
National Library 1*1 of Canada
B1bltoth6?que nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiqcles

395 W&lington Street 395, rut3 Weltmgton
Onawa. Untsrio Otfawa [Oritanol
KIA ON4 KIA ON4

NOTICE

The quality of this microform is
heavily deger tdent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possib te.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
p hotoeopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendmenis.

La qualit6 de cette microforme
depend grandement de la quallte
de la these soumise au
microfitmage. Nous avons tout
fait pour assurer une qualite
supbrieure de reproductbn.

S'il mancp des pages, veuillez
communiquer avec I'universitb
qui a confere le grade.

La qualit6 d'impression de
certaines pages peut laisser a
desirer, surtout si les pages
originales ont 6t6
dactylographiees a I'aide d'un
ruban use ou si I'universite nous
a fait parvenir une photocopie da
qualite inferietrre.

La reproduction, m6me partielle,
de cette microforme est soumise
ii la Lsi canadienne SUP k dtoit
d'auteur, SRC 1970, c. C-30, et
ses amendements subsequents.

MODELLING AUTOMOTIVE ENGINES FOR
AUTOMATED DIAGNOSIS

by

Charles David Hunter

B.A.Sc., The University of British Columbia, 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the School
of

Engineering Science

O Charles David Hunter 1991
SMON FXASER UNIVERSITY

November 1991

AD rights reserved. This thesis may not be
reproduced in whole or in part, by photocopying

or by other means, without the permission of the author.

National Library 1*1 ofCanada
BibliothQue nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des sentices bibliographiques

395 Wettington Street 395. rue Welltngton
Ottawa. Ontario Otrawa (Ontario)
K I A O M KIA ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

t'auteur a accord6 une licence
irrevocable et non exclusive
permettant & la Bibliothi3que
nationale du Canada de
reproduire, prbter, distribuer ou -
vendre des copies de sa these
de quelque mani6re et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thise a la disposition des
personnes intbressbes.

The author retains ownership of Cauteur conserve la propriht6 du
the copyright in his/her thesis. droit d'auteur qui protbge sa
Neither the thesis nor substantial thhse. Ni la these ni des extraits
extracts from it may be printed or substantieis de celle-ci ne
otherwise reproduced without doivent Btre imprimes ou
his/her permission. autrement reproduits sans son --

autorisation.

Approval

Name: Charles David Hunter

Degree: Master of Applied Science

Title of Thesis: Modelling Automotive Engines for
Automated Diagnosis

Examining Committee: Dr. John C. Dill, Chairperson

I

Dr. John D. on ex
Senior Supervisor

-

~d ~i l ikirn S. Evens
*

Supervisor

Mr. ~tefdn ~ ! / ~ o d e ~ h
External Examiner

Date Approved: Dee. 6. 194 1

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un i ve rs i t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser U n i v e r s i t y L ib ra ry , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther u n i v e r s i t y , o r o ther educational i n s t i t u t i o n , on

i t s own behal f o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l no t be al lowed

w i thou t my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

Modellinq Automotive Engines for Automated Diagnosis

Charles D. Hunter

December 11, 1991

Cda te)

Abstract

As the complexity of vehicular electronic control systems increases,
automobiles are becoming increasingly difficult to diagnose. Diagnostic expert
systems based on production rules have been used with limited success for
small, well understood domains. Model-based diagnostic systems offer
advanced capabilities, as displayed for domains such as electronic circuits,
where efficient models are easily developed. The success of model-based
technology for automotive diagnosis depends on the availability of efficient
automotive diagnostic models.

Engine models are presently developed for two purposes, design and control.
Models for design often require extensive computation, and deal with variables
unrelated to diagnosis. Control models require empirical results from lengthy
bench testing. Models specilkally for engine diagnosis have not been reported.

All models are necessarily incomplete, and even the most detailed models will

be unable to find all diagnoses. Quantitative models pursue excessively

detailed calculations. Qualitative models are potentially more efficient while

still providing the necessary detail for diagnosis. Our model represents physical

components as primitives, and groups of components working together as

composite components. We incorporate a specialization hierarchy, which uses

inheritance to centralize, and reduce the storage of, information that is
common to similar types of components. We also utilize a composition

hierarchy ta derive the structure and behaviour of complex systems from that

of its sub-components.

We present a prototype engine subsystem model to diagnose single, non-

intemittmt faults, implemented with the Echidna constraint reasoning

system, which incorporates constraint logic programming, truth maintenance,

and dependency backtracking, all in an object-oriented framework.

Performance of the prototype is reported, and is extrapolated to estimate the

performance of a complete engine model. Limitations of the prototype model,

and suggestions for further research, are discussed.

to my family, for not rushing me

George, Pat, Margaret, Tim, Sarah

Acknowledgements

I would like to thank the director of the Simon Fraser University Expert
Systems Lab Dr. William S. Havens for leading the diagnosis group, acting as

second supervisor, and for his determined generation of, and participation in,
academic debate, the graduate students of the diagnosis research group,
Afwarman Manaf, for his support a d encouragement, and Peter MacDona'fd,

for forcing us to broaden our research horizons, McCarney Technologies fnc.,
for their financial support, and Stefan Joseph for cheerfully acting as McCarney
liaison and external examiner.

It was a pleasure to work with the staff of the Expert Systems Lab - Miron

Cuperman, Rod Davison, and especially Sue Sidebottom, whose programming
assistance and patience were invaluable.

Finally, my deepest thanks to my supervisor Dr. John Dewey Jones, for his

confidence, for always being available, for prodding me when I needed it, for

always listening, and for the many revisions of this thesis he enthusiastically
proof read.

Table of Contents

. .
Approval*..... ... 11

...
Abstract*-......................... ... 111
AcknowledgementsN ...,.......O................................ v i
List of Tables~..~.. x

.*. .*...**...... List of Figures " x

1. Introduction 1
.. I .I . Automotive Technology 2

1.2. Automated Reasoning by Expert Systems .. 4

1.2.2. Rule-Based Expert Systems .. 4

1.2.3. Model-Based Expert Systems .. 6
. . 1.3. Motivation .. 7

2 . Literature Review ., ,...... .. 8

2.1. Automotive Diagnostic Expert Systems ... -8

2.2. Model-Based Diagnosis .. 8

2.3. Automotive Engine Modelling ... 14

2.3.1. Modelling for Design .. 14

2.3.2. Modelling for Control ... 15

2.3.3. Failure Detection and Isolation ... 17

3 . Automated Model-Based Diagnosis 18

3.1. Symptom Generation 2 0

3.2. Candidate Set Generation ... 22

3.21 . Naive Search ,. .. -24

3.2.2 Abductive-Rule-Based Search .. 25

vii

3.2.3 . Probabilistic Search ... 2 8

3.2.3.1. Global Probabilistic Strategy 28

3.2.3.2. Local Probabilistic Strategy 29

3.3. Discriminating Between Candidates ... 30

.. 4. Engine Modelling for Diagnosis 33

4.1. Completeness, .. 3 3

4.2. Competence .. 3 5

4.3. Qualitative and Quantitative Models ... 36

4.4. Assumptions and Limitations .. 36

4.4.1. Time - Steady State, Intermittent Faults 37

4.4.2. Single Fault Assumption .. 38

4.4.3. Correct configuration of components 40

4.4.4. Measurements and tolerances ... 4 0

4.5. Component Models ... 40

4.5.1. Primitive Compnent Models ... 4 1

4.5.2. Composite Component Models ... 44

4.5.2.1. System Component Models 46

4.5.2.2. Compound Component Models 49

4.6. Hierarchical Composition .. 52

4.6.1. Specialization Hierarchy .. 5 2

4.6.2. Composition Hierarchies ... 5 4

4.7. Suggestions for Future Work on Modelling 55

4.7.1. Ranking Candidates .. 5 5

4.7.2. Disaimination between Candidates 5rj

4.7.2. Time, 5 6

v iii

.. . 5 Prototype Diagnostic Modd 57

5.1. Echidna Constraint Reasoning System ... 57

......................... ... 5.2. Prototype Vehicle ,. 58

5.3. Prototype Subsystems ... 59

5.4. Simulated Diagnosis ... 6 3

5.4.1. Analysis of Performance ... 6 9

5.5. Suggested Implementation Improvements 70

... 6 Conclusions ,.....*.. 73

. .*..*.*........................*. Appendix A Knowledge Bases 77

.......................... A.1. Component Knowledge Base ,. 7 7

A.2. Primitive Knowledge Base .. 8 6

A.3. Compound Knowledge Base .. I l l

A.4. System Knowledge Base 114

Appendix B - Simulated Diagnostic Sessions ... 128
B.1. Power System Diagnostic Simulation 128

B . I .I . Input Data-Base File .. 128

B.1.2. Output File .. 130

B.2. Canister Purge System Diagnostic Simulation 134

B.2.1. Input Data-Base File .. 134

8.2.2. Output File ... 136

... References*...............,....... 144

List of Tables

Table 5-1: Number of Components .. 65

Table 5-2: Power System Performance ... 66

Table 5-3: CCP System Performance .. 67

Table 54: Engine Performance 69

.. Table 5-5: Vehicle Performance 69

List of Figures

Figure 1-1: Automobile Diagnostic Expert System ... 6

Figure 3-1: Diagnostic Procedure .. 19

Figure 3-2: Symptom Generation ... 21

Figure 3-3: Candidate Generation ... 23

Figure 3-4: Abductive Candidate Generation .. 26

............................ Figure 4-1: Primitive Component Model - Simple Switch 42

Figure 4-2: Composite System Component . twoSwi tches diagram 48

Figure 4-3: Composite Compound Component . ignitionSwitch 51

Figure 4-4: Partial Vehicle Specialization Hierarchy 53

Figure 4-5: Partial Vehicle Composition Hierarchy 54

Figure 5-1: Prototype Model €hmposition Hierarchy 6 0

Figwe 5-2: 12-volt Power Distribution System 61

Figure 5-3: Charcoal Canister Purge System .. 62

.. Figure 5-4: Fuel System 63

Introduction

Given tests, measurements, and observations of a malfunctioning device,
diagnosis is the task of identifying the faulty component(s) which caused the
mdfunttion(s). The objective is to develop a modelling strategy suitable for the
efficient and accurate model-based automated diagnosis of complex
electrical Jmechanicaf devices, and to use this strategy to develop a pro totype
diagnostic model fur+ a subsystem of an. electranically controlled automobile
engine. The prototype model must be extendible to the diagnosis of complete
vehicles from a wide range of automobile manufacturers, models, ages, and
locations, and must serve as the basis for commercial implementation. Specific
goals of this thesis are to:

Evaluate the current state and future trends in automobile diagnosis and
diagnostic tools, especially relating to electronic and computerized
control systems.

Evaluate the diagnostic suitability of current mathematical and
computational automobile engine models.

Study current li terahrre on automated model-based diagnosis.

Develop a prototype diagnostic model and test it with the Echidna

constraint reasoning system [Sidebottom 911, an expert system shell
which incorporates model-based reasoning, logic programming,

constraint propagation, and hypothetical reasoning.

The remainder of this chapter is concerned with goal A above. Chapter 2 deals
with goals B and C by reviewing three research areas - automotive diagnostic

expet systems, model-'based diagnosis, and automotive engine modelling.

Chapters 3 to 5 deal with goal D. Chapter 3 describes our general approach to
automated model-based diagnosis, providing a foundation for the following
chapters.

Using simple examples from the automotive domain chapter 4 develops the
structure and knowledge representation of our prototype diagnostic model. It is
assumed the reader has read chapter 3, or is familiar with the concepts and
definitions presented there.

Chapter 5 presents the prototype automobile diagnostic model, preceded by a

quick description of the Echidna Constraint Reasoning System developed at
Simon Fraser University's Center for Systems Science [Sidebottom 911.
Echidna's syntax is based on that of Prolog. Readers not familiar with Prolog
could consult [Bratko 861 or [Sterling 861. The performance of the Echidna
implemented model, and obvious improvements to that implementation, are
discussed. Echidna code for our model, and input files and output data from
diagnostic simulations, is shown in the appendices.

1.1. Automotive Technology

Since the early eighties all automobiles have had some form of electronic

control, development being driven by stricter U.S. government environmental
emissions and fuel consumption regulations for passenger vehicles. Emission
regulations specified maximum allowable emissions for a specific test cycle

simulating city and highway driving including idling, accelerating,
decelerating, ~ n d cruising, and corporate fuel consumption averages and

penalties for exceeding them were set. Initially the controlled inputs were fuel
flow rate, spark timing, and exhaust gas recirculation, and the optimized

outputs were exhaust and evaporative emissions, and fuel consumption.
Electronic controI systems consisted of a microcomputer (often called an

eicxtronic control mudde or ECM) and a number of sensors and actuators.

The electronic revolution swept through the automobile manufacturers. The
relative ease of designing and developing electronic components and the
existence of on-board hardware led to a rapid expansion ot' electronic control to
other areas of the engine and vehicle. Performance was a valuable marketing
feature and manufacturers found that their vehicle's performance could be
enhanced by altering the control strategy when the vehicle was not at an
operating point specified in the government test cycle. While continuing to
meet increasingly stringent regtilations for emissions (and, due to changes in
government policy, somewhat neglecting fuel consumption) some
manufacturers are now attempting to improve performance, driveability, and
driverfpassenger comfort. Electronic components are replacing their
mechanical equivalents resulting in reduced volume, mass, maintenance, and
cost, increased reliability, smoother operation, and fewer moving parts and
wear surfaces. Each new model and year introduces new electronic
components, sensors, and control strategies. Emission requirements will soon
be extended to cover trucks and other commercial vehicles.

As electronic control systems become more complicated and extensive, it is
increasingly difficult to diagnose and repair engine and vehicle faults.
Electronic control systems provide excellent reliability, but when they fail

today's automobile technician can not be expected to diagnose them using
yesterday's (non-computerized) tools.

Diagnosis procedures are supplied by the manufacturers, but are generic and
cover only a small fraction of possible malfunctions. The ECM stores and
displays trouble codes, (which are unique to each manufacturer), but these are
set conservatively to minimize false alarms. While manufacturers have

supplied their dealer service facilities with sophisticated electronic tools to aid
diagnosis, (with varying degrees of success), the average service station is
quickly becoming unable to repair its customers' vehicles efficiently and

accurately. A selection of third-party generic electronic diagnostic tools is
available [Joseph 891 that display the outputs and inputs of the electronic

control module in either graphic, tabular or text form. While these tools are of

great assistance, the actual diagnosis is performed by the technician, requiring
him to have complete knowledge of the system's operation.

1.2. Automated Reasoning by Expert Systems

Expert systems are computer programs which use specialized databases (known
as knowledge bases) to reason about some limited domain. The two primary

components of an expert system are the inference engine and the knowledge
base. When given a query, the inference engine consults the knowledge base to
produce an answer. The separation between the knowledge base and the
inference engine distinguishes expert systems from conventional programs,
which combine the knowledge and control into algorithm(s) which compute
answers. Expert systems have been classified into the following applications:
diagnosis, interpretation, monitoring, debugging, prediction, design, planning,
repair, instruction, and control, [Hayes-Roth 831 which can in turn be gro~lped
under two major headings - analysis, which includes diagnosis, and synthesis,

which, for example, includes design. Diagnosis is one of the simpler
applications because we usually know much about the object we arc
diagnosing. In design we do not know the form of the artifact until after we are
finished. Diagnosis is therefor a better choice for expanding expert systems into
large, complex domains.

1-23. Rule-Based Expert Systems

The first generation of expert systems relied on knowledge bases representing
knowledge only as production rules of the form IF <antecedent> THEN
<consequent>. It was shown that expert level performance could be obtained if
the domain was sufficiently restricted, and the underlying complexities of the
real-world problem were replaced by domain-specific rules obtained from an

expert [Buchanan 841. Primary examples of rule-based expert systems are

MYCfN (blood disorder diagnosis) [Buchanan 841, MACSYMA (symbolic
mathematics) [Martin 71 1, PROSPECTOR (mineral exploration) [Duda 791, and
DOMINIC (engineering design) [Howe 861.

Although expert systems and expert system shells ("empty" expert systems
ready for domain-specific knowledge) have been given greater computational
power and a wide range of programming, reasoning, and knowledge
acquisition tools [KEE 86][G2 881, they still depend on the production-rule
knowledge representation- Common criticisms of rule-based systems are that
they have no meta-knowledge (e.g. do not know their limits and do not exhibit
"graceful degradation" at their limits), they are difficult to organize, update,
and maintain when the number of rules becomes large, and most importantly,
they have no knowledge of the domain's composition (the set of components
which comprise the domain), structure (the way those components are
connected), and behaviour (the way those components behave and interact).

Rule-based expert systems are generally recommended and successful only
when the given problem domain is small and well-understood, and when
there is general agreement among domain experts [Luger 891. Yet those
domains which may most benefit from expert systems, for example diagnosis
of electronic circuits, medical disorders, and automobiles, do not now, and may
never, fit this description. Thus, while there has been extensive work in these

areas, there are many problems still to be solved.

Many elementary A1 textbooks use automotive diagnosis for a sample domain

[Luger $91. Invariably the example uses a production-rule knowledge
representation, and usually involves a simplified version of the electrical or
charging systems. Although popular as an example, no one has yet been able to
develop a diagnostic expert system that will significantly benefit an automotive

technician. Since we design automobiles, we understand their composition,
structure, and behaviour. And yet, current rule-based expert system technology
has been unable to provide much more than textbook examples. Moreover,

automobile electrical systems are no longer simple, especially with the advent

of computerized control systems.

1.2.3. Model-Based Expert Systems

Model-based expert systems use a model (a behavioural theory about some

class of artifact, situation, concept) instead of a collection of condition/action

pairs obtained from a domain expert. Model-based systems attempt to capture
structure and behaviour explicitly [Davis 841. A model-based diagnostic system

for a mechanical device, for example, is developed directly from the device's
design description. Just as in rule-based expert systems, model-based systems

maintain the separation between the knowledge base and the inference engine.

expert system

data

inference

diagnosis
observations,
measurements,

technician instructions

knowledge base:

I \ model andfor rules 1 f

Figure 1-1
Automobile Diagnostic Expert System

The potential advantages of model-based systems over rule-based systems are

many [Davis 841 [Fink 851 [Hamscher 871. The model has a structure resulting

naturally from the structure of the artifact being modelled, and can take

advantage of similarities between different components and assemblies.

Maintenance of model-based expert systems is easier, as changes to the artifact

can naturally be included as changes to the model. While development and

verification of model-based diagnostic systems does not require as much of an
diagnostician's time, it does require more time from an engineer or designer,
but, in general, the designer/engineer will be better able to formalize his
knowledge. Perhaps the most important is that a model can be used for more
than one task (i.e., recognition, explanation, prediction) [Genesereth 841 For
example, a rule-based diagnostic system can not be used to identify whether a
particular artifact belongs in its domain, nor can it make any predictions about
artifacts within its domain.

1.3. Motivation

Our prototype diagnostic model will be designed for an expert system that can
be extended into a commercial product covering a wide range of vehicles
and/ or automotive sub-systems. The result of this commercial enterprise will
be the improved diagnostic ability of automotive technicians, resulting in
efficient and accurate automobile repairs, and happy automobile owners and

manufacturers' warranty departments. The reduction in malfunctioning (and
undiagnosed) emission-control systems will reduce the automobile's

contribution to environmental decay. Fuel consumption will decrease.
Automobile manufacturers will be comfortable designing more sophisticated,

efficient and safe vehicles, knowing that they can be effectively diagnosed. The
application of electronic control to trucks and other engines can be handled
efficiently.

Finally, it is believed that the modelling techniques developed can be applied
to the diagnosis of other complex devices and domains.

2. Literature Review

This chapter provides a limited overview of three research areas related to our
study - automotive diagnostic expert systems, model-based diagnosis, and
automotive engine modelling. The vast quantity of publications covering these
topics prohibits a complete review, but this review is representative of current
work and provides a firm foundation for further study.

2.1. Automotive Diagnostic Expert Systems

The application of model-based diagnosis to automotive engines, and
mechanical systems in general, has not been widely reported. Prototype systems
that use shallow and deep knowledge bases have been developed and tested on
a gas heating system [Fink 851, and dynamic systems [Abu-Hanna 855.

A number of authors have developed prototypes of rule-based automobile
diagnosis expert systems. ''Problem-cause" pairs were employed to diagnose
Nissan's Electronic Concentrated Engine Control System [Tomikasi 871, and a
commercially developed expert system shell was tested on '81 -'83 Genera 1
Motors computer-controlled carbureted engines [Klausmeier 861.

2.2. Model-Base d Diagnosis

The most popular domain for the study of model-based diagnosis is electronic

circuits, for a number of reasons. Electronic circuit diagnosis is a real problem
due to continually increasing complexity in electronic circuit design. Most, if

not all, researchers have a background in electronics or computers and are

therefore intimately familiar with the domain. Using a common domain

allows easy comparison of results. Most importantly, however, the electronic
circuit domain is blessed with a close relationship between structure and
function. Knowing a circuit's structure (i.e., the arrangement of resistors,
capacitors, transistors, etc.) the function of the circuit can easily be ascertained
and a reasonably accurate model of behaviour can be developed relatively
easily. The ease of modelling electronic circuit behaviour allows researchers to
concentrate on diagnostic theory rather than complexities in modelling. Still,
there is presently no unified theory capable of diagnosing complex and time-
dependent devices efficiently [Harnscher 90b1, because traditional circuit models
do not explicitly represent aspects of the device a diagnostician would consider,
such as the shape of signals (rising, falling, steady, oscillating, etc.), and the
kinds of failures that are likely to occur.

