MAPLE:

Multiprocessor APL machinE

by
Warren S. Snyder

B.Sc., Simon Fraser University, 1977

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the department
of

Computing Science

Warren S. Snyder
"SIMON FRASER UNIVERSITY

February 1982

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL ii

Name : Warren S. Snyder
Degree: Master of Science

Title of Thesis: MAPLE- A Multiprocessor APL machinE

Examining Commitee:

Chairperson: W.S. Luk

E.M.Edwards
Senior Supervisor

Richard F. Hobson

~Thomas W. Calvert

M.A. Jenkins
External Examiner
Department of Computing & Information science
Queen's University
Kingston, Ontario

Date Approved: ol Fel-7¢

Abstract iii

An architecture was investigated which allows a high
degree of concurrent processing dquring direct execution of
APL statements. It consists of four modules called the
Execution vUnit (EXU) , Data Manipulation Unit (DMU),
Arithmetic-Logic Unit (ALU), and Input-Output Unit (IOU).
Each module represents a subset of the proéessing needed to
synthesize a complete APL environment. These modules

communicate in a multiprocessing network.

Research was concentrated on the DMU, which implements
an APL workspace and all array storage and access
activities. A configuration was achieved that greatly
minimizes the number of main memory accesses for all APL
statements. For those operations which require array
accesses, performances equal to main memory speeds can be

achieved.

Approval -
Abstract -
List of Tables
List of Figures
Introduction -

Chapter 1

e
wn

Chapter

NN
L] .
> wn -

Chapter 3
3.1
3.2
Chapter 4
4.1
4.2
4.3
Chapter 5
5.1
5.2
Chapter 6
6.1
6.2
Chapter 7
7.1
7.2
7.3
Appendix 1
Appendix 2
Appendix 3
Appendix 4

Bibliography

Table of Contents

The APL Language - - -
APL Problems and Corrections -
APL Primitive Classes - -

APL Systems - - -
Other Array Processing Systems-
Features Summary - - -
Array Processing Theory -

Architectural Justification -
MAPLE's Architecture - -

The Workspace - - -
Memory Management - - -
Data Types - - -
Workspace Structures - -

DMU - - -
DMU Architecture - - -
DMU Instructions and Operation-

Bus Arbitration - - -
Unit Specifications - -
Architecture Evaluation - -
DMU Performance - - -
Performance of the EXU & ALU -
Summary - - - -
APL Syntax - - -
Array Access ALgorithms - -

Execution Resource Usages -

DMU Instructions - - -

ii

iii

vi

23
29
33
36

43
48
51
54
74
92
97

99
111

120
125
135
137
141
144
146
150
159
163

167

iv

Table
1.2.1
1.2.2

1.2.3

List of Tables

Examples
Examples
Extended
Examples

Extended

of Lists

of The Index Primitive
Assignment

of Extended Assignment

Scalar Conformability

APL Primitive Subdivisions

Four Groups of APL Primitives

Principle of SS1 Descriptors

Examples

Properties of Hole Table Maintenance

of Drag Along

DMU APL Instructions

ALU APL Instructions

IOU APL Operations

ALU Operational Times

APL Expression Syntax

Proposed

Examples

APL Syntax

of APL Syntax

page

10
12
14
17
20
22
38
42
63
112
129
132
143
147
148
149

List of Figures

PEPE
STARLET System

Bus Overview

Translational Memory Management

Hole Table

Virtual Address
Relocation Vector
Data Hierarchy
Type—-Rank Header
Component C,oJe

Size Code Examples
Descriptor Layout
Descriptor Examples
Array Reference Table
ST and SAV

Data Manipulation Unit
OMU's Structure

MMU's Local Store
Memory Addressing

Bus Signals

page
31
46
50
57
61
72
73
82
85
87
88
90
91
94
96
100
102
106
108

123

vi

Introduction 1

At present APL and LISP are the two main languages
which prov ide powerful array processing primitive
instructions. Both languages have a strong theoretical basis
and a long history of implementation. APL was designed to be
consistent with existing vector and tensor theory while LISP
is based on Lambda Calculus [MIC73]. There have been
tendencies to extend both APL and LISP to remove the

inadequacies of each and even to combinine the two [JEN80].

The primary objective of this thesis is to reflect on
the design of a memory architecture for a high performance
multi-processor APL computer. This objective, however,
requires some consideration of the structure of APL, some
extensions to it, and the overall architecture of a machine
to execute the language efficiently. These matters will be

considered first as they influence the memory architecture.

The results of the investigations will be a hypothetical
machine called "MAPLE" which should be manufacturable using
current microelectronic engineering practices. The following

is the set of objectives for MAPLE's design.

Objectives

-Define the 1language to be implemented and determine the
nature of the tasks to be performed in its execution.
-Outline a machine architecture which can* efficiently
execute the 1language. An architecture which exploits
parallel processing where possible, and is modular for ease
of implementation.

-Define (in detail) the requirements for the memory
architecture. This involves investigation of the workspace

organization and array storage/access methods.

This thesis will address the above objectives with
emphasis on the design of the memory architecture and
work space structure. Indepth investigation of the
remaining aspects of MAPLE's design will be left for future

research.

This thesis is divided into four areas of discussion.
Chapter 1 covers the first area, discussing the properties,
problems, and extensions of the APL language. In chapter 2
the ©State of the Art of APL and array processing systems
will be discussed. Then in Chapters 3 through 6 an
implementation of MAPLE will be discussed. This involves
descriptions of both its architecture and engineering. It is
in this third area that MAPLE's main priorities will be
covered. Chapter 7 examines the performance expected from
the architecture along with some suggestions for future
improvements with a summary of how well the objectives of

this thesis were met.

1.1 The APL language 4

The APL language provides a set of array processing
operations suitable for a wide class of applications.
K.E.Iverson [IVE62] is credited with the language's
invention, proposing it as a mathematical notation for
describing array theory as it applies to Tensor Algebra. The
language's extensions and implementations are credited to

numerous others [FAL64] ,[{BRE68].

APL obtained worldwide recognition when the first
machine implementations were successful during the late
1960's. However, its availablity was and 1is not now
widespread partly due to the vast complexities in
implementing the language on existing hardware and the lack

of skilled personnel to do so.

Appendix 1 contains a partial description of the
syntax for APL expressions (which is the basic procedural
unit of the 1language). For a more complete description of

APL's syntax and execution see [FAL79].

It is apparent from appendix 1 that the expression
syntax 1is not complex. However, what is not obvious is the
reason the 1language 1is almost always interpreted and not
compiled. This can be explained by two facts: Firstly,
interpretation is not a complex task, easing implementation
and allowing a highly interactive environment for the user;
Secondly, the dynamic nature of the data makes compilation
very difficult (there have been a few partially successful

incremental compilers for APL [JOHN79]).

The advantages of APL are far more numerous than its
disadvantages. Its strengths arise from its powerful array
manipulation primitives which allow concise statements about

a problem in a consistent manner..

The problems of any APL system can be considered in two
separate classes. The first c¢lass results from the
implementation , i.e. how the logical and language concepts
were transferred to an actual machine. The implementation
has more effect than any other feature in reducing the
usefulness of an APL system. The implementation affects the
efficiency of the language in carrying out the instructions
contained in it. However, all implementation problems can be

cured by the suitable choice of machine architecture.

The second class of problems result from the language
itself. The current definition of the language has many
restrictions on operators, primitives, and wuser defined
functions/arrays ([ABR75] describes some aspects of what is
wrong with APL). Nearly all of these restrictions are the
result of defining a useable system within the constraints

of the machine technology at definition time.

An implementation effort may be divided into three
phases, Workspace Management, Array Reference/ Operation
Algorithms, and User/ Operation System Interfaces. Workspace
Management includes dynamic changes in size and attributes
of arrays during execution and maintaining associations
between accessible arrays and their names. The specific
problems of Workspace Management will be addressed in

chapter 4.

The problem of referencing arrays in the various modes
and manners which APL requires is a very complex task. These
involve algorithms to select subsets of data from arrays in
an almost arbitrary fashion. These algorithms often imply a
large amount of data movement. If, however, it can be
recognized when such movements are not required, then
significant improvements can be realized. It will be the
subject of chapter 5, on the DMU, to suggest an architecturé
for the efficient execution of these algorithms. This phase
of an implementation covers what is generally called the

execution (interpretation) of the language.

The remaining problems lie in interfacing the user to
the system. This requires editing provisions for APL
programs and data and a proper interactive environment. Some

of these problems will be addressed in chapter 6 on the IOU.

1.2 APL Problems and Correction Suggestions 7

The problems of the APL language and its restrictions
will be discussed first and the implementation left for the
later chapters. All APL arrays must be homogeneous. That is,
all elements must be <chosen from either character or
numerical scalars. Certain applications, however, (such as
those LISP 1is often used for) require that elements of an
array be chosen from a set of arrays (an example is, lines
of a paragraph which are varying length character vectors
grouped together). This requires the concept of a
"Generalized Array" where each element of an array can be
any data object, allowing the expression of arrays of

arrays.

A substantial effort in extending APL to include this
concept has been addressed by E.Edwards [EDW73], R.Murray
[MUR73], H.Haegi [HAE76], and T.More [MOR79] (also [VAS73],
[GHA76], [GUL76], [JEN78], and [PIE79]). The extensioﬁ
proposed here follows that which E.Edwards proposed. The
details of this extension are still controversial in the APL
community and will be left somewhat open for future changes,

but a need for this extension has been shown to be genuine.

This extension to genéralized arrays can be summarized
by two concepts. The first is that of a "List" scalar, which
is the scalar element for all generalized arrays. The second
concept 1is a set of mechanisms which allow the user to
transform any array into a list scalar or any list scalar to
an array. These are the dual processes of "Imbed" and

"Expose" respectively. c.f. Table 1.2.1 for examples.

The rules for indexing are given in appendix 1 under
the rules of expression syntax (subexpression Iexpression).
Though the concept of indexing is well defined in APL it
lacks the symmetrical form that éll the other primitives
have. This will be rectified by the introduction of the

dyadic selection primitive "Index".

This primitive 1is described in the CDC*APL system
[CDC*APL]. Basically, it 1is a dyadic function where the
right argument 1is the array to index, while the left
argument is a "List" of indices. This index list has as many
components as the array has axes, and the arrays imbedded
within this list are indices within these axes. Table 1.2.2

illustrates this primitive.

TABLE 1.2.1

EXAMPLES OF LISTS

X+«'HELLO' o(JI0+0

Y«'THIS IS A LONGER SENTENCE'
Z+2 5p110

L«(cX),(cY) ,cZ
ARCREATE THE LIST L

A/, Y=oL[1]

3=pL

L+cl

1=p,L

A/, Z=2(>oL)[2]

N+«3 3p>L

A/, (oN[230])="HELLO'

TABLE 1,2,2
EXAMPLES OF THE INDEX PRIMITIVE

x[y;z] ' ACONVENTIONALLY
((eY),cZ2)nX AEQUIVALENTLY

I«(cY) ,cZ

InX AALTERNAT tVFL Y

X+2 3 3 5pZ ACONSIDER THE ARRAY X
X[s313Y] AONE ACCESS OF X
xX{Y31;531 AANOTHER SIMILAR ACCESS
E+c0pcO nAN EMPTY LIST
I«E,E,(c1),cY

InX AFIRST ACCESS

(dI)nx ASECOND ACCESS

jo

11

It is not my intention to remove the syntax for the
index subexpression, but rather to augment it with the index
primitive. Since all former cases of indexing can be reduced
to expressions involving the "Index" primitive, an actual
machine implementation may translate the former syntax into
equivalent expressions with "Index". However, this extension
should be made available to the user as complex indexing
expressions can therefore be assigned to variables for later

use, something which is not possible with present APL.

In the introduqtion of the "Index" primitve it must be
recognized that indexing is a true selection process and as
such must be made to have the same syntax form as the other
selection primitives. However, within the current APL,
indexing 1is given a special property in that it can be
involved in an assignment process. Table 1.2.3 shows the
operation of assignment as currently supported along with

the proposed extension to assignment.

Assignment's extension can be best described as
allowing the assignment of one array into another array of
similar shape and type, if the left argument represents a
subset of a named object. The o0ld definition restricted this
to only a named object or a subset of a named object
generated by indexing. This more general principle was
recognized by a group at CDC when they implemented CDC*APL
[CDC*APL], so they proposed énd implemented part of the

definition of table 1.2.3.

12

TABLE 1.2.3

EXTENDED ASSIGNMENT

PREVIOUS DEFINITION: NOBJECT+EXPR
NOBJECTLIEXPR]+EXPR
EXPR: VALID APL EXPRESSION
IEXPR: INDEXING EXPRESSION
NOBJECT: A NAMED OBJECT

RAFTER ASSIGNMENT THE TERM TO LEFT OF ASSIGNMENT (LT)
AAND TERM TO RIGHT (RT) HAVE THE FOLLOWING PROPERTY

A/ ,LT=RT

PROPOSED DEFINITION:

SE (SELECTION EXPRESSION)

SE«EXPRESSION

SE: NOBJECT
QSE
EXPR&SE
$SE
EXPROSE
EXPRpSE
EXPR/SE
EXPRnSE
EXPR4SE
EXPR+SE
,SE

RAND THE FOLLOWING SPECIAL CASE

EXPR\SE

ANO CYCLES

ANO OVERTAKE

RALL THE ABOVE EXCEPT THE LAST FOLLOW (A/,SE=EXPR)
AAFTER ASSIGNMENT .THE LAST DOES UNDER THE FOLLOWING RULE

A (EXPR\SE)++(~EXPR)/EXPR\SE

13

The nature of the selection operations that were
allowed in the CDC* proposal restricted the usable
primitives to Transpose, Rotate, Take, Drop, Reshape, Index.
That 1is, the pure selection primitives. The proposal to be
made here 1is to also allow assignmemt into selection
expression (either temporary or named objects) and to allow
in addition the wuse of both compression and expansion as
valid selection primitives. c.f table 1.2.4 . This extension
was briefly introduced by E.Edwards 1in describing

improvements to the APL language [EDW80].

A useful set of expansions to the APL language involves
generalizations in the data types allowable, the first of
which 1is the extension of the numerical scalars to the
complex scalars. This allows the inclusion of the current
reals and allows many primitives to produce complex results.:
Many of the primitives have natural extensions to the

complex domain and have been treated by P.Penfield [PEN79].

While there 1is still debate concerning the extensions
of some of the primitives to the complexes, one may choose
at this time to trap their results to domain errors or some
suitable value. It 1is important that this data type be
allowable to extend the usefulness of APL to the scientific

community.

TABLE 1.2.4 14
EXAMPLES OF EXTENDED ASSIGNMENT

AC(~T)/114pA;1+B o4«Tx4

RINSERT NEW ROWS B, INTO MATRIX A, AS
RGIVEN BY T. WITH CONVENTIONAL ASSIGNMENT
ANOW WITH EXTENDED ASSIGNMENT

(TXA)+B

ALT/114pA;)+B

ARREPLACE ROW OF A BY ROWS B AS GIVEN BY T
ROR

(T4A4)+B

G1[6+163;3+13]1«G2
AAS OPOSED TO
(6 346 3¥G1)+G2

(3 24B)+00B+10 50p1

AINITIALIZE A MATRIX AND ITS SUBMATRIX
(1 18I)+«1eI+«10 10p0

ACREATE IDENTITY MATRIX

G<(N,N)p' ?
(1 1&8GLX;Y])«"x!
RGRAPH PLOTTER

15

Another data type that needs expanding is character
data. In almost all systems, except for advanced graphics,
the set of characters is small and unalterable. That is, in
Fortran, Pascal, and APL languages, the character sets are
not user defineable. It will be the intention of this
extension to APL to provide a high degree of flexibility in
the definition of character data. These extensions will also
allow the definition of other IO related data types such as

speech or graphics.

An attempt to provide these types of extensions will be
in allowing the user to access and modify the character set
definition within the system. This involves the controlled
assignment to the system object(s) which support the set of

character scalars.

The most important extension to the APL language to be’
proposed here involves the manner in which arrays of
dissimilar shapes are coerced into conformable shapes during
the execution of dyadic "scalar" functions. Currently, two
arrays are "conformable" if either, both have the same shape
or one contains exactly one element. One element arrays are
Reshaped into an array of the same shape as the other array
‘(unless it has only one element in which case the array with

the higher rank dictates shape).

16

This is an extremely useful concept. However,as Edwards
(in a paper on simplifying APL concepts [EDW80]) and Breed a
few years earlier [BRE71l], point out, this principle should
be extended to allow a more general coercion of arrays. Thié
is the principle of "Extended Scalar Conformability". Its

rules follow:

Any two arrays of the same rank are conformable IF (1)
their shapes are identical OR (2) IF for the dimensions that
differ, pairwise, one has dimension 1. The axes with
dimension 1 are extended by replication along that direction

to the dimension of the other array.

For arrays of rank differing by 1, the "smaller" array
can have its rank extended by 1 at a location indexable by
the index operator. Since the two arrays now have the same

rank the first principle can be applied.

In the cases where the ranks differ by more than one the
old principle of scalar conformability applies. c.f. Table

1.2.5 for examples.

TABLE 1.2.5 I7

EXAMPLES OF EXTENDED SCALAR CONFORMABILITY

1+5 6p130
X+2 1 3p0
Y«2 4 3p1

XvY

X+«1 3p0
x+[01]Y

MARKS
WEIGHTS
MARKS+[0 JWEIGHTS

ACURRENTLY ALLOWED
ATWO ARRAYS X Y

RONLY ALLOWABLE IF EXTENDED
ASCALAR CONFORMABILITY

REXTENDS (pX) TO 1 1 3
ATHEN REPLICATES X S0
ATHAT (pX)=2 4 3

R AN N,M MATRIX OF MARKS
AVECTOR OF WEIGHTS (M=RHO)
RASSOCIATED MARKS BY WEIGHTS

18

These principles will be taken a step further in the
ability to coerce arrays. For the cases of ranks differing
by two or more, the "smaller" array can be extended to the
"larger" array's rank by the index operator, whose argument
is a vector of intended axes. The default values will result
in extending any array along its last coordinate axis, the
same as the above proposal except more than one axis is

involved.

This principle of Extended Scalar Conformability
(E.S.C.) will dramatically influence the machine
architecture of- MAPLE. In Appendix 2 an algorithm for

implementing E.S.C. is given.

1.3 APL Primitive Classes 19

From the primitives "in their extended forms I shall
investigate their classification into fundamental groups.
The first group is obvious, being the "Numeric" primitives,
c.f. Table 1.3.1. A primitive can be classified as numeric
if the resultant array belongs to the complex numbers. This
class contains the scalar numeric functionsvsuch as PLUS and
TIMES. Also included are such primitives as MEMBERSHIP and

INDEX-OF,.

