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Abstract 

As the complexity of vehicular electronic control systems increases, 
automobiles are becoming increasingly difficult to diagnose. Diagnostic expert 
systems based on production rules have been used with limited success for 
small, well understood domains. Model-based diagnostic systems offer 
advanced capabilities, as displayed for domains such as electronic circuits, 
where efficient models are easily developed. The success of model-based 
technology for automotive diagnosis depends on the availability of efficient 
automotive diagnostic models. 

Engine models are presently developed for two purposes, design and control. 
Models for design often require extensive computation, and deal with variables 
unrelated to diagnosis. Control models require empirical results from lengthy 
bench testing. Models specilkally for engine diagnosis have not been reported. 

All models are necessarily incomplete, and even the most detailed models will 

be unable to find all diagnoses. Quantitative models pursue excessively 

detailed calculations. Qualitative models are potentially more efficient while 

still providing the necessary detail for diagnosis. Our model represents physical 

components as primitives, and groups of components working together as 

composite components. We incorporate a specialization hierarchy, which uses 

inheritance to centralize, and reduce the storage of, information that is 
common to similar types of components. We also utilize a composition 

hierarchy ta derive the structure and behaviour of complex systems from that 

of its sub-components. 

We present a prototype engine subsystem model to diagnose single, non- 

intemittmt faults, implemented with the Echidna constraint reasoning 

system, which incorporates constraint logic programming, truth maintenance, 

and dependency backtracking, all in an object-oriented framework. 

Performance of the prototype is reported, and is extrapolated to estimate the 



performance of a complete engine model. Limitations of the prototype model, 

and suggestions for further research, are discussed. 
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Introduction 

Given tests, measurements, and observations of a malfunctioning device, 
diagnosis is the task of identifying the faulty component(s) which caused the 
mdfunttion(s). The objective is to develop a modelling strategy suitable for the 
efficient and accurate model-based automated diagnosis of complex 
electrical Jmechanicaf devices, and to use this strategy to develop a pro totype 
diagnostic model fur+ a subsystem of an. electranically controlled automobile 
engine. The prototype model must be extendible to the diagnosis of complete 
vehicles from a wide range of automobile manufacturers, models, ages, and 
locations, and must serve as the basis for commercial implementation. Specific 
goals of this thesis are to: 

Evaluate the current state and future trends in automobile diagnosis and 
diagnostic tools, especially relating to electronic and computerized 
control systems. 

Evaluate the diagnostic suitability of current mathematical and 
computational automobile engine models. 

Study current li terahrre on automated model-based diagnosis. 

Develop a prototype diagnostic model and test it with the Echidna 

constraint reasoning system [Sidebottom 911, an expert system shell 
which incorporates model-based reasoning, logic programming, 

constraint propagation, and hypothetical reasoning. 

The remainder of this chapter is concerned with goal A above. Chapter 2 deals 
with goals B and C by reviewing three research areas - automotive diagnostic 

expet systems, model-'based diagnosis, and automotive engine modelling. 



Chapters 3 to 5 deal with goal D. Chapter 3 describes our general approach to 
automated model-based diagnosis, providing a foundation for the following 
chapters. 

Using simple examples from the automotive domain chapter 4 develops the 
structure and knowledge representation of our prototype diagnostic model. It is 
assumed the reader has read chapter 3, or is familiar with the concepts and 
definitions presented there. 

Chapter 5 presents the prototype automobile diagnostic model, preceded by a 

quick description of the Echidna Constraint Reasoning System developed at 
Simon Fraser University's Center for Systems Science [Sidebottom 911. 
Echidna's syntax is based on that of Prolog. Readers not familiar with Prolog 
could consult [Bratko 861 or [Sterling 861. The performance of the Echidna 
implemented model, and obvious improvements to that implementation, are 
discussed. Echidna code for our model, and input files and output data from 
diagnostic simulations, is shown in the appendices. 

1.1. Automotive Technology 

Since the early eighties all automobiles have had some form of electronic 

control, development being driven by stricter U.S. government environmental 
emissions and fuel consumption regulations for passenger vehicles. Emission 
regulations specified maximum allowable emissions for a specific test cycle 

simulating city and highway driving including idling, accelerating, 
decelerating, ~ n d  cruising, and corporate fuel consumption averages and 

penalties for exceeding them were set. Initially the controlled inputs were fuel 
flow rate, spark timing, and exhaust gas recirculation, and the optimized 

outputs were exhaust and evaporative emissions, and fuel consumption. 
Electronic controI systems consisted of a microcomputer (often called an 

eicxtronic control mudde or ECM) and a number of sensors and actuators. 



The electronic revolution swept through the automobile manufacturers. The 
relative ease of designing and developing electronic components and the 
existence of on-board hardware led to a rapid expansion ot' electronic control to 
other areas of the engine and vehicle. Performance was a valuable marketing 
feature and manufacturers found that their vehicle's performance could be 
enhanced by altering the control strategy when the vehicle was not at an 
operating point specified in the government test cycle. While continuing to 
meet increasingly stringent regtilations for emissions (and, due to changes in 
government policy, somewhat neglecting fuel consumption) some 
manufacturers are now attempting to improve performance, driveability, and 
driverfpassenger comfort. Electronic components are replacing their 
mechanical equivalents resulting in reduced volume, mass, maintenance, and 
cost, increased reliability, smoother operation, and fewer moving parts and 
wear surfaces. Each new model and year introduces new electronic 
components, sensors, and control strategies. Emission requirements will soon 
be extended to cover trucks and other commercial vehicles. 

As electronic control systems become more complicated and extensive, it is 
increasingly difficult to diagnose and repair engine and vehicle faults. 
Electronic control systems provide excellent reliability, but when they fail 

today's automobile technician can not be expected to diagnose them using 
yesterday's (non-computerized) tools. 

Diagnosis procedures are supplied by the manufacturers, but are generic and 
cover only a small fraction of possible malfunctions. The ECM stores and 
displays trouble codes, (which are unique to each manufacturer), but these are 
set conservatively to minimize false alarms. While manufacturers have 

supplied their dealer service facilities with sophisticated electronic tools to aid 
diagnosis, (with varying degrees of success), the average service station is 
quickly becoming unable to repair its customers' vehicles efficiently and 

accurately. A selection of third-party generic electronic diagnostic tools is 
available [Joseph 891 that display the outputs and inputs of the electronic 

control module in either graphic, tabular or text form. While these tools are of 



great assistance, the actual diagnosis is performed by the technician, requiring 
him to have complete knowledge of the system's operation. 

1.2. Automated Reasoning by Expert Systems 

Expert systems are computer programs which use specialized databases (known 
as knowledge bases) to reason about some limited domain. The two primary 

components of an expert system are the inference engine and the knowledge 
base. When given a query, the inference engine consults the knowledge base to 
produce an answer. The separation between the knowledge base and the 
inference engine distinguishes expert systems from conventional programs, 
which combine the knowledge and control into algorithm(s) which compute 
answers. Expert systems have been classified into the following applications: 
diagnosis, interpretation, monitoring, debugging, prediction, design, planning, 
repair, instruction, and control, [Hayes-Roth 831 which can in turn be gro~lped 
under two major headings - analysis, which includes diagnosis, and synthesis, 

which, for example, includes design. Diagnosis is one of the simpler 
applications because we usually know much about the object we arc 
diagnosing. In design we do not know the form of the artifact until after we are 
finished. Diagnosis is therefor a better choice for expanding expert systems into 
large, complex domains. 

1-23. Rule-Based Expert Systems 

The first generation of expert systems relied on knowledge bases representing 
knowledge only as production rules of the form IF <antecedent> THEN 
<consequent>. It was shown that expert level performance could be obtained if 
the domain was sufficiently restricted, and the underlying complexities of the 
real-world problem were replaced by domain-specific rules obtained from an 

expert [Buchanan 841. Primary examples of rule-based expert systems are 



MYCfN (blood disorder diagnosis) [Buchanan 841, MACSYMA (symbolic 
mathematics) [Martin 71 1, PROSPECTOR (mineral exploration) [Duda 791, and 
DOMINIC (engineering design) [Howe 861. 

Although expert systems and expert system shells ("empty" expert systems 
ready for domain-specific knowledge) have been given greater computational 
power and a wide range of programming, reasoning, and knowledge 
acquisition tools [KEE 86][G2 881, they still depend on the production-rule 
knowledge representation- Common criticisms of rule-based systems are that 
they have no meta-knowledge (e.g. do not know their limits and do not exhibit 
"graceful degradation" at their limits), they are difficult to organize, update, 
and maintain when the number of rules becomes large, and most importantly, 
they have no knowledge of the domain's composition (the set of components 
which comprise the domain), structure (the way those components are 
connected), and behaviour (the way those components behave and interact). 

Rule-based expert systems are generally recommended and successful only 
when the given problem domain is small and well-understood, and when 
there is general agreement among domain experts [Luger 891. Yet those 
domains which may most benefit from expert systems, for example diagnosis 
of electronic circuits, medical disorders, and automobiles, do not now, and may 
never, fit this description. Thus, while there has been extensive work in these 

areas, there are many problems still to be solved. 

Many elementary A1 textbooks use automotive diagnosis for a sample domain 

[Luger $91. Invariably the example uses a production-rule knowledge 
representation, and usually involves a simplified version of the electrical or 
charging systems. Although popular as an example, no one has yet been able to 
develop a diagnostic expert system that will significantly benefit an automotive 

technician. Since we design automobiles, we understand their composition, 
structure, and behaviour. And yet, current rule-based expert system technology 
has been unable to provide much more than textbook examples. Moreover, 



automobile electrical systems are no longer simple, especially with the advent 

of computerized control systems. 

1.2.3. Model-Based Expert Systems 

Model-based expert systems use a model (a behavioural theory about some 

class of artifact, situation, concept) instead of a collection of condition/action 

pairs obtained from a domain expert. Model-based systems attempt to capture 
structure and behaviour explicitly [Davis 841. A model-based diagnostic system 

for a mechanical device, for example, is developed directly from the device's 
design description. Just as in rule-based expert systems, model-based systems 

maintain the separation between the knowledge base and the inference engine. 

expert system 

data 

inference 

diagnosis 
observations, 
measurements, 

technician instructions 

knowledge base: 

I \ model andfor rules 1 f 

Figure 1-1 
Automobile Diagnostic Expert System 

The potential advantages of model-based systems over rule-based systems are 

many [Davis 841 [Fink 851 [Hamscher 871. The model has a structure resulting 

naturally from the structure of the artifact being modelled, and can take 

advantage of similarities between different components and assemblies. 

Maintenance of model-based expert systems is easier, as changes to the artifact 



can naturally be included as changes to the model. While development and 

verification of model-based diagnostic systems does not require as much of an 
diagnostician's time, it does require more time from an engineer or designer, 
but, in general, the designer/engineer will be better able to formalize his 
knowledge. Perhaps the most important is that a model can be used for more 
than one task (i.e., recognition, explanation, prediction) [Genesereth 841 For 
example, a rule-based diagnostic system can not be used to identify whether a 
particular artifact belongs in its domain, nor can it make any predictions about 
artifacts within its domain. 

1.3. Motivation 

Our prototype diagnostic model will be designed for an expert system that can 
be extended into a commercial product covering a wide range of vehicles 
and/ or automotive sub-systems. The result of this commercial enterprise will 
be the improved diagnostic ability of automotive technicians, resulting in 
efficient and accurate automobile repairs, and happy automobile owners and 

manufacturers' warranty departments. The reduction in malfunctioning (and 
undiagnosed) emission-control systems will reduce the automobile's 

contribution to environmental decay. Fuel consumption will decrease. 
Automobile manufacturers will be comfortable designing more sophisticated, 

efficient and safe vehicles, knowing that they can be effectively diagnosed. The 
application of electronic control to trucks and other engines can be handled 
efficiently. 

Finally, it is believed that the modelling techniques developed can be applied 
to the diagnosis of other complex devices and domains. 



2. Literature Review 

This chapter provides a limited overview of three research areas related to our 
study - automotive diagnostic expert systems, model-based diagnosis, and 
automotive engine modelling. The vast quantity of publications covering these 
topics prohibits a complete review, but this review is representative of current 
work and provides a firm foundation for further study. 

2.1. Automotive Diagnostic Expert Systems 

The application of model-based diagnosis to automotive engines, and 
mechanical systems in general, has not been widely reported. Prototype systems 
that use shallow and deep knowledge bases have been developed and tested on 
a gas heating system [Fink 851, and dynamic systems [Abu-Hanna 855. 

A number of authors have developed prototypes of rule-based automobile 
diagnosis expert systems. ''Problem-cause" pairs were employed to diagnose 
Nissan's Electronic Concentrated Engine Control System [Tomikasi 871, and a 
commercially developed expert system shell was tested on '81 -'83 Genera 1 
Motors computer-controlled carbureted engines [Klausmeier 861. 

2.2. Model-Base d Diagnosis 

The most popular domain for the study of model-based diagnosis is electronic 

circuits, for a number of reasons. Electronic circuit diagnosis is a real problem 
due to continually increasing complexity in electronic circuit design. Most, if 

not all, researchers have a background in electronics or computers and are 

therefore intimately familiar with the domain. Using a common domain 



allows easy comparison of results. Most importantly, however, the electronic 
circuit domain is blessed with a close relationship between structure and 
function. Knowing a circuit's structure (i.e., the arrangement of resistors, 
capacitors, transistors, etc.) the function of the circuit can easily be ascertained 
and a reasonably accurate model of behaviour can be developed relatively 
easily. The ease of modelling electronic circuit behaviour allows researchers to 
concentrate on diagnostic theory rather than complexities in modelling. Still, 
there is presently no unified theory capable of diagnosing complex and time- 
dependent devices efficiently [Harnscher 90b1, because traditional circuit models 
do not explicitly represent aspects of the device a diagnostician would consider, 
such as the shape of signals (rising, falling, steady, oscillating, etc.), and the 
kinds of failures that are likely to occur. 

Early model-based expert systems dealt with path sensitization (hypothesizing a 
component in a particular faulty state, backward propagating to measurable 
inputs, and forward propagating to measurable outputs), hierarchical 
description, and qualitative properties of signals (i.e., smooth, spiky, random, 
rising, decreasing, etc.) as well as their values were discussed [Shirley 831. 
Genesereth presented diagnosis based on design descriptions, not 
symptom/fault rules [Genesereth 841, building upon his earlier work on 
diagnosis using hierarchical design models [Genesereth 811. Davis wrote on 
diagnosis from structure and behaviour [Davis 841, and recently co-authored a 
survey on model-based troublcshaoting [Davis 881. Reiter set the foundation 
for a large body of future work by formalizing diagnosis using first-order logic 
[Reiter 371. Hamscher added to this with work on diagnosis from first principles 

[Hamscher 871, and Dague tackled the difficulties in modelling for 
troubleshooting [Dague 871. 

A system called the "General Diagnostic Engine" (GDE) [deKleer 871, based on 
the attractive premise that only correct modes of operation need be explicitly 
represented, was implemented and tested on electronic circuits. It was able to 
diagnose multiple faults, represented diagnoses as minimal sets of violated 

assumptions, used an incremental diagnostic procedure, was domain 



independent, and combined model-based prediction with sequential diagnosis 
to propose measurements to localize faults. GDE relied heavily on three 
important topics described below: reason maintenance, Bayesian probability 
methods, and entropy. 

Reason maintenance systems (RMSs) [Doyle 791, sometimes called truth 
maintenance systems (TMSs), were developed to support non-monotonic 
reasoning. In monotonic reasoning new beliefs are derived from old beliefs, 
old beliefs never change, and the number of beliefs is ever increasing. Non- 
monotonic reasoning more closely matches human reasoning by allowing 
beliefs based on incomplete information, or other beliefs.. When new 
information forces a modification of a previously held belief, all beliefs 
depending on that belief may also have to be modified. The TAMS maintains a 
record of the presently held beliefs, and the reasons for those beliefs, which 
may be other beliefs. When a reason for a belief is removed, that belief, and all 
beliefs depending on that belief, may have to be removed (if there are no other 
reasons to believe them). The TMS promotes data-dependency backtracking, 
where only those choices directly responsible for a contradiction are changed. 

This contrasts with chronological backtracking commonly used in Prolog, 
where a contradiction results in a backwards chronological change of choices, 
whether or not those choices directly contributed to the contradiction. 

Many TMSs (e.g., Doyle's Justification Truth Maintenance System, or JTMS) 
support only one solution at a time (i.e., a single context), but many problems 
require computing and comparing multiple solutions. The assumption-based 

TMS fATMS) [deKleer 86a,bl is a multiple-context TMS developed precisely for 
these problems. The ATMS can in parallel investigate all contexts supported by 

different sets of assumptions, without confusion, and without re-derivation of 

shared intermediate conclusions. Less backtracking is required than in a TMS, 
and minimal set covers are utilized to reduce data storage. 

Bayesian methods allow diagnostic reasoning under uncertainty by providing a 
formalism for calculating the probabilities we need by combining and 



manipulating the probabilities that are easiest to estimate [Pearl 881. When 
there is more than one diagnosis that fits the evidence it is desirable to know 
the probabilities of those diagnoses. However, the probabilities of competing 
diagnoses depend on the evidence that has been collected. Some probabilities 
can be estimated fairly easily and stored for later use (for instance, the 
probability that a certain component of a particular engine model will fail, and 
the probability that a particular component failure will result in particular 
symptoms), but it is impossible to tabulate in advance the probabilities of each 
diagnosis relative to all possible combinations of evidence. Bayes law can be 
interpreted as: 

where D is a particular diagnosis, e is the evidence gathered so far, P(D I e) is the 
posterior probability of the diagnosis D given the evidence e, P(e l D) is the 
conditional probability that the malfunction explained by diagnosis D will 
create the evidence e, P(D) is the prior probability of the diagnosis, and P(e) is a 
normalizing factor that can be approximated by the sum of all prior 
probabilities (i.e., the sum over all D's of P(e I D)) [Pearl 881. P(e 1 D) and P(D) can 
be estimated and stored in the diagnostic system. Posterior probabilities are 
used to rank competing diagnoses. 

GffE used a one-step look-ahead strategy based on Shannon entropy [Shannon 
491 [Papoulis 841. Entropy is a measure of the amount of information left in an 
information source. The entropy of an information source is defined as: 

where Z is a variable measured at the source with probability distribution P(z), 
and H(Z) is the entropy of Z When dl possible messages from a source (i.e., all 

Z'S) have equal probability entropy is at a maximum (much information 

remains) because the probability distribution gives little hint as to which 



message you might receive. The entropy is small when the probability of one 
message greatly exceeds that of the others, so measuring that source provides 
less information as it will most likely yield the message with the high 
probability. In the limit where the probability of a particular message is 1 and 
the probability of all others is 0, that source can only give one message, so there 
is no information left in the source. 

In a diagnostic scheme each possible measurement point is an information 
source. Measurements are expensive, so it is desirable to minimize the number 
of measurements needed to find the correct diagnosis. Entropy can be used to 
estimate which measurement will leave the least information in the system 
(i.e., eliminate the largest number of possible diagnoses). The expected entropy 
after the next measurement can be calculated for each possible measurement 
point as a weighted sum of the expected entropies for each possible value of 
that measurement point. The measurement point with the lowest expected 
entropy after the next measurement will on average minimize the number of 
measurements needed to isolate the correct diagnosis. 

GDE's lack of explicit failure modes unfortunately resulted in physicaIly 
impossible failures being considered and presented as possible diagnoses. For 
example, a bulb could fail by lighting when no voltage was applied. deKleer 
modified his GDE with the addition df behavioural modes in a system called 
SHERLOCK [deKleer 891. Here, a component can have an arbitrary number of 
behavioural modes, some representing correct operation, some faulty 
operation, and one unknown. Bayesian probability calculations based on the 

likelihood of each behavioural mode were used to handle the combinatorial 
explosion already plaguing GDE. 

Hamscher also modified GDE, but instead incorporated two distinct 
hierarchies, one physical and the other functional [Hamschef 99a1. Although 

fault models were included, they were not required, and were only used 
heuristically to guide the search and limit the size of the search space. His 

system was named the "'Extended Diagnostic Engine", or XDE. 



Struss provided yet another approach in a system called GDEt [Struss 891. Here, 
explicit use of fault modes was incorporated. It also added to GDE by proving 
the correctness of components, and ruling out implausible hypotheses, and 
resulted in an extended version of the ATMS [Struss $31. 

