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ABSTRACT 

Recognition of shape is one of the fundamental problems in computer vision. A 

number of fast line detection and line-based depth recovery algorithms have been de- 

veloped on various parallel architectures to meet the requirement of real-time robotic 

vision. This thesis describes a parallel and hierarchical (pyramidal) approach to fast 

Hough line detection and line-based motion stereo. The lines are represented using 

their Hough parameters p and 0. The processes of line merging and matching are 

integrated in the pyramidal framework. 

To reduce the complexity of the line merging process, the Dynamically Allocated 

Quadtree (DAQ) is introduced to represent the Hough parameter space. The line 

merging algorithm using the DAQ is appreciably more efficient than the original algo- 

rithm presented by Jolion and Rosenfeld. A line-based motion stereo algorithm is also 

developed to recover the depth information along linear features in the scene. Live 

images are obtained from a single static camera and a moving belt. Line segments 

from the multiple motion stereo images are matched while they are merged hierar- 

chically in the pyramid. It is shown that the problem of matching lines among the 

multiple images can be effectively carried out as a straight-line detection problem in 

a well-defined three dimensional parameter space. 



Experimental results from the SFU hybrid pyramid are presented for both line de- 

tection and line-based motion stereo algorithms. The pyramid architecture capitalizes 

on advantages of both the mesh and the pipeline architectures. It is demonstrated 

that the new algorithms combined with the hybrid pyramid hardware environment 

are suitable for real-time object recognition. 
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CHAPTER 1 

INTRODUCTION 

Vision is one of the most powerful perceptual mechanisms of human beings. It can 

provide us with a great amount of information about the outside world and enable us 

to interact intelligently with the outside world. It is no wonder that many attempts 

have been made to give machines a sense of vision since the time when digital com- 

puters were invented. On the other hand, human vision is also very complex. It is 

not surprising, that attempts of giving machines a sense of vision have mostly ended 

with little success. However, significant progress has been made, mainly in industrial 

applications in which the "visual environment can be controlled and the task faced by 

the machine vision system is clear-cut" [l]. A very typical example could be a vision 

system used for directing a robot arm to do some operations on a moving conveyor 

belt. 

One of the essential goals of a computer vision system is object recognition. To 
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achieve this goal, it is very important to estimate the properties of the object's sur- 

faces. This surface information can be analyzed through the edge locations of the 

images, because edges arise from surface discontinuities or from reflectance or illumi- 

nation boundaries of the object [2]. 

Symbolic descriptions of edges are often used as building blocks to construct the 

final description of the sensed objects. For example, a polyhedra object can be in- 

terpreted through the line descriptions of its edges. The most widely used symbolic 

description in computer vision is straight lines, not only because they are the most 

commonly appeared shape in this world, but also because they are easy to define and 

interpret by computer vision systems. Line detection is used as the major approach 

to get the description of straight lines. Lots of research has been conducted in this 

area [3 - 121. 

Line detection techniques are usually applied in the two-dimensional image space. 

To interpret the three-dimensional world, depth information must be recovered. One 

of the commonly used methods for depth recovery is stereo vision which is imple- 

mented by matching the corresponding point of pair of images. Stereo technology has 

been widely used to recover the depth information [4, 13 - 201. A detailed discussion 

of stereo mechanisms will be presented in Chapter 5 .  

A lot of good line detection and depth recovery algorithms have been developed. 

But most of them were initially implemented on sequential machines. The implemen- 

tation of vision algorithms involves processing large two-dimensional arrays of data 
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on the Von Neumann machine. This kind of data processing is inefficient. It has been 

known that the operation on image array can be done concurrently on each element 

of the array, which may remarkably speed up the vision process. 

To break the Von Neumann bottleneck and perform the vision process in real-time, 

different forms of parallel architecture have been proposed [3]. A parallel machine 

contains concurrently running processors and the communication links among those 

processors. In [4], Stout defined the Communication radius of a parallel machine as 

the minimum value of R(p) over all processors p in the machine, where R(p) is the 

largest number of communication links needed from processor p to any other processor 

in the parallel machine. In the same paper, he also pointed out that for a non-trivial 

vision problem, "any algorithm must take time proportional to the communication 

radius" . 

The mesh strutted computer contains a two-dimensional grid of processors where 

each processor is connected to its four nearest neighbour, Figure l . l(a) depicts the 

mesh parallel processors. The communication radius of the mesh architecture can be 

achieved at the four center processors, where each of them will take N steps to go to 

the furtherest corner processor [4]. 

Since the communication radius of the mesh computer is N, it is apparent that 

O(N) time complexity is incurred to deal with the N x N square images on the 

N x N mesh architecture. Applications such as the O(N) complexity line-detection 

algorithm, have been developed on a N x N mesh architecture [ 5 ] .  
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level = 0 

level = 1 
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Processor Link 

Figure 1.1: Mesh and Pyramid Structure. 
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The pyramid structure was first introduced by S. Tanimoto and T. Pavlidis in 

1975 [6] for parallel image processing. Figure l . l (b)  gives a picture of a 3 level pyra- 

mid. From this figure it can be seen thai level N of the pyramid is constructed by 

2N x 2N processors connected as a mesh. Every level has one fourth as many pro- 

cessors as the level just below it, and each non-base processor is connected to four 

children from the level below. The communication radius of the pyramid is log(N) be- 

cause it takes log(N) hops for the top level processor to go to any base level processor. 

From the communication radius theory, only O(1ogN) complexity is incurred in 

processing N x N square images on pyramidal parallel architectures. Besides that, a 

pipeline technique is very much suitable for the hierarchical structure of the pyramid. 

Pipelining can be applied within the pyramid by assigning different functions to the 

multiple levels of the pyramid. 

Since the pyramid architecture capitalizes on the advantages of both the mesh 

and the pipeline architecture, there have been many attempts of solving the vision 

problems by using this pyramid architecture. p tin^ basic image operations can be 

efficiently calculated using this pyramid architecture. As the pioneer of the pyramid 

structure, Tanimoto and Pavlidis [6] believe that the pyramid structure can a) quickly 

find a relevant part of the image, and b) ignore irrelevant detail of the original image. 

P. J. Burt [7] [8] pointed out that one of the primary advantages of pyramid is that " 

they are hierarchically organized and locally connected." It is easy to find that the 
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connection between levels of the pyramid serves as a link between pixel-level repre- 

sent ation and symbolic/ob ject level represent ation. 

Most parallel machines are organized either in SIMD (Single Instruction Multiple 

Data) or MIMD (Multiple Instruction Multiple Data) mode. SIMD machines are 

ideal for iconic data processing because all image pixels are to be processed identi- 

cally. On the other hand, MIMD architectures tend to work effectively on symbolic 

data processing because they can concurrently process many different pieces of data 

independently. To achieve optimum performance at all levels of the vision problem, 

hybrid architectures consisting of both SIMD and MIMD have been proposed. [9] [lo] 

Several researchers have suggested the implementation of hybrid pyramidal ma- 

chines for parallel computer vision [l ll.  The most ambitious development is the Image 

Understanding Architecture at the University of Massachusetts-Amherst. The large 

pyramid will eventually consist of three levels, with 512 x 512 SIMD processors at the 

bottom, 64 x 64 MIMD processors in the middle and 8 x 8 MIMD processors at the 

top [I21 191. 

At Simon Fraser University, a hybrid pyramid multiprocessor vision machine was 

built for real-time vision applications [13]. The pyramid has 512 one-dimensional 

SIMD array processors at the bottom and a 63-node transputer-based multiprocessor 

system on the top. Parallel hardware links (PARLink) are developed to enable par- 

allel data communications between the array processors and the transputers. 
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The motivation of this thesis is to develop fast line detection and line-based depth 

recovery algorithms on the SFU hybrid pyramid vision machine and to demonstrate 

that these algorithms combined with the hybrid pyramid hardware environment have 

potential in real-time object recognition. 

This thesis first presents algorithms and implementations of fast Hough line de- 

tection in the hybrid pyramid. Live input images are preprocessed in the array pro- 

cessors. Transputers on the top merge edge pixels into short line segments and then 

into longer lines hierarchically in the hybrid pyramid. The lines are represented using 

their Hough parameters p and 6. To reduce the complexity of the line merging pro- 

cess, a Dynamically Allocated Quadtree (DAQ) is introduced to represent the Hough 

parameter space. 

Line detection only gives two-dimensional descriptions of the objects. To interpret 

the three-dimensional world, st ere0 technology is used to recover the depth informa- 

tion. To get larger disparity and lower error rate during the matching, Multiple- 

baseline stereo [14] was proposed by using multiple cameras to take more than two 

snapshots. Since we are concentrated on a manufacturing environment with assembly 

lines where the belts are moving at a relatively constant speed, instead of moving the 

camera, multiple snapshots of the moving objects can be taken in rapid succession 

by a static camera. The controlled belt movement guarantees that any disparity only 

occurs along the epipolar line. We named this method Motion Stereo. 

