o i n t  i n  i t s  domain. 

In formal ly ,  a Turing machine may be thought  o f  as a box 

t h a t  looks  something l i k e  a t a p e  r e c o r d e r .  The machine can be 

loaded wi th  a t a p e ,  i n f i n i t e l y  long i n  bo th  d i r e c t i o n s ,  which 

is  a c t u a l l y  a d i s c r e t e  sequence o f  squa re s .  A f i n i t e  number of  

t h e s e  squa re s  may have symbols p r i n t e d  on them, one symbol t o  



a squa re ,  t h e  symbols coming from t h e  l i s t  sl,  s2,  s3, ... . 
A t  any given moment du r ing  i t s  o p e r a t i o n  t h e  machine i s  i n  one 

of  a  f i n i t e  number of  states o r  " i n t e r n a l  c o n f i g u r a t i o n s "  

( t h e  p o s s i b l e  i n t e r n a l  c o n f i g u r a t i o n s  be ing  denoted by symbols 

from t h e  l i s t  q l ,  q 2 ,  q3 ,  ) and i s  "scanning" one of t h e  

squa re s  on t h e  t a p e .  The a c t i o n  of t h e  machine i s  complete ly  

determined by i t s  i n t e r n a l  c o n f i g u r a t i o n ,  t h e  symbol, i f  any, 

p r i n t e d  on t h e  scanned squa re ,  and a  f i n i t e  set of b u i l t -  

i n  i n s t r u c t i o n s ,  each i n s t r u c t i o n  being o f  one o f  t h e  fol lowing 

forms : 

i) When i n  i n t e r n a l  c o n f i g u r a t i o n  qi scanning a square  

wi th  symbol s . ( o r  scanning a blank squa re )  change t h e  symbol on 
3 

t h e  scanned square  t o  sk and change t o  i n t e r n a l  c o n f i g u r a t i o n  ql. 

ii) When i n  i n t e r n a l  c o n f i g u r a t i o n  qi scanning a square  

w i th  symbol s ( o r  a b lank  squa re )  move t h e  t a p e  s o  t h a t  
j 

scanned square  i s  now n e x t  t h e  one t o  t h e  r i g h t  and change t o  

i n t e r n a l  c o n f i g u r a t i o n  q  I.' 
iii) When i n  i n t e r n a l  c o n f i g u r a t i o n  qi scanning  a square  

wi th  symbol s ( o r  a b lank  squa re )  move t h e  t a p e  s o  t h a t  t h e  
j 

scanned square  i s  now t h e  nex t  one t o  t h e  l e f t  and change t o  

i n t e r n a l  c o n f i g u r a t i o n  ql. 

When t h e  machine changes a symbol s o r  a blank t o  a  symbol 
j 

Sk w e  say t h a t  t h e  machine " p r i n t s  t h e  symbol skl'. A t  t n e  

beginning of  a "computation" a  t a p e ,  which may be blank o r  may 

have a  f i n i t o  number of  s i i s  p r i n t e d  on it, is  p laced  i n  t h e  

machine s o  t h a t  the machine i s  scanning one of  t h e  squa re s  on 



t h e  t a p e ,  and t h e  machine i s  set wi th  an i n t e r n a l  c o n f i g u r a t i o n ,  

'1 
. The machine beg ins  o p e r a t i n g  by i t s e l f  fo l lowing  i t s  

b u i l t - i n  i n s t r u c t i o n s .  Of cou r se ,  t h e  b u i l t - i n  i n s t r u c t i o n s  

must be such t h a t  no two are c o n t r a d i c t o r y .  When t h e  machine 

f i n d s  i t s e l f  i n  a c e r t a i n  i n t e r n a l  c o n f i g u r a t i o n  scanning a 

square  w i th  a symbol (or no symbol) such t h a t  none of  i t s  in -  

s t r u c t i o n s  correspond t o  t h a t  c o n f i g u r a t i o n  and symbol ( o r  

b l a n k ) ,  t h e  machine s t o p s  and w e  say  t h a t  whatever i s  p r i n t e d  

on t h e  t a p e  when t h e  machine s t o p s  i s  t h e  " r e s u l t a n t "  i n  t h a t  

machine of  whatever was on the  t a p e  i n  t h e  beginning.  Not ice  

t h a t  i n  some c a s e s  t h a  machine may s t a r t  and never  s t o p .  

W e  are now ready t o  fo rma l i ze  o u r  d e s c r i p t i o n  of t h e  

Turing machine. 

DEFINITION 2..1. An exp res s ion  i s  a f i n i t e  sequence (pos- 

s i b l y  empty) of  symbols chosen from t h e  l i s t :  q l , q 2 , q ~ ' ;  

, R' L. s 0 ? s 1 r S 2 , * " -  

W e  w i l l  o f t e n  w r i t e  B i n s t e a d  of  so and t h e  symbol so (or 

S )  w i l l  be  used t o  denote  what w e  i n t u i t i v e l y  t h i n k  of as a 

b lank  square .  Decauso sl w i l l  be a commonly used symbol which 

w i l l  t a k e  on a s p e c i a l  s i g n i f i c a n c e ,  w e  w i l l  o f t e n  simply write 

1 f o r  sl. 

DEFINITION 2.2. A guadruple  is  an exp res s ion  having one 

of t h e  fo l lowing  forms: 



DEFINITION 2.3 .  A Turing &lachine i s  a f i n i t e ,  non-empty, 

set  of  quadruples  t h a t  c o n t a i n s  no two d i s t i n c t  quadruples  

beginning wi th  t h e  same q and s 
1' 

The q i g s  and s I s  t h a t  occur  i j 

i n  t h e  quadruples  of a Turing PIachine a r e  c a l l e d  i t s  i n t e r n a l  

c o n f i g u r a t i o n s  and i t s  a l p h a b e t  r e s p e c t i v e l y .  

The r e a d e r  w i l l  n o t e  t h a t  t h e  quadruples  o f  t y p e s  ( l ) ,  

( 2 )  and ( 3 )  correspond t o  t h e  i n s t r u c t i o n s  of t y p e s  i) , i i) ,  

and iii) r e s p e c t i v e l y  mentioned i n  t h e  in formal  d e s c r i p t i o n .  

The c o n d i t i o n  t h a t  no two quadruples  may have t h e  same f i r s t  

two symbols corresponds t o  t h e  in formal  c o n d i t i o n  t h a t  no t w o  

i n s t r u c t i o n s  a r e  c o n t r a d i c t o r y .  I f  it i s  n o t  c l e a r  now, t h i s  

remark w i l l  become clear when t h e  r e a d e r  has  reached DEFN 2.7 .  

DEFINITION 2 . 4 .  An i n s t an t aneous  d e s c r i p t i o n  is an ex- 

p r e s s i o n  t h a t  c o n t a i n s  e x a c t l y  one qi ,  n e i t h e r  R nor  L ,  and i s  

such t h a t  t h e  qi i s  n o t  t h e  r ight-most  symbol. I f  Z i s  a  

Turing machine and a an  in s t an t aneous  d e s c r i p t i o n ,  t i h  w e  say 

t h a t  ,a i s  an in s t an t aneous  d e s c r i p t i o n  of Z i f  t h e  qi tha t  

occu r s  i n  a i s  an i n t e r n a l  c o n f i g u r a t i o n  o f  Z and t h e  s igs  

t h a t  occur  i n  a occur  i n  t h e  a lphabe t  o f  2. 

DEFINITION 2.5. An exp res s ion  t h a t  c o n s i s t s  e n t i r e l y  of 

t h e  symbols si i s  c a l l e d  a  t a p e  express ion .  A t a p s  exp res s ion  

may a l s o  be c a l l e d  a  word i n  t he  s . ' s .  
1- 

I n  what fo l lows ,  P and Q are u s u a l l y  t a p e  exp res s ions .  

DEFINITION 2.6,  Le t  Z be a Turing machine, and l e t  a be 

an i n s t .  des. o f  Z ,  where qi i s  t h e  i n t e r n a l  c o n f i g u r a t i o n  t h a t  

occurs  i n  a and where s i s  t h e  symbol immediately t o  t h e  r i g h t  
j 



of qi. Then we call qi the internal configuration of Z at a, 

and we call s the symbol scanned by Z at a. The tape expres- 
j 

sion obtainsd by removing qi from a is called tne  expression on 

the tape of Z at a. 

DEFINITIOLI 2.7, Let Z be a Turing machine, and let a,B 

be instantaneous descriptions. Then we write "a -t f3 (Z)", 

or (where no ambiguity can result) simply "a + B " ,  to mean that 

one1 of the following alternatives holds: 

(1) There exist expressions P and Q (possibly empty) 

such that 

a is Pq.s.Q 
1 3  

B is PqlskQ 

and qisjskql c Z. 

(2) There exist expressions P and Q (possibly empty) 

such that 

and q.s.Rq E Z 
1 3  1 

(3) There exists an expression P (possibly empty) such 

that 

a is Pq.s 
1 j 

f3 is Ps.q s 
3 1 3  

and q.s.Rql E Z 
1 3  

by the definition of a Turing machine, at most one of the 
alternatives can hold. 



( 4 )  There e x i s t  exp res s ions  P and Q ( p o s s i b l e  empty) 

such t h a t  

a i s  PskqisjQ 

6 is P q p k s j Q  

and q . s  . ~ q ~  Z 
1 3  

( 5 )  There e x i s t s  an express ion  Q ( p o s s i b l y  empty) such 

t h a t  

or is qis jQ 

B i s  qlS3SjQ 

and q . s . L q l  c Z .  
1 3  

The fo l lowing  theorems fo l low immediately from t h i s  de- 

f  i n i t i o n .  

THEOREM 2.2. I f  a -+ B ( Z ) ,  and Z C Z ' ,  t hen  a  -t f3 ( Z ' ) .  

DEFINITION 2 .8 .  An i n s t an t aneous  d e s c r i p t i o n  a is  c a l l e d  

t e r m i n a l  wi th  r e s p e c t  t o  2, i f  f o r  no f3 do w e  nave a  + @ ( Z ) .  

DEFINITION 2.9, By a computation of a  Tur ing machine Z i s  

meant a  f i n i t e  sequence a l r a 2 , * * * a  o f  i n s t an t aneous  d e s c r i p -  
P 

t i o n s  such t h a t  ai -+ ai+l ( Z )  f o r  1 i 2 p-1 and such t h a t  

a  is t e r m i n a l  w i th  r e s p e c t  t o  2 .  I n  such a case we w r i t e  
P  

"a = R e s  (or ) "  and w e  c a l l  t h e  r e s u l t a n t  of al  wi th  res- 
P Z 1 P 

p e c t  t o  Z .  

EXAHPLE 2 .1 .  The r e a d e r  w i l l  recall  t h a t  w e  may w r i t e  

B f o r  so and 1 f o r  sl. L e t  Z be t h e  Turing machine c o n s i s t -  

i n g  of  t h e  fo l lowing  quadruples .  (Formally,  Z i s  t h e  set 

whose e lements  are t h e  fo l lowing  quadruples . )  



Le t  al  = q l l l B 1 l l .  Then t h e  fo l lowing  is  a computation of 2 .  

ul = q l l l a l l l  

-+ qlBIBl l l  

-r Bq21Blll  

+ B 1 q 2 B l l l  

-+ B1Bq3ll1 

-+ B1Bq3B11 

N o t e  t h a t  BlBq3Bll i s  t e r m i n a l .  Hence R e s Z ( q l l l B l l l )  = 

B1Bq3B11. Also n o t e  t h a t  Z has  i n t e r n a l  c o n f i g u r a t i o n s  q l ,  

q2 and q3  and has a lphabe t  B , 1  ( o r  so ,sl) . The reader w i l l  

n o t e  t h a t  t h i s  p a r t i c u l a r  machine w i l l  always perform a  corn- 

p u t a t i o n ,  i .e .  w i l l  always s t o p  a f t e r  a f i n i t e  number o f  

s t e p s ,  no matter what i n s t a n t a n e o u s  d e s c r i p t i o n  it starts with.  

EXAilPLE .2 .  L e t  Z be t h e  Turing machine c o n s i s t i n g  of 

t h e  fo l lowing  quadruples .  

q l s l R q l  

q1s2Rq1 

q1s3S~q2 

Then t h e  fo l lowing  i s  a computation of 2 .  



s q s s s s  j s s q s s s  2 1 2 1 3 2  2 2 1 1 3 2  

+ s s s q s s  2 2 1 1 3 2  

+ s s s q s s  2 2 1 2 0 2  

0 which i s  t e r m i n a l  s i n c e  no quadruple  of Z begins  w i th  q 2 s  . 
Note, however, t h a t  i f  w e  begin  w i t h  t h e  i n s t an t aneous  d e s c r i p -  

t i o n  a = s y s s s s we g e t  tile fo l lowing  2 1 2 1 2 1 '  

+ s s q s s s  2 2 1 1 2 1  

-* s s s q s s  2 2 1 1 2 1  

-t s s s s q s  2 2 1 2 1 1  

and t h e  machine " w i l l  go on fo reve r " .  S ince  no t e r m i n a l  

i n s t an t aneous  d e s c r i p t i o n  i s  reached t h e r e  i s  no computation 

of Z beginning w i t h  a and w e  say  "ResZ(a)  i s  undef ined".  

W e  now show how Turing machines can be used t o  perform 

c e r t a i n  numerical  computations.  I f  n i s  a p o s i t i v e  i n t e g e r  

w e  w r i t e  sin t o  denote  sisie -s  1 (n occur rences  o f  si) and 

w e  l e t  sio denote  t h e  empty express ion .  

D E F I N I T I O N  2.10. With each number n w e  a s s o c i a t e  t h e  

ln+l  
t a p e  exp res s ion  ii where n = 



DEFINITION 2.11. With each k- tup le  of  i n t e g e r s ,  

( n l t n 2 t e e * n k ) l  w e  a s s o c i a t e  t h e  t a p e  exp res s ion  ( n l t n 2 1 H * n k ) =  

Thus 3 = 1111 and ( 2 7 )  = l l l B l l l l ~ 1  

DEFINITION 2.12. L e t  &I be  any express ion .  Then 

IlMIl i s  t h e  number of occur rences  of  1 ( o r  s l)  i n  13. 

~ h u s  , l l l l q 4 s 2 s 4 1 ~ l l l  = 4 and 11s s - q  s I 1  = 0. 2 3 4 0  

DEFINITION 2 . 1 3 .  L e t  Z be a Turing machine. Then, f o r  

each n ,  w e  a s s o c i a t e  w i t h  Z an n-ary func t ion  

as fo l lows .  For each n- tup le  (ml ,m2,  * m  ) , w e  Set n 

a = ql (ml ,m2,  - *m ) Then we l e t  Y Z  (n) (m1,m2, * ,mn) = n 

i i R e s Z  (a) 1 1  i f  R e s  (a) i s  clef inecl, i .e. i f  t h e r e  i s  a compu- 
z 

t a t i o n  of  Z beginning w i t h  a ,  and w e  l e a v e  Y Z  (n)  ( m l t m 2 ,  ,mn) 

undef ined i f  ResZ(a )  i s  undefined.  W e  w r i t e  YZ(x) f o r  

DEFINITION 2.14. An n-ary func t ion  f ( x l , * * *  , X n )  i s  

p a r t i a l l y  computable i f  t h e r e  e x i s t s  a Tur ing machine Z such 

t h a t  

I n  t h i s  case w e  say  t h a t  Z computes f .  I f  i n  a d d i t i o n ,  

f ( X ~ , X ~ , " *  x i s  a t o t a l  f u n c t i o n ,  i . e .  has  as i t s  domain 

t h e  se t  of a l l  n - tup le s  of p o s i t i v e  i n t e g e r s ,  t hen  it i s  

c a l l e d  computable. 



CHAPTER 111 

COMPUTABLE AND RECUgSIVE FUNCTIONS. 

DEFILIITION 3.1. The operation of composition 

(n associates with the functions f (Y  (") , gl (X ) , g2 (X . , 
g, (X ("I ) , the function h (X ) = f (gl (X ) , g2 (X (n) ) I . . * I  

gm(Xn ) ) . This function is defined for precisely those 

n-tuples (a lt...,an) for which (al, ... ,a ) is in the domain n 

of each of the functions gi(x(")) , i = 1,2,. . . ,m, and for 
which the m-tuple 

is in the domain of f (Y (m)). 1ts value at (al, ... ,a ) is n 

f(gl(alta 2 , . . .  ,an), g2(a1,a2,...,a n )r...tgm(alta2t.~ta n 1 ) .  

DEFINITION 3.2. The operation of minimalization 

associates with each total function f (y ,X ) the function 

h(X'")), whose value for given X is the least value of 

y, if one such exists, for which f(y,X (")) = 0, and which is 

undefined if no such y exists. 

