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ABSTRACT

Many procedures have been proposed to test the hypothesis
that a set of data comes from a certain distribution. These
procedures are known as goodness-of-fit tests or tests of fit.
Two important types of goodness-of-fit tests are tests based on
regression theory and tests based on the empirical distribution
function (EDF).

In this thesis several new tests of fit based on regression
theory are proposed and some results on these new tests are
given. A framework with which to discuss these new tests and
already existing regression tests is presented. In additiom, EDF
tests are extended to the case of testing for the two-parameter
exponential distribution.

A Monte Carlo power study is conducted in order to compare
empirically the power of regression, EDF, and other tests of fit
when testing for the normal, exponential, and extreme value

distributions.
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I. Definitions and Background Theory

1.1 Introduction

In order to satisfy the assumptions of a statistical
technique, or to model a phenomenon, a researcher will often
want to test that his or her data come from a certain
distribution. Let Yys Yos ==es ¥, be independent and identically
distributed observations from a cumulative distribution

function, F(y). The researcher wants to test the hypothesis
F(y) = Fo(y) > (1)

where Fo(y) is some cumulative distribution function.
Occasionally, this distribution will be completely specified,
but more often it will have one or more unknown parameters. This
problem is known as goodness-of-fit testing.

The classical procedure for solving this problem is the x2
test proposed by Karl Pearson (1900). The advantage of this test
is that it is simple to calculate and easily understood. With
continuous distributions, however, the test requires grouping,
which causes a loss of information and thus a loss of power.

Because of this, the test will not be discussed further. (For a

complete discussion of the xz test see Kendall and Stuart, 1973)

#




There have been many goodness-of-fit procedures suggested
for continuous distributions. The oldest and most common methods

use the empirical distribution function (EDF),

Fn(y) = f# of observed values < y . (2)
n

The fit is judged by the degree of closenessvbetween the EDF and
the distribution function, F(y). Tests of this type are known as
EDF tests.

Another common procedure for testing fit is to plot y(i),
the i~th largest observation in the sample, against some
function of i. The fit is then judged by the strength of the
linearity of the graphed values. This procedure leads to
regression tests of fit.

In this thesis regression and EDF tests of fit are
reviewed, new tests are introduced, and some results on these
new tests are given. These tests are then compared with other
goodness—-of -fit tests. The comparisons will be made for three
distributions; eXponential, extreme value, and normal.

Regression and EDF tests are presented in chapters 2 and 3,
respectively. In chapter 4 other tests of fit which are to be
compared are introduced, and some examples of testing for the
different distributions are given in chapter 5. The results of
the power comparisons, and the conclusions drawn from them are

presented in the final chapter. The remainder of this chapter 1is

.




used to state the basis by which the various tests will be
compared, define and present relevant facts about the three

distributions, and present some important estimation theory.

1.2 Principles of Goodness-of-Fit

The different tests of fit will be compared on the basis of
three principles of goodness-of-fit testing that were proposed

by Stephens (1978).

Principle 1

The statistic should keep close to the original data, not
make an elaborate transformation to new numbers which mean
little to the researcher. Thus, when a test statistic is
significant, the researcher will be able to interpret this in
terms of some irregularity in the original data.

For example, when the x2 test statistic mentioned above is
significant, the significance can be seen as a value in one or
more of the groups that is much different;than expected. Both
EDF tests and regression tests follow principle 1, and this

principle will not be discussed further in this thesis.

Principle 2
A test should be consistent and unbiased.

Let the null hypothesis be

F(y) = Fo(y;a,b) > (3)




where a and b are unknown location and scale parameters, and let

t, be the value of the statistic, t, such that
P( t > t, | F(y) = Fo(c+dy) Y = q . (4)
for any constants ¢ and d. A test is consistent if

lim P( t > t | F(y) # Fo(c+dy) Yy =1 . (5)
n->w
This concept was introduced by Wald and Wolfowitz (1940) and is
a minimum quality needed for a goodness-of-fit test, as the
corresponding concept of consistency in estimation is a minimum
requirement for an estimator.
A related but not as essential a quality is that a test be

unbiased. A test, t, is unbiased if
P(t >t | F(y) # Fo(c+dy) Yy > a (6)

for all sample sizes. A consistent test will always be
asymptotically unbiased, but an unbiased test will not

necessarily be consistent.

Principle 3

A test should be powerful over a wide range of
alternatives.

The power of a test is




P( t > t, | F(y) # Fo(c+dy) ) . (7)

Clearly no one test will be most powerful for all
alternatives, so we desire a test that has good relative power
for all or, at least, most alternatives. Extensive Monte Carlo
work has been performed in an attempt to find tests which follow
this principle. The powers of regression, EDF and other tests of
fit has been compared for the normal, exponential and extreme
value distributions. The powef of a test against a certain
alternative distribution is calculated by looking at several
samples from that alternative and calculating the proportion of

times the test rejects the null hypothesis.

1.3 The Distributions

The Exponential Distribution

The two parameter exponential distribution is defined as,

F(y;a,b) =1 - expl-(y - a)/b] , ' (8)

for y > a and b > 0. The parameters, a and b, are location and
scale parameters, and in addition, a is a threshold parameter,
meaning that either a response cannot occur or cannot be
measured below that value.

The distribution has had wide application in lifetime

’




testing and other events that occur at random in time. Because
time is defined only on the positive axis, the distribution is
most often used with a known, and equal to 0. There are other
cases, however, where it might be supposed that some variable
declines exponentially after a certain value, a, which is
unknown. In this thesis only this case, where both a and b are
unknown, will be considered.

An important property of the exponential distribution is
that it has a constant hazard rate. This means that an item that
has an exponential failure rate is ageless. The hazard rate is

defined as
h(y) = £(y)/[1 - F(y)] , (9)

where f(y) is the density function, f(y) = dF(y)/dy. This can be
interpreted, for a lifetime distribution, as the probability
that an item will fail in time dy, given that it has survived up
to time y. For the exbonential distribution, it is easily seen
that h(y)=1/b. In other words the future survival of the item
does not depend on the age of the item. Several goodness-of-fit
tests have been derived based on this property.

Another characteristic of the exponential distribution is
that it is a special case of two other distributions that are
often used to model events in time; the Weibull distribution,
(which will be defined in the next section), and the gamma

distribution. Because of this, these distributions are important
L]




alternatives to be guarded against when testing that a random

variable is exponentially distributed.

The Extreme Value Distribution

The maximum value of a random sample, X s has a
nondegenerate limiting distribution if there exists a sequence

of constantsf{an} and {bn} with a_ > 0 such that

lim PI(x_ - bn)/an <yl = F(y) . (10)
N—->ew
If the distribution of (xn - bn)/an is nondegenerate, then F(y)

must be one of three types. The Type I distribution, which is
commonly referred to as the extreme value distribution, is

defined as
F(y;a,b) = exp{-exp[(y - a)/bl} , (11)

where a and b are location and scale parameters, respectively,

and b > 0. The type II distribution is defined as

F(y;a,b,k) = exp{~[(y - a)/bl1 ¥} , (12)

for y > a, and b,k > 0. The type III distribution is defined as
k
F(ys;a,b,k) = exp{-[(a - y)/b]"} , (13)

for y < a and b,k > 0.
The type I distribution arises if the parent population has

a right tail which declines at least as quickly as the
#




exponential distribution, the second form arises if the right
tail is thicker than the exponential distribution, and the third
form arises if the distribution is bounded above. If we let

¢ = 1/k, then the type I distribution can be seen as the
crossover point between the two distributions, that is, where
c=0.

The corresponding distributions of smallest values can be
found by looking at the distributions of (-Y). The type III
distribution for smallest values is also known as the Weibull
distribution.

The type II and III distributions can be transformed to the

type I distribution by the transformations
X = log (Y - a) and X = -log (a ~ Y) , (14)

respectively. From this it is easily seen that if Y has a

Weibull distribution, defined

k
F(y;c,d,k) = 1 - exp{-[(y - ¢)/d1"} , (15)
for y > ¢, d,k > 0, and ¢ known, then X = -log(Y - c) has the
extreme value distribution, where a = -log(d) and b = 1/k. This

fact enables us to test for the two parameter Weibull and the
extreme value distribution with one procedure.

The extreme value distributions have applications in many
problems involving the maximum or minimum values of a sample.

Some examples are the weakest 1link in a chain, the maximum
Iy




height of a river, the maximum rainfall, etc. The Weibull
distribution has also been used quite often in reliability and

lifetime models.

The Normal Distribution

A random variable is normally distributed if it has the

probability density
f(y;a,b) = 1/[by(21)]1 exp{-(1/2)[(y - a)/b1%} , (16)

for b > 0. The parameters, a and b, are once again location and
scale parameters, respectively. This distribution is the most
widely used distribution in statistics, and has applications to

almost every field of statistics.

1.4 Estimation Procedures

Ordinary Least Squares

Let y be a vector of observations and X be a matrix with

columns (l1,x), where x is a vector of known values and

1 = (1,1,..+1). Let y be linearly related to x; that is,
y = XB + e , (17)
where B = (a,b) is the vector of parameters, and e is a vector

of random errors with




E(e)

il
o
-

and

E(ee’)

n
Q
—
.

The ordinary least squares (OLS) estimator of

sum of squares

(18)

(19)

B minimizes the

SS = (y - XB) (y - XB) . (20)
Differentiating and setting equal to 0, gives
dss/dB = 2X°(y - XB) = 0 , (21)
which implies
B(OLS) = (X'X)_IX'y . (22)
Therefore, the OLS estimates of a and b are
b(OLS) = [x’y - (1°y)(1"x)/nl/[x"x - (1°x)"/n] (23)
and
a(0LS) = 1°y/n - b(OLS)(1°x)/n . (24)

It is known by the Gauss-~Markov theorem that a(0LS) and

b(OLS) are the minimum variance linear unbiased estimators of a

and b for this model. (e.g. Kendall and Stuart, 1973) If (19)

does not hold, the OLS estimators are still unbiased estimators
.
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of a and b, but the are no longer the minimum variance (MV)
linear estimators. The MV linear estimators are the generalized
least squares estimators which will be defined in the next

section.

Generalized Least Squares Theory

Once again, let y be a vector of observations and X be a

matrix with columns (l1,x), such that
y = XB + e , (25)

where B = (a,b) is the vector of parameters and e is the vector

of random errors with .expectation equal to 0. Now, let

E(ee’) = b2 V . (26)

The generalized least squares (GLS) estimate of B, given by
Aitken (1935), (also, see Kendall and Stuart, 1973), is found by
transforming y to i.i.d variables. That is, decompose V-1 into

LL’, and let

z =L’y , (27)

W=1X, (28)
and

u =L"e . (29)

The new model is then

'y

11




where

z = WB + u ,

_E(uu') =1 .

(30)

(31)

Thus, using ordinary least squares we can find the estimate of

B,

Therefore,

which

and

where

and

implies that

B (OLS)

B (GLS)

1

-1
(W'W) W'y
(x° 1L x) "1 X'LL y

(x v ixy Tt xovTly

the GLS estimate of B is

(x'v"lx)—IX'v_ly

a(GLS) = -x'Gy

b

(GLS) = 1°Gy ,

12
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(33)

(34)

(35)

(36)




D = (1°v iy (xr v ix) - (1oviin? . (37)

It can be shown that these are the best (MV) linear unbiased
estimates of a and b. (Kendall and Stuart, 1973)
The GLS estimates are also the values which minimize the

generalized error sum of squares,
PR |
R = (y - XB)'V "(y - XB) . (38)

Differentiating and setting equal to 0O leads to,

dR/dB = 2 x’v‘1 (y - XB) =0 (39)

which implies

B(GLS) = (x’v"lx)'1 x'v'ly . (40)

The fact that the GLS estimates minimize this weighted sum of
squares is useful in understanding the different goodness-of-fit
tests to be discussed in chapter 2.

A particular situation where the generalized least squares
estimators are of value 1s in the estimation of parameters from
the order statistics of a sample. Let y be a continuous random
variable with distributioﬁ F(y;a,b), where a and b are location
and scale parameters. Also let y(l),iy(z),i-..,iy(n) be the
order statistics of a sample of size n from this distribution.

Then

13



y = a + bt , (41)

where t is the reduced random variable with distribution
F(t;0,1).

Let m, be the expected value of the i~th order statistics
of a sample of size n drawn from F(t;0,1), and m be the vector

with components m, - Then,

E[y(i)] = a + bmi s (42)

and
y = XB + e , (43)

where in this case y is the vector of order statistics, and X is
the matrix with columns (l,m).

Since the Y (1) are order statistics, they are not
independent and identically distributed (i.i.d.) random
variables. Let V be the covariance matrix of the order
statistics from the distribution F(t3;0,1), and therefore of e;

i.e.,

E(ee’) = b2 vV . (44)

Estimates of a and b can then be found by applying (34) and

(35) .

14




The Normal Distribution
For some distributions, the properties of m and V simplify
the GLS theory. (see LLoyd, 1952; and Kendall and Stuart, 1973)

For symmetric distributions,

Jm = -m , (45)
and
viegvtlyg, (46)
where
J=1]120 1 |
| . I
I . I
| . I
| 1 0 | . (47)
Applying this fact,
L4 —1 d -
1’V mn = 1°(JV "J)nm
13 vl om
= 1'v'1(-m)
R |
= -1V "m , (48)
which implies that
P |
1’V "m = 0 . (49)

Using this result, (34) and (35) reduce to

15




a(GLS) 1'v"1y/1'v'11 (50)

[

and

I

b (GLS) m'V—ly/m'V—lm (51)

Furthermore, for the normal distribution it is known that

vl =1, | (52)

a(GLS) = 1’y/n =5 . (53)

The Exponential Distribution
Another special distribution for which simplifying
properties of m and V--1 are known is the exponential

distribution. In this case

- -1
m, = 3 (n -3 +1) 7, (54)
1 .
i=1
and V_1 has all elements zero except
~1 2 2
ror+l (n - )"+ (n -1 + 1) (55)
and
-1 | - _ 2
r,r+l1 v r+l,r (n r) ‘ (56)

16




(57)
(58)
(59)
(60)
(61)

(62)

(63)

(64)

(65)

These properties imply that
1’m = n ,
V—lm =1 ,
o 2
1'v = (a?, 0, ..., O) ,
1'V—1m =n ,
m'V_lm =n ,
1'V—11 = n2 .
and
, o= 2
1V 'y n y(l) .
Hence (34) and (35) become
a (GLS) Y (1) [y y(l)]/(n - 1) ,
and
b(GLS) = nly - y(l)]/(n -1 .
These special forms of the GLS estimators will become important

in studying the regression tests for the exponential and normal

distributionse.

