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Abstract 

The behaviour of insurance surplus over time for a portfolio of homogeneous life 

policies in an environment of stochastic mortality and rates of return is examined. 

We distinguish between stochastic and accounting surpluses and derive their first two 

moments. A recursive formula is proposed for calculating the distribution function of 

the accounting surplus. We then examine the probability that the surplus becomes 

negative in any given insurance year. Numerical examples illustrate the results for 

portfolios of temporary and endowment life policies assuming an AR(1) process for 

the rates of return. 

Keywords: insurance surplus, stochastic rates of return, AR(1) process, stochas- 

tic mortality, distribution function 
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Chapter 1 

Introduction 

Understanding stochastic properties of life insurance surplus is essential for insur- 

ance companies to make business decisions that will guarantee a high probability of 

solvency. Life insurers face a variety of risks. How many death benefits have to be 

paid out in any given year? Uncertain timing of contingent cash flows gives rise to 

mortality or insurance risk. A life insurance policy is typically purchased by a series 

of periodic payments called (contract) premiums. This series of payments contingent 

on policyholders survival to the time when each payment comes due constitutes a life 

annuity of premiums. The premiums are invested in the market to earn interest. But 

what interest rates will prevail in the market in the future? Many insurance con- 

tracts have a fairly long term (think, for example, of a whole life insurance issued to 

someone aged 30), in which case ignoring the stochastic nature of rates of return will 

lead to a significant understatement of the true riskiness of these contracts. There 

are other sources of uncertainty arising in the life insurance context (future expenses, 

lapses, etc.), but the environment of stochastic mortality and rates of return already 

presents many challenges for analyzing life insurance contracts. 

The theory of life contingencies evolved from a deterministic treatment of various 

risks to the introduction of a methodology for the stochastic treatment of decrements 

at first and later of rates of return. Traditionally, in order to take into account differ- 

ent sources of risk, including decrements due to mortality, disability, etc. as well as 

interest rates, deterministic discounting for each source of risk was used (see Jordan 
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(1967)). However, under this approach it was impossible to obtain information about 

the likelihood and magnitude of random deviations from the mean discounted values. 

In the text by Bowers et al. (1986), the theory of life contiiigencies was extended to 

incorporate the random nature of decrements. The concept of a random survivor- 

ship group was introduced by relating the survival function and the life table, which 

allowed for the full use of probability theory; whereas, the so-called deterministic sur- 

vivorship group approach, previously used in actuarial science and based on the rates 

(as opposed to probabilities) of decrement summarized in the life table, did not have 

this flexibility and thus ignored the stochastic nature of mortality. Under this frame- 

work the mortality risk can be quantified by considering such summary measures as 

standard deviation, median and percentiles of actuarial functions' distributions. 

Although mortality risk is definitely an important risk component of the life in- 

surance business, in many circumstances it can be at least partially diversified by 

increasing the size of the business. On the other hand, investment risk cannot be 

diversified and in some cases its relative size can be quite large. Thus, models for 

stochastic rates of return must be incorporated in the theory of life contingencies. 

Search for a useful model for rates of return that can be employed in actuarial 

applications can be traced back to the 1970's. Since by now there is a very extensive 

literature on this topic, no attempt is made here to provide a complete list of related 

papers. Instead, some of the key papers are mentioned to demonstrate what kind of 

models have been considered and in what applications they were used. 

Before choosing a model for stochastic rates of return, one needs to decide, first 

of all, what exactly has to be modeled since there are several possibilities including 

an effective interest rate, force of interest and force of interest accumulation function. 

Other questions that have to be addressed are related to the dependence structure 

of rates of return in successive time intervals (i.e., should the rates be assumed to 

be independent or correlated?) and the type of model (i.e., should a continuous or 

discrete time framework be used?). This fairly wide range of possibilities for modeling 

interest rate randomness led researchers to consider a variety of models. 

In a number of early papers on the subject it was assumed that the forces of 

interest in successive years were uncorrelated and identically distributed (i.e., the force 
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of interest is generated by a white noise process). Waters (1978) used this assumption 

to calculate the first four moments of the compound interest and actuarial functions 

and to obtain the limiting distribution of the average sums of actuarial functions 

by fitting Pearson curves. This assumption about rates of return was also made by 

Boyle(1976) and Dufresne (1990) among others. 

A more realistic assumption is to assume that the forces of interest in successive 

years are correlated. Various time series models have been employed for this purpose. 

For example, Pollard (1971) used an autoregressive process of order two. 

Panjer and Bellhouse (1980) developed a general theory for both discrete and con- 

tinuous stochastic interest models for determining the moments of the present value 

of deterministic and contingent cash flows. Then the authors specifically considered 

discrete time autoregressive models of order one and two (with real roots of charac- 

teristic polynomial only) as well as their continuous time analogue and applied their 

results to a whole life insurance policy and a life annuity. A shortcoming of this paper 

is that by considering stationary autoregressive models, future rates of return are as- 

sumed to be independent of past and current rates. In Bellhouse and Panjer (1981)) 

the results were extended to models in which forces of interest depend on a number 

of past and current rates. This was achieved by using discrete time conditional au- 

toregressive processes. Numerical illustrations for the price of a pure discount bond, 

an annuity certain, a whole life insurance and a life annuity were provided assuming 

a conditional autoregressive process of order one. 

Dhaene (1989) further extended the work done by Panjer and Bellhouse as well as 

by Giaccotto (1986) to the case when the force of interest follows an autoregressive 

integrated moving average process of order (p, d,  q), ARIMA (p, d, q). The paper 

presented a methodology for efficient computation of the moments of present value 

functions. 

Stochastic differential equations (SDE) also found their use in the actuarial lit- 

erature. For example, Beeknlan and Fuelling (1990) used the Ornstein-Uhlenbeck 

process (a first order linear SDE, also known as the Vasicek model in the finance 

literature) to model the force of interest accumulation function. As an application, 

they derived formulas for the mean values and standard deviations of future payment 
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streams, both deterministic (an annuity certain) and contingent (a life annuity). Nu- 

merical examples illustrated the results for different values of paramet,ers. In a series 

of publications by Parker (e.g., Parker (1993), Parker (1994a), Parker (1996) and 

Parker (1997)), the author also used the Ornstein-Uhlenbeck process but for the 

force of interest rather than for the force of interest accumulation function. In addi- 

tion, Parker (1995) studied a second order linear stochastic differential equation for 

the force of interest process. Tluee cases for the roots of the characteristic equation 

were considered (real and distinct roots, real and equal roots, and complex roots). 

It was demonstrated in the paper that this model is able to combine the effects of a 

tendency to continue a recent trend and of a mean reverting property. This indicates 

that a second order process is more flexible compared to a first order process, which 

could only have one of those properties, usually the mean reversion. Numerical ex- 

amples were given for the expected value and variance of a discounting function and 

an annuity certain. 

A couple of remarks can be made at this point. In some cases, whether a discrete 

model or a continuous one is used does not alter the dynamic of the process. For ex- 

ample, a conditional AR(1) process is the discrete analogue of the Ornstein-Uhlenbeck 

process; also a discrete representation of a second order SDE is the ARMA(2,l) pro- 

cess. So, a choice of a discrete or a continuous model can be a personal preference. 

Refer to  the text by Pandit and Wu (1983) for a discussion of the principle of covari- 

ance equivalence that can be used to establish parametric relations between discrete 

and continuous representations of a process. 

It can be noted that some of the researcher chose to  model the force of interest and 

others the force of interest accumulation function. In the paper by Parker (199413) 

the difference between these two modeling approaches was discussed. Numerical 

illustrations of the expected value, standard deviation and skewness of an annuity 

immediate for a number of processes under each of the two approaches were presented, 

which demonstrated a different stochastic behavior of present value functions under 

the two modeling methods. Further, to provide more insight into the implicit behavior 

of the force of interest process under the two approaches, the conditional expected 

value of the force of interest accumulation function up to time t given its value up to 

time s (s < t )  and the force of interest at time s was examined. It was revealed that 
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this conditional expectation does not depend on the value of the force of interest at 

time s when modeling the force of interest accumulation function. It is more realistic 

to assume that this conditional expectation depends on the force of interest at time s, 

which is the case when modeling the force of interest. A numerical example indicated 

that one possible implication of modeling the force of interest accumulation function 

is that the expected value of the force of interest in the immediate future can be 

significantly away from its current value. This illustration shows that modeling the 

force of interest accumulation function has limited practical value. 

Most of the papers mentioned above gave the first two or three moments of present 

value and actuarial functions when only one stream of payments or only one policy 

was considered. Some generalizations to these applications include studying the whole 

distribution (either using the density function or the cumulative distribution function) 

for a portfolio of identical contracts or a general portfolio. 

Frees (1990) presented the first two moments of the net single premium of a single 

insurance contract and an annuity. Premium determination under the equivalence 

principle and explicit extension to reserves including the second moment of the loss 

function were presented. The results were derived at f is t  assuming that the forces of 

interest in each time interval are independent and identically distributed (i.i.d.) each 

following the same normal distribution and then using a moving average process of 

order one, MA(1). In the second part of the paper, the author considered a block of 

business. He proposed to approximate the distribution of the average loss random 

variable for a block of identical policies by another random variable, which is equal 

to the expected value of the loss random variable for one policy where expectation is 

taken over time-of-death random variable and follows the limiting distribution of the 

average loss when the number of policies in the block approaches infinity. A suggestion 

for a recursive calculation of the distribution function of the average loss under the 

i.i.d. assumption for interest rates was given. Finally, the limiting distribution of 

surplus, defined as the excess of assets over liabilities, for the case of full matching of 

assets and projected liabilities was presented. 

Norberg (1993) derived the expected value and variance of the liability associated 

with one contract and then of the total liability for a portfolio of policies assuming the 

Ornstein-Uhlenbeck process for the force of interest. He proposed a simple solvency 
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criterion, which requires an insurer to maintain a reserve equal to the expected value 

plus a multiple of the standard deviation of the loss random variable. Numerical 

results for an authentic portfolio were provided. 

The expected value, standard deviation and coefficient of skewness as well as an 

approximate distribution of the present value of future deterministic cash flows when 

the force of interest is modeled by the white noise process, the Wiener process and 

the Ornstein-Uhlenbeck process were presented in Parker (1993). The approximation 

of the cumulative distribution function was based on a recursive integral equation. 

An n-year certain annuity-immediate was used for numerical illustrations. The same 

approximation technique for the distribution function was then applied to the lim- 

iting portfolios of identical temporary and endowment insurance contracts in Parker 

(1994a) and Parker (1996) with the Ornstein-Uhlenbeck process for the force of in- 

terest used for illustrative purposes (see Coppola et al. (2003) for an application of 

the method to large annuity portfolios). In Parker (1997), these results were further 

generalized to a general limiting portfolio of different life insurance policies such as 

temporary, endowment and whole life. In addition, this paper discussed a way of 

splitting the risluness of the portfolio into an insurance risk and an investment risk 

(see also Bruno et al. (2000)). Although high accuracy of the approximation used 

by the author in the above-mentioned papers was justified, Parker (1998) presented a 

method for obtaining the exact distribution of the discounted and accumulated val- 

ues of deterministic cash flows based on recursive double integral equations. The two 

results that will be derived in Chapter 5 use a variation of this method. 

Marceau et a1.(1999) studied the prospective loss random variable for general 

portfolios of life insurance contacts and compared its first two moments as well as the 

distribution functions obtained via Monte Carlo simulation method for portfolios of 

different sizes (including a limiting portfolio) and different composition. Numerical 

examples for portfolios of temporary, endowment and a combination of temporary and 

endowment life policies, in which the force of interest assumed to follow a conditional 

AR(1) process, were presented. It was observed that the convergence rate of the 

variance of the loss random variable for a portfolio of temporary contracts is much 

slower compared to the other two portfolios. This indicates that the mortality risk 

component is large compared to  the non-diversifiable investment risk in any portfolio 
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of a realistic size, and as a result of this a use of the distribution of the limiting 

portfolio to approximate the distribution of a finite portfolio is questionable in a 

context of temporary life insurances. 

