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ABSTRACT 

Player positioning is critical in many sport games; we use soccer as the example. 

The results of this study will help to improve digital sports games technology. 

In existing methods, the player calculates its desired position using current 

location of the ball and its own role in the team formation. 

The existing methods have two disadvantages: neglecting the game dynamics and 

leaving behind some potentially good positions without consideration; the latter being the 

common shortcoming of decision tree algorithms. 

The proposed approach is taking into account the dynamics by determining the 

available time horizon which limits the feasible area where the optimal position is 

located. To make sure that all potential alternative positions in the feasible area have been 

evaluated and considered, the Pareto optimality approach is used. As a result, the 

proposed method provides the opportunity to create an optimal dynamic formation for the 

whole team. 

Keywords: Artificial intelligence; computer simulation; multicriteria decision making; 
Pareto optimality; RoboCup 
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1 INTRODUCTION 

1.1 Background 

This research is inspired by previous work in the SFUnleashed project. 

SFUnleashed was the only Canadian team in the soccer simulation league that 

participated in RoboCup World Competition and RoboCup American Open in 2003 and 

2004. 

The idea of robotic soccer was first introduced by Professor Alan Mackworth of 

University of British Columbia in 1992 (Mackworth, 1992). Independently, a group of 

researchers in Japan after serious investigation decided to launch international robotics 

competition. In 1993-1995 an official soccer simulator was developed and the first 

official RoboCup competition was held in 1997. Games involving either physical or 

simulated autonomous robots have been played in all competitions since then. 

RoboCup uses soccer as the primary domain for research in Robotics and 

Artificial Intelligence. The main activity in RoboCup is international competitions and 

research conferences in three major domains: RoboCup Soccer, RoboCup Rescue, and 

RoboCup Junior. This study concentrates exclusively on the soccer domain. 

During our interactions with representatives of the Electronic Arts, one of the 

biggest digital games production companies in America, we realised that rational 

behaviour is one of the main issues in digital sports games design and development. In 

this thesis, these issues are addressed by using simulated soccer as a test bench. In 

particular, I rely on the experience with the SFUnleashed simulated soccer project. Some 

results of this project are outlined in Figure 1.1. SFUnleashed has demonstrated 

reasonably good performance, especially taking into account that in 2003 this simulated 

team was a newcomer. 



The purpose of the SFUnleashed project was two-fold: (1) to develop approaches 

for implementing methods of artificial intelligence into robotics soccer and (2) to 

contribute to the development of digital sports games. 

One essential behavioural feature is deciding by the given player where to go 

during the game when the ball is under the control by somebody else. I call this player 

positioning. On the average, this activity is taking about 90 per cent of the player time. 

Because of the critical importance of this feature, this thesis is dedicated to the 

development of methods for improved player positioning. From the main material it will 

become clear that some theoretical results of this study can be applied in different 

situations, and not exclusively to player positioning and in different digital sports games. 

However, in order to keep focused and limit the size of the thesis, I have deliberately 

narrowed its scope to the offensive player positioning. In other words, consideration is 

given only to situations when the ball is possessed by a team-mate. I hope to demonstrate 

the applicability of the theoretical models in situations other than offensive positioning in 

my future work. 

So-called multi-level player architecture is one of such theoretical models. From 

the first steps of the SFUnleashed project we had noticed that there were difficulties in 

player behaviour. In most known from the literature (RoboCup 2000, 2001, ...) 

implementations of simulated soccer teams every simulation step each player makes a 

new decision. These decisions are based on the current perception information and some 

model of unobserved aspects of the current state (Russell&Norvig, 2003). Indeed, the 

environment state in simulated soccer game changes in the real time and a new state can 

significantly differ fi-om the previous one. Abrupt changes in the simulated player's 

intentions are obviously counterproductive, as they, sometimes, result in hectic behaviour. 

These changes are especially noticeable when the perceived information about the world 

is imperfect due to the presence of random errors. This leads to the presumably false 

conclusion that the decisions in simulated soccer cannot be persistent in time and long- 

time planning is impossible. 

This contradicts with what takes place in real-life soccer. Human players are 

normally acting according to some mental plan, having the time horizon up to several 



seconds. We would like to find a way to modeling this sort of persistent, robust 

behaviour. 

I believe that some decisions can last for several simulation cycles if the 

environment state does not change or changes 'smoothly'. To model this, we want to 

know when the decision will change. Determining the time horizon for short-term 

planning is one of the key issues addressed in this thesis. 

To achieve robustness in decision making I am making use of the improved 

layered agent structure. 

The basic idea of layered agent structure itself is not new. Such RoboCup scholars 

as Peter Stone (Stone, 2000) introduced layered reinforcement learning and Kok and De 

Boer (Kok & Boer, 2002) also described a sort of layered agent structure. Nevertheless, I 

believe that this structure can be constructed in different ways. For instance, Kok and De 

Boer (Kok & Boer, 2002) constructed the layers as agent skills levels in the following 

way. 

- Atomic actions. Atomic actions are the commands which a player can send to the 

server, like turn or dash. 

- Low-level skills like searching for the ball 

- Intermediate-level skills like moving to a position 

- High-level skills like intercepting the ball 

A skill in every level is a sequence of lower-level skills. This approach appears to be 

reasonable and proved to be effective in many cases. However, it does not guarantee that 

any of the higher-level skill sequence of actions will not be interrupted to start a new one. 

The improved layered agent structure of a SFUnleashed player differs in that it 

was about the layers of decision making rather than player actions. The structure involved 

the following four decision levels: 

- Strategic level. Long term plan for all players for the whole game. Strategy was 

implemented through formations. 



- Tactics level. Short term plans for small groups of player to achieve a local goal 

like an offside trap. This level was not implemented in SFUnleashed as yet. 

- Individual level. Individual short term plan of actions for a player is, for instance, 

to make a leading pass to a particular team-mate. This level was implemented 

through a persistent action plan with a particular duration. The duration was 

determined empirically, without proper theoretical analysis. 

- Atomic level. Atomic action is an action with duration of one simulation cycle. In 

fact, atomic actions are the commands which can be sent to the server like kick or 

dash. 

The experience with SFUnleashed raised many questions and some problems 

remained unsolved, especially with the soccer player behaviour in the offensive 

situations. Obviously without reasonably good implementation of such behaviour, the 

simulated soccer team would be hardly winning in the RoboCup competitions. In 

particular, it was unclear what the time horizon of an individual player level plan should 

be and how collaboration with the team-mates should be organized. This study addresses 

these and related issues. In particular, it raises the following research questions. 

I .  What generic decision making framework should be used to achieve rational 

player behaviour that would be applicable to positioning? 

2. How to balance rewards, risks, and costs while the player is deciding about its 

optimal position on the field? 

3. How to determine the reasonable time frame for positioning planning? 

4. How to limit the search space for the optimal position and achieve robustness of 

the player positioning behaviour? 

5.  How to achieve player collaboration with the proposed decision making 

framework? 

This research answers these questions using Multicriteria Decision Making Theory, 

prediction methods, and constructing the appropriate criteria for players' behaviour. 



Figure 1.1 shows that in American Open 2003 tournament SFUnleashed won four of six 

played games, in the RoboCup 2003 SFUnleashed only lost one game in the first round 

and was just one point short to advance fiom the second round to the final stage. In 

RoboCup 2004 the team also advanced into the second round. 

1.2 Overview of the chapters 

Chapter two further elaborates on the background and overviews relevant 

information used in this research. First of all, a short description of the soccer rules is 

given. Soccer simulator presumably must implement these rules. Also, soccer strategy 

and tactics methods are described. These methods are the basis for implementing the 

rational behavior criteria and evaluation. 

Secondly, the chapter provides information about the RoboCup research and 

educational initiative and the Tao of Soccer simulator. The RoboCup initiative provides a 

framework and a standard problem for research. The Tao of Soccer is used as the research 

tool providing more flexible and convenient environment for implementation of the 

proposed methods. The Tao of Soccer server physics description is provided as the basis 

for prediction methods proposed in Chapter three. Finally, I present the overview of the 

theory underlying Multicriteria Decision Analysis. This theory provides methods and 

approaches for finding the balanced solution with respect to many conflicting 

performance criteria. 

Chapter three describes the main ideas and proposed methods of this research. I 

propose methods for determining the time horizon for planning player positioning and 

calculating the area for feasible positions. Also, the criteria for the positioning problem, 

the place of the problem in the multicriteria problem classification, and algorithms for 

finding the best compromise solution are described. 

Chapter four presents statistical results and analyses and discusses the 

experimental teams' performance in different settings. 

Finally, in chapter five, the research questions are revisited, the conclusion is made about 

the current research contribution, and hture research directions are outlined. 



Table 1.1 SFUnleashed in international com~etitions 
AmericanOpen 2003, '""sburgh, USA (htt~://www.cs.cmu.edu/-AmericanOpen03/resulWsimuation rl.html, 2003) - _ _ _ *  --" - . -- . -. - ^ ^ __  .& .. 

Winner's Bracket 

Round 1, Group H results 

C 

RoboCup 2003, Padua, Italy (httu://www.uni-koblenz.de/%7Efruit/or~cO3/, 2003) 

Results from the first level group games 
-* 



2 LITERATURE REVIEW 

2.1 Strategy and tactics of soccer 

Soccer is one of the oldest sports games in the world. The first official soccer 

association was created in 1863 in England. Soccer is now considered the most popular 

sport on earth. 

2.1.1 Rules of modern soccer 

This section overviews only those parts of soccer rules which are of interest for 

simulation and research purposes. (www.fifa.com, Official site of FIFA, 2006) 

A soccer game is played on a rectangular field about 100 by 64 meters. Two goals 

are placed on the opposite sides of the field at the centre of each goal line. The distance 

between the goal posts is 7.32 meters. Two teams play with a spherical ball with a 

circumference of about 70 centimetres. Each team consists of not more than eleven 

players, one of whom is the goalkeeper. A goal is scored when the ball completely passes 

over the goal line, between the goalposts. The team scoring the greater number of goals 

during a match is the winner. If both teams score an equal number of goals, or if no goals 

are scored, the match is drawn. A number of special situations are recognized in soccer. 

We are interested only in some of them: 

- Offside. A player is in an offside position if he is nearer to his opponents' goal 

line than both the ball and the second last opponent; a player in an offside position 

is only penalized if, at the moment the ball touches or is played by one of his 

team, he is involved in active play 

- Throw-in. A throw-in is a method of restarting play when the whole ball passes 

over the touch line (the side line of the field). 

- Goal kick. A goal kick is a method of restarting play when the whole ball, having 

last touched a player of the attacking team, passes over the goal line outside the 

goal. 



- Corner kick. A corner kick is a method of restarting play when the whole ball, 

having last touched a player of the defending team, passes over the goal line and a 

goal is not scored 

Current rules of soccer open a wide range of action for teamwork and player 

collaboration referred as soccer strategy and tactics. 

2.1.2 Soccer strategy 

Strategy is a long-term plan of action to achieve the particular goal. This goal in 

soccer could be to win the game or not to lose the game. Strategy defines overall team 

behavioural pattern. In soccer, strategy is mainly achieved through formations. 

A formation defines the players' roles in the team and their location on the field. 

The player roles are as follows: 

- Goalie. The player who defends the goal - the only player in the team who is 

allowed to touch the ball with his or her hands. 

- Defenders. The players located close to the goal that prevent the opponents from 

scoring. There are wing defenders and center defenders. Defenders mostly are 

situated in the defensive zone and create the line of defense. 

- Midfields. The players located in the middle area of the field. Midfields support 

defenders in defense and forwards in attack. Also, they serve as a bridge between 

defenders and attackers. There are wing midfields and central midfields. Midfields 

are situated in the middle zone and form the middle line. 

- Forwards or attackers. The players located near the opponents' goal. Forwards try 

to come closer to the opponents' goal and score goals. There are wing and center 

forwards. Forwards are situated in the offensive zone and form the line of attack. 

Players act on the field according to their role in the formation. If there are more 

defenders in the formation the team plays a defensive game. In the opposite case, if there 

are more forwards in the formation the team plays an offensive game. Many formations 

were developed in the history of soccer. Usually, different formations are denoted as a set 

of three numbers representing number of defenders, number of midfields, and number of 



forwards. Some formations have their own names. For instance, 4-2-4, also known as 

"Brazilian" formation is the formation with four defenders, two midfields, and four 

forwards. 

Figure 2.1 Early 3-2-5 "WM" offensive formation (Beim, 1977) 

0 
Forwards 

Midfields 

Defenders 0 

Goalie 

Figure 2.2 5-3-2 "Catenaccio" or "Italian bolt" defensive formation (Beim, 1977) 

Forwards 0 0 

Midfields 

Defenders 0 0 
0 

Goalie 

I I 



Nowadays, balanced and flexible formations are widely used. This means that teams use 

one of the "balanced" formations 4-3-3 or 3-3-4 but can change them to an offensive 

formation when in attack and to a defensive formation while in defence. Peter Stone 

facilitated the idea of flexible formation in soccer simulation in the form of role exchange 

(Stone, 2000). The formations show that the soccer strategy is essentially all about 

positioning. The tactics of soccer are achieved through positioning, as well. 

2.1.3 Soccer tactics 

Tactics is a short term plan to achieve an interim goal and support the strategy. 

The interim goal can be to destroy an opponent's attack or to penetrate the defence. 

Different tactics methods are used in attack and defence. In attack, the tactics are as 

follows (Beim, 1977; Vogelsinger, 1973) 

- Space. Space is extremely important in attack. Forwards must use the space 

between and behind the defenders. If a player has no space he or she most likely 

will not be considered as a potential pass taker or may lose the ball control in case 

of pass. The second aspect of the free space principle is keeping free space 

between the player and partners and/or the goal to be able to receive a pass. 

- Attack depth and support. Forwards coming closer to the opponent's goal with the 

ball are attacked by defenders. It is always easier for a defender to intercept the 

ball than for an attacker to keep it. For this reason midfields must support the 

attackers. Quick short passes back and forth between midfields and forwards can 

disorient the defenders and create a chance to penetrate the defence. 

- Penetration. The principle of penetration requires the players, especially forwards, 

to move as deeply as possible into the opponent's defence. Such moves lead to 

destroying the defence and chance to score a goal. 



- Width. If all forwards were to concentrate in the middle of the field before the 

goal, defenders could easily outplay them. Supporting the width of attack causes 

defenders to move closer to the touch lines, thus opening up space for penetration. 

The objectives of defence are to prevent opponents form scoring, regain possession of 

the ball, and initiate an attack. Defence can take several forms like man-to-man 

defence, zone defence, and combined defence. The tactics methods, though, are the 

same for all defence forms. They involve: 

- Delay. This method is opposite to penetration in attack. When an opposing player 

gains possession of the ball the team needs time to restructure for defence. A 

defender must position himself to eliminate as many forward passing 

opportunities as possible to prevent the defence penetration. 

