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ABSTRACT 

This paper is concerned.with the relationship between 

two distributions in time series which are renewal processes; 

the intervals between successive events and the number of events 

in successive intervals of fixed length. 

Chapter I surveys the theory of random sequences of events 

in time, aad discusses modifications which allow for the 

occurrence of simultaneous events. The Compound Poisson 

distribution arising from Feller's "lightning damagew model is 

found to be the model with the widest applicability, and a 

discrete equivalent is given. The choice between the intervals 

and the number of events distributions as the starting point of 

a model for series of events is examined, and it is shown that, 

if simultaneous events are to be allowed, neither distribution 

is sufficient to characterize the series. 

Chapter II'considers the approach to equilibrium of a 

renewal process. By considering special cases of the renewal 

theorem which are important in applications, it is shown that 

the approach to equilibrium is exponentially fast in these 

cases. 

Chapter I11 is concerned with the simulation of a Poisson 

process, using discrete approximations to a negative exponential 

distribution. The method examined is baaed on the replacement 

of the uniform distribution over (0, l )  by a discrete equivalent, 



but the approximations are very much coarser than would 

normally be used, and it is shown that the technique is 

tolerant of very coarse approximations as far as the number 

of events distribution is concerned. A remark is made 

concerning the wide variations between different realizations 

of a stochastic process, based on the counts made in different 

ways on the same series of events. 
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Introduction 

This investigation arose from a study of the paper, 

"Characterization of the flow of events - a problem of 
Simulationw, by E.A.G. 1E;rrowles and D.S. Stewart. The first 

problem to be considered is the extent to which a model for a 

series of events in tine can be characterized either by the 

distribution of intervals between events, or by the distribution 

of the number of events occurring in succcssive intervals of . 

fixed length. The answer given to this by Knowles and Stewart 

is that both distributions are required to characterize the 

series. Their assertion refers to a rather specialized model 

which is examined in t h e  context of similar models of rather more 

generality, both discrete and continuous. 

The Ehowles and Stewart paper was also concerned with the 

problems arising from the fact that, because of the existence in 

any real situation of a minimum observable unit of time, "all 

observable intervals distributions are histograms ... n 
Generalizing from their special model, they came to the 

conclusion that simple random selection from an intervals 
t 

distribution always yields a number of events distribution of 

a geometric type. In particular, It... no simple process of 

random selection from exponential interval distribution will 

ever produce a Poisson distribution, as is often suggested h 

the literat~e.~ 

This paper examines the practical problem of simulating a 

Poisson process by repeated selection of intervals from a 



distribution which is a discrete approximation to the negative 

exponential. Some very coarse approximations are chosen, to 

discover how far one can go and still preserve a number of 

events distribution which is recognizably close to the Poisson 



Chapter I 

Some Models for Series of Events 

1. We wish to consider suitable models to account for series 

of events where the only observations are the counts of the 

number of events occurring in successive intervals of fixed 

length. The investigations of Enowles and stewart' were 

concerned with the arrival of orders at a factory, the observa- 

tions being the number of orders arriving per day over an extended 

period. For convenience, we shall frequently use the day as our 

basic unit of time. One of the questions raised by the paper of 

Xhowles and Stewart is whether current theories take account of 

the fact that there exists in every situation occurring in 

practice a minimum observable unit of time. It may be orders 

of magnitude smaller than a day, but the mathematical device of 

considering an interval of length 6t, say, and then calculating 

the limit of some function as st + 0, has no parallel in the 

world of real measurements. 

We begin by considering some straightforward models for 

series of events, and investigating the relationship between 

the distributions of the intervals between events, and the 

distributions of counts of events in successive intervals of 

fixed length, which we shall refer to as "census distributionsM 

2 after Skellam and Shenton. 

2. We begin with the simplest of models in discrete time. 

Let Nt be the number of events occurring up to and including 



time t (t real >O), and suppose: 

(a) ~rob(N~+~ - Nt = 0) = q, a constant for all t; 

(b) Prob(~~+~ - Nt = 1 ) = p, also constant; 

(c) prob(~~+~ - Nt > 1 ) = 0. 

Thus p + q = 1, and 

prob(Ntc1 - Nt = k Ill = kl , N2 = k2 .. .. Nt-l = kt-, 1 
is equal to P ~ O ~ ( N ~ + ~  - Nt = k). 

These conditions may be summed up by saying that the stream 

of events is stationary (p,q, constant), simple  r rob(^^+, -Nt>l )=o) 
and without after effect (conditional and absolute probabilities 

identical). This is the language used by Khintchine3 in 

discussing the corresponding model in continuous time. 

It follows easily (peller4, p.305) that, if T, is the time 

at which the rth event occurs, 

pr~b(T,-T,-~ =n) = ppn-l r=1,2,... 

taking for convenience the 0th event at t = 0. 

The counting distribution is quite straightforward. The 

number of events at time t = n has the binomial (1,p) distribu- 

tion, and hence the number of events in an interval of length k 

units is binomially distributed with parameters (k,p). 

The model is simple, but very restrictive, the counting 

distribution being binomial in each case. Furthermore, the unit 

of time for counts must be at least k times the unit for intervals 

if as many as k events per counting unit is to be possible. It 

would of course be possible to adjust the parameters to obtain 

approximations to the Poisson distribution (k large, p small) or 

the normal (k large), but the advantages, if aay, of a discrete 



model are going to disappear if k gets too big. 

3. We now summarise the specification of the corresponding 

continuous t be. 

Nt be the number of events occurring up to and including 

Suppose : 

Prob {(N~+$~ - Nt) = o)= At + o( st), A constant. 

PrOb { %+st - = I ) =  1 - ASt + O( it). 

{ %+st - Nt I) = O( st). - 
This is the Khintchine3 model. If Tr is the time at which the 

rth event occurs, 

*ob (Tr - Trwl 1 ct) = 1 - e-pt, where p= x . 
The counting distribution for the number of events in an interval 

of length Z is Poisson ( AT), so once again only one kind of 

counting distribution is obtained, though if Z is large enough 

the distribution will be approximately normal. 

These two models, describe a sequence of events occurring 

"randomly in timeN, i.e. at any instant the waiting time to the 

next event is completely uninfluenced by the sequence of events 

up to that instant. This property of the intervals between 

events is referred to by ~eller~ (pp. 304, 41 2) as ttlack of 

memoryt1, or peller5 (p. 8) as the ttMarkov propertyN. The 

geometric and exponential distributions are unique among discrete 

and continuous distributions respectively in having this property. 

Of course, in formulating a model to fit a real situation 

one must make observations on the sequence in order to make an - 
estimate of the parameters. To this extent information about 



the waiting time to the next event is influenced by a knowledge 

of the past. However, the whole sequence is used and not its 

detailed variability. 

4. In order to obtain models of wider applicability, the 

mintchine model can be modified by relaxing some of the 

conditions, for instance, by allowing for simultaneous events. 

If we consider first the discrete time model (p. 3), it is a 

random walk with Nt, the number of events up to time t, subject 

to increase of 0 and 1 with probabilities 1-p and p respectively. 

A more general model would allow increases of 0,1,2,.... with 
QO - 

probabilities pop p, , p2, .. .. , where pr = 1 . The intervals 
r=o 

between events would still have the geometric distribution 

{( 1 -Po)Po ] , and the number of events' at "points of occurrencen 
would have the arbitrary distribution iPr} . 

The advantages-of this model are that it will deal with the 

multiple events situation and at the same time it preserves the 

Markov property (p. 5)  of the intervals between groups of events. 

The equivalent model in continuous time is Feller's "lightning 

damage" model,4 p. 398. The intervals between bursts of events 

(lightning flashes) have the negative exponential distribution, 

and hence the Markov property, while the number of events at each 

burst (number of dollars worth of damage) has an arbitrary 

distribution over the set of positive integers. 

So far we have been considering Nt as the basic random 

variable, subject to increase at rand-om points in time. kn 



alternative approach is to consider.the interval between 

successive events, or bwsts of events, as the basic random 

variable, and to derive the census distribution from assumptions 

about the distribution of intervals. This was the approach of 

Knowles and Stewart, and it may have been influenced by their 

wish to simulate a series of events by generating a sequence of 

successive intervals. We return to the simulation problem in 

Chapter 111. 