Early work in the domain of medical diagnosis used a hierarchical structure of 
disorders (i.e., problems, syndromes, diseases) with a strong dependence on 
Bayesian probabilities [Ben-Bassat 803. Peng and Reggia introduced another 
interpretation of Bayesian classification theory [Peng 861, and parsimonious 
covering theory based on causal associations between disorders and 
manifestations (symptoms), where a parsimonious or "simple" cover is a set of 
possible disorders which satisfies all known information and meets some 
criterion for being "simple". Examples of parsimony criteria are: 1) single - 
disorder diagnoses only, 2) minimality, where each diagnosis contains the 
smallest number of disorders needed to cover all symptoms, 3) irredundancy 
where no proper subset of a diagnosis is also a diagnosis, and 4) relevancy, 
where each disorder in a diagnosis predicts at least one of the symptoms. 

A review of hypothetical reasoning based on abduction [Goebel90] explains and 
distinguishes several forms of inference and reasoning central to diagnosis. 
Abductive reasoning is an unsound rule of inference where one hypothesis 
(perhaps from a set of possible hypotheses) is chosen that explains or accounts 
for all known observations. In automobile diagnosis this corresponds to 

reasoning from symptoms and engine behaviour to a hypothetical diagnosis of 
broken components. This contrasts with induction, another unsound rule of 
inference, which reasons from symptoms and broken components to 

hypothetical engine behaviour, and deduction, a sound rule of inference which 
reasons from broken components and engine behaviour to symptoms. A 
survey of abductive reasoning in multiple fault diagnosis [Finin 891 
summarizes current research into five different approaches, concluding that 
the emerging consensus is integrating parsimonious set covering or logic 

formalism (which can be transformed from each other), causal models to 



incorporate intermediate pathological states, and Bayesian probabilities freed of 
most restrictions on independence. 

2.3. Automotive Engine Modelling 

Unlike electronic circuits, the behaviour of mechanical systems is not easily 
derived from their structure, so a single mechanical system may be represented 
by a variety of models each developed and tuned for a different pmpose. 
Engine modelling is presently pursued for two different reasons - engine 
design and engine control. These models are not developed with expert 
systems implementation in mind. The REPAIR project [Lee 901 has recently 
explored the use of qualitative reasoning for model-based diagnosis of simple 
mechanical devices. There is presently no literature available on models 
specifically for engine diagnosis. 

23.1. Modelling for Design 

Models for engine design simulate the dynamic and quasi - static performance 
of an engine, allowing the designer to predict the outcome of a particular 
design without having to complete costly prototype construction, testing, and 
analysis. Some of these models include not only physical properties and 
quantities but also the effect of part geometries (i.e., combustion chamber 

shape), and materials. 

Diagnosis covers only t h e  variables which can be changed after the vehicle is 
in operation 6-e., dibration, adjustxwnts, replacement of components, etc.), 

whife engine design models are concerned with variables that can be changed 
before engine components are made (i-e., valve seat angles, displacement, 
number of cylinders, etc-). 



Engine design models of vastly different size have k e n  developed - some 
requiring hours of mainframe cpu time, and others designed for personal 
computers [Morel 881 [Blumberg 791. The cost and time of a computed diagnosis 
must be less than that of the a technician, so efficiency in terms of hardware 
and time are critical- In the short term it is unlikely that automobile service 
centers will have access to hardware more powerful than a PC. 

23.2. Nodelling for Control 

A recent comprehensive survey of internal combustion engine models for 
control system design fPoweIl 871 defined models by two parameters, the first 

dealing with time (steady state, or dynamic), and the second dealing with the 
use of physics (inputloutput or physical). While there are no true steady-state 
processes in a reciprocating engine, the steady-state models describe the 
condition where air flows, fuel flows, and engine temperatures have reached a 
steady, but oscillating state. I10 models are developed solely by matching 
outputs with their causal inputs, while physical models are derived from 
mdedyigiing physical principles. Of course, engine models for control need not 
consider part geometry or material. 

Muck of the early work on dynamic physical models was done on diesel 

engines, bur many of the results have direct application to spark ignition (SI) 
engines. During the 1970's research concentrated on 1/0 models, because 
stringent emission regulations and demand for fuel economy made it 
important to develop models and controllers quickly. Although focus later 
shifted to physical, models, ail models still suffer a significant reliance on 
engine testing for empirical parameters. 

Early research on modelling used the control variables spark advance, air/fuel 
ratio, and later exhaust gas recirculation, to optimize fuel consumption and 

emissions. On-line optimization of engines was a viable alternative to 



developing these early models as engine testing for the control model took up 
to two weeks. Later, interest spread to modelling the catalyst by mapping the 
conversion efficiencies of CO, Hc, and NOx to exhaust temperature, exhaust gas 
mass flow rate, and air/fuel (A/F) ratio. 

A dynamic power-train model using eight variables (three relating to engine), 
and two time delays to model the effects of a four-stroke SI engine, automatic 
transmission, and rubber tires was reported [Cho 891. The three engine 
variables considered are mass of air in intake manifold, engine speed, and 
fueling lag. The corresponding transport delays are the intake to torque 
production delay, and spark-to-torque production delay, both of which vary 
with engine speed. 

Cho's work borrowed from a compact, nonlinear model for real-time control 
including intake manifold dynamics, fuel dynamics, process delays [Moskwa 

871. Although engine controllers were governing idle speed, A/F ratio, spark 
advance, and limiting knock, torque control to manage torque production and 
delivery was required in preparation for a complete power-train model for 
controlling shift quality and timing, and traction. Moskwa considered the 
engine as a group of five sub-systems (throttle body, intake manifold, fuel 
injection, combustion and torque production, and rotational dynamics). 

Moskwa had added fuel injection and other refinements to one of the first 
physically based dynamic engine models that recognized throttle effects, in take 
manifold dynamics, and the discrete nature of the four stroke engine [Dobner 

80,831. Dobner's model's inputs were A/F ratio, throttle, spark advance, and 
load torque and provided net torque, and engine speed outputs. Dynamic 
aspects were handled by time delays and integration, and non-linearitics 

dowed predictions over a braad operating range. The highly modular model 
divided the engine into carburetor, intake manifold, combus tion and 

dynamics, with considerable time spent on fuel transport. 



A nonlinear dynamic model including the effects of turbo-charging and inter- 
cooling (i.e., cooling the A/F mixture between the turbo-charger and the 
cylinder head) a SI engine has also been developed [Foss 891 to allow the 
evaluation of microprocessor control of the turbo-charger waste-gate. 

2.3.3. Failure Detection and Isolation 

Engine control models and detection filters can be used for real time diagnosis 
of sensor failures. Based on techniques from failure detection and isolation 
theory, a diagnostic system named the Binary Phase Detection Filter (BPDF) has 
been implemented [Min 891, [Rizzoni 891. This system relies on functional 
redundancy between sensors to detect a wide range of sensor failures, and 
Rizzoni claims actuator failure detection is possible with similar methods. The 
BBDF detects and partially isolates failures, which is closer to identifying 
symptoms than to providing a diagnosis as a set of failed components. 
Considerable engine testing is required to obtain transformation matrices, and 
failures in other components of the electronic control system and engine can 
not be detected or diagnosed. 

Willsky has reviewed design methods for failure detection in dynamic systems 
[Willsky 761 and concluded that the failure detection problem is extremely 

complex, and issues such as available computational facilities and level of 
hardware redundancy are critical. A more recent survey of Process Fault 

Detection based on modelling and estimation methods [Isermann 841 

concluded that accurate models are critical, so only well defined and 

understood processes are suitable. 



3. Automated Model-Based Diagnosis 

This chapter describes our general approach to automated rnodel-based 
diagnosis, providing a foundation for the modelling strategies presented later. 
The structure of the model and knowledge representation are presented in 
chapter 4, and implementation of the prototype model in Echidna is detailed in 

chapter 5. 

Model-based diagnosis compares a model's predicted behaviour (values of 
variables, relationships, modes, states, conditions) with the actual behaviour 
exhibited by the artifact the model represents. Although the model is assumed 
to predict the model's component's behaviour correctly, it does not always 
predict healthy behaviour of the artifact. For example, if some of the model's 
components are in a faulty state, then the model-predicted behaviour will be 
faulty behaviour, but the model is assumed to correctly predict the (faulty) 
behaviour resulting from the faulty components. We will see later why the 

model is used for predicting both faulty and healthy behaviour. The 
assumption that the model correctly predicts the behaviour of the artifact is 
critical and questionable, and is treated in detail in chapter 4, but for now let us 

accept it. 

Our automated diagnostic system is an interactive taol, not a substitute, for 
automotive technicians. Technicians should be able to direct the system, offer, 
reject and modify intermediate solutions and advice, and decide between 

equally promising paths. The system should be able to recover (and benefit) 
from the technician's mistakes. Many of the features necessary to achieve this 

(e.g explanation systems) are not dealt with here, but where possible we work 
towards this god. 

The diagnostic procedure shown in Figure 3-1 is composed of three automated 
computational tasks: generating a set of symptoms, generating a set of 



candidates ("candidate" will be defined, but for now think of candidates as 
possible explanations for the symptoms), and discriminating between those 
candidates; and one physical task, repairing or replacing a part of the engine or 
taking more measurements (and reporting back to the diagnostic system). An 
efficient computational implementation may combine portions of the first 
three tasks, but for clarity, and other reasons that will become clear later in this 
chapter, we will consider them separately. This procedure mimics that used by 
human diagnosticians, although humans are poor at remembering large 
amounts of data (long lists, for example), and so would necessarily use shorter 
lists and probably be more opportunistic in their approach. We will expand 
upon each of the three computational tasks after clarifying a few terms. 

T pre&n t? 
present? 

Figure 3-1 
Diagnostic Procedure 

The nrtipcf (sometimes called the device) is the particular automobile engine 

that we are trying to diagnose (e-g., the engine in the red '88 Chevrolet Celebrity 

in bay number 1). From a diagnostic point of view it will be more interesting if 

the artifact is in a faulty condition, but we will not know its condition initially. 

Each artifact is composed of art arbitrary number of components. We will 

discuss components in detail in chapter 4, but for now think of components as 



the physical objects that can break and be repaired or replaced as a single unit. 
We explicitly represent both healthy and faulty component behaviour. 

The m o d e l  describes: I )  the artifact's internal structure, i.c., the 
interconnections between components, and 2) the behaviour of cach 

component. The model we are using must have been developed for the class of 
engines that the artifact belongs to - in general, e.g., you can not use a model of 
a Volkswagen air-cooled 4 cylinder engine to diagnose a Cadillac V8 engine. 

The model may have a wide scope ie.g., covering all engines of a particular 
manufacturer, say General Motors), or it may be very specific and only cover a 

particular model, year, and range of serial numbers. 

The model is sometimes referred to as a deductive model because i t  deduces 
the "output" variables of the artifact given its component's states (e.g., on, off, 
leaky, blocked, etc.), and known "inputs". We will argue in chapter 4 that this is 
an over simplification because the directionality of the model (i.e., which 
variables are inputs and which are outputs) may be indeterminate. 

3.1. Symptom Generation 

If the model is adjusted to represent a healthy car (i-e., all components of the 

model are working properly), and the predicted behaviour from the healthy car 

model disagrees with the actual behaviour of the artifact, then the artifact must 

not be working properly - it must have at least one faulty component, and it is 
displaying symptoms of that fault. 

A s y m p t o m  is a difference between the healthy car model's predicted 

behaviortr and the artifact's actual behaviour (Figure 3-21. Symptoms can be 

qualitative, e.g., "the engine idles roughly", or quantitative, "the battery voltage 

is 8 volts and it should be greater than 9 volts". Note that quantitative 

symptoms can often be expressed qualitatively - e.g., "the battery voltage is 



!oww. If an artifact exhibits no symptoms, then according to our model it is 
operating correctly, and no further diagnostic effort is required. 

A faulty artifact will probably exhibit a number of symptoms, even if only one 
component is actually faulty. If the battery voltage is low, then the headlights 
will be dim, and the car will be hard to start. Multiple faulty components will 
only exacerbate this problem. If faults "mask" each other, it is possible that an 
artifact with faulty components exhibits no symptoms. Thus, an artifact with 
one or more faulty components will have zero or more symptoms. 
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Figure 3-2 
Symptom Genera tion 

Our Iist of symptoms may grow or decline as the diagnostic session progresses 
and more data is obtained. New measurements may increase, or have no affect 
on, the number of symptoms. Replacing a faulty component may eliminate a 
portion of the symptoms, have no effect on the number of symptoms, or, in 
the case that that faulty component was masking symptoms, increase the 
number of symptoms. Note that symptoms are differences between the healthy 
car model's predictions and actual measurements, rather than differences 

between the healthy car model's predictions and potential measurements. 

The diagnostic session begins by collecting information about the artifact. This 

information may include driveability symptoms supplied by the operator (e.g., 



the car is hard to start - the model predicts the car should be easy to start), 
observations made by the technician (e.g., the battery terminals are severely 
corroded - the model assumes good electrical contacts), and data available from 
the electronic control module (ECM) collected via a "scan tool" (e.g. the battery 
voltage sensed by the ECM). In general the operator of the vehicle will be 
unaware of symptoms generated directly from the ECM data. After the set of 
symptoms is determined we are ready to generate a set of candidates. 

3.2. Candidate Set Generation 

A candidaf e is an assignment of state (e.g., mode) to every component of the 

model, such that all model predictions are consistent with all evidence. There 
may be more than one candidate for each set of evidence. If no symptoms exist 
all components of a candidate will be in a healthy state. If one or more 

symptoms are present each candidate must include at least one component that 
is in a faulty state. As the diagnostic session progresses and more information 
is gathered, we want to converge on a single candidate that corresponds to the 
actual state of the artifact. 

Commonly, diagnoses are described by the faulted components only, not as 
candidates explicitly describing the state of all components, both faulty and OK, 

We use the term culprit to describe the set of components that are in a faulty 
state. More than one candidate can have the same culprit. 

If the model represents a faulty state, we refer to the differe~res between 
predicted and actual behaviour as discrepancies. By changing the state of 
chosen components in the model from good to faulty, (say, for example, by 

changing a particular wire's state from OK to open-circuited), we may be able to 

force the model's prediction of the artifact's behaviour to match the artifact's 
actual behaviour, eliminating all discrepancies. We have found a single 

candidate when there are no longer any discrepancies (Figure 3-3). We have 



not yet said how to choose the components to implicate, but this will be 
answered shortly. The implicated set of components is the culprit, as defined 
above. 

It is important to distinguish between symptoms and discrepancies. Symptoms 
can be thought of as special cases of discrepancies where the model is 
representing healthy operation. Symptoms are eliminated by fixing the artifact 
(car). Discrepancies are eliminated through modifying the model to match the 
artifact's behaviour. 
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Figure 3-3 
Candidate Genera tion 

As noted earlier, there will probably be many candidates at the start o 

diagnostic session. There may be so many that we do not care to generate them 
all. In this case we will have to decide how many to generate, either by some 
probabilistic measure or by deciding on some arbitrary maximum beforehand. 
We can generate more candidates later if new evidence forces us to rule out 
those already under consideration. 

Some of the candidates may be very likely (e.g., weak battery), and some 
candidates will be quite unlikely (e-g., all the spark plug wires are shorted). It is 

preferable that the candidates be generated in order cf likelihood for then we 



are guaranteed that the most likely candidate will be in the set (it will be 
generated first). Ranking the candidates will later aid in discriminating 
between them. Generating candidates in ranked order will be discussed shortly. 

To chose the implicated components we use search. Figure 1.1 (on page 6) 
shows an inference engine connected to the knowledge base (model). In 
traditional expert systems search is controlled by the inference engine. If the 
search strategy is sound (finds only valid candidates) and complete (finds all 
candidates) then it will find all valid candidates in the model. We must 
differentiate between the soundness and completeness of the search strategy 
and that of the diagnostic system as a whole. It is impossible for a model to 
cover all possible failures, and for efficiency, some popular search strategies are 
neither sound nor complete. Therefore there is no guarantee that we will be 
able to generate even a single candidate. If our model is unable to predict the 
actual behaviour we are measuring, then we wiH fail to find a candidate. We 
discuss the issue of completeness in detail in chapter 4. 

We now present three methods of searching for candidates: naive search, 
abductive rule-based search, and probabilistic search. 

32.1. Naive Search 

Naive candidate generation uses the inference engine's built-in general search 

procedures to "blindly" search for candidates. It uses no domain-specific 
knowledge to guide the search and is generally diagnostically inefficient. Figure 
3-3 corresponds to naive candidate generation if the inference engine (not 
shown in Figure 3-31 decides how to change the deductive model and monitors 

for the presence of discrepancies. 

Depth-first search, as used by many popular inference engines, can not directly 
generate r d e d  candidates. The order in which such systems find candidates 



depends on the syntactic ordering of the knowledge base. In effect, the system 
tries to find a logical proof for the top level goal, i.e., to find a candidate, or 
candidates, given known information. Ranking the candidates after they are 
generated in a non-ranked order offers no benefit in reducing search, as you 
have already committed resources to generate the candidate before you decide 
it is unlikely. The score of the candidate is calculated after it is generated, so 
equal time is spent on unlikely candidates. Unless all unranked candidates are 
generated there is no guarantee that the most likely will be included. 

3.2.2. Abductive-Rule-Based Search 

The disadvantage of naive candidate generation is speed. To increase speed, 
domain knowledge in an abductive rule-base (Figure 3-4) can heuristically 
direct the search for candidates. The diagnostic procedure described in this 
chapter distinguishes candidate generation from symptom generation precisely 
to allow for an abductive rule-base. We will describe the abductive rule-base in 
detail before tackling the possible pitfalls. 

The abductive ruIes are syrnptom(s)/cause(s) pairs where the cause is a list (of 
arbitrary length) of faulty components which are hypothesized to cause the 
associated symptom(s). There is no restriction on the number of rules for each 
symptom or set of symptoms. Based on particular symptomatic information 
(and a strategy for choosing the best rule) the abductive rule-base will direct the 
inference engine to implicate (make faulty) certain components. If the 

implicated components cannot form part of a consistent candidate (i.e., the 
inference engine cannot assign healthy states to all other components such that 

all discrepancies are eliminated), the next rule is tried. If no rules match the 
symptoms, or all rules that match have been tried and failed, the abductive 
mfe directed search fails. 
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Figure 3-4 
Abductive Candidate Generation 

So far we have assumed that the abductive rule-base is symptom driven, and 
we know symptoms are eliminated only by replacing or repairing components 
of the artifact. There may be an advantage to allowing discrepancies to "fire" 
rules in the abductive rule-base. This corresponds to a "depth first" abductive 
search. For example the model's predictions computed from a symptom fired 
rule results in a number of discrepancies, and discrepancy fired rules modify 
the model to eliminate a fraction of these discrepancies, and so on. This loop 
continues until all discrepancies are eliminated, or no more rules match the 
discrepancies. Unfortunately, there is no guarantee that the number of 
discrepancies decrease after each rule fired by discrepancies. We have not yet 

explored the implications and efficiency of this strategy, but there are 
fundamental differences between discrepancy/cause pairs and symptom/cause 

pairs, and it is also not clear how or when this "feedback loop" will terminate. 

One problem here is that it is not clear when to try a different symptom driven 
rule or another discrepancy driven rule. Discrepancy driven rules will add 
more faulty components, so will find candidates with many broken 

components before finding those with few broken components. Since the 
symptom/cause rules are heuristic rules, it would seem reasonable to try all 
r u b  matching the symptoms before resorting to the discrepancies. 



A diagnostician might think "I believe component A is faulty, and I now have 
discrepancy X, which I think can be explained if component B is also faulty". 
The difference between this strategy and that presented above is that the 
technician took into consideration the faulty component A when he added 
faulty component B, rather than just basing his rule on discrepancy X. It seems 
that to be efficient, rules based on discrepancies must have as antecedents the 
faulty components that led to those discrepancies. 

A serious drawback of the abductive rule-base directed search is in trading the 
inference engine, with its carefully planned and analyzed, though general, 
search strategy, for a rule-base complete with the weaknesses and strengths 
outlined in chapter I. 

The abductive rule-base is a global knowledge source. It implicates components 
based on symptoms, but the symptoms do not necessarily present themselves 
at the implicated components (e.g., the symptom "dim" may be manifested at 
the headlights and the implicated component may be an undercharged battery). 
The abductive rule-base, unlike the model, does not mimic the structure of the 
artifact and thus significantly reduces modularity of the knowledge base. 

