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Abstract iii 

An architecture was investigated which allows a high 

degree of concurrent processing during direct execution of 

APL statements. It consists of four modules called the 

Execution Unit (EXU) , Data Manipulation Unit (DMU) , 

Arithmetic-Logic Unit (ALU), and Input-Output Unit (IOU). 

Each module represents a subset of the processing needed to 

synthesize a complete APL environment. These modules 

communicate in a multiprocessing network. 

Research was concentrated on the DMU, which implements 

an APL workspace and all array storage and access 

activities. A configuration was achieved that greatly 

minimizes the number of main memory accesses for all APL 

statements. For those operations which require array 

accesses, performances equal to main memory speeds can be 

achieved. 
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I n t r o d u c t i o n  

L 

A t  p r e s e n t  APL and LISP a r e  t h e  t w o  main l anguages  

which p r w  i d e  power fu l  a r r a y  p r o c e s s i n g  p r i m i t i v e  

i n s t r u c t i o n s .  Both l anguages  have a  s t r o n g  t h e o r e t i c a l  b a s i s  

and a  long  h i s t o r y  of implementa t ion .  APL was des igned  to  be 

c o n s i s t e n t  w i t h  e x i s t i n g  v e c t o r  and t e n s o r  t h e o r y  w h i l e  LISP 

is based on Lambda C a l c u l u s  [MIC73]. There have been 

t e n d e n c i e s  to  ex tend  bo th  APL and LISP to  remwe t h e  

i n a d e q u a c i e s  of each and w e n  to  combinine t h e  t w o  [JEN801 . 

The p r imary  o b j e c t i v e  of t h i s  t h e s i s  i s  to  r e f l e c t  on 

t h e  d e s i g n  of a  memory a r c h i t e c t u r e  f o r  a  h i g h  performance 

m u l t i - p r o c e s s o r  APL computer .  T h i s  o b j e c t i v e ,  however,  

r e q u i r e s  some c o n s i d e r a t i o n  of t h e  s t r u c t u r e  of APL, some 

e x t e n s i o n s  to i t ,  and t h e  o v e r a l l  a r c h i t e c t u r e  of a  machine 

to  e x e c u t e  t h e  l anguage  e f f i c i e n t l y .  These m a t t e r s  w i l l  be 

c o n s i d e r e d  f i r s t  a s  t h e y  i n f l u e n c e  t h e  memory a r c h i t e c t u r e . .  

The r e s u l t s  of t h e  i n v e s t i g a t i o n s  w i l l  be a  h y p o t h e t i c a l  

machine c a l l e d  "MAPLE" which shou ld  be manufac tu rab le  u s i n g  

c u r r e n t  m i c r o e l e c t r o n i c  e n g i n e e r i n g  p r a c t i c e s .  The f o l l o w i n g  

is t h e  s e t  of o b j e c t i v e s  f o r  MAPLE'S d e s i g n .  



-Define t h e  l anguage  to  be implemented and de te rmine  t h e  

n a t u r e  of t h e  t a s k s  to  be performed i n  i t s  e x e c u t i o n .  

- O u t l i n e  a  machine a r c h i t e c t u r e  which c a n  ' e f f i c i e n t l y  

e x e c u t e  t h e  language.  An a r c h i t e c t u r e  which e x p l o i t s  

p a r a l l e l  p r o c e s s i n g  where p o s s i b l e ,  and is modular f o r  e a s e  

of implementa t ion .  

-Define ( i n  d e t a i l )  t h e  r e q u i r e m e n t s  f o r  t h e  memory 

a r c h i t e c t u r e .  T h i s  i n v o l v e s  i n v e s t i g a t i o n  of t h e  workspace 

o r g a n i z a t i o n  and a r r a y  s t o r a g e / a c c e s s  methods. 

T h i s  t h e s i s  w i l l  a d d r e s s  t h e  a b w e  o b j e c t i v e s  wi th  

emphasis  on t h e  d e s i g n  of t h e  memory a r c h i t e c t u r e  and 

workspace s t r u c t u r e .  Indep th  i n v e s t i g a t i o n  of t h e  

remaining a s p e c t s  of MAPLE'S d e s i g n  w i l l  be  l e f t  f o r  f u t u r e  

r e s e a r c h .  



T h i s  t h e s i s  is d i v i d e d  i n t o  f o u r  a r e a s  of d i s c u s s i o n .  

Chapter  1 c w e r s  t h e  f i r s t  a r e a ,  d i s c u s s i n g  t h e  p r o p e r t i e s ,  

problems,  and e x t e n s i o n s  of t h e  APL language.  I n  c h a p t e r  2 

t h e  S t a t e  of t h e  A r t  of APL and a r r a y  p r o c e s s i n g  sys tems 

w i l l  be  d i s c u s s e d .  Then i n  c h a p t e r s  3 through 6 an  

implementa t ion  of MAPLE w i l l  be d i s c u s s e d .  T h i s  i n v o l v e s  

d e s c r i p t i o n s  of both  i t s  a r c h i t e c t u r e  and e n g i n e e r i n g .  I t  is 

i n  t h i s  t h i r d  a r e a  t h a t  MAPLE'S main p r i o r i t i e s  w i l l  be  

covered .  Chapter  7 examines t h e  performance  expec ted  from 

t h e  a r c h i t e c t u r e  a long  w i t h  some s u g g e s t i o n s  f o r  f u t u r e  

improvements w i t h  a  summary of how w e l l  t h e  o b j e c t i v e s  of 

t h i s  t h e s i s  were m e t .  



1.1 The APL language 4 

The APL language prw'ides a set of array processing 

operations suitable for a wide class of applications. 

K.E. Iverson [WE621 is credited with the language's 

invention, proposing it as a mathematical notation for 

describing array theory as it applies to Tensor Algebra. The 

language's extensions and implementations are credited to 

numerous others [FAL641 , [BRE68] . 

APL obtained worldwide recognition when the first 

machine implementations were successful during the late 

1960's. However, its availablity was and is not now 

widespread partly due to the vast complexities in 

implementing the language on existing hardware and the lack 

of skilled personnel to do so. 

Appendix 1 contains a partial description of the 

syntax for APL expressions (which is the basic procedural 

unit of the language). For a more complete description of 

APL's syntax and execution see [FAL79]. 

It is apparent from appendix 1 that the expression 

syntax is not complex. However, what is not obvious is the 

reason the language is almost always interpreted and not 

compiled. This can be explained by two facts: Firstly, 

interpretation is not a complex task, easing implementation 

and allowing a highly interactive environment for the user; 

Secondly, the dynamic nature of the data makes compilation 

very difficult (there have been a few partially successf ul 

incremental compilers for APL [JOHN79]). 



, 

The advantages of APL are far more numerous than its 

disadvantages. Its strengths arise from its powerful array 

manipulation primitives which allow concise statements about 

a problem in a consistent manner. 

The problems of any APL system can be considered in two 

separate classes. The first class results from the 

implementation , i.e. how the logical and language concepts 

were transferred to an actual machine. The implementation 

has more effect than any other feature in reducing the 

usefulness of an APL system. The implementation affects the 

efficiency of the language in carrying out the instructions 

contained in it. However, all implementation problems can be 

cured by the suitable choice of machine architecture. 

The second class of problems result from the language 

itself. The current definition of the language has many 

restrictions on operators, primitives, and user defined 

f unctions/arrays ( [ABR75] describes some aspects of what is 

wrong with A P L ) .  Nearly all of these restrictions are the 

result of defining a useable system within the constraints 

of the machine technology at definition time. 



An implementa t ion  e f • ’ o r t  may be d i v i d e d  i n t o  t h r e e  

p h a s e s ,  Workspace Management, Ar ray  Reference/  Opera t ion  

Algor i thms ,  and User/ Opera t ion  System I n t e r f a c e s .  Workspace 

Management i n c l u d e s  dynamic changes  i n  s i z e  and a t t r i b u t e s  

of a r r a y s  d u r i n g  e x e c u t i o n  and m a i n t a i n i n g  a s s o c i a t i o n s  

between a c c e s s i b l e  a r r a y s  and t h e i r  names. The s p e c i f i c  

problems of Workspace Management w i l l  be a d d r e s s e d  i n  

c h a p t e r  4.  

The problem of r e f e r e n c i n g  a r r a y s  i n  t h e  v a r i o u s  modes 

and manners which APL r e q u i r e s  i s  a  v e r y  complex t a s k .  These 

i n v o l v e  a l g o r i t h m s  to  select s u b s e t s  of d a t a  from a r r a y s  i n  

an  a lmos t  a r b i t r a r y  f a s h i o n .  These a l g o r i t h m s  of t e n  imply a  

l a r g e  amount of d a t a  movement. I f ,  however,  i t  c a n  be 

recogn ized  when such movements a r e  n o t  r e q u i r e d ,  t h e n  

s i g n i f i c a n t  improvements c a n  be r e a l i z e d .  I t  w i l l  be t h e  

s u b j e c t  of c h a p t e r  5 ,  on t h e  DMU, t o  s u g g e s t  a n  a r c h i t e c t u r e  

f o r  t h e  e f f i c i e n t  e x e c u t i o n  of t h e s e  a l g o r i t h m s .  T h i s  phase  

of an implementa t ion  c o v e r s  what i s  g e n e r a l l y  c a l l e d  t h e  

e x e c u t i o n  ( i n t e r p r e t a t i o n )  of t h e  language.  

The remaining problems l i e  i n  i n t e r f a c i n g  t h e  u s e r  to  

t h e  system. T h i s  r e q u i r e s  e d i t i n g  p r o v i s i o n s  f o r  APL 

programs and d a t a  and a  p r o p e r  i n t e r a c t i v e  environment .  Some 

of t h e s e  problems w i l l  be a d d r e s s e d  i n  c h a p t e r  6 on t h e  I O U .  



1.2 APL Problems and Correction Suggestions 7 

The problems of the APL language and its restrictions 

will be discussed first and the implementation left for the 

later chapters. All APL arrays must be homogeneous. That is, 

all elements must be chosen from either character or 

numerical scalars. Certain applications, however, (such as 

those LISP is often used for) require that elements of an 

array be chosen from a set of arrays (an example is, lines 

of a paragraph which are varying length character vectors 

grouped together). This requires the concept of a 

"Generalized Array" where each element of an array can be 

any data object, allowing the expression of arrays of 

arrays. 

A substantial effort in extending APL to include this 

concept has been addressed by E.Edwards [EDW73], R.Murray 

[MUR73] , H.Haegi [HAE76] , and T.More [MOR79] (also [VAS73] , 
[GHA76] , [GUL76] , [JEN781 , and [PIE791 ) . The extension 

proposed here follows that which E.Edwards proposed. The 

details of this extension are still controversial in the APL 

community and will be left somewhat open for future changes, 

but a need for this extension has been shown to be genuine. 



This extension to generalized arrays can be summarized 

by two concepts. The first is that of a "List" scalar, which 

is the scalar element for all generalized arrays. The second 

concept is a set of mechanisms which allow the user to 

transform any array into a list scalar or any list scalar to 

an array. These are the dual processes of "Imbed" and 

"Expose" respectively. c.f. Table 1.2.1 for examples. 

The rules for indexing are given in appendix 1 under 

the rules of expression syntax (subexpression Iexpression) . 
Though the concept of indexing is well defined in APL it 

lacks the symmetrical form that all the other primitives 

have. This will be rectified by the introduction of the 

dyadic selection primitive "Index". 

This primitive is described in the CDC*APL system 

[CDC*APL] . Basically, it is a dyadic function where the 

right argument is the array to index, while the left 

argument is a "List" of indices. This index list has as many 

components as the array has axes, and the arrays imbedded 

within this list are indices within these axes. Table 1.2.2 

illustrates this primitive. 



T A B L E  1 . 2 . 1  

E X A M P L E S  OF L I S T S  
I 

X + ' H E L L O t  oUIO+O 
Y c l T H I S  I S  A  LONGER S E N T E N C E 1  
Z+2 5 p 1 1 0  

L + ( c X )  , ( c Y )  , c z  
A C R E A T E  T H E  L I S T  L  



S A B L E  1 . 2 . 2  
E X A M P L E S  OF T H E  I N D E X  P R I M I T I V E  

I + ( c Y )  , c Z  
I n X  n A L T E R N A T  r v r ~  Y 
X 4 2  3 3 5 p Z  A C O N S I D E R  T H E  ARRAY X  
XC ; ; 1  ; Y I  AONE A C C E S S  OF X  
X C Y ; 1 ; ; 1  R A N O T H E R  S I M I L A R  A C C E S S  
E t c O p c O  RAN EMPTY L I S T  
I + E , E , ( c l ) , c Y  
I n X  A F I R S T  A C C E S S  
($1)  nX ASECOND A C C E S S  



It is not my intention to remove the syntax for the 

index subexpression, but rather to augment it with the index 

primitive. Since all former cases of indexing can be reduced 

to expressions involving the "Index" primitive, an actual 

machine implementation may translate the former syntax into 

equivalent expressions with "Index". However, this extension 

should be made available to the user as complex indexing 

expressions can therefore be assigned to variables for later 

use, something which is not possible with present APL. 

In the introduction of the "Index" primitve it must be 

recognized that indexing is a true selection process and as 

such must be made to have the same syntax form as the other 

selection primitives. However, within the current APL, 

indexing is given a special property in that it can be 

involved in an assignment process. Table 1.2.3 shows the 

operation of assignment as currently supported along with 

the proposed extension to assignment. 

Assignment's extension can be best described as 

allowing the assignment of one array into another array of 

similar shape and type, if the left argument represents a 

subset of a named object. The old definition restricted this 

to only a named object or a subset of a named object 

generated by indexing. This more general principle was 

recognized by a group at CDC when they implemented CDC*APL 

[CDC*APLl , so they proposed and implemented part of the 

definition of table 1.2.3. 



TABLE 1 . 2 . 3  
I 

EXTENDED ASSIGNMENT 

PREVIOUS D E F I N I T I O N :  NOBJECTcEXPR 
NOBJECT[IEXPRl+EXPR 

EXPR: V A L I D  APL EXPRESSION 
I E X P R :  INDEXING EXPRESSION 
NOBJECT: A NAMED OBJECT 

RAFTER ASSIGNMENT THE TERM TO LEFT OF ASSIGNMENT ( L T )  
RAND TERM TO RIGHT ( R T )  HAVE THE FOLLOWING PROPERTY 

A /  ,LT=RT 

PROPOSED D E F I N I T I O N :  SE (SELECTION EXPRESSION)  
SEcEXPRESSION 

S E :  NOBJECT 
Q S E  
EXPRQSE 
OS E 
EXPROSE 
EXPRpSE R N O  CYCLES 
E X P R / S E  
EXPRnSE 
EXPR+SE R N O  OVERTAKE 
EXPRSSE 
s S E  

RAND THE FOLLOWING S P E C I A L  CASE 
EXPR\SE 

R A L L  THE ABOVE EXCEPT THE LAST FOLLOW ( A / . S E = E X P R )  
RAFTER ASSIGNMENT .THE LAST DOES UNDER THE FOLLOWING RULE 
R (EXPR\SE)++( -EXPR)  /EXPR\SE 



I 

The nature of the selection operations that were 

allowed in the CDC* proposal restricted the usable 

primitives to Transpose, Rotate, Take, Drop, Reshape, Index. 

That is, the pure selection primitives. The proposal to be 

made here is to also allow assignmemt into selection 

expression (either temporary or named objects) and to allow 

in addition the use of both compression and expansion as 

valid selection primitives. c.f table 1.2.4 . This extension 
was briefly introduced by E.Edwards in describing 

improvements to the APL language [EDW80] . 

A useful set of expansions to the APL language involves 

generalizations in the data types allowable, the first of 

which is the extension of the numerical scalars to the 

complex scalars. This allows the inclusion of the current 

reals and allows many primitives to produce complex results., 

Many of the primitives have natural extensions to the 

complex domain and have been treated by P.Penfield [PEN79]. 

While there is still debate concerning the extensions 

of some of the primitives to the complexes, one may choose 

at this time to trap their results to domain errors or some 

suitable value. It is important that this data type be 

allowable to extend the use•’ ulness of APL to the scientific 

community. 



T A B L E  1 . 2 . 4  

EXAMPLES OF EXTENDED ASSIGNMENT 
I 

A [ ( - T ) / I  14  P A ;  ]+B oA+T+A 
R I N S E R T  NEW ROWS B ,  I N T O  MATRIX A ,  A S  
R G I V E N  BY T .  WITH CONVENTIONAL ASSIGNMENT 
RNOW W I T H  EXTENDED ASSIGNMENT 
( T + A ) + B  

A C T / I  l t p A ;  l 4 B  
AREPLACE ROW OF A  BY ROWS B  AS  G I V E N  BY T  
ROR 
( T f A ) + B  

G 1 [ 6 + 1 6 ; 3 + 1 3 l + G 2  
n A S  OPOSED TO 
( 6  3 4 6  3 + G l ) + G 2  

( 3  2 t B ) + O o B + 1 0  5 0 p l  
n I N I T I A L I Z E  A  MATRIX AND I T S  SUBMATRIX 
( 1  l Q I ) + l o I + l O  l o p 0  
ACREATE I D E N T I T Y  MATRIX 

G + ( N , N ) p t  ' 
( 1  l Q G C X ; Y I ) + ' * '  
RGRAPH PLOTTER 



Another d a t a  t y p e  t h a t  needs  expanding i s  c h a r a c t e r  

d a t a .  I n  a lmos t  a l l  sys tems ,  e x c e p t  f o r  advanced g r a p h i c s ,  

t h e  set  of c h a r a c t e r s  is  s m a l l  and u n a l t e r a b l e .  Tha t  is ,  i n  

F o r t r a n ,  P a s c a l ,  and APL l a n g u a g e s ,  t h e  c h a r a c t e r  sets a r e  

n o t  u s e r  def i n e a b l e .  I t  w i l l  be t h e  i n t e n t i o n  of t h i s  

e x t e n s i o n  to  APL to  p r o v i d e  a h igh  d e g r e e  of f l e x i b i l i t y  i n  

t h e  d e f i n i t i o n  of c h a r a c t e r  d a t a .  These e x t e n s i o n s  w i l l  a l s o  

a l l o w  t h e  d e f i n i t i o n  of o t h e r  I0 r e l a t e d  d a t a  t y p e s  such a s  

speech o r  g r a p h i c s .  

An a t t e m p t  t o  p r o v i d e  t h e s e  t y p e s  of e x t e n s i o n s  w i l l  be 

i n  a l lowing  t h e  u s e r  to  a c c e s s  and modify t h e  c h a r a c t e r  s e t  

d e f i n i t i o n  w i t h i n  t h e  system. T h i s  i n v o l v e s  t h e  c o n t r o l l e d  

ass ignment  to  t h e  sys tem o b j e c t  (s) which s u p p o r t  t h e  set  of 

c h a r a c t e r  s c a l a r s .  

The most i m p o r t a n t  e x t e n s i o n  t o  t h e  APL language  to  be 

proposed h e r e  i n v o l v e s  t h e  manner i n  which a r r a y s  of 

d i s s i m i l a r  s h a p e s  a r e  c o e r c e d  i n t o  conformable  shapes  d u r i n g  

t h e  e x e c u t i o n  of dyad ic  " s c a l a r "  f u n c t i o n s .  C u r r e n t l y ,  two 

a r r a y s  a r e  "conformable" i f  e i t h e r ,  b o t h  have t h e  same shape  

o r  one c o n t a i n s  e x a c t l y  one e lement .  One e lement  a r r a y s  a r e  

Reshaped i n t o  an  a r r a y  of t h e  same shape  a s  t h e  o t h e r  a r r a y  

( u n l e s s  i t  h a s  o n l y  one e lement  i n  which c a s e  t h e  a r r a y  w i t h  

t h e  h i g h e r  rank d i c t a t e s  s h a p e ) .  



I 

This is an extremely useful concept. However,as Edwards 

(in a paper on simplifying APL concepts [EDW80]) and Breed a 

few years earlier [BRE71], point out, this principle should 

be extended to allow a more general coercion of arrays. This 

is the principle of "Extended Scalar Conformability". Its 

rules follow: 

Any two arrays of the same rank are conformable IF (1) 

their shapes are identical OR (2) IF for the dimensions that 

differ, pairwise, one has dimension 1. The axes with 

dimension 1 are extended by replication along that direction 

to the dimension of the other array. 

For arrays of rank differing by 1, the "smaller" array 

can have its rank extended by 1 at a location indexable by 

the index operator. Since the two arrays now have the same 

rank the first principle can be applied. 

In the cases where the ranks differ by more than one the 

old principle of scalar conformability applies. c.f. Table 

1.2.5 for examples. 



T A B L E  1 . 2 . 5  r 3 

EXAMPLES OF EXTENDED SCALAR CONFORMABILITY 
I 

1+5 6 ~ 1 3 0  ACURRENTLY ALLOWED 
X+2 1 3pO 
Y+2 4 3 p l  ATWO ARRAYS X Y  

AONLY ALLOWABLE I F  EXTENDED 
ASCALAR CONFORMABILITY 

AEXTENDS ( p X )  TO 1  1  3  
ATHEN REPLICATES X SO 
ATHAT ( p X ) = 2  4 3  

MARKS A AN N , M  MATRIX OF MARKS 
WEIGHTS AVECTOR OF WEIGHTS (M=RHO) 
MARKS+[OIWEIGHTS AASSOCIATED MARKS BY WEIGHTS 



These p r i n c i p l e s  w i l l  be t a k e n  a  s t e p  f u r t h e r  i n  t h e  

a b i l i t y  to  coerce a r r a y s .  For t h e  c a s e s  of r a n k s  d i f f e r i n g  

by t w o  o r  more, t h e  " s m a l l e r "  a r r a y  c a n  be extended t o  t h e  

" l a r g e r "  a r r a y ' s  rank by t h e  index o p e r a t o r ,  whose argument 

i s  a  v e c t o r  of i n t e n d e d  axes .  The d e f a u l t  v a l u e s  w i l l  r e s u l t  

i n  ex tend ing  any a r r a y  a long  i t s  l a s t  c o o r d i n a t e  a x i s ,  t h e  

same a s  t h e  a b w e  p r o p o s a l  e x c e p t  more t h a n  one a x i s  is 

invo lved .  

T h i s  p r i n c i p l e  of Extended S c a l a r  

(E.S.C.) w i l l  d r a m a t i c a l l y  i n f l u e n c e  

a r c h i t e c t u r e  of MAPLE. I n  Appendix 2 an 

implementing E.S.C. is  g iven .  

Conformabi l i ty  

t h e  machine 

a l g o r i t h m  f o r  
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I 

From t h e  p r i m i t i v e s  i n  t h e i r  extended forms I s h a l l  

i n v e s t i g a t e  t h e i r  c l a s s i f i c a t i o n  i n t o  fundamenta l  g roups .  

The f i r s t  g roup  i s  o b v i o u s ,  be ing  t h e  "Numeric" p r i m i t i v e s ,  

c . f .  Tab le  1.3.1.  A p r i m i t i v e  c a n  be c l a s s i f i e d  a s  numeric 

i f  t h e  r e s u l t a n t  a r r a y  b e l o n g s  to  t h e  complex numbers. T h i s  

c l a s s  c o n t a i n s  t h e  s c a l a r  numeric f u n c t i o n s  such a s  PLUS and 

TIMES. A l s o  i n c l u d e d  a r e  such p r i m i t i v e s  a s  MEMBERSHIP and 

INDEX-OF. 

The numer ica l  p r i m i t i v e s  a l l  pe r fo rm a  t r a n s f o r m a t i o n  

from one d a t a  type  o r  v a l u e  to  a n o t h e r .  There is  a  se t  of 

p r i m i t i v e s  which do n o t  per form any such t r a n s f o r m a t i o n s .  

They a r e  t h e  " S e l e c t i o n "  p r i m i t i v e s ,  which s imply  modify t h e  

s p a t i a l  a r rangement  of an a r r a y  o r  e lse  select a  s u b s e t  of 

t h e  a r r a y ,  c . f .  Tab le  1 .3 .1 .  These s e l e c t i o n  p r i m i t i v e s  a r e  

j u s t  t h o s e  which were mentioned i n  s e c t i o n  1 .2  on s e l e c t i o n  

e x p r e s s i o n s .  

The remaining few p r i m i t i v e s  c a n  be c l a s i f i e d  a s  e i t h e r  

i n v o l v i n g  an I0 f u n c t i o n  or some e x e c u t i v e  f u n c t i o n  of 

c o n t r o l  o r  d a t a  a s s o c i a t i o n .  These l a s t  few groups  a r e  

c a l l e d  " I O " ,  " C o n t r o l " ,  and "Other"  p r i m i t i v e s  r e s p e c t i v e l y .  

Under most c i r c u m s t a n c e s  t h e  " o p e r a t o r s "  c a n  be grouped a s  

c o n t r o l  o p e r a t i o n s  o r  s e l e c t i o n  o p e r a t i o n s ,  b u t  t h e y  w i l l  

n o t  be d i s c u s s e d  h e r e .  



T A B L E  1 . 3 . 1  

A P L  P R I M I T I V E  S U B D I V I S I O N S  
I 

N U M E R I C A L  P R I M I T I V E S  
MONADIC 

- + - x ; r L  S C A L A R  
l o * @ ? !  S C A L A R  
1 4 v  S P E C I A L  

D Y A D I C  
+ - x t r ~ ~  S C A L A R  
o * e = # c s  S C A L A R  
> ~ A v * Y !  S C A L A R  
? E I T ~ ! ~  S P E C I A L  

S E L E C T I O N  P R I M I T I V E S  
MONADIC 

Q 0 ,  3 c  
D Y A D I C  

P / \ Q 0 + +  

I 0  P R I M I T I V E S  
MONADIC 

D P Flo=cl7 
D Y A D I C  

111 1 
N I L A D I C  

0 ~O=mcl' ' 
C O N T R O L  P R I M I T I V E S  

MONADIC 
+ P 

D Y A D I C  
NONE 

O T H E R  P R I M I T I V E S  
MONADIC 

D Y A D I C  



I t  is n o t  o b v i o u s  t o  which c l a s s e s  i f  a t  a l l  t h e  

"Other" p r i m i t i v e s  b e l o n g ,  b u t  upon close o b s e r v a t i o n  t h e y  

c a n  be t i e d  t o  t h e  s e l e c t i o n  p r i m i t i v e s .  The p r i m i t i v e  

"Ca tena te"  is  s imply  a  r e s t r u c t u r i n g  o p e r a t i o n  which j o i n s  

two a r r a y s  t o g e t h e r .  "Assignment" pe r fo rms  no d a t a  

t r a n s f  o r m a t i o n s  o r  re-ar rangements  b u t  e f f e c t s  a  naming of 

a r r a y s .  I n  some s e n s e  t h i s  i s  a  s e l e c t i o n  o p e r a t i o n .  

