
Modelling Autosegmental Phonology
with

Multi-Tape Finite State Transducers

by

Bruce Wiebe

BSc. Simon Fraser University 1988

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Bruce Wiebe 1992

SIMON FRASER UNIVERSITY

December 1992

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Approval

Name: Bruce Wiebe

Degree: Master of Science

Title of Thesis: Modelling Autosegmental Phonology with
Multi-Tape Finite State Transducers

Examining Committee:

Chair: D r . Binay Bhat tacharya

- ---

Dr. Fred Popowich
Senior Su~ervisor

/

Dr. Paul McFETijije

Dr. Veronica Dahl

- -- --

Dr. Tom Perry
External Examiner

Q-60-
Date ~ ~ ~ r o v k i

PARTIAL COPYRIGHT LICENSE

I hereby g ran t t o Simon Fraser U n i v e r s i t y t h e r i g h t t o lend

my t h e s i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f t he Simon Fraser U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e cop ies o n l y f o r such users o r i n response t o a request f rom the

l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r educa t iona l i n s t i t u t i o n , on

i t s own b e h a l f o r f o r one o f i t s users . I f u r t h e r agree t h a t permiss ion

f o r m u l t i p l e copy ing o f t h i s work f o r s c h o l a r l y purposes may be g ran ted

by me o r t h e Dean o f Graduate Stud ies. I t i s understood t h a t copy ing

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l n o t be a l lowed

w i t h o u t my w r i t t e n permiss ion.

T i t l e o f Thes is /Pro ject /Extended Essay

Modelling Autosegmental Phonology with Multi-Tape Finite State

Transducers

Author :

(s i gnat u r e)

Bruce M. Wiebe

(name)

December 17, 1992

(date)

Abstract

Phonology may be briefly defined as the study of sound patterns in spoken language.

One of the most well-known computational models of phonology, Koskenniemi's two-lev-

el phonology, is based on an underlying linguistic theory that has been superseded by au-

tosegmental phonology, which began with the work of Goldsmith. There is a need for

computational models that are faithful to this more recent theory. Such a model can form

the basis of a computational tool that can quickly and accurately check the validity of a

phonological analysis on a large amount of phonetic data, freeing the linguist from the te-

dious and enor-prone task of doing this by hand.

This-thesis presents a new computational model of phonology that is faithful to stan-

dard autosegmental theory, that has clearly adequate expressive power, and that is suitable

as the basis for a tool for phonological analysis. It follows on very recent efforts by Kornai

and Bird & Ellison to model autosegmental phonology. The model is based on a view of

phonology that sees phonological representations as data and phonological rules as proce-

dures that manipulate them. It models rules using multi-tape state-labelled finite transduc-

ers (MSFTs), a natural extension of finite state transducers obtained by adding multiple

input and output tapes. MSFTs are shown to be powerful enough to express a wide range

of autosegmental rules. We also investigate the class of formal languages accepted by

multi-tape state-labelled finite automata (MSFAs) when their input tapes are considered to

encode a single word in parallel. This class is quite large, including some languages that

are not context free. Given that our model is faithful to autosegmental theory, this gives an

upper bound on the computational power required to model autosegmental phonological

rules.

i i i

Acknowledgements

It is my privilege and joy to express my appreciation to many people whose help has

made this thesis possible.

First, to the Lord, who gave me the ability and opportunity to do a masters degree,

convinced me that I should take it, gave me a vision for using this research to benefit the

work of Bible translation, and sent many people and circumstances my way to encourage

me and assure me that 1 was following his will.

To Keith m- Snider, for introducing me to autosegmental phonology during CSIL '91, and

for his contagious excitement which sparked in me the desire to focus my own research in

on this area of linguistics.

To Fred Popowich, for his encouragement, enthusiasm, availability, and guidance; for

helping me to estabIish contacts in the academic world; and for giving me freedom to pur-

sue my research interests.

To Steven Bird, for being a friend and long distance supervisor; for his constant en-

couragement along the way; for taking the time to read through several versions of my

work and give me guidance.

To Andras Kornai, whose own research inspired mine, for stimulating discussions that

helped keep my thinking clear,

To Jo Calder, for being an unoffical committee member and local computational pho-

nology resource person.

To Mark Ellison for his input and encouragement, especially at the DIMACS work-

shop.

To Veronica Dahl, Paul McFemdge, and Tom Shermer, who asked questions and of-

fered ideas that had a significant impact on this research.

To Evan Antworth, John Goldsmith, Doug Pulleyblank, and Gary Simons, for their in-

terest and encouragement.

To Binay Bhattacharya, for encouraging me to apply for an NSERC postgraduate

scholarship, and to NSERC for their support of this research through two postgraduate

scholarships and through Fred Popowich's NSERC Operating Grant OGP0041910.

To tKe Natural Language Lab and the School of Computing Science at Simon Fraser

University for the use of their facilities.

And to my parents, for their support and encouragement throughout my education.

Approval

Abstract

Acknowledgements

Table of ~ o n t e k s

List of Figures

Chapter 1
Introduction

1.1. Outline

1.2. Background

Table of Contents

Chapter 2
Preliminaries

2.1. Introduction to Phonology and Morphology

2.1.1. Morphology

2.1.2. Phonology

2.2. Introduction to Autosegmental Phonology

2.2.1. History

2.2.2. An Example

2.2.3. Rule Ordering

2.2.4. The Association Convention

2.3. Introduction to Automata Theory

i i

iii

iv

vi

xi

2.3.1. Finite State Automata

2.3.2. Regular Languages

2.3.3. Other Classes of Languages

Chapter 3
MSFAs and MSFTs

3.1. Intuitive Description

3.1.1. General Remarks

3.1.2. MSFAs

3.1.3. MSFTs

3.2. Formal Definitions

3.2.1. MSFAs

3.2.2. MSFTs

3.3. Elsewhere in the Literature

3.4. Phonological Considerations

Chapter 4
Encoding Autosegmental Representations

4.1. Intuitive Description

4.2. Formal Definition

4.2.1. Autosegmental Representations

4.2.2. The Multi-Linear Code

4.3. Linguistic Advantages of the Multi-Linear Code

4.3.1. Computability

4.3.2. Invertibility

4.3.3. Iconicity

4.3.4. Compositionality

4.3.5. Modularity

vii

4.3.6. Multi-tiered Representations and Redundancy

4.3.7. The No Crossing Constraint

Chapter 5
Operations on MSFAs

5.1. Theoretical Interest

5.2. Product

5.2.1. Intuitive Description

5.2.2. Formal Definition

5.3. Disjoint Product

5.3.1. Intuitive Description

5.3.2. Formal Definition

5.4. Other Operations

5.4.1. Collapsing States

5.4.2. Expanding States

Chapter 6
Modelling Autosegmental Rules

6.1. Checking Well-formedness

6.2. Understanding Autosegmental Rules

6.2.1. The NCC

6.2.2. Limits on the Number of Associations Per Segment

6.2.3. Summary

6.3. Modelling an Autosegmental Rule

6.3.1. Matching a Structural Description

6.3.2. Inserting and Deleting Segments and Association Lines

6.3.3. The NCC Revisited

6.3.4. Well-Formedness Constraints Revisited

viii

6.3.4.1. Double Association Lines 87

6.3.4.2. Limits on the Number of Associations Per Segment 88

6.3.4.3. The Conjunctivity Condition

6.3.5. The Final Step

6.4. Summary

Chapter 7 y

Computational Power of MSFAs

7.1. Interpreting MSFAs as Language Acceptors

7.2. Beyond Regular Languages

7.3. The Chomsky Hierarchy

7.4. An Upper Bound

Chapter 8
Evaluation

8.1. Kay and Multi-Tape Transducers

8.1.1. Computational Power

8.1.2. Association

8.2. Koskeniemmi and Two-Level Phonology

8.2.1. Background

8.2.2. Non-linear Representations

8.2.3. Reversibility

8.3. Kornai and the Triple Code

8.3.1. Background

8.3.2. Non-regular Phonological Relations

8.3.3. Response and Rebuttal

8.3.4. Towards Extra Computational Power

8.3.5. The Triple Code

8.4. Bird & Ellison and One-level phonology

8.4.1. Background

8.4.2. Declarative vs. Procedural

8.4.3. Complexity of Automata

8.5. Model and Theory

8.6. Conclusions

Appendix A
Properties of Encodings

Bibliography

List of Figures

Figure 2- 1 :
Figure 3- 1 :
Figure 3-2:
Figure 3-3:
Figure 4- 1 :
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5- 1 :
Figure 5-2:
Figure 6- 1 :
Figure 7- 1 :
Figure 7-2:
Figure 7-3:

The Chomsky Hierarchy and Indexed Languages
A simple MSFA
A simple MSFT
A simple modified MSFA
Ill-formed encodings
Elementary autosegmental operations
Concatenation
The No Crossing Constraint enforced
Combining MSFAs by the product operation
Com bining MSFAs by the disjoint product operation
Checking well-formedness with MSFAs
Context free languages accepted by MSFAs
Context sensitive languages accepted by MSFAs
MSFAs and the Chomsky Hierarchy

Chapter 1
Introduction

1.1. Outline

Phonology may be briefly defined as the study of sound patterns in language. The pho-

nologist attempts to determine the way language utterances are represented in the mind of

the speaker. He also analyzes the speech sounds that the speaker actually produces, which

are usually different from what is stored mentally. Both the mental representation and the

spoken word are described using phonological representations. Then the relationship be-

tween the two is explained by means of phonological rules.

There are competing theories about what phonological representations should look . .
like, and how phonological rules should be described. However, there is widespread

agreement among phonologists today that the non-linear representations and rules of the

autosegmental theory of phonology are superior to the linear representations and rules of

the classical theory of generative phonology from which autosegmental theory developed.

The goal of this thesis is to construct a new computational model of autosegmental

phonology that will form an adequate basis for a computational tool for phonologists.

Such a tool would be invaluable both to theoretical linguists who desire to test their theo-

ries, and to field linguists who want to analyze data. It would provide a way to efficiently

and accurately test the validity of a phonological analysis on a large amount of data. This

task is typically neglected by theoretical linguists; theories are often based on a small

amount of data because of the difficulty of doing large analyses. By contrast, analyzing

large amounts of data is a fact of life for field linguists, but it is tedious and is subject to

human error. Thus, a computational tool for phonological analysis would benefit both the-

oretical and working phonologists.

Although there have been other recent efforts along this line, there are some areas in

which a new model can make a unique contribution. In particular, the question of how

much formal computational power is needed to model non-linear phonology is a thread

that runs throughout this work. This model is a response to the need for a procedural im-

plementation of autosegmental phonology with clearly adequate expressive power.

The method is to take as the basis of the model a computational device we call multi-

tape state-labelled finite automata (MSFAs), and in particular, multi-tape state-labelled fi-

nite transducers (MSFTs), which are a special case of MSFAs. Using suitably defined op-

erations, simple MSFTS that describe various aspects of autosegmental rules can be

combined to form more complex MSFTs that simulate the action of any autosegmental

rule. The architecture of MSFTs also gives rise to a simple non-linear encoding of auto-

segmental representations.

The scope of this thesis includes the development and theoretical evaluation of the

model, but does not include an implementation of the model. The evaluation includes a

comparison with other recent work in this area. The model is evaluated on the basis of

three general criteria: expressive adequacy, faithfulness to the standard theory of autoseg-

mental phonology, and suitability as the basis of a computational tool for verifying phono-

logical analyses.

In Chapter 2 we give a brief introduction to autosegmental phonology for computer

scientists, and to automata theory for linguists. Chapter 3 defines the automata that will

form the basis of our model: MSFAs and MSFTs. Chapter 4 defkes the non-linear encod-

ing of autosegmental representations that allows MSFTs to process phonological forms,

and considers its advantages from a linguistic point of view. Chapter 5 defines various op-

erations that can be used to combine MSFAs and MSFTs into new ones. The operations of

product and disjoint product play a central role in our model.

Having defined all the formal compulational tools we need, we then show how to

model an autosegmental rule with an MSFT in Chapter 6. Chapter 7 gives a brief sketch of

the formal computational power of MSFAs and MSFTs. Finally, Chapter 8 concludes with

an evalutation of our model, especially in comparison with the work of Kay [29], Kosken-

niemi [33], Kornai [32], and Bird & Ellison [8], suggesting some directions for further re-

search along the way.

1.2. Background

The use of finite state transducers in modelling phonological rules has its roots early in

the history of phonology. Early generative phonology took a procedural view of rules as

processes that manipulated representations as data. Chomsky and Halle, in their landmark

work The Sound Pattern of English [lo], used transformational grammars to describe

these processes. Given the correspondence between formal grammars and automata (see

Section 2.3.), it was natural to investigate the use of automata in implementing phonologi-

cal rules.

In 1972, Johnson [25] showed that the phonological relations described by generative

rules were regular, in the sense that they can be described by regular grammars. Since then

there have been many efforts to apply finite state transducers (FSTs) to phonology [3, 8,

18, 29, 32, 331, since FSTs compute regular relations. This is true in spite of the fact that

the representations and rules of generative phonology have changed, and hence, presum-

ably, the relations have changed as well.

In this work, we have chosen to model autosegmental phonology, a contemporary the-

ory of generative phonology that has been applied to a wide range of languages. For rea-

sons that we will discuss in the last chapter, we have taken a procedural approach to this

problem. Kornai [32] has recently proposed a procedural model of autosegmental phonol-

ogy based on rules as FSTs. However, for reasons that we will discuss in detail in Chapter

8, we believe that FSTs are not powerful enough to model autosegmental rules. There are

certain phonological operations that cannot be captured with just finite state power. There-

fore, we have chosen to use a more powerful class of automata.

In the procedural view, autosegmental rules are processes that transform autosegmen-

tal representations. Thus, we use transducers working on input and output tape(s) to simu-

late this process. In view of the multi-tiered nature of autosegmental representations, it

seems natural to use transducers with multiple input and output tapes to model autoseg-

mental rules. Each tier of a representation could be encoded and written on one input tape

of a transducer. (Some provision for representing the association lines between tiers would

also be needed.) The transducer would then process this input and produce an output rep-

resentation on its multiple output tapes.

We will in fact encode autosegmental representations in this fashion, and model auto-

segmental rules as MSFTs, a natural extension of FSTs. This idea is in one sense not new.

Kay suggested using multi-tape FSTs to deal with Arabic phonology and morphology in

1987 [29]. However, Kay assumed that these devices had no more than finite state power,

an assumption that turns out to be false. As a result, however, MSFTs prove to have clear-

ly adequate computational power to describe not just Arabic phonology and morphology,

but also autosegmental rules that can be used to describe any language.

Chapter 2
Preliminaries

This thesis presents an automata-based computational model of autosegmental pho-

nology. In order to make this work accessible to computer scientists not familiar with pho-

nology, and to linguists not familiar with automata theory, this chapter contains a brief,

basic introduction to some fundamental concepts of phonology (and in particular, autoseg-

mental phonology); to the related field of morphology; and to automata theory.

2.1. Introduction to Phonology and Morphology

2.1.1. Morphology

The meaning of a language depends on the meaning of the parts. A morpheme is the

smallest unit of meaning in a language. In English, this unit is (usually) smaller than a

word and larger than a letter. For instance, the word "liveliness" can be divided up into

three morphemes as live-li-ness, and each morpheme contributes a unit of meaning to the

word as a whole.

The morphology of a language is an account of how the language combines mor-

phemes into words. In English, this process is very simple compared to other languages of

the world; English morphology consists mainly of concatenating a small number of pre-

fixes and suffixes to the beginning and end of word roots. By contrast, Finnish has a more

complicated morphology. Finnish words can have very long strings of prefixes and suffix-

es agglutinated to them, so that a noun can have some 2,000 inflected forms, and a verb

can have over 12,000. In other languages we find more complicated phenomena like redu-

plication (repeated morphemes) and discontinuous mophemes (morphemes whose parts

are dismbuted throughout a word). We give examples of these below:

(1) Reduplication (Maori)

dik thick

dikdik very thick

mero boy

memero boys

meromero little boy

memeromemero little boys

(2) Discontinuous morphemes (Arabic)

k-t-b

katab

jiktib

maktuub

to write

he wrote

he will write

written

In reduplication, whole morphemes or syllables are repeated in order to add a new

shade of meaning to the original word. Discontinuous morphemes are even more complex.

In Arabic, the verb root meaning "to write" is the three consonants k-t-b, but these never

appear as a word by themselves in the language. Vowels and other consonants are added

around and in between these three root consonants in order to add verb tense and subject

information.

2.1.2. Phonology

The phonology of a language can be described in simple terms as the sound patterns of

that language. An utterance in a language is not a random sequence of sounds. There is

structure and order in the sounds that one hears and produces. Each language has a differ-

ent set of constraints on what constitutes a well-formed sequence of speech sounds. For

example, an English speaker knows that "strunk" might possibly be an English word, but

that "mzwlunk" could not be. This is because one conforms to the phonological con-

straints of English, and the other does not. Somehow, the English speaker knows that

"mzwl" is not allowed at the beginning of a word, but "str" is.

If a situation arises where a phonological constraint is violated, a phonological rule

springs into action to correct the violation.' An easy way to illustrate this general principle

of phonology is to look at morphological processes. When a morphological process puts

two morphemes together, a constraint can be temporarily violated. Then it becomes neces-

sary for a rule to make appropriate changes.

For example, in English, adding the plural suffix -s to the end of a word causes the

phonological changes exemplified by the words below:

(3) caps

cats

tacks

(4) cabs (cabz)

rods (rodz)

dogs (dogz)

1. Phonological constraints tend to be implicit in a generative theory of phonology, where rules
often "endeavor to achieve [a specific] end without ever directly acknowledging it" ([22], p. 87).
By contrast, in a declarative theory of phonology, constraints are taken to be central, and they are
explicitly stated. The means by which the constraints are satisfied is of secondary importance, and
the details can be left unspecified, leaving open the possibilities for implementation.

In (3)' the plural suffix -s is pronounced as an 's'. But in (4), it is pronounced as a 'z'.

The only difference between 's' and 'z' is whether or not the vocal chords are vibrating.

(You can feel this difference by placing your hand on your Adam's apple while pronounc-

ing the two sounds.) The technical term for this is voicing - '2' is voiced and 's' is not.

Notice also the consonants next to the -s in (3) and (4) -- 'b', 'd', and 'g' are voiced, while

'p', 't' and 'k' are not. So in effect, the plural suffix -s has taken on the voicing character-

istic of the neighboring consonant. This is an example of a very common type of phono-

logical rule that is found in many languages, where voicing spreads to neighboring speech

sounds.

We could summarize this situation by saying that English has a phonological con-

straint to the effect that two consonants pronounced next to each other in a word must

agree in voicing. (If you were to pronounce the plural of cab as cabss instead of cabz, it

would sound strange.) A phonological rule applies to situations where this is not true,

making a phonological change to ensure that the constraint is satisfied.

From this example, one can see that there is a close connection between morphology

and phonology. When the morphological component of a language dictates that two mor-

phemes are to be concatenated, often there will be phonological changes taking place at

the boundary between the two morphemes.

An important point to notice is that speakers of English do not think of there being two

different plural suffixes (-s and -z), but only one. This is evidence that we have stored in

our minds a single underlying form for the plural suffix, which takes on different surface

forms when we actually pronounce it. The relationship between underlying and surface

forms is determined by phonological rules and constraints.

Given this general framework, we are faced with some questions. How should we rep-

resent phonological forms (underlying and surface)? What is the nature of phonological

constraints and rules, and by what mechanisms should rules change phonological repre-

sentations? The answers to these and other questions lead to different thepries of phonolo-

2.2. Introduction to Autosegmental Phonology

2.2.1. History

A phonological representation is a representation of knowledge about the structure of

speech sounds in an utterance of a language. Goldsmith ([22], p. 331) defines phonology

this way:

A theory of phonology is built of three parts: it is a theory of the nature of

phonological representations; it is an inventory of levels of representation,

and a characterization of each level; and it is a theory of phonological

rules, the statements that relate representations on each level."

A theory of phonology has at least two levels of representation: the deepest level con-

tains underlying forms, which are meant to represent the knowledge stored in the speak-

er's mind about the sounds of an utterance; and the highest level contains surface forms,

which are obtained from the underlying forms by applying various phonological rules,

yielding a representation which describes the properties of the actual utterance. To return

to a previous example, an English speaker might have the underlying form "cab+s" stored

in his mind, but by means of a phonological rule about voicing he produces the surface

form "cabz".

For classical generative phonology, of which the definitive work is The Sound Pattern

of English (S P E) by Chomsky and Halle [lo], the phonological representations were sim-

ply linear stings of symbols, and the phonological rules were string rewriting rules (such

as "b+s + bz"). Each symbol in a smng represented a segment, which was thought of as a

speech sound that was articulated during a particular slice of time with a definite begin-

ning and ending point. Each segment had various features that might be related to the vo-

cal apparatus, such as tone, position of the tongue, position of the lips, etc. For example,

the vowel '6' (where the acute accent indicates high tone) might have the features [+HI,

[+back], [+high], [+round], meaning that when the segment is pronounced, the tone is

high, the tongue is back and high in the mouth, and the lips are rounded, or pursed. Simi-

larly, the vowel '9' (where the grave accent indicates low tone) would have the features

[-HI, [+back], [-high], [-round], meaning that the tone is not high, the tongue is back but

not high in the mouth, and the lips are not rounded. Notice that the features are assumed to

be binary, having either a '+' or a '-' value. Segments are usually written as a matrix of

feature values:

Beginning in 1976 with the work of Goldsmith [19,20], a new approach known as au-

tosegmental (or non-linear) phonology began to take over from linear (SPE) phonology. -
The key difference in non-linear phonology is that phonological representations are no

longer linear strings, but multiple tiers of segments with associations between the tiers.

The idea for this sprang mainly from work on tonal languages. Tone was formerly consid-

ered to be simply a feature of a vowel, as above. However, it became clear that tone

should be separated from the vowel of which it was formerly considered a part, and be-

come an independent segment in its own right. (This is where the term autosegmental

comes from--autonomous segment.)