Time spent assembling and maintaining the abductive rule-base may be better 
spent on the model. A strong abductive rule-base may reduce the job of the 

model to that of verification, but an efficient model (and inference strategy) 
may eliminate the need for an abductive rule-base. 

A record of the sections of the search space covered by the abductive rule-base 
should be maintained so if it fails to find enough candidates an alternate search 

strategy will not re-visit those sections already searched. 



3.2.3. Probabilistic Search 

We divide probabilistic search into two major sub-divisions, the first of which 
we call "global" strategies, and the second of which we will refer to as "focal" 

strategies. 

33.3.t Global Probabifistic Strategy 

As presented earlier we want to find the candidate with the highest posterior 
probability, i.e.,  candidate l evidence collected so far). (Note in chapter 2 we 

used "diagnosis" and here we use the more concise term "candidate" which 
was defined earlier in this chapter .) 

Each component has a prior probability p(modei) associated with each of its i 
modes: 

Initially, before any evidence is gathered, and assuming independence of faults, 
p(~j) the probability of candidate q is [deKleer 891: 

where p(m) is the prior probabilify of behaviour mode m being manifested (i.e., 
a particufar component in a particular mode). After a variable xi is measured to 
have a value Vjk: 

where p ( ~ i  = vik) is a numalization factor. Or in general, where e is the 
previously obtained evidence: 



We want to generate the candidates in order of decreasing posterior probability 
(i.e., p(cj 1 X i  = vik,e)), but we cannot calculate p(xi = Vik 1 cj,e) until after the 
candidate is generated. A solution is using a best first search based on an 
estimate of the probability of the candidate, that estimate being the value of 
p ( ~ j  le) IdeKleer 891. The inference engine concentrates on the candidate with 
the highest estimated value. 

This is a global probabilistic method because it uses the candidate probability, 
which is calculated from the probabilities of all components, to select the 
modes of individual components. It makes local decisions based on global 
information. The local strategy below attempts to reduce this dependence on 
global information. 

323.2 Local Probabilistic Strategy 

This strategy, often called a Bayesian Belief Network uses local summaries of 
global information [Pearl 881. Although components still have access to global 
information, they only communicate with their neighbours. The Bayesian 

belief networks are fairly complex, so the following brief description omits 
many details. 

Each component of the model shares variables with its neighbours, e.g., 
voltage, flow rate, displacement, etc. Each component receives probability 
distributions (i.e., the probability of each possible value) for those variables sent 

by its neighbours. In the case that the variable has a known value the 
prottabilit). distribution will be a spike at that value. Based on these 

b i s ~ b u t i m s  m d  ihe component's knowledge of the probabilities of its own 

state, it cdculates a probability distribution for its state, chooses a most likely 

valw fa its state, and then notifies its neighbours of any changes. In this way 



the "network" of components will choose states resulting in the most likely 
candidate. 

For the remainder of this thesis we will concentrate on naive search because of 
its simplicity. The abductive and probabilistic methods may offer advantages, 
especially for efficient multiple fault candidates, but also cloud the issue of 
modelling. Both are heuristic, and therefore fallible, but may offer significant 
performance increases. We point out later some of the changes to our 
modelling strategy that would be necessary to incorporate these heuristic search 
strategies. 

Once we have established a list of candidates we must determine which 
member of that list corresponds to the actual cause our artifact's symptoms. 
This is the process of discriminating between competing candidates. 

3.3. Discriminating Between Candidates 

The commercial use of an automated diagnostic system demands that it 

provide accurate diagnoses (i.e., culprits) more cheaply than an efficient (but 
computationaly unaided) human diagnostician. Diagnostic costs (not including 
the eventual repair) include the use of space, equipment, and consumables, but 

the labour cost e technician's time) is assumed to be the dominating 
contributor. In some cases the repair time will be part of the diagnostic time 

(e-g., when a calibration fault occurs and is corrected during the diagnostic 
process). If the technician is standing by while computation is proceeding, the 
cost of the diagnostic session is proportional to the sum of the computational 
time and the technician's information-gathering and reporting time. The 

ccrmputational tasks mentioned above provide a list of candidates, and a 
possib1e h i h e r  computationai task is preparing an (optimum) strategy for 

gathering new information. 



If we choose not to give the technician direction in discriminating between 
candidates the computational cost is eliminated, but discriminating between 
competing candidates and choosing measurements and tests becomes the sole 
responsibility of the technician. He may choose simplistic methods including 
blindly repairing or replacing some or all components implicated by likeiy 
candidates, or slightly better strategies based on component reliabilities (where 
this information is available). He may be able to develop a reasonable 
measurement and test strategy to test the candidates. These methods are 
labour-intensive, depend on the abilities of the technician, and will in general 
fail to minimize the dollar cost of the diagnostic session. 

We assume that increasing computational effort on discrimination will reduce 
the demands on the technician and thereby reduce overall cost (which may not 
always be true, and depends strongly on computer technology). Ideally, we 
would like to be able to compute which series of measurements or tests would 
most cheaply lead to the correct candidate. Each measurement or test will 
eliminate a number of candidates, while confirming the possibility of others. 
The new information may or may not increase the number of symptoms but 
will decrease the number of candidates. This process can be likened to "divide 
and conquer", "differential diagnosis" or "half split". At this point, we need to 
distinguish between tests and measurements. 

A measurement is the value of a particular variable while holding the inputs 

land therefore outputs) constant. If suitable probabilistic information is known 
the entropy methods presented in chapter 2 can be used to estimate the next 

best measurement. 

A test is a new set of artifact inputs (and possibly outputs) which will confirm 
some of the candidates and eliminate others. It is often easier to change (and 
measure) inputs and outputs than interior values. However, tests are much 
harder to generate, especially if any components have time dependence (i.e., 
their behaviour at time 2 depends on their behaviour at time 1). There does 

nut seem to be a consensus on efficient methods for test generation. 



Probabilities and likelihoods on their own are inadequate to provide minimal 
cost candidate discrimination. For instance, if the best next measurement ( e g ,  
the measurement that will eliminate the highest number of candidates) is very 
expensive, and the second-best measurement is only marginally worse but very 
cheap, then we would like to make the second-best measurement first. 

An ideal system would be more flexible than simply choosing between tests 
and measurements. There may be cases where it is cheaper to replace or repair 
components than perform distinguishing tests. Here, we would like to perform 
the repair and tell the diagnostic system that that component or set of 
components is definitely OK, and no candidate assigning them to a faulty mode 
is possible. 

It is hoped that the technician will not introduce new faults, and therefore new 
symptoms, but, allowing for human and computational imperfection, all 
diagnostic sessions should end by confirming the lack of symptoms. Moreover, 
an ideal system would record the verified diagnosis in a database for future use, 
just as a human diagnostician would. This data-base would become an expert 

knowledge source and could be used for abductive rule-base generation, 
statistical updating, and automated learning. Automobile manufacturers could 
use this information to build more reliable vehicles. 



4. Engine Modelling for Diagnosis 

This chapter develops the knowledge representation we use for our prototype 
diagnostic model. We use simple examples within the automotive domain, 
but details of the prototype model are withheld until chapter 5. It is assumed 
the reader has read chapter 3, or is familiar with the concepts and definitions 
presented there. The syntax used in the code examples in this chapter is loosely 
based on that of the Echidna constraint reasoning system developed at Simon 
Fraser University's Center for Systems Science [Sidebottom 911. Echidna's 
syntax is based on that of ProIog [Bratko 861, [Sterling 861. Echidna code is 
presented in appendices A and B. 

4.1. Completeness 

One of the primary issues in diagnostic modelling, or modelling in general, is 
the level of abstraction of the model. Models at the lowest level of abstraction 
might deal with thermodynamic properties, chemical processes, atomic 
collisions, electrical charges, etc. Models at a higher level include those for ideal 
wires, ideal transistors, and ideal structural beams. Still higher are "black box" 
models of complete chips or circuit boards, or structural models used for the 
wind loads on buildings. Highest of all are concepts in a flow chart. A model at 
a low level of abstraction will be capable of calculating extremely precise 
answers, but may require massive computational resources. A higher level 
model will provide more general answers, presumably in less time. 

Consider a model of a simple physical object at the lowest possible level of 
abstraction. Assume for a moment it is possible to encode everything we know 

about that object, including its particle physics, chemistry, etc. The model will 
be extremely large and complicated, and yet, at the edges of human knowledge 

and understanding, it will still be incomplete. So we cannot completely model 



even a simple object [Davis 881. Moreover, it is impractical, or maybe 
impossible, to encode everything that is known about even simple objects. As a 
consequence of these facts all knowledge bases will be incomplete at some 
level, and all reasoning systems using incomplete knowledge bases will be 
incomplete, however complete the inference strategy or problem solver. 

Incomplete models can still provide much useful information. We have sent 
men to the moon with incomplete models of flight and interplanetary physics. 
Once we have accepted the fact that our model will necessarily be incomplete, 
and therefore incapable of finding all solutions, we must decide how detailed 
our model must be to be adequate for the chosen task. 

The appropriate level of modelling abstraction depends on the context and use 
of the model. Take, for example, a thin metal rod formed into a coil. This coil 
can be modeled in many ways. If it is a heater element in a toaster its model 
will be concerned with electrical resistivity and thermal properties. If it is used 
to generate a magnetic field its model will include the physics of magnetic 
fields. If it is a spring in a mechanical spring/mass/damping system the 
important properties may be spring constant and maximum extension. 
Furthermore, a model adequate for the design of this coil may differ from 
models for other tasks, including diagnosis. It is possible a single model could 
be used for design and diagnosis, but each of these tasks may use only a portion 
of the model. 

An automobile diagnostic system should identify failed components. The 

model does not need variables other than those that will achieve this goal. For 
instance, it is probably not necessary to calculate and report the changing 
thermodynamic properties of a failed electrical switch. However, it is desirable 

to be able to provide a description of how the failed component is behaving to 
convince the technician that the diagnosis is plausible. This would provide the 

starting point for an explanation system, which, as stated in chapter 1, will not 

form part of this thesis. 



4.2. Competence 

There is another measure that has been proposed to judge the acceptability of 
our model. A model of a physical component is said to be competent if, for 
each and every possible combination of the component's actual inputs and 
outputs, there exists at least one mode (this will be defined shortly, but for now 
think of a mode as a pre-defined relationship between input and output 
variables) whose predicted values are consistent with the actual values. (As 
mentioned earlier, it is at times unclear which variables are inputs and which 
variables are outputs. More on this later). Competence is certain if the 
component model has an unknown mode, i.e., a mode where the values of the 
inputs and outputs are unconstrained. This mode can cover any actual 
behaviour of the artifact - from OK to completely destroyed. The unknown 
mode provides little help in discriminating between likely candidates. 

A model of an artifact is competent if, for each and every possible combination 
of the artifacts' inputs and outputs, modes can be selected for each of its 
components such that the predicted values of the artifact are consistent with 
actual values. This will be the case if all component models are competent, and 
the structure of the model (i-e., the way the components are connected) 
accurately represents the artifact. If a fault arises from a change in the artifact's 

structure from the design structure, say, for instance, the cases of two electrical 
sub-components touch and form a current path, then the structure of the 

model (which is based on the designed structure) no longer matches that of the 
artifact, and the two electrical component models will no longer accurately 
model the behaviour of their respective components. The model is not 
competent to explain changes in the artifact's structure. It may be possible to 

model changes in structure, but this type of modelling is highly context 
dependent (e.g., the physical location of a component may be critical). We have 
not explored this area. 



4.3. Qualitative and Quantitative Models 

Models at low levels of abstraction are often presented in a mathematical form. 
A detailed mathematical model based on sound physical principles calculates 
exact quantitative predictions. Developing such a model for a large system may 
be completely intractable, and even small artifacts may take excessive computer 
time. Our poor understanding of some systems (the human body, chemical 
processes, etc.) precludes the development of such models. 

Human diagnosticians make use of qualitative reasoning. For example they 
may classify fuel pressure from the pump as acceptable, low, or high. The actual 
values are less important than the range they fall in. It is not necessary to 
calculate the exact pressure if it is known that it is too low. Whatever the result 
of the calculation, the pump will have to be replaced. Remember, the goal of 

automotive diagnosis is to identify a set of failed components, not to quantify 
the degradation of their performance 

4.4. Assumptions and Limitations 

Diagnosing large devices is a difficult task so simplifying assumptions are made 
to reduce complexity and increase efficiency. These assumptions further reduce 

the completeness of our model, but we have previously accepted that our 
model will necessarily be incomplete. Once again, the assumptions we make 
are acceptable if they allow us to develop a model that is adequate for our 

intended diagnostic task. Some of these assumptions may prove to be too 
unrealistic for a commercially viable system, while others may ultimately 
prove acceptable. We believe that the strategies presented here can later be 
modified in such a way as to remove any unacceptable assumptions. 



4-4.1. Time - Steady State, Intermittent Faults 

Many processes in an =wtomobile are inherently oscillatory. Much of the 
literature on engine modelling uses the description "steady state" to describe an 
engine with constant inputs and outputs. Automobile inputs include, for 
example, the engine load (e.g. the grade of the hill being climbed), the throttle 
pedal position, steering, braking, shifting, the settings of all switches, and the 
operating environment (e,g. altitude). Artifact outputs are vehicle speed, 
acceleration, exhaust, noise, heat, air conditioning, etc. Internal engine 
variables are not restricted to single values under this definition of steady state. 
For example, while the engine is running the exhaust manifold pressure 
fluctuates throughout each engine cycle. However, at a given engine operating 
point (i.e., constant inputs) the shape of the pressure wave (i.e., peak pressure, 
average pressure, minimum pressure, the time between each of these events, 
etc.) will be constant. Even so, some variables will be decreasing during steady 
operation (the fuel in the tank is decreasing whenever the engine is running), 
and others will be increasing (the amount of fuel vapour stored in the charcoal 
canister), although the rate of change of fuel and vapour may be constant. This 
steady state definition effectively describes four distinct operating points: I) key 
off, 2)  key on engine off, 3) idle, 4) operation at a steady load and speed. 

The above definition of steady state may prove to be necessary for the first 
commercially viable automotive diagnostic systems. Our prototype model has 

been developed with a more strict definition of steady state. At steady state all 
the artifact's inputs and outputs are constant, and all variables and component 
states are constant. This assumption allows us to ignore the effects of time. 

Components such as charcoal canisters and fuel tanks, as mentioned earlier, 
have variables that change even as the artifact inputs and outputs are held 

constant. 



Our steady state assumption precludes the diagnosis of intermittent faults. 
Intermittent faults are those that cause symptoms to appear and disappear 
seemingly at random. The artifact exhibits no symptoms most of the time, but 
occasionally exhibits a particular set of symptoms. Symptoms can only be 
removed by replacing a faulty component. Unfortunately many electrical faults 
are of the intermittent variety. 

We assume that all measurements made and reported by the technician are 
accurate and are taken at the correct location. When a variable is bound to a 
measured value, that value is assumed constant and correct for the duration of 
the diagnostic session. The measurements may not all be taken at the same 
time, but all variables are assumed to remain constant. 

4.4.2. Single Fault Assumption 

If we consider all multiple fault candidates (i.e., more than one component can 
be in a faulty state) then the number of possible candidates explodes 
exponentially. An artifact with N primitive components with an average of K 
behavioural modes will have on the order of K raised to the power N potential 
multiple fault candidates. An artifact with 10 components each with four 
behavioural modes will have on the order of 4 raised to the power 10, or 

approximately 1,000,000 candidates! Limiting the maximum number of faults 
allowed in each candidate reduces the size of the search space, but also 
eliminates potential, although unlikely, candidates (i.e., those with more than 

the maximum number of faults). 

The single fault assumption allows candidates implicating a single component, 

but is unrealistic in many situations, as will be discussed shortly. If we limit 
ourselves to single fault candidates, and disregard additional candidates with 

the same implicated component and state, then we have potentially as many 
candidates as the sum of the faulty modes for each and every primitive 



component. An artifact with N components with an average of K behavioural 
modes, F of which are faulty (F<K), will have F*N candidates. For the example 
given above, if three of each component's modes were faulty, there would be 
3'10, or 30 single fault candidates. 

Some sets of symptoms will not be explainable by a single fault candidate and if 
we limit ourselves te this assumption we may be incapable of finding the 
corred candidate, or ever, a single candidate. The model is no longer generally 
competent, because it will not be able to match the behaviour of an artifact with 
more than one fadty component. The model could still be competent for 
single fault candidates. Having an unknown mode would accomplish this. 
However, the unknown mode is more unlikely than the explicitly represented 
modes, but will be responsible for many candidates. We have decided to 
exclude the unknown mode, assuming the explicitly represented modes to be 
much more likely. Our model is neither complete nor competent. 

Xn general an artifact must have a single fault before it has multiple faults, 
unless :he multiple faults occur simultaneously. Multiple faults that occur 
simultaneously are probably not independent. If healthy component operation 
is much more likely than faulty operation, and all faults are independent, then 
usually single fault candidates will be more likely than multiple fault 
candidates. However, modern automotive electronic controllers can 

compensate for some minor faults, so the operator of the vehicle is unlikely to 
experience symptoms until multiple faults exist. The single fault assumption 
will often fail in this situation. 

The single fault assumption may be weful for preventative maintenance (i.e., 
the operator has not yet experienced symptoms, but the technician finds faulty 
data coming from the ECM). Here, the number and significance of failures 

must be small. A search for single fault candidates that did not find enough 
candidates, or did not find the correct candidate, could be followed by searches 
for double fault candidates, then triple fault candidates, etc. 



4.4.3. Correct configuration of components 

It is assumed that the model structure accurately reflects that of the artifact. The 
model cannot re-arrange its component models, so cannot predict the output of 
an improperly connected artifact. 

4.4.4. Measurements and tolerances 

The issue of measurement tolerances is not considered. For example, if a 
variable is predicted to have a value of 6.0 volts, but its actual measured value 
is 5.75 volts, is the measured value consistent or inconsistent with the 
predicted value? Possible decision schemes include fixed tolerances (say 0.5 

volts), fixed percentages (say lo%), or, better yet, tolerances that are local to the 
variable being measured. We have assumed all variables have discrete integer 
values and the tolerance is one unit. Although unrealistic, this assumption is 
adequate for our model's level of abstraction. For a full commercial 
implementation a more complex scheme would merit consideration. 

4.5. Component Models 

There are two basic types of component models, primitive component models 

and composite component models. In section 4.5.1. we will define and discuss 
primitive component models, providing a foundation for the discussion of 
composite component models in section 4.5.2. 



4.5.1. Primitive Component Models 

Primitive component models represent fallible physical components that are 
replaced or repaired as single units. The spark plug wire for the number 1 

cylinder is an example of a physical component that could be represented by a 
primitive component model. 

Each primitive component model has: I)  an arbitrary number (greater than 0) 
of interface variables which it can communicate to the outside world, 2) a finite 
and exhaustive set of behavioural modes relating those interface variables. 

Interface variables may be qualitative or quantitative, discrete or continuous. 
Our example simpleswitch (Figure 4-1) has five interface variables - Signal, 
Voltl, Volt2, CurrentInl, and CurrenKlut2. (See [Sidebottom 911 for details of 
Echidna syntax, and appendix A.2. for a detailed code for a switch) Signal is a 
boolean (qualitative) variable (it is off or on), and the others are numerical 
(quantitative). Interface variables can have a unique value, or they can have a 
defined range of values. For example, Volt1 could have a single value of 12 
volts, or a range of 9 to 16 volts. 



terminall 
Voltl 
Currenth1 CurrentOutZ 

switch 

sim~leswitch 
I 

% list of interface variables 
Signal. 
Voltl, Currenth1 . 
Volt2. CurrenKht2. 

% groupings of variables to terminals 
terminall (Volt1,CurrentInf). 
terminal2(VoIt2,CurrentUu t2). 

% behavioural modes of simple switch 
mode :- offMode; onMode; shortedMode; openCctMode. 

offMode :- Signal = off, Currenth1 = 0, CurrentOutlt. = 0, 
State = off, 
Condition = god. 

onhiode :- Signal = on, CurrentInl = CurrentOut2, Voltl = Volt2, 
State = on, 
Condition = good. 

shortedhbde :- Currenth1 = CurrentQut2, Voltl = Volt2, 
State = shortrtd, 
Condition = bad. 

openCctMode :- Currenth1 = 0, CurrentOut2 = 0, 
state = opncct, 
Condition = bad. 

