FAST RASTER GRAPHICS USING PARALLEL PROCESSING

by

Thomas Strothotte

B.Sc., Simon Fraser University, 1980

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the Department
of

Computing Science

© Thomas Strothotte 1981

SIMON FRASER UNIVERSITY

June, 1981

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL

Name: Thomas Strothotte
Degree: Master of Science
Title of Thesis: Fast Raster Graphics using Parallel Processing

Examining Committee:

Chairperson: Thomas K. Poiker

Brian V. Funt
Senior Supervisor

'Pavol Hell

Richard F. Hobson

Patricia L. Brantingham
External Examiner
Associate Professor
Department of Criminology
Simon Fraser University

Date Approved:

ii

PARTIAL COPYRIGHT LICENSE

'

| hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on
its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

Fast Raster Graphics Using Parallel Processing

Author:

(signature)
Thomas Strothotte

(name)

30. June 1981

(date)

Abstract
A theoreticali framework for a method of raster graphics image
formation using parallel processing is presented. Parallel algorithms
have been developed to quickly rotate, scale, translate and display
three-dimensional objects. The hardware consists of a large number
of individual processors with inter-processor communication restricted
to immediate neighbours, organized as if they were uniformly spread
about the surface of a sphere. The objects for display are modelled
as if they were inside this sphere of processors.
Each processor stores the following information:
1) the intersection points of the object's surface with a radial
line extended from the sphere's center, and

2) memory representing part of the screen.
The algorithm involves an organized message-passing scheme to
accomplish rotations of the object description and the subsequent
display of the image. Estimates based on the results of a simulation
of the system using several hundred processors indicate that the
perfomance improves in a near-linear fashion with the number of

processors.

Acknowledgements
| wish to thank my senior supervisor Brian Funt for his invaluable
guidance of my research, and Llolita Wilson for proofreading the
manuscript. | wish to express my gratitude to Doreen Godwin, Elma
Krbavac and my office-mate Shane Caplin for their moral support

throughout my time at Simon Fraser.

Table of Contents
Chapter Page

ApprOVal o'o'o-'o.o..o-'..n'o-oo'o..oo.oo--.-o-coooo..o.nooooon'ot-l"° ii

AbStraCt oooccocoooooooo-.oooooooooooooooo'ooo.ooc-oouooocooooooo.loo'iii

Acknowledgemen?s ceeeeessecessssesssssssessascsccccccccnnanns B 1Y
Table of ContentS.eieeeerecesccsscssccacescsssscscscscscnscsssscsscssssssss V
LiSt Of FiQUIreSesesesseseacsnsossscscscssssscscssssscscscsnsassssesssVill
Te INtroduclion .seeeecescscossssssssssscssssscsssosssscosasnssnssnsasesl
1.1 Background .ceeesesescsscescssecscosscsassssasscasssssssscsossl
1.2 Motivation for Further Research «ceceeeeccccecssosassssscssnsesl

2. Review of Previous Methods of Object Description ..eiceccecccsseslt
2.1 Polygon Based Object Descriptions ..cccecectisccsssscacsscsessld
2.1.1 Hierarchical Organization of Polygon Data ..ccceesesssd

2.1.2 Spherical Organization of Polygons .«cceeesseccessssses8

2.2 Parametric Surface RepresentalionS .cceeceecctcscsssccscsnssess?d
2.3 Simple Surface ElementS sececcocccssscsssssssscessscanccnssasll

3. Parallel Processing eceseeececssssescssssccccccsossssssscsssncesesssll
3.1 Performance Improvement .cceeccccsecessesscancsscssosscsssssell
3.2 MUlti—PrOCESSOrS cessessccsscosssscscoscssscsssnssansssscsssssell
3.3 Network COmpULErS ceesceccsssscccsssscsccssscsscscssscscscssssclb
3.4 Techniques for Constructing Parallel Solutions .ecccecvceseseslb

4, Design of a Geodesic Structure .cceccececcccsccoscsssscsssssaseecsesld
.1l OVErVIEW eeeseececsssocsssssscscsssssssessasscscsssssssscacnsesld
4.2 Computer Model ..20
4.3 Distributing Facets Evenly About a Sphere ..cceeecsncesesssl
4.4 Overview of Architecture 211

L".S OverVieW Of SOftware .!..III;.I.......I...I!.!....l00000000026

4.6 Connecting Processors: A Problem in Graph Theory «ceeee..27
4.6.1 Basic DefinitioNs seieeecesssoscssnsssssssccscsscccsssssll
4.6,2 Attributes of the Graph .eececestsscsnsssseseressessel8

5. Realization of the Geodesic Structure .ieceeieceecseccscccsceesces3?
5¢1 MethOdS .eeesescesocssssesossescsssecssssscssssscsascnssccscns3l
5.1.1 Preliminary-Setup e.ccseeecsccccoscsscssccsssccessssessldl
5.1.2 Object-Initialization .cceeesccesecccsssssssssssssscceceel’
5.1.2.1 Linking SUrfaces ..ceceeeesccscsessesscssssal8

5.1.2.2 Setting up the Rotation .ccececeecccscccasesslil

5.1.3 Calculation of Facet Positions and Intensity Values ..41
5.1.4 Small-angle ApproximationsS «c.ceeceecescessscrasacsasasll
5.1.5 Scaling and Translation ..cccecececccssecscscccscseccesstil
5.1.6 Perspective Transformation «.ccececcertreccescconccceesaslil
5.1.7 Assembling Triangles for Display «cceseccesscccsssceslib
5.1.8 Traversing the Network .cceccecccsccscsccescecsssaessld?
5.1.8.1 Great-circle Algorithm ..eiieieciescececesessl8

5.1.8.2 Small-circle Algorithm ..cceecceecscecescaessdl

5.1.9 Turning on Pixels .ecieseececcccavecsosccetsscsssscsessd
5.1.10 Rotating Object cievecececccccccosesescscsrsscsssssseesd3

5.2 Simulation and Results .ceceecccescosocasssscnsesssssssseseasdl
5.2.1 Simulating Parallelism ...ceeectececcccccossesecscceeeaddd
5.2.2 Some EXampleS cuieeesssccsscssacssscesssessssssssscssdbd

5.3 Performance ANalySiS secsescesesccsssssessssosssessssssnssnssbb
5¢3¢1 ROtAlioN seeeecccscessssocscssscssssccssscsssscssassesb?
5.3.2 Initial Position and Intensity Calculation ..cececseeessb?
5.3.3 Facet-to-pixel-holder Transfer ..cccescecerescsencesssb8

5.3.4 Turning on Pixels .ciciiiieeccssosccssesscsssoscassssb8

vi

5.305 OVera“ COSt .l...l......'".'..."..II....".OII"...71

6. COﬂCiUSiOﬁS ooooooooooo..on.oooollono-onuooolo.-ooon.oto-ooooonloo73
)

Appendix A: Summary of Processor Information Content .ieisieeaesss?5

Appendix B: Timing Estimates for Facet Calculations .iieeeececcesss??

List Of ReferencCeS .seeeececesccessceotscssscsnsssscssscscsscsscsassancsselB

vii

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10

11

12
13
14

15

List of Figures

Method of hierarchial organization of a scene ..eeceececees?

Parametric specification of curved surfaces «.ececeeeeeeel0

Method of modelling a geometric figure via a grid
Of squares ..l.l.l..........l.................‘...I......11

Graph showing improvement as a result of
increasing the number of processors ..scesecescscsccsssssld

Method of modelling objects in two dimensions .eceees0es19

Rotation of an object in 3-SPAcCe eecesceccsecsscrscensassll

An icosahedron l..l..ll.ll.lllllll.lll..llll.l....lll..023

Method of subdividing triangles of icosahedron23

Architecture of overall SyStem .c.eessececesccscesscccssseeld

Hexagonal facet showing message path .ceesecrsesesssesa30

Flowchart showing overview of major system
functions .l.‘l...l.............................I....I.l..33

Distribution of Pixel-holders among sScreen ..eccoceesssces3b

Sample scan-line for pixel-holder «cceeeesessnececececsssd?

Example of how facets are linked to form surfaces39

Subset of the facets drawn from a front view ...eceeeecssli2

viii

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

16

17

18

19

20

21

22

23

24

Construction for calculating perspective
transformation tececvresccsasesanennns ceeesssesssesdlid

Comparison of ' Great-circle Algorithm and
Smau‘CIFC!e Algcr!thﬂ‘ Sseoee et s rss e 0-0000.052

Graphs of message-passing for draw-phase of
unrotated SPhere cececssesescsscsasssseesscsssccssssssosessd’

Image of unrotated sphere c.eeceececescecscsscccacsansssd?

Graphs of message-passing during rotation of
sphere through 60"-..I....I.........ISO

Graphs of message-passing during rotation of
sphere through 30° ,..iiecescccrccssscsssccssssasssansssbl

Graphs of message-passing during rotation of
sphere through 1800 l......l..l‘..l.‘........l.-.l...l..62

Graphs of message-passing for draw-phase of
unrotated CUDEe eceveeressnccasssoscsssnscssssosscssssacnsssbl

Image of unrotated cube .iciieciecciaccsrecsessscoscseassbb

1. Introduction

1.1 Background)

Computer produced pictures today provide a direct and useful
method of communication between man and computer. The ability to
produce realistic images is of immense value in research, education
and industry. Computer simulators are used to drive displays for
real-time environments for the training of pilots of aircraft,
space-craft and ocean-going vessels. Real-life situations are
simulated, but at high cost.

With the advent of the Very Large Scale Integrated (VLSI)
circuit technology, the benefits of real-time image processing have
come within reach of less affluent customers. Interest has already
been shown by biologists who wish to supplement their cross-sectional
information about specimens with three-dimensional views. Other
diverse areas of application include simulation of human movement for
dance studies (Calvert et. al(1980)), and advertising in industry

(Newman & Sproull (1979)).

1.2 Motivation for Further Research

Most objects are inherently three-dimensional, but computer
display screens are only two-dimensional. In real life, a person can
walk around an object to see its total exterior. A reasonable
substitute for this "walking around" is to smoothly rotate the object
on the screen,

The problem is that smooth rotation of an object on a screen

requires an enormous number of calculations in a short space of time.

For smooth rotation without flickering, a new image must refresh the
screen every 1/30 of a seconc;. This does not leave much time to
compute the intensity of the 10,000 to 250,000 pixels found on raster
graphics devices. With present uni-processor technology, real-time
raster graphics image processing is not possible. In fact, the phrase
*digital image rotation" has been used to refer to the rotation of an
object in the plane of the screen, as opposed to rotation in three
dimensions.*

The prime concern of this thesis is to reduce the time required
to rotate and display a three-dimensional object. The problem will be
attacked on two fronts. First, the method will involve a high degree
of parallelism. The appropriate calculations will be performed
simultaneously by many processors, thereby reducing the overall
amount of time required for the computation.

The second line of attack will aim to reduce the complexity of
the calculations required to rotate an object. By working in
spherical coordinates, trigonometric information will be pre-computed
and will remain constant throughout the rotation and display of the
object.