Early model-based expert systems dealt with path sensitization (hypothesizing a
component in a particular faulty state, backward propagating to measurable
inputs, and forward propagating to measurable outputs), hierarchical
description, and qualitative properties of signals (i.e., smooth, spiky, random,
rising, decreasing, etc.) as well as their values were discussed [Shirley 831.
Genesereth presented diagnosis based on design descriptions, not
symptom/fault rules [Genesereth 841, building upon his earlier work on
diagnosis using hierarchical design models [Genesereth 811. Davis wrote on
diagnosis from structure and behaviour [Davis 841, and recently co-authored a
survey on model-based troublcshaoting [Davis 881. Reiter set the foundation
for a large body of future work by formalizing diagnosis using first-order logic
[Reiter 371. Hamscher added to this with work on diagnosis from first principles

[Hamscher 871, and Dague tackled the difficulties in modelling for
troubleshooting [Dague 871.

A system called the "General Diagnostic Engine" (GDE) [deKleer 871, based on
the attractive premise that only correct modes of operation need be explicitly
represented, was implemented and tested on electronic circuits. It was able to
diagnose multiple faults, represented diagnoses as minimal sets of violated

assumptions, used an incremental diagnostic procedure, was domain

independent, and combined model-based prediction with sequential diagnosis
to propose measurements to localize faults. GDE relied heavily on three
important topics described below: reason maintenance, Bayesian probability
methods, and entropy.

Reason maintenance systems (RMSs) [Doyle 791, sometimes called truth
maintenance systems (TMSs), were developed to support non-monotonic
reasoning. In monotonic reasoning new beliefs are derived from old beliefs,
old beliefs never change, and the number of beliefs is ever increasing. Non-
monotonic reasoning more closely matches human reasoning by allowing
beliefs based on incomplete information, or other beliefs.. When new
information forces a modification of a previously held belief, all beliefs
depending on that belief may also have to be modified. The TAMS maintains a
record of the presently held beliefs, and the reasons for those beliefs, which
may be other beliefs. When a reason for a belief is removed, that belief, and all
beliefs depending on that belief, may have to be removed (if there are no other
reasons to believe them). The TMS promotes data-dependency backtracking,
where only those choices directly responsible for a contradiction are changed.

This contrasts with chronological backtracking commonly used in Prolog,
where a contradiction results in a backwards chronological change of choices,
whether or not those choices directly contributed to the contradiction.

Many TMSs (e.g., Doyle's Justification Truth Maintenance System, or JTMS)
support only one solution at a time (i.e., a single context), but many problems
require computing and comparing multiple solutions. The assumption-based

TMS fATMS) [deKleer 86a,bl is a multiple-context TMS developed precisely for
these problems. The ATMS can in parallel investigate all contexts supported by

different sets of assumptions, without confusion, and without re-derivation of

shared intermediate conclusions. Less backtracking is required than in a TMS,
and minimal set covers are utilized to reduce data storage.

Bayesian methods allow diagnostic reasoning under uncertainty by providing a
formalism for calculating the probabilities we need by combining and

manipulating the probabilities that are easiest to estimate [Pearl 881. When
there is more than one diagnosis that fits the evidence it is desirable to know
the probabilities of those diagnoses. However, the probabilities of competing
diagnoses depend on the evidence that has been collected. Some probabilities
can be estimated fairly easily and stored for later use (for instance, the
probability that a certain component of a particular engine model will fail, and
the probability that a particular component failure will result in particular
symptoms), but it is impossible to tabulate in advance the probabilities of each
diagnosis relative to all possible combinations of evidence. Bayes law can be
interpreted as:

where D is a particular diagnosis, e is the evidence gathered so far, P(D I e) is the
posterior probability of the diagnosis D given the evidence e, P(e l D) is the
conditional probability that the malfunction explained by diagnosis D will
create the evidence e, P(D) is the prior probability of the diagnosis, and P(e) is a
normalizing factor that can be approximated by the sum of all prior
probabilities (i.e., the sum over all D's of P(e I D)) [Pearl 881. P(e 1 D) and P(D) can
be estimated and stored in the diagnostic system. Posterior probabilities are
used to rank competing diagnoses.

GffE used a one-step look-ahead strategy based on Shannon entropy [Shannon
491 [Papoulis 841. Entropy is a measure of the amount of information left in an
information source. The entropy of an information source is defined as:

where Z is a variable measured at the source with probability distribution P(z),
and H(Z) is the entropy of Z When dl possible messages from a source (i.e., all

Z'S) have equal probability entropy is at a maximum (much information

remains) because the probability distribution gives little hint as to which

message you might receive. The entropy is small when the probability of one
message greatly exceeds that of the others, so measuring that source provides
less information as it will most likely yield the message with the high
probability. In the limit where the probability of a particular message is 1 and
the probability of all others is 0, that source can only give one message, so there
is no information left in the source.

In a diagnostic scheme each possible measurement point is an information
source. Measurements are expensive, so it is desirable to minimize the number
of measurements needed to find the correct diagnosis. Entropy can be used to
estimate which measurement will leave the least information in the system
(i.e., eliminate the largest number of possible diagnoses). The expected entropy
after the next measurement can be calculated for each possible measurement
point as a weighted sum of the expected entropies for each possible value of
that measurement point. The measurement point with the lowest expected
entropy after the next measurement will on average minimize the number of
measurements needed to isolate the correct diagnosis.

GDE's lack of explicit failure modes unfortunately resulted in physicaIly
impossible failures being considered and presented as possible diagnoses. For
example, a bulb could fail by lighting when no voltage was applied. deKleer
modified his GDE with the addition df behavioural modes in a system called
SHERLOCK [deKleer 891. Here, a component can have an arbitrary number of
behavioural modes, some representing correct operation, some faulty
operation, and one unknown. Bayesian probability calculations based on the

likelihood of each behavioural mode were used to handle the combinatorial
explosion already plaguing GDE.

Hamscher also modified GDE, but instead incorporated two distinct
hierarchies, one physical and the other functional [Hamschef 99a1. Although

fault models were included, they were not required, and were only used
heuristically to guide the search and limit the size of the search space. His

system was named the "'Extended Diagnostic Engine", or XDE.

Struss provided yet another approach in a system called GDEt [Struss 891. Here,
explicit use of fault modes was incorporated. It also added to GDE by proving
the correctness of components, and ruling out implausible hypotheses, and
resulted in an extended version of the ATMS [Struss $31.

Early work in the domain of medical diagnosis used a hierarchical structure of
disorders (i.e., problems, syndromes, diseases) with a strong dependence on
Bayesian probabilities [Ben-Bassat 803. Peng and Reggia introduced another
interpretation of Bayesian classification theory [Peng 861, and parsimonious
covering theory based on causal associations between disorders and
manifestations (symptoms), where a parsimonious or "simple" cover is a set of
possible disorders which satisfies all known information and meets some
criterion for being "simple". Examples of parsimony criteria are: 1) single -
disorder diagnoses only, 2) minimality, where each diagnosis contains the
smallest number of disorders needed to cover all symptoms, 3) irredundancy
where no proper subset of a diagnosis is also a diagnosis, and 4) relevancy,
where each disorder in a diagnosis predicts at least one of the symptoms.

A review of hypothetical reasoning based on abduction [Goebel90] explains and
distinguishes several forms of inference and reasoning central to diagnosis.
Abductive reasoning is an unsound rule of inference where one hypothesis
(perhaps from a set of possible hypotheses) is chosen that explains or accounts
for all known observations. In automobile diagnosis this corresponds to

reasoning from symptoms and engine behaviour to a hypothetical diagnosis of
broken components. This contrasts with induction, another unsound rule of
inference, which reasons from symptoms and broken components to

hypothetical engine behaviour, and deduction, a sound rule of inference which
reasons from broken components and engine behaviour to symptoms. A
survey of abductive reasoning in multiple fault diagnosis [Finin 891
summarizes current research into five different approaches, concluding that
the emerging consensus is integrating parsimonious set covering or logic

formalism (which can be transformed from each other), causal models to

incorporate intermediate pathological states, and Bayesian probabilities freed of
most restrictions on independence.

2.3. Automotive Engine Modelling

Unlike electronic circuits, the behaviour of mechanical systems is not easily
derived from their structure, so a single mechanical system may be represented
by a variety of models each developed and tuned for a different pmpose.
Engine modelling is presently pursued for two different reasons - engine
design and engine control. These models are not developed with expert
systems implementation in mind. The REPAIR project [Lee 901 has recently
explored the use of qualitative reasoning for model-based diagnosis of simple
mechanical devices. There is presently no literature available on models
specifically for engine diagnosis.

23.1. Modelling for Design

Models for engine design simulate the dynamic and quasi - static performance
of an engine, allowing the designer to predict the outcome of a particular
design without having to complete costly prototype construction, testing, and
analysis. Some of these models include not only physical properties and
quantities but also the effect of part geometries (i.e., combustion chamber

shape), and materials.

Diagnosis covers only t h e variables which can be changed after the vehicle is
in operation 6-e., dibration, adjustxwnts, replacement of components, etc.),

whife engine design models are concerned with variables that can be changed
before engine components are made (i-e., valve seat angles, displacement,
number of cylinders, etc-).

Engine design models of vastly different size have k e n developed - some
requiring hours of mainframe cpu time, and others designed for personal
computers [Morel 881 [Blumberg 791. The cost and time of a computed diagnosis
must be less than that of the a technician, so efficiency in terms of hardware
and time are critical- In the short term it is unlikely that automobile service
centers will have access to hardware more powerful than a PC.

23.2. Nodelling for Control

A recent comprehensive survey of internal combustion engine models for
control system design fPoweIl 871 defined models by two parameters, the first

dealing with time (steady state, or dynamic), and the second dealing with the
use of physics (inputloutput or physical). While there are no true steady-state
processes in a reciprocating engine, the steady-state models describe the
condition where air flows, fuel flows, and engine temperatures have reached a
steady, but oscillating state. I10 models are developed solely by matching
outputs with their causal inputs, while physical models are derived from
mdedyigiing physical principles. Of course, engine models for control need not
consider part geometry or material.

Muck of the early work on dynamic physical models was done on diesel

engines, bur many of the results have direct application to spark ignition (SI)
engines. During the 1970's research concentrated on 1/0 models, because
stringent emission regulations and demand for fuel economy made it
important to develop models and controllers quickly. Although focus later
shifted to physical, models, ail models still suffer a significant reliance on
engine testing for empirical parameters.

Early research on modelling used the control variables spark advance, air/fuel
ratio, and later exhaust gas recirculation, to optimize fuel consumption and

emissions. On-line optimization of engines was a viable alternative to

developing these early models as engine testing for the control model took up
to two weeks. Later, interest spread to modelling the catalyst by mapping the
conversion efficiencies of CO, Hc, and NOx to exhaust temperature, exhaust gas
mass flow rate, and air/fuel (A/F) ratio.

A dynamic power-train model using eight variables (three relating to engine),
and two time delays to model the effects of a four-stroke SI engine, automatic
transmission, and rubber tires was reported [Cho 891. The three engine
variables considered are mass of air in intake manifold, engine speed, and
fueling lag. The corresponding transport delays are the intake to torque
production delay, and spark-to-torque production delay, both of which vary
with engine speed.

Cho's work borrowed from a compact, nonlinear model for real-time control
including intake manifold dynamics, fuel dynamics, process delays [Moskwa

871. Although engine controllers were governing idle speed, A/F ratio, spark
advance, and limiting knock, torque control to manage torque production and
delivery was required in preparation for a complete power-train model for
controlling shift quality and timing, and traction. Moskwa considered the
engine as a group of five sub-systems (throttle body, intake manifold, fuel
injection, combustion and torque production, and rotational dynamics).

Moskwa had added fuel injection and other refinements to one of the first
physically based dynamic engine models that recognized throttle effects, in take
manifold dynamics, and the discrete nature of the four stroke engine [Dobner

80,831. Dobner's model's inputs were A/F ratio, throttle, spark advance, and
load torque and provided net torque, and engine speed outputs. Dynamic
aspects were handled by time delays and integration, and non-linearitics

dowed predictions over a braad operating range. The highly modular model
divided the engine into carburetor, intake manifold, combus tion and

dynamics, with considerable time spent on fuel transport.

A nonlinear dynamic model including the effects of turbo-charging and inter-
cooling (i.e., cooling the A/F mixture between the turbo-charger and the
cylinder head) a SI engine has also been developed [Foss 891 to allow the
evaluation of microprocessor control of the turbo-charger waste-gate.

2.3.3. Failure Detection and Isolation

Engine control models and detection filters can be used for real time diagnosis
of sensor failures. Based on techniques from failure detection and isolation
theory, a diagnostic system named the Binary Phase Detection Filter (BPDF) has
been implemented [Min 891, [Rizzoni 891. This system relies on functional
redundancy between sensors to detect a wide range of sensor failures, and
Rizzoni claims actuator failure detection is possible with similar methods. The
BBDF detects and partially isolates failures, which is closer to identifying
symptoms than to providing a diagnosis as a set of failed components.
Considerable engine testing is required to obtain transformation matrices, and
failures in other components of the electronic control system and engine can
not be detected or diagnosed.

Willsky has reviewed design methods for failure detection in dynamic systems
[Willsky 761 and concluded that the failure detection problem is extremely

complex, and issues such as available computational facilities and level of
hardware redundancy are critical. A more recent survey of Process Fault

Detection based on modelling and estimation methods [Isermann 841

concluded that accurate models are critical, so only well defined and

understood processes are suitable.

3. Automated Model-Based Diagnosis

This chapter describes our general approach to automated rnodel-based
diagnosis, providing a foundation for the modelling strategies presented later.
The structure of the model and knowledge representation are presented in
chapter 4, and implementation of the prototype model in Echidna is detailed in

chapter 5.

Model-based diagnosis compares a model's predicted behaviour (values of
variables, relationships, modes, states, conditions) with the actual behaviour
exhibited by the artifact the model represents. Although the model is assumed
to predict the model's component's behaviour correctly, it does not always
predict healthy behaviour of the artifact. For example, if some of the model's
components are in a faulty state, then the model-predicted behaviour will be
faulty behaviour, but the model is assumed to correctly predict the (faulty)
behaviour resulting from the faulty components. We will see later why the

model is used for predicting both faulty and healthy behaviour. The
assumption that the model correctly predicts the behaviour of the artifact is
critical and questionable, and is treated in detail in chapter 4, but for now let us

accept it.

Our automated diagnostic system is an interactive taol, not a substitute, for
automotive technicians. Technicians should be able to direct the system, offer,
reject and modify intermediate solutions and advice, and decide between

equally promising paths. The system should be able to recover (and benefit)
from the technician's mistakes. Many of the features necessary to achieve this

(e.g explanation systems) are not dealt with here, but where possible we work
towards this god.

The diagnostic procedure shown in Figure 3-1 is composed of three automated
computational tasks: generating a set of symptoms, generating a set of

candidates ("candidate" will be defined, but for now think of candidates as
possible explanations for the symptoms), and discriminating between those
candidates; and one physical task, repairing or replacing a part of the engine or
taking more measurements (and reporting back to the diagnostic system). An
efficient computational implementation may combine portions of the first
three tasks, but for clarity, and other reasons that will become clear later in this
chapter, we will consider them separately. This procedure mimics that used by
human diagnosticians, although humans are poor at remembering large
amounts of data (long lists, for example), and so would necessarily use shorter
lists and probably be more opportunistic in their approach. We will expand
upon each of the three computational tasks after clarifying a few terms.

T pre&n t?
present?

Figure 3-1
Diagnostic Procedure

The nrtipcf (sometimes called the device) is the particular automobile engine

that we are trying to diagnose (e-g., the engine in the red '88 Chevrolet Celebrity

in bay number 1). From a diagnostic point of view it will be more interesting if

the artifact is in a faulty condition, but we will not know its condition initially.

Each artifact is composed of art arbitrary number of components. We will

discuss components in detail in chapter 4, but for now think of components as

the physical objects that can break and be repaired or replaced as a single unit.
We explicitly represent both healthy and faulty component behaviour.

The m o d e l describes: I) the artifact's internal structure, i.c., the
interconnections between components, and 2) the behaviour of cach

component. The model we are using must have been developed for the class of
engines that the artifact belongs to - in general, e.g., you can not use a model of
a Volkswagen air-cooled 4 cylinder engine to diagnose a Cadillac V8 engine.

The model may have a wide scope ie.g., covering all engines of a particular
manufacturer, say General Motors), or it may be very specific and only cover a

particular model, year, and range of serial numbers.

The model is sometimes referred to as a deductive model because i t deduces
the "output" variables of the artifact given its component's states (e.g., on, off,
leaky, blocked, etc.), and known "inputs". We will argue in chapter 4 that this is
an over simplification because the directionality of the model (i.e., which
variables are inputs and which are outputs) may be indeterminate.

3.1. Symptom Generation

If the model is adjusted to represent a healthy car (i-e., all components of the

model are working properly), and the predicted behaviour from the healthy car

model disagrees with the actual behaviour of the artifact, then the artifact must

not be working properly - it must have at least one faulty component, and it is
displaying symptoms of that fault.

A s y m p t o m is a difference between the healthy car model's predicted

behaviortr and the artifact's actual behaviour (Figure 3-21. Symptoms can be

qualitative, e.g., "the engine idles roughly", or quantitative, "the battery voltage

is 8 volts and it should be greater than 9 volts". Note that quantitative

symptoms can often be expressed qualitatively - e.g., "the battery voltage is

!oww. If an artifact exhibits no symptoms, then according to our model it is
operating correctly, and no further diagnostic effort is required.

A faulty artifact will probably exhibit a number of symptoms, even if only one
component is actually faulty. If the battery voltage is low, then the headlights
will be dim, and the car will be hard to start. Multiple faulty components will
only exacerbate this problem. If faults "mask" each other, it is possible that an
artifact with faulty components exhibits no symptoms. Thus, an artifact with
one or more faulty components will have zero or more symptoms.

predicted

comparator

+,

symPtOl==

Figure 3-2
Symptom Genera tion

Our Iist of symptoms may grow or decline as the diagnostic session progresses
and more data is obtained. New measurements may increase, or have no affect
on, the number of symptoms. Replacing a faulty component may eliminate a
portion of the symptoms, have no effect on the number of symptoms, or, in
the case that that faulty component was masking symptoms, increase the
number of symptoms. Note that symptoms are differences between the healthy
car model's predictions and actual measurements, rather than differences

between the healthy car model's predictions and potential measurements.

The diagnostic session begins by collecting information about the artifact. This

information may include driveability symptoms supplied by the operator (e.g.,

the car is hard to start - the model predicts the car should be easy to start),
observations made by the technician (e.g., the battery terminals are severely
corroded - the model assumes good electrical contacts), and data available from
the electronic control module (ECM) collected via a "scan tool" (e.g. the battery
voltage sensed by the ECM). In general the operator of the vehicle will be
unaware of symptoms generated directly from the ECM data. After the set of
symptoms is determined we are ready to generate a set of candidates.

3.2. Candidate Set Generation

A candidaf e is an assignment of state (e.g., mode) to every component of the

model, such that all model predictions are consistent with all evidence. There
may be more than one candidate for each set of evidence. If no symptoms exist
all components of a candidate will be in a healthy state. If one or more

symptoms are present each candidate must include at least one component that
is in a faulty state. As the diagnostic session progresses and more information
is gathered, we want to converge on a single candidate that corresponds to the
actual state of the artifact.

Commonly, diagnoses are described by the faulted components only, not as
candidates explicitly describing the state of all components, both faulty and OK,

We use the term culprit to describe the set of components that are in a faulty
state. More than one candidate can have the same culprit.

If the model represents a faulty state, we refer to the differe~res between
predicted and actual behaviour as discrepancies. By changing the state of
chosen components in the model from good to faulty, (say, for example, by

changing a particular wire's state from OK to open-circuited), we may be able to

force the model's prediction of the artifact's behaviour to match the artifact's
actual behaviour, eliminating all discrepancies. We have found a single

candidate when there are no longer any discrepancies (Figure 3-3). We have

not yet said how to choose the components to implicate, but this will be
answered shortly. The implicated set of components is the culprit, as defined
above.

It is important to distinguish between symptoms and discrepancies. Symptoms
can be thought of as special cases of discrepancies where the model is
representing healthy operation. Symptoms are eliminated by fixing the artifact
(car). Discrepancies are eliminated through modifying the model to match the
artifact's behaviour.

actual
behaviour

artifact

I comparator

b
discrepancies+ empty

'deductive '
model

predicted
behaviour

set

I candidate
b

Figure 3-3
Candidate Genera tion

As noted earlier, there will probably be many candidates at the start o

diagnostic session. There may be so many that we do not care to generate them
all. In this case we will have to decide how many to generate, either by some
probabilistic measure or by deciding on some arbitrary maximum beforehand.
We can generate more candidates later if new evidence forces us to rule out
those already under consideration.

Some of the candidates may be very likely (e.g., weak battery), and some
candidates will be quite unlikely (e-g., all the spark plug wires are shorted). It is

preferable that the candidates be generated in order cf likelihood for then we

are guaranteed that the most likely candidate will be in the set (it will be
generated first). Ranking the candidates will later aid in discriminating
between them. Generating candidates in ranked order will be discussed shortly.

