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ABSTRACT 

One of the main tasks of mathematical cartography is to 

determine a projection of a mapped territory in such a way that 

the resulting deformations of angles, areas and distances are 

objectively minimized. Since the transformation process will 

generally change the original distances it is appropriate to 

adopt the deformation of distances as the basic parameter for 

the evaluation of map projections. As the qualitative measure 

of map projections the author decided to use the Airy- 

Kavraiskii criterion 

where A is the area of the mapping domain, a and b semi-axes of 

the indicatrix of Tissot, and the integration is extended to 

the whole domain. Until now all optimization of map projec- 

tions were referred to domains with analytically defined 

boundaries, for example, a spherical trapezoid, spherical cap 

or a hemisphere, and for those map projections in which the 

analytical evaluation of the integral was possible. The author 

expands the optimization process to irregular domains with 

boundaries consisting of a series of discrete points. The 

minimization of the criterion leads to a least square 

adjustment problem. 
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The main purpose of the project was to develop a uniform 

method to optimize the standard and most frequently used 

mapping systems in geography for Canadian territory. The scope 

of optimization was enlarged by the inclusion of the 

optimization of modified equiareal projections as well as the 

determination of the Chebyshev conformal projections. 

Almost all small scale maps of the territory of Canada 

have been based on the normal aspect of the Lambert Conformal 

Conic projection with standard parallels at latitudes of 49' 

and 77". Every optimized projection in the research yielded a 

smaller value for the Airy-Kavraiskii criterion. Thus, it was 

proven that any standard map project ion with properly selected 

metagraticule and constant parameters of the projection is much 

better than the official projection. The best result was 

achieved with the optimized equidistant projection. Since the 

projection equations for the equidistant conic projection are 

very simple and the projection gives the best result with 

respect to the Airy-Kavraiskii criterion, the author highly 

recommends its application for small scale maps of Canada. 
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0. INTRODUCTION 

Song F o r  F i v e  Dollars  

F i v e  l e a r n e d  s c h o l a r s  

were e a c h  p a i d  a d o l l a r  

to  see i f  t h e y  c o u l d  f i n d  o u t  s o m e t h i n g  new 

b u t  t h e y  met w i t h  some r e s i s t a n c e  

f o r  a c c o r d i n g  to  t h e  d i s t a n c e  

t h e y  n o t i c e d  t h i n g s  g o t  smaller or t h e y  g rew.  

A p a s s i o n  i n  them b u r n e d  

t h e y  l e f t  no worm u n t u r n e d  

t h e y  f l a t t e n e d  a l l  t h e  bumps to  f i l l  i n  h o l e s  

a n d  f rom L e i c e s t e r  to  East A n g l i a  

made c o n t i n e n t s  r e c t a n g u l a r  

a n d  e v e n l y  d i s t r i b u t e d  t h e  p o l e s .  

2. INTRODUCTION TO CARTOGRAPHIC PROBLEMS 

The  m a t h e m a t i c a l  a s p e c t  of c a r t o g r a p h i c  mapp ing  is a 

p r o c e s s  wh ich  e s t a b l i s h e s  a u n i q u e  c o n n e c t i o n  b e t w e e n  p o i n t s  o f  



the earth's sphere and their images on a plane. It was proven 

in differential geometry (Eisenhart, 1960), (Goetz, 1970), 

(Taschner, 1977) that an isometric mapping of the sphere onto a 

plane with all corresponding distances on both surfaces 

remaining identical can never be achieved since the two 

surfaces do not possess the same Gaussian curvature. In other 

words, it is impossible to derive transformation formulae which 

will not alter distances in the mapping process. Cartographic 

transformations will always cause a certain deformation of the 

original surface. These deformations are reflected in changes 

of distances, angles and areas. 

The main task of mathematical cartography is to determine 

projection formulae to transform a mapped territory onto a 

plane with a minimum deformation of the original sphere. It is 

possible to derive transf ormation equations which have no 

deformations in either angles or areas (Richardus and Adler, 

l972), (Frankich, 1977). These projections are called 

conformal and equiareal, respectively. The transformation 

processes, however, always change distances and therefore the 

deformation of distances must be used as the basic parameter 

for the evaluation of map projections. 

Criteria for the selection of an appropriate cartographic 

system for small scale geographic mappings are versatile 

(~ranzula, 1974). It has been usually stated that the choice 

of map projection depends on the position, geometrical shape of 

the mapping domain, and the purpose of the map. An applied 



cartographic representation must be a reliable image of the 

mapping territory. In other words, the overall deformation of 

distances must be as small as possible. The distribution of 

distortions should be the essential governing factor for the 

selection of a map projection. 

It remains to define a measure of deformation of distances 

related to a point of a mapping domain and a measure of 

deformation for the whole demain. The ratio of a differential- 

ly small distance on the mapping plane and its counterpart on 

the sphere is generally used to express the change of distances 

(Biernacki, l965), (Fiala, 1957). This ratio is called the 

scale factor. The ideal value of the scale factor is unity. 

In that case there is no deformation of a distance. Chebyshev 

suggested (Kavraiskii, 1959) use of the natural logarithm of 

the scale factor as the measure of deformation. The author in 

this research has adopted Chebyshev's definition of deforma- 

tion. Before the definition of the measure of quality can be 

expanded to a mapping domain it must be realized that the scale 

factor and also its logarithm at a point in an arbitrary non- 

conformal projection varies as a function of the direction 

(Biernacki, l965), (Richardus and Adler, 1972). Cartographers 

usually consider the extreme scale factors at the point only. 

The extreme value of the scale occur in two orthogonal direc- 

tions, called the principal directions (Kavraiskii, 1959). 

Airy ( 1861) recommended the analytical integration of the sum 

of squares of the principal scales for the whole territory as 



the measure of quality of a mapping system. He assumed that 

the boundary of the territory is analytically defined and that 

the practical integration process is possible. It is appro- 

priate to mention that there are very few map projections and 

even fewer analytically defined boundaries (spherical cap, 

spherical trapezoid, hemisphere or the whole sphere) where the 

analytical integration is achievable. 

3. OBJECTIVES OF RESEARCH 

The two main objectives of the research were: 

1 ) theoretical formulations, of cartographic mapping, ideas and 

methods of optimization, and an explicit development of a new 

optimization process suggested by the author; 2) the practical 

application of the derived method for the optimization of 

various cartographic systems for Canadian territory. The first 

part is strictly theoretical and the second is practical. 

The theoretical part discusses general mapping theory. It 

was developed in the eighteenth and nineteenth century with a 

small contribution introduced at the beginning of this century. 

There are several books in foreign languages in mathematical 

cartography which cover these theoretical foundations 

(Biernacki, 1973), (Driencourt et Laborde, 1932), (Fiala, 

1957), (Hoschek, 1969), (Kavraiskii, 1959), (Meshcheryakov, 

l968), (Wagner, 1962). The only English language publications 



(Maling, 1973), (Richardus and Adler, 1972), are elementary 

books and they lack a serious mathematical treatment of map 

projections. The first chapter therefore presents an 

abbreviated overview of mathematical cartography including all 

necessary mathematical expressions, given without proofs and 

derivations. There are, however, two explicit derivations of 

the fundamental differential equations of mappings. 

The Russian cartographic school developed in the last few 

decades a series of interesting approaches to map projections. 

In particular, Urmaev (1953) and Meshcheryakov (1968) intro- 

duced the concept of a system of two partial differential 

equations which can be called the fundamental system. The 

system involves two partial differential equations with four 

characteristics of distortions, thus the system is undeter- 

mined. If two of the characteristics are predefined, or if two 

conditions with the characteristics are superimposed on the 

mapping equations, the fundamental differential equations can 

be at least theoretically integrated, leading to the final 

expressions of cartographic mappings. The development is, from 

a mathematical point of view, of great interest since it opens 

an avenue for derivation of many new map projections in which 

the starting criterion is a distribution of characteristics of 

distortions over the mapping domain. This development is known 

to very few North Americans and therefore the author gave the 

detailed derivations of both Meshcheryakov' s and Urmaev' s 

system of fundamental differential equations. 



Classification of mapping is given with respect to the 

characteristics of deformations (Kavraiskii, 1959). It treats 

conformal, equiareal and equidistant projections only. All 

other classification schemes are neglected. The classes of 

conformal and equiareal projections are defined by their 

corresponding differential equations. The possibility of 

integration of the differential equation has been proven by the 

author. The author developed from the non-linear partial 

differential equation two map projections. One of them is a 

well-known Lambert ' s equiareal cylindric projection and the 

other is a new equiareal projection. 

The second chapter starts with concepts of ideal and best 

map projections (Meshcheryakov, 1968) and the introduction of 

qualitative measures for mapping systems. The author 

synthesized the ideas of Airy ( l86l), Kavraiskii ( l959), 

Meshcheryakov (1968), ~ranEula (1971 ) , and Young (1920) and 
decided to use for the optimization criterion the Airy measure 

of quality modified by Kavraiskii. The measure is the integral 

of the sum of squares of logarithms of the principal scales and 

the integration was extended to the whole mapping domain. The 

Airy-Kavraiskii measure formally resembles variance in statis- 

tics and its optimization, as the author proved, leads to the 

least squares adjustment problem. One could use some other 

measures of quality, for example, the sum of principal scales, 

the sum of absolute values of logarithms of principal scales, 

and others. Their optimizations, however, lead to the solution 
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of a system of non-linear equations while the least squares 

adjustments are reduced to the solution of linear equations. 

This was the main reason that the Airy-Kavraiskii measure was 

selected as the basis of optimization. 

Very few mathematical cartographers have seriously tackled 

the optimization problem. Airy ( 1 8 6 1 )  was the first to use his 

criterion to develop a map projection of a hemisphere. He 

applied calculus of variations to minimize the norm in the 

Hilbert space. Young ( 1920 )  expanded the approach including 

some other projection systems and extending the integration to 

the whole sphere. In the two cases of Airy and Young the 

selected functions were integrable for domains inclosed by 

analytically defined curves. Kavraiskii ( 1959 )  explained the 

optimization of conic projections for domains bounded by two 

parallels. His method was reduced to the determination of the 

best standard parallels satisfying the Airy-Kavraiskii 

criterion. ~ranrula ( 1971)  determined the best modified 

projections of the whole world by applying the same criterion, 

but instead of an analytical minimization of the norm he used a 

numerical minimization process. 

The final generalization of the optimization for the Airy- 

Kavraiskii measure of quality was introduced by the author. A 

mapping domain was approximated by a series of discrete points 

whose density is a matter of personal choice and it is usually 

governed by the size of the computer. The higher the density 

of points the more reliable are the results of optimization. 
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Every mapping domain can be approximated by discrete points 

regardless of its shape and size. The boundary does not need 

to be analytically defined. In other words, every mapping of 

an arbitrary domain can be realistically optimized. The author 

further improves the determination of the best map projection 

by including the most optimal metagraticule, as named by Wray 

(1974). The metagraticule represents a coordinate system 

similar to the geographic graticule except that it is generally 

displaced on the sphere with respect to the graticule. The 

metagraticule represents an invariant frame for a projection 
*__- - 

system. The optimization process, developed by the author, 

leads to the optimal metagraticule in addition to the best 

determination of constants for individual map projections. The 

optimized mathematical model is non-linear with respect to the 

unknown parameters (metagraticule and constants of projections) 

and it must be made linear by the Newton method. The author 

has linearized the optimization mathematical models for almost 

all important conic, cylindric and azimuthal map projections. 

The spectrum of optimized projections was enlarged by the 

inclusion of modified equiareal map projections. The major 

study of modified map projections has been made by Wagner 

(1962). He empirically selected modification constants. The 

author, however, developed a method where the constants were 

determined through least squares optimization, minimizing the 

Airy-Kavraiskii measure of distortion. Such determined 

modified equiareal projections can be used for small-scale 



mappings of a r b i t r a r y  domains when t h e  p r o p e r t y  of e q u i v a l e n c y  

is  e s s e n t i a l  t o  u s e r s .  

Conformal map p r o j e c t i o n s  have g e n e r a l l y  l i t t l e  impor tance  

f o r  s m a l l - s c a l e  g e o g r a p h i c  t r a n s f o r m a t i o n .  They a r e ,  however, 

fundamenta l  f o r  l a r g e - s c a l e  t o p o g r a p h i c  maps. The a u t h o r  

b e l i e v e s  no o p t i m i z a t i o n  of mappings is comple te  w i t h o u t  

Chebyshev' s p r o j e c t i o n s  which a r e  t h e  b e s t  conformal  p r o j e c -  

t i o n s  (Meshcheryakov, 1969) . They a r e  d e f i n e d  a s  p r o j e c t i o n s  

i n  which t h e  changes  of s c a l e  a r e  minimized. Chebyshev ' s  

theorem ( B i e r n a c k i ,  1965) s t a t e s  t h a t  t h e  n e c e s s a r y  and 

s u f f i c i e n t  c o n d i t i o n  of  t h e  b e s t  conformal  p r o j e c t i o n  is to  

have a c o n s t a n t  s c a l e  f a c t o r  a long  t h e  boundary c o n t o u r  of t h e  

domain. The Russ ian  c a r t o g r a p h i c  s choo l  (Urmaev, 1953 ) has  

so lved  t h e  problem of o b t a i n i n g  t h e  b e s t  conformal  p r o j e c t i o n s  

f o r  symmetric bounda r i e s .  The a u t h o r  showed i n  t h e  f i r s t  p a r t  

of t h e  t h i r d  c h a p t e r  t h e  sugges t ed  s o l u t i o n s  of  Urmaev us ing  

s e v e r a l  methods (method of  R i t z ,  method of  f i n i t e  d i f f e r e n c e s ,  

and method of l e a s t  s q u a r e s ) .  The  comple t ion  of t h e  de t e rmina -  

t i o n  of Chebyshev' s p r o j e c t i o n s  f o r  most g e n e r a l  non-symmetric 

domains was deve loped  by t h e  a u t h o r .  He used a complex 

polynomial  a s  a mapping a n a l y t i c  f u n c t i o n  and computed t h e  

c o e f f i c i e n t s  of t h e  polynomial  by t h e  method of  l e a s t  s q u a r e s .  

The r e s u l t a n t  l i n e  of c o n s t a n t  s c a l e  approximated c l o s e l y  t h e  

boundary c o n t o u r .  
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4. PRACTICAL OPTIMIZATIONS FOR CANADIAN MAPS 

The second part of the research was the practical 

application of the theoretical optimization developed in the 

first part of the thesis. All optimization routines were 

applied for various maps of Canada. Although the theoretical 

portion of the research contains several optimization 

approaches attributed to Urmaev (1 953 ) , these approaches are 
not implemented because of their restricted value for the 

Canadian territory, which can hardly be approximated by a 

spherical trapezoid or a symmetric domain. 

The author devoted a major part of the last chapter to the 

optimization of conic, cylindric, azimuthal and modified 

equiareal map projections. The optimization criterion was 

minimization of the Airy-Kavraiskii measure of distortions. In 

other words, the author calculated the logarithms of the 

principal scales at a finite number of discrete points which 

approximate the Canadian territory. A numerical integration of 

the squares of these logarithms extended to the whole domain 

was minimized by the method of least squares. The author 

developed mathematical models for main cartographic mappings. 

All formulae were given in an explicit form suitable for 

further optimization of any other territory. 

When the author decided to test the quality of present 

small scale mappings of Canada and subsequently investigate 

possible improvements using an objective criterion of 
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deformations it was expected that the optimization would amount 

to a small refinement to the present system resulting in a 

marginally better graphical representation of Canada. The 

numerical results of the research surpassed these hopes to an 

unexpected amount. Every optimized map projection leads to a 

much better mapping system than the presently used Lambert 

Conformal Conic projection with standard parallels of 49' and 

77'. In other words all projections optimized by the author 

give better representation of Canada with less distortions than 

the system in use. Particularly good results are obtained with 
- - - -- -- - 

an oblique aspect of an equidistant conic projection whose 

transformation formulae are very simple and therefore suitable 

for providing the basis of a new small-scale map of Canada. 

The overall deformations with this projection are 70 percent 

smaller compared to the official projection. 

The author believes that from theoretical point of view 

this research for all practical purposes completes the opti- 

mization of small-scale mapping. However, the determination of 

better geodetic mapping (projections of the ellipsoid of 

rotation onto a plane) remains to be tackled. This research 

also indicated that more studies could be done in the integra- 

tion of the fundamental differential equations of geographic 

mappings. 



I. GENERAL T H E O R Y  OF CARTOGRAPHIC MAPPINGS 

1. INTRODUCTION TO THEORY OF SURFACES 

L e t  us  c o n s i d e r  a  s u r f a c e  S and on it a  c l o s e d  domain  

D. The s u r f a c e  is d e f i n e d  by a  se t  o f  c u r v i l i n e a r  p a r a -  

metric c o o r d i n a t e s  u i ,  where  i = 1 , 2 .  The p o s i t i o n  v e c t o r  

of t h e  s u r f a c e  is 

The s u r f a c e  is c a l l e d  r e g u l a r  i f  f o r  e v e r y  p o i n t ,  wh ich  

b e l o n g s  t o  t h e  domain D t h e  f o l l o w i n g  c o n d i t i o n  is s a t i s f i e d  

where  

ar = - and 
a u l  

A p o i n t  i n  which t h e  v e c t o r  p r o d u c t  of  t h e  two t a n g e n t  

v e c t o r s  ftl and 1: is e q u a l  t o  z e r o  is c a l l e d  a  s i n g u l a r  

p o i n t  of t h e  p a r a m e t r i z a t i o n  ( u l , u 2 )  and i t  is e x c l u d e d  from 

t h e  domain D ( G o e t z ,  1 9 7 0 ) .  



Every regular surface S can have an infinite number of 

i different parametrization systems (u ) . When one of the 

parametric coordinates ui is kept constant and the other varies 

we obtain a family of curves dependent on one parameter only, 

called the coordinate lines. 

Let us take a curve on the surface defined by the equa- 

tions 

ul = ul(t) and u 2 =  u2(t), 

where t is an arbitrary parameter. The square of a differen- 

tially small length of the curve is known as the first funda- 

mental or the metric form of the surface and is obtained by the 

equation 

where ds is the differentially small length and gij is the 

first fundamental or metric tensor. For real surfaces and 

parametrizations gij - - gji0 The formula (1-1-5) uses the 

standard summation convention, i.e. the summation is always 

applied when the same indices appear twice in the same 

monomial, once as a superscript and once as a subscript. 



Thus ,  t h e  e q u a t i o n  (1-1-5) e x p l i c i t l y  w r i t t e n  becomes 

For  a  g i v e n  s u r f a c e  and a  s e l e c t e d  p a r a m e t r i c  c o o r d i n a t e  

s y s t e m  w e  o b t a i n  a metric t e n s o r  

w i t h  componen t s  

The i n d i v i d u a l  components  of  t h e  m e t r i c  t e n s o r  a r e  o b t a i n e d  by 

t h e  s c a l a r  p r o d u c t s  of  t h e  c o r r e s p o n d i n g  t a n g e n t  v e c t o r s  +, 
and r2. 



The d i s c r i m i n a n t  of t h e  f i r s t  f u n d a m e n t a l  form, d e n o t e d  by 

i A s u r f a c e  is r e g u l a r  f o r  a  c h o s e n  p a r a m e t r i z a t i o n  ( u  ) 

when 

The t a n g e n t  v e c t o r  a t o  t h e  c u r v e  (1-1-4) c a n  be d e f i n e d  a s  a  

l i n e a r  c o m b i n a t i o n  of  t h e  t a n g e n t  v e c t o r s  t o  p a r a m e t r i c  c u r v e s  

i where  a  a r e  t h e  components  of  a w i t h  r e s p e c t  t o  t h e  coor -  

d i n a t e  s y s t e m  ( u l ) .  I f  w e  t a k e  a n o t h e r  c u r v e  which i n t e r s e c t s  

t h e  f i r s t  and d e n o t e  its t a n g e n t  v e c t o r  a t  t h e  common p o i n t  o f  

t h e  two c u r v e s  by b , t h e n  t h e  a n g l e  u be tween  t h e  two c u r v e s  

is o b t a i n e d  from t h e  s c a l a r  p r o d u c t  of  t h e  t a n g e n t  v e c t o r s  



which yields 

-IJ 
COS W = (1-1-12) 

The angle between the coordinate lines is a special case of the 

last formula 

cos 0 = 912'4911 922 

The orthogonality of the parametric coordinate lines is 

achieved when the last formula takes on a value of zero at 

every point of the surface. Thus, the condition of orthogo- 

nality of parametric curves is 

and the corresponding metric form becomes 

The area of a differentially small element of the surface 



, 

and its i n t e g r a t i o n  f o r  t h e  whole domain 

The e l emen t s  of s u r f a c e s  ( a  d i f f e r e n t i a l l y  s m a l l  d i s t a n c e ,  

d s ,  an a n g l e  between two c u r v e s  of t h e  s u r f a c e ,  w , and t h e  

a r e a  of t h e  domain, A ) a r e  known a s  t h e  i n t r i n s i c  e l emen t s  of 
D 

t h e  s u r f a c e  s i n c e  t h e y  a r e  i n v a r i a n t  no m a t t e r  which parame- 

t r i z a t i o n  is s e l e c t e d .  I n  o t h e r  words,  t h e  c o o r d i n a t e s  can be 

changed bu t  t h e  v a l u e s  of i n t r i n s i c  e l emen t s  remain u n a l t e r e d .  

To s i m p l i f y  t h e  deve lopments  of formulae  i n  c e r t a i n  t y p e s  

of mappings, w e  can make a  s p e c i f i c  p a r a m e t r i z a t i o n  of t h e  

s u r f a c e  which l e a d s  t o  a  p a r t i c u l a r  t ype  of t h e  f i r s t  funda- 

menta l  form. 

For example,  i f  g l  = 1 and g12 = 0 we o b t a i n  t h e ,  so- 

c a l l e d ,  s emigeodes i c  c o o r d i n a t e s  w i t h  t h e  f i r s t  fundamenta l  

form 

When g l l  = g 2 2  and g 1 2  = 0 t h e  r e s u l t i n g  c o o r d i n a t e s  a r e  

c a l l e d  i s o m e t r i c  i n  geodesy and i s o t h e r m i c  i n  mathematics .  The 



m e t r i c  form i n  i s o t h e r m i c  c o o r d i n a t e s  becomes 

The i s o t h e r m i c  c o o r d i n a t e s  a r e  ex t r eme ly  impor t an t  i n  

c a r t o g r a p h y  s i n c e  t h e  d e t e r m i n a t i o n  of t h e s e  c o o r d i n a t e s  on 

s u r f a c e s  l e a d s  d i r e c t l y  t o  conformal  mappings p robab ly  t h e  most 

i m p o r t a n t  t ype  of r e p r e s e n t a t i o n  from a  p r a c t i c a l ,  a s  w e l l  a s  a  

t h e o r e t i c a l ,  p o i n t  of view. 

I n  a d d i t i o n  t o  t h e  a l r e a d y  mentioned i n t r i n s i c  e lements  of 

a  s u r f a c e :  d i s t a n c e ,  a n g l e ,  and a r e a ,  t h e r e  is a n o t h e r  i n t r i n -  

s i c  e lement  of t h e  utmost  impor tance  and t h a t  is t h e  Gauss ian  

c u r v a t u r e .  I t  is o b t a i n e d  by t h e  formula (Goetz ,  1970) 

where b  is t h e  d i s c r i m i n a n t  of t h e  second fundamental  form 

whose components a r e  computed by t h e  v e c t o r  e q u a t i o n  

and t h e n  



Mathematical  c a r t o g r a p h y  g e n e r a l l y  d e a l s  wi th  t h r e e  

d i f f e r e n t  s u r f a c e s :  p l a n e ,  s p h e r e  and s p h e r o i d .  

The p l a n e  is a  s u r f a c e  whose Gauss ian  c u r v a t u r e  is e q u a l  

t o  zero .  I f  we adop t  an o r t h o g o n a l  C a r t e s i a n  c o o r d i n a t e  system 

i ( x  ) t h e  f i r s t  fundamental  form on t h e  p l a n e  becomes 

ds2  = (dx 1 )  2 + ( d ~ 2 )  2 .  (1-1-23) 

The s p h e r e  and t h e  s p h e r o i d ,  on t h e  o t h e r  hand, belong t o  

s u r f a c e  of r o t a t i o n ,  which a r e  d e f i n e d  by t h e  r o t a t i o n  of a  

p l a n a r  cu rve  abou t  an a x i s .  The a x i s  of r o t a t i o n  l i e s  i n  t h e  

p l a n e  of t h e  cu rve .  Var ious  p o s i t i o n s  of t h e  r o t a t i n g  cu rve  

a r e  c a l l e d  m e r i d i a n s  of t h e  s u r f a c e .  

A s p h e r e  is a  s p e c i a l  c a s e  of a  s u r f a c e  of r o t a t i o n  

g e n e r a t e d  by t h e  r o t a t i o n  of a  s e m i c i r c l e  of r a d i u s  R, whose 

v e c t o r  is 

4 4 

w i t h  b ,J , being m u t u a l l y  o r t h o g o n a l  v e c t o r s .  

The f i r s t  fundamental  form on t h e  s p h e r e  is 



and t h e  Gauss i an  c u r v a t u r e  becomes 

s i n c e  

A s p h e r o i d  is o b t a i n e d  by t h e  r o t a t i o n  of a  m e r i d i a n  

e l l i p s e  about  i ts semi-minor a x i s .  Its s u r f a c e  is used t o  

approximate  t h e  a c t u a l  s u r f a c e  of t h e  e a r t h  f o r  g e o d e t i c  

p o s i t i o n i n g  and,  s u b s e q u e n t l y ,  f o r  g e o d e t i c  mappings, b u t  t h e s e  

a r e  o u t s i d e  t h e  scope  of t h i s  work. Thus it s u f f i c e s  t o  g i v e  

t h e  fundamental  formula of a  s p h e r o i d  

where N is t h e  maximal r a d i u s  of c u r v a t u r e  a t  a  p o i n t  ( u l , u 2 )  

o b t a i n e d  by t h e  e x p r e s s i o n  

a  is t h e  semi-major a x i s  of t h e  mer id i an  e l l i p s e  and e2 is t h e  

s q u a r e  of t h e  e c c e n t r i c i t y  
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and b is the semi-minor axis of the meridian ellipse. 

The components of the fundamental metric tensor are 

with M being the radius of curvature of the meridian ellipse 

Thus, the first fundamental form is 

and the Gaussian curvature is 

K = l/MN. 

2. CARTOGRAPHIC MAPPINGS 

Let us consider two regular surfaces, S and P, and on the 

first surface S, a closed domain D. Both surfaces are defined 

by a corresponding set of curvilinear parametric coordinates: 

i i (u ) on St and (x ) on P, for i = 1,2. 

Then the relationship 

x1 = x1(u11u2) and x2 = x2(ultu2) (1-2-1) 



defined in the domain, DES, establishes a connection between 

points of the first surface A(ul,u2) ED and points of the 

second surface B(xl,x2), which belong to some domain A. In 

other words, the domain D of the first surface is transformed 

into the domain, A of the second surface, or the domain D is 

projected onto the second surface in the domain A. To make 

projections or mappings meaningful in practice, the class of 

transformation functions (1-2-1) is restricted to those 

functions which are unique, twice differentiable and continuous 

up to the second derivative, finite, and where in all points 

the Jacobian determinant must be different from zero, i.e. 

Such an established one-to-one correspondence between the 

points of the two domains, which is continuous in both direc- 

tions, is called a homeomorphism. 

The first surface is commonly called the original surface 

and the second surface is then the projection surface. 

Under homeomorphism, however, the transformation direction is 

reversible and the mapping can be also performed from the 

second onto the first surface 

u1 = u1 (XI ,x2) and u2 = u2 (XI ,x2) . (1-2-3) 

Commonly, the first set of formulae (1-2-1) is known as 

the direct or forward solution, while the second set (1-2-3) 



r e p r e s e n t s  t h e  i n v e r s e  s o l u t i o n  of t h e  mapping problem. 

Ca r tog raphy  assumes t h e  e a r t h  t o  be a  s p h e r e  of r a d i u s  R 

and t h e  p r o j e c t i o n  s u r f a c e  a  p l a n e .  Thus, t h e  s u b j e c t  of math- 

e m a t i c a l  c a r t o g r a p h y  f o r  g e o g r a p h e r s  is main ly  r e s t r i c t e d  t o  

v a r i o u s  t y p e s  of t r a n s f o r m a t i o n s  of  t h e  s p h e r e  o n t o  t h e  p l a n e .  