So the feature(s) associated with tone were bundled into a segment, placed on a differ-

ent tier in the representation (called the tonal tier), and associated with the vowel's re-

maining features by means of association lines. For example, the representation of the two

vowels discussed above would now become:

tonal tier

segmental tier

2.2.2. An Example

In the Etsako language, a whole word is reduplicated to add the meaning of "each"

([24], pp. 1 1- 12). In the case of the word for "house", we have:

6wi house

6w6wi each house

where the "' accent means a rising (low to high) tone. Note that the final 'a' has been de-

leted in the first copy of the word. The autosegmental explanation of the rising tone on the

'0' is as follows. The word "house" is represented like this (here we write letters as short-

hand for a feature matrix):

I I
o w a

Then the word is reduplicated:

and finally, the first 'a' is deleted and its tone is reassociated to the next vowel:

I \I I
O W o w a

and that is where the rising tone comes from: a sequence of a low tone followed by a high

tone on the same vowel. The crucial point here is that the low tone is clearly behaving in

an independent fashion by disassociating from its original vowel and reassociating to an-

other, resulting in the other vowel having two tones (or what is known as a contour tone).

This is something that was impossible to account for in a linear theory, where tone was

simply a single feature of a vowel.

Eventually, this idea of features behaving as independent segments was extended to

many other kinds of features, leading to a multi-tiered representation where each indepen-

dent group of features had its own tier. If this idea is carried to its logical conclusion, each

individual feature could have its own tier. One can think of an autosegmental representa-

tion as an orchestral score. Each staff, or line, in a score specifies what an individual in-

strument is doing at each point in time. In the same way, each tier in an autosegmental

representation specifies the value of a feature or collection of features at successive points

in time, which might correspond to the actions of the various articulators in the mouth (vo-

cal chords, tongue, lips, etc). The association lines tell us which "notes" should overlap in

time [6, 391.

This is a completely different notion of a segment than was entertained in SPE phonol-

ogy. No longer does a segment represent a whole speech sound, being pronounced over a

time interval with definite beginning and ending points. A segment now is "no more than

the minimal unit of phonological representation" ([22], p. lo), and the overlapping of

many segments represents a speech sound. Because the segments that overlap to form a

speech sound may not all start or end at the same point in time, it does not make sense to

try to slice up the time line into intervals.

A phonological representation may have many tiers, and association lines between

segments on any pair of tiers. A pair of tiers together with all the association lines between

segments on those tiers is referred to collectively as a chart.

Thus, phonological rules in autosegmental theory operate on these multi-tiered repre-

sentations. The elementary operations of which these rules are composed are addition and

deletion of a segment on a tier, or addition and deletion of an association line. These oper-

ations are represented in a somewhat informal, ad hoc, and at times unclear notation in the

literature [6].

Returning to our example, we show in (10) a rule that would accomplish the result in

(9), where a vowel is deleted and its tone is reassociated to the following vowel (T stands

for any tone and V for any vowel):

This rule demonstrates three of the elementary operations mentioned above. The circle

around the first V with an arrow pointing to the null symbol indicates that the vowel is to

be deleted. The small '2 ' through the association line indicates that that association line is

to be deleted. And the dotted association line indicates that an association line is to be add-

ed there. If we strip the rule of all these notations indicating the elementary operations to

be performed, we are left with the structural description (SD) of the rule:

If a phonological representation contains the SD of a rule, then the rule applies to that rep-

resentation.

2.2.3. Rule Ordering

The practicing phonologist proposes a large set of phonological rules to account for

various phonological phenomena observed in the data. This raises an important question:

does it matter what order we apply these rules in? The answer is "yes": the same rules ap-

plied in a different order can possibly derive a different surface form.

One of the major disadvantages of linear (SPE) phonology is the prohibitive amount of

ordering of phonological rules. In order to generate the right surface forms, it became nec-

essary in many cases to specify an ordering of the phonological rules that could not be de-

viated from without getting incorrect results. So rule A would have to apply before rule B,

and rule B before rule C, etc. In fact, sometimes in order to explain two different phenom-

ena, the same rules would have to be ordered one way to explain one phenomenon, and a

different way to explain the other. So it was impossible to explain both at once! This was

unsatisfactory, to say the least.

In autosegmental theory, much (although not all) of this need for rule ordering has

been eliminated. This is partly due to the fact that features can be separated from each oth-

er onto different tiers, and thus do not interfere with each other in ways that linear phonol-

ogy had to prevent by carefully ordering its rules. If rule ordering could be completely

eliminated, the rules could be applied simultaneously instead of sequentially, which has

significant implications for a computational model of phonology.

2.2.4. The Association Convention

It may happen that the underlying form of a word does not have any associations be-

tween tones and vowels. In this case, the task of associating the tones and the vowels is di-

vided between language-specific rules and general conventions that apply to all languages.

We have seen an example of the former in (10).

The Association Convention is an example of the latter. It is a kind of default associa-

tion rule. It may affect a representation if it has at least one association line. It adds associ-

ations lines outward in a one-to-one fashion from the already present association line,

associating from either tier only elements that are currently unassociated ([22], pp. 13-14).

Goldsmith gives an example of a word in the Kikuyu language of Kenya whose under-

lying form is:

t o m a r o r i r e

A language-specific rule (whose details need not concern us) associates the fist tone to the

second vowel:

Then the Association Convention associates the rest of the tones:

t o m /777
Finally, another language specific rule gives the final, surface form:

t o m a r o r i r e

This shows how the Association Convention interacts with language-specific rules to

produce surface forms.

2.3. Introduction to Automata Theory

We will now give the reader a whirlwind tour of the subject of automata theory, touch-

ing on those topics that will arise later on in the thesis. For a more complete introduction

to automata theory, we refer the reader to the standard texts by Hopcroft and Ullman [23]

and Denning et. al. [14].

2.3.1. Finite State Automata

A jnite state automaton (F 'SA) is an abstract mathematical device that reads input

symbols on a tape and responds by either accepting or rejecting the input. It does this by

changing its internal state each time it reads a symbol, and when it has read all input sym-

bols on the tape, its internal state determines whether it accepts or rejects.

FSAs are typically represented using diagrams such as the one below:

The circles represent internal states; the state in which the FSA always begins is

marked by an incoming arrow. The accepting states (also calledfinal states) are identified

with double circles. The arrows, each labelled with an input symbol, indicate how the ma-

chine will change states when it reads that symbol. For example, if the above machine M

is in state qg and reads an 'a' on the input tape, it will change (make a transition) to state

91.

M accepts the input word "aabbb", because it will make transitions ending in state qz,

a final state. It does not accept the word "aaa", because it would end in state ql, a non-final

state. Let S be the set of all strings of a's and/or bys. M defines a subset of S consisting of

all those strings that it accepts. This is called L(M), the language accepted by M. L(M) is

referred to as afinite stare language because it is defined by a finite state automaton.

M is a transition-labelled FSA. It is also possible to define state-labelled FSAs, which

are represented in diagrams like this:

Each state is labelled with an input symbol. (The name of the state is written outside

the circle.) A state-labelled FSA makes a transition along an arrow and into a state la-

belled with a symbol s iff it can read the symbol s from the input tape. For example, if M'

above is in state qg and it reads a 'b' from the input tape, it makes a transition to state ql.

Notice that L(M') does not contain any strings beginning with 'b', because M' must always

begin by reading an 'a' from the input tape.

Transition labelled FSAs and state-labelled FSAs are equivalent. That is, for each ma-

chine of one type, a machine of the other type can always be defined which accepts the

same language. Notice that M and M' are equivalent: L(M) = L(M1) = {ambn I m,n > 012.

A finite state transducer (FST) is an FSA which reads pairs of symbols from its input

tape, as if it were reading two tapes at once:

T accepts pairs of words, including cab, wy> and caaabb, wxxyz>. An FST accepts a

set of pairs of words, or a binary relation on words. For example, The binary relation R(T)

accepted by T is {caambbn, wxmyzn> I m,n 2 0). Notice that FSTs can only accept pairs of

words of the same length.

We can consider an FST to be scanning two tapes simultaneously. On each transition,

it scans two symbols. But we can change things somewhat, and think of each of those

symbols as being either read from an input tape or written onto an output tape. Thus, an

FST can be viewed as either accepting pairs of words, or generating pairs of words, or

2. By convention, the solid arrow-head in (17) indicates that M' does not accept the empty input. A
hollow arrow-head would indicate that an empty input tape is accepted.

18

reading an input word on one tape and writing an output word on the other. The latter in-

terpretation of FSTs is useful, because one can view them as computing a function of the

input word. In this case the FST is said to transduce the input word to the output word.

A generalized sequential transducer (GST) is like an FST, but it is able to accept pairs

of words of different length, as if it were scanning two tapes independently. One way of

doing this is to allow an FST to write strings (including the empty string) on its output tape

instead of only symbols. An equivalent way is to divide up the states of an FSA into two

partitions, and call one partition the "scan" states and the other the "print" states. Then the

machine can freely alternate back and forth between reading input symbols (when it is in

the "scan" states) and writing output symbols (when it is in the "print" states).

A relation accepted by an FST or a GST is called, for reasons that we shall soon see, a

regular relation.

So far, we have considered only deterministic FSAs, FSTs, and GSTs. A deterministic

machine is one that, at each step of its execution, has only one choice, so its behavior is

uniquely determined by the input. A non-deterministic machine is one that may have more

than one choice at each step. For an automaton, this means there may be several possible

sequences of transitions by which a given input can be accepted. For a transducer, this in

turn means that an input word might be transduced to more than one output word.

2.3.2. Regular Languages

A grammar is a string rewriting system which contains a special start symbol S, some

non-terminal symbols (by convention, capital letters), some terminal symbols (any other

symbols), and a finite set of productions, rules which transform strings to other strings.

These rules are of the form x + y, where x and y are strings of terminal and/or non-termi-

nal symbols; a rule is interpreted as meaning "replace any one occurence of x by y". The

idea is to begin with S and apply a finite sequence of productions until a string of terminal

symbols is obtained. The string thus obtained is said to be in the language of the grammar;

the language generated by the grammar is the set of all stings that can be produced in this

manner.

A regular grammar is a grammar in which the productions are all of the form A + wB

or A + w, where A and B are any non-terminal symbols, and w is any string of terminal

symbols (including the empty string). For example, the following regular grammar gener-

ates the language L(M) = L(M') = {ambn I m,n > 0):

A language generated by a regular grammar is called a regular language.

A regular expression is a sequence of symbols from some alphabet A, connected by

the binary operators + and. (usually omitted when writing expressions) and the unary op-
*

erator . A regular expression denotes a language. Regular expressions and the languages

they denote, are defined as follows:

0 is a regular expression and denotes the language {)

E is a regular expression and denotes the language {E)

for all a E A, a is a regular expression and denotes the language {a)

if r and s are regular expressions denoting the languages R and S respectively, then

(r+s), (n) and (;) are regular expressions denoting R u S, RS = {rs I r E R, s E S),

and R* = (i I i 2 0) respectively

For example, a regular expression denoting the language L(M) = L(M') = {ambn I m,n > 0)

would be (aa*bb*).

The languages described by regular expressions are exactly the regular languages.

Also, the finite state languages are exactly the regular languages. In this sense, regular

grammars, regular expressions, and FSAs are equivalent: they all describe the same class

of languages.

Regular languages are closed under certain operations, including union, intersection,

complement, concatenation, reversal, and Kleene closure (the * operation on languages).

That is, these operations produce languages which are also regular (see [14]). So, for ex-

ample, the intersection of two regular languages is also a regular language.

2.3.3. Other Classes of Languages

Regular (R) languages can be described by both automata and grammars. There are

other, larger classes of languages which also have this dual characterization. These include

the most well-known classes of context free (CF), context sensitive (CS), and recursively

enumerable (RE) languages (RE languages correspond to well-known automata called

Turing machines). These four classes of languages are strict subsets of one another, in the

given order, and form what is known as the Chomsky hierarchy, which is pictured in Fig-

ure 2-1. Also shown in that diagram, as a shaded circle, is the class of indexed languages,

which fall between the CF and CS language classes.

Given a language over some alphabet A, a homomorphism is a mapping from symbols

in A to strings of symbols in A. For example, if A = {a, b), we could define the mapping

h = {a + aa, b + aba). If every word in a language is transformed by such a homomor-

phism, the result is another language. So the language L(M) = aa*bb* is transformed by

the homomorphism h into the language aa(aa)*aba(aba)*. All the classes of languages

mentioned above, and many others, are closed under homomorphism.

Figure 2-1: The Chomsky Hierarchy and Indexed Languages

Chapter 3
MSFAs and MSFTs

In this chapter we describe and define the automata that form the basis of our model of

autosegmental phonology, and discuss their relation to other automata in the literature.

3.1. Intuitive Description

3.1.1. General Remarks

Multi-tape FSAs were first introduced by Rabin and Scott in 1959 [34]. Intuitively, a

multi-tape FSA is an FSA with multiple input tapes instead of just one. These tapes are in-

dependent - that is, each tape has its own independent read head,' unlike the finite state

transducer, which has two tapes but only a single read head. The finite state control is sim-

ilar except that it must specify which tape is being scanned (ie. which read head is being

advanced) on each transition. Also, the automaton halts only when all read heads have

reached the ends of their respective tapes. Notice that a single execution of a multi-tape

FSA with n tapes accepts an n-tuple of words (one word on each tape), rather than a single

word like an FSA. In other words, multi-tape FSAs accept n-ary relations instead of lan-

guages.

Multi-tape FSTs are similar to multi-tape FSAs, having in addition a set of output

tapes, one for each input tape.2 (These devices have been used informally by Kay [29].)

1. An FSA with only one read head that scans all tapes simultaneously is just a multi-track FSA,
which is equivalent to a standard FSA.
2. Actually, a multi-tape FST could have more or less output tapes than input tapes. We have cho-
sen LO make this a part of our definition. This choice is not without linguistic significance, and will
be discussed later on in this chapter.

Their finite state control specifies for each transition whether the machine is scanning or

printing, and on which tape. A multi-tape FST is said to transduce an n-tuple of words

W=<wl, ..., w,> to another n-tuple X=<xl, ..., x,> if, beginning in a start state, it can com-

pletely scan each word of W on the input tapes, and end in a final state with X on the out-

put tapes.

The basic definitions of multi-tape FSAs and multi-tape FSTs are non-deterministic.

That is, at each step of execution, the automaton may have several possible valid transi-

tions to choose from. Notice that a non-deterministic multi-tape FST may transduce an in-

put to more than one output. Of course, we could also define deterministic versions of

these machines, in which at each step only one choice is available. We have chosen to use

the non-deterministic version of these machines because they can accept languages using

fewer states than deterministic machines.

3.1.2. MSFAs

We will define a version of multi-tape FSAs whose states are labelled rather than their

transitions. They are generalizations of the state-labelled non-deterministic finite autorna-

ta (SFAs) of Bird & Ellison [8]. They are accordingly called multi-tape SFAs (MSFAs). An

example of a two-tape MSFA is given in Figure 3-1.

Figure 3-1: A simple MSFA

Most of the notation used above is familiar. Notice that the states are labelled with sets

(braces are omitted for single element sets). The states are also named ql, 92, and q3 sim-

ply for ease of reference. (Do not confuse a state's label with its name.) The dotted line di-

vides the states of the automaton into two partitions, Q1 and Q2. Each partition

corresponds to one of the input tapes of the automaton. A transition into a state q in parti-

tion Qi is interpreted as scanning a single symbol on the ith tape. The symbol scanned

must be one of those given in the label of the state q.

Suppose this automaton is given the input <aa, bcba> (ie. "aa" on tape 1, "bcba" on

tape 2). It begins by entering the initial state ql and advancing the read head on tape 1 past

the first "a". It then makes a transition to q2, scanning the first "b" on the second tape. This

is followed by a transition to qg, which allows for either an "a" or a "c" to be scanned on

tape 2; the input symbo1.i~ a "c", so the automaton can proceed. In this way the transitions

continue back to ql, to q2, and finally to q3. At this point all the input on both tapes has

been scanned, and the automaton is in a final state, so it terminates successfully, accepting

the input <aa, bcba>.

We can describe this sequence of transitions as a sequence of pairs, each pair showing

the current stare and the portion of the input that has already been scanned:

One can see the kind of 2-tuples this automaton will accept: <a, bc>, <aaa, bababa>,

<aaaa, bcbcbabo. This MSFA accepts exactly the set of Ztuples in the relation

<an, (b(a+c))">, n 2 0. 3

3. Actually, there is nothing in the description of the automaton so far that tells us whether or not it
accepls the empty input cE, &>. This will be remedied later.

25

3.1.3. MSFTs

The basic element of our model of autosegmental phonology will be multi-tape state-

labelled finite transducers (MSFTs), a version of multi-tape FSTs. An example of an

MSFT with two input tapes and two output tapes appears in Figure 3-1.

Figure 3-2: A simple MSFT

The dotted lines divide the states of the MSFT into four parts: two input partitions I1

and 12, and two output partitions O1 and 0 2 . A transition into a state in Ii causes a symbol

to be scanned from input tape i, and a transition into a state in Oi causes a symbol to be

printed on output tape i.

Notice that there are two initial states. Both MSFTs and MSFAs can have multiple ini-

tial states, so that the machine can choose which state to begin execution in. It is necessary

to allow this choice, because (unlike transition-labelled machines) the initial state specifies

which symbol(s) must be read first, and on which tape, and we want to allow any possibil-

ity at the first step of execution, just like at any other step. Notice that this choice does not

necessarily imply that the machine is non-deterministic. If the labels of the initial states

are mutually disjoint, for example, then the machine will have only one choice at the f ist

step of execution.

The double-headed arrow between states q4 and q5 is simply shorthand for two one-

way arrows.

This machine transduces the input <aa, a> to the output cabab, bba>. The sequence of

transitions that it follows could be described by a sequence of triples, each triple consist-

ing of the current state, the input scanned so far, and the output printed so far:

[ql, <a, E>, <E, E>] + [q2, <a, E>, <a, &>I

+ [q3, <a, 0 , Cab, 01
+ [q6, <a, 0 , Cab, b>l

-+ [ql, caa, E>, cab, b>]

+ [q2, <aa, E>, <aha, b>]

+ [q3, <aa, E>, cabab, b>]

+ [q6, <aa, E>, cabab, bb>]

+ [q4, <aa, a>, cabab, bb>]

-, [q5, <aa, a>, cabab, bba>]

This MSFT takes any input of the form <an, am> and transduces it to <(ab)", bnam>,

n, m 2 0. 4

3.2. Formal Definitions

Let us now give a more formal definition of these devices.

4. Again, it is not clear what the MSFT would do if given the input <E, E>. This will be made clear.

Definition 3-1: A multi-tape non-deterministic state-labelledfinite automaton with n

tapes (n-tape MSFA) is a septuple cQ, C, h, 6, I, F, e> where:

Q is a finite set of states, partitioned into n subsets cQ1, ..., Q,>

Cis a finite set, the alphabet

h _c Q x C is a labelling relation, assigning a subset of the alphabet to each state

6 c Q x Q is a nansition relation, assigning a subset of states to each state

I c Q is a set of initial states

F c Q is a set offinal states

e is a boolean value, true if the automaton accepts the empty n-tuple a, ..., E>, and

false otherwise 0

Each partition Qi of Q corresponds to one of the tapes of the automaton. A transition

into a state q in partition Qi is interpreted as scanning a single symbol on the i" tape. The

state q must be compatible with the particular symbol on that tape.

Definition 3-2: A state q is compatible with a symbol o E C on tape i iff (q, o) E h and

q E Qi. CI

An MSFA accepts an input n-tuple written on its tapes as follows: The read heads be-

gin at the left edges of their respective input tapes. The MSFA begins execution by, as it

were, making a "transition" into any initial state q E I that is compatible with the first

symbol on some tape. The read head on that tape is advanced past the first symbol. On

each transition, the MSFA may change states to any state q' such that (q, q') E 6 and q' is

compatible with the next symbol on some tape i. This advances the read head on tape i.

The MSFA accepts the input if there is some sequence of transitions that leads to a final

state, with all the read heads at the end of their respective tapes. More formally:

Let A = cQ, C, h, 6, I, F, e> be an n-tape MSFA.

Definition 3-3: A situation of A is a pair [q, XI, where q is the current state, and X is an n-

tuple <XI, ..., xn>, each xi E z*, representing the portion of the input that has already

been scanned on the tapes. 0

Definition 3-4: Define the relation +A on situations of A as follows: [q, XI +A [r, Y] i E

(q, r) E 8 (there is a transition from q to r)

for some tape i, 3 o E C such that xio = yi and xi = yj V j # i; in other words,

X = <XI, ..., xi, ..., xn> and Y = <XI, ..., x p , ..., xn> (a single symbol o has been

scanned on tape i)

r is compatible with o on tape i

Define +A* to be the transitive closure of +a. 0

In order to define formally what it means for an MSFA to accept an input, we need to

consider a slight variation on an MSFA called a modified MSFA. An example of a modified

MSFA that is equivalent to the MSFA in Figure 3-1 is shown in Figure 3-3.

Figure 3-3: A simple modified MSFA

This machine is interpreted slightly differently. It begins execution ajready in the ini-

29

tial state qo, with both of its read heads to the left of the input words on the tapes. If the in-

put is <&, E>, then no transitions are taken, and the input is accepted because qg is a final

state. If the input is not <E, E>, then execution proceeds as it does with an MSFA, each

transition into a state resulting in a symbol being scanned on one of the tapes.

This modified MSFA accepts the same inputs as its counterpart in Figure 3-1. Howev-

er, notice how Figure 3-3 makes explicit something that was not specified in Figure 3-1:

namely, whether or not the empty input <E, E> is accepted.

The state qo is a special state labelled with the empty set, and is in a partition by itself,

a partition which does not correspond to either of the input tapes. The only purpose of qg

is to specify (by means of being a final state or not) whether the empty input is accepted.

