ON THE STATIONARY

EINSTEIN-MAXWELL-KLEIN-GORDON EQUATIONS

by

Jack David Gegenberg
B.A., University of Colorado, 1970

M.Sc., University of British Columbia, 1972

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in the Department
of

Mathematics

(:) Jack David Gegenberg 1981
SIMON FRASER UNIVERSITY
May 1981
A11 rights reserved. This thesis may not be

reproduced in whole or in part, by photocopy
or other means, without permission of the author.



_i'{__
APPROVAL
Name: Jack David Gegenberg
Degree: Doctor of Philosophy

Title of Thesis: On the Stationary Einstein~Maxwell-Klein-Gordon

Examining Committee:

Chairperson: G.A.C. Graham

A. Das
WSenior Supervisor

R.W. Lardner

E. Fechlaner

K.S. Viswanathan

T 0B, De Wit
External Examiner
Professor

Department of Physics
University of Texas at Austin

Date Approved: May 25, 1981

Equations



PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon fraser University the right to lend
my thesis, project or extended essay (the titie of which is shown below)
to users of the Simon Fraser University Library, and to make paffial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on
its own behalf or for one of its users. | further agree that permission
for muitiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

~ [} ‘ . —_ ‘
(.7 4 7 he ; 57/11 71/017@»/\/ z-/:—"'“.)’ ern //46?4"&1/6///“’

kZ(’/;) - Gé’/f‘o/ém 57 aa%/(;ﬂﬁ

Author:

(signature)

e

\j ac [< D- G‘?ﬁ’ cq é:,*c,
7 /

(name)

Jene /&, )5& )

(date)




-iii-
ABSTRACT

The stationary Einstein-Maxwell-Klein-Gordon (EMKG) equations for
interacting gravitational, e]ectromagnétic, and meson fields are examined.
The theory is cast into the formalism of principal fiber bundles with a
connection, wherein its relationship to current trends in theoretical
physics is made manifest. The EMKG equations are shown to admit a "Higgs -
Tike mechanism" for giving mass to the gauge field. A theorem specifying
sufficient conditions for the stationarity of the spacetime metric to imply
stationarity of the other fields is proved. By imposing additional con-
straints and symmetries, the EMKG equations are considerably simp]ified.

An attempt ismade to apply a solution-generating technique, and this meets
with only partial success. Finally, a stationary, but non-static, solution

is found, and the geometric and physical properties are discussed.



~fV-

Acknowledgement

The author wishes to thank Professor A. Das for his kindly and
patient supervision and for providing‘insight and support during the
darker moments.

The author also thanks Dr. E. Pechlaner, Dr. S. Kloster, and

Mr. T. Biech for helpful discussions.



-\ -

TABLE OF CONTENTS

Approval Page ..cuvieiiiiiiiiiiiieiiitetitiiiirieatttaioenaases
ABSEPACE w ittt it eetes ettt ittt it e
Acknowledgement .........c.iiiiiann U
Table of Contents Chtriieereeticersasenaatetearseesassnernanas
LiSt OFf FIQUIreS wueeiiiieeeeeeinereesoanntnacsnresscsinnarasnss
CHAPTER 1 Introduction ...cviviiiiiiiiiiiniiineinnnns e
" CHAPTER 2 The WorTd-Bundle ...cuuvveereninennsenneeeneenes
CHAPTER 3 The Stationary Case ..vivirieverincrncsnnensnenens
CHAPTER 4 Isometric Motion ....iieniiiiiiiiiiniiiiiieneen
CHAPTER 5 Generating Solutions of the EMKG Egquations .....
CHAPTER 6 Axial Symmetry ...t i
CHAPTER 7 Properties of the Solution ........ccoiiivinnnn
Appendix A Principal Fiber Bundles with a Connection ......

Appendix B The Principal Fiber Bundle Structure of a
Stationary Spacetime .....viiiiiiiiiiiiiiiiinnnn
Appendix C The Proof that the 1-form ¢ is Closed ..........

Appendix D Properties of the Potential Space Metric LAB .

REFERENCES '

R I R R R R I R I N N N NS LI A N AL A

BIBLIORAPHY ettt it ittt et

29
45
69
82

92

102

111

115

117

121

125



Figure 2.1:
Figure 7.1:

Figure A.1l:

-Vi-

LIST OF FIGURES

The Yorld-Bundie

A
Graph of 933(r).

------------------------------

Principal Fiber Bundle........ ..ot



1. INTRODUCTION

A. Motivation

In théoretica] physiés, a new.paradigm is emergingl. It is diffi-
cult, at this point, to completely deécribe or even name, the emerging
paradigm. Broadly speaking, what we have is a growing consensus among
theoretical physicists that nature at its most fundamental level can be
described by "quantum gauge theories". Furthermore, it is increasingly
believed that the topological and metrical properties of spacetime itself
play a highly non-trivial role at the level of elementary particles. The
formerly complementary paradigms of (classical) general relativity theory
and quantum field theory are shedding their separate identities, and are
evolving into the theory of quantum gauge fields. In a sense the new
paradigm is the fulfilment of the hopes of Einstein, Weyl, Schr6ﬂinger,
and others that the fundamental fdrces of interaction could be unified in
a geometrfca1 setting.

At the heart of the new paradigm is the triad of gravity, gauge
fields, and matter fields (also dubbed source fields, or generic "Higgs
fields"). In Chapter 2, it will be outlined how this triad is consistent
with the mathematical theory of principal fiber bundles with a connection.
The simplest example of such a triad is the system consisting of a scalar
(f.e., spinjzero) meson interacting with gravity and the electromagnetic
field. The electromagnetic field is the simplest gauge field because the
corresponding gauge group, U(1), is Abelian, and hence the gauge fields
are not directly self-interacting. The Einstein-Maxwell-Klein-Gordon
(EMKG) equations are an obvious choice for the field equations describing

the dynamical behaviour of such a system.
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Exact solutions of classical field equations are important in the
new paradigm. There are two (not unrelated) reasons for this. First,
in theories such as quantum chromodyn_amics2 (the gauge theory of the
strong interaction), in contrast to quantum electrodynamics, pertur-
bative technfques have not born fruit. Second, certain exact solutions
of classical field equations have revealed a richness and subtlety of the
corresponding quantum field theories that could not have been revealed by
perturbative techniques3. Examples of this are the t'Hooft monopoles,
which are soliton solutions of the Yang-Mills-Higgs equations3’4, the
various instanton solutions of the vacuum Yang-Mills equations (in
Euclidean spacetime)s, and the gravitational instanton solutions of the
vacuum Einstein equations with a strict]y Riemannian metric6’7’8.

In this thesis, the EMKG equations will be examined in some depth.
By imposing certain symmetries (stationarity and axial symmetry of the
fields) and other types of restrictions (isometric motion of the meson
field and the Weyl-Majumdar-Papapetrou ( WMP ) condition), the field
equations are simplified to the point where exact solutions can be found.
A class of such solutions is displayed and some of its‘properties are
discussed. The project undertaken here is to be regarded within the
framework of the new paradigm. Hence the formal nature of Chapters 2
and 3 and the Appendices A and B, which cast the theory into the elegant

geometric formalism which has proven so useful for understanding the

structure and concepts of gauge theories.

B. A Brief History of the EMKG Equations

The history of the Klein-Gordon equation goes back to 1926 with the

attempts of Schrﬁdingerg, Gordon]o, and Klein'| to construct relativistic
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versions of quantum-mechanical wave—equatfons. In 1935, Yukawa12 proposed
a model for the strong nuclear interaction in which the force between
nucleons was mediated by massive charged scalar mesons (pi mesons, of
pions) which obeyed the Klein-Gordon equation in regions external to the
nucleonic sources.

In 1947, Utiyama13 examined the Einstein equations with a scalar meson
source which obeyed a curved spacetime version of the Klein-Gordon éduation.
Subsequent investigations tended to deal with the subcase of massless
scalar mesons. Prominent examples of this are the papers of Szekeres14,
Bergmann and Leipnik15, and Yi]maz16. More recently, Eris and Gﬁrses17
displayed a technique for generating classes of solutions of the Einstein-
Maxwell-massless-Klein-Gordon equations from stationary axially-symmetric
solutions of the Einstein-Maxwell equations. In this context, it should
be mentioned that the massless Klein-Gordon equation in curved spacetime
is often modified by the addition of the term %—ﬁ Yy where ﬁ is the scalar
curvature of spacetime and ¢ is the meson field. Such theories are often
dubbéd “conformal scalar" éince the correspondingly modified K1ein—Gordon
equation is invariant under conformal transformations 6f the metric tensor18

Recently, there has been considerable interest in the Klein-Gordon
and other wave-equations in a given semi-Riemannian spacetime. This is
usually done in the context of black-hole physics or quantum field theory
in a curved classical "background" spacetime. The solutions of the Klein-
Gordon equation so found are never exact solutions of the combined Einsfein—
Maxwe11jKTein—Gordon equations. For more details, see the book by Fried-

1ander19 and the review by Gibbons20 and the references cited therein.
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2]’22, Stephenson23, De24, and Das and Coff-

In the early 1960's, Das
man25 found exact, static, spherically symmetric solutions of the EMKG
equations with the scalar meson having non-zero rest mass and charge. The
solutions found by Das and Coffman are particularly interesting. -

First, they bear some resemblance to so]itons3, i.e., regular, finite
energy, localized solutions of a wave-equation.. Second, the solutions
exist only if the fine-structure constant attains certain numerical values
determined by a non-linear eigenvalue problem.” Finally, the corres-
ponding spacetimes are topologically nontrivial. In quantum gauge theor-

ies 'solitons are important, as mentioned above, and coupling constants

are often energy—dependentz.

C. Summary

In Chapter 2, the properties of a principal fiber bundle over a space-
time M, with structure group U(1) are developed. The bundle space, a five-

dimensional smooth manifold, is called the world-bundle and denoted W. If

W is endowed with a connection, determined by a 1-form field A over W,
then W is the geometric setting for an Abelian gauge theory, and fhe local
expressions Ai for A can be identified with the electromagnetic potential.
The semifRiemannian structure on M4 determines the gravitational field in
the usual manner. Scalar meson fields ¢ are associated with smooth
sections of the vector bundle associated with W by the fundamental rep-
resentation of U(1). In any region of M4 where § # 0 (strictly speakind,
arg (y) is CZ), one may use the real gauge, wherein ¢ is real.

The EMKG equations are introduced via an action principle. It is

shown that in regions of My where ¢ # 0, certain configurations of the
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fields mimic solutions of the Einstein-Proca or Einstein-Maxwell-lorentz
equations.

The metric § of spacetime is assumed to be stationary in Chapter 3.
The field equations then require that % Tij = 0, where Tij is the sum of
the energy-momentum tensors of the electromagnetic field, Eij’ and of the
' méson field, Mij' It is shown that if one further demands that either
é’Eij =0or £ Mij = 0 in a region of spacetime where ¢ # 0, then
% AF) = % Ai = 0, i.e., the meson and electromagnetic fields are stationary.
| The theory is then decomposed into "3+1 form", so that all fields are
over Mé = M4/T] where T] is the one-parameter group of translations gen-
erated by the timelike Killing vector field gi. Tensor analysis over M3
js developed and the static case, including the Das-Coffman solutions, is
reviewed,

In Chapter 4, we demand that the meson current Ji is parallel to gi.

This condition is called isometric motion, and has been used previously to

simp1ify the Einstein-Maxwell-Lorentz equations. Used in the present
context, it enables one to write the EMKG equations in terms of the metric

gaB of M3, two complex potentials ¢ and T, and the real meson field n.

Two significant results are then demonstrated. The first is that the mag-

netic field is parallel to the so-called twist vector (determined by the

A

9401.) ’
which is a functional relationship between 944 and the real part of the

The second is that the Weyl-Majumdar-Papapetrou (WMP) condition,

electromagnetic potential ¢, implies that either e2 = 16Trm2 or that the
real and imaginary parts of ¢ are functionally related. In the above, e

and m are the charge and rest-mass of the scalar meson.
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Chapter 5 constitutes an attempt to apply the Kramer, Neugebauer,

"~ and Stephani (KNS) solution-generating gg§gEE?6 to the EMKG equations.

Thé stationary Einstein-Maxwell or Einstein-Maxwe115Lorentz equations with
jsometric motion for the fluid are derivable from an action principle on

M, with a Lagrangian density which is invariant under a group of trans-

3
formations isomorphic to SU(2,1) acting on ¢, T, and, in the case where a

fluid source is present, on the pressure, density, and fluid velocity
fields. This group transforms among solutions of the field equations in
a nontrivial way. However, if we apply the KNS technique to the station-
ary EMKG equations with isometric motion for the meson, then the trans-
formations so obtained are, in general, trivial. However, along the way,
one discovers a group isomorphic to SU(2,1) x T] which transforms among
solutions of the stationary EMKG equations with the meson massless and
electrically neutral. Mass breaks the SU(2,1) x T] symmetry much as iﬁ
breaks conformal symmetry in electrodynamics.

In Chapter 6, the stationary EMKG equations with isometric motion
are further simplified by imposing axial symmetry on the metric and the
electromagnetic and meson fields. Interestingly enough, it is demon-
strated that the metric can be put in the so-called Weyl-Lewis-Papapetrou
form if and only if the WMP condition is satisfied. Fina]]y, a class of
exact solutions +*s found. These solutions are stationary (but non-static),
axially symmetric, and satisfy the WMP and isometric motion conditions.

The final Chapter is a discussion of the properties of the solutions
found in the previous Chapter. In particular it is shown that the metric

has causal pathologies similar to those of the Godel metric. The metric is
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not asymptotically flat, but is homogeneous. The sources are shown to be
well-behaved in that Tij satisfies the strong energy condition of Hawking
and E11is.

There are four appendices. The first summarizes the properties of
principal fiber -bundles with a connection. The second shows that a station-
ary spacetime M4 has the structure of a principal fiber bundle over a

strictly Riemannian M3 = M4/T1. The components 944 determine a connection

on the bundle space M4. The remaining two appendices are technical.

D. Suggestions for Future Research

In terms of the subject matter of the thesis itself, there are two
projects which are worth pursuing. The first is the question of whether

Theorem 3.1 could be strengthened so that the hypothesis that either

% Mij =0 or g Eij = 0 could be dropped. The second is to find other
solutions of the EMKG equations, in particular solutions where Re(¢) # a
constant and/or n # a constant. It would be gratifying if such a solution
required the parameter e to satisfy an eigenvalue problem a la the Das-
Coffman solution. The hope is that such a solution would be a more physi-
cally realistic classical model of an elementary particle than either the
Das-Coffman solution or the solution found in this thesis.

The rather dramatic simplification in the stationary EMKG equations
that results when isometric motion is imposed suggests the use of that
condition in other equations for interacting systems of gravity, gauge
fields, and sources. Under current jnvestigation are the Einstein-Maxwell

28,29

Diracz7 and Einstein-Yang-Mills-Higgs equations.
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Finally, Appendix B suggests treating the stationary gravitational
vacuum as a gauge theory. Under investigation by the author are questions

of topology and guantization in this formalism.
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jection. Given peM,, there is a neighborhood Up of p such that =~

2. THE WORLD-BUNDLE

A. The World-Bundle

A natural geometrical setting for the physical theory described in
this thésis is the world-bundle W. The latter is a principal fiber bundle
w%th a connection. The pertinent properties of principal fiber bundles are
summarized in Appendix A. More detailed treatments can be found in
Kobayashi and Nomizu30, Drechslier and Mayer3], and Daniel and Via11et32.

In spelling out the properties of W, most of the notation and conventions
used subsequently will be displayed.

The principal fiber bundle structure of W is denoted by w(M4,U(1), T).

