
MAPLE: .
Multiprocessor APL machinE

by

Warren S. Snyder

B.Sc., Simon Fraser University, 1977

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the department

of

Computing Science

0 Warren S. Snyder
SIMON FRASER UNIVERSITY

February 1982

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL

N a m e : Warren S . Sflyder

Degree: M a s t e r of S c i e n c e

T i t l e of T h e s i s : MAPLE- A M u l t i p r o c e s s o r APL machinE

Examining Cornmitee:

C h a i r p e r s o n : W . S . Luk

-
E.M.Edwards

S e n i o r S u p e r v i s o r

R i c h a r d F. Hobson

" ~ h o m a s W . C a l v e r t

~ x t e r n a l Examiner
Depa r tmen t of Computing & I n f o r m a t i o n s c i e n c e

Q u e e n ' s U n i v e r s i t y
K i n g s t o n , O n t a r i o

Abstract iii

An architecture was investigated which allows a high

degree of concurrent processing during direct execution of

APL statements. It consists of four modules called the

Execution Unit (EXU) , Data Manipulation Unit (DMU) ,

Arithmetic-Logic Unit (ALU), and Input-Output Unit (IOU).

Each module represents a subset of the processing needed to

synthesize a complete APL environment. These modules

communicate in a multiprocessing network.

Research was concentrated on the DMU, which implements

an APL workspace and all array storage and access

activities. A configuration was achieved that greatly

minimizes the number of main memory accesses for all APL

statements. For those operations which require array

accesses, performances equal to main memory speeds can be

achieved.

Table of Contents

Abstract - - - - - - - iii
List of Tables

List of Figures

Introduction -
Chapter 1

1.1
1.2
1.3

The APL Language - - - 4
APL Problems and Corrections - 7
APL Primitive Classes - - 19

Chapter 2
2.1 APL Systems - - - 23

Other Array Processing Systems- 29
Features Summary - - - 33
Array Processing Theory - 36

Chapter 3
3.1
3.2

Architectural Justification - 43
MAPLE'S Architecture - - 48

Chapter 4
4.1
4.2
4.3

The Workspace - - - 51
Memory Management - - - 54
Data Types - - - 74
Workspace Structures - - 92

Chapter 5
5.1
5.2

DMU - - - 97
DMU Architecture - - - 99
DMU Instructions and Operation- 111

Chapter 6
6.1
6.2

Bus Arbitration - - - 120
Unit Specifications - - 125

Chapter 7
7.1

Architecture Evaluation - - 135
DMU Performance - - - 137
Performance of the EXU & ALU - 141
Summary - - - - 144

Appendix 1 APL Syntax - - - 146

Appendix 2 Array Access ALgorithms - - 150
Appendix 3 Execution Resource Usages - 159
Appendix 4 DMU Instructions - - - 163
Bibliography

List of Tables

Table

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3.1

1.3.2

2.4.1

2.4.2

4.1.3

5.2.1

6.2.1

6.2.2

7.2.1

A.l.l

A.1.2

A.1.3

,
Examples of Lists

Examples of The Index Primitive - 10
Ex tended Assignment - 12
Examples of Extended Assignment - 14
Extended Scalar Conformability - 17
APL Primitive Subdivisions - 20
Four Groups of APL Primitives - 22
Principle of SS1 Descriptors - 38
Examples of Drag Along - 42
Properties of Hole Table Maintenance - 63

DMU APL Instructions - 112
ALU APL Instructions - 129
IOU APL Operations - 132
ALU Operational Times - 143
APL Expression Syntax

Proposed APL Syntax

Examples of APL Syntax

List of Figures

Figure

2.2.1

3.1.1

3.2.1

4.1.1

4.1.2

4.1.4

4.1.5

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.3.1

4.3.2

5.1.1

5.1.2

5.1.3

5.1.4

I

PEPE

STARLET System

Bus Overview

Translational Memory Management

Hole Table

Virtual Address

Relocation Vector

Data Hierarchy

Type-Rank Header

Component C o CI e

Size Code Examples

Descriptor Layout

Descriptor Examples

Array Reference Table

ST and SAV

Data Manipulation Unit

OMU's Structure

MMU's Local Store

Memory Addressing

Bus Signals

I n t r o d u c t i o n

L

A t p r e s e n t APL and LISP a r e t h e t w o main l anguages

which p r w i d e power fu l a r r a y p r o c e s s i n g p r i m i t i v e

i n s t r u c t i o n s . Both l anguages have a s t r o n g t h e o r e t i c a l b a s i s

and a long h i s t o r y of implementa t ion . APL was des igned to be

c o n s i s t e n t w i t h e x i s t i n g v e c t o r and t e n s o r t h e o r y w h i l e LISP

is based on Lambda C a l c u l u s [MIC73]. There have been

t e n d e n c i e s to ex tend bo th APL and LISP to remwe t h e

i n a d e q u a c i e s of each and w e n to combinine t h e t w o [JEN801 .

The p r imary o b j e c t i v e of t h i s t h e s i s i s to r e f l e c t on

t h e d e s i g n of a memory a r c h i t e c t u r e f o r a h i g h performance

m u l t i - p r o c e s s o r APL computer . T h i s o b j e c t i v e , however,

r e q u i r e s some c o n s i d e r a t i o n of t h e s t r u c t u r e of APL, some

e x t e n s i o n s to i t , and t h e o v e r a l l a r c h i t e c t u r e of a machine

to e x e c u t e t h e l anguage e f f i c i e n t l y . These m a t t e r s w i l l be

c o n s i d e r e d f i r s t a s t h e y i n f l u e n c e t h e memory a r c h i t e c t u r e . .

The r e s u l t s of t h e i n v e s t i g a t i o n s w i l l be a h y p o t h e t i c a l

machine c a l l e d "MAPLE" which shou ld be manufac tu rab le u s i n g

c u r r e n t m i c r o e l e c t r o n i c e n g i n e e r i n g p r a c t i c e s . The f o l l o w i n g

is t h e s e t of o b j e c t i v e s f o r MAPLE'S d e s i g n .

-Define t h e l anguage to be implemented and de te rmine t h e

n a t u r e of t h e t a s k s to be performed i n i t s e x e c u t i o n .

- O u t l i n e a machine a r c h i t e c t u r e which c a n ' e f f i c i e n t l y

e x e c u t e t h e language. An a r c h i t e c t u r e which e x p l o i t s

p a r a l l e l p r o c e s s i n g where p o s s i b l e , and is modular f o r e a s e

of implementa t ion .

-Define (i n d e t a i l) t h e r e q u i r e m e n t s f o r t h e memory

a r c h i t e c t u r e . T h i s i n v o l v e s i n v e s t i g a t i o n of t h e workspace

o r g a n i z a t i o n and a r r a y s t o r a g e / a c c e s s methods.

T h i s t h e s i s w i l l a d d r e s s t h e a b w e o b j e c t i v e s wi th

emphasis on t h e d e s i g n of t h e memory a r c h i t e c t u r e and

workspace s t r u c t u r e . Indep th i n v e s t i g a t i o n of t h e

remaining a s p e c t s of MAPLE'S d e s i g n w i l l be l e f t f o r f u t u r e

r e s e a r c h .

T h i s t h e s i s is d i v i d e d i n t o f o u r a r e a s of d i s c u s s i o n .

Chapter 1 c w e r s t h e f i r s t a r e a , d i s c u s s i n g t h e p r o p e r t i e s ,

problems, and e x t e n s i o n s of t h e APL language. I n c h a p t e r 2

t h e S t a t e of t h e A r t of APL and a r r a y p r o c e s s i n g sys tems

w i l l be d i s c u s s e d . Then i n c h a p t e r s 3 through 6 an

implementa t ion of MAPLE w i l l be d i s c u s s e d . T h i s i n v o l v e s

d e s c r i p t i o n s of both i t s a r c h i t e c t u r e and e n g i n e e r i n g . I t is

i n t h i s t h i r d a r e a t h a t MAPLE'S main p r i o r i t i e s w i l l be

covered . Chapter 7 examines t h e performance expec ted from

t h e a r c h i t e c t u r e a long w i t h some s u g g e s t i o n s f o r f u t u r e

improvements w i t h a summary of how w e l l t h e o b j e c t i v e s of

t h i s t h e s i s were m e t .

1.1 The APL language 4

The APL language prw'ides a set of array processing

operations suitable for a wide class of applications.

K.E. Iverson [WE621 is credited with the language's

invention, proposing it as a mathematical notation for

describing array theory as it applies to Tensor Algebra. The

language's extensions and implementations are credited to

numerous others [FAL641 , [BRE68] .

APL obtained worldwide recognition when the first

machine implementations were successful during the late

1960's. However, its availablity was and is not now

widespread partly due to the vast complexities in

implementing the language on existing hardware and the lack

of skilled personnel to do so.

Appendix 1 contains a partial description of the

syntax for APL expressions (which is the basic procedural

unit of the language). For a more complete description of

APL's syntax and execution see [FAL79].

It is apparent from appendix 1 that the expression

syntax is not complex. However, what is not obvious is the

reason the language is almost always interpreted and not

compiled. This can be explained by two facts: Firstly,

interpretation is not a complex task, easing implementation

and allowing a highly interactive environment for the user;

Secondly, the dynamic nature of the data makes compilation

very difficult (there have been a few partially successf ul

incremental compilers for APL [JOHN79]).

,

The advantages of APL are far more numerous than its

disadvantages. Its strengths arise from its powerful array

manipulation primitives which allow concise statements about

a problem in a consistent manner.

The problems of any APL system can be considered in two

separate classes. The first class results from the

implementation , i.e. how the logical and language concepts

were transferred to an actual machine. The implementation

has more effect than any other feature in reducing the

usefulness of an APL system. The implementation affects the

efficiency of the language in carrying out the instructions

contained in it. However, all implementation problems can be

cured by the suitable choice of machine architecture.

The second class of problems result from the language

itself. The current definition of the language has many

restrictions on operators, primitives, and user defined

f unctions/arrays ([ABR75] describes some aspects of what is

wrong with A P L) . Nearly all of these restrictions are the

result of defining a useable system within the constraints

of the machine technology at definition time.

An implementa t ion e f • ’ o r t may be d i v i d e d i n t o t h r e e

p h a s e s , Workspace Management, Ar ray Reference/ Opera t ion

Algor i thms , and User/ Opera t ion System I n t e r f a c e s . Workspace

Management i n c l u d e s dynamic changes i n s i z e and a t t r i b u t e s

of a r r a y s d u r i n g e x e c u t i o n and m a i n t a i n i n g a s s o c i a t i o n s

between a c c e s s i b l e a r r a y s and t h e i r names. The s p e c i f i c

problems of Workspace Management w i l l be a d d r e s s e d i n

c h a p t e r 4.

The problem of r e f e r e n c i n g a r r a y s i n t h e v a r i o u s modes

and manners which APL r e q u i r e s i s a v e r y complex t a s k . These

i n v o l v e a l g o r i t h m s to select s u b s e t s of d a t a from a r r a y s i n

an a lmos t a r b i t r a r y f a s h i o n . These a l g o r i t h m s of t e n imply a

l a r g e amount of d a t a movement. I f , however, i t c a n be

recogn ized when such movements a r e n o t r e q u i r e d , t h e n

s i g n i f i c a n t improvements c a n be r e a l i z e d . I t w i l l be t h e

s u b j e c t of c h a p t e r 5 , on t h e DMU, t o s u g g e s t a n a r c h i t e c t u r e

f o r t h e e f f i c i e n t e x e c u t i o n of t h e s e a l g o r i t h m s . T h i s phase

of an implementa t ion c o v e r s what i s g e n e r a l l y c a l l e d t h e

e x e c u t i o n (i n t e r p r e t a t i o n) of t h e language.

The remaining problems l i e i n i n t e r f a c i n g t h e u s e r to

t h e system. T h i s r e q u i r e s e d i t i n g p r o v i s i o n s f o r APL

programs and d a t a and a p r o p e r i n t e r a c t i v e environment . Some

of t h e s e problems w i l l be a d d r e s s e d i n c h a p t e r 6 on t h e I O U .

1.2 APL Problems and Correction Suggestions 7

The problems of the APL language and its restrictions

will be discussed first and the implementation left for the

later chapters. All APL arrays must be homogeneous. That is,

all elements must be chosen from either character or

numerical scalars. Certain applications, however, (such as

those LISP is often used for) require that elements of an

array be chosen from a set of arrays (an example is, lines

of a paragraph which are varying length character vectors

grouped together). This requires the concept of a

"Generalized Array" where each element of an array can be

any data object, allowing the expression of arrays of

arrays.

A substantial effort in extending APL to include this

concept has been addressed by E.Edwards [EDW73], R.Murray

[MUR73] , H.Haegi [HAE76] , and T.More [MOR79] (also [VAS73] ,
[GHA76] , [GUL76] , [JEN781 , and [PIE791) . The extension

proposed here follows that which E.Edwards proposed. The

details of this extension are still controversial in the APL

community and will be left somewhat open for future changes,

but a need for this extension has been shown to be genuine.

This extension to generalized arrays can be summarized

by two concepts. The first is that of a "List" scalar, which

is the scalar element for all generalized arrays. The second

concept is a set of mechanisms which allow the user to

transform any array into a list scalar or any list scalar to

an array. These are the dual processes of "Imbed" and

"Expose" respectively. c.f. Table 1.2.1 for examples.

The rules for indexing are given in appendix 1 under

the rules of expression syntax (subexpression Iexpression) .
Though the concept of indexing is well defined in APL it

lacks the symmetrical form that all the other primitives

have. This will be rectified by the introduction of the

dyadic selection primitive "Index".

This primitive is described in the CDC*APL system

[CDC*APL] . Basically, it is a dyadic function where the

right argument is the array to index, while the left

argument is a "List" of indices. This index list has as many

components as the array has axes, and the arrays imbedded

within this list are indices within these axes. Table 1.2.2

illustrates this primitive.

T A B L E 1 . 2 . 1

E X A M P L E S OF L I S T S
I

X + ' H E L L O t oUIO+O
Y c l T H I S I S A LONGER S E N T E N C E 1
Z+2 5 p 1 1 0

L + (c X) , (c Y) , c z
A C R E A T E T H E L I S T L

S A B L E 1 . 2 . 2
E X A M P L E S OF T H E I N D E X P R I M I T I V E

I + (c Y) , c Z
I n X n A L T E R N A T r v r ~ Y
X 4 2 3 3 5 p Z A C O N S I D E R T H E ARRAY X
XC ; ; 1 ; Y I AONE A C C E S S OF X
X C Y ; 1 ; ; 1 R A N O T H E R S I M I L A R A C C E S S
E t c O p c O RAN EMPTY L I S T
I + E , E , (c l) , c Y
I n X A F I R S T A C C E S S
($1) nX ASECOND A C C E S S

It is not my intention to remove the syntax for the

index subexpression, but rather to augment it with the index

primitive. Since all former cases of indexing can be reduced

to expressions involving the "Index" primitive, an actual

machine implementation may translate the former syntax into

equivalent expressions with "Index". However, this extension

should be made available to the user as complex indexing

expressions can therefore be assigned to variables for later

use, something which is not possible with present APL.

In the introduction of the "Index" primitve it must be

recognized that indexing is a true selection process and as

such must be made to have the same syntax form as the other

selection primitives. However, within the current APL,

indexing is given a special property in that it can be

involved in an assignment process. Table 1.2.3 shows the

operation of assignment as currently supported along with

the proposed extension to assignment.

Assignment's extension can be best described as

allowing the assignment of one array into another array of

similar shape and type, if the left argument represents a

subset of a named object. The old definition restricted this

to only a named object or a subset of a named object

generated by indexing. This more general principle was

recognized by a group at CDC when they implemented CDC*APL

[CDC*APLl , so they proposed and implemented part of the

definition of table 1.2.3.

TABLE 1 . 2 . 3
I

EXTENDED ASSIGNMENT

PREVIOUS D E F I N I T I O N : NOBJECTcEXPR
NOBJECT[IEXPRl+EXPR

EXPR: V A L I D APL EXPRESSION
I E X P R : INDEXING EXPRESSION
NOBJECT: A NAMED OBJECT

RAFTER ASSIGNMENT THE TERM TO LEFT OF ASSIGNMENT (L T)
RAND TERM TO RIGHT (R T) HAVE THE FOLLOWING PROPERTY

A / ,LT=RT

PROPOSED D E F I N I T I O N : SE (SELECTION EXPRESSION)
SEcEXPRESSION

S E : NOBJECT
Q S E
EXPRQSE
OS E
EXPROSE
EXPRpSE R N O CYCLES
E X P R / S E
EXPRnSE
EXPR+SE R N O OVERTAKE
EXPRSSE
s S E

RAND THE FOLLOWING S P E C I A L CASE
EXPR\SE

R A L L THE ABOVE EXCEPT THE LAST FOLLOW (A / . S E = E X P R)
RAFTER ASSIGNMENT .THE LAST DOES UNDER THE FOLLOWING RULE
R (EXPR\SE)++(-EXPR) /EXPR\SE

I

The nature of the selection operations that were

allowed in the CDC* proposal restricted the usable

primitives to Transpose, Rotate, Take, Drop, Reshape, Index.

That is, the pure selection primitives. The proposal to be

made here is to also allow assignmemt into selection

expression (either temporary or named objects) and to allow

in addition the use of both compression and expansion as

valid selection primitives. c.f table 1.2.4 . This extension
was briefly introduced by E.Edwards in describing

improvements to the APL language [EDW80] .

A useful set of expansions to the APL language involves

generalizations in the data types allowable, the first of

which is the extension of the numerical scalars to the

complex scalars. This allows the inclusion of the current

reals and allows many primitives to produce complex results.,

Many of the primitives have natural extensions to the

complex domain and have been treated by P.Penfield [PEN79].

While there is still debate concerning the extensions

of some of the primitives to the complexes, one may choose

at this time to trap their results to domain errors or some

suitable value. It is important that this data type be

allowable to extend the use•’ ulness of APL to the scientific

community.

T A B L E 1 . 2 . 4

EXAMPLES OF EXTENDED ASSIGNMENT
I

A [(- T) / I 14 P A ;]+B oA+T+A
R I N S E R T NEW ROWS B , I N T O MATRIX A , A S
R G I V E N BY T . WITH CONVENTIONAL ASSIGNMENT
RNOW W I T H EXTENDED ASSIGNMENT
(T + A) + B

A C T / I l t p A ; l 4 B
AREPLACE ROW OF A BY ROWS B AS G I V E N BY T
ROR
(T f A) + B

G 1 [6 + 1 6 ; 3 + 1 3 l + G 2
n A S OPOSED TO
(6 3 4 6 3 + G l) + G 2

(3 2 t B) + O o B + 1 0 5 0 p l
n I N I T I A L I Z E A MATRIX AND I T S SUBMATRIX
(1 l Q I) + l o I + l O l o p 0
ACREATE I D E N T I T Y MATRIX

G + (N , N) p t '
(1 l Q G C X ; Y I) + ' * '
RGRAPH PLOTTER

Another d a t a t y p e t h a t needs expanding i s c h a r a c t e r

d a t a . I n a lmos t a l l sys tems , e x c e p t f o r advanced g r a p h i c s ,

t h e set of c h a r a c t e r s is s m a l l and u n a l t e r a b l e . Tha t is , i n

F o r t r a n , P a s c a l , and APL l a n g u a g e s , t h e c h a r a c t e r sets a r e

n o t u s e r def i n e a b l e . I t w i l l be t h e i n t e n t i o n of t h i s

e x t e n s i o n to APL to p r o v i d e a h igh d e g r e e of f l e x i b i l i t y i n

t h e d e f i n i t i o n of c h a r a c t e r d a t a . These e x t e n s i o n s w i l l a l s o

a l l o w t h e d e f i n i t i o n of o t h e r I0 r e l a t e d d a t a t y p e s such a s

speech o r g r a p h i c s .

An a t t e m p t t o p r o v i d e t h e s e t y p e s of e x t e n s i o n s w i l l be

i n a l lowing t h e u s e r to a c c e s s and modify t h e c h a r a c t e r s e t

d e f i n i t i o n w i t h i n t h e system. T h i s i n v o l v e s t h e c o n t r o l l e d

ass ignment to t h e sys tem o b j e c t (s) which s u p p o r t t h e set of

c h a r a c t e r s c a l a r s .

The most i m p o r t a n t e x t e n s i o n t o t h e APL language to be

proposed h e r e i n v o l v e s t h e manner i n which a r r a y s of

d i s s i m i l a r s h a p e s a r e c o e r c e d i n t o conformable shapes d u r i n g

t h e e x e c u t i o n of dyad ic " s c a l a r " f u n c t i o n s . C u r r e n t l y , two

a r r a y s a r e "conformable" i f e i t h e r , b o t h have t h e same shape

o r one c o n t a i n s e x a c t l y one e lement . One e lement a r r a y s a r e

Reshaped i n t o an a r r a y of t h e same shape a s t h e o t h e r a r r a y

(u n l e s s i t h a s o n l y one e lement i n which c a s e t h e a r r a y w i t h

t h e h i g h e r rank d i c t a t e s s h a p e) .

I

This is an extremely useful concept. However,as Edwards

(in a paper on simplifying APL concepts [EDW80]) and Breed a

few years earlier [BRE71], point out, this principle should

be extended to allow a more general coercion of arrays. This

is the principle of "Extended Scalar Conformability". Its

rules follow:

Any two arrays of the same rank are conformable IF (1)

their shapes are identical OR (2) IF for the dimensions that

differ, pairwise, one has dimension 1. The axes with

dimension 1 are extended by replication along that direction

to the dimension of the other array.

For arrays of rank differing by 1, the "smaller" array

can have its rank extended by 1 at a location indexable by

the index operator. Since the two arrays now have the same

rank the first principle can be applied.

In the cases where the ranks differ by more than one the

old principle of scalar conformability applies. c.f. Table

1.2.5 for examples.

T A B L E 1 . 2 . 5 r 3

EXAMPLES OF EXTENDED SCALAR CONFORMABILITY
I

1+5 6 ~ 1 3 0 ACURRENTLY ALLOWED
X+2 1 3pO
Y+2 4 3 p l ATWO ARRAYS X Y

AONLY ALLOWABLE I F EXTENDED
ASCALAR CONFORMABILITY

AEXTENDS (p X) TO 1 1 3
ATHEN REPLICATES X SO
ATHAT (p X) = 2 4 3

MARKS A AN N , M MATRIX OF MARKS
WEIGHTS AVECTOR OF WEIGHTS (M=RHO)
MARKS+[OIWEIGHTS AASSOCIATED MARKS BY WEIGHTS

These p r i n c i p l e s w i l l be t a k e n a s t e p f u r t h e r i n t h e

a b i l i t y to coerce a r r a y s . For t h e c a s e s of r a n k s d i f f e r i n g

by t w o o r more, t h e " s m a l l e r " a r r a y c a n be extended t o t h e

" l a r g e r " a r r a y ' s rank by t h e index o p e r a t o r , whose argument

i s a v e c t o r of i n t e n d e d axes . The d e f a u l t v a l u e s w i l l r e s u l t

i n ex tend ing any a r r a y a long i t s l a s t c o o r d i n a t e a x i s , t h e

same a s t h e a b w e p r o p o s a l e x c e p t more t h a n one a x i s is

invo lved .

T h i s p r i n c i p l e of Extended S c a l a r

(E.S.C.) w i l l d r a m a t i c a l l y i n f l u e n c e

a r c h i t e c t u r e of MAPLE. I n Appendix 2 an

implementing E.S.C. is g iven .

Conformabi l i ty

t h e machine

a l g o r i t h m f o r

1 .3 APL P r i m i t i v e C l a s s e s 19

I

From t h e p r i m i t i v e s i n t h e i r extended forms I s h a l l

i n v e s t i g a t e t h e i r c l a s s i f i c a t i o n i n t o fundamenta l g roups .

The f i r s t g roup i s o b v i o u s , be ing t h e "Numeric" p r i m i t i v e s ,

c . f . Tab le 1.3.1. A p r i m i t i v e c a n be c l a s s i f i e d a s numeric

i f t h e r e s u l t a n t a r r a y b e l o n g s to t h e complex numbers. T h i s

c l a s s c o n t a i n s t h e s c a l a r numeric f u n c t i o n s such a s PLUS and

TIMES. A l s o i n c l u d e d a r e such p r i m i t i v e s a s MEMBERSHIP and

INDEX-OF.

The numer ica l p r i m i t i v e s a l l pe r fo rm a t r a n s f o r m a t i o n

from one d a t a type o r v a l u e to a n o t h e r . There is a se t of

p r i m i t i v e s which do n o t per form any such t r a n s f o r m a t i o n s .

They a r e t h e " S e l e c t i o n " p r i m i t i v e s , which s imply modify t h e

s p a t i a l a r rangement of an a r r a y o r e lse select a s u b s e t of

t h e a r r a y , c . f . Tab le 1 .3 .1 . These s e l e c t i o n p r i m i t i v e s a r e

j u s t t h o s e which were mentioned i n s e c t i o n 1 .2 on s e l e c t i o n

e x p r e s s i o n s .

The remaining few p r i m i t i v e s c a n be c l a s i f i e d a s e i t h e r

i n v o l v i n g an I0 f u n c t i o n or some e x e c u t i v e f u n c t i o n of

c o n t r o l o r d a t a a s s o c i a t i o n . These l a s t few groups a r e

c a l l e d " I O " , " C o n t r o l " , and "Other" p r i m i t i v e s r e s p e c t i v e l y .