Definition 3-5: Let A = <Q, Z, h, 6, I, F, e> be an n-tape MSFA, where Q is partitioned
*

into <Q1, ..., Q,>. Let W = <wl, ..., w,> be an n-tuple, each wi E Z . To more easily

define what it means for A to accept W, we first define a modified MSFA

A' = <Q', C, 8, A, I', F'>, a variation on A, as follows:

Q' = Q u {qg) (add a distinguished state qg, labelled with the empty set)

> where QO = (qg) (qo is in its own special par- Q' is partitioned into cQO, Q1, ..., Q, ,

tition Qo, which does not correspond to any tape)

8 = 6 u ((qO, q) 1 V q E I) (add transitions from qo to all initial states in A)

I' = (qO) (qO is the only initial state in A')

F = F u (qO) if e = true, otherwise F' = F (qo is a final state iff A accepts the empty

input <E, ..., E>)

We say that A accepts W iff [qO, <E, ..., 01 [q, W], 3 q E F. In other words,

A accepts W iff A' can start in state qo and find a sequence of transitions that scan W

and end in a final state. C3

Modified MSFAs are simply a device to make the formal definition of accept easier to

state. They will also be especially helpful later on when we define one of our operations

on MSFAs. Usually, diagrams of MSFAs will be of the type in Figure 3-1. In order to indi-

cate on a diagram whether or not an MSFA accepts the empty input, we can use two differ-

ent types of arrow-heads on the arrows that mark the initial states: hollow arrow-heads

(+) will mean that that <E, ..., E> is accepted, and solid anow-heads (+) will mean

that it is not.

Actually, MSFAs have more than one possible interpretation. We have been speaking

of them as acceptors, interpreting the tapes as input tapes with read heads, each transition

scanning an input symbol on a tape. But (as with FSAs) they can also be considered gen-

erators, interpreting the tapes as output tapes with write heads, each transition printing an

output symbol on a tape. Furthermore, since MSFAs have multiple tapes, some of the

tapes could be considered input tapes, and some output tapes; ie. MSFAs can be interpret-

ed as transducers.

3.2.2. MSFTs

Definition 3-6: A multi-tape nun-deterministic state-labelled finite transducer with n

tapes (n-tape MSFT) is a 2n-tape MSFA, where n tapes are designated as input tapes,
5 and n as output tapes. The states Q are partitioned into <I1, ..., I,, 01, ..., On>, each Ii

corresponding to the iLh input tape, and each Oj corresponding to the j' output tape.

The boolean value e is true iff the MSFT transduces CE, ..., E> to a, ..., E> (ie. iff,

considered as a 2n-tape MSFA, it accepts the 2n-tuple <E, ..., E, E, ..., E>). 0

Definition 3-7: An n-tape MSFT is said to transduce input W=cwl, ..., w,> to output

X=<xl, ..., x,> iff, considered as a 2n-tape MSFA, it accepts <wl, ..., w,, XI, ..., x,>.

0

There are also several possible interpretations of MSFTs - four, to be precise. A

transducer can be interpreted as either reading or writing on its set of "input" tapes, and

5. As we have indicated before, a more general definition is possible in which an MSFT can have a
different number of input tapes than output tapes. For our purposes in modelling autosegmental
rules, we only need he more restricted definition given here.

likewise on its set of "output" tapes. If it reads from both, it is accepting input-output

pairs. If it writes on both it is generating input-output pairs. If it reads from its input tapes

and writes on its output tapes (the usual interpretation), it is performing transduction. If it

reads from its output tapes and writes on its input tapes, it is performing inverse transduc-

lion. This latter interpretation will be important for our purposes in modelling autoseg-

mental rules. We will be able to use the same device to model the application of rules in

two directions: from underlying to surface forms via transduction, and from surface to un-

derlying forms via inverse transduction.

3.3. Elsewhere in the Literature

Multi-tape FSAs were fist introduced by Rabin and Scott in 1959 [34]. Fischer gives a

good summary of their properties [17]. Fischer points out in his survey that the class of n-

ary relations accepted by multi-tape FSAs (for n > 1) has different properties than the class

of unary relations (ie. languages) accepted by FSAs. This implies that multi-tape FSAs

cannot be equivalent to FSAs.

Our MSFAs and MSFTs are a generalization of the SFAs of Bird & Ellison [8]. They

can also be considered a generalization of generalized sequential transducers (GSTs) [14].

GSTs are themselves a generalization of finite state transducers. In one sense they are

no more powerful than FSTs, because they can only map regular languages to other regu-

lar languages. However, they do have a capability that FSTs do not have. Because they

can, for each input symbol scanned, print zero or more output symbols, they can transduce

input strings to output strings that are longer or shorter than the input string [14].

We could have defined a different version of multi-tape FST, one that could only write

exactly one output symbol for each input symbol scanned. This could have been done by

defining a multi-tape FST as a multi-tape FSA with an alphabet of pairs, by analogy with

the way FSTs have often been defined as FSAs with an alphabet of pairs. However, given

that we want to model autosegmental rules, we need to be able to perform transductions

that do not preserve length. When an autosegmental rule adds a segment to, or deletes a

segment from, a tier, it changes the length of that tier. For this reason we needed to define

transducers that can perform transductions that do not preserve length.

State-labelled transducers were chosen over transition-labelled transducers because

they have a couple of minor advantages when used to represent autosegmental rules. One

is that they typically have less non-determinism; the other is that their diagrams are visual-

ly clearer.

There are several equivalences between our automata and other automata found in the

literature that are straightforward to prove. Our MSFAs are equivalent to the multi-tape

FSAs defined by Rabin & Scott [34]. This allows us to later make use of some of their re-

sults. Also, Bird & ~l l i son have noted the equivalence of their SFAs with (transition-la-

belled) FSAs 181, a result that follows from the equivalence of Mealy and Moore machines

[23]; this result can be extended to MSFAs, defining a transition-labelled version of multi-

tape FSAs and demonstrating equivalence. The proof would use similar techniques to

those found in the proof of MealyNoore equivalence. Finally, this result can be used to

show that GSTs are a special case of MSFTs.

3.4. Phonological Considerations

As has been mentioned before, using multiple tapes instead of a single tape on which

to encode autosegmental representations is natural, given that the representations them-

selves are multi-tiered, and not linear. Komai [32] has reduced autosegmental representa-

tions to a linear encoding so that they will fit on a single tape of an FST, but there are

difficulties with this approach that we will discuss in Chapter 8. It is a hard problem to

overcome these difficulties by finding an alternative linear encoding. One gets the feeling

that autosegmental representations are essentially multi-linear, and cannot be forced into a

linear string without requiring more than finite state power to process them. We offer no

conclusive proof of this statement, but instead offer a solution that retains the multi-linear

character of autosegmental representations, and uses more than finite state power to pro-

cess them.

One question that may have occurred to phonologists reading the definition of MSFTs

relates to the alphabet. An MSFT has a single alphabet for all of its tapes. Each tape will

correspond to a different autosegmental tier, and each alphabet symbol will represent an

autosegment (containing one or more features). This means that the same alphabet sym-

bols could appear on different tapes, contrary to the requirement in autosegmental phonol-

ogy that features cannot appear on more than one tier [22].

This is not a problem. If we want to have a different alphabet for each tape, we can just

partition the single alphabet into n parts, one for each tape, much as we partitioned the

state set. An MSFT with multiple disjoint alphabets is a special case of an MSFT with a

single alphabet.

However, it may be advantageous to allow the possibility of having the same feature

on different tiers. Goldsmith considers this possibility in an analysis of Sierra Miwok

([22], p. 89). At least we have this option open to us.

Chapter 4
Encoding Autosegmental Representations

Now that we have introduced MSFTs, the computational device we will use to model

autosegmental rules, we will show how autosegmental representations can be encoded on

the tapes of an MSFT.

4.1. Intuitive Description

Consider the following representation of the Arabic verb stem kattab meaning

"caused to write":

/\ c v c c v c

k \I t b

The verb stem contains three morphemes, one on each tier. This representation can be,

in effect, cut into three parts like this:

c v c c v c
I \ I I

Using this as a guide, the representation can easily be encoded as three strings on a 3-

tape MSFT:

(22) a l l

c2v1c2c2v1c2

k2 t22b2

Here, a digit following a segment is used to represent the incidence of an association

line on that segment. The incidence of association lines from different charts is represent-

ed using distinct digits (here 1 or 2). So, for example, in the middle string (representing

the middle tier) we have a C followed by a 2 representing an association line from the bot-

tom chart; then a v followed by a 1 representing an association line from the top chart; etc.

In the bottom string, there is a t followed by two 2's, representing the incidence on the

segment t of two association lines from the bottom chart.

Although this example does not show it, this encoding is powerful enough to also rep-

resent associations between the top and bottom tier. We could use 3's to represent such as-

sociation lines, if there were any.

It is important to realize why we do not lose any information content in the representa-

tion by dividing it up into parts like this. The reason is that we can always put the parts

back together properly (ie. match up the halves of the association lines to-their proper part-

ners). We can do this because of the No Crossing Constraint (NCC), which says that well-

formed autosegmental representations cannot contain association lines that cross1. The

NCC ensures that within a chart, the association line halves will match up in order. It pro-

hibits, for example, the first half-line on one tier matching up with the third half-line on

the facing tier of the chart. So a person (or an algorithm) given the encoding in (22) could

easily reconstruct the representation in (20) by pairing up the 1's in the order that they ap-

pear on the two tiers, and doing the same with the 2's.

4.2. Formal Definition

We will now define more precisely the encoding scheme we have described above. To

do this, we must first preciseIy define what we mean when we speak of an autosegmental

representation. 2

4.2.1. Autosegmental Representations

We do this in terms of a generalization of the mathematical notion of a bipartite graph.

Definition 4-1: An n-partite graph G is a pair <V, E> where:

V is a set of vertices, partitioned into n parts <V1, ..., Vn>

E is a set of edges - unordered pairs of vertices in V

E satisfies the property that u, v E Vi (u, v) e E (ie. there are no edges between

vertices in the same partition) Cl

Definition 4-2: An autosegmental representation A with n tiers is a 4-tuple cG, S, L, O>

where:

G is an n-partite graph <V, E>, with V partitioned into <V1, ..., Vn> (these partitions

correspond to the tiers of the representation)

S is a set of symbols which represent segments 3

1. We will define the NCC more precisely in a moment.
2. Our definitions are similar to those of Coleman and Local in [12].

L: V 4 S is a labelling function, assigning to each vertex v E V a label L(v) from

the set S

0 is a collection of linear ordering relations (S1, ..., I,), where each Si is a linear or-

dering of Vi

the edges E of G satisfy the NCC on each chart; that is: V i, j, V u, v E Vi, w, x E Vj,

if u Si v and w %x, then (u, x) E E a (v, w) e E. 0

Definition 4-3: Define A, as the set of all autosegmental representations with n tiers over

a common set S of segments. 0

Definition 4-4: Two autosegmental representations A, B E A, are said to be equal iff

there is an isomorphism between them (a one-to-one correspondence between their

vertices that preserves all the structure that defines autosegmental representations -

the edges, the vertex partitions, the vertex labels, and the linear ordering of the

partitions). That is, given two n-tiered representations A = <GA, S, LA, OA> and

B = <GB, S, LB, OB>, we say A = B iff there is a 1-1, onto function z: VA + VB such

that V u, v E VA:

(u, V) E EA a (~(u) , z(v)) E EB (edges are mapped to edges)

'd i 3 j such that u, v E VAj ~ (u) , z(v) E VB j, and u <i v a z(u) <j ~ (v) (partitions

are mapped to partitions, and the linear order within them is preserved)

LA(v) = LB(z(v)) (labels are preserved) 0

4.2.2. The Multi-Linear Code

We want to encode elements of A, as n-tuples of strings.

Definition 4-5: The multi-lineor code is defined by an encoding function En: A, + (z*)",

3. The elements of the set S are meant to represent phonological features or feature bundles (seg-
ments, in the sense that Goldsmith uses the term [22]); thus, they will have some internal structure.
But we need not go into detail about this here, and will simply represent elements of S as single
symbols, as is often done by phonologists.
4. We can allow these to be partial linear orderings if we want to represent tiers with partially
ordered autosegments, or no linear ordering at all ([26], see [121).

where Z = S u (ail I i,j = 1, ..., n, i < j) , where the aij are unique symbols not contained

in S. Each aij will represent the incidence of an association line on a segment:

specifically, an association line from the chart containing the i" and $ tiers.

Let A E A,, as in Definition 4-2. We will define En(A) by defining the various

pieces that make it up. Let the p(i) vertices in each partition (tier) Vi be named, in or-
th th der, vil ci vi2 <i ... ci vip(i) . Consider vik, the k vertex in the i partition (tier). It has

a total of qik = I {(vik, w) E E I w E V j) I association lines linking it to vertices in the j'

partition (tier). This is encoded as the string gijk = aii4i@. The vertex vik together with

all its association lines is encoded as the string f;:k = L(vik) gilk gi2k ... gink. The whole

of the i' tier is encoded by the string ei = filfiz ... fipi) . SO, finally, we can define

En(A) = <el, ..., en>, 0

In spite of the gory mathematical detail, this encoding function En is really quite sim-

ple, as we have already seen in the example above. In fact, it is so straightforward that it

can be considered just a notational variant of autosegmental diagrams. Certainly it is not

as graphic, but the correspondence between autosegmental representations and multi-lin-

ear encodings is obvious.

4.3. Linguistic Advantages of the Multi-Linear Code

We have already alluded to the simplicity of the multi-linear code. There are several

other features of the code that will make it attractive to phonologists.

Kornai [32] has laid down four criteria of a good coding scheme for encoding autoseg-

mental representations. Although these criteria were originally stated with respect to lin-

ear encodings, three of them - computability, invertibility, and iconicity - are just as

applicable to non-linear encodings like the multi-linear code. As for the fourth criterion -

compositionality - we shall see that a linear encoding cannot be fully compositional. Ac-

cordingly, we argue that a more appropriate criterion is an alternate version of composi-

tionali ty that we call rier-wise compositionality, and show that the multi-linear code

satisfies it fully. We also show that the multi-linear code is incapable of representing cross-

ing association lines.

4.3.1. Computability

At the most basic level, this criterion means that there is an algorithm that can be used

to effectively compute the encoding. This is certainly true for our encoding.

This basic definition can be refined in two ways. On the one hand, one can consider (as

Kornai does) the formal amount of computing power required to compute the encoding. In

other words, does it require the full power of a Turing machine, or only that of a finite

state automaton, or something in between? However, in order for an automaton to process

an autosegmental representation, it must be encoded in some way on the tape(s) of the au-

tomaton, so the job of computing an encoding needs to be done before the automaton can

start. Kornai gets around this by defining a pseudo-automaton called an autosegmental au-

tomaton which can directly scan an autosegmental representation, but this is not the way

automata are usually defined. The meaning of his result that an autosegmental automaton

can compute his encoding is thus not clear.

The other possibility for refining the definition of computability is to consider the

computational complexity of the algorithm. In other words, is the running time of the al-

gorithm proportional to the size of the representation, or to a polynomial function of that

size, or even an exponential function of that size? A code that can be computed by a linear

time algorithm would be preferred over one that requires a quadratic or exponential time

algorithm.

Having said all that, all we are really concerned with for now is that our code can be

computed. We are more interested in the formal power required to model autosegmental

rules.

4.3.2. Invertibility

As Kornai uses the term, the encoding function En is invertible (1-1) iff it always as-

signs different codes to different representations; ie. A # B =, En(A) # En(B), or, equiva-

lently, En(A) = EJB) 3 A = B. As Kornai points out, an encoding function that assigns

the same code to different autosegmental representations is relatively useless. An invert-

ible code is useful precisely because given En(A) one can find A.

The multi-linear code is certainly 1-1; given an encoding, it would be a simple matter

to reconstruct the autosegmental representation that it encodes. The vertices and their la-

bels, partitions, and linear ordering would be clear from an inspection of the encoding, and

the edges can be reconstructed by a left-to-right matching of pairs of identical aii symbols

from different strings in the encoding.

We can formally show that the multi-linear code satisfies this basic definition of in-

vertibility, and at the same time explain in detail the method of decoding the code to find

the original representation.

Theorem 4-1: The multi-linear encoding function En is invertible (1-1).

Proof: See Appendix A. Q

There is a greater sense in which a function f : X + Y can be invertible. If it is onto as

well as 1-1 (fully invertible), then for every possible element y E Y we can find a (unique)

x E X such that f(x) = y. In terms of our encoding En, this would mean that every possible

n-tuple in (Z*)" would correspond to a valid autosegmental representation. In fact, this is

not the case: there are ill-formed encodings in (z*)". There are two characteristics that

make encodings ill-formed: "double" association lines and "dangling" association lines.

These two characteristics are illustrated in Figure 4-1.

allb

xlly

albl

X ~ Y

"Double" association line "Dangling" association line

Figure 4-1: Ill-formed encodings

It could be argued that the criterion of full invertibility is really just a straw man. Any

1-1 function f : X -+ Y can be made fully invertible (1-1, onto) by restricting its codomain

Y to be just the range f(X); ie. defining f : X + f(X). Our encoding function En can be

made fully invertible by defining its codomain to be just the set C , G (E*)" of codes that

are well-formed. Then we could define the inverse (decoding) function D,: C, + A, as

There is a problem with ignoring ill-formed codes like this if they actually turn up in

practice. In that case, codes would have to be checked for well-formedness before they are

decoded. But in fact, a computational tool could be implemented so that all autosegmental

representations created by the user are checked for correctness, and all rules are guaran-

teed, given well-formed codes, to produce well-formed codes (we will say more about this

later). Since valid representations would give rise to only well-formed codes, and valid

rules would maintain well-formedness, ill-formed codes would never arise, unless there

were bugs in the implementation.

In fact, it is easy to check the well-formedness of a multi-linear code by making sure

all the aU's match up properly (ie. that there are no "double" or "dangling" association

lines). In fact this can be done using an MSFA. We will go into more detail in Section 6.1.

about how this is done.

4.3.3. Iconicity

The intuitive idea behind iconicity is that minimal changes to a representation should

correspond to minimal changes to its encoding. A small change to one part of the repre-

sentation should not result in changes to the entire encoding. The multi-linear code cer-

tainly meets this intuitive criterion.

There are four basic types of changes that can be made to a representation by a rule:

addition of an association line (edge), or "linking"

deletion of an association line (edge), or "delinking"

addition of a segment (vertex)

deletion of a segment (vertex)

These are the elementary operations of autosegmental phonology. They are simple,

and their simplicity is reflected in the corresponding operations that are performed on

multi-linear encodings of autosegmental representations. These are:

insertion of a symbol aij on each of two strings

removal of a symbol ag from each of two strings

insertion of a symbol s E S on a smng

removal of a symbol s E S from a string

Examples of these operations on autosegmental representations and their encodings

are shown in Figure 4-2.

Kornai does not precisely define his criterion of iconicity, but a careful reading of his

comments about it reveals that it is closely tied to the information content of autosegmen-

tal representations. In information theory, the information content of an object is the num-

ber of bits required to represent it. (If there are N objects in a set, the information content

of one of them is r10g2 ~ 1 , assuming each element of the set has equal probability.5) On

careful examination, it becomes clear that Kornai's definition of iconicity includes not

only the intuitive idea above, but also requires that the length of the encoding be a func-

tion of the information content of the representation.

In this alternative sense, the multi-linear code is not iconic. Consider the two represen-

tations below, together with their encodings:

a lb l

x l y l

Representations with equal information content

There are a total of 12 valid autosegmental representations with two tiers and two ver-

tices on each tier. Their association patterns all have the same information content:

log2 12. However, their multi-linear codes are not the same length. The fundamental rea-

son for this is that the multi-linear code is based on a unary notation for representing asso-

ciation patterns, rather than a binary notation. The presence of an association line is

represented by the presence of two symbols in the code; the absence of an association line

is likewise represented by the absence of such symbols. In an optimally iconic code, in

Kornai's sense, each possible association pattern, including the two in (23), would be rep-

resented by 4 bits. Instead, we use varying numbers of bits to represent them.

5. This brings up two areas in which Kornai's information-theoretic criterion is unclear. First. A, is
an infinite set. Any member of A, can be considered a member of various different subsets. Komai
picks one - the set of bistrings of length n - to talk about, but there are others. This choice will
affect the measure of the information content of a particular representation. Second, it may or may
not be reasonable to assign equal probabilities to phonological representations in a particular set. It
is not clear how these probabilities would be computed. Thanks to Mark Ellison (personal commu-
nication) for pointing out his latter issue.

linking

albl alcbl
_+

xlyl xl yl

adding a segment

albl abl
_+

xlyl xyl

delinking

abl bl
---+

xyl XY 1

deleting a segment

Figure 4-2: Elementary autosegmental operations

45

This information theoretic aspect of encodings is not as important to us as the perspi-

cuity aspect. Our main concern is that the elementary operations of autosegmental phonol-

ogy can be simply described in our multi-linear code.

4.3.4. Compositionality

In constructing a computational model of a linguistic theory, our goal will be to pro-

duce a model that is as faithful as possible to the original theory. Simple operations in one

should correspond to simple operations in the other. (We have already seen indications

that this is true of our model.) Ideally, every computational operation that is part of the

model should be linguistically significant; the model should not contain linguistically ir-

relevant computational manipulations. This is a standard by which we can measure "good-

ness of fit" between model and theory. This is in accord with the "Occam's Razor"

principle: given two models that adequately describe a theory, the simpler one is to be pre-

ferred.

This brings us to the operation of concatenation. This is an operation on autosegmental

representations whose simplicity we want to preserve in our model. We want to be able to

concatenate, and take apart, the encodings in much the same way as we do the representa-

tions. This is the idea behind the compositionality criterion.

The concatenation of representations and encodings is illustrated in Figure 4-2. The

concatenation of representations involves concatenating their tiers individually and com-

bining the results into a new representation that retains the old association lines.

