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ABSTRACT

Player positioning is critical in many sport games; we use soccer as the example.

The results of this study will help to improve digital sports games technology.

In existing methods, the player calculates its desired position using current

location of the ball and its own role in the team formation.

The existing methods have two disadvantages: neglecting the game dynamics and
leaving behind some potentially good positions without consideration; the latter being the

common shortcoming of decision tree algorithms.

The proposed approach is taking into account the dynamics by determining the
available time horizon which limits the feasible area where the optimal position is
located. To make sure that all potential alternative positions in the feasible area have been
evaluated and considered, the Pareto optimality approach is used. As a result, the
proposed method provides the opportunity to create an optimal dynamic formation for the

whole team.

Keywords: Artificial intelligence; computer simulation; multicriteria decision making;
Pareto optimality; RoboCup
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1 INTRODUCTION

1.1 Background

This research is inspired by previous work in the SFUnleashed project.
SFUnleashed was the only Canadian team in the soccer simulation league that
participated in RoboCup World Competition and RoboCup American Open in 2003 and
2004.

The idea of robotic soccer was first introduced by Professor Alan Mackworth of
University of British Columbia in 1992 (Mackworth, 1992). Independently, a group of
researchers in Japan after serious investigation decided to launch international robotics
competition. In 1993-1995 an official soccer simulator was developed and the first
official RoboCup competition was held in 1997. Games involving either physical or

simulated autonomous robots have been played in all competitions since then.

RoboCup uses soccer as the primary domain for research in Robotics and
Artificial Intelligence. The main activity in RoboCup is international competitions and
research conferences in three major domains: RoboCup Soccer, RoboCup Rescue, and

RoboCup Junior. This study concentrates exclusively on the soccer domain.

During our interactions with representatives of the Electronic Arts, one of the
biggest digital games production companies in America, we realised that rational
behaviour is one of the main issues in digital sports games design and development. In
this thesis, these issues are addressed by using simulated soccer as a test bench. In
particular, I rely on the experience with the SFUnleashed simulated soccer project. Some
results of this project are outlined in Figure 1.1. SFUnleashed has demonstrated
reasonably good performance, especially taking into account that in 2003 this simulated

team was a newcomer.



The purpose of the SFUnleashed project was two-fold: (1) to develop approaches
for implementing methods of artificial intelligence into robotics soccer and (2) to

contribute to the development of digital sports games.

One essential behavioural feature is deciding by the given player where to go
during the game when the ball is under the control by somebody else. I call this player
positioning. On the average, this activity is taking about 90 per cent of the player time.
Because of the critical importance of this feature, this thesis is dedicated to the
development of methods for improved player positioning. From the main material it will
become clear that some theoretical results of this study can be applied in different
situations, and not exclusively to player positioning and in different digital sports games.
However, in order to keep focused and limit the size of the thesis, I have deliberately
narrowed its scope to the offensive player positioning. In other words, consideration is
given only to situations when the ball is possessed by a team-mate. I hope to demonstrate
the applicability of the theoretical models in situations other than offensive positioning in

my future work.

So-called multi-level player architecture is one of such theoretical models. From
the first steps of the SFUnleashed project we had noticed that there were difficulties in
player behaviour. In most known from the literature (RoboCup 2000, 2001, ...)
implementations of simulated soccer teams every simulation step each player makes a
new decision. These decisions are based on the current perception information and some
model of unobserved aspects of the current state (Russell&Norvig, 2003). Indeed, the
environment state in simulated soccer game changes in the real time and a new state can
significantly differ from the previous one. Abrupt changes in the simulated player's
intentions are obviously counterproductive, as they, sometimes, result in hectic behaviour.
These changes are especially noticeable when the perceived information about the world
is imperfect due to the presence of random errors. This leads to the presumably false
conclusion that the decisions in simulated soccer cannot be persistent in time and long-

time planning is impossible.

This contradicts with what takes place in real-life soccer. Human players are

normally acting according to some mental plan, having the time horizon up to several



seconds. We would like to find a way to modeling this sort of persistent, robust

behaviour.

I believe that some decisions can last for several simulation cycles if the
environment state does not change or changes ‘smoothly’. To model this, we want to
know when the decision will change. Determining the time horizon for short-term

planning is one of the key issues addressed in this thesis.

To achieve robustness in decision making I am making use of the improved

layered agent structure.

The basic idea of layered agent structure itself is not new. Such RoboCup scholars
as Peter Stone (Stone, 2000) introduced layered reinforcement learning and Kok and De
Boer (Kok & Boer, 2002) also described a sort of layered agent structure. Nevertheless, I
believe that this structure can be constructed in different ways. For instance, Kok and De
Boer (Kok & Boer, 2002) constructed the layers as agent skills levels in the following

way.

— Atomic actions. Atomic actions are the commands which a player can send to the

server, like turn or dash.
— Low-level skills like searching for the ball
— Intermediate-level skills like moving to a position
— High-level skills like intercepting the ball

A skill in every level is a sequence of lower-level skills. This approach appears to be
reasonable and proved to be effective in many cases. However, it does not guarantee that

any of the higher-level skill sequence of actions will not be interrupted to start a new one.

The improved layered agent structure of a SFUnleashed player differs in that it
was about the layers of decision making rather than player actions. The structure involved

the following four decision levels:

— Strategic level. Long term plan for all players for the whole game. Strategy was

implemented through formations.



Tactics level. Short term plans for small groups of player to achieve a local goal

like an offside trap. This level was not implemented in SFUnleashed as yet.

Individual level. Individual short term plan of actions for a player is, for instance,
to make a leading pass to a particular team-mate. This level was implemented
through a persistent action plan with a particular duration. The duration was

determined empirically, without proper theoretical analysis.

Atomic level. Atomic action is an action with duration of one simulation cycle. In

fact, atomic actions are the commands which can be sent to the server like kick or
dash.

The experience with SFUnleashed raised many questions and some problems

remained unsolved, especially with the soccer player behaviour in the offensive

situations. Obviously without reasonably good implementation of such behaviour, the

simulated soccer team would be hardly winning in the RoboCup competitions. In

particular, it was unclear what the time horizon of an individual player level plan should

be and how collaboration with the team-mates should be organized. This study addresses

these and related issues. In particular, it raises the following research questions.

1.

What generic decision making framework should be used to achieve rational
player behaviour that would be applicable to positioning?

How to balance rewards, risks, and costs while the player is deciding about its
optimal position on the field?

How to determine the reasonable time frame for positioning planning?

How to limit the search space for the optimal position and achieve robustness of

the player positioning behaviour?

. How to achieve player collaboration with the proposed decision making

framework?

This research answers these questions using Multicriteria Decision Making Theory,

prediction methods, and constructing the appropriate criteria for players' behaviour.



Figure 1.1 shows that in American Open 2003 tournament SFUnleashed won four of six
played games, in the RoboCup 2003 SFUnleashed only lost one game in the first round
and was just one point short to advance from the second round to the final stage. In

RoboCup 2004 the team also advanced into the second round.

1.2 Overview of the chapters

Chapter two further elaborates on the background and overviews relevant
information used in this research. First of all, a short description of the soccer rules is
given. Soccer simulator presumably must implement these rules. Also, soccer strategy
and tactics methods are described. These methods are the basis for implementing the
rational behavior criteria and evaluation.

Secondly, the chapter provides information about the RoboCup research and
educational initiative and the Tao of Soccer simulator. The RoboCup initiative provides a
framework and a standard problem for research. The Tao of Soccer is used as the research
tool providing more flexible and convenient environment for implementation of the
proposed methods. The Tao of Soccer server physics description is provided as the basis
for prediction methods proposed in Chapter three. Finally, I present the overview of the
theory underlying Multicriteria Decision Analysis. This theory provides methods and
approaches for finding the balanced solution with respect to many conflicting
performance criteria.

Chapter three describes the main ideas and proposed methods of this research. I
propose methods for determining the time horizon for planning player positioning and
calculating the area for feasible positions. Also, the criteria for the positioning problem,
the place of the problem in the multicriteria problem classification, and algorithms for
finding the best compromise solution are described.

Chapter four presents statistical results and analyses and discusses the
experimental teams' performance in different settings.

Finally, in chapter five, the research questions are revisited, the conclusion is made about

the current research contribution, and future research directions are outlined.



Table 1.1 SFUnleashed in international competitions

AmericanOpen 2003, Pittsburgh, USA (http://www.cs.cmu.edu/~AmericanQpen03/results/simulation_r1.html, 2003)
~ Group A 1 2 | 3 Wins Losses Draws Points Rank |

1 UT Austin Villa - o 11 I L

2 Tranians 00 0 R 1 3%

3 SFUnleashed03 | 1:0 20 o [ & | 1

Winner's Bracket

U\}A ;ffi]éarn

W{ﬂﬁér‘s Bracket
Champion

Loser's Bracket
.~ Brainstormers

Results from the first level group games

1 Brainstormes03

2  SFUnleashed03

3 hana
4 Robolog2k3
5 Avan

6 VirtualWerder : : : ; ! : e

Results from the second level group games Group A_2

Group A_2 12 3 4 5 6

| FC Portugal - 5:0 5:0 2:0 1:0 16:0
2 Oxsy — 0:4 0:5 0:3 2:0
3 SFUnleashed : : - 0:1 2:2 5:0
4 Cyberoos @ : i - 1:212:0
5 Zenit-NewERA im0
6 Amistres  : &

RoboCup 2004, Lisbon, Portugal (http://www.robocup2004.pt/docs/pdfs/SoccerSimulation2D.pdf, 2004)

Round 1, Group H results

Rank Team Points Goal Diff Coaly
. o Scored
9 2 24

1 RoboSina 2 2
2 SE1inleashed 4 0 9

Goals
Conceded

-Games

Robolog2D
Round 2, Group C results
| Goal Diff | Goals Scored | Goals Conceded | Games

STEP
TsinghuAeolus

15 32

SEUnleashed
_ Impossibles

hana



2 LITERATURE REVIEW

2.1 Strategy and tactics of soccer

Soccer is one of the oldest sports games in the world. The first official soccer
association was created in 1863 in England. Soccer is now considered the most popular

sport on earth.

2.1.1 Rules of modern soccer

This section overviews only those parts of soccer rules which are of interest for

simulation and research purposes. (www.fifa.com, Official site of FIFA, 2006)

A soccer game is played on a rectangular field about 100 by 64 meters. Two goals
are placed on the opposite sides of the field at the centre of each goal line. The distance
between the goal posts is 7.32 meters. Two teams play with a spherical ball with a
circumference of about 70 centimetres. Each team consists of not more than eleven
players, one of whom is the goalkeeper. A goal is scored when the ball completely passes
over the goal line, between the goalposts. The team scoring the greater number of goals
during a match is the winner. If both teams score an equal number of goals, or if no goals
are scored, the match is drawn. A number of special situations are recognized in soccer.

We are interested only in some of them:

— Offside. A player is in an offside position if he is nearer to his opponents’ goal
line than both the ball and the second last opponent; a player in an offside position
is only penalized if, at the moment the ball touches or is played by one of his

team, he is involved in active play

— Throw-in. A throw-in is a method of restarting play when the whole ball passes
over the touch line (the side line of the field).

— Goal kick. A goal kick is a method of restarting play when the whole ball, having
last touched a player of the attacking team, passes over the goal line outside the

goal.



— Corner kick. A corner kick is a method of restarting play when the whole ball,
having last touched a player of the defending team, passes over the goal line and a

goal is not scored

Current rules of soccer open a wide range of action for teamwork and player

collaboration referred as soccer strategy and tactics.

2.1.2 Soccer strategy

Strategy is a long-term plan of action to achieve the particular goal. This goal in
soccer could be to win the game or not to lose the game. Strategy defines overall team

behavioural pattern. In soccer, strategy is mainly achieved through formations.

A formation defines the players' roles in the team and their location on the field.

The player roles are as follows:

— Goalie. The player who defends the goal - the only player in the team who is
allowed to touch the ball with his or her hands.

— Defenders. The players located close to the goal that prevent the opponents from
scoring. There are wing defenders and center defenders. Defenders mostly are

situated in the defensive zone and create the /ine of defense.

— Midfields. The players located in the middle area of the field. Midfields support
defenders in defense and forwards in attack. Also, they serve as a bridge between
defenders and attackers. There are wing midfields and central midfields. Midfields

are situated in the middle zone and form the middie line.

— Forwards or attackers. The players located near the opponents' goal. Forwards try
to come closer to the opponents' goal and score goals. There are wing and center

forwards. Forwards are situated in the offensive zone and form the line of attack.

Players act on the field according to their role in the formation. If there are more
defenders in the formation the team plays a defensive game. In the opposite case, if there
are more forwards in the formation the team plays an offensive game. Many formations
were developed in the history of soccer. Usually, different formations are denoted as a set

of three numbers representing number of defenders, number of midfields, and number of



forwards. Some formations have their own names. For instance, 4-2-4, also known as
"Brazilian" formation is the formation with four defenders, two midfields, and four

forwards.

Figure 2.1  Early 3-2-5 "WM" offensive formation (Beim, 1977)
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Figure 2.2  §-3-2 "Catenaccio"” or "Italian bolt” defensive formation (Beim, 1977)

Forwards o o
Midfields
Defenders O O O O
O
Goalie ®
I T




Nowadays, balanced and flexible formations are widely used. This means that teams use
one of the "balanced" formations 4-3-3 or 3-3-4 but can change them to an offensive
formation when in attack and to a defensive formation while in defence. Peter Stone
facilitated the idea of flexible formation in soccer simulation in the form of role exchange
(Stone, 2000). The formations show that the soccer strategy is essentially all about

positioning. The tactics of soccer are achieved through positioning, as well.

2.1.3 Soccer tactics

Tactics is a short term plan to achieve an interim goal and support the strategy.
The interim goal can be to destroy an opponent's attack or to penetrate the defence.
Different tactics methods are used in attack and defence. In attack, the tactics are as

follows (Beim, 1977; Vogelsinger, 1973)

— Space. Space is extremely important in attack. Forwards must use the space
between and behind the defenders. If a player has no space he or she most likely
will not be considered as a potential pass taker or may lose the ball control in case
of pass. The second aspect of the free space principle is keeping free space

between the player and partners and/or the goal to be able to receive a pass.

— Attack depth and support. Forwards coming closer to the opponent's goal with the
ball are attacked by defenders. It is always easier for a defender to intercept the
ball than for an attacker to keep it. For this reason midfields must support the
attackers. Quick short passes back and forth between midfields and forwards can

disorient the defenders and create a chance to penetrate the defence.

— Penetration. The principle of penetration requires the players, especially forwards,
to move as deeply as possible into the opponent's defence. Such moves lead to

destroying the defence and chance to score a goal.
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— Width. If all forwards were to concentrate in the middle of the field before the
goal, defenders could easily outplay them. Supporting the width of attack causes

defenders to move closer to the touch lines, thus opening up space for penetration.

The objectives of defence are to prevent opponents form scoring, regain possession of
the ball, and initiate an attack. Defence can take several forms like man-to-man
defence, zone defence, and combined defence. The tactics methods, though, are the

same for all defence forms. They involve:

— Delay. This method is opposite to penetration in attack. When an opposing player
gains possession of the ball the team needs time to restructure for defence. A
defender must position himself to eliminate as many forward passing

opportunities as possible to prevent the defence penetration.

— Support. While some players directly oppose the player with the ball the others
must block other opposing players to eliminate passing opportunities. Sometimes

this technique is referred as marking.

— Balance. Defending players must provide cover for as much space as possible

which means that they must be distributed evenly across the field.

— Pressuring. Pressuring is an active defensive tactics. It can be thought of as attack
in defence. The goal of pressuring is to restrict space for the attacking opponents.
The pressuring players must keep as close as possible to the attacking opponents,

remaining goal-side.
— Control. Defending player must maintain its role in the whole defensive structure.

