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ABSTRACT.

The main object of this thesis is to discuss the "Cheo" (or '"C")
lower asymptotic density, upper asymptotic and natural density for
sets of n~tuples of non-negative integers. These densities are closely

related to the K-asymptotic density of A. R. Freedman.

Chapter 0 states the main results of Schnirelmann density,
asymptotic density and natural density for subsets of the sequence of
non-negative integers (i.e., in the case of dimension one). The basic
properties of Cheo (lower) asymptotic density in n-dimensions are
obtained in chapter 1. Chapter 2 is concerned with additive questions
involving the Cheo (lower) asymptotic density. Chapter 3 consiéts of
the structure results similar to the additivity theorem. Finally,
we compare the C—asymptotic density and the K-asymptotic density of

—

Freedman in chapter 4,
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CHAPTER O.

INTRODUCTION.

The purpose of this thesis is to develop an asymptotic type density
called the Cheo asymptotic density for sets of n~tuples of nonnegative |
integers, This Cheo asymptotic density is similar to the asymptotic
density of Freedman [4]. We shéll present the basic definitions in

chapter 1.

By way of introduction we shall first present a brief discussion of
the subject in the case of dimension one, i.e.,-in the case of non-

negative integers 0,1,2,***.

Let A be a set of nonnegative integers, for any positive integer n,
let A(n) be the number of positive integers npt greater than n in A.

Then the Schnirelmann density 0 of A is defined as

o= glb{éﬁg)l n>1}

From this definition we immediately see that

(1) If ACI (I = the set o6f all nonnegative integers),

then 0=<0<1 and



(i) o=1 if and only if A=I or A=I \ {0}.
If A and B are subsets of the nonnegative integers, then the sum A+B
is defined to be the set

{ atb | a€a, beB }.

Schnirelmann and Landau [6,P3] proved that if O€ANB and if a, B, Y

are the Schnirelmann densities of A, B, C=A+B respectively, then
Y = o+B-oB
and if o+f = 1 , then y=1.
The question of the relation of Y to & and B has been the subject of
much investigation. In 1942, H.B. Mann [7] proved the famous 0+B theorem,
which states that, if A and B each contain 0, then

vy = min { 1, o+8 }.

The lower asymptotic density &(A) or, briefly,the asymptotic density

of A is defined to be

. A(n)
§(a) = 11mn1nf = .

From this definition we can easily see that the asymptotic density of

any subset of I is invariant under tranlation,i.e.



S( xtA ) = §(A)

for ACI and x€I .
For any subset A,B of I, A is said to.be asymptotic to B (denoted by
kvB) if there is an integer N>0 such that AN{ N, N+1,'f""} = BN{ N, N+1,°*"}.
It can be seen that if A~B, then §(A) = §(B).
Also, in analogy to one of the Schnirelmann-Landau results, we have
if §(A) + §(B) > 1, then C~I.
The analogue of the o+B theorem of Mann for asymptotic density is not

true; consider, for example, the case, where both A and B are composed of

all nonnegative even integers, so that A+B is the same set. Then we have

~

§(A) = 8(B) = &(A+B) = k.

However, Erdds [3] proved that if 0€A, 0, 1€B, §(B)<S(A) and
S (A)+S6(B)=<1, then

S (C)

v

§ (A)+58 (B). —~

We now state the remarkable result of M. Kreser which amounts to the
best possible for asymptotic density along the lines of the o+f theorem.
The language is that of Halberstam and Roth [ 6, P51 ]:

A "system" (A', B') is said to be "worse" than (A,B) if ACA', BCB'
and A+B~A'+B'.

A "system" is said to be ‘''degenerate mod g'" if both A and B are

unions of (entire) Congruence classes mod g.



A "system" (A,B) is said to be '"degenerate" , if there exists an g
such that (A,B) is degenerate mod g.

Kreser proved that, assuming A,B,CI, C=A+B, S(A)+S(B)<1 :
(1) If no system worse than (A,B) is degenerate, then 6 (C)=6 (A)+68(B).
(ii) 1If there is a system worse than (A,B), which is degenerate mod g

and g is minimal, than §(C)=6 (A)+S(B)-1/g.

We continue our discussion by defining the upper asymptotic density

8(A) of A to be

A(n)
n

g@)=lh%&m

For any ACI if the lower asymptotic density and the upper asymptotic

have same value, then we say that the natural density of A exists and write

v(A) = §(A) = §(A). 1In this case

1. A()
v(A) = llﬂ\":;—“ .

n-e

Evidently, Vv is a finitely additive set function, i.e. if A1, A, ""*,Ap

are subsets of I such that AiﬂAj = ¢ for i#j and each Aj possesses natural

n
density, thenil_J1 A; has natural density and
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The function f on sets is countably additive, if Ay, Az,"****, Ap," """

is a sequence of sets such that f(A{) is defined for each i and
o x

A;NAy=¢ for i#j, then f(ig1 A ) =i§1 £(A1) .

An example shows that v is not countably additive. Let A={1},
Ax={2},"++ <+, Ap={n},******". Then v(Ai)=0 for each i, therefore,
B § - § A 42
;21 V(A1)=0. But .U, (A;)=I\{0}, hence 1=v (U, A)) #Z; V(41)=0.

Although v is not countably additive, we can prove that V is
"almost'" countably additive. This result called the additivity theorem
for natural density, states that, if Ay, Ax,**°"**,A,, """ "are subsets of
I such that AjNAj=¢ for i#j and each Aj possesses natural density, then
there exist Bi, By,***=“*", B,,*'*** such that Bj~A;, i=1,2,*<*-++, the

fee]
natural densityof igl By exists and

R.C. Buck [1] has defined (lower) asymptotic density, upper asymptotic
density for subsets of a measure space X. Briefly, the proeedure is this:
Take a countable increasing sequence K(i) of subset X which covers X and a
sequence p; of measures. defined on the same class of sets which includes the
sets K(i). The following properties are assumed:

(1) #;(X) =1 for each i,
(ii) Wi ®@GE)Y)Y »0 as i » » (fixed i)y
(iii) For each i there exists a(i) such that, if AhK(a(i)) = ¢then

By (&) = 0.



Then define the (lower) asymptotic density of A to be
D(A) = Lim (&)
100
and upper asymptotic density of A to be
D) = lim y (4)
i
and the natural density D(A) as usual. Furthermore, a set ACX is called
bounded if AcK(i) for some i. We shall write AéB when A\ B is bounded;
there is then a value of j for which A\ K(j)<B\ K(j). R. C. Buck proved
the following theorem: If AjCA,C**'CApc*+, lim D (A) = A and
lim D (An) = § , then there exists a set A with D(A) = A and D(A) = §
such that AnéA for all n. Ffom this theorem we immediately see that if
the sets A héve natural dénsity, and AléAzé"‘&An&"‘. Then,.there is
a set A, unique up to sets of zero natural density, such that A CA for
all n and D(A) = lim D(A,). Furthermore, if C;, C,, """ are disjoint sets

having natural density, there is a set C, unique up to sets of zero

. n ©
. . = T
natural density, such that Cjkgl C, for all n and with D(c) = ];1:D(Ck)'

The reader may later wish to compare this result of Buck's with our

theorem 3.19 and 3.21 in chapter 3,

To conclude this discussion we mention that it has been noticed that

§(A) = 1lim d ( AU{1,2,°°*,N})
Nopoo

This is the basis for our definition of (lower) Cheo asymptotic

density in chapter 1.



Chapter 1 follows closely to the paper of Freedman (4, section 21.
We define the Cheo or C-asymptotic density in n-dimensional space. To
do this we first generalize the Schnirelmann density given above to
n~-dimensions. We‘also give some equivaleit forms of the C-asymptotic
density. To conclude the chapter we reducé the C-asymptotic density
to the usual asymptotic density in the case n=1.

In chapter 2,we discuss some additive questions involving the
C-asymptotic density.

In chapter 3, which we consider the main part of this paper, we
define the upper C-asymptotic density and the C-natural densify. We
prove the "additivity theorem" for C-natural density and some related
results for lower and upper C-asymptotic density (Theorems 3.25, 3.19
and 3.21 respectively) which are entirely new in this setting.

In chapter 4, we attempt to compare the C-asymptotic density
and the K- asymptotic density of Freedman. Finally, we will see

that the lower C-asymptotic and K-asymptotic densities are in fact

different.



CHAPTER 1.

THE CHEO ASYMPTOTIC DENSITY IN n-DIMENSION.

Let n be a positive integer and S the set of all n-tuples of non-
negative integers, the element (0, 0,***-- »0) is denoted by Q and

generally the element (X3, Xps**°+- » Xp) by x.