D i f f e r e n t i a l  geometry (Goetz ,  1970; Taschne r ,  1977)  shows 

t h a t  a  mutual  p r o j e c t i o n  of two s u r f a c e s  is e x p l i c i t l y  d e f i n e d  

by t h e  metrics of t h e  s u r f a c e s .  The metric t e n s o r  depends upon 

a  s u r f a c e  and a  s e l e c t e d  p a r a m e t r i z a t i o n ,  a s  was s t a t e d  i n  

(1-1-7) .  The fundamenta l  set of  p a r a m e t r i c  c u r v i l i n e a r  c o o r d i -  

n a t e s  on t h e  s p h e r e  c o n s i s t s  of t h e  g e o g r a p h i c  l a t i t u d e ,  4 ,  and 

t h e  g e o g r a p h i c  l o n g i t u d e  A. The l a t i t u d e  of a  p o i n t  is t h e  

a n g l e  between t h e  r a d i a l  l i n e  th rough t h e  p o i n t  and t h e  equa- 

t o r i a l  p l a n e .  I n  i t s  magni tude,  t h e  l a t i t u d e  can be between 0' 

and 90' w i t h ,  c o n v e n t i o n a l l y ,  t h e  p o s i t i v e  a l g e b r a i c  s i g n  f o r  

t h e  l a t i t u d e s  of  t h e  n o r t h e r n  hemisphere  and t h e  n e g a t i v e  f o r  

t h e  s o u t h e r n  hemisphere .  The l o n g i t u d e  of a  p o i n t  is t h e  a n g l e  

reckoned  from t h e  i n i t i a l  m e r i d i a n  p l a n e ,  a l s o  c a l l e d  t h e  

Greenwich m e r i d i a n ,  e a s t w a r d l y  o r  wes tward ly  t o  t h e  m e r i d i a n  o f  

t h e  p o i n t  i n  q u e s t i o n .  I n  i t s  magni tude ,  t h e  l o n g i t u d e s  can be 

between 0' and 180'. Eas tward ly  measured l o n g i t u d e s  a r e  con- 

v e n t i o n a l l y  t aken  t o  be p o s i t i v e  and wes t e rn  l o n g i t u d e s ,  

n e g a t i v e .  The i n i t i a l  o r  c e n t r a l  m e r i d i a n  of a  mapped t e r r i -  

t o r y  seldom c o i n c i d e s  w i t h  t h e  i n i t i a l  m e r i d i a n  of t h e  geo- 

g r a p h i c  system,  t h e  Greenwich m e r i d i a n .  T h e r e f o r e ,  c a r t o g -  

r a p h e r s ,  i n s t e a d  of  u s ing  l o n g i t u d e s  use t h e  d i f f e r e n c e s  of 

l o n g i t u d e s  between t h e  l o n g i t u d e  of a  p o i n t ,  A ,  and t h e  



, 
l o n g i t u d e  of t h e  s e l e c t e d  c e n t r a l  m e r i d i a n ,  X o '  

Thus, i n  c a r t o g r a p h y  each p o i n t  on t h e  s p h e r e  is d e f i n e d  

by t h e  l a t i t u d e ,  0 ,  and t h e  d i f f e r e n c e  i n  l o n g i t u d e ,  1. The 

c o o r d i n a t e  l i n e s  c o n s i s t  of m e r i d i a n s ,  l i n e s  of c o n s t a n t  1, and 

p a r a l l e l s ,  l i n e s  of c o n s t a n t  4.  

The p r o j e c t i o n  s u r f a c e  is a  p l a n e  wi th  e i t h e r  an or thog-  

o n a l  C a r t e s i a n  c o o r d i n a t e  system ( x , y )  o r  a  p o l a r  c o o r d i n a t e  

sys tem (y  ,Q). S i n c e  t h e  change from r e c t a n g u l a r  i n t o  p o l a r  

c o o r d i n a t e s  and v i c e  v e r s a  is accompl i shed  by s i m p l e  t r a n s -  

f o r m a t i o n  formulae ,  i t  w i l l  be assumed, a t  l e a s t  i n  t h e  

p r e l i m i n a r y  c o n s i d e r a t i o n s ,  t h a t  p o i n t s  of t h e  mapping p l a n e  

a r e  d e f i n e d  by t h e i r  r e c t a n g u l a r  C a r t e s i a n  c o o r d i n a t e s .  

Thus, a  mapping system e s t a b l i s h e s  a  law of t r a n s f o r m a t i o n  

of c u r v i l i n e a r  s p h e r i c a l  c o o r d i n a t e s  ( +  ,1) i n t o  t h e  p l a n e  

c o o r d i n a t e s  ( x , y )  . To each p o i n t  of t h e  s p h e r e  t h e  t r a n s f o r -  

mat ion  f u n c t i o n s  a s s i g n  a  unique p o i n t  on t h e  p l ane .  The 

g e n e r a l  t r a n s f o r m a t i o n  formulae  f o r  t h e  d i r e c t  and i n v e r s e  

compu ta t ions  (1-2-1) and (1-2-3) can be t r a n s c r i b e d  f o r  c a r -  

t o g r a p h i c  mappings i n t o  t h e  fo l lowing  p a r a m e t r i c  e q u a t i o n s  



and 

where the first set of equations defines the direct mapping and 

the second set the inverse mapping. The transformation func- 

tions must satisfy the same conditions as the general formulae 

(1-2-1) of continuity, differentiability up to the second 

derivative, uniqueness, finiteness and the Jacobian determinant 

must differ from zero, a (x,y)/a (+,l) 1: 0. In other words, the 

mapping functions must be homeomorphic. 

The fundamental metric on the sphere, according to the 

formula (1-1-15) Is 

ds2 = l?2(d$,2 + C O S ~ +  d12), 

and that on the plane 

where dS is a differentially small linear element on the plane, 

obtained as an image of the corresponding linear element ds on 

the sphere, and the image is realized by the transformation 

functions (1-2-5) . Since the rectangular coordinates (x,y) are 

functions of spherical coordinates (+,1), the differentials in 

the last formula (1-2-8) are 

dx = x d+ + xldl and dy = y+d+ + yldl. 
$ 

(1-2-9) 



, 
When the differentials (1-2-9) are substituted into the 

equation (1-2-8) we obtain the well known expression for the 

square of a differentially small distance in the plane as a 

SPHERE PLANE , 

Figure 1-2-1 Coordinate systems in cartographic mappings 

function of spherical coordinates 

d ~ 2  = g l l d $ 2  + 2g12d$dl + g2,d12, 



where  

SPHERE : 

e 

PLANE: 
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F i g u r e  1-2-2 D i f f e r e n t i a l l y  s m a l l  s u r f a c e  e l e m e n t  o f  t h e  s p h e r e  

and i ts p r o j e c t i o n  i n  t h e  p l a n e  

The a z i m u t h  of  a  d i f f e r e n t i a l l y  s m a l l  l i n e  segment  d s  on 

t h e  s p h e r e  is d e f i n e d  a s  t h e  a n g l e  r eckoned  c l o c k w i s e  from t h e  

p o s i t i v e  d i r e c t i o n  of t h e  m e r i d i a n  t o  t h e  segment  and is 



, 
d e n o t e d  by a .  I ts t a n g e n t  f u n c t i o n  is o b t a i n e d  from t h e  s m a l l  

r i g h t  a n g l e  t r i a n g l e  ABC on t h e  f i g u r e  1-2-2, namely 

t a n  a = c o s  $ d l / d $ .  (1-2-12) 

The g r i d  b e a r i n g ,  3 ,  is t h e  a n g l e  on t h e  p r o j e c t i o n  p l a n e  

between t h e  d i r e c t i o n  of  t h e  y - a x i s  of  t h e  p l a n e  c o o r d i n a t e  

s y s t e m ,  measured c l o c k w i s e ,  and t h e  p r o j e c t i o n  of t h e  a r c  

segment  dS, namely  

From t h e  above  e q u a t i o n  one  c a n  a l s o  d e t e r m i n e  t h e  b e a r i n g  

o f  t h e  p r o j e c t i o n  of  m e r i d i a n  (1 = c o n s t . ,  d l  = 0 )  and p a r a l l e l  

( $  = c o n s t . ,  d$  = 0 )  

t a n  ) = x m / y m  and t a n  x = xl/yl  (1-2-14) 

The p r o j e c t i o n  of t h e  a z i m u t h  a ,  d e n o t e d  by a '  is t h e n  



Thus 

Substituting the values for tan f3 and tan $I from (1-2-14) 

respectively and rearranging the terms, we have 

cot a' = ,,/m 2 + g12/fi, 
dl 

where 

The angle between the projections of parametric curves is 

computed by the formula (1-1-13) 

The sine function of angle e is then 



A d i f f e r e n t i a l l y  s m a l l  a r e a  on t h e  s p h e r e  l i m i t e d  by two 

c l o s e  m e r i d i a n s  and p a r a l l e l s  is 

dp = ~2 cos + d+ d l ,  (1-2-21) 

and its p r o j e c t i o n  on t h e  p l a n e  becomes 

dP = 4q-d$ d l .  ( 1-2-22 ) 

Thus w e  have d e f i n e d  a l l  t h e  i m p o r t a n t  i n t r i n s i c  e l e m e n t s  

__-  - o f  t h e  sphe re :  a  d i f f e r e n t i a l l y  sma l l  d i s t a n c e ,  d s ,  and i ts 

az imuth ,  a ,  a  d i f f e r e n t i a l l y  sma l l  a r e a ,  dp, and t h e  corre- 

sponding p r o j e c t i o n s  on t h e  p l a n e  dS, a', dP, a s  f u n c t i o n s  of  

t h e  d i f f e r e n t i a l s  d$ and d l .  The a p p r o p r i a t e  l o g i c a l  compar- 

i s o n  of t h e  i n t r i n s i c  e l emen t s  p r o v i d e s  us w i t h  measures  of 

q u a l i t y  f o r  v a r i o u s  p r o j e c t i o n  sys tems .  

3 .  THEORY OF DISTORTIONS 

D i f f e r e n t i a l  geometry (Goe tz ,  1970)  shows t h a t  an isomet- 

r i c  mapping of  two s u r f a c e s ,  a  mapping where a l l  c o r r e s p o n d i n g  

d i s t a n c e s  on both  s u r f a c e s  remain i d e n t i c a l ,  can be o b t a i n e d  i f  

and o n l y  i f  t h e  Gauss i an  c u r v a t u r e s  of both s u r f a c e s  a r e  

i d e n t i c a l .  S i n c e  t h e  Gauss i an  c u r v a t u r e  of a  s p h e r e  is e q u a l  

t o  t h e  i n v e r s e  of t h e  s q u a r e  of t h e  r a d i u s ,  and t h a t  of  t h e  

p l a n e  is equa l  t o  ze ro ,  it is i m p o s s i b l e  t o  d e r i v e  t r a n s f o r -  

ma t ion  formulae  which, g e n e r a l l y ,  w i l l  no t  a l t e r  d i s t a n c e s .  



In other words, the mapping prbcess will always cause a certain 

deformation of the original intrinsic elements. Although some 

of the intrinsic elements may be preserved in the mapping pro- 

cess, the complete identity of the original surface elements 

and their projected counterparts can never be achieved in car- 

tographic projections. 

One of the main tasks of mathematical cartography is to 

determine a projection of a mapped territory in such a way that 

the resulting deformations of the original intrinsic elements 

are objectively minimized. Thus, distances, angles and areas 

will generally be changed in the transformation process. 

However, the changes of projected distances, angles and areas, 

and in particular the variations of these changes must be made 

as small as possible by the appropriate choice of transfor- 

mation formulae. Distortions of surfaces in cartographic 

mappings are infinitely versatile, but, considered locally, the 

variations of the same distortions around an arbitrary point of 

a projected domain are governed by the general laws valid for 

all analytically defined projection systems. These laws are 

the subject of the theory of distortions. They were developed 

by a French mathematician and cartographer, M. Tissot 

(1824-1897) in 1859, with their final version being published 

in 1881 in Tissot's 'Memoirs'. 

The theory of distortion is relatively well covered in 

textbooks of mathematical cartography, e.g. (Biernacky, 1965), 

(Fiala, 1957), (Kavraisky, 1959), (Richardus, Adler, 1972) and 

many others. In the English language it still remains to be 



t r e a t e d  r i g o r o u s l y ;  however, t h e r e  is no need t o  r e d e v e l o p  a l l  

t h e  formulae  of t h e  t h e o r y  of d i s t o r t i o n s .  I t  w i l l  s u f f i c e  t o  

l i s t  and e x p l a i n  them, s i n c e  they  a r e  used l a t e r  when e v a l u a t e d  

n u m e r i c a l l y .  

The comparison of a  d i f f e r e n t i a l l y  s m a l l  d i s t a n c e  on t h e  

s p h e r e  and its p r o j e c t i o n  on t h e  p l a n e  is made by t h e  s c a l e  

f a c t o r ,  k .  

where ds  is t h e  s p h e r i c a l  d i s t a n c e  and dS is its p l a n a r  

c o u n t e r p a r t .  The i d e a l  v a l u e  of t h e  s c a l e  is u n i t y ,  i n  which 

c a s e ,  a  d i s t a n c e  on t h e  s p h e r e  and its p r o j e c t i o n  on t h e  p l a n e  

a r e  i d e n t i c a l .  The d i s t o r t i o n  of d i s t a n c e s  is then  d e f i n e d  by 

t h e  e q u a t i o n  

From t h e  fundamental  d e f i n i t i o n  of t h e  s c a l e  (1-3-1) and 

by us ing  t h e  e x p r e s s i o n s  (1-2-7) and (1-2-8) we have t h e  v a l u e  

f o r  t h e  s q u a r e  of t h e  s c a l e  



which can e a s i l y  be t r ans fo rmed  i n t o  

c o s 2 ~  + .A s i n  2a + (1-3-3) 
R c o s  4 

where a  is t h e  azimuth of t h e  o r i g i n a l  d i s t a n c e  d s  on t h e  

s p h e r e  and g i j  a r e  t h e  e l emen t s  of t h e  m e t r i c  t e n s o r .  I t  is 

obv ious  from t h e  l a s t  formula t h a t  t h e  s c a l e  i n  g e n e r a l  depends 

on t h e  p o s i t i o n  of a  p o i n t  ( g i j )  and t h e  d i r e c t i o n  of t h e  l i n e  

segment a t  t h e  p o i n t  ( a ) ,  i . e .  

- - k = k ( g i j ,  a ) .  (1-3-4) 

The s c a l e s  a long  t h e  p a r a m e t r i c  c o o r d i n a t e  l i n e s ,  

m e r i d i a n s  and p a r a l l e l s  a r e  d e r i v e d  d i r e c t l y  from t h e  e q u a t i o n  

(1-2-25) knowing t h a t  f o r  m e r i d i a n s  a  = 0 ,  and f o r  p a r a l l e l s  

a  = sr/2, t h u s  

and 

n  = G 2 / R  c o s  6 ,  (1-3-6) 

where m is t h e  s c a l e  a long  m e r i d i a n s  and n  a long  p a r a l l e l s .  



The e q u a t i o n  (1-3-3) can a l s o  be exp res sed  i n  terms of m,n 

and t h e  p a r a m e t r i c  a n g l e  8, i . e .  

k2 = m2 C O S ~ ~  + mn c o s  8 s i n  2a + n 2 s i n 2 a .  (1-3-7) 

The extreme v a l u e s  of t h e  s c a l e  a r e  o b t a i n e d  from t h e  

e q u a t i o n  d ( k * ) / d a  = 0 which y i e l d s  

t a n  2ao = 29 l 2  (20s 4 I (1-3-8) 
g l l  c0s2$ - 

where a. and a. + n/2 i n d i c a t e  two a n g l e s  t h a t  s a t i s f y  t h e  

above t r i g o n o m e t r i c  e q u a t i o n  and r e p r e s e n t  t h e  d i r e c t i o n s  of 

t h e  extreme s c a l e  changes .  These two o r t h o g o n a l  d i r e c t i o n s  a r e  

c a l l e d  t h e  p r i n c i p a l  d i r e c t i o n s  and t h e i r  main c h a r a c t e r i s t i c  

is t h a t  t hey  remain o r t h o g o n a l  on t h e  p r o j e c t i o n  p l a n e  a s  w e l l .  

The d e f i n i t i o n  and meaning of t h e  p r i n c i p a l  d i r e c t i o n s  a r e  

fo rmula t ed  by T i s s o t  i n  h i s  'Memoirs1 ( ~ a v r a i s k i i ,  1959) i n  t h e  

f i r s t  theorem of mappings. 

. . . In  eve ry  non-conf ormal r e p r e s e n t a t i o n  of a  r e g u l a r  
s u r f a c e  o n t o  a n o t h e r  t h e r e  is one and o n l y  one p a i r  of 
co r r e spond ing  o r t h o g o n a l  d i r e c t i o n s  which a r e  t h e  
p r i n c i p a l  d i r e c t i o n s  and they  r e p r e s e n t  t h e  d i r e c t i o n s  
of t h e  ex t reme s c a l e s . .  .. 

The d i s t o r t i o n  of a r e a s  v  is t h e  d i f f e r e n c e  between u n i t y  
P  

and t h e  s c a l e  of a r e a  p  



where p is defined as the ratio of a differentially small area 

on the plane and its original value on the sphere, namely 

Substituting in the above formula the expressions for 

areas dp, dP (1-2-21) and (1-2-22) we have 

p = mn sin 8 .  (1-3-12) 

The projection of the parametric angle, 8, is computed 

either by the equations (1-2-19) and (1-2-20) or 

tan 8 = m/gl2. (1-3-13) 

The deformation of the parametric angle is defined by 

E: = n/2 - 8 ,  

and its tangent function is 

tan E = - g 12/fi 



I 

The a n g u l a r  d e f o r m a t i o n  w is d e f i n e d  a s  t h e  d i f f e r e n c e  

between an azimuth a and its p r o j e c t i o n  a ' ,  i . e .  

I ts  numer ica l  v a l u e  can be o b t a i n e d  from t h e  e x p r e s s i o n  

t a n  w = 411 c o s  $ + g l  t a n  a - fi , (1-3-17) 

g l l  c o s  $ c o t  a  + g12 + fl t a n  a  

bu t  t h e  same formula w i l l  be g i v e n  l a t e r  i n  a  form more 
-- - 

s u i t a b l e  f o r  numer i ca l  compu ta t ions .  

A t  t h e  end of t h i s  s e c t i o n  it must be emphasized t h a t  a  

g r e a t  m a j o r i t y  of t h e  formulae  from t h e  t h e o r y  of d i s t o r t i o n s  

were a l r e a d y  known t o  L. Eu le r  b u t  t h e i r  comple te  and f i n a l  

form was e l a b o r a t e d  o n l y  a  c e n t u r y  ago by T i s s o t .  However, f o r  

r ea sons  unknown t o  t h e  a u t h o r ,  c a r t o g r a p h e r s  i n  E n g l i s h  

speak ing  c o u n t r i e s  have been r e l u c t a n t  e i t h e r  t o  adop t  them o r  

t o  deve lop  them f u r t h e r .  Only i n  t h e  l a s t  decade have w e  been 

e x p e r i e n c i n g  a  c e r t a i n  i n t e r e s t  i n  ma thema t i ca l  problems of 

c a r t o g r a p h y  (Mi lno r ,  1969) .  

4 .  I N D I C A T R I X  OF TISSOT 

I n  h i s  s t u d y  of g e n e r a l  c a r t o g r a p h i c  t r a n s f o r m a t i o n s  

T i s s o t  i n t roduced  an e l l i p s e  of d i s t o r t i o n  o r  t h e  i n d i c a t r i x  of 

p r o j e c t i o n ,  which found a  p a r t i c u l a r l y  i m p o r t a n t  p l a c e  i n  



mathematical cartography.  iss sot's indicatrix, as a geometric 
characteristic of a mapping system, explained the fundamental 

questions of deformations of intrinsic elements and gave the 

distortions a more natural character and a more readily appli- 

cable visible form. The indicatrix of Tissot, with all its 

elements defined, completely describes the cartographic trans- 

formation system, or in other words, every measure of distor- 

tion can be expressed as a function of parameters of the 

indicatrix of Tissot (Biernacki, 1965) . 
The ellipse of distortion at a point of a projected domain 

is obtained by the transformation of a differentially small 

circle of unit radius from the original surface of the sphere 

onto the projection plane. The circle is generally transformed 

into an ellipse whose semi-axes are projected in the principal 

directions and in their magnitude they are equal to the extreme 

scale factors. The semi-major axis a is the maximal scale at 

the point PI and the semi-minor axis b is the minimal scale. 

The most suitable coordinate systems are the orthogonal local 

systems with the principal directions on both surfaces as the 

coordinate axes ( 5 , q )  on the sphere and (x,y) on the plane. 

The semi-axes of the indicatrix are computed from known 

scales along the parametric curves, m and n, and the projected 

parametric angle, 8. 

1 1 a = - (A + B) and b = - (A - B) (1-4-1) 
2 2 



where  

A 2  = m 2  + n2 + 2mn s i n  8 , 
(1-4-2) 

B* = m 2  + n2 - 2mn sin 0 .  

SPHERE: PLANE : 

M A P P I N G  

F i g u r e  1 - 4 - 1  U n i t  c i r c l e  and t h e  i n d i c a t r i x  of T i s s o t  



1 

The orientation angle of the meridian with respect to the 

first principal direction, 6, is 

and its projection on the plane, B ' ,  is 

tan 6' = b tan 6. 
a 

If we'take an arbitrary direction, 6, with respect to the 

first principal direction, then the scale factor in its 

direction, k can be expressed in terms of the extreme scales 

and the direction angle, 6. 

The angular distortion, defined again as the difference 

between the original direction, 6, and its projection, 6', is 

and 



where t h e  p r o j e c t i o n  a n g l e ,  6 ' ,  is computed by t h e  formula 

(1-4-4).  

The maximal a n g u l a r  d i s t o r t i o n ,  w o  , is 

, a - b  s i n  w 0  - - , 
a + b  

and it o c c u r s  when s i n  ( 6 + 6 ' )  = 1, o r  6 + 6 '  = n/2. 

The d i r e c t i o n ,  6 0 ,  i n  which t h e  maximal a n g u l a r  d i s t o r t i o n  

t a k e s  p l a c e  is computed from t h e  r e l a t i o n s h i p  

and its p r o j e c t i o n  

The s c a l e  of a r e a s ,  p, can a l s o  be exp res sed  i n  terms of 

t h e  pa rame te r s  of t h e  i n d i c a t r i x  of T i s s o t  by 

p  = ab. 



I 

When the fundamental equations of a geographic mapping 

(1-2-5) are given, various quantities can be computed that 

fully characterize distortions. These quantities then specify 

the properties of the transformation system. They are: the 

scale factor k t  the scales along parametric curves, m and n, 

the projection of the parametric angle, 9, the extreme scales, 

a and b, the bearing of the meridian, I#, and that of the par- 

allel, x, the scale of areas, p, and many others. Since these 

quantities completely describe a projection, they are called 

the characteristics of mapping. Each of the characteristics 

can be defined as a function of eight variables 

where Xi is an arbitrary characteristic. From the totality of 

all characteristics we can select different vectors of four 

independent characteristics and then all others can be 

expressed in terms of the chosen basic vector. As a basic 

vector we may take, for example, (a, b a I #  , (m, n, I #  x) , 
(m, n, I#, e ) ,  etc. The independence of a set of four charac- 

teristics can be determined by the analysis of the corre- 

sponding formulae. A more appropriate and a more rigorous 

approach is to prove that the set of four independent charac- 

teristics satisfies the following inequality 



I 

If the Jacobian (1-4-13) is nonsingular, and thus the four 

characteristics are independent, we can determine a unique set 

of transformation formulae (1-2-5) from the differentials 

5. FUNDAMENTAL DIFFERENTIAL EQUATIONS 

As shown in the preceding section, any combination of four 

independent characteristics of map projections, Xi 

(i = 1, 2, 3, 4) may serve as the basis of the vector space of 

all deformation parameters. Therefore, the specification of 

the four basic characteristics as functions of + and 1 at every 
point of the mapping domain fully determines the mapping 

system. In other words, it must be theoretically possible to 

derive the final transformation functions x = x(+,l) and 

y = y(+,l) directly from a specified distribution of distor- 

tions defined by the basis vector. 

Let us now take two suggestions for the basis vectors made 

by Russian cartographers G.A. Meshcheryakov and N.A. Urmaev. 

The former (Meshcheryakov, 1968) recommended the basis vector 

(m, n, 8, J I )  and the latter (Urmaev, 1953) (m, n, E ,  p) . We 

shall develop both systems in order to obtain the fundamental 

differential equations of map projections with respect to both 

bases. 

Meshcheryakov's suggestion of (m, n, 0 ,  $)  uses the known 



, 
expressions for scales along parametric curves (1 -3 -5 )  and 

( I - 3 - 6 ) ,  and the bearings of the projections of parametric 

curves, whose tangent functions were given by the formulae 

( I - 2 - 1 4 ) ,  bearing in mind that the parametric angle e is 

defined by the equation 

When the elements of the metric tensor gij are substituted 

into the equations (1-3-5)  and (1 -3 -6 )  and the equations are 

squared we have 

The formulae (1-2-14)  can be rewritten in the form 

and 
4l = y$ tan + y$ cP 

= x cot $ 

(1-5-3)  

x = yl tan x , 1 y1 = X1 cot x. 

When the last results are substituted into the equations 

(1 -5 -2 )  and employing the trigonometric identities 

1 + tan2$ = sec2q , 1 + cot29 = csc2q 



we obtain 

Y4 = Rm cos $ , yl = R cos 4 n cos , 

and 

x = Rm sin ) , xl = R cos 4 n sin . 
4 

The integration of equations (1-5-4) leads to the 

transformation expressions (1-2-5) , providing the conditions of 
integrability are satisfied, namely 

With the introduction of new abbreviations 

m* = Rm and n* = Rn cos 4 

the equation (1-5-4) becomes 

Y4 
= m* cos ) , yl = n* cos , 

X = m* sin ) , x = n* sin . 
4 1 



The c o n d i t i o n s  of i n t e g r a b i l i t y  (1-5-5) a r e  t h e n  

m* s i n  y  + m* c o s  y  y1 = n* s i n  x + n* c o s  x , 1 0 0 

(1-5-8) 

m* c o s  IJJ - m* s i n  IJJ I J J ~  = n* c o s  x - n* s i n  x x . 1 4 0 

From t h e  d e f i n i t i o n  of  p a r a m e t r i c  a n g l e ,  8 ,  (1-5-1) we 

h a v e  t h a t  

x = 8 + l ; )  , 

and s u b s t i t u t e d  i n t o  e q u a t i o n s  (1-5-8) w e  o b t a i n  

s i n  $(m* - n* c o s  8 + n* s i n  8 IJJ + n* s i n  8 8 ) = 
1 4 0 4 

= - c o s  +(m* yl  - n* s i n  8 - n* c o s  8 y  - n* c o s  8 8 ) , 
4 4 4 

and 

c o s  $(m* - n* c o s  8 + n* s i n  8 y  + n* s i n  8 8 ) = 1 0 0 4 

= s i n  $(m* - n* s i n  8 - n* c o s  8 IJJ - n* c o s  8 8 ) ,  
0 4 4 

o r  s i m p l i f i e d  

n s i n  y  = - u cos + , 

a Cos + = w s i n  $ , 



where 

and 

u = m* - n* sin 8 - n* cos 8 JI - n* cos 8 8 . 
0 0 0 

The equations (1-5-10) then can be satisfied only if the 

expressions Q and u are equal to zero, namely 

m* - n* cos 8 + n* s i n e  JI + n* sin 8 8 = 0, 1 0 0 0 

1 (1-5-12) m*$l - n* sin 8 - n* cos 8 I$ - n* cos 8 8 = 0. 
0 0 0 

The system of partial differential equations (1-5-12) may 

be called the fundamental system of differential equations of 

map projections, since the system must be satisfied at every 

point of the mapping domain. The system involves four charac- 

teristics m,n,g,$ and their partial derivatives of the first 

order with respect to the parametric coordinates ( 1 )  The 

equations are quasilinear with respect to any combination of 

two characteristics from the basis vector m,n,B,qt. The system 

of two equations connects four functions and, thus, it is 

undetermined. For practical applications of the fundamental 

system we must predefine the values of two characteristics, or 



e s t a b l i s h  two r e l a t i o n s  betwebn them a t  eve ry  p o i n t  of t h e  

mapping domain. Only then  is t h e r e  a  t h e o r e t i c a l  p o s s i b i l i t y  

of i n t e g r a t i o n  of t h e  e q u a t i o n s  (1-5-12).  

The b a s i s  v e c t o r  of Urmaev ( m , n , ~  ,p)  r e q u i r e s  t h e  equa- 

t i o n s  (1-5-2) 

I n  a d d i t i o n  t o  them, t h e  t a n g e n t  f u n c t i o n  of t h e  

d e f o r m a t i o n  of p a r a m e t r i c  a n g l e ,  E ,  is g i v e n  by t h e  e q u a t i o n  

(1-5-15) 

t a n  E = - 9 1 2 .  , 
rn 

and from (1-3-11) 

a = ~2 c o s  4 p. 

Thus 

t a n  E = - 1 

R 2  cos 4 p  912 '  

o r  f i n a l l y  

t a n  = - - -I- 
R Z  c o s  , p  ( x , x 1  + Y , Y ~ )  * 



The s e l e c t e d  t r a n s f o r m a t i o n  f u n c t i o n s  x = x ( + , l )  and 

y  = y ( + , l )  must s a t i s f y  a t  eve ry  p o i n t  of t h e  domain t h e  

e q u a t i o n s  (1-5-13) and (1-5-14).  The e s t a b l i s h m e n t  of new 

c o o r d i n a t e  sys tems  r e q u i r e s  t h e  i n t e g r a t i o n  of t h e  same t h r e e  

e q u a t i o n s .  However much we may wish t o  c a r r y  o u t  t h e  op t imi -  

z a t i o n  p r o c e s s  and,  t h u s ,  reduce  d i s t o r t i o n s  t o  any d e s i r a b l e  

l e v e l  we cannot  go too  f a r  s i n c e  t h e  r e l a t i o n s  between d i s t o r -  

t i o n  e l emen t s  (1-5-13) and (1-5-14) must a lways e x i s t .  