Here W is a C manifo1d (the bundle space), M4 (the base manifold) is a

four-dimensional connected Hausdorff paracompact ¢” manifold, U(1) (the

structure group) is the one-parameter Abelian group of unitary transfor-

mations, and m:W +.M4 is a surjective c” map, called the canonical pro-
)
is diffeomorphic to prU(]). It is not assumed that W is trivial, i.e.
that W is diffeomorphic to M4xU(1). See Figure -2l -

The manifold. M4 is provided with an affine strucfure; In particular,
it is assumed that M4 has a semi-Riemannian structure. This means that
there is a rank-two non-degenerate symmetric tensor field 3 on M, with

33 ~

signature -2. In the usual way”~ the metric g determines a torsion-free

affine connection on M4 . On:a coordinate patch (i.e. locally), where .

the metric has components gij’ the connection is determined by the

Christoffel symbols




t
[
re—

1

The World-Bundle.

Figure 2.1 :

(1)n x A
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im,” ~

(93m,k * %km,j = Ijk.n’* (2.7)

io_1
Tsk =29

Lower case latin indices 1,j,....,ze {1,2,3,4} and the summation convention

holds for repeated jindices in a term. A comma denotes partial different-

A A

: =9
jation with respect to the coordinates, e.g. gij;k = axk 93,

Covariant derivatives with respect to g are defined as usual, and

locally are denoted by Vi. Thus, for example, if Bj is a covariant vector

field on M4, then

) k
ViBs = By 5 - I358-

The Rijemann curvature tensor is defined so that its components fn a chart,

AL

i -
R skm® are given by

i i i r i r i

R skm = Timok ™ Tikom * Timivk ™ TikPvm - (2.2)

The Ricci tensor and curvature scalar are, respectively,

AS

3k = R1jki’ and ‘ (2.3a)

= >

>
I

g Rjk' (2.3b)
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These tensors satisfy the usual algebraic identities:

A "~ "~

Riskm ¥ Rimjk * Rikmg =

?

A ~ n

R (2.4)

iikm = Rigmk = Ryikm T Remiye

X >

ij Ji

A number of differential identities are also satisfied by the Riemann ten-
sor and its contractions, the most important of which are the Bianchi

identities:

A A A

V1R1jkm + vaij1k + kaijml =0, (2.5)

This in turn implies the contracted Bianchi identities:

Vijk = 0, , (2.6)

"~ "~ "~

P 1 . . .
where ij = Rjk -5 ijR is the Einstein tensor.

The semi-Riemannian affine structure on M4 can be described in a co-

ordinate-independent way in termc of differential form533. This is accom-
plished by introducing the orthohorma1 family of 1-form fields w? = w? dx1,
such that

§1Jd)awb = nab

395 =ngp = diagonal (-1, -1, -1, 1). (2.7)
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Lower case latin indices a,b,...,he {1,2,3,4} and denote the tetrad (or

vierbein or invariant) components. The affine connection on M4 is deter-

mined by the connection 1-forms wab vaiab dx'. These quantities are

related to the F;k by

a _ r a S k
wp = T v enp dxt, (2.8)

t

where esb = gs nbcwct are the components of the orthonormal basis of tang-

a

ent vectors dual to the w i

The curvature 2-forms Qab are defined as

a _ a d c
Qb—dwb+wc/\wb, : (2.9)

and are related to the curvature tensor by

a _17ra k m

Q b =3 R bkmdx A dx, (2.10)
~a _ o a _Jj . ‘ ' .

where R bkm = R skm w . ev . The torsion-free property of the connection

and the Bianchi identities are equivalent to, respectively:

d® + w3 A w® = 0, and (2.11)

do +u)C/\Q C/\u)c. =0 . ' (2.12)

Equations (2.9), (2.11), and (2.12) are the Cartan structural equations for

a connection on the bundle of orthonormal frames 0(M4) over M4. This is a



-14-

principal fiber bundle over M4 with structure group L:, the proper ortho-
chronous Lorentz group. The bundle space of 0(M4) consists of all bases

34. The covariant deriv-

(frames) of the tangent spaces TpM4 at all peM,
ative with respect to § acts upon all smooth (i.e., C*) sections of the
vector bundles associated with 0(M4) under the various representations
of the Lie group L:, i.e. smooth tensor fields. The wab and the Qab
may be interpreted as the matrix eiements of the 1o¢a1 expressions for the
connection 1-form and curvature 2-form fields, respectively, of a connect-
jon on the principal fiber bundle 0(M4).

The world-bundie W is also endowed with a connection, denoted here by
A. Thus (see Appendix A) A is a 1-form field over ¥, and it determines a
unique smooth decomposition of Tww into horizontal and vertical subspaces

for each welW. If UCM4 is the domain of a chart on M4 and S: U~ W is a

local smooth section, then the local expressions for A are

K. = A(5,5.) = -ieA (2.13)
. = -) = -1€A. U, .
J *J i*
where u is a basis of u(1), the Lie algebra of U(1). The féctori is
introduced in order to make Aj real-valued (u(1) is anti-hermitian). The
constant factor (-e) is chosen for later convenience.

The curvature 2-form field F is
F = DA, (2.14)

where D is the exterior covariant derivative. Since U(1) is Abelian,

it follows that
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F = dA (2.15)

The local expressions for F are of the form

~

= -jeF..u = -i . -AL . 2.
1.6e.
F.. =A. . - A, .. (2.17)

The curvature 2-form F satisfies the Bianchi identity

DF = dF = 0 , (2.18)

+F +F,, . =0, - (2.9)

Fisok t FeiL;

A cautionary note is in order here. A common practice is to essent-
ially drop the distinction between the globally-defined forms A and F on W

and the forms A = Aidk]and F = ~%4dex1/\ dxj. To do so implies that

there is a global smooth section on Mys and hence that W is trivial, i.ef'
isomorphic to M4 x U(1). 1In order to keep open the possibility of the
non-triviality of W, the objects A and F above will be assumed to be defined

with respect to a local smooth section.
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The fundamental representation of U(1) is that carried by C = the

complex plane. If aeC, then the action (left or right) of U(1) on o is
juét of the form eieu, where 9cR. Denote the vector bundle associated to
W by the fundamental representation by V(M4, C, nv). Thus the fibers of
Vv are isomorphic to C.

Let o: U»C be a local smooth section ofVV. The set { o(m) |meU} is

called a moving frame over U. If |o (m)| = /o[m)*a(m) = 1 for every

meU(o(m)* is the complex conjugate of o(m)), then the moving frame can
.also be interpreted as a local. section Qf'w; :In’this case o is called a
 Tocal gaugéF,

A gauge transformation on W is a smooth map v:U - U(1). Gauge trans-

formations act upon moving frames of vector bundles associated with rep-
resentations of U(1). Let o be a local gauge, and let Ai be the components
of the local expression for the connection A with respect to o. By

equation (A.10), the exterior covariant derivative of o is
Do = 1'eAjde ® o ©(2.20)

The fundamental representation of the gauge transformation v is of the

ie . .
form e u’ where u:U > R is smooth. Thus o is transformed to a new

gauge ¢' by
gt = eV 4 (2.21)

Since the exterior covariant derivative is independent of the gauge, it

follows that
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Do' = ieAé dx" ® o'

From the fact that D is a derivation (see equation A.12 of Appendix A),
and from (2.21), it follows that A&, the Tocal expressions for A in the

transformed gauge o', are related to Aj by the formula
AL Ay U (2.22)

tet ¢ be a smooth section of the vector bundle associated with the fund-
amental representation of U(1), and denote its component with respect to
the gauge o by ¥, so that ¢ = yo. The component of ¥ with respect to

o' is then given by
o= e (2.23)

The geometrical setting just sketched is now given the following
physical interpretatioﬁ. The base manifold M4 is spacetime. The semi-
Riemannian structure on M4 determines the gravitationa1’f1e1d. The conn-
ection on W determines the electromagnetic field. In particular, the
real-valued tensor field Fij is the electromagnetic field strength tensor
- field and Aj is the four-potential. Matter fields on spacetime are smooth
sections of vector bundles associated with representations of U(1). 1In
particular, smooth sections of the vector bundle associated with the fuﬁd—
amental repreéentation of U(]) are the wave-functions bf mesons, i.e.
charged massive spin-zero bosons. Physically measureable quantities are

required to be independent of the choice of gauge and spacetime coordinates.
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For example, the field strength Fij and the probability density of a
meson, namely, |1,U|2 = y*P, are gauge-invariant.

Alternatively the wor]dfbund1e W has the structure of a fivejdimens—
jonal semi-Riemannian manifold with a one-parameter isometry. The group
which generates the isometry is U(1). This viewpoint is, of course, that
of the Kaluza-Klein "unified" field theory35’36, as updated and general-

jzed by Kerner37, Trautman38, and Choag.

B. The Field Equations

If the world-bundle is to be a model for classical, i.e. non-second-
quantized, interacting gravitational, electromagnetic, and mesonic fields,
then the so far unprescribed fields ;ij’ Aj’ and ¥ must be goverqed by
appropriate dynamical laws. It is postulated here that these dynamical
laws are derivable from an action principle. Hence, it is assumed that
there is a lagrangian density L(y; Aj; a]j) depending on the fields and

their derivatives such that when the action functional

124, ndxndx3ndx? is extremized, the

~

I(ys A 91-3-) = Jytlys Ass 91-3-) (-g)

J J
consequent Euler-lLagrange equations are the dynamical Taws. In thé above
expression, U is an open connected compact region of M4, a is the deter-
minant of the aij’ and the variations of the fields on the boundary 3U are
prescribed.

The criteria for choosing the form of L are the fo]]owing;
(i) L is gauge and coordinate transformation invariant;
(ii) If the connections on 0(M4) and W are both flat, i.e.,
if the respective curvature 2-forms Qab and F vanish,
then L reduces to the usual free lLagrangian density

Lo(w) = n1JBiw*ij + mzw*w for a meson with rest mass m

in Minkowski spacetime;
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(iii) L should be the "simplest” Lagrangian density consistent

with the previous criteria.

The first two criteria can be justified on physical grounds, while

the third is invoked for primarily aesthetic reasons. The following is

a short 1ist of physically not untenable possibilities that are ruled out

by the above:

1.

Higher order se]fQinteractfons of the meson fields, e.g., terms
in the Lagrangian density of the form b(w*w)z violate (ii). Such
terms may be useful in accounting at Teast phenomenologically for
the interaction of the meson with the strong and/or weak forces.
The T1ikelihood that existing mesons, e.g. pions, are not "fund-
amental™, but rather are composite partic1e52 cannot be dealt
with in the formalism being used here.

The intimate connection between the electromagnetic and weak
interactions as postulated in the Weinberngalaam theory40 and
which is on the verge on experimental verification cannot be
accounted for within the model being deve]obed here.

The possibility that the affine structure of spacetime has
torsion41 has been explicitely ruled out here.

If there is supersymmetry in the universe42, thén certain

fermion fields such as the spin 3/2 "gravitino” fie1d43 would
have to be included.

One interpretation of the Bohm-Aharonov effect is that the
interaction of matter fields with the electromagnetic field

may be gauge—dependent44.
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A11 of the above caveats suggest the Timitations of the model which
is being developed here. However all of the above, with the possible excep-
tidn of 6, could be embraced within geometrical settings similar in principle
to the world-bundle W. For examp]e, possibility 3 could be developed in
terms of a wofld-bund1e with structure group SU(2) x U(1)40.
We shall begin by considering the Lagrangian density L0 for a free

scalar field in Minkowski spacetimé. L0 can be made gauge and coordinate

transformation invariant by making the following substitutions:

25D, =V, + ieA.,
o3 j j

so that the Lagrangian density becomes
L, = g 9DRp*D,p - mly*y (2.24)
KG ~ it 7d ) )

The constant e is to be interpreted as the charge of the meson.
The "kinetic" or "free field" terms in the lLagrangian density are

now assumed to be

2 i3
Ley =R - 5k F IE. ., (2.25)

1]

N —

where R is the scalar curvature and k is a coupling constant. The complete

Lagrangian density is

L= Lew * 2k Lye- ) (2.26)
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This choice for L is governed by the criterion of simplicity, as LEM is
the simplest non-trivial scalar which can be constructed from the partial
derivatives of Qij and Aje The units used here are "natural gaussian"
if k = 8n. Hence ¢ =f = G (the Newtonian gravitational constant) = 1.

The field equations are obtained by extremizing the action I {defined

on p. 18) under independent variations of the fields ¢, y*, Aj’ and g'J,

subject to the "boundary-conditions"
Sy = SY* = 5Aj =0,

“ms r “mn S N

g (8T ) - g (s’ ) =0,

on 3U. Hence the field equations are:

2

K = (D‘]DJ. +mS)y =0, | (2.27a)
* = (nrIp* 2 * = '

k* = (D*9D% + m°) y* = 0, (2.27b)
M' o= ij” -3 =0, (2.27¢)
Si3 % G5 *k Ty =0, (2.27d)

where

3= —ie[(D*i(p*)(p - w*niw], | (2.28)
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and

T E Mt Eg (2.29)

with

g = 2 0% 0y - aps [(0xen) (o) - mym], (2.30)

Bis ® ik ij 0 R P (2.31)
The differential identities satisfied by the fields are

Vij - 0, (2.32)

vaij - 0. (2.33)

The field equations (2.27) are known as the Einstein-Maxwell-Klein-Gordon

(EMKG) equations.

The following counting argument shows that in general the EMKG

equations are determinate. One may impose four coordinate conditions

(C
955 :
+1 () +1 (p*%) -4 (c' =0) -1 (A
10 (Sij = 0)
0) - 4(vaij

field equations is 11

+1 (K* = 0) -_1(ijj

determinate.

1

+

T 0) and one gauge condition (A = 0) on the fields y, y*, Aj’ and

~

Hence the number of independent fields is 11 = 10 (gij) +4 (A.) +.

J
0). The number of independent
4 (M =0)+1 (K=0)+

0). Hence, the EMKG equations are
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. The Real Gauge

- In the following, a choice of gauge will be imposed on the EMKG equat-
jons. This gauge, called the real gauge, will simplify subsequent comput-
ations, and will facilitate thé comparison of the EMKG equations with related
field equations involving gravity.

Let ¢ be a smooth meson field, which is non-vanishing on some u:M4.

Then by defining the smooth functions

n = (W%)%, | (2.38)
o == Tn (U*/y), | (2.35)
so that

V= neiea, / (2.36)

it is seen that n can be interpreted as the real-valued component of the

€% This choice of gauge is called,

meson field with respect to the gauge e
for obvious reasons, the real gauge. Clearly the constant function € = 1

over C is also a gauge, and-shall be dubbed the canonical gauge. The comp-

onent of the meson field in the canonical gauge is ¢ itself. Let the comp-
onents of the connection 1-form on W be ﬁ& in the canonical gauge. Then
the transformation from the canonical to the real gauge e'® = ¢'®% has the

effect

n = e '€ ) (2.37)
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| A, = At ®s 55 (2.38)

by equations (2.22) and (2.23). Note that Aj are the components of the
connection in the real gauge. Now in the canonical gauge, and by use of
(2.36), the quantities 3},ﬂ}j? and the Klein-Gordon equation (2.27a) be-
come, respectively,

—J'i = 'ZeZ(K.i + OL,T-)TIZ, (2 -39)

2, — 2 “rs
(Ay + o) (AJ- + a,j)n - g: s [g Nyl *

M.. = Zn,in,j + 2e i3

1]
(2.40)

2" _ — 2 2 2
+ g (R 4 o) (B +an) -’
K = {vrv n - ezgrs(ﬂ +a,.) (A +a, )+ m2n +
- r r ’r S ’s
(2.41)

+ ien-]Vr[(Kr + on,r) nZJ } e® = g,

The Klein-Gordon equation for y* is just the complex conjugate of the last

equation above. If n_] #+ 0, then (2.41) and its comp]ex‘conjugate hold if

and only if the real and imaginary parts of Ke '®* vanish separately. Hence,

in the real gauge, the EMKG equations reduce to:

033 = Gy * KTy =0, | (2.42a)
m' = ij’j 3 =0, | (2.42b)
K. = 2 eZAJAj)n - 0, | (2.42¢)

= VJan + (m



-25-

¢ = V(an0) =0, (2.424)

J iJ
Mg = 2mgnsg + 2eTA AT - gij [arsn’rn’s C i ezArAr)nz] ’ (2.43)
and
it = -2l (2.44)

Note that the equation Ki = 0 is equivalent to the differential identity
ViJi = 0, so that when solving the EMKG eguations in the real gauge only
equations (2.42a) - (2.42c) need be considered directly.