The l a s t  p r i m i t i v e  monadic nRho", i s  t e c h n i c a l l y  a  

numer ica l  p r i m i t i v e ,  b u t  it is so c l o s e l y  t i e d  to t h e  a r r a y  

it is o p e r a t i n g  upon t h a t  I have a l s o  grouped it wi th  t h e  

s e l e c t i o n  p r i m i t i v e s .  The r e s u l t  is  shown i n  Tab le  1 .3 .2 ,  

where o n l y  f o u r  g r o u p s  e x i s t .  



TABLE 1 . 3 . 2  

THE FOUR GROUPS OF APL P R I M I T I V E S  
I 

MONADICS 

NUMERIC 
- - + - x ; o * t B l  

r L ? ! a l b V  
SELECTION 

p @ Q , c 3  
I0 

CI P 
CONTROL 

* 2 

DYADICS 

NUMERIC 
+ - X ; ~ L I O * ~ B  

= f < < > l A V * Y  

! ? E l B l T  
SELECTION 

p / \ + + 9 Q t n  
I 0  

III P 
CONTROL 

N O  E X P L I C I T  DYADIC CONTROL 
P R I M I T I V E S  AS Y E T .  



APL Systems 

S/360 ~m~lementation 

This was the first successful implementation of APL, 

done in 1965 by IBM Inc. on an S/360 model 50 [BRE68]. It 

was highly successful and has set the standard for almost 

all other implementations. 

The APL language was still under developement at this 

time. The result was most of the language as it stands 

today. Much of what was put into the implementation extended 

or modified Iverson's original proposal [IVE62] . It was, 
however, far from an optimal implementation as far as 

performance was concerned, nor has that company made 

significant attempts to correct the deficiencies in their 

so•’ tware. 

They represented data as either numeric, character, or 

function.The numerics were either 1 bit integers (booleans),, 

32 bit integers or 64 bit rationals. The M50 processor was 

equiped to deal with these data types at the scalar level. 

The booleans were packed efficiently into 32 bit words. 

Character data was encoded into 8 bits and packed 4 to a 32 

bit word. The functions were condensed into an internal byte 

code string form, which was easier to interpret, allowing 

some of the text string searchs to be eliminated by doing 

the lexical analysis at edit time. 



There were many restrictions on the users of this 

system, most of which were the direct result of restricting 

the workspace size to 2*15 bytes. However later 

implementations corrected this problem. 

A number of inefficiencies existed in the execution of 

many of their primitives. All operations were explicitly 

carried out without the exploitation of "Drag Along" and 

"Beating" [ABR70]. This tended to produce very large 

temporary results compounding the problem of insufficient 

workspace size. 

I0 was primitive, providing support for hardcopy 

terminals only. There were no provisions to allow for future 

developements such as video terminals. Output of arrays was 

supported but input was character string oriented, allowing 

only a single line to be entered. 

It is my opinion that the introduction of system 

function separate from the language was a mistake. This 

negates the possiblity of generating system level software 

in APL. Later IBM implementations corrected some, but not 

all, of these problems (some system primitives were added). 

It is interesting to notice that this attempt to provide 

operating system interfaces has become a standard for most 

implementations (the standard as proposed by A.Falkoff and 

D.Orth [FAL79]). 



CDC* ~m~iementation 

This implemenation by Control Data Corporation on the 

CDC Star machine in 1973 was a radical advancement in array 

processing, both in the language and the hardware 

[CDC*STAR] . The Star architecture made heavy use of 

pipelining and vector machine instructions. Many of the 

scalar dyadic primitives could be implemented in a single 

machine instruction. 

The software made use of the ideas of Abrams in his 

thesis on an APL machine [ABR70] . They employed two types of 
data storage: one form for objects and one for object 

descriptions. These storage types will be described in 

section 2 .4 .  They allowed most selection operations to be 

delayed to the point were their explicit operation became 

unnecessary. 

Data was represented similar to the IBM implementation 

except that all data was compacted into 6 4  bit words instead 

of 3 2  and 6 4  bit words. The integers were represented as a 

special case of the rationals so that they were all 48 bits 

in length within a 6 4  bit word. Booleans were compacted to 

fit within 48 bits of a 64 bit word. Character data was 

represented as 8  bit bytes, 8  bytes per word. 



Their major extentio* to the APL language was the 

introduction of lists or generalized arrays. At present few 

other implementation have succeeded in this extention (a 

French system was described by M.Pierre having Generalized 

Arrays [PIE791 ) . Another improvement in the language was to 
allow assignment to an expression if that expression 

represented a subset of the data there (as proposed in 

section 1.2). 

MCM Implementation 

In 1973 MCM Canada succeeded in producing the first 

APL implementation to run on a microprocessor. They choose 

the Intel 8008 as it was effectively the only microprocessor 

available at the time. With some hardware enhancements to 

overcome the address space limitations of this processor, 

they managed to implement the full APL language. 

The significant features of this machine were its size, 

user inter•’ ace, and its I0 facilities. The machine's 

physical size was small allowing it to be portable. In 

actual fact the first model MCM700 was a briefcase 

implementation with provisions for battery backup within the 

same enclosure. 



The sys tem supper t e d  ' o b j e c t  paged v  i r  t u a l  memory from 

e i t h e r  t a p e  o r  d i s k  a l l o w i n g  t h e  machine to  use  a  v e r y  

l i m i t e d  RAM s t o r a g e  y e t  a l l o w i n g  l a r g e  workspaces. A l l  

o p e r a t i n g  sys tem i n t e r f a c e s  were p r w i d e d  v i a  APL quad 

f u n c t i o n s  [MCMI , a l l o w i n g  t h e  u s e r  t o  deve lope  h i g h e r  l e v e l  

o p e r a t i n g  sys tems w i t h i n  t h e  c u r r e n t  system. 

I0 a r c h i t e c t u r e  was s u b s t a n t i a l l y  improved i n  t h e  MCM 

sys tems.  They p r w i d e d  f o r  i n t e r f a c i n g  a lmos t  any a r b i t r a r y  

I0 d e v i c e ,  s u p p o r t e d  through a  set  of u s e r  a c c e s s a b l e  sys tem 

t a b l e s  d e s c r i b i n g  t h e  c u r r e n t  I0 d e v i c e  and t h e  p r o t o c o l s  t o  

use .  

The MCM sys tem took a  r a d i c a l  approach to  i n t e g e r  d a t a  

t y p e s .  Because t h e  INT-8008 i s  an  8  b i t  p r o c e s s o r ,  and t h e  

c o s t  of RAM s t o r a g e  was p r o h i b i t i v e l y  h igh  f o r  t h e  

a p p l i c a t i o n ,  t h e y  implemented an expandable  i n t e g e r  word 

s i z e .  However, t h e y  f a i l e d  to  p r o v i d e  a  s e p a r a t e  boolean 

word s i z e  ( t h e y  chose  to r e p r e s e n t  boo leans  a s  8  b i t  

i n t e g e r s )  The p r w i d e d  s i z e s  a r e  l , 2 , 3 , 4 , 5 , 6  and 7 b y t e s .  

The r e a l s  were s i m i l a r  to  t h e  f o r m a t  used by I B M ' s  

implementa t ion ,  i e .  u t i l i z i n g  8  b y t e s .  

The d e f i c i e n c i e s  of t h e  MCM sys tem were i n  t h e  

r e s t r i c t i o n s  on t h e  u s e r ,  most of which r e s u l t e d  from MCM's 

e f f o r t s  t o  minimize s t o r a g e  requ i rements .  The most s e v e r e  

r e s t r i c t s  a r r a y s  to  dimensions  of 0 to  255 ( rank however was 

u n r e s t r i c t e d ,  a l l o w i n g  up to  rank 3 2 ) .  



In MCM's naming convention only the first three 

characters had significance. This has placed a significant 

burden on users in avoiding name conflicts. Along with the 

implementation deficiences was the machine's overall 

performance at array processing tasks. For many applications 

programs executed at speeds which are too slow for normal 

use and only suitable for nonsupervised stand-alone 

operation. 

VANGUARD 2-80 Implementaion 

This is a recent APL implementation(l979) for the Zilog 

2-80 microprocessor [VAN]. It represents an almost complete 

implementation of IBM's APLSV, with a few restrictions on 

the domains of the primitives, and also with a few of the 

primitives missing. 

It represents the state of the attempts to implement. 

APL on modern low cost machines. It can best be described as 

a cumbersome and rather poorly thought out system. Very few 

options on data types were given, with booleans occupy one 

byte ,integers 2 bytes, and reals occupying 6 bytes as 

packed BCD numbers. 

A serious fault of this system is it did not make use 

of the improvements from other implementations to date, such 

as virtual memory or generalized 10. It is certainly not a 

contender in the users market for APL or array processing. 
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The most n o t i c e a b l e  a r r a y  p r o c e s s o r  sys tem o t h e r  t h a n  

an  APL sys tem is  t h e  STARAN by Goodyear C o r p o r a t i o n .  The 

a r c h i t e c t u r e  of t h i s  machine i s  r a d i c a l l y  d i f f e r e n t  than  t h e  

o t h e r  machines d e s c r i b e d  h e r e .  E f f e c t i v e l y  it c o n s i s t s  of 

many p a r a l l e l  p r o c e s s o r s  which c a n  w o r k  i n d e p e n d e n t l y  of 

each o t h e r .  

I t  c a n  b e s t  be d e s c r i b e d  a s  a  multi-ALU sys tem,  one ALU 

p e r  memory module, each memory module be ing  a b i t  a r r a y  of 

256 by 256 b i t s .  A l l  d a t a  o p e r a t i o n s  a r e  on 256 b i t  wide 

words. These l a r g e  superwords a l l o w  a h igh  degree  of 

p a r a l l e l i s m  i n  o p e r a t i o n s .  Along w i t h  t h i s  l a r g e  word w i d t h ,  

i s  t h e  a b i l i t y  to  a c c e s s  t h e  a r r a y  a long  e i t h e r  of i t s  t w o  

c o o r d i n a t e s ,  wi th  a  t h i r d  c o o r d i n a t e  s p e c i f y i n g  modules. 

With t h e  a b i l i t y  to  have modules o p e r a t e  on d a t a  i n  

p a r a l l e l ,  u l t r a  h igh  v e c t o r  o p e r a t i o n  r a t e s  c o u l d  be 

ach ieved  (approx imate ly  40 m i l l i o n  o p e r a t i o n s  p e r  second 

w i t h  o n l y  4 modules) . 

The main d i s a d v a n t a g e  of t h e  STARAN sys tem is i t s  256 

b i t  bus  s i z e .  T h i s  is  a v e r y  l a r g e  p h y s i c a l  bus  s i z e  and 

l e a d s  t o  bus  i n t e r f a c i n g  problems,  making t h e  sys tem t o t a l l y  

i m p r a c t i c a l  f o r  s m a l l  o r  medium s i z e  machine d e s i g n .  



STARAN was o r ig ina l ly  indended as  an associat ive 

memory subsystem which could be used in a pa ra l l e l  

processing environment w i t h  a host processor. STARAN 

demonstrates the use•’ ulness of having a separate data 

processor f o r  e f f i c i e n t  array processing and tha t  i f  one has 

an easy access to  array elements i n  an almost a rb i t ra ry  

manner, a s ign i f ican t  imprwement i n  performance can be 

achieved. 

Another non APL system which was intended for  array 

processing is the PEPE multiprocessor system [VIC78].It was 

once (1976) , one of the most power•’ u l  systems i n  the world, 

being composed of up to  288 pa ra l l e l  processing elements, 

c . f .  2.2.1.  

The basic u n i t s  a re  independent processors, each of 

which derives i t s  ins t ruct ion from a common source. They a l l ,  

work essen t ia l ly  in  pa ra l l e l  on separate data se t s .  Since 

the elements were weakly coupled, intercommunication was a 

bottleneck. 

For arrays of modest s i z e ,  many orders of magnitude 

imprwement w e r  conventional systems, such as  S/360, can be 

achieved ( tha t  i s ,  for  operations on single s e t s  of arrays 

such as simple scalar  dyadics).  Each of the u n i t s  can handle 

a subset of the necessary scalar  processes. 



PEPE 
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I 
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A.L.U. C-U. Associative 
output C.U. 



The problem wi th  such a sys tem is  i n  d a t a  management.It 

becomes v e r y  d i f f i c u l t  t o  mwe components between p r o c e s s i n g  

e lements .  With t h e  l a c k  of i n t e r  u n i t  communicat ions,  

complex o p e r a t i o n s  such a s  a r r a y  r e s t r u c t u r i n g  becomes a 

hor rendous  t a s k .  For t h e s e  p r o c e s s e s  each p r o c e s s o r  i n  t u r n  

must be asked f o r  d a t a .  Thus p r o c e s e s s  w i l l  i n v a r i a b l y  be 

less e f f i c i e n t  t h a n  a s i n g l e  memory s t r e a m  i n s t r u c t i o n  of 

t h e  S/360 o r  t h e  v i r t u a l  r e s t r u c t u r i n g  of t h e  CDC STAR. 

The a b w e  i s  t y p i c a l  of u s i n g  i d e n t i c a l  p a r a l l e l  

p r o c e s s i n g  e lements .  A t r a d e o f f  r e s u l t s  between t h e  

e f f i c i e n c y  of s c a l a r  dyad ic  o p e r a t i o n s  and s t r u c t u r a l  and 

i n t e r p r e t i v e  o p e r a t i o n s .  
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From the various implementations and similar systems, 

it is possible to extract the best features and those 

aspects that should be incorporated in future APL 

implementations. These features fall within two categories, 

language and machine features. I will deal with language 

features first. 

A significant language feature was the sucessf ul 

introduction of generalized arrays by CDC*STAR. Their 

aproach was similar to the proposed language extention of 

section 1.2. This same system also allowed limited 

specifications into selection expressions. 

The a b w e  two language extentions are significant as 

they increase the ability of APL to express algorithms which 

were up to then extremely awkward to express. Assignment 

into a selection expression can reduce the number of steps, 

in many APL algorithms. These two features will have a high 

implementation priority in the machine design to be 

undertaken here. 

In looking at the MCM implementation, three facts about 

the language become apparent. First, object names should 

have no significant length restrictions. 

The second was MCM-APL's inclusion of all system 

functions as primitives. The language then does not have two 

con•’ licting environments for the user to contend with. 



The t h i r d  i m p o r t a n t  f e a t u r e  of t h e  MCM sys tems was t h e  

a b i l i t y  f o r  t h e  u s e r  to  r e c o n f i g u r e  t h e  I0 sys tem d u r i n g  

e x e c u t i o n .  T h i s  is n e c e s s a r y  f o r  a s i n g l e  u s e r  machine which 

must a d a p t  to  changes  i n  t h e  I0 d e v i c e s  connec ted  to it. 

A l l  t h r e e  of t h e s e  f e a t u r e s  w i l l  have h igh  p r i o r i t y  i n  

implementa t ion .  

The impor tance  of boolean d a t a  s t r o n g l y  u r g e s  t h a t  

boo leans  be compacted to  a s i n g l e  b i t  p e r  component. T h i s  

r e s u l t s  i n  o r d e r  of magnitude i n c r e a s e  i n  s t o r a g e  e f f i c i e n c y  

and a s i m i l a r  i n c r e a s e  i n  s t r e a m i n g  speed.  

A s  f a r  a s  r educ ing  r e s t r i c t i o n s  on a r r a y  s i z e s ,  i t  i s  

b e s t  to o n l y  r e s t r i c t  a r r a y s  by t h e  amount of a v a i l a b l e  

memory and no o t h e r  f a c t o r s .  A l l  implementa t ions  which a l l o w  

"Rank" of a t  l e a s t  1 6 ,  appear  to  impose no a p p a r e n t  

r e s t r i c t i o n  on t h e  u s e r s .  MAPLE w i l l  a l l o w  "Rank" of a t  

m o s t  31. 

I f  t h e  workspace s i z e  is 2*32 words ( u n r e a l i s t i c l y  

l a r g e  workspace f o r  a s i n g l e  u s e r )  t h e n  d imensions  shou ld  be 

a l lowed w i t h i n  [O ,2*32] . The MCM sys tems i n  d e f i n i n g  

d imensions  between [O ,2*81 p l a c e d  undue r e s t r i c t i o n s  on t h e  

u s e r .  



The other array processing systems demonstrate the high 

ef f iciency of applying parallel processors to array 

processing, as increased performance for some problems 

results as more processors are introduced [MIT74]. However, 

the nature of these processors should not be as uniform as 

the PEPE system but allow specialization to achieve the 

increased efficiency. 



2.4 Array Processing Theory 36 

In 1970 P.S.Abrams in his doctorial thesis laid the 

foundations for efficient processing of APL array structural 

operations and a method of improved interpretation [ABS70]. 

Since that time a number of implementations have succesf ully 

adopted some of these techniques ( [CDC*APL] , [AMR73] ) . 

A number of important principles for array accessing 

were introduced by Abrams. Many of these are the result of 

the IBM APL/360 implementation, such as the need for 

"Descriptors" to describe the properties of arrays. 

All arrays have Rank and Dimensional parameters which 

are associated with the array itself. These must be encoded 

somewhere in memory to control the access to the arrays (any 

access algorithm must know the number of elements to access 

and in which order). 

Abrams suggested a method by which, by the introduction 

of Rank plus 1 more components to a descriptor, one can 

describe a large class of array structural operations by 

simple manipulations of the overall descriptor. He called 

the use of principles such as this "Beating". 



A s s o c i a t e d  wi th  ~ e a t i n i  i s  t h e  "Reference  Counter" .  I t  

i s  a method by which unnecessa ry  c o p i e s  of a r r a y s  c a n  be 

avoided b u t  s t i l l  p r e s e r v e  t h e  i l l u s i o n  of i n d i v i d u a l  

c o p i e s .  T h i s  is  v e r y  u s e f u l  i n  s y n t h e s i z i n g  " C a l l  by Value". 

The b a s i s  of t h e  r e f e r e n c e  c o u n t e r  i s  a s  f o l l o w s :  w e r y  

a r r a y  h a s  a s s o c i a t e d  wi th  i t  a s i n g l e  word, which i n d i c a t e s  

a  c o u n t  of t h e  d e s c r i p t o r s  which r e f e r e n c e  a  s u b s e t  of '  t h e  

a r r a y .  

Some a r r a y s  c a n  be d e s c r i b e d  by j u s t  a  d e s c r i p t o r  and 

a r e f e r e n c e  coun t .  Thus t w o  t y p e s  of d e s c r i p t o r s  a r e  

p o s s i b l e :  t h o s e  which d i r e c t l y  d e s c r i b e  an  a r r a y  w i t h o u t  any 

t r a n s f o r m a t i o n  in • ’  o rmat ion  and t h o s e  which i n d i r e c t l y  

d e s c r i b e  a  new a r r a y  based upon a n o t h e r  a r r a y  and some 

t r a n s f o r m a t i o n  i n f o r m a t i o n .  The former  w i l l  be c a l l e d  

" S t o r a g e  S t a t e  Zero" (SSO) a r r a y s  and t h e  l a t t e r  c a l l e d  

"S to rage  S t a t e  One" (SS1) a r r a y s  [CDC*GID] . 

The n a t u r e  of t h e  t r a n s f o r m a t i o n  i n f o r m a t i o n  w i l l  be 

d i s c u s s e d  now. One of t h e  components n e c e s s a r y  is t o  

i n d i c a t e  an "Off set"  i n t o  t h e  t r ans fo rmed  a r r a y ,  w h i l e  t h e  

remaining Rank components c a l l e d  t h e  "Jump" v e c t o r  i n d i c a t e  

how t o  a c c e s s  a r r a y  e l e m e n t s  a long  each of t h e  Rank axes .  An 

example of t h i s  p r i n c i p l e  is  i l l u s t r a t e d  i n  Tab le  2.4.1. 



TABLE 2 . 4 . 1  38  

P R I N C I P L E  OF S S 1  DESCRIPTORS 
I 

OFFSET:  INDEX INTO SUBSPACE DEFINED BY ARRAY 
THAT I S  INDIRECTLY REFERENCED. 

RANK: ppARRAY 
JUMP: ( p J ) = R A N K  
RHO: (pRHO)=RANK oRHO=pARRAY 

I F  ' I '  , A  VECTOR ( R A N K = p I ) ,  REPRESENTS THE 
COORDINATES INTO AN ARRAY,  THEN THE LOCATION 
OF T H I S  I ' T H  COMPONENT I S  GIVEN BY 

T H I S  DEFINES THE JUMP VECTOR 

OFFSET43 
JUMP46 1  
RHO 4 3  3  
ATHEN 



Appendix 2 c o n t a i n s  a  p r a c t i c a l  set  of a l g o r i t h m s  which 

c a n  work w i t h  SS1 d e s c r i p t o r s  t o  produce  SS1 d e s c r i p t o r s  

which ref lect  APL s e l e c t i o n  p r i m i t i v e s .  These a l g o r i t m s  were 

d e s c r i b e d  by Abramsv t h e s i s  c h a p t e r  3 ,  b u t  i n  a  s l i g h t l y  

d i f f e r e n t  n o t a t i o n .  

These a l g o r i t h m s  imply v i r t u a l  o p e r a t i o n s  on an  a r r a y ' s  

e n t i r e t y  w h i l e  having t i m e  c o m p l e x i t i e s  which a r e  l i n e a r  i n  

t h e  a r r a r y ' s  rank.  T h i s  p r o v i d e s  a  s u b s t a n t i a l  r e d u c t i o n  i n  

b o t h  t h e  t i m e  and space  c o m p l e x i t i e s  of APL s t r u c t u r a l  

p r i m i t i v e s .  Thus most s e l e c t i o n  o p e r a t i o n s  c a n  occur  a t  

speeds  independant  of t h e  number of e l e m e n t s  i n  an  a r r a y .  

I n  t h e  rea lm of s t o r a g e  e f f i c i e n c y ,  i t  is  n o t i c e d  t h a t  

t h e  r e s u l t  of t h e  monadic index g e n e r a t o r  p r i m i t i v e  c a n  be 

d e s c r i b e d  a s  an  i n i t i a l  v a l u e ,  a  c o u n t  of terms, and a  s t e p  

d i r e c t i o n  ( b i t ) .  T h i s  was t h e  p r o p o s a l  t h a t  P.Abrams , 

i n t r o d u c e d  i n  h i s  t h e s i s .  

The implementors  of t h e  CDC*APL extended t h i s  c o n c e p t  

t o  an i n i t i a l  v a l u e ,  a  c o u n t  of terms and an  increment  

v a l u e .  T h i s  l a t t e r  method d e s c r i b e s  a  c l a s s  of a r r a y  c a l l e d  

" I n t e r v a l s " .  I n t e r v a l s  a l l o w  t h e  e x p r e s s i o n  of f l o a t i n g  

p o i n t  a r r a y s  i n  which a  c o n s t a n t  term r e l a t e s  a l l  e lements .  

They r e q u i r e  j u s t  t h r e e  components to  e x p r e s s  any such 

v e c t o r s :  a  dimension t e rm,  s t a r t  v a l u e ,  increment  v a l u e .  

Such d e s c r i p t o r s  w i l l  be c a l l e d  "S to rage  S t a t e  Two" (SS2) 

a r r a y s .  



An SS2 a r r a y  r e q u i r e s t n o  memory a l l o c a t i o n  e x c e p t  t h a t  

which t h e  d e s c r i p t o r  i t s e l f  r e q u i r e s .  T h i s  l e a d s  to  

s i g n i f i c a n t  r e d u c t i o n  i n  s t o r a g e  r e q u i r e m e n t s  f o r  a  l a r g e  

se t  of v e c t o r s  s t a r t i n g  from an i n i t i a l  "Index Genera to r"  

p r i m i t i v e .  

I t  is my p r o p o s a l  t o  e x t e n d  t h e  c o n c e p t  of t h e  

I n t e r v a l ,  f rom s imply  v e c t o r s  t o  a r b i t r a r y  a r r a y s .  S i n c e  a l l  

a r r a y s  have t h e  RHO i n f o r m a t i o n  p r e s e n t ,  t h i s  e x t e n t i o n  o n l y  

r e q u i r e s  an  e x t r a  term p e r  a x i s .  T h i s  e x t e n t i o n  a l l o w s  

s e l e c t i o n  t r a n s f o r m a t i o n s  on i n t e r v a l  a r r a y s  w i t h o u t  t h e  

c o n v e r s i o n  f i r s t  to  an  SSO a r r a y ,  and hense  a l l o w  reduced 

s t o r a g e  requ i rement  ( a  s i m i l a r  p r o p o s a l  i s  supposedly  due to  

D. Samson [SAM791 ) . 

The form of t h e  d e s c r i p t o r  is  t h e  same a s  t h a t  f o r  an 

SS1 a r r a y  e x c e p t  t h a t  t h e  Off s e t  and Jump terms have  t h e ,  

d i f f e r e n t  meanings of S t a r t  and Increment  r e s p e c t i v e l y .  

There e x i s t s  one o t h e r  d i f f e r e n c e  between SS2 and SS1 a r r a y  

d e s c r i p t o r s :  an  SS2 d e s c r i p t o r  does  n o t  have a  component 

i n d i c a t i n g  an  i n d i r e c t  r e f e r e n c e  to  a n o t h e r  a r r a y .  I n  t h i s  

s e n s e  an  SS2 a r r a y  i s  s i m i l a r  t o  an  SSO a r r a y ,  i n  t h a t  o t h e r  

a r r a y s  may i n d i r e c t l y  p o i n t  t o  it. 



Abrams also addressed; in his thesis, some problems of 

APL interpretation. He and others have noticed that many APL 

statements have the nonsymmetrical property that an 

equivalent statement can be synthesized with reduced 

complexity. A few examples are given in Table 2.4.2. He 

called this principle "Drag along". 

His proposal was a stack architecture in which the 

instruction stream could be modified to effect equivalent 

semantic expressions. As this subject concerns more the 

tasks of APL interpretation and as this thesis will 

concentrate on the problem of data manipulations, it will be 

defer red as later research. 



TABLE 2 . 4 . 2  

A EXAMPLES O F  DRAG ALONG , 

A THE LEFT REQUIRES 1000 ' + '  OPERATIONS 
A WHILE THE RIGHT ONLY 3 ' + '  OPERATIONS. 
A HOWEVER, LEFT DOES ALL 1000 DOMAIN CHECKS 
A WHILE RIGHT ONLY 3 .  

A WHILE ACCESSING ELEMENTS OF ALL ARRAYS 
A SIMULTANEOUSLY ONE ELIMINATES TEMPORARY 
A ARRAYS. 
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A s  was seen  i n  s e c t i o n  1 . 3 ,  t h e  d i v i s i o n  of t h e  

p r i m i t i v e s  of t h e  APL language  r e s u l t e d  i n  4  c l a s s e s  of 

o p e r a t i o n s ,  l e a d i n g  t o  Tab le  1 .3 .2 .  These f o u r  g roups  a r e  

a lmos t  m u t u a l l y  e x c l u s i v e  and s u g g e s t  d i f f e r i n g  hardware.  I t  

was t h i s  d i v i s i o n  which i n f l u e n c e d  MAPLE'S d e s i g n .  