Under most c i r c u m s t a n c e s t h e " o p e r a t o r s " c a n be grouped a s

c o n t r o l o p e r a t i o n s o r s e l e c t i o n o p e r a t i o n s , b u t t h e y w i l l

n o t be d i s c u s s e d h e r e .

T A B L E 1 . 3 . 1

A P L P R I M I T I V E S U B D I V I S I O N S
I

N U M E R I C A L P R I M I T I V E S
MONADIC

- + - x ; r L S C A L A R
l o * @ ? ! S C A L A R
1 4 v S P E C I A L

D Y A D I C
+ - x t r ~ ~ S C A L A R
o * e = # c s S C A L A R
> ~ A v * Y ! S C A L A R
? E I T ~ ! ~ S P E C I A L

S E L E C T I O N P R I M I T I V E S
MONADIC

Q 0 , 3 c
D Y A D I C

P / \ Q 0 + +

I 0 P R I M I T I V E S
MONADIC

D P Flo=cl7
D Y A D I C

111 1
N I L A D I C

0 ~O=mcl' '
C O N T R O L P R I M I T I V E S

MONADIC
+ P

D Y A D I C
NONE

O T H E R P R I M I T I V E S
MONADIC

D Y A D I C

I t is n o t o b v i o u s t o which c l a s s e s i f a t a l l t h e

"Other" p r i m i t i v e s b e l o n g , b u t upon close o b s e r v a t i o n t h e y

c a n be t i e d t o t h e s e l e c t i o n p r i m i t i v e s . The p r i m i t i v e

"Ca tena te" is s imply a r e s t r u c t u r i n g o p e r a t i o n which j o i n s

two a r r a y s t o g e t h e r . "Assignment" pe r fo rms no d a t a

t r a n s f o r m a t i o n s o r re-ar rangements b u t e f f e c t s a naming of

a r r a y s . I n some s e n s e t h i s i s a s e l e c t i o n o p e r a t i o n .

The l a s t p r i m i t i v e monadic nRho", i s t e c h n i c a l l y a

numer ica l p r i m i t i v e , b u t it is so c l o s e l y t i e d to t h e a r r a y

it is o p e r a t i n g upon t h a t I have a l s o grouped it wi th t h e

s e l e c t i o n p r i m i t i v e s . The r e s u l t is shown i n Tab le 1 .3 .2 ,

where o n l y f o u r g r o u p s e x i s t .

TABLE 1 . 3 . 2

THE FOUR GROUPS OF APL P R I M I T I V E S
I

MONADICS

NUMERIC
- - + - x ; o * t B l

r L ? ! a l b V
SELECTION

p @ Q , c 3
I0

CI P
CONTROL

* 2

DYADICS

NUMERIC
+ - X ; ~ L I O * ~ B

= f < < > l A V * Y

! ? E l B l T
SELECTION

p / \ + + 9 Q t n
I 0

III P
CONTROL

N O E X P L I C I T DYADIC CONTROL
P R I M I T I V E S AS Y E T .

APL Systems

S/360 ~m~lementation

This was the first successful implementation of APL,

done in 1965 by IBM Inc. on an S/360 model 50 [BRE68]. It

was highly successful and has set the standard for almost

all other implementations.

The APL language was still under developement at this

time. The result was most of the language as it stands

today. Much of what was put into the implementation extended

or modified Iverson's original proposal [IVE62] . It was,
however, far from an optimal implementation as far as

performance was concerned, nor has that company made

significant attempts to correct the deficiencies in their

so•’ tware.

They represented data as either numeric, character, or

function.The numerics were either 1 bit integers (booleans),,

32 bit integers or 64 bit rationals. The M50 processor was

equiped to deal with these data types at the scalar level.

The booleans were packed efficiently into 32 bit words.

Character data was encoded into 8 bits and packed 4 to a 32

bit word. The functions were condensed into an internal byte

code string form, which was easier to interpret, allowing

some of the text string searchs to be eliminated by doing

the lexical analysis at edit time.

There were many restrictions on the users of this

system, most of which were the direct result of restricting

the workspace size to 2*15 bytes. However later

implementations corrected this problem.

A number of inefficiencies existed in the execution of

many of their primitives. All operations were explicitly

carried out without the exploitation of "Drag Along" and

"Beating" [ABR70]. This tended to produce very large

temporary results compounding the problem of insufficient

workspace size.

I0 was primitive, providing support for hardcopy

terminals only. There were no provisions to allow for future

developements such as video terminals. Output of arrays was

supported but input was character string oriented, allowing

only a single line to be entered.

It is my opinion that the introduction of system

function separate from the language was a mistake. This

negates the possiblity of generating system level software

in APL. Later IBM implementations corrected some, but not

all, of these problems (some system primitives were added).

It is interesting to notice that this attempt to provide

operating system interfaces has become a standard for most

implementations (the standard as proposed by A.Falkoff and

D.Orth [FAL79]).

CDC* ~m~iementation

This implemenation by Control Data Corporation on the

CDC Star machine in 1973 was a radical advancement in array

processing, both in the language and the hardware

[CDC*STAR] . The Star architecture made heavy use of

pipelining and vector machine instructions. Many of the

scalar dyadic primitives could be implemented in a single

machine instruction.

The software made use of the ideas of Abrams in his

thesis on an APL machine [ABR70] . They employed two types of
data storage: one form for objects and one for object

descriptions. These storage types will be described in

section 2 .4 . They allowed most selection operations to be

delayed to the point were their explicit operation became

unnecessary.

Data was represented similar to the IBM implementation

except that all data was compacted into 6 4 bit words instead

of 3 2 and 6 4 bit words. The integers were represented as a

special case of the rationals so that they were all 48 bits

in length within a 6 4 bit word. Booleans were compacted to

fit within 48 bits of a 64 bit word. Character data was

represented as 8 bit bytes, 8 bytes per word.

Their major extentio* to the APL language was the

introduction of lists or generalized arrays. At present few

other implementation have succeeded in this extention (a

French system was described by M.Pierre having Generalized

Arrays [PIE791) . Another improvement in the language was to
allow assignment to an expression if that expression

represented a subset of the data there (as proposed in

section 1.2).

MCM Implementation

In 1973 MCM Canada succeeded in producing the first

APL implementation to run on a microprocessor. They choose

the Intel 8008 as it was effectively the only microprocessor

available at the time. With some hardware enhancements to

overcome the address space limitations of this processor,

they managed to implement the full APL language.

The significant features of this machine were its size,

user inter•’ ace, and its I0 facilities. The machine's

physical size was small allowing it to be portable. In

actual fact the first model MCM700 was a briefcase

implementation with provisions for battery backup within the

same enclosure.

The sys tem supper t e d ' o b j e c t paged v i r t u a l memory from

e i t h e r t a p e o r d i s k a l l o w i n g t h e machine to use a v e r y

l i m i t e d RAM s t o r a g e y e t a l l o w i n g l a r g e workspaces. A l l

o p e r a t i n g sys tem i n t e r f a c e s were p r w i d e d v i a APL quad

f u n c t i o n s [MCMI , a l l o w i n g t h e u s e r t o deve lope h i g h e r l e v e l

o p e r a t i n g sys tems w i t h i n t h e c u r r e n t system.

I0 a r c h i t e c t u r e was s u b s t a n t i a l l y improved i n t h e MCM

sys tems. They p r w i d e d f o r i n t e r f a c i n g a lmos t any a r b i t r a r y

I0 d e v i c e , s u p p o r t e d through a set of u s e r a c c e s s a b l e sys tem

t a b l e s d e s c r i b i n g t h e c u r r e n t I0 d e v i c e and t h e p r o t o c o l s t o

use .

The MCM sys tem took a r a d i c a l approach to i n t e g e r d a t a

t y p e s . Because t h e INT-8008 i s an 8 b i t p r o c e s s o r , and t h e

c o s t of RAM s t o r a g e was p r o h i b i t i v e l y h igh f o r t h e

a p p l i c a t i o n , t h e y implemented an expandable i n t e g e r word

s i z e . However, t h e y f a i l e d to p r o v i d e a s e p a r a t e boolean

word s i z e (t h e y chose to r e p r e s e n t boo leans a s 8 b i t

i n t e g e r s) The p r w i d e d s i z e s a r e l , 2 , 3 , 4 , 5 , 6 and 7 b y t e s .

The r e a l s were s i m i l a r to t h e f o r m a t used by I B M ' s

implementa t ion , i e . u t i l i z i n g 8 b y t e s .

The d e f i c i e n c i e s of t h e MCM sys tem were i n t h e

r e s t r i c t i o n s on t h e u s e r , most of which r e s u l t e d from MCM's

e f f o r t s t o minimize s t o r a g e requ i rements . The most s e v e r e

r e s t r i c t s a r r a y s to dimensions of 0 to 255 (rank however was

u n r e s t r i c t e d , a l l o w i n g up to rank 3 2) .

In MCM's naming convention only the first three

characters had significance. This has placed a significant

burden on users in avoiding name conflicts. Along with the

implementation deficiences was the machine's overall

performance at array processing tasks. For many applications

programs executed at speeds which are too slow for normal

use and only suitable for nonsupervised stand-alone

operation.

VANGUARD 2-80 Implementaion

This is a recent APL implementation(l979) for the Zilog

2-80 microprocessor [VAN]. It represents an almost complete

implementation of IBM's APLSV, with a few restrictions on

the domains of the primitives, and also with a few of the

primitives missing.

It represents the state of the attempts to implement.

APL on modern low cost machines. It can best be described as

a cumbersome and rather poorly thought out system. Very few

options on data types were given, with booleans occupy one

byte ,integers 2 bytes, and reals occupying 6 bytes as

packed BCD numbers.

A serious fault of this system is it did not make use

of the improvements from other implementations to date, such

as virtual memory or generalized 10. It is certainly not a

contender in the users market for APL or array processing.

2.2 Other Array P r o c e s s i n g Systems 29

The most n o t i c e a b l e a r r a y p r o c e s s o r sys tem o t h e r t h a n

an APL sys tem is t h e STARAN by Goodyear C o r p o r a t i o n . The

a r c h i t e c t u r e of t h i s machine i s r a d i c a l l y d i f f e r e n t than t h e

o t h e r machines d e s c r i b e d h e r e . E f f e c t i v e l y it c o n s i s t s of

many p a r a l l e l p r o c e s s o r s which c a n w o r k i n d e p e n d e n t l y of

each o t h e r .

I t c a n b e s t be d e s c r i b e d a s a multi-ALU sys tem, one ALU

p e r memory module, each memory module be ing a b i t a r r a y of

256 by 256 b i t s . A l l d a t a o p e r a t i o n s a r e on 256 b i t wide

words. These l a r g e superwords a l l o w a h igh degree of

p a r a l l e l i s m i n o p e r a t i o n s . Along w i t h t h i s l a r g e word w i d t h ,

i s t h e a b i l i t y to a c c e s s t h e a r r a y a long e i t h e r of i t s t w o

c o o r d i n a t e s , wi th a t h i r d c o o r d i n a t e s p e c i f y i n g modules.

With t h e a b i l i t y to have modules o p e r a t e on d a t a i n

p a r a l l e l , u l t r a h igh v e c t o r o p e r a t i o n r a t e s c o u l d be

ach ieved (approx imate ly 40 m i l l i o n o p e r a t i o n s p e r second

w i t h o n l y 4 modules) .

The main d i s a d v a n t a g e of t h e STARAN sys tem is i t s 256

b i t bus s i z e . T h i s is a v e r y l a r g e p h y s i c a l bus s i z e and

l e a d s t o bus i n t e r f a c i n g problems, making t h e sys tem t o t a l l y

i m p r a c t i c a l f o r s m a l l o r medium s i z e machine d e s i g n .

STARAN was o r ig ina l ly indended as an associat ive

memory subsystem which could be used in a pa ra l l e l

processing environment w i t h a host processor. STARAN

demonstrates the use•’ ulness of having a separate data

processor f o r e f f i c i e n t array processing and tha t i f one has

an easy access to array elements i n an almost a rb i t ra ry

manner, a s ign i f ican t imprwement i n performance can be

achieved.

Another non APL system which was intended for array

processing is the PEPE multiprocessor system [VIC78].It was

once (1976) , one of the most power•’ u l systems i n the world,

being composed of up to 288 pa ra l l e l processing elements,

c . f . 2.2.1.

The basic u n i t s a re independent processors, each of

which derives i t s ins t ruct ion from a common source. They a l l ,

work essen t ia l ly in pa ra l l e l on separate data se t s . Since

the elements were weakly coupled, intercommunication was a

bottleneck.

For arrays of modest s i z e , many orders of magnitude

imprwement w e r conventional systems, such as S/360, can be

achieved (tha t i s , for operations on single s e t s of arrays

such as simple scalar dyadics). Each of the u n i t s can handle

a subset of the necessary scalar processes.

PEPE

HOST CDC7600 1

1 element
I I

I

I

Figure 2.2.1

I

a h .

aau.
cu

I

I

-

mem.

Correlat ion C,U.

I I

A.L.U. C-U. Associative
output C.U.

The problem wi th such a sys tem is i n d a t a management.It

becomes v e r y d i f f i c u l t t o mwe components between p r o c e s s i n g

e lements . With t h e l a c k of i n t e r u n i t communicat ions,

complex o p e r a t i o n s such a s a r r a y r e s t r u c t u r i n g becomes a

hor rendous t a s k . For t h e s e p r o c e s s e s each p r o c e s s o r i n t u r n

must be asked f o r d a t a . Thus p r o c e s e s s w i l l i n v a r i a b l y be

less e f f i c i e n t t h a n a s i n g l e memory s t r e a m i n s t r u c t i o n of

t h e S/360 o r t h e v i r t u a l r e s t r u c t u r i n g of t h e CDC STAR.

The a b w e i s t y p i c a l of u s i n g i d e n t i c a l p a r a l l e l

p r o c e s s i n g e lements . A t r a d e o f f r e s u l t s between t h e

e f f i c i e n c y of s c a l a r dyad ic o p e r a t i o n s and s t r u c t u r a l and

i n t e r p r e t i v e o p e r a t i o n s .

2.3 Features Summary 33

From the various implementations and similar systems,

it is possible to extract the best features and those

aspects that should be incorporated in future APL

implementations. These features fall within two categories,

language and machine features. I will deal with language

features first.

A significant language feature was the sucessf ul

introduction of generalized arrays by CDC*STAR. Their

aproach was similar to the proposed language extention of

section 1.2. This same system also allowed limited

specifications into selection expressions.

The a b w e two language extentions are significant as

they increase the ability of APL to express algorithms which

were up to then extremely awkward to express. Assignment

into a selection expression can reduce the number of steps,

in many APL algorithms. These two features will have a high

implementation priority in the machine design to be

undertaken here.

In looking at the MCM implementation, three facts about

the language become apparent. First, object names should

have no significant length restrictions.

The second was MCM-APL's inclusion of all system

functions as primitives. The language then does not have two

con•’ licting environments for the user to contend with.

The t h i r d i m p o r t a n t f e a t u r e of t h e MCM sys tems was t h e

a b i l i t y f o r t h e u s e r to r e c o n f i g u r e t h e I0 sys tem d u r i n g

e x e c u t i o n . T h i s is n e c e s s a r y f o r a s i n g l e u s e r machine which

must a d a p t to changes i n t h e I0 d e v i c e s connec ted to it.

A l l t h r e e of t h e s e f e a t u r e s w i l l have h igh p r i o r i t y i n

implementa t ion .

The impor tance of boolean d a t a s t r o n g l y u r g e s t h a t

boo leans be compacted to a s i n g l e b i t p e r component. T h i s

r e s u l t s i n o r d e r of magnitude i n c r e a s e i n s t o r a g e e f f i c i e n c y

and a s i m i l a r i n c r e a s e i n s t r e a m i n g speed.

A s f a r a s r educ ing r e s t r i c t i o n s on a r r a y s i z e s , i t i s

b e s t to o n l y r e s t r i c t a r r a y s by t h e amount of a v a i l a b l e

memory and no o t h e r f a c t o r s . A l l implementa t ions which a l l o w

"Rank" of a t l e a s t 1 6 , appear to impose no a p p a r e n t

r e s t r i c t i o n on t h e u s e r s . MAPLE w i l l a l l o w "Rank" of a t

m o s t 31.

I f t h e workspace s i z e is 2*32 words (u n r e a l i s t i c l y

l a r g e workspace f o r a s i n g l e u s e r) t h e n d imensions shou ld be

a l lowed w i t h i n [O ,2*32] . The MCM sys tems i n d e f i n i n g

d imensions between [O ,2*81 p l a c e d undue r e s t r i c t i o n s on t h e

u s e r .

The other array processing systems demonstrate the high

ef f iciency of applying parallel processors to array

processing, as increased performance for some problems

results as more processors are introduced [MIT74]. However,

the nature of these processors should not be as uniform as

the PEPE system but allow specialization to achieve the

increased efficiency.

2.4 Array Processing Theory 36

In 1970 P.S.Abrams in his doctorial thesis laid the

foundations for efficient processing of APL array structural

operations and a method of improved interpretation [ABS70].

Since that time a number of implementations have succesf ully

adopted some of these techniques ([CDC*APL] , [AMR73]) .

A number of important principles for array accessing

were introduced by Abrams. Many of these are the result of

the IBM APL/360 implementation, such as the need for

"Descriptors" to describe the properties of arrays.

All arrays have Rank and Dimensional parameters which

are associated with the array itself. These must be encoded

somewhere in memory to control the access to the arrays (any

access algorithm must know the number of elements to access

and in which order).

Abrams suggested a method by which, by the introduction

of Rank plus 1 more components to a descriptor, one can

describe a large class of array structural operations by

simple manipulations of the overall descriptor. He called

the use of principles such as this "Beating".

A s s o c i a t e d wi th ~ e a t i n i i s t h e "Reference Counter" . I t

i s a method by which unnecessa ry c o p i e s of a r r a y s c a n be

avoided b u t s t i l l p r e s e r v e t h e i l l u s i o n of i n d i v i d u a l

c o p i e s . T h i s is v e r y u s e f u l i n s y n t h e s i z i n g " C a l l by Value".

The b a s i s of t h e r e f e r e n c e c o u n t e r i s a s f o l l o w s : w e r y

a r r a y h a s a s s o c i a t e d wi th i t a s i n g l e word, which i n d i c a t e s

a c o u n t of t h e d e s c r i p t o r s which r e f e r e n c e a s u b s e t of ' t h e

a r r a y .

Some a r r a y s c a n be d e s c r i b e d by j u s t a d e s c r i p t o r and

a r e f e r e n c e coun t . Thus t w o t y p e s of d e s c r i p t o r s a r e

p o s s i b l e : t h o s e which d i r e c t l y d e s c r i b e an a r r a y w i t h o u t any

t r a n s f o r m a t i o n in • ’ o rmat ion and t h o s e which i n d i r e c t l y

d e s c r i b e a new a r r a y based upon a n o t h e r a r r a y and some

t r a n s f o r m a t i o n i n f o r m a t i o n . The former w i l l be c a l l e d

" S t o r a g e S t a t e Zero" (SSO) a r r a y s and t h e l a t t e r c a l l e d

"S to rage S t a t e One" (SS1) a r r a y s [CDC*GID] .

The n a t u r e of t h e t r a n s f o r m a t i o n i n f o r m a t i o n w i l l be

d i s c u s s e d now. One of t h e components n e c e s s a r y is t o

i n d i c a t e an "Off set" i n t o t h e t r ans fo rmed a r r a y , w h i l e t h e

remaining Rank components c a l l e d t h e "Jump" v e c t o r i n d i c a t e

how t o a c c e s s a r r a y e l e m e n t s a long each of t h e Rank axes . An

example of t h i s p r i n c i p l e is i l l u s t r a t e d i n Tab le 2.4.1.

TABLE 2 . 4 . 1 38

P R I N C I P L E OF S S 1 DESCRIPTORS
I

OFFSET: INDEX INTO SUBSPACE DEFINED BY ARRAY
THAT I S INDIRECTLY REFERENCED.

RANK: ppARRAY
JUMP: (p J) = R A N K
RHO: (pRHO)=RANK oRHO=pARRAY

I F ' I ' , A VECTOR (R A N K = p I) , REPRESENTS THE
COORDINATES INTO AN ARRAY, THEN THE LOCATION
OF T H I S I ' T H COMPONENT I S GIVEN BY

T H I S DEFINES THE JUMP VECTOR

OFFSET43
JUMP46 1
RHO 4 3 3
ATHEN

Appendix 2 c o n t a i n s a p r a c t i c a l set of a l g o r i t h m s which

c a n work w i t h SS1 d e s c r i p t o r s t o produce SS1 d e s c r i p t o r s

which ref lect APL s e l e c t i o n p r i m i t i v e s . These a l g o r i t m s were

d e s c r i b e d by Abramsv t h e s i s c h a p t e r 3 , b u t i n a s l i g h t l y

d i f f e r e n t n o t a t i o n .

These a l g o r i t h m s imply v i r t u a l o p e r a t i o n s on an a r r a y ' s

e n t i r e t y w h i l e having t i m e c o m p l e x i t i e s which a r e l i n e a r i n

t h e a r r a r y ' s rank. T h i s p r o v i d e s a s u b s t a n t i a l r e d u c t i o n i n

b o t h t h e t i m e and space c o m p l e x i t i e s of APL s t r u c t u r a l

p r i m i t i v e s . Thus most s e l e c t i o n o p e r a t i o n s c a n occur a t

speeds independant of t h e number of e l e m e n t s i n an a r r a y .

I n t h e rea lm of s t o r a g e e f f i c i e n c y , i t is n o t i c e d t h a t

t h e r e s u l t of t h e monadic index g e n e r a t o r p r i m i t i v e c a n be

d e s c r i b e d a s an i n i t i a l v a l u e , a c o u n t of terms, and a s t e p

d i r e c t i o n (b i t) . T h i s was t h e p r o p o s a l t h a t P.Abrams ,

i n t r o d u c e d i n h i s t h e s i s .

The implementors of t h e CDC*APL extended t h i s c o n c e p t

t o an i n i t i a l v a l u e , a c o u n t of terms and an increment

v a l u e . T h i s l a t t e r method d e s c r i b e s a c l a s s of a r r a y c a l l e d

" I n t e r v a l s " . I n t e r v a l s a l l o w t h e e x p r e s s i o n of f l o a t i n g

p o i n t a r r a y s i n which a c o n s t a n t term r e l a t e s a l l e lements .

They r e q u i r e j u s t t h r e e components to e x p r e s s any such

v e c t o r s : a dimension t e rm, s t a r t v a l u e , increment v a l u e .

Such d e s c r i p t o r s w i l l be c a l l e d "S to rage S t a t e Two" (SS2)

a r r a y s .

An SS2 a r r a y r e q u i r e s t n o memory a l l o c a t i o n e x c e p t t h a t

which t h e d e s c r i p t o r i t s e l f r e q u i r e s . T h i s l e a d s to

s i g n i f i c a n t r e d u c t i o n i n s t o r a g e r e q u i r e m e n t s f o r a l a r g e

se t of v e c t o r s s t a r t i n g from an i n i t i a l "Index Genera to r"

p r i m i t i v e .

I t is my p r o p o s a l t o e x t e n d t h e c o n c e p t of t h e

I n t e r v a l , f rom s imply v e c t o r s t o a r b i t r a r y a r r a y s . S i n c e a l l

a r r a y s have t h e RHO i n f o r m a t i o n p r e s e n t , t h i s e x t e n t i o n o n l y

r e q u i r e s an e x t r a term p e r a x i s . T h i s e x t e n t i o n a l l o w s

s e l e c t i o n t r a n s f o r m a t i o n s on i n t e r v a l a r r a y s w i t h o u t t h e

c o n v e r s i o n f i r s t to an SSO a r r a y , and hense a l l o w reduced

s t o r a g e requ i rement (a s i m i l a r p r o p o s a l i s supposedly due to

D. Samson [SAM791) .

The form of t h e d e s c r i p t o r is t h e same a s t h a t f o r an

SS1 a r r a y e x c e p t t h a t t h e Off s e t and Jump terms have t h e ,

d i f f e r e n t meanings of S t a r t and Increment r e s p e c t i v e l y .

There e x i s t s one o t h e r d i f f e r e n c e between SS2 and SS1 a r r a y

d e s c r i p t o r s : an SS2 d e s c r i p t o r does n o t have a component

i n d i c a t i n g an i n d i r e c t r e f e r e n c e to a n o t h e r a r r a y . I n t h i s

s e n s e an SS2 a r r a y i s s i m i l a r t o an SSO a r r a y , i n t h a t o t h e r

a r r a y s may i n d i r e c t l y p o i n t t o it.

Abrams also addressed; in his thesis, some problems of

APL interpretation. He and others have noticed that many APL

statements have the nonsymmetrical property that an

equivalent statement can be synthesized with reduced

complexity. A few examples are given in Table 2.4.2. He

called this principle "Drag along".

His proposal was a stack architecture in which the

instruction stream could be modified to effect equivalent

semantic expressions. As this subject concerns more the

tasks of APL interpretation and as this thesis will

concentrate on the problem of data manipulations, it will be

defer red as later research.

TABLE 2 . 4 . 2

A EXAMPLES O F DRAG ALONG ,

A THE LEFT REQUIRES 1000 ' + ' OPERATIONS
A WHILE THE RIGHT ONLY 3 ' + ' OPERATIONS.
A HOWEVER, LEFT DOES ALL 1000 DOMAIN CHECKS
A WHILE RIGHT ONLY 3 .