In this thesis, a design for a parallel graphics system is
developed. The methods used address the concerns expressed above.
Programs will be described which have been written to simulate the
graphics system and test its algorithms.

Following this introduction, the main body of the thesis is
organized as follows. First, past methods of object representation

will be examined. Then parallel processing as a source of improved

*Advertisment for COMTAL Vision ONE/20 in Computer 13, 7 (June,
1980}, p. 63.

performance in graphics systems will be considered. Finally, the
design of a gyeodesic structure for processing raster qgraphics images
is presented with a detailed discussion of the algorithms and some

results of a simulation.

2. Review of Previous Methods of Object Description
Previous methods of object description can be categorized according to
whether they employ polygbns, regular surface elements, or
parametric surface patches. The most thoroughly studied type of
representation is the polygon. Because of the shortcomings of the
polygon method of modelling smooth, curved surfaces, several
parametric surface representations have been developed. A variation
is the method of storing many simple elements, which lends itself
very well to simple hidden surface and shading algorithms; however,
for arbitrary objects it can use up large regions of memory.

The algorithms for each of these three classes of object

descriptions will be discussed in separate sections.

2.1 Polygon Based Object Descriptions

The most popular approach to object modelling has been to
approximate surfaces with collections of polygons (Newmah & Sproull
(1979)). This works well for familiar objects such as cubes,
parallelepipeds, wedges and polygonal prisms. By increasing the
number of faces, a polyhedron <can be constructed that will
approximate any solid object. This completeness property makes the
polyhedron attractive as a primitive representation. The drawback of
the polyhedron approximation is that the processing and display times
can become intolerabie.

One of the useful properties of the polyhedral representation is
that it is conceptually easy to work with. An object can be modelled

by a set of faces where each face is a planar polygon defined by the

(x,y,7z) coordinates of the endpoints of its edges. Rotations are

performed by multiplying each endpoint p by a rotation matrix R to
produce the rotated point p', viz.,

p'=Rp ()

For example, for a rotation of 8 about the x-axis, we would have

T e e]
R =] 0 cos® ~sin 6 |
0

sin 9 cos 9 |

(2)
Many of the computations on the polyhedra can be done in
parallel. Transformations such as rotation are performed on each
point, and the calculations on any point are independent of the
calculations on any other point. The same is true for calculating the
screen coordinates and pixel intensities. Display can be done by a
multiple processor z-buffer scheme as demonstrated by Parke (1980).
Despite the fact that the operations can be done in parallel,
this scheme does not perform well due to the long processing time for
each of the polygons. In addition to several multiplications and
additions needed to project a polygon onto the screen, calculating its
intensity involves numerous trigonometric operations. Furthermore,
performance gains of current multiple-processor z-buffer schemes at

attractive only with small numbers of processors.

2.1.1 Hierarchical Organization of Polygon Data

In order to speed up clipping and visibility operations, Clarke
(1976) proposed organizing the polygon data by the wuse of a
hierarchical representation. It consists of trees whose branches

represent bounding wvolumes and whose terminal nodes represent

primitive object elements, usually polygons.

A sample scene is show;1 in Figure 1la. Objects close to one
another are grouped together. They are placed into "bounding
volumes", and organized as in the tree structure illustrated in Figure
1b.

Rubin & Whitted (1980) suggest that the bounding volumes be
parallelepipeds, oriented to minimize their size. With this
representation any surface can be rendered, since in the limit the
bounding volumes make up a point representation of the object. The
advantage is that the visibility calculation consists only of a search
through the data structure to delete the correspondence between
terminal level bounding wvolumes and the current pixel. For
ray-tracing algorithms, this means that the point of intersection of
each ray need only be calculated for a small number of bounding
volumes, not for every object.

While ray-tracing can be performed in parallel, there
nonetheless remains an enormous number of calculations to be done.
A ray from each pixel must be traced through the hierarchical
representation.

The bounding wvolume polygon organization is particularily
effective when a large amount of detail is being stored. When the
detail contained in the bounding volumes becomes finer than the
resolution of the display device, no more detailed information need be
processed. "Zooming in" on the data structure is accomplished by
the simple operation of traversing down the tree. Clarke(1976) and
Rubin & Whitted (1980) note that this means that the entire data

structure could be stored on disk, and the relevant portions

A //
Q 2 /

/ ‘/,,,

S\

L

=)
"

L

Figure 1a

Method of hierarchial organization of a scene. The entire scene is
enclosed in the polygon labelled A. Two sets of subordinate objects
are then grouped together into volumes B and C. The grouping
simplifies ray-tracing algorithms, since initial intersections must be
calculated only on the bounding wvolumes, not on the individual
objects.

>

e AN
e N
S .
e
//, A
B z
s ! N Vs \
| N // N
/ ! N 4 AN

{ s
s I \ / \.\
1 2 3 4 5

Figure 1b

Tree Organization for scene above. Ray-tracing proceeds by stepping
down the tree, looking for intersections. Once the size of a
bounding volume becomes less than the resolution of the display
device, no lower levels need be considered.

retrieved as needed.

This method of representation is useful for scenes in which
severa! different orders of magnitude of detail are desired.
Moreover, the scheme is most useful for scenes in which the objects
are clustered, particularily when these clusters are relatively far
apart. The ray-tracing is then simple because most of the rays miss
most of the bounding volumes.

For objects which do not fall into these categories, performance
of the hierarchical representation scheme degenerates very quickly.

Bounding volumes become extraneous information which must be stored

and processed by the ray-tracing algorithms.

2.1.2 Spherical Organization of Polygons

If polygons are to be used as the form of representation, a
method of selecting their positions must be defined. Brown (1979)
suggested choosing polygon vertices from piecewise planar functions of
a sphere called "well-tesselated surfaces". A geodesic dome is spread
around the object, and each of the triangular faces of the dome is
allowed to contract radially inward until the vertices rest on the
surface of the object. The plane of each triangle is determined by
the points at which the vertices touch the object. The collection of
triangles then describes the object.

Brown discusses a very simple hidden-surface algorithm for his
modelling scheme. The faces are sorted in decreasing order of angle
at the origin between any face point and the viewing direction.
Brown cites the example of a globe: if the viewport is above the

north pole, the sort is on the minimum latitude. Faces are then

projected onto the screen and displayed in the sorted order. In this
way, portions of the screen corresponding to hidden surfaces are
overwritten. This display scheme is an inherently sequential process
which cannot be done in parallel. The method as presented by
Brown has no advantages over the unstructured polygon modelling.
Indeed, it results in a great deal of unnecessary calculation in cases
where parts of the object could be modelied with considerably fewer

polygons, and there is no return on this investment of extra work.

2,2 Parametric Surface Representations

Although the use of polygons is a simple and workable method
of modelling objects with flat surfaces, problems arise when polygons
are used to represent smooth, curved surfaces. To handle these
problems, more refined models of parametric surface patches were
proposed, by Bezier (1974) and DeBoor (1972), who developed
numerous methods to parameterize surfaces. The essential concepts
are illustrated in Figure 2. A function of f(x,y) is defined, which
gives the z-coordinate of the surface. The function is evaluated at
regular intervals when a display is required. The patches can be
defined so that they require no more, and often less, data than
corresponding polygon-based surface descriptions.

Surfaces described in a parameteric form can be generated in
parallel, since calculations of the z-values are independent of each
other, However, Clarke(1976) notes that complications arise because
the mathematics is no longer linear; it can be very time consuming to
calculate the intersections of surfaces and to calculate the points

above a clipping plane.

10

Figure 2

Parametric specification of curved surfaces. At each of the vertices
on the grid, a height value is calculated. For clarity, only the
values at the edges are shown.

2.3 Simple Surface Elements

Computer tomography stimulated an alternative approach to
representing three-dimensional objects (Herman (1979)). The surface
is modelled by a large number of identical surface elements which are
both small and simple. The method is in sharp contrast to methods
of modelling objects by a relatively few complex, albeit easily
"sarameterizable”, elements.

Consider the two-dimensional situation illustrated in Figure 3.
The plane of the paper is divided into a series of squares, and a
geometric figure, in this case a circle, is represented by shading
certain of the squares.

We can extend this notion to describe the objects in the real

11

Figure 3

Method of modelling a geometric figure via a grid of squares. The
set of shaded squares form a circle.

world. The region of space which is to be modelled is divided into a
large number of cubes, and an object surface, called a cuberille,
consists of a subset of the collection of those cubes. In order to
mode!l a general object accurately, a large number of voxels are
required. Herman states that the surface of an human organ can
typically be modelled by 10,000 to 25,000 faces. Since all the voxels
are in the same orientation, the shading and screen projection
calculation for each facet is quite simple. The visible surfaces of the
voxels have only one of three possible orientations, simplifying
intensity calculations. This has the result, however, that a surface
may have a checkered appearance on the display.

The voxel representation lends itself well to parallel processing.

g
g
"
€

12

Transformations such as rotation can be performed independently on
each voxel, and the z-buffering scheme is easily imptemented to
eliminate hidden surfaces. However, the calculations for each
individual rotation involves a great deal of computation, as with the

polygonal representation.

3. Parallel Processing
Parallel processing offers attractive computational gains. Indeed,
Crow (1980) indicates that p‘aralle| processing holds the greatest
promise for improvements in image processing. In this section,
parallel processing in the context of graphics will be reviewed.
First, the potential gains which may be realized with parallel
processing will be examined. Following this will be consideration of
multi-processors and network computers. Finally, techniques for

constructing parallel solutions will be discussed.

3.1 Performance Improvement

The most obvious potential advantage to a multi-processor or
network computer is an improvement in the machine's performance,
both in terms of terminal response time and the time required for
complex computations.

Consider a set of operations which takes T time units to
complete on a uni-processor. It might be reasonable to expect that n
processors could complete the task in T/n time units. In practice
such an improvement is rarely realized. The problems encountered
are similar to our every-day experiences. If we have a large staff
working on a task, a certain amount of staff time is consumed in the
management, delegation, supervision and checking of work .
Additional time is used in inter-staff communication about related
sub-tasks which are performed by different persons. Moreover, a

given task may involve a great dea! of sequential work. For

example, in the newspaper industry, the paper must first be written

13

E
4
H
£
¢
¢

14

by reporters, then printed, and finally distributed. It is crucial
that the operations be done in that order.

These same problems plague multi-processor computers. Some
processors can be added to reduce the amount of overall time taken
by a task. At a certain point, however, performance no longer
improves, and in some cases actually declines, with more processors.
A graph showing a typical speedup curve is shown in Figure 4. If
the amount of time take by n processors to complete a task is T(n},
the speedup S(n) is defined as T(1}/T(n). The peak of the actual
response curve is often found at less than 10 processors (Chu et. al

(1980)).

3.2 Multi-processors

Multi-processor architectures have two important distinguishing
features. First, they inciude multiple, autonomous processors, and
second, all processors share most, and often all, of primary memory.
A great many multi-processor architectures have been proposed in the
literature, though only a few have actually been built. In the few
which have reached the building stage, there exist some interesting
results.