This section will be concluded by showing that if certain constraints
are imposed on the solutions of the EMKG eguations, then the resulting
equations formal]y resemble other well-known classical field equations in-
volving gravity. These results will be stated as theorems.
~ Theorem 2.1. The class of solutions of (2.42a) - (2.42c) fof which

n = a constant Z 0 satisfy the field equations

1T .1 rs 2 )

Foo g 944F Fpg * MAAL) =0, (2.45)

Al =0, ' (2.46)

Q=m - e AjAj - 0, : (2.47)
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where M2 = 2e2n2 = a constant. The differential identity ViJ] = 0 becomes

o) =0l - (2.48)

Proof: The constraint n=a constant reduces (2.42c) to (2.47). Substitute
the constraint and (2.47) into (2.42a), (2.42b), and (2.42d) to get the
desired result.//

The equations (2.45), (2.46), and (2.48) are the Einstein-Proca equat-
ions45 foria massive vector meson interacting with the gravitational field.
Equation (2.47) is a subsidiary condition and implies that the vector meson
wave-function Ai is a timelike vector field. The theorem is reminiscent of
the so-called Higgs mechanism46, since a certain configuration of a massive
scalar field effectively "gives mass" to the photon field, but otherwise
plays no dynamical role. In contrast to the Higgs mechanism, where the mass
of the original scalar meson is imaginary and there is a quartic self-inter-
action, the scalar meson here has real mass and obeys the linear Klein-
Gordoh equation;

Theorem 2.2. Let the conditions of the previous theorem‘ho1d. Define the
vector field Vs = (e/m)Ai and the constants p = 2m2n2 and o = -2emn2. Then

the equations (2.42a) - (2.42d) reduce to

11

Oj5 = Gy + K(Ejy +oovyvs) = 0,
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proof: The proof is as in the previous theorem. //

The above are the equations for a charged dust in general relativity
The dust is characterized by constant mass and charge densities and the
velocity vector field is parallel to the electromagnetic four-potential.
Theorem 2.3. If m2 - eZAjAj = 0 and if there is a real-valued scalar

field 8 such that n,. = 6A., then equations (2.42a) - (2.42d) can be
i i

written in the form:

(F)Y = V(pVJ) = 0,
: J
(F)Q = vJv. -2 =0,
J

_ 22 _ 2 . 2 - 5% -

where p =mn", p = |(m/e) 6|°, 0 = -22 (m/e)n”, and Vi = 2 (e/m)Ai =
L -

= 2%(e/m) 0 ]n’i‘
Proof: Substitute the conditions m2 - eZAJAj = 0 and n’j = eAj into

(2.42a) - (2.42d) to get the desired result.//
‘The above are the equations for a perfect fluid in general rela-

tivity47. Here the ratio of charge density o to mass density p is a



-28-

1
2

constant = -2 (em)_]. The fluid velocity is parallel to the electromag-

netic four-potential. Also the pressure p and the mass density satisfy an

equation of state of the form

~

ij .
g Jp’-ip:j = 4pp-

If 0, is paralleTtorni (which includes the case 8 = constant), then

Fij = 0.
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3., THE STATIONARY CASE

~

'In this section it will be assumed that the metric g is stationary.
1t will be demonstrated that under certain conditions the EMKG equations
together with the stationarity of the metric imply the stationarity of
the e1ectromégnetic and meson fields. The metric will be put into the
usual 3+1 form and tensor analysis on an associated 3-manifold M3 will
be developed. The components of the curvature tensor will be written in
terms of tensor fields on M3. Finally, the static case will be briefly

reviewed.

A. Stationary Metrics

Let x1 be coordinates on UCZM4. Then the dx1 are a basis of 1-form

fields dual to the coordinate basis ai = —27-. The metric g can be written
X

as

A=A _ij

g gijdx dxv, (3.1)

where dx'dx® is shorthand for 1/2(dx" ® dxd + dxJ C),dx1). The metric
g is said to be stationary on M4 if there is a smooth time-like vector
field E'over M4 which generates a one-parameter group of isometries

This means that E is a Killing vector field, i.e., that Z satisfies the

Killing equation
£9g=0, (3.2)
£ . '

' >
where £ is the Lie derivative48 with respect to £. The Tocal form of

(3.2) is
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= ngi + vigj = 0, (3.3)

Consider the class of observers whose world-lines are the trajector-

>
jes (integral curves) of £. Such observers will be called, following

Trautman48, Copernican. A Copernican chart (x], x2, x3, x4 = t) is

characterized by 34 = E, i.e,, the x4-1ines are fhe wor1d51ines of a
Copernican observer. Clearly, in such a chart, gi = 61.

The metric ; is static if it is stationary and if the trajectories
of E are orthogonal to a family of hypersurfaces. The latter condition is

equivalent to48:

E[i567 = 0 _ (3.4)

fThe following resu]ts48 are easily derived from (3.3) and (3.4): 'If
§ is stationary, then ina Copernican chart Qij,4 =0, If ; is static as
well, then in a Copernican chart, §a4 =0 for all a = 1,2,3.
Trautman48 has shown that neighboring Copernican observers in a stat-
ionary spacetime appear at rest in a Fermi-transported local frame if and
only if the spacetime is static. In this sense, the physical distinction

between stationary and static is that only in the latter neighboring

Copernican observers will not rotate with respect to one another.

B. Stationarity of Electromagnetic and Meson Fields

It is usually assumed, for example in Das22 or in Israel and Wi1son49,
that non-gravitational fields in a stationary spacetime are also stationary.

If @ is an observable non-gravitational field, then & is stationary if
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£6 = 0. If ¢ is a wave-function, so not directly observable, then y is

2

stationary if the Lie derivative of lwlz = nz,whichjé_observab1e, is

equal to zero. These latter conditions are not always necessary consequen-
ces of the field equations and the stationarity of a, as has been demon-
strated by WO011ey50 and Wainwright and YaremoviczS]. In this section it

will be asked whether (3.3) and the EMKG equations imply

? Fis = 0s (3.5)
and

elyl = £ =0, 3.6
EM £n (3.6)

where Fij is the electromagnetic field strength and y is the meson wave-
function. Note that from (3.6) and from the fact that £ obeys the product

rule, it follows that

gw = iEy, (3.

where E is a real-valued function. The stationarity of ¥ means that [yl

s constant along the trajectory of E through p, for each pe M,.
ng 4

ﬂA necessary and sufficient condition for (3.5) is that there exists

a smooth scalar field f such that
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This follows from (2.17) and the factS] that for any tensor field T}"‘ :

o\ L i |
—g(vk Tj...)“vk<§Tj...)' | (3.9)

Now perform the gauge transformation

Ay = Ay s (3.10a)

Te=e 1y, (3.10b)

where X is chosen so that £ X = -f. This choice for A is possible because
g

of the required smoothness of f. Now

g K} _ g A+ g As
=0,

and

£ (v *9) k (w*y) =0

A= 0. (3.5')
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Wainwright and YaremoviczS] proved the elegant and general result
that if g is homothetic, i.e., that £’gij = ZYgij’ where vy fs a constant,
and if Fij is non-null (FijF1J # 0), then the equations for a charged

perfect fluid in general relativity imply that

£V, =Y Vi, £0 = -2Yp, £p = -2yp, and
g .

g 1 £
.= yF.. + Y *F. .,
2 i3 - iy 7Y T

where v%; p, and p are as defined in section 2.C, *Fij is the Hodge dual

of Fij ( see section 4.A) and ? is related to the comp1ex1’on52 o of Fij

by ? = £a.

£
€

An analogous, but alas weaker, result for the EMKG equations will now
be demonstrated:
Theorem 3.1. Let E (which is not necessarily timelike) generate an isometry
of g, so that ¢ 9i5 © 0. Further, suppose that the EMKG equations (2.42)
hold, and that either £ M., =0 or £E., = 0. Then £n =0 and £ A, = 0.

g 13 g 1 e . g

The proof of the theorem depends on the following two lemmas:
Lemma 3.151. Let Aij be a symmetric tensor field with 2 Aij = 0. If X is
an eigenvalue of Aij with a non-null eigenvector, then £ ) = 0.
Proof: Let u’ be a non-null eigenvector of Aij with eigenvalue A. Take the
Lie derivative of both sides of AijuJ = AgijuJ to get the desired result. //

Lemma 3.2. 1In the real gauge, the eigenvalues of

- 2 2 ~ 2.2 ’rs 2 2
M,. = -
.ij - Z(T],]- n,j te A.iAjn ) + gij [m n g (n:r‘n’s te AY‘ASn )]
~ 2
=20, + g, (nn% - Q),
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_ 2 2 - Tij
N n’j + e AiAjn and Q = g Qij’ are

=
>
3]
=
D

)
[ Y
.
I

mn - Q, and . (3.11a)

>
n

+ (3.11b)

>
1]
3
3

' ij 2 .
Vg, 07 + g

Furthermore, the eigenvectors at peM, corresponding to Ao(p) generate a
subspace of TpM4 which contains at Teast one non-null vector.

Proof: Consider the secular equations for Mij:

- hggg) = det(20;5 - 2A ),

= det(M, .
0 et( 1] J 1J

where A = Q - m2n2 + A. So we solve the secular equation dEt(Qij'Agij
2 2

for A and then find the eigenvalues A of Mij from A=A +mn - Q. A

)=0

straightforward but tedious calculation yields the desired eigenvalues AO
and Ai.

Since Q - mzn2 + AO =0, it follows that

_ A 2 2
(M.ij - Aoa.ij) - [ZQ.iJ‘ _gij(Q"mn +>\O)]

Thus, if UJ is an eigenvector of Mij with eigenvalue Ao’ then

i :
Qij U’ =0, (3.12)

and hence QijU1UJ =0, i.e., (n,].u‘)2 + (enpivh)? = 0.



-35-

A necessary and sufficient condition, then, for (3.12) is
Ns u =20, (3.]33)
A1U1 = 0. . (3.13b)

If Mss and Ai are nonjcollinear, then the set of Ui satisfying the above
equations generates‘a two-dimensional subspace of TpM4. Let ri and si

span this subspace. If one or both of ri and si are non-null, then we are
done. If they are both null, then the vector ti £ ri + si is non-null
since gijtitj = 2§ijrisj is non-zero by the fact that two null vectors are
orthogonal if and only if they are collinear. If s s and Ai are collinear,
then the solutions of (3.13) span a three-dimensional subspace, and this
subspace obviously contains a non-null vector. //

Proof of Theorem 3.1. From g g.. = 0, it follows that g Gij = 053. Hence

1J

-from Gij + kTij = 0 one has g Tij

Now, since Mij can be written as

A

0. Thus, by hypothesis, ¢ M.. = 0.
g

it follows that

A

0=¢€M,, =280Q.. - g..

£ 1J £ 1] 1] g xb.

By Lemma 3.2, AO has a non-null eigenvector, and so by Lemma 3.1,
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‘ gh = 0. Thus
£
£0;; =0, . (3.14)
. N
and since £ Q = g EQ]-J.,
€ €
it follows that £ Q = 0. But
£ :
) ,
0:=£A0=£("‘“2-Q) =n’ngn-£Q=2nngn,
€ € € € ‘ €
and so
£n =20,
€

Finally, the last equation implies that g N>y = (g n)’i = 0, so that from

0, then

1

(3.14) it follows that £ (AiAj) = 0. If each component Ai
£

i = 0 follows trivially. If one component, say A], is non-zero, then

Tith
=

g(A]A]) = 0 implies g A] = 0. Then from g (A]Aj) = 0, it follows that

£A. =0 for j =1,2,3,4. //
g J

C. The 3 + 1 Decomposition of the Metric

-
In a Copernican chart, the timelike Killing vector & satisfies

i_ i
£ —f64 . (3.15)



-37-

Hence, in a Copernican chart with coordinates (xa,t), as we have seen above,
the‘gij are functions of the x* only. Henceforth, lower case greek indices

are elements of {1,2,3}. Without loss of generality, the metric g can be

written in a Copernican chart as fo]]ows49:

g - -e"”(x)gas( Jax®ax® + () [a (x)ax® + dr]? . (3.16)

The functions w, » and a, depend on the x% only, and the symbol

908
(x) = (x*). The above shall be called the Copernican form of the metric

and it is clearly preserved by the following coordinate transformations

6
on M4 >
& = fOL(X), (3.17a)
t' =t + A(x), (3.17b)

where f* and A are arbitrary smooth functions of the x%, if and only if the

aa transform as

a' (x') =X 4 (x) -2, (x). (3.18)

Note the resemblance of the last equation to a gauge transformation of the
electromagnetic four-potential Ai‘ In fact, the choice of a, for a part-
icular Copernican chart is only determined up to the addition of a gradient

of an arbitrary smooth function.
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The above considerations motivate the following reinterpretation of a
stationary spacetime.M4: A statijonary spacetime is a principal fiber
bundle M4(M3, Ti, HS). The base manifold M3, often called the associated
space21’22’25, is a connected Riemannian three-dimensional smooth manifold
and the structﬁrejgroup I% is the one-parameter group of isometries gen-
erated by 2. In fact, M3 o M4/T]. The bundle space M4 is endowed with a
connection. Given a moving frame, i.e,, a smooth non-zero real-valued

function on UCM,, then this connection is locally determined by the smooth

35
1-form field aadxa over U. The curvature 2-form of the connection is given
locally by

faB 3.8 % - (3.19)

In Appendix B it will be shown how the Riemannian structure on M3 and the
connection on the bundle space M4'determine the semi-Riemannian structure
on M4.

The metric on M3 is here chosen to be the 9,8 S defined by (3.16).
This choice is merely conventional, and others have used other conventions,
€.g., Lichnerowicz54 chose -e"wg . The quantities g ,, a_, and w-transform,

‘ of aB’ Ta
respectively, as a rank two tensor, a covariant vector, and a scalar under
coordinate transformations of M3.

Henceforth, we shall work in M3. Unless otherwise specified, greek
indices are raised and lowered by 90" In cases where confusion could
arise,, tensors in M4 are "hattedf, e.g.,

FO = g™F ]
s 79 T
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Covariant derivatives of tensors in M3 are denoted by a slash. Thus, for

example, if Ba is a covariant vector field on M3, then

- _rY
BaIB Ba,B {uB} BY’

95,8 " 9ps,0 " gaB,G)

are the Christoffel symbols for the metric 9,8 on M3. The following formulae

will be used repeated1y49’54:

~

a8 ~ -e™ a8 ¥ ewaaaB
§a4 - ewaa :
944 = "
"aB - 0B (3.20)
aa4 - QWO
§44 = e™W - %%
L o wkh
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The alternating tensor on My is defined as

Ny

a8y =9 €apy °
where

+1, if (oBy) is an even permutation of (123),
€08y = -1, if (aBy) is an odd permutation of (123),

0, otherwise.