Without a  l o s s  of g e n e r a l i t y ,  Urmaev assumed t h e  u n i t  

r a d i u s  of t h e  e a r t h  and h a s  r e p l a c e d  i n  (Urmaev, 1953)  t h e  

e q u a t i o n s  (1-5-13) and (1-5-14) by f o u r  e x p r e s s i o n s  

x = -m s i n ( €  + 8 )  , x l  = v c o s  8 ,  
4 1 

J 

y+ 
= m C O S ( E  + 8 )  , y1 = v s i n  8 ,  

where 

v = t-l c o s  +. 

and is an unknown a r b i t r a r y  f u n c t i o n  of t h e  p a r a m e t r i c  co- 

o r d i n a t e s  ( +  ,1) 



In the case of equations (1-5-15) the conditions of inte- 

grability (1-5-5) become 

-ml sin(€+$) -m COS(E+$) ( E  +fl ) = v cos $-v sin $ 6 1 1  4 

m cos(s+$) -m sin(@+$) ( E  +$ ) = v sin B+V cos 6 , J 
1 1 1  4 # 

The solution of these two equations with respect to the 

variable, B m  , can be obtained by multiplying the first equation 
by sin(€ + B), the second by cos(s + $ )  and then subtracting 

one from the other. The solution with respect to 6 is derived 
1 

by multiplying the first equation by cos 8, the second by sin 8 

and then adding the resulting equations togethe?. After some 

simple rearrangement of terms we obtain 

1 (1-5-19) - v tan E -B1 - -4- + rnl + 
m cos E m 

The equations (1-5-19) represent a second version of the 

fundamental differential equations of map projections. In the 

most general case they are partial differential equations with 

partial derivatives of the first and second order and in some 

specific cases they are ordinary differential equations of the 



I 

f i r s t  and second o r d e r .  The  d e t e r m i n a t i o n  of t h e  f u n c t i o n  B 

from t h e  fundamental  sys tem l e a d s  t o  a  p a r t i a l  d i f f e r e n t i a l  

e q u a t i o n  of t h e  Monge-Amper t ype  whose a n a l y t i c a l  s o l u t i o n  is, 

v e r y  o f t e n ,  i m p o s s i b l e  n o t  o n l y  wi th  e l emen ta ry  f u n c t i o n s  b u t  

a l s o  wi th  s p e c i a l  f u n c t i o n s .  However, a  numer ica l  s o l u t i o n  

w h i c h  y i e l d s  t h e  r e c t a n g u l a r  c o o r d i n a t e s  ( x , y )  of a  p o i n t  can 

o f t e n  be de t e rmined :  n o t  t h e  a n a l y t i c a l  e x p r e s s i o n s  f o r  coor -  

d i n a t e s  bu t  t h e i r  numer i ca l  v a l u e s .  I n  t h i s  way a  number of 

new t r a n s f o r m a t i o n  sys tems  can be des igned ,  so  t h a t  t h e  r e c t a n -  

g u l a r  c o o r d i n a t e s  of a  r e g u l a r  g r a t i c u l e  n e t  a r e  computed a s  a  

numer ica l  s o l u t i o n  of t h e  fundamental  system wi th  some tiddi- 

t i o n a l  c o n d i t i o n s .  Some a u t h o r s ,  (Meshcheryakov, 1 9 6 8 ) ,  c a l l  

t h e  d i f f e r e n t i a l  e q u a t i o n s  (1-5-19) t h e  Euler-Urmaev funda- 

menta l  e q u a t i o n s .  

6. CLASSIFICATION OF MAPPINGS 

There  a r e ,  t h e o r e t i c a l l y ,  an i n f i n i t e  number of conce iv -  

a b l e  t r a n s f o r m a t i o n  sys t ems  t h a t  can be used i n  ma thema t i ca l  

c a r t o g r a p h y .  To s t u d y  t h i s  t o t a l i t y  of map p r o j e c t i o n s  re-  

q u i r e s  some r e a s o n a b l e  g roup ing ;  it demands a  s u i t a b l e  c l a s -  

s i f i c a t i o n  scheme. 

To c l a s s i f y  a  set  of o b j e c t s ,  whose number can be f i n i t e  

o r  i n f i n i t e ,  means t o  d e s i g n  s m a l l e r  g roups  of t h e  o b j e c t s  s o  

t h a t ,  from a  c e r t a i n  p o i n t  of view, each group  has  d i s t i n c t  



, 
common characteristics. This point of view is called the basis 

of classification. The selection of the basis must lead to 

groupings of map projections that are either practically or 

theoretically important. An ideal classification must consist 

of mutually exclusive and collectively exhaustive groups which 

will contain an approximately equal number of practically sig- 

nificant map projections. When the basis of classification is 
'i 

changed, it is quite natural that the distribution and grouping 

should also change. 

The problem of classification of cartographic projections 

is one of the fundamental tasks of mathematical cartography. 

The classical bases for classification were suggested by Tissot 

and later elaborated by a Russian cartographer, V.V. Kavraiskii 

(1959). These widely accepted divisions of map projections 

were developed for a certain group of transformations only. 

They do not comprise all existing and conceivable projections 

and they lead to an uneven aggregation of projections in 

various classes. The bases of classical groupings are: 

(.i) character of distortions expressed by the relation- 

ship of the semi-axes of the indicatrix of Tissot, and; 

(ii) property of the normal grid, i.e. the image of the 

normal graticule of meridians and parallels in the mapping 

plane. 

In addition to these two fundamental bases there are 

others that are used with more or less success. For example, 



maps are classified according to: 

(iii) the character of projection equations (1-2-5) (the 

parametric classification of Tobler, 1962), 

(iv) the aspect of the metagraticule, i.e. the position 

of the metapole of the used metagraticule with respect to the 

geographic pole, (Wray, 1974), C 

(v) the character of the differential equations whose 

solutions define the transformation functions (the genetic 

classification of Meshcheryakov, (Meshcheryakov, 1968) , 
(vi) the value of the metric tensor to the second order, 

suggested by B.H. Chovitz (Chovitz, 1952, 1954). 

There are, naturally, other ways to classify map projec- 

tions. However, the scope of this work (the optimization of 

cartographic projections with respect to the distribution of 

distortions) suffices to consider no other classification 

scheme than the very first one: classification according to 

the character of distortions. 

The first classical grouping of cartographic projections 

according to the character of distortions leads normally to 

four distinct classes of projections: 

a) conformal or orthomorphic projections, 

b) equiareal or equivalent projections, 

c) equidistant projections, and 

d) arbitrary or aphylactic projections. 



, 
The Russ ian  c a r t o g r a p h e r s ,  G.A. Ginzburg and 

T.D. Salmanova, (Pavlov  1964) , sugges t ed  a  s l i g h t l y  modi f ied  

v e r s i o n  of t h e  above c l a s s i f i c a t i o n .  They took t h e  f i r s t  t h r e e  

c l a s s e s  of conformal ,  e q u i a r e a l  and e q u i d i s t a n t  p r o j e c t i o n s  a s  

t hey  were and then  s p l i t  t h e  f o u r t h  c l a s s  and c r e a t e d :  
\ 

a )  conformal  p r o j e c t i o n s ,  

b)  p r o j e c t i o n s  w i th  s m a l l  de fo rma t ion  of a n g l e s ,  

c) e q u i d i s t a n t  p r o j e c t i o n s ,  

d )  p r o j e c t i o n s  wi th  s m a l l  de fo rma t ions  of a r e a s ,  and 

e )  e q u i a r e a l  p r o j e c t i o n s .  

Although t h e  s u g g e s t e d  scheme a l l o w s  a  s l i g h t l y  b e t t e r  and 

more me thod ica l  a r rangement  of a r b i t r a r y  p r o j e c t i o n s  i n  two 

c l a s s e s  b) and d ) ,  t h e  c l a s s i f i c a t i o n  does  n o t  h e l p  i n  t h e  

s t u d y  of t h e  a r b i t r a r y  p r o j e c t i o n s  s i n c e  t h e i r  c h a r a c t e r i s t i c s  

a r e  so  d i v e r s e  t h a t  t h e y  can no t  be exp res sed  by any r e a s o n a b l e  

common denomina tor ,  whether  they  belong t o  a  s i n g l e  c l a s s  o r  t o  

two d i s t i n c t  c l a s s e s .  L e t  us now b r i e f l y  d e f i n e  i n d i v i d u a l  

c l a s s e s .  

Conformal mappings a r e  t h o s e  i n  which a t  eve ry  p o i n t  of 

t h e  mapped domain t h e  semi-axes of t h e  i n d i c a t r i x  of T i s s o t  a r e  

i d e n t i c a l ,  t h a t  is 

o r  t h e  s c a l e  f a c t o r ,  k , a t  each p o i n t  has  a  c o n s t a n t  v a l u e  

independent  of t h e  d i r e c t i o n ,  but  g e n e r a l l y  changes from p o i n t  



to point. In others words, the scale factor is a function of 

the position of the point only, 

As a result of the above property, angles at a point in 

conformal projections are preserved, or, the similarity of 

differentially small surface elements in the conformal projec- 

tions is maintained. 

In equiareal projections the scale of area, p, has a con- 

stant value that, without loss of generality, can be assumed to i 

be equal to unity. Then, the areas obtained from the plane 

coordinates are identical to the corresponding areas on the 

sphere. The condition of equiareal mappings is satisfied on 

the whole domain if at every point the product of the principal 

scales is equal to unity, 

Since the condition of conformality requires that a=b, it 

is obvious that a projection cannot satisfy both conditions of 

conformality and equivalency simultaneously on the whole pro- 

jected domain. 

When one of the axes of the indicatrix of Tissot has a 

value of unity for the whole transformation domain, the projec- 

tion is called equidistant. It preserves distances along one 

specific direction, i.e. one of the principal directions is the 



direction of no linear deformations. 

Thus, the conditions of equidistancy are 

Equidistant projections are, according to their properties 

of distortion elements, somewhere between conformal and equi- 

areal mappings. 

The class of arbitrary or aphilactic map projections com- 

prises all projection systems which are neither conformal, - 
equiareal nor equidistant. This class is theoretically much 

larger than the others but in practice the distribution of 

mappings according to the character of distortion in the four 

classes is relatively even. That is, the number of aphylactic 

map projections in use is not particularly large. 

7. CONFORMAL MAPPINGS 

Conformal transformations constitute a specific class of 

projections with a series of remarkable properties of .great 

theoretical and practical significance. In cartography, they 

are at the same time the simplest and the most elaborate pro- 

jections. The theory of conformal mapping of a sphere onto a 

plane was elaborated independently by Lambert (1728 - 1777) and 
Euler (1707 - 1783). The conformal projections of the surfaces 

of rotation onto a plane were developed by Lagrange (1736 - 1813), 



but  t h e  g e n e r a l  t h e o r y  of coniormal  r e p r e s e n t a t i o n s  of r e g u l a r  

s u r f a c e s  was fo rmula t ed  by Gauss (1777 - 1855) , (Gauss ,  1825) . 
A conformal  mapping of r e g u l a r  s u r f a c e s  is d e f i n e d  a s  a 

t r a n s f o r m a t i o n  where t h e  s c a l e  f a c t o r  a t  eve ry  p o i n t  of t h e  

p r o j e c t e d  domain is independent  of t h e  d i r e c t i o n  and is t h e r e -  

f o r e  a  f u n c t i o n  of t h e  p o s i t i o n  o n l y ,  i . e .  

A s  a  r e s u l t  of t h e  independence of t h e  s c a l e  on t h e  

d i r e c t i o n ,  t h e  a n g l e s  a t  eve ry  p o i n t  a r e  p r e s e r v e d .  Sometimes 

t h e  fundamental  d e f i n i t i o n  is made i n  t h e  r e v e r s e  o r d e r ,  i .e .  a  

conformal  mapping is d e f i n e d  a s  a  t r a n s f o r m a t i o n  i n  which 

a n g l e s  remain unchanged and t h e r e f o r e  t h e  l i n e a r  s c a l e  is a  

f u n c t i o n  of p o s i t i o n  on ly .  Gauss combined t h e s e  two p r o p e r t i e s  

s t a t i n g  t h a t  i n  eve ry  conformal  t r a n s f  o rmat ion  t h e  s i m i l a r i t y  

of d i f f e r e n t i a l l y  s m a l l  shapes  is r e t a i n e d .  

Conformal mappings a r e  d i r e c t l y  connec ted  t o  t h e  e s t a b -  

l i s h m e n t  of i s o t h e r m i c  c o o r d i n a t e s  on t h e  s u r f  a c e s  involved  i n  

t h e  p r o j e c t i o n .  The m e t r i c  form i n  i s o t h e r m i c  c o o r d i n a t e s  

(1-1-19) ds2 = [ A  ( u l ,  u2) 2 1  [ ( d u l )  2 + (du2)  2 1  i n d i c a t e s  t h a t  

f o r  i s o t h e r m i c  c o o r d i n a t e s  t h e  e l emen t s  of t h e  m e t r i c  t e n s o r  

s a t i s f y  t h e  c o n d i t i o n  



The fundamental  m e t r i c  on a  s p h e r e  of r a d i u s  R (1-2-7) 

e x p r e s s e d  i n  te rms  of g e o g r a p h i c  c o o r d i n a t e s  ( l a t i t u d e  and 

d i f f e r e n c e  i n  l o n g i t u d e )  is n o t  i s o t h e r m i c ,  

However t h e  q u a d r a t i c  form can e a s i l y  be t r ans fo rmed  i n t o  

an  i s o t h e r m i c  form by t h e  i n t r o d u c t i o n  of a  new, s o - c a l l e d  

i s o t h e r m i c  l a t i t u d e ,  q, whose d i f f e r e n t i a l  is d e f i n e d  by 

dq = s e c  4 d4. (1-7-3) 

Then t h e  q u a d r a t i c  form ( 1-2-7) becomes 

The i n t e g r a t i o n  of t h e  e q u a t i o n  (1-7-3) y i e l d s  t h e  e x p r e s s i o n  

f o r  t h e  i s o t h e r m i c  l a t i t u d e  

Gauss has  proved t h a t  a  conformal  t r a n s f o r m a t i o n  is e s t a b -  

l i s h e d  when t h e  f o l l o w i n g  r e l a t i o n  e x i s t s :  



where 

and F is an analytic function, i.e. a function of the complex 

variable w whose first derivative does exist and is continuous 

at every point of the mapped domain. The differentiability of 

the function F is proven by the Cauchy-Riemann equations, which 

are the necessary and sufficient condition that the complex 

function F is analytic and the mapping performed by the func- 
-- .-- 

tion is conformal, 

and 

The condition of conformality can also be expressed in 

terms of scales along parametric lines and the deformation of 

the parametric angle, 



In this case the fundamental differential equations of map 

projections (1-5-19) become 

where 

v = m cos 4 .  

The transformation of geographic latitude into isothermic 

latitude is performed by the equation (I-7-3), where 

dq/d+ = sec $ = cosh q, (1-7-12) 

and then (1-7-11) becomes 

v = m sech q. (1-7-13) 

The fundamental differential equations of con•’ ormal 

mappings (1-7-10) can now be expressed in terms of isothermal 

coordinates 



The condition of integrability $ - 
ql - $lq yields 

or finally 

The above formula is the well known Laplace equation of 

mathematical physics. The equation can also be expressed as a 

function of the scale. From (1-7-13) we have 

In v = In m - In cosh q 

and differentiating 

with the second derivatives 

When the results of differentiation ( 1-7-17) are substi- 

tuted into the Laplace equation (1-7-15) we obtain 



1 

which is t h e  Po i s son  e q u a t i o n  of ma thema t i ca l  p h y s i c s .  

The Laplace  and Po i s son  e q u a t i o n s  (1-7-15) and (1-7-18) 

have g r e a t  s i g n i f i c a n c e  i n  t h e  o p t i m i z a t i o n  p r o c e s s  of con- 

fo rma l  mappings. 

The s o l u t i o n s  of t h e  Laplace  e q u a t i o n s  a r e  c a l l e d  harmonic  

f u n c t i o n s  and they  de t e rmine  t h e  v a l u e  of I n  v a t  eve ry  p o i n t  

of  t h e  mapped domain. I n  t h a t  manner t h e  v a l u e  of I n  v can  be 

de te rmined  a l s o  a t  t h e  c e n t r a l  mer id i an  where 1 = 0. The rec-  

t a n g u l a r  c o o r d i n a t e  y  on t h e  c e n t r a l  m e r i d i a n  is then  

where c  is an a r b i t r a r y  c o n s t a n t  and v is t h e  v a l u e  of v a t  
0 

t h e  c e n t r a l  m e r i d i a n .  The a n a l y t i c a l  c o n t i n u a t i o n  l e a d s  t o  t h e  

g e n e r a l  formula 

where F is an a n a l y t i c  f u n c t i o n  assumed t o  be unique and 

one-to-one. 

The g r e a t  m a j o r i t y  of conformal  map p r o j e c t i o n s  used i n  

p r a c t i c a l  c a r t o g r a p h y  can be deve loped  e a s i l y  and d i r e c t l y  from 

t h e  Laplace  e q u a t i o n  (1-7-15). For example,  by assuming t h e  

q u a n t i t y  v t o  be a  c o n s t a n t  we have 

I n  v = c o n s t .  , o r  v = c ,  



and 

yo= K + c / dq = K + cq, 

where the constant of integration is equal to zero since for 

q = 0 also y = 0. Thus, the last equation becomes 

and then applying the analytic continuation we have 

which is the expression for the Mercator projection. 

Let us now assume that the scale is a function of the 

isothermic latitude, q, only: i .e. 

which reduces the Laplace equation (1-7-15) to one term only 

The first integration yields 



where  t h e  n e g a t i v e  s i g n  of t h e  c o n s t a n t ,  c ,  is used s i m p l y  f o r  

c o n v e n i e n c e .  The s e c o n d  i n t e g r a t i o n  t h e n  g i v e s  

I n  v = I n  c K  - c q ,  (1-7-25) 

where  t h e  c o n s t a n t  of i n t e g r a t i o n  is e x p r e s s e d  a s  t h e  n a t u r a l  

l o g a r i t h m  of  t h e  p r o d u c t  of t h e  f i r s t  c o n s t a n t ,  c ,  and t h e  

s e c o n d  c o n s t a n t ,  K.  The q u a n t i t y  v is t h e n  

The o r d i n a t e  on t h e  c e n t r a l  m e r i d i a n  is  

and w i t h  t h e  a n a l y t i c  c o n t i n u a t i o n  w e  o b t a i n  

- c ( q  + i l )  
y + i x = Q - K e  I 

which is t h e  Lamber t  c o n f o r m a l  c o n i c  p r o j e c t i o n .  A s p e c i a l  

c a s e  of t h e  Lambert  c o n f o r m a l  c o n i c  p r o j e c t i o n  f o r  c = 1 is t h e  

s t e r e o g r a p h i c  p r o j e c t i o n .  I n  t h e  same way w e  can  d e v e l o p  many 

more s t a n d a r d  c o n f o r m a l  p r o j e c t i o n s .  

I n  t h e  o p t i m i z a t i o n  p r o c e s s  of c o n f o r m a l  map p r o j e c t i o n s  

t h e r e  is a n o t h e r  s p e c i a l  s o l u t i o n  of t h e  L a p l a c e  e q u a t i o n  

(1-7-15) which h a s  c o n s i d e r a b l e  i n t e r e s t  and i m p o r t a n c e .  The 



solution is given by the equation 

which is a harmonic polynomial whose first five values are: 

n = l  q + il, 

n = 2 q2 + i2ql - 12, 
n = 3 q3 + i3q21 - 3q12 - il3, I (1-7-28) n = 4 q4 + i4q31 - 69212 - i4q13 + 14, 

n = 5 qs + i5q41 - l0q3l2 - il0q213 + 5q14 + ils. 

In each of these expressions there are two groups of 

uniform polynomials with coefficients related to real and 

imaginary terms. Let us denote a polynomial with real 

coefficients by $n and that with imaginary coefficients by en. 

Each one of the polynomials qn and e n  is a special 

solution of the Laplace equation, thus an arbitrary linear 



combina t ion  of t h e  two polynom'ia ls  is a l s o  a  s o l u t i o n ,  i . e .  

T h i s  s o l u t i o n  y i e l d s  an i n f i n i t e  s e r i e s  of conformal  map 

p r o j e c t i o n s  whose c o e f f i c i e n t s  a  and b .  can  be de t e rmined  s o  
j I 

t h a t  t h e  s c a l e  f a c t o r  m, and t h u s  t h e  f u n c t i o n  v is o p t i m i z e d  

f o r  a  p a r t i c u l a r  mapping domain. I t  can a l s o  be shown t h a t  

some w e l l  known p r o j e c t i o n s  l i k e  t h e  Lambert conformal  c o n i c ,  

Lag range ' s  p r o j e c t i o n ,  L i t t r o v ' s  p r o j e c t i o n  and t h e  T r a n s v e r s e  

Mercator  p r o j e c t i o n  can be d i r e c t l y  d e r i v e d  from t h e  e q u a t i o n  

(1-7-30).  I n  a d d i t i o n  t o  t h e s e  known p r o j e c t i o n s  we can 

deve lop  many unknown b u t  u s e f u l  map p r o j e c t i o n s .  

8. EQUIAREAL PROJECTIONS 

E q u i a r e a l ,  o r  e q u i v a l e n t  map p r o j e c t i o n s  a r e  t h o s e  i n  

which t h e  s c a l e  of a r e a s  a t  eve ry  p o i n t  of t h e  mapping domain 

has  one and t h e  same v a l u e .  For r ea sons  of s i m p l i c i t y  t h e  

c o n s t a n t  is assumed t o  be e q u a l  t o  u n i t y .  S i n c e  t h e  s c a l e  of 

a r e a s  was d e f i n e d  by t h e  e q u a t i o n s  (1-3-11) , (1-3-12) and 

(1-4-11) it is e a s y  t o  prove t h a t  t h e  ma thema t i ca l  c o n d i t i o n  of 

e q u i a r e a l  p r o j e c t i o n  is 



This is a nonlinear partial differential equation with two 

dependent variables x,y and two independent variables 4,l. 

Since we have only one equation and two unknowns, the system 

(1-8-1) is undetermined and has an infinite number of solu- 

tions. Particular solutions can be obtained theoretically by 

the integration of the above differential equation if some 

additional conditions are formulated, the conditions which 

clarify the relationship between dependent variables or their 

connections to the independent variables. The totality of all 

these conditions is again infinite, thus leading to a totality 

of equiareal projections which is very difficult to derive 

directly from the initial differential equation (1-8-1) in an 

organized manner. However, the integration process is theoret- 

ically, as well as practically, possible. Two map projections 

will be developed to prove the possibility of obtaining cartog- 

raphic transformation systems directly from the fundamental 

condition of equiareal mappings. One of these projections is a 

new equiareal projection developed by the author and the other 

is a well-known map projection, Lambert's equiareal cylindric 

projection. 

Let us assume that the transformation formulae x = x(+,l) 

and y = y(+,l) can be expressed as products of four functions 

in the following way: 



Thus, we are using the standard separation of variables. The 

required partial derivatives are then 

and the fundamental condition of equiareal mapping becomes 

In order to develop specific solutions, let us introduce an 

additional condition 

f2'W g2(U = 11 

f2W g2' (1) = 10 

If we combine the above equations we have 

•’2' (l)/f2(l) = g2' ( W g 2  (1) I 

and the integration yields 

In f2(1) = In g2(1) + In c, 



Assuming that the constant of integration, c, is equal to unity 

we finally obtain 

The equality of functions f (1) and g2 (1) results in a simple 

form of the first equation of (1-8-5) 

f2df2 = dl, 

or integrating 

and finally 

The fundamental equation of equiareal mappings (1-8-4) in this 

particular case, with the assumptions (1-8-5) is 



Let us now apply the method of undetermined coefficients. Then 

the required functions f (4) and gl ( + )  have the form 

f,(+) = a, cos + b, sin 4 + c,, 

(1-8-9) 

gl(+) = a2 cos 4 + b2 sin + + c2, 

and the corresponding derivatives are 

f11(4) = -a 1 sin + + bl cos +, 

gll(+) = -a 2 sin + + b2 cos 4, J 
where a,, a2, b,, b2, cl, c2 are unknown coefficients. 

Substituting the equations (1-8-9) and (1-8-10) into 

(I-8-8), after some rearrangement of terms we obtain 

alb2 - bla2 + cl(b2cos + - a2sin +)  + c2(alsin 4 - blcos 4 )  

= ~2 cos 4 .  

At least one of the parameters ci must be different from 

zero. The last equation will be satisfied if 
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yielding three equations with six unknowns. If we assume 

cl = a and cp = 0, from the second equation we obtain that 

a2 = 0 from the third equation b2 = ~ 2 / a  and from the first 

that al = 0. In addition, the parameter bl can take any value 

and therefore can be set to be equal to zero. Thus the only 

non-zero coefficients are 

- ~2 
b2 - - and cl = a, 

a 

which lead to a specific version of the equations (1-8-3) 

and finally to the transformation formulae 

y = E sin ( CK. 
a 

It can easily be proven that the last equations satisfy 

the fundamental differential equation of equiareal mappings 

(I-81) , thus the transformation (1-8-13) is really equiareal. 
Another equiareal projection can be obtained if we again 

assume the validity of the first equation of (1-8-5) and also 

that 



where a is an a r b i t r a r y  non-zero c o n s t a n t .  Then 

I n t e g r a t i n g  t h e  e q u a t i o n  (1-8-14) and d i f f e r e n t i a t i n g  (1-8-15) 

we o b t a i n  

f , ( l )  = a . 1 and g 2 ' ( 1 )  = 0 ,  

and then  t h e  fundamental  d i f f e r e n t i a l  e q u a t i o n  becomes 

f l ( 4 )  g l ' ( $ )  = R 2  CoS $0 (1-8-17) 

The f u n c t i o n s  f  1 ( + )  and g l  ( 4 )  a r e  a g a i n  e x p r e s s e d  a s  a  

l i n e a r  combina t ion  (1-8-9) l e a d i n g  t o  t h e  fo l lowing  form of t h e  

fundamental  d i f f e r e n t i a l  e q u a t i o n  (1-8-17) 

a  a  s i n  + c o s  4 - a l b 2  s i n 2 4  + b l a 2  cos24 - b l b 2  s i n  4 c o s  4 + 
1 2  

+ c l a 2  c o s  4 - c l b 2  s i n  4 = ~2 cos  4 ,  



Thus 

with the transformation formulae 

~2 Y = sin 4, 
k 

where 

The equations (1-8-18) define Lambert's equiareal cylindric 

projection. 

The most important group of equiareal projections, from 

the practical point of view, is Euler's. Euler's projections 

are the equiareal mappings in which the image of the meta- 

graticule constitutes an orthogonal grid. Without a loss of 

generality let us take direct aspects only. Thus, in Euler's 

projections the image of meridians and parallels is an orthog- 

onal net of lines in the projection plane. The conditions of 

Euler's projections are 

p =  1 and c = O .  



The orthogonality of parametric lines in the projection 

indicates that the scales along meridians and parallels are the 

principal scales. Thus, the conditions (1-8-20) can be written 

Let us now introduce a new parameter, t, defined from the 

expression (1-5-16) by 

t = v2 = n2 C O S ~ + ,  

which gives 

ff n = - and m = 3. (1-8-23) 
cos + 4-F 

Instead of the independent variable + we shall use another 

variable, s defined as 

s = sin + ( 1-8-24) 

and then 

ds = cos $ d$. (1-8-25) 

Substituting the equations (I-8-23), (1-8-24) and (1-8-25) 

into the formulae (1-5-15) we obtain 

) (1-8-26) 
= - sin 6 

Y s , y1 = 475 cos 6 
4-F J 
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Conditions of differentiability xs1 = x and yS1 = yls 1s 

yield 

- sin - sin B 
E 

81 - tl = fi cos B fiS + - . ts, 
2 m  2ff 

(1-8-27) - cos B - sin B - - -E sin B B~ + E2Ui  
f i  2 4 ~ 3  2 6  

ts- 

In order to eliminate and tS from the equation (1-8-27) 1 

the first equation is multiplied by cos 8, the second by sin g 

and then they are subtracted giving 
-- - 

In the same way, one can eliminate and tl by 
S 

multiplying the first equation of (1-8-27) by sin B, the second 

by cos B and then adding them together 

The differentiation of the equation (1-8-28) with respect 

to 1 and of (1-8-29) with respect to s yields 



The partial differential equation of the second order 

(1-8-30) represents the fundamental differential equation of 

Euler's projections. Superimposing some additional conditions 

on the function t, we can develop, by the integration of the 

fundamental equation, various types of Euler's projections. 

For example, if we take a special case where t is a func- 

tion of latitude only, or in our case t = t(s), then 

or finally 

where c and K are arbitrarily selected constants. The derived 

projection is Lambert's equiareal conic projection. 

If we take another special case where t is a function of 

difference in longitude only, i.e. 

then the equation (1-8-30) becomes 



with the solution 

Projections which satisfy the last equation have the 

parametric grid consist of circular arcs. In a special limited 

case, when the constant K is equal to zero, we obtain Lambert's 

equiareal cylindric projection, the same projection that has 

already been developed in (1-8-18). 

Generalization of developments of equiareal projections 

from the fundamental differential equation (1-8-1) requires 

further systematic study of the problem. The main difficulty 

is the lack of an organized series of different solutions of 

the undetermined system (1-8-1). Two of many solutions using 

the equations (I-8-2), derived by the author, were obtained by 

a more or less trial and error approach. It requires a 

mathematician with a deep insight into partial differential 

equations to develop a great number of practically important 

solutions. 



11. OPTIMAL MAP PROJECTIONS 

1. IDEAL AND BEST MAP PROJECTIONS 

The problem of the determination of an optimal map 

projection of the sphere, or its portion onto a plane, can be 

extremely ambiguous unless the criteria for qualitative 

assessments of transformation formulae are clearly and 

rigorously defined. The definition of the problem is always 

the most reasonable starting point for its solution. 
-- -- 

Meshcheryakov (1968) has suggested that the optimized map 

projection can belong to two distinct categories. They can be 

either ideal or the best transformation systems. 

The concept and definition of ideal map projections was 

introduced to cartography by the most important of the Russian 

cartographers, V.V. Kavraiskii with the following words 

(Kavraiskii, 1959): 

"It is possible to find a map projection under a 
unique condition where, for example, the maximum 
deformat ion of distances for the whole mapped domain 
is as small as possible." 

The problem of ideal map projections has not been solved. Even 

its mathematical definition has not yet been clearly given. 

Generally, for cartographers, the problem is too difficult 
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from the mathematical point of view, and mathematicians only 

recently rediscovered mathematical cartography (Milnor, 1969). 

The problem of minimization of maximal distortion, which leads 

to ideal map projections, will be simply called the minimax 

problem. Although the existence and uniqueness of an ideal map 

projection was introduced by Kavraiskii and the existence 

mathematically proven by an American mathematician, J. Milnor 

( 1969), the determination of a real ideal projection for an 

arbitrary domain of the sphere cannot be practically solved 

unless an infinite number of conceivable transformation systems 

are optimized and then compared, and this, in actuality, is an 

impossible task. 

Meshcheryakov (1968) recommended an alternative solution 

for the problem: instead of trying to find an ideal map 

projection of a certain domain, cartographers should concen- 

trate on the best projections. The best projection of a given 

class is the one in which deformations are at a minimum. In 

other words, knowing the requirements of map users and the 

shape and extent of the mapped territory, a cartographer can 

predetermine the class of transformation systems and then 

optimize it. The result will be the best map projection of the 

particular class. By comparing several of the easily optimized 

classes, or the best projections, one can make the final 

decision as to which of one of the best projections will be 

adopted for the mapping of the domain. 



