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Abs t rac t  

A theoret ica i  f ramework fo r  , a  method o f  ras te r  g raph ics  image 

formation u s i n g  para l le i  processing i s  presented.  Paral lel  a lgor i th r rs  

have been developed to  q u i c k l y  rotate,  scale, t ranslate and  d isp lay  

three-dimensional objects. The  ha rdware  consis ts  of  a la rge  number 

o f  i nd i v idua l  processors w i t h  in ter-p rocessor communication r e s t r i c t e d  

t o  immediate neighbours,  organized as i f  t h e y  were un i fo rmly  spread 

about t he  sur face o f  a sphere. T h e  objects fo r  d isp lay  are modelled 

as i f  they  were ins ide th i s  sphere  o f  processors. 

Each processor  s tores t h e  fo l lowing in format ion:  

1) t h e  in tersect ion po in t s  o f  t he  object's sur face w i th  a rad ia l  

l i ne  extended f rom the  sphere's center ,  and 

2 )  memory represent ing  p a r t  of t he  screen. 

T h e  a lgor i thm involves an organized message-passing scheme t o  

accomplish ro ta t ions  o f  the  object descr ip t ion  and the  subsequent  

d isp lay  o f  t h e  image. Estimates based o n  t h e  r e s u l t s  of a simulat ion 

o f  t he  system u s i n g  several h u n d r e d  processors ind icate tha t  t he  

perfomance improves in a near- l inear fashion w i t h  the  number of  

processors. 
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1. l n t roduc t i on  

1 .1  Background  , - 

Computer p roduced p i c t u r e s  today  p r o v i d e  a d i rec t  and  use fu l  

method o f  communication between man and  computer.  The ab i l i t y  t o  

p roduce  real is t ic  images is  of  immense value in research, educat ion 

and  i ndus t r y .  Computer simulators a re  used to  d r i v e  d isp lays  f o r  

real- t ime envi ronments fo r  the  t r a i n i n g  o f  p i l o t s  o f  a i r c ra f t ,  

space-craft  and ocean-going vessels. Real-I i f e  s i tuat ions are  

simulated, b u t  at h i g h  cost. 

With the advent  o f  the  V e r y  La rge  Scale In tegra ted  ( V L S I )  

c i r c u i t  technology, the benef i ts  o f  real - t i  me image processing have 

come w i th in  reach o f  less a f f l uen t  customers. In te res t  has a l ready 

been shown b y  bio logis ts  who w ish  to supplement t he i r  cross-sectional 

in format ion about specimens w i th  three-dimensional views. Other  

d i ve rse  areas o f  appl icat ion inc lude simulat ion o f  human movement f o r  

dance studies ( Ca lver t  - -  et. a1 ( 1980) ) , and  adve r t i s i ng  in i n d u s t r y  

(Newman & Sprou l l  (1979)). 

1.2 Mot ivat ion f o r  F u r t h e r  Research - - 

Most objects are i nhe ren t l y  three-dimensional, b u t  computer 

d isp lay screens are  on ly  two-dimensional. I n  real  l i fe,  a pe rson  can 

walk a round  an object t o  see i t s  to ta l  ex ter io r .  A reasonable 

subs t i t u te  fo r  t h i s  "wa lk ing  a round"  i s  t o  smoothly ro ta te  t h e  object 

o n  the  screen. 

T h e  problem is  t ha t  smooth ro ta t i on  o f  an object on  a screen 

requ i res  an enormous number o f  calculat ions in a sho r t  space o f  time. 



F o r  smooth r o t a t i o n  w i t hou t  f l i c ke r i ng .  a new imaue must  r e f r e s h  t h e  
, 

sc reen  e v e r y  1/30 o f  a second. T h i s  does n o t  leave much t ime t o  

compute t he  i n tens i t y  o f  t h e  10,000 t o  250,000 p i x e l s  f o u n d  o n  r a s t e r  

g r a p h i c s  devices. With p r e s e n t  un i - p rocesso r  technology,  rea l - t ime 

r a s t e r  g r a p h i c s  image p rocess ing  i s  n o t  possible.  In fact, t h e  p h r a s e  

"d i g i t a l  image ro ta t ion1 '  has  been  u s e d  t o  r e f e r  t o  t h e  r o t a t i o n  o f  a n  

ob ject  in t h e  p l ane  o f  t h e  sc reen ,  as opposed t o  r o t a t i o n  in t h r e e  

dimensions." 

T h e  p r i m e  conce rn  o f  t h i s  thes is  i s  t o  r e d u c e  t h e  time r e q u i r e d  

t o  r o ta te  a n d  d i sp lay  a three-d imensional  object .  T h e  p rob lem w i l l  b e  

a t t acked  o n  t w o  f r on t s .  F i r s t ,  t h e  method w i l l  i n vo l ve  a high deg ree  

o f  paral le l ism. T h e  app rop r i a te  ca lcu la t ions  w i l l  b e  p e r f o r m e d  

s imul taneously  by many p rocessors ,  t h e r e b y  r e d u c i n g  t h e  ove ra l l  

amount o f  t ime r e q u i r e d  f o r  t h e  computat ion.  

T h e  second l i ne  o f  a t tack w i l l  aim t o  r e d u c e  t h e  complex i t y  of  

t h e  ca lcu la t ions r e q u i r e d  t o  r o t a t e  a n  object .  B y  w o r k i n g  in 

spher ica l  coord inates,  t r i gonome t r i c  i n f o rma t i on  w i l l  b e  p re -computed  

a n d  w i l l  remain cons tan t  t h r o u g h o u t  t h e  r o t a t i o n  a n d  d i sp lay  o f  t h e  

object .  

In t h i s  thes is ,  a des ign  f o r  a pa ra l l e l  g r a p h i c s  sys tem i s  

developed. T h e  methods u s e d  add ress  t h e  conce rns  expressed  above. 

P rog rams  w i l l  b e  desc r i bed  wh i ch  have  been  w r i t t e n  t o  s imulate t h e  

g r a p h i c s  sys tem a n d  t es t  i t s  a lgor i thms.  

Fo l low ing  t h i s  i n t r oduc t i on ,  t h e  main b o d y  o f  t h e  thes is  i s  

o rgan i zed  as fol lows. F i r s t ,  p a s t  methods o f  ob ject  r ep resen  t a t i on  

w i l l  b e  examined. T h e n  pa ra l l e l  p rocess ing  as a source  o f  i m p r o v e d  

*Adve r t i smen t  f o r  COMTAL V is ion  ONE120 in Computer  - 13, 7 (June ,  
19801, p. 63. 



performance in graph ics  systems w i l l  be considered. Final!y, t he  , 

des ign  of  a geodesic s t r i r c tu re  f o r  p rocess ing  ras te r  g raph ics  images 

is  p resented w i t h  a detai led d iscussion o f  the  a lgor i thms and  some 

resu l t s  of  a simulation. 



2 .  Review o f  Previous Methods of Object Descr ipt ion 

Previous methods o f  object descr ip t ion  can b e  categorized according t o  
1 

whether they  employ polygons, regu la r  surface elements, o r  

parametr ic  sur face patches. The most thorough ly  s tud ied t y p e  o f  

representat ion is  the  polygon. Because o f  the  shortcomings o f  t he  

po lygon method of modell ing smooth, c u r v e d  surfaces, several 

parametr ic  sur face representat ions have been developed. A var ia t ion  

i s  the  method o f  s to r ing  many simple elements, which lends i tse l f  

v e r y  well to  simple h idden sur face and shad ing algori thms; however, 

f o r  a r b i t r a r y  objects i t  can use u p  la rge reg ions  o f  memory. 

T h e  algori thms for  each o f  these th ree  classes o f  object 

descr ipt ions wi l l  b e  discussed in separate sections. 

2.1 Polygon Based Object Descr ipt ions 

The  most popular  approach t o  object modell ing has been t o  

approximate surfaces w i th  collections o f  po lygons (Newman & Sprou l l  

(1979) 1. Th is  works  well f o r  famil iar objects such as cubes, 

paral lelepipeds, wedges and polygonal  pr isms. B y  increasing t h e  

number o f  faces, a po lyhedron can b e  const ruc ted tha t  wi l l  

approximate any sol id object. Th is  completeness p r o p e r t y  makes the  

po lyhedron a t t rac t ive  as a pr imi t i ve  representat ion. The drawback o f  

t he  po lyhedron approximation i s  tha t  t he  processing and d isplay times 

can become intolerable. 

One o f  t he  usefu l  p roper t ies  o f  t he  po lyhedra l  representat ion i s  

tha t  i t  i s  conceptual ly easy to  work with. An  object can b e  modelled 

b y  a set o f  faces where each face is  a p lanar  polygon def ined b y  the 



(x ,y ,z !  coordinates o f  t he  endpo in ts  o f  i t s  edqes. Rotat ions are  
I 

performed b y  mu l t i p l y ing  each endpo in t  p b y  a ro ta t ion  mat r ix  R t o  

produce the  ro ta ted po in t  Q', viz., 

~ ' = R Q  ( 1 )  

For  example, f o r  a ro ta t ion  o f  e about the  x-axis, we would have 

I- 0 0 0 
cos 0 -sin 0 

- 1  
0 s in  8 cos 8 

I 
- I 

Many o f  t he  computations o n  the  po lyhedra  can b e  done in 

paral lel .  Transformations such as ro ta t ion  are  per formed on each 

point ,  and t h e  calculations o n  any  po in t  a re  independent o f  the  

calculat ions on any other  point.  The  same i s  t r u e  fo r  calculat ing the  

screen coordinates and p ixe l  intensit ies. Display can b e  done b y  a 

mul t ip le processor z -buf fe r  scheme as demonstrated b y  Parke (1980).  

Despite t h e  fact tha t  t h e  operat ions can b e  done in paral lel ,  

th is  scheme does not  per form well due t o  the  long processing time for  

each o f  the  polygons. In addi t ion to  several mult ipl icat ions and 

addit ions needed t o  pro jec t  a po lygon on to  the  screen, calculat ing i t s  

in tens i ty  invo lves  numerous t r igonometr ic  operations. Fur thermore,  

performance gains o f  c u r r e n t  mult iple-processor z -buf fe r  schemes at 

a t t rac t ive  only w i th  small numbers o f  processors. 

2.1.1 Hierarchical Organizat ion - o f  Polygon Data 

In o r d e r  t o  speed u p  c l i pp ing  and v i s ib i l i t y  operat ions, C larke  

(1976) proposed organiz ing the  po lygon data b y  the use of a 

h ierarchical  represen tation. I t  consists o f  trees whose branches 

represent  bound ing  volumes and whose terminal nodes represent  



6 

pr im i t i ve  object elements, usua l ly  polygons. 

A sample scene is  shown in F i a u r e  la .  Objects close t o  one 

another  a re  g rouped  together .  T h e y  a re  p laced i n t o  "bound ing  

volumes", and organ ized as in the t ree  s t r u c t u r e  i l l us t ra ted  in F i g u r e  

Ib. 

Rub in  & Whit ted (1980) suggest  t ha t  t he  bound ing  volumes b e  

paral lelepipeds, o r ien ted  to minimize the i r  size. With t h i s  

representat ion any  sur face can b e  rendered,  since in the  l imi t  t he  

bound ing  volumes make u p  a p o i n t  representat ion o f  the  object.  T h e  

advantage i s  t ha t  the  v i s ib i l i t y  ca lcu lat ion consis ts  on ly  of a search 

th rough  the  da ta  s t r u c t u r e  t o  delete t h e  correspondence between 

terminal level bound ing  volumes and  the  c u r r e n t  p ixe l .  F o r  

ray - t rac ing  algori thms, t h i s  means tha t  t he  p o i n t  o f  in te rsec t ion  o f  

each r a y  need on ly  b e  calculated f o r  a small number of  b o u n d i n g  

volumes, not  f o r  e v e r y  object. 

While ray - t rac ing  can  b e  per fo rmed in paral lel ,  t h e r e  

nonetheless remains an enormous number o f  calculat ions t o  b e  done. 

A r a y  f rom each p i x e l  must b e  t raced t h r o u g h  the  h ie rarch ica l  

represen tation. 

T h e  bound ing  volume po lygon organizat ion i s  p a r t i c u l a r i l y  

e f fec t ive  when a la rge  amount o f  de ta i l  i s  be ing  stored. When the  

deta i l  conta ined in the  b o u n d i n g  volumes becomes f i ne r  t h a n  the  

resolut ion o f  the  d isp lay device, n o  more deta i led in format ion need b e  

processed. "Zooming in" on  t h e  da ta  s t r u c t u r e  i s  accomplished by 

the  simple operat ion o f  t r a v e r s i n g  down the  tree. Clarke(1976) and  

Rub in  & Whit ted (1980) note tha t  t h i s  means tha t  t he  e n t i r e  da ta  

s t r u c t u r e  cou ld  b e  s to red o n  d i sk ,  and  the  re levant  po r t i ons  



F i g u r e  l a  

Method o f  h ie rarch ia l  organizat ion o f  a scene. T h e  en t i re  scene i s  
enclosed in the  po lygon label led A. Two sets o f  subordinate objects 
a re  then  grouped together  i n t o  volumes B and C. The g r o u p i n g  
simp I i f ies ray - t rac ing  algori thms, since in i t ia l  in tersect ions must b e  
calculated on ly  on the b o u n d i n g  volumes, not  on  the i nd i v idua l  
objects. 

F i g u r e  1b 

T ree  Organizat ion f o r  scene above. Ray- t rac ing  proceeds b y  s tepp ing  
down the  tree, looking f o r  in tersect ions.  Once the  size o f  a 
bound ing  volume becomes less than  the  resolut ion o f  t he  d isp lay  
device, no lower levels need b e  considered. 



r e t r i e v e d  as needed; 
1 

T h i s  method o f  representa t ion  i s  use fu l  f o r  scenes in wh ich  

several  d i f f e r e n t  o rde rs  of magni tude o f  detai l  a re  desired. 

