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ABSTRACT

One of Fhe main tasks of mathematical cartography is to
determine a érojection of a mapped territory in such a way that
the resulting deformations of angles, areas and distances are
objectively minimized. Since the transformation process will
generally change the original distances it is appropriate to
adopt the deformation of distances as the basic parameter for
the evaluation of map projections. As the qualitative measure
of map projections the author decided to use the Airy-

Kavraiskii criterion

2 _ 1 2 2
EAK = >3 £ (ln a + 1ln b) da ,

where A is the area of the mapping domain, a and b semi-axes of
the indicatrix of Tissot, and the integration is extended to
the whole domain. Until now all optimization of map projec-
tions were referred to domains with analytically defined
boundaries, for example, a spherical trapezoid, spherical cap
or a hemisphere, and for those map projections in which the
analytical evaluation of the integral was possible. The author
expands the optimization process to irregqular domains with
boundaries consisting of a series of discrete points. The
minimization of the criterion leads to a least square

adjustment problem.
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The main purpose of the project was to develop a uniform
method to optimize the standard and most frequently used
mapping systems in geography for Canadian territory. The scope
of optimizatgon was enlarged by the inclusion of the
optimization of modified equiareal projections as well as the
determination of the Chebyshev conformal projections.

Almost all small scale maps of the territory of Canada
have been based on the normal aspect of the Lambert Conformal
Conic projection with standard parallels at latitudes of 49°
and 77°. Every optimized projection in the research yielded a
smaller value for the Airy-Kavraiskii criterion. Thus, it was
proven that any standard map projection with properly selected
metagraticule and constant parameters of the projection is much
better than the official projection. The best result was
achieved with the optimized equidistant projection. Since the
projection equations for the equidistant conic projection are
very simple and the projection gives the best result with
respect to the Airy-Kavraiskii criterion, the author highly

recommends its application for small scale maps of Canada.
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O. INTRODUCTION

1. GRIMMS' INTRODUCTION

Song For Five Dollars

Five learned scholars

were each paid a dollar

to see if they could find out something new
but they met with some resistance

for according to the distance

they noticed things got smaller or they grew.

A passion in them burned

they left no worm unturned

they flattened all the bumps to fill in holes
and from Leicester to East Anglia

made continents rectangular

and evenly distributed the poles.

2. INTRODUCTION TO CARTOGRAPHIC PROBLEMS

The mathematical aspect of cartographic mapping is a

process which establishes a unique connection between points



the earth's sphere and their images on a plane. It was proven
in differential geometry (Eisenhart, 1960), (Goetz, 1970),
(Taschner, 1977) that an isometric mapping of the sphere onto a
plane with all corresponding distances on both surfaces
remaining identical can never be achieved since the two
surfaces do not possess the same Gaussian curvature. In other
words, it is impossible to derive transformation formulae which
will not alter distances in the mapping process. Cartographic
transformations will always cause a certain deformation of the
original surface. These deformations are reflected in changes
of distances, angles and areas.

The main task of mathematical cartography is to determine
projection formulae to transform a mapped territory onto a
plane with a miniﬁum deformation of the original sphere. 1It is
possible to derive transformation equations which have no
deformations in either angles or areas (Richardus and Adler,
1972), (Frankich, 1977). These projections are called
conformal and equiareal, respectively. The transformation
processes, however, always change distances and therefore the
deformation of distances must be used as the basic parameter
for the evaluation of map projections.

Criteria for the selection of an appropriate cartographic
system for small scale geographic mappings are versatile
(Frandula, 1974). It has been usually stated that the choice
of map projection depends on the position, geometrical shape of

the mapping domain, and the purpose of the map. An applied



cartographic representation must be a reliable image of the
mapping territory. 1In other words, the overall deformation of
distances must be as small as possible. The distribution of
distortions should be the essential governing factor for the
selection of a map projection.

It remains to define a measure of deformation of distances
related to a point of a mapping domain and a measure of
deformation for the whole demain. The ratio of a differential-
ly small distance on the mapping plane and its counterpart on
the sphere is generally used to express the change of distances
(Biernacki, 1965), (Fiala, 1957). This ratio is called the
scale factor. The ideal value of the scale factor is unity.

In that case there is no deformation of a distance. Chebyshev
suggested (Kavraiskii, 1959) use bf the natural logarithm of
the scale factor as the measure of deformation. The author in
this research has adopted Chebyshev's definition of deforma-
tion. Before the definition of the measure of quality can be
expanded to a mapping domain it must be realized that the scale
factor and also its logarithm at a point in an arbitrary non-
conformal projection varies as a function of the direction
(Biernacki, 1965), (Richardus and Adler, 1972). Cartographers
usually consider the extreme scale factors at the point only.
The extreme value of the scale occur in two orthogonal direc-
tions, called the principal directions (Kavraiskii, 1959).
Airy (1861) recommended the analytical integration of the sum

of squares of the principal scales for the whole territory as



the measure of quality of a mapping system. He assumed that
the boundary of the territory is analytically defined and that
the practical integration process is possible. It is appro-
priate to mention that there are very few map projections and
éven fewer analytically defined boundaries (spherical cap,
spherical trapezoid, hemisphere or the whole sphere) where the

analytical integration is achievable.

3. OBJECTIVES OF RESEARCH

The two main objectives of the research were:
1) theoretical formulations of cartographic mapping, ideas and
methods of optimization, and an explicit development of a new
optimization process suggested by the author; 2) the practical
application of the derived method for the optimization of
various cartographic systems for Canadian territory. The first
part is strictly theoretical and the second is practical.

The theoretical part discusses general mapping theory. It
was developed in the eighteenth and nineteenth century with a
small contribution introduced at the beginning of this century.
There are several books in foreign languages in mathematical
cartography which cover these theoretical foundations
(Biernacki, 1973), (Driencourt et Laborde, 1932), (Fiala,
1957), (Hoschek, 1969), (Kavraiskii, 1959), (Meshcheryakov,

1968), (Wagner, 1962). The only English language publications
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(Maling, 1973), (Richardus and Adler, 1972), are elementary
books and they lack a serious mathematical treatment of map
projections. The first chapter therefore presents an
abbreviated overview of mathematical cartography including all
necessary mathematical expressions, given without proofs and
derivations. There are, however, two explicit derivations of
the fundamental differential equations of mappings.

The Russian cartographic school developed in the last few
decades a series of interesting approaches to map projections.
In particular, Urmaev (1953) and Meshcheryakov (1968) intro-
duced the concept of a system of two partial differential
equations which can be called the fundamental system. The
system involves two partial differential equations with four
characteristics of distortions, thus the systeﬁ is undeter-
mined. If two of the characteristics are predefined, or if two
conditions with the characteristics are superimposed on the
mapping equations, the fundamental differential equations can
be at least theoretically integrated, leading to the final
expressions of cartographic mappings. The development is, from
a mathematical point of view, of great interest since it opens
an avenue for derivation of many new map projections in which
the starting criterion is a distribution of characteristics of
distortions over the mapping domain. This development is known
to very few North Americans and therefore the author gave the
detailed derivations of both Meshcheryakov's and Urmaev's

system of fundamental differential equations.



Classification of mapping is given with respect to the
characteristics of deformations (Kavraiskii, 1959). It treats
conformal, equiareal and equidistant projections only. All
other classification schemes are neglected. The classes of
conformal and equiareal projections are defined by their
corresponding differential equations. The possibility of
integration of the differential equation has been proven by the
author. The author developed from the non-linear partial
differential equation two map projections. One of them is a
well-known Lambert's equiareal cylindric projection and the
other is a new equiareal projection.

The second chapter starts with concepts of ideal and best
map projections (Meshcheryakov, 1968) and the introduction of
qualitative measures for mapping systems. The author
synthesized the ideas of Airy (1861), Kavraiskii (1959),
Meshcheryakov (1968), Franéula (1971), and Young (1920) and
decided to use for the optimization criterion the Airy measure
of quality modified by Kavraiskii. The measure is the integral
of the sum of squares of logarithms of the principal scales and
the integration was extended to the whole mapping domain. The
Airy-Kavraiskii measure formally resembles variance in statis-
tics and its optimization, as the author proved, leads to the
least squares adjustment problem. One could use some other
measures of quality, for example, the sum of principal scales,
the sum of absolute values of logarithms of principal scales,

and others. Their optimizations, however, lead to the solution



¥

of a system of non-linear eguations while the least squares
adjustments are reduced to the solution of linear equations.
This was the main reason that the Airy-Kavraiskii measure was
selected as the basis of optimization.

Very few mathematical cartographers have seriously tackled
the optimization problem. Airy (1861) was the first to use his
criterion to develop a map projection of a hemisphere. He
applied calculus of variations to minimize the norm in the
Hilbert space. Young (1920) expanded the approach including
some other projection systems and extending the integration to
the whole sphere. In the two cases of Airy and Young the
selected functions were integrable for domains inclosed by
analytically defined curves. Kavraiskii (1959) explained the
optimization of conic projections for domains bounded by two
parallels. His method was reduced to the determination of the
best standard parallels satisfying the Airy-Kavraiskii
criterion. Franéula (1971) determined the best modified
projections of the whole world by applying the same criterion,
but instead of an analytical minimization of the norm he used a
numerical minimization process.

The final generalization of the optimization for the Airy-
Kavraiskii measure of quality was introduced by the author. A
mapping domain was approximated by a series of discrete points
whose density is a matter of personal choice and it is usually
governed by the size of the computer. The higher the density

of points the more reliable are the results of optimization.
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Every mapping domain can be approximated by discrete points
regardless of its shape and size. The boundary does not need
to be analytically defined. 1In other words, every mapping of
an arbitrary domain can be realistically optimized. The author
further improves the determination of the best map projection
by including the most optimal metagraticule, as named by Wray
(1974). The metagraticule represents a coordinate system
similar to the geographic graticule except that it is generally
displaced on the sphere with respect to the graticule. The
metagraticule represents an invariant frame for a projection
éyétem. -fhéwoptimizatién'proceéS} developed by the author,
leads to the optimal metagraticule in addition to the best
determination of constants for individual map projections. The
optimized mathematical model is non-linear with respect to the
unknown parameters (metagraticule and constants of projections)
and it must be made linear by the Newton method. The author
has linearized the optimization mathematical models for almost
all important conic, cylindric and azimuthal map projections.
The spectrum of optimized projections was enlarged by the
inclusion of modified equiareal map projections. The major
study of modified map projections has been made by Wagner
(1962). He empirically selected modification constants. The
author, however, developed a method where the constants were
determined through least squares optimization, minimizing the
Airy-Kavraiskii measure of distortion. Such determined

modified equiareal projections can be used for small-scale
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mappings of arbitrary domains when the property of equivalency
is essential to users.

Conformal map projections have generally little importance
for small-scale geographic transformation. They are, however,
fundamental for large-scale topographic maps. The author
believes no optimization of mappings is complete without
Chebyshev's projections which are the best conformal projec-
tions (Meshcheryakov, 1969). They are defined as projections
in which the changes of scale are minimized. Chebyshev's
theorem (Biernacki, 1965) states that the necessary and
sufficient condition of the best conformal projection is to
have a constant scale factor along the boundary contour of the
domain. The Russian cartographic school (Urmaev, 1953) has
solved the problem of obtaining the best conformal projections
for symmetric boundaries. The author showed in the first part
of the third chapter the suggested solutions of Urmaev using
several methods (method of Ritz, method of finite differences,
and method of least squares). The completion of the determina-
tion of Chebyshev's projections for most general non-symmetric
domains was developed b{ the author. He used a complex
polynomial as a mapping analytic function and computed the
coefficients of the polynomial by the method of least squares.
The resultant line of constant scale approximated closely the

boundary contour.



4. PRACTICAL OPTIMIZATIONS FOR CANADIAN MAPS

The second part of the research was the practical
application of the theoretical optimization developed in the
first part of the thesis. All optimization routines were
applied for various maps of Canada. Although the theoretical
portion of the research contains several optimization
approaches attributed to Urmaev (1953), these approaches are
not implemented because of their restricted value for the
Canadian territory, which can hardly be approximated by a
sphérical trapezoid or a symmetric domain.

The author devoted a major part of the last chapter to the
optimization of conic, cylindric, azimuthal and modified
equiareal map projections. The optimization criterion was
minimization of the Airy-Kavraiskii measure of distortions. 1In
other words, the author calculated the logarithms of the
principal scales at a finite number of discrete points which
approximate the Canadian territory. A numerical integration of
the squares of these logarithms extended to the whole domain
was minimized by the method of least sgquares. The author
developed mathematical models for main cartographic mappings.
All formulae were given in an explicit form suitable for
further optimization of any other territory.

When the author decided to test the quality of present
small scale mappings of Canada and subsequently investigate

possible improvements using an objective criterion of



deformations it was expected éhat the optimization would amount
to a small refinement to the present system resulting in a
marginally better graphical representation of Canada. The
numerical results of the research surpassed these hopes to an
unexpected amount. Every optimized map projection leads to a
much better mapping system than the presently used Lambert
Conformal Conic projection with standard parallels of 49° and
77°. In other words all projections optimized by the author
give better representation of Canada with less distortions than
the system in use. Particularly good results are obtained with
an oblique aspect>;£ﬂ;:$;aﬁiéiétént conic projection whose
transformation formulae are very simple and therefore suitable
for providing the basis of a new small-scale map of Canada.

The overall deformations with this projection are 70 percent
smaller compared to the official projection.

The author believes that from theoretical point of view
this research for all practical purposes completes the opti-
mization of small-scale mapping. However, the determination of
better geodetic mapping (projections of the ellipsoid of
rotation onto a plane) remains to be tackled. This research
also indicated that more studies could be done in the integra-

tion of the fundamental differential equations of geographic

mappings.



I. GENERAL THEORY OF CARTOGRAPHIC MAPPINGS

1. INTRODUCTION TO THEORY OF SURFACES

Let us consider a surface S and on it a closed domain
D. The surface is defined by a set of curvilinear para-
metric coordinates ul, where 1 = 1,2, The position vector

of the surface is

; ol = f* (ul,u2). (1-1-1)

The surface is called regular if for every point, which

belongs to the domain D the following condition is satisfied

tfl X tfz # 0, (I-1-2)

where

2

_off _ ot 1
tfl = 3ol and 5z ° (I-1-3)

A point in which the vector product of the two tangent
vectors 1:1 and tz is equal to zero is called a singular
point of the parametrization (ul,u2?) and it is excluded from

the domain D (Goetz, 1970).



Every regular surface S cén have an infinite number of
different parametrization systems (ui). When one of the
parametric coordinates ui is kept constant and the other varies
we obtain a family of curves dependent on one parameter only,
called the coordinate lines.

Let us take a curve on the surface defined by the equa-

tions

ul! = ul(t) and u2 = u2(t), (I-1-4)

where t is an arbitrary parameter. The square of a differen-
tially small length of the curve is known as the first funda-
mental or the metric form of the surface and is obtained by the

equation
ds? = gij duiduj, (I-1-5)

where ds is the differentially small length and gij is the
first fundamental or metric tensor. For real surfaces and
3 = gj.. The formula (I-1-5) uses the

standard summation convention, i.e. the summation is always

parametrizations 9

applied when the same indices appear twice in the same

monomial, once as a superscript and once as a subscript.
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Thus, the equation (I-1-5) explicitly written becomes
2 = 1y 2 1du2 2y 2 -1-
ds gll(du Y2 + 2912 duldu?2 + gzz(du )2, (I-1-6)

For a given surface and a selected parametric coordinate

system we obtain a metric tensor

9.5 = E£(5,u), (1-1-7)

with components

g = (I-1-8)

The individual components of the metric tensor are obtained by

the scalar products of the corresponding tangent vectors ffl

and t*,.

9, = £ 9, = L, and gy, = F0L,. (I-1-9)
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'

The discriminant of the first fundamental form, denoted by

g, is

= g].]. gzz - 9212- (I"l"lO)

. : . i
A surface is regular for a chosen parametrization (u’)

when

The tangent vector 21 to the curve (I-1-4) can be defined as a

linear combination of the tangent vectors to parametric curves

where a' are the components of fl with respect to the coor-
dinate system (ul). If we take another curve which intersects

the first and denote its tangent vector at the common point of

the two curves byb , then the angle w between the two curves

is obtained from the scalar product of the tangent vectors
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which yields

CosS w = (I-1-12)
i j i j
/gija a /;ijb b

The angle between the coordinate lines is a special case of the

last formula
cos e = 912/'/911 922 ° (1-1—13)
The orthogonality of the parametric coordinate lines is
achieved when the last formula takes on a value of zero at

every point of the surface. Thus, the condition of orthogo-

nality of parametric curves is
g,, = 0, (I-1-14)
and the corresponding metric form becomes
ds2 = gll(dul)2 + gzz(duz)z. (I-1-15)

The area of a differentially small element of the surface

S 1is

dp = Yg duldu?, (I-1-16)



and its integration for the whole domain

A, = /[ Y9 duldu2. (I-1-17)

The elements of surfaces (a differentially small distance,
ds, an angle between two curves of the surface, w , and the
area of the domain, AD) are known as the intrinsic elements of
the surface since they are invariant no matter which parame-
trization is selected. 1In other words, the coordinates can be
changed but fhe values of intrinsic elements remain unaltered.

To simplify the developments of formulae in certain types
of mappings, we can make a specific parametrization of the
surface which leads to a particular type of the first funda-
mental form.

For example, if g,;, = 1 and g,, = 0 we obtain the, so-
called, semigeodesic coordinates with the fifst fundamental

form

ds2 = (dul)2 + G(ul,u2)(du?)2, (I-1-18)

When g, and g,, = 0 the resulting coordinates are

92,

called isometric in geodesy and isothermic in mathematics. The



metric form in isothefmic coordinates becomes
ds2 = [x(ul,u2)12((dul)2 + (du2)2?j}. (I-1-19)

The isothermic coordinates are extremely important in
cartography since the determination of these coordinates on
surfaces leads directly to conformal mappings probably the most
important type of representation from a practical, as well as a
theoretical, point of view.

In addition to the already mentioned intrinsic elements of
a surface: distance, angle, and area, there is another intrin-
sic element of the utmost importance and that is the Gaussian

curvature, It is obtained by the formula (Goetz, 1970)
K = b/g, (I-1-20)

where b is the discriminant of the second fundamental form

whose components are computed by the vector equation

o= K13 £ £, (1-1-21)
’g

and then

(I-1-22)
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Mathematical cartography éenerally deals with three
different surfaces: plane, sphere and spheroid.

The plane is a surface whose Gaussian curvature 1is equal
to zero. If we adopt an orthogonal Cartesian coordinate system

(xl) the first fundamental form on the plane becomes
ds?2 = (dx!l)2Z + (dx2)2, (I-1-23)

The sphere and the spheroid, on the other hand, belong to
surface of rotation, which are defined by the rotation of a
planar curve about an axis. The axis of rotation lies in the
plane of the curve. Various positions of the rotating curve
are called meridians of the surface.

A sphere is a special case of a surface of rotation
generated by the rotation of a semicircle of radius R, whose
vector is

’ ’
£* = R cos ulcos u2 ¢ + R cos ulsin UZJ + R sin uzk,
(I-1-24)

’ s

with t/,‘, ,1; being mutually orthogonal vectors.

The first fundamental form on the sphere is

ds?2 = R2[(dul)2 + cos2ul (du?)2?j], (I-1-25)



and the Gaussian curvature becomes

=

= 1/R2, (I-1-26)

since

gll = Rz’ glz = 0, g22 = R2 cosz ul’

o
]
o)
o
]

12 0, b

22 R cos? ul, (I-1-27)

A spheroid is obtained by the rotation of a meridian
ellipse about its semi-minor axis. 1Its surface is used to
approximate the actual surface of the earth for geodetic
positioning and, subsequently, for geodetic mappings, but these
are outside the scope of this work. Thus it suffices to give
the fundamental formula of a spheroid

’ ’

£ = N cos ulcos u24 + N cos ulsin u?-" + N(l-e?)sin ulb ’

(I-1-28)

where N is the maximal radius of curvature at a point (ul,u?)
obtained by the expression

N = a ’ (I-1-29)

(l_ez sin? ul) 172

a is the semi-major axis of the meridian ellipse and e2 is the

square of the eccentricity

e2 = (a2 - b2)/az?, (I-1-30)
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and b is the semi-minor axis of the meridian ellipse.

The components of the fundamental metric tensor are
= N2 cos? ul, (I-1-31)
with M being the radius of curvature of the meridian ellipse
M= a(l-e2)/(l-e2 sin2 ul)3/2, (I-1-32)
Thus, the first fundamental form is
ds2 = M2(dul)2 + N2 cos?2 ul (du?)2?, (I-1-33)
and the Gaussian curvature is

K = 1/MN. (I-1-34)

2. CARTOGRAPHIC MAPPINGS

Let us consider two reqular surfaces, S and P, and on the
first surface S, a closed domain D. Both surfaces are defined
by a corresponding set of curvilinear parametric coordinates:
(ui) on S, and (xi) on P, for i = 1,2.

Then the relationship

x! = xl(ul,u?2) and x2 = x2(ul,u?), (I-2-1)



defined in the domain, DeS, establishes a connection between
points of the first surface A(ul,u2) e¢D and points of the
second surface B(x!l,x2), which belong to some domain A. 1In
other words, the domain D of the first surface is transformed
into the domain, A of the second surface, or the domain D is
projected onto the second surface in the domain A. To make
projections or mappings meaningful in practice, the class of
transformation functions (I-2-1) is restricted to those
functions which are unique, twice differentiable and continuous
up to the second derivative, finite, and where in all points

the Jacobian determinant must be different from zero, i.e.

d(x1,x2)/3(ul,u2y % 0. (I-2-2)

Such an established one-to-one correspondence between the
points of the two domains, which is continuous in both direc-
tions, is called a homeomorphism.

The first surface is commonly called the original surface
and the second surface is then the projection surface.

Under homeomorphism, however, the transformation direction is
reversible and the mapping can be also performed from the

second onto the first surface

ul = ul(x1l,x2) and u2 = u2(x!,x2). (I-2-3)

Commonly, the first set of formulae (I-2-1) is known as

the direct or forward solution, while the second set (I-2-3)



repreéents the inverse solutioh of the mapping problem.
Cartography assumes the earth to be a sphere of radius R
and the projection surface a plane. Thus, the subject of math-
ematical cartography for geographers is mainly restricted to
various types of transformations of the sphere onto the plane.
Differential geometry (Goétz, 1970; Taschner, 1977) shows
that a mutual projection of two surfaces is explicitly defined
by the metrics of the surfaces. The metric tensor depends upon
a surface and a selected parametrization, as was stated in
(I-1-7). The fundamental set of parametric curvilinear coordi-
nates on the sphere consists of the geographic iatitude, ¢, and
the geographic longitude A. The latitude of a point is the
angle between the radial line through the point and the equa-
torial plane. In its magnitude, the latitude can be between 0°
and 90° with, conventionally, the positive algebraic sign for
the latitudes of the northern hemisphere and the negative for
the southern hemisphere. The longitude of a point is the angle
reckoned from the initial meridian plane, also called the
Greenwich meridian, eastwardly or westwardly to the meridian of
the point in question. 1In its magnitude, the longitudes can be
between 0° and 180°. Eastwardly measured longitudes are con-
ventionally taken to be positive and western longitudes,
negative. The initial or central meridian of a mapped terri-
tory seldom coincides with the initial meridian of the geo-
graphic system, the Greenwich meridian. Therefore, cartog-
raphers, instead of using longitudes use the differences of

longitudes between the longitude of a point, i, and the
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longitude of the selected central meridian, Xo'

Thus, in cartography each point on the sphere is defined
by the latitude, ¢, and the difference in longitude, 1. The
coordinate lines consist of meridians, lines of constant 1, and
parallels, lines of constant 4.

The projection surface is a plane with either an orthog-
onal Cartesian coordinate system (x,y) or a polar coordinate
system (y,p). Since the change from rectangular into polar
coordinates and vice versa is accomplished by simple trans-
formation formulae, it will be assumed, at least in the
preliminary considerations, that points of the mapping plane
are defined by their rectangular Cartesian coordinates.

