
A logical Framework for Model Based Diagnosis
with Probabilistic Search

Peter Macdonald

M.Sc., McMaster University, 1979
B.Sc., Queens University, 1976

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School
of

Computing Science

O Peter Macdonald 1992
SIMON FRASER UNIVERSITY

November 1992

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopying

or other means, without the permission of the author.

Name :

Degree :

Title of Thesis :

Approval

Peter Macdonald

Master of Science

A Logical Framework for Model Based Diagnosis
with Probabilistic Search

Examining Committee : Dr. Veronica Dahl, Chairperson

I \,- - vv-/\

m S. ~av%s
Senior Supervisor

w - - -,-----.
Dr. John D. Jones
Supervisor 4 l

, / I 7 -

Dr. ~ a i w ei] an
Supervisor

,,,/- v - - --
Dr. David Poole
External Examiner

Nov. 16.1992
Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs i t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ib ra ry , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o the r u n i v e r s i t y , o r o ther educational i n s t i t u t i o n , on

i t s own beha l f o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l gain s h a l l not be allowed

wi thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

A Logical Framework f o r Model Based Diagnosis with P r o b a b i l i s t i c Search.

Author: - - -

(s ignature)

P e t e r D. Macdonald

(name)

November 16, 1992

(date)

Abstract

Diagnosis involves finding explanations for the observed behavior
of an often complex physical system. Historically, approaches to
diagnosis have differed, depending upon the existence, or not, of a
theoretical model of system behavior. Problems in medical diagnosis
are characterized by a highly incomplete knowledge of how the
human body operates. In contrast, the behavior of engineered
systems is typically described by a sophisticated theory based on
established scientific principles.

Early expert systems developed for medical diagnosis model the
reasoning strategies of human experts, rather than human
physiology. These systems feature ad-hoc uncertainty calculi, and
shallow, heuristic domain knowledge. Alternatively, recent medical
diagnosis systems utilize Bayesian Belief Networks to represent
statistical, causal models of the human body and disease.

Model-based diagnosis systems address engineering domains and
incorporate engineering models of system behavior. The lack of a
generalized uncertainty calculus results in difficulties in ranking
diagnoses, and in diagnosing faults which are not covered by the
theoretical model.

We propose a generalized model-based approach to diagnosis
which reconciles statistical and deterministic modeling. We argue
that even with an engineered system, particularly one which is
faulty, there are aspects of system behavior which are incompletely
understood. We require a representation which is equally good at
representing both well-understood and partially-understood aspects
of system behavior.

We present a way of representing Bayesian Belief networks as
logic programs with extra-logic probability annotations. In doing so
we extend the dual procedural and declarative semantics of the
annotated logic programs. We also present an architecture for
diagnostic inferencing. The proposed architecture features a

combination of best-first search and intelligent backtracking and
generates diagnoses in order of decreasing likelihood. The
architecture explicitly supports the comparison of multiple diagnoses
with incremental observations, a process typical of diagnostic
problem solving.

Acknowledgements

I would like to thank my wife, Robin, for her love and support
during my stint back at school. I also wish to thank my three
children Graham, Hugh and Ian for the constant delight and
encouragement they have been to me during this period. I would like
especially to thank my senior supervisor, Dr. Bill Havens, for his
encouragement, guidance and many fruitful discussions. I am also
grateful to Dr. John Jones for his curiosity, his always open ear and
fresh viewpoints.

I wish to thank Charlie Hunter of the diagnosis group for his
perspective on the practical difficulties in modeling real complex
engineering systems. I am grateful to Miron Cuperman of the Expert
Systems Lab for his patience and cooperation in answering my many
questions on Echidna.

I would like to acknowledge the financial support which I obtained from
MacDonald Dettwiler, the Science Council of British Columbia, and the
Center for Systems Science. I would like especially to thank Dr. Bruce
Sharpe, Dr. John MacDonald and Mr. Pat Brownsword of MacDonald
Dettwiler for their ongoing interest and support of my research.

Table of Contents

. .
Approval .. 11 ...
Abstract .. 111

Acknowledgements ... v
Table of Contents v i

.. 1 . Introduction 1
2 . Recent Research ... 6

.. 2.1. What is Abduction 6
.. 2.2. Approaches to Abduction -8

2.3. Architectures for Abduction ... 2 2
2.4. What is needed .. 2 9

... 3 . A Knowledge Representation for Abduction 3 2
3.1. Syntax ... 3 2

3.1.1. Definite Programs 3 2
3.1.2. Bayesian Networks .. 3 5
3.1.3. Bayesian Programs ... 3 9

.. 3.2. Declarative Semantics 4 6
3.2.1. Definite Programs .. 4 6
3.2.2. Bayesian Networks ... 5 4
3.2.3. Bayesian Programs ... 6 5

.. 3.3. Procedural Semantics 8 2
3.3.1. Definite Programs .. 8 3
3.3.2. Bayesian Programs .. 8 5

.. 3.4. Examples 9 0
3.5. Comparison with Probabilistic Horn Abduction 9 2

4 . An Architecture for Abduction 9 4
4.1. Consumer Architecture ... 9 4

4.1.1. ATMS .. 9 6
.. 4.1.2. Consumer Level 1 0 4

4.1.3. Focusing Level ... 1 06
.. 4.2. Definite Programs 1 0 8

............................... 4.3. Comparison with Intelligent Backtracking 1 2 1
4.4. Bayesian Programs .. 1 2 7
4.5. Introducing Constraints .. 1 3 9