To reduce the complexity of pixel-based corresponding points matching , line-based 
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stereo matching was introduced. In the second part of this thesis, an algorithm for 

line-based motion stereo will be introduced. Input data is obtained from a single 

camera and a moving belt. A parallel and hierarchical (pyramidal) algorithm for line 

merging and matching is described. It is shown that the problem of matching lines 

among the multiple motion stereo images can be effectively carried out in a straight- 

line finding problem in a well defined 3D parameter space. 

The organization of this thesis is as follows: The next chapter will give an overview 

of existing Hough line detection approaches. Chapter 3 describes the architecture of 

SFU hybrid pyramid vision machine. Chapter 4 presents the fast pyramidal Hough 

line detection algorithm. Chapter 5 details a line-based motion stereo algorithm. 

Chapter 6 of the thesis describes our experimental results, and the conclusion as well 

as discussion of future work are given in chapter 7. 



CHAPTER 2 

HOUGH BASED LINE 

DETECTION APPROACHES 

2.1 Hough Transformation for Detecting Straight 

Lines 

Detection of straight lines is one of the recurring problems in computer vision and 

image processing. As a straight line is just a group of collinear points in an image 

space, the task of finding a line is equivalent to finding that group of collinear points. 

Many approaches have been presented, among them, one of the most widely used is 

the Hough Transformation[l5]. 

By using some mathematical transformation, a group of collinear points on the 



CHAPTER 2. HOUGH BASED LINE DETECTION APPROACHES 

(4 @) 

Figure 2.1: Image space and Hough space. 

image space can be translated into a single point on the transformed space (often 

referred to as parameter space). This parameter space can be represented as an 

integer array to accumulate the transformed points. After applying the mathematical 

transformation, each group of collinear points (edge pixels) will be mapped into a 

"peak" point in the parameter space. This reduces the image-based line finding 

problem to a peak detecting problem in the parameter space. The reason for adopting 

this transform-based line detection approach is that detecting peaks is usually much 

easier than detecting collinear points. 

Any 2D line in the image can be represented uniquely by two parameters such as 

slope-intercept , intercept (x)-intercept (y) , etc. In [Is], a straight line is specified by 

the angle 0 of its normal and its algebraic distance p from the orgin. The equation 

of this transformation is: p = xcos0 + ysin0. From Figure 2.1 it can be seen that the 

collinear points (xO, yo), ( x l ,  yl),  ... (xn, yn) share the same p - 6 value in which: 
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Thus these collinear points are transformed into a single point in the p - 0 parameter 

space, which is also known as the Hough Space. 

2.2 Improvement of the Hough Transformation 

The traditional Hough Transformation implementation involves the following steps: 

Step0 Parameter space is defined at a proper quantization and represented by 

an integer array para-space. Initialize all the elements of para-space to zero. 

Step1 Scan the edge image, for each edge pixel (x;, y;) with the orientation 

0 calculate: p = xcos8 + ysin0. Update the accumulate array para-space: 

para-space [p] [O] = para-space [p] [8] + 1. 

St ep2 Scan the parameter space para-space. Detecting every peak point (p;, 8;). 

To avoid excessive number of lines or noise being detected, a practical threshold 

K can be set. 

We can find there are two scanning processes involved in the traditional Hough 

transformation implementation. The operation of 2D array scanning is very costly 
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and these two scanning processes comprise the bottleneck of the implementation of a 

fast Hough line detection. 

Various approaches have been taken to deal with the above problems. Illingworth 

and Kitttler [16] provide an extensive survey on various Hough techniques. Among 

these techniques, parallel architectures are widely accepted for concurrently processing 

the elements of arrays. More recently, a number of fast Hough transform algorithms 

have been developed for different parallel architectures including the shared-memory 

[17], mesh-connected arrays[5] [18], hypercube[l9] and pyramid[20]. 

From the discuskon of communication radius of the parallel machine, we know 

that O(N) can be reached by using mesh connected architecture. Cypher et. al. [5] 

developed an O(N) complexity Hough Transform on N x N mesh-array architecture 

in 1987. Basically, Hough Transform is implemented on mesh-connected processors 

by rotating the columns of the image until all the collinear pixels (pixels in same 

band) for a given projection angle are moved into the same row of processors. After 

horizontal shift and add, collinear points with this projection angle can be calculated. 

O(PN) complexity is needed while P is the number of projections to be calculated. 

Improvement was made so that O(N + P) complexity can be achieved [5]. 

To achieve higher performance, pyramid architectures can be used since they have 

a smaller communication radius. Actually, O(1ogN) algorithms were developed on 

pyramid architectures [20] [lo]. 
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Researchers also found out that the overhead of the second scanning process (peak 

finding) could be reduced by designing some efficient peak searching mechanisms. Li 

and Lavin developed a fast Hough Transform algorithm based on bintree data struc- 

ture [21], the parameter space is represented with Bintree. To reduce the searching 

time, an algorithm was developed on bintree. It has the flexibility of searching the 

parameter space along each dimension independently. Illingworgh and Kittler intro- 

duced their Adaptive Hough Transform mechanism in 1987 [22]. Instead of just using 

one fine-grained Hough space, they defined a multiple level coarse-to-fine Hough space 

and voted simultaneously on these multiple spaces. The effort of Hough space search- 

ing can be greatly reduced by applying an efficient coarse-to-fine searching strategy 

on these multiple Hough spaces. 

The advantage of parallel architecture is that it is possible to divide the whole 

image array into various parts and let the parallel processors process these parts. 

However, another problem appears: Each processor only gets a relatively small part 

of the image, this image is still mapped into the whole parameter space and the 

searching for full-parameter space is still needed. For a parallel architecture, it is not 

economical to store the whole parameter space (represented as a multi-dimensional 

array) in each processors's local memory and to process that array. 

To alleviate this dilemma, a new approache has proposed by Jolion and Rosen- 

feld in 1989 [20] which essentially does parallel and hierarchical line merging so as to 

avoid the use of any accumulator arrays and to fully utilize the power of the parallel 

architecture. 
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A small block of image is first examined by the base processors of the pyramid. 

Since this small block of image may not contain too many edge pixels, they will 

form a sparse set of parameter-space pixels. The list of these pixels will be checked 

and grouped into some clusters which will then be sent to the parent processors. 

Each higher level processor will recursively group the clusters it receives from its chil- 

dren. This processing work only concerns the cluster of parameter pixels rather than 

mapping the pixels into the full-size parameter space array. Implementations of this 

algorithm can be found [20] [lo]. 

Our first simple algorithm is similar to [20], in which a time complexity of O(1og 

N) is claimed where N is the size of the image. However, this simple algorithm places 

a severe limitation on the number of lines K, which each processor may process. Ad- 

ditionally, a major assumption is that the algorithm is implemented on a massive 3D 

pyramid with a 2D array processor at its base that is nearly as large as the image 

size. The algorithm will slow down drastically if a large K is allowed while working 

with a smaller pyramid such like our short (half-scale) pyramid. 

To reduce the complexity of the simple line merging algorithm, a Dynamically 

Allocated Quadtree (DAQ) is introduced to represent the Hough parameter space. 

A detailed discussion of this DAQ based line detection algorithm is presented in 

Chapter 4. 



CHAPTER 3 

A HYBRID PYRAMIDAL 

VISION MACHINE 

Since pyramid structure supports multiresolution approaches and capitalizes on the 

advantages of both mesh and pipelined, it is suitable for parallel computer vision 

17, 8, 231. 

The transputer is a suitable processing element for a pyramidal machine because 

of its flexibility as a MIMD(multip1e-instruction multiple-data) processor. However, 

implementing a full pyramid of transputers is too expensive and not necessary. In 

most cases, the processes applied at the bottom of the pyramid are just kernel con- 

volutions for edge detection, or other similar filtering which can be done efficiently 

on SIMD(sing1e-instruction multiple-data) processors. A good solution is to combine 

these two types of the machine together, which yields a hybrid pyramidal machine [24]. 
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Level 0 

Level 3 

Level 4 

Level 5 

Transputer Link - PARLink 

0 Transputer 

Figure 3.1: The SFU hybrid pyramid vision machine. 
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Figure 3.1 depicts the SFU hybrid pyramid vision machine. The AIS-4000 has 

fine-grained parallelism with 512 processors arranged in a single-instruction multiple- 

data (SIMD) 1-D array architecture. It can readily simulate a 2-D array and handle 

over 3 billion operations per second. Each of the sixty three transputers is a T-800 

with 2 MBytes memory. Three of the four links of each T-800 node are used to form a 

binary tree. The remaining single link of each T-800 is connected to a programmable 

cross-bar switch which provides flexibility for additional desirable connectivity. For 

now, it is used to form horizontal links between the cousin nodes to augment the 

binary tree as shown in Figure 1. The single root node at level 0 interfaces with a 

host Sun-4 workstation. The AIS-4000, at the bottom layer of the pyramid, acquires 

live images and performs lower level processing, with one processor working on each 

column of the image, whereas the transputers which form the top of the pyramid 

perform higher level image processing and analysis. 