We write h(X = min ~ f ( y , ~  ("1) = 01 
Y 

EXAdPLE 3.1. Consider the function 

x/2 = min C (y+y) -x = 01. x/2 is a partial function defined 
Y 

only when x/2 is even. 

DEFINITION 3.3. The total function f(y,X ("I) is called 

regular if min [f ( y , ~  (") = 01 is total. 
Y 

DEFINITION 3.4, A function is partial recursive if 

it can be obtained by a finite number of applications of 

composition and minimalization beginning with the functions 



of th2 folloc~iny list.: 

DEFINITION 3.5. A function is recursive if it can be 

obtained by a finite number of applications of composition 

and minimalization of regular functions, beginning with the 

functions of the list of definition 3 . 4 .  

The following corollary is immediate from the pre- 

ceding definition~. 

COROLLARY 3.1. Every recursive function is total and 

is partial recursive. 

As will be shown in the appendix, the converse of 

this is also true. 

The remainder of this chapter will be devoted pri- 

marily to showing that every recursive function is compu- 

table. (We will show in the appendix that every computable 

function is recursive.) 

To show that every recursive function is computable 

we must construct Turing machines to compute each of the 

functions in the list of definition 3 . 4 ,  and for each appro- 

priate set of computable functions a machine that will 



compose them, and for each computable function a machine 

that will minimize it. 

THE0REL.I 3.2. The addition function f(x,y) = x + y is 

computable. 

PROOF: We must construct a Turing machine Z such 

that Y Z  (2) (x,y) = x + y . consider the machine of example 

2.1 consisting of the quadruples 

which is terminal. Thus, 



THEOREPS 3.3 .-..' The successor function, S (x) = x + 1 , 
is computable. 

PROOF: Let Z be any Turing machine with respect to 

which qlm is terminal for all m, e.g. let Z consist of the 

single quadruple qlBBql. Then yZ (m) = llql"l = m + 1. 0 

THEOREM 3.4. The proper subtraction function, f ( x , y ) =  

x ' y, is computable. 
Let Z be the Turing machine consisting of the following 

quadruples : 



We must show that YZ (2) (ml,m2) = ml L m 2 and we cons ide r  
-- 

two cases. Let al = q1(ml,m2) = q m Bm 1 1 2' 
First suppose that 

ml gm2, and let k = ml - m2. Then 



Now, except for i n i t i a l  and final B ' S ,  a3 i s  l i k e  al w i t h  

a p a i r  of 1's cancelled, The process is now repeated. 

Eventually 

which is  terminal. B u t  llol II = k = ?L ' m2e Hence, i f  rnlgn2! 
P 

Next suppose that  ml < m and let k = mg - rn 2 '  1' 
Then 



ml k 
ml+l 

+ B BBB qlOBB - - at 

which i s  t e r m i n a l .  But llatll = 0.  Hence, i f  ml < m 2 ,  



THEOREM 3.5. For each number n 2 1 and for each 

n 
number i t  1 s i I n , the n-ary function Ui (xl , x2 . xn) is 

computable. 

Let Z be the Turing machine consisting of the following 

quadruples, where j runs over all integers #i such that 



. .  in i t mn+l 
.t BS1 B qnl (for s,t suitably chosen) 

which is terminal. Hence, 

THEOREM 3.6. The function (similar to the multipli- 

cation function) f (x,y) = (x+l) (y+l) is computable. 

Xe shall construct a ~uring machine Z such that 

Informally what we do is construct Z such that when given 
m,+1 m,+l 

B1 L an initial instantaneous description, al = qll 8 

it duplicat~s the second block of 1's ml times, each time 

erasing a 1 from the first block, thus finishing with ml+l 

blocks each with mZ+l 1's. 

Let Z consist of the following quadruples: 



The introduction of the two symbols, s2 and s g ,  into the 

alphabet of Z is to aid in the process of counting and regu- 

lating the total number of duplications. 

Our proof that Y Z  (2) (ml .m2) = (ml+l) (rnZ+l) is induc- 

tive. It is convenient to prove first a step which will be 

repeated many times throughout the proof, i.e. the step of 
m2+1 

duplicating once the second block of 1's (the block, 1 1 



Let a = PB1 
L q5BB, where P is an arbitrary tape 

m, 
expression. Then a + PBl ' q 6 1 ~ ~  

+ PBlm2s3Bqgl 

+ PBlm2S34gB1 

m 2 
+ PB1 qgs3B1 

m2 + PBl q51Bl 



m 2 + 1  . m  +1 m 2 + l  
Tnus P B 1  q S B B  -+ - *  PqlOBl  B 1  

NOW l e t  al = q l l l  rnlBlrn2+l I 

m m 2 + 1  
Then al * q l B l  ' ~ 1  

Thus t h e  " e f f e c t i '  o f  t h e  Turing machine is t o  delete a 1 

ml m2+1  f r o m  t h e  expression 1 and t o  d u p l i c a t e  1 , This  process 



occurs again and again until 

ml+l times 

I 

But a is terminal, and lla I! = (ml+l (mZ+l) . Hence, 
P P 

THE02EM 3.7. Let f (Y (m) ) , gl (X (n) ) , g2 (X (n) 

be (partially) computable. Let h (X (") ) be given by. 

Then h (x'")) is (partially) computable. Thus the class of 

(partially) computable functions is closed under the opera- 

tion of composition. 

Before proving theorem 3.7., let us use it to show 

that multiplication is computable. 

COROLLARY 3.8. The multiplication function f (x, y) =xy 

is computable. 

g2(x,y) = y + 1. Then by Theorems 3.4 and 3 . 6 , f  and gl are 

computable and g2 (x ,y) = S ( u ~ ~  (x, y) ) and so is computable 



by theorems 3.5, 3.6, and 3.7. Thus by theorem 3.7 

= x y + x  is computable. 

Now taking f (xl ,x2) = X1 r x again and taking gl(x,y)=xy+x 2 

and g2 (x,y) = Ill2 (x,~) = x we have the computability of 

k(x,y) = f (gl(x,y), g2 (x~Y)) = (xy+x) r x = xy. ~ h u s  xy is 

computable. 0 

;We will now prove theorem 3.7. We shall adopt the 

convention of systematically omitting final occurrences of 

B (a blank) in instantaneous descriptions, unless the B is 

immediately preceded by a qi. Thus if Z contains the quad- 

ruple q3BLq3 we shall write 11s s lq B + lls3s2q31 (Z). 3 2  3 

A check with definition 2.7 will show that there is no prob- 

lem in doing this. 

DEFINITION 3,6. If Z is a ~uring machine we let 8 (Z) 

be the largest number i such that qi is an internal confi- 

guration of Z. 

DEFINITION 3.7. A Turing machine Z is called n-regular 

(n>O) if (1) there is an s>O such that, whenever 

ResZ[ql(ml, ..., mn)] is defined, it has the form q 0 (Z) ( 5 ,  -.-r ) 5 

for suitable r l , - * *  Js, and 

(2) no quadruple of Z begins with q4 e ( z ) '  



Informally, n-regular ~uring machines present the 

outputs of a computation in a form suitable as inputs of 

a computation by another machine. 

DEFINITION 3.8. If Z is a Turing machine, then Z (n 

is the Turing machine obtained from Z by replacing each in- 

ternal configuration qi, at all of its occurrences in quad- 

ruples of Z, by qn+i. 

LENMA 3.1. For every Turing machine Z, we can find 

a Turing machine Z' such that, for each n, Z' is n-regular, 

and, in fact, 

PROOF: In this and in future descriptions of Turing 

maqhines there may be comments appearing in parentheses 

at the right of the formal list of quadruples. These 

comments are intended only as informal aids to give an in- 

tuitive idea of what the machine is "doing". 

Let 1 and pbe the first two symbols in the list 

S2rS3tS4 8 "  that are not in the alphabet of Z. Let Z1 

consist of the following quadruples: 

(print A on the left) 



(move r i g h t  u n t i l  a  double 
blank i s  reached)  

( p r i n t  p on t h e  r i g h t )  

(move l e f t  u n t i l  X i s  reached)  

I t  i s  easy  t o  see t h a t  wi th  r e s p e c t  t o  Z l ,  

which i s  t e r m i n a l .  Now set K = 0 ( 2  ( 5 )  ) = e ( z )  + 5 and l e t  

Z 2  c o n s i s t  of  a l l  t h e  quadruples  of  Z (5) i n  a d d i t i o n  t o  t h e  

fo l lowing  quadruples .  where qi may be any i n t e r n a l  conf igura-  

t i o n  o f  2 (5)  

cli ABqk+i (erase ths marker A )  

qk+iBLq2k+i 

q2k+iBXq2k+i ( p r i n t  X one square  t o  t h e  l e f t )  

q2k+ihRqi ( r e t u r n  t o  t h e  main computation) 

qi pBq3k+i ( e r a s e  t h e  marker p )  

q3k+iBRq4k+i 

q4k+iB W4k+i ( p r i n t  pone square  t o  t h e  r i g h t )  

q4k+i pLqi ( r e t u r n  t o  t h e  o r i g i n a l  computa- 
t i o n )  

Obviously t h e  e f f e c t  of  2 ( 5 )  by i t s e l f  on t h e  i n s t a n -  
.---- 

taneous d e s c r i p t i o n  q6(mlt-*,mn) would be t h e  same as 



t h a t  of  Z on ql(ml,. . . ,nh) only wi th  the s u b s c r i p t  of  each 

q r a i s e d  by 5. But i f  w e  were t o  "put  Z t o  work" on t h e  

ins tan taneous  d e s c r i p t i o n  Aq6(ml,-*,m~)P it would g e t  s tuck  

t h e  f i r s t  t i m e  it scanned X o r  p s i n c e  n e i t h e r  X nor  p is i n  

t h e  a lphabet  of Z and hence of  Z (5). I t  is easy  to  see, then ,  

t h a t  t h e  a d d i t i o n  of t h e  above quadruples a l lows Z 2  t o  d e a l  

w i t h  X and p and perform b a s i c a l l y  t h e  same computation 

t h a t  z (5) would perform i f  X and p weren ' t  t h e r e .  Now, 

e i t h e r  ~ e s ~ [ q ~ ( r n ~ , * * ~  ,mn ) ]  i s  def ined  i n  which case w e  have,  

w i t h  r e s p e c t  t o  Z 2 ,  

which i s  t e rmina l ,  wnere \ l a I l  = ilitesZ[ql (ml , ,mn) 311. o r  

ResZLcil (ml t 
... , m n ) ]  i s  undefined,  i n  which case  s o  i s  

xes, [Xq6 p]. 
2 

L e t  ii = 5K+1 and l e t  Z3 c o n s i s t  o f  a l l  t h e  quadruples of 

t h e  form q .  s . s .q,,l where qi is any i n t e r n a l  con•’ i g u r a t i o n  of 
1 3  3 

Z 2 ,  wnere s belongs t o  t h e  a lphabe t  of Z 2 ,  and where no 
j 

quadruple beginning wi th  q . s  belongs t o  Z 2 .  C l e a r l y ,  i f  
1 j 

hPqiQp i s  a t e rmina l  ins tan taneous  d e s c r i p t i o n  wi th  r e s p e c t  

t o  Z 2 ,  w e  have 

where ~ P q # p  i s  t e rmina l  i n  Z 3' 

Next l e t  Z 4  c o n s i s t  of  t h e  fol lowing quadruples where 

s ranges over  a l l  t h e  symbols of  t h e  a lphabet  o f  Z o t h e r  
j 



than 1 and B (i.e. so and sl) 

s . Bq. 'i4+1 j il+l 

q~li+ lBRq,l+ 1 

%I+ 1 lBq,l+ 2 

q,i+ 1 Bqi4+ 4 

(move leftward looking for A )  

(move rightward looking for a 1) 

(if p is reached without a 1, 
prepare to terminate) 

(locate the block of 1 Is) 

(add 1 to the block of 1's) 

(terminate) 



and the process .is re~cctteci, IE there were o r i g i r ~ a l l y  g 1 ' s  

present :e e v e n t ~ 2 1 1 y  have -+ . . . 

->- 
%1+4 (kn accordance w i t h  

khc. xnven t i on  of 
m i t t i n j ;  final 2's.) 

*.*-..---... - 
. ----.-. !IResZ[qL (m, 4 , . . . ,!n n ) I i~+ l  

r RLS,- < (mi, * 
-, 9 * 8miil 1=4L1+51 

L 3 2 For &v:? r$-regular rr'uxing iw~hi:.e !Z htd s x 2 .  

& , "Yizre is a (pin) - r ep l ax  :.'uriny rnachtnc Z s u d i  t h z t  
2 

whelisvsr 
,. -.<.-.-- *. - - .- 

EC?S~~[C~- tIIIl, . . p i a i - ) ]  
f a  A i: qo ta )  (ti-,* * *  X i  5 



it is also the case that 

ishereas, whenever ResZ[ql(ml, ..., m n )] is undefined, so is 
Resz Cql(kl,*'.tkptmlt".tmn)3. 

P 
PROOF: Let 6 , ~  be distinct sits not in the alphabet 

of 2 .  Let U1 consist of the following quadruples. 

q116q1 (replace the first 1 by 8) 

\ (replace 1 by E) 
qiBRqi+~ 

With respect to u1 ql(kl, ..., k tml...fm ) P n 

kl k +1 ml+l mn+l 
-+ q161 B...Bl B1 B.. .B1 

k k +1 ml+l mn+l 
r 6q21 'El. ..B1 ~1 B.. .B1 



kl kp+l ml+l m n + l  
-h gc B. . .BE qp+l  B 1  B.. . B 1  

which is  t e rmina l .  

Next, l e t  N = o ( Z ( P + ~ ) ) ,  and l e t  3 c o n s i s t  of a l l  t h e  

quadruples  of Z ( p f 2 )  and, i n  a d d i t i o n ,  t h e  fo l lowing  quad- 

r u p l e s ,  where qi may be any i n t e r n a l  con f igu ra t ion  of Z (p+2) 

( i n t e r r u p t  computation) , 

( search  f o r  6) 

(resume main computation) 

(observing E, prepare  t o  
copy & )  

(observing B,  p repare  t o  
copy B) 



q7~+i'Bq8~+i (copy B) 

q8~+iERq4n+i (repeat) 

If P is any tape expression, then, with respect to u2,  

Thus, under the "action" of U2, all of the ~ ' s  are moved one 

square to the left whenever one of them is encountered, making 

room for a computation, equivalent to that which Z would 



make, to be carried out. 

Now, let U3 = u1UU2. Then, with respect to Uj, 

wherever ResZ[ql(ml, ..., mn)] is defined? otherwise, there is 

no computation beginning with ql(kl, ..., k ,ml,...,m ) (i.e. 
P n 

when starting with this instantaneous description, the machine 

will never stop). 

Finally, let N = 0 (U3) and let Z consist of all the 
P 

quadruples of u3 in addition to the following: 

(erase one E )  

Then, using what we have just shown for U3,  we have 

with respect to Z whenever Resz[ql(ml,...,m ) ]  is defined, 
PI n 



kl+l kp+l 
+ qn+2 1 B.. . ~ 1  B(r1,...,rs) 

which is terminal. 

LEMMA 3 . 3 .  THE COPYING MACHINES C 
P* 

For each pro 

there exists a Turing machine C such that C is t-regular 
P P 

for all t>p and 

Informally, the machine C recopies on the left all but 
P 

the p leftmost arguments. Note that p=O is permitted. 

Let C consist of the following quadruples: 
P 

(set "marker" s2 ) 



32iIp+2 

(move over  p b locks  o f  1 ' s )  

(set "marker" s3) 

(hunt  f o r  double  blank on r i g h t )  

(scanning 1, r e p l a c e  it by s4,  and 
p repa re  t o  copy 1) 

(scanning B, r e p l a c e  it by s5, and 
p repa re  t o  copy B) 

(scanning s3, e r a s e  and prepare  t o  
t e rmina t e  ) 

(go l e f t )  

( f i n d i n g  s2 r e p l a c e  it by s 4 )  

( r e p l a c e  s4 by 1) 

( r e p l a c e  s5 by B) 

(go l e f t  one square)  



qp+9 BLqp+l~ 

q p + l 0 ~ ~ 4 ~ ~ + 1 0  
(copy 1, temporarily using s4) 

qp+10s4Rqp+14 

qp+lllLqp+ll 

qp+nBLqp+u (go left) 

qp+l 1 6Lqp+l 1 

s lq qp+ll 4 p+12 
(replace s4 by 1) 

S Bq qp+ll 5 p+12 
(replace s5 by B) 

qp+121Lqp+13 
(go left one square) 

qp+12BLqp+13 

qp+13Bs5qp+13 
(copy B, temporarily using s5) 

s Rq qp+13 5 p+14 

qp+141Rqp+14 

qp+14BRqp+14 
(go right) 

s Rq qp+14 3 p+14 

s lq qp+14 4 p+6 
(restore 1 and repeat) 

qp+14S5Bqp+6 
(restore B and repeat) 

qp+151Lqp+ 15 (go left) 

qp+15BLqp+15 

qp+15s41qp+16 
(replace s 4  by 1 and terminate) 

Now, with respect to Cg, 



For p>Ot 



The computation now proceeds  as i n  t h e  case p=O, working from 

t h e  r i g h t  and copying o n t o  t h e  l e f t  u n t i l  sg i s  reached.  