Definition (l.1). For any x€S define

L(x)

{,yJ l YES, yisxi (d=1,2,+++°-" ,n) }

and

U = {y | xeL@ )

We let €= { L(x)| x¢S\0}. The classCis called the class of Cheo

sets or the C-class on S.

—

Definition (1.2). For any set ACS and a finite set XCS, A(X) is the

cardinality of the set ( AﬂX)\Q,u

Definition (1.3). For any ACS the Cheo or C-density of A is defined

to be

' _ AL)) '
d(a) = glb {S—@%)—) x€5\Q ).



In the paper of L. Cheo [2], he has defined the C-density of A
in the case n=2. In the case n=1, above definition reduces to the

ordinary Schnirelmann density of the set A.

Notation: For a nonnegative integer N, let
J) = { x | x€S, min {x1,*"*,xn}=N }.

It can be noted that J(N) = S\U((N+1,+*** N+1)).

Definition (1.4). For any ACS the lower Cheo asymptotic density,
referred to henceforth as C-asymptotic density, is defined to be

§(A) = lin d (AUT ().

Remark (1.5). For all N=0 we have

- [AVTQD) TALx) |
d(AUJ(N)) = glb { SL) XES\T(N) }.

Since for all g€J(N), we have L(x)cJ(N) and

[AUT () 3 (L(x))
S(L(x))

= 1=2d(AUT(N)).

Definition (1.6). For integers M, N, n with M>N>0, n>0, let

ae2)™ -1
MF2) T~ (M=N+1)"

g(M,N,n) = min { m=1,+-+,n}.
We note that for fixed N,n, g(M,N,n)»>~ as M»». Also, for fixed
"M,N, if n)>n, then g(M,N,n;)<g(M,N,n2). The second statement is

obvious. The first statement follows from the fact that for fixed N,n:
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a#2)" - 1 (M*'Z'-l)[(MG-Z)n‘l +(M+2)n—-2 + et 1]

a2) = (=n+1)" e 2-1-1) [ (e 2) P & ) ae2) ™2 e e e 1)

o[ o)™ 4 ae2)™ 2 e et1)

D[ L & oD 082) 2 e e et o)L

—>c0 as M -

Lemma (1.7). Let 0SN<M and x€S such that Mtlsx; (i=1,+*+,n). If

n n
igl (x4 + 1) —igl (x{-M)
f(M,N,n,x)

n n —
I g+ D) - I (W)

then £ (M,N,n,x )>g(M,N,n)

Proof. For n=1,

(x3 + 1) = (x3 - M) _ 1+M _

f(M,N,n,x) = 1 + 1) = (x1 = X))  1#N

g(M,N,1).
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Also, for any n, if x = (M+l,-**,Mtl), then

ow2)" -1
f(M,N,n,x) = > g(M,N,n).

o+2)" - M-w1)"

Now, we perform a multiple induction. Let k>1 and assume the lemma
true for all M,N,n,x with n<k. Let x = (x1,"',xk) be such that X{>
M{i=1,'"",k) and, for some j, xJ.>M+1, and assume for each y = (y1,'“'",yk)

with M<y;=x4 (i=1,°*=~,k) and, for some j, Yi<¥3> that f(M,N,k,y)>g(M,N,k).

Without loss of generality we may assume that x,>Mkl. And

k k
I, g+ 1) = I, G - 1)
f(M,Nska§) =
Kk k
.El (Xi + 1) - 'El (Xl - N)
k k k k
[ (x1-1+1) i]=12 (x1+1)=-(x;1-1-M) iQZ,, (xi~M) 1 + [ 122 (x4+1)- 122 (x5-M)}

= K - .k .- K K
[Gxy=141) (I, (xg41)=Gep=1-N) (T (eg-N)] & [ (I, (xg+1)- I, Gy =) ]

Zmin {f(Mstks(xl"l» XZs'..’xk))s f(MsN:k—ls(XZ,”':Xk_))}

>min {g(M,N,k), g(M,N,k-1)}



= g(MsN:k) .

The third ineqality follows from the fact that, if a,b,c,d, are

positive integers, then

joi)
+4-
o

(e]

+

[aW
v
=]

5
.
(el I}
oo
At

Hence, the lemma is proved.

By simplé calculations we can get the following formulas:

(l.a) For each x€S, ~
n

S(L() = I (x5 + 1) = L.

(1.b) For ﬁ,'xes, Y€L(x), we have
n

S(LEINUY) = I, (x4 -yi+ 1) - AQ).

where A(y) = 0 if y # Q and A(y) = 1 if y = Q.

~s

(1.¢) For Mz0, x ¢ J(M), then -~
n n

S(L(xNI(M)) = igl (x4 + 1) - igl (x{ - M - 1.
To see (l.c), since

LEINIM) = LEON[LGINU((M+L, - M) ]

Thus,
n n

12

SLENI) = [ 0 (g + 1) =11 = I [(x5 = G+ 1)) + 1]
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n n
= igl (x; + 1) - :LLII (x4 = M) - 1.
Lemma (1.8). If O<NM and x ¢ J(M), then
S(L(x) S(LNIM))
ST~ SEepnimy > sl
Proof. The first inequality is obvious.
: n n
S(LE)NIM)) ~ i_I__Il (x; + 1) - igl (x5 - M -1
S(L(xNI(N)) n n
i]-Il (xi + 1) - iI=I1 (%3 - N) -1

> f(M,N,n,x) = g(M,N,n).

Definition (1.9). For any integer N=0, define

£ (N) = { L{x) | Lx)Ee, x5 \JW) 1.

 Definition (1.10). Let & be the class of all sequences{L(gi)} in ¢

which satisfy the property that for each integer N>0
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S(LGM)
S(LGHNI M)

lim
{00

Lemma (1.11). If { L(ggi) } is a sequence such that L()\(Ji) €£ (1),

then { L(ggi) } € g .

Proof. Lemma (1.8) shows that for i sufficiently large we have

SLG™) g(1,N,n)
S(L(HNI)
and g(i,N,n) > « as i-> o .

Theorem (1.12). If {LQ{Ji)} €S and . ACS, then

s < 1im 2Q&D)
TosaEh)

Proof. Let N>0. Then

ARG ACGH) + sEanLed))
daalJn)y) < - = N
| S(L{xl)) S(LGsL))

Hence



lm - ACGH) s nLh)
aauIm) = 72 I — + . ]
S(L(x")) S(L(g"))
- lim  A(L(xD)) Tim SI@NL(x1))
T e ——————— 4 e -
S(LGH) S(LGE)
. lim  A(L(x1))
i ——
S(L(x"))
Letting = No« ye have the result.

The following theorem shows that §(A) can be always obtained as a

limit of quotients A(L(;{gi))/ S(L(;\gi)) where {L(gi)} is a sequénce in § .

Theorem (1.13). For any ACS there exists {L(}\gi)}ég such that

lim
-0

A(LGxl))

S(A) = ,
S(L(x"))

* Furthermore, we may choose L(g\{li) so that §ies \NJ@{E) .



Proof. If §(A) = 1, then for any sequence {L(§;)}Eé§we have

un ACED) T ACED)

SLGH) S(LG))

A
—

1 = G(A)Si_m {ore0

and the theorem is proved in this case.
Suppose that §(A)<l. For any i=l, let M(i) be such M(i)>i and

g(M{i),i,n) > 21
and choose L(§?)ECZ such that §?ES\\J(M(i)) and
[ AUTQui)) &) .

- - < daUuTm@E)) + 'Zl
S(L(x)) -

The existence of L(xl) follows from the remark 1.5.

It follows that L(xl)e £(M(@i})c# (i) so that by lemma 1.11{ L(xl) }€'S

It remains only to show that §(A) is the limit of the gquotients

ALGL)) / s@)).

From the inequalities

.16
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[ ATILE))  AMEh)) I @E)

0 < , - . < ~
S(LxM)) S(L(x)) - S(@LEY)
s(L1HNI({1)) 1 1
T s sMM@,im 2*

it follows that

Jim

e

[[AUJ(i)](L(§?)) A(L(x1))

_ ‘ ]=o0..
S (L(x1)) S (L))

But also

[ AT I@EN)
S (L))

lim

e

= §(A)

for

[A@IEE))  [ATME)] @G
d(AUT (1)) < — < .
S(L(x1)) SLEM)
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< d [AUTQM@)) ] + i{
25,

where both ends approach §(A) as i<

Therefore,

A
S(L(xi))

lim
i

= §(A).

Theorem (1.14). TFor any ACS we have

glb lim  A(L(x1))
{LGghJes o s(L(xl)) .

~

S(A) =

Proof. By theorem 1.12 we have for any {LQ@i)}GS

. A
s(a) = 118 Q*i ~
S(L(x")) «

Thus,

~

glb lim  A(L(g1))
{L(él)}ég i S(L(gi)) .