The key to combining the AIS-4000 and the transputer nodes into a pyramidal 

architecture is a high speed communication link between the AIS-4000 and the trans- 

puters. After some initial study, the use of any single fast link was ruled out because 

of its limitation of data transfer rate, and more importantly, its inability to transfer 

data to more than one transputer (or AIS processor) simultaneously. 

A parallel link, called PARLink was built in the Parallel Vision lab at SFU [13]. 

The AIS-4000 has eight processors packaged into one custom VLSI chip called a Pixie. 

Each Pixie chip interfaces to one 32K by eight bit static RAM chip for local image 

storage. Since the AIS-4000 has 512 SIMD nodes, this means there are 64 clusters of 
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Pixie and RAM chips. This architecture lends itself to the construction of 64 parallel 

links connecting each cluster up to the transputer pyramid. Two of these links are 

connected to one transputer node for a binary tree configuration. The transputers are 

ordinarily connected with 20 Mbit/sec serial links according to an INMOS protocol. 

Therefore the hardware requirements for each PARLink are to read eight bit parallel 

data from the static RAM chips of the AIS-4000 and translate this into the INMOS 

serial format. This requirement is reversed for communication from the transputers 

to the AIS-4000. The core of each PARLink is the INMOS C012 chip, with only a 

few additional buffers and control signals required. All PARLinks are controlled by 

some custom microcode subroutines supplied by the AIS Inc. Connections are made 

directly to the data lines of the static RAM chips. Control signals are obtained from 

the AIS-4000 digital I/O channels as well as direct connections to the microcontroller. 

A throughput of 1 MByte/sec can be achieved for each PARLink, which allows an 

image to be passed in 4 msec, with a total bandwidth of 64 MBytes/sec for all of the 

PARLinks. 

The completion of the PARLink enabled the integration of two parallel subsystems, 

i.e. the AIS SIMD array processor and the MIMD transputer network, into a hybrid 

pyramid. The massive parallelism characterized by the array processors is naturally 

embedded in this pyramid machine, because each level of the pyramid is itself an 

array. Moreover, more interesting and complex algorithms can be implemented in 

the hybrid pyramid, since the transputers are powerful computing machines and they 

operate in a hierarchical MIMD mode. 



CHAPTER 4 

FAST PYRAMIDAL LINE 

DETECTION ALGORITHM 

The pyramid vision machine supports the multiresolution approaches and capitalizes 

on advantages of both the mesh and the pipeline architectures. For a real-time system 

in which image data come in from the bottom continuously, this multilevel bottom-up 

information flow and abstraction can provide substantial speedup. 

For example, the pyramidal Hough algorithm for line detection by Jolion and 

Rosenfeld [20] can readily be implemented in this fashion. Briefly, each transputer 

at the bottom level of the pyramid examines a vertical stripe of the edge image and 

merges edge pixels into short lines. The short lines are then passed up to the parent 

nodes and merged recursively up in the pyramid. A practical threshold K for the 

number of lines reported by each transputer can be set to avoid excessive number of 
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short lines and noise being detected. 

4.1 A Simple Line Merging Algorithm 

The central part of the Jolion and Rosenfeld [20] pyramidal line detection algorithm 

is line merging. The original paper uses parameters p, 0 and two L-coordinates X's to 

represent line segments and to calculate distances between them. As noted in Jolion 

and Rosenfeld [20] : "this represent ation treats collinear segments as a single segment 

even if they are far apart ." It is because under that representation checking whthin 

the vicinity of two line segments with slightly different 0's is a bit complicated. In 

our prototype implementation, a modification is made so that coordinates of the end 

points are used to check the vicinity of the line segments before any merging pro- 

cess can take place. The coordinates of the end points are also used for calculating 

distances between the line segments, which involves only simple linear equations for 

the calculation of point-to-line distance. Hence, the use of comput ationally expen- 

sive trigonometric functions as in [20] is mostly avoided. The memory requirement 

is slightly increased, instead of two L-coordinates, four coordinates are now stored 

for each line segment. the parameters p, 0 are still used, but only for the purposes of 

quick checking and indexing to the dynamically allocated Hough space as shown later. 

The following explains our modified version of the original line merging algorithm. 
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4.1.1 Line Segment Representation 

A line segment S is denoted by a pair of Hough parameters (p ,  0) and coordinates 

(xl, yl , x2, y2) of its end points PI and P2. A line having an orientation of 45" 5 0 < 

135" or 225" 5 0 < 315" is considered as x-major, otherwise, it is y-major. Another 

parameter num records the current number of pixels on the line segment. In summary, 

a line segment is represented by: 

4.1.2 Vicinity Checking of Line Segments 

Use the x-major line segments S and S' in Figure 4.1 as an example, where XI,  x2, 

xi, and xh are the x-coordinates of PI, P2, P;, and P;, and x2 > XI ,  xh > xi. If 

(xi - x2) > T or (xl - 2;) > r (e.g., T = 32 in 512 x 512 images), then S and S' are 

far apart. Similar measures are developed for vicinity checking of y-major lines, or 

x-major and y-major lines. Line segments far apart are not allowed to merge even if 

they have very similar p and 19. 

4.1.3 Collinearity Checking of Line Segments 

The collinearity of two similarly oriented line segments is determined by simply mea- 

suring the maximum distance between them. Consider S c L and S' c L', the 

distance between the two line segments is defined by: 

d(S, S' ) = max [dl (PI, L') , d2 ( ~ 2 ,  L' ) , d; (pi, L) , d; (pi, L)] , 
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where PI, Pz, and P;, P; are end points of S and s', and dl, dz, and d; , da are their 

distances to the other line, respectively (see Figure 4.1). 

Figure 4.1: Detection of collinearity and merging 

4.1.4 Simple Merging Algorithm 

Following is the detail of simple merging algorithm for pyramidal line detection: 

ALGORITHM Simple-Merging(S, s') 
IF two line segments S and S' have almost identical 19 and p 

THEN trivial-merge; 

ELSE if their 0's differ too much 

THEN trivial-reject ; 

ELSE /* Collinearity checking */ 
IF d(S, s') is less than a pre-determined threshold 

/* non-trivial merge */ 
THEN merge S and S' into a new line segment S";  

END{Simple-Merging) 
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Figure 4.1 shows an example of merging x-major lines. The relative position of 

the new end points Nl, N2 of S" with respect to S and S' is affected by the numbers 

of the pixels (num and numl) on S and s'. Namely, the line with a larger nurn will 

possess a heavier weight and hence pull the new end point toward it. For example, 

Nl is between point Pl and its foot-of-normal Fl to line s'. Let (xl, yl) and (xlo, ylO) 

be the coordinates of PI and Fl, (x, y)  for Nl can be derived as: 

I 

num num 
x = 1 21 + I x10 

num + num num + num 
num num 

Y = nurn + nurn I Y 1  + nurn + num' Yl0 

Similar calculation can be applied to P2-F2, P;-F;, and P;-F; to generate a total 

of four candidates for Nl and N2. Nl is the one that has the smallest x-coordinate 

value among the four candidates and N2 the largest. The sum nurn + num' = num' 

is recorded as the total number of pixels on S" which is approximately equal to its 

length. Finally, a pair of p, 0 for S" is calculated using Nl and N2. Similar methods 

will be used for other situations, i.e., merging y-major lines, or merging x-major and 

y-major lines. It is shown in [20] that the accuracy of p and 0 is improved when a 

merged line segment becomes longer and longer. 

It should be emphasized that the cost of trivial-merge or trivial-reject is minimal. 

If two lines cannot be trivially merged or rejected, then the collinearity checking had 

to be invoked which is computationally expensive. 

The Jolion and Rosenfeld paper [20] claims that their line merging algorithm has 

a time complexity of O(1og N), where N is the size of the image. Besides the severe 
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limitation on the number K of lines allowed to be reported by each processor, a ma- 

jor assumption is that the algorithm is implemented in a massive pyramid with a 2D 

array processor at its base that is nearly as large as the image size, i.e., the height 

H of the pyramid is not much less than M = log, N. While working with a smaller 

pyramid, e.g., the short "half-scale") pyramid as ours, the algorithm will slow down 

drastically. Assume the image has a resolution 2M x 2M and the base of the pyramid 

has 2H x 2H nodes, then h = M - H. If h is not small, then the leaf nodes are 

overloaded and become the bottleneck. 

Several effective and flexible pyramidal pipeline techniques were developed and 

proved especially suitable for our 2D pyramid [25]. Under the flexible pipelining, 

processors at each level can have relatively balanced load. However, the increase of 

the speed has a upper bound of loo%, because there are not quite 100% more parent 

nodes that can share the work of the leaf nodes in a binary tree configuration. 

