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In this paper the linear extrapolation thecry of full rank multivaxiate

.5 discussed. The

It

discrete parameter weakly stationary stochastic processes
approach used is that which was originally propeosed by Zasuhin and subsequent-
iy developed by Wiener and Masani. The fUﬂdamentél theory reguived for the
study of multivariate processes is first established, culminating in a
characterization of full rank processes in tenss of their gpectral measures.
The linear extrapolation problem for full rank processes is then set forth.
This is followed by a discussion of the difficulties encountered in sceking
an éutoregressive representation for the predictor and the partial soluticns
of Wiener and Masani. The paper concludes with a discussion of the special

preoblens encountered in the theory of degenerate rank processes.
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INTRODUCTION

The study of multivariate prediction theory began in the U.S.S.R. in
the early 1940's at approximately the same time as the univariate case was
being investigated (for references to the Russian literature see Jang Ze Pei
[10]). Problems still exist in the multivariate case, however, whereas the
univariate case was essentially solved by the early 1950's (see, for example,
Hannaﬁ [7D. \

The study of univariate processes rests heavily on the theory of complex
valued functions on the ﬁnit disc, notably the theory of H_ and Lp spaces.
The natural multivariate analogﬁe of this is the study of matrix valued
functions. Two problems arise with the introduction of matrix methods: the
lack of commutativity of multiplication and the existence of singular non-zero
matrices. Nonetheless, many results have been obtained, notabl§ in the case
of full rank processes, (Masani [21], and Rozanov [26]).

There are two éiésely related approaches to the general problem of
multivariate  predicticn. One technique, addéted by Rozanov [26], Matveev
[22], and others is to study a certain Hilbert space H of complex valued
random variables. A second, although similar, approach is the one proposed
by Zasuhin and developed by Wiener and Masani [29]. In their approach the

vector valued random functions themselves are treated as elements of a

Hilbert space 22_. However, instead of using the normal inner product on
Adf




~this space a matrix valued inner product called the Gramian is introduced.
.The results obtained by each approach are almost the sane, since EZ is
essentially just B9 . It is this latter approach of Wiener and Masani's
that is reviewed in this paper.

Chapter I sets forth the basic definitions of the univariate theory and
presents the necessary material on matrix integration theory that is required
throughout the paper.

In Chapter IX the fundamental Hilbert space £2 is introduced and its

1

properties developed. The time domain analysis of multivariate discrete
parameter weakly stationary (henceforth referred to as g-variate) processes
s presented, including the multivariate extension of the classical Wold
decomposition theorem.

The spectral theory of g-variate processes is developed in Chapher III,

. )
together with a characterization of full rank processes in terms of their
anE E

spectral measures.

Y

Chaptexr IV contains an ocutline of the extrapolation theory of {ull rank

{

processes as developed by Wiener and Masani [30] and Masani's [19] subsequent
generalization of these results.

The first half of the chapter contains various soluticns of the extra-
polation problem together with the required material on minimal g-variate
processes., In the latter half, methods of finding the generating function
of a g~variate process are presented.

Chapter V concludes the paper with a discussion of the unsolved problems

encountered in the study of degenerate rank pirocesses.




CHAPTER T

MATHEMATICAL PREREQUISITES

UNIVARIATE CONCEPTS

The following univariate definitions are fundamental to the entire

papex.

Definition 1 A probability space is an ordered triple (X,B,p) where X

is a set, B is'a Borel field of subsets of X , and r is a positive,

real valued, countably additive set function defined on B with PX) = 1.

Definition 2 A random variable ' f on X is a complex valued function

defined on X which is measurable with respect to B .

Definition 3 A stochastic process (on X) is a family of random variables
{£: t e r1}. If T = R , the reals, the process is called a continuous
parameter process; if T = N , the integers, then the process is called a

discrete parameter process.

Definition 4 A weakly stationary discrete parameter stochastic process

{£ : ~» < n<w® ig a process satisfying the following two conditions:

1y Ef = _Jf {=m)Plax) = 0O Vn



2 | -
< e =
2) Elfnl © ¥Yn , and Ef £ =Ef

m+hfn+h;,vn'm’h £ N.

[
7]

The function- c{m,n) = Efﬁf called the covariance function of

n
e the process {fn: -® < n < @} , If the process is weakly stationary,
then c(m,n) = c(m~n,0) =T . -
m-n
Definition 5 Let the process '{fﬁ: - < n < ©} be weakly stationary.
. i
The associated sequence {Fn: - < n < @} is called the covariance
sequence of the process {fn: ~© < n < ®} ,
‘Lemma 1  Let {Fn:' -® < n < ®} be as above. Then
i) To =0,

iy I =T, Veen,

iii) lPtl =T, Veen, ' S

iv) {Fn: -w < n < ®} jis a positive definite seguence; i.e. th,tz,...t
n n

1eeC , X L. c r >0
n

in N and any complex numbers c,,c 521 k%1 jck tj_tk

1°72

Proof Parts i) and ii) are obvious from the definition. Part-iii)
_is a particular instance of the generalized Caﬁchy Schwartz inequality
in the Hilbert space L2(X) discussed at the beginning of Chapter 2.

Part iv) follows from the relationship
n n — n n ~ ’ n 2

' T = z £, = L. =20 .
521 kg1 5% €5ty s21 kk cjckEftj e = Bl oyt

Under the usual interpretation of the indexing set as time, saying

that a érocess ‘{fn: ~© < n < ®} is weakly stationary is equivalent to




saying that the first and second moments of the random variables are

independent of time.

Examples

An uncorrelated process. Let {fn: ~® < n <o}l bea sequence of

independent identically distributed random variables on some probability

space, each having zero mean and unit variance. Then <f3,k) = Ef_fk =
J - 3
6,} . and hence {xn: —o < p <o} ig a weakly stationary process. Any
jk !

weakly stationary process having a covariance sequence of the form

Pt = Stok » where k 1is a constant, is called an uncorrelated process.
A WOVing average process. Let {fn: -~ < pn < ©} ba an uncorrelated
- o - E a .
process, and let {Ak} be a sequence of complex numbers satisfying
Ke=m00 ‘
® oy 12 -
) w;Ak[ < oo, Let the process {gr: - < p < ®} he defined by
ke - ) *
® .
g = 4 A f . The existence of g follows from the square
n =0 Tk n-k n
summability of the sequence {A,} . Then c<(j,k) = _ZX NA. L
- . k . N B 5 Ny
koo .
which is a function of only -k . Thus {g : =-® < pn.< o} is a weakly
n , /
stationary process. Such a process is called a moving average process.

MATRIY INTEGRATION THEORY

The material in this section is necessary for the study of multi-
vafiate processes. Only the statements of the following theorems and
lemmas are included here, sincé their proofs are not essential to the
multivariate theory. For their proofs and a mére detailed discussion of

. . N - - e - . A~
this material, the reader 1is referred to Chapter 3 of Wiener and Masani [ 29].




The following notation will be used. If A is a sqguare matrix, the
- * . - . . \
symbols AA, TA, and A will denote the determinant of A, the trace of

A, and the conjugate transpose of A respectively. The symbols C, D+ '

and D_ will denote the sets 'zf = 1, !zl <1, and 1<

Z

= in
the complex plane. The definition and important properties of the Hardy
class H

¢ ~ can be found in Wiener and Masani [ 29].

Theorem 1 i) The space of g %X ¢ mwmatrices with complex entries is a

Banach algszbra under the usual algebraic operations and either of the norms

L.U.B. "AFj
Al = A=l - Banach norm
2l = ko 15
U P = S S S
IA]E = [taa ]* = [igl jél Aij 1 - Buclidean norm.
ii)  This space is a Hilbert space under the same operations and the
¥ 4 4 -
inner product (A,;B) = TAB = L. .L. A..B,.
i=1 j3=1 13 ji

However, both the Banach norm znd the Buclidean norm generate

eguivalent topologies on this gpace, since }A} = ‘A = V@‘AiB . In

B B

this topology, A A as n > if and only if each entry of An tends

to the corresponding entry of A as n > <« ,

Definition 6 i) L@"6 > 0, is the set of all g x g mnatrix valued

functions F = [F..] on the unit circle with complex valued entries

1]
F,. in L, .
ij §
ii) LOo is the set of all ¢ -x g matrix valued functions F on the unit
circle with complex valued entries F,, in L_ , that is, each Fij is
5 -

essentially bounded.




Theorem 2 1) ¥ e Ld' § >0, if and only if F has measurable entries

and !FlE € L@ . LG’ § =1, is a Banach space under the usual zlgebrai
operations and the norm IFIG = [2ﬁ é”lF(e)i d8]1/6

ii) L2 is a Hilbert space under the usual operations and the inner
product ((F,G)) = EE-IO ‘(e)G*(G)}de , Wwith the corresponding norm
being [IF]l = V((F,F)) = ;1712 .

iii) Fel if and only if F has measurable entries and IFI is

“0oC

E

egssentially bounded. LM is a Banach alecebra under the usual algebraic

operations and the rorm |F}oo = ESS. L.U.B. ]P(O)I
0=6 =2n

Definition 7 The Lebesgue integral of a function F € L =1, 1is

defined by IZﬁF(O)QG [f F O)d@] iy

Lemma 2 i) If Fe LG and G € LGI ;, where — + — = 1 , then FG
¢ 8 “ 1 1
ii) If Fn +- F € LG and Gn > G in LG' as n > ® ., where — + =
8 $
L P2 ms o ik oan o 22T A
then JO En(U}un(G)CU ﬂ'JO F(U)G(U)do ag n 7 «©
iii) 1f Felg, 6>0, ana cel,, then v el
i - ' ) ! . >
iv) If & > &8 > 0 , then Lw C LG' C Ls and lFlw > |F 6' > ILIG .
v)  If FEL@ § >0, then AFCLG/q.
It follows from iii), with G(9) = e_nleI , that every function F
L@' § > 0, has an n'th Fourier coefficient
2T -nif ‘
A = SR a0 .
n 0
If A = [A?.] and F(B) = [F,.(®)] , <then A?. is the n'th Fourier
n ij ‘ ij ij
cogfficient of the function P, J(6) .

in



The following theorem gives the matricial extensions of some well krown

results of Fourier analysis.

Theorem 3 i) Riemann Lebesgue lemma. If An is the n'th Fourier

coefficient of F € LS’ §=1, then A >0 as n > ®
n

ii) If An is the n'th Fourier coefficient of F € LQ, then
b 2 ¢ Lf th ¥ 19

I "t reo suc ‘hat <
nE oo An . . Conversgely, if the An are such that ngwwlAn g < ,

then there is a function P € L7 such that A“ is its n'th Fourier

coefficient.

iii) Parseval's identity. If ?P,G ¢ LZ and have n'th Fourier
coefficients A_ and B respectively, then m£f2ﬂF(6)G*(8)d8 = 5 AB*.

n n ' 21 0 n=-%n n
iv) Convolution rule. If F and G are as in iii) then the n'th

o0
. - - . *
Fourler coefficient off PG 1is .

k=- &k n-k

Definition 8 if F € Ll and An is its n'th Fourier coefficient, then

the functions defined by
i Ea z "
F (z2) = L A4 2 z €D and F (z) = A 2z z €D
4 (2) n=0"n" + ! e ! -

are czlled respectively the inner and outer functions determined by F

E?eorem 4 If F ¢ Ll and the values of F are non negative hermitian,

on D , and AF(elﬁ) €

' ' " ‘ . c .
2) Either AF+(Z) vanishes identically, or log AF € Ll on C and
- lOg!AF (0) { <’.,,£|:.‘. 21“100'/31?(@16) 1(16
A | o



Definition 9 Let F be a g x q matrix valued function on [gz,b] .