Another approximation for the distribution of the loss random variable for a single 

life annuity and for a homogeneous portfolio is given in Hoedemakers (2005). This 

approximation is based on the concept of comonotonicity. Upper and lower bounds on 

quantiles of a distribution were obtained and their convex combination was demon- 

strated to be a very accurate approximation of the true distribution. The authors 

chose to model the force of interest accumulation function by a Brownian motion with 

a drift and an Ornstein-Uhlenbeck process. 

The focus of the papers mentioned above is on the stochastically discounted value 

of future deterministic or contingent cash flows with the cash flows being viewed 

and valued at the same point in time. For example, the net single premium of a 

life insurance policy or a life annuity is viewed and valued at the issue date. In the 

reserve calculation only cash flows that will be incurred by the inforce policies at a 

given valuation date are taken into account and the experience of the portfolio prior 

to that valuation date is ignored. In the case of a single policy, if the policyholder 

does not survive to a given valuation date, no reserve is allocated for that policy. 

We will develop a model and perform our analysis in a different framework. To 

illustrate our approach consider a closed block of life insurance business at its initia- 

tion. All the quantities of interest that we study are measured at some given dates 

in the future but are viewed at the initiation date. This framework allows assessing 

adequacy of, for example, initial surplus level, pricing and future reserving method 

before the block of business is launched. 

Let us follow this block of business in time. Fix one of the valuation dates and 

refer to it as time r .  Prior to time r ,  the insurer collects premiums and pays death 

benefits according to the terms of the contract. So, by time r ,  the insurer's assets 

from this block of business are equal to the accumulated value of past premiums net 

of death benefits paid. After time r ,  the insurer will continue paying benefits as they 

come due and receive periodic premiums. The discounted value at time r of all future 

benefits net of all future premiums to be collected constitutes the insurer's liabilities. 
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The value of assets in excess of the value of liabilities represents the surplus. It is this 

quantity that we attempt to study. It is worth mentioning at  this point that in the 

context of a portfolio of life insurance policies we will distinguish between two types 

of surplus. One of them we call a stochastic surplus, which was briefly described in 

general terms above. The other type of surplus we refer to as an accounting surplus. 

Although the name may suggest a deterministic nature of the accounting surplus, in 

fact it is a stochastic quantity. The difference between the two types of surplus lies 

in how liabilities are defined. In the case of accounting surplus the liability is the 

actuarial reserve, which is typically some summary measure (e.g., expected value) or 

a statistic of the prospective loss random variable, whereas in the case of stochastic 

surplus it is the prospective loss random variable itself. 

For insurance regulators it is important that insurance companies maintain an 

adequate surplus level. To represent actuarial liabilities, the insurers are required to 

report their actuarial reserves calculated in accordance with regulations. So, when 

monitoring insurance companies, the regulators actually look at what we call the 

accounting surplus. We propose a formula for obtaining the distribution function 

of accounting surplus at any given valuation date. One piece of information that is 

readily available from this distribution function is the probability that the surplus 

falls below zero at any given time r .  If this probability is too high, say above 5%, 

then perhaps the insurer should make some adjustments to the terms of the contract 

such as, for example, increasing the premium rate or raising additional initial surplus. 

Assumptions regarding the model for rates of return and decrements due to mor- 

tality are presented in Chapter 2. In Chapter 3 we develop a methodology for studying 

a single life insurance policy. The ideas for one policy are further extended to study 

a portfolio of homogeneous policies in Chapters 4 and 5. In Chapter 4 we define two 

types of insurance surpluses and derive their first two moments. A method for com- 

puting the distribution function of the accounting surplus is discussed in Chapter 5. 

Concluding remarks and areas for future research are provided in Chapter 6. 
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Model Assumptions 

2.1 Stochastic Rates of Return 

For illustrative purposes, we choose to model the force of interest by a conditional 

autoregressive process of order one, AR(1). A similar model was used, for example, 

by Bellhouse and Panjer (1981) and Marceau et al. (1999). However, the results that 

will be presented in the later chapters may also allow the use of other more general 

Gaussian models. 

Let S(k) be the force of interest in period (k - 1, k], k = 1 ,2 ,  . . . , n, with a possible 

realization denoted by Sk. The forces of interest {S(k); k = 1,2, .  . . , n) satisfy the 

following autoregressive model: 

where ~k N N(0, n2) and6 is the long-term mean of the process. We assume that 

) + I  < 1 to ensure stationarity of the process. 

For our further discussion, it is convenient to introduce a notation for the force 

of interest accumulation function, which is then used to study both discounting and 

accumulation processes. 

Let I(s, r) denote the force of interest accumulation function between times s and 
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r, (0 < s 5 r )  l. It is given by 

The AR(1) model has already been extensively studied and many results about it 

are readily available in the literature. In the rest of this section we will extend some 

of the known results to obtain the distribution of the force of interest accumulation 

function between any two given times, both unconditional and conditional. 

For our further analysis, when two or more force of interest accumulation functions 

are involved, it will be necessary to distinguish three cases for the times between which 

the accumulation occurs. Suppose we are interested in obtaining the value at some 

given time r  of two cash flows occuring at times s and t. 

If s < t < r (i.e., both cash flows occur prior to time r), the values at time r of 

these cash flows need to be accumulated using I (s ,  r) and I ( t  , r) ; 

If r < s < t (i.e., both cash flows occur after time r), the values at time r of 

these cash flows need to be discounted using I(r, s) and I(r ,  t) ;  

If s < r < t (i.e., one cash flow occurs before time r and the other one occurs 

after time r), the values at time r of these cash flows need to be accumulated 

and dscounted using I (s, r) and I (r, t) respectively. 

When I(s, r) follows a Gaussian process, only the first two moments are necessary 

to completely determine its distribution. In particular, we will derive the expected 

value, the variance and the autocovariance for I ( s ,  r) conditional on both the starting 

value of the process at time 0, S(0) , as well as on the terminal value, 6(r), for 0 < s < r. 

Similar steps can be taken to derive analogous results for the force of interest 

accumulation function between times r and t ,  0 < r < t ,  conditional on the start- 

ing value of the process 6(0) and the value of the process at time r, 6(r); i.e., for 

{I(r, t)  1 6(0), 6(r)), r < t. However, note that in this case we can use the results for 

I(r, t), r < t conditional only on S(r), since I(r, t) satisfies the Markovian property. 

(See Cairns and Parker (1997) for similar derivations). 

'This notation was motivated by the notation used in Marceau et al. (1999). 
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To calculate the moments of I ( s ,  r), 0 < s < r ,  conditioiial on 6(0) and 6(r), it 

is convenient first to derive the unconditional moments of I (s ,  r), 0 < s < r (i.e., 

inomelits for the stationary distribution of I ( s ,  r), 0 < s < r), u~hicl~ a,re then used 

to obtain the moments of I (s ,  r), 0 < s < r, coiiditional only on the starting value, 

6(0), and consequently on both the starting and the terminal values of the process. 

It is well known that for the stationary AR(1) process defined in (2.1) 

Then, for s < r, 

and 

Var [I ( s ,  r)] = Var [ C 6(j)] 
j=s+l 

= ( r -  s)Var[6(j)] + 2  c c Cov[6(j),6(i)] 

The covariance terms, corresponding to the three cases for the force of interest 

accumulation functions mentioned earlier, are given by the following formulas: 
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Case 1: s < t < r 

Case 2: r <  s < t 

o2 
= Var[I (r, s)] + - 4 

2 (4" - Qt)(4-" - #-'I. 
1 - 42 (1 -4) 

Case 3: s < r < t 

Next we consider the moments of I(s ,  r) when the force of interest follows a con- 

ditional AR(1) process. Two approaches can be used in this case. One of them 

involves directly applying the definition of I(s ,  r) as being a sum of b(j)'s each of 

which follows a conditional AR(1) process. Another approach is to use the fact that 

{6(j); j = 0,1, ...) and any linear combinations of 6(j)'s have a multivariate normal 
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distribution, in which case known results from the multivariate normal theory can be 

applied (e.g., see Johnson and Wichern (2002)). 

Either approach produces 

(I) E[I(s, r)16(0) = 601 = (r - s)6 + -((I)" - 4')(60 - 6). 
1 - 0  

Note that, when applying the second approach, we use the following formula: 

where Cov[I(s, r), 6(0)] can be derived as follows: 

- o2 -- (I) (OS - 4 7 .  1-021-(I) 

Refer to Appendix A.l for more details on the derivation of the above results. 

The second approach is more general and, therefore, it is more convenient for 

numerical calculations. 

Conditional variance and covariance are given by 

Var[I(s, r)lb(O)] = Var[I(s, r)] - 
Cov[I(s, r),  6(0)12 

Var[J(O)I 

- - ~ [ r - s + -  " ( r - s - 1 - -(I (I) - #-S-l)) - 
1 - (I)2 1 - 4  1 - 4  

(I) 
- (-i2(oS - or121 

1 - o  

and, for s < r < t ,  

Cov[I(s, r), I(r, t )  (6(0)] = Cov[I(s, r),  I(r, t)] - Cov[I(s, r), 6(0>1 . Cov[I(r, t), 6(0)1 

Var[6(0>1 
(2.8) 
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Notice that Equation (2.8) with s < r < t corresponds to case 3 described for 

unconditional covaxiances between force of interest accuinulation functions. For- 

mulas for the other two cases, namely Cov[I(s, r), I(t,r)(6(0)] for s < t < r and 

Cov[I(r, s), I(r, t) 1 b(O)] for r < s < t ,  are analogous. 

Finally, when conditioning on both the current force of interest and the force 

of interest at some given time r in the future, the expected value and variance of 

I ( s ,  r), s < r, can be calculated from the following formulas: 

and 

Var[I(s, r))6(0), 6(r)] = Var[l(s, r))6(0)] - Cov[I(s, r), 6(r)I6(0)I2 

Var[b(r) IS(O)l 

Similarly, for I (r, t) , r < t , 

But because the process is Markovian, we also have 

and 

Var[I(r, t) (6(0), 6(r)] = Var[I(O, t - r) )6(0)], 

and Equations (2.5), (2.7) and (2.8) can be applied. 

In our notation, a discount function from time t to time r and an accumulation 

function from time s to time r for s < r < t are given by e-'('tt) and el(",') respectively. 

Since each S(k) is normally distributed, so is any linear combination of S(k)'s. 

This implies that -I (r, t )  - N ( - E[I(r, t)] , Var[I (r, t)]) and 
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I(r, S) N N(E[I(r, s)], Var[I(r, s)]), and that both discount and accum~~lation func- 

tions follow a lognormal distribution. 

If Y N N (E[Y], ~ a r [ ~ ] ) ,  then the mth-moment of el7 is 

7 

E [em"] = e m E[Y] + Var [ E l  

We can use Equation (2.9) to find moments of e-'('jt) and el(">'). 

In our numerical examples, we use the following arbitrarily chosen values of the 

parameters: 

2.2 Decrements 

Parameter 

4 
0 

6 

60 

Following the notation developed in Bowers et al. (1986), let T, be the future lifetime 

of a person aged x years, also referred to as a life-age-x and denoted by (x). 

P(T, 5 t) = tq, and P(T, > t) = ,p, are the distribution function and survival 

function of the continuous random variable T, respectively. 

Let K, be the curtate-future-lzfetime of (x); that is, K, is a discrete random variable 

representing the number of complete years remaining until the death of (x). Its 

probability mass function and distribution function are given by 

Value 

0.90 

0.01 

0.06 

0.08 

and 

A nonparametric life table is used to determine the distribution of K,. If 1, denotes 

the number of lives aged x from the initial survivorship group, then the probability 

that ( 2 )  will survive for k years is kp, = and the probability that (x) will survive 
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for k - 1 years and then die in the next year (i.e., (x) will die in the kth year) is 
l.T+k-l-L+k 

k-11qx = 1, 

In our numerical examples we use the Canada 1991, age nearest birthda,~ (ANB), 

male, aggregate, population mortality table. 

The future lifetimes of policyholders in an insurance portfolio are assumed to be 

independent and, in a portfolio of homogeneous policies, also identically distributed. 

2.3 Summary of Assumptions 

In this section we more formally restate the main assumptions of our model. 

K t )  is the curtate-future-lifetime of individual i aged x. 

We will consider a class of functions, denoted gi, which depend on K?) and a sequence 

of forces of interest {b(k), k = 0,1, . . .). 

