
ENFORCEMENT OF INTEGRITY
CONSTRAINTS

IN RECURSIVE DATABASES

Lifang Zhu

B.CS Huazhong University of Science and Technology, Wuhan, China, 1983

MS.CS Peking University, Beijing, China, 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School
of

Computing Science

@ Lifang Zhu 1992
SIMON FRASER UNIVER.SITY

December 1992

All rights reserved. This work may not be
reproduced in whole or in part, b y photocopy

or other means, without the permission of the author.

Name:

Degree:

Title of thesis:

APPROVAL

Lifang Zhu

hjaster of Applied Science

Enforcement of Integrity Constraints

in Recursive Databases

Examining Committee: Dr. Warren Burton, Chairman

Dr. Nick Cercone, Senior Supervisor

Dr. Jiawei ad, Senior Supervisor

--

/
Dr. Fred Popowich, Examiner

Date Approved:
December 1 6 , 1 9 9 2

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser U n i v e r s i t y the r i g h t t o lend

my thes i s , p r o j e c t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser U n i v e r s i t y L ib ra ry , and t o make p a r t i a l o r

s i n g l e copies on l y f o r such users o r i n response t o a request from the

l i b r a r y o f any o the r u n i v e r s i t y , o r o the r educat ional i n s t i t u t i o n , on

i t s own beha l f o r f o r one o f i t s users. ' I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r - p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l gain s h a l l no t be al lowed

w i thou t my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

Author:

(s i gnature)

(name)

(date)

ABSTRACT

Integrity constraint(ic) enforcement forms an essential component in deductive

database processing. Some interesting methods which enforce integrity constraints

have been proposed by Topor, Lloyd, Decker, Kowalski, Sadri, Soper, Martens, Bruynooghe,

Yum and Henschen. In this thesis we further analyze and develop efficient simplifica-

tion algorithms and methods for the enforcement of integrity constraints in recursive

deductive databases. We combine theorem-proving methods with compilation tech-

niques in our approach. Theorem-proving methods are used to prune the size of the

integrity constraint checking space and compilation techniques are also used to de-

rive necessary implicit modifications and evaluate the simplified integrity constraint

set against the actual database. Synchronous and asynchronous chain recursions are

discussed. By exploiting the hierarchical structure of a deductive database, we can

precompile or partially precompile integrity constraints and ic-relevant rules to sim-

plify integrity constraint checking and validate some modifications by static qualitative

analysis. By analyzing predicate connection and variable binding, and compiling re-

cursive rules independently, we can simplify ic-relevant queries and generate efficient

checking plans. Some asynchronous and synchronous chain recursive integrity check-

ing relevant queries can be simplified to non-recursive or simpler queries. Efficient

processing algorithms are developed for integrity checking and derivation of implicit

modification. To perform integrity checking against the actual database we utilize

the 'affected graph' of a modification. We achieve by focusing our attention only on

the part of the database which is affected by the update and relevant to integrity

constraints.

To my parents.

ACKNOWLEDGMENTS

My greatest thanks to my Senior Supervisor Dr. Nick Cercone for his supporting and

helping me throughout my work on this research. Without his encouragement this

work may never be finished.

Thanks to my Supervisor Dr. Jiawei Han for his informative instruction at the

early stage of this research.

Also thanks to Dr. Fred Popowich for examining the thesis and helping with the

revision of the thesis.

CONTENTS

... ABSTRACT . 111

ACKNOWLEDGMENTS . v

1 Introduction . 1

. 1.1 General approach 3

. 1.2 Syntax of a logical dat. abase 4

. 1.3 Knowledge modification 6

1.4 Assumption . 7

. 1.5 Thesis organization S

. 2 Background 9

. 2.1 Recursion in deductive clatabases 9

. 2.2 Recursive query processing 11

. 2.3 Theorem-proving approach 12

2.4 Query planning approach. Nlartens' integrity checking method 16

. 2.5 Compilation approach. maintaining state constraints 23

. 2.6 Summary 28

. 3 IC checking in non-recursive chtabases 30

. 3.1 Preliminary remarks 30

. 3.2 Basic simplification principles 32

. 3.3 Simplification of integrity constraints 33

. 3.4 Static qualitative analysis simplification method 37

. 3.5 Variable-ic connection analysis 42

. 3.6 Integrity constraint checking 47

. 3.7 Enforcement of ICs in non-recursive databases 51

. 3.7.1 EDB modification 52

. 3.7.2 IDB modification 53

. 3.7.3 Integrity constraint modification 54

. 3.7.4 Transactions 54

. 4 IC checking in recursive databases 57

. 4.1 Recursive query evaluation 58

. 4.2 Compile and simplify ICs in recursive databases 61

. 4.3 Primitive transitive recursion 64

. 4.4 Complex recursion 68

. 4.5 Integrity checking in recursive databases 70

. 4.6 Enforcement of integrity constraints in recursive databases 71

. 5 Discussion 74

. 6 Summary 80

. REFERENCES 82

vii

CHAPTER 1

Introduction

Integrity constraint[IC] enforcement is an essential part of deductive database pro-

cessing. An integrity constraint specifies a property that the database must satisfy to

remain in a valid state. Any modification to the database may affect the consistency

defined by the constraints, so that integrity constraints must be enforced after modi-

fications to ensure the consistency of the database.

Integrity checking has been an interesting database research topic since the 1970's.

The enforcement of integrity constraints is time-consuming, which largely affects the

overall performance of database processing. Extensive research had been done on

integrity constraint enforcement in relational databases in the 1970's and at the be-

ginning of the 1980's. Thereafter, some researchers extended their interests to de-

ductive databases. Some interesting methods for the enforcement of ICs in deductive

databases have been proposed by Topor and Lloyd [14], Decker [4], Kowalski, Sadri

CHAPTER 1. INTRODUCTION 2

and Soper [6], Martens and Bruynooghe[l5], in non-recursive databases. Yum and

Henschen [21, 221 proposed a method for maintaining state-constraints in deductive

databases with transitive and linear recursions. In this thesis I explore this problem

extensively and develop efficient methods for the enforcement of integrity constraints

in non-recursive and recursive deductive databases. From this point on, database is

used to refer to deductive database, for simplicity.

Recently, query independent recursion compilation techniques have provided a

very good recursive query evaluation method for some practical recursions[3, 7, 8,

10, 111. On one hand, the theorem-proving technique provides a very good method

for static analysis of integrity constraints and the intensional database[IDB] structure.

On the other hand, the compilation technique provides an efficient processing strategy

for the evaluation of integrity constraints and the derivation of implicit modification.

We combine these two techniques in our approach to simplify integrity constraints,

derive implicit modification and check integrity constraints. We partially or fully com-

pile and simplify integrity constraints and integrity constraint relevant (ic-relevant)

rules. By static qualitative analysis of the relationships among compiled integrity

constraints and rules we can validate most of the updates. The static analysis result

can direct the necessary integrity checking procedure against the actual database.

Query independent compilation techniques are adopted to compile linear recursions

and some other complex recursions into synchronous chains and asynchronous chains.

By predicate connection analysis and variable binding analysis, recursive ic-relevant

queries can be simplified and evaluated by an efficient evaluation strategy extended

from the multi-counting method[ll].

C H A P T E R 1. INTRODUCTION

1.1 General approach

Integrity constraints are used to express meta-knowledge about the facts and rules

present in the database. For the information represented by facts and rules to be 'cor-

rect', the database has to 'satisfy' its integrity constraints. As with many researchers,

we adopt the consistency view that consistency among facts, rules and constraints is

demanded [15, 6, 211. We say an integrity constraint is violated if it is inconsistent

with the the facts, rules and constraints in the database. Thus, we can take use of

the well-developed query techniques to check integrity constraints efficiently.

Simply evaluating integrity constraints after any modification is time-consuming

and unnecessary. It is reasonable to assume that the database satisfies its constraints

before the transaction, so that any violation afterwards must involve at least one

of the modifications in the transaction. In the 70's and early 80's, many methods

had been proposed for the enforcement of integrity constraints in relational databases

based on this assumption; a survey can be found in [17]. Following Nicolas, Decker[4],

Toper and Lloyd[l4], others have extended this idea into deductive databases.

Kowalksky[6], Martens[l5], Yum and Henschen[21, 221, etc., improved integrity

checking by reasoning forward and focusing only on the part of the database affected

by the update. Based on the derivation systems they used, we can classify their

approaches into three classes.

Theorem-proving approach. Decker[4], Toper and Lloyd[14], Kowalski, Sadri

and Soper [6], and others make use of a Prolog-like tuple-at-a-time derivation

CHAPTER 1. INTRODUCTION 4

system to check integrity constraints within the theorem-proving framework,

and achieve the simplification effect proposed by Nicolas [17].

Logical query planning approach. Martens and Bruynooghe [15] make use of an

implementation of a logical query language approach proposed by Ullman [19]

as supporting evaluation mechanism, and incorporate it with integrity checking

simplification methods.

Compilation approach. Yum and Henschen [21, 221 based their integrity mainte-

nance method on query compilation techniques to derive implicit modifications,

simplify and check integrity constraints as in relational databases.

These different approaches are developed along with the development of the rea-

soning and query processing techniques of deductive databases. We will illustrate and

analyze each approach with an example in the second chapter.

1.2 Syntax of a logical database

We adopt the Prolog convention of denoting logical datalog programs. We use strings

of characters starting with an upper case letter to denote variables and strings begin-

ning with a lower case letter (a, b, c, ...) to denote constants. Integers are constants.

We use identifiers starting with lower case letters (p, q, r, ...) for predicate names

and the same identifiers starting with capital letters to represent the corresponding

relation defined by the predicates.

CHAPTER 1. INTROD UCTION 5

Relations and predicates refer to the same object from database terminology and

logic terminology respectively. Tuple and fact refer to the same object also.

A literal is of the form ~ (t ~ , t 2 , . . . , t,) where p is a predicate name of arity n and

each t;(l <= i <= n) is a constant or a variable. A literal can be negated by a prefix

-. We call (tl, t2, ..., t,) a tuple.

We consider a deductive database consisting of the following three exclusive com-

ponents:

the extensional database (EDB), which is composed of base predicates.

the intensional database (IDB), which is composed of derived predicates which

are defined by deductive rules of the following form:

r : - p l y p2, . . . , pn, " q l , " q2, . . . , - 9 m

integrity constraints (IC), which are defined by the following form:

:- P I , p2, . . . , pn, " q l , " q2, . . . , " qm .

A query is represented in relational algebra or a Horn clause. For example,

where, - in the position of predicate attributes means we have no interest in the cor-

responding at tributes.

CHAPTER 1. INTRODUCTION

and ? before a variable indicates the corresponding variable is inquired.

The following notations are used for the representation of relational algebra for-

mulas:

U represents union

nl,%B represents the relation projection of B on the first and last attributes.

Ui=l..n Oi = 01 U O2 U ... U on.

chn* = chn(X0, XI), chn(X1, X2), ...

chni(X0, Xi) = ~hn(X0, XI), chn(X1, X2), ..., ~hn(Xi-I , Xi).

Predicate-ic connections among the predicates and integrity constraints is very im-

portant in the compilation of recursions and the enforcement of integrity constraints.

