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ABSTRACT

This paper is concerned .with the relationship between
two distributions in time series which are renewal processes;
the intervals between successive events and the number of events
in successive intervals of fixed length.

Chapter I surveys the theory of random sequences of events
in time, and discusses modifications which allow for the
occurrence of simultaneous events. The Compound Poisson
distribution arising from Feller's "lightning damage" model is
found to be the model with the widest applicability, and a
discrete equivalent is given. The choice between the‘intervals‘
and the number of events distributions as the starting point of
a model for series of events is examined, and it is shown that,
if simultaneous events are to be allowed, neither distribution
is sufficient to characterize the series.

Chapter II 'considers the approach to equilibrium of a
renewal process. By considering special caées of the renewal
theorem which are important in applications, it is shown that
the approach to equilibrium is exponentially fast in these
cases.

Chapter IIIAis concerned with the simulation of a Poisson
process, using discrete approximations to a negative exponential
distribution. The method examined is based on the replacement

of the uniform distribution over (0,1) by a discrete equivalent,
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‘but the approximations are vefy much coarser than would
normally be used, and it is shown that the technique is
tolerant of very coarse approximations as far as the number
of events distribution is concerned. A remark is made
concerning the wide variations between different realizations
of a stochastic process, based on the counts made in different

ways on the same series of events.
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Introduction

This investigatién arose from a study of the paper,
"Characterization of the flow of events - a problem of
Simulation", by E.A.G. Knowles and D.S. Stewart.' The first
problem to be considered is the extent'to which a model for a
series of events in time can be characterized either by the
distribution of intervals between events, or by the distribution
of the number of events occurring in successive intervals of
fixed length. The answer given to this by Knowles and Stewart
is that both distributions are required to characterize the
gseries. Their assertion refers to a rather specialized model
which is examined in the context of similar models of rather more
generality, both discrete and continuous.

The Knowles and Stewart paper was also concerned with the
problems arising from the fact that, because of the existence in
any real situation of a minimum observable unit of time, "all
observable intervals distributions are histograms ..."
Generalizing from their’special model, they came to the
conclusion that simple random selection from an intervals
distribution always yields a number of events distribution of
a geometric type. In particular, "... no simple process of
random selection from an exponential interval distribution will
ever produce a Poisson distribution, as is often suggested in
the literature."

This paper examines the practical problem of simulating a

- Poisson process by repeated selection of intervals from a




distribution which is a discrete approximation to the negative
exponential. Some very coarse approximations are chosen, to
discover how far one can go and still preserve a number of
events distribution which is recognizably close to the Poisson

distribution.



-3 -

Chapter I

Some Models for Series of Events

1. We wish to consider suitable models to account for . series
of events where the only observations are the counts of the
nunber of events occurring in successive inter#als of fixed
length. The investigations of Knowles and Stewart1 were
concerned with the arrival of orders at a factory, the observa-
tions being the number of orders arriving per day over an extended
period. For convenience, we shall frequently use the day as our
basic unit of time. One of the questions raised by the paper o#
Knowles and Stewart is whether current theories take account of
the fact that there exists in every situation occurring in
practice a minimum observable unit of time. It may be orders
of magnitude smaller than a day, but the mathematical device of
considering an interval of length &%, say, and then calculating
the limit of some function as &t = 0, has no parallel in the
world of real measurements.

We begin by considering some straightforward models for
éeries of events, and investigating the relationship between
the distributions of the intervals between events, and the
distributions of counts of events in successive intervals of
fixed length, which we shall refer to as "census distributions"

after Skellam and Shenton.2

2. We begin with the simplest of models in discrete time.

Let N, be the number of events occurring up to and including



time t (t real > 0), and suppose:

(a) Prob(Nt+1 -N, = 0) = q, a constant for all t;
(b) Prob(Nt+1 -N, = 1) = p, also constant;

Thus p + g =1, and

t+1
is equal to Prob(Nt+1 - N, = k).

These conditions may be summed up by saying thaf the stream
of events is stationary (p,q, constant), simple (Prob(N£+1—Nt>1)=O)
and without after effect (conditional and absolute probabilities
identical). This is the language used by Khintchine’ in
discussing the corresponding model in continuous time.

It follows easily (Feller®, p.305) that, if T is the time
at which the rth event occurs, _

Prob(T. - T._, =n) = pg™ T =1,2,...
taking for convenience the Oth event at t = 0.

The counting distribution is quite straightforward. The
number of events at time t = n has the binomial (1,p) distribu-~
tion, and hence the number of events in an interval of length k
units is binomially distributed with parameters (x,p).

The model is simple, but very restrictive, the counting
distribution being binomial in each case. Furthermore, the unit
of time for counts must be at least k times the unit for intervals
if as many as k events per counting unit is to be possible. It
would of course be possible to adjust the parameters to obtain |

approximations to the Poisson distribution (k large, p small) or

the normal (k large), but the advantages, if any, of a discrete
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model are going to disappear if k gets too big.

e We now summarise fhe specificétion of the corresponding
model in continuous time.

Let Nt be the number of events occurring up to and including
time t. Suppose:

(a) Prob {(m 0} = At + o( &), A constant.

se§6 — Ng) =
(b) Prob { N, g -N. = 1}= 1 - Abt+ o( 8t).
(¢) Prob {Nt+8t -N, > 1}= o( 8t).

This is the Khintchine” model. If T. is the time at which the

rth event occurs,

1
%

The counting distribution for the number of events in an interval

£t

r—q £%) = 1 - e, where M=

Prob (Tr - T

of length T is Poisson ( AT), so once again only one kind of
counting distribution is obtained, though if T is large enough_
the distribution will be approximately normal.

These two mbdels'describe a sequence of events occurring
"randomly in time", i.e. at any instant the waiting time to the
next event is completely uninfluenced by the sequence of events
up to that instant. This property of the intervals between
events is referred to by Feller? (pp. 304, 41é) as "lack of
memory", or Feller5 (p. 8) as the "Markov property". The
geometric and exponential distributions are unique among discrete
and continuous distributions respectively in having this property.

0f course, in formulating a model to fit a real situation
one must make observations on the sequence in order to make an

estimate of the parameters. To this extent information about
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the wailting time to the next event is influenced by a knowledge
of the past. However, the whole sequence is used and not its

detailed variability.

4. In order to obtain models of wider applicability, the
Khintchine model can be modified by relaxing some of the
conditions, for instance, by allowing for simultaneous events.

If we consider first the discrete time model (p. 3), it is a
random walk with Nt’ the number of events up to time t, subject
to increase of O and 1 with probabilities 1-p and p respectively.
A more general model would allow increases of 0,1,2,.... with

[
probabilities Pyr Pys Posscees where z: P, = 1. The intervals
r=0

between events would still have the geometric distribution
{(1-po)pon-1} , and the number of events at "points of occurrence"
would have the arbitrary distribution {pr} .

The advantages ' of this model are that it will deal with the
multiple events gsituation and at the same time it preserves the
Markov property (p. 5) of the intervals between groups of events.
The equivalent model in continuous time is Feller's "lightning
damage" model,4 p. 398. The intervals between bursts of events
(1lightning flashes) have the negative exponéntial distribution,
and hence the Markov property, while the number of events at each
burst (number of dollars worth of damage) has an arbitrary
distribution over the set of positive integers.

S0 far we have been considering Nt as the basic random

variable, subject to increase at random points in time. An
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alternative approach is to consider- the interval between
successive events, or bursts of events, as the basic random
variable, and to derive the census distribution from assumptions
about the distribution of interwvals. This was the approach of
Knowles and Stewart, and it may have been influenced by their
wish to simulate a series of events by generating a sequence of
succesgive intervals. We return to the simulation problem in
Chapter III.