The developement of a  p r o c e s s i n g  machine f o r  t h e  

numeric p r i m i t i v e s  is t r e a t e d  e l sewhere  [GIL74]. I n  

p a r t i c u l a r ,  most of t h e s e  p r i m i t i v e s  ( s c a l a r  ones )  l e n d  

themse lves  to e f f i c i e n t  p i p e l i n i n g  t e c h n i q u e s .  I n  g e n e r a l  

they  can  be c l a s s i f i e d  as having one o r  t w o  i n p u t  d a t a  

s t r e a m s  and one o u t p u t  s t r e a m ,  w i t h  no r e q u i r e d  s t o r a g e  of 

operands  p a s t  t h e  immediate o p e r a t i o n .  

I0 p r o c e s s i n g  i n v o l v e s  s i n g l e  d a t a  s t r e a m  p a t h s ,  t o  and 

from I0 d e v i c e s ,  w i t h  p o s s i b l e  d a t a  c o n v e r s i o n s  a long  t h e  

way. The n a t u r e  of t h e  I0 d e v i c e s  may be dynamic so t h a t  , 

l o c a l  c o n t r o l  of them may be r e q u i r e d .  Such is t h e  c a s e  of 

m u l t i p l e  d e v i c e s  r e q u i r i n g  d i f f e r i n g  d r i v e  f u n c t i o n s  and t h e  

c a s e  of v a r i a b l e  communication p r o t o c o l s .  These f u n c t i o n s  

c a n  b e s t  be c o n t r o l l e d  a t  t h e  i n t e r f a c e  l e v e l  v i a  an I0 

p r o c e s s o r  ( t h i s  is  t h e  d e s i g n  p h i l i s o p h y  of t h e  IBM S/360 

w i t h  i t s  I0 c o n t r o l  u n i t s  and c h a n n e l s ) .  



The s e p a r a t i o n  of t h e  s e l e c t i o n  p r i m i t i v e s ,  is a g a i n ,  a  

n a t u r a l  one. They perform no t r a n s f o r m a t i o n s  upon t h e  a c t u a l  

e l e m e n t s  of an  a r r a y ,  b u t  o n l y  on i t s  o v e r a l l  s t r u c t u r e  a s  

i t  r e s i d e s  i n  memory. P. Abrams [ABR70] h a s  shown t h a t  

g e n e r a l i z e d  s e l e c t i o n  o p e r a t i o n s  on a r r a y s  c a n  be  performed 

by a  s i n g l e  a l g o r i t h m  i f  a  c e r t a i n  r e p r e s e n t a t i o n  i s  taken .  

The need f o r  l o c a l  c o n t r o l  of memory management 

f u n c t i o n s  and some sys tem o p e r a t i o n s  was a l s o  shown to  be 

t r u e  i n  an a r t i c l e  by D. Samson [SAM79]. T h i s  l e a d  to  t h e  

c o n c e p t  of a  smar t  memory mach ine , the  Data  Manipu la t ion  U n i t  

(DMU) , which is d e s c r i b e d  i n  c h a p t e r  5. 

S e c t i o n  2.4 d i s c u s s e d  t h e  work by Abrams on APL machine 

d e s i g n ,  which showed us  t h a t  an  APL machine must d i v i d e  t h e  

work of program e x e c u t i o n  i n t o  e x c l u s i v e  t a s k s  ( c h a p t e r  3 , 4  

[ABS701) . What t h e s e  t a s k s  a r e  depends upon t h e  approach , 

t aken .  H e  d e s c r i b e s  a  sys tem of a t  l e a s t  t w o  p r o c e s s o r s :  

t h a t  of a  D-machine and an  E-machine, where t h e  f i r s t  

p roduces  code  f o r  t h e  second. I t  was n o t  h i s  c o n t e n t i o n  t h a t  

such a  sys tem was o p t i m a l ,  b u t  t h a t  a n  improvement i n  t h e  

e x e c u t i o n  c o u l d  r e s u l t  i f  s p e c i a l i z e d  p r o c e s s i n g  was 

p r e s e n t .  

The o r g a n i z a t i o n  t a k e n  h e r e  is s i m i l a r  t o  t h a t  t a k e n  i n  

t h e  STARLET sys tem [GIL74] . T h i s  h y p o t h e t i c a l  machine ' s 

a r c h i t e c t u r e  was a l s o  i n s p i r e d  by Abrams's t h e s i s  and i s  

shown i n  f i q u r e  3.1.1. These p e o p l e  adopted  a  m u l t i p r o c e s s o r  
i 

sys tem wi th  v e r y  s p e c i a l i z e d  p r o c e s s o r s .  



I 

Where the STARLET was a tightly coupled system of 

dependent elements, MAPLE is a more loosely coupled system 

of independent processors. The major architectural 

similarities between MAPLE'S design and the STARLET'S, are 

that both are array processors and are multiprocessor based, 

and both may make use of pipelining techniques. 

The design philosophy of MAPLE is to allow a maximum 

amount of concurrency to occur during execution and a very 

modular approach to the architecture. The result will be 

that changes in language or hardware will have minimal 

effect upon the organization of the machine. This will be 

realizable through four specialized processors, each of 

which has a minimal instruction set and no fixed internal 

organization. 

Johannsen[JOH781 describes an architecture for a system 

of microprogrammable modules. Together they allow modular 

construction of complex processors. It was his contention 

that the separation of a single processor's functions into 

separate units (even at the microprogram level) allows for a 

more efficient processor design. Here, it is my intention to 

describe a more systematic and efficient approach to a high 

level machine design, through the use of parallel processing 

and multiprocessing. 



STARLET SYSTEM 

I OPERATING I 
SYSTEM & 

10 PROCESSOR 

PROCESSOR r- 
Figure 3.1.1 



This attitude of modulaiity is shown strikingly in two 

papers by Hobson [HOB80-11 [HOB80-21. Described in the first 

is an approach towards specialized processing elements to 

achieve high level language implementations and in the 

second is a system which is suitable for high level langauge 

interpretation using multiprocessing (specifically for an 

array language like APL) . 

MAPLE is similar to a CDC STAR 100 computer system 

running APL [APL*STAR] in that both provide array operations 

at the machine level, and support an extended version of 

APL. They are, however, radically different as far as 

machine architectures are concerned [CDC*STAR] . 



3.2 MAPLE'S Architecture 48 

MAPLE is a moderately'coupled multiprocessor system, 

each processor having its own local store for buffering of 

data/instructions. There are four processors or units in 

this system each with specialized functions. They are the 

Execution Unit (EXU) , the Input Output Unit (IOU) , the 

Arithmetic and Logic Unit (ALU), and the Data Manipulation 

Unit (DMU) . 

The EXU is responsible for interpretation and execution 

control of the language. It will cache the functions that it 

is interpreting and in so doing issue instructions to the 

other three units so that the statements can be executed. 

The IOU supplies the interface between the user and the 

system. This is accomplished through control of various I0 

devices and high l w e l  editing features. All data formatting 

and conversions for display are performed by this unit. 

The ALU is a high perfomance arithemetic unit which 

performs all scalar operations. It produces numerical 

results only. 



The DMU is the most important and complex of the four 

units. It performs all main memory storage and management 

functions along with the APL selection functions. It also 

performs all the associations between array names and their 

actual locations in memory. The actual accessing of arrays 

is through the DMU in the form of a vector data strearn onto 

a common time multiplexed bus. Figure 3.2.1 shows a 

simplified view of the overall arrangement. 

These four processors will be combinations of existing 

microprocessors and microprogrammed hardware. The total 

number of processing elements is not fixed but will be 

greater than four. Their functions and locations will be 

grouped into the four separate machine units. 

The next chapter will investigate most of the problems 

in implementing the workspace in which all arrays reside . 

(the workspace being a logical entity supported within the 

DMU) . 
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CHAPTER 4 The Workspace 51 

This chapter covers , the data structures that exit 

within MAPLE and the implementation problems they generate. 

Here I am mainly concerned with implementing an APL 

workspace and the architecture necessary to support the 

workspace. 

The workspace is constructed in R/W RAM memory by the 

organization of arrays into distinct subspaces of this 

memory. The memory architecture of MAPLE will consist of a 

single large bit addressable store in which all arrays and 

system objects are located. 

The reason for only a single memory module was, the 

separation of memory into multiple units was not conducive 

to easy array maitenance and memory management. The only 

advantage of multiple memories seems to be in modularity but 

this is overshadowed by the simplicity of a single store. No 

speed improvements can be obtained unless multiple buses 

exist (a far too complex and untidy situation). 



The m a j o r i t y  of main memory a c c e s s e s  w i l l  be i n  t h e  

form of word f e t c h e s  ( a  word i s  some number of b i t s ) .  For 

e f f i c i e n c y ' s  s a k e ,  main memory w i l l  a c c e s s e d  i n  word u n i t s  

b u t  a d d r e s s e d  a t  t h e  b i t  l e v e l .  The c h o i s e  t a k e n  f o r  MAPLE 

was 16  b i t s  p e r  word due t o  t h r e e  f a c t o r s :  (1) i n c r e a s e d  

word s i z e  must be o f f s e t  by i n c r e a s e d  bus  s i z e  and 

c o m p l e x i t y .  (2)  memories a r e  t e n d i n g  to  be s t a n d a r d i z e d  i n  8 

b i t  wide 1.C.s  s u g g e s t i n g  t h e  d e s i r e a b i l i t y  of m u l t i p l e s  of 

t h i s  width .  (3)  16 b i t s  is  becoming a  p o p u l a r  width f o r  

m i c r o p r o c e s s o r s  w i t h  r e s u l t a n t  hardware a v a i l a b i l i t y .  

A s  16  b i t s  is  t h e  fundementa l  a c c e s s  u n i t  of memory it 

makes s e n s e  to  b a s e  t h e  a d d r e s s i n g  on t h i s  u n i t .  However, 16 

b i t s  is t o t a l l y  i n a d e q u a t e  to  r e p r e s e n t  a  s u f f i c i e n t  a d d r e s s  

s p a c e  (2*16 =65K) e s p e c i a l l y  i f  b i t  a d d r e s s i n g  i s  d e s i r e d .  

By u s i n g  t w o  words or 32 b i t s ,  2*32 b i t s  o r  2*28 words c a n  

b e  a d d r e s s e d  (16 b i t s  p e r  word) .  T h i s  amounts t o  537 m i l l i o n .  

b y t e s  of a d d r e s s a b l e  s t o r a g e  o r  one h a l f  g i g a b y t e .  

With t h e  c u r r e n t  t r e n d s  i n  memory t echno logy ,  between 

1 0  to  100 megabytes of RAM s t o r a g e ,  w i t h  100 nanosecond 

a c c e s s ,  w i l l  be a v a i l a b l e  i n  t h e  nea r  f u t u r e  f o r  a  few 

thousand  d o l l a r s  and f i t  w i t h i n  a  minicomputer frame.  A s  

t h i s  is b e i n g  w r i t t e n ,  one  megabyte of RAM s t o r a g e  costs a  

few thousand  d o l l a r s  and would occuppy f o u r  f i v e  by t e n  

i n c h  b o a r d s .  



For many applications a few megabytes of storage is 

sufficient. However, if expansion is to take place without 

modification to the system software, the address space 

should be large enough. Thus the choice of a 32 bit address. 

Note currently there are available 2*16 bit RAMs with 

the desired access times. With the introduction of 2*20 bit 

RAMs the memory size expectations will be realized. 
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All arrays require storbage, with some requiring more or 

less depending on data class and structure. For the purpose 

of memory management, all arrays can be considered as memory 

segments characterized by a beginning address and length. 

Segments are contiguous nonwerlapping regions of address 

space. 

Memory Management is now defined as the processes 

which handle both requests for new storage, called 

"Allocation" and the release of storage which is no longer 

in use, called "De-allocation". The problem that APL 

presents to memory management is that both the address and 

size of arrays are dynamically changing, in contrast to 

systems in which most arrays have static memory 

requirements. An example of APL1s dynamic nature is 

exemplified in the primitive class of scalar dyadic 

functions. These primitives always generate a totally new. 

array, which requires temporary storage based upon the size 

and nature of its arguments. 



The most important requirement of an APL system is  the 

a b i l i t y  to  reassign to  any object  a t o t a l l y  new array with 

a rb i t ra ry  charac te r i s t ics .  T h i s  has the e f fec t  that  the old 

storage associated w i t h  an object  is released, without being 

used towards the new storage for  tha t  same object.  If the 

system t r i ed  to  overwrite an array w i t h  i t s  update then data 

in tegr i ty  would be jeopardized. The new data is therefore 

generated and reassigned to  the object ,  releasing the old 

data. 

A second requirement on segments in  an APL workspace is 

tha t  the memory subsystem allow Random Access into  arrays 

along w i t h  the usual sequential access for  scalar  dyadics. 

I f  the address subspace of a segment i s  contiguous then t h i s  

is  eas i ly  sa t i s f i ed .  

An APL workspace can be part i t ioned in to  two se ts :  the 

s e t  of a l l  segments associated w i t h  arrays and the s e t  of 

a l l  unused contiguous address subspaces (whose elements are 

cal led "holes").  These segments and holes can be scattered 

throughout the workspace or ordered depending on the memory 

management system used. A l l  memory management systems 

(dynamic systems as  defined i n  t h i s  thes i s )  can be 

characterized by the existance of holes and segments and the 

propert ies t h a t ,  a l l  "al locations" are taken from holes and 

a l l  "de-allocations" turn segments in to  new holes. 



There a r e  b a s i c a l l y  t w o  g e n e r a l  methods f o r  t h e  

management of memory, c a l l e d :  (1) Hole Tab le  Maintenance and 

( 2 )  Address Maintenance.  The former  m a i n t a i n s  an  i n v e n t o r y  

of segments and h o l e s  and r e a r r a n g e s  segments ,  w h i l e  t h e  

l a t t e r  t r i e s  t o  remove t h e  c o n t i g u o u s  requ i rement  p l a c e d  on 

segments .  Address  Maintenance is examined f i r s t  (it was n o t  

t h e  method chosen f o r  MAPLE'S memory management). 

Address Maintenance a t t e m p t s  t o  a l l o w  p a i r s  of segments 

o r  h o l e s  to  be  l i n k e d  t o g e t h e r  to  g e n e r a t e  a new segment o r  

h o l e ,  w i t h o u t  t h e  need to  p h y s i c a l l y  mwe any of t h e s e  

subspaces .  There a r e  t w o  methods which accompl ish  t h i s :  

f i r s t ,  r e g i o n s  (pages)  of memory c a n  be l i n k e d  i n  a l i n k e d  

l i s t  where each r e g i o n  p o i n t s  t o  i t s  s u c c e s s o r ;  and second ly  

pages  ( r e g i o n s )  can  be mapped t o  an  i somorphic  space  v i a  a 

t r a n s l a t i o n  t a b l e .  

Both methods a l l o w  r e g i o n s  and hence segments  to  appear  

a s  c o n t i q u o u s  s e q u e n t i a l  a d d r e s s  s u b s p a c e s ,  however,  o n l y  

t h e  t r a n s l a t i o n  method a l l o w s  random a c c e s s  w i t h i n  t h e s e  

subspaces  (guaran teed  by t h e  d e f i n i t i o n  of an  isomorphism) . 
c f .  f i g u r e  4.1.1. 
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Consider  a  p u r e  Address Maintenance sys tem,  w i t h  no 

Hole Tab le  maintenance.  Wi th in  t h e  subspace  r e p r e s e n t e d  by 

t h e  pages  of a  segment ,  t h e r e  c a n  be o n l y  one a r r a y .  A l l  

a r r a y s  w i l l  have t h e  same v a l u e  of o f f  s e t  ( u s u a l l y  z e r o )  

i n t o  a  page f o r  t h e i r  f i r s t  a d d r e s s ,  o t h e r w i s e  t h e s e  o f f s e t s  

must be main ta ined  (which is e q u i v a l e n t  to  Hole 

Main tenance) .  The a b w e  r e p r e s e n t s  t h e  c o n d i t i o n  t h a t  a l l  

segments  a r e  a l l o c a t e d  i n  page s i z e  u n i t s ,  wi th  o n l y  a  

s i n g l e  a r r a y  p e r  set  of pages .  

These pages  have s i z e s  from one word to  some l a r g e  

f r a c t i o n  of t h e  workspace. The i d e a l  s i t u a t i o n  would be t h e  

a b i l i t y  to  t r a n s l a t e  any word a d d r e s s  so t h a t  e v e r y  word was 

a v a i l a b l e  to  be l i n k e d  t o g e t h e r .  However, f o r  w e r y  page 

t h a t  c a n  be r e l o c a t e d  t h e r e  must be an  e lement  of t h e  page 

t r a n s l a t i o n  t a b l e ,  r e p r e s e n t i n g  a  p o s s i b l e  s i g n i f i c a n t  

overhead to  s u p p o r t  memory management. 

S i n c e  a r r a y  segments a r e  a l l o c a t e d  i n  page u n i t s ,  i n  a  

random d i s t r i b u t i o n  of segment s i z e s  e v e r y  segment w i l l  

have an a v e r a g e  waste  of memory e q u a l  to  one h a l f  page. Thus 

reduc ing  page s i z e s  r educes  t h e  amount of memory p e r  segment 

which is n o t  i n  use.  However, r educ ing  t h e  page s i z e  

i n v e r s e l y  i n c r e a s e s  t h e  page t r a n s l a t i o n  t a b l e  s i z e  and i t s  

a s s o c i a t e d  maintenance.  



Page t a b l e  sys tems hav,e one v e r y  s e r i o u s  d i s a d v a n t a g e ,  

i f  a l l  a r r a y s  a r e  r e s t r i c t e d  to  s t a r t i n g  a t  a  page boundry,  

t h e n  t h e  maximum number of segments  is  d i r e c t l y  r e l a t e d  to  

t h e  page s i z e .  I n  t r y i n g  to  reduce  page t a b l e  maintenance  

t h e  page s i z e  must be i n c r e a s e d ,  r educ ing  t h e  f l e x i b i l i t y  of 

t h e  sys tem i n  d e f i n i n g  new o b j e c t s .  

Summarizing Page Tab le  management: 

Disadvan tages ;  

-(I) t h e r e  is a waste  of memory p e r  a r r a y  depending upon t h e  

page s i z e  and number of segments.  

-(2) t h e r e  is  an  overhead i n  s t o r a g e  i n  t h e  t r a n s l a t i o n  

t a b l e  which might  n o t  be n e g l i g i b l e .  

- ( 3 )  a l l  a d d r e s s i n g  r e q u i r e s  e i t h e r  an e x t r a  memory c y c l e  t o  

l o c a t e  t h e  n e x t  page o r  a  comparison to  de te rmine  i f  t h e  

a d d r e s s  is  w i t h i n  t h e  c u r r e n t  page. 

- ( 4 )  t h e  t r a n s l a t i o n  t a b l e  must be modi f i ed  to  s u p p o r t .  

memory mwes r e s u l t i n g  i n  non n e g l i g i b l e  p r o c e s s i n g .  

- (5) *** t h e  number of d i s t i n c t  a r r a y s / s c a l a r s  t h a t  c a n  

e x i s t  is  s t r i c t l y  less t h a n  t h e  number of pages  i n  t h e  

system. 

Advantages;  

- (1) segments  do n o t  have to  be p h y s i c a l l y  mwed to  a f f e c t  

t h e i r  motion i n  t h e  workspace. Thus to  r e a r r a n g e  t h e  

workspace t h e  T r a n s l a t i o n  t a b l e  o n l y  need be r e a r r a n g e d .  



Hole Table Maintenance (HTM) i s  the a l te rna t ive  to  

Page Translation. This performs the linking of holes by the 

actual  physical relocation of arrays to  produce a hole which 

w i l l  accommodate the a l locat ion request,c.f.  f igure  4 .1 .2 .  

HTM has many forms, a common one is  to  a l loca te  from 

only one hole till it is exhausted, a t  which time the e n t i r e  

workspace is  reorganized to  generate a single hole 

representing a l l  f r ee  memory [ S Y K 7 9 1 .  This scheme is very 

simple but not very e f f i c i en t .  The inefficiency is due to  

the lack of use of the holes fragmenting the workspace from 

the continually releasing of array storage. I t  is highly 

probable tha t  one of these other holes would be able t o  

accommodate the request. 

A solution is  to  maintain a table  of a l l  exis t ing holes 

from which a l l  requests are  f i l l e d .  T h i s  presents four main 

problems : 

(1) which hole is to  be chosen for  a request? 

( 2 )  as  the number of holes increases the time to  search the 

hole table  increases. 

( 3 )  the' r a t e  of releases of arrays may exceed the r a t e  of 

requests f o r  a time su f f i c i en t  t o  overflow ANY hole table  

( the example is the return from a large recursive c a l l ) .  

( 4 )  what is to  be done when the hole table  overflows? 
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The choice of the hole is usually either first fit or 
I 

best fit depending on how the hole table is organized. First 

fit was chosen for MAPLE'S memory manager as it has some 

useful properties: (1)The search time to locate an allocation 

request is better than for best fiti(2)With concurrent 

processing table updates do not play an important part in 

evaluating performance; (3)By ordering the hole table by 

increasing addresses successive memory requests will be more 

stable and tend to compact the workspace into arrays in the 

lower addresses and holes in the upper addresses. 

Problem (2) is solved by limiting the hole table to a 

maximum size which does not present a serious search time. 

The exact size of this table will be the subject of future 

experimentation, however other researchers indicate that the 

optimal size is on the order of 64 entries [CDC*GID]. 

All Hole Table maintenance systems can be characterized 

by the few properties listed in table 4.1.3. The more 

efficient schemes reduce the probabilities of hole table 

growth, resulting in fewer conditions where objects must be 

relocated ("Garbage Collections") . 



T A B L E  4 . 1 . 3  
P R O P E R T I E S  O F  H0,LE T A B L E  M A I N T E N A C E  

H  < = >  C U R R E N T  NUMBER OF H O L E S  
M MAXIMUM NUMBER OF H O L E S  

A / ,  HSM U P P E R  BOUND ON T A B L E  S I Z E  

s < = >  S I Z E  OF A R R A Y  R E Q U E S T E D  
O R  R E L E A S E D .  

L  < = >  L O C A T I O N  OF R E L E A S E D  A R R A Y  
H S  < = >  V E C T O R  OF H O L E  S I Z E S  
H L  < = >  V E C T O R  OF HOLE L O C A T I O N S  

O W A = + / H S  S I Z E  OF F R E E  MEMORY 

A L L O C A T I O N :  
H+H+O I F  H O L E  CHOSEN I S  > S  
H+H-1 I F  H O L E  CHOSEN I S  = S  
H+H-X X 2 1  I F  ' G A R B A G E  C O L L E C T I O N ' ( G . C .  

G . C .  < = >  A / S > H S  

D E A L L O A C T I O N :  
A U G M E N T A T I O N  H+H+X 
x=o < = >  ( L E H L + H S ) % ( L + S ) E H L  
x= -1 < = >  ( L E H L + H S ) A ( L + S ) E H L  
O T H E R W I S E  H+H+X 
X= 0  G A R B A G E  C O L L E C T I O N  
X = l  ( - G  .C .  ) A - A U G M E N T A T I O N  



Garbage c o l l e c t i o n  need occur  o n l y  i f  e i t h e r :  (1) no 
I 

h o l e  c a n  accommodate t h e  r e q u e s t  and t h e r e  a r e  more than  one 

h o l e s  or ( 2 )  a h o l e  t a b l e  w e r f l o w  o c c u r s .  A s  workspace s i z e  

i n c r e a s e s  t h e  p r o b a b i l i t y  of n o t  f i n d i n g  a h o l e  l a r g e  enough 

d e c r e a s e s  and a s  MAPLE was i n t e n d e d  t o  have a v e r y  l a r g e  

workspace t h e  emphasis  was p l a c e d  on reduc ing  h o l e  t a b l e  

w e r f l o w .  

I t  is t h e r e f o r e  i m p o r t a n t  t o  i n v e s t i g a t e  t h e  mechanisms 

which a f f e c t  h o l e  t a b l e  growth. Tab le  4.1.3 i n d i c a t e d  t h a t  

two h o l e s  c a n  be augmented, t h i s  o c c u r s  when a newly 

g e n e r a t e d  h o l e  ( r e l e a s e d  a r r a y )  and an  e x i s t i n g  h o l e  s h a r e  a 

comman boundry a d d r e s s .  S i n c e  memory c a n  be a l l o c a t e d  i n  

words,  t h e r e  is a non z e r o  p r o b a b i l i t y  t h a t  a new h o l e  c a n  

be  augmented wi th  some c u r r e n t  h o l e ,  r e s u l t i n g  i n  t h e  s i z e  

of t h e  h o l e  t a b l e  n o t  changing o r  even reduc ing .  

By o r d e r i n g  t h e  h o l e  t a b l e  by i n c r e a s i n g  a d d r e s s  and 

s e a r c h i n g  f o r  f i r s t  f i t  t h e r e  i s  a t r e n d  to  c l u s t e r  segments  

i n  t h e  lower a d d r e s s e s  a long  w i t h  t h e  a s s o c i a t e d  c l u s t e r i n g  

of h o l e s  w i t h  lower a d d r e s s e s .  A s  t h e  p r o b a b i l i t y  of an 

augmenta t ion  i n c r e a s e s  a s  t h e  d e n s i t y  of h o l e s  w i t h i n  a new 

h o l e s  a d d r e s s  space  i n c r e a s e s ,  t h i s  c l u s t e r i n g  t e n d s  to 

i n c r e a s e  augmenta t ion .  



S t a t i s t i c s  t a k e n  f rom,  t h e  CDC*APL sys tem,  which used 

f i r s t  f i t  i n  a  64  e n t r y  h o l e  t a b l e ,  showed t h a t  t h e  

e x e c u t i o n  t i m e  s p e n t  i n  doing ga rbage  c o l l e c t i o n s  due t o  

t a b l e  o v e r f l o w s  was n e g l i g i b l e  [CDC*GID] . However, a t t e m p t s  

shou ld  be made to  i n c r e a s e  t h e  e f f i c i e n c y  of t h e  ga rbage  

c o l l e c t i o n  a s  i n  some p r o c e s s e s  (such a s  r e a l  t i m e  

a p p l i c a t i o n s )  e x c e s s i v e  d e l a y s  i n  moving memory c a n  n o t  be 

t o l e r a t e d .  