The numerical primitives all perform a transformation
from one data type or value to another. There is a set of
primitives which do not perform any such transformations.
They are the "Selection" primitives, which simply modify the
spatial arrangement of an array or else select a subset of
the array, c.f. Table 1.3.1. These selection primitives are
just those which were mentioned in section 1.2 on selection

expressions.

The remaining few primitives can be clasified as either
involving an IO function or some executive function of
control or data association. These 1last few groups are
called "IO", "Control", and "Other" primitives respectively.
Under most circumstances the "operators" can be grouped as
control operations or selection operations, but they will

not be discussed here.

TABLE 1.3.1
APL PRIMITIVE SUBDIVISIONS

NUMERICAL PRIMITIVES

MONADIC
~ + = x 3 [1 SCALAR
| o * e 2?2 ! SCALAR
(SR W SPECIAL
DYADIC
+ = x £ [L | SCALAR
O * ® = £ < £ SCALAR
> 2 AV N N ! SCALAR
? € 11T 1 H SPECIAL
SELECTION PRIMITIVES
MONADIC
& ¢ , o <
DYADIC

p /N & ¢ + ¥

I0 PRIMITIVES

MONADIC
m v a0=v

DYADIC
m v

NILADIC
0 al=eM"?

CONTROL PRIMITIVES

MONADIC
> »

DYADIC
NONE

OTHER PRIMITIVES
MONADIC

DYADIC

20

21

It is not obvious to which classes if at all the
"Other" primitives belong, but upon close observation they
can be tied to the selection primitives. The primitive
"Catenate" 1is simply a restructuring operation which joins
two arrays together. "Assignment" performs no data
transformations or re-arrangements but effects a naming of

arrays. In some sense this is a selection operation.

The last primitive monadic "Rho", 1is technically a
numerical primitive, but it is so closely tied to the array
it 1is operating upon that I have also grouped it with the
selection primitives. The result is shown in Table 1.3.2,

where only four groups exist.

THE FOUR GROUPS OF APL PRIMITIVES

-

s |1 +

U

NO EXPLICIT DYADIC CONTROL

/

v

1

]

m A

x
1

+
<
1

4

TABLE

MONADICS

NUMERIC
$+ O
B

SELECTIO

[po]

I0

* ®
Ay
N

CONTROL

DYADICS

NUMERIC
r v |
> 2 A \"
B 1 T
SELECTION
v+ b & +
I0

CONTROL

PRIMITIVES AS YET.

1.3.2

22

2.1 APL Systems 23

S/360 Implementation
This was the first successful implementation of APL,
done in 1965 by IBM Inc. on an S/360 model 50 [BRE68]. It
was highly successful and has set the standard for almost

all other implementations.

The APL 1language was still under developement at this
time. The result was most of the language as it stands
today. Much of what was put into the implementation extended
or modified 1Iverson's original proposal [IVE62]. It was,
however, far from an optimal implementation as far as
performance was concerned, nor has that company made
significant attempts to «correct the deficiencies in their

sof tware.

They represented data as either numeric, character, or
function.The numerics were either 1 bit integers (booleans),
32 bit integers or 64 bit rationals. The M50 processor was
equiped to deal with these data types at the scalar level.
The booleans were packed efficiently 1into 32 bit words.
Character data was encoded into 8 bits and packed 4 to a 32
bit word. The functions were condensed into an internal byte
code string form, which was easier to interpret, allowing
some of the text string searchs to be eliminated by doing

the lexical analysis at edit time.

24

There were many restrictions on the users of this
system, most of which were the direct result of restricting
the workspace size to 2*15 bytes. However later

implementations corrected this problem.

A number of inefficiencies existed in the execution of
many of their primitives. All operations were explicitly
carried out without the exploitation of "Drag Along" and
"Beating" [ABR70]. This tended to produce very large
temporary results compounding the problem of insufficient

workspace size.

I0 was primitive, providing support for hardcopy
terminals only. There were no provisions to allow for future
developements such as video terminals. Output of arrays was
supported but input was character string oriented, allowing

only a single line to be entered.

It is my opinion that the introduction of system
function separate from the language was a mistake. This
negates the possiblity of generating system level software
in APL. Later 1IBM implementations corrected some, but not
all, of these problems (some system primitives were added).
It is interesting to notice that this attempt to provide
operating system interfaces has become a standard for most
implementations (the standard as proposed by A.Falkoff and

D.Orth [FAL791).

e

25

CDC* Impiementation
This implemenation by Control Data Corporation on the
CDC Star machine in 1973 was a radical advancement in array
processing, both in the 1language and the hardware
[CDC*STAR] . The Star architecture made heavy use of
pipelining and vector machine instructions. Many of the
scalar dyadic primitives could be implemented in a single

machine instruction.

The software made use of the ideas of Abrams in his
thesis on an APL machine [ABR70]. They employed two types of
data storage: one form for objects and one for object
descriptions. These storage types will be described in
section 2.4. They allowed most selection operations to be
delayed to the point were their explicit operation became

unnecessary.

Data was represented similar to the IBM implementation
except that all data was compacted into 64 bit words instead
of 32 and 64 bit words. The integers were represented as a
special case of the rationals so that they were all 48 bits
in length within a 64 bit word. Booleans were compacted to

fit within 48 bits of a 64 bit word. Character data was

represented as 8 bit bytes, 8 bytes per word.

26

Their major extention to the APL language was the
introduction of lists or generalized arrays. At present few
other implementation have succeeded 1in this extention (a
French system was described by M.Pierre having Generalized
Arrays [PIE79]). Another improvement in the language was to
allow assignment to an expression if that expression

represented a subset of the data there (as proposed in

section 1.2).

MCM Implementation
In 1973 MCM Canada succeeded 1in producing the first
APL implementation to run on a microprocessor. They choose
the Intel 8008 as it was effectively the only microprocessor
available at the time. With some hardware enhancements to
overcome the address space limitations of this‘processor,

they managed to implement the full APL language.

The significant features of this machine were its size,
user interface, and its I0 facilities. The machine's
physical size was small allowing it to be portable. In
actual fact the first model MCM700 was a briefcase
implementation with provisions for battery backup within the

same enclosure.

27

The system supported object paged virtual memory from
either tape or disk allowing the machine to use a very
limited RAM storage yet allowing large workspaces. All
operating system interfaces were provided via APL quad
functions [MCM], allowing the user to develope higher level

operating systems within the current system.

IO architecture was substantially improved in the MCM
systems. They provided for interfacing almost any arbitrary
IO device, supported through a set of user accessable system
tables describing the current IO device and the protocols to

use.

The MCM system took a radical approach to integer data
types. Because the INT-8008 is an 8 bit processor, and the
cost of RAM storage was prohibitively high for the
application, they implemented an expandable integer word
size. However, they failed to provide a separate boolean
word size (they chose to represent booleans as 8 bit
integers) The provided sizes are l,2,3,4,5,6 and 7 bytes.
The reals were similar to the format used by IBM's

implementation, ie. utilizing 8 bytes.

The deficiencies of the MCM system were 1in the
restrictions on the user, most of which resulted from MCM's
efforts to minimize storage requirements. The most severe
restricts arrays to dimensions of 0 to 255 (rank however was

unrestricted, allowing up to rank 32).

28

In MCM's naming convention only the first three
characters had significance. This has placed a significant
burden on users in avoiding name conflicts. Along with the
implementation deficiences was the machine's overall
performance at array processing tasks. For many applications
programs executed at speeds which are too slow for normal
use and only suitable for nonsupervised stand-alone

operation.

VANGUARD Z-80 Implementaion
This is a recent APL implementation(1979) for the Zilog
Z-80 microprocessor [VAN]. It represents an almost complete
implementation of 1IBM's APLSV, with a few restrictions on
the domains of the primitives, and also with a few of the

primitives missing.

It represents the state of the attempts to implement-
APL on modern low cost machines. It can best be described as
a cumbersome and rather poorly thought out system. Very few
options on data types were given, with booleans occupy one
byte ,integers 2 bytes, and reals occupying 6 bytes as

packed BCD numbers.

A serious fault of this system is it did not make use
of the improvements from other implementations to date, such
as virtual memory or generalized IO. It is certainly not a

contender in the users market for APL or array processing.

2.2 Other Array Processing Systems 29

The most noticeable array processor system other than
an APL system is the STARAN by Goodyear Corporation. The
architecture of this machine is radically different than the
other machines described here. Effectively it consists of
many parallel processors which can work independently of

each other.

It can best be described as a multi-ALU system, one ALU
per memory module, each memory module being a bit array of
256 by 256 bits. All data operations are on 256 bit wide
words. These large superwords allow a high degree of
parallelism in operations. Along with this large word width,
is the ability to access the array along either of its two
coordinates, with a third coordinate specifying modules.
With the ability to have modules operate on data in
parallel, ultra high vector operation rates could be
achieved (approximately 40 million operations per second

with only 4 modules).

The main disadvantage of the STARAN system is its 256
bit bus size. This 1is a very large physical bus size and
leads to bus interfacing problems, making the system totally

impractical for small or medium size machine design.

30

STARAN was originally indended as an associative
memory subsystem which could be wused in a parallel
processing environment with a host processor. STARAN
demonstrates the usefulness of having a separate data
processor for efficient array processing and that if one has
an easy access to array elements in an almost arbitrary

manner, a significant improvement in performance can be

achieved.

Another non APL system which was intended for array
processing is the PEPE multiprocessor system [VIC78].1It was
once (1976), one of the most powerful systems in the world,
being composed of up to 288 parallel processing elements,

c.f. 2.2.1.

The basic units are independent processors, each of
which derives its instruction from a common source. They all-
work essentially in parallel on separate data sets. Since
the elements were weakly coupled, intercommunication was a

bottleneck.

For arrays of modest size, many orders of magnitude

improvement over conventional systems, such as S/360, can be

achieved (that 1is, for operations on single sets of arrays

such as simple scalar dyadics). Each of the units can handle

a subset of the necessary scalar processes.

PEPE

HOST CDC7600

]

Correlation C.U. AL.U. C.U. Associative
output C.U.
lelement
alu.
Cu. mem.
aou.
of up to
288
Figure 2.2.1

3l

32

The problem with such a system is in data management.It
becomes very difficult to move components between processing
elements. With the 1lack of inter unit communications,
complex operations such as array restructuring becomes a
horrendous task. For these processes each processor in turn
must be asked for data. Thus procesess will invariably be
less efficient than a single memory stream instruction of

the S/360 or the virtual restructuring of the CDC STAR.

The above 1is typical of wusing identical parallel
processing elements. A tradeoff results between the
efficiency of scalar dyadic operations and structural and

interpretive operations.

2.3 Features Summary 33

From thé various implémentations and similar systems,
it is possible to extract the best features and those
aspects that should be incorporated in future APL
implementations. These features fall within two categories,
language and machine features. I will deal with language

features first.

A significant 1language feature was the sucessful
introduction of generalized arrays by CDC*STAR. Their
aproach was similar to the proposed language extention of
section 1.2. This same system also allowed limited

specifications into selection expressions.

The above two language extentions are significant as
they increase the ability of APL to express algorithms which
were up to then extremely awkward to express. Assignment
into a selection expression can reduce the number of steps -
in many APL algorithms. These two features will have a high
implementation priority in the machine design to be

undertaken here.

In looking at the MCM implementation, three facts about
the 1language become apparent. First, object names should

have no significant length restrictions.

The second was MCM-APL's inclusion of all system
functions as primitives. The language then does not have two

conflicting environments for the user to contend with.

34

The third important feature of the MCM systems was the
ability for the wuser to reconfigure the IO system during
execution. This is necessary for a single user machine which

must adapt to changes in the IO devices connected to it.

All three of these features will have high priority in

implementation.

The importance of boolean data strongly urges that
booleans be compacted to a single bit per component. This
results in order of magnitude increase in storage efficiency

and a similar increase in streaming speed.

As far as reducing restrictions on array sizes, it is
best to only restrict arrays by the amount of available
memory and no other factors. All implementations which allow
"Rank" of at least 16, appear to impose no apparent
restriction on the users. MAPLE will allow "Rank" of at

most 31l.

If the workspace size is 2*32 words (unrealisticly
large workspace for a single user) then dimensions should be
allowed within [0,2*32]. The MCM systems in defining
dimensions between [0,2*8] placed undue restrictions on the

user.

35

The other array proceséing systems demonstrate the high
efficiency of applying parallel processors to array
processing, as increased performance for some problems
results as more processors are introduced [MIT74]. However,
the nature of these processors should not be as uniform as
the PEPE system but allow specialization to achieve the

increased efficiency.

2.4 Array Processing Theory 36

In 1970 P.S.Abrams in his doctorial thesis laid the
foundations for efficient processing of APL array structural
operations and a method of improved interpretation [ABS70].
Since that time a number of implementations have succesfully

adopted some of these techniques ([CDC*APL],[AMR73]).

A number of important principles for array accessing
were introduced by Abrams. Many of these are the result of
the 1IBM APL/360 implementation, such as the need for

"Descriptors" to describe the properties of arrays.

All arrays have Rank and Dimensional parameters which
are associated with the array itself. These must be encoded
somewhere in memory to control the access to the arrays (any
access algorithm must know the number of elements to access

and in which order).

Abrams suggested a method by which, by the introduction‘
of Rank plus 1 more components to a descriptor, one can
describe a 1large <class of array structural operations by
simple manipulations of the overall descriptor. He called

the use of principles such as this "Beating".

37

Associated with Beatiné is the "Reference Counter". It
is a method by which unnecessary copies of arrays can be
avoided but still preserve the illusion of individual
copies. This is very useful in synthesizing "Call by Value".
The basis of the reference counter is as follows: every
array has associated with it a single word, which indicates
a count of the descriptors which reference a subset of the

array.

Some arrays can be described by just a descriptor and
a reference count. Thus two types of descriptors are
possible: those which directly describe an array without any
transformation information and those which indirectly
describe a new array based upon another array and some
transformation information. The former will ibe called
"Storage State Zero" (8S0) arrays and the latter called

"Storage State One" (S8S1) arrays [CDC*GID].

The nature of the transformation information will be
discussed now. One of the components necessary 1is to
indicate an "Offset" into the transformed array, while the
remaining Rank components called the "Jump" vector indicate
how to access array elements along each of the Rank axes. An

‘example of this principle is illustrated in Table 2.4.1.

Lkt

TABLE 2.4.1 38
PRINCIPLE OF SS1 DESCRIPTORS

OFFSET: INDEX INTO SUBSPACE DEFINED BY ARRAY
THAT IS INDIRECTLY REFERENCED.

RANK: ppARRAY
JUMP: (pd)=RANK
RHO: (pRHO)=RANK oRHO=pARRAY

IF 'I' ,A VECTOR (RANK=pI), REPRESENTS THE
COORDINATES INTO AN ARRAY, THEN THE LOCATION
OF THIS I'TH COMPONENT IS GIVEN BY

OFFSET+JUMP+ . xI
THIS DEFINES THE JUMP VECTOR
REXAMPLE

ARRAY1+1255 o[0I0+0
ARRAY2+« 3 4 5
9 10 11
15 16 17

OFFSET+3
JUMP«6 1
RHO «3 3
ATHEN

11=ARRAY2[1;2]
11=ARRAY1LOFFSET+JUMP+ . xI+1 2]

39

Appendix 2 contains a préctical set of algorithms which
can work with SS1 descriptors to produce SS1 descriptors
which reflect APL selection primitives. These algoritms were
described by Abrams' thesis chapter 3, but in a slightly

different notation.

These algorithms imply virtual operations on an array's
entirety while having time complexities which are linear in
the arrary's rank. This provides a substantial reduction in
both the time and space complexities of APL structural
primitives. Thus most selection operations can occur at

speeds independant of the number of elements in an array.

In the realm of storage efficiency, it is noticed that
the result of the monadic index generator primitive can be
described as an initial value, a count of terms, and a step
direction (bit). This was the proposal that P.Abrams

introduced in his thesis.

The implementors of the CDC*APL extended this concept
to an initial wvalue, a count of terms and an increment
value. This latter method describes a class of array called
"Intervals". Intervals allow the expression of floating
point arrays in which a constant term relates all elements.
They require Jjust three components to express any such
vectors: a dimension term, start value, increment value.
Such descriptors will be called "Storage State Two" (SS2)

arrays.

40

An SS2 array requires'no memory allocation except that
which the descriptor itself requires. This 1leads to
significant reduction in storage requirements for a large
set of vectors starting from an initial "Index Generator"”

primitive.

It is my proposal to extend the concept of the
Interval, from simply vectors to arbitrary arrays. Since all
arrays have the RHO information present, this extention only
requires an extra term per axis. This extention allows
selection transformations on interval arrays without the
conversion first to an SSO0 array, and hense allow reduced
storage requirement (a similar proposal is supposedly due to

D.Samson [SAM79]).

The form of the descriptor is the same as that for an
5S1 array except that the Offset and Jump terms have the:
different meanings of Start and Increment respectively.
There exists one other difference between SS2 and SS1 array
descriptors: an SS2 descriptor does not have a component
indicating an indirect reference to another array. In this
sense an SS2 array is similar to an SSO array, in that other

arrays may indirectly point to it.

W@Fw““'“ te

41

Abrams also addressed; in his thesis, some problems of
APL interpretation. He and others have noticed that many APL
statements have the nonsymmetrical property that an
equivalent statement can be synthesized with reduced
complexity. A few examples are given in Table 2.4.2. He

called this principle "Drag along".

His proposal was a stack architecture in which the
instruction stream could be modified to effect equivalent
semantic expressions. As this subject concerns more the
tasks of APL interpretation and as this thesis will
concentrate on the problem of data manipulations, it will be

deferred as later research.

TABLE 2.4.2 ‘rZ»

A EXAMPLES OF DRAG ALONG

3410+X > 10+3+4+X o X+1+11000

A THE LEFT REQUIRES 1000 '+' OPERATIONS
A WHILE THE RIGHT ONLY 3 '+' OPERATIONS.
n HOWEVER, LEFT DOES ALL 1000 DOMAIN CHECKS

R WHILE RIGHT ONLY 3.

A«11000
B«Ax3.1

C+12
A+ Bx(«+ D0 I«+1 TO 1000 (ALII+BLIIxC)

A WHILE ACCESSING ELEMENTS OF ALL ARRAYS
R SIMULTANEOUSLY ONE ELIMINATES TEMPORARY

R ARRAYS.

3.1 Architectural Justification 43

As was seen in section 1.3, the division of the
primitives of the APL 1language resulted in 4 classes of
operations, leading to Table 1.3.2. These four groups are
almost mutually exclusive and suggest differing hardware. It

was this division which influenced MAPLE's design.

The developement of a processing machine for the
numeric primitives is treated elsewhere [GIL74]. 1In
particular, most of these primitives (scalar ones) lend
themselves to efficient pipelining techniques. In general
they can be classified as having one or two input data
streams and one output stream, with no required storage of

operands past the immediate operation.