The simplest variable pattern of a rule is the linear variable pattern (just like the

above chn chain), where 1) all the predicates are binary and contain neither constants

nor repeated variables, 2) two consecutive predicates share variables at their neigh-

boring argument positions and there is no other shared variable among predicates,

and 3) the two variables of the head ~redicate correspond to the starting and ending

variables of the body [lo]. Sometimes, variables are omitted in some formulas in this

thesis if they are in a linear variable pattern.

1.3 Knowledge modification

Knowledge modification in a deductive database falls into three classes:

CHAPTER 1. INTRODUCTION

data modification, modify the extensional database. We can further classify data

modifications into three kinds of operations: addition, deletion, and change.

rule modification, modify the intensional database.

integrity constraint modification.

Actually we can classify rule modification and integrity constraint modification as

for data modification, but we do not want to because we can not gain anything from

it in the enforcement of integrity constraints.

Any of these three kinds of knowledge modification may affect the integrity and

consistency of the knowledge database. Thus, integrity constraints must be enforced

whenever these kinds of modification occur.

1.4 Assumption

We discuss and study the enforcement of integrity constraints in deductive databases

based on the following assumptions.

Assumption 1 We assume that the database is function-free, range-restricted

and stratified.

Assumption 2 We assume the recursions in the database are compilable to asyn-

chronous or synchronous chains.

C H A P T E R 1. INTRODUCTION

1.5 Thesis organization

This thesis is organized as follows. In Chapter 2, we survey recent research in the

area of integrity constraint enforcement and recursive query processing. In chapter

3, we outline an integrity constraint transformation (compilation) algorithm, static

qualitative analysis algorithm, predicate-ic connection analysis method, and integrity

checking algorithm, for the enforcement of integrity constraints in non-recursive de-

ductive databases. In chapter 4, we discuss simplification of integrity constraints,

evaluation of primitive transitive recursive ic-queries, evaluation of complex recursive

ic-queries, and integrity checking in recursive databases. In chapter 5 , we discuss our

methods, and compare the performance of our methods with previous methods. In

the last chapter, we summarize our work and discuss future research directions.

CHAPTER 2

Background

2.1 Recursion in deductive databases

A predicate p is said to imply a predicate r (p => r) if there is a Horn clause in an IDB

with predicate r as the head and p in the body, or there is a predicate q where p => q

and q=> r [8]. A predicate p is said to be recursive if p => p. Two predicates p and

q are mutually recursive if p => q and q => p. A recursive rule is linear if there is no

mutual recursion and any rule with r as head contains no more than one occurrence of

r in the body. A transitive recursion, i.e., single chain recursion, which contains only

a one-sided join with the recursive predicate is a special case of linear recursion. Lin-

ear recursion is a very important kind of recursion and has been studied extensively

because it is believed that practical recursions are linear or transferable to linear ones.

A rule cluster of a predicate R is the maximum subset of rules in an IDB in which

CHAPTER 2. BACKGROUND

all of the head predicates of the rules are either R or P where P => R.

As above, an integrity constraint cluster can be defined as a set of rules of the

union of clusters of all of the rules which appeared in the ic.

Recursion is a very important feature of Knowledge-Base Management Systems.

Much research has been done on the evaluation of recursion. Many good meth-

ods have been proposed like Magic sets[3], Counting[3], Henschen-Naqvi [2, 71, and

query-independent compilation[8, 9, 101. Bancilhon and Ramakrishnan have written

a very good survey on the problem of evaluation of recursive queries against deductive

databases [2].

Recursions can be classified based on defi nitions or compilation results[9]. We are

interested at the classification based on compilation results from the evaluation point

of view. It is possible and desirable to treat different recursions differently in the

enforcement of ICs.

1. A bounded recursion is a recursion whose compiled formula consists of finite

relational expressions, which is equivalent to a set of nonrecursive rules.

2. An asynchronous chain recursion (AC) (especially, single-chain recursions) is

recursion whose compiled formula consists of a finite number of asynchronous

chains and possibly a small number of other predicates. Asynchronous chains

means that the length of one chain is independent to the lengths of the other

chains in the formula.

CHAPTER 2. BACKGROUND

3. A Synchronous chain recursion is a recursion which is compilable to one or a

set of synchronous chains. Synchronous chains means that all chains have the

same length.

4. Hyper-string recursions an infinite set of strings with irregular patterns.

2.2 Recursive query processing

T h e o r e m [Hanl] A recursive cluster consisting of one linear recursive rule and one

or more nonrecursive rules is compilable to either a bounded recursion or an n-chain

recursion[8].

By analyzing predicate connections in a deductive database, a function-free linear

recursion can be compiled to[8]:

1. a bounded recursion, in which recursion can be eliminated from the program,

2. an n-chain recursion, whose compiled formula consists of one chain, or n syn-

chronized chains.

E x a m p l e 2.3 Following is the definition of a well-known same generation recur-

sion.

same-generat ion (X , Y) : - parent (X , XI) , parent (Y, Y 1) ,

same-generation(X1, Y1) .
same- generation(^, Y) : - sibling(X, Y).

CHAPTER 2. BACKGROUND 12

The above single linear recursion can be compiled to a two-chain recursion as

shown below:

Theorem [HLl] Many interesting function-free recursions such as, multiple linear

recursions in linear variable patterns, some mutual recursions, canonical multi-linear

recursions, can be compiled to asynchronous chain recursions and processed by tran-

sitive closure query processing strategies[lO].

The processing of primitive n-chain recursions has been studied extensively. In

case of n = 1 (Single chain recursion) or asynchronous chain recursion, they can be

processed by well-studied transitive closure algorithms. Other multi-chain recursion

(n > 1) can be handled by synchronized processing of n chains. Most recognized

processing methods include: Henschen-Naqvi algorithm[7], the counting methods and

the magic sets method [3] and their extensions [2] .

2.3 Theorem-proving approach

Application domain: function-free, range-restricted non-recursive database.

Derivation system based: tuple-at-a-time Prolog-like derivation system.

Methods for avoiding redundantly rechecking constraints which are unaffected by

the transaction were proposed by Topor and Lloyd [14], Decker [4]. Their simplifica-

tion algorithms extend Nicolas' algorithm[l7] for relational databases and primarily

CHAPTER 2. BACKGROUND

consist of the following two steps:

Generate a simplified checking set from the transaction, which is possibly sim-

pler and more highly instantiated than the original set, and whose satisfaction

ensures the consistency of the updated database.

Evaluate the derived constraint set against the actual database by top-down

reasoning.

The reasoning system they used is a purely top-down, Prolog-li ke tuple-at-a-time

derivation system. Backward reasoning does not fit for checking integrity constraints

because it fails to focus only on the part of the database which is affected by the

updates. To overcome the drawback of top-down reasoning of Prolog for integrity

checking, Kowalski, Sadri and Soper [6] extended the Prolog-like derivation system

by :

allowing forward reasoning as well as backward reasoning.

incorporating additional inference rules for reasoning about implicit deletions

caused by changes to the database, and

incorporating a generalized resolution step, which is needed for reasoning for-

wards from negation as failure.

In the Prolog-like derivation system we can only reason starting from a denial.

To reason forward, the proof procedure underlying the consistency method allows us

reason from any deductive rules, denial or negated atom. In short, the consistency

CHAPTER 2. BACKGROUND 14

method works as follows: Take the added or deleted fact, added or deleted rule, in-

serted constraint as top clause and the database (EDB, IDB and ICs) as the input

set to reason forward. If a refutation is found, the update violates the constraints.

Otherwise, if no refutation can be found, the update is valid.

Example 2.1 In the following database, citizen and registered-alien without criminal-

record are defined to be lawful residents. To be in a valid state the database is required

that no lawful residents are deported. Suppose we have a transaction to delete Frank's

criminal record. The database is assumed to be consistent before the transaction.

IDB: lawful-resident(x) :- registered-alien(x),

not(crimina1-record(X)). (ri)

ICs : :- lawful-resident(x), deported(x1.

EDB: deported(John),

criminal-record(Frank),

registered-alien(Frank1,

deported(Frank),

citizen (Tom)

(ici)

Transaction(T): delete criminal-record(~rank1

CHAPTER 2. BACKGROUND

By taking not(Criminal-record(F'rank)) as the top clause we can show the integrity

checking procedure as shown in the diagram below.

Top clause

not(crimina1-record(Frank)

I

lawful-resident(Frank) <--

registered-alien (Frank)

I

<- registered-alien(Frank) &

deported (Frank)

I

<- deported (Frank)

I

C I

Input set

r 1

The search space consists of one refutation illustrating that the update causes the

database to violate the integrity constraints.

It is difficult to implement forward reasoning in a backward reasoning system.

Forward reasoning makes the consistency method more efficient than other previous

methods. Kowalski, Sadri and Soper found the importance of focusing only on the

affected part of the database by the update.

CHAPTER 2. BACKGROUND 16

2.4 Query planning approach, Martens' integrity

checking met hod

Application domain : function-free, stratified and non-recursive deductive database.

All rules and constraints in the database must be range-restricted.

Derivation system based : relation-at-a-time logical query language implementa-

t ion.

Martens and Bruynooghe[l5] tried to integrate an approach to implementing a

logical query language presented by Ullman [19], and efficient techniques for integrity

checking as advocated by Nicolas[l5], Decker[4], Topor and Lloyd[l2], Kowalski, Sadri

and Soper[6], etc. Their method was based on Ullman's query planning method using

rulelgoal graphs and capture rules[l9]. The purpose of rulelgoal graphs is to allow

the planning of evaluation strategies. Martens and Bruynooghe extended it for the

enforcement of integrity constraints. One advantage is that using it, the system can

fix the best order in which to evaluate implicit modification and check integrity con-

straints.

The rule/goal graph Martens and Bruynooghe used is slightly different from U11-

man's original rulelgoal graph. They draw arcs in opposite directions [19, 151. In

their algorithms they use posocc-ic and negocc-ic to represent a positive occurrence

or a negative occurrence in an ic. They use posocc-r and negocc-r to represent a pos-

itive occurrence or a negative occurrence in a rule. For integrity checking, Martens

and Bruynooghe extended the rulelgoal graph as follows:

CHAPTER 2. BACKGROUND

1. If ic is a constraint with n (ordered) variables, then there is a node i d for each

adornment, p, where p is a string of b (bound) or f (free) of length n1 representing

the state of arguments or variables.

2. We add arcs id'- > BS (arc from icP to B;), where q is such that those argu-

ments of Bi are bound which contain variables bound by P Or "0 variables at

all. The other arguments of Bi are free.

3. For every predicate A occurring in the database, add a transaction node At.

4. For every node At, we add arcs:

a posocc-ic (negocc-ic) arc A ~ - > icP for every constraint ic where A occurs

in a positive (negative) literal and p is such that all variables appearing as

arguments to (one occurrence of) A are bound and no other variables are

bound.

a posocc-r (negocc-r) arc A ~ - > r p for every rule r where A occurs in

a positive (negative) literal and p is such that all variables appearing as

arguments to (one occurrence of) A are bound and no other variables are

bound.