For the simple model (p. 3) the same result is achieved
whether we postulate the fandom variable Nt subject to increases
of O or 1, with probabilities q and p respectively, or an interval
Tk between events k-1 and k, where Prob(Tk =n) = pqn_1.
Similarly, the continuous time Poisson process is equivalently
characterized by the Khintchine assumptions (p. 5) about the
increases in Nt’ or by the assumption of a distribution of
intervals between events which is negative exponential.

The method by which Knowles and Stewart modify the basic
model to include multiple events is to postulate an infervals
distribution which allows for a zero interval. They then raise
the question whether this modified version can still. be character-
ized equally by either the intervals distribution ot the census
distribution. Their model had previously been analysed by
Skellam and Shenton2 who provided an account of many of its
properties. We propose to examine particularly the derivation
of the census distribution, in order to compare the results with

the discrete version of the lightning damage model of page 6.



5. Consider a series of events in discrete time beginning at

the epoch t = 0, with the rth event occurring at time

i T (r=1,2 coo-)
k= K ’

Suppose the Tk are independént random variables each having the

distribution specified by Prob(T=n) = Py (n=0,1,2,000.).
- -]

=T ( TLo ) and denote the probability

oo

Let B(T) =

np
n=1 n
generating function /_ pnsu by G(s). We find first the
n=o0
distribution of the number of events at time t and the limiting

distribution as t —» oo , _
Let Prob(k events occur at time t) = f(k,t) (k¥ =0,1,2,....)

and denote the probability of at least n events at time t by

Fn,t) = > £(k,t)
k=n

We also require the probability generating function

€ (z,t) = Z £(k,t)z"

k=0
Now F(n,t) = Po F(a-1,t)  n>t
and £(n,t) = (1-p,) F(n,8) =n >t
Thus Fn,5) = p2" F(1,%)
and £(n,t) = (1-pg)p,>"" F(1,8)  n3x1
Hence D(z,t) = (1-p,) F(1,%) e+ £(0%)
- %% (4] - (1-p,) F(1,%)

| (1-POZ)2
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Since D0,8) = 1 = FO,8) + £00,%)
and %;% (1,8) = —éiélel = expectéd number of events
)

at time %, /u(t), say

(1-p,) F(1,%)z

Qz,8) = 1 - Fi,5)

1 = po2
-
= 1 - F(1,%) [1_~§—_i;—i§]
C - w® () =] )
/ o LT = P67

The existence of a limiting, or equilibrium, distribution
for the number of events at time t, as t—» 00 , depends on the
behaviour of /u(t) as t—» o0 . Ve assume first that they
distribution of the Tk is aperiodic, i.e. values of k other than
zero for which Py £ 0 have a greatest common divisor of unity.
If this were not the case, the time units could be rescaled to

make it so. It can then be proved that lim /u(t) =1
t ~e 00 T

This result is a pafticular case of the Renewal Theorem,
which is proved in Feller, Vol.l, pp.306-7,4 for discrete
distributions, and in Vol.II, pp.346—51,5 for the general case.
We return to the question of the approach to equilibrium in
Chapter II. In the ﬁeantime we obtain the equilibrium census
distribution of the Knowles and Stewart model by replacing /u(t)
by % in (5.1),.giving |

. .
lim.Q(z,t)=1—( p°)[1'z]

t —> 00 T 1 = Doz
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1 -p
and hence, f£(0) = 1 = < 2
_ (5.2)
(k) = =~ (k > 0)

This result agrees with that of Knowles and Stewart,
although they did not make it clear that it was an equilibrium
distribution. What they calculated were frequency ratios within
a single realization of the series, and these will tend to the
values of the probabilities when the equilibrium state is reached,

provided such a state exists.

6. A number of questions can now be answered about this model. ,
The first question, already raised on page 7, is whether the
intervals distribution and the census distribution would each

be sufficient by itself to characterize the series. The answer
is clearly not, since the census distribution depends only on the
two parameters p, and T, the same values of which could belong
to an infinite set of intervals distributions.

The next question is how does this model compare with the
lightning damage model (p. 6)? Firstly, the Markov property no
ionger holds in general. If, for instance, k units of time have
elapsed since the last event, the probability of an event during
the next time unit will be at'least Piegq 2 and if k¥ + 1 is the
largest #alue of r for which p, # 0, then an event in the next
time unit is certain. Then also, the census distributioﬁ is a
very specialized one: it is always of the geometric type with

(k) = pof(k - 1) for k >1.

Evidently it is at a disadvantage on both counts; the intervals
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distribution is arbitrary when it could usefully be geometric,

and the census distribution is geometric (except for the first

term) when it might be arbitrary.

7. We now consider the consequences of making the census

distribution the basis of the model. We take the simple model

of page 3 as our starting point and, to accommodate multiple

events, we modify condition (c¢) to allow increases in the number

of events of greater than unity. Because both the intervals and

the census distributions are discrete, the discussion of paras. 4

and 5 is easily modified to give the properties of the reversed

model.

We suppose the number of events at time t to be Nt’ where

Prob {N, =n} = R, (n=0,1,2,....) for all t > 0.
o0
Let E(Nt) = 2;; nR_ = m and denote the p.g.f.
(-]

n
Z Tl'ns by H(s)

n=o

If the probability that the interval between the (r-1)th event

and the rth event is t is given by g(t,r), then
oo

Z g(i,r) = G(%,r), say,

i=t

is the probability that the interval is of length at least t.

Then
and

Thus

and

G(t,r)
g(t,r)
G(t,r)

g(t,r)

= R G(t-1,7) t>1
= (1= T\O)G(t,r) t 21
= f(ot-1 G‘(1,I‘)

= (1-Ry) R,* ' e(1,r)
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Hence i‘ (z,r) = %:: g(k,r)zk
- =0

— T\'oz

1 - T(r)(1 -R)) [-—_—-11 = Z] (7.1)
by the same argument as before, where T(r) is the expected value

47
of the interval terminating at the rth event, and T(r) = -=Q§%4£l .

As before, the existence of a limiting distribution depends

on the existence of 1lim T(r). This follows from the renewal
IT—b ®

theorem. So long as K1 # 0, which ensures that the distribution
of Nt is aperiodic, we have

lim T(r) ‘"‘,27 (7.2)

I —b oo
The census distribution, i.e. that of Nt’ is now arbitrary
(provided it is not periodic), and the derived intervals

distribution in the equilibrium state can be obtained from
1

(7.1) by replacing T(r) by/M . We obtain,
1

-
g(O) = 1 -—/'—“——-9' " (7.2)
(1 - K,)2 Ko

/4.4

Now, the concept of a zero interval no longer serves any useful

il

t>0

g(t)

purpose. What we are concerned with is the distribution of

(non-zero) intervals between bursts of events, and if we define

_ _ t
Prob(T = t|1>0) = T'-%&EE_OT |

then, p(t) = (1 -R,)) R £>0

p(t)

i

and the intervals distribution is pure geometric.
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This model is plainly the discrete equivalent of Feller's
lightning damage model, having its desirable properties of an
arbitrary census distribution with a geometric intervals

distribution preserving the Markov property.

8. We have already remarked. (para. 6, p.10) that, when
multiple events are admitted, the model cannot, in general,
be characterized either by the intervals distribution, or by
the census distributionm. However, there is one model for which
the specification of eithér distribution would be sufficient:
it is the one in which both distributions are geometric. It is
not thgn necessary to limit consideration to the equilibrium
state either, since the Markov property of geometric intervals
implies that equilibrium is immediately attained.

To establish this result we take an intervals distribution

with probability of a zero interval, p,, and probability of an

k-
q 1

interval of length k, (1-p,)p , k>0, where p + q = 1.

[,
The expectation, T, is then Z (1—po)qu-1k
k=1 .

;- 2 k
= (1-py)p ;;;,~*5€ qQ

(SN

= (1-po)p 25 (735)
1
= 1- RSN S
(1-p5)p 0 -2
(1—po)
= —
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Using equations (5.2) (p..10!);, we obtain the census

distribution,
1 - Po ‘
f(O) = 1 —-——.E—- = 1 - P = q
£(k) (1-p0) %8,
= T
= p(1-py)p, " (x>0)

This is, of course, a geoﬁetrié distribution, except for
£{0). We must now show that, beginning with this census
distribution, we should arrive back at the intervals distribution
above, using equations (7.2) (p.12).