Definition 4-6: If A, B E A, are autosegmental representations then the concatenation of

A and B is formed by taking the (set -theoretic) union of the corresponding parts of the

representations: the graphs, the vertex partitions, the labelling functions, and the

orderings, adding to the ordering the stipulation that the last vertex in each partition of

A precedes the first vertex in the corresponding partition of B (together with all the

implications that follow by the transitivity of an ordering relation).

alblc

xylzl

Figure 4-3: Concatenation

Definition 4-7: If E, F E (c*)" are multi-linear codes, then the concatenation of E and F is

formed by concatenating the corresponding members of the n-tuples. So if E = <el, ...,
en> and F = cfl, ..., fn>, then the concatenation is EF = <elfl, ..., enfn>.

Definition 4-8: An encoding function E is compositional iff V A, B, C E A,, we have

C = AB a E(C) = E(A)E(B).

Theorem 4-2: The multi-linear encoding function En is compositional.

Proof: See Appendix A. Cl

We should point out that concatenating autosegmental representations is, strictly

speaking, not a phonological operation. It is an operation of morphology (morphemes are

concatenated in the formation of words) and of syntax (words are concatenated in the for-

mation of sentences). In particular, the boundary between morphology and phonology has

often been fuzzy and blurred in the literature because there is so much interaction between

the two. This is one area where the dividing line needs to be drawn a little sharper.

Having said that, however, we should hasten to add that concatenation is an operation

on phonological representations. Therefore, a model of phonology ought to facilitate this

operation. If a computational model of phonology is built without regard for the models of

morphology and syntax that must interface with it, it could unnecessarily complicate what

should be a simple operation for those other models. That is why compositionality is an

important criterion of a good encoding of autosegmental representations.

We conclude this section with an observation about linear encodings of autosegmental

representations. Kornai has presented a linear encoding of A,, in contrast to our non-linear

encoding. His goal was to show that autosegmental phonology, as a transformational rule

system, requires only the power of a finite state transducer to implement. Since finite state

transducers have only a single input tape, this necessitated a linear encoding. We have res-

ervations about Kornai's success in achieving his goal, which we will go into later. But

there is another issue that is completely independent of the question of the computational

power of autosegmental phonology. From the point of view of compositionality, linear en-

coding~ are inadequate.

As Kornai has well said, "the absolute minimum we should demand is that [a coding

scheme] must be invertible" ([32], p. 23). Given that an encoding function must be 1-1, if

it is also linear (encodes a representation as a single string), then it is impossible for it to

be compositional.

Theorem 4-3: An invertible linear encoding of A, cannot be compositional.

Proof: See Appendix A. Cl

What is the significance of this result? It ends the fruitless search for a compositional

linear encoding (given that any encoding must be 1-1). Furthermore, if compositionality is

taken to be an absolute requirement, i t ends the search for a linear encoding altogether.

Kornai's code is, of course, not compositional. It is "partially" compositional - that

is, "it is compositional for all those representations that are associated at both ends"

(p. 26). Nevertheless, compositionality is a pass-fail criterion. If for some representations

the encoding is not compositional, then every time the operation of concatenation is per-

formed on encodings, the encodings must be checked to see if the operation will actually

succeed. If not, some extra bit-twiddling must be done to make sure the outcome of the

operation is a well-formed encoding, and that it is the correct encoding. This bit-twiddling

would be a linguistically irrelevant operation - a trait that a good computational model of

a linguistic theory should avoid (see comments on page 46 above). If you choose to en-

code autosegmental representations as linear strings, you are forced to include these irrel-

evant operations in your model.

As we said before, concatenation, though not actually not a phonological operation,

should be facilitated by a phonological model so that morphology and syntax need not

concern themselves with fixing up ill-formed encodings after they concatenate representa-

tions. This means choosing a compositional encoding. Therefore, since only a non-linear

code can be compositional, our choice is made.

Theorem 4-3 is also an improvement on a result of Kornai's. After defining the four

criteria of an ideal (linear) code (computability, invertibility, iconicity, and compositional-

ity), he goes on to show that a code that fully meets all four of these criteria simply does

not exist. Having done this, he notes that the proof does not depend on the computability

criteria at all; hence, it is the other three criteria as a group that are impossible to meet ful-

ly. We have further shown that iconicity can be struck from this group, and the invertibili-

ty criteria can be weakened (since he defines full invertibiliy as not only 1-1 but also

onto), and it is still impossible to find a code meeting these remaining two criteria. These

criteria are basic in the sense that any linear encoding of autosegmental representations

ought to satisfy them, as we have argued above. It is hard to see how the criteria could be

weakened further.6

The representations A and B in the proof of Theorem 4-3 embody a fundamental idea:

that of the independence of the tiers of autosegmental representations. The representation

AAABBB could also be built up by concatenating in a different order: ABABAB or

BBAABA or AABBBA, etc. Concatenations on one tier do not affect those on another

tier; therefore they can be interspersed in any order. This is precisely the downfall of the

compositional linear code. It is exactly this ability to concatenate in different orders from

which we derived a contradiction in our proof. This is not surprising: a linear code cannot

help but enforce a dependence between the tiers, since they are all encoded in the same

string. The only way around this is to separate the tiers into different strings.

Not only should the'encoding reflect the independence of the tiers, but so should the

computational device that processes the encodings. It is therefore important that MSFAs

have independent read heads, one on each tape, rather than a single read head that scans all

the tapes. We shall see that this choice between a single read head vs. independent read

heads makes a fundamental difference in the computational power of the device. The

former gives the device only finite state power, but the latter gives it considerably more

power than that.

4.3.5. Modularity

Closely related to the idea of independent tiers is that of independent charts. A perva-

sive phenomenon in autosegmental phonology is that different charts in a representation

are separate and independent, having no phonological effect on one another (unless a rule

is specifically constructed to refer to elements from two different charts). This implies that

a good computational model should reflect this modularity, or independence of charts, in

its encoding.

6. One way of weakening compositionality is to define it as C = AB E(C) = E(A)sE(B) where s
is a kind of boundary marker that is independent of A and B (Kornai calls it a "syncategorematic
element"). The proof of Theorem 4-3 would be trivial with this definition of compositionality.

Suppose we wanted to add an association line to a chart. With a linear encoding, we

would have to wade through all the material from the other charts to find the proper place

to add the link, and the change may have repercussions throughout the whole encoding in

the way the other charts are encoded, even though they have not changed. Again, Kornai's

triple code (generalized to more than two tiers) has this problem. One needs a non-linear

encoding to get around this kind of problem.

4.3.6. Multi-tiered Representations and Redundancy

One of the clearest advantages of the multi-linear code over Kornai's triple code is the

ease with which it handles representations with more than two tiers. The triple code works

for representations with two tiers, but as Kornai himself admits, the generalization of this

code to more than two tiers is very impractical, and contains considerable redundancy

(p. 72). Even with two-tiered representations, the triple code is redundant: a single seg-

ment may be represented by anywhere from 1 to k symbols, where k is the length of the

longest tier. In contrast, the multi-linear code is practical and contains no redundancy at

all, for arbitrary n. No matter how many tiers there are, each segment is still encoded as

one symbol, and each association line as two symbols.

4.3.7. The No Crossing Constraint

The multi-linear code is incapable of encoding representations with crossing lines.

Theoretically, one could apply Definition 4-5 to a representation with crossing lines, as in

Figure 4-1, even though such an ill-formed representation is not in the domain of the en-

coding function En. The result would be the encoding of a well-formed representation.

a l b l

x l y l

a l b l

x l y l

Well-formed representation Representation with crossing lines

Figure 4-4: The No Crossing Constraint enforced

The procedure given in the proof of Theorem 4-1 for inverting the code will never pro-

duce a representation with crossing lines. This is because the ad symbols are matched up

in pairs in a left-to-right manner.

This is certainly a desirable property of the multi-linear encoding, from a linguistic

point of view. An association line is properly interpreted as indicating the temporal over-

lap of intervals corresponding to the linked segments [6,39]. The NCC is then just a state-

ment of the physical reality that if two intervals b and x overlap in time, it is impossible

for any interval a preceding b to overlap with any interval y following x. If an encoding is

incapable of representing such a situation, then this physical reality is embodied as an in-

tegral part of the encoding, rather than imposed as an external constraint. Just as it would

be physically impossible for a person to pronounce the second representation in Figure 4-

1, it is formally impossible for the multi-linear code to represent that situation.

Chapter 5
Operations on MSFAs

We have defined MSFTs, a special case of MSFAs, and shown how autosegmental rep-

resentations can be encoded on the tapes of an MSFT. Our goal is to demonsmte that any

conceivable autosegmental rule can be modelled by an MSFT. To this end, we will define

various operations on MSFAs and show how these operations can be used to combine sim-

ple, elementary MSFAs into more complex, composite MSFAs. This approach will allow

us to divide the complicated problem of modelling an autosegmental rule into small parts

that are easily solved.

5.1. Theoretical Interest

FSAs (and thus FSTs, as a special case) can be combined by aproduct operation. If A1

and A2 are FSAs which accept the languages L(Al) and L(A2) respectively, then the prod-

uct Al x A2 will accept the language L(Al x A2) = L(Al) n L(A2). The product operation

produces an automaton that simulates what happens when the two machines are executed

in parallel, both scanning the same input word, and accepting that word only if it is accept-

ed by both automata. Bird and Ellison have used this product operation to advantage in

their model of autosegmental phonology [8].

Also, FSTs can be combined by a composition operation. If TI is an FST that transduc-

es input so to output sl, and T2 is an FST that transduces input sl to output s2, then the

composition T1 o T2 will transduce input so to output s2. Kaplan and Kay pointed out the

usefulness of this operation for modelling the ordered rules of generative phonology [30].

Kornai followed this path [32], and Koskenniemi began on this path but took a detour that

led to a different model [3].

MSFTs are a generalization of FSAs and FSTs. From a theoretical perspective, it is an

interesting question in and of itself to ask whether or not these operations of product and

composition generalize to MSFI's. We will find that, with a significant qualification, these

operations (as well as others) do in fact generalize to MSFTs. We will also find that the

product operation proves to be very useful for combining MSFTs like building blocks to

yield more complex MSFTs that model autosegmental rules.

5.2. Product

5.2.1. Intuitive Description

Consider the two-tape MSFAs in Figure 5-1. Both A1 and A2 accept strings of a's and

b's on their two tapes, and each places slightly different restrictions on those strings. No-

tice that in Al there are transitions between almost every pair of states, except that there is

only one transition out of q2, and only one transition into qq. The effect of this is to ensure

that a b is scanned on tape 1 iff a b is also scanned on tape 2. In other words, the strings on

the two tapes must have equal numbers of b's. Similarly, A2 ensures that the strings it ac-

cepts have equal numbers of a's.

Now consider executing A1 and A2 simultaneously (in parallel) on the same pair of

strings, making transitions in synchronization with each other. Every time A1 reads from

tape 1, A2 will also read from tape 1. Likewise on tape 2. In fact, we will consider that Al

and A2 share the same read heads (in the same way that the transducers in Koskenniemi's

KIMMO system share read heads [33, 3, 291). And since on each transition they will be

reading the same symbol, the states that they simultaneously enter will both have to be

compatible with that symbol. Given this manner of parallel execution of Al and A2, we

are interested in whether or not both Al and A2 accept a given input.

Two MSFAs executing in parallel like this can be simulated by a single MSFA. For ex-

ample, the parallel execution of Al and A2 can be simulated by the MSFA Al x A2 in Fig-

A1 x A 2

Figure 5-1: Combining MSFAs by the product operation

ure 5-1. (The x represents the product operation on MSFAs, as we will see later.) The

technique is to have one state in Al x A2 for each pair of states that Al and A2 could pos-

sibly be in at any given moment. For instance, it would be possible for Al to be in state qg

and A2 to be in state r3, but not in state r l or r4 (because qg and r l are in different parti-

tions, and q3 and r4 don't have compatible labels). Then, each possible pair of simulta-

neous transitions in Al and A2 can be simulated by a single transition in A l x A2.

The states of Al x A2 are pairs of states from Al and A2. A transition from qiq to qkrl

in Al x A2 represents a simultaneous transition from qi to qk in Al and from rj to rl in A2.

A state qjq in A1 x A2 is final (initial) iff both Q in Al and r j in A2 are f i ~ a l (initial). This

means that Al x A2 will accept an input only if both A1 and A2 accept it. For example, dl

three automata accept the input cab, ab>.

A significant point needs to be brought to attention here. Notice that both Al and A2

accept the input cab, ba>, but A1 x A2 does not. Is something wrong here? It seems like

we would want Al x A2 to accept all the inputs accepted by both Al and A2. In other

words, we would like our product operation to satisfy L(Al x Ai) = L(Al) n L(A2), as is

the case when A1 and A2 are FSAs. However, it turns out that it is impossible, in general,

to construct an MSFA that accepts the intersection of two languages accepted by MSFAs.

In other words, the class of languages accepted by MSFAs is not closed under intersection

[17, 161. So we cannot hope to define a product operation , or any other operation, that sat-

isfies the above equation. Al x A2 does not accept all the inputs accepted by both Al and

A2. What is true is the converse: Both Al and A2 accept all the inputs accepted by A1 x

*2.

Underlying all of this discussion is the concept of a scanning pattern of an MSFA.

Given a particular input, an MSFA scans its tapes in a particular order (eg. first a symbol

from tape 2, then a symbol from tape 1, then another symbol from tape 2, etc.). This we re-

fer to as a scanning pattern. It is precisely because A1 and A2 do not use the same scan-

ning pattern when accepting cab, ba> that A1 x A2 does not accept cab, ba>. By

simulating Al and A2 in the manner described above, Al x A2 requires not only that both

Al and A2 accept the given input, but also that they do it using the same scanning pattern.

A scanning pattern of a two-tape MSFA can be represented as a string of 1's and 2's,

where a 1 represents scanning a symbol from tape 1, etc. A1 accepts the input cab, ba> us-

ing the scanning pattern 1122. On the other hand, A2 accepts cab, ba> using the scanning

pattern 2121. Ar and A2 cannot accept cab, ba> using the same scanning pattern; in fact,

Al must begin by scanning a symbol on tape 1, whereas A2 must begin on tape 2.

Interestingly enough, if we extend each input accepted by an MSFA A to include the

scanning pattern used to accept it, then we can define the extended language LJA) accept-

ed by that MSFA, and these extended languages are closed under intersection; in fact,

L,(AI x A2) = Le(A1) n Le(A2). As a partial example, Al accepts, among others, the ex-

tended inputs in the set (cab, ba, 1122>, cab, ab, 1212>, cab, ab, 2112>) (notice that

cab, ab> can be accepted using two different scanning patterns). Similarly, A2 accepts the

extended inputs in (cab, ba, 2121 >, cab, ab, 1212>, Cab, ab, 1221>). If we intersect these

sets, we obtain {cab, ab, 1212>). Not only does this intersection operation eliminate

Cab, ba> because of the differing scanning patterns, but it aIso eliminates some cab, ab>

inputs for the same reason. Of all the extended inputs mentioned above, cab, ab, 1212> is

the only one accepted by Al x A2.

5.2.2. Formal Definition

Having considered these examples, let us now define the product of two MSFAs. Re-

call from Chapter 3 that an MSFA is a septuple cQ, C, h, 6, I, F, e> where, in particular,

the set Q of states is divided into n partitions corresponding to the input tapes, and h is the

labelling function, assigning sets of symbols to each state.

Definition 5-1: Two states q and r in different MSFAs are compatible iff each belongs to

the i" partition in its MSFA, and h(q) n h(r) t (21.0

Definition 5-2: Let Al = cQ1, Z, hl, 61, 11, Fly el> and A2 = <Q2, C, h2, 62, 12, F2, e p be

two n-tape MSFAs. Then the product of Al and A2 is the n-tape automaton Al x A2 =

<Q, C, h,6, I, F, e>, where:

Q = (cq, r> E Q1 x Q2 I q and r are compatible) (pairs of compatible states are states

in A, x A2)

Q is partitioned into <TI, ..., T,> where Ti = (cq, r> in Q I q and r are in the i' parti-

tions in Al and A2 respectively)

h(cq, r>) = hl(q) n h2(r) (labels are formed by intersection)

(<ql, rl>, <q2, r2>) E 6 iff cql, q p E 61, and <rl, r p E 62 (transitions in Al x A2

represent simultaneous transitions in A1 and A2)

I = Q n (I1 x 12) (pairs of initial states are initial)

F = Q n (Fl x F2) (pairs of final states are fmal)

e = el A e2 (Al x A2 accepts the empty input iff both Al and A2 do) 0

5.3. Disjoint Product

We now turn our attention to another operation on MSFAs called disjointproduct.

5.3.1. Intuitive Description

Consider the two MSFAs in Figure 5-2. For reasons that will become clear later on

when we define the disjoint product operation, we have drawn Al and A2 as modified MS-

FAs, where the state of the machine before it reads any symbols is represented as an unla-

belled state (see ~efininon 3-5). Al accepts strings on tape 1 of the form (ab)", and A2

accepts strings on tape 2 of the form ambn. Notice that A1 has an empty 2nd partition, and

A2 has an empty 1'' partition. They can never read from the same tape; therefore, A1 X A2

= 0, the empty automaton (which accepts only the empty input).

Now suppose we wanted to execute Al and A2 in parallel as follows. They would scan

the same input, but A1 would read only tape 1, and A2 would read only tape 2. They

would make transitions compIetely independently of one another. If both MSFAs accepted

the smngs on their respective tapes, then the input as a whole would be accepted. If Al

and A2 were executed in disjoint parallel like this, they would accept inputs of the form

Two MSFAs executing in disjoint parallel can be simulated by a single MSFA. For ex-

ample, the disjoint parallel execution of Al and A2 can be simulated by the MSFA

Al @ A2 in Figure 5-2 (where the @ stands for disjointproduct). The technique is to have

several copies of Al and A2 in the disjoint product machine, and to be able to make transi-

tions back and forth between these copies in a way that simulates the simultaneous execu-

tion of the two machines.

@ 90 QO

..

a
9 1

6-Q q2 Q1

...

A1 @ A 2

Figure 5-2: Combining MSFAs by the disjoint product operation

In A l A2 there are three copies of Al in partition Q1 and three copies of A2 in parti-

tion Q2. There is one copy of A l for each state in A2, and one copy of A2 for each state in

Al. The copies are exact except that states which were initial and/or final in the original

may not be the same in the copy. We will see later how this is determined. As well, there

are a lot of transitions between the two partitions.

A state r,qj in partition Ql is a copy of state q, in Al. When Al @ A2 is in state r,qj it

is simulating the fact that Al is in state q j and A2 is in state ri. Similarly, a state qjv in par-

tition Q2 is a copy of state r j in A2 and simulates the fact that Al is in state %.

Whenever a transition is made from Q1 to Q2, it simulates the fact that Al remains in

the state it was in, in "suspended animation", while A2 makes a transition. Similarly, a

transition from Q2 to Q1 simulates A2 being "suspended" and Al making a transition. To

take a concrete example, the transition from q 6 1 to r lq l represents A2 being suspended in

state r l while Al makes a transition from qo to ql.

A careful examination of the transitions in Figure 5-2 will convince the reader that

they agree with this description. Thus, Al @ A2 accepts exactly inputs of the form

~(ab) ' , ambn>.

5.3.2. Formal Definition

Let us make this informal description more rigorous.

Definition 5-3: Two n-tape MSFAs Al and A2 with partitions <Q1, ..., a> and

cR1, ..., R,> are tape-disjoint iff V i = 1, ..., n, at least one of Q and Ri are empty. Two

modified n-tape MSFAs Al and Az with partitions cQO, ..., Qn> and <Rg, ..., Rn> are

tape-disjoint iff they satisfy the same condition (which excludes the special partitions

Qo and Ro). 0

We will state the definition of disjoint product on modified MSFAs rather than stan-

dard MSFAs, simply because this makes it easier to state.

Definition 5-4: Let Al = cQ1, C, hl , 81, 11, F1> and A2 = <Q2, I;, h2, 62, 12, F2> be two

tape-disjoint modified n-tape MSFAs. Then the disjoint product of Al and A2 is the

n-tape MSFA Al @ A2 = cQ, C, h, 8, I, F, e> defined as follows:

. Let Q1 = [qo, ..., Q] and Q2 = {ro, ..., r,] (including the initial unlabelled states qo

and ro). Then Q = Q1 x (Q2 - Irol) u Q2 X (Qi - (q01)-

h is defined by h(riq,) = h(q,) and h(w) = h(7) V r,qj qiq E Q.

6 is defined by the following, V i j ,k where i 2 0, j,k > 0:

vlqi, r ,qp E 6 iff <q,-, qp E 61 (transitions within A1)

<qjrj, q j rp E 6 iff aj r p E 82 (transitions within A2)

a l q j q j rp E 6 iff a i , r p E 62 (transitions from Al to A2)

<qjrj, r,qp E 6 iff <qj, qp E 81 (transitions from A2 to A1)
th I = { a o , c p 1 <q0, qp E 61) u { q 0 , ri> I q, r p E 621 (initial states in the 0 cop-

ies of Al and A2 are initial)

F = Q n (F1 x F2 u F2 x F1) (pairs of final states are final)

e = true iff both qg and rg are final (A1 8 A2 accepts the empty input iff both Al and

A2 do)

The operations of product and disjoint product are both associative, so we will be able

to meaningfully write expressions like A x B x C and A 8 B 8 C. However, we will not

assume that the two operations are associative over one another, so in expressions which

use both operations we will use brackets to indicate operator precedence.

5.4. Other Operations

We need to define two other operations on MSFAs and MSFTs that will be useful in

the next chapter.

