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ABSTRACT

A strongly minimal set H is strictly minimal if it is

definable without parameters, realizes only l-type, and there are no
nontrivial equivalence relations on it definable without parameters.

(A)H is by definition H N acf(a); dimH(A) the size of a maximal

independent subset of (A)H . If H is strictly minimal, it is

. c . . - as
modular if for any A,B CH , dlmH(A) + dlmH(B) dlmH(A U B)

+ dimH((A)H n (B)H) . E is an H-envelope of A if E is maximal
subject to (E U A)H = (A)H . In the following, M is an
Nb—categorical, No—stable structure, H € M is strictly minimal with

either H modular or (A)H # ¢ , and E is an H-envelope of A C M.

Theorem 2.7. For any a b, €M with st(allA) = st(52|A) there

122/°

- A - A
i i <b, > = >
is b, €M with st(al b, |a) st(a2 <b,, |a) .

Lemma 3.1. ST(E|A UH) = {st(b|aUH):Db €M and aUD) = (@A)},

where ST(A|B)is by definition {st(a|B): a € A} .

Theorem 4.5. (1) M is atomic owver E UH .
(2) If (A)H is finite, M is atomic over E .

Corollary 4.6. If M is countable, E is unique up to an

automorphism of M fixing A U H pointwise.

(iii)
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INTRODUCTION

The notion of a theory categorical in power o was first
introduced by Kos (see Yos) and Vaught (see V1) in 1954. Probably the

first important result about N _-categorical theories is the 1959

0
theorem that a theory T 1is No—categorical if and only if T has
only finitely many types in any finite set of variables; this is

attributed to Engeler and Svenonius as well as Ryll-Nardzewski (all

independently; see En, R-N, Sv). Vaught (V2) gave some other equivalent

conditions in 1961.

In Kos it was conjectured that any countable theory
categorical in one uncountable power is categorical in every
uncountable power. Th?s conjecture was proved by Morley in 1965 (Mo);
in this paper Morley introduced the notions of transcendental rank
and degree and totally transcendental theory. Morley's rank is used
in the present paper, and of course in countable languages totally
transcendental and NO—stable theories are the same as pointed out in
Mo, Theorem 2.8.

The term stable (also superstable and No—stable) actually
comes from Shelah (Shl, Sh2); indeed, the modern notion of stability,
as well as a great deal of what is known about it, is due to Shelah,
beginning about 1969. Shelah's notion of forking independence,
though never mentioned by name, is implicit throughout the current
paper. The same goes for the finite equivalence relation theorem
(sh2, 111, 2.8; see also CHIL, Lemma 1.6); for example, it is used in

deriving Proposition 1.14 of the current paper from Theorem 3.1 of



of CHL. His concepts of strong type and almost definability are

used quite explicitly in the current paper. Also due to Shelah are

0] - el‘"
the notion of imaginary elements and a structure referred to as M 2

this is essentially our structure N . (All of the above is in Sh2.)
There are other notion of rank besides Morley's,:several

due to Shelah and one, the U-rank, due to Lascar (Las), which for

the purposes 6f the current paper is identical with Morley's

(as pointed out in Bu, a relatively readable account of some of the

highlights of CHL.) The notation for forking independence used

here comes from Ma.

Sets of Morley rank O are finite and hence of little interest
in studying ideas related to categoricity. Given the Morley rank,
then, the natural thing . to consider is definable sets of rank and
degree 1. These, called strongly minimal sets, were first
investigated by Marsh (Mar) in 1966, and later more thoroughly by
Baldwin and Lachlan (BL) where they were used to prove a conjecture
of vaught's that every lecategorical theory in a countable language has

one or No—nonisomorphic models. Of course, given imaginary elements,

the study of strongly minimal sets is virtually equivalent to

studying strictly minimal sets (CHL).

Much of the work regarding categoricity has been devoted

to providing answers to the following {(from Mo, more oriless):

(1) vUnder what conditions on a structure M can it be finitely

axiomatizable?



(2) Under what conditions is the rank of M finite?

(o structure is finitely axiomatizable, etc., iff its complete theory

is.)

Baldwin (B) provided a partial answer to (2) in 1973; if
M is Nl—categorical it has finite rank. Lachlan, in 1974,
attempted to prove that the rank is finite for No—categorical M.
To do this, he invented the notion of pseudoplane and showed (La)
that the nonexistence of No—categorical pseudoplanes implies not
only the finiteness o% rank for No-categorical M , but also that
stable and No-categorical imply No-stable. He proved also without
assuming nonexistence of pseudoplanes, that superstable and

No-categorical imply stable (as he mentions, this was known to Shelah).

Makowsky, meanwhile, showed in Mak that a structure which
is the algebraic closure of a strongly minimal set cannot be
finitely axiomatizable (extending a result known to Vaught) and

provided an example of a superstable finitely axiomatizable theory.

In 22, Zil'ber proved that if H is a strictly minimal
No—categorical structure, either H interprets a rank 2, degree 1
pseudoplane or the Classification Theorem is true for H ; the
Classification Theorem says that either H has in effect no
structure at all or is essentially an affine or projective space over
a finite field. 1In 23, he introduced the notion of envelope in
an attempt to prove that no complete totally categorical theory T

can be finitely axiomatizable. The idea of the proof was to show



that if M is a model of such a T and H € M is strongly minimal,
then an envelope of any sufficiently large subset of H is a finite
model of any fixed finite subset of T . 23 contains an error, which

zil'ber has since repaired (in a non-~trivial way).

Cherlin noticed that the Classification Theorem (for all
strictly minimal, No-categorical H) is a consequence of the
Classification Theorem for finite simple groups. (See CHL for

proof.,)

Using the Classification Theorem, Cherlin, Harrington
and ILachlan (in CHL) expanded and reorganized Zzil'ber's work. 1In
particular, they generalized most of Zil'ber's work to
'No—categorical, No-stable structures, proved the rank is finite in

N _-categorical, N_-stable structures, and introduced the powerful

0 0

- Coordinatization Theorem (Theorem 3.1 of CHIL, Proposition 1.14 of

the present paper). Using a notion of envelope that is the same

as Zil'ber's except in one particularly perverse case (and in all
cases the same as in the present paper), they show that No—categoricaI,
No-stable structures are not finitely axiomatizable, addressing

(1). on the other hand, Peretyat'kin (P) has found an example of an

Nl—categorical finitely axiomatizable structure.

Zil'ber in 24 and 25, found a quite different proof of

the Classification Theorem without using any deep group theory.

