
ENFORCEMENT OF INTEGRITY 
CONSTRAINTS 

IN RECURSIVE DATABASES 

Lifang Zhu 

B.CS Huazhong University of Science and Technology, Wuhan, China, 1983 

MS.CS Peking University, Beijing, China, 1989 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the School 
of 

Computing Science 

@ Lifang Zhu 1992 
SIMON FRASER UNIVER.SITY 

December 1992 

All rights reserved. This work may not be 
reproduced in whole or in part, b y  photocopy 

or other means, without the permission of the author. 



Name: 

Degree: 

Title of thesis: 

APPROVAL 

Lifang Zhu 

hjaster of Applied Science 

Enforcement of Integrity Constraints 

in Recursive Databases 

Examining Committee: Dr. Warren Burton, Chairman 

Dr. Nick Cercone, Senior Supervisor 

Dr. Jiawei  ad, Senior Supervisor 

-- 

/ 
Dr. Fred Popowich, Examiner 

Date Approved: 
December 1 6 ,  1 9 9 2  



PARTIAL COPYRIGHT LICENSE 

I hereby grant  t o  Simon Fraser U n i v e r s i t y  the  r i g h t  t o  lend 

my thes i s ,  p r o j e c t  o r  extended essay ( the  t i t l e  o f  which i s  shown below) 

t o  users o f  the Simon Fraser U n i v e r s i t y  L ib ra ry ,  and t o  make p a r t i a l  o r  

s i n g l e  copies on l y  f o r  such users o r  i n  response t o  a request from the 

l i b r a r y  o f  any o the r  u n i v e r s i t y ,  o r  o the r  educat ional  i n s t i t u t i o n ,  on 

i t s  own beha l f  o r  f o r  one o f  i t s  users. ' I  f u r t h e r  agree t h a t  permission 

f o r  m u l t i p l e  copying o f  t h i s  work f o r  scho la r l y  purposes may be granted 

by me o r  the  Dean o f  Graduate Studies. I t  i s  understood t h a t  copying 

o r - p u b l i c a t i o n  o f  t h i s  work f o r  f i n a n c i a l  gain s h a l l  no t  be al lowed 

w i thou t  my w r i t t e n  permission. 

T i t l e  o f  Thesis/Project/Extended Essay 

Author: 

(s i gnature) 

(name) 

(date) 



ABSTRACT 

Integrity constraint(ic) enforcement forms an essential component in deductive 

database processing. Some interesting methods which enforce integrity constraints 

have been proposed by Topor, Lloyd, Decker, Kowalski, Sadri, Soper, Martens, Bruynooghe, 

Yum and Henschen. In this thesis we further analyze and develop efficient simplifica- 

tion algorithms and methods for the enforcement of integrity constraints in recursive 

deductive databases. We combine theorem-proving methods with compilation tech- 

niques in our approach. Theorem-proving methods are used to prune the size of the 

integrity constraint checking space and compilation techniques are also used to de- 

rive necessary implicit modifications and evaluate the simplified integrity constraint 

set against the actual database. Synchronous and asynchronous chain recursions are 

discussed. By exploiting the hierarchical structure of a deductive database, we can 

precompile or partially precompile integrity constraints and ic-relevant rules to sim- 

plify integrity constraint checking and validate some modifications by static qualitative 

analysis. By analyzing predicate connection and variable binding, and compiling re- 

cursive rules independently, we can simplify ic-relevant queries and generate efficient 

checking plans. Some asynchronous and synchronous chain recursive integrity check- 

ing relevant queries can be simplified to non-recursive or simpler queries. Efficient 

processing algorithms are developed for integrity checking and derivation of implicit 

modification. To perform integrity checking against the actual database we utilize 

the 'affected graph' of a modification. We achieve by focusing our attention only on 

the part of the database which is affected by the update and relevant to integrity 

constraints. 
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CHAPTER 1 

Introduction 

Integrity constraint[IC] enforcement is an essential part of deductive database pro- 

cessing. An integrity constraint specifies a property that the database must satisfy to 

remain in a valid state. Any modification to the database may affect the consistency 

defined by the constraints, so that integrity constraints must be enforced after modi- 

fications to ensure the consistency of the database. 

Integrity checking has been an interesting database research topic since the 1970's. 

The enforcement of integrity constraints is time-consuming, which largely affects the 

overall performance of database processing. Extensive research had been done on 

integrity constraint enforcement in relational databases in the 1970's and at the be- 

ginning of the 1980's. Thereafter, some researchers extended their interests to de- 

ductive databases. Some interesting methods for the enforcement of ICs in deductive 

databases have been proposed by Topor and Lloyd [14], Decker [4], Kowalski, Sadri 
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and Soper [6], Martens and Bruynooghe[l5], in non-recursive databases. Yum and 

Henschen [21, 221 proposed a method for maintaining state-constraints in deductive 

databases with transitive and linear recursions. In this thesis I explore this problem 

extensively and develop efficient methods for the enforcement of integrity constraints 

in non-recursive and recursive deductive databases. From this point on, database is 

used to refer to  deductive database, for simplicity. 

Recently, query independent recursion compilation techniques have provided a 

very good recursive query evaluation method for some practical recursions[3, 7, 8, 

10, 111. On one hand, the theorem-proving technique provides a very good method 

for static analysis of integrity constraints and the intensional database[IDB] structure. 

On the other hand, the compilation technique provides an efficient processing strategy 

for the evaluation of integrity constraints and the derivation of implicit modification. 

We combine these two techniques in our approach to simplify integrity constraints, 

derive implicit modification and check integrity constraints. We partially or fully com- 

pile and simplify integrity constraints and integrity constraint relevant (ic-relevant) 

rules. By static qualitative analysis of the relationships among compiled integrity 

constraints and rules we can validate most of the updates. The static analysis result 

can direct the necessary integrity checking procedure against the actual database. 

Query independent compilation techniques are adopted to compile linear recursions 

and some other complex recursions into synchronous chains and asynchronous chains. 

By predicate connection analysis and variable binding analysis, recursive ic-relevant 

queries can be simplified and evaluated by an efficient evaluation strategy extended 

from the multi-counting method[ll]. 
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1.1 General approach 

Integrity constraints are used to express meta-knowledge about the facts and rules 

present in the database. For the information represented by facts and rules to  be 'cor- 

rect', the database has to 'satisfy' its integrity constraints. As with many researchers, 

we adopt the consistency view that consistency among facts, rules and constraints is 

demanded [15, 6, 211. We say an integrity constraint is violated if it is inconsistent 

with the the facts, rules and constraints in the database. Thus, we can take use of 

the well-developed query techniques to check integrity constraints efficiently. 

Simply evaluating integrity constraints after any modification is time-consuming 

and unnecessary. It is reasonable to assume that the database satisfies its constraints 

before the transaction, so that any violation afterwards must involve at least one 

of the modifications in the transaction. In the 70's and early 80's, many methods 

had been proposed for the enforcement of integrity constraints in relational databases 

based on this assumption; a survey can be found in [17]. Following Nicolas, Decker[4], 

Toper and Lloyd[l4], others have extended this idea into deductive databases. 

Kowalksky[6], Martens[l5], Yum and Henschen[21, 221, etc., improved integrity 

checking by reasoning forward and focusing only on the part of the database affected 

by the update. Based on the derivation systems they used, we can classify their 

approaches into three classes. 

Theorem-proving approach. Decker[4], Toper and Lloyd[14], Kowalski, Sadri 

and Soper [6], and others make use of a Prolog-like tuple-at-a-time derivation 
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system to check integrity constraints within the theorem-proving framework, 

and achieve the simplification effect proposed by Nicolas [17]. 

Logical query planning approach. Martens and Bruynooghe [15] make use of an 

implementation of a logical query language approach proposed by Ullman [19] 

as supporting evaluation mechanism, and incorporate it with integrity checking 

simplification methods. 

Compilation approach. Yum and Henschen [21, 221 based their integrity mainte- 

nance method on query compilation techniques to derive implicit modifications, 

simplify and check integrity constraints as in relational databases. 

These different approaches are developed along with the development of the rea- 

soning and query processing techniques of deductive databases. We will illustrate and 

analyze each approach with an example in the second chapter. 

1.2 Syntax of a logical database 

We adopt the Prolog convention of denoting logical datalog programs. We use strings 

of characters starting with an upper case letter to denote variables and strings begin- 

ning with a lower case letter (a, b, c, ...) to denote constants. Integers are constants. 

We use identifiers starting with lower case letters (p, q, r, ...) for predicate names  

and the same identifiers starting with capital letters to represent the corresponding 

relation defined by the predicates. 
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Relations and predicates refer to the same object from database terminology and 

logic terminology respectively. Tuple and fact refer to the same object also. 

A literal is of the form ~ ( t ~ ,  t 2 ,  . . . , t,) where p is a predicate name of arity n and 

each t;(l <= i <= n)  is a constant or a variable. A literal can be negated by a prefix 

-. We call (tl, t2,  ..., t,) a tuple. 

We consider a deductive database consisting of the following three exclusive com- 

ponents: 

the extensional database (EDB), which is composed of base predicates. 

the intensional database (IDB), which is composed of derived predicates which 

are defined by deductive rules of the following form: 

r : -  p l y  p2,  . . . ,  pn, " q l ,  " q2,  . . . ,  - 9 m  

integrity constraints (IC), which are defined by the following form: 

:- P I ,  p2,  . . .  , pn, " q l ,  " q2, . . . ,  " qm . 

A query is represented in relational algebra or a Horn clause. For example, 

where, - in the position of predicate attributes means we have no interest in the cor- 

responding at tributes. 
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and ? before a variable indicates the corresponding variable is inquired. 

The following notations are used for the representation of relational algebra for- 

mulas: 

U represents union 

nl,%B represents the relation projection of B on the first and last attributes. 

Ui=l..n Oi = 01 U O2 U ... U on. 

chn* = chn(X0, XI), chn(X1, X2), ... 

chni(X0, Xi) = ~hn(X0,  XI), chn(X1, X2), ..., ~hn(Xi-I ,  Xi). 

Predicate-ic connections among the predicates and integrity constraints is very im- 

portant in the compilation of recursions and the enforcement of integrity constraints. 

The simplest variable pattern of a rule is the linear variable pattern (just like the 

above chn chain), where 1) all the predicates are binary and contain neither constants 

nor repeated variables, 2) two consecutive predicates share variables at their neigh- 

boring argument positions and there is no other shared variable among predicates, 

and 3) the two variables of the head ~redicate correspond to the starting and ending 

variables of the body [lo]. Sometimes, variables are omitted in some formulas in this 

thesis if they are in a linear variable pattern. 