Garbage c o l l e c t i o n  t r i g g e r e d  by an  a l l o c a t i o n  r e q u e s t  

r e s u l t s  i n  l o c a t i n g  a  set of t w o  o r  more h o l e s ,  which upon 

r e l o c a t i o n  r e s u l t  i n  a  s i n g l e  h o l e  of s i z e  s u f f i c i e n t  to  

accommodate t h e  r e q u e s t .  The most e f f i c i e n t  ga rbage  

c o l l e c t i o n  a l g o r i t h m  r e s u l t s  i n  t h e  mwement of t h e  l e a s t  

amount of memory and t h e  l e a s t  p r o c e s s i n g  overhead.  

S i n c e  t h e  h o l e  t a b l e  is o r d e r e d  by a d d r e s s  it is 

r e l a t i v e l y  e a s y  to  f i n d  a  minimal se t  of h o l e s  which w i l l  

r e s u l t  i n  t h e  l e a s t  amount of a r r a y  mwement. Once t h i s  se t  

i s  found a l l  a r r a y s  c o n t a i n e d  w i t h i n  t h e  range  of a d d r e s s e s  

d e f i n e d  by t h e s e  h o l e s  w i l l  be moved down i n t o  t h e  lowest 

h o l e .  T h i s  h a s  t h e  e f f e c t  of bubb l ing  h o l e s  up i n t o  t h e  

h i g h e s t  h o l e  till o n l y  one h i g h  h o l e  e x i s t s  ( w i t h i n  t h i s  
I 

s u b s e t  of h o l e s )  . 



Mwing an a r r a y  i n v o l v e s  t w o  p r o c e s s e s :  (1) t h e  
I 

s e q u e n t i a l  r e l o c a t i o n  of i t s  e lements  and (2 )  t h e  t o t a l  

upda te  of a l l  r e f e r e n c e s  to  i t s e l f .  The f i r s t  p r o c e s s  

r e q u i r e s  e x a c t l y  t w o  memory c y c l e s  p e r  word of t h e  a r r a y ,  

w h i l e  t h e  second p r o c e s s e s  i s  h e a v i l y  dependant  upon t h e  

o r g a n i z a t i o n  of t h e  workspace. I n  sys tems  which implement 

L i s t s  t h e r e  is t h e  enormous problem of upda t ing  a l l  fo rward  

p o i n t e r s ,  wi th  one s o l u t i o n  being to  use  b a c k p o i n t e r s .  I n  

t h e  n e x t  s e c t i o n  t h e  workspace o r g a n i z a t i o n  is d i s c u s s e d  and 

t h e  s o l u t i o n  to  upda t ing  i s  shown t o  be nea r  t r i v i a l .  

The average  of t h e  minimum amount of memory t h a t  e x i s t s  

between t h e  se t  of h o l e s  t h a t  a r e  to  be c o l l e c t e d  d i c t a t e s  

t h e  average  w e r h e a d  of ga rbage  c o l l e c t i o n  (assuming a nea r  

c o n s t a n t  t i m e  to l o c a t e  t h e  set  of h o l e s  t o  co l l ec t ) .  T h i s  

c a n  v a r y  from j u s t  a few words to  many thousands  of words,  

however,  a measure of an upper bound on t h e  amount of memory , 

to  be mwed c a n  be found.  

The w o r s t  c a s e  c o n d i t i o n  o c c u r s  when a l l  h o l e s  a r e  

s e p a r a t e d  by e q u a l  s i z e  r e g i o n s  of a r r a y s .  A s  t h e  h i g h e s t  

a d d r e s s  i n  t h e  a d d r e s s  space  is w i t h i n  t h e  l a s t  h o l e  t h e  

amount of s t o r a g e  r e p r e s e n t e d  by t h e s e  r e g i o n s  i s  

Workspace Used 



I t  is expected that  the dominant cause of garbage 

col lect ions  w i l l  be hole table  overf lows, which r e su l t  i n  

exactly two holes being collected.  By choosing two holes 

w i t h  the l e a s t  amount of storage separating them, the l e a s t  

time fo r  a garbage col lect ion w i l l  r esu l t .  These two holes 

w i l l  be precomputed, before any garbage col lect ion is 

required, concurrently w i t h  memory u t i l i za t ion  t o  reduce the 

overhead of a garbage col lect ion.  

Stacks 

There are some operations on arrays tha t  are stack l i k e  

(FIFO and LIFO)  , in  which t o  have to  regenerate the whole 

array for  each operation cycle would be highly inef f ic ien t .  

A "Push" operation is  log ica l ly  the catenation of a scalar  

to  a vector and a "Pop" is  a l a s t  element take and drop. 

While takes and drops do not require memory movement a 

catenation always does, thus a mechanism m u s t  ex i s t  t o  do a .  

Push without memory m o v  ement. 

An obvious solution is  t o  make a l l  L I F O  stacks fixed 

s t a t i c  objects  with some maximum address space, such tha t  no 

overflow can resu l t .  I n  APL the execution stack m u s t  be able 

to  grow to  f i l l  the whole workspace avai lable ,  or typically 

more than half of the en t i r e  workspace ( to  allow f l ex ib le  

recursion).  Assigning the majority of the workspace's usable 

memory to  any object is  highly r e s t r i c t i v e  considering tha t  

most stacks have average s izes  of only a few percent of 

the i r  maximum size .  



What is needed is a  mhthod of dynamic a l l o c a t i o n  which 

does  n o t  mwe memory to  a l l o c a t e  i n c r e a s e s  i n  s t a c k  s i z e s  

and o n l y  u t i l i z e s  a s  much memory a s  t h e  s t a c k s  c u r r e n t  s i z e .  

T h i s  may be  ach ieved  u s i n g  Address  T r a n s l a t i o n  memory 

management, b u t  t h i s  method was n o t  chosen f o r  memory 

management of APL a r r a y s .  S t a c k s ,  however,  a r e  n o t  a  d a t a  

t y p e  d e f i n e d  i n  APL ( a t  l e a s t  n o t  a t  p r e s e n t )  so i t  i s  n o t  

i n  c o n f l i c t  wi th  t h e  a r r a y  a l l o c a t i o n  scheme i f  s t a c k s  

u t i l i z e  t h i s  scheme of memory management. 

Dynamic a l l o c a t i o n  of sys tem o b j e c t s  ( such a s  s t a c k s )  

use  Page Tab le  Maintenence f o r  t h e  f o l l o w i n g  reasons :  

(1) system o b j e c t s  a r e  u s u a l l y  l a r g e  so page s i z e  c a n  be 

l a r g e ,  r educ ing  t a b l e  s i z e s  and proceszf  j , ,  . 
(2) sys tem o b j e c t s  do n o t  change t h e i r  base  a d d r e s s  a s  t h e  

r e s u l t  of any o p e r a t i o n s  on them. 

( 3 )  s i z e  m o d i f i c a t i o n s  of sys tem o b j e c t s  is  s imply  a  m a t t e r  

of l i n k n g  and u n l i n k i n g  pages .  

Consider  a  workspace d i v i d e d  i n t o  "n" u n i t  subspaces  

( p a g e s ) .  These pages  can  be c h a r a c t e r i z e d  a s  one of t h r e e  

t y p e s  : 

(1) c o n t a i n i n g  o n l y  an a r r a y  o r  p a r t  of an  a r r a y  (no f r e e  

s p a c e ) .  

( 2 )  c o n t a i n i n g  a  h o l e  and an a r r a y  (some f r e e  s p a c e ) .  

( 3 )  c o n t a i n i n g  o n l y  f r e e  space .  



The f i r s t  type represents zero waste, the second 

represents waste which memory management handles, the l a s t  

represents a page which is not i n  use a t  a l l  and as  such is 

f r e e  to  be used in  any possible way. I t  is  the existance of 

the l a s t  type of pages which allows e f f i c i e n t  dynamic 

a l locat ion of system objects .  

MAPLE'S dynamic system-object maintenance operates as  

follows : 

(1) each such object  is al located a fixed s t a t i c  subspace of 

the workspace (base address and s i ze  are  f ixed ) .  

( 2 )  a system of v i r t u a l  memory is  used to  swap in to  these 

subspaces r ea l  pages t o  s a t i s f y  the required current  s izes  

of these objects .  

The mechanism for  t h i s  v i r t u a l  memory can be described 

as  follows: 

(1) whenever a page which is  en t i r e ly  a hole i s  detected by 

memory management the rea l  memory associated w i t h  t h i s  page 

is  removed creating a "Black Hole" i n  the workspace, and the 

rea l  page is placed on a f r e e  l i s t  of pages. 
I 

( 2 )  an ob jec t ' s  address space w i l l  be composed of both rea l  
i 

and v i r t u a l  pages (black ho le s ) ,  where the actual  storage 

associated w i t h  the object  is just  the sum of the real  

pages. 



Allocation; , 

(1) whenever an object m u s t  be expanded by "n" pages, i f  

there are a t  l e a s t  "n" black holes w i t h i n  the object and "n" 

f r e e  real  pages, then these black holes w i l l  be f i l l e d  w i t h  

rea l  pages. 

( 2 )  the replacement of one black hole w i t h  a real  page 

produces another black hole elsewhere (the number of black 

hole pages is conserved). 

( 3 )  the movement of pages i s  supported v i a  a t ransla t ion 

table  of pages, cal led the "Relocation Vector I' (R.V. ) . 

. I n t i a l l y  i n  a c lear  workspace there ex i s t s  a s e t  of 

system objects  and one Free Hole. A11 real  pages, except one 

per system object ,  ex i s t  i n  the Free Hole. Therefore the 

amount of rea l  memory i n  the system i s  dictated by the s ize  

of workspace the user sees. The s ize  of the workspace the 

system sees is t h i s  user s ize  plus the sum of system, 

objects '  maximum s izes ,  t ha t  is the v i r t u a l  space is larger 

than the real  space supported by RAM. 

The choise made in  MAPLE was to  u t i l i z e  two 1 6  b i t  

words fo r  a l l  addresses for  a 2*32 b i t  addressable memory 

space (usually the v i r t u a l  space is defined as  much 

smaller) .  The lower 16  b i t s  of an address form a b i t  address 

in to  a word, and a word address into  a page, given by the 

high order 16  b i t  word, c . f .  f igure  4 .1 .4 .  T h i s  mapping 

allows 2*16 pages of v i r t u a l +  space w i t h  pages being 2*12 

words (8k bytes) i n  s ize .  
1 
rr 
i 

i 



S i n c e  t h e r e  a r e  few 'system objects t h e  wasted memory 

g e n e r a t e d  by a Page Tab le  maintenance  sys tem due to  t h e s e  

l a r g e  pages  is n e g l i g i b l e .  A l a r g e  page s i z e  a l s o  d e c r e a s e s  

t h e  w e r h e a d  i n  page t r a n s l a t i o n ,  bo th  i n  t h e  s i z e  of RV and 

t h e  w e r h e a d  i n  l o c a t i n g  t h e  n e x t  page from RV. F i g u r e  4.1.5 

d e m o n s t r a t e s  t h e  f u n c t i o n  of t h e  RV. 

I n  t h e  n e x t  c h a p t e r  t h e  a r c h i t e c t u r e  and e n g i n e e r i n g  of 

t h e  memory management subsystem w i l l  be d e s c r i b e d .  



Virtual Address 

F i g u r e  4.l.f 



Relocation Vector 

R P N  

-7- 
I 

virtual page 

RPN = R V [ v i r t u a l  page] 

Figure +l.5 



4.2 Data Types 74 

All APL data is represented as one of the following: 

function, numeric, graphic, or list (generalized intermixed 

forms). In this system definition, each of the four classes 

of data may have many subclasses (which in turn may also be 

divided into subclasses) reflecting considerations such as 

integer/real distinctions of numerics. The implementation 

considerations will now be discussed for the different 

classes of data. 

Numerics 

There are two subclasses of numeric data, the real and 

complex numbers. To the extent practical, all possible 

values of these subclasses must be represented. This implies 

the need for a floating point representation for reals and 

(X+iY) of complexes. The complex numbers, X+iY , will be 
represented as an ordered pair X,Y of reals where X and Y 

will both be of the same numeric subclass. e.g. both boolean, 

or floating point. For the reals one must approximate the 

irrationals to their nearest rational value as they can not 

be directly represented as numeric values. Similarly the 

rationals must be approximated to the nearest fixed length 

floating point number. 



It is wasteful to represent the numerics in the range 

(0,l) (ie. Booleans) by the bit patterns for reals, since 

reals require a larger number of bits than Booleans. As 

booleans are numeric, they will require a separate bit 

representation. The obvious representation is for a single 

bit to be used, thus a boolean vector is simply a sequence 

of bits, the same number as its dimension. 

With the notion that each component has a size based on 

the subclass it is in, an efficient representation can be 

chosen for each class or subclass. It is important to note 

that specifically within the class of numerics, the 

components of an array will invariably not be of the same 

subclass. An example is the intermixing of boolean values 

and rational values. However, it is not possible to achieve 

an efficient streaming of components in a generalized 

selection format if the components of the arrays have varing , 

bit widths [LAW75]. 

This implies that all components of an array be in the 

same subclass w e n  if storage efficiency is not optimal. 

Thus there will be conversions between subclasses. These 

conversions should be kept to a minimum, as they require 

processing that is not implied by the instructions that may 

initiate them. 



S i n c e  i n t e g e r s  occur  , f r e q u e n t l y  i n  d a t a  s t o r a g e  and 

i n f o r m a t i o n  p r o c e s s i n g ,  a  d i s t i n c t  set  o r  d i v i s i o n  i s  i n  

o r d e r .  I t  is o b v i o u s  t h a t  t h e  b o o l e a n s ,  which a r e  i n t e g e r s ,  

r e q u i r e  a s e p a r a t e  s u b c l a s s  t h e r e f o r e  t h e  i n t e g e r s  w i l l  be 

d i v i d e d  i n t o  i t s  own s u b c l a s s e s .  I n  s e c t i o n  2.1 i t  was 

mentioned t h a t  t h e  MCM sys tem had 7 d i s t i n c t  i n t e g e r  s i z e s ,  

i t  remains t h e n  to  d e t e r m i n e  an  o p t i m a l  set  of i n t e g e r  s i z e s  

f o r  MAPLE. 

The n e x t  c l a s s  ( t h e  c h a r a c t e r s )  w i l l  show t h a t  a  use•’ u l  

component s i z e  is  8  b i t s  a l l o w i n g  t h e  r e p r e s e n t a t i o n  of -128 

to  +I27 i n t e g e r  v a l u e s .  Though t h i s  i s  a  u s e f u l  range  of 

i n t e g e r  v a l u e s ,  it is i n s u f f i c i e n t  f o r  most a p p l i c a t i o n s .  

I n t e g e r s  w i t h i n  t h e  range  +-10*9 shou ld  be a l l o w e d ,  or 

v a l u e s  w i t h i n  t h e  range  of t h e  dimension of t h e  r a v e l  of t h e  

l a r g e s t  a r r a y  a l lowed i n  t h e  system. S i n c e  boo leans  s e r v e  

s p e c i a l  f u n c t i o n s  i n  i n f o r m a t i o n  s t o r a g e  it would b e .  

improper to  r e s t r i c t  t h e  dimension of a  boolean v e c t o r  to  

less t h a n  h a l f  t h e  a v a i l a b l e  b i t  s t o r a g e  i n  main memory, 

which c o u l d  be on t h e  o r d e r  of 10*9 b i t s .  

A s  i n  m o s t  of t h e  p r e v i o u s  implementa t ions  , t h e  i n t e g e r s  

were s imply  d i v i d e d  i n t o  t w o  d i v i s i o n s :  boo leans  (1 b i t  

i n t e g e r s )  and a l l  o t h e r s  a s  32 b i t  i n t e g e r s  [BRE68]. T h i s  

a u t h o r  a d v o c a t e s  t h e  a b w e  and a l s o  t h e  f u r t h e r  d i v i s i o n  

i n t o  m u l t i p l e s  of b y t e  w i d t h s  a s  i n  t h e  MCM implementa t ion  

[MCMl . 



MAPLE supports 1,2,4 and 6 byte multiples for integers. 

Byte multiples of 3 and 5 are dropped as their width oddness 

is unmanageable. The 1 ,2 and 4 are common sizes and most 

computer systems have them. The 6 byte integers are not 

useful for indexing as they are too large, but they are a 

convenient intermediary between the rationals and the other 

integers,as the rational coeficient is a 6 byte integer. 

The floating point format has a length of 64 bits with 

a 16 bit binary exponent and a 48 bit integer coefficient. 

The coefficient will be right normalized to ease conversions 

between 48 bit integers and rationals. This format is a 

standard one as used in many of CDC1s large mainframes 

[CDC*GID]. The format amounts to 4 words of main memory per 

component. This format for floating point numerics is also 

easy to microprogram. 

It is important to note at this time that component 

sizes, though having to be uniform within any array, do not 

have to be of any specific bit width. It is only for the 

ease of construction of the component from word accesses 

that they are standardized. Since it is the objective of 

this machine's design to prwide efficient bit addressing, 

the abwe restrictions on component sizes are an 

implementation consideration aimed at providing werall high 

speed memory access to all components. 



C h a r a c t e r s ,  Graph ics  and O t h e r s  

T h i s  d e f i n i t i o n  w i l l  i n c l u d e  a l l  d a t a  r e p r e s e n t a t i o n s  

t h a t  1/0 s h o u l d  hand le .  I t  may i n c l u d e  forms of speech i n  

manners which a r e  u n c o n v e n t i o n a l ,  or s p e c i a l  network 

i n t e r f a c e s .  The main p o i n t  to  make is t h a t  c l a s s i c a l  APL and 

o t h e r  programming l anguages  a r e  somewhat r e s t r i c t i v e  i n  

t h e i r  d a t a  r e p r e s e n t a t i o n s .  T h i s  implementaion w i l l  c o r r e c t  

some of t h e s e  d e f i c i e n c i e s .  

With in  t h i s  c l a s s  of d a t a  t h e r e  w i l l  be t h e  s u b c l a s s  of 

c h a r a c t e r  d a t a  , ( p r e s e n t  i n  o t h e r  APL machines)  , a s  w e l l  a s  

o t h e r  p o s s i b l e  s u b c l a s s e s  which have n o t  y e t  been d e f i n e d .  

For t h e  c l a s s i c a l  c a s e  of a  computer a l p h a b e t ,  one h a s  

between 64 and 256 c h a r a c t e r s  t o  d e a l  w i t h  [ F A L 7 9 ]  . These 

a r e  e a s i l y  encoded i n t o  8 b i t  codes .  However t h e r e  e x i s t e d  

no mechanism by which one c o u l d  pe r fo rm o p e r a t i o n s  on t h e s e  

e l e m e n t s  o r  to  form new e l e m e n t s  to  be  added t h e  set .  Such 

an  o p e r a t i o n  might  be t h e  l o g i c a l  OR between t h e  boolean 

m a t r i c e s  r e p r e s e n t i n g  t h e  f o n t s  of c h a r a c t e r s  ( ie .  

o v e r s t r i k e  o p e r a t i o n s  a t  t h e  u s e r  l e v e l ) .  



I n  t h i s  implementation, characters w i l l  be represented 

as integer indices of the def in i t ion  objects  for  each 

character.  T h u s  there w i l l  e x i s t  a  system object  ca l led  the 

Atomic Vector which is a l i s t  of def in i t ions  for  each 

character.  The I O U  w i l l  i n t e rp re t  t h i s  l i s t  t o  perform the 

desired I0  function. This l i s t  may, as  above, define 

characters as  boolean matrices f o r  display fon ts  or as  

t rans la te  values to  some other I0  device. 

Ins t ruct ions  

The number of primit ives i n  APL i s  l e s s  than 255,  so 

tha t  8 b i t s  is su f f i c i en t  t o  encode a l l  of them. Since the 

Interpreta t ion or Execution processor w i l l  be designed to  

in te rpre t  APL d i r ec t ly ,  i t  w i l l  only need to  look a t  one of 

three types of data. The f i r s t  is  an APL pr imit ive ,  second a 

named object ,  and th i rd  i s  a l i t e r a l  or character vector.  

The recognization of APL primit ives is t r i v i a l  while named, 

objects  require associat ive searches. 



I n  APL t h e  d e f i n i t i o n  of names i s  r e l a t i v e l y  a r b i t r a r y ,  

which p r e s e n t s  t h e  problem of encoding them f o r  look-up 

d u r i n g  i n t e r p r e t a t i o n .  The c h o i c e s  a r e  to  do an a r r a y  s e a r c h  

to  i d e n t i f y  t h e  name ( ie .  no e n c o d i n g ) ,  t o  hash t h e  names, 

o r  t o  pe r fo rm no s e a r c h s  a t  a l l  f o r  name o b j e c t  

a s s o c i a t i o n s .  The l a t t e r  is  performed by doing a l l  

name-ob ject a s s o c i a t i o n s  a t  e d i t  t i m e  f o r  t h e  t e x t  s t r i n g s  

invo lved .  The names a r e  r e p l a c e d  by an  index of a  symbols 

t a b l e  where t h e  l i t e r a l  form of t h e  name ( o r  p o i n t e r  t o  i t) 

is s t o r e d .  T h i s  e l i m i n a t e s  a  c l a s s  of s e a r c h e s  b u t  n o t  a l l  

s e a r c h e s .  The o t h e r s  a r e  n e c e s s a r y  to  s u p p o r t  c e r t a i n  

f u n c t i o n  parameter  c a l l i n g  modes, which w i l l  be d i s c u s s e d  

l a t e r .  

A s  d e s c r i b e d  p r e v i o u s l y ,  c h a r a c t e r  d a t a  w i l l  be mapped 

to  i n t e g e r s ,  so l i t e r a l  s t r i n g s  w i l l  be i n t e g e r  v e c t o r s  of 

u s u a l l y  8 or 16 b i t  l e n g t h s  (more t h a n  2*15 c h a r a c t e r  c o d e s ,  

is e x c e s s i v e ) .  Thus a l l  APL t e x t  c a n  be compressed i n t o  an  

i n t e g e r  v e c t o r  a s  t h e  s t o r a g e  form. The i n t e g e r  d i v i s i o n  

used w i l l  e i t h e r  depend upon t h e  maximum ob j e c t / c h a r a c t e r  

code  v a l u e  encoded o r  it c a n  be a  unique d i v i s i o n  w i t h  

v a r y i n g  component l e n g t h s .  



T h i s  may seem i n  c o n f l i c t  to  what was s a i d  e a r l i e r  

abou t  u n i f o r m i t y  i n  component s i z e s  b u t  it must be p o i n t e d  

o u t  t h a t  s e l e c t i o n  o p e r a t i o n s  on an  APL l i n e  of code  i s  a t  

p r e s e n t  n o t  p e r m i t t e d  and no p r o p o s a l s  to  a l l o w  such 

o p e r a t i o n s  have been p r e s e n t e d .  Thus t h e  p r i m i t i v e s  w i l l  be 

encoded i n t o  8 b i t s ,  w h i l e  t h e  c h a r a c t e r s  and names c o u l d  be 

encoded i n t o  v a r y i n g  l e n g t h  b i t  p a t t e r n s .  

L i s t s  

L i s t s  a r e  a r r a y s  of o b j e c t  r e f e r e n c e s  ( i e .  i n t e g e r s  f o r  

index ing  an  o b j e c t  r e f e r e n c e  t a b l e ) .  The name encoding a b w e  

i s  an example of s c a l a r  l is ts .  There a r e  no r e s t r i c t i o n s  on 

t h e  c l a s s e s  of d a t a  which c a n  be combined o r  imbedded w i t h i n  

a  l i s t ,  nor a r e  t h e r e  any r e s t r i c t i o n s  on t h e  dep th  of imbed 

e x c e p t  through a v a i l a b l e  memory. 

F i g u r e  4.2.1 shows t h e  w e r a l l  d a t a  h i e r a r c h y  w i t h i n  

t h i s  implementa t ion .  Shown a r e  t h e  f o u r  c l a s s e s  of d a t a  and 

t h e i r  a s s o c i a t e d  s u b c l a s s e s .  

D e s c r i p t o r  B i t  R e p r e s e n t a t i o n s  

A l l  o b j e c t s  have t h e i r  own d e s c r i p t o r s  which g i v e  t h e  

o b j e c t ' s  shape  , l o c a t i o n ,  and d a t a  c l a s s .  Shape i n f o r m a t i o n  

was d e s c r i b e d  i n  t h e  s e c t i o n  on s e l e c t i o n  d e s c r i p t o r s  i n  

s e c t i o n  2.4. Loca t ion  i s  g i v e n  v i a  a  l i s t  s c a l a r  o r  o b j e c t  

r e f e r e n c e .  
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There are two basic types of descriptors, the storage 

state zero (SSO) and storage state one (SS1) descriptors. 

Since SSO and SS1 arrays all contain rank,rho and type 

information their encoding will be discussed now. 

Rank will be restricted to belong to 10, 311 for 

efficiency in the operations in the hardware selection unit. 

There are no algorithms in current publications on APL in 

which arrays of ranks greater than 31 are generated, so it 

is assumed this restriction will have negligible effect on 

the machine's intended purpose (H.Saa1 found that rank was 

usually less than 3 and rarely explicitly more than 4 

[SAA75]). Thus rank can be encoded into 5 bits. 

A valid argument against ranks greater than 31 is that 

any non-degenerate array of rank 'k' must have > or = 2*k 

elements which for the smallest elements (booleans) 

represents a full workspace at rank=31 (workspace 

size=2*31). 



The maximum dimension of any axis will be restricted to 

2*31 or by the amount of available memory, which ever is 

less Thus RHO information can be encoded into 32 bit 

integers. However, very few arrays will have any axes with 

dimensions greater than 2*15 so they will normally only 

require 16 bit integers. In many applications dimensions 

less than 128 are the case. For storage efficiency, two bits 

will be used to determine the component size of the 

descriptor itself. This allows 8, 16 and 32 bit integers for 

the RHO 'nformation contained within. 

To differentiate between storage state (SS) descriptors, 

a single bit will be used. The distinction will be between 

SSO and the higher storage states. Since primary memory 

accesses involve 16 bits, the rank, SS, and data type will 

be grouped together in a single word. This leaves 8 bits for 

data typing. 

There are four data classes, so two bits are needed to 

determine which is represented, leaving 6 bits for subclass 

and division encoding. However only 5 will be used to 

simplify hardware selection of these bits (they have the 

same relative position as the rank information which is 5 

bits in length). The complete Rank-Type word's layout is 

shown is figure 4.2.2. 