As mentioned above, one of the main tools of CHL is

Zil'ver's notion of envelope. They also prove that except in the



previously mentioned perverse case, envelopes are unique in the
sense that any two H-envelopes of A are isomorphic when considered
as structures in their own right. This is the result the present
paper extends. The main result of the present paper is that in

N .-categorical, No-stable structures, envelopes are as unique as

0
could reasonably be expected, except in the perverse case (where
they are not at all unique for either our envelopes or Zil'ber's).
Along the way we prove that, for any subset A of an No—categorical,
No-stable M, M is in a natural sense weakly homogeneous over A .
The first chapter of this paper is devoted to preliminaries,
the bulk of which are from CHL. The second proves the weak
homogeneity just mentioned (Theorem 2.7). The third proves that any
two H-envelopes of A are isomorphic via a map fixing A U H point-
wise except in the perverse case, (Corollary 3.3). The final
chapter shows that the structure is atomic over the union of H
and any H-envelope (Theorem 4.5) and so if the structure is

countable, the map from Corollary 3.3 extends to an automorphism of

the structure (Corollary 4.6).



CHAPTER 1

PRELIMINARIES

This chapter is devoted to setting the stage for the rest of
the paper. It begins with a description of a structure N constructed
from the given structure M ; N is essentially a version of Shelah's

Meq . [For an alternate description, see Ma, pp. B5-~B8.]

From this point on M is assumed to be No—categorical and
No-stable. The chapter defines most of the notions studied in the
péper; most importantly, strictly minimal sets and envelopes. The
definitions come essentially from CHL althcugh they are a little more
general. The Classification Theorem of Zil'ber and Cherlin for
strictly minimal sets (see CHL, Theorem 2.l1) is not stated but those
of its consequences which I use are, in Propositions 1.9 through 1.12.
Particularly important are 1.9(2) and (3) and 1.11(1). 1l.9(2) states
basically that a modular strictly minimal set behaves nicely when any
parameters from the structure are named; 1.9(3) that any strictly
minimal set is closely tied to a modular one; and 1.11(1l) that any two
modular strictly minimal sets are either not related at all or tied

in the closest possible manner.

The result from CHL which this paper generalizes is
Proposition 1.18. Also from CHL come Propositions 1.13 and 1.14; the
latter, which states how powerful knowledge about strictly minimal

sets is, is used repeatedly throughout the paper. 1Its basic content



is that any degree 1l type has an associated strictly minimal type that
induces structure on the given type.

The chapter closes with a few well-known consequences
of superstability and a simple application of these useful elsewhere

in the paper.
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Throughout, M and N (also Mi, N', etc.) will refer to
structures in a relational language. This entails no loss of
generality for the purposes of this paper. If two or more structures
are mentioned together there is no assumption that they share the same

language. |M| denotes the universe of M .

If A E_IMIn for some n < w , A is definable if it is
definable using parameters from |[M|; A is B-definable if it is
definable using parameters from B ; A is O-definable if it is
definable without parameters. The distinction between sequences,
singletons, and the ranges of sequences will frequently be dropped;

for example a-definable means rng(a)—definable.

If AcM, (M,A) denotes the expansion of M obtained by
" adding for each a ¢ A a predicate U, with UaM = {a}. If ac |M|
is non-empty, M[A denotes the structure with universe A in
language L(MIA) which has a predicate symbol R.A for every

. . . . M n
O-definable relation R on M ; and if R 1is n-ary, R.A A ROA .

rkM(B) and degM(B) (or just rk(B), deg(B) if M 1is

understood) denote the Morley rank and degree of B for any

nn
B c |M]". (rk,deg)  (B) = (rk, (B) deg, (B)).

Proposition 1.1. If A E_IMI is definable and M 1is stable,

then for any n<w , B C a" .
(1) B is definable in M iff it is definable in M|aA.

(2) (rk,deg) (B) = (rk,deg),;,(B) .

M|a
This is Proposition 1.4 of CHL.



Definition 1.2. (1) A map h: Mll - |M2| is a w.e.

embedding of M1 into vM2 if h is injective and for any

n<w,Aac|m|", & is o-definable in M, iff h(a) is

O-definable in M

2

(2) h:IMll > |M2| is an equivalence of M and M, if h is a

w.e. embedding of Ml into M2 and h_l exists and 1is a

w.e. embedding of M2 into Ml .

(3) M and M, are essentially identical if ]Ml[ = |M2[ and the

identity is an equivalence of Ml and M2 .

(4) M1 is a w.e. substructure of M2 (M2 is a w.e. extension

of Ml) if |M1| E_]M2| and the identity is a w.e. embedding of

in . We write C -
M1 to M2 Ml-— We.e. M2

(5) 1f |Mmg] < |m | N |m,| and |M | is O-definable in M, , then

h:IMll > |M2j is a w.e. embedding of M, into M, (an equivalence

of Ml and M2) over M, if hllMOI is the identity and h is a
w.e. embedding of Ml into M2 (an equivalence of Ml and M2).
Remarks. (i) All the above definitions are language-free.

(ii) Ml S-w e M2 iff lMll is a O-definable subset of M2 and M

is essentially identical to M2||Ml| .

(iii) 1If MI'MZ S-w.e. N and IMll S.!le , then Ml E;w.e. M2 .

(iv) 1f c c c -
) MO — w.e. M1 and — w.e. M2 » then MO — w.€e. M2
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(v} If AC lMll and h:[Mll + |M,| is a w.e. embedding of M,

into M2 , then h is a w.e. embedding of (bLl,A) into (MZ'A)'

pefinition 1.3. (1) 1f ABC |M| and A and B are

O-definable, then A is B-small if there are n < w and
n . .
O-definable C and F such that C C B and F 1is a function from

Cc onto A .

(2) 1f B C M| is O-definable and AC IM] , A is B-small if there

is O-definable C C |M| such that C is B-small and A CC .

(3) M., is a d-substructure of M, and M, is a d-extension of

1
C is -
M, , deroted M, C .M, , if M c M, and M, | &s IMll small
(in Mz).

Remarks. (i) If A,B,C € |M| are O-definable, A € C and
C is B-small, then A is B-small according to defintion 0.3(1);

thus 0.3(1) and (2) agree on O-definable subsets of |M|.

(ii) 1If M ¢ N , then for any O-definable A with

M| cac |n], A is |M|-small iff N|A is a d-extension of M .

iii If C C .

(1ii) M, C 4 M, and M, C M, , then M C M

iv If C C C .
(iv) MC M, M Cc M and |M|<_Z_|Ml|, then M C M
(v) If M cC C C hen C .

. SgMrMigM, and M C o My, then M C M

Definition 1.4. N is a definable closure of M if -

(i) Mc N .
— W.€.
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(ii) For all 'k < w and all definable R‘S.|N|k there is |M|-small

B C |N| such that either R C Bk or R U Bk = Ile .

s s : C C ] 3
(iii) If M <4 Ml < voe. N and Ml S-d M2 , then there is M, and

c .M C N and h 1is an

h: [my| > |M,| such that M c M, c

1

equivalence of Mé and M2 over M, .

(iv) |s} =ulac |N| : o is |M|-small} .