Martens' method treats different kinds of modifications separately, adding a fact,

deleting a fact, adding a rule, deleting a rule, adding an integrity constraint, deleting

an integrity constraint. Their main algorithm is for the addition and deletion of facts.

Compared with the case of addition or deletion of facts, the integrity checking for

adding or deleting rules is easier. They merely treat the receipe of the added or

CHAPTER 2. BACKGROUND 18

deleted rule as added or deleted facts, then go through the same procedure as adding

or deleting facts. When adding an integrity constraint, they just treat it as a query;

if it is not false it causes integrity problem. The easiest case to consider is for the

deletion of constraints; no checking needs to be done, only integrity checking related

information needs to be updated accordingly. The basic procedure for checking adding

or deleting a fact is as follows:

First check whether the update directly violates integrity constraints

Then derive all implicit additions and deletions which are an immediate conse-

quence of the update.

Let the implicit addition or deletion undergo the same procedure.

Let us take Martens' algorithm for the addition of a fact as an example to illus-

trate and analyze his method.

Adding a fact A(al, az, ..., a,)

1. If the addition of this fact has already been treated, continue with another

change.

2. If A(al, a2, ..., a,) is provable in the initial database, that is, A(al, a2, ..., a,) is

redundant; then, continue with another change.

3. For every posocc-ic arc At - - > icP where A(al, az, ..., a,) can be unified with

the A-occurrence in ic, compute the relation for icp. If a non-empty relation

CHAPTER 2. BACKGROUND 19

is found, stop the processing of this transaction, undo it and inform the user

about the integrity constraint violation that occurred.

4. For every posocc-r arc At - - > rP where A(a1, a2, ..., a,) can be unified with

the A-occurrence in r, compute the relation for rP . Translate to facts concerning

the predicate occurring in the head of r. Treat every resulting tuple as an added

fact.

5. For every negocc-r arc At - - > rP where A(al, az, . . . , a,) can be unified with the

A-occurrence in r, compute the relation for rP. Translate it to facts concerning

the predicate occurring in the head of r. Treat every resulting tuple as a deleted

fact.

Martens and Bruynoogheh's method reasons relation-at-a-time instead of Prolog-

like tuple-at-a-time, which is preferable and more efficient in deductive databases. It

is possible to take advantage of precompilation to optimize integrity checking if modi-

fication to rules and constraints is not frequent. The reasoning method is bottom-up,

so Martens' method has advantages of a bottom-up evaluation system, which can

make the method focusing only on the part of the database which is affected by the

update.

One potential problem is caused by their pure bottom-up reasoning system, which

fails to focus only on the parts of the database which may affect constraints. All

of the implicit modifications are derived and without further consideration, some of

them may not affect any constraints.

CHAPTER 2. BACKGROUND 20

This method is recursive. For the integrity checking of an addition of a fact, the

first step of adding a fact is trivial. The second step is not so simple, to find if A(a1,

a2, ..., an) is provable in the old database, we need to reason against the old database.

They spend almost the same amount time on checking boundary conditions as de-

riving implicit modifications. The third step is unvoidable but not very expensive in

the entire checking procedure. The last two steps equal several queries. We need to

evaluate all of the rules in which A occurs. These steps will generate more implicit

modifications which need to undergo the same procedure as A(a1, a2, ...). This is the

most expensive part of the method.

Martens and Bruynooghe's method can only handle the situation in which a pred-

icate may occur only once in the body of a rule or integrity constraint. In this case,

simply unifying the added or deleted fact with its occurrences in a rule's body is not

enough to derive the immediate effect on the rule in the last two steps. Nevertheless,

it is easy to extend their method to handle more complex situations.

Example 2.2: The following uses abbreviations 1-r for lawful-residents and e-v for

eligible-visitor, etc. for the database in Example 2.1. One rule defining that eligible

visitor are dependents of lawful residents is added.

IDB : 1-r (X) : - r-a(X) , no t (c - r (X)) .

1-r(X) : - c i t (X) .
e-v(X) :- depen(X, Y) , 1 - r (Y) .

ICs : : - 1-r(X) , deported(X) . (i c i)

CHAPTER 2. BACKGROUND

EDB : depen(John, Tom) ,

deported(John),

c-r(Frank),

r-a(Frank) ,

deported(Frank),

cit (Johnson) ,

cit (Tom) .

T: Add r-a(George)

In rule r3 of the database above, e-v has one variable, which has two binding

situations, free and bound, so that there are two nodes, e - vb and e - vf, for e-v in

the extended rule/goal graph as shown in Fig. 2.2 (a). Rule r3 has two variables X

and Y. There is an arc from e - vb to r!f because X of r3 is bound and Y of r3 is free

due to X of e-v is bound. For the same reason, there is an arc from e - vf to r3ff.

There is an arc from rif to depenbf because depen occurred in the body of r3 and X

and Y of depen are bound and free accordingly when X and Y in r3 are bound and

free. In the same way we can complete the extended rule/goal graph for rule r3 and

other rules as shown in Fig. 2.2 (a) and (b). There is an transaction node for each

predicate. When variables in depen are bound, the binding can be passed to variables

in rule r3, so that there is an arc from depent to r:b. In this way, the entire extended

rulelgoal graph for the database of Example 2.2 can be built and is shown in Fig. 2.1.

CHAPTER 2. BACKGROUND

b
cit

e-v e-v

depen bf depen ff

b b
r-a c-r

f
r-a c-r

deported ,
r-a , c-r ,

(4

Fig. 2.1 The extended rulelgoal graph for the database in Example 2.2

If we start from the transaction node of r-at in Fig. 2.1 (d), we find r-at does

not occur in any integrity constraint, so it will not affect any integrity constraint

CHAPTER 2. BACKGROUND 23

directly. From r-at to r l , there is a posocc-r arc, so we need to unify r-a(George) with

r-a's occurrence in rl 's body and treat the resulting relation as added facts for 1-r,

1-r(George). 1-r(George) needs to undergo the same procedure as adding r-a(George).

1-r(George) is verified by the second step as not derivable in the old database. 1-r

occurs in icl as shown in Fig. 2.1 (e), so icl needs to be checked with the unification

of 1-r(X) with 1-r(George); fortunately the result is empty. 1-r occurs in r3 as shown in

Fig. 2.l '(e), we have to evaluate its influence on e-v and the result need to undergo the

same procedure as before according to Martens' method. But we find any modification

of e-v has no chance to violate any integrity constraint in the database, so our last

effort is in vain.

2.5 Compilation approach, maintaining state con-

straint s

Application domain: function-free, single linear recursive Horn database. Integrity

constraints are required to be range restricted.

Derivation system based: compilation approach.

McCune and Henschen [16] proposed a method for maintaining state constraints

in a relational database. From a theoretic point of view, they attempt to represent the

relationship between the database before and after an update by transition axioms, so

that integrity constraints on the new database can be represented and simplifiedon the

initial database state. For a transaction, they try to generate a complete test set to be

applied before the transaction is performed. They emphasize that checking integrity

CHAPTER 2. BACKGROUND 24

constraint should be done before updating to avoid unnecessary undoing of illegal

transactions. Unlike Nicolas' direct substitution and simplification method, they use

a more cumbersome computation extensive method to simplify integrity constraints.

Generic constants are used during constraint compilation at their specification time.

When the database is in use and a user requests an update, the appropriate compiled

formulas are retrieved, the generic constants are replaced with the update values, the

formulas are simplified, and (if need be) tested against the database.

Yum and Henschen [21, 221 generalized the state-constraint maintaining method in

relational databases above to deductive databases involving Horn clauses. They try to

deduce all of the relevant implicit and explicit updates upon arrival of a transaction,

then the same integrity constraint enforcement strategy as in relational databases can

be exploited to maintain state constraints in deductive da.tabases. Their method has

three stages:

Simplification of integrity constraints at integrity constraint specification time.

Derivation of induced updates upon arrival of a transaction through a compila-

tion approach.

Evaluation of the relevant simplified integrity constraints.

Yum and Henschen use the same method of simplifying integrity constraints pro-

posed by McCune and Henschen [16]. The simplification method is outlined below.

Algorithm 2.3.1 Simplification of integrity constraints

CHAPTER 2. BACKGROUND

1. Form a transition axiom (TAX) for the update.

2. Replace all of the instances of the new relation in the integrity constraint axiom

with the right-hand-side of TAX, which is equal to the new relation.

3. Convert the above integrity constraint clause into a conjunctive form.

4. Delete all of the conjuncts subsumed by the old integrity constraint clause,

which is true because we assume the database satisfies its constraints before the

update.

5. Convert the remaining clause into a disjunctive form.

Induced updates are called redundant when they are already derivable before the

update for insertion or they are still derivable after the update for deletion. Redun-

dant facts are removed by querying them on the initial database state or the new

database state for redundant induced insertion or deletion separately.

To deduce induced updates, they compile all the IDB rules, whose head relation

may violate some integrity constraints(which appears in some integrity constraints).

When an insertion update arrives, evaluate the increment of each compiled rule with

the update predicate in its body. Thus, we can deduce a set of non-redundant facts

that are implicitly or explicitly inserted to the database due to an update. The set of

deleted facts can be derived in the same way for deletion updates. The same proce-

dure can be applied to the update of an IDB.

Let us take insertion of a fact P' as an example to illustrate the derivation of

CHAPTER 2. BACKGROUND

induced updates.

A forward chaining rule cluster for a base predicate, F-cluster(P) is a set of com-

piled rules, with a predicate P in its body, whose head relation may violate some

integrity constraint. F-clustere(P1) is U;=,.., Re; where R is a unified rule in the

F-cluster(P), dl, . . . ,8, are most general unifiers(mgus) of each occurrence of P in the

F-cluster(P) and an update P', and n is the number of mgus. F-clusterTel(P') is a

set of relational database expressions for evaluating F-clustere (P').

The set of induced updates due to an update can be obtained by evaluating

F-clusterTel(P') and removing redundant facts.

Yum and Henschen proposed two algorithms to deduce induced updates for tran-

sitive closure and primitive linear recursive rules. The transitive closure rules actually

are single chain recursions. Primitive linear recursive rules are single linear recursions

[22, 81. The single linear recursive rule set consists of

The compilation result formula for r is:

CHAPTER 2. BACKGROUND

Thus, the relational expression for F-c lus t e rTe l (B1) is

After careful examination, the above equation (2 .2) can be transformed into equa-

tion (2 . 3) because Bf is a tuple and Bf cu B' is still B'.

where m = j + k + I

The above compiled formula (2 . 3) can be processed efficiently using counting

method, the B chain and C chain should be synchronized.

The last stage of their method is the evaluation of simplified integrity constraints.

For each induced inserted and deleted fact, the related simplified integrity constraints

are retrieved, the generic constants are replaced with the fact, and the formula is

evaluated against the updated database.

We should notice the difference between the evaluation method here with McCune

and Henschen7s corresponding method for relational databases. They evaluate the

simplified constraint set against the initial database state before. Here they evaluate

constraints against the updated database for simplicity and avoiding the uncontrol-

lable complexity of simplification of integrity con~tra~ints in deductive databases in

CHAPTER 2. BACKGROUND

the same way as in relational databases.