IO processing involves single data stream paths, to and
from IO devices, with possible data conversions along the
way. The nature of the IO devices may be dynamic so that
local control of them may be required. Such is the case of
multiple devices requiring differing drive functions and the
case of wvariable communication protocols. These functions
can best be controlled at the interface level via an IO
processor (this 1is the design philisophy of the IBM S/360

with its IO control units and channels).

PR T e

44

The separation of the selection primitives, is again, a
natural one. They perform no transformations upon the actual
elements of an array, but only on its overall structure as
it resides in memory. P. Abrams [ABR70] has shown that
generalized selection operations on arrays can be performed

by a single algorithm if a certain representation is taken.

The need for local control of memory management
functions and some system operations was also shown to be
true in an article by D. Samson [SAM79]. This lead to the
concept of a smart memory machine,the Data Manipulation Unit

(DMU) , which is described in chapter 5.

Section 2.4 discussed the work by Abrams on APL machine
design, which showed us that an APL machine must divide the
work of program execution into exclusive tasks (chapter 3,4
[ABS70]). What these tasks are depends upon the approach -
taken. He describes a system of at least two processors:
that of a D-machine and an E-machine, where the first
produces code for the second. It was not his contention that
such a system was optimal, but that an improvement in the
execution could result if specialized processing was

present.

The organization taken here is similar to that taken in
the STARLET system [GIL74]. This hypothetical machine's
architecture was also inspired by Abrams's thesis and is
shown in fiqure 3.1l.1l. These people adopted a multiprocessor

system with very specialized processors.

45

Where the STARLET was a tightly coupled system of
dependent elements, MAPLE is a more loosely coupled system
of independent processors. The major architectural
similarities between MAPLE's design and the STARLET's, are
that both are array processors and are multiprocessor based,

and both may make use of pipelining techniques.

The design philosophy of MAPLE is to allow a maximum
amount of concurrency to occur during execution and a very
modular approach to the architecture. The result will be
that changes in 1language or hardware will have minimal
effect upon the organization of the machine. This will be
realizable through four specialized processors, each of

which has a minimal instruction set and no fixed internal

organization.

Johannsen[JOH78] describes an architecture for a system
of microprogrammable modules. Together they allow modular
construction of complex processors. It was his contention
that the separation of a single processor's functions into
separate units (even at the microprogram level) allows for a
more efficient processor design. Here, it is my intention to
describe a more systematic and efficient approach to a high
level machine design, through the use of parallel processing

and multiprocessing.

INSTRUCTION

STARLET SYSTEM

OPERATING

SYSTEM &
IO PROCESSOR

46

‘=4 BUS
SYSTEM

PROCESSOR

DATA
PROCESSOR

Figure 3!\

STRUCTURE

PROCESSOR

47

This attitude of modularity is shown strikingly in two
papers by Hobson [HOB80-1] [HOB80-2]. Described in the first
is an approach towards specialized processing elements to
achieve high 1level 1language implementations and in the
second is a system which is suitable for high level langauge
interpretation using multiprocessing (specifically for an

array language like APL).

MAPLE is similar to a CDC STAR 100 computer system
running APL [APL*STAR] in that both provide array operations
at the machine level, and support an extended version of
APL. They are, however, radically different as far as

machine architectures are concerned [CDC*STAR].

3.2 MAPLE's Architecture 48

MAPLE is a moderately coupled multiprocessor system,
each processor having its own local store for buffering of
data/instructions. There are four processors or units in
this system each with specialized functions. They are the
EXecution Unit (EXU), the Input Output Unit (IOU), the
Arithmetic and Logic Unit (ALU), and the Data Manipulation

Unit (DMU).

The EXU is responsible for interpretation and execution
control of the language. It will cache the functions that it
is interpreting and in so doing issue instructions to the

other three units so that the statements can be executed.

The IOU supplies the interface between the user and the
system. This 1is accomplished through control of various IO
devices and high level editing features. All data formatting

and conversions for display are performed by this unit.

The ALU is a high perfomance arithemetic unit which
performs all scalar operations. It produces numerical

results only.

49

The DMU is the most important and complex of the four
units. It performs all main memory storage and management
functions along with the APL selection functions. It also
performs all the associations between array names and their
actual 1locations in memory. The actual accessing of arrays
is through the DMU in the form of a vector data stream onto
a common time multiplexed bus. Figure 3.2.1 shows a

simplified view of the overall arrangement.

These four processors will be combinations of existing
microprocessors and microprogrammed hardware. The total
number of processing elements is not fixed but will be
greater than four. Their functions and locations will be

grouped into the four separate machine units.

The next chapter will investigate most of the problems
in implementing the workspace in which all arrays reside -
(the workspace being a logical entity supported within the

DMU) .

50

EXU
status
data
instruction
ALU DMU 10U

Figure 3.2.1

BUS OVERVIEW

CHAPTER 4 The Workspace 51

This chapter covers the data structures that exit
within MAPLE and the implementation problems they generate.
Here I am mainly concerned with implementing an APL
workspace and the architecture necessary to support the

workspace.

The workspace is constructed in R/W RAM memory by the
organization of arrays into distinct subspaces of this
memory. The memory architecture of MAPLE will consist of a
single 1large bit addressable store in which all arrays and

system objects are located.

The reason for only a single memory module was, the
separation of memory into multiple units was not conducive
to easy array maitenance and memory management. The only
advantage of multiple memories seems to be in modﬁlarity but
this is overshadowed by the simplicity of a single store. No
speed improvements can be obtained unless multiple buses

exist (a far too complex and untidy situation).

52

The majority of main memory accesses will be in the
form of word fetches (a word is some number of bits). For
efficiency's sake, main memory will accessed in word units
but addressed at the bit level. The choise taken for MAPLE
was 16 bits per word due to three factors: (1) increased
word size must be offset by increased bus size and
complexity. (2) memories are tending to be standardized in 8
bit wide I.C.s suggesting the desireability of multiples of
this width. (3) 16 bits 1is becoming a popular width for

microprocessors with resultant hardware availability.

As 16 bits 1is the fundemental access unit of memory it
makes sense to base the addressing on this unit. However, 16
bits is totally inadequate to represent a sufficient address
space (2*16 =65K) especially if bit addressing is desired.
By wusing two words or 32 bits, 2*32 bits or 2*28 words can
be addressed (16 bits per word). This amounts to 537 million-

bytes of addressable storage or one half gigabyte.

With the current trends in memory technology, between
10 to 100 megabytes of RAM storage, with 100 nanosecond
access, will be available in the near future for a few
thousand dollars and fit within a minicomputer frame. As
this is being written, one megabyte of RAM storage costs a
few thousand dollars and would occuppy four five by ten

inch boards.

53

For many applications ~a few megabytes of storage is
sufficient. However, 1if expansion is to take place without
modification to the system software, the address space

should be large enough. Thus the choice of a 32 bit address.

Note currently there are available 2*16 bit RAMs with
the desired access times. With the introduction of 2*20 bit

RAMs the memory size expectations will be realized.

4.1 Memory Management 54

All arrays require storage, with some requiring more or
less depending on data class and structure. For the purpose
of memory management, all arrays can be considered as memory
segments characterized by a beginning address and length.
Segments are contiguous nonoverlapping regions of address

space.

Memory Management is now defined as the processes
which handle both requests for new storage, called
"Allocation" and the release of storage which is no longer
in use, called "De-allocation". The problem that APL
presents to memory management is that both the address and

size of arrays are dynamically changing, in contrast to

systems in which most arrays have static memory
requirements. An example of APL's dynamic nature is
exemplified in the primitive <class of scalar dyadic

functions. These primitives always generate a totally new-
array, which requires temporary storage based upon the size

and nature of its arguments.

55

The most important requirement of an APL system is the
ability to reassign to any object a totally new array with
arbitrary characteristics. This has the effect that the o0l4
storage associated with an object is released, without being
used towards the new storage for that same object. If the
system tried to overwrite an array with its update then data
integrity would be Jeopardized. The new data is therefore
generated and reassigned to the object, releasing the old

data.

A second requirement on segments in an APL workspace is
that the memory subsystem allow Random Access into arrays
along with the usual sequential access for scalar dyadics.
If the address subspace of a segment is contiguous then this

is easily satisfied.

An APL workspace can be partitioned into two sets: the
set of all segments associated with arrays and the set ofl
all wunused contiguous address subspaces (whose elements are
called "“holes"). These segments and holes can be scattered
throughout the workspace or ordered depending on the memory
management system used. All memory management systems
(dynamic systems as defined in this thesis) <can be
characterized by the existance of holes and segments and the
properties that, all "allocations" are taken from holes and

all "de-allocations" turn segments into new holes.

e

56

There are basically two general methods for the
management of memory, called: (1) Hole Table Maintenance and
(2) Address Maintenance. The former maintains an inventory
of segments and holes and rearranges segments, while the
latter tries to remove the contiguous requirement placed on
segments. Address Maintenance is examined first (it was not

the method chosen for MAPLE's memory management).

Address Maintenance attempts to allow pairs of segments
or holes to be linked together to generate a new segment or
hole, without the need to physically move any of these
subspaces. There are two methods which accomplish this:
first, regions (pagés) of memory can be linked in a linked
list where each region points to its successor; and secondly
pages (regions) can be mapped to an isomorphic space via a

translation table.

Both methods allow regions and hence segments to appear
as contiquous sequential address subspaces, however, only
the translation method allows random access within these
subspaces (guaranteed by the definition of an isomorphism).

cf. figure 4.1.1.

57
Translationa'l Memory

Management

Sysrem Phystcar

AbpRESS AroRrESS

Pace © 5 EPA“@

ggi PHGE TRHNS\HTIDN
—/\—

Page v Face ~

2 o B o B S];]

[Pas v e— — 1 e

PF\GE LINKING

Freore 1

58

Consider a pure Addrgss Maintenance system, with no
Hole Table maintenance. Within the subspace represented by
the pages of a segment, there can be only one array. All
arrays will have the same value of offset (usually zero)
into a page for their first address, otherwise these offsets
must be maintained (which 1is equivalent to Hole
Maintenance). The above represents the condition that all
segments are allocated in page size wunits, with only a

single array per set of pages.

These pages have sizes from one word to some large
fraction of the workspace. The ideal situation would be the
ability to translate any word address so that every word was
available to be 1linked together. However, for every page
that can be relocated there must be an element of the page
translation table, representing a possible significant

overhead to support memory management.

Since array segments are allocated in page units, in a
random distribution of segment sizes every segment will
have an average waste of memory equal to one half page. Thus
reducing page sizes reduces the amount of memory per segment
which 1is not in wuse. However, reducing the page size
inversely increases the page translation table size and its

associated maintenance.

59

Page table systems have one very serious disadvantage,
if all arrays are restricted to starting at a page boundry,
then the maximum number of segments is directly related to
the page size. 1In trying to reduce page table maintenance
the page size must be increased, reducing the flexibility of

the system in defining new objects.

Summarizing Page Table management:
Disadvantages;
- (1) there is a waste of memory per array depending upon the
page size and number of segments.
-(2) there 1is an overhead 1in storage in the translation
table which might not be negligible.
-(3) all addressing requires either an extra memory cycle to
locate the next page or a comparison to determine if the
address is within the current page.
-(4) the translation table must be modified to support-
memory moves resulting in non negligible processing.
-(5) *** the number of distinct arrays/scalars that can
exist 1is strictly 1less than the number of pages in the

system.

Advantages;
-(1l) segments do not have to be physically moved to affect
their motion 1in the workspace. Thus to rearrange the

workspace the Translation table only need be rearranged.

60

Hole Table Maintenanqe (HTM) is the alternative to
Page Translation. This performs the linking of holes by the
actual physical relocation of arrays to produce a hole which

will accommodate the allocation request,c.f. figure 4.1.2.

HTM has many forms, a common one is to allocate from
only one hole till it is exhausted, at which time the entire
workspace is reorganized to generate a single hole
representing all free memory [SYK79]. This scheme is very
simple but not very efficient. The inefficiency is due to
the 1lack of use of the holes fragmenting the workspace from
the continually releasing of array storage. It is highly
probable that one of these other holes would be able to

accommodate the request.

A solution is to maintain a table of all existing holes
from which all requests are filled. This presents four main
problems:

(1) which hole is to be chosen for a request?

(2) as the number of holes increases the time to search the
hole table increases.

(3) the rate of releases of arrays may exceed the rate of
requests for a time sufficient to overflow ANY hole table
(the example is the return from a large recursive call).

(4) what is to be done when the hole table overflows?

el

Hole Table
31 0
0 locqtion
size
N-1
N - current table dimension

Figure 4.1.2

62

The choice of the hole is wusually either first fit or
best fit depending on how the hole table is organized. First
fit was <chosen for MAPLE's memory manager as it has some
useful properties: (1) The search time to locate an allocation
request is better than for best fit; (2)With concurrent
processing table updates do not play an important part in
evaluating performance; (3)By ordering the hole table by
increasing addresses successive memory requests will be more
stable and tend to compact the workspace into arrays in the

lower addresses and holes in the upper addresses.

Problem (2) 1is solved by limiting the hole table to a
maximum size which does not present a serious search time.
The exact size of this table will be the subject of future
experimentation, however other researchers indicate that the

optimal size is on the order of 64 entries [CDC*GID].

All Hole Table maintenance systems can be characterized’
by the few properties 1listed in table 4.1.3. The more
efficient schemes reduce the probabilities of hole table
growth, resulting in fewer conditions where objects must be

relocated ("Garbage Collections").

4
.
3
:
é" .

TABLE 4,1.3

PROPERTIES OF HOLE TABLE MAINTENACE

H <=> CURRENT NUMBER OF HOLES
M MAXIMUM NUMBER OF HOLES
A/, H<M UPPER BOUND ON TABLE SIZE
S <=> SIZE OF ARRAY REQUESTED

OR RELEASED.
L <=> LOCATION OF RELEASED ARRAY
HS <=> VECTOR OF HOLE SIZES
HL <=> VECTOR OF HOLE LOCATIONS
OwA=+/HS SIZE OF FREE MEMORY
ALLOCATION:
H+H+0 IF HOLE CHOSEN IS >S8
HeH=-1 IF HOLE CHOSEN IS =8
HeH-X X21 IF 'GARBAGE COLLECTION'(G.C.)
G.C. <=> A/S>HS
DEALLOACTION:
AUGMENTATION HeH+X
X=0 <=> (LeHL+HS)2(L+S)eHL
X="1 <=> (LeHL+HS)A(L+S)eHL
OTHERWISE HeH+X
X=0 GARBAGE COLLECTION
X=1 (~G.C.)A~AUGMENTATION
G. <=> (H=M)A(~LeHL+HS)A~(L+S)eHL

©3

BERCE bl 1

64

Garbage collection need occur only if either: (1) no
hole can accommodate the request and there are more than one
holes or (2) a hole table overflow occurs. As workspace size
increases the probability of not finding a hole large enough
decreases and as MAPLE was intended to have a very large

workspace the emphasis was placed on reducing hole table

overflow.

It is therefore important to investigate the mechanisms
which affect hole table growth. Table 4.1.3 indicated that
two holes can be augmented, this occurs when a newly
generated hole (released array) and an existing hole share a
comman boundry address. Since memory can be allocated in
words, there 1is a non zero probability that a new hole can
be augmented with some current hole, resulting in the size

of the hole table not changing or even reducing.

By ordering the hole table by increasing address and
searching for first fit there is a trend to cluster segments
in the lower addresses along with the associated clustering
of holes with 1lower addresses. As the probability of an
augmentation increases as the density of holes within a new

holes address space increases, this clustering tends to

increase augmentation.

65

Statistics taken from the CDC*APL system, which used
first fit in a 64 entry hole table, showed that the
execution time spent in doing garbage collections due to
table overflows was negligible [CDC*GID]. However, attempts
should be made to increase the efficiency of.the garbage
collection as in some processes (such as real time
applications) excessive delays in moving memory can not be

tolerated.

Garbage collection triggered by an allocation request
results in 1locating a set of two or more holes, which upon
relocation result in a single hole of size sufficient to
accommodate the request. The most efficient garbage
collection algorithm results in the movement of the least

amount of memory and the least processing overhead.

Since the hole table 1is ordered by address it is
relatively easy to find a minimal set of holes which will’
result in the least amount of array movement. Once this set
is found all arrays contained within the range of addresses
defined by these holes will be moved down into the lowest
hole. This has the effect of bubbling holes up into the
highest hole till only one high hole exists (within this

subset of holes).

66

Moving an array invo}ves two processes: (1) the
sequential relocation of 1its elements and (2) the total
update of all references to itself. The first process
requires exactly two memory cycles per word of the array,
while the second processes 1is heavily dependant upon the
organization of the workspace. In systems which implement
Lists there is the enormous problem of updating all forward
pointers, with one solution being to use backpointers. In
the next section the workspace organization is discussed and

the solution to updating is shown to be near trivial.

The average of the minimum amount of memory that exists
between the set of holes that are to be collected dictates
the average overhead of garbage collection (assuming a near
constant time to locate the set of holes to collect). This
can vary from just a few words to many thousands of words,
however, a measure of an upper bound on the amount of memory -

to be moved can be found.

The worst case condition occurs when all holes are
separated by equal size regions of arrays. As the highest
address in the address space is within the last hole the
amount of storage represented by these regions is

WorkSpace Used

$# Holes-1

67

It is expected that the dominant cause of garbage
collections will be hole table overflows, which result in
exactly two holes being collected. By choosing two holes
with the least amount of storage separating them, the least
time for a garbage collection will result. These two holes
will be precomputed, before any garbage collection is
required, concurrently with memory utilization to reduce the

overhead of a garbage collection.

Stacks

There are some operations on arrays that are stack like
(FIFO and LIFO), 1in which to have to regenerate the whole
array for each operation cycle would be highly inefficient.
A "Push" operation is logically the catenation of a scalar
to a vector and a "Pop" is a last element take and drop.
While takes and drops do not require memory movement a
catenation always does, thus a mechanism must exist to do a -

Push without memory movement.

An obvious solution is to make all LIFO stacks fixed
static objects with some maximum address space, such that no
overflow can result. In APL the execution stack must be able
to grow to fill the whole workspace available, or typically
more than half of the entire workspace (to allow flexible
recursion). Assigning the majority of the workspace's usable
memory to any object is highly restrictive considering that
most stacks have average sizes of only a few percent of

their maximum size.

ki

68

What is needed is a method of dynamic allocation which
does not move memory to allocate increases in stack sizes
and only utilizes as much memory as the stacks current size.
This may be achieved using Address Translation memory
management, but this method wés not chosen for memory
management of APL arrays. Stacks, however, are not a data
type defined 1in APL (at least not at present) so it is not
in conflict with the array allocation scheme if stacks

utilize this scheme of memory management.