For the simple model (p. 3) the same result is achieved 

whether we 

of 0 or 1 ,  

Tk between 

Similarly, 

postulate the random variable Nt subject to increases 

with probabilities q and p respectively, or an interval 
n-1 events k-1 and k, where  rob(^^ = n) = pq . 

the continuous time Poisson process is equivalently 

characterized by the Hhintchine assumptions (p. 5) about the 

increases in Nt, or by the assumption of a distribution of 

intervals between events which is negative exponential. 

The method'by which ICnowles and Stewart modify the basic 

model to include multiple events is to postulate an intervals 

distribution which allows for a zero interval. They then raise 

the question whether this modified version can still.be character- 

ized equally by either the intervals distribution ot the census 

distribution. Their model had previously been analysed by 

2 Skellam and Shenton who provided an account of many of its 

properties. We propose to examine particularly the derivation 

of the census distribution, in order to compare the results with 

the discrete version of the lightning damage model of page.6. 



5. Consider a series of events in discrete time beginning at 

the epoch t = 0, with the rth event occurring at time 

YI 

Suppose the Tk are independent random variables each having the 

distribution specified by ~rob(~=n) = pn (n = 0,1,2,. . . . ) . . 
8 

Let E(T) = L np, = t ( < 00 ) and denote the probability 
n=l P 

generating function L p,sn by ~ ( s )  . We find first the 
n=o 

distribution of the number of events at time t and the limiting 

distribution as t -+ . 
Let Prob(k events occur at time t) = f(k,t) (k = 0,1,2,.. ..) 

and denote the probability of at least n events at time t by 

We also require the probability generating function 

and 



Since 

and a I -D = expected nuber of events 
- A-0 

at time t, ,u(t), say 

(1-p0)z 
1 - 3 )  [I. - 'V I 

The existence of a limiting, or equilibrium, distribution 

for the number of events at time t, as t-+ oo , depends on the 
behaviour of p(t) as t 4 a, . We assume first that the 

distribution of the Tk is aperiodic, i.e. values of k other than 

zero for which pk f 0 have a greatest common divisor of unity. 

If this were not the case, the time units could be rescaled to 
1 make it so. It can then be proved that lim p(t) = 7 . 

t -ao 

This result' is a particular case of the Renewal Theorem, 

which is proved in Feller, Vol.1, pp.3~6-? ,4 for discrete 

distributions, and in Vol.11, pp. 346-51 , for the general case* 
We return to the question of the approach to equilibrium in 

Chapter 11. In the meantime we obtain the .equilibrium census 

distribution of the Knowles and Stewart model by replacing ~ ( t )  



1 - Po 
and hence, f (0) = 1 - 

Z 

This result agrees with that of ICnowles and Stewart, 

although they did not make it clear that it was an equilibrium 

distribution. What they calculated were frequency ratios within 

a single realization of the series, a,nd these will tend to the 

values of the probabilities when the equilibrium state is reached, 

provided such a state exists. 

6. A number of questions can now be answered about this model., 

The first question, already raised on page 7, is whether the 

intervals distribution and the census distribution would each 

be sufficient by itself to characterize the series. The answer 

is clearly not, since the census distribution deponds only on the 

two parameters po and Z , the same values of which could belong 
to an infinite set of intervals distributions. 

The next question is how does this model compare with the 

lightning damage model (p. 6)? Firstly, the Markov property no 

longer holds in general. If, for instance, k units of time have 

elapsed since the last event, the probability of an event during 

the next time unit will be at least pk+,, and if k + 1 is the 

largest value of r for which pr f 0, then an event in the next 

time unit is certain. Then also, the census distribution is a 

very specialized one: it is always of the geometric type with 

f(k) = p0f(k-) for k > l .  

I Evidently it is at a disadvantage on both counts; the intervals 

i I 



- 1 1  - 

distribution is arbitrary when it could usefully be geometric, 

and the census distribution is geometric (except for the first 

term) when it might be arbitrary. 

7. We now consider the consequences of making the census 

distribution the basis of the.mode1. We take the simple model 

of page 3 as our starting point and, to accommodate multiple 

events, we modify condition (c) to allow increases in the number 

of events of greater than unity. Because both the intervals and 

the census distributions are discrete, the discussion of paras. 4 

and 5 is easily modified to give the properties of the reversed 

model. 

We suppose the number of events at time t to be Nt, where 

Prob {Nt = n) = Kn (n= 0,1,2 ,....) for all t >O. 

Let E(N~) = 2 nT(, = ,u and denote the p.g.f. 
n=o 

If the probability that the interval between the (r-1)th event 

and the rth event is t is given by g(t,r), then 
m 

is the probability that the interval is of length at least t. 

Then ~(t,r) = fio~(t-l ,r) t >l 

and g(t,r) = (1- fi0)~(t,r) t 3 1 

Thus ~(t,r) = R, t-1 ,r) 

and g(t,r) = (1- no) fiOt-'-~(1 ,r) 



Hence f i  (e,r) = L g(k,r)zk - k=o 

by the same argument as before, where ~ ( r )  is the expected value 

of the interval terminating at the rth event, and ~ ( r )  - A. a 1 - az 

As before, the existence of a limiting distribution depends 

on the existence of lim ~(r).  his follows from the renewal 
r-m 

theorem. So long as IT1 f 0, which ensures that the distribution 

of Nt is aperiodic, we have 

The census distribution, i.e. that of ITt, is now arbitrary 

(provided it is not periodic), and the derived intervals 

distribution in the equilibrium state can be obtained from 
1 (7.1) by replacing 7(r) by - . We obtain, 
P 

Now, the concept of a zero interval no longer serves any useful 

purpose. What we are concerned with is the distribution of 

(non-zero) intervals between bursts of events, and if we define 

then, 

and the intervals distribution is pure geometric. 



This model is plainly the discrete equivalent of Pellerls 

lightnag daaage iiiodel, having its desirable properties of an 

arbitrary census distribution with a geometric intervals 

distribution preserving the Markov property. 

8. We have already remarked. (para. 6, p.10) that, when 

multiple events are admitted, the model caanot, in general, 

be characterized either by the intervals distribution, or by 

the census distribution. However, there is one model for which 

the specification of either distribution would be sufficient: 

it is the one in which both distributions are geometric. It is 

not then necessary to limit consideration to the equilibrium 

state either, since the Markov property of geometric intervals 

implies that equilibrium is immediately attained. 

To establish this result we take an intervals distribution 

with probability of a zero interval, po, and probability of an 

k-l , k>O, where p + q = 1. interval of length k,' ( 1 -po) pq 

The expectation, t , then 
k=1 



Using equations (5.2) (p.3.10: 9 1 ,  we obtain the census 

distribution, 
1 - Po 

f ( 0 )  = 1  - 't 
= 1 - p  = q 

This is, of course, a geometric distribution, except for 

f(Oj. we must now snow tnat, beginning with this census 

distribution, we should arrive back at the intervals distribution 

above, using equations (7.2) (p. 12). 

It is easily verified that the expectation of the census 

distribution is 

Thus, 

and 

which is indeed the original distribution of intervals. 

9.  The models considered so far all come within the realm of 

Renewal Theory. A renewal process is characterized by the fact 

that the intervals between successive pairs of events are 

independent identically distributed random variables. The 

language derives from industrial replacement theory,.where the - 

events are failures of components, which are then replaced by 



new components, assumed to have the same lifetime distribution. 

The time to the nth renewal is the s7.m of n indepndent 

identically distributed random variables, TI+T2+ ... T,. A 

renewal process can also be considered as a random walk with 

positive increments (in Nt, the number of renewals up to time t) . 
The two aspects of the process are related by the equivalence 

of the probabilities of 

(a) T. + T2 + .... +I, > t  
I 

and (b) N t d n .  