The NaBy are related to the components of the alternating tensor

N3 km on M4 by:

- w
Mgy - € Tagyd ° (3.21)
where

= (-q)% 3.22
ﬂijkm = (—9) ( . )

€ijkm

with €4 5km defined ana]ogou;]y to €ypy "

A

Finally, the components of the curvature tensor R1jkm on a stationary

M, in a Copernican chart can be expressed in terms of tensors on M36:

4
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[exp(2w)/4] [-2m!“v - Sw’uw 5

3

+ (SSA:[(D]

4

[exp(4w)/4] [ " 1,

-1 | } -2a 3"
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UY ’B Y BIJ s ] ’u

U o U
+ fuyf B] + [exp(4w/4] [aBa fauf Y] .

pH - _ u T ' u
R ol lexp(2w)/4] [ 2aaw| v+2f oV 3aa@,vw,

+ &¥a Mwtdw 2w M or2w He
Vv o VO 0V Vo,

” | .
b g gf el Bf 1+ [exp(aw)/a] [, @ ]
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[exp(4uw)/2] [anduf”[aaY]]_,.

¥ fB[Yfﬁ]

4



42~

where Aw = gan o8 RGBYS are the components of the curvature tensor

on Ms, and the fa are defined by (3.19).

B

D. The Static Case

The equations (3.4) are necessary and sufficient conditions that a

stationary M4 is also static. If we define a vector field T on M4 by

[3 knm]

i FMijkm & VE (3.24)

r—]
H]

then clearly (3.4) is equivalent to Ty = 0. Now in a Copernican chart it

turns out that

Ty = 0,
and
-1 Qlw By
T, =7 € naByf . (3.25)

The T, are the components of a vector field, called the twist vector field,

on M3. If M4 is static, then it follows that T, = 0, and hence that

Let us return for a moment to the principal fiber bundle interpretation
of a'statibnary M4. The faB are the components of the curvature 2-form of
the connection defined Tocally by the a, on the principle fiber bundle M,

(M3, Tqs HS). Thus the bundle space M4 is static if and only if the
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connection if flat. In this interpretation it is manifest that the static
property is local. A flat connection implies that the connection 1-form

’aadxa is closed, i.e., d(addxa) = 0, The converse of the Poincare’ 1émma
("Closed forms are Tocally exact")33 implies that for each peM3 there is a
neighborhood of p in which there exists a function X such that aadxa = da,

fewsa, = A, Thus the metric g of a static M, can be written as

g = ~Ve'.‘”gOLdeOdeB + %y .

22,47,88 " ith timelike co-

This is the standard form of a static metric
ordinate A. The equations A(x*) = constant locally describe the spacelike
surfaces orthogonal to the E .

The properties of the (locally) static EMKG equations have been
examined in detail, for example in Das22 and Das and Coffmanzs, in Bronni-
kov, et. a1.55, and in Stephenson23. Some interesting exact static so]uj
tions were found by Das and Coffmanzs. The metric and the electromagnetic
and meson fields of these solutions are spherically symmetric. The electro-
magnetic field is, in addition, Coulomb-1like and described by a single real-
valued potential A. The so-called Weyl-Majumdar-Papapetrou (WMP) condition
is satisfied; »
9aq = €% = (1 + 4np)?

and the "bare" charge e and mass m satisfy a balance condition®

e2= Mmz.

* The units used in references 22 and 25 differ from those used here. 1In
particular, one may transform the former units to the Tatter by writing
eZ,E 4ﬂ€2, where ¢ is the unit of charge in references 22 and 25, and e

is the unit of charge used here.
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In the following, (x, 6, ¢, t) are modified spherical coordinates.
In particular, x is the inverse of a radial coordinate, 6 and ¢ are the
usual angular coordinates orn a sphere, and t, the timelike coordinate, is

chosen so that 51 =g i.e., the chart is Copernican. In these co-

i
4!
ordinates, the metric, electromagnetic, and meson fields are, respectively,

2

o’ Zade?)] + U2 (x)dt?,

3 = - U2(x) [csch4'x dx? + csch®x (de” + sin

Alx) = (%)'] [U_](x) -11 ., ~ (3.26)

wix,t) = -k-]x ei1Et.

The function U(x) = e"m/2 must satisfy the second-order nonlinear ordinary

differential equation

2
5L§-U + (ex cschzx)2 w3 = 0. (3.27)

dx

The equation (3.27) resembles the field equation for a static scalar
field in one space dimension with a cubic self-interaction. The latter
equation has soliton so]utibnss, and so it is not too surprising that
(3.27) has solutions which are soliton-1ike. One such class of solutions
is found by choosing boundary conditions on U such that the total charge
fM3Jin1/§ d3x is finite and is equal to e. The solution of this boundafy-
value problem entails solving a non-linear eigenvalue equation for e.
The smallest value in the spectrum of e is about two orders of magnitude
larger than the experimentally determined value of the fine-structure

constant.
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4. ISOMETRIC MOTION

- The stationary Einstein-Maxwell equations can be written in a useful

26,49,56,57  1¢ there

and elegant -form in terms of two complex potentials
are sources, then, in general, the above potentials do not exist. How-
ever, if one imposes the condition that the current four-vector J1 of the

sources is parallel to the Killing vector field 51, then the complex

2
potentials can be defined 6. This condition is called isometric motion

since the motion of the sources is along the trajéctories of Ei.

In this éhapter, after some preliminaries, the condition of isometric
motion will be imposed on the current of the meson field. This will enable
us to define complex potentials and write the stationary EMKG equations in
a revealing form. Two significant results are demonstrated. The first is
that the magnetic field is parallel to the twist vector defined in the
previous chapter. The second is that the Weyl-Majumdar-Papapetrou (wMP)

58,59 2 2

condition implies that either e” = 2km™, or that the electric and

magnetic potentials are functionally related.

A. The Electric and Magnetic Potentials

In a stationary spacetime, the electric and magnetic fields can be

covariantly defined. 1In particular,
E. = &F.. , (4.1)

(4.2)

jm g
R |
Yy
[ S}
»
(")

where g1 is the timelike Killing vector field and Fij is the electro-

magnetic field strength. The Hodge dual *Fij is defined in the usual way:



_46;

_ 1 km
*F55 5 2 Mjkm T (4.3)

where n. was defined earlier (cf. equation (3.22)). Equations (4.1)

ijkm
and (4.2) generalize the usual coordinate-dependent definitions

EOL = [.:OL4 ?

= *
Ho = “Fog -

In a Copernican chart, (4.1) and (4.2) reduce to (4.4) and (4.5) since in

this case £1 = §. Henceforth we shall work in the real gauge (cf. section

1
2.C) and we shall assume that the spacetime metric g is stationary and

that either g Mij =0 or £E,. =0, so that, by Theorem 3.1, ¢ n =0 and

RN £
grAi = 0. The latter implies
g Fij =0. (4.6)

From the above and from the factS] that g nijkm =0, it-follbws as well that
g *F.. =0 . A , (4.7)
£

In what follows, the EMKG equations and the stationarity of the various
fields will be used to derive expressions for the "curl", i.e., the anti-
symmetrized covariant derivative, of various vector fields. The work in-

volved is greatly simplified if the abstract (differential geometric)
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yiewpoint is adopted60. In particular, one needs the fo]]owing33
Let X be a smooth vector field over M4, and let B ¢ Fp(M4), i.e., a
smooth p-form field over M4. Then the contraction of B by % is a (p-1)

form field defined by

' > -> > > -
(():( B) (Y]’.."YP-]) = B (X9 Y]’-'.,Y_P-]) ’ (4'8)
where 4&, e s 7P-1 are an arbitrary set of contravariant vectors. Thus

the electric and magnetic fields can be abstréct]y defined as the 1-form

fields E and H which satisfy

E= -2CF, (4.9)
E.

H= -2C *F . (4.10)
g€

s |
1
]

The Maxwell equations can tHen be expressed in the form

1
[an]

dF (4.11),

d *F-=*J | (4.12)
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where *J is a 3-form field dual to the current 1-form field, i.e.,
¥3 2 (*d..,) dx A ddadst =X n . 3" dxi A dxd A dx (4.13)
- ijk 3 'rijk ’ ’

We will also need the definition of the Lie derivative of a p-form.
Given that the Lie derivative of a scalar field (0-form) f is §f==df(i),
and the Lie derivative of a vector field 7 is § 7 = [;,?] = XY - 7?, then
the Lie derivative of a p-form field 6 is defined by33

S

> _ > > £V >
(§e) (Yyseees ,p)-§ [o(Y,5-0 s ¥p)T - 0 (§Y1,Y0,..05¥p) - .o

§7p) , o (4.014)

for any set of p vector fields ?1""’?P'
The following lemma, which is proved by Hicks33, will be used
repeatedly:

Lemma 4.1. Let 6 ¢ Fp(M4) and X a smooth vector field. Then

d(C6) =£6 -~ C (de) . (4.15)
X X X

The l1emma allows us to quickly compute the exterior derivatives of E

and H. We also use the facts that g F=¢ *F = 0, which follow from (4.6)

Y

and (4.7), the definitions (4.9) and (4.10) of E and H, and the Maxwell

equations. The upshot is

dE = -2d(CF) = -2[£F - C (dF)] = 0 , - (4.16)
g [ :
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= -2d{C*F) = ~2[£*F - C(d*F)] = 2C*J . (4.17)
£ - E- & 2

The following theorem is thus proved:
Theorem 4.1. The magnetic field 1jfo}m js closed if and only if C*J = 0.
The latter js true if and only if J[iij] =0, i.e., d is para]]e]?hag.

We shall henceforth require J and E to be parallel. This condition

is called isometric motion26 since the "motion" of the source is along

the trajectories of the timelike Killing vector fie]dvg. A Copernican
observer would observe the meson field at rest in this case. It will be
shown later that there are solutions of the stationary EMKG equations with
the charged meson field in isometric motion but such that Coperﬁican
observers would detect a magnetic field and a magnetic-like gravitational
field, but would not detect an electric field or an electric-like ("New-
tonian") gravitational field. The properties of these solutions will be
discussed in detail in Chapter 7.

Henceforth, we shall work in a Copernican chart and in the real gauge.
The following three theorems are consequences of the assumption bf isometric
motion.
Theorem 4.2. In a Copernican chart in the real gauge, the condition of
isometric motion is equivalent to
= g¥p, = e%g®(ah, - A) =0 . (4.18)
Proof: 1In a Copernican chart E? = gaigi = 0, and thus isometric motion
implies Su g ;iadi = 0. From (2.44) and (3.20) we then obtain the desired

result, since n # 0. //
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The vanishing of the Lie derivative of the 4-potential Ai implies
that in a Copernican chart Ad and A4vare independent of the time coordinate
t = x4. Hence Aa(x) and A4(x) may be regarded, respectively, as a vector
field and a scalar field on M3, the Riemannian base space of the principal

fiber bundle M4. From (4.18) it foliows that these quantities are related

by

A =Aa. . | (4.19)

Theorem 4.3. In a Copernican chart, the x4acomponents of Ei and Hi both
vanish. The remaining components, Ea and Ha’ are the components of locally
exact 1-form fields on M3, i.e., there is a neighborhood of each p ¢ M3 on

which there exists scalar fields A and B such that

Ea = A’a s (4.20)
and
Ha = -B’a . (4.21)

. T i = j = = L v’
Proof: In a Copernican chart, E4 £ F4j F44 0, and similarly for H4.
Since £ E. =0 and £H, =0, it follows that E and H_are independent of

g 1 g 1 a a

t = x4. Hence Ea and Ha are the components of 1-form fields on M3. Now by

Theqrem 4.1, Eadxa and Hadxa are closed T-form fields on M3, and hence, by

the converse of the Poincare 1emma61, they are locally exact.//
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The minus sign in (4.21) is chosen for later convenience. Since

without loss of generality we may choose A = -A4; Thus (4.19) becomes
A, = -Aa, . (4.22)

Theorem 4.4. The assumption of isometric motion implies that the magnetic
field Ha is paraliel to the twist vector Ty (defined by equation (3.25)).

In particular,

= - = ~W
B,a .Ha e ATa . (4.23)

Proof: Take the exterior derivative (in M3) of the 1-form field AdeB.

From (4.22), the definitions of F._, and f _, and from F , = A , we obtain
. Q B o4 o

B

“fe’ T Tag t %Fee T %Fa (4.24)

Hence, using (3.20) and (3.21),

_ o ij
= - = % = e e
B Hy = -*F 7 Tadijh

=l 1w BS ve -
-z ngg 99 (Fgo +agF g - acFg)

. 1 - ) .
= ? ewnaBY gB g.YngEA

i
o
g
=
~
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the last equality following from (3.25). //

A Copernican observer will thus find that the magnetic field and the

magnetic-like part of the gravitational field are parallel.

B. The Complex Potentials

The Maxwell equations (4.11) and (4.12) can be written as a single

complex equation:

dF = J , (4.25)
where

F=F-i*Fand J = -i*J . (4.26)

This prompts the introduction of a smooth complex potential over M4,

¢ = A+ iB , (4.27)
so that

- 2C F = d¢, or ' (4.28)
g

Jp . =

g F-ij ¢’-| b4
where Eij = Fij - i*Fij' In a Copernican chart, ¢ can be considered as a

complex-valued scalar field over M3; .
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In the work of Kramer, Neugebauer, and Stephani26, it was shown that

for the Einstein-Maxwell-Lorentz equations with a charged perfect fluid

‘source in isometric motion, one may define another complex potential in

terms of ¢ and the "wertical part" of the metric,vew and a,- It shall
now be demonstrated that an analogous result holds for the EMKG equations
with the meson field in isometric motion.

R B
% Zijdx A dx©,

it

We begin by defining a complex 2-form field Z

where

;5 = 2[v58; - (76| + KkeFg (4.29)

1

In the above k = 8w, ¢* is the complex conjugate of ¢, and Zij is anti-
symmetric since, by Killing's equation, ngi = -Vigj. For convenience, we

shall write

Si5 % 2ngi =-S5 (4.30)
= - 1 * . i

so that

-z Lz _

zij Sij + ko Fij , | (4.32)

or, in terms of differential forms,

~

Z=S+ke¢* F - - (4.32a)



~h4.

~

where S has the obvious definition. Finally, we define a complex 1-form

field ¢ = gidx1by contracting with E;

N

~~
~
w
w

S’

r = -2C
2

By Lemma 4.1, -

dz = -2 [gz - ¢ (dZ):’ . | (3.34)
€ g
In Appendix C it is shown that dz = 0, Hence, locally there exists a smdoth

complex scalar field I such that

C = '-'dI' s ‘ (3‘35)

or,

~

* = =
S; * ko*g g = T

T, (4.36)

where the Si are the components of the 1-form field CS, i.e.,

g

In the manner of Kramer, Neugebauer, and Stephan126, we now write
T explicitely in terms ¥, ¢, ¢*, and the "twist potential™ Q, which is
defined below. From Killing's equation, it follows that

~

~*=_ j
5, + S, = -2(gg)
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We can write ngj Eew, because this invariant relation holds in a Copernican
chart. The real part of (4.36) is then
[-2e‘”+k¢*¢+1“+1“*]1.=0.
Hence,

-2e” + k¢*¢ + (I + T*) = a constant.

If we choose the constant above to be zero, and write Q@ = Im(I'), we have,

finally,

r=e‘°--'2‘—¢*¢+m i (4.38)

49,62

It can be shown that Q satisfies

= l 7 * * »
Q,'i T.i + 2 1k(¢ ¢,1 - d) ,'Id)) H . (4-39)
where T, is the twist vector on M,, defined by equation (3.24).