5.4.1. Collapsing States

We will informally define the operation of collapsing a state in an MSFA. This opera-

tion will prove to be useful later on when modelling autosegmental rules with MSFTs -

particularly, for example, modelling the deletion of an association line. Consider the fol-

lowing MSFA:

A accepts pairs of words with equal numbers of b's, interspersed between a's. Suppose

we wanted to construct from A another MSFA that accepted pairs of words in which only

the first word was allowed to have any b's. We could accomplish this by removing the

starred state from A and reconnecting the transition arrows like this:

We determine where to add transitions by thinking of the starred state as a bus stop at

which the bus no longer stops. It now passes right by the former stop and continues along

any one of the routes indicated by the transition lines that leave the starred state. Also, be-

cause the bus stop used to be an exchange point (the starred state used to be a final state)

where passengers could transfer to other lines, the transit company has decided to make all

immediately previous bus stop(s) into exchange points (all states with transitions into the

starred state become final states).

One can think of this operation as equivalent to changing the label of the collapsed

state to the empty string E (although MSFAs cannot have strings in their labels, only sym-

bols), so that each time that state is entered, no symbol is read from any tape. The collapse

operation produces the MSFA that accepts exactly the inputs that would be accepted if this

was the case.

5.4.2. Expanding States

We can also (informally) define the operation of expanding a state into an MSFA. This

operation is in some sense the opposite of collapsing a state. It can be thought of as equiv-

alent to replacing the label of the expanded state with the set of inputs accepted by a given

MSFA, so that when the expanded state is entered, one of those inputs is scanned on the

tape(s).

Suppose we start again with the machine A in (24), and expand the starred state into

the following MSFA:

(This can be thought of as improving the bus service in a rapidly developing suburb.)

This would produce a new MSFA:

Each initial state in B (there is only one) receives incoming transitions from all the

states that had transitions into the starred state. Each final state in B (both are final) has

outgoing transitions to all the states that the starred state did. Finally, the final states of B

remain final states in A" iff the starred state was final.

Chapter 6
Modelling Autosegmental Rules

Having defined on MSFAs and MSFTs the operations of product, disjoint product, and

collapsing and expanding of states, we now need to show their usefulness in modelling au-

tosegmental rules. We start by showing how to check the well-formedness of a multi-lin-

ear encoding with an MSFA. We then take a closer look at some issues in interpreting

autosegmental rules. Finally, we take a step by step walk through the procedure for model-

ling a simple rule.

6.1. Checking Well-formedness

We will begin by considering how MSFAs can be used to check the well-formedness

of an encoded au tosegmen tal represen tation.

Recall that the alphabet of our MSFAs is C = S u (aij I i j = 1, ..., n), where S contains

the symbols that represent segments, and the au symbol is used to represent association

lines between tier i and tier j. For convenience, let us define the following subsets of E

A = {aijI i j = 1 , ..., n)

for each i j , aij= Z - (aij)
S = c - s = A

Also, let us introduce some convenient terminology for charts: chart (i, J] will refer to the

chart containing tiers i and j (and the association lines between those two tiers).

The three automata in Figure 6-1 contain the essence of all the well-formedness crite-

wij

Figure 6-1: Checking well-fonnedness with MSFAs

ria that a multi-linear code must satisfy. Mu ensures that there are no dangling association

lines in chart (i, jJ (ie. that the a g match up in pairs). Wi makes certain that on tier i, the

segments and the au are in the proper order relative to one another (ie. each tier must be-

gin with a segment symbol, and the au's that follow each segment must be in a certain or-

der). And Wii verifies that there are no double association lines in chart (i, j] (ie. that

between every matching pair of aiiYs, there is at least one intervening segment on one of

the tiers).

For example, suppose S = (W, X, Y, 2). Then Mu would accept the encoding

c W a p f l a g Y a i i Z a p p because each tier contains three association symbols. But it

would reject the encoding <WaijaijXaQ YaijZaij> because the top tier has more associa-

tion symbols than the bottom. Wi would accept <Wa,lXaii, Yai/ai> but reject

<aiiWXaij, Yabaii7 because an encoding cannot begin with an au symbol. Finally, Wii

would accept <WaiiXaii, Yaiiao> but reject <Wails,+, Yai,ao>, because W and Y are

double associated.

Actually, Mu is unnecessary, because Wii, in the process of checking for double asso-

ciation lines, also checks for dangling association lines. So Wi and Wii are all we need.

The key observation to make here is that each automaton does a small part of the

whole task of checking the well-formedness of an multi-linear code. We are working with

n-tiered representations, in general, so even though these automata only have states in one

or two partitions, there are n input tapes, and thus n partitions in each automaton. The

checks performed by these automata need to be done on each and every chart, or tier, as

the case may be. In other words, what we really need is several copies of each of these au-

tomata running in parallel on the different charts (or tiers) of the encoding. If they all ac-

cept the encoding, i t is well-formed. If any one of them does not accept it, it is ill-formed.

Thus, what we need to do is combine these automata, using the operations of product and

disjoint product, into a single MSFA that simulates all of them executing in parallel.

How can we do this? First of all, it is a simple matter to combine the-Wi using disjoint

product. The MSFA W1 0 W2 0 ... 0 W, will check all n tiers of an encoding for proper

ordering of symbols. However, combining the Wi is not so straightforward. The disjoint

product operation is not defined on the Wij because they are not tape-disjoint. And if we

take their product, we will end up with the empty automaton.

The reason for this is that each Wii actually has n-2 empty partitions. In the product of

the Wii, if a partition is empty in any Wii, that partition will also be empty in the product.

Since for each partition we can find a Wii which has that partition empty (assuming n > 2),

the product of the Wi will be the empty automaton.

If an MSFA has an empty partition, it cannot scan any symbols on the corresponding

tape. This is not rea1Iy what we want in the case of Wij. Instead, we need to specify that

those tiers can contain anything (rather than nothing). This is easily done by taking dis-

joint products with MSFA(s) that accept anything on those tiers. As a simple example, let

us suppose we are working with 3-tiered representations (n = 3), and take MI2 and M23

from Figure 6-1, as well as two other machines II and I ~ ~ :

1. We are abusing notation here by drawing several machines on the same diagram, using names to
distinguish them. We will do this in other places as well, for convenience. This could cause confu-
sion with the other interpretation of such a diagram as a single machine. We rely on the assumption
(which will be true for the examples we give) that the diagram of each individual machine will be a
completely connected graph; this will enable the reader to distinguish separate machines even with-
out the names.

M12 60 I3 will accept exactly those encodings with no dangling association lines on

chart (1,2), placing no restrictions on tier 3. In other words, if a 3-tiered encoding has

equal numbers of a12 symbols on tiers 1 and 2, then M12 60 I3 will accept it, and vice ver-

sa. Similarly I1 63 M23 will accept exactly those encodings with no dangling association

lines on chart (2,3), placing no restrictions on tier 1.

The product, (MI2 60 13) x (I1 60 M23), will accept exactly those encodings that are ac-

cepted by both (M12 60 13) and (I1 60 M23) using the same scanning pattern. Now for

multi-tiered representations, there will always be a scanning pattern involving all the tiers

by which all the association lines can be traversed in the proper order; this was shown by

Kornai ([32], 02.4.3, pp. 72-73). From this it follows that the product (M12 €3 13) x

(I1 63 M23) can accept all (as well as only) those 3-tiered encodings that have no dangling

association lines on charts (1,2) or (2,3). To complete the picture, we would have to add

Mi3, which checks chart (1,3), yielding the MSFA (M12 @ 13) x (M23 8 11) x (M13 63 12).

It is convenient to state MSFAs without making reference to tiers that are irrelevant to

the purpose at hand (as in Figure 6-1). Therefore we will do so, and use the method above

to extend the MSFAs as necessary.

6.2. Understanding Autosegmental Rules

Constructing a rigorous formal model always forces one to examine more closely the

thing being modelled to see if it is properly understood. This often leads to the unearthing

of issues that were not apparent before. It is so in our case as well: before we can model

autosegmental rules, we must understand precisely what they are, what they do, and how

they do it.

6.2.1. The NCC

An autosegmental rule is made up of two parts: the structural description (SD) and the

structural change (SC). The rule applies to a particular representation only if that represen-

tation contains the SD of the rule as a subpart. As an illustration consider the High Tone

Shift rule from the Kikuyu language ([22], p. 17):

The SD of rule (29) is (30):

The SC is everything else in the rule; ie. the small 'z' that indicates the deletion of an

association line, and the dotted line that indicates the addition of an association line.

It is usually easy to determine whether or not a rule applies to a representation. For ex-

ample, it is clear that rule (29) applies to (31) but not to (32):

However, there are some things that are not so clear. Does the rule apply to (33)?

Although this representation contains the SD of the rule, notice that if the rule were

applied, it would add an association line that crosses a line already present in the represen-

tation. This brings up the general question of whether or not a rule should apply if it cre-

ates a line-crossing situation.

As Bird and Ladd point out [7], Goldsmith is not consistent on this issue in Autoseg-

mental and Metrical Phonology; he treats the NCC differently for different types of rules.

In the case of the Association Convention and rules of unbounded spreading, the NCC is

interpreted as blocking the addition of associations that would create line-crossing situa-

tions. In describing a rule of unbounded spreading on p. 30, he says:

... the autosegment will be associated with all unassociated accessible seg-

ments on the opposite tier. ..and so will be associated to all those unassoci-

ated segments to which it can link without crossing any association lines.

Thus, a segment on the opposite tier is only accessible to another segment if they can be

associated without causing lines to cross [7]. And on page 47, Goldsmith says:

The Association Convention and rules of unbounded spreading will not

create line-crossing situations, since they are absolutely conditioned to af-

fect only pairs of unassociated segments on tiers of a chart.

Actually, this is not quite correct; he should have said "pairs of unassociated and accessi-

ble segments".

The importance of this interpretation of the NCC to the correctness of his analysis of

Sukuma verbs on p. 16,17 is duly noted:

The notable result is that of (21d), where a High tone remains unassociated

because there is no unassociated [and accessible] vowel for it to associate

with.

In contrast, Goldsmith says of language-particular rules on p. 47: -

... If a rule is formulated to add a single association line, it can, in principle,

cause a line-crossing situation. In this case, ... the line that the rule adds re-

mains, but the line that formerly existed is taken to be the offending line

and is automatically erased.

In this case, then, the NCC does not block the addition of crossing lines, but rather re-

pairs ill-formed representations by "erasing offending lines".

Under these assumptions, the rule (29) would in fact apply to (33), and produce (34).

If we take a moment to reflect on the implications of Goldsmith's assumptions, we re-

alize that they add to autosegmental rules a powerful mechanism - the ability to repair

ill-formed representations. Suppose we have a rule that adds an association line between

two segments A and B, and consider a representation that matches the SD of this rule. If A

and B are a considerable distance apart in the representation, then this rule has the poten-

tial to wipe out all association lines in its path between A and B. This kind of extra power

could get out of hand, allowing rules to do things they were never intended to do, which

would at the very Ieast force the phonologist to be cautious when writing rules.

In order to interpret the NCC consistently, and to avoid the possible danger of phono-

logical rules with runaway power, we have chosen to block a rule from applying if it

would create a line-crossing situation. The next section lends support to this conclusion.

6.2.2. Limits on the Number of Associations Per Segment

The NCC is one well-formedness constraint2 to which Goldsmith grants the power to

repair ill-formed representations. He extends this kind of thinking to another well-formed-

ness constraint. Each tier has a minimum and maximum number of associations allowed

per segment. Possible violations of this condition are discussed on p. 18, 19:

... it is incumbent on us to explain, therefore, what happens if the number of

tones on a vowel should exceed the maximum, or not reach the minimum.

If the maximum is exceeded during application of a rule:

... the tone assigned by the rule is maintained, but the earlier tone is dissoci-

ated.

This repair strategy is well-defined if the maximum is 1, but suppose the maximum is

2. In this case, if a rule associates a tone to a vowel that already has two tones, one of these

two tones must be dissociated, but which one? The phrase "the earlier tone" is ambiguous.

Even if we were to make it more precise, what criterion should we use to choose between

the two earlier tones? The only reasonable criterion seems to be "the outermost tone on the

side where the new tone is associating". Whether this criterion is supported by real lan-

guage data has yet to be determined.

Furthermore, what repair strategy are we to use if a rule causes a vowel to have less

than the minimum allowable number of tones? Suppose the minimum is 1, and that a rule

dissociates the last vowel from a tone. Then we need to immediately find a tone to associ-

ate to this vowel. Should we reassociate the one that was just dissociated? This would be

equivalent to blocking the rule, if it does nothing else besides the dissociation. The choice

of any other tone would be arbitrary at best, and capricious at worst.

6.2.3. Summary

Granting well-formedness constraints the power to repair ill-formed representations is

2. Our use of the term "well-fomedness constraint" is not to be confused with Goldsmith's Well-
Formedness Condition (WFC).

clearly problematic. It necessitates more clearly defined repair strategies than have yet

been proposed (we offered a few crude first attempts above). Also, it forces an inconsis-

tent interpretation of the No Crossing Constraint. Finally, it is more difficult computation-

ally. The alternative, a consistent interpretation of all well-formedness constraints as

blocking rules that would create well-formedness violations, is computationally straight-

forward within the model we have chosen.

6.3. Modelling an Autosegmental Rule

There are several steps in the process of constructing an MSFA that models an auto-

segmental rule. We will demonstrate this process for the High Tone Shift rule, repeated

here for convenience:

Up to this point, we have represented all association lines using a0 symbols, one for

each chart. But there are (at least) three different types of association lines relative to an

autosegmental rule: (1) those that are part of the input representation but are not explicitly

mentioned in the rule, (2) those that are part of the input representation and are explicitly

mentioned by the rule (including those that will be deleted by the rule), and (3) those that

are added by the rule. In what follows, we will differentiate between these three types of

links (which we briefly refer to as background, foreground and added lines), using the

symbols aij, aij', and aij' respectively in the labels of MSFA states (the alphabet Z will be

replaced by the larger alphabet C = C u [ad , a i l)) . This distinction will later be done

away with. The reason for it will become clear as we go along.

Think of all three of these symbols as being the same when it comes to matching en-

codings (ie. they all match an aij symbol in an encoding), but different as far as MSFAs

are concerned (the distinction will be maintained as we combine various MSFAs in the

process of constructing an MSFA that models this rule). This dual interpretation will be

justified in the end, because in the last step of the process, all state labels containing a$

and a,;' will be modified so that they only contain aw

6.3.1. Matching a Structural Description

We start with the following two automata:

The basic purpose of these automata is to verify that the encoding on the input tapes

containsthe SD of the High Tone Shift rule:

This SD can be expressed as a pair of regular expressions R = ~Z*V~(~ 'CVZ* , Z H U ~ Z * > ,

together with the stipulation that the two a$ symbols in R are a pair, ie. they refer to the

same association line.

SDi @ SDj accepts all encodings that match R. As it accepts an encoding, it makes a

distinction between foreground and background association symbols by virtue of which

state it uses to scan an association symbol. If it uses a state labelled a i , it is interpreting

the aii symbol being scanned as part of a foreground line. If it uses a state labelled Z

(which contains aij but not a i) , the aq symbol being scanned is being interpreted as part

of a background line.

But there is a problem. Consider representation (32), which we repeat here for conve-

nience:

This representation would be encoded as <Va,jcVCVa+ LaoHaii>. SDi @ SDj ac-

cepts this encoding, because it does match R. But rule (35) does not apply to representa-

tion (32). The problem is that the aii symbols in the encoding that are interpreted as parts

of the foreground line in the rule do not correspond to the same association line in the en-

coding.

This problem is easily solved using the product operation and the machines IMq and

IMii below, taken from Figure 6- 1 (recall that the bar notation means set complement):

IMil and IM$ scan association symbols in pairs. I M i scans foreground association sym-

bols, and IMij scans background association symbols. Their product will scan in pairs all

the association symbols in an input encoding, ensuring that each pair corresponds to an as-

sociation line. In other words, once an aij or ai; is encountered on one tape, it must be en-

countered on the other. The states labelled X will accept any number of symbols which are

neither aij nor aii.

Thus, in order to verify that an input encoding matches R and that the association sym-

bols that are interpreted as parts of foreground lines actually do form pairs in the encod-

ing, we need the automaton SDii = (SDi @ SD,) x (IMu x M i) .

A second point needs to be made about the aii symbols. Consider again the SD in (37).

What precisely does it say about the representation to which the rule can apply? It says

that certain segments must be present on the two tiers, and that some of those segments

must be associated in certain ways. Notice, however, that the segments may have other as-

sociations (within this chart, not to mention associations to other tiers) that are not men-

tioned by the SD. As Goldsmith says on p. 39:

If an autosegment is multiply associated while a rule mentions only one of

the lines in its structural description, will the rule apply? ... If the rule

changes or deletes the autosegment(s) in question, then the rule will not ap-

ply; ... If the function of the rule is to add or delete an association line, then

the rule will apply in any event.

(This condition on the application of rules is referred to as the Conjunctivity Condi-

tion, and will come up again in this chapter.) We will come back to the question of opera-

tions that change or delete autosegments, but the High Tone Shift rule has no such

operations (it only operates on association lines). So any of the segments mentioned in

rule (35) may have other association lines besides those mentioned explicitly in the SD.

This includes segments like the second V which have no associations mentioned by the

SD. (If a rule needs to specify that a segment has no associations at all (within the chart(s)

explicitly mentioned by the rule), then the segment must have a circle around it.) This,

then, means that our automaton SDii is incomplete. It does not allow for other association

lines.

The following MSFA accepts an a9 symbol preceded and followed by any number of

other association symbols:

Each state in SDi and SDj labelled with an a+ needs to be expanded into the MSFA

Ad SO that these other association lines can be scanned (recall the definition of the expan-

sion operation in Section 5.4.2.) For example, SDj would become:

Also, the following MSFA accepts a segment So followed by any number of other as-

sociation symbols:

In the same manner, each state in SDi and SDj labelled with a segment symbol (in this

case, V, C, or H) must be expanded into the MSFA So, where the label So is replaced by

the appropriate segment symbol. If, in the SD, the particular segment had a circle around

it, indicating that this segment had no associations on chart (ij), then we could also

change the label A in So to A - {aii).

Given that we have this mechanical procedure for expanding automata to account for

extra association lines, we will proceed to draw all our diagrams unexpanded, since they

are much easier to read that way.

6.3.2. Inserting and Deleting Segments and Association Lines

Recall our automaton SDij = (SDi O SD,) x (IMij x IMij'). Now so far SDii only deals

with the input encoding. We must also produce an output encoding. The first step towards

this is the identity transduction MSFA:

This is the identity transduction machine for tier k, with two states for each symbol in

the alphabet Z' = (o I , 02, ..., olrl). It reads any string on the k" input tape and writes it on

the kLh output tape. Now SDij so far only reads from input tapes (i and J?, so we start by

factoring in a machine that scanslprints anything on an output tape:

SDij 0 OXi C3 OXj reads an input encoding that satisfies the SD of the High Tone Shift

rule, and allows anything at all on the output tapes. Now that we have a machine whose ith

and jth input and output partitions are non-empty, we can factor in the identity transduc-

tion on each tier. Then we have our first MSFA approximation to the High-tone Shift rule,

HSO = (SDij 63 OXi C3 OXj) x (IDi C3 IDj). This machine reproduces on the output tapes any

input encoding that satisfies the SD. If the input encoding does not satisfy the SD, the ma-

chine faik3

Now HSO is closer to what we want, but of course we have done nothing yet about de-

leting and inserting association lines. How do we do this? The beginning of the answer is

to go back to square one and change SDi and SDj (which we first introduced in (36)) so

that the association line that is added becomes part of the SD, as shown in (45). This may

seem a little strange, but bear with us for the moment :

3. We will say more about the machine's failure once we have finished showing how it simulates a
rule.

The basic idea is this: HSO will reproduce this extra association line on the output

tapes. To get a machine that will insert and delete association lines (or segments), we col-

lapse states in HSO (recall the definition of the collapse operation in Section 5.4.1.). If we

want a segment or an association line to be inserted (as in our example), we collapse the

state(s) that scan it on the input tape. If we want a segment or association line to be delet-

ed, we collapse the state(s) that write it on the output tape.

We have introduced the third type of association line, the added line, into our automa-

ton SDv Accordingly, we will factor in another machine IM;, which scans ai/' symbols

in pairs. It is easy to extrapolate from (39) and see what IMii x I M i x IM(would look

like: it would scan all three types of association symbols in pairs. We redefine SDii (and

therefore HSO) as SDij = (SDi 8 SD,) x (IMg x IM,j' x IM;) This will be important when

we discuss the NCC below.

In our example, there are two starred states in SDi and SDj that correspond to the add-

ed association line. We have said that in order to simulate the insertion of that association

line, we must collapse the states in HSO that scan it on the input tapes. But HSO has many

more and different states than SDi and SDj. The question is, which states in HSO corre-

spond to the added association line?

The answer is that one must keep track of which states correspond to the added associ-

ation line (ie. are "starred") as the product and disjoint product operations are performed.

Both of these operations produce machines whose states are pairs of states from the factor

machines. So the answer is quite straightforward: in a product machine, state-pairs which

contain a starred state in either position will also be starred states; in a disjoint product

machine, state-pairs which contain a starred state as the second element of the pair will

also be starred states (see Definition 5-4). This means that there will be many starred states

in HSO corresponding to a single starred state in SDi or SDj

We need to notice two things about the way we have simulated a phonological rule

with an MSFT'. The automaton searches (non-deterministically) in the input encoding for

exactly one occurrence of the SD of the rule, and either changes the encoding at the point

where the SD is matched, or fails if it cannot match the SD. This is not consistent with the

usual interpretation of phonological rules on two counts: (1) A rule ought to apply at all

points where it can match the SD, not just one, and (2) if the SD cannot be matched, the

rule should have no effect (ie. output the input encoding unchanged) instead of rejecting

the input.