1.3 Knowledge modification 

Knowledge modification in a deductive database falls into three classes: 
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data modification, modify the extensional database. We can further classify data 

modifications into three kinds of operations: addition, deletion, and change. 

rule modification, modify the intensional database. 

integrity constraint modification. 

Actually we can classify rule modification and integrity constraint modification as 

for data modification, but we do not want to because we can not gain anything from 

it in the enforcement of integrity constraints. 

Any of these three kinds of knowledge modification may affect the integrity and 

consistency of the knowledge database. Thus, integrity constraints must be enforced 

whenever these kinds of modification occur. 

1.4 Assumption 

We discuss and study the enforcement of integrity constraints in deductive databases 

based on the following assumptions. 

Assumption 1 We assume that the database is function-free, range-restricted 

and stratified. 

Assumption 2 We assume the recursions in the database are compilable to asyn- 

chronous or synchronous chains. 
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1.5 Thesis organization 

This thesis is organized as follows. In Chapter 2, we survey recent research in the 

area of integrity constraint enforcement and recursive query processing. In chapter 

3, we outline an integrity constraint transformation (compilation) algorithm, static 

qualitative analysis algorithm, predicate-ic connection analysis method, and integrity 

checking algorithm, for the enforcement of integrity constraints in non-recursive de- 

ductive databases. In chapter 4, we discuss simplification of integrity constraints, 

evaluation of primitive transitive recursive ic-queries, evaluation of complex recursive 

ic-queries, and integrity checking in recursive databases. In chapter 5 ,  we discuss our 

methods, and compare the performance of our methods with previous methods. In 

the last chapter, we summarize our work and discuss future research directions. 



CHAPTER 2 

Background 

2.1 Recursion in deductive databases 

A predicate p is said to imply a predicate r (p => r) if there is a Horn clause in an IDB 

with predicate r as the head and p in the body, or there is a predicate q where p => q 

and q=> r [8]. A predicate p is said to be recursive if p => p. Two predicates p and 

q are mutually recursive if p => q and q => p. A recursive rule is linear if there is no 

mutual recursion and any rule with r as head contains no more than one occurrence of 

r in the body. A transitive recursion, i.e., single chain recursion, which contains only 

a one-sided join with the recursive predicate is a special case of linear recursion. Lin- 

ear recursion is a very important kind of recursion and has been studied extensively 

because it is believed that practical recursions are linear or transferable to linear ones. 

A rule cluster of a predicate R is the maximum subset of rules in an IDB in which 
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all of the head predicates of the rules are either R or P where P => R. 

As above, an integrity constraint cluster can be defined as a set of rules of the 

union of clusters of all of the rules which appeared in the ic. 

Recursion is a very important feature of Knowledge-Base Management Systems. 

Much research has been done on the evaluation of recursion. Many good meth- 

ods have been proposed like Magic sets[3], Counting[3], Henschen-Naqvi [2, 71, and 

query-independent compilation[8, 9, 101. Bancilhon and Ramakrishnan have written 

a very good survey on the problem of evaluation of recursive queries against deductive 

databases [2]. 

Recursions can be classified based on defi nitions or compilation results[9]. We are 

interested at the classification based on compilation results from the evaluation point 

of view. It is possible and desirable to treat different recursions differently in the 

enforcement of ICs. 

1. A bounded recursion is a recursion whose compiled formula consists of finite 

relational expressions, which is equivalent to a set of nonrecursive rules. 

2. An asynchronous chain recursion (AC) (especially, single-chain recursions) is 

recursion whose compiled formula consists of a finite number of asynchronous 

chains and possibly a small number of other predicates. Asynchronous chains 

means that the length of one chain is independent to the lengths of the other 

chains in the formula. 
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3. A Synchronous chain recursion is a recursion which is compilable to one or a 

set of synchronous chains. Synchronous chains means that all chains have the 

same length. 

4. Hyper-string recursions an infinite set of strings with irregular patterns. 

2.2 Recursive query processing 

T h e o r e m  [Hanl] A recursive cluster consisting of one linear recursive rule and one 

or more nonrecursive rules is compilable to either a bounded recursion or an n-chain 

recursion[8]. 

By analyzing predicate connections in a deductive database, a function-free linear 

recursion can be compiled to[8]: 

1. a bounded recursion, in which recursion can be eliminated from the program, 

2. an n-chain recursion, whose compiled formula consists of one chain, or n syn- 

chronized chains. 

E x a m p l e  2.3 Following is the definition of a well-known same generation recur- 

sion. 

same-generat ion (X , Y) : - parent (X , XI) , parent (Y, Y 1) , 

same-generation(X1, Y1) . 
same- generation(^, Y) : -  sibling(X, Y). 
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The above single linear recursion can be compiled to a two-chain recursion as 

shown below: 

Theorem [HLl] Many interesting function-free recursions such as, multiple linear 

recursions in linear variable patterns, some mutual recursions, canonical multi-linear 

recursions, can be compiled to asynchronous chain recursions and processed by tran- 

sitive closure query processing strategies[lO]. 

The processing of primitive n-chain recursions has been studied extensively. In 

case of n = 1 (Single chain recursion) or asynchronous chain recursion, they can be 

processed by well-studied transitive closure algorithms. Other multi-chain recursion 

( n  > 1) can be handled by synchronized processing of n chains. Most recognized 

processing methods include: Henschen-Naqvi algorithm[7], the counting methods and 

the magic sets method [3] and their extensions [ 2 ] .  

2.3 Theorem-proving approach 

Application domain: function-free, range-restricted non-recursive database. 

Derivation system based: tuple-at-a-time Prolog-like derivation system. 

Methods for avoiding redundantly rechecking constraints which are unaffected by 

the transaction were proposed by Topor and Lloyd [14], Decker [4]. Their simplifica- 

tion algorithms extend Nicolas' algorithm[l7] for relational databases and primarily 
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consist of the following two steps: 

Generate a simplified checking set from the transaction, which is possibly sim- 

pler and more highly instantiated than the original set, and whose satisfaction 

ensures the consistency of the updated database. 

Evaluate the derived constraint set against the actual database by top-down 

reasoning. 

The reasoning system they used is a purely top-down, Prolog-li ke tuple-at-a-time 

derivation system. Backward reasoning does not fit for checking integrity constraints 

because it fails to focus only on the part of the database which is affected by the 

updates. To overcome the drawback of top-down reasoning of Prolog for integrity 

checking, Kowalski, Sadri and Soper [6] extended the Prolog-like derivation system 

by : 

allowing forward reasoning as well as backward reasoning. 

incorporating additional inference rules for reasoning about implicit deletions 

caused by changes to the database, and 

incorporating a generalized resolution step, which is needed for reasoning for- 

wards from negation as failure. 

In the Prolog-like derivation system we can only reason starting from a denial. 

To reason forward, the proof procedure underlying the consistency method allows us 

reason from any deductive rules, denial or negated atom. In short, the consistency 
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method works as follows: Take the added or deleted fact, added or deleted rule, in- 

serted constraint as top clause and the database (EDB, IDB and ICs) as the input 

set to reason forward. If a refutation is found, the update violates the constraints. 

Otherwise, if no refutation can be found, the update is valid. 

Example 2.1 In the following database, citizen and registered-alien without criminal- 

record are defined to be lawful residents. To be in a valid state the database is required 

that no lawful residents are deported. Suppose we have a transaction to delete Frank's 

criminal record. The database is assumed to be consistent before the transaction. 

IDB: lawful-resident(x) :- registered-alien(x), 

not(crimina1-record(X)). (ri) 

ICs : :- lawful-resident(x), deported(x1. 

EDB: deported(John), 

criminal-record(Frank), 

registered-alien(Frank1, 

deported(Frank), 

citizen (Tom) 

(ici) 

Transaction(T): delete criminal-record(~rank1 
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By taking not(Criminal-record(F'rank)) as the top clause we can show the integrity 

checking procedure as shown in the diagram below. 

Top clause 

not(crimina1-record(Frank) 

I 

lawful-resident(Frank) <-- 

registered-alien (Frank) 

I 

<- registered-alien(Frank) & 

deported (Frank) 

I 

<- deported (Frank) 

I 

C I 

Input set 

r 1 

The search space consists of one refutation illustrating that the update causes the 

database to violate the integrity constraints. 

It is difficult to implement forward reasoning in a backward reasoning system. 

Forward reasoning makes the consistency method more efficient than other previous 

methods. Kowalski, Sadri and Soper found the importance of focusing only on the 

affected part of the database by the update. 
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2.4 Query planning approach, Martens' integrity 

checking met hod 

Application domain : function-free, stratified and non-recursive deductive database. 

All rules and constraints in the database must be range-restricted. 

Derivation system based : relation-at-a-time logical query language implementa- 

t ion. 

Martens and Bruynooghe[l5] tried to integrate an approach to implementing a 

logical query language presented by Ullman [19], and efficient techniques for integrity 

checking as advocated by Nicolas[l5], Decker[4], Topor and Lloyd[l2], Kowalski, Sadri 

and Soper[6], etc. Their method was based on Ullman's query planning method using 

rulelgoal graphs and capture rules[l9]. The purpose of rulelgoal graphs is to allow 

the planning of evaluation strategies. Martens and Bruynooghe extended it for the 

enforcement of integrity constraints. One advantage is that using it, the system can 

fix the best order in which to evaluate implicit modification and check integrity con- 

straints. 

The rule/goal graph Martens and Bruynooghe used is slightly different from U11- 

man's original rulelgoal graph. They draw arcs in opposite directions [19, 151. In 

their algorithms they use posocc-ic and negocc-ic to represent a positive occurrence 

or a negative occurrence in an ic. They use posocc-r and negocc-r to represent a pos- 

itive occurrence or a negative occurrence in a rule. For integrity checking, Martens 

and Bruynooghe extended the rulelgoal graph as follows: 
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1. If ic is a constraint with n (ordered) variables, then there is a node i d  for each 

adornment, p, where p is a string of b (bound) or f (free) of length n1 representing 

the state of arguments or variables. 

2. We add arcs id'- > BS (arc from icP to B;), where q is such that those argu- 

ments of Bi are bound which contain variables bound by P Or "0 variables at 

all. The other arguments of Bi are free. 

3. For every predicate A occurring in the database, add a transaction node At. 

4. For every node At, we add arcs: 

a posocc-ic (negocc-ic) arc A ~ -  > icP for every constraint ic where A occurs 

in a positive (negative) literal and p is such that all variables appearing as 

arguments to (one occurrence of) A are bound and no other variables are 

bound. 

a posocc-r (negocc-r) arc A ~ -  > r p  for every rule r where A occurs in 

a positive (negative) literal and p is such that all variables appearing as 

arguments to (one occurrence of) A are bound and no other variables are 

bound. 