A WHILE ACCESSING ELEMENTS OF ALL ARRAYS
A SIMULTANEOUSLY ONE ELIMINATES TEMPORARY
A ARRAYS.

3.1 A r c h i t e c t u r a l J u s t i f i c a t i o n 43

A s was seen i n s e c t i o n 1 . 3 , t h e d i v i s i o n of t h e

p r i m i t i v e s of t h e APL language r e s u l t e d i n 4 c l a s s e s of

o p e r a t i o n s , l e a d i n g t o Tab le 1 .3 .2 . These f o u r g roups a r e

a lmos t m u t u a l l y e x c l u s i v e and s u g g e s t d i f f e r i n g hardware. I t

was t h i s d i v i s i o n which i n f l u e n c e d MAPLE'S d e s i g n .

The developement of a p r o c e s s i n g machine f o r t h e

numeric p r i m i t i v e s is t r e a t e d e l sewhere [GIL74]. I n

p a r t i c u l a r , most of t h e s e p r i m i t i v e s (s c a l a r ones) l e n d

themse lves to e f f i c i e n t p i p e l i n i n g t e c h n i q u e s . I n g e n e r a l

they can be c l a s s i f i e d as having one o r t w o i n p u t d a t a

s t r e a m s and one o u t p u t s t r e a m , w i t h no r e q u i r e d s t o r a g e of

operands p a s t t h e immediate o p e r a t i o n .

I0 p r o c e s s i n g i n v o l v e s s i n g l e d a t a s t r e a m p a t h s , t o and

from I0 d e v i c e s , w i t h p o s s i b l e d a t a c o n v e r s i o n s a long t h e

way. The n a t u r e of t h e I0 d e v i c e s may be dynamic so t h a t ,

l o c a l c o n t r o l of them may be r e q u i r e d . Such is t h e c a s e of

m u l t i p l e d e v i c e s r e q u i r i n g d i f f e r i n g d r i v e f u n c t i o n s and t h e

c a s e of v a r i a b l e communication p r o t o c o l s . These f u n c t i o n s

c a n b e s t be c o n t r o l l e d a t t h e i n t e r f a c e l e v e l v i a an I0

p r o c e s s o r (t h i s is t h e d e s i g n p h i l i s o p h y of t h e IBM S/360

w i t h i t s I0 c o n t r o l u n i t s and c h a n n e l s) .

The s e p a r a t i o n of t h e s e l e c t i o n p r i m i t i v e s , is a g a i n , a

n a t u r a l one. They perform no t r a n s f o r m a t i o n s upon t h e a c t u a l

e l e m e n t s of an a r r a y , b u t o n l y on i t s o v e r a l l s t r u c t u r e a s

i t r e s i d e s i n memory. P. Abrams [ABR70] h a s shown t h a t

g e n e r a l i z e d s e l e c t i o n o p e r a t i o n s on a r r a y s c a n be performed

by a s i n g l e a l g o r i t h m i f a c e r t a i n r e p r e s e n t a t i o n i s taken .

The need f o r l o c a l c o n t r o l of memory management

f u n c t i o n s and some sys tem o p e r a t i o n s was a l s o shown to be

t r u e i n an a r t i c l e by D. Samson [SAM79]. T h i s l e a d to t h e

c o n c e p t of a smar t memory mach ine , the Data Manipu la t ion U n i t

(DMU) , which is d e s c r i b e d i n c h a p t e r 5.

S e c t i o n 2.4 d i s c u s s e d t h e work by Abrams on APL machine

d e s i g n , which showed us t h a t an APL machine must d i v i d e t h e

work of program e x e c u t i o n i n t o e x c l u s i v e t a s k s (c h a p t e r 3 , 4

[ABS701) . What t h e s e t a s k s a r e depends upon t h e approach ,

t aken . H e d e s c r i b e s a sys tem of a t l e a s t t w o p r o c e s s o r s :

t h a t of a D-machine and an E-machine, where t h e f i r s t

p roduces code f o r t h e second. I t was n o t h i s c o n t e n t i o n t h a t

such a sys tem was o p t i m a l , b u t t h a t a n improvement i n t h e

e x e c u t i o n c o u l d r e s u l t i f s p e c i a l i z e d p r o c e s s i n g was

p r e s e n t .

The o r g a n i z a t i o n t a k e n h e r e is s i m i l a r t o t h a t t a k e n i n

t h e STARLET sys tem [GIL74] . T h i s h y p o t h e t i c a l machine ' s

a r c h i t e c t u r e was a l s o i n s p i r e d by Abrams's t h e s i s and i s

shown i n f i q u r e 3.1.1. These p e o p l e adopted a m u l t i p r o c e s s o r
i

sys tem wi th v e r y s p e c i a l i z e d p r o c e s s o r s .

I

Where the STARLET was a tightly coupled system of

dependent elements, MAPLE is a more loosely coupled system

of independent processors. The major architectural

similarities between MAPLE'S design and the STARLET'S, are

that both are array processors and are multiprocessor based,

and both may make use of pipelining techniques.

The design philosophy of MAPLE is to allow a maximum

amount of concurrency to occur during execution and a very

modular approach to the architecture. The result will be

that changes in language or hardware will have minimal

effect upon the organization of the machine. This will be

realizable through four specialized processors, each of

which has a minimal instruction set and no fixed internal

organization.

Johannsen[JOH781 describes an architecture for a system

of microprogrammable modules. Together they allow modular

construction of complex processors. It was his contention

that the separation of a single processor's functions into

separate units (even at the microprogram level) allows for a

more efficient processor design. Here, it is my intention to

describe a more systematic and efficient approach to a high

level machine design, through the use of parallel processing

and multiprocessing.

STARLET SYSTEM

I OPERATING I
SYSTEM &

10 PROCESSOR

PROCESSOR r-
Figure 3.1.1

This attitude of modulaiity is shown strikingly in two

papers by Hobson [HOB80-11 [HOB80-21. Described in the first

is an approach towards specialized processing elements to

achieve high level language implementations and in the

second is a system which is suitable for high level langauge

interpretation using multiprocessing (specifically for an

array language like APL) .

MAPLE is similar to a CDC STAR 100 computer system

running APL [APL*STAR] in that both provide array operations

at the machine level, and support an extended version of

APL. They are, however, radically different as far as

machine architectures are concerned [CDC*STAR] .

3.2 MAPLE'S Architecture 48

MAPLE is a moderately'coupled multiprocessor system,

each processor having its own local store for buffering of

data/instructions. There are four processors or units in

this system each with specialized functions. They are the

Execution Unit (EXU) , the Input Output Unit (IOU) , the

Arithmetic and Logic Unit (ALU), and the Data Manipulation

Unit (DMU) .

The EXU is responsible for interpretation and execution

control of the language. It will cache the functions that it

is interpreting and in so doing issue instructions to the

other three units so that the statements can be executed.

The IOU supplies the interface between the user and the

system. This is accomplished through control of various I0

devices and high l w e l editing features. All data formatting

and conversions for display are performed by this unit.

The ALU is a high perfomance arithemetic unit which

performs all scalar operations. It produces numerical

results only.

The DMU is the most important and complex of the four

units. It performs all main memory storage and management

functions along with the APL selection functions. It also

performs all the associations between array names and their

actual locations in memory. The actual accessing of arrays

is through the DMU in the form of a vector data strearn onto

a common time multiplexed bus. Figure 3.2.1 shows a

simplified view of the overall arrangement.

These four processors will be combinations of existing

microprocessors and microprogrammed hardware. The total

number of processing elements is not fixed but will be

greater than four. Their functions and locations will be

grouped into the four separate machine units.

The next chapter will investigate most of the problems

in implementing the workspace in which all arrays reside .

(the workspace being a logical entity supported within the

DMU) .

BUS OVERVIEW

EXU
i

st at us
n

Figure 3.2.1

n

V 1

data

instruction

V w .,

0

I \ .,
" L r v

ALU DMU I O U
..

CHAPTER 4 The Workspace 51

This chapter covers , the data structures that exit

within MAPLE and the implementation problems they generate.

Here I am mainly concerned with implementing an APL

workspace and the architecture necessary to support the

workspace.

The workspace is constructed in R/W RAM memory by the

organization of arrays into distinct subspaces of this

memory. The memory architecture of MAPLE will consist of a

single large bit addressable store in which all arrays and

system objects are located.

The reason for only a single memory module was, the

separation of memory into multiple units was not conducive

to easy array maitenance and memory management. The only

advantage of multiple memories seems to be in modularity but

this is overshadowed by the simplicity of a single store. No

speed improvements can be obtained unless multiple buses

exist (a far too complex and untidy situation).

The m a j o r i t y of main memory a c c e s s e s w i l l be i n t h e

form of word f e t c h e s (a word i s some number of b i t s) . For

e f f i c i e n c y ' s s a k e , main memory w i l l a c c e s s e d i n word u n i t s

b u t a d d r e s s e d a t t h e b i t l e v e l . The c h o i s e t a k e n f o r MAPLE

was 16 b i t s p e r word due t o t h r e e f a c t o r s : (1) i n c r e a s e d

word s i z e must be o f f s e t by i n c r e a s e d bus s i z e and

c o m p l e x i t y . (2) memories a r e t e n d i n g to be s t a n d a r d i z e d i n 8

b i t wide 1.C.s s u g g e s t i n g t h e d e s i r e a b i l i t y of m u l t i p l e s of

t h i s width . (3) 16 b i t s is becoming a p o p u l a r width f o r

m i c r o p r o c e s s o r s w i t h r e s u l t a n t hardware a v a i l a b i l i t y .

A s 16 b i t s is t h e fundementa l a c c e s s u n i t of memory it

makes s e n s e to b a s e t h e a d d r e s s i n g on t h i s u n i t . However, 16

b i t s is t o t a l l y i n a d e q u a t e to r e p r e s e n t a s u f f i c i e n t a d d r e s s

s p a c e (2*16 =65K) e s p e c i a l l y i f b i t a d d r e s s i n g i s d e s i r e d .

By u s i n g t w o words or 32 b i t s , 2*32 b i t s o r 2*28 words c a n

b e a d d r e s s e d (16 b i t s p e r word) . T h i s amounts t o 537 m i l l i o n .

b y t e s of a d d r e s s a b l e s t o r a g e o r one h a l f g i g a b y t e .

With t h e c u r r e n t t r e n d s i n memory t echno logy , between

1 0 to 100 megabytes of RAM s t o r a g e , w i t h 100 nanosecond

a c c e s s , w i l l be a v a i l a b l e i n t h e nea r f u t u r e f o r a few

thousand d o l l a r s and f i t w i t h i n a minicomputer frame. A s

t h i s is b e i n g w r i t t e n , one megabyte of RAM s t o r a g e costs a

few thousand d o l l a r s and would occuppy f o u r f i v e by t e n

i n c h b o a r d s .

For many applications a few megabytes of storage is

sufficient. However, if expansion is to take place without

modification to the system software, the address space

should be large enough. Thus the choice of a 32 bit address.

Note currently there are available 2*16 bit RAMs with

the desired access times. With the introduction of 2*20 bit

RAMs the memory size expectations will be realized.

4.1 Memory Management 54

All arrays require storbage, with some requiring more or

less depending on data class and structure. For the purpose

of memory management, all arrays can be considered as memory

segments characterized by a beginning address and length.

Segments are contiguous nonwerlapping regions of address

space.

Memory Management is now defined as the processes

which handle both requests for new storage, called

"Allocation" and the release of storage which is no longer

in use, called "De-allocation". The problem that APL

presents to memory management is that both the address and

size of arrays are dynamically changing, in contrast to

systems in which most arrays have static memory

requirements. An example of APL1s dynamic nature is

exemplified in the primitive class of scalar dyadic

functions. These primitives always generate a totally new.

array, which requires temporary storage based upon the size

and nature of its arguments.

The most important requirement of an APL system is the

a b i l i t y to reassign to any object a t o t a l l y new array with

a rb i t ra ry charac te r i s t ics . T h i s has the e f fec t that the old

storage associated w i t h an object is released, without being

used towards the new storage for tha t same object. If the

system t r i ed to overwrite an array w i t h i t s update then data

in tegr i ty would be jeopardized. The new data is therefore

generated and reassigned to the object , releasing the old

data.

A second requirement on segments in an APL workspace is

tha t the memory subsystem allow Random Access into arrays

along w i t h the usual sequential access for scalar dyadics.

I f the address subspace of a segment i s contiguous then t h i s

is eas i ly sa t i s f i ed .

An APL workspace can be part i t ioned in to two se ts : the

s e t of a l l segments associated w i t h arrays and the s e t of

a l l unused contiguous address subspaces (whose elements are

cal led "holes"). These segments and holes can be scattered

throughout the workspace or ordered depending on the memory

management system used. A l l memory management systems

(dynamic systems as defined i n t h i s thes i s) can be

characterized by the existance of holes and segments and the

propert ies t h a t , a l l "al locations" are taken from holes and

a l l "de-allocations" turn segments in to new holes.

There a r e b a s i c a l l y t w o g e n e r a l methods f o r t h e

management of memory, c a l l e d : (1) Hole Tab le Maintenance and

(2) Address Maintenance. The former m a i n t a i n s an i n v e n t o r y

of segments and h o l e s and r e a r r a n g e s segments , w h i l e t h e

l a t t e r t r i e s t o remove t h e c o n t i g u o u s requ i rement p l a c e d on

segments . Address Maintenance is examined f i r s t (it was n o t

t h e method chosen f o r MAPLE'S memory management).

Address Maintenance a t t e m p t s t o a l l o w p a i r s of segments

o r h o l e s to be l i n k e d t o g e t h e r to g e n e r a t e a new segment o r

h o l e , w i t h o u t t h e need to p h y s i c a l l y mwe any of t h e s e

subspaces . There a r e t w o methods which accompl ish t h i s :

f i r s t , r e g i o n s (pages) of memory c a n be l i n k e d i n a l i n k e d

l i s t where each r e g i o n p o i n t s t o i t s s u c c e s s o r ; and second ly

pages (r e g i o n s) can be mapped t o an i somorphic space v i a a

t r a n s l a t i o n t a b l e .

Both methods a l l o w r e g i o n s and hence segments to appear

a s c o n t i q u o u s s e q u e n t i a l a d d r e s s s u b s p a c e s , however, o n l y

t h e t r a n s l a t i o n method a l l o w s random a c c e s s w i t h i n t h e s e

subspaces (guaran teed by t h e d e f i n i t i o n of an isomorphism) .
c f . f i g u r e 4.1.1.

Translational Memory

Management

Consider a p u r e Address Maintenance sys tem, w i t h no

Hole Tab le maintenance. Wi th in t h e subspace r e p r e s e n t e d by

t h e pages of a segment , t h e r e c a n be o n l y one a r r a y . A l l

a r r a y s w i l l have t h e same v a l u e of o f f s e t (u s u a l l y z e r o)

i n t o a page f o r t h e i r f i r s t a d d r e s s , o t h e r w i s e t h e s e o f f s e t s

must be main ta ined (which is e q u i v a l e n t to Hole

Main tenance) . The a b w e r e p r e s e n t s t h e c o n d i t i o n t h a t a l l

segments a r e a l l o c a t e d i n page s i z e u n i t s , wi th o n l y a

s i n g l e a r r a y p e r set of pages .

These pages have s i z e s from one word to some l a r g e

f r a c t i o n of t h e workspace. The i d e a l s i t u a t i o n would be t h e

a b i l i t y to t r a n s l a t e any word a d d r e s s so t h a t e v e r y word was

a v a i l a b l e to be l i n k e d t o g e t h e r . However, f o r w e r y page

t h a t c a n be r e l o c a t e d t h e r e must be an e lement of t h e page

t r a n s l a t i o n t a b l e , r e p r e s e n t i n g a p o s s i b l e s i g n i f i c a n t

overhead to s u p p o r t memory management.

S i n c e a r r a y segments a r e a l l o c a t e d i n page u n i t s , i n a

random d i s t r i b u t i o n of segment s i z e s e v e r y segment w i l l

have an a v e r a g e waste of memory e q u a l to one h a l f page. Thus

reduc ing page s i z e s r educes t h e amount of memory p e r segment

which is n o t i n use. However, r educ ing t h e page s i z e

i n v e r s e l y i n c r e a s e s t h e page t r a n s l a t i o n t a b l e s i z e and i t s

a s s o c i a t e d maintenance.

Page t a b l e sys tems hav,e one v e r y s e r i o u s d i s a d v a n t a g e ,

i f a l l a r r a y s a r e r e s t r i c t e d to s t a r t i n g a t a page boundry,

t h e n t h e maximum number of segments is d i r e c t l y r e l a t e d to

t h e page s i z e . I n t r y i n g to reduce page t a b l e maintenance

t h e page s i z e must be i n c r e a s e d , r educ ing t h e f l e x i b i l i t y of

t h e sys tem i n d e f i n i n g new o b j e c t s .

Summarizing Page Tab le management:

Disadvan tages ;

-(I) t h e r e is a waste of memory p e r a r r a y depending upon t h e

page s i z e and number of segments.

-(2) t h e r e is an overhead i n s t o r a g e i n t h e t r a n s l a t i o n

t a b l e which might n o t be n e g l i g i b l e .

- (3) a l l a d d r e s s i n g r e q u i r e s e i t h e r an e x t r a memory c y c l e t o

l o c a t e t h e n e x t page o r a comparison to de te rmine i f t h e

a d d r e s s is w i t h i n t h e c u r r e n t page.

- (4) t h e t r a n s l a t i o n t a b l e must be modi f i ed to s u p p o r t .

memory mwes r e s u l t i n g i n non n e g l i g i b l e p r o c e s s i n g .

- (5) *** t h e number of d i s t i n c t a r r a y s / s c a l a r s t h a t c a n

e x i s t is s t r i c t l y less t h a n t h e number of pages i n t h e

system.

Advantages;

- (1) segments do n o t have to be p h y s i c a l l y mwed to a f f e c t

t h e i r motion i n t h e workspace. Thus to r e a r r a n g e t h e

workspace t h e T r a n s l a t i o n t a b l e o n l y need be r e a r r a n g e d .

Hole Table Maintenance (HTM) i s the a l te rna t ive to

Page Translation. This performs the linking of holes by the

actual physical relocation of arrays to produce a hole which

w i l l accommodate the a l locat ion request,c.f. f igure 4 .1 .2 .

HTM has many forms, a common one is to a l loca te from

only one hole till it is exhausted, a t which time the e n t i r e

workspace is reorganized to generate a single hole

representing a l l f r ee memory [S Y K 7 9 1 . This scheme is very

simple but not very e f f i c i en t . The inefficiency is due to

the lack of use of the holes fragmenting the workspace from

the continually releasing of array storage. I t is highly

probable tha t one of these other holes would be able t o

accommodate the request.

A solution is to maintain a table of a l l exis t ing holes

from which a l l requests are f i l l e d . T h i s presents four main

problems :

(1) which hole is to be chosen for a request?

(2) as the number of holes increases the time to search the

hole table increases.

(3) the' r a t e of releases of arrays may exceed the r a t e of

requests f o r a time su f f i c i en t t o overflow ANY hole table

(the example is the return from a large recursive c a l l) .

(4) what is to be done when the hole table overflows?

Hole Table

31

(location
size b

N - current table dimension

Figure 4.1.2

The choice of the hole is usually either first fit or
I

best fit depending on how the hole table is organized. First

fit was chosen for MAPLE'S memory manager as it has some

useful properties: (1)The search time to locate an allocation

request is better than for best fiti(2)With concurrent

processing table updates do not play an important part in

evaluating performance; (3)By ordering the hole table by

increasing addresses successive memory requests will be more

stable and tend to compact the workspace into arrays in the

lower addresses and holes in the upper addresses.

Problem (2) is solved by limiting the hole table to a

maximum size which does not present a serious search time.

The exact size of this table will be the subject of future

experimentation, however other researchers indicate that the

optimal size is on the order of 64 entries [CDC*GID].

All Hole Table maintenance systems can be characterized

by the few properties listed in table 4.1.3. The more

efficient schemes reduce the probabilities of hole table

growth, resulting in fewer conditions where objects must be

relocated ("Garbage Collections") .

T A B L E 4 . 1 . 3
P R O P E R T I E S O F H0,LE T A B L E M A I N T E N A C E

H < = > C U R R E N T NUMBER OF H O L E S
M MAXIMUM NUMBER OF H O L E S

A / , HSM U P P E R BOUND ON T A B L E S I Z E

s < = > S I Z E OF A R R A Y R E Q U E S T E D
O R R E L E A S E D .

L < = > L O C A T I O N OF R E L E A S E D A R R A Y
H S < = > V E C T O R OF H O L E S I Z E S
H L < = > V E C T O R OF HOLE L O C A T I O N S

O W A = + / H S S I Z E OF F R E E MEMORY

A L L O C A T I O N :
H+H+O I F H O L E CHOSEN I S > S
H+H-1 I F H O L E CHOSEN I S = S
H+H-X X 2 1 I F ' G A R B A G E C O L L E C T I O N ' (G . C .

G . C . < = > A / S > H S

D E A L L O A C T I O N :
A U G M E N T A T I O N H+H+X
x=o < = > (L E H L + H S) % (L + S) E H L
x= -1 < = > (L E H L + H S) A (L + S) E H L
O T H E R W I S E H+H+X
X= 0 G A R B A G E C O L L E C T I O N
X = l (- G .C .) A - A U G M E N T A T I O N

Garbage c o l l e c t i o n need occur o n l y i f e i t h e r : (1) no
I

h o l e c a n accommodate t h e r e q u e s t and t h e r e a r e more than one

h o l e s or (2) a h o l e t a b l e w e r f l o w o c c u r s . A s workspace s i z e

i n c r e a s e s t h e p r o b a b i l i t y of n o t f i n d i n g a h o l e l a r g e enough

d e c r e a s e s and a s MAPLE was i n t e n d e d t o have a v e r y l a r g e

workspace t h e emphasis was p l a c e d on reduc ing h o l e t a b l e

w e r f l o w .

I t is t h e r e f o r e i m p o r t a n t t o i n v e s t i g a t e t h e mechanisms

which a f f e c t h o l e t a b l e growth. Tab le 4.1.3 i n d i c a t e d t h a t

two h o l e s c a n be augmented, t h i s o c c u r s when a newly

g e n e r a t e d h o l e (r e l e a s e d a r r a y) and an e x i s t i n g h o l e s h a r e a

comman boundry a d d r e s s . S i n c e memory c a n be a l l o c a t e d i n

words, t h e r e is a non z e r o p r o b a b i l i t y t h a t a new h o l e c a n

be augmented wi th some c u r r e n t h o l e , r e s u l t i n g i n t h e s i z e

of t h e h o l e t a b l e n o t changing o r even reduc ing .

By o r d e r i n g t h e h o l e t a b l e by i n c r e a s i n g a d d r e s s and

s e a r c h i n g f o r f i r s t f i t t h e r e i s a t r e n d to c l u s t e r segments

i n t h e lower a d d r e s s e s a long w i t h t h e a s s o c i a t e d c l u s t e r i n g

of h o l e s w i t h lower a d d r e s s e s . A s t h e p r o b a b i l i t y of an

augmenta t ion i n c r e a s e s a s t h e d e n s i t y of h o l e s w i t h i n a new

h o l e s a d d r e s s space i n c r e a s e s , t h i s c l u s t e r i n g t e n d s to

i n c r e a s e augmenta t ion .

S t a t i s t i c s t a k e n f rom, t h e CDC*APL sys tem, which used

f i r s t f i t i n a 64 e n t r y h o l e t a b l e , showed t h a t t h e

e x e c u t i o n t i m e s p e n t i n doing ga rbage c o l l e c t i o n s due t o

t a b l e o v e r f l o w s was n e g l i g i b l e [CDC*GID] . However, a t t e m p t s

shou ld be made to i n c r e a s e t h e e f f i c i e n c y of t h e ga rbage

c o l l e c t i o n a s i n some p r o c e s s e s (such a s r e a l t i m e

a p p l i c a t i o n s) e x c e s s i v e d e l a y s i n moving memory c a n n o t be

t o l e r a t e d .

Garbage c o l l e c t i o n t r i g g e r e d by an a l l o c a t i o n r e q u e s t

r e s u l t s i n l o c a t i n g a set of t w o o r more h o l e s , which upon

r e l o c a t i o n r e s u l t i n a s i n g l e h o l e of s i z e s u f f i c i e n t to

accommodate t h e r e q u e s t . The most e f f i c i e n t ga rbage

c o l l e c t i o n a l g o r i t h m r e s u l t s i n t h e mwement of t h e l e a s t

amount of memory and t h e l e a s t p r o c e s s i n g overhead.

S i n c e t h e h o l e t a b l e is o r d e r e d by a d d r e s s it is

r e l a t i v e l y e a s y to f i n d a minimal se t of h o l e s which w i l l

r e s u l t i n t h e l e a s t amount of a r r a y mwement. Once t h i s se t

i s found a l l a r r a y s c o n t a i n e d w i t h i n t h e range of a d d r e s s e s

d e f i n e d by t h e s e h o l e s w i l l be moved down i n t o t h e lowest

h o l e . T h i s h a s t h e e f f e c t of bubb l ing h o l e s up i n t o t h e

h i g h e s t h o l e till o n l y one h i g h h o l e e x i s t s (w i t h i n t h i s
I

s u b s e t of h o l e s) .