Maximum Likelihood

Let Yy» Yoo cos Y, be

f(y;B), where B is a vector

'S

a random sample from a density

of unknown parameters. The

17



LLikelihood Function is defined
L(ylB) = f(yllB)f(yle)...f(ynlB) . (66)

The maximum likelihood estimators are the set of values of the
parameters, B, which maximize the Likelihood Function. ML
estimators, first introduced by Fisher (1921), have several nice
statistical properties, including the fact that they are
asymptotic MV unbiased estimators. For a complete discussion of
ML estimators and their properties, see Kendall and Stuart

(1973).

The Exponential Distribution
For the exponential distribution, the maximum likelihood

estimators of a and b are

a(ML) = y(l) and b(ML) =y - y(l) ’ (67)

where
n
y =1 y.,/n, (68)

and y(l) is the smallest value in the sample. a(ML) and b (ML)
are biased, and it 1is important to note that the variance of
a(ML) is proportional to I/n2 rather than 1/n This fact will be
utilized in chapter 3.

The similarity, in this case, be&ween the GLS estimators

*

18



and the maximum likelihood (ML) estimators 1is easily seen. In
fact, the GLS estimators can be expressed as functions of the ML

estimators;

a(GLS) a(ML) - b(ML)/n , (69)

and

b (GLS)

nb (ML)/(n - 1) . (70)

The Extreme Value Distribution
The maximum likelihood estimators of a and b for the

extreme value distribution (Type I) are

n
a(ML) = -bML) 1log { & exp[—yi/b(ML)]/n} s (71)
i=1
and -
n
b(ML) = (1/n) I y
, i
i=1
n n
-{z yiexP[yi/b(ML)]}/{ z exp[yi/b(ML)]} ,  (72)
i=1 i=1

where b(ML) must be solved for iteratively. These are biased

estimates of a and b.

19



The Normal Distribution
For the normal distribution, the maximum likelihood

estimates of a and b are

n
a(ML) = ¥y, and b(ML) = (1/n) L (yi - 3')2 . (73)

i=1

It is interesting to note that a(GLS) = a(ML), in this case.

20



IT. Regression Tests

2.1 Introduction

The forerunners of regression tests of fit were the
graphical goodness-of-fit methods. In these methods the ordered
sample is plotted against some function of i, and the
goodness-of-fit is graphically estimated by the closeness of
this plot to linearity. Regression tests can be seen as attempts
to define the meaning of a good or bad fit, by the use of a
measure of the linearity of the plot.

Several different methods of measuring linearity exist, and
these methods are discussed in section 2.2. In section 2.3 the
various regression tests are presented, and the procedure to
calculate the test statistics is given in section 2.4. In the
final section of this chapter results on some of these

regression tests are given.

2.2 Measures of Linearity

Most regression statistics utilize the following model,

y = al + bx + e (74)

for some x, where

21



E(e) = 0 , (75)
2

E(ee’) = b~ VvV , (76)

and y is the vector of order statistics. A measure of how well
the data fits this linear model is desired. This measure of the

linearity of the data should not depend on the parameters, a and

'b, of the hypothesized distribution. That is, the measure should

be location and scale invariant. This allows one test statistic

to be used for all values of a and b.

Measures of Linearity using OLS Estimators

' . . 2
The most common measure of linearity is the ordinary r ,
the squared correlation between a vector of values y, and a

vector of values x, defined

2 — N, - 2
r- = [(x = X))’ (y - y1)1]
(x - X1)°(x - %1) (y - Y1) (y - 1) . (77)
Looking at R = 1 - r2 is more intuitive to goodness-of-fit

testing since the hypothesis of a certain model is rejected by
large values of the statistic. A procedure which produces a
statistic equal to R is to regress the ordered values on some
function of 1, estimate a and b by ordinary least squares (OLS),
and calculate the error (or unexplained) sum of squares,
ESS(OLS), divided by the total sum of squares, TSS. The
statistic, R, is then defined

»
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R = ESS(OLS)/TSS , | (78)

where

ESS(OLS) = (y - $)°(y - §) , (79)
TSS = (y - yD)"(y - yl) , (80)
§ = a(OLS) + b(OLS)x , (81)

and a(OLS), b(OLS), and y are defined in equations (23), (24),

and (74), respectively.

Because of the identity, TSS = ESS(OLS) + RSS(OLS), where
RSS(OLS) = (§ - F1)(§ - §1) , (82)

R always lies between 0 and 1. Clearly, r2 is equivalent to

RSS(OLS)/TSS or 1 - ESS(OLS)/TSS.

Measures of Linearity using GLS Estimators

The main problem with the measures of linearity involving
estimation by OLS is that since we are ignoring the covariance
structure of the order statistics, we are not getting the best
estimates of a and b. Thus, because we are not using this
information about the distribution, we expect a drop in power
from this type of statistic.

If we wish to utilize the information of the covariance

structure %n the estimation procedure, the parameters a and b
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should be estimated using generalized least squares (GLS). After
this has been done, it seems reasonable, for a measure of the |
fit to the line to look at some function of the residuals,
y - ¥. The problem is that there is no function that has the
relationship to r2, the squared correlation coefficient, that
the ordinary error sum of squares has. Therefore, several
methods of measuring linearity, using GLS estimators, will be
considered.

The first method of measuring linearity using GLS
estimators, is to look at the sum of squares of the residuals
using GLS estimators divided by the total sum of squares. The

error sum of squares using GLS estimators is defined
ESS(GLS) = (y - §)'(y - §) , (83)
where

alGLs) + b(GLS)m , (84)

<>
]

and a(GLS) and b(GLS) are defined in equations (34) and (35),
respectively. This measure has an intuitive appeal, and as will

be seen later, it has some nice statistical properties.

Measures of Linearity using a
Decomposition of the Covariance Matrix

The second method of utilizing the GLS estimates in a
measure of linearity uses the way in which the GLS estimates are

.
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found.

matrix

as was

vector

-1
That is, we first decompose V ~, the inverse covariance

of e, the random error term, into

vl - 1re (85)

presented in section 1.4 above. Then, transform the y

and the X matrix into

z = L'y (86)

W= 1X. (87)

The covariance matrix of z is now the identity matrix. We can

then look at

ESS = (z - 2)°(z - 2) (88)
divided by
88 = (z - z1)"(z - zl) , (89)
where
£ = WB(OLS) (90)
and
Z = 1°2/n . . (91)

A problem with this method is that the TSS is not

independent of the transformation used. Since there is more than

one way to decompose the matrix, V , into a matrix times its
»
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transpose, this method is not desirable.

Measures of Linearity using the Generalized Error Sum of Squares
Another method of measuring linearity 1is based on the

generalized error sum of squares, GESS. GESS is defined

GESS = (y - $)°V ' (y - $), (92)
where

¥ = a(GLS) + b(GLS)m . (93)

Since this is the quantity that is minimized by the GLS
estimation procedure, it is an appropriate measure to be used
when the parameters are estimated by GLS. In order to make the
measure of linearity scale invariant, the GESS must be divided
by another sum of squares. What is wanted is a generalized TSS

of the form
, o1
(y = ¢l)’'V (y - cl) , (94)

where ¢ is some suitable scalear quantity. Buse (1973) proposed
the quantity c=y(GLS), where

— P | |

F(GLS) =1V "y/1°V "1 . (95)

The generalized total sum of squares is then

GTSS = (y - F(GLS)1)"V 1(y - §(GLS)1) . (96)
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This quantity has properties similar to the TSS in ordinary
regression. Just as y is the scalar that minimizes the
unweighted sum of squared deviations (y - c¢l)”(y - c¢l), y(GLS)
minimizes the weighted sum of squares, (94). Also, GTSS can be
decomposed into a generalized regression sum of squares, and the

GESS defined above. The decomposition is
N - PSS RPN -
GTSS = (y - y(GLS)1)“V (¥ - y(GLS)1) + GESS . (97)
Thus, the measure of linearity consisting of GESS divided by
GTSS, has the property of lying between 0O and 1.

Measures of Linearity using ML Estimators

A final possible class of measures of linearity utilize the
maximum likelihood estimators. If the ML estimators of a and b,
a(ML) and b(ML), exist, then these estimators can then be
inserted %n the regression equation and the fit measured by one
of the already mentioned procedures. Since the covariance
matrix, V, is not explicitly used in the estimation procedure,
the most acceptable measure is the ordinary ESS(ML)/TSS, where
ESS(ML) is the residual sum of squares using maximum likelihood
estimators. Although this method has no least squares
interpretation, it has the advantage that the ML estimators do
not require the expected values or covariances of the order

statistics in order to be calculated.

.
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In the next section the tests of fit corresponding to these

measures of linearity will be presented.

2.3 Definitions of Regression Tests

A number of different choices for the vector x have been
proposed or implied for the regresssion model given in (74).
Regression tests will be presented in the framework of the

vector, x, and the measure of linearity that are utilized.

Regression Tests Using the Expected Values of Order Statistics

The most common set of values of x is the vector of
expected values of the order statistics, m. If the OLS
estimators are used, several statistics equivalent to the

. 2 .
ordinary r exist. For the normal distribution, Shapiro and

Francia (1972) proposed the statistic,

W = (m'y)z/(n—l)szm'm . (98)
where
2 — 1N -
(n-1)s" = (y - 1)’ (y - ¥1) . (99)
. . 2 . .
It is easily seen that this is equivalent to r , since 1'm = 0

for the normal distribution. Sarkadi (1975) showed that the
statistic r2 is consistent for all location-scale distributions
with finite variance, and introduced the corresponding statistic
for the exponential distribution, although he giveé no

.
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percentage points for the statistic. Gerlach (1979) showed that
a modified r2 statistic for censored samples is consistent for
all general location—s;ale distributions, and he gave points for
the extreme value (Weibull) case. (For the purpose of
comparison, R will be looked at rather than rz.)

Until now, no goodness-~of-fit tests have been proposed
using generalized least squares or maximum likelihood estimators
and measuring the departure from linearity using one of the
methods described in the preceding section. The test statistic
which uses generalized least squares to estimate the parameters,

and measures the departure from linearity with ESS(GLS)/TSS,

will be referred to as Gl. Gl is defined as,
Gl = (y - ¥)°(y - /(y -y (y - F1) , (100)
where
§ = a(GLS) + b(GLS)m . (101)

The corresponding test statistic using maximum likelihood
estimators and measuring linearity by ESS(ML)/TSS, will be
called G2. The test statistic which utilizes the measure of
linearity, GESS/GTSS defined in (92) and (96) respectively, will
be referred to G3.

In this thesis the finite and asymptotic expectations of
some regression tests have been found. Also, using Sarkadi’s

2 , ,
proof of the consistency of r ', Gl is shown to be a consistent
'y
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test. These results will be presented in the next section.

A major drawback with the GLS methods is that V has only
been tabulated for small sample sizes (e.g. for the extreme
value distribution for sample sizes up to n = 25, (Mann, 1968);
and'for the normal distribution for sample sizes up to n = 50,
(Tiet jen, et al, 1977)). There is no problem for the exponential
distribution, since the inverse covariance matrix can be easily
computed, but for othe; distributions it must be approximated
using an algorithm such as Davis and Stephens”® (1977, 1978)
approximation of the covariance matrix for the normal

distribution.

Regression Tests using the Inverse Cumulative Distribution

Function

There have been many regression tests suggested using the
inverse cumulative distribution function of some function of 1,
for .the i-th element of x. These functions are easily calculated
approximations of m, chosen either to avoid storing tables of
the expected values of the order statistics, or for very large
. sample sizes for which m has not been tabulated. (The expected
values of the order statistics have been tabulated for the
normal distribution for n = 1(1),100(25),200 by Pearson and
Hartley (1972), and for the extreme value distribution for
n = 1(1),100 by White (1967).) Also, the asymptotic distribution
of the statistics using these quantities is often easier to

.
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calculate than the distribution of statistics using the expected
values of the order statistics.

Since there would be no reason to approximate m with some
function to avoid storage, and then store V or V—l, all of the
tests involving approximations of this type propose estimating a
and b by OLS and measuring the linearity by rz. One could, of
course, estimate V as well with an algorithm such as Davis and
Stephens (1977,1978) for the normal distribution, and then
proceed with one of the methods using the GLS estimates of a and
b.

These approximations of m utilize the probability integral
transformation which is a method of transforming any continuous
distribution to a uniform(0,1) distribution. This is, if X has

distribution F(x), then setting
u = F(x) , (102)

implies u has a uniform(0,1) distribution. Therefore,

E[ ] = i/(n+l) is a reasonable first approximation to

(i)

F{E[x ]1}. For this reason,

(1)

h = F Y [E(u)] (103)

where u is the vector of uniform order statistics, has been
suggested. It should be noted that this approximation can be
very bad for the extreme values of i, especially if the tails of

F are steep.
¢
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The obvious test statistic to use is thé squared
correlation between y and h. DeWet and Venter (1973) proposed
this statistic for the normal distribution, and gave a table of
the asymptotic distribution of the statistic. Smith and Bain
(1976) give some critical values of the statistic,

Rh =1 - r2(y,h), for the normal, exponential, and extreme value
case.

Since the maximum likelihood estimates require no storage,
another possible statistic is G2, ESS(ML)/TSS, with m replaced
by h. This statistic will be referred to as G2h.