5 . Conclusion ... 1 4 3
References ... 1 4 8

List of Figures

........ Figure 2.1. P(DIS1. S2) is not constrained by P(DIS1) and P(DIS2) 1 1
Figure 2.2. Causal representations link related concepts only 1 4
Figure 2.3. A Bayesian Network ... 1 6
Figure 2.4. Causal Bayesian Networks are modular 1 8
Figure 3.1. A Bayesian Network ... 4 1
Figure 4.1. Consumer Architecture ... 9 5
Figure 4.2. Simple label propagation in an ATMS 1 0 3
Figure 4.3 Justification lattice for a definite program
refutation ... 1 1 3
Figure 4.4. ATMS-based backtracking derives order-
independent labels .. 1 2 6
Figure 4.5 A Simple Bayesian Network .. 1 2 8

.. Figure 4.6. A simple S S tree 1 3 4

vii

Chapter 1
Introduction

Humans are often called upon to diagnose a complex physical
system exhibiting abnormal behavior. Such problems are inherently
difficult. Complex systems fail in many different ways, not all of
which are well understood. There may be several possible
explanations for an observed set of symptoms, with some
explanations being much more likely than others, In spite of these
difficulties, human experts such as physicians and mechanics are
remarkably adept at diagnosing problems in diverse application
domains.

In recent years diagnosis has been studied as a problem in
Artificial Intelligence. Diagnostic Expert Systems have been
developed which model the knowledge intensive reasoning of human
experts in solving diagnosis problems. MYCIN [Buchanan,84] is an
early example of an Expert System for medical diagnosis. While
relatively successful, the limitations of these early systems are
readily apparent. MYCIN models knowledge as if-then rules of the
form i f symptom then disease. The uncertain nature of diagnostic
reasoning is modeled by associating ad-hoc certainty factors with
these rules which are combined according to the way in which the
rules are combined in a line of reasoning. The ad-hoe, procedural
nature of MYCIN certainty factors can lead to incorrect, non-intuitive
results as well as problem solving inflexibilities [Pear1,88]. For
example, MYCINts certainty factors do not combine properly for
correlated sources of evidence. Also, MYCIN only supports diagnostic
queries. It can reason from symptom to disease but not vice-versa.

The i f symptom then disease form of MYCINts rules leads to a
s ha 1 low knowledge base. Rather than reflecting an in-depth domain
understanding, these rules model how experts solve diagnosis
problems in a particular application domain. This perspective results

Introduction 2

in shallow, surface knowledge which is immodular, and difficult to
extend. Domain knowledge which, in principle, can be applied to
many different domain problems, is instead tied to a particular
usage.

In recent years Bayesian Belief Networks [Pear1,88] have been
applied to medical diagnosis. Bayesian Belief Networks remedy many
of the problems associated with MYCIN. Bayesian Belief Networks
model causal (cause + symptom) relationships between diseases

and their symptoms in a modular and intuitively appealing way.
Moreover, this is accomplished without sacrificing the formal
semantics of Bayesian probabilities. However, Bayesian Belief
Networks are essentially propositional representations. This
represents a modeling limitation, particularly in Engineering
domains, where we often have generative theories capable of
deriving complex system behaviors. Bayesian Belief Networks are
well suited to medical diagnosis where we do not have a well
understood theory of the human body and disease.

Recent research in Model Based Diagnosis has focused on domains
where the physical system is an engineered artifact such as a circuit,
or a mechanical system. Model Based Diagnosis incorporates an
elaborate model of how the physical system ought to work. A
complex system is represented as many interconnected components
with localized, well understood modes of operation. Each component
includes a model of its normal healthy behavior, as well as one or
more faulty behavioral states. The global behavior of the system can
be derived from the net effect of local behavioral interactions
between connected compoqents. The problem of enumerating global
disease/symptom pairs has been replaced with the problem of
modeling the localized behavior of components, and their
inter-connection.

Formalizations of model based diagnosis [Reiter,87a],
[de Kleer,90a], [Selman,90] are based on predicate calculus and are
closely related to formalizations of default logic. Like Bayesian Belief
Network applications, the model based approach is based on causal,

Introduction

modular, and intuitively appealing representations. However, unlike
Bayesian Belief Networks they do not incorporate a generalized
uncertainty calculus. As a result, model based diagnosis systems
often resort to implicit and explicit assumptions in order to
distinguish between likely and unlikely diagnoses. Often, for
example, it is assumed that single component failures are more likely
than multiple component failures. De Kleer's SHERLOCK system
[de Kleer,89a] assumes that components fail independently. Perhaps
more seriously, model based systems implicitly assume that the
inter-connectivity of components is as given by the model. This rules
out the possibility of shorted circuits in a circuit diagnosis
application. As a result of such assumptions, model based diagnosis
systems loose modelling completeness. There are some states of the
actual physical system which are not represented.

In this thesis we posit that the partitioning of diagnosis problems
according to whether the application domain is well understood or
not is superficial. Diagnosis domains do not either have a well
developed theory or none at all. Rather most applications contain
aspects of both. An Engineering system may have a well understood
theory provided that certain conditions hold. If these conditions are
not met, then the system may exhibit behavior which can only be
modeled statistically.

We propose a way of representing Bayesian Belief Networks as
Horn clause logic programs which are annotated with extra-logic
probabilities. We refer to such programs as Bayesian programs. This
integrated representation offers both the benefits of Bayesian Belief
Networks and predicate-calculus-based formulations of model based
diagnosis. It offers generalized probabilistic ranking of diagnoses,
together with the expressivity of predicate calculus for those parts of
the model which have a well founded theory.