- Support. While some players directly oppose the player with the ball the others 

must block other opposing players to eliminate passing opportunities. Sometimes 

this technique is referred as marking. 

- Balance. Defending players must provide cover for as much space as possible 

which means that they must be distributed evenly across the field. 

- Pressuring. Pressuring is an active defensive tactics. It can be thought of as attack 

in defence. The goal of pressuring is to restrict space for the attacking opponents. 

The pressuring players must keep as close as possible to the attacking opponents, 

remaining goal-side. 

- Control. Defending player must maintain its role in the whole defensive structure. 

- Offside trap. When an opponent is ready to make a forward pass, defending 

players can move in such a way that one or several opposing players will find 

themselves in offside position. This method requires full concentration and strong 

coordination since, if applied inaccurately, it can easily lead to a goal. 



2.1.4 RoboCup: robotic soccer as a research tool. TAO of Soccer 

"By the year of 2050, develop a team of fully autonomous humanoid robots that 
can win against the human world soccer champion team" 

This is the motto of the RoboCup international research and education initiative as it is 

stated in the official RoboCup site (www.robocup.org, 2006). 

2.1.4.1 RoboCup overview and research objectives 

RoboCup Soccer consists of five leagues. 

- Simulation league. In this league eleven independent artificial agents play as a 

team using computer simulation. Each player is a computer program. Players may 

communicate using a simulation server protocol but any direct communication 

outside the server is prohibited. The players get visual information from the server 

and send back commands representing their actions. Matches have two 5-minute- 

long parts. 

- Small size robot league 

- Middle size robot league 

- Four-legs robot league 

- Humanoid robot league 

An interested reader can obtain more information about real robot leagues in the 

official RoboCup website mentioned above. 

While the last four leagues of real robots deal with many technical problems like 

mechanics and sensors, the simulation league mainly develops methods for rational player 

behaviour. This research falls into the domain of computer soccer simulation. 

RoboCup provides a standard framework and standard problem for research in AI. 

The objectives of the research are real-time sensor development, rational behavior, 

strategy acquisition, learning, real-time planning, multi-agent systems, collaboration, 

context recognition, vision, strategic decision-making, motor control, intelligent robot 

control, and many more. In this research I concentrate on rational behaviour and 

collaboration. 



2.1.4.2 Simulated soccer and digital sports games 

Soccer inspired many digital computer games, such as FIFA Soccer by Electronic 

Arts. By the multi-player nature of the game, the human player is unable to control all the 

characters in his own team. This means that several team-mates are computer-driven non- 

player characters. They must be designed to make the impression of real independent 

soccer players. In simulated soccer each player is an independent computer program not 

controlled by a human. This feature connects simulated soccer and digital sports games. 

Methods developed for simulated soccer can be successfully applied to digital sports 

games. 

2.1.4.3 The simulation environment - TAO of Soccer 

The simulation server used in RoboCup is a sophisticated tool intended to 

simulate a real soccer game as closely as possible. It is written in C++ and operates under 

Linux. The server brings in some random errors into visual information and players' 

actions. Also, the visual information is restricted by some view angle and distance. These 

features make some research tasks difficult. For instance, if problems with positioning are 

revealed, it is hard to say whether they are a result of a poor positioning algorithm, a 

wrong world model, or inaccurate visual information. This can only be determined with 

sufficiently long simulations. Unfortunately, thousands of games are required for gaining 

reasonably precise results, which prolongs experiments too much. For this reason, 

another soccer simulator, TAO of Soccer, was chosen for conducting this research. 

TAO of Soccer was developed by Yu Zang in 2001 as an alternative to the 

RoboCup soccer simulator (Zang, 2005). TAO of Soccer has all the features of the 

RoboCup simulator but it is written in Java, has a simpler client-server protocol, and can 

be used both as a simulator and an interactive game environment. I used it as a simulator 

only. Using TAO of Soccer gave us the opportunity to use full information about the 

environment and concentrate on problems of rational behaviour. Actuator random errors 

are the only source of randomness in TAO of Soccer. 



Table 2.1 Differences and similarities between RoboCup simulator and TAO of Soccer 

Characteristics 

Environment 

State change 

Environment 
information 

I Actuator error I 
Information errors 

Control 

RoboCup simulator 

Dynamic 

Real time 

Incomplete 

Present 

Random for visual 
information. 
Random for players' actions 

Distributed 

- -- 

Complete 

Present I 
No errors in visual information 
(except small rounding 
errors). 
Random for players' actions 

Distributed, human interaction 
possible 

Table 2.1 shows that the main difference between the RoboCup simulator and TAO of 

Soccer is that the information available to the artificial player is complete and precise. 

This substantially reduces the number of simulation runs that are necessary for evaluating 

different player behaviours. 

2.1.4.4 TAO of Soccer server physics 

For determining the time horizon available for planning the player behaviour, we 

need to be able to predict situations on the field rather precisely. To construct prediction 

algorithms, we should use some laws of physics. The TAO of Soccer server simulates 

physics as follows (Zang, 2005): 

- Soccer field is rectangular. The touch line is 100 meters long and goal line is 65 

meters long. The distance between goalposts is 8 meters. Each point p on the 

field is represented by rectangular Euclidean coordinates (x,y), where x is 

measured along the touch line and y is measured along the goal line. The center of 

the field is set to (0,O); Y axis goes up and X stretches to the right. 

- The players and the ball are represented by circles and are the only dynamic 

objects of the environment. The motions of the dynamic objects are simulated 

stepwise every 50 milliseconds. 



- Motion of a player is calculated every simulation step as follows 

o a, = FORCE * Kl - v , - ~  * K, 

where i is current simulation step number, pi is player's current position, pi-, is 

player's previous position, vi is player's current velocity, Vi-, is player's previous 

velocity, ai is player's current acceleration, a,-, is player's previous acceleration. 

FORCE is set by the client (player agent program). Coefficient Kl is the force 

factor. K2 is the friction factor. They are calculated by setting constants MaxSpeed and 

TimcToMnx. 

o Kl = MaxSpeed * l5nestep2 / ( TirncToIIIax * MaxForcc); 

o & = MuxForccl * K1 / (MaxSpeed * Timestep); 

MmSpeed is the maximum speed the player can reach. TimeToMax is the amount of 

time a player needs to reach full speed without friction. TimeStcp is the length of one 

simulation step. defaulted to 0.05 sec. 

MaxFovce is the maximum force a player can apply, defaulted to 100. 

- Motion of the ball is calculated every simulation step as follows: 

o ai = KICKFORCE * K1 and vi = 0 if kicked by a player 

o otherwise vi = -FRICTIONFACTOR * v ~ - ~  

Kl is the kick force factor. It is calculated as: 

MaxKick is the maximum kick force a player can apply, defaulted to 1 00. 

- When there are several players very close to the ball, one of them is randomly 

clzosen as the controller of the ball. The controller of the ball can kick the ball by 



sending the kick command, or he c'an dribble thc ball by sending normal drive 

command. Hcnce, thc acceleration is rcduced as: 

o a, = {FORCE * Kl - vi-I * K,} * DRIBBLEFACTOR 

where DRIBBLEFACTOR is the maximal dribble force factor when a player is 

dribbling. 

In order to reflect unexpected movements of objects in real world, TOS adds 

random error to the movement of objects and to the parameters of commands. 
- As for player movements, noise is added as follows: 

o A, - (FORCE * KI - Vo * K2) * (1 +/- RandomFactor); 
- As for the free ball movement, noise is added as follows: 

o Al = -FRICTIONFACTOR * VVo * (1 +/- RandomFactor); 
- When the player kicks the ball, noise is added to the kicking direction as follows: 

o KickDir, = KickDiro +/- KickRandom; 

2.2 Aspects of the player rational behaviour. Why positioning? 

We want our player agents to behave rationally. It is normally believed in the A1 

community that an ideal rational artificial agent is defined as follows. 

"For each possible percept sequence, an ideal rational agent should do whatever action is 
expected to maximize its performance measure, on the basis of the evidence provided by 
the percept sequence and whatever built-in knowledge the agent has." 

An agent is defined as some entity that perceives its environment through sensors 

and acts upon this environment trough some actions (Russell&Norvig, 2003). 

In the simulated soccer environment an agent perceives the following information 

- its own position and the orientation of its body and its parts, 

- the positions of other players, 

- the position of the ball. 

An agent can perform the following actions 

- kick the ball 



- move (dash, turn) 

- talk (send messages). 

These simple actions can be combined in more complex actions which make sense from 

the soccer point of view as follows: 

- position itself (move) 

- chase the ball (move) 

- pass (kick) 

- shoot(kick) 

- dribble (kick +move). 

Russell&Norvig outline four basic types of agent (Russell&Norvig 2003). 

Simple reflex agents 

Model-based reflex agents 

Goal-based agents 

Utility-based agents 

Simple reflex agents select actions using some condition-action rules according to 

current perception. 

Model-based reflex agents maintain some model of the world. They also use some 

condition-action rules but act according to the current state of world using an internal 

model. 

Goal-based agents store goal information and the information about the results of 

possible actions in order to choose actions that achieve the goal. Goal-based agents reason 

about the future (Russell&Norvig 2003). The goals for an agent can be set manually by 

the designer. 

Utility-based agent can set the goals for itself by defining a utility function. A 

utility function is a function that maps a state to a real number, which represents the 

associated degree of happiness (Russell&Norvig 2003). In other words, each simulation 



step, an agent must perceive the environment information, create possible plans of 

actions, and evaluate these plans according to the utility function. 

Figure 2.3 Structure of a utility-based, goal-oriented agent 

While dealing with the model in Figure 2.3, we must bring attention to two 

problems. Firstly, the environment state in soccer simulation is changing in real time. 

Since the plan of actions depends on the perceived environment state, this plan can 

change significantly from one simulation step to another. This renders some plans useless 

since any plan which lasts more than several cycles is unachievable because the state 

would change before the plan completion. For instance, passing the ball requires just one 

or very few simulation steps and the appropriate plan probably would not change 

significantly during the pass execution. On the other hand, implementing a positioning 

plan can take several dozens of cycles. It would be nahe to expect that the state would 



not substantially change during such period of time. Secondly, the state may be 

characterized by several parameters. Utility functions are normally used for evaluating 

states. However, it is not always possible to create a utility function properly mapping the 

environment state into a real number. In what follows, I will show that these problems 

were not addressed in existing player positioning methods. 

To solve these problems, I will consider an enhanced structure of a utility-based 

agent. This structure involves the predicted state of the world and multi-criteria decision 

making. 

So, why positioning? First of all, positioning occupies most of a player's time. 

More than 90% of the player's time is devoted to deciding where to go to and moving to 

this destination. Secondly, soccer strategy and tactics are mostly achieved through player 

positioning. A team in a soccer simulation is a multi-agent system which requires 

collaboration. Positioning, if executed purposefully, is the key to collaboration. At last, 

positioning requires the longest action plans compared to other player behaviors. 

There is a conflict between the real time change of the environment state and the 

necessity to create long term plans for player positioning. This conflict has not been 

addressed in existing positioning methods. This study investigates this problem in a 

systematic way and provides the solution. 



Figure 2.4 Enhanced structure of utility-based, goal-oriented agent which is using prediction and 
multicriteria decision making 

2.3 Existing player positioning methods 

In some existing player positioning methods, a soccer agent perceives the current 

situation and calculates its desired location on the pitch by taking in consideration the 

current or predicted location of the ball and its own 'home' position in the formation. 

Each player determines its destination as a weighted sum of these two points. In some 

cases, current positions of other players are also taken into account. This approach was 

implemented in some simulated soccer teams participating in the international RoboCup 



initiative, in particular, FC Portugal and UVA Trilearn (Kok & Boer, 2002) who were the 

winners in some worldwide and regional competitions. 

An alternative approach can be found in the descriptions of the CS Freiburg 

middle-size robots team (2001) and the CM-United small-size robots team (Stone at. al, 

1998). With this approach, the field is divided into small rectangles and each rectangle is 

evaluated against some utility function. This approach involves some multi-criteria 

evaluation similar to the simple weighting method for multicriteria optimisation problems 

described later. As both teams were world champions in their leagues, these positioning 

methods produce satisfactory results. 

Nevertheless, I see some disadvantages of the existing positioning methods. First 

of all, common for both approaches, is that these two approaches neglect the game 

dynamics. When the game is in process, the ball is in motion almost all the time. 

Therefore, the calculated player position is a moving target too and often is too far away 

from the player. If the player cannot reach the target before the situation changes, it will 

waste its effort. For the first, weighed ball-home position approach, one more 

disadvantage is in the decision making method used. It is based on a decision tree with 

heuristic rules balancing the anticipated rewards and risks. In some cases, these 

conflicting criteria are even not explicitly specified by the creator of the decision making 

algorithm. This is leaving behind some potentially good target positions without proper 

consideration. 

For the second approach based on fixed rectangular zones, another disadvantage is 

that the utility hnction cannot always be properly constructed. For conflicting criteria, 

mapping the multicriteria optimisation problem into single criteria optimisation problem 

may be inappropriate and give unexpected results. This effect was observed when a 

similar algorithm was implemented for the SFUnleashed team. 

The proposed method eliminates these disadvantages by using a more elaborate 

prediction of the situation in combination with the multi-criteria decision analysis 

(MCDA). 



2.4 Overview of Multi-Criteria Decision Analysis Theory 

Real-life optimisation problems often require solutions which are characterised by 

several incomparable and often competing performance indicators, or criteria. Informally, 

the problem can be defined as a search for the optimal solution among a number of 

possible solutions characterised by several criteria. The Multi Criteria Decision Analysis 

theory is well developed by many authors and is applicable to many areas from 

economics to engineering. It is also called Multicriteria optimisation (Stadler, 1988; 

Ehrgott, 2005), Multiobjective optimization (Liu, Yang, Whidborne, 2003) or Vector 

optimization (Kolbin, 2003). Below I will describe the basics of the theory following the 

concepts provided by these authors. 

2.4.1 Problem formulation 

It is always possible to construct the criteria as assumed for minimisation, so 

formally the multicriteria optimisation problem can be formulated as the problem of 

simultaneously minimising the n criteria functions xi ( p )  , i = I,&. . .n where p  is a 

variable vector from the space of vectors p  called decision space F , or, find 

In general, the problem does not have a unique optimal solution which means that we 

cannot minimize all the criteria simultaneously because of the inherent conflict. 

Nevertheless, we should find some solution which we will call optimal in the sense of the 

most suitable compromise. 

We will call a set of accessible alternatives for the decision problem a feasible set 

F, c F . We denote the space of vectors ~(x,, X,  , . . .xn) as the criteria space C and 

the image of F, under X = (x, , X, , . . .xn ) as C, C - the image of the feasible set, or 

the feasible set in the criteria space. 