Then - F is of bounded variation if and only if the set of variations

n
{kETIF(Xy) - F( } of F over different finite partitions

kal)IE

{XO'XJ""Xn} of [a,b] is bounded above F is non decreasing if and

only if its values are Hermitian and x' > x implies that F(x') -~ F(x)

is non negative Hermitian.

Lemma 3 i) o= [F;4] is of bounded variation on [a,b] if and only
~J

if each Fij is of bounded variation.

ii) If F = [Fij] is non decreasing and bounded on la,p] , then the

Fii’ i=1,2,...q are real valued, non decreasing and bounded on [a,bl .

The F,., 1 # 3 , are functions of bounded variation, in general complex
i . : 1

valued.

It follows from the abov

{1

lemma and known properties of complex valued

P PP - R e ] TI e, s dode
PO R NS L S WA Vald Lol niit ALLRLVY L L CALliNs

3
]
—
6o
[a—
~
s

SR ™
1z

L1k £’

’r.'-
O
e

bounded variation on [a,b] it has at most countzbly many points of

- . . . . T " o
discontinuity, all of them eve simple, and that F exists a.e. and is
in Ll "on fa,b] .

Definition 19 Let ¥ be of bounded variation on [a,b] . The furnctions

ad 5 ,
F, F , and F are defined as follows:

Fo(x) =¥(a) + JF

Fat+t0) -~ F(a) + a<§<XF(t+O) - B (t-0) + F{x) ~ F(x-0) ,

las]
»
i

v

PP(x) = Flx) - Fo(x) - FO(x) .



© 10

These functions are called the absolutely continuous, discontinuous, and
singular parts of F respectively.

N

An immediate consequence of this definition is the following lemma.

Lemma 4 i) (F7) =TF a.e.
d [}
ii) () = 0 except at the points of discontinuity of F .
s ]
iij) (F7) =0 a.e.
iv) If the same superscript notation is adopted for the components of
a a a d ' s s
F = = . T = . .
, then F [Fij], F [Fij]v and F [Flj]

TheoreqLé_ If F is non decreasing and bounded on [a,b] . then so are

d
Fa, F~, and FS .

Definition 11 Let F and G be g x g matrix valued functions on

[a,b] . Let T ='{x0,xl,...xr} be a partition of [a,b] , iﬂi =

*x . ]
max {xk-xk_l: k=l,2,...n} , and T = {tl’tz""tn} . Wwhere’

< < =
xk-l = tk _‘Xk for each Xk 1,2,...n .

* n
i) 1f, as |7| ~ o0, s(F,G,m,T) = kglF(tk){c(xk)~G(xk_l)} tends to a
" limit L , then L is called the left Riémann—stieltjes integral of F
. cL . b

with respect to G from a to b , and it is denoted by faF(x)dG(x) .
ii) The right Riemann-Stieltjes integral fsz(x)F(x) is similarly
defined.

iii) 1If, as |m| >0 s'(rré'w ™) = g Fit ) {G(x )-G( Y IF* (t))
S s n ' 1G] = P G )Gl X
tends to a limit L ; then L 1is called the bilateral Riemann-Stieltjes

integral of F and F¥ with respect to G from a to b , and it is
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denoted by ffF(x)dG(x)F*(x)

Theorem 7 i) If F is continuous and G 1is of bounded variation then

. b
the integrals faF(x)dG(x),

jidG(x)F(x), and sz(x)dG(x)F*(x) exist

ii) ng(x)dGl(x) + sz(x)dG2(x) - ng(x)d(Gl(x) L6, ()
ii1) IEF(x)dG(x) + deF(X)G(X) = F(B)G(b) ~ F(a)G(a)

iv) If G(x) is absolutely continuous on [a,b] (that is, G(x) =

o0

G (x)Vx € [a,b]l) then sz(x)dG(x) = IEF(X)G'(x)dx

Definition 12 Let G be of bounded variation on [0,2r] .  Then the

n'th Fourier Stieltjes coefficient of G 1is defined to be

1.2 -ni6 1,2 ~niB A
A =1 — A (6 e e s G . {
A =5l e aG () [zﬂf e d lj‘O)J

Note that the existence of & follows fyom the part i) of the

. ) ~-niB
previous theorem with F(x) = e T

21 ~nif

Lemma 5 If I is of bounded variation and for all n fo e ar(g) = 0 ,

then F is constant valued.

27 ~nib
In particular, the above lemma implieg that if foﬂe nJLdF(@) =
27 -nif . .
fO e dG (6) for all n , then F(O) and G(B) differ by a constant

matrix.
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CHAPTER II

MULTIVARIATE STOCHASTIC PROCESSES

In this chapter the structural framework for the study of univariate
processes is first presented, and then the multivariate generalizations are
developed.

The approach taken to the multivariate theory is that which was
originally proposed by Zasuhin in 194) (see Jang Ze PeiADQ]) and subsequently
developed by Wiener and Masani [29] in 1958. A similar approach which

doesn't rely as much on square matrix analysis can be Ffound in Rozanov [26].

COMPLEX VALUED RANDOM VARIABLES

Let ({¥X,B,P) be a probkability space and let L2(X) denote the set of
all complex valued B measurable functions f on X for which
L2 . o .
fX]I\t)] P(dt) < » , i.e., the set of all random variables on X having
finite variance. Tt is a well known fact (Rozanov|26]) that L2(X) is a

Hilbert space under the usual operations and the inner product (f,g) =

e L
2

fxf(t)ajf)P(dt) » with the corresponding norm being ||ffi= (£,£) ° .
The following notation will be used. If A and B are subsets of

L2(X)  then A+B will denote the set of all functions f+g where £ € A

i

and g € B . O(fj)jET wiil denote the subspace (that is, closed linear
manifold) spanned by the functions £, for Jj e J . The orthogonal

J
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projection of a function f onto the subspace M of L2(X) will be
written as (flM)

A weakly stationary discrete parameter stochastic process is then a
sequence {fn: - @< n < ®  in L2(X) which, from a geometric point of
view, can be thought of as a single parameter curve in L2(X) .

The basic space studied in the analysis of wmultivariate processes is
similar to the space L2(X): however, the elements of L2(X) are replaced
by vectors of random variables, ¢ x g complex matrices are used instead

of complex coefficients, and the inner product is replaced by the matrix

valued Gramian inner product.

MULTTVARTATE RANDOM VARIABLES

Definition 13 £ _ = ﬂz(x) is the set of all ¢ dimensional column vector
L

) . ) ' i .
valued functions ¥ on X whose components F, i

it

1,2,...q axe

elements of L?(X) .

It follows easily from the properties of LZ(X) that ﬁ? is a

Hilbert space under the usual operations and the inner product

d i
{(F,G)) = [ L FT()GT ()P (L) .

1 .
The corresponding norm is [|F|] = ((F.7))* . A sequence {F : -~ ® < n < o}

n

is said to coverge to F in Kz if and only if HFn—FH + 0 as n > @,

This is equivalent to Fz + 7 in LO(X} ag n > ® for sach 3 =1,2,...9.
, Y 2 :

Definition 14 If F and G aré¢ in ﬁj . then the matrix

N 2

F,6) = [FT,6N)] = [fol(t)Gj(t)p<at)]
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is called the Gramian of the pair F and G .

i

L
Note that ((F,G)) = T(F,G) and |[F| [1(F,F)]*? . Aalthough the

concept of orthogonality already exists in £ the following definitions

7 r

which are bhased on the Gramian rather than on the inner product are used.

Definition 15 Let F . F,and G be in £2 . Then

i) F l_G if and only if ({(¥,G) = Q .

ii) F is a normal vector if and only if (F,F} =1 .

iii) {r.: j € J} is an orthonormal set if and only if (F ,F ) = § I
j ' m T n mn

Definition 16 i) A linear manifold in 22 is a non empty subset M of

22 such that if F, G ¢ ¥ then AF + BG ¢ M for any ¢ x g complex
matrices A and B .

-~ 1d) A subspace of £ is a linear manifold which is cloged in the

AV

o Y P L L YA B S S P P
CLLOgY LJr.:J,J_t:J_aLt: b'y the norm.

4
fah

iii) The subspace (respectively linear manifold) spanned by a subset M

of 32 is the intersection of all subspaces (respectively linear manifolds)
containing M . As before, the subspace spanned by the set {Fj: j e J}

will be denoted by O(Fj)

jed

iv) If Mj C 22 for .j £ J , then ng M_j will denote the set of all

Fj , with Fj € Mj , which converge in the topology of the norm.
The following lemma is a trivial conseguence of the above definitions.

o - < ey X - . . Lt ot
Lemma 6 i) (G,F) = (F,G) , and (F,F) is non negative definite.
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ii) If F - P and G -G as n >, then (F ,G ) + (F,G) .
n . n n n
n m n mn
iii)  (,&.A,F,,.%.B.G.) = .L. .L. A, (F,,C)B" .
i=l1i"i =1 373 i-1 3=171 71 79

iv) ¥ | ¢ if and only if pt l_cj in L,(0) , for 1,3 =1,2,...q .

V) F 1is a normal vector if and only if its components form an crthonormal
set in L2(X) .

vi) Thé set {Fj: 5 & J} is orthonormal if and only if the set of all

components of all the F,, 7 € J forms an orthonormal set in L_(X)

-

vii) Let {Fﬁ: - ® < pn < ®} be a sequence in Zo satisfying (F_,F_) =
- E¥Y i
San . If the matrix K 1is invertible and one defines Gn by Gn =
k]
SN " » {re .
Vi.'Fn . then the sequence 1Gn: -~ © < n < ®} is orthonormal.

The proof of the following lemma, although lengthy, is of a routine

nature,

Lemma 7 1) M is a subspace of £2 if and only if there is a subspace
M of L2fX) zsuch that M = u? | The subspace M is the set of all
components of all elements of M .

ii) Let M be a subspace of K2 and let F ¢ £2 . Then there exists a

unique G ¢ M such that |[#-G|| S |

r-4|l for all H e M . Tor this G,
i . . , .
G = (F iM) , where M 1is as in 1) above. A function G & M satisfies
this inequality if and énly if  (F-G) L M.
1ii) If M and N are subspaces of 22 and M < N , then there exists
1 i 1
a unigue subspace M of KQ such that N =M+ M and M i_M .
iv) Let {G.: j € J} be a subset of £_ . Then ¥ € 0(G.). if
‘ 3 2 jed
and only if F = lim Fn , where each Fp is a finite linecar combination,

n*oo

with matrix coefficients, of the G,, j & J .
J



i
X Let = C and M = O(F7). C L (x) . £ M i i
V) et M G(Fj)jEJ £2 an ( 5 jeq 2\Y) If M is as in

= |
i) above, then M = closure .&. IN° .

Definition 17  The function G of part ii) above is called the orthogonal

projection of F onto M and is denoted by (F‘M) .

The last part of lemma 6 illustrates one way in which the multivariate

Ermmgr A
from tb

Thereas in the univaritate Lueory

any orthcgonal sequence in L2(X) can be normalized, this is not in general

passible in the space 32 . If the matrix K of lemma 6, part vii) is not
invertible, very little can be done {see however Masani [21]). Therefore

it becomes necessary to take Fourier expansions of functions with respect to
S ¥

gequences that are orthogonal but not necessarily orthonormal.