It is easily verified that the expectation of the census

distribution is

b  _ 1 _
=3, =T =M
1 - Eo
Thus, g(O) = 1 - 7— = 1 - p‘l: = po
. (1- R )2 R o1
and g(t) = t>0
/A
= 15" = (1 - po)pqt"1,

which is indeed the original distribution of intervals.

9. The models considered so far all come within the realm of
Renewal Theory. A renewal process is characterized by the fact
that the intervals between successive pairs of events ére
independent identically distributed random variables. The
language derives from industrial repl§cement theory, . where the

events are failures of components, which are then replaced by
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new components, assumed to have the same lifetime distribution.

The time to the nth renewal is the sum of n independent
identically distributed random variables, T1+T2+...Tn. A
renewal process can also be considered as a random walk with
positive increments (in Nt’ the number of renewals up to time t).
The two aspects of the process are related by the eguivalence
of the probabilities of

(a) T, + To+ eeee + T, >%

and (b) N <n.

Discrete renewal prdcesses are discussed by Feller4,
Chapter XIV, under the heading of recurrent events. The

6

renewal process in continuous time is dealt with by Cox~ and

by Feller5, Chapter XI. The survey paper by Smith7 gives a

8 give statistical

number of applications, and Cox and Lewis
significance tests for renewal processes. The particular problem
of renewal theory to which we intend to devote our attention in
the next chapter is rapidity of approach to equilibrium. Except
for those special cases where the Markov property holas, the
renewal density, or expected rate of occurrence of events, will
not be constant. It does have a constant limiting value though;
this is the Renewal Theorem referred to on‘page g. Now, if one
wishes to count the number of events occurring in an interval of
fixed length starting at an arbitrary point in time, the waiting
time to the first event in the interval will have a distribution
which is conditional on the choice of the starting point of

the interval. This distribution of initial waiting times
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will also settle down to a common limiting distribution as
the counting interval becomes more remote in time from the
start of the process. The approach to this limiting situation

is our next concern.
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Chapter II

The .Aporoacn to Bguilibrium

1. We begin by formulating the "elementary renewal theorem"
in discrete and in continuous time, and investigate proofs of
the two versions in certain specialized cases which have
particular importance in practical applications. General

re not always difficult (see, for instance,

Smith7, p.246). However, our reason for considering special
proofs, rather than a general one, is that they throw some light
on the rapidity with which the limiting situation is reached in

these practical applications.

2. In discrete time first, an event is held to have occurred
T

at time t = 0, and the rth event occurs at time %:; Tk’ r=1,2,...

The Tk are positive, integer valued random variables, all having

the same distribution, with E(Tk) =T .
HPmM%:n)=%,M=1£“HLtMpmmmnw

generating function G(s) may be defined by

oo

6(s) = 2 p, s"

n=1
The probability of the first event occurring at time t is, of
course, pt. Now'let the probability of an event at time t be uy.
u; can also be interpreted as the expected number of events at
time t. These definitions hold for t > 0 and we define

u, = 1 and p’o = 0,
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The elementary renewal theorem states simply that

. 1
lim u = = .

4 Theorem 3 (p.286) proved on pages 306-7.

This is Feller's
In the continuous time model, an event is held to have

occurred at time t = O as before, and the rth event at time
%f; Tk sy T =1,2,0... The Tk are now independent continuous

random variables having the same dis
density function £(t), (t > 0) with E(Tk) = T as before.
Instead of a probability generating function we employ the

Laplace transform of £(t), denoted by f£*(s), and defined by

0
£*(s) = ff(t)e—St dt
o
We note here that £*(s) is a moment generating function in the
o0
(-1)1' vsr .
sense that f*(s) = ZE: Mr , where‘/u; is the rth
r=0 r!

moment of Tk about the origin. Thus, for'instance;
T = -f*'(0), i.e. the first derivative of f*(s) evaluated
at s = 0.
If we now define the number of events up to and including
time t to be Nt’ then the equivalent function to U in the

discrete case is the renewal density h(t), defined by

BNy, g — M)

n(t) = lim
t-0 &t
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The elementary renewal theorem in continuous time
states that
lim h(t) = %+ .

L ~—» a3
This is not quite the result proved by Smith, quoted on page 15,
but is equivalent to it. (See, for instance, Coxs, p. 55.)

A further modification is required to deal with multiple events

1

models, and thus to establish the result lim /u(t) =T

guoted on page 9. We deal with this first.
For the distribution of intervals {pn§ ,no= 0,1,2,00..
with expectation T, defined in I.4 (p. 6), the occurrence of

bursts of events is a renewal process having an intervals

D T
distribution {—=—} , n=1,2,.... with expectation —— ;
1~Dp, 1-p,
by the elementary renewal theorem, if up is the probability of
‘ 1—Po

at least one event at time t, 1lim u =
+t —>o00 T

The conditional probability of k events at time t given
at least one event is pok"1 (1—po). Thus the unconditional

probability of k events is ut(1—po)pok—1. The expected number

of events at time + is therefore
[
k-1
B(Ny) = u(1-p,) g;; kp,

1

-

1
But ut—’ T ’ SO E(Nt) —— E :
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3. The first special case we consider is a discrete time
model where the intervals distribution is finite, i.e. there

exists a positive integer m, such that:

PI‘Ob(Tk = m) = pm >0
and Prob(Tk >m) = O

The probability generating function G(s) is then a polynomial.

If the intervals distribution is to be estimated from
observations of a realization of a process, a finité distribution
will often be the result. Assuming that no parametric form of
distribution suggests itself, a natural estimator for the
distribution function F(t) of the Ty is the empirical

distribution fuanction Fn(t), based on n observations, where
Fn(t) = % (naumber of observed intervals £ t). This is an

unbizssed and consistent estimator of F(t). (Cox and Lewiss,-
pp.142-3.) With this procedure, m is the value of the largest
observed interwval. |

In addition to the definitions of para. 2 (p. 17), we

define the "generating function" U(s) by
) £o
U(s) = EE: u_tst
t=0
The following relations then hold:

YomPm T Ynemi1Pp-q T occee T WPy n>m
These relations express the fact that an event at t = n is the

result of the compound event, an event at t = n - k folloﬁed by
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an interval of length k, the two components being independent;
further, the different values of k are mutualiy exclusive and
exhaustive.

Multiplying by s and summing fromn = 1 ton = , we have

U(S) = -1-—_-_1—@ .

Since G(s) is a polynomial of degree m the right-hand side can
be expressed as a sum of partial fractions. If we suppose that

the roots, Sy» Spy eees S of 1 - G(8) are all distinct, the

m
expansion is of the form -

Be) = Y i

5= sj -8
and the numerators are given by the formula aj = G'1s .
' J
A p-fold repeated root S will introduce terms
s Gyt Grip-1
* e o O ’ -
s, S (sp- s )2 (s,- s )P

One root of 1 - G(s) is s = 1, and this is not repeated, for if
it were, it wowld imply -G'(1) = O, i.e. T = 0. Furthermore,
since Is| <1 implies lG(s)l < 1, and hence G(s) # 1, the root
s = 1 is the smallest in absolute value.

Having established this we now consider the expansion of
each partial fraction as a power series in s. The coefficient
of s? in U(s) will be the sum of the contributions from m such

expansions. For example,

: -1
— 1 - 582
S. = S aj L4 j(1 'sj ) ’
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a .
giving a contribution of -—é%;r , and
®3
Crik-t 1 -2 y7E
(S - s )k r+k-1 s k SI'

a
which gives a contribution of Tkl (k+n-1)

k+n
Sy

n

We may label the root s =1 as Sy with the corresponding value

a

of a, equal to ET%ETT = ¢ - It is clear then that the

contribution of the corresponding partial fraction to the

coefficient of s in U(s) is simply % . All the other

contributions contain at least the nth power of %— , and,

J
since in each case lsil > 1, these contributions will diminish
exponentially as n increases.