To chose the implicated components we use search. Figure 1.1 (on page 6)
shows an inference engine connected to the knowledge base (model). In
traditional expert systems search is controlled by the inference engine. If the
search strategy is sound (finds only valid candidates) and complete (finds all
candidates) then it will find all valid candidates in the model. We must
differentiate between the soundness and completeness of the search strategy
and that of the diagnostic system as a whole. It is impossible for a model to
cover all possible failures, and for efficiency, some popular search strategies are
neither sound nor complete. Therefore there is no guarantee that we will be
able to generate even a single candidate. If our model is unable to predict the
actual behaviour we are measuring, then we wiH fail to find a candidate. We
discuss the issue of completeness in detail in chapter 4.

We now present three methods of searching for candidates: naive search,
abductive rule-based search, and probabilistic search.

32.1. Naive Search

Naive candidate generation uses the inference engine's built-in general search

procedures to "blindly" search for candidates. It uses no domain-specific
knowledge to guide the search and is generally diagnostically inefficient. Figure
3-3 corresponds to naive candidate generation if the inference engine (not
shown in Figure 3-31 decides how to change the deductive model and monitors

for the presence of discrepancies.

Depth-first search, as used by many popular inference engines, can not directly
generate r d e d candidates. The order in which such systems find candidates

depends on the syntactic ordering of the knowledge base. In effect, the system
tries to find a logical proof for the top level goal, i.e., to find a candidate, or
candidates, given known information. Ranking the candidates after they are
generated in a non-ranked order offers no benefit in reducing search, as you
have already committed resources to generate the candidate before you decide
it is unlikely. The score of the candidate is calculated after it is generated, so
equal time is spent on unlikely candidates. Unless all unranked candidates are
generated there is no guarantee that the most likely will be included.

3.2.2. Abductive-Rule-Based Search

The disadvantage of naive candidate generation is speed. To increase speed,
domain knowledge in an abductive rule-base (Figure 3-4) can heuristically
direct the search for candidates. The diagnostic procedure described in this
chapter distinguishes candidate generation from symptom generation precisely
to allow for an abductive rule-base. We will describe the abductive rule-base in
detail before tackling the possible pitfalls.

The abductive ruIes are syrnptom(s)/cause(s) pairs where the cause is a list (of
arbitrary length) of faulty components which are hypothesized to cause the
associated symptom(s). There is no restriction on the number of rules for each
symptom or set of symptoms. Based on particular symptomatic information
(and a strategy for choosing the best rule) the abductive rule-base will direct the
inference engine to implicate (make faulty) certain components. If the

implicated components cannot form part of a consistent candidate (i.e., the
inference engine cannot assign healthy states to all other components such that

all discrepancies are eliminated), the next rule is tried. If no rules match the
symptoms, or all rules that match have been tried and failed, the abductive
mfe directed search fails.

f healthy \

(model L- I

I candidate

Figure 3-4
Abductive Candidate Generation

So far we have assumed that the abductive rule-base is symptom driven, and
we know symptoms are eliminated only by replacing or repairing components
of the artifact. There may be an advantage to allowing discrepancies to "fire"
rules in the abductive rule-base. This corresponds to a "depth first" abductive
search. For example the model's predictions computed from a symptom fired
rule results in a number of discrepancies, and discrepancy fired rules modify
the model to eliminate a fraction of these discrepancies, and so on. This loop
continues until all discrepancies are eliminated, or no more rules match the
discrepancies. Unfortunately, there is no guarantee that the number of
discrepancies decrease after each rule fired by discrepancies. We have not yet

explored the implications and efficiency of this strategy, but there are
fundamental differences between discrepancy/cause pairs and symptom/cause

pairs, and it is also not clear how or when this "feedback loop" will terminate.

One problem here is that it is not clear when to try a different symptom driven
rule or another discrepancy driven rule. Discrepancy driven rules will add
more faulty components, so will find candidates with many broken

components before finding those with few broken components. Since the
symptom/cause rules are heuristic rules, it would seem reasonable to try all
r u b matching the symptoms before resorting to the discrepancies.

A diagnostician might think "I believe component A is faulty, and I now have
discrepancy X, which I think can be explained if component B is also faulty".
The difference between this strategy and that presented above is that the
technician took into consideration the faulty component A when he added
faulty component B, rather than just basing his rule on discrepancy X. It seems
that to be efficient, rules based on discrepancies must have as antecedents the
faulty components that led to those discrepancies.

A serious drawback of the abductive rule-base directed search is in trading the
inference engine, with its carefully planned and analyzed, though general,
search strategy, for a rule-base complete with the weaknesses and strengths
outlined in chapter I.

The abductive rule-base is a global knowledge source. It implicates components
based on symptoms, but the symptoms do not necessarily present themselves
at the implicated components (e.g., the symptom "dim" may be manifested at
the headlights and the implicated component may be an undercharged battery).
The abductive rule-base, unlike the model, does not mimic the structure of the
artifact and thus significantly reduces modularity of the knowledge base.

Time spent assembling and maintaining the abductive rule-base may be better
spent on the model. A strong abductive rule-base may reduce the job of the

model to that of verification, but an efficient model (and inference strategy)
may eliminate the need for an abductive rule-base.

A record of the sections of the search space covered by the abductive rule-base
should be maintained so if it fails to find enough candidates an alternate search

strategy will not re-visit those sections already searched.

3.2.3. Probabilistic Search

We divide probabilistic search into two major sub-divisions, the first of which
we call "global" strategies, and the second of which we will refer to as "focal"

strategies.

33.3.t Global Probabifistic Strategy

As presented earlier we want to find the candidate with the highest posterior
probability, i.e., candidate l evidence collected so far). (Note in chapter 2 we

used "diagnosis" and here we use the more concise term "candidate" which
was defined earlier in this chapter .)

Each component has a prior probability p(modei) associated with each of its i
modes:

Initially, before any evidence is gathered, and assuming independence of faults,
p(~j) the probability of candidate q is [deKleer 891:

where p(m) is the prior probabilify of behaviour mode m being manifested (i.e.,
a particufar component in a particular mode). After a variable xi is measured to
have a value Vjk:

where p (~ i = vik) is a numalization factor. Or in general, where e is the
previously obtained evidence:

We want to generate the candidates in order of decreasing posterior probability
(i.e., p(cj 1 X i = vik,e)), but we cannot calculate p(xi = Vik 1 cj,e) until after the
candidate is generated. A solution is using a best first search based on an
estimate of the probability of the candidate, that estimate being the value of
p (~ j le) IdeKleer 891. The inference engine concentrates on the candidate with
the highest estimated value.

This is a global probabilistic method because it uses the candidate probability,
which is calculated from the probabilities of all components, to select the
modes of individual components. It makes local decisions based on global
information. The local strategy below attempts to reduce this dependence on
global information.

323.2 Local Probabilistic Strategy

This strategy, often called a Bayesian Belief Network uses local summaries of
global information [Pearl 881. Although components still have access to global
information, they only communicate with their neighbours. The Bayesian

belief networks are fairly complex, so the following brief description omits
many details.

Each component of the model shares variables with its neighbours, e.g.,
voltage, flow rate, displacement, etc. Each component receives probability
distributions (i.e., the probability of each possible value) for those variables sent

by its neighbours. In the case that the variable has a known value the
prottabilit). distribution will be a spike at that value. Based on these

b i s ~ b u t i m s m d ihe component's knowledge of the probabilities of its own

state, it cdculates a probability distribution for its state, chooses a most likely

valw fa its state, and then notifies its neighbours of any changes. In this way

the "network" of components will choose states resulting in the most likely
candidate.

For the remainder of this thesis we will concentrate on naive search because of
its simplicity. The abductive and probabilistic methods may offer advantages,
especially for efficient multiple fault candidates, but also cloud the issue of
modelling. Both are heuristic, and therefore fallible, but may offer significant
performance increases. We point out later some of the changes to our
modelling strategy that would be necessary to incorporate these heuristic search
strategies.

Once we have established a list of candidates we must determine which
member of that list corresponds to the actual cause our artifact's symptoms.
This is the process of discriminating between competing candidates.

3.3. Discriminating Between Candidates

The commercial use of an automated diagnostic system demands that it

provide accurate diagnoses (i.e., culprits) more cheaply than an efficient (but
computationaly unaided) human diagnostician. Diagnostic costs (not including
the eventual repair) include the use of space, equipment, and consumables, but

the labour cost e technician's time) is assumed to be the dominating
contributor. In some cases the repair time will be part of the diagnostic time

(e-g., when a calibration fault occurs and is corrected during the diagnostic
process). If the technician is standing by while computation is proceeding, the
cost of the diagnostic session is proportional to the sum of the computational
time and the technician's information-gathering and reporting time. The

ccrmputational tasks mentioned above provide a list of candidates, and a
possib1e h i h e r computationai task is preparing an (optimum) strategy for

gathering new information.

If we choose not to give the technician direction in discriminating between
candidates the computational cost is eliminated, but discriminating between
competing candidates and choosing measurements and tests becomes the sole
responsibility of the technician. He may choose simplistic methods including
blindly repairing or replacing some or all components implicated by likeiy
candidates, or slightly better strategies based on component reliabilities (where
this information is available). He may be able to develop a reasonable
measurement and test strategy to test the candidates. These methods are
labour-intensive, depend on the abilities of the technician, and will in general
fail to minimize the dollar cost of the diagnostic session.

We assume that increasing computational effort on discrimination will reduce
the demands on the technician and thereby reduce overall cost (which may not
always be true, and depends strongly on computer technology). Ideally, we
would like to be able to compute which series of measurements or tests would
most cheaply lead to the correct candidate. Each measurement or test will
eliminate a number of candidates, while confirming the possibility of others.
The new information may or may not increase the number of symptoms but
will decrease the number of candidates. This process can be likened to "divide
and conquer", "differential diagnosis" or "half split". At this point, we need to
distinguish between tests and measurements.

A measurement is the value of a particular variable while holding the inputs

land therefore outputs) constant. If suitable probabilistic information is known
the entropy methods presented in chapter 2 can be used to estimate the next

best measurement.

A test is a new set of artifact inputs (and possibly outputs) which will confirm
some of the candidates and eliminate others. It is often easier to change (and
measure) inputs and outputs than interior values. However, tests are much
harder to generate, especially if any components have time dependence (i.e.,
their behaviour at time 2 depends on their behaviour at time 1). There does

nut seem to be a consensus on efficient methods for test generation.

Probabilities and likelihoods on their own are inadequate to provide minimal
cost candidate discrimination. For instance, if the best next measurement (e g ,
the measurement that will eliminate the highest number of candidates) is very
expensive, and the second-best measurement is only marginally worse but very
cheap, then we would like to make the second-best measurement first.

An ideal system would be more flexible than simply choosing between tests
and measurements. There may be cases where it is cheaper to replace or repair
components than perform distinguishing tests. Here, we would like to perform
the repair and tell the diagnostic system that that component or set of
components is definitely OK, and no candidate assigning them to a faulty mode
is possible.

It is hoped that the technician will not introduce new faults, and therefore new
symptoms, but, allowing for human and computational imperfection, all
diagnostic sessions should end by confirming the lack of symptoms. Moreover,
an ideal system would record the verified diagnosis in a database for future use,
just as a human diagnostician would. This data-base would become an expert

knowledge source and could be used for abductive rule-base generation,
statistical updating, and automated learning. Automobile manufacturers could
use this information to build more reliable vehicles.

4. Engine Modelling for Diagnosis

This chapter develops the knowledge representation we use for our prototype
diagnostic model. We use simple examples within the automotive domain,
but details of the prototype model are withheld until chapter 5. It is assumed
the reader has read chapter 3, or is familiar with the concepts and definitions
presented there. The syntax used in the code examples in this chapter is loosely
based on that of the Echidna constraint reasoning system developed at Simon
Fraser University's Center for Systems Science [Sidebottom 911. Echidna's
syntax is based on that of ProIog [Bratko 861, [Sterling 861. Echidna code is
presented in appendices A and B.

4.1. Completeness

One of the primary issues in diagnostic modelling, or modelling in general, is
the level of abstraction of the model. Models at the lowest level of abstraction
might deal with thermodynamic properties, chemical processes, atomic
collisions, electrical charges, etc. Models at a higher level include those for ideal
wires, ideal transistors, and ideal structural beams. Still higher are "black box"
models of complete chips or circuit boards, or structural models used for the
wind loads on buildings. Highest of all are concepts in a flow chart. A model at
a low level of abstraction will be capable of calculating extremely precise
answers, but may require massive computational resources. A higher level
model will provide more general answers, presumably in less time.

Consider a model of a simple physical object at the lowest possible level of
abstraction. Assume for a moment it is possible to encode everything we know

about that object, including its particle physics, chemistry, etc. The model will
be extremely large and complicated, and yet, at the edges of human knowledge

and understanding, it will still be incomplete. So we cannot completely model

even a simple object [Davis 881. Moreover, it is impractical, or maybe
impossible, to encode everything that is known about even simple objects. As a
consequence of these facts all knowledge bases will be incomplete at some
level, and all reasoning systems using incomplete knowledge bases will be
incomplete, however complete the inference strategy or problem solver.

Incomplete models can still provide much useful information. We have sent
men to the moon with incomplete models of flight and interplanetary physics.
Once we have accepted the fact that our model will necessarily be incomplete,
and therefore incapable of finding all solutions, we must decide how detailed
our model must be to be adequate for the chosen task.

The appropriate level of modelling abstraction depends on the context and use
of the model. Take, for example, a thin metal rod formed into a coil. This coil
can be modeled in many ways. If it is a heater element in a toaster its model
will be concerned with electrical resistivity and thermal properties. If it is used
to generate a magnetic field its model will include the physics of magnetic
fields. If it is a spring in a mechanical spring/mass/damping system the
important properties may be spring constant and maximum extension.
Furthermore, a model adequate for the design of this coil may differ from
models for other tasks, including diagnosis. It is possible a single model could
be used for design and diagnosis, but each of these tasks may use only a portion
of the model.

An automobile diagnostic system should identify failed components. The

model does not need variables other than those that will achieve this goal. For
instance, it is probably not necessary to calculate and report the changing
thermodynamic properties of a failed electrical switch. However, it is desirable

to be able to provide a description of how the failed component is behaving to
convince the technician that the diagnosis is plausible. This would provide the

starting point for an explanation system, which, as stated in chapter 1, will not

form part of this thesis.

4.2. Competence

There is another measure that has been proposed to judge the acceptability of
our model. A model of a physical component is said to be competent if, for
each and every possible combination of the component's actual inputs and
outputs, there exists at least one mode (this will be defined shortly, but for now
think of a mode as a pre-defined relationship between input and output
variables) whose predicted values are consistent with the actual values. (As
mentioned earlier, it is at times unclear which variables are inputs and which
variables are outputs. More on this later). Competence is certain if the
component model has an unknown mode, i.e., a mode where the values of the
inputs and outputs are unconstrained. This mode can cover any actual
behaviour of the artifact - from OK to completely destroyed. The unknown
mode provides little help in discriminating between likely candidates.

A model of an artifact is competent if, for each and every possible combination
of the artifacts' inputs and outputs, modes can be selected for each of its
components such that the predicted values of the artifact are consistent with
actual values. This will be the case if all component models are competent, and
the structure of the model (i-e., the way the components are connected)
accurately represents the artifact. If a fault arises from a change in the artifact's

structure from the design structure, say, for instance, the cases of two electrical
sub-components touch and form a current path, then the structure of the

model (which is based on the designed structure) no longer matches that of the
artifact, and the two electrical component models will no longer accurately
model the behaviour of their respective components. The model is not
competent to explain changes in the artifact's structure. It may be possible to

model changes in structure, but this type of modelling is highly context
dependent (e.g., the physical location of a component may be critical). We have
not explored this area.

4.3. Qualitative and Quantitative Models

Models at low levels of abstraction are often presented in a mathematical form.
A detailed mathematical model based on sound physical principles calculates
exact quantitative predictions. Developing such a model for a large system may
be completely intractable, and even small artifacts may take excessive computer
time. Our poor understanding of some systems (the human body, chemical
processes, etc.) precludes the development of such models.

Human diagnosticians make use of qualitative reasoning. For example they
may classify fuel pressure from the pump as acceptable, low, or high. The actual
values are less important than the range they fall in. It is not necessary to
calculate the exact pressure if it is known that it is too low. Whatever the result
of the calculation, the pump will have to be replaced. Remember, the goal of

automotive diagnosis is to identify a set of failed components, not to quantify
the degradation of their performance

4.4. Assumptions and Limitations

Diagnosing large devices is a difficult task so simplifying assumptions are made
to reduce complexity and increase efficiency. These assumptions further reduce

the completeness of our model, but we have previously accepted that our
model will necessarily be incomplete. Once again, the assumptions we make
are acceptable if they allow us to develop a model that is adequate for our

intended diagnostic task. Some of these assumptions may prove to be too
unrealistic for a commercially viable system, while others may ultimately
prove acceptable. We believe that the strategies presented here can later be
modified in such a way as to remove any unacceptable assumptions.

4-4.1. Time - Steady State, Intermittent Faults

Many processes in an =wtomobile are inherently oscillatory. Much of the
literature on engine modelling uses the description "steady state" to describe an
engine with constant inputs and outputs. Automobile inputs include, for
example, the engine load (e.g. the grade of the hill being climbed), the throttle
pedal position, steering, braking, shifting, the settings of all switches, and the
operating environment (e,g. altitude). Artifact outputs are vehicle speed,
acceleration, exhaust, noise, heat, air conditioning, etc. Internal engine
variables are not restricted to single values under this definition of steady state.
For example, while the engine is running the exhaust manifold pressure
fluctuates throughout each engine cycle. However, at a given engine operating
point (i.e., constant inputs) the shape of the pressure wave (i.e., peak pressure,
average pressure, minimum pressure, the time between each of these events,
etc.) will be constant. Even so, some variables will be decreasing during steady
operation (the fuel in the tank is decreasing whenever the engine is running),
and others will be increasing (the amount of fuel vapour stored in the charcoal
canister), although the rate of change of fuel and vapour may be constant. This
steady state definition effectively describes four distinct operating points: I) key
off, 2) key on engine off, 3) idle, 4) operation at a steady load and speed.

The above definition of steady state may prove to be necessary for the first
commercially viable automotive diagnostic systems. Our prototype model has

been developed with a more strict definition of steady state. At steady state all
the artifact's inputs and outputs are constant, and all variables and component
states are constant. This assumption allows us to ignore the effects of time.

Components such as charcoal canisters and fuel tanks, as mentioned earlier,
have variables that change even as the artifact inputs and outputs are held

constant.

Our steady state assumption precludes the diagnosis of intermittent faults.
Intermittent faults are those that cause symptoms to appear and disappear
seemingly at random. The artifact exhibits no symptoms most of the time, but
occasionally exhibits a particular set of symptoms. Symptoms can only be
removed by replacing a faulty component. Unfortunately many electrical faults
are of the intermittent variety.

We assume that all measurements made and reported by the technician are
accurate and are taken at the correct location. When a variable is bound to a
measured value, that value is assumed constant and correct for the duration of
the diagnostic session. The measurements may not all be taken at the same
time, but all variables are assumed to remain constant.

4.4.2. Single Fault Assumption

If we consider all multiple fault candidates (i.e., more than one component can
be in a faulty state) then the number of possible candidates explodes
exponentially. An artifact with N primitive components with an average of K
behavioural modes will have on the order of K raised to the power N potential
multiple fault candidates. An artifact with 10 components each with four
behavioural modes will have on the order of 4 raised to the power 10, or

approximately 1,000,000 candidates! Limiting the maximum number of faults
allowed in each candidate reduces the size of the search space, but also
eliminates potential, although unlikely, candidates (i.e., those with more than

the maximum number of faults).

The single fault assumption allows candidates implicating a single component,

but is unrealistic in many situations, as will be discussed shortly. If we limit
ourselves to single fault candidates, and disregard additional candidates with

the same implicated component and state, then we have potentially as many
candidates as the sum of the faulty modes for each and every primitive

component. An artifact with N components with an average of K behavioural
modes, F of which are faulty (F<K), will have F*N candidates. For the example
given above, if three of each component's modes were faulty, there would be
3'10, or 30 single fault candidates.

Some sets of symptoms will not be explainable by a single fault candidate and if
we limit ourselves te this assumption we may be incapable of finding the
corred candidate, or ever, a single candidate. The model is no longer generally
competent, because it will not be able to match the behaviour of an artifact with
more than one fadty component. The model could still be competent for
single fault candidates. Having an unknown mode would accomplish this.
However, the unknown mode is more unlikely than the explicitly represented
modes, but will be responsible for many candidates. We have decided to
exclude the unknown mode, assuming the explicitly represented modes to be
much more likely. Our model is neither complete nor competent.

Xn general an artifact must have a single fault before it has multiple faults,
unless :he multiple faults occur simultaneously. Multiple faults that occur
simultaneously are probably not independent. If healthy component operation
is much more likely than faulty operation, and all faults are independent, then
usually single fault candidates will be more likely than multiple fault
candidates. However, modern automotive electronic controllers can

compensate for some minor faults, so the operator of the vehicle is unlikely to
experience symptoms until multiple faults exist. The single fault assumption
will often fail in this situation.

The single fault assumption may be weful for preventative maintenance (i.e.,
the operator has not yet experienced symptoms, but the technician finds faulty
data coming from the ECM). Here, the number and significance of failures

must be small. A search for single fault candidates that did not find enough
candidates, or did not find the correct candidate, could be followed by searches
for double fault candidates, then triple fault candidates, etc.