4 Discrete renewal processes are discussed by Feller , 
Chapter XIV, under the heading of recurrent events. The 

renewal process in continuous time is dealt with by Coxb and 

5 7 by Feller , Chapter XI. The survey paper by Smith gives a 

number of applications, and Cox and ~ e w i s ~  give statistical 

significance tests for renewal processes. The particular problem 

of renewal theory to which we intend to devote our attention in 

the next chapter is rapidity of approach to equilibrium. Except 

for those special cases where the Piirkov property holds, the 

renewal density, or expected rate of occurrence of events, will 

not be constant. It does have a constant 1imiting.value though; 

this is the Renewal Theorem referred to on page 9. Now, if one 

wishes to count the number of events occurring in an interval of 

fixed length starting at an arbitrary point in time, the waiting 

time to the first event in the interval will have a distribution 

which is conditional on the choice of the starting point of 

the interval. This distribution of initial waiting time9 
- 



will also settle down to a common limiting distribution as 

the comting -terval becoaes =ore remote in time from the 

start of the process. The approach to this limiting situation 

is OUT next concern. 



Chapter I1 

The.Approac'il to Zquilibriu 

1. We begin by fomulating the ''elementary renewal theoremtt 

in discrete and in continuous time, and investigate proofs of 

the two versions in certain specialized cases which have 

particular importance in practical applications. General 

~rccfs exict, z;r,d n e t  a>~;rs di f f ic i f i t  ( s e e ,  for instance; 

smith7, p .246) . However, our reason for considering special 

proofs,rather than a general one, is that they throw some light 

on the rapidity with which the limiting situation is reached in 

these practical applications. 

2. In discrete time first, an event is held to have occurred 
r 

at time t = 0, and the rth event occurs at time TI,, r = 1,2 ,... 
The 

the 

Tk are positive, integer valued random variables, all having 

same distribution, with E(T~) = Z . 
If J?rob(~], = n) = p,, (n = 2 ,  . . the probability 

generating function ~ ( s )  m y  be defined by 

The probability of the first event occurring at time t is, of 

course,pt. Now let the probability of an event at time tbe ut. 

ut can also be interpreted as the expected number of events at 

time t. These definitions hold for t > 0 and we define 
- 

Uo = 1 and $. = 0. 0 



The elementary renewal theorem s t a t e s  simply tha t  

This i s  F e l l e r t  s4 Theorem 3 (p. 286)  proved on pages 306-7. 

In  the continuous time model, an event i s  held t o  have 

occurred a t  time t = 0 as before, and the r t h  event a t  time 

2 T , r = , 2 ,  . The Tk a re  now independent continuous 
k=l 

random variables having iiie a w e  iilstrf"utflo, defined ?3jj t h c  

density function f ( t ) ,  ( t >  0) with E(T~) = t as  before. 

Instead of a probability generating function we employ the 

Laplace transform of f ( t ) ,  denoted by f * ( s ) ,  and defined by 

Ye m t e  here tkt f*(s) i s  a nme-v l t  generating function i n  the 

(-1 )',U;sr 
sense. tha t  f* ( s )  = , where , u r  ' is the r t h  

r=o r! 

moment of Tk about the  origin. Thus, f o r  instance, 

= -f* '(0),  i .e .  the f i r s t  derivative of f*(s)  evaluated 

I f  we now define the nwnber of events up t o  and including 

time t t o  be N t ,  then the equivalent function t o  % i n  the 

d iscre te  case i s  the renewal density h ( t ) ,  defined by 



The elementary renewal theorem in continuous time 

s$ates that 
1 lim h(t) = - 

t-a 't 

This is not quite the result proved by Snith, quoted on page 15, 
4 but is equivalent to it. (see, for instance, Cox , p. 55.) 

B further modification is required to deal with multiple events 

1 models, and thus to establish the result limp(t) = - 
T 

quoted on page 9 .  We deal with this first. 

For the distribution of intervals iPn\ , n = 0,l ,2, . . . . 
with expectation z', defined in 1.4 (p. 6 ) , the occurrence of 
bursts of events is a renewal process having an intejrvals 

Z 
distribution , n = 1,2,.... with expectation - 9 

1 -Po 

by the elementary renewal theorem, if ut is the probability of 

1 -Po 
at least one event at tine t, lim ut = - . 

t -+a0 Z 

The conditional probability of k events at time t given 

at least one event is po k-l ( 1 -po) . Thus the unconditional 

probability of k events is ut ( I  -Po)pok-l . The expected number 

of events at time t is therefore 



3. The first special case we consider is a discrete time 

model where the intervals distribution is finite, i . e .  there 

exists a positive integer m, such that: 

Prob(~~ = m) = p, > 0 

and PrOb(Tk 7 m) = 0 

The probability generating function G(s) is then a polpomial. 

If the intervals distribution is to be estimated from 

observations of a realization of a process, a Zinite distribution 

will often be the result. Assuming that no parametric form of 

distribution suggests itself, a natural estimator for the 

distribution function F(t) of the Tk is the enpirical 

distribution function Fn(t), based on n observations, where 

1 Fn(t) = ;; (number of observed intervals L t). This is an 

0 

unbiassed and consistent estimator of ~(t). (Cox and ~ewis", 

pp. 142-3. ) Vith this procedure, m is the value of the largest 

observed interval. 

In addition to the definitions of para. 2 (p. 17), we 

define the "generating functiontt ~ ( s )  by 

The following relations then hold: 

These relations express the fact that an event at t = n is the 

result of the compound event, an event at t = n - k followed by 



an interval of length k, the two conponents being independent; 

further, the different values of k are ~utully exclusive 

exhaustive, 

Nultiplying by sn and summing from n = 1 to n = , we have 

Since'G(s) is a poljrnomial of degree m the right-hand side can 

be expressed as a sum of partial fractions. If we suppose that 

the roots, sl, s2, .... of 1 - G ( s )  are all distinct, the 

expansion is of the form 

and the numerators are given by the formula a j = h e  
3 

A p-fold repeated root s, will introduce terms 

"r %+I ar+p-~ 
9 2 * * * * '  s - s  r .  - s (sr- s )P 

One root of 1 - G(s) is s = 1, and this is not repeated, for if 

it were, it would inply -G' ( 1 ) = 0, i. e. Z = 0. Furthermore, 

since 1st 41 implies I G ( s ) ~  < 1, znd hence ~ ( s )  f 2 ,  the root 

s = 1 is the smallest in absolute value. 

Having established this we now consider the expansion of 

each partial fraction as a power series in s. The coefficient 

of s" in ~ ( s )  will be the sum of the contributions from m such 

expansions. For example, 

ad, - I S 
-1 

s - s  - aj $1 --T 1 7 5 J 



"i giving a contribution of 9 

aw~-l (k+;-1) which gives a contribution of k+n 
Sr 

Me nay label the root s = 1 as sl with the corresponding value 

1 

of a1 equal to I - - ,G'O - 'E . It is clear then that the 

contribution of the corresponding partial fraction to the 

1 coefficient of sn in ~ ( s )  is simply - 
Z 

. Alltheother 

1 

I contributions contain at least the nth power of 9 and, 
j 

since in each case Is, 1 > 1 , these contributions will diminish 
U 

exponentially as n increases. 

Thus, firstly, lin = - ' , and secondly, the limit . 

n-9- Z 

is approached exponentially. 

4. Our next example is 2, special case of the renewal theorem 

in continuous time. We consider the situation when P ( s ) ,  the 

Laplace transform of the density function of intervals (see p.18), 

is a rational function. Included in this class of density 

functions are the gamma distributions for which 

,.&*-I ,-at 
f(t) = with V > l  integral, m) 

and 



In queuing theory the gamma distribution with integral 

is lmown as the special Erlang distribution. It is widely 

used in the theory of queues and in replacement theory where 

the lack of memory or lack of aging implied by the use of the 

negative exponential distribution is too unrealistic. A random 

variable having the gamma distribution with parameter V can be 

interpreted as the sum of v independent random variables, each 

having a negative exponential distribution. Some of the 

pleasanter properties of the latter distribution carry over, 

and some ''aging" is introduced. In replacement theory the nodel 

is known as "failure by stages", the failure of an item being 

supposed to occur as a result of a sequence of minor failures 

at the points of a Poisson process. It should be noted that, 

even if the Poisson process changed its parameter d after each 

minor failure, the transfom f*(s) would still be a rational 

function. 