Depending on the distribution wished to be tested for,
several other functions have been suggested. For example,
Weisberg and Bingham (1975), following Blom (1958), propose

using

x. = Fli(i - .375)/(n + .25)] , (104)

i
as an approximation to m, for the normal distribution. For other
distributions there are, no doubt, other functions that
approximate m well. However, if the approximation is good, it is
expected that any test statistic using the approximation will
have the same power properties as the corresponding statistic
using m. Indeed, this is what Weisberg and Bingham found for
their test. Because of this, no further comparisons will be made

with tests utilizing approximations other than h.
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The Shapiro Wilk Statistic

Shapiro and Wilk (1968, 1972) devised the W tests for
normality and exponentiality, respectively. The procedure they
propose is to regress the order statistics on m as above,
estimate b by GLS, and to look at the normalized ratio of the

2
square of b(GLS) to the usual estimate of b, 32 which 1is

" defined in (99). Thus, in the case of normality,

W = R4[b(GLS)]2/(n—l)C232 . (105)

where C2 = m'V—lV_lm and R2 = m'V_lm. R2 and C2 are constants

placed in the formula so that W lies between 0 and 1.
There is another way, however, to view this statistic. If

one regresses the order statistics on the values
k = 1°G/d (106)

where G is given in (36), and d is the normalization constant to
make k’k = 1, estimates a and b by OLS, and looks at the
ordinary r2, one gets a statistic equivalent to W. In the case
of normality this reduces to regressing the order statistics on
m'V—l//(Cz) where C2 is given above, and in the case of
exponentiality it reduces to regressing the order statistics on
a set of values the first of which is at 1/n - 1, and the rest
at 1/n.

A possible justification for regressing the order

statistics against these unusual values comes from the results
'y
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of Chernoff an& Lieberman (1956) and Barmett (1975). They found
that if one constrains estimation of a and b to OLS, then the
"pbest" valueé to use as k for the exponential and normal
distributions are those used for W. Here "best" means that the
OLS estimators are also the GLS estimators. This seems to
suggest that, at least for normality and exponentiality, W will
be a more powerful statistic than those bésed on r2 from
regressing the order statistics on m. Although no "best" values
for k exist for the extreme value distribution, or to any other
well known distribution, the W test was extended to the extreme
value distribution in this thesis.

Using the fact due to Stephens (1975) that for the normal

distribution,
V 'm -> 2m (107)

as n approaches infinity, it can be seen that the W test and the
Shapiro-Francia test, W', are asymptotically equivalent. (In
fact W° was initially derived as a large sample approximation to
W. For a comparison of the two statistics, see Shapiro and
Francia (1972), Weisberg (1974), and Weisberg and Bingham
(1975).) Sarkadi conjectures that since Shapiro-Francia’s test
is consistent, that this implies W for normality will also be
consistent.

In the exponential case, however, there is no relationship

between the Shapiro-Wilk and Shapiro-Francia tests. In fact for
¢
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exponentiality

2

W= nly 12/(n - 1)s (108)

Y (1)

which is similar to the coefficient of variation, s/y. Sarkadi
implies that because many distributions have the same
coefficient of variation as the exponential distribution, that W
is not consistent. It is not quite as simple as this, however.
For example, if one is given a normal distribution with mean
equal to 1, and variance equal to 1, (coefficient of variation
equal to 1), the Shapiro-Wilk statistic will have asymptotic
power equal to 1 since
r11i1>nm}3[y(1)] = —o (109)
It is possible to construct a distribution for which the W
test for exponentiality will not have asymptotic power equal to
1 if attention is restricted to distributions with a threshold
parameter. (Since W is known to be location invariant, the
threshold can be taken to equal 0 without loss of generality.)
In these distributions
l1im Ely ] =0 . (110)
o> (1)
Since the distributions of § and 52, and thus the W test for
exponentiality, depend only on the first four moments of a

distribution, one method to show that the W test for
Py
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exponentiality is inconsistent is to find a distribution in this
restricted class with the same first four moments of any
translated exponential distribution. If this was done, the
Shapiro-Wilk statistic would have the same asymptotic
distribution for this new distribution as for the null
distribution, and thus could not be consistent.

Another way to show the inconsistency of the W test is to
find a distribution restricted to the positive axis, with the
same coefficient of variation as the exponential distribution.
Some examples of distributions restricted to the positive axis
with coefficient of variation equal to 1 are; the Beta(a,b)
distribution with a < 1 and b=a(a+l)/(l-a), the F(a,b)
distribution with b > 6 and a=(2b-4)/(b~6), and the
lognormal (0,b) distribution with b=1n(2).

The existence of these distributions alone does not prove
the lack of consistency of W. It would also have to be shown
that the variance of W for these distributions approaches 0 at
least as quickly as for the exponential distribution. No results
of this type have been proved, but the power of W was compared
for several of the above distributions for sample sizes 10, 20,
50, and 100. The mean and standard deviation of W were also
calculated for 1000 samples of each size and for each
distribution. These values can be compared with those for the
exponential distribution in table 1. (The power of another test,

A2, which will be defined in the next chapter, was also included
L]
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for the purpose of comparison.) The results strongly suggest
that the W test is not a consistent test, and for some

distributions 1is asymptotically biased.
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Expected value,

Table 1

standard deviation and power (in %)

of the Shapiro-Wilk W-test for exponentiality against

selected alternatives.

Alternative
Distribution

Exponential

Beta
(+25,.417)

Beta
(.5,1.5)

Beta
(.75,2.625)

Beta
(.99,197.01)

F (6,8)

F (4,10)

Log-normal
(0,1n(2))

Sample
Size

10
20
50
100

10
20
50
100

10
20
50
100

10
20
50
100

10
20
50
100

10
20
50
100

10
20
50
100

10
20
50
100

Expected -
Value

0.135
0.060
0.022
0.010

0.130
0.056
0.021
0.010

0.129
0.057
0.021
0.010

0.134
0.097
0.021
0.010

0.134
0.060
0.022
0.010

0.145
0.064
0.022
0.011

0.143
0.061
0.022
0.011

0.134
0.059
0.021
0.010

38

Standard
Deviation

0.058
0.022
0.006
0.002

0.073
0.021
0.005
0.001

0.056
0.019
0.004
0.001

0.063
0.067
0.004
0.002

0.061
0.021
0.006
0.002

0.076
0.031
0.008
0.003

0.074
0.026
0.008
0.003

0.069
0.026
0.008
0.003

16 .8
16.1
26.5
24.0

14.4
19.2
25.7
22.9

Power
A2



2.4 Procedure to Calculate the Regression Statistics

Let Yy y2, e ey yn be the random sample of size n from the

distribution F(yj;a,b).

1.

Sort the sample in ascending order, and let y be the vector
of order statistics.

Find
y = 4 + bk , (111)

where & and b a;e OLS, GLS, or ML estimates, and k is the
vector of expected values of order statistics or some other
function, depending on the statistic that is being
calculated.

Calculate the appropriate error sum of squares and total sum
of squares;

Compute the regression statistic according to the formula

given in table 2.
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Table 2

Definitions of regression test statistics studied.

Notation:
ESS(c,x) = [y - a(e)l - b(e)x] [y - a(e)l - b(c)x]

TSS = (y - ¥)'(y - ¥)

GESS = [y - a(GLS)1 - b(GLS)m]“V '[y - a(GLS)1 - b(GLS)m]"
— =1 - '

GTSS = (y - )V "(y - ¥)

Name Formula

R ESS(OLS,m)/TSS

Rh - ESS(OLS,h)/TSS

Gl ESS(GLS,m)/TSS

G2 ESS(ML,m)/TSS

G2h ESS(ML,h)/TSS

G3 "GESS/GTSS
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2.5 Theory of Regression Tests

Expectations of Gl and R

Since in the case of order statistics the errors cannot be
assumed to be normally distributed, very little distribution
theory is known for the regression statistics. From least
squares theory, however, the expectations of the statistics
under the null hypothesis can often be found.

Before finding the expectations of R and Gl under the null
hypothesis, we will prove four lemmas. For the remainder of this
section, let y, X, B, and e be as defined in (25), and V be as

defined in (26).

Lemma 1

E[ESS(OLS)] = tr(V) - tr[x'vx(x'x)'ll (112)

Proof: Let § be defined in (81). It is known that

0

[y - ¥1 XB + e - XB(OLS)

= X[B - B(OLS)] + e
= X[B - (X'X)—IX'y] + e

= X[B - (x’x)'lx’(XB + e)] + e
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e -~ X(X'X)—IX'e

[In - X(X'X)—IX']e

[

Qe , (113)

where

[I - X(X'X) "X°1 . (114)

O
[l

THis implies that

E[ESS(0OLS)]

E{(y - 9)°(y - $)]

E (e’Q’Qe)

= b2 tr(QQV) , (115)

where tr is the trace operator. (Kendall and Stuart, 1973)
Furthermore, since the trace operator is invariant under cyclic

permutation of matrices,

1 1

tr(Q°QV) = tr{[I - X(X'X) "X°]7[I - X(X'X) "X"]1V}
= (triv - 2X(X°X) " x°vV +
X(x %) T xxx x) " xeviy
= {tr(V) - triX’vX(x-x) 11} . (116)

Lemma 2

Let § be the vector of estimates of y defined in (84),

E[§ - E($)IIF - B(§)1° = b2 x5 'x (117)
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where
S = (X°'V "X) . (118)
Proof: First, it can be shown that

¢ = XB(GLS)
= xs'lx'v"ly
-1_,. -1
= XS "X’V "(XB + e)

- xB + xs 1x'vle s (119)

and thus

E($) XB . (120)

From (119) and (120),

1 -1

E[§ - E($)IIy - E($)]1° = E(XS v lee v lxs X’ ]
= b% xs 1 x v lxs lx-
- b2 xs”'x-. (121)
Lemma é
E[ESS(GLS)] = tr(V) - tr(x Xs 1) (122)
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Proof: Let § be defined in (84). Following the proof of

Lemma 1, it can be seen that

(y - %) XB + e - XB(GLS)

!

b

o
|

B(GLS)] + e
1 -1

= X[B - (x'v"lx)" X'V "yl + e

1_,.-1

= xiB - (x'v I txviix + )1 + e

= e - x(x'v'lx)"lx’v_le

= [In - xs—lx’v_l]e

= Pe ,

where

P = [I - XS X'V ],

and S--1 is defined in (118). This implies that

E[ESS(GLS)] = E((y - 9)°(y - $)1
= E (e’P’Pe)
= b2 tr (P PV) ,
where
tr (P PV) = tr{[I - XS—1X'V_1]’[I - xs'lx'v"llv}
1 -1 -1 1 -1

= tr{[I - 2Xs "X’V + V XS "X°XS X" 1V)

L V'lx(x’v'

1

= tr[V - 2X°XS~
= tr(V) - 2tr(X’'XS

= tr(V) - tr(X'XS_l) .

b4

Yy + tr(X°Xs )

1

IX)X'XS_ X

1

(123)

(124)

(125)
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Lemma 4§ .
lim E[ESS(GLS)/n] = 0 . _ (127)
n->w

for all distributions with finite second moment.
Proof: First, it can be shown that for any distribution

where 02 and u2 are finite, that
2 2 4
tr(V) = n(¢g + p ) - m'm (128)

2 .
where o is the variance of the reduced variable t, and y 1is the

mean of t. Furthermore, Hoeffding (1953) proved that

lim m’ m/n ! y2 dF (y)

n->w
=0 +p (129)

whenever the right hand side is finite. Therefore,

lim [tr(V)/n)] = 0 . (130)

n->w
By Lemma 2, we know that since X'XS_1 is a covariance matrix,
roe—l
tr(X°Xs ") >0 , (131)

which implies that
¢
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Er (V) > tr(V) - tr(x°xs 1) ,

E[ESS(GLS)] (132)

Therefore, since E[ESS(GLS)] is positive and less than tr(V),
the result follows from (130).

The significance of the above lemmas is that ESS(OLS) and
ESS(GLS) are the quantities in the numerators of the statistics,
R and Gl. In both of these cases the quantity in the denominator
; 2 . . . s 2 2 .
is s which is known to converge in probability to b o . This

implies that for any e > 0, there exists an N such that

E{ [ESS/(N-1)]/s%}
2 2

E(ESS/TSS)

< 1/(b"c” - e) E[ESS/(N-1)] , (133)
which implies that
lim E(Gl) = 1lim E(ESS(GLS)/TSS)
n—->w n—->w

0. (134)

Furthermore, by the Markov inequality which states that for any

positive random variable X,
P(X > t) < E(X)/t , (135)

the critical values of Gl approach 0O in the limit.
The limiting expectation of R, and thus of the critical

values of R, has been shown to be 0 by Sarkadi (1975), and can
*
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be obtained from Hoeffding’s (1953) theorem. From this theorem
it can be derived that there is perfect asymptotic correlation
between the expected values of the order statistics and the
order statistics. (Kendall and Stuart, 1973).

In the special case of the normal distribution, ESS/S2 and
s2 are independent due to the sufficiency of sz. (Hogg and

Craig, 1956) This implies
2 2
E(ESS/s”) = E(ESS)/E(s”) (136)

for any sample size. This allows the expectations of R and Gl to
be calculated exactly for finite sample sizes.

No statement of independence can be made for the
exponential or extreme value distributions, but Monte Carlo
results for finite sample sizes suggest that (136) 1is

approximately true for these two distributions.

Consistency of Gl

2
In order to prove the consistency of r (=1 - R) for any
distribution, Fo(x), with finite variance, Sarkadi (1975)
effectively shows that there exists an e > 0, such that

lim P( R > e | H1 y =1, (137)
n->o

and that for any e > 0, in particular e, = e,

l1im P( R > e | H. ) =0 , (138)

n—->

1
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where HO is the null hypothesis, F(x) = Fo(x), and Hl is the
alternative hypothesis, F(x) = Fl(x). Using these two results

from Sarkadi and Lemma 4 of the preceding section, we prove the

following theorenm.

Theorem 1

Gl, defined in (100), is a consistent test.