Type-Rank Header 

Figure 42.2 



These 5 b i t s  f o r  component s i z e  w i l l  encode a l l  t h e  

s u b c l a s s  and d i v i s i o n  i n f o r m a t i o n  p o s s i b l e .  They w i l l  s o l e l y  

de te rmine  t h e  component b i t  s i z e s .  Each of t h e  3 2  p o s s i b l e  

p a t t e r n s  a v a i l a b l e  w i l l  r e p r e s e n t  a  unique b i t  s i z e  

r e g a r d l e s s  of t h e  d a t a  c l a s s .  T h i s  5 b i t  number w i l l  be  an 

index to  a  f i rmware  t a b l e ,  i n s i d e  a l l  u n i t s ,  which maps to  a  

3 2  b i t  number r e p r e s e n t i n g  component b i t  s i z e s .  F i q u r e  4 . 2 . 3  

g i v e s  t h e  b i t  s i z e s  and t h e  d e f i n e d  5 b i t  c o d e s  t h a t  

r e p r e s e n t  them. Note it is a  s i m p l e  m a t t e r  of changing t h e  

e n t r i e s  w i t h i n  t h e s e  f i rmware  t a b l e s  t o  e f f e c t  changes  i n  

component s i z e s .  F i g u r e  4 . 2 . 4  g i v e s  examples of v a r i o u s  b i t  

p a t t e r n s  f o r  a  few a s s o r t e d  d a t a  t y p e s .  

The b i t  encod ings  p r e s e n t e d  h e r e  a r e  some of many 

p o s s i b i l i t e s .  They r e p r e s e n t  an a t t e m p t  t o  reduce  t h e  number 

of b i t s  r e q u i r e d  t o  encode t h e  n e c e s s a r y  i n f o r m a t i o n  w i t h o u t  

undue complex i ty  i n  t h e  e x t r a c t i o n  of t h i s  i n f o r m a t i o n .  I t  . 

w i l l  be shown t h a t  i n  t h e  c h a p t e r s  on t h e  a r c h i t e c t u r e  of 

MAPLE, changes  to  t h i s  encoding w i l l  have minimal e f f e c t  i n  

t h e  s t r u c t u r e  of t h e  o v e r a l l  machine (due to  

m o d u l a r i z a t i o n )  . 
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W i t h i n  a l l  descriptors, ,  and hence objects ,  there w i l l  

be a component which spec i f ies  the count of the number of 

times tha t  object  is referenced (Reference Counter) by any 

other object .  T h i s  is  necessay to  support l i s t s  and 

generalized select ion operations as  described i n  chapter 

2.4.  This Reference Counter i s  simply be an integer value 

and is sized exactly as  the rank-type word. Note tha t  no 

object  can e x i s t  which has a reference count of zero. 

Also, within every descriptor there w i l l  be a unique 

component which is tha t  ob jec t ' s  own reference number. T h i s  

i s ,  in e f f e c t ,  a back index in to  any object  reference table  

to  f a c i l i t a t e  the process of e f f i c i e n t  garbage col lect ion 

(see section 4 . 1  on memory managment). I t  a lso  obeys the 

rule  of s i ze  tha t  the reference count obeys. The general 

layout of a descriptor or header i s  given in  f igure  4.2 .5 .  

I t  shows tha t  par t  of a descriptor which is  present i n  a l l ,  

arrays. Figure 4.2.6 shows how SSO and SS1 arrays d i f f e r  in  

the i r  descriptors.  
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The workspace is the ,union of the s e t  of a l l  system 

objects  and a l l  objects  generated, e i ther  d i rec t ly  or 

ind i rec t ly  by the user. Such system objects  are the symbol 

tables  and stacks needed to  allow the execution of APL 

statements. The user objects  are a l l  the arrays tha t  a user 

can access or needs t o  know about. This section discusses 

more on the organization of the memory space and the 

s t ructure  of the objects  themselves. 

The workspace can be thought of as consisting of N 

d i s t i n c t  arrays,  each w i t h  a descriptor and i t s  associated 

storage s t a t e .  A11 storage s t a t e  zero (SSO) arrays reference 

the data which follows immediately af t e r  the descriptor.  

A l l  storage s t a t e  one (SS1) arrays reference data 

ind i rec t ly ,  based upon parameters given w i t h i n  the 

descriptor.  For most SS1 arrays these parameters include an 

indirect  reference t o  another array. To support t h i s  l e v e l ,  

of indirection one of two schemes can be used. 

The f i r s t  has the current  address of the other array as  

a parameter. This presents s ignif icant  problems as  f a r  as  

memory management is concerned, as the relocation of an 

object  necessi tates the modification of a l l  indirect  

references to  it. The problem of simply locating a l l  such 

references is d i f f i c u l t  since there may be more than one 

indirect  reference. One m u s t  e i ther  dissallow 

multireferences or disallow addressing of an array v i a  

absolute address. 



T h i s  l e a d s  to  t h e  seconh method, which i n v o l v e s  s t o r i n g  

a  pseudo-name i n  t h e  p a r a m e t e r s ,  r a t h e r  t h a n  t h e  a c t u a l  

a d d r e s s .  When i t  is n e c e s s a r y  to  l o c a t e  t h e  i n d i r e c t l y  

r e f e r e n c e d  a r r a y ,  t h e  c u r r e n t  a d d r e s s  is o b t a i n e d  through 

some b ind ing  between t h i s  a d d r e s s  and t h e  pseudo-name. 

T h i s  b ind ing  is suppor ted  through t h e  Array  Reference  

Tab le  (ART) .  I t  i s  e s s e n t i a l l y  a  v e c t o r  of a l l  unique a r r a y s  

i n  t h e  sys tem,  t h e  components of which a r e  t h e  a c t u a l  

a b s o l u t e  a d d r e s s e s  f o r  t h e s e  a r r a y s ,  and i t s  i n d i c e s  a r e  t h e  

pseudo-names. F i g u r e  4.3.1 shows i t s  s t r u c t u r e  and use .  I t  

i s  worthy of n o t e  t h a t  t h i s  sys tem of a  s i n g l e  r e f e r e n c e  

t a b l e  f o r  a l l  a r r a y s  g r e a t l y  s i m p l i f i e s  t h e  t a s k  of p o i n t e r  

upda t ing  d u r i n g  ga rbage  c o l l e c t i o n s .  

Thus,  i n t e r n a l l y ,  a l l  a r r a y s  a r e  r e f e r e n c e d  by an 

i n t e g e r  v a l u e  which i s  an  index of ART. ART is a  s y s t e m ,  

o b j e c t  ma in ta ined  by t h e  memory manager. I t  i s  i n  t h e  c l a s s  

of dynamica l ly  expandable  sys tem o b j e c t s  which t h e  Memory 

Manager m a i n t a i n s .  Note t h e  a d d r e s s e s  i n  ART a r e  a l l  32 b i t s  

i n  l e n g t h .  

Given t h e  above method of r e p r e s e n t i n g  a r r a y s  i n  t h e  

sys tem,  t h e  r e p r e s e n t a t i o n  of L i s t s  w i l l  now become c l e a r e r .  

S i n c e  a  L i s t  is  an a r r a y  of a r r a y s ,  i t s  d a t a  s t r u c t u r e  is  

s imply  an i n t e g e r  a r r a y  of s a i d  a r r a y  pseudo-names ( ie .  

o b j e c t  r e f e r e n c e  numbers) . 
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What is needed now is, an association between the user 

supplied names and these internal pseudo-names. This is 

supported through the symbol table (ST) which is a list of 

literal representations, and the symbol association vector 

(SAV) which is a vector of associated psuedo-names. The 

chapter on the Execution Unit's operation will describe the 

use of these system objects in detail. For now, refer to 

figure 4.3.2 for a structural view of SAV and ST. 



ST ,,A SAV 

Figure 4.3.2 
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The heart of MAPLE is ,the DMU, as it maintains the 

workspace and allows arbitrary accesses to arrays within. 

Since the tasks of memory management and array accessing are 

somewhat independent and can often run concurrently, they 

shall be delegated to two separate subunits (each having 

their own processors). These two units are the Memory 

Management Unit and the Object Manipulation Unit, with the 

functions of the MMU described in the last chapter. 

The allocation of memory for all arrays will be fully 

transparent to the user (where the "user" is another 

processor), with the user never needing to know the location 

or memory requirement of arrays. Therefore all references to 

arrays will be by names as described in section 4.3. The 

user will supply a numerical name which directly associates 

with an array within the DMU. 

The DMU does not support any explicit associations 

between literal names at the APL system level. Instead it 

provides a powerful tool with which to implement many 

different levels of binding between names. This will be 

expanded upon in chapter 6 on the EXU's operation. 



The objectives of the DMU are as  follows: t o  p r w  ide  

a rb i t ra ry  access to  arrays for  the user; support a  large 

v i r t u a l  memory space greater  than 1 0 0  megabytes; p r w  ide 

associat ive lookup of objects;  fetch array components a t  

streaming ra tes  equal to  memory access speeds; allow 

multiple data streams to  occurr concurrently; allow i t s  

ins t ruct ions  to  be interpreted a t  the same time as  executing 

previous ones. The architecture which w i l l  s a t i s f y  these 

objectives w i l l  now be described. 
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Each of the DMU objectives will now be discussed in 

turn, starting with access paths. Provision of general 

accessing of arrays requires manipulation of a large set of 

parameters [LAW751 , [ABR70] . The DMU accomplishes this with 

the Object Manipulation Unit (OMU) . The reponsibility of the 
OMU is the generation of absolute virtual addresses for 

every access desired. 

The OMU must be able to generate addresses at least as 

fast as components are requested. The addresses generated go 

to the MMU which is responsible for accessing memory. The 

processes of memory fetch and address generation can be 

pipelined so that next address generation can occur 

concurrently with component fetch. It is not my intention to 

try to achieve optimal DMU performance at this time , but to 
demonstrate that a high degree of performance can be 

achieved with minimal hardware design. 

Figure 5.1.1 shows the general architecture of the DMU. 

It shows the two subunits, the OMU and MMU and the other 

components of the DMU. All nontemporary information is 

contained within the main memory module except for some data 

in the MMU's local store. The Bus Controller is responsible 

for interfacing the DMU to the other units in the system. 
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Object ManipuAation Unit 

The OMU is the heart of the DMU1s functional power. It 

provides a number of address generation algorithms for 

component location. It has the conventional machine design 

analogy of the MAR (memory address register) and increment 

circuits. However, it is a few orders of complexity above 

such a simple function. It is capable of providing bit 

addresses to locate array components for every type of array 

access that the APL language requires. 

To accomplish this task it requires a large set of 

internal registers to parameterize these accesses. These 

registers are loaded based upon the descriptor contained 

within every array (see sections 2.4 and 4.2) , shown in 

figure 5.1.1 as part of the OMU's local store. 

Combined with these access registers is the hardware 

to do the actual address generation. Figure 5.1.2 shows 

hardware that can implement the algorithm "AC2" -rom 

Appendix 2. AC2 produces sequential addresses into an 

apparent array from a SS1 descriptor. AC2 is based upon the 

desire to eliminate all multiplications during the actual 

address generation process. The performance of the address 

generation algorithms will be discussed chapter 7. 



to MMU's MAR 



Not shown in figure , 5.1.2 is the hardware to drive 

this address generation circuitry. A microprogrammed 

processor which accepts instructions from the instruction 

bus (c.f. figure 5.1.1) runs the address generation 

hardware. The exact nature of this processor is the subject 

of future research and not included in this thesis. 

The hardware for address generation uses the register 

modules called J,CNTR,T,and RHO, contained within the local 

store of the OMU. They represent the necessary parameters 

for address generation that the indicated algorithm uses. 

Each of these modules is a set of registers of 32 words each 

(32 bit words). The number 32 was chosen because each scalar 

register of a set represents an axis of an array, that is, 

the maximum rank is 31 (rank belongs to [O ,311 ) . 

These four modules of 4 times 32 words each form an 

access set of parameters that, once setup, can adequately 

access an array in any monadic format. There exists one such 

set for wery array that is currently being accessed. The 

number of arrays that will be currently accessable will be 

set to 16 for this implementation. This choice is somewhat 

arbitrary, based on purely physical constraints of local 

store memory. This memory amounts to 2048 32 bit words (a 

reasonably small amount). 



Of c o u r s e  one c a n  requce  t h i s  r equ i rement  by reduc ing  

t h e  maximum a l l o w a b l e  rank and t h e  number of s i m u l t a n e o u s l y  

a c c e s s a b l e  a r r a y s .  T h i s  w i l l  p r o b a b l y  have no e f f e c t  upon 

a p p l i c a t i o n s  a s  t h e y  a r e  p r e s e n t l y  d e v i s e d  b u t  i n  t h e  f u t u r e  

t h e  need f o r  more complex i n t e r - r e l a t i o n s h i p s  between a r r a y s  

may be i n  o r d e r .  I t  does  n o t ,  t h e r e f o r e ,  pay to  res t r ic t  t h e  

d e s i g n  of t h i s  system. 

The c u r r e n t  s t a t e  of a  r e g i s t e r  se t  d e f i n e s  t h e  a d d r e s s  

of t h e  c u r r e n t  component accessed .  A s  t h e r e  a r e  16  sets it 

is  n e c e s s a r y  to  swi tch  between sets to  a c c e s s  d i f f e r e n t  

a r r a y s .  The p r o c e s s  of t h i s  swi tch  c a n  be done v i a  t h e  

r e g i s t e r  f i l e  a d d r e s s i n g  of t h e  O M U ' s  l o c a l  s t o r e .  S i n c e  

o n l y  one a r r a y  is a c t i v e  a t  any s i n g l e  a c c e s s  (memory i s  

s i n g l e  p o r t e d )  it is s imply  a  m a t t e r  of d e f i n i n g  t h e  h i g h  

o r d e r  a d d r e s s  b i t s  of l o c a l  s tore to  d e f i n e  a  r e g i s t e r  set .  

M o d i f i c a t i o n  of t h i s  a d d r e s s  index  c a n  be  accomplished 

i n  a  s i n g l e  m i c r o i n s t r u c t i o n ,  f a c i l i t a t i n g  t h e  a b i l i t y  t o  

dynamica l ly  a l t e r  t h e  r e g i s t e r  set  t h a t  i s  a c t i v e .  T h i s  

a l l o w s  one to  change t h e  a c t i v e  a r r a y  t h a t  is  be ing  a c c e s s e d  

w i t h i n  a  s i n g l e  mic rocyc le .  By doing so, t h e  OMU c a n  p r o v i d e  

a  t i m e  d i v i s i o n  m u l t i p l e x e d  sequence of a d d r e s s e s  f o r  

d i f f e r e n t  a r r a y s .  

The a b w e  scheme a l l o w s  m u l t i p l e  d a t a  s t r e a m s  to  be  

s y n t h e s i z e d  w e r  a  common bus.  I t  w i l l  become a p p a r e n t  t h a t  

t h i s  a l l o w s  f o r  an e f f i c i e n t  p a r a l l e l  p r o c e s s i n g  of a r r a y  

e lements .  T h i s  w i l l  be d i s c u s s e d  i n  s e c t i o n  7.1. 



Memory ~ana~ement Unit 

Main memory was described in section 4.1 but can be 

summarized as follows: a large array organized as 1 to 256 

million words of 16 bits each. In that same section it was 

mentioned that all addresses generated are effectively bit 

addresses within main memory. 

The OMU generates bit level addresses by which the MMU 

accesses array components. cf. figure 4.1.4. The MMU regards 

the lowest four bits of any address as an index into a 16 

bit memory word. The next 12 bits are word addresses into a 

virtual page. There can be 2*16 such pages. All addresses 

given to the MMU by the OMU are references to real objects 

within memory. 

Along with the address of the component accessed, the 

MMU must know the component's size. Since all components are , 

of the same length for any single array, this can be passed 

in a single transfer. The component sizes were discussed and 

defined in section 4.2. For sizes of 16 or more bits the 

problem of bit alignment is trivial. However, for subword 

sizes the generation of a component w e r  a fixed size bus 

requires that they be uniformly aligned. 

For Memory management the MMU has the following objects 

within its local store: "Hole Table" (HT) , "Relocation 
Vector'' (RV), and "Free List" (FL), c.f. figure 5.1.3. 
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The s i z e  of t h e  H o l e  Tab le  w i l l  have a  nominal maximum 

v a l u e  of 64 wi th  t h e  o p t i o n  of e i t h e r  u s i n g  s m a l l e r  o r  

l a r g e r  t a b l e s .  T h i s  is  r e q u i r e d  a s  t h e  o p t i m a l  t a b l e  s i z e  i s  

somewhat a p p l i c a t i o n  dependant .  However , by a l l o w i n g  

e x p e r i m e n t a l  changes  i n  t h e  HT i t  may be p o s s i b l e  to  

de te rmine  o p t i m a l  t a b l e  s i z e s  i n  d i f f e r i n g  envi ronments .  

The R e l o c a t i o n  Vector  i s  t h e  mechanism which maps t h e  

v i r t u a l  a d d r e s s  space  to  t h e  r e a l  memory of t h e  system. RV 

a long  wi th  FL p r w  i d e s  dynamic a l l o c a t i o n  of sys tem o b j e c t s  

w i t h  a  minimal amount of work, c . f .  f i g u r e  4.1.5. To 

e l l i m i n a t e  t h e  w e r h e a d  of having to  index RV t o  o b t a i n  t h e  

a s s o c i a t e d  r e a l  page a  s i n g l e  c e l l  a s s o c i a t i v e  memory is 

u s e d ,  c . f .  f i g u r e  5.1.4. I f  t h e  n e x t  v i r t u a l  a d d r e s s  is 

w i t h i n  t h e  c u r r e n t  page (g iven  v i a  an e q u a l s  comparison) 

t h e n  RV i s  n o t  indexed ,  o t h e r w i s e  RV must be indexed to  

o b t a i n  t h e  new page. 

U s e  of o n l y  one c e l l  of a s s o c i a t i v e  memory e l i m i n a t e s  

w e r h e a d  i n  a c c e s s e s  w i t h i n  t h e  c u r r e n t  page ,  however,  more 

c e l l s  would reduce  page boundry c r o s s i n g  overheads .  With 

page s i z e s  of 2*12 words a  s i n g l e  d a t a  s t r e a m  is v e r y  

u n l i k e l y  t o  produce  many page boundry c r o s s i n g s  a s  most 

a r r a y s  have s i z e s  less t h a n  2*12 words. For m u l t i p l e  s t r e a m s  

t h e r e  would be a  s t r o n g  advan tage  i n  us ing  an  a s s o c i a t i v e  

c e l l  f o r  each s e p a r a t e  a r r a y .  
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C u r r e n t l y ,  a s s o c i a t i v e  ,memories a r e  n o t  a v a i l a b l e  which 

a r e  s u i t a b l e  f o r  use  i n  t h i s  machine. The p r o t o t y p e  of MAPLE 

w i l l  use  a s i n g l e  a s s o c i a t i v e  c e l l  f o r  RV index ing  w i t h  t h e  

i n t e n t i o n  of Custom LSI d e s i g n  f o r  such key MMU f u n c t i o n s .  

The c o n t e n t s  of RV a r e  r e a l  page numbers and a l s o  

e n t r i e s  which i n d i c a t e  Black Holes. The v a l u e  Zero w i l l  be 

used to  i n d i c a t e  t h a t  no r e a l  memory i s  a s s o c i a t e d  w i t h  t h e  

v i r t u a l  page ( implying t h a t  t h e r e  does  n o t  e x i s t  a r e a l  page 

numbered z e r o ) .  

The F r e e  L i s t  (FL) i s  s imply  a s t a c k  w i t h i n  t h e  MMU 

which c o n t a i n s  t h e  page numbers of a l l  r e a l  pages  which a r e  

t o t a l l y  f r e e .  These pages  a r e  used to  r e p l a c e  Black Holes i n  

t h e  a d d r e s s  s p a c e ,  d e f i n e d  by RV, t h e r e f o r e  p r o v i d i n g  

dynamic a l l o c a t i o n .  

The M M U ' s  l o c a l  s tore h a s  t h e  same width  a s  m a i n '  

memory. I t  i s  p o s s i b l e  t o  p r o v i d e  t h e  M M U ' s  l o c a l  s t o r a g e  

r e q u i r e m e n t s  w i t h i n  main memory b u t  t h i s  would impose 

a n o t h e r  l e v e l  of i n d i r e c t i o n  f o r  memory a c c e s s e s  and p r e v e n t  

c o n c u r r e n t  memory management. S i n c e  t h e  c o s t  of s e p a r a t e  

memory is a lmos t  i n s i g n i f i c a n t  compared to  t h e  o v e r a l l  

d e s i g n ,  and is dropping r a p i d l y ,  i t  does  n o t  make s e n s e  to  

d e s i g n  a sys tem which o p t i m i z e s  t h i s  memory useage.  



Bus ControlJer 

This is the only other control element of the DMU. It 

is responsible for the reception and transmission of 

components w e r  the data bus, coordinating all transf ers. 

Its basic structure will be that of a finite state machine 

used to synchronize bus signals. 

A bus transfer sequence will interchange only a single 

component regardless of its length. Bit and byte components 

will be right jusiftied to a 16 bit word, leading bits 

zeroed. This is simply an implementation constraint to 

simplify the design. It will have little effect except in 

the operation of some boolean dyadic functions. Future 

research may investigate possible ways to improve on this. 

The BC provides the handshaking signals necessary to 

allow any of the units attached to interchange a single 

component w e r  the data bus. These signals involve strobes 

to indicate next word and address information concerning 

which unit is using the bus. A more complete description of 

tke bus protocol is given in chapter 6. 



5.2 DMU Instructions and Operation 111 

The inst ruct ions  tha t ,  the DMU supports are described 

i n  t h i s  section. Most of the DMU ins t ruct ions  have d i r ec t  

APL equivalence while some are very Operating System l ike .  

The d i r ec t  APL* ins t ruct ions  are l i s t e d  in  table 5 .2 .1  and 

w i l l  be discussed f i r s t .  They w i l l  be looked a t  i n  the order 

that  they are presented in  the table. 

Quad Expunge is  a system primitive which releases the 

object  whose name is given as  i t s  argument. Since a l l  arrays 

have a reference count associated w i t h  them, t h i s  operation 

f i r s t  decrements tha t  count. If tha t  count equals zero, the 

object is non-referenced and the a r ray ' s  storage is  released 

to  memory management. 

Copy has the e f fec t  of generating a new name and copy 

of the descriptor for  X. That i s ,  a t o t a l l y  new name is 

generated which references the same array as  X. Assignment 

i s  a form of Copy, except tha t  a new name is not generated. 

Instead the old array ( Z )  has i t s  reference count 

decremented and the name is reassociated w i t h  X. 

A l l  the r e s t  of the APL operations l i s t e d  have two 

modes of operation. Either a descriptor (and hence array) i s  

generated or the operation is parameterized for  data 

streaming (as required fo r  a scalar  dyadic operation).  These 

two modes are cal led the "generate" and "stream" modes 

respectively. 



TABLE 5 . 2 . 1  

DMU APL INSTRUCTIONS 
5 

RERASE X 
ACOPY X OR ASSIGN X 
ADYADIC TRANSPOSE 
AMONADIC TRANSPOSE 
ADYADIC ROTATE 
AMONADIC ROTATE 
ACATENATE 
ARAVEL 
ATAKE (WITH OVERTAKE) 
ADROP 
ARESHAPE 
ARHO 
ACOMPRESSION 
AEXPANSION 
AINDEXING 
AEXPOSE ( L I S T  P R I M )  
AIMBED ( L I S T  P R I M )  



Transpose is a pure , se lec t ion  operation which allows 

the axes of any array to  be re-arranged. I n  no case i s  any 

memory required for  t h i s  operation except tha t  which is 

needed for  a descr iptor ,  i f  requested. In the case of 

descriptor generation it w i l l  be a storage s t a t e  one array 

( refer  to  section 2.4 fo r  description of storage s t a t e s ) .  

Catenate always involves memory requests. I t  involves 

the generation of three data streams, t o t a l l y  internal  to  

the DMU, which copy arrays X and Y in to  a new object Z .  The 

r e su l t  w i l l  always be a storage s t a t e  zero array. 

Ravel is a complex primitive whose actual  in ternal  

function depends upon the storage s t a t e  of the argument. For 

any storage s t a t e  zero array the ravel i s  a simple storage 

s t a t e  one descriptor.  The ravel of a storage s t a t e  one array 

m u s t  be a storage s t a t e  zero array. The l a t t e r  is to  

preserve the a b i l i t y  of selection operations t o  generate 

storage s t a t e  arrays [CDC*GID] . , 

Rotate i s  a lso a d i f f i c u l t  primitive but for  d i f fe ren t  

reasons. The monadic primitive can always be performed by a 

storage s t a t e  one transformation. However, the generalized 

dyadic form can not be so described. If an actual  object 

need be generated, as  fo r  assignment, then an SSO array w i l l  

be generated. B u t  if one only wishes t o  access the described 

array,  then the DMU w i l l  do the streaming without memory 

request. The same is  true of Ravel: i f  i n  the stream mode, 

only the array need be accessed. 



, 
Take is s i m i l a r  t o  t r a n s p o s e  i n  t h a t  f o r  m o s t  c a s e s  

e x c e p t  d u r i n g  o v e r t a k e  it is p o s s i b l e  to  do an  SS1 

t r a n s f o r m a t i o n  t o  a c h i e v e  t h e  r e s u l t a n t  a r r a y .  I n  t h e  

g e n e r a t i o n  mode it may, however,  be n e c e s s a r y  to  do a  memory 

r e q u e s t  and SSO g e n e r a t i o n .  T h i s  i s  because  i n  some APLs t h e  

Take f u n c t i o n  c a n  be an  w e r - t a k e  i n  which t h e  e x t r a  

e l e m e n t s  a r e  o b t a i n e d  from some f i l l  i d e n t i t y .  T h i s  DMU w i l l  

s u p p o r t  both  Take f u n c t i o n a l  forms ( t h e  former is a  subcase  

of t h e  l a t t e r ) .  

Drop c a n  a lways  be performed by an  SS1 t r a n s f o r m a t i o n  

so t h e  u s e r  h a s  t h e  c h o i c e  of e i t h e r  t h e  s t r e a m  mode or 

g e n e r a t i o n  mode. 

Reshape is i n  t h e  same c l a s s  a s  Rave l ,  where an  SS1 

t r a n s f o r m a t i o n  c a n  n o t  a lways  be r e a d i l y  performed on an SS1 

a r r a y .  T h e r e f o r e  t h e  g e n e r a t e  mode may c r e a t e  a  new o b j e c t  , 

i n  memory. 

Rho a lways  g e n e r a t e s  a  new SSO a r r a y  ( v e c t o r )  i n  t h e  

g e n e r a t e  mode. The reason  f o r  t h i s  i s  a s  f o l l o w s :  t h e  rho  

i n f o r m a t i o n  w i t h i n  e v e r y  a r r a y ' s  d e s c r i p t o r  does  n o t  have a  

r e f e r e n c e  c o u n t ,  s o  an SS1 a r r a y  p o i n t i n g  t o  t h i s  d a t a  

c a n n o t  r e a d i l y  be  g e n e r a t e d .  The obv ious  reason  is t h a t  t h e  

rho  v e c t o r  is so s h o r t  t h a t  i t  is  u s u a l l y  much e a s i e r  j u s t  

t o  copy t h e  d a t a  t h a n  t o  r e f e r e n c e  i t  ( t h e r e  a r e  a  maximum 

of 31 components to  any rho  v e c t o r )  . 