Proposition 1.5. (1) Suppose M S-d Ml'MZ and

M| N M = |M] . There is a structure unique up to essential
1 2

identity with universe ]Mll U |M,| that has M, and M, as
w.e. substructures. Denote this structure M1 U M2 ; we have further

that MC . M UM

d 2
(2) For all M there exists N a definable closure of M . Further
if M has only a countable number of O-definable relations, we can

choose N with only a countable number of O-definable relations,

and this N is unique up to equivalence over M .

(3) If McC N and N 1is a definable closure of M ,

SaM S
then N is a definable closure of Ml .

The proof is omitted. Here as elsewhere if neither a proof
nor a reference is given, the reader should be able to supply his own
proof if necessary.

For any A E_lNl where M E-W.e. N , (M,A) denotes

(~N,2) | |M| .
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Proposition 1.6. If A E'lNI and N 1is a definable closure

of M, then (N,A) 1is a definable closure of (M,3).

From now on, M will refer to an No-stable, No-categorical

structure in a countable relational language and N to a (i.e., the)
definable closure of M which has countably many O-definable
relations. Unless otherwise indicated, all sets considered will be
[M]-small subsets of [N] . The principal exception to this rule

is that algebraic closures of small sets will not be small — acf(A)
always refers to the algebraic closure of A taken in N . Since any

d-extension of M 1is N _-categorical and N.-stable, N retains

0 0

much of the character of No—categorical, No—stable structures.

For instance, although N is not N,-categorical, any type (over ¢)

0
realized in N is isolated. Balso, if A 1is finite acf(a) 1is not,

but for any small B , acf(aA) N1 B is finite.

The notation tp(EIA) is used for the (complete) type of a
over A , and also for the solution set of this type. st(EIA) is the
strong type of a over A ; also its solution set. tp(a) = tp(5|¢)

and st(a) = st(3d|¢). Thus st(3,]a) = st(a,|a) iff tp(a |a) =

'/tp(gzlA) and for any A—aefinable B E_Ile with 51, 52 € B and any

A-definable equivalence relation E on B with a finite number of classes,

we have a1 E 52 -

For any definable B S_‘N] , there is a point [B] € N
which "names" B == that is, (N,{[B]J}) 1is essentially identical to the
expansion of N by a predicate U with UN =B . Specifically, let

w(xlao) be a definition of B ; on the O-definable set tp(ao)
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define ~ Dby: a~a' iff Vxhp(x,g) > w(x,a')]. We may assume
that tp(ag/ ~ € |N|, so let [B] = 50/~ . Now for any b' with
tp(b') = tp(I[B}), there is a unique B' such that

[B'} =b' — x €B' iff 3y € tp(ay) [b' = y/~A @ (x,¥)]. The
notation [A] is unambigquous for definable A given a particular
definition of A — whenever it is used, a particular definition is
assumed. Also, if the definition used for A is @(x,a) and A"
is a conjugate of A , then the definition used for A' is ¢(x,a')
for some a' € tp(a) (it's irrelevant which a' € tp(a)). Note
that st(a,|na) = st(a,|a) iff tp(a, |act(a)) = tp(a,lact(a)).

A set B is almost A-definable if [B] € acf(a); that is, there is

C which is A-definable and an A-definable equivalence relation E on

C with finitely many classes, one of which is B . If

[B] € acf(¢), B 1is almost O-definable.

For any definable B and any A , the closure of A ig B,
denoted (A)B r is BN act(a U {[B]}).
B 1s an atom over A 1if tp(blA) is the same for every

b€B. B is an atom (B is transitive) if B is an atom over ¢ .

Definition 1.7. (1) A set H is strongly minimal if it is

definable and (rk,deg)H = (1,1).
(2) If H is strongly minimal, there is no [H]-definable equivalence
relation on H with finite classes and H is an atom over [H], we say

H 1is strictly minimal.

The following version of the exchange principle is used

(Lemma 2, 81 of BL):
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Proposition 1.8. If H is B-definable and strongly

minimal, a € H and c € ac¢(B U {a}) - acé(B), then

a € act(B U {c}) .

If H is definable and B CH , B is independent over A

if for any b€B , b § (A U (B—{b}))Hi Otherwise B is dependent

over A . From now on, if a definition is made "over A" and the A

is omitted, it is understood to. be ¢ . Thus, B is independent

means B 1is independent over ¢ .

If H is strongly minimal and A C H , then dimH(A)
denotes the cardinality of a maximal independent subset of A . If
B C |N|, dim (B) = dim(B) ); codim (B) is the cardinality of a
maximal subset of H independent over B . These notions are

well-defined. Also, if A € B C acf(a), dimH(A) = dimH(B) and

c0dimH(A) = cOdimH(B) .

If H is definable and A CH , then A is H-closed over

>

B if (a U B), =A; the H is often omitted.

If H is strictly minimal, then H is modular if for any

closed A,B CH , dim (A) + dim, (B) = dim (A U B) + dim (A nB).

If H is strictly minimal, D[H,A] (the dependence relation

of H over A) denotes {BKH : B finite and dependent over Al};
D[H,$] is denoted DI[H].

Ssuppose H is strictly minimal and A is finite; then
H - (a), is a O-definable strongly minimal atom in (N,A U {1 .

Let M, be a small substructure of N containing A Ur U {iHl}. 1In
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M there is a coarsest A U {[H]}-definable equivalence relation E,
on H - (A)H with finite classes since M1 is No-categorical.
But any relation on H - (A)H that's A U {[H]}-definable in N is

a U {[H]}-definable in M. , so E, is the coarsest A U {[H]}-

1
definable such relation in N . ILet HA = [H-(A)H]/EA and H/A be
a corresponding A U {[H]}-definable subset of N as given by 0.6

and the definition of N .

Proposition 1.9. Iet H be strictly minimal.

(1) If A is finite, H/A is strictly minimal in (N,A); if in

addition either H is modular or (A)H #¢ , then H/A is modular.
(2) If H is modular or (A)H #¢ , D[H,A] = D[H.(A)H].

(3) sSuppose H is not modular. Then there is a modular H' C N

such that:

(i) {[MH1} is [H']-definable and {[H']} is _[H]-definable .
(ii) 1If tp([Hl]) = tp([H2]), then tp([Hll .[Hi]) = tp([H2],[H5])

1’ H2 and

any non-mocdular strictly minimal H
(iii) For any a € H , there is a unique {[H],a}-definable bijection

between H/a and H' .

(4) If H is not modular and (A)H =¢ , then

D[H,A] = D[H,(A)

H']

(5) If H is not modular and A C H' is finite, then H/A is not
modular and there is a unique A U {[H]}-definable bijection between

(H/A)' and H'/A .



16.

This proposition contains ILemmas 2.3 - 2.7 of CHL.

If H is modular, the notation H' just refers to H .