Mwing an a r r a y i n v o l v e s t w o p r o c e s s e s : (1) t h e
I

s e q u e n t i a l r e l o c a t i o n of i t s e lements and (2) t h e t o t a l

upda te of a l l r e f e r e n c e s to i t s e l f . The f i r s t p r o c e s s

r e q u i r e s e x a c t l y t w o memory c y c l e s p e r word of t h e a r r a y ,

w h i l e t h e second p r o c e s s e s i s h e a v i l y dependant upon t h e

o r g a n i z a t i o n of t h e workspace. I n sys tems which implement

L i s t s t h e r e is t h e enormous problem of upda t ing a l l fo rward

p o i n t e r s , wi th one s o l u t i o n being to use b a c k p o i n t e r s . I n

t h e n e x t s e c t i o n t h e workspace o r g a n i z a t i o n is d i s c u s s e d and

t h e s o l u t i o n to upda t ing i s shown t o be nea r t r i v i a l .

The average of t h e minimum amount of memory t h a t e x i s t s

between t h e se t of h o l e s t h a t a r e to be c o l l e c t e d d i c t a t e s

t h e average w e r h e a d of ga rbage c o l l e c t i o n (assuming a nea r

c o n s t a n t t i m e to l o c a t e t h e set of h o l e s t o co l l ec t) . T h i s

c a n v a r y from j u s t a few words to many thousands of words,

however, a measure of an upper bound on t h e amount of memory ,

to be mwed c a n be found.

The w o r s t c a s e c o n d i t i o n o c c u r s when a l l h o l e s a r e

s e p a r a t e d by e q u a l s i z e r e g i o n s of a r r a y s . A s t h e h i g h e s t

a d d r e s s i n t h e a d d r e s s space is w i t h i n t h e l a s t h o l e t h e

amount of s t o r a g e r e p r e s e n t e d by t h e s e r e g i o n s i s

Workspace Used

I t is expected that the dominant cause of garbage

col lect ions w i l l be hole table overf lows, which r e su l t i n

exactly two holes being collected. By choosing two holes

w i t h the l e a s t amount of storage separating them, the l e a s t

time fo r a garbage col lect ion w i l l r esu l t . These two holes

w i l l be precomputed, before any garbage col lect ion is

required, concurrently w i t h memory u t i l i za t ion t o reduce the

overhead of a garbage col lect ion.

Stacks

There are some operations on arrays tha t are stack l i k e

(FIFO and LIFO) , in which t o have to regenerate the whole

array for each operation cycle would be highly inef f ic ien t .

A "Push" operation is log ica l ly the catenation of a scalar

to a vector and a "Pop" is a l a s t element take and drop.

While takes and drops do not require memory movement a

catenation always does, thus a mechanism m u s t ex i s t t o do a .

Push without memory m o v ement.

An obvious solution is t o make a l l L I F O stacks fixed

s t a t i c objects with some maximum address space, such tha t no

overflow can resu l t . I n APL the execution stack m u s t be able

to grow to f i l l the whole workspace avai lable , or typically

more than half of the en t i r e workspace (to allow f l ex ib le

recursion). Assigning the majority of the workspace's usable

memory to any object is highly r e s t r i c t i v e considering tha t

most stacks have average s izes of only a few percent of

the i r maximum size .

What is needed is a mhthod of dynamic a l l o c a t i o n which

does n o t mwe memory to a l l o c a t e i n c r e a s e s i n s t a c k s i z e s

and o n l y u t i l i z e s a s much memory a s t h e s t a c k s c u r r e n t s i z e .

T h i s may be ach ieved u s i n g Address T r a n s l a t i o n memory

management, b u t t h i s method was n o t chosen f o r memory

management of APL a r r a y s . S t a c k s , however, a r e n o t a d a t a

t y p e d e f i n e d i n APL (a t l e a s t n o t a t p r e s e n t) so i t i s n o t

i n c o n f l i c t wi th t h e a r r a y a l l o c a t i o n scheme i f s t a c k s

u t i l i z e t h i s scheme of memory management.

Dynamic a l l o c a t i o n of sys tem o b j e c t s (such a s s t a c k s)

use Page Tab le Maintenence f o r t h e f o l l o w i n g reasons :

(1) system o b j e c t s a r e u s u a l l y l a r g e so page s i z e c a n be

l a r g e , r educ ing t a b l e s i z e s and proceszf j , , .
(2) sys tem o b j e c t s do n o t change t h e i r base a d d r e s s a s t h e

r e s u l t of any o p e r a t i o n s on them.

(3) s i z e m o d i f i c a t i o n s of sys tem o b j e c t s is s imply a m a t t e r

of l i n k n g and u n l i n k i n g pages .

Consider a workspace d i v i d e d i n t o "n" u n i t subspaces

(p a g e s) . These pages can be c h a r a c t e r i z e d a s one of t h r e e

t y p e s :

(1) c o n t a i n i n g o n l y an a r r a y o r p a r t of an a r r a y (no f r e e

s p a c e) .

(2) c o n t a i n i n g a h o l e and an a r r a y (some f r e e s p a c e) .

(3) c o n t a i n i n g o n l y f r e e space .

The f i r s t type represents zero waste, the second

represents waste which memory management handles, the l a s t

represents a page which is not i n use a t a l l and as such is

f r e e to be used in any possible way. I t is the existance of

the l a s t type of pages which allows e f f i c i e n t dynamic

a l locat ion of system objects .

MAPLE'S dynamic system-object maintenance operates as

follows :

(1) each such object is al located a fixed s t a t i c subspace of

the workspace (base address and s i ze are f ixed) .

(2) a system of v i r t u a l memory is used to swap in to these

subspaces r ea l pages t o s a t i s f y the required current s izes

of these objects .

The mechanism for t h i s v i r t u a l memory can be described

as follows:

(1) whenever a page which is en t i r e ly a hole i s detected by

memory management the rea l memory associated w i t h t h i s page

is removed creating a "Black Hole" i n the workspace, and the

rea l page is placed on a f r e e l i s t of pages.
I

(2) an ob jec t ' s address space w i l l be composed of both rea l
i

and v i r t u a l pages (black ho le s) , where the actual storage

associated w i t h the object is just the sum of the real

pages.

Allocation; ,

(1) whenever an object m u s t be expanded by "n" pages, i f

there are a t l e a s t "n" black holes w i t h i n the object and "n"

f r e e real pages, then these black holes w i l l be f i l l e d w i t h

rea l pages.

(2) the replacement of one black hole w i t h a real page

produces another black hole elsewhere (the number of black

hole pages is conserved).

(3) the movement of pages i s supported v i a a t ransla t ion

table of pages, cal led the "Relocation Vector I' (R.V.) .

. I n t i a l l y i n a c lear workspace there ex i s t s a s e t of

system objects and one Free Hole. A11 real pages, except one

per system object , ex i s t i n the Free Hole. Therefore the

amount of rea l memory i n the system i s dictated by the s ize

of workspace the user sees. The s ize of the workspace the

system sees is t h i s user s ize plus the sum of system,

objects ' maximum s izes , t ha t is the v i r t u a l space is larger

than the real space supported by RAM.

The choise made in MAPLE was to u t i l i z e two 1 6 b i t

words fo r a l l addresses for a 2*32 b i t addressable memory

space (usually the v i r t u a l space is defined as much

smaller) . The lower 16 b i t s of an address form a b i t address

in to a word, and a word address into a page, given by the

high order 16 b i t word, c . f . f igure 4 .1 .4 . T h i s mapping

allows 2*16 pages of v i r t u a l + space w i t h pages being 2*12

words (8k bytes) i n s ize .
1
rr
i

i

S i n c e t h e r e a r e few 'system objects t h e wasted memory

g e n e r a t e d by a Page Tab le maintenance sys tem due to t h e s e

l a r g e pages is n e g l i g i b l e . A l a r g e page s i z e a l s o d e c r e a s e s

t h e w e r h e a d i n page t r a n s l a t i o n , bo th i n t h e s i z e of RV and

t h e w e r h e a d i n l o c a t i n g t h e n e x t page from RV. F i g u r e 4.1.5

d e m o n s t r a t e s t h e f u n c t i o n of t h e RV.

I n t h e n e x t c h a p t e r t h e a r c h i t e c t u r e and e n g i n e e r i n g of

t h e memory management subsystem w i l l be d e s c r i b e d .

Virtual Address

F i g u r e 4.l.f

Relocation Vector

R P N

-7-
I

virtual page

RPN = R V [v i r t u a l page]

Figure +l.5

4.2 Data Types 74

All APL data is represented as one of the following:

function, numeric, graphic, or list (generalized intermixed

forms). In this system definition, each of the four classes

of data may have many subclasses (which in turn may also be

divided into subclasses) reflecting considerations such as

integer/real distinctions of numerics. The implementation

considerations will now be discussed for the different

classes of data.

Numerics

There are two subclasses of numeric data, the real and

complex numbers. To the extent practical, all possible

values of these subclasses must be represented. This implies

the need for a floating point representation for reals and

(X+iY) of complexes. The complex numbers, X+iY , will be
represented as an ordered pair X,Y of reals where X and Y

will both be of the same numeric subclass. e.g. both boolean,

or floating point. For the reals one must approximate the

irrationals to their nearest rational value as they can not

be directly represented as numeric values. Similarly the

rationals must be approximated to the nearest fixed length

floating point number.

It is wasteful to represent the numerics in the range

(0,l) (ie. Booleans) by the bit patterns for reals, since

reals require a larger number of bits than Booleans. As

booleans are numeric, they will require a separate bit

representation. The obvious representation is for a single

bit to be used, thus a boolean vector is simply a sequence

of bits, the same number as its dimension.

With the notion that each component has a size based on

the subclass it is in, an efficient representation can be

chosen for each class or subclass. It is important to note

that specifically within the class of numerics, the

components of an array will invariably not be of the same

subclass. An example is the intermixing of boolean values

and rational values. However, it is not possible to achieve

an efficient streaming of components in a generalized

selection format if the components of the arrays have varing ,

bit widths [LAW75].

This implies that all components of an array be in the

same subclass w e n if storage efficiency is not optimal.

Thus there will be conversions between subclasses. These

conversions should be kept to a minimum, as they require

processing that is not implied by the instructions that may

initiate them.

S i n c e i n t e g e r s occur , f r e q u e n t l y i n d a t a s t o r a g e and

i n f o r m a t i o n p r o c e s s i n g , a d i s t i n c t set o r d i v i s i o n i s i n

o r d e r . I t is o b v i o u s t h a t t h e b o o l e a n s , which a r e i n t e g e r s ,

r e q u i r e a s e p a r a t e s u b c l a s s t h e r e f o r e t h e i n t e g e r s w i l l be

d i v i d e d i n t o i t s own s u b c l a s s e s . I n s e c t i o n 2.1 i t was

mentioned t h a t t h e MCM sys tem had 7 d i s t i n c t i n t e g e r s i z e s ,

i t remains t h e n to d e t e r m i n e an o p t i m a l set of i n t e g e r s i z e s

f o r MAPLE.

The n e x t c l a s s (t h e c h a r a c t e r s) w i l l show t h a t a use•’ u l

component s i z e is 8 b i t s a l l o w i n g t h e r e p r e s e n t a t i o n of -128

to +I27 i n t e g e r v a l u e s . Though t h i s i s a u s e f u l range of

i n t e g e r v a l u e s , it is i n s u f f i c i e n t f o r most a p p l i c a t i o n s .

I n t e g e r s w i t h i n t h e range +-10*9 shou ld be a l l o w e d , or

v a l u e s w i t h i n t h e range of t h e dimension of t h e r a v e l of t h e

l a r g e s t a r r a y a l lowed i n t h e system. S i n c e boo leans s e r v e

s p e c i a l f u n c t i o n s i n i n f o r m a t i o n s t o r a g e it would b e .

improper to r e s t r i c t t h e dimension of a boolean v e c t o r to

less t h a n h a l f t h e a v a i l a b l e b i t s t o r a g e i n main memory,

which c o u l d be on t h e o r d e r of 10*9 b i t s .

A s i n m o s t of t h e p r e v i o u s implementa t ions , t h e i n t e g e r s

were s imply d i v i d e d i n t o t w o d i v i s i o n s : boo leans (1 b i t

i n t e g e r s) and a l l o t h e r s a s 32 b i t i n t e g e r s [BRE68]. T h i s

a u t h o r a d v o c a t e s t h e a b w e and a l s o t h e f u r t h e r d i v i s i o n

i n t o m u l t i p l e s of b y t e w i d t h s a s i n t h e MCM implementa t ion

[MCMl .

MAPLE supports 1,2,4 and 6 byte multiples for integers.

Byte multiples of 3 and 5 are dropped as their width oddness

is unmanageable. The 1 ,2 and 4 are common sizes and most

computer systems have them. The 6 byte integers are not

useful for indexing as they are too large, but they are a

convenient intermediary between the rationals and the other

integers,as the rational coeficient is a 6 byte integer.

The floating point format has a length of 64 bits with

a 16 bit binary exponent and a 48 bit integer coefficient.

The coefficient will be right normalized to ease conversions

between 48 bit integers and rationals. This format is a

standard one as used in many of CDC1s large mainframes

[CDC*GID]. The format amounts to 4 words of main memory per

component. This format for floating point numerics is also

easy to microprogram.

It is important to note at this time that component

sizes, though having to be uniform within any array, do not

have to be of any specific bit width. It is only for the

ease of construction of the component from word accesses

that they are standardized. Since it is the objective of

this machine's design to prwide efficient bit addressing,

the abwe restrictions on component sizes are an

implementation consideration aimed at providing werall high

speed memory access to all components.

C h a r a c t e r s , Graph ics and O t h e r s

T h i s d e f i n i t i o n w i l l i n c l u d e a l l d a t a r e p r e s e n t a t i o n s

t h a t 1/0 s h o u l d hand le . I t may i n c l u d e forms of speech i n

manners which a r e u n c o n v e n t i o n a l , or s p e c i a l network

i n t e r f a c e s . The main p o i n t to make is t h a t c l a s s i c a l APL and

o t h e r programming l anguages a r e somewhat r e s t r i c t i v e i n

t h e i r d a t a r e p r e s e n t a t i o n s . T h i s implementaion w i l l c o r r e c t

some of t h e s e d e f i c i e n c i e s .

With in t h i s c l a s s of d a t a t h e r e w i l l be t h e s u b c l a s s of

c h a r a c t e r d a t a , (p r e s e n t i n o t h e r APL machines) , a s w e l l a s

o t h e r p o s s i b l e s u b c l a s s e s which have n o t y e t been d e f i n e d .

For t h e c l a s s i c a l c a s e of a computer a l p h a b e t , one h a s

between 64 and 256 c h a r a c t e r s t o d e a l w i t h [F A L 7 9] . These

a r e e a s i l y encoded i n t o 8 b i t codes . However t h e r e e x i s t e d

no mechanism by which one c o u l d pe r fo rm o p e r a t i o n s on t h e s e

e l e m e n t s o r to form new e l e m e n t s to be added t h e set . Such

an o p e r a t i o n might be t h e l o g i c a l OR between t h e boolean

m a t r i c e s r e p r e s e n t i n g t h e f o n t s of c h a r a c t e r s (ie .

o v e r s t r i k e o p e r a t i o n s a t t h e u s e r l e v e l) .

I n t h i s implementation, characters w i l l be represented

as integer indices of the def in i t ion objects for each

character. T h u s there w i l l e x i s t a system object ca l led the

Atomic Vector which is a l i s t of def in i t ions for each

character. The I O U w i l l i n t e rp re t t h i s l i s t t o perform the

desired I0 function. This l i s t may, as above, define

characters as boolean matrices f o r display fon ts or as

t rans la te values to some other I0 device.

Ins t ruct ions

The number of primit ives i n APL i s l e s s than 255, so

tha t 8 b i t s is su f f i c i en t t o encode a l l of them. Since the

Interpreta t ion or Execution processor w i l l be designed to

in te rpre t APL d i r ec t ly , i t w i l l only need to look a t one of

three types of data. The f i r s t is an APL pr imit ive , second a

named object , and th i rd i s a l i t e r a l or character vector.

The recognization of APL primit ives is t r i v i a l while named,

objects require associat ive searches.

I n APL t h e d e f i n i t i o n of names i s r e l a t i v e l y a r b i t r a r y ,

which p r e s e n t s t h e problem of encoding them f o r look-up

d u r i n g i n t e r p r e t a t i o n . The c h o i c e s a r e to do an a r r a y s e a r c h

to i d e n t i f y t h e name (ie . no e n c o d i n g) , t o hash t h e names,

o r t o pe r fo rm no s e a r c h s a t a l l f o r name o b j e c t

a s s o c i a t i o n s . The l a t t e r is performed by doing a l l

name-ob ject a s s o c i a t i o n s a t e d i t t i m e f o r t h e t e x t s t r i n g s

invo lved . The names a r e r e p l a c e d by an index of a symbols

t a b l e where t h e l i t e r a l form of t h e name (o r p o i n t e r t o i t)

is s t o r e d . T h i s e l i m i n a t e s a c l a s s of s e a r c h e s b u t n o t a l l

s e a r c h e s . The o t h e r s a r e n e c e s s a r y to s u p p o r t c e r t a i n

f u n c t i o n parameter c a l l i n g modes, which w i l l be d i s c u s s e d

l a t e r .

A s d e s c r i b e d p r e v i o u s l y , c h a r a c t e r d a t a w i l l be mapped

to i n t e g e r s , so l i t e r a l s t r i n g s w i l l be i n t e g e r v e c t o r s of

u s u a l l y 8 or 16 b i t l e n g t h s (more t h a n 2*15 c h a r a c t e r c o d e s ,

is e x c e s s i v e) . Thus a l l APL t e x t c a n be compressed i n t o an

i n t e g e r v e c t o r a s t h e s t o r a g e form. The i n t e g e r d i v i s i o n

used w i l l e i t h e r depend upon t h e maximum ob j e c t / c h a r a c t e r

code v a l u e encoded o r it c a n be a unique d i v i s i o n w i t h

v a r y i n g component l e n g t h s .

T h i s may seem i n c o n f l i c t to what was s a i d e a r l i e r

abou t u n i f o r m i t y i n component s i z e s b u t it must be p o i n t e d

o u t t h a t s e l e c t i o n o p e r a t i o n s on an APL l i n e of code i s a t

p r e s e n t n o t p e r m i t t e d and no p r o p o s a l s to a l l o w such

o p e r a t i o n s have been p r e s e n t e d . Thus t h e p r i m i t i v e s w i l l be

encoded i n t o 8 b i t s , w h i l e t h e c h a r a c t e r s and names c o u l d be

encoded i n t o v a r y i n g l e n g t h b i t p a t t e r n s .

L i s t s

L i s t s a r e a r r a y s of o b j e c t r e f e r e n c e s (i e . i n t e g e r s f o r

index ing an o b j e c t r e f e r e n c e t a b l e) . The name encoding a b w e

i s an example of s c a l a r l is ts . There a r e no r e s t r i c t i o n s on

t h e c l a s s e s of d a t a which c a n be combined o r imbedded w i t h i n

a l i s t , nor a r e t h e r e any r e s t r i c t i o n s on t h e dep th of imbed

e x c e p t through a v a i l a b l e memory.

F i g u r e 4.2.1 shows t h e w e r a l l d a t a h i e r a r c h y w i t h i n

t h i s implementa t ion . Shown a r e t h e f o u r c l a s s e s of d a t a and

t h e i r a s s o c i a t e d s u b c l a s s e s .

D e s c r i p t o r B i t R e p r e s e n t a t i o n s

A l l o b j e c t s have t h e i r own d e s c r i p t o r s which g i v e t h e

o b j e c t ' s shape , l o c a t i o n , and d a t a c l a s s . Shape i n f o r m a t i o n

was d e s c r i b e d i n t h e s e c t i o n on s e l e c t i o n d e s c r i p t o r s i n

s e c t i o n 2.4. Loca t ion i s g i v e n v i a a l i s t s c a l a r o r o b j e c t

r e f e r e n c e .

Data Hierarchy

List Numeric Instruction 10

Complex Real Character Others

r - 7 +-l
Rational lnteger Rational lnteger

r - l f-l
Boolean Others Boolean Others

Figure 42.1

There are two basic types of descriptors, the storage

state zero (SSO) and storage state one (SS1) descriptors.

Since SSO and SS1 arrays all contain rank,rho and type

information their encoding will be discussed now.

Rank will be restricted to belong to 10, 311 for

efficiency in the operations in the hardware selection unit.

There are no algorithms in current publications on APL in

which arrays of ranks greater than 31 are generated, so it

is assumed this restriction will have negligible effect on

the machine's intended purpose (H.Saa1 found that rank was

usually less than 3 and rarely explicitly more than 4

[SAA75]). Thus rank can be encoded into 5 bits.

A valid argument against ranks greater than 31 is that

any non-degenerate array of rank 'k' must have > or = 2*k

elements which for the smallest elements (booleans)

represents a full workspace at rank=31 (workspace

size=2*31).

The maximum dimension of any axis will be restricted to

2*31 or by the amount of available memory, which ever is

less Thus RHO information can be encoded into 32 bit

integers. However, very few arrays will have any axes with

dimensions greater than 2*15 so they will normally only

require 16 bit integers. In many applications dimensions

less than 128 are the case. For storage efficiency, two bits

will be used to determine the component size of the

descriptor itself. This allows 8, 16 and 32 bit integers for

the RHO 'nformation contained within.

To differentiate between storage state (SS) descriptors,

a single bit will be used. The distinction will be between

SSO and the higher storage states. Since primary memory

accesses involve 16 bits, the rank, SS, and data type will

be grouped together in a single word. This leaves 8 bits for

data typing.

There are four data classes, so two bits are needed to

determine which is represented, leaving 6 bits for subclass

and division encoding. However only 5 will be used to

simplify hardware selection of these bits (they have the

same relative position as the rank information which is 5

bits in length). The complete Rank-Type word's layout is

shown is figure 4.2.2.

Type-Rank Header

Figure 42.2

These 5 b i t s f o r component s i z e w i l l encode a l l t h e

s u b c l a s s and d i v i s i o n i n f o r m a t i o n p o s s i b l e . They w i l l s o l e l y

de te rmine t h e component b i t s i z e s . Each of t h e 3 2 p o s s i b l e

p a t t e r n s a v a i l a b l e w i l l r e p r e s e n t a unique b i t s i z e

r e g a r d l e s s of t h e d a t a c l a s s . T h i s 5 b i t number w i l l be an

index to a f i rmware t a b l e , i n s i d e a l l u n i t s , which maps to a

3 2 b i t number r e p r e s e n t i n g component b i t s i z e s . F i q u r e 4 . 2 . 3

g i v e s t h e b i t s i z e s and t h e d e f i n e d 5 b i t c o d e s t h a t

r e p r e s e n t them. Note it is a s i m p l e m a t t e r of changing t h e

e n t r i e s w i t h i n t h e s e f i rmware t a b l e s t o e f f e c t changes i n

component s i z e s . F i g u r e 4 . 2 . 4 g i v e s examples of v a r i o u s b i t

p a t t e r n s f o r a few a s s o r t e d d a t a t y p e s .

The b i t encod ings p r e s e n t e d h e r e a r e some of many

p o s s i b i l i t e s . They r e p r e s e n t an a t t e m p t t o reduce t h e number

of b i t s r e q u i r e d t o encode t h e n e c e s s a r y i n f o r m a t i o n w i t h o u t

undue complex i ty i n t h e e x t r a c t i o n of t h i s i n f o r m a t i o n . I t .

w i l l be shown t h a t i n t h e c h a p t e r s on t h e a r c h i t e c t u r e of

MAPLE, changes to t h i s encoding w i l l have minimal e f f e c t i n

t h e s t r u c t u r e of t h e o v e r a l l machine (due to

m o d u l a r i z a t i o n) .

Component Code

Bit Size

1
8

16
32
48
64

2
16
32
64
96

1 28

Other codes are unassigned

Figure +2.3

floating real

1 1 1

X X X

16 bit

floating complex

1

-
list . data

class

0

16 bit integer real

1 1

1 O X X X " X

unmarked boxes are 0

X X

O X X X X X

8 bit character

Figure 4.2.4

X X ' X

W i t h i n a l l descriptors, , and hence objects , there w i l l

be a component which spec i f ies the count of the number of

times tha t object is referenced (Reference Counter) by any

other object . T h i s is necessay to support l i s t s and

generalized select ion operations as described i n chapter

2.4. This Reference Counter i s simply be an integer value

and is sized exactly as the rank-type word. Note tha t no

object can e x i s t which has a reference count of zero.

Also, within every descriptor there w i l l be a unique

component which is tha t ob jec t ' s own reference number. T h i s

i s , in e f f e c t , a back index in to any object reference table

to f a c i l i t a t e the process of e f f i c i e n t garbage col lect ion

(see section 4 . 1 on memory managment). I t a lso obeys the

rule of s i ze tha t the reference count obeys. The general

layout of a descriptor or header i s given in f igure 4.2 .5 .

I t shows tha t par t of a descriptor which is present i n a l l ,

arrays. Figure 4.2.6 shows how SSO and SS1 arrays d i f f e r in

the i r descriptors.

Descriptor Layout

The width of these terms is given by 2 bits

within the RT word.

15 o ? ? ?

Figure 4-2.5

. . ., Rank
Type
SS

Ref.
count

Back
index Rank elements of RHO

R
sso
etc.

R
ssl
etc.