Thus, a mapping system establishes a law of transformation
of curvilinear spherical coordinates (¢,l1) into the plane
coordinates (x,y). To each point of the sphere the transfor-
mation functions assign a unique point on the plane. The
general transformation formulae for the direct and inverse
computations (I-2-1) and (I-2-3) can be transcribed for car-

tographic mappings into the following parametric equations

X = x(¢,1) , y=y(¢e,1), (I-2-5)
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and

o = ¢(X,y), 1 = 1(x,y), (I-2-6)

where the first set of equations defines the direct mapping and
the second set the inverse mapping. The transformation func-
tions must satisfy the same conditions as the general formulae
(I-2-1) of continuity, differentiability up to the second
derivative, uniqueness, finiteness and the Jacobian determinant
must differ from zero, 3(x,y)/3(¢,1) # 0. In other words, the
mapping functions must be homeomofphic.

The fundamental metric on the sphere, according to the

formula (I-1-15) is
ds2 = ﬁz(d¢2 + cos?y dl12), (I-2-7)
and that on the plane
ds2 = dx2 + dy2, (I-2-8)

where dS is a differentially small linear element on the plane,
obtained as an image of the corresponding linear element ds on
the sphere, and the image is realized by the transformation

functions (I-2-5). Since the rectangular coordinates (x,y) are
functions of spherical coordinates (¢,1), the differentials in

the last formula (I-2-8) are

dx = x d¢ + xldl and dy = y

A de + y,dl. (I-2-9)

¢
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When the differentials (I-2-9) are substituted into the

equation (I-2-8) we obtain the well known expression for the

square of a differentially small distance in the plane as a

SPHERE

PLANE

_____ f?\ xy)
|
| X
—

<] MAPPING

, equatof

Figure I-2-1 Coordinate systems in cartographic mappings

function of spherical coordinates

ds? = g, ,d¢? + 2g,,d¢dl + g9,,d12, (I-2-10)
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where
9,, = x¢2 + y¢2, 9,, = X, X + y¢yl, 9,, = xl2 + y12° (I-2-11)

SPHERE PLANE:

Z Q+dﬂ
( Rcosg df ) ¢+d¢
C B

Figure I-2-2 Differentially small surface element of the sphere

and its projection in the plane

The azimuth of a differentially small line segment ds on
the sphere is defined as the angle reckoned clockwise from the

positive direction of the meridian to the segment and is
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denoted by a. Its tangent function is obtained from the small

right angle triangle ABC on the figure I-2-2, namely
tan o« = cos ¢ dl/de¢. (I-2-12)

The grid bearing, 3, is the angle on the projection plane
between the direction of the y-axis of the plane coordinate

system, measured clockwise, and the projection of the arc

segment dS, namely

x,doe + x,d1 .
tan g = 9x = X9 ¥ X194 (I-2-13)

dy  yede + ypdl

From the above equation one can also determine the bearing
of the projection of meridian (1 = const., dl1 = 0) and parallel

(¢ = const., d¢ = 0)

tan y = x,/y, and tan x = x1/y;- (I-2-14)

The projection of the azimuth o, denoted by a' is then

al - B - w‘ (I-2-15)
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Thus

tan o' = tan(g — y) = L2 B - tan vy . (I-2-16)
1l + tan B tan y

Substituting the values for tan g8 and tan y from (I-2-14)

respectively and rearranging the terms, we have

tan o' = /g dl ’
g11d¢ + glzdl

or
cot o' = g,,/v7 X+ q,,/77, (1-2-17)
a1
where
9 =9,,9,, - 9;,2%- (I-2-18)

The angle between the projections of parametric curves is

computed by the formula (I-1-13)
cos § = 912//911912' (I-2-19)
The sine function of angle § is then

sin § = /T - cos26 = /9//9,,9,, (I-2-20)
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A differentially small area on the sphere limited by two

close meridians and parallels is

dp = R2 cos ¢ d¢ 41, (I-2-21)

and its projection on the plane becomes

dp = /g d¢ dl. (I-2-22)

Thus we have defined all the important intrinsic elements
of the sphere: - a differentially small distance, ds, and its
azimuth, a, a differentially small area, dp, and the corre-
sponding projections on the plane dS, «', dP, as functions of
the differentials d¢ and dl. The appropriate logical compar-
ison of the intrinsic elements provides us with measures of

quality for various projection systems.

3. THEORY OF DISTORTIONS

Differential geometry (Goetz, 1970) shows that an isomet-
ric mapping of two surfaces, a mapping where all corresponding
distances on both surfaces remain identical, can be obtained if
and only if the Gaussian curvatures of both surfaces are
identical. Since the Gaussian curvature of a sphere is equal
to the inverse of the square of the radius, and that of the

plane is equal to zero, it is impossible to derive transfor-

mation formulae which, generally, will not alter distances.



In other words, the mapping prbcess will always cause a certain
deformation of the original intrinsic elements. Although some
of the intrinsic elements may be preserved in the mapping pro-
cess, the complete identity of the original surface elements
and their projected counterparts can never be achieved in car-
tographic projections.

One of the main tasks of mathematical cartography is to
determine a projection of a mapped territory in such a way that
the resulting deformations of the original intrinsic elements
are objectively minimized. Thus, distances, angles and areas
will generally be changed in the transformation process.
However, the changes of projected distances, angles and areas,
and in particular the variations of these changes must be made
as small as possible by the appropriate choice of transfor-
mation formulae. Distortions of surfaces in cartographic
mappings are infinitely versatile, but, considered locally, the
variations of the same distortions around an arbitrary point of
a projected domain are governed by the general laws valid for
all analytically defined projection systems. These laws are
the subject of the theory of distortions. They were developed
by a French mathematician and cartographer, M. Tissot
(1824-1897) in 1859, with their final version being published
in 1881 in Tissot's 'Memoirs'.

The theory of distortion is relatively well covered in
textbooks of mathematical cartography, e.g. (Biernacky, 1965),
(Fiala, 1957), (Kavraisky, 1959), (Richardus, Adler, 1972) and

many others. In the English language it still remains to be
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treated rigorously; however, éhere is no need to redevelop all
the formulae of the theory of distortions. It will suffice to
list and explain them, since they are used later when evaldated
numerically.

The comparison of a differentially small distance on the
sphere and its projection on the plane is made by the scale

factor, k.

k = 45, (I-3-1)

where ds is the spherical distance and dS is its planar
counterpart. The ideal value of the scale is unity, in which
case, a distance on the sphere and its projection on the plane
are identical. The distortion of distances is then defined by

the equation
Ve = k - 1. (I-3-2)

From the fundamental definition of the scale (I-3-1) and
by using the expressions (I-2-7) and (I-2-8) we have the value
for the square of the scale

k2 = dx2 + dyz ’
R2(d¢2 + cos?¢ dl2)




- 33 -

which can easily be transformed into
k2 = 951 cos2q + 12 sin 2a + 922 sin2q (I-3-3)
R R< cos ¢ R4 cos<¢ )

where o is the azimuth of the original distance ds on the
sphere and gij are the elements of the metric tensor. It is
obvious from the last formula that the scale in general depends
on the position of a point (gij) and the direction of the 1line

segment at the point (a), i.e.

e e e k =k (gi j,’ a) . o ) (I-3_4)

The scales along the parametric coordinate lines,
meridians and parallels are derived directly from the equation
(I-2-25) knowing that for meridians a« = 0, and for parallels

a = /2, thus

m = /gll/R, (I-3-5)
and
n = /gzz/R COS ¢ (I-3-6)

where m is the scale along meridians and n along parallels.



The equation (I-3-3) can also be expressed in terms of m,n

and the parametric angle g, i.e.

k2 = m2 cos2q + mn cos 9 sin 2a + n2sin2g. (I-3-7)

The extreme values of the scale are obtained from the

equation d(k2)/da = 0 which yields

tan 2a, = __ 2912 C0S ¢ (1-3-8)
91, 082 - 9y,

where a, and a, *+ /2 indicate two angles that satisfy the
above trigonometric equation and represent the directions of
the extreme scale changes. These two orthogonal directions are
called the principal directions and their main characteristic
is that they remain orthogonal on the projection plane as well.
The definition and meaning of the principal directions are
formulated by Tissot in his 'Memoirs' (Kavraiskii, 1959) in the

first theorem of mappings.

...In every non-conformal representation of a regular
surface onto another there is one and only one pair of
corresponding orthogonal directions which are the
principal directions and they represent the directions
of the extreme scales....

The distortion of areas vp is the difference between unity

and the scale of area p
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where p is defined as the ratio of a differentially small area

on the plane and its original value on the sphere, namely

p = dp/dp. (I-3-10)

Substituting in the above formula the expressions for

areas dp, dP (I-2-21) and (I-2-22) we have

p = /g ’ (I-3-11)
R2 cos ¢
or
p = mn sin 9. (I-3-12)

The projection of the parametric angle, 8, is computed

either by the equations (I-2-19) and (I-2-20) or

tan ¢ = /37912. (I-3-13)

The deformation of the parametric angle is defined by

e =n1/2 - 9, (I-3-14)

and its tangent function is

tan ¢ = =~ glz/f§ . (I-3-15)
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The angular deformation w is defined as the difference

between an azimuth o and its projection a', i.e.
w=a=-a' . (I-3-16)
Its numerical value can be obtained from the expression

tan w = 911 C°S ¢ *+ 9,, tan a - /9 . (I-3-17)
g,, Cos ¢ cot a + g,, + Yg tan «

but the same formula will be given later in a form more
suitable for numerical computations. T

At the end of this section it must be emphasized that a
great majority of the formulae from the theory of distortions
were already known to L. Euler but their complete and final
form was elaborated only a century ago by Tissot. However, for
reasons unknown to the author, cartographers in English
speaking countries have been reluctant either to adopt them or
to develop them further. Only in the last decade have we been

experiencing a certain interest in mathematical problems of

cartography (Milnor, 1969).

4. INDICATRIX OF TISSOT

In his study of general cartographic transformations
Tissot introduced an ellipse of distortion or the indicatrix of

projection, which found a particularly important place in



mathematical cartography. Tissot's indicatrix, as a geometric
characteristic of a mapping system, explained the fundamental
questions of deformations of intrinsic elements and gave the
distortions a more natural character and a more readily appli-
cable visible form. The indicatrix of Tissot, with all its
elements defined, completely describes the cartographic trans-
formation system, or in other words, every measure of distor-
tion can be expressed as a function of parameters of the
indicatrix of Tissot (Biernacki, 1965).

The ellipse of distortion at a point of a projected domain
is obtained by the transformation of a differentially small
circle of unit radius from the original surface of the sphere
onto the projection plane. The circle is generally transformed
into an ellipse whose semi-axes are projected in the principal
directions and in their magnitude they are equal to the extreme
scale factors. The semi-major axis a is the maximal scale at
the point P' and the semi-minor axis b is the minimal scale.
The most suitable coordinate systems are the orthogonal local
systems with the principal directions on both surfaces as the
coordinate axes (£,n) on the sphere and (x,y) on the plane.

The semi-axes of the indicatrix are computed from known
scales along the parametric curves, m and n, and the projected

parametric angle, 8.

a=X(a+B) and b=21(a-B) (I-4-1)

N
N =
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where
A2 = m?2 + n2 + 2mn sin 9 ,
} (I-4-2)
B2 = m2 + n2 - 2mn sin 9.
SPHERE: PLANE:
y
4 ? J = const
f=const .
r=1

PQ DP

MAPPING

Figure I-4-1 Unit circle and the indicatrix of Tissot
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The orientation angle of the meridian with respect to the
first principal direction, 8, is

{/sin g =V 2a2.-.b2 (I-4-3)

a2 - m2

and its projection on the plane, g', is

tan g' = £ tan s. (I-4-4)

a

If we take an arbitrary direction, §, with respect to the
first principal direction, then the scale factor in its

direction, k can be expressed in terms of the extreme scales

6'
and the direction angle, §.

k62 = a2 cos2§ + b2 sin2§. - (I-4-5)

The angular distortion, defined again as the difference

between the original direction, §, and its projection, §', is
w =6 - 4§ (I-4-6)

and
sin (6 + &"), (I-4-7)
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where the projection angle, §', is computed by the formula

The maximal angular distortion, Wy is

sin u, = 222, (I-4-8)
a+b
and it occurs when sin ( 6§ + 8') =1, or 6 + &' = /2.

The direction, 60, in which the maximal angular distortion

takes place is computed from the relationship

60 = /4 + w°/2, (I-4-9)
and its projection

§ ' = /4 - mo/2. (I-4-10)

The scale of areas, p, can also be expressed in terms of

the parameters of the indicatrix of Tissot by

p = ab. (I-4-11)
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When the fundamental equétions of a geographic mapping
(I-2-5) are given, various quantities can be computed that
fully characterize distortions. These quantities then specify
the properties of the transformation system. They are: the
scale factor k, the scales along parametric curves, m and n,
the projection of the parametric angle, 9, the extreme scales,
a and b, the bearing of the meridian, y, and that of the par-
allel, y, the scale of areas, p, and many others. Since these
quantities completely describe a projection, they are called
the characteristics of mapping. Each of the characteristics

can be defined as a function of eight variables

X, = Xi(¢r 1, x, y, x

i xll y¢l yl)l (1—4-12)

o'
where Xs is an arbitrary characteristic. From the totality of
all characteristics we can select different vectors of four
independent characteristics and then all others can be
expressed in terms of the chosen basic vector. As a basic
vector we may take, for example, (a, b, @ v), (m, n, v, x),
(m, n, vy, 8), etc. The independence of a set of four charac-
teristics can be determined by the analysis of the corre-
sponding formulae. A more appropriate and a more rigorous

approach is to prove that the set of four independent charac-

teristics satisfies the following inequality

a(xlr Xz’ x3’ xu) 2 0 . (1-4-13)
3(x¢r X1r Yy Y1)
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If the Jacobian (I-4-13) is nonsingular, and thus the four
characteristics are independent, we can determine a unique set

of transformation formulae (I-2-5) from the differentials

(I-2-9).

5. FUNDAMENTAL DIFFERENTIAL EQUATIONS

As shown in the preceding section, any combination of four
independent characteristics of map projections, X4
(i =1, 2, 3, 4) may serve as the basis of the vector space of
all deformation parameters. Therefore, the specification of
the four basic characteristics as functions of ¢ and 1 at every
point of the mapping domain fully detefmines the mapping
system. In other words, it must be theoretically possible to
derive the final transformation functions x = x(¢,1) and
y = y(4,1) directly from a specified distribution of distor-
tions defined by the basis vector.

Let us now take two suggestions for the basis vectors made
by Russian cartographers G.A. Meshcheryakov and N.A. Urmaev.
The former (Meshcheryakov, 1968) recommended the basis vector
(m, n, 8, y) and the latter (Urmaev, 1953) (m, n, ¢, p). We
shall develop both systems in order to obtain the fundamental
differential equations of map projections with respect to both
bases,

Meshcheryakov's suggestion of (m, n, 8, y) uses the known
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expressions for scales along parametric curves (I-3-5) and
(I-3-6), and the bearings of the projections of parametric
curves, whose tangent functions were given by the formulae

(I-2-14), bearing in mind that the parametric angle 8 is

defined by the equation

8 =y - y. (I-5-1)

When the elements of the metric tensor g;; are substituted

into the equations (I-3-5) and (I-3-6) and the equations are

squared we have

m2 =21 (x2+y2),
RZ ¢ ¢

I-5-2
n2 = 1 (x 2 +vy 2y, ( )

R2cos?y 1 1

The formulae (I-2-14) can be rewritten in the form

xd> =y tany , y, = x coty

¢ ¢ ¢

and (I-5-3)

X, = ¥y tan ¢ , Y1 = ¥ cot y.

When the last results are substituted into the equations

(I-5-2) and employing the trigonometric identities

1 + tan2y = sec2y , 1 + cot2y = csc?y
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we obtain

R cos ¢ n cos yx ,

]
]
Q
(@]
0
<
-
]
[
il

and (I-5-4)

x
"

Rm sin ¢y , x R cos ¢ n sin y .

1
The integration of equations (I-5-4) leads to the
transformation expressions (I-2-5), providing the conditions of

integrability are satisfied, namely

a(x ) _ a(x,) aly,) _ aly,y)
6’ = 1’ and o’ = 1° .
51 30 31 3% (I-5-5)

With the introduction of new abbreviations

m* Rm and n* = Rn cos ¢ (I-5-6)

the equation (I-5-4) becomes

y, = m* cos ¢y , y1 n* cos y ,
(I-5-7)

m* sin ¢y ,

>
I

n* sin y .

>
]
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The conditions of integrability (I-5-5) are then

m*1 sin y + m* cos y vy = n*¢ sin y + n* cos x X 4"
(I-5-8)
* - * { = * - * i
m*, cos y m* sin y ¢, n s cos y n* sin y Xy

From the definition of parametric angle, 6, (I-5-1) we

have that
x =8 + 9y, (I-5-9)

and substituted into equations (I-5-8) we obtain

sin y(m*, - n* cos 8 + n* sin @ + n* sin 8 8 ) =
vty ¢ Y ¢
= -CoSs m* - n* sin 8 - n* cos 9§ - n* cos 8 8
v ( vy 6 ¢¢ ¢) ’
and
cos m*, - n* cos 8 + n* sin ¢ + n* sin 8 8 =
¥ ( 1 6 w¢ ¢)
= sin m* - n* sin 8 - n* cos ¢ - n* cos @8 9
¥ ( 121 6 w¢ ¢),
or simplified
Q siny = - w cos y ,
(I1-5-10)

Q cos v = w sin vy ,



where
Q = m*, - n* cos 6 + n* sin 9 + n* sin ¢ ¢
1 b Ve %
and (I-5-11)
J
= m¥* - n* sin 8 - n* cos o - n* cos 8 6 .
v Y1 b Y b

The equations (I-5-10) then can be satisfied only if the

expressions o and w are equal to zero, namely

m*. - n* cos 8 + n* sin 9 + n* sinsg 8 =0
1 s Yo s = O
(1-5-12)

m*wl - n*¢ sin 8 = n* cos 9 ¢¢ - n* cos § e¢ = 0.

The system of partial differential equations (I-5-12) may
be called the fundamental system of differential equations of
map projections, since the system must be satisfied at every
point of the mapping domain. The system involves four charac-
teristics m,n,9,y and their partial derivatives of the first
order with respect to the parametric coordinates (4,1). The
equations are quasilinear with respect to any combination of
two characteristics from the basis vector m,n,8,y. The system
of two equations connects four functions and, thus, it is
undetermined. For practical applications of the fundamental

system we must predefine the values of two characteristics, or
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establish two relations between them at every point of the
mapping domain. Only then is there a theoretical possibility
of integration of the equations (I-5-12).

The basis vector of Urmaev (m,n,e,p) requires the equa-

tions (I-5-2)

X 2 + 2 = mZRZ
o " Yy '
(I-5-13)

X,2 + y12 = n2R2cos2y.

1

In addition to them, the tangent function of the

deformation of parametric angle, ¢, is given by the equation

(I-5-15)

and from (I-3-11)

Yg = R2 cos ¢ p.

Thus
tan ¢ = - S S 9107
R2 cos ¢ p
or finally

tan ¢ = - /) T4 (x¢x1 + y¢y1). (I-5-14)
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The selected transformatibn functions x = x(4,1) and
y = v(¢,1) must satisfy at every point of the domain the
eguations (I-5-13) and (I-5-14). The establishment of new
coordinate systems requires the integration of the same three
equations, However much we may wish to carry out the optimi-
zation process and, thus, reduce distortions to any desirable
level we cannot go too far since the relations between distor-
tion elements (I-5-13) and (I-5-14) must always exist.
Without a loss of generality, Urmaev assumed the unit
radius of the earth and has replaced in (Urmaev, 1953) the

equations (I-5~13) and (I-5-14) by four expressions

x¢ = -m sin(e + B) ro Xy =V cos B,
(I-5-15)
y¢ = m cos(e + 3)} roYy =Y sin 8,
where
V = n COS ¢ (I-5-16)

and g8 is an unknown arbitrary function of the parametric co-

ordinates (4,1)

B =8(¢,1). (I-5-17)
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In the case of equations (I-5-15) the conditions of inte-

grability (I-5-5) become

—m1 sin(e+g) -m cos(e+s)(el+sl) v cos B=v sin g s¢,

¢
(I-5-18)

m, cos(e+B) -m Sin(€+8)(€1+6 v sin g+v cos g8 8 .

1 1) b N

The solution of these two equations with respect to the
variable, s¢, can be obtained by multiplying the first equation
by sin(e + B), the second by cos(e + 8) and then subtracting
one from the other. The solution with respect to B is derived
by multiplying the first equation by cos g, the second by sin g
and then adding the resulting equations together. After some

simple rearrangement of terms we obtain

a my + \)¢Sln €
= )
¢ v COS ¢

-5-1
v tan ¢ (1-3-19)
-8y = ¢ + m + eq.

The equations (I-5-19) represent a second version of the
fundamental differential equations of map projections. 1In the
most general case they are partial differential equations with
partial derivatives of the first and second order and in some

specific cases they are ordinary differential equations of the
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first and second order. The determination of the function g
from the fundamental system leads to a partial differential
equation of the Monge-Amper type whose analytical solution is,
very often, impossible not only with elementary functions but
also with special functions. However, a numerical solution
which yields the rectangular coordinates (x,y) of a point can
often be determined: not the analytical expressions for coor-
dinates but their numerical values. 1In this way a number of
new transformation systems can be designed, so that the rectan-
gular coordinates of a regular graticule net are computed as a
numerical solution of the fundamental system with some &ddi-
tional conditions. Some authors, (Meshcheryakov, 1968), call
the differential equations (I-5-19) the Euler—Urmaev.funda-

mental equations.

6. CLASSIFICATION OF MAPPINGS

There are, theoretically, an infinite number of conceiv-
able transformation systems that can be used in mathematical
cartography. To study this totality of map projections re-
quires some reasonable grouping; it demands a suitable clas-
sification scheme.

To classify a set of objects, whose number can be finite
or infinite, means to design smaller groups of the objects so

that, from a certain point of view, each group has distinct



common characteristics. This point of view is called the basis
of classification. The selection of the basis must lead to
groupings of map projections that are either practically or
theoretically important. An ideal classification must consist
of mutually exclusive and collectively exhaustive groups which
will contain an approximately equal number of practically sig-
nificant map projections. When the basis of classification is
changed, it is quite natural that the distribution and groupihg
should also change.

The problem of classification of cartographic projections
is one of the fundamental tasks of mathematical cartography.
The classical bases for classification were suggested by Tissot
and later elaborated by a Russian cartographer, V.V. Kavraiskii
(1959) . These widely accepted divisions of map projections
were developed for a certain group of transformations only.
They do not comprise all existing and conceivable projections
and they lead to an uneven aggregation of projections in
various classes. The bases of classical groupings are:

(i) character of distortions expressed by the relation-
ship of the semi-axes of the indicatrix of Tissot, and;

(ii) property of the normal grid, i.e. the image of the
normal graticule of meridians and parallels in the mapping
plane.

In addition to these two fundamental bases there are

others that are used with more or less success. For example,
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maps are classified according to:
(iii) the character of projection equations (I-2-5) (the
parametric classification of Tobler, 1962),

(iv) the aspect of the metagraticule, i.e. the position
of the metapole of the used metagraticule with respect to the
geographic pole, (Wray, 1974), .

(v) the character of the differential equations whose
solutions define the transformation functions (the genetic
classification of Meshcheryakov, (Meshcheryakov, 1968),

(vi) the value of the metric tensor to the second order,
suggested by B.H. Chovitz (Chovitz, 1952, 1954).

There are, naturally, other ways to classify map projec-
tions. However, the scope of this work (the optimization of
cartographic projections with respect to the distribution of
distortions) suffices to consider no other classification
scheme than the very first one: <classification according to
the character of distortions.

The first classical grouping of cartographic projections
according to the character of distortions leads normally to
four distinct classes of projections:

a) conformal or orthomorphic projections,

b) equiareal or equivalent projections,

c) equidistant projections, and

d) arbitrary or aphylactic projections.



The Russian cartographers, G.A. Ginzburg and
T.D. Salmanova, (Pavlov 1964), suggested a slightly modified
version of the above classification. They took the first three
classes of conformal, equiareal and equidistant projections as
they were and then split the fourth class and created:

a) conformal projections, \

b) projections with small deformation of angles,

c) equidistant projections,

d) projections with small deformations of areas, and

e) equiareal projections.

Although the suggested scheme allows a slightly better and
more methodical arrangement of arbitrary projections in two
classes b) and d), the classification does not help in the
study of the arbitrary projections since their characteristics
are so diverse that they can not be expressed by any reasonable
common denominator, whether they belong to a single class or to
two distinct classes. Let us now briefly define individual
classes,

Conformal mappings are those in which at every point of
the mapped domain the semi-axes of the indicatrix of Tissot are

identical, that is

b, (I-6-1)

»
"

or the scale factor, k , at each point has a constant value

independent of the direction, but generally changes from point



to point. In others words, the scale factor is a function of

the position of the point only,

k = k(¢,1). (I-6-2)

As a result of the above property, angles at a point in
conformal projections are preserved, or, the similarity of
differentially small surface elements in the conformal projec-
tions is maintained.