2.4.2 Definitions 

To introduce the concepts of non-dominated points and efficient solutions we 

need some definitions. 

2.4.2.1 Relations 

A Cartesian product A x B of two sets A and B is the set of all ordered pairs 

(arb) where a isin A and b isin B  h hat is A x B = {(arb) ( a E A,b E B) . 

Let S be a set. A subset R of S x S is a binary relation on S . A binary relation 

R on S is called 

- reflexive if (5, S) E R for all S E S 

- irreflexive if (5,s) 8 R for all S E S 

- symmetric if (s', S' ) E R 3 (s' , s') E R for all s', S' E S 

- asymmetric if (s', S' ) E R 3 (s', S' ) e R for all s', S' E S 

- transitive if (s', S' ) E R and (s' , s3) E R 2 (s' , s3 ) E R for all 

s1,s2,s3 E S 

- negatively transitive if (s', s') e R and (s2,s3) e R 3 (s', s3) e R for all 

s1,s2,s3 E S 

- connected if (s' , S' ) s R or (s' , S' ) E R for all S' , s2 E S with S' + 5' 

- strongly connected (or total) if (s', S' ) E R or (s', S' ) E R for all s', S' E S 

2.4.2.2 Ordering 

Strict preference. A binary relation R on set S is a strict preference on S if and only if 

R serves to introduce a hierarchy among the elements of S . In this case R is denoted as 

4. 



Indifference. A binary relation R on set S is an indifference on S if and only if R 

serves to introduce a notion of equality among the elements of S .  In this case R is 

denoted as -. 

Preference. A binary relation R on set S is a preference on S if and only if 

R = Rl u R2 is the disjoint union of a strict preference R, and an indifference R,. In 

this case R is denoted as 5 .  

Ordering relations. A binary relation R on set S is: 

- apartialpreorder if and only if it is reflexive and transitive 

- apartial order if and only if it is reflexive, transitive, and asymmetric 

- a complete preorder if and only if it is reflexive, transitive, and complete 

- a linear order (or simply order) if and only if it is reflexive, transitive, 

asymmetric and complete 

- an equivalence if and only if it is reflexive, transitive, and symmetric 

2.4.2.3 Cones and lexicographical order 

Often partial orders and preorders are generated by cones. 

A subset K W of a vector space W is a cone, if and only if ap E K for all p E K 

and for all a > 0 . 

A cone K c W is called: 

- nontrivial or proper if K t 0 and K t W 

- convex if apl + (1 - a)p2 E K for all pl,  p2 E K and for all 0 < a < 1 

- pointed if for p E K,  p # 0, p t -p i.e. K n (-K) = 0 

Convex pointed cones generate partial orders. Non-convex and non-pointed cones 

generate only partial preorders since they contain subspaces destroying the asymmetry 

property. 



Figure 2.5 Natural order in R2 (Stadler, 1988) 

A cone K is associated with each point x in R2 and V x E K ,  x I y . The point z is 

not comparable to x with this order. 

Another ordering widely adopted on practice is the lexicographical order. A 

lexicographical order is similar to the order of words in a dictionary (as assumed for 

maximization): p' > p2 if and only if 

- X i ( p ' ) = ~ , ( p 2 ) ,  i = l , . . . , k  and ~ ~ + ~ ( p ' ) > x ~ + ~ ( p ~ )  for some 

k  = l , . . . , n  - I .  

This means that the criteria x,, . . ., x, are ordered according to importance. p1 is 

preferred to p2 if its criterion ranged first is greater regardless of the values of other 

criteria. Only if the values of the first criterion are equal for both points, the next criterion 

is taken into consideration. An important property of the lexicographical order is that two 

distinct points in the decision space cannot be indifferent with this order. 



2.4.3 Non-dominance and efficiency 

2.4.3.1 Concepts 

In the feasible area in the criteria space not all alternatives deserve equal consideration. 

There is only a small subset of so-called non-dominated alternatives where the solution to 

the optimisation problem should be sought. All the rest of the alternatives could be just 

ignored, which substantially simplifies the search. Below I explain this idea in a more 

formal way. 

In terms of the decision space and criteria space we can compare two points p1 and p2 

in the decision space the following way (minimisation assumed): 

- either p1 + p2 if and only if X(pl) 5 x (p2 )  (Strict inequality for at least one 

criteria), that is 3 j such as x,(pl) < x j (p2)  and xi (p l )  5 xi (p2)  for all 

i t  j 

- or p1 < p2 if and only if X(pl) 2 X(p2) (Strict inequality for at least one 

criteria) that is 3 j  such as x j (p l )  > X, (p2)  and xi (p l )  t xi (p2)  for all 

i + j  

- or p1 - p2 if and only if X(pl) = X(p2) that is xi (p l )  = xi (p2)  for all i  . 

- or p1 -+ p2 if and only if X(pl) o x(p2 ) that is 3 j such as 

x,(p1)>x,(p2) a n d 3  i t  j suchas x,(p1)<xi (p2)  

Notice, that we compare the images of the points from the decision space in the criteria 

space and, for instance, p1 - p2 does not mean that p1 = p2 in the decision space. 

Here p1 4+ p2 are incomparable or not dominating each other because p1 is 

better by some criteria and p2 is better by some other criteria. p1 > p2 means that p1 is 

better than p2 by some criteria and not worse by the others. It is said that p1 dominates 

p2 or p2 is dominated by pl. 



When solving the multicriteria optimisation problem, we are not interested in 

dominated points as possible solutions because for any dominated solution there is at least 

one solution which is better by at least one criterion and is not worse by any of the other 

criteria. We need to find the solutions which are not dominated by others. Such solutions 

are called non-dominated or Pareto-optimal. Some authors also call them Edgeworth- 

Pareto optimal (Stadler, 1988), non-inferior, or efficient (Ehrgott, 2002). Pareto (Pareto, 

1906 as cited in Stadler, 1988, p.2) defined optimal decision as: 

"We will say that the members of a collectivity enjoy maximum 
ophelimity in a certain position when it is impossible to find a way of 
moving from this position very slightly in such a manner that the 
ophelimity enjoyed by each of the individuals of the collectivity increases 
or decreases. That is to say, any small displacement in parting from that 
position necessarily has the effect of increasing the ophelimity that certain 
individuals enjoy, of being agreeable to some and disagreeable to others." 

In a set of non-dominated solutions the improvement of some criterion can be 

achieved only by deterioration of some other criteria. The definition of efficient solutions 

and non-dominated points can be stated as (Ehrgott, 2002): 

A feasible solution pS E Fs is called eficient or Pareto-optimal, if there is no 

< X  p  . If pS is efficient, X(pS)  is called non- other p  E Fs such that X  ( p )  - ( ' )  
dominated point. If pl,  p2 E Fs and X ( p l )  5 x ( p 2 )  than p1 dominates p2 and 

X  ( p l )  dominates X  ( p 2 ) .  The set of all efficient solutions ps E Fs is denoted F, and 

called the efficient set. The set of all non-dominated points cS = X(pS)  E C, , where 

pS E FS is denoted as C, and called the non-dominated set, Pareto-frontier, or efficient 

solution frontier (Liu, Yang, Whidborne, 2003). 

There are several equivalent definitions, in particular: 

pS E Fs is efficient if there is no such p  E F, such that X, ( p )  < xi (ps)for 

i = 1,. . . , n and X,  ( p )  < X ,  (pS ) for some j E {I , . .  ., iJ . In other words there is no 

point p  such as p  > pS . 



A feasible solution pS E Fs is called weakly efJicient or weakly Pareto-optimal, if there 

isno p  E Fs suchthat ~ ( p )  < x ( p S ) , i . e .  xi ( p )  < xi ( p s )  for all i = I, ..., n .  The 

point cS = X(pS ) is then called weakly non-dominated. 

Figure 2.6 Pareto frontier 

Figure 2.2 illustrates efficient solutions in the two-dimension criteria space where X, ( p )  

and x, ( p )  are assumed for minimization. Segments AC and DE represent the Pareto 

frontier. Segment AB represents weakly non-dominated points, segments BC and DE 

represent strictly non-dominated points. We can see that the Pareto frontier is non-convex 

and disconnected. All points in cone G are dominated by point g and point f is non- 

dominated because cone F contains no points from Fs . 

2.4.3.2 Non-dominated set bounds 

An indication of maximal and minimal values of non-dominated points is given by 

the ideal and nadir points (Ehrgott, 2002). These points are used in many methods, for 



instance, for minimax (ideal point) method (Liu, Yang, Whidborne, 2003) of finding the 

most preferred solution from a set of efficient solutions. 

If a set of efficient solutions is nonempty and bounded, we always can find real 
- - 

numbers gi ,  Ci, i = 1,. . ., n such as g, 2 xi 9 Ci for all c (x,, x,, . . ., x,) E Cs. 

The ideal point C' = (xf , xf, . . ., x:) of multicriteria optimisation problem (2.1) 

is given by xf = mi n xi (p )  . 
PEF,  

The nadir point C" = (x: , X: , . . ., X: ) of multicriteria optimisation problem 

(2.1) is given by x,! = max x i (p) .  
P ~ F E  

Figure 2.7 Ideal and nadir points for a two-dimensional criteria space 

Figure 2.3 shows the ideal and nadir points for the non-convex problem depicted in 

Figure 2.2. Notice, that we do not need to calculate the efficient set of solutions to find 



the ideal point. This fact makes this point particularly useful for a priori methods 

described below. 

2.4.4 Methods 

Sometimes it is possible to reduce the multi-criteria optimization to single 

criterion. This is achieved by constructing a utility function for the multicriteria 

optimization problem (2.5.1) in the form u ( X  ( p ) )  = u (x, ( p )  , x2 ( p )  , .. . , Xn ( p ) )  . In 

this simple case the optimal solution can be found as the solution that minimizes the 

utility function u ( X  ( p ) )  for all p  E Fs . The simple weighting method was developed 

to serve this purpose. 

2.4.4.1 Simple weighting method 

We describe the simple weighting method using an example of a two criteria 

optimization problem, as it is given in (Liu, Yang, Whidborne, 2003) and (Ehrgott, 2003). 

In general, a two criteria optimisation problem can be stated as follows: 

- minimize x, ( p )  

- minimize x, ( p )  

- given p  E Fs 

Notice, that if some criterion xi ( p ) ,  i = 1,Z assumed for maximization we always can 

replace it by the -xi ( p )  equivalent for minimization. Without loss of generality, we can 

assume that both criteria are measured using the same scale. If the image Cs of the 

feasible set Fs in the criteria space is convex and compensation between the two criteria 

is allowed, the simple weighting method can be applied to generate efficient solutions. In 

this case, we create a utility function and the problem can be thought of as a single criteria 

optimization problem in form: 

Minimize f ( p )  = a, f, ( p )  + a2f2 ( p )  



where a, 2 0 and a, 2 0 are weighting factors. For a single criteria problem, dividing 

the criteria by a positive real number does not change the optimum. If we assume that 

a, > 0 we can divide both sides of (2.5.2) by a, and denote a = a2 /a, . Then we can 

consider the equivalent problem 

Minimize f (p, a)  = f, (p) + af, (p) (2.3) 

since C, is convex. For a given a ,  the optimal solution of (2.5.2) is an efficient solution 

of the stated multicriteria problem. Using different values for a ,  we can generate 

different efficient solutions. Since we are not looking for a specific efficient solution but 

for a set of efficient solutions, here a is just a parameter that does not represent the 

decision-maker preferences. The graph of the utility function is a line in the criteria space 

given by the formula 

1 a 
f, + af, = a or f, = --f, + - where a is aconstant 

a a 
(2.4) 

1 a 
So, the slope of the line is - - and its ordinate intercept is - . 

a a 



Figure 2.8 Indifference lines for the simple weighting method 

Figure 2.9 Change weight for simple weighting method when a O and a 



Figure 2.10 Change weight for simple weighting method for a = O and a = 

All points of the line located inside the image of the feasible set have the same value of 

the utility function. Therefore, the line is a linear indifference curve. Points B and C on 

Figure 2.3 represent two solutions in which the utility function has the same value, i.e. 

f, (B)  + af, (B)  = f, (C)  + af, (C)  = b .  This means that the two solutions in the 

feasible set represented by points B and C are indifferent regarding this utility function. 

The solution of the single criteria problem is to move the line to the direction of the origin 

in parallel until it becomes the tangent line to the image of the feasible set in the criteria 

space. Point A in Figure 2.3 represents the tangent point. We can see that point A is in 

Pareto frontier and represents an efficient solution in the feasible set. If the coefficients of 

the utility function represent preferences on the criteria and the linear utility function is 

acceptable, then the point in F, represented by A in the criteria space would be the best 

compromise point. 

If we change a , the line will rotate and following cases are possible: 

- if the new weight is oo > a' > a ,  the representation of the best compromise 

solution point will change fiom A to D as shown in Figure 2.5. Increasing a 

means that the weight of f, is increasing but the weight of fl is decreasing 



- if the new weight is a > a' > 0 ,  the representation of the best compromise 

solution will change from A to E as shown in Figure 2.5. Increasing a means that 

the weight of fl is increasing but the weight of f2 is decreasing 

- if a = 0 ,the representation of the best compromise solution will change from A 

to G as shown in Figure 2.6. This means that f, is not considered anymore and we 

only want to minimize fl . The solution may be weakly efficient. 

- if a = oo , the representation of the best compromise solution will change from A 

to H as shown in Figure 2.6. This means that f, is not considered any more and 

we only want to minimize f2 . The solution may be weakly efficient. 

The simple weighting method is natural but the utility function approach can be 

applied only to a particular type of multicriteria optimization problems. A large number 

of methods for different types of problems have been developed. We must classify the 

methods and problems to be able to choose the appropriate methods. 

2.4.4.2 Optimization method and problem classification 

Multiple criteria optimization methods can be divided into three main classes (Liu, 

Yang, Whidborne, 2003): 

- Efficient solution generation methods with preferences provided after 

optimisation. 

- Methods for generating the best solutions based on preferences provided a 

priori. 

- Interactive methods with preferences extracted progressively in decision 

analysis process. 

In the first class of methods, the set of desirable efficient solutions is generated 

first. Then, according to the decision maker preferences the best compromise solution is 

found. An advantage of these posterior methods is that there is no need to involve the 

decision maker in the generation of the set of efficient solutions. The disadvantages of 

these methods are as follows: they usually require a large number of calculations and, 



sometimes, the set of efficient solutions is too large which complicates finding the best 

compromise solution. The simple weighting method described above is a widely used but 

only applicable to problems with a convex image of the feasible set and a smooth Pareto- 

frontier. In the case of a non-convex image of the feasible set in the criteria space, this 

method may fail to produce a correct set of efficient solutions. 