We also propose an architecture for problem solving with
Bayesian programs. At first glance Bayesian programs look very
much like Prolog programs. However, we argue that the

Introduction 4

requirements of diagnostic problem solving make for very different
architectural tradeoffs.

The adoption of causal rules strengthens the importance of search.
Whereas MYCIN reasons directly from symptoms to disease, we
search among a space of possible causes to find those that generate
the observed symptoms. In complex systems containing many
components, the search space becomes very large. It is essential that
we adopt a strategy for moving through this search space efficiently.

Recent intelligent backtracking implementations for Prolog
[Bruynooghe,84], [Cox,84], [Drakos,88], [Havens,9 11, [You,89] use
Reason Maintenance System (RMS) techniques to improve the
efficiency of search. These techniques are based on the early
identification of search space branches which cannot possibly lead to
a solution. In the case of diagnosis problems, it is not sufficient to
find any diagnosis. Rather, it is important that we find the most
likely diagnosis first. We therefore propose an integration of
best-first probabilistic search with intelligent backtracking.

Another characteristic of diagnostic problem solving is that
typically, diagnosis systems are called upon to recommend a course
of action based on a set of highly likely diagnoses. A diagnosis
system may recommend that a particular measurement be taken in
order to discriminate between several highly likely diagnostic
candidates. Typically, depending upon the result of this
measurement, several candidates are eliminated from further
consideration. Here we see the need to maintain multiple solutions to
a diagnostic query, and to support incremental, interactive
comparisons involving these solutions. These capabilities are in
marked contrast to most Prolog-like systems which generate the next
solution by destroying the first.

This thesis is organized as follows. Chapter 2 discusses diagnosis
as an example of the more general form of reasoning known as
abduction. We present a survey of recent research related to the
above objectives. Chapter 3 describes a new knowledge

Introduction 5

representation for abductive problem solving. The declarative and
procedural semantics of this representation are developed as an
extension to conventional logic programs. In chapter 4 we discuss an
inferencing architecture which addresses the special requirements of
abductive problem solving. We finish with chapter 5 which draws
conclusions.

Chapter 2
Recent Research

In this chapter we view diagnosis as an example of the more
general class of problems which are solved through abductive
reasoning. We discuss what abduction is and survey related research.

2.1. What is Abduction

Abduction is the reasoning process by which one generates
explanations for observations. In medical diagnosis we may observe
that John has a sore throat. Abductive reasoning enables one to
propose the hypothetical explanation that John has a cold which is
causing his sore throat. We can think of abduction as an unsound rule
of inference which resembles a sort of inverse deduction.

Whereas deduction leads to unequivocal assertions, abduction
leads to equivocal assertions. That John has a cold is essentially a
guess. It is a hypothesis which, if it were unequivocally true, would
deductively lead to the observed sore throat. Here we see that
abductive and deductive reasoning often work together with
deduction acting as a partial justification for abductive guesses.

Of course there are many other possible reasons for John's sore
throat, some of which are more likely than others. Typically, in
proposing that John has a cold, we have implicitly selected this
explanation on the basis that it is more likely than other equally
possible explanations. The ranking and comparison of multiple
possible explanations is a common feature of problems which require
abduction.

R e c e n t Research 7

The equivocal nature of assertions reached through abduction
leads to an inherent non-monotonicity that does not occur in
deductive problem solving. We may have to retract previous
assertions in the light of new evidence. If we were to discover that
John has just undergone an operation to remove his tonsils, we would
typically retract the previous explanation in favour of a now much
more likely explanation, namely, that John's sore throat was caused
by the operation which lead to swelling and damaged tissue.

Charniak and McDermott point out that abduction is properly
related to causation [Charniak,87]. They cite the example:

patient in ward 5 + patient has cancer

patient has cancer
patient in ward 5

If abduction generates explanations which explain observations
then our unsound rule of inference falls short as a definition of
abduction. The fact that a patient is in ward 5, does not explain why
he or she has cancer. Charniak and McDermott offer an alternative
rule of inference - one which is based on causality rather than logical
implication.

a causes b

b
a

The difficulty with this definition is that whereas logical
implication is well understood, the human notion of causality has
proven difficult to define precisely, in spite of its intuitive appeal.
Model based reasoning adopts causality as a primitive notion and
incorporates it into the way in which knowledge is modeled. Model
based systems use rules of the form cause + ef fec t . which makes

the two rules of inference proposed above, equivalent.

R e c e n t Research

2.2. Approaches to Abduction

A1 researchers have developed different approaches to the
problem of abductive reasoning. Several researchers have proposed
nonmonotonic extensions to classical logic. These logics are referred
to as nonmonotonic logics. Reiter's Default Logic [Reiter,80],
McDermott and Doyle's nonmonotonic logic [McDermott,80], and
Poole's framework for default reasoning [Poole,88] are based on the
notion of logical consistency. The essential idea is to interpret the
pattern "in the absence of information to the contrary, assume A", as
"if A can be consistently assumed, then do so". Recent work in model
based diagnosis exploits this idea. Components are assumed to
operate normally unless this leads to predictions which conflict with
observations. If necessary, assumptions are retracted until
inconsistencies between observed and predicted behavior is
removed. This forms the basis for several recent model based
diagnosis systems [de Kleer,87], [Genesereth,84], [Reiter,87a],
[Poole,87], [Davis,84], [de Kleer, 89al.

McCarthy's circumscription [McCarthy,80] is a form of non-
monotonic reasoning based on the notion of selecting interpretations
which minimize the number of accepted abnormalities or exceptions.