We begin by establishing a relation between f*(s) m d  h*(s), 

the Laplace transform of h(t). We pick up the exposition from 

page 19 . 
Let TI  + T2 + .... + Tr= S,, where the random variable S, 

has the distribution function Kr(t) and density function 

low Prob {lTt < r] = Prob S, > t = 1 - ~ ( t ) .  

Hence Prob {lTt = r] = ( t  - + t (we define lI0(t) = 1) 

= P (r), say. 
Nt 



If we now define the probability generating function of Nt as 

we have 

Now, taking Laplace 

h*(s) = 

q ( s )  = 

h*(s) = 

and since 

From t h i s  re la t ion  i t  i s  c lear  tha t  when P*(s) is  a ra t iona l  

fynction so i s  h-*(s). F-arthermore, s is a fac tor  of i t s  

denominator, since f*(0) = 1 .  Remembering tha t  f*(s)  i s  a 

rnolcent generating function, f*' (0)  = -T , which i s  not zero 

The 

consider 
L 

so tha t  s 1 0  i s  a simple r o o t  of 1 - f*(s ) .  

object of examining the roots of 1 - f s ( s )  i s  t o  

the expansion of h*(s) as  a sum of p a r t i a l  fractions.  

We can then consider the  approach t o  equilibrium i n  a manner 

s imilar  t o  the d iscre te  case (pp.21,22 ). Having expressed 



- 25 - 

h*(s) a s  the r a t i o  of t w o  polynomials, we can labe l  the roots 

o f  the  denomizator s -i = j?  I .  . Also, wemay specify 

sl = 0. Then f o r  j > I ,  we asser t  tXat s .  has anega t ive  
J 

r e a l  part .  For i f  &(s . ) > 0,  then 
J 

which contradicts P ( s .  ) = I . 
J 

The other poss ib i l i ty  i s  tha t  there ex is t s  a pure iaaginary 

r o o t  s j  = i p ,  say, where p is real .  This would imply tha t  

which i s  not possible f o r  a  continuous f ( t ) .  

The p a r t i a l  f rac t ion  expznsion o f  h*(s) is of the form: 

where m i s  the degree of the denominator of  f*(s) .  This assumes 

tha t  the s a r e  a l l  d i f fe rent ,  i n  which case the numerators a re  3 
given by the formula 

a =A. 
j f*' ( s j )  

Iilodifications similar  t o  t ha t  on page 22 apply i n  the case o f  

repeated roots. s1 = 0 i s  not a repeated r o o t ,  a s  w e  have seen, 

so tha t  



We now need some standard results of Laplace transform 

j--A?,eorj: ~ ~ k i  b.~~Ack c= 32 exprccscd in the fclloxing vay. D e m t e  the 

inverse transform of a function g ( s )  by L-' ( 6 ) .  Then, 

Xence, if the s. are all different, 
J 

and, since the non-zero s all have negative real parts, the 
j 

1 limit T of h(t) as t -a- is approached exponentially. 

will give rise 

in the partial 

to terns like 

to terms like 

t h e  

fraction expansion of h-*(s), and on inversion 

in h(t) . The approach to zero is again comparable to 

exponential decay. 



5. So far we have considered the way in which the renewal 

density approaches its limiting value with increasing time. 

Our final special case considers the way in which equilibrium 

is approached with increasing serial number of events. 

Let us suppose that our basic time unit is one day, and 

each day is divided into k  fractions, a fraction being the smallest 

observable unit of tir;le. The distribution of intervals between 

events is assued discrete, each interval being a whole number 

of fractions, with one fraction the smallest possible interval. 

Suppose an event occurs during the rth fraction of soae particular 

day (1 S r & k), then we can define the process as being in 

state Er until the next event. 

Thw, a transition occurs at each event, and since the 

transition probability changing from state state 

as a result of a event is independent of the previous history 

of the process, the sequence of states will form an exbedded 

Markov chain. If the process is in state Er, and the interval 

between the event which brought it there and the subsequent event 

is p fractions, then the next state is E where j = r + p (nod k ) ,  
j ' 

unless this is zero, in wnich case j = k. 

Since we ha\-e specified that ain interval of one fraction is 

possible, all states are accessible. The transition probability 

prs is obtained by adding the probabilities of all intervals t 

for which t = s - r (mod k). Hence, if the values of pl j ,  

j = 1,2,. . . . k, are denoted by q then the Lr ,? ;~s i t ion  rn2-h-is 
j ' 



4 The matrix i s  ci rculant ,  m d  hence doubly stochastic (Fe l le r  , 
- - m \  

p . x m ) ,  an6 i n  t h e  i i m i t  a i l  s t a t e s  hcve equal probability o f  
1 - 
k Ve propose t o  obtain zn expl ic i t  formula f o r  the 

probabil i ty o f  each s t a t e  a f t e r  n events, and hence show tha t  

the  approach t o  equilibrium proceeds a t  a r a t e  comparable with 

exp (-n). S o ~ e  numerical r e su l t s  w i l l  be obtained from this 

resu l t  i n  Chapter 111. 

If i n i t i a l l y  the probabi l i t ies  of the process being i n  

s t a t e  j a re  a j = 1,2,  .. .. k, m d  A i s  the row ~ a t r i r r  defined 
j ' 

'Jy A = ( a ,  a2 , a5 . . 9), then a f t e r  n t ransi t ions  

(' 'eventsw) the s t a t e  probabi l i t ies  a re  given by the row matrix 

.an. To calculate P" tie diagonalize P, noting tha t  i f  

I P = UDU-I, where D i s  a diagonal matrix, then P" = UDnu- . 
Let 8 = exp ( ) be a k t h  root of unity. 

Then i f  Ur is a column vector defined by 

ur ' = ( I  8, . . $(k-l )r  1 

the  j th  element of the column vector (Pu,) i s  



I f ,  therefore ,  D i s  the  diagonal matrix f di j] , where 

and U is the  k x k n a t r i x  with r t h  column U, a s  already defined, 

then PU = T'?) 

The a-step t r a n s i t i o n  p robab i l i t i e s ,  pis ( n ) ,  a r e  obtained 

as the  elements of 9, and the  probabi l i ty  of each s t a t e  a f t e r  

n events i s  given by the  appropriate elenent of the  xriatrix 

en = ~ ~ 9 ~ l J - l  . The r ap id i ty  with which these  p robab i l i t i e s  

approach t h e i r  l im i t i ng  vstlues i s  Getermined by the  nature of  

t h e  l a t e n t  roo ts  A, of I?, which form the  non-zero elements 

of the  matrix D. 

Now, 

so t h a t  

and 

and the  inequal i ty  w i l l  be s t r i c t l y  l e s s  than, unless a l l  
- 



$ (n-l )r have the sme arguaent , which is only true lor r = 0. 

0 otherwise. 

The calculation of U-' follows from the result 

Hence the rth colunn ofli-I has elene~ts 

The limiting form of the natrix is therefore, 



k 
I s ince am = 1 Hence -in-3 i; 

r?=I 

This confirms the  r e s u l t  quoted on page 28 t h a t  i n  the  l i m i t  
1 a l l  s t a t e s  have e q u l  probabi l i ty  of . 

The e x p l i c i t  fomulz f o r  the  s t a t e  matrix w i l l  be obtained 

a f t e r  assigning numerical valucs t o  the  i n i t i a l  s t a t e  

p robabi l i t i e s .  This s h p l i f i e s  the  fomulae  a i i t k l e  without 

s a c r i f i c i n g  any general i ty  of technique. 

Ve choose a1 = a2 - - ... . - - zk-l = 0 ,  am2 ak = 1 ,  so t h a t  

i n i t i a l l y  t he  process i s  i n  s t a t e  Ek with probzbi l i ty  one. 