Dynamic allocation of system objects (such as stacks)
use Page Table Maintenence for the following reasons:
(1) system objects are usually large so page size can be
large, reducing table sizes and processii.j.

{(2) system objects do not change their base addfess as the
result of any operations on them.
(3) size modifications of system objects is simply a matter

of linkng and unlinking pages.

Consider a workspace divided into "n" unit subspaces
(pages). These pages can be characterized as one of three
types:

(1) containing only an array or part of an array (no free
space) .
(2) containing a hole and an array (some free space).

(3) containing only free space.

69

The first type represents zero waste, the second
represents waste which memory management handles, the last
represents a page which is not in use at all and as such is
free to be used in any possible way. It is the existance of
the 1last type of pages which allows efficient dynamic

allocation of system objects.

MAPLE's dynamic system-object maintenance operates as
follows:
(1) each such object is allocated a fixed static subspace of
the workspace (base address and size are fixed).
(2) a system of virtual memory is used to swap into these
subspaces real pages to satisfy the required current sizes

of these objects.

The mechanism for this virtual memory can be described
as follows:
De-allocation;
(1) whenever a page which is entirely a hole is detected by
memory management the real memory associated with this page
is removed creating a "Black Hole" in the workspace, and the
real page is placed on a free list of pages.
(2) an object's address space will be composed of both real
and virtual pages (black holes), where the actual storage
associated with the object 1is Jjust the sum of the real

pages.

wrespg s

70

Allocation; '

(1) whenever an object must be expanded by "n" pages, if
there are at least "n" black holes within the object and "n"
free real pages, then these black holes will be filled with
real pages.

(2) the replacement of one black hole with a real page
produces another black hole elsewhere (the number of black
hole pages is conserved).

(3) the movement of pages is supported via a translation

table of pages, called the "Relocation Vector" (R.V.)}.

-Intially in a clear workspace there exists a set of
system objects and one Free Hole. A1l real pages, except one
per system object, exist 1in the Free Hole. Therefore the
amount of real memory in the system is dictated by the size
of workspace the user sees. The size of the workspace the
sysfem sees 1is this wuser size plus the sum of system-
objects' maximum sizes, that is the virtual space is larger

than the real space supported by RAM.

The choise made in MAPLE was to utilize two 16 bit
words for all addresses for a 2*32 bit addressable memory
space (usually the virtual space is defined as much
smaller). The lower 16 bits of an address form a bit address
into a word, and a word address into a page, given by the
high order 16 bit word, c.f. figure 4.1.4. This mapping
allows 2*16 pages of virtual space with pages being 2%*12

words (8k bytes) in size.

71

Since there are few 'system objects the wasted memory
generated by a Page Table maintenance system due to these
large pages is negligible. A large page size also decreases
the overhead in page translation, both in the size of RV and
the overhead in locating the next’page from RV. Figure 4.1.5

demonstrates the function of the RV.

In the next chapter the architecture and engineering of

the memory management subsystem will be described.

72

Address

Virtual

43

16 15

i

] .

Word

Virtual

Address

Address

Page

Figure 41L+

73

Relocation Vector

15 0

B

L____virtual space

virtual page

RPN —

RPN = RV [virtual page]

Figure 415

4.2 Data Types 74

All APL data is represented as one of the following:
function, numeric, graphic, or list (generalized intermixed
forms). In this system definition, each of the four classes
of data may have many subclasses (which in turn may also be
divided into subclasses) reflecting considerations such as
integer/real distinctions of numerics. The implementation
considerations will now be discussed for the different

classes of data.

Numerics

There are two subclasses of numeric data, the real and
complex numbers. To the extent practical, all possible
values of these subclasses must be represented. This implies
the need for a floating point representation for reals and
(X+iY) of complexes.The complex numbers, X+i¥Y, will be
represented as an ordered pair X,Y of reals where X and Y
will both be of the same numeric subclass. e.g. both boolean
or floating point. For the reals one must approximate the
irrationals to their nearest rational value as they can not
be directly represented as numeric values. Similarly the
rationals must be approximated to the nearest fixed length

floating point number.

75

It is wasteful to represent the numerics in the range
(0, (ie. Booleans) by the bit patterns for reals, since
reals require a larger number of bits than Booleans. As
booleans are numeric, they will require a separate bit
representation. The obvious representation is for a single
bit to be used, thus a boolean vector is simply a sequence

of bits, the same number as its dimension.

With the notion that each component has a size based on
the subclass it 1is in, an efficient representation can be
chosen for each class or subclass. It is important to note
that specifically within the c¢lass of numerics, the
components of an array will invariably not be of the same
subclass. An example 1is the intermixing of boolean values
and rational values. However, it is not possible to achieve
an efficient streaming of components in a generalized
selection format if the components of the arrays have varing-

bit widths [LAW75].

This implies that all components of an array be in the
same subclass even if storage efficiency is not optimal.
Thus there will be conversions between subclasses. These
conversions should be kept to a minimum, as they require
processing that is not implied by the instructions that may

initiate them.

76

Since integers occur frequently in data storage and
information processing, a distinct set or division is in
order. It is obvious that the booleans, which are integers,
require a separate subclass therefore the integers will be
divided into 1its own subclasses. In section 2.1 it was
mentioned that the MCM system had 7 distinct integer sizes,
it remains then to determine an optimal set of integer sizes

for MAPLE.

The next class (the characters) will show that a useful
component size is 8 bits allowing the representation of -128
to +127 integer values. Though this is a useful range of
integer values, it is insufficient for most applications.
Integers within the range +-10*9 should be allowed, or
values within the range of the dimension of the ravel of the
largest array allowed in the system. Since booleans serve
special functions in information storage it would be-
improper to restrict the dimension of a boolean vector to
less than half the available bit storage in main memory,

which could be on the order of 10*9 bits.

As in most of the previous implementations,the integers
were simply divided into two divisions: booleans (1 bit
integers) and all others as 32 bit integers [BRE68]. This
author advocates the above and also the further division
into multiples of byte widths as in the MCM implementation

[MCM] .

717

MAPLE supports 1,2,4 and 6 byte multiples for integers.
Byte multiples of 3 and 5 are dropped as their width oddness
is unmanageable. The 1 ,2 and 4 are common sizes and most
computer systems have them. The 6 byte integers are not
useful for indexing as they are too large, but they are a
convenient intermediary between the rationals and the other

integers,as the rational coeficient is a 6 byte integer.

The floating point format has a length of 64 bits with
a 16 bit binary exponent and a 48 bit integer coefficient.
The coefficient will be right normalized to ease conversions
between 48 bit integers and rationals. This format is a
standard one as used in many of CDC's 1large mainframes
[CDC*GID]. The format amounts to 4 words of main memory per
component. This format for floating point numerics is also

easy to microprogram.

It is important to note at this time that component
sizes, though having to be uniform within any array, do not
have to be of any specific bit width. It is only for the
ease of construction of the component from word accesses
that they are standardized. Since it is the objective of
this machine's design to provide efficient bit addressing,
the above restrictions on component sizes are an
implementation consideration aimed at providing overall high

speed memory access to all components.

78

Characters, graphics and Others
This definition will include all data representations
that I/O0O should handle. It may include forms of speech in
manners which are unconventional, or special network
interfaces. The main point to make is that classical APL and
other programming languages are somewhat restrictive in
their data representations. This implementaion will correct

some of these deficiencies.

Within this class of data there will be the subclass of
character data ,(present in other APL machines), as well as

other possible subclasses which have not yet been defined.

For the classical case of a computer alphabet, one has
between 64 and 256 characters to deal with [FAL79]. These
are easily encoded into 8 bit codes. However thére existed
no mechanism by which one could perform operations on these
elements or to form new elements to be added the set. Such’
an operation might be the logical OR between the boolean
matrices representing the fonts of characters (ie.

overstrike operations at the user level).

79

In this implementation, characters will be represented
as integer indices of the definition objects for each
character. Thus there will exist a system object called the
Atomic Vector which is a 1list of definitions for each
character. The 1IOU will interpret this list to perform the
desired IO function. This 1list may, as above, define
characters as boolean matrices for display fonts or as

translate values to some other IO device.

Instructions

The number of primitives in APL is 1less than 255, so
that 8 bits is sufficient to encode all of them. Since the
Interpretation or Execution processor will be designed to
interpret APL directly, it will only need to look at one of
three types of data. The first is an APL primitive, second a
named object, and third is a literal or character vector.
The recognization of APL primitives is trivial while named -

objects require associative searches.

80

In APL the definition oﬁ names is relatively arbitrary,
which presents the problem of encoding them for look-up
during interpretation. The choices are to do an array search
to identify the name (ie. no encoding), to hash the names,
or to perform no searchs at all for name object
associations. The latter 1is performed by doing all
name-object associations at edit time for the text strings
involved. The names are replaced by an index of a symbols
table where the literal form of the name (or pointer to it)
is stored. This eliminates a class of searches but not all
searches. The others are necessary to support certain

function parameter calling modes, which will be discussed

later.

As described previously, character data will be mapped
to integers, so literal strings will be integer vectors of
usually 8 or 16 bit lengths (more than 2*15 character codes.
is excessive). Thus all APL text can be compressed into an
integer vector as the storage form. The integer division
used will either depend upon the maximum object/character
code value encoded or it can be a unique division with

varying component lengths.

81

This may seem in conflict to what was said earlier
about uniformity in component sizes but it must be pointed
out that selection operations on an APL line of code is at
present not permitted and no proposals to allow such
operations have been presented. Thus the primitives will be
encoded into 8 bits, while the characters and names could be

encoded into varying length bit patterns.

Lists
Lists are arrays of object references (ie. integers for
indexing an object reference table). The name encoding above
is an example of scalar lists. There are no restrictions on
the classes of data which can be combined or imbedded within
a list, nor are there any restrictions on the depth of imbed

except through available memory.

Figure 4.2.1 shows the overall data hierarchy within
this implementation. Shown are the four classes of data and

their associated subclasses.

Descriptor Bit Representations
All objects have their own descriptors which give the
object's shape ,location, and data class. Shape information
was described in the section on selection descriptors in
section 2.4. Location is given via a list scalar or object

reference.

82

Data Hierarchy

| l B j

List Numeric Instruction 10

_ |
l | | |
Complex Redl Character Others

—

Rational Integer Rational Integer

1

Boolean Others Boolean Others

Figure 4-2.|

83

There are two basic types of descriptors, the storage
state zero (SS0) and storage state one (SS1) descriptors.
Since SS0 and SS1 arrays all contain rank,rho and type

information their encoding will be discussed now.

Rank will be restricted to belong to [0, 31] for
efficiency in the operations in the hardwaré selection unit.
There are no algorithms in current publications on APL in
which arrays of ranks greater than 31 are generated, so it
is assumed this restriction will have negligible effect on
the machine's intended purpose (H.Saal found that rank was
usually 1less than 3 and rarely explicitly more than 4

[SAAT75]). Thus rank can be encoded into 5 bits.

A valid argument against ranks greater than 31 is that

any non-degenerate array of rank 'k' must have > or = 2%k
elements which for the smallest elements (booleans)
represents a full workspace at rank=31 (workspace

size=2%*31).

84

The maximum dimension of any axis will be restricted to
2*31 or by the amount of available memory, which ever is
less Thus RHO information can be encoded into 32 bit
integers. However, very few arrays will have any axes with
dimensions greater than 2*15 so they will normally only
require 16 bit integers. In many applications dimensions
less than 128 are the case. For storage efficiency, two bits
will be wused to determine the component size of the
descriptor itself. This allows 8, 16 and 32 bit integers for

the RHO 'nformation contained within.

To differentiate between storage state (SS) descriptors,
a single bit will be used. The distinction will be between
SS0 and the higher storége states. Since primary memory
accesses involve 16 bits, the rank, SS, and data type will
be grouped together in a single word. This leaves 8 bits for

data typing.

There are four data classes, so two bits are needed to
determine which is represented, leaving 6 bits for subclass
and division encoding. However only 5 will be used to
simplify hardware selection of these bits (they have the
same relative position as the rank information which is 5
bits in length). The complete Rank-Type word's layout is

shown is figure 4.2.2.

g5

Header

Type —Rank

8 7

9

15 14 13 12 11 10

rank

0
data class

component sjze

storage state
word size

Figure 42.2

86

These 5 bits for component size will encode all the
subclass and division information possible. They will solely
determine the component bit sizes. Each of the 32 possible
patterns available will represent a unique bit size
regardless of the data class. This 5 bit number will be an
index to a firmware table, inside all units, which maps to a
32 bit number representing component bit sizes. Fiqure 4.2.3
gives the bit sizes and the defined 5 bit codes that
represent them. Note it is a simple matter of changing the
entries within these firmware tables to effect changes in
component sizes. Figure 4.2.4 gives examples of various bit

patterns for a few assorted data types.

The bit encodings presented here are some of many
possibilites. They represent an attempt to reduce the number
of bits required to encode the necessary information without
undue complexity in the extraction of this information. It .
will be shown that in the chapters on the architecture of
MAPLE, changes to this encoding will have minimal effect in
the structure of the overall machine (due to

modularization).

Component Code

Qo o ljo o o | | e | (0 o |
.-.-....-'-—-ccoco°

— | (= O O o | ™ "0 0o |
o (O (== O = O (O (e [|©
O | e (O (e | O e O | [O e

Bit

1
8
16
32
48
64
2
16
32
64
96
128

Other codes are unassigned

Figure

4.2.3

Size

8t

S 11LE C opE EXAMPLES

X x X ol 1 1 o x x \ x
floating real

x| x | 111 0| > aE
floating complex

x | x | x 1141 0 | x x | x
16 bit integer real

x x I x 1 1 0 x R t
8 bit character

NN ERRRENE

s/
16 bit list . data
class

unmarked boxes are 0O

Figure

4.2.%

€8

89

Within all descriptors, and hence objects, there will
be a component which specifies the count of the number of
times that object is referenced (Reference Counter) by any
other object. This 1is necessay to support lists and
generalized selection operations as described in chapter
2.4. This Reference Counter is simply be an integer value
and is sized -exactly as the rank-type word. Note that no

object can exist which has a reference count of zero.

Also, within every descriptor there will be a unique
component which is that object's own reference number. This
is, 1in effect, a back index into any object reference table
to facilitate the process of efficient garbage collection
(see section 4.1 on memory managment). It also obeys the
rule of size that the reference count obeys. The general
layout of a descriptor or header is given in figure 4.2.5.
It shows that part of a descriptor which is present in all-
arrays. Figure 4.2.6 shows how SS0 and SS1 arrays differ in

their descriptors.

90

Descriptor Layout

15 o 2 e e
Rank Ref. Back
Type | count index | Rank elements of RHO |.. .5
SS

The width of these terms is given by 2 bits
within the RT word.

Figure 4‘.2.5

DES(‘.KI?TO& EXHmP_ES

R

ssO
etc.

RHO Vector

DATA

ssl
etc.

RHO Vector

Array Specification

R Jump Values

offset object
reference

Selection class

1st Start

Increment

.[{Rth Start |Ihcrement

Interval

Figure 4 2.6

class

9l

4.3 Workspace Structure 92

The workspace 1is the union of the set of all system
objects and all objects generated, either directly or
indirectly by the user. Such system objects are the symbol
tables and stacks needed to allow the execution of APL
statements. The user objects are all the arrays that a user
can access or needs to know about. This section discusses
more on the organization of the memory space and the

structure of the objects themselves.

The workspace can be thought of as consisting of N
distinct arrays, each with a descriptor and its associated
storage state. All storage state zero (SS0) arrays reference
the data which follows immediately after the descriptor.
All storage state one (SSl) arrays reference data
indirectly, based upon parameters given within the
descriptor. For most SS1 arrays these parameters include an
indirect reference to another array. To support this level-

of indirection one of two schemes can be used.

The first has the current address of the other array as
a parameter. This presents significant problems as far as
memory management is concerned, as the relocation of an
object necessitates the modification of all indirect
:eferences to it. The problem of simply locating all such
references 1is difficult since there may be more than one
indirect reference. One must either dissallow
multireferences or disallow addressing of an array via

absolute address.

93

This leads to the second method, which involves storing
a pseudo-name in the parameters, rather than the actual
address. When it 1is necessary to locate the indirectly
referenced array, the current address is obtained through

some binding between this address and the pseudo-name.

This binding is supported through the Array Reference
Table (ART). It is essentially a vector of all unique arrays
in the system, the components of which are the actual
absolute addresses for these arrays, and its indices are the
pseudo-names. Figure 4.3.1 shows its structure and use. It
is worthy of note that this system of a single reference
table for all arrays greatly simplifies the task of pointer

updating during garbage collections.

Thus, internally, all arrays are referenced by an
integer value which 1is an index of ART. ART is a system-
object maintained by the memory manager. It is in the class
of dynamically expandable system objects which the Memory
Manager maintains. Note the addresses in ART are all 32 bits

in length.

Given the above method of representing arrays in the
system, the representation of Lists will now become clearer.
Since a List 1is an array of arrays, its data structure is
simply an integer array of said array pseudo-names (ie.

object reference numbers).

94

Array Reference Table

31 0

absolute address

e—

Internal
Reference
Numbers

z
L

type | ref. | rho
S's

count
rank .%ﬂck DATA
inde x

Figure 43 |

95

What is needed now is an association between the user
supplied names and these internal pseudo-names. This is
supported through the symbol table (ST) which is a list of
literal representations, and the symbol association vector
(SAV) which 1is a vector of associated psuedo-names. The
chapter on the Execution Unit's operation will describe the
use of these system objects in detail. For now, refer to

figure 4.3.2 for a structural view of SAV and ST.

ST and DAV

35 96 =3
101;56 = 727 =—f—>
SAV ST

Figure 432

CHAPTER 5 DMU 97

The heart of MAPLE is the DMU, as it maintains the
workspace and allows arbitrary accesses to arrays within.
Since the tasks of memory management and array accessing are
somewhat independent and can often run concurrently, they
shall be delegated to two separate subunits (each having
their own processors). These two units are the Memory
Management Unit and the Object Manipulation Unit, with the

functions of the MMU described in the last chapter.

The allocation of memory for all arrays will be fully
transparent to the wuser (where the "user" 1is another
processor), with the user never needing to know the location
or memory requirement of arrays. Therefore all references to
arrays will be by names as described in section 4.3. The
user will supply a numerical name which directly associates

with an array within the DMU.

The DMU does not support any explicit associations
between 1literal names at the APL system level. Instead it
provides a powerful tool with which to implement many
different 1levels of binding between names. This will be

expanded upon in chapter 6 on the EXU's operation.