Compression is a very ,special DMU instruction. In this 

implementation, the operation occurs explicitly but it is 

the contention of some [EDW80-21 that an SS4 array, known as 

a Sparce Array, synthesized via compression, is a valid 

extension to an APL system. In the stream mode a specified 

boolean left argument directs the selection of the elements 

from the right argument. In the generation mode, at this 

time, an SSO array will be created. 

Expansion is handled identically to Compression, with 

the fill element for read operations defined the same as 

conventional APL (zero for numerics and blanks for 

characters). 

Index is supported as a dydaic primitive with the same 

form as the other selection primitives. It takes a list 

vector of imbedded axis indices. It supports both the stream 

and generate modes. In the latter an SSO array is generated, 

as index can not be described via an SS1 transformation. 

Expose is a very simple operation. It only operates 

upon list scalars to return the array imbedded by the list 

[EDW73] . 

Imbed is the complement to Expose. It takes any array 

and generates a list scalar from the result. Both Imbed and 

Expose have the two modes that the other selection 

operations have. 



The abwe are the direct APL primitives that the DMU 

supports. The rest of the instructions are for controlling 

the memory mode of the operation and for memory management 

functions. Some of their description follows in these next 

few paragraphs. 

It is necessary to remember that all arrays are 

accessed via a unique name (which is numerical).An 

instruction to the DMU must include this name or imply the 

last array accessed. That is, one can ask for the transpose 

of an array in the generate mode, then ask for a rotation, 

without the need to respecify the array. 

As described in section 4.1 the DMU supports dynamic 

allocation for system objects at the hardware level with 

minimal overhead. Therefore the DMU can prwide stack 

functions for external operations in a LIFO manner. The 

number of stacks that can be supported have few theoretical 

constraints. However, at least two should be prw ided; one 

for execution control and one for temporary storage. 

There does not seem to be any need to prw ide the 

ability for array pushes or pops due to the multiple 

reference capability of reference counts, so stack 

operations within the DMU are limited to scalar values. The 

DMU itself only requires scalar stacking provisions. 



The DMU will have the following stack operations: 

Create, which takes two arguments, the maximum depth the 

stack will ever be (never exceed depth), and stack's 

component size; Push places a single component on to the 

stack (which is an argument of the instruction); Pop removes 

a component from the stack. 

There exists one implicit instruction of the DMU that 

must be mentioned. That is the automatic maintanance of 

reference counters for arrays. Whenever an array is 

accessed, via generate mode, and an SS1 descriptor is 

generated, the SSO array that is the basic unit of the 

transformation will have its Ref-count incremented. 

Along with the a b w e  implicit operation two explicit 

forms exist. The first was mentioned as Quad Expunge (the 

dereferencing of an array) and the other is its complement 

called "Ireference". This instruction has the effect of 

incrementing an array's reference counter. The usefullness 

of this instruction is in parameter passing for Call by 

Value. It allows one to logically specify that a copy of an 

array has been made, without the need for a physical copy. 



There remains just ove class of instructions. These 

are the Descriptor Creation instructions as opposed to 

descriptor selection instructions mentioned at the beginning 

of this section. These instructions allow the user to 

selectively create and modify array descriptors. Using 

standard rules for descriptor generation one can describe an 

arbitrary array. 

The main purpose of these instructions is to specify 

complex streaming operations. The best example of this is 

the synthesis of a scalar dyadic reduction operation. For 

this APL operation an array is streamed to an ALU but the 

result is returned into an array of reduced rank but based 

upon the old array. This is the class of instructions which 

will take an existing descriptor for an array and produce 

the desired new descriptor to facilitate reduction. 

These instructions fall into two subclasses. The first 

are just preset algorithms which allow the necessary 

transformations for the higher complexity APL operations. 

The best example of which is extended scalar conformability. 

The second class allows direct manipulation of the 

components of descriptors such that the user must provide 

the algorithm for descriptor formation. The algorithms for 

the first type are given in appendix 2. 



A Complete description,of all DMU instructions is given 

in appendix 3. The format of these instructions will now be 

discussed. 

All instructions operate upon register files which 

contain valid descriptors for arrays. There may be up to 16 

such descriptor registers within the DMU. The need for this 

many is not obvious but becomes apparent if one is to allow 

each unit to have simultaneous array accesses. 

The instructions from the EXU to the DMU are along a 16 

bit bus and may be from 1 to 4 words long. Instruction 

format allows for a maximum of 64 instructions of which only 

approximately 32 have been defined. 



6 . 1  B u s  A r b i t r a t i o n  1 2 0  

T h i s  c h a p t e r  deals  w i t h ,  t h e  o t h e r  t h r e e  u n i t s  o f  MAPLE, 

b u t  f i r s t  t h e  c o m m u n i c a t i o n s  p r o t o c o l s  b e t w e e n  t h e  u n i t s  

w i l l  b e  d i s c u s s e d .  

A s  shown i n  f i g u r e  3 .2 .1  t h e r e  are  t h r e e  b u s e s  b e t w e e n  

t h e  f o u r  u n i t s .  T h e s e  are t h e  Data,  I n s t r u c t i o n ,  a n d  S t a t u s  

b u s e s .  A l l  o f  t h e s e  b u s e s  are b i d i r e c t i o n a l .  

The Data B u s  w i l l  h a v e  t h e  same w i d t h  as  p r i m a r y  memory 

(16  b i t s ) .  I t  i s  my i n t e n t i o n  to  r e d u c e  b u s  w i d t h s  so t h a t  

t h e  u n i t s  c a n  b e  c o n d e n s e d  i n t o  VLSI c h i p s  i n  t h e  f u t u r e .  

The Data B u s  t r a n s c i e v e s  c o m p o n e n t s  o f  s i z e s  1 to 1 2 8  b i t s  

, w i t h  t h e  w o r d s  t h a t  make u p  a componen t  e x c h a n g e d  b e t w e e n  

u n i t s ,  a t  m a i n  memory s p e e d .  

I n  c o m b i n a t i o n  w i t h  t h e  S t a t u s  b u s ,  a s i n g l e  componen t  

i s  t r a n s f e r e d  b e t w e e n  u n i t s  f r o m  a s o u r c e ' s  o u t p u t  q u e u e  

i n t o  t h e  d e s t i n a t i o n ' s  i n p u t  q u e u e .  T h i s  e x c h a n g e  u n t i l i z e s  ' 

t h e  Data Bus  f o r  i t s  e n t i r e  d u r a t i o n  ( a p p r o x i m a t e l y  1 0 0  to  

1 0 0 0  n a n o  s e c o n d s  d e p e n d i n g  o n  t h e  s i z e  o f  t h e  c o m p o n e n t )  . 
The S t a t u s  b u s  c o o r d i n a t e s  t h e  t r a n s f e r .  

The n e x t  componen t  t r a n s f e r e d  w e r  t h e  Data b u s  may be 

s o u r c e d  f r o m  a n y  o f  t h e  f o u r  u n i t s ,  t h u s  t h e  Data Bus  w i l l  

b e  t i m e  m u l t i p l e x e d  b e t w e e n  f o u r  s o u r c e s .  T h i s  p r o p e r t y  

a l l o w s  t h e  b u s  to  b e  u t i l i z e d  a t  a h i g h  e f f i c i e n c y .  S i n c e  

most u n i t s  c a n n o t  p r o c e s s  c o m p o n e n t s  a t  b u s  r a t e s ,  t h e  b u s  

c o u l d  be f r e e  much o f  t h e  t i m e .  + 



The e f f e c t  is t h a t  f o u r  , s imul taneous  d a t a  s t r e a m s  c a n  be 

w e r l a p p e d  amongst themse lves ,  a l l o w i n g  a  h i g h  d e g r e e  of 

p a r a l l e l i s m  and f o r  p i p e l i n i n g  of i n s t r u c t i o n  e x e c u t i o n .  

I n s t r u c t i o n  p r e f e t c h  c a n  t h e n  be done d u r i n g  I0 or ALU 

o p e r a t i o n s .  

The d i r e c t i o n  of a l l  t r a n s f e r s  ( e i t h e r  i n  o r  o u t  of t h e  

DMU) i s  c o n t r o l l e d  by t h e  DMU v i a  t h e  s t a t u s  bus. Each of 

t h e  o t h e r  t h r e e  u n i t s  have an  o u t p u t  s t a t u s  l i n e  (Ready 

l i n e ) .  A r eady  l i n e  i n d i c a t e s  i f  t h e  a s s o c i a t e d  u n i t  is  

ready  to  a c c e p t  or send d a t a .  A l l  t h r e e  of t h e s e  s i g n a l s  go  

i n t o  t h e  DMU. 

T r a n s f e r s  between o u t p u t  and i n p u t  queues  a r e  

c o n t r o l l e d  by t h e  DMU v i a  6 o u t p u t  l i n e s  ( r e l a t i v e  to  t h e  

DMU) . The f i r s t  i s  t h e  T r a n s f e r  D i r e c t i o n  Line  (TDL, a  r e a d  

w r i t e  e q u i v a l e n t ) .  TDL in fo rms  t h e  u n i t s  i f  t h e  bus  c y c l e  is  

a  DMU r e a d  o r  write o p e r a t i o n .  

Which u n i t  t h e  n e x t  t r a n s f e r  w i l l  occur  w i t h  i s  g i v e n  

by t h r e e  a d d r e s s  l i n e s  c a l l e d  t h e  L o g i c a l  U n i t  Address  l i n e s  

(LUA) . The t r a n s f e r  c a n  o c c u r  b e t e e n  t h e  DMU and one of t h e  

o t h e r  t h r e e  p h y s i c a l  u n i t s  (each of which c a n  c o n t a i n  more 

t h a n  one l o g i c a l  u n i t ) .  



To i n i t i a t e  a  bus  c y c l e ,  t h e  DMU a c t i v a t e s  t h e  Cycle  

S t a r t  Line  (CSL). The CSL is  a  s t r o b e  s i g n a l i n g  t h e  s t a r t  of 

a comple te  component t r a n s f e r .  The t r a n s f e r  i s  c o m p l e t e l y  

synchronous ,  w i t h  bo th  u n i t s  knowing t h e  word l e n g t h  b e f o r e  

t h e  o p e r a t i o n  beg ins .  

The l a s t  DMU s t a t u s  s i g n a l  is t h e  End Of St ream (EOS) 

l i n e .  When a d a t a  s t r e a m  h a s  f i n i s h e d ,  t h i s  l i n e  w i l l  be 

a c t i v a t e d  a long  wi th  t h e  u n i t  a d d r e s s  f o r  which t h e  s t r e a m  

was a s s o c i a t e d .  T h i s  is u s u a l l y  used a s  an i n t e r r u p t  t o  t h e  

EXU f o r  e x e c u t i o n  f l o w  c o n t r o l .  F i g u r e  6 .1 .1  shows t h e  

expanded bus  s t r u c t u r e  of t h i s  machine. 

A s  shown i n  f i g u r e  6.1.1,  t h e  I n s t r u c t i o n  bus  i s  16 

b i t s  wide wi th  f i v e  s t a t u s  l i n e s  f o r  c o n t r o l  purposes .  The 

f i r s t  two l i n e s  a r e  f o r  u n i t  i d e n t i f i c a t i o n  ( U I D )  and a r e  

g e n e r a t e d  by t h e  EXU to i n d i c a t e  which u n i t  t h e  i n s t r u c t i o n  

i s  f o r .  They a r e  b i d i r e c t i o n a l  and a r e  used to  i n d i c a t e  t h e  

u n i t  r e q u e s t i n g  an  i n t e r r u p t  to  t h e  EXU. One of t h e  

remaining l i n e s  is  t h e  I n s t r u c t i o n  S t r o b e  ( I S )  t o  i n d i c a t e  

t o  t h e  a d d r e s s e d  u n i t  t h a t  t h e  I n s t r u c t i o n  Bus c o n t a i n s  a  

v a l i d  i n s t r u c t i o n .  



Bus Signals 



The remaining t w o  l i n e s ,  a r e  to  c o o r d i n a t e  i n t e r u p t s  to  

t h e  EXU. The f i r s t  acts as a r e q u e s t  f o r  bus  and t h e  second 

i s  i t s  acknowledgement s i g n a l .  The t h r e e  competing u n i t s  a r e  

da i sy -cha ined  t o g e t h e r .  When t h e  EXU acknowledges an  

i n t e r r u p t ,  t h e  a p p r o p r i a t e  u n i t  w i l l  d r i v e  t h e  U I D  l i n e s ,  

and d r i v e  t h e  I n s t r u c t i o n  bus  wi th  t h e  d a t a  it wishes  to  

p a s s .  

T h i s  s e p a r a t i o n  of t h e  b u s e s  a l l o w s  f o r  s i m u l t a n e o u s  

i n s t r u c t i o n  s e t u p  and e x e c u t i o n .  The n e t  e f f e c t  i s  a 

p i p e l i n g  ing  of i n s t r u c t i o n  f e t c h  and e x e c u t e  f o r  t h e  f o u r  

u n i t s .  

I t  shou ld  be a p p a r e n t  by now t h a t  t h e  DMU c o n t r o l s  a l l  

d a t a  t r a n s f e r s  between t h e  u n i t s ,  and t h a t  t h e s e  t r a n s f e r s  

must be between t h e  DMU and some o t h e r  u n i t .  Thus t h e  

u n i t s / p r o c e s s o r s  i n  t h e  machine a r e  coup led  t o g e t h e r  s o  t h a t  

no s i n g l e  u n i t  c a n  f u n c t i o n  w i t h  a n o t h e r  removed. 

The l a s t  s t a t e m e n t  i s  o n l y  p a r t i a l l y  t r u e .  The sys tem 

c a n n o t  i n t e r a c t  wi th  t h e  e x t e r n a l  world u n l e s s  t h e  I O U  ' s  

p r e s e n t  and few o p e r a t i o n s  c a n  be  performed wi th  o u t  t h e  

ALU. How t h e s e  u n i t s  i n t e r a c t  i s  t h e  t o p i c  of t h e  n e x t  

s e c t i o n .  
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An indepth look at the requirements for the other three 

units in the system will be discussed now. The features and 

interactions of all units will also be described. 

EXU's Structure 

It was mentioned in chapter 3 that the EXU was the 

control unit for program execution. By the appropriate 

instructions to the other three units a wide variety of 

array processing tasks can be accomplished. 

Via the instruction bus, the EXU can initiate a large 

class of data trans•’ ers and transformations. The instruction 

sets of the three units allows the EXU to synthesize the 

complete APL language as described in chapter 1. However, by 

modification of the EXU, an endless class of array 

processing languages can be generated. This concept is 

exemplified by R.Hobson [HOB80-11 in his work on so•’ tware' 

sympathetic chip design. 

Some of the architectural characteristics of the EXU's 

possible implementation follows. Firstly the hardware 

structure and then some of the principles of interpretation 

that the EXU uses. 



S i n c e  t h e  EXU i s  p r i m p r i l y  i n t e n d e d  to  i n t e r p r e t  APL, 

i t s  i n t e r n a l  s t r u c t u r e  w i l l  r e f l e c t  t h i s .  The c u r r e n t  

e x e c u t i n g  l i n e  and i t s  p a r a m e t e r s  a r e  l o c a t e d  w i t h i n  t h e  

EXU. T h i s  code  e x p r e s s i o n  is f e t c h e d  from t h e  DMU a s  a  d a t a  

s t r e a m  d e s t i n e d  to  t h e  EXU (which is u s u a l l y  done w h i l e  

a n o t h e r  u n i t  is e x e c u t i n g  a n  i n s t r u c t i o n ) .  

The s i z e  of t h e  E X U ' s  l o c a l  s t o r e  d e t e r m i n e s  t h e  number 

of l i n e s  which c a n  be  cached w i t h i n  i t s e l f .  I t  is p o s s i b l e  

t o  r e s t r i c t  t h e  maximum l e n g t h  of an  APL s t a t e m e n t ,  and many 

implementa t ions  have  done so ( APL/360, MCM APL) . Within  

MAPLE t h e r e  w i l l  be no r e s t r i c t i o n  on t h e  l e n g t h  of an  APL 

s t a t e m e n t ,  however,  t h e  a v e r a g e  l i n e  l e n g t h  c a n  be  used to  

de te rmine  t h e  s t o r a g e  requ i rement  f o r  t h e  EXU. 

The average  l e n g t h  is i n  t h e  o r d e r  of 50 c h a r a c t e r s  

[BIN751 ,[SAA75]. With such a  v a l u e  many l i n e s  c a n  be e a s i l y  

b u f f e r e d  w i t h i n  t h e  EXU. T h i s  r e s u l t s  i n  s i g n i f i c a n t l y  less 

d a t a  bus  t r a n s f e r s  due to  t h e  memory h e i r a r c h y  between DMU 

and E X U ' s  l o c a l  s t o r e  [TAN761 , 

The i n t e r n a l  complex i ty  of t h e  EXU need n o t  be g r e a t .  

I n s t r u c t i o n  g e n e r a t i o n  c a n  be made t a b l e  d r i v e n  and l i t t l e  

a c t u a l  p r o c e s s i n g  of a r r a y s  i s  done by e x e c u t i o n  c o n t r o l .  A 

c o n v e n t i o n a l  16  b i t  mic roprocessor  (such a s  t h e  MC6809) 

would be adaqua te  f o r  a l l  i t s  t a s k s .  



The EXU i s  r e s p o n s i b l e  , f o r  a l l  s y n t a x  c h e c k s  on t h e  

i n s t r u c t i o n  s t r eam.  T h i s  i s  done by a n a l y s i s  of t h e  cached 

APL s t a t e m e n t s  and i n t e r r o g a t i o n  of t h e  DMU wer  t h e  

machine ' s  i n s t r u c t i o n  bus. By p i p e l i n i n g  t h i s  p r o c e s s  w i t h  

t h e  p r o c e s s  of i n s t r u c t i o n  g e n e r a t i o n ,  t h e  u s u a l  w e r h e a d  of 

s y n t a x  check ing  c a n  be reduced.  

Most APL sys tems  pre-encode t h e  t o k e n s  a t  e d i t  time so 

t h a t  l e x i c a l  a n a l y s i s  is g r e a t l y  reduced d u r i n g  e x e c u t i o n  

[BAT73]. T h i s  sys tem must o b v i o u s l y  do t h e  same. T h i s  i s  

done by t h e  EXU when a  f u n c t i o n ' s  d e f i n i t i o n  i s  c l o s e d  o r  

d u r i n g  t h e  c o n t r o l  p r i m i t i v e  "Execute" ( f u n c t i o n  token  

t r a n s l a t i o n  is done by Execute  i n t e r n a l l y  so t h a t  t h e  APL 

s u p e r v i s o r  c a n  be w r i t t e n  i n  APL). 

I n  s e c t i o n  4 . 3  t h e  t w o  a r r a y s  f o r  symbol t a b l e  

ma in ta inance  were i n t r o d u c e d .  The f i r s t  (SAV) maps l o c a l l y  

d e f i n e d  numer ica l  names to  g l o b a l  DMU names ( t h e  DMU does  

n o t  s u p p o r t  environment  h i e r a r c h i e s ) .  These l o c a l  names a r e  

one to  one a s s o c i a t e d  wi th  t h e  l i t e r a l  tokens  w i t h i n  

f u n c t i o n s .  The second a r r a y  (ST) , t h e  a c t u a l  symbol t a b l e  

c o n t a i n s  t h e  l i t e r a l  v a l u e s  f o r  t h e  tokens .  



There  may be many ve r , s ions  of b o t h  SAV and ST p r e s e n t  

a t  one t i m e  each  r e p r e s e n t i n g  a d i f f e r e n t  c a l l i n g  

environment .  To a c c e s s  a n  a r r a y ,  t h e  EXU looks up i t s  g l o b a l  

name i n  t h e  c u r r e n t l y  a c t i v e  SAV, t h e n  p a s s e s  t h i s  name to  

t h e  DMU. S i n c e  t h e  s i z e  of SAV d i r e c t l y  r e l a t e s  t o  t h e  

number of l o c a l  v a r i a b l e s ,  it c a n  be expec ted  to  be r a t h e r  

s m a l l  ( i n  t h e  o r d e r  of 10  t o  100 components) .  I t  i s  

t h e r e f o r e  r e a s o n a b l e  t o  e x p e c t  t h e  EXU t o  b u f f e r  more t h a n  

one v e r s i o n  of SAV. Only when a f u n c t i o n  is e n t e r e d  or 

e x i t e d  does  SAV need to  be a c c e s s e d  from t h e  DMU. T h i s  

r educes  bus  overhead and i n c r e a s e s  o v e r a l l  e f f i c i e n c y .  

I t  shou ld  be mentioned t h a t  d u r i n g  program e x e c u t i o n  ST 

need o n l y  be a c c e s s e d  f o r  t h e  "Execute" p r i m i t i v e  o r  t o  

s u p p o r t  a p a r a m e t e r / f u n c t i o n  c a l l i n g  h i e r a r c h y .  A t  such 

times, a number of t h e  a c c e s s a b l e  ST'S must be s e a r c h e d  to  

o b t a i n  a t o k e n ' s  a c t u a l  machine name. C u r r e n t l y  t h e  s e a r c h '  

w i l l  be done v i a  t h e  "Index" p r i m i t i v e  which i s  an  u l t r a  

f a s t  l i n e a r  s e a r c h .  

ALU's S t r u c t u r e  

The ALU is t h e  second p r o c e s s o r  u n i t  t h a t  c o n n e c t s  t o  

t h e  i n s t r u c t i o n  bus. I t  is r e s p o n s i b l e  f o r  a l l  s c a l a r  

f u n c t i o n s .  Tab le  6.2.1 i a  a comple te  l i s t  of t h e  APL 

o p e r a t i o n s  which it c a n  perform. A l l  of t h e s e  o p e r a t i o n s  

t a k e ,  a s  i n p u t ,  one o r  t w o  v e c t o r  d a t a  s t r e a m s ,  of known 

p a r a m e t e r s ,  and produce  a s i n g l e - o u t p u t  v e c t o r  d a t a  s t r eam.  



T A B L E  6 . 2 . 1  

A L U  A P L  I N S T R U C T I O N S  
I 

A X  AND Y  D E N O T E  I N D I V I D U A L  S C A L A R  C O M P O N E N T S  O F  A R R A Y S .  

Y + X  0 + X  
Y-X 0 - X  
Y x X  0 x x  
Y t X  0 + X  
Y r x  0 rx  
YLX O LX 
Y I X  O I X  
YOX 0 ox 
Y*X 0 *X 
Y@X 0 @X 
Y?X 0 ? X  
Y!X O !X 
YBX 0 B X  R X  Y  D E N O T E  A R R A Y S  
Y t X  0 t X  
Y = X  
Y % X  
Y < X  
Y S X  
Y > X  
Y 2 X  
YAX 
YVX 
Y*X 
YVX 
Y  E X  
Y  1 X  
YTX 

-X 



To accomplish many gf the more complex instructions, 

the ALU keeps track of the indices for all data streams it 

associates with. This simply requires three 32 bit counters 

that increment on each bus transfer cycle. The ALU performs 

a reduction operation by knowing the correspondence between 

the lengths of the input stream to the output stream. This 

ratio is given via a special instruction to the ALU (from 

the EXU) . 

The ratio abwe relates the number of components that 

pass into the ALU to the number which leave it. Normally 

this value defaults to 1 for all scalar dyadic functions. 

This feature is necessary for "Indexn ,"Reductions", and 

"Membership" primitives. 

In chapter 2, the concept of the interval data class 

was introduced. The interval for numerics allows incredible 

compression of arrays with the properties so described. The 

ALU will allow numeric interval operations if the interval 

array is first transferred into the ALU. This requires a 

very special instruction, as the other dyadic argument is 

streamed/loaded separately to the first argument. There must 

be cooperation between the three units EXU, ALU, and DMU to 

accomplish this. 



The amount of s t o r a g e ,  an  i n t e r v a l  a r r a y  t a k e s  i s  

n o t  s i g n i f i c a n t ,  a s  it a lways  h a s  a l e n g t h  less t h a n  64  

components. I t  i s  t h e r e f o r e  r e a s o n a b l e  to  cache  a l l  i n t e r v a l  

a r r a y s  w i t h i n  t h e  ALU and a l l o w  h i g h l y  asynchronous  

component o u t p u t i n g .  

Given i n  Appendix 2  is a n  a l g o r i t h m  f o r  t h e  g e n e r a t i o n  

of SS2 i n t e r v a l  a r r a y s  based upon t h e i r  d e s c r i p t o r s .  I t  h a s  

n o t  been dec ided  whether  o r  n o t  t h e  ALU or t h e  DMU w i l l  

g e n e r a t e  t h e  a r r a y  e lements .  T h i s  is because  i n t e r v a l s  c a n  

have f l o a t i n g  p o i n t  f o r m a t s ,  which t h e  DMU does  n o t  s u p p o r t .  

A most i m p o r t a n t  ALU i n s t r u c t i o n  i s  t h e  d a t a  c o n v e r s i o n  

p r i m i t i v e .  I t  i s  monadic and a l l o w s  both  upwards and 

downwards l e n g t h  c o n v e r s i o n s  of numer ica l  a r r a y s .  A t  t h e  

d i s c r e t i o n  of t h e  EXU any a r r a y  c a n  be c o n v e r t e d  i n t o  having 

e i t h e r  a s m a l l e r  o r  l a r g e r  number of b i t s  p e r  component. 

T h i s  i n s t r u c t i o n ,  a long  w i t h  t h e  ALUs a b i l i t y  to  moni tor  

numer ica l  w e r f l o w s  and w e r s i z e s ,  a l l o w s  e f f i c i e n t  d a t a  

s t o r a g e  f o r m a t s .  

I O U ' s  S t r u c t u r e  

A t  p r e s e n t  t h e  I O U  ' s  n o t  v e r y  w e l l  developed.  Tab le  

6 . 2 . 2  shows a l l  of t h e  APL i n s t r u c t i o n s  t h a t  i t  s u p p o r t s .  

There a r e  few I0 f u n c t i o n s  i n  t h e  APL language  a t  p r e s e n t ,  

which i s  r e f l e c t e d  i n  t h e  few i n s t r u c t i o n s  t h e  IOU performs.  



T A B L E  6 . 2 . 2  

I O U  A P L  O P E R A T I O N S  
I 

Y I X  
I x 

Y T X  
r X  
OAV A S Y S T E M  V A R I A B L E  . . . . . . A Y E T  TO B E  D E F I N E D  

R I O  S Y S T E M  F U N C T I O N S  



However, t h e  DMU was des igned  to  a l l o w  a v e r y  l a r g e  

expans ion  i n  t h e  s u b d i v i s i o n s  of g r a p h i c a l  d a t a .  Even though 

t h e r e  a r e  few o p e r a t i o n s  p r e s e n t l y ,  t h e r e  a r e  v e r y  good 

i n d i c a t i o n s  t h a t  f u t u r e  r equ i rements  on computers  w i l l  

n e c e s s i t a t e  expans ion.  S i n c e  t h e  I O U ,  and a l l  u n i t s ,  have 

t h e i r  own s e p a r a t e  sets of i n s t r u c t i o n s ,  t h e r e  e x i s t s  more 

t h a n  adequa te  room f o r  f u t u r e  i n s t r u c t i o n  encoding.  