Then the  probabi l i ty  t h a t  the  process i s  in s t a t e  E a f t e r  n  
j 

f u r t h e r  events is (ai) . the  j t h  elenent i n  the  row a a t r i x .  
m 

on page 29. 

- 
i f  n = 1 this 

U II 

. 0 1 ) ~ ~ i r - ' ,  where U and D a r e  as defined 

Thus, . 
7 - 

fornula gic-es f o r  the  coef f ic ien t  of qi the  value 

and t h i s  sum i s  zero uiLess k-j+i-I = 0 (nod k ) ,  i n  which case 

it i s  unity.  Thus, t he  formula gives f o r  ( a - )  the  value 
J I 

qj+l f o r  j < k, ql f o r  j = k. 



This agrees with the  l a s t  row o l  the  t r m s i t i o n  matrix I?, 

For values of n grez te r  thm o m  the f o r a u a  f ~ r  (a.) 
3 n 

i s  not a par t icu la r ly  sinsle m e  froin t~h ich  t o  compute. 

However, it does show qiiite c lear ly  t h a t ,  i f  the  l a rges t  

value of 1 Xc 1 f o r  m & B i s  a ,  say, then the  difference,  

1 between the  v a l ~ e  of (a  . )  m d  I; , i s  cer ta in ly  l e s s  than 
3 n 

n a  Thus, t he  approach t o  equilibrium i s  exponential a s  

asserted on page 28. 



'I. 3e now coxe t o  t h s  s e c o i ~ d  problez meationed i.1: 5 e  

4 .  in t roduct io3:  how t o  six;i;ate a s e r i e s  in con%i;rluous xi-e 

wken a l l  i n t e r v a l s  ciis-?-riSu2;iors a r a  d i s c r e J ~ e  because of the  

n i n i m x  05se i~a3l .e  -mit of '~ime. lje -Lake "sie Poisso:: L~~~ 

ira j rr',,+-". . .-,--- - because it is g e m ~ a l l y  reckoned t o  be s--,- 3-- -- -- -I -- V ,-,- e-L 

t o  s lFfiake t h e  negat ive exponent izl  cXst r ibut ion ,  a d  also 

because of the  s ta t s i len t  in t i e  paper 5y iinoeles a i d  ~ t e w s r t '  

(p .  12'3) that a l o i s s o n  distriSu-Lion never o c c w s  as a res7LLt of 

s i n g l e  randon se lecz ion  f r o 3  a1 exponect ial  i n t e i v a l s  ?As-h5buJ~iox. 

(There is ucrfortuiztely a r e f e r e r c e  2% t h i s  point in the p ~ 2 e r  to 

a non-existent e c t r y  i n  <he bibl iography.)  Ve reproduce <heir 

argmedc i n  b r i e f .  

Fig. I 

Grouping t h e  Xegative Exponential D i s t r i b u t i o n  



The resulting gaozetric 
, - 2 = 0,1 $ 2 ,  . . . ( n o t e  the  existence o f  zero  in te rva ls ) ,  i s  m e n  

s - ~ Z s t i t u t e d  into the ep iva len t  o f  eq-0-ations (5 .2)  (p.  "O) , 

500 events 

Eiiatogzms of  Intervals a ~ d  Zmber-of -2venJ~s  D i s t r i b u t i o n s  



As t h e  authors rigkt3-y observe, t h ~  '~ imbzr  of evec ts  histo-a2 

of Z'igurz 2 cud6 not be ~ i s t & e n  f o r  that of 2 " ~ l s s s -  

2 i s t r i bu t ion .  

There a r e  severa l  c r i t i c i s ~ s  which cz-1, be leveLled at  +his  

The f irst  is "'e pro~ed-~zrc . "*-at the  g r ~ ~ i 3 h ~  0: t71 e  c0i~-i;i2u~ua 

d i s t r i b u t i o n  i s  very coarss: tke  f l r a t  col -mi  alone represe12ts 

a p T o ~ a ~ ~ l i ~ g  o f  I - - 1 * 21.632. - 11~wxlier~ore, a l l  -these iz temrals  e 

of l e s s  thau wa i t  l e ~ g - t h  ia t i x , ~  c a n t i n u o ~ s  distribu-bion are 

identified as zero in-Lervals in the  grouped d i s t r iY~ t i c i2 .  &-. & 

s e q u e x e  of %kzcc I r i J~emals  o f  ~ e n & h s  ' 0.8, 0.9, 0.7 frm -she 

coztinlxo-as d i s t r i b u t i o a  woud rc2resent  4 eve i~ t s  of 2 Poisson 

process x i t h  an i n t e r v a l  betb~eei? 'che first ar6 foWJi;i? of 2.4 wits 

02 t b e .  A l t e r  t h e  grouping of i n t e rva l s  as descri'oed, these  

would bz l i s t e d  as 4 s i ~ u l t a ~ z o u s  events. There is  0 i 2 ~  P u t h e r  

poin-c . -clter grwiplng the e x 2 o x n t i z l  &i s -h ibu t ion  i n  thz  aame2 

descr i j ed ,  +;he r e s L t i n g  set of intaivals, althocgh 2mrirg only 

i n -c sga i  values,  T W ~ L G  lime no uvper I i m i - b  - a fulnther a~prox iaz -  

t i o r  tioucl have t o  be aade in tr"cxc&%ing the dis'crlbv-tion a t  sone 

point where the  proSzbil i ty of a l a rge r  in te rva l  reaches an 

knoi.r-A eis$yijutioi-,, 1 -k  dqe-.-.,' I L ~ S  02 %he ?i"ac% -bhat, 12 :; i s  a 

random va-rlable x i t h  6-is tr i 'mtion T-~xction 3'(x), 'chm Y = P(X) 





If lq is an integer randoinly chosen f rom the set O,i,...,gg, 

the2 X = -b 0.005(2N + '; ) has app roxk~a t e iy  -bile negative 

exponential density function e-" 



-L.mcl 
- ~ a s i e n ' c  e f f e c t s  due t o  the starJ; of t h e  p roczss ,  c 3-dfglk 

r=dou nwnber w a s  chosen t o  d e t e m i n e  %he start oZ the process  

in day -7, mid counts  'wers no% recorucd w c t i l  day 1 tras reached.  

To i l l u s t r a t e  t h e  method, t h e  start  of one oZ the  t r i a l s  i s  sho?m. 

% 3 The i n i t i a l  3 -d ig i t  rmdors nw'3er chosen w a s  754, SG m e  

m- , ~ o c e s s  w a s  s t a r t e d  a t  t = -6.754. n' m e  prcces s  t h c n  c~n'cim&A 

i n d i c a t e d  i n  t h e  folio win^ partial record :  

I n t  e iva l  
-?-a -.-- 

\ A L U U  

Table I )  

0.987 

0.242 

0.067 

Siagsed  N ~ f ~ e r  of 
'I; lme even t s  

e t c .  

I n  a s i r o u l a t i ~ n  cover ing  227 c o a p i e t e  ' : d a ~ - * ' ~ ,  ' 3  '207 evesJcs 

wsre recorded ,  

even t s  p e r  day 

E\Tui;i'~ e r  

the observed d i s t r i b u t i o n  of t h e  m i - a e r  o2 

b e i z g  as 2ollot:s: 

Xmker  of dzys of  even t s  O b s e ~ v e d  Gxpect~d (Cyan c 
Po i s son  2 i s t r i j u t i o n )  

T o t a l  



P ine l maber  of events d i s t r i bu t ion  i s  a good T i t  'GO iha 

. . -  *-*2 ,,..A< 1 - 1  2 - c? A A \  ~ ' G ~ S Z G Z  ddl~ U I - L U U U I V I L  - L .  , L, , 8 5  T,:->-PL, ,,L- a u i L c y  i x * i a L s .  

Detailed t e s t s  on o t h e ~  s imda t ions  a r e  g iver  on page 52. 