Selection class

RHO Vector

R Jump Values

DATA

RHO Vector A r ray Specikation

offset object
reference

Interval class

- . 1st Start Increment Rth Start Increment

4 . 3 Workspace Structure 92

The workspace is the ,union of the s e t of a l l system

objects and a l l objects generated, e i ther d i rec t ly or

ind i rec t ly by the user. Such system objects are the symbol

tables and stacks needed to allow the execution of APL

statements. The user objects are a l l the arrays tha t a user

can access or needs t o know about. This section discusses

more on the organization of the memory space and the

s t ructure of the objects themselves.

The workspace can be thought of as consisting of N

d i s t i n c t arrays, each w i t h a descriptor and i t s associated

storage s t a t e . A11 storage s t a t e zero (SSO) arrays reference

the data which follows immediately af t e r the descriptor.

A l l storage s t a t e one (SS1) arrays reference data

ind i rec t ly , based upon parameters given w i t h i n the

descriptor. For most SS1 arrays these parameters include an

indirect reference t o another array. To support t h i s l e v e l ,

of indirection one of two schemes can be used.

The f i r s t has the current address of the other array as

a parameter. This presents s ignif icant problems as f a r as

memory management is concerned, as the relocation of an

object necessi tates the modification of a l l indirect

references to it. The problem of simply locating a l l such

references is d i f f i c u l t since there may be more than one

indirect reference. One m u s t e i ther dissallow

multireferences or disallow addressing of an array v i a

absolute address.

T h i s l e a d s to t h e seconh method, which i n v o l v e s s t o r i n g

a pseudo-name i n t h e p a r a m e t e r s , r a t h e r t h a n t h e a c t u a l

a d d r e s s . When i t is n e c e s s a r y to l o c a t e t h e i n d i r e c t l y

r e f e r e n c e d a r r a y , t h e c u r r e n t a d d r e s s is o b t a i n e d through

some b ind ing between t h i s a d d r e s s and t h e pseudo-name.

T h i s b ind ing is suppor ted through t h e Array Reference

Tab le (ART) . I t i s e s s e n t i a l l y a v e c t o r of a l l unique a r r a y s

i n t h e sys tem, t h e components of which a r e t h e a c t u a l

a b s o l u t e a d d r e s s e s f o r t h e s e a r r a y s , and i t s i n d i c e s a r e t h e

pseudo-names. F i g u r e 4.3.1 shows i t s s t r u c t u r e and use . I t

i s worthy of n o t e t h a t t h i s sys tem of a s i n g l e r e f e r e n c e

t a b l e f o r a l l a r r a y s g r e a t l y s i m p l i f i e s t h e t a s k of p o i n t e r

upda t ing d u r i n g ga rbage c o l l e c t i o n s .

Thus, i n t e r n a l l y , a l l a r r a y s a r e r e f e r e n c e d by an

i n t e g e r v a l u e which i s an index of ART. ART is a s y s t e m ,

o b j e c t ma in ta ined by t h e memory manager. I t i s i n t h e c l a s s

of dynamica l ly expandable sys tem o b j e c t s which t h e Memory

Manager m a i n t a i n s . Note t h e a d d r e s s e s i n ART a r e a l l 32 b i t s

i n l e n g t h .

Given t h e above method of r e p r e s e n t i n g a r r a y s i n t h e

sys tem, t h e r e p r e s e n t a t i o n of L i s t s w i l l now become c l e a r e r .

S i n c e a L i s t is an a r r a y of a r r a y s , i t s d a t a s t r u c t u r e is

s imply an i n t e g e r a r r a y of s a i d a r r a y pseudo-names (ie .

o b j e c t r e f e r e n c e numbers) .

Array Reference Table

absolute address

Figure 4- 3.1

.

=

- DATA
type

s s
rank

ref.
count

back in ex

rho

What is needed now is, an association between the user

supplied names and these internal pseudo-names. This is

supported through the symbol table (ST) which is a list of

literal representations, and the symbol association vector

(SAV) which is a vector of associated psuedo-names. The

chapter on the Execution Unit's operation will describe the

use of these system objects in detail. For now, refer to

figure 4.3.2 for a structural view of SAV and ST.

ST ,,A SAV

Figure 4.3.2

CHAPTER 5 DMU 97

The heart of MAPLE is ,the DMU, as it maintains the

workspace and allows arbitrary accesses to arrays within.

Since the tasks of memory management and array accessing are

somewhat independent and can often run concurrently, they

shall be delegated to two separate subunits (each having

their own processors). These two units are the Memory

Management Unit and the Object Manipulation Unit, with the

functions of the MMU described in the last chapter.

The allocation of memory for all arrays will be fully

transparent to the user (where the "user" is another

processor), with the user never needing to know the location

or memory requirement of arrays. Therefore all references to

arrays will be by names as described in section 4.3. The

user will supply a numerical name which directly associates

with an array within the DMU.

The DMU does not support any explicit associations

between literal names at the APL system level. Instead it

provides a powerful tool with which to implement many

different levels of binding between names. This will be

expanded upon in chapter 6 on the EXU's operation.

The objectives of the DMU are as follows: t o p r w ide

a rb i t ra ry access to arrays for the user; support a large

v i r t u a l memory space greater than 1 0 0 megabytes; p r w ide

associat ive lookup of objects; fetch array components a t

streaming ra tes equal to memory access speeds; allow

multiple data streams to occurr concurrently; allow i t s

ins t ruct ions to be interpreted a t the same time as executing

previous ones. The architecture which w i l l s a t i s f y these

objectives w i l l now be described.

5.1 DMU Architecture 99

Each of the DMU objectives will now be discussed in

turn, starting with access paths. Provision of general

accessing of arrays requires manipulation of a large set of

parameters [LAW751 , [ABR70] . The DMU accomplishes this with

the Object Manipulation Unit (OMU) . The reponsibility of the
OMU is the generation of absolute virtual addresses for

every access desired.

The OMU must be able to generate addresses at least as

fast as components are requested. The addresses generated go

to the MMU which is responsible for accessing memory. The

processes of memory fetch and address generation can be

pipelined so that next address generation can occur

concurrently with component fetch. It is not my intention to

try to achieve optimal DMU performance at this time , but to
demonstrate that a high degree of performance can be

achieved with minimal hardware design.

Figure 5.1.1 shows the general architecture of the DMU.

It shows the two subunits, the OMU and MMU and the other

components of the DMU. All nontemporary information is

contained within the main memory module except for some data

in the MMU's local store. The Bus Controller is responsible

for interfacing the DMU to the other units in the system.

Local Store 7

STORE L

df

Controller Cr

MMU

.

Local Store '+

Data Manipulation Unit

1 'T'

Figure 5. 1. I

<
instruction
address OMU

Object ManipuAation Unit

The OMU is the heart of the DMU1s functional power. It

provides a number of address generation algorithms for

component location. It has the conventional machine design

analogy of the MAR (memory address register) and increment

circuits. However, it is a few orders of complexity above

such a simple function. It is capable of providing bit

addresses to locate array components for every type of array

access that the APL language requires.

To accomplish this task it requires a large set of

internal registers to parameterize these accesses. These

registers are loaded based upon the descriptor contained

within every array (see sections 2.4 and 4.2) , shown in

figure 5.1.1 as part of the OMU's local store.

Combined with these access registers is the hardware

to do the actual address generation. Figure 5.1.2 shows

hardware that can implement the algorithm "AC2" -rom

Appendix 2. AC2 produces sequential addresses into an

apparent array from a SS1 descriptor. AC2 is based upon the

desire to eliminate all multiplications during the actual

address generation process. The performance of the address

generation algorithms will be discussed chapter 7.

to MMU's MAR

Not shown in figure , 5.1.2 is the hardware to drive

this address generation circuitry. A microprogrammed

processor which accepts instructions from the instruction

bus (c.f. figure 5.1.1) runs the address generation

hardware. The exact nature of this processor is the subject

of future research and not included in this thesis.

The hardware for address generation uses the register

modules called J,CNTR,T,and RHO, contained within the local

store of the OMU. They represent the necessary parameters

for address generation that the indicated algorithm uses.

Each of these modules is a set of registers of 32 words each

(32 bit words). The number 32 was chosen because each scalar

register of a set represents an axis of an array, that is,

the maximum rank is 31 (rank belongs to [O ,311) .

These four modules of 4 times 32 words each form an

access set of parameters that, once setup, can adequately

access an array in any monadic format. There exists one such

set for wery array that is currently being accessed. The

number of arrays that will be currently accessable will be

set to 16 for this implementation. This choice is somewhat

arbitrary, based on purely physical constraints of local

store memory. This memory amounts to 2048 32 bit words (a

reasonably small amount).

Of c o u r s e one c a n requce t h i s r equ i rement by reduc ing

t h e maximum a l l o w a b l e rank and t h e number of s i m u l t a n e o u s l y

a c c e s s a b l e a r r a y s . T h i s w i l l p r o b a b l y have no e f f e c t upon

a p p l i c a t i o n s a s t h e y a r e p r e s e n t l y d e v i s e d b u t i n t h e f u t u r e

t h e need f o r more complex i n t e r - r e l a t i o n s h i p s between a r r a y s

may be i n o r d e r . I t does n o t , t h e r e f o r e , pay to res t r ic t t h e

d e s i g n of t h i s system.

The c u r r e n t s t a t e of a r e g i s t e r se t d e f i n e s t h e a d d r e s s

of t h e c u r r e n t component accessed . A s t h e r e a r e 16 sets it

is n e c e s s a r y to swi tch between sets to a c c e s s d i f f e r e n t

a r r a y s . The p r o c e s s of t h i s swi tch c a n be done v i a t h e

r e g i s t e r f i l e a d d r e s s i n g of t h e O M U ' s l o c a l s t o r e . S i n c e

o n l y one a r r a y is a c t i v e a t any s i n g l e a c c e s s (memory i s

s i n g l e p o r t e d) it is s imply a m a t t e r of d e f i n i n g t h e h i g h

o r d e r a d d r e s s b i t s of l o c a l s tore to d e f i n e a r e g i s t e r set .

M o d i f i c a t i o n of t h i s a d d r e s s index c a n be accomplished

i n a s i n g l e m i c r o i n s t r u c t i o n , f a c i l i t a t i n g t h e a b i l i t y t o

dynamica l ly a l t e r t h e r e g i s t e r set t h a t i s a c t i v e . T h i s

a l l o w s one to change t h e a c t i v e a r r a y t h a t is be ing a c c e s s e d

w i t h i n a s i n g l e mic rocyc le . By doing so, t h e OMU c a n p r o v i d e

a t i m e d i v i s i o n m u l t i p l e x e d sequence of a d d r e s s e s f o r

d i f f e r e n t a r r a y s .

The a b w e scheme a l l o w s m u l t i p l e d a t a s t r e a m s to be

s y n t h e s i z e d w e r a common bus. I t w i l l become a p p a r e n t t h a t

t h i s a l l o w s f o r an e f f i c i e n t p a r a l l e l p r o c e s s i n g of a r r a y

e lements . T h i s w i l l be d i s c u s s e d i n s e c t i o n 7.1.

Memory ~ana~ement Unit

Main memory was described in section 4.1 but can be

summarized as follows: a large array organized as 1 to 256

million words of 16 bits each. In that same section it was

mentioned that all addresses generated are effectively bit

addresses within main memory.

The OMU generates bit level addresses by which the MMU

accesses array components. cf. figure 4.1.4. The MMU regards

the lowest four bits of any address as an index into a 16

bit memory word. The next 12 bits are word addresses into a

virtual page. There can be 2*16 such pages. All addresses

given to the MMU by the OMU are references to real objects

within memory.

Along with the address of the component accessed, the

MMU must know the component's size. Since all components are ,

of the same length for any single array, this can be passed

in a single transfer. The component sizes were discussed and

defined in section 4.2. For sizes of 16 or more bits the

problem of bit alignment is trivial. However, for subword

sizes the generation of a component w e r a fixed size bus

requires that they be uniformly aligned.

For Memory management the MMU has the following objects

within its local store: "Hole Table" (HT) , "Relocation
Vector'' (RV), and "Free List" (FL), c.f. figure 5.1.3.

MMU Local Store

15 0

Relocation

Vector

Free Stack

Figure 5.1.3

The s i z e of t h e H o l e Tab le w i l l have a nominal maximum

v a l u e of 64 wi th t h e o p t i o n of e i t h e r u s i n g s m a l l e r o r

l a r g e r t a b l e s . T h i s is r e q u i r e d a s t h e o p t i m a l t a b l e s i z e i s

somewhat a p p l i c a t i o n dependant . However , by a l l o w i n g

e x p e r i m e n t a l changes i n t h e HT i t may be p o s s i b l e to

de te rmine o p t i m a l t a b l e s i z e s i n d i f f e r i n g envi ronments .

The R e l o c a t i o n Vector i s t h e mechanism which maps t h e

v i r t u a l a d d r e s s space to t h e r e a l memory of t h e system. RV

a long wi th FL p r w i d e s dynamic a l l o c a t i o n of sys tem o b j e c t s

w i t h a minimal amount of work, c . f . f i g u r e 4.1.5. To

e l l i m i n a t e t h e w e r h e a d of having to index RV t o o b t a i n t h e

a s s o c i a t e d r e a l page a s i n g l e c e l l a s s o c i a t i v e memory is

u s e d , c . f . f i g u r e 5.1.4. I f t h e n e x t v i r t u a l a d d r e s s is

w i t h i n t h e c u r r e n t page (g iven v i a an e q u a l s comparison)

t h e n RV i s n o t indexed , o t h e r w i s e RV must be indexed to

o b t a i n t h e new page.

U s e of o n l y one c e l l of a s s o c i a t i v e memory e l i m i n a t e s

w e r h e a d i n a c c e s s e s w i t h i n t h e c u r r e n t page , however, more

c e l l s would reduce page boundry c r o s s i n g overheads . With

page s i z e s of 2*12 words a s i n g l e d a t a s t r e a m is v e r y

u n l i k e l y t o produce many page boundry c r o s s i n g s a s most

a r r a y s have s i z e s less t h a n 2*12 words. For m u l t i p l e s t r e a m s

t h e r e would be a s t r o n g advan tage i n us ing an a s s o c i a t i v e

c e l l f o r each s e p a r a t e a r r a y .

1 w o r d (b i t 1
add r e S S addr.

As interpreted by MMU from OMU

, 3 page 1) I 6,

cur ren t v i r t ua l c u r r e n t page

CVP C PR

Figure 5.1.4

C u r r e n t l y , a s s o c i a t i v e ,memories a r e n o t a v a i l a b l e which

a r e s u i t a b l e f o r use i n t h i s machine. The p r o t o t y p e of MAPLE

w i l l use a s i n g l e a s s o c i a t i v e c e l l f o r RV index ing w i t h t h e

i n t e n t i o n of Custom LSI d e s i g n f o r such key MMU f u n c t i o n s .

The c o n t e n t s of RV a r e r e a l page numbers and a l s o

e n t r i e s which i n d i c a t e Black Holes. The v a l u e Zero w i l l be

used to i n d i c a t e t h a t no r e a l memory i s a s s o c i a t e d w i t h t h e

v i r t u a l page (implying t h a t t h e r e does n o t e x i s t a r e a l page

numbered z e r o) .

The F r e e L i s t (FL) i s s imply a s t a c k w i t h i n t h e MMU

which c o n t a i n s t h e page numbers of a l l r e a l pages which a r e

t o t a l l y f r e e . These pages a r e used to r e p l a c e Black Holes i n

t h e a d d r e s s s p a c e , d e f i n e d by RV, t h e r e f o r e p r o v i d i n g

dynamic a l l o c a t i o n .

The M M U ' s l o c a l s tore h a s t h e same width a s m a i n '

memory. I t i s p o s s i b l e t o p r o v i d e t h e M M U ' s l o c a l s t o r a g e

r e q u i r e m e n t s w i t h i n main memory b u t t h i s would impose

a n o t h e r l e v e l of i n d i r e c t i o n f o r memory a c c e s s e s and p r e v e n t

c o n c u r r e n t memory management. S i n c e t h e c o s t of s e p a r a t e

memory is a lmos t i n s i g n i f i c a n t compared to t h e o v e r a l l

d e s i g n , and is dropping r a p i d l y , i t does n o t make s e n s e to

d e s i g n a sys tem which o p t i m i z e s t h i s memory useage.

Bus ControlJer

This is the only other control element of the DMU. It

is responsible for the reception and transmission of

components w e r the data bus, coordinating all transf ers.

Its basic structure will be that of a finite state machine

used to synchronize bus signals.

A bus transfer sequence will interchange only a single

component regardless of its length. Bit and byte components

will be right jusiftied to a 16 bit word, leading bits

zeroed. This is simply an implementation constraint to

simplify the design. It will have little effect except in

the operation of some boolean dyadic functions. Future

research may investigate possible ways to improve on this.

The BC provides the handshaking signals necessary to

allow any of the units attached to interchange a single

component w e r the data bus. These signals involve strobes

to indicate next word and address information concerning

which unit is using the bus. A more complete description of

tke bus protocol is given in chapter 6.

5.2 DMU Instructions and Operation 111

The inst ruct ions tha t , the DMU supports are described

i n t h i s section. Most of the DMU ins t ruct ions have d i r ec t

APL equivalence while some are very Operating System l ike .

The d i r ec t APL* ins t ruct ions are l i s t e d in table 5 .2 .1 and

w i l l be discussed f i r s t . They w i l l be looked a t i n the order

that they are presented in the table.

Quad Expunge is a system primitive which releases the

object whose name is given as i t s argument. Since a l l arrays

have a reference count associated w i t h them, t h i s operation

f i r s t decrements tha t count. If tha t count equals zero, the

object is non-referenced and the a r ray ' s storage is released

to memory management.

Copy has the e f fec t of generating a new name and copy

of the descriptor for X. That i s , a t o t a l l y new name is

generated which references the same array as X. Assignment

i s a form of Copy, except tha t a new name is not generated.

Instead the old array (Z) has i t s reference count

decremented and the name is reassociated w i t h X.

A l l the r e s t of the APL operations l i s t e d have two

modes of operation. Either a descriptor (and hence array) i s

generated or the operation is parameterized for data

streaming (as required fo r a scalar dyadic operation). These

two modes are cal led the "generate" and "stream" modes

respectively.

TABLE 5 . 2 . 1

DMU APL INSTRUCTIONS
5

RERASE X
ACOPY X OR ASSIGN X
ADYADIC TRANSPOSE
AMONADIC TRANSPOSE
ADYADIC ROTATE
AMONADIC ROTATE
ACATENATE
ARAVEL
ATAKE (WITH OVERTAKE)
ADROP
ARESHAPE
ARHO
ACOMPRESSION
AEXPANSION
AINDEXING
AEXPOSE (L I S T P R I M)
AIMBED (L I S T P R I M)

Transpose is a pure , se lec t ion operation which allows

the axes of any array to be re-arranged. I n no case i s any

memory required for t h i s operation except tha t which is

needed for a descr iptor , i f requested. In the case of

descriptor generation it w i l l be a storage s t a t e one array

(refer to section 2.4 fo r description of storage s t a t e s) .

Catenate always involves memory requests. I t involves

the generation of three data streams, t o t a l l y internal to

the DMU, which copy arrays X and Y in to a new object Z . The

r e su l t w i l l always be a storage s t a t e zero array.

Ravel is a complex primitive whose actual in ternal

function depends upon the storage s t a t e of the argument. For

any storage s t a t e zero array the ravel i s a simple storage

s t a t e one descriptor. The ravel of a storage s t a t e one array

m u s t be a storage s t a t e zero array. The l a t t e r is to

preserve the a b i l i t y of selection operations t o generate

storage s t a t e arrays [CDC*GID] . ,

Rotate i s a lso a d i f f i c u l t primitive but for d i f fe ren t

reasons. The monadic primitive can always be performed by a

storage s t a t e one transformation. However, the generalized

dyadic form can not be so described. If an actual object

need be generated, as fo r assignment, then an SSO array w i l l

be generated. B u t if one only wishes t o access the described

array, then the DMU w i l l do the streaming without memory

request. The same is true of Ravel: i f i n the stream mode,

only the array need be accessed.

,
Take is s i m i l a r t o t r a n s p o s e i n t h a t f o r m o s t c a s e s

e x c e p t d u r i n g o v e r t a k e it is p o s s i b l e to do an SS1

t r a n s f o r m a t i o n t o a c h i e v e t h e r e s u l t a n t a r r a y . I n t h e

g e n e r a t i o n mode it may, however, be n e c e s s a r y to do a memory

r e q u e s t and SSO g e n e r a t i o n . T h i s i s because i n some APLs t h e

Take f u n c t i o n c a n be an w e r - t a k e i n which t h e e x t r a

e l e m e n t s a r e o b t a i n e d from some f i l l i d e n t i t y . T h i s DMU w i l l

s u p p o r t both Take f u n c t i o n a l forms (t h e former is a subcase

of t h e l a t t e r) .

Drop c a n a lways be performed by an SS1 t r a n s f o r m a t i o n

so t h e u s e r h a s t h e c h o i c e of e i t h e r t h e s t r e a m mode or

g e n e r a t i o n mode.

Reshape is i n t h e same c l a s s a s Rave l , where an SS1

t r a n s f o r m a t i o n c a n n o t a lways be r e a d i l y performed on an SS1

a r r a y . T h e r e f o r e t h e g e n e r a t e mode may c r e a t e a new o b j e c t ,

i n memory.

Rho a lways g e n e r a t e s a new SSO a r r a y (v e c t o r) i n t h e

g e n e r a t e mode. The reason f o r t h i s i s a s f o l l o w s : t h e rho

i n f o r m a t i o n w i t h i n e v e r y a r r a y ' s d e s c r i p t o r does n o t have a

r e f e r e n c e c o u n t , s o an SS1 a r r a y p o i n t i n g t o t h i s d a t a

c a n n o t r e a d i l y be g e n e r a t e d . The obv ious reason is t h a t t h e

rho v e c t o r is so s h o r t t h a t i t is u s u a l l y much e a s i e r j u s t

t o copy t h e d a t a t h a n t o r e f e r e n c e i t (t h e r e a r e a maximum

of 31 components to any rho v e c t o r) .

Compression is a very ,special DMU instruction. In this

implementation, the operation occurs explicitly but it is

the contention of some [EDW80-21 that an SS4 array, known as

a Sparce Array, synthesized via compression, is a valid

extension to an APL system. In the stream mode a specified

boolean left argument directs the selection of the elements

from the right argument. In the generation mode, at this

time, an SSO array will be created.

Expansion is handled identically to Compression, with

the fill element for read operations defined the same as

conventional APL (zero for numerics and blanks for

characters).

Index is supported as a dydaic primitive with the same

form as the other selection primitives. It takes a list

vector of imbedded axis indices. It supports both the stream

and generate modes. In the latter an SSO array is generated,

as index can not be described via an SS1 transformation.

Expose is a very simple operation. It only operates

upon list scalars to return the array imbedded by the list

[EDW73] .

Imbed is the complement to Expose. It takes any array

and generates a list scalar from the result. Both Imbed and

Expose have the two modes that the other selection

operations have.

The abwe are the direct APL primitives that the DMU

supports. The rest of the instructions are for controlling

the memory mode of the operation and for memory management

functions. Some of their description follows in these next

few paragraphs.

It is necessary to remember that all arrays are

accessed via a unique name (which is numerical).An

instruction to the DMU must include this name or imply the

last array accessed. That is, one can ask for the transpose

of an array in the generate mode, then ask for a rotation,

without the need to respecify the array.

As described in section 4.1 the DMU supports dynamic

allocation for system objects at the hardware level with

minimal overhead. Therefore the DMU can prwide stack

functions for external operations in a LIFO manner. The

number of stacks that can be supported have few theoretical

constraints. However, at least two should be prw ided; one

for execution control and one for temporary storage.

There does not seem to be any need to prw ide the

ability for array pushes or pops due to the multiple

reference capability of reference counts, so stack

operations within the DMU are limited to scalar values. The

DMU itself only requires scalar stacking provisions.

The DMU will have the following stack operations:

Create, which takes two arguments, the maximum depth the

stack will ever be (never exceed depth), and stack's

component size; Push places a single component on to the

stack (which is an argument of the instruction); Pop removes

a component from the stack.

There exists one implicit instruction of the DMU that

must be mentioned. That is the automatic maintanance of

reference counters for arrays. Whenever an array is

accessed, via generate mode, and an SS1 descriptor is

generated, the SSO array that is the basic unit of the

transformation will have its Ref-count incremented.

Along with the a b w e implicit operation two explicit

forms exist. The first was mentioned as Quad Expunge (the

dereferencing of an array) and the other is its complement

called "Ireference". This instruction has the effect of

incrementing an array's reference counter. The usefullness

of this instruction is in parameter passing for Call by

Value. It allows one to logically specify that a copy of an

array has been made, without the need for a physical copy.

There remains just ove class of instructions. These

are the Descriptor Creation instructions as opposed to

descriptor selection instructions mentioned at the beginning

of this section. These instructions allow the user to

selectively create and modify array descriptors. Using

standard rules for descriptor generation one can describe an

arbitrary array.

The main purpose of these instructions is to specify

complex streaming operations. The best example of this is

the synthesis of a scalar dyadic reduction operation. For

this APL operation an array is streamed to an ALU but the

result is returned into an array of reduced rank but based

upon the old array. This is the class of instructions which

will take an existing descriptor for an array and produce

the desired new descriptor to facilitate reduction.