— Offside trap. When an opponent is ready to make a forward pass, defending
players can move in such a way that one or several opposing players will find
themselves in offside position. This method requires full concentration and strong

coordination since, if applied inaccurately, it can easily lead to a goal.
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2.1.4 RoboCup: robotic soccer as a research tool. TAO of Soccer

"By the year of 2050, develop a team of fully autonomous humanoid robots that
can win against the human world soccer champion team"
This is the motto of the RoboCup international research and education initiative as it is

stated in the official RoboCup site (www.robocup.org, 2006).

2.1.4.1 RoboCup overview and research objectives

RoboCup Soccer consists of five leagues.

— Simulation league. In this league eleven independent artificial agents play as a
team using computer simulation. Each player is a computer program. Players may
communicate using a simulation server protocol but any direct communication
outside the server is prohibited. The players get visual information from the server
and send back commands representing their actions. Matches have two S-minute-

long parts.
— Small size robot league
— Middle size robot league
— Four-legs robot league
— Humanoid robot league

An interested reader can obtain more information about real robot leagues in the

official RoboCup website mentioned above.

While the last four leagues of real robots deal with many technical problems like
mechanics and sensors, the simulation league mainly develops methods for rational player

behaviour. This research falls into the domain of computer soccer simulation.

RoboCup provides a standard framework and standard problem for research in AL
The objectives of the research are real-time sensor development, rational behavior,
strategy acquisition, learning, real-time planning, multi-agent systems, collaboration,
context recognition, vision, strategic decision-making, motor control, intelligent robot
control, and many more. In this research 1 concentrate on rational behaviour and

collaboration.
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2.1.4.2 Simulated soccer and digital sports games

Soccer inspired many digital computer games, such as FIFA Soccer by Electronic
Arts. By the multi-player nature of the game, the human player is unable to control all the
characters in his own team. This means that several team-mates are computer-driven non-
player characters. They must be designed to make the impression of real independent
soccer players. In simulated soccer each player is an independent computer program not
controlled by a human. This feature connects simulated soccer and digital sports games.
Methods developed for simulated soccer can be successfully applied to digital sports

games.

2.1.4.3 The simulation environment - TAO of Soccer

The simulation server used in RoboCup is a sophisticated tool intended to
simulate a real soccer game as closely as possible. It is written in C++ and operates under
Linux. The server brings in some random errors into visual information and players'
actions. Also, the visual information is restricted by some view angle and distance. These
features make some research tasks difficult. For instance, if problems with positioning are
revealed, it is hard to say whether they are a result of a poor positioning algorithm, a
wrong world model, or inaccurate visual information. This can only be determined with
sufficiently long simulations. Unfortunately, thousands of games are required for gaining
reasonably precise results, which prolongs experiments too much. For this reason,

another soccer simulator, TAO of Soccer, was chosen for conducting this research.

TAO of Soccer was developed by Yu Zang in 2001 as an alternative to the
RoboCup soccer simulator (Zang, 2005). TAO of Soccer has all the features of the
RoboCup simulator but it is written in Java, has a simpler client-server protocol, and can
be used both as a simulator and an interactive game environment. I used it as a simulator
only. Using TAO of Soccer gave us the opportunity to use full information about the
environment and concentrate on problems of rational behaviour. Actuator random errors

are the only source of randomness in TAO of Soccer.
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Table 2.1 Differences and similarities between RoboCup simulator and TAO of Soccer

Characteristics RoboCup simulator TAO of Soccer
Environment Dynamic Dynamic

State change Real time Real time
Environment Incomplete Complete
information

Actuator error Present Present

Information errors

Random for visual
information.

Random for players' actions

No errors in visual information
(except small rounding
errors).

Random for players' actions

Control

Distributed

Distributed, human interaction
possible

Table 2.1 shows that the main difference between the RoboCup simulator and TAO of

Soccer is that the information available to the artificial player is complete and precise.

This substantially reduces the number of simulation runs that are necessary for evaluating

different player behaviours.

2.1.4.4 TAO of Soccer server physics

For determining the time horizon available for planning the player behaviour, we

need to be able to predict situations on the field rather precisely. To construct prediction

algorithms, we should use some laws of physics. The TAO of Soccer server simulates

physics as follows (Zang, 2005):

— Soccer field is rectangular. The touch line is 100 meters long and goal line is 65

meters long. The distance between goalposts is 8 meters. Each point p on the

field is represented by rectangular Euclidean coordinates (x,y), where x is

measured along the touch line and y is measured along the goal line. The center of

the field is set to (0,0); Y axis goes up and X stretches to the right.

— The players and the ball are represented by circles and are the only dynamic

objects of the environment. The motions of the dynamic objects are simulated

stepwise every 50 milliseconds.
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— Motion of a player is calculated every simulation step as follows
O P =Py *+Viy
o V,=V,,+a,,

o & =FORCE*K, -v, , *K,
where / is current simulation step number, p, is player's current position, p;_, is
player's previous position, V; is player's current velocity, Vv, , is player's previous
velocity, @, is player's current acceleration, &, , is player's previous acceleration.

FORCE is set by the client (player agent program). Coefficient K; is the force
factor. K is the friction factor. They are calculated by setting constants MaxSpeed and
TimeToMax.

o K;=MaxSpeed * TimeStep® / ( TimeToMax * MaxForce);
o K= MaxForce * Ky / (MaxSpeed * TimeStep);

MaxSpeed 1s the maximum speed the player can reach. TimeToMax is the amount of
time a player needs to reach full speed without friction. TimeStep is the length of one
simulation step, defaulted to 0.05 sec.

MaxForce is the maximum force a player can apply, defaulted to 100.

— Motion of the ball is calculated every simulation step as follows:

o Pi=P4*+Viy

o @ = KICKFORCE =K, and v, = 0 ifkicked by a player

o otherwise v, = —-FRICTIONFACTOR *v,_,

K is the kick force factor. It 1s calculated as:
o Ky =MaxSpeed * TimeStep | MaxKick;

MaxKick is the maximum kick force a player can apply, defaulted to 100.
— When there are several players very close to the ball, one of them is randomly

chosen as the controller of the ball. The controller of the ball can kick the ball by
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sending the kick command, or he can dribble the ball by sending normal drive
command. Hence, the acceleration is reduced as:

o a = {FORCE *K, v, , *K,} * DRIBBLEFACTOR

where DRIBBLEFACTOR is the maximal dribble force factor when a player is
dribbling.

In order to reflect unexpected movements of objects in real world, TOS adds
random error to the movement of objects and to the parameters of commands.
— As for player movements, noise is added as follows:
o A;=(FORCE *K; - Vy * K;) * (1 +/- RandomFactor);
— As for the free ball movement, noise is added as follows:
o A, =-FRICTIONFACTOR * V; * (1 +/- RandomFactor);
— When the player kicks the ball, noise is added to the kicking direction as follows:
o KickDir; = KickDiry +/- KickRandom;
2.2 Aspects of the player rational behaviour. Why positioning?

We want our player agents to behave rationally. It is normally believed in the Al
community that an ideal rational artificial agent is defined as follows.
"For each possible percept sequence, an ideal rational agent should do whatever action is

expected to maximize its performance measure, on the basis of the evidence provided by
the percept sequence and whatever built-in knowledge the agent has."

(Russell&Norvig, 2003, p.36)

An agent is defined as some entity that perceives its environment through sensors

and acts upon this environment trough some actions (Russell&Norvig, 2003).
In the simulated soccer environment an agent perceives the following information
— its own position and the orientation of its body and its parts,
— the positions of other players,
— the position of the ball.
An agent can perform the following actions

—  kick the ball

16



— move (dash, turn)
— talk (send messages).

These simple actions can be combined in more complex actions which make sense from

the soccer point of view as follows:

— position itself (move)

— chase the ball (move)

— pass (kick)

— shoot(kick)

— dribble (kick +move).

Russell&Norvig outline four basic types of agent (Russell&Norvig 2003).
e Simple reflex agents
e Model-based reflex agents
e Goal-based agents
e Utility-based agents

Simple reflex agents select actions using some condition-action rules according to

current perception.

Model-based reflex agents maintain some model of the world. They also use some
condition-action rules but act according to the current state of world using an internal

model,

Goal-based agents store goal information and the information about the results of
possible actions in order to choose actions that achieve the goal. Goal-based agents reason
about the future (Russell&Norvig 2003). The goals for an agent can be set manually by
the designer.

Utility-based agent can set the goals for itself by defining a utility function. A
utility function is a function that maps a state to a real number, which represents the

associated degree of happiness (Russell&Norvig 2003). In other words, each simulation
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step, an agent must perceive the environment information, create possible plans of

actions, and evaluate these plans according to the utility function.

Figure 2.3  Structure of a utility-based, goal-oriented agent

i What world

How the world  is like now

evolves v
What it will be like

if I do action A

How happy I will be
in such a state

What action I
should do now

While dealing with the model in Figure 2.3, we must bring attention to two
problems. Firstly, the environment state in soccer simulation is changing in real time.
Since the plan of actions depends on the perceived environment state, this plan can
change significantly from one simulation step to another. This renders some plans useless
since any plan which lasts more than several cycles is unachievable because the state
would change before the plan completion. For instance, passing the ball requires just one
or very few simulation steps and the appropriate plan probably would not change
significantly during the pass execution. On the other hand, implementing a positioning

plan can take several dozens of cycles. It would be naive to expect that the state would
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not substantially change during such period of time. Secondly, the state may be
characterized by several parameters. Utility functions are normally used for evaluating
states. However, it is not always possible to create a utility function properly mapping the
environment state into a real number. In what follows, I will show that these problems

were not addressed in existing player positioning methods.

To solve these problems, I will consider an enhanced structure of a utility-based
agent. This structure involves the predicted state of the world and multi-criteria decision

making,

So, why positioning? First of all, positioning occupies most of a player's time.
More than 90% of the player's time is devoted to deciding where to go to and moving to
this destination. Secondly, soccer strategy and tactics are mostly achieved through player
positioning. A team in a soccer simulation is a multi-agent system which requires
collaboration. Positioning, if executed purposefully, is the key to collaboration. At last,

positioning requires the longest action plans compared to other player behaviors.

There is a conflict between the real time change of the environment state and the
necessity to create long term plans for player positioning. This conflict has not been
addressed in existing positioning methods. This study investigates this problem in a

systematic way and provides the solution.
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Figure 2.4  Enhanced structure of utility-based, goal-oriented agent which is using prediction and
multicriteria decision making
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2.3 Existing player positioning methods

In some existing player positioning methods, a soccer agent perceives the current
situation and calculates its desired location on the pitch by taking in consideration the
current or predicted location of the ball and its own ‘home’ position in the formation.
Each player determines its destination as a weighted sum of these two points. In some
cases, current positions of other players are also taken into account. This approach was

implemented in some simulated soccer teams participating in the international RoboCup

20



initiative, in particular, FC Portugal and UvA Trilearn (Kok & Boer, 2002) who were the

winners in some worldwide and regional competitions.

An alternative approach can be found in the descriptions of the CS Freiburg
middle-size robots team (2001) and the CM-United small-size robots team (Stone at. al,
1998). With this approach, the field is divided into small rectangles and each rectangle is
evaluated against some utility function. This approach involves some multi-criteria
evaluation similar to the simple weighting method for multicriteria optimisation problems
described later. As both teams were world champions in their leagues, these positioning

methods produce satisfactory results.

Nevertheless, I see some disadvantages of the existing positioning methods. First
of all, common for both approaches, is that these two approaches neglect the game
dynamics. When the game is in process, the ball is in motion almost all the time.
Therefore, the calculated player position is a moving target too and often is too far away
from the player. If the player cannot reach the target before the situation changes, it will
waste its effort. For the first, weighed ball-home position approach, one more
disadvantage is in the decision making method used. It is based on a decision tree with
heuristic rules balancing the anticipated rewards and risks. In some cases, these
conflicting criteria are even not explicitly specified by the creator of the decision making
algorithm. This is leaving behind some potentially good target positions without proper

consideration.

For the second approach based on fixed rectangular zones, another disadvantage is
that the utility function cannot always be properly constructed. For conflicting criteria,
mapping the multicriteria optimisation problem into single criteria optimisation problem
may be inappropriate and give unexpected results. This effect was observed when a

similar algorithm was implemented for the SFUnleashed team.

The proposed method eliminates these disadvantages by using a more elaborate
prediction of the situation in combination with the multi-criteria decision analysis

(MCDA).
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2.4 Overview of Multi-Criteria Decision Analysis Theory

Real-life optimisation problems often require solutions which are characterised by
several incomparable and often competing performance indicators, or criteria. Informally,
the problem can be defined as a search for the optimal solution among a number of
possible solutions characterised by several criteria. The Multi Criteria Decision Analysis
theory is well developed by many authors and is applicable to many areas from
economics to engineering. It is also called Multicriteria optimisation (Stadler, 1988;
Ehrgott, 2005), Multiobjective optimization (Liu, Yang, Whidborne, 2003) or Vector
optimization (Kolbin, 2003). Below I will describe the basics of the theory following the

concepts provided by these authors.

24.1 Problem formulation

It is always possible to construct the criteria as assumed for minimisation, so
formally the multicriteria optimisation problem can be formulated as the problem of
simultaneously minimising the n criteria functions X; (p), i=1,2,...n where p isa

variable vector from the space of vectors p called decision space F , or, find

min(x, (p), X, (P) -, ()) @1

pef

In general, the problem does not have a unique optimal solution which means that we
cannot minimize all the criteria simultaneously because of the inherent conflict.
Nevertheless, we should find some solution which we will call optimal in the sense of the

most suitable compromise.

We will call a set of accessible alternatives for the decision problem a feasible set

F, < F . We denote the space of vectors €(X,,X,,...X,) as the criteria space C and

the image of F_ under X = (X, X,,...X,,) as C, < C - the image of the feasible set, or

the feasible set in the criteria space.
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2.4.2 Definitions

To introduce the concepts of non-dominated points and efficient solutions we

need some definitions.

2.4.2.1 Relations

A Cartesian product A x B of two sets A and B is the set of all ordered pairs
(a,b) where @ isin A and b isin B . Thatis Ax B = {(a,b) lae A be B} .

Let S be a set. A subset R of S x S is a binary relation on S . A binary relation
R on S is called

reflexive if (S,S) e Rforallse S

— irreflexive if (S,S) g R forall se S

—  symmetric if (51,52) eR= (52,51) e R forall s',s* € S

— asymmetric if (51,52) eR= (52,51) ¢ R forall s',s° ¢ S

— transitive if (51,52) e R and (52,53) eR=> (51,53) e R for all
s',s?,s°eS

— negatively transitive if (51,52) ¢ R and (52,53) g R> (51,53) ¢ R for all
s',s°,s° €S

—  connected if (51,52) e Ror (52,51) e R forall s',s* € S with st # §?

— strongly connected (or total) if (51,52) e R or (52,51) e R forall s*,s* € S

2.4.2.2 Ordering

Strict preference. A binary relation R on set S is a strict preference on S if and only if
R serves to introduce a hierarchy among the elements of S, In this case R is denoted as

<.
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Indifference. A binary relation R on set S is an indifference on S if and only if R
serves to introduce a notion of equality among the elements of S. In this case R is

denoted as ~.

Preference. A binary relation R on set S is a preference on S if and only if

R = R, U R, is the disjoint union of a strict preference R, and an indifference R,. In

this case R is denoted as <.

Ordering relations. A binary relation R onset S is:

a partial preorder if and only if it is reflexive and transitive

a partial order if and only if it is reflexive, transitive, and asymmetric

a complete preorder if and only if it is reflexive, transitive, and complete

a linear order (or simply order) if and only if it is reflexive, transitive,

asymmetric and complete

— an equivalence if and only if it is reflexive, transitive, and symmetric

2.4.2.3 Cones and lexicographical order

Often partial orders and preorders are generated by cones.

A subset K < W of a vector space W is a cone, if and only if ap € K forall p € K

and forall ¢ > 0.

A cone K < W is called:
— nontrivial or proper if K # & and K = W

— convexif ap* + (1 - a)p? e K forall p*,p* e K andforall 0 < <1
— pointediffor pe K, p#0, p # -p ie. Km(—K) =g

Convex pointed cones generate partial orders. Non-convex and non-pointed cones

generate only partial preorders since they contain subspaces destroying the asymmetry

property.
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2
Figure 2.5 Natural orderin R* (Stadler, 1988)

o Z

v

A cone K is associated with each point X in R? and V X € K, x < y. The point Z is

not comparable to X with this order.