§(A) =

On the other hand, there exists a sequence {Lgﬁ})}é 8 such that



5y - 1im ALGD) g ACGD)
Posaeh) s .

Therefore,

{L()é,i)}ESl% s(LC}si))-
It follows that
1
§(A) = glb lim A(L(§ ))
Lehies ¥ saehn.

Definition (1.15). For N=0 and ACS we define

ALRE) + S@EINIW)Y | -
: x€ S\ 0}.
S(L(x)) ;

aN(a) = giv {

" Theorem (1.16). TFor any ACS,

lim

N
o ().

S(A) =

Proof. Since, for each L(z)E(} and for each N,

i9



[AUT () 1 (L () ALG)) + STNL(R))

<

S(L(x)) S(L(x))

it follows that d(AUT(N)) = dN(A).

On the other hand, let {L(xl)}€Ssuch that

A(L(x1))
g s
s (LGeb))
Then
g ACGED) + SELEHNIW)
d (a) =

S (L(x1))

AL s@EbIIW))
= — + —
s(LGh)) sy

—

the right hand side of the inequality tends to §(A) as i tends to infinite.

Hence, for each N we have

d(AUT () y=d™ (A)< 6 (A).

Therefore,

sea) = Hm @V ).




Theorem (l1.17). For any ACS,

§(A) = bl;f dalamy)y.

Proof. As in the proof of theorem 1.16,

d(AUT(N)) = dAUT(M)UT(N)) = dN(AUJ(N))

1l

A

S (AUT (N)) =8 (A).

The last equality follows easily from the definition of §.

Theorem (1.18). For any ACS,

(i) 1If n=2 énd AMNJI(N) is finite for each N=0, then §{A) = 0

(ii) If S\A cJ(N) for some N, then §{A)=1.

Proof. (i) For N=0, let x be chosen so

1,8 2,82 %=1,

large that x, . >N (i=1,***,n-1) and ST ((x

i,N N)))>N-S (ANJ ()

1N %=1,
Let L(x ceeLx N) = L(ﬁN) so that L(gN)Ec, and
1,N° ’>"n-1,N°

{LQgN)}e S (since L%N) €4 (N-1)) and LQgN)CJ ).

Hence

21
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N N
pim ACGED) gy, [AM®IEED)

S(L@N)) T Noe

1A

0 =6(Aa) -
N-S(ANTJW))

it
o

A
|
|

A

(i) If S\ACJ(N), then AUT(M) = S for M=N. Thus d(AUI(M)) = d(S) = 1

and the result follows:

§Emark (1.19). The part (i) -of theorem 1,18 is not true for n=1,

For example, let A=I the set of all nannegative integers. Then for each

N>0, ANJ(N) is finite, but §(4) = 1 # 0.

To conclude this chapter we prove that § generalizes the usual

asymptotic density.

Theorem (1.20). In the case n=1, §(A) is the usual asymptotic

density of A.

Proof. When n=1, S=I. Then S(L(i)) = i for each i€I\0. Hence
by theorem 1.12 we have
lim A(i)

§(A) = T3 {

10



On the other hand, by theorem 1.13, there is a sequence {ni}

such that nj- as i»e~corresponding to {L(n;)}€ gsuch that

. A(ng) . A@)
lim i lim
S§(A) = i > 1
n

i i .

This completes the proof.

23



CHAPTER 2.

THE C-ASYMPTOTIC DENSITY OF THE SUM OF TWO SETS.

r

In this chapter, we discuss some proterties of the C-asymptotic

density of the sum of two sets.

Definition (2.1). Let A and B be subsets of S, we define

A+B = { ,@-.-m gEA, heB 1.

Here a+h= (a;y +by, a2 + ba,"**,an + by) where g = (aj,az,"*,ay)
and { = (bi,b2,*++,by). Furthermore, if ACU(y), we define
Ay, = {x | x€8, y + x€A}

Note! for any AcCS, A is defined to be the set S\ A.
Lemma (2.2). If Q¢ANB and A(L(x)) + B(L(x))> S(L(x)), then x€A + B.

Proof. Suppose that x § A+B = C, then x€S\ C =C . Let the
elements of ANL(x) be enumerated
{0=a0,81,"" 80}

For each i (0=i<n), we have x - QﬂE_(L()\g)ﬂB’) \,Q since ;\{l—’%iGL(gg)\,Q, and if

X% = 2i€B then x = a; + (¥ - a;)€C contrary to assurption. Thus the set

24



D= {1§ -84 l i=1,2,+-+,n} _C_(EDL(QS))\Q

and so

ALGD) + 1= n+l = S(D)= BLR)) = SLG) ~ BA)).

Therefore,

ALGE) + BLE) = SL&E) - 1 < SLE)-

tA

This is a contradiction.

Theorem (2.3). If Q€ANB and $(A) + §(B) > 1, then S\ (A+B)CI(N)

for some N. This last condition implies that §(A+B) = 1.

Proof. The last statement is just theorem (1.18(ii)).

Let A = §(A) +8(B) - 1, then A>0. Since §(A)= 1lim d(AUT(N))
N0

and §(B) = 1im &BUJ(N)), thus for some Np we have

Noeo

\

A

(1) L+ 5 < d(ADI(NG)) + d(BUI(No)).

Since, for any L(:;:)€ &
[AUT (No) ] (L(x))

S(L(x))

d(AUT(Np)) <

‘25
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Then

(2) S(L(x)) " d(AUT (o)) = [AUT(N) 1 (L(x)).

Similarly,
(3) S(L (%)) d(BUIMN0)) = [BUING) (L ()).

Combining (1), (2), (3) we obtain

S(LG)) + 35 WLG))< (AT 1(LG) + [BUI o) ] (L))

Let M be so large that g(M,Ng,n) :»%-. By lemma 1.8, if x¢J(M), then

S(L{x)) A
S(LC&)HJ(NO)) > g(M:NOsn) >')'\-

Hence, for xf£J(M),

v

ALG)) + BLG) = [AUT(N) 1(L() + [BUTMNG) I L) - 28(L(x)INI(No))

v

S(L(x)) + 55 (L(Y) - 258 (LGD)

S(LGK)) -

Therefore, by lemma 2.2, x¢A+B so that S \ (A+B)CI (M),

Remaerk (2.4). If §(A) + §(B) = 1, the conclusion of theorem 2.3

2

is not necessarily true. For example, let S = I and let

A =3B = {(a,b) I (a,b)€S, a is even}

We are going to show that §(A) = §(B) = %. It is sufficient to show that



ALY
geay = Z 0

1300

o[ =

saEh)

for all sequence {L(ﬁi)}e 8 (see theorem 3.12 below).

Let {L(’gi)} be any sequence in 8 and let ’351 = (aj, bj).
Case I. If ’>\{IiéA, then

ALGED)  Fag + DBy + 1) - 1

SLGD)  (ag 4 Dby + 1) - 1

_-%(ai 1)y + 1) 1

(a; + 1)(b; + 1)-1 (a; + 1)(b; + 1) - 1

1 1

2

2 @ F DG, F D

(ai + l)(bi +1) -1

——

Case II, If ,J\cliEA, then

ALGD)) 2(ap)®g +1) =1+ (b + 1)

SWGEH)  (ag F Dy + 1) -1

1 1
E(‘ai + 1) (bi + 1) -1+ E(‘bi + 1)

(a; + )by +1) = 1

27
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i(ag + 1) (by + 1) 1 by -+ 1
= - 1 -
TG T DGt D -1 @ FDG +D 1 Pt ¥ D -1

1 1 1
2

2 T(ag + Dy + 1) (a; + Dy + 1) -1 gy + D) -

Thus we have

3.
lim A(LQS )) L
. T T G
e S(LQ:JI))
Therefore,
S(A) +8(B) = +%=1
But A+B = A and S(A+B) = §(A) = % .

The following theorem shows that the C-asymptotic density of a
set is invariant under translation. We note that, if Q¢A then

AGLGD) = (eRA) (Lg + 3 )) for any x, ¥, €5.

Theorem (2.5). S(g + A) = &(A) for each ACS and x€S.

Proof. If x =0, then x + A = A and the theorem is trivial.

Hence it is assumed that x#Q. Furthermore, since x + A and +(A\Q)



differ in at most one point, it may be assumed that QfA.
It is first shown that §(x + A) 26(A). Let N = max{x1,""*,x,},

then for any ,\LGS\J(N) we have

(*) AL®) = x+ AV (Lix + ¥))

s+ &) LG+ P\ LE) + g+ A ELE)

1A

JM(LE) + G+ AL + 1.
The last inequality follows from the fact that

(g + A L+ v \LE) < I @E) + 1.