The t e r m i n a l  i n s t an t aneous  d e s c r i p t i o n  i s  

LELW 3.4. THE TRANSFER MACHINES, R 
P *  

For each  p>O 

t h e r e  e x i s t s  a  Tur ing machine, H which is  t - r e g u l a r  f o r  
P'  

every  t > p  and such t h a t  R e s  [ql (k l , .  . tk tml ,  0 t m n )  1 = 
RD P 

In fo rma l ly ,  t h e  f i r s t  p  arguments arb interchangd on 

t h e  t a p e  wi th  t h e  remaining arguments. 

W e  n o t e  t h a t  i n  t h e  copying o p e r a t i o n  o f  C each 1 
P' 

- - -  

t h a t  occurs  i n  t h e  t a p e  exp res s ion  (ml, . . . , m n ) ,  t h e  expres-  

s i o n  t o  be  copied,  is r ep l aced  by s4 which i n  t u r n  i s  aga in  

r ep l aced  by 1. Thus, w e  s imply d e f i n e  R t o  act  j u s t  l i k e  
P  

C on ly  erase t h e s e  s4 ' s  i n s t e a d  of r e p l a c i n g  them by 1's. 
P 

Hence w e  may d e f i n e  R t o  c o n s i s t  of p r e c i s e l y  t h e  quad- 
P  

r u p l e s  of  C except  t h a t  t h e  quadruple  q14~41qp+6 i s  re- 
P  

placed q14s4Bqp+6 * u 

LEMMA 3.5.  For each  n- regula r  Tur ing machine 2 ,  

t h e r e  is  an n- regula r  Tur ing machine Z '  such t h a t ,  whenever 

it is a l s o  t h e  c a s e  t h a t  



whereas, whenever ~ e s ~ [ q ~ ( m ~ , . . . , m ~ ) ]  i s  undef ined,  s o  is 

I f  w e  f i r s t  recopy (ml, ..., mn) on t h e  l e f t  and then  

employ lemma 3.2  t o  g e t  (ml, .  .. , m n , r l , .  . . , rS) and then  

t r a n s f e r  (ml,  ..., m ) w i t h  (rl ,  ..., r ) w e  w i l l  have what w e  n  3 

want. Thus l e t  Z n  be  a s  i n  lemma 3.2, i .e .  such t h a t  

Then le t  Z '  = CoL 

as i n  lemmas 3 . 3  

LEbIIyIA 3 .6 .  

"n 
(15) (14+' ) where Co and % are " Rn 

and 3 . 4  r e s p e c t i v e l y .  0 

L e t  Z l ,  ..., Z be Turing machines. Le t  
P  

n>O. Then, t h e r e  e x i s t s  an n- regula r  Tur ing machine Z '  

such t h a t  

PROOF: by induc t ion  on p. For p = l  t h i s  i s  j u s t  lemma 

1. Suppose, t h e n ,  t h a t  t h e  r e s u l t  i s  known f o r  p=k and 

l e t  Z1, ..., zk+ l  be  g iven  Turing machines. L e t  ri 

= Y (n 
ri ( m 1 , . . m n )  f o r  lsi*+l. By induc t ion  t h e r e  

z ; 
.L 

e x i s t s  an n- regula r  Turing machine Y1 such t h a t  

R e s  [ql (ml , .  . o m n )  I = q8 (Y1) (rl 8 f rk)  
Y1 

till, , 
i i"l*l '"'I 

'Illli, 

',,!I ' 8 

, "f" 

Then by lemma 3.5, t h e r e  i s  an n- regula r  Tur ing machine Y2 
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and theorem 3.7. is finally proved. 0 

THEOREM 3.9. I•’ f (y,,, ) is computable, then 

h(~(")) = min if(y,X (") ) = 01 is partially computable. Y 
Noreover, if f (y ,X (") ) is regular then h (X ) is computable. 

PROOF: The second statement follows immediately from 

the first and the definition of a regular function. The 

idea behind the proof of the first statement is simple* 

We essentially construct a Turing machine which successiV@ly 

computes f ( O  ,X ) , f (1 x ( )  ) . . . , until a zero is re- 
ceived. This machine will compute forever if it never gets 

a zero and so, formally, there will be no computation, 

which is what we want. The details of this construction are 

as follows. 

Let U consist of the quadruples 

W q 1 7  move two spaces 

qlBLqZ left and print 

- -- 
Then with respect to U t  ql(x ) , which 

is terminal. 

Since f (yi~(n) ) is computable, there is a Turing ma- 

chine which will compute •’, and so by lemmas 3.1 and 3.5 

there is an (n+l)-regular Turing machine Y such that 

(2  So if we let N = 0 (Y ( 2 )  ) , then, with respect to Y , 



Now let M consist of the quadruples 

qNIBqN 

qNBRqN+l 

q ~ + 1 1 1 q ~ + 2  

q ~ +  3BRq N+4 

Then, with respect to M, if f (y,X (")) = k>O, we have 

-f ... 
-t '~+2 lk, (y X ("I ) which is terminal. 

If. on the other hand, f (y ,X ("I ) = 0, t h e n  

Next, let Q consist of the quadruples 

Then, with respect to Q, 

By theorem 3.5 and lemma 3.1, there is an (n+l)-regular 



Turing machine Z1 such t h a t  

Res Cql(y,x (n)  ) 
z1 

L e t  E c o n s i s t  of a l l  t h e  quadruples  of Z1 i n  a d d i t i o n  t o  t h e  

quadruple .  qg ( Z ,  ) lBqg (Z1) . Then, wi th  r e s p e c t  t o  E (N+3 f 

. * 

l e t t i n g  K = 6 (E  (N+3) , 

Now, l e t  Z = U U Y ( 2 ) U M U Q U E  (N+3  ) .  W e  s h a l l  s e e  

t h a t  Y Z  ( n ) ( ~ ( n ) )  = h ( ~ ( " ) )  = r n i n y ~ f ( ~ , x ( ~ ) )  = 01. L e t  t h e  

numbers X ("I be f i x e d  ; l e t  f (i ,X (") ) = ri and suppose t h a t  

rO # 0, rl # O,...,r;-l f O ,  rk = 0. Then wi th  r e s p e c t  t o  Z ,  

(us ing  U )  

(us ing  Y ( 2 )  ) 

( )  (us ing  M) + qN+2 (rO-l, Or 

(us ing  Q) 



(using Y ( 2 )  ) 

+ q3+4 (k IX (n) (using M) 

(using E (n+3) ) , 

k and llqbBl )I = k = min.&f (y,X (n)) = 01 = h(~(")). 

Notice that if ri 9 0 for all i then the internal con- 

figuration q N+4 is never reached, and so no terminal in- 

stantaneous description is ever reached, and so YZ (n) (x(n) 

is undefined, as will be h (X (n) 0 

Continuing theorems 3.7. and 3.9. with theorems 

3.2, 3.3, 3.4, 3.5, and corollary 3.8, we immediately have 

THEOREM 3.10. Every (partial) recursive function is 

(partially) computable. 



CHAPTER I V  

TiiE WEAK HALTIiJG PROBLEPI FOR TURING &lACHINES 

A t  t h i s  p o i n t ,  w e  should  r e c a l l  t h a t  i n  t h e  o u t l i n e  

given i n  Chapter I f o r  a method of proving t h e  u n s o l v a b i l i t y  

of t h e  word problem f o r  groups w e  n o t i c e d  t h a t  t h e  problem 

could be " t r a n s f e r r e d " ,  i .e .  it would s u f f i c e  t o  f i n d  another  

problem f o r  which t h e r e  was no e f f e c t i v e  procedure and then  

show t h a t  t h i s  i m p l i e s  t h a t  t h e r e  can be no e f f e c t i v e  pro- 

cedure  f o r  s o l v i n g  t h e  o r i g i n a l  problem. W e  are now ready 

t o  state such an o t h e r  problem. 

The problem has  t o  do wi th  Turing machines. A good 

reason  f o r  looking  a t  Tur ing machines can be found by n o t i c -  

i n g  t h a t  t h e  quadruples  of a  Turing machine are r e a l l y  

j u s t  r u l e s  f o r  t rans forming  one s t r i n g  of symbols (an 

in s t an t aneous  d e s c r i p t i o n )  i n t o  ano the r ,  and as such "do" 

a s i m i l a r  t h i n g  t o  t h a t  "done" ~y t h e  d e f i n i n g  r e l a t i o n s  of 

a group p r e s e n t a t i o n .  Another reason f o r  cons ide r ing  Turing 

machines i s  t h i s .  A s  we argued b e f o r e ,  i f  we have a problem, 

a s o l u t i o n  t o  which c o n s i s t s  of  f i n d i n g  an e f f e c t i v e  proce- 

dure  for answering any of a countab le  number o f  q u e s t i o n s ,  

t hen  we can number t h e s e  q u e s t i o n s  and cons ide r  t h e  func t ion  

whose va lue  a t  a  number is  0 i f  t h e  answer t o  t h e  q u e s t i o n  

wi th  t h a t  number i s  yes  and whose va lue  a t  a  number is 1 

i f  t h e  answer t o  t h e  q u e s t i o n  wi th  t h a t  number i s  no. Then 

t h e r e  i s  an e f f e c t i v e  procedure  f o r  answering any of  t h e  

q u e s t i o n s  i f  and on ly  i f  t h e  func t ion  is c a l c u l a b l e .  W e  



also noted that by Church's thesis, a function is calculable 

if and only if it is recursive and we have shown that a 

function is recursive only if it is computable. Thus if our 

function can be shown to be not computable then it will not 

be recursive and hence will not be calculable and so our 

problem will be unsolvable. If our problem has to do with 

Turing machines, then the function we get from the problem 

"says something" about Turing machines. If that function is 

computable, there must, by definition, be a Turing machine 

,i.n which will "compute" it. Thus, we will have a Turing 

machine which will "say something" amut Turing machines; 

in particular, it will "say something" about itself. 

We know from experience in mathematics, particularly 

in set theory and logic, that paradoxes often occur when we 

have a statement (or set, or function) which can be applied 

to itself. The "Russell Paradox" (Consider the set of all 

sets which do not contain themselves as elements, i.e. 

S = {x: x~x), and ask the question, "Is this set an element 

of itself, i.e. is S@?") is perhaps the most famous 

example. Our proof that the function we will get cannot 

be computable will be based on a similar paradox. 

The theorem we are after is the following. 

THEOREM 4.1. (THE UNSOLVABILITY OF THE WEAK HALTING 

PKOBLEA FOR TURING MACHINES). There is no effective proce- 

dure for determining for an arbitrary Turing machine Z and 

an arbitrary instantaneous description a of Z whether or 



not there exists a computation of Z beginning with a. 

(Recall that if there is no computation, thzn, when we 

"put a into Z", the machine Z will start computing and never 

stop. ) 

Informally, our proof will proceed as follows. We 

will show that there is an effective way of numbering 

Turing machines, so that given any machine one can find the 

number associated with it and vice versa. We suppose that 

there is a solution to the halting problem. Then there is 

an effective procedure for determining for an arbitrary 

Turing machine Z and an arbitrary instantaneous description 

a of Z whether or not there exists a computation of Z 

beginning with a. In particular such an effective procedure 

will exist when a is of the form qlZ for some number x. 

On the basis of this, we will show that there exists a 

Turing machine U such that there is a computation of U 

beginning with qlr if and only if in the machine associated 
with the number x there is no computation beginning with - 
q1Z- We get our paradox by considering what happens when 

we "put qlc into U", where w is the number associated with 

the machine U. If there is no computation of U beginning 

with qlw then, by the way U is constructed, there is such 
a computation. On the other hand, if there is such a com- 

putation, then theire isn't one. 

We now proceed formally with the proof. Consider the 

following system of numbering the Turing machines. 



If r, is any quadruple of the form qisjskql, let g (r,)=i+j+k+l 

If i, is any quadruple of the iorm q.s.Rql 
1 3  

or q.s.Lql let •˜(n) = i+j+l = 3 
If Z is any Turing machine, and 3 , o Z , .  . . , % are the quad- 

n 
ruples of Z, let 5 (Z) = k ~ l  5 (qk) , and let IZ I = n. Note that 

neither g(Z) nor I z )  depend on the order in which the 

quadruples of Z are presented. We now order the Turing 

machines in a sequence. Assume that all the Turing 

machines, Z, such that g(Z) < m have been included in the 

sequence. We may certainly assume, without loss of 

generality, that the quadruples of any machine Z are ordered 

lexicographically, taking as the order of the alphabet for 

the third symbol of a quadruple R, then L, then S~,S~,S~,..., 

and ordering the other symbols by their subscripts. Now 

consider all the Turing machines Z such that •˜(Z) = m 

and I z I  = 1 and order them lexicographically. Assume we 

have dealt with all machines Z such that •˜(Z) = m and 

I z /  < r. Then order those such that •˜(Z) = m and I z I  = r 

lexicographically, considering first the first symbol of 

the first quadruple and then the second symbol of the first 

quadruple, etc., then the first symbol of the second quad- 

ruple, etc.. Since the quadruples of Turing machines are 

ordered lexicographically, each machine will appear only 

once in the sequence and it is fairly easy to see that each 

machine will appear in the sequence. Now for any Turing 

machine 2 let N(Z) = n where Z is the (n+l)'st term in this 



sequence. (Then if Z is the first term, N(Z) = 0 )  We 

see immediately that for each Z, N(Z) is well defined and 

for each number n there is a machine Z such that N(Z) = n. 

If N(Z) = n we will call the machine Zn. Thus if N is 

-1 thought of as a one-to-one correspondence, Zn = N (n). 

It is clear from the description given above that we 

have given an effective procedure for constructing the 

sequence z ~ , Z ~ , Z ~ ~ Z ~ , . ~ . Z ,  for any finite number n and 

that given any machine Z we can construct the sequence 

until Z appears and so find N(Z). Thus given any machine Z 

we can find N(z) and given any number n we can find Zn. 

Now define the binary function t (n ,x) by t (n,x) = 0 

if, in tha Turing machine Zn, thero is a computation of Zn 

beginning with the instantaneous description ql(z) = 

= qll 
(x+l) 

= qlS1 (X+l) H and t (n ,x) = 1 if no such computation 

exists. 

LEI@IA 4.1. t(n,x) is not computable. 

Suppose t(n,x) is computable. Then there is a Turing 

machine Z such that (I~es~[q~ (G) ]!I = t (n ,x) . By lemma 3.1. 

there is a Turing machine Y such that Y is 2-regular and 

Let Co be the copying machine of lemma 3.3. Then, 

by the same lemma, Res [ql%]= q16(x'X). co 
Now let v = B(Y) + 15 and let i4 be the Turing machine 

consisting of the quadruples 



- 
Then wi th  r e s p e c t  $0 Y, qvO = q v l  

and t h e  machine keeps a l t e r n a t i n g  between t h e s e  two i n s t a n -  

taneous d e s c r i p t i o n s ,  never  reach ing  a t e r m i n a l  one,  and s o  

t h e r e  i s  no computation. Also wi th  r e s p e c t  t o  M, 

which i s  t e rmina l .  

NOW l e t  U = C ~ U Y  ( 1 5 ) ~ ~ .  Then wi th  r e s p e c t  t o  U ,  

+ ... -+ 1qv+2 1, which i s  t e r m i n a l ,  i f  t (x,x) = 1 

+ lqv+lB + lqv+2B + ... and never  r eaches  a t e r m i n a l  

i n s t an t aneous  d e s c r i p t i o n ,  i f  t(x,x) = 0. Thus t h e r e  i s  a  



computation of U beginning with qlx if and only if t(x,x)-1. 

However, t(x,x) = 1 if and only if there is no computation 

of the Turing machine Zx beginning with qlz. Thus 

~es~[q~z] is defined if and only if Reszx[qlF] is not. 

Finally let w = N ( U )  so that U = Zw. Then we see 

that ResZw[qlW~ is defined if and only if is 

not defined, surely an impossible situation. Thus, t(n,x) 

cannot be computable and lemma 4.1 is proved. 