In equiareal projections the scale of area, p, has a con-
stant value that, without loss of generality, can be assumed to
be equal to unity. Then, the areas obtained from the plane
coordinates are identical to the corresponding areas on the
sphere. The condition of equiareal mappings is satisfied on
the whole domain if at every point the product of the principal

scales 1is equal to unity,

ab

I
[
.

(I-6-3)

Since the condition of conformality requires that a=b, it
is obvious that a projection cannot satisfy both conditions of
conformality and equivalency simultaneously on the whole pro-
jected domain.

When one of the axes of the indicatrix of Tissot has a
value of unity for the whole transformation domain, the projec-

tion is called equidistant. It preserves distances along one

specific direction, i.e. one of the principal directions is the



) b)

direction of no linear deformations.

Thus, the conditions of equidistancy are

a=1 or b= 1. (I-6-4)

Equidistant projections are, according to their properties
of distortion elements, somewhere between conformal and equi-
areal mappings.

The class of arbitrary or aphilactic map projections com-
prises all projection systems which are neither conformal,
éqhié;;;i"ndr equidistant. This class is theoretically much
larger than the others but in practice the distribution of
mappings according to the character of distortion in the four

classes is relatively even. That is, the number of aphylactic

map projections in use is not particularly large.

7. CONFORMAL MAPPINGS

Conformal transformations constitute a specific class of
projections with a series of remarkable properties of ‘great
theoretical and practical significance. 1In cartography, they
are at the same time the simplest and the most elaborate pro-
jections. The theory of conformal mapping of a sphere onto a
plane was elaborated independently by Lambert (1728 - 1777) and
Euler (1707 - 1783). The conformal projections of the surfaces

of rotation onto a plane were developed by Lagrange (1736 - 1813),
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but the general theory of cohformal representations of regular
surfaces was formulated by Gauss (1777 - 1855), (Gauss, 1825).
A conformal mapping of regular surfaces is defined as a
transformation where the scale factor at every point of the
projected domain is independent of the direction and is there-

fore a function of the position only, i.e.
m=m(¢,1). (I-7-1)

As a result of the independence of the scale on the
direction, the angles at every point are preserved. Sometimes
the fundamental definition is made in the reverse order, i.e. a
conformal mapping is defined as a transformation in which
angles remain unchanged and therefore the linear scale is a
function of position only. Gauss combined these two properties
stating that in every conformal transformation the similarity
of differentially small shapes is retained.

Conformal mappings are directly connected to the estab-
lishment of isothermic coordinates on the surfaces involved in
the projection. The metric form in isothermic coordinates
(I-1-19) ds2 = [Ax(ul, u2)2] « [(dul)2 + (du?)2] indicates that
for isothermic coordinates the elements of the metric tensor

satisfy the condition

9,; = 95, and 9,, = 0. (I-7-2)
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]

The fundamental metric on a sphere of radius R (I-2-7)

expressed in terms of geographic coordinates (latitude and

difference in longitude) is not isothermic,

ds2 = R2(d¢2 + cos?y dl2),

However the quadratic form can easily be transformed into

an isothermic form by the introduction of a new, so-called

isothermic latitude, g, whose differential is defined by

dq = sec ¢ d¢. (I-7-3)

Then the quadratic form (I-2-7) becomes

ds2 = R2(dq2 + dl2), (I-7-4)

The integration of the equation (I-7-3) yields the expression

for the isothermic latitude

g = 1n tan(n/4 + ¢/2). (I-7-5)

Gauss has proved that a conformal transformation is estab-

lished when the following relation exists:

Z = F(w) (I-7-6)



where
2=y + ix , w=gq + il, (1-7-7)

and F is an analytic function, i.e. a function of the complex
variable w whose first derivative does exist and is continuous
at every point of the mapped domain. The differentiability of
the function F is proven by the Cauchy-Riemann equations, which
are the necessary and sufficient condition that the complex
function F is analytic and the mapping performed by the func-

R

tion is conformal,

X) = Yq = Re ggéﬂl ’
w

and ' (I-7-8)

“Xq = Y1 = ~Im ggéﬂl .
w

The condition of conformality can also be expressed in

terms of scales along parametric lines and the deformation of

the parametric angle,

m=n,¢e=0. (I-7-9)
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N

In this case the fundamental differential equations of map

projections (I-5-19) become

_m .
B¢ -
» Vv
(I-7-10)
v ’
—Bl = ¢
m
where
V =M COS ¢ (I-7-11)

The transformation of geographic latitude into isothermic

latitude is performed by the equation (I-7-3), where
dq/d¢ = sec ¢ = cosh q, (I-7-12)
and then (I-7-11) becomes
v = m sech q. (I-7-13)
The fundamental differential equations of conformal

mappings (I-7-10) can now be expressed in terms of isothermal

coordinates

-gy = 210V - (I-7-14)
3l 3q
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The condition of integrability Bql = qu yields
321ln v _ _ 321ln v
312 ag?
or finally (I-7-15)

321ln v . 321ln v _ 0.
312 3g?

The above formula is the well known Laplace equation of
mathematical physics. The equation can also be expressed as a

function of the scale. From (I-7-13) we have

ln v=1nm - 1ln cosh q : (I-7-16)
and differentiating
3 In v _ 3 lnm ; 9 1n v _ 3 lnm _ . /h a
31 91 3q 3q

with the second derivatives

32ln v _ 32lnm , 321ln v _ 32lnm
al2 al2 ag? 3g2

- sech2q. (I-7-17)

When the results of differentiation (I-7-17) are substi-

tuted into the Laplace equation (I-7-15) we obtain

321ln m + 32ln m

= sech? I-7-18
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which is the Poisson equation ;f mathematical physics.

The Laplace and Poisson equations (I-7-15) and (I-7-18)
have great significance in the optimization process of con-
formal mappings.

The solutions of the Laplace equations are called harmonic
functions and they determine the value of 1ln v at every point
of the mapped domain. In that manner the value of 1ln v can be
determined also at the central meridian where 1 = 0. The rec-

tangular coordinate y on the central meridian is then

Y, = ¢ + fv dq = F(q) (1-7-19)

where ¢ is an arbitrary constant and Vo is the value of v at
the central meridian. The analytical continuation leads to the

general formula
y + ix = F(q + il), (1-7-20)

where F is an analytic function assumed to be unique and
one-to-one.

The great majority of conformal map projections used in
practical cartography can be developed easily and directly from
the Laplace equation (I-7-15). For example, by assuming the

quantity v to be a constant we have

ln v = const. , or v = c, (I-7-21)
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and

yo= K+ cysdg =K+ cq,

(I-7-21)

where the constant of integration is equal to zero since for

q = 0 also y = 0. Thus, the last equation becomes

and then applying the analytic continuation we have

y + ix = ¢c(q + i1),

which is the expression for the Mercator projection.

Let us now assume that the scale is a function of

isothermic latitude, gq, only: i.e.

m = m(q),

(I-7-22)

the

(I-7-23)

which reduces the Laplace equation (I-7-15) to one term only

d2ln v _

0.
dq?
The first integration yields
d ln v _ -c,

dq

(I-7-24)



where the negative sign of the constant, ¢, is used simply for

convenience. The second integration then gives
In v = 1n cK - cq, (I-7-25)

where the constant of integration is expressed as the natural
logarithm of the product of the first constant, ¢, and the
second constant, K. The quantity v is then

v = cKe—cq'

The ordinate on the central meridian is
y = cK f e-cq dg = Q - Ke-cq,

and with the analytic continuation we obtain

. -C + il
y + ix = Q0 - Ke (q ),

(I-7-26)
which is the Lambert conformal conic projection. A special
case of the Lambert conformal conic projection for ¢ = 1 is the
stereographic projection. 1In the same way we can develop many
more standard conformal projections.

In the optimization process of conformal map projections
there is another special solution of the Laplace equation

(I-7-15) which has considerable interest and importance. The
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solution is given by the equation
. n
ln v = (q + il) -, (I-7-27)
which is a harmonic polynomial whose first five values are:
n=1 o + i1,
n =2 g2 + 1i2ql - 12,

n=3 g3 + 1i3g2l - 3ql2 - i13, b (I-7-28)

n =4 g* + 14931 - 69212 - i4ql3 + 1%,

n =25 g5 + is5g*l - 109312 - il0g213 + 5ql+ + i15. J

In each of these expressions there are two groups of
uniform polynomials with coefficients related to real and
imaginary terms., Let us denote a polynomial with real

coefficients by vy and that with imaginary coefficients by L

by = 14 8o = 1v )

v, = 4, 8, = &,

v, = 92 - 12, 6, = 241,

vy = @ - 3ql2, 63 = 3q21 - 13, \ (1-7-29)
v, = 9% - 63212 + 1%, 6, = 4931 - 4ql3,

b = g% - 109312 + 5ql%, 6 = 591 - 109213 + 15, |

Each one of the polynomials v and 8 is a special

solution of the Laplace equation, thus an arbitrary linear



combination of the two polynomials is also a solution, i.e.

n
ln v = z (a. v. + b. 68.). (I-7-30)

This solution yields an infinite series of conformal map
projections whose coefficients aj and bj can be determined so
that the scale factor m, and thus the function v is optimized
for a particular mapping domain. It can also be shown that
some well known projections like the Lambert conformal conic,
Lagrange's projection, Littrov's projection and the Transverse
Mercator projection can be directly derived from the equation
(I-7-30). In addition to these known projections we can

develop many unknown but useful map projections,

8. EQUIAREAL PROJECTIONS

Equiareal, or equivalent map projections are those in
which the scale of areas at every point of the mapping domain
has one and the same value. For reasons of simplicity the
constant is assumed to be equal to unity. Since the scale of
areas was defined by the equations (I-3-11), (I-3-12) and
(I-4-11) it is easy to prove that the mathematical condition of

equiareal projection is

x1y¢ - x¢y1 = R2 cos 4. (I-8-1)
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This is a nonlinear partial differential equation with two
dependent variables x,y and two independent variables ¢,1.
Since we have only one equation and two unknowns, the system
(I-8-1) is undetermined and has an infinite number of solu-
tions., Particular solutions can be obtained theoretically by
the integration of the above differential equation if some
additional conditions are formulated, the conditions which
clarify the relationship between dependent variables or their
connections to the independent variables., The totality of all
these conditions is again infinite, thus leading to a totality
of equiareal projections which is very difficult to derive
directly from the initial differential equation (I-8-1) in an
organized manner. However, the integration process is theoret-
ically, as well as practically, possible. Two map projections
will be developed to prove the possibility of obtaining cartog-
raphic transformation systems directly from the fundamental
condition of equiareal mappings. One of these projections is a
new equiareal projection developed by the author and the other
is a well-known map projection, Lambert's equiareal cylindric
projection.

Let us assume that the transformation formulae x = x(¢,1)
and ¥ = y(¢,1) can be expressed as products of four functions

in the following way:

b3
"

(I-8-2)

gi1(4) 92(1)-

<
"
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'

Thus, we are using the standard separation of variables. The

required partial derivatives are then

%
|

= £'06) £,(1) , x; = £,(¢) £',(1),
(1-8-3)

~
]

gll(¢) gz(l) v yl = 91(¢:) 9'2(1),

and the fundamental condition of equiareal mapping becomes

El(e)E," (1)g,(1)g, " (¢) = £,"(¢)£,(1)g,"(1)g, (¢) = RZ cos 4.
(I-8-4)

In order to develop specific solutions, let us introduce an

additional condition

W
—
~

£,'(1) g, (1)
(I-8-5)

|
[
.

£,(1) g,'(1)

If we combine the above equations we have

£,'(1)/£,(1) = g,'(1)/9,(1),

and the integration yields

1ln fz(l) = 1ln gz(l) + 1ln c,
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or

£,(1) = cg,(1).

Assuming that the constant of integration, ¢, is equal to unity

we finally obtain

£,(1) =g,(1). (I-8-6)

The equality of functions fz(l) and gz(l) results in a simple

form of the first equation of (I-8-5)

£,4f, = 41,
or integrating
§f22=1
and finally
£, = /21. (I1-8-7)

The fundamental equation of equiareal mappings (I-8-4) in this

particular case, with the assumptions (I-8-5) is

£,06) 9,'(¢) = £,'(¢) 9,(¢) = RZ cos ¢,
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or

£ LE,(0) 9, (0)] = RZ cos o. (1-8-8)
!

Let us now apply the method of undetermined coefficients. Then

the required functions £,(¢) and g, (¢) have the form

£,(¢) = a, cos ¢ + b, sin 4 + C v
(I-8-9)
g,0¢) = a, cos ¢ + b2 sin ¢ + C,r
and the corresponding derivatives are
fl'(¢) = -a, sin ¢ + b1 coS ¢,
(I-8-10)
g,'(¢) = -a, sin ¢ + b, cos ¢,
where a ;s a,, bl, b2, C,r C, are unknown coefficients.

Substituting the equations (I-8-9) and (I-8-10) into

(I-8-8), after some rearrangement of terms we obtain

alb2 - bla2 + cl(bzcos b - azsin b) + c2(alsin b - blcos 6)

= R2 cos ¢.

At least one of the parameters ¢4 must be different from

zero. The last equation will be satisfied if

a,b, -ba, =0
a;c, - acy; =0 (I1-8-11)
bc—bC=R2,
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yielding three equations with six unknowns. If we assume

c, = «a and c, = 0, from the second equation we obtain that
a, =0 from the third equation b2 = R2/q and from the first
that a, = 0. 1In addition, the parameter b, can take any value

and therefore can be set to be equal to zero. Thus the only

non-zero coefficients are

b. = R2 and ¢, = q, (I-8-12)

which lead to a specific version of the equations (I-8-3)

£,(6) = @ , £,(1) = /21,
g,(s) =B siny , g,(1) = /70,

a

and finally to the transformation formulae

X = a /21,
2 (I-8-13)
y = BZ sin 4 /21.
a
It can easily be proven that the last equations satisfy
the fundamental differential equation of equiareal mappings
(1-8-1), thus the transformation (I-8-13) is really equiareal.
Another equiareal projection can be obtained if we again

assume the validity of the first equation of (I-8-5) and also

that

£,'(1) = a, (I-8-14)
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'

where o is an arbitrary non-zero constant. Then
9,(1) = l/a. (I-8-15)

Integrating the equation (I-8-14) and differentiating (I-8-15)

we obtain
£,(1) =a . 1 and g,'(1) =0, (I-8-16)
and then the fundamental differential equation becomes
f1(¢) gl'(¢) = R2 cos 4. (1-8-17)

The functions f;(¢) and g1(¢) are again expressed as a
linear combination (I-~8-9) leading to the following form of the

fundamental differential equation (I-8-17)

a,a,sin ¢ cos 4 - alb2 sin2y + bla

24 - i +
12, cos2y b1b2 sin ¢ cos ¢

2

+ c,a, cos ¢ - ¢,;b, sin ¢ = R2 cos ¢,

1

or

a,a, = o , a,a, - blb2 =0,
alb2 =0 , bla2 = 0

= = 2
clb2 o , c,a, R<.
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Thus

£,(s) = ¢, =c¢

2 . 2
gl(¢) = RZ sin br gl'(¢) = RZ cos b o
c c
with the transformation formulae
x =k 1,
R2 . (I-8-18)
y = = sin 4,

k

where
k =a » ¢ (I-8-19)

The equations (I-8-18) define Lambert's equiareal cylindric
projection.

The most important group of equiareal projections, from
the practical point of view, is Euler's. Euler's projections
are the equiareal mappings in which the image of the meta-
graticule constitutes an orthogonal grid. Without a loss of
generality let us take direct aspects only. Thus, in Euler's
projections the image of meridians and parallels is an orthog-
onal net of lines in the projection plane. The conditions of

Euler's projections are

1l and ¢ = 0. (I-8~-20)

o
]



- 73 -

The orthogonality of parametric lines in the projection
indicates that the scales along meridians and parallels are the
principal scales. Thus, the conditions (I-8-20) can be written
as

m=1/n , € = 0. (I-8-21)

Let us now introduce a new parameter, t, defined from the

expression (I-5-~16) by

t = v2 = n2 cos?y, (I-8-22)
which gives
n = L& and m = S9S ¢, (I-8-23)
cos ¢ Yt

Instead of the independent variable 4 we shall use another

variable, s defined as

s = sin ¢ (I-8-24)
and then

ds = cos ¢ d¢. (I-8-25)

Substituting the equations (I-8-23), (I-8-24) and (I-8-25)

into the formulae (I-5-15) we obtain

xg = S25 8 , x, = /T sin g
/t
. (I-8-26)
Yg = -~ sin 8 ’ Y] = Yyt cos 8
/T J
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]

Conditions of differentiability Xg1 = ¥ig and Yg1 = Yig
yield

sin 8 cos B - sin B

- By - —=—= t] = /Tt cos g gy + Z—=L . tg,
/t 2/t3 2/E

) (I-8-27)

- Cos 8 By - Sin 8 ¢+, = -/t sin g Bg + gos 8 , tge

/t 2/t3 2/t

In order to eliminate 31 and tS from the equation (I-8-27)
the first equation is multiplied by cos g, the second by sin g
and then they are subtracted giving

—_:E -ty = 28g. (I-8-28)

In the same way, one can eliminate B g and tl'by
multiplying the first equation of (I-8-27) by sin g, the second

by cos g and then adding them together
231 = -t . (I-8-29)

The differentiation of the equation (I-8-28) with respect
to 1 and of (I-8-29) with respect to s yields

_ 1 2
285 = = tyy + Y (ty) 2,

26ls = -t

ss’
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or

3 - 2 = -8~
tit g L, + 2(E)) 0. (I-8-30)

The partial differential equation of the second order

(I-8-30) represents the fundamental differential equation of

Euler's projections. Superimposing some additional conditions

on the function t, we can develop, by the integration of the
fundamental equation, various types of Euler's projections.

For example, if we take a special case where t is a func-

tion of latitude only, or in our case t = t(s), then
t =0 , t_=-=2¢ , t = -2cs + 2cK A

or finally L (I-8-31)

t = 2¢(K - s),

where ¢ and K are arbitrarily selected constants. The derived

projection is Lambert's equiareal conic projection.

If we take another special case where t is a function of

difference in longitude only, i.e.

t = t(1)

then the equation (I-8-30) becomes



with the solution

t = 1. (I-8-32)

Projections which satisfy the last equation have the
parametric grid consist of circular arcs. In a special limited
case, when the constant K is equal to zero, we obtain Lambert's
equiareal cylindric projection, the same projection that has
already been developed in (I-8-18).

Generalization of developments of equiareal projections
from the fundamental differential equation (I-8-1) requires
further systematic study of the problem. The main difficulty
is the lack of an organized series of different solutions of
the undetermined system (I-8-1). Two of many solutions usihg
the equations (I-8-2), derived by the author, were obtained by
a more or less trial and error approach. It requires a
mathematician with a deep insight into partial differential
equations to develop a great number of practically important

solutions.



II. OPTIMAL MAP PROJECTIONS

1. IDEAL AND BEST MAP PROJECTIONS

The problem of the determination of an optimal map
projection of the sphere, or its portion onto a plane, can be
extremely ambiguous unless the criteria for qualitative
assessments of transformation formulae are clearly and
rigorously defined. The definition of the problem is always
the most reasonable starting point for its solution.

Meshcheryakov (1968) has suggested that the optimized map
projection can belong to two distinct categories. They can be
either ideal or the best transformation systems.

The concept and definition of ideal map projections was
introduced to cartography by the most important of the Russian
cartographers, V.V, Kavraiskii with the following words
(Kavraiskii, 1959):

"It is possible to find a map projection under a

unique condition where, for example, the maximum

deformation of distances for the whole mapped domain
is as small as possible."

The problem of ideal map projections has not been solved. Even
its mathematical definition has not yet been clearly given.

Generally, for cartographers, the problem is too difficult



- 78 -
from the mathematical point of-view, and mathematicians only
recently rediscovered mathematical cartography (Milnor, 1969).
The problem of minimization of maximal distortion, which leads
to ideal map projections, will be simply called the minimax
problem. Although the existence and uniqueness of an ideal map
projection was introduced by Kavraiskii and the existence
mathematically proven by an American mathematician, J. Milnor
(1969), the determination of a real ideal projection for an
arbitrary domain of the sphere cannot be practically solved
unless an infinite number of conceivable transformation systems
are optimized and then compared, and this, in actuality, is an
impossible task.

Meshcheryakov (1968) recommended an alterqative solution
for the problem: instead of trying to find an ideal map
projection of a certain domain, cartographers should concen-
trate on the best projections. The best projection of a given
class is the one in which deformations are at a minimum. 1In
other words, knowing the requirements of map users and the
shape and extent of the mapped territory, a cartographer can
predetermine the class of transformation systems and then
optimize it. The result will be the best map projection of the
particular class. By comparing several of the easily optimized
classes, or the best projections, one can make the final
decision as to which of one of the best projections will be

adopted for the mapping of the domain.



3

The criteria for the qualitative assessment of map projec-
tions, and thus the basis of the optimization process, will be
explained in the subsequent sections. For a large number of
transformation systems the optimization consists of the solu-
tion of a variational problem under the condition of extremum.
The criteria leading to such solutions are called the criteria
of the variational type (Meshcheryakov, 1968).

The optimization of conformal mappings was suggested by
various authors, but the criterion which was adopted as the
most realistic was defined by a Russian mathematician,
Chebyshev (Kavraiskii, 1959). Chebyshev stated that the best
conformal projections of a closed domain is the one for which
the logarithm of the maximal scale is minimized. Thus, the
Chebyshev conformal projections belong to the minimax type.

The rigorous analytical determination of the Chebyshev
projection for a domain defined by an arbitrary contour line is
unknown. However, in practice, approximate solutions are
feasible and for map users they are sufficiently accurate, as

the author will show.

2. LOCAL QUALITATIVE MEASURES

Every transformation process of a closed domain of a

regular surface onto another surface whose Gaussian curvatures
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differ will result in deformation of distances. By selecting
special transformation functions, areas or angles may be
preserved, but distances which are also intrinsic elements of
the original surface will always undergo a certain change.
Thus it is quite appropriate to adopt the deformation of
distances as the basic parameter for the evaluation of map
projections. Changes of angles and areas will be expressed as
functions of deformation of distances in the principal
directions.

The deformation of distances at a point, thus locally

defined, was given by the formula (I-3-2)

(IT-2-1)

where k is the scale factor, a function of the position and the
direction k = (¢,1,a). There are however, some additional
measures of deformations in mathematical cartography, some of
which are more and the others less important. For example, the

deformation can also be defined by the expression

Ve =1 - 1/k (II-2-2)
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Chebyshev, Weber and Markov (Kavraiskii, 1959) have used
the natural logarithm of the scale factor as the definition of

deformation, i.e.

(I1-2-3)

The linear deformation for conical equiareal projections

is sometimes defined by the expression

LI )
Vs % (k2 - 1), (I1I-2-4)
but this definition appears to be of lesser practical
importance.

All measures of distortions of distances are functions of

the scale factor, and are thus linearly dependent, since

Kk=1+v = —1— =¢S5 =/T7% 2V, (I1-2-5)

and thus they differ among themselves by the quantities of
second order only. In other words, for the first order term it

is irrelevant which definition of distortion is used.
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From the author's point of view, the most natural measure
of distortion is v'' = 1n k since its optimization in the cases
of conformal or equidistant projections automatically leads to
a minimal distortion of areas, and in the case of equidistant
and equiareal projections the optimization process guarantees
minimal deformations of angles. Analogous results are not
obtained with other definitions of linear distortion.