Another ordering widely adopted on practice is the lexicographical order. A

lexicographical order is similar to the order of words in a dictionary (as assumed for

maximization): p* >~ p? if and only if:
- X (pl) > X1(p2)
or

- X (pl)zxi(pz), i=1,..,k and X, (p1)>xk+1(p2) for some

This means that the criteria X,,..., X, are ordered according to importance. p* is

preferred to p? if its criterion ranged first is greater regardless of the values of other

criteria. Only if the values of the first criterion are equal for both points, the next criterion
is taken into consideration. An important property of the lexicographical order is that two

distinct points in the decision space cannot be indifferent with this order.

25



2.4.3 Non-dominance and efficiency

2.4.3.1 Concepts

In the feasible area in the criteria space not all alternatives deserve equal consideration.
There is only a small subset of so-called non-dominated alternatives where the solution to
the optimisation problem should be sought. All the rest of the alternatives could be just
ignored, which substantially simplifies the search. Below I explain this idea in a more

formal way.
In terms of the decision space and criteria space we can compare two points p' and p?
in the decision space the following way (minimisation assumed):
— either p* > p? if and only if X(p') < X(p?) (Strict inequality for at least one
criteria), that is 3  j such as Xj(pi) < Xj(pz) and X, (p*) < x,(p*) for all
N
— or p' < p? if and only if X(p') > X(p?) (Strict inequality for at least one
criteria) that is 3 J such as Xj(pl) > Xj(pz) and x,(p') > x,(p?) for all
i+
— or p' ~ p? ifand only if X(p') = X(p?) thatis x,(p*) = x;(p*) forall /.
— or p' <~ p® if and only if X(p') <> X(p*) that is 3 j such as
Xj(pl) > Xj(pz) and 3 7% jsuchas x,(p') < x,(p?)

Notice, that we compare the images of the points from the decision space in the criteria

space and, for instance, p* ~ p* does not mean that p' = p? in the decision space.

Here p' <> p* are incomparable or not dominating each other because p' is
better by some criteria and p? is better by some other criteria. p* > p® means that p' is
better than p? by some criteria and not worse by the others. It is said that p' dominates

p? or p? is dominated by p'.
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When solving the multicriteria optimisation problem, we are not interested in
dominated points as possible solutions because for any dominated solution there is at least
one solution which is better by at least one criterion and is not worse by any of the other
criteria. We need to find the solutions which are not dominated by others. Such solutions
are called non-dominated or Pareto-optimal. Some authors also call them Edgeworth-
Pareto optimal (Stadler, 1988), non-inferior, or efficient (Ehrgott, 2002). Pareto (Pareto,
1906 as cited in Stadler, 1988, p.2) defined optimal decision as:

"We will say that the members of a collectivity enjoy maximum
ophelimity in a certain position when it is impossible to find a way of
moving from this position very slightly in such a manner that the
ophelimity enjoyed by each of the individuals of the collectivity increases
or decreases. That is to say, any small displacement in parting from that
position necessarily has the effect of increasing the ophelimity that certain
individuals enjoy, of being agreeable to some and disagreeable to others."

In a set of non-dominated solutions the improvement of some criterion can be
achieved only by deterioration of some other criteria. The definition of efficient solutions

and non-dominated points can be stated as (Ehrgott, 2002):

A feasible solution p° € F, is called efficient or Pareto-optimal, if there is no

other p € F, such that X (p)< X (ps). If p° is efficient, X(p°) is called non-

S
dominated point. If p',p* € F, and X(p*) < X(p?) than p* dominates p*> and

S

s

X ( pl) dominates X ( pz). The set of all efficient solutions p° € F; is denoted F, and
called the efficient set. The set of all non-dominated points ¢* = X(p®) € C,, where

p° € F, is denoted as C , and called the non-dominated set, Pareto-frontier, or efficient

solution frontier (Liu, Yang, Whidborne, 2003).

There are several equivalent definitions, in particular:
p® e F, is efficient if there is no such p e F, such that X, (p) < X (ps)for
i=1,..,n and x;(p) < X, (ps) for some j e {1,...,/}. In other words there is no

point p suchas p = p°.
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A feasible solution p° € F_ is called weakly efficient or weakly Pareto-optimal, if there
isno p € F, such that X (p) < X(ps), ie. x;(p) < X (ps) forall i =1,...,n. The

point €° = X(p°) is then called weakly non-dominated.

Figure 2.6 Pareto frontier

v

Figure 2.2 illustrates efficient solutions in the two-dimension criteria space where X, (p)

and x, (p) are assumed for minimization. Segments AC and DE represent the Pareto

frontier. Segment AB represents weakly non-dominated points, segments BC and DE
represent strictly non-dominated points. We can see that the Pareto frontier is non-convex
and disconnected. All points in cone G are dominated by point g and point f is non-

dominated because cone F contains no points from F_.

2.4.3.2 Non-dominated set bounds

An indication of maximal and minimal values of non-dominated points is given by

the ideal and nadir points (Ehrgott, 2002). These points are used in many methods, for
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instance, for minimax (ideal point) method (Liu, Yang, Whidborne, 2003) of finding the

most preferred solution from a set of efficient solutions.

If a set of efficient solutions is nonempty and bounded, we always can find real

numbers g,-,E,', I=1,...,nsuchas ¢, < X; < ci for all C(Xl,xz,...,xn) e C,.

The ideal point ¢’ = (X{ , Xi P X,‘:) of multicriteria optimisation problem (2.1)

is given by x| = miFn x(p).

The nadir point c" = (x},xY,...,x") of multicriteria optimisation problem

(2.1)is given by x = max x;(p).
perg

Figure 2.7 Ideal and nadir points for a two-dimensional criteria space

X3

v
X

Figure 2.3 shows the ideal and nadir points for the non-convex problem depicted in

Figure 2.2. Notice, that we do not need to calculate the efficient set of solutions to find
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the ideal point. This fact makes this point particularly useful for a priori methods

described below.

2.4.4 Methods

Sometimes it is possible to reduce the multi-criteria optimization to single

criterion. This is achieved by constructing a utility function for the multicriteria
optimization problem (2.5.1) in the form u(X (p)) = U(X1 (P), X, (P)seeer X, (p)) In
this simple case the optimal solution can be found as the solution that minimizes the

utility function u (X ( p)) for all p € F,. The simple weighting method was developed

to serve this purpose.

2.4.4.1 Simple weighting method

We describe the simple weighting method using an example of a two criteria

optimization problem, as it is given in (Liu, Yang, Whidborne, 2003) and (Ehrgott, 2003).
In general, a two criteria optimisation problem can be stated as follows:
~ minimize X, (p)
—~ minimize X, (p)
— given p € F,

Notice, that if some criterion X; (p) , i = 1,2 assumed for maximization we always can
replace it by the —X; (p) equivalent for minimization. Without loss of generality, we can

assume that both criteria are measured using the same scale. If the image C, of the

feasible set F_ in the criteria space is convex and compensation between the two criteria

is allowed, the simple weighting method can be applied to generate efficient solutions. In
this case, we create a utility function and the problem can be thought of as a single criteria

optimization problem in form:

Minimize f(p) = o,f; (p) + a,f, (p) 2.2)
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where o; > 0 and @, > 0 are weighting factors. For a single criteria problem, dividing

the criteria by a positive real number does not change the optimum. If we assume that

a; > 0 we can divide both sides of (2.5.2) by «, and denote & = @, /e, . Then we can

consider the equivalent problem
Minimize f(p,a) = f, (p) + af, (p) (2.3)

since C, is convex. For a given «, the optimal solution of (2.5.2) is an efficient solution

of the stated multicriteria problem. Using different values for «, we can generate
different efficient solutions. Since we are not looking for a specific efficient solution but
for a set of efficient solutions, here « is just a parameter that does not represent the
decision-maker preferences. The graph of the utility function is a line in the criteria space

given by the formula

1
f+af,=aorf, =-—f + 8 Where a is a constant (2.4)
a a

.1 . . : . a
So, the slope of the line is — — and its ordinate intercept is — .
a a
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Figure 2.8

Indifference lines for the simple weighting method

AL

Figure 2.9

Change weight for simple weighting method when & * 0 ang @ #
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Figure 2.10 Change weight for simple weighting method for & = O ang @ =

f, (p) f,+af,=a

f,+af,=b

f,(p)

All points of the line located inside the image of the feasible set have the same value of
the utility function. Therefore, the line is a linear indifference curve. Points B and C on
Figure 2.3 represent two solutions in which the utility function has the same value, i.e.

f,(B) + af, (B) =, (C) + af, (C) = b. This means that the two solutions in the

feasible set represented by points B and C are indifferent regarding this utility function.
The solution of the single criteria problem is to move the line to the direction of the origin
in parallel until it becomes the tangent line to the image of the feasible set in the criteria
space. Point A in Figure 2.3 represents the tangent point. We can see that point A is in
Pareto frontier and represents an efficient solution in the feasible set. If the coefficients of
the utility function represent preferences on the criteria and the linear utility function is

acceptable, then the point in F, represented by A in the criteria space would be the best

compromise point.

If we change « , the line will rotate and following cases are possible:

— if the new weight is © > a" > a, the representation of the best compromise
solution point will change from A to D as shown in Figure 2.5. Increasing «

means that the weight of f, is increasing but the weight of f; is decreasing
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— if the new weight is & > o' > 0, the representation of the best compromise
solution will change from A to E as shown in Figure 2.5. Increasing @ means that

the weight of f, is increasing but the weight of £, is decreasing

— if a = 0 ,the representation of the best compromise solution will change from A

to G as shown in Figure 2.6. This means that f, is not considered anymore and we

only want to minimize f,. The solution may be weakly efficient.

— if a = o, the representation of the best compromise solution will change from A

to H as shown in Figure 2.6. This means that £, is not considered any more and

we only want to minimize f, . The solution may be weakly efficient.

The simple weighting method is natural but the utility function approach can be
applied only to a particular type of multicriteria optimization problems. A large number
of methods for different types of problems have been developed. We must classify the

methods and problems to be able to choose the appropriate methods.

2.4.4.2 Optimization method and problem classification

Multiple criteria optimization methods can be divided into three main classes (Liu,

Yang, Whidborne, 2003):

- Efficient solution generation methods with preferences provided after

optimisation.

- Methods for generating the best solutions based on preferences provided a
priovri.

- Interactive methods with preferences extracted progressively in decision

analysis process.

In the first class of methods, the set of desirable efficient solutions is generated
first. Then, according to the decision maker preferences the best compromise solution is
found. An advantage of these posterior methods is that there is no need to involve the
decision maker in the generation of the set of efficient solutions. The disadvantages of

these methods are as follows: they usually require a large number of calculations and,
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sometimes, the set of efficient solutions is too large which complicates finding the best
compromise solution. The simple weighting method described above is a widely used but
only applicable to problems with a convex image of the feasible set and a smooth Pareto-
frontier. In the case of a non-convex image of the feasible set in the criteria space, this

method may fail to produce a correct set of efficient solutions.

The second type of methods, often referred to as "a priori" methods, require some
global preference information in advance. Using the preferences, a multicriteria
optimisation problem can be transferred into a single criteria optimisation problem. Then,
the solution for the single criteria optimisation problem is the best compromise solution
for the original problem. For these methods, optimisation only needs to be conducted
once and the number of calculations is relatively small but it could be difficult to provide
the global preference information in advance. The ideal point method is one of the widely
used methods of this group. In fact, this method serves as the base for a number of other
methods; the goal attainment method is one of them, using canonical weights to represent
the decision maker preferences. Goal programming is only applicable to convex
problems; the minimax reference point method extends goal programming to non-convex
cases and provides a basis for generating efficient solutions in both convex and non-

convex Pareto-frontiers.

The third type of methods requires providing some local preference information
progressively in an interactive optimisation and decision making process. The main idea
is to construct a series of single criteria optimisation problems related to the original
multicriteria optimisation problem. The solutions of the single criteria problems will
approach the best compromise solution for the multicriteria optimisation problem. These
methods are referred to as interactive methods. Among the methods of this type
Geoffrion's method has been introduced the earliest. Again, this method is applicable to

convex problems only.

We also need to classify the multicriteria optimisation problems to be able to
apply appropriate methods to different types of problems. The formal classification of

multicriteria optimisation problems is as follows (Ehrgott, 2003):
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Usually, vectors in the criteria space can not be compared directly. To be able to
compare them we introduce some ordering on the criteria space. The ordering maps the
criteria space into some ordered criteria space. This ordering is called model map and

denoted as . A multicriteria optimisation problem has the following elements:

the feasible set F_,
—  the criteria vector X = (X;, X;,.00/ X,,),

— the criteria space C,
— the ordered image of the feasible set in the criteria space, and

— the model map 4.

The feasible set, criteria vector and criteria space are the data of the multicriteria
optimisation problem. These five features exhaustively describe a multicriteria

optimisation problem.

For practical purposes, I will classify multicriteria optimisation problems on the

basis of the features of the data of multicriteria optimisation problems.

— Depending on the properties of the feasible set, I will distinguish between

continuous and discrete; infinite and finite problems.

— Depending on the type of objective functions, I will distinguish between linear,

non-linear and non-smooth problems

— Depending on the form of Pareto-frontier, I will distinguish between convex and

non-convex problems, and problems with disconnected Pareto-frontier.

Thus, the multicriteria optimization theory provides powerful methods for solving the
problems involving multiple parameters evaluation. We should carefully evaluate the
nature of the problem to apply an appropriate methodology. In many cases, the optimal
solution is non-feasible and we can find only the best compromise solution. This solution

always belongs to the Pareto-frontier of the feasible set.
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3 METHODS

3.1 Determining the time horizon for decision making by the player

The new method for predicting situation in the soccer game with reasonably high
precision is one of the central ideas of this study. It is based on determining the available
time horizon until the situation is expected to change abruptly. This section provides
description of methods for defining the time horizon and other prediction methods. These
methods supply information for multicriteria optimization methods for player positioning,

also described in this chapter.

Soccer is a dynamic game with rapidly changing environment state. The
simulation environment reflects this property by having a simulation cycle length of 50-
100 ms. In every simulation cycle, the player receives an update about the environment
state and must inform the simulation server about its decision by sending control
commands. Some important information like the direction and magnitude of the ball’s
velocity can change significantly from cycle to cycle. For this reason, it is often difficult
to precisely predict the situation and create any short-term plans even for several cycles.
If the decision differs significantly from cycle to cycle, the dynamics prevents the player
from performing all necessary actions to actually carry out the decision. For instance, if
the calculation of the player position on the field is based on the current location of the

ball, the player would very rarely reach the desired position.

While the actual environment state changes every cycle, some predicted
environment state can be relatively stable for several cycles. I will define the time span
with stable predicted environment state as the time horizon for prediction or prediction
period and denote it as T , expressed in the number of simulation cycles. Notice that there
is no need for the player to remember the first cycle of current prediction period. From
the player's point of view, every simulation cycle is the first cycle of the time horizon for

prediction. If T = O for the previous cycle, the player calculates a new time horizon and
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makes a new prediction. Otherwise, the player merely decrements the calculated time
horizon and updates the prediction by utilizing current information about the
environment.

Table 3.1 shows sequence of time horizon 7 calculations by one of the players.
When the ball is under control of a player the time horizon is zero since the players'
action is unpredictable. As soon the ball is kicked and leaves the control area, the player
is able to evaluate the time needed for the ball interception. This time becomes the time
horizon for other predictions. Every simulation cycle the player recalculates the time
horizon and refines the other predictions using new information about the environment.

Since the time horizon of zero length makes no sense, in the implementation I
make a guess about the behaviour of the player controlling the ball. I suppose that the
player will continue to move with the ball maintaining the same velocity for at least 10
simulation cycles, and extend the time horizon accordingly. Prediction of the ball motion

helps us to define the length of 7 .