Since t(n,x) is not computable it is not recursive 

and hence, by Church's thesis, uncalculable. Thus, there 

can be no effective procedure for determining for an arbitrary 

Turing machine Z and an arbitrary number x whether or not 

there is a computation of Z beginning with qlz. And so, 

obviously, there cannot be an effective procedure for deter- 

mining for an arbitrary Turing machine Z and an arbitrary 

instantaneous description a of Z, whether or not there exists 

a computation of Z beginning with a, and theorem 4.1. is 

proved. Thus the weak halting problem for Turing machines 

is unsolvable, 0 

The reader wishing only the proof of the unsolvability 

of the weak word problem, not caring about the unsolvability 

of the strong, can now omit Chapter V and proceed immediately 

to Chapter VI. 



CHAPTER V 

140RE RECURSIVE FUNCTIONS AND 

THE STRONG HALTING PROBLEM FOR TURING MACHINES 

W e  have shown t h a t  t h e r e  is  no e f f e c t i v e  procedure  

which w i l l  de termine f o r  an a r b i t r a r y  Turing machine and an 

a r b i t r a r y  i n s t an t aneous  d e s c r i p t i o n  i n  t h a t  machine, whether 

o r  n o t  t h e r e  i s  a  computation of  t h a t  machine beginning wi th  

t h a t  i n s t an t aneous  d e s c r i p t i o n .  W e  have c a l l e d  t h i s  r e s u l t  

" t h e  u n s o l v a b i l i t y  of t h e  weak h a l t i n g  problem f o r  Turing 

machines". There is ,  however, a s imilar  b u t  s t r o n g e r  r e s u l t  

t h a t  w e  can prove.  

I f  Z i s  a Turing machine, w e  d e f i n e  t h e  h a l t i n g  prob- 

l e m  f o r  Z t o  be t h e  problem of f i n d i n g  an e f f e c t i v e  procedure 

f o r  determining f o r  an a r b i t r a r y  i n s t an t aneous  d e s c r i p t i o n  

i n  Z ,  whether o r  n o t  t h e r e  i s  a  computation of  Z beginning 

wi th  t h a t  i n s t an t aneous  d e s c r i p t i o n .  Thus t h e  h a l t i n g  prob- 

l e m  f o r  Turing machines i s  r e a l l y  t h e  problem o f  f i n d i n g  

a s i n g l e  procedure which w i l l  be  a  s o l u t i o n  t o  t h e  h a l t i n g  

problem f o r  Z f o r  a l l  Tur ing machines, Z ,  a t  once.  W e  w i l l  

show t h a t  t h e r e  i s  a s p e c i f i c  Turing machine Z O  such t h a t  

t h e  h a l t i n g  problem f o r  Z O  is  unsolvable .  Thus i f  w e  c a l l  

t h e  problem of f i n d i n g  f o r  each Turing machine, Z a  s o l u t i o n  

t o  t h e  h a l t i n g  problem f o r  Z t h e  s t r o n g  h a l t i n g  problem f o r  

Turing machines, then  w e  w i l l  have shown t h e  u n s o l v a b i l i t y  

of t h e  s t r o n g  h a l t i n g  problem. 



This indeed is a stronger result than our previous 

one. It could be possible that given any Turing machine we 

could find a solution to the halting problem for that 

machine, but that, since there is an infinite number of 

machines, there is no uniform solution that would work for 

all of them. 

The proof of this stronger result is considerably more 

difficult than that of the weaker result. We must intro- 

duce the notion of predicates, a new numbering system for 

Turing machines and expressions, and must do much more work 

examining recursive and computable functions and predicates 

before we can find a computable predicate or function that 

will be just right for our purposes, i.e. which will be 

computed by a Turing machine, ZO, with unsolvable halting 

problem. 

An expression that contains lower-case letters of the 

Roman alphabet (with or without subscripts) and that be- 

comes a statement, either true or falso, when these letters 

are replaced by any numbers whatever (always assuming that 

the same letter, at two different occurrences in the ex- 

pression, is replaced by the same number) is called a 

predicate. We shall usually employ upper case Roman letters, 

such as P,Q,R,S,T, to designate predicates and, as with 

functions, denote an n-ary predicate, P, with variables or 

arguments xl ,x2,. . . ,x n by P (xl,x2,. . .xn) or P (X ) NOW, 

if P(xl,x2,...,xn) is an n-ary predicate then the set of all 



n-tuples of numbers (al,a2,. . . ,a ) for which P (al,a2 ,.. . ,a ) n n 

holds is called the extension of P and is written 

The characteristic function of the extension of P(X (n) ) 

will be called just the characteristic function of P (X'")) and 

will be denoted by C (x(") ) . Thus, C (al ,a2,. . . .a ) = 0 if 
P P n 

P (al,.. . ,a ) is true and C (al ,. . . ,a ) = 1 if P (al,.. . ,an) n P n 

is false. The connectives v (or), A (and), and .c, (not) 

can be applied to predicates to obtain new predicates, Thus, 

for example, if P (x,y) and Q (y,z) are predicates, so are 

P(alta2) or Q(a2,a3) holds; P(x,y) A Q(y.2) will ho-ld for 

all triples (alta2 ,a3)' for which both P (al,a2) and Q(a2,ag) 

hold; and sP(x,y) will hold for all pairs (alta2) for which 

P (al ,az) fails. Note that while both P (x,y) and Q (y,z) 

are binary predicates, both P (x,y) v Q (y, z) and P (x,y) A 

Q(y,z) are ternary. 

Two n-ary predicates are said to be equivalent if 

they have the same extension. If P (X ) and Q.(X (") ) are 

equivalent we write P(X (")) +-tQ(x(")). Thus, if P(x,y) 

(Either P or Q holds if and only if it is not true that 

both P and Q fail.) 



NOW, l e t  P (y tx l , .  . . .xn) ( o r ,  a s  w e  may w r i t e ,  P (y , x ( ~ )  ) ) 

be an (n+ l ) - a ry  p r e d i c a t e .  Then t h o  express ion  

i s  another  ( n + l )  -ary  p r e d i c a t e ,  which we may w r i t e  Q (z  ,X (") ) . 
The s ta tement  ob ta ined  by i n s e r t i n g  d e f i n i t e  numbers 

c , a  ,a ...., a f o r  t h e  letter z ,xl ,x  2 , . . . t x  i n  t h e  express ion  1 2  n n 

i s  t r u e  i f  and on ly  i f  t h e r e  i s  a. number b ,  OZbsc, f o r  which 

P ( b , a l t a 2 ,  ..., an )  is  t r u e .  W e  d e s i g n a t e  t h i s  p r e d i c a t e  

by 3 P ( ~ , x ( ~ ) ) .  That  i s ,  ? P ( y , X  ("1) ++ p ( O , d n ) )  v 
y=o y=o 

P ( I - , x ( ~ ) ) ~  v P ( Z ~ X ( ~ ) ) ~  

S i m i l a r l y  w e  w r i t e  

The symbols and " $ " are r e f e r r e d  t o  a s  a bounded 
y= 0 y=o 

e x i s t e n t i a l  q u a n t i f i e r  and a bounded u n i v e r s a l  q u a n t i f i e r ,  

r e s p e c t i v e l y .  

P (y  ,X (") ) may be regarded a s  an abb rev ia t ion  of t h e  
Y 

' i n f i n i t e  exp res s ion"  P(0,X ( " ) )  V P ( ~ , X ( ~ ) ) V  ... . This  

i s  o f  course  n o t  s t r i c t l y  speaking kosher s i n c e  t h e r e  i s  n o t  

r e a l l y  any such t h i n g  as an i n f i n i t e  express ion .  More 

a c c u r a t e l y ,  3P ( y  , X  ( " I )  i s  an n-ary p r e d i c a t e  which ho lds  f o r  
v 
J 

a given n- tup le  ( a l , a 2 , . ~ . , a n ) ,  i f  and on ly  i f  t h e r e  i s  some 

number yo such t h a t  P(yo ,a l , a2 , . . . , a  n ) i s  t r u e .  S i m i l a r l y  



VP (Y ,x(~) ) holds for a a ,  . . a ) , if and only if, for 
Y n 
every number yo, P(yo,al,a2,...,a ) is true. We may in- n 

formally think of VP (h ,X ) as representing the "infinite 
Y 

expression" P (0 ,X ) A P (1 ,X (n))~ ... . #I 3 Il and "Vw 
Y Y 

are referred to as an existential quantifier and a universal 

quantifier, respectively. 

Note that VP (y,X ("1) 4-+ ~QP(~,X(~)). 
Y Y 

DEFINITION 5.1. Let S be a set of n-tuples. Then 

we say that S is recursive or computable, accordingly, if 

its characteristic function is. 

DEFINITION 5.2. The predicate P (X(")) is called 

recursive if its extension, (X I P (X ) } , is. 
~efinitions 5.1 and 5.2 immediately yield. 

COROLLARY 5.1. A predicate, P (X ) , is recursive 
if and only if characteristic function C (X'")) is recursive. 

P 

We are now in a position to say more about the parti- 

cular useful computable function mentioned earlier, i.e. 

the function that will be computed by a Turing machine with 

unsolvable halting problem. 

Now, with each recursive predicate is associated a 

recursive function, its characteristic function, and so we 

can search for our particular recursive function by searching 

for an appropriate predicate. Suppose that P(x,y) is a 

binary predicate. Then 3P(x,y) is a unary predicate. 
Y 

Suppose further that P (x,y) is recursive but 3 P (y,y) is not. 
Y 



Now, s i n c e  P (x ,y )  i s  r e c u r s i v e ,  i t s  c h a r a c t e r i s t i c  

func t ion ,  Cp(x,y) i s  a  r e c u r s i v e  func t ion .  According t o  t h e  

d e f i n i t i o n  of r e c u r s i v e  f u n c t i o n s ,  t h e n ,  t h e  f u n c t i o n  

rnin [C (x ,y)  = 0) i s  a  p a r t i a l  r e c u r s i v e  func t ion .  Now, 
Y P  

C p ( x t y )  = O i f  and on ly  i f  P ( x , y )  ho lds .  So i f  ~ ( x , y )  i s  

a p r e d i c a t e ,  w e  w r i t e  "min P (x ,y )  " f o r  'inin [C ( x , y )  = o]", 
Y Y P 

and w e  have t h e  r e s u l t  t h a t  rnin P ( x , y )  i s  p a r t i a l  r e c u r s i v e  
Y 

i f  P (x ,y )  i s  r e c u r s i v e .  

Given a  s p e c i f i c  va lue  f o r  x ,  rnin P ( x , y )  is  de f ined  
Y 

t o  be t h e  l e a s t  va lue  of y  such t h a t  P ( x , y )  h o l d s ,  i f  such 

a va lue  of y  e x i s t s ,  and rnin P ( x , y )  i s  undefined i f  no such 
Y 

va lue  of y  e x i s t s .  S ince  min P ( x , y )  is  a p a r t i a l  r e c u r s i v e  
Y 

func t ion  it  i s  p a r t i a l l y  computable and s o  t h e r e  i s  a  

Turing machine Z O  such. . t h a t  Y (x)  = rnin P (x ,y)  . Thus t h e r e  
z 0 Y 

i s  a computation o f  ZO beginning wi th  t h e  i n s t an t aneous  

d e s c r i p t i o n  qlx = q l l  X+l i f  and on ly  i f  min P ( x , y )  i s  de- 
Y 

f i n e d ,  which happens i f  and on ly  i f  t h e r e  is  a  y  such t h a t  

P (x ,y)  ho lds ,  which i n  t u r n  happens i f  and on ly  i f  3 P (x ,y)  
Y 

ho lds .  

Now 3P(x,y)  i s  n o t  r e c u r s i v e  and s o  i t s  c h a r a c t e r i s t i c  
Y 

f unc t ion  i s  no t  r e c u r s i v e .  By Church 's  t h e s i s ,  t h e n ,  t h e r e  

is  no " e f f e c t i v e  procedure"  f o r  de t e rmin ing , fo r  an a r b i t r a r y  

va lue  of  x ,  what t h e  va lue  of t h e  c h a r a c t e r i s t i c  f u n c t i o n  

a t  x  w i l l  be. Thus t h e r e  is  no e f f e c t i v e  procedure  f o r  

de te rmin ing ,  f o r  an a r b i t r a r y  v a l u e  of  x ,  whether o t  n o t  

3 ~ ( x , y )  ho lds ;  and hence t h e r e  i s  no e f f e c t i v e  procedure  f o r  
Y 



determining, for an arbitrary value of x, whether or not 

there is a computation of ZO beginning with the instantaneous 

description qlz, and the halting problem for ZO is unsolvable. 

So all we need to do to find a Turing machine ZO 

with unsolvable halting problem is to find a predicate P(x,y) 

such that P(x,y) is recursive but3~(x,y) is not recursive. 
Y 

The greater part of the remainder of this chapter, then, 

will be devoted to first defining a predicate which we think 

should work, and then proving that it, in fact, does work. 

As was the case with the weak halting problem result, 

the predicate we look for will "say something" about 

Turing machines, Of course, the only "inputs" that predi- 

cates will take are numbers or n-tuples of numbers, and 

so before we can define a predicate which "says" anything 

about Turing machines we must find an "effective" method of 

numbering Turing machines. In this case, the numbering 

system that we used before is not very satisfactory, so 

we will develop a new system. 

The symbols used in the discussion of Turing machines 

With each of these symbols we associate an odd number g 3  

as follows: 



Thus for each i, s is associated with 4i+7 and qi with i 

4i+5. 

Hence, with any expression there is now associated 

a finite sequence of odd numbers al,a2, ..., a 
no For example, 

the quadruple qllRq2 is associated with the sequence 

9,11,3,13, (recall that 1 is sl and B is and the 

instantaneous description qllll is associated with 9,11,11,11. 

We will now define a method of associating a single number 

with each such sequence and hence with each expression. 

DEFINITION 5.3. Let M be the expression consisting 

of the symbols rl,r2,r3,...,r no Let alta2, ..., a be the n 

corresponding numbers associated with these symbols. Then 

the "Gbdel number of M" is the number 

where Pr(k) is defined to be the nth prime number, taking 0 

to be the 0th prime. We write gn(M) = r. If M is the 

empty expression, we let 1 be its Godel number and we write 

gn (31) = 1. If gn @I) = r we also write M = exp (r) . 
9 11.53.713 

Thus gn ( ylRq2) = 2 3 

As an immediate consequence of this definition and 

of the fundamental theorem of Arithmetic we have 



COROLLARY 5 . 2 .  I f  id and N are expressions such that 

gn (Ivi) = gn (N) , then M .= N. 

D E F I N I T I O N  5 . 4 .  If iq1 ,A2 , ... ,M is a finite sequence n 
of expressions, then the Gddel number of this sequence of 

expressions is defined to be the number 

Thus, the Gddel number of the sequence qllBql, 

COROLLARY 5.3. No number is the Gddel number both of 

an expression and of a sequence of expressions. (Note that 

we make the convention that the empty expression, the expres- 

sion with no symbols, is considered an expression, but the 

empty sequence of expressions, the sequence with no expres- 

sions, is not considered to be a sequence of expressions. 

If it was, the two things would have the same Gddel number 

and ruin this corollary.) 

PROOF: Let r be a Gddel number. If r = 1 then r is 

the Gddal number of the empty expression. 1 cannot be the 

Gddel number of a sequence of expressions because any such 

sequence contains at least one expression and the Gddel number 

of this expression must be 1, and so the Gddel number of 

the sequence will be 22l = 2. 



Now suppose r22. Then by the way Gddel numbers are 

constructed, r = 2n-m where m is odd, and n 9. Now if 

2"-m is the Gddel number of an expression, n the number asso- 

ciated with a symbol and hence is odd and 23. If 2"em is 

the Gddel number of a sequence of expressions, n itself is 

the Gddel number of an expression and so will be 1 or even. 0 

Corresponding to Corollary 5.2, we have 

COROLLARY 5.4. Two sequences of expressions that 

have the same Gddel number are identical. 

Now, a computation of Turing machine is a finite 

sequence of expressions, all of thern instantaneous descrip- 

tions, and thus has a Gddel number. A Turing machine, how- 

ever, is simply a finite set of expressions, all of them 

quadruples, in which order is irrelevant. 

DEFINITION 5.5. Let Z be a Turing machine. Let 

41,~2,...,i be any arrangement of the quadruples of Z n 

without repetitions. Then, the Gddel number of the sequence 

ivi1 ,M2 , . . . ,Eln is called a Gddel number of the Turing machine 

Note that a Turing machine with n quadruples has n! 

distinct Gddel numbers, one for each permutation of its 

is the predicate that holds, for given z , x  l,...,xn,yI 

exactly when z is the Gddel number of a Turing machine Z, 

and y is the Gddel number of a computation of Z beginning 



with the instantaneous description ql(xl, ..., x ) .  Tl(ztxty) n 

We will prove that for all n, the predicates 

Tn(z,xl,...,x ,y) are recursive. Then the predicate n 

T(z,x,y) will surely be recursive. We will then define 

W(x,y) will be the predicate we want, for since T 

is recursive W will certainly be recursive, and we will be 

able to show that 3W(x,y) is not recursive. 
Y 

We now proceed with the work of showing that for all 

n, Tn(z,xl, ..., xn,y) is recursive. We begin by listing some 

more recursive, and hence computable functions which we 

will need to use. Each function is accompanied by a defi- 

nition, if necessary, and a formula which shows how it is 

constructed by composition or minimalization from functions 

in Definition 3.4. and thus proves them to be recursive. 