1 

The criteria for the qualitative assessment of map projec- 

tions, and thus the basis of the optimization process, will be 

explained in the subsequent sections. For a large number of 

transformation systems the optimization consists of the solu- 

tion of a variational problem under the condition of extremum. 

The criteria leading to such solutions are called the criteria 

of the variational type (Meshcheryakov, 1 9 6 8 ) .  

The optimization of conformal mappings was suggested by 

various authors, but the criterion which was adopted as the 

most realistic was defined by a Russian mathematician, 

Chebyshev (Kavraiskii, 1 9 5 9 ) .  Chebyshev stated that the best 

conformal projections of a closed domain .is the one for which 

the logarithm of the maximal scale is minimized. Thus, the 

Chebyshev conformal projections belong to the minimax type. 

The rigorous analytical determination of the Chebyshev 

projection for a domain defined by an arbitrary contour line is 

unknown. However, in practice, approximate solutions are 

feasible and for map users they are sufficiently accurate, as 

the author will show. 

2. LOCAL QUALITATIVE MEASURES 

Every transformation process of a closed domain of a 

regular surface onto another surface whose Gaussian curvatures 



differ will result in deformation of distances. By selecting 

special transformation functions, areas or angles may be 

preserved, but distances which are also intrinsic elements of 

the original surface will always undergo a certain change. 

Thus it is quite appropriate to adopt the deformation of 

distances as the basic parameter for the evaluation of map 

projections. Changes of angles and areas will be expressed as 

functions of deformation of distances in the principal 

directions. 

The deformation of distances at a point, thus locally 

defined, was given by the formula (1-3-2) 

where k is the scale factor, a function of the position and the 

direction k = ( 4  , l  ,a). There are however, some additional 

measures of deformations in mathematical cartography, some of 

which are more and the others less important. For example, the 

deformation can also be defined by the expression 
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Chebyshev, Weber and Markov (Kavraiskii, 1959) have used 

the natural logarithm of the scale factor as the definition of 

deformation, i.e. 

The linear deformation for conical equiareal projections 

is sometimes defined by the expression 

v" ' 
s = -  I (k2 - 1 ) .  

2 

but this definition appears to be of lesser practical 

importance. 

All measures of distortions of distances are functions of 

the scale factor, and are thus linearly dependent, since 

and thus they differ among themselves by the quantities of 

second order only. In other words, for the first order term it 

is irrelevant which definition of distortion is used. 
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From the author's point of view, the most natural measure 

of distortion is v" = In k since its optimization in the cases 

of con•’ ormal or equidistant projections automatically leads to 

a minimal distortion of areas, and in the case of equidistant 

and equiareal projections the optimization process guarantees 

minimal deformations of angles. Analogous results are not 

obtained with other definitions of linear distortion. 

From the theory of distortions and the indicatrix of 

Tissot we know that at every regular point of a mapping domain 

the principal directions represent the directions of the 

extreme scales- a and b and that every element of distortion can 

be easily expressed in terms of the principal scales. For 

example, the extreme angular distortion at a point in a non- 

conformal projection is given by the formula 

w = arc sin ((a - b)/(a + b)). 
0 ,  

( 11-2-61 

The deformation of areas, v is defined by the equation 
P ' 



In 1861 an English astronomer, G.B. Airy, made the first 

significant attempt in cartography to introduce a qualitative 

measure for a combination of disortions. His measure of 

quality was designed to be an equivalent to the variance in 

statistics. It was defined (Airy, l86l), at first, by the 

expression 

a 
r2 = (E - 1)2 + (ab - 1)2, 
A 

but later in the optimization process he used another version 

which may be called the mean quadratic deformation of distances 

where 

v = a -  1 and v b = b -  1. a 

Airy's two definitions of the mean quadratic deformation 

(11-2-8) and (11-2-9) differ in the terms of third order only. 

We can take, for example, the first definition and transform it 

in the following way: 



IF- 

2 
a - 1)2 + (ab - 1)2 = (' + va - 1) + [(I + va)(1 + vb) - 1 1 2  = 
(b l + v  

b 

The first term of the middle row in the last formula 

approximates the square of the maximal angular deformation 

(11-2-6) and the second term is the square of the deformation 

of areas (11-2-7). 

In 1897, the German cartographer A. Klingatsch generalized 

the first mean quadratic deformation of Airy (11-2-8) by the 

introduction of arbitrarily selected weights for the accuracy 

of angles and areas. The mean quadratic deformation of 

Klingatsch is then computed by the weighted mean 

where p and p are positive dimensionless quantities called 
W P 

weights. Their numerical values can be arbitrarily varied to 

satisfy the specific requirements of users (Kavraiskii, 1959). 

The measure of the quality of map projections by Airy 

( 11-2-9) and the subsequent generalization by Klingatsch 

(11-2-11) uses only the principal scales and their 



, 
deformations. A more realistic evaluation of the deformations 

of distances at a point was suggested by a German geodesist, 

W. Jordan, in 1896, whose mean square deformation was defined 

by the formula 

I €2 = - I (k - 1)2 da, 
J 2r 

where a is the direction angle usually reckoned from the first 

principal direction (Meshcheryakov, 1969). 

Kavraiskii ( 1959) recommended a small modification of the 

mean square deformations of Airy and Jordan by the logarithmic 

definition of linear deformation (11-2-3). Such altered mean 

square deformations are called Airy-Kavraiskii and Jordan- 

Kavraiskii, 

and 

From a theoretical point of view there is a distinct 

difference between Airy's and Jordan's approaches. However, 

the optimization process using either measure of quality for 

mapping systems will lead to similar results whose differences 

scarcely justify Jordan's much more complicated measure 

(Kavraiskii, 1959). 



3. QUALITATIVE MEASURES FOR DOMAINS 

So far the qualitative measures of map projections have 

been locally defined, since when we use one of the formulae 

1 1 - 2 -  (11-2-11) 1 1 - 2 - 1 2  (11-2-13) and (11-2-14) we can 

compute the mean square deformation of distances at a point. 

The evaluation and comparison of map projections of a closed 

domain point by point in applying one of the above mentioned 

expressions will generally lead to too many ambiguities with 

respect to the selection of points and their distribution over 

the mapped area. To alleviate these difficulties Airy (1861) 

introduced the mean square error of a domain 

where the integration is extended over the whole area A of the 

domain. 

With the logarithmic definition of distortion (11-2-3) the 

criterion of Airy becomes the criterion of Airy-Kavraiskii 

The optimization process leading to the minimization of 

equation (11-3-2 ) will be called the optimization according to 

the Airy-Kavraiskii criterion. 
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If, instead of Airy's version of the mean square 

deformation, we take Jordan's formula (11-2-1 2) or the Jordan- 

Kavraiskii (11-2-14) and evaluate them for the whole domain we 

obtain 

The optimization process, using the last formula as the 

basis, is known as the optimization according to the Jordan- 

Kavraiskii criterion. 

In his numerical minimizations of distortions the author 

will use the criterion of Airy-Kavraiskii (11-3-2). 

From a theoretical point of view, the criterion of Jordan- 

~avraiskii is certainly superior to the criterion of Airy- 

Kavraiskii since it takes deformations in all directions around 

a point and not only in the principal directions as in the 

Airy-Kavraiskii formula. Practically, however, the analytical 

evaluation of the integral (11-2-12) is often very difficult or 

even impossible and we have to approximate it by a numerical 

integration. 



The i n t e g r a t i o n  o f  t h e  mean s q u a r e  d e f o r m a t i o n  f o r  t h e  

whole  a r e a  i n  b o t h  c r i t e r i a  h a s  t h e  same p rob lem.  The boundary  

c o n t o u r  l i n e  o f  a  domain is v e r y  se ldom d e f i n e d  by a  ' n i c e '  

a n a l y t i c  e x p r e s s i o n .  I n  t h e  o p t i m i z a t i o n  o f  mappings  o f  a  

h e m i s p h e r e ,  f o r  example ,  A i r y  ( 1861 ) and Young ( 1920)  had a n  

a n a l y t i c a l  d e f i n i t i o n  o f  t h e  b o u n d a r y ,  b u t  it is more u s u a l  t o  

d e f i n e  t h e  b o u n d a r y  by a  p o l y g o n  o f  d i s c r e t e  p o i n t s .  Even i n  

t h e  c a s e s  o f  an a n a l y t i c a l  d e f i n i t i o n  o f  t h e  boundary  t h e  

a n a l y t i c a l  i n t e g r a t i o n  may be e x t r e m e l y  d i f f i c u l t  or 

i m p o s s i b l e .  T o  r e d u c e  t h e  p rob lem o f  i n t e g r a t i o n ,  t h e  a u t h o r  

w i l l  u s e  t h e  p r a c t i c a l  p r o c e d u r e  of n u m e r i c a l  i n t e g r a t i o n  

t h r o u g h o u t  t h e  r e s e a r c h .  

K a v r a i s k i i  ( 1 9 5 9 )  s u g g e s t e d  a  v e r y  s i m p l e  summation o f  t h e  

i n d i v i d u a l  mean s q u a r e  d e f o r m a t i o n s  e v a l u a t e d  a t  r e g u l a r  mesh 

p o i n t s  on t h e  s p h e r e .  Young ( 1 9 2 0 )  i n s i s t e d  on a  ' b e t t e r '  

summation t a k i n g  a  r e g u l a r  mesh on t h e  p r o j e c t i o n  p l a n e .  F o r  

r e l a t i v e l y  s m a l l  s i z e s  o f  mapping domains  b o t h  meshes  w i l l  

p r o d u c e  more o r  less i d e n t i c a l  r e s u l t s .  F o r  l a r g e r  domains  t h e  

d i f f e r e n c e s  c a n  be c o n s i d e r a b l e .  The a u t h o r  d o e s  n o t  see why 

Young 's  mesh on t h e  p r o j e c t i o n  p l a n e  w i l l  y i e l d  more r e a l i s t i c  

r e s u l t s ,  and b e c a u s e  i t s  f o r m a t i o n  is  n u m e r i c a l l y  more 

c o m p l i c a t e d  t h e  p r e f e r e n c e  w i l l  be g i v e n  to  a  r e g u l a r  mesh on 

t h e  o r i g i n a l  s u r f a c e  o f  t h e  s p h e r e .  



4. OPTIMIZATION OF CONICAL PROJECTIONS 

Conical map projections include those cartographic 

transformations in which the metagraticule on the sphere, a 

system of orthogonal coordinate lines, is projected onto a 

plane in the following way. The metameridians (q = const.) are 

transformed either into straight lines intersecting at a point 

or parallel straight lines. Metaparallels ( 5  = const.) become 

either concentric circles with the centre at the intersection 

point of the projection of the metameridians, or they become 

parallel straight lines orthogonal to the projection of 

metameridians. 

To clarify the exact meaning of the metagraticule, as 

named by Wray ( l 9 7 4 ) ,  and its connection to the graticule, the 

set of geographic coordinates (latitude @ and difference in 

longitude 1 ) ,  let us refer to the figure 11-4-1. The metapole, 

0, is usually selected to be the central point of a mapping 

domain or is determined so that the central line of the mapping 

territory becomes either metaparallel or the metaequator. 

Great circles passing through the metapole, 0, and its 

antipodal point, O', are called metameridians. The position of 

a metameridian is fixed by an angle, q, called the metalongi- 

tude, reckoned clockwise from the geographical central 

meridian. Thus, the geographic meridian through the metapole 



is the initial metameridian. Orthogonal circular curves to 

metameridians are called metaparallels. They are defined by 

the metalatitude, 5 ,  an arc length on the unit sphere between 

the metaequator and the metaparallel in question. 

Greenwich meridian 

2 

Figure 11-4-1 Graticule and metagraticule 

It is clear from the figure that the metagraticule 

represents a coordinate system similar to the geographic 

graticule except that it is qenerally displaced on the sphere 



with respect to the graticule. ~ccording to the geographic 

latitude of the metapole, in conical projections we can 

distinguish three different aspects: 

( 1  ) 4 = " / 2  - direct aspect, 
0 

( 2 )  0 < 4 < " / 2  - oblique aspect, and 
0 

( 3 )  4 = 0 - transverse aspects. 
0 

Because the metagraticule represents an invariant frame 
---- 

for a projection system, the first step in computation is the 

transformation of the geographic coordinates into the 

metacoordinates. The second step is the computation of plane 

coordinates. 

The metacoordinates ((,q) of a point defined by its 

geographic coordinates ($,1) are obtained by the formulae of 

spherical trigonometry in the spherical triangle OPA. 

and 

cos4 sin(X - A) tan q = 0 
sin$ cos$ - sin4 c o s ~  cos(Ao-A) 

0 0 
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For the t ransverse aspect ( $ o  = 0 )  the l a s t  formulae a re  

reduced to: 

s i n  6 = cos( cos(Ao-A). 

sin(Ao-A) 
tan TI = 

tan+ 

The f i n a l  transformation i n  rectangular coordinates 

X = ~ ( S r n )  r Y = y ( S r ~ ) r  

or i n  polar coordinates 

y ie lds  the required cartographic project ion.  

The conical pro jec t ions  are  subdivided in to  three 

subgroups of conic, azimuthal and cy l indr i c  map pro jec t ions .  

The general formulae of conic pro jec t ions  are  

x = p s i n  y , y =  - p c o s y ,  

where 



The quantity c is an arbitrary positive constant whose 

numerical value is usually smaller than one. When the constant 

c is exactly equal to one, we obtain azimuthal projections. 

Cylindric map projections are defined by the general 

expressions 

where k is an arbitrary positive constant. 

The principal scales coincide with the scales along the 

parametric curves and for conic projections they are 

For cylindric projections they become 

For a reader unfamiliar with mathematical cartography the 

appendix 1 contains typical grids of various conical map 

projections, i .e. conic, cylindric and azimuthal mappings. 

The general formulae of conic and cylindric projections, 

(11-4-5) and (11-4-6) respectively, clearly indicate that there 



is an infinite number of conceivable conic projections. With a 

proper choice of functions p = p (6) and y = y( S )  we can derive 

conformal, equiareal or equidistant or an arbitrary conical 

projection. All these derivations include the determination of 

two parameters. One of them is the initial constant, c or k, 

and the second parameter is the constant of integration in the 

solution of a particular differential equation: the equation 

which specifies the character of linear distortion. 

The selection of the two parameters is made in such a way 

that the deformations of scale are as small as possible. In 
- -- - 

other words, an optimization process which satisfies one of the 

criteria, Airy-Kavraiskii (11-3-2) or Jordan-Kavraiskii 

(11-3-4), will determine the best choice of projection 

constants. 

The most important conical projections are: 

Lambert conformal conic projection: 

where c2 is the integration constant and q is the isothermic 

latitude obtained by the expression (I-7-5), which, in the case 

of metalatitude becomes 

q = In tan ( ~ / 4  + 5/2). 



, 
Lambert eauiareal conic projection: 

= 1/L(c2 - sing). 
1 

Equidistant conic projection: 

Azimuthal projections may be considered as a special case 

of conic projections in which the first constant, c, has a 

value of unity. Thus, the formula (11-4-9), (11-4-1 1) and 

(11-4-1 2) with cl = 1 represent azimuthal conformal, equiareal 

and equidi.stant projections respectively. 

The most important cylindric projections are: 

Mercator projection: 

x = k n  , y = k q .  

Lambert equiareal cylindric projection: 

1 
x  = kn , y = i  sing. 

Plate carree projection (equidistant): 

x = k n  , y = C .  

Urmaev's cylindric projection: 

x = kn , y = a16 + a2g3 + a3{5, 



I 

where a!, a?, a3 are constants which can be directly computed 

by defining the scale on three different metalatitudes 

The constants a (i = l,2,3) can also be determined i 

through optimization by applying one of the criteria of the 

best projections. 

Generally speaking, the optimization of conical 

projections is a relatively simple problem that was solved at 

the end of the nineteenth century. The detailed description of 

various optimization methods can be found in (Kavraiskii, 

l959), where a particular emphasis was given to the 

optimization of Lambert's conformal conic projection by the 

method of least squares. The optimization of one or two 

constants leads to a system of one or two equations with the 

same number of unknowns. The only small problem is the 

mathematical definition of an optimization criterion in terms 

of the required constants. The author expands the optimization 

process including the simultaneous determination of the best 

metagraticule for an arbitrary shaped territory and a specific 



, 
map projection. This will enlarge the mathematical structure 

by two more unknowns, the latitude and longitude of the 

metapole. 

Thus, in the most generalized optimization of map 

projections, one of the selected optimization criteria would 

have to be expressed as a function of the transformation 

constants and the metagraticule. Then the numerical 

approximation process will yield the best values of constants 

and the best metagraticule for the particular domain and the 

selected transformat ion system. 
- - --- 

5. OPTIMIZATION OF MODIFIED PROJECTIONS 

A modification of map projections is the process of 

obtaining new cartographic systems from already existing map 

projections. Let us assume that the rectangular coordinates 

(x,y) are expressed in terms of the metagraticule ( 5 , ~ ) .  

This transformation represents the initial map projection which 

will be modified by the equations 



where 

and A and B are arbitrary constants. The functions x and y in 

(11-5-2) are identical to the initial functions (11-5-1 ) except 

that they are expressed in terms of new variables (u,v) , 

To simplify the modification process, the most general 

modification of the metagraticule (11-5-3) will be restricted 

to those modifications in which only the original metameridians 

( = const.) are transformed into modified metameridians 

(v = const.) and the original metaparallels (5 = const.) become 

modified metaparallels (u = const.). In this case, the 

transformation equations (11-5-3) are simplified to 

Both of these transformations must be regular, i.e. the 

Jacobian determinant of the modified transformation must be 

different from zero at every point of the mapping domain, 

In order to investigate the distortion parameters of the 

modified map projections, we must compute the elements of the 



metric tensor 

The partial derivatives of the new coordinates (X ,Y) with 

respect to the independent variables (5,n) can be expressed in 

the following way 

Then the elements of the metric tensor (11-5-6) become 

with the Jacobian determinant 

Taking again a unit sphere as the original surface the 

distortion parameters (the scale along metameridian m, scale 



along metaparallel n, parametric angle 0, and the scale of 

areas p) are 

p = sec u E .  

- -- 

When the original mapping (11-5-1 ) is conformal then its 

modification would preserve conformality if m = n and 0 = ~ / 2 .  

From the expressions (11-5-10), (11-5-11) (11-5-12) it can 

easily be seen that only an identity mapping with constants 

A = B will result again in a conformal map projection. In 

other words, a real modification of a transformation system 

cannot retain conformality. If the original projection is 

conformal its modified version can never be conformal. 

When the original mapping is equiareal, its modification, 

in order to be also equiareal, must satisfy the required 

condition that the scale of the area is equal to unity, i.e. 

du dv sec F = 1, AB(xVyu - x y ) - - u v dF dn 



Since for the original equiareal mapping x y - xUyY = cos u v u 

the last differential equation becomes 

dv 1 cos 5 dg - = -  
do ABcos u d u  

The resulting differential equation can be satisfied at every 

point of the mapping domain only if both sides have a constant 

value. Thus 

At the same time the transformation of equation (11-5-14) 

yields 

1 cos u du = - 
ABC cos 5 dS , 



and its integration 

1 sin u = - sin F, + K2. 
ABC 

n 

Assuming that both coordinate systems ( F , , n )  and (u,v) have the 

same origin, i.e. for 5 = 0 also u = 0 and for rl = 0 also 

v = 0, both integration constants K 1  and K2 become zero and the 

resulting modified curvilinear coordinates become 

s i n ~ , v = ~ q .  sin u = - (11-5-171 
ABC n 

n 

The first affine transformation of an equiareal conic 

projection had already been suggested in 1913 by Zinger. His 

modified conic equiareal projection was computed by the 

formulae (Kavraiskii, 1959) 

where (x,y) are the coordinates of the equiareal conic 

projection and p is an arbitrary constant. A more serious 

investigation of modified equiareal projections was initiated 

by Siemon in 1938. However, the most thorough study of 
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modifications has been made by Wagner, (Wagner, 1941 and 

Wagner, 1962). The author has adopted his theory of 

modifications with the notation suggested by Franvula in his 

dissertation, (Franvula, 1971). 

Since constants A and B in the first equation of (11-5-17) 

are arbitrarily selected values, Wagner ( 1962) recommended that 

they be composed of three constants Ck, Cm, Cnin the following 

way 

A = ck/- I B = 1/ck= . (11-5-19) 

Then the transformation formulae (11-5-2) and ( 11-5-4 ) 

become 

and 

sin u = Cmsin( , v = Cnn. ( 11-5-21 ) 

Thus, if the original mapping (11-5-1) is equiareal the 

modification by the expressions (11-5-20) and (11-5-21 ) also 

yields an equiareal transformation. 



, ' 

The quantities Ck, Cm, Cn are positive constants whose 

numerical values were subjectively selected in Wagner's work. 

~rangula ( 1971 ) , however, optimized several map projections 
according to the criterion of Airy by varying the values of 

constants. He used electronic computers and a trial-and-error 

method to determine the constants in such a way that Airy's 

measure of the quality EA was minimized for domains of the 

whole earth and the individual hemispheres. The result of his 

investigations are given in (Francula, 1971). when the 

original equiareal property of the projection (11-5-1 ) is not 

to be retained by the modified system, Wagner introduced a new 

constant, Ca, which regulates the distortion of areas. The 

transformation equations are then 

For non-equiareal projections the modification of the 

metagraticule can be simplified, and instead of equations 

(11-5-21) we can use another set of expressions 

From many equiareal projections the author has selected 

the following transformations which can be modified and their 

constants optimized by the criterion of Airy-Kavraiskii. 



Sanson's projection: 

Sanson's projection is defined as a sinusoidal equiareal 

projection which satisfies three conditions: ( i) scale along 

the symmetric central metameridian is constant, (ii) all other 

meridians are sinusoidal curves, and (iii) the pole is 

projected as a point. The original equations of the projection 

are: 

X = n c o s C  and Y = 5 ,  (11-5-24 ) 

and the modified versions become 

Y = arc sin(C sin[) . 
c ~ T T  m n m 

~ollweide' s projection: 

The projection is equiareal and maps the hemisphere into a 

circle of radius of 47, metameridians are symmetric ellipses 

with respect to the central meridian which is a straight line. 

The pole is projected as a point. 

247 X = n  cos YJ , Y = JZsin Y ,  
ll 

where 



The modified equations of $the projection are 

where 

2$ + sin $ = n Cmsing . ( 11-5-28 ) 

Hammer's projection: 

This projection was obtained by an affine transformation 

of the Lambert azimuthal equiareal projection. 

x = 2 6  s i n a ,  y = 2 s i n d c o s a ,  ( 11-5-29 ) 
2 

where 

sin 5 cos a = cos cos 5 , cos a = - . (11-5-301 
sin a 

The modified equations become 

sin d cos a , (11-5-31 ) 
2 

where 

cos 6 = cosCnn - /1 - c2 sin25 , cos a = Cmsinc . (11-5-32) 
2 m sin 6 

Eckert's IV projection (elliptical): 

The original equations of the projection are 

where 
1 Y + 2 sin Y + - sin 2 Y = (2 + R )  sin 5 
2 2 

The modified version of the equation is 

x = C k l / z  n (  1 + cos $ )  and Y = 
C k m  

where 

sin $, (11-5-35) 



6. OPTIMIZATION AND THE METHOD OF LEAST SQUARES 

Let us adopt the criterion of Airy-Kavraiskii (11-3-2) as 

the basis for the optimization of map projections, 

' j (lnza + ln2b) dA = min. E&=xA 

To simplify the writing we can introduce the abbreviations 

In a = v and ln b = vb , a ( 11-6-1 ) 

and then the criterion becomes 

dA = min 

where A is the total area of the mapping domain and the 

integration is extended to the whole domain. There are very 

few domains in cartography which can be analytically defined, 

but even for these cases it is often difficult, if not 

impossible, to perform integration analytically. To alleviate 

this problem the integral in the last formula will be 

approximated by the finite summation 



A n - - 1 z [ (va)2 $ +  (vb)f] A A ~  = min , (11-6-3) E 2 ~ ~  iji i=l i 1 

h 

where EAK is the approximation of EAK, AA is a small but finite 

portion of the domain, n is the number of area elements 

covering the whole domain, and the distortion parameters 

(va,vb) are numerically evaluated at the central point of each 

element of the area, AA. To introduce regularity into the 

computation, the mapping domain is covered by the mesh of 

meridians and parallels which subdivide the domain into a large 

number of spherical trapezoids. The area of such a trapezoid 

limited by two parallels, and $2, and two meridians, X 1  and 

X2r is obtained by the formula (Sigl, 1977) 

where R is the radius of the sphere. For a small distance 

between parallels we can assume that 

and with the abbreviations 

+ 2 - 4, = A$ and X~ - X 1  = AX , 
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f o r  a  u n i t  s p h e r e  (R-1) f o r m u l i  (11-6-4)  becomes 

AAi = A$ Ah COs$i , 

where  ( i  is t h e  l a t i t u d e  o f  t h e  c e n t r a l  p o i n t  o f  AAi. 

F u r t h e r  s i m p l i f i c a t i o n  is a c h i e v e d  i f  t h e  d i f f e r e n c e s  

be tween  m e r i d i a n s  and p a r a l l e l s  a r e  k e p t  c o n s t a n t  f o r  t h e  

domain.  I n  t h a t  case 

and t h e  a r e a  becomes 

S u b s t i t u t i n g  t h e  l a s t  e x p r e s s i o n  i n t o  t h e  c r i t e r i o n  

( 11-6-3 ) w e  h a v e  

n  - C [ ( v a )  T + ( v b ) T ]  C O S ( ~  = min , (11-6-10) E'AK - i= l  1 1 
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and since K/2A is a constant, the most suitable non-conformal 

projection of a closed domain is obtained by the optimization 

of the expression 

n 
1 [ (va) 2i + (vb); ] COS+~ = min , 
i=l 

with the summation sign including all trapezoids which 

approximate the domain. The minimization of the above 

expression is nothing but a least squares problem. The unknown 

parameters of a projection, metagraticule and various 

constants, are to be determined in such a way that the sum of 

the squares of distortions multiplied by the cosine functions 

of the corresponding' latitudes is at a minimum. 

The method of least squares has been known to mathematical 

cartography for some time. The first suggestion that the 

theory for the determination of constants in the Lambert 

conformal projection be applied, was made in 1913 by Zinger 

(Kavraiskii, 1959). In 1934 Kavraiskii elaborated the 

evaluation of all constants of integration in the normal aspect 

of conical, i.e. conic, azimuthal and cylindric projections by 

the method of least squares. In 1953 Urmaev solved the problem 

of a symmetric Chebyshev projection by least squares. The 

result was a conformal map projection for a domain symmetric 

with respect to the central meridian, the projection which did 



not perfectly satisfy the boundary conditions, but where the 

deviations from the boundary requirements squared and added 

together gave a minimum. Finally, in 1977 Tobler suggested a 

new map projection with minimized distance errors. As a result 

he did not obtain a pair of analytic transformation functions 

x = x(E , n )  , y = y(E ,n) but numerical values of plane 

coordinates (x,y) for points whose positions on the sphere were 

known. If the known points are nicely and evenly distributed 

over the mapping domain it is not difficult to introduce a 

numerical interpolation procedure to transform additional 

points of the sphere into the plane coordinate system. The 

determination of plane coordinates by the method of least 

squares in Tobler ' s approach corresponds to the determination 

of the most probable values of coordinates in the least squares 

adjustment of geodetic control survey nets by the method of 

trilateration (Mikhail, 1 9 7 6 ) .  

In addition to the briefly described applications of the 

method of least squares in mathematical cartography, the author 

is suggesting further generalization of the optimization 

process including the determination of the most suitable 

metagraticule as well as other constants and parameters of 

projections. The attempt will also be made to optimize 

modified map projections according to the criterion of Airy- 

Kavraiskii ( 11-6-1 1 ) .  The method of least squares will be 

applied in the following way. The distortion elements va and 

Vb must be expressed as functions of unknown parameters: 



metagraticule and modification constants. If we adopt the most 

suitable notation, the matrix notation, for the method of least 

squares, the functional connection between the distortion 

elements and unknown parameters becomes 

where v is a column vector of 2n distortion elements,F(C) is 

a column vector of 2n functions and c is a vector of unknown 

parameters whose number must be smaller than 2n, i.e. smaller 

than twice the number of approximation trapezoids of the 

domain. 

If we introduce a 

and ,C = 

strictly diagonal matrix of 2n by 2x1 

dimensions whose elements are the cosines of the latitudes 

listed in the following way, 



the basic condition of an optimized map projection according to 

the criterion of Airy-Kavraiskii (11-6-11) becomes 

In this form, the equation (11-6-15) is the easily 

recognizable fundamental requirement of least squares. In the 

classical application of least squares for the adjustment of 

physical measurements, the vector represents an array of 

residual corrections of measurements and 4 is the weight 
matrix. In our case the weight matrix can also be modified. 

If we feel that certain points of the mapping domain are more 

important than others, we can assign higher weights to the more 

valuable points according to some empirical rule. For example, 

the density of population can serve as the weighting basis. In 



, 
t h a t  c a s e  more popu la t ed  a r e a s  w i l l  have s m a l l e r  d e f o r m a t i o n s  

t h a n  t h e  l e s s  popu la t ed  p o r t i o n s  of  t h e  domain. T h e  most 

a p p r o p r i a t e  s e l e c t i o n  of w e i g h t s  is a  ve ry  d i f f i c u l t  problem 

and r e q u i r e s  s p e c i a l  a t t e n t i o n  and v e r y  c a r e f u l  r e s e a r c h .  The 

a u t h o r  w i l l  no t  d w e l l  f u r t h e r  on t h e  problem s i n c e  it does  n o t  

d i r e c t l y  belong t o  an o b j e c t i v e  o p t i m i z a t i o n  p r o c e s s .  I n  t h i s  

work t h e  weight  m a t r i x  w i l l  a lways be d e f i n e d  by t h e  m a t r i x  

(11-6-14) ,  e x c e p t  i n  one c a s e  where t h e  Lambert Conformal Conic  

p r o j e c t i o n  is op t imized  a c c o r d i n g  t o  t h e  p o p u l a t i o n  d e n s i t y  a s  

t h e  we igh t ing  bases .  