Martens' method treats different kinds of modifications separately, adding a fact, 

deleting a fact, adding a rule, deleting a rule, adding an integrity constraint, deleting 

an integrity constraint. Their main algorithm is for the addition and deletion of facts. 

Compared with the case of addition or deletion of facts, the integrity checking for 

adding or deleting rules is easier. They merely treat the receipe of the added or 



CHAPTER 2. BACKGROUND 18 

deleted rule as added or deleted facts, then go through the same procedure as adding 

or deleting facts. When adding an integrity constraint, they just treat it as a query; 

if it is not false it causes integrity problem. The easiest case to  consider is for the 

deletion of constraints; no checking needs to be done, only integrity checking related 

information needs to be updated accordingly. The basic procedure for checking adding 

or deleting a fact is as follows: 

First check whether the update directly violates integrity constraints 

Then derive all implicit additions and deletions which are an immediate conse- 

quence of the update. 

Let the implicit addition or deletion undergo the same procedure. 

Let us take Martens' algorithm for the addition of a fact as an example to illus- 

trate and analyze his method. 

Adding a fact A(al, az, ..., a,) 

1. If the addition of this fact has already been treated, continue with another 

change. 

2. If A(al, a2, ..., a,) is provable in the initial database, that is, A(al, a2, ..., a,) is 

redundant; then, continue with another change. 

3. For every posocc-ic arc At - - > icP where A(al, az, ..., a,) can be unified with 

the A-occurrence in ic, compute the relation for icp. If a non-empty relation 
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is found, stop the processing of this transaction, undo it and inform the user 

about the integrity constraint violation that occurred. 

4. For every posocc-r arc At - - > rP where A(a1, a2, ..., a,) can be unified with 

the A-occurrence in r, compute the relation for rP .  Translate to facts concerning 

the predicate occurring in the head of r. Treat every resulting tuple as an added 

fact. 

5. For every negocc-r arc At - - > rP where A(al, az, . . . , a,) can be unified with the 

A-occurrence in r,  compute the relation for rP. Translate it to facts concerning 

the predicate occurring in the head of r. Treat every resulting tuple as a deleted 

fact. 

Martens and Bruynoogheh's method reasons relation-at-a-time instead of Prolog- 

like tuple-at-a-time, which is preferable and more efficient in deductive databases. It 

is possible to take advantage of precompilation to optimize integrity checking if modi- 

fication to rules and constraints is not frequent. The reasoning method is bottom-up, 

so Martens' method has advantages of a bottom-up evaluation system, which can 

make the method focusing only on the part of the database which is affected by the 

update. 

One potential problem is caused by their pure bottom-up reasoning system, which 

fails to focus only on the parts of the database which may affect constraints. All 

of the implicit modifications are derived and without further consideration, some of 

them may not affect any constraints. 
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This method is recursive. For the integrity checking of an addition of a fact, the 

first step of adding a fact is trivial. The second step is not so simple, to find if A(a1, 

a2, ..., an) is provable in the old database, we need to reason against the old database. 

They spend almost the same amount time on checking boundary conditions as de- 

riving implicit modifications. The third step is unvoidable but not very expensive in 

the entire checking procedure. The last two steps equal several queries. We need to 

evaluate all of the rules in which A occurs. These steps will generate more implicit 

modifications which need to undergo the same procedure as A(a1, a2, ...). This is the 

most expensive part of the method. 

Martens and Bruynooghe's method can only handle the situation in which a pred- 

icate may occur only once in the body of a rule or integrity constraint. In this case, 

simply unifying the added or deleted fact with its occurrences in a rule's body is not 

enough to derive the immediate effect on the rule in the last two steps. Nevertheless, 

it is easy to extend their method to handle more complex situations. 

Example 2.2: The following uses abbreviations 1-r for lawful-residents and e-v for 

eligible-visitor, etc. for the database in Example 2.1. One rule defining that eligible 

visitor are dependents of lawful residents is added. 

IDB : 1-r (X) : - r-a(X) , no t  ( c - r  (X) ) . 

1-r(X) : - c i t  (X) . 
e-v(X) :- depen(X, Y ) ,  1 - r ( Y ) .  

ICs : : - 1-r(X) , deported(X) . ( i c i )  
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EDB : depen(John, Tom) , 

deported(John), 

c-r(Frank), 

r-a(Frank) , 

deported(Frank), 

cit (Johnson) , 

cit (Tom) . 

T: Add r-a(George) 

In rule r3 of the database above, e-v has one variable, which has two binding 

situations, free and bound, so that there are two nodes, e  - vb and e - vf, for e-v in 

the extended rule/goal graph as shown in Fig. 2.2 (a). Rule r3 has two variables X 

and Y. There is an arc from e  - vb to r!f because X of r3 is bound and Y of r3 is free 

due to X of e-v is bound. For the same reason, there is an arc from e  - vf to  r3ff. 

There is an arc from rif to depenbf  because depen occurred in the body of r3 and X 

and Y of depen are bound and free accordingly when X and Y in r3 are bound and 

free. In the same way we can complete the extended rule/goal graph for rule r3 and 

other rules as shown in Fig. 2.2 (a) and (b). There is an transaction node for each 

predicate. When variables in depen are bound, the binding can be passed to variables 

in rule r3, so that there is an arc from depent  to r:b. In this way, the entire extended 

rulelgoal graph for the database of Example 2.2 can be built and is shown in Fig. 2.1. 



CHAPTER 2. BACKGROUND 

b 
cit 

e-v e-v 

depen bf depen ff 

b b 
r-a c-r 

f 
r-a c-r 

deported , 
r-a , c-r , 

( 4  

Fig. 2.1 The extended rulelgoal graph for the database in Example 2.2 

If we start from the transaction node of r-at in Fig. 2.1 (d), we find r-at does 

not occur in any integrity constraint, so it will not affect any integrity constraint 
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directly. From r-at to r l ,  there is a posocc-r arc, so we need to unify r-a(George) with 

r-a's occurrence in rl 's body and treat the resulting relation as added facts for 1-r, 

1-r(George). 1-r(George) needs to undergo the same procedure as adding r-a(George). 

1-r(George) is verified by the second step as not derivable in the old database. 1-r 

occurs in icl as shown in Fig. 2.1 (e), so icl needs to be checked with the unification 

of 1-r(X) with 1-r(George); fortunately the result is empty. 1-r occurs in r3 as shown in 

Fig. 2.l '(e), we have to evaluate its influence on e-v and the result need to undergo the 

same procedure as before according to Martens' method. But we find any modification 

of e-v has no chance to violate any integrity constraint in the database, so our last 

effort is in vain. 

2.5 Compilation approach, maintaining state con- 

straint s 

Application domain: function-free, single linear recursive Horn database. Integrity 

constraints are required to be range restricted. 

Derivation system based: compilation approach. 

McCune and Henschen [16] proposed a method for maintaining state constraints 

in a relational database. From a theoretic point of view, they attempt to represent the 

relationship between the database before and after an update by transition axioms, so 

that integrity constraints on the new database can be represented and simplifiedon the 

initial database state. For a transaction, they try to generate a complete test set to be 

applied before the transaction is performed. They emphasize that checking integrity 
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constraint should be done before updating to avoid unnecessary undoing of illegal 

transactions. Unlike Nicolas' direct substitution and simplification method, they use 

a more cumbersome computation extensive method to simplify integrity constraints. 

Generic constants are used during constraint compilation at their specification time. 

When the database is in use and a user requests an update, the appropriate compiled 

formulas are retrieved, the generic constants are replaced with the update values, the 

formulas are simplified, and (if need be) tested against the database. 

Yum and Henschen [21, 221 generalized the state-constraint maintaining method in 

relational databases above to deductive databases involving Horn clauses. They try to 

deduce all of the relevant implicit and explicit updates upon arrival of a transaction, 

then the same integrity constraint enforcement strategy as in relational databases can 

be exploited to maintain state constraints in deductive da.tabases. Their method has 

three stages: 

Simplification of integrity constraints at integrity constraint specification time. 

Derivation of induced updates upon arrival of a transaction through a compila- 

tion approach. 

Evaluation of the relevant simplified integrity constraints. 

Yum and Henschen use the same method of simplifying integrity constraints pro- 

posed by McCune and Henschen [16]. The simplification method is outlined below. 

Algorithm 2.3.1 Simplification of integrity constraints 
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1. Form a transition axiom (TAX) for the update. 

2. Replace all of the instances of the new relation in the integrity constraint axiom 

with the right-hand-side of TAX, which is equal to the new relation. 

3. Convert the above integrity constraint clause into a conjunctive form. 

4. Delete all of the conjuncts subsumed by the old integrity constraint clause, 

which is true because we assume the database satisfies its constraints before the 

update. 

5. Convert the remaining clause into a disjunctive form. 

Induced updates  are called redundant when they are already derivable before the 

update for insertion or they are still derivable after the update for deletion. Redun- 

dant facts are removed by querying them on the initial database state or the new 

database state for redundant induced insertion or deletion separately. 

To deduce induced updates, they compile all the IDB rules, whose head relation 

may violate some integrity constraints(which appears in some integrity constraints). 

When an insertion update arrives, evaluate the increment of each compiled rule with 

the update predicate in its body. Thus, we can deduce a set of non-redundant facts 

that are implicitly or explicitly inserted to the database due to an update. The set of 

deleted facts can be derived in the same way for deletion updates. The same proce- 

dure can be applied to the update of an IDB. 

Let us take insertion of a fact P' as an example to illustrate the derivation of 
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induced updates. 

A forward chaining rule cluster for a base predicate, F-cluster(P) is a set of com- 

piled rules, with a predicate P in its body, whose head relation may violate some 

integrity constraint. F-clustere(P1) is U;=,.., Re; where R is a unified rule in the 

F-cluster(P), dl, . . . ,8, are most general unifiers(mgus) of each occurrence of P in the 

F-cluster(P) and an update P', and n is the number of mgus. F-clusterTel(P') is a 

set of relational database expressions for evaluating F-clustere (P'). 

The set of induced updates due to an update can be obtained by evaluating 

F-clusterTel(P') and removing redundant facts. 

Yum and Henschen proposed two algorithms to deduce induced updates for tran- 

sitive closure and primitive linear recursive rules. The transitive closure rules actually 

are single chain recursions. Primitive linear recursive rules are single linear recursions 

[22, 81. The single linear recursive rule set consists of 

The compilation result formula for r is: 
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Thus, the relational expression for F-c lus t e rTe l (B1)  is 

After careful examination, the above equation (2 .2 )  can be transformed into equa- 

tion ( 2 . 3 )  because Bf is a tuple and Bf cu B' is still B'. 

where m = j + k + I  

The above compiled formula ( 2 . 3 )  can be processed efficiently using counting 

method, the B chain and C chain should be synchronized. 

The last stage of their method is the evaluation of simplified integrity constraints. 