This method can focus its attention on the affected part of the database which is

related to integrity constraints fairly well. The compilation approach is adopted to

deduce induced updates, which makes it more efficient than other approaches. That

integrity constraints can be compiled at their specification time is also one of the

processing advantages.

Yum and Henschen derive induced updates and check integrity constraints sep-

arately. The overall optimization of derivation of induced updates and evaluation

of integrity constraints is impossible. All the relevant induced updates are deduced

before IC evaluation; unnecessary derivation of induced updates may occur when a

violation of integrity does happen.

Redundant facts are removed by querying them on the initial database, which is

quite expensive, especially for those facts of recursive predicates.

2.6 Summary

We have already known that reasoning forward (bottom-up) from updates can achieve

the effect of focusing only on the part of the database which is affected by updates,

and that reasoning backward (top-down) from integrity constraints can focus only

on the constraint closures, i.e., the part of the database relevant to constraints. It

CHAPTER 2. BACKGROUND 29

is desirable to reach these two goals at the same time while checking integrity con-

straints. We propose a new integrity checking method which will combine these two

reasoning strategies. We will use a top-down theorem-proving approach to prune the

forward reasoning space first, and use the result to guide integrity constraint checking.

Recursion makes integrity constraint checking much more challenging. Generally

speaking reasoning forward from facts is not a best fit for dealing with integrity con-

straint checking in the presence of functions and recursion[l5]. Yum & Henschen

presented a processing method for a very simple kind of recursion. Recently, many

interesting methods have been proposed for recursive query processing. We will make

use of recent research results on the query independent compilation of special recur-

sions to deal with the recursion problem in integrity constraint checking.

CHAPTER 3

IC checking in non-recursive

databases

3.1 Preliminary remarks

In deductive databases, any update to base predicate space(defined in an EDB) or IDB

predicate definitions may cause changes to relations defined by other derived predi-

cates(defined in an IDB). This kind of modifications is called an implicit modification.

A modification may affect an integrity constraint directly if the modified predicate

occurs in the integrity constraint, and/or indirectly if the modification causes implicit

modification on an derived predicate which occurs in a constraint.

Induced updates are the set of facts that are implicitly or explicitly inserted to

or deleted from a database due to the updates of a transaction. An induced update

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 31

is called redundant if it already derivable before the update for insert or they are

still derivable after the update for delete [21].

An ic-query is defined as a query for integrity checking or derivation of induced

updates. In section 3.6 we will explain how to compose ic-queries.

Generally speaking, the database is consistent before an transaction. Any modi-

fication may affect only a part of the database and some of the integrity constraints.

Most of the evaluations will be redundant if we simply evaluate all of the integrity

constraints after any modification. To simplify integrity constraints and to reduce

redundant checking has become a key issue in the development of integrity checking

methods.

In summary, we face the following challenges to enforce integrity constraints:

Simplification of integrity constraints. Redundant checking should be deduced

as much as possible.

Derivation of implicit modification and redundancy exclusion.

Integrity checking against the real databases.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

3.2 Basic simplification principles

We all know that the relational join operation has monotonic behavior. So, the result

of a query of an integrity constraint must be monotonic. Consider a relation

Deletion on A or addition on B can never increase R. Two basic principles can be

deduced from this monotonic behavior[l7].

Principle 1: The deletion of tuples from a positive literal in an integrity con-

straint will not cause integrity problems to this integrity constraint directly.

Principle 2: The addition of tuples to a negative literal in an integrity constraint

will not cause integrity problems to this integrity constraint directly.

By analysis of the structure of the IDB we can determine that some EDB's modifi-

cations will not violate any ICs or simplify integrity checking at least. This is one kind

of modification which will not cause an integrity violation. Actually, there is another

group of EDB modifications which will never cause integrity problems. By carefully

examining the structure of all of the Horn clauses in a deductive database, we find

two facts: generally a predicate has quite a few attributes and integrity constraints

impose constraints on only a few attributes. Thus, we can predict that most change

modifications on EDB predicates may not affect the constrained attributes, thus no

integrity violation.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

Consider the integrity constraint,

the fare of each flight must be greater than 0,

:- flight(Fno, ... , Fare), Fare <= 0.

We can soon find that modification on attributes of flight other than Fare will

never cause a violation to the integrity constraint mentioned above.

3.3 Simplification of integrity constraints

Yum and Henschen [21, 221 used a compilation method to derive induced updates

for pure Horn databases. In Horn databases with no negation, non-recursive rules

can be compiled into formulas including only EDB predicates by unification. In Horn

databases augmented with negation, the compilation is not so straightforward, and the

output cannot be so regular. To derive induced updates, we cannot simply unify the

addedldeleted fact with their occurrences in the compiled formula to derive induced

updates if there are some negative literals or subformulas in the compiled formula.

CHAPTER 3. IC CHECKrNG IN NON-RECURSIVE DATABASES 34

Example 3.1: In the following database, citizen and registered-alien without

criminal-record are defined to be lawful residents. A person is said to have crimi-

nal record if he is a criminal in Canada or has a criminal record in his/her home

country. To be in a valid state the database is required that all lawful residents are

not deported.

I D B : lawful-resident(X) :- reg i s te red-a l i en(X) ,

not(crimina1-record(X)). (r l)

criminal-record(X) : - criminal(X, Canada).

criminal-record(X) : - cit izen-of(X, Country),

criminal(X, Country).

The compilation form of r l could be:

lawful-resident(X) : - regis tered-al ien(X) ,

" (criminal(X, Canada) V c i t izen-of(X, Y) &

criminal(X, Y)) .

It is wrong to derive induced updates by unifying the update with criminal or

citizen-of. We have to treat negated predicates differently in the compilation process.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 35

We already know that induced updates, which can be gotten by unifying updates

with their occurrence in a rule, are probably redundant. It is wrong to unify redun-

dant deletion with its negative occurrence, which may result false conclusion. It is

impossible to avoid redundancy checking of implicit modification if the predicate occurs

negatively in another predicate's definition or in an integrity constraint.

For example, an integrity constraint below:

If an implicit deletion Q' on q is redundant, an integrity violation is concluded

because P & Q' happens to be true. Actually, deletion of Q' is redundant (Q' is still

in Q), P & Q is still false, that is, no integrity violation occurred.

There are two ways to handle redundant implicit modification, Martens checks

every derived implicit update[15], and Yum & Henschen checked only for predicates

occurring in integrity constraints. We will adopt the compilation approach, and not

check redundancy unnecessarily. But due to possible negative literals in our databases,

we do some redundancy checking for implicit modifications. As a preliminary result, a

method checking less implicit modification redundancy will have better performance

in most situations than one with more checking, because the compilation approach

can have better optimization.

An expansion of a rule or integrity constraint is the unification of a derived pred-

icate in the body of the rule or constraint with a definition of the predicate.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

Algorithm 3.1. Transformation of integrity constraints and rules by expansion.

Input Integrity constraints and an IDB.

Output Partially compiled integrity constraints and ic-relevant rules which have

no derived predicates occurring in their bodies.

1. Expand an integrity constraint. Unify a derived predicate p, which occurred

positively in an integrity constraint, with its definitions respectively, which may

result in several new integrity constraints.

2. Perform the above step recursively until no derived predicate occurred positively

in any integrity constraint.

3. Transform ic-relevant rules (defining derived predicates occurring negatively in

some integrity constraints) similarly.

0 Expand an ic-relevant rule. Unify a derived predicate p, which occurs pos-

itively in the body of an ic-relevant rule, with its definitions, respectively.

Unification may result in several new ic-relevant rules.

0 Perform the above step recursively until no derived predicate occurring

positively in any ic-relevant rule.

0 All of the rules defining those predicates which occur negatively in ic-

relevant rules are ic-relevant rules also; so that they need to be compiled

and go through step 3.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 3 7

Example 3.2: Using algorithm 3.1 we can transform the integrity constraints and

relevant rules in the database in Example 3.1. Because criminal-record is defined by

base predicates alone, no rules need to be compiled. The integrity constraint icl is

transformed into two integrity constraints:

: - registered-alien (X) , not (criminal-record (x)) , deported (x) (ici-I)

: - cit izen(X) , deported(x) . (ici-2)

Static qualitative analysis simplification met hod

After transformation of integrity constraints and relevant rules, it is easier to use

the static qualitative analysis method [23] to analyze the database to find some in-

tegrity checking related information. By static analysis of the transformed integrity

constraints and relevant rules, we can determine:

when a modification may affect which integrity constraints,

when a modification may affect which ic-relevant derived predicates,

0 an optimum evaluation plan for integrity constraint checking when a modifica-

tion occurs.

An implicit modification is said to be redundant if it has no opportunity to affect

any integrity constraint directly and/or indirectly. This kind of implicit modification

should be avoided in the integrity constraint checking process.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 38

A predicate is ic-relevant if it belongs to a cluster of an integrity constraint of

the database. Because it implies some derived predicates occurred in some integrity

constraints, modification of the predicate provides the opportunity to cause violations

to those integrity constraints.

An extended dependency graph is a dependency graph[20] extended with repre-

sentation of the relationships between predicates and integrity constraints, and arcs

marked with posocc and negocc explicitly showing a predicate's occurrence in a rule or

an integrity constraint is positive or negative. Posocc-p and negocc-p mean a positive

occurrence and a negative occurrence of a predicate in the definition of a predicate

respectively. Posocc-ic and negocc-ic mean a positive occurrence and a negative oc-

currence of a predicate in the definition of an integrity constraint respectively.

An affected graph is a part of the extended dependency graph relevant to one EDB

predicate.

The static qualitative analysis simplification method is straightforwardi231. First,

an expanded dependency graph[23] is built for the database as explained with Fig.

3.1 below, which represents the hierarchical structure of the database.

Second, an affected graph[23] is built for each base predicate's addition and dele-

tion operation separately to determine which derived predicates and integrity con-

straints are affected by the modification.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

Third, the affected graph is pruned to eliminate irrelevant integrity constraints

and derived predicates. An integrity constraint should be discarded from the affected

graph if it was found to be not affected by the modification by qualitative analysis.

A derived predicate, an intermediate node, should be discarded from the integrity

constraint checking process if it has no way to affect any integrity constraint.

Fourth, record the pruned affected graph for further use in real integrity checking.

Finally, we may find that many modifications on an EDB may never affect any

integrity constraint if its pruned affected graph is empty.

Normally, after transformation of integrity constraints and relevant rules, the in-

tegrity constraint relevant part of the database has a very simple structure. Most of

the base predicates only occur in integrity constraints, not in definitions of ic-relevant

derived predicates. For those base predicates which do not occur in any compiled

ic-relevant rules, they do not need to go through the above procedure thoroughly. As

in relational databases, we can determine the necessary information simply by using

the two basic principles 1 & 2.

Example 3.3: Let us analyze the transformed database shown in Example 3.1 &

3.2 by the static qualitative analysis method. The extended dependency graph for

the database is shown in Fig. 3.1. There is one node for each predicate and integrity

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 40

constraint. There is an arc for each occurrence of a predicate in a rule or an integrity

constraint with a mark showing if it occurs positively or negatively. For example, the

arc from citizen to lawful-resident indicates that citizen occurs positively in lawful-

resident's definition (r2), and the arc from citizen to icl-2 marked posocc-ic indicates

that citizen occurs positively in icl-2.

lawful-resident

criminal-record

ci tizen-of

criminal

icl-1
icl-2

Fig. 3.1 -- An extended dependency graph

We can pre-analyze the relationships among integrity constraints and predicates.