The second type of methods, often referred to as "a priori" methods, require some 

global preference information in advance. Using the preferences, a multicriteria 

optimisation problem can be transferred into a single criteria optimisation problem. Then, 

the solution for the single criteria optimisation problem is the best compromise solution 

for the original problem. For these methods, optimisation only needs to be conducted 

once and the number of calculations is relatively small but it could be difficult to provide 

the global preference information in advance. The ideal point method is one of the widely 

used methods of this group. In fact, this method serves as the base for a number of other 

methods; the goal attainment method is one of them, using canonical weights to represent 

the decision maker preferences. Goal programming is only applicable to convex 

problems; the minimax reference point method extends goal programming to non-convex 

cases and provides a basis for generating efficient solutions in both convex and non- 

convex Pareto-frontiers. 

The third type of methods requires providing some local preference information 

progressively in an interactive optimisation and decision making process. The main idea 

is to construct a series of single criteria optimisation problems related to the original 

multicriteria optimisation problem. The solutions of the single criteria problems will 

approach the best compromise solution for the multicriteria optimisation problem. These 

methods are referred to as interactive methods. Among the methods of this type 

Geoffrion's method has been introduced the earliest. Again, this method is applicable to 

convex problems only. 

We also need to classifL the multicriteria optimisation problems to be able to 

apply appropriate methods to different types of problems. The formal classification of 

multicriteria optimisation problems is as follows (Ehrgott, 2003): 



Usually, vectors in the criteria space can not be compared directly. To be able to 

compare them we introduce some ordering on the criteria space. The ordering maps the 

criteria space into some ordered criteria space. This ordering is called model map and 

denoted as 6'. A multicriteria optimisation problem has the following elements: 

- the feasible set F, , 

- the criteria vector X = (x,, x,, . . . , x,) , 

- the criteria space C , 

- the ordered image of the feasible set in the criteria space, and 

- the model map 6'. 

The feasible set, criteria vector and criteria space are the data of the multicriteria 

optimisation problem. These five features exhaustively describe a multicriteria 

optimisation problem. 

For practical purposes, I will classify multicriteria optimisation problems on the 

basis of the features of the data of multicriteria optimisation problems. 

- Depending on the properties of the feasible set, I will distinguish between 

continuous and discrete; infinite and finite problems. 

- Depending on the type of objective functions, I will distinguish between linear, 

non-linear and non-smooth problems 

- Depending on the form of Pareto-frontier, I will distinguish between convex and 

non-convex problems, and problems with disconnected Pareto-frontier. 

Thus, the multicriteria optimization theory provides powerful methods for solving the 

problems involving multiple parameters evaluation. We should carefully evaluate the 

nature of the problem to apply an appropriate methodology. In many cases, the optimal 

solution is non-feasible and we can find only the best compromise solution. This solution 

always belongs to the Pareto-frontier of the feasible set. 



3 METHODS 

3.1 Determining the time horizon for decision making by the player 

The new method for predicting situation in the soccer game with reasonably high 

precision is one of the central ideas of this study. It is based on determining the available 

time horizon until the situation is expected to change abruptly. This section provides 

description of methods for defining the time horizon and other prediction methods. These 

methods supply information for multicriteria optimization methods for player positioning, 

also described in this chapter. 

Soccer is a dynamic game with rapidly changing environment state. The 

simulation environment reflects this property by having a simulation cycle length of 50- 

100 ms. In every simulation cycle, the player receives an update about the environment 

state and must inform the simulation server about its decision by sending control 

commands. Some important information like the direction and magnitude of the ball's 

velocity can change significantly from cycle to cycle. For this reason, it is often difficult 

to precisely predict the situation and create any short-term plans even for several cycles. 

If the decision differs significantly from cycle to cycle, the dynamics prevents the player 

from performing all necessary actions to actually carry out the decision. For instance, if 

the calculation of the player position on the field is based on the current location of the 

ball, the player would very rarely reach the desired position. 

While the actual environment state changes every cycle, some predicted 

environment state can be relatively stable for several cycles. I will define the time span 

with stable predicted environment state as the time horizon for prediction or prediction 

period and denote it as T , expressed in the number of simulation cycles. Notice that there 

is no need for the player to remember the first cycle of current prediction period. From 

the player's point of view, every simulation cycle is the first cycle of the time horizon for 

prediction. If T = 0 for the previous cycle, the player calculates a new time horizon and 



makes a new prediction. Otherwise, the player merely decrements the calculated time 

horizon and updates the prediction by utilizing current information about the 

environment. 

Table 3.1 shows sequence of time horizon T calculations by one of the players. 

When the ball is under control of a player the time horizon is zero since the players' 

action is unpredictable. As soon the ball is kicked and leaves the control area, the player 

is able to evaluate the time needed for the ball interception. This time becomes the time 

horizon for other predictions. Every simulation cycle the player recalculates the time 

horizon and refines the other predictions using new information about the environment. 

Since the time horizon of zero length makes no sense, in the implementation I 

make a guess about the behaviour of the player controlling the ball. I suppose that the 

player will continue to move with the ball maintaining the same velocity for at least 10 

simulation cycles, and extend the time horizon accordingly. Prediction of the ball motion 

helps us to define the length of T . 

Table 3.1 Action sequence for prediction 

I Simulation cycle # I Calculated T 1 Player's action 

1 801 5 I Recalculate T , refine the prediction 

806 1 0 I Recalculate T , refine the prediction 

802 

803 

804 

805 

1 807 I 9 I Calculate new T . make new ~rediction I 

4 

3 

2 

1 

81 2 I 3 1 Recalculate T , refine the orediction 

Recalculate T , refine the prediction 

Recalculate T , refine the prediction 

Recalculate T , refine the prediction 

Recalculate T . refine the prediction 

808 

809 

81 0 

81 1 

81 3 I 2 1 Recalculate T . refine the prediction 

81 4 I 1 I Recalculate T . refine the mediction 

8 

6 

5 

4 

1 815 I 0 I Recalculate T . refine the mediction I 

Recalculate T , refine the prediction 

Recalculate T , refine the prediction 

Recalculate T , refine the prediction 

Recalculate T , refine the prediction 

81 6 

81 7 

25 

. . . 
Calculate new T , make new prediction 



3.1.1 Ball motion prediction 

In the soccer game the situation prediction is possible with reasonable precision when 

the ball is outside the reach of all players. I assume that in each team the player who can 

reach the ball in the shortest time will be trying to get control of the ball. The other 

players will be just moving to some positions on the field which are good from their point 

of view. This fact allows predicting the situation while the ball is moving freely. So, 

determining the ball motion is the critical task that must be addressed. 

Prediction of the ball motion and location is the base for defining feasible area and the 

time horizon for other predictions. We can identify two distinct states of the ball: 

- the ball is controlled by a player 

- the ball is not controlled by a player 

In the first case, the ball is situated inside some kickable area around a player. The 

kickable area is a circular space around the player inside which the player can kick the 

ball. The diameter of the kickable area is defined by the simulation server settings and 

represents a distance in which a real human player can reach the ball without changing his 

or her own position. The diameter of a kickable area in the simulation server 

implementation used is 1.5 metre. 

In the second case, two types of action are possible: 

- the player kicks the ball 

- the player dribbles the ball 

If the player makes the decision to shoot the ball, the ball leaves the kickable area of 

the player and we are faced with the situation where the ball is not controlled by any 

player until it arrives into the kickable area of another player. The shooting itself takes 

very little time, usually one or two simulation steps. 

In the case where the ball is dribbled, the player moves along the field keeping the 

ball inside the kickable area. It is hard to predict which decision the player will make next 

and for how long it will dribble the ball. For this reason, in the case of controlled ball, it is 

sufficient to suggest that the player will dribble the ball for some empirically defined time 

horizon. Since a player has some inertia, the dribbling player is unable to change the 



velocity or direction of the motion abruptly; therefore, the vector of the predicted location 

of the ball can be defined as the sum of current position vector of the player and current 

velocity vector of the player multiplied by the time horizon: 

where n is the time horizon empirically defined in this implementation, as n = 20. We 

must not use position and velocity of the ball here since the ball has much less inertia than 

a player and its velocity can significantly change from one simulation step to another 

causing confusion in the predicted position. 

This prediction can be inaccurate if the player decides to shoot the ball; anyway, it 

leaves only a few simulation cycles and other players are unable to relocate before they 

realise its inaccuracy. Another shortcoming of this method is the fact that we can only 

guess the time horizon for dribbling which forces us to take the current position of the 

player as a base for the prediction. This makes the predicted position of the ball a 

"moving target" since the current position of the player controlling the ball will change 

every simulation step. Nevertheless, the maximal velocity of dribbling is sufficiently less 

than the maximal velocity of a player without the ball which means the players will be 

able to successfully relocate using the predicted position of the ball. 

The case when the ball is not controlled is much more interesting and useful. The 

situation on the field depends mostly on the ball location and speed. If the ball is 

controlled, its velocity can change abruptly when the player kicks it. The ball velocity 

change forces all the players to change their location accordingly, so the entire agent 

environment will change in the time horizon of several cycles while the ball is moving. If 

it is moving freely, we can predict with high accuracy where, when and by which player 

the ball will be likely intercepted using the laws of physics and the standard simulation 

model features. Having these predictions, we can determine the time horizon for other 

predictions and decision making since the behaviour of all the players somehow depends 

on the state of the ball. Moreover, experiments show that the ball is uncontrolled more 

than 90% of the time of the game (Fig. 3.1). This means that we are able to divide the 

time span of the game into periods significantly larger than one simulation step. These 



periods have a stable environment state given by prediction inside the time horizon 

defined for each period. This makes the player's decisions about positioning persistent 

during the period. 

Figure 3.1 Ball control during the game. 

Average data for 8 games 

I Ball controlled average Ball free average 

Percentage 

I Ball controlled % Ball free % 

To predict the time and the place of where the interception occurs, we must 

determine which player is able to reach the ball first because the fastest players to the ball 

in both teams are most likely to be chasing it. To do that, we must estimate the 

interception time for all the players on the field. The algorithm should also define the 



location of the interception point. Remco de Boer and Jelle Kok (KoklkBoyer, 2002) 

proposed an appropriate algorithm for determining the time and location of the 

interception point. This algorithm, however, contains three nested loops, which is rather 

time consuming. For the purposes of this research a simplified algorithm using only two 

nested loops and some heuristics was implemented. The simplified algorithm provides 

accurate results for the time and location of the interception point. 

Figures 3.2-3.4 illustrate the process of the interception point prediction. The 

magenta coloured circle with a dot represents the interception point as it is predicted by 

the yellow player #I 1. We can see that the prediction is refined as the ball is approaching 

the interception point. Nevertheless, the predicted interception point remains in close area 

of the actual interception point (Figure 3.4). Table 3.2 presents data on the predicted 

situation while passing the ball. 

Piyme 3.2 The ball has just started to move freely 



Figure 3.3 The ball is halfway the way to the interce~tion  oh 

Figure 3.4 The ball is intercepted. 

Table 3.2 shows an example of the ball interception point and time prediction. The 

maximal and average deviations of the predicted interception points from the actual 

interception point are sufficiently less that 1 meter. This is enough accuracy for decision 

making. 



The player predicted, at some point in the game, that the ball would be intercepted 

in 16 cycles at the point with coordinates (-27.20, 0.78). The actual interception happened 

in 15 cycles at point with coordinates (-27.45, 0.70). TAO of soccer simulator provides 

almost precise visual sensor information which helps to make the prediction more 

accurate. The RoboCup simulation requires some additional methods to enhance the 

prediction accuracy. 

Table 3.2 A player reports its prediction data (Fig.3.2-3.4). 

3.1.2 Players' motion prediction 

The ball motion prediction gives us the time horizon for other predictions. The 

Comment 

Time horizon refined 

Actual interception 
point 

X coordinate of 
predicted 
interception point 
-27.20 
-27.1 8 
-27.43 
-27.53 
-27.67 
-27.78 
-27.75 
-27.37 
-27.36 
-27.40 
-27.46 
-27.51 
-27.48 
-27.47 
-27.48 
-27.45 

Average deviation 

prediction of the player motion can be based on two types of information: 

- the player's physical state 
- the player's decision making mechanism 

Y coordinate of 
predicted 
interception point 
0.78 
0.68 
0.68 
0.70 
0.71 
0.64 
0.67 
0.75 
0.71 
0.66 
0.69 
0.71 
0.69 
0.72 
0.71 
0.70 

0.1 3 

In both cases several levels of prediction are possible. For instance, during the game 

we can try to infer the opponents' decision making scheme and use it for prediction, or 

use one of the already known decision making schemas. For the physical state prediction 

Predicted number 
of cycles 

16 
15 
14 
13 
12 
11 
10 
8 
7 
6 
5 
4 
3 
2 
1 
0 

Maximal deviation 

Deviation from actual 
interception point in 
meters 
0.27 
0.27 
0.02 
0.08 
0.23 
0.33 
0.30 
0.09 
0.09 
0.06 
0.02 
0.06 
0.03 
0.03 
0.03 
0.00 

0.33 



we can use information about the players' velocity and acceleration. In this case the 

prediction is based on the fact that the players possess some amount of inertia and are not 

able to change their velocity abruptly. In the current implementation only player velocity 

was used for prediction. 

The vector of the player's predicted location can be defined as the sum of current 

position vector of the player and current velocity vector of the player multiplied by the 

time horizon: 

- + 

Ppredicted = Pcurrent + "p 9 

This formula is similar to the above formula of the prediction of the motion of 

controlled ball, but this time the time horizon is substantially greater; it is calculated 

based on the prediction of the ball free motion. 

Since the player can change its velocity applying some force, the given formula can 

produce inaccurate results when the velocity is changing over time. To reduce this 

inaccuracy the exponential smoothing with coefficient 0.5 was applied. This means that 

the predicted position is given by formula: 

- 
where pow is the player's position predicted in the previous simulation cycle, pDrediCted 

is the predicted position given by (3.1) and a is a smoothing coefficient. 

In general, the accuracy of the prediction in any given prediction interval grows in 

the end of the interval because the player gets desired speed and acceleration approaches 

zero. Also, the longer the prediction interval, the more precise the prediction at the end of 

the interval is. 

In Figures 3.5-3.7 the white circle with a dot represents the anticipated position of 

red player #8 at the moment of the ball interception as predicted by yellow player #8. 



Figure 3.5 The ball is in motion 

Figure 3.6 The ball is about to be intercepted 



Figure 3.7 The ball is interce~ted 

Table 3.3 shows an example of the prediction of a player position at the moment 

of the ball interception. The maximal and average deviations of the predicted positions 

from the actual position are close to 2 metres. This prediction is less precise than the 

prediction of the ball interception point but still accurate enough to make a decision. It 

can be seen from the table that the prediction precision grows as the prediction period 

comes to its end. 