To see this, for any y¢J(N)

n n

I (L) = T (yi+1) - I (v -® -1 (by formula l.c)
i=1 i=1 . .
and
n n
x+ACE+pP\LE))=s I [(Xi,"' yi + 1) - xi]\- I (yi - %)
i=1 i=1
n n
= 1 (yi + 1) - .H (yi - Xi) s
i=]1 i=1
n n
but N2x; (1 = 1,°"*,n) then I (y; ~N) = I (y; - %) and so
i=1 i=]1

(g + A L+ P\ LEH= IO @E) + 1.

29
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Now, if we let {L(xi)}€é>such that

(x + A) (L(yi))
S(LGgL))

§ (g +A) = 11T

1>

Then swé have, by (%)

ALGEY) - sy @iy -1

§(x + A) Lim :
S(L(y1))

i

v

ALEH) - s@EHNI))- 1
sLGH)

im AGGD) N ACLGEH)
1lm

e S T ER st

1lim
-0

> §(A).

It remains to show that &(x + A) = §(A). Clearly, for each
E+AOCE) s ALE).

Let {L(;Li)}e § such that

AL(y"))

sLeh)

1im
e

= §(4).

Then



| . + A @E L, ACEh)
§(g + A) < il ® .(x < Hn (x
S{L(x")) S(LGEM)

1 T oo = 6 (A)

and the theorem is proved.

Corollary (2.6). If ACS, x€S we have §(A-x) = §(A).

Proof. Since A-x= {a ~x | a€A, x5%a; (£ = 1,**+,n)} and

A-x +x={a l AfA, x4sa; (L = 1,**",n)}cA. Then by theorem 2.5 we have

${A - %) = 86((A - x) + %) < §(A).
Furthermore, if we let N = max {x1,°'‘,X;} then

ANIMN) € (A-x) +x=1{a | a€A, x;<a; (1 =1,"++,n)}.
Hence

S(A - » +x) = 8GA\ JM)= §Q).

This completes the proof.

Theorem (2.7). 1If ANBCJ(N) for some N, then §(AUB) = §(A) + §(B).

In particular, if QEANBCI(N), then §(A+B)Z 8(A) + §(B).
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Proof. The second statement follows easily from the first since
A+BoOAUB if Q€ANB.

Let C = AUB. If M>N, then ANBCJ(M) and so for any L()\{)::E c

[CUTQD (L) = AL\ JM)) + BL(E) \ JM)) + SLGENIM))

[AUT QD 1(L () + [BUTAD 1L () - SLENIM).

Thus, for M&N, L(x)€C ,

[CUTD] (L(x)) + SLEINI (D)

S (L(x))
[AUTD T(L(x))  [BUTQM)] (L(x))
= + -
S(L(x)) S(L(x))

v

d(AUT (M) + d(BUI(M)).

Hence, by definition of dN,

Fcusan) = dauIen) + d@UIM)).

Letting M»», we obtain by theorem 1.17

§(C) = 6¢A) + &(B).

Remark(2.8) The inequality sign of theorem 2.7 can not be omitted.

For instance, if we let S = I%and let



A= {(X,y) I (X,Y)ES’ ny_-} )

e~}
]

S \A.

Then AUB = S and so §(AUB) = 1. But §(A) + §B) = 0+ 0 = 0. To see this

recall, for any {L(zgi)}E S ,

A(LGL))
S(L(xh))

§(a) < 2

1-»e0

Letting L(xl) = L((21,1)), 1 = 1,2,**", we have {L(x!)}€¢Sand

i,
rim ACCH 1))

i~500

0 < 8(A)

1A

s, 1))

G+ DGE+2)
2

1im 1

p e

G+ DEt+1) -1

—

1im G@+1)E+2) i+ 2

p i

lim

i

A

= 0.

D@+ e+ et + 1y

Similarly, we have §(B) = O.
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" CHAPTER 3.

THE UPPER C—-ASYMPTQTIC DENSITY, THE C-NATURAL DENSITY AND

SOME STRUCTURE RESULTS.

In this chapter, we define the upper C-asymptotic density and the
C-natural density. We give analogies to theorems 1.12--1.17 for the
upper C-asymptotic density. We prove the "additivity" theorem for
C-natural density and some related results for lower aﬁd upper
C-asymptotic density (Theorem‘3.25, 3.19 and 3.21 respectively) which

are entirely new in this setting.

Definition (3.1). For a set AcS, we define the upper C-density

——

of A to be

_ AGGE) |
d(A) = lup { —— xS\ Q0 }
S(Lx))

and the upper C-asymptotic density of A to be

§Q) = ‘1im d a\J)).
Nowo

It is easy to see that
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[ANIT )] L (x))

. £ES\I)T
S(Lx))

AAN\I@)) = lub{

Since E(A \J(N)) forms a nonincreasing sequence as N+~ it follows that

§(A) always exists.

Theorem (3.2). If {L(g)}€§ and ACS, then

_ L ALGE™)
@) > 1im ——
ise S(L(xY)) .

- Proof. For any N0 and {L(;\gi)}e s , we have

[A\NTM]I WD)
S(L(EH))

AAaN\Ja))=

AQGD)) - sEEINLE)
(L))

=

Thus

B o AaEhY) | su@mneh)
da \g@) = 1im | - - ]
ise S sL&Eh)




CAQGH) SEMNLED)

= lim [ — ] +lin [ - —
s SL(xD))  Ioe SLGE))
B YeXe )

= lim [ — ]
i S(L(ZD))

Letting N+« we obtain

A
T@) > Iim ————
i~ S(LE1))

Corallary (3.3). For any AcCS we have §(A) = S(A).

Proof. For any {LQ{l)}GS we have

AGGY) AcGE)
d(a) = lim = - < lim — = §(4).
oo S(LED)) i S(L(ZD))

Theorem (3.4). For any ACS there is a sequence {L(’}\(Jl).}G 8§ such that

ALGx))
§(A) = 1lim —
ise S(L(x))

Proof. For any i>1, let M(i) be such that M(i) > and




gM(@{i), 1, n) > o1

‘and choose L(éi)€<3>such that z}e S\ JM(i)) and

[ANIQE)) @)

— 2 A(A\ J01G0))) - 3
S(L(xM)) -

Since, LQ&;)E#;(M(i)) c€ (1) we have {LC&?)}E S . From the inequalities

AQLGY)  [A\I@I@E)
CsLE S(L&EM)

[A\I@UIDIAEY [A\IDIEEY)

IA

S(LG)) s (L))
CSE@NLED) 1 !
S osaEh) 0 gm@, 1, ) 2,

it follows that

ALGD) [A @I @EN

lim | - — l1=0.
ire  S(L(ZH)) SL&))
But also
ANI@OI@E)
lim = § (A),

fseo (L))
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for
B [A\ T @&EH)
d@A\J{)) = .
S(LGM)
[ANJHMEN] @& _ 1
> _ > TA\IGIE))) - —
S(L(x)) - 2+

where both ends approach 6 (A) as i+~ , This shows that

_ AQGED)
§ (A) = lim —_—
ise  S(L(zh)) .

The following three theorems give the other equivalent forms for the

upper C-asymptotic density.

Theorem(3.5). For each ASS,

_ _AGE) ~
d(A) = lub lim —
{L'(,g,i)}GS i S(L(}\(l .

Proof. By theorem 3.2, for any {L(§?)}€S

o A@EM
§() = lim

ioe S(LGD))

Thus



_ _AGGE)
§(A) = 1lub 1lim —
LIS ir=  SLE))

On the other hand, by theorem 3.4 there exists a sequence {ngi)}é 8

such that
_ AGEDY) L A@E)
sQaA) = lim —————— = lim —————
ise S(L(x1)) ise  S(L(zM))
__ A@@EH)
s 1wy 1im -
{L(x)}€S 1=  S(L(x")).
Therefore,
_ __ AGGM)
§(A) = 1ub lim -
{Lxh)}e 8 ine S(L(xM))
Notation. For N=0 and ACS define —
. ALG) - SEENNLE)
d (A) = 1lub{ L)€ }-

S(LG&))

Theorem (3.6). For any ACS,

3(A) = lim T(@) .
Nooo:

Proof. Since, for each L(x)€c

39



[ANIMICE) . ALE) - STMNLE)

40

S (L(x)) S (L(x))
Then
[A\ JAD @) AQLG) - SEANNLE)
1lub{ LEC I = lub{ . Lx)eed.
s@&) S(L(x))

Therefore,

CdA\IT@) = ).