For each induced inserted and deleted fact, the related simplified integrity constraints 

are retrieved, the generic constants are replaced with the fact, and the formula is 

evaluated against the updated database. 

We should notice the difference between the evaluation method here with McCune 

and Henschen7s corresponding method for relational databases. They evaluate the 

simplified constraint set against the initial database state before. Here they evaluate 

constraints against the updated database for simplicity and avoiding the uncontrol- 

lable complexity of simplification of integrity con~tra~ints in deductive databases in 



CHAPTER 2. BACKGROUND 

the same way as in relational databases. 

This method can focus its attention on the affected part of the database which is 

related to integrity constraints fairly well. The compilation approach is adopted to 

deduce induced updates, which makes it more efficient than other approaches. That 

integrity constraints can be compiled at their specification time is also one of the 

processing advantages. 

Yum and Henschen derive induced updates and check integrity constraints sep- 

arately. The overall optimization of derivation of induced updates and evaluation 

of integrity constraints is impossible. All the relevant induced updates are deduced 

before IC evaluation; unnecessary derivation of induced updates may occur when a 

violation of integrity does happen. 

Redundant facts are removed by querying them on the initial database, which is 

quite expensive, especially for those facts of recursive predicates. 

2.6 Summary 

We have already known that reasoning forward (bottom-up) from updates can achieve 

the effect of focusing only on the part of the database which is affected by updates, 

and that reasoning backward (top-down) from integrity constraints can focus only 

on the constraint closures, i.e., the part of the database relevant to constraints. It 
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is desirable to reach these two goals at the same time while checking integrity con- 

straints. We propose a new integrity checking method which will combine these two 

reasoning strategies. We will use a top-down theorem-proving approach to prune the 

forward reasoning space first, and use the result to guide integrity constraint checking. 

Recursion makes integrity constraint checking much more challenging. Generally 

speaking reasoning forward from facts is not a best fit for dealing with integrity con- 

straint checking in the presence of functions and recursion[l5]. Yum & Henschen 

presented a processing method for a very simple kind of recursion. Recently, many 

interesting methods have been proposed for recursive query processing. We will make 

use of recent research results on the query independent compilation of special recur- 

sions to deal with the recursion problem in integrity constraint checking. 
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IC checking in non-recursive 

databases 

3.1 Preliminary remarks 

In deductive databases, any update to base predicate space(defined in an EDB) or IDB 

predicate definitions may cause changes to relations defined by other derived predi- 

cates(defined in an IDB). This kind of modifications is called an implicit modification. 

A modification may affect an integrity constraint directly if the modified predicate 

occurs in the integrity constraint, and/or indirectly if the modification causes implicit 

modification on an derived predicate which occurs in a constraint. 

Induced updates are the set of facts that are implicitly or explicitly inserted to  

or deleted from a database due to the updates of a transaction. An induced update 
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is called redundant if it already derivable before the update for insert or they are 

still derivable after the update for delete [21]. 

An ic-query is defined as a query for integrity checking or derivation of induced 

updates. In section 3.6 we will explain how to compose ic-queries. 

Generally speaking, the database is consistent before an transaction. Any modi- 

fication may affect only a part of the database and some of the integrity constraints. 

Most of the evaluations will be redundant if we simply evaluate all of the integrity 

constraints after any modification. To simplify integrity constraints and to reduce 

redundant checking has become a key issue in the development of integrity checking 

methods. 

In summary, we face the following challenges to enforce integrity constraints: 

Simplification of integrity constraints. Redundant checking should be deduced 

as much as possible. 

Derivation of implicit modification and redundancy exclusion. 

Integrity checking against the real databases. 
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3.2 Basic simplification principles 

We all know that the relational join operation has monotonic behavior. So, the result 

of a query of an integrity constraint must be monotonic. Consider a relation 

Deletion on A or addition on B can never increase R. Two basic principles can be 

deduced from this monotonic behavior[l7]. 

Principle 1: The deletion of tuples from a positive literal in an integrity con- 

straint will not cause integrity problems to this integrity constraint directly. 

Principle 2: The addition of tuples to a negative literal in an integrity constraint 

will not cause integrity problems to this integrity constraint directly. 

By analysis of the structure of the IDB we can determine that some EDB's modifi- 

cations will not violate any ICs or simplify integrity checking at least. This is one kind 

of modification which will not cause an integrity violation. Actually, there is another 

group of EDB modifications which will never cause integrity problems. By carefully 

examining the structure of all of the Horn clauses in a deductive database, we find 

two facts: generally a predicate has quite a few attributes and integrity constraints 

impose constraints on only a few attributes. Thus, we can predict that most change 

modifications on EDB predicates may not affect the constrained attributes, thus no 

integrity violation. 
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Consider the integrity constraint, 

the fare of each flight must be greater than 0, 

:- flight(Fno, ... , Fare), Fare <= 0. 

We can soon find that modification on attributes of flight other than Fare will 

never cause a violation to the integrity constraint mentioned above. 

3.3 Simplification of integrity constraints 

Yum and Henschen [21, 221 used a compilation method to derive induced updates 

for pure Horn databases. In Horn databases with no negation, non-recursive rules 

can be compiled into formulas including only EDB predicates by unification. In Horn 

databases augmented with negation, the compilation is not so straightforward, and the 

output cannot be so regular. To derive induced updates, we cannot simply unify the 

addedldeleted fact with their occurrences in the compiled formula to derive induced 

updates if there are some negative literals or subformulas in the compiled formula. 



CHAPTER 3. IC CHECKrNG IN NON-RECURSIVE DATABASES 34 

Example 3.1: In the following database, citizen and registered-alien without 

criminal-record are defined to be lawful residents. A person is said to have crimi- 

nal record if he is a criminal in Canada or has a criminal record in his/her home 

country. To be in a valid state the database is required that all lawful residents are 

not deported. 

I D B :  lawful-resident(X) :- reg i s te red-a l i en(X) ,  

not(crimina1-record(X)). ( r l )  

criminal-record(X) : -  criminal(X, Canada). 

criminal-record(X) : -  cit izen-of(X, Country), 

criminal(X, Country). 

The compilation form of r l  could be: 

lawful-resident(X) : -  regis tered-al ien(X) ,  

" (criminal(X, Canada) V c i t izen-of(X,  Y) & 

criminal(X, Y) ) .  

It is wrong to derive induced updates by unifying the update with criminal or 

citizen-of. We have to treat negated predicates differently in the compilation process. 
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We already know that induced updates, which can be gotten by unifying updates 

with their occurrence in a rule, are probably redundant. It is wrong to  unify redun- 

dant deletion with its negative occurrence, which may result false conclusion. It is 

impossible to avoid redundancy checking of implicit modification if the predicate occurs 

negatively in another predicate's definition or in an integrity constraint. 

For example, an integrity constraint below: 

If an implicit deletion Q' on q is redundant, an integrity violation is concluded 

because P & Q' happens to be true. Actually, deletion of Q' is redundant (Q' is still 

in Q), P & Q is still false, that is, no integrity violation occurred. 

There are two ways to handle redundant implicit modification, Martens checks 

every derived implicit update[15], and Yum & Henschen checked only for predicates 

occurring in integrity constraints. We will adopt the compilation approach, and not 

check redundancy unnecessarily. But due to possible negative literals in our databases, 

we do some redundancy checking for implicit modifications. As a preliminary result, a 

method checking less implicit modification redundancy will have better performance 

in most situations than one with more checking, because the compilation approach 

can have better optimization. 

An expansion of a rule or integrity constraint is the unification of a derived pred- 

icate in the body of the rule or constraint with a definition of the predicate. 
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Algorithm 3.1. Transformation of integrity constraints and rules by expansion. 

Input Integrity constraints and an IDB. 

Output Partially compiled integrity constraints and ic-relevant rules which have 

no derived predicates occurring in their bodies. 

1. Expand an integrity constraint. Unify a derived predicate p, which occurred 

positively in an integrity constraint, with its definitions respectively, which may 

result in several new integrity constraints. 

2. Perform the above step recursively until no derived predicate occurred positively 

in any integrity constraint. 

3. Transform ic-relevant rules (defining derived predicates occurring negatively in 

some integrity constraints) similarly. 

0 Expand an ic-relevant rule. Unify a derived predicate p, which occurs pos- 

itively in the body of an ic-relevant rule, with its definitions, respectively. 

Unification may result in several new ic-relevant rules. 

0 Perform the above step recursively until no derived predicate occurring 

positively in any ic-relevant rule. 

0 All of the rules defining those predicates which occur negatively in ic- 

relevant rules are ic-relevant rules also; so that they need to be compiled 

and go through step 3. 
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Example 3.2: Using algorithm 3.1 we can transform the integrity constraints and 

relevant rules in the database in Example 3.1. Because criminal-record is defined by 

base predicates alone, no rules need to be compiled. The integrity constraint icl is 

transformed into two integrity constraints: 

: - registered-alien (X) , not (criminal-record (x) ) , deported (x) (ici-I) 

: - cit izen(X) , deported(x) . (ici-2) 

Static qualitative analysis simplification met hod 

After transformation of integrity constraints and relevant rules, it is easier to  use 

the static qualitative analysis method [23] to analyze the database to find some in- 

tegrity checking related information. By static analysis of the transformed integrity 

constraints and relevant rules, we can determine: 

when a modification may affect which integrity constraints, 

when a modification may affect which ic-relevant derived predicates, 

0 an optimum evaluation plan for integrity constraint checking when a modifica- 

tion occurs. 

An implicit modification is said to be redundant if it has no opportunity to affect 

any integrity constraint directly and/or indirectly. This kind of implicit modification 

should be avoided in the integrity constraint checking process. 
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A predicate is ic-relevant if it belongs to a cluster of an integrity constraint of 

the database. Because it implies some derived predicates occurred in some integrity 

constraints, modification of the predicate provides the opportunity to cause violations 

to those integrity constraints. 

An extended dependency graph is a dependency graph[20] extended with repre- 

sentation of the relationships between predicates and integrity constraints, and arcs 

marked with posocc and negocc explicitly showing a predicate's occurrence in a rule or 

an integrity constraint is positive or negative. Posocc-p and negocc-p mean a positive 

occurrence and a negative occurrence of a predicate in the definition of a predicate 

respectively. Posocc-ic and negocc-ic mean a positive occurrence and a negative oc- 

currence of a predicate in the definition of an integrity constraint respectively. 

An affected graph is a part of the extended dependency graph relevant to one EDB 

predicate. 

The static qualitative analysis simplification method is straightforwardi231. First, 

an expanded dependency graph[23] is built for the database as explained with Fig. 

3.1 below, which represents the hierarchical structure of the database. 