4.4.3. Correct configuration of components

It is assumed that the model structure accurately reflects that of the artifact. The
model cannot re-arrange its component models, so cannot predict the output of
an improperly connected artifact.

4.4.4. Measurements and tolerances

The issue of measurement tolerances is not considered. For example, if a
variable is predicted to have a value of 6.0 volts, but its actual measured value
is 5.75 volts, is the measured value consistent or inconsistent with the
predicted value? Possible decision schemes include fixed tolerances (say 0.5

volts), fixed percentages (say lo%), or, better yet, tolerances that are local to the
variable being measured. We have assumed all variables have discrete integer
values and the tolerance is one unit. Although unrealistic, this assumption is
adequate for our model's level of abstraction. For a full commercial
implementation a more complex scheme would merit consideration.

4.5. Component Models

There are two basic types of component models, primitive component models

and composite component models. In section 4.5.1. we will define and discuss
primitive component models, providing a foundation for the discussion of
composite component models in section 4.5.2.

4.5.1. Primitive Component Models

Primitive component models represent fallible physical components that are
replaced or repaired as single units. The spark plug wire for the number 1

cylinder is an example of a physical component that could be represented by a
primitive component model.

Each primitive component model has: I) an arbitrary number (greater than 0)
of interface variables which it can communicate to the outside world, 2) a finite
and exhaustive set of behavioural modes relating those interface variables.

Interface variables may be qualitative or quantitative, discrete or continuous.
Our example simpleswitch (Figure 4-1) has five interface variables - Signal,
Voltl, Volt2, CurrentInl, and CurrenKlut2. (See [Sidebottom 911 for details of
Echidna syntax, and appendix A.2. for a detailed code for a switch) Signal is a
boolean (qualitative) variable (it is off or on), and the others are numerical
(quantitative). Interface variables can have a unique value, or they can have a
defined range of values. For example, Volt1 could have a single value of 12
volts, or a range of 9 to 16 volts.

terminall
Voltl
Currenth1 CurrentOutZ

switch

sim~leswitch
I

% list of interface variables
Signal.
Voltl, Currenth1 .
Volt2. CurrenKht2.

% groupings of variables to terminals
terminall (Volt1,CurrentInf).
terminal2(VoIt2,CurrentUu t2).

% behavioural modes of simple switch
mode :- offMode; onMode; shortedMode; openCctMode.

offMode :- Signal = off, Currenth1 = 0, CurrentOutlt. = 0,
State = off,
Condition = god.

onhiode :- Signal = on, CurrentInl = CurrentOut2, Voltl = Volt2,
State = on,
Condition = good.

shortedhbde :- Currenth1 = CurrentQut2, Voltl = Volt2,
State = shortrtd,
Condition = bad.

openCctMode :- Currenth1 = 0, CurrentOut2 = 0,
state = opncct,
Condition = bad.

Figure 4 4
Prinzitive Component Model- Simple Switch

We commonly think of physical components as having input variables which
cause output variables. This is not generally the case, however. Take, for
instance, our simple switch with two electrical connections, each of which can
be represented as two variables, one for voltage (relative to ground) and one for
current. We all might agree that Signal is an input, but either electrical
connection could kre the input, and the other would be the output. We think of
interface variables coexisting with each other rather than causing each other.
Some interface variabf es require a defined direction (e.g., current), so where
necessary a positive direction will be arbitrarily assigned. Otherwise,
directionality is insignificant. h our example Currenth1 is defined for positive
flow in, and CumtOut2 for positive current flow out.

Behavioural modes, also known as states, or simply modes, are consistent sets
uf relationships between the values of the interface variables. Our example
simpleswitch has four behavioural modes - offMode, onMode, shortedMode,
and openCctMode. Behavioural modes can represent healthy operation (i.e., a
switch can be on or off), or faulty operation (a switch can also be shorted or
stuck open). Behavioural modes are not required to define exhaustively the
relationships between all interface variables. For example, when a

simpfeSwitch is off, its voltages are unknown and offMode does not limit, or
even mention, them.

Where two or more variables are intuitively related, as in an electrical

connmion, it is mvenient, although not necessary, to group them into a
single entity we call a terminal. Our example has two terminals, named
terminall and teminal2, both representing electrical connections.

As stated previously, a primitive component model may have several modes

&a: represent heatthy (or g d f of OK, or correct) operation, and severai modes
that are faulty (or bad, or notOK). We define Condition to take the value of
"good" or "bad". Our switch has two modes with Condition = good (offMode
and onMode1, and two modes with Condition = bad (shortedMode and

o p C W o d 4 . Note that a switch that is stuck open behaves exactly as a switch

that is turned off, so as long as that switch remains off, either offMode or
openMode accurately describes its behaviour. OffMode should be more iikely
than openMode so it should be chosen first. Our model relies on the ordering
of the modes to achieve this.

We use a black box analogy for primitive component models. A primitive
component model is a single black box. Interface variables pass through holes
on the outside of the box. Each black box has a rotary knob on the outside to
select the behavioural mode. The knob positions that correspond to a healthy
mode cause a green light to shine, and the positions corresponding to a fauIty
mode will cause a red light to shine. From the outside of the box the internal
structure of the component can not be seen.

Our model of a simple switch does not refer to a particular switch, in a

particular setting. It is tempting to think we have a general, and context
independent description of how a simple switch behaves. It is, however, a
mistake to believe that any component can be competently modelled without
respect to the context in which it operates. A heavy switch may be used as a

door stop, but our model would not be adequate to predict its behaviour for
this task. Our model of the switch is useful only when it represents an electrical

control device in a simple electrical circuit. In this limited context the switch
model is general, and the actual values of the interface variables depend on the

components connected to the switch The generality of the model, within its

limited context, allows a number of desirable features including modularity,
code reuse, and hierarchical inheritance, which will be discussed later.

4.52. Composite Component Models

We mUld represent an engine as an extremely large set of interconnected

primitive component models. We notice, however, that certain groups of

components work together closely to perform a required task. Our cognitive

toad is reduced by reasoning about a group of cooperating components before
directly implicating a specific component. For example, certain symptoms may
lead to the hypothesis that a fault lies within a group of components. After
hypothesizing that that group is mis-behaving, we would search for the
member(s) of that group that are responsible. Instead of immediately dealing
with a large number of objects, we are considering a much smaller number of
groups, and each group we eliminate vastly reduces our search. When we do
this we are implicitly changing the level of abstraction of our mental model of
the engine. These groupings of physical components also provide a mental
organization for complicated artifacts.

Composite component models represent groups of two or more sub-

components that work closely together to perform a desired task. A sub-
component may be represented by either a primitive component model or
another composite component model.

We have a black box analogy for composite component models. A composite
component model is a single, larger black box. The composite box has a number
of holes through which its interface variables can pass. Each sub-component is
a black box inside the composite box, but the subcomponent boxes can not be
seen from the outside. Some of the interface variable holes in the sub-
component boxes will align with those in the composite box. Some of the
interface variable holes in the subcomponent boxes will align with those of
other subcomponent boxes. All of the knobs for selecting the state of the sub-
components are accessible from the outside of the composite box, and all of the
sub-component condition lights are visible from the outside of the composite
box.

There are two categories of composite components, compound components
and system components. In section 4.5.2.1. we will first describe the system type

of composite component, followed by a discussion of the compound

component in section 4.5.2.2.

4.5.2.1. System Component Models

A fuel injection system could be represented as a system component. The sub-
components of a fuel system work together to deliver clean fuel, at the correct
flow rate and pressure, from the tank to the injectors. The sub-components
include hoses, injectors, a pump, a filter, a tank, and a pressure relief valve. A

fault in any of the sub-components may adversely affect the flow of fuel to the
cylinders.

How do we decide which components to include in a given system? Some
components are easily excluded from a system, e.g., tires would not likely be
included in the fuel injection system. Other components are closely related, but
intuitively are not part of a system. The battery provides 12-volt power to the
fuel injectors, but most people would not consider the battery part of the fuel
system. A faulty battery would affect the delivery of fuel, but would also have
many other far reaching effects, some of which may be more noticeable, such as
the refusal of the starter to turn over.

It can be more difficult to determine intuitively whether a particular
component belongs in the system. The fuel pump draws 12-volt power from a
fuse. Is that fuse part of the fuel system, or part of the 12 volt power system?

We suggest it belongs in the fuel system if the fuel system is the only system it

protects, but would include it in the 12-volt power system if it protected other
systems as well. These grouping decisions may be somewhat arbitrary, but a
reasonable solution is possible because the engine designer and fuel system
designer probably traveled a similar path, and choosing different boundaries

should not strongly influence the diagnostic routine.

A simple example of a system component is the imaginary twoswitchcs in

Figure 42. It is composed of two sub-components named S1 and S2, each of
which is a simple switch behaving as described in the earlier example of

primitive components. Just like primitive component models, system models
have interface variables and terminals. System twoswitches has six interface
variables, SignalA, SignalB, VoltA, CurrentInA, VoltB, CurrentOutB, and two
terminals, terminalA, and terminalB. The directionality of interface variables
is as described for primitive component models. Component S1 has its
terminall connected to twoswitches terminalA, and its terminal2 is connected
to S2's terminall. The other interface variables of Sl, S2, and twoswitches are
connected as shown.

terminalA terminalB
VoltA VoltB
CurrentInA CurrentOutB

twoswitches

% define interface variables
SignalA. SignalB.
VoltA. CurrentInA.
Volt B. CurrentOutB.

% groupings of variables to terminals
terminalA(VoltA,CurrentInA).
terminalB(VoltB,CurrentOutB).

% define sub-components of twoswitches
Sl isa switch.
S2 isa switch.

% Connect sub-components within twoswitches
S1: terminal2 = S2: terminall.

% Connect sub-components to interface variables of twoswitches
terminalA = Sl : terminall.
terminalB = Sl: terminal2.

1

Figure 4-2
Composite System Component - twoswitches diagram

Composite components (i-e., both system and compound components) differ

from primitive components in that their behaviour is not explicitly

represented, rather their behaviour is the sum of the behaviour of their sub-

components. The behavioural mode of a composite component is a relation

over the behaviourd modes of its sub-components. This relation could take a
number of forms. It could be a mapping into a single variable, with each

possible value representing a unique combin ation of the modes of the

4 9

sub-
component~. We use the vector (or list) of the states of the sub-components as
the state of a system component.

System components are not replaced as a unit. A faulty system results in the
replacement or repair of one or more of its sub-components. System
components can not in themselves fail, but are considered faulty if any of their
sub-components are faulty.

The condition of a system component is a relation over the condition of its
sub-components. The simplest such relation is that the system condition is
good if all of its sub-components is good, and bad if any of its sub-components
is bad. A slightly more insightful scheme is labeling the condition of a faulty
system with the name of the failed sub-component i.e., the condition of a faulty
fuel system could be bad-injector. We use a similar approach to that used
above for modes, where the condition of a system is a vector of the conditions
of its sub-components. From this vector we can determine whether any sub-
components have failed, and which components have failed.

The previous discussion of context of primitive components holds for system
components also. The twoswitches example is a general model of a two switch
system only in the context of a simple electrical circuit. In this context VoltB
and CurrentOutB depend on VoltA, CurrentInA, SignalA and SignalB, as well .
as the behavioural mode associated with each switch.

4.522. Compound Component Models

A compound component model represents a single complex physical

component as a set of simpler sub-component models. The fundamental
difference between a compound component model and a system component
model is that the compound model represents a component that will be

replaced as a single unit. Any object that can be represented with a compound
component model could also be represented by a primitive component model.

An ignition switch can be represented as a compound component. An ignition
switch is a complex device with many poles and throws, and defining
behavioural modes would be tedious. Alternately, the ignition switch can be

modelled as a collection of linked simple switches and junctions, where each
switch acts as a primitive switch and each junction acts like a primitive
junction.

Like system component models, the condition of a compound component
model is a relation over the condition of its sub-components. EIowever, the
compound component model represents a single physical component . The
sub-components can not be replaced independently. We therefore summarize
the conditions of the sub-components into a scalar condition for the compound
component. If any of the sub-components is faulty (i.e., in a bad condition) then
the condition of the compound is bad. Otherwise, the condition of the
compound component is good.

A simple example of a compound component model is the imaginary ignition
switch in Figure 4-3. It is composed of two sub-components, one named Switch
which behaves like a simple switch, and another named Junction, which
behaves like a primitive component model for a junction, (i.e., a connection

between two or more conductors). We have not given a detailed description of

a junction, but it would have a form similar to that of our simple switch with a
good mode and faulty modes. Just like primitive and system models,
compound component models have interface variables and terminals.
Compound ignitionswitch has seven interface variables including SignalA,
and three terminals including terminalA. The directionali ty of interface

variables is as described for primitive and system models. The other interface

variables of Switch, Junction, and ignitionswitch are connected as shown.

SignalA

tenninalA terminalB
VoltA VoltB
Cunren tInA CurrentOutB

terminalc
VoltC
CmentOutC

ignitionswitch
{% define interface variables

Signal A.
VoltA. Currenth A.
VoltB. CurrentOutB.
Vol tC. CurrentOutC.

% groupings of variables to terminals
terminalA(VoltA,CurrentInA).
terminalB(VoltB,CurrentOutB).
terminalC(VoltC,CurrentOutC).

% define sub-components of ignition switch
Switch isa switch.
Junction isa junction.

% Connect sub-components within ignition switch
Switch: terminal2 = Junction:terminall .

% Connect sub-components to interface variables
terminalA(VoltA,CurrentInA) = Switch:terminall(Voltl,CurrentInl).
terminalB(VoltB,CurrentInB) = Switch:terminal2(Volt2, -CurrentI112).
terminalC(VoltC,CurrentInC) = Switch:terminal3(Volt3, -CurrentIn3).
% define behavioural modes of ignitionswitch

mode:- goodMode; badMode.
goodMode :- Swi tch:Condition(Good),

JunctionCondi tion(Good),
Condition = Good.

badMode :- Switch:Condition(Bad) or Junction:Condition(Bad),
Condition = Bad.

1

Figure 4-3
Composite Compound Component - ignitionswitch diagram

Like system component models, the behavioural mode of a compound
component model is a relation over the behavioural modes of its sub-
components, and we use the vector (or list) of the behavioural modes of the
sub-components as the state of a compound component.

The context dependent generality of compound component models is as
described for primitive and system models.

4.6. Hierarchical Composition

The use of primitive and composite components leads directly to a hierarchical
structuring of the model. Two separate types of hierarchies result: a
specialization hierarchy and a composition hierarchy [Genesereth 811. Both
types of hierarchies promote modularity, code re-use, and representation of
knowledge at varying levels of abstraction.

4.6.1. Specialization Hierarchy

Specialization hierarchies, also known as is-a, kind-of, and type hierarchies
[Luger 891, are tree shaped structures that allow objects (in our case

components) to inherit from other, more general objects. In a specialization
hierarchy, each node is an instance of its parent, but a more detailed or

"specialized" instance.

Figure 4-4 shows the top levels of our specialization hierarchy. Echidna code
for the top of this hierarchy (component, primitive component, compound

component, and system component) is shown in appendix A.1. Our root node

is a general component model, and attributes (i.e., the existence of interface

variables, state, and condition) that are common to both primitive component
models and composite component models are stored here.

All primitive component models inherit the attributes of the component
model and add a specific structure including behavioural modes. A switch is a
specific instance of primitive component model. Although not shown here,
our simple switch may have children that represent particular manufacturer's
models of switches, which may have limited current capacity and voltage, and
may have additional behavioural modes.

Composite components inherit t!ie attributes of components, and all have sub-
components. Compound components inherit the attributes of composites, and
add scalar "Condition" (e.g., while "component" declares that all components
have "Condition", "compound component" declares that the "Condition" of
compound components will have a single value). System components have
the attributes of composites but have a vector representation for condition. If
this hierarchy covered a family of engines it might have several children
inheriting from a general fuel system.

component rn

Figure 4-4
Partial Vehicle Specialization Hierarchy

4.6.2. Composition Hierarchies

The use of composite system components leads directly to a composition, or
part-of, hierarchy, a tree structure where the nodes are components and the
arcs are part-of links. Each parent node is "composed" of its child nodes, or in
other words, the sum of a parent's children is that parent itself. The root node
is a system model of the complete artifact and the leaf nodes are primitive and
compound component models. For example, Figure 4-5 shows a vehicle (i.e., a
composite system component), with sub-components including engine and
electrical, each of which is also a composite component, and has sub-

components of its own (some of which are shown). Primitive and compound
components are not shown in Figure 4-5, but would be at the far right.

fuel system
engine emission syst ,<

ccp system
electronic control egr sys tern
electrical 12-volt supply
braking - ground
steering
instrumentation
MY
drivetrain

Figure 4-5
Partial Vehicle Composition Hierarchy

It is important to understand that objects in a composition hierarchy may be
connected even though the composition hierarchy shows no links between
them. The tires are certainly not part of the engine, but they are definitely

connected or the vehicle could not move.

The beauty of this structure is that all parents of a component are affected by
the state of that component, and all other components are unaffected by its
state. For example, a broken fuel injector leads to a faulty engine, and in turn, a

faulty vehicle, but does not lead to a faulty electrical system. A faulty battery
leads to a faulty 12-volt supply, and electrical system, but does not lead to a
faulty engine. Since all components are descendents of the root node (vehicle),
any fault will lead to a faulty vehicle, as we expect.

4.7. Suggestions for Future Work on Modelling

The assumptions listed earlier in this chapter may be unrealistic - in particular
the single fault assumption, discrete valued variables, and the unit tolerance.
Modelling structure and configuration (i.e., having modes for system
components as well as for primitive components) may allow diagnoses
implicating a change in structure. Our modelling strategy does not yet support
three important areas: ranking candidates, discrimination between candidates,
and time considerations.

47.1, Ranking Candidates

The modelling strategy presented here does not provide information required
for candidates to be generated in ranked order. As discussed in chapter 3
probability theory, and possibly abductive rules, may have the potential to
achieve this goal. Probability theory, whether global or local in strategy, needs

the explicit representation of the prior probabilities associated with each
behavioural mode. If we store these probabilities with our "general" models
described above we are saying "all physical components that behave in the
fashion our primitive model describes, have these failure probabilities". But
we know, for instance, although all wires behave similarly, their failure
probability depends cn the conditions they operate under and the standards to

which they were manufactured and installed. We conclude that all
probabilities are context dependent, and would vary between instances of a
single model. The power of the probabilistic methods lies in having the

probabilities associated with the instances of the models corresponding to
particular physical components.

4.7.2. Discrimination between Candidates

As mentioned earlier we want to eliminate candidates until we have all but
the one that corresponds to the actual state of the artifact. We want to
minimize the cost of eliminating candidates. The entropy calculations
described in chapter two can be used for this but are based on normalized
probabilities. A method minimizing the expected dollar cost of the diagnostic
session would be better yet. Abductive rules may also be able to heIp here, but
we did not have the resources to explore these options.

4.72, Time

%me method of dealing with time is required. Some components, such as fuel
tanks and charcoal canister can not be effectively modelled without reference to
time. For these components the outputs depend on past inputs, i.e., there is a
time delay between values of interface variables.

5. Prototype Diagnostic Model

This chapter presents the prototype automobile diagnostic model, preceded by a

quick description of the Echidna constraint reasoning system. The performance
05 the Echidna implemented model, and obvious improvements to that
implementation, are discussed. Echidna code, input files, and output data is
shown in the appendices.

5.1. Echidna Constraint Reasoning System

The prototype model presented in this chapter was implemented using the
Echidna constraint reasoning system developed at Simon Fraser's Center for
Systems Science [Sidebottom 911, and running on a Sun SPARCstation 1.

Echidna was developed for synthesis, analysis and other recognition tasks, and
couples constraint satisfaction, logic programming based on the first-order
Horn-clause semantics of Prolog, justification-based truth maintenance, and
dependency backtracking, all in an object-oriented framework. In Echidna
objects are represented as schemata with persistent state. Objects are accessed by
unifying goals (logid messages) with the predicates (logical methods) defined
within the schema.

Echidna was being developed concurrently with our prototype model, and was

still at an early stage of development, so many advanced features were not yet
available. The performance of our diagnostic system depended on our
modelling efficiency and the reasoning efficiency of Echidna. Recent advances

to Echidna have provided a richer set of tools for reasoning and knowledge

mpmntilltion, wodd profrably prove to be much more efficient.

The early version of Echidna was unable to reason about, or even remember,

multiple s~lutions (i.e+, multiple candidates). To find additional candidates the

fail predicate must be used, which eliminates the present candidate. Before

issuing the fail goal the present candidate can be displayed on the screen or
stored in an external file, but no more reasoning about that candidate can take

place. To work around this problem we computed a completely new set of
candidates each time new data were added. This was clearly inefficient, as time
was spent reproducing previously computed results. This problem precluded
the implementation of a minimum entropy calculation to discriminate

between candidates. This type of calculation must have all candidates available

simultaneously.

If the multiple solution problem were eliminated and the entropy calculation

performed, the Echidna based diagnostic system could tell the technician which
measurement to perform next. The technician might like to respond with the
value resulting from that measurement, but the Echidna interface required

that the technician enter that measurement as a top level Echidna goal.
Echidna could not monitor the terminal for data input, it could only respond

to top leve! goals typed in the Echidna window. The graphic interface for
Echidna is being developed at this time.

5 2 Prototype Vehicle

The prototype vehicle used as a guideline is a 1988 Chevrolet Celebrity with 3.8

liter 72-6 engine, vehicle identification number (VIN) W. The VfN W engine

has an advanced electronic control system, and has undergone considerable
analysis and testing. Service and engineering documentation, and technician's

expertise, is available.