Furthermore, let {L(xi)}E § .such that

_ CALGED)
§(A) = l1lim -
120 S(L(x))

Thus

i AQGD) - sEEINL(EM)
a7 (A) = —
sLx)

AQLG)  S@MNLED)
s (L(xH) SELGEEN

The right hand side of the inequality tends to §(A) as i~» . Then

} T = T@.



Therefore, for each N we have

T < Ty = T\ a@)

and so

lim §V(A) = §(A).
N—roo

Theorem (3.7). For any AcCS,

§(A) = lim T\ J).

Noo

Proof. As in the proof of theorem 3.6

da\ J@) = daa\Jm)] \amw)
= T\ I)
=5 A\Jm)) = 5).

The last equality follows from the definition of §.

Theorem (3.8). 1In the case n=1, E(A) is the usual upper asymptotic

derisity of A.

Proof. When n = 1, S = I the set of all nonnegative integers, then

for any i€I \0, S(L(i))

1

i. Hence by theorem 3.2, we we have

- . AQ)
§(A) = lim —

i i .
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On the other hand, by theorem 3.4, there exists a sequence {nij‘such

that ny~> as i»~ corresponding to {L(nj)}€¢ § such that

_ A(ni) A
§(A) = lim < lim -—

and the result.. follows.

Theorem (3.9), If ANBCI(N) for some N, then

S(AUB) = §(A) + S§(B).

Proof. For M>N we have ANBCJ(M), then for any L(x)€ C

[AUB)\ 30T (LG)  (TANTEDIUB\ 30D 1) (L(g))
S(LGx)) S(LG)

A\ I D] (LG) + [B\ JaD (LG
S(LG)

1A

A

AAaNIeD) + da@\IW).

Thus —
a[ (AUB) \J ()] = da\J@n) + d@\Jan).

Letting M»~ we obtain

S(AUB) < §(a) + §(B).

Remark (3.10). The inequality sign of the theorem 3,9 can not be

removed. For example, let S = Iz, A and B defined as in remark 2.8.

Then we can see that




2
o>
ey
=
h g
|1}
ot
%)
h g
il
[

To see this recall, for any {L(xvi)}é S
_ _A@E
§(A) = lim — I

ire S(L(X)) -

Letting L(zgi) = L(4, 21)), i=1,2,""", we have {L(xi)}ES and

_ O AE, 2
1=48) = lim "
| ise S(L(GE, 20)))

i+ 31)E + 2)

1+ @ =E+

— 2
= lim — .
100 G@+1nEt+1 -1
(i+1) (i+2) 1 L (28-4) G+1)
_ g 26 @l @My @ 41 @M
e 1 - ___._.L..____
(i+1) (2*+1)
it2 1 o2~
. i . i i
_ T 204D Gy @+ 2
. 1
i 1 - .
(i+1) (27+1)
= l.

8imilarly, we have 6(B) = 1. Therefore

T +8@) =1+1 >8@lB) = 1.

We begin now our study of the some structure results.




Definition (3.11). TFor any AcS if §(A) = §(A), then we say that the

C-natural density of A exists and write V(A) = §(A) = §(A).

Note. The C-natural density of a set A does not always exist. For

example, if we let S = 12 and A = {(x,y) I (x,y)€S, y=x}, then from

remark 2.8 and remark 3.10, we have 6(A) = 0 and 6(A) = 1. Therefore,

the C-natural density of A does not exist.

Theorem (3.12). The C-natural density of ACS exists if and only if,

for each {L(ﬁ?)}E_S , the quotients A(L(gi))/S(LC§i)) form a convergent

sequence. In this case

v(A) =

lim
00

for each sequence {L(@i)}e s K

Proof. (i) Suppose

{L(Kﬁ)}e 8 , by theorem
V(A) =
Thus
v(@a) =

that

1.12

S (4)

1lim
e

AQGD)
s (L))
the v(A) exists, then for each sequence

and theorem 3.2,

AGGL) A@GE)

< lim ————— < 1in ——
ire S(L(EH))  do= S(LZD))
<= 8@) = v(a)

CAQ@GED))

S(L(x1)).
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(ii) Suppose A(L(gi))/S(L(;gi)) is convergent for each
{L()ﬁcj‘)}é S . Then all limits must be the same, for, if {L(g;(‘i')} -and
{L(;Li)} are two sequences in 8 such that A(L(.)\gi))/S(LG\gi)) and
A(L(}Li))/S(L(yJi)) converge to different limits, then the sequence

{L(gi) } defined by

. xI for i odd
i_ ~
z =1

Y for i even

s in Sand lim A(L(,g,i))/S(L(@i)) does not exist. This is a contradiction.
Therefore, all the limits are the same. By theorem 1.13 and theorem 3.4.
there exist {L(;g,l)} and {L(,y,i)} in 8 such that
ALGD) AQE))
§(A) = lim —— = lim ——— = 8(A).
iwe S(L(x)) i S(L(Y)

Hence, V(A) exists and the last statement of the theorem is obvious.

Theorem (3.13). For any ACS, if the C-natural density V(A) exists,

~—

then the C-natural density \)(K) also exists and

v(A) + v(a) = 1.

Proof. Since the C-natural density V(A) exists, theorem 3.12 shows
that for each {L(,)\gi)}é S the quotients A(LQ(Ji))/S(L(;\gi)) form a
convergent sequence and

AL
V(A) = 1lim ——
1o S (L(K)).
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Hence, for each {LQ§;)}E s

e saeh) - Aeh)
S(LGH)) S(LGx1))

ALGx)
saEh)

=] =1 -v()

as i»» , it follows from the theorem 3.12 that V(A) will exist and

_ A&H)
\)(A) = 1lim —_— = 1 - \)(A).
ise  S(L(gY))

Corollary (3.14). For any AcS, the C-natural density exists if and

~

only if
§(a) + 8(a) = 1.

Proof. (i) Suppose that V(A) exists. Theorem 3.13 shows that
vCK)exists and
v(A) +v(a) = 1.
But also
V(4) = §(A) and V(A)= §QA).
Hence
§(a) + §(A) = 1.
(ii) Suppose that 8(A) + 6(A) = 1. ILet {Lg%?)}~ be a

sequence such that {L(x})}é § and



e s
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AQGED))
§(4) = lim ——
i S(LGD)).
Then

_ @) CAWGEY)
§A) = Ljﬂ — = l_lIE 1 - ——
S iem S(L(xY)) 1w - S(LGED))

1 - 8(A)

ACGED)
] - ———
e S@G1))
AL
=1-1im ———

{se0 s(L(;gi))

]
=
[N
=i

1°- 8().

Hence, 6(A) = EKA).

On the other hand, we have, by corollary 3.3, §(A)< §(A).  Therefore,

§(A) ='§(A) and v(A) exists.

Corollary (3.15). For any ACS, the C-natural density exists if and

only if

S(A) + 8(a) = 1,

The proof is similar to corollary 3.14.

From the remark 2.8 and remark 3.10, we know that, for set A, B with

ANBCI(N), the equalities §(AUB) = 8(A) + 8(B) and 8(AUB) = S(A) + 8(B)

need not be true in general. But if the C-natural densities of A and B

exist, then we can prove the following result which amounts to finite



additivity for C-natural density.

Theorem (3.16). Let Aj,Az,°**,A, be sets with C-natural density

such that, for each pair i, j with i # j there is an Nij such that

AﬂlAjCJ(Nij). Then A = AjUAzU*~+~ A, has C-natural density and

n
v(A) = L v(Ai).
i=1

1

Proof. Let N = max {N.

nax lj}. Clearly B; = Ai\ J(N) has natural
1,]

density and
Vv(B;) = v(Ai) i=1,2,""",n.

Since the Bi are disjoint, for any sequence {LC@I)}GS

ALGED) + A @ED) + o+ A @G  ACED)

S(L(g) S(LGH)
(B1UB2U* " "UB,) (L(x1))
) S(LGx)) a
By (L(x1)) + Bo(LGD)) + ++++ + B (L))
) s (LGeh)
where both ends converge to gl V(A;) as ide . By theorem 3.12 we
i=

conclude that v(A) exists and

n .
v(A) = L v(A).

i=1

The remainder of the chapter will be devoted to the proofs of some

structure results for lower and upper C-asymptotic density and the
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"additivity" theorem. Before discussing those theorems, let us give

| the following definition:

Definition (3.17). For any A,BCS, A is said to be asymptotic to B

(denoted by A~B) if there is an integer N such that A \J(N) = B\\J(N).
It is easily seen that A¥B if and only if there exists an N such that

AUJ(N) = BUJI(N).

Lemma (3.18). For any A,BCS, 1f AVB then §(A) = 8(B) and S (A)= S (B).