Proof: It is well known that a(OLS) and b(0OLS) are the
estimators which minimize the ESS. Therefore, if any other
estimators are used, the ESS will be greater than or eﬁual to
the ESS using OLS estimators. In particular, it is easily seen

that

ESS(OLS) < ESS(GLS) (139)

which implies that R < Gl. This fact, with result (137), implies

that there exists an e > 0 such that

lim P( Gl > e | H, ) = 1 . (140)
n"'>on

It was shown above that the limiting expectation of Gl is
0, and this, along with the Markov inequality, implies that for

any e > 0,

lim P( Gl > e | H, )y =0 . (141)
n—Dw

48



Therefore, Gl is a consistent test.

The Expectation of G3

The expectation of GESS, defined in (92), is
2
E(GESS) = b " (n - 2) . (142)

(Kendall and Stuart, 1973) The expectation of GTSS can be found

as follows:

E(GTSS)

o1 -1 2, , -1
Ely’V 'y = (1°V "y)°/1°Vv "1]
= E{(al + bm + e)'V—l(al 4+ bm + e) -

[l'V—l(al + bm + e)]z/l'V_ll}

- Ebn v i - (erviiny(icviteysicvin 4

e’vle - b2(1'v'1m)2/1’v'11]
= bz[m'V_lm - (l’V-lm)z/l’V_ll +

1 1

n - tr(v 11'V—1V)/1’V_ 11]

1

- - 2 ~1
b2[m'V m - (1°V 1m) /1°Vv "1 +

(n - 1)] - (143)

Using the fact that 1’V—1m = 0 and V_lm -> m, in the case of the

normal distribution,
2 P |
E(GTSS) = b (n - 1 + m°V "m) , (144)
which implies that

1im E(GTSS/n) 3b° . (145)

n—-> o
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In the exponential case (143) reduces to

E(GTSS) = 2b2(n - 1) , (146)
which implies that
. 2
lim E(GTSS/n) = 2b . (147)
n->wo

Thus, if it could be shown that GTSS and GESS/GTSS were
independent or that GTSS converged in probébility to its
expected value, the asymptotic expectation of G3 would equal 1/2

in the exponential case and 1/3 in the normal case.
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ITI. EDF Statistics

3.1 Background and Definitions

Let y(l), y(z), ..oy y(n) be the order statistics of a
sample of size n from the distribution F(y). The EDF statistics
measure the discrepancy between the empirical distribution
function, Fn(y), defined in chapter 1, and the hypothesized
distribution function, Fo(y). These test statistics were
developed for the case where Fo(y) is continuous, and completely
specified, that is, with no unknown parameters.

The most famous EDF statistic, D, was proposed by

Kolmogorov (1933), and is defined by

D = sup IFn(y) -~ FO(Y)| . (148)
y
This is the largest vertical gap between the empirical
distribution function and Fo(y). Kolmogorov also found the
asymptotic distribution of D, and gave a recurrence relation for
the distribution for finite n.
Smirnov (1939) introduced the corresponding one-tailed test

statistics, D+ and D-, defined by

D+ = sup [Fn(y) - Fo(y)] > (149)

y
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and

D- = sup [Fo(y) - Fn(y)] ’ (150)
y
and found their asymptotic distribution. These three statistics,
D, D+, and D-, are known as the Kolmogorov-Smirnov statistics.
Another test statistic of this general type was proposed by

Kuiper (1960), and is defined
V =D+ + D~ . ) (151)

This statistic was proposed in order to test for randommness on a
circle. The Kolmogorov-Smirnov statistics can produce different
values depending on where the origin of the circle is measured,
whereas V 1s independent of the origin of the circle. Kuiper
found the asymptotic distribution of V, and Stephens (1965) gave
the exact distribution of V for finite n.

Because of fhe Glivenko~Cantelli theorem (Glivenko, 1933;
Cantelli, 1933) which states that if F(y) = Fo(y), then

P( 1im D = 0 )
n->w

1
—
-

(152)

it is known that the Kolmogorov-Smirnov tests and the Kuiper
test are consistent tests.
A second family of EDF statistics for continuous

distributions was first proposed by Cramer(1928), and
¢
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generalized by von Mises (1931) and Smirmov (1939). The general

form is

K=n s glFg()IF_(y) - F ()17 aF () - ©(153)

The statistic with g=1 1is called the Cramer-von Mises statistic,
W2. The asymptotic distribution of this statistic was
investigated by Smirnmov (1936), and found by Anderson and
Darling (1952). Pearson and Stephens (1962) found the
distribution of W2 for finite n.

Anderson and Darling (1952,1954) proposed and found the
asymptotic distribution of the statistic with the weight

function,

-1
g[FO(y)] = {Fo(y)[l - FO(Y)]} > (154)

which is known as A2. The corresponding statistic for
goodness-of -fit on the circle, invariant with respect to the
origin, was proposed by Watson (1961). The statistic, U2, is

defined by
2
U2 = n s (F_(y) - Fo(y) = £)° dF (y) (155)
where
t = s [F_(y) - F (y)] dF (y) - (156)

Stephens (1963,1964) found the asymptotic and finite

distribution of U.
#
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Stephens (1970) found modifications for all of the above
statistics, so that the asymptotic significance points can be
used for finite sample sizes. This allows the use of these
statistics with only one set of tables. For a detailed survey of
thg distribution theory of EDF tests, see Durbin (1973).

In practice, to calculate the EDF statistics, the
probability integral transformation, referred to in the last
chapter, is utilized. The order statistics from F(y) are
transformed to uniform order statistics by this transformation,
and the empirical distribution function of these new uniform
order statistics is compared with the uniform distribution
function, F(z) = z. Since this can be done for all continuous
distributions, the distributions of the EDF statistics are
independent of the distribution being tested for.

The formulas for the 6 EDF statistics defined above, are

D+ = mix [i/n - z(i)] . (157)
D- = max (z,,. - (i-1)/n) , (158)
i (i)
D = max (D+,D-) , (159)
VvV = D+ + D- , (160)
o 2
W2 = { ¢ [z, - (21 - 1)Y/2n]"} + 1/12n , (161)
i=1 ()
9 n
U2 = W2 - n(z - 1/2)" where z = & zi/n s (162)
i=1
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and

Y + 1In(1 )1¥/n - n ,(163)

n
A2 = ¢ i (21 - 1)[{1n(z Z(n+1-1)

. (1)
where Z(i) is’the i-th transformed order statistic.

If the distribution being tested has one or more unknown
patameters, then the EDF statistics are no longer distribution
free. It is known, however, that if the unknown parameters are
location and scale, then the distributions of the EDF statistics
do not depend on the unknown parameters.

When testing for Fo(y;a,b) with unknown a and b, location
and scale parameters, respectively, the following procedure can
be used. First, estimate the parameters, a and b, by maximum

likelihood or some other efficient method, and calculate

a)/t , (164)

W

(1) T T
where 3 and b are the estimates of a and b. Then, calculate

z F(w(i);O,l) . (165)

(i)
In this case the Z(i) are no longer uniform random variables and
the distribution of the statistics will depend on the Fo(y)
being tested for.

Stephens (1974,1977,1979) found the moments and

approximateq the asymptotic distribution of the EDF statistics
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for the normal, extreme value, and logistic distributions with
one or both parameters unknown, and the exponential distribution
with scale parameter unknown. He also gave modifications for the
test statistics for finite n in each of these cases. Durbin
(1975) found the exact distributions for finite n in the case of
the exponential distribution with scale parameter unknown for

the statistics D, D+, and D-.

3.2 Application to the Two-parameter Exponential Distribution

Until now, very little work has been done on EDF statistics
in the case of testing for the two-parameter exponential
distribution. One reason for this is that there exists a simple
technique to eliminate the unknown location parameter, a. Lf
are the order statistics from a sample of

Y(l)’ Y(z)! A ] Y(n)

size n from the exponential(a,b) distribution, then

Z(1y = V(i+1) T V(1) (166)

are the order statistics of a sample of size n-1 from the
exponential(0,b) distribution. The z°s can then be tested using
the procedure above and Stephens’ (1974) modifications.

As an alternative to the above method, one can proceed with
the usual EDF method for distributions with unknown parameters.
That is, estimate both parameters by some procedure and perform
the probability integral transformation. If the maximum

likelihood (or GLS) estimators are used the asymptotic
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distribution of the statistics 1s the same as for the case where
a is known. This is because a(ML) has variance of the order
2 . . .
1/n°, and so is super efficient, as mentioned in chapter 1.
(Darling, 1955) There will, however, be a difference in the
distribution for finite sample sizes.
In most other cases involving estimation of parameters, the

maximum likelihood estimators have been utilized. If the maximum

likelihood estimators, y(l) and ¥y y(l) are used in this case,
then w(l) = y(l) - y(l) will‘always be equal to 0. This implies
that Z(l) is also 0, which produces an infinite value for A2.

Since A2 has been found to be a very important EDF statistic
(see Stephens, 1974), another procedure is desired.

A good solution is to use the unbiased generalized least
squares estimates rather than the maximum likelihood estimates.
It has already been noted that the GLS estimators can be
expressed as functions of the ML estimators. In chapter 6, these
two estimation procedures, as well as the transformation to one
parameter exponential will be compared on the basis of their
power against a wide range of alternatives, when testing for the

two-parameter exponential distribution.
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IV. Other Tests of Fit

4.1 Introduction

In addition to the EDF and regression tests, which arise
out of a procedure applicable to testing for many different
distributions, various special tests have frequently been
proposed by different authors to test for specific
distributions. Some power comparisons have been made for these
tests either because they were believed to be serious rivals to
the tests already mentioned, or because no other power
comparisons have been made for them in the three cases under
consideration in this thesis. Most of the tests were developed
with the object of testing for one particular distribution, and
they will be presented under the heading of that particular

distribution.

4.2 Exponential Distribution

Other than the tests introduced in this thesis, only two
other tests have been developed primarily for testing for the
two~parameter exponential distribution. They are; the
Shapiro-Wilk test which was presented in chapter 2, and the
Tiku, Rai, and Mead (1974) test. The Tiku, Rai, and Mead test

.
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statistic, TRM, is the ratio of an estimator of b which 1is
calculated on only a part of the sample, with the maximum

likelihood estimator. TRM is defined,

TRM = (1 - l/n)bc/[l - 1/n(1 - q)1b(ML) (167)
where
n-r
b = [(l/n)iily(i) + Y (qopy T y(l)?/(l - q) , (168)
q = r/n, r = [.5+ .5n)], and [x] is the greatest integer in x.

It was also shown that TRM has a beta distribution, which for
large sample sizes can be approximated by a normal distribution.
Several other tests were chosen to be compared on the basis
of their good power properties for the one-parameter exponential
distribution. (For a complete power survey for the
exponential(0,b) distribution, see Stephens, (1978)) A test
which 1s known to be uniformly most powerful against the gamma
distribution alternative when testing for the exponential(0,b)
distribution (Shorack, 1972), was suggested by Moran
(1947,1951). The test, M, is defined
o _ ,
M = —Ziilln[y(i)/y] . (169)
It is also known that M has a X2 distribution with 2n degrees of

freedom.
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Another test in this category is L, introduced by Lewis
(1965). He proposed the test
n
L = 2n —iilly(i)/ny . (170)
A third test was proposed by Jackson (1967). This is
another test which is the ratio of two estimators of b. In this
case it is the OLS estimator divided by the maximum likelihood

~estimator, for exponential(0,b). That is,
T =m’y/1l’y , (171)

where y and m are the vectors of order statistics and expected
order statistics, respectively.

It was necessary to modify these three tests to apply them
to Festing for the two-parameter exponential distribution. The
obvious method is to apply the "docking-off" transformation
described in the last chapter, to the order statistics, and
calculate the test statistics on the z values. This was done for
all three tests.

For T, however, the OLS and maximum likelihood estimators
for the two-parameter exponential could also be used. In this

case T becomes,
T2 = (m’y - 3)/n(y - y(l)) . (172)
It is easily shown that
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Tl = T2 + (n - 1)/n , (173)

where Tl is the T test obtained from the "docking-off"
procedure. Therefore, for Jackson’s T, unlike for the EDF tests,
the two procedures yield equivalent results.

Several EDF tests with special modifications for the
one—-parameter exponential distribution, used with the docking
of f technique, were also looked at. The first of these is a
modified version of W2 suggest by Finkelstein and Schafer
(1971). Their test statistic, FS, which was found to have good

power for the one parameter case, is defined

FS =
i

[[Bci=]

lmax(lF(Y(i);b) - (i - 1)/n|)IF(Y(i);b) - i/nl) «(174)

The other EDF tests utilize two well known properties of
the exponential distribution. The first, due to Pyke (1965), is

that if y(i) are order statistics from an exponential

distribution, that
d; = (n + 1 - i) (y(i) - y(i—l)) . (175)

where y(0)=0, also have an exponential distribution with the
same scale parameter. This fact is also utilized by the M, L,

and TRM tests introduced above. The second property 1is that if
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h|
u(j) =ifl}’(i)/ny’ j = 1’ LR | I'l"l ’ (176)

then the u(j) are ordered uniform random variables. After
subtracting y(l), these two transformations can be made to get
n ~ 2 uniform distributed variables which can be tested by the
EDF procedure for a completely specified distribution. This
procedure will be referred to as the K transformation. All six
of the EDF tests were compared using this procedure.

The final two tests that were compared for the exponential
distribution are based on the hazard rate defined in (9). It is
known that if the hazard rate of a distribution increases
(decreases) monotonically; then the normalized sample spacings,
di’ tend to increase (decrease) with i for fixed sample size.
(Lin and Mudholkar, 1980) Thus, the constant hazard rate of the
exponential distribution implies that the normalized spacings
should be approximately the same size. Several tests have been

proposed utilizing this fact. Fercho and Ringer (1972) found

Gnedenko’s F-test defined

Q(r) = (n—r)Sl/rSu, (177)
where
r n
Sl.= I di and S = I di’ (178)
i=1 Yoi=r+l
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to have the best power among tests of this type. Q(r) is known
to have an F distribution with 2r and 2(n-r) degrees of freedom.
Fercho and Ringer suggest using r = [n/2].