Let us briefly mention two possible strategies for solving these problems. One strategy

would be to add a meta-level mechanism above the rule transducers which feeds input en-

coding~ into them and executes them. This mechanism could detect transducer failure and

act accordingly, and could also reapply a rule to its own output until all possible applica-

tions of the rule are exhausted. This, however, adds extra computational power to the

overall model. An alternative strategy is to construct, beginning with the automata we

have presented, more complicated rule automata which can perform the structural changes

specified by the rule in each place that the SD can be matched, which means performing

the identity transduction if the SD cannot be matched.

6.3.3. The NCC Revisited

HSO enforces the NCC. To see why this is so, consider the following observations.

First, the factor (IDi 8 ID,) imposes the scanning pattern of the input tapes onto the output

tapes. In other words, the output tapes must be scanned with the same pattern as the input

tapes. This is because each symbol that is read on the input tape is immediately written on

the corresponding output tape before the next input symbol is read.

Second, when any pair of association symbols is scanned, the two symbols are

scanned in immediate succession. No other input symbol can be scanned in between. This

means that there will be a point during the execution of HSO when the input tape heads

will simuItaneously rest on both of the association symbols in that pair.

Because this is true on the output tapes as well as the input tapes, it would be impossi-

ble for HSO to add an association line that created a line-crossing situation. For example,

given the following input representation:

HSO could not produce the following output:

This output representation would have the encoding <Va$Va{, Haii1La0>, where we

have indicated the interpretations that HSO would have to place on the various association

symbols. According to our previous arguments, the output tape heads would at one point

have to rest simultaneously on the c r ~ pair, and at another (earlier or later) point, rest si-

multaneously on the air pair. This is impossible, because MSFAs cannot scan backwards,

which is what HSO would have to do to perform this feat.

Therefore, HSO would fail when trying to apply the High Tone Shift rule to representa-

tion (46). This is equivalent to the blocking of the rule, which, as we have already argued,

is the most reasonable course of action when a rule is faced with the option of creating a

line-crossing situation.

6.3.4. Well-Formedness Constraints Revisited

When an autosegmental rule applies to a representation, its output must conform to

certain well-formedness constraints. There are three of these that could be violated:

no "double" association lines

the Conjunctivity Condition

upper and lower limits on the number of associations per freely associating segment

Accordingly, we need to make sure that HSO enforces these well-formedness con-

straints on its output. We will present two automata, OWij, and LAii, which scan the out-

put tapes and enforce the first and last constraints. We also describe a different technique

for enforcing the Conjunctivity Condition. We can then define HSI = HSO x (1% 8 Ej @

(OWo x LA$), which will incorporate these constraints into our MSIT model of the High

Tone Shift rule.

Some well-fonnedness constraints do not need to be enforced. These include 'no "dan-

gling" association lines' and 'proper ordering of symbols on the tiers'. The reason these

don't need to be checked is that that they will never be violated. If we assume that we start

with well-formed encoding, our rule automata are constructed in such a way as to main-

tain these kinds of well-formedness; they never attempt to write symbols on the output

tapes in an improper order, or to write unequal numbers of association symbols on facing

tiers. We only need to check well-formedness constraints that stand in dcnger of being vi-

olated by the application of a rule.

6.3.4.1. Double Association Lines

Consider the following representation:

This representation contains the SD of the High Tone Shift rule at its leftmost end. But

does the rule apply here? The association line that the rule would add at this point is al-

ready present. Again, this is an issue that Goldsmith does not consider, so we can only of-

fer suggestions. The alternatives are (1) the rule does not apply here because the

association line is already present, (2) the rule applies in any case, and deletes the first as-

sociation line, but does not add an association linee4

The first of these alternatives seems the most natural for two reasons. First, option (2)

involves partial application of a rule: part of the rule takes effect and part does not. This

concept is not found in the literature; a rule either applies completely or it doesn't apply at

all. Also, partial application of the High Tone Shift rule does not accomplish the purpose

for which the rule was written, namely, to shift the association of the high tone from one

vowel to the next. In other words, the deletion and the insertion are an integral package

that cannot be divided up without defeating the purpose of the rule. In general, it seems

4. We assume that autosegmental representations cannot have double links, which eliminates the
possibility of a third alternative, namely, adding the association line anyway, resulting in a double
association line. Double association lines are only possible in the encoding of an autosegmental
representation. Multiple association lines in the representations themselves would have undesirable
empirical consequences such as having some segmenls more strongly associated than others (ie.
requiring more than one delinking to dissociate them).

that for any rule, the possibility of partial application would allow the rule to apply in situ-

ations where it does not accomplish its purpose. Therefore we will choose option (1) for

our model.

We have already seen in Figure 6-1 the automaton Wij that prevents double association

lines. OWij is just the version of this machine that operates on the output tapes:

This factor OWil ensures that the output encoding will have no double association

lines. Therefore, the rule will be blocked from applying in situations where it would add

an association line between segments that are already associated.

6.3.4.2. Limits on the Number of Associations Per Segment

For each chart (i, j), and each tier k within that chart, there is a subset Fijk c S desig-

nated freely associating segments. Only these segments are allowed to have association

lines in chart (i, j). And there are upper and lower limits on how many association lines

they may have (although these limits may be 00 and 0 respectively).

Correspondingly, on each tier we could define Nijk = S - FUk, the set of all non-associ-

ating segments on tier k in chart (i, j).

LAii will be the automaton that scans the output tapes and enforces limits on the num-

ber of associations per segment. Here is the version of LAii in the case where the mini-

mum is 1 and the maximum is m:

If there was no upper limit on the number of associations, then we could delete the

states numbered 2 through m, and put a self-loop on state 1. If the lower limit was higher

(say 1 > I), then there would be no transitions from states 1 through 1-1 going back to the

left. If there was no lower limit (ie. it was O), there would be a self-loop on the state la-

belled Fijk and a transition from it to the state labelled Nuk

Keep in mind that all the states in this machine need to be expanded as discussed earli-

er to allow for association lines from this tier to other charts besides (i, J].

6.3.4.3. The Conjunctivity Condition

Recall from page 79 that the Conjunctivity Condition states that a segment cannot be

modified or deleted unless all its association lines on the appropriate chart(s) are men-

tioned in the SD of the rule. This condition makes things convenient: it means among oth-

er things that we will not create dangling association lines5; we will never have to worry

about the choice between deleting them or reattaching them or blocking the rule -- the

choice is already made for us -- block the rule. This is a simple matter of not allowing any

association symbols (on the appropriate chart(s)) besides those explicitly mentioned by

the rule. For example, take the rule of Sandhi Lowering in KiHunde ([22], pp. 37-39):

Because the first High tone is being modified, the rule must explicitly mention d l of its

associations to the CV tier. If there are any other associations, the rule will not apply (ie.

will block). Therefore, when constructing the MSFT for this rule, we would have to begin

with the following expanded automaton SDj for the lower tier ('I' represents a word

boundary):

5. Except that we may create dangling lines if the deleted segment has associations to charts other
than the ones mentioned in the rule.

90

where A' = A - {aii). In other words, when we are expanding the aii states, we expand the

one next to the first H with a slightly different automaton.

6.3.5. The Final Step

The last step in the process of modelling the High Tone Shift rule is to change the state

labels of HSl that contain a,; or a/. For every state Q in HSl, if h (~) n {aj;, a(') # 0,

then let h (~) = h (~) - { a t , ai;') u {aii). This means that every state that before accept-

ed a(or a/ will now instead accept aii This eliminates the distinction between back-

ground, foreground, and added lines. The distinction is no longer needed - it has served

its purpose in affecting the structure of the MSFT we created to model the High Tone Shift

rule. The structure of the MSFT is such that it will enforce the NCC, as we described

above.

6.4. Summary

We have shown above that the basic autosegmental mechanisms of addition and dele-

tion of association lines and segments can be performed by MSFTs. There are some other

mechanisms that we have not dealt with, but which can also be performed by MSFTs.

These include modification of segments; recognizing boundaries between morphemes,

words, and phrases; unbounded spreading, and the Association Convention.

The user of a computational tool based on this model would not have to concern him-

self with the details of MSFTs. He could simply specify autosegmental representations

and rules in autosegmental notation (by means of a graphical user interface, perhaps).

Representations could then be converted to multi-linear codes. A rule would be converted

into regular expressions, and from these regular expressions, the automata shown above

could be automatically constructed. These automata would be combined into a single

MSFI', which would then be executed on the multi-linear codes to simulate the action of

the rule.

If a graphical interface was too tedious, or a way of specifying representations and

rules in a text file was needed, then autosegmental representations could be specified as

multi-linear codes, and rules could be described using regular expressions, along with

some other notation.

This chapter, then provides a proof of concept for the idea that MSlTs can implement

autosegmental rules. By going through a specific example, we have exemplified the gener-

al principles of combining MSFAs and MSFTs into rule automata.

Chapter 7
Computational Power of MSFAs

We have already made allusions to the fact that MSFAs have more theoretical comput-

ing power than FSAs. In this chapter we substantiate that claim and make some prelimi-

nary investigations into the class of formal languages accepted by MSFAs.

7.1. Interpreting MSFAs as Language Acceptors

MSFAs, strictly speaking, do not accept languages; rather, they accept n-ary relations

[34]. They do not accept single words, but n-tuples of words, one word on each tape.

Therefore, in order to talk about the class of languages accepted by MSFAs, we need to in-

terpret an n-tuple of words in some way as a single word. In our case, this means interpret-

ing multi-linear codes as linear strings.

The main reason for interpreting MSFAs as language acceptors and multi-linear codes

as single words (linear strings) is so that we can investigate the computational power of

our model in a way that is comparable with Kornai's model [32]. Kornai uses transducers

to process linear strings; we can conceptually view our model as doing the same. Once we

have done this, we will find that one of the fundamental differences between our model

and Kornai's is a difference in computational power.

There are two obvious possibilities: the words of an n-tuple can be combined into one

word either in series or in parallel. In the former case, the n-tuple <wl, w2, ..., wn> is in-

terpreted as the word wlw2 ... w,. In the latter case, it is interpreted as a single word over an

alphabet of n-tuples of characters. Individual letters of the words are combined into n-tu-

ples in parallel. For example, the 3-tuple <ab, cd, ef> would be interpreted as the two-let-

ter word <a,c,e><b,d,f>, consisting of 3-tuple characters.

Which method should we choose? With a series interpretation, many n-tuples would

be interpreted as the same word. For example, <aa, bb, cc>, <a, abbc, c> and <aab, bc, c>

would all be interpreted as the word aabbcc. In our application, many encodings of auto-

segmental representations could be interpreted as the same formal language word. This in-

terpretation would mean losing the 1-1 property of our linear encoding when moving to

the formal language domain.' On the other hand, the parallel interpretation yields an in-

vertible mapping of encodings.

More importantly, the series interpretation loses all intuition that there is a temporal

connection between segments on the different tapes.2 This intuition is also lost in the par-

allel interpretation, but not to as great an extent, because there is some sense that segments

in different co-ordinate positions within the n-tuples can overlap in time.

Finally, under the series interpretation, an MSFA can accept strictly context sensitive

languages. In particular, it is easy to see that an n-tape MSFA can accept the n-tuple

<w, w, ..., wz, which under a series interpretation is the language (G I w E z*). For a 2-

tape MSFA, this is the language ww, which is strictly context sensitive. We will see below

that under the parallel interpretation, an n-tape MSFA cannot accept ww for any n. There-

fore, the series interpretation leads to a more powerful kind of automata.

For all these reasons, we have chosen the parallel interpretation of input words on the

tapes of an MSFA.

Consider representation (21) from Chapter 4. Its encoding was the 3-tuple:

1. There would be no way to invert this mapping to go from the formal language word back to the
encoding, unless each tier had a special end-of-tier marker, or unless segments could not appear on
more than one tier.
2. Jo Calder (personal communication).

(53) all

c2v1c2c2v1c2

k2t22b2

Under the parallel interpretation, this would be interpreted as the following word,

where we have written the 3-tuple letters vertically:

Since all the words in an n-tuple will not necessarily be the same length, we must intro-

duce a new symbol "-" into our alphabet X as a kind of place-holder, to explicitly represent

the blank symbol.

7.2. Beyond Regular Languages

Clearly MSFAs can accept all regular languages, since one-tape MSFAs are equivalent

to FSAs. But MSFAs can accept non-regular languages as well. The intuitive reason for

this is that an MSFA scanning a word encoded in parallel on its input tapes in the manner

described above can scan different parts of the word at the same time.

Let us make an analogy to FSAs. It is easy to see that an FSA with two independent

read heads scanning the same input tape can accept the (non-regular) context free lan-

guage ambm, because one of the read heads can skip over the a's, and then the two heads

can compare the a's and b's, symbol for symbol. In this way the FSA can take advantage

of the ability to scan different parts of the word at the same time. MSFAs have a similar

kind of ability. Their read heads can scan n-tuples separated by arbitrary distances, and

each head reads one co-ordinate of the n-tuple under it. Although they cannot compare

whole n-tuples, the ability to compare widely separated co-ordinates like this is enough to

give them extra computational power.

It is precisely this ability to scan different parts of an input word at the same time that

is so important in modelling autosegmental rules. Association lines can associate seg-

ments in any part of one tier to segments in any part of the facing tier. Ln order for any

computational device to efficiently process autosegmental representations, it must be able

to scan two associated segments from widely separated parts of the representation at the

same time. Kornai's model is based on standard FSAs and FSTs, which do not have this

ability. This is the basic source of some problems with his model, as we will argue later.

MSFAs, by taking advantage of this ability, can accept non-regular languages. Specifi-

cally, they can scan 2 symbols on one tape for every one symbol scanned on another tape;

or scan 3 symbols for 1; or k symbols for 1, for any fixed k. For example, Figure 7-1 and

Figure 7-1: Context free languages accepted by MSFAs

Figure 7-2 show how MSFAs can accept languages that are homomorphic to xmym,

xmymzm, and wlxmylzm. In this context, the homomorphisms map n-tuples to symbols; eg.

in Figure 7-1, we can map <a, a> to x and <-, a> to y to show that L(A1) is homomorphic

to xmym.

7.3. The Chomsky Hierarchy

However, MSFAs cannot recognize all context sensitive languages, or even all context

free languages. To show this, we appeal to a theorem of Rabin and Scott ([34], p. 124),

Figure 7-2: Context sensitive languages accepted by MSFAs

97

which we restate below in terms of MSFAS:~

Theorem 7-1: Let A be a deterministic two-tape MSFA. The set of all words wl for

which there exists some word w2 such that <wl, w p is in L(A) (ie. the domain of the

[binary] relation defined by A) is definable by a state-labelled finite automaton (SFA).

An SFA defining this set can in fact be constructed effectively from A . ~

This theorem can be generalized to MSFAs with more than two tapes, as Rabin and

Scott claim. It can also be generalized to non-deterministic MSFAs, a question which

Rabin and Scott did not consider.

This theorem means that the languages accepted on each individual tape of an MSFA

must be regular. This is. a useful tool for proving that certain languages do not belong to

the class of languages accepted by MSFAs (henceforth referred to as MSFA languages).

For example, we know that the following language cannot be an MSFA language:

for the simple reason that the language accepted on the first tape is ambm, a non-regular

language. So this is an example of a context free language that is not an MSFA language.

Notice that language (53, like the language in Figure 7-1, is homomorphic to ambm.

Yet one is an MSFA language and one is not. This is counter-intuitive. Most of the lan-

guage classes in the Chomsky hierarchy that have been investigated so far are closed un-

der homomorphism. This is not the case with MSFA languages.

We also have an example of a (strictly) context sensitive language ([14], p. 366) that is

not an MSFA language. We can again use Theorem 7-1 to show that:

3. It is easily proved that the deterministic version of our MSFAs is equivalent to Rabin and Scott's
mu1 ti-tape automata.
4. It would be interesting to answer the following question: Is this effective procedure of Rabin and
Scott's equivalent to collapsing all the states in the other partitions?

Theorem 7-2: No language (ww I w E A*) (IAl > 1) is accepted by an n-tape MSFA for

any n.

Pmof: Suppose that L = (ww I w E A*} is accepted by an n-tape MSFA M (A is an

alphabet of n-tuples, with IAl > 1). We will show that this is impossible by

contradiction.

Since IAl > 1, we can find two n-tuples in A which differ in some ih co-ordinate.

Let Ai be the alphabet of symbols that appear in the i" co-ordinate of n-tuples in A

(IAil > 1). Note that equality of n-tuples is based on co-ordinate-wise comparison.

From this it follows that since M accepts only words of the form ww, it accepts only

words of that form on tape i. Also, for every word wiwi, wi E A;, there is a word ww,

w E A*, accepted b; M, whose projection on the iLh co-ordinate is wiwi. Thus M ac-

cepts all words of the form ww on tape i.

So M accepts a (strictly) context sensitive language on its ih tape. This contradicts

Theorem 7- 1 above. 0

7.4. An Upper Bound

To summarize so far, we have shown that MSFAs can accept all regular languages,

some (but not all) strictly context free languages, and some (but not all) strictly context

sensitive languages. To cap off our investigation of the formal computational power of

MSFAs, we will show that they cannot accept non-context-sensitive languages. We will do

this by simulating an MSFA with a linear bounded automata (LBA), which is the machine

equivalent of a context sensitive grammar [23].

Theorem 7-3: An LBA can simulate an n-tape MSFA.

Proof: We will describe the ideas of the proof intuitively. The proof is easier using the

transition-labelled version of multi-tape FSAs, so we will simulate a multi-tape

transition-labelled finite automata (MTFA) and invoke their equivalence to MSFAs.

The technique is to use an LBA with an n-track tape (which is equivalent to an

LBA with an alphabet of n-tuples). Since this LBA has only one read head (scanning

all n tracks), it will have to remember the position of the n simulated read heads of the

MTFA using special symbols, and make up for its lack of read heads by its ability to

scan in both directions instead of just one.

An LBA can use special symbols to mark positions on the tracks as follows. For

each symbol s in the alphabet of the MTFA, the LBA wilI have two symbols: s and s'.

If the LBA scans s' on the ith track, it will know that the simulated read head on the i~

track is positioned there, about to scan the symbol s.

At each execution step, an MTFA is in a state that dictates which tape is to be read

from. It reads from this tape, advancing the read head over one symbol, and depending

on what that symbol is, makes a transition into another state. This can be simulated as

follows. Because there are a fixed finite number (n) of input tapes on the MTFA, the

LBA can use its states to remember what tape (track) it is currently reading from. Sup-

pose this is tape i. It reads a symbol from track i by resetting its read head back to the

beginning of the tape, and scanning forward until it sees a special symbol s' on track i.

It then rewrites s' as s, and makes a transition based on having read s on tape i (simu-

lating the corresponding transition in the MTFA). This transition would include re-

cording (in the state information) which tape is now to be read from, based on what

partition the MTFA transition entered. Then the symbol t to the immediate right of s on

the tape would be rewritten as t', to simulate the movement of the head on that tape.

This is all straightforward. We only need to observe that this can all be done in

space bounded by the length of the input; in fact, it is done in exactly the space taken

up by the input. The final states of the LBA will be based on the final states of the

MTFA, so that the two machines will accept exactly the same inputs. This completes

the proof. 0

This shows that the class of MSFA languages is contained in the class of context sensi-

tive languages. The containment is proper, since ww is not an MSFA language..

We summarize our findings with Figure 7-3, a diagram of the Chomsky hierarchy. The

Figure 7-3: MSFAs and the Chomsky Hierarchy

four circles, recall, represent the regular (R), context free (CF), context sensitive (CS) and

recursively enumerable (RE) languages. The shaded region indicates the MSFA languages

and their relationship to this hierarchy.

Chapter 8
Evaluation

In this final chapter, we compare and contrast our model with various other models

that make use of finite state automata. In doing so, we evaluate the model based on the

three criteria of adequate expressive power, faithfulness to autosegmental theory, and suit-

ability as a basis for a computational tool. We also suggest possible directions for future

research.

We will consider four quite different approaches to modelling a theory of phonology

using finite state automata. The earliest work on finite state autosegmental phonology was

by Kay [29]. The KIMMO system is based on the two-level phonology of Kimmo Kosk-

enniemi [33]. Two other approaches, proposed by Kornai [32] and Bird & Ellison [8], are

based on autosegmental theory.

8.1. Kay and Multi-Tape Transducers

8.1.1. Computational Power

A well-known application of FSTs to Arabic morphology and phonology was made by

Kay [29]. In this work, Kay made use of multi-tape FSTs, claiming that they had no more

than finite state power. *
He begins by describing a transducer with four tapes, three of which are interpreted as

input tapes, and one as an output tape. It has only one read/write head: "...when the autom-

aton moves from one state to another, each of the four tapes will advance ..." Here he is

safely within the bounds of finite state power, because this is nothing more than a four-

track FSA, which is equivalent to a single tape FSA with an alphabet of 4-tuples.

However, he goes on to say (p. 5):

I shall allow myself some extensions to this basic scheme which will en-

hance the perspicuity and economy of the formalism without changing its

essential character. In particular, these extensions will leave us clearly

within the domain of finite state devices.

These extensions of which he speaks include notational extensions which allow the trans-

ducer to advance (or not advance) each tape independently.

As Bird & Ellison point out ([8], p. 41), "the claim that his model is a [finite state]

transducer is unsubstantiated." In fact, his transducer is not finite state; it is a 4-tape

MSFA, with 3 tapes considered as input tapes and 1 considered as an output tape.'

That this device is not finite state can be seen from results reported by Fischer [17]. He

defines D, and N, as the classes of sets of n-tuples accepted by the deterministic and non-

deterministic versions of n-tape FSAs, respectively. He then notes that D, is not closed un-

der any of the operations that regular languages are closed under, except set complementa-

tion (it is not closed under union, intersection, input reversal, concatenation, or Kleene

closure). Also, although N, is closed under many of these operations, it is not closed under

complementation or intersection. If multi-tape FSAs were finite state devices, the sets that

they accept would be closed under all these operations (see Section 2.3.2.). We have seen

in Chapter 7 that multi-tape FSAs have somewhat more than finite state power.