Second, an affected graph[23] is built for each base predicate's addition and dele- 

tion operation separately to determine which derived predicates and integrity con- 

straints are affected by the modification. 
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Third, the affected graph is pruned to eliminate irrelevant integrity constraints 

and derived predicates. An integrity constraint should be discarded from the affected 

graph if it was found to be not affected by the modification by qualitative analysis. 

A derived predicate, an intermediate node, should be discarded from the integrity 

constraint checking process if it has no way to  affect any integrity constraint. 

Fourth, record the pruned affected graph for further use in real integrity checking. 

Finally, we may find that many modifications on an EDB may never affect any 

integrity constraint if its pruned affected graph is empty. 

Normally, after transformation of integrity constraints and relevant rules, the in- 

tegrity constraint relevant part of the database has a very simple structure. Most of 

the base predicates only occur in integrity constraints, not in definitions of ic-relevant 

derived predicates. For those base predicates which do not occur in any compiled 

ic-relevant rules, they do not need to go through the above procedure thoroughly. As 

in relational databases, we can determine the necessary information simply by using 

the two basic principles 1 & 2. 

Example 3.3: Let us analyze the transformed database shown in Example 3.1 & 

3.2 by the static qualitative analysis method. The extended dependency graph for 

the database is shown in Fig. 3.1. There is one node for each predicate and integrity 
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constraint. There is an arc for each occurrence of a predicate in a rule or an integrity 

constraint with a mark showing if it occurs positively or negatively. For example, the 

arc from citizen to lawful-resident indicates that citizen occurs positively in lawful- 

resident's definition (r2), and the arc from citizen to icl-2 marked posocc-ic indicates 

that citizen occurs positively in icl-2. 

lawful-resident 

criminal-record 

ci tizen-of 

criminal 

icl-1 
icl-2 

Fig. 3.1 -- An extended dependency graph 

We can pre-analyze the relationships among integrity constraints and predicates. 

From Fig. 3.1 we find that lawful-resident has no influence on icl-1 and icl-2 because 

there is no path from lawful-resident to reach the integrity constraint nodes icl-1 or 

icl-2. In other words, lawful-resident does not imply any integrity constraint. Thus, 

lawful-resident can be discarded from the process of enforcement of integrity con- 

straints. After general pruning of nodes which represent ic-irrelevant predicates and 
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which cannot reach integrity constraint nodes, and pruning of dangling arcs in the ex- 

tended dependency graph, we obtain a common affected graph for the database. The 

general affected graph (for all ic-relevant base predicates) for our example database 

is shown in Fig. 3.2 after that node lawful-resident and relevant arcs are discarded 

from Fig. 3.1. 

citizen 
I criminal-record b\\/ 

posocc c 

po c-ic 

icl-1 
ic 1-2 

\ citizen-of 

criminal 

Fig. 3.2 -- A general affected graph 

According to Principle 1 & 2 we can determine that deletion on citizen, registered- 

alien, and deported will not cause integrity constraint violations. By qualitative 

analysis, we can determine that addition on criminal and citizen-of will not cause 

any integrity constraint violation because they can only cause implicit addition to 

criminal-record, which will not affect icl-1. The following information in Table 3.1 

can be obtained by qualitatively analyzing the potential effect on the IDB and ICs of 

the database shown in Example 3.1 that is caused by various EDB modifications. All 

other EDB modifications not listed will not affect any integrity constraint directly or 

indirectly. 
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Predicate Operation Derived-predicates affected ics affected 

--------- --------- --------- --------- ........................... ------------ ........................... ------------ 
citizen addit ion icl-2 

deported addit ion ici-1 & icl-2 

reg.-alien addition icl-1 & ici-2 

criminal deletion criminal-record icl-1 

cit izen-of deletion criminal-record icl-1 

Table 3.1 Affected information of the EDB modifications 

Variable-ic connect ion analysis 

Let us define a variable to be ic-relevant to an integrity constraint if a change modifi- 

cation which occurs on the variable may cause the integrity constraint to be violated. 

A predicate is ic-relevant to an integrity constraint if its modification may cause a 

violation to the integrity constraint. A variable in a formula is call shared if it occurs 

in more than one predicates in the formula. 

Algorithm 3.2. Find ic-relevant variables for an integrity constraint: 

Put each predicate occurring in the ic with its shared variables in the list OPEN, 

Fetch a derived predicate from the OPEN queue, and put it in the list, CLOSE. 

For each of the rules defining this predicate, analyze the rule body and deter- 

mine ic-relevant variables for each predicate occurring in the rule body. Other 
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than shared variables, those variables corresponding to the head predicate's ic- 

relevant variables are ic-relevant. Then record the result in the OPEN list if the 

predicate is not in CLOSE or with different ic-relevant variables as before. 

If there are no derived predicates left in the OPEN list, return the OPEN list. 

If there are extensional predicates occurring more than once in the result, we 

merge their ic-relevant variables. 

Algorithm 3.2 is complete; it can determine all of the ic-relevant variables because: 

(1) if there is no derived predicate in the integrity constraint, then algorithm 3.2 can 

determine all of the shared variables; and only shared variables are ic-relevant, so the 

algorithm can find all ic-relevant variables. (2) if there is some derived predicates in 

the constraint, then the recursive step can determine all of the ic-relevant variables. 

The algorithm determines those ic-relevant distinguished variables (appearing in the 

head predicate) and all of the shared variables, which are the only variables which 

may change the corresponding ic-query result. Thus, we are sure that the algorithm 

is complete in this situation. 

The use of Example 3.2 is illustrated in Example 3.4 below. 

Method 2: Integrity checking by predicate-ic connection analysis. 

For a change modification on an extensional predicate, retrieve the predicate's 

related information about variable ic-relevance. 

For each potentially affected integrity constraint, if the modification does not 

affect any ic-relevant variables, then we conclude that this modification will not 
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cause any problem to the integrity constraint defined by this ic. 

Generally, a change operation modifies only a few attributes; we can easily identify 

whether ic-relevant attributes are affected. If some ic-relevant attributes are affected, 

we must check these constraints against the database. 

We can use a simple situation to reason the correctness of the second method. For 

example, for an integrity constraint 

the corresponding integrity checking query is 

which by transformation into relational algebra, is equal to: 

~ z A ( X ,  2) KZB(2, Y) 

The modification on X in A will not affect nzA(X, 2 )  and the modification on Y 

in B will not affect IIzB(Z, Y). Thus, a change modification on X of A and/or Y of 

B will not change the result of the above query. 

Example 3.4: Let us make the database in Example 3.1 more complex, and add 

a few attributes to each predicate. 
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IDB : 

lawful-resident(Name) :- registered-alien(Name, Nationality, 

Married-status) 

not(crimina1-record(Name, CriminalCase)). 

lawful-resident(Name) :- citizen-of(Name, Canada). 

criminal-record(Name, CriminalCase) :- 

criminal(Name, CriminalCase, Canada). 

criminal-record(Name, CriminalCase) :- citizen-of(Name, country), 

criminal (Name, Criminalcase, Country) . (r4) 

ICs : : - lawful-resident (Name) , 

deported(Name , Date, Reason) 

EDB : 

registered-alien(John, Greek, Single) 

TI: modify John's Marriage status from Single to Married in 

registered-alien. 

(icl) 

First Algorithm 3.1 can be used to transform this more complex database as shown 

in Example 3.2. The integrity constraint icl is transformed into two new constraints 
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lcl-1 and icl-2 as illustrated below. 

IC : : - registered-alien(Name, Nationality, Married-status) , 

not(crimina1-record(Name, criminalcase)), 

deported(Name , Date, Reason) . (icl-1) 

: - citizen-of (Name, ~anada) , 

deported (Name, Date, Reason) . (ici-2) 

Let us analyze predicate-ic connections in icl-1 and icl-2. For icl-1, Name is 

ic-relevant because it is shared by registered-alien, criminal-record and deported. By 

analyzing rule r3, we find that Name of criminal is ic-relevant. By analyzing r4, we 

find that Name of citizen-of and Name of criminal are also ic-relevant. We can analyze 

icl-2 in the same way. We obtained the following predicate-ic connection information 

for integrity constraint icl-1 and icl-2. 

1 -  registered-alien 

icl-1 criminal 

icl-1 citizen-of 

icl-1 deported 

icl-2 citizen-of 

icl-2 deported 

Name 

Name 

Name 

Name 

Name 

Name 

We find the only ic-relevant attribute of registered-alien is Name and T1 only 

modifies John's Marriage-status, so that we can conclude that T1 will not violate any 

integrity constraints. 
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3.6 Integrity constraint checking 

There are many good methods for integrity constraint checking [16, 171. We propose 

an integrity constraint checking method based on the database query mechanism. 

Similar to the extended rule/goal graph which Martens and Bruynooghe used in their 

algorithm, we use the affected graph to direct the derivation of implicit modification 

and integrity checking against actual databases. The affected graph for database mod- 

ifications are obtained by qualitative analysis of the effect on integrity constraints im- 

posed by the modifications. Only the direct or indirect effect on integrity constraints 

and derived predicates which are relevant to integrity constraints are retained in the 

affected graph. Thus we can focus on only the part of the database which is affected 

by the updates and has the potential to affect integrity constraints. 

Algorithm 3.3: Integrity constraint checking for the addition or deletion on an 

EDB predicate p using an affected graph. 

1. For every posocc-ic arc from p to an ic where the addition on p can be unified 

with the positive occurrences of in the ic. If there is more than one p-occurrence 

in the ic, only one occurrence can be unified at a time. Evaluate the unified 

formulas, if a non-false result is reached, an integrity constraint violation is 

caused, and the transaction should be refused and undone. Otherwise, continue 

the checking process. 

2. For every negocc-ic arc from p to an ic where the deletion on p can be unified with 

the negative occurrences of p in  the ic. If there is more than one p-occurrence 

in the ic, only one occurrence can be unified at a time. Evaluate the unified 
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formulas, if a non-false result is reached, an integrity constraint violation is 

caused, and the transaction should be refused and undone. Otherwise, continue 

the checking process. 

3. For every posocc-r arc from p to a derived predicate r where the addition on 

p can be unified with the positive occurrences of p in  the bodies of rules which 

defines r. If there is more than one p-occurrence in the r, only one occurrence 

can be unified at a time, and the all unified formula should be 'unioned' together. 

Evaluate the unified formula as a query inquiring into the ic-relevant variables 

to derive induced updates (addition) on r. Query the result on the database 

before the transaction to exclude redundant addition updates. 

4. For every posocc-r arc from p to a derived predicate r where the deletion on p can 

be unified with the positive occurrences of p in the bodies of rules which defines 

r. If there is more than one positive occurrence in the r, only one occurrence can 

be unified at a time, and the all unified formula should be 'unioned' together. 