Thus, firstly, lim w, = % , and secondly, the limit

n =0

is approached exponentially.

4. Our next example ig a special case of the renewal theorem

in continuous time. We consider the situation when £*(s), the
Laplace transform of the density function of intervals (see p.18),
is a rational function. Included in this class of density

functions are the gamma distributions for which

A SIS
£7((t) = ¢ with  v>1 integral,

7 (»)

and £*(s)

!
R
Mk
W
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In queuing theory the gamma distribution with integral
is known as the special Erlang distribution. It is widely
used in the theory of queues and in replacement theory where
the lack of memory or lack of aging implied by the use of the
negative exponential distribution is too unrealistic. A random
variable having the gamma distribution with parameter v can be
interpreted as the sum of v independent random variables, each
having a negative exponential distribution. Some of the
pleasanter properties of the latter distribution carry over,
and some "aging" is intrdduced. In replacement theory the model
is known as "failure by stages", the failure.of an item being
supposed to occur as a result of a sequence of minor failures
at the points of a Poisson process. It should be noted that,
even if the Poisson process changed its parameter o« after each
minor failure, the transform £¥*(s) would still be a rational
function.

We begin by establishing a relation between f*(s) and h*(s),
the Laplace transform of h(t). We pick up the exposition from
page 19.

Let T1 + T2 + eeee + Tr = Sr’ where the random wvariable Sr

has the distribution function Kr(t) and density function
1
kr(t) = Kr(t).

Now Prob {Nt < r} = Prob S.>t = 1 -K(t).

Hence ProB {Nt = r} Ki(t) - Kr+1(t) (we define Ko(t) =1)

= PNt(r), say.
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If we now define the probability generating function of Nt as

(]

G(t,2z) = Py, (r)z"
; N't r)z
we have G(t,z) = g;; [Kr(t) - Kr+1(t)] zT
= 1 + Z (z-1)25" 1K (%)
=1 +
[+
e s 2 \
Since E [Ntk = -55‘(t,1) = ZLH K, (%),
Ir=

h(t)

il
o
cH

Now, taking Laplace transforms,

n* = 3}
(o) = L ke
and since k;(s) = [£%(s)]" ,
nr(s) = —LXs)
1 = £%(s)

From this relation it is clear that when £*(s) is a rational

function so is h¥*(s). Furthermore, s is a factor of its
denominator, since £¥(0) = 1. Remembering that £¥*(s) is a
moment generating function, f*'(O) = =-T , which is not zero

(p.18 ), so that s = 0 is a simple root of 1 - £*(s).

The object of examining the roots of 1 - £*(s) is to
consider the expansion of h*(s) as a sum of partial fractionms.
We can then consider the approach to equilibrium in a manner

similar to the discrete case (pp.21,22 ). Having expressed
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h*(s) as the ratio of two polynomials, we can label the roots
cf the denominator sj; I =1,2,...0 Also, we may specify

8y = 0. Then for j > 1, we assert that s.

3 has a negative

real part. For if 4Q(sj) > 0, then

lf*(sj)l < flexp(-sjt)lf(t) at < ff(t) dt = 1
o 0

which contradicts f*(sj) = 1.
The other possibility is that there exists a pure imaginary

root sj = ip, say, where p is real. This would imply that

f*(ip) =1 = 'fexp(-ipt_) £(t) dat = jf('t) dt
o o

which is not possible for a continuous £(t).
The partial fraction expansion of h*(s) is of the form:

s - s. ?

m N
i=1 J

where m is the degree of the denominator of f*(s). This assumes

that the sj are all different, in which case the numerators are

given by the formula
- % S.
G
%! (s,
(s5)
Modifications similar to that on page 22 apply in the case of

repeated roots. s, = 0 is not a repeated root, as we have seen,
P 1

so that

ay = 200 _ 1

~£%1(0) T
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We now need some standard results of Laplace transform
theory which can be expressed in the following way. Denocte the

o

inverse transform of a function g(s) by L—1(g). Then,

-1 1
(L) =

vl ( Eéa ) = exp(at)
-1 1 + -1 ;
R — = t
( (o-a)B Y exp(at)

Hence, if the sj are all different,

n
h(t) = %' + 2{; 2 exp(sjt)
J:

and, since the non-zero sj all have negative real parts, the

limit & of h(t) as t—>e  is approached exponentially.
The presence of a k-fcld root g in the denominator of h¥(g)
r

will give rise to terms like

a

—_P—-E p=1,2,ooook
-S
(s )

in the partial fraction expansion of h*(s), and on inversion
to terms like

)

L
Y exp(srt)

in h(t). The approach to zero is again comparable to

exponential decay.
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5. So far we have considered the way in which the rencewal
density approaches its limiting value with increasing time.
Our final special case considers the way in which equilibrium
is approached with increasing serial number of events..

Let us suppose that our basic time unit is one day, and
each day is divided into k fractions, a fraction being the smallest
observable unit of time. The distribution of intervals between
events is assumed discrete, each interval bveing a whole number
of fractions, with one fraction the smallest possible interval.
Suppose an event occurs during the rth fraction of some particular
day (1 ¢ r & k), then we can define the process as being in
state Er until the next eventf

Thus, a transition occurs at each event, and since the
transition probability Ppg of changing from state Er to state ES
as a result of an event is independent of the previous history
of the process, the sequence of states will form an embedded
Markov chain. If the process is in state E,,, and the interval
between the event which brought it there and the subsequent event
is p fractions, then the next state is Ej’ where j = r + p (mod k),
unless this is zero, in which case j = k.

Since we have specified that an interval of one fraction is
possible, all states are accessible. The transition probability
Prg is obtained by adding the probabilities of all intervals %
for which t = s - r (mod k). Hence, if the values of 1 PP

j=1,2,.... k, are denoted by qj, then the transition matrix

RS
R



ey .i{_l

Ay a, . . Ty
P = k=1 X k-2

s q3 . . a4

The matrix is circulant, and hence doubly stochastic (Feller4,

p.358), and in the limit all states have equal probability of
% . We propose to obtain an explicit formula for the
probability of each state after n events, and hence show that
the approach to equilibrium proceeds at a rate comparable with
exp (-n). Some numerical results will be obtained from this
result in Chapter III.

f initially the probabilities of the process being in
state J are aj, J=1,2,4000 kX, and A is the row matrix defined
by A = (a1 8y 8z . . . ak), then after n transitions
("events") the state probabilities‘are given by the row matrix

APR, To calculate P we diagonalize P, noting that if
P = UDU_1, where D is a diagonal matrix, then PT = vpPu~t .

Tet 0 = exp ( Zkﬁi

) be a kth root of unity.

Then if Ur is a column vector defined by
v r 2r (kx=1)r
v.'! = (1 8 &< . . . 6 .)
the jth element of the column vector (PUr) is

Zk q G (m+j—2)r
m

m=1
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k
- (2 g 0fmry gl
m=1 &
-
Hence, if Ar = zf G e.(m-1)r
m=1
PU, = A0, forr=1,2,.0.. k

If, therefore, D is the diagonal matrix {dij} , Where
- \
43 = M

d = 0, i#3 1i,j =1,25¢... k

34
“dJ

and U.is the k¥ X k matrix with rth column Ur as already defined,
then U = UD
P = UDGT .

The n-step transition probabilities, pis(n), are obtained
as the elements of Pn, and the probability of each state after
n events is given by the appropriate element of the matrix
AP® = aUD%™' . The rapidity with which these vrobebilities
approach their limiting values is determined by the nature of
the latent rooté Xl,of P, which form the non-zero elements

of the matrix D.