From the theory of distortions and the indicatrix of
Tissot we know that at every regular point of a mapping domain
the principal directions represent the directions of the
extreme scales a and b and that every element of distortion can
be easily expressed in terms of the principal scales. For
example, the extreme angular distortion at a point in a non-

conformal projection is given by the formula

g = arc sin ((a - b)/(a + b)). . (II-2-6)

The deformation of areas, vp, is defined by the equation

v = ab - 1, (I1-2-7)



In 1861 an English astronomer, G.B. Airy, made the first
significant attempt in cartography to introduce a qualitative
measure for a combination of disortions. His measure of
quality was designed to be an equivalent to the variance in
statistics, It was defined (Airy, 1861), at first, by the

expression
a
ei = (B - 12 + (ab - 1)2, (II-2-8)

but later in the optimization process he used another version

which may be called the mean quadratic deformation of distances

(vg1 + v2b )y (I1-2-9)

N|—

where

v.=a-1 and vb b - 1. (II-2-10)

Airy's two definitions of the mean quadratic deformation
(II-2-8) and (II-2-9) differ in the terms of third order only.
We can take, for example, the first definition and transform it

in the following way:
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D Va- 24 [+ vl + vy - 1]2 =

8-12+ (ab-1)2 =
(b ) (a ) 1 + vb

(Ya = VD)2 + (vy+ v+ v vp)2 L5 o2 4 2 4 3 4 y3
T_:_V;_ [va vZ 0 (va vb)].

The first term of the middle row in the last formula
approximates the square of the maximal angular deformation
(II-2-6) and the second term is the square of the deformation
of areas (II-2-7).

In 1897, the German cartographer A. Klingatsch generalized
the first mean quadratic deformation of Airy (II-2-8) by the
introduction of arbitrarily selected weights for the accuracy
of angles and areas. The mean guadratic deformation of

Klingatsch is then computed by the weighted mean

a
2 = (p ==1)%2 py + (ab - 1)2 p | (II-2-11)
Py + Pp

where Py, and pp are positive dimensionless quantities called
weights. Their numerical values can be arbitrarily varied to
satisfy the specific requirements of users (Kavraiskii, 1959).
The measure of the guality of map projections by Airy
(II-2-9) and the subsequent generalization by Klingatsch

(II-2-11) uses only the principal scales and their
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deformations. A more realistic evaluation of the deformations
of distances at a point was suggested by a German geodesist,
W. Jordan, in 1896, whose mean square deformation was defined

by the formula

€l = (k = 1)2 da, (II-2-12)

1
2w

O —n

where o is the direction angle usually reckoned from the first
principal direction (Meshcheryakov, 1969).

Kavraiskii (1959) recommended a small modification of the
mean square deformations of Airy and Jordan by the logarithmic
definition of linear deformation (II-2-3). Such altered mean
équare deformations are calledAAiry—Kavraiskii and Jordan-

Kavraiskii,

2 =1 (1n2 a + 1n2 b I1-2-13
Ak 2! ) ( )
and
2n -
e2 = .1 [“"1n2k da . (I1-2-14)
JK 2% °

From a theoretical point of view there is a distinct
difference between Airy's and Jordan's approaches. However,
the optimization process using either measure of quality for
mapping systems will lead to similar results whose differences
scarcely justify Jordan's much more complicated measure

(Kavraiskii, 1959).
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3. QUALITATIVE MEASURES FOR DOMAINS

So far the gqualitative measures of map projections have
been locally defined, since when we use one of the formulae
(11-2-9), (11-2-11), (I11-2-12), (II-2-13) and (II-2-14) we can
compute the mean square deformation of distances at a point.
The evaluation and comparison of map projections of a closed
domain point by point in applying one of the above mentioned
expressions will generally lead to too many ambiguities with
respect to the selection of points and their distribution over
the mapped area. To alleviate these difficulties Airy (1861)

introduced the mean square error of a domain

EX = 7% {\ (V4 + VR) da, (II-3-1)

where the integration is extended over the whole area A of the
domain.
With the logarithmic definition of distortion (II-2-3) the

criterion of Airy becomes the criterion of Airy-Kavraiskii

Edg = 7x / (In2 a + 1n2 b) da. (11-3-2)

A

The optimization process leading to the minimization of
equation (II-3-2) will be called the optimization according to

the Airy-Kavraiskii criterion.



If, instead of Airy's version of the mean square
deformation, we take Jordan's formula (II-2-12) or the Jordan-

Kavraiskii (II-2-14) and evaluate them for the whole domain we

obtain
1 2w
2 = - 2 —em
EZ znAff (k = 1)2 do 4a, (II-3-3)
A o
or
1 2%
E2 = 1n2 k da dA. -3-4
Ik oy L £ n a (IT-3-4)

The optimization process, using the last formula as the
basis, is known as the optimization according to the Jordan-
Kavraiskii criterion.

In his numerical minimizations of distortions the author
will use the criterion of Airy-Kavraiskii (II~3-2).

From a theoretical point of view, the criterion of Jordan-
Kavraiskii is certainly superior to the criterion of Airy-
Kavraiskii since it takes deformations in all directions around
a point and not only in the principal directions as in the
Airy-Kavraiskii formula. Practically, however, the analytical
evaluation of the integral (II-2-12) is often very difficult or
even impossible and we have to approximate it by a numerical

integration.
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The integration of the meén square deformation for the
whole area in both criteria has the same problem. The boundary
contour line of a domain is very seldom defined by a 'nice’
analytic expression. 1In the optimization of mappings of a
hemisphere, for example, Airy (1861) and Young (1920) had an
analytical definition of the boundary, but it is more usual to
define the boundary by a polygon of discrete points. Even in
the cases of an analytical definition of the boundary the
analytical integration may be extremely difficult or
impossible. To reduce the problem of integration, the author
will use the practical procedure of numerical integration
throughout the research.

Kavraiskii (1959) suggested a very simple summation of the
individual mean sguare deformétions evaluated at regular ﬁesh
points on the sphere. Young (1920) insisted on a 'better'
summation taking a regular mesh on the projection plane. For
relatively small sizes of mapping domains both meshes will
produce more or less identical results. For larger domains the
differences can be considerable. The author does not see why
Young's mesh on the projection plane will yield more realistic
results, and because its formation is numerically more
complicated the preference will be given to a regular mesh on

the original surface of the sphere.



4. OPTIMIZATION OF CONICAL PROJECTIONS

Conical map projections include those cartographic
transformations in which the metagraticule on the sphere, a
system of orthogonal coordinate lines, is projected onto a
plane in the following way. The metameridians (n = const.) are
transformed either into straight lines intersecting at a point
or parallel straight lines. Metaparallels (£ = const.) become
either concentric circles with the centre at the intersection
point of the projection of the metameridians, or they become
parallel straight lines orthogonal to the projection of
metameridians.

To clarify the exact meaning of the metagraticule, as
named by Wray (1974), and its connection to fhe graticule, the
set of geographic coordinates (latitude ¢ and difference in
longitude 1), let us refer to the figure II-4-1. The metapole,
O, is usually selected to be the central point of a mapping
domain or is determined so that the central line of the mapping
territory becomes either metaparallel or the metaequator.

Great circles passing through the metapole, O, and its
antipodal point, O', are called metameridians. The position of
a metameridian is fixed by an angle, n, called the metalongi-
tude, reckoned clockwise from the geographical central

meridian. Thus, the geographic meridian through the metapole
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is the initial metameridian. Orthogonal circular curves to
metameridians are called metaparallels. They are defined by
the metalatitude, £, an arc length on the unit sphere between

the metaequator and the metaparallel in question,

Greenwich meridian

Figure II-4-1 Graticule and metagraticule

It is clear from the figure that the metagraticule
represents a coordinate system similar to the geographic

graticule except that it is generally displaced on the sphere
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with respect to the graticule. According to the geographic
latitude of the metapole, Ot in conical projections we can

distinguish three different aspects:

(1) ¢ = 1T/2 - direct aspect,
o
(2) 0 < ¢ K 1T/2 - obligque aspect, and
o

(3) ¢ = 0 - transverse aspects.
o

Because the metagraticule represents an invariant frame
for a projection system, the first step in computation is the
transformation of the geographic coordinates into the

metacoordinates. The second step is the computation of plane

coordinates.
(¢rl) + (Ern) + (er)

The metacoordinates (£,n) of a point defined by its
geographic coordinates (¢,l) are obtained by the formulae of

spherical trigonometry in the spherical triangle OPA.

sint = sin sine + cos cos¢ cos(ir =i
£ ¢O ¢ ¢o ¢ ( o ),

and (IT-4-1

s¢ sin - A
tan n = coS¢ (AO )

sing cos¢o - 51n¢o Ccos¢ cos(xo-x)
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'

For the transverse aspect (¢o = 0) the last formulae are

reduced to:

sin £ = cos$ cos(xo-x),
(II-4-2)
sin(xo-x) .
tan n = —~———m—m

tané¢

The final transformation in rectangular coordinates

X = x(g,n) , y = y(&,n), (I1-4-3)
or in polar coordinates
Yy = v(&/n)s 0 = p(E,n). (II-4-4)

yields the required cartographic projection.
The conical projections are subdivided into three
subgroups of conic, azimuthal and cylindric map projections.

The general formulae of conic projections are

x =psiny , y=-p cos vy,
where (II-4-5)

Yy = Cn ’ p = p(E) J
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The quantity ¢ is an arbitrary positive constant whose
numerical value is usually smaller than one. When the constant
¢ is exactly equal to one, we obtain azimuthal projections.
Cylindric map projections are defined by the general

expressions
x = kn , vy = y(&), (II-4-6)
where k is an arbitrary positive constant.

The principal scales coincide with the scales along the

parametric curves and for conic projections they are

= o = o 2 -4-
m do ' n c coss” (I1-4-7)
For cylindric projections they become
= 4y =
m = 3o ' n = k/cosé. (I1-4-8)

For a reader unfamiliar with mathematical cartography the
appendix 1 contains typical grids of various conical map
projections, i.e. conic, cylindric and azimuthal mappings.

The general formulae of conic and cylindric projections,

(II-4-5) and (II-4-6) respectively, clearly indicate that there



is an infinite number of conceivable conic projections. With a
proper choice of functions p = p(£) and y = y(E) we can derive
conformal, equiareal or equidistant or an arbitrary conical
projection. All these derivations include the determination of
two parameters. One of them is the initial constant, ¢ or k,
and the second parameter is the constant of integration in the
solution of a particular differential equation: the equation
which specifies the character of linear distortion.

The selection of the two parameters is made in such a way
that the deformations of scale are as small as possible. 1In
6£H;£w;g;éé;.ahibptimizétion précessvhhich satisfies one of the
criteria, Airy-Kavraiskii (II-3-2) or Jordan-Kavraiskii
(IT-3-4), will determine the best choice of projection
constants,

The most important conical projections are:

Lambert conformal conic projection:

Y = Cl" r P = c2e ’ (II-4"9)

where c, is the integration constant and q is the isothermic
latitude obtained by the expression (I-7-5), which, in the case

of metalatitude becomes

g = 1ln tan (n/4 + £/2). (II-4-10)
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v

Lambert equiareal conic projection:

2 .
y=¢mn o, o =‘V/z—(c2 - sing). (IT-4-11)
1

Equidistant conic projection:

Azimuthal projections may be considered as a special case
of conic projections in which the first constant, ¢, has a
value of unity. Thus, the formula (II-4-9), (II-4-11) and
(II-4-12) with ¢, = 1 represent azimuthal conformal, equiareal
and equidistant projections respectively. |

The most important cylindric projections are:

Mercator projection:

x =kn , y = kq. (I1-4-13)

Lambert equiareal cylindric projection:

sing. (II-4-14)

x=kn , y = %

Plate carree projection (equidistant):

X=kn , y=E. (I1-4-15)

Urmaev's cylindric projection:

x =k , y=aé + a&d + aes, (II-4-16)
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where a,, a a, are constants which can be directly computed

27! 3

by defining the scale on three different metalatitudes

Err Eprkge
a; + 3 ayg2 + 5 azel = my,
a, +3 azgg + 5 a3g; =m,, (I1-4-17)
a, +3 a g% + 5 azed =m,.
The constants ai (i = 1,2,3) can also be determined

through optimization by applying one of the criteria of the
best projections.

Generally speaking, the optimization of conical
projections is a relatively simple problem that was solved at
the end of the nineteenth century. The detailed description of
various optimization methods can be found in (Kavraiskii,
1959), where a particular emphasis was given to the
optimization of Lambert's conformal conic projection by the
method of least squares. The optimization of one or two
constants leads to a system of one or two equations with the
same number of unknowns. The only small problem is the
mathematical definition of an optimization criterion in terms
of the required constants. The author expands the optimization
' précess including the simultaneous determination of the best

metagraticule for an arbitrary shaped territory and a specific
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map projection. This will enlarge the mathematical structure
by two more unknowns, the latitude and longitude of the
metapole.

Thus, in the most generalized optimization of map
projections, one of the selected optimization criteria would
have to be expressed as a function of the transformation
constants and the metagraticule. Then the numerical
approximation process will yield the best values of constants
and the best metagraticule for the particular domain and the

selected transformation system.

5. OPTIMIZATION OF MODIFIED PROJECTIONS

A modification of map projections is the process of
obtaining new cartographic systems from already existing map
projections. Let us assume that the rectangular coordinates
(x,y) are expressed in terms of the metagraticule (£,n).

x = x(&,n) , y = y(g,n). (II-5-1)

This transformation represents the initial map projection which

will be modified by the eguations

X =A x(u,v) , ¥Y=2B yl(u,v) (II-5-2)
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where

u = u(&,n) r v = v(E,n), (IT-5-3)

and A and B are arbitrary constants. The functions x and y in
(II-5-2) are identical to the initial functions (II-5-1) except
that they are expressed in terms of new variables (u,v).

To simplify the modification process, the most general
modification of the metagraticule (II-5-3) will be restricted

to those modifications in which only the original metameridians

(n const.) are transformed into modified metameridians

(v const.) and the original metaparallels (£ = const.) become
modified metaparallels (u = const.). 1In this case, the

transformation equations (II-5-3) are simplified to

u=ug) , v vin). (II-5-4)
Both of these transformations must be regular, i.e. the
Jacobian determinant of the modified transformation must be

different from zero at every point of the mapping domain,

3 (u,v) -5-5
372?:7 + 0. (I1-5-5)

In order to investigate the distortion parameters of the

modified map projections, we must compute the elements of the
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metric tensor

G = X2 + v2, G =XX +YY G = X2 + yv2, II-5-6
£ g’ £°n £ n’ 22 n n ( )

The partial derivatives of the new coordinates (X,Y) with
respect to the independent variables (£,n) can be expressed in

the following way

_ du _ dav
XE = A xu ac ' Xn A xV an’
(II-5-7)
du dv
Y = B e ¢ Y = B o [ A
£ Yo " dE " e v * @

Then the elements of the metric tensor (II-5-6) become

du, 2
Gll (Azxﬁ + BZY&)(EE) ’

2 + 2
G, (A xuxV B yuyv)

Q1Q
wmiic
Q1Q
3|<

(II-5-8)
= (A2x2 22y (dv,?
G22 = (A xV + B YV)(E;) '
with the Jacobian determinant
- ) du 2 dv 2 11-5-9)
= A2B - e - -5-
G (x, ¥, = ¥ ¥,)°@e) (Fq), (

Taking again a unit sphere as the original surface the

distortion parameters (the scale along metameridian m, scale
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along metaparallel n, parametric angle 0, and the scale of

areas p) are

m=7YG, . (II-5-10)

n = sec u /G,, , (II-5-11)
sin @ = /G / /G[|G,, (I1-5-12)
p = sec u /G . (I1-5-13)

e T

When the original mapping (II-5-1) is conformal then its
modification would preserve conformality if m = n and 0 = n/2.
From the expressions (II-5-10), (II-5-11), (II-5-12) it can
easily be seen that only an identity mapping with constants
A = B will result again in a conformél map projection. 1In
other words, a real modification of a transformation system
cannot retain conformality. If the original projection is
conformal its modified version can never be conformal.

When the original mapping is equiareal, its modification,
in order to be also equiareal, must satisfy the required

condition that the scale of the area is equal to unity, i.e.

du dv
AB(xvyu - xuyv) 3 " an sec g

1,
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or

dv _ cos & dag

dn AB(xvyu - xuyv) du

Since for the original equiareal mapping XY, = X ¥y = Cos u

u
the last differential equation becomes

dv _ 1_cos g d¢

-5-1
dn AB cos u du (I1-5-14)

The resulting differential equation can be satisfied at every
point of the mapping domain only if both sides have a constant

value. Thus

or

v=2Cn+ K (II-5-15)

At the same time the transformation of equation (II-5-14)

yields

cos u du cos ¢ d¢ ,

ABCn
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and its integration

sin u sin £ + K,. (II-5-16)

ABC

Assuming that both coordinate systems (£,n) and (u,v) have the
same origin, i.e. for £ = 0 also u =0 and for n = 0 also
v = 0, both integration constants K, and K, become zero and the

resulting modified curvilinear coordinates become

sin u sin £, v = Cnn. (II-5-17)

ABC

The first affine transformation of an equiareal conic
projection had already been suggested in 1913 by Zinger. His
modified conic equiareal projection was computed by the

formulae (Kavraiskii, 1959)
X =ux , Y=o oy (II-5-18)
u

where (x,y) are the coordinates of the equiareal conic
projection and y is an arbitrary constant. A more serious
inVestigation of modified equiareal projections was initiated

by Siemon in 1938. However, the most thorough study of
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modifications has been made by'Wagner, (Wagner, 1941 and
Wagner, 1962). The author has adopted his theory of
modifications with the notation suggested by Franvula in his
dissertation, (Franvula, 1971).

Since constants A and B in the first equation of (II-5-17)
are arbitrarily selected values, Wagner (1962) recommended that

they be composed of three constants Ck' Cm' Cnin the following

way
A = Ck/V Can ’ B = 1/CkVCan . (II‘5-19)
Then the transformation formulae (II-5-2) and (II-5-4)
become
Ck 1
X = ———— x(u,v) ry ¥ 5 ——— y(u,v) , (II-5~-20)
cCC C CcC C
m n k m n
and
sin u = Cm51n5 r V= Cnn. (II-5-21)

Thus, if the original mapping (II-5-1) is equiareal the
modification by the expressions (II-5-20) and (II-5-21) also

yields an equiareal transformation.
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C Cn are positive constants whose

k' “m’

numerical values were subjectively selected in Wagner's work.

The quantities C

Francula (1971), however, optimized several map projections
according to the criterion of Airy by varying the values of
constants. He used electronic computers and a trial-and-error
method to determine the constants in such a way that Airy's
measure of the quality EA was minimized for domains of the
whole earth and the individual hemispheres. The result of his
investigations are given in (Francula, 1971). When the
original equiareal property of the projection (II-5-1) is not
to be retained by the modified system, Wagner introduced a new

constant, Ca' which regulates the distortion of areas. The

transformation equations are then

CaCk 1
X = ———nw x(u,Vv) r ¥ = —m—m y(u,v) , (II-5-22)
cC C cCC
mn k m n

For non-equiareal projections the modification of the
metagraticule can be simplified, and instead of equations

(II-5-21) we can use another set of expressions
u=C¢t , v = Cnn . (ITI-5-23)
From many equiareal projections the author has selected

the following transformations which can be modified and their

constants optimized by the criterion of Airy-Kavraiskii.
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Sanson's projection:

Sanson's projection is defined as a sinusoidal equiareal
projection which satisfies three conditions: (i) scale along
the symmetric central metameridian is constant, (ii) all other
meridians are sinusoidal curves, and (iii) the pole is

projected as a point. The original equations of the projection

are:
X =n cos & and Yy=¢, (II-5-24)
and the modified versions become
C.C
X = K /1T <-c¢c? sinlg ,
C C m
m n
(II-5~-25)

Y % e arc sin(CmsinE) .
g/ C
C Cm n

Mollweide's projection:

The projection is equiareal and maps the hemisphere into a
circle of radius of /3, metameridians are symmetric ellipses
with respect to the central meridian which is a straight line.

The pole is projected as a point.

X =2/2 n cosy , Y =vZ sinv ,
hi
where (II~-5-26)

2 Y + sin ¥ = 1 sin £ .
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The modified equations of .the projection are

sin ¢y , (I1-5-27)

2y + sin y = 7 Cysing . (II-5-28)

Hammer's projection:

This projection was obtained by an affine transformation

of the Lambert azimuthal equiareal projection.

x =256 sina , vy = 2 sin % cos a , (II-5-29)
where
cos 0 = cos 1L cos £, cos a = ELE_E . (IT-5-30)
2 sin ¢
The modified equations become
2C.C
= kK'n ; sin a , ¥ = E___EL_. sin % cos a , (II-5-31)
/T k/CaCn
where
cos § = cosCn" /1 - c2 sin2g , cos a = Cpsing (I1-5-32)
2 m sin §

Eckert's IV projection (elliptical):

The original equations of the projection are
X =n(1+ cosvy) , vy =r siny , (I1-5-33)

where
Y + 2 sin ¥ + % sin 2 v = (2 +1) sin¢ . (II-5-34)

The modified version of the equation is

C
X=¢1/=n(1+cosy) and Y = .

E—————— sin vy, (IT-5-35)
Cn k/Can
where

v + 2 sin ¢ + % sin 2 ¢ = (2 + D)cy sin § . (II-5-36)
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6. OPTIMIZATION AND THE METHOD OF LEAST SQUARES

Let us adopt the criterion of Airy-Kavraiskii (II-3-2) as

the basis for the optimization of map projections,

1
2 = e 2 2 = i
B2k > £ (1n2a + 1n2b) da min.

To simplify the writing we can introduce the abbreviations

ln a = va and 1ln b = vb R (ITI-6-1)
and then the criterion becomes
1
2 = e 2 2 = mi b=
EZg > £ (v2 + vi) aa min , (I1-6-2)

where A is the total area of the mapping domain and the
integration is extended to the whole domain. There are very
few domains in cartography which can be analytically defined,
but even for these cases it is often difficult, if not
impossible, to perform integration analytically. To alleviate
this problem the integral in the last formula will be

approximated by the finite summation
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~ n
E2,, =1 ¢ [(v.)2'+ (vpo)2] AA: = min II-6-3
ak = 35 (I, [(va)2+ (vp)2] eay . )

where EAK is the approximation of E AA is a small but finite

AK'
portion of the domain, n is the number of area elements
covering the whole domain, and the distortion parameters
(va,vb) are numerically evaluated at the central point of each
element of the area, AA. To introduce regularity into the
computation, the mapping domain is covered by the mesh of
meridians and parallels which subdivide the domain into a large
number of spherical trapezoids. The area of such a trapezoid
limited by two parallels, ¢, and ¢,, and two meridians, A, and

A is obtained by the formula (Sigl, 1977)

2’

" AA = 2R2(A2-A1)sin%(¢2—¢1)cos%(¢2+¢1) ' (II-6-4)

where R is the radius of the sphere. For a small distance

between parallels we can assume that

o] =1
sin 5(¢2-¢1)—5(¢2-¢1) ' (II-6-5)

and with the abbreviations

$, = ¢, = a4 and x, = A, = AX , (II1-6-6)
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for a unit spheré (R=1) formula (II-6-4) becomes

AAi = Ad AA cos¢i ’ (II-6-7)

where ¢4 is the latitude of the central point of AAi.

Further simplification is achieved if the differences
between meridians and parallels are kept constant for the

domain. 1In that case

Ap « AX = K (IT-6-8)

and the area becomes

AAi = K cos¢; - (II-6-9)

Substituting the last expression into the criterion

(II-6-3) we have

n
E2g = & % [(va)2 + (Vb)i] cos; = min , (II-6-10)

2A i=1
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and since K/2A is a constant, 'the most suitable non-conformal
projection of a closed domain is obtained by the optimization

of the expression

e

1[(va)zi + (vg)3 ] cos¢; = min , (II-6-11)

i
with the summation sign including all trapezoids which
approximate the domain. The minimization of the above
expression is nothing but a least squares problem. The unknown
parameters of a projection, metagraticule and various
constants, are to be determined in such a way that the sum of
the squares of distortions multiplied by the cosine functions
of the corresponding latitudes is at a minimum.

The method of least squares has been known to mathematical
cartography for some time. The first suggestion that the
theory for the determination of constants in the Lambert
conformal projection be applied, was made in 1913 by Zinger
(Kavraiskii, 1959). 1In 1934 Kavraiskii elaborated the
evaluation of all constants of integration in the normal aspect
of conical, i.e. conic, azimuthal and cylindric projections by
the method of least squares. In 1953 Urmaev solved the problem
of a symmetric Chebyshev projection by least squares. The
résult was a conformal map projection for a domain symmetric

with respect to the central meridian, the projection which did



- 111 -

not perfectly satisfy the bounaary conditions, but where the
deviations from the boundary requirements squared and added
together gave a minimum., Finally, in 1977 Tobler suggested a
new map projection with minimized distance errors. As a result
he did not obtain a pair of analytic transformation functions

X = x(E,n), vy = y(E,n) but numerical values of plane
coordinates (x,y) for points whose positions on the sphere were
known. If the known points are nicely and evenly distributed
over the mapping domain it is not difficult to introduce a
numerical interpolation procedure to transform additional
points of the sphere into the plane coordinate system. The
determination of plane coordinates by the method of least
squares in Tobler's approach corresponds to the determination
of the most probable values of coordinates in the least squares
adjustment of geodetic control survey nets by the method of
trilateration (Mikhail, 1976).