There are computational difficulties associated with both
circumscription and default logics. However, for our purposes, a more
important deficiency is the lack of any ranking criteria. While default
logics enumerate a space of possible abductive explanations, the
logics are not able to rank which explanations are better than others.
This is critical as some abductive explanations are intuitively far
superior to others which are equally well supported by the
nonmonotonic logic. Diagnostic systems deal with this requirement in
different ways. Reiter [Reiter,87a] generates diagnoses in order of the
increasing cardinality of the set of faulty components. This is a
generalization of the single-fault assumption often used in
conventional MYCIN-like diagnosis systems [Charniak,87]. De Kleer
[de Kleer,87], [de Kleer, 89a], [de Kleer,90b] uses Bayesian analysis
together with simplifying independence assumptions. This leads to

R e c e n t Research

the more general question as to whether we are looking in the wrong
place in our quest for an abductive reasoning formalism. Perhaps
probabilistic reasoning should be given explicit consideration, rather
than treated as an afterthought.

Bayesian probability theory enables us to reason with uncertainty
in a very general and consistent way. Consider the joint probability
distribution, P(D1 ,D2,S 1 ,S2). From a knowledge representation point
of view, it has a well defined denotational semantics. The frequency
with which D l = d l ,D2=d2,S 1=sl ,S2=s2 occurs is P(d1 ,d2,sl ,s2).
Another property of joint probability distributions is global
coherence. Global coherence refers to the property that individual
pieces of knowledge making up a knowledge base sum to a complete
understanding of a whole system. In this case our pieces of
knowledge are probability values. The complete set of these pieces of
knowledge supports generalized global queries. If we consider Dl,D2
to represent diseases, and Sl ,S2 symptoms, then we can perform
abductive calculations such as:

We are equally able to calculate deductive conditional
probabilities such as P(S 1 =s 1 ID 1 =yes).

Unfortunately, the joint probability distribution representation is
extremely immodular. Each piece of knowledge is a statement about
the entire system. We essentially have a single system with a very
large set of attributes. If we change any probability value, we must
reexamine the entire system in order to ensure that the distribution
remains normalized. As a knowledge representation, this deficiency
is fatal. Such a representation is extremely difficult to build and to
maintain.

R e c e n t Research 1 0

In the 70's and early 80's researchers developed Expert Systems
for medical diagnosis of which the much written about MYCIN is a
notable example [Buchanan,84], [Charniak,87]. These systems
incorporate ad-hoc uncertainty calculi so as to avoid the modularity
difficulties associated with probability representations. The basic
strategy is to exploit the syntactic modularity of rule based
representations, namely, the property whereby rules can be invoked
incrementally without regard for each other. Unfortunately, in doing
so, desirable properties of Bayesian probabilities, such as global
coherence, and denotational semantics are sacrificed.

In [Pear1,88], Pearl refers to systems which use MYCIN-like
uncertainty calculi as e x t e n s i o n a 1 systems. He contrasts the
procedural semantics of extensional systems with the denotational
semantics of intensional systems such as Bayesian probability theory.
In his words, the propositional rule A + B, with associated certainty

factor m means: "If you see the certainty of A undergoing a change
DA, then regardless of what other things the knowledge base
contains and regardless of how DA was triggered, you are given an
unqualified license to modify the current certainty of B by some
amount DB, which may depend on m, on DA, and on the current
certainty of B". In contrast, in the Bayesian formalism the rule can be

1

associated with the conditional probability P(BIA) = m which states
that of all world's for which A is true, those for which B is also true
constitute an m percent majority. Extensional systems mean what
they allow one to do. Intensional systems make statements about a
domain.

While extensional semantics results in localized, syntactic
manipulations, it creates other difficulties. Consider the rules S1 + D
with associated certainty factor m l , and S2 + D with associated

. certainty factor m2. In MYCIN certainty factors are real numbers
between -1 and 1. A certainty factor of -1 indicates a complete lack
of believe; a value of 1 represents complete certainty. If both m l and
m2 are positive, and both rules are executed, MYCIN calculates the
certainty factor for D as CF(D) = m l + m2(1-ml). The effect of the

R e c e n t Research

Figure 2.1. P(DISl,S2) is not constrained by P(DIS1) and P(DIS2)

second rule invocation is always to increase the certainty of D
resulting from the first rule invocation.

Under a Bayesian formalism the assertions P(DISl)=ml and
P(DIS2)=m2 do not constitute sufficient information to determine
P(DISl,S2). This can be seen in the Venn diagram representations of
figure 2.1. In both Venn diagrams P(DDS1) and P(DIS2) are close to
one, yet in the first case P(DISl,S2) = 1, and in the second case
P(DISl,S2) = 0. The value of P(DISl,S2) is not constrained in any way
by a knowledge of P(DIS1) and P(DIS2). Knowledge about the
relationship between sets S1 and D, and between S2 and D, is
inadequate when it comes to making further statements about the
nature of S l n S 2 and its relationship with D.

Extensional semantics provides a certainty factor calculation
mechanism which parallels the conventional, highly localized rule
execution mechanism. Unfortunately, certainty factors do not
combine in such a way as to reflect global interrelationships in our
models. Global coherence has been sacrificed for syntactic

R e c e n t Research 1 2

modularity. Improper treatment of correlated sources of evidence
[Pear1,88] and other difficulties can be attributed to this sacrifice.

The earlier definition of extensional rule semantics is explicitly
tied to the direction of reasoning. Extensional semantics propagates
certainty factors from rule antecedent to rule consequent. It does not
provide a similar license to reason in reverse. As a result, MYCIN-like
systems support only a single direction of reasoning. Since MYCIN
reasons from symptoms to disease, i t uses rules of the form
e f f ec t + c a u s e . Moreover, in order to prevent certainty factor

amplification cycles, i t must not have a n y rules of the form
cause + effect. This is at odds with our treatment of abduction as a
rule of inference. As such, a single rule of the form cause + effect

should support either forward reasoning (deduction) or backward
reasoning (abduction).