The simple merging algorithm is implemented and the results will be shown in the 

Chapter 6. As some of the timing results show, when the number of lines in the test 

image increases, the time for line detection increases quadratically. This is because 

the worst case time complexity for merging two groups of lines is O(PQ) where P and 

Q are numbers of lines in these two groups. The algorithm will be especially slow if 

each pair of the lines must undergo a collinearity check. 
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4.2 An Improved Line Merging Algorithm Using 

As pointed out in the previous section, the original simple line merging algorithm 

has several drawbacks. One of its major problems is the unstructured organization 

of the partially detected line segments. When a parent processor attempts to merge 

partial results from its two child processors, it has to deal with two potentially long 

linked lists. Since lines are represented by points in the Hough parameter (p - 6) 

space, a potential cure is to partition the parameter space into subspaces of smaller 

sizes. For instance, if the number of the lines in each of the two child parameter 

spaces can be split evenly into M subspaces, the worst case time complexity will 

become M x (P/M x Q/M) = PQlM. Nevertheless, in order to quickly construct 

and traverse the subspaces, an efficient and dynamic indexing mechanism for the 

Hough space must be developed. 

4.2.1 The Dynamically Allocated Quadtree (DAQ) 

Quadtree has become a popular data structure. Its various applications and variations 

were reviewed extensively by Samet in his 1984 paper [26]. A quadtree for representing 

the Hough parameter space is a tree where each node represents a certain range of the 

parameter space (pmin, p,,,, Omin, Om,,). A finer resolution of this parameter space 

can be found in 4 children of this node, each child represents one of four subspaces of 

the current node: 
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An index to the quadtree that contains a string composed of characters a, b, c, and d 

can be used for each node is showed in Figure 4.2. Root (level 0) node has an empty 

string of index, while 4 children of the root (level 1) have index a, b, c, d, respectively. 

The nodes at the next level (level 2) will have index aa, ab, ac, ad, ba, ..., dc, dd. Thus, 

a unique index is associated with each node for fast access of a certain node in the 

tree. A list of line segments is allocated within each leaf node of the quadtree, whereas 

no line segment is associated with any internal tree nodes. 

Figure 4.2: Indexing the DAQ 

In their early papers [27] [28], O'Rourke and Sloan presented Dynamically Quan- 

tized Hough Spaces and Dynamically Quantized Pyramids. Both focused on the 

quantization problem, i.e., using a limited number of cells to represent the parameter 

space so that fine precision is maintained where it is needed. In this thesis, quadtrees 

are used for different purposes, namely, they are used for dynamic construction of 

Hough subspaces and, subsequently, for quick indexing in the merging process. We 

call them Dynamically Allocated Quadtrees (DAQ's) because they are dynamically 
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constructed by the transputer leaf nodes. We always equally divide a 2D Hough space 

into four quadrants when it is necessary to split a DAQ node. In this way, an efficient 

algorithm can be developed for combining two DAQ's at the parent node. 

4.2.2 Building initial DAQ's 

The following recursive procedure INSERT is performed by the transputer leaf nodes 

in the pyramidwhen they combine edge pixels into short line segments and build the 

initial DAQ's for these line segments in their subimages. Max-depth is a adjustable 

parameter which defines the maximal depth of the DAQ. Since the collinearity check- 

ings for non-trivial merges are only performed among line segments at max-depth 

level of the DAQ, the insertion routine is reasonably fast. 

It should be pointed out that the recursive procedure INSERT provides a concise 

description. In real implementation, some modifications/optimizations can make the 

procedure more efficient. 

Procedure INSERT (S, R) 

Use the parameters p and 0 of S to traverse the DAQ from the root R downwards, 

until it encounters a leaf node Q of the DAQ 

IF Q is a virtual node /* No line resides in it yet. */ 
THEN leave S in node Q; 

ELSE /* Q is an actual node, there are lines in it already. */ 
IF S has almost identical 6 and p with any line S' already in Q 
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THEN trivial-merge; 

ELSE IF current-level = max-depth; 

THEN IF S is "collinear" with line S' already in the Q 

THEN non-trivial merge; 

ELSE link S into the list of the lines at Q; 

ELSE /* split Q */ 
generate 4 virtual child nodes for Q; 

for all lines NewS E {S, all lines in Q) 

INSERT (NewS, Q); 

Figure 4.3 illustrates a sequence of insertions taken place in a transputer leaf node. 

Numbers in boxs indicate p and 6 of lines. Initially, the root of the DAQ is a virtual 

node which has no line associated with it yet. A line (60, 250") is inserted at Step 1. 

Step 2 sees the second inserted line which causes the split of the root node. A new 

line (61, 250") is trivially merged with the old line (60, 250") at Step 313.1, and a 

new longer line (60, 250") is generated. At Step 4, another line (12, 170") is inserted. 

Because its p value 12 is fairly close to p value 40 of the previous line in node b, 

new children nodes are recursively generated until the two lines reach the deepest 

allowable level (assume max-depth = 4) and fit in nodes bccc and bccd. Finally, the 

last inserted line (36, 171") finds its place at node bccd at Step 515.1. Since it is 

almost collinear with line (40, 170•‹), the two lines are merged into a new line (39, 

170"). 
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Figure 4.3: Building a DAQ at a transputer leaf node 
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4.2.3 Combining two DAQ's 

Procedure COMBINE (DAQI, DAQ2) 

Traverse DAQ2 and examine each leaf node Q2 in sequence; 

FOR each Qz 

IF there is a (real, virtual or internal) node Q1 in DAQ1 at the corresponding 

position as Q2 in DAQ2 

THEN Q = Q1; 

ELSE 

find Q2's youngest parent node Q; that has 

a corresponding node Q; in DAQ1; 

Q = Q;; 

FOR all lines S in Q2 

INSERT (S, Q); 

END(COMB1NE) 

The function of a parent node is to combine the two DAQ's from their two children 

to generate a new DAQ. In the combining process, collinear short line segments are 

merged into longer lines. Suppose there are two trees DAQl and DAQ2, an efficient 

algorithm is to first traverse only one tree, say DAQ2, and examine each leaf node 

Q2 in sequence. The procedure INSERT is used to place the lines in Q2 into their 

corresponding nodes in DAQI. As a result, DAQ2 is appended to DAQ1. 
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Figure 4.4: An example of combining two DAQ's 
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Figure 4.4 shows the combination of two DAQ's at a parent node. DAQl and 

DAQ2 from its two children will be combined into DAQ. Leaf nodes in DAQ2 are 

examined. Node aa in DAQ2 does not have a corresponding node in DAQ1, so the 

youngest parent node a in DAQ1 is found and line (-150, 62") is inserted into node a, 

which causes a trivial merge of lines (-150, 60") and (-150, 62") into a new line (-150, 

61"). (The new line stays in node a for now, this intermediate result is not shown in 

the figure.) Similarly, line (-5, 150") in DAQ2 does not have a corresponding node in 

DAQl and is inserted to node a in DAQ1, which cause the split of node a as shown in 

Figure 4.4 Line (-110, 195") in DAQ2 finds its corresponding virtual node c in DAQ1, 

and is inserted into it. Finally, line (120, 220") is inserted to node d in DAQ1, which 

causes it to be linked to the other line (110, 190") in node db. 

4.2.4 Choosing the Depth of DAQ 

The choice of the value for max-depth of the DAQ is an important issue. For all prac- 

tical purposes, max-depth = 8 is sufficiently deep for a very fine partitioning of the 

Hough parameter (p - 0) space. One of the concerns is the overhead for building the 

DAQ, especially when it is deep. Experiments are conducted by varying max-depth 

at multilevels in the pyramid. Our results in Chapter 6 will show that the overhead 

for building a deep DAQ is low and acceptable and has a very good payoff. 

Another concern is the detectability of lines in the image. If deep DAQ's are 

maintained at all levels in the pyramid (including the root transputer), then the 

Hough space is always divided into many fine subspaces. Excessive number of lines 
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might be reported by the root transputer, even if many of them only deviated by 

a tiny dp and/or do. It is because they are separated by too many boundaries of 

fine divisions. A suggested method is to reduce the max-depth gradually while the 

line merging process ascends the transputer pyramid. This will greatly improve the 

line detectability while maintaining the effectiveness of the DAQ algorithm. In real 

implementation, the four quadrants of each Hough subspace are overlapped to prevent 

mergable lines from being separated by the boundaries of the adjacent quadrants. 



CHAPTER 5 

LINE-BASED MOTION STEREO 

ALGORITHM 

We use our left and right eyes to judge the depth of what we see because the images 

captured by our left eye are different with those captured by the right eye. Moreover, 

the correspondence problem is defined as to select a particular location on a surface 

in the scene from one image and to identify that same location in the other image [2]. 

This technology can also be applied to the computer vision systems. Stereo Vision is 

used for depth recovery in which pairs of images from horizontally and/or vertically 

displaced camera are used. 
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Stereo Disparity 

A simple example can illustrate the mechanism of how to recover the depth informa- 

tion from a pair of images. Figure 5.1 shows two cameras where their optical axes 

are parallel and separated by a distance of b. The line connecting two lens centers is 

defined as the Baseline. The baseline is perpendicular to the optical axes of both lens. 