The i a t e r v a l s  d i s t r i b u t i o ~  i s  not the  correct  cne l o r  a 

Poisson process; i n  pz r t i cu l a r ,  extreaeiy shor t  zzqd very long 

i n t e l v a l s  are excluizd.  r"' m e r e  &re exx-kly  1 GO p o s s i L i ~  

i n t e r v a l s ,  a l l  haviag the  sane proSaSiliLy, the  s a a l l e s J ~  being 

0.005 2.nd %he  Inr3es-L f;5,29fi. Thn r \vc i r + S  n r  7 ..rn,,? 4 ,----L,?q? ,- 
--A- . r ~  - V  VAVWI --I I *  V CUU LJ- V U C L . U - J  

regard t h i s  t m c a t i o n  as an advantage, l i k e l y  t o  n&c h i s  modd 

zore r e a l i s t i c  than a t rue exponential d i s t r i bu t ion  rather  %ha 

l e s s .  Zowever, our concern i s  t o  irrvestigate the  adeyacy  or 

otherwise of a  d i s c re t e  a 2 p r o x i n ~ t i o c  t o  z negzJcive ex>one:~Lisl 

d i s t r i bu t ion ,  and it is  in t e r e s t i ng  t o  cmpare  the  way i n  xkich 

the  probabi l i ty  densi ty c - m e  i s  cormer-bed i n t o  s h i s t o g r m  by 

the  ~ e t h o d  jus t  used, v i t h  the  Iko;-:les ax6 S t e w ~ r t  t ~ 1 x c i q ' ~ : e  

i l l u s t r a t e d  i n  Figure 1 ( 2 . 3 3 ) .  I n  order t o  - - ?  i u ~ ~ e  the  conparis on, 

2 nuch coarser  a ~ p r o x i a a t i o n  6 : i l l  be considered; o w  ir ~rh lch  

there  a r e  o d y  t e n  possible ixtervalx,  each havixg a probaSil i ty 

of one tenth .  This i s  achieved by choosing a sixgle randon 

d i g i t ,  pref ix ing a deciiiial point adding O.G5 t o  a g p r c x i a ~ t e  

2 = 1 - Y. The following r e s u l t s  a r e  obtained: 

The mean of these  t en  values of -lL-iP i s  3 . g 7 y 9  ?..%her th2.12 

uczity. This pa r t i cu l a r  discrepancy w i l l  be dea l t  with l z t e r  
- 

(p.40 ) when we propose an inproved gethod of gTou;3irg i n t o  t;. 



s m a l l  nwaber of i n t  e m a l s  . 3 A,,e ., basla f o r  ccnverting a 

however. The res-iiitixg i? i s J~ogTa  has z f i n i t e  ra5er or" 

con t ras t s  with the  nethod i l l u sk ra t cd  by 3'iga-5 I (p.33). 

3 .  The exzct d e t a i l s  of the  procaii-me z re  p ~ h a p  nore c l e s r i y  

revealed by Fi,me 4 on page 41 . The u n i t  intelrvzl ( 0 , :  ) fin 

tke  ordinate axis (p robabi l i ty )  of the  ciistriSukion ?=ctioil 

- 0 gr2-9h i s  2iviZed i n t o  ter, equal s;i3-in%emals. LI IJ~, is tke  

7- 1 midpoint of the  rth sub-intervzl,  then 2 (I,) i s  tzke2 t o  be 

the  r t h  value or" t t o  be assigned z. non-zero proba5il i ty.  Thuc , 

f o r  instaiice, point B i n  Fiwe 4 identi . f ies  the  EJi;X value of t, 

1 .43. An obvious improvercent on t h i s  pyocedwe t70-&2 5e t o  use 

;he endpoints of the  t en  sub-2nJ~er-vzls on the  o r d i n a t e  2 x k .  

I Suppose gr and o, 2;-e t i e  eadpointa 3 1  the  rth ou3-in'cerval. 

Then the r t h  value of "L;o be assigxed a mn-zero probabi i i ty  

7-1 would be more appropriately chosen as the  m a 2  of i (q,) 
A 

F-I (qrl). / This would meal, f o r  e x a q l e ,  ir.stea6 of t c k i q  

point B i n  Figure 4 f o r  the  3 th  valv-e, choosing -:he ni22oizx of 

0. . . 
A the  segzect AX. S i m e  $his  ;lirozeCue :rcvX ao-b ; ; i ~ - e  a ILXUG 

vaiue f o r  the  10th value of t, -Xiis last value i s  besx c h ~ s z i  

-Lo give a u n i t  mean f o r  the  t en  v d u e s ,  disposing of t h e  

discrepancy re fe r red  t o  on page 39. 

To highl ight  the  eZPect of t h i s  ~ 0 6 l f l c ~ t L o i 1  proceAme, 

consider the  extreme case of a h i s t o p a s  v i i h  ociy -ki:o coP7r1- LA&.--s. 

The f i r s t  procedure would assig-r, values 0.25, 0.75 t o  2 ,  



Partitioning the area under the 
density curve of the negative 
ex9onertial distribution into 
ten equal parts. 

Fig. 3 

An improved method of 
approximating the 
negative exponential 
distribution. 



corresponding to the random bits 0 and 1 respectively. The 

two possible values of t, each with probability 9, would be 
-In 0.25 and -ha 0.75, i.e. 1.386 and 0.288, with mean 0.837. 

The Nimprovedn procedure would give for the smaller value the 

mean of -In 0.5 and -In 1, i.e. 0.347, and the larger value, 

to make up a mean of 1, would be 1.653. 
1 Values of t, each with probability , 

histograms with n columns, calculated by the 

are given in Table 11. They are rounded to 

Table I1 

corresponding to 

"impoveiAw procedi.lre, 

2 decimal places. 

Conversion of the density c w e  of the exponential 

distribution with unit mean into a histogram with 
n columns each of equal area 

Mid-points of intervals 

We are looking at these discrete approximations to the 

exponential distribution in terms of how well they approximate 

a Poisson process when used for the intervals distribution.' 

If our criterion for a good approximatkon is the census 



distribution over intervals of unit length, which should be a 

Poisson distribution with unit mean, then taking n = 2 will not 

be satisfactory. It will not be possible to obtain more than 

3 events in a day with this choice of intervals distribution. 

4. There is no simple way of determining the census 

distribution when any of these intervals distributions are 

used. It has been established in Chapter I1 (p .  22 ) that the 

equilibrium census distribution will have unit mean, but beyond 

1 that the straightforward method of making a comparison with the 
k 

Poisson distribution is by a computer simulation of a realization 

of the process. 

Before carrying out the simulation, it was necessary to 

apply the results of Chapter I1 on the approach to equilibrium, 

in order to decide how long after the start of the process the 

transient effect of a determined starting point could be neglected. 

In order to reduce some heavy computation, the case of 10 equal 

intervals was chosen from Table I1 (p.42), but the intervals were 

rounded to one place of decimals. The rounding was done in such 

a way as to avoid zero intervals (thus 0.05 was rounded up to 0.1) 

and to preserve a unit mean. This process &.ve the following 
1 ten intervals, each with a probability of : 

In the notation of 11.2 (p.17), if we take time units of 

0.1, the generating function ~(s) is given by 



with Z= 10, and lim u(t) = m , as proved on pp. 20-22 
t --,a 

for the case when ~(s). is a polynomial. 

The equilibrium distribution is therefore such that.the 

expected nuuber of events in 10 units, equalling 1 tldayw, is 

unity. In order to demonstrate the exponential approach to 

equilibrium, the first few values of u(t) were calculated and 

plotted against t. Instead of expanding ~ ( s )  as a sum of 

partial fractions (p.2i j, it was found more convenient to 

work directly from the relation 

taking % = 0 for all values of k except 1,2,3,4,6,8,ll,l4,l9 

and 32, for each of which % = 0.1. 

The calculated values of U, are given in Table I11 (p.45), 

and the graph, Figure 5, shows U, converging to its equilibrium 

value of 0.1. 

The values of un are given to 3D, although the calculations 

carried 9D throughout, in order to eliminate rounding errors, 

bearing in mind that these build up with a recursive calculation. 

Taking the values in cycles of 32, it can be seen that large 

fluctuations due to the influence of the start of the process 

have almost died out by the end of the second cycle. This 

corresponds to 64 units of 0.1, or 6.4 "daysn. 