Table 3.1 Action sequence for prediction

Simulation cycle # | Calculated T | Player's action

800

801 5 Recalculate T , refine the prediction
802 4 Recalculate T , refine the prediction
803 3 Recalculate T , refine the prediction
804 2 Recalculate T , refine the prediction
805 1 Recalculate T , refine the prediction
806 0 Recalculate T , refine the prediction
807 9 Calculate new T , make new prediction
808 8 Recalculate T , refine the prediction
809 6 Recalculate T , refine the prediction
810 5 Recalculate T , refine the prediction
811 4 Recalculate T , refine the prediction
812 3 Recalculate T , refine the prediction
813 2 Recalculate T , refine the prediction
814 1 Recalculate T , refine the prediction
815 0 Recalculate T , refine the prediction
816 25 Calculate new T , make new prediction
817
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3.1.1 Ball motion prediction

In the soccer game the situation prediction is possible with reasonable precision when
the ball is outside the reach of all players. I assume that in each team the player who can
reach the ball in the shortest time will be trying to get control of the ball. The other
players will be just moving to some positions on the field which are good from their point
of view. This fact allows predicting the situation while the ball is moving freely. So,
determining the ball motion is the critical task that must be addressed.

Prediction of the ball motion and location is the base for defining feasible area and the
time horizon for other predictions. We can identify two distinct states of the ball:

— the ball is controlled by a player

— the ball is not controlled by a player

In the first case, the ball is situated inside some kickable area around a player. The
kickable area is a circular space around the player inside which the player can kick the
ball. The diameter of the kickable area is defined by the simulation server settings and
represents a distance in which a real human player can reach the ball without changing his
or her own position. The diameter of a kickable area in the simulation server

implementation used is 1.5 metre.

In the second case, two types of action are possible:
— the player kicks the ball
— the player dribbles the ball

If the player makes the decision to shoot the ball, the ball leaves the kickable area of
the player and we are faced with the situation where the ball is not controlled by any
player until it arrives into the kickable area of another player. The shooting itself takes
very little time, usually one or two simulation steps.

In the case where the ball is dribbled, the player moves along the field keeping the
ball inside the kickable area. It is hard to predict which decision the player will make next
and for how long it will dribble the ball. For this reason, in the case of controlled ball, it is
sufficient to suggest that the player will dribble the ball for some empirically defined time

horizon. Since a player has some inertia, the dribbling player is unable to change the
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velocity or direction of the motion abruptly; therefore, the vector of the predicted location
of the ball can be defined as the sum of current position vector of the player and current

velocity vector of the player multiplied by the time horizon:

—

ppredicted = Peurrent + Veurrent X 1,

where n is the time horizon empirically defined in this implementation, as N = 20. We
must not use position and velocity of the ball here since the ball has much less inertia than
a player and its velocity can significantly change from one simulation step to another
causing confusion in the predicted position.

This prediction can be inaccurate if the player decides to shoot the ball; anyway, it
leaves only a few simulation cycles and other players are unable to relocate before they
realise its inaccuracy. Another shortcoming of this method is the fact that we can only
guess the time horizon for dribbling which forces us to take the current position of the
player as a base for the prediction. This makes the predicted position of the ball a
"moving target" since the current position of the player controlling the ball will change
every simulation step. Nevertheless, the maximal velocity of dribbling is sufficiently less
than the maximal velocity of a player without the ball which means the players will be
able to successfully relocate using the predicted position of the ball.

The case when the ball is not controlled is much more interesting and useful. The
situation on the field depends mostly on the ball location and speed. If the ball is
controlled, its velocity can change abruptly when the player kicks it. The ball velocity
change forces all the players to change their location accordingly, so the entire agent
environment will change in the time horizon of several cycles while the ball is moving. If
it is moving freely, we can predict with high accuracy where, when and by which player
the ball will be likely intercepted using the laws of physics and the standard simulation
model features. Having these predictions, we can determine the time horizon for other
predictions and decision making since the behaviour of all the players somehow depends
on the state of the ball. Moreover, experiments show that the ball is uncontrolled more
than 90% of the time of the game (Fig. 3.1). This means that we are able to divide the

time span of the game into periods significantly larger than one simulation step. These
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periods have a stable environment state given by prediction inside the time horizon
defined for each period. This makes the player's decisions about positioning persistent

during the period.

Figure 3.1  Ball control during the game.
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To predict the time and the place of where the interception occurs, we must
determine which player is able to reach the ball first because the fastest players to the ball
in both teams are most likely to be chasing it. To do that, we must estimate the

interception time for all the players on the field. The algorithm should also define the
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location of the interception point. Remco de Boer and Jelle Kok (Kok&Boyer, 2002)
proposed an appropriate algorithm for determining the time and location of the
interception point. This algorithm, however, contains three nested loops, which is rather
time consuming. For the purposes of this research a simplified algorithm using only two
nested loops and some heuristics was implemented. The simplified algorithm provides
accurate results for the time and location of the interception point.

Figures 3.2-34 illustrate the process of the interception point prediction. The
magenta coloured circle with a dot represents the interception point as it is predicted by
the yellow player #11. We can see that the prediction is refined as the ball is approaching
the interception point. Nevertheless, the predicted interception point remains in close area
of the actual interception point (Figure 3.4). Table 3.2 presents data on the predicted

situation while passing the ball.

Figure 3.2  The ball has just started to move freely
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Figure 3.3  The ball is halfway the way to the interception point

Figure 3.4  The ball is intercepted.

Table 3.2 shows an example of the ball interception point and time prediction. The
maximal and average deviations of the predicted interception points from the actual
interception point are sufficiently less that 1 meter. This is enough accuracy for decision

making.
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Table 3.2 A player reports its prediction data (Fig.3.2-3.4).

X coordinate of Y coordinate of Predicted number | Deviation from actual Comment

predicted predicted of cycles interception point in

interception point interception point meters

-27.20 0.78 16 0.27

-27.18 0.68 15 0.27

-27.43 0.68 14 0.02

-27.53 0.70 13 0.08

-27.67 0.71 12 0.23

-27.78 0.64 11 0.33

27.75 0.67 10 0.30

-27.37 0.75 8 0.09 Time horizon refined

-27.36 0.71 7 0.09

-27.40 0.66 6 0.06

-27.46 0.69 5 0.02

-27.51 0.7 4 0.06

-27.48 0.69 3 0.03

-27.47 0.72 2 0.03

-27.48 0.7 1 0.03

-27.45 0.70 0 0.00 Actual interception
point

Average deviation 0.13 Maximal deviation | 0.33

The player predicted, at some point in the game, that the ball would be intercepted
in 16 cycles at the point with coordinates (-27.20, 0.78). The actual intercéption happened
in 15 cycles at point with coordinates (-27.45, 0.70). TAO of soccer simulator provides
almost precise visual sensor information which helps to make the prediction more
accurate. The RoboCup simulation requires some additional methods to enhance the

prediction accuracy.

3.1.2 Players’ motion prediction

The ball motion prediction gives us the time horizon for other predictions. The
prediction of the player motion can be based on two types of information:

— the player's physical state

— the player's decision making mechanism

In both cases several levels of prediction are possible. For instance, during the game
we can try to infer the opponents’ decision making scheme and use it for prediction, or

use one of the already known decision making schemas. For the physical state prediction
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we can use information about the players' velocity and acceleration. In this case the
prediction is based on the fact that the players possess some amount of inertia and are not
able to change their velocity abruptly. In the current implementation only player velocity
was used for prediction.

The vector of the player’s predicted location can be defined as the sum of current
position vector of the player and current velocity vector of the player multiplied by the

time horizon;

ppredicted = pcurrent + Vcurrent X np’ (31)

This formula is similar to the above formula of the prediction of the motion of
controlled ball, but this time the time horizon is substantially greater; it is calculated
based on the prediction of the ball free motion.

Since the player can change its velocity applying some force, the given formula can
produce inaccurate results when the velocity is changing over time. To reduce this
inaccuracy the exponential smoothing with coefficient 0.5 was applied. This means that

the predicted position is given by formula:

Prew = Ppredicted X & + Pojg X (1 - a) (-2)

where Eo,d is the player's position predicted in the previous simulation cycle, B predicted

is the predicted position given by (3.1) and « is a smoothing coefficient.

In general, the accuracy of the prediction in any given prediction interval grows in
the end of the interval because the player gets desired speed and acceleration approaches
zero. Also, the longer the prediction interval, the more precise the prediction at the end of
the interval is.

In Figures 3.5-3.7 the white circle with a dot represents the anticipated position of

red player #8 at the moment of the ball interception as predicted by yellow player #8.
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Figure 3.5 The ball is in motion

Figure 3.6  The ball is about to be intercepted
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Table 3.3 shows an example of the prediction of a player position at the moment
of the ball interception. The maximal and average deviations of the predicted positions
from the actual position are close to 2 metres. This prediction is less precise than the
prediction of the ball interception point but still accurate enough to make a decision. It
can be seen from the table that the prediction precision grows as the prediction period

comes to its end.

Table 3.3 A player reports its prediction data.

X coordinate of the Y coordinate of the Predicted | Deviation Comment
predicted position predicted position number from the
of cycles | actual
position in
meters
5.57 -7.11 19 1.46
5.16 -7.38 18 1.71
4.94 -7.73 17 1.86
4.80 -8.02 15 1.99
4.79 -8.21 14 2.03
478 -8.32 12 2.06
4.81 -8.38 11 2.04
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X coordinate of the Y coordinate of the Predicted | Deviation Comment
predicted position predicted position number from the
of cycles | actual
position in
meters
4.85 -8.42 10 2.02
5.19 -8.34 9 1.66
5.82 -8.15 8 1.01
6.25 -7.98 7 0.55
6.57 -7.9 6 0.23
6.71 -7.89 4 0.08
6.79 -7.88 3 0.02
6.83 -7.87 2 0.04
6.82 -7.87 1 0.04
6.80 -7.90 0 0.00 | Actual
interception
point
Average deviation 1.25 Maximal deviation 2.06

At some point in the game, player #6 predicted that when the ball is intercepted in
19 cycles, the opponent player will be located at the point with coordinates (5.57, -7.11).
The actual interception happened in 16 cycles and at that moment the opponent player
was located at the point with coordinates (6.80, -7.90).

More sophisticated algorithms can be developed using the acceleration data, but
the development of such algorithms is beyond the scope of this research. The ball and the
players are the dynamic parts that form the soccer simulation environment. Once the
positions of the ball and the players are predicted, the predicted state of the environment
is defined and the player is able to look for an optimal position.

Further improvements could be made with reasonably good models of player
behaviour. It is possible in principle to predict actions by team-mates; prediction for the
opponents requires modeling their decision making. In this study, I do not address this

problem, though. It was left as part of future work instead.
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3.1.3 Feasible area and area of responsibility

In general, the player can consider any point on the field as a potential destination.
Since the coordinates of the points on the field are represented by pairs of real numbers,
there is an infinite number of location options. To make the problem tractable, I will be
using a discrete representation of the field in the form of a grid of points covering the
entire field. To preserve precision, the distance between points should not be too large;
too small distance would result in prohibitively long computations. So I set this distance
at 2 metres in each dimension, which is comparable with the player size and provides
sufficient precision for positioning. Since the field size is 100 by 65 meters, the total
number of point in the grid is:

(% + 1) x (%ﬂ + 1) = 1683 points. (3.3)

We will consider this grid as the set representing the decision space and denote it
as F . Having information about the time horizon for the planning of positioning and the
player role in the formation, we can define the area on the field where the player will be
searching for the optimal position. To make this positioning decision, the player must be
able to eventually reach the desired position in given time T . This means that the optimal
position can not be just any point in the decision space - it must be some point that the
player can reach in the given prediction period. In other words, many points in F can be

eliminated as unfeasible.

Thus we define the feasible area as the area containing all the points the player

can reach in the given time horizon. We denote the set of points inside the feasible area as

F. cF.

In practice, at any given simulation cycle, for each of the players, the feasible area
is a circle with radius R, =V, _ x T where V__ is the maximal player velocity and T

is the current time horizon for decision making. The player has some inertia; so the centre

of the circle is defined as f)current + Veurrent. Consequently, we can define F, as
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F - {,B e F | ’(Bcurrent + Veurent ) - ,B] < Rf} (3.4)

To maintain simple collaboration with team-mates, every player must obey team
formation. This means that the player must occupy a particular part of the field, according
to its role in the formation and current or, in our case, predicted location of the ball. In
fact, there are many algorithms, calculating the point where the player must be located
based on its role and the ball location. We will call this point the recommended point.
Jelle Kok and Remko de Boer described a simple algorithm for calculation of such point
(Kok&Boyer, 2002). Essentially, this is a weighted sum of the player "home" position
defined in the formation and the location of the ball. We will use a predicted ball position

for this calculation.
Prec = Phome X & + Ppay X (1 - a) (35)
We define the responsibility area as some circular area with centre in the
recommended point. We denote the set of points inside the responsibility area as F, < F.
At any given simulation cycle, for each of the players, the responsibility area is a

circle with heuristically defined radius R. = 10 meters. We can define F, as

Frz{BeFl

Prec ~ P <R}

The player must be seeking some position inside the responsibility area at any
time of the game to maintain the team formation. Note that the responsibility area can
take a geometrical form other than a circle. This form was merely chosen as the most

natural in the context of the soccer game.

Since the player must seek the position inside the responsibility area and must be

able to realise its positioning plans, the set of points F, < F where the player must

search for the optimal position is the intersection of the sets of feasible area and the
responsibility area:

F. = F. N F,. This is the feasible set in the decision space.
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Figure 3.8 Search space
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Figure 3.8 shows an example of the search space for yellow player #10. Yellow

circle represents the feasible area, magenta circle represents the responsibility area and

yellow squares represent the feasible set F,.
In the case when F, is an empty set, I consider the player being too far away from

the responsibility area and establish the only solution to be the center of the area of

responsibility. The player will move to the area of responsibility as quickly as possible.

3.2 Criteria for general positioning in attack

To keep the size limit of this thesis, the application part of this study is
deliberately limited to player positioning in the situations when own team is in attack.
Still I believe that a similar approach is also possible to address positioning in defence.
However, the recent study conducted by Eddie Hou, my fellow graduate student at the
same school, has shown that some defence related tasks require different approach.
Therefore, in this thesis, I elected to concentrate solely on the offensive player

positioning. This section elaborates on the criteria used for decision making.
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Now that we constructed the feasible set, we must create an appropriate objective

or criterion space to use multicriteria optimisation methods. To each point /3, in the

feasible set we assign the vector Ci (Xy;, Xy, .., X,; ) Where Xy, Xy, ..., X,,; are some

characteristics of the point in the form of real values. The source of knowledge for the

criteria construction is the strategy and tactics of the soccer game.

In this research I consider only general positioning for attack. General positioning
means that in this work I am not considering any ’special‘ situations or tasks as personal
marking or offside trap. Attack means that we consider criteria only for situations where
the team controls the ball with one exception. In defence, either a regular simple
positioning algorithm or the same criteria as for the attack is used. The team controls the
ball if one of the team players actually controls the ball or the prediction shows that the
ball will likely be intercepted by one of the team players. I also describe different sets of

criteria for simple and advanced team collaboration.

3.2.1 Simple team collaboration

Simple team collaboration is achieved through team formation. With the simple
team collaboration, each player must only maintain the team formation and search for the
optimal position for itself disregarding positions of other players in the team. The
characteristics of the recommended point depend on the ball state, the state of opponents,

and the state of the player itself.

For simple collaboration, the criteria are the same for all stages of attack but

different for different groups of players.