Evaluate the unified formula as a query inquiring into the ic-relevant variables 

to derive induced updates (deletion) on r. Query the result on the modified 

database to exclude redundant deletion updates. 

5. For every negocc-r arc from p to r, we can treat addition or deletion on p as we 

will treat induced updates on other predicates in step 6. 

6.  For induced updates 

For every posocc-ic or negocc-ic arc from r to ics, treat induced updates 

(addition) as in step 1 and deletion as in step 2. 
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For every negocc-r arc from r to a derived predicate s where the implicit 

addition on p can be unified with the negative occurrences of p in  the bodies 

of rules which defines s. If there is more than one negative occurrence 

in s, only one occurrence can be unified each time, and the all unified 

formula should be 'unioned' together. Evaluate the unified formula as a 

query inquiring into the ic-relevant variables to derive induced updates 

(deletion) on s .  Query the result on the modified database to exclude 

redundant induced deletion updates. 

0 For every negocc-r arc from r to a derived predicate s where the implicit 

deletion on p can be unified with the negative occurrences of p in the bodies 

of rules which defines s. If there is more than one negative occurrence in the 

s, only one occurrence can be unified each time, and the all unified formula 

should be 'unioned' together. Evaluate the unified formula as a query 

inquiring into the ic-relevant variables to derive induced updates(addition) 

on s. Query the result on the database before update to exclude redundant 

induced addition updates. 

0 Repeat step 6 for induced updates. 
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neg c-ic 1 
criminal-record 

criminal 

Fig. 3.3 -- The affected graph for deletion on criminal 

Example 3.5: After static qualitative analysis of a database, we can obtain an 

affected graph for each EDB modification which requires non-trivial integrity con- 

straint checking. Starting from criminal in Fig. 3.2, prune those nodes unreachable 

from criminal and discard useless arcs. Deletion from criminal may cause deletion 

from criminal-record because there is a posocc-p arc from criminal to criminal-record, 

which represent that criminal occurs positively in the definition of criminal-record. 

Deletion from criminal-record may cause an integrity constraint violation to icl-l 'be- 

cause criminal-record occurs negatively in icl-1. We obtained the affected graph shown 

in Fig. 3.3 for the deletion on Criminal relation in the database shown in Example 

3.1. Interested readers can refer to 1231 for details about how to qualitatively analyze 

the effect of a modification on the database and how to build affected graphs. If 

there is a update, delete crimina,l(John, Canada) from the Criminal relation; integrity 

constraints should be checked by the following procedure: 



CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 

derive the implicit modification on criminal-record, because in the affected graph 

there is an arc from criminal to criminal-record. Unify criminal(John, Canada) 

with criminal's occurrence in r3's body, which defines criminal-record, and ob- 

tain an induced update, deletion of criminal-record(John). It is impossible t o  

unify criminal(John, Canada) with criminal's occurrence in r4's body, which 

defines criminal-record, that is, the deletion of criminal(John, Canada) will not 

cause any implicit modification through r4. 

query criminal-record(John) in the new database after the update to  determine 

if i t  is redundant. If it is redundant, the update is valid. 

unify criminal-record(John) with criminal-record's negative occurrence in icl-1 

because there is a negocc-ic arc from criminal-record to icl-1 in the affected 

graph, and obtain the following integrity checking query: 

evaluate the above query. If the result is false, the deletion criminal(John, 

Canada) is valid, otherwise, an integrity violation has occurred and the update 

should be refused and undone. In fact, the result is false, which means that the 

update is valid. 

3.7 Enforcement of ICs in non-recursive databases 

Integrity constraint simplification and compilation of relevant rules, predicate-ic con- 

nection analysis, and static analysis should be performed when the database is estab- 

lished and revised whenever any IDB or IC modification occurs. By making use of the 
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above integrity checking knowledge, integrity constraints in non-recursive, function- 

free databases can be enforced as follows: 

Upon arrival of a modification, retrieve qualitative analysis information if it 

already exists or qualitatively analyze the potential effect on the database to 

validate the modification and obtain the affected graph for integrity checking 

against the actual database. 

An EDB change modification may be validated by predicate-ic connection anal- 

ysis. If the modified attributes are not ic-relevant to any integrity constraint, 

the modification will not cause an integrity constraint violation. 

If a modification cannot be validated in the two steps above, the simplified 

integrity constraint set should be evaluated against the actual database using 

algorithm 3.3. 

3.7.1 EDB modification 

The most frequent modification to deductive database is EDB modification, which 

consists of addition of facts to a base relation, deletion facts from a relation, and 

change of facts in a relation. 

Method 3: Modify a base predicate 

an EDB modification can be validated by checking the static analysis informa- 

tion. By qualitatively a.nd statically analyzing the direct and indirect affect 
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of a modification on the intensional database and integrity constraints, we can 

determine which modifications will not cause integrity constraint violations. 

an EDB change modification may be validated by predicate-ic connection anal- 

ysis. If the modified attributes are not ic-relevant to any integrity constraint, 

the modification will not cause integrity constraint violations. If some modified 

attributes are ic-relevant to some integrity constraints, the irrelevant ics should 

be discarded from the integrity constraint checking process and we check the 

affected ones at the next step. 

Use algorithm 3.3 to take care of the remaining modifications and integrity 

constraint pairs. 

3.7.2 IDB modification 

IDB modification can be validated using the EDB modification integrity constraint 

checking method. To simplify our method, we limit an IDB modification to be dele- 

tion or addition of one single rule; it is straightforward to extend the method to 

accommodate multi-rule modification. The general idea is that we treat rule addition 

as adding facts to head predicates of the rule and treat rule deletion as deleting facts 

from head predicates of the rule. Thus, we can enforce integrity constraint checking 

for rule modification as we do for data modification. In addition, qualitative analysis 

and predicate-ic connection analysis information must be revised to incorporate the 

modification of the IDB. 
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3.7.3 Integrity constraint modification 

For convenience, we limit ourselves to adding or deleting one integrity constraint at a 

time. The deletion of an integrity constraint is always legal. Generally speaking, when 

an integrity constraint is added, we need to check its conformance with the current 

IDB. Sometimes the added ic may be trivial, that is, the current database does not 

have any possibility of violating the new constraint, or the new ic is contradictory to 

the current database. Contradictory constraints are beyond the scope of this thesis, 

we will not go any further with them. We only check if the new ic is satisfied in the 

current database by evaluating the integrity constraint's body as a query. If the result 

is not empty, a violation occurs and this modification should be refused. We undo 

the transaction and inform the user. 

For the convenience of subsequent integrity constraint checking, we need to update 

the static analysis and predicate-ic connection analysis information about the deleted 

ic or the added ic. In the case of deletion of an ic, simply deleting all of the relevant 

information is enough. When an ic is added, we need to do qualitative analysis and 

variable analysis for the new integrity constraint. 

3.7.4 Transactions 

For a transaction consisting of several EDB modifications, IDB modifications and/or 

IC modifications, we can analyze each modification separately, and evaluate all of the 

implicit modifications and integrity constraint queries together after the transaction. 
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Let us use a simple example to illustrate that the integrity checking is complete 

and correct. For example 

T : add P' and 9 '  

For addition P', we will check 

P1&Qnew 

For addition Q', we will check 

Pnew &Qt 

where P, Q are relations corresponding to predicate p and q, Pnew and Qnew 

represent the relations of p and q after modification. 

Pnew = P u Pt 

Qnew = Q U Q' 

The integrity constraint after the transaction should be, 

Pnew&Qnew 

<==> Pnew&(Q U Qt)  

<==> (Pnew&Q) U (Pnew&Qt) 

<==> (P&Q)  U (Pt&Q) U (P&Q1) U (Pt&Qt) 

<==> (P1&Q) U (P&Qt) U (Pt&&') P&Q = Empty 



CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 

<==> (P1&Q) u (P'&Q1) U (P1&Q) U (P&Q1) 

<==> (PI&(& U Q')) U ((PI U P)&Q1) 

<==> P1&Qnew U Pnew&Qf 

This last step illustrates that Pnew&Qnew can be verified be checking P1&Qnew and 

Pn,,&Q1 separately. 



CHAPTER 4 

IC checking in recursive databases 

Recursion makes integrity constraint checking more challenging. Developing more ef- 

ficient enforcement algorithms is demanding for recursive database processing. Check- 

ing of integrity constraints requires evaluation of a very special query, which amounts 

to existence checking (no variable is inquired). This existence property is very impor- 

tant in the processing of queries involving chains; efficient evaluation strategies can 

be developed for the evaluation of this kind of query. 

We discuss only recursive integrity constraints (their clusters include recursive 

predicates) in this chapter because non-recursive integrity constraints can be enforced 

as in non-recursive databases. 
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4.1 Recursive query evaluation 

Query independent compilation is a powerful tool in the enforcement of integrity 

constraints in recursive databases. First, the compilation can aid the evaluation of 

recursive integrity constraints and derivation of implicit modification. Second, the 

ic-queries can be simplified by analyzing the query forms. Combined with predicate- 

ic connection analysis discussed in chapter 3, a quad-state variable analysis method 

[ll] can be used to simplify the ic-queries; and some chains can be excluded from the 

evaluation procedure and appropriate evaluation strategies can be planned. 

Multi-way counting method[ll] is the generalization of the counting method for the 

processing of versatile queries on complex chain recursions. It is preferable and more 

efficient to choose different processing strategies for different queries. A variable of a 

queried recursive predicate has four different states; p, instantiated and inquired; c ,  

instantiated and not inquired; u, not instantiated and inquired; and i, not instantiated 

and not inquired. The query analysis method based on the four possible states of 

variables is called the quad-state variable binding analysis method [lo, 111. Four 

possible processing strategies for a recursive query exist: 

a nonrecursive strategy, which uses only traditional nonrecursive processing al- 

gorit hms. 

a total closure strategy, which derives the entire recursive relation. 

a query closure strategy, which derives a query-related closure. 

an existence checking strategy, which checks the existence of answers in the 
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database. 

The efficiency of these four different processing strategies differs largely[ll]. The 

last processing strategy is the most efficient strategy which requires the least over- 

head. Using the quad-state analysis method, it is possible to evaluate ic-queries 

efficiently, and we can simplify an integrity constraint with chains before evaluation 

by analyzing the relevance of variables of a recursive predicate to integrity constraints. 

Lemma [Han] If only the exit vectors (consists of all the exit variables) of an 

n-chain recursion are relevant (inquired or instantiated or both) to a query, the query 

can be processed by examining the exit rule only [ l l ] .  

In an integrity checking query, only ic-relevant variables are possibly instantiated 

because they occurred in other base predicates. Also there is no variable inquired. Our 

analysis leads to the following corollary of Lemma[Han]for integrity checking queries. 