98

The objectives of the DMU are as follows: to provide
arbitrary access to arrays for the user; support a large
virtual memory space greater than 100 megabytes; provide
associative 1lookup of objects; fetch array components at
streaming rates equal to memory access speeds; allow
multiple data streams to occurr concurrently; allow its
instructions to be interpreted at the same time as executing
previous ones. The architecture which will satisfy these

objectives will now be described.

5.1 DMU Architecture 99

Each of the DMU objectives will now be discussed in
turn, starting with access paths. Provision of general
accessing of arrays requires manipulation of a large set of
parameters [LAW75],[ABR70]. The DMU accomplishes this with
the Object Manipulation Unit (OMU). The reponsibility of the
OMU 1is the generation of absolute virtual addresses for

every access desired.

The OMU must be able to generate addresses at least as
fast as components are requested. The addresses generated go
to the MMU which is responsible for accessing memory. The
processes of memory fetch and address generation can be
pipelined so that next address generation can occur
concurrently with component fetch. It is not my intention to
try to achieve optimal DMU performance at this time , but to
demonstrate that a high degree of performance can be

achieved with minimal hardware design.

Figure 5.1.1 shows the general architecture of the DMU.
It shows the two subunits, the OMU and MMU and the other
components of the DMU. All nontemporary information is
contained within the main memory module except for some data
in the MMU's local store. The Bus Controller is responsible

for interfacing the DMU to the other units in the system.

Local Store

im

OomMu

instruction
MMU address
+32
MAIN
STORE

Fa

Local Store

Controller

Bus L_

?s

D

Data Manipulation

Figure

S

5. 1.1

Unit

-
)

|00

101

Object Manipulation Unit

The OMU is the heart of the DMU's functional power. It
provides a number of address generation algorithms for
component location. It has the conventional machine design
analogy of the MAR (memory address register) and increment
circuits. However, it 1is a few orders of complexity above
such a simple function. It is capable of providing bit
addresses to locate array components for every type of array

access that the APL language requires.

To accomplish this task it requires a large set of
internal registers to parameterize these accesses. These
registers are 1loaded based upon the descriptor contained
within every array (see sections 2.4 and 4.2), shown in

figure 5.1.1 as part of the OMU's local store.

Combined with these access registers is the hardware
to do the actual address generation. Figure 5.1.2 shows
hardware that can implement the algorithm "AC2" ~“rom
Appendix 2. AC2 produces sequential addresses into an
apparent array from a SS1 descriptor. AC2 is based upon the
desire to eliminate all multiplications during the actual
address generation process. The performance of the address

generation algorithms will be discussed chapter 7.

QMU s STsucrumz

to MMU’s MAR
(CNTR| =, |T !RHO
32 T lor | 32
ALU
o)
Aux L Aux R
Figure 5|2

loz,

103

Not shown in figure ,h 5.1.2 1is the hardware to drive
this address generation circuitry. A microprogrammed
processor which accepts instructions from the instruction
bus (c.f. figure 5.1.1) runs the address generation
hardware. The exact nature of this processor is the subject

of future research and not included in this thesis.

The hardware for address generation uses the register
modules called J,CNTR,T,and RHO, contained within the local
store of the OMU. They represent the necessary parameters
for address generation that the indicated algorithm uses.
Each of these modules is a set of registers of 32 words each
(32 bit words). The number 32 was chosen because each scalar
register of a set represents an axis of an array, that is,

the maximum rank is 31 (rank belongs to [0,31]).

These four modules of 4 times 32 words each form an
access set of @ parameters that, once setup, can adequately
access an array in any monadic format. There exists one such
set for every array that is currently being accessed. The
number of arrays that will be currently accessable will be
set to 16 for this implementation. This choice is somewhat
arbitrary, based on purely physical constraints of local
store memory. This memory amounts to 2048 32 bit words (a

reasonably small amount).

104

Of course one can reduce this requirement by reducing
the maximum allowable rank and the number of simultaneously
accessable arrays. This will probably have no effect upon
applications as they are presently devised but in the future
the need for more complex inter-relationships between arrays
may be in order. It does not, therefore, pay to restrict the

design of this system.

The current state of a register set defines the address
of the current component accessed. As there are 16 sets it
is necessary to switch between sets to access different
arrays. The process of this switch can be done via the
register file addressing of the OMU's local store. Since
only one array 1is active at any single access (memory is
single ported) it 1is simply a matter of defining the high

order address bits of local store to define a register set.

Modification of this address index can be accomplished
in a single microinstruction, facilitating the ability to
dynamically alter the register set that is active. This
allows one to change the active array that is being accessed
within a single microcycle. By doing so, the OMU can provide
a time division multiplexed sequence of addresses for

different arrays.

The above scheme allows multiple data streams to be
synthesized over a common bus. It will become apparent that
this allows for an efficient parallel processing of array

elements. This will be discussed in section 7.1.

105

Memory Managément Unit
Main memory was described in section 4.1 but can be
summarized as follows: a large array organized as 1 to 256
million words of 16 bits each. In that same section it was
mentioned that all addresses generated are effectively bit

addresses within main memory.

The OMU generates bit level addresses by which the MMU
accesses array components. cf. figure 4.1.4. The MMU regards
the 1lowest four bits of any address as an index into a 16
bit memory word. The next 12 bits are word addresses into a
virtual page. There can be 2*16 such pages. All addresses
given to the MMU by the OMU are references to real objects

within memory.

Along with the address of the component accessed, the
MMU must know the component's size. Since all components are
of the same length for any single array, this can be passed
in a single transfer. The component sizes were discussed and
defined 1in section 4.2. For sizes of 16 or more bits the
problem of bit alignment is trivial. However, for subword
sizes the generation of a component over a fixed size bus

requires that they be uniformly aligned.

For memory management the MMU has the following objects
within its 1local store: "Hole Table"™ (HT), "Relocation

Vector" (RV), and "Free List" (FL), c.f. figure 5.1.3.

06

MMU Local Store

15 (o)

102
1022 Relocation
0 Vector

o

8 Free Stack

3

Figure 5.‘.3

107

The size of the Hole Table will have a nominal maximum
value of 64 with the option of either using smaller or
larger tables. This is required as the optimal table size is
somewhat application dependant. However, by allowing
experimental changes 1in the HT it may be possible to

determine optimal table sizes in differing environments.

The Relocation Vector is the mechanism which maps the
virtual address space to the real memory of the system. RV
along with FL provides dynamic allocation of system objects
with a minimal amount of work, c.f. figure 4.1.5. To
elliminate the overhead of having to index RV to obtain the
associated real page a single cell associative memory is
used, c.f. figure 5.1.4. 1If the next virtual address is
within the current page (given via an equals comparison)
then RV 1is not indexed, otherwise RV must be indexed to

obtain the new page.

Use of only one cell of associative memory eliminates
overhead 1in accesses within the current page, however, more
cells would reduce page boundry crossing overheads. With
page sizes of 2*12 words a single data stream is very
unlikely to produce many page boundry crossings as most
arrays have sizes less than 2*12 words. For multiple streams
there would be a strong advantage in using an associative

cell for each separate array.

M enons o8
EMORY DDORESSING
31 16 4 0
virtual | word bit
page address addr.
As interpreted by MMU from OMU
31 16 31 16
current virtual current page
page
CvP CPR

Figure 5.\.+

109

Currently, associative hmemories are not available which
are suitable for use in this machine. The prototype of MAPLE
will wuse a single associative cell for RV indexing with the

intention of Custom LSI design for such key MMU functions.

The contents of RV areQ reél page numbers and also
entries which indicate Black Holes. The value Zero will be
used to indicate that no real memory is associated with the
virtual page (implying that there does not exist a real page

numbered zero).

The Free List (FL) is simply a stack within the MMU
which contains the page numbers of all real pages which are
totally free. These pages are used to replace Black Holes in
the address space, defined by RV, therefore providing

dynamic allocation.

The MMU's 1local store has the same width as main-
memory. It 1is ©possible to provide the MMU's local storage
requirements within main memory but this would impose
another level of indirection for memory accesses and prevent
concurrent memory management. Since the cost of separate
memory 1is almost insignificant compared to the overall
design, and 1is dropping rapidly, it does not make sense to

design a system which optimizes this memory useage.

110

Bus Controller
This 1is the only other control element of the DMU. It
is responsible for the reception and transmission of
components over the data bus, coordinating all transfers.
Its basic structure will be that of a finite state machine

used to synchronize bus signals.

A bus transfer sequence will interchange only a single
component regardless of its length. Bit and byte components
will be right jusiftied to a 16 bit word, leading bits
zeroed. This 1is simply an implementation constraint to
simplify the design. It will have little effect except in
the operation of some boolean dyadic functions. Future

research may investigate possible ways to improve on this.

The BC provides the handshaking signals necessary to
allow any of the units attached to interchange a single
component over the data bus. These signals involve strobes
to indicate next word and address information concerning
which wunit is using the bus. A more complete description of

the bus protocol is given in chapter 6.

5.2 DMU Instructions and Operation 111

The instructions that, the DMU supports are described
in this section. Most of the DMU instructions have direct
APL equivalence while some are very Operating System like.
The direct APL’ instructions are listed in table 5.2.1 and
will be discussed first. They will be looked at in the order

that they are presented in the table.

Quad Expunge is a system primitive which releases the
object whose name is given as its argument. Since all arrays
have a reference count associated with them,.this operation
first decrements that count. If that count equals zero, the
object is non-referenced and the array's storage is released

to memory management.

Copy has the effect of generating a new name and copy
of the descriptor for X. That is, a totally new name is
generated which references the same array as X. Assignment(
is a form of Copy, except that a new name is not generated.
Instead the old array (Z) has 1its reference count

decremented and the name is reassociated with X.

All the rest of the APL operations 1listed have two
modes of operation. Either a descriptor (and hence array) is
generated or the operation 1is parameterized for data
streaming (as required for a scalar dyadic operation). These
two modes are called the "generate" and "stream" modes

respectively.

TABLE 5.2.1

DMU APL INSTRUCTIONS

Oex' x*
Z+X
Yax
X
YéX
oX
Y. x
o X
Y+x
Yx
YpX
pX
Y/x
Y\x
YnX
X
cX

RERASE X

ACOPY X OR ASSIGN X
ADYADIC TRANSPOSE
AMONADIC TRANSPOSE
ADYADIC ROTATE
AMONADIC ROTATE
ACATENATE

ARAVEL

aTAKE (WITH OVERTAKE)
ADROP

ARESHAPE

aRHO

ACOMPRESSION
AEXPANSION
AINDEXING

AEXPOSE (LIST PRIM)
AIMBED (LIST PRIM)

n2

113

Transpose 1is a pure ,selection operation which allows
the axes of any array to be re-arranged. In no case is any
memory required for this operation except that which is
needed for a descriptor, if requested. In the case of
descriptor generation it will be a storage state one array

(refer to section 2.4 for description of storage states).

Catenate always involves memory requests.It involves
the generation of three data streams, totally internal to
the DMU, which copy arrays X and Y into a new object Z. The

result will always be a storage state zero array.

Ravel is a complex primitive whose actual internal
function depends upon the storage state of the argument. For
any storage state zero array the ravel is a simple storage
state one descriptor. The ravel of a storage staté one array
must be a storage state =zero array. The 1latter is to
preserve the ability of selection operations to generate

storage state arrays [CDC*GID].

Rotate is also a difficult primitive but for different
reasons. The monadic primitive can always be performed by a
storage state one transformation. However, the generalized
dyadic form can not be so described. If an actual object
need be generated, as for assignment, then an SS0 array Qill
be generated. But if one only wishes to access the described
array, then the DMU will do the streaming without memory
request. The same is true of ﬁavel: if in the stream mode,

only the array need be accessed.

114

Take 1is similar to trénspose in that for most cases
except during overtake it 1is possible to do an SS1
transformation to achieve the resultant array. 1In the
generation mode it may, however, be necessary to do a memory
request and SSO generation. This ié because in some APLs the
Take function can be an over-take in which the extra
elements are obtained from some fill identity. This DMU will
support both Take functional forms (the former is a subcase

of the latter).

Drop can always be performed by an SS1 transformation
so the wuser has the choice of either the stream mode or

generation mode.

Reshape 1is in the same class as Ravel, where an SS1
transformation can not always be readily performed on an SS1
array. Therefore the generate mode may create a new object

in memory.

Rho always generates a new SSO array (vector) in the
generate mode. The reason for this is as follows: the rho
information within every array's descriptor does not have a
reference count, so an SS1 array pointing to this data
cannot readily be generated. The obvious reason is that the
rho vector 1is so short that it is usually much easier just
to copy the data than to reference it (there are a maximum

of 31 components to any rho vector).

115

Compression 1is a very special DMU instruction. In this
implementation, the operation occurs explicitly but it is
the contention of some [EDW80-2] that an SS4 array, known as
a Sparce Array, synthesized via compression, is a valid
extension to an APL system. In the stream mode a specified
boolean 1left argument directs the selection of the elements
from the right argument. 1In the generation mode, at this

time, an SS0 array will be created.

Expansion is handled identically to Compression, with
the £fill element for read operations defined the same as
conventional APL (zero for numerics and blanks for

characters).

Index is supported as a dydaic primitive with the same
form as the other selection primitives. It tékes a list
vector of imbedded axis indices. It supports both the stream
and generate modes. In the latter an SS0 array is generated,

as index can not be described via an SS1 transformation.

Expose 1is a very simple operation. It only operates
upon list scalars to return the array imbedded by the list

[EDW73] .

Imbed 1is the complement to Expose. It takes any array
and generates a list scalar from the result. Both Imbed and
Expose have the two modes that the other selection

operations have.

116

The above are the direct APL primitives that the DMU
supports. The rest of the instructions are for controlling
the memory mode of the operation and for memory management
functions. Some of their description follows in these next

few paragraphs.

It 1is necessary to remember that all arrays are
accessed via a unique name (which is numerical).An
instruction to the DMU must include this name or imply the
last array accessed. That is, one can ask for the transpose
of an array in the geherate mode, then ask for a rotation,

without the need to respecify the array.

As described in section 4.1 the DMU supports dynamic
allocation for system objects at the hardware level with
minimal overhead. Therefore the DMU can provide stack
functions for external operations in a LIFO manner. The
number of stacks that can be supported have few theoretical
constraints. However, at least two should be provided; one

for execution control and one for temporary storage.

There does not seem to be any need to provide the
ability for array pushes or pops due to the multiple
reference capability of reference counts, so stack
operations within the DMU are limited to scalar values. The

DMU itself only requires scalar stacking provisions.

117

The DMU will have the following stack operations:
Create, which takes two arguments, the maximum depth the
stack will ever be (never exceed depth), and stack's
component size; Push places a single component on to the
stack (which is an argument of the instruction); Pop removes

a component from the stack.

There exists one implicit instruction of the DMU that
must be mentioned. That 1is the automatic maintanance of
reference counters for arrays. Whenever an array is
accessed, via generate mode, and an SS1 descriptor is
generated, the SS0 array that is the basic unit of the

transformation will have its Ref-count incremented.

Along with the above implicit operation two explicit
forms exist. The first was mentioned as Quad E#punge (the
dereferencing of an array) and the other is its complement
called "Ireference". This instruction has the effect of
incrementing an array's reference counter. The usefullness
of this instruction 1is 1in parameter passing for Call by
Value. It allows one to logically specify that a copy of an

array has been made, without the need for a physical copy.

118

There remains just one class of instructions. These
are the Descriptor Creation instructions as opposed to
descriptor selection instructions mentioned at the beginning
of this section. These instructions allow the user to
selectively create and modify array descriptors. Using
standard rules for descriptor generation one can describe an

arbitrary array.

The main purpose of these instructions is to specify
complex streaming operations. The best example of this is
the synthesis of a scalar dyadic reduction operation. For
this APL operation an array is streamed to an ALU but the
result 1is returned into an array of reduced rank but based
upon the old array. This is the class of instructions which
will take an existing descriptor for an array and produce

the desired new descriptor to facilitate reduction.

These instructions fall into two subclasses. The first
are just preset algorithms which allow the necessary
transformations for the higher complexity APL operations.

The best example of which is extended scalar conformability.

The second class allows direct manipulation of the
components of descriptors such that the user must provide
the algorithm for descriptor formation. The algorithms for

the first type are given in appendix 2.

119

A Complete description of all DMU instructions is given
in appendix 3. The format of these instructions will now be

discussed.

All instructions operate wupon register files which
contain valid descriptors for arrays. There may be up to 16
such descriptor registers within the DMU. The need for this
many is not obvious but becomes apparent if one is to allow

each unit to have simultaneous array accesses.

The instructions from the EXU to the DMU are along a 16
bit bus and may be from 1 to 4 words long. Instruction
format allows for a maximum of 64 instructions of which only

approximately 32 have been defined.

6.1 Bus Arbitration 120

This chapter deals with, the other three units of MAPLE,
but first the communications protocols between the units

will be discussed.

As shown in figure 3.2.1 there are three buses between
the four units. These are the Data, Instruction, and Status

buses. All of these buses are bidirectional.

The Data Bus will have the same width as primary memory
(16 bits). It is my intention to reduce bus widths so that
the wunits can be condensed into VLSI chips in the future.
The Data Bus transcieves components of sizes 1 to 128 bits
ywith the words that make up a component exchanged between

units, at main memory speed.

In combination with the Status bus, a single component
is transfered between units from a source's output queue
into the destination's input queue. This exchange untilizes -
the Data Bus for its entire duration (approximately 100 to
1000 nano seconds depending on the size of the component).

The Status bus coordinates the transfer.

The next component transfered over the Data bus may be
sourced from any of the four units, thus the Data Bus will
be time multiplexed between four sources. This property
allows the bus to be utilized at a high efficiency. Since
most units cannot process components at bus rates, the bus

could be free much of the time.

121

The effect 1is that four simultaneous data streams can be
overlapped amongst themselves, allowing a high degree of
parallelism and for pipelining of instruction execution.
Instruction prefetch can then be done during IO or ALU

operations.

The direction of all transfers (either in or out of the
DMU) is controlled by the DMU via the status bus. Each of
the other three units have an output status line (Ready
line). A ready 1line indicates if the associated unit is
ready to accept or send data. All three of these signals go

into the DMU.

Transfers between output and input queues are
controlled by the DMU via 6 output lines (relative to the
DMU). The first is the Transfer Direction Line (TDL, a read
write equivalent). TDL informs the units if the bus cycle is

a DMU read or write operation.

Which wunit the next transfer will occur with is given
by three address lines called the Logical Unit Address lines
(LUA). The transfer can occur beteen the DMU and one of the
other three physical units (each of which can contain more

than one logical unit).

122

To initiate a bus cycle, the DMU activates the Cycle
Start Line (CSL). The CSL is a strobe signaling the start of
a complete component transfer. The transfer is completely
synchronous, with both units knowing the word length before

the operation begins.

The last DMU status signal is the End Of Stream (EOS)
line. When a data stream has finished, this line will be
activated along with the unit address for which the stream
was associated. This is usually used as an interrupt to the
EXU for execution flow control. Figure 6.1.1 shows the

expanded bus structure of this machine.