Theorem 8 Let {Qp: - ® < n < ® be a sequence in 22 with (@m,@n) =

o0

6 K, K#0. If FP= 2 Ag, and G = .. B.¢. , then

mn J==* ]3] J==* 17

@ * 12 =y J2 2
; = ) = 7 3 { = .

i) (F,g) j:4__00733“‘.KB3 R jé“mlAj- lﬂ <, and (F ) = AK

‘s I . X . ; . o
ii) The linear manifold .2 Llel)  is closed and identical to G(@.)j o *

3 J , =

iii) For any H € Kq there exist matrices Cj such that (H|3(¢j)§;mm' =
%}

. C.o., and H,o@ = C K .
j2e075%5 et n
Proof i) This follows from the linearity and convergence properties of

. . . . 2 . .
the Gramian as given in lemma 6; noting that [|F{l” = 1(F,¥) gives the

. (2 ;

equation for |IF[|®-. If one takes G = ¢_ s then B = SjnI and hence
B J

(r,o ) (F,G ¥ A KB* = A K

L'@n = (F,G) = .o A, 5 = A

j Lt 0O
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[ee) o0
ii) It is easily seen that ._Z;Mooa(goj) - O(q)j)j‘~uoo . The proof of the

trices,

mma on Hermitian m

J
reverse inclusion, which reguires a le

o

can be

{

found in Wiener and Masani [29].

~ [ee) e o] ! o
iii) Let H = (u]o(e.)., ) . Since 0ol(e.). = .3 olp,) by part ii),
3 3= 3 J== e J
~ o0 ~
there exist matrices C, such that H= ,f C,p. and (H,p ) = C K .
] j== 3] n n
~ [ea] ~
By part ii) of lemma 7 (H-H) _!L_G(q)j)j=__00 ; hence FH~H,@n) = (H,@n) -

(H,@n) = Q . Thus (H,@n) = CnK .

TIME DOMAXN ANALYSIS

Lre) 2
Ji

"ne following is the multivariate generalization of definitions 3 and 4.

Definition 18 A g dimensional discrete parameter weakly stationary
stochastic process (or eguivalently, a g-variate process) is a sequence

{F : =<« pn<w in £_ having the property that the Gramian (¥ ¥ ) =

n 2 . m n
Fm L= [Yij(mwn)] depends only on the difference m-n and not on ® or n
separately. The seguence irn: - < n < o ig called the covariance

sequence of the process, and T is called the covariance matrix for lead n.
: " n

The study of multivariate processes as seguences in ﬂz is referred to

as time domain enalysis. This is as opposed to spectral analysis, which is
exanined in the next chapter.

Every g-variate process '{Fn; ~ o < n < «} has associated with it
g univariate weakly stationary processes, since (Fi,Fi) = Yjﬁ(mmn) . The

coverse however ig obviously false.

The next lemma is the multivariate extension of lemma 1.

§

Lemma 8 et {Tn: @ < n < ©} be the covariance seguence of the g~
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. variate process {Fn: - o< n<® . Then
< 1) FO >0, i.e. the matrix FO is non negative definite,
L} * )
iy T =T,
-n n
iii) The sequence '{Fn: - © < n < ®} is non negative definite: if
Cl,Cz,...Cn are any n -q x g complex matrices and tl’t2""tn are any
n n *
integers, the Lo .z.c.T C,.=0.
gers, Tois j=171 ti—tj j

groo;ﬁ Part i) follows from lemma 6, and ii) is obvious. For iii), let

Cq

X be any row vector in . Then
n n % % n n % % n 2
L .. C. C =, L. xC, (F C.x, = B|,L.xC.F =z 0.
x(:|.=l ji 1rt.—t. .)X 151 j=ly 1(Ft.'Ft.) ng l1=lX it,
i3 i 73 i
Let {Fn: - @ < n< »} be ag-variate process. It is well known

(see Rozanov [26]) that there exists a unitary operator U on L2(X)

3

e 3
t =
satisfying UFn Fn+l

for 3=1,2,...q and any n . The operator U

may not be unique: however, if V 1is another unitary operator satisfying
the above conditions then. U and V will.égree on the subspace of L2(X)
spanned by {Fi: -~ ®< pn<® J= l,2,...q} . Since this ig¢ the largest

subspace of -L2(X) that is ever considered, U can then be considered

unique.

Definition 19 The operator U is called the shift operator of the process

{F : =~ ®< n< o , and one writes UF = F .
n ‘ n n+l

Definition 20 Let {Fn: - © < n < ®} be a g-variate process. The sub-

space of 22 SPanned by {Ek: - © < k < n} -ié called the present and past
t,g ' ) o ) . .
of Fn , and is denoted by Mn . The subnpace M__ = ng—w Mn_ is called



19

00

the remote past of the process, while M = closure U M  is called the
_ oo n=-% ' n

space spanned by the process.

The present and past of Fi of the component processes '{F]: - @ < n <
will be denoted by Mi , which is a subspace of L2 ¥) . The spaces Mim
and M’ are defined znalogously to M and M .

oo P ee) or

The proof of the next lemma is clear from the above definitions and

lemna 7.

Lemma 9 Let {Fn: -~ © < n < ©f be a g-variate process. Then
i M cM CM c M
l) ‘4”00 i .n i 1 lﬁ(;o ¢

J J y J
ii) M M’ CM Cc M for = 1,2,...

o ‘N 1 J g4 q
‘e n
1 UM = N

) l‘xk i,l’k—?-n ’

n

iv) U (r, M = (P, )
( jl x) ( 3411'4k+n !
. o 3 . 94 . .

V) G ¢ Mn if and only if G- € closure j;JMn for 3 =1,2,...q9 .
Definition 21 The g-~variate process {Fn: - © < pn < % is non determin~
istic if for some n , Fn |4 Mn L The process is minimal if for some 1,

Fp 00 o

(L

Since the process {Fn: - ® < p < @ ig weakly stationary, it follows

that F M
n g -1

for some particular n if and only if F_ Z Mn*] for all

n . Similarly Fn o4 O(Fk)k#n holds for some particular n  if and only if

Let {r : = ©<n < ® be anon deterministic process. Then Gn ==
n
Fo- ¥ ;M 1) ig different from O for every n . Intuitively, this
n n' n-1
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means that no matter how much information akbout the past behaviour of the
process one is given, it is impossible to linearly predict exactly the

behaviour of the process at the next moment in time.

Lemma 10 Let {Fn: -~ © < n < ® and {Gn: - © < n < ®} be as above.
Then
i) {Gn: - © < n< »} is a g-variate process with the same shift operator
as {F : =-®<n<w ,i.e., UG =G
o 1n n+y
ii) The process {G : =- ® < n < =} is uncorrelated: (G_,G ) =6_G ,
n n'n mn

G = = B .
where (GO,GO) (Gn Gn)

Proof i) (G .G ) = (Fm~(Fm|Mm_l),Fn—(Fn[Mn_l)) =

Y1) = (F (F

m+h VoF ™ (F lM

n+h n+h »)

at ol m+h l Mm+h-— 1

h h w
WlF ~ M )1, U[F -G M n+h-1

=(G

m+h'Gn+h) ) UGn = UFn - U(Fn[‘./in—l) =F

(Fn+lan) - Gn+l :

n+l
iL3 O )

One may assume without loss of generality that m < n . Then (Gm,Gn) =

!

(Fm-<Fm]Mm_l), Fn-(pn]Mn_l)) . since (Fm!Mm_l) €M _, €M /it follows

‘. n n
ii) If m=n, then (G ,G ) = (G ,G) = (UG, UG, = (G.,G.) =38 G .
. m n n n Y vu mn

—r : c : < -
that Fm (rmle_l) € Mm Mn , Since m _ n . From lemma 7, H (H[S) l_s
for any H € 32 and any subspace S of 22 .  Hence

(F = [M ), F-(F [M 1)) =0. Thus (gm,Gn) =0=6_G.

Definition 22 Let the g-variate processes V{Fn: - ® < n <o and

‘{Gn: - ® < n < ®©} be as above. The process .{Gn: - ®<n <o g
called the innovation process of the process'{fn: - < n < o}, The

Gramian matrix G = (GO{GO) is called the prediction error matrix for lag 1.
ot




Definition 23 The rank of the g-variate process {Fn: - © < pn < ®  ig
.the rank of the prediction errcxr matrix for lag 1, and is denoted by o
If p =g then the process is said to be cf full rank: otherwise, it is of

degenerate rank.

It follows that a g-variate process is non deterministic if and only if
c=1. If p # g . however, then the prediction error matrix for lag 1 is
not invertible, and hence, by previous remarks, the innovation process cannot
be normaliszed. Thus problems arise in the multivariate theory of degenerate
rank processes that do not arise in the univariate theowry.

The following definition and theorem delineate those nrocesses which

<

are, in a sense, the most non deterministic processes of all.

e n

Definition 24 A process {p : =~ o< pn < w isg regular if and only if

(FOian) > (0 as n > ®w .,

Note In the literature there are cases of conflicting use of terminolcgy,
and also cases of different ternms used for the same concept. For example,

Dooh [4] uses the term regular in a sense different from the above. in

-

other pape: such as Masani [21] a process that is regular hy the above

definition is called a purely non deterministic process. Conflicting
definitions of rank algo exist: see chapter 4.

The proof of the following theorem can be found in Wiener and Masani [29].

Theoream 9 The following conditions on a g-variate process are eguivalent:
i) {¥ : =~ o< n< o 1s a regular process,

I



Proof i)  Since G_ = F - (F IM

22
ii) {Fn: - < n< o} is a one sided moving average process, i.c.,
b :
o= LA G o where {p ,0 ) = 0 K
n k=0"k'n-k ' Ym’n’ mn

iidy M = {o}

The next lemma is the justification of the name innovation process for
the process {G : = ® < n < ®} , It is the basis for the Wold
il

decomposition theorem.

Lemma 11 Let {Fn: ~ © < n < ®} be a g-variate process, and let

{Gn: - ® < n < ®} be its innovaticn process. Let Mn be the present

and past of . Fn , and let Nn be the present and past of Gn . Then

3 ~ . n
(M N

1) M= Mgt N Mo, LN, -

n (A

i) if m<n,Mn”—M + 0(G

) and M cM , ¢ €M for any %

L k k k-1 k-1 k k
r P €] C 4 . [ the thes al ,‘ o = B - -
Thus Hm ¥ J( k kum-l] hn On the other hand, ]n l*n (Fn Mn 1)
(r L =G + (P ] ~ I + e . Thus = +
nmsfl-wl) n ( n[Mnml) & qnwl (G L)]f =+ 1 = Mn Mr1~-l
J(C k“ . Continuing this decomposition, Mrl = Mn-—2 + 0 (Gk)k:nwl = ...
= M+ . Since G =T _-(¥ |M s | M for any k .
M O(Gk)k ol since G, = T, - (F! Mkml) r Gy 1 . _, for any
sarticular [ 3 M ) e and oM .
In particular, Gm—+-l ‘l— H"m ! C’m+2 -l Pl Mm : poan . Gn l Mn‘—l m
Since azch Gk ;, k = m+l,...n is oxrthogonal to [‘»"‘im , 1t follows -that
n
O (G
Mm -l- ( k“k=m+1
ii) Let HeM . Then H ¢ M for each n . Since M ‘ G , it
~CO n n — n+l
follows that h_[ G for esch n Hence H ‘ oR (e )m = N Because
4 LW Llea A - Jn L. - O L . . - L Y k:—UC \'OO ° <
.this is true for every H &M _ ., M “L NOO . Since (J £ M~ and M c
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M it follows that M ot M oM . To prove the reverse inclusion, it
n - n n
will be shown that if 5 € Mn , then (Hiﬁum+ﬁn) is just H . Since
/ I H < ‘ : - £17 ;  § — 3z S !xl
M o i-Nn ;, by an earlier lemma \Hlem +Nn) == (HlMNw; + (H‘Nn) .
' n n
ance = - 3 M - 1A 1 > - 3 (TIIM +
Hence @M = Lin @M) + lin (lo(G), )= lim O M+ (6 )y L)
Fipee 00 m=- mr=
= 1im ({H|M ) = (H{M) = H , the second and 3rd equalities following from
) n n

Pt aeie™)

- i .v B oV \
part i) above.  Thus Mn M+ hn .