Figure 4 4  
Prinzitive Component Model- Simple Switch 



We commonly think of physical components as having input variables which 
cause output variables. This is not generally the case, however. Take, for 
instance, our simple switch with two electrical connections, each of which can 
be represented as two variables, one for voltage (relative to ground) and one for 
current. We all might agree that Signal is an input, but either electrical 
connection could kre the input, and the other would be the output. We think of 
interface variables coexisting with each other rather than causing each other. 
Some interface variabf es require a defined direction (e.g., current), so where 
necessary a positive direction will be arbitrarily assigned. Otherwise, 
directionality is insignificant. h our example Currenth1 is defined for positive 
flow in, and CumtOut2  for positive current flow out. 

Behavioural modes, also known as states, or simply modes, are consistent sets 
uf relationships between the values of the interface variables. Our example 
simpleswitch has four behavioural modes - offMode, onMode, shortedMode, 
and openCctMode. Behavioural modes can represent healthy operation (i.e., a 
switch can be on or off), or faulty operation (a switch can also be shorted or 
stuck open). Behavioural modes are not required to define exhaustively the 
relationships between all interface variables. For example, when a 

simpfeSwitch is off, its voltages are unknown and offMode does not limit, or 
even mention, them. 

Where two or more variables are intuitively related, as in an electrical 

connmion, it is mvenient, although not necessary, to group them into a 
single entity we call a terminal. Our example has two terminals, named 
terminall and teminal2, both representing electrical connections. 

As stated previously, a primitive component model may have several modes 

&a: represent heatthy (or g d f  of OK, or correct) operation, and severai modes 
that are faulty (or bad, or notOK). We define Condition to take the value of 
"good" or "bad". Our switch has two modes with Condition = good (offMode 
and onMode1, and two modes with Condition = bad (shortedMode and 

o p C W o d 4 .  Note that a switch that is stuck open behaves exactly as a switch 



that is turned off, so as long as that switch remains off, either offMode or 
openMode accurately describes its behaviour. OffMode should be more iikely 
than openMode so it should be chosen first. Our model relies on the ordering 
of the modes to achieve this. 

We use a black box analogy for primitive component models. A primitive 
component model is a single black box. Interface variables pass through holes 
on the outside of the box. Each black box has a rotary knob on the outside to 
select the behavioural mode. The knob positions that correspond to a healthy 
mode cause a green light to shine, and the positions corresponding to a fauIty 
mode will cause a red light to shine. From the outside of the box the internal 
structure of the component can not be seen. 

Our model of a simple switch does not refer to a particular switch, in a 

particular setting. It is tempting to think we have a general, and context 
independent description of how a simple switch behaves. It is, however, a 
mistake to believe that any component can be competently modelled without 
respect to the context in which it operates. A heavy switch may be used as a 

door stop, but our model would not be adequate to predict its behaviour for 
this task. Our model of the switch is useful only when it represents an electrical 

control device in a simple electrical circuit. In this limited context the switch 
model is general, and the actual values of the interface variables depend on the 

components connected to the switch The generality of the model, within its 

limited context, allows a number of desirable features including modularity, 
code reuse, and hierarchical inheritance, which will be discussed later. 

4.52. Composite Component Models 

We mUld represent an engine as an extremely large set of interconnected 

primitive component models. We notice, however, that certain groups of 

components work together closely to perform a required task. Our cognitive 



toad is reduced by reasoning about a group of cooperating components before 
directly implicating a specific component. For example, certain symptoms may 
lead to the hypothesis that a fault lies within a group of components. After 
hypothesizing that that group is mis-behaving, we would search for the 
member(s) of that group that are responsible. Instead of immediately dealing 
with a large number of objects, we are considering a much smaller number of 
groups, and each group we eliminate vastly reduces our search. When we do 
this we are implicitly changing the level of abstraction of our mental model of 
the engine. These groupings of physical components also provide a mental 
organization for complicated artifacts. 

Composite component models  represent groups of two or more sub- 

components that work closely together to perform a desired task. A sub-  
component may be represented by either a primitive component model or 
another composite component model. 

We have a black box analogy for composite component models. A composite 
component model is a single, larger black box. The composite box has a number 
of holes through which its interface variables can pass. Each sub-component is 
a black box inside the composite box, but the subcomponent boxes can not be 
seen from the outside. Some of the interface variable holes in the sub- 
component boxes will align with those in the composite box. Some of the 
interface variable holes in the subcomponent boxes will align with those of 
other subcomponent boxes. All of the knobs for selecting the state of the sub- 
components are accessible from the outside of the composite box, and all of the 
sub-component condition lights are visible from the outside of the composite 
box. 

There are two categories of composite components, compound components 
and system components. In section 4.5.2.1. we will first describe the system type 

of composite component, followed by a discussion of the compound 

component in section 4.5.2.2. 



4.5.2.1. System Component Models 

A fuel injection system could be represented as a system component. The sub- 
components of a fuel system work together to deliver clean fuel, at the correct 
flow rate and pressure, from the tank to the injectors. The sub-components 
include hoses, injectors, a pump, a filter, a tank, and a pressure relief valve. A 

fault in any of the sub-components may adversely affect the flow of fuel to the 
cylinders. 

How do we decide which components to include in a given system? Some 
components are easily excluded from a system, e.g., tires would not likely be 
included in the fuel injection system. Other components are closely related, but 
intuitively are not part of a system. The battery provides 12-volt power to the 
fuel injectors, but most people would not consider the battery part of the fuel 
system. A faulty battery would affect the delivery of fuel, but would also have 
many other far reaching effects, some of which may be more noticeable, such as 
the refusal of the starter to turn over. 

It can be more difficult to determine intuitively whether a particular 
component belongs in the system. The fuel pump draws 12-volt power from a 
fuse. Is that fuse part of the fuel system, or part of the 12 volt power system? 

We suggest it belongs in the fuel system if the fuel system is the only system it 

protects, but would include it in the 12-volt power system if it protected other 
systems as well. These grouping decisions may be somewhat arbitrary, but a 
reasonable solution is possible because the engine designer and fuel system 
designer probably traveled a similar path, and choosing different boundaries 

should not strongly influence the diagnostic routine. 

A simple example of a system component is the imaginary twoswitchcs in 

Figure 42. It is composed of two sub-components named S1 and S2, each of 
which is a simple switch behaving as described in the earlier example of 



primitive components. Just like primitive component models, system models 
have interface variables and terminals. System twoswitches has six interface 
variables, SignalA, SignalB, VoltA, CurrentInA, VoltB, CurrentOutB, and two 
terminals, terminalA, and terminalB. The directionality of interface variables 
is as described for primitive component models. Component S1 has its 
terminall connected to twoswitches terminalA, and its terminal2 is connected 
to S2's terminall. The other interface variables of Sl, S2, and twoswitches are 
connected as shown. 



terminalA terminalB 
VoltA VoltB 
CurrentInA CurrentOutB 

twoswitches 

% define interface variables 
SignalA. SignalB. 
VoltA. CurrentInA. 
Volt B. CurrentOutB. 

% groupings of variables to terminals 
terminalA(VoltA,CurrentInA). 
terminalB(VoltB,CurrentOutB). 

% define sub-components of twoswitches 
Sl isa switch. 
S2 isa switch. 

% Connect sub-components within twoswitches 
S1: terminal2 = S2: terminall. 

% Connect sub-components to interface variables of twoswitches 
terminalA = Sl : terminall. 
terminalB = Sl: terminal2. 

1 

Figure 4-2 
Composite System Component - twoswitches diagram 

Composite components (i-e., both system and compound components) differ 

from primitive components in that their behaviour is not explicitly 

represented, rather their behaviour is the sum of the behaviour of their sub- 

components. The behavioural mode of a composite component is a relation 

over the behaviourd modes of its sub-components. This relation could take a 
number of forms. It could be a mapping into a single variable, with each 



possible value representing a unique combin ation of the modes of the 

4 9 

sub- 
component~. We use the vector (or list) of the states of the sub-components as 
the state of a system component. 

System components are not replaced as a unit. A faulty system results in the 
replacement or repair of one or more of its sub-components. System 
components can not in themselves fail, but are considered faulty if any of their 
sub-components are faulty. 

The condition of a system component is a relation over the condition of its 
sub-components. The simplest such relation is that the system condition is 
good if all of its sub-components is good, and bad if any of its sub-components 
is bad. A slightly more insightful scheme is labeling the condition of a faulty 
system with the name of the failed sub-component i.e., the condition of a faulty 
fuel system could be bad-injector. We use a similar approach to that used 
above for modes, where the condition of a system is a vector of the conditions 
of its sub-components. From this vector we can determine whether any sub- 
components have failed, and which components have failed. 

The previous discussion of context of primitive components holds for system 
components also. The twoswitches example is a general model of a two switch 
system only in the context of a simple electrical circuit. In this context VoltB 
and CurrentOutB depend on VoltA, CurrentInA, SignalA and SignalB, as well . 
as the behavioural mode associated with each switch. 

4.522. Compound Component Models 

A compound component model represents a single complex physical 

component as a set of simpler sub-component models. The fundamental 
difference between a compound component model and a system component 
model is that the compound model represents a component that will be 



replaced as a single unit. Any object that can be represented with a compound 
component model could also be represented by a primitive component model. 

An ignition switch can be represented as a compound component. An ignition 
switch is a complex device with many poles and throws, and defining 
behavioural modes would be tedious. Alternately, the ignition switch can be 

modelled as a collection of linked simple switches and junctions, where each 
switch acts as a primitive switch and each junction acts like a primitive 
junction. 

Like system component models, the condition of a compound component 
model is a relation over the condition of its sub-components. EIowever, the 
compound component model represents a single physical component . The 
sub-components can not be replaced independently. We therefore summarize 
the conditions of the sub-components into a scalar condition for the compound 
component. If any of the sub-components is faulty (i.e., in a bad condition) then 
the condition of the compound is bad. Otherwise, the condition of the 
compound component is good. 

A simple example of a compound component model is the imaginary ignition 
switch in Figure 4-3. It is composed of two sub-components, one named Switch 
which behaves like a simple switch, and another named Junction, which 
behaves like a primitive component model for a junction, (i.e., a connection 

between two or more conductors). We have not given a detailed description of 

a junction, but it would have a form similar to that of our simple switch with a 
good mode and faulty modes. Just like primitive and system models, 
compound component models have interface variables and terminals. 
Compound ignitionswitch has seven interface variables including SignalA, 
and three terminals including terminalA. The directionali ty of interface 

variables is as described for primitive and system models. The other interface 

variables of Switch, Junction, and ignitionswitch are connected as shown. 



SignalA 

tenninalA terminalB 
VoltA VoltB 
Cunren tInA CurrentOutB 

terminalc 
VoltC 
CmentOutC 

ignitionswitch 
{% define interface variables 

Signal A. 
VoltA. Currenth A. 
VoltB. CurrentOutB. 
Vol tC. CurrentOutC. 

% groupings of variables to terminals 
terminalA(VoltA,CurrentInA). 
terminalB(VoltB,CurrentOutB). 
terminalC(VoltC,CurrentOutC). 

% define sub-components of ignition switch 
Switch isa switch. 
Junction isa junction. 

% Connect sub-components within ignition switch 
Switch: terminal2 = Junction:terminall . 

% Connect sub-components to interface variables 
terminalA(VoltA,CurrentInA) = Switch:terminall(Voltl,CurrentInl). 
terminalB(VoltB,CurrentInB) = Switch:terminal2(Volt2, -CurrentI112). 
terminalC(VoltC,CurrentInC) = Switch:terminal3(Volt3, -CurrentIn3). 
% define behavioural modes of ignitionswitch 

mode:- goodMode; badMode. 
goodMode :- Swi tch:Condition(Good), 

JunctionCondi tion(Good), 
Condition = Good. 

badMode :- Switch:Condition(Bad) or Junction:Condition(Bad), 
Condition = Bad. 

1 

Figure 4-3 
Composite Compound Component - ignitionswitch diagram 



Like system component models, the behavioural mode of a compound 
component model is a relation over the behavioural modes of its sub- 
components, and we use the vector (or list) of the behavioural modes of the 
sub-components as the state of a compound component. 

The context dependent generality of compound component models is as 
described for primitive and system models. 

4.6. Hierarchical Composition 

The use of primitive and composite components leads directly to a hierarchical 
structuring of the model. Two separate types of hierarchies result: a 
specialization hierarchy and a composition hierarchy [Genesereth 811. Both 
types of hierarchies promote modularity, code re-use, and representation of 
knowledge at varying levels of abstraction. 

4.6.1. Specialization Hierarchy 

Specialization hierarchies, also known as is-a, kind-of, and type hierarchies 
[Luger 891, are tree shaped structures that allow objects (in our case 

components) to inherit from other, more general objects. In a specialization 
hierarchy, each node is an instance of its parent, but a more detailed or 

"specialized" instance. 

Figure 4-4 shows the top levels of our specialization hierarchy. Echidna code 
for the top of this hierarchy (component, primitive component, compound 

component, and system component) is shown in appendix A.1. Our root node 

is a general component model, and attributes (i.e., the existence of interface 



variables, state, and condition) that are common to both primitive component 
models and composite component models are stored here. 

All primitive component models inherit the attributes of the component 
model and add a specific structure including behavioural modes. A switch is a 
specific instance of primitive component model. Although not shown here, 
our simple switch may have children that represent particular manufacturer's 
models of switches, which may have limited current capacity and voltage, and 
may have additional behavioural modes. 

Composite components inherit t!ie attributes of components, and all have sub- 
components. Compound components inherit the attributes of composites, and 
add scalar "Condition" (e.g., while "component" declares that all components 
have "Condition", "compound component" declares that the "Condition" of 
compound components will have a single value). System components have 
the attributes of composites but have a vector representation for condition. If 
this hierarchy covered a family of engines it might have several children 
inheriting from a general fuel system. 

component rn 

Figure 4-4 
Partial Vehicle Specialization Hierarchy 



4.6.2. Composition Hierarchies 

The use of composite system components leads directly to a composition, or 
part-of, hierarchy, a tree structure where the nodes are components and the 
arcs are part-of links. Each parent node is "composed" of its child nodes, or in 
other words, the sum of a parent's children is that parent itself. The root node 
is a system model of the complete artifact and the leaf nodes are primitive and 
compound component models. For example, Figure 4-5 shows a vehicle (i.e., a 
composite system component), with sub-components including engine and 
electrical, each of which is also a composite component, and has sub- 

components of its own (some of which are shown). Primitive and compound 
components are not shown in Figure 4-5, but would be at the far right. 

fuel system 
engine emission syst ,< 

ccp system 
electronic control egr sys tern 
electrical 12-volt supply 
braking - ground 
steering 
instrumentation 
MY 
drivetrain 

Figure 4-5 
Partial Vehicle Composition Hierarchy 

It is important to understand that objects in a composition hierarchy may be 
connected even though the composition hierarchy shows no links between 
them. The tires are certainly not part of the engine, but they are definitely 

connected or the vehicle could not move. 

The beauty of this structure is that all parents of a component are affected by 
the state of that component, and all other components are unaffected by its 
state. For example, a broken fuel injector leads to a faulty engine, and in turn, a 



faulty vehicle, but does not lead to a faulty electrical system. A faulty battery 
leads to a faulty 12-volt supply, and electrical system, but does not lead to a 
faulty engine. Since all components are descendents of the root node (vehicle), 
any fault will lead to a faulty vehicle, as we expect. 

4.7. Suggestions for Future Work on Modelling 

The assumptions listed earlier in this chapter may be unrealistic - in particular 
the single fault assumption, discrete valued variables, and the unit tolerance. 
Modelling structure and configuration (i.e., having modes for system 
components as well as for primitive components) may allow diagnoses 
implicating a change in structure. Our modelling strategy does not yet support 
three important areas: ranking candidates, discrimination between candidates, 
and time considerations. 

47.1, Ranking Candidates 

The modelling strategy presented here does not provide information required 
for candidates to be generated in ranked order. As discussed in chapter 3 
probability theory, and possibly abductive rules, may have the potential to 
achieve this goal. Probability theory, whether global or local in strategy, needs 

the explicit representation of the prior probabilities associated with each 
behavioural mode. If we store these probabilities with our "general" models 
described above we are saying "all physical components that behave in the 
fashion our primitive model describes, have these failure probabilities". But 
we know, for instance, although all wires behave similarly, their failure 
probability depends cn the conditions they operate under and the standards to 

which they were manufactured and installed. We conclude that all 
probabilities are context dependent, and would vary between instances of a 
single model. The power of the probabilistic methods lies in having the 



probabilities associated with the instances of the models corresponding to 
particular physical components. 

4.7.2. Discrimination between Candidates 

As mentioned earlier we want to eliminate candidates until we have all but 
the one that corresponds to the actual state of the artifact. We want to 
minimize the cost of eliminating candidates. The entropy calculations 
described in chapter two can be used for this but are based on normalized 
probabilities. A method minimizing the expected dollar cost of the diagnostic 
session would be better yet. Abductive rules may also be able to heIp here, but 
we did not have the resources to explore these options. 

4.72, Time 

%me method of dealing with time is required. Some components, such as fuel 
tanks and charcoal canister can not be effectively modelled without reference to 
time. For these components the outputs depend on past inputs, i.e., there is a 
time delay between values of interface variables. 



5. Prototype Diagnostic Model 

This chapter presents the prototype automobile diagnostic model, preceded by a 

quick description of the Echidna constraint reasoning system. The performance 
05 the Echidna implemented model, and obvious improvements to that 
implementation, are discussed. Echidna code, input files, and output data is 
shown in the appendices. 

5.1. Echidna Constraint Reasoning System 

The prototype model presented in this chapter was implemented using the 
Echidna constraint reasoning system developed at Simon Fraser's Center for 
Systems Science [Sidebottom 911, and running on a Sun SPARCstation 1. 

Echidna was developed for synthesis, analysis and other recognition tasks, and 
couples constraint satisfaction, logic programming based on the first-order 
Horn-clause semantics of Prolog, justification-based truth maintenance, and 
dependency backtracking, all in an object-oriented framework. In Echidna 
objects are represented as schemata with persistent state. Objects are accessed by 
unifying goals ( logid messages) with the predicates (logical methods) defined 
within the schema. 

Echidna was being developed concurrently with our prototype model, and was 

still at an early stage of development, so many advanced features were not yet 
available. The performance of our diagnostic system depended on our 
modelling efficiency and the reasoning efficiency of Echidna. Recent advances 

to Echidna have provided a richer set of tools for reasoning and knowledge 

mpmntilltion, wodd profrably prove to be much more efficient. 

The early version of Echidna was unable to reason about, or even remember, 

multiple s~lutions (i.e+, multiple candidates). To find additional candidates the 



fail predicate must be used, which eliminates the present candidate. Before 

issuing the fail goal the present candidate can be displayed on the screen or 
stored in an external file, but no more reasoning about that candidate can take 

place. To work around this problem we computed a completely new set of 
candidates each time new data were added. This was clearly inefficient, as time 
was spent reproducing previously computed results. This problem precluded 
the implementation of a minimum entropy calculation to discriminate 

between candidates. This type of calculation must have all candidates available 

simultaneously. 

If the multiple solution problem were eliminated and the entropy calculation 

performed, the Echidna based diagnostic system could tell the technician which 
measurement to perform next. The technician might like to respond with the 
value resulting from that measurement, but the Echidna interface required 

that the technician enter that measurement as a top level Echidna goal. 
Echidna could not monitor the terminal for data input, it could only respond 

to top leve! goals typed in the Echidna window. The graphic interface for 
Echidna is being developed at this time. 

5 2  Prototype Vehicle 

The prototype vehicle used as a guideline is a 1988 Chevrolet Celebrity with 3.8 

liter 72-6 engine, vehicle identification number (VIN) W. The VfN W engine 

has an advanced electronic control system, and has undergone considerable 
analysis and testing. Service and engineering documentation, and technician's 

expertise, is available. 

The vehicle was decomposed into major sub-systems. (Remember, sub-systems 

are actualIy composite system components as described in chapter 4). The 

major subsystems were: engine, drive-train, body, electrical, electronic control, 

instnunentation, steering, braking, climate control. This decomposition was 



intuitive (at least to the author), but, as stated earlier, somewhat arbitrary, and 
probably iAer groupings could serve equally well. The most controversial 
decision is separating the electronic control system from the engine, but the 
electronic control system goyerns many components not directly related to the 
e~gine  - for instance, corrlponents that regulate the temperature in the operator 
compartment. No pretense is made that these groupings are adequate and 
sufficient for commercial implementation, they are presented only as an 
example. 