The vehicle was decomposed into major sub-systems. (Remember, sub-systems

are actualIy composite system components as described in chapter 4). The

major subsystems were: engine, drive-train, body, electrical, electronic control,

instnunentation, steering, braking, climate control. This decomposition was

intuitive (at least to the author), but, as stated earlier, somewhat arbitrary, and
probably iAer groupings could serve equally well. The most controversial
decision is separating the electronic control system from the engine, but the
electronic control system goyerns many components not directly related to the
e~gine - for instance, corrlponents that regulate the temperature in the operator
compartment. No pretense is made that these groupings are adequate and
sufficient for commercial implementation, they are presented only as an
example.

Ne did not have the resources or the desire to model a complete engine or
family of engines, we decided to concentrate on a subset of the major sub-
systems rather than all components connected to the electronic control module
(ECM). The pinciples developed should be widely applicable.

5.3. Prototype subsystems

It was tempting to explore the electronic control system itself, but there is a
critical shortage of detailed engineering information about the control system
because of the automobile manufacturers' reluctance to release these data. The
techniques developed should be equally applicable to components of the
electmnic control system, when details of their design become available.

We decided to concentrate on a portion of the 12 - volt power system (for ease
of model development and explanation), the charcoal canister purge (CCP)
system, (because it incorporates mechanical components, and emission control

systems including the CCP system are relatively unreliable), and the fuel
system (because ii is the system nost influenced by the electronic control
system), The prototype model composition hierarchy is shown in figure 5-1.

All of the boxes shown in this hierarchy are represented as composite system

components. Echidna code for systems is shown in appendices A.I. and A.4. .

12-volt power supply

Figure 5-1
Prototype Model Composition Hierarchy

The 12-volt power system distributes 12 volt DC electrical power from the

battery to all systems that have low voltage (i.e., 12 volt) electrical components.

Our model of a portion of the 12-volt power system is shown in Figure 5-2. A

complete model would have many more sub-components and many more
interface variables. The sub-components of this system model are three wires,

two fuses, two junctions, an ignition switch, and a battery. The ignition switch

is represented by a compound component model, and all other sub-
components are represented by primitive component models. Echidna code for

primitive component models is shown in appendices A.1. and A.Z., code for

compound components is shown in appendices A.I. and A.3., and code for the
power system is presented in appendices A.1. and A.4. The battery is
unrealistically modelled with only one terminal, but the model is adequate for

the intended use. The 12-volt power system shares interface variables, as
defined in the figure, with the operator, exhaust gas recirculation (EGR) system,

CCP system, fuel system, and electronic control system. We did not model the

EGR system.

Operator [T) valve wire]
*

terminal1 4
Volt1

signal Currentout1

12-volt Power System

* 6
f fur wire inj. wire \

System u Electronic
Control

CCP System

Figure 5-2
12-Volt Power Distribution System

The CCP system (Figure 5-3) eliminates fuel evaporation from the fuel system

to the environment by storing the vapour in a charcoal canister, and venting
that vapour to the manifold when commanded by the electronic control
system. The sub-components of the CCP system are five hoses, two wires, a
purge solenoid, charcoal canister, and a pressure control valve. All sub-
components are represented as primitive component models. The system
shares interface variables with the l2-volt power system, air system, electronic

control system, atmosphere, and fuel system. The interface variables are
defined in the figure. We did not model the air system. Echidna code for the
primitive sub-component models are found in appendices A.1. and A.2., and

code for the CCP system is presented in appendices A.1. and A.4. .

System

manifold

terminall
Press1
FlowInl
Flow Condl

Figure 5-3
Charcoal Canister Purge System

The fuel system (Figure 5-4) distributes pressurized and filtered fuel from the
fuel tank to the fuel injectors. The actual fuel system has six injectors, but for

simplicity we have included only one. The electronic control system controls
the flow of electricity to the injectors and the fuel pump. The fuel system

shares interface variables with the electronic control system, engine

mechanical system, CCP system, and air system. We did not model the engine
mechanical system. Echidna code for the primitive sub-component models are
found in appendices A.I. and A.2., and code for the fuel system is presented in

appendices A.1. and A.4. .

Electronic Control 12-volt Power System

0 press

hose to 4
- 8

PCV

Emmi
(ccp)

manifold comb.
chamber I

Air System

Figure 5-4
Fuel System

5.4. Simulated Diagnosis

We simulated a number of diagnostic sessions. The input files and output data

for two of those simulations are shown in appendix 8. We now give a general
description of our diagnostic simulations followed by discussion of individual
simulation results.

The first step in each simulation was loading the knowledge bases
cornponenkkb, primitive.kb, compound.kb, and system.kb. (for example see

appendix B.l.1.). The artifact we are simulating is not always a complete

vehicle. The first two simulations deal individually with the 12-volt power

system and the CCP system. The other systems contained in the loaded

knowledge bases are not used in these simulations.

The second step of each simulation is to define, build, and name a model of the

artifact, and to find candidates for that model. The input file calls the model the

"top level object" because this is the object that we will communicate with
through the Echidna interface. Since no measurement data has yet been given,
no combination of component states leads to inconsistency. Since we do not

wish to generate an exhaustive list of all possible state assignments, our
diagnostic system will always look for healthy candidates first, and will always

stop after finding a healthy candidate.

The third step of the simulated diagnostic session is to add measurement data
(i-e., add evidence) to the diagnostic system, and to re-issue the command to
find candidates. The system will re-generate the candidate found in the last

step. If this candidate is consistent with the new data diagnostic reasoning will
stop. If this candidate is inconsistent the system will attempt to find a healthy
candidate that is consistent. If no healthy candidate can be found the system

will exhaustively search for all single fault candidates, but without duplicating

candidates that share the same culprit. Remember culprits are the connponen t s
that are in a faulty state (i.e., Condition = bad).

Any additional steps are repeats of step three. Echidna does not forget the

measurements from previous steps so the number of candidates (and culprits)

will always decrease or stay the same.

We mentioned earlier that using the fail predicate to generate multiple

solutions forced us to lose all solutions, including the last solution. The faulty

solutions are printed to the screen, but then disappear. In this case, we must re-

generate solutions to determine whether they are consistent with new

evidence. After steps finding a healthy candidate it is possible ts add new

evidence directly to the existing solution, but to be consistent we re-generated
candidates after each measurement was added.

For each simulation we recorded elapsed time from the beginning of the
session (i.e., before loading the knowledge bases) to the end of each step as
described above. From this we calculated the incremental time for each step of
the session. The incremental time is important because it is the time the
technician will have to wait for a list of candidates. The time to load the
knowledge bases is constant for all simulations, independent of the artifact we
are diagnosing. Loading only those schemata needed would have been quicker
in the cases where not all schemata were involved. Echidna offers an

optimization option that compiles discrete constraints. We timed our
simulated sessions with the optimization both on and off.

Table 5-1 shows the number uf components in each of the systems we
modelled. The power system, for instance, has one compound component (the
ignition switch), eleven primitive components, and one system component
(the power system itseii).

power1 ce~l fuel1 enginel vehicle1

no. of primitives 11 10 25 35 46

naofaampounds 1 0 0 0 1

no,ufsystems '1 1 1 3 5

Table 5-1
Number of Components

Our first simulated diagnostic session was for the 12-volt power system (see
appendix 8.1.1. for input data file, and 8.1.2. for output file). The first line of

entries in Table 5-2 shows the time taken to load the knowledge bases with the

optimization on (43.5 seconds) and with the optimization off (4.8 seconds). As

mentioned earlier knowledge bases were loaded for all our component models,

so time was spent loading unnecessary schemata.

no. of candidates

load kb I
no data

incremental time
(seconds)

optimized non-optimized

1 - healthy

1st

! 2nd
0
2 3rd

elapsed time
(seconds)

optimized non-optimized

3 - faulty

2 - faulty

1 - faulty

Table 5-2
Power System Performance

The second line of entries in table 5-2 shows the incremental and elapsed times

to define, name, and build the 12-volt power system and find a single healthy

candidate. The incremental time was 2.5 seconds with the optimization on and

1.9 with the optimization off. Appendix 8.1.2. shows the state and condition of
all sub-components of the 12-volt power system. All are in state 0 and

condition 0, which corresponds to a "good" state. Of course, no symptoms are

present, because no measurements have been taken.

The third line of entries in table 5-2 represents the results of adding our first
measurement (i.e., the signal was "off" and volt5 had a value of 6) . This
generated three faultjy candidates in the times shown in incremental times of
3.9 and 6.3 seconds. The three culprits are the junction3 in state 1, the junction
3 in state 3, and the battery in state 1.

After the second measurement was added (i.e., the battery's voltage was 14) two
candidates remained, the two involving the junction3. After the third
measurement (junction3 volt2 = 14) only one candidate remained, junction 3

in state 3.

Our second simulated diagnostic session was for the Charcoal canister purge
system (see appendix B.2.1. for input data file, and B.2.2. for output file). The
first line of entries in table 5-3 shows the times it took to load the knowledge
bases with the optimization both on and off, which, as expected are identical to
the times in Table 5-1 above.

no. of candidates

1 - healthy

1 - healthy

6 - faulty

6 - faulty

2 - faulty

Table 5-3
CCP System Performance

incremental time
(seconds)

optimized nonsptimiied

elapsed time
(seconds)

optimized nonsptimized

The second line of entries table 5-3 shows the incremental and elapsed time to
define, name, and build the CCP system and find a single healthy candidate.
The incremental time was 1.1 seconds with the optimization on and off. This
step was slightly quicker than for the power system because the power system
has a compound component. The CCP and power systems have similar
numbers of primitive components (I1 versus 10). Appendix B.2.2. shows the
state and condition of all sub-components of the CCP system. All are in state 0

and condition 0, which corresponds to a "good" state. Of course, no symptoms
are present.

The third line of entries in table 5-3 represents the results of adding our first
measurement (volt2 had a value of 14 and volt3 had a value of 0). This data
was not inconsistent with the healthy candidate generated in the last step, so
reasoning stopped after this candidate was re-generated.

The fourth line of entries in table 5-3 represents the results of adding our
second measurement (press1 = -1 and flowout1 = 2). This data resulted in six
faulty candidates.

The fifth line of entries in table 5-3 represents the results of adding our third
measurement (press6 = -1). This data did not reduce the number of candidates,
so was a poor choice of measurement. Ideally the diagnostic system would

advise which measurements will best discriminate between competing

candidates.

The sixth line of entries in table 5-3 represents the results of adding our fourth
measurement (press5 = 2 and flowIn5 = 2). This data eliminated all but two
faulty candidates, one implicating the hose1 and the other implicating the

solenoid. Another measurement would be needed to identify which of these is

the actual candidate.

The final two simulations were for the engine (which was composed of the
fuel system and the CCP system) and for the vehicle (which was composed of
the engine and the 12-volt power system. Unfortunately, we did not have time
to generate test data that would allow us to incrementally eliminate faulty
candidates. We were able to build models of these systems and find a healthy
candidate, the incremental and elapsed times for which are shown in Table 5-4

and Table 5-5.

Table 5-4

load kb

build

Engine Performance

no. of candidates

-
1 - healthy

Table 5-5
Vehicle Performance

load kb

build

5.41. Analysis of Performance

incremental time
(seconds)

optimized non-optimized

43.5 4.8

5.4 6.4

The optimization technique is designed to speed up reasoning using discrete

constraints. The penalty for this speed increase is slower loading of knowledge

elapsed time
(seconds)

optimized non-optimized

43.5 4.8

48.9 11.2

no, of candidates

-
1 - healthy

incremental time
(seconds)

optimized non-optimized

43.5 4.8

8.5 11.1

elapsed time
(seconds)

optimized non-optimized

43.5 4.8

52.0 15.9

bases. In our case, especially in the first two simulations, we compiled many
more constraints than were actually used. While the diagnostic steps were
between 0 to 50% faster for the optimized version, the loading stage was
approximately ten times slower. In the first two simulations the complete non-
optimized diagnostic simulation took less time than the optimized knowledge
base loading. Our vehicle model had a total of 52 components. If a complete
vehicle model had, say, 1000 components, and a linear relationship between
loading and the number of components, then the loading time would be
approximately 10 minutes for the optimized version and approximately 2

minutes for the non-optimized version. The possibility of dynamically loading
knowledge bases (i.e., automatically loading knowledge bases as they are
needed) may need to be explored.

Step two for our vehicle model took 8.5 seconds for the optimized run and 11.1
for the non-optimized run. This step always finds one healthy candidate. Our
vehicle model represents a small fraction of a complete vehicle. Even a linear
time increase with the number of components would result in minutes of
waiting time for step two.

The first two simulations took even longer on the steps following step two,
Part of the problem was that we were regenerating candidates at each step
rather than continuing reasoning from the last step. Ideally Echidna would
maintain a set of candidates between steps and, as new measurements are

obtained, continue reasoring on each candidate in parallel until only one
remains.

5.5. Suggested Implementation Improvements

To encourage ~ d u : ~ r y and make the knowledge base easier to maintain,
extend, and debug, global constraints should be explicitly represented as such,

either in a separate global schema, or as global methods outside of any declared

schema. The single fault rule is a global constraint, but is hidden within the

inheritance hierarchy. For example, switching to (or adding) a double fault rule
would be much easier if global constraints were explicit.

The assignment of condition to compound components could be automatically
accomplished through a method in the compound schema rather than coded

in method mode/U in each compound component. Based on the sub-

component list a domain for the condition could be dynamically created. For

example, the "Condition" might be stored in a vector with the first element
having the value good or bad, and the second element indicating which, if any,

components are bad. This could be expanded to multiple fault candidates by

allowing the second element to be a list of indeterminate length.

To simplify coding, the domains of interface variables were declared in
advance, and were fixed for different units (e-g., all voltages were declared to
have the domain of -20 to +20 volts). Realistically, different physical

components represented by the same behavioural model would have different
domains for their interface variables.

We have separate models for junctions of three and four electrical connections.
Junctions of any number of conductors can be described by two laws, Kirchoff's

current law and Kirchoffs voltage law. We should have a general junction

model with a variable number of conductors.

Likewise, our model of a rail in a fuel injection system is more generally a

modd of a junction of three fluid conduits. We may be better off with a model

called "fllridJunctionn which has a variable number of branches (each with a

variable size). We would create a rail with tree branches of sizes 1.5 1.0 and 0.5

by declaring "rail isa junction, rail:defiie(3,(1.5 1 .5))".

Both of the last two improvements hint at a stronger one. We could model
general physical ccrmponent types such as valves (switches, solenoids,

regulators), junctions, reservoirs (fuel tanks, charcoal canisters), sources,

conduits (wires, hoses). For example, a simple switch could be modelled as an
instance of an electrical valve with a binary (on/off) control setting.

6. Conciusions

The application of model-based diagnosis to automotive engines, and
mechanical systems in general, has not been widely reported. A number of
authors have developed prototypes of rule-based automobile diagnosis expert
sys terns.

Engine modelling is presently pursued for two different purposes - engine
design and engine control. Such models are not developed with expert systems
implementation in mind. Diagnosis is concerned with only those variables
which can be changed after the vehicle is in operation (i.e., calibration,
adjustments, replacement of components, etc.), while engine design models are
concerned with quantitative variables that can be changed before engine
components are made (e-g., valve seat angles, displacement, number of
cylinders, etc,). Many engine design models are computationdy expensive
because they calculate precise quantitative answers from complicated
mathematical equations. Control models were traditionally developed solely by
matching outputs with their causal inputs, although physical models are now
deriving behaviour from underlying physical principles. Still, all control
models stilt suffer a significant reliance on engine testing for estimation of
empirical parameters.

The most popular domain for the study of model-based diagnosis is electronic
circuits because this domain is blessed with a close relationship between

structure and function. Knowing a circuit's structure (i.e., the arrangement of
resistors, capacitors, transistors, etc.) a reasonably accurate model of behaviour
can be developed relatively easily- The ease of modelling electronic circuit

khaviour allows researchers to concentrate on diagnostic theory rather than
compfexi ties in modelling.

A good example of a model-based diagnosis is the General Diagnostic Engine
(GDE) [deKleer 871, which can incrementally diagnose multiple faults, is

domain independent, and is able to propose measurements to localize faults.
GDE incorporated an assumption-based multiple context reason maintenance
system, Bayesian probability methuds to rank diagnoses, and decision theory to
estimate the next best measurement. GDE was superseded by SHERLOCK

[deKleer 891 which allowed more modelling flexibility, reduced physically
impossible diagnoses, and provided heuristics to minimize combinatorial

explosion.

A different approach to multiple fault model-based diagnosis was provided by
the Bayesian Belief Network [Pearl 881. Here, the model is a causal network of

components that send messages to their neigbours in the form of probability
distributions. New evidence results in two passes of messages through the

network, after which all components will be in their most likely state.

Our qualitative modelling strategy builds on that of SHERLOCK. We add

specialization and composition hierarchies, and different types of component
models. The specialization hierarchy allows components of the model to

inherit behaviour from more general components. The two basic categories of

component models are primitive component models and composite
component models.

Primitive component models are at the lowest level of abstraction. They

represent fallible physical components that are replaced as single units. These

models have interface variables they share with the component models they

are connected to, and a finite and exhaustive set of behavioural modes which

relate those variables Some of the modes represent healthy operation, and

some represent faulty operatiom

Composite models are divided into compound and system models. System
models represent a group of physical sub-components that work together to

perform a task (e.g. the fuel system). The behaviour of a system component
model is not described explicitly, rather it is derived from that of its sub-
component~. If any of the sub-components have failed then the system has also
failed.

Compound component models are similar to system models because they have
a number of sub-components, but differ in that they represent a single physical
component. Complicated components such as ignition switches are more easily
represented as a combination of simpler switches and junctions. An ignition
switch could be modelled as a primitive component, but defining all the
behavioural modes would be tedious. Compound components are replaced as a
single unit.

A composition hierarchy gives an intuitive organization to the model. In this
tree structure the nodes represent components of the model, and the arcs
represent part-of links. The root node is the complete artifact(e.g., engine or
vehicle) and the leaf nodes represent physical fallible components. All nodes
other than the leaf nodes are groups of components that cooperate to perform a
task.

At this point our model is not able to reason with time. The behaviour of some
components varies with time, i-e., outputs at a later time depend on the inputs
at an earlier time. This time delay problem can be neglected in diagnosing
combinatorial digital circuits, hence the interest in them as trial domains for
general diagnostic systems. Modelling mechanical systems with time delays is

more mmpIica ted.

Ow model does not store information necessary to generate candidates in a
ranked order (i.e., the most likely first). Presently candidates are found in an
order depending on the syntactic ordering of the knowledge base. Because of

this we limited our model to single fault candidates, which vastly reduces the
number of possible candidates, and forces all candidates to be reasonably likely.

Adding an unknown mode to each primitive component would make our

model competent for single fault diagnoses. However, we chose to forgo

competence because we assume the unknown mode is much less likely than
those we explicitly represented, and would result in less likely candidates.

Our prototype model was st.t.cessfulIy implemented in the Echidna constraint
reasoning system running on a Sun SPARCstation I, and had schemata
representing portions of a vehicle, engine, fuel system, charcoal canister purge
system, and 12-volt power system. Echidna was being developed at the same

time as our model, and many advanced features that could improve
knowledge representation and reasoning efficiency have since become

available. Performance was adequate for our prototype model, taking an
average of approximately 5 seconds after new measurement data was received

to generate a new list of candidates. However, a model of a full engine or
vehicle would be much larger, and response times would be on the order of

minutes. Part of the reason for the slow speed was the inability of the early
version of Echidna to generate and retain multiple solutions to a single

diagnostic query.

Appendix A - Knowledge Bases

A.1. Component Knowledge Base

%
% All voltages will have integer (discrete1 values between -20 and +20
%

%
76 AIf currents will have integer (discrete) values between -10 and +10. This
b is a simplifying and time saving assumption. In reality sont- automotive
% tompoxtents carry much more than 10 amperes
%

7%
% All pressures will have integer (discrete) values between -5 and +5
%

%
% All flow rates will have integer (discrete) values between -5 and +5
%

%--

%
% Schema component describes a general component. Other more specific
% components will be derived from component
%

schema component

%
% Schema instance variables
%

Name.
integer State.
integer Condition.
component Clist.
PrintList.

%
% accessors for schema instance variables
%

condi tion(Condi tion).
name(Name1.
state(State1.
printList(PrintList).

%
% component methods
%

mode.

%
% build/O unifies Printlist with the Name State and Condition
% of the component
%

%
% healthyCandidate(SubComp0nentListf unifies Condition with 0,
% and issues the goal mode
%

heal thyCandida te(SubComponentList):-
condition(O),
mode.

%
% singleFau1 tCandidate(SubComponentList,Flag issues the goal
% mode
%

singleFaultCanclidate(S~bComponentList,Fla~):- mode.

%
% findCulpritCCulprit) unifies Culprit with State if
% Condition = 1
%

order findCu1 pri t.

findCulprit(C1,State):- Condition =:= 1.

findCulprit(C1,Culprit):- Condition =:= 0.
1

schema primitive:component

%
76 primitive methods
5%

'36
% initialization - primitive components have Condition 0 (good)
% or 1 &ad).

:- Condition = 10,l) -.
1

schema comp0site:component
I

%
% composite methods
%

%
% buildSubCompstSubComponentList) recursively builds the
% sub-components in the Iist.
%

buildSubComps(fcomp0nent Hcomp I Tcomps.1):-
Hcomp:build,
buildSubComps(Tcom3s).