. . P . ‘ v -~ Bl e a e o om
e 18 Lhe wmuliivariale extension of the classical Wold

decomposition theoram. Oniy an outline of the preoof given by Wiener and
Masani is given here. For details, sec Wiener and Masani [209].
Theorem 10 (Wold Decompogition) et {F : = o < n < o} be a g~variate
n
process and let {6 : -~ ® < n < ®} be its innovation process. If M
n n

and Nn are the present and past of F and G respectively, then

* n n '

i F =T \ vhere = (T i v o= (F
i) N Jn + Vn , where U (Fnlh J l_V, (F IM_‘)

n n Il nt' —w »
ii) {Un{ ~ @< n <ol and {Vn: - © < n < o} are g-variate processes.
iii) The process {Vna - oo < n < » ig deterministic, and Ffor each
n’O(Vk)E:~m = M_. '
iv) The process {U ¢ = ©<n <ol jig regular, and can be written as

n

the following moving average:

U $ A
n k=0

G I w5 |n G
"k -k ! n" 7 k=0""k

4
™
o

where as before G = (GO,G ) and the Ak are matrices satisflying

AkG = (UO'G-k) - (FO’G

Proof Part i) is obvious from the previous lemma, while the verification
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- of ii} is a simple consequence of the linearity of the Gramian inner

" product., Part iii) follows essentially from part iii) of lemma 7. Since
' n .. ®
€0 i = LA .G . 3 i
Un (Gk)k=-w , it follows that U kZO okCn-k . By use of the shift
operator U of the processes '{Fn: - ® < n < ®} ang {Gn: ~ © < n < o},

it can be shown that the coefficient Ank is independent of n . That the

process {Un: - ®< <o} is regular follows from theorem 9.
Corollary If the process {F : - ® < pn < o} is of full rank, then
—_— il
the process {Un: - ® < n < w} can be represented as
52 X
U = L C =% <
n = kEokMn-k ”Un“ kz—-OlcklE
where {Hn: "= o <n < ® js the normalized innovation process:
T : Y . ‘ :
= = = G = .
Hn G Gn ' Ck (UO,H_k) AkG where Ak 1s as above, and Aoﬁf VG
s ' . 16 m L ki6 | ) .
Definition 25 The function &(e” ") = kEOAkG e is called the generating
function of the process '{Fn: ‘= < p < o}

‘

The converse to the above theorem is not true. Robeftson [24] has an
example of a.decomposition of a process into orthogonal regular and determin-
istic prdcesses which are not the component»p;ocesses in the Wold
decomposition.  He has also given necessary‘and sufficient conditions for
such a decomposition to in fact be Wold's decompésition (see also‘Jang Ze Pei
[10]) . |

The importance of the Wold décomposition theorem cannot be overestimated.
In the study of prediction theory it says, in effect, that the only kind of

processes which need really be investigated are regular processes.

i
i
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Examples

correlated q«vaYndLe Process. Let X Dbe a non negdtlve Hermitian

!

. . i R . . .
matrix, let {f: © < n < w} Ppe an uncorrelated univariate process in
n

LZ(X) for each i = 1,2,...0 , such that any two of these processes are

uncorrelated with cach other except at the same time, i.e. £ £~ f =

- T
12 .
S ’9"f2] , then {Fr: - < n < ®} is an
I 1

mn i n n n
uncerreloted g-variate process with (P 7 ) = ¢ K .
: m' n mn
Moving average proccss. The simplest example of such a ¢g-variate process

is that which is constructed from g-~variate moving averages and placing

o . . C . i
them side by side as in the above exawple. et {f : =~ o< n<ew} bea
‘ n
- PO . - - el o 5 I‘i
univariate moving average process for each 1 = 1,2,...q :+ £ =
C de ¥ . n
; . 2 . .
@ (i) (i) ® (i) y” (i) (4
L c ¢ o Ic l < and {g g )y = & K K > 0 .
e O R L ! Jn I mn  ii 7 OTEA
. . i .
If the uncorrelated univariate processes {g ¢ = ®© < n < ©} also satisfy
(1) (D ‘
E g g7 =0 K,, then {F_: =~ <n < ®} is a g-variate moving
m n mn o ij n :
T
% ' (1) (2 (q) 7T
average process: F_ o= 2 C. G where F = [f 77,1 B
g n ¢me00 k n-k n [ n ‘n ' n f
D (2) ()T (1 (2 () % 2
o r (‘ =+ o ) - ~ q ! T o
G g, g T pe g ] Cp diag (c e ey ) ké_m’cy - .
_— -+ X N .. [ .
Tt folloysthen that (¢ , 7 ) = X C . KC .+ since (G ,G ) = ¢ K .
m n J==% 7 n-mi) m n mn
A more interesti le of a g-variate moving average process 1s
the following Le -~ < p < ® be as in the above
example, and define the proces £ t - ©<p <o} ag follows:
(i) @ (1) (1) (ep)
£ = 0 i=1,2,...g-1 and £ * =
n ksl n-k re 4q © n
¢ (@) . @ ‘ . :
Lo, g . Then ¥* = . DG where F and G are as above
kem=-oo "k n-k n k=07 n-k n n
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1 2)
c() c( 0O .« < o .. 0
o C(2) (3) : o 0
) {g-1) (@)
. ¢4 ¢
(@)
0 e e e e e e e e . 0 c .
Thus {FD: ~ o < < @} g a g-variate moving average process.
Processes of arbitrary rank. Consicer the example of an uncorrelated
process as given ahove. 1t follows from lemma 7 and the condition
(1) () . - - : ¢
E £7°f = § K,, thet (F._ M) =0 if v > 0 . Thus if
m n mn o o1j v 0
{G : = o<y <®» is the innovation process of the process
n = :
{Fr: - oo < p<cw , then G = F R Thus the prediction error matrix
1 n okl =

for lag 1 of the process {Fn: -0 < pn < o g just (G ,GO) = (I

3 F) =K

]
Thus the rank of the process {p+ - o< n <ol is just the rank of the

matrix KX and hence through suitable choices of K processes of any given
F ) Lo g et

rank can be constructed.
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CHAPTER III

SPECTRAL ANALYSIS

SPECTRAL THEORY

In this section a more detailed investigation will be made of the
shift opérator U of a q—variaté process. This will lead tobthe study of
the space L2,m Qf fuhctions on C which are square integrable with
respect to a, particular ma£rix valued measure M closely reléted to U .

It will then be shown that this space L is in fact isomorphic to Moo N

2,m
Let U be the shift operator of the g-variate process '{Fn: ~ o < < ®},
It is known (see Wiener and Masani [29]) that because U is unitary it can

be written as

om i
f’"el

U= 0

% ae) ,

where E 1is a projection valued measure over ({o,2m],B) ,- B being the
class of Borel subsets of [O,2ﬂ] . ' Two“measures can then be associated
with the‘process '{Fn: - << n < é}u.

i) An £2 Valued, countably additive, orthogonally scattered (c.a.o.s.)

measure & defined by
£() =E®F, BeB.

The measure has the property that if BN C =g , then (&§(B),§(C)) =0 .

- ii) A g x q non negative Hermitian matrix valued measure M defined by
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M(B) = (£(B),E(B)) BeB.

Definition 26 The matrix valued measure M described above is called the

spectral measure of the process .{Fn: - ®© < n< »} . The matrix valued
function F(0), 0e [0,21]., defined by F(0) = 2w M([0,06]) , is called the

spectral distribution function of the process.

It is ?ossible (see Doob [4]) to define integrals of a complex valued
function ¢ on [0,21] with respect to the components of the measures
and M , since they have properties akin to those of a process with ortho-

" gonal increments. Hence the following makes sense.

Defintion 27 Let £ , M, and F be as above, and let ¢: [0,21] » ¢

The integrals
2
16 @@ , f2Tsorm@e) , and s2T¢(8)ar (6)
are defined to be, respectively,

[T @] [f§”¢(e)Mij(de)] , and [f§”¢(e)dFij(e)] :

The following theorem relates these measures to the process

{F: -w®<n<w},

n

Theorem 11 1) F_ = fole “E(a0)F, = [oTe "o (a0) .

. 27 -nif _ 1.2m -nif

ii) Fn = fo e M(de) = 2ﬂ{0 e' dar(9) .

Proof i) It is easily seen that " = fzﬂe—nleE(de); this follows

¢]
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from the orthogonality of the projection valued measure E . Since

_ .n . _ 2T _-nib
- F = U Fo o+ it follows that F = fO e E(d@)FO .
- _ _,p27m,~nif 2m .
ii) Pn = (Fn,FOQ-— (fo d E(d@)F0 ' IO E(de)FO) . By representing

these integrals as limits of approximating sums, the result follows from

the linearity and limiting properties of the Gramian in lemma 6.

Theorem 12 Let {Fn: - ®<n < ®© bea g-variate process and let F be
its spectrai distribution function. Then F is bounded, non decreasing,

and right continuous on [0,2T] with F(0) = O .

Proof It is clear from the properties of the measure E that F is non

decreasing and F(0) = 0 . F 1is bounded and right continuous because

E([0,27]) = I and 1lim E([0,x]) = E([O,xo]) (see [29]).

x—*xo

It is extremely useful to know when a given matrix valued function F
is in fact the spectral distribution function of some g-variate process.

In [2] Cramer proved that the above conditions are in fact sufficient.

This result is extremely useful in the construction of examples.

Theorem 13 (Cramer) Let F be a g x g complex matrix valued function

on [0,2n1] which satisfies the following: F 1is bounded, non decreasing,

right continuous, and F(0) = O . Then there exists a g-variate process

n

{F : =-o<n< o} such that F(6) is its spectral distribution function.

1

From the above theorems and the theory of complex valued functions

(see Hewitt and Stromberg [ 8]) the following theorem can be proved.
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Theorem 14 Let F(B) be the spectral distribution function of the process

{F: -®<n<w}

n . Then F has a derivative a.e. (Leb.) which has non

negative Hermitian values and is in Ll .

Definition 28 If the spectral distribution function F is in fact

absolutely continuous (with respect to Lebesgue'measure) on [0,2“] then

the matrix valued function F'(6) is called the spectral density function

n€f +ha
CI Toe

Let '{fn: - ® < n < ®©} be a l-variate process. It is a well known

fact that the space M _ = of this process is isomorphic to the space of

complex valued functions on [0,2m] which are square integrable with respect

to the spectral measure of ‘{fn: - © < n< ®}, Under this isomorphism
. . . -ni6
the function fn is mapped into e .
The generalization of this isomorphism for a multivariate process was
first accomplished by Wiener and Masani [ 30] under the assumption that the

process is of full rank. The work of Rosenberg [27] and Rozanov [26]

extended this result to all g-variate processes.

Let '{Fn: - ® < n < ®} be a g-variate process with spectral measure
M . Let U(B) and V(B) , 6 € [0,21] , be g x g matrix valued functions.
Since M is non negative Hermitian valued, it follows that for any Borel

set A, T™(A) = 0 implies M(A)

o . Thus the entries of M are all

daM(6)
dtM™M(0)

the matrix of Rédon4Nikodym derivatives of the entries of M with respect

ébsolutely continuous with respect to the measure 7TM . Let be

to ™™ .
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Definition 29 The integral fng(G)M(dG)V(G) is defined to be

am(0)

f U(G)d M)

V(D) ™ (a9)

It can be shown (Rozanov [26]) that the value of the above integral
does not in fact depend on the measure M . Any other measure P
satisfying Mij <P, i,j=1,2,...q could have been used instead of TM

and would yield the same value for the above integral.