In order to guard against altermnatives with hazard rates
that are not monotonic (e.g. the lognormal distribution), Lin
and Mudholkar (1980) propose the test that rejects the null
hypothesis if either of F1l or Fu fall in the rejection region.

The two tests are defined

Fl = (n-2r)S./rS , and Fu = (n-2r)S /rsS , (179)
1 m u m
where
n-r n
Sm =3 d,, Su =5r d,, (180)
i=r+l i=n-r+

and Sl is defined above. The critical values are found using the

approximation
P(a<Fl<b,a<Fu<b|Ho)<[P(a<F<b)]2, (181)

where F has an F distribution with 2r and 2(n-2r) degrees of
freedom. Lin and Mudholkar found this approximation to be very
good. They suggest using r = [n/10] since the quality of the
approximation increases as the denominator degrees of freedom

increase.
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4.3 Extreme Value Distribution

For the extreme value distribution, five additional tests
were studied. Two of these tests were especially designed to
test for the extreme value distribution (type I) against typé II
and type III extreme value distribution alternatives.

Ihe first of these was introduced by Bardsley (1977). It is
the ratio between the sample standard deviation, s, and the
standard deviation of the largest member of all possible pairs
in the sample, s”. The test utilizes the fact that
asymptotically, s = s’ for the type I distribution, for the type

IT distribution s < s’, and for the type III distribution

s > s’. (Jenkinson, 1955) The test is defined,

B=(s°/s'? - /s, C(182)
where
n -2
s, = /{[1l/n(n - 1)] £ (t, - t)"} , (183)
t . i
i=1
n
Tt =3 ti/n s (184)
i=1
and
t; = nsz/s'2 - (n - l)xi , (185)

where X is the ratio of sz/s'2 calculated after excluding the

i-th value ,0of the sample. Bardsley presents a large sample
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approximation to the critical values of B, and recommends not
using the approximation for sample sizes less than 45.

The second test statiétic designed to test for an extreme
value type I distribution against type II and type III
alternatives was proposed by van Montfort and Otten (1978). The
test is an approximation of the locally most powerful test
against the type II and type III altermatives. Let the i-th

normalized sample spacing be defined

d ]/(mi—m. ) (186)

i - Vay ~ G-y i-1

for i=2, ..., n , and 9 be the derivative of E(di) which in the

extreme value case is approximated by
g; = log{-logl[(i-.5)/(n+1)1} . (187)

Van Montfort and Otten’s test statistic, A, 1is defined

n n _ 2
A= [(Cr 1.d./ 3z 1) - dl/ (v7/n) (188)
i=2 i=2

where 1i is an approximation of the i~th normalized sample

spacing that uses hi rather than m,

[« W
il
N g

d./(n-1) , (189)
5 1

and
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n 9 :
vio= 1 (d; - d)"/(n - 1) . (190)

This test statistic was primarily designed as a one-sided test
to be used to test against either the type I1 or type III
distribution. The test, however, can be used as a two-sided test
against all alternatives. van Montfort and Otten give
approximations to the distribution of A, and also give critical
points for some finite sample sizes.

The third test statistic looked at for the extreme value
distribution is also based on the sample spacings. The test, S,

proposed by Mann, Scheuer, and Fertig (1973), is defined

T n-1
S = (5 d )/ (zx d,) , (191)
. i X i
i=1 i=1
di is defined in (186), r = [m/2], and [x)] is the greatest

integer in x. The test statistic was developed to test for the
type I extreme value distribution for smallest values, and
utilizes the fact that the right tail of this distribution is
steeper than than alternatives of the normal or distribution. It
was also designed to test for the two-parameter Weibull (extreme
value type III distribution for smallest values) against the
three-parameter Weibull distribution (location parameter not
equal to 0.) In this case when logarithms are taken, the right
tail of the alternative is longer than the right tail of the

extreme valPe distribution type 1. (No reason was given for the
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choice of these alternatives.)

The test statistic was modified to test for the extreme
value distribution of largest values by making the
transformation X = -Y, and looking at the lower tail. It was
also changed to a two-tailed test to test for all alternatives.
Mann, Scheuer, and Fertig show that asymptotically S has a Beta
distribution. Monte Carlo points were also given for sample
sizes up to 25, and show that the distribution holds even for
small sample sizes.

An approximation to Mann, Scheuer, and Fertig’s test,
replacing di by li where li is the same as for the test
statistic, A, above, and r = [m/2], was also examined. This test
is referred to as Sh.

The final two tests statistics for the extreme value
distribution considered were ratio type tests of the
Shapiro-Wilk type. In the normal case, W is proportional to the
ratio of the generalized least squares estimate of b with the
maximum likelihood estimate of b. The ratio of these two
estimates, called W°, is not equivalent to W in the extreme
value case, and was considered.

The last test was designed as a large sample approximation
of W for the extreme value case. Since the correlation between
the generalized least squares estimator and the maximum
likelihood estimator is quite high even for small sample sizes,

the ratio of the maximum likelihood estimator and 52, which will

~
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be referred to as W°°, was considered.

4.4 Normal Distribution

Since goodness-of-fit tests for the normal distribution
have been extensively analyzed with respect to power, (see
Stephens, 1973; and Shapiro, Wilk, and Chen, 1968), only one
other test was considered. This is van Montfort and Otten’s
test, A. In the normal distribution 8o the derivative of E(di)’

is approximated by
-1 2
g; = /4 + 3/4(F "(p.))" , (192)

where P; = (i-7/8)/(n+1/4). The test statistic was designed as a
oné—tail test against alternatives of the Student-t
distribution. However, Monte Carlo results showed that the test
could be significant in either tail depending on the
alternative, so in order to utilize this test statistic as a

test against all alternatives it was used as a two-tailed test.
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V. Monte Carlo Results and Examples

5.1 Finite Significance Points

New Statistics

The distributions for finite sample sizes of all of the
statistics introduced for the first time in this thesis were
approximated by Monte Carlo methods. These statistics are; GI1,
G2, G2h, G3, and the statistics W', W°°, and Sh for the extreme
value distribution. For each of several sample sizes, 10,000
samples from the hypothesized distribution were generated using
the IMSL library (version 7), and the statistics were calculated
for each sample. The finite distributions were calculated for
sample sizes 5(5), 25 for all distributions. The significance
points were also calculated for samples of size 50 fromithe
normal distribution and if péssible for the extreme value
distribution, and samples of size 50 and 100 for the exponential
distribution.

In order to avoid having a overwhelmingly large number of
tables, significance points are presented only for those
statistics which proved their value in the power comparisons.

These statistics are; Gl, G2, and G2h. Tables of the Monte Carlo
*
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significant points can be found in the Appendix.

New Cases for Existing Statistics

Several statistics that had been previously introduced were
extended to new cases, and the distributions for finite n of
these statistics were found. The statistics are; W for the
extreme value distribution, R for the exponential distribution,
and W2, U2, and A2 case 5 for the exponential distribution.
Significance points for these test statistics based on 10,000

samples can be found in the Appendix.

Other Statistics

The finite distributions of some already existing
statistics were also calculated. In some cases the significance
points were unavailable for some of the sample sizes wanted for
the power comparisons, but in most cases these results were used
to check the adequacy of the Monte Carlo procedure. Either
10,000 or 5,000 samples were taken from the hypothesized

distribution for these statistics.

5.2 Tllustrations

Illustration 1

Thirty-two values of modulus of rupture measured on Douglas

Fir and Larch 2x4s were kindly provided by Dr. W. Warren. These

L
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values were tested for exponentiality. The data and values of
the regression and EDF statistics can be found in table 3. By
looking at the modified values of W2, U2, and A2, and
interpolating from the Monte Carlo tables for the other

statistics it is seen that all statistics strongly reject the

hypothesis that the variable is exponentially distributed.
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Table 3

Thirty-two ordered values of modulus of fupture for Douglas
Fir and Larch two-by-fours.

43.19 49 .44 51.55 55.37 56.63 67.27 78.47 86.59
90.63 92.45 94.24 94.35 94.38 98.21 98.39 99 .74
100.22 103.48 105.54 105.54 107.13 108.14 108.64 108.94
109.62 110.81 112.75 113.64 116.39 119.46 120.33 131.57

Values and significance levels of the regression and EDF test
statistics for exponentiality calculated on the above data.

Name of "Value Significance
Statistic Level
R -39 <.01
Rh .36 <.01
Gl 2.52 <.01
G2 2.32 <.01
G2h 1.71 <.01
G3 .66 <.01
1) .17 <.01
D+ 1.11 <.025
D- 1.99 <.01
D 1.99 <.01
\Y 3.10 <.01
W2 1.07 <.01
U2 .78 <.01
A2 5.10 <.01
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Illustration 2

van Montfort (1973) presents 47 values in cu. feet/sec. of
the annual maxima of the discharges of the North Saskatchewan
River at Edmonton. A random sample of twenty-five of these
values were tested for the extreme value distribution. The

sample and values of the statistics can be found in table 4.
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Table 4
Twenty-five values of the annual maxima of the discharges

of the North Saskatchewan River at Edmonton in cubic feet
per second.

19.885, 20.94 21.82 24.888 27.5

28.1 28.6 30.38 31.5 38.1
39.02 40.0 40.0 40.4 44 .7
50.33 51.442 58.8 61.2 65.597
66.0 84.1 106 .6 121.97 185.56

Values and significance levels of the regression and EDF
statistics calculated on the above data.

Name of Value Significance
Statistic Level
R .102 <.10
Rh -131 >.10
Gl .176 <.05
G2 .176 <.05
G2h -237 <.025
G3 365 >.10
W .310 <.02
w2 .103 <.10
U2 .079 >.10
A2 . 745 <.10
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Illustration 3

Modulus of elasticity was measuréd for sixty-four 2x4s of
Douglas Fir or Larch. (Data provided by Dr. W. Warren.) A sample
of 50 of these values was tested for normality. These values and
the values of the regression and EDF statistics can be found in
table 5. A1l the statistics fail to reject the hypothesis that

the data is normally distributed.
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Table 5

Fifty values of modulus of elasticity for Douglas Fir
and Larch two-by-fours.

43.19 45.84 49.44 51.55 54.14
55.37 56.93 59.63 60.04 61.07
65.74 67.09 72.24 72.34 73.46
76.52 77 .35 78.36 78.47 78.79
82.00 83.57 84 .95 86.59 87.96
90.19 91.57 91.74 92.45 94.24
94.54 95.00 98.139 99.74 100.22
103.48 105.54 107.13 108.14 108.64
108.94 109.62 110.81 112.75 116.39
116.79 119.46 120.33 121.16 131.57

Values and significance levels of the regression and EDF
statistics calculated on the above data.

Name of Value Significance
Statistic Level

R .019 >.10
Rh .015 >.10
Gl .019 >.10
G2 .019 >.10
G2h .018 >.10
G3 263 >.10
W .963 >.10
w2 .049 >.10
U2 .047 >.10
A2 362 >.10
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VI.

6.1

Results and Conclusions

Introduction

In order to compare the power properties of the various

test procedures for each distribution, a wide range of

alternative distributions and sample sizes was investigated. The

procedure was as follows:

1.

A sample of size 10, 20, or 50 from some distribution other
than the null distribution was generated. The random samples
were generated using IMSL version 7 random generators-

All statistics to be compared were calculated, and it was
recorded whether the statistic was significant.

This procedure was repeated several times and the percentage
of significant samples was recorded. (Not all the statistics
were compared using the same set of samples.)

The distributions generated were the appropriate

alternatives for each null distribution. For each alternative

distribution, 2500 (or in some cases, 1000) samples of each of

size 10, 20 and 50, were generated. The maximum standard error

of the power results is equal to .5//n which, for the cases

where 2500 samples were generated, is 17, and, for the cases

wvhere 1000 samples were generated, is equal to 1.6%.

¢
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Since the covariance matrix of the order statistics from an
extreme value distribution have only been tabled for sample
sizes up to n=25, any test for the extreme value distribution
which utilized the GLS estimate was not calculated for samples
df size 50.

A listing of all of the alternative distributions employed
in the power study is given in table 6. The results of the power
comparison for the extreme value distribution can be found in
tables 7 to 9, for the exponential distribution in tables 10 to
16, and for the normal distribution in table 17. All results
presented are for 10%Z level tests. The powers for a 5% level

test are also available.
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Table 6

Alternative distributions used in the power study.

Name

Beta(a,b)
Chi-squared(a)
Exponential

Extreme value
type 1

Extreme value
type II(a)

Extreme value
type III(a)

F(a,b)

Half-Cauchy
Half -normal
Laplace
Log-normal (a)
Normal
Student-t (a)
Uniform

Weibull (a)

Definition of
Standardized Distribution

f(x)

f(x)

f(x)

F(x)
F(x)

F(x)

f(x)

y is
£ (x)
£(x)
£(x)
£(x)
£(x)

F(x)

0 < x <1

, X > 0

~-(a+b) /2

= cnst. x271(1-x)P7 L,

< cnst. x@7D 2 0 x/2)

= cnst. exp(-x)

= expl-exp(-x)]

- expl-(x)1%1 , x > 0

< expl-(-x)2], x < 0

= cnst. x®72/ 2010 asbyx)
x >0

T(l), x is |y|

N, x is [y|

= cnst. exp(-|x])

= cnst. exp[-(1ln x)2/2a], x >0

= cnst. exp(—x2/2)

= cnst. (l+x2/a)-(@8F¥1)/2

=1, 0 <x <1

= 1 - exp[(—x)a] , X >0
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Code

B(a,b)
C(a)

Exp

EVI

EVII(a)

EVIII(a)

F(a,b)
HC

HN

L
LN(a)
N

T(a)

W(a)



Power,

Alt.
dist.

B
(1,4)

EVII
(.1)

EVII
(-2)

EVII
(.4)

EVII
(.8)

EVIII
(.1)

EVIII
(-2)

EVIII
(.4)

EVIII
(.8)

(in Z)’

Table 7

of tests for the Extreme Value
against selected alternatives.