Corollary 4.1 If only exit variables are ic-relevant in an ic-query, the n-chain can 

be dropped from the query form. 

A chain of an AC is irrelevant to a query if and only if its chain variables are in 

the state of i, uninstantiated and not inquired[lO]. 

Lemma [HanLu] (Discard irrelevant chains) If the query is irrelevant to chains of 
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the query form, the irrelevant chains can be discarded from the processing and the 

answer to the query remains the same[lO]. 

A chain of an AC is irrelevant to a ic-query if and only if its chain variables are 

ic-irrelevant . 

Corollary 4.2 All irrelevant chains in a AC ic-query can be discarded without 

affecting the integrity checking. 

Example 4.1 The compiled formula of a recursion consists of three asynchronous 

chains as below: 

Consider the query: 

R(-, Y, 2, abc). 

where, - in the position of predicate attributes means we have no interest in the cor- 

responding attributes; and A Y x O ,  Xi) = A(X0, XI), A(Xl, Xz), ... A(X ;-I, Xi). 

Because X is irrelevant to the query, chain A can be discarded from the query 

processing, thus 
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4.2 Compile and simplify ICs in recursive databases 

It is impossible to transform a recursive rule into a non-recursive rule by finite ex- 

pansion except for bounded recursions. We adopt the query independent compilation 

method to compile a recursion before simplification of integrity constraints. Integrity 

constraints and rules in recursive databases can be transformed by treating recursive 

predicates as base predicates using a similar transformation method like Algorithm 

3.1. 

Algorithm 4.1 Simplification of integrity constraints in recursive databases. 

Input Integrity constraints. 

Output Ic-queries for integrity constraint evaluation and derivation of necessary 

induced updates. 

1. Transform the integrity constraints and relevant rules using Algorithm 3.1 by 

treating recursive predicates as base predicates. 

2. Find ic-relevant variables of each EDB predicate by predicate-ic connection anal- 

ysis using Algorithm 3.2, a.s above treating recursive predicates as base predi- 

cates. 

3. Compile ic-relevant recursive predicates using query-independent compilation 

methods to n-chain forms or asynchronous chains. 
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4. Unify the compiled formula of the recursive predicate with its occurrences in 

transformed integrity constraints and rules defining ic-relevant derived predi- 

cates. 

5. Analyze the bodies of unified integrity constraints and rules, discard irrelevant 

chains according to Corollary 4.1 & 4.2. 

Example 4.2 The database shown in Example 3.1 is extended as below. We 

define a citizen's descendants as lawful residents. Descendant is defined recursively, 

X's descendants are defined to be his children and their descendants. 

IDB: lawful-resident (X) : - registered-alien(X) , 

not(crimina1-record(X)) 

lawful-resident(X) :- citizen(X). 

lawful-resident(X) :- citizen(Y), descendant 0 ,  X) . 

descendant (X, Y) : - descendant (x, Z) , children(Z, Y) . 

descendant(X, Y) :- children(~, Y). 

IC : :- lawful-resident(X), deported(~). 

First, the integrity constraints and IDB can be transformed using Algorithm 3.1 

by treating the recursive predicate, descendant, as base predicate. Thus, the integrity 
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constraint icl can be transformed into three integrity constraints as below. 

IC : 

:- registered-alien(X), not(crimina1-record(X)), deported(X) (icl-1) 

:- citizen(X), deported(X) (icl-2) 

: - citizen (Y) , descendant (Y, X) , deported (X) (icl-3) 

We will omit icl-1 and icl-2 in hte later discussion, because they are not recursive 

and can be enforced as in non-recursive databases. 

Using Algorithm 3.2 we can obtain all of the ic-relevant information related with 

icl-3 as below. 

icl-3 citizen X 

icl-3 deported X 

icl-3 descendant x, y 

Descendant can be compiled into a single chain by query-independent compilation 

methods: 

Because the chain variable X of descendant is ic-relevant, the children chain can 

not be discarded from the integrity constraint checking processing. After unifying 

descendant's compiled formula with its occurrence in icl-3, icl-3 becomes: 
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(icl - 3c) 

4.3 Primitive transitive recursion 

Primitive transitive recursion is a very common recursion in deductive databases. 

Sometimes it is called single chain recursion because it is compilable to a single chain. 

Well developed transitive closure processing strategies can be adopted to evaluations 

of this kind of recursion[2]. 

For simplicity, we assume the primitive transitive closure rule is defined by a 

recursive rule and an exit rule as illustrated by the following: 

The compiled form of the above recursive rule is: [8] 

0: 

r(Xo, Yo) = chni(xo, Xi), exit(Xi, Yo) 
i = O  

or we simply write as (in linear variable pattern) 

r = chn*, exit. 
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where chn* = chn(Xo, XI) ,  chn(X1, X2), ...; X is a chain variable, and Y is an exit 

variable. 

First let us consider the implicit modification caused by the addition of a tuple 

chn'. The implicit modification can be obtained by unifying chn' with each chn in the 

chain separately as: 

AR = chn', chn', chnj, exi t .  
i=O j=O 

(4.1) 

Notice the induced updates AR may have redundancy. 

The above formula (4.1) can be transformed to two highly instantiated asyn- 

chronous chain formula: 

(chn*, chn') x (chn'chn*), exit  (4.2) 

After compilation and simplification of integrity constraints and ic-relevant rules 

by Algorithm 4.1, if there is any primitive transitive recursion in integrity constraints 

or ic-relevant rules, the chain variables must be ic-relevant, otherwise the chain can 

be discarded from our integrity constraint checking if they are irrelevant. 

When a primitive transitive recursion occurs in an integrity constraint, there are 

two typical situations. The integrity constraint may have the following forms: 

( i c f l )  p(X, Y), r (Y,  Z) The cha in  v a r i a b l e  i s  i c - r e l e v a n t  
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(icf2) p(X, Y), r(Y, Z), q(Z, S) Both the chain variable and the exit 

variable are ic-relevant 

Where p and q can be replaced with a complex formula. 

The above integrity constraint forms icfl and icf2 can be transformed into two 

query forms after unified with the implicit modification on r: 

(icql) p ,  chn*, chn' X chn', chn*, exit 

(icq2) p, chn*, chn' X chn', chn*, exit, q 

There is a special case for icql, when the exit predicate is the same as chain 

predicate, the query form icql is equal to: 

because chn: chn* is always non-empty. 

The above query forms icql and icq2 have the following characteristics: 

0 no variables are inquired, 

0 one end of the chains is highly instantiated 

Thus, the existence checking processing strategy can be adopted to checking the 

integrity constraints. This processing strategy is very efficient in terms of chain pro- 

cessing[l2]. Let us sketch the general integrity checking procedure for primitive tran- 

sitive recursive integrity constraints. First evaluate p, chn*, chn' to check if the query 
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is false. If it is false, the update chn' is valid. Second, check chn', chn*, exit or 

chn', chn*, exit, q, if the result is false the update is valid, otherwise an integrity con- 

straint violation occurred, and the update should be rejected and undone. 

In the same way, we can derive induced updates for a primitive transitive closure 

recursion. The only difference from evaluation of integrity constraints is that some 

variables are inquired, so that an appropriate processing strategy should be selected 

by quad-state binding analysis. The obtained induced updates need to be queried on 

the initial database to check if they are redundant. 

For deletion on chn, we can derive induced deletions in the same way as for ad- 

dition. Notice we have no situation to check the direct effect of a deletion on chain 

predicates. The obtained induced updates need to be queried on the updated database 

to check if they are redundant. 

For modification on the exit predicate, there is no specific algorithm available. 

Nevertheless, after unification of the update with its occurrence in the compiled for- 

mula, the primitive transitive recursive query is highly instantiated at the exit end, 

so that efficient processing is expected. 

Our discussion is based on that the chain predicates and exit predicate are base 

predicates. We believe that our method fits the situation that the chain predicates 

and exit predicate are not base predicates with slight adjustment. 
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Example 4.3 Consider add a tuple, children(John, Pete), to children relation in 

the database shown in Example 3.2. To check the simplified integrity constraint icl-3, 

formula ic-13c can be transformed into a two highly instantiated asynchronous chain 

recursive query as below. 

(citizen(%), Ui=,.., childreni(Yo, John),  children(John, Pete)) x 

(children(John, Pete), Ui=,.,, childreni(Pete, x), deported(Y,)) ( i d  - 3d) 

The above query icl-3d can be evaluated efficiently by existence checking process- 

ing strategy. For details, please refer to [12]. 

4.4 Complex recursion 

The evaluation method for integrity constraints and implicit modification involving 

primitive transitive recursions discussed in section 4.3 is applicable to asynchronous 

chain recursion with more than one asynchronous chain. We can simplify and eval- 

uate the affected chain as above and evaluate the remaining chains by the general 

transitive closure processing strategy as discussed in [lo]. 

Counting and generalized counting methods are recognized as one of the best per- 

forming algorithms among many interesting linear recursive query processing meth- 

ods. The methods achieve their efficiency by focusing on the facts relevant to a query 

and reducing the interaction of different chain components in the recursion by reg- 

istering the relative distances(leve1s) from query constants. Such an isolation makes 
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many optimization techniques available to multi-chain recursions. 

For integrity constraint evaluation of complex recursions, we need to extend the 

multi-way counting method[l 1] . As general counting methods, we need to  register 

extra level information in the evaluation of ic-queries. Let us use a 2-chain recursion 

to illustrate how to evaluate integrity constraints and derive induced updates. We 

adopt a standard compiled formula as follows with two synchronous chains A and C: 

Suppose an addition of tuple A'  occurs, which may cause the following implicit 

addition to R: 

where m = j + k + I  

Equation 4.4 is equivalent to 

Thus, we can evaluate the A chain with the following algorithm 4.2. 

Algorithm 4.2 Evaluation of updated chains in a multi-chain recursion. 
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0 Evaluate Closure-A1 , the projection of A*A1 on the first variable and record the 

level information as in any counting method. 

0 Evaluate Closure-A2, the projection of A'A* on the last variable and record the 

level information. 

0 Join the two intermediate closures, Closure-A1 and Closure-A2, where the level 

number is the sum of the two level numbers in Closure-A1 and Closure-A2. 

The B chain can be evaluated as in general chain processing. We suggest the use 

of the quad-state binding analysis method to select a proper processing strategy for 

non-updated chains. 

Generally, we can evaluate the updated chain using Algorithm 4.2 and treat other 

chains as in general chain processing. While evaluating an ic-query for constraints, 

the existence checking strategy can be adopted. While evaluating ic-queries deriving 

induced updates, other processing strategies may be required. Furthermore, we can 

always start at the updated chain because it is always highly instantiated. 

4.5 Integrity checking in recursive databases 

When an update requires integrity constraint checking against the actual database, we 

can do so in a quite similar manner as in non-recursive databases using Algorithm 3.3. 