Table 3.3 A player reports its prediction data. 

predicted position predicted position 
Predicted 
number 
of cycles 

Deviation 
from the 
actual 
position in 
meters 

1.46 

Comment 



Comment 

Actual 
interception 
point 

2.06 

Deviation 
from the 
actual 
position in 
meters 

X coordinate of the 
predicted position 

6.80 

Average deviation 

At some point in the game, player #6 predicted that when the ball is intercepted in 

19 cycles, the opponent player will be located at the point with coordinates (5.57, -7.1 1). 

The actual interception happened in 16 cycles and at that moment the opponent player 

was located at the point with coordinates (6.80, -7.90). 

More sophisticated algorithms can be developed using the acceleration data, but 

the development of such algorithms is beyond the scope of this research. The ball and the 

players are the dynamic parts that form the soccer simulation environment. Once the 

positions of the ball and the players are predicted, the predicted state of the environment 

is defined and the player is able to look for an optimal position. 

Further improvements could be made with reasonably good models of player 

behaviour. It is possible in principle to predict actions by team-mates; prediction for the 

opponents requires modeling their decision making. In this study, I do not address this 

problem, though. It was left as part of future work instead. 

Y coordinate of the 
predicted position 

-7.90 

1.25 

Predicted 
number 
of cycles 

0 0.00 

Maximal deviation 



3.1.3 Feasible area and area of responsibility 

In general, the player can consider any point on the field as a potential destination. 

Since the coordinates of the points on the field are represented by pairs of real numbers, 

there is an infinite number of location options. To make the problem tractable, I will be 

using a discrete representation of the field in the form of a grid of points covering the 

entire field. To preserve precision, the distance between points should not be too large; 

too small distance would result in prohibitively long computations. So I set this distance 

at 2 metres in each dimension, which is comparable with the player size and provides 

sufficient precision for positioning. Since the field size is 100 by 65 meters, the total 

number of point in the grid is: 

(F + I) x (y + 1) = 1683 points. 

We will consider this grid as the set representing the decision space and denote it 

as F . Having information about the time horizon for the planning of positioning and the 

player role in the formation, we can define the area on the field where the player will be 

searching for the optimal position. To make this positioning decision, the player must be 

able to eventually reach the desired position in given time T . This means that the optimal 

position can not be just any point in the decision space - it must be some point that the 

player can reach in the given prediction period. In other words, many points in F can be 

eliminated as unfeasible. 

Thus we define the feasible area as the area containing all the points the player 

can reach in the given time horizon. We denote the set of points inside the feasible area as 

Ff c F .  

In practice, at any given simulation cycle, for each of the players, the feasible area 

is a circle with radius Rf = V,,, x T where V,,, is the maximal player velocity and T 

is the current time horizon for decision making. The player has some inertia; so the centre 
- 

of the circle is defined as pCumn, + vcurrent . Consequently, we can define Ff as 



To maintain simple collaboration with team-mates, every player must obey team 

formation. This means that the player must occupy a particular part of the field, according 

to its role in the formation and current or, in our case, predicted location of the ball. In 

fact, there are many algorithms, calculating the point where the player must be located 

based on its role and the ball location. We will call this point the recommended point. 

Jelle Kok and Remko de Boer described a simple algorithm for calculation of such point 

(Kok&Boyer, 2002). Essentially, this is a weighted sum of the player "home" position 

defined in the formation and the location of the ball. We will use a predicted ball position 

We define the responsibility area as some circular area with centre in the 

recommended point. We denote the set of points inside the responsibility area as F, G F . 

At any given simulation cycle, for each of the players, the responsibility area is a 

circle with heuristically defined radius Rr = 10 meters. We can define Fr as 

The player must be seeking some position inside the responsibility area at any 

time of the game to maintain the team formation. Note that the responsibility area can 

take a geometrical form other than a circle. This form was merely chosen as the most 

natural in the context of the soccer game. 

Since the player must seek the position inside the responsibility area and must be 

able to realise its positioning plans, the set of points F, G F where the player must 

search for the optimal position is the intersection of the sets of feasible area and the 

responsibility area: 

F, = Ff n Fr . This is the feasible set in the decision space. 
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Figure 3.8 Search space 

Figure 3.8 shows an example of the search space for yellow player #lo. Yellow 

circle represents the feasible area, magenta circle represents the responsibility area and 

yellow squares represent the feasible set F, . 

In the case when F, is an empty set, I consider the player being too far away from 

the responsibility area and establish the only solution to be the center of the area of 

responsibility. The player will move to the area of responsibility as quickly as possible. 

3.2 Criteria for general positioning in attack 

To keep the size limit of this thesis, the application part of this study is 

deliberately limited to player positioning in the situations when own team is in attack. 

Still I believe that a similar approach is also possible to address positioning in defence. 

However, the recent study conducted by Eddie Hou, my fellow graduate student at the 

same school, has shown that some defence related tasks require different approach. 

Therefore, in this thesis, I elected to concentrate solely on the offensive player 

positioning. This section elaborates on the criteria used for decision making. 



Now that we constructed the feasible set, we must create an appropriate objective 
- 

or criterion space to use multicriteria optimisation methods. To each point pi in the 
- 

feasible set we assign the vector Ci (xi,, x,,, . . ., x,,) where xi,, x,,, . . ., x,, are some 

characteristics of the point in the form of real values. The source of knowledge for the 

criteria construction is the strategy and tactics of the soccer game. 

In this research I consider only general positioning for attack. General positioning 

means that in this work I am not considering any 'special' situations or tasks as personal 

marking or offside trap. Attack means that we consider criteria only for situations where 

the team controls the ball with one exception. In defence, either a regular simple 

positioning algorithm or the same criteria as for the attack is used. The team controls the 

ball if one of the team players actually controls the ball or the prediction shows that the 

ball will likely be intercepted by one of the team players. I also describe different sets of 

criteria for simple and advanced team collaboration. 

3.2.1 Simple team collaboration 

Simple team collaboration is achieved through team formation. With the simple 

team collaboration, each player must only maintain the team formation and search for the 

optimal position for itself disregarding positions of other players in the team. The 

characteristics of the recommended point depend on the ball state, the state of opponents, 

and the state of the player itself. 

For simple collaboration, the criteria are the same for all stages of attack but 

different for different groups of players. 

3.2.1.1 Criteria for attackers 

1. All players must maintain the formation. This means the player must keep as close 

as possible to the "recommended" point which represents the responsibility area 

centre. So the first criterion is the distance between the point in the feasible set 
4 4 

and the centre of the responsibility area x,, = lip, - P,, 11. The smaller this 

number, the better the point is. 



2. All attackers must be open for a forward pass (Beim,1977). This means that the 

player must keep the path (straight line) between itself and the predicted position 

of the ball from being blocked by an opponent or opponents. The characteristic of 

this path can be the widest open angle (Kok, 2002) or the distance from the line 

segment to the closest opponent. We use the distance from the line segment (the 

point of the predicted location of the ball) to the closest opponent as the base for 

the second parameter. The greater this number, the better the point is. There exists 

such threshold value of this distance that for any values greater than this threshold 

the actual distance does not matter. For instance, if the distance to the closest 

opponent is greater than 5 metres it does not matter if it equals to 10 metres or 50 

metres because the opponent is still unable to intercept the pass regardless of the 

pass distance and shooting direction error. We call this threshold distance 

tolerance threshold dtr . Using this threshold we can invert the parameter, so that 

. The smaller the value of this 

criterion is, the better the point. Notice that for all points with the distance greater 

than the threshold, the value of the parameter is zero. 

3. All players must maintain open space (Vogelsinger, 1973; Beim, 1977). This 

means that the player must keep as far away as possible from surrounding 

opponents. We use the distance from the point to the closest opponent as the base 

for the second parameter. The greater this number, the better the point is. Again, 

as we did for the second parameter, we invert this criterion using the distance 

tolerance threshold x3/ = max I()). The threshold 

value for the first parameter can differ from the threshold value for the second 

parameter. For all points with the distance greater than the threshold, the value of 

the parameter is zero. 

4. The attackers must be ready for defence penetration (Beim, 1977). This 

requirement means that the player must keep an open path to the opponent's goal 

and keep as close as possible to the offside line, so we can construct two criteria. 

The player must keep the path (straight line) between itself and the opponent's 

goal from being blocked by an opponent or opponents. The characteristic of this 



path can be the widest open angle [Kok] or the distance from the line segment to 

the closest opponent. We use the distance from the line segment (the point - the 

center of the goal) to the closest opponent (except the goalie) as the base for the 

second parameter. The greater this number, the better the point is. We use the 

distance tolerance threshold to inverse the parameter, so 

))) . The smaller the value of this 

criterion, the better the point. Notice that for all points with the distance greater 

than the threshold the value of the parameter is zero. 

5. The player must keep as close as possible to the opponent offside line to be able to 

penetrate the defence. The offside line is the line going through the position of the 

opponent defender closest to the goal and parallel to the goal line. So, the next 

criterion is the distance between the point in the feasible set and the offside line by 

point is. 

the X coordinate xSi = pi - Xo,ide I - 

Thus, we have five criteria altogether to evaluate the potentially optimal location points 
for attackers. 

. The smaller this number, the better the 

3.2.1.2 Criteria for midfields 

The criteria for the midfields are similar to the criteria for attackers with some exceptions. - - 
1. All players must maintain the formation, so xIi = l i p ,  - prec 11. 
2. All midfields must be open for a forward pass from the defenders (Beim, 1977), 

distance greater than the threshold the value of the parameter is zero. 

3. All players must maintain open space (Vogelsinger, 1973; Beim, 1977). This 

means that the player must keep as far as possible from surrounding opponents. 

We use the distance from the point to the closest opponent as the base for the 

second parameter. The greater this number, the better the point is. Again, as we 

did for the second parameter, we inverse this criterion using a distance tolerance 



The threshold value for 

the first parameter can differ from the threshold value for the second parameter. 

For all points with the distance greater than the threshold the value of the 

parameter is zero. 

4. The midfields act in the central zone of the field and usually have many opponents 

around them. To be able to develop an attack they must have some open space 

before them when they get the ball (Beim, 1977). This requirement means that the 

player must keep an open path in the direction of the opponent's goal. The 

direction of the path is not the direction to the center of the opponents' goal, since 

the midfields are not going to penetrate the defence line. While experimenting, we 

empirically discovered that one of the appropriate paths is a line segment about 10 

meters long, parallel to the side line of the field. The player must keep this path 

from being blocked by an opponent or opponents. The characteristic of this path is 

the distance from the line segment to the closest opponent. We use the distance 

tolerance threshold to inverse the parameter, SO 

the value of this criterion is, the better the point. For all points with the distance 

greater than the threshold the value of the criterion is zero. 

Altogether, we constructed four criteria for estimation of the possible location points 

for the midfields in attack. 

The midfields must interfere with the opponents' activity to prevent the development 

of an attack. Generally speaking, this responsibility of the midfields is considered to 

be a part of the defensive tactics. Nevertheless, there is a method of defence that can 

be thought of as active defence or attack in defence. This method is called 

"pressuring". The essence of this method is to interfere with all the actions of as many 

opponent players as possible at the same time forcing them to make mistakes (Beim, 

1977). 

Since in defence neither open space nor receiving a pass are of any concern, the set of 

criteria for it would be different: 



- - 
1. All players must maintain the formation, so XI,  = l i p ,  - p,, 1 1 .  

We use only a part of pressure technique, namely preventing cross passes between 

opponent attackers. To achieve this goal the midfields must keep closer to the line 

defined by positions of the opponent forwards. We construct this line as follows 

(in case of three opponent forwards): 

o Construct the line connecting the positions of two wing opponent forwards 

o Construct a line parallel to it through the position of the opponent central 

forward 

o The line between two previously constructed lines, and parallel to them 

will be the desired line 

If we denote the described line as La,,, the last criterion can be expressed as 

X,, = d(La,, , Pi ) . The smaller the value of the criterion is, the better the point. 

Figure 3.9 Lattack con~truction 



3.2.1.3 Criteria for defenders 

The criteria for the defenders are essentially the same as the criteria for midfields. - - 
I .  All players must maintain the formation, so xIi = Ilpi - prec 1 1 .  
2. All defenders must be open for a forward pass from the goalie, so 

distance greater than the threshold the value of the parameter is zero. 

3. All players must maintain open space, SO 

X3i = ma' (0, (dtr - I~ZI ?closest opponent 11)). The threshold value for the first 

parameter can differ from the threshold value for the second parameter. For all 

points with the distance greater than the threshold the value of the parameter is 

zero. 

4. The defenders must keep an open path in the direction of the opponent's goal, so 

the value of this criterion, the better the point. For all points with the distance 

greater than the threshold, the value of the criterion is zero. 

Altogether, we constructed four criteria for estimation of the possible location points 

for the attacking defenders. 

3.2.2 Advanced team collaboration 

As previously mentioned, simple team collaboration is achieved through team 

formation. Each player purely maintains the team formation and searches for the optimal 

position for itself disregarding positions of other players in the team. Further 

improvement is possible through advanced team collaboration. This is achieved trough 

collective decisions, when the players look not only for the optimal positions for 

themselves but for mutually optimal positions for some group of players. This approach 

can be used for general positioning as well as for special actions like offside trap. 

However, in this research I construct the criteria for general positioning only. 



When thinking about mutually optimal positions for the group of players, we can 

reconstruct the decision space or use the same decision space and effectuate additional 

criteria. The first approach seems to be more promising but poses some problems, which 

makes it more difficult to implement in the given simulation. 

3.2.2.1 Decision space reconstruction 

Let's consider a case of two players looking for mutually optimal location points. 

Let the first player have the feasible decision set F: and the second player have the 

feasible decision set F: . Then the new feasible decision set for mutually optimal location 

points will be some set of ordered pairs or the Cartesian product of these two sets 

Having this set, we can try to construct the criteria space for it. Some criteria are 

individual for each point and some should be applied to both points, such as the most 

wide open path between them. The problem of this approach is in its high computational 

cost. For instance, if each initial feasible set consists of N points the resulting set will 

consist of N x N = N2 points. The dimension of the criteria space will be greater than 

the sum of dimensions of individual criteria spaces since it must include all the individual 

criteria and some aggregate criteria. 

For the reason of computational complexity, I utilized the additional criteria 

approach for advanced collaboration. 

3.2.2.2 Construction of additional criteria 

The idea of constructing additional criteria for advanced collaboration is based on 

taking in the consideration not only the state of the ball and the opponents but also some 

team-mates. In the case of two players trying to find mutually optimal positions each of 

them is taking in consideration the predicted position of the other. Eventually, they will 

adjust their positions according to the positions aggregated criteria values. We can think 

about this approach as a reflection of the first degree, when each of the partners takes in 



consideration the position of the other but ignores the fact that the partner takes in 

consideration its own position. 