1(
’ N o= S g (m-1)r
Now r ;1; qp,
so that Xk = 1
E (m-1)r
and iXIJ < éé; lqﬂle l

qmig(m-—ﬂri _

and the inequality will be strictly less than, unless all
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Hy

‘E)(m-1)r have the same argument, which is only true for r = O.

Thus ( )\r)n—»o as n—»® for r £ k, and the limiting form of
n . < o . .
1 . . hf e . = = =
D™ is {d13} where al3 1 for i 3 k, and
0 otherwise.

The calculation of U"1 follows from the result

k . . e ..
Soopimpg™ - v (IR g ir 545 = 0 (mod k)
m=1 m=1 .

'y

C otherwise.
Hence the rth column ofU"1 has elenents

Lgle=a) 5 yot,2,ii k.

Tne limiting form of the matrix P2 is therefore,

I T 0 0 . . o\ /1 e¥
5 8% . . . 1 o 0 . . o\[1 &%2 |

D D@
V)
/.

i
m._s



n 1 .
Hence AP —> = since 7 a =1.

n=1
This confirms the result guoted on page 28 that in the limit
all states have equal probabiiity of % .

The explicit formula for the state matrix will be obtained
after assigning numerical velues to the inivial state
probabiliities. This simplifies thne formulae a 1ittle without
sacrificing any generality of technique.

We choose ay = a5, = «ove =8 4 = O,.and 2. =1, so that
initially the process is in state Ek with probability one.

Then the probability that the process is in state B. after n

J
further events is (aj)n », the jth element in the row matrix.

(0 0 . . O 1) UDU™', where U and D are as defined

=

on page 29. Thus, .

Y 0™ N pl-i+)m

m=1

Kl

(aj )n =

3 p (=3)m )\

m

i
m_.\

) . k )
_ '}L{Z [e(k—;])m( Z qi6<l"1)m )n~]

m=1 =i

If n =1 this formula gives for the coefficient of a3 the value

3

1

B (k=3)m §(i-1)m _ % i g (k=j+i-1)m
1 m=1

Wl—
™1»

K
Il

and this sum is zero unless k-j+i-1 = 0 (mod k), in which case
it is unity. Thus, the formula gives for (aj)1 the value

4541 for j < k, q4 for j = k. -
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This agrees with the last row of the transition matrix P,

A S ~am AV m L ommqnna T

K s - o (=)
L Udl Vidae L Vdodivicls

3

£ean
o e
<A WA N e

-~
Wi v

O]

b

or values of n greater than one the formula for (aj)
n

is not a particularly simpnle one from which to compute.

However, it does show gquite clearly that, if the largest

value of }‘Xml for m # k is a, say, then the difference,

between the wvalue of (aj)n and % , 1s certainly less than

n iy . .
a e Thus, the approach to equilibrium is exponential as

asserted on page 28.



1. We now come to the second problem mentioned in the
introduction: how to simulate a series in continuous time

-

when all intervals distributions are discretve because of The

ninimum observable unit of tinme. Ve take the Polsson ZCes
because 1t is generally reckoned to be a siraightfciwara = Ticr

b3

to simulave the negative exzpounential distribution, and also
because of Tthe statement in The paver by Knowles and Stewart
(p.123) that a Poisson distribution never occurs as a resulit of

sinple random selecvion Ifrom an exponential intervals distribut

(There is wunfortunately a reference at +this point in the paper to

a non-existent entry in the bibliography.) We reproduce their

argument in brief.

p(a<) P(k)

0{\ oy,
g ,Q(\—el
-W3X ' = (1-¢e j&
ply= e P A prid= {i-e )
X3 0 k=012,
\
A Y
e‘é
. ) B sy S K
©c i 1 3 4 5§ < o ¢« 2 3 g4

Fig. 1

Grouping the Negative Exponential Distribution
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e, vhe number of events histogran

8

As the authors rigatly obse
of TFigure 2 could notb b mistaken for That of a Poisson
distribution.

There are several criticisms which can te levelled at this
procedure. The Tfirstc is Tthav the grouping of The continuous
distribution is very coarse: the first column alone represents
== J.53%2. Furtherzore, all these intervals
of less than unit length in the continuous distribution are
identified as zero invervals in the grouped distribution. A
sequence of three intervals of lengtas 0.8, 0.9, 0.7 from th
continuous distribution would represent 4 events 2 Poisson
process with an interval between the first and fourth of 2.4 uaits
of time. After the grouping of intervals as described, these
would be listed as 4 simultansous events. There is one further
point. After grouping tne exponenﬁial distribution in the wmanner
descrived, the resuliting set of intervals, although having only
integral values, would have no upper limit - a further approxima-
tion would nave to be made in truncating the distribution at some

point where the probavbility of a larger interval reaches an

acceptably small value.

2. Thnere is a well-known metvhod O

B

exponential distridbution which avoids all these criticisms.

R @]
See, for instance, Tocher”’, p.14.) The method 1s generally
used for converting random numbers into sample values Ifrom a
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is wniforzly distributed over (0,1) (Fraser'c, p.85). Thus,
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- negative exponential invterval
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Trom the wniFform digtribhutio:

that the approximaticn to a cozntinuous distribution by a discrete

Suppose a 2-digit randcm nunmber is Gsed. Then & decimal
point is prefixed and 005 zdced. Thus the ranfom number 47
vields 0.475 and 02 yields 0.025. This procedure gives a
discrete rancon variable uniformly distributed over the numbers
0.005(2n+1) (= 0,1,2,...+,S95). This is the avproxinstion %o
the random variable P avbove, ant corresponding values of X are
obtained, for instaence, by using 4 figure tables. Table 1
enavles 2-digit random numbers To be translated directly into

negative exponential variates.

Some trizl runs were carried out using randon number tables
1C & caiculating macnine. i Segquence of iatervals was
generated vy The method described above, the machine being
used to sun the intervals, giving the elapsed

each Y“event®. If the rth event occurs when T = 2, then it

is held To have occurred during day N, where I = [Tr] = 1,

Hy

x] denotes the integral part of x. The values of T

were held to 3 decimal places. In orcder to eliuinate
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Table T

Conversion of 2-digit random nwnbers into negative exvoneantial

variates

If N is an integer randomly chosen from the set 0,1,...,89,
then X = -1n 0.005(2N + 1) has approximately the negative

exponential density function e .

X N X N i

e
A
k]

=

o0 5.298 25 1.367 50 0.683 75 0.281
01 4.200 26 1.328 51 0.664 76 0.268
02  3.689 27 1.291 52  0.644 77 0.255
03  3.352 28  1.255 55  0.626 78  0.242
04 3.101 29 1.221 54  0.607 79 0.229

05  2.901 30 1.188 55 0.589 80 0.217
c6 2.7%% 31 41.15% S5 0.57% 8t 0.203
07 2.590 32 1.124 57 0.555 82 0.192
08 2,465 33 1.094 58 0.536 83 0.180
09 2.354 34 1.064 59 0.519 84 0.168
10 2,254 35 1.036 60 0.50% 85 0.157
11 2.165 36 1.008 61  0.486 86  0.145
12 2,080 37 0.981 62  0.470 87 0.134
13 2.002 38 0.955 63 0.454 83 0.i22
14 1.931 59 0.929 64 0.4%9 89  0.111
15  1.864 40  0.904 65 0.423 %0  0.100
16  1.802 41 0.880 66 0.408 91  0.08S
17  1.743 42 0.856 67 0.353 92  0.073.
18 1.687 43 0.8%2 68 0.378 9%  0.067
19  1.635 44 0.810 69 0.364 94  0.057
20 1.585 45 0.788 70 0.350 95 0.046
21 1.8537 46 0.766 71 0.336 96  0.035
22 1.492 47  0.745 72 0.322 97  0.025
2% 1.448 48 0.724 73 0.308 98 0.015
24  1.407 49 0.703 74 0.294 99 0.005



- 38 -

transient effects due to the start of the process, & 3-Aigis

-

rendom number was chosen

e

ternine the start of the process

(u

ot

0 G

in day ~7, and counts ‘were not recordcd until day 1 was rcached.

o illustrate the method, the start of one of the trials is showm.
The initial 3-digit random number chosen was 764, 86 the

process was started at t = -6.764. The process then continued

a8 indicaved in the followiling partial record:
Random IEEE?Yal Hlavpsed Number of
number | ngi;ml) tine eventa
37 0.981 -5.783
78 0.242 -5.541
93 0.067 -5.474
09 2.554 -3.120
25 1.448 -1.672
47 0.745 -0.927
71 0.3%36 -0.591
44 J0.5610 0.219 1 in day i
09 2,554 2.57 {3
19 1.635 4.208 0 : 4
32 1.124 5.332 1 o 2
14 1.931 7.263 0 n 7
31 1.155 8.418 8
etc.