(Minimalization, here, will only be applied to regular 

functions. ) 

(1) N(x) = 0 N (x) = uL1 (x) ' ull (x) . 
(2) a(x) = 1 ' x ; that is a ( 0 )  = 1 



(4) [ J i ] ,  the largest integer ~ 4 % .  

2 .  [fi] = miny[(y+l) - x # 01 

(5) lx-YI = (xty) + (yLx) 

(6) [x/y]. If yfO, [x/y] is the largest integer 

X less than or equal to the rational number - 
yo 

(7) R(x,y) . If yfO, R(x,y) is the remainder 

on dividing x by y. That is = [x/y]+ R(xty) 
Y Y ' 

We take R(x,y) = x ' ytx/y], so R(x,O)=x. 

Recall that we said that Church's thesis, i.e. the 

statement that every function which we intuitively feel 

should be calculable is recursive, couid not be proved 

and that we would have to accept it on faith. The reader 

should find that, as we proceed on our course of searching 

for the particular useful recursive function mentioned 

before, this act of faith will seem to become more and more 

valid, as we will be showing the recursiveness of some 

quite complicated functions, which we might not have 

thought, at first glance, could be derived from the few 

simple functions in the definition. 



W e  w i l l  f i n d  it convenien t  t o  have t h e  r e c u r s i v e n e s s ,  

and hence computab i l i ty ,  of  such func t ions  as xY and x! . 
These a r e  c e r t a i n l y  f u n c t i o n s  t h e  va lues  o f  which w e  know 

how t o  c a l c u l a t e ,  and s o ,  i f  Church's t h e s i s  is t o  be  

b e l i e v e d ,  they must be r e c u r s i v e .  Wnen w e  c a l c u l a t e  t h e  

va lue  o f  xY f o r  p a r t i c u l a r  g iven  numbers x and y  w e  must 

f i r s t  c a l c u l a t e  x Z  f o r  a l l  numbers z  such t h a t  O.~z<y. 

S i m i l a r l y  t o  c a l c u l a t e  x!, w e  f i r s t  must c a l c u l a t e  z !  f o r  

a l l  z  such t h a t  O s z ~ x .  The processes  w e  u se  can be r e p r e -  

s en t ed  by t h e  p a i r s  of equa t ions  xo = 1 

X Y+L = xY . , 
and 

r e s p e c t i v e l y .  

I n  g e n e r a l ,  w e  know from t h e  Recursion Theorem of  

elementary set and n a t u r a l  number t heo ry  t h a t  i f  f ( X  (n )  ) 

and g  ( X  ("+*I) a r e  t o t a l  f u n c t i o n s ,  then  t h e r e  i s  a  unique 

t o t a l  func t ion  h(X ("+l)) t h a t  s a t i s f i e s  t h e  equa t ions  

For example, i n  t h e  c a s e  o f  t h e  f u n c t i o n  xY, n = l ,  f  (x)=O, 

g  (y , z  ,x )=z  ex and h (y ,x)  = xY. I n  t h e  case of  t h e  func t ion  

x!, n=O, f = l ,  g ( x , y ) = y b x ,  and h ( x )  = x!. 



DEFINITION 5.5. The operation of primative recursion 

associates with the given total functions f (X ) , g (X (n+2) ) 

the function h(X ("'l)), where 

It would be very convenient, indeed, if we could know 

that whenever we get a function by primative recursion from 

two functions which we know to be recursive, then the new 

function is also recursive. This is, in fact, the case. 

But before we can prove this result, we must prove some 

results about finite sequences of numbers. 

It is a well known fact that there exists a one-to-one 

correspondence between the set of natural numbers and the 

set of ordered pairs of natural numbers and, indeed, that 

such a correspondence can be set up in an "effective" 

manner. By Church's thesis, then, we should certainly be 

able to set up this correspondence by recursive, and hence 

computable, functions, and we will show now how this can 

be done. 

THEOREM 5.7. There exist recursive functions 

J (x,y) , K(z) , L(z) such that 



and i f  K(z)  = K ( z l )  and L ( z )  = L ( z l ) ,  t h e n  z = 2 ' .  

PROOF: Le t  J ( x , ~ )  = $((x+y12 + 3x+y).  NOW 

2 (x+y) +3x+y = (x+y) (x+y) + (x+y) +2x = (x+y) (x+y+l)  +2x, which 

i s  always even. Hence, J ( x , y )  i s  always an i n t e g e r ,  and s o  

is  a w e l l  d e f i n e d  func t i on .  J ( x , y )  is  r e c u r s i v e ,  s i n c e  

Suppose t h a t  z ,x ,y  are numbers such t h a t  

2 2 Then 8z+1=4 (22) +l=4 ( (x+y) +3x+y) +l=4 (x+y) +12x+4y+l 

2 
= ( ( 2 ~ + 2 ~ )  2+2 (2x+2y) +l) +8x= (2x+2y+l)  +8x. 

2 2 The re fo r e ,  (2x+2y+1) 2+8z+l= (2x+2y+l)  +8x< (2x+2y+l) +4 (2x+2y+l) +4 

= (2x+2y+3) 2 

And s o  2x+2y+l S JliliZ7rl c 2x+2y+3, 

Hence [J8zT1] i s  e i t h e r  2x+2y+l o r  2x+2y+2. 

[J-] + 1 is  e i t h e r  2x+2y+2 o r  2x+2y+3. T h e r e f o r e ,  

And s o  x+y = [ ( [ ~ ' 8 3 1 ]  + l ) / 2 3  - 1 (2 

Thus by (1). 3x+y = 22 - ( [ ( [ d - - +  1])/2] - 1)2 ( 3 )  

I 
S i nce  d e t  

, 1 # 0, e q u a t i o n s  (2 )  and ( 3 )  show t h a t  f c r  a 

g iven  z ,  t h e r e  can  be  a t  most one p a i r ,  ( x , y )  , s a t i s f y i n g  (1) . 
I f  such x and y e x i s t ,  t h e y  can be  c a l c u l a t e d  by 

r e c u r s i v e  f u n c t i o n s .  I f  w e  w r i t e  



then, clearly, Ql(z) and Q2(z) are recursive functions, and 

(2) and (3) yield x+y = Ql(z) 

3x+y = Q2 (z) 

which can be solved to give x = [(Q2 (z)'Q1 (2) )/2 ] = K(z) 

y = Q1(~)L[(Q2(~)LQ1(~))/2] = L(z) 

where K(z) and L(z) are recursive functions. Thus if 

are chasen arbitrarily, z = J (x,y) satisfies (I). And so 

if we choose any pair (x,y) there will be a z which will 

satisfy our three desired relations; namely 

It only remains to show that K(z) and L(z) are total 

functions, i.e. that for any natural number value of 2, 

there exist x and y satisfying (1). Let z be any number. 

Let r be the largest number such that 1+2+...+riz. Let 

x = z - (1+2+...+r). Then xSr, for if xlr+l, then 

1+2+...+r+(r+l)>z, contradicting our choice of r. Let 

y = r-X. Then, z = (1+2+. . . + (x+y) ) + x = 1/2 (x+y) (x+y+l)+x. 
2 

And so 22 = (x+y) (x+y+l)+2x = (x+y) +3x+y , and (1) is 
satisfied. 



W e  have proved the  e x i s t e n c e  of t h e  t h r e e  r ecu r s ive  

f u n c t i o n s  i n  t he  theorem. Suppose K(z) = K ( z t )  and L ( Z ) = L ( Z ' ) .  

Then z = J ( k ( z ) , L ( z ) )  = J ( K ( Z ' ) , L ( ~ ' ) )  = z ' .  Thus z = z '  

and t h e  theorem is  proved. 0 

Next, we consider t h e  problem of s e t t i n g  up a similar 

r e c u r s i v e  correspondence between t h e  n a t u r a l  numbers and 

t h e  set of  a l l  t h e  f i n i t e  sequences,  of whatever l e n g t h ,  

of i n t e g e r s .  

THEOREM 5.8. Let ao,.a l,... ,an be any f i n i t e  sequence 

of  numbers. Then the re  a r e  numbers u and v such t h a t  

R ( u , l + v ( i + l )  ) = ai f o r  i = 0,1 ,2 , .  . . ,n .  (Recal l  t h a t  R(x ,y )  

i s  t h e  remainder on d iv id ing  x by y ,  and i s  a r e c u r s i v e  

f u n c t i o n ) .  

W e  begin wi th  a number t h e o r e t i c  l e m m a  

LE;~WA 5.1. Let v be d i v i s i b l e  by t h e  numbers 1 , 2 ,  ..., n. 

Then t h e  numbers l + v ( i + l ) ,  i = 0,1,2 ,  ..., n,  a r e  r e l a t i v e l y  

prime i n  p a i r s .  

PROOF. L e t  mi = l + v ( i + l ) .  Since v i s  d i v i s i b l e  by 

1 , 2 , . . . n  any d i v i s o r  of mi, o t h e r  than 1, must be 

g r e a t e r  t han  n. NOW suppose t h a t  dlmi and d )  m j and i> j . 
Then d l  ( i + l ) m  - ( + ) m i .  But ( i + l ) m  - ( j+ l )mi  = 

j j 

( i + l )  ( l + v ( j + l )  ) - ( j + l )  ( l + v ( i + l )  = ( ( i + l ) + v ( i + l )  ( j + l ) )  - 
( ( j + l ) + v ( i + l )  ( j + l ) )  = 1-1. 

Thus d l i - j .  But Oci-jsn. Hence d = l .  0 

Proof of Theorem: Let  A be t h e  l a r g e s t  of t h e  

numbers ao,a l ,  ..., an ,  and l e t  v = 2A0n!. Let  mi = l + v ( i + l ) .  



Then by the lemma, the m. are relatively prime in pairs. 
1 

Also ai<vcmi for i = OIl,2,...,n. Now, by the Chinese 

Remainder Theorem, there is a number u such that 

u r a (mod mi) i i = O,lt2,...,n. 

That is, R(u,mi) = R(ailmi) i = 0,1,2,. . . ,n. But ailmi. 

Hence, R (ai ,mi) = a i' Thus 

THEOREH 5.9. There r recursive f unction3 Ti (w) 

such that, if a0,a1,...,a are any numbers whatever, there nt 

exists a number wo such that Ti(wO) = ail i = OI1,2,...,n. 

PROOF. Define Ti(w) by the equation 

Clearly Ti ( w )  is recursive. Let us be given the integers 

a0talt- tane Then by Theorem 5.2, there exist numbers 

u and v such that R(u,l+v (i+l) ) = air i = 0,1,2 ,.. . ,n. 
Let wo = J (u,v) . Then 

for i = O1l,...,n. 0 

We are finally ready to prove that functions constructed 

from recursive functions by primative recursion are themselves 

recursive. 



THEOREM 5.10. Let h (X ("+') ) be obtained from 

f(x(")), g(X (n+2) ) by primative recursion. If f and g are 

recursive, then so is h. 

PROOF: By Theorem 5.9., for each choice of X (n 

and y, there exist at least one number w such that 0 

Now, to say that a condition holds for all numbers z less 

than y is equivalent to saying that y is the least number 

for which it could fail. That is 

And so h (yt~(n) ) is recursive. 0 

COROLLARY 5.11. The functions xY and x! are recursive. 

PROOF. Let f(x) = S(N(x)) = 1 and g(y,u,v) = uv. 

Then clearly f and g are recursive. By Theorem 5.10, so 

is h (y ,x) which satisfies 



But h(y,x) = xY satisfies this pair of equations, and so 

xY is recursive. 

Let f (y) = 1 and g (x,u,v) = (x+l)u. Then clearly •’ and 

g are recursive and so h(x,y) is recursive where h(x,y) 

But h(x,y) = x! satisfies the above equations and so x! 

is recursive, 0 

COROLLARY 5.12. I•’ •’(~.x(P) ) is recursive. so are 

THEOREd 5.13. Let R and S be recursive sets of n-tuples. 

Then so are RUS, R E ,  and (the complement of R) . 
PROOF: CRUS (x(~) ) = cR (X ("I) CS (X  (n) ) 



THEOREM 5.14. Let P and Q be recursive n-ary predi- 

cates. Then so are PvQ, P AQ, and -P. 

PROOF. We note that 

and then apply Theorem 5.13. 0 

THEOREM 5.15. If P(y,X ("I ) is an (n+l)-ary recursive 

predicate, then so are 

Z 
3 P(YJ ("I) and P(~,X(")). 
y= 0 y=O 

Z 
PROOF. Let Q(z,X ("I) ++ P(~,X(")). Then we note 

z 
that C,(z,ic ) = n Cp (y ,X(nr;~ and apply corollary 5.12 

y=o 
to get the first part. 

To get the second part, we note that 

and apply Theorem 5.14 and the first part. 0 

We should note that the boundedness of the quantifier 

is absolutely essential to this result. In fact, as we shall 

see later, there exists a recursive predicate P(y,x) such 

that 3P (y ,x) is not recursive. (The very thing we ' re looking 
Y 

'I•’ S is a set of numbers or of n-tuples, then denotes 
the complement of S. 



for!) 

DEFINITION 5.6. Let P (y ,X ("I ) be an (n+l) -ary predicate. 
Z 

Then, by f (z,X ("I ) = hi P (y ,X (") ) we mean the (n+l) -ary 
y=O 

total function that satisfies the equation 

where this is defined, and f (z ,x(~) ) = 0 elsewhere. 

THEOREX 5.16. If P(~,x(~)) is recursive, then so is 

PROOF : Claim : 

Z 
If the claim is true then it is clear that ,+i p (y,~(~)) is 

y=o 
recursive. 

Consider the right hand side of the equation in the 

claim. Call it 3. Assume we are given a specific (n+l)- 

tuple, (z ,X(") ) . If there is no yCz such that P (y .X (n) ) 

holds, then C (y ,X ("I) = 1 for all y'z, and so 
P 

2 z 
y g o ~ p  (Y r x  (")) = 1. ~ h u s  a( B C~(Y~X("))) = 01 and so 

y=o 
z 

R = 0 = M P(y,X(")). - 
y=O 

If there is a yc, z such that P (y ,X ) holds, then let 
z 

yo be the least such y. Then C (y ,x(~)) = 0, so II Cp(ytX (n) )=  
P 0 y=O 



Now, for all y<y P (y,X(") ) does not hold, since yo is 0' 

the least y for which it does hold. So for all y<yO, 

Cp (Y ,X ("I) = 1. ~ h u s  for all t<yo, i.e. for t=O ,l,. . . .y-1, 
f C,(Y,X (") ) = 1. Note that there are yo such t Is. 
y=o t 
However, C (y ,X 

P O  
("I) = 0, and so if tzy n c (y,~(n)) = 0. 

O' "=n P 

Thus 

t<Y0 

sum, 
z 
C 

z t - 
if we consider L Il C- ( y  ,X(") ) we note that each 

t=O y=O J? - 
(and there are yo of them) will contribute 1 to the 

and each t2y0 will contribute 0. Thus 
t Z n cp(y,x (n)) - - yo. NOW R = a( n C~(Y,X(~))) 

t=O y=O y=o 
z t (n)) = - 2 
E ncp(y,~ l.yo = yo - P (y ,x(") ) , and the claim is 

t=O y=O y=o 

proved. 0 

THEOREM 5.17. The predicates x=y, xry, x<y, xgy, and x>y 

are all recursive. 

PROOF. The characteristic function of xzy is a(a(yzx)) 

and so it is recursive. The recursiveness of the other pre- 

dicatesfollow from the following equivalences: 

x5y ++ ygx, 

x>y ++ 'L(x5y) , 
x<y ++ 'L(xz_y) , 

and x=y ++ x s y ~ x ~ y ,  

We are now able to list some more recursive functions 

and predicates which we will use in our later work. Each 

function or predicate is followed by a definition, if 



necessary, and a formula which proves it to be recursive. 

(1) ylx. y is a divisor of x. 

(2) Prime (x) . x is a prime number. 
X 

Prime (x) ++ (x>l) A V ( (z=l) v (z=x)v'~ (Z I x )  ) . 
z=O 

(3) Pr (x). Pr (x )  = the nth prime in order of magnitude 

where we arbitrarily take the 0th prime equal to 0. 