The embedded Markov chain of Chapter I1 (p.27) can be used 

to check the approach to equilibrium as a function of serial 

number of event, rather than of time. The transition probabilit- - 
ies are calculated as follows: 



Table I11 

Convergence of %, the expected number of events at time n 

. 1 u, has generating function ~ ( s )  = -J , where P(s) is 

the generating function of the intervals distribution and, in 

this case, F( s) = 6 (s+s2+s3+s4+~6+s8+s1 +sl 4+s1 9+s32) . 





An event at time k units + r tenths'(k integral, 
0 5 r 6 9) is held to have occurred in the 

(r+l )th fraction of day k + 1. 
q, = 0 (no interval is an integral multiple of 1 );  

92 = 0.2 (intervals of 0.1 and 1.1.will increase the 

number of fractions by one). 

Similarly, q = 0.2, q4 = 0.1, q5 3 = 0.2, qg = qg = 0, 

- (27 - 99 = PI() = 0.1. 

The latent roots have the following absolute values: 

Since lAn 1 ihl n, the largest value of the diagonal 
matrix D~ (p.29) in absolute value (except for dl 0 ,  will 

be less than 0.362~. 

Now, (0.~62)~ = 0.0022 approximately, which shows that a 

good approximation to equilibrium has been reached after only 

6 events. The start of the simulation described on page 38 

was a random point in day -7, and in the computer simulation 

which follows it was a random point in day -10. Equilibrium 

in the sense of equal probability for all fractions will $ake 



longer to achieve if each day is broken into 1,000 fractions, 

but it will be comparable as far as the census distribution 

is concerned if the number of events per day is counted in 

each case. 

5. The computer was used to generate a sequence of pseudo- 

random numbers, uniform over (0, 1) by the multiplicative 

c n w x ~ c e  zethod (!kcher9, pp . 7 5 4 1  ) ,' t h e  first d2gi-b 

after the decimal point being taken as a random digit. 

The program listing (pp. 49-50) shows how this was converted 

into an interval from the table on page 42. For each set 

of intervals, the same sequence of digits was used, although 

this does not mean that there is any direct comparison between 

the realizations, since different proportions of the random 

digits are discarded in the different realizations. 



/ /  F C i i  
* i iA\ ;E DFS I Y  
*IOCSi C A i i D t 1 1 3 2  Pi i l i ; \TER.)  
* L I S T  S C U ? C E  PROG2API  
*ONE wO2D I N T E G E R S  

D I b ' l E ; i S I O h  N V E i J T ( 1 0 )  , T E R V L ( 8 , 1 0 )  
R E A D ( 2 9 2 1 )  T E R V L  

2 1  F O R r 4 A T ( 8 F 5 . 2 )  
5  R E A D ( 2 ~ 1 0 0 l ~ ~ r I X ~ L T O P ~ T I M E  

S F (  I X ) b O * b O , 5 O  
5 0  DO 2 0  N t l t l O  
2 0  N V E N T ( N ) = O  

N D A Y S = O  
K=- 1 

100  F O R V A T (  3 I 7 b F g e 2 )  

1 
DO 7 L = l , L  T O P  

C  G E R E R A T E  A K  I N T E R V A L  
30 CA'LL X A h D D ( I X , I Y t I D )  

X = T E R V L ( M , I D I  
I F ( X ) 3 0 , 3 0 , 3 2  

32  T I M E = T I M E + X  
I F ( T I , X E l 3 C t 3 l t 3 1  

3  1 NCOMP=T I b?E 

I I F ( K 1 3 3 9 3 3 . 3 4  
3 3  NEMP=NCOMP 

I =NCOMP 
K = 1  
GO TO 3 0  

3 4  J = N C O M P - I  
I = N C O X P  

C T E S T  I F  NEW D A Y  H A S  BEEN E N T E R E D  
I F (  J - l ) 3 * 4 9 4  

C  I F  NOT I I V C R E A S E  N U M B E R  O F  E V E N T S  B Y  O N E  
3 K = Y + l  

GO T O  7 
C I F  SO I N C R E A S E  C O U N T  OF D A Y S  W I T H  K E V E N T S  A L S O  E M P T Y  D A Y S  I F  A N Y  

4 & D A Y S = N D A Y S +  J 
h V E N T ( K ) = N V E S T ( K ) + l  
P4EbqP=NEXP+J- 1 

C  RECORD O h €  E V E N T  I N  NEW D A Y  
K = l  

7  COrYT I N U E  
8 F O R M A T ( ' l 1 , ' S I M U L A T I 0 N  C O V E R E D 1 t 1 7 , '  C O M P L E T E  D A Y S '  / )  

~ R I T E ( ~ P ~ ) N C O M P  
W R I T E ( 3 t 9 ) N E M P  

9 F O R V A T ( 6 X , 2 0 H  E V E N T S  D I S T R I B U T I O N / / 6 X ~ 2 7 n N O .  O F  E V E N T S  NO* OF DA 
l Y S / / 1 2 X ~ l H O , l O X , I 4 )  

DO 10 N = 1 , 1 0  



10 W R I T E [ 3 * 1 1 l N , S V E N T ( N I  
11 F O R N A f ( I l 3 , 1 1 4 )  

GO T O  5 
60 C A L L  E X I T  

END 

/ /  F O R  
+ L I S T  S O U R C E  PROGRAM 
* O N E  WORD I h T E G E R S  

S U B R O U T I I V E  R A N D D  ( I X B I Y B I D )  
I Y = I X + 8 9 9  
I F (  I Y ) 5 * 6 * 6  

5 I Y = I Y + 3 2 7 6 7 + 1  
6 Y F L = I Y  

Y F ~ = Y F L / 3 2 7 6 7 r  
I D = l O r * Y F L + l  
I X = I Y  
RETURN 
E h D  



.6. For this series of simulations, tKe following statistical 

tests were carried out on the census distributions: 

(a) to find whether the.mean number of events per day was 

consistent with the hypothesis that the census distribution 

was Poisson, with parameter 1 ;  

(b) to find whether the census distribution could be 

fitted by a Poisson distribution with unit mean, as measured 

by the X 2  goodness-of-fit test; 
(c) it being assumed that the mean number of events per 

day was unity (as established by the Renewal Theorem), to 

determine whether the variance of the number of events per day 

was aignificantly different from one. For this test, since 

(n-l)sL is a X 2  variable, with n - 1 degrees of freedom, 
r2 

r * being taken as 1 , Fishert s approximation, that is 

approximately normal, ( , 1 ) , was used. The approximation 

is very good for n = 100   enda all A d  stewartlO, p. 374). 

The results are displayed on page 52. They show that 

for a series of 1,000 events or thereabouts, a census 

distribution not discernibly different from a Poisson 

distribution is obtained with only the roughest of approxixna- 

tions to a negative exponential gap distribution. It would 

not be true, of course, that a census distribution taken over 

intervals of length substantially shorter than one day would 

be equally close to a Poisson distribution. 
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The results of the test carried out on the simulation 

runs may be summarized as follows: 

(a) For a Poisson distribution with unit mean covering 

about 1,000 days, the standard error of the mean would be about 

0.032. In each case, the mean number of events per day, shown 

in row 4 of Table IV, is within one standard error of the mean. 

These figures are therefore consistent with the hypothesis of 

a Poisson distribution with unit parameter. 

2 
(b) The sample values X s  obtained from the goodness-of- 

fit tests are shown in row 10 of Table IV, with the corresponding 

number of degrees of freedom in row 11. In row 12, the percent- 
2 

age point of the X distribution in Table IV of Fisher and 
2 

yatesl1 which is adjacent to the value found for Xs is given. 
The null hypothesis of a Poisson distribution with unit parameter 

would be rejected at the 5% level of significance in two cases: 

the runs with 4 and with 10 intervals. 

(c) On the'null hypothesis that the variance of the census 

distribution is unity, the values of e in row 8 of Table IV, 

are samples from a Normal (0,l) distribution, whose absolute 

values will be exceeded with the probabilities given in row 9. 