We still need the affected graph of the modification to direct our integrity constraint 

checking. The only difference is that when an ic-query is required for evaluation, we 

should evaluate the recursive ic-queries as discussed in the last two sections. We can 
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use transitive closure techniques to treat single chain recursions and asynchronous 

recursions and extended multi-way counting method for multi-chain recursions. 

4.6 Enforcement of integrity constraints in recur- 

sive databases 

The integrity constraint enforcement in recursive databases is not as difficult as that 

in non-recursive databases except the evaluation of recursive ic-queries is more time- 

consuming. We have discussed the simplification of integrity constraints in section 4.2, 

evaluation of primitive transitive recursive ic-queries in section 4.3, evaluation of com- 

plex recursive ic-queries in section 4.4, and integrity checking in recursive databases 

in section 4.5. Now, we can sketch our method for the enforcement of integrity con- 

straints in recursive databases. 

Method 3: The enforcement of integrity constraints in recursive deductive databases. 

Transform, qualitatively analyze, and simplify integrity constraints and ic-relevant 

rules using Algorithm 4.1 

Validate the modification by qualitative analysis. 

Validate change modification by predicate-ic connection analysis. 

Derive necessary induced updates and check affected integrity constraints against 

the actual database. 
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In summary, we can simplify the enforcement of integrity constraints whose cluster 

involve recursive predicates in the following aspects: 

As in non-recursive databases, we can validate a large group of modifications 

by static qualitative analysis. 

By analyzing ic-relevant variables in a recursive predicate, some recursive in- 

tegrity constraints can be simplified into nonrecursive or simpler integrity con- 

straints. 

Using the predicate-ic connection analysis method we can further validate an- 

other group of modifications. 

Example 4.4 Consider the database shown in Example 4.2 and a transaction of 

the addition of children (John, Pete). First the database is transformed and simplified 

as described in Example 3.2 using Algorithm 4.1. Then, by qualitative analysis, we 

can determine that deletion on children will not affect icl-3. The affected graph for 

the addition on children is built as illustrated in Example 3.5 and is shown in Fig. 

4.1. This affected graph shows the part of the database affected by the addition mod- 

ification on children and relevant to integrity constraints. 
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icl- 3 

descendant 

children 

Fig. 4.1 -- The affected graph for addition on children 

For addition of children(John, Pete), the integrity constraint icl-3 can be trans- 

formed into formula icl-3d as shown in section 4.3. According to the affected graph, 

Fig. 4.1, we can generate an integrity constraint checking plan for the addition of a 

tuple, children(John, Pete), to children relation as below. 

0 Evaluate the first part of query icl-3d. 

U citiren(Yo), c h i l d r e n ' ( ~ ~ ,  John),  children(John, Pete) 
k 1 . a  

if the query is false, then the addition is valid. Otherwise, 

0 evaluate 

U children(John, Pete), childreni(pete, Xi), deported(Xi) 
i=l..oc 

if the query is false, then the addition is valid. Otherwise, the addition caused 

an integrity constraint violation, and has to be redone. 



CHAPTER 5 

Discussion 

As shown in Chapter 2, we can generally approach the enforcement of integrity con- 

straints in three different ways, theorem-proving, query planning and compilation. 

There are various advantages and disadvantages associated with each approach. We 

combined them in our approach to achieve most of their advantages and overcome 

some disadvantages. 

The theorem proving approach [4, 14, 61 suffers a general efficiency problem for 

large databases, because of the reasoning system it used is the Prolog-like tuple-at- 

a-time top-down derivation system. Martens' query planning approach[l5] failed to 

concentrate their effort only on the part of the database which is relevant to integrity 

constraints because their reasoning system is purely bottom-up. 

Yum & Henschen's compilation approach[21] can only treat Horn databases, that 
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is, no negation is allowed in the IDB. It is based on the speciality of Horn clause 

databases, whose IDB predicates can be compiled straightforwardly. This method 

needs non-trivial extension to be be applicable to general deductive databases with 

negation. 

We use a compilation approach to transform the ic-relevant part of the databases 

like Yum & Henschen[21]. By treating negative literals and recursive predicates dif- 

ferently from other derived predicates and using an affected graph to direct integrity 

constraint checking against the actual databases as Martens and Bruynooghe[l5] use 

rule/goal graph, we successfully extended the application domain to Horn databases 

augmented with negation. 

To achieve the effect of focusing our effort only on the part of the database relevant 

to integrity constraints as backward reasoning from constraints could, we use a static 

qualitative analysis method to prune the set of integrity constraints. Thus, we check 

only those explicit or implicit modifications against the actual database which have 

the potential to affect integrity constraints. 

The transformation method 3.1 of integrity constraints and relevant rules is the 

basis of our integrity enforcement method. Integrity constraints and relevant rules 

are expanded as deeply as possible, so that we achieved good global optimization over 

the derivation of implicit modification and evaluation of integrity constraints. On the 

other hand, predicates occurring negatively need special attention. There is no way 

to avoid implicit modification redundancy checking over these predicates. Redundant 
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deletion on A is actually false addition to - A, which may cause us to make a wrong 

conclusion. This is one of the reasons why Yum & Henschen chose to deduce relevant 

induced updates separating from the evaluation of integrity constraints. 

Using the compilation method to derive induced updates can reduce intermediate 

results and increase global optimization [19]. This method is quite fit for transactions 

which modify much data at a time due to the validation by relation-at-a-time. The 

predicate-ic connection analysis method is simple, but works effectively for the change 

operations. 

The extended dependency graph can represent the dependency relationships among 

predicates. Also it can represents i m p l y  relationships for predicates (an i m p l y  relation 

is transitive). The extended dependency graph is designed to capture the relationships 

among integrity constraints and predicates. From an extended dependency graph we 

can find that an integrity constraint is relevant to which predicates. Thus, we can 

qualitatively analyze the effect that a modification may cause on integrity constraints 

and derived predicates based on the extended dependency graph. 

The predicate-ic connection analysis method is simple and effective to validate 

change modifications. This method is found greater usage in recursive databases. It 

forms the basis for simplification and evaluation of recursive ic-queries. By analyz- 

ing predicate-ic connection, binding information of variables of recursive predicates 

can be obtained, some chains can be discarded or simplified and efficient evaluation 

strategies can be planned. 
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Qualitative analysis and overall analysis of predicate-ic connection can be done ini- 

tially statically and/or incrementally. The only adaptation of this information needed 

is when rule and/or integrity constraint modifications happen. Even the integrity con- 

straint checking against databases can be precompiled for each EDB's various modi- 

fications. As Yum and Henschen [21, 221, ic-queries can be precompiled using generic 

constants to represent updates and replaced with real updates at evaluation time. 

For each modification, we build an affected graph, if it is possible to affect some 

integrity constraints directly or indirectly. This graph depicts which ic-relevant pred- 

icates and which integrity constraints are affected by the update. Only the ic-relevant 

part of the database affected by the update is present in the affected graph. Thus, the 

affected graph can direct integrity checking effectively with less redundant checking. 

Our integrity constraint enforcement methods for recursive databases is based 

on the query independent compilation technique. Further improvement is possible 

along with the development of recursive query processing techniques. Our integrity 

evaluation algorithms are efficient because of the following facts: 

0 We collected all potential constraints for our ic-queries. The integrity constraints 

are expanded as deeply as possible, thus any recursive ic-queries we need to 

evaluate obtained maximum constraints. [12] 

0 Duplication of evaluation is decreased. We can always evaluate necessary chains 

starting from the updates, thus only the update-relevant part is evaluated. 
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Generally, duplication and size of immediate result may greatly affect the perfor- 

mance of recursive query evaluation[2]. 

Compared with other methods proposed by Topor and Lloyd [12], by Decker [4] 

and by Kowalski et al. [6] .  Martens [13], Yum and Henschen [19, 201, the efficiency 

of our algorithm derives from the following aspects: 

Decreased intermediate results. We need only derive implicit modifications for 

ic-relevant negated predicates. 

Increased global optimization. Compilation techniques are used in the derivation 

of necessary implicit modifications and evaluation of integrity constraints. 

In addition to exploiting the assumption that the database satisfies the integrity 

constraints before a transaction like other methods, our methods exploit the 

overall hierarchical structure of the database. In a deductive database, if we 

modify EDB predicates, such modification may cause implicit modification on 

some IDB predicates which may or may not cause an integrity violation. We 

achieved focusing our attention only on the updated part of the database which 

is relevant to integrity constraints. 

Using predicate-ic connection analysis, we can validate most of the change mod- 

ifications with no integrity checking against the large database. 

If a modification does need real integrity checking, query processing can be done 

in a very efficient way. 
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0 Many integrity constraints involving chain recursions are degenerated to non- 

recursive ones by analyzing the relationship between chain variables and in- 

tegrity constraints or are simplified to simpler chain recursions. 

We extended the application domain to a reasonable scope. Solved wholely or 

partially the problems related to complex transactions and recursions in integrity 

constraint checking. 



CHAPTER 6 

Summary 

We further studied and developed efficient simplification algorithms and methods for 

the enforcement of integrity constraints in recursive deductive databases. We corn- 

bined the theorem-proving method with compilation techniques in our methods. The 

theorem-proving method is used to prune integrity constraint checking space and corn- 

pilation techniques are used to derive necessary implicit modifications and evaluate 

the simplified integrity constraint set against the actual database. We achieved the 

effect that focussed our effort only on the part of the database which is affected by 

the transaction as Martens[l5], Yum and Henschen[21, 221, etc., and focussed only 

Dn part of the affected part which is relevant to integrity constraints. By exploit- 

ing the hierarchical structure of a deductive database we precompiled or partially 

precompiled integrity constraints and ic-relevant rules to simplify integrity constraint 

checking and validated some modification by static qualitative analysis. By analyzing 

predicate-ic connection and variable binding, and compiling recursive rules indepen- 

dently, we simplified ic-relevant queries and generated efficient checking plans. Some 
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asynchronous and synchronous chain recursive integrity checking relevant queries can 

be simplified to non-recursive or simpler chain recursions. Efficient processing algo- 

rithms were developed for integrity checking and derivation of implicit modification 

for asynchronous and synchronous chain recursive ic-queries. 

Our integrity enforcement methods in recursive databases were based on the query- 

independent compilation of recursions. The recursions discussed in this thesis are con- 

fined to the function-free synchronous and asynchronous chain recursions. It is still 

an open research problem to compile complex recursions into regular chains and/or 

irregular chains. We believe that static analysis method and simplification method of 

the intensional database and integrity constraints are applicable to function deduc- 

tive databases and complex recursive databases. It is an interesting and challenging 

research issue to extend our methods to the enforcement of integrity constraints in 

function databases and complex databases. 
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