I n  o r d e r  t o  a p p l y  t h e  method of  l e a s t  s q u a r e s  t h e  

d i s t o r t i o n  e l e m e n t s  va  = I n ( a )  and v b  = 1 n ( b )  must be e x p r e s s e d  

i n  terms of t h e  unknown p a r a m e t e r s ,  . T h i s  is p robab ly  t h e  

main h i n d r a n c e  i n  t h e  whole p r o c e s s .  From t h e  t h e o r y  of 

d i s t o r t i o n s  i n  t h e  f i r s t  c h a p t e r ,  it is known t h a t  t h e  semi- 

a x e s  of t h e  i n d i c a t r i x  of T i s s o t  a r e  computed i n  t h e  f o l l o w i n g  

way: 



The m a t h e m a t i c a l  model ( 11-6-1 2 )  is g e n e r a l l y  n o n l i n e a r  and t o  

b e  used i n  t h e  l e a s t  s q u a r e s  p r o c e s s  w e  s h a l l  l i n e a r i z e  it by 

t a k i n g  t h e  T a y l o r  series 

where  & " is t h e  v e c t o r  o f  a p p r o x i m a t e  v a l u e s  o f  unknowns. 

T a k i n g  o n l y  t h e  f i r s t  t w o  terms i n  t h i s  e x p a n s i o n ,  t h e  v e c t o r  

o f  c o r r e c t i o n s  to  t h e  a p p r o x i m a t i o n s , ~ , ~ ,  w i l l  be o b t a i n e d  by 

t h e  method o f  l e a s t  s q u a r e s .  The v e c t o r  o f  unknown p a r a m e t e r s ,  

4 , is t h e n  

When t h e  a p p r o x i m a t e  v a l u e s  o f  p a r a m e t e r s  a r e  close to  t h e  

s o l u t i o n ,  t h e  c o r r e c t i o n  v e c t o r  is s m a l l  and a l l  terms o f  

second  o r  h i g h e r  o r d e r  o f  A &  i n  (11-6-17) can  be n e g l e c t e d  

a s  b e i n g  p r a c t i c a l l y  i n s i g n i f i c a n t .  The v e c t o r  o f  approxima-  

t i o n s  is u s u a l l y  d e t e r m i n e d  from p r e v i o u s  e x p e r i e n c e .  I t  is  

p a r t i c u l a r l y  i m p o r t a n t  to e s t a b l i s h  t h e  p o s i t i o n  o f  t h e  

m e t a g r a t i c u l e  r e l a t i v e l y  w e l l .  The b e t t e r  t h e  a p p r o x i m a t i o n s  

t h e  b e t t e r  t h e  end r e s u l t s  w i l l  be.  The method o f  l e a s t  

s q u a r e s  can  a l s o  be used i t e r a t i v e l y .  A f t e r  t h e  f i r s t  computa-  

t i o n ,  t h e  v e c t o r  X )  c a n  be r e e n t e r e d  i n t o  t h e  c o m p u t a t i o n  a s  



t h e  f i r s t  a p p r o x i m a t i o n ,  and t h e  method o f  l e a s t  s q u a r e s  w i l l  

t h e n  r e s u l t  i n  s m a l l e r  c o r r e c t i o n s , ~ ~ ,  a s s u m i n g  t h e  

c o n v e r g e n c e  o f  t h e  p r o c e s s .  D i v e r g e n c e  i n d i c a t e s  t o o  much a n  

error i n  t h e  i n i t i a l  a p p r o x i m a t i o n  v e c t o r  or t h e  i n c o r r e c t  

f o r m u l a t i o n  of t h e  m a t h e m a t i c a l  model  (11-6 -17) .  

D e n o t i n g  by  

t h e  m a t h e m a t i c a l  model ( 11-6-17) becomes a t y p i c a l  c a s e  o f  

N e w t o n ' s  method 

and t h e  f u n d a m e n t a l  c o n d i t i o n  o f  l e a s t  s q u a r e s  ( 11-6-1 5 )  

y g v  = rnin is o b t a i n e d  when 



Since 

the partial differentiation of the above matrix equation with 

respect to C yields 

where 

T /! x=@.& $ and a= $?9.eo . (11-6-23) 
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L i n e a r  e q u a t i o n s  (11-7-22)  a r e  c a l l e d  t h e  normal  e q u a t i o n s  

w i t h  N b e i n g  a  n o n - s i n g u l a r  s y m m e t r i c  m a t r i x  w i t h  r e s p e c t  t o  

t h e  p r i n c i p a l  d i a g o n a l .  

The  s o l u t i o n  o f  t h e  s y s t e m  (11-6 -22) ,  f o u n d  u s i n g  C h o l e s k y  

me thod ,  y i e l d s  t h e  v e c t o r  of c o r r e c t i o n s  

and t h e n ,  f i n a l l y ,  by e q u a t i o n s  (11-6-18) t h e  r e q u i r e d  

unknowns. 

A f t e r  t h e  d e t e r m i n a t i o n  o f  t h e  unknowns, t h e  m e a s u r e  of  

d i s t o r t i o n  A i r y - K a v r a i s k i i  is o b t a i n e d  by t h e  f o r m u l a  

where  f o r  a r e g u l a r  mesh t h e  q u a n t i t y  K is t h e  p r o d u c t  of t h e  

d i f f e r e n c e s  i n  l a t i t u d e  and l o n g i t u d e  of t h e  mesh p o i n t s ,  i .e.  



The method of least squar;s has been by far the most 

predominant approximation technique in many scientific fields. 

It yields a unique solution by a very general computation 

algorithm which can be applied even in the most complicated 

mathematical models. If the mathematical models are linear or 

linearized, the approximation algorithm consists of the 

solution of linear equations whose number is equal to the 

number of unknowns. If the resulting vector of corrections 

& , is small, i.e. we are dealing with close 

approximations, the first application of the method will give 
-- 

sufficiently good results. For larger values of /\G , the 
computed unknowns serve only as improved approximat ions and the 

method of least squares is iteratively applied until the 

difference between two successive computations of are 

practically negligible. 

The main difficulty in the application of least squares 

for the optimization of cartographic mappings is the 

linearization of the mathematical model (11-6-1 2) by the Newton 

method. Analytical expressions for the deformation elements 

v = In a and vb = In b in terms of the vector of unknown a 

parameters are relatively complicated and their partial 

differentiation with respect to the unknowns are cumbersome. 

The problem can be largely simplified by the usage of one of 

the available packages for a non-linear least squares fit. 

Although the author has not used a single non-linear least 



s q u a r e s  approach it must be emphasized t h a t  under c e r t a i n  

c i r c u m s t a n c e s  t h e y  a r e  t h e  most e l e g a n t  and e f f i c i e n t  s o l u t i o n s  

of t h e  o p t i m i z a t i o n  problem. D i f f i c u l t i e s  wi th  a  n o n - l i n e a r  

l e a s t  s q u a r e s  method main ly  a r i s e  from t h e  d i f f i c u l t  q u e s t i o n s  

which must be d e a l t  w i th  i n  programming of  a  n o n - l i n e a r  

i t e r a t i v e  method when t o  s t o p  and e i t h e r  admit  f a i l u r e  or 

d e c l a r e  a c c e p t a b l e  app rox ima t ion  (Denn i s ,  1 9 7 7 ) .  I n  o r d e r  t o  

e n s u r e  convergence  of i t e r a t i v e  s o l u t i o n s  t h e  i n i t i a l  app rox i -  

ma t ions  must be r e a s o n a b l y  good. S i n c e  t h e  a u t h o r  could  n o t  

f u l f i l l  t h i s  impor t an t  i n i t i a l  r equ i r emen t  t o  any meaningfu l  

d e g r e e  of accu racy  t h e  o p t i m i z a t i o n  was performed by t h e  l i n e a r  

Gauss-Newton method on ly .  

7. CRITERION OF CHEBYSHEV 

Chebyshev fo rmula t ed  i n  1856 a  theorem about  t h e  b e s t  

p r o j e c t i o n  from a  c l a s s  of conformal  p r o j e c t i o n s  

(Meshcheryakov, 1969)  . Conformal t r a n s f o r m a t i o n  sys tems  i n  

which t h e  changes  of s c a l e  m = m ( $  ,1) a r e  minimized a r e  c a l l e d  

Chebyshev 's  p r o j e c t i o n s .  I n  o t h e r  words, t h e  r a t i o  of t h e  

maximum and minimum s c a l e  f a c t o r  f o r  t h e  whole mapping domain 

bounded by a  c l o s e d  con tou r  l i n e  w i l l  be s m a l l e r  t han  i n  any 

o t h e r  conformal  mapping of  t h e  same domain. S i n c e  t h e  s c a l e s  

i n  Chebyshev 's  p r o j e c t i o n s  w i l l  d e v i a t e  a s  l i t t l e  a s  p o s s i b l e  

from u n i t y  t h e  l o g a r i t h m s  of s c a l e s  w i l l  d e v i a t e  a s  l i t t l e  a s  

p o s s i b l e  from ze ro .  



C h e b y s h e v t  s t h e o r e m  ( ~ i e r n a c k i ,  1965 )  s t a t e s  t h a t  t h e  

n e c e s s a r y  and s u f f i c i e n t  c o n d i t i o n  for a c o n f o r m a l  p r o j e c t i o n  

to b e l o n g  t o  t h e  Chebyshev  p r o j e c t i o n s  is t h a t ,  a l o n g  t h e  

b o u n d a r y  c o n t o u r  of t h e  domain  t h e  mapping s h a l l  y i e l d  a  

c o n s t a n t  scale f a c t o r .  

T h u s ,  t h e  d e t e r m i n a t i o n  o f  a  Chebyshev p r o j e c t i o n  for a 

c l o s e d  domain c o n s i s t s  o f  a  s e a r c h  f o r  a n  a n a l y t i c  f u n c t i o n  o f  

t h e  i s o t h e r m i c  v a r i a b l e  ( q + i l )  wh ich  w i l l  p r o d u c e  a c o n s t a n t  

scale f a c t o r  a l o n g  t h e  b o u n d a r y  o f  t h e  domain .  ~ o i s s o n ' s  

e q u a t i o n  ( I - 7 - 1 8 ) ,  wh ich  was d e v e l o p e d  e a r l i e r ,  must  h a v e  a 

c o n s t a n t  v a l u e  on t h e  b o u n d a r y  c o n t o u r  

where  f o r  t h e  b o u n d a r y  c o n t o u r  r 

s e c h 2  q = c o n s t .  

The g e n e r a l i t y  o f  t h e  s o l u t i o n  is n o t  r e s t r i c t e d  i f  w e  

a s sume  t h e  c o n s t a n t  i n  t h e  e q u a t i o n  (11-7-1)  t o  be z e r o .  I n  

t h i s  c a s e ,  t h e  d e t e r m i n a t i o n  o f  t h e  Chebyshev p r o j e c t i o n s  is  

r e d u c e d  to  t h e  s o l u t i o n  o f  D i r i c h l e t ' s  p r o b l e m  w i t h  z e r o  

b o u n d a r y  v a l u e s  (Urmaev,  1953 ) . 



Chebyshev d i d  n o t  p r e s e n t  a  p r o o f  o f  h i s  t h e o r e m .  Much 

l a t e r ,  i n  1896 ,  a n o t h e r  R u s s i a n  m a t h e m a t i c i a n  and c a r t o g r a p h e r ,  

D.A. G r a v e ,  r i g o r o u s l y  p r o v e d  t h e  t h e o r e m .  From t h a t  t i m e  many 

a u t h o r s  have  c a l l e d  t h e  t h e o r e m  t h e  Chebyshev-Grave  t h e o r e m  o f  

c o n f o r m a l  mapp ings .  The p r o o f  f o r  t h e  t h e o r e m  c a n  be found  i n  

(Meshcheryakov  1 9 6 8 ) .  

The d e t e r m i n a t i o n  of a  r e a l  Chebyshev p r o j e c t i o n  of a 

c l o s e d  domain on t h e  s p h e r e  c a n  be s u b d i v i d e d  i n t o  t h r e e  p a r t s .  

F i r s t  t h e  e a r t h ' s  s u r f a c e  is c o n f o r m a l l y  mapped o n t o  a  p l a n e  by 

t h e  i s o t h e r m i c  c o o r d i n a t e s  
- .  - 

where  

T h i s  is a c t u a l l y  t h e  M e r c a t o r  p r o j e c t i o n  o f  a  u n i t  s p h e r e  o n t o  

a  p l a n e  w i t h  t h e  s c a l e  f a c t o r  ml = s e c 4 .  

The s e c o n d  s tep is t h e  d e f i n i t i o n  of a h a r m o n i c  f u n c t i o n  

which  maps t h e  domain  i n t o  a  u n i t  c i rc le .  The t r a n s f o r m a t i o n  

must  be n o r m a l i z e d ,  so t h a t  a  c e r t a i n  p o i n t  ( q o , l o )  of t h e  

domain becomes t h e  c e n t r e  o f  t h e  u n i t  c i rc le .  The d e f i n i t i o n  



of  an a n a l y t i c  f u n c t i o n  which d o n f o r m a l l y  maps t h e  domain i n t o  

t h e  c i r c l e  is p e r f o r m e d  by e i t h e r  o f  t w o  g r o u p s  o f  me thods .  I n  

t h e  f i r s t  g r o u p  t h e  r e s u l t  is an a p p r o x i m a t e  a n a l y t i c  f u n c t i o n ,  

i .e .  an  a p p r o x i m a t i o n  o f  t h e  h a r m o n i c  t r a n s f o r m a t i o n  f u n c t i o n  

which r i g o r o u s l y  s a t i s f i e s  t h e  boundary  c o n d i t i o n .  The b e s t  

e x a m p l e  o f  t h i s  k i n d  o f  method is t h e  a p p r o x i m a t i o n  method 

d e v e l o p e d  i n  1908 by a German e n g i n e e r ,  W. R i t z  ( C o u r a n t  and 

H i l b e r t ,  1 9 3 7 ) .  The s e c o n d  g r o u p  o f  me thods  c o n s i s t s  o f  

f i n d i n g  a r i g o r o u s  a n a l y t i c  f u n c t i o n  which d o e s  n o t  p e r f e c t l y  

s a t i s f y  t h e  boundary  c o n d i t i o n .  Thus ,  t h e  found mapping w i l l  

be f u l l y  c o n f o r m a l  b u t  t h e  P o i s s o n  e q u a t i o n  w i l l  n o t  be  

c o m p l e t e l y  f u l f i l l e d  a l o n g  t h e  boundary  c o n t o u r .  Bo th  g r o u p s  

of  me thods  w i l l  y i e l d  a f u n c t i o n  u=u(w)  w i t h  t h e  s c a l e  f a c t o r  

The t h i r d  and f i n a l  s tep  is t h e  e s t a b l i s h m e n t  o f  a  

t r a n s f o r m a t i o n  z = z ( u )  o f  t h e  u n i t  c i r c l e  i n t o  t h e  c l o s e d  domain 

o f  t h e  z - p l a n e  s a t i s f y i n g  t h e  f u n d a m e n t a l  c o n d i t i o n  o f  

Chebyshev '  s map p r o j e c t i o n s  o f  t h e  c o n s t a n t  s c a l e  f a c t o r  a l o n g  

t h e  boundary  c o n t o u r .  The s c a l e  f a c t o r  combin ing  a l l  t h r e e  



transformation steps is 

where c is a constant. 

The derivative dz/du is defined on the unit circle. At the 

same time we know that 

dz dz In 1-1 = v and arg - - 
du du - 6  

Both functions, v and 6, are harmonic functions and they appear 

to be conjugated. Therefore Cauchy-Riemann equations (1-7-8  ) 

will yield the function 6 and after that, on the unit circle, 

they will also yield dz/du. By integrating the function dz/du 

along the unit circle we finally obtain z=z(u) on the contour 

line r ,  and its transformation, for example by the method of 

Kantorovich (Kantorovich, Krylov, l958), yields a conformal 

projection of the unit circle onto the initial domain bounded 

by the contour r .  

A more detailed description of the development of 

Chebyshev's projections will be given in the third chapter. 

An additional remark concerning the quality of Chebyshev' s 

projections must be made. The scale of areas in conformal 
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projections is obtained by the formula 

p = m 2 .  

Because the Chebyshev projections optimize the distortion, 

defined as the natural logarithm of the scale factor, In m, 

they automatically optimize the logarithm of the scale of 

areas 

l n p = 2  l n m .  

Thus, Chebyshev's projections, of all conformal projections, 

are closest to equiareal projections. Among other conformal 

projections they occupy a position similar to Euler's 

projections among equiareal transformations. Euler's 

projections, as is well known, satisfy one of the conditions of 

conformality, & = O r  and are therefore closest to conformal 

mappings. There is also, however, the second condition of 

conformality, m=n, and if we define a class of equiareal 

mappings which satisfy the second condition of conformality as 

the group of equiareal projections closest to conformal, then 

we have an ambiguity which does not exist with Chebyshev's 



projections. Thus the uniqueness of Chebyshev's projections 

among conformal projections not only does not correspond to the 

position of Euler's projections among equiareal mappings, but 

is in fact far greater. 



111. .THE CHEBYSHEV MAP P R O J E C T I O N S  

1. INTRODUCTION 

The best conformal map pro jec t ions ,  or Chebyshev's projec- 

t ions ,  of a closed domain by the contour l i n e  I' i s  the projec- 

t ion i n  which the r a t i o  of the maximal sca le  fac tor  and the 

minimal scale  fac tor  has the smallest  possible value. I n  order 

to belong to the c l a s s  of Chebyshev project ions,  a conformal 

mapping m u s t  produce a constant scale  fac tor  along the boundary 

contour l ine .  Thus, the determination of the best conformal 

transformation of a closed domain cons is t s  of solving the 

Laplace equation (1-7-15) 

where v = m .cos 5 ,  for an analy t ic  function of the isothermic 

complex variable  ( q + i l )  which w i l l  y ie ld a constant scale  

fac tor  along the boundary, i . e .  

m = const. r 



I 

The criterion of Chebyshev can also be defined mathemati- 

cally by the Poisson equation (1-7-18) 

with 

The integration of the Poisson equation (111-1-2) with 

boundary conditions (11-1-3 ) yields the best conformal projec- 

tion. 

It must be emphasized at the beginning of this chapter 

that very few mapping domains in cartography have a regular and 

mathematically defined contour line. The majority of mapping 

areas have irregular boundaries and the rigorous determination 

of Chebyshev's projections for such irregular contours is 

theoretically impossible. The boundary is usually approximated 

by a series of discrete points at which the boundary condition 

( 111-1-3) can be rigorously satisfied. 

Instead of the isothermic latitude, q, we shall introduce 

a new variable, the difference of latitude, q, and the latitude 

of the central point, 
q0 

i.e. 



In this way the isothermic coordinates (q,l) are normalized and 

the Poisson equation (111-1-2 ) becomes 

If we introduce abbreviations 

the Poisson equation is transformed into 

The boundary condition (111-1-3) can easily be replaced by 

the zero boundary condition, i.e. 



, 
T h i s  s i m p l i f i c a t i o n  of  t h e  boundary  c o n d i t i o n  is g e n e r a l l y  

a c h i e v e d  by t h e  c o n s t r u c t i o n  of  a  f u n c t i o n  h  ( q , l )  t h a t  a g r e e s  

w i t h  t h e  v a l u e s  o f  f u n c t i o n  u  on t h e  boundary .  Then 

where z is an unknown f u n c t i o n  which a l s o  s a t i s f i e s  t h e  P o i s s o n  

e q u a t i o n ,  however,  w i t h  a n o t h e r  f r e e  term. Thus  i n  a l l  f u r t h e r  

d i s c u s s i o n s  and d e v e l o p m e n t s  w e  s h a l l  t a k e  t h e  P o i s s o n  e q u a t i o n  

(111-1-7 w i t h  t h e  z e r o  boundary  c o n d i t i o n .  

The c a l c u l u s  o f  v a r i a t i o n  shows t h a t  t h e  s o l u t i o n  o f  t h e  

P o i s s o n  e q u a t i o n  w i t h  t h e  z e r o  boundary  c o n d i t i o n  is t h e  s o l u -  

t i o n  o f  t h e  D i r i c h l e t  p rob lem and is e q u i v a l e n t  t o  t h e  minimi-  

z a t i o n  o f  t h e  D i r i c h l e t  i n t e g r a l  

where D is t h e  p l a n e  r e g i o n  bounded by t h e  c o n t o u r  I'. I n  o t h e r  

words ,  t h e  s o l u t i o n  w i l l  p r o v i d e  u s  w i t h  a  f u n c t i o n ,  u ( q , l ) ,  

which is c o n t i n u o u s  i n  t h e  domain D, t o g e t h e r  w i t h  its p a r t i a l  

d e r i v a t i v e s  o f  t h e  f i r s t  and second  orders and v a n i s h e s  a l o n g  

t h e  c o n t o u r  r .  



1 

~ o s t  s o l u t i o n  methods of t h e  D i r i c h l e t  problem can be 

subd iv ided  i n t o  two fundamen ta l ly  d i f f e r e n t  g roups  (Urmaev, 

1953) .  The f i r s t  group c o n s i s t s  of s o l u t i o n s  i n  which t h e  

harmonic  f u n c t i o n ,  u ( q ,  1) , is approximated ,  bu t  where t h e  

approximat ion  p e r f e c t l y  s a t i s f i e s  t h e  boundary c o n d i t i o n s .  

Because t h e  s o l u t i o n  is o n l y  an approximat ion  of a harmonic 

f u n c t i o n ,  t h e  P o i s s o n  e q u a t i o n  f o r  an a r b i t r a r y  p o i n t  of t h e  

domain w i l l  no t  be e x a c t l y  s a t i s f i e d .  The b e s t  known among 

t h e s e  methods was deve loped  by W. R i t z  i n  1908 and is known 

today  a s  t h e  R i t z  method. The second group  of methods y i e l d s  a 

r i g o r o u s  harmonic f u n c t i o n ,  t h e r e f o r e  t h e  Po i s son  e q u a t i o n  is  

comple t e ly  s a t i s f i e d  a t  e v e r y  pont  of t h e  domain; however, t h e  

boundary c o n d i t i o n s  a r e  no t  p e r f e c t l y  f u l f i l l e d .  S i n c e  t h e  

boundary i n  c a r t o g r a p h y  is u s u a l l y  approximated by a series of 

d i s c r e t e  p o i n t s ,  t h e  boundary w i l l  be a c l o s e d  polygon and t h e  

l i n e  of c o n s t a n t  s c a l e  de fo rma t ion  w i l l  be a smooth curve  which 

approximates  t h e  polygon. L i n e s  of c o n s t a n t  d e f o r m a t i o n s  a r e  

c a l l e d  i s o c o l s .  Thus t h e  second g roup  of methods y i e l d s  

conformal mappings whose i s o c o l s  o n l y  approximate  t h e  r e a l  

boundary.  The method of  l e a s t  s q u a r e s  is t h e  most s u i t a b l e  

method i f  t h e  r e q u i r e d  harmonic f u n c t i o n  is expres sed  by 

harmonic  po lynomia ls .  The method a s c e r t a i n s  t h e  b e s t  conformal  

p r o j e c t i o n  wi th  t h e  boundary i s o c o l  app rox ima te ly  f o l l o w i n g  t h e  

r e a l  boundary. 



When the mapping domain iesembles an ellipse and is rela- 

tively small, the determination of the Chebyshev projection for 

the domain is considerably simpler. The solution was suggested 

by various authors (Lagrange, Laborde, Schols, Kavraiskii, 

Vahramaeva) in slightly different ways but they can all be 

brought to the same denominator. All these methods are based 

on the property of a differentially small isocol around the 

origin of the plane coordinate system that is also the central 

point of the domain, and where the scale factor in the origin 

is equal to unity. Such an isocol is an ellipse expressed by 

the formula 

1 v = m-1 =  AX^ - 2Bxy + ( - -  ~ ) y ~  = 0, 
2 

in which the coefficients A and B depend upon the size and 

orientation of the boundary ellipse. 

L A = - (1 - C cos 2a), 
4 

1 B = - C  sin 2a, 
4 



, 
The pa rame te r s  a ,  b  and a a r e  t h e  semi-major a x i s ,  t h e  

semi-minor a x i s  and t h e  o r i e n t a t i o n  a n g l e  of t h e  semi-major 

a x i s  of t h e  boundary e l l i p s e ,  r e s p e c t i v e l y .  

The r e c t a n g u l a r  c o o r d i n a t e s ,  a c c o r d i n g  t o  K a v r a i s k i i ,  

( 1 9 5 9 ) ,  a r e  then  ob ta ined  by t h e  e x p r e s s i o n s  

where x, y  a r e  t h e  Gauss ian  c o o r d i n a t e s  wi th  r e s p e c t  t o  t h e  

c e n t r a l  p o i n t  ($,, x ~ ) .  

The e l l i p t i c  conformal  p r o j e c t i o n ,  i .e. ,  a  conformal  pro- 

j e c t i o n  wi th  e l l i p t i c  isocols (111-1-13) is o n l y  one of s e v e r a l  

examples  which a r e  e l a b o r a t e d  i n  t h e  l i t e r a t u r e  of ma thema t i ca l  

c a r t o g r a p h y  (Pav lov ,  1964) .  I t  is g iven  p u r e l y  a s  an i l l u s t r a -  

t i o n  of a  s p e c i a l  t ype  of Chebyshev 's  p r o j e c t i o n s  which have 

r a t h e r  l i m i t e d  p r a c t i c a l  s i g n i f i c a n c e ,  a l t h o u g h  t h e i r  de te rmin-  

a t i o n  is very  s imple .  U n f o r t u n a t e l y ,  t h e  boundary con tou r  

l i n e s  can seldom be approximated by an e l l i p s e  and t h e r e f o r e  

t h e  merits of such a  p r o j e c t i o n  a r e  reduced whenever t h e  

boundary f l u c t u a t e s  c o n s i d e r a b l y  about  t h e  adopted  e l l i p s e .  



, 

Various solutions of Chebyshev projections for generally 

symmetric domains can be mostly found in the Russian carto- 

graphic literature. For example, in 1953 N.A. Urmaev investi- 

gated different ways of minimizing the Dirichlet integral by 

the method of Ritz, finite difference method and the method of 

least squares for conformal mapping of a symmetric spherical 

trapezoid. Although a great majority of mapping domains in 

geography can be seldom approximated by a symmetric spherical 

trapezoid, Urmaev's work ( 1953) is an interesting contribution 

to mathematical cartography. Since it is largely unknown to 

North American cartographers the author decided to describe in 

detail the work of Urmaev in the next three sections. The 

notation is slightly modified, particularly in the method of 

least squares, but the essense of Urmaev's work is preserved. 

In addition to the minimization of Dirichlet's integral 

for symmetric domains the author proposes the method of least 

squares for a non-symmetric boundary consisting of a series of 

discrete points. The development of the method is given in the 

fifth section of the chapter. 

It must be also mentioned that in 1973 a geodesist from 

New Zealand, W. I. Reilly, developed a conformal map projection 

whose isocols closely approximate the actual shape of New 

Zealand. This projection to the author's knowledge is the only 

real approximation of a Chebyshev projection in use at present. 



l i m  I ( E n )  = m 
n+- 

A s k e t c h y  d e v e l o p m e n t  o f  f o r m u l a e  f o r  t h e  p r o j e c t i o n  o f  N e w  

Z e a l a n d  c a n  be found i n  ( R e i l l y ,  1 9 7 3 ) .  

2. METHOD OF RITZ 

I n  t h e  i n t r o d u c t i o n  o f  t h i s  c h a p t e r  it was i n d i c a t e d  t h a t  

t h e  s o l u t i o n  o f  t h e  P o i s s o n  e q u a t i o n  (111-1-7)  is e q u i v a l e n t  to  

t h e  m i n i m i z a t i o n  o f  t h e  D i r i c h l e t  i n t e g r a l  ( 111-1-10) , 

where D is t h e  domain bounded by t h e  c o n t o u r  r ,  and t h e  

r e q u i r e d  f u n c t i o n  u ( A q , l )  v a n i s h e s  on  t h e  b o u n d a r y  c o n t o u r .  

L e t  u s  d e n o t e  by u * ( ~ q , l )  t h e  e x a c t  s o l u t i o n  o f  t h e  P o i s s o n  

e q u a t i o n  w i t h  z e r o  b o u n d a r y  c o n d i t i o n s  and by I ( u*) =m t h e  e x a c t  

v a l u e  o f  t h e  D i r i c h l e t  i n t e g r a l .  I t  is l o g i c a l  to  e x p e c t  t h a t  

a  c o n s t r u c t e d  a p p r o x i m a t i o n  E ( ~ q , l )  o f  t h e  r e q u i r e d  f u n c t i o n  u* 

which  s a t i s f i e s  t h e  b o u n d a r y  c o n d i t i o n s  and f o r  wh ich  t h e  v a l u e  

of t h e  ~ o i s s o n  i n t e g r a l  is close to  m would be a  r e l a t i v e l y  

close a p p r o x i m a t i o n  o f  t h e  unknown s o l u t i o n .  I f ,  m o r e o v e r ,  o n e  

can  c o n s t r u c t  a  s e q u e n c e  o f  a p p r o x i m a t e  s o l u t i o n s  ii ( A q , l )  so n  

t h a t  

t h e n  w e  know t h a t  

l i m  E = u*, n  n+ 



or t h e  c o n s t r u c t e d  s e q u e n c e  c o n v e r g e s  to  t h e  r e a l  s o l u t i o n  o f  

t h e  p r o b l e m ,  ( R e c t o r y s ,  1 9 7 7 ) .  