Jones & Schwartz (1980) give a status report of experience
using multi-processrs, citing three major systems. Programming
efforts with the C.mmp/HYDRA, the Cm*/StarOS, and the PLURIBUS
have indicated that a near linear speedup is attainable for some
problems. In fact, one searching program actually showed a
better-than-linear speedup in performance. However, all these results

were attained with modest numbers of processors (less than 50). It

i

15

SPEEDUP

PROCESSORS
Figure 4
Graph showing improvement as a result of increasing the number of

processors. The straight line is the ideal linear speedup, while the
curve is a typical result.

is not «clear whether these trends can be extrapolated to a
significantly larger number of processors.

Jones & Schwartz go on to make several important statements
about their experience. They assert that parallel programs are not
qualitatively different fr‘om sequential programs, nor are they more
difficult to write. The authors further predict that no major new
programing language will be required to write software for
multi-processors, although they do not provide a complete justification
of this statement. Indeed, Feldman (1979) has designed such a

language, though its usefulness remains in question.

16

3.3 Network Cocmputers

3

The development of very large scale integrated (VLSI)} circuit
technology has made it possible to have a "computer on a chip",
consisting of a complete micro-processor. Serving as a node in a
network, each chip can communicate, via messages, with a small
number of other nodes. Wittie (1980) surveys numerous connection
methods, or topologies, for linking networks.

An important factor in evaluating a network is the maximum
number of nodes a message must visit to travel from a node A to any
other node B in the network. Related to this is the message traffic
density, which measures the system bottlenecks in the network.
Another consideration is the ease with which a network can be laid
out on a two-dimensional plane for a VLSI chip implementation. Also
for fault-tolerance, the network should be able to recover from

single-point failures.

3.4 Techniques for Constructing Parallel Solutions

Several broad techniques for constructing parallel solutions to
problems have been proposed. The most important step in finding
such a solution is to identify the smallest inherently independent
subpart of the problem. This unit is referred to as a grain, and its
size is the granularity of the problem. Once this has been
identified, the problem may be solved independently on each of the
grains, or on groups of grains.

For problems in which computation can be performed
independently on subsets of the data, the input data can be

partitioned into groups, with each group assigned to one processor.

17

The code to be executed can be replicated on each processor. Parke
(1980) used this idea in his method of parallel processing in a
z-buffer system., Using an interlace pattern, pixels of the screen are
distributed among ‘"image-processors". Polygons are input to
"splitter-processors", which are organized in a tree structure. The
splitters decompose the polygons into pixels and broadcast the
intensities and z-buffer information to the image processors. Parke's
system suffers from the saturation effect discussed earlier: the peak
in his speedup curve is found at between 16 and 64 processors.

If the problem which must be solved consists of several
inherently sequential segments, these segments can be handled by a
pipeline. Output from one phase is treated as input to the next
phase. Each phase can in itself then be processed in parallel.
Clarke(1980) made use of this method in designing his Geometry
Engine, a VLSI system for transforming polygon-data. The system
scales, translates and clips polygon data, preparing it for a z-buffer
system such as that of Parke. Parallelism is implemented at the level
of the arithmetic processing within the processor, where polygon data
is processed in a pipeline. Clarke's system is capable of transforming
about 900 polygons in the 1/30 second required for real-time

processing.

E
H
£
14
b

4. Design of a Geodesic Structure

In the last section, we reviewed several broad categories of object

descriptions, noting several attempts at information structuring. In
this section, we will discuss a scheme by which a rotation of the
object description can be performed with relatively few calculations.
First proposed by Funt (1981), the method amounts to structuring
polygon data in a spherically symmetric manner.

After an overview of the method, a formal description is given.
The distribution of the polygons will be discussed, followed by an
analysis of the interaction between the hardware and software of the

system.

4.1 Overview

One of the design criteria was to have the rotation calculation
involve only simple arithmetic. A construction which satisfies this
criterion in two dimensions is illustrated in Figure 5. Suppose that
we have eight people standing in a circle around an object of
interest, Each person records in a log book what he sees when he
looks radially inward, and then turns his back to the object. The
group collectively now has a complete description of the object. No
one person can see every part of the object, but every part is seen
by someone.

Suppose now that we wanted to rotate the object description by

- 45 degrees. One way to do this, is to have each person pass his

log book to the person to the right. Without having moved the

object, the description is rotated. A rotation of a further 45 degrees

18

%

19

Figure 5

Method of modelling objects in two dimensions. A group of people,
standing around an object, observe what they see by looking radially
inward. A rotation is accomplished by passing the description to
their neighbors.

would be accomplished by passing the logbook to the right once more,
and so on.

This scheme can be extended to three dimensions. Imagine a
hollow sphere with a three dimensional object placed inside it.
Equally spaced around the sphere are people who look radially
inward, and record what they see between where they are, and the
center of the sphere. A rotation is accomplished by each of the

observers passing his view to his neighbour along the axis of

20

rotation, as illustrated in Figure'a 6.

It is interesting to note that this scheme of managing the
information is the inverse of the vision system called a ‘"compound
eye" which is found in some animals, such as insects. Some 1,000 to
40,000 hexagonal "facets" are spread about a hemishere on either side
of the animal's head. Each facet is able to receive only a pencil of
light falling perpendicular to its face. The animal can differentiate
motion and velocity by determining the speed at which an object
crosses the field of view of successive facets.

The important feature of this scheme of data organization is
that there are no sine or cosine calculations necessary to rotate the
description of the object. This simplicity comes as a result of
working in polar coordinates. In the next section, we will see how

these concepts can be exploited in a computer model.

4.2 Computer Model

The informal notions introduced in the last section exhibit
properties which make them very attractive for actual implementation.
The key point is that the actions of each person can be performed
by an individual processor in a multiple-processor environment.
Communication between processors is limited to a small number of
neighbours, making it realistic with present-day technology. Further,
- the operations performed by each of the processors are very simple.
To rotate, for example, requires only a small number of
multiplications and additions to determine where the information must
be sent and then passing it to the correct neighbour.

Each of the "people" on the "sphere" is modeliled by a data

21

Figure 6

Rotation of an object in 3-space, analogous to the 2-space rotation of
Figure 5. Information is passed to the neighboring node along the
axis of rotation. Note that the speed of rotation is limited by the
speed of the message-passing at the equator.

structure called a facet. Each facet knows its (¢4,8) coordinates, and
the distance to the points at which a suri.’ace of the object crosses a
line extended from the facet to the center of the sphere. The
surface normal at that point is also recorded for later use in the
shading calculation. In addition, the facet will have a list of the

neighbouring facets to which it can send information.

4.3 Distributing Facets Evenly About a Sphere

ldeally, we want the facets to cover small "patches" of the
surface of the sphere. These patches should be as round as
possible, so that the distance to the object surface, when measured

at the centers of the patches, is representative of the patch as a

22

whole. Furthermcre, to preserve symmetry in the data structure, we
want all the facets to be identical.

Due to the geometric constraints of the real world, these ideal
conditions cannot be met. First, the facets can clearly not be
completely round, but must be polygons, otherwise there would be
sizable “inter-facet" gaps, leaving parts of the surface unrepresented.
Furthermore, it is well known that there is no way to completely
cover the surface of a sphere with many identical polygons
(Harris(1977}). A good approximation is the icosahedron.

A diagram of an icosahedron is shown in Figure 7a. The
icosahedron has 12 vertices, 20 faces called Principle Polyhedral
Triangles (PPT's} and 30 edges. A 'flattened-out" version of the
icosahedron is shown in Figure 7b.

We need more than the 20 facets which the PPTs provide. The
PPTs are then subdivided as in Figure 8. Each edge is divided into
n equal segments. Each point is connected with a line segment to a
point on each of the other edges, so that all the line segments are
parallel to one of the edges of the PPT. The result is a 3-way grid
on the PPT consisting of equilateral triangles. Finally, each vertex
is translated outward until it is at unit distance from the center of
the sphere. Hexagonal facets are constructed by collapsing groups of
six triangles. The triangles located around the vertices of the PPT's

form pentagonal facets.

L

23

Figure 7

An icosahedron (a) and the same object spread out in two dimensions
(b). Note that each wvertex has 5 edges. The wvertices of the
triangles at the top and bottom of (b) actualy correspond to the
north and south poles, respectively.

Figure 8

Method of subdividing triangles of icosahedron. Each principle
polyhedral triangle is divided into smaller ones, which are then
grouped to form hexagons.

24

4.4 Overview of Architecture

Now that a scheme for modeiling the objects has been
developed, attention will be shifted to an implementation of the model.
While we will not intimately concern ourselves with the details of the
hardware, we nonetheless must maintain a conceptual overview of the
system so as to understand the environment in which the model and
its programs will function.

An overview of the architecture to be used is illustrated in
Figure 9. At the top level, a user inputs commands which will
define the object. Later the wuser inputs other commands to
manipulate and rotate it. These commands are read by the "data and
command handler", which transliates the high-level descriptions from
the user into commands on the group of facets. The facet-commands
are then passed on to the '"processor sUpervisor" which issues
instructions to all the individual processors. The processors
themselves contain local memory for the facet information they
currently hold, and they hold memory for pixel intensities which the
video generator can read and display on the graphics device. Each
processor can communicate with five or six other processors.

The significant feature of the system is that the processors'

workload is composed of three distinct segments:

1. Object description and manipulation. Facets are stored by the
processors and the facets are manipulated by the processors to
reflect rotations requested by the user.

2., Message-passing. This operation occurs at two different times.

One such time is during object rotations, since they involve

passing the object description to a neighbouring processor. Since

25

USER
COMMANDS

DATA AND
COMMAND
HANDLER

PROCESSOR
SUPERVISOR

NETWCRK OF

PROCESSO FACET
PROCESSORS

FACET

PIXELS PIXELS

A

VIDEC
GENERATOR

\

RASTER
GRAPHICS

Figure 9

Architecture of overall system. Information is supplied by the user
at the top level and then handled by the interconnected network of
processors. Each processor has storage for some facets, and
separate storage for some pixels. The video generator reads pixel
values to display on the raster output device.

26

any one rotation step is'oniy through a small angle, these
messages only have to traverse a sma!ll number of processors.
The second time message-passing is performed is when the facet
information is converted to pixel intensities. At this time, the
pixel information must be sent to the processor which actually
holds the corresponding pixels.

3. Z-buffer. Every processor holds data corresponding to certain

pixels, and must maintain a z-buffer for them,

4.5 Overview of Software

Although from the point of view of the hardware, the
processors can be visualized as being in a planar arrangement, the
graphics programs view them as being uniformly spread about the
surface of a sphere. Each processor holds one facet. The following
steps are involved in displaying an object on the screen. Each point
held by a facet is converted to rectangular Cartesian coordinates.
The first two components are treated as the (x,y) coordinates of that
point on the screen, while the third component is treated as the
z-distance. Neighbouring processors '~ hold facets which denote
adjacent portions of the same surfaces: the rectangular Cartesian
coordinates of these adjacent facets are combined to form triangles
which approximate the surface. Each triangle is then sent, via
inter-processor messages, to the processor which holds the portion of
the screen on which the triangles are to be displayed. A
polygon-filling algorithnm then fills in the triangles and the pixel data
inserted into the z-buffer.