Ne did not have the resources or the desire to model a complete engine or 
family of engines, we decided to concentrate on a subset of the major sub- 
systems rather than all components connected to the electronic control module 
(ECM). The pinciples developed should be widely applicable. 

5.3. Prototype subsystems 

It was tempting to explore the electronic control system itself, but there is a 
critical shortage of detailed engineering information about the control system 
because of the automobile manufacturers' reluctance to release these data. The 
techniques developed should be equally applicable to components of the 
electmnic control system, when details of their design become available. 

We decided to concentrate on a portion of the 12 - volt power system (for ease 
of model development and explanation), the charcoal canister purge (CCP) 
system, (because it incorporates mechanical components, and emission control 

systems including the CCP system are relatively unreliable), and the fuel 
system (because ii is the system nost influenced by the electronic control 
system), The prototype model composition hierarchy is shown in figure 5-1. 

All of the boxes shown in this hierarchy are represented as composite system 

components. Echidna code for systems is shown in appendices A.I. and A.4. . 



12-volt power supply 

Figure 5-1 
Prototype Model Composition Hierarchy 

The 12-volt power system distributes 12 volt DC electrical power from the 

battery to all systems that have low voltage (i.e., 12 volt) electrical components. 

Our model of a portion of the 12-volt power system is shown in Figure 5-2. A 

complete model would have many more sub-components and many more 
interface variables. The sub-components of this system model are three wires, 

two fuses, two junctions, an ignition switch, and a battery. The ignition switch 

is represented by a compound component model, and all other sub- 
components are represented by primitive component models. Echidna code for 

primitive component models is shown in appendices A.1. and A.Z., code for 

compound components is shown in appendices A.I. and A.3., and code for the 
power system is presented in appendices A.1. and A.4. The battery is 
unrealistically modelled with only one terminal, but the model is adequate for 

the intended use. The 12-volt power system shares interface variables, as 
defined in the figure, with the operator, exhaust gas recirculation (EGR) system, 

CCP system, fuel system, and electronic control system. We did not model the 

EGR system. 



Operator [T) valve wire] 
* 

terminal1 4 
Volt1 

signal Currentout1 

12-volt Power System 

* 6 
f fur wire inj. wire \ 

System u Electronic 
Control 

CCP System 

Figure 5-2 
12-Volt Power Distribution System 

The CCP system (Figure 5-3) eliminates fuel evaporation from the fuel system 

to the environment by storing the vapour in a charcoal canister, and venting 
that vapour to the manifold when commanded by the electronic control 
system. The sub-components of the CCP system are five hoses, two wires, a 
purge solenoid, charcoal canister, and a pressure control valve. All sub- 
components are represented as primitive component models. The system 
shares interface variables with the l2-volt power system, air system, electronic 

control system, atmosphere, and fuel system. The interface variables are 
defined in the figure. We did not model the air system. Echidna code for the 
primitive sub-component models are found in appendices A.1. and A.2., and 

code for the CCP system is presented in appendices A.1. and A.4. . 



System 

manifold 

terminall 
Press1 
FlowInl 
Flow Condl 

Figure 5-3 
Charcoal Canister Purge System 

The fuel system (Figure 5-4) distributes pressurized and filtered fuel from the 
fuel tank to the fuel injectors. The actual fuel system has six injectors, but for 

simplicity we have included only one. The electronic control system controls 
the flow of electricity to the injectors and the fuel pump. The fuel system 

shares interface variables with the electronic control system, engine 

mechanical system, CCP system, and air system. We did not model the engine 
mechanical system. Echidna code for the primitive sub-component models are 
found in appendices A.I. and A.2., and code for the fuel system is presented in 

appendices A.1. and A.4. . 
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Figure 5-4 
Fuel System 

5.4. Simulated Diagnosis 

We simulated a number of diagnostic sessions. The input files and output data 

for two of those simulations are shown in appendix 8. We now give a general 
description of our diagnostic simulations followed by discussion of individual 
simulation results. 

The first step in each simulation was loading the knowledge bases 
cornponenkkb, primitive.kb, compound.kb, and system.kb. (for example see 

appendix B.l.1.). The artifact we are simulating is not always a complete 

vehicle. The first two simulations deal individually with the 12-volt power 



system and the CCP system. The other systems contained in the loaded 

knowledge bases are not used in these simulations. 

The second step of each simulation is to define, build, and name a model of the 

artifact, and to find candidates for that model. The input file calls the model the 

"top level object" because this is the object that we will communicate with 
through the Echidna interface. Since no measurement data has yet been given, 
no combination of component states leads to inconsistency. Since we do not 

wish to generate an exhaustive list of all possible state assignments, our 
diagnostic system will always look for healthy candidates first, and will always 

stop after finding a healthy candidate. 

The third step of the simulated diagnostic session is to add measurement data 
(i-e., add evidence) to the diagnostic system, and to re-issue the command to 
find candidates. The system will re-generate the candidate found in the last 

step. If this candidate is consistent with the new data diagnostic reasoning will 
stop. If this candidate is inconsistent the system will attempt to find a healthy 
candidate that is consistent. If no healthy candidate can be found the system 

will exhaustively search for all single fault candidates, but without duplicating 

candidates that share the same culprit. Remember culprits are the connponen t s 
that are in a faulty state (i.e., Condition = bad). 

Any additional steps are repeats of step three. Echidna does not forget the 

measurements from previous steps so the number of candidates (and culprits) 

will always decrease or stay the same. 

We mentioned earlier that using the fail predicate to generate multiple 

solutions forced us to lose all solutions, including the last solution. The faulty 

solutions are printed to the screen, but then disappear. In this case, we must re- 

generate solutions to determine whether they are consistent with new 

evidence. After steps finding a healthy candidate it is possible ts add new 



evidence directly to the existing solution, but to be consistent we re-generated 
candidates after each measurement was added. 

For each simulation we recorded elapsed time from the beginning of the 
session (i.e., before loading the knowledge bases) to the end of each step as 
described above. From this we calculated the incremental time for each step of 
the session. The incremental time is important because it is the time the 
technician will have to wait for a list of candidates. The time to load the 
knowledge bases is constant for all simulations, independent of the artifact we 
are diagnosing. Loading only those schemata needed would have been quicker 
in the cases where not all schemata were involved. Echidna offers an 

optimization option that compiles discrete constraints. We timed our 
simulated sessions with the optimization both on and off. 

Table 5-1 shows the number uf components in each of the systems we 
modelled. The power system, for instance, has one compound component (the 
ignition switch), eleven primitive components, and one system component 
(the power system itseii). 

power1 ce~l fuel1 enginel vehicle1 

no. of primitives 11 10 25 35 46 

naofaampounds 1 0 0 0 1 

no,ufsystems '1 1 1 3 5 

Table 5-1 
Number of Components 



Our first simulated diagnostic session was for the 12-volt power system (see 
appendix 8.1.1. for input data file, and 8.1.2. for output file). The first line of 

entries in Table 5-2 shows the time taken to load the knowledge bases with the 

optimization on (43.5 seconds) and with the optimization off (4.8 seconds). As 

mentioned earlier knowledge bases were loaded for all our component models, 

so time was spent loading unnecessary schemata. 

no. of candidates 

load kb I 
no data 

incremental time 
(seconds) 

optimized non-optimized 

1 - healthy 

1st 

! 2nd 
0 
2 3rd 

elapsed time 
(seconds) 

optimized non-optimized 

3 - faulty 

2 - faulty 

1 - faulty 

Table 5-2 
Power System Performance 

The second line of entries in table 5-2 shows the incremental and elapsed times 

to define, name, and build the 12-volt power system and find a single healthy 

candidate. The incremental time was 2.5 seconds with the optimization on and 

1.9 with the optimization off. Appendix 8.1.2. shows the state and condition of 
all sub-components of the 12-volt power system. All are in state 0 and 

condition 0, which corresponds to a "good" state. Of course, no symptoms are 

present, because no measurements have been taken. 



The third line of entries in table 5-2 represents the results of adding our first 
measurement (i.e., the signal was "off" and volt5 had a value of 6) .  This 
generated three faultjy candidates in the times shown in incremental times of 
3.9 and 6.3 seconds. The three culprits are the junction3 in state 1, the junction 
3 in state 3, and the battery in state 1. 

After the second measurement was added (i.e., the battery's voltage was 14) two 
candidates remained, the two involving the junction3. After the third 
measurement (junction3 volt2 = 14) only one candidate remained, junction 3 

in state 3. 

Our second simulated diagnostic session was for the Charcoal canister purge 
system (see appendix B.2.1. for input data file, and B.2.2. for output file). The 
first line of entries in table 5-3 shows the times it took to load the knowledge 
bases with the optimization both on and off, which, as expected are identical to 
the times in Table 5-1 above. 

no. of candidates 

1 - healthy 

1 - healthy 

6 - faulty 

6 - faulty 

2 - faulty 

Table 5-3 
CCP System Performance 

incremental time 
(seconds) 

optimized nonsptimiied 

elapsed time 
(seconds) 

optimized nonsptimized 



The second line of entries table 5-3 shows the incremental and elapsed time to 
define, name, and build the CCP system and find a single healthy candidate. 
The incremental time was 1.1 seconds with the optimization on and off. This 
step was slightly quicker than for the power system because the power system 
has a compound component. The CCP and power systems have similar 
numbers of primitive components (I1 versus 10). Appendix B.2.2. shows the 
state and condition of all sub-components of the CCP system. All are in state 0 

and condition 0, which corresponds to a "good" state. Of course, no symptoms 
are present. 

The third line of entries in table 5-3 represents the results of adding our first 
measurement (volt2 had a value of 14 and volt3 had a value of 0). This data 
was not inconsistent with the healthy candidate generated in the last step, so 
reasoning stopped after this candidate was re-generated. 

The fourth line of entries in table 5-3 represents the results of adding our 
second measurement (press1 = -1 and flowout1 = 2). This data resulted in six 
faulty candidates. 

The fifth line of entries in table 5-3 represents the results of adding our third 
measurement (press6 = -1). This data did not reduce the number of candidates, 
so was a poor choice of measurement. Ideally the diagnostic system would 

advise which measurements will best discriminate between competing 

candidates. 

The sixth line of entries in table 5-3 represents the results of adding our fourth 
measurement (press5 = 2 and flowIn5 = 2). This data eliminated all but two 
faulty candidates, one implicating the hose1 and the other implicating the 

solenoid. Another measurement would be needed to identify which of these is 

the actual candidate. 



The final two simulations were for the engine (which was composed of the 
fuel system and the CCP system) and for the vehicle (which was composed of 
the engine and the 12-volt power system. Unfortunately, we did not have time 
to generate test data that would allow us to incrementally eliminate faulty 
candidates. We were able to build models of these systems and find a healthy 
candidate, the incremental and elapsed times for which are shown in Table 5-4 

and Table 5-5. 

Table 5-4 

load kb 

build 

Engine Performance 

no. of candidates 

- 
1 - healthy 

Table 5-5 
Vehicle Performance 

load kb 

build 

5.41. Analysis of Performance 

incremental time 
(seconds) 

optimized non-optimized 

43.5 4.8 

5.4 6.4 

The optimization technique is designed to speed up reasoning using discrete 

constraints. The penalty for this speed increase is slower loading of knowledge 

elapsed time 
(seconds) 

optimized non-optimized 

43.5 4.8 

48.9 11.2 

no, of candidates 

- 
1 - healthy 

incremental time 
(seconds) 

optimized non-optimized 

43.5 4.8 

8.5 11.1 

elapsed time 
(seconds) 

optimized non-optimized 

43.5 4.8 

52.0 15.9 



bases. In our case, especially in the first two simulations, we compiled many 
more constraints than were actually used. While the diagnostic steps were 
between 0 to 50% faster for the optimized version, the loading stage was 
approximately ten times slower. In the first two simulations the complete non- 
optimized diagnostic simulation took less time than the optimized knowledge 
base loading. Our vehicle model had a total of 52 components. If a complete 
vehicle model had, say, 1000 components, and a linear relationship between 
loading and the number of components, then the loading time would be 
approximately 10 minutes for the optimized version and approximately 2 

minutes for the non-optimized version. The possibility of dynamically loading 
knowledge bases (i.e., automatically loading knowledge bases as they are 
needed) may need to be explored. 

Step two for our vehicle model took 8.5 seconds for the optimized run and 11.1 
for the non-optimized run. This step always finds one healthy candidate. Our 
vehicle model represents a small fraction of a complete vehicle. Even a linear 
time increase with the number of components would result in minutes of 
waiting time for step two. 

The first two simulations took even longer on the steps following step two, 
Part of the problem was that we were regenerating candidates at each step 
rather than continuing reasoning from the last step. Ideally Echidna would 
maintain a set of candidates between steps and, as new measurements are 

obtained, continue reasoring on each candidate in parallel until only one 
remains. 

5.5. Suggested Implementation Improvements 

To encourage ~ d u : ~ r y  and make the knowledge base easier to maintain, 
extend, and debug, global constraints should be explicitly represented as such, 

either in a separate global schema, or as global methods outside of any declared 



schema. The single fault rule is a global constraint, but is hidden within the 

inheritance hierarchy. For example, switching to (or adding) a double fault rule 
would be much easier if global constraints were explicit. 

The assignment of condition to compound components could be automatically 
accomplished through a method in the compound schema rather than coded 

in method mode/U in each compound component. Based on the sub- 

component list a domain for the condition could be dynamically created. For 

example, the "Condition" might be stored in a vector with the first element 
having the value good or bad, and the second element indicating which, if any, 

components are bad. This could be expanded to multiple fault candidates by 

allowing the second element to be a list of indeterminate length. 

To simplify coding, the domains of interface variables were declared in 
advance, and were fixed for different units (e-g., all voltages were declared to 
have the domain of -20 to +20 volts). Realistically, different physical 

components represented by the same behavioural model would have different 
domains for their interface variables. 

We have separate models for junctions of three and four electrical connections. 
Junctions of any number of conductors can be described by two laws, Kirchoff's 

current law and Kirchoffs voltage law. We should have a general junction 

model with a variable number of conductors. 

Likewise, our model of a rail in a fuel injection system is more generally a 

modd of a junction of three fluid conduits. We may be better off with a model 

called "fllridJunctionn which has a variable number of branches (each with a 

variable size). We would create a rail with tree branches of sizes 1.5 1.0 and 0.5 

by declaring "rail isa junction, rail:defiie(3,(1.5 1 .5))". 

Both of the last two improvements hint at a stronger one. We could model 
general physical ccrmponent types such as valves (switches, solenoids, 



regulators), junctions, reservoirs (fuel tanks, charcoal canisters), sources, 

conduits (wires, hoses). For example, a simple switch could be modelled as an 
instance of an electrical valve with a binary (on/off) control setting. 



6.  Conciusions 

The application of model-based diagnosis to automotive engines, and 
mechanical systems in general, has not been widely reported. A number of 
authors have developed prototypes of rule-based automobile diagnosis expert 
sys terns. 

Engine modelling is presently pursued for two different purposes - engine 
design and engine control. Such models are not developed with expert systems 
implementation in mind. Diagnosis is concerned with only those variables 
which can be changed after the vehicle is in operation (i.e., calibration, 
adjustments, replacement of components, etc.), while engine design models are 
concerned with quantitative variables that can be changed before engine 
components are made (e-g., valve seat angles, displacement, number of 
cylinders, etc,). Many engine design models are computationdy expensive 
because they calculate precise quantitative answers from complicated 
mathematical equations. Control models were traditionally developed solely by 
matching outputs with their causal inputs, although physical models are now 
deriving behaviour from underlying physical principles. Still, all control 
models stilt suffer a significant reliance on engine testing for estimation of 
empirical parameters. 

The most popular domain for the study of model-based diagnosis is electronic 
circuits because this domain is blessed with a close relationship between 

structure and function. Knowing a circuit's structure (i.e., the arrangement of 
resistors, capacitors, transistors, etc.) a reasonably accurate model of behaviour 
can be developed relatively easily- The ease of modelling electronic circuit 

khaviour allows researchers to concentrate on diagnostic theory rather than 
compfexi ties in modelling. 



A good example of a model-based diagnosis is the General Diagnostic Engine 
(GDE) [deKleer 871, which can incrementally diagnose multiple faults, is 

domain independent, and is able to propose measurements to localize faults. 
GDE incorporated an assumption-based multiple context reason maintenance 
system, Bayesian probability methuds to rank diagnoses, and decision theory to 
estimate the next best measurement. GDE was superseded by SHERLOCK 

[deKleer 891 which allowed more modelling flexibility, reduced physically 
impossible diagnoses, and provided heuristics to minimize combinatorial 

explosion. 

A different approach to multiple fault model-based diagnosis was provided by 
the Bayesian Belief Network [Pearl 881. Here, the model is a causal network of 

components that send messages to their neigbours in the form of probability 
distributions. New evidence results in two passes of messages through the 

network, after which all components will be in their most likely state. 

Our qualitative modelling strategy builds on that of SHERLOCK. We add 

specialization and composition hierarchies, and different types of component 
models. The specialization hierarchy allows components of the model to 

inherit behaviour from more general components. The two basic categories of 

component models are primitive component models and composite 
component models. 

Primitive component models are at the lowest level of abstraction. They 

represent fallible physical components that are replaced as single units. These 

models have interface variables they share with the component models they 

are connected to, and a finite and exhaustive set of behavioural modes which 

relate those variables Some of the modes represent healthy operation, and 

some represent faulty operatiom 

Composite models are divided into compound and system models. System 
models represent a group of physical sub-components that work together to 



perform a task (e.g. the fuel system). The behaviour of a system component 
model is not described explicitly, rather it is derived from that of its sub- 
component~. If any of the sub-components have failed then the system has also 
failed. 

Compound component models are similar to system models because they have 
a number of sub-components, but differ in that they represent a single physical 
component. Complicated components such as ignition switches are more easily 
represented as a combination of simpler switches and junctions. An ignition 
switch could be modelled as a primitive component, but defining all the 
behavioural modes would be tedious. Compound components are replaced as a 
single unit. 

A composition hierarchy gives an intuitive organization to the model. In this 
tree structure the nodes represent components of the model, and the arcs 
represent part-of links. The root node is the complete artifact(e.g., engine or 
vehicle) and the leaf nodes represent physical fallible components. All nodes 
other than the leaf nodes are groups of components that cooperate to perform a 
task. 

At this point our model is not able to reason with time. The behaviour of some 
components varies with time, i-e., outputs at a later time depend on the inputs 
at an earlier time. This time delay problem can be neglected in diagnosing 
combinatorial digital circuits, hence the interest in them as trial domains for 
general diagnostic systems. Modelling mechanical systems with time delays is 

more mmpIica ted. 

Ow model does not store information necessary to generate candidates in a 
ranked order (i.e., the most likely first). Presently candidates are found in an 
order depending on the syntactic ordering of the knowledge base. Because of 

this we limited our model to single fault candidates, which vastly reduces the 
number of possible candidates, and forces all candidates to be reasonably likely. 



Adding an unknown mode to each primitive component would make our 

model competent for single fault diagnoses. However, we chose to forgo 

competence because we assume the unknown mode is much less likely than 
those we explicitly represented, and would result in less likely candidates. 

Our prototype model was st.t.cessfulIy implemented in the Echidna constraint 
reasoning system running on a Sun SPARCstation I, and had schemata 
representing portions of a vehicle, engine, fuel system, charcoal canister purge 
system, and 12-volt power system. Echidna was being developed at the same 

time as our model, and many advanced features that could improve 
knowledge representation and reasoning efficiency have since become 

available. Performance was adequate for our prototype model, taking an 
average of approximately 5 seconds after new measurement data was received 

to generate a new list of candidates. However, a model of a full engine or 
vehicle would be much larger, and response times would be on the order of 

minutes. Part of the reason for the slow speed was the inability of the early 
version of Echidna to generate and retain multiple solutions to a single 

diagnostic query. 



Appendix A - Knowledge Bases 

A.1. Component Knowledge Base 

% 
% All voltages will have integer (discrete1 values between -20 and +20 
% 

% 
76 AIf currents will have integer (discrete) values between -10 and +10. This 
b is a simplifying and time saving assumption. In reality sont- automotive 
% tompoxtents carry much more than 10 amperes 
% 

7% 
% All pressures will have integer (discrete) values between -5 and +5 
% 



% 
% All flow rates will have integer (discrete) values between -5 and +5 
% 

%------------------------------------------------------------------------ 

% 
% Schema component describes a general component. Other more specific 
% components will be derived from component 
% 

schema component 

% 
% Schema instance variables 
% 

Name. 
integer State. 
integer Condition. 
component Clist. 
PrintList. 