1if HO and Hl are strictly minimal sets, they are

orthogonal over A if for any Ei € H, independent over A, h,

is independent oOver AUH. . for i=0,1. We write H l_H .
1-i (0] 1

Otherwise, HO and Hl are nonorthogonal over A , written

0%+l

Proposition 1.10. (1) For any strictly minimal Ho and

H with (D, = (H D, =¢ andany a, Hy|H iff

1 1 0
Hy 1 H .
A
(2) 1If ([Ho])Hl = ([Hl])Ho =¢ , H, and H, are strictly minimal
sets, and H0 l_Hl , then for any A , (A U Hl)Ho = (A)Ho -

(3) The relation of being nonorthogonal is an equivalence relation
on the set of strictly minimal sets.
(1) and (3) are parts of Lemma 1.5 of CHL; (2) follows

easily from (1).

Proposition 1.11. Suppose HO and H1 are O-definable,

nonorthogonal strictly minimal sets and for i = 0,1 , either “Hi

is modular or (A)H o .
i

(1) I1f HO and Hl are both modular, there is a unique O0O-definable

bijection between them. In particular, dimH>(A) = dimH (n) .
0 1l
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(2) If neither HO or Hl is modular, then dimHO(A) = dimHl(A) .

(3) If HO is modular and Hl is not, dlmHo(A) + 1= dlmHl(A).

This includes corollaries 2.8 and 2.9 of CHL.

Proposition 1.12. Suppose HO and Hl are O-definable

non-orthogonal strictly minimal sets. There are three possibilities:

(1) Hl is not modular, (A)H = ¢ , and either HO is modular or
1

(d).. # ¢ ; then codi () + 1 = codi (a) .
mH0 lmHl

Hy

(2) Interchange HO and Hl in (1) .

(3) Otherwise, codi (a) = codi (a) .
mH0 lmHl

Proposition 1.13. If M is an No—categorical, No-stable

structure, then rk(M) 1is finite.

This is Theorem 1.4 of CHL; it implies that for any a ,
rk(a) (= rkN(A) by definition) is finite, since every A we consider
is a small subset of N and so contained in an No—categorical,

No-stable structure.

Proposition 1.14. If HCN is transitive and definable,

rk(d) =1 and deg(H) = 1 , there is a strictly minimal set J which
is almost [H]-definable, an atom over [H] such that for any
a €H , (a)J # ¢

A set J such that for any a € H, (a)J # ¢ 1is said to

coordinatize H . This proposition, the basic tool of this paper, is

Theorem 3.1 of CHL.
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Notation: - Tp(A|B)x = {tp(a|B) : a € A} for any A,B C |N| , and

sT(a|B) = {st(a|B) : a € A} . TP(A) = Tp(A|¢) and ST(A) = ST(A|¢).

Definition 1.15. B is homogeneous over A 1if for any

ao'al'bO € B such that tp(ao!A) = tp(a1|A) ;, there is bl € B such

that tP(50A<bO>|A) = tp(51A<bl> |a) . B is weakly homogeneous over

A if for any ao,al,bo € B such that st(EOIA) = st(§l|A), there

. . - A _ - A
is by € B with st(a, <b0>|A) = st(a; <bl>|A).

Proposition l.1l6. Let G be homogeneous and J a

O-definable atom with (G)J €CG . Then if (G N M)J ¢,

(c N M)J =clJg.

proof. Let e € (GN M) and m € G N M be such that
e € (1?1)J . If £ €GN J, tp(e) = tp(f) and since G 1is homogeneocus.

there is m € G with tp(<e>™m) = tp(<f>"m'). Sso £ € (@) and
m' €GNAM. Thus GN J c (N M)J and the reverse inclusion is

immediate from G J = (G)J .

Definition 1.17. If M € N, HC |n| is strictly

minimal, and A C INI; then E E_lMll is an H-envelope of A 1in

Ml if E 4is a maximal subset of IMlI such that (E U A)H = (A)H .

E is an H-envelope of A if E is an H~envelope of A in M .
Remarks: (1) If E is an H-envelope of A in Ml , then

(a), ¢E and (E), =E .
Ml Ml
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(2) If E 1is an H-envelope of A in Ml , there is G an

H-envelope of A in N with E c€G . For any such G, (G)

"

=GN M, =E . [Note: G is not small.] Any such G 1is called an

extension of E to an H-envelope of A in N .

Proposition 1.18. If E 1is an H-envelope of A 1in

Ml-E woe. N and either H 1is modular or (A)H # ¢ , then

(1) E 1s homogeneous

(ii) ST(E) = {st(a) : a € M, and (aU E)H = (@} .

This follows easily from Theorem 7.3 of CHL. The set A 1is
assumed small; there is no need here to assume Ml is small e= oOf

course, E will not then be small, but as long as A 1is, the result

is true.

Morley rank and U-rank are identical in any N_.-categorical,

0

No-stable structure and hence in N for the purposes of this paper
(all types will be over small sets). The notation E\L,C means that

- - B
rktp(a|B e = rktp(aIB) , and A\L/C means that for every (finite)
B

a€a, aJ,c. The following summarizes the basic facts about
B )
forking used in this paper:

proposition '1.19. (1) For any b, A, there is finite

a € A such that BJ,A .
a

(2 al,c =clA. Inparticular, if rktp(a) =1 and a € act(b),
B B



20.

then rktp(bla) < rktp(b).

(3) There do not exist a,B,Ci(i < w) such that Ci\l, U Cj and
B j#i

a,,,]’,ci for all i< w .

B

(4) 1f ccp, ajc and alD, then a,D.
B c B

calc . .
(5) If A; CA! Cact(n) for i< 3, then aoll n, iff

These facts follow from the superstability of M and are
part of the literature. See for example Ma , where (1) is A.1l0,

(2) is A.5, (3) 1is D.2(i), (4) 1is A.4 and (5) is B.4.

Proposition 1.20. Suppose H 1is strictly minimal, either

H is modular or (A)H o . (A)H is finite and 4 € N . Then
(a U {ah, is finite.
Proof. Suppose not. Then choose {ci : i< wl in

(aU {d})H independent over (A) . By 1.9(2), {ci :1i<w} is

H

independent over A . Thus ci\L,{cj : j #1i} , but also
A

ci\l}d for each i <w . 1.19(2) and (3) then give a contradiction.
A
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CHAPTER 2

WEAK HOMOGENEITY

The same conventions as in Chapter 1 are carried over here
and elsewhere. 1In particular, M 1is an No-categorical, No-stable
structure, N is its definable closure and any set mentioned is small
unless other&ise indicat;d. The basic result of this chapter
(Theorem 2.7) is that for any 51, Ez,bl € N and A CN which is
small, if st(glIA) = st(azlA) then there is b2 € N so that
st(ElA< bl> IA) = st(52A< b2> |A) . That is, N is weakly homogeneous
over any small A € N, and it follows that M is weakly homogeneous
over any A C M . Also included is a technical lemma (2.1 and its
corollary 2.2) useful in establishing 4.2 and 4.3 as well as 2.4. The

chapter concludes with an example (2.8) showing that M need not be

homogeneous over A .
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Lemma 2.1. Suppose H and I are strictly minimal, H is
almost O-definable and I is almost b-definable, where b € H . Also

suppose there is a € N with b f (a)H and (< a,b >)I ; (b)I .