In a Copernican chart,

~

Sq = 2 [v4g4 - i*(v4g4)] =0,

since Vi£j~= _ngi' Thus, by (4.36), T 1 0. The complex potential T,

Tike ¢, can be thought of as a scalar field over M3. The same consider -

ations obviously apply to Q.
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It will now be shown that ¢ and T satisfy formally similar field
equations. -An analogous result was shown for perfect fluid sources by
Kramer, Neugebauer, and Stephani26. These field equations are equivaTent
to the Maxwell equations and the Einstein equations 614 = - kTi4"

First consider the Maxwell equations in the form
v, F'9 =3, (4.40)
After contracting with respect to £s and using (4.30), one obtains

PR I
+ 5 S.. FY =- . s
06+ 5 Siy e,

where [J = V1Vj. The so-called dual-product identitys2 is needed. This
states that any two anti-symmetric tensors Aij and Bij satisfy the follow-

ing identity

* spik _ aik 1 i rs
Ajk B A Bjk 5 6j Ars B 7 . - (4.41)

This enables one to easily establish that

1 S pdp -1, <

-0

(T kereT) (4.42)

where I*' = g.IJ r 5 Hence, the Maxwell equations for the case of stationary

s
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gravitational and electromagnetic fields with stationary mesonic source in

jsometric motion are equivalent to
O - e (P + koxe* ) 4 = -€10; . - (4.43)

In order to obtain an ana]bgous equation for I', we begin by considering
the complex-valued anti-symmetric tensor field Zij defined by equation (4.32).
We want an equation analogous to the Maxwell equation (4.40), i.e., an

equation of the form
v,z = 7! (4.44)

where the "current" T' depends on the sources of the gravitational field.

From (4.32),

V.Eij = V.gij + k *.Fij + ¢o* .Eij'l . 4.45
J J ¢,J ¢ vJ 3 : ( )

Now

~

y.s'J = 2v, [ng’ - 1*(VJ£1)]

LRl
= 2R,
R Jg

‘ 1 i 5
2k(TY. - = ST , 4.46
(1, - 7 & ¢ (4.46)

i

by the Einstein equations and by use of the following facts47
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*(gdrTy -
\7j (v'eg') = 0.

Also, from (4.40), the last term in (4.45) becomes

947, N L | (4.47)
Hence (4.45) can be written as

v, AL S [¢*. N IRPTE LI GijT) gy ¢*Ji] : (4.48)

The right hand side of (4.48) satisfies the criterion mentioned above for the
"current” T' in (4.44). In fact, since the dual-product identity enables one

to show that

i ; ince
where Efj is the electromagnetic energy-momentum tensor, and since
.i

E i = 0, (4.48) reduces to

5 -% GijM) eIy g Ji] . (4.49)

v.7'9 = g [-Z(Mi. -

If one now contracts (4.49) by gi and uses the dual-product identity, one

obtains
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or - e (7 ) T -k ['Z(Mij -3 EijM)g"ajw*e"JiJ. (4.50)
This equation is of the same form as (4.43).

So far, we have found that under the assumptions of stationarity and
jsometric motion the Maxwell equations, the Einstein equations 814 =‘-kT1.4,
and the Klein-Gordon equations are equivalent, respectively, to (4.43),
(4.50), and (2.42c). The remaining field equations are the Einstein

equations GaB = -kTa The Tatter can be cast into covariant form using

8"
the projection operator34 h1j defined by

h'o=sl el L (4.51)

The results of acting on the Ricci tensor Rij and the energy-momentum tensor

T.. with h'. are the tensors R.. and T..:
1) J 1] 1]

R. . h” .
1j it Jrs,

T

=
-

=
72}

.. hLT
ij i"jrs.

In a Copernican chart, the components RaB are

=Ry = 8,Rgy = 3gR 4 A acRy, (4.52)
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It turns out that, for our purposes, the most convenient form of the

o >

_ 7 . . N
R kTaB equat1ons is the following*:

-5 - R ~Wp TS
055 = Rij te hinrsE 13 k(Tij hijT + e Trsg £7)

For easy reference, the EMKG equations in the form in which they will be

henceforth used are collected here:

= W, 5 LIS _ = -w r.s

Rij + e hinrsg £ = —k(TiJ. - hijT + e hijTrsE £7) , (4.53)

0o - et kere ) o L = £ (4.54)
_ . ' . 1 ~ . . .

Or - e™(r°! + kg*e* )T 5 = k [-Z(Mij -7 gijM)a‘g‘ + ¢*51J1.J , (4.55)

On + e'w(mzew - e2A2) n=20. (4.56)

C. The Field Equations as Tensor Equations on M,

In this section we will work in a Copernican chart and in thereal gauge.
The components of the electromagnetic energy-momentum tensor Eij can be

expressed in terms of tensors on M3 as follows:

* The o_, used here are not quite the same as the quantities of the same name

aB

appearing in eguation (F]) of Kloster, Som, and Dass. Denoting the latter
(K) . oK) v (K)

by T48 it turns out that Tug = %08  ~ Ipg9 Ouv .
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Ep = 3 (e + €% ag)bi(9.0%) - ™o 0%, + 0% 0 ()

- i(n“Bvaa + nﬁaVaB) AN DN
Egg = 5 D1(0.0%) ~ (4.57)
g = .% {'i”uBV¢fv¢,ﬂ +efagh(,0%)}

where A1(¢;¢*)ezga8¢ a¢* .b This result was obtained by Israel and Wilson

using slightly different notation and different units49f

The components of the meson energy-momentum tensor Mij are:

=
i

2 22 -W w
= 2(”,a”,3 *efa ahm )+ (-e g o +eaau,

2e2A2n2 + ewu .

=
i

Mug = 3 Mag >

1JMij = 2(e-wA2n2 - e®An + 2u)

=
11
[fa]

where

3, = 2¢°An°
(4.59)
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We shall first write the field equations eguivalent to

o >

oB
are:

= 'kTaB’ i.e., equations (4.53). In a Copernican chart, the latter

Oug = Rag = 3y Rea = g Ry + (3,35 = @ 77g 0) Ryy

f
§
o~
—
—|
™
i
v
—|
>0
g
o
™
—'
Q
s
o+
———
o
o
™
1
1)
Q
™
S
—|
s
s

+ e—wgasT ]

From equations (3.20) and (3.23), the left hand side, in a Copernican

chart, is

1
aBR ~ uB 7 ( w,uw,B te Tt

where Ra is the Ricci tensor constructed from the matric 98 on M3 and

B
Ty is the twist vector. Since (4.38) and (4.39) imply that

P I
T,u + k¢*¢’a = (e ),u it | v(4.60)

the ¢ become:
oB

o =R _+ %— e-2w Re [(T

o8 = Rug "k ) (Mg rkerg) |

Hence, from (4.57) and (4.58), the field eguations (4.53) become
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1 -
R+ 7 e 2w Re[(T ot k¢*¢,a) (r’:B + k¢¢fs)]

3

._r—w x : 2w (2 W 2,2y 2
+ k [ e Re¢,a¢§8 + 2n’a g + 2e i} qu(m e -e A )n (4.61)

=0

It 1s straightforward to show that the remaining EMKG equations become:

Dz¢ - €™ (P %4kg**%)g = ze%eRe(¢)n’ (4.62)
AT = e (1% + ko*¢*®) T = 2ke'w[-(m2ew - e%n?)
O (4.63)
+ %- iezIm(¢2)] n2 ,
Azn - e'ZQ(mzew - APy =0, ' (4.64)

where A, is the Laplacian operator on M3, i.e.,

L N
bzt =017, = 9 7 (97 60,8 -

The equations (4.61) - (4.64) are the desired tensor eguations on M3.
They are equivalent to the EMKG equations for stationary gravitational
and electromagnetic fields whose stationary mesonic source is in isometric

motion.

D. ~ The WMP Condition

The Weyl-Majumdar-Papapetrou (WMP) condition, that 944 is functionally

dependent on A4 (the x4—component of the electromagnetic 4-potentia1‘Ai),
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47,21,58,59 31 order to simplify the static

has been used by various authors
Einstein-Maxwell equations to the point that exact solutions can be readily
found. If sources are present, then, characteristically, a "balance
condition” on the charge and mass densities of the form (charge density)/
(mass density) = constant often results. If one imposes the WMP condition
on the sourceless static Einstein-Maxwell equations, then one finds47 a
solution which may be interpreted as arising from an arbitrary number of
charged point-masses mutually at rest.

In the next theorem it will be demonstrated that an analogous situation

arises for the stationary EMKG equations with isometric motion. The form

of the WMP condition to be used is

R (4.65)

It is worth noting that the above can be written in an invariant manner,

namely,
m = e?ATA. . - (4.65a)

A solution of the stationary EMKG equations which satisfies (4.65) or (4.65a)
will be said to be of the WMP class.

Theorem 4.5. Let_(gaB,ew,aa,A,B?n) be of the WMP class (in the real gauge
and in a Copernican chart) with A # 0. Then one or both of the following

must-hold:
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(1) €% = 2km? ;

‘(ii) The potentials A and B are functionally related.
Proof: The proof uses the fact that a solution of the EMKG equations in
a Copernican chart must satisfy the contracted Bianchi identities bn M3,

namely

B Lo |
Ru I8 5 R,u 0 . | (4.66)

The WMP condition (4.65) is now imposed on the field equations (4.61) -

(4.64). The result is:

-2 ) _ ‘
RaB + oA A,uA,B + BA B,aB,B + 2kn’0ln’B =0 , (4.67)
-1, 2.2, _ '
AA - A (2MA - MB +2m 7)) =0 , (4.68)
AB - 387 1A (AB) = 0 - (4.69)
km® 2 2 |
oA - (1+ —2 )AlB + 2am n =0, (4.70)
e
Aon = 0 N ) (4.7])
where
2 ‘ 2
_ km _ km
@=2--%5,and 8 =% - —
e e

The relation (4.23) has been used to eliminate fd from the field equations.

From the above, one finds that
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B8

,a A,aB’B - B’aA’

g)

From the fact that gaB is Riemannian and from the definjtion of B, it
follows that (4.66) is satisfied only if either e° = 2kn’, or if A and B
are functionally related, or if B = a constant. Since the third case is
clearly a special case of the second, the theorem is proved. //

If e2 = 2km2, so that 8 = 0 and d = 3/2, then the field equations

(4.67) - (4.71) reduce to:

Ry * g- A'ZA’GA’B +2kn m =0, (4.72)
AA - ATAA =0,  (4.73)
8B - 3878 (AB) = 0, (4.74)
AB = MA - 2mPn? =0, (4.75)
Aom = 0. (4.76)

Since these equations identically satisfy (4.66), there are seven independ-
ent equations for the six independent unknowns. (Three of the 9yp €N be
chosen arbitrarily, leaving three components of 9,8 plus the three scaTar§
A, B, and n as independent fields.) This makes the task of solving these
equations a difficult one.

If B = B(A), then (4.67) - (4.71) become:
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=2 2 -
Ryg * A [a+ 8 (BNP|A A S+ 2ln n =0, (4.77)
b2 A=A (2= B0 A s Lm0, (4.78)
B'AA + (B'' - 3AT'B')AJA = 0 , | (4.79)
km?y o2 2.2
[a - (1 + -7?0 (B')°] AMA + 2o0m™n” =0 , (4.80)
e
Azn =0 N (4.8])
where B' = 'é%- B. The consistency of equations (4.78) - (4.80) requires

that B satisfy the following ordinary non-linear differential equation:

1

6B’ - 208718 - 28a7Y(8")3 = 0.

This equation has two first integrals:

B,y = LN BB A (4.82)
B 2BBA?

where B0 is a constant of iﬁtegration. If (aB) < 0, then B€+) is real.
But if (aB) > 0, then, to insure the reality of B', it is necessary that
[A] < (40LBB§)_1{‘ .

There are six independent equations for the five remainings unknowns
in this case. In general, the task of finding solutions would be formid-

able because of the non-polynomial character of (4.82).
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We conclude this chapter with a theorem giving a necessary and suff-
jcient condition for a stationary WMP-solution to be static.
Theorem 4.6. A WMP solution with A 20, n # 0, and m # 0 is static if and
only if d =0, i.e., e2 =4 km2.
Proof: If a ? 0, then (4.70) implies that A;B = 0, i.e., B = a constant.
But then, by (4.23), Ty = 05 50O Q is static. On the other hand, if 3 is
static, then A;B = 0, so (4.70) becomes a(AA + 2m2n2) = 0. Sincem# 0
and n # 0, it follows that a = 0. //
22

This theorem is consistent with results obtained earlier by Das It

also shows that, in a sence, non-trivial stationary non-static and static
WMP solutions are "disjoint" if B and A are not functionally related. This

is so because in the former case e2 = 2km2, while in the latter e~ = %kmz.
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5.  GENERATING SOLUTIONS OF THE EMKG EQUATIONS

One of the more promising recent'deve1opments in general relativity
is the discovery of techniques for generating new solutions of the station-
ary Einstein-Maxwell equations from known solutions. The origins‘of this
project go back to the work of_BonnorG% Buchdah16{:Eh1ers6i Ernst6q Harrison61

68 69, and Kloster, Som and Das6. In the early

Matzner and Misner ~, Geroch
1970's it was discovered independently by Kramers, Neugebauer and
Stephani26, and Kinners]ey7o, that the group SU(2,1) plays a fundamental
role in transforming stationary electrovac solutions into one another. At
the present time, Kinnersley and Chitre71 and Ernst and Hauser60 have de-
veloped fhe solution-generating technique to the point that some sort of
"general solution" of the stationary axially symmetric Enstein-Maxwell
equations may be at hand.

In this chapter, the method of Kramer, Neugebauer, and Stepham‘26
(KNS) will be applied to the stationary EMKG equations with the meson source
in isometric motion, with the hope of discovering a non-trivial group of

transformations of the fields which generate "new solutions from old". To

accomplish this, the Lagrangian density must be of the form R + Lo’ where

- af B
L, = Lpg (©)g eA’a P

R is the curvature scalar on M3, the eA are the fields ¢,¢*,I',T'%n,
the indices A,B,... have the range {1,2,3,4,5} and the Ly, are functions
of the eA .. This, unfortunately, is not the case, since it turns out

that the Lagrangian density is of the form R + Ly * H, where
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2

H = 4kf"2[m2f - e—4— (¢ + ¢*)2} n2 ,

with

w

f=ze =% (I +T*+ ko*g).

1l

The KNS ansatz relies on the fact that a Lagrangian density of the form
of L0 above can be interpreted as a semi-Riemannian metric with components
Lpg n a chart on some manifold ("potential space") with coordinates GA.’
The "solution-generating group" is simply the group of isometries of the

metric L The procedure that will be followed here is to find the group

AB*
of transformations which preserves LO and then find the subset which also
preserves H. In general, as shall be shown below, this subset is trivial.
However, along the way, one discovers the isometries of LO, and this is a
group of transformations among solutions of the EMKG equations with a mass-
less neutfa] meson source. It seems that the meson's mass breaks the KNS
symmetry much as it breaks the conformal group symmetry of relativstic wave-

equations in flat spacetime72.

A. The KNS form of the Lagrangian Density

The Einstein-Hilbert Lagrangian density for the EMKG equations is given
by equations (2.24) - (2.26), namely

A

L =R+ 2 [-14, FU.F1j + 0" Ty0,y - mzw*w} : (5.1)

If ome simply imposes the conditions of stationarity and isometric motion
on L (in a chart where one may use the real gauge), then the Euler-Lagrange

equations of the "reduced" Lagrangian density so obtained are not the corr-
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ect field equations (4.53) - (4.56) or (4.61) - (4.64), since some of the
field equations have already been used. However, by examining the field
equations, it is possible to "guess" an appropriate Lagrangian density.