%
% compositeState(SubCon~ponentlist,OList,Sta te) recursively
% assembles the State of a composite component from the States
% of the sub-components in SubGmponentList.
%

compositeState(f component Hcomp i Tcomps],OldList,Sta tek-
Hcomp:state(Cstate),
compositeState(Tcornps,[Cstate I OldList1,State).

schema compound:composi te
I

%
% compound methods
%

:- Condition = (0,l) -.

%
% build/O issues goals buildSubComps/I, compositeState/3,
% nameAndStateList/S, and unifies PrintList with Name, NSList
% from nameAndStateList/3, and Condition.
%

build:- buildSubCompdClist).
compositeState(Clist,f],State),
nameAndStateList(Clist,[],NSList),
PrintList = [Name,NSList,Condi tionl.

%
% nameAndStateList(SubComponentList, OldList, NandSList)
% assembles in NandSList a list of the Name and State of each
% of the components in SubComponentList.
'35

nameAndStateList([component Hcomp I Tcompsl,OldList,NSList):-
Hcomp:name(~name),
Hcomp:stste(Cstate),
nameAndSiatcList(Tcomps,f[Cname,Cstatel I OldList1,NSList).

%
% build / O issues goals truildSubcomps/l, compositesta tel3,
56 systernCondition/3, and partOfPrSntlid3 and unifies PrintList
% with Name and Par0fE;t from parH3)fPrintList /3.

%
% partOfPrintList(SubComponentList,OldList,PartOfList)
% assembles in PartOfList a list of the Name, State, and
% Condition of each of the components in SubComponentList.
%

parKlfPrintList([component Hcomp I Tcompsl,OldList,PartOfList):-
Hcomp:printList(PList),
partOfPrintList(Tcomps,~ist I OldList1,PartOfList).

%
% systemCondition(SubComponentList,OList,Condition) recursively
% assembles the Condition of a composite component from the
% Conditions of the sub-components in SubComponentList.
%

systemcondi tion([component Hcomp I Tcomps],OldList,Condi tion):-
Hcomp:eondition(Ccondi tion),
systemConditionCTcomps,[Ccondition I OldList1,Condition).

%
% findCandidates/O first tries findHealhtyCandidate, then tries
% findSingleFaultCandidate. A candiate is an assignment of modes
% to all primitive components
%

order findcandidates.

%
% findHea1 thyCandidate10 issues goal heal thyCandida te/ 1, and then
% prints PrinUist on xl.een

%

%
% printRoutine(PrintList) prints formatted PrintList
%

order printRou tine.

%
% healthyCandidate(SubComponentList) sends the message
% healthyCandidate/l to each component in SubComponentList
%

heal thycandida te([]).

%
% findSingleFaulffindidate/O issues goal singleFaultCandidate/2,
% prints PrintList on screen, issues goal findCdprit 12 which
9% return the StaQ of the faulty mrnponent in Culprit, and
% and fails on Culprit to find other single fault candidates.
% A single fault candidate can have only crne primitive component
416 in a faulty state.
0

order findSingleFadtCandidates.

findSingleFauliCandida tes:-
singleFaultCandidate(Clist,0)"
print("\n$$\n\ni'l,
printRoutine(PrintList)"
print("\niooking for more single fault candidates\nU),
findCulprit(Clist,Culprit),
fail(Cu1prit).

%
% singleFaultCandidate(Sub";3omponentList,ag) recursively sends
% the message singleFaultC;ndidate/2 to each component in
% SubComponentList, issues goals conditionSummary/2 and
% singleFaul t /3.
%

singleFaul tCandida teacomponen t Hcomp I Tcompsl ,In flag):-
Hcomp:singleFaul tCandidate(CIist,O),
Hcomp:condition(Ccond),
conditionSummary(C~ond,CondSummary)~
singleFault(Inflag,Outflag,CondSummary),
singleFaultCandidate(Tcomps,Outflag).

%
% findCulprit(SubComponentList,Culprit) recursively searches
% SubComponentList to find the component which is in a faulty
% mode and returns that components State in Culprit
%

findculprit([component Hcomp I Tcomps1,Culprit):-
Hcomp:findCulpri t(CIist,Cu 1 pri t),
findculpri t(Tcornps,Culprit).

%
X conditionSummary(Comp0nentCondition~ummary) makes
% Summary
% and Componentcondition q u a i for primitive mmponen ts, and
% issues goal d r I 2 if CompomtCondition is a List
%

mnditionSummary(1,1).
condi tionSummary(Ccond,l):- mcmber(l,(Ccond]).

%
% member(a,List) succeeds if 1 is a member of List. ! k t can
% have an arbitrary struetuPe (i-e., lists within lists).
%

order member.

%
% singleFault(InFla~OutF1agICondition) fails if both OutFlag
% and Condition are 1.
%

A.2. Primitive Knowledge Base

schema fusc:primi tive
f

%
% Schema instance variables
%

vol tageRange Vol ti. currentRange Currenth1 .
vot tageRange Volt2. furrentRange CurrenUOu t2.

%
% acccssors for xhem instance variables
%

terminal? (Voltl,Cunent%nl).
teminalZ(VolQ,CurrentOut2).
vo1tl(Voltl). currentInl(Cumntln1).
volt2(Vol t2). mmnfit2(CurrontOu t2).

5%
% initialization -fuse has state 0 or I
%

:- State = 10,11 -.

%
% mode/O defines behavioral modes of fuse
%

order mode.

mode:- % good state
Currentout2 =:= Currentlnl,
Volt2 =:= Voltl,
State =:= 0,
Condition =:= 0.

mode:- % bad state - fuse blown
Currentout2 =:= 0,
Currenth1 =:= 0,
State =:= I,
Condition =:= 1.

%--
%
% Schema junction3 is derived from primitive. This is a model of a
% junction of three electrical conductors.
%

schema junction3:primitive
C

%
% Schema instance variables
%

voltageRange Voltl. currentRange CurrentInl .
voltageRange Volt2. currentRange Currentin2
voltageRange VolO. currentliange CurrentIn3.

%
% accessors for schema instance variables
%

%
% initialization - junction3 has state 0 to 4
%

:- State = {0..4) -.

%
% made/0 defines behavioral mods of junction3
%

% good condition
Voltl =:= vow,
Volt2 =:= VoM,
Currenffnl + CurrentIn2 + Currenth3 =:= 0,
State =:= 0,
Condition =:= 0.

%opencircuiton1
cumffn2 + currentIn3 =:= 0,
C m t I n l =:= 0,
Volt2 =:= Volt3,
State =:= 1,
Condition =:= 1.

% open circuit on 2
Currentin1 + Cumnth3 =:= 4
C m t I n 2 =:= 4
Voltl =:= Volt3,
State =:= 2,
Condition =:= 1.

%opencircircon3
Cumtltnl+ Currentkt2 =.r= 0,
CurrentIn3 =:= 0,
Volt1 =:= Volt2,
State =:= 3,
Condition =r 1,

mode:- % shorted circuit
Voltl =:= Volt2,
Volt2 =:= Volt3,
Currentlnl+ CurzlentfriL + CurrentIn3 =\= 0,
State =:= 4,
Condition =F 1.

J

% Schema switch is derived from primitive. This is a model of a simple
% single post single throw electrical switch
%
%--

schema swi tclxprimitive
{

%
% Schema instance variables
%

voltageRange Voltl. currentRange Currenth1 .
voltageRange Volt2. currentRange Current& t2.
signalType Signal.

%
% accessors for schema instance variables
%

%
% switch methods
%

%
% initialization - switch has state 0 to 3
%

:- State = [0..3} -.

%
% mode/0 defines behavioral modes of switch
%

order mode.

mode:- % Off condition
Signal =:= off,
CunentIn1 =:= 0,
currentout;! =:= 0,
State =:= 0,
Condition =:= 0.

mode:- % On condition
Signal =:= on,
Currentlnl=:= C~1rnmtOut2,

Voltl =:= Volt2,
State =:= I,
Condition =:= 0.

mode:- % short circuit across throw
CurrentInl =:= CurrentUut2,
Voltl =:= vow,
State =:= 2,
Condition =:= 1.

mode:- % open arcuit across throw
Currentrnl =:= 0,
Cw~entOut2 =:= 0,
Sbte =:= 3,
Condition =:= 1.

J

y*-----*------------------------*---
%
% Schema wire is derived from primitve. This is a model of a simple
% electrical conductor
'15

schema wire:prirnitive

%
% Schema instance variables
%

vdtageliange Voltl . currentRange CurrentInl.
voltageRange Volt2 currentRange CmntOut2.

%
% accessors for schema instance variables
%

terminal1 (Voltl ,CurrentInl).
terminaU(Vo1 t2,CurrentOutZ).
voltlWolt1). currentInl(CurrentIn1).
volt2Wolt2). currentOut2(CurrentOut2).

46
% initialization - wire has state O to 3
%

%
% mode/O defines behavioral modes of wire
%

order mode.

mode: % good state
Voltl =:= Volt2,
Currenth1 =:= CurrentOut2,
State =:= 0,
Condition =:= 0.

mode:- % shorted shte
Voltl =:= Volt2,
State =:= 1,
Condition =:= 1.

mode:- % open state
CmentInl =:= 0,
CmentOut2 =:= 0,
State =:= 2,
Condition =:= 1.

I

%--
%
% Schema battery is derived from primitive. This is an extremely simple
% and unrealistic model of a 12 volt automotive battery. This model
% assumes the battery is a source, i-e., it has only one terminal at
% which a voltage and current can be measured. A more realistic model
% would be required if the battery was to be C O M ~ C ~ € ? ~ to a model of
% the ground circuits.
%

schema battery:primitive
I

%
% Schema instance variables
%

voltageRange Volt. currentRange CurrentOut.

%
% accessors for schema instance variables
%

%
% battery methods
%

%
% initialization - battery has state 0 to 2
%

:- State = (0..2f -.

%
% mode/0 defines behavioral modes of battery
%

order mode.

mode:- % good state, voltage between 9 and 16 volts
Volt >= 9,
Volt =< 16,
State =:= 0,
Condition =:= 0.

mode:- % bad state, undercharged
Volt < 9,
State =:= 1,
Condition =:= I.

mode:- % bad state, overcharged
Volt > 16,
State =:= 2,
Condition =:= 1.

1

%--

%
% Schema hose is derived from primitve, This is a model of a simple
% hose
%

schema hose:primitive

%
% 3;thema instance variables
X

%
% aiccessors for schema instance variables

terminall (Pressl,FlowInl,FlowCondl 1.
termina12(Press2,Fl0wOut2~RowCond2).

%
Z hose methods
%

%
% initialization - hose has state 0 to 2
%

:- State = (0..21 ,

%
% mode/O defines behavioral modes of hose
%

order mode.

mode:- % good state
FlowInl== HowOut2,
Press1 =:= Press,
FlowCondl =:= FlowCond2,
State =:= 0,
Condition =:= 0.

mode:- % leaking state
FIowOut2 =\= FlowInl,
Press1 =:= Pre5s2,
State =:= 1,
Condition =:= 1.

mode:- % blocked state
FIowOut2 =:= 0,
FlowInl =:= 0,
State =:= 2,
Condition =:= 1.

I

75
% Schema instance variables
%

pressRange Press1 . fIowRateRange Flow011 tl . conditionType RowCondl .
prcssRange Prc.ss2. fiowRateRange Flow1n;l. conditionType FlowCond2.
pressRa nge Press3. flowRateRange J3owLn3. con& tionType FlowCond3.

%
% atcflssors for schema instance variables
%

%
% canister methods
%

%
% initialization - canister has state 0 to 5
%

:- State = (0..51 -,

%
% d e / 0 defines behavioral modes of canister
%

order mode.

mode- % good state, not storing nor purging
FlowOutl =:= C3,
Howln3 =:= 0,
Howln2 =:= 0,
Press1 =:= ms3,
Press1 =:= kess2,
State =:= 0,
Condition =:= 0.

% g d state, storing but not purging
HowOutl =:= 0,
FlowIn2 =:= 0,
How1113 > 0,

Press3 =:= Pressl,
State =:= 1,
Condition =:= 0.

mode:- % good state, purging but not storing
Flow1113 =:= 0,
FlowOutl =:= FfowIn2,
Pressl < Press2,
Press1 =:= I'mS3,
State =:= 2,
Condiiion =:= 0.

% bad state, blocked inlet no. 2
FlowOutI =:= 0,
FlowIn2 =:= 0,
State =:= 3,
Condition =:= 1.

% bad state, blocked inlet no. 3
Flow1113 =:= 0,
State =:= 4,
Condition =:= 1.

mode:- % bad state, leaking
RowOutl=\= Flowin2,
State =:= 5,
Condition =:= 1.

1

%
% Schema pcv is derived from primitve. This is a model of a simple
% pressure control valve as used in the charcoal canister purge system
%

schema pcv:prirni tive
f

%
% Schema instance variables
%

%
% atcessors for x k m a illstance variables
%

%
% pcv methods
%

%
% initialization - pcv has state 0 to 6
%

:- State = (0..6) -.

%
% mode/O defines behavioral modes of pcv
%

order mode.

mode- % Valve is closed by vacuum on terminal 1
Pressl < 0,
FlowOutI =:= 0,
FlowIn2 =:= 0,
State =:= 0,
Condition =:= 0.

mode:- % Valve is o p e d by pressure on terminal 2
Pressl >= 0,
Press2 > 4,
FlowOutl =:= Flowln2,
State =:= I,
Condition =:= 0.

mode:- % Valve is opened by vacuum on terminal 3
Pressl >= 0,
Press3 < 0,
Pressl =:= Prcss2,
F l o a t 1 =:= Flowln2,
State =:= 2,
Condition =:= 0.

am&:- % ?Wve btoclkxf
HowIn2 =:= 0,
FfotvOutl =:= 0,
State =:= 3,
Condition =:= 1.

mode:- % Valve stuck open
Press1 =:= PresB,
FlowOutl =:= FlowIn2,
State =:= 4,
Condition =:= 1.

mode:- % Valve restricted
Press1 =\= Ress2,
m o ~ o u t l = : = R O W I ~ ~ ,
State =:= 5,
Condition =:= 1.

mode:- % Valve leaking
FlowOutl=\= FlowIn2,
State =:= 6,
Condition =:= 1.

1

%--

%
% Schema solenoid is derived from primitve. This is a rnodcl of a simple
5% electrical solenoid valve used to control fluid flow
5%

schema so1enoid:primi tive
I

%
% Schema instance variables
%

%
% atcessors for sthema instance variables
96

%
% initialization - solenoid has state 0 to 5
%

:- State = (0.51 ,

%
% mode/O defines behavioral modes of solenoid
%

order mode.

mode:- % g d state (dosed solenoid)
Flowout1 =:= 0,
Flowrn;! =:= 0,
Volt3 - %'oft4 >= 8,
Volt3 - Volt4 =< 16,
Currenth3 =:= CumntOut4,
State =:= 0,
Condition =:= 0.

mode:- % good state (open solenoid)
FlowOutl =:= Fk3wIn2,
Press1 =:= PrefslZ,
CurrentIn3 => 0,
Currentout4 =:= 0,
Volt3 =:= VoIt4,
State =:= 1,
Condition =I= 0.

mode:- % blocked siate
RowOut't =:= 0,
HowIriL => 0,
State =:= 2,
Condi tim =:= 1.

mode:- % stuck open state
Flowoutl =:= FtowIriL,
Press1 =:= Press2,
State =:= 3,
Condition =.--- 3.

mode:- % leaking state
FlowIn2 =\= FlowOutl,
State =:= 5,
Condition =:= 1.

1

schema junction4:prirni tive

O/o
% Schema instance variables
%

voltagebnge Voltl. currenthnge CurrentInl.
voltagehnge Volt2. mrrentRange CurrentIn2.
voltageRange Volt3 currentbnge CurrentIn3.
voltageRange Volt4. currentbnge CurrentIn4.

%
% accessors for schema instance variables
%

%
% junction4 methods
%

%
% initialization - junction4 has state 0 to 5
%

:- State = (0..5} -.

%
% mode/ 0 defines twh;vioral modes of solenoid
%

order mode.

mode:- % good condition
Voltl =:= Volt2,
Volt2 =:= Volt3,
Volt3 =:= Volt4,
CurrentInl + Currenth12 + CunentIn3 + CurrentIn4 =:= 0,
State =:= 0,
Condition =:= 0.

mode:- % open circuit on 1
CunmttIn;! + CurrentIn3 + CunentIn4 =:= 0,
CurrentInl =:= 0,
Volt2 =:= VOW,
volt3 =:= volt4,
State =:= 1,
Condition =:= 1.

mode:- % open circuit on 2
~u&entlnl+ Currenth3 + CurrentIn4 =:= I),
Currentln2 =:= 0,
Voltl =:= Volt3,
Volt3 =:= Volt4,
State =:= 2,
Condition =:= 1.

% open circuit on 3
Currenth1 + CurentIn2 + CurrentIn4 =:= 0,
CunentIn3 =:= 0,
Voltl =:= Volt2,
Volt2 =:= Volt4,
State =:= 3,
Condition =:= 1.

% open circuit on 4
CurrentInl + Currenth2 + CurrentIn3 =:= 0,
CunentIn4 =:= 0,
Voltl =:= Volt2,
Volt;! =:= Volt3,
State =:= 4,
Condition =:= 1.

% shorted circuit
Voltl =:= Vole,
Volt2 =:= v o i q
volt3 =:= Volt4,
CurrentInl + CumtIn2 + Currenth3 + CurrentIn4 =\= 0,
State =:= 5,
Condition =:= I,

schema re1ay:primitive
I

%
% Schema instance variables
%

voltageRange Voltl. currentRange CurrentInl .
voltageRange Volt2 currentbnge Curren tOu t2.
voltageRange Volt3. currenthnge CurrentIn3.
voltageRange Volt4. currenthnge CurrentOut4.

%
% accessors for schema instance variables
%

%
% initialization - relay has state 0 to 5
%

:- State = (0..51 ,

%
% mode/O defines behavioral modes of solenoid
%

order mode.

mode:- % relay not energized
volt1 =:= Volt&

CurrentInl=:= 0,
CunmtOut2 =:= 0,
Currenth3 =:= 0,
Currentout4 =:= 0,
State =:= 0,
Condition =:= 0.

mode:- % relay energized
Volt1 - Volt2 >= 9,
Volt1 - Volt2 =< 16,
Volt3 =:= Volt4,
CurrentInl =:= CumentOu.t2, % primary current
Currentin3 =:= CurrentOut4, % secondary current
State =:= 1,
Condition =:= 0.

mode:- % open circuit in primary
Currenth1 =:= 0,
Currentout2 =:= 0,
CurrentIn3 =:= 0,
Currentout4 =:= 0,
State =:= 2,
Condition =:= 1.

mode:- I short circuit in primary
Volt1 =:= Volt2,
Volt3 =:= Volt4,
CurrentInl =:= CurrentOut2, % primary current
CurrentIn3 =:= CurrentOut4, % secondary current
State =:= 3,
Condition =:= 1,

mode:- % open c h i t in secondary
CurrentIn3 =:= 0,
c m t o u t 4 == 0,
State =:= 4,
Condition =:= 7.

mode:- % short circuit in secondary
Volt3 =:= Volt4,
State =:= 5,
Condition =:= 1.

1

%--

8%
% Schema tank is derived from primitve. This is a model of a simple
% fuel tank
X
%--

schema tank:primitive
i

%
% Schema instance variables
75

pressRange Pressl. flowRateRange RowInl. conditionType FlowCond1.
presshnge Press2. flowRateRange RowOut2. conditionType FlowCond2.
presshnge Prurss3. flowRateRange RoVVfXEt3. conditionType FlowCond3.

%
% accessors for schema instance variables
%

terminall (Pressl,lFlowInl,FlowCondl).
tenninal2(Press2,FlowO~t2~FiowCond2).
terminal3(Press3,FlowO~t3~FlowCond3).

%
% tank methods
%

%
% initialization - tank has state 0 to 1
%

:- State = (0..1) -.

%
% mode/O defines behavioral modes sf solenoid
5%

order mode.

mode:-Press1 =:= Press2,
state =:= 0,
Condition =:= 0.

mode:-Press1 =\= Press2,
State =:= 1,
Condition =:= 1.

1

%---

%
% Schema regulator is derived from primitve. This is a model of a simple
% diaphragm pressure regulator

schema regula tor:primitive
f

%
% Schema instance variables
%

%
% accessors for schema instance variables
%

terminal 1 (Pressl,FlowInl,HowCondl).
terminal2(Press2,FlowOut2,FlowCond2).
terminal3(Press3,FlowOut3,FlowCond3).

pressl(Press1). flowInl(FlowIn1). flowCondl(FlowCondl).
pressZ(Press2). flowOut2(F3owOut2). flowCond2(FlowCond2).
presfi(Press3). flowOut3(RowOut3). flowCond3(FlowCond3).

%
% regulator methods
%

96
% initialization - regulator has state 0 to 4
%

:- State = [0..4) -.