Moreover,  t he  scheme i s  most use fu l  f o r  scenes in which the  objects 

a r e  c lus tered,  pa r t i cu la r i l y  when these c lus ters  a re  re la t i ve ly  f a r  

apar t .  The ray - t rac ing  i s  t hen  simple because most o f  the r a y s  miss 

most o f  the  bound ing  volumes. 

Fo r  objects which do n o t  fa l l  i n t o  these categories, performance 

o f  t he  h ierarchical  r e p  resen tat ion scheme degenerates v e r y  qu i ck l y .  

Bound inq  volumes become ex t raneous in format ion which must b e  s to red  

and  processed b y  the  r a y - t r a c i n g  algori thms. 

2.1.2 Spherical  Organizat ion - o f  Polygons 

I f  po lygons are  to  b e  used  as the  form o f  representat ion,  a 

method o f  select ing the i r  posi t ions must  b e  def ined. B rown  (1979) 

suggested choosing po lygon ver t i ces  f rom piecewise p lanar  func t ions  of 

a sphere  cal led "well-tesselated sur faces" .  A geodesic dome is  spread 

a round  the  object, and each o f  t h e  t r i angu la r  faces of  the  dome i s  

allowed t o  cont rac t  rad ia l l y  i n w a r d  u n t i l  t he  ver t ices r e s t  on the  

sur face o f  t h e  object. The p lane o f  each t r iang le  i s  determined b y  

the  po in t s  at which the  ver t i ces  touch the  object. The  col lect ion o f  

t r iang les  then  describes the  object. 

B r o w n  discusses a v e r y  simple h idden-sur face a lgor i thm f o r  h i s  

model l ing scheme. The faces are  so r ted  in decreasing o rde r  o f  angle 

at t he  o r i g i n  between any  face p o i n t  and  the v iewing d i rec t ion .  

B rown  c i tes the  example o f  a g lobe:  i f  t he  v iewport  i s  above the 

n o r t h  pole, t he  s o r t  i s  o n  the  minimum lat i tude.  Faces are  then 



pro jec tea  onto  the  screen and, d isp layed in t h e  sor ted  order .  In t h i s  

way, po r t i ons  o f  the  screen co r respond ing  to  h idden  sur faces a r e  

overwr i t t en .  Th is  d isp lay scheme i s  a n  i nhe ren t l y  sequential  process 

wh ich  cannot b e  done in paral lel .  T h e  method as presented by 

B r o w n  has n o  advantages ove r  t h e  u n s t r u c t u r e d  po lygon modell ing. 

Indeed, i t  resu l ts  i n  a g rea t  deal o f  unnecessary calculat ion in cases 

where  p a r t s  o f  the  object c o u l d  b e  modelled w i t h  considerably fewer 

polygons, and the re  is  n o  r e t u r n  o n  t h i s  investment  o f  e x t r a  work .  

2.2 Parametr ic Surface Represen tat ions - 
Although  t h e  use o f  po lygons i s  a simple and workable method 

o f  model l ing objects w i th  f la t  sur faces,  problems ar ise when po lygons 

a re  used  t o  represent  smooth, c u r v e d  surfaces. To  handle these 

problems, more re f i ned  models o f  paramet r ic  sur face patches were 

proposed, b y  Bezier  (1974) and  DeBoor ( l972),  who developed 

numerous methods to  parameterize surfaces. T h e  essential concepts 

a r e  i l l us t ra ted  in F igu re  2. A func t i on  o f  f ( x , y )  is def ined, wh ich  

g ives  the  z-coordinate o f  the  sur face.  T h e  func t ion  i s  evaluated at 

r e g u l a r  i n te rva l s  when a d isp lay  i s  requ i red .  T h e  patches can b e  

defined so tha t  they  r e q u i r e  n o  more, a n d  o f ten  less, da ta  than  

cor respond ing  polygon-based sur face descr ipt ions.  

Sur faces descr ibed in a parameter ic  form can b e  generated in 

para l le l ,  s ince calculat ions o f  t h e  z-values a re  independent  o f  each 

o ther .  However, Clarke(  1976) notes tha t  complications ar ise because 

the  mathematics i s  n o  longer  l inear ;  i t  can  b e  v e r y  time consuming t o  

calculate the  in tersect ions o f  sur faces a n d  to calculate the  po in t s  

above a c l i pp ing  plane. 



F i g u r e  2 

Parametr ic specif icat ion o f  c u r v e d  surfaces. A t  each o f  t he  ver t ices 
on the  grid, a he ight  value is  calculated. For  c la r i t y ,  on ly  the  
values at t he  edges are shown. 

2.3 Simple Surface Elements - 
Computer tomography st imulated an a l ternat ive approach t o  

represent ing  three-dimensional objects ( Herman ( 1979) ) . The sur face 

i s  modelled by a large number o f  ident ical sur face elements which a re  

bo th  small and simple. The method i s  in sharp  cont ras t  t o  methods 

o f  modell ing objects b y  a re la t ive ly  few complex, albeit  easily 

"pararneterizable", elements. 

Consider the  two-dimensional s i tua t ion  i l l us t ra ted  in F igu re  3. 

The p lane o f  the paper is  d i v ided  i n t o  a series o f  squares, and a 

geometric f igure ,  in th is  case a circle, i s  represented by shading 

cer ta in  o f  t he  squares. 

We can ex tend  th is  no t ion  to descr ibe the objects in the  rea l  
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Method o f  model l ing a geometric f i g u r e  v ia  a g r i d  o f  squares. T h e  
set of shaded squares form a circle. 

world. The reg ion  o f  space which is  t o  b e  modelled i s  d i v ided  in to  a 

la rge number o f  cubes, and an object surface, called a cuber i l le ,  

consists  of a subset o f  the  col lect ion o f  those cubes. I n  o r d e r  to  

model a general  object accurately, a large number o f  voxels a re  

required.  Herman states tha t  t he  sur face of an human o rgan  can 

typ ica l ly  b e  modelled b y  10,000 to 25,000 faces. Since al l  t he  voxels 

are in the  same or ientat ion,  t he  shading and screen pro jec t ion  

calculat ion f o r  each facet i s  qu i te  simple. The v is ib le sur faces o f  t he  

voxels have on ly  one o f  t h ree  possible or ientat ions, s impl i fy ing  

in tens i ty  calculations. Th is  has the  resu l t ,  however, tha t  a sur face 

may have a checkered appearance o n  the  display. 

The  voxel  representat ion lends i tse l f  well t o  paral lel  processing. 



Transformat ions such as r o t a t i ~ n  can b e  per formed independent ly  o n  

each voxel, and the z -bu f fe r i ng  scheme is  easily implemented to 

eliminate h idden surfaces. However, t he  calculations f o r  each 

ind iv idua l  ro ta t ion  involves a great  deal o f  computation, as w i t h  the  

polygonal  represen tation. 



3. Paral lel  Processing 

Paral lel  processing o f fe rs  a t t rac t ive  computational gains. Indeed, 

Crow (1980) indicates tha t  p'arallel p rocess ing  holds the  greatest  

promise for  improvements in image processing. In th i s  section, 

para l le l  processing in the  contex t  o f  g raph ics  wi l l  b e  reviewed. 

F i r s t ,  the po tent ia l  gains which may b e  real ized w i t h  para l le l  

processing w i l l  b e  examined. Fol lowing t h i s  wi l l  b e  considerat ion o f  

mult i -processors and network  computers. F inal ly ,  techniques f o r  

cons t ruc t i ng  para l le l  solut ions wi l l  b e  discussed. 

3.1 Performance Improvement - 
T h e  most obvious potent ia l  advantage t o  a mult i -processor o r  

ne twork  computer is  an improvement in t h e  machine's performance, 

b o t h  in terms o f  terminal response time and  the  time r e q u i r e d  f o r  

complex computations. 
L 

Consider  a set o f  operat ions wh ich  takes T time u n i t s  t o  

complete on  a uni-processor.  I t  m igh t  b e  reasonable t o  expect  tha t  n 

processors cou ld  complete t h e  task in T / n  time un i ts .  In prac t ice  

such an improvement is  r a r e l y  realized. The  problems encountered 

are  simi lar t o  o u r  every-day  experiences. If we have a la rge  s t a f f  

wo rk ing  on  a task, a cer ta in  amount of s taf f  time is  consumed in the  

management, delegation, superv is ion and check ing  o f  work .  

Addi t ional  time is  used in in te r - s ta f f  communication about re la ted  

sub- tasks wh ich  are per fo rmed b y  d i f f e r e n t  persons. Moreover, a 

g i ven  task may invo lve  a great  deal o f  sequential  work .  Fo r  

example, in the  newspaper i n d u s t r y ,  the  paper  must f i r s t  b e  w r i t t e n  



by repor te rs ,  t hen  p r i n ted ,  and f i na l l y  d i s t r i bu ted .  I t  is  c ruc ia l  

tha t  t h e  operat ions b e  done in tha t  o rde r .  

These same problems p lague mult i -processor computers. Some 

processors can b e  added t o  reduce  the  amount o f  overa l l  time taken 

b y  a task. A t  a ce r ta in  po in t ,  however,  performance n o  longer 

improves, and in some cases actual ly  decl ines, w i th  more processors. 

A g r a p h  showing a typ ica l  speedup c u r v e  i s  shown in F i g u r e  4. If 

the  amount o f  time take b y  n processors t o  complete a task i s  T ( n ) ,  

t he  speedup S ( n )  is def ined as T ( l ) / T ( n ) .  The  peak o f  the actual 

response c u r v e  is  o f ten  found a t  less than  10 processors ( C h u  et. al 

(1980) ). 

3.2 Mult i -processors - 

Multi-processor a rch i tec tures  have two  important  d i s t i ngu i sh ing  

features. F i r s t ,  t h e y  inc lude mult iple, autonomous processors, and 

second, all processors share most, and  o f ten  all, o f  p r i m a r y  memory. 

A great  many mul t i  -processor a rch i tec tures  have been proposed in t h e  

l i te ra ture ,  though on ly  a few have actual ly  been bu i l t .  In the few 

which have reached the  b u i l d i n g  stage, t he re  ex is t  some in te res t i ng  

resul ts .  

Jones & Schwartz (1980) g ive  a s ta tus  r e p o r t  o f  exper ience 

u s i n g  mult i -processrs, c i t i n g  th ree  major systems. Programming 

e f f o r t s  w i th  the  C.mmp/HY DRA, the  Cm*/StarOS, and the PLURlBUS 

have indicated tha t  a near l inear  speedup i s  attainable fo r  some 

problems. In fact,  one search ing  p rog ram actual ly showed a 

bet ter- than- l inear  speedup in performance. However, all these resu l t s  

were at ta ined w i th  modest numbers  o f  processors ( less than  5 0 ) .  I t  
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Graph showing improvement as a resu l t  o f  increasing the  number o f  
processors. The s t ra igh t  l ine i s  the  ideal l inear speedup, whi le the  
c u r v e  i s  a typ ica l  resul t .  

i s  no t  clear whether these t rends  can b e  extrapolated t o  a 

s igni f icant ly  la rger  number o f  processors. 

Jones E Schwartz go on t o  make several important  statements 

about the i r  experience. They assert t ha t  paral le l  programs are  not  

qua l i ta t ive ly  d i f f e ren t  f rom sequential  programs, no r  are they  more 

d i f f i c u l t  to  wri te. The authors  f u r t h e r  p r e d i c t  tha t  n o  major new 

programing language wi l l  be  r e q u i r e d  t o  wr i t e  sof tware for  

multi-processors, a l though they  d o  not  p r o v i d e  a complete just i f icat ion 

o f  t h i s  statement. Indeed, Feldman (1979) has designed such a 

language, though i t s  usefulness remains in quest ion. 



3.3 Network Computers - 
1 

T h e  development of v e r y  l a rge  scale in tegra ted  ( V L S I )  c i r c u i t  

technology has made it possible t o  have a "computer on  a ch ip" ,  

cons is t ing  o f  a complete micro-processor. Se rv ing  as a node in a 

ne twork ,  each ch ip  can communicate, v i a  messages, w i th  a small 

number o f  o the r  nodes. Witt ie (1980) s u r v e y s  numerous connect ion 

methods, or  topologies, f o r  linking networks .  

A n  important  factor  in eva lua t ing  a network i s  the  maximum 

number o f  nodes a message must v i s i t  t o  t rave l  f rom a node A to  any  

o ther  node B in the  ne twork .  Related t o  t h i s  is  the  message t r a f f i c  

densi ty ,  wh ich  measures t h e  system bot t lenecks  in t h e  ne twork .  

Another  considerat ion i s  the  ease w i t h  wh ich  a network can b e  la id 

ou t  on  a two-dimensional plane fo r  a VLSI  c h i p  implementation. Also 

f o r  fault-tolerance, t he  ne twork  shou ld  b e  able t o  recover  f rom 

single-point fai lures. 

3.4 Techniques f o r  Cons t ruc t i nq  Paral lel  Solut ions - - 
Several b road  techniques f o r  c o n s t r u c t i n g  para l le l  solut ions t o  

problems have been proposed. T h e  most impor tan t  step in finding 

such  a solut ion is  to  i den t i f y  t he  smallest i nhe ren t l y  independent  

subpar t  o f  t he  problem. Th i s  u n i t  is  r e f e r r e d  t o  as a g ra in ,  and i t s  

size is  the  g ranu la r i t y  o f  the  problem. Once t h i s  has been 

ident i f ied,  the  problem may b e  solved independent ly  o n  each o f  t he  

gra ins ,  o r  on  g roups  o f  gra ins.  

F o r  problems in which computat ion can b e  per formed 

independent ly  on  subsets of t he  data, t he  i n p u t  da ta  can b e  

pa r t i t i oned  i n t o  groups,  w i th  each g r o u p  assigned to one processor.  