Definition 30 The class L2 o is defined as the set of all g x g
r

matrix valued functions V() on [0,27] such that IgWV(S)M(dG)V*(G)

exists.

!

Note that if U and V are in- L2 o and A and B are q x g

~
r

matrices, then AU + BV is also in L2 . It is also clear that if U

7

. 27 "k .
and V are in L2 n then fo U(O)M{dd)v (H) exists.
?

Definition 31 Let U and V be in L . The L matrix and

2,m 2,m

complex valued inner products are defined as follows:

f2'ﬂ'

(U,v) U(G)M(de)v 0) ,

((U'V)) = T(U,V) .
m m

The following important theorem is due independently to both Rosenbery

and Rosanov. For its proof see Rosenberg [27].

‘Theorem 15  The space L2 0 is complete under the norm lVlm = ((V,V)): .
B — : ‘ o :
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Recall that M(B) = (£(B),E(B)) for B e€ B . As a consequence of
the above theorem it is possible to define integrals of the form

27
fo v(6)£(ad) foxr .any VvV in L2 . It is then possible to prove the
, ’

following theorem. For the details, see Rosenberg [ 27].

Theorem 16 Let & be the c.a.o.s. measure and M the spectral measure

associated with the process '{Fn: ~©<n<® . Let S =0((B)) C £2 .
BEB
Then

.

i) G &€ § if and only if there exists V € L such that G = fg vV(0)E(40) ,

2,

ii) The function V above is uniquely defined up to a set of zero M
measure,

iii) The correspondence V fg“v(e)g(de) is an isomorphism of L2 n
I

onto S: it is 1:1, onto, linear, and (U,V)m = (fg“U(e)E(de), fgﬂV(e)E(de))

for all U and V in L .
2,m

C e L o
= Mm , it follows that L and M

S
2,m @

=0(g(8)) =0(UF
BeB n=-
are isomorphic Hilbert spaces. From theorem 11 it is known that

o I Pt
oL

2T -ni e s .
F = [ e nleE(de); hence the L image of F_  under this isomorphism
n 0 2,m n
is e—nleI . The image of the shift operator U in M_ 1is the operator
-ib ) s
et (multiplication by e le), the values of the measure £&(B) correspond

to the functions Xg * and the projection operators E(B) correspond to

multiplication by XB .

PROCESSES OF FULL RANK

In this section a characterization of full rank processes in terms of

their spectral measures will be found. In the univariate theory a process
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is of full rank if and only if the process is non deterministic. Since the
spectral criteria for non determinism is known in the univ%riate case, a
characterization of such full rank processes is available (see, for example,
Rozanov [ 26}).

The solution in the multivariate case was obtained by Wiener and Masani
in 1958.5 Rozanov also has a solution to the question of full rank; however,
the reader should be warned that his definition of rank is different from
that adopted here. Aécordinq to Rozanov, a q—ﬁariate process
{Fn: - ®<«<n< o has rank m if and only if
i) the process has a spectral density re) ,

ii; The rank of F'(0) is m for almost all 6 .

This d;finition has an obvious drawback in that not all processes have

a rank, It can be shown that a process that is of full rank by the Wiener

and Masani definition is also of full rank according to Rozanov's definition.

The coverse, however, is not true: see Jang Ze Pei [10].

The following theorem shows that a large class of.q;variate processes

do in fact have spectral density functions.

Theorem 17 Let '{Fn: - ®© < n < ®} be a moving average process:
F = % AG ‘(G G)=86 G, . % |a Gl§12<oo‘
n = k& kn-k * %n'Cn mn ' k=-w!"k" 'E )

Then its spectral distribution function F(0) is absolutely continuous with

respect to Lebesgue measure, and F'(ele) admits the factorization

Pt = 0l 0t (o) | where 0(el®) = § a K0



Proof It follows from theorem 3 that the functions ¢

Lq ;, which implies 0% ¢ Ll . The k'th Fourier coeffici
2

are A G% and G%A*k

* v
o K respectively. Hence,

b by *

i-M
(o Z P8
e)<I> (e i€

Fourier coefficient of &% Z A .G

__...oo

is = A.G
J==% 3]

[o.03
= X

this is just Pn , since T = (Fn,FO)

©

S *
kE-ol Py

theorem 11.

fgﬂe_nle

27

Thus Qe

- )d0 = f

2nT
n

fﬁ@(elt *eifae |, ie. rel®) = ot o* (o1

)

Theorem 18 Let {Fn:

F = 3 AG G ,G) =8 G, .5.|a G%l2
= x50%k%n-k" Cn'%n) T %mn®r kEo!%k

19) 19)

n .

Then F' (e = @(eie)é*(e CD(eie Z A Ge

where k2oPk

)

i) A®+(z) = 0 for all

iG)

z €D
+

r
1.2w
S

o
lOgAF (e ’-2—“:0

L

€5

*
ii) on C and log (AAOGAO) =

ie)

Proof _ The factorization of F'(e is obvibus from the

Since and its n'th Fourier coefficient is zero if

o e L2

theorem 4 either the first alternative above holds or else

1.271

27 fO

log A" (o1

this
5

and logIA(A G )l loglA@(eie)]de .  However,

1 .27 . *
J < =
log(AOGAO) = 3Efo Yd8  since AAOGAO IAAOG

|s0|?

Rozanov has shown that the above factorization is in

for the process 4{Fn: - © < n < ®} to be regular. For

proof see [26];

and ®*

A,
-

-k’ k=- wAank

It then follows from theorem 7 and lemma 7 that Fl(e

34

are in

ents of ¢

However

P

)

e M04p (19,

iG)

- ® < n < ®} be a regular process:

% kib

and either

log A (e0)ap

last theorem.
n<O0, by

logh® € L. on

1
implies

2 and

l

fact sufficient

details of the

and

from theorem 3, the K'th

7

by
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Theorem 19 (Rozanov) The pro¢ess 4{Fn: - ®© < n<® jg regular if and
only if its spectral distribution F(8) is absolutely continuous with

respect to Lebesgue measure, R(F') = p a.e., and F'(ele) admits the factor-
Coatd i i i X i0 +
ization F'(ele) = @(ele)é*(ele) with <I>(el ) € Lg on C , i.e., in the set

of all functions in L2 whose n'th Fourier coefficient vanishes for n < 0 .

Upon combining the above results with the Wold decomposition theorem

one obtains the following theorem.

Theorem 20 Let ’{Fn: - ® < n< »} beanon deterministic g-variate

. ) . )
process. Qet {Un: - ®< n< ®}, {Vn: - ©< n < o}, {Ak}k:-m and G
be as in the Wold decomposition theorem, and let F, Fu’ and F, be the
spectral distribution functions of the processes '{Fn: - © < n < «}
‘{Un: - ®<n<®} , and '{Vn: - ® < n < ®} respectively. Then

. = + l
i) F Fu Fv p

s : . v g 18 b ki6
ii) Fu is absolutely continuous and Fu = §p~ , where (e = 1k 0AkG
iii) If {Fn: - © < n < »} is of full rank then logAF; el on C

1 .27 v, iB8
and 1loghG = 2ﬂf0 logAFu(e ydé .
Proof - i) Since the processes '{U : =©<n<o} and .{Vn: - ® < n < o}
are orthogonal., (F ,Fy) = (U V. ,U0+V0) = (U_,U,) + U V) + (V /Uy) +
(Vn’vo) = (Un'UO) + (Vn,VO) . Thus
1 2ﬂ -nif 1 2ﬂ ~-nib 1 ,2m —nie 1 2ﬂ -nib

= = d 8)+F _(O) .

21rfo dr(6) = 5=/ e dF (e) T 70 © dF_(8) = o= 70 © (F, (B)+F, @)

Since this is true for all n , by lemma 7 F(G) = Fu(e) + Fv(e) + K,

<

where K is a constant matrix. However F(0) = Fu(O) = FV(O) = 0: hence
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K=0 and F{6) =F (0) +F_(0) .
. u v

ii) This is obvious from the theorems. 10 and 18.
iii) Recall that AOG =G . If the process '{Fn: - ® < n< ®} ig of
full rank G is invertible and hence AO = AS =1 . Thus A(©+(O)) =

A(G%) # 0 and hence the second alternate conclusion of theorem 18 must
hold. The required result follows since AOGA; =G .

The following lemma is required for the proof of the main theorem of
" this section. Its proof, while not difficult, requires some extraneous
material on matrix integration theory and hence is not presented. For

details of the proof the reader should consult Wiener and Masani [29].

Lemma 12 Let F be the spectral distribution function of the g-variate

n

. o n
H - 0 < < ™ . t = ! = .
process {Fn n } Let Pp(z2) nEOAnz and P (F) nEOAnF—n
Then
1) eE),2E) = et ar e e,

i)  logA(R(F),P(F) = 2=/ loghr' (e'*)ag + log|sa |? ; the integral on

the right may be equal to -« .

Theorem 21 Let ‘{Fn: - © < n < ®} be a g-variate process. Then p =g ,

i.e., the process is of full rank, if and only if l_ogAFl £ Ll on C .

When this occurs

_£J2ﬁ

v, i
5o loghF (e7h)ab] ,

AG = expl

where G 1is the prediction error matrix for lag 1.
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Proof = Let the process '{Fﬁ: - © < n < co}'_be of full rank, and let

’ F = u_ o+ Vn be its Wold decomposition. From theorem 20 logAF; € Ll on C
i6 . t 1 1

yd8 . Since F = Fu + FV and the values of

0

) 1 .2m '
< =
and logAG = 2ﬂf0 loghF (e

. . ‘ Vi
F; are non negative Hermitian, it is easily shown that AFu(e

) = ar' e .
. N 1 .27 v, 48, o _ 1 .2m T
—_— — . T
This in turn implies 2ﬂf0 logAFu(e )ag = 2ﬂf0 logAF (e ")dd hus

loghG = E%nglogAF'(ele)de‘. Since the process is of full rank AG # 0 ,

. s

which implies fgﬂlogAF (ele)de is greater than -« . From theorem 4

fzﬂloaAF'fele\he < 100Ar#Lz2ﬂF'(ele)d61 < ® gince F € L . Thus when
0 7 ) : Th2m 0 ! 1

the process is of full rank logAF' € Ll on C -

[}
<  Let logAF g Ll on C . The innovation vector GO is, by

definition, equal to FO-(F0|M_1) . Since (FOiM_l) € M—l , G. =

0
n
lim G(n) : where G(n) = FO—.nggn)F_. by lemma 7. By part ii) of the
n>e o (3—132j i8 2
above lemma logA(G n),G n)) > EEfoﬂlogAF'(el yde + log!AAOI . But AO ’

the coefficient of FO , is just 1I: thus log]AAO[2 = 0 . Therefore

(n)

logA (G ,G(n)) = jifgﬂlogAF‘(ele)de . Upon taking the limit as n =+ « ,

1 .2 10
one obtains loghG = —%fa”logAFi(e*u)de . By assumption the last integral
is finite, so AG > 0 . Thus the process ”{Fn: -~ ®<n < w ig of full

rank.
When the process is in fact of full rank all of the above inequalities
. , 12w v i8
hold. From the first part of the above proof  logAG = Eﬁfo loghAF (e 7)db ,
and from the second part of the proof the reverse inequality holds.  Thus

. s
when the process is of full rank logAG = EiféﬂlogAF (ele)de .

i Theo;em'22 Let '{Fn: - ® <in <:m} be a full rank g-variate process,
'{Un: - ®© < n <} and '{Vn: -~ © < n <®} the component processes in its

Wold decomposition, and F, F , and F_  the spectral distribution functions
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of these processes respectiVely; If F = F(a) + F(d) + F(S) is the
: decompositioh of F into its absolutely continuous, discontinuous, and
singular parts, then

F_ = @ ana F, = pld 4 pls)
Proof From theorem 20 it is known that F = Fu + Fv' and that Fu is
absolutely continuous. Hence one need only show that F; =0 a.e. on C .
Since the process is of full rank, by
Hence AF' is different from zefo a.e., or equivalently, R(F.) = g a.e.