The problem in this approach is that we cannot be sure that the process of 

adjusting always converges. The benefit of the method is that we do not substantially 

increase the computational complexity and simply use different sets of criteria. The 

implementation of the method indeed showed improvement in the team performance. 

Unlike the simple collaboration case, advanced collaboration requires different 

sets of criteria for different stages of attack as well as introducing the notion of designated 

partner. 

Let A and B be two team-mates. Player B is the designated partner of the player A 

if the latter takes into consideration the location of B in its positioning process. If the 

player has more than one designated partner, we will call them the first designated 

partner, the second designated partner, and so on. 

For the 4-3-3 formation, the partner designations are as follows: 

- For lines forwards - midfields 

o The left-wing forward to the left-wing midfield and vice versa 

o The center forward to the center midfield and vice versa 

o The right-wing forward to the right-wing midfield and vice versa 

- For lines midfields - defenders 

o The left-wing defender to the left-wing midfield and vice versa 

o The right-wing defender to the right-wing midfield and vice versa 

o The center right defender to the center midfield and vice versa 

o The center left defender to the center midfield and vice versa 



3.2.2.3 Criteria for the attackers 

3.2.2.3.1 Criteria for the case when the ball is in the defensive zone 

The ball is in the defensive zone when it is controlled or will be intercepted by the 

goalie or a defender. In this case the criteria for the forwards are as follows: 
- - 

1. All players must maintain the formation, so XI,  = lipi - prec 1 1 .  
2. All players must maintain open space, 

- - 
X,, = max (0, (dtr - I l p i I  pclOs,, opponent 11)) . For all points with the distance 

greater than the threshold, the value of the parameter is zero. 

3. The attackers must be ready for the defence penetration, so 

-- 
X 3 i  = ma' (or ( d t r  - d ( p i  pgOa/ I Pc~osest opponent and 

4. Since the ball is too far fiom the attackers, they can not expect a direct pass. This 

means they must keep open span towards designated partners rather than to the 

ball. Also, the wing forwards must try to stay open towards the center midfield but 

they are not designated partners because the central midfield will not adjust its 

position according to the positions of the wing forwards. The criterion for all the 

forwards to keep open for a direct pass fiom the designated partner is based on the 

distance from the line segment connecting the point and the predicted position of 

the designated partner to the closest opponent. We use the distance tolerance 

threshold to inverse the criterion 

x~~ = pi - Xofiide I - 

5. The wing forwards must keep open to direct pass fiom the central midfield 

. The smaller these numbers are, the better the point. 

- 
pipdesig  - patner 1 Pc~osest opponent ))) . 

Altogether, we have five criteria for the central forward and six criteria for the 

wing forwards when the ball is in the defensive zone. 

3.2.2.3.2 Criteria for the case where the ball is in the middle zone 



The ball is in the middle zone when it is controlled or will be intercepted by a 

midfield. In this case the criteria for the forwards are as follows: 
- - 

All players must maintain the formation: XI, = lipi - prec 1 1 .  
All players must maintain open space: 

xZi = max 0,  dtr - pi pclosest opponent . For all points with the distance ( ( II- - 
greater than the threshold the value of the parameter is zero. 

The attackers must be ready for the defence penetration: 

The smaller these numbers are, the better the point. 

( (  (-- 
-X  

X 3  = max 01 dtr - d P i  Pgoa/ f Pclosest opponent ))) and ~4 = Ipj - ~ o m d e  

If the ball is controlled or is going to be intercepted by the designated partner 

a 

(for the wing forwards only) by the central midfield, any of the forwards must 

keep open for a direct pass. Notice that the player must keep open to the 

predicted ball position, not the designated partner position since the partner is 

chasing the ball and does not adjust its position 

-- 
x s i  = max (of ( d t r  - d ( p i  ~ , a / /  I Pc/osest opponent ))) a 

If the ball is controlled or is going to be intercepted by wing midfield that is not 

the designated partner (and not the central midfield for the wing forwards), any 

forward must keep open for the designated partner rather than for the ball. 

Altogether, we have five criteria for all forwards when the ball is in the middle 

zone and the 5th criterion differs depending on the situation. 

3.2.2.3.3 Criteria for the case when the ball is in the offensive zone 

The ball is in the offensive zone when it is controlled or will be intercepted by a 

forward. In this case, the criteria for the forwards are as follows: 
d - 

1. All players must maintain the formation: XI, = Itpi - prec 11. 



2. All players must maintain open space: 

. For all points with the distance 

greater than the threshold the value of the parameter\ is zero. In the final stage of 

attack, the forwards are concerned more about the defence penetration than about 

maintaining the wide open space, so the distance tolerance threshold must be 

significantly reduced. 

3. The attackers must be ready for the defence penetration: 

5. The forwards should not bother to be open to the direct pass since they are very 

close to the line formed by opponent defenders and direct pass is likely to be 

intercepted. Instead, together with the midfields the forwards must create "attack 

depth" (Vogelsinger, 1973; Beim, 1977). All forwards must keep open for the 

designated partners again 

4. x,, = pi - XOfiide I--x 

- 
p i  Pdesig - patner I Pclosest opponent ))) . 

. The smaller these numbers are, the better the point. 

Altogether, we have five criteria for all forwards when the ball is in the 

offensive zone. 

3.2.2.4 Criteria for midfields 

3.2.2.4.1 Criteria for the case when the ball is in the defensive zone 

When the ball is in the defensive zone the criteria for midfields are as follows: 
- + 

1. All players must maintain the formation: x,, = (Ip, - prec ( 1  . 
2. All players must maintain open space: 

- - 
x2, = max (0, (dtr - I l p i  I pclosest opponent 11)) . For all points with the distance 

greater than the threshold the value of the parameter is zero. 



3. The midfields must be ready to get a direct pass from defenders or the goalie. If 

the ball is controlled or is going to be intercepted by the designated all midfields 

must keep open regarding the predicted ball position. 

-- 
X 3 i  = ma' (01 ( d t r  - d ( p i ~ , ~ / /  I Pc~osest opponent 1)) . 
If the ball is controlled or is going to be intercepted by a player which is not the 

designated partner all midfields must keep open for the designated partner in the 

defensive line rather than for the ball. 

- 
pi&esiq - patner I pc~osest  opponent ))) . Notice, that the 

central midfield has two designated partners and has one more similar criterion, 

accordingly. 

4. Midfields must keep open to the predicted position of the designated partner in the 

forward line to create a "bridge" between defenders and forwards. This "bridge" 

allows the team to quickly deliver the ball from the defensive zone to the 

Altogether, we have four criteria for the wing midfields and five criteria for 

the central midfield when the ball is in the defensive zone. 

3.2.2.4.2 Criteria for the case when the ball is in the middle zone 

The ball is in the middle zone when it is controlled or will be intercepted by a 

midfield. In this case, the criteria for the forwards are as follows: 
- + 

1. All players must maintain the formation: xIi = lipi - prec 1 1 .  
2. All players must maintain open space: 

. For all points with the distance 

greater than the threshold the value of the parameter is zero. 



3. The midfields must be ready to support the attackers for the defence penetration, 

the better the point. 

so they must move forward x3, = pi - X,,,, I- 
4. Midfields must keep open to the predicted position of the designated partner to be 

ready to make a forward pass, 

. The smaller these numbers are, 

- 
X4i = max (0, (dtr - d (pi ~ i e s i g  - Pc~osest  opponent ))) . 

5. Midfields must be open to a direct pass to support the player controlling the ball if 

a forward pass is impossible, XSi = maX 

Altogether, we have five criteria for all midfields when the ball is in the middle zone. 

3.2.2.4.3 Criteria for the case when the ball is in the offensive zone 

The ball is in the offensive zone when it is controlled or will be intercepted by a 

forward. The main task for the midfields in this situation is to support the forwards 

creating "depth" for the attack. Criteria for the midfields are as follows: 
- + 

1. All players must maintain the formation: x,, = l i p ,  - p,, 1 1 .  
2. All players must maintain open space: 

. For all points with the distance 

greater than the threshold the value of the parameter is zero. 

3. The midfields must be ready to support the attackers for the defence penetration, 

the better the point. 

so they must move forward x3, = pi - X,,,, I- 
4. If the ball is controlled or is going to be intercepted by the designated partner or 

(for the wing midfields only) by the central forward, all midfields must keep open 

for direct pass. Notice that the player must keep open to the predicted ball 

position, not the designated partner position since the partner is chasing the ball 

. The smaller these numbers are, 



and does not adjust its position 

If the ball is controlled or is going to be intercepted by the wing forward that is 

not the designated partner (and not the central forward for the wing midfields), all 

midfields must keep open for the designated partner rather than for the ball. 

Altogether, we have four criteria for the midfields when the ball is in the 

offensive zone and the 4th criterion differs depending on the situation. 

3.2.2.4.4 Pressure 

Just like in the case of simple collaboration, the midfields perform pressure when 

the ball is controlled by the opponents. The criteria are the same as for simple 

collaboration. 

3.2.2.5 Criteria for defenders 

Since the defenders rarely participate in attacking actions the criteria for defenders 

are similar to the criteria for simple collaboration. 
- 

1. All players must maintain the formation: xIi = l l p i  - prec 11. 
2. All midfields must be open for a forward pass from the goalie: 

-d 

X2i = max (o, (d t r  - (pi pba, Pc,osest opponent ))). For all points with the 

distance greater than the threshold the value of the parameter is zero. 

3.  All players must maintain open space: 

X 3  = max (0, (dtr - ((KI Cclosest opponent I))). For all points with the distance 

greater than the threshold the value of the parameter is zero. 



4. The defenders must keep open to the designated partner: 

the distance greater than the threshold the value of the criterion is zero. 

Altogether, we have established four criteria for estimation of the possible location points 

for the defenders in attack. 

3.3 The decision making algorithm 

We have specified the positioning problem as a Multicriteria Decision Making 

(MCDM) problem. The player has a feasible set of points on the field which is a subset of 

the decision space. Each point in the feasible set is mapped into the objective or criteria 

space. We constructed all the criteria for minimisation in the sense that the smaller the 

value of a criterion is, the better the position. The criteria, in general, are incomparable 

and conflicting; this means we are unable to minimise all the criteria simultaneously. For 

this type of problems, the general approach is to find the set of non-dominated or Pareto- 

optimal points and then apply some method for choosing the best compromise point from 

this set. We refer to this set as the Pareto-set. Many methods have been developed for 

different types of Multicriteria Optimization problems. To choose the suitable method, we 

must analyse the type of the problem we have. 

3.3.1 Problem analysis 

The type of the problem depends, in particular, on the type of the Pareto-set, so 

the Pareto-set types must first be described. A Pareto-set can be convex or non-convex. 

For a convex Pareto-set any two points in the set can be connected by a straight line 

segment which does not cross the Pareto frontier (Fig. 3.1). 



Figure 3.10 Example of a convex Pareto-set 

For problems with convex Pareto-set, the weighted sum method can be applied. 

For a non-convex Pareto-set, there are at least two points in the set which can be 

connected by a straight line which does cross the Pareto eontier. 



Figure 3.11 Example of a non-convex Pareto-set 

For problems with non-convex Pareto-set, several methods were developed, for 

instance the minimax reference point method (Yang, 2000 in Liu, Yang, Whitborn, 2003). 

However, it requires some preference information in advance. 

In the soccer game the Pareto-set also can be disconnected (Kyrylov, 2005). The 

feasible set itself can be connected but not necessarily convex. This non-convexity can 

make the Pareto frontier disconnected. 



Figure 3.12 Example of a disconnected non-convex Pareto-set 

In case of the disconnected Pareto set, the minimax reference point method may fail to 

produce a unique solution. 

Having this classification of Pareto sets, we can then classify our problem. We 

replaced the continuous field space by a grid of points and restricted the decision space of 

a player to a feasible set, so our problem is discrete and finite. 

In this implementation, the objective functions for the points in the set are some 

distances. In general, for different points in the set a particular criterion can be a distance 

to different objects like the distance to the closest opponent. For different points, the 

closest opponents could be different opponent players. Having only this reason we can 

conclude that the objective functions are not only non-linear but also non-continuous; 

therefore the problem that we are dealing with is a non-linear non-convex MCDM 

problem. 

To prove that some Pareto sets for the problem are non-convex and disconnected, 

we first make the assumption that all the Pareto-sets for the problem are connected and 

convex. Then, we present some counterexamples to show that is not the case. 



Figure 3.13 Example of a non-convex Pareto-set for an attacker 

Pareto set non-convexity example 

Pareto frontier 
+ Shows non-convexity 

I + Dominated points 

Figures 3.13 and 3.14 present examples of non-convex Pareto-sets in case of two 

parameters for an attacker trying to keep close to the recommended point and to the 

offside line. 

Figure 3.14 Example of a disconnected Pareto-set for an attacker 
- -- - 

Pareto set discontinuity example 

Distance to recommended point 

+ Frontier 2 

Finally, we can classify the problem as a discrete, finite, non-linear, non-continuous, and 

non-convex problem. 



3.3.2 Pareto-set construction and sequential elimination 

To make the final choice from the feasible set, the player can first find the points 

which are definitely "better" than the others. Following the Pareto optimality principle, 

the "better" points are the points which are not dominated by the others. I use the 

definition of non-dominancy to find the set of Pareto-optimal solutions or Pareto-set. 

3.3.2.1 Pareto-set construction algorithm 

I used a simple and straightforward algorithm for the Pareto-set construction 

implemented by Dr. V. Kyrylov. The algorithm is based on the definition of strong non- 

dominance for two points: 

Definition 3.1 A point p1 is not dominated by point p2 if there is at least one criterion 

CI (P) such as ci (P' ) 5 C, (p2 ) , where ci (p)  ( i  = 1,2,. . .k) are assumed for 

minimisation. 

This definition allows for an easy comparison between two points according to 

dominance. Using this definition, which was implemented as a function, the following 

Pareto-set construction algorithm was implemented (V.Kyrylov, 2005): 

set ParetoSetConstructin~~gorithrn(set FEASIBLE SET) 

BEGIN 

Create set Paretoset (empty set) 

FOR (every element A in FEASIBLE SET) 

Mark A as nondominated 

FOR (every element B in FEASIBLE SET) 

IF (A is dominated by B) 

Mark A as dominated 

Break the loop 

END IF 

END FOR 

IF (A is nondominated) 

Add A to Paretoset 



END I F  

END FOR 

RETURN Paretoset 

END 

3.3.2.2 Sequential elimination algorithm 

Once we have obtained the Pareto-set, the last step in the process of finding the 

optimal position for the player is choosing the point fiom the constructed Pareto-set. 

Professor Kyrylov, the primary academic supervisor of this study, has recently proposed a 

method called "the sequential elimination of the poorest alternative" (Kyrylov, 2006). 