1. The random variables {K:)) are independent and identically distributed. 

2. The random variables ( ~ 2 ) )  and {6(k), k = 0,1, .  . .) are independent. 

3. Conditional on {6(k), k = 0,1, . . .), ('3.) are independent and identically dis- 

tributed. 

Inour  model, we consider two random processes. One process is related to the mor- 

tality experience of a portfolio and the other one is a, sequence of future stochastic 

rates of return. In order to study these two processes simultaneously, we assume that 

future lifetimes and future rates of return are independent. This is stated in Assurnp- 

tion 2. Assumption 3 implies that there is one type of insurance policies being sold 

to a group of independent policyholders with similar characteristics. Note, however, 

that the values of those policies are not independent because they are invested in the 

same financial instruments. 
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Single Life Insurance Policy 

3.1 Methodology 

Consider a single life policy issued to a person aged x, which pays a death benefit b 

at the end of the year of death if death occurs within n years since the policy issue 

date and a pure endowment benefit c if the person survives to time n. Note that if c 

is equal to zero then the policy is referred to as an n-year temporary insurance, and if 

c is nonzero than we deal with an n-year endowment insurance. In our examples, we 

will consider a special case of the endowment contract when c is equal to b, since this 

is the most basic design in practice. The net level premium for this policy is payable 

at the beginning of each year as long as the policy remains in force and is denoted T. 

In this chapter we study the retrospective gain, prospective loss and surplus ran- 

dom variables for one policy. Typically, the prospective loss is defined only if a policy 

is still in force at  a given valuation date. So, we will at first derive the first two mo- 

ments of the prospective loss random variable conditional on the survival to a given 

time r .  However, in order to define the surplus for a policy at issue based on the 

retrospective gain and the prospective loss valued at time r and viewed at time 0, we 

will then extend the definition of the prospective loss as being unconditional on the 

survival to time r .  

The retrospective gain is the difference between the accumulated values of past 

premiums collected and benefits paid. Let RG, denote the retrospective gain random 
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variable at time r .  For r > 0, 

K~ eI(s,r) - b . eI(Kx+l,r), K~ = 0 ~ 1 , .  . . , r - 1, 7T Zs=o 
RG, = 

r-1 I(s, r) 
a s = o  e , K X = y , r + l ,  . . .  . 

The mth moment of RG, can be calculated directly from the definition of RG, using 

the formula for computing expectations by conditioning (e.g., see equations (3.3) and 

(3.4) p.lOG in Ross (2003)). 

Note that for m = 1 we have 

where the last line follows from Theorem 3.2 given in Bowers et al. (1986) (see 

Appendix A.2 for the statement of this theorem) with 
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and 

The prospective loss is the difference between the discounted values of future 

benefits to be paid and premiums to be received. Let PLrnd be the prospective loss 

random variable valued at time r and conditional on the event that the policyholder 

has survived to time r. 

where J,, is the remaining future lifetime of (x) provided that (x) has survived to 

time r. That is, {J,,, = j )  - {Kx - r = jJ  Kx 2 r ) .  

Based on the above definition of pLynd7 

Alternatively, the prospective loss can be rewritten as a difference of two random 

variables Z and Y, where Z represents the present value of future benefits and Y 

represents the present value of future premiums of $1 valued at time r and conditional 

on survival to time r. That is, 

where 
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and cr:3r e-I(r> 3 )  , Jx,r=O,I ,  . . . ,  n - r - I ,  

Czi: e- ' (r~s) ,  Jx,r = n - r 7 n  - r + I , .  . . . 

Using the above definitions of Z and Y ,  we find that 

and 

The last line can be obtained from the theorem in Appendix A.2 with 

~ : z E [ e - ' ( ~ > ~ ) ] ,  j = O , l  ,..., n - r -  1, 

$(.i) = 

E[e-'(r.s)],  j = n - r 7 n  - r + 1, .  . . , 

and 
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Combining (3.3) and (3.4), we obtain 

The second raw moment of P L F ~ ~  is 

where, for example, 

Let us now define the (unconditional) prospective loss random variable: 
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Since the mth moment of the (unconditional) prospective loss random variable is 

equal to 

to calculate the moments of PL,, we simply have to multiply the corresponding 

moments of the conditional prospective loss by the survival probability ,pX. In the 

rest of this chapter whenever we refer to the prospective loss random variable, we 

mean the unconditional one. 

The insurance surplus at time r, 1 < r < n, for a single life policy is defined to be 

the difference between the retrospective gain and prospective loss random variables, 

valued at time r and viewed at time 0; i.e., ST = RG, - PL,. As a function of Kx it 

is thus given by 

The mth moment of ST can be calculated from: 
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3.2 Numerical Illustrations 

Consider a single life policy with $1000 benefit issued to a person aged 30. The 

premium for this policy is determined according to the equivalence principle (see 

Appendix A.4 for more details on the equivalence principle). The results derived 

in the previous section are illustrated for the temporary and endowment insurance 

contracts with the term equal to 5 years (see Tables 3.1 and 3.2), 10 years (see 

Figure 3.1) and 25 years (see Figure 3.2). 

We begin by analyzing the behaviour of the expected values of the retrospective 

gain, prospective loss and surplus conditional on the force of interest at time r; the 

values for three possible realizations of 6(r) (4%, 6% - the long-term mean of the 

process and 8% - the starting value of the process) are given in the middle three 

columns of Tables 3.1 and 3.2. Observe that when 6, decreases, the conditional 

expected values of RG, decrease but the conditional expected values of PL, increase. 

This is due to the effects of accumulating and discounting at lower rates of return. 

Since ST = RG, - PL,, the expected value of the surplus decreases by the amount 

equal to the sum of the gain decrease and the loss increase. 

Comparing the unconditional expected values of the retrospective gain and prospec- 

tive loss, we can see that, for the temporary insurance contracts, the expected values 

at first rise but then begin to decline as r approaches the term of the contract, which 

is clearly demonstrated in the upper left panels of Figures 3.1 and 3.2. This is consis- 

tent with building up a small reserve in early years of the contract and then spending 

it since no benefit has to be paid under the terms of this contract if a policyholder 

survives up to the contract maturity. In the case of the endowment contracts, the 

expected values gradually increase to the amount of the benefit, which would have 

to be paid with certainty at  time n if the policy is in force at  time (n - 1) (death in 

year n would result in the death benefit payment and survival to time n would result 

in the pure endowment benefit). 

We can also observe that the expected value of the surplus increases with r. Even 

though in these examples pricing of the contracts is done according to the equivalence 

principle, the mean value of the surplus is positive at all valuation dates we considered. 

This can be attributed to the Gaussian nature of the rates of return. The asymmetry 
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of the process with nonzero variance results in a larger accumulation effect compared 

to the discounting effect. If the variance of the process was zero or, in other words, if 

the rates of return were deterministic, then an accumulation factor would be exactly 

the inverse of the corresponding discount factor. But in the environment of stochastic 

rates of return the product of the expected values of the accumulation and discount 

factors is always greater than one: 

E [ e I ( s j r ) ]  . E [e-'(s>r)] = e ~ [ ~ ( s , r ) ] + i V a r [ I ( s , r ) ]  . e-~[~(s , r ) l+~var[~(s , r ) l  

- - evar['(S~r)l > 1 if Var[I(s, r)] > 0. 

As r increases, so does the variability of the retrospective gain, since there is both 

a larger uncertainty about future cash flows and rates of return. Note that in general 

the variability of the prospective loss depends on the number of deaths up to time r, 

the death pattern after time r and the randomness of the future rates of return. The 

combination of these three factors may cause the overall variability to either increase 

or decrease with r depending on the relative importance of each of them. For the 

contracts we considered the behaviour of the standard deviation of PL, varies with 

the type and the term of the contract. For the 5-year and 10-year temporary policies, 

the prospective loss becomes less volatile for larger values of r; for the 25-year policy, 

the standard deviation slightly increases initially and then declines. This decline in 

the variability for larger values of r is due to a smaller uncertainty about the death 

pattern after time r and the fact that the mortality component of temporary policies 

usually dominates the investment one. The standard deviation of the prospective loss 

for endowment policies at  first declines but then increases for values of r approaching 

the term of the contract. In the case of endowment policies, it is the increase in 

the uncertainty about future rates of return that drives the overall variability of the 

prospective loss up for larger values of r .  



CHAPTER 3. SINGLE POLICY 

Table 3.1: Expected values and standard deviations of retrospective gain, prospective 
loss and surplus for 5-year temporary insurance contract. 
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Table 3.2: Expected values and standard deviations of retrospective gain, prospective 
loss and surplus for 5-year endowment insurance contract. 
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10-year temporary insurance 10-year temporary insurance 
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Figure 3.1: Expected values and standard deviations of retrospective gain, prospective 
loss and surplus for 10-year temporary and endowment contracts. 
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Figure 3.2: Expected values and standard deviations of retrospective gain, prospective 
loss and surplus for 25-year temporary and endowment contracts. 
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Portfolio of Homogeneous Life 

Insurance Policies 

In practice, insurers deal not with just one insurance policy but rather with a col- 

lection of policies forming an insurance portfolio. Therefore, our next objective is 

to extend the results for one insurance contract developed in the previous chapter to 

study portfolios of insurance contracts. One way to proceed is to define the retrospec- 

tive gain, prospective loss and surplus for a portfolio by aggregating the corresponding 

random variables for one policy over the number of policies in the portfolio. However, 

for large portfolios, say 100,000 policies, this approach might not be very efficient. 

Alternatively, we could model portfolio's cash flows in every year, in which case the 

maximum number of terms to add up is equal to the duration of the policies in the 

portfolio. This is the approach we will adopt. 

Consider a portfolio of identical life policies issued to a group of m policyholders 

all aged x with the same mortality profile. Similar to a single policy discussed in 

the previous chapter, each contract pays a death benefit b at the end of the year of 

death if death occurs within n years and a pure endowment benefit c if a policyholder 

survives to the end of year n. ;.r is the annual level premium payable at the beginning 

of each year as long as the contract remains in force. This portfolio is referred to as 

being homogeneous. 
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4.1 Retrospective Gain 

Let RC; denote the net cash flow at time j prior to time r, 0 5 j 5 r (i.e., it is a 

retrospective cash flow for valuation at time 7'). 

where 

1 if policyholder i aged x survives for j years, 
Z,j(.) = 

0 otherwise, 

1 if policyholder i aged x dies in year [j - 1, j), 
gi,j(x) = 

0 otherwise, 

and is an indicator; it is equal to 1 if condition A is true and 0 otherwise. 

Indicator l{j>o) multiplying the second term in Equation (4.1) reinforces the fact 

that no death benefit is paid at the beginning of the first year of the contract (i.e., 

when j = 0). So, RC,' is the sum of all the premiums collected at  the issue date. Now 

consider what happens at time j = r .  Death benefits are paid at the end  of year r 

to everyone who dies during that year. So, this cash outflow becomes a part of the 

retrospective cash flow RC,'. However, premiums are collected at the beginning of the 

next year ((r + year) and therefore they contribute to the prospective cash flow 

(more formally defined in the next section). This is why indicator l{j,Tl multiplies 

the first term in Equation (4.1), which makes the premiums i d o w  disappear for j = r .  

3 j ( x )  = CE, Yi j(x) denotes the number of people from the initial group of m 

policyholders aged x who survive to time j (i.e. it is the number of inforce policies 

at time j) and !Bj (x) = ELl !Bi,j (x) denotes the number of deaths in year [j - I ,  j) . 

Observe that Yj (x) and !Bj (x) have binomial distributions with 

$(x) ,BIN(m, jpX) and gj(x) wBIN(rn, j-lIqx). 
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This can be used to calculate 

and, for i < j, 

The covariance between cash flows arises due to the fact that, if a person belongs 

to T i (x )  (i.e., he or she was alive at time i) ,  the same person might also belong to  

either T j (x )  or %'j(x) at some later time j > i. For different policyholders, it was 

assumed earlier that their lifetimes are independent (Assumption 1). 

The formulas for various variance and covariance terms used above are given in 

the next section; see Equations (4.6)-(4.12) with r set to zero and T0(x) equal to m. 