The following does the job:

L=R+ L0 + H, (5.2)
where
3 ) -2 _* - * Q.
Ly = K EAr 4 TRt e Atk 20T
(5.3)
+1/kf'2¢*r*:a ¢+ 2kn*"n

2 50 >0 *

o[ 2. &2 27 2 |
H = 2kf [mf—T(¢+¢*)]n . (5.4)
The quantity f is
f=e’ =% (I +I*+ k™) , ~ (5.5)

where the equation just preceeding (4.38) on page 55 has been used. The
terms (R + Lo) are the Lagrangian density for the stationary EMKG equations
with a massless neutral meson source,

The quantity L0 is a quadratic form in the gradients of the five fields
b, ¢*, I's T*, n. Following KNS, we interpret these fields as coordinates "in
a five-dimensional manifold K5,‘ca11ed the “potential space". Capital
1atiﬁ indices range over {1,2,3,4,5} and denote components of geometric

objects on K5. In particular, we write
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(5.6)
-2 ] n
(Lg) =7k f2] 0 mrm 0 ¢ 0 (5.7)
- (T+4T*) 0 ¢ 0 0
0 ¢ o k' o
o* 0 k' 0 o
0 0 0 0 8f2
Hence, the LAB = LBA are the components of the metric LO defined by:
L, = Lyg do ad® | (5.8)

where "d" here denotes the exterior derivative on K5. The matrix (LAB) is

block diagonal, i.e.,"

AB) - L

L

o
N
=~

where a,b,... ¢ {1,2,3,4} .

Let G be the group of isometries of Eo' Clearly, G leaves the Lag-
rangian density L, jnvariant. In the next section, we shall see how the-
infinitesimal generators of G are obtained, and we will display the corr-

esponding finite transformations.
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B. Transformations which Preserve Lg

The infinitesimal generators of G are the Killing vector fields of

L0 in KS' To obtain them, we solve Killing's equation in KS:

£ =
“lag = Vae t Ve )a
(5.10)
_ yC C C
=Vgtac YV abee t Vhae,c o
where || denotes the covariant derivative on K_ with respect to the metric

5

LAB' We shall consider the three cases (i) A=B =5, (ii)A=5,B =b,

and (iii) A = a, B = b.

(i) Equation (5.10) becomes

5 L55 = 2 LSC v 5 + LSS,CV =0
- - - 5 _ .
But L55 = 2K = a constant, and LSC = 65C2k, so we have V 5 0, i.e.,
5 _ a . |
Vi = ¢ (07) . S (5.11)
(i1) 'In this case,
- C C C
Elgp = LoV b " Lep s * bsb,cV =0

By (5:11), and since L5b = 0, we have

a  _
2k €,b+LabV 5 0 .
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But the first term is independent of @5 =7 and since Lab 5 = 0, it

3

follows that

a =
(LabV ) 5 = -2k€’

b

-
Thus,

- a _ '
Vp = LpV® = -2ke gn +xp s (5.12)

where Xp, are arbitrary functions of the 6 & Thus the Killing vector

fields VA of L,, are of the form

AB

(Vy) = (Vv , 2ke) = (xp - Zke,bn, 2ke). - (5.13)

(ii§) Finally, we consider

EL , =V +V

v b T Yage * Vbja T

By (5.13), the above is equivalent to the two equations

_ = 5.
§ Lab Xa |Ib * Xb |la o (5.14)
£ L 0 . _ (5.15) -

ve ab i Zeflab )

In Appendix D it is shown that (5.15) implies that e = a constant.

Hence, (5.13) reduces to
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(Vy) = (x> 2ke) - (5.16)

)
The equations (5.14) are precisely the equations for the generators

of the eight parameter group of KNS transformations of stationary Einstein-

Maxwell so]utfons into one another26; This group is isomorphic to SU(2,1),

and it was shown by Das and K]oster72 that the group is generated by three

continuous transformations and one discrete transformation. The action of

these transformations on the fields ¢, T and n are given below:

(g, ldlzl“,n)

1. (6,r,m)

TZ(Y) (¢,Ton) = (¢, T + iy, n)
(5.17)

(¢ + 26%, T - 2ks6 - 2k|8]%, n)

T3(6) (Cb,r’n)

The parameters o and & are complex, while iy is real. The fields ¢* and T*
transform as the complex conjugates of ¢ and T. |

From the two continuous transformations T2 and T3 and thé discrete
transformation T, one may generate the two remaining KNS transformations

as follows:
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(1oT,(*) 6T) (4,1,n)

1, (6.1.0) )

(o(1 + iAF)_], r(1 +'1AF)-],n)

(5.18)

TS(B) (¢,T,ﬂ) (TOT (B) OT) (¢,Tm)

3

_ O+2R*T r n
1-2k30-2k 8|2 1-2kBo-2k|B|°T

The parameter A is real and B is complex.
The infinitesimal generator (0,0,0,0,2ke) generates the finite trans-

_formation
P(¢,Tyn) = (¢,I'yn + 2ke) . - (5.19)

The transformations (5.17) and (5.19) form a group G isomorphic to

Su(2,1) x T, where T; is the one-parameter group of translations.

C. The Triviality of G

The group G = SU(2,1) x T, preserves the term Lo’ dgfined by equation
(5.3), in the Lagrangian density L = R + LO + H. Since, the scalar curv-
ature R on M3 does not depend on any of the fields OA,‘ it is trivially
preserved under G. It remains to examine the effect of G on the term H
in L. Unfortunately, it turns out that the subset of G which preserves H
is trivial.

First we consider the effect of the KNS transformations, which are
jsomorphic to SU(2,1), on H. To this end, we consider the effect of the
transformations T], T2, T3, and T on H. Under each of these transformations,

the quantity H will become
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Wi o= 2k(f')72 [(m')2 o) (o' + ¢'*)2J ("%, (5.20)
where
f' = %—(r‘ + rf* + k¢**¢') . - (5.21)

(1) Let (iTin") = T\ (6,1,m). Thus,

1
£ o= |al? ¥ » (5.22)
and H' is
. zkla;‘zf‘z[(m Y2 fagle)2]a] Plap + a*cp*)z] o  (5.23)

If the parameters e and m are non-zero, then the subset of T] which pre-

serves H consists of transformations of the form:

¢'=a¢ ,

r'= aZT R

m'=+am, (5.24)
e'=+ae,

n'‘=n ,

where a is real parameter.
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(ii) The transformations T2 preserve H with no restriction on the

real parameter vy, i.e.,

=

1l
<~
-

e}
1)
e}
+
-1

<

m'"'=m , ‘ (5.25)
e' = e ,
n'=n,

preserve H.

(iii) Under T,, f' = f, and H' becomes

3’

HY = 247 [(m')zf - () (6 + 0%+ 2(6 + 6*))2] n’ (5.26)
Hence, the subset of T3 which preserves H is given by
¢' = ¢ - 2id ,
, . 2
' =T - 2ikdg - 2kd™ ,
m''=m, ' ' (5.27).
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where the parameter d is real.

(iv) Under the discrete transformation T, one obtains

f! = II||_2.f:, ) (5.28)
and

- 2
H' = 2k]r|2 £2 [mzf - }Te T Z(I‘*cb + rcp*)z] n? . (5.29) .
(The constants m and e must transform as m' = m and e’ = e under T if

they are to remain constant.) Hence, in general, H is not invariant under
T.

Under the transformations P(E)(¢,T,n) = (¢,I',n + 2ke), H becomes

o= 2kf72 [(m')2 Fogle)? (o4 ¢*)2](n2 + Gken + 4k%E2)

Hence, the subset of P which preserves H is the identify element (e = 0).
(a) (v)
s T2 s

and T3(d), with the parameters a, y, and d all real. THe full group G does

transform solutions of the EMKG equations with massless neutral meson fields

Thus the subset of G which preserves L is generated by T]

into one another.

2

respectively, are clearly trivial. To show that the remaining transfor- |

The transformations T](a) and T (Y), given by (5.24) and (5.25).

mation, TB(d), given by (5.27), is trivial, it suffices to show that e

and the twist vector Ty get mapped into themselves.
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Let ¢' and T'' denote the result of the action of the transformation
(5.27) on ¢ and I'. Then since ¢' and I'' are solutions of the EMKG equat-

jons, there are quantities w' and Q' such that, by equation (4.38)

o' +iQ' . (5.30)

ro| =

r‘=e -
Now, by (5.27), we have,

P - 2ikdd - 2kd? = T' = & - Lko*o + ikd(o* - o) - 2kd® + i . (5.31)

N

Hence, by using (4.38) for I on the left hand side,
¥ +in =6 [Ld(¢ + %) + Q']
Since d is real, it follows that

w' =w , - (5.31)

Q' = Q - kd(¢ + ¢*) . = (5.32)

If we take the gradient (in M3, of course) of both sides of the latter

equation, we get

1 - _ *
Q’a ' Q’a kd(¢ + ¢ )’u

The transformed twist potential Q' must satisfy (4.39), and so from (5.33),
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T - -} k(o %ol - 9% 0') = T

and hence, using (5.27) again, we obtain

The results (5.31) and (5.34) show that the transformation T

trivial.

3

-] * * *
- §?(¢ ¢,a - ¢,a¢) - kd(¢ + ¢ ),a >

(d)

(5.34)

is
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6. AXIAL SYMMETRY

A uniformly rotating source produces stationary fields. Thus it seems
natural to introduce the additional symmetry that the metric is invariant
under rotations about some given line (the "polar axis"). This will be
accomplished by assuming that there exists another Killing vector 3 whose
trajectories are closed curves in M4 and which commutes with the timelike
Killing vector Z, i.e.,£?3 = [E,E] = - £ E’= 0. A subset of the Copernican
charts, with coordinatef;(r,z,e,t), ha;)an angular coordinate 6 whose curves
are the trajectories of S. It will be further assumed that £n =£ Ai = 0,
so that, it terms of the above charts, the components on thel;etr;l 9yg ON
M3s the complex potentials ¢ and T, and the meson field n, depend only on
the radial coordinate r and the axial coordinate z. With these aésumptions,
the stationary EMKG equations with isometric motion and with the WMP cond-
ition holding, will be written as partial differential equations on an aux-

illiary Euclidean space E3. Finally, a class of exact solutions of these

reduced equations with A = a constant will be displayed.

A. _The Periodic Killing Vector Field

An axially symmetric metric is characterized by the existence of a
Killing vector field E whose trajectories are closed curves, i.e.,,g is
"periodic". It is further assumed that E is compatible with the timelike

Killing vector field 273:

£ = [ap} [pg} et-0 . (6.1)

This condition implies that one may choose charts on M4 such that the traj-

+
ectories of both p and E are coordinate curves33. Such charts form a sub-
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set of the Copernican charts. If one denotes by x3 and x4 =t the co-
ordinates whose curves are, respectively, the trajectories of B and E,
then clearly in such a chart, pi = 6; and gi = 51. Furthermore, in such
a Copernican chart 9,0° 2y and w are independent of both x3 and t. 1In
general, it is not possible to guarantee in advance that a solution of the
appropriate field equations will be such as to make B'space1ike ever_ywhere7
Spacetime will, in general, contain Smooth closed non-spacelike curves.

It is well known {(cf., for eXamp1e, Krasinéki73, and references there-

in) that there exists a subset of charts of the above type, with coordinates

denoted (r, z, 6, t), in which the metric has the form:
g=-e"® [e\)(dr2 + dzz) + eZAdGZ] + e (adp+ dt)2. - (6.2)

In the above, 6 is an angular coordinate, whose curves are the trajector-

jes of B, and (r,z) are rectangular Cartesian coordinates in the half-

plane 6 = a constant, t = a constant. The domain of these coordinates is

the open set in M4 whose image 1'an4 under the coofdinate map is

O<r<w, -@<z<w, 0< 6<2m, -»<t<eo, The functions w, v, A, and

a depend on (r,z) only. The polar axis r=0 is at least a coordinate singul-

arity. The coordinates (r,z,e,t) are called cylindrical Copernican co-

ordinates. The considerations of Chapter 3 suggest that the additional

requirement that either g Mij =0 or ¢ Eij = 0, suffices for

, p p , \
£ = £‘Ai = 0. In any case, we shall simply assume that the latter hold.

p p
The result is that the complex electromagnetic potential ¢, the gravi-

tational potential T', and the meson field n depend on (r,z) only.
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B. The Cylindrically Symmetric EMKG Equations

The Riemannian metric g on Mg in cylindrical Copernican coordinates is

v(r,z) (d 2 2y o2A(r,2) el . (6.3)

g=e r +dz7) +

The components of the Ricci tensor Rd of g in these coordinates are easily

B
computed:

_ ] 1

R_l_l =5 Av + }\’.l_l + }\’.I -5 (A,-l\)’-l - A’z\)’z) s

R,, = + v + ) + 28 +]—()\\) - ALV ,)

22~ 2 22 027 2 V0 27,20 7 (6.4)
_ ]

Rz =22 P A 7 D v v )

Ryz = e?AV (AX + \Vklz) = ex_vA(eA) ,

(I _ 2 _ 2 .2
where x =1r, x~ =2z, Av = v 1 + Vo0 and |val® = A’] + A,Z'

‘The following theorem is further motivation for imposing the WMP cond-
ition on the EMKG equations:
Theorem 6.1. Assume the stationary EMKG equations with isometric motion
hold. Furthermore, assume that all the fields are cylindrically symmetric.

~ 74,75

Then the metric g on M4 can be put in the Weyl-lLewis form , namely, in

cylindrical Copernican coordinates,

g = e [tav(dr2 + dzz) + rzdez] + e¥ (ade + dt)2 . (6.5)

if and only if the WMP condition (4.65) holds.



_85-

Proof: Consider the field equation (4.61), witha = 8 = 3. By use of

(6.4) and the facts ¢ 3 = r , =n 3 = 0, the field equation becomes

!3 >
VAt + 2ke 20PN (20 22y 12 L g

A

If the metric is of the form (6.5), i.e., " =r, then the above equation

implies that (4.65) holds. On the other hand, if (4.65) holds, thenvex

must be harmonic in (r,z). Fo]]ow{ng Synge47, we reason as follows:

k(r,z).

Write r = e Then r harmonic implies that there exists a conjugate

harmonic function z{r,z) such that

where f is analytic. The transformation (r,z) -+ (r,z) is then conforma176,

v(r,z)(d 2 2

so it preserves the form e r- +dz7), i.e.,

2 -2

2) +_ev(r,z) (dr® + dz°)

ev(r,z) (dr2 + dz

~

Thus we have succeeded in putting g in the Weyl-Lewis form (6.5).//

A1l the field equations (4.72) - (4.76) can now be written as partial
differential equations on an auxilliary Euclidean R3." The equations below
are the EMKG equations with stationarity, isometric motion, the WMP cond-

ition, e2 = 16ﬂm2, and axial symmetry imposed:

Av = - —%A'Z IVAIZ - 2k [vnlz‘ , (6.6)
B 3 -2(,2 2 2 2

v,rf" r {‘§-A [A,r - A’ZJ + 2k [n,r - n’?]} . (6.7)
) -2 . |

vV, {3A A,rA,z + 4k”,rn,z} . ‘(6.8)
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v’B -3 VA-VB=0 , : (6.9)

veh - A"]|VA| 2‘= o, (6.10)

1vB|% - |vAlZ = 2mf e’ n? (e

vn=0 , | (6.12)

where A = EA—, A _ = §55 V is the usual gradient operator in cylindrical
e ar »Z 9z :

polar coordinates on E3 (R3 with a Euclidean metric), V2 is the Laplacian,
VA « VB is the scalar product, and |VA| = (VA - vA) .

Some comments on these equations are in order before more restrictions
are imposed on them.

(i) The equations (6.7) and (6.8) are integrable. This is actua]]y
a consequence of the contracted Bianchi identities on M3 (equations 4.66),

and the field equations (6.10) and (6.12). Hence, given harmonic functions

n and 1nA on E3, v can be computed'from the following path-independent

contour integral in E3:

vir,z) = 5' v - ds (6.13)
C
where

> _ (I3 ,-2,.2 2 2 2 -2 -
vV = G{EA (Am-{z)+2k(nJ.-th],rFA AJAJ'+4MKHR{L9’

ds = (dr, dz, rde) |,
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and C is a cdntour from a given point to the point (r,z,8). Also it should
be noted that equation (6.6) is not independent, but is a consequence of
the rest of the field equations. The situation here is not without prece-
dent in the quest for exact axially symmetric solutions. See Synge47,
page 311- for the case of static vacuum solutions, and Eris and G'Lirses17
for the case of a neutral massless meson field source of the Einstein-Max-
well equations.