Because this algorithm does not rely on any information about objective functions, it is 

applicable to any MCDM problem having a finite Pareto-set. The computational 

complexity of the algorithm is 0 ( K ~  ) , where K is the number of elements in the Pareto- 

set. Each criterion is given some relative weight. Kyrylov describes the algorithm as 

follows: 

"The key assumption is that each criterion has its relative weight; in our case this 
information is reflecting the preferences of the developer of the decision making 

algorithm. So let X be the set of all alternatives, P c X  be the Pareto set, XEX be a 
decision vector, g l  (x), . . .gn(x) be the criteria functions (all of which we want to 
minimize), and wl,. . .,wn be the non-negative weights whose sum is 1. The 
algorithm is . . . 

S :=  P; 
for ( k  :=  1 toK-1 ) 

{ 
With probability w j ,  randomly select j-th criterion; 
Find the element x E S having the maximal value of 

gj (XI ; 
remove x from S; 

1 
return the last remaining element in S "  

(Kyrylov, 2006, p. 9) 

The algorithm eliminates one element fiom the Pareto-set at a time and there are 

K - 1 iterations. In every step, one criterion is randomly selected according to its weight. 

Since the weights are used as the probability distribution, criteria that have greater weight 



are chosen more frequently. On each step the point having the greatest value of the 

current criterion is removed from the resulting set. The last remaining element is the 

approximation of the optimal solution of the problem. When K is increasing, the 

approximation converges to the optimal solution. 

In the current implementation, it is almost impossible to decide which criterion is 

more important than others. For this reason, a simplified version of this algorithm was 

used. Criteria for elimination were not given any weights and were just used in turns, 

starting always from distance to the recommended point. This is similar to assuming that 

their weights are equal. 

If we are able to achieve complete precision of the predicted state of the 

environment, we could argue that the computed optimal point would stay the same in 

every step in the prediction period. Unfortunately, such exact precision is impossible and 

the predicted state is refined with each simulation step. Decision robustness is very 

important for the good performance of the team. To increase the robustness of the 

decision the following method was applied: let the current simulation step be step number 
- 

i , current Pareto-set F: , and the optimal point for the previous simulation cycle pi-1. 

Then, for every simulation step i : 

In other words, if the optimal point of the previous simulation cycle is in the 

Pareto-set for the current simulation cycle, it is thought to be good enough to serve as the 

new optimal point. 



Figure 3.15 Example of the Pareto-set and the optimal point 

Figure 3.15 shows the Pareto set and the optimal point for the yellow midfielder #7 which 

is looking for the optimal point by using the criteria for advanced collaboration. 

Currently, the player supports the attack. Empty yellow squares represent the Pareto-set; 

the yellow square with a blue dot inside represents the optimal point. We can see that the 

optimal point is open to the ball and the designated partner (black arrows), far enough 

from the closest opponents (red arrows), and takes into consideration the recommended 

point (white arrow). Yellow player #11 is about to intercept the ball. It takes about 4-6 

cycles for a player to perform an action like a pass. Player #7 is about 3 metres from the 

desired position heading directly to it (blue arrow). This means that when the player 

controlling the ball is ready to finalize its action the positioning yellow player #7 will be 

at or very close to the optimal position, ready to support the attack. 

3.4 Research tools - visualization 

Even a perfect theory can produce unexpected results if it is applied incorrectly. 

This research is partly a study of simulation, so validation and verification processes must 

be applied to the model. In particular, it is necessary to verify the prediction methods and 



the choice of the criteria. The easiest and the most efficient way to do that is to observe 

visually the predicted positions for dynamic objects (for instance the ball or a player), the 

Pareto-set, and the optimal point. 

With this purpose an additional tool was added to the simulation monitor. The 

menu item "Show Pareto" turns on the visual representation of the Pareto-set with the 

optimal point and, by default, the responsibility area for one of the players. Since any 

changes in the user interface are time consuming, I did not introduce any other user 

controls. Nevertheless, by changing several lines of code we can replace the responsibility 

area representation by the predicted position of the ball or the predicted position of any of 

the players. Also, the player whose Pareto-set is displayed can be changed in the same 

way. 

The standard player communication system was used as a channel for 

communicating the information about the player's world model. 

The communication system is designed to provide some restricted communication 

between players. According to the RoboCup rules, the players can not communicate 

directly. A player sends its messages to the server, which broadcasts them to other 

players. 

In the current implementation, the player simply sends the information about the 

Pareto-set as a text message in a particular form to the server. The server, in turn, relays it 

to the monitor, and the monitor displays the received information. 





4 EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Performance indicators 

Before we choose the performance indicators for evaluating the proposed method, 

we should ask ourselves what exactly is going to be measured. The soccer game doesn't 

have any explicit measurements that would fully characterise player positioning 

performance. Even the game score often can be deceiving; it often happens that an 

undeniably stronger team loses to a weaker team even if it has apparent prevalence during 

the game. Using the score for measuring player positioning performance makes sense 

only when it is possible to run at least 50-100 games for each set of conditions. Luckily, 

over the years several indicators have been developed that are implicitly related to player 

positioning. Each of them was intended to measure some aspect of the team performance. 

I have used the same indicators, which are: game score, territorial prevalence, ball 

possession, and number of shots to goal. 

In all experiments, the same simulated team played on both sides. The only 

difference between the two teams was that one team had the improved player positioning 

algorithm. All the remaining features in both teams were same. This remark is important 

because the performance indicators that we have selected should be able to measure the 

difference in player positioning rather than other features, such as goal scoring or ball 

passing algorithms. 

4.1.1 The game score 

The game score is the overall indicator of team performance. As previously 

mentioned, it can be deceiving; mostly score is applied to official competitions, when the 

competing teams do not have a chance to play against the same opponent more than one 

or two times. On the contrary, if the same two teams play a series of games, as the 

common practice during Stanley Cup play-offs goes, it is more likely that the better team 

wins more games. 



4.1.2 The territorial prevalence 

The territorial prevalence shows better team organisation. While the game score 

strongly depends on the quality of the scoring algorithm and the quality of defence, the 

territorial prevalence relies more on positioning and passing. I will measure the territorial 

prevalence in the number of simulated seconds which the ball was located on the left or 

the right half of the field. 

4.1.3 The ball possession 

The ball possession also shows the quality of team organisation. In some sense, it 

is the complement to the territorial prevalence. This indicator reflects mostly the quality 

of the passes, and to some extent player positioning. We can imagine that with both good 

passing and positioning a team can quickly deliver the ball to the opponents' goal, 

organise an attack, and try to score. However, after an attempt to score the team often 

loses the control of the ball and it can happen that the team that is unable to quickly 

penetrate the opponent's defence will have better ball possession time. For this reason, I 

will use this indicator to evaluate player positioning only in combination with the others. 

Since all the teams don't use dribbling, this indicator is measured in number of kicks 

made by the players of the team. 

4.1.4 The number of shots to goal 

The number of shots to goal shows the quality of team organisation in the final 

stage of the attack. This organisation includes the ability to penetrate the opponent 

defence using positioning and passing. I did not implement any special tactic schemes for 

the defence penetration and all the teams have the same simple passing algorithm. For 

this reason, in this implementation I have concentrated on offensive positioning. The 

number of shots to goal is the second most important measurement of the team 

performance. This performance indicator includes four cases: (1) all situations when the 

player has shot at the goal, but the ball was intercepted by any opponent except the 

goalie; (2) all cases when the goalie caught the ball; (3) all cases when the ball crossed 

the goal line outside the opponents' goal but close enough to a goal post (within the 

distance equal to the width of the goal), and (4) the actual goals. 



4.2 Performance analysis methods 

4.2.1 Experiments 

For the experiments three different teams: control team (team l), experimental 

team with so-called 'simple' collaboration (team 2), and experimental team with 

'advanced' collaboration (team 3). The optimality criteria used in teams 2, 3 are 

explained in Section 3.2. All the teams are identical except the positioning of players in 

the attack. The control team players used for positioning the respective recommended 

locations calculated as weighted sum of the home position and the location of the ball. 

Players in the experimental team with simple collaboration used the optimality criteria for 

simple collaboration and multicriteria decision analysis methods while performing 

attacks; in all the rest situations they were using the recommended positions. Players in 

the experimental team with advanced collaboration were using the optimality criteria for 

advanced collaboration and multicriteria decision analysis methods while performing 

attacks; otherwise the recommended positions were used. 

To gather statistics, 100 games have been run in each pair: team 1 vs. team 2, 

team 1 vs. team 3, and team 2 vs. team 3. Each game was of the RoboCup format (two 

halves 5 minutes long each). Each team played 50 games on the left side of the field and 

50 games on the right side of the field. It is natural to assume that, by design, the 

measurements of the performance indicators obtained in different games are statistically 

independent. 

4.2.2 Hypothesis testing 

To make sure that the proposed methods actually yield improved performance, we 

must show that the difference between values of the measured performance indicators, if 

any, is statistically significant. The nature of these indicators suggests the equal number 

of measurements for each team. Therefore we are interested in the construction of a 

confidence interval for the difference of the mean values of each indicator. If zero value 

lies outside the confidence interval, there is a statistically significant difference between 

the measured performance indicators. This is exactly the hypothesis we want to test. 



This pattern fits for the Paired-t Confidence Interval Method, as neither the 

expectations nor the variances of the performance indicator probability distributions are 

known. This method is especially useful when the expectations are different, so the null 

hypothesis stating that the expectations are equal is false (Law&Kelton, 2000). We will 

use this method when comparing an improved team against the control team. In contrary, 

when we compare two improved teams it is sufficient to perform a hypothesis test to 

show that the observed difference is significantly different from zero. In this case we will 

apply the T-Test: Paired Two Sample for Means, included in the Excel statistics package. 

Since the variances of the performance indicator probability distributions are unknown, 

the test for uneven variances will be applied. 

For i = 1,2 let Xi,, Xi,, ..., Xi, be a sample of n independent and identically 

distributed observations collected from i -th system. If pi = E (xu ) is the expectation 

we are interested in, we want to construct a confidence interval 5 = pl - p2 . Thus we 

define new set of observations, Zj = Xlj - X,, , for j = 1,2,. . . , n ; let their 

expectation be 5 = E (z, ) . 

We use the average to estimate the latter expectation: 

The variance of this estimate is, 

Thus the lOO(1- a) percent confidence interval can be formed as 



where S is the standard deviation for the estimate. 

Notice, that XIj and X, do not need to be exactly normally distributed or have equal 

variances. If Zj's are normally distributed, this confidence interval is exact. Otherwise, 

the Central Limit Theorem implies that it is near 1 - a for large n . 

4.3 Offensive positioning with simple collaboration 

4.3.1 Statistics 

The games results by the team with simple collaborative player positioning 

(experimental team) versus the control team with basic positioning are presented in Table 

4.1. 

Table 4.1 Game statistics for the team with simple collaboration positioning vs. control team 

Score Ball on side Shots to goal BaH possession 

control team 0 301 11 347 
Standard Deviation experimental team 1.95 56.75 

control team 0.55 24.71 4.1 6 29.89 

Sample Variance experimental tea 3220.1 1 

control team 0.31 17.29 893.27 

control team 0 I93 5 283 



Data histogram show that the distribution of each performance indicator is close to 

normal distribution. One example is presented in and Figure 4.1. 

Figure 4.1 Score frequencies histogram for the experimental team. 

Score frequencies 
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Since we are going to apply the Paired-t Confidence Interval Method, we need to 

construct data for the performance indicators differences. These data are given in Table 

4.2. Their distribution is also close to normal (Figure 4.2). 

Table 4.2 Games statistics for the team with simple collaboration positioning vs. control team 

Mean 
Median 
Standard Deviation 
Sample Variance 
Range 
Minimum 
Maximum 
Game count 

Territorial prevalence 

124.22 
127.00 
49.59 

2458.84 
393 
-90 
303 
100 

Score difference 

5.20 
5.00 
2.14 
4.59 

10 
0 

10 
100 

Shots to goal difference 

8.51 
8.00 
7.58 

57.46 
57 

-27 
30 

100 

Ball possession 
difference 

1 18.31 
121 .OO 
69.34 

4807.91 
647 

-115 
532 
100 



Figure 4.2 Score difference frequencies histogram. 

Frequencies of score difference 
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4.3.2 Confidence interval calculation 

We will construct the confidence intervals according to (4.3). For 99% 

confidence, we have tloo~l,l~o~oX = 2.626 . 

For the score difference, we have 2(10 0) = 5.2 and 

2.14 = = 0.2 14. According to (4.3), the 99% confidence interval 

is [4.64; 5.761 . Since zero is outside this interval, with 99% confidence we can say 

that the score difference is statistically significant in favour of the experimental team 

playing against the control team. 

For the territorial prevalence, we have ?(I 00) = 124.22 and 

49.59 
,/[1(100)1 = 

= 4.96. According to (4.4), the 99% confidence interval 



is [I1 1.20; 137.2 51. Since zero value is outside the interval, with 99% confidence we 

can say that the territorial prevalence is statistically significant for the experimental team. 

For the ball possession difference, we have 2(10 0) = 1 18.3 1 and 

69.34 
,/[zol = 

= 6.93 . According to (4.3), the 99% confidence interval is 

[I 00.1 1; 13 6.5 11 . Since zero value is outside the interval, we can say that for the 

experimental team the ball possession prevalence is statistically significant with 99% 

confidence. 

For the shots to goal difference we have 2(100) = 8.5 1 and 

d m  = $ = 0.76 . According to (4.3), the 99% confidence interval is 

[6.5 1; 10.501 . Since zero value is outside the interval, we can say that for the 

experimental team the prevalence in shots to goal is statistically significant with 99% 

confidence. 

4.3.3 Conclusion 

The presented statistical data indicate that the experimental team with simple 

collaboration outplays the control team with basic player positioning in all aspects of the 

game. 

4.4 Offensive positioning with advanced collaboration 

4.4.1 Statistics 

The games by the team with advanced collaborative player positioning (experimental 

team) versus the control team with basic positioning showed results which are presented 

in Table 4.3. Data histograms show that the distributions of all measured performance 

indicators are close to normal (see an example in Figure 4.3). 



Table 4.3 Game statistics for the team with advanced collaboration positioning vs. the control 
team 

Mean experimental team 7.25 189.41 23.9 424.61 
control team 0.43 281.56 13.13 355.61 

Median experimental team 7 191.5 24 423.5 
control team 

Standard Deviation 2.06 22.61 5.72 24.1 2 
experimental team 

Sample Variance 
experimental team 

control team 

control team 
Maximum experimental team 

control team 
Count 1 00 1 00 1 00 1 00 

Figure 4.3 Score frequencies histogram for the experimental team 
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Since we are going to apply the Paired-t Confidence Interval Method, we need to 

construct data for the differences. These data are given in Table 4.4. Their values 

obtained in different games are statistically independent. The distributions are also close 

to normal. 