The retrospective gain at a given time r is equal to the accumulated value to time 

r of all net cash flows that occur prior to that time. So, using the cash flow approach, 

we can express the retrospective gain in terms of RCJ as follows: 

RG, = xi=, RCJ . e'(jJ-1. 

Then, under Assumption 2 (i.e., assuming independence between future lifetimes 

and interest rates) we obtain 

and 
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where mT is the size of the portfolio at time r (i.e., the realizatioi~ of YT(x)). 

Since for 0 < j 5 n - r 

{Tj (x + r )  19T (x) = mT} .- BlN(m.r7 jpX+,) and 

{gj (x  + r)J=ZT(x) = mT} BIN(mT7 j-llqx+r) 7 

we can use the known moments of binomially distributed random variables to find 

the moments of PC;, which are ' 

and 

Var [PC; (lf.,] = b2 . Var [gj (z + r )  1 Zr] . l{j>o) 

+ c2 Var [z,-, (2 + T) (Yr] - l{j=n-r) 

+ T~ . V 4 2 j  (X + r )  ITr] l{j<n-r> 

+ 2 . b . c . Cov[gj (x + r), 9 . ( x  + r) ITT] . l{j,,-r) 

- 2 .  b.~.Cov[9~(x+r),~~(x+r)I9~]. l{O<j<n-rl 

- c . T . C O V [ ~ ~ ( X  + r), T~(x + r )  1 Yr] . l{j=n-T), 

'For simplicity of notation, in some cases we will use YT instead of Yr(z) when there is no 
ambiguity about age z. 
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where 

Now we can rewrite PL, in terms of PC; and calculate its first two raw moments 

using the results developed above. We get 

and 

n-T-1 n-r 

+ 2 . x . PC,* ( TT] . ~[e - ' (~~~+ ' ) - ' (~*~+j )  

since {I<:)} are independent of {6(j), j = 0, 1, . . .) (Assumption 2). 

We can calculate E[PLT] and Var[PLT] either using Equations (4.14) and (4.15) 

and taking double expectations over TT (x) and 6(r), or directly from Equation (4.13). 
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4.3 Insurance Surplus 

4.3.1 Introduction 

In general, we define insurance surplus to be the difference between assets and liabil- 

ities at a given valuation date. Recall that the retrospective gain is the accumulated 

value of past premiums collected net of past benefits paid and, thus, in our context, it 

can be viewed as the value of assets. In turn, the liabilities associated with a portfolio 

of life policies are based on the prospective loss, which is the discounted value of fu- 

ture obligations net of future premiums. So, the liabilities can simply be represented 

by the prospective loss random variable. In this case the surplus is referred to as the 

net stochastic surplus or just stochastic surplus and is denoted S,"tOch. 

In practice, at each valuation date, an insurer is required to set aside an actuarial 

reserve based on the number of policies in force as well as on the current interest rate. 

This reserve is a liability item on the balance sheet of the insurance company. So, an 

alternative definition of the surplus is the difference between the value of assets and 

the actuarial reserve, in which case we call it the accounting surplus and denote it 

S F t .  

The reserve is intended to cover the future liabilities of the insurer. Therefore, 

the amount needed to be set as a reserve at time r should be at least the expected 

value of PL, conditional on the number of inforce policies in the portfolio 2,(x) and 

the force of interest S(r).  If, instead, it is required to have a conservative reserve that 

will cover net future obligations with a high probability, one can use a pth percentile 

of the prospective loss random variable with p between 70% and 95%, for example. 

However, this reserve can be fairly difficult to incorporate in the model, since we need 

to know the distribution function of PL,, which is not easy to obtain. Alternatively, 

a reserve could be set equal to the expected value plus a multiple of the standard 

deviation of PL, (see Norberg (1993)). 

In the rest of this section we derive the first two moments of the stochastic and 

accounting surpluses, assuming that the reserve is given by the conditional expected 

value of the prospective loss random variable. 
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4.3.2 Methodology 

Let , V ( ~ , ( X ) ,  6(r ) )  or simply ,V denote the reserve at time r. It is a function of 

2 , ( x )  and 6(r)  and thus, when viewed from time 0, is a random quantity whose value 

at time r depends on the realizations of 2 , ( x )  and 6(7-). 

is the accounting surplus at time r conditional on the number of policies in force and 

the force of interest at that time. 

The stochastic surplus is given by 

s , " ~ ~ ~ ~  = RG, - PL, . 

Assume that 

,v . V ( Z ( x ) ,  6(r))  = E[PL,  I IC,, 6(r)]  

We then have 

= EarT) [F, [E [RG, I Y., 61r)l I ]  - En(,) [Cz [E[PL,  I 2 T 7  6 ( r ) ] ] ]  

= E[RG, - PL,] 

That is, with our particular choice of the reserve, stochastic and accounting surpluses 

have the same expected value. 

Let us next consider the variance of the accounting surplus when the reserve is 

given by Equation (4.18). 

Result 4.3.1. 

+ Var[RG,] - 2 Cov(RG,, PL,) , 
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where 

n-r n-r f 

A proof of Result 4.3.1 is given in Appendix A.5. 

The variance calculation for the stochastic surplus is straightforward as 

Var [s,btoCh] = Var [RG, - PL,] 

= Var [RG,] + Var [PL,] - 2 - Cov [RG,, PL,] . 

Note that t,o calculate Cov [RG,, PL,] , we need to know E [RC; - PC:], since 

Cov [RG,, P L,] = E [RG, . PL,] - E [RG,] . E [P L,] 
T n-T 

= x x E[RC; . PC:] . ~[e'(j~')-'('~'+~)] - E[RG,] . E[PL,] , 
j = O  i=O 

where the last line follows from Assumption 2. 

E [RC;. PC:] can be obtained in one of the two ways. First, conditioning on the 

number of policies in force, 

m 

= x E [RC; (9, ( x ) ]  . E [PC: 1 lr; (z )]  . P (2, (z) = m,) . 
m,=O 

Alternatively, a computationally more efficient approach is to use 

E [RC; . PC:] =Cov [RC;, PC:] +E [RC;] - E  [PC:], where the covariance is based 
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directly on the definitions of RCj' and PC:. 

Cov [RC; 7 PC:] = 17 . b . Cov [& (x) , gi (x + r)] . I{~,,  i>o) 

+ T . C .  C O V [ ~ ~ ( X ) ,  Z(X + r)] .1{~<~ , i=~-~ , i>0)  

- T2 . COV[& (4, Z ( x  + r)] . i<n-r) 

- 
b2 . C O V [ ~ ~ ( X ) ,  g i ( x + ~ ) ]  . I{i>O,i>O) 

- b . c * C o v [ g j ( ~ ) ,  Z ( x  +r)]  , I ~ ~ > ~ , ~ = ~ - ~ , ~ > ~ )  

+ b 17 . Cov [gj(x), Z ( x  + r)] . I { ~ , ~ ,  i<n-r) , 

where 

Cov[gj(x), gi(x + r)] = -m . j-llqx . i+i-llqx and 

4.4 A Note on Variance for Limiting Portfolio 

A limiting portfolio is an abstract concept and is not achievable in practice. However, 

its characteristics such as variability can serve as benchmarks for portfolios of finite 

sizes and can provide some useful information for insurance risk managers. 

If the variance of the surplus per policy for a given portfolio is much larger than 

the corresponding variance for the limiting portfolio, then it can be concluded that 

a large portion of the total risk is due to the insurance risk. In other words, there 

is a great uncertainty about future cash flows. One implication of this is that, if 

the insurer decides to hedge the financial risk, for instance, by purchasing bonds 
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whose cash flows will match those of the portfolio's liabilities, this strategy will not 

be very efficient and the cost incurred to implement it might not be justified. In this 

case, selling more policies, sharing the mortality risk or buying reinsurance are better 

strategies to mitigate the risk. 

For a limiting portfolio, the calculation of the moments is done similarly to the 

case when the size of the portfolio is finite, except that the random cash flows per 

policy, RCTlm and PCl lm,  are replaced by their expected values. For example, the 

second raw moment of RGT/m and PLT/m and the covariance between them become 

lim E [ ( R G , / ~ )  '1 = x x E[RC:/m] . E[RC;/m] - ~[e'("~)+'(j>') 
m+co I ,  

i=O j=O 

lim E [ ( P L , / ~ )  '1 = x x E [ P C J / ~ ]  E [PC;/m] ~[e-'('~'+')-'('~'+~) 
m-co i=O j=O 

I 

and 

lim Cov(~G,/m, PLT/m) = x x E[RC;/m] - E[PC:/m] . cov (e'(j7*), e-'('.'+"). 
m-co j=O i=O 

4.5 Numerical Illustrations 

Consider homogeneous portfolios of life policies with $1000 benefit issued to people 

aged 30 and with premiums determined under the equivalence principle (see Ap- 

pendix A.4). Note that the expected values of the retrospective gain and prospective 

loss per policy as well as the two types of surplus per policy are the same as for a 

single policy which we discussed in the previous chapter. Here, we would like to see 

how the riskiness of the portfolio, as measured by the standard deviation, changes 

with respect to changes in the initial portfolio size. The results are presented for 

portfolios of size 100, 10,000, 100,000 and the infinite size (limiting portfolio). To 

compare portfolios of different sizes, all quantities are calculated on the per policy 

basis. 

2This is true for the accounting surplus only with our particular choice of the reserve equal to 
the expected value of the prospective loss. 
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Tables 4.1 and 4.2 give standard deviations of the retrospective gain at time r per 

policy conditional on the force of interest S(r) for the portfolios of 5-year temporary 

and 5-year endowment insurance contracts respectively. Three scenarios of possible 

realizations of S(r) (4%, (3% and 8%) are considered. Comparing the standard devia- 

tions for portfolios of different sizes, we see that they decrease as m increases. This is 

due to the diversification of the mortality risk. However, notice that this effect is much 

larger for portfolios of temporary policies than for portfolios of endowment policies. 

For example, in the case of temporary insurances when m = 10,000, SDIRGl/m] is 

almost 8 times larger than SDIRGl/m] for the limiting portfolio (0.1148 vs. 0.0137) 

and at  r = 4 the ratio is almost 3.5 (.2721 vs. 0.0788). But for portfolios of endow- 

ment insurances, even when there are only 100 policies, the ratio is around 2 at r = 1 

(3.9981 vs. 1.7325) and just over 1 at r = 4 (29.1919 vs. 27.2842). Increasing the 

size of the portfolio of endowment contracts to 10,000 almost entirely eliminates the 

insurance risk. 

This can be explained by the relative size of the mortality and investment risks. 

For short term (such as 5 years) temporary policies most of the risk comes from 

the uncertainty about how many deaths occurs during the duration of the contract. 

Therefore, for a small portfolio, when the size of the portfolio increases by a factor 

of, say, 100, one would expect the standard deviation to go down by a factor of 

about 10 (the square root of 100). We can see that for m increasing from 1 to 

100 and from 100 to 10,000. But an endowment policy is essentially an investment 

product that pays the benefit a t  the end of the term with a very high probability 

(e.g., probability that a 30 year old male survives for 5 years is 0.9931488, which is the 

probability of paying the pure endowment benefit) and so the small mortality risk gets 

quickly diversified for portfolios of even moderate size leaving only the nondiversifiable 

investment risk. Another way to see this is to compare conditional standard deviations 

to the corresponding unconditional ones. In the case of temporary contracts, there 

is a fairly small difference between them (e.g., for m = 10,000, SD[RG4/m] and 

SD[RG4/m I S(4)] are all around 0.8), but in the case of endowment contracts, for 

some parameters, unconditional standard deviations are almost three times as large 

(e.g., for rn = 10,000, SD[RG4/m]=27.3 vs. SD[RG4/m (S(4)] z 9.6). We can 

see that unconditional standard deviations are always larger than the corresponding 
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conditional ones confirming the conditional variance formula 

Also, note that the conditional standard deviations for the limiting portfolios at r = 1 

are equal to zero due to the absence of the investment risk in our model and a full 

diversification of the insurance risk. Hence, the corresponding unconditional deviation 

represents pure investment risk at time r = 1. 

Results for the prospective loss random variable, similar to those presented in 

Tables 4.1 and 4.2, are summarized in Tables 4.3 and 4.4. 