As shown in figure 6.1.1, the Instruction bus is 16
bits wide with five status lines for control purposes. The
first two 1lines are for unit identification (UiD) and are
generated by the EXU to indicate which unit the instruction
is for. They are bidirectional and are used to indicate the
unit requesting an interrupt to the EXU. One of the
remaining 1lines 1is the Instruction Strobe (IS) to indicate
to the addressed unit that the Instruction Bus contains a

valid instruction.

23

Bus Signals

0
Clr L

-—-----ESU'&\";EEG
s"‘leoL vy

°r 1% 1or {°r{%r|Op

Dava

FIG—URE Q‘l

124

The remaining two lines are to coordinate interupts to
the EXU. The first acts as a request for bus and the second
is its acknowledgement signal. The three competing units are
daisy-chained together. When the EXU acknowledges an
interrupt, the appropriate unit will drive the UID lines,
and drive the Instruction bus with the data it wishes to

pass.

This separation of the buses allows for simultaneous
instruction setup and execution. The net effect is a
pipelinging of instruction fetch and execute for the four

units.

It should be apparent by now that the DMU controls all
data transfers between the units, and that these transfers
must be between the DMU and some other unit. Thus the
units/processors in the machine are coupled together so that

no single unit can function with another removed.

The last statement is only partially true. The system
cannot interact with the external world unless the IOU °'s
present and few operations can be performed with out the
ALU. How these units interact 1is the topic of the next

section.

6.2 Unit Specifications 125

An indepth look at the‘requirements for the other three
units in the system will be discussed now. The features and

interactions of all units will also be described.

EXU's Structure
It was mentioned in chapter 3 that the EXU was the
control wunit for program execution. By the appropriate
instructions to the other three units a wide variety of

array processing tasks can be accomplished.

Via the instruction bus, the EXU can initiate a large
class of data transfers and transformations. The instruction
sets of the three units allows the EXU to synthesize the
complete APL language as described in chapter 1. However, by
modification of the EXU, an endless class of array
processing 1languages can be generated. This concept is
exemplified by R.Hobson [HOB80-1] in his work on software’

sympathetic chip design.

Some of the architectural characteristics of the EXU's
possible implementation follows. Firstly the hardware
structure and then some of the principles of interpretation

that the EXU uses.

126

Since the EXU is primarily intended to interpret APL,
its internal structure will reflect this. The current
executing 1line and its parameters are located within the
EXU. This code expression is fetched from the DMU as a data
stream destined to the EXU (which is usually done while

another unit is executing an instruction).

The size of the EXU's local store determines the number
of 1lines which can be cached within itself. It is possible
to restrict the maximum length of an APL statement, and many
implementations have done so (APL/360, MCM APL). Within
MAPLE there will be no restriction on the length of an APL
statement, however, the average line length can be used to

determine the storage requirement for the EXU.

The average length 1is in the order of 50 characters
[BIN75] ,[SAA75]. With such a value many lines can be easily
buffered within the EXU. This results in significantly less
data bus transfers due to the memory heirarchy between DMU

and EXU's local store [TAN76].

The internal complexity of the EXU need not be great.
Instruction generation can be made table driven and little
actual processing of arrays is done by execution control. A
conventional 16 bit microprocessor (such as the MC6809)

would be adaquate for all its tasks.

127

The EXU is responsible , for all syntax checks on the
instruction stream. This is done by analysis of the cached
APL statements and interrogation of the DMU over the
machine's instruction bus. By pipelining this process with

the process of instruction generation, the usual overhead of

syntax checking can be reduced.

Most APL systems pre-encode the tokens at edit time so
that 1lexical analysis 1is greatly reduced during execution
[BAT73]. This system must obviously do the same. This is
done by the EXU when a function's definition is closed or
during the control primitive "Execute" (function token
translation 1is done by Execute internally so that the APL

supervisor can be written in APL).

In section 4.3 the two arrays for symbol table
maintainance were introduced. The first (SAV) maps locally
defined numerical names to global DMU names (the DMU does
not support environment hierarchies). These local names are
one to one associated with the 1literal tokens within
functions. The second array (ST), the actual symbol table

contains the literal values for the tokens.

128

There may be many versions of both SAV and ST present
at one time each representing a different calling
environment. To access an array, the EXU looks up its global
name in the currently active SAV, then passes this name to
the DMU. Since the size of SAV directly relates to the
number of 1local variables, it can be expected to be rather
small (in the order of 10 ¢to 100 compbnents). It is
therefore reasonable to expect the EXU to buffer more than
one version of SAV. Only when a function is entered or
exited does SAV need to be accessed from the DMU. This

reduces bus overhead and increases overall efficiency.

It should be mentioned that during program execution ST
need only be accessed for the "Execute" primitive or to
support a parameter/function calling hierarchy. At such
times, a number of the accessable ST's must be searched to
obtain a token's actual machine name. Currently the search’
will be done via the "Index" primitive which is an ultra

fast linear search.

ALU's Structure
The ALU 1is the second processor unit that cohnects to
the instruction bus. It 1is responsible for all scalar
functions. Table 6.2.1 1ia a complete 1list of the APL
operations which it can perform. All of these operations
take, as input, one or two vector data streams, of known

parameters, and produce a single-output vector data stream.

TABLE 6.2.1 127
ALU APL INSTRUCTIONS

nX AND Y DENOTE INDIVIDUAL SCALAR COMPONENTS OF ARRAYS.

Y+X o +X
Y-X o -X
YxX o xX
YsX o X
Yrx o [x
YLX o LX
Y|X o |X
YoX o oX
Y*X o *X
YoX o eX
Y?X o ?2X
Y'X o !X
YRX o BX nX Y DENOTE ARRAYS
Y1X o 1X
Y=X

YzXx

Y<X

Y<sx

Y>x

Y=X

YAX

yvx

aX

YvX

YeX

Yix

Yvx

130

To accomplish many ¢of the more complex instructions,
the ALU keeps track of the indices for all data streams it
associates with. This simply requires three 32 bit counters
that increment on each bus transfer cycle. The ALU performs
a reduction operation by knowing the correspondence between
the 1lengths of the input stream to the output stream. This
ratio 1is given via a special instruction to the ALU (from

the EXU).

The ratio above relates the number of components that
pass 1into the ALU to the number which leave it. Normally
this value defaults to 1 for all scalar dyadic functions.
This feature 1is necessary for "Index" ,"Reductions", and

"Membership" primitives.

In chapter 2, the concept of the intervalrdata class
was introduced. The interval for numerics allows incredible
compression of arrays with the properties so described. The
ALU will allow numeric interval operations if the interval
array 1is first transferred into the ALU. This requires a
very special instruction, as the other dyadic argument is
streamed/loaded separately to the first argument. There must
be cooperation between the three units EXU, ALU, and DMU to

accomplish this.

131

The amount of storage, an interval array takes is
not significant, as it always has a length less than 64
components. It is therefore reasonable to cache all interval
arrays within the ALU and allow highly asynchronous

component outputing.

Given in Appendix 2 is an algorithm for the generation
of SS2 interval arrays based upon their descriptors. It has
not been decided whether or not the ALU or the DMU will
generate the array elements. This is because intervals can

have floating point formats, which the DMU does not support.

A most important ALU instruction is the data conversion
primitive. It 1is monadic and allows both upwards and
downwards 1length conversions of numerical arrays. At the
discretion of the EXU any array can be converted into having
either a smaller or larger number of bits per component.
This instruction, along with the ALUs ability to monitor
numerical overflows and oversizes, allows efficient data

storage formats.

IOU's Structure
At present the I0U °s not very well developed. Table
6.2.2 shows all of the APL instructions that it supports.
There are few IO functions in the APL language at present,

which is reflected in the few instructions the IOU performs.

TABLE 6.2.2 132
TOU APL OPERATIONS

Yymx
0 x
Yv X
Yy X
0av ASYSTEM VARIABLE
nYET TO BE DEFINED
anI0 SYSTEM FUNCTIONS

133

However, the DMU was designed to allow a very large
expansion in the subdivisions of graphical data. Even though
there are few operations presently, there are very good
indications that futuge requirements on computers will
necessitate expansion. Since the IOU, and all units, have
their own separate sets of instructions, there exists more

than adequate room for future instruction encoding.

The temporary stack instructions within the DMU allows
the IOU to obtain from the external world, arrays of highly
variable lengths. By pushing datum as it is obtained onto
this stack, an array whose overall size is not known can be
handled. Remember that the DMU will allow dynamic stacks
without tying up more memory than the current stack depth.

stack requires.

Since arrays that are directed to output are usually'
of moderate size, the IOU should provide local store for
most of the arrays it will need to buffer. For this purpose,
between 8 and 64 thousand bytes of storége should be
provided in the IOU. At current densities, this amounts to
only 2 to 8 ICs, and can even be on chip if the IOU is ever

implemented as a single chip unit.

134

It is my intention that the 1IOU contains all mapping
arrays necessary for IO functions. Such an array is the Quad
Atomic Vector, which defines the current character set. As
was described in section 4.2, all character/ graphical data
is internally represented as positive integers. These arrays
are passed to the IOU which does the necessary translation

to the various IO devices attached to the system.

A separate 1I0 processor provides a high degree of
insensitivity (in the overall system) to changes in IO
configurations. This modular approach simplifies the overall

design of the machine.

Chapter 7 Architecture Evaluation 135

Parallel processing has the potential to greatly
increase processing speeds; often increases are linear
in the number of processors [MIT74]. Improved modularity of
design will also result if tasks are properly divided
amongst these processors [SWA77] .. It has been demonstrated
in this thesis that the execution of APL may be clearly
partitioned amongst four major processors, each optimized

for its assigned task.

An important consequence of MAPLE's multiprocessor
architecture 1is its inherent modularity. One can employ a
structured design philosophy to each of MAPLE's four main
processors and debug each via simulators. The net effect is
that MAPLE can be brought up "ON AIR" sooner than in more

conventional designs.

MAPLE's memory architecture utilizes two co-processing
units to implement all array accessing functions needed for
APL,along with all workspace functions. These two units make

up the DMU which this thesis has concentrated upon.

The DMU meets an objective of this thesis in that it
combines all memory functions into a single processing
module. A complete set of APL selection functions is
implemented within the DMU producing a very "smart" memory

machine.

136

The DMU, in providing all memory functions, essentially
reduces the task of implementing an APL system to syntactic
and scalar processing. This combined with MAPLE's simple
multiprocessor network allows rapid developement of a

complete APL machine.

7.1 DMU Performance 137

The DMU is designed sp that the operation "Beating"
is highly developed with the possibility of "Drag Along"
(section 2.4). These processes allow APL statements to imply
a high degree of array restructuring without actually
accessing the arrays in question. Usually one need only
access an array directly when a scalar dyadic operation is
to be done. This follows since, unless a storage state zero
array must be built as a temporary during statement
execution, most selection operations can be described via

storage state one transformations (see section 2.4).

An important feature of the DMU is its ability to allow
multiple simultaneously accessed arrays. This is accompanied
by the DMU's ability to accept instructions while current
accesses are taking place. This allows individual units
connected to the DMU to access arrays at their own speed,
without tying up the system bus or the DMU. An important -
consequence of this is the ability for the units to execute

tasks concurrently.

To demonstrate the principle, consider the case of the
APL primitive Exponential. It is unreasonable to expect this
scalar operation to run anywhere near memory speed.
Therefore while this instruction 1is proceeding, an
instruction prefetch can occur along with a set up for the
next array operation. The ability to multiplex the DMU's

function leads to ease in pipelining.

138

With these abilities,,the DMU can effectively provide
virtual array access, at better than memory speed, to any
single array or provide any array component, to any unit
connected, as fast as requested. The net effect is that APL
statements can proceed at the effective scalar unit speeds

of the slowest unit or operation that needs to be done.

In Appendix 4, several APL statements are broken down
into their steps to show how a conventional system would
execute them as compared to their execution using the DMU
(and the other units of this system). The steps in these
examples show the differences in memory allocation processes
during statement execution. The conclusion to be made is
that there 1is a significant reduction in the number of
requests to memory when the architecture of this thesis is

used.

The performance of the MMU 1is very dependant upon
application, tied to the type, size, and use of arrays by
the wuser. 1In MAPLE's design for memory management there is
very little overhead in processing time for array allocation
or de-allocation. MAPLE's architecture allows changes in
some of the mechanisms of memory management without
affecting the rést of the system so if memory managment

becomes troublesome corrections can still be introduced.

139

The performance of, the OMU (array access and
transformations) 1is related to the following properties:
(1) DMU instruction time
(2) Access setup time

(3) Component access rate.

The selection instructions will be based upon the
algorithms given in Appendix 2. These have time complexities
linear in the Rank of the array operated on. This results in
the high performace of array structural operations. Special
cases of selection operations do require that all of an
array's components be accessed, so performance would be

based on (3).

Most of the DMU instructions mentioned in Appendix 3
are either of the form above or are simple instructions only
requiring constant time for execution. Such are “Setup“,(
"Copy", "Read" etc. "Setup" triggers access of the specified
array for data streaming between units, only requiring that
a valid descriptor be 1loaded into the specified register

file. Therefore the access setup time is constant in time.

The only setup instruction which requires a non
constant time complexity is "Access", which loads a register
file based upon a given array name. Access is linear in Rank
as a descriptor must be moved from main memory to local

store of the OMU.

140

The important performance factor of the DMU is (3),
the time required to 1locate and fetch/store the next
component. The access algorithm of the OMU will be based
upon "AC3" of Appendix 2. Because of AC3's importance its
operation will be described fully (for the analysis all time
will be normalized to Main Memory Cycle time-MMC with any

microinstruction timing approximated as 1/2 MMC).

AC3 is based upon two loops, which are executing
concurrently, namely LP1l and LP2. LP2 is responsible for the
generation of addresses along the current row (given to main
memory for a pipelined memory access). This loop is composed
of three microinstructions all of which can be executed in
parallel, resulting in each address generation iteration of
LP2 requiring only 1/2 MMC (less than the required 1 MMC to

keep up with memory).

While LP2 is running LPl is updating the offset to the
next row of the array (if a scalar oL vector LPl never
runs). LPl has the capablity of updating this row offset at
address generation rates IF the next row is within the
current plane. Thus address generation into Matrices can

proceed at memory speeds.

When there 1is a need to change planes of an array LP1l
must perform 1+Rank addition operations to update the row
offset. Now as most arrays have Dimensions greater than
their Rank this overhead in changing planes will be small

compared to time spent within the plane.

7.2 Performance of the EXU & ALU 141

When the design of the EXU (section 6.2) was discussed
it was mentioned that the EXU's local store would be used
for caching executing APL functions and parameters. This
reduces the number of memory accesses to a minimum for the
interpretation of code strings, and allows the EXU to
preprocess instructions. These two factors will guarantee

efficient interpretation of the internal APL code.

The actual performance of the EXU can not be given here
as 1its exact internal architecture has not been set.
However , given MAPLE's architecture the flexibility to allow

even an incremental compiler within the EXU is possible.

The ALU will wultimately be a microprogrammed micro-
processor capable of scalar speeds on the order of main
memory speeds, however, for prototyping theré are many
suitable NMOS processors which offer high performance
(I432***, MC68000). Some operations (boolean OR etc) can run
at better than main memory speeds implying that for these
better than 3 million instructions per second rates can be

achieved (based on 330 nanosecond memory).

142

Table 7.2.1 gives the component times for an IBM
4341-L01 running APL. These were obtained by performing the
indicated scalar dyadics and measuring the average time to
execute for 10000 elements. The average times for all the
numeric scalar dyadics 1is on the order of 10 microseconds
(per element). For integer PLUS ,MAPLE requires only 6 memory
cycles per element which at a modest 330 nano-second cycle
time 1is 2 microseconds per element (a factor of 5 better

than the 4341).

The above 1is only to demonstrate that all general
purpose computers are inferior to an array streaming machine
as to the efficiency of vector operations. The array
processor has only one instruction to execute per array
while the general = purpose machine may have several

instructions to execute per array component.

The 1IOU will not be discussed as its performance is
not important to the study of MAPLE due to its low expected
utilization. Since the IOU can cache data for IO it does not

present any overhead to non IO APL execution.

143

TABLE 7.2.1
4341 ALU TIMES (PER COMPONENT)

X+110000 o Y<«1000+X

X+y => 8,7E 6 SECONDS
X-Y => 8,3E 6 1y
Xxy => 13,85 6 '!
XsY => 17.2E°6 !
X+oX °o Y«1000xX
X+y => 7.3E°6 SECONDS
X-Y => 7,0E°6 te
Xxy => 10,9¢ 6 '!
Xsy => 16,38 6 '!

X+<10000p10>27100p20 o Y«10000p10>2100p20

XAY =»> 2.5E°6 SECONDS
Xvy =»> 2.56°6 !

7.3 Summary 144

The goal of this thesis was to investigate a possible
architecture for a machine capable of efficient APL
execution. This task was broken up into a rough description
of the overall machine and a indepth study of the functions

of its memory architecture.

The result was MAPLE and its four subunits: The EXU,
a language executor; The ALU, a scalar arithmetic processor;
The IOU, an input output processor; And the DMU which

provides all memory functions.

MAPLE's modular architecture allowed the partial
separation of the four wunits' interactions letting
concentration fall on the functionality of the DMU. A
complete APL workspace environmemt was described within the

DMU, made up of memory management and accessing functions.

A complete set of data structures were developed for-
the DMU to implement the workspace. Included was a system of
array descriptors which allows deferring most selection
operations until actual data need be accessed. This along
with concurrent memory management makes a very efficient

memory architecture.

145

Work still remains in,producing an actual functioning
DMU. This involves obtaining suitable hardware to implement
the algorithms and concepts described in this thesis. It is
hoped that a complete DMU could be integrated into a single
monolithic silicon chip. 1In this way a broad set of array

processing systems could cost effectively utilize a DMU.

When a complete working DMU has been produced, the next
step would be the construction of the scalar ALU. As a
substantial number of I.C. manufacturers are currently
working on monolithic arithmetic units,it is hoped that this

hardware will soon be available.

The remaining tasks in MAPLE's construction are the
design and building of the IOU and EXU. It is hoped that
satisfactory performance can be obtained through the use of
existing 16 bit microprocessors. If it ever becomes
practical to produce single ICs for these functions then

MAPLE could be realized as a modular four chip set.

APPENDIX 1 146

THIS APPENDIX GIVES A BRIEF DESCRIPTION OF THE FEATURES OF
THE APL LANGUAGE. THE FIRST TABLE GIVES THE SYNTAX FOR
EXPRESSION EVALUATION USED IN MOST APL INTERPRETERS, WHILE
THE FOLLOWING TABLE GIVES A FEW EXAMPLES OF THIS SYNTAX.