F o r  t h e  m i n i m i z a t i o n  o f  t h e  D i r i c h l e t  i n t e g r a l ,  R i t z  

s u g g e s t e d  a s e q u e n c e  o f  f u n c t i o n s  d e p e n d i n g  on  s e v e r a l  

p a r a m e t e r s  

so t h a t  for a l l  t h e  v a l u e s  o f  t h e  p a r a m e t e r s  t h e  b o u n d a r y  

c o n d i t i o n s  a r e  f u l f i l l e d .  The v a l u e  o f  t h e  D i r i c h l e t  i n t e g r a l  

is t h e n  a f u n c t i o n  of t h e  unknown p a r a m e t e r s ,  c i ,  i .e .  

and t h e  minimum of t h e  i n t e g r a l  is a c h i e v e d  when 

a w n )  
= 0 f o r  i = 1 , 2  ,..., n.  (111-2-5)  a ci 

S o l v i n g  t h e  s y s t e m  of n e q u a t i o n s  (111-2-5)  w i t h  n 

unknowns, we o b t a i n  p a r t i c u l a r  v a l u e s  o f  p a r a m e t e r s  Fi. 

s u b s t i t u t i n g  i n t o  t h e  D i r i c h l e t  i n t e g r a l  t h e  f u n c t i o n  I (F1,F2,  

..., Fn) g i v e s  t h e  a b s o l u t e  minimum. F i n a l l y ,  s e l e c t i n g  t h e  

f u n c t i o n  i n  t h e  f a m i l y  (111-2-3)  c o r r e s p o n d i n g  to  t h e  computed  

v a l u e s  of  t h e  p a r a m e t e r s ,  T i ,  w e  c o n s t r u c t  t h e  r e q u i r e d  

a p p r o x i m a t e  s o l u t i o n  



In 1953 the Russian geodesist N.A. Urmaev was the first 

to recommend the application of the Ritz method for conformal 

projections of symmetric domains with respect to the y-axis of 

the plane coordinate system. He suggested that the sequence 

(111-2-3) be defined as a linear combination of independent 

functions q ( = 0 , 2 ,  n ) ,  i.e. 

Functions qi must be continuous inside the domain and they 

must vanish along the contour line. When the linear combina- 

tion (111-2-7) is substituted into the Dirichlet integral (III- 

2-4) it yields a quadratic function of coefficients ai whose 

partial differentiation (111-2-5) results in a set of n linear 

equations with n unknowns which can easily be solved. The 

simplicity of the solution of the system (111-2-5) appears to 

be the main reason for the suggested formulation of the 

function un. 

The domain of Urmaev's investigations was a spherical 

trapezoid bounded by the isothermic latitudes ql and q2? and 

the difference in longitude 1. If we define the auxiliary 

quantities 



then the function, u, must vanish for values of <=&a and l=+b. 

Among many, the following family of functions will satisfy the 

boundary conditions for any values of parameters c, 

The above series assumes symmetry with respect to the 1- 

axis of the curvilinear coordinate system and thus all odd- 

power terms of 1 disappear. 

Let us take the second of these expressions as our 

approximation, 

u = (a2-~q2)(b2-12)(cl+c2~q) (111-2-10) 

The partial derivatives of the selected function with 

respect to the independent variables (q,l) are 

and the corresponding squares 



Let us split the Dirichlet integral into two parts 

where 

and 

= / /  uf dq dl. 
D 

Then the first part, I with equations ( 111-2-1 1 ) becomes 

I1 = c2 A + clc2 A12 + c2 A22, i 1 (111-2-15) 
2 

where 

A1  1 = 4//((b2-12)2~q2+(a2-~q2)12) dq dl, 
D 

A,, = 4//(2(a2-hq2) 2~q12-~q(a 2-3~q2)(b2-12)2) dq dl, (111-2-17) 
D 

A,, = //(4hq212 (a2-hq2)+(b2-12) (a2-3hq2) 2, dq dl. (111-2-18) 
D 



The second part of the Dirichlet integral, 12, can also be 

expressed as the sum of two integrals M1 and M2. 

where 

M1 = II((a2-Aq2)(b2-12) f dq dl, (111-2-20) 
D 

and 

M2 = //((a2-Aq2)(b2-12)Aq f dq dl. (111-2-21) 
D 

The evaluations of integrals Aij i f  = 1 2 )  in limits from 

-a to +a and from -b to +b can easily be performed. See, for 

example (Kantovovich-Krylov, 1958). Their values are 

In both integrals, MI and M2, we have the evaluation of 

therefore M1 and M2 , taking into account ( 111-2-23), are 

transformed into 



and 

Let us now introduce new symbols 

+a 1 +a 1 +a K = I f dq, K1 = - J f Aq dq, K2 = - 
0 -a a -a a2-a I f m2 dq, 1 

With these abbreviations the integrals, M1 and M2, become 

4 Ml = - a2b3 (K - K2), 
0 

( 111-2-27) 
3 

and 

The only remaining problem is the computation of integrals 

Ki (i=0,1,2,3). Their determination is done in the following 

way 



or, knowing the relationship between the metalatitude and the 

corresponding isothermic latitude we have 

Other values of Ki (i=1,2,3) are derived from the 

integration by parts 

1 
K1 = tanhq2 + tanhql + - In cosh qL 

a cosh q2 

or in terms of the metalatitude 



1 + a  
K 2  = - ( a 2 (  t a n h  q 2  - t a n h  q l )  - 2[Aq l n  c o s h ( q o + a q ) ]  + 

a2 -a 

2  c o s h  q, 
K 2  = t a n h  q 2  - t a n h  ql - - I n  

2  
+ - No, 

a  c o s h  q l  a2 

where  

N = J I n  cosh  (qo+Aq) dq.  
0 -a 

The f i n a l  i n t e g r a l  K3 is s o l v e d  by a  s i m i l a r  way, and 

+a 
-3 1 t a n h ( q o + b q ) b q 2  d q ,  

- a  



K3 = t a n h  q2 + t a n h  q 1  + - 3 i n  Gosh q 1  + 2 N~ , 
a  c o s h  q2 a3  

where  

With  t h e  m e t a l a t i t u d e  t h e  i n t e g r a l  K 3  becomes  

--  --.-- - 

The v a l u e s  o f  i n t e g r a l s  N 1  and N2 c a n  be d e t e r m i n e d  by o n e  

o f  t h e  n u m e r i c a l  p r o c e d u r e s .  It is s u f f i c i e n t  to  e v a l u a t e  t h e  

f u n c t i o n s  nq, l n ( c o s h  q ) ,  where  ~ q = q - q o ,  i n  l i m i t s  be tween  q l  

and q2 and t h e n  a p p l y  an  i n t e g r a t i o n  f o r m u l a .  

The ~ i r i c h l e t  i n t e g r a l  ( 111-2-12) w i t h  e x p r e s s i o n s  ( I I I - 2 -  

1 5 )  and ( 1 1 1 - 2 - 1 9 ) ,  knowing t h a t  A 1 2  = 0 ,  becomes 

and i ts  minimum o c c u r s  when 

and 



C1 = -Ml/Al and  c2 = -M2 /Az2 . (111-2-40) 

Formula  (111-2-10) w i l l  p r o v i d e  u s  w i t h  v a l u e s  o f  t h e  

r e q u i r e d  f u n c t i o n ,  u = l n ( m ) ,  f o r  v a r i o u s  p o i n t s  o f  t h e  mapping 

domain.  

The whole d e s c r i b e d  a p p r o a c h ,  s u g g e s t e d  and d e v e l o p e d  by 

urmaev,  is a p p l i c a b l e  when t h e  mapping domain is a s p h e r i c a l  

t r a p e z o i d .  The most g e n e r a l  d e f i n i t i o n  o f  t h e  f a m i l y  o f  func-  

t i o n s  e q u i v a l e n t  t o  (111-2-9) c a n n o t  be f o r m u l a t e d  f o r  a n  

a r b i t r a r y  boundary  c o n s i s t i n g  o f  a  series o f  d i s c r e t e  p o i n t s .  

F o r  a  c i r c u l a r  domain w i t h  t h e  c e n t r e  a t  t h e  o r i g i n  o f  t h e  

i s o t h e r m i c  c o o r d i n a t e  s y s t e m ,  ( A q , l )  , t h e  a u t h o r  s u g g e s t s  

a n o t h e r  f a m i l y  o f  f u n c t i o n s  

( r 2  - ~ q 2  - 1 2 ) ( c 1  + c 2 d q  + c 3 ~ q 2 ) ,  ... etc . ,  

where  r is t h e  r a d i u s  o f  t h e  c i r c u l a r  s p e r i c a l  domain e x p r e s s e d  

i n  r a d i a n  measure .  

When t h e  boundary  c o n s i s t s  o f  a convex ,  non-symmetr ic  

po lygon  o f  m d i s c r e t e  p o i n t s ,  t h e  f a m i l y  o f  f u n c t i o n s  is  



Thus it is obvious that, for a circular cap, (111-2-41 ) 

has a similar symmetric form as the system (111-2-9) and deri- 

vations with evaluations of required integrals can be performed 

in a similar manner. However, the system (111-2-42) with a 

slightly larger number of points is very difficult to solve. 

In addition to the computational disadvantage, the polygon must 

be strictly convex, i.e., every straight line which defines a 

section of the boundary between any two successive points of 

the boundary must be completely outside the mapping domain. 

Because of all these complications cartographers have never 

applied the ~ i t z  method, at least to the author's knowledge, 

for a non-symmetric arbitrary boundary. The complexity of 

integration discourages even the most enthusiastic carto- 

grapher. The integration of M1 and M2 could be performed 

numerically rather than analytically which would introduce a 



I 

c e r t a i n  r e d u c t i o n  of problems.  I t  is a l s o  impor t an t  t o  empha- 

s i z e  t h a t  b e t t e r  app rox ima t ions  t o  t h e  t r u e  c o n f o r m a l i t y  a r e  

ach ieved  when more te rms  i n  (111-2-9) a r e  used,  which a g a i n  

i n c r e a s e s  t h e  compu ta t iona l  d i f f i c u l t i e s .  

3. THE METHOD OF FINITE DIFFERENCES 

The R i t z  method is no t  t h e  on ly  method of f i n d i n g  a  

f u n c t i o n ,  u ( q , l )  , a s  an approximate  s o l u t i o n  of t h e  Po i s son  
- - -  

e q u a t i o n  wi th  z e r o  boundary c o n d i t i o n s .  Urmaev ( 1953) a l s o  

s u g g e s t e d  t h e  a p p l i c a t i o n  of t h e  f i n i t e  d i f f e r e n c e  method. The 

method is b a s i c a l l y  v e r y  s imp le  b u t  it a l s o  assumes symmetry 

abou t  t h e  q-ax is ,  which c e r t a i n l y  d e c r e a s e s  i ts  range  of  

a p p l i c a t i o n .  

L e t  us  assume t h a t  t h e  domain is subd iv ided  i n  t h e  d i r e c -  

t i o n  of isometric l a t i t u d e  i n t o  ( q 2 - q l ) / h  rows, where h  is 

t h e  width of a  row, and i n  t h e  d i r e c t i o n  of  l o n g i t u d e  i n t o  

( 1 2 - l l ) / k  columns, where k is t h e  wid th  of a  column. 

The f u n c t i o n  u depends upon two v a r i a b l e s ,  q and 1. A t  

an a r b i t r a r y  p o i n t  of t h e  domain t h e  T a y l o r  expans ion  y i e l d s  



L e t  us  t a k e  f i v e  n e i g h b o u r i n g  p o i n t s ,  a s  shown i n  f i g u r e  

111-3-1, and e x p r e s s  t h e  v a l u e s  o f  t h e  f u n c t i o n  u  a t  f o u r  

p o i n t s  i n  terms of t h e  c e n t r a l  p o i n t .  

F i g u r e  111-3-1 A s e c t i o n  of  t h e  g r i d  



When t h e  above e q u a t i o n s  a r e  added i n  p a i r s ,  i .e . ,  t h e  

f i r s t  t o  t h e  t h i r d  and t h e  second t o  t h e  f o u r t h  w e  o b t a i n  

The f i r s t  e q u a t i o n  of (111-3-3) is d i v i d e d  now by h e ,  t h e  

second by k2 and t h e  r e s u l t s  a r e  added 



where  R is t h e  r e m a i n d e r  which '  c o n t a i n s  t h e  terms o f  t h e  f o u r t h  

and h i g h e r  o r d e r s  of h and k. 

From t h e  P o i s s o n  e q u a t i o n  ( 111-1-2) we h a v e  

and t h e r e f o r e  e q u a t i o n  (111-3-4)  becomes 

where  

p = -  k 2  and f '  = k 2 s e c h 2  q .  (111-3-6)  
h2 

I n  t h i s  manner t h e  r i g o r o u s  s o l u t i o n  o f  t h e  P o i s s o n  

e q u a t i o n  is s u b s t i t u t e d  by an  a p p r o x i m a t e  n u m e r i c a l  s o l u t i o n .  

A t  e v e r y  p o i n t  o f  t h e  s y m m e t r i c  mapping domain ,  s t a r t i n g  f rom 

t h e  b o u n d a r y  where  t h e  v a l u e s  of f u n c t i o n  u ( q , l )  a r e  known, we  

c a n  write a compute r  program w i t h  e a s e ,  b u t  f o r  a  s y m m e t r i c  

b o u n d a r y  w i t h  r e s p e c t  to  one  c o o r d i n a t e  a x i s  o n l y ,  t h e  p rogram 

can  be v e r y  complex .  



, 
4. SYMMETRIC CHEBYSHEV PROJECTIONS BY LEAST SQUARES 

The R i t z  and f i n i t e  d i f f e r e n c e  methods  s o l v e  t h e  P o i s s o n  

e q u a t i o n  (1-7-18) w i t h  z e r o  boundary  c o n d i t i o n s  by a p p r o x i -  

m a t i n g  a t r u e  ha rmonic  f u n c t i o n .  Thus ,  s t r i c t l y  s p e a k i n g ,  t h e  

r e s u l t s  o f  t h e  t w o  methods  a r e  n o t  e x a c t  c o n f o r m a l  mapp ings  b u t  

a p p r o x i m a t i o n s  o n l y .  Us ing  t h e  r e s u l t s  i n  t h e  P o i s s o n  e q u a t i o n  

w e  w i l l  o b t a i n  some d i s c r e p a n c i e s ,  i.e., t h e  P o i s s o n  e q u a t i o n  

w i l l  n o t  be e x a c t l y  s a t i s f i e d  e x c e p t  a l o n g  t h e  boundary  c o n t o u r  

o f  t h e  domain.  L e t  us  now t a k e  t h e  o p p o s i t e  a p p r o a c h  and 

d e v e l o p  e x a c t  h a r m o n i c  f u n c t i o n s  which y i e l d  t r u e  c o n f o r m a l  

mapp ings  b u t  o n l y  a p p r o x i m a t e l y  s a t i s f y  t h e  boundary  c o n d i -  

t i o n s .  I n  o r d e r  t o  e l i m i n a t e  l a r g e  d i s c r e p a n c i e s  i n  t h e  z e r o  

b o u n d a r y  c o n d i t i o n s ,  t h e  method o f  l e a s t  s q u a r e s  w i l l  be 

a p p l i e d .  Once t h e  e x a c t  ha rmonic  f u n c t i o n  is s e l e c t e d ,  t h e  

method of l e a s t  s q u a r e s  w i l l  y i e l d  c o e f f i c i e n t s  r e l a t e d  to  t h e  

selected harmonic  f u n c t i o n  d e t e r m i n e d  i n  s u c h  a way t h a t  t h e  

d i s c r e p a n c i e s  of  t h e  z e r o  boundary  c o n d i t i o n s  s q u a r e d  and added 

t o g e t h e r  w i l l  g i v e  u s  a  minimum. The e a s i e s t  h a r m o n i c  f u n c t i o n  

for  t h e s e  p u r p o s e s  is a ha rmonic  p o l y n o m i a l  (1-7-27 ) . W e  

s h a l l  assume symmetry o f  t h e  boundary  c o n t o u r  i n  t h e  f i r s t  c a s e  

and non-symmetr ic  c a s e s  w i l l  be d e a l t  w i t h  i n  t h e  s u b s e q u e n t  

s e c t i o n .  

The q u a n t i t y  v a s  d e f i n e d  by t h e  e q u a t i o n  (1-7-13) is a 

complex f u n c t i o n ,  t h u s  t h e  n a t u r a l  l o g a r i t h m  can  be e x p r e s s e d  

by ha rmonic  p o l y n o m i a l  (1-7-29) 



I n  m = a + a l q l  + a 2 q 2  + ... + akqk  + I n  c o s h  q. (111-4 -1 )  
0 

The c o e f f i c i e n t s  a i ,  f o r  i = O , l , .  . . . . . , k ,  are d e t e r m i n e d  by 

t h e  method o f  l e a s t  s q u a r e s  f rom t h e  f u n d a m e n t a l  c o n d i t i o n  o f  

l eas t  s q u a r e s  
n  

( I n  m i ) 2  = min ,  
i=l 

where  n  is t h e  number of d iscre te  p o i n t s  wh ich  a p p r o x i m a t e  t h e  

b o u n d a r y  c o n t o u r .  The  number o f  f i x e d  b o u n d a r y  p o i n t s  m u s t  be  

l a r g e r  t h a n  t h e  number o f  unknown c o e f f i c i e n t s ,  i . e . ,  

L e t  u s  a g a i n  u s e  m a t r i x  n o t a t i o n ,  t h e  most s u i t a b l e  t y p e  

o f  n o t a t i o n  f o r  t h e  method o f  l e a s t  s q u a r e s ,  i n  wh ich  t h e  

f u n d a m e n t a l  e q u a t i o n  o f  t h e  m a t h e m a t i c a l  model  ( 111-4-1 ) 

o b t a i n s  t h e  fo rm 

w h e r e  



The c o n d i t i o n  o f  l e a s t  squares  (111-4-2) then becomes 

uTu = min, (111-4-5) 



which t a k e s  p l a c e  when t h e  f i r s t  d e r i v a t i v e  of U ~ C T S (  w i t h  

r e s p e c t  t o  t h e  v e c t o r  o f  t h e  unknowns, a , is e q u a l  t o  z e r o ,  

i .e . ,  

T a k i n g  t h e  m a t h e m a t i c a l  model (111-4-3) we can  wr i t e  

and t h e  d e r i v a t i v e  of  t h e  above e x p r e s s i o n  is 

or f i n a l l y ,  

where  

Y P  T -4 3c = JL and b = J; b (111-4-9) 
.+p T - 



The s o l u t i o n  of t h e  system of normal e q u a t i o n s  (111-4-8) 

y i e l d s  t h e  v e c t o r  of unknowns 

A s  a measure of q u a l i t y  of  t h e  l e a s t  s q u a r e s  f i t ,  w e  can  

u s e  t h e  v a r i a n c e  from s t o c h a s t i c  ma thema t i ca l  models 

The h i g h e r  t h e  deg ree  of harmonic po lynomia ls ,  t h e  b e t t e r  

t h e  f i t  t h e  s o l u t i o n  w i l l  have. I f  w e  keep n, t h e  number of 

f i x e d  boundary p o i n t s ,  c o n s t a n t ,  t h e  i n c r e a s e  of t h e  o r d e r  o f  

t h e  po lynomia l ,  k, r e s u l t s  i n  a s m a l l e r  v a l u e  of t h e  denomina- 

t o r  i n  ( 1 1 1 - 4 - 1  1 )  and a l s o ,  n a t u r a l l y ,  i n  a s m a l l e r  v a l u e  o f  

uTu . Thus, t h e r e  must be an o p t i m a l  v a l u e  of  k which  w i l l  

y i e l d  t h e  s m a l l e s t  v a r i a n c e .  To o p t i m i z e  t h e  o r d e r  k,  t h e  

a u t h o r  sees no o t h e r  way than  a t r i a l - a n d - e r r o r  approach.  

S e v e r a l  o r d e r s  of k should  be t aken  and t h e  s o l u t i o n s  eva lu -  

a t e d .  When t h e  d i f f e r e n c e s  i n  t h e  s c a l e  f a c t o r ,  m, become 

p r a c t i c a l l y  i n s i g n i f i c a n t  u s ing  k-th and ( k + l ) - s t  o r d e r  of t h e  

harmonic  po lynomia l ,  f u r t h e r  i n c r e a s e s  of  t h e  o r d e r  a r e  mean- 

i n g l e s s .  I f ,  however, t h e  boundary c o n d i t i o n s  a r e  weighted  

more, t h e  s m a l l e s t  v a l u e  of v a r i a n c e ,  u 2 ,  w i l l  i n d i c a t e  t h e  

b e s t  o r d e r  of t h e  po lynomia l .  



I 

With known coefficients, ai, we can compute the logarithm 

of the scale factor and, thus, the scale factor at every point 

of the mapping domain 

(ao+al$l+. ..a $ +In cosh q) 
m = e  k k  . 

The rectangular coordinates (x,y) of a Chebyshev projec- 

tion determined in this way for a symmetric domain are also 

computed by a harmonic polynomial 

where 

If we separate the real and imaginary parts we obtain the 

formulae 
k 

The unknown coefficients A for i=O, 1,. . , ,k, are obtained if 

from the expression (1-7-19) 



The f i r s t  d e r i v a t i v e  o f  t h e  a b o v e  e q u a t i o n  w i t h  r e s p e c t  t o  

t h e  i s o t h e r m i c  l a t i t u d e  y i e l d s  t h e  f u n c t i o n  v e t  t h u s  

S i n c e  f u n c t i o n  v  c a n  a lso be d e t e r m i n e d  f rom (111-4-1)  by  
0 

t h e  f o r m u l a  

it s u f f i c e s  to  d e t e r m i n e  v O  v a l u e s  a t  k d i f f e r e n t  p o i n t s  a l o n g  

t h e  c e n t r a l  m e r i d i a n  and  s u b s t i t u t e  them i n t o  (111-4 -17) .  The  

r e s u l t  is k  l i n e a r  e q u a t i o n s  w i t h  k  unknowns Ai ( i = 1 , 2 , .  .. , k ) .  

I n  t h e  m a t r i x  form we h a v e  

w h e r e  



The s o l u t i o n  of t h e  s y s t e m  (111-4-19) y i e l d s  t h e  f i n a l  

unknowns,  Ai . 
The e l e m e n t s  o f  t h e  m a t r i x  X c a n  be d e t e r m i n e d  d i r e c t l y  

from t h e  e q u a t i o n s  (1-7-29) which i n  o u r  c a s e  a r e  



, 

In the same way we can compute (for j=lt2,. . . #k) 

However, with electronic computers it is much more 

suitable to use the recursion relations. With the initial 

values 

other elements are 



where j=1,2, ..., k. 
The Chebyshev projection defined by the equations (III-4- 

15) will give a symmetric isocol which smoothly approximates 

the real boundary contour. 

5. NON-SYMMETRIC CHEBYSHEV PROJECTIONS 

The adaptability of the symmetric Chebyshev projections, 

as described in the previous section, is restricted to domains 

whose boundary can be approximated by a symmetric isocol, a 

smooth curve along which the scale distortion takes on a con- 

stant value. For non-symmetric territories, the application of 

the symmetric Chebyshev projections may lead to too large devi- 

ations of scale from the desired constant value along the boun- 

dary contour and thus the effort of the optimization process 

can become almost meaningless. The problem can be solved by 

the development of a non-symmetric analytic function which 

yields a non-symmetric isocol whose shape resembles the mapping 

domain. 

In the modern Russian cartographic literature the problem 

is clearly stated. For example, Meshcheryakov (1968) discusses 

all aspects of the Chebyshev projections without giving the 

actual solution of a non-symmetric case. Pavlov (1974) listed 

the required formulae for a symmetric Chebyshev project ion and 
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mentioned non-symmetric g e n e r a l i z a t i o n s  by t h e  method of 

Vahramaeva, w i thou t  d e s c r i b i n g  t h e  a c t u a l  p r o c e s s  or g i v i n g  any 

mathemat ica l  e x p r e s s i o n .  The a u t h o r  was u n s u c c e s s f u l  i n  

o r i g i n a l l y  o b t a i n i n g  any r e f e r e n c e s  w i th  a d e t a i l e d  e x p l a n a t i o n  

of t h e  method used by Vahramaeva. With t h e  assumpt ion  t h a t  

Vahramaeva a p p l i e d  non-symmetric harmonic po lynomia l s  (1-7-30) 

t h e  au tho r  has  deve loped  a l l  t h e  r e q u i r e d  formulae  which, he  

had b e l i e v e d ,  c o n s t i t u t e  t h e  method of  Vahramaeva. However, 

a f t e r  r e a d i n g  t h e  f i r s t  v e r s i o n  of t h e  t h e s i s ,  D r .  T o b l e r  s e n t  

t o  t h e  a u t h o r  t h e  E n g l i s h  t r a n s l a t i o n  of an a r t i c l e  by 

Vahramaeva. The deve loped  formulae by t h e  a u t h o r  do n o t  

resemble  t h e  work of Vahramaeva. 

L e t  us  t a k e  t h e  harmonic po lynomia l  (1-7-30) and write it 

i n  t h e  form 

Using t h e  d e f i n i t i o n  of f u n c t i o n  v i n  (1-7-13) t h e  l a s t  

fo rmula  can be t r ans fo rmed  i n t o  

I n  m = a + a l + l  + ... 
0 + akqk  + 

+ b l o l  + ... + b k o k +  i n  cosh q ,  



where  a ( 0 1 . . . k )  and b ( = 1 , 2  k) a r e  unknown i i 

c o e f f i c i e n t s  to  be d e t e r m i n e d  by  t h e  method of  l e a s t  s q u a r e s  

t h u s  s a t i s f y i n g  t h e  f u n d a m e n t a l  r e q u i r e m e n t  ( 111-4-2) 

n  
1 ( I n  m i ) 2  = m i n ,  

i=l 

where n  is t h e  number of d i s c r e t e  p o i n t s  which a p p r o x i m a t e  t h e  

boundary .  The number n  m u s t  be l a r g e r  t h a n  t h e  number o f  

unknown c o e f  f  i e n t s ,  i  .e., 

~ e t  us a g a i n  i n t r o d u c e  a s imi l a r  m a t r i x  n o t a t i o n  t o  t h a t  

i n  t h e  p r e v i o u s  s e c t i o n  

tT = [ I n  c o s h  ql l n  c o s h  q2 . . i n  c o s h  q n ]  



where  i ( i ) a n d  o ( ~ ) ,  for j= l , .  . . ,k  and 1 , .  . n a r e  computed  b y  
j j 

t h e  e x p r e s s i o n s  (111-4-22) and (111-4-23) r e s p e c t i v e l y  or by 

t h e  r e c u r s i o n  f o r m u l a e  ( 111-4-24) .  

The v e c t o r  o f  unknowns & is  t h e n  

Compared to  t h e  d e t e r m i n a t i o n  of t h e  s y m m e t r i c  Chebyshev  

p r o j e c t i o n s ,  t h e  d e v e l o p m e n t  o f  non-symmetr ic  f o r m u l a e  up t o  

now is, more or less, i d e n t i c a l  t o  t h e  f o r m e r  e x c e p t  t h a t  t h e  

m a t r i x  3f, a l s o  i n c l u d e s  t h e  terms of t h e  i m a g i n a r y  p a r t  o f  t h e  

ha rmonic  p o l y n o m i a l  and t h e  v e c t o r  of t h e  unknown c o e f f i c i e n t s  

c o n s i s t s  o f  p a r a m e t e r s  a i  and bi where  i=l,. . . , k .  T h e o r e t -  

i c a l l y  t h e  o r d e r  of p o l y n o m i a l s  p i  and O d o  n o t  need  to  be  t h e  
j 

same, b u t  t h r o u g h o u t  t h i s  work,  f o r  r e a s o n s  of s i m p l i c i t y ,  t h e  

a u t h o r  a s s u m e s  t h a t  i ,  j= l , .  . . , k .  



With known c o e f f i c i e n t s  a i  b i ,  a s c e r t a i n e d  f rom t h e  
f 

boundary  c o n d i t i o n s ,  t h e  a n a l y t i c  c o n t i n u a t i o n  e n a b l e s  u s  t o  

compute  t h e  l o g a r i t h m  o f  t h e  scale a n d ,  t h u s ,  t h e  s c a l e  i t s e l f  

a t  e v e r y  p o i n t  o f  t h e  mapping domain by t h e  f o r m u l a  ( 111-5-2) . 
L e t  u s  now e x p r e s s  t h e  same f o r m u l a  as t h e  sum o f  two v e c t o r  

p r o d u c t s  and t h e  l o g a r i t h m  of  t h e  c o s i n e  h y p e r b o l i c  f u n c t i o n  o f  

t h e  i s o t h e r m i c  l a t i t u d e ,  

l n m =  aTQ + b T $  + a ,  + I n  c o s h  q 

where  

a T  = [ a ,  a , .  . . . . .  . a k ] ,  

I n  t h e  same way t h e  f o r m u l a  (111-5-1) becomes 

and 



We have already seen that the plane rectangular coordin- 

ates (x,y) obtained by a conformal mapping are conjugated har- 

monic functions of the isothermic coordinates which, thus, 

satisfy the Cauchy-Riemann equations (1-7-8 ) . Therefore, if 

the selected analytic function of conformal mapping is a har- 

monic polynomial, the rectangular coordinates will be computed 

by the pair of functions 

where 

The coefficients Ai, Bi, for 1 , .  . k ,  are unknown and 

will be obtained from the fundamental equations of map projec- 

tions (1-5-15) and (1-5-19). Since we are dealing with a con- 

formal mapping in which there is no distortion of the para- 

metric angle, E = O ,  and the scale factor is constant at a point, 

m=n, the equations (1-5-1 5) become 
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x = -m s i n  $ , 
4 

X I  = V COS $ , 

yb 
= m cos , y l  = v s i n  6 , 

where  

v = m cos 9 = m s e c h  q. (111-5-17) 

The r e l a t i o n s h i p  between t h e  g e o g r a p h i c  and t h e  i s o t h e r m i c  

l a t i t u d e  ( I - 7 - 1 2 ) ,  where  dq/d$ = sec 6 = c o s h  q ,  e n a b l e s  u s  t o  

t r a n s f o r m  t h e  e x p r e s s i o n s  ( 111-5-1 6 )  i n t o  

x = -v  s i n  8 , 
9 

X1 = v COS 8 , 

Yq 
= v cos 8 , y1 = v s i n  8 . 