3.2.1.1 Criteria for attackers

1. All players must maintain the formation. This means the player must keep as close
as possible to the "recommended” point which represents the responsibility area

centre. So the first criterion is the distance between the point in the feasible set

. The smaller this

and the centre of the responsibility area X, = “f), — ,B,ec
number, the better the point is.
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2. All attackers must be open for a forward pass (Beim,1977). This means that the
player must keep the path (straight line) between itself and the predicted position
of the ball from being blocked by an opponent or opponents. The characteristic of
this path can be the widest open angle (Kok, 2002) or the distance from the line
segment to the closest opponent. We use the distance from the line segment (the
point of the predicted location of the ball) to the closest opponent as the base for
the second parameter. The greater this number, the better the point is. There exists
such threshold value of this distance that for any values greater than this threshold
the actual distance does not matter. For instance, if the distance to the closest
opponent is greater than 5 metres it does not matter if it equals to 10 metres or 50
metres because the opponent is still unable to intercept the pass regardless of the
pass distance and shooting direction error. We call this threshold distance

tolerance threshold d,. . Using this threshold we can invert the parameter, so that

X,;, = max (O, (dt, - d(p,pba,,, Peiosest opponent ))) The smaller the value of this

criterion is, the better the point. Notice that for all points with the distance greater
than the threshold, the value of the parameter is zero.

3. All players must maintain open space (Vogelsinger, 1973; Beim, 1977). This
means that the player must keep as far away as possible from surrounding
opponents. We use the distance from the point to the closest opponent as the base
for the second parameter. The greater this number, the better the point is. Again,

as we did for the second parameter, we invert this criterion using the distance

tolerance threshold X5, = max (O,(dtr - “E,, ,Bc,osestopponent )) The threshold

value for the first parameter can differ from the threshold value for the second
parameter. For all points with the distance greater than the threshold, the value of
the parameter is zero.

4. The attackers must be ready for defence penetration (Beim, 1977). This
requirement means that the player must keep an open path to the opponent's goal
and keep as close as possible to the offside line, so we can construct two criteria.
The player must keep the path (straight line) between itself and the opponent's

goal from being blocked by an opponent or opponents. The characteristic of this
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path can be the widest open angle [Kok] or the distance from the line segment to
the closest opponent. We use the distance from the line segment (the point — the
center of the goal) to the closest opponent (except the goalie) as the base for the
second parameter. The greater this number, the better the point is. We use the

distance tolerance threshold to inverse the parameter, SO
X, = max (O, (dtr -d (p,.pgoa,, D oiosest opponent ))) The smaller the value of this

criterion, the better the point. Notice that for all points with the distance greater
than the threshold the value of the parameter is zero.

5. The player must keep as close as possible to the opponent offside line to be able to
penetrate the defence. The offside line is the line going through the position of the
opponent defender closest to the goal and parallel to the goal line. So, the next

criterion is the distance between the point in the feasible set and the offside line by

. The smaller this number, the better the

— X
Pi — Xomsice

the X coordinate X., =

point is.

Thus, we have five criteria altogether to evaluate the potentially optimal location points
for attackers.

3.2.1.2 Criteria for midfields

The criteria for the midfields are similar to the criteria for attackers with some exceptions.

1. All players must maintain the formation, so X, = “5, - E,ec

2. All midfields must be open for a forward pass from the defenders (Beim, 1977),

S0 X,; = Max (O, (dt, —d(p,pba,,,[—)C,osestopponent))). For all points with the

distance greater than the threshold the value of the parameter is zero.

3. All players must maintain open space (Vogelsinger, 1973; Beim, 1977). This
means that the player must keep as far as possible from surrounding opponents.
We use the distance from the point to the closest opponent as the base for the
second parameter. The greater this number, the better the point is. Again, as we

did for the second parameter, we inverse this criterion using a distance tolerance
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threshold X3,- = max (01 (dtr - Hpil pclosest opponent

)) The threshold value for

the first parameter can differ from the threshold value for the second parameter.
For all points with the distance greater than the threshold the value of the
parameter is zero.

. The midfields act in the central zone of the field and usually have many opponents
around them. To be able to develop an attack they must have some open space
before them when they get the ball (Beim, 1977). This requirement means that the
player must keep an open path in the direction of the opponent's goal. The
direction of the path is not the direction to the center of the opponents' goal, since
the midfields are not going to penetrate the defence line. While experimenting, we
empirically discovered that one of the appropriate paths is a line segment about 10
meters long, parallel to the side line of the field. The player must keep this path
from being blocked by an opponent or opponents. The characteristic of this path is
the distance from the line segment to the closest opponent. We use the distance

tolerance threshold to inverse the parameter, SO

X4 = max(O,(dt, -d (p,. (X, Y)P,(X + 10, ¥), Perosest opponent ))) The smaller

the value of this criterion is, the better the point. For all points with the distance

greater than the threshold the value of the criterion is zero.

Altogether, we constructed four criteria for estimation of the possible location points

for the midfields in attack.

The midfields must interfere with the opponents' activity to prevent the development

of an attack. Generally speaking, this responsibility of the midfields is considered to

be a part of the defensive tactics. Nevertheless, there is a method of defence that can

be thought of as active defence or attack in defence. This method is called

"pressuring”. The essence of this method is to interfere with all the actions of as many

opponent players as possible at the same time forcing them to make mistakes (Beim,
1977).

Since in defence neither open space nor receiving a pass are of any concern, the set of

criteria for it would be different:
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1. All players must maintain the formation, so X,; = ”E, - E,ec

2. We use only a part of pressure technique, namely preventing cross passes between
opponent attackers. To achieve this goal the midfields must keep closer to the line
defined by positions of the opponent forwards. We construct this line as follows
(in case of three opponent forwards):

o Construct the line connecting the positions of two wing opponent forwards

o Construct a line parallel to it through the position of the opponent central
forward

o The line between two previously constructed lines, and parallel to them
will be the desired line

If we denote the described line as L, the last criterion can be expressed as

Xy = AL packs ;)i ). The smaller the value of the criterion is, the better the point.
Figure 3.9 Latta ok construction
Y

A

L

attack

v
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3.2.1.3 Criteria for defenders

The criteria for the defenders are essentially the same as the criteria for midfields.

.

1. All players must maintain the formation, so X;; = HE, - Brec
2. All defenders must be open for a forward pass from the goalie, so
X,; = max (O,(dtr - d(p,pba,,,pc,osestopponent ))) For all the points with the

distance greater than the threshold the value of the parameter is zero.

3. All players must maintain open space, S0

X3 = max(O,(dt, —|

)) The threshold value for the first

p il p closest opponent

parameter can differ from the threshold value for the second parameter. For all
points with the distance greater than the threshold the value of the parameter is
Zero.

4. The defenders must keep an open path in the direction of the opponent's goal, so

X, =max(0,(d, = d(B,06YIPLX +10,), Patsestoppoen - The smaler

the value of this criterion, the better the point. For all points with the distance
greater than the threshold, the value of the criterion is zero.
Altogether, we constructed four criteria for estimation of the possible location points

for the attacking defenders.

3.2.2 Advanced team collaboration

As previously mentioned, simple team collaboration is achieved through team
formation. Each player purely maintains the team formation and searches for the optimal
position for itself disregarding positions of other players in the team. Further
improvement is possible through advanced team collaboration. This is achieved trough
collective decisions, when the players look not only for the optimal positions for
themselves but for mutually optimal positions for some group of players. This approach
can be used for general positioning as well as for special actions like offside trap.

However, in this research I construct the criteria for general positioning only.
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When thinking about mutually optimal positions for the group of players, we can
reconstruct the decision space or use the same decision space and effectuate additional
criteria. The first approach seems to be more promising but poses some problems, which

makes it more difficult to implement in the given simulation.

3.2.2.1 Decision space reconstruction

Let's consider a case of two players looking for mutually optimal location points.

Let the first player have the feasible decision set Fs1 and the second player have the

feasible decision set Fs2 . Then the new feasible decision set for mutually optimal location

points will be some set of ordered pairs or the Cartesian product of these two sets
F? = F:xF: ={(p,a)IpeFl,qeF?}.

Having this set, we can try to construct the criteria space for it. Some criteria are
individual for each point and some should be applied to both points, such as the most
wide open path between them. The problem of this approach is in its high computational
cost. For instance, if each initial feasible set consists of N points the resulting set will
consist of N x N = N? points. The dimension of the criteria space will be greater than
the sum of dimensions of individual criteria spaces since it must include all the individual

criteria and some aggregate criteria.

For the reason of computational complexity, I utilized the additional criteria

approach for advanced collaboration.

3.2.2.2 Construction of additional criteria

The idea of constructing additional criteria for advanced collaboration is based on
taking in the consideration not only the state of the ball and the opponents but also some
team-mates. In the case of two players trying to find mutually optimal positions each of
them is taking in consideration the predicted position of the other. Eventually, they will
adjust their positions according to the positions aggregated criteria values. We can think

about this approach as a reflection of the first degree, when each of the partners takes in
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consideration the position of the other but ignores the fact that the partner takes in

consideration its own position.

The problem in this approach is that we cannot be sure that the process of
adjusting always converges. The benefit of the method is that we do not substantially
increase the computational complexity and simply use different sets of criteria. The

implementation of the method indeed showed improvement in the team performance.

Unlike the simple collaboration case, advanced collaboration requires different
sets of criteria for different stages of attack as well as introducing the notion of designated

partner.

Let A and B be two team-mates. Player B is the designated partner of the player A
if the latter takes into consideration the location of B in its positioning process. If the
player has more than one designated partner, we will call them the first designated

partner, the second designated partner, and so on.
For the 4-3-3 formation, the partner designations are as follows:
— For lines forwards - midfields
o The left-wing forward to the left-wing midfield and vice versa
o The center forward to the center midfield and vice versa
o0 The right-wing forward to the right-wing midfield and vice versa
— For lines midfields — defenders
o The left-wing defender to the left-wing midfield and vice versa
o The right-wing defender to the right-wing midfield and vice versa
o The center right defender to the center midfield and vice versa

o The center left defender to the center midfield and vice versa
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3.2.2.3 Criteria for the attackers

3.2.23.1

Criteria for the case when the ball is in the defensive zone

The ball is in the defensive zone when it is controlled or will be intercepted by the

goalie or a defender. In this case the criteria for the forwards are as follows:

1.

2.

All players must maintain the formation, so x,;, = ”5, - E,ec
All players must maintain open space,

)) For all points with the distance

X,; = mMax (Or (dt,— - ”p/r P ciosest opponent

greater than the threshold, the value of the parameter is zero.

The attackers must be ready for the defence penetration, so

X3i = max (OI (dtr - d (pipgoal / Eclosest opponent ))) and

. The smaller these numbers are, the better the point.

—X
Xai =P — Xoffside

Since the ball is too far from the attackers, they can not expect a direct pass. This
means they must keep open span towards designated partners rather than to the
ball. Also, the wing forwards must try to stay open towards the center midfield but
they are not designated partners because the central midfield will not adjust its
position according to the positions of the wing forwards. The criteribn for all the
forwards to keep open for a direct pass from the designated partner is based on the
distance from the line segment connecting the point and the predicted position of
the designated partner to the closest opponent. We use the distance tolerance

threshold to inverse the criterion

X5i = maxX (O, (dtr - d (pipdesig _ patner? pc/osest opponent ))) ‘

The wing forwards must keep open to direct pass from the central midfield

Xg; = MaxX (O, (dtr ~-d (p,-pdes,'g_ patner ! Dciosest opponent ))) :

Altogether, we have five criteria for the central forward and six criteria for the

wing forwards when the ball is in the defensive zone.

3.2.2.3.2

Criteria for the case where the ball is in the middle zone

60



The ball is in the middle zone when it is controlled or will be intercepted by a

midfield. In this case the criteria for the forwards are as follows:

1. All players must maintain the formation: X;; = HE, - Erec

2. Al players must maintain open space:

X,; = max (0, (dt, —“p,-,pc,osestopponent )) For all points with the distance

greater than the threshold the value of the parameter is zero.

3. The attackers must be ready for the defence penetration:

X5 = Mmax (0, (dtr - d(pipgoallEclosestopponent ))) and X, = \E’X - Xoffside

The smaller these numbers are, the better the point.

4. If the ball is controlled or is going to be intercepted by the designated partner or
(for the wing forwards only) by the central midfield, any of the forwards must
keep open for a direct pass. Notice that the player must keep open to the
predicted ball position, not the designated partner position since the partner is

chasing the ball and does not adjust its position

X = Mmax (0, (dtr - d(P,-Tba,,/ Eclosestopponent ))) .

5. If the ball is controlled or is going to be intercepted by wing midfield that is not
the designated partner (and not the central midfield for the wing forwards), any
forward must keep open for the designated partner rather than for the ball.

X5; = Max (O/ (dtr -d (pipdesig _ patner? Piosest opponent ))) .

Altogether, we have five criteria for all forwards when the ball is in the middle

zone and the 5th criterion differs depending on the situation.

3.2.2.3.3 Criteria for the case when the ball is in the offensive zone

The ball is in the offensive zone when it is controlled or will be intercepted by a

forward. In this case, the criteria for the forwards are as follows:

1. All players must maintain the formation: X, = ”5, — E,ec
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2. Al players must maintain open space:

X, = maX(O,(dt, —"E, Bc,osestopponent )) For all points with the distance

greater than the threshold the value of the parameter\ is zero. In the final stage of
attack, the forwards are concerned more about the defence penetration than about
maintaining the wide open space, so the distance tolerance threshold must be
significantly reduced.

3. The attackers must be ready for the defence penetration:

X3 = max(O, (dtr - d(pipgoall Bclosestopponent ))) and

. The smaller these numbers are, the better the point.

—X
4. X4/' =P, - Xoffside

5. The forwards should not bother to be open to the direct pass since they are very
close to the line formed by opponent defenders and direct pass is likely to be
intercepted. Instead, together with the midfields the forwards must create "attack
depth" (Vogelsinger, 1973; Beim, 1977). All forwards must keep open for the
designated partners again

XS/' = max (0, (dtr - d (pipdesig _ patner/ pclosest opponent ))) ’

Altogether, we have five criteria for all forwards when the ball is in the

offensive zone.

3.2.2.4 Criteria for midfields

3.2.2.4.1 Criteria for the case when the ball is in the defensive zone

When the ball is in the defensive zone the criteria for midfields are as follows:

1. All players must maintain the formation: X,;, = "B, - Brec

2. Al players must maintain open space:

X,;, = mMax (0,(dt, —”E, Bdosest opponent )) For all points with the distance

greater than the threshold the value of the parameter is zero.
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3. The midfields must be ready to get a direct pass from defenders or the goalie. If
the ball is controlled or is going to be intercepted by the designated all midfields

must keep open regarding the predicted ball position.

X3 = Max (Ol (dtr ~d (%r Eclosest opponent ))) .

If the ball is controlled or is going to be intercepted by a player which is not the
designated partner all midfields must keep open for the designated partner in the
defensive line rather than for the ball.

— - )
x3i = max (0' (dtr -d (pipdesig_ patner? pclosest opponent ))) - Notice, that the

central midfield has two designated partners and has one more similar criterion,

accordingly.

4. Midfields must keep open to the predicted position of the designated partner in the
forward line to create a "bridge" between defenders and forwards. This "bridge"

allows the team to quickly deliver the ball from the defensive zone to the

. S E——
offensive zone X,; = Max (0, (dtr -d (pipdesig _ patner 1 Pciosest opponent )))

Altogether, we have four criteria for the wing midfields and five criteria for

the central midfield when the ball is in the defensive zone.

3.2.24.2 Criteria for the case when the ball is in the middle zone

The ball is in the middle zone when it is controlled or will be intercepted by a

midfield. In this case, the criteria for the forwards are as follows:

1. All players must maintain the formation: X, = “E, - E,ec

2. Al players must maintain open space:

X,; = max (O, (dt, —HE,,EC,osestopponent )) For all points with the distance

greater than the threshold the value of the parameter is zero.
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3. The midfields must be ready to support the attackers for the defence penetration,

. The smaller these numbers are,

—X
so they must move forward X5, = ‘p,- — X prside

the better the point.

4. Midfields must keep open to the predicted position of the designated partner to be

ready to make a forward pass,

——— —
X, = maxX (0, (dtr -d (P,-Pdes,-g_pamerr P ciosest opponent ))) .

5. Midfields must be open to a direct pass to support the player controlling the ball if

a forward pass is impossible, X5, = max (0, (dt, -d (p,pba,,, Bc,osest opponent )))

Altogether, we have five criteria for all midfields when the ball is in the middle zone.