Furthermore, v(A) exists if and only if V(B) exists and v(A) = V(B) if
both exist. .
Proof. Since AMB, there exists an Nj; such that AUJ(N;) = BUJ(N1).
Thus for N =N; we have
AUT(N) = BUJQN) .
Therefore -

dAlI()) = d@®UIM)) for all N= N;.
Letting N> we obtain

§(a) = 8§(B).

The remainder of the proof is similar and left to the reader.

We now proceed to prove some structure results. We consider a
sequence of sets {A;} on S such that AjCA;C***cA,C***, then § (A1) &(A2)

. s+et=6(A)<S ***.. Thus {8(A,)} is an increasing sequence bounded above by 1.



30

Therefore, the limit of {&A;)} exists.

A question raises ''suppose AJCAZC'--CAnC'°° does it imply that

(-] .
P : 1"
8 ( .U An) = lim S(An)? .
n=1 o
A simple example shows that this is not true. Let S = 12, Ay = JQ),

Ay = J(2),"" A, = J{n),""". Then A1§A2C"'§AHC"','it is easy to see

that §(A,) = O for each n. Thus

1im G(An) = 0.
Tieo
But §C U A) =6() = 1.
n=1

However, we can find a sequence of sets{Bj} such that By~A; (1 = 1,2,
«+*) and
§( 9 Bi) = }im. G(Ai).

1 100

In this case we could take Bj =¢ for each i. In general we have the

—

following theorem.

Theorem (3.19). Let Ai,A2,°"°,Ar,"" " be sets with C-asymptotic

density 8, (k = 1,2,°**) such that AJCAZC"'CAkC' Then there exist
B1,B2,***,Bgk**" such rhat B™Ar (k = 1,2,°**) and

§C U Bp) = lim 8(ap).
k=1 ks

Proof. (i) If BvAp (k =1,2,-++), let



B=UB °
k=1 &

Then By C 3 for any k. Therefore, 8(Bx) = 8§(Z) for any k and §(Ax) =6(Z3)

for any k. This implies lim G&(Ax) = §(p3).

koo
(ii) We are going to choose the By such that

§(B) < lim S(A).

ke

Since, §(Ag) = & (k= 1,2,"" '@ there exists a sequence {L(ggi’l)}é S

such that

ALt ly)
61 = G(AJ) = lim i 1
ise S (L(x7)).
Thus, there is an integer N;30 such that for all zgi.’IES \J®W1)
a LGty
—-————'_—1—-— <=6 + 1.
S(L(x"))
Similarly, there exists a sequence {L(}r\;li’z)}é 8 such that
A2 (LGgH02))
62 = 6(A2) = lim -'——-——'—2—— =
i S (L(x’)).
Choose Ny big enough such that
1) N2>0Nji;
(ii) There exists an zgi’léJ(Nz) \NJWN1);
(1i1) A2 (LGcts2)) s
L —— = 8 + )% for all x>“ €5 \J(N2).
s (Lgt?)) |

In general, there exists a sequence {L(}\gi’k)}ég such that

Ay (L(x1sK))
8 = §(AK) = lim —————
- i § (L(z1°K)) .

51



Choose N big enough such that

(ii)  there exists an z}i’k—IEJ(Nk)\ J(Np—1)

(111) A (LGEF)

- = § + L for all xiKes\ JQ) .
i,k k ~
S L&)
Tet
B = A \ J() (k = 1,2,°°").
Then
By k= 1,2,°*°).
k k
Since, BjCAj (3 = 1,2,°+") and A1CAzC"""CA(C'"", then U Bj © .U Ay = A
, ji=1 j=1
Now, let B = U By, by theorem 1.12, for any {L(}Li)}é 8
k=1 ‘
| B (L))
§(B) = 1lim —
ise  S(L(yY))
Take
vl = some = legmy) \J),
262 =

some ;;Vi’ZEJ(Ns) \J(N2),

Then, the sequence {L(;Lk)}E 8§ . It follows from our chosen By that
k

pagky (Y BV BeraU® ) €@)
- 1=

5 (L)) S (L (g%))

52
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1

k

(U B @G)
I
(L))
A L5 o
< —-——'——1:— 55k+_
5 (L) K

(since, Bj (L(yk)) = 0 for all j=k+1)., Therefore

B (L) 1
_l_irﬂ———-—-k—— = lim (8 + ) = lim S = lim Sk = lim 6 (4y)
ks 5 (L(y ")) koo < koo ko ko

(since, {8} is an increasing sequence bounded above by 1).
k

Hence

S(B) = Lim 8(4g).

k=0

This completes the proof.

We also prove the analogue of theorem 3.19 in terms of upper C-asymptotic

density. We require the following lemma:*

Lemma (3.20). TIf ACS and 8(A) = &, then for any €30 there exists an

“integer N0 such that for all x€S\ J(N) we have

AL (%))
— = 4§ + €,

S (L(x))
Proof. We suppose that this lemma is not true. Then there is an €30

and for any integer N30 there exists an z’N such that ggNG S\ J(N) with
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AL
SLG)

It follows since {L(,x,N)}G s that

>-§+€ >_§—

ALED)
lim ———

— >3
N S(LGE))

which contradicts to the theorem 3.2.

Theorem (3.21). Let Aj,As,"**,Ax**'* be sets with upper C-asymptotic

density O (k= 1,2,°++) such that A1CA,C*-*CAC***, Then there exist

B13B2,***,By, " *such that By™Ak (k = 1,2,°**) and

§C U By) = lim §(4).
k=1 koo

Proof_:_ i) 1f BkNAk. k = 1:23.”), let

B = U Bk .
. k=1

—

Then ByC B for any k. Therefore, -S-(Bk)s §(B) for any k and E(Ak)

<§(pB) for any k. This implies lim -O_(Ak) = §(B).

koo

(i1) We want to choose the By such that

§(B) = lim 8(4a).

ke

By lemma 3.20, there exists an integer Ny>0 such that for any ;\giGS \J(Nl)

Ay (LGx1))

- = & +1
S(L(x))



and there exists N, :N; such that for any z}és\\J(NZ)

A L)
—_— < Stk
S (L(x1))

L R A I I R B B B I N Y

there exists Ny such that Ny>Ny.; and for any é?ES\\J(Nk)

ML)
s @il

Let
B = ANJQ)  (k=1,2,000). )
Then
Bk.N Ak. A (k= 1,2,"').
k
Since, BiCAi (i = 1,2,""") and AICAZC"‘CAkC"', then U Bi C
i=1
Now, let ~
B = U ‘Bk .
k=1
By theorem 3.4, there exists a sequence {L(§?»E §  such that
- ALEN)
Q) = lim ————
‘ i 5 (L(x")) .

For any x # Q, there exists an k such that x ¢ JQ%) but x €J(Wyy1)-

Therefore

k
R 4 l
R I

S(L(x1)) S (LG

55
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k IR
. ‘
C U BRA&))  p i)

t=l — l
= N — - < r = &k + T
sLH) sSA.xH)
(since, B;(L(x1)) = 0 for all j2ktl).
Since {L(x})kf § , as isw, koo also. Therefore,
B(L(K,l)) o o o
lim — < lim (Sg+ E? = 1im (Gk+-E) = 1im Gk
ive  B(L(x7)) i koo koo
= lim § (4).
k<o '
Hence
§(B) = lim §(ap).
oo
This proves the theorem.
Corollary (3.22). Let Aj,Az,*"’,Ag," " be sets with C-asymptotic

density &, and upper C-asymptotic density -G_k( k =1,2,***) such that
AyCApCr-rCcppCr . Then there exist Bi,Ba," " ,By,""’ * such that Bk'\'Ak

(k = 1,2,°"") and such that both

—

§C U B = Lim §(&) and S¢ 0 B) = lim S(a).

k=1 koo ' k=1 ksoo:
Proof. From theorem 3.19, there exist B},B},**",By,*** and
Ni,N},***,N§,""" such that By = A\ J(N) and
(1) §C U B ) = lim §(ay)
k=1 koo

Furthermore, theorem 3.21 shows that there also exist Bi',Bi',*"",B ', ""
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and Ni',N}',=o = Nf',==" such that Bl‘(‘ = AN J(Nl‘(‘) and

(2) TC U BLU) = lim Sy
k=1 koo

If we take B, = Ak\\J(max {Ng , Np'} ), then B (k= 1,2,°°°)
and By CBy , BiCB{ for each k. By the first part of proof of theorem 3.19,

we have

(3) lim 6CA) = 6(C U B)
K-so0 k k=1 K

Combining (1) and (3), we obtain

lim (&) =8C U B) =8C U BY = Llim &)
ke k=1 k=1 koo

and so

§C U B = lim §(A)
k=1 k-

Similarly, we have

§C U By) = lim &(ag)
k=1 ko

Now, we are going to prove the '"additivity' theorem for the C-natural

density.