The  code to  b e  executed can b e  rep l ica ted  o n  each processor.  P a r k e  
I 

(198n) used th is  idea in h i s  method o f  para l le l  processing in a 

z -bu f fe r  system. Us ing  an in ter lace p a t t e r n ,  p ixe ls  o f  the screen a re  

d i s t r i b u t e d  among "image-processors". Polygons are i n p u t  t o  

"splitter- processor^^^, wh ich  are  organ ized in a t ree  s t ruc tu re .  T h e  

sp l i t t e rs  decompose the po lygons in t o  p ixe ls  and broadcast  t he  

in tensi t ies and z -bu f fe r  in format ion t o  t h e  image processors. Parke's 

system su f fe rs  f rom the  sa tura t ion  e f fec t  discussed ear l ie r :  the  peak 

in h i s  speedup c u r v e  is  found at between 16 and 64 processors. 

I f  the  problem which  must b e  solved consists of several 

i nhe ren t l y  sequential  segments, these segments can b e  hand led  b y  a 

pipel ine. Ou tpu t  from one phase i s  t rea ted  as i n p u t  t o  t h e  n e x t  

phase. Each phase can in i tse l f  t hen  b e  processed in para l le l .  

Clarke(1980) made use o f  t h i s  method in des ign ing  h i s  Geometry 

Engine, a VLS l  system f o r  t rans forming polygon-data. T h e  system 

scales, t ranslates and c l i ps  po l ygon  data, p r e p a r i n g  i t  fo r  a z -bu f fe r  

system such as tha t  of Parke. Parallel ism is  implemented at the  level 

o f  the  ar i thmet ic  processing w i th in  the  processor ,  where po lygon data  

i s  processed in a pipel ine. Clarke's system i s  capable o f  t rans forming 

about 900 po lygons in the 1/30 second r e q u i r e d  f o r  real- t ime 

processing.  



4. Design o f  a Geodesic S t r u c t u r e  

In the last section, we rev iewed several b road  categories o f  object 
I 

descript ions, no t i ng  several attempts at  information s t ruc tu r ing .  In 

t h i s  section, we wi l l  discuss a scheme b y  which a ro ta t ion  o f  the  

object descr ip t ion  can b e  per formed w i t h  re la t ive ly  few calculations. 

F i r s t  proposed b y  Fun t  (1981), t he  method amounts to  s t r u c t u r i n g  

po lygon data in a spherical ly symmetr ic manner. 

A f t e r  an overv iew o f  the  method, a formal descr ipt ion i s  g iven.  

The d i s t r i bu t i on  of the  po lygons w i l l  b e  discussed, followed by an 

analysis o f  the  interact ion between t h e  hardware and software o f  the  

system. 

4.1 Overview - 

One o f  t h e  design c r i t e r i a  was t o  have the ro ta t ion  calculat ion 

involve only simple ar i thmetic.  A const ruc t ion  which sat isf ies t h i s  

c r i t e r i on  in two dimensions is  i l l us t ra ted  in F igu re  5. Suppose tha t  

we have e igh t  people s tand ing in a c i rc le  around an object o f  

in terest .  Each person records  in a log  book what h e  sees when h e  

looks radia l ly  inward,  and then  t u r n s  h i s  back to the  object. The  

g roup  col lect ively now has a complete descr ip t ion  o f  the object. No 

one person can see e v e r y  p a r t  o f  t h e  object, b u t  eve ry  p a r t  i s  seen 

b y  someone. 

Suppose now that  we wanted t o  ro ta te  the  object descr ip t ion  b y  

45 degrees. One way to do th is ,  i s  t o  have each person pass h i s  

log book to the  person t o  t h e  r i g h t .  Without hav ing  moved the  

object, the  descr ipt ion is rotated. A ro ta t i on  of a f u r t h e r  45 degrees 
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Method o f  model l ing objects in two dimensions. A g r o u p  o f  people, 
s tand ing  a round  an object, observe what t hey  see b y  looking rad ia l l y  
inward. A ro ta t i on  i s  accomplished b y  pass inq  the  descr ip t ion  t o  
the i r  neighbors.  

would b e  accomplished b y  passing t h e  logbook to  the  r i g h t  once more, 

and  so on. 

T h i s  scheme can b e  ex tended t o  t h r e e  dimensions. Imagine a 

hollow sphere w i th  a th ree  dimensional object placed ins ide  i t .  

Equal ly  spaced around the  sphere a re  people who look rad ia l l y  

inward,  and r e c o r d  what t hey  see between where they  are, and the 

center  o f  t h e  sphere. A ro ta t i on  i s  accomplished b y  each of t he  

observers  pass ing  h i s  view t o  h i s  ne ighbour  along the ax is  of 



rotat ion,  as i l l us t ra ted  in F i g u r e  6. 
I 

I t  is  i n te res t i ng  to  note tha t  t h i s  scheme o f  managin5 the  

informat ion is  t h e  inverse o f  t he  v is ion  system called a 'kompound 

eye"  which is  found in some animals, such as insects. Some 1,000 to 

40,000 hexagonal " facets" are spread about a hemishere on e i ther  side 

o f  the  animal's head. Each facet i s  able t o  receive only a penc i l  o f  

l i g h t  fa l l ing  perpend icu lar  t o  i t s  face. The animal can d i f fe rent ia te  

motion and veloc i ty  b y  determining the  speed at which an object 

crosses the  f ie ld o f  view o f  successive facets. 

The important  fea ture  o f  t h i s  scheme o f  da ta  organizat ion i s  

tha t  t he re  are n o  sine o r  cosine calculat ions necessary t o  ro ta te  the 

descr ip t ion  o f  t he  object. Th is  s impl ic i ty  comes as a resu l t  of 

work ing  in polar  coordinates. In t h e  n e x t  section, we wi l l  see how 

these concepts can b e  exp lo i ted  in a computer model. 

4.2 Computer Model - 

T h e  informal  not ions i n t roduced  in the  last section e x h i b i t  

p roper t i es  wh ich  make them v e r y  a t t rac t ive  f o r  actual implementation. 

T h e  k e y  p o i n t  is  tha t  t he  act ions o f  each qe rson  can b e  per formed 

by an ind iv idua l  processor in a mult iple-processor environment. 

Communication between processors i s  l imi ted t o  a small number of 

neighbours,  making i t  real is t ic  w i th  present-day technology. F u r t h e r ,  

t he  operat ions per formed b y  each o f  t h e  processors are v e r y  simple. 

T o  rotate, f o r  example, requ i res  only a small number of 

mul t ip l icat ions and addit ions to  determine where the information must 

b e  sent and then  passing i t  to  the  co r rec t  neighbour.  

Each o f  t he  "people" on  the  "sphere"  i s  modelled 5 y  a data  
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Rotat ion o f  an object in 3-space, analogous t o  the  2-space ro ta t i on  o f  
F i g u r e  5. In format ion i s  passed to  t h e  ne ighbor ing  node along the  
ax is  o f  rotat ion.  Note tha t  the  speed o f  ro ta t i on  i s  l imi ted b y  the  
speed o f  t he  message-passing at t he  equator.  

s t r u c t u r e  cal led a facet. Each facet knows  i t s  ( @ , e l  coordinates, and 

the  d is tance to  t h e  po in t s  at wh ich  a sur face of  the  object crosses a 

l ine  ex tended f rom the  facet t o  t he  center  o f  t he  sphere. The  

sur face normal at tha t  po in t  i s  also reco rded  fo r  la te r  use in the  

shad ing  calculat ion. In addit ion, the  facet w i l l  have a l i s t  of t he  

ne ighbour ing  facets t o  which i t  can  send informat ion.  

4.3 D i s t r i b u t i n q  Facets Evenly About  a Sphere - 

Ideal ly ,  we want the  facets t o  cover  small "patches"  o f  the  

sur face o f  t he  sphere. These patches shou ld  b e  as r o u n d  as 

possible, so tha t  the  distance to  the  object surface, when measured 

at the cen te rs  of  t he  patches, is  representa t ive  o f  the  pa tch  as a 



who!e. Fur thermcre ,  !e preserve symmctry in t h e  data s t ruc tu re ,  we 
I 

want all t h e  facets t o  b e  ident ical.  

Due t o  t h e  geometric const ra in ts  o f  t he  real  world, these ideal 

condi t ions cannot b e  met. F i rs t ,  t h e  facets can c lear ly  no t  b e  

completely round,  b u t  must b e  polygons, otherwise there  would b e  

sizable " inter-facet1'  gaps, leaving p a r t s  o f  the  surface unrepresented.  

Fur thermore,  i t  is  well known tha t  t he re  i s  no  way t o  completely 

cover the  sur face of a sphere w i th  many ident ica l  po lygons 

( H a r r i s (  1977) 1. A good approximation i s  the  icosahedron. 

A diagram of an icosahedron i s  shown in F i g u r e  7a. T h e  

icosahedron has 12 vert ices, 20 faces cal led Pr inc ip le  Polyhedral  

Tr iang les  (PPT's) and 30 edges. A " f la t tened-out"  vers ion  o f  t he  

icosahedron is  shown in F igu re  7b. 

We need more than the 20 facets which the  PPTs prov ide.  T h e  

PPTs are  then subd iv ided as in F igu re  8. Each edge i s  d i v ided  i n t o  

n equal segments. Each po in t  is  connected w i t h  a l ine segment t o  a 

po in t  o n  each of the  o the r  edges, so tha t  a l l  t he  l ine  segments a re  

paral le l  t o  one o f  t he  edges o f  t he  PPT. The resu l t  is  a 3-way grid 

on the  PPT cons is t ing  of equi lateral  tr iangles. F inal ly ,  each ver tex  

i s  t ranslated ou tward  u n t i l  i t  i s  at u n i t  distance from the  center  o f  

t he  sphere. Hexagonal facets are  const ruc ted b y  col lapsing g r o u p s  o f  

s ix  tr iangles. The  t r iangles located a round  the  ver t ices  o f  t he  PPT's 

form pentagonal facets. 



F i g u r e  7 

A n  icosahedron (a )  and the  same object spread ou t  in two dimensions 
( b ) .  Note tha t  each ver tex  has  5 edges. T h e  ver t ices o f  t he  
t r iang les  at t h e  top and bottom of  ( b )  actualy correspond to  the  
n o r t h  and  south  poles, respect ive ly .  

F i g u r e  8 

Method of s u b d i v i d i n g  t r iang les  o f  icosahedron. Each p r i n c i p l e  
po lyhedra l  t r i ang le  is  d i v ided  i n t o  smaller ones, which a re  then 
grouped t o  form hexagons. 



4.4 Ovcrviev: o f  A rch i tec tu re  - - , 

Now tha t  a sc5eme fe r  model l ing the objects has been 

developed, a t ten t ion  wi l l  b e  sh i f t ed  t o  an implementation o f  t he  model. 

While we wi l l  no t  int imately concern ourselves w i t h  the  detai ls o f  t he  

hardware,  we nonetheless must maintain a conceptual overv iew o f  t h e  

system so as t o  unders tand  the  env i ronment  in which the  model and 

i t s  p rograms wi l l  funct ion.  

A n  overv iew o f  t he  a rch i tec tu re  t o  b e  used i s  i l l us t ra ted  in 

F i g u r e  9. At  t he  top level, a use r  i n p u t s  commands wh ich  w i l l  

de f ine  the object. La ter  the  use r  i n p u t s  o the r  commands t o  

manipulate and  ro ta te  i t .  These commands are  r e a d  b y  the  "data and 

command hand ler " ,  which t ranslates t h e  h igh- level  descr ip t ions  f rom 

the  use r  i n t o  commands on  the  g r o u p  o f  facets. The facet-commands 

are then passed on to  the llprocessor supe rv i so r "  which issues 

i ns t ruc t i ons  to  all t h e  ind iv idua l  processors. The  processors 

themselves contain local memory fo r  the  facet in format ion they  

c u r r e n t l y  hold, and they  ho ld  memory f o r  p i x e l  in tensi t ies wh ich  the  

v ideo generator  can read  and  d isp lay  on the  graph ics  device. Each 

processor can communicate w i th  f i ve  o r  s i x  o ther  processors. 

T h e  s ign i f i can t  fea ture  o f  t he  system is tha t  t h e  processors'  

work load i s  composed o f  t h ree  d i s t i nc t  segments : 

1. Object descr ip t ion  and manipulat ion. Facets are  s to red b y  the  

processors and the  facets a re  manipulated b y  the  processors t o  

re f lec t  ro ta t ions  requested b y  the  user .  

2 .  Messaqe-passing. T h i s  operat ion occurs  at two  d i f f e r e n t  times. 

One such time i s  d u r i n g  object rotat ions,  since they  invo lve  

pass ing  the  object descr ip t ion  to  a ne iqhbour ing  processor.  Since 



DATA AVD 

I 

F i g u r e  9 

A rch i tec tu re  o f  overa l l  system. Informat ion i s  suppl ied by the  use r  
at the  top level and then  hand led  by  the  in terconnected network  o f  
processors. Each processor  has storage fo r  some facets, and 
separate storage fo r  some pixels .  T h e  v ideo generator  reads p i x e l  
values t o  d isp lay  on the  ras te r  o u t p u t  device. 



any one ro ta t i on  s iep  i s  on l y  th rough  a smail anyie, these , 

messages on ly  have to  t rave rse  a small number o f  processors. 

The  second time message-passing i s  per formed i s  when the  facet 

in format ion i s  conver ted  t o  p i x e l  intensit ies. A t  th is  time, the  

p i xe l  in format ion must b e  sent  t o  the  processor which actual ly  

holds the cor respond ing pixels. 

3. Z-buf fer .  E v e r y  processor ho lds  data cor respond ing t o  cer ta in  

pixels, and must maintain a z -buf fe r  f o r  them. 

4.5 Overv iew o f  Software - - 

Although from t h e  po in t  o f  view o f  the  hardware, t he  

processors can b e  visual ized as b e i n g  in a p lanar  arrangement, the  

graph ics  programs view them as b e i n g  un i fo rmly  spread about the  

sur face o f  a sphere. Each processor holds one facet. The fo l lowing 

steps are invo lved in d isp lay ing  an object on  the  screen. Each po in t  

he ld  b y  a facet i s  conver ted  t o  rec tangu lar  Cartesian coordinates. 