(ii) There are no non-trivial static solutions of (6.6) - (6.12).
This follows immediately from (6.11) since Ty = 0 imples that B,a =0,
which, in turn, holds if and only if A,d = 0 and either m = 0 or n = 0.

If m = 0, then there is a family of solutions of the form:

g = (1) (42 4 4,2y - 12402 4 gt | (6.14)

where v(r,z) is given by

v(r,z) = 2k }'(n2 - n2 ) dr + 2rn n _dz (6.15)
? ,T »Z ,r .z ? ~ :

C

for each harmonic function n(r,z). These are static solutions of the Ein-
stein equations with an electrically neutral massless meson field source,
and are a subclass of the solutions found for that case by Eris and GUrses17
Ifn =0, then from (6.7) and (6.8), v = a constant and hence ; is flat and

the electromagnetic and meson fields vanish.

C. The Case A = a Constant

The Lorentz force on the meson is given by FJ.J.JJ which, by the assumpt-

ion of isometric motion, is proportional to F14. Since F14 = A i the
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condition A = a constant is equivalent to the vanishing of the Lorentz
force. Thus the motion of the meson is geodesic77 (at least at the class-
jcal level). This constitutes a physical interpretation (or at Tleast
motivation) for the condition A = a constant. The result of the ]atter is

that the field equations (6.6) - (6.12) become:

av = -2kjvn|? (6.16)
Vo Tk (”fr - ”?z) : | (6.17)
v, =dken n o, (6.18)
vB =0 , (6.19)
1v8]2 = 2n’e’n? (6.20)
vn =0 . o C (e.2n)

The existence and uniqueness of solutions of the above field equations
are shown by the following theorem:
Theorem 6.2. If v, B, and n are 02 functions in the auxilliary space E3,
then:
(i) Equations (6.16) - (6.21) have solutions only if n.= a constant;
(ii) The following is a so1ution; unique up to the choice of param-

eters ags My v, A, BO’ and n:
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~

g = -(2ka%)" [e"(dr2 + dz2) + rzdez] + (2kA%) [é(r)de + d%]z . (6.22)

a(r) = i_[(23/2kA3)‘1eV/2nm} Zra (6.23)
A = a constant,
B = i_(Z%ev/an) z+ B, (6.24)

n = a constant.

(i) If n(r,z) is a solution of (6.21) then there is a solution v(r,z)
unique up to a constant of integration, of (6.17) and (6.18). Write
flr.z) = 20e” 2. 1f B(r,z) is C° and satisfies (6.19) and (6.20), then

there exists a function a(r,z) such that

w
it

f cosa (6.25)

[we]
1]

f sina , g : (6.26)
if and only if

e va. = cos?a , (6.27)

-1 1 cosa sina . (6.28)

-~
-~
}
Q

H
L}
~

Now define A = In|f|, differentiate (6.27) with respect to r and (6.28) with

respect to z, and add the resulting equations to get
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M - r (cos 200 A+ sin 202 ) - 2r"% cos? @ =0 . (6.29)

Use (6.17), (6.18) and (6.21) to express Ax, A . and X , in terms of

n, N and n 7 only. Then (6.29) is a quadratic equation in r-]:
L] ]

c]r‘2 " Czr-] $C. =0 , | | (6.30)

where

2 cos2 o s

C] =

C, = Zn_] cosa (cosan _ + sinan _)

2 - e ,Z >

C, = n_2 16m(cosa n _ + sina n )2 + |Vn|2
3~ N sZ

2 > 2 2 (ﬁ'~-Vn)2 ’

Thus €2 - 4c,Cy = 4070 [(R - 7)) - 2|vn|? - 4k
n

(cosa, sina). Since {ﬁ]z =1, it follows that

11

(n - Vn)2 - Z]anz < 0 for vn # 0. Thus if |vn| # O, Cg - 4C]C3 < 0, so
r-] must be complex. Hence, in order to get solutions depending on real
values of r, it must be that |vn] = 0, i.e., n = constant.

(ii) Clearly if n = constant, then v = constant. Thus the So]ution of
equations (6.16) - (6.21) reduces to finding a C2 function B(r,z) such

2:

that v2B = 0 and |vB|% = p° = 2n® ¥ n?

n“ = constant. Now the equations

(6.27) and (6.28) become, respectively,

cosa sino .

o3
il
-
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The only C] functions a{r,z) satisfying these last two equations are con-
stant functions o = + /2, + 3 m/2, .... Hence, by (6.25) and (6.26)

B,r = 0 and B,z =+ p. In conclusion, B = + pz + BO’ where B0 is an
arbitrary constant of integration, n = constant, and v = constant is the
unique class of solutions of equations (6.16) - (6.21).//

In the next chapter, the geometrical and physical properties of

these solutions will be e]ucidated;
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7. PROPERTIES OF THE SOLUTION

In this chapter, some of the properties of the solution of the EMKG
equations obtained in the last chapter will be displayed. It will be shown,
in particular, that the metric_g of the solution is static if and only if
it is flat. The latter will be shown to hold only if the mass m of the
meson is zero or if the constant wave-function n = 0. The causality prop-
erties of 5 will be examined, and it will be shown that the trajectories
of the periodic Killing vector field p are timelike in a region of M,

- 1

Lo~
exterior to the cylinder 0 < r <r, = (k*M) . This causal pathology is

similar to that found in the Godel so]ution47. The "sources" will be shown

34

to obey the strong energy condition of Hawking and E1lis Finally, the

physical relevance of the solution will be commented upon.

A. Geometric Properties of the Metric

We will consider here some of the properties of the metric
g = - (2kd)! [e\’(dr2 + dz%) + rzdez] + (2kA%) [a(r)de ' dt]z . (7.1)
where

alr) = + (232 A% &2 o o7 4 a, (7.2)

In the above, n and m are arbitrary positive constants, A is a non-zero
constant, and v and a, are arbitrary constants.
(1) It is easy to see that the metric g on M3, given by

g =e¥ (dr2 + dzz) + rzdez . (7.3)

is flat. Hence with no loss of generality, one may choose v = 0, so that

(7.1) and (7.2) become:
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g - —(2kA2)f][dr2 + 2% + r2d62:| + (2kA%) [a(r)de + dt]2 : (7.4)
a(r) = # (232 a3 oZ a . (7.5)

Now make the following coordinate transformation:

ro= Ty ,
2t = ¢z R
6' =8 ,
tt =Ct ,

where C2 = 2kA2. After dropping the primes, (7.5) and (7.6) can be written

in the form:

g = - [grz + d22 + rzdez] + [a(r)de + d{}z R (7.5")

a(r) = -_l-_kl/ZMr2 + a (7.6")

0

where M = mm. In these coordinates, the WMP condition =1 =(e2/m2) A2

implies that A is given by

A= (2k)7F . (7.7)
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The magnetic potential B is then of the form

1
2

B =+2°M + B0 . ‘ _ (7.8)
The meson field is, of course, still given by n = a constant.
(2) The components of the twist vector T, are most easily computed by

substituting (7.8) into (4.23). The result is

T-I"T3_Os
(7.9)

n
+
nN
~

Ty =+ M

Hence, g is static only if M= 0, i.e., either m = 0 or n = 0.
(3) The invariant components of Rijkm are now computed. The orthonormal

tetrad used is w defined by:

w =dr ,
wz =dz ,
(7.10)
w3 = rdo ,
4 _
w = a(r)de + dt

The connection 1-form wab and the curvature 2-form Qab are easily computed

from the structure equations (2.11) and (2.9), respectively. The result is
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L -
w]3 = i_kZMuﬁ LIS ,
1
w]4=ikZMw3 ,
| (7.01)
w34 =+ k%Mu} ,
] 2 2

Q3=3ka Aw” o,
52]4=kM2w]/\w ,
(7.12)
934 = kMzw3 A w4 .
1 _ .2 _ .2 _
Q 2 = Q 3 " Q 4= 0

Finally, the invariant components R(abcd) of the curvature tensor can be

. a _1+7(a) ¢ d C . '
obtained from G~ = 7 R (bcd)® A @ s and the non-vanishing components
are:

~ a2
Reraany = 3KM°

- 2

S - 2
R(3443) = kM
Thus g is flat only if n =0orm=0. Note that the R(abcd) are

constants.
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S

(4) Since g = det 955 = -r2, there is at least a coordinate singularity
on the polar axis r = 0. In order that the polar axis be part of the

smooth manifold M4, the condition of e]ementa[x,f1atness47 must be satis-

fied for regions of M, which contain the surface r = 0. Thus we must

check that
T1im -ﬁ- =21 (7.14)
r-o r

where Cr is the circumference of a circle centered on the polar axis and

~

Rr is its radius, both computed with respect to the metric g. We need only

consider circles for which z and t are constant. Hence

4 2

1 1L L
¢ = 2n)(alr))’ v2[% = 2njie® & (+ 2KMa - 16?4 Q7

and Rr = r, Thus

2

2[%
0

c
lim =- _ 2 2 -
rso Rp = 2m[kM7r" + 2kMa - 1+ ar

We see that the elementary flatness condition (7.14) is satisfied

only if a, = 0. Henceforth, it is assumed the above holds, so that

L., 2
alr) =+ kMr~ . _ (7.15)
(5)  The magnitude of the periodic Killing vector field 3 is

9(3.3) = g5, = (a(r))? - ¢% = (wirZa)? (7.76)
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Write r = (k%M)_1. Thus p is spacelike for 0 < r < rys null for r = r_,

and timelike for r > ro.

Figure 7.1:  fGraoh of §33(r).

There is a type of horizon at ro- A Copernican observer at rs would

be rotating at the speed of light, as seen by another Copernican observer
at some r'# ro- For r > ry the trajectories of 3 are smooth closed time-
Tike curves. Such causal pathologies are observed in the Godel so]utidn34’47.
(6) The surface defined by r = 0 consists of the Tocus of fixed points of

the Killing vector field p. However, with a, = 0, the manifold M, can be
extended to include this surface. This can be easily seen by tranéforming

to rectangular Cartesian coordinates (x, y, z, t). The metric is then of

the form:

a = - [dx2 + dy2 + dzz} + [j;ro_](xdy - ydx) + d%}z

Clearly the metric is regular at x =y = 0.

- Define the "twist charge"78 (or, in the parlance of Gibbons and Hawk-

ing79, the "nut charge™) enclosed bya closed surface S in M3 as

-
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Since T, is a constant vector field on all of M3, including the polar axis,
it follows that NS = 0 for any S. This means that, unlike the Taub-NUT
metric80, the metric considered here cannot be interpreted as a "gravi-

tational dyon“8].

B. The Strong Energy Condition

The non-vanishing components of Tij’ the energy-momentum tensor field

of the electromagnetic and mesonic "sources", are:

11 22

Tyq = M [rz + 3(a(r))2] ,
(7.17)
34

44 -

The non-vanishing components of the current four-vector field J; are: ”

=+ (8K)M%al(r) ,

[l
i

(7.18)

- 35,2
Jg = + (8k)™M

It will be shown here that the Tij satisfy the strong energy condition

of Hawking and E]]is34. This condition means that
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owwd s Lty 3, (7.19)
ij — 2 i J
for any timelike vector W',
We will show that (7.17) satisfy (7.19) by considering the eigen-
values A 3 and the corresponding set of linearly independent eigen-

i 3 - , . 1 o
vectorsV (a) of Tij‘ Thus Tij &Gi) Aa V(a)i' The eigenvalues ar

easily computed from det(Tij - Agij) = 0. We have

) .
A=A, =M
A, =M, (7.20)
3
x = 3Ml
4

2) | o (7.21)

VJ ) = (0513030) s

The eigenvectors V%]), V%z), ande%3) are spacelike, while the eigenvector

V€4) is timelike. The V%a) form an orthonormal tetrad.

* The author thanks Mr. Ted Biech for doing the computation correctly.
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Let W' be an arbitrary timelike vector. Without loss of generality,

W' can be taken to be a unit vector. Denote the invariant components of

W' with respect to the orthonormal tetrad V%a) by wa, i.e., w'o= wav‘(a).

Hence,
Tl - Z WP n,p = MWD E + wh)2 - wh? 34?2
ij
a,b=1
= [ awh? + 40D + 2w3)? + 3]
LIS N .
Furthermore, §-w wiT i M~. So we finally have

Tijw‘wj i %w"wiTjj - M2 [4(\,11)2 r 822 + 232 + 2] >0,

demonstrating that the strong energy condition holds for the solution being

considered here,

C. The Physical Relevance of the Solution

Som and Raychaudhuri82 discovered a solution of the Einstein-Maxwell-
Lorentz equations with a charged dust source in which the metric is formally
jdentical to the metric (7.5') with a, = 0, and with the e]éctromagnetic
field of the same form as that determined by the potentials (7.7) and (7.8).
This is not surprising in view of Theorem 2.2, since the meson field in our
solution is a constant.

Theorem 2.1 provides a third interpretation of our solution. The potent-
jals A and B determine the field strength of a stationary Proca field with

mass M.
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The physical relevance of the solution is problematic. On the one
hand the electromagnetic and mesonic sources are not obviously unphysical,
given the fact that the Hawking and E11is strong energy condition is sat-
‘jsfied. On the other hand, the metric (7.5') is not asymptotically flat
and has causa1 pathologies of the sort which violate our intuition, and,
in any case, have never been observed.

If our metric were, like the Taub-NUT metric, asymptotically flat,
then, Tike the latter, which also has causal pathologies, our (Euclideanized?)
solution could play a role in quantum gravity83. From the quantum point of
view, the Tack of asymptotic flatness is more serious than the existence of
closed smooth timelike curves.

Non-asymptotically flat 5etrics with physically well-behaved sources
are often dubbed "cosmological". In this context, the solutions given by
(7.5%), (7.6') with a, = 0, (7.7) and (7.8), could be interpreted as avmodel
for a universe consisting of a gas of protons, diffuse enough so that spin
can be ignored, and with a constant magnetic field Hu = -B 0 - i_Z%N 6@2

L]

due to the proton charge.
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APPENDIX A - Principal Fiber Bundles with a Connection

In this Appendix the basic definitions and properties of principal
fiber bundles with a connection are summarized. The purpose of this is
primarily to standardize notation. For proofs, examples, and detailed
discussion, the reader is referred to Kobayashi and Nomizu30, Drechsler
and Mayer3], Daniel and Via]]et32, Trautmah38,y and Cho39.

A fiber bundle is a manifold which is 1océ11x jisomorphic to the
Cartesian product of two other manifolds. More precisely we have:

Def.A.1: A smooth fiber bundle is a smooth manifold P together with

another smooth manifold M, called the base space, and a smooth surject-
jon m: P > M, called the projection, such that the following property,

called local triviality, is satisfied:

There exists a smooth manifold F, called the fiber space, such that
for each m € M there is an open neighborhood U of m such that n_](U)
is diffeomorphic to U x F.

A smooth fiber bundle shall be denoted by P(M,F,m).

Def.A.2: A smooth fiber bundle P{M,F,m) is trivial if P is diffeo-

morphic to M x F. | ‘

Def.A.3: A smooth map s:U > P, UCM, such that mwoS = idM is called a

smooth section of P over U. A smooth section whose domain is M is

called a global section.

A1l trivial fiber bundles admit global sections, but the converse is gen-
erally not true.
" The two types of smooth fiber bundles we shall be concerned with here

are vector bundles and principal fiber bundles. (Henceforth, the smooth-
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ness of the various manifolds and maps shall be taken for granted and the

adjective "smooth" shall be dropped.)

Def.A.4: A fiber bundle P(M,V,m) is a vector bundle if the fibers V
are vector spaces.