% 
% accessors for schema instance variables 
% 

condi tion(Condi tion). 
name(Name1. 
state(State1. 
printList(PrintList). 

% 
% component methods 
% 

mode. 



% 
% build/O unifies Printlist with the Name State and Condition 
% of the component 
% 

% 
% healthyCandidate(SubComp0nentListf unifies Condition with 0, 
% and issues the goal mode 
% 

heal thyCandida te(SubComponentList):- 
condition(O), 
mode. 

% 
% singleFau1 tCandidate(SubComponentList,Flag issues the goal 
% mode 
% 

singleFaultCanclidate(S~bComponentList,Fla~):- mode. 

% 
% findCulpritCCulprit) unifies Culprit with State if 
% Condition = 1 
% 

order findCu1 pri t. 

findCulprit(C1,State):- Condition =:= 1. 

findCulprit(C1,Culprit):- Condition =:= 0. 
1 

schema primitive:component 

% 
76 primitive methods 
5% 

'36 
% initialization - primitive components have Condition 0 (good) 
% or 1 &ad). 



:- Condition = 10,l) -. 
1 

schema comp0site:component 
I 

% 
% composite methods 
% 

% 
% buildSubCompstSubComponentList) recursively builds the 
% sub-components in the Iist. 
% 

buildSubComps(fcomp0nent Hcomp I Tcomps.1):- 
Hcomp:build, 
buildSubComps(Tcom3s). 

% 
% compositeState(SubCon~ponentlist,OList,Sta te) recursively 
% assembles the State of a composite component from the States 
% of the sub-components in SubGmponentList. 
% 

compositeState(f component Hcomp i Tcomps],OldList,Sta tek- 
Hcomp:state(Cstate), 
compositeState(Tcornps,[Cstate I OldList1,State). 



schema compound:composi te 
I 

% 
% compound methods 
% 

:- Condition = (0,l) -. 

% 
% build/O issues goals buildSubComps/I, compositeState/3, 
% nameAndStateList/S, and unifies PrintList with Name, NSList 
% from nameAndStateList/3, and Condition. 
% 

build:- buildSubCompdClist). 
compositeState(Clist,f],State), 
nameAndStateList(Clist,[],NSList), 
PrintList = [Name,NSList,Condi tionl. 

% 
% nameAndStateList(SubComponentList, OldList, NandSList) 
% assembles in NandSList a list of the Name and State of each 
% of the components in SubComponentList. 
'35 

nameAndStateList([component Hcomp I Tcompsl,OldList,NSList):- 
Hcomp:name(~name), 
Hcomp:stste(Cstate), 
nameAndSiatcList(Tcomps,f[Cname,Cstatel I OldList1,NSList). 

% 
% build / O  issues goals truildSubcomps/l, compositesta tel3, 
56 systernCondition/3, and partOfPrSntlid3 and unifies PrintList 
% with Name and Par0fE;t from parH3)fPrintList /3. 



% 
% partOfPrintList(SubComponentList,OldList,PartOfList) 
% assembles in PartOfList a list of the Name, State, and 
% Condition of each of the components in SubComponentList. 
% 

parKlfPrintList([component Hcomp I Tcompsl,OldList,PartOfList):- 
Hcomp:printList(PList), 
partOfPrintList(Tcomps,~ist I OldList1,PartOfList). 

% 
% systemCondition(SubComponentList,OList,Condition) recursively 
% assembles the Condition of a composite component from the 
% Conditions of the sub-components in SubComponentList. 
% 

systemcondi tion([component Hcomp I Tcomps],OldList,Condi tion):- 
Hcomp:eondition(Ccondi tion), 
systemConditionCTcomps,[Ccondition I OldList1,Condition). 

% 
% findCandidates/O first tries findHealhtyCandidate, then tries 
% findSingleFaultCandidate. A candiate is an assignment of modes 
% to all primitive components 
% 

order findcandidates. 

% 
% findHea1 thyCandidate10 issues goal heal thyCandida te/ 1, and then 
% prints PrinUist on xl.een 

% 



% 
% printRoutine(PrintList) prints formatted PrintList 
% 

order printRou tine. 

% 
% healthyCandidate(SubComponentList) sends the message 
% healthyCandidate/l to each component in SubComponentList 
% 

heal thycandida te([]). 

% 
% findSingleFaulffindidate/O issues goal singleFaultCandidate/2, 
% prints PrintList on screen, issues goal findCdprit 12 which 
9% return the StaQ of the faulty mrnponent in Culprit, and 
% and fails on Culprit to find other single fault candidates. 
% A single fault candidate can have only crne primitive component 
416 in a faulty state. 
0 

order findSingleFadtCandidates. 



findSingleFauliCandida tes:- 
singleFaultCandidate(Clist,0)" 
print("\n$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n\ni'l, 
printRoutine(PrintList)" 
print("\niooking for more single fault candidates\nU), 
findCulprit(Clist,Culprit), 
fail(Cu1prit). 

% 
% singleFaultCandidate(Sub";3omponentList,ag) recursively sends 
% the message singleFaultC;ndidate/2 to each component in 
% SubComponentList, issues goals conditionSummary/2 and 
% singleFaul t /3. 
% 

singleFaul tCandida teacomponen t Hcomp I Tcompsl ,In flag):- 
Hcomp:singleFaul tCandidate(CIist,O), 
Hcomp:condition(Ccond), 
conditionSummary(C~ond,CondSummary)~ 
singleFault(Inflag,Outflag,CondSummary), 
singleFaultCandidate(Tcomps,Outflag). 

% 
% findCulprit(SubComponentList,Culprit) recursively searches 
% SubComponentList to find the component which is in a faulty 
% mode and returns that components State in Culprit 
% 

findculprit( [component Hcomp I Tcomps1,Culprit):- 
Hcomp:findCulpri t(CIist,Cu 1 pri t), 
findculpri t(Tcornps,Culprit). 

% 
X conditionSummary(Comp0nentCondition~ummary) makes 
% Summary 
% and Componentcondition q u a i  for primitive mmponen ts, and 
% issues goal d r I 2  if CompomtCondition is a List 
% 



mnditionSummary(1,1). 
condi tionSummary(Ccond,l):- mcmber(l,(Ccond] ). 

% 
% member(a,List) succeeds if 1 is a member of List. ! k t  can 
% have an arbitrary struetuPe (i-e., lists within lists). 
% 

order member. 

% 
% singleFault(InFla~OutF1agICondition) fails if both OutFlag 
% and Condition are 1. 
% 



A.2. Primitive Knowledge Base 

schema fusc:primi tive 
f 

% 
% Schema instance variables 
% 

vol tageRange Vol ti. currentRange Currenth1 . 
vot tageRange Volt2. furrentRange CurrenUOu t2. 

% 
% acccssors for xhem instance variables 
% 

terminal? (Voltl,Cunent%nl). 
teminalZ(VolQ,CurrentOut2). 
vo1tl(Voltl). currentInl(Cumntln1). 
volt2(Vol t2). mmnfit2(CurrontOu t2). 

5% 
% initialization -fuse has state 0 or I 
% 

:- State = 10,11 -. 



% 
% mode/O defines behavioral modes of fuse 
% 

order mode. 

mode:- % good state 
Currentout2 =:= Currentlnl, 
Volt2 =:= Voltl, 
State =:= 0, 
Condition =:= 0. 

mode:- % bad state - fuse blown 
Currentout2 =:= 0, 
Currenth1 =:= 0, 
State =:= I, 
Condition =:= 1. 

%------------------------------------------------------------------------ 
% 
% Schema junction3 is derived from primitive. This is a model of a 
% junction of three electrical conductors. 
% 

schema junction3:primitive 
C 

% 
% Schema instance variables 
% 

voltageRange Voltl. currentRange CurrentInl . 
voltageRange Volt2. currentRange Currentin2 
voltageRange VolO. currentliange CurrentIn3. 

% 
% accessors for schema instance variables 
% 



% 
% initialization - junction3 has state 0 to 4 
% 

:- State = {0..4) -. 

% 
% made/0 defines behavioral mods of junction3 
% 

% good condition 
Voltl =:= vow, 
Volt2 =:= VoM, 
Currenffnl + CurrentIn2 + Currenth3 =:= 0, 
State =:= 0, 
Condition =:= 0. 

%opencircuiton1 
cumffn2 + currentIn3 =:= 0, 
C m t I n l  =:= 0, 
Volt2 =:= Volt3, 
State =:= 1, 
Condition =:= 1. 

% open circuit on 2 
Currentin1 + Cumnth3 =:= 4 
C m t I n 2  =:= 4 
Voltl =:= Volt3, 
State =:= 2, 
Condition =:= 1. 

%opencircircon3 
Cumtltnl+ Currentkt2 =.r= 0, 
CurrentIn3 =:= 0, 
Volt1 =:= Volt2, 
State =:= 3, 
Condition =r 1, 

mode:- % shorted circuit 
Voltl =:= Volt2, 
Volt2 =:= Volt3, 
Currentlnl+ CurzlentfriL + CurrentIn3 =\= 0, 
State =:= 4, 
Condition =F 1. 

J 



% Schema switch is derived from primitive. This is a model of a simple 
% single post single throw electrical switch 
% 
%------------------------------------------------------------------------ 

schema swi tclxprimitive 
{ 

% 
% Schema instance variables 
% 

voltageRange Voltl. currentRange Currenth1 . 
voltageRange Volt2. currentRange Current& t2. 
signalType Signal. 

% 
% accessors for schema instance variables 
% 

% 
% switch methods 
% 

% 
% initialization - switch has state 0 to 3 
% 

:- State = [0..3} -. 

% 
% mode/0 defines behavioral modes of switch 
% 

order mode. 

mode:- % Off condition 
Signal =:= off, 
CunentIn1 =:= 0, 
currentout;! =:= 0, 
State =:= 0, 
Condition =:= 0. 

mode:- % On condition 
Signal =:= on, 
Currentlnl=:= C~1rnmtOut2, 



Voltl =:= Volt2, 
State =:= I, 
Condition =:= 0. 

mode:- % short circuit across throw 
CurrentInl =:= CurrentUut2, 
Voltl =:= vow, 
State =:= 2, 
Condition =:= 1. 

mode:- % open arcuit across throw 
Currentrnl =:= 0, 
Cw~entOut2 =:= 0, 
Sbte =:= 3, 
Condition =:= 1. 

J 

y*-----*------------------------*----------------------------------------- 
% 
% Schema wire is derived from primitve. This is a model of a simple 
% electrical conductor 
'15 

schema wire:prirnitive 

% 
% Schema instance variables 
% 

vdtageliange Voltl . currentRange CurrentInl. 
voltageRange Volt2 currentRange CmntOut2. 

% 
% accessors for schema instance variables 
% 

terminal1 (Voltl ,CurrentInl). 
terminaU(Vo1 t2,CurrentOutZ). 
voltlWolt1). currentInl(CurrentIn1). 
volt2Wolt2). currentOut2(CurrentOut2). 

46 
% initialization - wire has state O to 3 
% 



% 
% mode/O defines behavioral modes of wire 
% 

order mode. 

mode: % good state 
Voltl =:= Volt2, 
Currenth1 =:= CurrentOut2, 
State =:= 0, 
Condition =:= 0. 

mode:- % shorted shte 
Voltl =:= Volt2, 
State =:= 1, 
Condition =:= 1. 

mode:- % open state 
CmentInl =:= 0, 
CmentOut2 =:= 0, 
State =:= 2, 
Condition =:= 1. 

I 

%------------------------------------------------------------------------ 
% 
% Schema battery is derived from primitive. This is an extremely simple 
% and unrealistic model of a 12 volt automotive battery. This model 
% assumes the battery is a source, i-e., it has only one terminal at 
% which a voltage and current can be measured. A more realistic model 
% would be required if the battery was to be C O M ~ C ~ € ? ~  to a model of 
% the ground circuits. 
% 

schema battery:primitive 
I 

% 
% Schema instance variables 
% 

voltageRange Volt. currentRange CurrentOut. 

% 
% accessors for schema instance variables 
% 



% 
% battery methods 
% 

% 
% initialization - battery has state 0 to 2 
% 

:- State = (0..2f -. 

% 
% mode/0 defines behavioral modes of battery 
% 

order mode. 

mode:- % good state, voltage between 9 and 16 volts 
Volt >= 9, 
Volt =< 16, 
State =:= 0, 
Condition =:= 0. 

mode:- % bad state, undercharged 
Volt < 9, 
State =:= 1, 
Condition =:= I. 

mode:- % bad state, overcharged 
Volt > 16, 
State =:= 2, 
Condition =:= 1. 

1 

%------------------------------------------------------------------------ 

% 
% Schema hose is derived from primitve, This is a model of a simple 
% hose 
% 

schema hose:primitive 

% 
% 3;thema instance variables 
X 

% 
% aiccessors for schema instance variables 



terminall (Pressl,FlowInl,FlowCondl 1. 
termina12(Press2,Fl0wOut2~RowCond2). 

% 
Z hose methods 
% 

% 
% initialization - hose has state 0 to 2 
% 

:- State = (0..21 , 

% 
% mode/O defines behavioral modes of hose 
% 

order mode. 

mode:- % good state 
FlowInl== HowOut2, 
Press1 =:= Press, 
FlowCondl =:= FlowCond2, 
State =:= 0, 
Condition =:= 0. 

mode:- % leaking state 
FIowOut2 =\= FlowInl, 
Press1 =:= Pre5s2, 
State =:= 1, 
Condition =:= 1. 

mode:- % blocked state 
FIowOut2 =:= 0, 
FlowInl =:= 0, 
State =:= 2, 
Condition =:= 1. 

I 



75 
% Schema instance variables 
% 

pressRange Press1 . fIowRateRange Flow011 tl . conditionType RowCondl . 
prcssRange Prc.ss2. fiowRateRange Flow1n;l. conditionType FlowCond2. 
pressRa nge Press3. flowRateRange J3owLn3. con& tionType FlowCond3. 

% 
% atcflssors for schema instance variables 
% 

% 
% canister methods 
% 

% 
% initialization - canister has state 0 to 5 
% 

:- State = (0..51 -, 

% 
% d e / 0  defines behavioral modes of canister 
% 

order mode. 

mode- % good state, not storing nor purging 
FlowOutl =:= C3, 
Howln3 =:= 0, 
Howln2 =:= 0, 
Press1 =:= ms3, 
Press1 =:= kess2, 
State =:= 0, 
Condition =:= 0. 

% g d  state, storing but not purging 
HowOutl =:= 0, 
FlowIn2 =:= 0, 
How1113 > 0, 



Press3 =:= Pressl, 
State =:= 1, 
Condition =:= 0. 

mode:- % good state, purging but not storing 
Flow1113 =:= 0, 
FlowOutl =:= FfowIn2, 
Pressl < Press2, 
Press1 =:= I'mS3, 
State =:= 2, 
Condiiion =:= 0. 

% bad state, blocked inlet no. 2 
FlowOutI =:= 0, 
FlowIn2 =:= 0, 
State =:= 3, 
Condition =:= 1. 

% bad state, blocked inlet no. 3 
Flow1113 =:= 0, 
State =:= 4, 
Condition =:= 1. 

mode:- % bad state, leaking 
RowOutl=\= Flowin2, 
State =:= 5, 
Condition =:= 1. 

1 

% 
% Schema pcv is derived from primitve. This is a model of a simple 
% pressure control valve as used in the charcoal canister purge system 
% 

schema pcv:prirni tive 
f 

% 
% Schema instance variables 
% 

% 
% atcessors for x k m a  illstance variables 
% 



% 
% pcv methods 
% 

% 
% initialization - pcv has state 0 to 6 
% 

:- State = (0..6) -. 

% 
% mode/O defines behavioral modes of pcv 
% 

order mode. 

mode- % Valve is closed by vacuum on terminal 1 
Pressl < 0, 
FlowOutI =:= 0, 
FlowIn2 =:= 0, 
State =:= 0, 
Condition =:= 0. 

mode:- % Valve is o p e d  by pressure on terminal 2 
Pressl >= 0, 
Press2 > 4, 
FlowOutl =:= Flowln2, 
State =:= I, 
Condition =:= 0. 

mode:- % Valve is opened by vacuum on terminal 3 
Pressl >= 0, 
Press3 < 0, 
Pressl =:= Prcss2, 
F l o a t 1  =:= Flowln2, 
State =:= 2, 
Condition =:= 0. 

am&:- % ?Wve btoclkxf 
HowIn2 =:= 0, 
FfotvOutl =:= 0, 
State =:= 3, 
Condition =:= 1. 



mode:- % Valve stuck open 
Press1 =:= PresB, 
FlowOutl =:= FlowIn2, 
State =:= 4, 
Condition =:= 1. 

mode:- % Valve restricted 
Press1 =\= Ress2, 
m o ~ o u t l = : =  R O W I ~ ~ ,  
State =:= 5, 
Condition =:= 1. 

mode:- % Valve leaking 
FlowOutl=\= FlowIn2, 
State =:= 6, 
Condition =:= 1. 

1 

%------------------------------------------------------------------------ 

% 
% Schema solenoid is derived from primitve. This is a rnodcl of a simple 
5% electrical solenoid valve used to control fluid flow 
5% 

schema so1enoid:primi tive 
I 

% 
% Schema instance variables 
% 

% 
% atcessors for sthema instance variables 
96 



% 
% initialization - solenoid has state 0 to 5 
% 

:- State = (0.51 , 

% 
% mode/O defines behavioral modes of solenoid 
% 

order mode. 

mode:- % g d  state (dosed solenoid) 
Flowout1 =:= 0, 
Flowrn;! =:= 0, 
Volt3 - %'oft4 >= 8, 
Volt3 - Volt4 =< 16, 
Currenth3 =:= CumntOut4, 
State =:= 0, 
Condition =:= 0. 

mode:- % good state (open solenoid) 
FlowOutl =:= Fk3wIn2, 
Press1 =:= PrefslZ, 
CurrentIn3 => 0, 
Currentout4 =:= 0, 
Volt3 =:= VoIt4, 
State =:= 1, 
Condition =I= 0. 

mode:- % blocked siate 
RowOut't =:= 0, 
HowIriL => 0, 
State =:= 2, 
Condi tim =:= 1. 

mode:- % stuck open state 
Flowoutl =:= FtowIriL, 
Press1 =:= Press2, 
State =:= 3, 
Condition =.--- 3. 



mode:- % leaking state 
FlowIn2 =\= FlowOutl, 
State =:= 5, 
Condition =:= 1. 

1 

schema junction4:prirni tive 

O/o 
% Schema instance variables 
% 

voltagebnge Voltl. currenthnge CurrentInl. 
voltagehnge Volt2. mrrentRange CurrentIn2. 
voltageRange Volt3 currentbnge CurrentIn3. 
voltageRange Volt4. currentbnge CurrentIn4. 

% 
% accessors for schema instance variables 
% 

% 
% junction4 methods 
% 

% 
% initialization - junction4 has state 0 to 5 
% 

:- State = (0..5} -. 

% 
% mode/ 0 defines twh;vioral modes of solenoid 
% 



order mode. 

mode:- % good condition 
Voltl =:= Volt2, 
Volt2 =:= Volt3, 
Volt3 =:= Volt4, 
CurrentInl + Currenth12 + CunentIn3 + CurrentIn4 =:= 0, 
State =:= 0, 
Condition =:= 0. 

mode:- % open circuit on 1 
CunmttIn;! + CurrentIn3 + CunentIn4 =:= 0, 
CurrentInl =:= 0, 
Volt2 =:= VOW, 
volt3 =:= volt4, 
State =:= 1, 
Condition =:= 1. 

mode:- % open circuit on 2 
~u&entlnl+ Currenth3 + CurrentIn4 =:= I), 
Currentln2 =:= 0, 
Voltl =:= Volt3, 
Volt3 =:= Volt4, 
State =:= 2, 
Condition =:= 1. 

% open circuit on 3 
Currenth1 + CurentIn2 + CurrentIn4 =:= 0, 
CunentIn3 =:= 0, 
Voltl =:= Volt2, 
Volt2 =:= Volt4, 
State =:= 3, 
Condition =:= 1. 

% open circuit on 4 
CurrentInl + Currenth2 + CurrentIn3 =:= 0, 
CunentIn4 =:= 0, 
Voltl =:= Volt2, 
Volt;! =:= Volt3, 
State =:= 4, 
Condition =:= 1. 