The required result is then a consequence of the following two lemmas. The

proof of lemma 13 can be found in Jang Ze Pei [10].

Lemma 13 R(F') = R(F;) + R(F;) a.e. Leb.

Lemma 14 Let '{Fn: -~ ® < n < ®} be any non deterministic g-variate
process and let Fn = Un + Vn be its Wold decomposition. Let F; be
the spectral density of the process ‘{Un: f ® < n < ®} . Then R(F;) =p
a.e. Leb., where p 1is the rankbof the process A{Fn: - o< n < o}

Proof Masani [20] has shown that the generating function & of the
process '{Fn: - ® < n < o} can be written in the form @(ele) =‘Q(éle)G%

where the matrix valued function § is invertible a.e. Leb. Since F; =

. .
¢ by theorem 20, it follows that R(F;) = R(G) = p a.e. Leb.

Thus if {F : = ®<n <} isof full rank, R(F;) =q a.e., R(F;) =

0 a.e., and hence F; = 0 a.e.
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Examgles

Spectra of uncorrelated processes. Let the process {Fn: - ® < n < o be

an uncorrelated g-variate process with (Fm,Fn) = amn X . Such a process

has a spectral density F'(8) which is just the constant matrix K . This

. "1 .2m -ni€ 1 27 -nib . .

is because 2ﬂf0 e K 46 = 2ﬂh}§ e d8 =0 if n # 0 and equals K

if n=0.

Discrete spectrum. Let the process '{Fn: -~ @ < n < ©} be defined by

Fioklpe ¢ + vhere o€ £2 for each k = 1,2,...p and satisfy

(@m;¢n) = GmpK , the Bk are arbitrary numbers in [0,2m] , and p is some

fixed finite number Then F_ = fzﬂe—nieE(de)F where E(6 )F, = ¢, and
) n 0 0 k'70 k

]

E(A)FO =0 |if An{el,ez,...ep} g . In this case the spectral distribu-

tion function F(8) is a step function with jumps at the points 6,

-k =1,2,...p . Thus F(0) = 2MjK where the integer j satisfies

e

17 and the process iFn: - ® < n < ®} is said to have a

e_ N = n

. O = O,
J 3t

A

discrete spectrum.
It is clear from the Wold decomposition theorem that ‘{Fn: - ® < pn < ®}
is deterministic: if it were non deterministic it would have a regular

component which has an absolutely continuous spectral distribution function,

contrary to the nature of F(0) .

‘Spectra of moving average processes. Let ’{Fn; - ® < n < w} be a g~variate

~ ® © 2
moving average process: F = ké—«p G P |Ck!E

< = -
k n-k ' k=-x © (Gm'Gn) 6mnK

From the properties of the Gramian in lemma 6 it follows that (F ,F,) =

(Lo C ¥ c.60 =2 .F ¢ c*
k=~ an"k ’ j=_°o j _j - k=m0 j="°° k Gn_k,G_j) j =
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121, @ ) ~(n-k+3)i0_ _* _ _l,om -nif, @ kif © jiG *
=0 (o sECy® KC)df = 57 © (E_oCpe )‘K(jé_wcje ) ao .

ince is is true for a n it follows that the cess : - n
[ th t £ i1 , it follows that the proce {Fn w < p < o}

has an absolutely continuous spectral distribution function F , and

Pl = c 350, *

kekie)K(jg_ije
In f22] Matveev has a rather complicated example of a spectral density
function of a deterministic bivariate process which has regular component
processes. This exampie shows the great extent.to which component processes
can interact with each other. It also illustrates the general lack of
concordance between the Wold and Lebesgue-Cfamér decompositions of a

g-variate process.
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CHAPTER IV

EXTRAPOLATION THEORY

THE EXTRAPOLATION PROBLEM

The prediction problems associated with a g~variate process
{Fn: - © < n < ®} are generally divided into three closely related
categories.

Filtering theory is concerned with trying to determine F when all
that is known are the random variables {F. + N,: j e T} , where

'{Nn: - ® < n < ®} jis a g-variate "noise” process qnd T ¢ N . Such
problems arise frequently in communications theory,)where the process

{Fn: - © < n < ®} is a signal and the process '{Nn: - © < n < ®} is the
unwapted static that is mixed in with the signal. For further information
on filtering theory see Rozanov [26] and Hannan [ 7].

Interpolation theory deals with the problem of determining Fk when
only the part {Fn: n € T} is known, where T C N . Such problems are
encountered in control theory, where, for example, the process

'{Fn: - ® < n.< ®»} may be sampled at regular‘time intervals and inferences
are to be drawn about the unobserved random variablés.
The special case of interpclation t@eory that arises when T is of

the form {k € N: k =<k'} is called extrapolation theory.

In this paper only linear least squaresﬁextrapolation will be considered.
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This is equivalent to saying that the best predictor Fv for Fv + given

the random variables {Fj: j = k'}, is simply (FVIMkl) .  Because of the

stationarity of the process A{Fn: -~ © < pn < ®} , one need only consider the
case k' =0 .
Definition 32 F = (FVIMO) , V>0, is called the predictor for F, -

A
There are three bagic gucsticns that can be asked skout Fv
. . 2 . . < s ie . L
i) Since F_ e M. ¢ M , it has an isomorphic image Y (e” ") 1in .
v 0 o v 2,m
i@
When can Yv(e ) be found?
. ~
ii) When does there exist an autoregressive representation of Fv : i.e.,

when does, there exist a‘series representation gv = kgoAkF—k ?
iii) When such a series exists, how can the coefficients Ak , k=0,1,...
be found?

Question i) was first answered by Wiener and Masani in [ 30] under the
assumption that the process {Fn: -~ ®<n<®} is of full rank. The
genefalization of this result to processes of arbitrary rank can be found
in Masani [21].

Only sufficient conditions for the existence of an autoregressive
representation Of; Ev have been found, and in these cases methods of

determining the coefficients A , k = 0,1... are known.

kl
The remainder of this chapter is devoted to the papers [30] by wiener
and Masani and [19] by Masani. Only full rank processes will be considered,

. 0
although a few minor generalizations of some of this material are known

{Masani [21]).
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SOLUTIONS OF THE EXTRAPOLATION PROBLEM

Let '{Fn: - ® < n < ®} be a g-variate full rank process, and let
=U +V_ beit 1 osition. Th F o= = My =
N n , Pe its Wold decomp en F_ (FVIMO) (UV+VVI o

(UVIMO) + (VVIMO) = (UVIMO) +V, s since V_ € M _cM . Thus the only

0
process that is interesting from a probabilistic viewpoint is the regular
process {Uh: - © < n < w} , since the prediction error is independent of
the process {V.: —w<n<wl: F -F =0 +V_ =~ (U|M) ~-V_=
n v v v v v 0 v
U_=- (U |M) . It is therefore assumed throughout the remainder of this
v v .

chapter that the full rank g-variate process is regular. It follows from
theorem 22 that this is eguivalent to assuming that the spectral density
F' of the process exists. o

The next two lemmas and theorem provide the solution to question i).
Sinée the spectral density F' of the process '{Fn: - ® < n < o} exists,
" Lebesgue measure can be used in the definition of L2 instead of the

L4
;5 ; ] ~
measure TM . It then follows that L2 m is the class of all g x g
L4
. . . 27 i, v, 16, %, i6
matrix valued functions ¢ on C for which fo dle” )F (e )O (e”7)ab
exists. With this characterization of L2 n the following lemma is easily
: ’

proved.

Lemma 15 i) ¢ € L2 'm if and only if /' e L, .
ii) If ¢, Ve L2 o then ({60 = ((o/F" YE")) .

iii) If ¢ € I_,oo and VY € L2,m»' then ¢ Y ¢ L2,m .

Lemra 16 Let  {Hn: - © < n < ®} be the normalized innovation process of

the process '{Fn: -~ ®<n<® , and let ¢ be its generating function.



- 44

Then

i) P01 ¢ L and is the isomorphic image of H_ e M |,
2,m n [oed

i) If e szﬁ then Y o e L .

iii) Let U € L2 n and let Ak be the k'th Fourier coefficient of ¢ ¢
14

n : -
Then as n > (2 A ekle)é 1

KE_rPr + Y in L .

. -1 . . crsqs
Proof i) That ¢ actually exists a.e. follows from the invertibility

t T *
at ind - hd
-t a k-

of F a.e. and the fact th = 2.C.. Let ¢ be the isomorphic
image in L of H_ . By using the isomorphism of L and M_ and
2,m n - 2,m ©
o . . . 1 % nie .
comparing Fourier coefficients one can show that F y" = e $ . Since

F' o= 00" and ¢' exists a.e., it follows that ¥ = e-n16®—l .

i) Let Y € L27m

[WE'|2en, . since F' = 00" ae., |WE|Z = tlyr'vt] = tlueeryt| =

; e
Then by the above lemma YVF € L2 , and hence

[vo|2 . thus |v8|Z e r and hence yoel, .

‘s ‘n kig. -1 . ‘ . _
iii) For each n (ké—nAke Y is actually in L2,m since & © ¢ LZ’m
a ¥ ki n kif, -1 B
an k=_nAke el - Then ”(k=—nAk¢ ) _wllm -
n ki6 -1 1 n kiB . ) -
I, 2 e yee Ve - lZogys -0 since =0 . By

definition of the coefficients Ak the right inner product tends to O ,

n ki6, -1 . ‘
and hence (ké—nAke ) 7 >y in L2,m as n -+ » .

Theorem 23 Let & be as in the above lemma. . Then

Y (eie) = [e

v

~v16®(e16)]0+®—1(e16) ,

. . . . ® ki
where [F] + denotes the function whose Fourier series is kgoAke id R
0 . -

Ak being the k'th Fourier coefficient of F .
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Proof It must first be shown that the above expression for Yv(ele) is in

* Y
fat in L . Since F = &o% a.e., Y (ele)F {e e)Y (ele) =
2,m v v
- -e » - . . . . .
[e vi @(ele)] +[e Vle@(ele)]*+ . This is in Ll since each factor is in
0 0
- . {9 -1
L. Thus, by lemma 15, [e Vle‘D(ele)] @(ele) is in L .
2 0+ 2,m
o]
1, - . .,
etL F kEOCan—k as in the corollary to the Wold decomposition
theorem, where {Hn: - © < n < ® is the normalized innovation process of
the regular process '{Fn: - © < qn <o}, Due to the orthogonality of the
An <n<wl ® M) = Fon $c m
s = ) = : o= ), - Sinc cC
process n n Fv' 0 K=v K v-k k=0 k+v -k ince k

is also the k'th Fourier coefficient of ¢ , it follows that

-vif, , i -1,i6, . 36, _ _ -vif_ i® @ ki

[e V% (e I L I 10 S IR g;L2 . By
. n I} - )

iii) of the previous lemma this implies 1lim (, X C kle)@ l(ele) =

e
—vif, , i0 1, 16, moe <70 VK
[e vi @(e} )] +® (e 1 )f. By i) of the last lemma it follows that
0
- . n A
)] le) is the L2 n image of 1lim X .C F
I

oo k= 0 v+k —k v
Thus Yv(ele) = [e'Vlee(ele)] o L) .