Tables 4.5,4.6,4.7 and 4.8 give standard deviations of the accounting and stochas- 

tic surpluses for portfolios of 5-year temporary and 5-year endowment insurance poli- 

cies. Table 4.9 shows correlation coefficients between retrospective gain and prospec- 

tive loss random variables for portfolios of 5-year endowment policies. 

Observe that as r increases, so do the conditional and unconditional standard 

deviations of the accounting surplus. For the stochastic surplus, although there is a 

reduction in the variability of the prospective loss for larger r, it might or might not 

be sufficient to offset an increase in the uncertainty of the retrospective gain. 

Comparing standard deviations corresponding to the same r but for different 

values of m, we can see that as m increases, there is a reduction in variability of the 

accounting surplus. As we already noted above, this reduction is attributed to the 

diversification of the mortality risk. However, even in the limiting case of endowment 

contracts, variability does not reduce to zero, since investment risk is nondiversifiable 

and remains present regardless of the size of the portfolio. 

It is interesting to note that the standard deviation of the stochastic surplus at 

valuation dates close to maturity for portfolios of endowment policies increases for 

larger portfolio sizes. Recall that 

We saw that the variability of both retrospective gain and prospective loss per policy 

random variables decreases as m increases. This suggests that the increase comes 

from the covariance component, which has to decrease to make Var [~ :"~~/ rn ]  larger 
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because of the minus sign. By looking at the correlation coefficients between RG,/m 

and PL,/nx, both coiiditional and unconditional, we can see that as m increases the 

correlation coefficients decrease. At earlier valuation dates, decrease in the variabil- 

ity of RG,/m and PL,/m seems to be sufficient to compensate for decrease in the 

covariance, but eventually, for r close to n, the reduction in the covariance slightly 

outweighs reduction in the variances of RG,/m and PL,/m. 

It is easy to see from Figure 4.1 that the stochastic surplus is more volatile than the 

accounting surplus. In the former case, the uncertainty in liabilities arises from the 

uncertainty in the complete future path of rates of return and mortality experience; 

whereas in the latter case, the randomness of liabilities comes from the uncertainty 

in the number of inforce policies remaining in the portfolio and the rate of return at 

the valuation date only. 

Also notice that as r increases, the difference in the volatilities of stochastic and 

accounting surpluses diminishes. In fact, at r equal to n (the term of the contract), 

conditional on the number of policyholders who survive to time n, there is no uncer- 

tainty about the liabilities and all the variation comes from the retrospective gain, 

which represents the asset side and is the same for the stochastic and accounting 

surpluses. 

Figures 4.2 and 4.3 display the standard deviations of accounting and stochastic 

surpluses per policy conditional on the number of inforce policies at time r (referred 

to as 'inforce size7 on the axes labels), Z,(x), and the force of interest in year r ,  

6(r), plotted against possible realizations of Z,(x) and 6(r). The plots are shown for 

portfolios of 100 10-year temporary and 10-year endowment life insurance policies at 

r equal to 5 and 8. For the portfolio of temporary policies, observe a steep increase 

in the variability of the accounting surplus when the inforce size decreases from 100 

policies to  99 policies and a less rapid increase for further decreases in the inforce 

size. The shape of these plots is difficult to explain because of the different factors 

affecting the variability of the surplus. One would expect the variability to be high 

when the probability of death in the time interval from 0 to r is about 0.5 and when 

the variability of the accumulation and discounting factors is high. 
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Table 4.1: Standard deviations of retrospective gain per policy for portfolios of 5-year 
temporary insurance contracts. 
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Table 4.2: Standard deviations of retrospective gain per policy for portfolios of 5-year 
endowment insurance contracts. 
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Table 4.3: Standard deviations of prospective loss per policy for portfolios of 5-year 
temporary insurance contracts. 
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Table 4.4: Standard deviations of prospective loss per policy for portfolios of 5-year 
endowment insurance contracts. 
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Table 4.5: Standard deviations of accounting surplus per policy for portfolios of 5-year 
temporary insurance contracts. 
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Table 4.6: Standard deviations of accounting surplus per policy for portfolios of 5-year 
endowment insurance contracts. 



CHAPTER 4. HOA,IOGENEOUS PORTFOLIO 

Table 4.7: Standard deviations of stochastic surplus per policy for portfolios of 5-year 
temporary insurance contracts. 
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Table 4.8: Standard deviations of stochastic surplus per policy for portfolios of 5-year 
endowment insurance contracts. 
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Table 4.9: Correlation coefficients between retrospective gain and prospective loss per 
policy for portfolios of 5-year endowment insurance contracts. 
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10-year temporary contract 

25-year temporary contract 

10-year endowment contract 

25-year endowment contract 

Figure 4.1: Expected value of surplus per policy, E[S,/m] (solid line); E[S,/m] f 
1.65 J ~ a r  [ S y t  /m] (dashed line) and E [ST /m] f 1.65 J ~ a r  [~f~oeh/rn] (dotted line) for 
portfolios of 100 10-year and 25-year temporary and endowment contracts. 
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Accounting Surplus at r = 5 Accounting Surplus at r = 5 

Accounting Surplus at r = 8 Accounting Surplus at r = 8 

Figure 4.2: Conditional standard deviation of surplus per policy for a portfolio of 
100 10-year temporary contracts given the inforce size 9r(x) and the force of interest 

w. 
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Accounting Surplus at r = 5 Accounting Surplus at r = 5 

Accounting Surplus at r = 8 Accounting Surplus at r = 8 

Figure 4.3: Conditional standard deviation of surplus per policy for a portfolio of 100 
10-year endowment contracts given the inforce size 2,(x) and the force of interest 

W).  



Chapter 5 

Distribution Function of 

Accounting Surplus 

In the previous chapter we derived and studied the first two moments of the stochas- 

tic and accounting surpluses for a homogeneous portfolio of life insurance policies. 

Although the analysis of the moments certainly helped us gain better understanding 

of the stochastic properties of the insurance surplus, it can be viewed only as a first 

step towards exploring the surplus' random behaviour. The standard deviation as a 

risk measure is unable to provide meaningful information when dealing with asym- 

metric distributions. Also, in the insurance context, usually only one of the tails 

of the distribution is of concern. So, nowadays commonly used risk measures are 

the Value-at-Risk (VaR) and the expected shortfall or conditional tail expect ation 

(CTE), calculation of which requires the knowledge of the distribution function. One 

of the objectives of this study was to  assess the probability of insolvency; i.e., the 

probability that the surplus will fall below zero. This chapter is, thus, devoted to the 

calculation of the distribution function of the accounting surplus at a given valuation 

date, which in turn allows to obtain the probability of insolvency. 
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5.1 Distribution Function of Accounting Surplus 

Recall that the accounting surplus at time r ,  conditional on the number of inforce 

policies and the force of interest at that time, is given by 

where , V ( ~ , ( X ) ,  6(r)) = ,V is the reserve at time r .  

Notice that, given the values of 2,(x) and 6(r), ,V is constant. Therefore, 

we can obtain the distribution function (df) of {S,"cct 1 2, (x) , 6(r)) from the df of 

{RG, I 2, (x) , 6(r)) as follows: 

p[s,"CCt 5 J I 2, = m,, 6(r) = 6,] = P[RGT 5 J + .V(m,, 6,) 1 .=-% = m ~ ,  6(r) = 6~1, 

(5.1) 

with 2,(x)  replaced by 2, for simplicity of notation. 

Since it is not trivial to get the distribution function of {RG, 1 2 , ,  6(r)) directly, 

we propose a recursive approach. 

For the valuation at a given time r ,  let Gt = C:=, RCJ . e1(j>') denote the accurnu- 

lated value to time t of the retrospective cash flows that occured up to and including 

time t, 0 5 t 5 r .  Observe that G, is equal to RG,. 

We can relate Gt and Gt-l as follows: 

Equation (5.2) can be used to build up the df of Gt from the df of Gt-l and thus the 

df of RG, recursively from Gt for t = 0,1, .  . . , r - 1. 
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Note that 

where the last line follows from the independence of Yt and b( t ) .  

Next we consider a function gt(A, mt, 6,) given by 

and motivated by Equation (5.3).  

The following result gives a way for calculating gt from gt-1, 1 < t 5 r 5 n. 

Result 5.1.1. 

where qt is the realization of RC: for given values of mt-1 and mt, 

with the starting value for gt 

gl(X, m1, 61) = 
P [ Y 1 ( x )  = ml] . fb(1) (61) if G1 5 A, 

otherwise. 

If (-) denotes the probability density function (pdf). Under our assumption for the rates of 
return, fs(,)(.) is the pdf of a normal random variable with mean E[b(t)lb(O) = bo] and variance 
Var[b(t) lb(0) = bo], and fs(,) where d = {b(t - 1) = is the pdf of a normal random 
variable with mean E[b(t) lb(0) = bO7 d] and variance Var[b(t) 1 b(0) = 60, dl. 
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Proof: 

From Equation ( 5 . 3 )  we have 

yt(X,  mt, 6,) = P [ 2 t  = mt, 6 ( t )  = 6t 1 Gt L A] . P [ G t  L A] 

A-RCr Using Equation (5 .2) ,  which implies that Gt-1 5 -&I, and the 
assumption of independence of 2t-1 and 2t from b ( t ) ,  we get 

m 
- rlt 

X 

mt-l=nzt 

CO - rlt 
t ( - = 4-1,ct-1 < -) e6t fsit-l) ~ - l ~ ~ t - l  < - d ~ t - ~ .  

By the Markovian property of % and d ( t )  and the definition of gt-I (9, rnt-,, 

gt(X,  rnt, dt)  becomes 

Once g,(X, m,, 6,) is obtained using Result 5.1.1, the cumulative distribution 
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function of S,"cct can be calculated as follows: 

- = IY 2 P [SFcct < e 1 3, = m,, 6(r) = 6,] P [4Y, = m,] . fs(,) (4) d6, 

Note that the reserve value, ,V, depends on 3, and 6(r) and so is different for different 

realizations of 3, and 6(r), m, and 6, respectively. 

Another approach that is easier to understand but which requires keeping track 

of more information is given in Appendix D. 

5.2 Distribution F'unct ion of Accounting Surplus 

per Policy for a Limiting Portfolio 

For a very large insurance portfolio, the actual mortality experience follows very 

closely the life table. In this case we can approximate the true distribution of the 

surplus by its limiting distribution, which takes into account the investment risk but 

treats cash flows as given and equal to their expected values. 

The limiting distribution can be derived similarly to the case of random cash flows. 

Define A = C:,,E[RC;/~] . e'(jtt). 

It can easily be shown that Gt = Gt-l . est +E[RC,' /m] (cf. Equation (5.2)). 

Now, let ht(X, dt) = P[Gt 5 X I 6(t) = 6,] . f6(t)(bt). This function can be used to 

calculate the df of Gt recursively similar to the way gt(X, mt, dt) was used for obtaining 

the df of Gt. A recursive relation for ht(X, dt) is given in the following result. 
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Result 5.2.1. 

with the starting value for ht 

hl@, 6 1 )  = { I )  a GI r A, 
otherwise. 

Since lim,,, P[S,"""t/m 5 c ( 6(r)  = 6.1 = P[GT 5 t + .V I 6(r)  = 6.1, 

lim P [ S F t / m  5 c] = 
nz-00 

1-, hr(E + rV, 6.) d d r ,  

where .V = .V(6(r)) denotes the benefit reserve at time r per policy for the limiting 

portfolio. 

5.3 Numerical Illustrations of Results 

For numerical illustrations, ure assume that 

and 

.V .V (6(r))  = E [ P L ~ / ~ L  1 6(r)] . 

5.3.1 Example 1: Portfolio of Endowment Life Insurance 

Policies 

Consider a portfolio of 100 10-year endowment life insurance policies with $1000 death 

and endowment benefits issued to a group of people aged 30 with the same mortality 

profile. Table 5.1 provides estimates of the probability of insolvency in any given year 

for different premium rates. The first column corresponds to the premium determined 

under the equivalence principle and the second column corresponds to the premium 
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with a 10% loading factor. We can see that when 8 = O%, all probabilities are slightly 

less than 50%. This can be expected since no profit or contingency margin is built 

into the premium when pricing is done under the equivalence principle. The fact 

that these probabilities are not exactly 50% is due to the asymmetry of the discount 

function. With the 10% loading factor, the probability of insolvency sharply decreases 

compared to the case of 8 = 0% in the first few years but this reduction is not as large 

in the later years of the contract. The probability that the accounting surplus falls 

below zero increases from 0.23% at r = I to 14.57% at r = 10. A 20% loading factor 

appears to be sufficient to ensure that the probability of insolvency in any given year 

is less than 5% . 