L e t  us  now d i f f e r e n t i a t e  t h e  r e c t a n g u l a r  c o o r d i n a t e s  ( x  , y )  

a s  e x p r e s s e d  by (111-5-14) w i t h  respect to  t h e  i s o t h e r m i c  l a t i -  

t u d e  q ,  



b e a r i n g  i n  mind t h a t  and a r e  v e c t o r s  of c o n j u g a t e d  

harmonic  po lynomia ls  w h i c h  must s a t i s f y  t h e  Cauchy-Riemann 

e q u a t i o n s  

L e t  us deno te  t h e  d e r i v a t i v e s  of  v e c t o r s  and $ w i t h  

r e s p e c t  t o  t h e  i s o t h e r m i c  l a t i t u d e  by v e c t o r s  and Y , 
r e s p e c t i v e l y ,  

where 

Thus t h e  i n d i v i d u a l  e l emen t s  of v e c t o r s  f and a r e  

o b t a i n e d  by t h e  formulae  



= , j j l  *I'= { v j = j o j - , ]  for j = l ,  ..., k 

w h e r e  

The c o n v e r g e n c e  of m e r i d i a n s ,  B ,  is also a h a r m o n i c  

f u n c t i o n  of t h e  i s o t h e r m i c  c o o r d i n a t e s  s i n c e  it s a t i s f i e s  t h e  

e q u a t i o n s  ( I - 7 - 1 4 ) ,  

The i n t e g r a t i o n  of o n e  of t h e s e  d i f f e r e n t i a l  e q u a t i o n s  

w i l l  g i v e  t h e  c o n v e r g e n c e .  

B = 

or w i t h  (111-5-12)  

F o r  e x a m p l e ,  

I dqf 

B = ![a ( a T ~  + bTS + a,) d q f  
a i 

which  f i n a l l y  y i e l d s  



' 2 ( J' ) ]  dq. B = / [ a T + Q ) +  Q a l  

The s u b s t i t u t i o n  of t h e  Cauchy-Riemann e q u a t i o n s  ( I I I - S -  

2 0 )  i n t o  t h e  l a s t  i n t e g r a l  g i v e s  

- - - 
where  c is t h e  c o n s t a n t  o f  i n t e g r a t i o n  whose v a l u e  is e q u a l  t o  

z e r o  i f  we d e c i d e  t o  h a v e  no  c o n v e r g e n c e  o f  m e r i d i a n s  a t  t h e  

o r i g i n  f o r  q=O and 1=0 .  T h u s  t h e  f i n a l  v e r s i o n  o f  t h e  l a s t  

e q u a t i o n  is 

The f o r m u l a  f o r  c o n v e r g e n c e  o f  m e r i d i a n s  ( 111-5-27) 

p e r m i t s  u s  to d e t e r m i n e  t h e  n u m e r i c a l  v a l u e  o f  t h e  c o n v e r g e n c e  

a t  e v e r y  p o i n t  o f  t h e  mapping  domain .  

L e t  u s  now combine  t h e  o b t a i n e d  r e s u l t s  f o r  v and  B i n  t h e  

r i g h t - h a n d  s i d e  o f  t h e  e q u a t i o n  ( 111-5-1 8 )  



S i n c e  a l l  e l e m e n t s  d e f i n i n g  t h e  d e r i v a t i v e s  x  and y a r e  
9 9 

known, we can compute t h e  d e r i v a t i v e s  a t  an a r b i t r a r y  p o i n t  o f  

t h e  domain. A t  t h e  same t i m e  t h e  d e r i v a t i v e s  a r e  e x p r e s s e d  i n  

t e rms  of unknown c o e f f i c i e n t s  A i  and Bi  i n  t h e  e q u a t i o n s  ( III- 

5-19), 

T h i s  is a  l i n e a r  sys tem of  two e q u a t i o n s  w i t h  2k unknown 

c o e f f i c i e n t s ,  A i r  Bi f o r  i = l  ,.. . , k .  T h e r e f o r e ,  i f  we t a k e  k  



I 

d i f f e r e n t  p o i n t s  o f  t h e  mapping domain t h e  s y s t e m  w i l l  be f u l l y  

d e t e r m i n e d .  A t  e a c h  s e l e c t e d  p o i n t  w i t h  known i s o t h e r m i c  

c o o r d i n a t e s  ( q , ) ,  f o r  i = l  , . . . , k ,  w e  must  e v a l u a t e  v e c t o r s  Q , 
8 ,  and Y . A t  e a c h  p o i n t  f o r m u l a e  (111-5-28) w i l l  

y i e l d  two l i n e a r  e q u a t i o n s  w i t h  2k unknowns. The t o t a l i t y  o f  

a l l  t h e  n e c e s s a r y  2k e q u a t i o n s  can  be g i v e n  i n  t h e  m a t r i x  form 

by t h e  e x p r e s s i o n  

where  is t h e  v e c t o r  o f  unknowns 

g is t h e  v e c t o r  o f  t h e  r i g h t - h a n d  s i d e  o f  t h e  e q u a t i o n s  ( I II-  

5-28) 

COS(-aT8 + b T Q  ) f o r  i = k + l  ,..., 2k 



and 3?? is the coefficient matrix whose individual elements 

ij are derived from the following expressions 

( i-k) 
j oj-l 

for i=l,..*,k; j=l, 

. . . ,k 

for i=l, . . . ,k; j=k+l, 
..., 2k 

for i=k+l, . . . ,2k; j=l, 
- --- ... ,k 

for i=k+l,. . . ,2k; j=k+l, 
**.,2k 

for all points from i=l to i=k. 

The solution of the system (111'5-30) yields the unknown 

coefficients Ai, Bi and thus completes the determination of a 

non-symmetric Chebyshev projection. 



The higher the order of the harmonic polynomial, the 

better the fit of the isocol to the selected approximation of 

the boundary contour. However, some unreasonable increase of 

the order may lead to too many computational difficulties for a 

very small increase in accuracy which, in the author's opinion, 

is too small to justify the additional computational costs. 

The optimization of the order of the harmonic polynomial can be 

made by an investigation of the deviations of the boundary 

contour from the boundary isocol, but the author sees no other 

way than the trial-and-error approach. 



IV. OPTIMAL CARTOGRAPHIC PROJECTIONS FOR CANADA 

1. INTRODUCTION AND HISTORICAL BACKGROUND 

Early maps of Canadian territories made by various explor- 

ers and surveyors contain no indications of the transformat ion 

formulae applied. Even the first atlas from 1875, compiled by 

H.F. Walling and published in London under the title "Atlas of 

the Dominion of Canada", has no descriptions of the map projec- 

tions used. According to the grid of meridians and parallels 

it seems that a polyconic projection was used as the basis of 

maps. 

At the beginning of the twentieth century three different 

organizations have been mainly involved in the mapping process. 

They were the Topographic Survey of the Department of the 

Interior, the Bureau of Geology and Topography of the 

Department of Mines and the Geographical Section of Militia and 

Defence. There was apparently no coordination between the 

agencies. They sometimes mapped the same territory in three 

different versions using different scales and different mapping 

systems. In order to unify efforts and make the topographic 

mapping universal, the Geographic Board of Canada was 

established in 1923. Two years later the Board suggested the 

Simple Polyconic projection, a suggestion that was changed 

after two additional years to the Transverse Mercator 

Projection. ~ h u s ,  from 1927 medium and large scale topographic 



mappings  used t h e  t r a n s v e r s e  a s p e c t  o f  t h e  c o n f o r m a l  c y l i n d r i c  

p r o j e c t i o n  w i t h  8" z o n e s .  F i n a l l y  a f t e r  t h e  Second World War 

C a n a d i a n  t o p o g r a p h e r s  a d o p t e d  t h e  U n i v e r s a l  T r a n s v e r s e  M e r c a t o r  

P r o j e c t i o n  w i t h  6' zones .  

F o r  s m a l l  s c a l e  maps, p a r t i c u l a r l y  t h o s e  which c o v e r e d  t h e  

whole  C a n a d i a n  t e r r i t o r y ,  c a r t o g r a p h e r s  s e l e c t e d ,  under  t h e  

i n f l u e n c e  o f  t h e  m i l i t a r y ,  t h e  normal  a s p e c t  o f  t h e  Lamber t  

Conformal  C o n i c  P r o j e c t i o n .  A t  t h a t  time t h e  m i l i t a r y  

c o n s i d e r e d  Canada to  be a  c o u n t r y  l o n g  and n a r r o w  a r o u n d  t h e  

4 9 t h  p a r a l l e l  and ,  t h u s ,  t h e  Lamber t  Conformal  C o n i c  P r o j e c t i o n  
--. - 

seemed a s  t h e  most s u i t a b l e  p r o j e c t i o n  f o r  s u c h  a  mapping 

domain e l o n g a t e d  i n  an e a s t - w e s t  d i r e c t i o n .  Map d e f o r m a t i o n s  

were f u n c t i o n s  o f  l a t i t u d e  o n l y  and t h e y  were min imized  a r o u n d  

t h e  4 9 t h  p a r a l l e l  by an  a d e q u a t e  c h o i c e  o f  s t a n d a r d  p a r a l l e l s .  

T h a t  t h e  n o r t h e r n  p a r t  o f  t h e  c o u n t r y  was t r e m e n d o u s l y  

d i s t o r t e d  was o f  a  l i t t l e  c o n c e r n .  The N o r t h  had no v a l u e  a t  

t h a t  time. 

I n  1944 f o r  a  new map series MCR 8 i n  t h e  s c a l e  o f  1 "  = 64 

miles a  C a n a d i a n  c a r t o g r a p h e r ,  P a r r y  s u g g e s t e d  a  c o n f o r m a l  

c o n i c  p r o j e c t i o n  w i t h  s t a n d a r d  p a r a l l e l s  a t  47" and 70" .  

However, t h e  S u r v e y o r  G e n e r a l ,  F.H. P e t e r s ,  i n  h i s  memorandum 

f rom O c t o b e r  20 ,  1945 to  M r .  Murd ie  s i m p l y  c h a n g e s  t h e  

r ecommenda t ion  w i t h  t h e  f o l l o w i n g  words :  



"Mr. P a r r y  i n  h i s  memorandum of  May 5 ,  1944, on 
f i l e s  1177, 21027 and 20788, recommends f o r  t h e  64- 
m i l e  map of  Canada a  c o n i c a l  o r t homorph ic  p r o j e c t i o n  
w i t h  t w o  s t a n d a r d  p a r a l l e l s .  For  t h e  t w o  s t a n d a r d  
p a r a l l e l s  he recommends 47" and 7 0 • ‹ ,  bu t  I t h i n k  i t  
would be more d e s i r a b l e  t o  a d o p t  47" and 6 g 0 ,  and you 
may p roceed  a c c o r d i n g l y  i n  p r e p a r i n g  t h e  p r o j e c t i o n  
c o - o r d i n a t e s . "  

The r e a s o n s  f o r  t h e  change a r e  n e i t h e r  s t a t e d  nor  o b v i o u s l y  

e v i d e n t .  The d i f f e r e n c e  o f  a d e g r e e  i n  t h e  n o r t h e r n  s t a n d a r d  

l a t i t u d e  can h a r d l y  be s i g n i f i c a n t  f o r  o v e r a l l  d i s t r i b u t i o n  of  

map d i s t o r t i o n s .  A s  a  m a t t e r  of  f a c t ,  t h e  d i s t r i b u t i o n  o f  

d i s t o r t i o n s  is f o r  t h e  f i r s t  t i m e  ment ioned i n  a  memorandum of  

M. G r i e v e  t o  M.G. Cameron from March 26, 1949. For  t h e  new 

proposed  series of maps which w i l l  r e p r e s e n t  a l l  t h e  l and  a r e a  

of  Canada i n  t he '  s c a l e  o f  1"  = 100 miles, M. G r i e v e  s u g g e s t e d  

a g a i n  t h e  Lambert Conformal Conic  P r o j e c t i o n  t h i s  time w i t h  

s t a n d a r d  p a r a l l e l s  a t  49" and 77'. M. G r i e v e  writes: 

"For  a  map of  Canada e x t e n d i n g  from t h e  s o u t h e r n  
t i p  of  Lake Michigan t o  t h e  n o r t h  of  Ellesmere I s l a n d  
and from t h e  remote  p a r t  of  Newfoundland to t h a t  o f  
Queen C h a r l o t t e  I s l a n d ,  a Lambert Conformal Conic  
P r o j e c t i o n  w i t h  s t a n d a r d  p a r a l l e l s  a t  49" and 77" h a s  
t h e  b e s t  d i s t r i b u t i o n  of  s c a l e  error. Between t h e s e  
l a t i t u d e s  t h e  s c a l e  is t o o  s m a l l  and beyond them, t o o  
g r e a t . "  

The recommendat i o n s  by M. G r i e v e  a b o u t  t h e  s t a n d a r d  p a r a l l e l s  

were adopted  and t h e y  have been s e r v i n g  as t h e  b a s i s  f o r  

mapping of  t h e  whole c o u n t r y  e v e r  s i n c e .  



Before any conclusions about the choice of projection and 

its parameters for Canada is made let us discuss and evaluate 

criteria which govern the choice. 

For l'arge scale topographic mappings advantages of 

conformal projections which locally preserve the shape are 

clear. Almost all countries in the world have adopted one or 

the other conformal mapping systems as the basis of their 

integrated survey coordinates and the topographic mapping. 

Conformal transformations preserve angles and their scale 

factor is a function of position only. Thus, for the surveying 

profession, mainly concerned with measurements of angles and 

distances, conformal map projections require a minimal altera- 

tion of measured quantities. 

For small scale geographic mappings, however, the criteria 

for the selection of an appropriate cartographic system are not 

so clearly defined. It has been usually stated that the 

choice of map projection depends on the position and geometri- 

cal shape of the mapping domain and the purpose of the map. A 

cartographic representation must be a reliable image of the 

mapping territory. In other words, the overall deformations of 

intrinsic elements must be as small as possible. The distribu- 

tion of distortions and their character should be the most 

essential governing factor for the selection of a map projec- 

tion. Only conical map projections (conic, cylindric and 

azimuthal) have the property that the curves of constant 

deformations, isocols, for areas, angles and distances have the 



, 

same shape and a r e  f u n c t i o n s  of d i s t a n c e s  from t h e  s e l e c t e d  

metapole  ( + O f  X O ) ,  on ly .  t h i s  is t h e  r e a s o n  t h a t  c o n i c a l  map 

p r o j e c t i o n s  a r e  used more t h a n  any o t h e r  c l a s s  of p r o j e c t i o n s  

i n  s t a n d a r d  g e o g r a p h i c  a t l a s e s .  

U n t i l  now t h e  a s se s smen t  of i n d i v i d u a l  mapping sys t ems  and 

t h e i r  pa rame te r s  f o r  Canadian t e r r i t o r y  has  been made 

s u b j e c t i v e l y .  I t  is e v i d e n t  from t h e  two ment ioned memorandums 

t h a t  even t h e  s e l e c t i o n  of a p p r o p r i a t e  s t a n d a r d  p a r a l l e l s  was 

dec ided  wi thou t  t o o  much i n v e s t i g a t i o n  i n  t h e  r e s u l t i n g  

d i s t r i b u t i o n  of d i s t o r t i o n s .  To r e s t r i c t  t h e  c h o i c e  o f  

a p p l i c a b l e  map p r o j e c t i o n s  f o r  sma l l  s c a l e  maps t o  conformal  

mappings o n l y  is a p r i o r i  an un reasonab le  t h i n g .  I n  a d d i t i o n  

t o  c la im and b e l i e v e  t h a t  c o n f o r m a l i t y  p r e s e r v e s  t h e  shape  of 

t h e  mapping domain is a w ide ly  sp read  misconcep t ion  and a  s i g n  

o f  ignorance .  Gauss  (1825)  i n  h i s  famous g e n e r a l  s o l u t i o n  of 

conformal  p r o j e c t i o n s  of r e g u l a r  s u r f  a c e s  s t a t e d  a l r e a d y  i n  t h e  

t i t l e  t h a t  c o n f o r m a l i t y  means t h a t  " d i e  Abbildung dem 

Abgeb i lde t en  i n  den k l e i n s t e n  T h e i l e n  a h n l i c h  wird" ( t h e  

p r o j e c t i o n  is s i m i l a r  to  t h e  o r i g i n a l  i n  i t s  s m a l l e s t  p a r t s ) .  

Thus, c o n f o r m a l i t y  p r e s e r v e s  shape o n l y  l o c a l l y  but  n o t  

g l o b a l l y .  I n  o t h e r  words, f o r  l a r g e  s c a l e  mappings where a  map 

s h e e t  c o v e r s  a  s m a l l  p o r t i o n  of t h e  mapping domain on ly ,  t h e  

s h a p e s  a r e  p r e s e r v e d  i n  t h e i r  f i r s t  app rox ima t ions .  However, 

i n  sma l l  s c a l e  mappings t h e  l o c a l  p r e s e r v a t i o n  of shape from 

t h e  p r a c t i c a l  p o i n t  of view is mean ing le s s .  To g i v e  conformal  

mappings a  p r e f e r e n c e  i n  a t l a s  c a r t o g r a p h y  is a  more o r  less 

s u b j e c t i v e  d e c i s i o n  which can h a r d l y  be j u s t i f i e d  by a  



r e a l i s t i c  and o b j e c t i v e  c r i t e r i o n .  On t h e  o t h e r  hand, t o  adop t  

e q u i a r e a l  map p r o j e c t i o n s  f o r  c e r t a i n  t y p e s  of maps i n  

geography can e a s i l y  be e x p l a i n e d  and unders tood .  

The a u t h o r  i n  h i s  r e s e a r c h  dec ided  t h a t  a l l  recommenda- 

t i o n s  f o r  t h e  c h o i c e  of a  p r o j e c t i o n  and its pa rame te r s  w i l l  be 

based on t h e  Ai ry -Kavra i sk i i  c r i t e r i o n  (11-3-2). The 

pa rame te r s  of t h e  p r o j e c t i o n  w i l l  be numer i ca l ly  o p t i m i z e d  

us ing  t h e  method of l e a s t  s q u a r e s  where t h e  o p t i m i z a t i o n  model 

is d e f i n e d  by t h e  e q u a t i o n  ( 11-6-1 1 ) . The d i s t o r t i o n  e l e m e n t s ,  

v  = I n  a  and vb = In  b, a r e  numer i ca l ly  e v a l u a t e d  a t  a  f i n i t e  a  

number of p o i n t s  which approximate  t h e  Canadian t e r r i t o r y .  The 

mapping domain is r e p r e s e n t e d  by 75 r e l a t i v e l y  even ly  d i s t r i b u -  

t e d  p o i n t s .  T h e i r  number can va ry  and t h e  more p o i n t s  t h a t  a r e  

used t h e  more r e l i a b l e  answers  may be expec ted .  I n  t h e  

a u t h o r ' s  r e s e a r c h  t h e  number of p o i n t s  was s t r i c t l y  governed by 

t h e  s i z e  of computer memory. The whole r e s e a r c h  was performed 

i n  a  Horizon microcomputer ,  wi th  a  r e s t r i c t e d  memory of 32 K ,  

a t  t h e  B r i t i s h  Columbia I n s t i t u t e  of Technology. A l l  op t imiza -  

t i o n  and computa t ion  r o u t i n e s  were w r i t t e n  i n  t h e  BASIC 

language.  



Figure IV-1-1 Distribution of points which 
approximate Canadian Territory 



2. OPTIMAL CONIC PROJECTIONS FOR CANADA 

Three standard conic projections are optimized: the 

Lambert conformal, Lambert equiareal and equidistant conic 

projection. 

The Lambert Conformal Conic projection of a unit sphere is 

defined by the equations 

~ = ~ s i n y  , y = C 2 - p  c o s y ,  

where 

Y = C1n and p = C2e -c,q 

The isothermal latitude, q, is given by the expression 

(11-4-10) 

q = In tan ( ~ / 4  + 5/2) , ( IV-2-2 ) 

and the metacoordinates are computed by equations (11-4-1) 

sin 6 = sin ( sin ( + cos mo cos ( cos (Ao-A), 
0 

and 

cos $ sin (Ao-A) 

tan ' = sin + cos $ - sin 4 cos 4 cos ( A ~ - A )  
0 0 
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T h u s ,  the optimization process w i l l  determine four unknown 

parameters: the geographic coordinates of the metapole 

, A )  and the projection constants C1 and C 2 .  

Since the f i r s t  projection is conformal one scale  fac tor  

per point m u s t  be evaluated. The scale  factor  i n  the Lambert 

conformal cone project ion is given by the formula 

Defining the d i s t o r t i o n  as the natural  logarithm of the 

sca le  fac tor  

the optimization model (11-6-1 1 )  i n  the case of conformal 

pro jec t ions  becomes 

n 
,z v i  cos t i  = min,  

i = l  

where n is the number of points which approximate the domain. 

To l i n e a r i z e  the mathematical model ( IV-2-4)  the Newton 

method is applied. Then the elements of $ matrix ( 1 1 - 6 - 2 0 )  

a re  defined by the p a r t i a l  der iva t ives  



a v i  
b ( i , 4 )  = - , f o r  i = l ,  ...., n .  

a c 2  

When t h e  e q u a t i o n  (IV-2-4) is s u b s t i t u t e d  i n t o  (IV-2-5) w e  

o b t a i n  

v  = I n  C 1  + I n  C2 , C 1 q  - I n  'cos g . ( IV-2-8 ) 

The p a r t i a l  d i f f e r e n t i a t i o n  of  t h e  above e x p r e s s i o n  w i t h  

r e s p e c t  t o  t h e  unknown v e c t o r  [$,  X o  C1 C p ]  y i e l d s  

d q i  dC 
b ( i , l )  = ( t a n  5  i - c1 . T )  . - , 

d + o  

or s i n c e  

1 dq = - 
dg c o s  5  dE t , and - = 

d + o  



w e  o b t a i n  

b ( i , l )  = ( t a n  6 - 
i cos L~ t i  f 

w h e r e  

cos (o s i n  $I - s i n  4 i Cos ( COS ( Ao-A ) - t i  - 0 
cos S i  . ( IV-2-11)  

The  e l e m e n t s  o f  t h e  s e c o n d  column o f  8 m a t r i x  a re  

s i m i l a r l y  

b ( i f 2 )  = ( t a n  c i  - C1 ) u i , ,  
cos 6 i 

w h e r e  

cos ( cos ( s i n  ( A  -A  i )  - dS o i o 
u i - T = -  cos 6 

. ( IV-2-13)  
i 

The  e l e m e n t s  o f  t h e  f i n a l  two co lumns  are 

a n d  
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The normal aspect of Lambert conformal conic pro jec t ion  

present ly used i n  Canada for a l l  small sca le  mappings has the 

standard p a r a l l e l s  a t  l a t i t u d e s  

+' = 49" and + " = 7 7 "  . 

I n  order to  compare optimized map project ions w i t h  the system 

present ly used the Airy-Kavraiskii measure of qua l i ty  (11-6-10)  

w i l l  be evaluated for the optimal versions as well as for the 

o f f i c i a l  project ion.  The numerical values of constants C1 and 

C 2  for the o f f i c i a l  project ion are calculated from the 

expressions for  the sca le  f ac to r s  ( IV-2-4 )  along the standard 

p a r a l l e l s .  

and then from here 

I n  cos + ' - I n  cos 4 "  
C ,  = 

qn - q '  
= .900 745 . 



, 

When t h e  f i r s t  c o n s t a n t  is known t h e  second is o b t a i n e d  e i t h e r  

from k' = 1 or k" = 1 y i e l d i n g  

With such c a l c u l a t e d  c o n s t a n t s  t h e  d i s t o r t i o n s  of t h e  

l i n e a r  s c a l e  f a c t o r  were de t e rmined  a t  75 p o i n t s  which 

approximate  t h e  c o u n t r y  y i e l d i n g  t h e  f o l l o w i n g  r e s u l t  f o r  t h e  

A i r y - K a v r a i s k i i  measure of q u a l i t y  

The i n i t i a l  app rox ima t ions  a r e  ve ry  impor t an t  t o  e n s u r e  

convergence  of t h e  o p t i m i z a t i o n  p r o c e s s .  Thus,  t h e  unknown 

v e c t o r  [ m o  C 1  C 2 ]  must be determined  r e l a t i v e l y  w e l l .  I n  

o r d e r  t o  compute t h e  f i r s t  app rox ima t ion  f o r  t h e  metapole  

( 4  , A  ) t h e  a u t h o r  has  measured from a g lobe  t h e  g e o g r a p h i c  
0 0 

c o o r d i n a t e s  of t h r e e  p o i n t s  which approximate  t h e  c e n t r a l  l i n e  

of Canadian t e r r i t o r y .  Then 

A - B  t a n  X o  = - C - D '  



where 

D = ( s i n  + ,  - s i n  + 2 ) ( ~ ~ ~  + 2  s i n  A~ - cos  s i n  x 1 )  ,) 

wi th  known l o n g i t u d e  of t h e  metapole  its l a t i t u d e  is computed 

by the-  f m m u l a  

Having de t e rmined  t h e  f i r s t  approximat ion  of t h e  me tapo le  

( + o , A o )  t h e  a u t h o r  has  c a l c u l a t e d  t h e  meta l a t i t u d e ,  5 ,  by t h e  

f i r s t  e q u a t i o n  (IV-2-3), f o r  s e v e r a l  boundary p o i n t s  t o  o b t a i n  

t h e  range  of m e t a l a t i t u d e .  The  f i r s t  app rox ima t ions  o f  

c o n s t a n t s  C1 and C2 were d e r i v e d  from t h e  c o n d i t i o n s  t h a t  

and 



where  

The two c o n d i t i o n s  (IV-2-19) when a p p l i e d  to  t h e  f o r m u l a  f o r  

t h e  s c a l e  f a c t o r  (IV-2-4) y i e l d  

I n  cos Smin - I n  cos 5 - max , 
C l  - - ( IV-2-21) 

qmax Smin 

and 

e lqmax cos 
- max . 

C2 - C ,  

Convergence  was f a s t ,  h a v i n g  t h u s  d e t e r m i n e d  t h e  

a p p r o x i m a t e  v a l u e s  of unknowns. The r e s u l t s  o f  o p t i m i z a t i o n  

and t h e  s u b s e q u e n t  ~ i r y - ~ a v r a i s k i i  m e a s u r e  o f  q u a l i t y  a r e  g i v e n  

i n  t h e  l a s t  s e c t i o n  o f  t h e  c h a p t e r .  

The Lamber t  E q u i a r e a l  C o n i c  p r o j e c t i o n  o f  a  u n i t  s p h e r e  i s  

d e f i n e d  by t h e  e q u a t i o n s  

x  = p s i n  y 

where  

y = C l r l  and p =1Jk ( c 2  - s i n  5 )  J 



, 

and t h e  p r i n c i p a l  s c a l e  f a c t o r s  a r e  

D i s t o r t i o n s  of t h e  p r i n c i p a l  scales are t h e n  

T h u s  e v e r y  p o i n t  of t h e  mapping  domain  y i e l d s  two o f  t h e  a b o v e  

e q u a t i o n s .  I n  o t h e r  words  t h e  s i z e  o f  t he>$  m a t r i x  is 2n x  4 ,  

where  n  is a g a i n  t h e  number of p o i n t s  wh ich  a p p r o x i m a t e  C a n a d a .  

T h e  e l e m e n t s  o f  t h e  $ m a t r i x  a r e  

cos ~ ( i )  2 - 1  = ( -  t a n  E ( i )  + 2(c2-sin [ ( i )  ) t ( i l  . ]  

where  i = l  , . . . . ,n and  t is d e f i n e d  by t h e  e q u a t i o n  ( IV-2-11)  . 

cos s ( i )  
b ( 2 i - 1  . 2 )  = ( -  t a n  E ( i )  + 2(C, -s in5( i )  

where  u is d e f i n e d  by t h e  e x p r e s s i o n  ( IV-2-13) . 



b ( 2 i - 1 , 4 )  = - 1 

2 ( c 2  - s i n  " i ) )  ' 1 
(IV-2-28) 

The i n i t i a l  a p p r o x i m a t i o n s  f o r  c o n s t a n t s  C1 and C, a r e  

a g a i n  o b t a i n e d  from t h e  r a n g e  o f  m e t a l a t i t u d e s ,  
--. .-- emax and Smin, 

a s suming  t h a t  t h e  s c a l e s  a t  t h e  e x t r e m e  v a l u e s  o f  m e t a l a t i t u d e s  

w i l l  be i d e n t i c a l  and e q u a l  t o  u n i t y .  Then from t h e  f i r s t  

e q u a t i o n  o f  ( IV-2-23) we  have  two e q u a t i o n s  

cos 5  min = V ~ C , ( C , -  s i n 5  min 1 , 

cos 5  = V 2 C 1 ( C 2 -  s i n 5  ) , max max 

whose s o l u t i o n  g i v e s  t h e  unknowns. 

cos2 F m i n  s i n  5  - cos2 5  s i n  5 
C, = max max min  , 

cos2 E m i n  - - 
'1 2 ( c 2  - s i n  E 1 min 



The approximations for the geographic coordinates of the 

metapole ( $  Xo) are derived from the equations (IV-2-16) and 
0, 

(IV-2-18). However in this research the author has simply 

adopted the values obtained from the optimization process of 

the Lambert conformal conic projection. 

An equidistant conic projection of a unit sphere is 

defined by the equations 

x = p  siny , y = C 2  P c o s y ,  

where 

y = C 1 q  and p = c 2 - 5 .  

The principal scale factors are 

C1 ( C y 5  
m =  1 and n =  cos 5 

with the corresponding deformations 

and the subsequent elements of 6 matrix are 

(C, - ~ ( i ) )  sin ~ ( i )  - cos E(i) 
b(i,l) = C ,  t(i) , (IV-2-33) 

cos2 [(i) 



, 

( C Z  - ~ ( i ) )  s i n  S ! i )  - cos c ( i )  
b ( i , 2 )  = C ,  u  ( i )  , (IV-2-34) 

cos2 6 ( i )  

b ( i , 4 )  = 1 
cos ' ( i )  ' 

where  i = l  , . . . . ,n and t and u  f u n c t i o n s  a r e  d e f i n e d  by t h e  

f o r m u l a e  (IV-2-11) and (IV-2-13 ) r e s p e c t i v e l y .  