3.2.2.4.3 Criteria for the case when the ball is in the offensive zone

The ball is in the offensive zone when it is controlled or will be intercepted by a
forward. The main task for the midfields in this situation is to support the forwards

creating "depth" for the attack. Criteria for the midfields are as follows:

1. All players must maintain the formation: x,;, = ”5, - Brec

2. All players must maintain open space:

X,; = max (O,(dtr —HEI, Bdosestopponent )) For all points with the distance

greater than the threshold the value of the parameter is zero.

3. The midfields must be ready to support the attackers for the defence penetration,

. The smaller these numbers are,

—X
pi - X offside

so they must move forward Xx;; =

the better the point.

4. If the ball is controlled or is going to be intercepted by the designated partner or
(for the wing midfields only) by the central forward, all midfields must keep open
for direct pass. Notice that the player must keep open to the predicted ball
position, not the designated partner position since the partner is chasing the ball
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and does not adjust its position

X4, = Max (Ol (dtr -d (ﬁ;a;l Bclosest opponent ))) .

If the ball is controlled or is going to be intercepted by the wing forward that is
not the designated partner (and not the central forward for the wing midfields), all
midfields must keep open for the designated partner rather than for the ball.

X4 = Max (0, (dtr -d (p: pdesig _ patner ! P ciosest opponent ))) .

Altogether, we have four criteria for the midfields when the ball is in the

offensive zone and the 4th criterion differs depending on the situation.

3.2.24.4 Pressure

Just like in the case of simple collaboration, the midfields perform pressure when
the ball is controlled by the opponents. The criteria are the same as for simple

collaboration.

3.2.2.5 Criteria for defenders

Since the defenders rarely participate in attacking actions the criteria for defenders

are similar to the criteria for simple collaboration.

1. All players must maintain the formation: X,; = “EI - B,ec
2. All midfields must be open for a forward pass from the goalie:
X,; = max (O,(dt, - d(p,.pba,,,pc,osest opponent ))) For all points with the

distance greater than the threshold the value of the parameter is zero.

3. All players must maintain open space:

X3 = max (0, (dtr —"[7,, Bc,osest opponent )) For all points with the distance

greater than the threshold the value of the parameter is zero.
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4., The defenders must keep open to the designated partner:

X, = Max (O, (dtr -d (p/ pdesig _ patner 1 D ciosest opponent ))) . For all points with

the distance greater than the threshold the value of the criterion is zero.

Altogether, we have established four criteria for estimation of the possible location points

for the defenders in attack.

3.3 The decision making algorithm

We have specified the positioning problem as a Multicriteria Decision Making
(MCDM) problem. The player has a feasible set of points on the field which is a subset of
the decision space. Each point in the feasible set is mapped into the objective or criteria
space. We constructed all the criteria for minimisation in the sense that the smaller the
value of a criterion is, the better the position. The criteria, in general, are incomparable
and conflicting; this means we are unable to minimise all the criteria simultaneously. For
this type of problems, the general approach is to find the set of non-dominated or Pareto-
optimal points and then apply some method for choosing the best compromise point from
this set. We refer to this set as the Pareto-set. Many methods have been developed for
different types of Multicriteria Optimization problems. To choose the suitable method, we

must analyse the type of the problem we have.

3.3.1 Problem analysis

The type of the problem depends, in particular, on the type of the Pareto-set, so
the Pareto-set types must first be described. A Pareto-set can be convex or non-convex.
For a convex Pareto-set any two points in the set can be connected by a straight line

segment which does not cross the Pareto frontier (Fig. 3.1).
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Figure 3.10 Example of a convex Pareto-set

A 4

For problems with convex Pareto-set, the weighted sum method can be applied.

For a non-convex Pareto-set, there are at least two points in the set which can be

connected by a straight line which does cross the Pareto frontier.
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Figure 3.11 Example of a non-convex Pareto-set

v

For problems with non-convex Pareto-set, several methods were developed, for
instance the minimax reference point method (Yang, 2000 in Liu, Yang, Whitborn, 2003).

However, it requires some preference information in advance.

In the soccer game the Pareto-set also can be disconnected (Kyrylov, 2005). The
feasible set itself can be connected but not necessarily convex. This non-convexity can

make the Pareto frontier disconnected.
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Figure 3.12 Example of a disconnected non-convex Pareto-set

v

In case of the disconnected Pareto set, the minimax reference point method may fail to

produce a unique solution.

Having this classification of Pareto sets, we can then classify our problem. We
replaced the continuous field space by a grid of points and restricted the decision space of

a player to a feasible set, so our problem is discrete and finite.

In this implementation, the objective functions for the points in the set are some
distances. In general, for different points in the set a particular criterion can be a distance
to different objects like the distance to the closest opponent. For different points, the
closest opponents could be different opponent players. Having only this reason we can
conclude that the objective functions are not only non-linear but also non-continuous;
therefore the problem that we are dealing with is a non-linear non-convex MCDM

problem.

To prove that some Pareto sets for the problem are non-convex and disconnected,
we first make the assumption that all the Pareto-sets for the problem are connected and

convex. Then, we present some counterexamples to show that is not the case.
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Figure 3.13 Example of a non-convex Pareto-set for an attacker

Pareto set non-convexity example
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Figures 3.13 and 3.14 present examples of non-convex Pareto-sets in case of two

parameters for an attacker trying to keep close to the recommended point and to the

offside line,

Figure 3.14 Example of a disconnected Pareto-set for an attacker
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Finally, we can classify the problem as a discrete, finite, non-linear, non-continuous, and

non-convex problem.
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3.3.2 Pareto-set construction and sequential elimination

To make the final choice from the feasible set, the player can first find the points
which are definitely "better" than the others. Following the Pareto optimality principle,
the "better" points are the points which are not dominated by the others. I use the

definition of non-dominancy to find the set of Pareto-optimal solutions or Pareto-set.

3.3.2.1 Pareto-set construction algorithm

I used a simple and straightforward algorithm for the Pareto-set construction
implemented by Dr. V. Kyrylov. The algorithm is based on the definition of strong non-

dominance for two points:

Definition 3.1 A point p' is not dominated by point p? if there is at least one criterion
[of (p) such as ¢,(p') <c,(p®), where C,(p) (i =1, 2,...k) are assumed for

minimisation.

This definition allows for an easy comparison between two points according to
dominance. Using this definition, which was implemented as a function, the following
Pareto-set construction algorithm was implemented (V.Kyrylov, 2005):
set ParetoSetConstructinAlgorithm(set FEASIBLE SET)

BEGIN
Create set ParetoSet (empty set)
FOR (every element A in FEASIBLE SET)
Mark A as nondominated
FOR (every element B in FEASIBLE SET)
IF (A is dominated by B)
Mark A as dominated
Break the loop
END IF
END FOR
IF (A is nondominated)

Add A to ParetoSet
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END TIF
END FOR
RETURN ParetoSet
END

3.3.2.2 Sequential elimination algorithm

Once we have obtained the Pareto-set, the last step in the process of finding the
optimal position for the player is choosing the point from the constructed Pareto-set.
Professor Kyrylov, the primary academic supervisor of this study, has recently proposed a
method called "the sequential elimination of the poorest alternative" (Kyrylov, 2006).
Because this algorithm does not rely on any information about objective functions, it is

applicable to any MCDM problem having a finite Pareto-set. The computational

complexity of the algorithm is O (K 2 ), where K is the number of elements in the Pareto-

set. Each criterion is given some relative weight. Kyrylov describes the algorithm as

follows:

"The key assumption is that each criterion has its relative weight; in our case this
information is reflecting the preferences of the developer of the decision making
algorithm. So let X be the set of all alternatives, P X be the Pareto set, xeX be a

decision vector, g1(x),...gn(x) be the criteria functions (all of which we want to
minimize), and wl,...,wn be the non-negative weights whose sum is 1. The
algorithm is ...

S := P;
for (( k := 1 to K-1 )

With probability wj, randomly select j-th criterion;

Find the element x € S having the maximal value of
gi(x);

remove X from S;

}

return the last remaining element in S*®
(Kyrylov, 2006, p. 9)

The algorithm eliminates one element from the Pareto-set at a time and there are
K ~1 iterations. In every step, one criterion is randomly selected according to its weight.

Since the weights are used as the probability distribution, criteria that have greater weight
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are chosen more frequently. On each step the point having the greatest value of the
current criterion is removed from the resulting set. The last remaining element is the
approximation of the optimal solution of the problem. When K is increasing, the

approximation converges to the optimal solution.

In the current implementation, it is almost impossible to decide which criterion is
more important than others. For this reason, a simplified version of this algorithm was
used. Criteria for elimination were not given any weights and were just used in turns,
starting always from distance to the recommended point. This is similar to assuming that

their weights are equal.

If we are able to achieve complete precision of the predicted state of the
environment, we could argue that the computed optimal point would stay the same in
every step in the prediction period. Unfortunately, such exact precision is impossible and
the predicted state is refined with each simulation step. Decision robustness is very
important for the good performance of the team. To increase the robustness of the

decision the following method was applied: let the current simulation step be step number
i, current Pareto—set P, , and the optimal point for the previous simulation cycle ,5,-_1.

Then, for every simulation step / :

if(p; 4 € P)
{

P =P
}

In other words, if the optimal point of the previous simulation cycle is in the
Pareto-set for the current simulation cycle, it is thought to be good enough to serve as the

new optimal point.
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Figure 3.15 Example of the Pareto-set and the optimal point

Figure 3.15 shows the Pareto set and the optimal point for the yellow midfielder #7 which
is looking for the optimal point by using the criteria for advanced collaboration.
Currently, the player supports the attack. Empty yellow squares represent the Pareto-set;
the yellow square with a blue dot inside represents the optimal point. We can see that the
optimal point is open to the ball and the designated partner (black arrows), far enough
from the closest opponents (red arrows), and takes into consideration the recommended
point (white arrow). Yellow player #11 is about to intercept the ball. It takes about 4-6
cycles for a player to perform an action like a pass. Player #7 is about 3 metres from the
desired position heading directly to it (blue arrow). This means that when the player
controlling the ball is ready to finalize its action the positioning yellow player #7 will be

at or very close to the optimal position, ready to support the attack.

3.4 Research tools - visualization

Even a perfect theory can produce unexpected results if it is applied incorrectly.
This research is partly a study of simulation, so validation and verification processes must

be applied to the model. In particular, it is necessary to verify the prediction methods and
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the choice of the criteria. The easiest and the most efficient way to do that is to observe
visually the predicted positions for dynamic objects (for instance the ball or a player), the

Pareto-set, and the optimal point.

With this purpose an additional tool was added to the simulation monitor. The
menu item "Show Pareto" turns on the visual representation of the Pareto-set with the
optimal point and, by default, the responsibility area for one of the players. Since any
changes in the user interface are time consuming, I did not introduce any other user
controls. Nevertheless, by changing several lines of code we can replace the responsibility
area representation by the predicted position of the ball or the predicted position of any of
the players. Also, the player whose Pareto-set is displayed can be changed in the same

way.

The standard player communication system was used as a channel for

communicating the information about the player's world model.

The communication system is designed to provide some restricted communication
between players. According to the RoboCup rules, the players can not communicate
directly. A player sends its messages to the server, which broadcasts them to other

players.

In the current implementation, the player simply sends the information about the
Pareto-set as a text message in a particular form to the server. The server, in turn, relays it

to the monitor, and the monitor displays the received information.
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Figure 3.16 Visualization
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4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Performance indicators

Before we choose the performance indicators for evaluating the proposed method,
we should ask ourselves what exactly is going to be measured. The soccer game doesn't
have any explicit measurements that would fully characterise player positioning
performance. Even the game score often can be deceiving; it often happens that an
undeniably stronger team loses to a weaker team even if it has apparent prevalence during
the game. Using the score for measuring player positioning performance makes sense
only when it is possible to run at least 50-100 games for each set of conditions. Luckily,
over the years several indicators have been developed that are implicitly related to player
positioning. Each of them was intended to measure some aspect of the team performance.
I have used the same indicators, which are: game score, territorial prevalence, ball
possession, and number of shots to goal.

In all experiments, the same simulated team played on both sides. The only
difference between the two teams was that one team had the improved player positioning
algorithm. All the remaining features in both teams were same. This remark is important
because the performance indicators that we have selected should be able to measure the
difference in player positioning rather than other features, such as goal scoring or ball

passing algorithms.

4.1.1 The game score

The game score is the overall indicator of team performance. As previously
mentioned, it can be deceiving; mostly score is applied to official competitions, when the
competing teams do not have a chance to play against the same opponent more than one
or two times. On the contrary, if the same two teams play a series of games, as the
common practice during Stanley Cup play-offs goes, it is more likely that the better team

wins more games.
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4.1.2 The territorial prevalence

The territorial prevalence shows better team organisation. While the game score
strongly depends on the quality of the scoring algorithm and the quality of defence, the
territorial prevalence relies more on positioning and passing. I will measure the territorial
prevalence in the number of simulated seconds which the ball was located on the left or

the right half of the field.

4.1.3 The ball possession

The ball possession also shows the quality of team organisation. In some sense, it
is the complement to the territorial prevalence. This indicator reflects mostly the quality
of the passes, and to some extent player positioning. We can imagine that with both good
passing and positioning a team can quickly deliver the ball to the opponents' goal,
organise an attack, and try to score. However, after an attempt to score the team often
loses the control of the ball and it can happen that the team that is unable to quickly
penetrate the opponent's defence will have better ball possession time. For this reason, I
will use this indicator to evaluate player positioning only in combination with the others.
Since all the teams don't use dribbling, this indicator is measured in number of kicks

made by the players of the team.

4.1.4 The number of shots to goal

The number of shots to goal shows the quality of team organisation in the final
stage of the attack. This organisation includes the ability to penetrate the opponent
defence using positioning and passing. I did not implement any special tactic schemes for
the defence penetration and all the teams have the same simple passing algorithm. For
this reason, in this implementation I have concentrated on offensive positioning. The
number of shots to goal is the second most important measurement of the team
performance. This performance indicator includes four cases: (1) all situations when the
player has shot at the goal, but the ball was intercepted by any opponent except the
goalie; (2) all cases when the goalie caught the ball; (3) all cases when the ball crossed
the goal line outside the opponents' goal but close enough to a goal post (within the

distance equal to the width of the goal), and (4) the actual goals.
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4.2 Performance analysis methods

4.2.1 Experiments

For the experiments three different teams: control team (team 1), experimental
team with so-called ‘simple’ collaboration (team 2), and experimental team with
‘advanced’ collaboration (team 3). The optimality criteria used in teams 2, 3 are
explained in Section 3.2. All the teams are identical except the positioning of players in
the attack. The control team players used for positioning the respective recommended
locations calculated as weighted sum of the home position and the location of the ball.
Players in the experimental team with simple collaboration used the optimality criteria for
simple collaboration and multicriteria decision analysis methods while performing
attacks; in all the rest situations they were using the recommended positions. Players in
the experimental team with advanced collaboration were using the optimality criteria for
advanced collaboration and multicriteria decision analysis methods while performing

attacks; otherwise the recommended positions were used.

To gather statistics, 100 games have been run in each pair: team 1 vs. team 2,
team 1 vs. team 3, and team 2 vs. team 3. Each game was of the RoboCup format (two
halves 5 minutes long each). Each team played 50 games on the left side of the field and
50 games on the right side of the field. It is natural to assume that, by design, the
measurements of the performance indicators obtained in different games are statistically

independent.