Def.A.5: A fiber bundle P(M,G,w) is a principal fiber bundle if G is

a Lie group and if in addition the following hold:
(i) G acts smoothly to the right on P without fixed points.
(i) The base space M is the quotient space of P by the equivalence
relation of right multiplication, i.e., M = P/G.

The right (left) action of aeG on peP is denoted RpP = p-u(Lap = a-p),
and satisfies, for each o,BeG,p*(0B) = (p-a)+-B and analogously for the
left action. That G acts on P without fixed points means that if
p=o. = p for some peP, then o is the identity element e of G.
Def.A.6: Let u be a vector field over a Lie group G. (Recall that G
has a smooth manifold structure, so u:G + TG.) Then p is right (left)
jnvariant if for every o,ReG, Ra*u(B) = u(aB) (La*u(B) = u(Ba)), where
Ra* is the Jacobian of the map Ru:G > G.

A1l vector bundles, trivial or otherwise, admit the g]bba1 section

O:M > P by m b (m,g), where 0 js the zero-vector of V. However, a principal

fiber bundle is trivia]izab]e (i.e., isomorphic to M x G) if and only if it

admits a global section

31

A principal fiber bundle P(M,G,m) is naturally associated with a family
of vector bundles Er(M’V’ﬂr) as follows:

" Let r:G > GL(V) be a representation of G, i.e., V is a vector space on

which GL(V) acts to the left., Thus r induces a map G x V -~ V by

(a,v) b r(a)v, for any aeG and veV. Write
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E. = (P x V)/6G,

and define'wr:Er > M by wr(z) z=7(p) for each z= [(p,v)] = the set of all points
in P x V equivalent to (p,v) under right action by G. Drechsler and
Mayer3] show that Er (M,V,ﬂr) satisfies the axioms for a vector bundle.
Hence we have:

Def.A.7: The vector bundle Er(M,V,ﬁr) is the vector bundle associated

to P by the representation r of G, with E. and UEE defined above.

Let'{uA}, A=1, ..., n=dim. G be a Teft invariant basis field on G.

38

The Wy are thus a basis of the Lie algebra G' of G The Hp induce, in a

natural way, a linearly independent set of vector fields {UX} over the
bundle space P, i.e., each UK (p)eT P. The uA* are called fundamental

P
vector fields over P corresponding to the Up - The subspace Vp of TpP

spanned by the uK(p) is called the vertical subspace of TpP.

Def.A.8: A connection on a principal fiber bundle P(M,G,m) is a smooth
assignment of a horizontal subspace Héi TpP such that

N T = .
(i) pP Hp@Vp

(ii) For every aeG, peP, H = RG*H

p=a p

, 1.e, Hp is right invariant.
iii H =T .
Tty = T )"
Denote by {ai} the coordinate basis fields over a coordinate patch U
of M. The existence of a connection on P allows one to uniquely associate
‘with any vector veTmM a vector ver where pew'](m)3]. The vector v is

called the horizontal 1ift of v, The horizontal 1lifts ai(p) are a basis-of

Hp, but in general are not part of a coordinate basis39
: The existence of a connection on P(M,G,m) implies the existence of a

1-form field w on P with values in the Lie algebra G'.
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Figure A.1 : Principal Fiber Bundle.

ws Lyduaowoad s Lp
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Def.A.9: A 1-form field w:P > T*P is called a connection 1-form field
on P if it satisfies:
(i) For any fundamental vector field v* corresponding to a vector
field v over M, w(v*) = v,
(ii) A vector field u is horizontal if and only if w(u) = 0.
Let {(U(a), xza))} be an atlas of M such that on each U(afihi there is
a local section of P, denoted S(a): U(a) > P. Given a connection 1-form

w, one can define a family of local 1-form fields A(a) over U(a) by

—
Q
~—
1l
I>
—

)*31) , ' (A.1)

where S(a)*:TmM - T (a)mP is the Jacobian of S(a) and the ug are-a basis of
the Lie algebra G'. In fact, the A(a) can be expressed as

~ i B , i
A(O’,) = A(a)_i dx’ = A((].) 'iuB @ dx . (A.Z)

where {dx1} are the basis 1-forms dual to {81}. The A(a)Bi are smooth real-

valued functions on U(a) and depend on the choice of the local section S(a)

Transform to a new local section Sza) S(a)-y, where Y:U(a) » G, It

can be shown that the expréssions

Az . = Y-]A( oy + Y_]aiy . F (A.3)
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A few definitions are necessary before the curvature 2-form can be
properly defined.
Def.A.10: Let r:G > GL(V) be a representation of G. A V-valued k-form
v over P is said to be a type r if for every aeG, a*v = r(a—1 V.

Def.A.11: The horizontal part, denoted hor v, of a k-form v of type r,

is defined by

hor:v(v1, cee s yk) = v (hor Vi s ees s hor vk) R

where v., ... , v, € T P, and hor v, is the projection of v, onto H .
1 k= 'p J J p

Def.A.12: The covariant exterior derivative of a k-form v of type r is

a (k + 1)-form of type r defined by
Dv = hor dv . (A.4)
The connection 1-form w is of the type "ad", i.e., it takes its values

in the set of automorphisms of the Lie algebra G' induced by the adjoint

representation of G in its Lie a1gebra32

Def.A.13: The Curvature 2-form Q is of type ad and is given by Q = Dw.
From the definitions of D and w it can be shown that3]
Q= dw + %{m,w] . (A.5)

where the commutator of two G'-valued forms v = vaB and 1t = TBuB is

_ B C _ B C .E
o1l = v AT [ugsupl =V A T Cpe Mg - § (A.6)
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The real numbers CE are the structure constants of G with respect to the

BC
basis {uB} of G'. The local expression for Q corresponding to a section

S(a):u(a) + P is

F(OL)U = Na) i3 T o (a)*ai’ S(on)* aj)
(A.8)
=AW~ Moyt T Bt P!
where
Aayis Aays? = M) iMay ~ Mws Ma)i

the product of the A(a)'s being the product defined by the Lie algebra

structure.

Under a change of local section Sfa) = S(a)-y, the_F(a) transforms as
Fl ) = —Y_] F( Y . (A-g)

The definition A.12 of the exterior covariant derivative Dv of a k-form
of type r allows one to define the exterior covariant derivative of a smooth
local section w:U(a) - Er on a vector bundle Er(M,V,Wr) associated with

P(M;G,w). This, of course, amounts to defining a connection on Er(M,V,wr).
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The definition (A.4) for D is not very convenient for computations, so,
following Trautman38§ we use the local expression corresponding to (A.4),

namely:

a _ 9 _a a B b '
D,-IP = axi yo o+ "B A(OL) .i\P R : . (A.10)

In the above, the indicies a, b are for the components in the vector space

V, and rEB is the ath component of
.d__ r exp(t )e (A ]])
dt 20 > )

t=0

where te[0,1], and the e, are the basis of V. Thus the matrices rg = (rgB)

b
are a basis of the r-representation of G'. Hence (rgBA(a)Bi) are the r-

representation of the components of the connection 1-form w. So (A.10) can
be written in matrix form as:

D% = 5w+ Ky (A.12)

oX

where ¢ stands for the column vector (wa) and K(u)i is the matrix with

B

a
elements rbBA(u) i

Now suppose that M is a semi-Riemannian manifold. Let w}“' be the
components of a V-valued tensor field over M. Then (A.12) has the immediate
generalization:

. jo.. i,
Di¥i... T V¥t K( vk, (A.13)
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" where Vi is the covariant derivative associated with the semi-Riemannian

structure on M.
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APPENDIX B - The Principal Fiber Bundle Structure of a Stationary Spacetime

In this Appendix, we shall consider the principal fiber bundle
M4(M3:Tﬁﬂ), where M4 is a smooth four—dimensiona1 manifold, T1is a l-param-
eter Lie group isomorphic to R (i.e., the "translation group"), M3, is a
smooth three-dimensiona1 manifold defined by M3 ES M4/Ti,and, finai]y,

ﬂ:M4 > M3 is a smooth surjection. In addition, it is assumed that:

(1) M3 is Riemannian with negative-definite metric h.
(itl There is a connectiona on the principal fiber bundle.
It will now be shown that the above is sufficient to determine a semi-

Riemannian structure on M4 with metric g having the signature -2 and such

that g is stationary, i.e., there exists a Killing vector field 2 on M4
such that g(i,i) > 0. It should be noted that the usual "3 + 1 decomposit-

jon" of a stationary spacetime amounts to establishing the converse of the

69
above -

~

The existence of ﬁhe metric g and the Killing vector field 3 on M4

will be established locally. Thus we work in a chart (U,xa) on M3. It is
also assumed that over U there is a smooth local section o: U +lﬁ“ The co-
ordinate basis over U is {aa}; and the dual basis is {dxa}.' Hence, the

metric h over U is
- a B
h=hgdx @dx (B.1)

where huB = hBa are smooth functions of the coordinates x~. Let £ be a

Jeft-invariant vector field over T1. Hence, £ is a basis of Iﬁ, the Lie
39

algebra of T1
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Now we will horizontally 1ift the basis{au}(rFTUM3 E{TpM3:peU} to

Tn'l(U)M4 E'{Tﬂ_l(p)M4:peU}. The reéu]ting linearly independent vector

fields aa are uniquely determined by the aa and the connection a. (See
Appendix A.) The 3, are horizontal and hence satisfy a(aa) = 0, However,

the aa are not, in general, part of a coordinate bdsis on M, because, as

39

4
pointed out by Cho™", [aa,aB] # 0. To get a set of coordinate basis vectors
on M, choose a trivial local section o:U - M, such that alp) = (xa,to),
_ where tO = a constant. Define the 1-form field a on U as the "pullback"

a =0 *a. Note also that
a(o,v) = (o*a) (v) = a(v) |, (B.2)

for any VETUMB‘ Thus, since

where E is the vector field over M4 induced by £ and a

aag (:) dx® it

follows that

a(o, 3 - aag) =0 ,
—_— > >
i.e., (0,08 - a £)eT M is horizontal. But since £ is vertical,
R * g o Aﬂ-l(U) 4 ~ R
m,& = 0, and so n*(aa) = Qa = n*(o*aa - aaé).

Thu;, by the uniqueness of the horizontal 1ift it follows that
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To .obtain the metric g on M, we use the prescription of Cho 37

Q2
(g
(2]
1}
o
')
—
oo
(2]
S

The quantities Ba1 and &' are the components with respect to the local basis

~

= ra . >
(O*aa,i) over M, of the vector fields d, and &, respectively. The pres-
cription (B.4) - (B.6) is natural in the sense that the metric gij makes
horizontal and vertical vectors orthogonal. Since (E;BQ,E) satisfies the

Q
re1at10ns3’
HE*aa,E;aB] =0 ,
— >
[O*aaagj - O s

it is a coordinate basis over ﬂ—1(U). Denote the corresponding coordinates by

(xa,x4). In this basis g1 = Gl. Hence equations (B.4) - (B.6) become

A

W _ .
up = € 8435 T Nog o | (8.7)
~ . m _
9y - €2, =0 (B.8)
o = € (8.9)
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~ ~ ~

These equations may be solved for gaB’ 944> and 9ag uniquely in terms of

h ., a ; and e®. In fact, by defining a new metric g on M3 by
aB’ “a aB

(B.10)

it can be seen that the equations (B.7) -~ (B.9) formally resemble the

equations which give the components of a stationary metric in a Copernican

chart.

From equation (B.6), the vector field E js timelike with respect to

the metric 955 Furthermore, in the chart (xa,x4), the Lie derivative of

the metric gij with respect to £ is

since the gaB’ a; and e®, from which the gij are constructed, are independ-
ent of x4. Hence E is a timelike Killing vector field over M4, g is station-

ary, and (xa,x4) are coordinates of a Copernican chart.
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APPENDIX C - The Proof that the 1-form ¢z is Closed

It will be shown here the dz = 0, where ¢ is the 1-form field defined
by equation (4.33).

From the definition of i, it is clear that £Z = 0. Hence
€

dr = 2C (dZ)
g€

Using the properties of exterior derivatives of forms33 and (4.28) and
(4.25), it can be shown that

dg = 2Cd§ - 4kC [(CF*)/\E:] + 2k¢* CS
g ele g

The assumption of isometric motion causes the last term of the above to van-
ish. Furthermore, from the properties of the contraction operation (see
Hick533, page 91), and from the facts47 []g = R g and V *(V E ) 0, it

follows that

dz = 2 {2in Rr gmgkdx A dxd - 2R IF E" dx' A dx)

where R'. is the Ricci tensor on M4. We now invoke the Einstein equations

in the form R = —k(Tr - l‘érT), to arrive at
m m 2 m
dr = -2kf2in (17 - L s™ 1yeek 4 2px £ £™Ky dxi A axd
rkji''m 2 " m ik’ jm

. r r _1.r R * k.m, i J
-2k{21nrkji(E pEM -5 mM) + (Fiijm FJkF1m)} EE dx A dx

It is now claimed that.

~ ~ ~ ~

r * _
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nrkij(Mrm - ;— a"mM)gkg"‘ =0 . (c.2)
These facts are most easily demonstrated in a Copernican chart. Equation
(C.1) holds independently of the isometric motion condition, and it is
established by explicit verification for the three cases (ij) = (aB),
(i3) = (o4), and (ij) = (44). Equation (C.2) holds only if the condition
of isometric motion is invoked, and follows almost immediately from
equations (4.58).

Upon using (C.1) and (C.2) in the previous expression for dz, the

desired result is obtained.
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APPENDIX D - .Properties.of the Potential Space Metric LAB

. B .
In this appendix, the contravariant components LA and the Chris-
toffel symbols KKB of the potential space metric LO will be dispTayed.

These will be used to show that el, = 0 implies that € = a constant.
AB

From (5.9), it follows that -

o . 1
Wy = T 1@, o (p.1)
e e e o -
' -1
(2
- (2]
where
aby _
(L°") = cofactor (Lab)ldet(Lab)
= 2f r0 el 0 o . L (D.2)
LI o* 0
0 o* 0 (T+T*)
¢ 0 (T+T*) 0

The Christoffel symbols of the metric LAB on K5 are
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K]a] = - 6? k! ox
K =0
Ky =7 T
Koy =gk f 0%
Kiy =0
K;2=-aazkf'1¢ ,
K2a3 0 (D.3)
Ko =-7F
Ko = T2 = 0 >
Ky = 0
K4a4 S 62 L

5 A _ A

Now consider the equations

= C -
E”ab =€ ab " Kab ¢~ 0 . (D.4)
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i a = a = a = a = = N
Since K]2 = K]4 K23 K34 0 for all a = 1,2,3,4, € must be of the form,
e = F(¢,T) + G(¢*,T*) , : (D.5)

where F and G are arbitrary differentiable functions of their arguments.

The equation

_ a -
EH]] = E,]] - K]] E’a 0] s
reduces to
- _
Fatkf oxF =0

Assume that F . is not jdentically zero. The first integral of the last

1
equation is then

= —Z]H(f) + C(¢*3F9F*) [}
where ¢ is an arbitrary differentiable function. But since F does not depend

on ¢* it follows that

-1
C2=-kf ¢

3

But this is impossible because ¢ 0 = 0, but (-kf_]¢) 1 # 0. bHence our

assumption F 1 # 0 must be wrong. The upshot is that € is of the form

F(T) + 6(¢*,T%)

m
n

" Similarly, the € = 0 equation yields

5,

e = F(T) + 6(I*)
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F + f'] F o= 0. The first integral is, if F 5 # 0,

Now ¢ |22 ,

33

-ln(F,Z) =-2 ]n(f) + p(¢’¢*3r*) 5

where p is an arbitrary differentiable function. If we differentiate

both sides with respect to T'* we obtain

- f_] +p 1" 0

Again, the last equation is impossible since p does not depend on I'. Hence,

F., =0, and € = G(I'*),

2

Finally, by exactly similar reasoning, the e” = 0 equation yields
44

e = a constant,
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