How well the system performs depends heavily on how the

inter-processor communication is handled. Clearly, the more nodes a

27

message must traverse, the more time is required. In the next
1}
saction, the merits of our inter-processor connection scheme will be

examined.

4.6 Connecting Processors: A Problem in Graph Theory

In order to make the design reasonable, we must limit the
number of connections between processors. Information must be
moved around between processors, because what a piece of information
means is determined by which processor is holding it and how it is
related to the rest of the object description. In this section, we
examine the factors which must be considered in deciding which
processors to connect. The problem will be discussed in terms of

graph theory.

4.6.1 Basic Definitions

Let us begin by defining some of the relevant terms from graph

theory.

Graph A Graph G(V,E) consists of' a set of points called
vertices, V, and a set of edges, E, connecting
vertices.

Order The order of a graph is the number of vertices in
the graph.

Adjacent Two edges are said to be adjacent if they have at
least one endpoint in common.

Degree For a vertex x, the degree d(x) is the number of
edges with x as an endpoint. The degree of a graph

is the maximum of all d{x).

28

Distance The distance d(x,y) between two vertices x and vy is
the length of the shortest path between x and v,
where "length" is defined as the number of arcs

which must be traversed.

Associated number

The associated number e{x) of a vertex is defined as
e(x) = maximum of all d(x,y).
A traveller at x can reach any other vertex with e(x)
or less stops.
Center The center of a graph is the vertex with the lowest
associated number.
Radius The radius is the associated number of the center.
Diameter The diameter is the maximum associated number of the

vertices in the graph.

4.6.2 Attributes of the Graph

There are several important attributes which the graph formed
by the geodesic dome construction has.

1. The graph is planar with degree 6. The small degree makes a

hardward implementation feasible., The planarity of the graph
means that even a VLS| implementation of the system may be
possible (Sequin(1981)). Our system, wusing several hundred
processors, is too large to fit onto one wafer using present-day
technology. However, the density of logic-gates per chip is
steadily increasing, and eventually the wafer may be able to hold

a system of the magnitude of ours.

2. The diameter of our graph is approximately equal to the radius.

29

This is easy to see: note that for every processor, there is a
processor on exactly the opposite side of the dome. Since the
density of processors per unit area is constant, the radius of the
graph is approximately equal to its diameter.

This radius-diameter relationship is important, because if
there were a large discrepancy between these quantities,
bottlenecks in the system would result at the center, or centers,

of the graph.

3. The radius of the graph is proportional to the square root of the

number of processors. To see this, consider the hexagon in
Figure 10. Messages are passed along the path labelled x.
Using this distance, we will derive an .expression relating the
number of processors, n, to the radius of the graph, i.e., the
distance between the poles.
As an approximation, let us assume that we have n identical hexagons
spread over the surface of the sphere, instead of our 12 pentagons
and n-12 hexagons. Using simple trigonometry, we can show that the
area "a" of each hexagon is
a = 2 * (3**,5) * x**2, (3)
The sum of the areas of the n hexagons must be equal to the area of
a unit sphere,
n*as=4%*nq, (4)
Substituting Equation 3 into Equation 4 yields an expiression for x,
x = sqrt((2*n)/(n*3**.,5)). (5)
The largest distance which a message ever has to travel is the
pole-to-pole distance . The number of nodes which must be

traversed is therefore,

30

Figure 10

Hexagonal facet showing message path. Messages are communicated
along the path labelled x.

31
r=m/2x (6)

or
r = sqrt(a*3** 5%n/8), (7)

Numericially, this is

r = .82 n**.5 (8)

5. Realization of the Geodesic Structure

In this section, we describe the details of the geodesic structure
which we proposed Iin the last éhapter. Along with the algorithms,
we will highlight the important features of a 4,000 line LISP
simuiation, which was written as an aid to the development of the
algorithms. The simulation used 482 processors, with one facet per
processor.

We will present a theoretical analysis of the performance of the
system, along with some experimental results obtained from the
simulation. Finally, we will show how the algorithms can be

extended.

5.1 Methods

A flowchart giving an overview of the flow of control of the
system is illustrated in Figure 11. The preliminary setup of the
system consists primarily of determining which pixels will be held by
which processor. Other system constants which can be pre-computed
in this phase will be pointed out later. The object-initialization phase
consists of inputting surfaces describing the object. The surfaces
are sampled at the facet locations, and these samples are linked
together to approximate the surface. The rotation parameters are
also initialized at this time.

The operation phase involves the actual rotation and display of
the object. We will show the principles by which the calculations are
performed, and indicate which of the relevant parameters can be

pre-computed. The display itself consists of four phases:

32

frput

Polygons

i

Link facets

Fra-romnacts

Rotation iwfﬂ

!

Project facet

Form

Triangles

Send
Triangles to
Pixel-holder

{

Make scan-

lines from

triangles

Y
Y

Turn on

Appropriate

Pixels

i

Potate

Object

Figure 11

Flowchart showing overview of major system functions.

33

34

1. calcuiate the rectangular Ca'rtesian coordinates of the facets and
their intensities,
2. assemble sets of three facets to form triangular patches,
3. send the triangular patches to the processor governing the
corresponding pixels, and
4, turn on the appropriate pixels.
The algorithms will be illustrated using a specific processor as an
example. Each has a name, such as P31-123. The first number, 31,
refers to the ¢ coordinate of the processor, rounded to the nearest
integer, while the second number, 123, refers to the 8 coordinate.
The actual coordinate of P31-123 is
(1, 30.7278, 122.5887).
This processor can communicate with its six neighbours: P28-114,

P41-123, P36-117, P20-120, P24-129 and P36-131.

5.1.1 Preliminary-Setup

At this time, the pixells on the screen are split up among the
processors. Each processor is to handle an equal part of t'he screen,
so that the work of turning the pixels on is distributed as equally as
possible. Further, it is important that adjacent processors hold
adjacent regions of the screen, since a triangular screen patch,
consisting of facets at its wvertices, can stretch over the region
governed by more than one processor.

The two angular coordinates of the processors provide a
convenient way of mapping processors onto the screen. The first
angular component varies from 0 to 360, the second from 0 to 180.

When we normalize these coordinates, each processor will have two

35

coordinates between 0 and 1, \(vhich then dcscribe a unique position
on the screen. Each processor holds the pixels which lie in a small
region around its screen position.

The distribution of processors produced by this method is
iflustrated in Figure 12. Each polygon in the figure represents the
part of the screen governed by one processor. The distribution is
relatively even toward the middie of the screen, but thins out toward
the top and bottom. This is a result of the singularities in the
spherical coordinate system. For many applications, this s
acceptable, since the center of the screen is more heavily used than
other parts of the screen. For this reason, this scheme was used in
the simulation.,

For a general purpose raster-graphics device, however, this
may not be acceptable. To rectify the situation, the (4,8} coordinate
of the processor could be multiplied by a modulating function, which
would have the effect of moving the end processors closer together,
and pulling the central ones farther apart.

Each processor must "be aware of" which pixels it is holding.
For each scan-line segment a processor holds on to, it maintains (see
Figure 13):

1. a pointer to the processor holding the previous segment of this
scan-line,

2. the x-coordinate of its starting position,

3. the y-coordinate of its starting position,

4. its length, and

5. a pointer to the processor holding the next segment of this

scan-line.

36

Figure 12

Distribution of Pixel-holders among screen. Each processor governs
one of the polygons.

37
POINTER TO POINTER TO
PROCESSOR HOLDING =1 X Y L ——> PROCESSOR HOLDING
PIXEL(X-1,Y) PIXEL(X+L,Y)
Figure 13

"~ Sample scan-line for pixel-holder.

The first and last items in this list are required in instances where a

triangle spreads over the pixels governed by several processors.

5.1.2 Object-initialization

In this phase, the object of interest is input to the system.

The wuser specifies a set of polygons approximating the object's

surface. Each polygon is identified by a name. The vertices of the

edges must lie inside a unit sphere. Processing of this information
proceeds as follows.

1. For each facet, the point of intersection of each polygon with a
line extended from the center of the sphere to the facet, is
calculated. For example, for the processor P31-123, every plane
would be examined to see whether it intersected the radial

line-segment from the center of the sphere to the point

38

(1,30.7,122.6) (in spherica'l-polar coordinates}. The intersections
are recorded as radial distances from the center of the sphere.
The surface normals of each of the plénes are then calculated.
The surface normal is recorded in Cartesian coordinates oriented
such that the positive z-axis coincides with the radial line of the
facet. the radial line. These facet-crossings and their normals
are labelled so the complete surface can later be re-constructed.
An example of such a label on processor P31-123 is
(F31-123 BACK)
The first part refers to the processor which initially holds the
facet, and the second part to the name of the surface which was
crossed.
2. The radial values at each facet are sorted in descending order.
3. The two surface normals of each plane are then re-examined.
The correct one is chosen by noting that as the object is
completely enclosed in the sphere, the outermost surface must
face out, and subsequent normals alternate between pointing in

and pointing out.

5.1.2.1 Linking Surfaces

Now that the input phase has "digitized" the surface of the
object, the discrete values must be linked to record how the surface
samples are related to form continuous surface patches.

Let us discuss the details in terms of a specific example.
Figure 14 shows processor P31-123 surrounded by its neighbours.
Notice that triangular patches are formed by P31-123 and adjacent

pairs of neighbours. These patches, appropriately shaded, are

P31—123

Figure 14

Example of how facets are linked to form surfaces.

39

40

destined for display on the screen. Each of these 6 patches is
shared by two neighbours so every processor must handle the
computation for approxim;—_\tely two triangles.

On the facet F31-123 we place the names of adjacent facets
which the holder of F31-123 will have to assemble. In this way, we
guarantee that the structure of the object is not disturbed. This is
in spite of the fact that the facets themselves are handled by
different processors, and that they trave! independently through the

network .

5.1.2.2 Setting up the Rotation

One of the design criteria was that rotations should be
performed with as simple arithmetic as possible. The method used
the following:

1. Given an axis of rotation, assign to each processor a
"virtual-coordinate". This spherical-polar coordinate is chosen so
that the axis of rotation coincides with the north-south axis of
the virtual coordinate system. For each processor, coordinates in
this new coordinate system are computed.

2., Later in the operation-phase, to rotate by ¢° simply means to
increment the angle of orientation of each surface patch by $° in
the virtual coordinate-system.

Note that the second step determines the time required for a rotation,

as it is repeated for every rotation increment.