[e—v16
0+

Although the above result was relatively easy to obtain, the determin-

ation of FV in MO is a much more difficult problem.

It is possible to obtain approximations of FV in M0 by solving

(n)

systems of linear equations. If the q x g matrices A, are chosen

(n ) o ) . ~

by = = =
so that EOAJ —j : (F |G(F X’ k =o) + it can be shown that F, ‘(FV[MO)
n
lim X Afn)F . . If the A( ) are so chosen it follows that
o 370 3 -3
o)

(FV - jEOAj F_ .) l.F-k for k = 0,1,...n . Thus

0= (F - .2 A(n)F JF ) = (F ,F ) = g A(n)(F F ) and hence

v 3=003 T=3" -k viT-k j=0"5 o R

- (n) o= e ‘
Pv+k = 320 3 F . for k=20,1,...n . This is a system of n + 1
equations in the n + 1 wunknown matrices A(n) A(n) A(n) , and can be

o '"71 '""n
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written as the single matrix equation

(n) , (n)

[AO NIRRT

Wiener and Masani [30] have shown that the second matrix on the left is

invertible if the process {Fn: - © < n< »} is of full rank. When this
occurs the unknown coefficients Aén), A{n),..;Aén) are given by
(n)  (n) )y _ rp - -1
[AO A cee A )= T, T Toend{To --- F;T
1—‘---n I‘0

i
!

The problem with this solution is that it involves the inversion of
an (n+l)g x (n+l)q matrix,. As n =+ o it becomes more and more
difficult to actually compute this inverse. Thus more subtle techniques

are required to solve the time domain extrapolation

L L 1D =i

problem. To see the
difficulties involved the following lemma is required. Its proof can be

found in Masani [20].

‘Lemma 17  Let '{Fn: - © < pn < ®} Dbe a g-variate process (of any rank 0 )
and let & be its generating function. Then
: ot ‘ ot
i) ® is an optimal function in L2 , l.e., ®+(O) >0, and if Y € L2
Cx * : * X
and YP = & a.e., leb., then (¢+(0)¢+(C)) = @+(0) '
ii) if p =q then ‘ i

. {_LJZH'ele+z
P taro 36

i

20, (2) logh[F" (8)1%a6] .
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Since the process '{Fn: —‘® < n <} is assumed to be of full rank,

by the above lemma the holomorphic extension ®+(z) of ® is invertible

at each =z ¢ D+ . Let ®+(z) = k;Z__OCkz , where Ck = AkG , and let
-1 <]
[¢+(Z)] = EODkzk - The coefficients D_ satisfy the relations

CD =
0”0 I,CD. +C.D

= + + D
o°1 1Po o, CD C.D C

072 171 oPg = O+ etc. It then follows

i \ . . . .
that Yv(e ) has a holomorphic extension to D; which is given by

] k © k ] k
(kékaz )(kéoDkz ) = .Y E _ =z ,

(¥.), () s

v +

T
N

where E =

.2.C D . ., . One would then hope that Y (ele) is some sort
vk 3=0 v+j k-] . v

of radial limit of (Yv)+(z) and thus be expressible as Yv(ele) =

® ki6 - . . i6 in L
kEOEVke . Problems arise however, since Yv(e ) may not be in , on

C and thus Would not have the matrices Evk as Fourief coefficients.

The éroblem of éetermining under what restrictions (Yv)+(z) does
converge in L2,m to Yv(eie) has been studied by Rozanov [26}, Wiener and
Masani [30], and Masani [19]. Rozanov .assumes that the given regular
g-variate procesé '{Fn: - © < n < ®} forms a basis; i.e., any element
H of M, can be represented as H = kg_wAka ; where the series converges
in Mo° , the representation is unique, and the sum of the series doesn't
change under arbitrary permutations of its terms. He then shows that this
property of a process implies the boundedness condition of Wiener and
Masani, and his development is almost exéctly the same as theirs. Hence
>the treatment of Wiener and Masani will be outlined in the remainder of
this section.

The following restriction is placed on the regular, full rank g-variate

" process A{Fn: -~ ® < <o},
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Boundedness Ccndition: The spéctral density F' satisfies the following:
i®

) = A'I < © for some real numbers A and A

0<AI =F'(e
Wiener and Masani [30] have shown that in practical applications of
the theory this condition will usually be met due to the errors inherent in

. . 3 . t
measuring data and estimating the spectral density F .

Lemma 18 i) L, = L, -
——e 2,m 2

ii) For every ¢ € L2 '

Mot 6% a0 = g = 2" r2Tee )" (™0 ae

ijii) L2 m‘ convergence, and L2 convergence are equivalent.
14 /

i
!

Proof From the boundedness condition it follows that both /Fl and

(/F')“l are in Loo . The criteria ¢.¢ L2 o if and only if oWEF' ¢ L2

. 1
then establishes i). Part ii) follows from lemma 1.5 of Wiener and Masani
[30] on Hermitian matrices. From ii) it is easily seen that for any

el Aol = fol_ =8l . This readily establishes iii).
m ;
The proof of the following lemma can be found in Wiener and Masani [30].

‘Lemma 19 i) - For any matrices Ao,Al,...An

NEAAT S (I z <2z oaat
CMkEoPiPr T GZoPRF o 1 ZoPFo) T A E0RAL -

i) My = 2 0(F_)

k

. C® .
iii) If G = kgoBkF_k then .
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2 2 2 «© 2

As an immediate corollary to ii) above one has the series representation

[

[oe] . :
- . < < . . . .
Hn kEODan-k . wWhere {Hn. © n ©} is the normalized innovation
process of the procesé {Fn: - o < n <o}, and the matrices Dk k=0,1,...
satisfy 2. [p |2 < ® |
Y yx20!"k'g
S

Theorem 24 = Let <I>(ei ) be the generating function of the process

F{Fn: - ® < pn<®}, and let the process '{Hn: -~ ®© < n < ®} and the matrices
Dk k =20,1,... be as above. Then

i) both ® and & are in Lf’: ,

. . . -1
is the k'th Fourier coefficient of ¢ .

ii) The maﬁ;ﬁx Dk

: +
Proof From the definition of & and theorem 18 it follows that ¢ = Lg .

. .

Since 90 = F' a.e. and the boundedness condition is assumed it follows
ot - ,

that ¢ ¢ Lw and 1 I Lbo . From lemma 16 it is known that H,

-1 . . ' .
corresponds to & under the isomorphism between L2 o and M, . Since
. T
n

by the last lemma, it follows that kgoDke

converges to gt in L . But L =L and they have identical
2,m 2,m 2 .
n .
.. kib -1 -1 .,
topologies: hence k_Z_ODke * converges to ¢ in L2 . Thus ¢ is

n ki
L.DF converges to H 18

k=0"k" -k 0

in fact in Lg’ and Dk is its k'th Fourier coefficient.
Theorem 25 Let {Fn: - ® < n< o} be a regular, full rank g-variate

process whose spectral density. F' satisfies the boundedness condition.

Then

A o0 H
Fv = kEOEka—k !
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= ! . ::_ t . . .‘.
where Evk jEOCv+jDk-j R Ck and Dk being the k'th Fo?rler coefficients

of & and ot respectively.

Proof Let Yv(éie) = [e-Vie¢(eie)]0+¢-l(eie) . Since [e-Vie¢]0+ =
. i . v-1 . et +
kzocv+ke%le = e vle{@(ele)—kgockekle} » it follows that [e VlGQ]Q* € Lg .

] _ + . +
From the previous lemma it is known that ¢ 1 € Lg ; hence Yv(ele) € Lg .

It follows from the convolution rule in theorem 3that the k'th Fourier

coefficient of Y"(ele) is E_, when k 2 0, and is clearly zero when

n . . . , .
k<0 . Thus as n >« , L E ekle > Y (ele) in L . However, by lemma 18,

<=0"vk v 2 :

n . . )
. . kib i )
>

'thls implies kEOEvke > Yv(e ) as n > in L2,m . From the

isomorphism of L

. 2,m
® kig
kEOEvke s

and Mm and theorem 23 it follows that Fv =

 In 1958 Masani [19] proved the following stronger result.

Theorem 26 Let {Fn: - ® < n < ®} be a regular full rank g-variate
. t . e ' L 1 -1
process whose spectral density F only satisfies F ¢ _ and (F7) € .

If the matrices Evk are as in the above theorem, then

A [e]
Fo = xZoBukf-x °

The proof of this theorem follows readily from the given conditions

on F' and lemma 18.

'MINIMAL PROCESSES

The characterization of full rank minimal processes due to Masani [19]

*

is the generalization of a theorem on univariate processes due to Kolmogorov.
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Recall that a g-variate process is minimal if and only if for some

(and hence all) n , ¥ When this occurs

n £ G(Fk)k#n

Q= F - (Fn‘O(Fk)k n) 7£ O for all neN .

n n #
It is clear that the sequence '{@n: - ® < n < ®} is a g-variate process
with the:same shift operator U as the process {Fn: - o< n < o},
Definition 33 The g~variate process {@n: - o < n < o} is called the

two sided innovation process of the process {Fn: - ® < n < ®

s

Definition 34 The process '{Fn: - © < n < ®} is full rank minimal if

and only if * Algy,gg) > O

Definition 35 Let ‘{Fn: -~ < n < ® bea full rank process and let
{¢n: ~ ©<n < o} be its two sided innovation process. The g-variate
process {wn: - © < n < o} defined by

-1
V= logreg) T ey

is called the normalized two sided innovation process of '{Fn: - ® < n <o},

The following lemma gives the basic properties of the process

A{wn: -~ ©<n<®} . Its proof and the proof of theorem 27 can be found

in Masani [ 19].

- Lemma 20 Let '{Hn: - © < n < ®} be the (one sided) normalized innovation
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process of the full rank minimal g-variate process {Fn: - © < n<® , and
let {Wnt -~ ®© < n < ® be ags above. Then
i) W¥) =0 I,

- X%
- . . . . .
ii) wn kEODan+k,’ where Dk is the k'th Fourier coefficient of
-1

(®+) + ® being the generating function of the process '{Fn: - ® < p < ®},

iis) o le Lg.'-.

Theorem 27 Tet {F : - ®© < n < ®©} he a

s ™ 1~
N QT va = H
n

e
its spectral distribution function.  Then ‘{Fn: -~ o< n < ®} is of full

5

rank minimal if and only if F'(e’”) is invertible a.e. and (Fl)“l € Ll

on C .,

Wheﬁjthis occurs (F')— is the spectral density of the normalized two
sided inn;vation proces; '{wn: - ©'< n < ®©} which is a regular full rank
process.

DETERMINATION OF THE GENERATING FUNCTION

It is clear from theorems 23, 25, and 26 that the determination of the
generating function @ of a regular full rank g-variate process
'{Fn: - ® < n < ®} is of utmost importance for the solﬁtion of the extra-~
polation problem. In practice it is the spectral density function F'
that is known, either through estimation from empirical data or from
theoretical c&nsiderations. Hence & is considered determined if it can
be found from the function F'
In the univariate theory there is no %roblem, since in this case ¢
~and F' are merely éomplex valued and real valued functions‘respectively.

‘-.e l. . ) N . : .
From the equation l‘P(el )] =F (ele) the function @ can be found due
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" to its optimality: see Rozanov [26] and Hanhan [ 7 ].

When q'> 1 , however, problems arise due to the failure of the
ekponential law for matrices. At present no closed form expression for
® in terms of F' is known: however, infinite series expansions for ¢
in terms of F' are available under certain restrictions. Wiener and
Masani [30] found such a solution when the boundedngss conditions are met.