In a simulation covering 227 complete “days', 201 events
were recorded, the observed distribvution of the number oFf
events per day being as Ffollows:

Number of days

Number of eventys Observed Expected (I{ron &
Poisson distridution)
0 g2 S
i 84 84
2 58 L2
5 11 - 14
4 2 ]

Total 227 227
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The aumber of events distribution is a good f£it Vo ©h
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Detailed tests on other simuiations are given on page 52.
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The intervals distribution is not the correct cne for a

Poisson process; in particular, extremely shortv and very long

ng
intervals are excluded. There are exactiy 100 possibvle

intervals, all having the same nprobability, the smallest being

Loy

0.005 and the largest

Ul

I L
Mary 1AM T AR meaAaT AT T o
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pis model

®

regard this truncation as an advantage, likely to mak
more realistic than a trué exponential distrivution rather than
less. However, our concern is to inve sti gate the adequacy or
otherwise of a discrete approximation to a negziive exponential
distribution, and it is interesting %o compare the way in which
the probability density curve is converted into a histogran by

-

the method Jjust used, with tihe Xnowles and

Stewart techunicue
illustrated in Figure 1 (p.33). In order to meke the comparison,
a much coarser approximetvion will be considered; one in which
there are only ten possible intervals, each having a probabdility
of one tenth. This is achieved by choosing a single randon
digit, prefixing a decimal point and adding 0.05 to approximat

P=1-7. The following results are obtained:

P 005 015 025 035 04‘5 055 065 -75 085 '95
-1nP 3.00 1.98 1.43 1.05 0.78 0.58 0.42 0.28 0.16 0.09

S

The mean of these ten values of -1nP is 0.973, rather than

unity. This particular discrevancy will be dealt with later
M £

(p.40 ) when we propose an improved method of grouping into a



small number of intervals. The basis for converiing a
continuous density curve into a histegram is She saume,

3 AT M a sulti TS e o o e £y - 1ymher AT
however. The resulting histogram has z finite rumber of
columns of equal area, as illusvrated in Figure 3, which

contrasts with the method illustrated by

b

igure 1 (p.33).

5. The exact details of the procedure are perhans moré clearly
revealed by Figure 4 on page 41. The unit interval (0,7) on
the ordinate axis (probability) of the distribution funciion
grapyh is divicded into ten.equal sub-invervals. it P, 18 The
midpoint of the rth sub-interval, +hen F—i(pm) is daken to be
the rth value of t to be assigned 2 non-zero provability. Thus,
for instance, point B in PFigure 4 identifies the &th value of %,
1.43. An obvious improvement on this procedure would be 0 use
the endpoints of the ten sub-intervals on the ordirnate axis.
Suppose ¢, and q..' are +the endpoints of the rih sub-inierval.

i E Al

S

Then the rth value of t to be assigned a non-zero probability
1

would be more appropriately chosen as the mean of T (qr) nd
A
i) ‘(qr'). This would mean, for example, instead of taking

point B in Figure 4 for ithie 8th value, choocsing the midpoint o
the segmentv AC. Since this procedure would 0ot give a iinive
value for the 10th value of 4, +this last value is best chosan
to give a unit mean for the ten values, disposing of the
discrepancy referred to on page 39.

To highlight the effect of this modification proceaure,

consider the extreme case of a histogram with only Two colwums.

The first procedure would assign values 0.25, 0.75 to P,
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-t Partitioning the area under the
f@9= e density curve of the negative
exponential distribution into
Yen equal parts.
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corresponding to the random bits O and 1 respectively. The
two possible values of t, each with probability %, would be
-ln 0.25 and -1n 0.75, i.e. 1.386 and 0.288, with mean 0.837.
The "improved" procedure would give for the smaller value the
mean of -Iln 0.5 and -In 1, i.e. 0.347, and the larger value,
to make up a mean of 1, would be 1.653.
Values of t, each with probability % » corresponding to
histograms with n columns, calculated by the “improved™ procedure

are given in Table II. They are rounded to 2 decimal places.

Table II

Conversion of the density curve of the exponential

distribution with unit mean into a histogram with

n columns each of egqual area

Mid-points of intervals

0.35 1.65

0.20 0.75° 2.05

O0.14 0.47 1.04 2.35

0.11 0.41 0.76 1.26 2.46

0.09 0.29 0.50 0.90 1.44 2.78

0.08 0.20 0.46 0.71 1.05 1.60 2.90

0.06 0.21 0.38 0.58 0.84 1.18 1.73 3.02

0.06 0.18 0.33 0.50 0.70 0.95 1.30 1.85 3.13

0.05 0.16 0.29 0.43 0.60 0.80 1.06 1.41 1.96 3.24

Ow o~ oowu s~V B

-—

We are looking at these discrete approximations to the
exponential distribution in terms of how well they approximate
a Poisson process when used for the intervals distribution.

- If our criterion for a good approximafion is the census

y



R AT e AR AR T e At

- 43 -

distribution over intervals of unit length, which should be a
Poisson distribution with unit mean, then taking n = 2 will not
be satisfactory. It will not be possible to obtain more than

3 events in a day with this choice of intervals distribution.

4. There is no simple way of determining the census
distribution when any of these intervals distributions are
used. It has been established in Chapter II (p. 22 ) that the
equilibrium census distribution will have unit mean, but beyond
that the straightforward method of making a comparison with the
Poisson distribution is by a computer simulation of a realization
of the process.

ﬁefore carrying out the simulation, it was necessary to
apply the results of Chapter II on the approach to equilibrium,
in order to decide how long after the start of the process the
transient effect of a determined starting point could be neglecfed.
In order to reduce some heavy computation, the case of 10 equal
intervals was chosen from Table II (p.42), but the intervals were
rounded to one place of decimals. The rounding was done in such
a way as to avoid zero intervals (tﬁus 0.05 was rounded up to 0.1)
and to preserve a unit mean. This process géve the following

ten intervals, each with a probability of T% :

0.1 0.2 0.3 0.4 0.6 0.8 1.1 1.4 1.9 3.2
In the notation of II.2 (p.17), if we take time units of

0.1, the generating function G(s) is given by

U I R L e el

G(s) = T% [s + s
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with T= 10, and lim u(t) = 7§ , as proved on pp. 20-22
t ~—s 00

for the case when G(s) is a polymomial.

The equilibrium distribution is therefore such that -the
expected number of events in 10 units, equalling 1 "day", is
unity. In order to demonstrate the exponential approach to
equilibrium, the first few values of u(t) were calculated and
plotted against +t. Instead of expanding U(s) as a sum of
partial fractions (p.21), it was found more convenient to

work directly from the relation

% = uopn+u1pn_1 + eeee +%po ’

taking p, = O for all values of k except 1,2,3,4,6,8,11,14,19

and 32, for each of which Py = 0.1. :
The calculated values of u, are given in Table III (p.45),

and the graph, Figure 5, shows w, converging to its equilibrium

value of O.1.

The values'of w, are given to 3D, although the calculations
carried 9D throughout, in order to eliminate rounding errors,
bearing in mind that these build up with a recursive calculation.
Taking the values in cycles of 32, it can be seen that large
fluctuations due to the influence of the start of the process
have almost died out by the end of the second cycle. This
corresponds to 64 units of 0.1, or 6.4 "days".