The problem arose when Kay gave his transducers the ability to advance each input

tape independently, which is as much as to say that each input tape has an independent

read head. Now, with an FST (one input and one output tape), the ability to advance the

output tape independently from the input tape does not increase the computational power,

1. This is a generalized kind of MSFT, with uneqwl numbers of input and output tapes (see Defini-
tion 3-6 and footnote).

this is generalized sequential transduction, which still specifies regular relations, although

it allows relations between words of unequal length [14]. But to allow one input tape to

advance independently of another input tape is quite another matter. This allows the trans-

ducer to scan different parts of the input at the same time, which gives it extra computa-

tional power (see comments above in Section 7.2.).

It is revealing that in an attempt to process non-linear representations with finite state

automata, Kay unknowingly resorts to something more powerful to get the job done. This

can be taken at least as circumstantial evidence that more power is needed. In any case,

this thesis contributes a proper understanding of the multi-tape automata that Kay used to

deal with Arabic morphology and phonology.

8.1.2. Association

Another point of comparison between Kay's work and ours has to do with representing

association lines. Kay has morphemes written on the tapes of his transducers without any

indication of the associations between the segments in those morphemes. He takes it as the

task of his transducers to determine what those associations should be. For example, from

the three morphemes a , CVCCVC, and k t b , his transducer deduces that the a should be

associated to the two v slots, the t to the two center C slots, etc. (see (20) in Chapter 4);

thus it writes out the correct form k a t t a b on its output tape.

We could divide the action of Kay's transducer into two conceptual tasks - a phono-

logical one and a morphological one. First, it properly associates segments, a task that

would be done by a set of autosegmental rules plus some other conventions like the Asso-

ciation Convention. Second, it combines the three tiers into one according to those associ-

ations, producing a linear representation.

The association lines that the transducer adds are not explicitly represented on the

tapes, but are implicit in the the way the transducer scans the tapes. In a sense, the associ-

ations are encoded in the transition function of the transducer. If a segment is scanned si-

multaneously with a C or V slot, and is written to the output tape, this represents an

association between the segment and the C or V slot.

By contrast, we encode the associations explicitly on the tapes of our automata using

special association symbols. This is because the scope of our work is broader than Kay's.

He is not modelling the whole of autosegmental theory, but just its application to a partic-

ular set of Arabic data. In fact, he is more concerned with morphographemics (the interac-

tion of morphology and orthography) than with phonology. It so happens that for the data

he considers, there are no underlying forms with lexically specified associations. His mod-

el could not deal with data like this. Since ours must, we have moved the encoding of as-

sociations out of the transducer into the encoding of the representations. In our transducers

we encode the more general principles of autosegmental rules which add and manipulate

association lines.

8.2. Koskeniemmi and Two-Level Phonology

8.2.1. Background

Antworth [3] gives a summary of the history leading up to Koskenniemi's work on

two-level phonology, and the KIMMO system which resulted from it. In an unpublished

conference paper ([30]; see [28]), Kaplan and Kay suggested the possibility of implement-

ing the ordered rules of classical generative phonology as a series of cascaded FSTs, the

output from each transducer feeding into the input of the next in sequence. Automata the-

ory tells us that it is possible to combine a series of FSTs like this into a single equivalent

FST which would produce the surface form directly from the underlying form.

The difficulty with this, as Koskenniemi found, was that the number of states in the

combined FST got prohibitively large, and made the computational model inefficient. So

he chose a different model: instead of having the FSTs operate in series, he had them oper-

ate in parallel. A bank of FSTs would execute in parallel, together generating the surface

form from the underlying form. These FSTs would in fact share the same readwrite heads.

Again, it is possible to combine such parallel FSTs into a single equivalent FST, but this

time more efficiently; that is, the number of states in the combined FST is much smaller.

These parallel FSTs could also be viewed as accepting pairs of underlying/surface

forms. A pair is accepted only if it is accepted by all the parallel FSTs. As Kay points out

[29], it is only because the FSTs share readwrite heads that they can be combined into

one. Although FSAs are closed under intersection, it is not possible in general to find an

FST that accepts the intersection of the regular relations accepted by two FSTs, if empty

transitions are allowed. For example, the intersection of the regular relations <amb*, c 5

and <a*bn, cn> is the non-regular relation <anbn, cn> [29, 361. But it is possible, when the

FSTs are required to share the same tape heads, and thus use the same scanning pattern

when accepting their inputs, to find an FST that simulates both executing in parallel.

We generalized this idea of sharing the same readwrite heads when we defined our

product operation on MSFAs. The generalization was to more than one input tape or more

than one output tape. The point of contact is with 2-tape MSFAs (1-tape MSFTs), which

can likewise accept <amb*, cm> and <a*bn, cn>, but not <anbn, cn>.

The implementation of two-level phonology was dubbed KIMMO. It actually incorpo-

rates two finite state models--one for phonology as described above, and another one for

morphology. It has served widely as a useful tool for morphological and phonological

analysis [37,3].

8.2.2. Non-linear Representations

However, from a phonological perspective, two-level phonology has an important lim-

itation: its representations are linear. The linear phonological representations of classical

generative phonology have now been superseded by non-linear representations. Antworth

([3], p. 12) notes this limitation, saying, "[KIMMO] does not support non-linear represen-

tation, and it is not clear how finite state phonology could be modified to do so."

We can now offer an answer to this question. First, if we take "finite _state phonology"

to mean a model with no more than finite state power, then we conjecture that finite state

phonology cannot adequately support non-linear representation. We argue below that Kor-

mi's model does not adequately support non-linear representations with only finite state

power. We suspect that other attempts at finite state processing of non-linear representa-

tions will also be inadequate.

Currently, two-level phonology computes regular relations between linear representa-

tions using FSTS.* However, we now have a new type of transducer, one with more than f i -

nite state power. We have shown in Chapter 6 that MSFfs can compute a wide range of

relations defined by autosegmental rules between non-linear representations. If the FSTs

in the KIMMO system were replaced by MSFTS~, the result would be a model that could

adequately support non-linear representations. This would be a fruitful line of further re-

search, especially in light of the wide acceptance and use that the KIMMO system has

seen since its introduction about 10 years ago.

8.2.3. Reversibility

The KIMMO system can recognize words as easily as generate them. This follows

from the fact that FSTs are reversible, in the sense that they can be directly interpreted as

producing input words from output words, as well as the other way around. MSFTs are

also reversible in this sense; that is, they can be interpreted as reading an encoding from

the output tapes, and writing a corresponding encoding on the input tapes. In this case, the

MSFT is performing inverse transduction, producing the input encoding(s) that are related

to a given output encoding by the rule the MSFT models.

If a single MSFT is used to generate surface forms from underlying forms (in the style

of either KIMMO or Kaplan and Kay), this means that given the surface form, the MSFT

could produce its corresponding underlying form. This ability to perform generation and

recognition by a single mechanism is a significant advantage in a practical computational

2. Ritchie shows that the two-level model does not fully utilize the generative power of the parallel
FSTs that are used to implement it [36].
3. Our thanks goes to Jo Calder @ersonal communication) for first pointing out this possibility.

tool.

8.3. Kornai and the Triple Code

8.3.1. Background

One of Kornai's goals with his model [32] was to fully implement autosegmental pho-

nology using FSTs. The strategy was to encode non-linear autosegmental representations

as linear strings so that FSTs could process them in the manner proposed by Kaplan and

Kay.

This thesis follows in the footsteps of Kornai's dissertation, and owes much to it. Our

model was constructed in the same transducer-based, procedural spirit as his. One of the

primary motivations for'this work was the perception that Kornai's model had inadequate

expressive power. Being based on FSTs, it computes regular relations between phonologi-

cal representations. But there are some phonological relations which are arguably not reg-

ular, at least under his linear encoding of autosegmental representations.

To support this claim, we will have to take a closer look at Kornai's linear encoding of

two-tiered autosegmental representations (ie. charts), called the niple code! Here is a

chart and its encoding:

4. Strictly speaking, Komai's triple code is an improved version of the code we present here. We
use his preliminary version of it for ease of presentation. The difference is minor and does not
affect our subsequent comments.

The dots are not part of the code; they are just delimiters to make the code easier to

read. The code is based on an algorithm which scans the chart from left to right and writes

out the code. The two tiers are scanned by, as it were, two independent read heads. At each

step, the segments under the read heads, and their association status (0 = unassociated, 1 =

associated), are written out as a triple. Then one or both of the read heads may move to the

next segment; these possibilities are referred to as top move (t), bottom move (b), orfill

move. Top and bottom moves are explicitly recorded in the code; full moves are implied

by the juxtaposition of two triples without any move recorded between them. The choice

of move depends on the association pattern in the chart, because neither read head can ad-

vance past an association line until it has been recorded. The choice of move is determin-

istic, because a full move is always made if possible.

Kornai discusses how this linear encoding can be processed by FSTs which implement

the operations of autosegmental phonology, such as the Association Convention, and the

insertion and deletion of segments and association lines. He contends that these opera-

tions, as well as autosegmental rules, iterated rules, and entire derivations can be simulat-

ed with a single FST. Thus he claims that only finite state power is needed to implement a

computational model of autosegmental phonology.

In passing, we should mention that, in contrast, we have only taken our model to the

level of autosegmental rules; we have not discussed iteration or entire derivations. We

claim that all autosegmental rules can be implemented as MSFAs, but for the time being,

in order to iterate rules, or combine them via various rule ordering strategies into deriva-

tions, we must rely on a meta-level mechanism above the transducers. This mechanism

would order the transducers, feed the output of one transducer into the input of the next,

detect when a transducer fails, etc.

We say "for the time being" because it may very well be possible to simulate an entire

derivation using a single MSFA. It is possible to extend our rule transducers so that when

they cannot match the SD of the rule they simulate, they will perform the identity trans-

duction instead of failing. It is also possible to define a composition operation on MSFTs,

by analogy with composition of FSTs, so that a single MSFI'can simulate two MSFTs op-

erating in series, subject to the condition that the scanning pattern with which the first

transducer writes its output is the same as the scanning pattern with which the second

transducer reads its input. With these and other tools, it may be possible to give a proce-

dure for combining an entire set of rules and a rule ordering strategy into a single MSFT.

This is an area for further work.

8.3.2. Non-regular Phonological Relations

Now, to return to Kornai's model, there are some reasons why we have difficulty ac-

cepting his claim that autosegmental phonology can be modelled with finite state power.

The fundamental issue here is that there are certain operations in autosegmental phonolo-

gy that cannot be done by a finite state transducer because they require an unbounded

amount of memory. That is, there is no principled upper bound on the amount of memory

required.

For example, the elementary operation of adding an association line suffers from this

problem. This was independently discovered by Bird & Ellison ([8], p. 45), and by the au-

thor [41]. An example from Goldsmith's discussion of accent systems ([21], p. 55), re-

ferred to in [8], is of tone association in Ci-Ruri, a Bantu language of Tanzania:

(57) "I bought it for you"

Here two association lines are being added according to the Accent Association Rule

([21], p. 4915:

The triple codes of the representation before and after the application of this rule are

shown in (57). (Each of the syllables of the word are treated as a single segment/symbol in

the code, and as a V slot for the purposes of the rule.) Notice that an FST, as it scans the

input encoding and writes the output encoding, would have to store some of the tones, be-

cause they are scanned well before they are written. The transducer needs to have suffi-

cient memory to store two tones at a time, because each of the tones marked with an arrow

5. If it is argued that Goldsmith's accent system is an extra-autosegmental one (ie. goes beyond the
bounds of standard autosegmental theory), we would counter by saying that the accents can be
modelled within standard autosegmental theory by adding an accent tier to the feature geometry.
An accented vowel or tone would be one that is associated to an accent feature on the that tier, and
Goldsmith's Pre- and Post-accents [21] can be recast as standard rules that reassociate accents.

in the triple code in (57) must be stored, and output two triples later. For example, the first

H tone is scanned in the second triple and output in the (second, third, and) fourth triple.

(The last L tone does not need to be stored, because it is already part of the last triple in the

first code.)

In discussing insertion of segments (p. 52), Kornai says:

... the changes [in the code] always involve adjacent triples, so they can still

be handled by finite transducers, in spite of the fact that these are common-

ly thought of as being 'memoryless'.

However, in the case of adding an association line, the changes do not always involve ad-

jacent triples, as we have seen. In a related example (1211, p. 54), the problem is even

more pronounced:

(59) "I bought (it) for you the chair"

* * *
na a ku 1

...a gur iiy e ci /.-' tebe
....- ..-- ..--

...*- ..-- ...-
...a *...-- 2. ...- ..-- ..*- ...'* ..-- ...& .'&

L H L L H L L H L

Here we have a phrase with three accented syllables. After some accent rules apply, in-

cluding one that causes the second accent to "hop" from the first word to the second, the

initial tone association shown above is performed. The tones indicated by the arrows must

be shifted over by three triples in the output. This means that the finite mnsducer that pro-

cesses these codes must be able to store three tones.

We could likely go on to find examples of this type that require an automaton to store

four or five tones. However, it is clear already that an autosegmental rule must be able to

associate two widely separated segments. In principle, there is no bound on the distance

between segments that can be associated by a rule.

Bird & Ellison give another example of a phonological operation which is not regular

under Komai's encoding: the Association Convention ([8], p. 45). They discuss the possi-

bility of dividing up the task into individual acts of association, and performing each .by a

finite state transducer. If we took this approach in our example above, this would reduce

the maximum memory required by an individual transducer, but the overall picture would

be the same (p. 45):

It is true that each individual act of association ... can be performed by a fi-

nite-state transducer. But no principled bound on the length of the deriva-

tion can be made, and the quantity of memory required is an increasing

function of the length of the derivation. Consequently, the step from unas-

sociated to associated form cannot be made by a single FST.

Therefore, under Komai's triple code, processes such as association and the Associa-

tion Convention are not finite state.

8.3.3. Response and Rebuttal

Kornai rightly identifies what he calls the memorylessness fallacy. This refers to the

misconception that finite state automata have no memory. The fact is that they do have

memory -just a fixed finite amount of it. Therefore they cannot do tasks that we think of

as requiring (an unbounded amount of) memory, such as parenthesis matching, which re-

quires an (infinite) stack. With this in mind, our claim is that autosegmental operations re-

quire an unbounded amount of memory.

Kornai responds to this by pointing out that his automata do not need to solve the gen-

eral problem of applying autosegmental operations to arbitrary encodings, but only to a fi-

nite number of encodings - the data that is actually met in practice. As he says on pages

60-61 :

... the problem is to express complex phonological operations ... We do not

have a general-purpose finite state solution to the problem ... But if we know

that we need only a finite class of. ..strings recognized, we can of course de-

vise a finite automaton for that class of strings ...

It is true that the phonologist will always be working with a finite amount of data, and

that therefore we can always put a bound on the amount of memory required to implement

phonological operationsi But this bound is an arbitrary, empirical one, and not a principled

theoretical one. We contend that Kornai's claim that FSTs have sufficient power to imple-

ment autosegmental phonology is similar to the claim that a regular grammar is sufficent

to parse any finite subset of a context free language. Both are true, but both make it diffi-

cult to express generalizations that are present in the data, even if these generalizations do

not find full expression.

Consider constructing a regular grammar for L = (ab, a2b2, ..., aIW bIW). It would

take a hundred rules, and these rules would essentially list each and every word. This

would completely miss the obvious generalization that is efficiently and concisely cap-

tured by the two rules of the context-free grammar (S + aSb, S + ab). This gives an in-

tuitive idea how Kornai's approach leads to a model that is inefficient and that is unable to

capture significant linguistic generalizations.

For example, a finite transducer could not implement the addition of an association

line in a unified way, but would essentially list all the possible cases, depending on wheth-

er the segments being associated were 0, 1, 2, ... up to some finite number k triples apart.

Similarly, if the Association Convention were implemented as a transducer, it would have

to treat a finite number of special cases, depending on how many association lines it add-

ed. In each case, we are missing a single general description of a what is, after all, a single

phonological operation.

Also, the appeal to only having a finite amount of data seems a too easy answer. Even

if we have a strictly recursively enumerable language, we can still parse a finite subset of

it with an FSA! After all, a finite state machine can simulate a Turing machine up to a cer-

tain finite point6. But this approach gives us no grasp on the structure of the languages we

are parsing if they are truly non-regular.

Therefore, it is profitable to investigate models with more power than an FST. Al-

though this extra power may not be empirically necessary, such models will be more effi-

cient and will be able to describe linguistic generalizations that they otherwise could not

describe. This is what we have done. Our MSFTs can be viewed as transducers processing

linear encodings, but they are transducers with more than finite state power. This is a fun-

damental difference between our model and Kornai's.

As we saw in Chapter 7, MSFTs are transducers with finite state power plus a little bit

of context free and context sensitive power. Exactly how much extra power this is needs to

be determined. Further investigations need to be made into the properties of MSFAs, and

the possibility of a grammar equivalent to MSFAs. Along with a grammar would come the

question of efficient parsing algorithms. This is another area for future work.

We have abandoned FSTs for a more powerful device that is able to capture useful

generalizations elegantly. Why not use an even more powerful device? Our main reason

for abandoning FSTs was their inability to generally describe a phenomenon at the very

core of autosegmental phonology: that of adding association lines.7 Until such time as an

important limitation like this becomes apparent with MSFTs, there is no reason to abandon

them for a more powerful device.

6. The computer is a classic example of this.
7. This stands in contrast to h e way context free grammars are still widely used to describe syntax,
because their limitations are not at the core of syntax, but at the fringe, in a few rare phenomena

8.3.4. Towards Extra Computational Power

In reaching beyond finite state power, we are in accord with recent work. Bird & El-

lison's model of autosegmental phonology [8], although based on SFAs, uses more than fi-

nite state power, because the process of applying rules (which are viewed as constraints

and modelled as SFAs) involves combining automata using operations of product and co-

product. We must point out that their use of a product operation is different than ours. This

is because for them, the product operation is itself the means of applying a rule, whereas

for us, the product operation is the means of constructing a rule, a transducer, which is

then applied by being executed.

Thus, for Bird & Ellison, the process of applying a rule requires indexed-grammar

power (see Figure 2-1 for the place of indexed grammar languages in the Chomsky hierar-

chy). In their own words (p. 48):

The question arises how we can construct the associations if the same oper-

ation for Kornai is not regular. The answer is simple. The operation which

we have applied here, the product operation, is a non-regular operation on

any linearisation of automata ... The task of making the necessary associa-

tions corresponds to taking the product of SFAs. Specifying the product op-

eration on regular expressions, for instance, has at least indexed-grammar

power.

So they too have gone beyond the limits of finite state power to model autosegmental pho-

nology. 8

8.3.5. The Triple Code

Apart from questions of computatjonal power, we can compare the encoding schemes

used by the two models to encode autosegmental representations. We have already dis-

8. We should mention also that Jones has done an implementation of autosegmental phonology
[26], but he did not investigate its formal computational power.

cussed the advantages of the multi-linear code in Section 4.3.; here we examine the mple

code more closely.

The triple code does not meet some of Kornai's own criteria for a good linear encoding

[8]. For example, the encoding is not compositional (Theorem 4-3 indicates that this must

be the case): the concatenation of two encodings is not necessarily the same as the encod-

ing of the concatenation. Also, it is not iconic: local changes to a representation can com-

spond to global changes in its encoding. These are illustrated below:

Triple code not compositional

Triple code not iconic

There are other desirable criteria that are not met. The triple code fails to maintain the

inherent simplicity of the elementary operations of autosegmental phonology, such as in-

sertion and deletion of segments and association lines. Instead of being simply and uni-

formly described, the complexity of these operations varies depending on the environment

of the affected segment or association line. For example, for representation (60)(b), it

takes more computation to add a line between e and X than between c and X. The elemen-

tary operations of autosegmental phonology ought to be implemented computationally in

a way that preserves their inherent simplicity; this is an important factor to the theoretical

linguist.

Kornai's encoding is not easily extended to autosegmental representations with more

than two tiers ([32], p. 70; [8], p. 45-46). Kornai discusses various possibilities for gener-

alizing the code to multi-tiered representations. He is forced to either introduce an imprac-

tical amount of redundancy to the code, or devise a more complicated algorithm to

compute the code. By contrast, our multi-linear code is designed from the start to handle

multi-tiered representations, and introduces no redundancy.

The mple code linearizes a representation so that the segments and associations from

different charts end up intermingled in the linear code. Thus, an FST that performs an op-

eration on a single chart must wade through phonological material that is unrelated to the

process at hand. Ideally, a computational model of a linguistic theory should not include

computations that are linguistically irrelevant, but rather each computation should embody

a linguistically significant process. Also, a good encoding should reflect the independence

of the charts of a representation.

Another linear encoding of autosegmental representations is proposed in [41]. It over-

comes some of the problems discussed above. However, this new code still does not result

in a finite state model. Adding an association line still requires more than finite state pow-

er, as with Kornai's code. The difficulty of forcing a multi-linear representation into a lin-

ear encoding in such a way as to be able to process it with finite state power raised our

suspicions that this may be impossible to do. This led us to propose the multi-linear code,

which overcomes all of the problems above, as discussed in Section 4.3.

8.4. Bird & Ellison and One-level phonology

8.4.1. Background

Recently, a new model of autosegmental phonology based on FSAs has been proposed

by Bird & Ellison [8, 91. This approach differs from that of Kornai in several fundamental

ways.

Rather than modelling representations as linear strings and rules as FSTs which oper-

ate on them, both representations and rules are modelled using FSAs. This is based on a

view of representations as the fundamental objects in autosegmental theory, and of the

tiers of a representation and the rules as (partial) descriptions of those objects. For exam-

ple, we might have the Etsako word for house, 6w8wh (see Section 2.2.). This is an object,

various aspects of which are described by, for example: (1) the segmental tier of its repre-

sentation, which contains the segments o w a o w a, with the a's being optional, (2) the

tonal tier of its representation, which specifies that the tone of this word goes from high to

low to high to low, on certain vowels, and (3) a rule that states that an optional vowel fol-

lowed by another vowel is not pronounced, but its tone is pronounced. These three de-

scriptions join forces to completely describe the word 6w6wh.