Then there is J C N which is modular and almost O-definable such

that J/b f I/b .

Proof. If I 1is almost O-definable, take J =1I' . If
not, but H/b 1.I/b , take J=H' . So assume I is not almost
O-definable and H/b_l I/b ; [I] € acf(b) - acf(¢), so by exchange
(1.8) b € acf([I]) and I is an atom over b . Let K = st([I]);

for each [Io] €K, I0 is almost bo—definable, strictly minimal

and an atom over bO for some bO € H , so the same is true for IO' .

= ' . i ~ ~ 1
Let J, U{Io : (1] € K} and define on J, by d,~d, iff
d, € (d.). , for some [I ] € K. ~ 1is certainly reflexive. If
1 0 Ii 1
] - >
, say dl € (do):Ill and do € I, i dl € ac8(<[IO],[Il],dO )

and dl f ac8(<[I0],[Il]>) since [IO] € ac (H), so ([IO])Il, =0 .

do N'dl

By exchange, d, € ac8(<[IO],[Il],dl>); again (<[IO]’[I1]'d1>)I0'
= (dl)I s s SO d0 € (dl)I , and so dlfv d0 « Thus ~ 1is

(0] 0
€ (do)Ill and d2 € (dl)Iz' ; then

symmetric. Suppose dl

d2 € ac8(<[Il],[I2],d0>)- since (<[I1],[12],d0>)I2. = (dO)Iz"

d2 € (do)I , - Thus ~ 1is an equivalence relation.
2

Let J = Joﬁv and define f : I'> J by £(4d) =4/~ .
f is an almost b-~definable injection (since 1I' is strictly minimal);

if we show that £ 1is onto it will demonstrate that J is strictly
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minimal, modular and an atom over b , and J/b = J 1'1' =I'/b l'I/b =1,

so J/b X_I/b. It suffices to show for any [Io], IIll € K that

I0 and Il are non-orthogonal. Suppose [IO], IIl] € K and

I0 l_Il ; choose [12] € K independent from both [I.] and [Ill .

0

Either I, | I, or 1, | I, and it follows from (rk, deg) K = (1,1)
for any independent [IO], [Il] € K that IO LIl . Now choose

b= bo, bl'

icw, [Ii] € K so that st(<]I],b,a>) = st(<[Ii],h3,a.>).

ceey bk' «ses € H independent over a and for each

(< a,b >)I #¢ so (< a,b, >)Ii # ¢ ; choose 4, € (< a'bi>)Ii for

L <w . - _ L
all i< w (b) . = ¢, so 4, ¢ @ha)li for i < w ; since
1, L u/b, , if welet B={b :i<uw}, q, (B) for i<uw.

1

Since Ii l_Ij for i#3j, i,j<w, 1if we let D = %di : 1< w},

d; $ ®UDp-{a;h_,so da, )b~ {4} for i<uw.
1 B
But also di\k,a , contradicting 1.19(3).
B

Corollary 2.2. Suppose H and I are strictly minimal,

H is almost c-definable and I is almost EA'<d:>-definable where

d € H . Also suppose there is a € N with d § (EA<a>)H and
(EA<a,d>)I ; (EA<d>)I . Then there is J CN which is modular, almost
c-definable and an atom over c¢ such that J/d.l_I/(EA<d>).

proof. Apply 2.1 in (N,c) to H/c and I/c with d/c

taking the part of b .
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Definition 2.3. (1) < Hl'HZ > 1is A-suitable for < 51,52 >

if Hl is strictly minimal, almost El U A-definable and

- A - A . .
st(c "<[H,1>|A) = st(c, <MH,1>[a). (2 < c,rc, > is A-great if

,H. > A-suitable for < c,,c. > ,

st(cllA) = st(czlA) and for any < H ,H, 17S5

1
either codimH (a U El) = codimH (a U 82) or both are infinite.
1 2

Remarks. (i) If < ¢ ,c_, > is A-great , 4, € acf(a U El)

1

- A ~ A - A - A .
<d.>|a) =
and st(c,’<d; |a) st(c, <d,>[a), then < c, <d;> , ¢, <d,>> is

A-great.
(ii) For any A , < ¢,6 > 1is A-great.

,E > 1is A-great iff

(iii) For any B, A CB C act(h), < c;,C,

1

< € 1€, > 1is B-great.

c, > is A~great , < H_,H, > is

4. <
Lemma 2.4 If o] 1 7Hy

A-suitable for < El,Ez >, da €H, (i=1,2) and

- A - A - A - A .
= > < >> - .
st(cl <dl>lA) st(c2 <d2>|A), then < c, <d,>,c, d2 is A-great

Proof. We may assume dl f act(a U El). Let < Il,I2 > be

A<d2>> ; if I_. (hence Iz) is not

A-suitable for < c.’<a.>, ¢ L

1 1

. - A - A
< ' 'S - i < >> .
modular, Il ,I2 1s also A-suitable for cl <dl>' c2 <d2

2

Rea >y =¢ iff (AU G a.>_ =¢, by 1.11 we
1 Il 2 2 12

Since (a U cy

may assume Il and I2 are modular. Choose a € A so that Hi is

almost EiAa-definable and Ii is almost EiA<di>A5-definable for
. - A =A= A . - A

= . > = > >
i=1,2 (au ¢y <dl )Il (a ¢y <dl )Il iff (a U c, <d2 )I2

-A= A . . .
= (a c2 <d2>)I and if both of these are true, since Ii is modular
2
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we have codimI (a ! EiA<di>) infinite for i = 1,2. So assume
i

. - - - . - A= A =A= A
there is a' €A, a' 2> a , with (a' cl <dl>)Il 2 (a cl <dl>)Il .

Since d; 4 (a'"e )H , we apply 2.2 to find J., modular,

1Ry

1

-A= . NS
almost a cl—deflnable, an atom over a cl such that

=A= A . - A = A
> =
Jl/dlll Il/(g c,'<d>) . since st(c, <4, [I;1>|a) = st(c,’<d,,[1,]1>|a)
- A - A
we have st(c, <dl,[Il],[Hl]>]A) = st(c, <d2,[12],[H2]>IA)

sO choose J2 so that

- A _ - A
st(c,"<d , (1,1, 1,1, (3,1>|a) = st(c, <d,, 1,1, [H,],(3,1>|n).