Definition (3.23). A set function f is said to be countably additive

1if the sets Aj,Ap,* ", Ak, """ such that AjNAy = ¢ for 1#j, then

FC U A) = % £ .
k=1 k=1
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Remark (3.24). There is a simple example to show that V is not a

|
' countably additive set function. Let S 12, Ay = JQA), A2 = J(Z)\j(l)’---,

]

Ap = I \J@-1),"*". Then .U &, =1%=35andsov( O a,) = 1.

But for each n, v(An) = § (Ap) ='§(An) 0. Therefore,

c
&
~

1
=

I v(a) =07 v(
1

n=

Although V is not countably additive, we can prove that v is "almost"
countably additive. This result is called the additivity theorem for

C-natural density.

Theorem (3.25). (Additivity Theorem). Let A;( i =1, 2,°°*) be sets

with C-natural density such that for each pair i,j with i # j , AiﬂAj =¢.

Then there exist B; (i=1,2,""") such that By~Ay (i =1,2,""") and

v( U B)= % v(Bi) = I v(A7) . —_
i=1 i=1 i=1
Proof. 1) If By~Ay i=1,2,***), let B = _ U By.
i=1
L n n n
Then §(B)y=6(C U By)= &C U By) = ¢ 6By = L v(®By.
: i=1 i=1 i=1 i=1

Letting no~ we have

o0

§(B) = I v(By).

i=1
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(ii) To choose the Bj such that 6(B) = g '\)(Bi).
i=1

Let V(4;) = v; ({ =1,2,°*), then for any {L(x)}€ §, there exists an
integer N10 such that for all x€5 \J(N1)
A1 (L(R)
S (L(x))

=v; +1

and there exists N, N; such that for any x€S\ J(N») we have
A1 (L(g)) + A2(L(x))
S(L(x))

=Svi+vti

there exists NyNp_; such that for any xeS\ J(N)  we have

AQE) + A2ME) + 77+ A(LE) 1
: S R 7RI Yl
S(Lx))

Now, let By = Ak\ J(Nk) (k = 1,2,°*°).

Thus
BkNAk, (k=1,2,...).
Let

B= U B .
k:_]_vgk

By theorem 3.4, there is a sequence {L(x)}€ § such that
_ BL&EH)
§(B) = lim ————

-0 S(L%l))

For any 5].' # 0 , there exists an k such that %i £ J(Ny) bot x € J(MNgpp) -

Therefore



BAGE) B@ +B@EY) + o+ B aEh)
sy 0 sae,

A ELGED) + A @G + o0+ A @ GD)
S(Lxh)

IA

SV o+ Vv +"'+.vk+%'

(since, Bj (L(z‘i)) = 0 for all j= k + 1).

Since {L()\gl) }¢ & , as i»» , ko> also. Therefore

_ BEEH) 1
G(B)=lim—-—-i—— < 1lim (\)1+\)2+"'+\)k+-1€)
ise  S(L(x7)) o
. 1
=11m(\)1+\)2+°"+\)k+—-)
k
koo
= I v(ag) = z \)(Bk).
k=1 k=1
It follows that

() = I v@) < 8(B) = S(B) .
k=1

Hence, &(p) = §(B) it implies that V(B) exists and

oo oo

VO U B) = I vEB)= I v
k=1 k=1 k=1

This completes the proof.

Here we give an application for the additivity theorem., Let S =1

2.
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¥

and let zﬁ be any enumeration of all ordered pairs (r,s) (points in §)

such that r and s are relatively prime and r,s>0. Let

Aj={t,>53' | £=1,2,°° 3} .

s

Then jgl Aj = g\ axes and so V( 52 Aj) = 1, Furthe?more, AiﬂAj = ¢
for i # j and v(Aj) =0 (j=1,2,"""). To see this, for any {L(Zi)}é S
there corresponds {L(q§;)} such that
Aj(LGEh) A @ egd))
<
s (L)) s (Lexd))

~o

If we let EP = (a,b), then tbj = (ta, tb) and S(L(g§j)) = (ta+ 1)(tb + 1)

-1 = 2 so that

A, (L(yE 1
A& 1
s ety 2
Since {L(yi)}E 8§ , as i»~ , to= also. Therefore
A5 L)
V(Aj) = lim —————— = 0,
iwe S (L(x))

—

By additivity theorem, there exist Bj“Aj G =1,2,""") and V( 3

|} [t

1 Bj)

zl'v(Aj) = 0. Here we note that Aj \Bj is only finite.

As an example of an application of theorem 3.19 and theorem 3.21,

we can prove the following theorem which differs slightly from the

additivity theoren.



Theorem (3.26). Let Al,Az,"‘,An,"' be sets with C-natural

! density such that for each pairAi,jvwith.i#j, AiﬂAj = ¢. Then there

exist By (k = 1,2,***) such that By™ 151 A; (k=1,2,"**) and

v( U 'Bk) = L v(4p)
k=1 k=1
Proof. lLet Al = Ay ;
k
Af( = A UA2U°*"UAg = » U Ay
i=1
Then AiCAiC"'CAiC"'. By cbrollary 3.22, there exist By, B2, " "4By, """

such that Bkmﬂi = iél A; (k= 1,2,==*) and such that both

§C U B = lim 5(a)) and §( U By = lim 6(AD).
k=1 k-re k=1 k=0
But also
° k
S U By) = lim 4(ap) = lim 4( U Ay
=] koo koo i=1
k o
= lim I §(A) = I &(ap).
ko  i=1 i=1

The third equality follows from the fact that, since the C-natural density

of A; (i=1,2,""",k) exist and



e

Similarly, we have

S U B)= I 8(a) -
k=1 i=

Furthermore, since §(4;) = E(Ai)

i

v(a;) (A = 1,2,°7"), then

§(ag) =8C U B
1 i=1 =]

™M 8

K.

§C U B) = I 8(ap) = I V(A) =
k=1 i=1 i=

it follows that the C-natural density of kE—-Jl By exists and

v( U B)Y= L Vv(@)
k=1 k k=1 Ak
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CHAPTER 4.

COMPARISON OF C- AND K-ASYMPTOTIC DENSITIES.

A. R. Freedman [4] has defined K-density and K-asymptotic density

as follows:

Definition (4.1). A set ¥ is said to be a K-class on S 1if

x¥=1{F | FN(s \g) is nonempty and finite; X€F = L(x)€F } .

For Fe 3¢ , let

F* = { x| 2€F; x€L\x = yfF}
F* is just the set of maximal points of F with respect to the partial

ordering < determined by the equivalence

A <X had Xj_fy:[ (i=1,2,+++,n) —~

It is clear that, for each F¢ X

F = U{ L(&g) I kgGF* 3.

Definition (4.2). For any AcCS, the lower K-density of A is defined
to be
A(F)
4 ) =glb { — | Fex )
S(F)

and the upper K-density of A is defined to be
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- A(F)
de(A) = lub { — | FEX 3 .
S (F)

In the case n = 1, dy(A) reduces to the ordinary Schnirelmann density .

of the set A.

Definition (4.3). For any ACS, the lower K-asymptotic density of A

is defined to be
Gk(A) = lim dk(AUJ(N))
. Noe

and the upper K-asymptotic density of A is defined to be

~

8 (A) = lim & (A\I(M)).
. Noee

Theorem (4;3). For any ACS we have §) (A) = §.(4) and‘gc(A) =< gk(A).

Proof. If A is either empty or finite, then

81 (A) = 8. (A) = O.

If A is asymptotic to S , then

8, (A) = §.(A) = 1.

N
Therefore, in above cases, the theorem is trivial. Since F is a set of

finite union of L(x), then for each x€S \Q, L(x)CF for some F in X .
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Hence, for any N0

[AUT QD) 1) [AUT )] @ ()
glb { ——— | F¢ X } = glb { :
5 (F) S (L(x))

| zes\Q Y .

That is,

d (ALIT(N)) = do.(AUT(N)) .

Letting N-»« we have

Si(A) = 8.8 .

Similarly, we have

§.(a) = Sy ()

From theorem 4.4, we know that §y (A) = §.(A) = g&(A) S-EKA). Thus

if the K-natural density of A exists, then so does the C—natural>density

and the two are equal.