In addition to the briefly described applications of the
method of least squares in mathematical cartography, the author
is suggesting further generalization of the optimization
process including the determination of the most suitable
metagraticule as well as other constants and parameters of
projections. The attempt will also be made to optimize
modified map projections according to the criterion of Airy-
Kavraiskii (II-6-11). The method of least squares will be
applied in the following way. The distortion elements v, and

v, must be expressed as functions of unknown parameters:

b
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metagraticule and modification constants. If we adopt the most
suitable notation, the matrix notation, for the method of least
squares, the functional connection between the distortion

elements and unknown parameters becomes

Ay = ‘}: (€ )., (II-6-12)

where ¥ is a column vector of 2n distortion elements,?(C) is
a column vector of 2n functions and c¢ is a vector of unknown
parameters whose number must be smaller than 2n, i.e. smaller

than twice the number of approximation trapezoids of the

domain.
- . - .
(v, L
(vip)h Ao
4 = : and £ =1 % | . (II-6-13)
. Ck
(Vadn “n
(Vb)n Cn
L . L i

0
If we introduce a strictly diagonal matrix ff of 2n by 2n
dimensions whose elements are the cosines of the latitudes

listed in the following way,
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i Cos¢, o . o o ]
o COS¢1 o [e] (o] (II-6-14)
@ = 3 . . . . . L] . . . . . . L] . . . 14
o o . coso
o o . o) cos¢
- nd

" the basic condition of an optimized map projection according to

the criterion of Airy-Kavraiskii (II-6-11) becomes

VT@ AF = min. (II-6-15)

In this form, the equation (II-6-15) is the easily
recognizable fundamental requirement of least squares. 1In the
classical application of least squares for the adjustment of
physical measurements, the vector {/ represents an array of
residual corrections of measurements and @ is the weight
matrix. In our case the weight matrix can also be modified.

If we feel that certain points of the mapping domain are more
important than others, we can assign higher weights to the more
valuable points according to some empirical rule. For example,

the density of population can serve as the weighting basis. 1In
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that case more populated areas will have smaller deformations
than the less populated portions of the domain. The most
appropriate selection of weights is a very difficult problem
and requires special attention and very careful research. The
author will not dwell further on the problem since it does not
directly belong to an objective optimization process. 1In this
work the weight matrix will always be defined by the matrix
(II-6-14), except in one case where the Lambert Conformal Conic
projection is optimized according to the population density as
the weighting bases.

In order to apply the method of least squares the
distortion elements vy T 1n(a) and Vp = In(b) must be expressed
in terms of the unknown parameters, £ . This is probably the
main hindrance in the whole process. From the theory of
distortions in the first chapter, it is known that the semi-

axes of the indicatrix of Tissot are computed in the following

way:

= = = x2 2 h
9.1 xg + y§, 9., XX ¥ YEYn' 9,, X2+ oy

Js
g= - i = 2= 2= 2 —-6—-
Yg anE xgyn, sine /ETTEEZ s Mé=g,, , n2=g,,sec¢g, ; (II-6-16)

A2=m2 + nZ + 2mn sine® , B2?=m? + n2 - 2mn sine ,

(A +B) , b=

N
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The mathematical model (II-6—1i) is generally nonlinear and to
be used in the least squares process we shall linearize it by

taking the Taylor series

1 =‘?(/C° + AL ) = l}'( L °) +-§—;£|°Z§,C+....(II-6-17)

where £ ° is the vector of approximate values of unknowns.
Taking only the first two terms in this expansion, the vector
of corrections to the approximations,A,C, will be obtained by
the method of least squares. The vector of unknown parameters,

£ + is then

£ =L+ AL (I1I-6-18)

When the approximate values of parameters are close to the
solution, the correction vector is small and all terms of
second or higher order of . [543 in (II-6-17) can be neglected
as being practically insignificant. The vector of approxima-
tions is usually determined from previous experience. It is
particularly important to establish the position of the
metagraticule relatively well. The better the approximations
the better the end results will be. The method of least
squares can also be used iteratively. After the first computa-

tion, the vector &£ can be reentered into the computation as
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the first approximation, and tﬁe method of least squares will
then result in smaller corrections, AL, assuming the
convergence of the process. Divergence indicates too much an
error in the initial approximation vector or the incorrect

formulation of the mathematical model (II-6-17).

Denoting by

v° =& (") ma & - ‘"’?l (II-6-19)

the mathematical model (II-6-17) becomes a typical case of

Newton's method

e =@ AL AR, (11-6-20)

and the fundamental condition of least squares (II-6-15)

A @tp = min is obtained when

3 VT:_?V =0 . (II-6-21)
Y
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Since

o e - Bonc P G s s

- AcTRTPR-nc 2L TRIL - By,

the partial differentiation of the above matrix equation with

respect to C yields

aﬂfT.?if' =2£T5}3A£+3@T?V°=0,

» £

or

Jlae + 4 =0, (II-6-22)

where

3L=@Tj’:/€) and u,=55T5’»u . (II-6-23)
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Linear equations (II-7-22) are called the normal equations
with N being a non-singular symmetric matrix with respect to
the principal diagonal.

The solution of the system (II-6-22), found using Cholesky

method, yields the vector of corrections

AC = - ﬂjlw ' (I1-6-24)

and then, finally, by equations (II-6-18) the required
unknowns.
After the determination of the unknowns, the measure of

distortion Airy-Kavraiskii is obtained by the formula

E3g = ‘2<—A vaf’V , (I1-6-25)

where for a regular mesh the quantity K is the product of the

differences in latitude and longitude of the mesh points, i.e.

K = Ap » AN . (IT-6-26)
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The method of least squarés has been by far the most
predominant approximation technique in many scientific fields.
It yields a unique solution by a very general computation
algorithm which can be applied even in the most complicated
mathematical models. If the mathematical models are linear or
linearized, the approximation algorithm consists of the
solution of linear equations whose number is equal to the
number of unknowns. If the resulting vector of corrections

[34; , is small, i.e. we are dealing with close
approximations, the first application of the method will give
sufficiently good results. For larger values of A€ , the
computed ‘unknowns serve only as improved approximations and the
method of least squares is iteratively applied until the
difference‘between two successive computations of DL are
"practically negligible,

The main difficulty in the application of least squares
for the optimization of cartographic mappings is the
linearization of the mathematical model (II-6-12) by the Newton
method. Analytical expressions for the deformation elements
vy T In a and Vp T In b in terms of the vector of unknown
parameters (£ are relatively complicated and their partial
differentiation with respect to the unknowns are cumbersome.
The problem can be largely simplified by the usage of one of

the available packages for a non-linear least squares fit.

Although the author has not used a single non-linear least
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squares approach it must be embhasized that under certain
circumstances they are the most elegant and efficient solutions
of the optimization problem. Difficulties with a non-linear
least squares method mainly arise from the difficult questions
which must be dealt with in programming of a non-linear
iterative method when to stop and either admit failure or
declare acceptable approximation (Dennis, 1977). 1In order to
ensure convergence of iterative solutions the initial approxi-
mations must be reasonably good. Since the author could not
fulfill this important initial requirement to any meaningful
degree of accuracy the optimization was performed by the linear

Gauss-Newton method only.

7. CRITERION OF CHEBYSHEV

Chebyshev formulated in 1856 a theorem about the best
projection from a class of conformal projections
(Meshcheryakov, 1969). Conformal transformation systems in
which the changes of scale m=m(¢,1) are minimized are called
Chebyshev's projections. 1In other words, the ratio of the
maximum and minimum scale factor for the whole mapping domain
bounded by a closed contour line will be smaller than in any
other conformal mapping of the same domain. Since the scales
in Chebyshev's projections will deviate as little as possible
from unity the logarithms of scales will deviate as little as

possible from zero.
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Chebyshev's theorem (Bierﬁacki, 1965) states that the
necessary and sufficient condition for a conformal projection
to belong to the Chebyshev projections is that, along the
boundary contour of the domain the mapping shall yield a
constant scale factor.

Thus, the de£ermination of a Chebyshev projection for a
closed domain consists of a search for an analytic function of
the isothermic variable (g+il) which will produce a constant
scale factor along the boundary of the domain. Poisson's
equation (I-7-18), which was developed earlier, must have a

constant value on the boundary contour

2 2
3¢ 1ln m + 3¢ 1ln m -

sech?
3qg2 912 a
where for the boundary contour T
sech? g = const. (I1-7-1)

The generality of the solution is not restricted if we
assume the constant in the equation (II-7-1) to be zero. 1In
this case, the determination of the Chebyshev projections is
reduced to the solution of Dirichlet's problem with zero

boundary values (Urmaev, 1953).
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Chebyshev did not present'a proof of his theorem. Much
later, in 1896, another Russian mathematician and cartographer,
D.A. Grave, rigorously proved the theorem. From that time many
authors have called the theorem the Chebyshev-Grave theorem of
conformal mappings. The proof for the theorem can be found in
(Meshcheryakov 1968).

The determination of a real Chebyshev projection of a
closed domain on the sphere can be subdivided into three parts.
First the earth's surface is conformally mapped onto a plane by

the isothermic coordinates

zZ = w , (II"7"2)

where

z =y + ix and w = g + il . (I11-7-3)

This is actually the Mercator projection of a unit sphere onto
a plane with the scale factor m; = sec¢.

The second step is the definition of a harmonic function
which maps the domain into a unit circle. The transformation
must be normalized, so that a certain point (qo,lo) of the

domain becomes the centre of the unit circle. The definition
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of an analytic function which conformally maps the domain into
the circle is performed by either of two groups of methods. 1In
the first group the result is an approximate analytic function,
i.e. an approximation of the harmonic transformation function
which rigorously satisfies the boundary condition. The best
example of this kind of method is the approximation method
developed in 1908 by a German engineer, W. Ritz (Courant and
Hilbert, 1937). The second group of methods consists of
finding a rigorous analytic function which does not perfectly
satisfy the boundary condition. Thus, the found mapping will
be fully conformal but the Poisson equation will not be
completely fulfilled along the boundary contour. Both groups

of methods will yield a function u=u(w) with the scale factor

lat) = 199y | (II-7-4)
dw

The third and final step is the establishment of a
transformation z=z(u) of the unit circle into the closed domain
of the z-plane satisfying the fundamental condition of
Chebyshev's map projections of the constant scale factor along

the boundary contour. The scale factor combining all three
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transformation steps is

_ du, dz, _ e
m sece Idwldul = c , (II-7-5)

where ¢ is a constant.
The derivative dz/du is defined on the unit circle. At the

same time we know that

dz dz
1 == = d ==
n |—| v and arg au

du (II-7-6)

1
w
s

Both functions, v and 8, are harmonic functions and they appear
to be conjugated. Therefore Cguchy-Riemann equations (I-7-8)
will yield the function g8 and after that, on the unit circle,
they will also yield dz/du. By integrating the function dz/du
along the unit circle we finally obtain z=z(u) on the contour
line I, and its transformation, for example by the method of
Kantorovich (Kantorovich, Krylov, 1958), yields a conformal
projection of the unit circle onto the initial domain bounded
by the contour T.

A more detailed description of the development of
Chebyshev's projections will be given in the third chapter,

An additional remark concerning the quality of Chebyshev's

projections must be made. The scale of areas in conformal
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projections is obtained by the‘formula

p = m2 ., (11-7-7)

Because the Chebyshev projections optimize the distortion,
defined as the natural logarithm of the scale factor, 1n m,
they automatically optimize the logarithm of the scale of

areas

Inp=21nm. (I1-7-8)

Thus, Chebyshev's prdjections, of all conformal projections,
are closest to equiareal projections. Among other conformal
projections they occupy a position similar to Euler's
projections among equiareal transformations. Euler's
projections, as is well known, satisfy one of the conditions of
conformality, =0, and are therefore closest to conformal
mappings. There is also, however, the second condition of
conformality, m=n, and if we define a class of equiareal
mappings which satisfy the second condition of conformality as
the group of equiareal projections closest to conformal, then

we have an ambiguity which does not exist with Chebyshev's
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projections. Thus the uniqueness of Chebyshev's projections
among conformal projections not only does not correspond to the
position of Euler's projections among equiareal mappings, but

is in fact far greater.



III. THE CHEBYSHEV MAP PROJECT&ONS

1. INTRODUCTION

The best conformal map projections, or Chebyshev's projec-
tions, of a closed domain by the contour line TI' is the projec-
tion in which the ratio of the maximal scale factor and the
minimal scale factor has the smallest possible value. 1In order
to belong to the class of Chebyshev projections, a conformal
mappiné must produce a constant scale factor along the boundary
contour line. Thus, the determination of the best conformal
transformation of a closed domain consists of solving the

Laplace equation (I-7-15)

3g? 312

where v = m ‘cos g, for an analytic function of the isothermic
complex variable (g+il) which will yield a constant scale

factor along the boundary, i.e.

mr = const. (ITII-1-1)
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The criterion of Chebyshev can also be defined mathemati-

cally by the Poisson equation (I-7-18)

32 In m + 32 1n m
3q? 312

= sech? g (III-1-2)

with
sech? q, = const. (I1II-1-3)

The integration of the Poisson equation (III-1-2) with
boundary conditions (II-1-3) yields the best conformal projec-
tion.

It must be emphasized at the beginning of this chapter
that very few mapping domains in cartography have a regular and
mathematically defined contour line. The majority of mapping
areas have irregular boundaries and the rigorous determination
of Chebyshev's projections for such irregular contours is
theoretically impossible. The boundary is usually approximated
by a series of discrete points at which the boundary condition
(ITI-1-3) can be rigorously satisfied.

Instead of the isothermic latitude, g, we shall introduce
a new variable, the difference of latitude, g, and the latitude

of the central point, q, e i.e.
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(ITI-1-4)

A = g - q

In this way the isothermic coordinates (q,l) are normalized and

the Poisson equation (III-1-2) becomes

2 2
92 1ln m + 34 In m -

sech? (ag + ) (I1I1I-1-5)

If we introduce abbreviations

[
=]
3

il
[ =1

-

]
[ =1
[}

2 = S
7q q' 31 uy sech< (agq + qo) f (111-1-6)

the Poisson equation is transformed into

au Bul
9, 1. ¢ -1-
s = £ (III-1-7)

The boundary condition (III-1-3) can easily be replaced by

the zero boundary condition, i.e.

sech? (aq + qo)
r

0 (ITI-1-8)
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This simplification of the boundary condition is generally
achieved by the construction of a function h (q,l) that agrees

with the values of function u on the boundary. Then
u=2z+h (q,l), (ITI-1-9)

where z is an unknown function which also satisfies the Poisson
equation, however, with another free term. Thus in all further
discussions and developments we shall take the Poisson equation
(III-1-7) with the zero boundary condition.

The calculus of variation shows that the solution of the
Poisson equation with the zero boundary condition is the solu-
tion of the Dirichlet problem and is equivalent to the minimi-

zation of the Dirichlet integral

I(u) = II[(—;;-) + (—)2 + 2uf] dqg 41, (III-1-10)

where D is the plane region bounded by the contour r. 1In other
words, the solution will provide us with a function, u(gq,l),
which is continuous in the domain D, together with its partial
derivatives of the first and second orders and vanishes along

the contour r.
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3

Most solution methods of the Dirichlet problem can be
subdivided into two fundamentally different groups (Urmaev,
1953). The first group consists of solutions in which the
harmonic function, u(qg,l), is approximated, but where the
approximation perfectly satisfies the boundary conditions.
Because the solution is only an approximation of a harmonic
function, the Poisson equation for an arbitrary point of the
domain will not be exactly satisfied. The best known among
these methods was developed by W. Ritz in 1908 and is known
today as the Ritz method. The second group of methods yields a
rigorous harmonic function, therefore the Poisson equation is
completely satisfied at every pont of the domain; however, the
boundary conditions are not perfectly fulfilled. Since the
boundary in cartography is usually approximated by a series of
discrete points, the boundary will be a closed polygon and the
line of constant scale deformation will be a smooth curve which
approximates the polygon. Lines of constant deformations are
called isocols. Thus the second group of methods yields
conformal mappings whose isocols only approximate the real
boundary. The method of least squares is the most suitable
method if the required harmonic function is expressed by
harmonic polynomials. The method ascertains the best conformal
projection with the boundary isocol approximately following the

real boundary.
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When the mapping domain resembles an ellipse and is rela-
tively small, the determination of the Chebyshev projection for
the domain is considerably simpler. The solution was suggested
by various authors (Lagrange, Laborde, Schols, Kavraiskii,
Vahramaeva) in slightly different ways but they can all be
brought to the same denominator. All these methods are based
on the property of a differentially small isocol around the
origin of the plane coordinate system that is also the central
point of the domain, and where the scale factor in the origin
is equal to unity. Such an isocol is an ellipse expressed by

the formula
= - 2 1 2 =
v = m-1 = Ax2 - 2Bxy + (3 - A)y¢ =0,

or

Ax2 + 2Bxy + A'y?2 = 0, (II1-1-11)

in which the coefficients A and B depend upon the size and

orientation of the boundary ellipse.

1

A = Z (1l - C cos 2a),
B = = sin 2q,
(I1I1I-1-12)
A' = %" A’
C - a2 - b2
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The parameters a, b and o« are the semi-major axis, the
semi-minor axis and the orientation angle of the semi-major
axis of the boundary ellipse, respectively.
The rectangular coordinates, according to Kavraiskii,

(1959), are then obtained by the expressions

By3 + Axy? - Bx2y =~ % Ay3,
(IT1-1-13)

Wl wl—

Ay3 - Bxy? - Ax2y + % Bx3,

where x, y are the Gaussian coordinates with respect to the
central point (¢o, Ao).

The elliptic conformal projection, i.e., a conformal pro-
jection with elliptic isocéls (III-1-13) is only one of several
examples which are elaborated in the literature of mathematical
cartography (Pavlov, 1964). It is given purely as an illustra-
tion of a special type of Chebyshev's projections which have
rather limited practical significance, although their determin-~-
ation is very simple. Unfortunately, the boundary contour
lines can seldom be approximated by an ellipse and therefore
the merits of such a projection are reduced whenever the

boundary fluctuates considerably about the adopted ellipse.



Various solutions of Chebyshev brojections for generally
symmetric domains can be mostly found in the Russian carto-
graphic literature. For example, in 1953 N.A. Urmaev investi-
gated different ways of minimizing the Dirichlet integral by
the method of Ritz, finite difference method and the method of
least squares for conformal mapping of a symmetric spherical
trapezoid. Although a great majority of mapping domains in
geography can be seldom approximated by a symmetric spherical
trapezoid, Urmaev's work (1953) is an interesting contribution
to mathematical cartography. Since it is largely unknown to
North American cartographers the author decided to describe in
detail the work of Urmaev in the next three sections. The
notation is slightly modified, particularly in the method of
least squares, but the essense of Urmaev's work is preserved.

In addition to the minimization of Dirichlet's integral
for symmetric domains the author proposes the method of least
squares for a non-symmetric boundary consisting of a series of
discrete points. The development of the method is given in the
fifth section of the chapter.

It must be also mentioned that in 1973 a geodesist from
New Zealand, W.I. Reilly, developed a conformal map projection
whose isocols closely appfoximate the actual shape of New
Zealand. This projection to the author's knowledge is the only

real approximation of a Chebyshev projection in use at present.
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A sketchy development of formulae for the projection of New

Zealand can be found in (Reilly, 1973).

2. METHOD OF RITZ

In the introduction of this chapter it was indicated that
the solution of the Poisson equation (III-1-7) is equivalent to

the minimization of the Dirichlet integral (III-1-10),

2 2
I(u) = ff[(gﬁ) + (%%) + 2uf] dq dl,

D

where D is the domain bounded by the contour r, and the
required function u(Aq,l, vanishes on the boundary contour.

Let us denote by u*(Aqgq,l) the exact solution of the Poisson
equation with zero boundary conditions and by I(u*)=m the exact
value of the Dirichlet integral. It is logical to expect that
a constructed approximation u(Aq,l) of the required function u¥*
which satisfies the boundary conditions and for which the value
of the Poisson integral is close to m would be a relatively
close approximation of the unknown solution. 1If, moreover, one

can construct a sequence of approximate solutions ﬁn(Aq,l) SO

that
lim I(Gn) =m (III-2-1)
nso

then we know that
lim Gn = u%, (IT1-2-2)

n+>o
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or the constructed sequence converges to the real solution of
the problem, (Rectorys, 1977).

For the minimization of the Dirichlet integral, Ritz
suggested a sequence of functions depending on several
parameters

Un = ¢(Aq,l,C1,C2,...,Cn), (III—2_3)
so that for all the values of the parameters the boundary
conditions are fulfilled. The value of the Dirichlet integral

is then a function of the unknown parameters, Cyr i.e.
I(Un) = I(clyczyooo,cn), (III'—2-4)
and the minimum of the integral is achieved when

aI(un)
—— = 0 for i = 1,2,.-.,n. (III-2_5)
3C.
i
Solving the system of n equations (III-2-5) with n
unknowns, we obtain particular values of parameters Ei'

Substituting into the Dirichlet integral the function I(T,,T,,

...,En) gives the absolute minimum. Finally, selecting the

function in the family (III-2-3) corresponding to the computed
values of the parameters, Ei' we construct the required

approximate solution
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-Gn = °(Aq’1,61 '62"°"_c-n)' (III-2_6)

In 1953 the Russian geodesiét N.A. Urmaev was the first
to recommend the application of the Ritz method for conformal
projections of symmetric domains with respect to the y-axis of
the plane coordinate system, He suggested that the sequence
(III-2-3) be defined as a linear combination of independent

functions wi (i=0,1,2,...,n), i.e.

n
Up = Vota v *asdote..tagy, = l”o+.'zla"'1‘pi (I111-2-7)
1=

Functions y; must be continuous inside the domain and they
must vanish along the contour line. When the linear combina-
tion (III-2-7) is substituted into the Dirichlet integral (III-
2-4) it yields a quadratic function of coefficients a; whose
partial differentiation (III-2-5) results in a set of n linear
equations with n unknowns which can easily be solved. The
simplicity of the solution of the system (III-2-5) appears to
be the main reason for the suggested formulation of the
function u .

The domain of Urmaev's investigations was a spherical
trapezoid bounded by the isothermic latitudes q, and d,r and
the difference in longitude 1., 1If we define the auxiliary

quantities
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¥

1, (III-2-8)

(] Y

1 1
qO = 5 (q1+q2)r a = 5 (qz"ql)r b =

then the function, u, must vanish for values of G=ta and l=tb.
Among many, the following family of functions will satisfy the

boundary conditions for any values of parameters c,

(a2-aq2)(b2-12)c,,
(a2-28g2)(b2-12)(c,+c,Aq),

(111-2~9)
(a2-4g%)(b2-12)(c,+c,Aq+cy0q3),

(aZ-AqZ)(bZ-IZ)(cltcqu+c3Aq3+cu12), etc.

The above series assumes symmetry with respect to the 1~
axis of the curvilinear coordinate system and thus all odd-
power terms of 1 disappear.

Let us take the second of these expressions as our
approximation,

u = (a%2-4g2)(b2-12)(c,+c,Aq) (III-2-10)

The partial derivatives of the selected function with

respect to the independent variables (q,l) are

=
[}

(b2-12) (-2c, Ag+c, (a2-3aq2) ),

=
]

-21(a2-ag2)(c,+c,Aq),

and the corresponding squares
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2 2 ' 2
(uq) =(b2-12) (402Aqf—4clcqu(aZ—BAq2)+c2(a2-3Aq2% )
(IT172-11)

2
(uy) =412(aZ-AqZ)(cl+ZClcqu+cqu§).

Let us split the Dirichlet integral into two parts

I(u) = Il+ 212, (I1I~-2-12)
where
I, = [[l(up)? + (u))?] dq 41, (III-2-13)
D
and
I, = [[ uf dq 4dl. (III-2-14)
D

Then the first part, I with equations (III-2-11) becomes

1!