These instructions fall into two subclasses. The first

are just preset algorithms which allow the necessary

transformations for the higher complexity APL operations.

The best example of which is extended scalar conformability.

The second class allows direct manipulation of the

components of descriptors such that the user must provide

the algorithm for descriptor formation. The algorithms for

the first type are given in appendix 2.

A Complete description,of all DMU instructions is given

in appendix 3. The format of these instructions will now be

discussed.

All instructions operate upon register files which

contain valid descriptors for arrays. There may be up to 16

such descriptor registers within the DMU. The need for this

many is not obvious but becomes apparent if one is to allow

each unit to have simultaneous array accesses.

The instructions from the EXU to the DMU are along a 16

bit bus and may be from 1 to 4 words long. Instruction

format allows for a maximum of 64 instructions of which only

approximately 32 have been defined.

6 . 1 B u s A r b i t r a t i o n 1 2 0

T h i s c h a p t e r deals w i t h , t h e o t h e r t h r e e u n i t s o f MAPLE,

b u t f i r s t t h e c o m m u n i c a t i o n s p r o t o c o l s b e t w e e n t h e u n i t s

w i l l b e d i s c u s s e d .

A s shown i n f i g u r e 3 .2 .1 t h e r e are t h r e e b u s e s b e t w e e n

t h e f o u r u n i t s . T h e s e are t h e Data, I n s t r u c t i o n , a n d S t a t u s

b u s e s . A l l o f t h e s e b u s e s are b i d i r e c t i o n a l .

The Data B u s w i l l h a v e t h e same w i d t h as p r i m a r y memory

(16 b i t s) . I t i s my i n t e n t i o n to r e d u c e b u s w i d t h s so t h a t

t h e u n i t s c a n b e c o n d e n s e d i n t o VLSI c h i p s i n t h e f u t u r e .

The Data B u s t r a n s c i e v e s c o m p o n e n t s o f s i z e s 1 to 1 2 8 b i t s

, w i t h t h e w o r d s t h a t make u p a componen t e x c h a n g e d b e t w e e n

u n i t s , a t m a i n memory s p e e d .

I n c o m b i n a t i o n w i t h t h e S t a t u s b u s , a s i n g l e componen t

i s t r a n s f e r e d b e t w e e n u n i t s f r o m a s o u r c e ' s o u t p u t q u e u e

i n t o t h e d e s t i n a t i o n ' s i n p u t q u e u e . T h i s e x c h a n g e u n t i l i z e s '

t h e Data Bus f o r i t s e n t i r e d u r a t i o n (a p p r o x i m a t e l y 1 0 0 to

1 0 0 0 n a n o s e c o n d s d e p e n d i n g o n t h e s i z e o f t h e c o m p o n e n t) .
The S t a t u s b u s c o o r d i n a t e s t h e t r a n s f e r .

The n e x t componen t t r a n s f e r e d w e r t h e Data b u s may be

s o u r c e d f r o m a n y o f t h e f o u r u n i t s , t h u s t h e Data Bus w i l l

b e t i m e m u l t i p l e x e d b e t w e e n f o u r s o u r c e s . T h i s p r o p e r t y

a l l o w s t h e b u s to b e u t i l i z e d a t a h i g h e f f i c i e n c y . S i n c e

most u n i t s c a n n o t p r o c e s s c o m p o n e n t s a t b u s r a t e s , t h e b u s

c o u l d be f r e e much o f t h e t i m e . +

The e f f e c t is t h a t f o u r , s imul taneous d a t a s t r e a m s c a n be

w e r l a p p e d amongst themse lves , a l l o w i n g a h i g h d e g r e e of

p a r a l l e l i s m and f o r p i p e l i n i n g of i n s t r u c t i o n e x e c u t i o n .

I n s t r u c t i o n p r e f e t c h c a n t h e n be done d u r i n g I0 or ALU

o p e r a t i o n s .

The d i r e c t i o n of a l l t r a n s f e r s (e i t h e r i n o r o u t of t h e

DMU) i s c o n t r o l l e d by t h e DMU v i a t h e s t a t u s bus. Each of

t h e o t h e r t h r e e u n i t s have an o u t p u t s t a t u s l i n e (Ready

l i n e) . A r eady l i n e i n d i c a t e s i f t h e a s s o c i a t e d u n i t is

ready to a c c e p t or send d a t a . A l l t h r e e of t h e s e s i g n a l s go

i n t o t h e DMU.

T r a n s f e r s between o u t p u t and i n p u t queues a r e

c o n t r o l l e d by t h e DMU v i a 6 o u t p u t l i n e s (r e l a t i v e to t h e

DMU) . The f i r s t i s t h e T r a n s f e r D i r e c t i o n Line (TDL, a r e a d

w r i t e e q u i v a l e n t) . TDL in fo rms t h e u n i t s i f t h e bus c y c l e is

a DMU r e a d o r write o p e r a t i o n .

Which u n i t t h e n e x t t r a n s f e r w i l l occur w i t h i s g i v e n

by t h r e e a d d r e s s l i n e s c a l l e d t h e L o g i c a l U n i t Address l i n e s

(LUA) . The t r a n s f e r c a n o c c u r b e t e e n t h e DMU and one of t h e

o t h e r t h r e e p h y s i c a l u n i t s (each of which c a n c o n t a i n more

t h a n one l o g i c a l u n i t) .

To i n i t i a t e a bus c y c l e , t h e DMU a c t i v a t e s t h e Cycle

S t a r t Line (CSL). The CSL is a s t r o b e s i g n a l i n g t h e s t a r t of

a comple te component t r a n s f e r . The t r a n s f e r i s c o m p l e t e l y

synchronous , w i t h bo th u n i t s knowing t h e word l e n g t h b e f o r e

t h e o p e r a t i o n beg ins .

The l a s t DMU s t a t u s s i g n a l is t h e End Of St ream (EOS)

l i n e . When a d a t a s t r e a m h a s f i n i s h e d , t h i s l i n e w i l l be

a c t i v a t e d a long wi th t h e u n i t a d d r e s s f o r which t h e s t r e a m

was a s s o c i a t e d . T h i s is u s u a l l y used a s an i n t e r r u p t t o t h e

EXU f o r e x e c u t i o n f l o w c o n t r o l . F i g u r e 6 .1 .1 shows t h e

expanded bus s t r u c t u r e of t h i s machine.

A s shown i n f i g u r e 6.1.1, t h e I n s t r u c t i o n bus i s 16

b i t s wide wi th f i v e s t a t u s l i n e s f o r c o n t r o l purposes . The

f i r s t two l i n e s a r e f o r u n i t i d e n t i f i c a t i o n (U I D) and a r e

g e n e r a t e d by t h e EXU to i n d i c a t e which u n i t t h e i n s t r u c t i o n

i s f o r . They a r e b i d i r e c t i o n a l and a r e used to i n d i c a t e t h e

u n i t r e q u e s t i n g an i n t e r r u p t to t h e EXU. One of t h e

remaining l i n e s is t h e I n s t r u c t i o n S t r o b e (I S) t o i n d i c a t e

t o t h e a d d r e s s e d u n i t t h a t t h e I n s t r u c t i o n Bus c o n t a i n s a

v a l i d i n s t r u c t i o n .

Bus Signals

The remaining t w o l i n e s , a r e to c o o r d i n a t e i n t e r u p t s to

t h e EXU. The f i r s t acts as a r e q u e s t f o r bus and t h e second

i s i t s acknowledgement s i g n a l . The t h r e e competing u n i t s a r e

da i sy -cha ined t o g e t h e r . When t h e EXU acknowledges an

i n t e r r u p t , t h e a p p r o p r i a t e u n i t w i l l d r i v e t h e U I D l i n e s ,

and d r i v e t h e I n s t r u c t i o n bus wi th t h e d a t a it wishes to

p a s s .

T h i s s e p a r a t i o n of t h e b u s e s a l l o w s f o r s i m u l t a n e o u s

i n s t r u c t i o n s e t u p and e x e c u t i o n . The n e t e f f e c t i s a

p i p e l i n g ing of i n s t r u c t i o n f e t c h and e x e c u t e f o r t h e f o u r

u n i t s .

I t shou ld be a p p a r e n t by now t h a t t h e DMU c o n t r o l s a l l

d a t a t r a n s f e r s between t h e u n i t s , and t h a t t h e s e t r a n s f e r s

must be between t h e DMU and some o t h e r u n i t . Thus t h e

u n i t s / p r o c e s s o r s i n t h e machine a r e coup led t o g e t h e r s o t h a t

no s i n g l e u n i t c a n f u n c t i o n w i t h a n o t h e r removed.

The l a s t s t a t e m e n t i s o n l y p a r t i a l l y t r u e . The sys tem

c a n n o t i n t e r a c t wi th t h e e x t e r n a l world u n l e s s t h e I O U ' s

p r e s e n t and few o p e r a t i o n s c a n be performed wi th o u t t h e

ALU. How t h e s e u n i t s i n t e r a c t i s t h e t o p i c of t h e n e x t

s e c t i o n .

6.2 Unit Specifications 125

An indepth look at the requirements for the other three

units in the system will be discussed now. The features and

interactions of all units will also be described.

EXU's Structure

It was mentioned in chapter 3 that the EXU was the

control unit for program execution. By the appropriate

instructions to the other three units a wide variety of

array processing tasks can be accomplished.

Via the instruction bus, the EXU can initiate a large

class of data trans•’ ers and transformations. The instruction

sets of the three units allows the EXU to synthesize the

complete APL language as described in chapter 1. However, by

modification of the EXU, an endless class of array

processing languages can be generated. This concept is

exemplified by R.Hobson [HOB80-11 in his work on so•’ tware'

sympathetic chip design.

Some of the architectural characteristics of the EXU's

possible implementation follows. Firstly the hardware

structure and then some of the principles of interpretation

that the EXU uses.

S i n c e t h e EXU i s p r i m p r i l y i n t e n d e d to i n t e r p r e t APL,

i t s i n t e r n a l s t r u c t u r e w i l l r e f l e c t t h i s . The c u r r e n t

e x e c u t i n g l i n e and i t s p a r a m e t e r s a r e l o c a t e d w i t h i n t h e

EXU. T h i s code e x p r e s s i o n is f e t c h e d from t h e DMU a s a d a t a

s t r e a m d e s t i n e d to t h e EXU (which is u s u a l l y done w h i l e

a n o t h e r u n i t is e x e c u t i n g a n i n s t r u c t i o n) .

The s i z e of t h e E X U ' s l o c a l s t o r e d e t e r m i n e s t h e number

of l i n e s which c a n be cached w i t h i n i t s e l f . I t is p o s s i b l e

t o r e s t r i c t t h e maximum l e n g t h of an APL s t a t e m e n t , and many

implementa t ions have done so (APL/360, MCM APL) . Within

MAPLE t h e r e w i l l be no r e s t r i c t i o n on t h e l e n g t h of an APL

s t a t e m e n t , however, t h e a v e r a g e l i n e l e n g t h c a n be used to

de te rmine t h e s t o r a g e requ i rement f o r t h e EXU.

The average l e n g t h is i n t h e o r d e r of 50 c h a r a c t e r s

[BIN751 ,[SAA75]. With such a v a l u e many l i n e s c a n be e a s i l y

b u f f e r e d w i t h i n t h e EXU. T h i s r e s u l t s i n s i g n i f i c a n t l y less

d a t a bus t r a n s f e r s due to t h e memory h e i r a r c h y between DMU

and E X U ' s l o c a l s t o r e [TAN761 ,

The i n t e r n a l complex i ty of t h e EXU need n o t be g r e a t .

I n s t r u c t i o n g e n e r a t i o n c a n be made t a b l e d r i v e n and l i t t l e

a c t u a l p r o c e s s i n g of a r r a y s i s done by e x e c u t i o n c o n t r o l . A

c o n v e n t i o n a l 16 b i t mic roprocessor (such a s t h e MC6809)

would be adaqua te f o r a l l i t s t a s k s .

The EXU i s r e s p o n s i b l e , f o r a l l s y n t a x c h e c k s on t h e

i n s t r u c t i o n s t r eam. T h i s i s done by a n a l y s i s of t h e cached

APL s t a t e m e n t s and i n t e r r o g a t i o n of t h e DMU wer t h e

machine ' s i n s t r u c t i o n bus. By p i p e l i n i n g t h i s p r o c e s s w i t h

t h e p r o c e s s of i n s t r u c t i o n g e n e r a t i o n , t h e u s u a l w e r h e a d of

s y n t a x check ing c a n be reduced.

Most APL sys tems pre-encode t h e t o k e n s a t e d i t time so

t h a t l e x i c a l a n a l y s i s is g r e a t l y reduced d u r i n g e x e c u t i o n

[BAT73]. T h i s sys tem must o b v i o u s l y do t h e same. T h i s i s

done by t h e EXU when a f u n c t i o n ' s d e f i n i t i o n i s c l o s e d o r

d u r i n g t h e c o n t r o l p r i m i t i v e "Execute" (f u n c t i o n token

t r a n s l a t i o n is done by Execute i n t e r n a l l y so t h a t t h e APL

s u p e r v i s o r c a n be w r i t t e n i n APL).

I n s e c t i o n 4 . 3 t h e t w o a r r a y s f o r symbol t a b l e

ma in ta inance were i n t r o d u c e d . The f i r s t (SAV) maps l o c a l l y

d e f i n e d numer ica l names to g l o b a l DMU names (t h e DMU does

n o t s u p p o r t environment h i e r a r c h i e s) . These l o c a l names a r e

one to one a s s o c i a t e d wi th t h e l i t e r a l tokens w i t h i n

f u n c t i o n s . The second a r r a y (ST) , t h e a c t u a l symbol t a b l e

c o n t a i n s t h e l i t e r a l v a l u e s f o r t h e tokens .

There may be many ve r , s ions of b o t h SAV and ST p r e s e n t

a t one t i m e each r e p r e s e n t i n g a d i f f e r e n t c a l l i n g

environment . To a c c e s s a n a r r a y , t h e EXU looks up i t s g l o b a l

name i n t h e c u r r e n t l y a c t i v e SAV, t h e n p a s s e s t h i s name to

t h e DMU. S i n c e t h e s i z e of SAV d i r e c t l y r e l a t e s t o t h e

number of l o c a l v a r i a b l e s , it c a n be expec ted to be r a t h e r

s m a l l (i n t h e o r d e r of 10 t o 100 components) . I t i s

t h e r e f o r e r e a s o n a b l e t o e x p e c t t h e EXU t o b u f f e r more t h a n

one v e r s i o n of SAV. Only when a f u n c t i o n is e n t e r e d or

e x i t e d does SAV need to be a c c e s s e d from t h e DMU. T h i s

r educes bus overhead and i n c r e a s e s o v e r a l l e f f i c i e n c y .

I t shou ld be mentioned t h a t d u r i n g program e x e c u t i o n ST

need o n l y be a c c e s s e d f o r t h e "Execute" p r i m i t i v e o r t o

s u p p o r t a p a r a m e t e r / f u n c t i o n c a l l i n g h i e r a r c h y . A t such

times, a number of t h e a c c e s s a b l e ST'S must be s e a r c h e d to

o b t a i n a t o k e n ' s a c t u a l machine name. C u r r e n t l y t h e s e a r c h '

w i l l be done v i a t h e "Index" p r i m i t i v e which i s an u l t r a

f a s t l i n e a r s e a r c h .

ALU's S t r u c t u r e

The ALU is t h e second p r o c e s s o r u n i t t h a t c o n n e c t s t o

t h e i n s t r u c t i o n bus. I t is r e s p o n s i b l e f o r a l l s c a l a r

f u n c t i o n s . Tab le 6.2.1 i a a comple te l i s t of t h e APL

o p e r a t i o n s which it c a n perform. A l l of t h e s e o p e r a t i o n s

t a k e , a s i n p u t , one o r t w o v e c t o r d a t a s t r e a m s , of known

p a r a m e t e r s , and produce a s i n g l e - o u t p u t v e c t o r d a t a s t r eam.

T A B L E 6 . 2 . 1

A L U A P L I N S T R U C T I O N S
I

A X AND Y D E N O T E I N D I V I D U A L S C A L A R C O M P O N E N T S O F A R R A Y S .

Y + X 0 + X
Y-X 0 - X
Y x X 0 x x
Y t X 0 + X
Y r x 0 rx
YLX O LX
Y I X O I X
YOX 0 ox
Y*X 0 *X
Y@X 0 @X
Y?X 0 ? X
Y!X O !X
YBX 0 B X R X Y D E N O T E A R R A Y S
Y t X 0 t X
Y = X
Y % X
Y < X
Y S X
Y > X
Y 2 X
YAX
YVX
Y*X
YVX
Y E X
Y 1 X
YTX

-X

To accomplish many gf the more complex instructions,

the ALU keeps track of the indices for all data streams it

associates with. This simply requires three 32 bit counters

that increment on each bus transfer cycle. The ALU performs

a reduction operation by knowing the correspondence between

the lengths of the input stream to the output stream. This

ratio is given via a special instruction to the ALU (from

the EXU) .

The ratio abwe relates the number of components that

pass into the ALU to the number which leave it. Normally

this value defaults to 1 for all scalar dyadic functions.

This feature is necessary for "Indexn ,"Reductions", and

"Membership" primitives.

In chapter 2, the concept of the interval data class

was introduced. The interval for numerics allows incredible

compression of arrays with the properties so described. The

ALU will allow numeric interval operations if the interval

array is first transferred into the ALU. This requires a

very special instruction, as the other dyadic argument is

streamed/loaded separately to the first argument. There must

be cooperation between the three units EXU, ALU, and DMU to

accomplish this.

The amount of s t o r a g e , an i n t e r v a l a r r a y t a k e s i s

n o t s i g n i f i c a n t , a s it a lways h a s a l e n g t h less t h a n 64

components. I t i s t h e r e f o r e r e a s o n a b l e to cache a l l i n t e r v a l

a r r a y s w i t h i n t h e ALU and a l l o w h i g h l y asynchronous

component o u t p u t i n g .

Given i n Appendix 2 is a n a l g o r i t h m f o r t h e g e n e r a t i o n

of SS2 i n t e r v a l a r r a y s based upon t h e i r d e s c r i p t o r s . I t h a s

n o t been dec ided whether o r n o t t h e ALU or t h e DMU w i l l

g e n e r a t e t h e a r r a y e lements . T h i s is because i n t e r v a l s c a n

have f l o a t i n g p o i n t f o r m a t s , which t h e DMU does n o t s u p p o r t .

A most i m p o r t a n t ALU i n s t r u c t i o n i s t h e d a t a c o n v e r s i o n

p r i m i t i v e . I t i s monadic and a l l o w s both upwards and

downwards l e n g t h c o n v e r s i o n s of numer ica l a r r a y s . A t t h e

d i s c r e t i o n of t h e EXU any a r r a y c a n be c o n v e r t e d i n t o having

e i t h e r a s m a l l e r o r l a r g e r number of b i t s p e r component.

T h i s i n s t r u c t i o n , a long w i t h t h e ALUs a b i l i t y to moni tor

numer ica l w e r f l o w s and w e r s i z e s , a l l o w s e f f i c i e n t d a t a

s t o r a g e f o r m a t s .

I O U ' s S t r u c t u r e

A t p r e s e n t t h e I O U ' s n o t v e r y w e l l developed. Tab le

6 . 2 . 2 shows a l l of t h e APL i n s t r u c t i o n s t h a t i t s u p p o r t s .

There a r e few I0 f u n c t i o n s i n t h e APL language a t p r e s e n t ,

which i s r e f l e c t e d i n t h e few i n s t r u c t i o n s t h e IOU performs.

T A B L E 6 . 2 . 2

I O U A P L O P E R A T I O N S
I

Y I X
I x

Y T X
r X
OAV A S Y S T E M V A R I A B L E A Y E T TO B E D E F I N E D

R I O S Y S T E M F U N C T I O N S

However, t h e DMU was des igned to a l l o w a v e r y l a r g e

expans ion i n t h e s u b d i v i s i o n s of g r a p h i c a l d a t a . Even though

t h e r e a r e few o p e r a t i o n s p r e s e n t l y , t h e r e a r e v e r y good

i n d i c a t i o n s t h a t f u t u r e r equ i rements on computers w i l l

n e c e s s i t a t e expans ion. S i n c e t h e I O U , and a l l u n i t s , have

t h e i r own s e p a r a t e sets of i n s t r u c t i o n s , t h e r e e x i s t s more

t h a n adequa te room f o r f u t u r e i n s t r u c t i o n encoding.

The temporary s t a c k i n s t r u c t i o n s w i t h i n t h e DMU a l l o w s

t h e I O U t o o b t a i n from t h e e x t e r n a l w o r l d , a r r a y s of h i g h l y

v a r i a b l e l e n g t h s . By pushing datum a s it is o b t a i n e d o n t o

t h i s s t a c k , a n a r r a y whose o v e r a l l s i z e is n o t known c a n be

handled . Remember t h a t t h e DMU w i l l a l l o w dynamic s t a c k s

w i t h o u t t y i n g up more memory t h a n t h e c u r r e n t s t a c k dep th .

s t a c k r e q u i r e s .

S i n c e a r r a y s t h a t a r e d i r e c t e d t o o u t p u t a r e u s u a l l y

of moderate s i z e , t h e I O U s h o u l d p r o v i d e l o c a l s tore f o r

most of t h e a r r a y s i t w i l l need t o b u f f e r . For t h i s p u r p o s e ,

between 8 and 64 thousand b y t e s of s t o r a g e shou ld be

p rov ided i n t h e IOU. A t c u r r e n t d e n s i t i e s , t h i s amounts t o

o n l y 2 t o 8 I C s , and c a n even be on c h i p i f t h e I O U i s e v e r

implemented a s a s i n g l e c h i p u n i t .

I t is my i n t e n t i o n t h a t t h e I O U c o n t a i n s a l l mapping

a r r a y s n e c e s s a r y f o r I0 f u n c t i o n s . Such an a r r a y i s t h e Quad

A t o m i c Vector, which d e f i n e s t h e c u r r e n t c h a r a c t e r set . A s

was d e s c r i b e d i n s e c t i o n 4 . 2 , a l l c h a r a c t e r / g r a p h i c a l d a t a

is i n t e r n a l l y r e p r e s e n t e d a s p o s i t i v e i n t e g e r s . These a r r a y s

a r e passed to t h e I O U which does t h e n e c e s s a r y t r a n s l a t i o n

t o t h e v a r i o u s I0 d e v i c e s a t t a c h e d to t h e system.

A s e p a r a t e I0 p r o c e s s o r p r o v i d e s a h i g h d e g r e e of

i n s e n s i t i v i t y (i n t h e o v e r a l l system) to changes i n I0

c o n f i g u r a t i o n s . T h i s modular approach s i m p l i f i e s t h e o v e r a l l

d e s i g n of t h e machine.

Chapter 7 Architecture Evaluation 135

Parallel processing has the potential to greatly

increase processing speeds ; of ten increases are linear

in the number of processors [MIT74] . Improved modularity of
design will also result if tasks are properly divided

amongst these processors [SWA77] . It has been demonstrated
in this thesis that the execution of APL may be clearly

partitioned amongst four major processors, each optimized

for its assigned task.

An important consequence of MAPLE'S multiprocessor

architecture is its inherent modularity. One can employ a

structured design philosophy to each of MAPLE'S four main

processors and debug each via simulators. The net effect is

that MAPLE can be brought up "ON AIR" sooner than in more

conventional designs.

MAPLE'S memory architecture utilizes two co-processing

units to implement all array accessing functions needed for

APL,along with all workspace functions. These two units make

up the DMU which this thesis has concentrated upon.

The DMU meets an objective of this thesis in that it

combines all memory functions into a single processing

module. A complete set of APL selection functions is

implemented within the DMU producing a very "smart" memory

machine.

The DMU, in providing a11 memory functions, essentially

reduces the task of implementing an APL system to syntactic

and scalar processing. This combined with MAPLE'S simple

multiprocessor network allows rapid developement of a

complete APL machine.

DMU Performance 137

The DMU is designed so that the operation "Beating"

is highly developed with the possibility of "Drag Along"

(section 2 . 4) . These processes allow APL statements to imply

a high degree of array restructuring without actually

accessing the arrays in question. Usually one need only

access an array directly when a scalar dyadic operation is

to be done. This follows since, unless a storage state zero

array must be built as a temporary during statement

execution, most selection operations can be described via

storage state one transformations (see section 2 . 4) .

An important feature of the DMU is its ability to allow

multiple simultaneously accessed arrays. This is accompanied

by the DMU's ability to accept instructions while current

accesses are taking place. This allows individual units

connected to the DMU to access arrays at their own speed,

without tying up the system bus or the DMU. An important.

consequence of this is the ability for the units to execute

tasks concurrently.

To demonstrate the principle, consider the case of the

APL primitive Exponential. It is unreasonable to expect this

scalar operation to run anywhere near memory speed.

Theref ore while this instruction is proceeding, an

instruction prefetch can occur along with a set up for the

next array operation. The ability to multiplex the DMU's

function leads to ease in pipelining.

With t h e s e a b i l i t i e s , , t h e DMU c a n e f f e c t i v e l y p r w i d e

v i r t u a l a r r a y a c c e s s , a t b e t t e r t h a n memory s p e e d , t o any

s i n g l e a r r a y o r p r o v i d e any a r r a y component, t o any u n i t

c o n n e c t e d , a s f a s t a s r e q u e s t e d . The n e t e f f e c t i s t h a t APL

s t a t e m e n t s can proceed a t t h e e f f e c t i v e s c a l a r u n i t speeds

of t h e slowest u n i t o r o p e r a t i o n t h a t needs to be done.