From Fig. 3.1 we find that lawful-resident has no influence on icl-1 and icl-2 because

there is no path from lawful-resident to reach the integrity constraint nodes icl-1 or

icl-2. In other words, lawful-resident does not imply any integrity constraint. Thus,

lawful-resident can be discarded from the process of enforcement of integrity con-

straints. After general pruning of nodes which represent ic-irrelevant predicates and

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 41

which cannot reach integrity constraint nodes, and pruning of dangling arcs in the ex-

tended dependency graph, we obtain a common affected graph for the database. The

general affected graph (for all ic-relevant base predicates) for our example database

is shown in Fig. 3.2 after that node lawful-resident and relevant arcs are discarded

from Fig. 3.1.

citizen
I criminal-record b\\/

posocc c

po c-ic

icl-1
ic 1-2

\ citizen-of

criminal

Fig. 3.2 -- A general affected graph

According to Principle 1 & 2 we can determine that deletion on citizen, registered-

alien, and deported will not cause integrity constraint violations. By qualitative

analysis, we can determine that addition on criminal and citizen-of will not cause

any integrity constraint violation because they can only cause implicit addition to

criminal-record, which will not affect icl-1. The following information in Table 3.1

can be obtained by qualitatively analyzing the potential effect on the IDB and ICs of

the database shown in Example 3.1 that is caused by various EDB modifications. All

other EDB modifications not listed will not affect any integrity constraint directly or

indirectly.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 42

Predicate Operation Derived-predicates affected ics affected

--------- --------- --------- --------- ------------ ------------
citizen addit ion icl-2

deported addit ion ici-1 & icl-2

reg.-alien addition icl-1 & ici-2

criminal deletion criminal-record icl-1

cit izen-of deletion criminal-record icl-1

Table 3.1 Affected information of the EDB modifications

Variable-ic connect ion analysis

Let us define a variable to be ic-relevant to an integrity constraint if a change modifi-

cation which occurs on the variable may cause the integrity constraint to be violated.

A predicate is ic-relevant to an integrity constraint if its modification may cause a

violation to the integrity constraint. A variable in a formula is call shared if it occurs

in more than one predicates in the formula.

Algorithm 3.2. Find ic-relevant variables for an integrity constraint:

Put each predicate occurring in the ic with its shared variables in the list OPEN,

Fetch a derived predicate from the OPEN queue, and put it in the list, CLOSE.

For each of the rules defining this predicate, analyze the rule body and deter-

mine ic-relevant variables for each predicate occurring in the rule body. Other

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 43

than shared variables, those variables corresponding to the head predicate's ic-

relevant variables are ic-relevant. Then record the result in the OPEN list if the

predicate is not in CLOSE or with different ic-relevant variables as before.

If there are no derived predicates left in the OPEN list, return the OPEN list.

If there are extensional predicates occurring more than once in the result, we

merge their ic-relevant variables.

Algorithm 3.2 is complete; it can determine all of the ic-relevant variables because:

(1) if there is no derived predicate in the integrity constraint, then algorithm 3.2 can

determine all of the shared variables; and only shared variables are ic-relevant, so the

algorithm can find all ic-relevant variables. (2) if there is some derived predicates in

the constraint, then the recursive step can determine all of the ic-relevant variables.

The algorithm determines those ic-relevant distinguished variables (appearing in the

head predicate) and all of the shared variables, which are the only variables which

may change the corresponding ic-query result. Thus, we are sure that the algorithm

is complete in this situation.

The use of Example 3.2 is illustrated in Example 3.4 below.

Method 2: Integrity checking by predicate-ic connection analysis.

For a change modification on an extensional predicate, retrieve the predicate's

related information about variable ic-relevance.

For each potentially affected integrity constraint, if the modification does not

affect any ic-relevant variables, then we conclude that this modification will not

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

cause any problem to the integrity constraint defined by this ic.

Generally, a change operation modifies only a few attributes; we can easily identify

whether ic-relevant attributes are affected. If some ic-relevant attributes are affected,

we must check these constraints against the database.

We can use a simple situation to reason the correctness of the second method. For

example, for an integrity constraint

the corresponding integrity checking query is

which by transformation into relational algebra, is equal to:

~ z A (X , 2) KZB(2, Y)

The modification on X in A will not affect nzA(X, 2) and the modification on Y

in B will not affect IIzB(Z, Y). Thus, a change modification on X of A and/or Y of

B will not change the result of the above query.

Example 3.4: Let us make the database in Example 3.1 more complex, and add

a few attributes to each predicate.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

IDB :

lawful-resident(Name) :- registered-alien(Name, Nationality,

Married-status)

not(crimina1-record(Name, CriminalCase)).

lawful-resident(Name) :- citizen-of(Name, Canada).

criminal-record(Name, CriminalCase) :-

criminal(Name, CriminalCase, Canada).

criminal-record(Name, CriminalCase) :- citizen-of(Name, country),

criminal (Name, Criminalcase, Country) . (r4)

ICs : : - lawful-resident (Name) ,

deported(Name , Date, Reason)

EDB :

registered-alien(John, Greek, Single)

TI: modify John's Marriage status from Single to Married in

registered-alien.

(icl)

First Algorithm 3.1 can be used to transform this more complex database as shown

in Example 3.2. The integrity constraint icl is transformed into two new constraints

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

lcl-1 and icl-2 as illustrated below.

IC : : - registered-alien(Name, Nationality, Married-status) ,

not(crimina1-record(Name, criminalcase)),

deported(Name , Date, Reason) . (icl-1)

: - citizen-of (Name, ~anada) ,

deported (Name, Date, Reason) . (ici-2)

Let us analyze predicate-ic connections in icl-1 and icl-2. For icl-1, Name is

ic-relevant because it is shared by registered-alien, criminal-record and deported. By

analyzing rule r3, we find that Name of criminal is ic-relevant. By analyzing r4, we

find that Name of citizen-of and Name of criminal are also ic-relevant. We can analyze

icl-2 in the same way. We obtained the following predicate-ic connection information

for integrity constraint icl-1 and icl-2.

1 - registered-alien

icl-1 criminal

icl-1 citizen-of

icl-1 deported

icl-2 citizen-of

icl-2 deported

Name

Name

Name

Name

Name

Name

We find the only ic-relevant attribute of registered-alien is Name and T1 only

modifies John's Marriage-status, so that we can conclude that T1 will not violate any

integrity constraints.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

3.6 Integrity constraint checking

There are many good methods for integrity constraint checking [16, 171. We propose

an integrity constraint checking method based on the database query mechanism.

Similar to the extended rule/goal graph which Martens and Bruynooghe used in their

algorithm, we use the affected graph to direct the derivation of implicit modification

and integrity checking against actual databases. The affected graph for database mod-

ifications are obtained by qualitative analysis of the effect on integrity constraints im-

posed by the modifications. Only the direct or indirect effect on integrity constraints

and derived predicates which are relevant to integrity constraints are retained in the

affected graph. Thus we can focus on only the part of the database which is affected

by the updates and has the potential to affect integrity constraints.

Algorithm 3.3: Integrity constraint checking for the addition or deletion on an

EDB predicate p using an affected graph.

1. For every posocc-ic arc from p to an ic where the addition on p can be unified

with the positive occurrences of in the ic. If there is more than one p-occurrence

in the ic, only one occurrence can be unified at a time. Evaluate the unified

formulas, if a non-false result is reached, an integrity constraint violation is

caused, and the transaction should be refused and undone. Otherwise, continue

the checking process.

2. For every negocc-ic arc from p to an ic where the deletion on p can be unified with

the negative occurrences of p in the ic. If there is more than one p-occurrence

in the ic, only one occurrence can be unified at a time. Evaluate the unified

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

formulas, if a non-false result is reached, an integrity constraint violation is

caused, and the transaction should be refused and undone. Otherwise, continue

the checking process.

3. For every posocc-r arc from p to a derived predicate r where the addition on

p can be unified with the positive occurrences of p in the bodies of rules which

defines r. If there is more than one p-occurrence in the r, only one occurrence

can be unified at a time, and the all unified formula should be 'unioned' together.

Evaluate the unified formula as a query inquiring into the ic-relevant variables

to derive induced updates (addition) on r. Query the result on the database

before the transaction to exclude redundant addition updates.

4. For every posocc-r arc from p to a derived predicate r where the deletion on p can

be unified with the positive occurrences of p in the bodies of rules which defines

r. If there is more than one positive occurrence in the r, only one occurrence can

be unified at a time, and the all unified formula should be 'unioned' together.

Evaluate the unified formula as a query inquiring into the ic-relevant variables

to derive induced updates (deletion) on r. Query the result on the modified

database to exclude redundant deletion updates.

5. For every negocc-r arc from p to r, we can treat addition or deletion on p as we

will treat induced updates on other predicates in step 6.

6. For induced updates

For every posocc-ic or negocc-ic arc from r to ics, treat induced updates

(addition) as in step 1 and deletion as in step 2.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 49

For every negocc-r arc from r to a derived predicate s where the implicit

addition on p can be unified with the negative occurrences of p in the bodies

of rules which defines s. If there is more than one negative occurrence

in s, only one occurrence can be unified each time, and the all unified

formula should be 'unioned' together. Evaluate the unified formula as a

query inquiring into the ic-relevant variables to derive induced updates

(deletion) on s . Query the result on the modified database to exclude

redundant induced deletion updates.

0 For every negocc-r arc from r to a derived predicate s where the implicit

deletion on p can be unified with the negative occurrences of p in the bodies

of rules which defines s. If there is more than one negative occurrence in the

s, only one occurrence can be unified each time, and the all unified formula

should be 'unioned' together. Evaluate the unified formula as a query

inquiring into the ic-relevant variables to derive induced updates(addition)

on s. Query the result on the database before update to exclude redundant

induced addition updates.

0 Repeat step 6 for induced updates.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

neg c-ic 1
criminal-record

criminal

Fig. 3.3 -- The affected graph for deletion on criminal

Example 3.5: After static qualitative analysis of a database, we can obtain an

affected graph for each EDB modification which requires non-trivial integrity con-

straint checking. Starting from criminal in Fig. 3.2, prune those nodes unreachable

from criminal and discard useless arcs. Deletion from criminal may cause deletion

from criminal-record because there is a posocc-p arc from criminal to criminal-record,

which represent that criminal occurs positively in the definition of criminal-record.