The correspondence points in the left and right images lie somewhere on a particular 

line, because these two points have the same y-coordinate. This line is defined as 

the Epipolar line. Let the coordinates of the point P be (X, Y, Z) and the image 

coordinates in the left and right images be (Xl, X) and (X,, 6). Then we have: 

Figure 5.1: Recover Depth from A Pair of Images 

xl x + b / 2  - - - X, X - b / 2  
- 

f z f Z 
and - - 
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where 

f is defined as the distance from the lens center to the image plane. The coordinates 

X, Y, Z can be solved from the equations 5.1 and 5.2: 

The coordinate Z can be used as the depth information. From equation 5.1, we 

get: 

Disparity is defined as the difference in the image coordinates (Xl - X,). It is easy to 

see that the depth is inversely proportional to disparity. 

5.2 Some Existing Stereo Approaches 

As we have discussed above, the central part of depth recovery using the stereo method 

is to identify the corresponding points in the pair of images. Once the corresponding 

points in the pair of images are identified, their disparity values can be calculated and 

be used to recover the depth information. 

To formulate the correspondence computation, its basis in the physical world must 

be examined and two constraints were identified [2]: 
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0 Uniqueness: "No more than one disparity value can be assigned to each item 

from the image." 

0 Continuity: "Disparity varies smoothly, since the surfaces of a object are gen- 

erally smooth compared with their distance from the viewer." 

To solve the stereo vision problems, the above constraints are usually inadequate. 

The constraint of Figure continuity is proposed by Mayhew and Frisby in 1981 [29] in 

which they stated, "... the edges of surfaces and surface markings such as lines and 

blobs will be spatially continuous and that is the ultimate justification for relying on 

figural grouping rules to guide binocular combination." In other words, disparities 

are continuous along the edges of the surfaces. Since then, this has been accepted as 

a more powerful disparity-continuous constraint. 

The correspondence problem is known to be very difficult. As Okutomi and 

Kanade had pointed out in [14], the distance between the pair of cameras greatly 

affects the accuracy and error rate of the correspondence process. A small distance 

(baseline) will provide less precision in the depth estimate due to narrow triangula- 

tion, whereas a longer distance (baseline) indicates a larger disparity range and hence 

higher error rate due to false matchs. To alleviate the dilemma, they proposed the 

multiple-baseline stereo method where different baselines are generated by lateral dis- 

placements of a camera. 

We are dealing with a manufacturing environment with assembly lines, where the 
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belts are moving at a relatively constant speed. Instead of moving the camera, multi- 

ple snapshots of the moving objects will be taken in rapid succession. The controlled 

belt movement guarantees the disparity only occurs along the epipolar line. We named 

this method Motion Stereo. 

In order to reduce the complexity of pixel-based matching, line-based stereo match- 

ing algorithms have been developed. Medioni and Nevatia [30] used linear features 

in their work. In 1988, McIntosh and Mutch [31] presented a system for matching 

straight lines. Multiple (eight) features were used. These lines failed to match only 

when three or more of their features differed significantly in two images. The line- 

based method for correspondence has the merits of naturally enforcing the constraint 

of figural continuity and speeding up the matching process. Moreover, it could be 

used to simultaneously yield certain boundary descriptions in Hough space which can 

be very useful for surface interpolation as suggested, for instance, by Hoff and Ahuja 

[32] in their integrated approach for Surface from Stereo. 

The line matching problem in the image space can readily be converted into a 

peak point matching problem in Hough space [33]. Furthermore, the search process 

in the Hough space can be accomplished effectively by using the technique of Dynamic 

Programming l. 

'The term "line matching" has been loosely used here. Strictly speaking, "collinear points" are 
being matched. Peaks in the Hough spaces represent the collinear points (whether they are con- 
nected or not). Optimal matches between the corresponding peaks are obtained in the Hough 
space. Afterwards, it is not difficult to obtain the disparity values, with a refined higher accuracy, 
for the individual corresponding points on each epipolar line. 
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In [34] Bolles, Baker, and Marimont proposed a technique of epipolar-plane image 

analysis for determining structure from motion. They took images in a rapid suc- 

cession to obtain a solid block of image data. The technique used knowledge of the 

camera motion to form and analyze slices (epipolar-planes) of the solid. It was pointed 

out that for straight-line camera motions, simple linear structures will be formed in 

the epipolar-planes. This same technique can apparently be applied to our motion 

stereo method, where objects only move along the epipolar lines. Moreover, it will be 

shown latter in this chapter that, if the solid block of the image data is mapped onto a 

3D Hough space, then the peaks that represent the lines in the original stereo images 

can be connected by a straight line in the Hough space. This forms the basis of our 

fast Hough line-based motion stereo technique, since the problem of matching lines 

among the multiple motion stereo images is effectively reduced to an easier problem 

of finding collinear points in the Hough space. 

Many state-of-the-art vision systems [35, 361 primarily use line features for vision- 

guided navigation and object recognition, especially in man-made environments. There- 

fore, the study of line-based motion stereo is still of importance and practical use. 

Moreover, there have been many attempts of employing parallel hardware to speed 

up the depth recovery process. For example, papers [37, 381 showed how pipeline 

architectures could be used in stereo matching process. 

The stereo algorithm described in this chapter has been implemented in the pyra- 

mid machine. It can quickly render a non-dense depth map along the linear contours 
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in the scene. 

5.3 Hough Line-based Motion Stereo 

As we mentioned early in chapter 2, a line in the image space can be mapped into a 

point in the parameter space by using Hough Transformation [15]. Since any 2D line 

in the image can be represented uniquely by two parameters, parameter spaces such 

as slope-intercept, or p - 6 have been used. As shown in Figure 5.2(a), we instead 

will use parameters ml, m2 to represent a line in the image space, where ml and ma 

are the distances from the bottom of the image to the intersection points between the 

extension of the line and the left or right border of the image, respectively. A single 

peak value at (ml, m2) in the parameter space can be seen in Figure 5.2(a). 

For convenience of the implementation in our pyramid machine, the stereo images 

of a time sequence are taken so that the epipolar lines are vertical. In other words, 

the disparity values between corresponding pixels in the multiple stereo images are 

measured by their Ay. For the lines represented by their parameters ml and m2, the 

disparity will be reflected by Aml and Am2. Suppose a line segment at time To has 

two end points (xi (O),  yl(0)) and (x2(0), ~2(0)).  If the belt moves along the Y-axis, at 

time TI the previous line segment will be seen at a new location with (xl(0), y l ( l ) )  and 

(x2(0), y2(1)), and so on. By superimposing these multiple images taken at different 

time T, Figure 5.2(b) shows the movement of that line segment. 
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Figure 5.2: MI-M2-T 3D parameter space. 
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Given the constant speed of the vertical motion, it is guaranteed that at any 

moment t in the time sequence: 

~ l ( t )  - ~ l ( t  - 1) = y1(t + 1) - y1(t) (5.5) 

~ 2 ( t )  - ~ 2 ( t  - 1) = y2(t + 1) - y2(t) (5.6) 

Suppose line segments t - 1, t,, t + 1 are not parallel. They will all intersect at a 

common point Q after being extended (mathematical proof can be found in Appendix 

A). Figure 5.2(b) depicts this situation. Since 

From equations 5.7, 5.8, 5.9, 5.10: 

Lines in the multiple motion stereo images are transformed into multiple MI-M2 

parameter spaces. A three-dimensional MI-M2-T parameter space can be constructed 

by stacking the multiple parameter spaces together. As in Figure 5.2(c), a line seg- 

ment L in the nth image is represented as a point P, in the MI-M2-T parameter 

space. Let Am(t) = m(t) - m(t - I) ,  because at any moment t ,  Aml(t) = Aml(t + 1) 

and Am2(t) = Am2(t + I), the N points in N MI-M2 planes can be connected by a 

straight line in the 3D parameter space. That is how the problem of matching lines 
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among the multiple motion stereo images is effectively being reduced to an easier 

problem of finding collinear points in the MI-M2-T space. This is also an important 

reason why MI-M2 is chosen to replace the well-known p, 0 Hough representation. 

Lines in multiple motion stereo images will not be mapped to a straight line in the 

p - 0 - T parameter space. 

5.4 Pyramidal Line-based Motion Stereo Algo- 

rithm 

In this section, a pyramidal algorithm for line detection and line matching will be 

described. Most existing stereo line matching algorithms detect lines first, followed 

by stereo matching. In this section, the processes of line detection and line matching 

are not separated. Instead, it will be shown that the integration of these two processes 

will benefit each other. 

5.4.1 Pyramidal Line Detection 

We have already presented a fast pyramidal line detection algorithm in the previous 

chapters. Basically, edge pixels are merged into short line segments at the lower level 

of the pyramid. The short lines are then passed to the parent nodes and merged 

recursively into longer lines up in the pyramid. To speed up the line merging process, 

a Dynamically Allocated Quadtree (DAQ) is used. This DAQ based pyramidal line 
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detection algorithm forms the basis of the line-based motion stereo algorithm. 