41

5.1.3 Calculation of Facet Positions and Intensity Values
— T

After a rotation, the object is displayed. First, every
processor examines its facet information and decides which position it
corresponds to, and what intensity it should have. Consider the
group of facets illustrated in Figure 15. The key to determining the
(x,y) screen coordinates from a facet at (¢,0) recording a surface at
radius r, is the observation that the surface patch can only lie in a
small cone-like region of the screen.

Each processor stores as pre-computed constants both its
spherical and Cartesian cocrdinates. Let these be (1,¢,86) and
(x,y.z), respectively. A surface point P held by the processor will
have coordinates (r,4¢,8) where 0<r<=1, The equivalent Cartesian
coordinates of P are simply (rx,ry,rz) which can be calulated with
one vector-multiplication.

The intensity of a surface patch is determined by the angle of
orientation of the surface with respect to the light source. At each
surface point, the surface normal unit vector n relative to the axis of
the facet must be known. And every facet must hold a unit vector
s in the direction of the light source. The angle 8 between these is
then given by

n . s = cos © (9)
Newman & Sproull (1979) propose that the intensity i of the the patch
will then be related to the light source intensity | by the equation

i =1 cos @ (10)
Note that if a more sophisticated shading algorithm were desired, it
could easily replace this fast, albeit simple, algorithm.

Some of the surfaces of the object being modelled will be back

42

Figure 15

Subset of the facets drawn from a front view. Note that a surface
which a facet sees, can only correspond to a narrow cone-like region
of the screen.

surfaces, surfaces which cannot be seen from the user's viewing
position. We want to avoid doing much work on these surfaces, since
they are of little wvalue. The way we can detect which facets
correspond to back surfaces is to repeat the intensity calculation once
more, this time operating on a unit vector in the direction of the
viewer, instead of the light source. If the cosine of the angle is
negative, then this facet corresponds to a surface which cannot be
seen. If all three vertices of a triangle correspond to back surfaces,

then the triangle is eliminated.

43

5.1.4 Small-angle Approximations

'

The calculations for facet position and intensity were based on
a facet being centered exactly on the processor holding it. In
general, this will not be true after a rotation. Instead, the facet
wil‘l be displaced from the center by some small amount (§¢,68),
relative to the virtual coordinate of the processor.

The correction for the position of the facet is particularly
simple. It is well known tha‘t over a small region of space, the slope
of a curved surface is approximately a constant, given by its
derivative. For this reason, we can pre-compute the rate of change
of the coordinates of a processor as a result of a small pertubation in
the ¢ direction, and a small pertubation in the 8 direction. The
actual change in the Cartesian coordinates can be calculated by
merely scaling the pre-computed values by the appropriate amount.

A somewhat more complex technique is used to adjust the unit
vector in the direction of the light source for the intensity
calculation. The wvector is computed at the corners of the surface
patch covered by the processor, and the actua!l value obtained by a
linear interpolation, analogous to that of Bui-Tuong (1975).

This method works everywhere except at the poles of rotation,
where a processor can cover the entire range of ¢ values from 0 to
360, For this reason, the calculation near the poles involves
pre-computing surface normals at increments of 20° in the ¢

direction, and linearly interpolating between the appropriate values.

44

5.1.5 Scaling and Translation

'

The points modelling the object are now ready to be scaled and
translated. Since the points all lie inside the unit sphere, scaling

and translation can be accomplished with the following:

Let
s be the scaling factor,
X be the wvector giving the desired transiation, in
rectangular Cartesian coordinates, and
P be an object vector, whose endpoints are the origin

and a point of interest on the object.
The scaled and translated vector P' is related to the initial object
vector P by the formula

Pl= X +s *P, (1)

5.1.6 Perspective Transformation

According to Rogers & Adams (1976, p. 72), if the vanishing
point is located at (0,0,-h) as in Figure 16, any vector v=(x,y,z) on
the object becomes

vi = v * 1/ (1+z/h). (12)
The important feature of this equation is that the direction of the
vector to any part of the object remains invariant under the
perspective transformation. By this time, the scaled and translated
(x,y,z) coordinates of the facet have already been determined. The
scaling factor for the perspective transformation can easily be

calculated from the coordinates of the point, and the transformed

vector obtained by a vector-multiplication.

Figure 16

Construction for calculating perspective
vanishing point is located at (0,0,-h).

transformation.

45

The

46

5.1.7 Assembling Triangles for Display

Now that the intensity and rectangular Cartesian coordinates
have been determined for each facet, the facets must be assembled to
form wvertices of triangles. Which facets are assembled by which
processors is dictated by the linking information which each facet
holds. Each processor proceeds as follows:

1. Send the completed facet points (i.e. name of facet, its screen
position and intensity), to each neighbour.
2. For each of the facets which the processor holds, assemble the
vertices of the triangles as required.
If two facets were held by neighbouring processors in the initial
input, we would expect them to remain in neighbouring positions at
all times, since we are dealing with rigid objects. However, as we
will see in the next section, the rotation phase does not guarantee
that a processor arrives at the desired destination. A facet may in
fact be removed from the correct processor by one node. This means
that sometimes, a processor may not actually hold all the required
vertices at the conclusion of step (2) above. In this case, a special
request must be issued to all neighbours.

After the triangle has been assembled, its destination must be
calculated. Recall that a processor's (¢,8) coordinate served as
(x,y) coordinates for the center of the screen patch which the
processor governed. Now this process is reversed. Knowing where
a point on the screen lies, we can determine the approximate
spherical-coordinates of the processor which holds that point.

With this in mind, the vertices of the triangles which a

processor has assembled are averaged, and this average value is used

A

u7

as the destination point.

5.1.8 Traversing the Network

Once the facet holder has decided which positions the triangles
will fill on the screen it must send the description of the triangles.
We will solve the general problem of finding the least expensive route
from one processor to another processor.

The cost ¢ of sending the information is expressed by the

formula

c=d* (c1 *s + c2) (13)
where

d is the number of nodes traversed en route,

cl is the cost of transferring one byte of information

from one processor to another,
s is the number of bytes in the message, and
c2 is the cost of deciding which processor is to receive

an outgoing message.

The two algorithms which have been developed to decide on the
exact path, illustrate that the "shortest" path (i.e. smallest d) may
not be the least expensive (i.e. smallest c¢) path. The first
algorithm, the Great-circle Algorithm with variations, follows the
shortest path, but involves very expensive calculations, compared to
the Small-circle Algorithm, which has simple calculations but produces

a path which is usually somewhat ionger.

48

5.1.8.1 Great-circle Algorithm

1

Keeping in mind that processors are spread evenly about the
surface of a unit sphere, it is clear that the shortest path between
any two processors follows the great circle characterized by the
positions of the starting and finished processors. Our task,
therefore, will be to find the chain of processors which lie closest to
this shortest path.

Any plane section of a sphere is a circle, This circle is
referred to as a Great-circle if the plane of intersection passes
through the center of the sphere, otherwise it is referred to as a
Small-circle. It is interesting to note that the problem of finding the
shortest route via the Great-circle has historical overtones. Early
mariners looking for the north west passage used this principle in
their "Great-circle" sailing by attempting to plan their routes as far
from the equator, and as close to the poles, as possible.

Definitions:
Let
f be the destination position of a message
i be the initial position of a message.

The algorithm we will follow can be loosely described as follows:
1. Calculate the rectangular Cartesian coordinates of f
2. Look up the rectangular Cartesian coordinates of i
3. WHILE message not arrived DO

a. Find out which neighbour n of i lies closest to f

b. Send the information to n

c. Set i ton

The phrase "message not arrived" requires elaboration. Each

A SO

49

processor "covers" a pentagonal or hexagonal region of space. The
computation to determine whether a message has actually arrived can,
for this reason, be difficult. A simplification is introduced by
assuming that the processor governs a rectangular region whose width
and height are given by the maximum extent of the hexagon or
pentagon. This rectangular space covers a larger area than the
original shape, meaning that a message may be considered "arrived"
whereas the actual destination was one of the neighbouring
processors. This minor inexactness is tolerable, and saves the time
required for an exact arrival calculation.

The non-trivial part of this algorithm is step 3a, finding the
neighbour closest to the destination. Two different methods of
roughly equal complexity have been developed to calculate this. Both
involve calculating the Cartesian coordinates of the destination, f, and
looking up the Cartesian coordinates i of the current processor. The
neighbouring processor closest to the destination is then the one with
the minimum value of

If - il (14)
Notice that this calculation, which must be repeated for each of the 5
or 6 neighbours, involves three multiplications and additions.

The second method for finding the processor closest to the
destination involves selecting one of the processors which lies closest
to the great circle characterized by the initial and destination points.

Let us define an additional quantity, ¢, which is perpendicular
to both i and f. The equation for this wvector uses the
cross-product,

c=ixf (15)

50

The equation for the plane of the great circle on which i and f lie
can be expressed as

€.n=0 (16)
Since the processors are separated by 360/n degrees, we can find the
processors which lie closest to the great circle by determining which
neighbouring processors satisfy

€ . n < cos (360/n) (17)
This subset, which usually has size two, can then be analyzed to
find which one lies closer to the destination by simply subtracting
angles.

Both of these methods involve considerable computation. The

cost ¢ of the message-passing system is the cost which increases as a
function of the number of processors, and it is what causes the

saturation effect illustrated earlier in Figure 4, Clearly, we need an

inexpensive calculation.

5.1.8.2 Small-circle Algorithm

The second method of traversing the network is less expensive
than the Great-circle Algorithm, despite the fact that it does not
guarantee the shortest path. The method relies on finding the
shortest way of traversing the plane of the display device, as
illustrated previously in Figure 12. We will follow the Small-circle
defined by the starting and destination points, whose plane is
perpendicular to the axis of the sphere. We can consider the first
angular component of a processor's coordinate to be a distance in the
x-direction, and the second a distance in the y-direction. Clearly,

the equation for the path we seek is that of a straight line,

51

Yy =m x + b (18)
where m is the slope, and b is the y-intercept. We seek to identify
the set of processors which lie closest to the line.

Definitions

Let
1 be the (¢,8) coordinates of the starting processor,
and
F be the (¢4,8) coordinates of the destination.

The algorithm is:
1. Set the difference D between the starting and the finishing
processors to F - |.
2. WHILE D > angular width of processor (i.e. message not arrived)
DO
a. Set N to that neighbour of | which, will decrease the second
coordinate of D and whose slope is the closest m.
b. Set | to N
c. Set D toF -1
Note that this algorithm requires only one division and several
comparisons for each processor on the path. However, the shortest
path is not guaranteed.

A sample comparison between the Great-circle and Small-circle
Algorithms is illustrated in Figure 17. In the diagram, we are
looking down at the north pole of a sphere. Imagine the initial and
final positions with different longitude, but identical in latitude. The
Great-circle Algorithm would send the message along the shortest
path, i.e., across the pole. The Smali-circle Algorithm would carry

the message around the globe along the small circle of constant

52

--Finistin
Position

Path generated -- --Path generatad
by Small-circle by Great-circle

Algorithm Algorithm
-=Starting

Position

Figure 17

Comparison of GCreat-circle Algorithm and Small-circle Algorithm. A
message must be sent from one side of the north pole to the other.
The Great-circle Algorithm finds the path across the pole, while the
Small-circle algorithm travels around the pole. Note that the
worst-case performance of the two algorithms is identical.

longitude.