The null hypothesis would be rejected at the 5% level in only 

one case, the run with 5 intervals. 

7. Realizations of a stochastic process can vary widely 

(Feller4, Ch.111, pp. 83-85, has some cautionary remarks about 

coin-tossing sequences). An experiment was carried out on the - 
sequence generated by the intervals distribution of para.$ (p.43) 



to discover the effect of shifting the counting grid. In 

the first run, an event at time t = 0.0 was assumed, 1,000 

intervals were sampled, and the number of events recorded in 

the successive intervals CO.0, O.g], [1.0, 1.9], ...., 
transient effects at the start of the process being ignored 

as irrelevant to this experiment. 

In subsequent runs, using the same sequence of random digits 

to sample the intervals, the number of events in successive 

intervals spanning 1 unit of time were again recorded, but with 

the first such interval starting at 0.1, then 0.2, and so on up 

to 0.9. The counting distributions are recorded in Table V. 

show in^ the variation in census distributions obtained from the 
same series of events obtained by shifting the counting grid 

forward in successive steps of 0.1 

First day 
starts at 
time t = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Number of 
events Number of days 

Total 1000 1000 1000 1000 1000 1000 1000 1000 1001 1001 



For a span of 1,000 days, the expected frequencies of 

a Poisson distribution would be: 

Number of events 0 1 2 3 4 > 4  

Number of days 368 368 184 61 15 4 

If each of the ten distributions above were subjected 
2 2 

to a X goodness-of-fit test, the values of X obtained 

would be, respectively, 

as compared with the tabular valrzes (4 d. f . ) of 
X *  1.064 7.779 9.488 1.1.688 13.277 

0.9 0.1 0.05 0.02 0.01 

Thus, according to the initial point chosen for the counting 

grid, the same series of events can give rise to a census 
2 

distribution judged by the X test to be consistent with a 

Poisson distribution, or to one which, by the same criterion, 

would be judged 'significantly different from the Poisson 

distribution at the 2% level of significance. 
2 

This result is not an indictment of the X test, but rather 

an indication of the wide variation to be found in census distrib- 

utions generated by the same distribution of intervals between 

events. Whilst it is obviously very satisfying to obtain exact 

probability distributions for cenaus distributions, it may, in 

some cases, obscure the fact that different realizations of a 

process may have widely differing appearances. If such a series 

of events is used as the input to the simulation of some 



practical system, a queuing process, for instance, the 

behaviour of the system may be expected to vary widely 

from one run to the next. 



Chapter IV 

3- and Conclusions 

1. The original problem considered by Knowles and Stewart 

was the simulation of the arrival of orders at a factory by 

the daily post. . Their approach began by postulating a 

distribution of intervals between arrivals in discrete units 

of one day, including eero intervals. This 2ro.cred tc be 

unsati-sfaatxmy, and they concluded that it was necessary to ..- 

postulate two distributions - o q e d  .hen-zero) intervals 
-- - 

betweenlarrivds, _ -- and the other of the number of . . -  arrivals on 

days when at least one arrival occurs. 
-- 

Having examined the appropriate models in Chapter I, we 

conclude that simply postu1ating;a number of events distribution, 

which includes the possibility of eero events in a day, would 

cover the Enowlea and Stewart problem and a wide range of 

similar situations. The number -of events distribution would 

naturally be based on observations of the actual pattern of 

arrivals if these are available. If arrivals occur every day, 

the problem of the intervals between =rivals does not arise. 

Otherwise, it is shown that the interval between days when 

events do occur will be distributed geometrically, giving a 

pattern of bursts of arrivals at raadom points in time - a 
diacrete equivalent of the Feller "lightning damagen model. 

All number of events distributiow having the same mean, and 

the same probability of zero events'will give the same 

. distribution for the intervals between bursts' of events. 



2. An alternative method of simulating the flow of events is 

to formulate a model in which events occur only one at a time, 

and then to superimpose a counting grid on the sequence. The. 

number of events within each division of the grid can then be 

interpreted as the number of arrivals in a day. If each 

interval is sampled from the same distribution, the basic model 

is a renewal process. For many purposes a model will be 

required for a process which has been ugo fn~  fny snme time ~d 

ha~l reached a state of equilibrium. If a renewal process 

starts with an event at 

of an event at time t = 

function of n, but will 

where Z is the mean of 

time t = 0, say, then the probability 

n (for a discrete process) will be a 
h 

1 approach a limit of as n--t cv , 
the intervals distribution. 

Investigations on the rapidity of the approach to 

equilibrium are made in Chapter I1 for particular forms of 

the intervals distribution which will be widely used in 

practical applications. The first is a discrete distribution 

of intervals in which only a finite number of values have non- 

zero probabilities. This covers the cases where a continuous 

distribution is approximated by a discrete one by the use of a. 

digital computer . It also includes intervals distributions 

based on an empirical distribution function applied to a sample 

from an observed series. The second form considered is the 

class of continuous distributions whose density functions have 

rational Laplace transforms. This includes gamma distributions 

with integral parameter, widely used in industrial replacement 

theory. The first case is then investigated from a seoond 



point view: the approach equilibrium looked 

terms of increasing serial number of event, rather than 

increasing time. This is done by studying a Markov chain 

embedded in the process. The conclusion in each case was 

that the approach to equilibrium was exponential. The 

consequence is that in a simulation exercise, only a small 

number of samples at the beginning of a process need to be 

discarded before it can be assumed that an equilibrium 

situation has been reached. 

3 .  Simulating a flow of events -as points in a renewal process 

can be performed using a digital- computer by repeated sampling 

from an intervals distribution. , The sampling will inevitably 

be from a discrete approximation if the intervals distribution 

is continuous (or discrete but not finite). Knowles and 

Stewart raised the question whether this approximation leads 

to serious discrepancies in the aensus distribution obtained 

from the counting grid. 

The investigation in Chapter I11 concentrated on 

approximations to the negative exponential distribution, 

since it was claimed by ICnowles and Stewart that this could 

never lead to a Poisson census distribution. Their teohnique 

for making the approximation was rejected, and a more convent- 

ional method adopted. This is based on the replacement of the 

uniform continuous distribution over (0,l) by a set of n equal 
1 intervals of the sekpent (0,1), each having probability ;r , 

before applying the probability integral transform. I 



There are certain difficulties in obtaining exact results 

for the census distributions, since within one realization, the 

number of events in two successive days (i.e. cells of the 

counting grid) are not independent, even when equilibrium has 

been reached. Simulation runs were therefore made, each of 

1,000 events, and the census distributions sampled as a 

frequency table. The values of n, the number of subdivisions 

of t h e  k i t e m &  (Q,?), rage& f h z  7 tc ?O, t h e  me= internal 

in each case being one day. Tests for the mean and variance 

of the census distributions, and for goodness-of-fit wi-kh the 
2 

Poisson distribution using the X test, were made. In most 

cases the null hypothesis of a P~isson distribution of unit 

mean and variance was not rejected at the 5% level of 

significance. The results of Chapter 11, on the approach 

to equilibrium of a renewal proqess, were used to determine 

the time for which the process should be allowed to run before 

imposing the co'unting grid, in order to ensure an equilibrium 

situation. 

The conclusion drawn from the simulation experiments was 

that the Poisson process is h i d y  tolerant of coarse 

approximations to the negative exponential gap distribution, 

provided these are made in the right way. There would be no 

necessity in practice to consider approximations anything 

Pike  as crude as the ones employed in this exercise. 



4. A further experiment was carried out, in which the 

counting grid was progressively displaced forward across 

a given series of points of a simulated Poisson process. 

At each shift, which was made through 0.1 of a day, in a 

process in which all intervals were multiples of 0.1 days, i 

the census distribution was counted. There were wide 

variations between the frequency tables produced at each 

shift, so that some of them were'good fits to a Poisson 

distribution, and others were significantly different from 

Poisson at the 574 level. It would appear that, if 

discrepancies in the census distributions do occur as a 

result of discrete approximations'to intervals distributions, 

then they are likely to be masked by m.ch larger variations 

between different realizations of the same process. 

4 
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