Deletion from criminal-record may cause an integrity constraint violation to icl-l 'be-

cause criminal-record occurs negatively in icl-1. We obtained the affected graph shown

in Fig. 3.3 for the deletion on Criminal relation in the database shown in Example

3.1. Interested readers can refer to 1231 for details about how to qualitatively analyze

the effect of a modification on the database and how to build affected graphs. If

there is a update, delete crimina,l(John, Canada) from the Criminal relation; integrity

constraints should be checked by the following procedure:

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

derive the implicit modification on criminal-record, because in the affected graph

there is an arc from criminal to criminal-record. Unify criminal(John, Canada)

with criminal's occurrence in r3's body, which defines criminal-record, and ob-

tain an induced update, deletion of criminal-record(John). It is impossible t o

unify criminal(John, Canada) with criminal's occurrence in r4's body, which

defines criminal-record, that is, the deletion of criminal(John, Canada) will not

cause any implicit modification through r4.

query criminal-record(John) in the new database after the update to determine

if i t is redundant. If it is redundant, the update is valid.

unify criminal-record(John) with criminal-record's negative occurrence in icl-1

because there is a negocc-ic arc from criminal-record to icl-1 in the affected

graph, and obtain the following integrity checking query:

evaluate the above query. If the result is false, the deletion criminal(John,

Canada) is valid, otherwise, an integrity violation has occurred and the update

should be refused and undone. In fact, the result is false, which means that the

update is valid.

3.7 Enforcement of ICs in non-recursive databases

Integrity constraint simplification and compilation of relevant rules, predicate-ic con-

nection analysis, and static analysis should be performed when the database is estab-

lished and revised whenever any IDB or IC modification occurs. By making use of the

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 52

above integrity checking knowledge, integrity constraints in non-recursive, function-

free databases can be enforced as follows:

Upon arrival of a modification, retrieve qualitative analysis information if it

already exists or qualitatively analyze the potential effect on the database to

validate the modification and obtain the affected graph for integrity checking

against the actual database.

An EDB change modification may be validated by predicate-ic connection anal-

ysis. If the modified attributes are not ic-relevant to any integrity constraint,

the modification will not cause an integrity constraint violation.

If a modification cannot be validated in the two steps above, the simplified

integrity constraint set should be evaluated against the actual database using

algorithm 3.3.

3.7.1 EDB modification

The most frequent modification to deductive database is EDB modification, which

consists of addition of facts to a base relation, deletion facts from a relation, and

change of facts in a relation.

Method 3: Modify a base predicate

an EDB modification can be validated by checking the static analysis informa-

tion. By qualitatively a.nd statically analyzing the direct and indirect affect

CHAPTER 3. I C CHECKING IN NON-RECURSIVE DATABASES 53

of a modification on the intensional database and integrity constraints, we can

determine which modifications will not cause integrity constraint violations.

an EDB change modification may be validated by predicate-ic connection anal-

ysis. If the modified attributes are not ic-relevant to any integrity constraint,

the modification will not cause integrity constraint violations. If some modified

attributes are ic-relevant to some integrity constraints, the irrelevant ics should

be discarded from the integrity constraint checking process and we check the

affected ones at the next step.

Use algorithm 3.3 to take care of the remaining modifications and integrity

constraint pairs.

3.7.2 IDB modification

IDB modification can be validated using the EDB modification integrity constraint

checking method. To simplify our method, we limit an IDB modification to be dele-

tion or addition of one single rule; it is straightforward to extend the method to

accommodate multi-rule modification. The general idea is that we treat rule addition

as adding facts to head predicates of the rule and treat rule deletion as deleting facts

from head predicates of the rule. Thus, we can enforce integrity constraint checking

for rule modification as we do for data modification. In addition, qualitative analysis

and predicate-ic connection analysis information must be revised to incorporate the

modification of the IDB.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

3.7.3 Integrity constraint modification

For convenience, we limit ourselves to adding or deleting one integrity constraint at a

time. The deletion of an integrity constraint is always legal. Generally speaking, when

an integrity constraint is added, we need to check its conformance with the current

IDB. Sometimes the added ic may be trivial, that is, the current database does not

have any possibility of violating the new constraint, or the new ic is contradictory to

the current database. Contradictory constraints are beyond the scope of this thesis,

we will not go any further with them. We only check if the new ic is satisfied in the

current database by evaluating the integrity constraint's body as a query. If the result

is not empty, a violation occurs and this modification should be refused. We undo

the transaction and inform the user.

For the convenience of subsequent integrity constraint checking, we need to update

the static analysis and predicate-ic connection analysis information about the deleted

ic or the added ic. In the case of deletion of an ic, simply deleting all of the relevant

information is enough. When an ic is added, we need to do qualitative analysis and

variable analysis for the new integrity constraint.

3.7.4 Transactions

For a transaction consisting of several EDB modifications, IDB modifications and/or

IC modifications, we can analyze each modification separately, and evaluate all of the

implicit modifications and integrity constraint queries together after the transaction.

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES 55

Let us use a simple example to illustrate that the integrity checking is complete

and correct. For example

T : add P' and 9 '

For addition P', we will check

P1&Qnew

For addition Q', we will check

Pnew &Qt

where P, Q are relations corresponding to predicate p and q, Pnew and Qnew

represent the relations of p and q after modification.

Pnew = P u Pt

Qnew = Q U Q'

The integrity constraint after the transaction should be,

Pnew&Qnew

<==> Pnew&(Q U Qt)

<==> (Pnew&Q) U (Pnew&Qt)

<==> (P&Q) U (Pt&Q) U (P&Q1) U (Pt&Qt)

<==> (P1&Q) U (P&Qt) U (Pt&&') P&Q = Empty

CHAPTER 3. IC CHECKING IN NON-RECURSIVE DATABASES

<==> (P1&Q) u (P'&Q1) U (P1&Q) U (P&Q1)

<==> (PI&(& U Q')) U ((PI U P)&Q1)

<==> P1&Qnew U Pnew&Qf

This last step illustrates that Pnew&Qnew can be verified be checking P1&Qnew and

Pn,,&Q1 separately.

CHAPTER 4

IC checking in recursive databases

Recursion makes integrity constraint checking more challenging. Developing more ef-

ficient enforcement algorithms is demanding for recursive database processing. Check-

ing of integrity constraints requires evaluation of a very special query, which amounts

to existence checking (no variable is inquired). This existence property is very impor-

tant in the processing of queries involving chains; efficient evaluation strategies can

be developed for the evaluation of this kind of query.

We discuss only recursive integrity constraints (their clusters include recursive

predicates) in this chapter because non-recursive integrity constraints can be enforced

as in non-recursive databases.

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

4.1 Recursive query evaluation

Query independent compilation is a powerful tool in the enforcement of integrity

constraints in recursive databases. First, the compilation can aid the evaluation of

recursive integrity constraints and derivation of implicit modification. Second, the

ic-queries can be simplified by analyzing the query forms. Combined with predicate-

ic connection analysis discussed in chapter 3, a quad-state variable analysis method

[ll] can be used to simplify the ic-queries; and some chains can be excluded from the

evaluation procedure and appropriate evaluation strategies can be planned.

Multi-way counting method[ll] is the generalization of the counting method for the

processing of versatile queries on complex chain recursions. It is preferable and more

efficient to choose different processing strategies for different queries. A variable of a

queried recursive predicate has four different states; p, instantiated and inquired; c ,

instantiated and not inquired; u, not instantiated and inquired; and i, not instantiated

and not inquired. The query analysis method based on the four possible states of

variables is called the quad-state variable binding analysis method [lo, 111. Four

possible processing strategies for a recursive query exist:

a nonrecursive strategy, which uses only traditional nonrecursive processing al-

gorit hms.

a total closure strategy, which derives the entire recursive relation.

a query closure strategy, which derives a query-related closure.

an existence checking strategy, which checks the existence of answers in the

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

database.

The efficiency of these four different processing strategies differs largely[ll]. The

last processing strategy is the most efficient strategy which requires the least over-

head. Using the quad-state analysis method, it is possible to evaluate ic-queries

efficiently, and we can simplify an integrity constraint with chains before evaluation

by analyzing the relevance of variables of a recursive predicate to integrity constraints.

Lemma [Han] If only the exit vectors (consists of all the exit variables) of an

n-chain recursion are relevant (inquired or instantiated or both) to a query, the query

can be processed by examining the exit rule only [l l] .

In an integrity checking query, only ic-relevant variables are possibly instantiated

because they occurred in other base predicates. Also there is no variable inquired. Our

analysis leads to the following corollary of Lemma[Han]for integrity checking queries.

Corollary 4.1 If only exit variables are ic-relevant in an ic-query, the n-chain can

be dropped from the query form.

A chain of an AC is irrelevant to a query if and only if its chain variables are in

the state of i, uninstantiated and not inquired[lO].

Lemma [HanLu] (Discard irrelevant chains) If the query is irrelevant to chains of

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES 60

the query form, the irrelevant chains can be discarded from the processing and the

answer to the query remains the same[lO].

A chain of an AC is irrelevant to a ic-query if and only if its chain variables are

ic-irrelevant .

Corollary 4.2 All irrelevant chains in a AC ic-query can be discarded without

affecting the integrity checking.

Example 4.1 The compiled formula of a recursion consists of three asynchronous

chains as below:

Consider the query:

R(-, Y, 2, abc).

where, - in the position of predicate attributes means we have no interest in the cor-

responding attributes; and A Y x O , Xi) = A(X0, XI), A(Xl, Xz), ... A(X ;-I, Xi).

Because X is irrelevant to the query, chain A can be discarded from the query

processing, thus

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES 61

4.2 Compile and simplify ICs in recursive databases

It is impossible to transform a recursive rule into a non-recursive rule by finite ex-

pansion except for bounded recursions. We adopt the query independent compilation

method to compile a recursion before simplification of integrity constraints. Integrity

constraints and rules in recursive databases can be transformed by treating recursive

predicates as base predicates using a similar transformation method like Algorithm

3.1.

Algorithm 4.1 Simplification of integrity constraints in recursive databases.

Input Integrity constraints.

Output Ic-queries for integrity constraint evaluation and derivation of necessary

induced updates.

1. Transform the integrity constraints and relevant rules using Algorithm 3.1 by

treating recursive predicates as base predicates.

2. Find ic-relevant variables of each EDB predicate by predicate-ic connection anal-

ysis using Algorithm 3.2, a.s above treating recursive predicates as base predi-

cates.

3. Compile ic-relevant recursive predicates using query-independent compilation

methods to n-chain forms or asynchronous chains.

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES 62

4. Unify the compiled formula of the recursive predicate with its occurrences in

transformed integrity constraints and rules defining ic-relevant derived predi-

cates.

5. Analyze the bodies of unified integrity constraints and rules, discard irrelevant

chains according to Corollary 4.1 & 4.2.

Example 4.2 The database shown in Example 3.1 is extended as below. We

define a citizen's descendants as lawful residents. Descendant is defined recursively,

X's descendants are defined to be his children and their descendants.

IDB: lawful-resident (X) : - registered-alien(X) ,

not(crimina1-record(X))

lawful-resident(X) :- citizen(X).

lawful-resident(X) :- citizen(Y), descendant 0 , X) .

descendant (X, Y) : - descendant (x, Z) , children(Z, Y) .

descendant(X, Y) :- children(~, Y).

IC : :- lawful-resident(X), deported(~).

First, the integrity constraints and IDB can be transformed using Algorithm 3.1

by treating the recursive predicate, descendant, as base predicate. Thus, the integrity

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

constraint icl can be transformed into three integrity constraints as below.

IC :

:- registered-alien(X), not(crimina1-record(X)), deported(X) (icl-1)

:- citizen(X), deported(X) (icl-2)

: - citizen (Y) , descendant (Y, X) , deported (X) (icl-3)

We will omit icl-1 and icl-2 in hte later discussion, because they are not recursive

and can be enforced as in non-recursive databases.