A + c2 A22, ) (ITII-2-15)

1 i1 152 812
where
A, = 4f[((b2-12)2aq2+(a2-2q2)12) dq dl, (III-2-16)
D
A, = 4[[(2(a?-2q?)2aql2-Aq(a2-3Aq2)(b2-12)2) dq d1, (III-2-17)
D
A,, = [[(48q212(a2-aq2)+(b2-12)2(a2-34q2)2) dq dl. (III-2-18)

D
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The second part of the Dirichlet integral, I,

expressed as the sum of two integrals M; and M,.

can also be

I, = éj((aZ-AqZ)(b2—12)(c1+c2Aq)f dg dl = ¢, M +c,M,, (III-2-19)

where

M)

and

=
IN)
]

The evaluations of integrals Aij (i,J=1,2) in limits
-a to +a and from ~-b to +b can easily be performed. See,

example (Kantovovich-Krylov, 1958). Their values are

128 128 a?b2 a4
A, = 45a3b3(a2+b2), A,,=0, A22=—T§a3b3(——g—+57).

In both integrals, M,

+b +b

13 2 4

[ (b2-12)dl=[b2l - 2] = 2b? - £p3 = 2p3; (III-
“b

-b 3 3

therefore M, and M, taking into account (III-2-23), are

transformed into

[f((a2-Aq?)(b2~12) f dq dl, (II1-2-20)
D

[f((a2-aq?)(b2-12)aq £ dq dl. (II1-2-21)
D

from

for

(I111-2-22)

and M2, we have the evaluation of

2-23)
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4 +a 4 +bA 2
M, = Za2b3[ f dq - =a2bdf 2% £ 4q, (II1-2-24)
3 -a 3 ~a 2
and
4 +aAg 4 +bA 3
M, = —=a3b3f f dg - —a3b3f —93 f dq. (I11-2-25)
3 ~a a 3 P

Let us now introduce new symbols

+a 1 +a 1 +a
= b = - 2
K iaf dq, K} = = £af aq dq, K, aziaf Aq? dgq,

(III-2-26)
1 +b
R, = ;3£af Ag3 dq.
With these abbreviations the integrals, M1 and MZ, become
= 4 - _—) -
M, = 3 a2b3(Ko Kz)’ (I11-2~27)
and
M, = 3 a’b3 (K- K3). (III-2-28)

The only remaining problem is the computation of integrals

Ki (i=0,1,2,3). Their determination is done in the following

way



- 142 -

+a +a
K = [ sech2(q +aq)dg = [tanh(g +aq)] =
) -a ) ) —a

(I11-2-29)

tanhq2 - tanhql,

or, knowing the relationship between the metalatitude and the

corresponding isothermic latitude we have
K =,sing, - sing,. (II1-2-30)

Other values of Ki (i=1,2,3) are derived from the

integration by parts

l +a - l +a
K, = = [ sech?(q +Aq)Aq dq = =([agtanh(g +ag)] -
a -a (o a (o] -a

+a
- J tanh(qo+Aq)dq),
-a
K, = tanhg? + tanhq, + i 1ln EEEE—EL ’ (I11-2-31)
a cosh q,

or in terms of the metalatitude

K, = sing, + sing, + = 1n 52582 (I1I-2-32)

a cosg
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1

) *a 1 +a
K, = = [sech2(q_+aq)aq2dq = = ([aq2tan(qg _+Aq)] -
allga ° a2 ° -a
+a
-2 | tanh(q _+4q) Aq dq),
-a
1 +a
K, = — (a%(tanh g, - tanh q,) - 2[ag 1ln cosh(q +Aq)] +
a2 ° -a
+a
+2 [ 1n cosh(g,+aq) dq),
-a
2 cosh ¢q 2
K, = tanh q, - tanh q; - = 1ln ——=2 + _ N, (IT1-2-33)
a cosh q; a%2 ©
or
K, = sing, - sing, + 2 1n 9852 4+ 2 y | (I1I-2-34)
a cosg, a2 °
where
+a
NO = [ 1ln cosh (qo+Aq) dqg. (III-2-35)
-a
The final integral K, is solved by a similar way, and
, ta 1 +a
K, = =.[ sech2(q +aq)aqidq = = ([aqitanh(g +aq)] =~
a3l , ) a3 0 Za

+a
-3 J tanh(qo+Aq)Aq2 dqg,
-a
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'

Ky = tanh g, + tanh q; + 3 1n S0sh g, + 6 y , (III-2-36)
a cosh q, asl
where
+a
N, = [ 1n cosh (q +4q) Aq dq. (II1I-2-37)
~a

With the metalatitude the integral K, becomes

> Costp , 8 (III-2-38)
K, = sing, 4+ sint, + — 1ln + — N —i=
3 2 b a cosE, a3 !

e e S e o o

The values of integrals N, and N, can be determined by one
of the numerical procedures. It is sufficient to evaluate the
functions Aq, ln(cosh q), where Aq=q-q ., in limits between ql
and g, and then apply an integration formula.

The Dirichlet integral (III-2-12) with expressions (III-2-

15) and (III-2-19), knowing that A, = 0, becomes
I(u) = c2a,, + C2hy, + 20 M) + 2c,M,, (I11-2-39)

and its minimum occurs when

3I(u) _ -
aCl = 2C1A11 + 2M1 = 0,
and
3I(u) _ _
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or

c, = —Ml/A11 and ¢, = —MZ/AZZ. (I11-2-40)

Formula (III-2-10) will provide us with values of the
required function, u=ln(m), for various points of the mapping
domain.

The whole described approach, suggested and developed by
Urmaev, is applicable when the mapping domain is a spherical
trapezoid. The most general definition of the family of func-
tions equivalent to (III-2-9) cannot be formulated for an
arbitrary boundary consisting of a series of discrete points.

For a circular domain with the centre at the origin of the
isophermic coordinate system, (Ag,l), the éuﬁhor suggests

another family of functions
(r2 - ag2 - 12) ¢y,
(r2 - 4q2 - 12)(c, + c,Aq), (III-2~41)
(r2 - aq2 - 12)(c, + c,Aq + ¢3Aq92%), ... etc.,
where r is the radius of the circular sperical domain expressed
in radian measure.

When the boundary consists of a convex, non-symmetric

polygon of m discrete points, the family of functions is
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(alAq+b11+d1)...(amAq+bm1+dm)c1,

(a;4g+b;14d,) ... (a Aq+b _1+d_)(c +c,aq+cy1), Y (III-2-42)

(a,aq+b,1+d ) ...(a Aq+b 1+d ).

(c,+c,aq+c,1+c,0q2+c,0ql+c 12) .

Thus it is obvious that, for a circular cap, (III-2-41)
has a similar symmetric form as the system (III-2-9) and deri-
vations with evaluations of required integrals can be performed
in a similar manner. However, the system (III-2-42) with a
slightly larger number of points is very difficult to solve.

In addition to the computational disadvantage, the polygon must
be strictly convex, i.e., every straight line which defines a
section of the boundary between any two successive points of
the boundary must be completely outside the mapping domain.
Because of all these complications cartographers have never
applied the Ritz method, at least to the author's knowledge,
for a non-symmetric arbitrary boundary. The complexity of
integration discourages even the most enthusiastic carto-
grapher. The integration of M; and M, could be performed

numerically rather than analytically which would introduce a
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certain reduction of problems. It is also important to empha-
size that better approximations to the true conformality are
achieved when more terms in (III-2-9) are used, which again

increases the computational difficulties.

3. THE METHOD OF FINITE DIFFERENCES

The Ritz method is not the only method of finding a
function, u(gq,l), as an approximate solution of the Poisson
equation with zero boundary conditions. Urmaev (1953) also
suggested the application of the finite difference method. The
method is basically very simple but it also assumes symmetry
about the g-axis, which certainly decreases its range of
application.

Let us assume that the domain is subdivided in the direc-
tion of isometric latitude into (qz-ql)/h rows, where h is
the width of a row, and in the direction of longitude into
(12-11)/k columns, where k is the width of a column.,

The function u depends upon two variables, g and 1. At

an arbitrary point of the domain the Taylor expansion yields
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*

2 2
u(g+h,14k) = u(q,1l) + 8n + 2 4 18200 4 5 370,
3q al 2 3q? 3gal
(III-3-1)
2 2 3 3 3
+ E_Ekz] + l[a U3 + 3 a‘u h2k + 3—3—2—hk2 + Q_Ek3] ...
al2 6 3g2 3g2al 3gal2 3

Let us take five neighbouring points, as shown in figure
III-3-1, and express the values of the function u at four

points in terms of the central point.

o1

Figure III-3-1 A section of the grid



2 3 4
u, = u - iHh + 1 E_Ehz - l Q_EhS + _l Q_Hhk + _..7
° 3q 2 3g? 6 3q3 24 a3g*
2 3 4
u2=uo_32k+la—2k2_lu.3 —la__g'-l».;....
3l 2 312 6 313 24 31*
S (III-3-2)
2 3 4
u; = u_ + Sy, yLlayw,, 1L CAL N U S LN
°  3q 2 3q2 aqg3 24 3qg*
2 3 [N
u, = u +2£k+la_gk2+£u.k3 +_1qu + ...
° 31 2 312 6 313 24 1™ J

When the above equations are added in pairs, i.e., the

first to the third and the second to the fourth we obtain

2 4
u; + u; = 2u_ + 3~Hh2 -1 A—Eh“ .o
0 3g? 12 aqg*
(I11-3-3)
32u 1 3%u
u, + u, = 2u_ + —k2 + — —k* + ..
2 * o ' 212 12 314

The first equation of (III-3-3) is divided now by h2, the

second by k? and the results are added

u; +u, N u,+u, 1 1 + 32u 32u (ITI-3-4)
h2 k2 °© "h2 k2 3gq2 212
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where R is the remainder which‘contains the terms of the fourth
and higher orders of h and k.

From the Poisson equation (III-1-2) we have

2y

2
a"u
2

3g? )

=}
¥

= sech? g

—

and therefore equation (III-3-4) becomes

k2 2
u, + u, = 2u0(33+1) + k2sech? q - ﬁz(u1+u3),
or N
u, + u, = 2uo(p+1) - p(u1+u3) + £', (ITII-3-5)
where
k2
p = Y] and f' = k2sech? q. (III-3-6)

In this manner the rigorous solution of the Poisson
equation is substituted by an approximate numerical solution.
At every point of the symmetric mapping domain, starting from
the boundary where the values of function u(qg,l) are known, we
can write a computer program with ease, but for a symmetric
boundary with respect to one coordinate axis only, the program

can be very complex.
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4. SYMMETRIC CHEBYSHEV PROJECTIONS BY LEAST SQUARES

The Ritz and finite difference methods solve the Poisson
equation (I-7-18) with zero boundary conditions by approxi-
mating a true harmonic function. Thus, strictly speaking, the
results of the two methods are not exact conformal mappings but
approximations only. Using the results in the Poisson equation
we will obtain some discrepancies, i.e., the Poisson equation
will not be exactly satisfied except along the boundary contour
of the domain. Let us now take the opposite approach and
develop exact harmonic functions which yield true conformal
mappings but only approximately satisfy the boundary condi-
tions. 1In order to eliminate large discrepancies in the zero
boundary conditions, the method bf least squares will be
applied. Once the exact harmonic function is selected, the
method of least squares will yield coefficients related to the
selected harmonic function determined in such a way that the
discrepancies of the zero boundary conditions squared and added
together will give us a minimum. The easiest harmonic function
for these purposes is a harmonic polynomial (I-7-27). We
shall assume symmetry of the boundary contour in the first case
and non-symmetric cases will be dealt with in the subsequent
section.

The quantity v as defined by the equation (I-7-13) is a
complex function, thus the natural logarithm can be expressed

by harmonic polynomial (I-7-29)
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In{m sech g) = ao +oagy, toay, ... + akwk’
or

Inm = a +tajy; +ay, + ... + a + 1n cosh gq. (III-4-1)

x" k
The coefficients asy for i=0,1,......,k, are determined by
the method of least squares from the fundamental condition of

least sqguares

e 3

(1n mi)2 = min, (III-4-2)

i=1

where n is the number of discrete points which approximate the
boundary contour. The number of fixed boundary points must be

larger than the number of unknown coefficients, i.e.,
n>k+ 1.

Let us again use matrix notation, the most suitable type
of notation for the method of least squares, in which the
fundamental equation of the mathematical model (III-4-1)

obtains the form

w=x%-a-++¢. (ITI-4-3)

where



1n m,

1n m,

In m

k]

-~
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1
A ™

L o)

1 WMy

In cosh q,

In cosh q,

1n cosh q,

(H)

(2)

(n)
k .-

-

4

The condition of least squares (III-4-2) then becomes

uTtL = min,

(ITI-4-5)

(ITI1-4-4)
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which takes place when the first derivative of gcril with
respect to the vector of the unknowns,  , is equal to zero,

i.e.,

i
o
*

SETRLTENVAY: | (III-4-6)

Taking the mathematical model (III-4-3) we can write
W= Ra+0"Kal) - a"]KRa a"RE+
+£'Ka+ 7€,

or

wu=-a"x Tﬁa; 2ATHe - €70, (111-4-7)

and the derivative of the above expression is

2w w)Inad =28 KR 2L = o,

or finally,

31/& + b =0, (III-4-8)

where

oL =" ¥ and o= 35Ty (1II-4-9)
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The solution of the systém of normal equations (III-4-8)

yields the vector of unknowns

a--N1p. (III-4-10)

As a measure of quality of the least squares fit, we can

use the variance from stochastic mathematical models
02 = (wTu)/(n-(kﬂ)). (III-4-11)

The higher the degree of harmonic polynomials, the better
the fit the solution will have. If we keep n, the number of
fixed boundary points, constant, the increase of the order of
the polynomial, k, results in a smaller value of the denomina-
tor in (III-4-11) and also, naturally, in a smaller value of
W TW . Thus, there must be an optimal value of k which will
yield the smallest variance. To optimize the order k, the
author sees no other way than a trial-and-error approach.
Several orders of k should be taken and the solutions evalu-
ated. When the differences in the scale factor, m, become
practically insignificant using k-th and (k+1l)-st order of the
harmonic polynomial, further increases of the order are mean-
ingless. If, however, the boundary conditions are weighted
more, the smallest value of variance, o2, will indicate the

best order of the polynomial.
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'

With known coefficients, a;, we can compute the logarithm
of the scale factor and, thus, the scale factor at every point

of the mapping domain

. e(ao+a1q;1+...ak¢vk+ln cosh q). (III-4-12)

The rectangular coordinates (x,y) of a Chebyshev projec-
tion determined in this way for a symmetric domain are also

computed by a harmonic polynomial

y + ix = F (q + il1), (III-4-13)

where

. +’Ai9i)‘ (I1I1-4-14)

If we separate the real and imaginary parts we obtain the

formulae

k k
x =7 A0, , y=1)Avy.. (II1-4-15)

The unknown coefficients Ai’ for i=0,1,...,k, are obtained

from the expression (I-7-19)

Y, = [ v, dg + ¢
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or

) k

The first derivative of the above equation with respect to
the isothermic latitude yields the function Vo thus

v, = A; + 2A,aq + 3A;8q2 + ... + kA AqF !, (III-4-17)

Since function v, can also be determined from (III-4-1) by

the formula

k
(ao+a1Aq+a2Aq2 te.o +oaAq)

v =e , (III-4-18)

it suffices to determine v, values at k different points along
the central meridian and substitute them into (III-4-17). The
result is k linear equations with k unknowns Ai (i=1,2,...,k).

In the matrix form we have

Q04=,d« ’ (ITTI-4-19)

where
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"‘ k-1] ‘ ~ e
1 2Aq(1)..... kAq(l) A1
k-1
1 2Aq(2)..... kAq(z) A,
k-1
1 2Aq(k)..... kAq(k)J - AkJ

(1)

(2)

(ITI1I-4-20)

The solution of the system (III-4-19) yields the final

unknowns, Ai'

The elements of the matrix}fi can be determined directly

from the equations (I-7-29) which in our case are

it

AgQy,

Aq%

3
aql

Aqg

i¥e ]

- 13,

3Aqi l%,

2 12 4
6Aqi 1i + li’

10Aqg 1% + 54q; lg.

f (II1-4-22)
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*

In the same way we can compute (for j=1,2,...,k)

o) 1,

eéi) = 2Aq1 li'

oft) = 3802 1, - 13, , (111-4-23)
oll) = 4aqd 1, - dagq; 13,

oll) = 5aqy 1; - 108q? 13 + 1§ _

However, with electronic computers it is much more
suitable to use the recursion relations. With the initial

values

‘pél) =1, @él) = 0,

other elements are

(1)

(1) (1)
Y34l i - 10277,

i¥j3 i73

I
[ d
el

(ITI-4-24)

(1) _ yq.oll) 4 1 408

ej+1 - i%3 i¥j



- 160 -

where j=1,2,...,k.
The Chebyshev projection defined by the equations (III-4-
15) will give a symmetric isocol which smoothly approximates

the real boundary contour,

5. NON-SYMMETRIC CHEBYSHEV PROJECTIONS

The adaptability of the symmetric Chebyshev projections,
as described in the previous section, is restricted to domains
whose boundary can be approximated by a symmetric isocol, a
smooth curve along which the scale distortion takes on a con-
stant value. For non-symmetric territories, the application of
the symmetric Chebyshev préjections may lead to too large devi-
ations of scale from the desired constant value along the boun-
dary contour and thus the effort of the optimization process
can become almost meaningless. The problem can be solved by
the development of a non-symmetric analytic function which
yields a non-symmetric isocol whose shape resembles the mapping
domain.

In the modern Russian cartographic literature the problem
is clearly stated. For example, Meshcheryakov (1968) discusses
all aspects of the Chebyshev projections without giving the
actual solution of a non-symmetric case. Pavlov (1974) listed

the required formulae for a symmetric Chebyshev projection and
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mentioned non-symmetric generaiizations by the method of
Vahramaeva, without describing the actual process or giving any
mathematical expression. The author was unsuccessful in
originally obtaining any references with a detailed explanation
of the method used by vVahramaeva. With the assumption that
Vahramaeva applied non-symmetric harmonic polynomials (I-7-30)
the author has developed all the required formulae which, he
had believed, constitute the method of Vahramaeva. However,
after reading the first version of the thesis, Dr., Tobler sent
to the author the English translation of an article by
Vahramaeva. The developed formulae by the author do not
resemble the work of vahramaeva.

Let us take the harmonic polynomial (I-7-30) and write it

in the form

In v = a +ajp, + ...t

(III-5-1)

+ a + blel + ... + b O,

x¥x Kk k

Using the definition of function v in (I-7-13) the last

formula can be transformed into

lnm = a +ajy, t ... F akwk +
(III-5-2)

+ ble1 + ... + bkok + 1ln cosh q,
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where a; (i=0,l,...,k) and bi (i=1,2,...,kK) are unknown

coefficients to be determined by the method of least squares

thus satisfying the fundamental requirement (III-4-2)

n
2 = :
i£l(1n mi) min,

where n is the number of discrete points which approximate the
boundary. The number n must be larger than the number of

unknown coeffients, i.e.,

n > 2k + 1 (ITI-5-3)

Let us again introduce a similar matrix notation to that

in the previous section

AT = (Inm Inm ..., 1n m ], (III-5-4)
T

0 = [aO’ al’ ce ey ak bl b2 e e o bk]’ (III_S-S)

izT = [1n cosh q; 1n cosh g, ... ln cosh q.] (III-5-6)



-— w ® e 0 w LI ]
K - 1 k ) k , (III-5-7)

(i)
J
the expressions (III-4-22) and (III-4-23) respectively or by

where ¢ and egl), for j=1,...,k and i=1,...,n are computed by

the recursion formulae (III-4-24).

The vector of unknowns & is then

c = - d . (III-5-8)

where

N-R"K aaa d-FK"0 . (11I-5-9)

Compared to the determination of the symmetric Chebyshev
projections, the development of non-symmetric formulae up to
now is, more or less, identical to the former except that the
matrix.af, also includes the terms of the imaginary part of the
harmonic polynomial and the vector of the unknown coefficients
£ consists of parameters a; and bi where i=1l,...,k. Theoret-
ically the order of polynomials vy and Oj do not need to be the
same, but throughout this work, for reasons of simplicity, the

author assumes that i,j=1,...,k.
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¥

With known coefficients a. b

i i ascertained from the
r

boundary conditions, the analytic continuation enables us to
compute the logarithm of the scale and, thus, the scale itself
at every point of the mapping domain by the formula (III-5-2).
Let us now express the same formula as the sum of two vector
products and the logarithm of the cosine hyperbolic function of

the isothermic latitude,

Inm=& Q +b"F +a + 1n cosh q (III-5-10)

where

fi,T =[a; a, « « « o ¢ .. ak],

R N
(III-5-11)

Giﬁ' = [y, vy o ¢ o o .

e
<

~
—
-

3T=[elez.......ok].

In the same way the formula (III-5-1) becomes

my=a'Q + b’ +a, (III-5-12)

and

@'Q +b 'S +a

(ITI-5-13)
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We have already seen that the plane rectanguiar coordin-
ates (x,y) obtained by a conformal mapping are conjugated har-
monic functions éf the isothermic coordinates which, thus,
satisfy the Cauchy-Riemann equations (I-7-8). Therefore, if
the selected analytic function of conformal mapping is a har-
monic polynomial, the rectangular coordinates will be computed

by the pair of functions

= ATQ +H TS

(III-5-14)
Y=GA«Ta -% T‘y ’
where
y4T=[A1A2.....Ak]I
(III-5-15)
@T = [B; By . . . . . B, .

The coefficients Ai’ Bi’ for i=1l,...,k, are unknown and
will be obtained from the fundamental equations of map projec-
tions (I-5-15) and (I-5-19). Since we are dealing with a con-
formal mapping in which there is no distortion of the para-
metric angle, €=0, and the scale factor is constant at a point,

m=n, the equations (I-5-15) become
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x¢ = -m sin 8 , Xy = v cos g ,
(ITI-5-16)
y¢ = m cos B , Yy = v sin g , J
where
vV =m cos ¢ = m sech q. (ITI-5-17)

The relationship between the geographic and the isothermic
latitude (I-7-12), where dq/d¢ = sec ¢ = cosh g, enables us to

transform the expressions (III-5-16) into

X = =-v sin g , X, vV cos B ,

(II1I-5-18)

v sin B .

Yy = v cosg , Yy

Let us now differentiate the rectangular coordinates (x,y)

as expressed by (III-5-14) with respect to the isothermic lati-

tude q,

= AT 2 Q1+ BT (P,

2o

(ITI-5-19)

~
Q
"
¢
o
M
QL
3 |

(8 - R

&l
<
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bearing in mind that Cl’ and é? are vectors of conjugated
harmonic polynomials which must satisfy the Cauchy-Riemann

equations

d 1 2 = - =2 -5—
a—a(Q)-al(S) and 3q(.?) — (Q). (111-5-20)

Let us denote the derivatives of vectors Q and 5’ with
respect to the isothermic latitude by vectors f and v ’

respectively,

2 Q@ =9, 2 =Y. (II1-5-21)

g
where
. 3V T

VT

[ 1 2p; 3y, « « « ko4
(III-5-22)

{1 20, 30, .. . ko

Thus the individual elements of vectors ﬂr/ and % are

obtained by the formulae
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ke = =9 -~ = = = ->-
g (t4=3vy 43, 'dl (vy=jo, ;1 for j=l,....k (III-5-23)

where

vy =0 =~ 1. (ITI-5-24)

The convergence of meridians, B8, is also a harmonic
function of the isothermic coordinates since it satisfies the

equations (I-7-14),

g = 3 1In v -8, = 3 1In v
q 3l ! 1 3g :

The integration of one of these differential equations

will give the convergence. For example,

1
B = f[——-a 32 Y] dq, (III-5-25)

or with (III-5-12)

2= /=2 @QTQ DTS ¢+ 2

1

which finally yields
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s=fla’ 2 Q)+ ot (& a.

The substitution of the Cauchy-Riemann equations

20) into the last integral gives

s=/1-aT 2 (&) + bT'a%;(Q” dq,

3q

or

s=-a4T8 + BPTR + o,

-

where ¢ is the constant of integration whose value is

zero if we decide to have no convergence of meridians

(III-5-26)

(III-5-

equal to

at the

origin for g=0 and 1=0. Thus the final version of the last

equation is

s=-aT8 + HTQ .

(II1-5-27)

The formula for convergence of meridians (III-5-27)

permits us to determine the numerical value of the convergence

at every point of the mapping domain.