T h e  f i r s t  two components are  t rea ted as t h e  ( x , y )  coordinates o f  tha t  

po in t  on  t h e  screen, whi le the third component i s  t reated as the 

z-distance. Ne ighbour ing  processors ho ld  facets which denote 

adjacent por t ions  o f  the  same sur faces:  the  rec tangu lar  Cartes ian 

coordinates o f  these adjacent facets are combined t o  form t r iang les  

which approximate the  surface. Each t r iang le  is  then sent, v i a  

i n  ter-processor messages, to  the  processor wh ich  holds the  p o r t i o n  of 

t he  screen o n  wh ich  the  t r iang les  are to  b e  displayed. A 

po lygon- f i l l ing  a lgor i thm then  f i l l s  in the  t r iang les  and the  p i xe l  data 

inser ted  in to  the  z-buf fer .  

How well t h e  system per forms depends heavi ly  on  how t h e  

inter-processor communication i s  handled. Clear ly ,  t he  more nodes a 



message must t raverse,  the  more time i s  requ i red .  In the  n e x t  
1 

scction, :he mer i ts  o f  o u r  in ter-processor connect ion scheme wi l l  b e  

examined. 

4.6 Connect ing Processors: - A Problem in Graph Theory  - 
In orde r  t o  make the  design reasonable, we must l imi t  t he  

number o f  connections between processors. Informat ion must b e  

moved around between processors, because what a piece o f  information 

means is determined b y  which processor i s  ho ld ing  i t  and how i t  i s  

re la ted t o  t h e  r e s t  of t he  object descr ipt ion.  In t h i s  section, we 

examine the  fac tors  which must b e  considered in decid ing which 

processors to connect. The problem wi l l  b e  discussed in terms o f  

g r a p h  theory.  

4.6.1 Basic Def in i t ions -- 
Let u s  beg in  by de f in ing  some o f  t he  re levant  terms from g r a p h  

theory.  

Graph 

Order  

Adjacent 

Degree 

A Graph G(V,E) consists o f  a set of po in ts  cal led 

vert ices, V, and a set o f  edges, E, connect ing 

vert ices. 

T h e  o rde r  o f  a g r a p h  i s  t h e  number o f  ver t ices in 

t h e  graph. 

Two  edges are said t o  b e  adjacent if they  have at 

least one endpoint  in common. 

For  a ve r tex  x ,  t h e  degree d ( x )  is t he  number of 

edges w i th  x as an endpoint.  The  degree o f  a g r a p h  

i s  the  maximum of  all d ( x ) .  



Distance The distance d ( x , y !  between two ver t ices  x and y i s  
I 

t he  length  o f  t he  shor tes t  pa th  between x and  y, 

where " length"  i s  de f ined as the  number o f  a rcs  

which must b e  t raversed.  

Associated number 

The  associated number e ( x )  o f  a ve r tex  i s  de f ined as 

e ( x )  = maximum o f  al l  d ( x , y ) .  

A t rave l le r  at x can  reach any other  ve r tex  w i th  e ( x )  

o r  less stops. 

Center The center  o f  a g r a p h  i s  t h e  ver tex  wi th the lowest 

associated number. 

Radius The rad ius  is  the  associated number o f  t h e  center.  

Diameter The diameter i s  t he  maximum associated number o f  t he  

ver t ices in the  graph.  

4.6.2 A t t r i bu tes  o f  the  Graph -- 
T h e r e  a re  several important  a t t r i bu tes  which t h e  g r a p h  formed 

b y  the geodesic dome const ruc t ion  has. 

1. The g r a p h  is p lana r  w i th  degree 6. The  small degree makes a - 
hardward  implementation feasible. T h e  p lanar i t y  o f  the  g r a p h  

means tha t  even a VLSl  implementation o f  t he  system may b e  

possible (Sequin( l981) 1. Our  system, us ing  several h u n d r e d  

processors, is too large t o  f i t  on to  one wafer u s i n g  present-day 

technology. However, the  dens i ty  o f  logic-gates p e r  c h i p  i s  

steadi ly increasing, and eventual ly  the  wafer  may b e  able to ho ld  

a system of the  magnitude o f  ours. 

2 .  The diameter o f  ou r  g r a p h  is approximately equal to  the  radius.  -- - 



Th is  is easy to see: note tha t  f o r  e v e r y  processor,  there  i s  a 
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processor  on  exact ly  the  opposi te s ide o f  the  dome. Since the  

dens i ty  of processors p e r  u n i t  area i s  constant,  the rad ius  o f  the  

g r a p h  i s  approximately equal t o  i t s  diameter. 

T h i s  radius-diameter re la t ionsh ip  i s  important ,  because if 

the re  were a large d iscrepancy between these quant i t ies,  

bo t t lenecks  in the  system would r e s u l t  a t  t he  center ,  o r  centers,  

o f  the  graph.  

3. The rad ius  -- of the  g r a p h  - is p ropo r t i ona l  -- t o  the  square  --- root  o f  the  

number - o f  processors. T o  see th is ,  consider  t h e  hexagon in 

F i g u r e  10. Messages are passed a long the  p a t h  label led x .  

Using th i s  distance, we wi l l  de r i ve  an .expression r e l a t i n g  the  

number o f  processors, n, to  t h e  r a d i u s  o f  the  graph,  i.e., t he  

distance between the poles. 

As  an approximation, le t  u s  assume tha t  we have n ident ica l  hexagons 

spread ove r  t he  sur face o f  the  sphere, instead o f  o u r  12 pentagons 

and n-12 hexagons. Us ing  simple t r igonomet ry ,  we can show tha t  t he  

area "a" o f  each hexagon i s  

a = 2 * (3**.5) * x**2. 

T h e  sum o f  the  areas o f  t he  n hexagons must  b e  equal t o  t he  area of 

a u n i t  sphere, 

n * a = 4 * r .  (4 

Subs t i t u t i ng  Equat ion 3 i n t o  Equat ion 4 y ie lds  an expression f o r  x ,  

x = s q r t (  (2*r ) / (n*3** .5)  1. ( 5 )  

T h e  largest  distance which a message eve r  has t o  t rave l  i s  t h e  

pole-to-pole distance r. The  number o f  nodes which must b e  

t rave rsed  is  therefore,  



F i g u r e  10 

Hexagonal facet showing message path.  Messages are communicated 
along the pa th  labelled x .  



Numericially, th is  is 



5. Realization o f  t h e  Geodesic S t r u c t u r e  

In th is  section, we describe the  deta i ls  o f  the  geodesic s t r u c t u r e  
, 

which we proposed In the  last chapter .  Along wi th  the  algori thms, 

we wi l l  h i g h l i g h t  the important  features o f  a 4,000 l ine LISP 

simulation, which was wr i t t en  as an a id  to  the  development o f  the  

algorithms. The simulation used 482 processors, w i th  one facet p e r  

processor. 

We wi l l  p resent  a theoret ical analysis o f  t he  performance o f  t h e  

system, along wi th  some experimental resu l ts  obtained f rom the  

simulation. F inal ly ,  we wi l l  show how the algori thms can b e  

ex tended. 

5.1 Methods - 
A flowchart g i v i n g  an overv iew o f  t he  flow o f  contro l  o f  t h e  

system i s  i l l us t ra ted  in F i g u r e  11. T h e  pre l im inary  setup o f  t he  

system consists p r imar i l y  o f  determining which p ixe ls  wi l l  b e  h e l d  by 

which processor. Other  system constants which can b e  pre-computed 

in th i s  phase wi l l  b e  po in ted o u t  later. T h e  object- ini t ial izat ion phase 

consists o f  i n p u t t i n g  surfaces desc r ib ing  the  object. The surfaces 

are sampled at the  facet locations, and these samples a re  l i nked  

together  t o  approximate the  surface. The  ro ta t ion  parameters are  

also in i t ia l ized at th is  time. 

The operat ion phase involves the  actual ro ta t ion  and d isplay of 

the  object. We wi l l  show the  pr inc ip les  by which the  calculat ions are 

performed, and indicate which o f  the  re levant  parameters can b e  

pre-computed. The  d isplay i tse l f  consists o f  f o u r  phases : 



Set up 

Screen 

lines f rom 

Turn on 

A p ~ r o p r i a t e  r-l 
P.otate 

Object i 

Figure 1 1  

Flowchart showing overview of major system functions. 



1. caicuiate the  rectangular  Cartes ian coordinates o f  ?he facets and 
I 

the i r  intensit ies, 

2. assemble sets o f  th ree facets t o  form t r i angu la r  patches, 

3. send the  t r iangu lar  patches to  the processor govern ing the  

cor respond ing p ixels,  and 

4. t u r n  o n  t h e  appropr iate pixels. 

The algori thms wi l l  be  i l l us t ra ted  u s i n g  a specif ic processor as an 

example. Each has a name, such as P31-123. The f i r s t  number, 31, 

r e f e r s  t o  the  4 coordinate o f  t he  processor, rounded to the  nearest 

in teger,  whi le the  second number, 123, r e f e r s  to  the  0 coordinate. 

T h e  actual coordinate o f  P31-123 i s  

(1, 30.7278, 122.5887). 

T h i s  processor can communicate w i t h  i t s  s i x  ne ighbours :  P28-114, 

P41-123, P36-117, P20-120, P24-129 and P36-131. 

5.1.1 Prel iminary-Setup 

A t  th is  time, the  p i xe l s  o n  t h e  screen are  sp l i t  up among t h e  

processors. Each processor i s  t o  handle an equal p a r t  o f  t he  screen, 

so tha t  t h e  work o f  turning t h e  p i xe l s  o n  is  d i s t r i b u t e d  as equal ly as 

possible. F u r t h e r ,  it is  impor tant  tha t  adjacent processors h o l d  

adjacent regions o f  the screen, since a t r i angu la r  screen patch,  

consist ing of facets at  i t s  ver t ices,  can s t r e t c h  over  the  reg ion 

governed by more than one processor. 

The  two angular  coordinates o f  t he  processors p rov ide  a 

convenient way o f  mapping processors on to  t h e  screen. The f i r s t  

angular  component var ies from 0 to 360, the  second from 0 to 180. 

When we normalize these coordinates, each processor wi l l  have two 



coordinates between 0 and 1, which then  descr ibe a un ique  pos i t ion  
I 

o n  the  screen. Each processor holds the  p ixe ls  which l ie in a small 

reg ion a round  i t s  screen posit ion. 

The  d i s t r i bu t i on  o f  processors p roduced  b y  t h i s  method i s  

i l l us t ra ted  in F i g u r e  12. Each po lygon in the  f i g u r e  represents  the  

p a r t  o f  t he  screen governed b y  one processor. The  d i s t r i bu t i on  i s  

re la t ive ly  even toward the  middle o f  the screen, b u t  t h ins  o u t  toward 

the  top and bottom. Th is  i s  a resu l t  o f  t h e  s ingu lar i t ies  in the 

spherical coordinate system. Fo r  many applications, t h i s  i s  

acceptable, since the center o f  the  screen i s  more heavi ly  used than  

o ther  p a r t s  o f  the  screen. For  th i s  reason, th i s  scheme was used in 

the simulation. 

Fo r  a general purpose ras ter -graph ics  device, however, t h i s  

may not  b e  acceptable. To rec t i f y  the  s i tuat ion,  the ( 4 , e  1 coordinate 

o f  t he  processor could b e  mul t ip l ied by a modulat ing funct ion,  which 

would have the  ef fect  o f  moving the  e n d  processors closer together ,  

and pulling the  centra l  ones fa r the r  apart.  

Each processor must "be aware o f "  which p ixe ls  i t  i s  hold ing.  

Fo r  each scan-line segment a processor holds o n  to, i t  maintains (see 

F i g u r e  13) :  

1. a po in te r  t o  the processor ho ld ing  the p rev ious  segment of th is  

scan-line, 

2. t he  x-coordinate o f  i t s  s t a r t i n g  posit ion, 

3. the y-coordinate o f  i t s  s t a r t i n g  posit ion, 

4. i t s  length,  and 

5. a po in ter  t o  the  processor ho ld ing  the  n e x t  segment of t h i s  

scan-line. 



F i g u r e  1 2  

D is t r i bu t i on  o f  Pixel-holders among screen. Each processor governs  
one o f  the  polygons. 



POINTER TO I POINTER TO 
PROCESSOR HOLDING * PROCESSOR HOLDIW 

PIXELCX-1,~) PIXEL(X+L,Y) 

F i g u r e  13 

Sample scan-line f o r  p ixel -holder .  

T h e  f i r s t  and last items in th is  l i s t  a re  r e q u i r e d  in instances where a 

t r iang le  spreads over  the  p ixe ls  governed b y  several processors. 

5.1.2 Object-Ini t ial izat ion 

In th is  phase, the  object o f  in te res t  i s  i n p u t  t o  the  system. 

T h e  user specif ies a set o f  polygons approximat ing the object's 

surface. Each polygon is  ident i f ied  b y  a name. The  ver t ices o f  the  

edges must lie ins ide a u n i t  sphere. Processing of t h i s  in format ion 

proceeds as follows. 

1 .  For each facet, the po in t  o f  in te rsec t ion  o f  each po lygon w i t h  a 

l ine extended from the center  o f  t he  sphere  to the  facet, i s  

calculated. For  example, f o r  t he  processor P31-123, e v e r y  p lane 

would b e  examined to see whether  i t  in tersected the radia l  

line-segment from the center  o f  t he  sphere to the  po in t  



( ! ,3O .7,122.6) ( i n  spherical-polar coordinates).  The in ter-sections 
I 

are  recorded as radia l  distances from the center  o f  the  sphere. 

The sur face normals of each o f  the  planes are then calculated. 

T h e  sur face normal is recorded in Cartesian coordinates or ien ted 

such tha t  t he  posi t ive z-axis coincides w i th  the radia l  l ine o f  the  

facet. t he  radia l  line. These facet-crossings and the i r  normals 

are labelled so the  complete surface can later  b e  re-constructed.  