Using Algorithm 3.2 we can obtain all of the ic-relevant information related with

icl-3 as below.

icl-3 citizen X

icl-3 deported X

icl-3 descendant x, y

Descendant can be compiled into a single chain by query-independent compilation

methods:

Because the chain variable X of descendant is ic-relevant, the children chain can

not be discarded from the integrity constraint checking processing. After unifying

descendant's compiled formula with its occurrence in icl-3, icl-3 becomes:

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

(icl - 3c)

4.3 Primitive transitive recursion

Primitive transitive recursion is a very common recursion in deductive databases.

Sometimes it is called single chain recursion because it is compilable to a single chain.

Well developed transitive closure processing strategies can be adopted to evaluations

of this kind of recursion[2].

For simplicity, we assume the primitive transitive closure rule is defined by a

recursive rule and an exit rule as illustrated by the following:

The compiled form of the above recursive rule is: [8]

0:

r(Xo, Yo) = chni(xo, Xi), exit(Xi, Yo)
i = O

or we simply write as (in linear variable pattern)

r = chn*, exit.

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES 65

where chn* = chn(Xo, XI) , chn(X1, X2), ...; X is a chain variable, and Y is an exit

variable.

First let us consider the implicit modification caused by the addition of a tuple

chn'. The implicit modification can be obtained by unifying chn' with each chn in the

chain separately as:

AR = chn', chn', chnj, exi t .
i=O j=O

(4.1)

Notice the induced updates AR may have redundancy.

The above formula (4.1) can be transformed to two highly instantiated asyn-

chronous chain formula:

(chn*, chn') x (chn'chn*), exit (4.2)

After compilation and simplification of integrity constraints and ic-relevant rules

by Algorithm 4.1, if there is any primitive transitive recursion in integrity constraints

or ic-relevant rules, the chain variables must be ic-relevant, otherwise the chain can

be discarded from our integrity constraint checking if they are irrelevant.

When a primitive transitive recursion occurs in an integrity constraint, there are

two typical situations. The integrity constraint may have the following forms:

(i c f l) p(X, Y), r (Y, Z) The cha in v a r i a b l e i s i c - r e l e v a n t

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES 66

(icf2) p(X, Y), r(Y, Z), q(Z, S) Both the chain variable and the exit

variable are ic-relevant

Where p and q can be replaced with a complex formula.

The above integrity constraint forms icfl and icf2 can be transformed into two

query forms after unified with the implicit modification on r:

(icql) p , chn*, chn' X chn', chn*, exit

(icq2) p, chn*, chn' X chn', chn*, exit, q

There is a special case for icql, when the exit predicate is the same as chain

predicate, the query form icql is equal to:

because chn: chn* is always non-empty.

The above query forms icql and icq2 have the following characteristics:

0 no variables are inquired,

0 one end of the chains is highly instantiated

Thus, the existence checking processing strategy can be adopted to checking the

integrity constraints. This processing strategy is very efficient in terms of chain pro-

cessing[l2]. Let us sketch the general integrity checking procedure for primitive tran-

sitive recursive integrity constraints. First evaluate p, chn*, chn' to check if the query

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

is false. If it is false, the update chn' is valid. Second, check chn', chn*, exit or

chn', chn*, exit, q, if the result is false the update is valid, otherwise an integrity con-

straint violation occurred, and the update should be rejected and undone.

In the same way, we can derive induced updates for a primitive transitive closure

recursion. The only difference from evaluation of integrity constraints is that some

variables are inquired, so that an appropriate processing strategy should be selected

by quad-state binding analysis. The obtained induced updates need to be queried on

the initial database to check if they are redundant.

For deletion on chn, we can derive induced deletions in the same way as for ad-

dition. Notice we have no situation to check the direct effect of a deletion on chain

predicates. The obtained induced updates need to be queried on the updated database

to check if they are redundant.

For modification on the exit predicate, there is no specific algorithm available.

Nevertheless, after unification of the update with its occurrence in the compiled for-

mula, the primitive transitive recursive query is highly instantiated at the exit end,

so that efficient processing is expected.

Our discussion is based on that the chain predicates and exit predicate are base

predicates. We believe that our method fits the situation that the chain predicates

and exit predicate are not base predicates with slight adjustment.

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

Example 4.3 Consider add a tuple, children(John, Pete), to children relation in

the database shown in Example 3.2. To check the simplified integrity constraint icl-3,

formula ic-13c can be transformed into a two highly instantiated asynchronous chain

recursive query as below.

(citizen(%), Ui=,.., childreni(Yo, John), children(John, Pete)) x

(children(John, Pete), Ui=,.,, childreni(Pete, x), deported(Y,)) (i d - 3d)

The above query icl-3d can be evaluated efficiently by existence checking process-

ing strategy. For details, please refer to [12].

4.4 Complex recursion

The evaluation method for integrity constraints and implicit modification involving

primitive transitive recursions discussed in section 4.3 is applicable to asynchronous

chain recursion with more than one asynchronous chain. We can simplify and eval-

uate the affected chain as above and evaluate the remaining chains by the general

transitive closure processing strategy as discussed in [lo].

Counting and generalized counting methods are recognized as one of the best per-

forming algorithms among many interesting linear recursive query processing meth-

ods. The methods achieve their efficiency by focusing on the facts relevant to a query

and reducing the interaction of different chain components in the recursion by reg-

istering the relative distances(leve1s) from query constants. Such an isolation makes

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

many optimization techniques available to multi-chain recursions.

For integrity constraint evaluation of complex recursions, we need to extend the

multi-way counting method[l 1] . As general counting methods, we need to register

extra level information in the evaluation of ic-queries. Let us use a 2-chain recursion

to illustrate how to evaluate integrity constraints and derive induced updates. We

adopt a standard compiled formula as follows with two synchronous chains A and C:

Suppose an addition of tuple A' occurs, which may cause the following implicit

addition to R:

where m = j + k + I

Equation 4.4 is equivalent to

Thus, we can evaluate the A chain with the following algorithm 4.2.

Algorithm 4.2 Evaluation of updated chains in a multi-chain recursion.

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES 70

0 Evaluate Closure-A1 , the projection of A*A1 on the first variable and record the

level information as in any counting method.

0 Evaluate Closure-A2, the projection of A'A* on the last variable and record the

level information.

0 Join the two intermediate closures, Closure-A1 and Closure-A2, where the level

number is the sum of the two level numbers in Closure-A1 and Closure-A2.

The B chain can be evaluated as in general chain processing. We suggest the use

of the quad-state binding analysis method to select a proper processing strategy for

non-updated chains.

Generally, we can evaluate the updated chain using Algorithm 4.2 and treat other

chains as in general chain processing. While evaluating an ic-query for constraints,

the existence checking strategy can be adopted. While evaluating ic-queries deriving

induced updates, other processing strategies may be required. Furthermore, we can

always start at the updated chain because it is always highly instantiated.

4.5 Integrity checking in recursive databases

When an update requires integrity constraint checking against the actual database, we

can do so in a quite similar manner as in non-recursive databases using Algorithm 3.3.

We still need the affected graph of the modification to direct our integrity constraint

checking. The only difference is that when an ic-query is required for evaluation, we

should evaluate the recursive ic-queries as discussed in the last two sections. We can

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES 71

use transitive closure techniques to treat single chain recursions and asynchronous

recursions and extended multi-way counting method for multi-chain recursions.

4.6 Enforcement of integrity constraints in recur-

sive databases

The integrity constraint enforcement in recursive databases is not as difficult as that

in non-recursive databases except the evaluation of recursive ic-queries is more time-

consuming. We have discussed the simplification of integrity constraints in section 4.2,

evaluation of primitive transitive recursive ic-queries in section 4.3, evaluation of com-

plex recursive ic-queries in section 4.4, and integrity checking in recursive databases

in section 4.5. Now, we can sketch our method for the enforcement of integrity con-

straints in recursive databases.

Method 3: The enforcement of integrity constraints in recursive deductive databases.

Transform, qualitatively analyze, and simplify integrity constraints and ic-relevant

rules using Algorithm 4.1

Validate the modification by qualitative analysis.

Validate change modification by predicate-ic connection analysis.

Derive necessary induced updates and check affected integrity constraints against

the actual database.

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

In summary, we can simplify the enforcement of integrity constraints whose cluster

involve recursive predicates in the following aspects:

As in non-recursive databases, we can validate a large group of modifications

by static qualitative analysis.

By analyzing ic-relevant variables in a recursive predicate, some recursive in-

tegrity constraints can be simplified into nonrecursive or simpler integrity con-

straints.

Using the predicate-ic connection analysis method we can further validate an-

other group of modifications.

Example 4.4 Consider the database shown in Example 4.2 and a transaction of

the addition of children (John, Pete). First the database is transformed and simplified

as described in Example 3.2 using Algorithm 4.1. Then, by qualitative analysis, we

can determine that deletion on children will not affect icl-3. The affected graph for

the addition on children is built as illustrated in Example 3.5 and is shown in Fig.

4.1. This affected graph shows the part of the database affected by the addition mod-

ification on children and relevant to integrity constraints.

CHAPTER 4. IC CHECKING IN RECURSIVE DATABASES

icl- 3

descendant

children

Fig. 4.1 -- The affected graph for addition on children

For addition of children(John, Pete), the integrity constraint icl-3 can be trans-

formed into formula icl-3d as shown in section 4.3. According to the affected graph,

Fig. 4.1, we can generate an integrity constraint checking plan for the addition of a

tuple, children(John, Pete), to children relation as below.

0 Evaluate the first part of query icl-3d.

U citiren(Yo), c h i l d r e n ' (~ ~ , John), children(John, Pete)
k 1 . a

if the query is false, then the addition is valid. Otherwise,

0 evaluate

U children(John, Pete), childreni(pete, Xi), deported(Xi)
i=l..oc

if the query is false, then the addition is valid. Otherwise, the addition caused

an integrity constraint violation, and has to be redone.

CHAPTER 5

Discussion

As shown in Chapter 2, we can generally approach the enforcement of integrity con-

straints in three different ways, theorem-proving, query planning and compilation.

There are various advantages and disadvantages associated with each approach. We

combined them in our approach to achieve most of their advantages and overcome

some disadvantages.

The theorem proving approach [4, 14, 61 suffers a general efficiency problem for

large databases, because of the reasoning system it used is the Prolog-like tuple-at-

a-time top-down derivation system. Martens' query planning approach[l5] failed to

concentrate their effort only on the part of the database which is relevant to integrity

constraints because their reasoning system is purely bottom-up.

Yum & Henschen's compilation approach[21] can only treat Horn databases, that

CHAPTER 5. DISCUSSION 75

is, no negation is allowed in the IDB. It is based on the speciality of Horn clause

databases, whose IDB predicates can be compiled straightforwardly. This method

needs non-trivial extension to be be applicable to general deductive databases with

negation.

We use a compilation approach to transform the ic-relevant part of the databases

like Yum & Henschen[21]. By treating negative literals and recursive predicates dif-

ferently from other derived predicates and using an affected graph to direct integrity

constraint checking against the actual databases as Martens and Bruynooghe[l5] use

rule/goal graph, we successfully extended the application domain to Horn databases

augmented with negation.