The temporary s t a c k  i n s t r u c t i o n s  w i t h i n  t h e  DMU a l l o w s  

t h e  I O U  t o  o b t a i n  from t h e  e x t e r n a l  w o r l d ,  a r r a y s  of h i g h l y  

v a r i a b l e  l e n g t h s .  By pushing datum a s  it is  o b t a i n e d  o n t o  

t h i s  s t a c k ,  a n  a r r a y  whose o v e r a l l  s i z e  is n o t  known c a n  be 

handled .  Remember t h a t  t h e  DMU w i l l  a l l o w  dynamic s t a c k s  

w i t h o u t  t y i n g  up more memory t h a n  t h e  c u r r e n t  s t a c k  dep th .  

s t a c k  r e q u i r e s .  

S i n c e  a r r a y s  t h a t  a r e  d i r e c t e d  t o  o u t p u t  a r e  u s u a l l y  

of moderate s i z e ,  t h e  I O U  s h o u l d  p r o v i d e  l o c a l  s tore f o r  

most of t h e  a r r a y s  i t  w i l l  need t o  b u f f e r .  For t h i s  p u r p o s e ,  

between 8 and 64 thousand b y t e s  of s t o r a g e  shou ld  be 

p rov ided  i n  t h e  IOU.  A t  c u r r e n t  d e n s i t i e s ,  t h i s  amounts t o  

o n l y  2 t o  8 I C s ,  and c a n  even be on c h i p  i f  t h e  I O U  i s  e v e r  

implemented a s  a  s i n g l e  c h i p  u n i t .  



I t  is my i n t e n t i o n  t h a t  t h e  I O U  c o n t a i n s  a l l  mapping 

a r r a y s  n e c e s s a r y  f o r  I0 f u n c t i o n s .  Such an  a r r a y  i s  t h e  Quad 

A t o m i c  Vector, which d e f i n e s  t h e  c u r r e n t  c h a r a c t e r  set .  A s  

was d e s c r i b e d  i n  s e c t i o n  4 . 2 ,  a l l  c h a r a c t e r /  g r a p h i c a l  d a t a  

is i n t e r n a l l y  r e p r e s e n t e d  a s  p o s i t i v e  i n t e g e r s .  These a r r a y s  

a r e  passed  to  t h e  I O U  which does  t h e  n e c e s s a r y  t r a n s l a t i o n  

t o  t h e  v a r i o u s  I0 d e v i c e s  a t t a c h e d  to  t h e  system. 

A s e p a r a t e  I0 p r o c e s s o r  p r o v i d e s  a h i g h  d e g r e e  of 

i n s e n s i t i v i t y  ( i n  t h e  o v e r a l l  system) to  changes  i n  I0 

c o n f i g u r a t i o n s .  T h i s  modular approach s i m p l i f i e s  t h e  o v e r a l l  

d e s i g n  of t h e  machine. 
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Parallel processing has the potential to greatly 

increase processing speeds ; of ten increases are linear 

in the number of processors [MIT74] . Improved modularity of 
design will also result if tasks are properly divided 

amongst these processors [SWA77] . It has been demonstrated 
in this thesis that the execution of APL may be clearly 

partitioned amongst four major processors, each optimized 

for its assigned task. 

An important consequence of MAPLE'S multiprocessor 

architecture is its inherent modularity. One can employ a 

structured design philosophy to each of MAPLE'S four main 

processors and debug each via simulators. The net effect is 

that MAPLE can be brought up "ON AIR" sooner than in more 

conventional designs. 

MAPLE'S memory architecture utilizes two co-processing 

units to implement all array accessing functions needed for 

APL,along with all workspace functions. These two units make 

up the DMU which this thesis has concentrated upon. 

The DMU meets an objective of this thesis in that it 

combines all memory functions into a single processing 

module. A complete set of APL selection functions is 

implemented within the DMU producing a very "smart" memory 

machine. 



The DMU, in providing a11 memory functions, essentially 

reduces the task of implementing an APL system to syntactic 

and scalar processing. This combined with MAPLE'S simple 

multiprocessor network allows rapid developement of a 

complete APL machine. 
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The DMU is designed so that the operation "Beating" 

is highly developed with the possibility of "Drag Along" 

(section 2 . 4 ) .  These processes allow APL statements to imply 

a high degree of array restructuring without actually 

accessing the arrays in question. Usually one need only 

access an array directly when a scalar dyadic operation is 

to be done. This follows since, unless a storage state zero 

array must be built as a temporary during statement 

execution, most selection operations can be described via 

storage state one transformations (see section 2 . 4 ) .  

An important feature of the DMU is its ability to allow 

multiple simultaneously accessed arrays. This is accompanied 

by the DMU's ability to accept instructions while current 

accesses are taking place. This allows individual units 

connected to the DMU to access arrays at their own speed, 

without tying up the system bus or the DMU. An important. 

consequence of this is the ability for the units to execute 

tasks concurrently. 

To demonstrate the principle, consider the case of the 

APL primitive Exponential. It is unreasonable to expect this 

scalar operation to run anywhere near memory speed. 

Theref ore while this instruction is proceeding, an 

instruction prefetch can occur along with a set up for the 

next array operation. The ability to multiplex the DMU's 

function leads to ease in pipelining. 



With t h e s e  a b i l i t i e s , ,  t h e  DMU c a n  e f f e c t i v e l y  p r w  i d e  

v i r t u a l  a r r a y  a c c e s s ,  a t  b e t t e r  t h a n  memory s p e e d ,  t o  any 

s i n g l e  a r r a y  o r  p r o v i d e  any a r r a y  component, t o  any u n i t  

c o n n e c t e d ,  a s  f a s t  a s  r e q u e s t e d .  The n e t  e f f e c t  i s  t h a t  APL 

s t a t e m e n t s  can  proceed a t  t h e  e f f e c t i v e  s c a l a r  u n i t  speeds  

of t h e  slowest u n i t  o r  o p e r a t i o n  t h a t  needs  to  be  done. 

I n  Appendix 4 ,  s e v e r a l  APL s t a t e m e n t s  a r e  broken down 

i n t o  t h e i r  s t e p s  to  show how a  c o n v e n t i o n a l  sys tem would 

e x e c u t e  them a s  compared to  t h e i r  e x e c u t i o n  u s i n g  t h e  DMU 

(and t h e  o t h e r  u n i t s  of t h i s  sys tem) .  The s t e p s  i n  t h e s e  

examples show t h e  d i f f e r e n c e s  i n  memory a l l o c a t i o n  p r o c e s s e s  

d u r i n g  s t a t e m e n t  e x e c u t i o n .  The c o n c l u s i o n  t o  be made i s  

t h a t  t h e r e  i s  a  s i g n i f i c a n t  r e d u c t i o n  i n  t h e  number of 

r e q u e s t s  t o  memory when t h e  a r c h i t e c t u r e  of t h i s  t h e s i s  is  

used. 

The performance of t h e  MMU is v e r y  dependant  upon 

a p p l i c a t i o n ,  t i e d  to  t h e  t y p e ,  s i z e ,  and use  of a r r a y s  by 

t h e  u s e r .  I n  MAPLE'S d e s i g n  f o r  memory management t h e r e  i s  

v e r y  l i t t l e  w e r h e a d  i n  p r o c e s s i n g  time f o r  a r r a y  a l l o c a t i o n  

o r  d e - a l l o c a t i o n .  MAPLE'S a r c h i t e c t u r e  a l l o w s  changes  i n  

some of t h e  mechanisms of memory management w i t h o u t  

a f f e c t i n g  t h e  r e s t  of t h e  sys tem so i f  memory managment 

becomes t roublesome c o r r e c t i o n s  c a n  s t i l l  be i n t r o d u c e d .  



The performance of , the OMU ( array access and 

transformations) is related to the following properties: 

(1) DMU instruction time 

(2) Access setup time 

(3) Component access rate. 

The selection instructions will be based upon the 

algorithms given in Appendix 2. These have time complexities 

linear in the Rank of the array operated on. This results in 

the high performace of array structural operations. Special 

cases of selection operations do require that all of an 

array's components be accessed, so performance would be 

based on (3). 

Most of the DMU instructions mentioned in Appendix 3 

are either of the form abwe or are simple instructions only 

requiring constant time for execution. Such are "Setup", 

"Copy", "Read" etc. "Setup" triggers access of the specified 

array for data streaming between units, only requiring that 

a valid descriptor be loaded into the specified register 

file. Therefore the access setup time is constant in time. 

The only setup instruction which requires a non 

constant time complexity is "Access", which loads a register 

file based upon a given array name. Access is linear in Rank 

as a descriptor must be mwed from main memory to local 

store of the OMU. 



The important performqnce factor of the DMU is (3) , 
the time required to locate and fetch/store the next 

component. The access algorithm of the OMU will be based 

upon "AC3" of Appendix 2. Because of AC3's importance its 

operation will be described fully (for the analysis all time 

will be normalized to Main Memory Cycle time-MMC with any 

microinstruction timing approximated as 1/2 MMC). 

AC3 is based upon two loops, which are executing 

concurrently, namely LP1 and LP2. LP2 is responsible for the 

generation of addresses along the current row (given to main 

memory for a pipelined memory access). This loop is composed 

of three microinstructions all of which can be executed in 

parallel, resulting in each address generation iteration of 

LP2 requiring only 1/2 MMC (less than the required 1 MMC to 

keep up with memory) . 

While LP2 is running LP1 is updating the offset to the 

next row of the array (if a scalar or vector LP1 never 

runs). LP1 has the capablity of updating this row offset at 

address generation rates IF the next row is within the 

current plane. Thus address generation into Matrices can 

proceed at memory speeds. 

When there is a need to change planes of an array LP1 

must perform l+Rank addition operations to update the row 

offset. Now as most arrays have Dimensions greater than 

their Rank this overhead in changing planes will be small 

compared to time spent within the plane. 



7.2 Performance of the EXU & ALU 141 

When the design of the EXU (section 6.2) was discussed 

it was mentioned that the EXU's local store would be used 

for caching executing APL functions and parameters. This 

reduces the number of memory accesses to a minimum for the 

interpretation of code strings, and allows the EXU to 

preprocess instructions. These two factors will guarantee 

efficient interpretation of the internal APL code. 

The actual performance of the EXU can not be given here 

as its exact internal architecture has not been set. 

However, given MAPLE'S architecture the flexibility to allow 

even an incremental compiler within the EXU is possible. 

The ALU will ultimately be a microprogrammed micro- 

processor capable of scalar speeds on the order of main 

memory speeds, however, for prototyping there are many 

suitable NMOS processors which offer high performance 

(I432***, MC68000). Some operations (boolean OR etc) can run 

at better than main memory speeds implying that for these 

better than 3 million instructions per second rates can be 

achieved (based on 330 nanosecond memory). 



Table 

4341-LO1 rl 

indicated 

7.2.1 gives the, component times for an IBM 

unning APL. These were obtained by performing the 

scalar dyadics and measuring the average time to 

execute for 10000 elements. The average times for all the 

numeric scalar dyadics is on the order of 10 microseconds 

(per element). For integer PLUS,MAPLE requires only 6 memory 

cycles per element which at a modest 330 nano-second cycle 

time is 2 microseconds per element (a factor of 5 better 

than the 4341) . 

The abwe is only to demonstrate that all general 

purpose computers are inferior to an array streaming machine 

as to the efficiency of vector operations. The array 

processor has only one instruction to execute per array 

while the general purpose machine may have several 

instructions to execute per array component. 

The IOU will not be discussed as its performance is 

not important to the study of MAPLE due to its low expected 

utilization. Since the IOU can cache data for I0 it does not 

present any overhead to non I0 APL execution. 



TABLE 7 . 2 . 1  
4 3 4 1  ALU T I M E S  ( P E R  CPMPONENT) 

X+Y = >  8 . 7 ~ ~ 6  SECONDS 
X-Y = >  8 . 3 ~ ~ 6  l 1  

XxY = >  1 3 . 8 3 - 6  l 1  

X+Y = >  1 7 . 2 ~ ~ 6  l 1  

X+Y = >  7 . 3 ~ ~ 6  SECONDS 
X-Y = >  7 . 0 ~ - 6  l  l  

xxy = >  1 0 . 9 6 - 6  l 1  

XiY = >  1 6 . 3 ~ - 6  l 1  

X A Y  = >  2 . 5 ~ - 6  SECONDS 
Xvy = >  2 . 5 ~ ~ 6  l 1  



Summary 1 4 4  

The goal of t h i s  t h e ~ i s  was  t o  i n v e s t i g a t e  a possible 

a r c h i t e c t u r e  f o r  a m a c h i n e  capable of e f f i c i e n t  APL 

e x e c u t i o n .  T h i s  t a s k  was b r o k e n  u p  i n t o  a r o u g h  d e s c r i p t i o n  

of t h e  o v e r a l l  m a c h i n e  a n d  a i n d e p t h  s t u d y  o f  t h e  f u n c t i o n s  

o f  i t s  memory a r c h i t e c t u r e .  

The r e s u l t  was MAPLE a n d  i ts  f o u r  s u b u n i t s :  The EXU, 

a l a n g u a g e  e x e c u t o r ;  The ALU, a scalar  a r i t h m e t i c  processor; 

The I O U ,  a n  i n p u t  o u t p u t  p r o c e s s o r ;  And t h e  DMU w h i c h  

prw i d e s  a l l  memory f u n c t i o n s .  

MAPLE'S m o d u l a r  a r c h i t e c t u r e  a l l o w e d  t h e  p a r t i a l  

s e p a r a t i o n  o f  t h e  f o u r  u n i t s '  i n t e r a c t i o n s  l e t t i n g  

c o n c e n t r a t i o n  f a l l  o n  t h e  f u n c t i o n a l i t y  of t h e  DMU. A 

c o m p l e t e  APL w o r k s p a c e  e n v i r o n m e m t  was  d e s c r i b e d  w i t h i n  t h e  

DMU, made u p  of memory management a n d  a c c e s s i n g  f u n c t i o n s .  

A complete set  o f  d a t a  s t r u c t u r e s  were d e v e l o p e d  f o r ,  

t h e  DMU to  i m p l e m e n t  t h e  w o r k s p a c e .  I n c l u d e d  was a s y s t e m  o f  

a r r a y  d e s c r i p t o r s  w h i c h  a l l o w s  d e f e r r i n g  most s e l e c t i o n  

o p e r a t i o n s  u n t i l  a c t u a l  d a t a  n e e d  b e  a c c e s s e d .  T h i s  a l o n g  

w i t h  c o n c u r r e n t  memory management makes  a v e r y  e f f i c i e n t  

memory a r c h i t e c t u r e .  



Work still remains in, producing an actual functioning 

DMU. This involves obtaining suitable hardware to implement 

the algorithms and concepts described in this thesis. It is 

hoped that a complete DMU could be integrated into a single 

monolithic silicon chip. In this way a broad set of array 

processing systems could cost effectively utilize a DMU. 

When a complete working DMU has been produced, the next 

step would be the construction of the scalar ALU. As a 

substantial number of I.C. manufacturers are currently 

working on monolithic arithmetic units,it is hoped that this 

hardware will soon be available. 

The remaining tasks in MAPLE'S construction are the 

design and building of the IOU and EXU. It is hoped that 

satisfactory performance can be obtained through the use of 

existing 16 bit microprocessors. If it ever becomes 

practical to produce single ICs for these functions then 

MAPLE could be realized as a modular four chip set. 



A P P E N D I X  1 

T H I S  A P P E N D I X  G I V E S  A  B R I E F  D E S C R I P T I O N  OF T H E  F E A T U R E S  O F  
T H E  A P L  L A N G U A G E .  T H E  F I 4 S T  T A B L E  G I V E S  T H E  S Y N T A X  F O R  
E X P R E S S I O N  E V A L U A T I O N  U S E D  I N  MOST A P L  I N T E R P R E T E R S ,  W H I L E  
T H E  F O L L O W I N G  T A B L E  G I V E S  A  FEW E X A M P L E S  O F  T H I S  S Y N T A X .  



TABLE A . l . l  
I 

APL EXPRESSION SYNTAX 

EXPRESSION: NOBJECT 
CONSTANT 
NILADIC FUSER 
MFUNCTION EXPRESSION 
EXPRESSION DFUNCTION EXPRESSION 
( E X P R E S S I O N )  
E X P R E S S I O N  C I E X P R E S S I O N I  

NOBJECT: 

CONSTANT: 

FUSER: 

MFUNCTION: 

DFUNCTION: 

A  NAMED OBJECT 

AN E X P L I C I T  CHARACTER OR NUMERIC 
SCALAR OR VECTOR 

A  USER DEFINED FUNCTION 

MONADIC FUSER 
MONADIC P R I M I T I V E  
SDPRIM / 
SDPRIM \ 
SDPRIM I C I E X P R E S S I O N I  
SDPRIM \ C I E X P R E S S I O N I  
ROTATE C I E X P R E S S I O N I  

DYADIC FUSER 
DYADIC P R I M I T I V E  
SDPRIM . SDPRIM 
0 .  SDPRIM 
I D P R I M  C I E X P R E S S I O N I  

I E X P R E S S I O N :  EXPRESSION 
IEXPRESSION ; IEXPRESSION 
NULL (EMPTY E X P R E S S I O N )  

SDPRIM: A  SCALAR DYADIC P R I M I T I V E  FUNCTION 

IDPRIM:  AN INDEXABLE DYADIC P R I M I T I V E  FUNCTION 
AIDPRIM AND SDPRIM ARE D I S J O I N T  S E T S  



TABLE A .\ .2 

PROPOSED APL SYNTAX 
5 

EXPRESSION: NOBJECT 
CONSTANT 
FUSER 
MFUNC EXPRESSION 
EXPRESSION DFUNC EXPRESSION 
(EXPRESSION)  
EXPRESSION CIEXPRESSIONI 

NOBJECT: 

CONSTANT: 

FUSER: 

FUNC: 

MFUNC: 

DFUNC: 

A NAMED OBJECT 

AN EXPLICIT GRAPHIC OR NUMERIC ARRAY 

A  USER DEFINED FUNCTION 

FUSER 
FUSER [IEXPRESSIONI 
PRIMITIVE 
PRIMITIVE [ IEXPRESSION] 

FUN C  
FUNC MOP 
FUNC MOP CIEXPRESSION] 

FUNC 
FUNC DOPD FUNC 
0 DOPD FUNC 
A ' 0 IMPLIES DEFAULT LEFT FUNC ARGUMENT 

IEXPRESSION: EXPRESSION 
IEXPRESSION; IEXPRESSION 
NULL (EMPTY EXPRESSION) 
AIEXPRESSION CAN BE INDIRECTLY 
AREPLACED BY THE INDEX PRIMITIVE 

MOP: 

DOPD: 

MONADIC SYNTAX MONADIC OPERATORS 
' / \ '  ONLY SUCH OPERATORS DEFINED 
AT PRESENT 

DYADIC SYNTAX DYADIC OPERATORS 
'.' ONLY SUCH DEFINED OPERATOR 
AT PRESENT 



TABLE A.1.3 

DYADIC P R I M I T I V E S  
( X + Y ) * 3 . 1  A * +  

3 1  2 Q X t Y p l Z  A Q t p 

MONADIC P R I N I T I V E S  

DYADIC FUNCTIONS 

( X  PLUS Y )  DEXP 3 . 1  
MTRANSPOSE 3  2 DRHO MRHO IOTA Z 

VZ+L PLUS R  
Z+L+ R  

V 
VZ+L DEXP R  

Z+L*R+l.  0 0 1  
v 
VZ+L DRHO GEORGE 

ZcLpCEORGE 
v 
VZ+MRHO T  

Z+pT 
V 

OPERATORS 
AOPERATORS ARE EITHER UNIVALENT OR DIVALENT 
A ( T H E  NUMBER OF FUNCS THEY TAKE AS ARGUMENTS) 

+ . X  A . I S  DIVALENT 
0 .  * X  A O .  I S  UNIVALENT 

ABOTH THE ABOVE MUST BE USED IN A  DYADIC 
ASYNTAX MODE, AND ALL P R I M I T I V E S  MUST BE 
ASCALAR DYADICS 

+ /X A / I S  UNIVALENT 
z\X A \ I S  UNIVALENT 

ABOTH THE ABOVE MUST BE USED IN A  MONADIC 
ASYNTAX MODE, AND ALL P R I M I T I V E S  MUST BE 
ASCALAR DYADICS 



APPENDIX 2 \ so  

A T H I S  APPENDIX CONTAINS A GENERAL DESCRIPTION O F  THE METHOD 
A BY WHICH ARRAYS WILL  BE, ACCESSED AND TRANSFORMED. EXAMPLES 
A O F  ALGORITHMS A N D  THEIR RESULTS WILL BE SHOWN. 

A FOR THE PURPOSES O F  T H I S  SECTION A S S 1  DESCRIPTOR WILL 
A BE REPRESENTED AS A VECTOR O F  ( 1 + 2 x p p A R R A Y )  ELEMENTS. 
A THE FIRST ELEMENT BEING THE BASE ADDRESS INTO MEMORY 
A (ASSUMED TO BE WORD ADDRESSABLESAND ALL COMPONENTS 
A HAVING WORD LENGTHS, FOR EASE I N  DEMONSTATION). 
A THE NEXT ppARRAY ELEMENTS WILL BE THE ELEMENTS O F  pARRAY, 
A A N D  THE LAST ppARRAY ELEMENYS WILL BE THE JUMP VALUES. 
A THROUGHOUT T H I S  SECTION O I O = O  FOR S IMPLICITY .  

X W O  3 2 2 1  
A X D  I S  THE S S 1  DESCRIPTOR FOR X 



A ' A C l '  I S  BASIC ALGORITHM FOR ACCESSING ARRAYS TO PRODUCE A  
A SEQUENTIAL STREAM OF COYPONENTS FROM MEMORY. I T  USES THE 
A PRINCIPLES OF THE JUMP VECTOR AND ' + . x 9  TO GENERATE V A L I D  
A ADDRESSES. HOWEVER, BECAUSE OF THE NEED TO PERFORM ppARRAY 
A MULTIPLICATIONS TO GENERATE A  SINGLE ADDRESS I T  I S  A  POOR 
A CHOISE AS A N  ALGORITHM TO IMPLEMENT IN MICROCODE. 
A T H I S  ACCESS ALGORITHM TAKES AS I T S  ARGUMENT A  S S 1  
A DESCRIPTOR AND RETURNS AS I T S  RESULT AN ARRAY OUT OF MEMORY 
A ( A  GLOBAL) AS DESCRIBED BY THE S S 1  DESCRIPTOR. 

A THERE ARE FOUR GLOBAL VECTORS WITHIN THE ACCESS ALGORITHMS: 
A ' C N T R , R H O , T , J V  EACH OF WHICH HAVE LENGTHS EQUAL TO THE 
A RANK OF THE ARRAY TO BE ACCESSED. THESE VECTORS FORM PART 
A OF THE OMU'S LOCAL STORE. THE ROUTINE ' I N I T '  I N I T I A L I Z E S  
A THEM. 

VZ+ACl D ; R ;  BASE; J ;  T ;  CNTR; RHO 
I N I T  
A 

A DC1 MODIFIES T  TO INDICATE THE NEXT 
A COMPONENT AND DECREMENTS CNTR TO CONTROL 
A THE ACCESS OF THE ARRAY. DC1 RETURNS 1  
A I F F  THE ENTIRE ARRAY HAS BEEN ACCESSED. 
A 

LP:+LPr D C I  R O  Z + Z  ,MEMORY[  BASE+ J + .   TI 
A 
A Z I S  THE RAVEL OF THE ARRAY ACCESSED. 
A I T  REPRESENTS THE DATA STREAM FOR T H I S  
A ARRAY. 
A 

Z+RHOpZ 
v 

V I N I  
BASE+D[O] O R + ( - ~ + P D ) + ~  o ' R  I S  THE RANK OF THE ARRAY' 
RHO+R+lCD 0 J+( - R ) + D  o q S E P A R A T E  OUT RHO AND JUMP' 
CNTR+RHO oT+RpO 0 ' I N I T I A L I Z E  CNTRS AND T'  
R+ R- 1  oZ+10 o ' R  INDICATES LAST A X I S '  
A 
A T  I S  I N I T I A L I Z E D  TO REPRESENT THE F I R S T  ELEMENT 
A OF THE ARRAY'S RAVEL. 

v 



A 'AC2 '  HAS THE PROPERTY THAT WHILE GENERATING ADDRESSES 
A INTO MEMORY THE ONLY SC4LAR FUNCTIONS REQUIRED ARE +,- . 
A T H I S  HAS S I G N I F I C A N T  ADVANTAGES AS FAR AS THE MICROLEVEL 
A HARDWARE NEEDED TO IMPLEMENT T H I S  ALGORITHM. 

VZcAC2 D ; R ;  RHO; J ;  T ;  CNTR; BASE; OFFSET 
I N I T  
OFFSET4BASE oqADDRESS OF F I R S T  COMPONENT' 
A 
A T [ R l  REPRESETS AN OFFSET INTO THE CURRENT 
A ROW POINTED TO BY ' O F F S E T ' ,  ' O F F S E T + T [ R I '  
A I S  THEN THE ADDRESS OF THE NEXT SEQUENTIAL 
A ELEMENT OF THE DATA STREAM. NOTE THAT ' R '  
A I S  A  CONSTANT SCALAR TERM FOR THE NUMBER O F  
A AXES THE ARRAY HAS.  
A 
A THE FUNCTION DC2 RETURNS 1  I F F  THE ARRAY'S 
A ACCESSING I S  COMPLETE. I T  ALSO MODIFIES 
A BOTH T  AND OFFSET TO COMPUTE THE NEXT 
A ADDRESS. 
A 

LP:+LPr I -  DC2 RO Z+Z,MEMORY[OFFSET+TCRI 1 
ZtRHOpZ 

v 

0 'RETURN I F  A  LL AXE ED' PDAT 
T [ A l + T [ A l + J [ A l  o t N E X T  OFFSET INTO ROW' 
+O ~ I - F + O = C N T R [ A ] + C N T R [ A I  -1o'RETURN I F  ROW -FINISHED' 
T ~ A l + O ~ C N T R ~ A ~ + R H O ~ A ~  0 ' R E S E T  ROW PARAMENTERS' 
F4 DC2 A-1 o'UPDATE NEXT ROWt 
OFFSET+BASE++ / T  0 'UPDATE OFFSET TO ROW' 

v 



R AC3 I S  A REFINEMENT OF AC2. I T  SEPARATES ADDRESS GENERATION 
A INTO A VECTOR GENERATIO$ AND AN UPDATE FOR ARRAYS. T H I S  
A ALLOWS EXTREMEMLY FAST ADDRESS GENERATION FOR VECTORS WITH 
A PARALLEL COMPUTATION OF THE PARAMEMTERS FOR HIGHER RANKS. 