> and since < c ,E > iis A-great,

< J.,J. > is A-suitable for < c.,c 172

1772 1" 72

either codim_ (A U c.) = codim_ (A U c.) or both are infinite.
J 1 J 2
1 2
- A

codimI_(A U cy <di>) = codim /
i ] .

- A
- <d.>
Il (aA (a U ¢ d1 )

- A
c. <d.>)
i i

It

. - A . - A
- . <d.> = . <d4d.>
(by 1.11(1)) codlmJi/di(A U c; d1 ) cOdlmJi(A U cy d1 )

. - . - A=
codlmJi (A U ci) if Ji _|__Hi/(ci a) .

. = . = A=
codlmJi (A U c,) -1 if J; X_Hi/(ci a) .

. = A= . = A- .
since J, _|__Hl/(cl a) iff J, _|__H2/(c2 a) , either

codim (a U c A<d >) = codim (AU c A<d >) or both are infinite.
Il 1 1 12 2 2

Lemma 2.5. If < 51,52 > 1is A-great and bl € N , then

there is b, € N such that st(51A<bl>|A) = st(52A<b2>|A) .
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. <c > a. cc, , < i
Proof Choose cl,c2 so that al _.cl ’ cl'c2 > is

A-great and rktp(bl|51) is minimal. 1If rktp(bllal) = 0 choose b2

so that st(ElA<bl>|A) = st(52A<b2>|A) and we are finished. So

suppose rktp(bllel) >1; let Hl be a strictly minimal almost

El—definable atom over El that coordinates st(bl|El)-— such H,

exists by 1.14. Choose H2 so that st(ElA<[H1]>|A) = st(52A<[H2]>|A)

—then < Hl'HZ > 1is A-suitable for < El'cz > . For

- A .
da, € (cl <b1>)H , there is 4

- A
1 2 € (c2 <b2>)H so that

1 2

- A - /\ . - . .
= < -
st(c1 <d1>|A) st(c2 d2>|A) ; if dl € (c1 U a) . this is

clear, and if &, ¢ (c; U A)H1 , then COdimﬂl(cl Ua =21.

Since < ¢.,C

172 > 1is A-great , codimHz(E2 Ua) =1, so choose any

d, § act(c, Un). By 2.4, <c Mea >, e Ma>> is

d, ¢ H 1 Y4 2 <9,

2 r
A-great; also rktp(b1|61A<dl>):< rktp(b [G)) by 1.19(2). This

contradiction finishes the proof.
Lemma 2.6. If st(gllA) = st(a,|a) there are Bl and

- = A= = Ao .
< > - .
b, such that a1 b»l,a2 b2 is A-great

- - - A~ _ _A_
proof. Choose b,, b, so that st(a; bllA) = st(a, b,|a) ,

< bl,b2 > 1s A=-great and rktp(allsl) is minimal; this can be done

since < ¢,¢ > is A-great. If rktp(allsl) = 0 we're done, so

assume rktp(gllsl) =1 . Let Hl be an almost El—definable,

strictly minimal atom over Sl that coordinatizes st(gllﬁl).

= Az A e A A .
Choose H, so that st(a,"b "<[H;1>[a) = st(a,’b, <[H,1>[a);

2
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. . - A-
< > - < > .
Hl'HZ is A-suitable for bl'b2 Let ¢y € (al bl)Hl and

= A= = Ar- A _ = A= A
choose «c, € (a, b2)H2 so that st(a,"b,"<c,>|a) = st(a,’b,"<c >|a);
by 2.4 < 51A<cl> , 52A<c2>> is A-great. By 1.19(2)
-1z A -z o
<c.>) < .
rktp(allbl cl ) rktp(al]bl) , a contradiction
From the two preceeding lemmas the following is immediate.
Theorem 2.7. If st(EllA) = st(ay|a) and b €N there

is b2 € N such that st(51A<bl>|A) = st(52A<b2>|A). In particular,

M is weakly homogeneous over any A CM .

corollary 2.8. If st(a,|a) = st(a,|a) then < a ,a,>
is A-great.
Proof. If we had a counterexample < a,,a. >, AGN P

1" 2 -

< Hy/H, > A-suitable for < 51,52 > with

codimH (a U 51) # codimH (a U 52) < NO , then by taking an elementary
1 2

submodel prime over al,EZ,IHl],[Hz] and a suitable countable subset

of a U Hl U H, , we would get a counterexample in countable N . SO

2

suppose N 1s countable, and < Hl'HZ > 1is A-suitable for < 51,52 > .

We have st(51A<[Hl]>|A) = st(52A<[H2]>lA) and using 2.6

and a back-and-forth argument we get an automorphism of N fixing

A pointwise that takes a. to a, and [H,] to [H

1 5 1 ]. The

2

conclusion is immediate.
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The following shows that there is an No—categorical
No-stable M and (algebraically closed in M) A CM such that M

is not homogeneous over A .

Example 2.8. Let L{(M) have one unary predicate symbol V

and three binary predicate symbols R . ~1 and ~, . Let
M =B U cUp, where |B| =|c| = |p| = N, , and :
M v=cubp.
(2) miM ,'NZM are both equivalence relations on VM .

M
(3) ~ has two classes C and D .

M . . .. M

(4) Every class of ~y is infinite; ~, has NO classes that

are subsets of C , NO classes that are subsets of D , and none that

intersect both ¢ and D .

M

M } ’ Dﬁvz

(5) Let C/~, = {cgiC = {DO,D re.s}, and

l'.oc l

B = {{Cile} H ilj < w} .
M . M
(6) R (a,b) iff a € B, b€ cUD and bﬁvz € a .
et A = {{Ci,Dj} :1i=2, 3= 1}. Choose a. € C

and b0 € DO . We have tp(ao|A) = tp(bO|A), but there is no bl €M

with tp(<a,a,>|a) = tp(<b,b >|A).



CHAPTER 3

ST(E|A U H), THE SET OF STRONG TYPES

The result of this brief chapter is that given H
strictly minimal in M and any A C M with either H modular or
(A)H # ¢ , the set of strong types over A U H realized in any
H-envelope of A doesn't depend on the choice of envelope. This
is Lemma 3.1. From this and 2.7 it follows easily (Corollary 3.3)
that in countable M the envelope is unique up to an isomorphism

fixing A U H pointwise,
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Lemma 3.1. If ACN is small, H is almost A-definable

and strictly minimal with either H modular or (1\)H #¢ , and E cM

is an H-envelope of A , then ST(EIA UH) = {st(l_alA UH) : Db €M
and (AU b = (A)H} .
proof. Given b € M and applying 1.19(1), (4) and (5)

we can find ,50 €A, h €H such that h is independent from

A, (‘;OAB)H # ¢ 1if H is not modular, H 1is almost Eo—definable,

and b \l/ AUH . If in addition (A U SlH = (A)H , then

ao h

BQJEOAB by 1.9(2). So by 1,19(2) and (5), E\J;EOAh , so by (4),
B{a.l/ AUH . That is, rktp(}_J‘A UH) = rktp(l_:lao) . Thus 1if
0
(AU b), = (n), and rktp(blaUH) = r there is a € act(n) such
that (rk,deg)tp(Bla) = (r,1), and H is a-definable.
We now show by induction on r that:

For all A,l-n with b e M, (AU B)H = (A)H and E an H-envelope of A ,

if rktp(BlA U H) there is e € E such that st(EIA U H)

I
o

= st(b|a U H).