This is a declarative view of phonology, where rules are viewed (and implemented) as

constraints rather than as procedures which transform representations. The representations

and rules are constructed in such a way that no information is ever lost in the process of

applying a rule; information can only be added. An example is given where the word elec-

tric is underlyingly represented with both a k and an s segment at the end of the word. If

the suffix -a1 is added, the s is "disabled" and the word is pronounced electrikal. If the suf-

fix -ity is added, the k is disabled and the word is pronounced electrisity. Notice that no in-

formation is lost (neither segment is ever deleted). Instead, information is added,

indicating that certain segments are disabled. Because rule application is a monotonic pro-

cess of accumulating information, the process can easily be reversed. Word generation is

no easier than word recognition.

8.4.2. Declarative vs. Procedural

This declarative view is quite different from the procedural view adopted by ourselves

and Kornai. As Bird and Ellison state (p. 11):

... our model enables us to give a direct procedural semantics to a declara-

tive reformuIation of non-linear phonology [italics mine].

Autosegmental phonology has been traditionally presented from a generative, procedural

standpoint (eg. [22], which is mainly procedural throughout, and offers an alternative view

in the last chapter). Rules are seen as processes that manipulate representations. Our goal

was to faithfully implement this theory as is, so that the analyses that currently exist can

be machine-tested.

The declarative, constraint-based approach has its advantages, as well as growing sup-

port in the work of several phonologists (eg. McCarthy). But it requires re-analysis of the

data. For example, the above quote is followed up with this statement:

This means that if a non-linear phonological analysis does not avail itself

of extrinsic rule ordering devices and destructive operations then it is pos-

sible to mechanically convert that analysis into a verification system. Such

a system is able to automatically test the empirical claims of theoretical

statements, and promises to bring untold benefits to phonological analysis.

If, however, an analysis does depend on rule ordering or destructive operations like the de-

letion of association lines, one either has to re-analyze the data in a declarative style, or

find a computational model that allows these mechanism. Our model fills this gap.

Kornai has summed up well our basic point. Speaking of formal systems of phonology

and morphology, including recent work on autosegmental phonology at Edinburgh, he

says ([32], p. 8):

However, these systems do not offer a formal reconstruction of mgnstream

generative phonology, they offer formal alternatives. Because they explic-

itly reject one or more of the fundamental assumptions underlying the se-

quential mode of ~ l e application used in the vast majority of generative

phonological analyses, they do not make it possible to restate the linguists'

work in a formal setting - in order to enjoy the benefits of the formal rigor

offered by these systems one must reanalyze the data.

8.4.3. Complexity of Automata

One feature that our model shares with Bird & Ellison's is complicated automata. In

both cases it is easy to give small examples, but the number of states and transitions in an

automata quickly grows as the examples get bigger. For example, they give a (simplified)

four-state automata on page 27 that describes a two-tiered representation with four seg-

ments and two association lines. As the number of tiers, segments, and association lines

increases, however, the corresponding automaton gets considerably larger. As is said on

page 24, "Clearly, such automata have the potential for getting complicated rather quick-

ly."

If we were to multiply out all the factor machines in our model of an autosegmental

rule, we would end up with a very large automata which would be hard to understand.

These automata are best understood by analyzing them into their components, as we have

done.

In general, our automata tend to be more complicated than the automata that do an

equivalent job for Bird & Ellison. One gets a feel for this from a reading of the example in

Chapter 6 of modelling the High Tone Shift rule. From this, one could imagine construct-

ing a number of rules (including the Association Convention) that would be required to

describe the Arabic phonology that they model in Section 5.3 of their paper with three

very simple automata.

The number of states in a disjoint product can grow proportionally with the product of

the number of states in each machine. In the case of the product operation, the number of

states in each partition can be as large as the product of the number of states in those parti-

tions in the factor machines. However, the total number of states and transitions in each

case also depends on the compatibility of the states in the machines being multiplied. A

product machine can be smaller (in terms of number of states and transitions) than its fac-

tor machines in many cases, if few states are compatible.

There are some techniques that can be used to simplify automata by eliminating un-

necessary states and transitions. This is another area for further investigation. The applica-

tion of such techniques to any model that takes products of automata would clearly be

beneficial.

8.5. Model and Theory

As always, constructing a formal model of a theory has led to clarifications of (or at

least to clarification questions about) the theory. In our case, these had to do with the pre-

cise working of autosegmental rules. They include:

Should a well-formedness condition be interpreted consistently as a constraint that

blocks the application of a rule, or should it be interpreted sometimes (in language-

specific rules) as a mechanism that repairs violations of the condition? We chose the

former.

In the case of the well-formedness condition that limits the number of associations

per freely associating segment, if automatic repairs are allowed, how should they be

done? This is unclear in some cases.

Should a rule be blocked from applying in a situation where it would add an associa-

tion line where there is one already? This seems reasonable.

If a segment is deleted which has associations to other tiers not mentioned in a rule,

should the rule be blocked, or should those associations be deleted along with the

segment?

How exactly does the Association Convention work? When there are more tones

than vowels, should all the tones be associated, or should multiple associations only

be done by language-specific rules? When there is more than one possible way to

add association lines, how does one decide between the options?

These questions must be answered before autosegmental rules can be given a compu-

tational interpretation. They ought also to be answered for the sake of a clearer definition

of the phonological theory. If there are competing answers, these at least should be made

clear.

Answers to these questions, especially the last three, will require co-operative work

from theoretical phonologists and working phonologists, because the answers have empir-

ical consequences. Answers need to be agreed upon on the basis of sound theoretical prin-

ciples as well as on the basis of what works over a wide range of data.

8.6. Conclusions

The main result of this thesis is the definition of a new kind of transducer, more power-

ful than an FST, and a demonstration of its adequacy to computationally implement auto-

segmental rules. We have argued that this extra computational power is needed to capture

significant generalizations that are central to autosegmental theory, something that FSTs

processing linearized autosegmentaI representations cannot do.

There are at least two possible directions to go from here. It may be that MSFTs are

enough to implement the entire standard theory of autosegmental phonology, by simulat-

ing the effect of ordered sequences of rules in a single transducer. This was Kornai's goal,

and we also set out in this direction.

On the other hand, we could replace the finite state transducers in the KIMMO system

with MSFTs, yielding a modified, more powerful form of two-level phonology. This

would enable KIMMO to process non-linear representations, bringing it up to date with

current phonological practice.

The primary motivation behind this work was the desire to provide a practical compu-

tational tool for phonological analysis. MSFTs, now 33 years old, have turned their hand

to non-linear phonology and proved themselves quite capable. They have earned a central

place in a computational phonological tool.

Appendix A
Properties of Encodings

In this appendix we prove some theorems that were stated in the main text (Chapter 4),

theorems about various properties of encodings of autosegmental representations.

Theorem 4-1: The multi-linear encoding function En is invertible (1-1).

Proof: Let A E A,. Suppose we are given the encoding EJA) = ee l , ..., en>. From this

encoding we can define B E A, such that En(B) = En(A) and A is isomorphic (equal)

to B. This shows that any A with multi-linear code <el, ..., en> is equal to B, so En is

invertible.

First, let us define B. Notice that the alphabet X in the definition of the multi-linear

code (Definition 4-5) is the disjoint union of two sets S and (aii I i j = 1, ..., n) . By dis-

tinguishing between symbols in these two sets1, we can define B as follows:

subdivide each string ei into p(i) substrings fil , $2, ..., $p(i), where p(i) is the number

symbols from S in ei, in such a way that only the first symbol in each fik (call it sik) is

from S, and filfi2...fiHi1 = ei 2

1. Notice that even if we were not given these sets a priori, we could, by examining how the sym-
bols are used in the encoding, determine not only which symbols belong to S and which to {aq).
but also, for the a+ which are tiers i and j. This is because the symbols in S are never used on more
than one tier (assuming we uphold Goldsmith's requirement that features cannot appear on more
than one tier), while the ay are each used on exactly two tiers - the ones indicated by their sub-
scripts.
2. In terms of our example, the elements from S were letters, and the (ai I ij = I, ..., n) were num-
bers, so we are dividing ei into substrings that start with a letter and end with only numbers.

define the vertex set of B as V = (vik I i=l, ..., n; k=l, ..., p(i))

define the labelling function of B by L(vik) = sik

define the partitions of V as <V1, ..., Vn> where Vi = (vik I k=l, ...,p(i))

define the orderings of the partitions in the obvious way: V i, vil ci vi2 ci ... <i v ~ ~ (~)

(this ordering keeps the labels in the same order that they appear in the encoding)

Construct the edge set E of B as follows: for each pair of tiers i and j (i # J], begin

from the left edge of ei and e) scanning rightward simultaneously in each string, look-

ing for the symbol ad in both strings, matching up pairs of them in left to right order.

For each pair, if an aii symbol is contained in & in ei, and in $l in ep then add the edge

(vik, vjl) to E. Such edges are all the edges in E.

The reader can verify that En(B) = En(A) = <el, ..., en>, using Definition 4-5. It is

also straightforward to construct the isomorphism between A and B (Definition 4-4)

that shows that A = B. C3

Theorem 4-2: The multi-linear encoding function En is compositional.

Proof: Let A, B, C E A,, and suppose C = AB. Then, by Definition 4-6, we can write the
th vertices of C in each partition i as vil < vi2 < ... < vip(i), where A's i partition contains

th exactly the vertices vil < ... < viq(i) and B's i partition contains exactly the vertices

viq(i)+l < ... < vip(i), and where the vertex labels and the edges of C are those of A and

B combined. Let En(A) = <el, ..., en> and En(B) = <fly ..., fn>. Then E,(A)En(B) =

<elfl, ..., enfn>. But also En(C) = <elfl, ..., enfn>, because: (a) this encoding contains

all the vertex labels in the proper order in the appropriate strings, and (b) for each pair

of strings eifi and ej$ in the encoding (corresponding to a chart), the symbols aq in

those strings still match up in pairs from left to right in the same way they did in En(A)

and En(B), meaning that they will still represent the same edges that they did before.

This latter statement (b) rests on the simple observation that in well-formed encodings

like En(A) and En(B), the number of aq9s in the ih andfh strings are always equal, so

that concatenating well-formed encodings will not change the way the aqYs match up

in pairs. Thus the encoding En(A)En(B) will represent exactly all the association lines

of A and B combined. 0

Lemma 4-1: Let w and x be non-empty strings in z*. Then wx = xw iff there exists a

"common factor" that "divides" both strings; that is, there is a string f such that w = f i

for some i and x = f J for some j.

Proof: A moment's consideration will convince the reader that wx = xw is a very strong

constraint on w and x. Not just any non-empty strings can be concatenated in either

order and produce the same result. This idea of having a "common factor" exactly

characterizes those strings that satisfy this constraint. The "if' direction of the proof is

easy: if w = f and x = f J, then certainly wx = xw, for f if j = f jf i. The "only i f '

direction is more interesting, and is the one that will be needed to prove Theorem 4-3

below.

If Iwl = Ixl then wx = xw a w = x, and our common factor is f = w = x. Assume

without loss of generality that Iwl > 1x1. We will prove the lemma by strong induction

on the length of the shortest string (ie. x). The base case will be 1x1 = 1; we start with

the induction step, where Ixl > 1.

Let d = Iwl div 1x1 and r = Iwl mod 1x1. Then Iwl = dlxl + r.

(61) wx = xw a w starts with x 3 wx = x(xwl) 3 wl

a w starts with xx wx = x(xxw2) 3 w2

a ...
d + w starts with xd-' + wx = X (X ~ - ' W ~ . ~) = x wd.13 wd.1

3. Iwl div Ixl is the integer part of Iwl/ 1x1.

d This means wd-1 = vx for some v, where Ivl = r, and w = x v. Now if r = 0, then
d v = E, w = x , and f = x is our common factor. If r # 0, then v # E, and:

We are almost back where we started (wx = xw), but now we have smaller strings,

since Ivl = r < 1x1 < Iwl. By our strong inductive hypothesis, x and v have a common

factor f. Since f "divides" both v and x, it will "divide" w = xdv as well, so f is the

common factor of w and x that we are looking for.

For the base case of the induction, where 1x1 = 1, the line of reasoning used in (61)

will show that x is the common factor f, since r must necessarily be 0. 0

Theorem 4-3: An invertible linear encoding of A, cannot be compositional.

Proof: Let E: A, -t Z* be a 1-1 linear encoding of A,. Assume that E is also

compositional; we will derive a contradiction from this. Consider the following two

representations A and B (each having two tiers, with one tier empty), together with

their c~ncatenat ion:~

4. This is not just a theoretical pathological case. One wodd find representations like this being
concatenated in, for example, tonal languages that have morphemes consisting of just a single tone
feature, and no other phonological material. A model of autosegmental phonology must be able to
account for phenomena like this.

Let E(A) = w and E(B) = x, where w and x are smngs in c*. Note that since E is

compositional and invertible, only the empty representation 0 is encoded by the emp-

ty string E , ~ and thus w t E and x + E. Also, since E is compositional and AB = BA, we

have wx = E(A)E(B) = E(AB) = E(BA) = E(B)E(A) = xw.

By Lemma 4-1, w and x have a common factor f. In fact, by the same lemma, any

two representations that can be concatenated in either order with the same result (as A

and B can), will have encodings under E that share a common factor. Furthermore, we

will go on to show that all the representations that have an empty bottom tier have en-

coding~ that share a single common factor. (The same is true for all representations

with an empty top tier).

Let T be the set of representations with an empty bottom tier. A E T. Let A' E T.

Then E(A) and E(B) share a common factor f, and E(A1) and E(B) share a common

factor g. Thus, 3 i, j such that E(B) = f ' = g /. We will show below that f and g them-

selves share a common factor h, which will of course be a common factor of E(A) and

E(A1). Then we can pick another A" E T, and in the same way show that E(A) and

E(A") have a common factor which is a factor of h. This argument can be repeated ad

infinitum to each element of T in turn, yielding a common factor of all the representa-

tions in T.

Given that f = g j , it follows that f and g share a common factor. Consider placing

the two strings f and g j on top of each other and observing how the various copies of

the factor f overlap the copies of the the factor g. Overlapping characters, of course,

must be equal. If we number the characters of g from 0 through Igl-1, then the first

character off will overlap at the following positions within various copies of g:

5. E(A) = E * E(AB) = E(A)E(B) = E(B) a AB = B A is the empty representation 0.

129

Olfl mod Igl

llfl mod Igl

21fl mod Igl

(i-1) Ifl mod Igl

It is a simple result of number theory that this set of numbers (eliminating dupli-

cates) is (0, d, 2d, 3d, ..., Igl-d), where d = gcd(lfl, Igl). This means that a copy o f f

overlaps a copy of g at each of these positions. Let h be the substring consisiting of the

first d characters off , or equivalently, of g. Then h is a common factor off and g.

We have now shown that every representation in T shares some single common

factor, call it @. Finally now, we can arrive at a contradiction relating to this alleged in-

vertible, compositional, linear encoding E. Consider the representations below.

We know that E(C) = @ for some k, and E(D) = 4 for some 1. But then

E(CD) = E(C)E(D) = $k@' = @'@k = E(D)E(C) = E@C), even though CD # DC; ie. E is

not invertible. This is a contradiction; hence, there is no such thing as a 1-1, composi-

tional, linear encoding of autosegmental representations. 0

Bibliography

Aho, A.V. (1968). Indexed Grammars - an Extension of Context Free Grammars,

Journal of the Association for Computing Machinery 15: 647-67 1.

Aho, A.V. (1969). Nested Stack Automata. Journal of the Association for Comput-

ing Machinery 16: 383-406.

Antworth, Evan L. (1990). PC-KIMMO: A Two-level Processor for Morphological

Analysis. Summer Institute of Linguistics, Dallas, Texas. Occasional Publications

in Academic Computing, Number 16.

Archangelli, Diana and Pulleyblank, Douglas. Grounded Phonology. To appear.

Bird, M. (1973). The equivalence problem for deterministic 2-tape automata. Jour-

nal of Comput. and Systems Science 7: 218-236.

Bird, Steven and Klein, Ewan (1990). Phonological Events. Journal ofLinguistics

26: 33-56.

Bird, Steven and Ladd, D.Robert (1991). Presenting Autosegmental Phonology.

Journal of Linguistics 27(1): 193-210.

Bird, Steven and Ellison, T. Mark (1992). One Level Phonology: Autosegmental

Representations and Rules as Finite-State Automata. Edinburgh Research Papers

in Cognitive Science, EUCCS/RP-5 1, Edinburgh University, April 1992.

Bird, Steven (1992). Finite-State Phonology in HPSG. Proceedings of Coling '92,

Nantes, July 1992.

Chomsky, Noam and Halle, Moms (1968). The Sound Panern of English. New

York: Harper and Row.

Church, Kenneth (1983). A Finite-State Parser for Use in Speech Recognition.

Proceedings of the 21st Annual Meeting of the Association for Computational Lin-

guistics, 9 1-97.

Coleman, John and Local, John (1991). The 'No Crossing Constraint' in Autoseg-

mental Phonology. Linguistics and Philosophy 14: 295-338.

Culik, K. and Karhumaki, J. (1989). HDTOL Matching of Computations of Multi-

tape Automata. Acta Informatica, Vol. 27, No. 2: 179ff.

Denning, Peter; Dennis, Jack; and Qualitz, Joseph (1978). Machines, Languages,

and Computation. Prentice-Hall: Englewood Cliffs, New Jersey.

Durand, Jacques (1990). Generative and Non-Linear Phonology. New York:

Longman.

Elgot, C.C. and Mezei, J.E. (1965). On Finite Relations Defined by Generalized

Automata. IBM Journal of Research and Development 9: 47-68.

Fischer, Patrick C. (1965). Multi-Tape and Infinite-State Automata - A Survey.

Communications of the ACM 8: 799-805.

Gibbon, Dafydd (1987). Finite State Processing of Tone Systems. Proceedings of

the Third Conference of the European Chapter of the Association for Computa-

tional Linguistics: 29 1-297.

[19] Goldsmith, John (1976). An Overview of Autosegmental Phonology. Linguistic

Analysis 2: 23-68.

[20] Goldsmith, John (1979). Autosegmental Phonology. PhD dissertation, MIT, 1976.

Distributed by IULC. New York: Garland Press.

[21] Goldsmith, John (1982). Accent Systems. The Structure of Phonological Repre-

sentations (Part I), eds. Harry van der Hulst and Norval Smith: 47-63. Dordrecht:

Foris Publications.

[22] Goldsmith, John (1990). Autosegmental and Metrical Phonology. Cambridge,

MA: Blackwell.

[23] Hopcroft, John E. and Ullman, Jeffrey D. (1979). Introduction to Automata Theo-

ry, Languages, and Computation. Addison-Wesley.

[24] Hulst, Harry van der and Smith, Norval (1982). An Overview of Autosegmental

and Metrical Phonology. The Structure of Phonological Representations (Part I):

1-45. Dordrecht: Foris Publications.

[25] Johnson, C. D. (1972). Formal Aspects of Phonological Descriprion.Mouton.

[26] Jones, Doug (1988). Models of Phonological Grammars. M.A. Thesis, Stanford

University.

[27] Katamba, Francis (1989). An Introduction to Phonology. Learning about Language

Series. New York: Longman.

[28] Kay, Martin (1983). When Meta-Rules Are Not Meta-Rules. Automatic Natural

Language Parsing, eds. Karen Sparck Jones and Yorick Wilks: 94-116. Chiches-

ter: Ellis Horwood Ltd. See pages 100-104.

[29] Kay, Martin (1987). Nonconcatenative Finite-State Morphology. Proceedings of

the Third Conference of the European Chapter of the Association for Computa-

tional Linguistics: 2- 10.

[30] Kay, Martin and Kaplan, Ronald (1981). Phonological Rules and Finite-State

Transducers. Unpublished conference paper.

[31] Kinber, E. (1983). The inclusion problem for some classes of deterministic multi-

tape automata. Theoretical Computing Science 26: 1-24.

[32] Kornai, Andras (199 1). Formal Phonology. PhD dissertation, Stanford University,

CA.

[33] Koskenniemi, Kimmo (1 983). Two-Level Morphology: A General Computational

Model for Word-Fonn Recognition and Production. PhD dissertation, University

of Helsinki.

[34] Rabin, M.O. and Scott, D. (1959). Finite Automata and Their Decision Problems.

IBM Journal of Research and Development 3: 114-125.

[35] Ritchie, Graeme (1989). On the Generative Power of Two-Level Morphological

Rules. Proceedings of the Fourth Conference of the European Chapter of the Asso-

ciation for Computational Linguistics: 5 1-57.

1361 Ritchie, Graeme (1992). Languages Generated by Two-Level Morphological

Rules. Computational Linguistics 18(1): 41-59

[37] Ritchie, Graeme D., Black, Alan W., Russell, Graham J., and Pulman, Stephen G.

(1992). Computational Morphology: Practical Mechanisms for the English Lexi-

con. ACL-MIT Press Series in Natural Language Processing, eds. Aravind K.

Joshi, Karen Sparck Jones, and Mark Y. Liberman. MIT Press, Cambridge, Massa-

chusetts.

[38] Rosenberg, A.L. (1964). On n-tape Finite State Acceptors. Proceedings of the Fifh

Annual Symposium on Switching Circuit Theory and Logical Design, Princeton,

1964: 76-81.

[39] Sagey, Elizabeth (1988). On the 111-Formedness of Crossing Association Lines.

Linguistic Inquiry 19: 109- 11 8.

[40] Sproat, Richard (1991). PC-KIMMO: A Two-level Processor for Morphological

Analysis (Review). Computational Linguistics 17(2): 229-23 1.

[41] Wiebe, Bruce (1992). An Efficient Linear Encoding of Autosegmental Representa-

tions. Abstract presented at the DIMACS Workshop on Human Language, Prince-

ton University, Princeton, New Jersey, March 20-22.