Cumulative distribution functions of accounting surplus per policy for different 

values of r are displayed in Figure 5.1 for three cases of 8 = 0%, 8 = 10% and 

8 = 20%. It can be observed that applying a loading factor to the benefit premium 

leads to an almost parallel shift in the distribution. We saw earlier that the variability 

of surplus increases with r. This is confirmed by the shape of the curves, which seem 

to be tilting to the right and look more spread out for larger values of r . Another 

interesting feature of the surplus distribution is a change in its skewness over time. 

Estimates of the skewness coefficients are summarized in Table 5.2. We can see that as 

r increases, the distribution changes from being negatively skewed to fairly positively 

skewed. 

Based on the analysis of the variability of accounting surplus per policy in the 

previous chapter, there is little difference between portfolios of size 10,000 or more 

and the limiting portfolio. So, let us also look at the accounting surplus per policy 

for the limiting portfolio. Table 5.3 contains estimates of insolvency probabilities. In 

addition to the benefit premium, we consider premiums with 10% and 20% loading 

factors as well as the case when nonzero initial surplus is included 2. Our arbitrary 

choice of the amount of initial surplus is based on the 7oth percentile of the surplus 

distribution at time r = n = 10. Probabilities when 6 = 0% and 6 = 10% are 

very close to the corresponding probabilities for the 100-policy portfolio we studied 

*TO calculate the df of S,acct/m with nonzero initial surplus per policy So, one simply has to 
adjust the cash flow at time 0 from RC; = T .m to RC; = (T +SO) em, and then apply Result 5.1.1 
or Result 5.2.1. 
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above. A 20% loading seems to be adequate to ensure no more than 5% probability of 

insolvency for all r. Instead of charging the premium with a 20% loading, the insurer 

can start this block of business with some initial surplus, say $61.74 per policy, and 

a lower premium. This initial surplus combined with the premium with only a 10% 

loading results in siniilar (slightly lower) insolvency probabilities. 

Cumulative distribution functions are plotted in Figure 5.2 and estimates of the 

skewness coefficients are given in Table 5.4. The results are very similar to the case 

of the 100-policy portfolio. 

Table 5.1: Estimates of probabilities that accounting surplus falls below zero for a 
portfolio of 100 10-year endowment policies. 
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Table 5.2: Estimates of skewness coefficients of accounting surplus distribution for a 
portfolio of 100 10-year endowment policies. 

Table 5.3: Estimates of probabilities that accounting surplus per policy falls below 
zero for the limiting portfolio of 10-year endowment policies. Initial surplus per policy 
So = 61.74 is the 7oth percentile of the SEd/m distribution. 
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Figure 5.1: Distribution fuilctions of accounting surplus per policy for a portfolio of 
100 10-year endowment policies. 
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Figure 5.2: Distribution functions of accounting surplus per policy for the limiting 
portfolio of 10-year endowment contracts. Initial surplus per policy 1 . s . ~  So = 61.74. 
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Table 5.4: Estimates of skewness coefficients of accounting surplus per policy distri- 
bution for the limiting portfolio of 10-year endowment policies. Initial surplus per 
policy So = 61.74 is the 7oth percentile of the Sgct/m distribution. 

5.3.2 Example 2: Portfolio of Temporary Life Insurance 

Policies 

In our next example, we study a homogeneous portfolio of 1000 5-year temporary 

insurance policies and the corresponding limiting portfolio with $1000 death benefit 

issued to people aged 30. As we saw in the previous chapter, even a very large portfolio 

(e.g., 100,000 policies) of temporary policies is still quite far from the limiting one. 

This is confirmed again by the distribution function of the accounting surplus per 

policy. Tables 5.5 and 5.6 give estimates of the probabilities of insolvency for different 

premiums charged. Premiums with 2% or 3% loading factors considerably decrease 

the probability of insolvency over the whole term of the contract for the limiting 

portfolio but have essentially no impact on those probabilities for the 1000-policy 

portfolio. Even a 20% loading factor is not sufficient to reduce the probabilities of 

insolvency to a reasonably low level (e.g. 5-10%). An implication of this is that for 

portfolios of temporary insurances, an insurer either has to maintain a very large 

portfolio or use a large premium loading. 

The distribution of the surplus for the 1000-policy portfolio remains negatively 

skewed for all values of r ;  see Table 5.7. In the case of the limiting portfolio, skewness 
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coefficients are faily small in magnitude and change from being negative for small 

values of r to being positive for larger r; see Table 5.8. 

The distribution functions of the accounting surplus per policy for the two port- 

folios are plotted in Figures 5.3 and 5.4. In the case of the 1000-policy portfolio, note 

that the plots for small values of r look more like plots of step functions for the df of a 

discrete random variable. This should not be a surprise. Remember that the surplus 

depends on the two random processes - a continuous one for the rates of return and 

a discrete one for the decrements. In the earlier years of the temporary contract, 

only a few deaths are likely to occur but each of them would have a relatively large 

impact on the surplus. This is reflected in the 'jumps' of the df of SYt/m.  The 

slightly upward sloped segments of the plots between any two 'jumps' indicate very 

small probabilities that the surplus realizes values in those regions. But in the later 

years the shape of the df gradually smoothes out due to the fact that there are more 

possibilities for allocating death events over the past years. 

Finally, Figure 5.5 presents the probability density functions of the accounting 

surplus per policy in every insurance year for the limiting portfolio of 5-year temporary 

policies. Four different combinations of the premium loading and the initial surplus 

are considered. These plots reinforce many of the observations we have already made 

regarding the distribution of the surplus. We can clearly see that with time the 

distribution becomes more dispersed. The mean value of the surplus shifts to the 

right as r increases; these shifts are larger for the contracts with a nonzero premium 

loading and initial surplus. 

Table 5.5: Estimates of probabilities that accounting surplus falls below zero for a 
portfolio of 1000 5-year temporary policies. 
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Table 5.6: Estimates of probabilities that accounting surplus falls below zero for the 
limiting portfolio of 5-year temporary policies. Initial surplus per policy So = 0.06 is 
the 7oth percentile of the S,"""/m distribution. 

Table 5.7: Estimates of skewness coefficients of accounting surplus distribution for a 
portfolio of 1000 5-year temporary policies. 

Table 5.8: Estimates of skewness coefficients of accounting surplus distribution for 
the limiting portfolio of 5-year temporary policies. Initial surplus per policy So = 0.06 
is the 70th percentile of the S,"""t/m distribution. 
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Figure 5.3: Distribution functions of accounting surplus per policy for a portfolio of 
1000 5-year temporary policies. 
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Figure 5.4: Distribution functions of accounting surplus per policy for the limiting 
portfolio of 5-year temporary policies. Initial surplus per policy 1 . s . ~  So = 0.06. 
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Figure 5.5: Density functions of accounting 
of 5-year temporary policies. 



Chapter 6 

Conclusions 

This research project explored the behavior of life insurance surplus in an environ- 

ment of stochastic mortality and interest rates. The surplus was examined at different 

future times from the point of the contract initiation. An advantage of this framework 

was that it allowed to assess an insurer's position from a solvency perspective through- 

out the duration of a contract before its initiation and so any necessary modifications 

to the terms of the contract can be made. 

The first two moments of the retrospective gain, prospective loss and insurance sur- 

plus for a single life insurance policy were derived. Then, these results were extended 

to the case of a homogeneous portfolio of life policies. It was suggested to distinguish 

between two types of insurance surplus, namely stochastic and accounting surpluses, 

each serving a slightly different purpose in addressing insurer's solvency. The ac- 

counting surpluses represent the financial results as they will be seen by shareholders 

and regulators at future valuation dates. When studying the stochastic surplus, one 

considers the range of possible portfolio values measured at a given valuation date 

that could become reality once all contracts in the portfolio have matured. Finally, 

the distribution function of the accounting surplus was numerically obtained by ap- 

plying the proposed recursive formula. The precision of the numerical approach was 

validated by comparing the first two moments estimated from the distribution func- 

tion with the exact ones. It was found that in most of the cases the relative errors 

were well within 1%. 
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We have seen that the variability of accounting surplus is less than the variability 

of stochastic surplus, since the accounting surplus depends on the experience only up 

to a given valuation date, whereas the stochastic surplus depends on the experience 

during the whole term of the contract. The difference in the variability between the 

two types of surplus diminishes with time and becomes negligible as we approach the 

maturity date of the contracts. 

Interesting observations were made regarding the changes in the variability of sur- 

plus per policy for different types of contracts in response to changes in the portfolio 

size. In particular, in the case of 5-year temporary policies, the reduction in the stan- 

dard deviation of surplus was roughly equal to the square root of the factor by which 

the portfolio size was increased. Even for a fairly large portfolio of 100,000 policies, 

the standard deviation was still considerably away from the corresponding standard 

deviation for the limiting portfolio. However, in the case of 5-year endowment poli- 

cies, increasing the portfolio size over 100 policies did not have a large impact on the 

variability of the surplus. Several important conclusions can be drawn from these 

observations. First of all, (short term) temporary and endowment policies are quite 

different in nature. In the former case, the uncertainty about future realizations 

mainly comes from the diversifiable mortality risk; whereas, in the latter case, the 

uncertainty mainly comes from the nondiversifiable investment risk. As a result, dif- 

ferent risk mitigation strategies should be used in each case. Temporary policies are 

very risky when sold to a small group of people, but for extremely large portfolios, 

most of the risk is diversified and reduced to just a small fraction of the fair (i.e., 

determined under the equivalence principle) premium charged for these policies. The 

limiting portfolio of endowment policies can be used as a proxy for portfolios of finite 

size, in which case a gain in the computing time will outweigh a relatively small loss 

in the accuracy. 

The analysis of the probabilities of insolvency was used to comment on the ad- 

equacy of premium rates and levels of the initial surplus. In fact, the probability 

of insolvency can be used as a risk measure. For example, the premium loading re- 

quired to ensure a sufficiently small probability of insolvency is much larger for a 

small portfolio than it is for a very large portfolio. 

This work can be further continued and extended in a number of ways. First 
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of all, there are still some questions that remain unanswered even within our set of 

assumptions. We have developed results for calculatiiig probabilities of insolvency 

at any given valuation date. The next question is what is the overall probability of 

insolvency in a given time horizon, finite or infinite. Surplus amounts at different 

times are highly correlated. If surplus falls below zero in one time period because of 

unfavorable experience, it is more likely to remain below zero in the next period. 

The recursive formula for the distribution of the accounting surplus took advantage 

of conditionally constant liability. Obtaining the distribution of stochastic surplus is 

much harder since one needs to take into account both random assets and liabilities. 

The model can be made more realistic by including expenses and lapses. If lapses 

are considered, the assumption of independence between decrements and rates of 

return might not be valid. 

Although only the case of life insurances was considered, the methodology can 

easily be extended to study life annuities and other insurance products by adjusting 

the cash flows. 

A homogeneous portfolio can be used as a proxy for a portfolio of policies with 

similar risk characteristics. But of course real insurance portfolios are comprised 

of different policies with different durations and benefits and issued to people with 

different mortality profles (e.g., gender, smoking status). So, the project could be 

generalized to study general portfolios of life insurances. 



Appendix A 

Additional Material 

A. l  Interest Rate Model 

Two approaches were mentioned for calculating moments of {I(s, r)16(0)). We give 

details of E[I(s, r) (S(0) = So] derivation under the f i s t  approach, which directly uses 

the definition of I(s, r). 

where the following facts about the conditional AR(1) process axe used (see, for 

example, Bellhouse and Panjer (1981)) : 

~[6(j)16(0) = 601 = S + (60 - 6)@, (A-2) 

cr2 
Var[S(j)lS(O) = So] = - (1 - qh2j) and 

1 - q52 (A-3) 
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A.2 Theorem 1 

We restate Theorem 3.2 given in Bowers et al. (1986) p. 64 for completeness. 