% shorted circuit 
Voltl =:= Vole, 
Volt2 =:= v o i q  
volt3 =:= Volt4, 
CurrentInl + CumtIn2 + Currenth3 + CurrentIn4 =\= 0, 
State =:= 5, 
Condition =:= I, 



schema re1ay:primitive 
I 

% 
% Schema instance variables 
% 

voltageRange Voltl. currentRange CurrentInl . 
voltageRange Volt2 currentbnge Curren tOu t2. 
voltageRange Volt3. currenthnge CurrentIn3. 
voltageRange Volt4. currenthnge CurrentOut4. 

% 
% accessors for schema instance variables 
% 

% 
% initialization - relay has state 0 to 5 
% 

:- State = (0..51 , 

% 
% mode/O defines behavioral modes of solenoid 
% 

order mode. 

mode:- % relay not energized 
volt1 =:= Volt& 



CurrentInl=:= 0, 
CunmtOut2 =:= 0, 
Currenth3 =:= 0, 
Currentout4 =:= 0, 
State =:= 0, 
Condition =:= 0. 

mode:- % relay energized 
Volt1 - Volt2 >= 9, 
Volt1 - Volt2 =< 16, 
Volt3 =:= Volt4, 
CurrentInl =:= CumentOu.t2, % primary current 
Currentin3 =:= CurrentOut4, % secondary current 
State =:= 1, 
Condition =:= 0. 

mode:- % open circuit in primary 
Currenth1 =:= 0, 
Currentout2 =:= 0, 
CurrentIn3 =:= 0, 
Currentout4 =:= 0, 
State =:= 2, 
Condition =:= 1. 

mode:- I short circuit in primary 
Volt1 =:= Volt2, 
Volt3 =:= Volt4, 
CurrentInl =:= CurrentOut2, % primary current 
CurrentIn3 =:= CurrentOut4, % secondary current 
State =:= 3, 
Condition =:= 1, 

mode:- % open c h i t  in secondary 
CurrentIn3 =:= 0, 
c m t o u t 4  == 0, 
State =:= 4, 
Condition =:= 7. 

mode:- % short circuit in secondary 
Volt3 =:= Volt4, 
State =:= 5, 
Condition =:= 1. 

1 

%------------------------------------------------------------------------ 

8% 
% Schema tank is derived from primitve. This is a model of a simple 
% fuel tank 
X 
%------------------------------------------------------------------------ 



schema tank:primitive 
i 

% 
% Schema instance variables 
75 

pressRange Pressl. flowRateRange RowInl. conditionType FlowCond1. 
presshnge Press2. flowRateRange RowOut2. conditionType FlowCond2. 
presshnge Prurss3. flowRateRange RoVVfXEt3. conditionType FlowCond3. 

% 
% accessors for schema instance variables 
% 

terminall (Pressl,lFlowInl,FlowCondl). 
tenninal2(Press2,FlowO~t2~FiowCond2). 
terminal3(Press3,FlowO~t3~FlowCond3). 

% 
% tank methods 
% 

% 
% initialization - tank has state 0 to 1 
% 

:- State = (0..1) -. 

% 
% mode/O defines behavioral modes sf solenoid 
5% 

order mode. 

mode:-Press1 =:= Press2, 
state =:= 0, 
Condition =:= 0. 

mode:-Press1 =\= Press2, 
State =:= 1, 
Condition =:= 1. 

1 

%----------------------------------------------------------------------- 

% 
% Schema regulator is derived from primitve. This is a model of a simple 
% diaphragm pressure regulator 



schema regula tor:primitive 
f 

% 
% Schema instance variables 
% 

% 
% accessors for schema instance variables 
% 

terminal 1 (Pressl,FlowInl,HowCondl). 
terminal2(Press2,FlowOut2,FlowCond2). 
terminal3(Press3,FlowOut3,FlowCond3). 

pressl(Press1). flowInl(FlowIn1). flowCondl(FlowCondl). 
pressZ(Press2). flowOut2(F3owOut2). flowCond2(FlowCond2). 
presfi(Press3). flowOut3(RowOut3). flowCond3(FlowCond3). 

% 
% regulator methods 
% 

96 
% initialization - regulator has state 0 to 4 
% 

:- State = [0..4) -. 

% 
% mode/ 0 defines behavioral modes of solenoid 
% 

order mode. 

mode:- % return flow to tank 
Flow1111 =:= FlowOut3, 
Pr-1- Press2 > 5, 
State =:= 0, 
Condition =:= 0. 

mode:- % no return flow 
FlowInl =:= 0, 
FlowOut3 =:= 0, 
Press1 -kess;!<S, 



State =:= 1, 
Condition =:= 0. 

mode:- % faulty diaphragm (will not open) 
FlowInl =:= 0, 
Fl0~&t3 =:= 0, 
State =:= 2, 
Condition =:= 1. 

mode:- % faulty diaphragm (will not close) 
FlowInl =:= Flowclut3, 
State =:= 3, 
Condition =:= 1. 

mode:- % leaking regulator 
FlowInl =\= FlowOut3, 
State =:= 4, 
Condition =:= 1. 

1 

%------------------------------------------------------------------------ 

% 
% Schema pump is derived from primitve. This is a model of a simple 
%dcpump 
% 

schema pump:primitive 
E 

% 
% Schema instance variables 
% 

pressRange Pressl. flowRateRange FlowInl. conditionType RowCondl . 
pressRange Press2. flowRateRange FlowOut2. conditionType FlowCond2. 

voltagehnge Volt3 currentRange CurrentIn3. 
voltageRange Volt4. currentRange CurrentOut4. 

96 
% accessors for schema instance variables 
% 



% 
% pump methods 
% 

% 
% initialization - pump has state 0 to 4 
% 

:- State = [0..41 , 

?6 
% mode/O defines behavioral modes of solenoid 
% 

order mode. 

% pump 'on' 
Flowlnl =:= FlowOuQ, 
Press2 > Pressl, 
Volt3 - Volt4 >= 9, % Power - ECM voltage 
Volt3 - Volt4 =< 16, 
CurrentOut4 =:= CurrentIn3, 
State =:= 0, 
Condition =:= 0. 

% pump 'off' 
FlowInl =:= 0, 
Flowout2 =:= 0, 
Volt3 =:= Volt4, 
Current1113 =:= 0, 
C1.mentOut4 =:= 0, 
State =:= 1, 
Condition =:= 0. 

% weak pump 
Volt3 - Volt4 >= 9, 
volt3 - Volt4 =< 16, 
Press2 =< Pressl, 
Flowlnl =:= FlowOuQ, 
State =:= 2, 
Condition =:= 1. 

% open circuited pump 
EowInl =:= 0, 
Flowout2 =:= 0, 
State =:= 3, 
Condition =:= 1. 

% leaking pump 
FlowInl =t= ElowOut.2, 



State =:= 4, 
Condition =:= 1. 

1 

schema injector:prirni tive 
I 

5% 
% Schema instance variables 
% 

pressbnge Pressl. flow% teRange FlowOutl. condi tionTypc FlowCond 1.  
pressRange Press2. flowhteRange FIowIn2. condi tionType FlowCond2. 

voltagehnge Volt3. currentbnge CurrentIn3. 
voltagehnge Volt4. currentRange CurrentOut4. 

% 
% accessors for schema instance variables 
% 

% 
% injector methods 
% 

% 
% initialization - injector has state 0 to 4 
% 

:- State = f0..41 -. 
% 
% mode/O defines behavioral modes of solenoid 
% 

order mode. 



% injector 'on' 
Flowout1 =:= FlowIn2, 
VOIW - volt4 =< 16, 
Volt3 - Volt4 >= 9, 
CunmtIn3 =:= CurrentOut4, 
State =:= 0, 
Condition =:= 0. 

% injector 'off' 
FlowIn2 =:= 0, 
Flowout1 =:= 0, 
Volt3 =:= Volt4, 
CurrentIn3 =:= 0, 
Currentout4 =:= 0, 
State =:= 1, 
Condition =:= 0. 

% injector leaking 
m~wOut l= \=  F ~ O W I ~ ,  

State =:= 2, 
Condition =:= 1. 

% injector plugged or open circuited 
Flowout1 =:= 0, 
FlowIn2 =:= 0, 
State =:= 3, 
Condition =:= 1. 

% short circuited 
HowOutl =:= FlowIn2, 
State =:= 4, 
Condition =:= 3. 

1 

schema fi1ter:primitive 

96 
% Schema instance variables 
% 



% 
% accessors for xherna instance variables 
% 

terminall (Pressl,FlowInl,FlowCondl). 
terminal2(Press2,FlowOut2,FlowCond2). 

press1 (Pressl). flowInl (FiowInl). flowCond1 (FlowCondl). 
press2(Press2). flowOut2(Flo wOut2). flowCond2(FlowCond2). 

% 
% filter methods 
% 

% 
% initialization - filter has state 0 to 2 
% 

:- State = {0..21 -. 

% 
% mode/O defines behavioral modes of solenoid 
% 

order mode. 

mode:- % g ~ o d  state 
Press2 =:= Pressl, 
FlowOut.2 =:= Fiowlnl, 
State =:= 0, 
Condition =:= 0. 

mode:- % blocked filter 
Press2 =\= Pressl, 
State =:= I, 
Condition =:= 1. 

mode:- % leaking fi'ter 
FlowOut2 =\= FlowTnl, 
State =:= 2, 
Condition =:= 1. 

1 

schema raikprimi tive 



ro 
% Schema instance variables 
% 

pressRange Press1 . flowRateRange FlowInl. conditionType FlowCondl . 
prcssRange Pr-2. flowliateRange RowOut2. conditionType FlowCond2. 
prcssRange Press3. flo & a  teRange RowOut3. cond i tionType FlowCond3. 

% 
% accessors for schema instance variables 
% 

% This allows for 1 injector 

% 
% rail methods 
% 

% 
% initialization - rail has state 0 to 1 
96 

:- State = (0..1) -. 

% 
% mod40 defines behavioral modes of solenoid 
% 

order mode. 

mode:- % goad state 
FlowInl =:= HowOut2 + FlowOut3, 
Pressl=:= k-&, 
Press1 =:= Press3, 
State =:= 0, 
Condition =:= 0. 

mode:- % leaking rail 
Flowlnl =\= FlowOut2 + RowOut3, 
State =:= 1, 
Condition =:= 1. 



A.3. Compound Knowledge Base 

schema igswiich:compound 
I 

% 
% Schema instance variables 
% 

voltageRange Voltl. currentRange CurrentInl . 
voltageRange Volt2. currentRange CurrentOut2. 
voltageRange Volt3. currentbnge CunentOut3. 
signalType Signal. 

switch Switch junction3 Junction. 

% 
% afce5SOrs for xkma instance variables 
'16 



% 
% igswitch methods 
% 

% 
% build/O imtantiates sub-components of igswitch, gives each 
7% a name, define the component list CIist, unifies the 
% instance variables of the sub-components, and sends a 
% mcssage to compound to build igswitch's sub-componmts. 
% 

% 
% define components of system 
% 

build:- Switch isa switch, Switch:narne(iSswitch), 
Junction isa junction3, Junction:name(iSjunction), 

% 
76 unify instance variables of power with those of its 
% submmpomfs 
8 

% 
% unify instance variables of between subcomponents 
8 



% mode/O assigns value to Condition 
% 

order mode. 

mode:-Switch:state(O), 
Junction:state(O), 
Signal =:= off, 
Condition =:= 0. 

mode:-Switch:state(l), 
Junction:state(O), 
Signal =:= on, 
Condition =:= 0. 



A.4. System Knowledge Base 

% 
% Schema instance variables 
% 

vol tageRange Vol t l  . currentRange Currentout1 . 
vo1 tageRange Volt2 currentRange CurrentOut2. 
vol tagefiange Vol t3. currentRange CurrentOut3. 
vol tageRange Vol t4. cumntRange CurrentOut4. 
voltageRange VoItS. cumntRange CurrentOut5. 

signalType Signal. 

% 
% subcomponents of power 
% 

ipwitch IS. battery Battery. 
wire W1. wire W2. wire W6. 
fuse ECM-F. fuse Engine-F. 
junction3 J1. junction3 J2. junction3 J3. 

% 
% accessom for persistent ~riables  



voltl(Volt1). currentOutl(CurrentOut1). 
volt2(Vol t2). currentOut2(Curre~tOut2). 
volt3(Volt3). currentOut3(CurrentOut3)- 
vol t4(Vol t4). currentOut4tCurrentOut4). 
volt5(Vol t5). currentOut5(CurrentOut5). 

% 
% power methods 
% 

% 
% build/O instantiates subcomponents of power, assigns each 
% a name, defines the component list Clist, unifies the 
% instance variables of the sub-mmponcnts, and sends a 
% message to system to build powe& sub-componcnts. 
% 

build:- 
IS isa igswitch, 
Battery isa battery, 
W1 isa wire, 
W2 isa wire, 
W6 isa wire, 
J1 isa junction3, 
J2 isa juntion3, 
J3 isa junction3, 
ECM-F isa fuse, 
Engine-F isa fuse, 

IS:namc(igni tionswi tch), 
Battery:name(battcry), 
Wl:name(wirel), 
W2:name(wire2), 
W6:name(wire6), 
J1:namdjunctionl), 
J2:name(junction2jt 
J3:name(junction3), 
ECM-F:name(ecmfuse), 
~n~ine-F:name(enginefusc), 

Clist = [IS,Battery,W l,W2,W6, J1 ,J2,J3,ECM-F,Engine-Fl, 

% 
% unify instance variables of power with t h e  of its 
% subcomponents 
% 



1S:signal (Signal), 

% 
% unify instance variables of between sub-components 
% 

IS:terminal2(VoItD,CurrentD), 
W2: terminall (VoltD,CurrentD), 

% 
% send message to system to build power's 
96 sutKx,mpnents 
6 



% Schema ccp is derived from system. This is a model of a charcoal 
% canister purge system. 
% 
%------------------------------------------------------------------------ 

% 
% Schema instance variables 
% 

pressRange Pressl. flowRateRange Flow- tl . condi tionType Flowcondl . 
voltageRange Volt2. currentRange CurrentIn2. 
voltageRange Volt3. currenfRange CurrentOut3. 
pressRange Press4. flowRateRange FlowIn4. conditionType FlowCond4. 
pressRange Pressti. flowRateRange FlowId5. conditionType FlowCond5. 
pressRange Press& flowRateRange FlowOutG. conditionType FtowCond6. 

canister Can. pcv PCV. 
hose Hl. hose HZ. 
hose H5. hose H6. 
wire W1. wire W2. 

solenoid Sol. 
hose H3. 

% 
% accessors for persistent variables 
% 

% 
% schema methods 



build/O instantiates sub-components of power, assigns each 
a name, defines the component list Clist, unifies the 
instance variables of the sub-components, and sends a 

% message to system to build schema's sub-components. 
% 

build:- 
Can isa canister, 
PCV isa pcv, 
Sol isa solenoid, 
HI isa hose, 
H2 isa hose, 
H3 isa hose, 
H5 isa hose, 
H6 isa hose, 
W1 isa wire, 
W2 isa wire, 

Clist = [Sol,Can,PCV,Hl ,H2,H3,H5,H6,Wl,W21, 

% 
% unify instance variables of schema with those of its 
% sutFcomponents 
% 

W 1 : terminall (Vol t2,Curren tIn21, 

Can: terminal2(Press4,FIowIn4,FlowCond4), 

% 
% unify instance variables of between sub-components 
% 



Can: termina13(PressF,FlowFr CondF), 
H3:terminal2(PressF,FlowF,CondF), 

PCV: terminal1 (RessC,FlowG,CondG), 
H3:terminall(PressG,FlowG,CondG), 

% 
% send message to system to build schema's 
% subcomponents 
% 

schema fueksystem 

% 
% Schema instance variables 
% 

voltagebnge Volt1 . currenthnge Curren tout1 . 
vo1tageRange Volt2. currenthnge CurrentIn2. 
voltagebnge VoIt3. cunentRange CurrentIn3. 
voltageRange Volt4. currenthnge CurrentOut4. 
vol tageRange Volt5 currenthnge CurrentIn5. 
pressRange Press6. flowRateRange FlowOut6. condi tionType Flo wCond6. 
pressRange Press7. flowhteRange F l o m t 7 .  condi tionType FlowCond7, 
pressRange Press8. fIowbteRange FlowOut8. conditionType FlowCondS. 
signalType Signal. 



% 
% sub-componen ts of fuel 
% 

tank F-Tank. 
injector Inj. 
hose HI. 
fuse F-Fuse. 
relay Relay. 
wire W1. 
wire W3. 
wire W 7. 

pump F-Pump. filter F-Filter. 
regulator Press-Reg. 
hose H2. hose H3. 
switch F-Switch. 
junction4 J4. junction3 J3. 
wire W2. 
wire W4. wire W5. 
wire W8. wire W9. 

% 
% accessors for persistent variables 
% 

volt1(Vsltl). currentOutl(CurrentOut1). 
vol t2(Vol t2). currentInZ(CurrentIn2). 
vol WVol t3). currentIn3(CurrentIn3). 
vol t4(Vol t4). currentOut4(CurrentOut4). 
voltS(Volt5). currentInS(CurrentIn5). 

% 
% schema methacis 
Z 

rail Rail. 

hose H4. 

wire W6. 
wire WIO. 



5% 
% build/O instantiates sub-components of power, assigns each 
% a name, defines the component list Clist, unifies the 
'% instance variables of the sub-components, and sends a 
% message to system to build schema's subcompnents. 

build:- FTank isa tank, 
F-Pump isa pump, 
F-Filter isa filter, 
F-Fuse isa fkse, 
F-Switch i s  switch, 
Relay isa relay, 
J4 isa junction4, 
J3 isa junction3, 
Rail isa rail, 
Inj isa injector, 
Press-Reg isa regulator, 
HI isa hose, 
H2 isa hose, 
H3 isa hose, 
H4 isa hose, 
W1 isa wire, 
W2 isa wire, 
W3 isa wire, 
W4 isa wire, 
W5 isa wire, 
W6 isa wire, 
W7 isa wire, 
W8 isa wire, 
W9 isa wire, 
W10 isa wire, 

F-Tank:name(fueltank), 
F_Pump:name(fuelpump), 
F-Filter:name(fuelfiItcr), 
F-Fuse:name(fuelfusc), 
rSwitch:name(fuclswi tch), 
Relay :name(fuelreIay), 
J4:namef junct4), 
J3:name(junct3), 
Raif:name(fuelrail), 
Inj:name(fuelinj), 
Press-Reg:name(fuelreg), 
H I  :namc(hosel), 
H2:name(hose2), 
H3:namc(hose3), 
H4:name(hosc4), 
W1 :name(wirel), 
W2:na~,e(wireZ), 
W3:name(wire3), 
W4:name(wire4), 
WS:namc(wire5), 
W6:nametwi-e6), 
W7:name(wire7), 
WS:name(wire8), 
W9:name( wire9), 
W lO:namc(wirclO), 

[H1,H2,H3,H4,W1,W2,W3,W4,W5,W6,W7,W8fW9fW~~,J4,J3, 
Relay,Rail,Inj,Press_Reg, F-Swi tch, F-Tank,F-Pum p, 
F-Fil ter,F-Fu se], 

% 
% unify instance variables of schema with those of its 
% ~ ~ ~ M m p o n e n t s  
% 



% 
% unify instance variables of between sub-components 
% 

F-Swi tch: terminal 1 (Vol tA,CurrentA), 
W10: terminaIZ(Vo1 tA,CurrentA), 

J3:terminal1(VoltC,currentRange CurrentCl), 
W8: terminall (Vol tC,currentRange CurrentC2), 
CurrentCl=:= 0 - CurrentC?, 

J4:terminall(VoltE,CurrentE), 
W6:teminal2(VoltE,CurrentE), % from switch 

J4:terminal2(VoltF,CurrentF), 
W7: terrninal2(VoltF,CurrentF), % from relay 

J4:terminal3(VoltG,cu1~entRange CurrentGI 1, 
W9:tenninall(VolG,currentRange CurrentG2), % to pump 
CurrentGI =:= 0 - CumntG2, 

J4: teminal4(VoltH,currentRange CurrentH1 ), 
W1 :tenminall (VoltI3,currentRange CurrentH21, % to pump 
CumntHl=:= 0 - CurrentH2, 



Press-Reg: terminal2(PressureJ,FlowJ,FCondJ 1, 
H4:terminall (kessureJ,FlowJ,FCond J), 



% 
% send message to system to build schema's 
% s u b c o m p o ~ ~ t s  
% 

schema cngine:system 

% 
% Schema instance variables 
96 

vol tageRange Volt1 . currentRange CurrentInl. 
vol tagcRange Vol t2. currentRange CumntIn2. 
vol tageRange Vol t3. currentRange CurrentIn3. 
pressffange Presd. flow RateRange FlowIn4. condi tionType FlowCond4. 

fuel F. 
ccp C. 