It should be clear from this discussion that the worst case for
the Small-circle algorithm is equal to the worst case for the
Creat-circle Algorithm, i.e., the radius of the graph. The
Small-circle Algorithm is much less expensive to compute, but has the
disadvantage that in general messages remain in circulation longer.
This, in turn, increases the chance of the message density building

up somewhere in the network, resulting in a bottleneck.

5.1.9 Turning on Pixels

Once a triangle has arrived at the correct processor, the

corresponding pixels must be turned on. A small complication is that

53

a given triangle may span ':he pixels held by several adjacent
processors.

The procedure is first to resolve the triangle into scan-lines
according to a polygon-filling algorithm similar to that of
(Crow(1976)). In the simulation, Gourand shading was added to the
filling algorithm (Newman & Sproull(1979}). As described earlier,
each processor "knows" which pixels it is responsible for, and which
neighbours handle adjacent pixels.

An iterative process for correctly distributing the pixels among
the processors is:

1. Decompose the triangle into scan-lines.
2. WHILE a processor p has scan lines which don't belong to it DO
a. lLet p keep that part of the scan-line which belongs to it.
b. Send the remaining portion of the scan line to the appropriate
neighbour.
Once a process has only pixels which belong to it, the pixels are
individually inserted into a z-buffer via the algorithm:

For each pixel

If z-value of new pixel is < z-value of previous value
then

store new z-value and
new intensity-value

repeat

5.1.10 Rotating Object

Each time the screen is refreshed, the object is rotated by a
small amount. This makes the rotation smooth. To initialize the

rotation about a given axis, each processor calculates its

54

“virtual-coordinate", which is aligned so that the axis of rotation
coincides with the north-south axis of the virtual-coordinate system.
Every facet holds a local-coordinate describing its position relative to
the virtual-coordinate of its processor. Although the calculation of
the virtual-coordinate is time-consuming as it requires numerous
trigonometric calculations, the calculation is only performed once for
each new axis of rotation.

The calculations required during the rotation are very simple.
Rotation requires adding the angle of the rotation increment to the
first angular component of the local-coordinates. Then the message is
sent to its destination, in a fashion similar to that for sending the
triangles from the facet-holders to the pixel-holders. The amount of

time required for a rotation is proportional to the rotation's angle.

5.2 Simulation and Results

The algorithms outlined in the previous section were implemented
under the MTS operating system on an IBM 4341 using LISP. The
primary purpose of the simulation was to aid in the development of
the algorithm and to study the message-passing system, rather than
to produce high-quality images.

Processors are represented by atoms, and the information a
processor "knows" is stored on its property list. A complete
inventory of properties is given in Appendix A. As properties are
added to the 482 simulated processors, memory is used up very
quickly due to the fact that LISP uses 8 bytes for each conscell.
The memory limitations became an insurmountable problem. Due to

hardware restrictions, the amount of memory for LISP programs and

55

data is limited to 255 pages, or‘approximately 1 megabyte.

By removing properties when they were no longer needed, it
was possible to complete all phases of the simulation, with the
exception of the actual turning on of the pixels, in the manner
described in Section 5.1.9. Not running this last part is not a major
loss, since it is a problem which has been thoroughly studied, and is
well understood. To obtain pictures, nonetheless, the polygon-filling
algorithm was applied sequentially to the triangles when they arrived
at the appropriate pixel-holder. The z-buffer data was handled by a
FORTRAN program. Images were generated by a PL/1 program using

overprinting on the line-printer to produce grey-shades.

5.2.1 Simulating Parallelism

Clearly the IBM 4341 is not capable of supporting the kind of
parallelism required for the graphics system. Instead, an operation
which would in reality be executed simultaneously on each processor
was handled sequentially using a LISP MAPping function. The amount
of CPU time required in an actual implementation could clearly not be
measured using this technique. Furthermore, only an estimate of the
processor utilization could be determined, since the simulation had to
synchronize steps which would not necessarily have to be syncronized
in reality.

Despite the problems inherent in a simulation, it was
nonetheless possible to study the message-passing system. Messages
were handled in "rounds". In each round, a processor passed on
the first of its outgoing messages to the appropriate neighbour.

During the rotation, and during the facet-to-pixel-holder transfer,

56

the following data were collected:

1. For each message, the number of nodes visited between its source
and its destination was measured. This wvalue should always be
less than or equal to the radius of the graph.

2. At each round, the percentage utilization of the processors was
measured, that is, the number of processors which had a message
to send.

The minimum number of rounds in which the message-passing system

can stop is clearly one greater than the length of the longest

message. If messages are delayed due to bottlenecks anywhere along

the way, the number of rounds required will be larger.

5.2.2 Some Examples

:
[:
t

The first test object we will consider is a sphere. It is
representative example, as its surface varies smoothly, and all
possible surface orientations to the light source are represented.

First, the sphere was displayed without rotation. Figure 18a
shows a graphi for the number of messages versus message length for
the facet-to-pixel-holder transfer. Most of the messages had to
travel a distance of between 2 and 6 nodes, with a maximum distance
of 8. Figure 18b shows the percentage utilization versus round. At
the outset, approximately 55% of the processors had messages to
send. This is reasonable, since approximately half the surfaces were
entirely on the back of the sphere, and were removed since their
surface normal pointed away from the viewer, The utilization

decreased in a near-linear fashion as time progressed. [t took 10

rounds to dispose cf all outstanding messages. This is one more

57

27
w
9.
O3
a
w
w u]
wl
>
LLD
577 o o
faet o
w U}
e 0]
o
: -
= o
& T —L
. . 8.
MESSRGE LENGTH
Figure 18a
()
o
o
o
o
o
W
Zl\
: ©
=
; (@u
| e
; =
] — m
—
jum
~O ©
w | jul
N a
|
jul
o jul
2 . o g
T 1
. 4, 8. 12
RGUND
Figure 18b

Graphs of message-passing for draw-phase of unrotated sphere.
Graph (a) shows number of messages versus message length. Graph
(b) shows the percentage utilization of the processors versus round.

58

than the nﬁnimum 9 rounds‘. This result indicates that the
information flowed through the network without undue delays.

The sphere which was produced is illustrated in Figure 19. As
expected, the intensity varies smoothly from the center of the sphere
outward, and the sphere appears symmetric.

Next, the sphere was rotated by 6°, which at 30 frames/second
would represent a rotational speed of 1/2 a revolution per second.
Figure 20 shows the graphs of the message-passing behavior during
the rotation. The longest messages travelled 1 node, while it took 2
rounds until all messages had arrived. This result indicates that a
slow rotation, which may be typical for many applications, is very
inexpensive.

Two further rotations were tested: 30° representing a moderate
speed of 3 revolutions per second, and 180°, representing the
maximum speed of 15 revolutions per second. The graphs for the
rotations are illustrated in Figures 21 and 22, respectively. In each
case, all messages arrived at their destination in only a small number
of rounds more than the minimum possible. The 30° rotation took 5
rounds to complete with a maximum message length of 3. The 180°
rotation had some messages which travelled the maximum possible
distance of 20 nodes, and took 26 rounds to complete.

The draw phase for the rotated spheres had results which were
identical to those for the unrotated spheres, and the image of the
rotated spheres was also virtually identical to the image of the
unrotated spheres. For this reason, the graphs are not repeated.

The next example which was run was a cube. The image was

drawn looking perpendicular to the front face. Figure 23 shows the

59

N . T AGR .
.. . [T ST
.o LR 1 RARRICL. T
v B oo

« B e

“ Ny Py
ax i my i St By 02 i e e SO A

e : 5 N
X A & Pt AR A
v = Gejesae IRt
o- - Gt 46 LRI
S B S ek b gaxunuwnuunuu--q.q--v-squ-s-.am i
T TARHEARS 3G AEARB XN AN TEKS A bt ~u

S LA R A ABXIAXAN ARANAR AW ARX AR BEANG Ga i Bt 5G]
CLARHHAA 38 ad a SRA KK LARK EK CEARIXIBIIRRBRE oS bndndy
TARIRAISHHI AAARZSKXBR AN EXRDK: BARIARABA AR AAXY 3993 Ra)
CERUAABAE AT AR AR YK ARAX 2 KNKARATARGATAXNN DR AARAN JA 05 AR A6 250
13reAAGINIAARIBATAX NAIARAKKA RN AR & AW KUAAKAARARRZRASA et Gh IIU I3 1y
A ardG3H0 A8 AN ABX BN AXKAIESAARKANRNARIATACEAIAIOR JLAIIASSGIE0IITTTxx
223G FI NG ARSI RAKRX SERK N AAAARA ZARAARX AN A AARTRAINZR B IA 9032 3010

wh-enaaanxanuu-nn:mnau:unllusxuux\al-luaunuaauarasa JTOM CRxx Ty
[LR
AaanRaR2Anasa B - Lotol S S

unuuunn;luiaaasan—wgw g
QEAERGHSECT

,
LIiol

JaeA4g i RERN AT AX lﬂ)laﬂlllllkudiiFLn
—ﬂﬂﬂaa-x:ulﬂ:\nlllmxa. ATAINuA A2 uL
= ewEKREIN nu-nas-wmm oAy

x Cesain
"5-')"-45-vullilill lﬂ BAAIFINARIRPAASHIASAE 00 vad e .
L] TICTO R .
L :
S80ERARRIRAD BAABRYEEE MT 7
L) HEmr
. IILIISRFIETY el ~
| eee s u!lallkl:lluuﬂaae:. l
aseus .