Pr(0) = 0 
Pr (n) !+l 

Pr (n+l) = M (Prime (y)Ay>Pr (n) 
y=o 

\ e  are finally ready to prove 

THEOREM 5.18. The predicates T, (z ,xl , . . . , xn , y are 

recursive, for all numbers n, 

Proof. We have shown, up to this point, that certain 

predicates and functions are recursive, and we have also 

shown a number of methods of constructing recursive predi- 

cates and functions from predicates and functions which we 

already know to be recursive. In this proof, then, we will 

show how the predicates Tn(z,xl, ..., xn,y) can be constructed 
with these methods from known recursive functions and pre- 

dicates. The proof simply consists of a list of functions 

and predicates, culminating in the predicates 

Tn(Z,xl,- ,xn,Y) Each function or predicate is accompanied 

by a definition and then a formula which proves the function 



or predicate to be recursive. 

Group I. Functions and Predicates Which Concern Gbdel 

Numbers of Expressions and Sequences of Expressions: 

(1) n G1 x. 

n G1 x is a binary function. 

If x = gn(M), where M is an expression consisting 

of the symbols dl, d2,. . . , 6 in that order, then if O<n~p, 
P' 

n G1 x is the number associated with the symbol 6n, whereas 

if n = 0 or n > p, then n G1 x = 0. 

If x is the Gddel number of the sequence of expressions 

M1,M2, .. . ,M then if OCnSp, n G1 x=gn(Mn), whereas if n=O P' 
or n>p, then n G1 x = 0. 

If x is not a Godel number, we don't care how it's 

defined, as long as it's recursive. 

If x = gn (M) , then •’ (x) is the number of symbols 
occurring in N. If x is the Gddel number of a sequence of 

expressions, then (x) is the number of expressions in the 

sequence. If x is not a Gadel number we don't care. 

( 3 )  GN(x) * 

GN(x) is a predicate which holds if and only if 

there exist positive integers ak, k e n ,  such that 



Note that it is not necessarily true that x is a Gddel number 

if GN(x) holds, but it is true that x is not a Gddel number 

if GN (x) does not hold. 

(4) Term (x,z) 
n 

Term (x,z) holds if and only if z = II Pr(k)ak for 
k=l 

suitable ak>O, and x=ak for some k, 1s ksn. 
f (x) 

If M and N are expressions, then gn (MN) = gn (M) *gn (N) . 
If x and y are Gddel numbers of the sequences of expressions 

i\ ,...,st and N1, ..., N respectively, then x*y is the Gddel 
P' 

number of the sequence M1,. ..,M,, N1, ..., N 
P. 

Group 11. Functions and Predicates Which Cgncern the 

Basic Structure of Turing Machines: 

IC (x) holds if and only if x is a number assigned 

to one of the qi. 
X 

IC (x) ++ 3 (x=4y+9) 
y=O 



A 1  (x)  ho lds  i f  and on ly  i f  x  is  a  number ass igned  

t o  one of  t h e  si 

R e  (x )  ho lds  i f  and on ly  i f  x  i s  t h e  number ass igned  

t o  a symbol which may appear  a s  t h e  t h i r d  symbol i n  a quad- 

r u p l e ,  i . e .  x  i s  t h e  number ass igned  t o  an si o r  R o r  L. 

R e  (x )  ++ A 1  (x)  v (x=z) v (x=5) . 
(9) Quad (x)  

Quad (x)  ho lds  i f  and on ly  i f  x  i s  t h e  Gddel 

number of a  quadruple .  

Quad (x)  t-. GN (x )  A (6: (x)  = 4 )  A I C  ( 1 G 1  x )  AA1 (2  G 1  x )  

ARe ( 3  G 1  x)AIC (4 G 1  x ) .  
I 

(10) Inc  (x ,y )  

Inc  (x , y )  ho lds  i f  and on ly  i f  x  and y  a r e  Gddel 

numbers of two d i s t i n c t  quadruples  beginning wi th  t h e  same 

two symbols. 

I n c  (x,y) ++ Quad ( x ) ~ Q u a d  ( y ) ~  (1 G1 x = l  G 1  y )  

TM(x) ho lds  i f  and on ly  i f  x is  t h e  Gddel number 

of a Turing machine. 
•’(x E (x)  

TM (x)  ++ GN ( x ) ~  V Quad ( n G l x ) ~  V q I n c  (nGlx,mGlx) ) I 
n= 1 m = l  



(12) FIR(n) 

n + l )  n + l  W e  want MR(n) t o  be g n ( n )  = y n ( 1  = g n ( s l  1 

M R ( O )  = 2 11 

11 IdR(n+l) = 2 *P/IR(n) 

ID(x)  ho lds  i f  and on ly  i f  x  i s  t h e  Gddel number 

o f  an in s t an t aneous  d e s c r i p t i o n  

Th i s  i s  a c l a s s  o f  f u n c t i o n s ,  one f o r  each va lue  

of n>O. W e  want I n i t ,  (xl, .  . . ,x  n  ) = gn (ql (xl, .  . . ,xn) ) 

Group 111. Funct ions  and Predicates which Concern t h e  

Rela t ion  " + I t  i n  Turing Machines. 

Yieldl  ( x , y , z )  ho lds  i f  and on ly  i f  x and y a r e  

Gddel numbers of i n s t an t aneous  d e s c r i p t i o n s ,  z i s  a Gddel 

number of a  Tur ing machine 2, and Exp (x)  -+ Exp ( y )  i n  Z, under 

Case 1 of  D e f i n i t i o n  2 . 7 .  



X X X X  t u  A 3 3 3 3 3 !I c ( X = F * ~ ~ * Z ~ * G ) A  ( y = ~ * 2  * 2  *G) 

Yield2 is  l i k e  Yieldl ,  bu t  d e a l s  wi th  case  2  of 

D e f i n i t i o n  2.7. 

x x x x x y  
n 3 3 3 3 3 3 C(x -~*2r*2S ,2 t*~)  

F=O G=O r = O  s = O  t = O  u=O 

Yield3 i s  l i k e  Yieldl ,  bu t  d e a l s  w i t h  case 3  of  

D e f i n i t i o n  2.7. 

Yie ld3(x ,y ,z )  t I D ( x ) A I D ( ~ ) A T X ( Z )  

X X X X  s t 7  
A 3 3 3 3 [ ( X = F * ~ ~ * ~ ' ) A  (y=F*2 * 2  *2 ) 

F=O r = O  s = O  t = O  

(18) Yield4 (x,y.z)  

Yield4 i s  l i k e  Yieldl ,  but d e a l s  wi th  case 4 of 

D e f i n i t i o n  2 . 7 .  

Yield4 (x ,y , z )  ++ I D ( x ) A I D  (y)nTrn(z) 



x x x x x y  
n 3 3 3 3 3 3 [ ( x = ~ + 2 ~ * 2 ~ * 2 ~ * ~ )  
F=O G-0 r-0 s=O t=O u=O 

(19) Yield5 (x,y. z) 

Yield5 is like Yieldl but deals with case 5 of 

Definition 2.7. 

Yield5 (x,y z) " ID (x) AID (y)nTM ( 2 )  

x x x y  t 7 s  
A 3 3 3 3 ~ ( ~ = 2 ~ * 2 ~ ~ / ) ( y ~ = 2  *2 *2 *G) 

(20) Yield (x,y,z) 

Yield (x,y,z) holds if and only if x and y are 

Gddel numbers of instantaneous descriptions, z is a Gddel 

number of a Turing machine, 2, and Exp (x) + Exp (y) in 2 .  

Yield (x,y,z) ++ Yieldl (x,y,z)vYield2 (x,y,z) 

vYield3 (x,y,z)vYield4 (xIyfz) 

vYield5 (x,y,z) 

(21) Fin (x,z) 

Fin (x,z) holds if and only if z is a Gddel number 

of a Turing machine 2, and x is the Gddel number of an 

instantaneous description which is terminal with respect to 2. 

Fin(x,z) 4+ ID(x) TM(z) 
X X X X  

A 3 3 3 3 { ( X = F + ~ ~ * ~ ~ ~ G ) ~ I C ( ~ ) ~ A ~ ( S )  
F=O G=O r=O s=O 



( 2 2 )  Comp(y,z) 

Comp(y,z) holds if and only if z is a Gddel number 

of a Turing machine Z, and y is the Gddel number of a compu- 

tation of Z. 

Comp(y,z) ++ TM(~)AGN(~) 

(23) Finally we have 

T~ ( Z  ,x1,. . . ,X ,y) ++ Comp (y,z) A (lGly=Initn (xl,. . . ,xn) ) n 

~ h u s  T, (z,5 , . . . ,X ,y) is a recursive predicate. n a 

As we outlined earlier, we 

W(x,y) ++ T(x,x,y) . It follows 

recursive and hence computable. 

that 3W(x,y) is not computable 
Y 

then we can formally define our 

halting problem. 

now define W(x,y) by 

immediately that W ( x , y )  is 

It remains only to prove 

and hence not recursive and 

machine ZO with unsolvable 

THEOREM 5.19. 3 W (x,y) is a non-computabls predicate. 
Y 

PROOF: Suppose3W(x,y) is computable. Then so is its 
Y 

characteristic function. Then there exists a Turing machine, 

z1, such that 



(x)  = 0 i f  3 w (x ,y)  ho lds .  
Y 

By Lemma 1 of Chapter  111, t h e r e  i s  a Turing machine Z i  

YI) which i s  1- regula r  and such t h a t  ResZ , [q l6 ) ]  = qg (z;) Zl  
1 

L e t  Z2 be t h e  Turing machine whose quadruples  c o n s i s t  of  a l l  

t h e  quadruples  o f  Zi i n  a d d i t i o n  t o  t h e  quadruples :  

i s  no t  i n  t h a  a lphabe t  of ~ i .  
Now i f  m i s  such t h a t  3W (m,y) d o e s n ' t  h o l d ,  t hen  Y ( m ) = l  

Y Z1 

and s o ,  wi th  r e s p e c t  t o  Z2 

which is  t e rmina l .  

But i f  m i s  such t h a t  3 W (m,y) h o l d s ,  t hen  YZ (m)=O and s o ,  
Y 1 

with  r e s p e c t  t o  Z2 



and a terminal 

instantaneous description is never reached. 

Thus, there is a computation of Z2 beginning with x if and 

only if 3W(x,y) doesn't hold, i . e .  if and only if %3W(x,y) 
Y Y 

holds. Now let z2 be a GOdel number of Z2. By definition 

of the predicate T, T(z2,zZ,y) holds if and only if y is 

the Gddel number of a computation of Z2 beginning with ql(q). 

Thus 3 T(z2,z2,y) holds if and only if there is some computa- 
V 

tion if Z2 beginning with ql(<)). But we argued above that 

such a computation exists if and only if %3W(Z2,y) holds. Thus 
Y 

But by definition of W, W(z2 ,y) ++ T (z2 ,z2 ,y) . And so 



Thus w e  have 

c l e a r l y  an imposs ib le  s i t u a t i o n .  

Thus 3W(x,y) cannot  be  computable. 0 
Y 

W e  now have W (x ,y )  computable and3  W (x ,y )  non-compu- 
Y 

t a b l e .  L e t  w(x,y)  be  t h e  c h a r a c t e r i s t i c  f u n c t i o n  of  W(x,y). 

Then w (x ,y)  i s  computable, and s o  g (x)  = min [w (x,y)=O] 
Y 

i s  a p a r t i a l l y  computable f u n c t i o n .  Thus, t h e r e  i s  a ~ u r i n g  

machine Z 0  such t h a t  Y Z  (x )  = g ( x ) .  
0 

THEOREi-i 5.20. The h a l t i n g  problem f o r  Z O  i s  unsolvable .  

PROOF: Define t h e  p r e d i c a t e  PZ (x)  t o  ho ld  i f  and 
0 

on ly  i f  t h e r e  is  a computation of Z 0  beginning w i t h  q l ( z ) .  

Then, by Church's  T h e s i s ,  t h e  h a l t i n g  problem f o r  Z O  ha s  a 

s o l u t i o n  i f  and on ly  i f  P (x) i s  r e c u r s i v e .  
zo  

Now PZ (x )  ho lds  i f  and on ly  i f  Y z  (x) i s  d e f i n e d ,  which 
0 0 

happens i f  and on ly  i f  g ( x )  i s  d e f i n e d ,  which happens 

i f  and only i f  min [w(x,y)=O] i s  d e f i n e d ,  which happens i f  
Y 

and on ly  if t h e r e  e x i s t s  a number y sach  t h a t  w(x,y)=O, 

which happens i f  and on ly  i f  t h e r e  is  a y such t h a t  W(x,y) 

ho lds ,  which happens i f  and on ly  i f  3W(x,y) ho lds .  
Y 

P ~ o  
(x )  -3 W (x ,y )  . But 3 W (x ,y )  i s  n o t  computable 

Y Y 
and hence n o t  r e c u r s i v e .  Thus PZ (x)  is  not  recursive and Z O  

0 
has  unso lvab le  h a l t i n g  problem. 



CHAPTER VI 

THE WEAK AND STRONG WORD PROBLEWS 

FOR SEMI-GROUPS. 

In this chapter, we will present a single argument 

which will show that both the weak and the strong word prob- 

lems for finitely presented semi-groups are unsolvable. The 

argument will in fact show that the unsolvability of the 

weak halting problem forTuring machines yields the unsolva- 

bility of the weak word problem for finitely presented semi- 

groups, and the unsolvability of the strong halting problem 

yields the unsolvability of the strong word problem for 

semigroups. 

More precisely, we show that there is a constructive 

correspondence between the set of all Turing machines and 

a set of finitely presented semigroups, i.e. we will give an 

effective procedure for constructing from each Turing machine, 

Z, a finitely presented semigroup, HZ, such that any solution 

to the word problem for HZ yields a solution to the halting 

problem for 2 .  

Suppose the weak word problem for finitely presented 

semigroups had a solution. Then given any Turing machine, Z, 

we use the effective procedure to construct the semigroup HZ 

and then use our solution to the weak word problem for semi- 

groups to get a solution to the halting problem for Z. Thus 

we would have a single procedure which could be applied to 

any Turing machine to solve the halting problem for that 



machine, contradicting the unsolvability of the weak halting 

problem. 

Now, suppose the strong word problem for finitely 

presented semigroups had a solution. The unsolvability of 

the strong halting problem produces a Turing machine, ZO, 

with unsolvable halting problem. We can then construct the 

semigroup HZ and since any solution to the word problem for 
0 

H ~ o  
would yield a solution to the halting problem for ZO, there 

can be no such solution. Thus we have a finitely presented 

semigroup with unsolvable word problem and so the strong word 

problem for semigroups is unsolvable. 

We now go ahead with the construction of the semi- 

group HZ from the Turing machine Z. To facilitate the con- 

struction we introduce the concept of semi-Thue and Tkui: 

systems. A semi-Thue system, T, is a pair (S,f3) where S is 

a finite set of symbols of generators and f3 is a finite set of 

rules. A word in T is a finite sequence of generators from 

S (like a word in a semigroup; note that inverses don't exist 

as they do in groups.) Words are multipled by juxtaposition,as 

in free semigroups. A rule of T, i,e. an element of B ,  is of 

the form "A+B1' where A and B are words in T. If C and il 

are words in T, then we write "C+D in T " if there are words 

A,B,P,Q in T, possibly empty, such that C is PAQ, D is PBQ and 

"A+B" is a rule of T. We write "E*F in T," where E and F 

are words in T, if there is a finite sequence C1,C2, ..., Cn 



of words in T such that E is C1, F is C n and "Ci+Ci+l in T" 

o r  = 2 ,  n - 1 .  Where no ambiguity can result, we simply 

write "C-tD" or "E =P". 

If a semi-Thuc system, T, has the additional pro- 

perty that "B+AW is a rule of T whenever "A+Bb is, then T 

is a Thue system, and we combine the rules, simply writing 

"Af3Bt1. The rule ' W A N  is called the inverse of the rule 

"A+B", and vice versa. The following theorems follow imme- 

diately from these definitions. 

THEOREM 6.1. If T is a semi-Thuc system, then C-tD 

in T implies C=D in T. 

THEOREM . 2 .  If T is a T h u ~  system, then C+D in T 

if and only if D+C in T; and E=F in T if and only if F-E in 

T. In these cases we write "C++D in To' and "33- F in TI' 

respectively. 

The reader may already have noticed that a Thu, 

system is, for all intents and purposes, a semi-group. All 

we have to do is replace the symbols ++ and - with the symbol 

=. We will, of course, make use of this fact in our con- 

struction. 