If r =0 and the conditions apply, there is a € acé(a)

il
o

with rktp(bla) , b€ (A)M CE and we're finished. Suppose

rktp(b|]pA U H) =k =1, b and A fulfill the conditions, and the
induction hypothesis holds for all r < k . choose a € acf(n) so

that (rk,deg)tp(bla) = (k,1), H is a-definable and let I be
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an almost a-definable strictly minimal atom over a that coordinatizes

tp(b|a). choose a € (D) -
case 1: H/a l_I . Then for any BE N, (B U {al})H/a = (B)H/a -

Thus (b U AU {al})H/a = (b U A)H/E = (A)H/E = (U {al})H/E ; thus

(buau {al})H = (a U {al})H and also E is an H-envelope of

au {al} . We also have rktp(b|a U {al} UH) <k, so by the

induction hypothesis there is e € E with st(b|a U {al} U H)
=st(elau {a;}um .
case 2: H/3a I . Thenif (AUH_#¢, BAUHA) #¢, 50

(a U H/a)I=I,so (AUH)I=I. Then ale(AUH)I;butthen

rktp(b|a U H) = rktp(B[£A<al>) < rktp(bla) = rktp(bja U H), a

contradiction. So (A U H)I = ¢ and so every point of I
the same strong type over A U H . Applying 1.18(2) in (N,a), since

E is also an H/a-envelope of A , we get e' € E with st(e' | a)

= st(b|a) and a, € (e’ AE)I . since st(aj[aUm =st(aaun ,

by 2.7 there is c €M with st(<al>KE|A U‘ﬁ) = st(<a2>AE|A U H).

9 SAE ) it = h = =
since a ¢ act(a’b), (AU {al} U b =@ Ub, = (A, = ( U {al})H

and so (AU f{a}Ua, = @Ufah . a, €act®, so E isan

2

H-envelope of A U {a2}. By the induction hypothesis, since
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rktp(c|a U {a,} U H) < rktp(Z|a U H) = rktp(b|a U H), there is T € E
with st(e[a U {a,} UH) =st(c|aU {a,} UH), so st(e]aUn) =
st(b|a U H) .

Thus ST(E[A UH) 2 {st(b[aUH) :be€M and (aUDb) = (a) }

and the opposite inclusion is clear.

Corollary 3.2. Given A,H and E as in Lemma 3.1, E is

weakly homogeneous over A U H .

proof. Suppose e ,e,,f, € E and st(ellA U H)

= st(ézlA UH). By 2.5 there is £} € M with st(ElA<fl>|A UmHn) =

-, _ = A, _ . .
st (e, <f2>|A U H); thus (e, <£5> U A = (a), and since E is an

there is f, € E by 3.1 such that

H-envelope of A U C 2

- _ ' - — A _
st(£,]JaU e, UR) =st(£yfalU e, UR. so st(e <fl>|A URn) =
st(e. M<£ >[a U H).

2 T2

Corollary 3.3. Suppose A and H are as in Lemma 3.1,

El and E2 are both H-envelopes of A (in M) , and M is

countable. Then there is an isomorphism of N|(El U H) and
NI(E2 U H) that fixes A UH pointwise.

proof. A simple back-and-forth argument based on 3.1

and 3.2.



33.

CHAPTER 4

M IS ATOMIC OVER E U H.

In this final chapter, it is shown that under the usual
assumptions that E 1is an H-envelope of A for H,AC M and H
strictly minimal with either H modular or (A)H # ¢ , that the
structure M 1is atomic over E U H . This result (Theorem 4.5), along
with Corollary 3.3, easily gives the final result (Corollary 4.6)
that if M 1s countable, an H-envelope of A is unique up to

an automorphism of M fixing A U H pointwise.
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pefinition 4.1. ¢ is A-good if tp(c|a) is isolated

and if for any H which is strictly minimal and almost c U A-definable,

(au E)H is either finite or all of H .
Remarks: (i) If d € ac(AUc) , ¢ is A-good iff
-A . '
c <d> 1is A-good.
(ii) If c¢ is A-good, H is strictly minimal and almost c U A-definable

and 4 € H, then tp(d]A U c) is isolated. Hence tp(EA<d>|A) is

isolated.

Lemma 4.2. If ¢ is A-good and H is strictly minimal

and almost A U E-definable, then for any 4 € H , EA<d> is A-good.

Proof. By the remarks, tp(EA<d>|A) is isolated and we

can assume d f ac(aAUc) . Let I be strictly minimal and almost
alJ EA<d>—definable. We may assume I is modular, since if
ay c-:A<d>)I # ¢ there is a direct connection between (A U EA<d>)I

and (A U EA<d>)I,-— i.e., if one is finite, the other is, and if
the second is I' , the first is I . cChoose a € A so that H is

almost EAE—definable and I is almost 5A5A<d>-deﬁinable. If

-A _,=A=A , . . ) -, -
(aUc <d>)I = (a ¢ <d>)I , we're finished; if not, find a' € A ,
aca' such that (EL"\E’\<d>)I ! (5A5A<d>)I . since also 4 § (E'AE)H ,
we apply 2.2 to find J which is almost a c-definable, modular and
an atom over e such that J/d 1_1/(5AEA<d>). Since ¢ is A-good,

au E)J is either finite or J ; thus by 1.20 , (ay EA<d>)J is
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finite or J and so (A U EA<d>)J/d is finite or J/d . Thus by

1.11(1) (A U E"<d>)I is finite or all of I/(a c'<d>) —

73N <a>)

but then (A U EA<d>) is finite or I .
I

Lemma 4.3. If H 1is strictly minimal, almost A-definable,

either H 1is modular or (A)H #¢ , and E 1is an H-envelope of A ,

then:
(1) The empty sequence is E U H-good.

(2) 1If, in addition, (A)H is finite then the empty sequence is E-good.
proof. Suppose I 1is strictly minimal and almost éAﬂ—definable,

where e € E and h € H is independent over E . Also suppose H is

almost e-definable. We need to check that (E U H)I is finite or all

of I . Also, if (A)H is finite and h = ¢ , we need to check that

(E)I is finite or 1 .

case 1. 1/(8'R) fHAS'H). If (U H) > (e"R), , then

‘ - Al = =A=
(E U H)I,«éAh) #¢ , so from 1.11(1) and (E U H)H,AeAh) H/(e h) we

get (E U H)_ = 1/(e"h). Thus either (E U H =1 or

/&My

=3

( U H)I = (EAE)I . Also when =¢ , if (A)H is finite, so is

: by 1.11 dim.I

EBpy/e s(E) = dimH/é(E) +1 so (B) g and (E)

/ e I

are finite.

case 2. I/(EAE) l_H/(EAﬁ) . Proceed by induction on th(h) .