3 37 4=E8A9 AN AN KA »
LAHSHLS-RRRAAINAD R
¢ :‘\nnl:ul:qsﬂ-ﬂadar N

ssessR3IxaAIR l.ll%o-ua-u.aw

13 anmany a3 I35AE8CCT
R x-nuun u auaxxn b
:amumau llaxnalxl-n-anaaﬁaum
AR XRCT 1N AAIARE AER AN A L1 (L I8
PO S -ua.n--q-uxu:unllun . ‘l'u\un:.. AR
SexmEX YL REARARANY, CreOrs
erexxxx I :nlu'nm- -lllll’hl!ﬂllul-}u?néwaﬁ"(}x"“
e AXTIICITHHR an A
ST TERE! @ias AABX @R :a:a:lun:x-:a-nawaaaa,
PreXAXA 1IN ARSI~ OARNAA AD LER, ®B RARYLIRABANC |
b1l ICRESSaES ARNA B EBRAKN A AUKIRIKS, nl:alxnlaluu ABNEAD IR 93320

H4AGRAEARI IR ARRZE X VS SK ENARARED lu!nlx:lx:n-aaulu:auavsu«—im—«e EEAE
N SnAdO AN ANDAANE AN VI KA AAXAN TAERARIAAAN A0 0T xx
. RENANAL I REANABR IR IO 3 I Ak x
ARAADBIAANAXXEANN TN SIS IHBSABA)) 1007 axxx
G ARHG IR ANASA B AAAARENERARABEANRNAVRIUAAIINUHEIABAHA) 1)) Txx xxn e
A AM0HA IS AN N EXEEARN IR ARG RARNARANA A AN ARKAARR G qe Cohdgh 1) 1 aaar s
SRR G e RRX AR XAL ZXHARE ERRE lx-x:nxuh NeimoeddRaniyD)) T s i xaae
et L L LT R LEL) 007 S axaxxee

S A IR EARA %X A TAK SR

T MEAe AAEIRARKR I INEX SEER 0203 axanxer
T ARSI AR HE A XAAZ R EXE nnnlllxltuxq—qrr-n«q-are.mq e R PR R
S A < LRI CE TP R TR R

| ey e AR gy e u:uuunu:—-«—---.-«......A_- pREE RSSO0
S MBGOL & -a-iu—---.—.m R R

e ECnas
N

o —a-»-m-ne-.-hﬂe-su.-n-n-.-u;)
Bt oLt M
oL LT AMERERE] R

e RIS PRI
O, e
Axa AR RRERRR
KAR4RIKAREAY RRXNY

beeresbrrresvires
AR et esseeerarrenie

-
»

Figure 19

Image of unrotated sphere. The image is longer than it is wide as
the line-printer prints 10 horizontal columns/inch but only 8 vertical
lines/inch.

60

1

x10
30.

20,
1

MESSAGES

NUMBER GF
10.
a

fp'

T T —1
L

MESSAGE LENGTH

Figure 20a

‘ 100.00

75.00

50.00

4

2 UTILIZATICGN

25.00

F 00
h!

L. 2.
ROUNC
Figure 20b
Graphs of message-passing during rotation of sphere through 6°.

Graph (a) shows number of messages versus message length. Graph
(b) shows the percentage utilization of the processors versus round.

61

160. 240, 320.
1 1

NUMBER OF MESSAGES

8a.
A

S o Bl 3
MESSACE LENGTH

Figure 21a

106.00
J
ag

75.00
3

-

50.00
=

UTTLIZATION

A
5.00

A

-
(=

o]}

r T T

2. 4.
RZUNG

e

@

Figure 21b

Graphs of message-passing during rotation of sphere through 30°.
Graph (a)J shows number of messages versus message length. Graph
(b) shows the percentage utilization of the processors versus round.

Graphs of message-passing during rotation of sphere

Graph

o
ity
W]
m .
38-
a
o
w
w
=
w8
© o
ECJ u]
=
o8 oo
=
a
a U]
oo o
i uful
1_4EF94NPG . .
. 8. 15. 24.
MESSRAGE LENGTH
Figure 22a
[o=]
o
o
©-m
o ju ul
(=]
o] e
=2 u]
o
= o
= 0Dy
RS 0y
Ho'_+ u
_,m
—
:)O mm
N
2 .
u
SJ o
., 10. 20. 30.
ROUND
Figure 22b

through

(a) shows number of messages versus message length.
(b) shows the percentage utilization of the processors versus round.

62

180°,
Graph

63

@1
2]
whn jul
O%T
o
w
2]
[T]
=
571)
T
ul
[ve]
=
2=
S, 1, 2. 3.
MESSAGE LENGTH
Figure 23a
o
r o
| o
S'\
(@]
(=]
o]
Z!\
[l
—
Ta
5 6T
o
i
o
~Ne
m-!
{ o o)
o
o o
< o
T T hd
% 2. y. 6.
ROUND
Figure 23b

Graphs of message-passing for draw-phase of unrotated cube. Graph
(a) shows number of messages versus message length. Graph (b)
shows the percentage utilization of the processors versus round.

64

graph of the number of messages versus message propagation ilength.
The longest message had a length of only 3, compared to 6 for the
sphere. This is because the processors toward the middle of the
screen were also the ones which held the facets modelling that part
of‘the cube. Figure 23b shows the graph of utilization versus
round. All messages arrived by the 5th round, meaning that
messages were not seriously delayed by bottlenecks.

The image which was produced is illustrated in Figure 24. The
intensity is uniform everywhere except at the edges. In the lower
half of the image, the intensity drops off smoothly to the white
background. This is because the triangles which cover that part of
the screen have one vertex on the front of the object, and two on
the side or bottom. The interpolation algorithm makes the intensity
vary smoothly over the triangles.

The top half of the image is more interesting. The sides are
uniformly dark, since it just so happened that facets were positioned
very close to the edges of the cube. At the top, the triangles used
alternated between having one vertex on the front and two on the
sides, and the other way around. The image produced illustrates
that the method of object representation is most effective with objects
whose surface varies smoothly. Sharp edges are rounded off,
particularly with a resolution of only 482 facets. Two methods of
solving this problem have emerged. The first is simply to increase
the number of facets. This increases the resolution, but at the
expense of processing time. The second solution is to adjust some
facet positions so they lie close to the edges of the polygons.

During the initial input of the polygons, a facet lying near an edge

Figure 24

Image of unrotated cube. Blemishes at the edges are due to
facet positions being far from the edges of the cube.

65

the

66

could be moved by simply giving it a local displacement coordinate
relative to the processor. This solution requires little more

processing time.

5.3 Performance Analysis

The task of estimating the performance which can be expected
from a multi-processor system is complicated by the fact that the
performance is often dependent on the input data itself. The
analysis for the graphics system is plagued by similar problems. How
many twists and caves are there in the object? How much of the
screen does the image cover? For these and related questions, we
will assume a set of '"reasonable" input data for the analysis itself.
Following this, we will see what happens to the equations as less
"reasonable" data is used.

Throughout the analysis, we will assume that operations such as
additions, subtractions and comparisons require one time unit, u, and
that multiplications and divisions require 10 units. In this way, the
analysis is independent of the cycle time of the processor used.
Typical values for u might range from 1 to 5 micro-seconds.
Further, it will be assumed that data can be transfered between
adjacent processors at the rate of 1 byte per m time units u.

The timing analysis will be treated in four sections: (1)
rotation, (2) facet position and intensity calculation, (3)

facet-to-pixel-holder transfer, and (4) polygon filling.

67

5.3.1 Rotation

]

Cieariy the cost of rotation is proportional to the number of
nodes a message visits en route to its destination. This, in turn, is
dependant on the angle of the rotation, ¢, and the radius of the
graph, hence the number of processors.

Let us define the function

R(¢,p) (19)
which gives the number of rounds elapsed before the longest message
arrives for a rotation through ¢° with p processors. The results of
the simulation indicate that the number of rounds required is oniy
marginally higher than the radius of the graph. If we estimate the
delay in the longest message to be 20%, we can use equation 8 to
arrive at

R(¢,p) = (mod(¢,180)/180)*1.2*.82*p**0.5 (20)
which reduces to

R(¢,p) = (mod(¢,180)/180)*p**0.5 (21)
The number of time units required for each round will be m for each
byte in the message, plus the cost of deciding which processor
should be the recipient (1 division, 3 subtractions and 3 comparisions
= 16u using Small-circle Algorithm). Therefore, the cost Cr of doing
a rotation of b bytes through ¢ degrees using p processors is

Cr = (16 + b*m)*(mod(¢,180)/180) *p**0.5 u (22)

5.3.2 Initial Position and Intensity Calculation

Listed in Appendix B is an overview of the operations required
to perform the initial position and intensity calculations. At the

conclusion of this phase, the triangles for display will be ready to be

68"

sent to the holder of the cor(espondivwg pixeis. According to the
estimates, 600u will be required for each crossing observed by each
facet. Thus, the cost Ci for this phase is

Ci = (500+48*m) * (number of crossings observed) u (23)

5.3.3 Facet-to-pixel-holder Transfer

The cost of this phase can be estimated in a manner similar to
that of the rotation. We will assume that there exists at least one
message which must travel the maximum possible distance, and that
the message-passing requires 20% more time to complete than the
minimum possible.

With each triangle description using 48 bytes, and 16u being
required for the decision about which neighbour to send an outgoing
message to, the cost Ct for this phase becomes

Ct = (48*m+16)*p**0.5 u (2u)
Note that if the object is centered on the screen, then no message
will have to be passed more than 1/2 of the maximum distance so that

the value of Ct from Equation 24 can be halved.

5.3.4 Turning on Pixels

The problem of estimating the performance of uni-processor
scan-line algorithms has been thoroughly studied. Parke (1980) has
the most recent results. His analysis prodvuced the following timing
estimates:

a. 9u per pixel,
b. 61u per scan-line; we will use a value of (61+20*m)u since

scan-line messages may have to be sent to neighbours (the

69

caicuiation for content of these messages are assumed to be
part of the scan-line algorithm itself),

c. b62u p'er edge, and

d. 71u per polygon.

Since we are always dealing with triangles, (c)} and (d) can be

combined to give 257u per triangle. Note however, that these results

are valid only for triangles which have an area of at least several
pixels. For wvery small triangles, no interpolation is required.

Estimates indicate that the cost for such very small triangles is

approximately 4u per triangle.

At this point, we will have to apply restrictions on the object
we are dealing with. These restrictions simplify the subsequent
algebra, but as will be discussed later, do not significantly alter the
outcome. Let us assume:

1. The object uses some fraction x of the screen, where a typical
value of x might be x=0.5.

2. The triangles have equal sizes and are distributed evenly about
the screen, hence spread evenly about one x'th of the
processors.

Let us assume that the number of triangles is t and that we are

dealing with a 256x256 raster qraphics device. The number of

triangles Pt per processor is then

Pt = (t/x)/p (25)
and taking right-angled triangles as representative, the average
number of pixels Tp per triangle is

Tp = (256**2)*(x/t) (26)

and the average number of scan-lines Ts per triangle is

70

Ts = (2*Tp)**0.5 X (27)
Now the number of pixeis Pp per processor is

Pp = Pt*Tp (28)
or

Pp = (256**2)/p (29)
The number of scan-lines per processor is

Ps = Pt*Ts. (30)
By substitution,

Ps = (362/p)*(t/x)**0.5 (31)

The total time for scan-conversion, Cs, per processor, is therefore
Cs = 9*Pp + (61+20*m)*Ps + 257*Pt (32)
or

Cs

9*(256**2) /p + (61+20*m)*(362/p)*(t/x)**0.5
+ 257*t/(p*x) (33)
Now that we have an expression for the performance, let us go
back and see what happens when we relax the restrictions made
previously. Suppose that x were small, i.e., the entire object were
concentrated in a small region of the screen. The scan-conversion
algorithm becomes very inexpensive. Because x is small, the
triangles comprising the object are very small, hence the cost Cs' is
Cs' = 4 * ¢ (34)
which is clearly less than Cs from Equation 33 for realistic
combinations values for t, x and p.
The small-triangle problem can also be treated at its source.
Before sending triangles to the pixel~holders, processors holding
facets could collapse groups of small triangles into fewer large ones.