To achieve the effect of focusing our effort only on the part of the database relevant

to integrity constraints as backward reasoning from constraints could, we use a static

qualitative analysis method to prune the set of integrity constraints. Thus, we check

only those explicit or implicit modifications against the actual database which have

the potential to affect integrity constraints.

The transformation method 3.1 of integrity constraints and relevant rules is the

basis of our integrity enforcement method. Integrity constraints and relevant rules

are expanded as deeply as possible, so that we achieved good global optimization over

the derivation of implicit modification and evaluation of integrity constraints. On the

other hand, predicates occurring negatively need special attention. There is no way

to avoid implicit modification redundancy checking over these predicates. Redundant

CHAPTER 5. DISCUSSION

deletion on A is actually false addition to - A, which may cause us to make a wrong

conclusion. This is one of the reasons why Yum & Henschen chose to deduce relevant

induced updates separating from the evaluation of integrity constraints.

Using the compilation method to derive induced updates can reduce intermediate

results and increase global optimization [19]. This method is quite fit for transactions

which modify much data at a time due to the validation by relation-at-a-time. The

predicate-ic connection analysis method is simple, but works effectively for the change

operations.

The extended dependency graph can represent the dependency relationships among

predicates. Also it can represents i m p l y relationships for predicates (an i m p l y relation

is transitive). The extended dependency graph is designed to capture the relationships

among integrity constraints and predicates. From an extended dependency graph we

can find that an integrity constraint is relevant to which predicates. Thus, we can

qualitatively analyze the effect that a modification may cause on integrity constraints

and derived predicates based on the extended dependency graph.

The predicate-ic connection analysis method is simple and effective to validate

change modifications. This method is found greater usage in recursive databases. It

forms the basis for simplification and evaluation of recursive ic-queries. By analyz-

ing predicate-ic connection, binding information of variables of recursive predicates

can be obtained, some chains can be discarded or simplified and efficient evaluation

strategies can be planned.

CHAPTER 5. DISCUSSION

Qualitative analysis and overall analysis of predicate-ic connection can be done ini-

tially statically and/or incrementally. The only adaptation of this information needed

is when rule and/or integrity constraint modifications happen. Even the integrity con-

straint checking against databases can be precompiled for each EDB's various modi-

fications. As Yum and Henschen [21, 221, ic-queries can be precompiled using generic

constants to represent updates and replaced with real updates at evaluation time.

For each modification, we build an affected graph, if it is possible to affect some

integrity constraints directly or indirectly. This graph depicts which ic-relevant pred-

icates and which integrity constraints are affected by the update. Only the ic-relevant

part of the database affected by the update is present in the affected graph. Thus, the

affected graph can direct integrity checking effectively with less redundant checking.

Our integrity constraint enforcement methods for recursive databases is based

on the query independent compilation technique. Further improvement is possible

along with the development of recursive query processing techniques. Our integrity

evaluation algorithms are efficient because of the following facts:

0 We collected all potential constraints for our ic-queries. The integrity constraints

are expanded as deeply as possible, thus any recursive ic-queries we need to

evaluate obtained maximum constraints. [12]

0 Duplication of evaluation is decreased. We can always evaluate necessary chains

starting from the updates, thus only the update-relevant part is evaluated.

CHAPTER 5. DISCUSSION

Generally, duplication and size of immediate result may greatly affect the perfor-

mance of recursive query evaluation[2].

Compared with other methods proposed by Topor and Lloyd [12], by Decker [4]

and by Kowalski et al. [6] . Martens [13], Yum and Henschen [19, 201, the efficiency

of our algorithm derives from the following aspects:

Decreased intermediate results. We need only derive implicit modifications for

ic-relevant negated predicates.

Increased global optimization. Compilation techniques are used in the derivation

of necessary implicit modifications and evaluation of integrity constraints.

In addition to exploiting the assumption that the database satisfies the integrity

constraints before a transaction like other methods, our methods exploit the

overall hierarchical structure of the database. In a deductive database, if we

modify EDB predicates, such modification may cause implicit modification on

some IDB predicates which may or may not cause an integrity violation. We

achieved focusing our attention only on the updated part of the database which

is relevant to integrity constraints.

Using predicate-ic connection analysis, we can validate most of the change mod-

ifications with no integrity checking against the large database.

If a modification does need real integrity checking, query processing can be done

in a very efficient way.

C H A P T E R 5. DISCUSSION 79

0 Many integrity constraints involving chain recursions are degenerated to non-

recursive ones by analyzing the relationship between chain variables and in-

tegrity constraints or are simplified to simpler chain recursions.

We extended the application domain to a reasonable scope. Solved wholely or

partially the problems related to complex transactions and recursions in integrity

constraint checking.

CHAPTER 6

Summary

We further studied and developed efficient simplification algorithms and methods for

the enforcement of integrity constraints in recursive deductive databases. We corn-

bined the theorem-proving method with compilation techniques in our methods. The

theorem-proving method is used to prune integrity constraint checking space and corn-

pilation techniques are used to derive necessary implicit modifications and evaluate

the simplified integrity constraint set against the actual database. We achieved the

effect that focussed our effort only on the part of the database which is affected by

the transaction as Martens[l5], Yum and Henschen[21, 221, etc., and focussed only

Dn part of the affected part which is relevant to integrity constraints. By exploit-

ing the hierarchical structure of a deductive database we precompiled or partially

precompiled integrity constraints and ic-relevant rules to simplify integrity constraint

checking and validated some modification by static qualitative analysis. By analyzing

predicate-ic connection and variable binding, and compiling recursive rules indepen-

dently, we simplified ic-relevant queries and generated efficient checking plans. Some

CHAPTER 6. SUMMARY 81

asynchronous and synchronous chain recursive integrity checking relevant queries can

be simplified to non-recursive or simpler chain recursions. Efficient processing algo-

rithms were developed for integrity checking and derivation of implicit modification

for asynchronous and synchronous chain recursive ic-queries.

Our integrity enforcement methods in recursive databases were based on the query-

independent compilation of recursions. The recursions discussed in this thesis are con-

fined to the function-free synchronous and asynchronous chain recursions. It is still

an open research problem to compile complex recursions into regular chains and/or

irregular chains. We believe that static analysis method and simplification method of

the intensional database and integrity constraints are applicable to function deduc-

tive databases and complex recursive databases. It is an interesting and challenging

research issue to extend our methods to the enforcement of integrity constraints in

function databases and complex databases.

REFERENCES

[I] Balbin, J. and Ramamohanarnao, K., A differential Approach to Query Op-
timization in Recursive Deductive Databases., Technical report, Dept. of CS,
Univ. of Melbourne, Australia, 1986

[2] F. Bancilhon, and R. Ramakrishnan, An amateur's Introduction to Recursive
Query Processing Strategies. Proceedings of the ACM-SIGMOD '86 Conference,
Washington, USA, C. Zaniolo (ed.),SIGMOD Record, Volume 15, Number 2,
1986, pp. 16-51

[3] F. Bancilhon, D. Maier, Y. Sagiv, and J.D. Ullman, Magic sets and other strange
ways to implement logic programs. Proceedings of the 5th ACM Symposium on
Principles of Database Systems, Cambrige, MA, 1986, ppl- 15.

[4] H. Decker, Integrity Enforcement on Deductive Databases. Proceedings of the
first International Conference on Expert Database Systems, Charleston, USA, L.
Kerschberg (ed.), Univ. of South Carolina, Columbia, USA, 1986.

[5] H. Gallaire, J. Minker and J. M. Nicolas, Logic and Databases: A deductive
Approach. ACM Computing Surveys, Volume 16, Number 2, 1984, pp 153-185.

[6] R. Kowalski, F. Sadri and P. Soper, Integrity Checking in Deductive Databases.
Proceedings of the 13th VLDB Conference, Brighton, Great Britain, P.M. Stocker
and W. Kent (eds.), Morgan Kauffmann, Los Altos, USA, 1987, pp61-69.

[7] L. J. Henschen, and S. Naqvi, On compiling queries in recursive first-order
databases. Journal of ACM, 31(1), 1984, pp47-85.

[8] J. Han, Compiling General Linear Recursions by variable Connection Graph
analysis, Computational Intelligence, 5(1), 1989, pp12-31.

[9] J. Han and L. Liu, Processing Multiple Linear Recursions. Proceedings of the
North American Conference on logic programming, 1989, pp816-830.

REFERENCES 83

[lo] J. Han and W. Lu, Asynchronous Chain Recursions. IEEE transactions on
Knowledge and Data Engineering, Vol. 1, No. 2, June 1989.

[I 11 J . Han, Multi-way Counting Method. Information Systems, Vol. 14, No. 3, 1989,
pp219-229.

[12] J . Han, Constraint-Based Reasoning in deductive Databases. Proc. 7th Int'l Conf.
on Data Engineering, Kobe, Japan, April 1991, pp257-265.

[13] J.L. Lassez, T. Huynh and K. MaaAloon, Simplification and Elimination of Re-
dundant Linear Arithmetic Constraints. Logical programming, Proceedings of
the North American Conference 1989, Lusk and Overbeek(ed.), pp37-60.

[14] W. Lloyd , E.A. Sonenberg and R.W. Topor, Integrity Constraint Checking in
Stratified Databases. Technical Report 8615, Dept . of Computer Science, Univ.
of Melbourne, Australia, 1986.

[15] B. Martens and M. Bruynooghe, Integrity Constraint Checking in Deductive
Databases Using a Rule/Goal Graph. Proceedings of the Second International
Conference on Expert Database Systems, 1988, pp567-601.

[16] William W. McCune and L. J . Henschen, Maintaining State Constraints in Rela-
tional Databases: A proof theoretic Basis, Journal of ACM, Vo1.36, No.1, January
1989, pp 46-48.

[17] LJ.-M. Nicolas, Logic for Improving Integrity Checking in Relational Database.
Acta Informatica, Volume 18, Number 3, 1982, pp. 227-253.

[18] W. Weber, W. Stueby and J . Karszt, Integrity Checking in Data Base Systems.
Information Systems, Vol. 8, No. 2, pp 125-136, 1983.

[19] J.D. Ullman, Implementation of Logical Query Languages for Databases. ACM
Transactions on Database Systems, Volume 10, Number 3, 1985, pp. 289-321.

[20] J . D. Ullman, Principles of Database and Knowledge-Base systems, Vols. 1 & 2,
Computer Science Press, Rockville, MD, 1989.

[21] H. W. Yum and L. J , Henschen, Integrity checking in deductive databases: a
compiled approach. Northwestern Univ. EECS Technical Report 90-12-DBM-01.

[22] H.W. Yum and L. J. Henschen, Maintaining State Constraints in Deductive
Databases. Proc. of Software Eng. and Knowledge Eng., 3rd international conf.,
Skokie, Illinois, USA, June 1991, 187-192.

REFERENCES 84

[23] L. Zhu, Enforcement of Integrity Constraints in Recursive Databases. 2nd Annual
Proc. of CSS Graduate Student Paper awards competition, 1992, pp58-77.