Compared with the previous chapter, a line segment S is represented by its pa- 

rameters ml and ma. For hierarchical merging, coordinates of its endpoints and the 

current number (num) of pixels on the line segment are recorded. Besides, the dis- 

parity values at both endpoints (Dl and D2) are also kept for the purpose of stereo 

matching. These two parameters are defined as type array which is capable of keeping 

disparity information for more than one ( up to a constant K ) potential match. As 

a result, a line segment S is represented as: 

S = (ml,m2,x11y17x21Y27nUm 

The DAQ pyramidal line merging algorithm is used for line detection. The only 

addition to that algorithm is that the disparity information is now also taken into 

account while merging the lines. To merge two line segments, not only their positions 

but also their disparity values will be checked. As for disparity, (a) the disparity 

values of the two line segments at the joint point must be very close, and (b) their 

disparity gradient % must be similar. 

5.4.2 Line Matching 

As discussed before, every line will appear as a point in the MI-M2-T 3D parameter 

space. Also, the same line L appears in the sequence of N images will form N peak 

points in their respective MI-M2 planes. The task is to find the collinear peak points 
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that can be connected by a straight line in the 3D Hough space. 

The N image frames come in succession. Frame 0 and Frame 1 are matched first. 

After Frame 2 comes, it will be matched against Frame 0, and so on, until all the 

frames are processed. 

Procedure MATCH(DAQ[O], DAQ[i]) 

IF( i = 0 ) RETURN; 

IF( i = 1 ) 

FOR each leaf node N(m1, ma) of DAQ [0] 

define an area A(ml f d, m2 f d) on the MI-M2 

plane for T=l ;  /* e g ,  d = 20 */ 
matchnode(N, A); 

IF( i > 1 ) 

FOR each leaf node N(m1, m2) of DAQ [0] 

FOR each potential match in MatchList[N], calculate the 

searching area A' by using previous Am1 and Am2; 

matchnode(N, A'); 

END{MATCH) 

Procedure match-node(N, A) 

FOR each node N' in area A /* using DAQ[if] */ 
IF N' is a matching candidate for N ,  link it to MatchList[N]; 
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Keep only the K best candidates according to their similarity 

in (a) disparity gradient, and (b) line length; 

Store the MatchList [N] into m l  [N] [K] , m2[N] [K] array; 

END{mat ch-node) 

For first match (Frame 0 to Frame I), no information is available except the data 

in the two frames. For every line L in Frame 0 whose peak point in 3D parameter 

space is (ml, mn, 0), search will be performed in the area (ml  f d, m2 f d, 1) in the 

MI-M2 space for Frame 1, where d is a selected constant value. It is possible that 

more than one matchable peak point can be found in the searching area. Although 

the eventual task is to find out the best candidate, there is not enough information 

to decide at this point. The K best candidates are kept in Dl [K], D2[K]. They will 

be used to guide later searches. 

After the initial match between the pair of lines in the first and second images is 

obtained, a hypothetical line segment PO-PI can be drawn in the MI-M2-T space. It 

is used to guide the future match. Figure 5.3 shows an example of the matching pro- 

cess in the 3Dparameter space. Since the corresponding peaks from the sequence of 

the multiple MI-M2 planes can be connected with a straight line, the correct location 

for P2 in the MI-M2 plane at T = 2 can be readily calculated by extending the line 

connecting PO and PI .  In calculation, Aml and Am2 derivable from the match PO-PI 

are used to find out the center of the search area A' for P2. Similarly, the process can 

be carried out further for later images in the sequence. In the real implementation 
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some heuristic steps are also accommodated to make up the early misses. A simple 

example will illustrate how this heuristic works. Figure 5.3 depicts another situation 

in which line segment QO in image(0) doesn't match any correspondence line segments 

in image(1). QO is not discarded right away, instead, it is kept for another try and 

finally, QO finds its corresponding line segment Q2 and Q3 in image(2) and image(3). 

T 

M2 

Figure 5.3: Matching in 3D parameter space. 

In the worst case, K2 potential match points could be found at each step and 

the K best among them will be retained. The number of potential match usually 

drops significantly after several steps. Since K is a relatively small number (4 in our 

experiment), the search process is very fast. 
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Figure 5.4: Data flow for line merging and matching in a three level pyramid. 

5.4.3 Integrating Merging and Matching 

The hierarchical line merging and matching are not independent processes. On one 

hand, merging short line segments into longer ones in the pyramidal hierarchy will 

gradually reduce the amount of lines to be matched. On the other hand, the disparity 

information from matching will impose another constraint on the merging, and thus 

yields a more reliable result. 

The integration of merging and matching is accomplished in one bottom-up data 

flow process. The motion stereo images are first fed to the leaf nodes. They will then 

be pipelined through the pyramid with both merging and matching performed at each 

level. 
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In the pyramid, the bottom level transputer nodes will receive the edge frames 

from AIS. For each image, the initial DAQ's for short lines will be built by the leaf 

transputer nodes. The DAQ's will be sent to the parent transputers. Each parent 

transputer node receives two DAQ's from its two children and combines them into a 

new DAQ (merging). After that, it will match that DAQ with the DAQ of Frame 0, 

update the disparity information of the line segments and send it to its own parent, 

and then wait for the next frame. This process will stop at the top level (root) after 

all the frames are processed. Figure 5.4 illustrates the data flow for this integrated 

process in a simple three level pyramid. 

According to the different tasks assigned to the different level of transputer, we 

divided the transputer into 3 groups: LEAF are those level 5 transputers, ROOT is 

the level 0 one, while all the remaining are belongs to BRANCH. We present those 

different tasks as follows: 

The main data structures used: 

1. FrameNumber; //total number of frames. 

2. Frame[FrameNumber] ; //input image from AIS. 

3. DAQ [FrameNumber] ; /IDA& tree of current node. 

4. DAQ-Left [FrameNumber]; //DAQ received from left child. 

5. DAQ-Right [FrameNumber] ; /IDA& received from right child. 
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Motionstereo-LEAF(F'rameNumber) 

FOR( i = 0; i < FrameNumber; i ++) 

FOR every edge pixel P of Frame[i] 

Traverse DAQ[i] from its root R downwards 

UNTIL it encounters a leaf node Q of DAQ[i]; 

INSERT(S, R); 

SEND(PARENT, DAQ[i]); 

END{MotionStereo_LEAF) 

MotionStereo-BRANCH(FrameNumber) 

FOR( i = 0; i < FrameNumber; i ++) 

RECEIVE(DAQ-Left [i], DAQ-Right [i]); 

DAQ[i] = COMBINE(DAQLeft [i], DAQ-Right [i]); 

MATCH(DAQ[O], DAQEi]); 

SEND(PARENT, DAQ[i]); 

END {Motionst ereoBRANCH) 

MotionStereo~ROOT(FrameNumber) 

FOR( i = 0; i < FrameNumber; i ++) 

RECEIVE(DAQ-Left [i], DAQ-Right [i]); 

DAQ[i] = COMBINE(DAQLeft [i], DAQ-Right [i]); 

MATCH(DAQ[O], DAQ[i]); 
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5.5 Compare Motion Stereo with Optical Flow 

Extracting 3-dimensional information from time-varying images is very useful. We 

have already shown how to recover the depth of lines by using the line-based motion 

stereo approach. Optical Flow is defined as: "The apparent motion of brightness pat- 

terns observed when a camera is moving relative to the objects being imaged." [I] 

Figure 5.5:  Perspective projection 

Motion Field is the velocity vector for every image pixels. At a particular time t ,  a 

point Pi in the image corresponds to some point Po on the object's surface. These two 

points are connected by the projection equation(see Figure 5.5). Suppose the object 

point Po has velocity vo which cause a velocity v; for its corresponding image point 

Pi. The movement of Po over a time period St is voSt while its image point Pi moves 

v;St. We can have: 
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dro dr; vo = - and 
dt 

v; = -, 
dt 

1 -v. - ( r  - v - ( v  r (r ,  x v,) x i - 
2 - - 

fi ( r ,  - i)2 ( r o - i ) 2  ' 

From the perspective projection equation yielded above, it is obvious that the ve- 

locity vector can be assigned to every image pixels thus constitute the motion field. 

According to Horn [I], "Neighboring points on an object have similar velocities." So 

that it incurs that the motion field of the image is also continuous in most of the place. 

In discrete digital images, an approximate continuous solution of motion field cal- 

culation can be reached by using a finite-difference schema. In particular, an iterative 

schema is used to implement the above theory. The number of iteration will affect 

the accuracy of the final result. In general, more iteration can give more precisely 

calculated motion field. 

A wide variety of methods have been used to the measure of optical flow [39]. Some 

methods calculate the instantaneous motion field directly while the others track fea- 

tures across the image and then find a correspondence between features between one 
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moment to the next. The measurement of optical flow is known to be difficult be- 

cause of the following two points. First, the changing pattern of intensity of the image 

only offers partial information about the true motion. Second, there does not exist a 

unique optical-flow field among changing images when the general motion of objects 

is allowed [39]. 