This has the added advantage that less data flows through the

71

network in the facet-to-pixel-holder transfer.

The other restriction we 'stated is that the triangles have equal
sizes. Often this does not hold, since a surface which is not
perpendicular to the viewer will be composed of smaii triangles. Here
again, the small triangles can be handled with the inexpensive

scan-conversion algorithm, resulting in an overall cost which is even

tess than that of Equation 33.

5.3.5 Overall Cost

The overall cost in terms of CPU time is
T=Cr +Ci + Ct +Cs (35)
As an example, let us use the following parameters:
1. U482 processors,
2. m, the number of cycles required to transmit one byte of
information equals 1u,
3. one facet per processor
4., a maximum of two radial values per facet,
5. a rotation through 6 degrees,
6. image centerred and using 1/2 of the screen,
7. 500 triangles.

The costs for these conditions are:

Cr = 66u
Ci = 1096u
Ct = 800u
Cs = 3680u
Therefore, T = 5642u. For u=5 micro-seconds, this result is still

within the limit of 1/30 of a second required for real-time processing.

72

However, it is important to note that the foregoing calculation should
be treated only as an order-of-magnitude estimate of the cost.

The performance of the modelled system improves in a
near-linear fashion with the number of processors. The reason for
this can easily be visualized by noting that the more processors we
have, the smaller the part of the screen each processor must govern,
hence the less pixels each must handie. Further, the more
processors we have, the smaller are the hexagonal patches on the
surface of the geodesic dome which each processor governs. Only
the message-sending costs increase with the number of processors.
However, this cost contributed only 15% to the total cost in the above

example, and this cost increases only as the square root of the

number of processors.

R L

6. Conclusions

The results of the simulation indicate that the messages flowed
through the network in an ordérly fashion. Both the rotation phase,
and the facet-to-pixel-holder phase completed the message-passing in
only marginally more than the minimum possible time. It is
noteworthy that the utilization of the processors during the
message-passing began at between 50% and 100%, and decreased in a
near-linear fashion with time. it is important that the percentage
utilization vs. round (time) graphs do not have any long tails. They
would indicate bottlenecks which would significantly slow the system
down.

It is interesting to compare the system presented in this thesis
with other attempts at producing images quickly. Clarke's system is
able to transform polygons in parallel, but these polygons had to be
input sequentially to a system such as Parke's multiple-processor
z-buffer. Parke's z-buffer, in turn, can make efficient use of only
16 to 64 processors to display the polygons. The system presented
here combines these two phases, object manipulation and object
display. The number of processors can be increased to improve the
performance as long as the time required for message-sending is less
than the time required for object manipulation and display.

The sample calculation for the theoretical performance analysis
showed that the message-sending due to the rotation and the

facet-to-pixel-holder transfer contributed only 15% to the overall

~display time. This is significant, since this parallel processing

system must compete with wuni-processors which do not require

message-sending. In the system presented here, the number of

73

74

processors can be increased to 'improve the performance as long as
the tota! time required for the message-sending is less than the time
required for object manipulation and display.

The simulation provides experimental evidence in support of the
viability message-passing scheme where theoretical results would be
difficult to obtain. But we must treat the results with guarded
optimism. There are still hardware design problems which must be
worked out before a prototype can be built. In particular, problems
concerning communication protocols must be solved. How exactly will
message be handled by the hardware? How will a processor detect
the arrival of a message?

Another problem area is the handling of the pixel-data.
Real-time raster graphics requires that an enormous amount of data
be transferred between the processors holding the z-buffer and the
screen, in a short space of time. Can this data be read by the
video-generator without affecting the current status of the processor
handling the pixel-data?

This thesis has laid a foundation for a graphics system using
parallel processing for the rotation and display of three dimensional
objects. A simulation has demonstrated the viability of the method,
and an order-of-magnitude estimate has indicated that it may be
possible to produce images in real time. The next step is the
development of the details of the hardware necessary to support an
énvironment similar to that of the simulation. The goal of real-time

display of complex images may then be realized.

75

Appendix A: Summary of Processor Information Content

Every processor must hold certain

with the other
inventory of

the

information to be able to interact
processors in the system. Presented below is an
properties each processor must have. The

properties are organized by the name of the system-phase in which

they are required. Included is an estimate of the storage
requirement (B=Bytes, KB=1000B), and an explanation of the
property.

General

Name 2B Name of processor.

Type 1B hexagon.

Coordinate 4B

Neighbours 12B

Object Description

Cell 21B

Triangles 6B

Drawing

P-Screen 6B

Light 6B

Viewport 6B

Gives processor type: either pentagon or
Angular (¢,8) coordinate of processor.

List of 5 or 6 neighbouring processors.

Gives information on surfaces crossed between
processor and center of sphere. Cell size varies:
21 bytes per crossing observed (2 byte radial
value, 6 byte normal, 3 byte name, 12 bytes

linking information).

Which pairs of neighbours join this processor to
form triangles used in display of object.

Gives projection of this processor onto screen.

Unit vector in direction of light-source, relative to
axis of processor.

Unit vector in direction of view-port, relative to

axis of processor,

oo ke B G BV

Z-buffer
Screen 80B
Pixels 1KB
Rotation

Virtual-coordinates
68

V-Angularwidth
4B

V-Differences
48R

76

Description of scan-line-segments held by this
processor.

Pixel-values and z-buffer.

Angular (¢,6) coordinate of processor aligned so
that the axis of rotation coincides with the
north-south axis in the virtual-coordinate system.

Cives width of processor in terms of (¢,6) in
virtual-coordinate system.

Gives differences in (¢,8) between processor and
each of its neighbours (in virtual-coordinates), as
well as the ratio 8¢/86.,

Facet to Pixel-holder Transfer

Angularwidth
4B

Differences 48B

Gives width of processor in terms of (¢,6) in
virtual-coordinate system.

Gives differences in (¢,8) between processor and
each of its neighbours, as well as the ratio 3¢/686

77

Appendix B: Timing Estimates for Facet Calculations

Presented below is a summary of the operations which must be
performed for each frame. The estimates are given in units "u",
where operations such as addition and subtraction are assumed to
take 1u of CPU time, and multiplications and divisions are assumed to
require 10u. It is assumed that to send a message, m time units are
required for each byte in the message.

Initial Position 1 vector multiplication 30u
Scaling 1 vector multiplication 30u
Translation 1 vector addition 3u
Small-Angle 2 multiplications

4 additions 24u
Perspective 4 divisions

4 additions 44y
Intensity 13 multiplications/divisions

16 additions 146u
Back-surface same as Intensity 146u
Neighbour Messages 48 byte length 48*m u
Assemble Triangles 20 comparisions

5 multiplications

2 additions 72u

Total (495 + 48*m}u

Approximately (500 + 48*m)u

78

List of References

Anderson, G. A. & E. Douglas Jensen (1975). "Computer
. Interconnection Structures: Taxonomy, Characteristics, and
Examples", Comput. Surv. 7, 4 (Dec. 1975), pp. 197-213,

Bechtolsheim, A. & F. Baskett, (1980). "High-Performance Raster
Graphics for Microcomputer Systems", SIGGRAPH '80, Aug., 1980,
pp. 43-47,

Bezier, P. (1972). Numerical Control--Mathematics and Applications,
A. R. Forrest {(trans.), London, Whiley.

Brown, C. M. (1978). "Representing the Orientation of Dendritic
Fields with Geodesic Tesselations", Univ. of Rochester, TR-13.

Brown, C. M. (1979). "Fast Display of Well-Tesselated Surfaces”,
Comput. & Graphics 4, pp. 77-85.

Bui-Tuong, Phong (1975). "Hiumination for Computer Generated
Pictures", Comm. ACM 18, 6 (June, 1975), pp. 311-317.

Calvert, T. W., J. Chapman, & A. Patla (1980). "The Integration of
Subjective and Objective Data in the Animation of Human
Movement", SIGGRAPH '80, Aug., 1980, pp. 198-203.

Chu, Wesley W., Leslie J. Holloway, Min-Tsung Lan & Kamal Efe
(1980). "Task Allocation in Distributed Data Processing”,
Computer 13, 11 (Nov. 1980), pp. 57-69.

Clarke, James (1980). "A VLS| Geometry Processor for Graphics",
Computer 13, 7 (July, 1980), pp. 59-68.

Clarke, James H. (1976}). "Hierarchial Geometric Models for Visible
Surface Algorithms", Comm. ACM 19, 10 (Oct. 1976), pp.
547-554,

Crow, F. C. (1976). "The Aliasing Problem in Computer Synthesizes
Shaded Images", Comm. ACM 19, 11 (Nov. 1977), pp. 799-805.

79

Crow, Franklin (1980). "Toward More Complicated Computer
Imagery", Comput. & Graphics 5, pp. 61-69.

DeBoor, C. (1972). "On Calculating with B-Splines", J. Approx.
Theory 6, pp. 50-62.

Feldman, Jerome A, (1979) . "High Level Programming for
Distributed Computing", Comm. ACM 22, 6 (June, 1979), pp.
353-368.

Funt, Brian V. (1981). "Multi-processor Rotation and Comparison of

Objects", to be presented at the 7th Int. Joint Conf. Art.
Int., Vancouver, Canada, Aug., 1981.

Harris, William F. (1977). "Disclinations", Sc. Am. 237, 6 (Dec.
1977), pp. 130-145.

Heath, Thomas L. (1956) The Thirteen Books of Euclid's Elements,
New York, Dover, Vol. 1-3.

Herman, G. T. (1979). "Representation of 3D surfaces by a large
number of simple surface elements", MIPG26, SUNY at Buffalo.

Jones, Anita K. & Peter Schwartz (1980). "Experience Using
Microprocessor Systems--A Status Report", Comput. Surv. 12, 2
(June, 1980), pp. 121-165.

Newman, William M. & Robert F. Sproull (1979). Principles of
Interactive Graphics, 2nd. Ed., New York, McGraw-Hili.

Parke, Frederic I. (1980). "Simulation and Expected Performance
Analysis of Multiple Processor Z-Buffer Systems", SIGGRAPH '80,
Aug., 1980, pp. 43-56,

Requicha, Aristides A. G. (1980). 'Representations for Rigid Solids:
Theory, Methods, and Systems", Comput. Surv. 12, 4 (Dec.
1980), pp. 437-464,

Rogers, David F. & Alan J. Adams (1979). Mathematical Elements for
Computer Graphics, New York, McGraw-Hill.

80

Rubin, S. & Whitted, T. {1980}. "A 3-Dimensional Representation for
Fast Rendering of Complex 'Scenes", SIGGRAPH '80, Aug. 1980,
pp. 110-116.

Sequin, Carlo H. (1981}). "Doubley Twisted Torus Networks for VLSI
Processor Arrays", Proc. 8th. Ann. Symp. on Comput. Arch.,
pp. 471-480.

Wittie, Larry D. (1980). "Communication Structures for Large
Networks of Microcomputers®”, SUNY at Buffalo, preprint submitted
for publication, 27 pp.