Theorem 1. Let K be a discrete random variable on nonnegative integers with g ( k )  = 

P ( K  = k )  = G(k)  - G(k - 1) and @(k)  be a nonnegative, monotonic function such 

that E[$(K)] exists. Then, 

A.3 Retrospective Cash Flows Conditional on 

Number of Policies In Force 

We first show how to obtain the distribution of the number of survivors at time j for 

0 < j < r, conditional on the number of survivors at time r .  This distribution is then 

used to calculate the mean and the variance of the retrospective cash flow at time j, 

RC;, as well as the covariance between RC: and RC; conditional on the number of 

policies in force at time r, T T ( x ) .  To simplify not ation, Tj ( x )  and gj ( x )  are denoted 

as Tj and 9.. 

Probability that mj people survive to time j given that m, people will survive to 

time r, j < r, can be calculated as follows: 

P [ T j  = mj n T, = m,] 
P [ q  = m j l T r  =m,] = 

P[Tr  = m r  ] 

where 
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since 2,122' N BIN(=.%j, ,-jpZ+j) and =.%j BIN(m, jp,) for 0 _< j  5 r. 

Now, consider the retrospective cash flows. The conditional meal, variance and 

covariance in terms of and gj are given by 

and for i < j ,  

The distribution of {2Zj = mj 1 2, = m,) can be used to obtain the following 

quantities necessary to evaluate expressions (A.5) - (A.7): 

for i < j 5 r ,  

rni=m, mj=mr 

x P[yi = mi 1 9, = m,], 
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where 

P[2' = mj I z. = mi, 2, = m,] = 

- - P [Tj = mj , Yi = mi, 3, = m,] 
P[Yi = mi, 2, = m,] 

and using the above formulas we can calculate: 

Var[Zj / 2, = m,] = E [ Y ~  I 3, = m,] - E[Tj (9, = n1,I2; 

C o v [ z , T j  (T,] = E[Yi .T j  (2,] -E[Yi )YT] .E[2j.  IYr]. 

Since the number of deaths in year j is the difference between the number of 

people alive at time j - 1 and at time j ; i.e. gj = Tj-, - Zj ; we have 

A.4 On Benefit Premium Determination 

In the ~iumerical examples unless stated otherwise, the equzvalence prznczple is used 

to set insurance premiums. As described in Bowers et al. (1997) (see pp.167-170), 
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this principle requires the premium to be chosen so that the expected value of the 

prospective loss random variable at issue is equal to zero (i.e., E [ P L ~ ]  = 0) 

From Equation (3.2) we have E [pLo] =E [z] - n-.E [Y] , implying that the pre- 

mium n- determined under the equivalence principle (also referred to as the benefit 

premium) is given by 

where: 

Z is the present value at issue of future benefits; 

Y is the present value at issue of future premiums of $1. 

The following table provides benefit premiums for temporary and endowment 

insurance contracts per $1000 benefit issued to (30) with 5, 10 and 25-year terms. 

Temporary Endowment 
n insurance insurance 
5 1.2691 160.2407 
10 1.3675 67.9009 
25 2.0883 17.5089 

Note that premiums determined under the equivalence principle are only based on 

the pattern of benefits and premiums. To take into account, for instance, profit and 

contingency margins, we introduce a premium loading factor 8. Then, the premium 

charged is equal to 

If I3 = 0 in (A.8), then .rr is the benefit premium. 

A.5 Proof of Result 4.3.1 

In the proof, we use the formula for computing expectation by conditioning and the 

conditional variance formula (e.g., see Equation 3.3 p.106 and Proposition 3.1 p.118 
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in Ross (2003)). 

Va[SFcct] = Varqr) E [ S y t  16(r)] + Eqr) Var[SFcct I 6(r)] 

Next, we simplify expressions (A.9)) (A.lO) and (A. 11). 
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Applying the conditioiial variance formula twice, Expression (A.9) becomes 

To numerically evaluate Expression (A. 10) it can be rewritten as 

n-r n-T 

x EqT) (~[e-'('~'+")16(r)] ~[e-'('~'+j) l6(r)]) - (EIPL,]) 2. (A. 13) 
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Finally, Expression (A. 11) simplifies to 

r n-r 

r n-r 

= x Err ( E  [RCJ - PC,' I%]) . Es(,) (~[e ' ( j>~)- ' ( "+~)  

j=O i=O 

r n-r 

In the above derivation we use the fact that {RC; I IE;} and {PC: I IP,} are uncorre- 

lated as well as {e1(37) 16(r)} and {e-'('lrC")/6(r)}, which can be shown as follows: 

e I ( j , r )  . E e-I(r,r+i) I [ I (5 6(r)l] 

= EI(j ,r)  [ e ' ~ ' )  E [ e-'('*'+" )l 6(r )]]  .: Markovian property 

- E [e'( j jr)  / 6(r)] . E [e-'(~,r+i) 6 r - I ( 1 1 ,  

Similarly, 

E[RC;. P C ; I ~ ~ I  = ERC;[E[RCJ. PC:IRCJ, 2r1] 

= ER.; [RC; E [PC: I RC;, 2 r ] ]  

= ERc; [RCJ . E [PC: I I ~ , ] ]  .: Markovian property 

= E [RC; I IP,] - E [PC: I Crr] , 

Now, replacing (A.9)-(A.11) with (A.12)-(A.14) proves the result. 0 
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On Numerical Computations 

Results 5.1.1 and 5.2.1 were used for obtaining the distribution function of the ac- 

counting surplus for portfolios of finite size and limiting portfolios respectively. To 

apply these results, one needs to evaluate the improper integrals over the values of 

bt, t = I , .  . . , r ,  where r corresponds to a valuation time. Because of the complexity 

of the integrand, a numerical evaluation of these integrals is required. 

In this appendix, several suggestions are made regarding the implementation of 

the results. Only the case of the portfolio with a finite number of policies is discussed. 

The implementation of the method for the limiting portfolio is analogous; in fact, it 

is simpler since there is no randomness about the cash flows and thus there is no 

weighted sum over possible number of survivors in any given time period. 

Each integral is approximated by a sum over a finite number of values of bt. 

Recall that in our model the force of interest in any year is normally distributed with 

mean E[b(t) (do] =: p s  and standard deviation SD[b(t) Ido] =: a s .  This implies that 

the distribution of b(t)lbo is symmetric and centered around ,us. We thus choose to 

consider points in the following range: ,us f k . a s .  The number of points is denoted 

pts.d and the values of bt are denoted {bi , i = 1, . . . , pts. d) for any given t . It was 

found that k = 5 and pts.d = 65 produce fairly accurate estimates of the integrals. 

Note that in order to include ,us into the set of considered points {bi, i = 1, . . . , pts.d), 

pts.d must be an odd integer. 

When the size of the portfolio is large, taking into account all possibilities for the 
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number of inforce policies in any given year is time-consuming. In fact, some of those 

outcomes can be quite unlikely. For example, for a portfolio of 100 policies issued to 

a group of people aged 30, the probability that there will remain 90 policies in force 

after one year is 2.12 . 10-l6 and for a portfolio of 1000 policies issued to (30), the 

probability that there will remain 900 policies in force after one year is 4.91 . 10-150. 

Ignoring these unlikely events will not have much impact on the accuracy of the df 

estimation but will definitely reduce computing tinie. In our numerical illustrations 

we choose to ignore those realizations of -Zt(x) for which P[-Zt(x) = m,] < 10-lo. 

The choice of values of X for which g (A, mt, dt) (t = 1, . . . , r )  is evaluated and J 

for which P[S,"cct 5 J] is evaluated is based on the range of values we use given by 

(E[G~] - kl.SD[Gt], E[Gt] + k2-SD [G~])  and 

(E[s,""'] - kl.SDISyt], E[S,""'] + k 2 . ~ ~ [ s , " ~ " ] ) ,  and the number of points denoted 

pts.g and pts.s respectively. For most portfolios, k1 = k2 = 5 and pts.g = pts.s = 85 

seemed to work fine. However, for a small portfolio of temporary insurance contracts 

for which the distribution of S,""& is fairly skewed to the left, we used kl = 6 and 

k2 = 4. 

Linear interpolation is used to obtain the values of gt-l(%, rat-,, dt-i). 

Once the df of the surplus is computed, we would also like to assess the accuracy 

of the numerical calculations. In Chapter 4 the first two moments of the accounting 

surplus were derived. Since they are evaluated from exact formulas, they can be used 

as the exact moments. We can also estimate the moments from the df. Remember 

that although the proposed method for calculating the df is exact, we have to use a 

number of numerical approximations to evaluate the improper integrals and to reduce 

computing time by ignoring unlikely realizations of the processes; so, the moments 

estimated from this df contain numerical errors. These estimates are then compared 

to the exact moments. If the difference between them is small, then we can conclude 

that the df is accurate and use it to obtain probabilities of various events associated 

with the accounting surplus. 

An estimate of the kth moment of S,"cct is given by 



APPENDIX B. ON N UI1fERICA L COAdP UTATIONS 

where J; = 1 + Jj) 

It seems to be computationally more coiivenier~t to treat the case r = 1 separately 

and use the recursive formula for g(X, mt,  4) (t  = 2 , .  . . , r )  starting at  t = 2. 

For r = 1 we have 

where 

The indicator function 1{G?<~+lv(ml,6f)) % - is a step function with the jump 

at J = Gf -lV(ml, 6:). To avoid interpolation between the values of the step function, 

which results in a numerical error whenever the values of the function argument are 

on different sides of the jump point, we consider values of J that satisfy 

[ = G; - lV(ml, b,t) for given values of ml  and 6:. Then, the I;'h moment of Sfcct 

can be estimated as follows: 
pts.s 

acct < E [(s,o&) '1 = ([l)k . @  [syt S [I] + C ([j)k (@[syt < h] - @ [sl - 51-11) 
j=2 

where pts.s is equal to the sum of the number of values of ml used in the df estimation 

and pts.d - 1. 
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Tables B.l, B.2, B.3 and B.4 provide exact values and estima,tes of the expected 

values and the standard deviations of the accounting surplus for portfolios of life 

insurance policies considered in Example I and Example 2 of Chapter 5. Lie also 

report relative errors. However, it should be noted that, when comparing very small 

numbers, relative errors might be misleading; instead one should look at the absolute 

errors. It can be observed that most of the relative errors are well within 1% of 

the corresponding exact values. For the portfolio of 1000 temporary policies with 

0% premium loading (see Table B.3), the expected values of the accounting surplus 

are very close to zero, which produces large relative errors. But the absolute errors 

between the exact expected values and their estimates do not exceed $0.002, which 

can be considered quite negligible in the insurance context. 
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Table B.l: Estimates of expected values and standard deviations of accounting surplus 
per policy for a portfolio of 100 10-year endowment policies. 

r I E[S,"d/m] I E[SFcct/m] I rel. error I SD[SFCct/m] I S D [ S y t / m ]  I rel. error 
A .---.- 7 

8 = 0%, rr = 67.90 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.1813 
0.5799 
1.2282 
2.1532 
3.3749 
4.9043 
6.7403 
8.8671 
11.2499 
13.8300 

-0.0017 
0.0304 
-0.0048 
-0.0045 
-0.0033 
-0.0027 
-0.0023 
-0.0021 
-0.0023 
-0.0025 

8 = lo%, rr = 74.69 

0.1810 
0.5975 
1.2223 
2.1436 
3.3639 
4.8912 
6.7251 
8.8483 
11.2241 
13.7951 

18.4494 
28.9773 
38.9717 
48.7720 
58.4269 
67.8404 
76.8750 
85.4109 
93.4105 
101.0684 

18.4445 
28.9847 
38.9385 
48.7257 
58.3658 
67.7569 
76.7586 
85.2437 
93.1651 
102.4769 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.0003 
-0.0003 
0.0009 
0.0010 
0.0010 
0.0012 
0.0015 
0.0020 
0.0026 
-0.0137 

0.0003 
-0.0010 
0.0006 
0.0008 
0.0010 
0.0012 
0.0014 
0.0020 
0.0028 
-0.0110 

53.7584 
58.3794 
63.4848 
69.1228 
75.3356 
82.1574 
89.6116 
97.7079 
106.4383 
115.7718 

8 = 20%, rr = 81.48 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

53.7581 
58.3607 
63.4855 
69.1293 
75.3362 
82.1566 
89.6139 
97.7082 
106.4369 
115.7689 

0.0000 
-0.0003 
0.0000 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

107.3356 
116.1789 
125.7415 
136.0925 
147.2963 
159.4104 
172.4828 
186.5488 
201.6267 
217.7137 

107.3352 
116.1350 
125.7439 
136.0953 
147.2979 
159.4111 
172.4849 
186.5492 
201.6259 
217.7126 

17.3837 
27.9597 
38.3216 
48.8169 
59.4432 
70.0953 
80.6368 
90.9464 
100.9743 
112.5302 

0.0000 
-0.0004 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

17.3884 
27.9325 
38.3458 
48.8547 
59.5002 
70.1778 
80.7490 
91.1297 
101.2591 
111.2875 

16.3317 
26.9414 
37.7102 
48.9139 
60.5285 
72.444 1 
84.5272 
96.6601 
108.7897 
122.6051 

16.3362 
26.9350 
37.7357 
48.9544 
60.5887 
72.5320 
84.6519 
96.8607 
109.0995 
121.4694 

0.0003 
-0.0002 
0.0007 
0.0008 
0.0010 
0.0012 
0.0015 
0.0021 
0.0028 
-0.0093 
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Table B.2: Estimates of expected values and standard deviations of accounting surplus 
per policy for the limiting portfolio of 10-year endowment policies. 

r I EIS,"cct/lm] I E[S,"Cct/m] I rel. error I SD[SFCct/m] I SD[SFcct/m] I rel. error 
- /. 