The procedural nature of MYCIN-like reasoning binds the form of
its knowledge representation to the particular problem being solved.
Extensional systems can compute a diagnosis, but cannot predict
additional symptoms which might arise from that diagnosis. From a
purely syntactic point of view, MYCIN appears to be doing deduction.
From a semantic point of view it is clearly a form of abduction. It is
probably best described as procedural abduction with no
concomitant deduction at all. Apart from preventing the same
knowledge base from being used for more than one purpose, the
unidirectional limitation of extensional systems compromises
diagnostic problem solving. In the case of a suspected disease, it is
natural to predict additional symptoms likely to be present if that
disease were in fact true. Whether or not these predicted symptoms
are actually present can be used to corroborate or discredit the
original explanation.

We have seen the sacrifices that extensional systems make in
order to achieve the syntactic modularity of rule based systems.
However, modularity can also be looked from a semantic point of
view. From this perspective we are concerned with examining
whether rules tie together remotely related concepts and entities. In

R e c e n t Research

this regard it is prehaps ironic to discover that while MYCIN-like
expert systems provide syntactic modularity, they suffer from poor
semantic level modularity. Figure 2.2 illustrates the problem. In the
example, either rain or sprinkler-on can result in grass-wet . In a
causal representation where we represent rules in the form
cause + ef fec t , this situation can be represented quite naturally as
rain + grass-wet and sprinkler + grass-wet. In a MYCIN-like

system we are required to choose a rule form which corresponds to
the direction of our reasoning. In this case our reasoning is
abductive, that is, from effect to cause. If we adopt a non-causal
representation of the form effect + cause, then we must use rules
such as g r a s s - w e t , s p r i n k l e r - o n + rain and
grass-w e t , rain + sprinkler-on, These rules resort to exceptions

to tie together concepts like rain and sprinkler-on which are only
remotely related to each other.

A precise definition of causality has proven elusive [Iwasaki,86a],
[Iwasaki,86b], [de Kleer,86e], [Forbus,88b]. Pearl [Pear1,88] speculates
that prehaps the human notion of causality is tied to an unconscious
selection of inherently parsimonious memory representations as a
way of structuring and simplifying our understanding of the world
within which we live. The unidirectional reasoning of MYCIN-like
systems rules out causal knowledge representations, thereby
eliminating from consideration, intuitively appealing and modular
representations.

Semantic level modularity is crucial to complex model building.
From this perspective, non-causal representations represent a
serious modeling handicap. Expert systems such as MYCIN are often
referred to as having s h a 1 1 o w knowledge bases. They reflect
associative rather than causal relationships, are incomplete, and are

. based on the heuristic experience of domain experts rather than on a
problem independent understanding of the domain itself. The
knowledge bases consist of highly inter-related problem dependent
rules and are difficult to maintain and extend.

Recent Research

(a) Causal Form

(b) Non-causal Form

Figure 2.2. Causal representations link related concepts
only

In contrast, Model Based Diagnosis systems adopt the causal,
object-based representations. These systems are referred to as
having deep knowledge. The resulting modularity and parsimony
enables relatively complex systems to be incrementally developed

Recent Research 1 5

and maintained. These systems allow for both diagnostic and
predictive reasoning.

In recent years Bayesian Belief Networks (from here on we refer
to Bayesian Belief Networks simply as Bayesian Networks) have
been proposed [Pear1,88] as an alternate knowledge representation
for uncertain reasoning. Bayesian Networks are intensional systems
and are based on Bayesian probability theory. The motivation is for a
representation which is modular, as well as having global coherence
and denotational semantics.

Consider the joint probability distribution P(A,B,C,D,E). We can use
the chain rule of probability theory, and a total ordering of the
variables, to express the joint probability distribution as a chain of
multiplications. In this example the variables are ordered
alphabetically:

Expressing the joint probability distribution in this form enables
one to exploit independence relationships in the semantic domain in
simplifying this expression. For example, the fact that B does not
depend on A is expressed as P(BIA) = P(B). Reducing the worlds
under consideration to those for which A is true, does not change the
percentage for which B is also true. Typically, there are many such
independence relationships. For each conditional probability in the
above expression, we determine the smallest set of conditioning
variables which directly influences the conditioned variable.
Continuing our example, we assume the following independence
relationships:

P(B IA) = P(B)

P(D I A,B,C) = P(D I C)

P(E I A,B,C,D) = P(E I A)

This simplifies the expression for the joint probability
distribution:

R e c e n t Research

Figure 2.3. A Bayesian Network

P(A,B,C,D,E) = P(A) P(B) P(C IA,B) P(D I C) P(E IA)

A Bayesian Network represents expressions of this sort as a
Directed Acyclic Graph (DAG). Figure 2.3 shows a Bayesian Network
representation of the above expression. Each variable is represented
as a node. Terms such as P(CIA,B) can be interpreted qualitatively as
"C depends on A and B." We represent this as directed edges from A
and B to C. There are directed edges from each conditioning variable
to the conditioned variable for each conditional probability in the
above expression. Bayesian Networks are given quantitative meaning
through the association of a set of probabilities at each node. Each
probability term in the original expression is associated with the
variable node for its conditioned variable. For example, we associate
P(CIA,B) with variable node C. If A,B,C have domains DA, DB, DC

respectively, then node C stores IDA l x IDB l x IDC l conditional

probabilities. Root nodes, for which there are no incoming edges,
store unconditional probabilities.