4.2.2 Hypothesis testing

To make sure that the proposed methods actually yield improved performance, we
must show that the difference between values of the measured performance indicators, if
any, is statistically significant. The nature of these indicators suggests the equal number
of measurements for each team. Therefore we are interested in the construction of a
confidence interval for the difference of the mean values of each indicator. If zero value
lies outside the confidence interval, there is a statistically significant difference between

the measured performance indicators. This is exactly the hypothesis we want to test.
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This pattern fits for the Paired-t Confidence Interval Method, as neither the
expectations nor the variances of the performance indicator probability distributions are
known. This method is especially useful when the expectations are different, so the null
hypothesis stating that the expectations are equal is false (Law&Kelton, 2000). We will
use this method when comparing an improved team against the control team. In contrary,
when we compare two improved teams it is sufficient to perform a hypothesis test to
show that the observed difference is significantly different from zero. In this case we will
apply the T-Test: Paired Two Sample for Means, included in the Excel statistics package.
Since the variances of the performance indicator probability distributions are unknown,

the test for uneven variances will be applied.
For i =1,2 let X,,, X,,,..., X, be a sample of N independent and identically

distributed observations collected from /-th system. If 4, = E (X u) is the expectation

we are interested in, we want to construct a confidence interval & = g — 4, . Thus we

define new set of observations, Zj = le - X,;, for j=1,2,...,n; let their
expectationbe £ = £ (Z j).
We use the average to estimate the latter expectation:
n

27

5,
Z(n) = — 4.1)

The variance of this estimate is,

2

o JZ;[ZJ - 2(”)}
Var[Z (n)} = =) . 4.2)

Thus the 100(1 — &) percent confidence interval can be formed as

W[E(n)} : (4.3)
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or

Z(n

)
( )itn_lll_ %I (4.4)

where S is the standard deviation for the estimate.

Notice, that X,; and X,; do not need to be exactly normally distributed or have equal
variances. If Z ;'s are normally distributed, this confidence interval is exact. Otherwise,

the Central Limit Theorem implies that it is near 1 — o for large n.

4.3 Offensive positioning with simple collaboration

4.3.1 Statistics

The games results by the team with simple collaborative player positioning
(experimental team) versus the control team with basic positioning are presented in Table

4.1.

Table 4.1 Game statistics for the team with simple collaboration positioning vs. control team

Mean experimental team

¢ conirolteam |
Median experimental team
4 - “Conttrol team. ey
Standard Deviation experimental team 1.95 25.39
0 control team -1 d R 89
Sample Variance experimental team 644.40 32.75 3220.11
control team 610557 1729 893.27
Range experimental team 9 195 33 581
o T . g

Minimum experimental team
_confrol tean
Maximum experimental team
~ control team . P 0 455
Game count 100 100 100 100
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Data histogram show that the distribution of each performance indicator is close to

normal distribution. One example is presented in and Figure 4.1.

Figure 4.1 Score frequencies histogram for the experimental team.

Frequency

Score frequencies

10 11
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Since we are going to apply the Paired-¢ Confidence Interval Method, we need to
construct data for the performance indicators differences. These data are given in Table

4.2, Their distribution is also close to normal (Figure 4.2).

Table4.2  Games statistics for the team with simple collaboration positioning vs. control team
Score difference | Territorial prevalence | Shols to goal difference | Ball possession
difference
Mean 5.20 124.22 8.51 118.31
Median 5.00 127.00 8.00 121.00
Standard Deviation 2.14 49.59 7.58 69.34
Sample Variance 459 2458.84 57.46 4807.91
Range 10 393 57 647
Minimum 0 -90 27 -115
Maximum 10 303 30 532
Game count 100 100 100 100
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Figure 4.2  Score difference frequencies histogram.
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4.3.2 Confidence interval calculation

We will construct the confidence intervals according to (4.3). For 99%

confidence, we have t1oo—1,1—0-0% =2.626 .

For the score difference, we have 2(100) =5.2 and

\/9737 [E (1 00)] _ 214 = 0.214. According to (4.3), the 99% confidence interval

- 100

is [4.64; 5.76] . Since zero is outside this interval, with 99% confidence we can say
that the score difference is statistically significant in favour of the experimental team
playing against the control team.

For the territorial prevalence, we have Z(100) = 124.22 and

\/@ [E (1 00)] _ 4959 _ 4.96. According to (4.4), the 99% confidence interval

V100
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is [1 11.20;1 37.25]. Since zero value is outside the interval, with 99% confidence we

can say that the territorial prevalence is statistically significant for the experimental team.

For the ball possession difference, we have Z(100) = 118.31 and

\/ Var 1 00 69 34 =6.93. According to (4.3), the 99% confidence interval is

~ J100

[1 00.11;136. 51] . Since zero value is outside the interval, we can say that for the

experimental team the ball possession prevalence is statistically significant with 99%

confidence.

For the shots to goal difference we have Z(100) = 8.51 and

\/Var 100 _ 758 = 0.76. According to (4.3), the 99% confidence interval is

\/100

[6. 51;10.5 O] . Since zero value is outside the interval, we can say that for the

experimental team the prevalence in shots to goal is statistically significant with 99%

confidence.
4.3.3 Conclusion

The presented statistical data indicate that the experimental team with simple
collaboration outplays the control team with basic player positioning in all aspects of the

game.

4.4 Offensive positioning with advanced collaboration

4.4.1 Statistics

The games by the team with advanced collaborative player positioning (experimental
team) versus the control team with basic positioning showed results which are presented
in Table 4.3. Data histograms show that the distributions of all measured performance

indicators are close to normal (see an example in Figure 4.3).
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Table 4.3  Game statistics for the team with advanced collaboration positioning vs. the control

team
b ‘Ballonside  Shotstogoal
Mean experimental team 7.25 189.41 239
control team 043 28156 S .13.13
Median experimental team 7 191.5 24
controlteam . 0 281 A
Standard Deviation 22,61 5.72

experimental team
control team

Sample Variance
experimental team

control team . 0.39 4436 : 17.14

Range experimental team 10 150 30

controlteam .3 . 147 .. 25

Minimum experimental team 2 137 6
~ control team .0 - 188 ' .4 290
Maximum experimental team 12 287 36 485
control team 8RB 20 493
Count 100 100 100 100

Figure 4.3  Score frequencies histogram for the experimental team.
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Since we are going to apply the Paired-# Confidence Interval Method, we need to

construct data for the differences. These data are given in Table 4.4. Their values

obtained in different games are statistically independent. The distributions are also close

to normal.
Table 4.4 Game statistics for the team with advanced collaboration positioning vs. control team
Score difference Territorial Shots to goal | Ball possession
prevalence difference difference
Mean 6.82 92.15 10.77 69.00
Median 7 89.50 9.50 68.50
Standard Deviation 225 43.25 8.12 46.12
Sample Variance 5.08 1870.96 65.88 2127.09
Range 11 297 51 303
Minimum 1 -99 -23 -116
Maximum 12 198 28 187
Count 100 100 100 100
Figure 4.4  Score difference frequencies histogram.

Error! Objects cannot be created from editing field codes.

4.4.2 Confidence interval calculation

We will construct the confidence intervals according to the equation (4.4). For the

225

score difference we have Z(100) = 6.82 and \[V;[_Z_(lOO)} =—==0.26.

v100

According to (4.4), the 99% confidence interval is [6. 14, 7.50]. Since zero is outside

the interval, with 99% confidence we can say that the score difference is statistically

significant in favour of the experimental team. This advantage is somewhat greater than

for the team using simple collaborative positioning.

For the territorial prevalence, we get Z(100) = 92.15 and

JVar[Z(100)] =

43.25
V100
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is [80. 78; 103.52] . Since zero value is outside the interval, we can say that the

territorial prevalence is statistically significant for the experimental team with 99%

confidence.

For the ball possession difference, we have Z(100) = 69.00 and

ﬁ?[? (100)] = 46.12 = 4.61. According to (4.3), the 99% confidence interval is

7100

[56.89; 81. 10]. Since zero value is outside the interval, with 99% confidence we can

say that the experimental team has prevailing ball possession.

For the shots to goal difference we have Z(100) = 10.77 and

\/Var 100 _ 812 = (0.81. According to (4.3), the 99% confidence interval is

V7100
[8.64; 1 2.90]. Since zero value is outside the interval, we can say that the

experimental team has prevalence in the number of shots to goal with 99% confidence.

4.4.3 Conclusion

The statistical data indicate that the experimental team with advanced
collaboration outplays the control team in all aspects of the game. This advantage appears
to be greater than that of the team with simple collaborative player positioning for scoring
and shooting but less in territorial prevalence and ball possession. However, without
additional experiments and testing we cannot say for sure that these differences are

statistically significant. This issue is addressed in the following sections.

4.5 Advanced collaboration/simple collaboration compared with
control team

4.5.1 Hypothesis testing

Essential statistical data for the team with simple collaboration and the team with
advanced collaboration when playing against the control team are given in Tables 4.1 and
4.3. Since we compare two experimental teams we are interested in testing the hypothesis

if the means of the performance indicators are different. So we apply t-Test: Paired Two
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Sample for Means with hypothesis of equivalence of two means. T-Test: Paired Two

Sample for Means with 95% confidence produces following results.

Table 4.5 T-test results for score

Advanced collaboration Simple collaboration
team score team score
Mean 7.25 5.54
\Variance 4.25 3.806465)
Observations 100, 100
Pearson Correlation -0.04646021
Hypothesized Mean Difference 0
Df 99
t Stat 5.889482279
P(T<=t) two-tail 5.33529E-08}
t Critical two-tail 1.9842169

Table 4.6 T-test results for shots to goal

Advanceq collaboration teamigimp,gcoﬂaboraﬁo_fﬂn eam

shots to goal shots to goal

Mean 23.9 20.68

ariance 32.67676768 32.74505
Observations 100 100
Pearson Correlation -0.017663162
Hypothesized Mean Difference 0
f 99
It Stat 3.946322211
IP(T<=t) two-tail ~ 0.000148466 -
it Critical two-tail 1.9842169
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Table 4.7 T-test results for territorial prevalence

Ball on side of
the control team

Ball on side of
the control team

when playing against when playing against
advanced collaboration team | simple collaboration team
Mean 281.56 299.24
\Variance 443.6024242 610.5681
Observations 100
Pearson Correlation -0.006258204
Hypothesized Mean Difference
df
t Stat -5.428616481
P(T<=t) two-tail 4,05127E-07,
t Critical two-tall 1.9842169
Table 4.8 T-test results for ball possession
Ball played by Ball played by
advanced simple
collaboration team collaboration team
(times per game) (times per game)

Mean 424.61 466.93
\Variance 581.8564646 3220.106
Observations 100

Pearson Correlation

0.015019097

Hypothesized Mean Difference

if

t Stat -6.900854655|
P(T<=t) two-tall 4.96374E-10
t Critical two-tail 1.9842169|

The test results show that the mean difference is statistically significant for all

performance indicators with the confidence at least 95%.

4.5,2 Conclusion

The statistical data indicate that the team with advanced collaboration outplays the

team with simple collaboration in the goals scored and shots to goal. However, the team

with simple collaboration ‘outplays’ the team with advanced collaboration in terms of ball

possession and territorial prevalence, which appears to be counter-intuitive.
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These results and results of visual observations allow us to affirm that the team
with advanced player collaboration acts in a more effective way. It takes less time for this
team to deliver the ball into the attack zone and to an attacker to get the ball in the
shooting position. This is the reason why the team with advanced collaboration yields in
territorial prevalence and ball possession to less sophisticated team. The former makes
smaller number of passes and spends less time on the opponents' half of the field before
one of the players is able to shoot to goal, while the latter tends to have more chances to

get the ball possession after the successful shots on the goal by the opponent.

4.6 Advanced collaboration vs. simple collaboration

4.6.1 Statistics

The games of the team with advanced collaborative player positioning versus the
team with simple collaboration showed the results presented in Table 4.9. Sample
distributions of all performance indicators appear to be close to normal (see example in

Figure 4.5).
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Table 4.9 Game statistics for the team with advanced collaboration vs. the team with simple
collaboration

Mean advanced
collabo

aboration teal
mple collaboration

control team

control team 0 200 5 326
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Figure 4.5 Score frequencies histogram for the advanced collaboration team.
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4.6.2 Hypothesis testing

T-Test: Paired Two Sample for Means with 95% confidence produces the results shown

in Tables 4.10 -4.13.

Table 4.10  T-test results for score

Advanced collaboration|Simple collaboration team|
team score score

Mean 5.29703 2.881188
Variance 5.210891 2.685743
Observations 101 101
Pearson Correlation -0.19095
Hypothesized Mean Difference 0
Df 100}
t Stat 7.95054
P(T<=t) two-tail 2.9E-12
t Critical two-tail 1.983971
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Table 4.11  T-test results for shots to goal

Advanced collaboration|Simple collaboration team

team shots to goal shots to goal
Mean 22.9703 16.9703
Variance 35.16911 28.76911
Observations 101 101
Pearson Correlation -0.194
Hypothesized Mean Difference 0
Df 100
t Stat 6.904092
P(T<=t) two-tail 4.72E-10)
t Critical two-tail 1.983971
Table 4.12  T-test results for territorial prevalence
Ball on side of
advanced collaboration| Ball on side of simple
team collaboration team
Mean 223.0297 246.495
\Variance 465.9891 413.1725
Observations 101 101
Pearson Correlation -0.94049
Hypothesized Mean Difference 0
Df 100
t Stat -5.71199
P(T<=t) two-tail 1.15E-07]
t Critical two-tail 1.983971
Table 4.13  T-test results for ball possession
Ball played by Ball played by simple

advanced collaboration | collaboration team (times

team (times per game) per game)
Mean 375.7525 401.0792
\Variance 722.9681 761.5537
Observations 101 101
Pearson Correlation -0.35137
Hypothesized Mean Difference 0
Df 100
t Stat -5.68301
P(T<=t) two-tail 1.31E-07
t Critical two-tail 1.983971

The test results show that the mean difference is statistically significant for all

performance indicators with confidence at least 95%.
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4.6.3 Conclusion

The statistical data indicate that the team with advanced collaborative player
positioning outplays the team with simple collaboration in goals scored and shots to gaol
but yields in the ball possession and the territorial prevalence. Since the team using the
advanced collaboration has better values for score and shots to goal, we can conclude that
this team plays more effective way; it tends to execute a smaller number of passes before

creating a shooting opportunity.
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S CONCLUSION

5.1 Research questions revisited

Now we can return to the research questions asked at the beginning of the paper.
The first research question was stated as: What generic decision making framework
should be used to achieve rational player behaviour that would be applicable to
positioning? The definition of rational behaviour gives the answer to this question.
Russell& Norvig (Russell& Norvig, 2003, p.972) gives the following definition for

perfect rationality:

"A perfectly rational agent always acts in every instant in such a way as to
maximize its expected utility given the information it has acquired from the environment"

In spite of the fact that the perfect rationality is unachievable, having this definition we
can consider rational player positioning as the process of finding a point on the field
which would be optimal in the sense of balancing risks and rewards which are some

objective functions or criteria.

The second research question was stated as: "How to balance rewards, risks, and
costs while the player is deciding about its optimal position on the field?" Multicriteria
Decision making analysis theory can be used to solve this problem. If we are able to
define some area on the field where a player will look for the solution and make the
number of alternatives finite, we can state the problem of finding the optimal position on
the field as a MCDA problem. We can define the set criteria for every point in the
feasible set creating the criteria space and apply MCDA methods to solve the problem.

The third question was stated as: "How to determine a reasonable time frame for
positioning planning?" The answer to this question is one of the central ideas of this
research. A player is unable to plan anything using rapidly changing information about

the environment. The soccer game is so dynamic that it seems impossible to recognise
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any period of stability. Fortunately, it appears, that not actual but some predicted state of
the system can be stable for a considerable period of time. Ball motion prediction, which
is rather precise, gives the time horizon for positioning planning. The prediction is easier
to make when the ball is rolling free. When the ball leaves a kickable area, a player can
predict the state of the environment at the moment of interception and calculate the period
for planning. Then, during every simulation cycle the player simply refines the prediction
and can adjust the decision. In most cases these adjustments proved to be only minor,
which provides the good base for the robustness of the decisions made with the new

method.

The fourth question was stated as: "How to limit the search space for the optimal
position and achieve robustness of the player positioning behaviour?" The time horizon
for positioning planning gives us a tool for substantially limiting the search space. When
the time for planning is known, the player can calculate the feasible area which contains
the alternative points reachable in the given time. Since every player has some area of
responsibility, which it is not supposed to leave, the intersection of these two areas gives
rise to the restricted search space, or the feasible set. To make the decisions robust, we
use the predicted state of the game environment instead of the state perceived in every
simulation cycle. The perceived state is used to just refine this prediction. Thus the

persistence of the player behaviour is achieved.

