This is the author's version of the work. Power Point Presentation for Magy Seif El-Nasr, Keith Miron, and Joseph Zupko. Intelligent Lighting for a Better Gaming Experience. CHI (Conference on Human Factors in Computing Systems) on Interactivity. Portland, Oregon, April 2-7, 2005. Downloaded from SFU Library institutional repository.

# **Intelligent Lighting for a Better Gaming Experience**

Magy Seif El-Nasr Assistant Professor Penn State University

Joseph Zupko, Penn State

Keith Miron, ICT



## Visual design/presentation

- Camera (Placement, Angle)
- Character
   (Placement, Orientation)
- Lighting
  - Affect U the perceived
- Visual attention
- Visual tension
- Character relationship
- Depth





#### How do designers design visuals?

 Camera orientation and position
 Characters positions and orientations
 Mood
 Dramatic intensity

### **Problem: unpredictability**

 Camera orientation and position
 Characters positions and orientations
 Mood
 Dramatic intensity

depend on user

Need to redesign for every change

## **Current Techniques**

Ambient Lighting design
 Static lighting design
 Dynamic lighting design

#### The next step – ELE:

- dynamic lighting + intelligent control system
- general intelligent dynamic lighting + designer controls styles & design goals (lighting style sheet)

# **Ambient Lighting**

Gives you the feel of a toy like environment
 But:

 Not realistic
 Flat



Image from the Sims

#### **Static Lighting Design** Manually setting light layout (light maps) Х **Advantages:** - realistic Images from Lightmaps (static shadowmaps) article written by Kurt Miller from: http://www.flipcode.com/articles/article\_lightmaps.shtml - Controllable **Disadvantages:** Don't adapt to variations in the environment Requires much memory

Image from Max Payne

### **Problems with Dynamic Lighting**

Movie blade.avi

#### Problems with current methods (a summary)

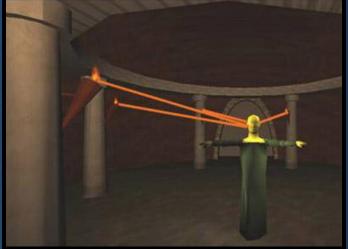
Static lighting

- Does not adapt to changes
- Requires much time and effort to construct
- Dynamic lighting
  - Needs more intelligent control
  - Requires much time and effort to script

### **ELE – Expressive Lighting Engine**

Build a lighting system that:

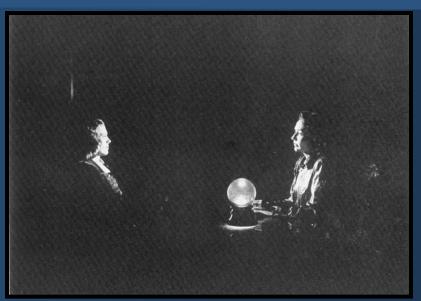
- Intelligently adjusts lighting in real-time accommodate context and effect
- Based on cinematic theory
- Allow artist to control lighting at a high-level




### **Lighting Design Goals**

Ensure visibility

Conform to practical sources






## **Lighting Design Goals**

Establish visual attention

#### Establish depth





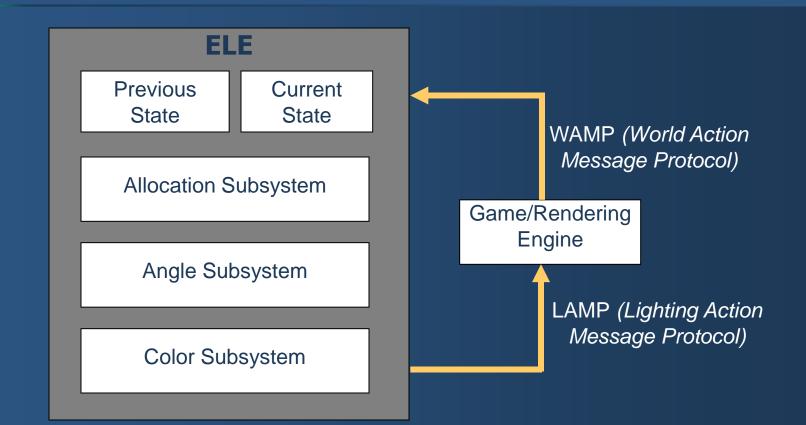
## **Lighting Design Goals**

#### Parallel dramatic tension

#### Provide mood





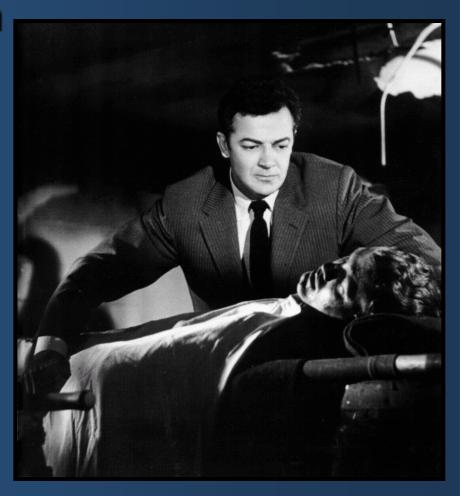

## **Conflicting Goals**

Problem:AnglesColors



Depends on style, gameplay, and context

### ELE (Expressive Lighting Engine)




The three subsystems: use optimization to find best solution given context, desired effects, state, and artists' constraints

## **Automatic light allocation**

 find best allocation depending on:
 – Modeling

- Depth
- Visibility
- Visual Continuity
- Visual Focus
- Low vs. high key



Lighting angle Selection Select azimuth, elevation angles Lighting designers specify goals: – Visual Continuity - Motivation of direction – Visibility - Modeling - Mood

ELE finds best light angles to meet goals

## **Choosing Colors**

 Color (Hue + saturation + intensity)
 Compose colors for different areas on the set







## **Choosing Colors**

Adjust colors to accommodate desired:

- Depth
- Dramatic Intensity
- Dramatic focus
- low vs. high key setting
- Specific author-suggested
  - Hue, Saturation, Lightness, color Warmth for focus, non-focus, and background
    - Palette restrictions specifying style
- + maintain *visual continuity* and *style*

#### Demos

### **Dynamic Intelligent Cinematic Lighting**

can make a difference in games

# Demo (Dynamic Lighting)

Movie with ELE

# **Demo (Static Lighting)**

Movie without ELE

#### Use of color in the Demo

Red means danger
Saturation is the level of danger
Green means health

Dynamically accommodating the interaction

## Conclusion

#### ELE:

 Intelligently adjusts lighting in realtime accommodate <u>context</u> and <u>effect</u>

-Based on *cinematic theory* 

 Allow artist to control lighting at a high-level

 Takes the artist 10% in the way (lighting style sheet)