An outline of our construction is as follows. For 

each Turing machine Z we will construct a semi-Thu2 system 

TZ with the property that for each instantaneous description 

a of Z there corresponds a word Aa in TZ such that if B is 

another word in TZ where A,+B in TZ, then B is A B for some 

instantaneous description 8 of Z and a+@ in Z. Also 



Aa+A in TZ whenever a+B in Z. B 
Thus, there is a certain class of words in TZ, 

corresponding to instantaneous descriptions of Z, such that 

T acts on these words just as Z acts on its instantaneous z 
descriptions. 

We then construct the semi-Thu- system Ti from TZ 

by adding one new generator, q, (without subscript) and a 

number of new rules to T so that for the word Aacorres- z 
ponding to an instantaneous description a of 2, we have 

A p in Ti if and only if A .I\ in TZ for some terminal a a 6 

instantaneous description 6 of Z. Of course this latter 

occurrence will take place exactly when there is a computa- 

tion of Z beginning with a. From Ti we construct the semi- 

group HZ with the same generators such that A = q a 
in HZ if and only if there is a computation of Z beginning 

with a.  

We proceed formally as follows. Let Z be any 

Turing machine. The set of generators of TZ will consist of 

all symbols appearing in the alphabet of Z, including the 

symbol so if it does not already appear in the alphabet of Z, 

all symbols appearing as internal configurations of Z, and 

the symbol sh, where h is the smallest positive integer not 

already appearing as the subscript of some s in the alphabet 

of z. 

If ais any instantaneous description of Z, i.e. 

a finite sequence of s 's with one qi not at the right and, 
j 



then we associate with athe word shsh in TZ, which we call 

A a* A word constructed in this manner from an instantaneous 

description of z is called a d-word in T2. 

The rules of TZ are constructed in groups, each 

group to correspond to a quadruple of Z. If q.s.Lql is a 
1 I  

quadruple of 2 ,  then the rules s q.s.+qlsnsj, one for each 
n l  J 

generator of T~ of the form sn, excluding sh, (i.e. for each 

s in the alphabet of Z, including so), w i l l  all be rules of n 

TZ. In addition, the rule s ~ ~ ~ s ~ Q ~ ~ ~ s ~ s ~  will be a rule of 

TZ. We recall that the quadruple q.s.Lql of Z acts on an 
1 3  

instantaneous description a when a involves qi and qi appears 

immediately to the left of the symbol s and has the effect 
1' 

of moving the qi one space to the left and changing it to ql. 

Our semi-Thu~ system rules act on the corresponding d-words 

and have the same effect on them. We have the rule shqisj+ 

shqlsosj instead of the rule shqisj+qlshsj SO that the sh 

will always remain at the left end of the word. We construct 

similar groups of rules from the quadruples of the forms 

q.s.Rql and qisjskql. If q.s.Rql is a quadruple of Z then 
1 3  1 3  

the rules q.s.s +sjqlsn, one for each generator of TZ of 
1 I  n 

the form sn, excluding sh, and the rule qisjsh+sjqlsosh 

will all be rules of TZ. Finally, if qisjskql is a quadruple 

of Z, it will act on an instantaneous description which has 

9 i immediately to the left of s and will have the effect of 
j 

changing the s to sk and the qi to ql. So we include the 
j 

single rule q.s.+q s among the rules of TZ. The rules 
1 3  l k  



derived as above from the quadruples of z are all the rules 

of TZ. 

Now we easily observe that if we apply any of the 

rules of TZ to a d-word we get another d-word. By simple 

induction, then, we derive that if E is a d-word in TZ and 

if E=F in TZ, then F is a d-word in TZ. We note even more than 

this, though. From the way we have constructed the rules of 

TZ we note that Aa+A in TZ if and only if a+B in 2. Thus 
€3 

we can define Aa to be a terminal d-word in TZ if a is a 

terminal instantaneous description in 2, and we will have the 

result that A is a terminal d-word in Z if and only if A is 

a d-word and there is no word 3 such that A+B in TZ. 

So if we consider the semi-Thue system TZ restricted 

to d-words, it in a sense "does the sami? thing" as the Turing 

machine 2. 

We now construct the semi-Thue system Ti from TZ. 

The set of generators of Ti will include all the generators 

of TZ in addition to the symbol q (no subscript). The set 

of rules of Ti will include all the rules of TZ in addition 

to the following groups of rules: 

(a) qisj+qsj for all qi and s 1' excluding sh, 

that are generators of TZ such that neither qisj, s q . ~ . ,  
h l l  

qisjsh, snqis for some n, nor q. s .s for some n, is the left 
l l n  

hand word in a rule of TZ; 



and t h e  s i n g l e  r u l e  

W e  no te  t h a t  i f  E i s  a  d-word i n  T i  t o  which one of 

t h e  r u l e s  of (a) may be appl ied  then t h e  e f f e c t  of applying t h e  

r u l e s  of ( a ) ,  ( b ) ,  ( c ) ,  ( d l ,  and (el t o  E wherever poss ib le  

i s  t o  f i r s t  change t h e  qi of E t o  q and then  t o  e r a s e  a l l  

t h e  s 's  except sh, g iv ing  t h e  word shqsh,  and f i n a l l y  t o  
j 

e r a s e  t h e  shVs  leaving  t h e  word q .  Thus, i f  we can apply 

one of t h e  r u l e s  of (a) t o  t h e  d-word E i n  Ti, we g e t  E q  

i n  Ti. 

Next, w e  note  t h a t  t h e  r u l e s  of (a) a r e  cons t ruc ted  

such t h a t  one of them is  app l i cab le  t o  t h e  d-word E of Ti 

i f  and only i f  E i s  a te rminal  d-word of TZ. A s  we a l ready 

observed, E i s  a  t e m i n a l  d-word of TZ i f  and only i f  E=A, 

where a i s  a te rminal  instantaneous d e s c r i p t i o n  of the  Turing 

machine Z .  

Combining t h e  above r s s u l t s  with our  previous ob- 

se rva t ions  we immediately have t h e  following theorem. 

THEOREX 6 . 3 .  There is  a  computation of t h e  Turing 

machine Z beginning w i t h  t h e  instantaneous d e s c r i p t i o n  a 

i f  a rd  only i f  A a q  i n  Ti. 

NOW l e t  TZ" be t h e  semi-Thua system whose genera tors  

a r e  j u s t  those  genera tors  of T i  and whose set of r u l e s  c o n s i s t s  

of t h e  inverses  of a l l  t h e  rules of Ti. We n o t i c e  immediately 

t h a t  E=f i n  TZ" i f  and only  i f  F-E i n  Ti, where E and F a r e  

a, any words i n  TZ . 



Next, l e t  TZ* be t h e  Thur system whose g e n e r a t o r s  

are j u s t  t hose  g e n e r a t o r s  of  T i  and whose s e t  of r u l e s  

i n v e r s e s ,  

of r u l e s  of 

c o n s i s t s  of t h e  r u l e s  of T i  t o g e t h e r  wi th  t h e i r  

i .e .  whose set of r u l e s  i s  t h e  union of t h e  s e t  

T i  and t h o  set of r u l e s  of  TZO'. 

THEOREM 6 . 4 .  I f  E i s  any d-word i n  TZ* t h e n  E, q 

TZ* i f  and on ly  i f  E = q  i n  T i .  

PROOF: Obviously E q  i n  TZ* i f  E q  i n  Ti. By 

THEOREM 6 . 2 , q S  i n  TZ* i f  and on ly  i f  E = q  i n  TZ*. Thus E b  q 

On t h e  o t h e r  hand, E = q  i n  Ti i f  ~ = J E  i n  T Z P .  Ob- 

v i o u s l y  q* i n  TZ* i f  E- q i n  TZ*. SO it s u f f i c e s  t o  prove t h a t  

F i r s t  w e  observe  t h a t  i f  C i s  any d-word o f  TI z 
o r  any word of 1; c o n s i s t i n g  of  s ' s  w i t h  e x a c t l y  one q  and an 

s a t  e i t h e r  end,' t hen  a t  most one r u l e  of  T i  i s  a p p l i c a b l e  

t o  C. Th is  i s  because i f  C is  d-word then  C i s  A f o r  some 
a 

i n s t an t aneous  d e s c r i p t i o n  a of  Z.  I f  any r u l e  of  T i  i s  

a p p l i c a b l e  t o  C t hen  e i t h e r  t h a t  r u l e  i s  one of r u l e s  o f  (a) 

i n  which c a s e  on ly  one can be a p p l i c a b l e  o r  t h a t  r u l e  is  

one of t h e  r u l e s  of TZ i n  which case aga in  on ly  oni: can be 

a p p l i c a b l e  because t h e  r u l e s  of  TZ a l l  come from t h e  quadruples  

of Z and a t  most one quadruple  of Z can be a p p l i e d  t o  a. 

l~emember  t h a t  a word invo lv ing  q  i s  n o t  a d-word, be- 
cause  a d-word i s  of t h e  form s a s  where a i s  an in s t an t aneous  
d e s c r i p t i o n  of 2. 

h h  



Also, from the way the rules of (a) were chosen, none of 

them can be applicable to C if a rule of TZ is. If C is a 

word involving q then the only possible rules of Ti that can 

be applicable to C are those of (b) , (c) , (d) and (e) , and 
it is easy to see that at most one of them can be applicable 

Now suppose q* in T *. Then there is a finite z 
sequence of words CltC2,...,C such that q is C1 and E is n 

C and Ci+Ci+l for i=1,2,...,n-1, and such that Ci is either n 

a d-word or a word consisting of s's with exactly one q 

and an s at either end, for i=2,3,.. .,n. (Note that C2 h 

must be the word shqsh.) Now let V1,V2,...rVn-l be the se- 

quence of rules of TZ* such that Vi is the rule A.+B of 
1 i 

T * and Ci is the word PiAiQi for Pi and Qi and Ci+l is the z 
word PiBiQi, i . e .  Vi is the rule used to get Ci+Ci+l in TZ*, 

for i=lt2,...,n-1. Then for each it Vi is a rule of either 

Ti or T Z  . It is easy to see that no rule of Ti can be 

applied to q, and so Vl must be a rule of TZ . (In fact Vl 

will be the rule q-shqsh.) Let m be the least number such 

that Vm is not a rule of TZ". Then VIn is a rule of Ti . 
Now Vm is the rule used to get C +Cm+l. "d we saw that Vm m 

can be the only rule of Ti applicable to Cm, and obviously 

it can only be applied in one way. Thus if Cm+D in Ti, 

D must be Cm+l. Now C,-l+C, in TZ* and the rule which gives 

this is in TZ ", SO Cm-l+C in T Z U  and thus C +Cm-l in Ti, and m m 

Cm-l is Cm+la Thus the words Cm and Cm+l could be omitted 



from the sequence C1,C2, ..., Cn. In this mflnner we can 

eliminate all the steps involving application of rules not 

from TZ and so qiE in TZ, and the theorem is proved. 0 

We are now ready to construct our semi-group. Let 

T be any Thue. system, Let HT be the semi-group with presen- 

tation (S;U) where S, the set of generators of HT, is just 

the set of generators of T and where U, the set of defining 

relations of HT, is such that A=B is in U if and only if A++B 

is a rule in T. Since defining relations of a semi-group 

are applied to words of the semi-group in the same way that 

rules of a Thue system are applied to words of the system, 

we see immediately that E=F in HT if and only if E- F in T, 

where E and F are any two words in HT. 

Now we are ready to finish the proof of the unsolva- 

bility of the weak and strong word problems for finitely 

presented semi-groups. 

THEOREN 6.5. Given a Turing machine Z, there exists 

a finitely presented semigroup HZ, such that a solution to 

the word problem for HZ yields a solution to the halting problem 

for Z. 

PROOF: Let HZ be the semigroup H,, I constructed as 
z 

described above from the Phue system Ti which is in turn 

constructed from Z. Let a be an arbitrary instantaneous 

description of Z. Then Aa is a word in TZ, hence in Ti, hence 

in Ti, and hence in HZ. By Theorem 6.3 th~re is a computation 

of Z beginning with a if and only if Aa=q in Ti. By Theorem 



6 . 4 . .  Aagq in Ti if and only if A a e  q in TZ*. We observed 

that Aa- q in 'i' * if and only if Aa=q in HZ. Thus there is z 
a computation of Z beginning with a if and only if Aa=q 

in HZ. But we can apply our solution to the word problem 

for HZ to determine whether or not A =q in H holds. Thus 
C1 z 

w e  have an effective process for determining whether or not 

there is a computation of Z beginning with a ,  and so we 

have a solution to the halting problem for Z. 0 

We nave essentially accom~lished what we set out to 

do. All that remains is to introduce Rotman's part of the 

proof of the word problem for groups. The first thing that 

we should note is that in a semigroup or group whose genera- 

tors are all of the form some number 

special word is a word L of the form AqiB where A and B are 

words in the s's alone and, in the case of a group, where 

L is a positive word, i.e. C is a word in the generators 

with no occurrences of the inverses of the generators. 

Post's Theorem, as Kotman calls it, is the theorem 

which gives the existence of a finitely presented semigroup 

with unsolvable word problem. This semigroup is called, by 

Rotman, Post's semigroup, and would be our semigroup HZ , 
0 

where ZO is a Turing machine with unsolvable word problem. 

Rotman shows that there is a finitely presented 

group G, with unsolvable word problem, and constructs this 

group from Post's semigroup. Thus Rotman shows the unsolvability 

of the strong word problem starting with the unsolvability of 



t h e  s t rong  word problem f o r  f i n i t e l y  presented semigroups. 

The group t h a t  Rotman c o n s t r u c t s  i s  such t h a t  t h e  s o l v a b i l i t y  

of i t s  word problem would y i e l d  t h e  s o l v a b i l i t y  of t h e  word 

problem f o r  t h e  semigroup from which it was constructed.  

A s  long a s  a semigroup has a f i n i t e  number of genera tors  of  

t h e  form si o r  qj f o r  some number i o r  j, and a f i n i t e  number 

of  de f in ing  r e l a t i o n s  of t h e  form C i  = r i ,  where Ei  and ri  

a r e  a l l  s p e c i a l  words, one can use Rotman's cons t ruc t ion  t o  

o b t a i n  a group such t h a t  t h e  s o l v a b i l i t y  of t h e  word problem 

f o r  t h a t  group y i e l d s  a s o l u t i o n  t o  t h e  word problem f o r  t h a t  

semigroup. So i f  t h e  weak word problem f o r  f i n i t e l y  presented 

groups were so lvab le  we would have an e f f e c t i v e  procedure 

f o r  so lv ing  t h e  weak word problem f o r  semigroups of t h i s  form. 

Now a11 t h e  semigroups t h a t  w e  cons t ruc ted  from Turing ma- 

chines have t h i s  form and s o  have unsolvable weak word 

problem. Thus Rotman's proof a c t u a l l y  shows t h a t  t h e  unsol- 

v a b i l i t y  of t h e  weak word problem f o r  f i n i t e l y  presented 

groups i s  obta inable  from t h e  unso lvab i l i ty  of t h e  weak word 

problem f o r  t h i s  c l a s s  of semigroups. 
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APPENDIX A 

I n  t h i s  appendix w e  s h a l l  t a k e  a  b r i e f  and by no means 

e i t h e r  complete o r  r i g o r o u s  look a t  some s p e c i a l  classes of 

groups f o r  which t h e  word problem has  been so lved .  When we 

say  t h a t  w e  a r e  g iven  a f i n i t e l y  p re sen ted  group,  G ,  w e  

assume t h a t  w e  are i n  f a c t  g iven  a  p a r t i c u l a r  f i n i t e  p re sen ta -  

t i o n  f o r  G ,  and w e  ask t h e  q u e s t i o n ,  " f o r  what s o r t s  o f  

f i n i t e  p r e s e n t a t i o n s  does t n e r e  e x i s t  an e f f e c t i v e  procedure  

f o r  de te rmin ing  whether o r  n o t  an a r b i t r a r y  word i n  t h e  

g e n e r a t o r s  i s  equa l  t o  t h e  i d e n t i t y ? "  W e  have a l r e a d y  seen 

t h a t  t h e  answer is  n o t  " f o r  a l l  s o r t s " .  

W e  w i l l  f i r s t  look a t  t h e  s i m p l e s t  t y p s  o f  group 

p r e s e n t a t i o n :  t h a t  w i th  no d e f i n i n g  r e l a t i o n s ,  namely t h e  

f r e e  group p r e s e n t a t i o n .  Given a f r e e  group on a f i n i t e  

set ( o r ,  f o r  t h a t  matter, an i n f i n i t e  se t )  of  g iven  genera- 

t o r s  w e  know t h a t  each word i s  e q u a l  t o  a unique reduced word 

and w e  know t h a t  t h e r e  is  a ve ry  s t r a i g h t f o r w a r d  e f f e c t i v e  

procedure f o r  f i n d i n g  t h a t  unique reduced word f o r  any g iven  

word. S ince  t h e  empty word, which r e p r e s e n t s  t h e  i d e n t i t y ,  

is  reduced,  t h e  s o l u t i o n  f o r  the word problem i s  c l e a r .  