An  example o f  such a label on  processor P31-123 is  

(F31-123 B A C K )  

The f i r s t  p a r t  r e f e r s  t o  the  processor which in i t ia l l y  holds the  

facet, and the  second p a r t  t o  the  name o f  the sur face which was 

crossed. 

2. The radia l  values at each facet are sor ted  in descending order .  

3. The two  sur face normals o f  each plane are  then re-examined. 

The  co r rec t  one is  chosen b y  no t ing  that  as the  object i s  

completely enclosed in the  sphere, t he  outermost sur face must 

face out, and subsequent normals a l ternate between p o i n t i n g  in 

and po in t i ng  out. 

5.1.2.1 Linking Surfaces 

Now tha t  the  i n p u t  phase has "d ig i t i zed"  the sur face o f  the  

object, the d iscre te  values must b e  l i nked  t o  reco rd  how the  sur face 

samples are re la ted t o  form continuous sur face patches. 

L e t  us discuss the  detai ls in terms o f  a specif ic example. 

F i g u r e  14 shows processor P31-123 sur rounded b y  i t s  neighbours.  

Notice that  t r i angu la r  patches are  formed b y  P31-123 and adjacent 

pa i r s  o f  neighbours.  These patches, appropr iate ly  shaded, are  



F i g u r e  14 

Example of  how facets a r e  l inked to form surfaces. 



dest ined fo r  d isp lay  on  the  screen. Each o f  these 6 patches is  
I 

shared b y  two neighbours so e v e r y  processor  must handle the  

computat ion fo r  approximately two  t r iangles.  

On the  facet F31-123 we place the  names o f  adjacent facets 

which the  ho lder  o f  F31-123 wi l l  have to  assemble. In th i s  way, we 

guarantee tha t  the  s t r u c t u r e  o f  t he  object i s  no t  d is tu rbed.  Th i s  i s  

in spi te o f  t h e  fact  t ha t  t he  facets themselves are  hand led  b y  

d i f f e r e n t  processors, and tha t  t hey  t rave l  independent ly  t h r o u g h  the  

network.  

5.1.2.2 Se t t i ng  - t h e  Rotat ion 

One of t he  design c r i t e r i a  was tha t  rotat ions should b e  

per fo rmed wi th  as simple ar i thmet ic  as possible. T h e  method used 

the  fol lowing : 

1. Given an axis o f  rotat ion, assign to each processor  a 

"v i r tual -coord inate" .  Th i s  spherical-polar coord inate is  chosen so 

tha t  the  ax is  o f  ro ta t ion  coincides w i t h  the  nor th -south  ax is  of 

the  v i r t u a l  coordinate system. F o r  each processor,  coordinates in 

th is  new coordinate system are  computed. 

2. Later  in the  operation-phase, t o  ro ta te  b y  4' simply means to  

increment the  angle o f  o r ien ta t ion  o f  each sur face pa tch  b y  $ O  in 

the  v i r t u a l  coordinate-system. 

Note tha t  t he  second step determines the  time r e q u i r e d  fo r  a rotat ion,  

as i t  is repeated f o r  e v e r y  ro ta t i on  increment. 



5 . I  . 3  Calcti lation o f  Face: Posit ions and In tens i t y  Values ----- 
A f t e r  a rotat ion, the  object i s  displayed. Firs!, eve ry  

processor examines i t s  facet in format ion and decides which posi t ion i t  

corresponds to, and what in tens i ty  i t  shou ld  have. Consider the  

g r o u p  o f  facets i l lus t ra ted in F i g u r e  1 5 .  The  k e y  t o  determining the  

( x  ,y 1 screen coordinates from a facet at ( 4 , 8  record ing  a sur face at 

rad ius  r, is the  observat ion tha t  the  sur face pa tch  can only lie in a 

small cone-like reg ion o f  t he  screen. 

Each processor stores as pre-computed constants b o t h  i t s  

spher ical  and Cartesian cocrdinates. Le t  these b e  ( I  4 , )  and 

(x ,y ,z ) ,  respect ively. A sur face po in t  - P he ld  by the  processor wi l l  

have coordinates r ,  $ 8  1 where O<r<=l. T h e  equivalent  Cartesian 

coordinates o f  P are simply ( r x , r y , r z )  which can b e  calulated w i th  

one vector-multipl ication. 

T h e  in tens i ty  o f  a sur face pa tch  i s  determined b y  the angle o f  

or ientat ion o f  t he  sur face w i th  respect  t o  t h e  l i g h t  source. A t  each 

sur face point ,  t h e  surface normal unit vec to r  - n re la t ive  t o  the  axis  of 

t he  facet must b e  known. A n d  e v e r y  facet must ho ld  a u n i t  vec tor  

s in the  d i rect ion o f  t he  l i g h t  source. T h e  angle e between these i s  - 
then  g i ven  b y  

n .  s = c o s 8  - - ( 9  1 

Newman & Sprou l l  (1979) propose tha t  t he  i n tens i t y  i o f  the  the  pa tch  

wi l l  then be  re la ted to  the l i g h t  source in tens i t y  I b y  the  equation 

i = I cos e (10) 

Note tha t  i f  a more sophist icated shading a lgor i thm were desired, i t  

could easily replace th is  fast, albeit simple, algori thm. 

Some of t he  surfaces o f  t he  object b e i n g  modelled wi l l  b e  back 
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Subset o f  the  facets d rawn  f rom a f r o n t  view. Note tha t  a sur face 
which a facet sees, can on ly  cor respond t o  a nar row cone-like reg ion 
o f  t h e  screen. 

surfaces, surfaces which cannot b e  seen f rom the  user 's v iewing 

posit ion. We want t o  avoid do ing much work  o n  these surfaces, since 

t h e y  are o f  l i t t l e  value. The way we can detect which facets 

correspond to  back surfaces i s  t o  repeat t h e  in tens i ty  calculat ion once 

more, th is  time opera t ing  o n  a u n i t  vec tor  in the  d i rec t ion  of t he  

viewer, instead of t he  l i g h t  source. If t h e  cosine o f  t he  angle i s  

negative, then th is  facet corresponds t o  a sur face which cannot b e  

seen. If all th ree ver t ices o f  a t r i ang le  co r respond  t o  back surfaces, 

then the t r iang le  i s  eliminated. 



5.1.4 Small-angle Approximations , 

The calculations fo r  facet pos i t i cn  and  in tens i ty  were based o n  

a facet be ing  centered exact ly  o n  t h e  processor ho ld ing  it. In 

general, t h i s  wi l l  no t  b e  t r u e  a f te r  a rotat ion. Instead, the  facet 

wi l l  be  displaced f rom t h e  center  by some small amount (64,681, 

re lat ive t o  the  v i r t u a l  coordinate o f  t he  processor. 

The cor rec t ion  fo r  the  posi t ion o f  t h e  facet i s  pa r t i cu la r l y  

simple. It is  well known that  over  a small reg ion  o f  space, the slope 

o f  a c u r v e d  surface is  approximately a constant, g i ven  by i t s  

der ivat ive.  For  th i s  reason, we can pre-compute the  ra te  o f  change 

o f  t he  coordinates o f  a processor as a resu l t  o f  a small per tubat ion  in 

the  direct ion, and a small pe r tuba t ion  in the  0 direct ion. The  

actual change in the Cartesian coordinates can b e  calculated by 

merely scal ing the  pre-computed values b y  the  appropr ia te  amount . 
A somewhat more complex technique is  used t o  adjust  t he  u n i t  

vec tor  in the  d i rect ion of t he  l i g h t  source fo r  the  in tens i ty  

calculation. The  vector  is  computed at t h e  co rne rs  o f  the  surface 

pa tch  covered by the processor, and the  actual value obtained b y  a 

l inear  interpolat ion, analogous to tha t  o f  Bu i -Tuong ( 1975) . 
T h i s  method works  everywhere  except  at t he  poles o f  rotat ion,  

where a processor can cover the  e n t i r e  r a n g e  o f  4 values f rom 0 to  

360. Fo r  th i s  reason, the  calculat ion near the  poles involves 

pre-computing sur face normals at increments o f  20•‹ in the  + 
direct ion, and l inear ly  in terpo la t ing  between t h e  appropr ia te  values. 



5.1 .5  Scal inq - and Translat ion 
I 

The  po in ts  modell ing the  object are now ready t o  b e  scaled and 

translated. Since the  po in ts  al l  l ie ins ide the u n i t  sphere, scal ing 

and t ranslat ion can b e  accomplished w i th  the  fol lowing: 

Le t  

s b e  the  scal ing factor,  

X - b e  the vector g i v i n g  the des i red  translat ion, in 

rec tangu lar  Cartesian coordinates, and 

P - b e  an object vector ,  whose endpoints are  the  o r i g i n  

and a po in t  o f  in terest  o n  the  object. 

T h e  scaled and t ranslated vector  is re lated to  the  in i t ia l  object 

vec tor  - P b y  the  formula 

P t = X + s * P .  - - - ( 1  1) 

5.1.6 Perspect ive Transformat ion 

Accord ing to  Rogers & Adams (1976, p. 72), i f  the van ish ing 

po in t  i s  located at  (O,O,-h) as in F igu re  16, any  vector  - v=(x,y,z)  o n  

the  object becomes 

v t  = v * 1 / ( l + z / h ) .  - - (12) 

The  important  fea ture  o f  th is  equation i s  tha t  t he  d i rec t ion  o f  t h e  

vector  t o  any p a r t  of the object remains i nva r ian t  u n d e r  t h e  

perspect ive transformation. B y  th is  time, the  scaled and t rans la ted 

(x,y,z) coordinates o f  t he  facet have a l ready been determined. The  

scal ing factor fo r  the perspect ive t ransformat ion can easi ly b e  

calculated f rom the  coordinates o f  the  point ,  and the  t ransformed 

vector  obta ined b y  a vector-mult ipl icat ion. 
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Const ruc t ion  for  ca lculat ing perspect ive  transformation. T h e  
van ish ing  po in t  i s  located at (O,O,-h) . 



5.1.7 Assembling Tr iangles - f o r  Disp!ay 
1 

Now that  the  in tens i ty  and rec tangu lar  Cartesian coordinates 

have been determined fo r  each facet, the  facets must b e  assembled t o  

form ver t ices o f  tr iangles. Which facets are assembled by which 

processors is d ic tated by the linking information which each facet 

holds. Each processor proceeds as follows: 

1. Send the  completed facet po in ts  (i.e. name o f  facet, i t s  screen 

pos i t ion  and in tens i ty ) ,  to  each neighbour-. 

2. For each o f  the facets which the  processor holds, assemble the  

ver t ices o f  the t r iangles as requ i red .  

I f  two facets were he ld  b y  ne ighbour ing  processors in the  in i t ia l  

input ,  we would expect them to  remain in ne ighbour ing  posit ions at 

all times, since we are deal ing w i t h  rigid objects. However, as we 

wi l l  see in the  n e x t  section, the  ro ta t i on  phase does not  guarantee 

tha t  a processor a r r i ves  at t h e  des i red  dest inat ion. A facet may in 

fact b e  removed f rom the  cor rec t  processor b y  one node. Th is  means 

tha t  sometimes, a processor may not  actual ly ho ld  all the  r e q u i r e d  

ver t ices at the  conclusion of step ( 2 )  above. In th is  case, a special 

request  must b e  issued t o  all neighbours.  

A f t e r  t he  t r iang le  has been assembled, i t s  dest inat ion must b e  

calculated. Recall tha t  a processor's ( + , e l  coordinate served as 

O(,Y) coordinates fo r  the  center  o f  t h e  screen patch  which the  

processor governed. Now th i s  process is  reversed.  Knowing where 

a po in t  on  t h e  screen l ies, we can determine the approximate 

spherical-coordinates o f  the  processor which holds tha t  point .  

With th is  in mind, the ver t ices o f  the t r iangles which a 

processor has assembled are averaged, and th is  average value is  used 



as the  dest inat ion point.  

5.1.8 T r a v e r s i n g  - the Network 

Once the  facet holder has decided wh ich  posi t ions the  t r iangles 

w i l l  fill o n  the  screen i t  must send the  descr ip t ion  o f  t he  tr iangles. 

We wi l l  solve the  general problem o f  f i n d i n g  the least expensive rou te  

f rom one processor t o  another processor. 

The  cost c of sending the  informat ion i s  expressed by t h e  

formula 

c = d * ( c l  * s + c2) (13) 

where 

d is  the  number o f  nodes t rave rsed  e n  route,  

c 1 i s  the  cost o f  t r a n s f e r r i n g  one b y t e  o f  information 

f rom one processor t o  another, 

s is the  number o f  b y t e s  in the  message, and 

c 2 i s  the  cost of decid ing which processor is  t o  receive 

an outgoing message. 

T h e  two algori thms which have been developed t o  decide o n  t h e  

exact  path,  i l lus t ra te  that  the  'lshortestll p a t h  (i.e. smallest d )  may 

not  b e  the  least expensive (i.e. smallest c) path. The f i r s t  

algori thm, the  Great-circle A lgor i thm w i t h  variat ions, fol lows t h e  

shortest  path, but involves v e r y  expensive calculations, compared t o  

the  Small-circle Algori thm, which has simple calculat ions b u t  produces 

a pa th  which i s  usual ly  somewhat longer. 



5.1.8.1 Great-circle A lqor i thm , 

Keeping in mind that processors are  spread evenly about t h e  

sur face of a u n i t  sphere, i t  i s  clear tha t  t he  shortest  p a t h  between 

any two processors follows the  great  c i r c le  character ized by the  

posit ions of the s ta r t i ng  and f in ished processors. Our  task, 

therefore, wi l l  be  to  find the  chain o f  processors which l ie closest t o  

th is  shor test  path.  