R e c e n t Research

The Bayesian Network DAG represents a partial ordering of the
variables which is consistent with the original total ordering. After
the Bayesian Network has been formed, the original total ordering
can be disregarded. Any total ordering consistent with the final
partial ordering would have lead to the same Bayesian Network
[Pear1,88].

Although a Bayesian Network Representation can be formed
regardless of which total variable ordering is initially adopted, the
modularity of the final DAG is very different for different orderings.
For example, figure 2.4 illustrates Bayesian Network representations
for the earlier example of figure 2.2. The first case represents a
causal ordering of the variables. The second case reverses the
ordering used in the first case. As in our earlier discussion, the
relatively better modularity of the second case suggests that we
adopt causal Bayesian Network representations. This is reinforced by
the intuitive nature of causal representations, and the availability of
conditional probabilities. We are far more likely to have probabilities
for the first case than for the second. In fact, although the preceding
discussion has focused on decomposing an existing joint probability
distribution into a Bayesian Network, in practise we are more likely
to incrementally build Bayesian Networks from an understanding of
causal dependencies among variables. The global distribution is
synthesized from an understanding of local causation.

Bayesian Networks achieve semantic level modularity by making
explicit use of independence relationships in the underlying
probability distribution. Unlike extensional systems, this is not
achieved at the expense of denotational semantics and global
cohesiveness. Bayesian Networks explicitly define the way in which
each variable directly depends on other variables. The way in which

. variables indirectly depend on each other under different evidential
conditions, can be derived through graph traversal algorithms
[Pear1,88]. Such procedures enables a Bayesian Network to act as a
graph traversing Inference Engine capable of answering generalized
queries, based on the underlying probability distribution.

R e c e n t Research

Causal Form

(b) Non-causal Form

Figure 2.4. Causal Bayesian Networks are modular

Pearl [Pear1,88] presents a distributed message-based approach to
belief updating and revision. In doing so he achieves syntactic
modularity not unlike that of rule based systems. Unfortunately, his
approach is limited to singly connected networks. A singly connected

Recent Research 1 9

network is a network for which no more than one path exists
between any two nodes. As we encountered earlier with extensional
systems, local syntactic reasoning mechanisms limit our ability to
maintain global correctness under all circumstances. In the case of
Bayesian Networks, however, a well defined semantics provides a
basis for which to develop more general meaning preserving
algorithms. One approach results in approximate answers through
the use of stochastic simulation techniques [Henrion,88]. Other
approaches use search and graph traversal based reasoning steps to
derive correct answers to Bayesian queries. Shachter [Shachter,86],
[Shachter,88] describes an approach based on transforming Bayesian
networks through a series of arc-reversal and node removal
reductions. Jensen et. al. [Jensen,89a], [Jensen,89b] outline a scheme
which makes use of a secondary structure known as a junction tree
for propagating belief information in multiply connected networks.
D'Ambrcsio et. al. [D'Ambrosio,90] describe a goal-driven approach
which is incremental with respect to both queries and observations.
Shimony and Charniak [Shimony,90] describe an algorithm for
finding maximum a-posteriori (MAP) assignments of node values
through the use of an intermediate boolean network and best-first
search techniques. Henrion [Henrion,90], [Henrion,91] investigates the
use of admissability heuristics for pruning best-first search trees.

There are strong similarities between Model Based Diagnosis, and
recent Bayesian Network based diagnosis which, out of convenience,
we refer to as Network Based Diagnosis. Both approaches represent
knowledge in the form cause + effect. Predicate calculus based

formalizations of Model Based Diagnosis [Reiter,87a], [de Kleer,90a]
provide well defined denotational semantics although this semantics
does not extend to the ranking of diagnoses. Both Model Based
Diagnosis and Network Based Diagnosis offer a well defined
enumeration of possible system states. Under Model Based Diagnosis,
global system behavior arises out of the way in which components
encapsulating local behavior, are physically connected. Under
Network Based Diagnosis, global assignments arise out of the way in

R e c e n t R e s e a r c h 2 0

which nodes encapsulating local conditional probabilities, are
connected.

At first glance, the object ontology which underlies Model Based
Diagnosis would seem to represent a fundamental difference. The
Model Based world consists of objects or components which interact
according to how they are physically connected. Whereas
components encapsulate deterministic behavior, Bayesian Network
nodes encapsulate statistical behavior. Whereas components are
physically connected, Bayesian Network nodes are causally
connected. However, recent research [Dechter,91] suggests that
object abstractions arise naturally out of causal interpretations of the
world, particularly in those cases where we have deterministic
models of behavior. From this perspective, causal representations
represent a generalization of object-based representations. The
object ontology of Model Based Diagnosis simply reflects the
relatively more complete theories associated with engineering
domains as compared with medical diagnosis.

The are however, important distinctions between the two
approaches. As mentioned above Model Based Diagnosis formalisms
do not include a general uncertainty calculus. As a result, diagnoses
cannot be ranked except through the use of simplified probabilistic
assumptions or heuristics. On the other hand, Model Based
formalisms offer the expressivity of predicate calculus over the
propositional nature of Bayesian Networks.