Table 4.4 Game statistics for the team with advanced collaboration positioning vs. control team 

Mean 

Median 

Standard Deviation 

Figure 4.4 Score difference frequencies histogram. 

Error! Objects cannot be created from editing field codes. 

Score difference 

6.82 

- - 

Sample Variance 

Range 

Minimum 

Maxim um 

Count 

4.4.2 Confidence interval calculation 

7 

2.25 

We will construct the confidence intervals according to the equation (4.4). For the 

Territorial 
prevalence 

92.15 

- -- 

5.08 

11 

1 

12 

100 

score difference we have ~ ( I O O )  = 6.82 and Var Z 100 = - = 0.2 6 . r[( g 

89.50 

43.25 

According to (4.4), the 99% confidence interval is [6.14; 7.501. Since zero is outside 

Shots to goal 
difference 

10.77 

-- 

1 870.96 

297 

-99 

1 98 

100 

the interval, with 99% confidence we can say that the score difference is statistically 

Ball possession 
difference 

69.00 

9.50 

8.12 

significant in favour of the experimental team. This advantage is somewhat greater than 

68.50 

46.1 2 

65.88 

51 

-23 

28 

100 

for the team using simple collaborative positioning. 

2127.09 

303 

-1 16 

187 

100 

For the territorial prevalence, we get T(10  0) = 9 2.1 5 and 

43.25 
= 4.3 3 . According to (4.3), the 99% confidence interval 



is [8O. 78; 103.521 . Since zero value is outside the interval, we can say that the 

territorial prevalence is statistically significant for the experimental team with 99% 

confidence. 

For the ball possession difference, we have z(100) = 69.00 and 

46.12 
= 4.6 1. According to (4.3), the 99% confidence interval is 

[56.89; 8 1. lo ] .  Since zero value is outside the interval, with 99% confidence we can 

say that the experimental team has prevailing ball possession. 

For the shots to goal difference we have 2(100)  = 10.77 and 

8.12 ,/[zol = - = 0.81. According to (4.3), the 99% confidence interval is m 
[8.64; 12.901.  Since zero value is outside the interval, we can say that the 

experimental team has prevalence in the number of shots to goal with 99% confidence. 

4.4.3 Conclusion 

The statistical data indicate that the experimental team with advanced 

collaboration outplays the control team in all aspects of the game. This advantage appears 

to be greater than that of the team with simple collaborative player positioning for scoring 

and shooting but less in territorial prevalence and ball possession. However, without 

additional experiments and testing we cannot say for sure that these differences are 

statistically significant. This issue is addressed in the following sections. 

4.5 Advanced collaboration/simple collaboration compared with 
control team 

4.5.1 Hypothesis testing 

Essential statistical data for the team with simple collaboration and the team with 

advanced collaboration when playing against the control team are given in Tables 4.1 and 

4.3. Since we compare two experimental teams we are interested in testing the hypothesis 

if the means of the performance indicators are different. So we apply t-Test: Paired Two 



Sample for Means with hypothesis of equivalence of two means. T-Test: Paired Two 

Sample for Means with 95% confidence produces following results. 

Table 4.6 T-test results for shots to goal 

Table 4.5 T-test results for score 

I Advanced collaboration team] Simple collaboration team] 

Mean 
Variance 
Observations 
Pearson Correlation 
Hypothesized Mean Difference 
D f 
t Stat 
P(T<=t) two-tail 
t Critical two-tail 

I shots to goal I shots to goal I 

Advanced collaboration 
team score 

7.25 
4.25 
100 

-0.04646021 
0 

99 
5.889482279 
5.33529E-08 

1.98421 69 

Simple collaboration 
team score 

5.54 
3.806465 

10 

Mean 
Variance 
Observations 
Pearson Correlation 
Hypothesized Mean Difference 

t Stat 
P(Tc=t) two-tail 
t Critical two-tail 

23.9 
32.67676768 

100 
-0.01 76631 62 

0 

3.94632221 1 
0.000148466 

1.98421 69 

20.68 
32.74505 

100 



Table 4.7 T-test results for territorial prevalence 

Mean 

Ball on side of 
the control team 

when playing against 
advanced collaboration team 

2 8 1 3  
Variance 
Observations 
Pearson Correlation 
Hypothesized Mean Difference 

Table 4.8 T-test results for ball possession 

443.6024242 
1 OC 

-0.00625820L 
C 

t Stat 
P(T<=t) two-tail 
t Critical two-tail 

Ball on side of 
the control team 

when playing against 
simple collaboration team 

299.2~ 

-5.42861 6481 
4.051 27E-05 

1.98421 65 

Mean 

Observations 
Pearson Correlation 
Hypothesized Mean Difference 
3f 

The test results show that the mean difference is statistically significant for all 

performance indicators with the confidence at least 95%. 

Ball played by 
advanced 

collaboration team 
(times per game) 

424.61 

t Stat 
P(T<=t) two-tail 
t Critical two-tail 

4.5.2 Conclusion 

Ball played by 
simple 

collaboration team 
(times per game) 

466.9: 

100 
0.01 501 9097 

0 
99 

-6.900854655 
4.96374E-10 

1.98421 69 

The statistical data indicate that the team with advanced collaboration outplays the 

team with simple collaboration in the goals scored and shots to goal. However, the team 

with simple collaboration 'outplays' the team with advanced collaboration in terms of ball 

possession and territorial prevalence, which appears to be counter-intuitive. 

1 OC 



These results and results of visual observations allow us to affirm that the team 

with advanced player collaboration acts in a more effective way. It takes less time for this 

team to deliver the ball into the attack zone and to an attacker to get the ball in the 

shooting position. This is the reason why the team with advanced collaboration yields in 

territorial prevalence and ball possession to less sophisticated team. The former makes 

smaller number of passes and spends less time on the opponents' half of the field before 

one of the players is able to shoot to goal, while the latter tends to have more chances to 

get the ball possession after the successful shots on the goal by the opponent. 

4.6 Advanced collaboration vs. simple collaboration 

4.6.1 Statistics 

The games of the team with advanced collaborative player positioning versus the 

team with simple collaboration showed the results presented in Table 4.9. Sample 

distributions of all performance indicators appear to be close to normal (see example in 

Figure 4.5). 



Table 4.9 Game statistics for the team with advanced collaboration vs. the team with simple 
collaboration 

Team Ball on team Number of Ball played by 
score side of the shots fo goal team {time 

field per Pmef 

Standard Deviation 2.28 21 39 5.93 26.89 
experimental team 

control team 20.33 5.3 27.60 
Sample Variance 5.21 465.m 35.17 722.97 
experimental team 

control team 2.69 413.17 761.55 

Range experimental team 123 27 125 
control team 113 140 

Minimum experimental 1 1 48 9 31 5 
team 

control team 200 5 326 
Maxim urn experimental 11 271 36 440 
team 



Figure 4.5 Score frequencies histogram for the advanced collaboration team. 

Score frequencies 

4.6.2 Hypothesis testing 

T-Test: Paired Two Sample for Means with 95% confidence produces the results shown 

in Tables 4.10 -4.13. 

Table 4.10 T-test results for score 

Advanced collaboration 
team score 

l~earson Correlation -0.1 9094 

Simple collaboration team 
score 

Mean 
Variance 
3bservations 

It Critical two-tail 1.9839711 1 

5.29703 
5.21 0891 

101 

Hypothesized Mean Difference 
D f 
t Stat 
P(T<=t) two-tail 

2.881 188 
2.685743 

101 

C 
1 00 

7.95054 
2.9E-12, 



Table 4.11 T-test results for shots to goal 
- 

Simple collaboration team 
shots to goal 

16.9703 Mean 
Variance 
Observations 

Advanced collaboration 
team shots to goal 

22.9703 

Pearson Correlation 
Hypothesized Mean Difference 
D f 

35.1 691 1 
101 

-0.1 94 
0 

100 
t Stat 
P(T<=t) two-tail 

28.7691 1 
101 

6.904092 
4.72E-10 

It Critical two-tail 

1 Stat -5.71 194 

1.983971 1 

Table 4.12 T-test results for territorial prevalence 

Table 4.13 T-test results for ball possession 

Ball on side of simple 
collaboration team 

246.495 
41 3.1 725 

101 

Mean 
Variance 
Observations 
Pearson Correlation 
Hypothesized Mean Difference 
D f 

P(T<=t) two-tail 
Critical two-tail 

Ball on side of 
advanced collaboration 

team 
223.0297 
465.9891 

101 
-0.94049 

0 
100 

1.1 5E-07 
1.983971 

Mean 
Variance 
Observations 

The test results show that the mean difference is statistically significant for all 

performance indicators with confidence at least 95%. 

93 

Pearson Correlation 
Hypothesized Mean Difference 
D f 
t Stat 
P(T<=t) two-tail 
t Critical two-tail 

Ball played by 
advanced collaboration 
team (times per game) 

375.7525 
722.9681 

101 
-0.351 37 

0 
100 

-5.68301 
1.31 E-07 
1.983971 

Ball played by simple 
collaboration team (times 

per game) 
401.0792 
761 5537 

101 



4.6.3 Conclusion 

The statistical data indicate that the team with advanced collaborative player 

positioning outplays the team with simple collaboration in goals scored and shots to gaol 

but yields in the ball possession and the territorial prevalence. Since the team using the 

advanced collaboration has better values for score and shots to goal, we can conclude that 

this team plays more effective way; it tends to execute a smaller number of passes before 

creating a shooting opportunity. 



5 CONCLUSION 

5.1 Research questions revisited 

Now we can return to the research questions asked at the beginning of the paper. 

The first research question was stated as: What generic decision making framework 

should be used to achieve rational player behaviour that would be applicable to 

positioning? The definition of rational behaviour gives the answer to this question. 

Russell& Norvig (Russell& Norvig, 2003, p.972) gives the following definition for 

perfect rationality: 

"A perfectly rational agent always acts in every instant in such a way as to 
maximize its expected utility given the information it has acquired from the environment" 

In spite of the fact that the perfect rationality is unachievable, having this definition we 

can consider rational player positioning as the process of finding a point on the field 

which would be optimal in the sense of balancing risks and rewards which are some 

objective functions or criteria. 

The second research question was stated as: "How to balance rewards, risks, and 

costs while the player is deciding about its optimal position on the jeld?" Multicriteria 

Decision making analysis theory can be used to solve this problem. If we are able to 

define some area on the field where a player will look for the solution and make the 

number of alternatives finite, we can state the problem of finding the optimal position on 

the field as a MCDA problem. We can define the set criteria for every point in the 

feasible set creating the criteria space and apply MCDA methods to solve the problem. 

The third question was stated as: "How to determine a reasonable time frame for 

positioning planning?" The answer to this question is one of the central ideas of this 

research. A player is unable to plan anything using rapidly changing information about 

the environment. The soccer game is so dynamic that it seems impossible to recognise 



any period of stability. Fortunately, it appears, that not actual but some predicted state of 

the system can be stable for a considerable period of time. Ball motion prediction, which 

is rather precise, gives the time horizon for positioning planning. The prediction is easier 

to make when the ball is rolling free. When the ball leaves a kickable area, a player can 

predict the state of the environment at the moment of interception and calculate the period 

for planning. Then, during every simulation cycle the player simply refines the prediction 

and can adjust the decision. In most cases these adjustments proved to be only minor, 

which provides the good base for the robustness of the decisions made with the new 

method. 

The fourth question was stated as: "How to limit the search space for the optimal 

position and achieve robustness of the player positioning behaviour?" The time horizon 

for positioning planning gives us a tool for substantially limiting the search space. When 

the time for planning is known, the player can calculate the feasible area which contains 

the alternative points reachable in the given time. Since every player has some area of 

responsibility, which it is not supposed to leave, the intersection of these two areas gives 

rise to the restricted search space, or the feasible set. To make the decisions robust, we 

use the predicted state of the game environment instead of the state perceived in every 

simulation cycle. The perceived state is used to just refine this prediction. Thus the 

persistence of the player behaviour is achieved. 

The fifth question was stated as: How to achieve player collaboration with the 

proposed decision making framework? We see two methods to achieve the collaboration. 

The first method is to create a more complex decision space, considering a possible 

solution not as a single location on the field for a single player but as a set of locations for 

a group of players. This approach is a subject of future work. The second method is to 

introduce criteria taking in the consideration of the positions of some partners or 

designated team-mates. The method produces promising results but needs further 

investigation. 

Now, having the research questions answered, we can pose an additional, final 

question: m a t  are the achievable benefits of the proposed methods? One of the central 

benefits of the proposed methods is the option to translate humanly-formulated 



requirements into programming logic. For example, imagine a coach who gives one of his 

players the following instruction: "Keep away from the opponents, stay as close as you 

can to the offside line and do not forget about your base position". These instructions 

seem to be difficult to be implemented using traditional programming methods. Using 

MCDA we can translate these requirements into criteria like: "maximise the distance to 

the closest opponent", "minimise the distance to the offside line", and "minimise the 

distance to the recommended position". Then, the player can search for the point in the 

feasible set using the methods described above. 

5.2 Future work 

Some directions for future work were already mentioned in the previous section. 

This research did not elaborate much on the collaboration problem. The approach using 

the feasible set of locations for a group of players seems to be promising but requires 

highly efficient algorithms to overcome the computational complexity. 

The prediction methods used here are rather simplified, especially methods for 

predicting player positions. More sophisticated methods based on opponent behaviour 

modeling can significantly improve the decision making mechanism and make the 

decisions more robust. 

The soccer game simulation, as the other sports games, is about making decisions 

and carrying them out. Most of these decisions must be taken regarding many objectives 

or criteria. Professor VKyrylov (Kyrylov, 2006) has already performed research about 

application of MCDA methods for carrying out decisions. Many other types of decisions 

are yet to be explored. Especially interesting are the decisions involving actions of 

different types like the decision to dribble or to make a pass. 

5.3 Conclusion 

This study has shown that the MCDM methods can be successfully applied to 

achieve rational behaviour and multi-agent collaboration in sports game simulation. The 

results of the research can be used in the industry of digital games. In one of the 

conferences the Sr. Art Director of Electronic Arts Frank Vitz admitted that 



"Nowadays we have achieved complete photo realism in the game character 
appearance. What we have not achieved yet, is the realism of its behavior. 
We just do not know how to do that." 

( Frank Vitz, Sr. Art Director, Electronic Arts Canada, New Media BC Games 

Workshop panel discussion, Vancouver, BC, March 16,2006 ) 

Scientific research can make contribution to the solution of this problem. 



APPENDIX: RAW STATISTICAL DATA 

Games statistics. Simple collaboration (experim.) team vs. control team 







Games statistics. Advanced collaboration (experim.) team vs. control team. 





Games statistics. Advanced collaboration (advanced) team vs. simple collaboration 
(simde) team. 
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