The optical flow mechanism can be mapped to a wide range of application do- 

mains, from the simple tracking of moving objects on the conveyor belt in industrial 

environment to the analysis of much more complex motions such as the cells in cell 

culture. The motion stereo approach we proposed deals with a subset of the optical- 

flow problems by imposing more constraints in a certain application domain. In the 

industrial environment where the objects are moving along the well-controlled con- 

veyor belt, more useful constraints can be set to speed up the optical-flow process. 

To make the object moving along a straight epipolar line, we can use multi-baseline 

stereo technology to solve the correspondence problem. Moreover, for objects with 

linear features, it is convenient to impose the line-based stereo instead of pixel-based 

calculation to speed up the process. It is obvious that the motion stereo approach 

works well for the above application domain. For complicated object movements and 

less constrainted working environment, optical-flow is still a good choice. 



CHAPTER 6 

EXPERIMENTAL RESULTS 

This chapter gives some experimental results of our pyramidal based algorithms. We 

st art with the pyramidal line detection algorithms, followed by the line-based motion 

stereo algorithm. 

6.1 Pyramidal line detection 

This section reports the comparative timing results for the simple merging algorithm 

and the improved algorithm that uses DAQ. Several real images and synthetic images 

are tested. All the test images are of the size of 512 x 512. 

Live input images are digitized by the AIS-4000. The sobel edge operator as 

adopted by Rosenfeld, et al. [18] is used to find the edge pixels and their directions 
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8's. The detected edges are initially more than one pixel wide. A non-maximum sup- 

pression technique is used to reduce their edge widths to one. All these preprocessings 

take place in the AIS-4000 in less than 200 milliseconds. They will not be included 

in the following timing results. 

6.1.1 Simple Merging Algorithm 

Table 6.1: Timing results for detecting lines in real images 

The results in Table 6.1 suggest that the simple pyramidal line merging algorithm 

can detect all lines in several real images (containing simple objects such as cubes or 

pyramids) at the order of 100 ms. They also indicate the following: 

cube 
pyramid 
Rubik 

when the lines of the larger objects are longer, the parent nodes will need a little 

more time to do some real merging job instead of simply passing the results up 

to the root; 

when the object has more lines, e.g. the "Rubik's cube", it will take longer to 

merge them. 

Time Required (ms) for Simple Algorithm 

To better illustrate the later point, four synthetic grid images are used. The first 

image has an 8 x 8 grid and hence 8 + 8 = 16 lines. Similarly, the others have 

Total 
119.8 
144.9 

3215.3 

level5 
95.7 

104.6 
437.60 

level4 
5.8 

11.5 
132.4 

level2 
5.6 
5.8 

560.3 

level3 
8.6 
9.3 

248.6 

level1 
1.4 
1.6 

210.2 

level0 
2.7 

12.1 
1626.2 
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16 + 16 = 32,32 + 32 = 64, and 64 + 64 = 128 lines. 

Table 6.2: Timing results for detecting lines in synthetic images 

Table 6.2 shows the significant increase in the total time required to detect all 

lines when the number of lines increases from 16 to 128. Notably, for the non-leaf 

transputer nodes (level 4 to level O), the time increase is approximately quadratic. 

This is consistent with the analysis in Chapter 4(4.1.3) which states the worst case 

time complexity for the simple merging algorithm is O(PQ) where P and Q are now 

the numbers of line segments detected by the child nodes. For the leaf nodes, however, 

the increase is not nearly as drastic. It is because that many trivial merges happened 

to occur at the leaf level for grid images and hence avoided the expensive procedure 

of checking for collinearity. 

8x8 grid 
16x16 grid 
32x32 grid 
64x64 grid 

6.1.2 DAQ-based Merging Algorithm 

Table 6.3 presents the comparative results of the DAQ merging algorithm and the 

simple merging algorithm. Apparently, the DAQ merging algorithm is more efficient 

than the simple algorithm. The speed increase range from 1.62 to 8.15 times for the 

Time Required (ms) for Simple Algorithm 
Total 
329.7 
585.8 

1543.1 
5434.5 

level5 
272.6 
368.0 
648.8 

1287.4 

level2 
7.7 

30.7 
124.7 
504.3 

level4 
6.6 

25.8 
118.4 
473.9 

level1 
8.5 

32.8 
131.3 
519.5 

level3 
8.7 

33.2 
130.4 
524.1 

level0 
25.6 
95.3 

389.5 
1485.3 
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Table 6.3: Comparative Timing Results for Line Detection 

I Level 2 1 7.7 1 30.7 1 124.7 1 504.3 1 5.6 / 5.8 1 560.3 

Level 5 
Level 4 
Level 3 

I Level 1 1 8.5 1 32.8 1 131.3 1 519.5 1 1.4 1 1.6 1 210.2 

Timing (in milliseconds) for the Simple Algorithm 

Level 2 4.8 12.7 4.6 5.9 19.8 I 1.1 1 1.7 1 7.1 

8 x 8 grid 
272.6 
6.6 
8.7 

Level 0 
Total 

Level 5 
Level 4 
Level 3 

25.6 
329.7 

Level 0 
Tot a1 

Speedup 

16 x 16 grid 
368.0 
25.8 
33.2 

Cube 
95.7 
5.8 
8.6 

95.3 
585.8 

3.1 
203.8 

1.62 

32 x 32 grid 
648.8 
118.4 
130.4 

Timing (in milliseconds) for the DAQ Algorithm 

64 x 64 grid 
1287.4 
473.9 
524.1 

Pyramid 

104.6 
11.5 
9.3 

389.5 
1543.1 

8 x 8 grid 
176.2 
7.5 
6.3 

4.0 
245.8 

2.38 

Rubik 
437.6 
132.4 
248.6 

1485.3 
5434.5 

8.8 
351.7 

4.39 

16 x 16 grid 
208.5 
11.4 
6.8 

2.7 
119.8 

Cube 
59.8 
12.4 
4.3 

10.4 
667.2 

8.15 

32 x 32 grid 
281.9 
32.4 
10.6 

12.1 
144.9 

64 x 64 grid 
553.2 
65.8 
14.9 

Pyramid 

65.2 
13.2 
10.6 

3.2 
85.4 

1.40 

1626.2 
3215.3 

Rubik 
278.3 
72.3 
25.8 

5.8 
102.4 

1.42 

33.2 
436.5 

7.37 
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grid images. Figure 6.1 depicts this comparative result. 

0 20 40 6 0  8 0  1 0 0  1 2 0  1 4 0  
Total  Number of Lines 

Figure 6.1: Comparative result for the grid images 

As for real images, the cube and pyramid are simple polyhedral objects (images 

not shown) with only a few boundary lines, whereas the Rubik cube image has 72 

extended lines. As shown in Figure 6.3, the edge map of "Rubik" has some noise that 

can be expected to slow down somewhat the line merging process. Indeed, Table 6.3 

shows that the total line detection time of 436.5ms for "Rubik" by the DAQ algorithm 

is between the time required by the 32 x 32 and the time required by the 64 x 64 grid 

images. Moreover, a good speed up of 7.37 is achieved. Figure 6.4 is a reconstructed 

cube scene for all the line detected by the DAQ algorithm. 
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Figure 6.2: Live image of ru .bik cube 

Figure 6.3: Edgemap of rubik-cube 

Figure 6.4: All detected lines 
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As shown in all the tables the leaf nodes are clearly overloaded. The application 

of flexible pyramidal pipelining technique [25] can easily balance the load of the trans- 

puter nodes at all levels of the pyramid and thus shorten the total time needed for the 

entire pyramidal line detection process. However, the main purpose of this section is 

to show the comparative results from the simple merging algorithm and the one using 

DAQ. For the simplicity and clarity for a fair comparison, the pipeline technique is 

not used. 

6.1.3 Choosing the depth of DAQ 

Table 6.4: Timing results for using various max-dept h's 

I max-depth I Time Required fms) 
T subtotal 

2149.3 
1535.0 
995.1 
693.3 
232.9 
224.3 
222.6 
230.4 
215.1 
217.4 
247.7 
217.2 
198.0 
199.5 
234.1 
315.1 

The timing for various combinations of max-depth at different levels is measured. 
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A 256 x 256 synthetic image which contain huge amount of lines is used. Due to the 

image size, only 31 transputer nodes( 5 levels) involved in this testing. Table 6.4 lists 

a number of their timing results. The notation nl-n2-n3 indicates that max-depth is 

nl, n2, and n3 at level 4, 3, and 2, respectively. 

The first row in the table (max-depths: 0-0-0) shows an extreme case in which 

the DAQ algorithm degenerates to the simple merging algorithm. The next three 

rows show some examples when the max-depth's are still not sufficiently large (i.e., 

only 1, 2 or 3). All timing results for the first four rows are unsatisfactory, although 

there is already a clear decreasing trend in their subtotals. For the other rows, the 

max-depth at level 3 is chosen as 4, the max-depth at level 5 ranges from 8 to 6, and 

the max-depth at level 4 is somewhere in between. Apparently, the DAQ algorithm 

works well as long as the max-depth's are reasonably large (i.e., 2 4 at all levels). 