We argue that the partitioning of diagnosis problems into
different problem classes, according to whether the problem domain
is well understood or not, is superficial. In the general case we can
expect to encounter problem domains for which some aspects are
well understood and other aspects are not well understood. In
automobile diagnosis, while many properties can be derived from a
well understood theory, there may be other symptoms such as
"rough-idle" which can only be statistically modelled. This point is
related to the issue of completeness in Model Based Diagnosis. Davis
and Hamscher [Davis,88], [Hamscher,90b] point out that a purely

Recent Research 2 1

Model Based System cannot account for all possible failure modes of
a device since it is based on the assumption that the model correctly
reflects the physical structure of the artifact undergoing diagnosis.
Indeed, there are implicit assumptions in any abstract model of
reality that may or may not be met in the case of a particular
artifact. Whereas predicate logic representations are good at
representing theoretical component behavior given a particular
framework of assumptions, probabilities are needed to summarize
possibilities which lie outside the assumptions sanctioning the
theory.

Recent research interest focuses on the possibility of overcoming
technical difficulties found in logic through the use of probabilities.
McDermott [McDermott,87] and Watanabe [Watanabe,87] discuss the
limitations of A1 systems based fundamentally on deductive logic, in
a world where abduction and induction play dominant roles in
commonsense and scientific reasoning. Cheeseman [Cheeseman,88]
suggests that Bayesian inferencing can overcome many of logic's
technical difficulties. Bacchus [Bacchus,90] argues that it is important
to distinguish between statistical and subjective degree of belief
interpretations for probability. His logic LP is an extension of
first-order logic for reasoning with statistical knowledge. Statistical
statements in LP specify probability distributions over a domain of
discourse. LP includes random designators which are treated as
random variables, rather than as conventional universally quantified
variables.

An alternative approach to integrating logic and probability is to
extend the possible worlds semantics of first-order logic to a
probability distribution over a set of possible worlds. Probabilities
assigned to sentences are treated as part of each sentence's assertion,

. and must hold for universally quantified variables of the sentence.
There is recent research along these lines. Charniak and Shimony
[Charniak,90] define a boolean belief network representation for a
propositional rule system and assign probabilistic semantics to
cost-based abduction. In [Poole,91] Poole proposes extensions to Horn

R e c e n t Research 2 2

clause logic and represents Bayesian Networks as extended logic
programs. In this thesis we propose a similar representational
mechanism. The motivation is to combine the representational
advantages of predicate logic with those of Bayesian Networks,
thereby supporting a generalized approach to diagnostic problem
solving.

2.3. Architectures for Abduction

In [Nii,89] Nii distinguishes between two problem solving
paradigms, one based on search and the other on recognition. In the
search-based paradigm a problem solver makes each problem
solving choice in the context of a well enumerated set of possible
choices. The search paradigm is referred to as a weak method since
virtually all programs that employ search use weak knowledge to
evaluate which of the available choices is best. In the recognition
paradigm a problem solver matches the current problem state with a
piece of knowledge that can be applied in this situation. As Nii puts
it:

"At any particular computational state, instead of generating and
evaluating the possible next states, a recognition system simply
knows what the next state should be."

The recognition paradigm is referred to as knowledge rich. It
relies heavily on task specific criteria to know what the next state
should be. Most current expert systems are recognition systems.

Whereas MYCIN is a recognition system, Model and Network
systems are search-based. As a result we are interested in
architectures which efficiently support search, particularly

- abductive, or nonmonotonic search. This leads to an examination of
Reason Maintenance Systems, and the architectures which use them.

A Reason Maintenance System (RMS) and a Problem Solver are
two components which together form an overall reasoning system.

R e c e n t R e s e a r c h 2 3

The role of the RMS is to keep a record of propositional assertions
arrived at by the Problem Solver during problem solving. These
assertions are referred to as d a t u m s . The RMS records both the
datums themselves, and the way in which these datums are justified
by other datums and/or assumptions. By recording datum
dependencies the RMS supports the Problem Solver in its use of
retractable assumptions. Should a line of reasoning lead to an
inconsistency, the datum dependencies identify which set of
assumptions lead to this inconsistency. Conjunctive sets of
inconsistent assumptions are referred to as nogoods . In order to
proceed, at least one of a newly discovered nogood's assumptions
must be retracted. As assumptions are retracted and/or asserted,
datum dependencies propagate resulting changes in datum belief
status. The complete set of nogoods encountered thus far serves to
prune the assumption search space of other, as yet unvisited, points
which subsume nogoods. Such search space points do not need to be
investigated as they subsume a previously discovered inconsistency.

It is the Problem Solver's responsibility to ensure the semantic
correctness of information which it passes to the RMS. The RMS
treats these expressions purely syntactically. This separates the
design of non-monotonic belief revision mechanisms from issues
concerning knowledge representation and inferencing, which differ
from one reasoning system to the next.

As well as supporting non-monotonic reasoning, and search space
reduction, the RMS acts as a cache of inferencing results. Search
space points typically share many common inferences. The RMS
stores these results and makes them available to the Problem Solver,
thereby eliminating the need for executing inferencing steps more
than once.

One of the early RMS systems was that of Doyle in the late
seventies [Doyle,79]. Doyle's RMS (which he called a TMS) is often
referred to as a justification based RMS, by way of distinguishing it
from de Kleer's more recent [de Kleer,86a], [de Kleer,86b],
[de Kleer,86c], [de Kleer,88] assumption-based RMS (which he refers

Recent Research 2 4

to as an ATMS). The distinguishing feature is the way in which the
relationship between datums and their entailing assumptions are
maintained. In Doyle's TMS this relationship is implicitly represented
by datum justification dependencies. Whenever an inconsistency is
identified, datum dependencies are followed in reverse, in order to
explicitly retrieve the responsible assumptions. In de Kleer's ATMS,
as well as recording justifications, assumptions responsible directly
or indirectly for a datum are explicitly and incrementally maintained
as information stored with each datum. He refers to these
conjunctive assumption sets as environments. Since each datum can
be inferred under more than one environment, each datum stores a
label which is a disjunctive set of environments. As each new datum
justification is added, its label environments are propagated forward
through the new justification.