0 = O%, ;r = 67.90 
0.0000 
0.0011 
0.0009 
0.0009 
0.0009 
0.0011 
0.0013 
0.0017 
0.0024 
0.0022 

0.1812 
0.5673 
1.2269 
2.1504 
3.3697 
4.8974 
6.7304 
8.8532 
11.2325 
13.8048 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 = lo%, ;r = 74.69 

18.1396 
28.6234 
38.5285 
48.2884 
57.9109 
67.2957 
76.2996 
84.7998 
92.7561 
100.2132 

-0.0006 
-0.0217 
-0.0011 
-0.0013 
-0.0015 
-0.0014 
-0.0015 
-0.0016 
-0.0015 
-0.0018 

0.1813 
0.5799 
1.2282 
2.1532 
3.3749 
4.9043 
6.7403 
8.8671 
11.2499 
13.8300 

18.1388 
28.5924 
38.4954 
48.2473 
57.8586 
67.2236 
76.1986 
84.6528 
92.5369 
99.9982 

17.0262 
27.5425 
37.8570 
48.3332 
58.9499 
69.6061 
80.1630 
90.5005 
100.5821 
110.4057 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.0000 
0.0011 
0.0008 
0.0009 
0.0009 
0.0011 
0.0014 
0.0018 
0.0024 
0.0022 

0.0000 
-0.0002 
-0.0001 
-0.0001 
-0.0001 
-0.0001 
-0.0001 
-0.0002 
-0.0002 
-0.0003 

0 = 20%, ;r = 81.48 

53.7584 
58.3794 
63.4848 
69.1228 
75.3356 
82.1574 
89.6116 
97.7079 
106.4383 
115.7718 

17.0255 
27.5109 
37.8251 
48.2904 
58.8945 
69.5275 
80.0499 
90.3369 
100.3369 
110.1670 

53.7584 
58.3699 
63.4797 
69.1140 
75.3294 
82.1481 
89.5988 
97.6932 
106.4162 
115.7397 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.0001 
-0.0001 
0.0000 
0.0000 
-0.0001 
-0.0001 
-0.0001 
-0.0001 
-0.0001 
-0.0002 

107.3356 
116.1789 
125.7415 
136.0925 
147.2963 
159.4104 
172.4828 
186.5488 
201.6267 
217.7137 

15.9380 
26.4625 
37.1893 
48.3826 
59.9985 
71.9291 
84.0382 
96.2148 
108.4152 
120.6012 

15.9122 
26.4296 
37.1560 
48.3372 
59.9373 
71.8417 
83.9136 
96.0319 
108.1418 
120.3358 

107.3507 
116.1726 
125.7381 
136.0858 
147.2888 
159.3989 
172.4680 
186.5335 
201.6012 
217.6760 

0.0016 
0.0012 
0.0009 
0.0009 
0.0010 
0.0012 
0.0015 
0.0019 
0.0025 
0.0022 
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Table B.3: Estimates of expected values and standard deviations of accounting surplus 
per policy for a portfolio of 1000 5-year temporary policies. 

r 1 E[S:cct/m] I ( rel. error I S D [ S y / m ]  I SD[Syt /m] I rel. error 
- 

0 = O%, 7r = 1.27 
1 
2 
3 
4 
5 

0.0005 
0.0015 
0.0030 
0.0048 
0.0068 

0.0007 
0.0012 
0.0048 
0.0067 
0.0088 

0 = 2%, T = 1.29 

1.1403 
1.6850 
2.1598 
2.6120 
3.0624 

-0.0002 
0.0010 
0.0018 
0.0023 
0.0028 

0.4000 
-0.2000 
0.6000 
0.3958 
0.2941 

- 
1 
2 
3 
4 
5 

1.1405 
1.6834 
2.1560 
2.6059 
3.0540 

1.1403 
1.6852 
2.1601 
2.6124 
3.0630 

0.1187 
0.1291 
0.1404 
0.1527 
0.1658 

-0.0003 
0.0010 
0.0018 
0.0023 
0.0028 

0 = 3%, T = 1.31 

0.1188 
0.1287 
0.1422 
0.1546 
0.1677 

0.1779 
0.1924 
0.2108 
0.2284 
0.2471 

1 
2 
3 
4 
5 

0.0008 
-0.0031 
0.0128 
0.0124 
0.01 15 

-0.0003 
0.0010 
0.0019 
0.0024 
0.0028 

0.0006 
-0.0026 
0.0081 
0.0079 
0.0073 

0.1778 
0.1929 
0.2091 
0.2266 
0.2453 

0 = 20%, T = 1.52 

1.1406 
1.6836 
2.1562 
2.6063 
3.0544 

1.1407 
1.6836 
2.1563 
2.6064 
3.0546 

1 
2 
3 
4 
5 

1.1404 
1.6853 
2.1603 
2.6126 
3.0632 

1.1830 
1.2763 
1.3784 
1.4850 
1.5980 

1.1825 
1.2770 
1.3773 
1.4839 
1.5969 

0.0004 
-0.0005 
0.0008 
0.0007 
0.0007 

1.1414 
1.6870 
2.1629 
2.6163 
3.0679 

1.1412 
1.6849 
2.1584 
2.6095 
3.0589 

0.0002 
0.0012 
0.0021 
0.0026 
0.0029 



APPENDIX B. ON NUAIERICAL COMPUTATIONS 

Table B.4: Estimates of expected values and standard deviations of accounting surplus 
per policy for the limiting portfolio of 5-year temporary policies. 

r 1 E[SpCCt/m] I E [ ~ y ~ / m ]  I rel. error 1 SD[Syt /m] I SD[SPc"/m] I rel. error 
-1 

6 = 0%, rr = 1.27 
0.0000 
0.0014 
0.0011 
0.0020 
0.0019 

1 
2 
3 
4 
5 

0.0005 
0.0015 
0.0030 
0.0048 
0.0068 

8 = 2%, rr = 1.29 

0.0005 
0.0015 
0.0030 
0.0048 
0.0068 

0.0000 
0.0000 
0.0011 
0.0010 
0.0018 

1 
2 
3 
4 
5 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

6 = 3%, rr = 1.31 

0.1187 
0.1291 
0.1404 
0.1527 
0.1658 

0.0523 
0.0729 
0.0873 
0.0979 
0.1065 

0.1187 
0.1291 
0.1405 
0.1527 
0.1659 

0.0020 
0.0014 
0.0011 
0.0019 
0.0026 

0.0523 
0.0730 
0.0874 
0.0981 
0.1067 

0.0515 
0.0731 
0.0893 
0.1024 
0.1138 

0.0000 
0.0000 
0.0007 
0.0000 
0.0006 

1 
2 
3 
4 
5 

0.0515 
0.0731 
0.0892 
0.1023 
0.1136 

0.1778 
0.1929 
0.2092 
0.2267 
0.2453 

0.1778 
0.1929 
0.2091 
0.2266 
0.2453 

8 = O%, rr = 1.27, So = 0.06 

0.0000 
0.0000 
0.0005 
0.0004 
0.0000 

1 
2 
3 
4 
5 

0.0529 
0.0744 
0.0899 
0.1021 
0.1124 

0.0510 
0.0732 
0.0902 
0.1044 
0.1171 

0.0000 
0.0000 
0.0011 
0.0020 
0.0027 

0.0655 
0.0716 
0.0785 
0.0861 
0.0942 

19 = 2%, i7 = 1.29, So = 0.06 

0.051 1 
0.0733 
0.0903 
0.1046 
0.1174 

0.0655 
0.0717 
0.0786 
0.0861 
0.0942 

0.0000 
0.0000 
0.0011 
0.0019 
0.0017 

0.0521 
0.0746 
0.0919 
0.1064 
0.1194 

1 
2 
3 
4 
5 

0.0000 
0.0014 
0.0013 
0.0000 
0.0000 

0.0529 
0.0744 
0.0898 
0.1019 
0.1121 

0.1837 
0.1992 
0.2160 
0.2340 
0.2533 

0.1837 
0.1992 
0.2160 
0.2341 
0.2533 

0.0000 
0.0000 
0.0000 
0.0004 
0.0000 

0.0521 
0.0746 
0.0918 
0.1062 
0.1192 
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Mortality Table 



Appendix D 

Alternative Method for Computing 

the Distribution Function of 

Accounting Surplus 

Note that 

- - PI=%-1 = mt-1, Tt = mt 1 Gt I A] . f6(t)(dt 1 Gt L A) . P[Gt L A] 
P[Tt-l = mt-1, 9 t  = mt] . fs( t)(6t)  

, (D.1)  

where the last line follows from the independence of T t - 1  and Tt from 6 ( t ) .  

Next we consider a function gt ( A ,  mtPl, mt , dt)  given by 

and motivated by Equation (D. 1 ) .  

The following result gives a way for calculating gt from gt-1, 1 < t _< r < n. 
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Result D.O.1. 

gt (A ,  mt-I, mt, 6t)  = P [ T t ( x )  =mt(%-l(ic) =mt-l] x 

(1: f b ( t ) ( 6 t  1 d(t - 1) = & - I )  x 

where qt is the realization of RC: for given values of mt-l and mt, 

with the starting value for gt 

P[=Zl(.) = m11 . f b (1 ) (61)  if Gl I A 
m, m1, 61) = 

othemuise. 

Proof: 
A-RCr Using Equation (5.2), which implies that {Gt 5 A )  = {G,-, < &), we obtain 

and from Equation (D.l )  : 

gt (A ,  mt-1, mt, 6t )  = P = mt-I, IC, = mt 1 Gt-1 < - x " ebt -"I 
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It can be rewritten as follows: 

x P [ z -~  = mtp2 ( < - X 

A - rlt A - rlt 
x f6( t )  ( 6 t16( t  - 1)  = st-1, Gt-1 < - e6t ) - f q t - 1 )  (st-1 1 ~ t - 1  < -) ebt dst-1. 

Applying the Markovian property of Zt and 6 ( t ) ,  we get 

x P [zt;-2 = mt-2 / G ~ - ~  5 - x "-"I ebt 
A - rlt 

~ f s ( t ) ( s t  I6(t - 1) = & - I )  f q t - 1 )  (4-1 1 Gt-1 < -) e 6t dht-l 

Substituting (D.3) into (D.2) proves the result. 

The starting value is obtained from the definition of gt ( A ,  mtVl, mt, st) for t = 1 

with P I Z O  = m] = 1. 
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Once g, (A, mrPl, m,, 6,) is obtained using Result D.O.l, the cumulative distribu- 

tion function of SFt can be calculated as follows: 
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