Regression tests

distribution

EDF tests

Sample Rh
size

10 9.4
20 7.0
50 6.2
10 14.8
20 18.7
50 27.2
10 19.5
20 29.2
50 49.3
10 33.2
20 53.6
50 83.1
10 59.7
20 85.2
50 99.3
10 9.5
20 6.4
50 5.4
10 10.2
20 9.6
50 18.9
10 24.3
20 40.0
50 83.2
10 61.3
20 93.0
50 *

o
O =

(=0 o}
.
wv o

Sy
.
o0

.
w o~ w uwun
. s .
N [« .30 =))

Fo R S e
L)
(=AW, [ N}

W2

16.8
25.4
56.6

11.8
13.9
17.8

15.0
22.9
38.8

28.4
48.8
82.2

60.1
87.7
99.6

10.2
12.2
17.0

13.9
18.1
36.4

25.6
46.6
82.9

U2

16.3
26.0
55.6

11.1
12.9
14.9

13.0
20.2
31.9

24.4
43.9
74 .3

55.7
84.4
99.4

10.2
12.7
15.9

13.4
18.4
33.4

24.8
46.0
80.4

56.5
89.4
99.9

A2

18.8
30.4
66.3

13.7
16.3
19.7

17.8
27.8
44 .9

32.7
56.2
86.8

66.0
91.8
99.9



Power,

(in z) ’
against selected alternatives.

Table 7 (continued)

Regression tests

of tests for the Extreme Value

distribution

EDF tests

Alt. Sample Rh

dis.

L

(1)

(6)

size

10
20
50

10
20
50

10
20
50

10
20

50

10
20

50

30.1
44.2
71.9

15.2
22.8
44.5

69.9
89.9
99.7

22.1
32.9
58.2

15.3
27 .8

83.1

R

32.2
48 .7
76.5

20.4
35.1
64.8

67 .7
89.3
99.7

24 .4
41.5

67 .4

24 .1
52.2
97.0

Gl

G2

33.0
54.0
84.9

19 .8
38 .2
77.1

68'8
88.6
99.7

25.2
46 .4
79.6

17 .7
40.2
93.9

81

G2h

19.1
38.0
75.0

G3

W

w2

32.0
56 .4
90 .8

18.8
31.0
61.8

67.0
90.3
99.9

23.5
41.6

76.4

21.4
37.8
78.4

U2

31.3
57.0
90.5

18.3
30.6
58.7

66.0
90.0
99.9

23.0
41.9
75 .4

21.7
38.8
76'8

A2

30.2
58.1
90 .8

16 .6
33.4
66.5

67 .3
90.6
99.9

22.3
43.5
79.2

20.3
42.2
86.6



Table. 8
Power, (in %), of tests for the Extreme Value distribution
against selected alternatives.

Alt. Sample Att Aut Stt Sut S2tt B W’ W
dist. size

B 10 11.2 2.4 17.2 4.5 16.4 12.0 15.7 5.7
(1,4) 20 13.1 1.0 24.0 2.2 24.3 13.1 30.0 8.7
50 23.4 0.2 43.1 0.8 43.4 14.2 12.8
EVII 10 14.4 6.2 11.6 6.1 12.7 13.9 11.2 14.0
(.1) 20 17.6 4.1 l4.4 4.6 15.0 15.8 11.2 15.8
50 27.2 2.0 20.6 3.0 21.8 22.7 26.5
EVII 10 19.2 3.8 15.5 4.0 17.0 18.8 13.6 17.0
(.2) 20 29.7 2.0 24.8 2.9 26.5 25.8 16.9 29.3
50 56.0 0.4 47.0 0.5 49.3 46.5 54 .0
EVII 10 34.6 1.7 28.4 2.3 31.0 32.2 24.1 33.7
(.4) 20 58 .4 0.4 53.5 0.6 55.5 51.8 40.3 57.8
50 91.5 0.0 87.7 0.0 89.2 85.1 90.2
EVII 10 64 .8 0.4 61.7 0.4 63.8 60.8 57.6 59.4
(.8) 20 90.9 0.0 89.5 0.0 90.8 86.0 86.4 88.8
50 99.8 0.0 99.8 0.0 99.8 99.0 99.2

EVIII 10 10.0 15.1 10.9 15.3 11.0 8.8 8.6 10.8
(.1) 20 14.5 22.3 13.4 20.5 12.3 12.1 9.7 14.3
50 22.8 35.6 16.9 26.6 17.5 17.8 22.9

EVIII 10 14.0 23.5 13.4 22.0 13.5 11.0 10.0 13.3
(.2) 20 24.1 36.7 18.3 29.5 18.1 17.0 12.4 26.4
50 59.8 75.6 39.5 55.6 41.4 45.2 56 .2

EVIII 10 32.0 46.2 26.4 39.4 26.6 16.1 12.7 30.1
(.4) 20 65.7 78.5 48.2 61.7 49.2 42.2 26.2 59.5
50 98.6 99.7 83.8 91.6 86.5 94.1 97.2

EVIII 10 68.3 79.5 56.2 69.2 58.5 27.5 31.8 64.1
0

(.8) 20 97 . 98.4 88.7 93.3 90.4 65.1 60.5 89.4
50 * * 99.7 99.9 99.8 94.4 99.9

82



Table 8 (continued)
Power, (in %), of tests for the Extreme Value distribution
against selected alternatives.

Alt. Sample Att Aut Stt Sut S2tt B W’ W’
dist. size

L 10 32.2 40.4 27.0 38.1 26.9 13.8 23.0 35.1
20 51.8 58.9 43.8 56.1 43.4 16.6 48.0 55.4
50 80.6 86.8 77.1 85.9 78.2 19.2 83.9
N 10 20.1 31.4 18.6 28.4 18.6 12.0 12.1 22.2
20 42.4 55.5 31.9 45.8 31.9 25.8 20.2 42.2
50 82.7 90.6 64.0 78.0 66.6 59.8 80.3
T 10 62.0 47.2 51.0 46.7 51.4 21.8 53.2 63.4
(1) 20 73.4 53.7 63.2 55.9 63.2 18.4 77.7 81.6
50 85.6 62.8 79.7 70.9 79.4 18.6 - 91.9
T 10 25.3 35.0 22.9 32.3 23.0 12.0 17.8 27.8
(6) 20 48.0 57.7 37.8 51.6 37.4 19.0 33.6 49.1
50 79.7 86.0 70.0 81.6 71.2 30.6 81.4
u 10 14.4 26.2 1 23.8 18.9 12.6 9.4 13.1

9.0
20 31.4 45.9 26.7 35.3 26.4 35.0 11.0 20.2
50 70.7 85.3 42.6 54.0 45.0 89.5 51.2
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Power,

Alt.
dist.

B

(1,4)

(1)

(3)

(4)

Alt.
dist.

B

(1,4)

(1)

(3)

(4)

(in 7%2),

Table 9

Regression tests

of tests for the Weibull distribution
against selected alternatives.

EDF tests

Sample Rh
size
10 11.2
20 11.2
50 16.3
10 12.1
20 15.6
50 19.0
10 9.6
20 8.2
50 7.0
10 9.3
20 7.4
50 7.3
10 20.2
20 31.7
50 54.4
Sample Att
size
10 10.8
20 13.0
50 19.2
10 12 .4
20 15.5
50 20.0
10 10.0
20 11.4
50 13.0
10 10.5
20 12.2
50 20.1
10 23.9
20 44.0
50 79.4

G2

10.6
12.4
17 .6

10.9
13.9
20.1

10.8
11.2
12.3

11.4
12.0
16 .2

26 .0
46 .8
78.9
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L]
o whN

[V, BV, RN |
s

NN

N O
AN~

G3

N~
" .
w o

S2tt

11.2
12.7
18.2

11.4
14.4
20.5

10.2
10.4
12.0

11.0
11.2
16 .5

26 .8
48.6
80.6

U2

10.8
11.1
14.2

10.2
12.0
17 .0

10.3
12.6
12.8

11.2
12.3
14.4

22.4
39.4
76.5

A2

11.9
13.4
17 .0

12.0
14.7
20.3



Table 10

Power, (in %), of the regression tests for the
distribution against selected altermatives.

Alt. Sample Rh R Gl G2 G2h G3
dist. size
B 10 8.6 13.4 17 .7 13.4 8.4 11.5
(1,4) 20 5.6 13.2 22.3 17.9 4.8 13.2
50 6.7 22.2 42 .8 38 .6 10.0 14.6
C 10 18 .4 13.4 11.0 19.4 39.0 25.4
(1) 20 23.0 17 .8 20.9 28 .5 41 .5 31.7
50 36.5 29 .4 54 .2 60.3 69.7 48 .7
C 10 9.8 13.5 20.9 16 .2 9.4 12.2
(4) 20 7.5 13.2 31.7 26.9 9.2 15.1
50 9.4 19.4 62.8 58.3 29.2 31.0
HC 10 44 .1 36.8 35.0 44.8 59.1 40.7

20 68.1 63.0 64.2 68.5 75.3 61.7
50 93.8 92.0 94.4 95.0 96.0 86.7

HN 10 10.2 15.8 24.7 18.7 8.5 13.4
20 9.3 19.3 35.6 29.4 9.8 17.3
50 12.6 32.2 68.2 64.3 28.6 22.9
LN 10 19.0 14.4 12.9 17.5 29.9 15.2
(1) 20 29.5 24.4 21.4 25.0 32.9 19.2
50 49 .4 42.8 42.5 45.8 52.1 26.6
LN 10 64.4 54.2 56.8 71.4 83.7 70.8
(2.4) 20 86.6 81.5 89.0 93.0 96.0 90.8
50 99.1 98.8 99.8 99.9 * 99.6
U 10 40.2 56.0 66.0 58.8 33.4 26.8
20 71.3 88.7 94.6 92.5 69.0 40.0
50 99.5 * * * 99.8 66.9
W 10 40.6 30.3 30.6 46.3 67.7 48.6

(.5) 20 58.4 49.8 61.8 70.7 82.4 67.6
50 85.8 82.5 97.5 98.2 98.9 92.9

W 10 18.8 27.4 46.8 37.5 18.4 20.8

(2) 20 22.0 38.8 76.1 71.0 39.2 34.5
50 48.0 71.6 99.2 99.0 92.4 73.8
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Exponential

11.4
17.3
43.5

25.0
39.0
78.6

16 .0
29 .2
72.7

48.3
71.6°
96 .0

17.0
29.6
72.4

19.1
26.5
47 . 4

48 .0
82.6
99.8

54 .4
82.0
99 .4

37.8
73.3
99 .7



Power,

(in %) ’

Table

11

of tests for the Exponential

distribution against selected alternatives.

Alt. Sample
size

dist.

B

(1)

(4)

HC

HN

LN
(1)

(2.4)

10
20
50

10
20

50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

FS

14.3
18.5
30.5

28.8
54 .2
90.9

21.3
36.4
74 .5

42 .4
70 .1
93.7

18.3
33.0
61.6

15.3
24 .6
37.2

L

86

MOR

13.0
14.3
25.9

38.8
67.7
97 .7

19.9
35.8
78 .5

39.5
62.0
87.7

16 .1
26 .5
50.3

14.2
14.5
16 .6

35.2
54 .3
87.9

69.3
94.0
99.9

35.6
65.8
97.0

TRM

13.7
14.3
30.3

31.4
49.9
82.7

14.9
25.7
58.2

37.5
63 .o
90.2

16 .8
25.8
53.5

13.2
19.1
27.1

79.2

98.1
*

42 .3
68.5
96 .7

61.1
84 .4
99.6

32.6
62.6
97 .8

BF

22.7
61.6
99.5

43.1
75 .3
99.8

18.9
41 .2
86.0



Table 12

Power, (in %), of the EDF tests for the Exponential
distribution, case &4 (a known), against selected altermnatives.

Alt. "Sample D+ D- D v W2 U2 A2
dist. size

B 10 3.6 16 .8 11.7 11.4 13.0 13.5 10.6
(1,4) 20 2.5 22.7 15.4 14.4 17 .7 15.7 14 .4
50 1.1 39.5 27 .4 23.6 31.2 24 .4 27 .8
c 10 54.0 1.7 33.6 30.9 38.1 33.6 56.2
(1) 20 72.2 0.7 57.2 50.4 62.6 53.8 71.7
50 96 .5 1.0 91.4 87.3 94 .5 89.0 98.3
c 10 1.2 43.3 32.5 29.7 37.9 34 .4 31.7
(4) 20 1.3 68.7 56 .1 50.8 63 .7 55.5 61.6
50 4.5 95.8 90.5 86 .7 95.0 90.6 96 .3
HC 10 53.9 2.8 42 .7 36.7 45.1 37.8 46.0
20 75.8 0.8 65.6 57.7 68.1 59.2 68.5
50 95.4 0.0 92.8 88.5 94 .2 89.1 93.9
HN 10 1.6 26.2 19.7 19.0 21.2 20.4 17 .0
20 0.8 38.6 27 .0 24 .8 31.7 27 .2 27 .4
50 1.0 66 .5 54 .4 48.7 62.1 51.6 58.8
LN 10 16.0 14.4 16 .6 16 .3 17 .4 17.5 14.9
(1) 20 22.5 15.6 22.5 23.2 25.6 26 .5 24 .8
50 36.0 23.8 36.7 48 . 4 43.3 51.2 50.5
LN 10 91.2 0.2 83.2 78 .3 86 .0 79.8 89.8
(2.4) 20 99.6 0.0 98.4 97 .0 99.1 97 .0 99.4
50 100.0 0.1 100.0 100.0 100.0 100.0 100.0
U 10 3.4 53.1 42 .2 47 .9 51.5 48 .0 44 .7
20 17 .6 80.0 69.0 78 .5 81.2 74 .7 77 .5
50 84.9 98.8 97 .0 99.7 99.4 98.6 99.8

W 10 79.4 0.3 63.8 57.1 68.9 '59.1 81.1
(.5) 20 95.2 0.0 91.0 84.1 92.2 86.2 96 .8
50 100.0 0.5 100.0 99.9 100.0 99.9 100.0

%) 10 2.3 75 .7 65.8 64 .1 76.2 69.3 69.6
(2) 20 9.8 96 .4 91.8 91.8 97 .0 93.8 96 .6
50 49 .8

100.0 100.0 100.0 100.0 100.0 100.0
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Table 13

Power, (in %), of the EDF tests, case 4a, for the
Exponential distribution against selected alternatives.