Let us now combine the obtained results for v and 8 in the

right-hand side of the equation (III-5-18)
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T o T &
x = -eld Q+p*5 %) sin(- T8 +PTQ ),
(III-5-28)

e(aT‘2 +bT3 ta)) cos(—aTs +bTG,).

o
|

Since all elements defining the derivatives xq and yq are

known, we can compute the derivatives at an arbitrary point of
the domain. At the same time the derivatives are expressed in
terms of unknown coefficients Ai and Bi in the equations (III~-

5-19),
AT?/+£TV= _e(aTQ +DTI 4o

sin-aT8 + DPTQR)H,

\ (III-5-29)
ATV-'@STT'= e(aTa + TS *a,)

cos(-a,Ts + bTa ).

This is a linear system of two equations with 2k unknown

coefficients, Ai' B, for i=1,...,k. Therefore, if we take k

1l
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different points of the mappiné domain the system will be fully
determined. At each selected point with known isothermic
coordinates (q,l), for i=1,...,k, we must evaluate vectors Q ’
3 ' ?/ and ‘v’ . At each point formulae (III-5-28) will
yield two linear equations with 2k unknowns. The totality of
all the necessary 2k equations can be given in the matrix form

by the expression

W - f - g, (III-5-30)

where is the vector of unknowns

g is the vector of the right-hand side of the equations (III-

5-28)
i

LATQ +DPTE +a)
sin(-A&TS + DPTR ) for i=1,...,k

g - sy - (III-5-32)

LATQ DTS +a

cos(-&ATE + PTQ ) for i=k+1,...,2k
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and A%gf is the coefficient matrix whose individual elements

ij are derived from the following expressions

[ i wgf% for i=1,...,k; j=1,
..I’k
(3-k) egfi_l for i=1,...,k; j=k+l,
...,2k

W - (wi4) =9 >(I1I-5-33)

j e;i-]..k) for i=k+1I---12k7 j=ll

cssrk

-(3-k) wgf;fi for i=k+l,...,2k; j=k+1,

«..s2k

where wél) = 1 and e§1)= 0 for all points from i=1 to i=k.

The solution of the system (III~5-30) yields the unknown

coefficients A;, B and thus completes the determination of a

non-symmetric Chebyshev projection.

f-W-.q. (111-5-34)
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The higher the order of tge harmonic polynomial, the
better the fit of the isocol to the selected approximation of
the boundary contour. However, some unreasonable increase of
the order may lead to too many computational difficulties for a
very small increase in accuracy which, in the author's opinion,
is too small to justify the additional computational costs.

The optimization of the order of the harmonic polynomial can be
made by an investigation of the deviations of the boundary
contour from the boundary isocol, but the author sees no other

way than the trial-and-error approach.
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IV. OPTIMAL CARTOGRAPHIC PROJECTIONS FOR CANADA

1. INTRODUCTION AND HISTORICAL BACKGROUND

Early maps of Canadian territories made by various explor-
ers and surveyors contain no indications of the transformation
formulae applied. Even the first atlas from 1875, compiled by
H.F. Walling and published in London under the title "Atlas of
the Dominion of Canada", has no descriptions of the map projec-
tions used. According to the grid of meridians and parallels
it seems that a polyconic projection was used as the basis of
maps.

At the beginning of the twentieth century three different
organizations have been mainly involved in the mapping process.
They were the Topographic Survey of the Department of the
Interior, the Bureau of Geology and Topography of the
Department of Mines and the Geographical Section of Militia and
Defence. There was apparently no coordination between the
agencies. They sometimes mapped the same territory in three
different versions using different scales and different mapping
systems. In order to unify efforts and make the topographic
mapping universal, the Geographic Board of Canada was
established in 1923. Two years later the Board suggested the
Simple Polyconic Projection, a suggestion that was changed
after two additional years to the Transverse Mercator

Projection. Thus, from 1927 medium and large scale topographic
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mappings used the transverse agpect of the conformal cylindric
projection with 8° zones. Finally after the Second World War
Canadian topographers adopted the Universal Transverse Mercator
Projection with 6° zones.

For small scale maps, particularly those which covered the
whole Canadian territory, cartographers selected, under the
influence of the military, the normal aspect of the Lambert
Conformal Conic Projection. At that time the military
considered Canada to be a country long and narrow around the
49th parallel and, thus, the Lambert Conformal Conic Projection
seemed as the most suitable projection for such a mapéihéwmarw
domain elongated in an east-west direction. Map deformations
were functions of latitude only and they were minimized around
the 49th parallel by an adequate choice of‘standard parallels.
That the northern part of the country was tremendously
distorted was of a little concern. The North had no value at
that time.

In 1944 for a new map series MCR 8 in the scale of 1" = 64
miles a Canadian cartographer, Parry suggested a conformal
conic projection with standard parallels at 47° and 70°.
However, the Surveyor General, F.H. Peters, in his memorandum
from October 20, 1945 to Mr. Murdie simply changes the

recommendation with the following words:
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H

"Mr. Parry in his memorandum of May 5, 1944, on
files 1177, 21027 and 20788, recommends for the 64-
mile map of Canada a conical orthomorphic projection
with two standard parallels. For the two standard
parallels he recommends 47° and 70°, but I think it
would be more desirable to adopt 47° and 69°, and you
may proceed accordingly in preparing the projection
co-ordinates." ‘

The reasons for the change are neither stated nor obviously
evident. The difference of a degree in the northern standard
latitude can hardly be significant for overall distribution of
map distortions. As a matter of fact, the distribution of
distortions is for the first time mentioned in a memorandum of
M. Grieve to M.G. Cameron from March 26, 1949, For the new
proposed series of maps which will represent all the land area
of Canada in the scale of 1" = 100 miles, M. Grieve suggested
again the Lambert Conformal Conic Projection this time with

standard parallels at 49° and 77°. M. Grieve writes:

"For a map of Canada extending from the southern
tip of Lake Michigan to the north of Ellesmere Island
and from the remote part of Newfoundland to that of
Queen Charlotte Island, a Lambert Conformal Conic
Projection with standard parallels at 49° and 77° has
the best distribution of scale error. Between these
latitudes the scale is too small and beyond them, too
great."

The recommendations by M. Grieve about the standard parallels
were adopted and they have been serving as the basis for

mapping of the whole country ever since.
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Before any conclusions about the choice of projection and
its parameters for Canada is made let us discuss and evaluate
criteria which govern the choice.

For large scale topographic mappings advantages of
conformal projections which locally preserve the shape are
clear. Almost all countries in the world have adopted one or
the other conformal mapping systems as the basis of their
integrated survey coordinates and the topographic mapping.
Conformal transformations preserve angles and their scale
factor is a function of position only. Thus, for the surveying
profession, mainly concerned with measurements of angles and
distances, conformal map projections require a minimal altera-
tion of measured guantities.

For small scale geographic mappings, however, the criteria
for the selection of an appropriate cartographic system are not
so clearly defined. It has been usually stated that the
choice of map projection depends on the position and geometri-
cal shape of the mapping domain and the purpose of the map. A
cartographic representation must be a reliable image of the
mapping territory. 1In other words, the overall deformations of
intrinsic elements must be as small as possible. The distribu-
tion of distortions and their character should be the most
essential governing factor for the selection of a map projec-
tion. Only conical map projections (conic, cylindric and
azimuthal) have the property that the curves of constant

deformations, isocols, for areas, angles and distances have the



- 178 -
same shape and are functions of distances from the selected
metapole (¢O, AO), only. this is the reason that conical map
projections are used more than any other class of projections
in standard geographic atlases.

Until now the assessment of individual mapping systems and
their parameters for Canadian territory has been made
subjectively. It is evident from the two mentioned memorandums
that even the selection of appropriate standard parallels was
decided without too much investigation in the resulting
distribution of distortions. To restrict the choice of
applicable map projections for small scale maps to conformal
mappings only is a priori an unreasonable thing. In addition
to claim and believe that conformality preserves the shape of
the mapping domain is a Qidely spread misconception and a sign
of ignorance. Gauss (1825) in his famous general solution of
conformal projections of regular surfaces stated already in the
title that conformality means that "die Abbildung dem
Abgebildeten in den kleinsten Theilen ahnlich wird" (the
projection is similar to the original in its smallest parts).
Thus, conformality preserves shape only locally but not
globally. 1In other words, for large scale mappings where a map
sheet covers a small portion of the mapping domain only, the
shapes are preserved in their first approximations. However,
in small scale mappings the local preservation of shape from
the practical point of view is meaningless. To give conformal
mappings a preference in atlas cartography is a more or less

subjective decision which can hardly be justified by a
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realistic and objective criterion. On the other hand, to adopt
equiareal map projections for certain types of maps in
geography can easily be explained and understood.

The author in his research decided that all recommenda-
tions for the choice of a projection and its parameters will be
based on the Airy~-Kavraiskii criterion (II-3-2). The
parameters of the projection will be numerically optimized
using the method of least squares where the optimization model
is defined by the equation (II-6-11). The distortion elements,
vy = In a and Vp = In b, are numerically evaluated at a finite
number of points which approximate the Canadian territory. The
mapping domain is represented by 75 relatively evenly distribu-
ted points. Their number can vary and the more points that are
used the more reliable answers may be expected. 1In the
author's research the number of points was strictly governed by
the size of computer memory. The whole research was performed
in a Horizon microcomputer, with a restricted memory of 32 K,
at the British Columbia Institute of Technology. All optimiza-

tion and computation routines were written in the BASIC

language.
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2. OPTIMAL CONIC PROJECTIONS FOR CANADA

Three standard conic projections are optimized: the

Lambert conformal, Lambert equiareal and equidistant conic

projection.

The Lambert Conformal Conic projection of a unit sphere is

defined by the equations

X =psiny , y= C2 - p COS Y ,

where (IV=-2~-1)

Yy=Cn and p = Cze-Clq .

The isothermal latitude, g, is given by the expréssion
(II-4-10)

g = 1ln tan (v/4 + £/2) , (IV-2-2)

and the metacoordinates are computed by equations (II-4-1)

sin £ = sin $a sin ¢ + cos ¢, COS ¢ cos (AO—A),

and (IV-2-3)

cos ¢ sin (AO-A)

tan n = sin ¢ COS by ~ sin ¢, COS ¢ cos (AO-A) ¢
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'

Thus, the optimization process will determine four unknown
parameters: the geographic coordinates of the metapole

(¢ Ao) and the projection constants C, and C,.

o
Since the first projection is conformal one scale factor

per point must be evaluated. The scale factor in the Lambert

conformal cone projection is given by the formula
k=¢CC, —— . (IV-2-4)

Defining the distortion as the natural logarithm of the

scale factor

v =1nk, , (Iv-2-5)

the optimization model (II-6-11) in the case of conformal

projections becomes

e 3

v2 cos £, = min, (IV-2-6)
1 1 i

i

where n is the number of points which approximate the domain.
To linearize the mathematical model (IV-2-4) the Newton
method is applied. Then the elements of@& matrix (II-6-20)

are defined by the partial derivatives



b(i,1)

1
Q
©

-

b(i,2)

\ (IV=2-7)

b(i,3)

b(i’4) = m— ’ fOf i=1’--oo’n-‘

When the equation (IV-2-4) is substituted into (IV-2-5) we

obtain
v=1nC, + 1n C, - Clq - 1ln cos ¢ . (IV-2-8)

The partial differentiation of the above expression with

respect to the unknown vector [¢O Ao C1 C,] yields

dqi dEi
b(i,1) = (tan g, - C, - EE-) gr-raek
or since
dg _ _1 de  _ e
az cos T and a3 t , (IV-2-9)
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we obtain

’ (IV-2-10)

where

cos ¢o sin ¢i - sin ¢, COS ¢i cos (AO—A.)

-— 1 - -
;= o8 €] . (IVv-2-11)

The elements of the second column of-is matrix are

similarly
. C
b(1'2) = (tan Ei - 1 ) ui r (IV-2-12)
Ccos £ . ‘ )
i
where

cos ¢o cos ¢i sin (Ao-xi)

== - oS £, . (IV-2-13)

The elements of the final two columns are

b(i,3) =& - q; , (IV-2-14)

1

and

b(i,4) . (IV-2-15)

|
Ol—n
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'

The normal aspect of Lambert conformal conic projection

presently used in Canada for all small scale mappings has the

standard parallels at latitudes

$' = 49° and " = 77° .

In order to compare optimized map projections
presently used the Airy-~Ravraiskii measure of
will be evaluated for the optimal versions as
official projection. The numerical values of

C, for the official projection are calculated

2

with the system
guality (II-6-10)
well as for the

constants C,; and

from the

expressions for the scale factors (IV-2-4) along the standard

parallels.

or

- ' - L]
c.c E—SiET -cc, &2
12 cos ¢' 172 cos ¢"
and then from here
ln cos 4' - 1ln cos 4"

c, = = .900

qn_ql

745 .



- 186 -

When the first constant is known the second is obtained either

from k' = 1 or k" = 1 yielding

c. = & = 1,766 833 .

With such calculated constants the distortions of the
linear scale factor were determined at 75 points which
approximate the country yielding the following result for the

Airy-Kavraiskii measure of quality

.021 65 .

/>
|

AR

The initial approximations are very important to ensure
convergence of the optimization process. Thus, the unknown
vector [¢o Ao C C,] must be determined relatively well. 1In
order to compute the first approximation for the metapole
(¢O,Ao) the author has measured from a globe the geographic
coordinates of three points which approximate the central 1line

of Canadian territory. Then

- D' (IV-2-16)
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where

A = (sin ¢4 = sin $,)(cos ¢, cos A, - cos ¢, cos xl),7
B = (sin ¢, - sin $,;)(cos ¢5 cos i, ~ cOS ¢, COS A,),
M IV-2-17)
C = (sin ¢, = sin ¢,)(cos ¢, sin r,; - cos ¢, sin Ao)e
D = (sin ¢, - sin 4,)(cos ¢, sin A, = C€OS ¢, sin i,),

with known longitude of the metapole its latitude is computed
by the formula -
COS ¢; CO0s (ir;=r ) — COS ¢, COS (A,~=A) (IV-2-18)

tan ¢ = o’ .

sin ¢, - sin ¢,

Having determined the first approximation of the metapole
(¢o,ko) the author has calculated the meta latitude, &, by the
first equation (IV-2-3), for several boundary points to obtain
the range of metalatitude. The first approximations of

constants C1 and C2 were derived from the conditions that

and Y (IV-2-19)
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where

=5 (¢ + €

max min) * (IV-2-20)

The two conditions (IV-2-19) when applied to the formula for

the scale factor (IV-2-4) yield

In cos Emin - 1ln cos Emax
C1 = — ! (IV-2-21)
9nax min
and
C,q
1 “max
c = e cos Emax . (IV=-2-21)
2 C

Convergence was fast, having thus determined the
approximate values of unknowns. The results of optimization
and the subsequent Airy-Kavraiskii measure of quality are given

in the last section of the chapter.

The Lambert Equiareal Conic projection of a unit sphere is

defined by the equations

x =psiny , y=¢C, -p cosy,

where

y=Cmn and o ='b/%j (C, - sin ¢)

¢ (IV=-2-22)

J
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and the principal scale factors are

. (IV-2-23)

_ /2C (C, - sin §) _ o - .

cos §

=] B

n

Distortions of the principal scales are then

v(2i-1) = 1n cosg; - %(ln c, + 1In(C, - singi) + 1n 2)
(IV-2-24)

v(2i) = - v(2i-1) .

Thus every point of the mapping domain yields two of the above
equations. In other words the size of theﬁa matrix is 2n x 4,
where n is again the number of points which approximate Canada.
The elements of theg matrix are

_ cos (i) i
(- tan g(i) + 2(C,-sin 5(1)) 1)

14

b(2i-1,1)

(IV-2-25)

b(2i ,1) -b(2i-1) ,

where i=1,....,n and t is defined by the equation (IV-2-11).

) cos E(i) .
(- tan €0i) + grezsiemny) o)

b(2i-1,2)
(IV-2-26)

-b(2i-1,2) ,

b(2i ,2)

where u is defined by the expression (IV-2-13).
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- _ .1
b(2i-1,3) = c,
> (IV-2-27)
b(2i ,3) = -b(2i-1,3) , J
. 1 N\
b(2i-1,4) = = ,
2(C, - sin £(i))
> (IV-2-28)
b(2i ,4) = - b(2i-1,4) . )

The initial approximations for constants C, and C, are

again obtained from the range of metalatitudes, ¢

B p——

max,and,gmin'
assuming that the scales at the extreme values of metalatitudes
will be identical and equal to unity. Then from the first

equation of (I1IV-2-23) we have two equations

cos g . = VZCI(C2 - sing_. ),

cos g =1 2C,(C, - sing__ ),

whose solution gives the unknowns.

2 i - 2 i
c. = cos gmin sin Emax cos gmax sin gmin ’
2
2 - 2
cos Emin cos gmax
> (IV-2-29)
2
c. = cos Emin
1 2(C, - sin Emin) |
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The approximations for the geographic coordinates of the
metapole (¢o'xo) are derived from the equations (IV-2-16) and
(IV-2-18). However in this research the author has simply
adopted the values obtained from the optimization process of
the Lambert conformal conic projection.

An equidistant conic projection of a unit sphere is

defined by the equations
X =psiny , y-= C2 p COS Yy ,

where ‘ (IV~-2-30)

The principal scale factors are

c, (C,-t)

m=1 and n = W (IV-2-31)

with the corresponding deformations
v(2i-1) = 0 and v(2i) = 1n C1 + 1n (Cz-si) - 1ln cossi (IV-2-32)

and the subsequent elements ofﬁ matrix are

(C, - €(i)) sin g(i) - cos &(i)
b(i,1) = C, e t(i) , (IV-2-33)
cos? g(1i)




b(i,2)

b(i,3) =

b(i,4)
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cos (i) '

(€, - &(i)) sin g(i) - cos €(1i)
c, -u (i) , (IV-2-34)
cos? g(1i)
C, - g(i)
Cos (1) ¢ (IV=-2-35)
Cy
(IV-2-36)

where i=1,....,n and t and u functions are defined by the

formulae (IV-2-11) and (IV-2-13) respectively.

The initial approximations for constants C, and C, are, as

usual, computed from the extreme values of metalatitude Emi

n

and & max and the corresponding scales equated to unity.

and then

COS &nin < €, (Cy = Emin) '
COS g ax = C1(Cy =& )
c. = Emax cos Emin " fnin ©°S ® nax ’ (1V-2-37)
2 COS &nin T ©°S Epax
cos £ .
c. = min (Iv-2-38)
1 C, - & .
min

With such values determined for the constants the

convergence was relatively fast.



- 193 -

’

3. OPTIMAL CYLINDRIC PROJECTIONS

Three cylindric map projections will be optimized for
Canadian territory and they are the Mercator conformal, Lambert
equiareal and Urmaev's projection. Since in all cylindric
mappings the smallest deformations occur in the wvicinity of the
metaequator the position of the metapole must be selected such
that the central line of Canadian territory becomes the
metaequator. The author has scaled from a globe two points,
(6,,2,) and (¢6,,2,) and then the first approximations of the
geographic coordinates of the metapole (¢o,xo) were computed 5§"

the formulae

tan 4, cos ), - tan 4, cos kl‘

= ’ -3=1
tan ko tan ¢, sin Xx; - tan ¢, sin 1, (Iv=3-1)
and
i - os
tan ¢, = sin (i, A) oc Ao . (IV-3-2)
tan ¢, sin A, - tan ¢, sin 1,

An oblique Mercator projection of a unit sphere is defined

by the equations

where

g = 1ln tan (r/4 + £/2) , (IV-3-4)

S,
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'

and C is an unknown constant to be determined by the

optimization process. Thus, there are three unknowns ¢o’ A C

0’
and the dimension of theﬁ matrix is n x 3. The elements of 3
matrix are determined by the differentiation of distortions

with respect to the vector of unknowns [¢o, A, C]. The scale

o
factor in the Mercator projection is calculated by the formula

= C —-3-
k = cos © (IV-3-5)

and the corresponding deformation by

v =1lnk=1lnC~- 1ln cos ¢ . (1IV-3-6)

Now the elements b(i,j) for i=1,....,n and j=1,2,3 are

b(i,1) = tan g(i) t(i) , (IV-3-7)

b(i,2) = tan ¢(i) u(i) , (IV-3-8)
and

b(i,3) = , (1v-3-9)

where t(i) and u(i) are calculated by the expressions (IV-2-11)
and (IV-2-13) respectively.
The initial approximation for the constant was taken to be

equal to unity.
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An oblique Lambert equiareal cylindric projection is

defined by equations.

_1
x=0C , y=gsing (IV-3-10)

with the principal scale factors

and m = C (IV=3-11)
Therefore the distortions are
v(2i-1) = In C - 1ln cos £ and v(2i) = - v(2i-1) (IV-3-12)

The subsequent elements of is matrix, for i=1,....,n, are

s
b(2i-1,1) = tan (i) t(i) ,
> (IV-3-13)

b(2i ,1) = - b(2i-1, 1) ,
b(2i-1,2) = tan £(i) u(i) ,

(IV-3-14)
b(2i ,2) = - b(2i-1,2) ,

) 1

b(2i-1,3) = g

(IV-3-15)
b(2i ,3) = -b(2i-1,3) .
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In Urmaev's oblique cylindric projection the rectangular

coordinates are given by the equations

x =Cn , y= a5+ a253 + a3g5 (IV-3-16)

with the principal scale factors

= Sos F and  m = a; + 3382 + Sazgt (IV-3-17)

Thus, the expressions for deformation elements are

Inm (IV-3-18)

v(2i-1) Inn , wv(2i)

and their partial derivatives with respect to the vector of

unknowns [¢o, Ayr @;s @,, @5, C] become

OI

b(2i-1,1) = &S] (6a,g(i) + 20a,83(i)) t(i)

(IV-3-19)
b(2i ,1) = tan g(1i) t(i) ,
b(2i-1,2) = E%TT (6a,g(i) + 20a,e3(i)) u(i) ,

(IV-3-20)
b(2i ,2) = tan g(i) u(i) ,
b(2i-1,3) = 0 ,

(IV-3-21)
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_ .
b(2i-1,4) = éﬁéiéll-,
f (IV-3-22)
b(2i ,4) = 0 ,
. _ 5 g4 (i) A
b(21 1,5) —-T(-i—)——- ’
(IV-3-23)
b(2i ,5) =0 ,
b(2i-1,6) = 0 ,
(IV-3-24)

b(2i ,6) =

Ol=

where again i=1,....,n and functions t(i), u(i) are calculated
by the equations (IV-2-11) and (IV-2-13) respectively.
Constants a,;, a,, a; and C were initially given the value of
unity. Although the optimization process showed later that the
initial guesses had been very far from their optimized values

the convergence was rapid.

4. OPTIMAL AZIMUTHAL PROJECTIONS

Azimuthal projections may be considered as special cases
of conical projections in which the wedge constant, ¢, is
eqdal to unity. Therefore the optimization process includes at
most three unknowns, the latitude and longitude of the metapole
and a constant. In some projections, like the equidistant

azimuthal and the Lambert equiareal azimuthal, only the
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metapole remains to be determined by the minimization of
distortions. 1In that case the optimization yields the central
point of the mapping domain only.
Since the optimization of azimuthal projections is so
simple the author will determine an optimal stereographic
projection only. The general formulae of an oblique

stereographic projection are

x =K, +psiny , y=K, -pcosy, (IV-4-1)
where
y=n , o=ce?=c tan (% - %) (Iv-4-2)
and K,, K, are arbitrarily selected constants. Since the

stereographic projection is a conformal projection it has one

scale factor per point only which is computed by the formula

k = =
Ll [ : -l -
2 cos? (Z- - i) (IV-4-3)

Thus, the distortion is

<
n
N

lIn k = ln ¢ ~ 2 1ln cos (% -2) - 1n 2 . (IV-4-4)

The differentiation of the above expression with respect to the

vector of unknowns [¢_, A_, c] yields the elements of the is

o
matrix.



b(i,1) = - tan {% + géi)) t(i) , (IV-4-5)
b(i,2) = - tan (5 + &) (i , (1V-4-6)
b(i,3) = <, (1v-4-7)

where function t(i) and u(i) are again evaluated by the
expressions (IV-2-11) and (IV-2-13) respectively and
i=1,....,n.

Approximate values of unknowns can easily be determined.
The geographic coordinates of the midpoint of a mapping domain
serve as the first approximations of 9o and Ao' The initial
approximation of the constant for a stereographic projection of
a unit sphere is ¢ = 2 and the optimization process converges

guickly.

5. OPTIMAL MODIFIED EQUIAREAL PROJECTIONS

In the fifth section of the second chapter it was shown
that the modification of equiareal map projections is a process
in which the metacoordinates (£,n) are changed into a new

coordinate system (u,v) by equations (II-5-21).