Given an a r b i t r a r y  word W ,  w e  s imply reduce W u n t i l  w e  f i n d  

t h e  reduced word W r  such t h a t  W=Wt. I f  W' is  empty w e  know 

t h a t  W = l ;  if n o t ,  W#1. Thus a l l  f r e e  groups have s o l v a b l e  

word problem. 



In 1912, Dehn showed that the word problem is solvable 

for the fundamental group of a closed two dimensional mani- 

fold of genus gz2. This is tne group with presentation 

-1 where (a ,a. ) is the commutator of ai and a j, ai-'a a. a 
i I j 1 j' 

Dehnts proof was a geometric one and has since been general- 

ized considerably. 

Next, suppose that G1 and G2 are disjoint finitely 

presented groups with solvable word problems. We will show 

that the free product G1*G2 has solvable word problem. 

We define the free product, * G , of a set, 
yer 

{G :y€I ') ,  of pair wise disjoint groups (note that any set 
Y 

of groups can be "made" pairwise disjoint by "painting their 

elements different colors") such that { S  ; A  } is the presen- 
Y Y 

tation 0f.G for eacn y€T, to be the group with presenta- 
Y 

tion { U S U Ry}. 
yfr y i y C r  

Thus, an element of G *G is a word in the symbols of 1 2  

S1E2 and their inverses. Let W be a word in G1*GZ Then 

the following effective procedure can be used to determine 

whether or not W=l (the empty word) in Gl*G2. 

Step 1. If W is empty, write " W = l "  , and stop. 
If not go to step 2. 

Step 2. Apply parentheses to W to write W as a product 

of subwords of W such that each subword is a word in either 

GL or G2 and no two adjacent subwords are both in G1 or both 



i n  G2.  

S t e p  3 .  Apply t h e  s o l u t i o n s  of t h e  word problems f o r  

G1 and G2 t o  t h e  subwords ob ta ined  i n  S t ep  2 and i f  a  

subword i s  equa l  t o  1 i n  e i t h e r  G1 o r  G 2 ,  d e l e t e  it from 

W. A f t e r  making a l l  p o s s i b l e  d e l e t i o n s ,  w e  g e t  a new word 

which w i l l  be e q u a l ,  i n  G1*G2, t o  W and which w e  w i l l  a l s o  

c a l l  W. Go back t o  S t ep  1 i f  a t  l e a s t  one d e l e t i o n  w a s  

made. I f  no d e l e t i o n s  were made, w r i t e  "Wfl", and s t o p .  

W e  can obvious ly  perform s t e p  1 i n  a f i n i t e  number o f  

s t e p s .  

Now, s i n c e  G1 and G2 are both  d i s j o i n t  and have a  

f i n i t e  number o f  g e n e r a t o r s  w e  can s u r e l y  perform s t e p  2 

i n  a f i n i t e  number of  s t e p s .  S ince  W is  only f i n i t e  i n  

l e n g t h ,  w e  must always e v e n t u a l l y  come t o  a p o i n t ,  a f t e r  

a f i n i t e  number o f  r e p e a t e d  a p p l i c a t i o n s  of  s t e p s  2  and 3 ,  

where e i t h e r  W is  empty, o r  no more d e l e t i o n s  can be made. 

So t h e  desc r ibed  procedure  i s  c e r t a i n l y  e f f e c t i v e ,  and s o  

t h e  word problem f o r  G1*G2 is  s o l v a b l e .  

By i n d u c t i o n ,  t hen ,  t h e  word produc t  f o r  any f i n i t e  f r e e  

produc t  of f i n i t e l y  p re sen ted  groups i s  s o l v a b l e ,  i f  t h e  

word problem is  s o l v a b l e  f o r  each of  t h e  groups whose f r e e  

produc t  i s  being taken .  

I t  can be shown t h a t  i f  G is  t h e  f r e e  produc t  o f  G1 

and G2 wi th  isomorphic subgroups HlcGl and H 2 c G 2  amalgamated, 

w e  can aga in  s o l v e  t h e  word problem i n  G i f  t h e  word 

problems f o r  G1 and G2 a r e  bo th  s o l v a b l e  and i f  i n  Gl and G2 



w e  can dec ide  whether a g iven  element belongs  t o  H1 

r e s p e c t i v e l y ,  and if w e  can s o l v e  t h e  word problems 

H1 and H and a l s o  i f  t h e  isomorphism between H1 and H2 2 '  

i s  c o n s t r u c t i v e ,  i .e .  i f  g iven  an a r b i t r a r y  element of 

H1 w e  can e f f e c t i v e l y  determine t h e  element of  H2 o n t o  which 

t h e  element of  H1 is  mapped, and v i c e  v e r s a .  

Using some of t h e s e  r e s u l t s ,  it has  been shown t h a t  t h e  

word problem i s  s o l v a b l e  f o r  any group G which is  f i n i t e l y  

genera ted  and which has  one d e f i n i n g  r e l a t i o n .  This  i s  

a g e n e r a l i z a t i o n  of  Dehn's r e s u l t ,  f o r  Dehn's group has  

e x a c t l y  one d e f i n i n g  r e l a t i o n .  

Suppose, now, t h a t  G i s  a f i n i t e l y  p re sen ted  group such 

t h a t  no two of  t h e  d e f i n i n g  r e l a t o r s  have any symbols i n  

common; i .e .  i f  R1 and R2 are any two d e f i n i n g  r e l a t o r s  

such t h a t  R1 i s  a reduced word invo lv ing  t h e  g e n e r a t o r s  

a i  , . . . ,a i  of  G and R2 i s  a reduced word invo lv ing  t h e  
1 n 

g e n e r a t o r s  a ,..., a of  G ,  t hen  t h e  sets {ai , . . . , a .  } 
'1 m 1 ln 

and {al , . . . ,a ,  } are d i s j o i n t .  Then G i s  t h e  f i n i t e  f r e e  
1 J n  

product  of  d i s j o i n t  groups each wi th  one d e f i n i n g  r e l a t i o n  

and,  perhaps ,  a f r e e  group,  and a s  such has  a s o l v a b l e  word 

problem. I n  t h i s  case G is  such t h a t  any two of i t s  d e f i n i n g  

r e l a t o r s  have no subwords i n  common. 

I n  1 9 4 9 ,  T a r t a k o v s k i i  [18] managed t o  ex tend  t h i s  

r e s u l t  somewhat by s o l v i n g  tile word problem f o r  groups i n  

which any two d e f i n i n g  r e l a t o r s  have on ly  ve ry  s m a l l ,  com- 

pared  t o  t h e i r  l e n g t h s ,  subwords i n  common. However, 



Tartakovskii's solution depends on knowing beforehand the 

orders of all the generators of the group, and this may not 

be readily available knowledge from the presentation, 

and, in fact, msy not be available at all. Tartakovskii's 

results are combinatorial in nature and are so elaborate 

that it would be impossible to describe them without lengthy 

preparation. 

Finally, the word problem has been solved for groups, 

G, where for each pair, a,b, of generators, ab=ba is among 

the defining relations or can be effectively derived from 

the defining relations; i.e. if a group can be shown to be 

abelian, it has solvable word problem. A proof of this 

result can be found in Section 3.3 of &iagnus, Karrass, 

and Solitar, Ell). 

Much more work than that described above has been 

done on the word problem. A slightly more detailed outline 

of this work is given in Section 6.1 of Magnus, Karrass, 

and Solitar, and detailed proofs of some of the results 

can be found throughout the book. Other proofs can be found 

in some of the original papers listed in the bibliography 

of this thesis and in the bibliography of Magnus, Karrass, 

and Solitar. 



APPENDIX B 

More on Computable and Recurs ive  Func t ions  

and t h e  Universa l  Turing Machine. 

I n  Chapter  I11 we showed t h a t  a l l  r e c u r s i v e  and p a r t i a l  

r e c u r s i v e  f u n c t i o n s  w e r e  computable o r  p a r t i a l l y  computable, 

r e s p e c t i v e l y .  I t  w a s  no t  necessary  i n  ou r  proof of  t h e  

e x i s t e n c e  of  a Turing n a c ~ l i n e ,  Z O t  w i t 1 1  unso lvab le  h a l t i n g  

problem, t o  snow t h e  converse ,  namely t h a t  every  p a r t i a l l y  

computable o r  computable f u n c t i o n  i s  p a r t i a l  r e c u r s i v e  o r  

r e c u r s i v e ,  r e s p e c t i v e l y ,  and s o  t h i s  w a s  n o t  shown. However 

w e  came very c l o s e  t o  showing t h i s ,  and s o ,  i f  on ly  f o r  

a e s t h e t i c  r ea sons ,  w e  i n c l u d e  t h e  proof i n  t h i s  appendix.  

W e  a l s o  show t h e  e x i s t e n c e  of ano the r  Turing machine wi th  

unso lvab le  h a l t i n g  problem. 

I n  t h e  proof of Theorem 5.18, wa p r e s s n t e d  a l is t  of 

r e c u r s i v e  p r e d i c a t e s  and f u n c t i o n s .  W e  now ex tend  t h a t  l i s t  

wi th  t h e  fo l lowing  f u n c t i o n s :  

( l * )  CU (n ,x )  

CU(n,x) = 0 i f  nG1 x 11 

CU (n ,x )  = 1 i f  nG1 x = 11 

CU(n,x) i s  t h e  c h a r a c t e r i s t i c  f u n c t i o n  of 

t h e  r e c u r s i v e  p r e d i c a t e  nGL x # 11 and,  as such,  i s  r e c u r s i v e .  

(2" Corn (x)  

I f  x  = gn (A)  , t nen  Corn (x)  = /IN/( ( t h e  number 

o f  1's o r  sits i n  '1). I f  x  i s  n o t  the Gddel number of an 



expression, then we don't care what Corn (x) is. 
•’ (x) 

Corn (x) = C CU (n,x) 
n=l 

If y is the Gddel number of the sequence of ex- 

pressions tdl ,I2 ,. . . ,Mn, then U (y) = I I " 1 , I I .  Otherwise, we 

don't care what U ( y )  is. 

THEOREH Ap . 1. Every (Partially) computable function 

is (Partial) recursive. 

PROOF: Suppose that f (X ) is partially computable. 

(n) (X(n)) = Then there is a Turing machine ZO such that YZ. 
U 

•’(x(")). Now let z0 be a SWel number of ZO. Now the pre- 

dicate Tn (zO ,X ,y) is recursive and so the function 

min- T (Z~,X(~) , y )  = min LCT (zO ,x(") ,y) = 01 is partial re- 
n Y 

cursive. Now, min T (z # X  ( R )  ,y) is the GWel number of the 
Y n  0 

computation of ZO beginning with ql(x1,x2, ..., xn), and is 
defined exactly when n 

yzo 
(X lt...t~ ) is. Thus n 

U (min T (zo ,i((") , y )  ) is partial recursive and v n  - 
~ ( m i n  T (Z~,X(~) ,y)) = n (x(")) = f (x(")) and so f is 

Y n 
partial recursive. 

Now suppose that f is computable. Then f is total and 

so for all n-tuples, (xl,x2, ..., x ) there is a computation n 

of Z O  beginning with ql(x1,x2, ..., x,). Thus for every 

n-tuple (x(") ) , there is a y o  such that Tn (zO ,x(") ,yo) 



holds .  Thus Tn (zO ,X (n )  ,y)  i s  a r e g u l a r  r e c u r s i v e  p r e d i c a t e  

and s o  min T ( z o , ~ ( n )  ,y )  and hence U(min T ( 2  , X ( " )  ,y)  
Y n  Y n  0 

a r e  r e c u r s i v e .  ~ h u s  f  ( X  ) i s  r e c u r s i v e .  0 

Thus, t h e  terms "computable " and " r e c u r s i v e "  a r e  i n t e r -  

changable ,  as are " p a r t i a l l y  computable" and " p a r t i a l  r ecu r -  

s i v e " ,  and s o ,  ~y  Church 's  t h e s i s ,  a f u n c t i o n  i s  c a l c u l a b l e  

i f  and on ly  i f  it is computable ( o r  p a r t i a l l y  computable, 

i f  i t  i s  n o t  t o t a l ) .  

Now, w e  o b t a i n  as a c o r o l l a r y  t o  Theorem I ,  t h e  pro- 

mised converse  t o  Coro l l a ry  3.1. 

COROLLARY A p .  2 .  Every f u n c t i o n  which i s  t o t a l  and 

p a r t i a l  r e c u r s i v e ,  i s  r e c u r s i v e .  

PROOF: Suppose f  i s  t o t a l  and p a r t i a l  r e c u r s i v e .  

S ince  it i s  p a r t i a l  r e c u r s i v e ,  it i s  p a r t i a l l y  computable. 

S ince  it is p a r t i a l l y  computable and t o t a l ,  i t  i s ,  by 

d e f i n i t i o n ,  computable. But t hen  by Theorem 1, it i s  

r e c u r s i v e .  0 

Now cons ide r  t h e  p a r t i a l  r e c u r s i v e  b i n a r y  func t ion  

9 (z ,x) = U (min T (z  , x ,y )  ) . This  f u n c t i o n  i s  p a r t i a l l y  
Y 

computable, and s o  t h e r e  i s  a Turing machine U such t h a t  

I u  ( z , x )  = q ( z , x ) .  We c a l l  U t h e  " u n i v e r s a l  Tur ing 

machine" s i n c e  it can be employed t o  compute any p a r t i a l l y  

computable s i n g u l a r y  f u n c t i o n  a s  fo l lows .  

Suppose f ( x )  i s  p a r t i a l l y  computable. L e t  Z O  be t h e  

Turing machine which computes f ,  i .e .  such t h a t  Y ( x ) = f ( x ) .  
z o  



Then l e t  z0 be  a Godel number of ZO. Then w e  have 

YU (zO ,x) = q (zg ,x )  = U (min T ( zO ,x ,y )  ) = Y (x)  = f  (x )  . 
Y z o  

The machine, U, can a l s o  be employed t o  compute n-ary 

func t ions .  Suppose f ( x l f x 2 ,  ... ,xn) i s  an n  p a r t i a l l y  

computable func t ion .  With t h e  n - tup le  (xl,x2, ..., x ) n 

we a s s o c i a t e  t h e  s i n g l e  number 

Xk x  = II P r  (k)  . 
I n  o t h e r  words w e  d e f i n e  t h e  computable n-ary f u n c t i o n  

iqow d e f i n e  hn (x) by hn (x) = f  ( lGlx  ,2Glx,.  . . ,nGlx) . Then 

f o r  any n. h n ( x )  i s  p a r t i a l l y  computable and w e  have 

For zach n ,  t h e r e  i s  a Turing machine Z wi th  Gddel number 
n '  

z  such t h a t  YZ (x)  = hn (x )  . And t h u s  we have n '  n  

And s i n c e  g i s  r e c u r s i v e  and hence c a l c u l a b l e  ( i n  f a c t ,  

g can be c a l c u l a t e d  e a s i l y )  t h e  machine U can be used t o  

c a l c u l a t e  f  (x(") ) . 
THEOREM Ap.3. The u n i v e r s a l  Turing machine, U ,  has  

unso lvab le  h a l t i n g  problem. 



PROOF: Near t h e  end of t h e  proof of Theorem 4 . 1  w e  found 

t h a t  "... t h e r e  can be no e f f e c t i v e  procedure  f o r  d e t e r -  

mining f o r  an a r b i t r a r y  Turing machine Z and an a r b i t r a r y  

number x whether o r  n o t  t h e r e  i s  a computation of  Z be- 

g inn ing  wi th  qlZ."  Since  t h e  system o f  Gddel numbering i s  

c e r t a i n l y  e f f e c t i v e ,  i . e .  g iven  a Turing machine w e  can 

e f f e c t i v e l y  determine i t s  Gddel number and v i c e  v e r s a ,  

and s i n c e  Yu (2) ( Z  ,x) = Y z  (x) , where z i s  t h e  Gddel number 

of  t h e  machine Z ,  i f  t h e  h a l t i n g  problem f o r  U had a so lu -  

t i o n ,  t hen  we would simply f i n d  the Gddel number f o r  t h e  

machine Z and use  t h e  s o l u t i o n  t o  tine h a l t i n g  problem f o r  U 

t o  determine whether o r  n o t  t h e r e  was a computation of  ti 

- 
beginning wi th  ql(z,x), which would t e l l  us whether o r  

n o t  t h e r e  was a computation of Z beginning wi th  qlz This ,  

however, would c o n t r a d i c t  o u r  p rev ious  r e s u l t .  0 
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