VZ+AC3 D ;RHO; T ;  CNTR; J ;  BASE; ADDRESS; R 
I N I T  
A 
A AC3 HAS TWO NESTED LOOPS. LP2 IN LP1.  
A LP2 CALCULATES ADDRESSES FOR SEQUENTIAL 
R ACCESS FOR THE CURRENT ROW OF AN ARRAY. 
A LPI  DOES THE UPDATES TO ALLOW ACCESSING 
R OF THE NEXT ROW. T H I S  I S  DONE AT THE 
A START OF THE LOOP AND AT THE END WHERE 
A UPDATE I S  CALLED. UPDATE RETURNS 0 I F F  
A THE ARRAY'S ACCESS I S  COMPLETE . 
A 

LPl:ADDRESS+BASE++/T oCNTR[Rl+RHO[RI 
LP2 : Z+Z,MEMORY[ADDRESSl 

ADDRESS+ADDRESS+ J C R ]  
+LP~~IO%CNTR[R]+CNTR[RI-~ 
+ L m I  U P D A T E  R-i 
ZbRHOpZ 

v 

VF+UPDATE A 
+Oxl-F+A20 0 'RETURN I F  ALL AXES UPDATED' 
TCAl+TCAI+JC A ]  o tJUMP ALONG CURRENT A X I S '  
+ O ~ I O Z C N T R [ A ] + C N T R [ A I - ~ ~ ' R E T U R N  I F  -FINISHED CURRENT A X I S '  
T [ A ] + O o  CNTR[Al+RHO[AI 0 ' R E S E T  PARAMETERS FOR CURRENT A X I S '  
FtUPDATE A-1 otUPDATE NEXT A X I S '  

v 



A SOME O F  THE ALGORITHMS WHICH FOLLOW WERE F I R S T  DESCRIBED BY 
A P.ABRAMS I N  H I S  T H E S I S  (CHAPTER 3 ) .  T H E I R  BASIC FORM I S  THE 
A SAME BUT THEY HAVE BEEN MODIFIED TO OPERATE O N  S S 1  DESCRIPTORS. 
A THESE ALGORITHMS MODIFY S S 1  DESCRIPTORS SO THAT AN ACCESS 
A ALGORITHM CAN PRODUCE THE DESIRED RESULT. 
A ALL ARGUMENTS ARE ASUMED TO BE WITHIN T H E I R  PROPER DOMAINS. 

ADYADIC TRANSPOSE 

VRD+X TRANSPOSE D; RHO; RANK; J ;  I 
A X  I S  VALID LEFT ARGUMENT 
A D  I S  S S 1  DESCRIPTOR 
RD+Do R A N K + ( - ~ + ~ D ) + ~  
RHO+RANK+lSDo J+( l+RANK)SD 
I + O  oRANK+l+r /X  o ' T H E  LRGEST VALUE IN X G I V E S  RANK' 

LP: RDCI+1 l+L / ( I = X )  /RHO oVDETERMINE ITH RHO VALUE' 
R D C I + I + R A N K I + + / ( I = X )  / J  ' D E T E R M I N E  I T H  J U M P  V A L U E '  
+LPr I R A N K >  I+I+I 
RD+( 1+2 xRANK)+RD o 'DROP OFF EXCESS FROM OLD D' 

v 

AC3 X D + O  3  4 4  1  
0 1  2  3  
4 5  6 7 
8 9 1 0  1 1  

AC3 1  0  TRANSPOSE X D  
0 4  8 
1 5  9 
2  6 1 0  
3  7 1 1  

AMONADIC TRANSPOSE 

VRD+ MTRANSPOSE D; RANK 
A D  I S  S S 1  DESCRIPTOR 
RD+D O R A N K + ( - ~ + ~ D ) + ~  
RDC i + t  R A N K I + R A N K +  I S D  
RDC I + R A N K + I  R A N K ] + + (   RANK) S D  

v 

AC3 MTRANSPOSE X D  
0 4  8 
1 5  9 
2  6 1 0  
3  7 1 1  

AMONADIC ROTATE 

VRD+I MROTATE D; RHO; RANK; J  
A I  I S  A X I S  OF ROTATION 
RD+Do R A N K + ( - ~ + ~ D ) + ~  0 ' R D  I S  THE SAME S I Z E  AS D' 
RHO+RANK+lSDo J+( l+RANK)SDo 'EXTRACT RHO, J  FROM D' 
R D [ o ] + D C O ] + J [ I ] ~ R H O [ I ~ - ~  o'MODFIY OFFSET' 
R D C ~ + I + R A N K I + - J C I I  o'MODIFY ITH JUMP VALUE' 



A C 3  0  MROTATE X D  
8 9 1 0  11 
4 5  6 7 
0 1  2 3  

ANO O V E R T A K E S  ALLOWED 

VRD+X T A K E  D ;  RHO;  R A N K ;  J  
AX I S  A  V A L I D  L E F T  ARGUMENT 
RD+Do R A N K + ( - l + p ~ ) + 2  
R H O + R A N K t l + D o  J+( l + R A N K ) + D  
R D [ O ] + D [ O ~ + J + . ~ ( X < O ) ~ R H O - ~ X  o ' M O D I F Y  O F F S E T / B A S E '  
R D C ~ + I R A N K I + I X  0 ' R E P L A C E  RHO V A L U E S '  

V  

A C 3  2  -3  T A K E  X D  
1 2 3  
5  6 7 

VRD+X DROP D ; R H O ; R A N K ;  J  
AX I S  V A I L D  L E F T  ARGUMENT 
RD+Do R A N K + ( - l + p ~ ) + 2  
R H O + R A N K ~ I + D O  J+( I + R A N K ) + D  
RDCO ]+DL 0  l + J + .  x ( X > O  ) x  (X ' M O D I F Y  B A S E / O F F S E T t  
RDC l + t  R A N K I t R H O -  IX 0 ' R E P L A C E  RHO V A L U E S '  

v 

A C 3  0  -2 DROP X D  
0  1 
4  5 
8 9 



A GENERATE I S  IDENTICAL TO AC2 I N  I T S  FORM WITH THE ONLY 
A DIFFERENCE BEING THAT XNSTEAD OF GENERATING ADDRESSES 
A I T  PRODUCES ACTUAL COMPONENTS WITHOUT ACCESSING MEMORY. 
A A  LARGE C L A S S  OF ARRAYS CAN BE DESCRIBED SO THAT N O  REAL 
A MEMORY I S  REQUIRED FOR T H E I R  STORAGE REGARDLESS OF T H E I R  
A APPARENT S I Z E S .  WHAT I S  REQUIRED I S  EQUIVALENT TO A  S S 1  
A DESCRIPTOR I N  FORM. 
A 
A GENERATE CAN BE USED TO PRODUCE ONLY NUMERIC ARRAYS.  

V Z +  GENERATE D ;RHO; R ;  J ;  BASE;  T ;  OFFSET 
I N I T  
OFFSETtBASE 

LP:+LPr I-DC2 R  oZ+Z,OFFSET+T[Rl  
Z+RHOpZ 
A GEN USES THE SAME 'DC2'  ROUTINE TO UPDATE 
A OFFSET AND T  AS DOES ' A C 2 ' .  

v 

GENERATE XD+O 4  5 2 0  2 . 0 1  
0  2 . 0 1  4 . 0 2  6 . 0 3  8 . 0 4  

2 0  2 2 . 0 1  2 4 . 0 2  2 6 . 0 3  2 8 . 0 4  
4 0  4 2 . 0 1  4 4 . 0 2  4 6 . 0 3  4 8 . 0 4  
6 0  6 2 . 0 1  6 4 . 0 2  6 6 . 0 3  6 8 . 0 4  

GENERATE MTRANSPOSE X D  
0 . 0 0  2 0 . 0 0  4 0 . 0 0  6 0 . 0 0  
2 . 0 1  2 2 . 0 1  4 2 . 0 1  6 2 . 0 1  
4 . 0 2  2 4 . 0 2  4 4 . 0 2  6 4 . 0 2  
6 . 0 3  2 6 . 0 3  4 6 . 0 3  6 6 . 0 3  
8 . 0 4  2 8 . 0 4  4 8 . 0 4  6 8 . 0 4  



A ' E S C '  PERFORMS THE TASK OF EXTENDED SCALAR COMFORMIBILITY 
A TEST AND GENERATION ON,TWO S S 1  DESCRIPTORS, GIVEN AS 
A ARGUMENTS. THE RESULT I S  A SINGLE ARRAY BEING THE LAMINATION 
A OF THE TWO EXTENDED DESCRIPTORS. THE VECTOR I INDICATES THE 
A AXES OVER WHICH THE EXTENSION I S  TO OCCUR. 

VRDS+ YD ESC XD; XR; Y R ;  XRHO; YRHO; X J ;  Y J ;  T  
AEXTENDED SCALAR CONFORMIBILITY 
ABETWEEN S S 1  DESCRIPTORS YD,XD 
X R + ( - ~ + P X D ) + ~ O  Y R + ( - ~ + ~ Y D ) + ~  0 ' X R , Y R  ARE X ,Y RANKS RESPECTIVELY' 
XRHO+XR+lf X D  YRHO+YR+l+YD 0 'EXTRACT RHO INFO ' 
XJ+( l + X R ) f X D  0 Y J + (  l + Y R ) + Y D  oqEXTRACT JUMP VECTORS' 
TCII+O 0 T + ( X R r Y R ) p l  o ' I  G I V E S  AXES TO CONFORM' 
o m ( X R > Y R )  / 'YR+XRo Y R H O C I l + l o  YRHO+T\YRHOo YJ+T\YJt 
o m ( Y R > X R )  / (  XR+YRo X R H O C I I f l o  XRHO+T\XRHOo X J f  T\XJ' 
A 
A THE ABOVE GUARENTEES THAT THE RANKS ARE NOW EQUAL 
A AND IN THE PROCESS, MODIFIES RHO SO THAT R H O ' C I I  ARE 1 
A AND J ' C I ]  ARE 0 .  
A 

X J [ (  ( ~ = X R H O ) A ~ Z Y R H O )  / I X R ] + O  0 ' R E S E T  JXCKSl  WHERE NEEDED' 
Y J [ ( ( ~ = Y R H O ) A ~ % X R H O ) / I Y R ~ + O  o ' R E S E T  J Y C K S ]  WHERE NEEDED' 
A 
A N O W  THAT THE ARRAYS HAVE THE SAME RANK CHECK FOR 
A THE RHO VALUES BEING EQUAL OR SOME TO BE '1'. 
A 
+ E R R ~ I - A / v ~ ~ = ( % ~ T ) / T + ( ( ~ , X R ) ~ X R H O ) ~ ( ~ , Y R ) ~ Y R H O  
XRHO+YRHO+XRHO r Y R H O  O ' R H O S  ARE M A D E  T H E  S A M E '  
+OORDS+(  ~ , ~ + ~ ~ X R ) ~ X D C O I , X R H O , X J , Y D ~ O I , Y R H O , Y J  

ERR: ' ERROR- NOT SCALAR CONFORMABLE' 
v 

XD+O 3  1  1  1  
YD+O 3 4  4  1 
I f 0  
YD ESC X D  

0 3 4 1 0  
0 3 4 4 1  



A THESE ARE MISCILLANEOUS FUNCTIONS USEFUL I T  CONVERTING FROM 
A SSO TO S S 1  AND PERFORMIflG SOME SIMPLE OPERATIONS SUCH AS 
A RAVEL. 

VRD+ RAVEL D; RHO; RANK 
R D + ~ ~ - ~ + D O  R A N K + ( - ~ + ~ D ) + ~  
RD[ 0  ]+DL 0 1 
R D [ l ] + x / R A N K + l + D  
A GIVEN A  S S 1  DESCRIPTOR THAT I S  
A ESSENTIALLY A  VECTOR RETURN A 
A A NEW DESCRIPTOR OF RANK 1  
A NOTE THAT NOT ALL S S 1  ARRAYS 
A CAN BE RAVELLED BY T H I S  METHOD. 

v 

VRD+ CONVERT D 
RD+O,D,l+x\D.l 
A CONVERTS SSO RHO INFORMATION 
A INTO A  S S 1  DESCRIPTOR. 

v 

VRD+X RESHAPE D 
R D + D [ O ] , X , l + x \ X , l  
A FOR S S 1  ARRAYS WHICH ARE ESSENTIALLY 
A VECTORS T H I S  ALGORITHM W I L L  PERFORM 
A RESHAPE FUNCTION. T H I S  ROUTINE W I L L  
A NOT PERFORM CYCLIC RESHAPING. 

v 



APPENDIX 3 

T H I S  APPENDIX CONTAINS TABLES OF APL STATEMENTS BROKEN D O W N  
INTO STEPS ILLUSTRATING Y O W  THE STATEMENTS ARE EXECUTED. 
EACH STEP I S  A SINGLE FUNCTION ( E I T H E R  MONADIC OR DYADIC) 
THAT GENERATES A TEMPORARY ARRAY. THESE ARRAYS CAN BE REAL 
OR VIRTUAL OBJECTS OR REFERENCES O N  SOME STACK DEPENDING 
UPON THE SYSTEM EXECUTIhlG THE STATEMENTS. THESE D I S T I N C T  
TEMPORARIES ARE GIVEN NAMES T I  T 2  T 3  ETC. AND ARE SHOWN IN 
COLUMN 1 OF EACH TABLE.  

A TABLE'S  SECOND COLUMN INDICATES WHETHER OR NOT THE TEMPORARY 
RESULT REQUIRES MEMORY ALLOCATION (IN SYSTEMS WHICH D O  NOT 
IMPLEMENT S S 1  AND REFERENCING OPERATIONS) .  THE THIRD COLUMN 
INDICATES TIlE MEMORY REQUIREMENTS FOR MAPLE'S 
IMPLEMENTATION. THE TERM ' A' INDICATES THAT A NEW ARRAY 
RESULTED WHILE 'NA '  INDICATES N O  NEW ARRAY. 

THE TERM 'BOTTLENECK' I S  USED WITHIN THE TABLES TO INDICATE 
THAT THE OPERATION REQUIRES A S IGNIFICANT AMOUNT OF TIME TO 
EXECUTE. 

IMPLIED 

Tl+Y 
T l + p T 1  
T l 4 1 T l  
T2+Y 
T3+X 
T 2 4 T 3 0 .  = T 2  
T3+X 
T3+pT3 
T ~ + I T ~  
~ 4 + - 1  
T3+T4+T3 
T2+T3@T2 
T 2 + ~ f  T 2  
T l + T 2 / T 1  

CONVENTIONAL 

NA 
A 
A BOTTLENECK 
NA 
NA 
A BOTTLENECK 
NA 
A 
A BOTTLENECK 
A 
A 
A BOTTLENECK 
A BOTTLENECK 
A BOTTLENECK 

PROPOSED 

NA 
NA 
NA 
NA 
NA 
A BOTTLENECK 
NA 
NA 
NA 
A 
A 
A BOTTLENECK 
A BOTTLENECK 
NA 



IMPLIED 

Tl+O 
T2+N 
T 3 t l  
T 2 t T 3 4 T 2  
N+T2 
T l + T 2 p T 1  
T24-1 
T l + T 2 , T 1  
T2+N 
T3+N 
T 2 + T 3 , T 2  
T l t T 2 p T 1  

AEXAMPLE 
I + ( N , N ) p l , ( N ~ l + N ) p O  

, 
CONVENTIONAL 

( R E L E A S E  N )  
BOTTLENECK 

BOTTLENECK 

BOTTLENECK 

PROPOSED 

( P O S S I B L E  RELEASE N )  

BOTTLENECK 

BOTTLENECK 



I 

I M P L I E D  C O N V E N T I O N A L  P R O P O S E D  

N A  N A  
A  N A  
A  B O T T L E N E C K  A  B O T T L E N E C K  
A  A  
A  A  
N A  N A  
A  N A  
A  N A  
A  A  
A  A  
A  A  



I M P L I E D  C O N V E N T I O N A L  PRO POSED 

N A  
B O T T L E N E C K  N A  

N A  
B O T T L E N E C K  A  B O T T L E N E C K  

A  
B O T T L E N E C K  N A  

N A  
B O T T L E N E C K  N A  

N A  
B O T T L E N E C K  A  B O T T L E N E C K  



Appendix 4 DMU I n s t r u c t i o n s  

A l l  DMU i n s t r u c t i o n s  have 6ne  of t h e  f o l l o w i n g  forms:  

CODE Rd,Rs,m,m; D 
CODE R s  ,m,m; D 

where CODE is a 6 b i t  encoding of t h e  i n s t r u c t i o n  ( w i t h i n  
t h e  16 b i t s  of t h e  i n s t r u c t i o n ) .  Rd,Rs s p e c i f y  one of 16  
r e g i s t e r  d e s c r i p t o r  f i l e s  ( h o l d i n g  a comple te  SS1 
d e s c r i p t o r )  . Rd is b o t h  a  s o u r c e  and d e s t i n a t i o n  f o r  t h e  
o p e r a t i o n ,  w h i l e  R s  is u s u a l l y  o n l y  a  s o u r c e .  The t w o  f l a g s  
' m '  s p e c i f y  o p t i o n a l  modes of o p e r a t i o n  t h a t  an i n s t r u c t i o n  
may have. The pa ramete r  ' D '  s p e c i f i e s  any o p t i o n a l  words of 
i n f o r m a t i o n  t h a t  may be  n e c e s s a r y  and which c a n ' t  be 
s p e c i f i e d  w i t h i n  t h e  i n s t r u c t i o n  word. 

[ l ]  COPY Rd,Rs 
The d e s c r i p t o r  i n  r e g i s t e r  R s  is c o p i e d  i n t o  ~ e g i s t e r  f i l e  
Rd . 

[2]  SETUP Rs , s s ,u  
The a r r a y  s p e c i f i e d  by r e g i s t e r  R s  is  a c t i v a t e d  i n  to  t h e  
s t r e a m  mode, ss-selects wether  t h e  a r r a y  i s  a s i n k  or s o u r c e  
of d a t a .  u  -selects which u n i t  t h e  d a t a  exchange w i l l  t a k e  
p l a c e  wi th .  

131 ACCESS Rd;N 
Rd i s  t h e  r e g i s t e r  to which t h e  d e s c r i p t o r  f o r  t h e  a r r a y  is 
l o a d e d  i n t o .  N- is t h e  name of t h e  a r r a y  t h a t  a c c e s s  is  
r e q u e s t e d  f o r .  R e t u r n s  t h e  Rank-Type word f o r  t h e  a r r a y .  

[4]  SCALAR CONFORM Rx ,Ry; I 
R e g i s t e r s  Rx,Ry a r e  modi f i ed  ( i f  p o s s i b l e )  to  r e f l e c t  
extended s c a l a r  c o n f o r m a b i l i  t y  of t h e i r  r e s p e c t i v e  a r r a y s .  
I- s p e c i f i e s  any a d d i t i o n a l  a x i s  p a r a m e t e r s  r e q u i r e d  i f  Rank 
X does  n o t  e q u a l  Rank Y .  

[5]  NAME R s  
Re tu rns  t h e  name f o r  t h e  a r r a y  i n d i c a t e d  by r e g i s t e r  R s .  
The DMU a lways  m a i n t a i n s  a naming f o r  a l l  a r r a y s .  

[6]  ALLOCATE R s  
R e g i s t e r  R s  i m p l i e s  an a r r a y  s o  t h e  DMU a l l o c a t e s  s t o r a g e  
f o r  an  a r r a y  s i m i l a r  t o  R s .  I t  does  n o t  m a t t e r  i f  R s  is a 
v a l i d  d e s c r i p t o r  f o r  an  a s s i g n e d  a r r a y ,  A new a r r a y  w i l l  
a lways  be a l l o c a t e d .  

[7]  READ R s ; I  
R e t u r n s  t h e  I t h  component of t h e  d e s c r i p t o r  R s ,  

[81 WRITE R s ; I , D  
M o d i f i e s  t h e  I t h  component of R s  wi th  t h e  d a t a  g i v e n  
f o l l o w i n g  index.  



[91 REDUCTION Rd , R s ;  I 
Register Rd is  made to  represent the modified descriptor 
from R s  for  the reduction operator. I- spec i f ies  the axis  of 
the reduction. 

[ l o ]  MTRANSPOSE R s  
Register R s  is  modified t o  r e f l ec t  a monadic array transpose 
operation. 

[ll] MROTATE R s ; I  
Register R s  is  modifies t o  r e f l ec t  a monadic array rota t ion 
operation along the ax is  given by I. 

[ 1 2 ]  RAVEL R s , s m  
Register R s  is  modified to  r e f l ec t  a ravelling of the array 
R s  specif ies .  s m -  indicates wether or not the operation need 
produce an new array or not ,  i e .  if  a streaming is t o  
take place or i f  a va l id  descriptor w i l l  be required. 

[13] RHO R s  
Register R s  is modified to  specify a new array given by Rho 
R s .  This new array w i l l  always f i t  w i t h i n  a reg is te r  f i l e s  
confines so unless requested no new storage a l locat ion w i l l  
be performed. 

[ 1 4 ]  EXPOSE R s  
R s  is replaced with a new descriptor for  the array indicated 
by the L i s t  scalar  associated w i t h  R s .  

[15] IMBED R s  
R s  is replaced with a new descriptor representing a l i s t  
scalar  for  the imbed of the old array associated w i t h  R s .  

[16] PUSH R s  
The NAME for  the array associated w i t h  R s  is pushed onto the 
execution stack (which is in te rna l  t o  the DMU). 

[17]  POP Rd 
The reg is te r  f i l e  Rd is loaded w i t h  the descriptor f o r  the 
array whoses NAME is popped off the execution stack. 

[18] OUTER PRODUCT Rx ,Ry 
The r eg i s t e r s  Rx and Ry are  modified to  r e f l e c t  the 
necessary s t ruc tu ra l  transformations f o r  the outer product 
operator. 

[I91 IREF R s  
The array specif ied by R s  w i l l  have i ts  internal  reference 
counter incremented. T h i s  operation is necessary for  
completeness. 



[20] DREF R s  
The a r r a y  s p e c i f i e d  by R s  w i l l  have i t s  i n t e r n a l  r e f e r e n c e  
c o u n t e r  decremented. A c o u n t  of z e r o  w i l l  r e l e a s e  t h a t  
a r r a y ' s  s t o r a g e .  

[21] DTRANSPOSE R d  , R s  
The a r r a y  s p e c i f i e d  by Rd is t r a n s p o s e d  a c c o r d i n g  to  t h e  
v e c t o r  s p e c i f i e d  R s .  The r e s u l t i n g  d e s c r i p t o r  is p l a c e d  i n t o  
Rd . 

[22] DROTATE Rd,Rs,sm;I 
The a r r a y  s p e c i f i e d  by Rd is r o t a t e d  a l o n g  a x i s  I a c c o r d i n g  
to  t h e  a r r a y  g i v e n  by R s .  The r e s u l t i n g  a r r a y  i s  a s s o c i a t e d  
wi th  Rd. s m -  selects wether  a  new a r r a y  need be g e n e r a t e d  or 
i f  t h e  d a t a  is to  be  immeadia te ly  s t reamed,  

[23] TAKE Rd,Rs 
The a r r a y  s p e c i f i e d  by Rd is s e l e c t e d  from (Take o p e r a t i o n )  
a c c o r d i n g  to  t h e  v e c t o r  a s s o c i a t e d  w i t h  R s .  

[24] DROP Rd,Rs 
The a r r a y  s p e c i f i e d  by Rd is s e l e c t e d  from (Drop o p e r a t i o n )  
a c c o r d i n g  to t h e  v e c t o r  a s s o c a i t e d  wi th  R s .  

[25] CATENATE Rd,Rs;I 
The a r r a y s  impl ied  by Rd and R s  a r e  c a t e n a t e d  
( lamenated)  t o  form a new a r r a y .  I- s p e c i f i e s  t h e  
which t h e  o p e r a t i o n  t a k e s  p l a c e .  

t o g e t h e r  
a x i s  wer  

[26] COMPRESS Rd , R s  ,s 
The a r r a y  g i v e n  by Rd is  compressed by t h e  a r r a y  g i v e n  by 
R s .  Two modes e x i s t .  The f i r s t  g e n e r a t e s  a  new a r r a y  which 
is a s s o c i a t e d  wi th  Rd. The second s imply  a l l o w s  one t o  d e f e r  
g e n e r a t i o n .  T h i s  a l l o w s  t h e  s e l e c t i o n  o p e r a t i o n  to  occur  
l o g i c a l l y  w i t h o u t  s t o r a g e  a l l o c a t i o n .  The l a t t e r  is  
r e q u i r e d  to  a l l o w  ass ignment  i n t o  a  compress ion  e x p r e s s i o n .  

[27] EXPAND Rd,Rs,s 
T h i s  o p e r a t i o n  is  i d e n t i c a l  t o  Compression i n  a l l  a s p e c t s  
e x c e p t  t h a t  t h e  o p e r a t i o n  is a l o g i c a l  expans ion.  

[281 INDEX Rd,Rs,s 
T h i s  i n s t r u c t i o n  h a s  t w o  modes g i v e n  by "s". The f i r s t  
pe r fo rms  an index of Rd's  a r r a y  v i a  t h e  index l i s t  s p e c i f i e d  
by R s .  The second g e n e r a t e s  an  Index S e t  f o r  Rd's a r r a y  
based upon R s ' s .  An Index S e t  i s  a se t  of v a l i d  i n d i c e s  i n t o  
an  a r r a y .  Here a new a r r a y  is g e n e r a t e d  be ing  i somorphic  to  
t h e  d e s i r e d  a r r a y .  An Index S e t  is  an  in ter .na1  DMU t y p e  
which t h e  u s e r  never  sees. T h i s  l a t t e r  mode a l l o w s  
ass ignment  i n t o  g e n e r a l i z e d  index  e x p r e s s i o n s .  



[29] RESHAPE R d , R s , s  
R d ' s  array is reshaped $according t o  R s ' s  vector.  The f lag  
"s" in ica tes  if a n  index s e t  should be generated , i f  a  new 
real  array should be generated, or if the array should only 
be setup for  streaming. The former allows assignment into  a 
reshape expression. 

[30] STACK ALLOCATE cs;S 
The DMU w i l l  support a t  l e a s t  one temporary stack f o r  other 
u n i t s  to  use. T h i s  instruction a l locates  a stack of maximum 
depth S w i t h  component s ize  cs. 

[31] TPUSH ;D 
The data i n  the ins t ruct ion is pushed onto the temporary 
stack. 

[32] TPOP 
Returns the l a s t  component pushed onto the temporary stack. 
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