]
(@]

sin u = Cm sing , v n . (IV-5-1)

The final modification of rectangular coordinates is

accomplished by the formulae (II-5-20).
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where Cm' Cn' and C, are constants to be determined by the

k
optimization process and x(u,v), y(u,v) are the original
mapping functions expressed in terms of the new variables
(u,v).

The elements of the metric tensor (II-5-8) and the square

root of Jacobian determinant (II-5-9) for the modified

equiareal mappings are

C » C
m cos?g n cosg
G, = =— K G,, = =— K /G = K (IV-5-3)
11 1 22 2 ! 3 !
Ch cos?u Cm cosu
where
= 1 -5-
Kl-cixl21+—2—yl21, (IV-5-4)
C
k
1
= C2 2 _ y2 —5—
K, Ct x5 + 2yv, (IV-5-5)
C
k
and
K, = Xy - X Y_ . (IV-5-6)

v
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The condition of equiareal mapping is

or
/G = cos u . (IV-5-7)

The computation of the principal scale factors, a and b,

are performed by the equations
a=2(A+B) and b=+ (A-B), (IV-5-8)

with the corresponding distortion parameters

Va = 1lna=1n (A + B) - 1In 2 ,
(IV-5-9)
vy = In b= 1In (A - B) - 1In 2 ,
where
A2 = G, + —1— G, + 2
11 2 22 ’
cos‘u
> (Iv-5-10)
and
_ 1
B2 = G, + — Gy = 2 .
cos?4u J
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Applying Newton's method for the linearization of Va and

v, as functions of unknown parameters Cm’ Cn’ C and AO

k' %o
elements of the is matrix are obtained. For i=1,....,n, where

n is the number of points at which the distortion elements v,

and vb are evaluated.
oV

. _ a _ 1__ (3A 9B
b(2i-1,1) = 7C_ T KB (acm + ach ’
(IV-5-11)
oV
. b 1 A 3B
b(2i ,1) = = — ( - )
3¢, ~ R - B \3c, ~ 3C,

ov
a

dA 9B J

b(2i-1,2) 3C A + B (ac aC

v
. a 1 A 9B
b(2i-1,3) = = ( + )
BCk A + B BCk BCk

(IV-5-13)

ov
. oA 3
b(2i ,3) = 22 = 7 ( - ag )

r
n n
(IV-5-12)
oV
. Wy 3A_ _ 3B
b(2i ,2) = 5. " B -B (3¢ )

ack

Bva

b(2i-1,4) = =

(22 3B
36, A+ B ‘3¢

3¢

3¢o

ava 1

. . i} 2A , 3B
Pl2i=1,3) = 55 " x+ B (G- * o)

(IV-5-15)
avb

° 4
(IV-5-14)
v
. b 1 3A 9B
b(2i ,4) = = 5= - )
A-B (a¢o 3¢

- \
axo A B ‘23X A
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In order to standardize the approach in partial differen-
tiation for individual modified equiareal map projections new

abbreviations are introduced:

A _ 1 B 1 B
3C, ~ 2A (Ey + Ep) and 5C, ~ 2B (E, + E,) , (IV=5-16)
where

0G G,,

_ 9
1 Yo and E, = 36; (

) e (IV-5-17)
cos?u

From the equations of transformation of coordinates (IV-5-1)

du _ sin & dv_ _ ' 5
ac_ = cos u and ac_ =" (Iv-5-18)

and using the definitions of elements of the metric tensor

(IV-5-3) the formulae for quantities E, and E, are easily

derived:
B, = =S282E (¢ (cosZu + 2 sinu sinf) + C K SiB&) (IV-5-19)
1 Cncos“u 1 m m™, cosu ’
Cn
E, = ———(K; sinu cosu - Kz(coszu - 2 sin?u)) , (IV-5-20)

C2cos*u
m
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where
3K1 1
= eme— 2 — - -
R, = 3% 2 (Ck X, Xqu + = Yy yuu) , (IV=-5-21)
k
and
3K, :
= —— = 2 —_— -5~
K " 2 (Ck X, X, ¥ - Y, va) . (IV-5-22)
k

with calculated values of E, and E, equations (IV-5-11) become

E1+E

b(2i-1,1) = 3B ! b(2i,1) = -b(2i-1,1) . (IV-5-23)

In a similar way to equations (IV-5-16) further

abbreviations are introduced.

3A 1 3B _ .l.. e
sc; =28 (L * Fp)  and 55— = o5 (F) + Fy) (IV-5-24)
where
3G, 1 3G,,
F, = 3C and F, = 3C (IV~-5-25)
n cos2u n
c 2
Fy = = L83 (Kgv - K;) , (IV-5-26)

F, = ———— (K, + K,v) , (1V-5-27)
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with
K, :
= em— 2 — -
Ke = 33 2 (C2 x, %, ¢ s Yy Yuu) © (IV-5~28)
k
and
K7 = BT = 2 (Ck Xv va + CT- yv yVV) . (IV-5-29)
k

Thus, the elements of the second column ofib matrix
(IV-5-12) are
F1+F2

b(2i-1,2) = A ! b(2i,2) = -b(2i-1,2) . (IV-5-30)

For the third column of matrix ib

oA 1 9B 1
g—; = 33 (Gl + G,) and EE; = 38 (G, + G,) , (IV-5-31)
where
G, = SC. and G, = ! 3C ’ (IV=-5-32)
k cos?u k
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or

2
G, = 2 2 255 (¢ x2 - L v2) (IV-5-33)
n cos?u Ci
2Cn ( ) 1 2)
2 C cos2u KV 3V
m k
with final expressions
G1 + G2
b(2i-1,3) = —5ap ! b(2i,3) = -b(2i-1,3) . (IV-5-35)

The last two columns of 55 matrix will be derived in a

similar fashion

3A ___1_(8A2_8_L_1_£+3A2 2V 3n
— ——— @ ommm— g  —— ’
¢0 2A u 13 8¢0 v an ¢0
or
3A 1 3A2 3A2
33; = A (FE— T, * 3v T,) (Iv-5-36)
where
3A2 3AZ _
so- = Hy + Hy and 35— = Hy + H, . (IV-5-37)
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C
T T | N )
T, T 36, - o5 u (cos¢o sin¢ sin ¢ cos¢ cos(Ag A)) o,
= v 9n_ _ sinn cosn sint o
T2 = 34 = % sing cos¢ - sing  cosy cos(r _-A) , (IV=5-38)
O . | |
ST ((CZ-sin2u)(K,+K,sin2u)-K, sin2u), (IV-5-39)
C_C_ cos2uy
m- n
G C
22
H, = & = —"2 (K5 + 2K, tan u) , (IV-5-40)
cos2u C, cos?u
3G C
11 2
Hy = =y = o 2Eg,, (IV-5-41)
n cos?u
3G C
22
H, = —— . — = — K, . (IV-5-42)
cos2u C_ cos2u
Thus, equation (IV-5-36) becomes
JA 1
36~ 2B ((Hy, +Hy) T, + (H; + B)T,) , (IV-5-43)
o
. 3A2 _ 3B? . . :
and since X - IX ! where Xi is an arbitrary variable,
i i
3B _ 1
5= = 35 ((Hp + Hy) Ty + (Hy + H,) T,) (IV-5-44)
o
. 1
b(2i-1,4) = = ((H, + H,) T, + (H, + H,) T,) , ]
a
(IV-5-45)
b(2i,4) = -b(2i,4) = -b(2i-1,4) .
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For the last column of is matrix

3A 1 (BAZ du 3 . 3A2 3v 3n )
= 5a ey o ’
Ao 2A ‘3u 3¢E ako vV an axo
or
3A 1 JA2 A2
ako T 2A (8u u; *+ v J2 ) ' (IV-5-46)
where
u, = _3_15 . 3L = - ¢ cost sin(x _-X) (IV-5-47)
T T O cos u cos¢ sin(A,
and
v 3 ) .
u, = 5 ¢ 3%; C, sinn cosn (cot (A, -1) - sin¢, tann). (IV-5-48)
, 1
b(2i-5) = zz= ((H; + H,) u; + (Hy + H,) u,) ,
‘ (Iv-5-49)
b(2i,5) = -b(2i-1,5) .

The main optimization computer program for equiareal
modified map projections was identical to all optimized mapping
systems. The differences between various projections were
given at the end of the program in subroutines in which partial

derivatives Xgr Yyr Xgr ¥

u v ¢ X r Y

X X were
uv ’ r Yaur *ov’ Yevu

v uv uu uu

defined.
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The author optimized four modified equiareal map

projections:

a) Sanson's projection,

b) Mollweide's projection,

c) Hammer's projection, and

d) Eckert's IV projection.
The partial differentiation of transformation eguations for
individual projections is given in the Appendix III. The
inclusion of differential formulae in this section would make

an already difficult section completely unreadable.

[ -

6. OPTIMIZATION RESULTS OF CONICAL PROJECTIONS

The official version of the normal aspect of the Lambert
conformal conic projection with standard parallels at latitudes
of 49° and 77° yielded the Airy-Kavraiskii measure of quality

(II-6-10) of

Eyg = -0216
The first optimization dealt with the normal aspect of the
Lambert conformal conic projection. The constants of the
projection, ¢, and c¢,, were optimized. 1In other words,
indirectly a better choice of standard parallels was made. The
improvement resulted in a 30 percent smaller measure of
distortion. Further optimization of the metagraticule gave

even better results. The final measure of distortion was
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reduced by more than one half.' The Lambert equiareal conic
projection gave a slightly better result of optimization than
the conformal projection, but the smallest measure of distor-
tion was achieved with the optimized equidistant projection.
Although the position of the metapole was expected to be
identical in all optimized conic projections the author
obtained small differences which are probably caused by
numericallevaluation of linearized mathematical models.

At the suggestion of Dr. T. Poiker the author has also
determined the optimized Lambert conformal projection where the
weights were based on the distribution of population. Since
the density of population drastically varies from one side of
the country to the other, the initial approximations for
unknown parameters were difficult to determine. After many
hours of pure trial-and-error attempts, convergence of the
optimization process was finally established leading to a
reasonably good mapping system.

The optimization of cylindric and azimuthal projections
was a more stable process than the optimization of conic
projections. Convergence was easy to establish,

The results of the optimization process are given in the

following table.
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PROJECTION: b A c, c, Epg
Lambert
Conformal Conic 90° 00°' - .9007 1.7668 .02165
(official projection)
Lambert
Conformal Conic 90° 00° - .8869 1.7888 .01468
(optimized normal)
Lambert
Conformal Conic 79° 20° 0° 36'| .8735 1.7855 .01232
(weights: population)
Lambert
Conformal Conic 72° 16'{-64° 36'| .9571 1.8653 .00961
(optimized) ;
Equiareal Conic 72° 29'|-58° 48' ,9485 1.0005 .00913
Equidistant Conic 72° 28'|-59° 20'| .9505 1.5785 .00686
Table IV-6-1 Optimized parameters of conic projections
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CYLINDRIC AND AZIMUTHAL PROJECTIONS:

Projection: 9o A C éAK
Mercator 25° 57! 156° 27°' .9904 .1096
(Conformal Cylindric)

Equiareal Cylindric 25° 57! 156° 27! .9904 .01096
Urmaev's Cylindric* 25° 57! 156° 27! .9904 .00775
Stereographic 60° 15° -91° 45" 1.9678 .01130

Table IV-6-2

Optimized parameters of cylindric
and azimuthal projections

*Optimized constants of Urmaev's cylindric projection are

Thus, the optimized version
an equidistant cylindric projection.
coefficients a, and a

a true equidis%ant cyii

a3

1.000 0000
.000 0001
.000 0009

of Urmaev's projection is almost
When the values of
converge to zero the projection becomes
ndric projection.
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| 7. OPTIMIZATION RESULTS OF MODIFIED

‘ EQUIAREAL PROJECTIONS

The optimization of modified equiareal projections was

much more susceptible to the divergence of the optimization

process than was the ease with the conical projection.

The

determination of reasonable close approximations for unknown

parameters was decisive and it required many hours of tedious

trial-and-error approach.

However, when the final approxima-

tions were found they led to very good results with respect to

the Airy-Kavraiskii measure of quality.

MODIFIED EQUIAREAL PROJECTIONS:

Projection %o Ao Cn Ch Cy EAK
Sanson 25° 57°¢ 61° 27! .9915 .8770 1.0620 .0105
Mollweide 25° 57! 61° 27°' .9918 1.0041 1.1000 .0070
Hammer 25° 57! 61° 27! .9914 1.0000 .9992 .0069
Eckert IV | 25° 57! 61° 27! .9794 .9135 1.2320 .0068

Table IV-7-1

Optimized parameters of
modified equiareal projections
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8. CHEBYSHEV'S PROJECTIONS FOR CANADA

Theoretical aspects of Chebyshev's projections were
discussed in the fourth chapter., Several of the possible ways
to satisfy the fundamental requirement of the constant scale
factor along the boundary polygon were described in detail.
However, for the practical computation the author has decided
to use a series of harmonic polynomials (I-7-27) only. The
boundary of Canadian territory was approximated by 31 discrete
points (See Figure IV-1-1). The optimization process
determined the coefficients of the harmonic polynomials by
satisfying the fundamental condition of least squares (III-4-2)
n
_1(ln m.)2 = min , (1v-8-1)

.

1

where n extended to all 31 boundary points. Since the number
of unknowns is 2k + 1, where k is the order of the harmonic
polynomial it is obvious that in the case of 31 boundary points
we can go up to the order of 15 for the harmonic polynomial.

In that case the boundary isocol will pass through all 31
points. However the higher the order of the interpolating
polynomial the larger the system of equations we have to solve
for. It is probably the best approach to control the sum of
the squares of logarithms of scale (IV-8-1) and if there is no
essential improvements between i-th order and i + 1st order to

stop further computations. The author has calculated the
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coefficients for the harmonic éolynomials up to the seventh
order. The minimized sum of residuals (IV-8-1) for the seventh
order polynomial was only slightly better than the sum of the
sixth order polynomial. Thus, according to the author's
opinion, for the boundary of 31 points which define Canada,
there is no need to go further than to the sixth order. It is
naturally a questionable problem what one considers a
significant improvement and what is an unimportant change.
These questions were neither investigated nor answered. The
author was rather interested in the optimization process and
the inclusion of conformal mappings in that process was made =
for the sake of completeness. The author is fully aware that
optimized conformal mappings have rather a small chance of ever

being used in geographic mappings. Equiareal and particularly

equidistant projections are much more applicable.
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CHEBYSHEV'S PROJECTIONS:

H 2
Order: a; by Y(1ln m)
§=m"r —
1 - .11545
- .20366 - .08570 .20744
2 - .10514
- .08196 - .01952
- .24218 .01502 .04605
3 - .08241
- .06808 .00980
- .20076 .06233
- .09338 .08345 .00814
4 : - .08027
- .06793 - .02250
- .20144 .06059
- .11756 .05741
.03916 .02725 .00468
5 - .07953
- .06790 - .02049
- .18890 .06843
- .12520 - .05717
.04069 .00151
- .00199 - .03519 .00419
6 - .07879
- .06919 .02052
- .18241 .07472
- .14406 .06049
.04467 .00623
- .02413 - .06743
.02154 .04119 .00358
7 .003578

Table IV-8-1 Coefficients of harmonic polynomials
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9. CONCLUSIONS AND RECOMMENDATIONS

This study of optimization of cartographic projections for
small scale mappings was conducted to investigate the general
approaches for obtaining the best projections using the Airy-
Kavraiskii measure of quality and, in particular, to derive the
coefficients for various mapping systems for Canadian
territory. The philosophical question whether the Airy-
Kavraiskii or the Jordan-Kavaraiskii criterion should be used
as the basis of the optimization process was answered by the
author's subjective choice of the former. The two criteria
should lead to similar results but the application of the Airy-
Kavraiskii criterion in the computation process was much
simpler. This was the main reason for its selection as the
basis of finding the best projections for Canada.

For the sake of completeness the author has added to the
research the determination of Chebyshev's projections, i.e. the
best conformal mappings, although conformal projections,
generally, should not be used for small scale maps in geog-
raphy. From the class of all analytic functions the author
optimized the complex polynomials only.

The optimization results clearly indicate that in the
family of conical projections neither conformal nor equiareal
mappings belong to the best system. The equidistant oblique
conic projection gave the best result and since it is a very

simple projection the author highly recommends its application
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for small scale maps of Canada. Here we have all necessary

formulae and coefficients which fully define the recommended

projection, namely

¢ = 72° 21°', Ag = -59° 20°, C, = .9505, ¢, = 1.5785,

sin

™y
]

sin 9o sin ¢ + cos ¢, COS ¢ cos (Ao-x) ’

cos ¢ sin (X ~i)
7 (IV=9-1)

tan = - ;
n sin ¢ cos ¢o - sin ¢o cos ¢o cos (AO-A) !

Yy=Cmn , o= C, - &,

»
"

p siny , y = C, = p cos y .

Since the above equations for the rectangular Cartesian
coordinates (x,y) are related to the mapping of a unit sphere
the results of the last two equations must be multiplied by an
average radius for Canada in the scale of mapping.

The optimized versions of modified equiareal projections
also gave very good results but they are not recommended since
the three best projections: Mollweide, Hammer, and Eckert IV
involve a numerical solution of a transcendental equation for
eaéh mapping point. Because these solutions can only be made
by a suitable iterative numerical approach, the computation
process becomes too lengthy and complicated. However, when the

equiareal property is of special importance and the cost of
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computation is unimportanﬁ then any of the last three modified

equiareal projections can be used.

Canada, the United States of America and Mexico will

legislate the new geodetic datum in the next few years.

the results of the new North America Datum will be changes to

large scale mappings. Almost all frames of the present large

scale topographic maps of Canada will have to be changed.

Although small scale atlas maps will not be effected by the

change of datum it might be opportune, while undertaking these

large modifications and transformations, for geographers to

select a better cartographic system. The system suggested by

the author has several recommendations.

10. EPILOGUE, WRITTEN BY LEWIS CARROLL

"What's the good of Mercator's North Poles
and Equators,

Tropics, Zones, and Meridian Lines?"

So the Bellman would cry: and the crew
would reply

"They are merely conventional signs!

Other maps are such shapes, with their
islands and capes!

But we've got our brave Captain to thank"
(So the crew would protest)"™ that he's
bought us

THE BEST -
A PERFECT AND ABSOLUTE BLANK!"
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APPENDIX 1: GRAPHICAL PRESENTATIONS OF TYPICAL
CONICAL PROJECTIONS

CONFORMAL CONIC

Lambert Conformal Conic Projection
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Obligue Aspect of Stereographic Projection
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MERCATOR PROJECTION
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Mercator Projection
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Equidistant Cylindric Projection
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'

APPENDIX 3: DERIVATION OF FORMULAE FOR OPTIMIZED
MODIFIED PROJECTIONS

(i) sanson's Projection:

X =VvVcecosu , y=u.

X, =~V sin u ' X, = €os u
Y, = 1 ’ Y, = 0
Xow =~ sin u . Yav = 0
Xgy = ~ vV cos u ’ You = 0
Xov = 0 ’ Yy = 0

(ii) Mollweide's Projection:

290 + sin 2 y = n sin u
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Computation of v:

p(0) =T sin u for i = 0 to n

o

F (i) 29 (i) + sin 2y(i) - 7 sin u ,

F'(i) 2(1 + cos 2vy)

Pi+1) = w(i) - &r

The iterative process is repeated until two successive

iterations are practically identical, i.e.
b (i+1) = w(i)] < e ,

where € is an arbitrarily selected small number.

ay T COS u

du 2 71 + cos 2y

X = 2/2 v sin ¢ dy

u T du

X, = EZZ cos

\ m v

_2/2 . dy
xulv =5 sin v 3y,
2 . 42

Xy = 21{5 v ((g{-) cos ¢ + sin ¢ JJ

du?
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Xoy = 0

= dy
Yy /2 cos y T
Yo = Yyy =0

/2 (cos v 89 _ sin ¥ (%i)z) '

du? u
where

2
AR u (2 cos u sin 2y %% - sin u (1+cos2y))

Ju?2 2(1+cos 2y)2

(iii) Hammer's Projection:

v
_ 2 cos u sin 2 , _ Ssin u
X = 3 y.——(S
COSE COSE
v
cos § = cos u cos 3 ,

48 _ o L Sin u
du 2 sin § '

: . ds
azs Sin § ¢cos u - sin u cos § - ,

- = COS

<

sin?sg
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sin

<

dv 2 sin § '

ds
cos § 3‘7) '

2
d?§ . cos u (l sin §¢ cos % - sin
dvZ 2 sin2s

Nl

2 2

d2s sin u 1 _. .V v ds$
= - (5 sin § sin 5 + cos § cos 5 ==) ,
du dv sin2s 2 2 2 dv
sin =
_sing L 848 s
X, = - (cos u sin 5 g7 = 2 sin u cos 3] ,
cos? =
X, = =22 Y- (cos % cos % + sin % sin % %é) ,
cos? =
= ] 2811 oY ind 48 _ i s
X = L*(S(cos 5(3 cosz(cos u sins = - 2 sin u cos 3) +
COSE
.V 1 § 48§ 4s . & d2s
+ sin 3 (cos u (5 cos 3 -G T sins g ¢t
. . & ds
+ sin u sin 3 35))
+ sin § % sin%(cos u sin% g% - 2 sinu cos%)%%) ,



uu

vv

uv
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'

R
sin =
2 § . .8 ds 1 §,d46, 2
28 (. S gac 8080
-y (cos ) (- sin u sins go +3 COs u cos Z(du) +
. 8§ 42s S . . & ds
+ cos u sin; — - 2 cos u cosy + sin u siny du) +

du2

1 . & ds , 5. ds
+t 5 (cos u sin > 30 2 sin u cos 5) sin § Eﬁ) ,
oS u__ (552 S $ sin ¥ (882 | 0sd sin ¥
2 cos* < (cos 2 (COSZ Sin 3 (dv) cosy sin 7 +
2
2
+ 2 sin % sin % g_i)
dv?2

. das 8 v . 8§ . v ds
+ sin § F5 (cos 7 Cos 3 + sin 3 sin 3 37)) ’
1 (cos £ cos u + + sin sin 2 Qﬁ)
2 “ T2 u 2 du’ !

2 =
cos 3

Nl o
QJ'Q.I
<jo»

sin u sin

1 28 (1 o §
(cos23 (5 sin u cosy

2 cos 2 %

|

g8 ind cos 4s
av -~ Sty dv

Q.

2 u

2 cost %

., . & d26 . .48 8 1 . .
+ sinu siny 333;)+51n63;(coszcosu+351nu sl

))

rfon
Q.-IQ.-
clo
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]

1

§ (1 . § ,ds,2 s .
= —— (cos?3 (3 sin u cosy (gg) - 2 cosy sin u +

y
M2 cost >
. . 8§ 42 - $ L . 8 ds
+ sinu sing o )+sinsg;(coszcosutgsinu sing o))
= —Sinu o028 (1 o8l (gﬁ\z + sin $ 828,
Yyv y 8§ ° 2 ‘2 2 u’ 2
2 cos 3 dv
. . .8 452
+ sin u sin ¢ sin 5 (55) ) -
(iv) Eckert's IV Projection:
X = — v (1+ cos ¥) , vy = 2/ sin vy
Y (4+m) 44w
Computation of v:
1 ™ .
¥(0) =3 (1 +7) sin u,
(1) = ¥(i) + 2 sin ¥(i) + 5 sin 2¥(i) - (2 + &) sin u ,
F'(i) = 1 + 2 cos ¥(i) + cos 2¥(1i)

Y(i+1) = ¥(i) - =+ for i=1

ton
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until '

e (i+1) - ¥(i)] < e .

av (2 + %) cos u
du T T+ 2 cos ¥ + cos 2¢

r

m
dzy _ 2+3 (2 cos u

du? (1 + 2 cosY + cos 2v)2

(siny + sin 2v) -

&i

- sin u (1 + 2 cos ¥ + cos 2¥)) ,

2 . dy
X, =-————v51n‘¥-ﬁ,
Yyn(4+n)
X, = —2 (1 + cos v¥) ,
VY (4+m)
X = - 2 sin V¢ aqc !

uv Yu(4+w)

2 2
X = —_—Y (cos ¥ (g% + sin ¥ Q_X) ,
Yo (4+w) du?
Xov © 0 .
y = EZE— cos V¥ dy
= [4
2 A
Yo = Yyy = Yyy © 0.
2 2
Yuy = 2/ (cos ¥ 4% _ sin ¥ (%%) ) .
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