Now, we are going to obtain a relationship between the Cwasymptotic
density and the K-asymptotic density. Before discussing this question,

let us mention a result of B. Muller [8] : For any ACS we have

A(F) + 1 1

(1) — 2 [1- @ - d.@N® B,
S(F) + 1 ,

where F€ ¥ and n is the dimension of S ( see [5, theorem 17] ).
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1

Theorem (4.5). For any A = I we have

1

S = [ 1- -8, an™ )"

Proof. First we show that for any integer N0

@+ -1 1
(2) dy (AUI(V)) = [1 - A~ d.uI@»® 1"
o+ DB

We take an arbitrary F€X and show that the right hand side of (2) does
not exceed [AUJ(N)](F)/S(F). 1If the point (N,N,***,N)¢F, then FCJ(N) and
[AUT(N) ] (F)
——-——__——=1
S(F)

and we are done. Hence, assuming that (N,N,***)€F, we have

AU IE) =2 7+ DP - 1.

We have, applying (1)

AT () [AUT) 1(®) . [AUTD) ](F) + 1

> —

S(F) [AUT) ](@F) + 1 S(F) + 1
(N+ 1B - ] 3
> [ 1 - Q- deausanpnN™ 1™ .,
(N + 1)
Hence,
N+ DB -1 3
4 (AUT (D) = [ 1M1 - - d.auenN 1* .
™+ 1P

Letting No» we obtain
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1
6 (@) 2 [1-@ -6, "

Corollary (4.6). For any ACS, GC(A) = 1 if and only if &, (A) = 1.

Proof. Suppose that Gk(A) =‘1. Then 1 = GC(A) > Gk(A) =1

1. If §.(A) = 1, then theorem 4.5 shpws that

which implies §.(A)
1

Y L
1286@ =2[1-Q=-8@N"P=[1-AQ-D1D""=1

v

Therefore,
Sk(a) = 1,
8

Theorem (4.7). For any ACS = we have

- — X
S (a) =1 - [1 - (E (anT °

Proof. First we show that for any integer N:=0

—~—~

_ N+ D" -1 _ L
(3) d (A\NT(M) =1 - ¢ YA - (d A\ I@)))HMHR
N+ 1P

We take an arbitrary F€ ¥ and show that [A\JW)J(F)/S(F) does not
exceed the right side of (3). If the point (N,N,***)¢F, then
[ANJ(N)J(F) = 0 and we are done. Hence, assuming that (N,***,N)€F,
_ we have [AUT()I(F) = (N + 1)™ - 1. We have, applying 1,
[AWT Q) 1E)  [AUTQ) ] (F) (AT ] (F) + 1

" > .
S (F) [AUT () ] (F)+ 1 S(F) + 1
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W+ 1" <1 _ 1
> (- 1 - @ - d.Qauians J1°,
(N +1)
so that
[ANT) 1(F) C[AUT QD ] ()
=] - ————
S(F) S (F)
W+ -1 _ 1
=1-¢( )1 - @ - d @EEENTE .
W+ B
We obtain (3) if we can show that d (AUI(N)) = 1 - d_(A\J(W)) . But

this is easy since, for each x€S \Q, we have

[AUT(N) T (L (x)) [ANT@) ] L&)
. ,
S (L(x)) S (L(x))

v

1-d.(a\J@))
Hence

N+ DB -1

A
Ek<A\J<N>) <1- ( [ 1 - @.a\Ta)t I°
N+ 1B

—

letting Noo we obtain

— — 1
8, (A) =1 -[ 1 - @ a)7 ]°

Corollary (4.8). For any AcS, EC(A) = 0 if and only if ?S—_k(A) = 0.

Proof. Suppose that ?S—k(A) = 0, then 0 = 'gS_k(A) > EC(A) >0

which implies ?S_C(A) =0 . 1If E‘C(A) = 0, then theorem 4.7 shows that



d
0 < “&k(A) <1-@Q-((OmMm=0

Therefore

(Sk(A) = 0‘.7

We conclude with an example which shows that, the C-asymptotic density

and the K-asymptotic density are in fact different. In this example, some

notations and properties for K-asymptotic density can be found in the
Freedman's paper [4].

.’Fa;amEle. Let S be of dimension two. For integers a,b = 10 let
D(a,b) = [U((a + b, a))NL((a + 2b,a + b))]U

UIUC(a, a + B))NL(Ca + b, a + 2b))].

Take aj = 10, by = 10! , aj4j = aj + 2bj , bj+1 = (aj41)+ and define
A=5 \ U D(aj,bq)-
i=1 -~
1 1
We prove that &, (A) < 3 and §.(A) = 7 so that 6, (A) # §.(A).
(i) Let F; = L((aj+bj, aj+2bi))UL((a;+2bi, aj+tbi)), mnote: Fi€ X
each i and (Fj)€ § since FiCX (b{)<X (i) for each i. Thus

AFy)

8 (A) = lim
isw  S(F3)

Now

for



Now

| AGE)

(ai+bi+1)2 + 2aibj

A

S(F;)  (aj+bi+l) (ag+2bi+1l) = 1 + (az+bi+1)by

2
‘bi +

a} + 4ajby + 2bi + 2ai + 1

3b% + 4ajbi + 4bj + 2a; + a%

af 2y 1 a;y 1
1+—+ 44—+ 24—+ 2— + —

I

b} b; by bF B}

“ .. 2
aj 1  ai ..a%

34+ b—F h— F 2— + —

4
u[H

since the last 5 terms

all approach 0O as i+

(ii) We show dC(A) > 1

each (x,y)€ S we have

AL(,y)))
S(L((x,9)))

First we show

by bij by bi

(i)

~

of the numerator and the last 4 terms of denominater

Hence we have Gk(A) S-% .

D) by proving that, in fact d.(A) Z-%, i.e., for

v
I

AL((ai4+1> 2i+1))) 1

> — for i = 0,1,2,**",

S(L((aj41, a441))) 2

note: if i = 0O then

71
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AQ(Ca1, a1))) 1
1>-—
S(L((a1, a1))) 2

For i>1 we have

AL((ai1, 2i+41)))  2bF + 2a;(2b3)

=z

S(L((ﬁi+l, ai+l))) (ai+25i+l)2— 1

2b% + 4ajby

4b3 + bajbg + 4bg + 2aj + af

Now
(*) 4aibi > 4b; + 4ai + a:ZL
since bay -~ 4 >ai t+ 4 (since aj>2) and by»aj so

(bay - 4)bi>(aj + 4)ai which implies (*). Thus

4baiby 1

ro |

tajby + &by + 2ai +.a}

2b% 1

45 2,
so we conclude
A(L((aj41s 2i+1))) 1

> —
S(L('(ai+]_’ ai+]_))) 2
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We now consider an arbitrary Cﬁ,y)G S . If either x<a or y<aj we have
! B
A(L((x,y))) 1
: =1>=
S(L((x,¥))) 2 .

Letting i be the largest index such that aj<x and a;<y, we may assume that

i>1. If y>aj41> then x<ai4] and we see that

AL(G,y)))  AQ@((x, aj+1)))

SL(Gx,y)))  SEL(&, ajs1))) :

and similarly if x>a;;;. Hence we can in fact assume that aj=x, y=aj4j.

We distinguish 3 cases: ( see figure)

Case I, Xy = (x,y) and x<aj+bi, y<aijtbj. In this case it is clear that

A(L(X1)) AL((ai, 21))) 1

> > -

S(L(X1))  S(L((ag, a3))) 2

Case II. X9 = (x,y) and x>ajt+b;, y<ajtbj. Here

ALEX9))  (ajtbi) (y-ai) + ajlx-aj) + A(L((ai, a4)))

S(L(Xp)) ) (y-ap) + (ag+l) (x-aq) + SL((ag, a1))) .
We need only to show that

(ajthi) (y-ai) + aj(x-ai) 1

> -

(x+1) (y=a3) + (a;+1) (x~aj) T2




This is clear since 2(a;+bj)>x+1 and 2ajy=aj+l. Note!: By symmetry we also

have the case x<aj+b;, y=ai+bi .

Case ITI. X4 = (x,y) and x>a;+by, y=zaj+h; . Let x = aj+b; +w and
y = a;+by + z . We may assume z2w. Now we have

A(ch3)j Wz +.b§— 1 + aj(bytw) + a;(bj+z) + A(L((a;, 21)))

S(L(X3)) (bi+w) (aj+bi+z+l) + (bi+z) (ai+l) + s(L((ai, ai)))

A(L((ai, 2a1))) 1
> — we need only o show that

S(L((ay, a3))) 2

Since

(bstw) (ajtb jtz+1l) + (bj+z) (aitl).
Now, we clearly have
2[a;(bs+2)] = aj(bjtw) + aj(bjt+z), ~
2(biHwz) = (b+w) (bytz)
2aj(bgtw) - 2= 2bgy +tw + 2z
1

Adding these inequalities we get (**) above. So we conclude dC(A)EE.

Therefore, 6C(A)2 do (&) 2~% . This completes the proof.
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(ai,ai+2bi)

(ai+l, ai+l)

(aj+2bj,ai)

( not drawn to scale )

= points missing from A
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