A n y  plane section of a sphere i s  a circle. T h i s  c i r c le  i s  

r e f e r r e d  t o  as a Great-circle if the  plane o f  in tersect ion passes 

th rough  the center  o f  the  s?here, otherwise i t  i s  r e f e r r e d  t o  as a 

Small-circle. I t  is  i n te res t i ng  to note tha t  t h e  problem of finding t h e  

shortest  rou te  v ia  the  Great-circle has h is tor ica l  overtones. Ear ly  

mar iners looking fo r  the  n o r t h  west passage used th is  p r inc ip le  in 

the i r  "Great-circle" sai l ing by at tempt ing t o  p l a n  the i r  rou tes  as far  

from the equator,  and as close t o  t h e  poles, as possible. 

Defini t ions: 

Le t  

f  - b e  the dest inat ion pos i t ion  o f  a message 

i - b e  the in i t ia l  pos i t ion  of a message. 

The  a lgor i thm we wi l l  follow can b e  loosely descr ibed as follows: 

1. Calculate the  rectangular  Cartesian coordinates o f  - f 

2. Look u p  the  rectangular  Cartesian coordinates o f  - i 

3. WHILE message not  a r r i v e d  DO 

a. F i n d  ou t  which ne ighbour  - n of - i lies closest t o  - f 

b. Send the  information t o  n 

c. Set - i to  2 

The  phrase "message not a r r i v e d "  requ i res  elaboration. Each 
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processcr  " c c ~ e r s ' ~  a pentagona! o r  hexagonal region o f  space. The  

computat ion to  determine whether a message has actual ly a r r i v e d  can, 

fo r  th is  reason, be d i f f i cu l t .  A simpl i f icat ion i s  in t roduced by 

assuming tha t  the  processor governs  a rec tangu lar  reg ion whose w id th  

and he ight  are g iven b y  t h e  maximum extent  o f  t he  hexagon o r  

pentagon. Th is  rectangular  space covers  a la rger  area than the  

or ig ina l  shape, meaning tha t  a message may b e  considered " a r r i v e d "  

whereas the actual dest inat ion was one o f  the  ne ighbour ing  

processors. Th is  minor inexactness i s  tolerable, and saves the  time 

r e q u i r e d  for an exact a r r i va l  calculation. 

The  non- t r i v ia l  p a r t  of t h i s  a lgor i thm i s  step 3a, finding the 

ne ighbour  closest to the  destination. Two  d i f f e ren t  methods o f  

rough ly  equal complexity have been developed t o  calculate th is .  Bo th  

involve calculat ing the  Cartesian coordinates o f  t he  dest inat ion, - f, and 

looking up the Cartesian coordinates - i o f  the  c u r r e n t  processor. The 

ne ighbour ing  processor closest to  the  dest inat ion i s  then the  one w i t h  

t h e  minimum value o f  

I f  - !I ( 14) 

Notice tha t  th is  calculation, which must b e  repeated f o r  each o f  the  5 

o r  6 neighbours, involves th ree mul t ip l icat ions and additions. 

T h e  second method f o r  finding t h e  processor closest t o  the  

dest inat ion involves select ing one o f  t he  processors which l ies closest 

to  the great  c i rc le  character ized by the in i t ia l  and dest inat ion points.  

Le t  us  def ine an addit ional quan t i t y ,  - c, which i s  perpend icu lar  

t o  bo th  - i and  - f. The equat ion fo r  th is  vector uses the  

cross-product  , 

c = i x f  - - -  ( 1 5 )  



The  equation fo r  the  p lane o f  th,e great  c i r c le  o n  which - i and f l ie  

can be expressed as 

c . n = O  - - (16) 

Since the  processors are separated b y  360/n degrees, we can f i n d  the  

processors which l ie closest t o  the  great  c i rc le  b y  determining which 

ne ighbour ing  processors sa t is fy  

c . n < cos (36011-1) - - (17) 

Th is  subset, which usual ly  has size two, can then b e  analyzed t o  

f i n d  which one l ies closer t o  the  dest inat ion by simply sub t rac t i ng  

angles. 

B o t h  o f  these methods involve considerable computation. The  

cost c of the  message-passing system is  the  cost which increases as a 

func t ion  o f  the  number o f  processors, and i t  is  what causes t h e  

saturat ion ef fect  i l l us t ra ted  ear l ier  in F igu re  4. Clearly,  we need an 

inexpensive calculation. 

5.1.8.2 Small-circle A lgor i thm 

The  second method o f  t rave rs ing  t h e  network i s  less expensive 

than the  Great-circle Algori thm, despi te the  fact tha t  i t  does not  

guarantee the  shortest  path. The  method rel ies o n  f i n d i n g  the  

shortest  way of t rave rs ing  the  plane of t he  d isplay device, as 

i l lus t ra ted p rev ious l y  in F i g u r e  12. We wi l l  follow the  Small-circle 

def ined b y  the  s t a r t i n g  and dest inat ion points, whose p lane i s  

perpendicular  t o  t h e  ax is  o f  t h e  sphere. We can consider t h e  f i r s t  

angular component of a processor's coordinate to  b e  a distance in the  

x-d i rect ion,  and the  second a distance in the  y-d i rect ion.  Clearly,  

the  equation fo r  t he  p a t h  we seek i s  that  of a s t ra igh t  l ine, 



y = m x + b  ( 1 8 )  
I 

wherc n is  the  slope, and b i s  the  y- intercept .  We seek to  i den t i f y  

the  set o f  processors which l ie closest t o  t h e  line. 

Def in i t ions 

Let  

I - b e  the  (Q ,8) coordinates o f  t he  s t a r t i n g  processor, 

and 

F - b e  the ( 4 , 0  1 coordinates o f  t he  dest inat ion. 

The a lgor i thm i s :  

1. Set the  d i f ference - D between the s t a r t i n g  and the  f i n i sh ing  

processors to  F - 1. - - 

2. WHILE - D > angular  w id th  o f  processor (i.e. message not  a r r i ved )  

DO 

a. Set - N t o  tha t  ne ighbour  o f  - I which, wi l l  decrease the  second 

coordinate o f  - D and whose slope i s  t h e  closest m. 

b .  Set - I t o N  - 

c. Set - D t o E - I  

Note tha t  t h i s  a lgor i thm requ i res  on ly  one d iv is ion  and several 

comparisons fo r  each processor on  the  path.  However, the  shortest  

p a t h  i s  not  guaranteed. 

A sample comparison between the  Great-circle and Small-circle 

Algor i thms is  i l lus t ra ted in F i g u r e  17. In t h e  diagram, we a re  

looking down at the  n o r t h  pole o f  a sphere. Imagine the  in i t ia l  and 

f inal posit ions w i th  d i f f e ren t  longitude, b u t  ident ical in lat i tude. The 

Great-circle A lgor i thm would send the  message along the shortest  

path, i.e., across the  pole. The Small-circle Algor i thm would c a r r y  

the message around the globe along the small c i rc le  o f  constant  



Path  generated - -  4- -path  qrnerated 
by Small-circle by G r e a t - c i r c l e  
A l g o r i t h m  

P o s i t i o r .  

F igu re  17 

Comparison o f  Great-circle A lgor i thm and Small-circle Algori thm. A 
message must be  sent from one side o f  t he  n o r t h  pole t o  the  other. 
T h e  Great-circle Algor i thm f inds  the  p a t h  across the  pole, whi le the  
Small-circle a lgor i thm t ravels around the  pole. Note tha t  the  
worst-case performance o f  t he  two algori thms i s  identical. 

longitude. 

I t  should be  clear from th i s  discussion tha t  t he  worst case for  

the  Small-circle algori thm is equal t o  the  worst  case fo r  t he  

Great-circle Algori thm, i.e., t he  rad ius  of the  graph.  The 

Small-circle Algor i thm is much less expensive t o  compute, but has the  

disadvantage tha t  in general messages remain in c i rcu la t ion  longer. 

This, in t u r n ,  increases the chance o f  the  message dens i ty  building 

u p  somewhere in the  network,  resu l t i ng  in a bot t leneck.  

5.1.9 T u r n i n q  o n  Pixels -- 

Once a t r iang le  has a r r i v e d  at t he  cor rec t  processor, the  

cor respond ing p ixe ls  must b e  t u r n e d  on. A small complication i s  that  



a g iven t r iang le  may span the  p ixe ls  he ld  by several adjacent 
I 

processors. 

T h e  procedure  is  f i r s t  t o  resolve the  t r iang le  i n to  scan-lines 

according to a po lygon- f i l l ing  a lgor i thm similar to  tha t  of 

(Crow(19761 I .  In the  simulation, Gourand shad ing was added to  the  

f i l l i ng  a lgor i thm (Newman & SprouI l (  1979) 1. As described ear l ier ,  

each processor "knows" which p i xe l s  i t  i s  responsible for,  and which 

ne ighbours  handle adjacent pixels. 

A n  i te ra t ive  process fo r  co r rec t l y  d i s t r i b u t i n g  the  p ixe ls  among 

t h e  processors is: 

1. Decompose the  t r iang le  i n t o  scan-lines. 

2. WHILE a processor p has scan l ines wh ich  don't belong t o  i t  DO 

a. Le t  p keep that p a r t  of t he  scan-line which belongs t o  i t .  

b. Send t h e  remaining po r t i on  o f  t h e  scan l ine  t o  the  appropr ia te  

neighbour.  

Once a process has only p ixe ls  which be long t o  i t ,  the  p i xe l s  are  

ind iv idua l ly  inser ted  i n to  a z -buf fe r  v ia  the  a lgor i thm: 

For  each p i xe l  

I f  z-value o f  new p i xe l  i s  < z-value o f  p rev ious  value 
then 

store new z-value and 
new intensi ty-value 

repeat 

5.1.10 Rotat ing Object 

Each time the  screen is  re f reshed,  the  object is  ro ta ted b y  a 

small amount. Th is  makes the  ro ta t ion  smooth. T o  in i t ia l ize the  

ro ta t ion  about a g i ven  axis, each processor calculates i t s  



"vir tual-coordinate",  which i s  al igned so tha t  t he  axis  o f  ro ta t ion  
I 

coincides w i th  the nor th-south  ax is  of t he  v i r tual -coordinate system. 

Every  facet holds a local-coordinate desc r ib ing  i t s  posi t ion re la t ive  t o  

the  v i r tual -coordinate o f  i t s  processor. A l though the  calculat ion of 

the  v i r tual -coordinate is time-consuming as i t  requ i res  numerous 

t r igonometr ic  calculations, the calculat ion i s  on l y  per formed once f o r  

each new axis o f  rotat ion. 

The  calculat ions r e q u i r e d  d u r i n g  the  ro ta t ion  are v e r y  simple. 

Rotat ion requ i res  adding the angle o f  t he  ro ta t ion  increment t o  the  

f i r s t  angular  component o f  the  local-coordinates. Then the  message i s  

sent to  i t s  dest inat ion, in a fashion simi lar t o  tha t  f o r  sending the  

t r iangles from the facet-holders t o  the  pixel-holders. The amount of 

time r e q u i r e d  f o r  a ro ta t ion  is  p ropor t iona l  t o  t h e  rotat ion's angle. 

5.2 Simulation and Results - 

The algori thms out l ined in the  p rev ious  sect ion were implemented 

under  the MTS opera t ing  system on an IBM 4341 u s i n g  LISP. The 

p r imary  purpose o f  t he  simulation was t o  a id  in the  development o f  

the  a lgor i thm and to s t u d y  the  message-passing system, r a t h e r  than 

t o  produce h igh-qual i ty  images. 

Processors are represented b y  atoms, and the  informat ion a 

processor "knows" is  s tored on i t s  p r o p e r t y  l ist. A complete 

i nven to ry  of p roper t ies  i s  g i ven  in Appendix A. As proper t ies  are  

added to t h e  482 simulated processors, memory i s  used up v e r y  

qu ick l y  due t o  the  fact that  L lSP uses 8 b y t e s  fo r  each conscell. 

T h e  memory l imitat ions became an insurmountable problem. Due t o  

hardware res t r ic t ions ,  the amount o f  memory fo r  L lSP programs and 



data is  l imi ted t o  255 pages, o r  approximately 1 megabyte. 
1 

By  removing proper t ies  when they  were n o  longer needed, i t  

was possible t o  complete all phases of the simulation, w i th  the  

except ion of t he  actual t u r n i n g  o n  of the  pixels, in the manner 

descr ibed in Section 5.1.9. Not running t h i s  last p a r t  is  no t  a major 

loss, since i t  i s  a problem which has been thorough ly  studied, and i s  

well understood. To obtain p ic tures ,  nonetheless, the po lygon- f i l l ing  

a lgor i thm was appl ied sequential ly t o  the  t r iangles when they  a r r i v e d  

at the  appropr ia te  pixel-holder.  The z-buf fe r  da ta  was handled b y  a 

FORTRAN program. Images were generated b y  a PL /1  program u s i n g  

o v e r p r i n t i n g  on the  l ine-pr in ter  t o  produce grey-shades. 

5.2.1 Simulat ing Parallelism 

Clear ly  the  IBM 4341 i s  no t  capable o f  suppor t i ng  the  kind of 

paral lel ism r e q u i r e d  f o r  the graph ics  system. Instead, an operat ion 

which would in rea l i ty  b e  executed simultaneously on each processor 

was handled sequential ly u s i n g  a LISP MAPping funct ion. The  amount 

o f  CPU time r e q u i r e d  in an actual implementation could c lear ly  no t  b e  

measured us ing  th is  technique. Fur thermore,  only an estimate of t he  

processor u t i l i za t ion  could b e  determined, since the  simulation h a d  to 

synchronize steps which would no t  necessari ly have t o  b e  syncronized 

in rea l i ty .  

Despite the  problems inherent  in a simulation, i t  was 

nonetheless possible to  s tudy  the  message-passing system. Messages 

were handled in "rounds".  In each round ,  a processor passed o n  

the  f i r s t  o f  i t s  ou tgo ing messages to  the  appropr ia te  neighbour.  