% 
% accessors for persistent variables 
% 

terminall (Volt1,Currentlnl). 
terminal2(Volt2,CurrentIn2). 
trrminal3(Volt3,CurrentIn3). 
tcrminal4(Press4,RowIn4,FlowCond4). 

% 
% schema metha& 



% 
% buifd/O instantiates subcomponents of powerl assigns each 
% a name, defines the component list Clist, unifia the 
% instance variables of the suftcomponents, and sends a 
76 message to system to build sthcrna's subtomponents. 
% 

build:- F isa fuel, F:name(fuelSyst), 
C isa ccp, Cmme(ccpSyst), 

Clist = IF,C3, 

% 
% unify instance variables of schema with those of its 
% s u b m p o ~ e n t s  
% 

% 
% unify instance variables of between sub-components 
% 

% 
% send mesage to system to build xhm's 
% sutKanponents 
% 



k Schema instance variables 
% 

sipalType Signal. 
pressRange Press. flowRateRange FlowIn. conditionType FlowCond. 

% 
Z sub-components of vehicle 
% 

power P. 
engine E. 

% 
% acccssors for persistent variables 
% 

signal(Signa1). 
tminal(Press,FlowIn,FIowfond). 
press( Press). fl ow1 n(Flow1n). flowCond(FlowCond). 

% 
% fbild/O instantiates sub-components of power, assigns each 
% a name, defines the component list Clist, unifies the 
% instance variables of the subcomponents, and sends a 
'46 message to system to build schema's sub-components 
% 

build:- P isa power, P:namdpowdyst), 

E isa engine, E:name(engineSyst), 

5% 
% unify insbnce variables of schema with those of its 
I-- 
% 

P:signaif Signal), 



% unify instance variables of betwecn subcomponcnts 
% 

% 
% send message to system to build schema's 
% subcompo~ts  
% 



Appendix B - Simulated Diagnostic , Sessions 

B.1. Power System Diagnostic Simulation 

B.1.1. Input Data-Base File 

set warnings off 

% 
% load knowledge bases 
% 

load component .kb 
load primitive.kb 
toad tompoundkb 
load system.kb 

% 
b define, name, and build top level object 
% 

pawn P isa power,P:namefpowerSystem~. 
P:build. 

% 
46 find and display a healthy candidate (i.e., no measurements have 
% yet been taken) 
% 



% 
% discard that candidate, add new data, and find new candidates 
% 

undo 2 
P:signal(off),P:volt5(6). 
P:findCandidates. 

% 
% add new data, and find new candidates 
% 

70 

% add new data, and find new candidates 
% 



B.1.2. Output File 

Echidna Version 0.9 beta 
Compiled: Thu (3ct 10 15:2259 PDT 1991 
tc) Copyright Expert Systems Lab. 
Simon Fraser University, 1991 

All rights reserved 
(Expires: &Mar-92) 

echidna command 1> load powerl 
loading data base file "powerl" ... 
loading knowledge base file "component.kb ... 
loading knowledge base file "primitive-kb ... 
loading knowledge base file "compound.kb" ... 
loading knowledge base file "system.kbW ... 
query #O "power P isa power,P:namdpowerSystem)." issued 
done #O P isa power, P:nametpowerSystem). 
query #1 Ybuild." issued 
done #O P isa power, P:name(powerSystem). 
done #1 P:build. 
query #2 "P:findCandidatesl' issued 

SYSTEM powerSystem 
enginefuse state 0 condition 0 
ecmfuse state 0 condition 0 
junction3 state 0 condition 0 
junction2 state 0 condition 0 
junction1 state 0 condition 0 
wire6 state 0 condition 0 
wire2 state 0 condition 0 
wire1 state 0 condition 0 
battery state 0 condition 0 
ignitionswitch state f [isjunction, 01, [iSswi tch, 0]] condition 0 

done #O P isa power, P:name(powerSystem). 
done #1 P:buitd, 
done #2 PfindCandidates. 
query #2 "PdindCandidates' is undone 
done #O P isa power, P:narne@owerSystem). 
done #I P:build. 
query #3 *T:signal(ofD,P:volt5(6)? issued 
done #O P isa power, P:name(powerSystem). 



done #1 Ebuild. 
done #3 P:signaI(offl, P:volt5(6). 
query #4 "EfindCandidates." issued 

SYSTEM powerSystem 
enginefuse state 0 condition 0 
ecmfuse state 0 condition 0 
junction3 state 1 condition 1 
junction2 state 0 condition 0 
junction1 state 0 condition 0 
wire6 state 0 condition 0 
wire2 state 0 condition 0 
wirel state 0 condition 0 
battery state 0 condition 0 
ignitionswitch state [[isjunction, 01, [isswitch, 011 condition 0 

looking for more single fault candidates 

SYSTEM powerSystem 
enginefuse state 0 condition 0 
ecmfuse state 0 condition 0 
junction3 state 3 condition 1 
junction2 state 0 condition 0 
junction1 state 0 condition 0 
wire6 state 0 condition 0 
wire2 state 0 condition 0 
wirel state 0 condition 0 
battery state 0 condition 0 
ignitionswitch state [[isjunction, 01, liSswiich, Of] condition 0 

looking for more single fault candidates 

SYSTEM powerSystem 
enginefuse state 0 condition 0 
ecmfuse state 0 condition 0 
junction3 state 0 condition 0 
junction2 state 0 condition 0 
junction1 state 0 condition 0 
wire6 state 0 condition 0 
wire2 state 0 condition 0 
wire1 state 0 condition 0 
battery state 1 condition 1 
ignitionswitch state [[Sjunction, 01, [isswitch, 011 condition 0 

looking for more single fault candidates 



no more single fault candidates 

done #O P isa power, P:name(powerSystem). 
done #1 P:build. 
done #3 P:signal(off), P:volt5(6). 
done #4 P:findCandidates. 
query #4 'T:findCandidates." is undone 
done #O P isa power, P:name(powerSystem). 
done #1 P:build. 
done #3 P:signal(off), P:volt5(6). 
query #5 'T:batt(battery Battery),Battery:volt(14)." issued 
done #O P isa power, P:name(powerSystem). 
done #1 P:build. 
done #3 P:signal(off), P:volt5(6). 
done #5 P:batt(Ba ttery), Battery:volt(l4). 
query #6 "P:findCandidates." issued 

SYSTEM powersystem 
enginefuse state 0 condition 0 
ccmfuse state 0 condition 0 
junction3 state 1 condition 1 
junction2 state 0 con& tion 0 
junction1 state 0 condition 0 
wire6 state 0 condition 0 
wire2 state 0 condition 0 
wire1 state 0 condition 0 
battery state 0 condition 0 
ignitionswitch state IfiSjunction, 01, [isswitch, 011 condition 0 

looking for more single fault candidates 

SYSTEM powersystem 
enginefusrr state 0 condition 0 
eanfuse state 0 condition 0 
junction3 state 3 condition 1 
junction2 state 0 condition 0 
~-lctionI state 0 condition 0 
wire6 state 0 condition 0 
wire2 state 0 condition 0 
winel state 0 condition 0 
battery state 0 condition 0 
ignitionswitch state [[iSjnction, 01, [isswitch, 011 condition 0 

looking for mre single fault candidates 



no mose single fault candidates 

done #O P isa power, P:name(powerSystem). 
done #1 P:build. 
done #3 P:signal(off), P:volt5(6). 
done #5 P:batt(Battery), Battery:volt(l4). 
done #6 P:findCandidates. 
query #6 "WindCandidates." is undone 
done #O P isa power, P:name(powerSystem). 
done #1 P:buiId. 
done #3 P:signal(off), P:volt5(6). 
done #5 P:batt(Battery), Battery:volt(l4). 
query #7 'T:j3(junction3 J3),J3:volt2(14)." issued 
done #O P isa power, P:name(powerSystem). 
done #I P:build. 
done #3 P:signal(off), P:volt5(6). 
done #5 P:batt(Battery), Battery:volt(l4). 
done #7 P:j3tJ3), J3:volt2(341. 
query #8 "P:findCandidatesn issued 

SYSTEM powersystem 
enginefuse state 0 condition 0 
ecmfuse state 0 condition 0 
junction3 state 3 condition 1 
junction;! state 0 condition 0 
junction1 state 0 condition 0 
wire6 state 0 condition 0 
wire2 state 0 condition 0 
wire1 state 0 condition 0 
battery state 0 condition 0 
ignitionswitch state IfiSjunction, 01, [isswitch, 011 condition 0 

looking for more single fault candidates 

no more single fault candidates 

done #O P isa power, P:narne(powe&ystem). 
done #I P:build. 
done #3 P:signal(oW, P:volt5(6). 
done #5 P:batt(Battery), Battery:vol t(1.Q). 
done #7 Pj3j3U3), J3:volt2(14). 
done #8 P:findCandidates. 
echidna cornmand 2> 



B.2. Canister Purge System Diagnostic Simulation 

B.2.1. Input Data-Base File 

set warnings off 

% 
% load knowledge bases 
% 

laad compnenLkb 
load prirni tive.kb 
bad mmpundkb 
load system.kb 

% 
% define, name, and build top level object 
% 

% 
5% find and display a healthy candidate (i.e., no measurements have 
% yet be taken) 
% 

CfindCandidates. 

% 
% discard that candidate, add new data, and find new candidates 
% 



% 
% add new data, and find new candidates 
% 

% 
% add new data, and find new candidates 
% 

% 
% add new data, and find new candidates 
% 



B.2.2. Output File 

echidna 
Echidna Version 0.9 beta 

Cwnpiled: Thu Od 10 152259 PDT 1991 
(c) Copyright Expert Systems Lab. 
S imn Fraser University, 1991 

All rights reserved 
(Expires: 8-Mar-92) 

echidna command I >  load ccpl 
loadi'ir; data base file "ccpl" ... 
loading knowledge base file "component.kb ... 
loading knowledge base file "primitive.kb ... 
loading :.nowledge base file "compound.kb" .. . 
loading knowledge base file "system-kb" ... 
query iii) "ccp C isa ccp, Cname(ccpSystem)." issued 
done #O C I= ccp, C:name(ccpSystem). 
query #1 "C:Puild." issued 
done #O C isa ccp, C.name(ccpSystem). 
done #1 C:build. 
query #2 "CfindCandidates." issued 

SYSTEM ccpsystern 
wire2 state 0 condition 0 
wire1 state 0 condition 0 
how6 state 0 condition 0 
hose5 state 0 condition 0 
hose3 state 0 condition 0 
hose2 state 0 condition 0 
hose1 state 0 condition 0 
pwCV state 0 condition 0 
canister1 state 0 condition O 
solenoid1 state 0 condition 0 

dune #O C isa ccp, CmmekcpSystm). 
done #1 Gbuild, 
Bow #2 f :findflitndidates. 
quay #2 '%:findCandidates." is undone 
done MI C isa ccp, Cmame(ccpSystem). 
done #I Cbuild. 
query #3 '%:volt2(14),C:volO(O)." issued 



done #O C isa ccp, C:name(ccpSystem). 
done #1 C:build. 
done #3 C:volt2(14), C:volt3(O). 
query #4 "C:findCandidates." issued 

SYSTEM ccpsystem 
wire2 state 0 condition 0 
wirel state 0 condition 0 
hose6 state 0 condition O 
hose5 state 0 condition 0 
hose3 state 0 condition 0 
hose2 state 0 condition 0 
hose1 state 0 condition 0 
presCV state 0 condition 0 
canister1 state 0 condition 0 
solenoid1 state 0 condition 0 

no symptoms 

done #0 C isa ccp, C.mme(ccpSystem). 
done #I C:build. 
done #3 C:volt2(14), C:volt3(0). 
done #4 CfindCandidates. 
query #4 "CfindCandidates." is undone 
done #O C isa ccp, C:name(ccpSystem). 
done #1 €:build. 
done #3 C:voIt2(14), C:volt3(0). 
query #5 "Cpressl(-1~,C:flowOut1(2)." issued 
done #0 C isa ccp, C:namdccpSystem). 
done #1 Cbuild. 
done #3 C:volt2(14), C:volt3(0). 
done #5 C:pressl(-l), C:flowOutl(2). 
query #6 "C:findCandidates." issued 

SYSTEM ccpsystem 
wire2 state 0 condition 0 
wirel state 8 condition 0 
hose6 state 0 condition 0 
hosefi state 0 condition 0 
hose3 state 0 condition 0 
hose2 state 0 condition 0 
hose1 state 1 condition I 
presCV state 0 condition O 
canister1 state 0 condition 0 
so1enoidl state 0 condition 0 



lcmking for more single fault candidates 

SYSTEM ccpsystem 
wire2 state 2 condition 1 
wire1 state 0 condition 0 
kosc6 state 0 condition 0 
how!? state 0 condition 0 
hose3 state 0 condition 0 
hox2 state 0 condition 0 
hoxl state 0 condition 0 
presCV state 0 condition 0 
canistml state 2 condition 0 
solenoid1 state 1 condition 0 

looking for more single fault candidates 

SYSTEM ccpsystem 
wire2 state 0 condition 0 
wire1 state 2 condition I 
ho& state 0 condition 0 
hose5 state 0 condition 0 
hose3 state 0 condition 0 
hose2 state 0 condition 0 
hose1 state 0 condition 0 
p r d  state 0 condition 0 
canister1 state 2 condition 0 
solenoid1 state 1 condition 0 

looking for more single fault candidates 

SYSTEM ccpsystem 
wire2 state 0 condition 0 
wire1 state 0 condition 0 
hose6 statc 0 condition 0 
hose5 state 0 condition 0 
hose3 state 0 condition 0 
hose2 state 0 condition 0 
b e 1  state 0 cor;ciiiion 0 
pmdX state 0 condition O 
rrtnLster1 state 2 mndi tion 0 
salenoid1 state 3 condition I 

looking for more single fault candidates 



SYSTEM ccpsystem 
wire;! state 0 condition 0 
wire1 state 0 condition 0 
hose6 state 0 condition 0 
hose5 state 0 condition 0 
hose3 state O condition 0 
hose2 state 0 condition 0 
hosel state 0 condition 0 
presCV state 0 condition 0 
canister1 state 2 condition 0 
sdenoidl state 4 condition 1 

looking for more single fault candidates 

SYSTEM ccpsystem 
wire2 state 0 condition 0 
wire1 state 0 condition 0 
hose6 state 0 condition 0 
hose5 state 0 condition 0 
hose3 state 0 condition 0 
h d  state 0 condition 0 
hosel state 0 condition 0 
p r d  state 0 condition 0 
canister1 state 0 condition 0 
so1enoidl state 5 condition 1 

looking for more singe fault candidates 

no more single fault candidates 

done ##O C isa ccp, C:name(ccpSystern). 
done #I C:buiM. 
done #3 C:volt2(14), C:volHOl. 
done #5 Cpressl(-11, C:flowOutl(2). 
done #6 CSindCandidats. 
query #6 "EfindCmdidates." is undone 
done #O C isa cep, CmmdccpSystem). 
done #I C:buiM. 
done #3 C:volt2(14), C:volW(Ol. 
done t15 C:presslf-11, C:r%uvOulil(2j. 
querj #7 "CpresH-l)." issued 
done #O C isa crg, C:name(ccpSystem1. 
done .,I C.W. 
done #3 I' voIt2(14), C:voWU). 
done #5 Cpressl(-I), Cf a ~ w O d  (2). 



SYSTEM ccpSystcm 
wire2 state 0 condition 0 
wire1 state 0 cordition 0 
h o d  state 0 condition 0 
hod5 statc 0 condition 0 
hose3 state 0 condition 0 
bse2 state 0 condition O 
bsel state 1 condition 1 
p e C V  state 0 condition 0 
canister1 staic 0 condition 0 
wfenoidl state 0 condition 0 

looking for more single fault candidates 

SYSTEM ccpSystcm 
wire2 state 2 condition f 
wire1 state 0 condition 0 
hose6 state 0 condition 0 
hose5 state 0 condition O 
hrzx3 state O condition 0 
Ituse2 state 0 condition 0 
hose1 state 0 condition 0 
pmKV state 0 condition O 
canister1 state 2 condition 0 
sofenoidl state 1 condition 0 

fwking for more single fault candidates 

SYSTEM ccpSystem 
wire2 slate 0 condition 0 
wiml state 2 condition 1 
f i a d  state O condition 0 
has& state O condition 0 
hose3 state 8 condition 0 
k 2  state 0 condition 0 
k l  state O condition 0 
p m S V  state 0 condition 0 
canister3 sta tft 2 condition 0 
wltrtclidl state I condition 0 

looking for more single fault candidates 



SYSTEM ccpSystem 
wire2 state 0 condition 0 
wirel state 0 condition 0 
hose6 state 0 condition 0 
hose5 state 0 condition 0 
hose3 state 0 condition 0 
hose2 state 0 condition 0 
hose1 state 0 condition 0 
presOI state 0 condition O 
canister1 state 2 condition 0 
solenoid1 state 3 condition 1 

looking for more single fault candidates 

SYSTEM ccpSystem 
wire2 state 0 condition 0 
wirel state 0 condition 0 
hose6 state 0 condition 0 
hose5 state 0 condition 0 
bse3 state 0 condition 0 
hose2 state 0 condition 0 
hose1 state 0 condition 0 
presCV state 0 condition 0 
canister1 state 2 condition 0 
solenoid1 state 4 condition 1 

looking for more single fault candidates 

SYSTEM ccpsystem 
wkd state 0 condition 0 
wire1 state 0 condition 0 
hose6 state 0 condition 0 
hose5 state 0 condition 0 
hose3 state 0 condition 0 
hose;! state 0 condition 0 
bsel state 0 condition 0 
presCt" state 0 condition 0 
canister1 state 0 condition 0 
s o M d 1  state 5 condition 1 

no more- sing5e fault candidates 



done #O C isa ccp, C:name(ccpSystem). 
done #I C:build. 
done #3 C:volt2(14), C:vof t3(O). 
done #5 C:pressl(-11, C:flowOutl(2). 
done #7 C:press6(-1). 
done #8 CfindCandidates. 
query #8 "CfindCandidates." is undone 
done #O C isa ccp, C.mmetctpSystem). 
done #I Chi ld .  
done #3 C:voIt2(14), C:vol t%O). 
done #5 C:pressl (-1 1, C:fiowOu tl(2). 
done #? C:press6(-1). 
query #9 "Cpres5(2),C:flowIn5(2)." issued 
done #O C isa ccp, C:name(ccpSystern). 
done 81 C:buiid. 
done #3 C:volt2(14), C:volt3(0). 
done #5 C:pressl(-11, CflowOutlt2). 
done #7 C:press6(-1). 
done #9 C:prcssEi(2), C:flowIfiQ). 
query #10 "C:findCandidates." issued 

SYSTEM ccpsystem 
wire;! state 0 condition 0 
wire1 state 0 condition 0 
hose6 state 0 condition 0 
hose5 state 0 condition 0 
hose3 state 0 condition 0 
hose2 state 0 condition 0 
hose1 state 1 condition 1 
pres6V state 2 condition 0 
canister1 state 1 condition 0 
solenoid1 state 0 condition 0 

tooking for more single fault candidates 

SY!TEM ccpSystem 
w i d  state 0 condition 0 
wire1 state 0 condition 0 
hose6 state 0 condition 0 
has& state 0 condition 0 
hose3 state 0 condition 0 

state Omndition 0 
hose1 state 0 condition 0 
presCV state 2 condition 0 
canister1 state 1 tomfition 0 
dencridl state 5 cunditkm I 



looking for more single fault candidates 

no more single fault candidates 

done #O C isa ccp, C:name(ccpSystem). 
done #I C:build. 
done #3 C:volt2(14), C:volt3(0). 
done #5 C:pressl(-I), C:flowOutl(Z). 
done #7 C:press6(-1). 
done #9 C:press5(2), C:flowIn5(2). 
done #10 C:findCandidates. 
echidna c o m n d  2> quit 
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