The overhead for building the DAQ's is never overwhelmingly heavy. In fact, the best 

timing results are from 8-5-4 and 8-6-4 when the leaf nodes at level 5 have the deepest 

DAQ of max-depth = 8 and only require 66.1 ms, which yield the minimal subtotals 

(198.0 or 199.5 ms) for all three levels. 

6.1.4 Real-time Blocking Sorting - Integrating with Robotic 

Workcell 

The fast pyramidal line detection algorithms have been integrated into a robotic 

workcell, which consists of a moving belt, a robot arm set beside the belt and a 

camera mounted above the mobile belt. 
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Camera 

mobile belt 
Real objects on the moving belt 

2D intepretation of the objects A, B 

Figure 6.5: Mis-Interpretation of objects using only 2D information 

A stream of varied polyhedral wooden blocks are placed on the moving belt. Live 

images are taken by the camera mounted above the belt and are sent to the hybrid 

pyramid for line detection. The vision system detects all the lines of the incom- 

ing images and decides whether it is a cube(square block from the image ). Cubes 

are removed from the belt by the robot arm while the other shapes are left on the belt. 

For ordinary block scenes, the algorithm takes less then 150 ms for line detection 

in the transputer pyramid. A simple heuristic algorithm was adopted for cube recog- 

nition which is basically taking the number of edges of the block and its orientation 

into consideration. The entire vision process is completed in less than 500 ms and 

thus enables real time sorting of the blocks. 
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Since the pyramidal line detection algorithm only interprets the 2D lines, it may 

misinterpret some objects, Figure 6.5 illustrates this situation. In a 2D scene, both 

objects will appear as a "cube" but actually only object A is. This problem will not 

be solved as long the depth information of the lines is missing. In other words, using 

line detection alone is not enough for recovering the objects. As we can see, this 

problem can be solved by combining the motion-stereo mechanism. 

6.2 Motion Stereo Depth Recovery 

In our experiment, polyhedral wooden blocks are placed on the moving belt, and eight 

consecutive frames of images were taken by the camera. Figure 6.6 shows eight live 

images. 

Images are sent to the AIS-4000 array processor frame by frame for edge detec- 

tion. Approximately 40 milliseconds (ms) is needed for each frame. Edge images are 

then sent to transputer leaf nodes via the PARLink. The pyramidal line merging and 

matching algorithm is applied to derive the final disparity map. Due to the limita- 

tion of the internal storage of the transputers (2MB on each transputer), not all edge 

images are kept. In fact, only edges for Frame 0 and the current Frame i are kept, all 

other frames (0 < k < i) are discarded after they are matched against Frame 0. 

Figure 6.7 shows all the matched lines of the moving object from 8 frames (No- 

tice: all static lines, e.g., the edges of the sensor mounted on the frame of the belt, 

are correctly not matched.) The final disparity map of Frame 7 is shown in Figure 6.8 
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Figure 6.6: Live images captured at different time T 
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Figure 6.7: All matched lines of 8 frames of the moving object 

Figure 6.8: Disparity map of frame 7 
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(for display purposes, the disparity values are shown with coded gray level intensities). 

Table 6.5: Timing results for recovering lines in real images. 

Time Required (ms) 

Table 6.5 shows the time needed to work on one frame of image "pyramid". The 

matching process of one image can be done at the order of 100 ms. Since the pipeline 

method is applied, the total time for 8-frame motion stereo is: 

Edge Detection 
Finding Short Lines 
Merging & Matching 

Sub Total 

As shown in the table, the level 5 nodes are clearly overloaded. The load can 

be readily balanced by using the pipeline technique as we mentioned in the previous 

section. Again, in this preliminary experiment the pipeline technique is not used. 

AIS 
40.0 

X 
X 

40.0 

level4 
X 
X 

13.0 
13.0 

level5 
X 

70.1 
X 

70.1 

- 

level3 
X 
X 

5.9 
5.9 

. , 

level2 
X 
X 

3.0 
3.0 

level1 
X 
X 

6.1 
6.1 



CHAPTER 7 

CONCLUSIONS AND 

DISCUSSION 

This thesis describes a parallel and hierarchical (pyramidal) approach to fast Hough 

line detection and line-based motion stereo. The lines are represented using their 

Hough parameters p and 0. The processes of line merging and matching are inte- 

grated in the pyramidal framework. 

Fast Hough line detection algorithms are first presented in which the lines are 

represented using their Hough parameters p and 0 are merged hierarchically by all 

the transputers in the pyramid. To reduce the complexity of the line merging pro- 

cess, a Dynamically Allocated Quadtree (DAQ) is introduced to represent the Hough 

parameter space. The comparative experimental results show that the line merging 

algorithm using DAQ is significantly more efficient than the simple merging algorithm. 
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The recovery of depth information of an object is important for 3D vision since 

it is essential for robotics and many manufacturing automation applications. An al- 

gorithm for line-based motion stereo is presented in the second part of this thesis. 

It is applied to a testbed of a manufacturing environment where an assembly belt is 

moving at constant speed. Only one camera is needed to capture a succession of mo- 

tion stereo images. A parallel and hierarchical (pyramidal) algorithm for line merging 

and matching is described. It is shown that the problem of matching lines among the 

multiple, motion stereo images can be effectively carried out in a 3D parameter space. 

A robotic workcell has been integrated into the overall system setup and it realizes 

the real-time vision process on the SFU hybrid pyramid vision machine. Preliminary 

experimental results show that our pyramidal line detection mechanism is capable of 

detecting all lines of a simple real image in the order of 100 ms, and the line-based 

motion stereo system is being able to producing a depth map along the linear features 

in about half a second. 

As Horn [I] described, the purpose of the vision system is to produce symbolic 

descriptions of the imaged objects; to make decisions based on the descriptions; and 

finally, to manipulate the objects by moving the robot arm according to the deci- 

sion made. Our approach demonstrated this kind of vision system (A diagrammatic 

representation of this kind of vision system is shown in Figure 7.1) has potential in 

real-time object recognition. 
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Figure 7.1: Vision system 

It is now well-known that the pyramid architecture provides an unique parallel and 

hierarchical platform, and has great potential for parallel vision [7, 8, 231. It supports 

the multiresolution approach and capitalizes on the advantages of both the mesh and 

the pipeline architectures. However, a full-scale 3D pyramid with thousands of nodes 

has yet to be created, and its availability will be limited for years to come. We have 

shown that, a 2DUhalf-scale" hybrid pyramid is not only economical, but can also be 

Object 

quite efficient and adequate for many parallel vision tasks. 

A 

Action 

(robot arm) 

n r 

Since we are developing vision systems for industrial purposes, further work is 

needed to improve the current algorithms and implementations and to make them as 

practical as possible. However, some limitations have been identified: 

Description A 

A load balance mechanism should be integrated into the current system. The 

goal can be achieved by choosing the proper max-depth of the DAQ at different 

levels and by using the pipeline technique. One limitation of the above methods 

is that they are all statically managed. A dynamical load-balancing mechanism 

Image 
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which can determine the load of different nodes and balance them on run-time 

is needed. 

The current motion stereo algorithm has difficulty dealing with vertical lines 

because the epipolar line is parallel to y-axes. To get a full description of both 

x-major and y-major lines, trinocular stereo can be applied [40]. Instead of a 

simple camera, a pair of cameras can be placed side by side in the direction 

perpendicular to the belt movement. The additional sequence of the motion 

stereo images will provide the necessary information for conducting matching in 

trinocular stereo. 



Appendix A 

ADDITIONAL PROOF 

Figure A.l depicts 3 non-parallel line segments ab, cd and e f.  As shown in in Chapter 

5, ac = cd = D l ,  bd = df = D2. Dl # D2 as these lines are non-parallel. The proof 

below shows that these three non-parallel lines will intersect at a common point. 

I 

I 
I 

PO 

I I 

Figure A. 1: Unparallel line segments 
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Proof by contradiction: 

First extend the line segments ab, cd and e f and assume that they don't intersect at 

a common point. The intersection points are defined as follows: 

Po is the intersection point of lines e f and ab. 

PI is the intersection point of lines ab and cd. 

P2 is the intersection point of lines ab and e f .  

From similar triangles, the ratio relationships are given: 

From Figure A.l: 

From equation A.l, A.2, A.3 and A.4: 

Assume POP2 # 0 and Dl # D2: 

P2f x (P0P2 + P2e) = P2e x (Pop2 + P z f )  

So we have: 
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From Figure A.l  it is easy to see that P2 f # P2e. This conclusion shows that our 

assumption about POP2 # 0 and Dl # D2 can not stand. Since Dl # D2, the only 

possible solution is POP2 = 0 which means Po = PI = P2 SO that all 3  non-parallel 

lines meet at a common intersection point. 
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