D u r i n g  the rotat ion, and d u r i n g  t h e  facet-to-pixel-holder t rans fer ,  
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!he fo!!owing data  were co!lected: 

1 .  For each message, the number o f  nodes v i s i t ed  between i t s  source 

and  i t s  dest inat ion was measured. T h i s  value should always b e  

less than  o r  equal t o  t he  r a d i u s  o f  t h e  graph.  

2 .  At  each round,  the  percentage u t i l i za t i on  o f  t he  processors was 

measured, tha t  is, the  number o f  p rocessors  which h a d  a message 

to send. 

T h e  minimum number o f  rounds  in wh ich  t h e  message-passing system 

can stop is  c lear ly  one greater  t han  the  l eng th  o f  the  longest 

message. I f  messages are delayed due  to bo t t lenecks  anywhere along 

t h e  way, the number o f  rounds  r e q u i r e d  w i l l  b e  la rger .  

5.2.2 Some Examp les -- 
T h e  f i r s t  test  object we wi l l  consider  is  a sphere. It i s  

representa t ive  example, as i t s  sur face var ies  smoothly, and all 

possible sur face or ientat ions t o  t h e  l i g h t  source are represented. 

F i r s t ,  the  sphere was d isp layed w i thou t  rotat ion. F i g u r e  18a 

shows a g r a p h  fo r  the  number o f  messages ve rsus  message leng th  fo r  

t h e  facet-to-pixel-holder t rans fer .  Most o f  the messages had  to  

t rave l  a distance o f  between 2 and 6 nodes, w i t h  a maximum distance 

o f  8. F i g u r e  18b shows the  percentage u t i l i za t ion  versus  round.  A t  

t he  outset, approximately 55% o f  t he  processors had messages t o  

send. Th is  is  reasonable, since approximate ly  ha l f  the sur faces were 

en t i re l y  on  the  back o f  the  sphere, and  were removed since the i r  

sur face normal po in ted  away f rom the viewer. The u t i l i za t ion  

decreased in a near- l inear fashion as t ime progressed.  I t  took 10 

rounds  to dispose o f  all ou ts tand ing  messages. Th i s  is  one more 
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F i g u r e  18b 

Graphs o f  message-passing fo r  draw-phase of unro ta ted  sphere. 
Graph (a)  shows number o f  messages ve rsus  message length.  Graph 
(h) shows the  percentage u t i l i za t ion  o f  the  processors versus  round .  



than :he minimum 3 rounds. T h i s  resu l t  indicates tha t  t he  , 

information flowed th rough  the  network  w i thout  undue delays. 

T h e  sphere which was produced i s  i l l us t ra ted  in F igu re  19. As 

expected, the in tens i ty  var ies smoothly f rom the  center  o f  t he  sphere 

outward,  and the  sphere appears symmetric. 

Next,  the  sphere was ro ta ted b y  6O, which at 30 frameslsecond 

would represent  a rotat ional speed o f  112 a revo lu t ion  p e r  second. 

F igu re  20 shows the  graphs o f  t h e  message-passing behav ior  during 

the  rotat ion. The longest messages t rave l l ed  1 node, while i t  took 2 

rounds  u n t i l  al l  messages h a d  ar r ived.  T h i s  resu l t  indicates tha t  a 

slow rotat ion, which may b e  typ ica l  f o r  many applications, is  v e r y  

inexpensive. 

Two  f u r t h e r  rotat ions were tested : 30•‹ represent ing  a moderate 

speed of 3 revolut ions pe r  second, and 180•‹, represent ing  the  

maximum speed o f  15 revolut ions p e r  second. The g raphs  fo r  t he  

ro ta t ions  are i l lus t ra ted in F igures  21 and 22, respect ive ly .  In each 

case, all messages a r r i v e d  at t he i r  dest inat ion in on ly  a small number 

o f  rounds more than the  minimum possible. The 30' ro ta t ion  took 5 

rounds  to  complete w i th  a maximum message length  o f  3. The 180' 

ro ta t ion  had some messages which t rave l led  the  maximum possible 

distance o f  20 nodes, and took 26 rounds  t o  complete. 

The  draw phase fo r  t he  ro ta ted  spheres h a d  resu l t s  which were 

ident ical t o  those fo r  the  un ro ta ted  spheres, and the  image of t he  

ro ta ted spheres was also v i r t u a l l y  ident ica l  t o  the  image o f  t he  

unro ta ted spheres. For  th i s  reason, the  g raphs  are not  repeated. 

The  n e x t  example which was run was a cube. The image was 

d rawn  looking perpendicular  t o  the  f r o n t  face. F i g u r e  23 shows the  



F i g u r e  19 

Image o f  un ro ta ted  sphere. The  image i s  longer  than  i t  is  wide as 
the l ine-pr in te r  p r i n t s  10 hor izonta l  co lumns/ inch  b u t  on ly  8 ve r t i ca l  
l inest inch.  



Figure 20a 

F igure  20b 

Graphs of message-passing du r i ng  rotat ion of  sphere through 6 O .  

Graph (a) shows number o f  messages versus message length. Graph 
(b) shows the percentage ut i l izat ion of  the processors versus round. 



F i g u r e  21a 

F igu re  21b 

Graphs of message-passing during ro ta t ion  o f  sphere t h r o u g h  30•‹. 
Graph (a)  shows number o f  messages versus  message length.  Graph 
(b)  shows the  percentage ut i l izat ion o f  t h e  processors versus  round.  
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Graphs of message-passing during ro ta t ion  of sphere t h r o u g h  180•‹. 
Graph (a )  shows number o f  messages ve rsus  message length.  Graph 
( b )  shows the  percentage u t i l i za t ion  o f  the  processors versus  round.  
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Graphs o f  message-passing fo r  draw-phase o f  unro ta ted cube. Graph 
(a )  shows number o f  messages ve rsus  message length. Graph (b)  
shows the  percentage ut i l izat ion o f  the  processors versus  round.  



g r a p h  of  the  number o f  message? ve rsus  message propagat ion length.  

T h e  longest message h a d  a length  of  on l y  3, compared t o  6 fo r  t he  

sphere. T h i s  i s  because the  processors toward  the  middle o f  t he  

screen were also the  ones wh ich  he ld  the  facets modell ing tha t  p a r t  

o f  the  cube. F i g u r e  23b shows the  g r a p h  o f  u t i l i za t ion  ve rsus  

round.  A l l  messages a r r i v e d  b y  the 5 t h  round ,  meaning tha t  

messages were no t  ser iously  delayed by bot t lenecks.  

T h e  image wh ich  was p roduced  i s  i l l us t ra ted  in F igu re  24. T h e  

in tens i ty  i s  un i fo rm everywhere  except  a t  t he  edges. I n  t he  lower 

ha l f  of t he  image, the  i n tens i t y  d r o p s  o f f  smoothly to  t h e  whi te 

background.  T h i s  i s  because the  t r iang les  wh ich  cover  t ha t  p a r t  o f  

the  screen have one ve r tex  o n  the  f r o n t  o f  t he  object, and  two on  

the  side o r  bottom. T h e  in te rpo la t ion  a lgor i thm makes the  i n tens i t y  

v a r y  smoothly ove r  t he  tr iangles. 

T h e  top h a l f  o f  the  image i s  more in te res t ing .  The  sides a re  

un i fo rmly  dark ,  s ince i t  jus t  so happened tha t  facets were posi t ioned 

v e r y  close t o  the  edges o f  t h e  cube. A t  t he  top, the  t r iang les  used 

a l ternated between h a v i n g  one ve r tex  on the  f r o n t  and two on  the  

sides, and  the  o ther  way around.  T h e  image p roduced  i l lus t ra tes  

tha t  the method o f  object representa t ion  i s  most ef fect ive w i t h  objects 

whose sur face var ies  smoothly. Sharp edges are  rounded  off, 

pa r t i cu la r l y  w i th  a resolut ion o f  on ly  482 facets. Two methods o f  

so lv ing  t h i s  p rob lem have emerged. T h e  f i r s t  i s  simply to increase 

the number o f  facets. Th i s  increases the  resolut ion,  b u t  at t he  

expense o f  processing time. T h e  second solut ion i s  to  ad jus t  some 

facet posi t ions so they  l ie close to  the  edges o f  the  polygons. 

D u r i n g  the in i t ia l  i n p u t  o f  t he  polygons,  a facet l y i n g  near  an edge 



F i g u r e  24 

Image o f  un ro ta ted  cube. Blemishes at t he  edges are  due  t o  the  
facet posi t ions be ing  fa r  f rom the edges o f  t he  cube. 



coi i ld  be  moved b y  simply g i v i n g  i t  a local displacement coordinate , 

re lat ive to the processor. Th is  solut ion requ i res  l i t t l e  more 

processing t i  me. 

5.3 Performance Analysis - 
The task o f  est imating the  per formance which can b e  expected 

f rom a multi-processor system is  complicated b y  the  fact tha t  t he  

performance is  of ten dependent on  the  input data i tsel f .  The 

analysis f o r  t he  graph ics  system i s  p lagued b y  similar problems. How 

many tw is ts  and caves are the re  in t h e  object? How much of t he  

screen does the  image cover?  For these and  re la ted questions, we 

wi l l  assume a set o f  "reasonable" i n p u t  da ta  fo r  t he  analysis itself. 

Fol lowing th is ,  we wi l l  see what happens t o  the  equations as less 

"reasonable" da ta  is  used. 

Th roughou t  the analysis, we wi l l  assume that  operat ions such as 

addit ions, subtract ions and comparisons r e q u i r e  one time un i t ,  u, and 

tha t  mult ipl icat ions and d iv is ions r e q u i r e  10 un i ts .  In th i s  way, the  

analysis is  independent o f  t he  cycle t ime o f  t h e  processor used. 

Typ ica l  values for  u might range from 1 to 5 micro-seconds. 

F u r t h e r ,  i t  wi l l  be  assumed tha t  da ta  can b e  t rans fered between 

adjacent processors at t he  r a t e  o f  1 b y t e  p e r  m time u n i t s  u. 

T h e  t iming analysis wi l l  be  t rea ted in fou r  sections: ( 1 )  

rotat ion, ( 2 )  facet posi t ion and in tens i ty  calculation, ( 3 )  

facet-to-pixel-holder t rans fer ,  and (4 )  po lygon filling. 



5.3.1 Rotation , 

Clear ly  the cost o f  ro ta t ion  is  p ropor t iona l  to  the number of 

nodes a message v i s i t s  en  r o u t e  t o  i t s  dest inat ion. This,  in t u r n ,  i s  

dependant on the angle of t he  rotat ion,  4 ,  and the  rad ius  o f  the  

graph,  hence the number o f  processors. 

Le t  u s  def ine the  func t ion  

R(4,p)  (19)  

which g ives the  number o f  rounds  elapsed be fo re  the  longest message 

a r r i v e s  fo r  a ro ta t ion  t h r o u g h  @ O  wi th  p processors. The  resu l t s  of 

t he  simulation indicate tha t  t he  number o f  rounds  r e q u i r e d  i s  on i y  

marginal ly h ighe r  than  the  rad ius  o f  t he  graph.  I f  we estimate the  

delay in the  longest message to b e  20%, we can use equation 8 to  

a r r i v e  at 

R ( @  ,p) = (mod(@,  180) /180)*1.2*.82*p**0.5 (20) 

which reduces to  

R(4 ,p )  = (mod(@ ,180)/180)*p**0.5 (21) 

T h e  number o f  time u n i t s  r e q u i r e d  f o r  each r o u n d  wi l l  b e  m f o r  each 

b y t e  in the  message, p lus  the cost o f  dec id ing  which processor 

should be  the  rec ip ient  ( 1  d iv is ion,  3 subt rac t ions  and 3 cornparisions 

= 16u us ing  Small-circle Algor i thm).  Therefore,  the  cost C r  o f  do ing 

a ro ta t ion  o f  b b y t e s  t h r o u g h  @ degrees u s i n g  p processors i s  

C r  = (16 + b*m)*(mod(@ ,180) /180)*p**0.5 u (22 

5.3.2 In i t ia l  Posit ion and In tens i t y  Calculat ion 

L is ted  in Appendix B is  an overv iew of the  operat ions r e q u i r e d  

t o  per form the in i t ia l  posit ion and  in tens i t y  calculations. A t  t he  

conclusion o f  th is  phase, the  t r iang les  f o r  d isplay wi l l  be  ready t o  b e  



sent  t o  the  ho lder  o f  the  corr;esponding p ixels.  Accord ing t o  the  

estimates, 600u w i l l  be  r e q u i r e d  fo r  each cross ing observed by each 

facet. Thus,  the  cost Ci f o r  t h i s  phase i s  

Ci = (500+48*m) * (number o f  c ross ings  observed) u ( 2 3 )  

5.3.3 Facet-to-pixel-holder T rans fe r  

T h e  cost of th is  phase can b e  est imated in a manner similar t o  

tha t  of the  rotat ion.  We wi l l  assume that  the re  ex is ts  at least one 

message which must t rave l  the  maximum possible distance, and tha t  

t h e  message-passing requ i res  20% more time to  complete than  the  

minimum possible. 

With each t r iang le  descr ip t ion  u s i n g  48 by tes ,  and 16u be ing  

r e q u i r e d  fo r  the  decision about which ne ighbour  t o  send an outgo ing 

message to, t he  cost C t  f o r  t h i s  phase becomes 

C t  = (48*m+16)*p**0.5 u (24) 

Note tha t  if t h e  object is  centered o n  t h e  screen, then n o  message 

wi l l  have t o  b e  passed more than  112 o f  t h e  maximum distance so tha t  

t h e  value o f  C t  f rom Equation 24 can b e  halved. 

5.3.4 T u r n i n g  o n  Pixels -- 

The problem of estimating the  performance o f  uni-processor 

scan-line a lgor i thms has been thorough ly  studied. Parke (1980) has 

the  most recent  results.  His analysis p roduced  the fol lowing t iming 

estimates : 

a. 9u  p e r  pixel,  

b. 61u p e r  scan-line; we wi l l  use a value o f  (61+20*m)u since 

scan-line messages may have t o  b e  sent t o  ne ighbours  ( t h e  



calcuiat ion fo r  content  of, these messages are assumed to  be  - 
p a r t  o f  the scan-line a lgor i thm i tse l f ) ,  

c .  62u pkr edge, and 

d. 71u p e r  polygon. 