Alt. Sample D+ D~ D v W2 U2 A2
dist. size

B 10 4.4 16 .8 12.5 12.0 13.8 13.1 11.6
(1,4) 20 2.9 22.4 14.8 14.6 17 .4 15.0 14.8
50 1.2 38.7 27 .0 23.0 31.0 24.0 27 .0
c 10 40.3 2.5 23.0 21.6 25.3 22.2 36.6
(1) 20 63.2 1.0 46 .9 40.7 51.2 44 .4 64 .1
50 - 94.4 1.0 87.3 81.6 91.3 84.9 96 .0
c 10 2.6 24 .8 18.2 16 .4 20.4 18 .4 15.6
(4) 20 1.4 42 .1 31.0 28 .0 35.0 30.6 31.7
50 2.2 78 .0 68.0 63 .5 74 .5 67 .3 74 .6
HC 10 53.8 2.6 41 .8 35.7 44 .4 37.5 45.4
20 75.6 0.6 65.5 57.3 68 .4 58.8 68.7
50 95.3 0.0 92.5 88.4 94.0 88.9 93.9
HN 10 1.8 25.0 17 .7 17.0 19.6 18.8 15.3
20 1.2 34.8 24 .6 22.5 28.3 24 .5 23.8
50 0.9 64 .9 51.8 47 .1 60.1 49 .8 56 .6
LN 10 21.8 7.2 14.2 13.0 15.5 13.8 14.9
(1) 20 29.1 6.0 20.7 16.3 22 .6 18.9 22.2
50 42 .4 5.4 32.1 29.5 36.4 32.3 35.3
LN 10 86 .9 0.4 76 .3 71.6 79 .4 73 .4 84 .6
(2.4) 20 99.0 0.0 97 .4 95 .4 98.3 95 .8 99.1
50 100.0 6.1 100.0 100.0 100.0 100.0 100.0
U 10 3.2 48 .5 37.9 43.0 45.5 43.6 39.0
20 15.4 78 .0 66.7 75.8 78 .0 72.8 74 .9
50 83.0 98.9 96 .8 99.7 99.6 98.3 99.6
1Y) 10 68.4 52.5 45.2 55.4 48 .2 66.4

0.5
(.5) 20 92.0 0.0 85.3 77.2 88.0 79.8 92.8
50 100.0 0.4 100.0 99.6 100.0 99.8 100.0

W 10 42 .6 33.2 31 .4 38.9 34.8 31.8

1.1
(2) 20 2.9 76 .0 65.4 63.4 74 .2 66.4 70 .1
50 23.2 99.5 98.3 98.0 99.4 98.7 99.3
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Table 14

Power, (in %), of the EDF tests, using the k transformation,
for the Exponential distribution against selected altermnatives.

Alt. Sample D+ D~ D A w2 U2 A2
dist. size

B 10 3.4 17.0 10.6 8.9 10.8 8.8 11.6
(1,4) 20 1.9 23.9 14.2 10.0 15.8 10.6 16 .5

50 0.5 44 .4 29.5 17 .1 32.8 18.2 34.8
c 10 39.6 . 28.8 20.2 30.2 19.5 35.9

2.2
() 20 63.9 0.6 51.0 34 .5 54.0 33.7 61.7
50 94.0 0.0 88.6 72.6 91.2 70 .4 94 .8

c 10 2.0 26.5 15.2 12.1 16 .5 12.1 16 .1
(4) 20 0.5 43.7 30.0 18.4 32.5 19.0 32.2
50 0.0 79.8 68.3 47 .9 74 .3 47.5 74 .0
HC 10 56.1 2.8 50.0 42 .2 50.0 43.2 48 .9
20 78.6 0.6 72.1 65.9 73.0 66 .5 72.0
50 96 .6 0.0 95.1 93.0 95.3 93.0 95.3
HN 10 1.4 25.2 15.6 11.8 16 .0 11.8 15.4
20 0.5 37.6 24 .4 14.0 26 .4 14.9 27 .2
50 0.1 71 .0 56 .5 35.1 63 .5 35.2 65.0
LN 10 22.0 17 .9 17 .4 17 .8 17 .6 16 .4

7.0
(1) 20 32.5 5.5 26.1 24 .5 27.0 25.8 25.4
‘ 50 46 .9 4.2 38.7 43.9 38 .7 45.6 38.2

LN 10 87.4 0.3 81.2 68 .7 82.3 68.1 85.0
(2.4) 20 99.2 0.0 98.5 95.2 98.6 94.2 99.2
50 100.0 0.0 100.0 100.0 100.0 100.0 '100.0

U 10 0.4 53.0 37.3 20.7 40.8 21.1 48 .3
20 0.0 84.9 73.0 47 . 4 79.4 45 .4 87.1
50 0.0 99.9 99.5 94.7 99.8 92.0 100.0
W 10 69.1 0.4 59.1 42 .9 61.2 42 .2 66 .4
(.5) 20 92.4 0.0 87.3 74 .1 89.1 72.2 92.7
50 100.0 0.0 99.8 99.5 99.9 98.9 100.0
1) 10 0.4 44 .7 30.4 17 .3 33.9 17.0 34.1
(2) 20 0.0 78.6 67 .0 43.0 73 .4 42 .2 73.0
50 0.0 99.7 99.2 93.2 99.6 90.6 99.6
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Table 15

Power, (in %), of the EDF tests, case 5, for the
Exponential distribution against selected alternatives.

Alt. Sample D+ D- D ' w2 U2 A2
dist. size

B 10 4.3 16 .0 11.8 11.6 13.7 11.9 12.8
(1,4) 20 3.1 22.0 15.1 15.6 17 .6 14 .4 16 .2
50 ) 1.0 38.6 26.9 22 .8 31.4 24.7 28 .6
c 10 39.8 2.4 23.5 22.1 26 .8 25.4 31.5
(1) 20 64 .3 0.9 48.1 42 .8 52.1 46 .1 59.0
50 93.8 1.0 87.3 81.5 91.3 85.7 95.0
c 10 2.5 23.6 16 .4 16 .1 20.0 16 .7 18.0
(4) 20 1.6 41 .6 31.1 29.1 35.1 29.7 33.6
50 1.7 77.9 67.7 63.3 75.0 67f8 75.6
HC 10 53.4 2.4 42 .0 36.0 45.9 40.6 47.9
20 76 .3 0.6 66.1 58.8 69.0 61.2 70 .2
50 95.1 0.0 92.5 88.4 94.2 89.6 94.1
HN 10 1.5 23.9 16 .7 16 .5 19.4 17.0 17 .6
20 1.4 34.2 24 .8 23.9 28.3 23.2 25.8
50 0.7 64 .8 51.5 46 .7 60 .6 50.3 58 .6
LN 10 20.3 6.7 14.4 13.0 16 .1 14.5 17.0
(1) 20 29.8 5.9 21.3 17.9 23.1 19.4 24.0
50 40.6 5.4 32.1 29.3 36.8 33.1 37.0
LN 10 86 .6 0.3 76 .9 71.9 80.4 77 .5 82.9
(2.4) 20 99.0 0.0 97 .5 95.8 98.4 96 .5 99.0
50 100.0 0.1 100.0 100.0 100.0 100.0 100.0
u 10 2.5 47 .2 35.6 42 .6 45.0 40 .4 44 .4
20 16.7 77 .6 66.8 77 .4 78 .1 71.2 79.0
50 80.9 98.9 96 .8 99.7 99.6 98.3 99.7
%) 10 68.0 53.2 45 .8 57.3 53.2 62.0

0.5
(.5) 20 92.5 0.0 86.0 78 .6 88.4 82.4 91.0
50 100.0 0.4 100.0 99.5 100.0 99.8 100.0

%) 10 41 .6 31.4 30.8 38.4 31.8 36.1

0.8
(2) 20 3.4 75 .8 65.5 65.0 74 .2 65.2 72.8
50 20.7 99.5 98.3 98.0 99 .4 98.8 99 .4
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Power,

Alt. Sample
size

dist.

(1,4)

(1)

(4)

HC

HN

LN
(1)

LN
(2.4)

(1“ Z) ’

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20

50

10
20
50

10
20
50

10
20
50

10
20
50

Table 16

of the EDF tests,

D+

o= N
.
o= N

19.2
27 .5
37.9
87.6

100.0

W wo
L]
=~

93.6

el ]
L[]
o BN L]

99.5
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case b5a,
Exponential distribution against selected alternatives.

10.0
12.2
20.2

34.3
52.2
87.2

10.2
19.2
55.0

40-1
60.6
88.6

12.2
17 .1
41 .1

14.0
16 .2

26.1

80.1
97 .3
100.0

30.4
68.6
99.4

60.0
85.2
99.8

18 .4
51.7
96 .9

for the

W2

U2

|
|
i
|
|



Power,

(in Z) ]
against selected alternatives.

Table 17

Regression tests

Alt. Sample Rh

dist.

C
(1)

(3)

(4)

Exp.

EV

LN
(1)

size

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

R

Gl

77.2
98.9
*

41.6
70.6
99.0

33.7
59.4
96 .6

G2

92

G2h

G3

61.2
85.4
99.0

28.2
42 .6
71.4

23.2
34.5
57 .6

39.6
57.7
88.1

16 .7
24 .4
36.7

17 .4
22.8
36.6

52.2
78.0
98.1

47.2
76.9
99.5

38.0
64 .5
97.9

of tests for the Normal distribution

32.6
47.2
68.1

20.2
26.9
35.7

19.7
23.9
33.0

25.6
32.1
45 l5

15.8
22.5
30.5

18.6
33.0
61.8

35.9
54.9
80.4

EDF tests

w2

U2

36.6
60.6
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50
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A

.8
.5
.1
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Table 17 (continued)

Power, (in 7%), of tests for the Normal distribution
against selected alternatives.

Regression tests EDF tests
Alt. Sample Rh R Gl G2 G2h G3 %) A W2 U2 A2
dist. size
T 10 70.2 68.9 69.0 68.9 70.4 58.9 64.6 56.1 67.7 67.6 67.8
(1) 20 92.9 91.8 91.8 91.8 92.8 83.8 90.1 87.1 91.1 90.8 92.0
50 * * * * * 98.1 99.6 99.6 * 99.9
T 10 22.6 21.9 21.9 21.9 22.7 15.3 20.5 16.8 19.4 19.3 20.4
(4) 20 36.8 34.2 34.2 34.3 36.8 20.8 29.7 28.8 28.3 28.1 31.7
50 63.4 60.1 60.1 60.1 63.9 33.4 44.0 53.6 47.1 47.1 50.4
T 10 18.6 17.8 17.8 17.8 18.6 12.6 16.5 13.5 15.6 16.0 16.5
(6) 20 26.0 24.0 24.0 24.1 26.0 16.2 22.2 19.4 19.0 19.3 23.7

50 45.6 42.5 42.5 42.6 45.8 20.5 27.5 34.0 28.2 28.5 32.1

U 10 7.8 10.4 10.4 10.4 8.0 16.8 21.6 20.6 13.7 15.4 15.7
20 8.6 15.6 15.7 15.8 8.6 23.7 35.8 49.2 24.5 27.3 32.4
50 43.0 68.2 68.2 68.4 43.6 40.2 94.2 97.2 59.6 64.0 73.6

W 10 91.0 92.4 92.4 92.4 91.2 81.3 94.4 49.8 90.2 90.4 92.5

(.5) 20 * * * * * 97.9 * 72.1 99.9 99.8
50 * * * * * * * Q4.4 * *

W 10 13.7 l4.4 14.4 14.4 14.1 12.4 18.8 11.6 14.1 13.9 15.0

(2) 20 21.3 22.2 22.2 22.3 21.2 15.9 26.4 15.4 20.6 19.4 26.0
50 44.8 50.1 50.1 50.2 45.3 21.8 58.8 15.4 38.7 33.5 45.0

W 10 8.2 8.2 8.2 8.2 8.3 9.4 13.9 10.0 9.2 10.2 9

(3.3) 20 6.8 6.9 7.0 7.1 6.8 8.6 8.6 9.6 9.9 10.2 11
50 5.3 6.4 6.4 6.4 5.3 10.2 10.5 10.7 8.4 8.9 8

W 10 9.0 9.3 9.4 9.3 9.1 9.2 14.9 8.6 9.8 10.6 10.4

(4) 20 8.0 7.7 7.7 1.7 7.9 9.3 9.0 9.2 10.0 10.5 11.8
50 6.1 7.1 7.1 7.1 6.2 10.8 10.4 10.2 10.1 10.4 10.7
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The

Results of Power Comparisons

Extreme Value (Weibull) Distribution

As expected there is no one statistic with best power for
all alternatives and sample sizes.

Several statistics have poor power relative to the other
statistics, and can be eliminated from further discussion.
They are: Bardsley’s statistic, B; G3; and the ratio of the
GLS and ML estimators, W’.

Statistics which utilize h, the vector with elements
F—l[i/(n+1)], have slightly better power (< 57 improvement)
than the corresponding statistic using the vector of
expected values of the order statistics against some
alternatives, but in several cases have much less power than
the statistics using m. It is clear that, whenever possible,
statistics using m such as R and G2, should be used rather
than the corresponding statistics, Rh and G2h. It should be
pointed out that this drop in power does not occur when the
spacings are used rather than the order statistics. The
statistics S and Sh have very similar power properties. In
fact, it seems that, overall, Sh has slightly better power

L4
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than the actual statistic proposed by Mann, Scheuer, and
Fertig, S.