The émbedded Markov chain of Chapter II (p.27) can be used
to check the approach to equilibrium as a function of serial
number of event, rather than of time. The transition probaﬁilit-

| les are calculated as follows:
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Table III

Convergence of u_, the expected. number of events at time n

w, has generating function U(s) =

this case, F(s) = T% (s+8

o]

QO 1 O\ B -

—
(@ JANe)

S WD >0V OIS UVUN =

U
0.1
0.11
0.121
0.133
0.046
0.141
0.054
0.148
0.061
0.065
0.150
0.080
0.057
0.176
0.081
0.076
0.086
0.075
0.172
0.097
0.080
0.110
0.090
0.070

n

25 .

26
27
28
29
30
31
32
33
34
35

36

37
38
39
40
41

42
43
44
45
46
47
48

2,63 6%4+6%4eB+s 14

Y
0.107
0.076 -
0.088
0.087
0.075
0.090
0.080
0.169
0.117
0.100
0.097
0.110
0.087
0.112
0.095
0.105
0.096
0.094
0.104
0.102
0.089
0.114
0.099
0.094

1

%_:—§T§7 , Where F(S) is

the generating function of the intervals distribution and, in

11

n

49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
T1

T2

14+s19+s32).

Uy
0.098
0.096
0.111
0.104
0.097
0.103
0.101
0.093
0.104
0.097
0.098
0.099
0.096
0.099
0.098

10.103
0.104
0.100
0.098
0.102
0.098
0.102
0.100
0.100
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An event at time k units + r tenths (k integral,
O ¢ £9) is held to have occurred in the
(r+1)th fraction of day k + 1.

qq = 0 (no interval is an integral multiple of 1);

0.2 (intervals of 0.1 and 1.1.will increase the

el
o
i

number of fractions by one).
Similarly, q3 = 0.2, q4 = 0.1, q5 = 0.2, q6 = q8 = O,

The latent roots have the following absolute values:

A=

lle = 0.314
l)‘3l = 0.13%8
A4l = 0.177
I/\sl = 0.362
Ael = ©-2

|A7l = 0.362
"\8l = 0.177
|A9| = 0.138
|Arg) = 0-314

Since |Xn| ¢ IN| 2, the largest value of the diagonal
matrix D® (p.29) in absolute value (except for d10,10) will
be less than 0.362%.

Now, (0.362)6 = 0.0022 approximately, which shows that a
good approximation to equilibrium has been reached after only
6 events. The start of the simulation described on page 38
was a random point in day -7, and in the computer simulation
which follows it was a random point in day -10. Equilibrium

in the sense of equal probability for all fractions will take
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longer to achieve if each day is broken into 1,000 fractions,
but it will be comparable as far as the census distribution
is concerned if the number of events per day is counted in

each case.

5. The computer was used to generate a sequence of pseudo-

after the decimal point being taken as a random digit.

The program listing (pp.;49-50) shows how this was converted
into an interval from the table on page 42. TFor each set

of intervals, the same sequence of digits was used, although
this does not mean that there is any direct comparison between
the realizations, since different proportions of the random

digits are discarded in the different realizations.
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// FCR

#NAME DFSIM
#IOCS{CARD»1132 PRINTER)
*LIST SCURCZ PROGRAM
*ONE wORD INTEGERS

21
5

50
20

32
31

33

34

@ -J

DIMENSION NVENT(10)»TERVLIB8»10)
READ(2921)TERVL
FORMAT(B8F542)
READ(29100)NMsIXsLTOP»TIME
IF(IX160960950
DO 20 N=l1,y10
NVENT({N)=0
NDAYS=0
==1
FORMAT(317:F5.2)
DO 7 L=1sL TOP
GENERATE AN INTERVAL
CALL RANDD(IXs1YsID) - ‘
X=TERVL{MyID) : ;
IF(X)30930,32
TIME=TIME+X
IF(TIME)3Cs31,s31
NCOMP=TIME
IF(K)Y33933,3¢4
NEMP =NCOMP . .
I=NCOMP !
K=1
GO TO 30
J=NCOMP =]
I=NCOMP
TEST IF NEW DAY HAS BEEN ENTERED
IF(J=1)39494 )
IF NOT INCREASE NUMBER OF EVENTS BY ONE
K=K+1
GO TO 7
IF sO INCREASE COUNT OF DAYS WITH K EVENTS ALSO EMPTY DAYS IF ANY
NDAYS=NDAYS+J
NVENT(K)=NVENT(K)+1
NEMP=NEMP+J=1
RECORD ONE EVENT IN NEW DAY
K=1
CONTINUE .
FORMAT('1'y'SIMULATION COVERED'sI 7' COMPLETE DAYS' /)
WRITE(3s8)INCOMP
WRITE(3s9)NEMP :
FORMAT(6X9»20H EVENTS DISTRIBUTION//76X92THNCs OF EVENTS NOe« OF DA
1YS//712Xy1HOs10Xy14)
O 10 N=1,10



PAGE 2

10 WRITE(3911)NsNVENTIN)
11 FORMAT(113+114)

GO TO 5
60 CALL EXIT
END
// FOR

#LIST SOURCE PROGRAM
#*ONE WORD INTEGERS
SUBROUTINE RANDD (IXyIYsID)

IY=]X*899
IF(IY)54646
5 IY=1Y+32767+1
6 YFL=1Y

YFL=YFL/32767e
ID=10e%YFL+1
IX=1Y

RETURN

END
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6. For this series of simulations, the following statistical
tests were carried ouﬁ on the census distributions: |

(a) to f£ind whether the mean number of events per dgy was
consistent with the hypothesis that the census distribution
was Poisson, with parameter 1;

(b) to find whether the census distribution could be
fitted by a Poisson distribution with unit mean, as measured
by the )(2 goodness~-of~-fit test;

(c) it being assumed that the mean number of events per
day wés unity (as established by the Renewal Theorem), to
determine whether the variance of the number of events per day

was significantly different from one. For this test, since

( ) 2
n-12s is a X2 variable, with n - 1 degrees of freedom,
r .

o 2 being taken as 1; Fisher's approximation, that v 22(2 is
approximately normal, (4 2n-1, 1), was used. The approximation
' 19, p.374).

The results are displayed on page 52. ’They show that

is very good for n = 100 (Kendall and Stewar

for a series of 1,000 events or thereabouts, a census
distribution not discernibly different from a Poisson
distribution is obtained with only the roughest of approxima-
tions to a negative exponential gap distribution. It would
not be true, of course, that a census distribution taken over
intervals of length substantially shorter than one day would
be equally close to a Poisson distribution.
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The results of the test carried out on the simulation
runs may be summarize@ as follows:

(a) For a Poisson distribution with unit mean covering
about 1,000 days, the standard error of the mean would be about
0.032. In each case, the mean number of events per day, shown
in row 4 of Table IV, is within one standard error of the mean.
These figures are therefore consistent with the hypothesis of

a Poisson distribution with unit parameter.

(b) The sample values )(: obtained from the goodness-of-
fit tests are shown in row 10 of Table IV, with the corresponding
number of degrees of freedom in row 11. In row 12, the percent-
age point of the )12 distribution in Table IV of Fisher and

11

2
Yates which is adjacent to the value found for )(

g is given.

The null hypothesis of a Poisson distribution with unit parameter
would be rejected at the 5% level of significance in two cases:
the runs with 4 and with 10 intervals.

(c) On the null hypothesis that the variance of the census
distribution is unity, the values of z in row 8 of Table IV,
are samples from a Normal (0,1) distribution, whose absolute
values will be exceeded with the probabilities given in row 9.
The null hypothesis would be rejected at the 5% level in only

one case, the run with 5 intervals.