147
TABLE A.1.1

APL EXPRESSION SYNTAX

EXPRESSION: NOBJECT
CONSTANT
NILADIC FUSER
MFUNCTION EXPRESSION
EXPRESSION DFUNCTION EXPRESSION
(EXPRESSION)
EXPRESSION [IEXPRESSION]
NOBJECT: A NAMED OBJECT
CONSTANT: AN EXPLICIT CHARACTER OR NUMERIC
SCALAR OR VECTOR
FUSER: A USER DEFINED FUNCTION
MFUNCTION: MONADIC FUSER
MONADIC PRIMITIVE
SDPRIM /
SDPRIM \

SDPRIM /LIEXPRESSION]
SDPRIM \[IEXPRESSION]
ROTATE [IEXPRESSION]

DFUNCTION: DYADIC FUSER
DYADIC PRIMITIVE
SDPRIM . SDPRIM
°o. SDPRIM

IDPRIM [IEXPRESSION]
IEXPRESSION: EXPRESSION
IEXPRESSION 3IEXPRESSION
NULL (EMPTY EXPRESSION)
SDPRIM: A SCALAR DYADIC PRIMITIVE FUNCTION

IDPRIM: AN INDEXABLE DYADIC PRIMITIVE FUNCTION
nIDPRIM AND SDPRIM ARE DISJOINT SETS

TABLE A.\.2 14-8

PROPOSED APL SYNTAX

EXPRESSION: NOBJECT

CONSTANT

FUSER

MFUNC EXPRESSION

EXPRESSION DFUNC EXPRESSION

(EXPRESSION)

EXPRESSION [IEXPRESSION]
NOBJECT: A NAMED OBJECT
CONSTANT: AN EXPLICIT GRAPHIC OR NUMERIC ARRAY
FUSER: A USER DEFINED FUNCTION
FUNC: FUSER

: FUSER [IEXPRESSION]

PRIMITIVE

PRIMITIVE [IEXPRESSION]
MFUNC: FUNC

FUNC MOP

FUNC MOP [IEXPRESSION]
DFUNC: FUNC

FUNC DOPD FUNC

o DOPD FUNC '

p'eo' TMPLTES DEFAULT LEFT FUNC ARGUMENT

IEXPRESSION: EXPRESSION
IEXPRESSION; IEXPRESSION
NULL (EMPTY EXPRESSION)
AIEXPRESSION CAN BE INDIRECTLY
RREPLACED BY THE INDEX PRIMITIVE

MOP: MONADIC SYNTAX MONADIC OPERATORS
'/\' ONLY SUCH OPERATORS DEFINED
AT PRESENT

DOPD: DYADIC SYNTAX DYADIC OPERATORS

‘' ONLY SUCH DEFINED OPERATOR
AT PRESENT

{49
TABLE A.1.3
EXAMPLES OF APL SYNTAX

DYADIC PRIMITIVES
(X+Y)*3.1 A * +
31 2 QX+Yp1Z n & ¢+ p

MONADIC PRINITIVES

xY A ‘ X
&3 2pp12 R & p1

DYADIC FUNCTIONS

(X PLUS Y) DEXP 3.1
MTRANSPOSE 3 2 DRHO MRHO IOTA 2

VZ«L PLUS R
Z«L+R

v

VZ«L DEXP R
Z«L*R%+1.,001

v

VZ«L DRHO GEORGE
Z+«LpGEORGE

v

VZ«MRHO T
Z2«pT

v

OPERATORS
ROPERATORS ARE EITHER UNIVALENT OR DIVALENT
R(THE NUMBER OF FUNCS THEY TAKE AS ARGUMENTS)

+.X A . IS DIVALENT

LI ¢ A o, IS UNIVALENT
RBOTH THE ABOVE MUST BE USED IN A DYADIC
ARSYNTAX MODE, AND ALL PRIMITIVES MUST BE
ARSCALAR DYADICS

+/X A / IS UNIVALENT

£\ X A \ IS UNIVALENT
RBOTH THE ABOVE MUST BE USED IN A MONADIC
RSYNTAX MODE, AND ALL PRIMITIVES MUST BE
ARSCALAR DYADICS

APPENDIX 2 150

£ N O P

w =

2 3

D2 D2D2DDD®D®DIDD

THIS APPENDIX CONTAINS A GENERAL DESCRIPTION OF THE METHOD
BY WHICH ARRAYS WILL BE, ACCESSED AND TRANSFORMED. EXAMPLES
OF ALGORITHMS AND THEIR RESULTS WILL BE SHOWN.

FOR THE PURPOSES OF THIS SECTION A SS1 DESCRIPTOR WILL
BE REPRESENTED AS A VECTOR OF (1+2xppARRAY) ELEMENTS.

THE FIRST ELEMENT BEING THE BASE ADDRESS INTO MEMORY
(ASSUMED TO BE WORD ADDRESSABLE ,AND ALL COMPONENTS
HAVING WORD LENGTHS, FOR EASE IN DEMONSTATION).

THE NEXT opARRAY ELEMENTS WILL BE THE ELEMENTS OF pARRAY,
AND THE LAST ppARRAY ELEMENYS WILL BE THE JUMP VALUES.
THROUGHOUT THIS SECTION DOI0=0 FOR SIMPLICITY.

AREXAMPLE

XD«0 3 2 2 1 .
AXD IS THE SS1 DESCRIPTOR FOR X

15|

'AC1' IS BASIC ALGORITHM FOR ACCESSING ARRAYS TO PRODUCE A
SEQUENTIAL STREAM OF COMPONENTS FROM MEMORY. IT USES THE
PRINCIPLES OF THE JUMP VECTOR AND '+.x' TO GENERATE VALID
ADDRESSES. HOWEVER, BECAUSE OF THE NEED TO PERFORM ppARRAY
MULTIPLICATIONS TO GENERATE A SINGLE ADDRESS IT IS A POOR
CHOISE AS AN ALGORITHM TO IMPLEMENT IN MICROCODE.

THIS ACCESS ALGORITHM TAKES AS ITS ARGUMENT A SS1
DESCRIPTOR AND RETURNS AS ITS RESULT AN ARRAY OUT OF MEMORY
(A GLOBAL) AS DESCRIBED BY THE SS1 DESCRIPTOR.

2 D®D®D®D®$I®¥DDD

THERE ARE FOUR GLOBAL VECTORS WITHIN THE ACCESS ALGORITHMS:
'‘CNTR,RHO,T,J' EACH OF WHICH HAVE LENGTHS EQUAL TO THE
RANK OF THE ARRAY TO BE ACCESSED. THESE VECTORS FORM PART
OF THE OMU'S LOCAL STORE. THE ROUTINE 'INIT' INITIALIZES
THEM.

D D D®ID®D

VZ«AC1 D sR; BASE3;J3T;CNTR; RHO

INIT

A

A DC1 MODIFIES T TO INDICATE THE NEXT

A COMPONENT AND DECREMENTS CNTR TO CONTROL
n THE ACCESS OF THE ARRAY. DC1 RETURNS 1

n IFF THE ENTIRE ARRAY HAS BEEN ACCESSED.

A
LP:+LP[1~ DC1 Reo Z+Z ,MEMORY[LBASE+J+.xT]
A

AR Z IS THE RAVEL OF THE ARRAY ACCESSED.
A IT REPRESENTS THE DATA STREAM FOR THIS

R ARRAY.

A

Z«RHOpZ

v
v
VINI

BASE«D[O0] eR«(1+pD)32 o'R IS THE RANK OF THE ARRAY'
RHO«R+14D oJ«(~-R)4+D o 'SEPARATE OUT RHO AND JUMP!
CNTR«RHO °T+«RpO o'INITIALIZE CNTRS AND T!
R<R-1 °oZ+10 o'R INDICATES LAST AXIS'

A
AR T IS INITIALIZED TO REPRESENT THE FIRST ELEMENT

R OF THE ARRAY'S RAVEL.
v

152

'AC2' HAS THE PROPERTY THAT WHILE GENERATING ADDRESSES
INTO MEMORY THE ONLY SCALAR FUNCTIONS REQUIRED ARE +,-
THIS HAS SIGNIFICANT ADVANTAGES AS FAR AS THE MICROLEVEL
HARDWARE NEEDED TO IMPLEMENT THIS ALGORITHM.

VZ«AC2 D sR;RHO 3 J3 T;CNTR; BASE ; OFFSET

INIT
OFFSET+BASE °'ADDRESS OF FIRST COMPONENT'

TLR] REPRESETS AN OFFSET INTO THE CURRENT
ROW POINTED TO BY 'OFFSET', 'OFFSET+T[R]'
IS THEN THE ADDRESS OF THE NEXT SEQUENTIAL
ELEMENT OF THE DATA STREAM. NOTE THAT 'R'
IS A CONSTANT SCALAR TERM FOR THE NUMBER OF
AXES THE ARRAY HAS.

THE FUNCTION DC2 RETURNS 1 IFF THE ARRAY'S
ACCESSING IS COMPLETE. IT ALSO MODIFIES
BOTH T AND OFFSET TO COMPUTE THE NEXT
ADDRESS.

A
LP:+LP[1~ DC2 Re Z+Z,MEMORY[LOFFSET+T[R]]

Z«RHOpZ

v

VF«DC2 A

+0x1F+A<0 o'RETURN IF ALL AXES UPDATED'
TlA)«T[A]+J[A] o'NEXT OFFSET INTO ROW'
+0x1~F+0=CNTR[LA)+«CNTR[A)-12"RETURN IF ROW ~FINISHED'
TLA)«0oCNTR[A)+RHO[A] o'RESET ROW PARAMENTERS'

F« DC2 A-1 o'UPDATE NEXT ROW'

OFFSET+BASE++ /T o'UPDATE OFFSET TO ROW'

153

DDD® D

VZ«AC3 D sRHO3T;CNTR; J3 BASE; ADDRESS R
INIT

-]

AC3 HAS TWO NESTED LOOPS, LP2 IN LP1.
LP2 CALCULATES ADDRESSES FOR SEQUENTIAL
ACCESS FOR THE CURRENT ROW OF AN ARRAY.
LP1 DOES THE UPDATES TO ALLOW ACCESSING
OF THE NEXT ROW. THIS IS DONE AT THE
START OF THE LOOP AND AT THE END WHERE
UPDATE IS CALLED. UPDATE RETURNS 0 IFF
THE ARRAY'S ACCESS IS COMPLETE .

2D2D2IDD®$ID®¥DD

A
LP1:ADDRESS«BASE++/T oCNTR[R]+«RHO[LR]
LP2:72+7Z ,MEMORY[LADDRESS]
ADDRESS«ADDRESS+JLR]
+LP2[1 02CNTRLR]+CNTR[R]-1
+LP1f\ UPDATE R-1
Z<«RHOpZ
v

VF«UPDATE A

+0x1~F«A20 o'RETURN IF ALL AXES UPDATED!
TLAJ«T[AT+JLA] o' JUMP ALONG CURRENT AXIS'

+0x1 02CNTR[(AJ«CNTR[(A]J-1"RETURN IF ~FINISHED CURRENT AXIS'
T[AJ«0e CNTRLAJ«RHOLA] °'RESET PARAMETERS FOR CURRENT AXIS'
F+«UPDATE A-1 o'JPDATE NEXT AXIS'

AC3 IS A REFINEMENT OF AC2. IT SEPARATES ADDRESS GENERATION
INTO A VECTOR GENERATION AND AN UPDATE FOR ARRAYS. THIS
ALLOWS EXTREMEMLY FAST ADDRESS GENERATION FOR VECTORS WITH
PARALLEL COMPUTATION OF THE PARAMEMTERS FOR HIGHER RANKS.

D D DDDD

ADYADIC

15¢

SOME OF THE ALGORITHMS WHICH FOLLOW WERE FIRST DESCRIBED BY
P.,ABRAMS IN HIS THESIS (CHAPTER 3). THEIR BASIC FORM IS THE
SAME BUT THEY HAVE BEEN MODIFIED TO OPERATE ON SS1 DESCRIPTORS.
THESE ALGORITHMS MODIFY SS1 DESCRIPTORS S0 THAT AN ACCESS
ALGORITHM CAN PRODUCE THE DESIRED RESULT.

ALL ARGUMENTS ARE ASUMED TO BE WITHIN THEIR PROPER DOMAINS.

TRANSPOSE

VRD+«X TRANSPOSE D3;RHO3;RANK;J; I

RX IS VALID LEFT ARGUMENT

RD IS SS1 DESCRIPTOR

RD«De RANK«(1+pD)%2

RHO+«RANK+1+Do J«(1+RANK)+D

I«0 oRANK+1+[/X o'THE LRGEST VALUE IN X GIVES RANK'
LP:RDLI+1]«L /(I=X)/RHO o'DETERMINE ITH RHO VALUE!®
RDUI+1+RANK]«+/(I=X)/Jd o "DETERMINE ITH JUMP VALUE!
+LP[\RANK>I+I+1

RD«(1+2xRANK)+RD o '"DROP OFF EXCESS FROM OLD D'

v

AEXAMPLES

AC3 XD <« 0 3 4 4 1

1 2
5 6

w F£ O

3
7

9 10 11

AC3 1 0 TRANSPOSE XD

8
9
10
11

W NP O
~Now;FE

AMONADIC TRANSPOSE

VRD+« MTRANSPOSE D3;RANK
AD IS SS1 DESCRIPTOR

RD«D °RANK+«(1+pD)+%2
RD[1+1RANKI+ORANK*1+D
RDU1+RANK+ RANK]+«d(1+RANK) +D

v

AC3 MTRANSPOSE XD

8
9
10
11

WN PO
~No v

AMONADIC ROTATE

VRD+«I MROTATE D;RHO;RANK;J

Al IS AXIS OF ROTATION

RD«De RANK+(1+pD)32 °o'RD IS THE SAME SIZE AS D'
RHO+«RANK4+1+Do J«(1+RANK)¥Do'EXTRACT RHO, J FROM D'
RD[O]«DLO]+J[I1xRHOLI1-1 oo'MODFIY OFFSET'
RD[1+I+RANK]+-JLI] o'MODIFY ITH JUMP VALUE'

v 155

AC3 0 MROTATE XD

8 9 10 11)
45 6 7
01 2 3

ANO OVERTAKES ALLOWED

VRD+«X TAKE D;RHO;RANK;J
AX IS A VALID LEFT ARGUMENT

RD+«De RANK+«(1+4pD)+2

RHO+«RANK4A1+Do J«(1+RANK)+D
RDLOJ«D[0]+J+.x(X<0)XxRHO-|X o'MODIFY OFFSET/BASE"
RDL1+1RANK]I«+|X o "REPLACE RHO VALUES'

AC3 2 "3 TAKE XD
1 23
56 7
VRD«X DROP D;RHO;RANK:dJ
aX IS VAILD LEFT ARGUMENT
RD+«Do RANK«(1+pD)%2
RHO«RANK41+Do J«(1+RANK)+D
RDLOJ«D[O]+J+.x(X>0)x|X o "MODIFY BASE/OFFSET'
RDL1+1RANK]«RHO- | X o "REPLACE RHO VALUES'

AC3 0 "2 DROP XD

o F£ O
o ;=

> D> D®D®DDD®D®DDDD

VZ« GENERATE D
INIT
OFFSET«BASE

LP:+LP[1~DC2 R °2+«Z,0FFSET+TLR]
Z«RHOpZ
R GEN USES THE SAME 'DC2' ROUTINE TO UPDATE
A OFFSET AND T AS DOES ‘'AC2'.

v

0

GENERATE

2.01 4,02

20 22.01 24,02 2

40 42,01 44,02

60 62.01 64,02 6

0.00
2.01
4.02
6.03
8.04

GENERATE

20.00
22.01
24,02
26.03
28.04

40.00
42,01
44,02
46.03
48.04

156

GENERATE IS IDENTICAL TO AC2 IN ITS FORM WITH THE ONLY
DIFFERENCE BEING THAT INSTEAD OF GENERATING ADDRESSES

IT PRODUCES ACTUAL COMPONENTS WITHOUT ACCESSING MEMORY.
A LARGE CLASS OF ARRAYS CAN BE DESCRIBED SO THAT NO REAL
MEMORY IS REQUIRED FOR THEIR STORAGE REGARDLESS OF THEIR
APPARENT SIZES. WHAT IS REQUIRED IS EQUIVALENT TO A SS1
DESCRIPTOR IN FORM.

GENERATE CAN BE USED TO PRODUCE ONLY NUMERIC ARRAYS.

s RHO3R; J3 BASE; T; OFFSET

XD«0 4 5 20 2.01

6.03 8.0u4
6.03 28,04

46,03 48.04

6.03 68,04

MTRANSPOSE XD

60.00
62.01
64.02
66.03
68.04

157

'ESC' PERFORMS THE TASK OF EXTENDED SCALAR COMFORMIBILITY
TEST AND GENERATION ON .TWO SS1 DESCRIPTORS, GIVEN AS
ARGUMENTS. THE RESULT IS A SINGLE ARRAY BEING THE LAMINATION
OF THE TWO EXTENDED DESCRIPTORS. THE VECTOR I INDICATES THE
AXES OVER WHICH THE EXTENSION IS TO OCCUR.

D ®» D D®D

VRDS« YD ESC XD; XR;YR;XRHO3;YRHO;XJ3YJ;T

REXTENDED SCALAR CONFORMIBILITY

RBETWEEN SS1 DESCRIPTORS YD,XD

XR+("1+pXD)+20° YR+(1+pY¥YD)#2 o'XR,YR ARE X,Y RANKS RESPECTIVELY'
XRHO+XR4+1+XD o YRHO+YR4+1+YD o'EXTRACT RHO INFO'
XJ«(1+XR)¥XD o YJ«(1+YR)+YD o'EXTRACT JUMP VECTORS'
TLI1<«0 o T«(XR[YR)p1 o'T GIVES AXES TO CONFORM'
o2 (XR>YR)/'YR+«XRe YRHO[I]«ie YRHO«T\YRHO° YJ+T\YJ'

o9 (YR>XR) /' XR+«YRo XRHO[I]«ie XRHO«T\XRHO° XJ+«T\XJ'

A

A THE ABOVE GUARENTEES THAT THE RANKS ARE NOW EQUAL

n AND IN THE PROCESS, MODIFIES RHO SO THAT RHO'[I] ARE 1
A AND J'[I] ARE 0.

A
XJL((1=XRHO)A12YRHO)/1XR1+«0 ©'RESET JX[LKS1 WHERE NEEDED'

YJLU((1=YRHO)AL1Z2XRHO) /1YR]«0 oo'RESET JY[KS] WHERE NEEDED'
A

Am NOW THAT THE ARRAYS HAVE THE SAME RANK CHECK FOR

R THE RHO VALUES BEING EQUAL OR SOME TO BE '1°'.