S and Sh have very similar power properties with von
Montfort and Otten’s statistic, A. With the exception of the
alternative Beta(l,4) distribution, S and Sh are beaten by
von Montfort and Otten’s statistic, A, in all cases, both as
a one-tailed and as a two-~tailed test.

All three of the EDF statistics compared have good overall
power properties. A2 is clearly the most powerful of the
three, with W2 marginally better than U2.

Of the regression statistiecs, R, Gl and G2, R has slightly
lower overall power. Gl has the best overall power of the
three for samples of size 10 and 20, but cannot be
calculated for samples of size greater thamn 25.

The Shapiro-Wilk statistic, W, has fairly good overall power
for samples of size 10 and 20. W°°, the ratio of the squared
ML estimator and 32, has power very similar to that of W,
and requires no stored data. Therefore, it should be used
rather than W even for small sample sizes.

All of the following statistics have good power, with high
relative power for some alternatives and low relative power
for other alternatives. These statistics are A, A2, G2, and
W’’. 0f these four, A is overall marginally better than the

others.
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Comparison of Power Results with Results of Other Power Studies

The

These results for the Weibull and Extreme Value
distributions agree with other results in this field.

Mann, Fertig and Scheuer (1971) compared the one-tailed
version of S with other statistics, including W2 and A2, for
sample sizes 5 and 10, and found S to be better, when
testing for the Weibull distribution. The only altermative
distributions compared were the 3-parameter Weibull and
log-normal (normal for testing for e.v.) distributions.
Littell, McClave, and Offen (1979) compared statistics
including A2, W2, Rh and S for a limited number of
alternatives and found A2 and W2 overall best. Their results
differ a bit from those in this study in that their results
give Rh slightly better power'than is indicated here.

van Montfort and Otten (1978) compare one-sided vers&ons of
A and B when testing against extreme value type II or III
alternatives, and find that A is uniformly superior to B.

These results strongly support this conclusion.

Exponential Distribution

The EDF statistics are overall better than the other
statistics compared with A2 and U2 ﬁaving the best power of
the EDF statistics.

.
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The

G3,

The EDF statistics using ML estimators (case 5a) have no
better power than the statistics using GLS estimators
(case 5). Since A2, which has been found to be a very
powerful statistic when testing for other distributions,
cannot be calculated using ML estimators, estimation by
GLS is the preferred procedure.

The EDF statistics using the k transformation
(mnormalized spacings) and the docking off procedure are
marginally more powerful than the EDF statistics using
the docking off procedure only.

A2 using GLS estimators, and A2 using the procedure of
subtracting y(l) and performing the K transformation
have the best overall power. They are marginally more
powerful than W2 in either of those two situations as
well as W2 using ML estimators and W2 using the docking
off procedure alone. Either A2 or W2 with any of these
procedures is a powerful test statistic.

Because of the simplicity, and superior power of the
case 5 EDF statistics, this procedure is recommended
over the other three.

regression statistics do very badly in this case with

Rh, G2h, and R having the worse power overall among all

statistics compared. Gl and G2 have the best power among the

regression statistics, but much worse power than the EDF .,

statistics especially against alternatives chi-square with 1
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degree of freedom and the Weibull(.5) distribution.

The procedures utilizing h have far less power than the
corresponding statistics using m. Since for the exponential
distribution, m is easily calculated, the expected values of
the order statistics should not be approximated by h.

LLin and Mudholkar’s statistic, BF, and Gnedenko’s statistic,
Q, do very badly relative to the other statistics.

The statistics which are a ratio of two estimators of the
scale parameter; Jackson’s J statistic, the L statistic
proposed by Lewis, and Shapiro-Wilk‘s W, ail do very well
overall. Of the three procedures, Shapiro-Wilk is marginally
best, but it was earlier shown not to be consistent and
should not be used for this reason.

Moran’s statistic, M, which is uniformly most powerful
against gamma alternmatives, does very well against
chi-square (as expected), and also Weibull altermatives. It
has very poor power, however, against some alternatives

including the lognormal(0,1) distribution.

Comparison of Power Results with Results of Other Power Studies

Tiku, Rai, and Mead (1974) compared their statistic, TRM,
with the Shapiro-Wilk statistic, W, against a wide range of
alternative distributions. The power results agree, but they
conclude that TRM has power of "comparable magnitude" with
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W, whereas in this thesis it 1is concluded that, overall, TRM
is much worse than W.

In general the power results are comparable to Stephens’
(1978) study of the one-parameter exponential distribution.
That is, modified versions of the statistics that were shown
to be powerful for the one-parameter exponential
distribution, were shown to be powerful in this study.

It has been pointed out by Dyer (1974) and Stephens (1974)
that it is better not to know the true mean and variance of
the alternative distribution, but rather to estimate them
from the data when testing for the normal distribution using
the EDF statistics. It can be seen, using the case 4
(location known) and case 5 power tables, that when testing
for exponentiality there is substantially less power for
some alternatives when the location parameter is estimated
from the data than when it is known. Therefore, in this case
it is better to know the true value of the location

parameter rather than estimate it from the data.

With the exception of the G3 statistic and van Montfort and

Otten’s statistic, A, all the statistics compared are very

2.
3.
The Normal Distribution
l.
close in power.
2.

Of the EDF statistics, A2 had at least as good, or better
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power than W2 or U2 against all alternatives. W2 and U2 had

dl B . - .
very similar power properties with W2 having a slight edge.
3. The three regresgssion statistics R,,E}, and G2 had almdsé

identical distributions under the null hypothesis, and

B

likewise, nearly identical power properties.

4. Substitztion of h for’m results ina?hanges in pozer of up to

52. The statistics using h, Rh and G2Zh, have better power

than the statisticé using m, R "and G2, for wide tailed

-

—;;—;;—;;a%tefaati¥esiﬁa§é;#afse;yev%%zéa%;a%%erna%%#es—tﬁ&f#&f&”
’ bounded.” The drop in power from using Rh and G2h.ra€hei than
R aﬁd G2 for the bounded alternatives 1s, in general, larger
than the increase in power for wide tailed alternatives.
5. The Shapiro-Wilk statistic, W, is the statistic with the
- "
best power agianst alternatives that are bounded, but has
:w;rse pé;er ;ﬁanrgﬁe éﬁ?rérigéﬁerr;eggg;sion statistics |
agaiﬁst alternatives with widér tails than the normal
distribution. |
6. van Montfort and Otten’s two-tailed A statistic has very bad
power‘é%lagive to the oth;r testsi- It was the most powerful
test compared agaihst a uniform distribution alternative.
All significant values of A calcul§§ed on samples from the
. uniforn&tstfibutfonveresI%?IfIcantintheIowerH;;§1.Tor
—most other distributions compared;, including the t— 7
alterpatives for which A vés-designed, the significant

valnes—of—A~vere—prinarglyrin the uppef tail.
- fad L »
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Comparison of Power Results with Results of Other Power Studies
1. Shapiro, Wilk, and Chen (1968) did a comprehensive study ‘of
\ ) . \
the major tests for no;k:lity, including, D, W2, d
W. They f ound V to: be far superior among all tests compared.
,,,,'Lhehr“eaults for W :Ln Lhia thesis match Shapiro, Wilk, and . . _

Chen s results very closely. It has been pointed out bf

Stephens (1974), that the powers of W2 and A2 1in Shapiro

r

wilk égd C n’s study vere inéorrect.
2. The powers\of the EDF statistics and W agree with Stephens”’

(1974) results. He concluded that W had marginally better

*

power "than W2 or A2.

.
°

3. Warren (1980} compared D, A2 and Weisberg and Bingham’s

- .

gp1roximation,o£,R,against, ﬁwide range of Weibull
R

2lternatives. The results im this thesis agree very closely

- /:fiit%é; results. - . ’ « ’ \,
6.3 Conclusions and Future Research 7 .

u I -

& Some overall conclusions on goodness-of-fit testing can be
. ;o .
made from the results presented in this tbesisl

1. Regrgﬁi}on tests do relatively well for the extreme e

and normal distributions, but, the poor power properties of

the tests for the'eprnentiql distribution indicate that

these tests are not desirable for general goodness-of-fit
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testing. The statistics, Gl and G2, proposed in this thesis
tend to be more powerful than the most common regression
statistic, R, but it is doubtful whether this increased
power is worth the extra computation needed to calculate
these statistics.

It was shown that the Shapiro-Wilk test, W, for
exponentiality is not a consistent test. For the normal
distribution, arguments for the consistency of W can be
presented, but there is no reason to bélieve that this test
will be consistent for any other distribution. Since ratio
goodness-of -fit tests do not utilize any specific property
of the distribution being tested for, there is no reason to
believe that any other ratio type test of fit will be a
consistent test. In fact, the consistency has not been shown
for any other ratio test presented in this thesis. Thus,
another possible principle of goodness-of-fit is that tests
of fit shoula utilize a characterization\or unique property
of the distribution being tested. Several statistics that do
utilize specific characterictics of the hypothesized
distribution have been presented in this thesis, and any of
these tests are preferable to the ratio tests. Since the
distribution function and expected order étatistics are
unique properties of a distribution, both the regression and
EDF type tests are tests which utilize characterizations of

the disgribution being tested.
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Several tests which have been presented as tests for
specific distributions were found to have no better power
than the EDF and regression statistics, and in some cases
much worse power. The results indicate that there is little
to be gained by using these specialized tests of fit.

There is much more work to be done on both the asymptotic
and finite distributions of goodness-of-fit tests. Also,
with the exception of the EDF tests, and now the regression
tests, few results have been found on the consistency of
tests of fit, and hence, much more work is needed in this
area.

There are several distributions including the gamma
distribution and the three-parameter Weibull distribution
with all parameters unknown which cannot as yet be tested
for. Application of regression and EDF tests to other
important distributions such as these would allow these
tests to be used as indicators of the distribution which
best fits the data, possibly by comparing the significance
levels of the particular statistic when testing for the

different distributions.
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Appendix

Monte Carlo significance points for tests of the
Exponential distribution.

Statistic n Significance level (%)
15 10 5 2.5 1
R 5 .178 .200 .260 .328 «392
10 .132 .156 .192 «232 272
15 .110 .128 .162 .194 «232
20 -096 «112 .140 .168 «210
25 .082 .096 «122 .152 .188
50 .056 .066 .084 .108 .142
100 .036 «042 .056 .074' .105
Statistic =n Significance level (%)
15 10 5 2.5 1
Gl 5 .303 .401 .604 -848 1.239
10 229 -283 401 555 .789
15 .183 227 .307 .400 .550
20 .157 .191 .261 -339 <h46
25 .133 .163 217 .273 .359
50 .083 .101 .133 167 .223
100 .051 .061 .081 .101 .139
Statistic n " Significance level (%)
15 10 5 2.5 1
G2 5 272 .322 .391 .481 727
10 .208 .251 .330 <423 «560
15 .170 .206 «271 <344 .450
20 .148 .180 .238 .300 .382
25 .126 .154 «202 250 -330
50 .082 .098 .128 .164 <212
100 .050 .060 .080 .100 .140

104




Statistic n

G2h 5
10

15

20

25

50

100

Statistic n

W2 5
10

15

20

25

50

100

Statistic n

U2 5
10

15

20

25

50

100

Statistic n

A2 5
10

15

20

25

50

100

15

.370
.256
204
.170
114
.094
.058

15

.102

.121

129
.133
.138
143
«144

15

.083
.095
.010
.102
.105
.109
.110

15

555
.660
715
747
.780
.837
.854

Significance level (%)

10

.406
«294
.234
.202
172
.116
.070

Significance level (%)

10

117
«140
.151
.156
162
.166
.166

Significance level (%)

10

.093
.109
114
.119
.122
.123
124

Significance level (%)

10

.621
.752
.815
.862
.891
.950
.978

105

5

+466
.354
.290
«252
222
.148
.096

5

.141

.176
.188
.198

O202
.206

.210

5

.113
.131
-140
147
.148
. 149
.152

5

.735

926
1.012
1.070
1.102
1.161
1.218

2.5

.510
. 408
<344
.298
.270
.184
.120

2'5

-.166
.209
.230
«241
«249
«248
+258

2.5

-131
156
.166
<172
.176
.176
.184

2.5

.848
1.096
1.208
1.290
1.351
1.377
1.462

556
<474
-413
370
326
230
.158

1

.197
.265
.281
.292
.313
.310
.320

1

.153
.189
.196
.209
.214
.213
.224

1

989
1.338
1.496
1.555
1.720
1.740
1.794




Monte Carlo significance points for tests of the
Extreme Value distribution.

Statistic

Gl

Statistic

G2

Statistic

G2h

n

10
15
20
25

10
15
20
25
50

10
15
20
25
50

«232
.170
134
.112
.096

15

.228
.166
-.130
.110
.094
.059

15

+294
.198
.156
.128
112
.067

Significance level (%)

10

.280
.206
.158
.134
.116

5

360
264
-206
«172
.152

2.5

456
.319
«252
212
.184

Significance level (%)

10

264
-.196
.154
.130
114
.071

5

+326
250
.198
-168
.150
.092

2.5

.377
.300
248
.210
-184
-.118

Significance level (%)

10

+334
.230
.184
154
.136
.083

106

5

.396
.286
.230
.200
.172
.109

2.5

442
«342
273
«243
214
.137

.580
400
.317
+268
.228

.451
.372
.308
.266
.230
.146

1

482
«397
«334
<304
.270
.179




Statistic

Statistic

n

5
10
15
20
25

10
15
20
25

Upper-tail Significance level (%)

15

1.090
<949
.884
.843
.820

10

1.159
1.004
.931
.886
.858

5

1.242
1.084
1.006
-949
«917

2.5

1.295
1.152
1.064
1.005

«+962

15 10 5 2.5
.599 .460 .388 -335
.583 <447 .387 337
.559 +455 <402 .358
556 461 408 -.362
-559 <472 -426 .387

107

1

1.323
1.224
1.133
1.060
1.022

Lower—-tail Significance level (%)
1

.282
«294
.314
319
<337
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