Since we are always deal ing w i th  t r iangles,  ( c )  and ( d )  can b e  

combined t o  g i ve  257u p e r  tr iangle. Note however, tha t  these resu l t s  

a re  va l id  only fo r  t r iangles which have an area o f  at least several 

p ixels .  F o r  v e r y  small t r iangles, n o  interpolat ion is requ i red .  

Estimates indicate tha t  the cost f o r  such v e r y  small t r iangles is  

approximately 4u p e r  tr iangle. 

A t  t h i s  point ,  we wi l l  have t o  app ly  res t r i c t i ons  o n  the  object 

we are deal ing with. These res t r ic t ions  s impl i fy  the  subsequent 

algebra, b u t  as w i l l  b e  discussed later ,  do not  s ign i f i cant ly  a l ter  the  

outcome. Le t  u s  assume: 

1. The object uses some f rac t ion  x o f  the screen, where a typ ica l  

va lue o f  x might  b e  x=0.5. 

2. The t r iang les  have equal sizes and a re  d i s t r i b u t e d  evenly about 

the  screen, hence spread evenly about one x ' t h  o f  t he  

processors. 

Le t  u s  assume that  the  number o f  t r iang les  is  t  and that  we are 

deal ing w i th  a 256x256 ras ter  g raph ics  device. The number of 

t r iangles Pt  p e r  processor is  then 

P t  = ( t l x ) l p  (25) 

and tak ing  r igh t -ang led t r iangles as representat ive,  the average 

number o f  p ixe ls  T p  pe r  t r iang le  is  

T p  = (256**2)* (x / t )  

and the  average number of scan-lines Ts  p e r  t r i ang le  i s  



Ts  = (2*Tp)**0.5 , 

Now the number of p ixe ls  Pp p e r  processor is  

P p  = P t X T p  

o r  

P p  = (256**2)/p 

T h e  number o f  scan-lines pe r  processor i s  

Ps = Pt*Ts. (30) 

B y  subst i tu t ion ,  

Ps = (362/p)*(t /x)**0.5 (31 1 

The  total  time fo r  scan-conversion, Cs, p e r  processor, is  there fore  

Cs = 9*Pp + (61+20*m)*Ps + 257*Pt (32) 

o r  

Cs = 9*(256**2) /p + (61+20*rn)*(362/p)*( t /x)**0.5 

+ 257*t / (p*x)  (33) 

Now that  we have an expression fo r  t he  performance, le t  u s  g o  

back and see what happens when we re lax  the res t r ic t ions  made 

prev ious ly .  Suppose tha t  x were small, i.e., the  en t i re  object were 

concentrated in a small reg ion  o f  t he  screen. The scan-conversion 

a lgor i thm becomes v e r y  inexpensive. Because x is small, the  

t r iangles compr is ing the  object are v e r y  small, hence the  cost Cs' is  

Cs' = 4 * t (34) 

which is c lear ly  less than Cs from Equation 33 fo r  real is t ic  

combinations values f o r  t ,  x and p .  

T h e  small-tr iangle problem can also b e  t rea ted at i t s  source. 

Before sending t r iangles to the  pixel-holders, processors ho ld ing  

facets could collapse g roups  o f  small t r iang les  i n to  fewer large ones. 

Th is  has the added advantage that less data f lows t h r o u g h  the  



network in t h e  facet-to-pixel-holder t rans fer .  

T h e  o ther  res t r i c t i on  we s ta ted i s  tha t  t he  t r iangles have equal 

sizes. Of ten  th i s  does not  hold, since a sur face which i s  no t  

perpend icu lar  t o  the  viewer wi l l  b e  composed o f  smaii t r iangles. Here 

again, t h e  small t r iangles can b e  hand led w i th  t h e  inexpensive 

scan-conversion algori thm, resu l t i ng  in an overal l  cost which i s  even 

less than  tha t  o f  Equation 33. 

5.3.5 Overal l  Cost 

T h e  overal l  cost in terms o f  CPU time i s  

T = C r  + Ci + C t  + Cs  

an example, le t  u s  use the  fo l lowing parameters: 

482 processors, 

m, the  number o f  cycles r e q u i r e d  to  t ransmit  one b y t e  of 

in format ion equals l u ,  

one facet p e r  processor 

a maximum o f  two rad ia l  values p e r  facet, 

a ro ta t ion  th rough  6 degrees, 

image center red and u s i n g  112 of the  screen, 

500 tr iangles. 

The  costs fo r  these condit ions are :  

C r  = 66u 

Ci  = 1096u 

C t  = 800u 

Cs = 3680u 

Therefore,  T = 5642u. For  u=5 micro-seconds, th is  resu l t  i s  s t i l l  

w i th in  the  l imit  o f  1/30 o f  a second r e q u i r e d  fo r  real-t ime processing. 
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However, it is important  t o  note that  t he  foregoing calculat ion should 

b e  t reated on ly  as an order-of -magni tude estimate o f  the cost. 

T h e  performance o f  the modelled system improves in a 

near- l inear fashion w i th  the number of processors. The  reason fo r  

t h i s  can easily b e  visual ized by n o t i n g  tha t  the  more processors we 

have, the smaller the p a r t  o f  t h e  screen each processor must govern,  

hence the less p ixels  each must handle. F u r t h e r ,  the more 

processors we have, the  smaller are t h e  hexagonal patches on the  

sur face o f  t h e  geodesic dome which each processor governs. On ly  

the message-sending costs increase w i t h  the  number of processors. 

However, t h i s  cost con t r i bu ted  on ly  158 t o  t h e  tota l  cost in the  above 

example, and th is  cost increases on ly  as the  square root  of the 

number o f  processors. 



6. Conclusions 

T h e  resu l t s  o f  the simulat ion indicate tha t  the  messages f lowed 

t h r o u g h  the  ne twork  in an o r d e r l y  fashion. B o t h  the ro ta t ion  phase, 

and the facet-to-pixel-holder pL7ase completed the  message-passing in 

on ly  m a r g ~ n a l l y  more than the  minimum possible time. It i s  

no tewor thy  tha t  the u t i l i za t ion  o f  the processors during t h e  

message-passing began at between 50% and  loo%,  and decreased in a 

near- l inear fashion w i t h  time. I t  is  important  tha t  the  percentage 

u t i l i za t ion  vs. r o u n d  (t ime) g raphs  d o  not  have any  long tails. T h e y  

would ind icate bo t t lenecks  which would s ign i f i can t ly  slow the  system 

down. 

I t  is  i n te res t i ng  to  compare the  system presented in t h i s  thesis 

w i t h  o ther  attempts at p r o d u c i n g  images q u i c k l y .  Clarke's system i s  

able to  t rans form polygons in paral lel ,  b u t  these po lygons h a d  to b e  

i n p u t  sequential ly t o  a system such as Parke's mu1 t iple-processor 

z-buf fer .  Parke's z -bu f fe r ,  in t u r n ,  can make e f f i c ien t  use  of on ly  

16 to 64 processors t o  d isp lay  the  polygons. The system presented 

h e r e  combines these two phases, object manipulat ion and  object 

display. The number o f  processors can b e  increased to  improve the  

per formance as long as the  time r e q u i r e d  fo r  message-sending i s  less 

than  the  time r e q u i r e d  f o r  object manipulat ion and d isp lay.  

T h e  sample calculat ion f o r  the theoret ical  performance analysis 

showed tha t  the message-sending due to  the ro ta t ion  and the  

facet-to-pixel-holder t rans fe r  con t r i bu ted  on ly  15% to  the  overa l l  

d isp lay time. Th i s  is  s igni f icant ,  since t h i s  para l le l  p rocess ing  

system must compete w i th  uni -processors which do  not  r e q u i r e  

message-sending. In the system presented here, the number  of  



processors can b e  increased t o  improve the  performance as l ong  as 

the  tota l  time r e q u i r e d  fo r  t he  message-sending is  !ess than  the  time 

r e q u i r e d  fo r  object manipulat ion a n d  d isp lay.  

T h e  simulat ion p rov ides  exper imenta l  evidence in suppor t  o f  t he  

v iab i l i t y  message-passing scheme where theoret ica l  resu l ts  would b e  

d i f f i cu l t  to  obtain. B u t  we must t rea t  the  resu l t s  w i th  gua rded  

optimism. The re  are s t i l l  hardware  des ign  problems which must b e  

worked out  be fore  a p r o t o t y p e  can b e  built. I n  par t i cu la r ,  problems 

concern ing  communication protocols  must b e  solved. How exact ly  wi l l  

message b e  hand led  by the hardware? How wi l l  a processor  detect  

t he  a r r i v a l  of  a message? 

Another  problem area i s  t he  hand l i ng  of the  pixel-data. 

Real-time ras te r  g raph ics  requ i res  tha t  an enormous amount o f  da ta  

b e  t rans fe r red  between the  processors h o l d i n g  the z -bu f fe r  and  the  

screen, in a sho r t  space o f  time. Can t h i s  da ta  b e  r e a d  by the  

video-generator w i thout  a f fec t ing  the  c u r r e n t  s ta tus  o f  the  processor  

hand l i ng  the  p ixe l -data? 

T h i s  thesis has la id a foundat ion f o r  a g raph ics  system u s i n g  

para l le l  processing fo r  the ro ta t i on  and  d isp lay  o f  t h ree  dimensional 

objects. A simulat ion has demonstrated the  v iab i l i t y  o f  t he  method, 

and an  order-of-magnitude estimate has ind ica ted  tha t  i t  may b e  

possible t o  p roduce  images in real  time. T h e  n e x t  s tep i s  t he  

development of the detai ls o f  t he  ha rdware  necessary to  suppor t  an 

envi ronment  similar t o  tha t  o f  the  simulation. The  goal o f  real- t ime 

d isp lay  of complex images may then  b e  real ized. 



Append ix  A : Summary of  Processor Informat ion Content 

E v e r y  processor must ho ld  cer ta in  in format ion t o  be  able to in terac t  
w i t h  the  o ther  processors in the  system. Presented below i s  an  
i n v e n t o r y  of the proper t ies  each processor must have. The  
proper t ies  are organized b y  the  name o f  t h e  system-phase in which 
they  are requ i red .  Inc luded i s  an  estimate o f  the  storage 
requirement (B=Bytes, KB=1000B), and an explanation o f  the  
p roper t y .  

General 

Name 2B Name o f  processor. 

T y p e  1 B Gives processor t y p e  : e i ther  pentagon o r  hexagon. 

Coordinate 4B Angu lar  ( 4 , 8  1 coordinate o f  processor. 

Neighbours 12B L i s t  of 5 o r  6 ne ighbour ing  processors. 

Object Descr ipt ion 

Cell 

Tr iang les  

Drawing 

P-Screen 

L i g h t  

Viewport  

216 Gives information on sur faces crossed between 
processor and center  o f  sphere. Cell size var ies :  
21 b y t e s  p e r  c ross ing observed (2 b y t e  rad ia l  
value, 6 b y t e  normal, 3 b y t e  name, 12 b y t e s  
linking information).  

6B Which p a i r s  o f  ne ighbours  join t h i s  processor t o  
form t r iangles used in d isp lay  o f  object. 

6B Gives pro ject ion o f  t h i s  processor onto screen. 

6B Uni t  vec tor  in d i rec t ion  o f  l ight-source, re lat ive t o  
ax is  o f  processor. 

6B Uni t  vector  in d i rec t ion  o f  view-port,  re lat ive t o  
ax is  of processor . 



Screen 

Pixels 

80B Descript ion of scan-line-segmen t s  he ld  by t h i s  
processor. 

1KB Pixel-values and z-buf fer .  

Rotat ion 

Vir tual -coordinates 
6 6  Angular  ($,9 ) coordinate o f  processor a l igned so 

tha t  the axis of ro ta t ion  coincides w i th  the  
nor th-south  ax is  in the  v i r tual -coordinate system. 

V -Angu  Iarw id th  
4B Gives width o f  processor in terms of ( 4  ,e ) in 

v i r tual -coordinate system. 

V-Dif ferences 
4 8 6  Gives d i f ferences in ($,€I ) between processor and 

each o f  i t s  ne ighbours  ( i n  v i r tual -coordinates) ,  as 
well as the ra t i o  60168. 

Facet t o  Pixel-holder T rans fe r  -- 

Angu la rw id th  
4 8  Gives width o f  processor in terms o f  ( $ , e l  in 

v i r tual -coordinate system. 

Di f ferences 48B Gives d i f ferences in ( $ ,e  ) between processor and 
each o f  i t s  neighbours,  as well as the r a t i o  6 $ / 8 9  
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Append ix  B: T iming Estimates fo r  Facet Calculations 

Presented below is a summary of t he  operat ions which must b e  
per formed fo r  each frame. The estimates are g iven in u n i t s  "un, 
where operat ions such as addi t ion and subt rac t ion  are assumed t o  
take l u  of CPU time, and mul t ip l icat ions and d iv is ions are  assumed t o  
r e q u i r e  I O U .  I t  is  assumed tha t  t o  send a message, m time u n i t s  a re  
r e q u i r e d  fo r  each b y t e  in the  message. 

In i t ia l  Posit ion 1 vector  mul t ip l icat ion 

Scaling 1 vector  mul t ip l icat ion 

Translat ion 1 vector  addi t ion 

Small-Angle 

Perspect ive 

l n tens i ty  

2 mult ip l icat ions 
4 addi t ions 

4 d iv is ions  
4 addit ions 

13 muItiplications/divisions 
16 addit ions 

Back-surface same as In tens i ty  

Neighbour Messages 48 b y t e  l eng th  

Assemb le Tr iangles 20 cornparisions 
5 mul t ip l icat ions 
2 addi t ions 

Total (495 + 48*m)u 

Approximately (500 + 48*m ) u  
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