The i n i t i a l  a p p r o x i m a t i o n s  f o r  c o n s t a n t s  C 1  and C 2  a r e ,  a s  

u s u a l ,  computed from t h e  e x t r e m e  v a l u e s  o f  m e t a l a t i t u d e  E m i n  

and 'max and t h e  c o r r e s p o n d i n g  s c a l e s  e q u a t e d  to u n i t y .  

cos ' max = C , ( C ,  - 'max) 

and t h e n  

COS S m i n  - 'max 'min 'OS 'max , 
COS Smin  - COS Smax 

( IV-2-37 ) 

COS Smin 
( IV-2-38 ) 

'2 - Smin ' 

With such  v a l u e s  d e t e r m i n e d  f o r  t h e  c o n s t a n t s  t h e  

c o n v e r g e n c e  was r e l a t i v e l y  f a s t .  



I 

3 .  OPTIMAL C Y L I N D R I C  PROJECTIONS 

T h r e e  c y l i n d r i c  map p r o j e c t i o n s  w i l l  be o p t i m i z e d  f o r  

Canadian t e r r i t o r y  and t h e y  a r e  t h e  Mercator  conformal ,  Lambert 

e q u i a r e a l  and Urmaev's p r o j e c t i o n .  S i n c e  i n  a l l  c y l i n d r i c  

mappings t h e  s m a l l e s t  d e f o r m a t i o n s  occu r  i n  t h e  v i c i n i t y  of t h e  

metaequator  t h e  p o s i t i o n  of t h e  metapole  must be s e l e c t e d  such  

t h a t  t h e  c e n t r a l  l i n e  of Canadian t e r r i t o r y  becomes t h e  

me taequa to r .  The a u t h o r  has  s c a l e d  from a g l o b e  two p o i n t s ,  

( + , , A , )  and ( $ 2 , A 2 )  and then  t h e  f i r s t  app rox ima t ions  of t h e  

geograph ic  c o o r d i n a t e s  of t h e  metapole  ( m o ,  A o)  were computed by 

t h e  formulae  

t a n  cos - t a n  + 2  c o s  
t a n  A. = t a n  + 2  s i n  A ,  - t a n  4 ,  s i n  ,12 

' (IV-3-1) 

and 

tan m = s i n  
- t a n  6, s i n  A ,  - t a n  6 .  s i n  1, 

An o b l i q u e  Merca to r  p r o j e c t i o n  of  a  u n i t  s p h e r e  is d e f i n e d  

by t h e  e q u a t i o n s  

where 

q = I n  t a n  (n/4 + 5 / 2 )  , 



and C is an unknown constant to be determined by the 

optimization process. Thus, there are three unknowns bO, AO, C 

and the dimension of the $3 matrix is n x 3. The elements of 8 
matrix are determined by the differentiation of distortions 

with respect to the vector of unknowns A ~ ,  C]. The scale 

factor in the Mercator projection is calculated by the formula 

C k = -  
cos 5 

and the corresponding deformation by 

Now the elements b(i,j) for i-1, ...., n and j=1,2,3 are 

b(i,l) = tan ((i) t(i) , ( IV-3-71 

b(i,2) = tan {(i) u(i) , ( IV-3-8 ) 

and 

where t(i) and u(i) are calculated by the expressions (IV-2-11) 

and (IV-2-13) respectively. 

The initial approximation for the constant was taken to be 

equal to unity. 



An oblique Lambert equiareal cylindric projection is 

defined by equations. 

with the principal scale factors 

C n = -  cos 5 
cos 5 and m = - C 

Therefore the distortions are 

v(2i-1) = In C - In cos 5 and v(2i) = - v(2i-1) (IV-3-12) 

The subsequent elements of 8 matrix, for i=l , . . . . ,n, are 

b(2i-1,1) = tan 6(i) t(i) , 1 

b(2i-1,2) = tan S(i) u(i) , 1 



, 

In ~rmaev's oblique cylindric projection the rectangular 

coordinates are given by the equations 

with the principal scale factors 

C n = -  
cos 5 and m = al + 3a2c2 + 5a3c4 (IV-3-17) 

~ h u s ,  the expressions for deformation elements are 

and their partial derivatives with respect to the vector of 

unknowns Ao, al, a2, a,, c] become 

( IV-3- 19 ) 

b(2i ,1) = tan S(i) t(i) , 

b(2i ,2) = tan E(i) u(i) , 



where  a g a i n  i = l  , . . . . , n  and f u n c t i o n s  t (  i )  , u(  i )  are c a l c u l a t e d  

by t h e  e q u a t i o n s  (IV-2-11) and (IV-2-13) r e s p e c t i v e l y .  

C o n s t a n t s  a l  , a 2  , a3 and C were i n i t i a l l y  g i v e n  t h e  v a l u e  of  

u n i t y .  A l t h o u g h  t h e  o p t i m i z a t i o n  p r o c e s s  showed l a t e r  t h a t  t h e  

i n i t i a l  g u e s s e s  had been  v e r y  f a r  from t h e i r  o p t i m i z e d  v a l u e s  

t h e  c o n v e r g e n c e  was r a p i d .  

4 .  OPTIMAL AZIMUTHAL PROJECTIONS 

A z i m u t h a l  p r o j e c t i o n s  may be c o n s i d e r e d  a s  s p e c i a l  c a s e s  

o f  c o n i c a l  p r o j e c t i o n s  i n  which t h e  wedge c o n s t a n t ,  c l ,  is 

e q u a l  t o  u n i t y .  T h e r e f o r e  t h e  o p t i m i z a t i o n  p r o c e s s  i n c l u d e s  a t  

most t h r e e  unknowns, t h e  l a t i t u d e  and l o n g i t u d e  o f  t h e  m e t a p o l e  

and a  c o n s t a n t .  I n  some p r o j e c t i o n s ,  l i k e  t h e  e q u i d i s t a n t  

a z i m u t h a l  and t h e  Lamber t  e q u i a r e a l  a z i m u t h a l ,  o n l y  t h e  
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metapole remains to be determined by the minimization of 

distortions. In that case the optimization yields the central 

point of the mapping domain only. 

Since the optimization of azimuthal projections is SO 

simple the author will determine an optimal stereographic 

projection only. The general formulae of an oblique 

stereographic projection are 

x =  K1 + p   sin^ , y = ~ ~ - p  c o s y ,  (IV-4-11 

where 

w y = s , p = = c tan (7 - 5) ( IV-4-21 

and K 1 ,  K2 are arbitrarily selected constants. Since the 

stereographic projection is a conformal projection it has one 

scale factor per point only which is computed by the formula 

~ h u s ,  the distortion is 

a 5 v = ln k = in c - 2 in cos (, - ) - 1 2 . (IV-4-41 

The differentiation of the above expression with respect to the 

vector of unknowns AO, C] yields the elements of the 6 
matrix. 



a S(i) b( i.2) = - tan (a + ) u(i) , ( IV-4-6 ) 

where function t(i) and u(i) are again evaluated by the 

expressions (IV-2-11) and (IV-2-13) respectively and 

i=l .. . . . ,n. 
Approximate values of unknowns can easily be determined. 

, The geographic coordinates of the midpoint of a mapping domain 

serve as the first approximations of +o and Ao. The initial 

approximation of the constant for a stereographic projection of 

a unit sphere is c = 2 and the optimization process converges 

quickly. 

OPTIMAL MODIFIED EQUIAREAL PROJECTIONS 

In the fifth section of the second chapter it was shown 

that the modification of equiareal map projections is a process 

in which the metacoordinates ( 6  ,n) are changed into a new 

coordinate system (u,v) by equations (11-5-21). 

sin u = Cm sin 6 . v = Cnn . 

The final modification of rectangular coordinates is 

accomplished by the formulae (11-5-20). 



where Cm, Cn, and Ck are constants to be determined by the 

optimization process and x (  u,v) , y( u,v) are the original 
mapping functions expressed in terms of the new variables 

(u,v). 

The elements of the metric tensor (11-5-8) and the square 

root of Jacobian determinant (11-5-9) for the modified 

equiareal mappings are 

- Cm c o s 2 ~  - 'n G I  - - - K 1  , G22 - - COSS K2 , f i = -  
COSU K 3  , ( IV-5-3 ) 

Cn C O S ~ U  'm 

where 

and 



The condition of equiareal mapping is 

hz = COS u . 

The computation of the principal scale factors, a and b, 

are performed by the equations 

1 
a P 2 ( A + B )  and (A - B) f ( IV-5-8 ) 

with the corresponding distortion parameters 

v = l n a =  In ( A + B )  - I n 2  
a 

( IV-5-9 ) 

"b = l n b =  In ( A - B )  - l n 2 ,  

where 

and 



Applying ~ewton's method for the linearization of va and 

v b  as functions of unknown parameters Cm, Cn, Ck, (o and A. 

elements of the $ matrix are obtained. For i=l , . . . . ,n, where 

n is the number of points at which the distortion elements va 

and vb are evaluated. 
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In order to standardize the approach in partial differen- 

tiation for individual modified equiareal map projections new 

abbreviations are introduced: 

aA 1 a B  1 - = -  
a 'm 

2 A ( E 1 + E 2 )  and - = -  
a 

2B (El + E2) r (IV-5-16) 

where 

1 1  
El = - - a and E2 - - (-) 

a 'm acm C O S ~ U  

From the equations of transformation of coordinates ( IV-5-1 ) 

du - =  sin 5 dv 

dCm COS u 
and - = 

dCn 
rl r 

and using the definitions of elements of the metric tensor 

(IV-5-3) the formulae for quantities El and E2 are easily 

derived: 

- - coszg sing 
CncosLtu ( K ~ ( C O S ~ U  + 2Cm sinu s i n 0  + C,,,K~=) , 

- n 
E2 - ( K ~  sinu cosu - K~ (COS~U - 2 sin2u)) , 

c;cos4 u 



where 

and 

with calculated values of El and E2 equations (IV-5-1 1) become 

In a similar way to equations (IV-5-16) further 

abbreviations are introduced. 

where 

aG11 
F 1  = - aG22 

and F~ = - - 
acn cos2u aCn 



w i t h  

and 

Thus, t h e  e l e m e n t s  o f  t h e  s e c o n d  column o f  % m a t r i x  

(IV-5-12) a r e  

F o r  t h e  t h i r d  column o f  m a t r i x  6 

where  

3% 1 - 1 a G 2 2  
and  G 2  - - - , 

c o s 2 u  a C k  



with f i n a l  e x p r e s s i o n s  

The l a s t  t w o  columns o f  $ matrix w i l l  be der ived  i n  a  

s i m i l a r  fa sh ion  

where 

a A 2  - -  a A2 
av - H j  + H q  . - H , + H ~  and - -  a u 



au  a <  L m 
T~ = E q = -  cos u ( c o s + ,  s i n +  - s i n  4 cosm C O S ( A ~ - A )  ) , 

0 

a 2 2 H~ = - ( )  = 'n (K5 + 2K2 t a n  u)  , 
a u  c o s 2 u  Cm C O S ~ U  

T h u s ,  e q u a t i o n  ( IV-5-36) becomes  

a n d  s i n c e  - a*2 = - 0 B 2  , where  Xi  is  an  a r b i t r a r y  v a r i a b l e ,  axi  ax i  



For the last column of 8 matrix 

where 

au aa C - m U , - F . q = - -  
COS u cosa cosm sin(\,-A) 

and 

av an 
u2 = - - Cn sinn c o s ~  (cot (AO-A) - sinmo tann). (IV-5-48) a~ a x o  

The main optimization computer program for equiareal 

modified map projections was identical to all optimized mapping 

systems. The differences between various projections were 

given at the end of the program in subroutines in which partial 

derivatives xuf yur xvr yvf x uvr Y ~ ~ f  X ~ ~ f  Yuuf x vvf %v were 

defined. 
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The author optimized four modified equiareal map 

projections: 

a) Sanson's projection, 

b) Mollweide's projection, 

c) Hammer's projection, and 

d) Eckert's IV projection. 

The partial differentiation of transformation equations for 

individual projections is given in the Appendix 111. The 

inclusion of differential formulae in this section would make 

an already difficult section completely unreadable. 
- - - 

- 

6. OPTIMIZATION RESULTS OF CONICAL PROJECTIONS 

The official version of the normal aspect of the Lambert 

conformal conic projection with standard parallels at latitudes 

of 49' and 77' yielded the Airy-Kavraiskii measure of quality 

(11-6-10) of 

The first optimization dealt with the normal aspect of the 

Lambert conformal conic projection. The constants of the 

projection, cl and c2, were optimized. In other words, 

indirectly a better choice of standard parallels was made. The 

improvement resulted in a 30 percent smaller measure of 

distortion. Further optimization of the metagraticule gave 

even better results. The final measure of distortion was 



reduced by more than one half. The Lambert equiareal conic 

projection gave a slightly better result of optimization than 

the conformal projection, but the smallest measure of distor- 

tion was achieved with the optimized equidistant projection. 

Although the position of the metapole was expected to be 

identical in all optimized conic projections the author 

obtained small differences which are probably caused by 

numerical evaluation of linearized mathematical models. 

At the suggestion of Dr. T. Poiker the author has also 

determined the optimized Lambert conformal projection where the 

weights were based on the distribution of population. Since 

the density of population drastically varies from one side of 

the country to the other, the initial approximations for 

unknown parameters were difficult to determine. After many 

hours of pure trial-and-error attempts, convergence of the 

optimization process was finally established leading to a 

reasonably good mapping system. 

The optimization of cylindric and azimuthal projections 

was a more stable process than the optimization of conic 

projections. Convergence was easy to establish. 

The results of the optimization process are given in the 

following table. 



CONIC PROJECTIONS: 

- -  

PROJECTION: 

Lambert 
Conformal Conic 
(official projection) 

Lambert 
Conformal Conic 
( optimized normal) 

Lambert 
Conformal Conic 
(weights: population) 

Lambert 
Conformal Conic 
( optimized) 
- --- 

Equiareal Conic 

Equidistant Conic 

Table IV-6-1 Optimized parameters of conic projections 



CYLINDRIC AND AZIMUTHAL PROJECTIONS: 

Table IV-6-2 Optimized parameters of cylindric 
and azimuthal projections 

"Optimized constants of Urmaev's cylindric projection are 

Projection: 

Mercator 
(Conformal Cylindric) 

Equiareal Cylindric 

Urmaev's Cylindric* 

S tereographic 

Thus, the optimized version of Urmaev's projection is almost 
an equidistant cylindric projection. When the values of 

c 

.9904 

.9904 

.9904 

1.9678 

- - 
coefficients a and a converge to zero the projection becomes 
a true equidiseant cylindric projection. 

40 

25' 57' 

25' 57' 

25" 57' 

- 

60' 15' 

156' 27' 

156" 27' 

156' 27' 

-91' 45' 

i 

A 

E~~ 

.I096 

.01096 

.00775 

.01130 

I 



7. OPTIMIZATION RESULTS OF MODIFIED 
EQUIAREAL PROJECTIONS 

The optimization of modified equiareal projections was 

much more susceptible to the divergence of the optimization 

process than was the ease with the conical projection. The 

determination of reasonable close approximations for unknown 

parameters was decisive and it required many hours of tedious 

trial-and-error approach. However, when the final approxima- 

tions were found they led to very good results with respect to 

the Airy-Kavraiskii measure of quality. 

MODIFIED EQUIAREAL PROJECTIONS: 

Table IV-7-1 Optimized parameters of 
modified equiareal projections 

Projection 

Sanson 

Mo1lwei.de 

Hammer 

Eckert IV 

40 

25" 57' 

25' 57' 

25" 57' 

25" 57' 

61' 27' 

61" 27' 

61' 27' 

61" 27' 

'm 

.9915 

.9918 

.9914 

.9794 

'n 

.8770 

1.0041 

1 .OOOO 

.9135 

'k 

1.0620 

1 .I000 

.9992 

1.2320 

h 

E~~ 

.0105 

.0070 

.0069 

.0068 



8, CHEBYSHEV'S PROJECTIONS FOR CANADA 

T h e o r e t i c a l  a s p e c t s  of Chebyshev 's  p r o j e c t i o n s  were 

d i s c u s s e d  i n  t h e  f o u r t h  c h a p t e r .  S e v e r a l  of  t h e  p o s s i b l e  ways 

to s a t i s f y  t h e  fundamental  r equ i r emen t  of t h e  c o n s t a n t  s c a l e  

f a c t o r  a long  t h e  boundary polygon were d e s c r i b e d  i n  d e t a i l ,  

However, f o r  t h e  p r a c t i c a l  computa t ion  t h e  a u t h o r  has  d e c i d e d  

t o  use a series of harmonic po lynomia l s  (1-7-27) on ly .  The 

boundary of Canadian t e r r i t o r y  was approximated by 31 d i s c r e t e  

p o i n t s  (See  F i g u r e  IV-1-1). The o p t i m i z a t i o n  p r o c e s s  

de te rmined  t h e  c o e f f i c i e n t s  of t h e  harmonic po lynomia l s  by 

s a t i s f y i n g  t h e  fundamental  c o n d i t i o n  of l e a s t  s q u a r e s  (111-4-2) 

n  
1 ( I n  m i ) 2  = min , 

i = l  

where n  extended t o  a l l  31 boundary p o i n t s ,  S i n c e  t h e  number 

o f  unknowns is 2k + 1 ,  where k  is t h e  o r d e r  of t h e  harmonic 

polynomial  it is obv ious  t h a t  i n  t h e  c a s e  of 31 boundary p o i n t s  

w e  can go up t o  t h e  o r d e r  of 15 f o r  t h e  harmonic po lynomia l .  

I n  t h a t  c a s e  t h e  boundary i s o c o l  w i l l  p a s s  th rough a l l  31 

p o i n t s .  However t h e  h i g h e r  t h e  o r d e r  of t h e  i n t e r p o l a t i n g  

polynomia l  t h e  l a r g e r  t h e  system of e q u a t i o n s  we  have t o  s o l v e  

f o r .  I t  is p robab ly  t h e  b e s t  approach t o  c o n t r o l  t h e  sum of  

t h e  s q u a r e s  of l o g a r i t h m s  of s c a l e  (IV-8-1) and i f  t h e r e  is no 

e s s e n t i a l  improvements between i - t h  o r d e r  and i + 1st o r d e r  t o  

s t o p  f u r t h e r  compu ta t ions .  The  a u t h o r  has  c a l c u l a t e d  t h e  
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coefficients for the harmonic polynomials up to the seventh 

order. The minimized sum of residuals (IV-8-1) for the seventh 

order polynomial was only slightly better than the sum of the 

sixth order polynomial. Thus, according to the author's 

opinion, for the boundary of 31 points which define Canada, 

there is no need to go further than to the sixth order. It is 

naturally a questionable problem what one considers a 

significant improvement and what is an unimportant change. 

These questions were neither investigated nor answered. The 

author was rather interested in the optimization process and 

the inclusion of conformal mappings in that process was mxde 

for the sake of completeness. The author is fully aware that 

optimized conformal mappings have rather a small chance of ever 

being used in geographic mappings. Equiareal and particularly 

equidistant projections are much more applicable. 



Table IV-8-1 Coefficients of harmonic polynomials 
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9. CONCLUSIONS AND RECOMMENDATIONS 

This study of optimization of cartographic projections for 

small scale mappings was conducted to investigate the general 

approaches for obtaining the best projections using the Airy- 

Kavraiskii measure of quality and, in particular, to derive the 

coefficients for various mapping systems for Canadian 

territory. The philosophical question whether the Airy- 

Kavraiskii or the Jordan-Kavaraiskii criterion should be used 

as the basis of the optimization process was answered by the 

author's subjective choice of the former. The two criteria 

should lead to similar results but the application of the Airy- 

Kavraiskii criterion in the computation process was much 

simpler. This was the main reason for its selection as the 

basis of finding the best projections for Canada. 

For the sake of completeness the author has added to the 

research the determination of Chebyshev's projections, i.e. the 

best conformal mappings, although conformal projections, 

generally, should not be used for small scale maps in geog- 

raphy. From the class of all analytic functions the author 

optimized the complex polynomials only. 

The optimization results clearly indicate that in the 

family of conical projections neither conformal nor equiareal 

mappings belong to the best system. The equidistant oblique 

conic projection gave the best result and since it is a very 

simple projection the author highly recommends its application 



for small scale maps of Canada. Here we have all necessary 

formulae and coefficients which fully define the recommended 

projection, namely 

sin 5 = sin ( sin ( + cos mo  cos ( cos (Ao-A) , 
0 

cos ( sin (Ao-A) 
tan q = 

sin ( cos (o - sin (o cos mo cos ( A ~ - A )  ' 

x = p siny , y =  C 2 -  p cosy . 

Since the above equations for the rectangular Cartesian 

coordinates ( x , y )  are related to the mapping of a unit sphere 

the results of the last two equations must be multiplied by an 

average radius for Canada in the scale of mapping. 

The optimized versions of modified equiareal projections 

also gave very good results but they are not recommended since 

the three best projections: Mollweide, Hammer, and Eckert IV 

involve a numerical solution of a transcendental equation for 

each mapping point. Because these solutions can only be made 

by a suitable iterative numerical approach, the computation 

process becomes too lengthy and complicated. However, when the 

equiareal property is of special importance and the cost of 



computat ion is unimpor tan t  then any of t h e  l a s t  three mod i f i ed  

e q u i a r e a l  p r o j e c t i o n s  can be used. 

Canada, t h e  Uni ted  S t a t e s  of America and Mexico w i l l  

l e g i s l a t e  t h e  new g e o d e t i c  datum i n  t h e  next  few y e a r s .  One of  

t h e  r e s u l t s  of t h e  new North America Datum w i l l  be changes to  

l a r g e  s c a l e  mappings. Almost a l l  f rames of t h e  p r e s e n t  l a r g e  

s c a l e  t o p o g r a p h i c  maps of Canada w i l l  have t o  be changed. 

Although sma l l  s c a l e  a t l a s  maps w i l l  no t  be e f f e c t e d  by t h e  

change of datum it might be oppor tune ,  whi le  u n d e r t a k i n g  t h e s e  

l a r g e  m o d i f i c a t i o n s  and t r a n s f o r m a t i o n s ,  f o r  g e o g r a p h e r s  t o  

select a b e t t e r  c a r t o g r a p h i c  system. The system sugges t ed  by 

t h e  a u t h o r  has  s e v e r a l  recommendations. 

EPILOGUE, WRITTEN BY LEWIS CARROLL 

"What 's  t h e  good of M e r c a t o r ' s  Nor th  P o l e s  
and Equa to r s ,  

T r o p i c s ,  Zones, and Mer id ian  Lines?"  
So t h e  Bellman would c ry :  and t h e  crew 

would r e p l y  
"They a r e  mere ly  c o n v e n t i o n a l  s i g n s !  
O the r  maps a r e  such shapes ,  wi th  t h e i r  

i s l a n d s  and capes! 
But we've g o t  our  brave  C a p t a i n  t o  thank"  

( S o  t h e  crew would p r o t e s t ) "  t h a t  h e ' s  
bought us  

THE BEST - 
A PERFECT AND ABSOLUTE BLANK!" 



APPENDIX 1: GRAPHICAL PRESENTATIONS OF TYPICAL 
CONICAL PROJECTIONS 

CONFORMRL CONIC 

Lambert Conformal Conic Projection 



STEREOGRAPHIC PROJECTION 

I 

Oblique Aspect of Stereographic Projection 



MERCATOR PROJECTION 

Mercator Projection 



Equidistant Cylindric Projection 



APPENDIX 2: GRAPHICAL REPRESENTATION OF TYPICAL 
EQUIAREAL MODIFIED PROJECTIONS 

Sanson's Projection 



Mollweide's Projection 



Hammer's Projection 



APPENDIX 3: DERIVATION OF FORMULAE FOR OPTIMIZED 
MODIFIED PROJECTIONS 

(i) Sanson's Projection: 

v sin u , x = cos u v 

x = -  
uv sin u 

x = -  v COS u , 
uu Yuu = 0 

(ii) Mollweide's Projection: 

2$ + s i n  2 J, = n sin u 



Computation of $: 

TI $(O) =, sin u for i = 0 to n 

F'(i) = 2(1 + cos 2$) 

The iterative process is repeated until two successive 

iterations are practically identical, i.e. 

I$(i+l) - $(i) I < E , 

where E is an arbitrarily selected small number. 

& = r r  COS u 
du 2 1 + cos 214 

2 4 5  x = -  
u TI 

v sin $ 

2JZ 
Xv = - 

TI 
cos $ 

x = -  ' I2 sin + 
TI 

9 
u l v  du 

- 
uu - 2 J r v  ll 

(($12 cos q + sin + a) 
du2 



( C O S  

71 

w h e r e  

s i n  

s i n  s i n  

( i i i )  H a m m e r ' s  Projection: 

v 

X = 2 cos u  s i n  7 , = s i n  u  
6  

COS - 6  
2 cos 7 

v 
COS 6  = COS u COS - 2 ' 

- v s i n  u  d 6  = COS - 
d u  2 s i n  6  ' 

d 6  
d 2 6  s i n  6  cos u  - s i n  u cos 6  - 
- =  v 

cOs 2 
d u  t 

d u 2  s i n 2 6  



d26 - =  cos u 1 v v d6 (7 s i n  64 cos 7 - s i n  7 cos 6 -) , 
dv2 2 s i n 2 6  dv 

d26 = - -  1 v v d6 
du dv 

s in  (7 s i n  6 s i n  7 + cos 6 cos 7 a;) , 
s i n 2 6  

v s i n  7 
X = 6 d6 6 

6 (cos u s i n  - - - 2 s i n  u c o s  7) , 
U cos2  7 2 du 

- - cos u 6 v 6 v d6 
Xv 6 ( C O S  7 cos 7 + s i n  - s i n  7 =) , 

cos2  7 2 

1 x = -  6 1 v 6 d6 6 
uv 6 ( c o s ~ ~ ( ~  C O S ~ ( C O S  u s i n -  - - 2 s i n  u cos 7) + 

cos4- 2 du 2 

v 1 6 d26 6 d6 d6 + s i n  - - + + s i n  7 ( c o s  u (7 c o s  - - - 2 du dv 2 du dv 

+ s i n  u s i n  6 d6 7 a ; ) )  + 

1 v 6 d6 6 d6 + s i n  6 - s in - - (cos  u s i n -  - - 2 s i n  u cos- - 2 2 2 du 2)dv) 



v  s i n  2 
x = -  6 1 6 d S 2 +  

6 
d6  * C o s  U cos T(x) ( c 0 s 2 ~  ( -  s i n  u  s i n -  - 

uu cos4- 2 du  2 
2 

6 d 2 6  6  6 d6 + cos u  si? - - 2 con u  COST + s i n  u  s i 5  =) + 
du2 

1 6 d6 5 d6 + 5 ( c o s  u  s i n  - - - 2 s i n  u  cos I )  s i n  6 =) 2 d u  

cos u  6 6 v  d6 2 6 v  
X = vv 6 ( C O S ~  7 (COST s i n  (=) - COST s i n  - + 

2 C O S ~  I 2 

6 v  d 2 6  + 2 s i n  I s i n  - -) t 
dv2 

d6 6 v 6 v  d6 + s i n  6 ( c o s  2 cos + s i n  7 s i n  T ~ ) )  , 

- 1 6 1 ( c o s  7 cos u  + - s i n  u  s i n  6 d6 
Yu - 6 2 T Z )  c o s 2  3 

6 d6 s i n  u  s i n  - - - 2 d v  
Yv - 6 2 cos 2 7 

- 1 6 1 6 d6  d6 ( c 0 s 2 ~  ( 7  s i n  u COT ;i;-;i; - 6 
%v - 6 

d 6  + s i n ?  cos - d v  
2 C O S ~  

6 d26  d6 6 1 6 d6 + s i n u  sixy m ) + s i n 6 - ( c o s ~ c o s u ~ s i n u  d v  sixy =)) , 



- - 1  ( c o s 2 q  6 (T  1 6 
6 s i n  u cosd d6)2-  2  c o s q  s i n  u + 

Yuu 2 c o s 4 ~  2  ( d u i  

6 d 2 6  d6  6 1  6 d6 + s i n u  s i 3  - ) + s i n & - ( c o s ~ c o s u + l s i n u  s i ~  x)) , 
d  u2 d u  

- - 6 1  6 d6 6 d26  s in  (cos21 (- cos- (-1 + s i n  - - + 
Yvv 6 2  C O S ~  \ 2  2  d u  d v 2  

6 d6 2 + s i n  u  s i n  6 s i n  2 (=) ) . 

( i v )  E c k e r t ' s  I V  P r o j e c t i o n :  

X = 2  2 G  v  ( 1 +  cos 'f ') , y  = - s i n  'f' rn m 

C o m p u t a t i o n  of 'f': 

1  
Y ( O )  = 7 ( I  + i) s i n  u , 

1  
~ ( i )  = 'f'(i) + 2  s i n  Y ( i )  + T  s i n  2 Y ( i )  - ( 2  + $ )  s i n  u  , 

F 1 ( i )  = 1 + 2  cos Y ( i )  + cos 2 ~ ( i )  

for i = l  t o  n  



u n t i l  

'II 

dY ( 2  + ?) cos u - = I 

d u  1 + 2 cos w + cos 2Y 

ll 

d2 Y 2 + T  
- =  d Y  ( s i n y  + s i n  2 ~ )  - ( 2  cos u ,, 
du2 ( 1  + 2 cosy + cos 2 ~ ) ~  

- s i n  u ( 1  + 2 cos Y + cos 2 1 ) )  , 

= - 2 d~ v s i n  Y , rn 

Xuv = - 2 dY s i n  Y a; , rn 

x = -  2v dlu 2 d 2 ~  
( c o s  y (z) + s i n  Y -) , uu m T T T  d u2 

2 G  = -  dY cos Y , 
Yu 6 

2 G  = -  d 2 ~  dY 2 

yuu  ( C O S  Y - - s i n  Y ) . 
rn d u2 
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