%
% mode/ 0 defines behavioral modes of solenoid
%

order mode.

mode:- % return flow to tank
Flow1111 =:= FlowOut3,
Pr-1- Press2 > 5,
State =:= 0,
Condition =:= 0.

mode:- % no return flow
FlowInl =:= 0,
FlowOut3 =:= 0,
Press1 -kess;!<S,

State =:= 1,
Condition =:= 0.

mode:- % faulty diaphragm (will not open)
FlowInl =:= 0,
Fl0~&t3 =:= 0,
State =:= 2,
Condition =:= 1.

mode:- % faulty diaphragm (will not close)
FlowInl =:= Flowclut3,
State =:= 3,
Condition =:= 1.

mode:- % leaking regulator
FlowInl =\= FlowOut3,
State =:= 4,
Condition =:= 1.

1

%--

%
% Schema pump is derived from primitve. This is a model of a simple
%dcpump
%

schema pump:primitive
E

%
% Schema instance variables
%

pressRange Pressl. flowRateRange FlowInl. conditionType RowCondl .
pressRange Press2. flowRateRange FlowOut2. conditionType FlowCond2.

voltagehnge Volt3 currentRange CurrentIn3.
voltageRange Volt4. currentRange CurrentOut4.

96
% accessors for schema instance variables
%

%
% pump methods
%

%
% initialization - pump has state 0 to 4
%

:- State = [0..41 ,

?6
% mode/O defines behavioral modes of solenoid
%

order mode.

% pump 'on'
Flowlnl =:= FlowOuQ,
Press2 > Pressl,
Volt3 - Volt4 >= 9, % Power - ECM voltage
Volt3 - Volt4 =< 16,
CurrentOut4 =:= CurrentIn3,
State =:= 0,
Condition =:= 0.

% pump 'off'
FlowInl =:= 0,
Flowout2 =:= 0,
Volt3 =:= Volt4,
Current1113 =:= 0,
C1.mentOut4 =:= 0,
State =:= 1,
Condition =:= 0.

% weak pump
Volt3 - Volt4 >= 9,
volt3 - Volt4 =< 16,
Press2 =< Pressl,
Flowlnl =:= FlowOuQ,
State =:= 2,
Condition =:= 1.

% open circuited pump
EowInl =:= 0,
Flowout2 =:= 0,
State =:= 3,
Condition =:= 1.

% leaking pump
FlowInl =t= ElowOut.2,

State =:= 4,
Condition =:= 1.

1

schema injector:prirni tive
I

5%
% Schema instance variables
%

pressbnge Pressl. flow% teRange FlowOutl. condi tionTypc FlowCond 1.
pressRange Press2. flowhteRange FIowIn2. condi tionType FlowCond2.

voltagehnge Volt3. currentbnge CurrentIn3.
voltagehnge Volt4. currentRange CurrentOut4.

%
% accessors for schema instance variables
%

%
% injector methods
%

%
% initialization - injector has state 0 to 4
%

:- State = f0..41 -.
%
% mode/O defines behavioral modes of solenoid
%

order mode.

% injector 'on'
Flowout1 =:= FlowIn2,
VOIW - volt4 =< 16,
Volt3 - Volt4 >= 9,
CunmtIn3 =:= CurrentOut4,
State =:= 0,
Condition =:= 0.

% injector 'off'
FlowIn2 =:= 0,
Flowout1 =:= 0,
Volt3 =:= Volt4,
CurrentIn3 =:= 0,
Currentout4 =:= 0,
State =:= 1,
Condition =:= 0.

% injector leaking
m~wOut l= \= F ~ O W I ~ ,

State =:= 2,
Condition =:= 1.

% injector plugged or open circuited
Flowout1 =:= 0,
FlowIn2 =:= 0,
State =:= 3,
Condition =:= 1.

% short circuited
HowOutl =:= FlowIn2,
State =:= 4,
Condition =:= 3.

1

schema fi1ter:primitive

96
% Schema instance variables
%

%
% accessors for xherna instance variables
%

terminall (Pressl,FlowInl,FlowCondl).
terminal2(Press2,FlowOut2,FlowCond2).

press1 (Pressl). flowInl (FiowInl). flowCond1 (FlowCondl).
press2(Press2). flowOut2(Flo wOut2). flowCond2(FlowCond2).

%
% filter methods
%

%
% initialization - filter has state 0 to 2
%

:- State = {0..21 -.

%
% mode/O defines behavioral modes of solenoid
%

order mode.

mode:- % g ~ o d state
Press2 =:= Pressl,
FlowOut.2 =:= Fiowlnl,
State =:= 0,
Condition =:= 0.

mode:- % blocked filter
Press2 =\= Pressl,
State =:= I,
Condition =:= 1.

mode:- % leaking fi'ter
FlowOut2 =\= FlowTnl,
State =:= 2,
Condition =:= 1.

1

schema raikprimi tive

ro
% Schema instance variables
%

pressRange Press1 . flowRateRange FlowInl. conditionType FlowCondl .
prcssRange Pr-2. flowliateRange RowOut2. conditionType FlowCond2.
prcssRange Press3. flo & a teRange RowOut3. cond i tionType FlowCond3.

%
% accessors for schema instance variables
%

% This allows for 1 injector

%
% rail methods
%

%
% initialization - rail has state 0 to 1
96

:- State = (0..1) -.

%
% mod40 defines behavioral modes of solenoid
%

order mode.

mode:- % goad state
FlowInl =:= HowOut2 + FlowOut3,
Pressl=:= k-&,
Press1 =:= Press3,
State =:= 0,
Condition =:= 0.

mode:- % leaking rail
Flowlnl =\= FlowOut2 + RowOut3,
State =:= 1,
Condition =:= 1.

A.3. Compound Knowledge Base

schema igswiich:compound
I

%
% Schema instance variables
%

voltageRange Voltl. currentRange CurrentInl .
voltageRange Volt2. currentRange CurrentOut2.
voltageRange Volt3. currentbnge CunentOut3.
signalType Signal.

switch Switch junction3 Junction.

%
% afce5SOrs for xkma instance variables
'16

%
% igswitch methods
%

%
% build/O imtantiates sub-components of igswitch, gives each
7% a name, define the component list CIist, unifies the
% instance variables of the sub-components, and sends a
% mcssage to compound to build igswitch's sub-componmts.
%

%
% define components of system
%

build:- Switch isa switch, Switch:narne(iSswitch),
Junction isa junction3, Junction:name(iSjunction),

%
76 unify instance variables of power with those of its
% submmpomfs
8

%
% unify instance variables of between subcomponents
8

% mode/O assigns value to Condition
%

order mode.

mode:-Switch:state(O),
Junction:state(O),
Signal =:= off,
Condition =:= 0.

mode:-Switch:state(l),
Junction:state(O),
Signal =:= on,
Condition =:= 0.

A.4. System Knowledge Base

%
% Schema instance variables
%

vol tageRange Vol t l . currentRange Currentout1 .
vo1 tageRange Volt2 currentRange CurrentOut2.
vol tagefiange Vol t3. currentRange CurrentOut3.
vol tageRange Vol t4. cumntRange CurrentOut4.
voltageRange VoItS. cumntRange CurrentOut5.

signalType Signal.

%
% subcomponents of power
%

ipwitch IS. battery Battery.
wire W1. wire W2. wire W6.
fuse ECM-F. fuse Engine-F.
junction3 J1. junction3 J2. junction3 J3.

%
% accessom for persistent ~riables

voltl(Volt1). currentOutl(CurrentOut1).
volt2(Vol t2). currentOut2(Curre~tOut2).
volt3(Volt3). currentOut3(CurrentOut3)-
vol t4(Vol t4). currentOut4tCurrentOut4).
volt5(Vol t5). currentOut5(CurrentOut5).

%
% power methods
%

%
% build/O instantiates subcomponents of power, assigns each
% a name, defines the component list Clist, unifies the
% instance variables of the sub-mmponcnts, and sends a
% message to system to build powe& sub-componcnts.
%

build:-
IS isa igswitch,
Battery isa battery,
W1 isa wire,
W2 isa wire,
W6 isa wire,
J1 isa junction3,
J2 isa juntion3,
J3 isa junction3,
ECM-F isa fuse,
Engine-F isa fuse,

IS:namc(igni tionswi tch),
Battery:name(battcry),
Wl:name(wirel),
W2:name(wire2),
W6:name(wire6),
J1:namdjunctionl),
J2:name(junction2jt
J3:name(junction3),
ECM-F:name(ecmfuse),
~n~ine-F:name(enginefusc),

Clist = [IS,Battery,W l,W2,W6, J1 ,J2,J3,ECM-F,Engine-Fl,

%
% unify instance variables of power with t h e of its
% subcomponents
%

1S:signal (Signal),

%
% unify instance variables of between sub-components
%

IS:terminal2(VoItD,CurrentD),
W2: terminall (VoltD,CurrentD),

%
% send message to system to build power's
96 sutKx,mpnents
6

% Schema ccp is derived from system. This is a model of a charcoal
% canister purge system.
%
%--

%
% Schema instance variables
%

pressRange Pressl. flowRateRange Flow- tl . condi tionType Flowcondl .
voltageRange Volt2. currentRange CurrentIn2.
voltageRange Volt3. currenfRange CurrentOut3.
pressRange Press4. flowRateRange FlowIn4. conditionType FlowCond4.
pressRange Pressti. flowRateRange FlowId5. conditionType FlowCond5.
pressRange Press& flowRateRange FlowOutG. conditionType FtowCond6.

canister Can. pcv PCV.
hose Hl. hose HZ.
hose H5. hose H6.
wire W1. wire W2.

solenoid Sol.
hose H3.

%
% accessors for persistent variables
%

%
% schema methods

build/O instantiates sub-components of power, assigns each
a name, defines the component list Clist, unifies the
instance variables of the sub-components, and sends a

% message to system to build schema's sub-components.
%

build:-
Can isa canister,
PCV isa pcv,
Sol isa solenoid,
HI isa hose,
H2 isa hose,
H3 isa hose,
H5 isa hose,
H6 isa hose,
W1 isa wire,
W2 isa wire,

Clist = [Sol,Can,PCV,Hl ,H2,H3,H5,H6,Wl,W21,

%
% unify instance variables of schema with those of its
% sutFcomponents
%

W 1 : terminall (Vol t2,Curren tIn21,

Can: terminal2(Press4,FIowIn4,FlowCond4),

%
% unify instance variables of between sub-components
%

Can: termina13(PressF,FlowFr CondF),
H3:terminal2(PressF,FlowF,CondF),

PCV: terminal1 (RessC,FlowG,CondG),
H3:terminall(PressG,FlowG,CondG),

%
% send message to system to build schema's
% subcomponents
%

schema fueksystem

%
% Schema instance variables
%

voltagebnge Volt1 . currenthnge Curren tout1 .
vo1tageRange Volt2. currenthnge CurrentIn2.
voltagebnge VoIt3. cunentRange CurrentIn3.
voltageRange Volt4. currenthnge CurrentOut4.
vol tageRange Volt5 currenthnge CurrentIn5.
pressRange Press6. flowRateRange FlowOut6. condi tionType Flo wCond6.
pressRange Press7. flowhteRange F l o m t 7 . condi tionType FlowCond7,
pressRange Press8. fIowbteRange FlowOut8. conditionType FlowCondS.
signalType Signal.

%
% sub-componen ts of fuel
%

tank F-Tank.
injector Inj.
hose HI.
fuse F-Fuse.
relay Relay.
wire W1.
wire W3.
wire W 7.

pump F-Pump. filter F-Filter.
regulator Press-Reg.
hose H2. hose H3.
switch F-Switch.
junction4 J4. junction3 J3.
wire W2.
wire W4. wire W5.
wire W8. wire W9.

%
% accessors for persistent variables
%

volt1(Vsltl). currentOutl(CurrentOut1).
vol t2(Vol t2). currentInZ(CurrentIn2).
vol WVol t3). currentIn3(CurrentIn3).
vol t4(Vol t4). currentOut4(CurrentOut4).
voltS(Volt5). currentInS(CurrentIn5).

%
% schema methacis
Z

rail Rail.

hose H4.

wire W6.
wire WIO.

5%
% build/O instantiates sub-components of power, assigns each
% a name, defines the component list Clist, unifies the
'% instance variables of the sub-components, and sends a
% message to system to build schema's subcompnents.

build:- FTank isa tank,
F-Pump isa pump,
F-Filter isa filter,
F-Fuse isa fkse,
F-Switch i s switch,
Relay isa relay,
J4 isa junction4,
J3 isa junction3,
Rail isa rail,
Inj isa injector,
Press-Reg isa regulator,
HI isa hose,
H2 isa hose,
H3 isa hose,
H4 isa hose,
W1 isa wire,
W2 isa wire,
W3 isa wire,
W4 isa wire,
W5 isa wire,
W6 isa wire,
W7 isa wire,
W8 isa wire,
W9 isa wire,
W10 isa wire,

F-Tank:name(fueltank),
F_Pump:name(fuelpump),
F-Filter:name(fuelfiItcr),
F-Fuse:name(fuelfusc),
rSwitch:name(fuclswi tch),
Relay :name(fuelreIay),
J4:namef junct4),
J3:name(junct3),
Raif:name(fuelrail),
Inj:name(fuelinj),
Press-Reg:name(fuelreg),
H I :namc(hosel),
H2:name(hose2),
H3:namc(hose3),
H4:name(hosc4),
W1 :name(wirel),
W2:na~,e(wireZ),
W3:name(wire3),
W4:name(wire4),
WS:namc(wire5),
W6:nametwi-e6),
W7:name(wire7),
WS:name(wire8),
W9:name(wire9),
W lO:namc(wirclO),

[H1,H2,H3,H4,W1,W2,W3,W4,W5,W6,W7,W8fW9fW~~,J4,J3,
Relay,Rail,Inj,Press_Reg, F-Swi tch, F-Tank,F-Pum p,
F-Fil ter,F-Fu se],

%
% unify instance variables of schema with those of its
% ~ ~ ~ M m p o n e n t s
%

%
% unify instance variables of between sub-components
%

F-Swi tch: terminal 1 (Vol tA,CurrentA),
W10: terminaIZ(Vo1 tA,CurrentA),

J3:terminal1(VoltC,currentRange CurrentCl),
W8: terminall (Vol tC,currentRange CurrentC2),
CurrentCl=:= 0 - CurrentC?,

J4:terminall(VoltE,CurrentE),
W6:teminal2(VoltE,CurrentE), % from switch

J4:terminal2(VoltF,CurrentF),
W7: terrninal2(VoltF,CurrentF), % from relay

J4:terminal3(VoltG,cu1~entRange CurrentGI 1,
W9:tenninall(VolG,currentRange CurrentG2), % to pump
CurrentGI =:= 0 - CumntG2,

J4: teminal4(VoltH,currentRange CurrentH1),
W1 :tenminall (VoltI3,currentRange CurrentH21, % to pump
CumntHl=:= 0 - CurrentH2,

Press-Reg: terminal2(PressureJ,FlowJ,FCondJ 1,
H4:terminall (kessureJ,FlowJ,FCond J),

%
% send message to system to build schema's
% s u b c o m p o ~ ~ t s
%

schema cngine:system

%
% Schema instance variables
96

vol tageRange Volt1 . currentRange CurrentInl.
vol tagcRange Vol t2. currentRange CumntIn2.
vol tageRange Vol t3. currentRange CurrentIn3.
pressffange Presd. flow RateRange FlowIn4. condi tionType FlowCond4.

fuel F.
ccp C.

%
% accessors for persistent variables
%

terminall (Volt1,Currentlnl).
terminal2(Volt2,CurrentIn2).
trrminal3(Volt3,CurrentIn3).
tcrminal4(Press4,RowIn4,FlowCond4).

%
% schema metha&

%
% buifd/O instantiates subcomponents of powerl assigns each
% a name, defines the component list Clist, unifia the
% instance variables of the suftcomponents, and sends a
76 message to system to build sthcrna's subtomponents.
%

build:- F isa fuel, F:name(fuelSyst),
C isa ccp, Cmme(ccpSyst),

Clist = IF,C3,

%
% unify instance variables of schema with those of its
% s u b m p o ~ e n t s
%

%
% unify instance variables of between sub-components
%

%
% send mesage to system to build xhm's
% sutKanponents
%

k Schema instance variables
%

sipalType Signal.
pressRange Press. flowRateRange FlowIn. conditionType FlowCond.

%
Z sub-components of vehicle
%

power P.
engine E.

%
% acccssors for persistent variables
%

signal(Signa1).
tminal(Press,FlowIn,FIowfond).
press(Press). fl ow1 n(Flow1n). flowCond(FlowCond).

%
% fbild/O instantiates sub-components of power, assigns each
% a name, defines the component list Clist, unifies the
% instance variables of the subcomponents, and sends a
'46 message to system to build schema's sub-components
%

build:- P isa power, P:namdpowdyst),

E isa engine, E:name(engineSyst),

5%
% unify insbnce variables of schema with those of its
I--
%

P:signaif Signal),

% unify instance variables of betwecn subcomponcnts
%

%
% send message to system to build schema's
% subcompo~ts
%

Appendix B - Simulated Diagnostic , Sessions

B.1. Power System Diagnostic Simulation

B.1.1. Input Data-Base File

set warnings off

%
% load knowledge bases
%

load component .kb
load primitive.kb
toad tompoundkb
load system.kb

%
b define, name, and build top level object
%

pawn P isa power,P:namefpowerSystem~.
P:build.

%
46 find and display a healthy candidate (i.e., no measurements have
% yet been taken)
%

%
% discard that candidate, add new data, and find new candidates
%

undo 2
P:signal(off),P:volt5(6).
P:findCandidates.

%
% add new data, and find new candidates
%

70

% add new data, and find new candidates
%

B.1.2. Output File

Echidna Version 0.9 beta
Compiled: Thu (3ct 10 15:2259 PDT 1991
tc) Copyright Expert Systems Lab.
Simon Fraser University, 1991

All rights reserved
(Expires: &Mar-92)

echidna command 1> load powerl
loading data base file "powerl" ...
loading knowledge base file "component.kb ...
loading knowledge base file "primitive-kb ...
loading knowledge base file "compound.kb" ...
loading knowledge base file "system.kbW ...
query #O "power P isa power,P:namdpowerSystem)." issued
done #O P isa power, P:nametpowerSystem).
query #1 Ybuild." issued
done #O P isa power, P:name(powerSystem).
done #1 P:build.
query #2 "P:findCandidatesl' issued

SYSTEM powerSystem
enginefuse state 0 condition 0
ecmfuse state 0 condition 0
junction3 state 0 condition 0
junction2 state 0 condition 0
junction1 state 0 condition 0
wire6 state 0 condition 0
wire2 state 0 condition 0
wire1 state 0 condition 0
battery state 0 condition 0
ignitionswitch state f [isjunction, 01, [iSswi tch, 0]] condition 0

done #O P isa power, P:name(powerSystem).
done #1 P:buitd,
done #2 PfindCandidates.
query #2 "PdindCandidates' is undone
done #O P isa power, P:narne@owerSystem).
done #I P:build.
query #3 *T:signal(ofD,P:volt5(6)? issued
done #O P isa power, P:name(powerSystem).

done #1 Ebuild.
done #3 P:signaI(offl, P:volt5(6).
query #4 "EfindCandidates." issued

SYSTEM powerSystem
enginefuse state 0 condition 0
ecmfuse state 0 condition 0
junction3 state 1 condition 1
junction2 state 0 condition 0
junction1 state 0 condition 0
wire6 state 0 condition 0
wire2 state 0 condition 0
wirel state 0 condition 0
battery state 0 condition 0
ignitionswitch state [[isjunction, 01, [isswitch, 011 condition 0

looking for more single fault candidates

SYSTEM powerSystem
enginefuse state 0 condition 0
ecmfuse state 0 condition 0
junction3 state 3 condition 1
junction2 state 0 condition 0
junction1 state 0 condition 0
wire6 state 0 condition 0
wire2 state 0 condition 0
wirel state 0 condition 0
battery state 0 condition 0
ignitionswitch state [[isjunction, 01, liSswiich, Of] condition 0

looking for more single fault candidates

SYSTEM powerSystem
enginefuse state 0 condition 0
ecmfuse state 0 condition 0
junction3 state 0 condition 0
junction2 state 0 condition 0
junction1 state 0 condition 0
wire6 state 0 condition 0
wire2 state 0 condition 0
wire1 state 0 condition 0
battery state 1 condition 1
ignitionswitch state [[Sjunction, 01, [isswitch, 011 condition 0

looking for more single fault candidates

no more single fault candidates

done #O P isa power, P:name(powerSystem).
done #1 P:build.
done #3 P:signal(off), P:volt5(6).
done #4 P:findCandidates.
query #4 'T:findCandidates." is undone
done #O P isa power, P:name(powerSystem).
done #1 P:build.
done #3 P:signal(off), P:volt5(6).
query #5 'T:batt(battery Battery),Battery:volt(14)." issued
done #O P isa power, P:name(powerSystem).
done #1 P:build.
done #3 P:signal(off), P:volt5(6).
done #5 P:batt(Ba ttery), Battery:volt(l4).
query #6 "P:findCandidates." issued

SYSTEM powersystem
enginefuse state 0 condition 0
ccmfuse state 0 condition 0
junction3 state 1 condition 1
junction2 state 0 con& tion 0
junction1 state 0 condition 0
wire6 state 0 condition 0
wire2 state 0 condition 0
wire1 state 0 condition 0
battery state 0 condition 0
ignitionswitch state IfiSjunction, 01, [isswitch, 011 condition 0

looking for more single fault candidates

SYSTEM powersystem
enginefusrr state 0 condition 0
eanfuse state 0 condition 0
junction3 state 3 condition 1
junction2 state 0 condition 0
~-lctionI state 0 condition 0
wire6 state 0 condition 0
wire2 state 0 condition 0
winel state 0 condition 0
battery state 0 condition 0
ignitionswitch state [[iSjnction, 01, [isswitch, 011 condition 0

looking for mre single fault candidates

no mose single fault candidates

done #O P isa power, P:name(powerSystem).
done #1 P:build.
done #3 P:signal(off), P:volt5(6).
done #5 P:batt(Battery), Battery:volt(l4).
done #6 P:findCandidates.
query #6 "WindCandidates." is undone
done #O P isa power, P:name(powerSystem).
done #1 P:buiId.
done #3 P:signal(off), P:volt5(6).
done #5 P:batt(Battery), Battery:volt(l4).
query #7 'T:j3(junction3 J3),J3:volt2(14)." issued
done #O P isa power, P:name(powerSystem).
done #I P:build.
done #3 P:signal(off), P:volt5(6).
done #5 P:batt(Battery), Battery:volt(l4).
done #7 P:j3tJ3), J3:volt2(341.
query #8 "P:findCandidatesn issued

SYSTEM powersystem
enginefuse state 0 condition 0
ecmfuse state 0 condition 0
junction3 state 3 condition 1
junction;! state 0 condition 0
junction1 state 0 condition 0
wire6 state 0 condition 0
wire2 state 0 condition 0
wire1 state 0 condition 0
battery state 0 condition 0
ignitionswitch state IfiSjunction, 01, [isswitch, 011 condition 0

looking for more single fault candidates

no more single fault candidates

done #O P isa power, P:narne(powe&ystem).
done #I P:build.
done #3 P:signal(oW, P:volt5(6).
done #5 P:batt(Battery), Battery:vol t(1.Q).
done #7 Pj3j3U3), J3:volt2(14).
done #8 P:findCandidates.
echidna cornmand 2>

B.2. Canister Purge System Diagnostic Simulation

B.2.1. Input Data-Base File

set warnings off

%
% load knowledge bases
%

laad compnenLkb
load prirni tive.kb
bad mmpundkb
load system.kb

%
% define, name, and build top level object
%

%
5% find and display a healthy candidate (i.e., no measurements have
% yet be taken)
%

CfindCandidates.