I n Appendix 4 , s e v e r a l APL s t a t e m e n t s a r e broken down

i n t o t h e i r s t e p s to show how a c o n v e n t i o n a l sys tem would

e x e c u t e them a s compared to t h e i r e x e c u t i o n u s i n g t h e DMU

(and t h e o t h e r u n i t s of t h i s sys tem) . The s t e p s i n t h e s e

examples show t h e d i f f e r e n c e s i n memory a l l o c a t i o n p r o c e s s e s

d u r i n g s t a t e m e n t e x e c u t i o n . The c o n c l u s i o n t o be made i s

t h a t t h e r e i s a s i g n i f i c a n t r e d u c t i o n i n t h e number of

r e q u e s t s t o memory when t h e a r c h i t e c t u r e of t h i s t h e s i s is

used.

The performance of t h e MMU is v e r y dependant upon

a p p l i c a t i o n , t i e d to t h e t y p e , s i z e , and use of a r r a y s by

t h e u s e r . I n MAPLE'S d e s i g n f o r memory management t h e r e i s

v e r y l i t t l e w e r h e a d i n p r o c e s s i n g time f o r a r r a y a l l o c a t i o n

o r d e - a l l o c a t i o n . MAPLE'S a r c h i t e c t u r e a l l o w s changes i n

some of t h e mechanisms of memory management w i t h o u t

a f f e c t i n g t h e r e s t of t h e sys tem so i f memory managment

becomes t roublesome c o r r e c t i o n s c a n s t i l l be i n t r o d u c e d .

The performance of , the OMU (array access and

transformations) is related to the following properties:

(1) DMU instruction time

(2) Access setup time

(3) Component access rate.

The selection instructions will be based upon the

algorithms given in Appendix 2. These have time complexities

linear in the Rank of the array operated on. This results in

the high performace of array structural operations. Special

cases of selection operations do require that all of an

array's components be accessed, so performance would be

based on (3).

Most of the DMU instructions mentioned in Appendix 3

are either of the form abwe or are simple instructions only

requiring constant time for execution. Such are "Setup",

"Copy", "Read" etc. "Setup" triggers access of the specified

array for data streaming between units, only requiring that

a valid descriptor be loaded into the specified register

file. Therefore the access setup time is constant in time.

The only setup instruction which requires a non

constant time complexity is "Access", which loads a register

file based upon a given array name. Access is linear in Rank

as a descriptor must be mwed from main memory to local

store of the OMU.

The important performqnce factor of the DMU is (3) ,
the time required to locate and fetch/store the next

component. The access algorithm of the OMU will be based

upon "AC3" of Appendix 2. Because of AC3's importance its

operation will be described fully (for the analysis all time

will be normalized to Main Memory Cycle time-MMC with any

microinstruction timing approximated as 1/2 MMC).

AC3 is based upon two loops, which are executing

concurrently, namely LP1 and LP2. LP2 is responsible for the

generation of addresses along the current row (given to main

memory for a pipelined memory access). This loop is composed

of three microinstructions all of which can be executed in

parallel, resulting in each address generation iteration of

LP2 requiring only 1/2 MMC (less than the required 1 MMC to

keep up with memory) .

While LP2 is running LP1 is updating the offset to the

next row of the array (if a scalar or vector LP1 never

runs). LP1 has the capablity of updating this row offset at

address generation rates IF the next row is within the

current plane. Thus address generation into Matrices can

proceed at memory speeds.

When there is a need to change planes of an array LP1

must perform l+Rank addition operations to update the row

offset. Now as most arrays have Dimensions greater than

their Rank this overhead in changing planes will be small

compared to time spent within the plane.

7.2 Performance of the EXU & ALU 141

When the design of the EXU (section 6.2) was discussed

it was mentioned that the EXU's local store would be used

for caching executing APL functions and parameters. This

reduces the number of memory accesses to a minimum for the

interpretation of code strings, and allows the EXU to

preprocess instructions. These two factors will guarantee

efficient interpretation of the internal APL code.

The actual performance of the EXU can not be given here

as its exact internal architecture has not been set.

However, given MAPLE'S architecture the flexibility to allow

even an incremental compiler within the EXU is possible.

The ALU will ultimately be a microprogrammed micro-

processor capable of scalar speeds on the order of main

memory speeds, however, for prototyping there are many

suitable NMOS processors which offer high performance

(I432***, MC68000). Some operations (boolean OR etc) can run

at better than main memory speeds implying that for these

better than 3 million instructions per second rates can be

achieved (based on 330 nanosecond memory).

Table

4341-LO1 rl

indicated

7.2.1 gives the, component times for an IBM

unning APL. These were obtained by performing the

scalar dyadics and measuring the average time to

execute for 10000 elements. The average times for all the

numeric scalar dyadics is on the order of 10 microseconds

(per element). For integer PLUS,MAPLE requires only 6 memory

cycles per element which at a modest 330 nano-second cycle

time is 2 microseconds per element (a factor of 5 better

than the 4341) .

The abwe is only to demonstrate that all general

purpose computers are inferior to an array streaming machine

as to the efficiency of vector operations. The array

processor has only one instruction to execute per array

while the general purpose machine may have several

instructions to execute per array component.

The IOU will not be discussed as its performance is

not important to the study of MAPLE due to its low expected

utilization. Since the IOU can cache data for I0 it does not

present any overhead to non I0 APL execution.

TABLE 7 . 2 . 1
4 3 4 1 ALU T I M E S (P E R CPMPONENT)

X+Y = > 8 . 7 ~ ~ 6 SECONDS
X-Y = > 8 . 3 ~ ~ 6 l 1

XxY = > 1 3 . 8 3 - 6 l 1

X+Y = > 1 7 . 2 ~ ~ 6 l 1

X+Y = > 7 . 3 ~ ~ 6 SECONDS
X-Y = > 7 . 0 ~ - 6 l l

xxy = > 1 0 . 9 6 - 6 l 1

XiY = > 1 6 . 3 ~ - 6 l 1

X A Y = > 2 . 5 ~ - 6 SECONDS
Xvy = > 2 . 5 ~ ~ 6 l 1

Summary 1 4 4

The goal of t h i s t h e ~ i s was t o i n v e s t i g a t e a possible

a r c h i t e c t u r e f o r a m a c h i n e capable of e f f i c i e n t APL

e x e c u t i o n . T h i s t a s k was b r o k e n u p i n t o a r o u g h d e s c r i p t i o n

of t h e o v e r a l l m a c h i n e a n d a i n d e p t h s t u d y o f t h e f u n c t i o n s

o f i t s memory a r c h i t e c t u r e .

The r e s u l t was MAPLE a n d i ts f o u r s u b u n i t s : The EXU,

a l a n g u a g e e x e c u t o r ; The ALU, a scalar a r i t h m e t i c processor;

The I O U , a n i n p u t o u t p u t p r o c e s s o r ; And t h e DMU w h i c h

prw i d e s a l l memory f u n c t i o n s .

MAPLE'S m o d u l a r a r c h i t e c t u r e a l l o w e d t h e p a r t i a l

s e p a r a t i o n o f t h e f o u r u n i t s ' i n t e r a c t i o n s l e t t i n g

c o n c e n t r a t i o n f a l l o n t h e f u n c t i o n a l i t y of t h e DMU. A

c o m p l e t e APL w o r k s p a c e e n v i r o n m e m t was d e s c r i b e d w i t h i n t h e

DMU, made u p of memory management a n d a c c e s s i n g f u n c t i o n s .

A complete set o f d a t a s t r u c t u r e s were d e v e l o p e d f o r ,

t h e DMU to i m p l e m e n t t h e w o r k s p a c e . I n c l u d e d was a s y s t e m o f

a r r a y d e s c r i p t o r s w h i c h a l l o w s d e f e r r i n g most s e l e c t i o n

o p e r a t i o n s u n t i l a c t u a l d a t a n e e d b e a c c e s s e d . T h i s a l o n g

w i t h c o n c u r r e n t memory management makes a v e r y e f f i c i e n t

memory a r c h i t e c t u r e .

Work still remains in, producing an actual functioning

DMU. This involves obtaining suitable hardware to implement

the algorithms and concepts described in this thesis. It is

hoped that a complete DMU could be integrated into a single

monolithic silicon chip. In this way a broad set of array

processing systems could cost effectively utilize a DMU.

When a complete working DMU has been produced, the next

step would be the construction of the scalar ALU. As a

substantial number of I.C. manufacturers are currently

working on monolithic arithmetic units,it is hoped that this

hardware will soon be available.

The remaining tasks in MAPLE'S construction are the

design and building of the IOU and EXU. It is hoped that

satisfactory performance can be obtained through the use of

existing 16 bit microprocessors. If it ever becomes

practical to produce single ICs for these functions then

MAPLE could be realized as a modular four chip set.

A P P E N D I X 1

T H I S A P P E N D I X G I V E S A B R I E F D E S C R I P T I O N OF T H E F E A T U R E S O F
T H E A P L L A N G U A G E . T H E F I 4 S T T A B L E G I V E S T H E S Y N T A X F O R
E X P R E S S I O N E V A L U A T I O N U S E D I N MOST A P L I N T E R P R E T E R S , W H I L E
T H E F O L L O W I N G T A B L E G I V E S A FEW E X A M P L E S O F T H I S S Y N T A X .

TABLE A . l . l
I

APL EXPRESSION SYNTAX

EXPRESSION: NOBJECT
CONSTANT
NILADIC FUSER
MFUNCTION EXPRESSION
EXPRESSION DFUNCTION EXPRESSION
(E X P R E S S I O N)
E X P R E S S I O N C I E X P R E S S I O N I

NOBJECT:

CONSTANT:

FUSER:

MFUNCTION:

DFUNCTION:

A NAMED OBJECT

AN E X P L I C I T CHARACTER OR NUMERIC
SCALAR OR VECTOR

A USER DEFINED FUNCTION

MONADIC FUSER
MONADIC P R I M I T I V E
SDPRIM /
SDPRIM \
SDPRIM I C I E X P R E S S I O N I
SDPRIM \ C I E X P R E S S I O N I
ROTATE C I E X P R E S S I O N I

DYADIC FUSER
DYADIC P R I M I T I V E
SDPRIM . SDPRIM
0 . SDPRIM
I D P R I M C I E X P R E S S I O N I

I E X P R E S S I O N : EXPRESSION
IEXPRESSION ; IEXPRESSION
NULL (EMPTY E X P R E S S I O N)

SDPRIM: A SCALAR DYADIC P R I M I T I V E FUNCTION

IDPRIM: AN INDEXABLE DYADIC P R I M I T I V E FUNCTION
AIDPRIM AND SDPRIM ARE D I S J O I N T S E T S

TABLE A .\ .2

PROPOSED APL SYNTAX
5

EXPRESSION: NOBJECT
CONSTANT
FUSER
MFUNC EXPRESSION
EXPRESSION DFUNC EXPRESSION
(EXPRESSION)
EXPRESSION CIEXPRESSIONI

NOBJECT:

CONSTANT:

FUSER:

FUNC:

MFUNC:

DFUNC:

A NAMED OBJECT

AN EXPLICIT GRAPHIC OR NUMERIC ARRAY

A USER DEFINED FUNCTION

FUSER
FUSER [IEXPRESSIONI
PRIMITIVE
PRIMITIVE [IEXPRESSION]

FUN C
FUNC MOP
FUNC MOP CIEXPRESSION]

FUNC
FUNC DOPD FUNC
0 DOPD FUNC
A ' 0 IMPLIES DEFAULT LEFT FUNC ARGUMENT

IEXPRESSION: EXPRESSION
IEXPRESSION; IEXPRESSION
NULL (EMPTY EXPRESSION)
AIEXPRESSION CAN BE INDIRECTLY
AREPLACED BY THE INDEX PRIMITIVE

MOP:

DOPD:

MONADIC SYNTAX MONADIC OPERATORS
' / \ ' ONLY SUCH OPERATORS DEFINED
AT PRESENT

DYADIC SYNTAX DYADIC OPERATORS
'.' ONLY SUCH DEFINED OPERATOR
AT PRESENT

TABLE A.1.3

DYADIC P R I M I T I V E S
(X + Y) * 3 . 1 A * +

3 1 2 Q X t Y p l Z A Q t p

MONADIC P R I N I T I V E S

DYADIC FUNCTIONS

(X PLUS Y) DEXP 3 . 1
MTRANSPOSE 3 2 DRHO MRHO IOTA Z

VZ+L PLUS R
Z+L+ R

V
VZ+L DEXP R

Z+L*R+l. 0 0 1
v
VZ+L DRHO GEORGE

ZcLpCEORGE
v
VZ+MRHO T

Z+pT
V

OPERATORS
AOPERATORS ARE EITHER UNIVALENT OR DIVALENT
A (T H E NUMBER OF FUNCS THEY TAKE AS ARGUMENTS)

+ . X A . I S DIVALENT
0 . * X A O . I S UNIVALENT

ABOTH THE ABOVE MUST BE USED IN A DYADIC
ASYNTAX MODE, AND ALL P R I M I T I V E S MUST BE
ASCALAR DYADICS

+ /X A / I S UNIVALENT
z\X A \ I S UNIVALENT

ABOTH THE ABOVE MUST BE USED IN A MONADIC
ASYNTAX MODE, AND ALL P R I M I T I V E S MUST BE
ASCALAR DYADICS

APPENDIX 2 \ so

A T H I S APPENDIX CONTAINS A GENERAL DESCRIPTION O F THE METHOD
A BY WHICH ARRAYS WILL BE, ACCESSED AND TRANSFORMED. EXAMPLES
A O F ALGORITHMS A N D THEIR RESULTS WILL BE SHOWN.

A FOR THE PURPOSES O F T H I S SECTION A S S 1 DESCRIPTOR WILL
A BE REPRESENTED AS A VECTOR O F (1 + 2 x p p A R R A Y) ELEMENTS.
A THE FIRST ELEMENT BEING THE BASE ADDRESS INTO MEMORY
A (ASSUMED TO BE WORD ADDRESSABLESAND ALL COMPONENTS
A HAVING WORD LENGTHS, FOR EASE I N DEMONSTATION).
A THE NEXT ppARRAY ELEMENTS WILL BE THE ELEMENTS O F pARRAY,
A A N D THE LAST ppARRAY ELEMENYS WILL BE THE JUMP VALUES.
A THROUGHOUT T H I S SECTION O I O = O FOR S IMPLICITY .

X W O 3 2 2 1
A X D I S THE S S 1 DESCRIPTOR FOR X

A ' A C l ' I S BASIC ALGORITHM FOR ACCESSING ARRAYS TO PRODUCE A
A SEQUENTIAL STREAM OF COYPONENTS FROM MEMORY. I T USES THE
A PRINCIPLES OF THE JUMP VECTOR AND ' + . x 9 TO GENERATE V A L I D
A ADDRESSES. HOWEVER, BECAUSE OF THE NEED TO PERFORM ppARRAY
A MULTIPLICATIONS TO GENERATE A SINGLE ADDRESS I T I S A POOR
A CHOISE AS A N ALGORITHM TO IMPLEMENT IN MICROCODE.
A T H I S ACCESS ALGORITHM TAKES AS I T S ARGUMENT A S S 1
A DESCRIPTOR AND RETURNS AS I T S RESULT AN ARRAY OUT OF MEMORY
A (A GLOBAL) AS DESCRIBED BY THE S S 1 DESCRIPTOR.

A THERE ARE FOUR GLOBAL VECTORS WITHIN THE ACCESS ALGORITHMS:
A ' C N T R , R H O , T , J V EACH OF WHICH HAVE LENGTHS EQUAL TO THE
A RANK OF THE ARRAY TO BE ACCESSED. THESE VECTORS FORM PART
A OF THE OMU'S LOCAL STORE. THE ROUTINE ' I N I T ' I N I T I A L I Z E S
A THEM.

VZ+ACl D ; R ; BASE; J ; T ; CNTR; RHO
I N I T
A

A DC1 MODIFIES T TO INDICATE THE NEXT
A COMPONENT AND DECREMENTS CNTR TO CONTROL
A THE ACCESS OF THE ARRAY. DC1 RETURNS 1
A I F F THE ENTIRE ARRAY HAS BEEN ACCESSED.
A

LP:+LPr D C I R O Z + Z ,MEMORY[BASE+ J + . TI
A
A Z I S THE RAVEL OF THE ARRAY ACCESSED.
A I T REPRESENTS THE DATA STREAM FOR T H I S
A ARRAY.
A

Z+RHOpZ
v

V I N I
BASE+D[O] O R + (- ~ + P D) + ~ o ' R I S THE RANK OF THE ARRAY'
RHO+R+lCD 0 J+(- R) + D o q S E P A R A T E OUT RHO AND JUMP'
CNTR+RHO oT+RpO 0 ' I N I T I A L I Z E CNTRS AND T'
R+ R- 1 oZ+10 o ' R INDICATES LAST A X I S '
A
A T I S I N I T I A L I Z E D TO REPRESENT THE F I R S T ELEMENT
A OF THE ARRAY'S RAVEL.

v

A 'AC2 ' HAS THE PROPERTY THAT WHILE GENERATING ADDRESSES
A INTO MEMORY THE ONLY SC4LAR FUNCTIONS REQUIRED ARE +,- .
A T H I S HAS S I G N I F I C A N T ADVANTAGES AS FAR AS THE MICROLEVEL
A HARDWARE NEEDED TO IMPLEMENT T H I S ALGORITHM.

VZcAC2 D ; R ; RHO; J ; T ; CNTR; BASE; OFFSET
I N I T
OFFSET4BASE oqADDRESS OF F I R S T COMPONENT'
A
A T [R l REPRESETS AN OFFSET INTO THE CURRENT
A ROW POINTED TO BY ' O F F S E T ' , ' O F F S E T + T [R I '
A I S THEN THE ADDRESS OF THE NEXT SEQUENTIAL
A ELEMENT OF THE DATA STREAM. NOTE THAT ' R '
A I S A CONSTANT SCALAR TERM FOR THE NUMBER O F
A AXES THE ARRAY HAS.
A
A THE FUNCTION DC2 RETURNS 1 I F F THE ARRAY'S
A ACCESSING I S COMPLETE. I T ALSO MODIFIES
A BOTH T AND OFFSET TO COMPUTE THE NEXT
A ADDRESS.
A

LP:+LPr I - DC2 RO Z+Z,MEMORY[OFFSET+TCRI 1
ZtRHOpZ

v

0 'RETURN I F A LL AXE ED' PDAT
T [A l + T [A l + J [A l o t N E X T OFFSET INTO ROW'
+O ~ I - F + O = C N T R [A] + C N T R [A I -1o'RETURN I F ROW -FINISHED'
T ~ A l + O ~ C N T R ~ A ~ + R H O ~ A ~ 0 ' R E S E T ROW PARAMENTERS'
F4 DC2 A-1 o'UPDATE NEXT ROWt
OFFSET+BASE++ / T 0 'UPDATE OFFSET TO ROW'

v

R AC3 I S A REFINEMENT OF AC2. I T SEPARATES ADDRESS GENERATION
A INTO A VECTOR GENERATIO$ AND AN UPDATE FOR ARRAYS. T H I S
A ALLOWS EXTREMEMLY FAST ADDRESS GENERATION FOR VECTORS WITH
A PARALLEL COMPUTATION OF THE PARAMEMTERS FOR HIGHER RANKS.

VZ+AC3 D ;RHO; T ; CNTR; J ; BASE; ADDRESS; R
I N I T
A
A AC3 HAS TWO NESTED LOOPS. LP2 IN LP1.
A LP2 CALCULATES ADDRESSES FOR SEQUENTIAL
R ACCESS FOR THE CURRENT ROW OF AN ARRAY.
A LPI DOES THE UPDATES TO ALLOW ACCESSING
R OF THE NEXT ROW. T H I S I S DONE AT THE
A START OF THE LOOP AND AT THE END WHERE
A UPDATE I S CALLED. UPDATE RETURNS 0 I F F
A THE ARRAY'S ACCESS I S COMPLETE .
A

LPl:ADDRESS+BASE++/T oCNTR[Rl+RHO[RI
LP2 : Z+Z,MEMORY[ADDRESSl

ADDRESS+ADDRESS+ J C R]
+LP~~IO%CNTR[R]+CNTR[RI-~
+ L m I U P D A T E R-i
ZbRHOpZ

v

VF+UPDATE A
+Oxl-F+A20 0 'RETURN I F ALL AXES UPDATED'
TCAl+TCAI+JC A] o tJUMP ALONG CURRENT A X I S '
+ O ~ I O Z C N T R [A] + C N T R [A I - ~ ~ ' R E T U R N I F -FINISHED CURRENT A X I S '
T [A] + O o CNTR[Al+RHO[AI 0 ' R E S E T PARAMETERS FOR CURRENT A X I S '
FtUPDATE A-1 otUPDATE NEXT A X I S '

v

A SOME O F THE ALGORITHMS WHICH FOLLOW WERE F I R S T DESCRIBED BY
A P.ABRAMS I N H I S T H E S I S (CHAPTER 3) . T H E I R BASIC FORM I S THE
A SAME BUT THEY HAVE BEEN MODIFIED TO OPERATE O N S S 1 DESCRIPTORS.
A THESE ALGORITHMS MODIFY S S 1 DESCRIPTORS SO THAT AN ACCESS
A ALGORITHM CAN PRODUCE THE DESIRED RESULT.
A ALL ARGUMENTS ARE ASUMED TO BE WITHIN T H E I R PROPER DOMAINS.

ADYADIC TRANSPOSE

VRD+X TRANSPOSE D; RHO; RANK; J ; I
A X I S VALID LEFT ARGUMENT
A D I S S S 1 DESCRIPTOR
RD+Do R A N K + (- ~ + ~ D) + ~
RHO+RANK+lSDo J+(l+RANK)SD
I + O oRANK+l+r /X o ' T H E LRGEST VALUE IN X G I V E S RANK'

LP: RDCI+1 l+L / (I = X) /RHO oVDETERMINE ITH RHO VALUE'
R D C I + I + R A N K I + + / (I = X) / J ' D E T E R M I N E I T H J U M P V A L U E '
+LPr I R A N K > I+I+I
RD+(1+2 xRANK)+RD o 'DROP OFF EXCESS FROM OLD D'

v

AC3 X D + O 3 4 4 1
0 1 2 3
4 5 6 7
8 9 1 0 1 1

AC3 1 0 TRANSPOSE X D
0 4 8
1 5 9
2 6 1 0
3 7 1 1

AMONADIC TRANSPOSE

VRD+ MTRANSPOSE D; RANK
A D I S S S 1 DESCRIPTOR
RD+D O R A N K + (- ~ + ~ D) + ~
RDC i + t R A N K I + R A N K + I S D
RDC I + R A N K + I R A N K] + + (RANK) S D

v

AC3 MTRANSPOSE X D
0 4 8
1 5 9
2 6 1 0
3 7 1 1

AMONADIC ROTATE

VRD+I MROTATE D; RHO; RANK; J
A I I S A X I S OF ROTATION
RD+Do R A N K + (- ~ + ~ D) + ~ 0 ' R D I S THE SAME S I Z E AS D'
RHO+RANK+lSDo J+(l+RANK)SDo 'EXTRACT RHO, J FROM D'
R D [o] + D C O] + J [I] ~ R H O [I ~ - ~ o'MODFIY OFFSET'
R D C ~ + I + R A N K I + - J C I I o'MODIFY ITH JUMP VALUE'

A C 3 0 MROTATE X D
8 9 1 0 11
4 5 6 7
0 1 2 3

ANO O V E R T A K E S ALLOWED

VRD+X T A K E D ; RHO; R A N K ; J
AX I S A V A L I D L E F T ARGUMENT
RD+Do R A N K + (- l + p ~) + 2
R H O + R A N K t l + D o J+(l + R A N K) + D
R D [O] + D [O ~ + J + . ~ (X < O) ~ R H O - ~ X o ' M O D I F Y O F F S E T / B A S E '
R D C ~ + I R A N K I + I X 0 ' R E P L A C E RHO V A L U E S '

V

A C 3 2 -3 T A K E X D
1 2 3
5 6 7

VRD+X DROP D ; R H O ; R A N K ; J
AX I S V A I L D L E F T ARGUMENT
RD+Do R A N K + (- l + p ~) + 2
R H O + R A N K ~ I + D O J+(I + R A N K) + D
RDCO]+DL 0 l + J + . x (X > O) x (X ' M O D I F Y B A S E / O F F S E T t
RDC l + t R A N K I t R H O - IX 0 ' R E P L A C E RHO V A L U E S '

v

A C 3 0 -2 DROP X D
0 1
4 5
8 9

A GENERATE I S IDENTICAL TO AC2 I N I T S FORM WITH THE ONLY
A DIFFERENCE BEING THAT XNSTEAD OF GENERATING ADDRESSES
A I T PRODUCES ACTUAL COMPONENTS WITHOUT ACCESSING MEMORY.
A A LARGE C L A S S OF ARRAYS CAN BE DESCRIBED SO THAT N O REAL
A MEMORY I S REQUIRED FOR T H E I R STORAGE REGARDLESS OF T H E I R
A APPARENT S I Z E S . WHAT I S REQUIRED I S EQUIVALENT TO A S S 1
A DESCRIPTOR I N FORM.
A
A GENERATE CAN BE USED TO PRODUCE ONLY NUMERIC ARRAYS.