The fifth question was stated as: How fo achieve player collaboration with the
proposed decision making framework? We see two methods to achieve the collaboration.
The first method is to create a more complex decision space, considering a possible
solution not as a single location on the field for a single player but as a set of locations for
a group of players. This approach is a subject of future work. The second method is to
introduce criteria taking in the consideration of the positions of some partners or
designated team-mates. The method produces promising results but needs further

investigation.

Now, having the research questions answered, we can pose an additional, final
question: What are the achievable benefits of the proposed methods? One of the central

benefits of the proposed methods is the option to translate humanly-formulated
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requirements into programming logic. For example, imagine a coach who gives one of his
players the following instruction: "Keep away from the opponents, stay as close as you
can to the offside line and do not forget about your base position". These instructions
seem to be difficult to be implemented using traditional programming methods. Using
MCDA we can translate these requirements into criteria like: "maximise the distance to
the closest opponent", "minimise the distance to the offside line", and "minimise the
distance to the recommended position". Then, the player can search for the point in the

feasible set using the methods described above.

5.2 Future work

Some directions for future work were already mentioned in the previous section.
This research did not elaborate much on the collaboration problem. The approach using
the feasible set of locations for a group of players seems to be promising but requires

highly efficient algorithms to overcome the computational complexity.

The prediction methods used here are rather simplified, especially methods for
predicting player positions. More sophisticated methods based on opponent behaviour
modeling can significantly improve the decision making mechanism and make the

decisions more robust.

The soccer game simulation, as the other sports games, is about making decisions
and carrying them out. Most of these decisions must be taken regarding many objectives
or criteria. Professor V.Kyrylov (Kyrylov, 2006) has already performed research about
application of MCDA methods for carrying out decisions. Many other types of decisions
are yet to be explored. Especially interesting are the decisions involving actions of

different types like the decision to dribble or to make a pass.

5.3 Conclusion

This study has shown that the MCDM methods can be successfully applied to
achieve rational behaviour and multi-agent collaboration in sports game simulation. The
results of the research can be used in the industry of digital games. In one of the

conferences the Sr. Art Director of Electronic Arts Frank Vitz admitted that
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“Nowadays we have achieved complete photo realism in the game character
appearance. What we have not achieved yet, is the realism of its behavior.
We just do not know how to do that.”

( Frank Vitz, Sr. Art Director, Electronic Arts Canada, New Media BC Games
Workshop panel discussion, Vancouver, BC, March 16, 2006 )

Scientific research can make contribution to the solution of this problem.
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APPENDIX: RAW STATISTICAL DATA

Games statistics. Simple collaboration (experim.) team vs. control team

1 4 0 170 297 12 25 456 349
2 6 0 172 295 10 18 470 321
3 4 0 202 280 19 18 412 366
4 8 0 159 306 9 18 468 319
5 4 1 144 335 7 18 474 348
6 6 0 170 295 10 18 503 293
7 6 0 177 299 15 21 474 343
8 8 0 163 307 7 21 468 324
9 5 0 190 289 9 15 455 374
10 2 1 212 272 13 12 427 382
11 9 0 188 280 12 16 442 355
12 6 1 178 294 9 28 456 381
13 2 1 211 274 14 13 415 373
14 8 0 147 317 9 24 449 322
15 4 0 178 304 8 18 408 388
16 4 0 198 284 17 21 451 372
17 8 0 178 293 13 18 476 343
18 7 0 161 304 12 21 442 338
19 4 0 185 296 11 15 475 375
20 6 0 164 313 20 18 519 344
21 5 2 206 268 20 13 425 367
22 5 0 137 342 12 18 527 331
23 7 0 156 317 13 18 462 335
24 5 0 177 302 11 21 459 364
25 4 2 201 275 26 24 456 366
26 4 0 184 298 13 36 473 364
27 3 0 208 277 14 18 424 419
28 3 0 177 306 9 12 503 368
29 6 1 142 326 6 24 486 309
30 5 0 169 311 10 30 458 347
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193

31 4 0 30 3 340 455
32 7 0 147 314 13 21 451 311
33 0 0 167 301 14 22 476 332
34 6 1 186 287 16 27 441 320
35 3 0 217 268 19 21 413 400
36 5 0 163 316 16 23 499 338
37 6 0 173 304 10 14 502 362
38 3 0 163 322 9 21 478 364
39 5 0 204 275 15 21 437 380
40 5 0 88 391 6 36 578 283
41 3 0 162 310 7 18 476 292
42 8 0 137 334 9 24 491 311
43 6 0 166 310 11 18 523 338
44 7 1 159 307 11 26 492 345
45 6 1 1563 313 13 18 475 296
46 5 0 176 303 8 24 428 349
47 8 0 154 317 9 14 462 335
48 9 0 167 301 16 22 508 311
49 6 0 159 317 8 31 419 374
50 8 0 147 324 8 27 464 334
51 4 2 213 263 17 17 423 375
52 6 0 194 283 11 20 429 375
53 5 0 193 286 11 21 443 395
54 7 0 156 314 11 21 466 352
55 9 0 179 289 15 11 423 337
56 8 0 197 269 9 24 407 351
57 6 0 129 347 12 28 511 295
58 4 1 192 287 10 15 486 375
59 5 0 161 318 9 17 483 362
60 7 0 161 312 11 16 468 330
61 8 1 178 290 12 29 439 322
62 6 0 166 310 12 28 486 358
63 4 0 194 288 19 23 442 367
64 1 1 216 271 22 21 410 408
65 4 0 193 287 12 21 478 337
66 9 1 184 280 11 18 434 321
67 3 0 200 285 13 25 446 396
68 4 1 156 323 14 21 475 316
69 9 0 157 313 9 29 449 320
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18

331

70 5 1 206 21 410

71 4 0 150 332 9 21 508 342
72 4 1 182 277 12 27 459 305
73 7 1 175 296 12 21 465 333
74 8 1 171 297 11 21 453 344
75 6 0 166 311 11 24 473 348
76 2 0 162 319 7 17 507 300
77 6 0 172 299 11 16 481 345
78 3 0 1563 332 13 18 502 341
79 3 1 162 330 9 33 447 326
80 7 1 177 294 9 12 477 347
81 5 0 178 301 8 18 494 373
82 5 0 177 301 11 23 484 363
83 9 0 167 310 11 21 453 325
84 9 0 1565 296 10 15 458 316
85 5 0 164 315 8 16 441 349
86 3 1 206 275 17 26 413 398
87 7 0 168 305 14 21 489 365
88 8 0 164 306 9 14 499 327
89 7 0 161 313 15 36 496 342
90 4 0 162 319 10 15 457 391
91 5 0 165 314 5 18 488 368
92 5 0 172 286 12 18 438 341
93 7 0 176 288 17 19 464 335
94 7 1 181 290 8 28 436 372
95 5 1 254 212 14 30 921 389
96 5 1 197 269 16 15 435 352
97 4 2 165 311 16 20 483 319
o8 5 1 200 276 13 12 436 348
99 5 1 161 316 8 21 496 348
100 2 1 199 285 15 25 466 377
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Games statistics. Advanced collaboration (experim.) team vs. control team.

T 247

1 7 1 209 14 20 392 358

2 6 0 215 261 15 16 429 381

3 10 0 164 300 8 24 418 326

4 6 0 166 311 8 24 479 327

5 7 0 177 295 7 32 441 348

6 8 2 174 290 12 22 420 316

7 11 1 161 298 11 28 454 344

8 7 0 207 267 15 26 418 360

9 8 1 185 283 10 20 411 344
10 5 1 183 293 10 34 423 383
11 7 1 171 300 14 16 405 333
12 7 0 192 281 13 22 409 350
13 4 0 224 258 15 16 416 390
14 3 2 193 286 16 30 410 372
15 7 1 206 264 15 22 432 344
16 6 0 200 276 17 28 431 345
17 8 0 163 308 10 32 478 365
18 5 0 186 293 11 24 431 329
19 5 0 237 242 20 22 390 420
20 8 0 178 294 18 24 404 347
21 12 0 163 296 5 22 446 294
22 9 0 199 271 13 18 416 355
23 6 1 202 271 14 30 380 380
24 8 0 190 280 15 22 410 360
25 6 0 218 258 19 24 393 363
26 6 1 174 299 9 30 451 327
27 12 0 182 278 17 20 422 332
28 8 0 205 266 12 16 442 352
29 7 1 200 271 18 24 439 367
30 8 0 207 266 20 18 426 341
31 5 3 173 297 15 22 414 328
32 6 0 189 287 7 14 408 355
33 8 0 177 292 14 30 450 348
34 8 0 176 295 8 36 413 381
35 7 0 207 264 15 20 427 370
36 5 1 204 272 15 24 435 366
37 8 1 154 314 12 32 432 330
38 11 0 214 247 17 14 433 334
39 11 0 139 323 5 32 465 350
40 4 0 201 280 14 20 427 384
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361

41 6 0 217 259 22 28 421

42 6 0 203 273 12 24 382 373
43 9 0 156 311 9 28 389 354
44 6 0 195 282 19 26 452 384
45 6 1 176 298 13 36 428 349
46 9 1 202 263 9 32 409 403
47 8 0 181 290 9 22 454 359
48 7 0 202 271 12 20 391 364
49 5 1 209 266 20 20 411 366
50 6 1 209 264 18 16 421 382
51 7 1 167 303 19 26 456 336
52 4 0 181 301 8 30 438 361
53 0 0 182 283 16 20 422 326
54 7 0 151 322 4 30 437 355
55 8 0 196 274 11 20 371 364
56 9 0 185 281 18 26 464 354
57 2 0 199 289 10 24 470 386
58 9 0 187 281 14 20 410 365
59 8 0 137 335 8 26 485 298
60 9 0 193 275 15 16 410 322
61 5 1 287 188 29 6 377 493
62 0 0 195 262 8 28 417 355
63 7 1 189 281 17 28 399 337
64 7 0 160 313 13 30 468 290
65 5 0 197 281 18 24 397 381
66 0 0 191 274 16 28 415 343
67 5 0 230 249 15 16 416 394
68 1 2 153 304 10 22 429 319
69 3 1 215 267 14 22 423 431
70 6 0 219 257 15 18 424 370
71 1 0 148 314 10 32 462 295
72 7 1 206 264 9 24 395 373
73 0 0 167 300 14 32 448 316
74 5 1 195 281 15 22 416 375
75 7 1 194 278 19 26 426 365
76 5 0 202 277 13 28 430 354
77 1 0 165 297 14 20 468 304
78 9 0 213 254 16 18 425 342
79 6 0 179 297 11 20 439 336
80 9 0 204 263 9 18 386 376
81 9 0 182 285 11 36 450 348
82 5 0 172 307 8 18 431 371
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270

83 7 0 204 13 20 440 370
84 8 0 170 300 12 20 434 312
85 6 0 229 247 17 22 415 392
86 1 1 170 286 10 22 398 326
87 7 0 167 297 10 34 467 331
88 9 1 161 304 8 22 421 319
89 6 0 175 301 12 32 443 320
90 6 1 196 277 11 22 390 406
91 5 2 182 292 10 26 404 344
92 8 1 182 286 11 28 428 363
93 7 1 193 277 15 18 430 385
94 9 0 210 257 9 22 428 407
95 7 1 203 268 12 18 413 370
96 5 1 193 276 8 26 392 367
97 8 1 189 278 16 28 417 338
98 6 0 168 309 13 32 432 357
99 8 1 194 274 17 24 435 381
100 8 1 199 269 16 18 392 344

Games statistics. Advanced collaboration (advanced) team vs. simple collaboration
(simple) team.
s =

Game

213

364

~399

1 6 4 242 12 24
2 2 7 264 204 30 13 345 418
3 7 4 208 253 17 24 365 374
4 3 1 235 248 14 24 356 416
5 5 3 201 270 14 27 440 406
6 5 2 223 249 18 20 358 395
7 5 3 219 251 20 27 390 395
8 1 1 234 253 18 31 364 399
9 10 1 201 261 8 26 418 381
10 7 2 216 250 15 26 374 388
11 8 2 237 228 23 26 349 398
12 3 2 219 261 20 24 397 419
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13 3 1 215 267 17 35 395 388
14 5 2 191 282 5 20 409 363
15 9 2 227 236 23 27 392 395
16 9 4 195 260 9 26 380 380
17 4 2 207 270 17 27 400 375
18 3 8 262 200 24 15 315 420
19 3 4 234 239 27 31 330 420
20 7 3 220 245 21 27 354 417
21 8 3 234 228 14 20 386 407
22 2 5 240 233 26 22 360 423
23 5 2 241 232 17 13 364 424
24 3 6 211 256 12 24 345 431
25 7 2 213 254 11 22 340 374
26 4 2 207 269 12 24 354 379
27 4 3 221 252 21 31 357 397
28 4 1 234 244 9 22 406 395
29 6 4 238 227 24 20 346 394
30 6 2 222 248 18 35 369 388
31 6 4 248 215 15 22 362 426
32 3 6 245 223 23 17 368 417
33 1 4 271 207 20 18 337 466
34 7 4 233 228 11 15 357 382
35 4 2 223 252 15 36 382 413
36 3 2 215 266 15 29 406 403
37 5 5 213 251 18 24 381 386
38 1 1 251 235 24 18 401 444
39 10 3 204 252 15 20 380 363
40 5 3 259 211 18 18 356 448
41 4 4 235 236 17 15 383 400
42 4 1 243 236 26 17 406 382
43 7 0 231 242 15 18 376 398
44 6 3 245 223 29 22 341 430
45 5 0 218 261 15 18 403 390
46 3 4 241 232 17 22 372 464
47 4 3 249 224 21 24 374 462
48 4 4 234 237 26 24 394 405
49 6 7 239 216 17 18 335 411
50 6 3 210 257 26 29 417 400
51 6 4 178 286 14 24 394 376
52 5 2 212 262 20 26 369 381
53 9 2 204 258 12 15 404 353
54 1 3 249 233 23 15 397 452
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55 6 3 219 249 14 22 398 421
56 5 0 236 243 12 17 363 398
57 6 3 245 222 18 11 355 413
58 3 3 251 225 15 26 355 445
59 8 3 253 209 12 20 345 411
60 4 1 211 266 17 24 388 420
61 7 3 198 267 20 27 407 386
62 6 6 240 219 20 17 366 398
63 5 2 202 271 12 26 409 415
64 5 3 240 230 6 26 328 422
65 6 5 218 244 20 22 380 367
66 4 6 214 251 12 29 342 418
67 9 2 235 227 20 15 357 399
68 4 1 207 272 11 31 387 424
69 6 3 227 242 24 17 382 366
70 7 2 214 254 17 18 381 419
71 3 6 231 237 11 17 342 407
72 8 1 189 279 17 27 410 373
73 3 2 226 253 12 33 363 429
74 3 3 225 241 15 20 365 399
75 4 3 238 234 27 15 397 431
76 8 2 209 255 14 26 408 375
77 10 1 148 313 6 27 438 326
78 5 1 218 258 11 26 350 391
79 7 1 229 242 24 9 420 373
80 11 4 177 276 9 36 350 343
81 4 2 249 227 17 13 367 418
82 4 2 210 265 9 35 386 413
83 9 3 190 268 23 27 358 347
84 1 4 228 251 21 29 377 369
85 3 3 256 220 20 17 372 440
86 3 4 211 261 17 31 353 394
87 4 4 238 232 14 24 345 411
88 5 3 222 248 11 24 367 381
89 7 2 200 265 15 20 431 391
90 11 3 158 295 12 24 406 326
91 7 0 208 264 20 24 432 382
92 6 2 222 248 14 22 349 437
93 3 7 248 217 17 18 338 460
94 4 1 229 249 20 17 390 385
95 6 1 243 230 23 27 348 395
96 4 4 230 241 17 15 394 414
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97 7 3 208 257 17 33 409 409
98 6 2 193 276 9 17 374 366
99 4 3 234 239 23 29 343 419
100 7 2 195 272 14 27 397 379
101 8 4 222 237 17 26 412 394
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