%
% discard that candidate, add new data, and find new candidates
%

%
% add new data, and find new candidates
%

%
% add new data, and find new candidates
%

%
% add new data, and find new candidates
%

B.2.2. Output File

echidna
Echidna Version 0.9 beta

Cwnpiled: Thu Od 10 152259 PDT 1991
(c) Copyright Expert Systems Lab.
S imn Fraser University, 1991

All rights reserved
(Expires: 8-Mar-92)

echidna command I > load ccpl
loadi'ir; data base file "ccpl" ...
loading knowledge base file "component.kb ...
loading knowledge base file "primitive.kb ...
loading :.nowledge base file "compound.kb" .. .
loading knowledge base file "system-kb" ...
query iii) "ccp C isa ccp, Cname(ccpSystem)." issued
done #O C I= ccp, C:name(ccpSystem).
query #1 "C:Puild." issued
done #O C isa ccp, C.name(ccpSystem).
done #1 C:build.
query #2 "CfindCandidates." issued

SYSTEM ccpsystern
wire2 state 0 condition 0
wire1 state 0 condition 0
how6 state 0 condition 0
hose5 state 0 condition 0
hose3 state 0 condition 0
hose2 state 0 condition 0
hose1 state 0 condition 0
pwCV state 0 condition 0
canister1 state 0 condition O
solenoid1 state 0 condition 0

dune #O C isa ccp, CmmekcpSystm).
done #1 Gbuild,
Bow #2 f :findflitndidates.
quay #2 '%:findCandidates." is undone
done MI C isa ccp, Cmame(ccpSystem).
done #I Cbuild.
query #3 '%:volt2(14),C:volO(O)." issued

done #O C isa ccp, C:name(ccpSystem).
done #1 C:build.
done #3 C:volt2(14), C:volt3(O).
query #4 "C:findCandidates." issued

SYSTEM ccpsystem
wire2 state 0 condition 0
wirel state 0 condition 0
hose6 state 0 condition O
hose5 state 0 condition 0
hose3 state 0 condition 0
hose2 state 0 condition 0
hose1 state 0 condition 0
presCV state 0 condition 0
canister1 state 0 condition 0
solenoid1 state 0 condition 0

no symptoms

done #0 C isa ccp, C.mme(ccpSystem).
done #I C:build.
done #3 C:volt2(14), C:volt3(0).
done #4 CfindCandidates.
query #4 "CfindCandidates." is undone
done #O C isa ccp, C:name(ccpSystem).
done #1 €:build.
done #3 C:voIt2(14), C:volt3(0).
query #5 "Cpressl(-1~,C:flowOut1(2)." issued
done #0 C isa ccp, C:namdccpSystem).
done #1 Cbuild.
done #3 C:volt2(14), C:volt3(0).
done #5 C:pressl(-l), C:flowOutl(2).
query #6 "C:findCandidates." issued

SYSTEM ccpsystem
wire2 state 0 condition 0
wirel state 8 condition 0
hose6 state 0 condition 0
hosefi state 0 condition 0
hose3 state 0 condition 0
hose2 state 0 condition 0
hose1 state 1 condition I
presCV state 0 condition O
canister1 state 0 condition 0
so1enoidl state 0 condition 0

lcmking for more single fault candidates

SYSTEM ccpsystem
wire2 state 2 condition 1
wire1 state 0 condition 0
kosc6 state 0 condition 0
how!? state 0 condition 0
hose3 state 0 condition 0
hox2 state 0 condition 0
hoxl state 0 condition 0
presCV state 0 condition 0
canistml state 2 condition 0
solenoid1 state 1 condition 0

looking for more single fault candidates

SYSTEM ccpsystem
wire2 state 0 condition 0
wire1 state 2 condition I
ho& state 0 condition 0
hose5 state 0 condition 0
hose3 state 0 condition 0
hose2 state 0 condition 0
hose1 state 0 condition 0
p r d state 0 condition 0
canister1 state 2 condition 0
solenoid1 state 1 condition 0

looking for more single fault candidates

SYSTEM ccpsystem
wire2 state 0 condition 0
wire1 state 0 condition 0
hose6 statc 0 condition 0
hose5 state 0 condition 0
hose3 state 0 condition 0
hose2 state 0 condition 0
b e 1 state 0 cor;ciiiion 0
pmdX state 0 condition O
rrtnLster1 state 2 mndi tion 0
salenoid1 state 3 condition I

looking for more single fault candidates

SYSTEM ccpsystem
wire;! state 0 condition 0
wire1 state 0 condition 0
hose6 state 0 condition 0
hose5 state 0 condition 0
hose3 state O condition 0
hose2 state 0 condition 0
hosel state 0 condition 0
presCV state 0 condition 0
canister1 state 2 condition 0
sdenoidl state 4 condition 1

looking for more single fault candidates

SYSTEM ccpsystem
wire2 state 0 condition 0
wire1 state 0 condition 0
hose6 state 0 condition 0
hose5 state 0 condition 0
hose3 state 0 condition 0
h d state 0 condition 0
hosel state 0 condition 0
p r d state 0 condition 0
canister1 state 0 condition 0
so1enoidl state 5 condition 1

looking for more singe fault candidates

no more single fault candidates

done ##O C isa ccp, C:name(ccpSystern).
done #I C:buiM.
done #3 C:volt2(14), C:volHOl.
done #5 Cpressl(-11, C:flowOutl(2).
done #6 CSindCandidats.
query #6 "EfindCmdidates." is undone
done #O C isa cep, CmmdccpSystem).
done #I C:buiM.
done #3 C:volt2(14), C:volW(Ol.
done t15 C:presslf-11, C:r%uvOulil(2j.
querj #7 "CpresH-l)." issued
done #O C isa crg, C:name(ccpSystem1.
done .,I C.W.
done #3 I' voIt2(14), C:voWU).
done #5 Cpressl(-I), Cf a ~ w O d (2).

SYSTEM ccpSystcm
wire2 state 0 condition 0
wire1 state 0 cordition 0
h o d state 0 condition 0
hod5 statc 0 condition 0
hose3 state 0 condition 0
bse2 state 0 condition O
bsel state 1 condition 1
p e C V state 0 condition 0
canister1 staic 0 condition 0
wfenoidl state 0 condition 0

looking for more single fault candidates

SYSTEM ccpSystcm
wire2 state 2 condition f
wire1 state 0 condition 0
hose6 state 0 condition 0
hose5 state 0 condition O
hrzx3 state O condition 0
Ituse2 state 0 condition 0
hose1 state 0 condition 0
pmKV state 0 condition O
canister1 state 2 condition 0
sofenoidl state 1 condition 0

fwking for more single fault candidates

SYSTEM ccpSystem
wire2 slate 0 condition 0
wiml state 2 condition 1
f i a d state O condition 0
has& state O condition 0
hose3 state 8 condition 0
k 2 state 0 condition 0
k l state O condition 0
p m S V state 0 condition 0
canister3 sta tft 2 condition 0
wltrtclidl state I condition 0

looking for more single fault candidates

SYSTEM ccpSystem
wire2 state 0 condition 0
wirel state 0 condition 0
hose6 state 0 condition 0
hose5 state 0 condition 0
hose3 state 0 condition 0
hose2 state 0 condition 0
hose1 state 0 condition 0
presOI state 0 condition O
canister1 state 2 condition 0
solenoid1 state 3 condition 1

looking for more single fault candidates

SYSTEM ccpSystem
wire2 state 0 condition 0
wirel state 0 condition 0
hose6 state 0 condition 0
hose5 state 0 condition 0
bse3 state 0 condition 0
hose2 state 0 condition 0
hose1 state 0 condition 0
presCV state 0 condition 0
canister1 state 2 condition 0
solenoid1 state 4 condition 1

looking for more single fault candidates

SYSTEM ccpsystem
wkd state 0 condition 0
wire1 state 0 condition 0
hose6 state 0 condition 0
hose5 state 0 condition 0
hose3 state 0 condition 0
hose;! state 0 condition 0
bsel state 0 condition 0
presCt" state 0 condition 0
canister1 state 0 condition 0
s o M d 1 state 5 condition 1

no more- sing5e fault candidates

done #O C isa ccp, C:name(ccpSystem).
done #I C:build.
done #3 C:volt2(14), C:vof t3(O).
done #5 C:pressl(-11, C:flowOutl(2).
done #7 C:press6(-1).
done #8 CfindCandidates.
query #8 "CfindCandidates." is undone
done #O C isa ccp, C.mmetctpSystem).
done #I Chi ld .
done #3 C:voIt2(14), C:vol t%O).
done #5 C:pressl (-1 1, C:fiowOu tl(2).
done #? C:press6(-1).
query #9 "Cpres5(2),C:flowIn5(2)." issued
done #O C isa ccp, C:name(ccpSystern).
done 81 C:buiid.
done #3 C:volt2(14), C:volt3(0).
done #5 C:pressl(-11, CflowOutlt2).
done #7 C:press6(-1).
done #9 C:prcssEi(2), C:flowIfiQ).
query #10 "C:findCandidates." issued

SYSTEM ccpsystem
wire;! state 0 condition 0
wire1 state 0 condition 0
hose6 state 0 condition 0
hose5 state 0 condition 0
hose3 state 0 condition 0
hose2 state 0 condition 0
hose1 state 1 condition 1
pres6V state 2 condition 0
canister1 state 1 condition 0
solenoid1 state 0 condition 0

tooking for more single fault candidates

SY!TEM ccpSystem
w i d state 0 condition 0
wire1 state 0 condition 0
hose6 state 0 condition 0
has& state 0 condition 0
hose3 state 0 condition 0

state Omndition 0
hose1 state 0 condition 0
presCV state 2 condition 0
canister1 state 1 tomfition 0
dencridl state 5 cunditkm I

looking for more single fault candidates

no more single fault candidates

done #O C isa ccp, C:name(ccpSystem).
done #I C:build.
done #3 C:volt2(14), C:volt3(0).
done #5 C:pressl(-I), C:flowOutl(Z).
done #7 C:press6(-1).
done #9 C:press5(2), C:flowIn5(2).
done #10 C:findCandidates.
echidna c o m n d 2> quit

References

Abu-Hanna, A. and Gold, Y. (1988) An Integrated, Deep-Shallow Expert System
For Multi-Level Diagnosis of Dynamic Systems. In Artificial Intelligence
in Engineering: Diagnosis and Learning, edited by J.S. Gero, Elsevier,
pp. 75-94.

Ben-Bassat, M., Carlson, R.W., Puri, V.K., Davenport, M.D., Schriver, M.L.,
Smith, R., Portigal, L.D., Lipnick, E.H. and Weil, M.H. (1980) Pattern
Based Interactive Diagnosis of Multiple Disorders: The MEDAS
System,IEEE Transactions in Pattern Anal. Mach. Intell, vol. 2, no. 2,
pp.148-160.

Blumberg, P.N., Lavoie, G.A. and Tabaczyrski, R.J. (1979) Phenomenological
Models for Reciprocating Internal Combustion Engines, Prog. Energy
Corn bust. Sci., Vol. 5, pp. 123-167.

Bratko, I. (1986) Prolog Programming for Artificial In felligence, Addison-
Wesley, Don Mills, Ontario.

Buchanan, B.G. and Shortliffe, E.H. (1984) Rule Based Expert Sysferns: The
MYCIN Experiments of the Stanford Heuristic Programming Project,
Addison-Wesley .

Cho, D. and Hedrick, J.K. (1989) Automotive Powertrain Modeling for Control,
Transact ions of the ASME, Vol. 111, pp. 568-576.

Dague, P., Deves, P., Raimon, 0. (1987) Troubleshooting: When Modelling is
the Trouble, Proceedings AAA1-87, pp.600-610.

Davis, R and Hamscher, W. (1988) Model Based Reasoning: Troubleshooting.
In Exploring Artificial Intelligence, edited by H.E. Shrobe and the
American Association far Artificial Intelligence. Morgan Kaufman,
pp.239-296.

Davis, R. (1984) Diagnostic Reasoning Based on Structure and Behavior.
Artificial Infelligence 24, pp.347-410.

Dobner, D.J. (1983) Dynamic Engine Models for Control Development - Part I:
Non-linear and Linear Model Formulation, Irrternational Jozrrrlul of
Vehicle Design, special publication SP4, Inderscience Enterprises ltd.,
U.K.

Dobner, D.J. (1980) A Mathematical Engine Model for Development of
Dynamic Engine Control, SAE 800054, Detroit, MI.

Doyle, J. (1979) A Truth Maintenance System. Artificial Intelligence 22, pp.127-
272.

Duda, R., Hart, P., Konolige, K. and Reboh, R. (1979) A computer based
consultant for mineral exploration. SRI International.

Finin, T. and Morris, G . (1989) Abductive Reasoning in Multiple Fault
Diagnosis. Art ificial In telligence Review, 3, pp.129-158.

Fink, P.K., Lusth, J.C. and Duran, J.W. (1985) A General Expert System Design
for Diagnostic Problem Solving, IE E E Transactions in Pat tern Anal.
Mach. Intell, vol. 7, no. 5, pp.553-560.

Foss, A.M., Heath, R.P.G., Heyworth, P., Cook, J,a. and McLean, J. (1989)
Thermodynamic Simulation of a Turbocharged Spark Ignition Engine
for Electronic Control Development, C391/044 IMechE.

G2. (1988) Trademark of Gensym Corp., 125 Cambridge Park Drive, Cambridge,
MA, 02140.

Genesereth, M.R. (1984) The Use of Design Descriptions in Automated
Diagnosis, Artificial Intel Zigence 24, pp.41 l - 436.

Genesereth, M.R. (1981) Diagnosis using Hierarchical Design
Models.Proceedings AAAi-81, pp.278-283.

Goebel, R. (1990) A Quick Review of Hypothetical Reasoning based on
Abduction. AAAI Spring Symposium on Automated Abduction,
Stanford University, Stanford, CA.

Hamscher, W. (1990a) XDE: Diagnosing Devices with Hierarchic Structure and
Known Component Failure Modes. IEEE Conference on A1 Applications.

Hamscher, W. (199Ob) Modelling Digital Circuits for Troubleshooting: An
Overview. IEEE Conference on A1 Applications.

Hamscher, W. and Davis, R. (1987) Issues in Model Based Troubleshooting.
Memo 893, MIT Artificial Intelligence Laboratory.

Hayes-Rofh, F., Waterman, D.,A., Lenat, D.B. (1983) Building Expert Systems,
Addison-Wesley.

Howe, E., Cohen, P., Dixon, J., Simmons, M. (1986) Dominic: A Domain-
Independent Program for Mechanical Engineering Design, Artificial
Intelligence, Vol.1, No.1, pp. 23-28.

Isermann, R (19%) Process Fault Detection Based on Modeling and Estimation
Methods - A Survey, Automa tica, Vol. 20, No. 4, pp. 387-404.

Joseph, S.J. and McCarney, J (1989) a new Engine Analysis System for Sensor
and Actuator Related problems, SAE 891726, Detroit, MI.

KEE (1986)Trademark of Intellicorp, 1975 El Camino Real West, Mountain
View, Ca 904040.

Klausmeier, R. (1986) Using Artificial Intelligence in Vehicle Diagnostic
Systems, SAE 861124, Detroit, MI.

de Kleer, J. and Williams, B.C. (1989) Diagnosis with Behavioral
Modes. Proceedings IJCAI-89, Detroit, MI, pp.l324-1330.

de Kleer, J. and Williams, B.C. (1987) Diagnosing Multiple Faults. Artificiul
Intelligence 32, pp.97-130.

de Kleer, J. (1986a) An Assumption-Based Truth Maintenance System.
Artificial Intelligence 28, pp.127-162.

de Kleer, J. (1986b) Extending the ATMS. Artificial Intelligence 28, pp.163-196.

Lee, M.H., Hunt, J.E., Price, C.J. and Long, F.W. (1990) REPAIR: A Model-Based
Diagnosis System, UK IT 1990 Conference, Southhampton, UK.

Luger, G.F., Stubblefield, W .A. (1989) Artificial Intelligence and the Dcsign of
Expert Systems, Benjamin/ Cummings.

Martin, W.A., and Fateman, R.J. (1972) The MACSYMA system. Proceedings of
the Second Symposium on Symbolic and Algebraic Manipulation, Los
Angeles, pp.59-75.

Min, P.S. and Ribbens, B.R. (1989) A Vector Space Solution to Incipient Sensor
Failure Detection with Applications to Automotive Environments. I E E E
Transactions on Vehicular Technology, Vol. 38, No. 3, pp.148-158.

Mittal, S., Dym, C.L. and Morjaria, M. (1986) PRIDE: An Expert System For The
Design of Paper Handling Systems. Computer, July,pp.102-114.

hrIorel, T., Keribar, R. and Blumberg, P. (1988) A New Approach to Integrating
Engine Performance and Component Design Analysis, SAE 880103,
Detroit, MI.

Moskwa, J.J., and Hedrick, J.K. (1987) Automotive Engine Modeling for Real
Time Control Application, Proc. of American Control Conference.

Papoulis, A. (1984) Probability, Random Variables, and Stochastic Processes,
McGraw Hill, USA.

Pearl, J. (1 988) Probabilistic Reasoning in In felligent Systems: Networks of
Plausible Inference, Morgan Kaufman, San Mateo, CA.

Peng, Y. and Reggia, J.A. (1986) Plausibility of Diagnostic Hypotheses: The
Nature of Simplicity. Proceedings AAAI-86, Philadelphia, PA, pp.140-145.

Powell, J.D. (1987) A Review of IC Engine Models for Control System Design,
IFAC 10th Triennial World Congress, Munich.

Reiter, R. (1987) A Theory of Diagnosis from First Principles. Artificial
Intelligence 32, pp.57-95.

Rizzoni, G., Hampo, R., Liubakka, M. and Marko, K. (1989) Real-Time
Detection Filters for On-Board Diagnosis of Incipient Failures, SAE
890763, Detroit, MI.

Shannon, C.E., and Weaver, W. (1549) The Mathematical Theory of
Communication, Universiry of Illinois Press, Urbana.

Shirley, M. and Davis R. (1983) Generating Distinguishing Tests based on
Hierarchical Models and Symptom Information. Proceedings IEEE
I nternationd Conference on Computer Design, Rye, NY, pp.455-458.

Sidebottom, S., Havens, W., Cupennan, M., Davison, R., Sidebottom, G. (1991)
Echidna Constraint Reasoning System (Versionl): Programming
Language Manual, technical report in preparation, Center for Systems
Science, Simon Fraser University, B.C., Canada.

Sterling L. and Shapiro, E. (1986) The Art of Prolog: Advanced Programming
Techniques, MIT Press, Cambridge, MA.

Stfuss, P. and Dressier, 0. (1989) ''Physical Negation"- Integrating Fault Modes
into the General Diagnosis Engine. Proceedings JCAI-89, Detroit, MI,
pp.1318-1323.

Struss, P. (1988) Extensions to ATMS Based Diagnosis. In Ar lificial In tel l igo~ce
in Engineering: Diagnosis and Learning, edited by J.S. Gero, Elsevier,
pp.3-28.

Tomikasi, T., Kishi, N., Wdetoshi, K. and Hino, A. (1987) Application of an
Expert System to Engine Troubleshooting, SAE 870% 0, Detroit, M.I.

Willsky, A.S. (1976) A Survey of Design Methods for Failure Detection in
Dynamic Systems, Automat ica, Vol. 15 pp. 601-61 1,