V Z + GENERATE D ;RHO; R ; J ; BASE; T ; OFFSET
I N I T
OFFSETtBASE

LP:+LPr I-DC2 R oZ+Z,OFFSET+T[Rl
Z+RHOpZ
A GEN USES THE SAME 'DC2' ROUTINE TO UPDATE
A OFFSET AND T AS DOES ' A C 2 ' .

v

GENERATE XD+O 4 5 2 0 2 . 0 1
0 2 . 0 1 4 . 0 2 6 . 0 3 8 . 0 4

2 0 2 2 . 0 1 2 4 . 0 2 2 6 . 0 3 2 8 . 0 4
4 0 4 2 . 0 1 4 4 . 0 2 4 6 . 0 3 4 8 . 0 4
6 0 6 2 . 0 1 6 4 . 0 2 6 6 . 0 3 6 8 . 0 4

GENERATE MTRANSPOSE X D
0 . 0 0 2 0 . 0 0 4 0 . 0 0 6 0 . 0 0
2 . 0 1 2 2 . 0 1 4 2 . 0 1 6 2 . 0 1
4 . 0 2 2 4 . 0 2 4 4 . 0 2 6 4 . 0 2
6 . 0 3 2 6 . 0 3 4 6 . 0 3 6 6 . 0 3
8 . 0 4 2 8 . 0 4 4 8 . 0 4 6 8 . 0 4

A ' E S C ' PERFORMS THE TASK OF EXTENDED SCALAR COMFORMIBILITY
A TEST AND GENERATION ON,TWO S S 1 DESCRIPTORS, GIVEN AS
A ARGUMENTS. THE RESULT I S A SINGLE ARRAY BEING THE LAMINATION
A OF THE TWO EXTENDED DESCRIPTORS. THE VECTOR I INDICATES THE
A AXES OVER WHICH THE EXTENSION I S TO OCCUR.

VRDS+ YD ESC XD; XR; Y R ; XRHO; YRHO; X J ; Y J ; T
AEXTENDED SCALAR CONFORMIBILITY
ABETWEEN S S 1 DESCRIPTORS YD,XD
X R + (- ~ + P X D) + ~ O Y R + (- ~ + ~ Y D) + ~ 0 ' X R , Y R ARE X ,Y RANKS RESPECTIVELY'
XRHO+XR+lf X D YRHO+YR+l+YD 0 'EXTRACT RHO INFO '
XJ+(l + X R) f X D 0 Y J + (l + Y R) + Y D oqEXTRACT JUMP VECTORS'
TCII+O 0 T + (X R r Y R) p l o ' I G I V E S AXES TO CONFORM'
o m (X R > Y R) / 'YR+XRo Y R H O C I l + l o YRHO+T\YRHOo YJ+T\YJt
o m (Y R > X R) / (XR+YRo X R H O C I I f l o XRHO+T\XRHOo X J f T\XJ'
A
A THE ABOVE GUARENTEES THAT THE RANKS ARE NOW EQUAL
A AND IN THE PROCESS, MODIFIES RHO SO THAT R H O ' C I I ARE 1
A AND J ' C I] ARE 0 .
A

X J [((~ = X R H O) A ~ Z Y R H O) / I X R] + O 0 ' R E S E T JXCKSl WHERE NEEDED'
Y J [((~ = Y R H O) A ~ % X R H O) / I Y R ~ + O o ' R E S E T J Y C K S] WHERE NEEDED'
A
A N O W THAT THE ARRAYS HAVE THE SAME RANK CHECK FOR
A THE RHO VALUES BEING EQUAL OR SOME TO BE '1'.
A
+ E R R ~ I - A / v ~ ~ = (% ~ T) / T + ((~ , X R) ~ X R H O) ~ (~ , Y R) ~ Y R H O
XRHO+YRHO+XRHO r Y R H O O ' R H O S ARE M A D E T H E S A M E '
+OORDS+(~ , ~ + ~ ~ X R) ~ X D C O I , X R H O , X J , Y D ~ O I , Y R H O , Y J

ERR: ' ERROR- NOT SCALAR CONFORMABLE'
v

XD+O 3 1 1 1
YD+O 3 4 4 1
I f 0
YD ESC X D

0 3 4 1 0
0 3 4 4 1

A THESE ARE MISCILLANEOUS FUNCTIONS USEFUL I T CONVERTING FROM
A SSO TO S S 1 AND PERFORMIflG SOME SIMPLE OPERATIONS SUCH AS
A RAVEL.

VRD+ RAVEL D; RHO; RANK
R D + ~ ~ - ~ + D O R A N K + (- ~ + ~ D) + ~
RD[0]+DL 0 1
R D [l] + x / R A N K + l + D
A GIVEN A S S 1 DESCRIPTOR THAT I S
A ESSENTIALLY A VECTOR RETURN A
A A NEW DESCRIPTOR OF RANK 1
A NOTE THAT NOT ALL S S 1 ARRAYS
A CAN BE RAVELLED BY T H I S METHOD.

v

VRD+ CONVERT D
RD+O,D,l+x\D.l
A CONVERTS SSO RHO INFORMATION
A INTO A S S 1 DESCRIPTOR.

v

VRD+X RESHAPE D
R D + D [O] , X , l + x \ X , l
A FOR S S 1 ARRAYS WHICH ARE ESSENTIALLY
A VECTORS T H I S ALGORITHM W I L L PERFORM
A RESHAPE FUNCTION. T H I S ROUTINE W I L L
A NOT PERFORM CYCLIC RESHAPING.

v

APPENDIX 3

T H I S APPENDIX CONTAINS TABLES OF APL STATEMENTS BROKEN D O W N
INTO STEPS ILLUSTRATING Y O W THE STATEMENTS ARE EXECUTED.
EACH STEP I S A SINGLE FUNCTION (E I T H E R MONADIC OR DYADIC)
THAT GENERATES A TEMPORARY ARRAY. THESE ARRAYS CAN BE REAL
OR VIRTUAL OBJECTS OR REFERENCES O N SOME STACK DEPENDING
UPON THE SYSTEM EXECUTIhlG THE STATEMENTS. THESE D I S T I N C T
TEMPORARIES ARE GIVEN NAMES T I T 2 T 3 ETC. AND ARE SHOWN IN
COLUMN 1 OF EACH TABLE.

A TABLE'S SECOND COLUMN INDICATES WHETHER OR NOT THE TEMPORARY
RESULT REQUIRES MEMORY ALLOCATION (IN SYSTEMS WHICH D O NOT
IMPLEMENT S S 1 AND REFERENCING OPERATIONS) . THE THIRD COLUMN
INDICATES TIlE MEMORY REQUIREMENTS FOR MAPLE'S
IMPLEMENTATION. THE TERM ' A' INDICATES THAT A NEW ARRAY
RESULTED WHILE 'NA ' INDICATES N O NEW ARRAY.

THE TERM 'BOTTLENECK' I S USED WITHIN THE TABLES TO INDICATE
THAT THE OPERATION REQUIRES A S IGNIFICANT AMOUNT OF TIME TO
EXECUTE.

IMPLIED

Tl+Y
T l + p T 1
T l 4 1 T l
T2+Y
T3+X
T 2 4 T 3 0 . = T 2
T3+X
T3+pT3
T ~ + I T ~
~ 4 + - 1
T3+T4+T3
T2+T3@T2
T 2 + ~ f T 2
T l + T 2 / T 1

CONVENTIONAL

NA
A
A BOTTLENECK
NA
NA
A BOTTLENECK
NA
A
A BOTTLENECK
A
A
A BOTTLENECK
A BOTTLENECK
A BOTTLENECK

PROPOSED

NA
NA
NA
NA
NA
A BOTTLENECK
NA
NA
NA
A
A
A BOTTLENECK
A BOTTLENECK
NA

IMPLIED

Tl+O
T2+N
T 3 t l
T 2 t T 3 4 T 2
N+T2
T l + T 2 p T 1
T24-1
T l + T 2 , T 1
T2+N
T3+N
T 2 + T 3 , T 2
T l t T 2 p T 1

AEXAMPLE
I + (N , N) p l , (N ~ l + N) p O

,
CONVENTIONAL

(R E L E A S E N)
BOTTLENECK

BOTTLENECK

BOTTLENECK

PROPOSED

(P O S S I B L E RELEASE N)

BOTTLENECK

BOTTLENECK

I

I M P L I E D C O N V E N T I O N A L P R O P O S E D

N A N A
A N A
A B O T T L E N E C K A B O T T L E N E C K
A A
A A
N A N A
A N A
A N A
A A
A A
A A

I M P L I E D C O N V E N T I O N A L PRO POSED

N A
B O T T L E N E C K N A

N A
B O T T L E N E C K A B O T T L E N E C K

A
B O T T L E N E C K N A

N A
B O T T L E N E C K N A

N A
B O T T L E N E C K A B O T T L E N E C K

Appendix 4 DMU I n s t r u c t i o n s

A l l DMU i n s t r u c t i o n s have 6ne of t h e f o l l o w i n g forms:

CODE Rd,Rs,m,m; D
CODE R s ,m,m; D

where CODE is a 6 b i t encoding of t h e i n s t r u c t i o n (w i t h i n
t h e 16 b i t s of t h e i n s t r u c t i o n) . Rd,Rs s p e c i f y one of 16
r e g i s t e r d e s c r i p t o r f i l e s (h o l d i n g a comple te SS1
d e s c r i p t o r) . Rd is b o t h a s o u r c e and d e s t i n a t i o n f o r t h e
o p e r a t i o n , w h i l e R s is u s u a l l y o n l y a s o u r c e . The t w o f l a g s
' m ' s p e c i f y o p t i o n a l modes of o p e r a t i o n t h a t an i n s t r u c t i o n
may have. The pa ramete r ' D ' s p e c i f i e s any o p t i o n a l words of
i n f o r m a t i o n t h a t may be n e c e s s a r y and which c a n ' t be
s p e c i f i e d w i t h i n t h e i n s t r u c t i o n word.

[l] COPY Rd,Rs
The d e s c r i p t o r i n r e g i s t e r R s is c o p i e d i n t o ~ e g i s t e r f i l e
Rd .

[2] SETUP Rs , s s ,u
The a r r a y s p e c i f i e d by r e g i s t e r R s is a c t i v a t e d i n to t h e
s t r e a m mode, ss-selects wether t h e a r r a y i s a s i n k or s o u r c e
of d a t a . u -selects which u n i t t h e d a t a exchange w i l l t a k e
p l a c e wi th .

131 ACCESS Rd;N
Rd i s t h e r e g i s t e r to which t h e d e s c r i p t o r f o r t h e a r r a y is
l o a d e d i n t o . N- is t h e name of t h e a r r a y t h a t a c c e s s is
r e q u e s t e d f o r . R e t u r n s t h e Rank-Type word f o r t h e a r r a y .

[4] SCALAR CONFORM Rx ,Ry; I
R e g i s t e r s Rx,Ry a r e modi f i ed (i f p o s s i b l e) to r e f l e c t
extended s c a l a r c o n f o r m a b i l i t y of t h e i r r e s p e c t i v e a r r a y s .
I- s p e c i f i e s any a d d i t i o n a l a x i s p a r a m e t e r s r e q u i r e d i f Rank
X does n o t e q u a l Rank Y .

[5] NAME R s
Re tu rns t h e name f o r t h e a r r a y i n d i c a t e d by r e g i s t e r R s .
The DMU a lways m a i n t a i n s a naming f o r a l l a r r a y s .

[6] ALLOCATE R s
R e g i s t e r R s i m p l i e s an a r r a y s o t h e DMU a l l o c a t e s s t o r a g e
f o r an a r r a y s i m i l a r t o R s . I t does n o t m a t t e r i f R s is a
v a l i d d e s c r i p t o r f o r an a s s i g n e d a r r a y , A new a r r a y w i l l
a lways be a l l o c a t e d .

[7] READ R s ; I
R e t u r n s t h e I t h component of t h e d e s c r i p t o r R s ,

[81 WRITE R s ; I , D
M o d i f i e s t h e I t h component of R s wi th t h e d a t a g i v e n
f o l l o w i n g index.

[91 REDUCTION Rd , R s ; I
Register Rd is made to represent the modified descriptor
from R s for the reduction operator. I- spec i f ies the axis of
the reduction.

[l o] MTRANSPOSE R s
Register R s is modified t o r e f l ec t a monadic array transpose
operation.

[ll] MROTATE R s ; I
Register R s is modifies t o r e f l ec t a monadic array rota t ion
operation along the ax is given by I.

[1 2] RAVEL R s , s m
Register R s is modified to r e f l ec t a ravelling of the array
R s specif ies . s m - indicates wether or not the operation need
produce an new array or not , i e . if a streaming is t o
take place or i f a va l id descriptor w i l l be required.

[13] RHO R s
Register R s is modified to specify a new array given by Rho
R s . This new array w i l l always f i t w i t h i n a reg is te r f i l e s
confines so unless requested no new storage a l locat ion w i l l
be performed.

[1 4] EXPOSE R s
R s is replaced with a new descriptor for the array indicated
by the L i s t scalar associated w i t h R s .

[15] IMBED R s
R s is replaced with a new descriptor representing a l i s t
scalar for the imbed of the old array associated w i t h R s .

[16] PUSH R s
The NAME for the array associated w i t h R s is pushed onto the
execution stack (which is in te rna l t o the DMU).

[17] POP Rd
The reg is te r f i l e Rd is loaded w i t h the descriptor f o r the
array whoses NAME is popped off the execution stack.

[18] OUTER PRODUCT Rx ,Ry
The r eg i s t e r s Rx and Ry are modified to r e f l e c t the
necessary s t ruc tu ra l transformations f o r the outer product
operator.

[I91 IREF R s
The array specif ied by R s w i l l have i ts internal reference
counter incremented. T h i s operation is necessary for
completeness.

[20] DREF R s
The a r r a y s p e c i f i e d by R s w i l l have i t s i n t e r n a l r e f e r e n c e
c o u n t e r decremented. A c o u n t of z e r o w i l l r e l e a s e t h a t
a r r a y ' s s t o r a g e .

[21] DTRANSPOSE R d , R s
The a r r a y s p e c i f i e d by Rd is t r a n s p o s e d a c c o r d i n g to t h e
v e c t o r s p e c i f i e d R s . The r e s u l t i n g d e s c r i p t o r is p l a c e d i n t o
Rd .

[22] DROTATE Rd,Rs,sm;I
The a r r a y s p e c i f i e d by Rd is r o t a t e d a l o n g a x i s I a c c o r d i n g
to t h e a r r a y g i v e n by R s . The r e s u l t i n g a r r a y i s a s s o c i a t e d
wi th Rd. s m - selects wether a new a r r a y need be g e n e r a t e d or
i f t h e d a t a is to be immeadia te ly s t reamed,

[23] TAKE Rd,Rs
The a r r a y s p e c i f i e d by Rd is s e l e c t e d from (Take o p e r a t i o n)
a c c o r d i n g to t h e v e c t o r a s s o c i a t e d w i t h R s .

[24] DROP Rd,Rs
The a r r a y s p e c i f i e d by Rd is s e l e c t e d from (Drop o p e r a t i o n)
a c c o r d i n g to t h e v e c t o r a s s o c a i t e d wi th R s .

[25] CATENATE Rd,Rs;I
The a r r a y s impl ied by Rd and R s a r e c a t e n a t e d
(lamenated) t o form a new a r r a y . I- s p e c i f i e s t h e
which t h e o p e r a t i o n t a k e s p l a c e .

t o g e t h e r
a x i s wer

[26] COMPRESS Rd , R s ,s
The a r r a y g i v e n by Rd is compressed by t h e a r r a y g i v e n by
R s . Two modes e x i s t . The f i r s t g e n e r a t e s a new a r r a y which
is a s s o c i a t e d wi th Rd. The second s imply a l l o w s one t o d e f e r
g e n e r a t i o n . T h i s a l l o w s t h e s e l e c t i o n o p e r a t i o n to occur
l o g i c a l l y w i t h o u t s t o r a g e a l l o c a t i o n . The l a t t e r is
r e q u i r e d to a l l o w ass ignment i n t o a compress ion e x p r e s s i o n .

[27] EXPAND Rd,Rs,s
T h i s o p e r a t i o n is i d e n t i c a l t o Compression i n a l l a s p e c t s
e x c e p t t h a t t h e o p e r a t i o n is a l o g i c a l expans ion.

[281 INDEX Rd,Rs,s
T h i s i n s t r u c t i o n h a s t w o modes g i v e n by "s". The f i r s t
pe r fo rms an index of Rd's a r r a y v i a t h e index l i s t s p e c i f i e d
by R s . The second g e n e r a t e s an Index S e t f o r Rd's a r r a y
based upon R s ' s . An Index S e t i s a se t of v a l i d i n d i c e s i n t o
an a r r a y . Here a new a r r a y is g e n e r a t e d be ing i somorphic to
t h e d e s i r e d a r r a y . An Index S e t is an in ter .na1 DMU t y p e
which t h e u s e r never sees. T h i s l a t t e r mode a l l o w s
ass ignment i n t o g e n e r a l i z e d index e x p r e s s i o n s .

[29] RESHAPE R d , R s , s
R d ' s array is reshaped $according t o R s ' s vector. The f lag
"s" in ica tes if a n index s e t should be generated , i f a new
real array should be generated, or if the array should only
be setup for streaming. The former allows assignment into a
reshape expression.

[30] STACK ALLOCATE cs;S
The DMU w i l l support a t l e a s t one temporary stack f o r other
u n i t s to use. T h i s instruction a l locates a stack of maximum
depth S w i t h component s ize cs.

[31] TPUSH ;D
The data i n the ins t ruct ion is pushed onto the temporary
stack.

[32] TPOP
Returns the l a s t component pushed onto the temporary stack.

Bibliography

Abrams ,P.S.

Abrams ,P.S.

Allen ,E. F.

Amram ,Y.

Batcher ,K.E.

Battarel ,G.

Bingham ,H

Breed ,L.M.

Breed ,L.M.

Brown ,J.A.

'An APL Machine '
PhD Thesis, Stanford University
SLAC report no. 114, 1970

'Whats Wrong with APL'
APL75 Congress Proceedings, page 1
ACM-STAPL 1975

'A Formal Definition of APL Syntax'
APL75 Congress Proceedings, page 15
ACM-STAPL 1975

deCosnac ,B. Granger, J. L. Smoucw it ,A.
'An APL Interpreter for Mini-computers
a microprogrammed APL machine'
APL73 Congress Proceedings, page 33

'STARAN Parallel Processor
System Hardware'

National Computer Conference, 1974

Delbreil ,M Tusera ,D.
'Optimized Interpretation of
APL Statements'
APL73 Congress Proceedings, page 49

'Content Analysis of APL
Defined Functions '
APL75 Congress proceedings, page 60
ACM-STAPL 1975

Lathwell ,R.H.
'The Implementation of APL/36O1
ACM Symposium on Experimental Systems
for Applied Mathematics
Academic Press Inc, N.Y., 1968

'Generalizing APL Scalar Extension'
APL Quote Quad , March 1971
ACM-STAL

'Evaluating Extensions to APL'
APL79 Conference Proceedings, page 148
ACM-STAPL 1979

'Features of the STAR-100'
Control Data Corporation
Advanced Studies Division
4201 North Lexington
Saint Paul, Minnesota

CDC*APL

CDC*GID

Edwards ,E.M.

Edwards ,E.M.

Falkoff ,A.D.

Falkoff ,A.D.

Ghandour ,Z .

Giloi ,W.K.

Gull ,W.

Haegi ,H.

Hobson ,R.F.

'CDC*APL Reference Manual '
Control Data Corporation

'General Implementation Details'
Control Data Corporation

'Generalized Arrays(1ists) in APL'
APL73 Congress Proceedings, page 99

'APL in the Classroom'
1980 APL Users Meeting
Toronto, Canada
I.P. SHARP Associates

K.E. Iverson, E.H.Sussenguth
'A Formal Description of System 360'
IBM System Journal
Vol 3 #3. 1964, page 193

Orth ,D.L.
'Development of an APL Standard'
APL79 Conference Proceedings, part 2
ACM-STAPL 1979

'A Simple Approach to the Empty
Generalized APL Arrays'
APL76 Conference proceedings, page 178
ACM-STAPL

Berg ,H.
' STARLET- An Unorthodox Concept
of a String/Array Computer'
Information Processing 1974
North Holland Publishing Company

'Recursive Data Structures and
Related Control Mechanisms in APL'
APL76 Conference Proceedings, page 201
ACM-STAPL

'The Extension of APL to Tree-like
Data Structures'
APL Quote Quad
Vol 7#2 Summer 1976, page 8

'So•’ tware Sympathetic Chip Set Design'
National Computer Conference, 1981
Vol 50 May 1981, page 3

Iverson ,K.E.

Iverson ,K.E.

Jenkins ,M.A.

Jenkins ,M.A.

Johannsen ,D.

'Structured Machine Design:
An Ongoing Experiment'
Proceedings of 8th Annual Symposium
On Computer Architecture
May 1981, page 37

'A Programming Language '
John Wiley & Sons Inc.
New York, 1962

'The Role of Operators in APL'
APL79 Conference Proceedings, page 128
ACM-STAPL 1979

Michel ,J.
'Operators in an APL Containing
Nested Arrays'
APL Quote Quad
Vol 9#2 December 1978, page 8

'On Combining the Data Structure
Concepts of Lisp and APL', 1780
Queen's University
Department of Computing &
Information Science
Technical Report No. 80-109

'Our Machine, A Microcoded
LSI Processor'

MICRO-11 Workshop Proceedings, 1978
ACM-SIGARCH
ACM Special Interest Group on
Microprogramming

Johnston ,R. L. 'The Dynamic Incremental Compiler
of APL/3000'
APL79 Conference Proceedings, page 82
ACM-STAPL 1979

Lawrie ,D.H. 'Access and Alignment of Data
in an Array Processor'
IEEE Transactions on Computers
Vol C-24 #12, December 1975

McDonnell ,E. E. 'Complex Floor '
APL73 Congress Proceedings, page 299

MCM

Mebus ,G.

Mitchell ,J.

More ,T.

Murray,R.C.

Pierre ,M.

'MCM/9'00 USER'S MANUAL'
Manual No. 018-0053
December, 1978
MCM Computers Ltd.
6700 Finch Avenue West
Suite 600
Rexdale, Ontario
M9W 5P5

'Laminar Extension: An Overlooked
Capability and the Search for
its Proper Home'
APL79 Conference Proceedings, page 36
ACM-STAPL 1979

Knadler ,C. Lunsford ,G. Yang ,S.
'Multiprocessor Performance Analysis'
National Computer Conference, 1974

'The Nested Rectangular Array
as a Model of Data'
APL79 Conference Proceedings, page 55
ACM-STAPL 1979

'On Tree Structure Extensions
to the APL Language'
APL73 Congress Proceedings, page 333

Pierre ,P.
'GESOP: A Relational Data Base
Using Generalized Arrays and
Data Base Primitives'
APL79 Conference Proceedings, page 102

Penfield,P. Jr. 'Proposal for a Complex APL'
APL79 Conference Proceedings, page 47
ACM-STAPL 1979

Ruggiu ,G.

Saal ,H. J.

Samson ,D.

Aigrain ,Ph.
'Description of APL Operators'
APL73 Congress Proceedings, page 401

Weiss ,Z.
'Some Properties of APL Programs'
APL75 Congress Proceedings, page 292
ACM-STAPL 1975

Reynaud ,Y.
'Storage Management in APL Machines'
APL Quote Quad
Vol 10#2 December 1979, page 19

Samson ,D.

Stritter ,S.

Swan ,R. J.

Sykes ,R.A. Jr.

Tang ,C.K.

Tokoro ,M.

VANGARD

Vick ,C. R.

Vasseur ,J. P.

These Docteur
'Modele Une Machine A.P.L. '
Universite Paul-Sabatier de Touluse
(sciences) Oct 1979

Tredennick ,N.
'Microprogrammed Implementation
of a Single Chip Microprocessor'
MICRO-11 Workshop Proceedings, 1978
ACM-SIGARCH

Fuller ,S.H. Siewiorek ,D.P.
'CM*- A Modular, Multi-microprocessor'
National Computer Conference, 1977

'Efficient Storage Management in APL'
APL79 Conference Proceedings
ACM-STAPL 1979, page 226

'Cache System Design in the Tightly
Coupled Mu1 tiprocessor System'
National Computer Conference, 1976

Watanabe ,T. Kawakami ,K. Sugano ,J. Noda ,Kg
'PM/II- Multiprocessor Oriented
Byte-sliced LSI Processor Modules'
National Computer Conference, 1977

'APL/Z80 '
Quick Reference Quide
VANGARD System Corporation
6812 San Pedro
San Antonio, Texas
78216

'PEPE Architecture- Present and Future'
National Computer Conference, 1978

'Extension of APL Operators to
Tree-like Data Structures'
APL73 Congress Proceedings, page 457

APL73 'Congress Proceedings
Copenhagen, Denmark, 1973
North Holland Publishing Company

APL75 Congress Proceedings
Pisa, Italy, 1975
ACM-SIGPLAN Technical Committee on APL
ACM, New York

APL76 Conference Proceedings
Ottawa, Canada, 1976
ACM-STAPL, New York

APL79 Conference Proceedings
Rochester, New York , 1979
APL Quote Quad Vol 9#4
ACM , New Yor k
APL Quote Quad
ACM
1133 Avenue of the Americas