7. Realizations of a stochastic process can vary widely
(Feller4, Ch.III, pp.83-85, has some cautionary remarks about
coin-tossing sequences). An experiment was carried out on the

sequence generated by the intervals. distribution of para.4 (p.43)
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to discover the effect of shifting the counting grid. In
the first run, an event at time t = 0.0 was assumed, 1,000
intervals were sampléd, and the number of events recorded in
the successive intervals [0.0, 0.9], [1.0, 1.9], ....,
transient effects at the start of the process being ignored
as irrelevant to this experiment.

In subsequent runs, using the same sequence of random digits
to sample the intervals, the number of events in succeésive
intervals spanning 1 unit of time were again recorded, but with
the first such interval starting at 0.1, then 0.2, and so on up
to 0.9. The counting distributions are recorded in Table V.

Table V

Showing the wvariation in census distributions obtained from the
same series of events obtained by shifting the counting grid
forward in successive steps of 0.1

First day

starts at .

time t = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E:ﬁﬁg: of Number of days
0 360 347 351 347 353 358 356 358 357 364
1 366 392 393 403 397 379 386 380 374 364
2 200 189 180 170 163 189 181 190 198 197
3 64 58 58 65 .76 59 61 54 59 . 62
4 8 14 18 14 '8 1 13 15 12 14
5 2 ' 1 3 4 3 2 1
6 1

Total 1000 1000 1000 1000 1000 1000 1000 1000 1001 1001
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For a span of 1,000 days, the expected frequencies of
a Poisson distribution would be: |
Number of events 0 1 2 3 4 >4
Number of days 368 368 184 61 15 4
If each of the ten distributions above were subjected
to a Xz goodness-of-fit test, the values of st obtained
would be, respectively,

5.86 4.48 2.77 10.71 12.58 1.64 1.79 1.71 3.45 2.34

as compared with the tabular values (4 d.f.) of
X2  1.064 7.779 9.488 11.688 13.277
2

P(X§>X ) 0.9 0.1 0.05 0.02 0.01

Thus, according to the initial point chosen for the counting
grid, the same series of events can give rise to a census
distribution judged by the }(2 test to be consistent with a
Poisson distribution, or to one which, by the same criterion,
would be judged significantly different from the Poisson
distribution at the 2% level of significance.

This result is not an indictment of the ?(2 test, but rather
an indication of the wide variation to be found in census distrib-
utions generated by the same distribution of intervals between
events, Whilst it is obviously very satisfying to obtain exact
probability distributions for census distributions, it may, in
some cases, obscure the fact that different realizations of a
process may have widely differing appearances. If such a series

of events is used as the input to the simulation of some
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practical system, & queuing process, for instance, the
behaviour of the system may be expected to vary widely

from one run to the next.
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Chapter IV

Summary and Conclusions

1. The original problem considered by EKnowles and Stéwart
was the simulation of the arrival of orders at a factory by
the daily post. - Their approach began by pQEEEl§E}E§_?
distribution of intervals between arrivals in discrete units
of one day, including zero intervals. This prgvg@ﬂﬁqwbg‘
unsatisfactory, and they concluded that it was necessary to
‘postulate two distributions - one of (non-zero) igﬁgrvals
between arrivals, and the other of the numbgrmgfm%rriV%;S on
days when at least one arrival occurs. |
hﬁ;Qing examined the appropriate models in Chapter I, we
conclude that simply postulating a number of events dist;ibution,
which includes the possibility of zero events in a day, would
cover the Knowles and Stewart problem and a wide range of
similar situations. The number -of events distribution would
naturally be based on observations of the actual pattern of
arrivals if these are available. If arrivals occur every day,
the problem of the intervals between arrivals does not arise.
Otherwise, it is shown that the interval between days when
events do occur will be distributed geometrically, giving a
pattern of bursts of arrivals at random points in time - a
discrete equivalent of the Feller "lightning damage"™ model.
All number of events distributions having the same mean, and
the same probability of zero efents'will give the same
distribution for the intervals between bursts of events.
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2. An alternative method of simulating the flow of events is
to formulate a model.in which events occur only one at a tinme,
and then to superimpose a counting grid on the sequence.‘ The-
nunber of events within each division of the grid can then be
interpreted as the number of arrivals in a day. If each
interval is sampled from the same distribution, the basic model
is a renewal process. For many purposes a model will be
required for a process which has been going for some time and
has reached a state of equilibrium. Jf a renewal process

starts with an event at time t = 0, say, then the probability

of an event at time t = n (for a discrete process) will be a
1
T
where T is the mean of the intervals distribution.

function of n, but will approach a limit of as n~-» ® ,
Investigations on the rapidity of the approach to
equilibrium are made in Chapter II for particular forms of
the intervals distribution which will be widely used in
practical applications. The first is a discrete distribution
of intervals in which only a finite number of vélues have non-~
zero probabilities. This covers the cases where a continuous
‘distribution is approximated by a discrete one by the use of a
digital computer. It also includes intervals distributions
based on an empirical distribution function applied to a sample
from an observed series. The second form considered is the
class of continuous distributions whose density functions have
rational Laplace transforms. This includes gamma distributions
with integral parameter, widely used in industrial replacement
theory. The first case is then investigated from a second
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point of view: the approach to equilibrium is looked at in
terms of increasing serial number of event, rather than
increasing time. This is done by studying a Markov chain
embedded in the process. The conclusiqn in each case was
that the approach to equilibrium was exbonential. The
consequence is that in a simulation exercise, only a small
number of samples at the beginning of a process need to be
discarded before it can be assumeéd that an equilibrium

situation has been reached.

3. Simulating a flow of events-as points in a renewal process
can be performed using a digital' computer by repeated sampling
from an intervals distribution. . The sampling will inevitably
be from a discrete approximation if the intervals distribution
is continuous (or discrete but not finite). Knowles and
Stewart raised the question whether this approximation leads

to serious discrepancies in the census distribution obtained
from,the'counting grid.

The investigation in Chapter III concentrated on
approximations to the negative exponential distributioh,
since‘it was claimed by Knowles and Stewart. that this could
never lead to a Poisson census distribution. Their technique
for making the approximation was rejected, and a more convent-
ional method adopted. This is based on the replacement of the

uniform continuous distribution over (0,1) by a set of n-equal

1

intervals of the segment (0,1), each having probability o

before applying the probability integral transform.
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There are certain difficulties in obtaining exact results
for the census distributions, since within one realization, the
number of events‘in two successive days (i.e. cells of tpe
counting grid) are not independent, even when equilibrium has
been reached. Simulation runs were therefore made, each of
1,000 events, and the census distributions sampled as a

frequency table. The values of n, the number of subdivisions

of the interval (0 1) 3 tc 10, the mean interval

in each case being one day. Tests for the mean and variance
of the census distributibns, and for goodness-of-fit with the
Poisson distribution using the '>(2 test, were made. In most-
cases the null hypothesis of a Poisson distribution of unit
mean and variance was not rejected at the 5% level of _
significance. The results of Chapter II, on the approach

to equilibrium of a renewal progess, were used to determine
the time for which the process should be allowed to run before
imposing the counting grid, in order to ensure an equilibrium
situation.

The conclusion drawn from the simulation experiments was
that the Poisson process is highly tolerant of coarse
approximations to the negative exponential gap distribution,.
pfovided these are made in the right way. There would be no
necessity in practice to consider approximations anything

like as crude as the ones employed in this exercise.




- 61 =

4. A further experiment was carried out, in which the
counting grid was progressively displaced forward across

a given series of points of a simulated Poisson process.

At each shift, which was made through 0.1 of a day, in a‘
process in which all intervals were multiples of 0.1 days,
the census distribution was counted. There were wide
variations between the frequency tables produced at each
shift, so that some of them were good fits to a Poisson
distribution, and others were significantly different from
Poisson at the 5% level. It would appear that, if
discrepancies in the census distributions do occur as a
result of discrete approximations to intervals distributions,
then they are likely to be masked by much larger variations

between different realizations of the same process.

4

i
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