Subsequently Masani [19] extended this result by weakening the restrictions

on P He chowed that only the weaker asgnnm

P - AW CL L QLilL Z

i) The ratio of the largest to the smallest eigenvalues of F' is in Ll ’
' .

ii) F is invertible a.e. on C1 and

-1
i) (Y el
. 1
are needed. Siﬁge these assumptions are satisfied when F e Loo and

v -1
") £ L ; both the generating function and the autoregressive represent-

gy

ation of can be found (see theorem 26) in this case.

Let '{Fn: ~ o< n< o} be a regular full rank g-variate process and
let F' be its spectral density function. If F' satisfies the bounded-
ness conditions it is not difficult to show that part iii) of the fcllowing

assumption involves no loss of generality. Hence for the remainder of this

section the following assumption is made:

. :
Assumption 1 i) F is the spectral density function of a regular full

rank g-variate process '{Fn:, - ®© < n < »},

ii) There exist real numbers A and %' such that

1
O<KAISF SAI<®,

o {0 i
) = I+ M) , where | = ESS. L.U.BnlM(ele)lB <1l.
0=6=21 '

5i1) Pl (e®
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- Definition 36. Let G € LP on C, p =2, and let G(ele) = f A ekle

k2~ k
) i6, ki®
Then G+(e ) = élAkb .

v -

The motivation for studying the following operator stems from Von
Neumann's projection theorem. See section 3 of Wiener and Masani [30] for

a heuristic discussion of this material.

Definition 37 For all ¢ in L, . B(g) = (¢M), , where M =¥'-T

The following properties of B are easily verified.

Lemma 21 i) B is in the Banach algebra of bounded linear operators on

L, into itself ana |B] =w <1 .

ii) Let I be the identity operator on L2 . Then I + B is invertible

1

and (I+B) =71 -B+B2-8>+ ...

o R 22 23
iii) B(1) = M+ , B (I) = (M+M)+ , BT(T) = ((M+M)+M)+ , etc.

iv) 1B = Wy .

' : k_k .
It follows from the above lemma that the series k;fo(-l) B (I} 1is

absolutely convergent. Hence the following definition in fact makes sense.

® k_k -1
kLo GBI = (T+B) (D)

]

Definition 38 (V]

-1 .
Theorem 28 iy Y = G%Q where . G is the prediction error matrix for

lag 1 of the process '{Fn: - © < n < e} ,

i) YF'W* =6 .
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Proof i) Since F' satisfies the boundedness conditions, by theorem 24

-1 ot -1
e el c L2 , and hence G¥ le L, - By lemma 21 the operator I + B

is 1l:1, thus all that is required is to show that G%‘ﬁ-l= (I+B)—1(I) .
This is equivalent to showing (I+B)(G%®_l) =1, This is readily
. . . 5 Ll ot . .

established by first noting that G°®(0) = I and G°® ¢ Lbo implies

- -
that G%. l'= I+ (G1® l)+. If kX > 0 then the k'th Fourier coefficient

Lo Lo Lo~

of G0* is 0 . since G%* = ¢ loo* = ¢ IF = c% L (Tay) =
¢l + 6%l | it follows that %7, + ey =0 . Thus

- - -1 - L -
(1+B) (Glifb l) = G;i@ Ly (G;’<I> M, =1+ (G;’<I> l)+ + (G20 l,.m)+ = I. Thus

w==G%®—l .
. . 1, - L
ii)" This is clear from i), since UF'y* = G%Q lF (o l)*G2 =G .

o \

Since M is obtainable from the spectral density F' so is (/A

. 1
Thus ¢ can be found when F  satisfies assumption 1.

For the remainder of this chapter the following aséumption is needed.

~ 1

It makes possible the factorization F' = £'F

where f' ¢ Ll, ?# € Ll , Bl e Lbo , and (if")_l £ Ll . such a factor=-

of the spectral density F
ization is required to make use of the theory of minimal processes.

Assumption 2 The regular full rank process '{Fn: -©<n<®} has a

spectral density F' which satisfies the following:

i) (F')'—l £ Ll on C .

ii) if A(ele) and u(ele) are the smallest and largest eigenvalues of
‘0 R
F (e7) , then. : gL, ., on C.

| A(ele) 1



-1 . s e
Lemma 22 If F' g L2 and (F') ~ € L2 assumption 2 is satisfied.

Proof If F',(F9) T e L2 then ¥',(EY 1 e Ll For any © TF'(ele)
equals the sum of the eigehvalues of F'(ele) and similarly for (F')_l
Thus, by theorem 2, 0 =< pu < F' € 12 and 0 = %.5 T(F')“l € 12 . Hence
i0
u(et’)
PR
Ae )
Definition 29 i) f'(eie) = %{1(316) + u(eie)) .
ii) M(ele) = l. F (ele) - I a.e.
t 16

M(ele) . is actually well defined, since f'(ele) zié-k(ele) >0 a.e.

Lemma 23 Under the conditions of assumption 2

i) F = £ (I+M) a.e.,

ii) lM(eie)lB =1 for 0=0=< 2r and [M(eie)lB <1 a.e.,

iii) .I + M is the spectral density of a full rank minimal g-variate
process,

iv) £' is the spectral density of a regular minimal ﬁnivariate process.

The proof of this lemma along with that of the following theorem can be

found in Masani [19].

Theorem 29 Let ¢,%, , and ¢ be the generating functions of the
- processes with spectral densities F', I+ M, and- fl respectively. Let

G and G be the prediction error matrices with.lag 1 of the first two
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. processes, and let g be the innovation fur.ction of the third process.

- Then
AU R | ot - 1 ot
oo, e, e by el
ii) d = q)d_vl,

iii) 6= lg]?&.

As in the case under assumption 1, the following operator on L2 is
examined. In this case, however, its norm is not necessarily strictly
less than 1

(¢) = (¢M)+ , where M is as in lemma 23.

Definition 40 For all ¢ e L,

Lemma 24 i) D is a bounded linear operator on L2 , and ]DIB =<1

i) D@ =wu, DZ(I) = ), DD = (o0 ), , ete.

Lemma 25 Let & , and & be as in theorem 29. Then, if I is the
identity operator on sz,

(1+D) (6*87 Y = 1 .
" Proof The proof is exactly the same as that of theorem 28, part i) once

-1 at
it is noted that @l £ L2 due to the full rank minimality of the process

with spectral density I + M .
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If it were possible to invert the operator I + D , the generating

- function & could then be found in a manner similar to that of theorem 28.

1°
The generating function ¢ of the univariate process with spectral density
£' can easily be found asbnoted on page 58. Then 5y theorem 29 the
generating function 9 of the process .{Fn: -~ ® < n < ® could be
obtained.

The proof of the following theorem rests upon the fact that lD[B <1

on some set of positive measure. For its

roof see Mas

' +
Theorem 30 i) D is a strict contraction operator on L , 1.e. if
. O+ .
v#Eoel, then [Da| < Ul .

ii) 1.+ D is 1:1 on L2 into itself.

By the above theorem the operator I + D 1is invertible on its range.

This fact, together with lemma 26, shows that (I+D)—1(I) exists.  The
-1
next theorem shows that the geometric series for (I+D) converges

strongly on the range of I + D . 1Its proof can be found in Masani [19].

Theorem 31 i) D" > 0 strongly on L. as n+®; i.e. for any VY € L

2 2

lim D" @) ]| =0

n—)OO
ii) If Y is in the range of I + D , then

n -
lim I (1T = (1+0) ™ )

n-ee

Theorem 32 If @l, and G are as in theorem 29, then

i)  The series I = M+ + (M M) ~... is mean convergent.
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p-1

ii) If ¥ is its sum, then Y =G L

iii) - & = YTy .

Proof i) is clear from the last theorem. ii) follows from the previous

* J P -1, %~
theorem and lemma 25. Since I + M = ®l®l ’ w(I+M)¢* = G%QllQlQ;(Qll *5

This proves iii).

Thus when the spectral density F  of

process F{Fn: - © < n < @} satisfies assumption 2, the generating function

d of ‘{Fn: -~ ® < n < ®} can be found.

Yy G =G.
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CHAPTER V

DEGENERATE RANK PROCESSES

There are several problems that arise in the study of degenerate rank
g-variate processes that do not exist in the full rank theory. In the full
rank case the determinant of the spectral density matrix F' is often
investigated: the analogue of this in the degenerate theory is the examin-
ation of various proper minors of F' . This naturally leads to the
ut{iizatién of the theory of the Nevanlinna class NO , a relevant discussion
of which can be found in Wiener and Masani [31].

Let {Fn: - © < n < »} be a degenerate rank g-variate process, and
let F(0) be its spectral distribution function. The following problems

are still receiving investigation.

i) Regular processes. By theorem 13 the process '{Fn:' - o <n < w} is

reéular if and only if F(8) is absolutely continuous with respect to
Lebesgue measure and F'(eie) = @(eie)Q*(eie) where ¢ ¢ Lg+ on C

Matveev [23] has found necessary and sufficient conditions for such a
factorization to exist. One part of his conditioné, however, requires that
certain functions on C be the boundary Yalues of functions in the N

“class. As noted in Rozanov [26] there is no general method known for

determining when a function on C =is in fact:.such a boundary value.
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In the special case of a rational spectral density F' (i.e., the
elements of F' are rational functions of ele) the process

'{Fn: - ® < pn < ®} is easily shown to be regular. A method for actually

* +
performing the factorization F'l =00 , de LO can be found in

2 !

Rozanov [26].

ii) Deterministic processes. Although the definition of a deterministic

i+t +he + rocant nAa
c o Tihe T regsent ne

P
practical spectral characterization of such processes is known. Matveev

[22] has found a sufficient condition for the process '{Fn: -~ ® < n < «} ;x
to be determ?nistic: he has also shown that this condition is not

necessary . In [10] an§ [11] Jang Ze Pei has developed necessary and

sufficient conditions for '{Fn: - ® < n < ©} to be deterministic, but his

criteria have the same problem as those of Matveev in i) above. Only in

-certain bivariate cases is it actually practical.

iii) Concordance In [17] Masani has shown that the conclusion of

theorem 22 does not hold in general by exhibiting a process having both a
spectral density F  and a non zero remote past. Robertson [24] showed
that a necessary and sufficient condition for concordance of the Wold

decomposition in the time domain and the Lebesgue Cramer decomposition in

the spectral domain is that R(F'(8)) = p a.e. Leb., where p is the rank

of the process {Fn: - ® < n< ﬁ} . However, there is no method known of
determining p except in certain special’cases. - This problem is closely
related to that of determining the spectral density F; of the regular

|
process >{Un: -~ ® < n < ®} in the Wold decomposition of ‘{Fn: - ® < n < ®},
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By utilizing the theory of subordination (this is called the theory of linear

transformations in translations of the Russian papers) Jang Ze Pei [10] and
[11] has been able to find F& in theory for any process {Fn: - © < < o},

but his method is only practical in some bivariate cases.

iv) Prediction theory. In [21] Masani gives the extension of theorem 23

if

)

to processes of arbitrary rank. However, the new expression for Y (e
v

L .
involves a certain matrix J when {F : = oo < n < ®} isg not of full

n
rank. Since the matrix J'L is determined from the prediétion error matrix
G (thought of as a linear operator on c?) and the calculation of G is
still an open problem, this new éxpression cannot be rut to practical use.

No studies have yet been made on the determination of an autoregreséive

A

fepresentation for F when the process '{Fn: - ® < n < ®} is of degenerate

rank, except in the case of a rational spectral density F' (see Yaglom [32D.
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