A

+ERR[\~A/v41=(24T)/T+«((1,XR)pXRHO)5(1,YR) pYRHO
XRHO+YRHO+«XRHO[YRHO o'RHOS ARE MADE THE SAME'
+0oRDS+(2,1+2xXR)pXD[0],XRHO ,XJ ,YDL O] ,YRHO,YJ
ERR:'ERROR- NOT SCALAR CONFORMABLE'

v

XD«0 3 1 1 1

YD+«0 3 4 4 1

I+0

YD ESC XD
03 410
0 3 4 41

158

A THESE ARE MISCILLANEOUS FUNCTIONS USEFUL IT CONVERTING FROM
A SS0 TO SS1 AND PERFORMING SOME SIMPLE OPERATIONS SUCH AS
A RAVEL.

VRD+« RAVEL D;RHO;RANK
RD+3p 14De RANK+(1+pD):2
RDLOJ+D[0]

RDL1]ex/RANK+1+D
A GIVEN A SS1 DESCRIPTOR THAT IS
A ESSENTIALLY A VECTOR RETURN A

A NEW DESCRIPTOR OF RANK 1

NOTE THAT NOT ALL SS1 ARRAYS

CAN BE RAVELLED BY THIS METHOD.

> ® >

v

VRD« CONVERT D

RD+0,D,1+x\D,1

A CONVERTS SS0 RHO INFORMATION
A INTO A S51 DESCRIPTOR.

v

VRD«X RESHAPE D
RD+«D[0],X,1+x\X,1
A FOR S51 ARRAYS WHICH ARE ESSENTIALLY
a VECTORS THIS ALGORITHM WILL PERFORM
A RESHAPE FUNCTION. THIS ROUTINE WILL
n NOT PERFORM CYCLIC RESHAPING.

APPENDIX 3 159

THIS APPENDIX CONTAINS TABLES OF APL STATEMENTS BROKEN DOWN
INTO STEPS ILLUSTRATING HOW THE STATEMENTS ARE EXECUTED.
EACH STEP IS A SINGLE FUNCTION (EITHER MONADIC OR DYADIC)
THAT GENERATES A TEMPORARY ARRAY. THESE ARRAYS CAN BE REAL
OR VIRTUAL OBJECTS OR REFERENCES ON SOME STACK DEPENDING
UPON THE SYSTEM EXFECUTING THE STATEMENTS. THESE DISTINCT
TEMPORARIES ARE GIVEN NAMES T1 T2 T3 ETC. AND ARE SHOWN IN
COLUMN 1 OF EACH TABLE.

A TABLE'S SECOND COLUMN INDICATES WIETHER OR NOT THE TEMPORARY
RESULT REQUIRES MEMORY ALLOCATION (IN SYSTEMS WHICH DO NOT
IMPLEMENT SS1 AND REFERENCING OPERATIONS). THE THIRD COLUMN

INDICATES THE MEMORY REQUIREMENTS FOR MAPLE'S
IMPLEMENTATION. THE TERM 'A' INDICATES THAT A NEW ARRAY
RESULTED WHILE '‘NA? INDICATES NO NEW ARRAY.

THE TERM ‘'BOTTLENECK' IS USED WITHIN THE TABLES TO INDICATE
THAT THE OPERATION REQUIRES A SIGNIFICANT AMOUNT OF TIME TO
EXECUTE.

AEXAMPLE

(A4 (T1+1pX)dXo . =Y) /1pY
IMPLIED CONVENTIONAL PROPOSED
T1+Y NA NA
Ti+pT1 A NA
T1+1T1 A BOTTLENECK NA
T2+Y NA NA
T3+X NA NA
T2+T30,=T2 A BOTTLENECK A BOTTLENECK
T3+X NA NA
T3+pT3 A NA
T3+1T3 A BOTTLENECK NA
T4+ 1 A A
T3«T4+T3 A A
T2+T30T2 A BOTTLENECK A BOTTLENECK
T2+A4T2 A BOTTLENECK A BOTTLENECK
T1+T72/T1 A BOTTLENECK NA

IMPLIED

T1+0
T2«N
T3+1
T2+T34T2
N«T2
T1+«T2pT1
T2+1
T1«T2,T1
T2+«N
T3+N
T2«T3,T2
T1+T2pT1

I+«(N,

CONVEN

REXAMPLE
N)pl,(N«14N)pO

¥

TIONAL

(RELEASE N)
BOTTLENECK

BOTTLENECK

BOTTLENECK

160

PROPOSED

A
NA
A
NA
NA
NA
A
A
NA
NA
A
NA

(POSSIBLE RELEASE N)

BOTTLENECK

BOTTLENECK

IMPLIED

T1+N
Ti+pT1
Tl+x/T1
T2+1 2
T1«T2A 271
T2+«N
T2+pT2
T2+pT?2
T3+1
T2+T3<T2
T1+T2vT1

REXAMPLE
(1<ppN)Vv1l 2A.2x/pN

CONVENTIONAL

N
A
A

b N O N L NN

A

h-S

BOTTLENECK

PROPOSED

NA
NA
A
A
A
NA
NA
NA
A
A
A

BOTTLENECK

16)

IMPLIED

Ti+X
T1+QT1
T2+X
T1«T2+T1
T2«1 3
T1«T2+T1
T2+Y
T1+«T2/T1
T2+2Z
T1«T2-T1

AEXAMPLE
Z-Y/1 3+X+QX
CONVENTIONAL PROPO SED
NA NA
A BOTTLENECK NA
NA NA
A BOTTLENECK A BOTTLENECK
A A
A BOTTLENECK NA
NA NA
A BOTTLENECK NA
NA NA
A BOTTLENECK A BOTTLENECK

162

Appendix 4 DMU Instructions 163

All DMU instructions have one of the following forms:

CODE R4,Rs,m,m; D
CODE Rs,m,m; D

where CODE 1is a 6 bit encoding of the instruction (within
the 16 bits of the instruction). Rd,Rs specify one of 16
register descriptor files (holding a complete SS1
descriptor). Rd 1is both a source and destination for the
operation, while Rs is usually only a source. The two flags
'm' specify optional modes of operation that an instruction
may have. The parameter 'D' specifies any optional words of
information that may be necessary and which can't be
specified within the instruction word.

[1] COPY Rd,Rs
The descriptor 1in register Rs is copied into Register file
Rd.

[2] SETUP Rs,ss,u
The array specified by register Rs is activated in to the
stream mode. ss-selects wether the array is a sink or source
of data. u -selects which unit the data exchange will take
place with.

[3] ACCESS Rd;N ,
Rd 1is the register to which the descriptor for the array is
loaded 1into. N- 1is the name of the array that access is
requested for. Returns the Rank-Type word for the array.

[4] SCALAR CONFORM Rx,Ry; I
Registers Rx,Ry are modified (if possible) to reflect
extended scalar conformability of their respective arrays.
I- specifies any additional axis parameters required if Rank
X does not equal Rank Y.

[5] NAME Rs
Returns the name for the array indicated by register Rs.
The DMU always maintains a naming for all arrays.

[6] ALLOCATE Rs
Register Rs implies an array so the DMU allocates storage
for an array similar to Rs. It does not matter if Rs is a
.valid descriptor for an assigned array. A new array will
always be allocated.

[7] READ Rs;I
Returns the Ith component of the descriptor Rs.

[8] WRITE Rs;I,D
Modifies the 1Ith component of Rs with the data given
following index.

164

[9] REDUCTION R4,Rs;I
Register Rd 1is made to represent the modified descriptor
from Rs for the reduction operator. I- specifies the axis of
the reduction.

[10] MTRANSPOSE Rs
Register Rs is modified to reflect a monadic array transpose
operation.

[11] MROTATE Rs;I
Register Rs is modifies to reflect a monadic array rotation
operation along the axis given by I.

[12] RAVEL Rs,sm
Register Rs is modified to reflect a ravelling of the array
Rs specifies. sm- indicates wether or not the operation need
produce an new array or not, ie. if a streaming 1is to
take place or if a valid descriptor will be required.

[13] RHO Rs
Register Rs is modified to specify a new array given by Rho
Rs. This new array will always fit within a register files
confines so unless requested no new storage allocation will
be performed.

[14] EXPOSE Rs
Rs is replaced with a new descriptor for the array indicated
by the List scalar associated with Rs.

[15] IMBED Rs
Rs 1is replaced with a new descriptor representing a list
scalar for the imbed of the old array associated with Rs.

[16] PUSH Rs
The NAME for the array associated with Rs is pushed onto the
execution stack (which is internal to the DMU).

[17] POP R4
The register file Rd is loaded with the descriptor for the
array whoses NAME is popped off the execution stack.

{18] OUTER PRODUCT Rx,Ry
The registers Rx and Ry are modified to reflect the
necessary structural transformations for the outer product
. operator.

[19] 1IREF Rs
The array specified by Rs will have its internal reference
counter incremented. This operation 1is necessary for
completeness.

165

[20] DREF Rs
The array specified by Rs will have its internal reference
counter decremented. A count of zero will release that
array's storage.

[21] DTRANSPOSE Rd,Rs
The array specified by R4 is transposed according to the
vector specified Rs. The resulting descriptor is placed into
Rd.

(22] DROTATE R4,Rs,sm;I
The array specified by R4 is rotated along axis I according
to the array given by Rs. The resulting array is associated
with Rd. sm- selects wether a new array need be generated or
if the data is to be immeadiately streamed.

[23] TARE Rd,Rs
The array specified by RA is selected from (Take operation)
according to the vector associated with Rs.

[24] DROP R4,Rs
The array specified by RA is selected from (Drop operation)
according to the vector assocaited with Rs.

[25] CATENATE Rd4d,Rs;I
The arrays implied by Rd and Rs are catenated together
(lamenated) to form a new array. I~ specifies the axis over
which the operation takes place.

[26] COMPRESS R4,Rs,s
The array given by Rd is compressed by the array given by
Rs. Two modes exist. The first generates a new array which
is associated with Rd. The second simply allows one to defer
generation. This allows the selection operation to occur
logically without storage allocation. The latter is
required to allow assignment into a compression expression.

[27] EXPAND Rd4,Rs,s
This operation is identical to Compression in all aspects
except that the operation is a logical expansion.

[28] INDEX R4,Rs,s

This instruction has two modes given by "s". The first
performs an index of RA's array via the index list specified
by Rs. The second generates an Index Set for RdA's array
. based upon Rs's. An Index Set is a set of valid indices into
an array. Here a new array is generated being isomorphic to
the desired array. An Index Set is an internal DMU type
which the user never sees. This latter mode allows
assignment into generalized index expressions.

166

[29] RESHAPE Rd,Rs,s
Rd's array 1is reshaped ‘'according to Rs's vector. The flag
"s" 1inicates if an index set should be generated , if a new
real array should be generated, or if the array should only
be setup for streaming. The former allows assignment into a
reshape expression.

[30] STACK ALLOCATE cs;S
The DMU will support at least one temporary stack for other
units to use. This instruction allocates a stack of maximum
depth S with component size cs.

[31] TPUSH ;D
The data in the instruction is pushed onto the temporary
stack.

[32] TPOP
Returns the last component pushed onto the temporary stack.

Bibliography 167

Abrams,P.S. 'An APL Machine'
PhD Thesis, Stanford University
SLAC report no. 114, 1970

Abrams,P.S. 'Whats Wrong with APL®
APL75 Congress Proceedings, page 1
ACM-STAPL 1975

Allen,E.F. 'A Formal Definition of APL Syntax'
APL75 Congress Proceedings, page 15
ACM-STAPL 1975

Amram,Y. deCosnac ,B. Granger,J.L. Smoucovit,A.
'An APL Interpreter for Mini-computers
a microprogrammed APL machine'
APL73 Congress Proceedings, page 33

Batcher ,K.E. 'STARAN Parallel Processor
System Hardware'
National Computer Conference, 1974

Battarel,G. Delbreil ,M Tusera,D.
'Optimized Interpretation of
APL Statements'
APL73 Congress Proceedings, page 49

Bingham,H 'Content Analysis of APL
Defined Functions'
APL75 Congress proceedings, page 60
ACM-STAPL 1975

Breed,L.M. Lathwell ,R.H.
'The Implementation of APL/360'
ACM Symposium on Experimental Systems
for Applied Mathematics
Academic Press Inc, N.Y., 1968

Breed,L.M. 'Generalizing APL Scalar Extension'
APL Quote Quad , March 1971
ACM-STAL

Brown,J.A. 'Evaluating Extensions to APL'

APL79 Conference Proceedings, page 148
ACM-STAPL 1979

CDC*STAR100 'Features of the STAR-100'
Control Data Corporation
Advanced Studies Division
4201 North Lexington
Saint Paul, Minnesota

CDC*APL
CDC*GID
Edwards ,E.M,

Edwards ,E.M.

Falkoff ,A.D.

Falkoff ,A.D.

Ghandour ,Z.

Giloi ,W.K.

Gull ,w.

Haegi ,H.

' Hobson ,R.F.

168

'CDC*APIL, Reference Manual'
Control Data Corporation

'General Implementation Details'
Control Data Corporation

'Generalized Arrays(lists) in APL'
APL73 Congress Proceedings, page 99

'APL in the Classroom'
1980 APL Users Meeting
Toronto, Canada

I.P. SHARP Associates

K.E.Iverson, E.H.Sussenguth

'A Formal Description of System 360'
IBM System Journal

Vol 3 #3. 1964, page 193

Orth,D.L.

'Development of an APL Standard'
APL79 Conference Proceedings, part 2
ACM-STAPL 1979

'A Simple Approach to the Empty
Generalized APL Arrays'

APL76 Conference proceedings, page 178
ACM-STAPL

Berg ,H.

'STARLET- An Unorthodox Concept
of a String/Array Computer'
Information Processing 1974
North Holland Publishing Company

'Recursive Data Structures and

Related Control Mechanisms in APL'
APL76 Conference Proceedings, page 201
ACM-STAPL

'"The Extension of APL to Tree-like
Data Structures'

APL Quote Quad

Vol 7#2 Summer 1976, page 8

'Sof tware Sympathetic Chip Set Design'
National Computer Conference, 1981
Vol 50 May 1981, page 3

Hobson ,R.F.

Iverson,K.E.

Iverson,K.E.

Jenkins ,M.A.

Jenkins M.A.

Johannsen,D.

Johnston,R.L.

Lawrie,D.H.

' McDonnell ,E.E.

169

'Structured Machine Design:

An Ongoing Experiment'

Proceedings of 8th Annual Symposium
On Computer Architecture

May 1981, page 37

'A Programming Language'
John Wiley & Sons Inc.
New York, 1962

'The Role of Operators in APL'
APL79 Conference Proceedings, page 128
ACM-STAPL 1979

Michel,J.

'‘Operators in an APL Containing
Nested Arrays'

APL Quote Quad

Vol 9%#2 December 1978, page 8

'‘On Combining the Data Structure
Concepts of Lisp and APL', [980
Queen's University

‘Department of Computing &

Information Science
Technical Report No. 80-109

'Our Machine, A Microcoded

LSI Processor'
MICRO-11 Workshop Proceedings, 1978
ACM-SIGARCH
ACM Special Interest Group on
Microprogramming

'The Dynamic Incremental Compiler

of APL/3000°
APL79 Conference Proceedings, page 82
ACM-STAPL 1979

'Access and Alignment of Data
in an Array Processor'

IEEE Transactions on Computers
Vol C-24 #12, December 1975

'Complex Floor'
APL73 Congress Proceedings, page 299

MCM

Mebus,G.

Mitchell,J.

More,T.

Murray,R.C.

Pierre M.

Penfield,P. Jr.

Ruggiu,G.

Saal ,H.J.

Samson,D.

170

'MCM/900 USER'S MANUAL'
Manual No. 018-0053
December, 1978

MCM Computers Ltd.

6700 Finch Avenue West
Suite 600

Rexdale, Ontario

M9W 5P5

'Laminar Extension: An Overlooked
Capability and the Search for

its Proper Home'

APL79 Conference Proceedings, page 36
ACM-STAPL 1979

Knadler ,C. Lunsford,G. Yang,S.
'Multiprocessor Performance Analysis'
National Computer Conference, 1974

'The Nested Rectangular Array

as a Model of Data'

APL79 Conference Proceedings, page 55
ACM-STAPL 1979

'On Tree Structure Extensions
to the APL Language'
APL73 Congress Proceedings, page 333

Pierre,P.

'GESOP: A Relational Data Base

Using Generalized Arrays and

Data Base Primitives'

APL79 Conference Proceedings, page 102

'Proposal for a Complex APL'
APL79 Conference Proceedings, page 47
ACM-STAPL 1979

Aigrain,Ph.
'Description of APL Operators'
APL73 Congress Proceedings, page 401

Weiss,Z.

'Some Properties of APL Programs'
APL75 Congress Proceedings, page 292
ACM-STAPL 1975

Reynaud,Y.

'Storage Management in APL Machines'
APL Quote Quad

Vol 10#2 December 1979, page 19

171

Samson,D. These Docteur
'Modele Une Machine A.P.L.'
Universite Paul-Sabatier de Touluse
(sciences) Oct 1979

Stritter,S. Tredennick ,N.
'Microprogrammed Implementation
of a Single Chip Microprocessor'
MICRO-11 Workshop Proceedings, 1978
ACM-SIGARCH

Swan,R.J. Fuller ,S.H. Siewiorek,D.P.
'CM*- A Modular, Multi-microprocessor'
National Computer Conference, 1977

Sykes,R.A. Jr. 'Efficient Storage Management in APL'
APL79 Conference Proceedings
ACM-STAPL 1979, page 226

Tang ,C.K. 'Cache SY¥stem Design in the Tightly
Coupled Multiprocessor System'
National Computer Conference, 1976

Tokoro ,M. Watanabe,T. Kawakami ,K. Sugano,J. Noda,K.
'PM/II- Multiprocessor Oriented
Byte-sliced LSI Processor Modules'
National Computer Conference, 1977

VANGARD 'APL/Z80"
Quick Reference Quide
VANGARD System Corporation
6812 San Pedro
San Antonio, Texas
78216

Vick,C.R. 'PEPE Architecture- Present and Future'
National Computer Conference, 1978

Vasseur ,J.P. 'Extension of APL Operators to
Tree-like Data Structures'
APL73 Congress Proceedings, page 457

172

APL73 'Congress Proceedings
Copenhagen, Denmark, 1973
North Holland Publishing Company

APL75 Congress Proceedings

Pisa, Italy, 1975

ACM-SIGPLAN Technical Committee on APL
ACM, New York

APL76 Conference Proceedings
Ottawa, Canada, 1976
ACM-STAPL, New York

APL79 Conference Proceedings
Rochester, New York, 1979
APL Quote Quad Vol 9#4

ACM, New York

APL Quote Quad
ACM
1133 Avenue of the Americas