Suppose h = ¢ ; expand E to G an H/E—enveloPe of A in N . By
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1.10(2), (6 U 1/8), = = (G) , S0 I/e CG; by 1.16, if

H/e

S #¢ then (E) =-=1I/e. Thus (E) is finiteor I .

(E)g/ 1/e

Again by 1.10(2) (e U H)I so (E U H)I is finite or I .

se = By
Now suppose that for any h' € H independent over E with th(h') <k
and any J strictly minimal, almost EAE'—definable, we have that
(E U H)J is either finite or J ; also suppose that h = ﬁ'A<ho>
where £h(h') =k = 0.
=,A _ ,=A=A .
If (EU h''<h >)_ = (e h''<h.>)_ , we are done since
0’1 01
(E U H)I = (E U ﬁ'A<ho>)I; so assume there is e' € E, e' 2_5 with
=, A=, A =A-,A - A= .
(' h"<h ) ; (€'h'"<h> _ . BAlso h, ¢ (e h') » so applying 2.2
gives J which is a modular, almost e'-definable atom over %Y

such that J/hO I_I/(EAE'A<hO>). By the induction hypothesis

(E U H)J is either finite or J , so (E U H)J

/ho is finite or J/hO

by 1.20. By 1.11(1), (E U H) is finite or

I/(EAE'A<hO>)
-A=, A . .
I/(e h <ho>) s, so (E U H)I is finite or I .
Lemma 4.4. Suppose B C M and some sequence is B=-good.
Then M is atomic over B .

Proof. Let b € M ; choose a € N so that a is

B-good and rktp(bja) is minimal. If rktp(bla) = 0, tp(bla U B)
is isolated; since tp(a|B) is isolated,. tp(b|B) is isolated. Suppose

rktp(Bla) > 1 and let H be a strictly minimal almost a-definable
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atom over a that coordinatizes st(BIE). Choose a' ¢ (BAS)H ;
by 4.2, alcars is B-good. Since rktp(5|5A<a'>) < rktp(bla) , we
have a contradiction.

Theorem 4.5. Suppose H 1is strictly minimal and almost

A-definable, and either H is modular or (A)H # ¢ . Also suppose

ECM is an H-envelope of A . Then:

(1) M is atomic over E U H .

(2) If in addition (A)H is finite, M 1is atomic over E .
Proof. Immediate from 4.3 and 4.4 .

Corollary 4.6. Let A, H and M be as in Theorem 4.5.

Then if El and E2 are both H-envelopes of A and M is

countable, there is an automorphism of M mapping El onto E2

and fixing A U H pointwise.

proof. Immediate from 3.3, 4.5 and the uniqueness of countable

prime models. (See, for example, ChK, Theorem 2.3.3, P. 95.)



BL:

Bu:

En:

La:

38.

REFERENCES

J. Baldwin, "Countable theories categorical in uncountable
power", Ph.D. Thesis, Simon Fraser University, 1970.

J. Baldwin, A. Lachlan, "On strongly minimal sets", JSL 36
(1971), 79-96.

S. Buechler, "No—categorical No—stable structures: Notes by
Steven Buechler on a paper by G. Cherlin, L. Harrington and

A. Lachlan", preprint.

C. Chang, H. Keisler, Model Theory, North-Holland, Amsterdam, 1973.

G. Cherlin, L. Harrington, A. Lachlan, "No—categorical,
No—stable structures", preprint.

E. Engeler, "A characterization of theories with isomorphic
denumerable models", Nétices Amer. Math. Soc. 6 (1959), 1e6l.
A. Lachlan, "Two conjectures on the stability of w-categorical
theories", Fund. Math. 81 (1974), 133-145.

D. Lascar, "Ranks and definability in superstable theories",
Israel J. Math. 23 (1976), 53-87.

J. Zos, "On the categoricity in power of elementary deductive
systems", Colloqg. Math. 3 (1954), 58-62.

M. Makkai, "A survey of basic stability theory with
particular emphasis on orthogonality and regular types",

to appear. f“‘\'%”zi

J. Makowsky, "On some conjectures connected with complete

sentences", Fund. Math. 81 (1974), 193-202.



Mo:

R-N:

Shl:

sh2:

Sv:

vl:

v2:

Zl:

39,

W. Marsh, "On wi.but not w-categorical theories", Ph.D.
Thesis, Univ. of Dartmouth, 1966.

M. Morley, "Categoricity in power", Trans. Amer. Math. Soc.
114 (1965), 514-538.

M. Peretyat'kin, "Example of an wl—categorical complete
finitely axiomatizable theory", Algebra and Logic 19 (1980),
202-229,

C. Ryll-Nardzewski, "On the categoricity in power NO ",
Bull. Acad. polon., Sci., Ser. Sci. Math. Astron. pPhys. 7 (1959),
545-548.

S. Shelah, "sStable theories", Israel J. Math. 7 (1969),

187-202.

S. Shelah, Classification Theory and the Number gg;Non—

Isomorphic Models, North-Holliang, Amsterdam, 1978.

L. Svenonius, "ﬁo—categoricity in first-order predicate
calculus", Theoria (Lund) 25 (1959), 82-94.

R. Vaught, "Applications of the ILOwenheim-Skolem-Tarski
theorem to problems of completeness and decidability", Indag.
Math. 16 (1954), 467-472.

R. Vaught, "Denumerable models of complete theories",

‘Infinistic Methods , Pergamon, London, 1961 , 303-321.

B. Zil'ber, "The structure of models of categorical theories
and the finite-axiomatizability problem", Preprint,

mimeographed by VINITI, Dep. N 2800-77,Kemerovo, 1977..



Z2:

Z3:

Z4:

Z5:

40.

B. Zil'ber, "Strongly minimal totally categorical theories”,
(Russian), Siberian Math. J. 21 (1980), 98-112.

B. Zil'ber, "Totally categorical theories: structural properties
and the non-finite axiomatizability”, Model Theory of Algebra
and Arithmetic, Proceedings of Conference held at Karpacz
Poland, 1979, Lecture Notes in Mathematics, vol. 834,
Springer-vVerlag, Berlin 1980.

B. Zil'ber, "Strongly minimal totally categorical theories

II", (Russian), to appear in Doklady Akad. Nauk.

B. zil'ber, "Strongly minimal totally categorical theories

III", (Russian), to appear in Doklady Akad. Nauk.