By explicitly maintaining datum labels, the ATMS is able to
efficiently respond to Problem Solver queries concerning more than
one problem solving extension.1. Here we use extension to refer to
the set of datums which follow from a maximal set of consistent
assumptions referred to as an interpretation. All datums whose label
contains an environment which is a subset of an interpretation, are
held to be true in that extension. In contrast, Doyle's TMS supports
queries regarding only one problem solving extension at a time. Each
datum is labeled as being either in the current extension or out of
the current extension. In principle, queries concerning other
extensions can be derived from existing datum dependencies; to do
so, however, is prohibitively computationally expensive. The ATMS
maintains datum labels in anticipation of Problem Solver queries for
more than just the current extension under active consideration. As a
result, the Problem Solver can switch its attention between very
different search space points at relatively little computational
expense. This is particularly attractive in abductive problem solving,

l ~ o r e generally an ATMS supports multiple contexts. A context refers to the
set of datums which follow from a characterizing set of consistent
assumptions. An extension refers to the set of datums which follow from a
characterizing maximal set of consistent assumptions.

R e c e n t Research 2 5

as we are often lead to compare several equally possible, mutually
inconsistent explanations.

Historically, the control interface between the Problem Solver and
its RMS has seen many variations. Doyle's TMS took responsibility for
selecting which assumption to retract from a nogood set, and for
selecting which alternative assumption to assert. In Doyle's
dependency d i r ec t ed backtracking these choices are made
arbitrarily, thereby denying the Problem Solver a role in guiding the
direction of problem solving. In [de Kleer,86c] de Kleer points out a
Problem Solver-RMS synchronization difficulty which he refers to as
the unouting problem. This problem concerns how a Problem Solver
keeps track of inferences which it has left on its agenda. Some
inferences are common to several contexts. When a Problem Solver
switches to a new context, it cannot always tell whether a shared
inference has previously been executed or not. Often, in order to be
sure, inferences are reexecuted unnecessarily.

De Kleer's Consumer Architecture [de Kleer,86c] presents a
Problem Solver-ATMS interface which solves the unouting problem.
In this architecture, the Problem Solver keeps track of its agenda
items, called consumers, by associating them with the RMS datums
that must be true in order for the consumer to be executed. By
attaching consumers to datums, they are assigned labels much like

\ regular datums. These labels can be used to determine whether a

consumer is executable in a particular interpretation. Consumers
disappear from the agenda immediately after execution. In this way,
only consumers which are executable in a selected interpretation,
and which have never been executed before, are scheduled for
execution.

i

Unfortunately, de Kleer's original Consumer Architecture, is based
on a breadth-first search of a l l possible interpretations. He argues
that this approach is warranted for problems with many solutions all
of which are required. In more recent work [de Kleer,86d],
[Forbus,88a] de Kleer et. al. propose modifications to the original
Consumer Architecture which place focusing control in the hands of

Recent Research 2 6

the Problem Solver, where it belongs. The Problem Solver defines a
problem solving focus of attention by specifying one or more focus
environments. As before, the Problem Solver associates consumers
with RMS datums. In this case, however, only consumers which are
executable in one of the focus environments are scheduled for
execution. Consumer execution is interrupted whenever a focus
environment becomes inconsistent. When this occurs the Problem
Solver establishes an alternative set of focus environments. This
focusing mechanism makes the architecture attractive for problems
requiring a limited number of h igh ly ranked solutions.
Unfortunately, the view persists that the ATMS is specifically aimed
at problems with many solutions, all of which are required.

The Consumer Architecture can be viewed as a kind of Blackboard
Architecture. Blackboard Architectures are based on a paradigm of
multiple specialists working together to solve a common problem. At
any time, the state of the problem solving is represented on a global
blackboard accessible to each specialist. Specialists view the
emerging state of the blackboard solution and indicate when they are
able to make a problem solving contribution. When authorized by a
controlling monitor, specialists make their contributions by updating
the blackboard with newly inferred information. When viewed as a
Blackboard Architecture, the consumers are specialists, the RMS
database is a blackboard, and the Problem Solver is the monitor.
There are numerous examples of Blackboard Architectures in the
literature [Nii,89]. Many of these systems solve problems best
viewed as abduction. Protean determines possible 3-D protein
molecule structures from evidence such as nuclear magnetic
resonance (NMR) data obtained from the protein in solution. Other
systems involve applications such as signal interpretation, and
speech recognition.

Recent research has seen the incorporation of RMS techniques into
Prolog implementations. Although resolution is based on deduction,
its goal directed or backward chaining implementation in Prolog is

, syntactically indistinguishable from abduction. In both cases we

R e c e n t Research 2 7

follow rules "backwards" from consequent to antecedent. Goebel
[Goebel,90] distinguishes the two by the equivocal nature of the
assumptions we reason back to in abduction, as compared to the
unequivocal facts of Prolog. With abduction we reason back to
assumptions which, if they were true, would explain our
observations. In backward chaining we reason back to facts which
are true. From the point of view of a Prolog Inference Engine, this
difference is relatively minor. When faced with a non-deterministic
clause choice during backward chaining, an Inference Engine does
not know at that time whether a particular clause choice will
successfully terminate in known facts or not. It can only proceed by
making optimistic assumptions until inconsistencies force retractions.
Thus the Inference Engine resorts to non-monotonic reasoning. This
naturally leads to consideration of an RMS-based architecture.

Under Prolog's SLD-refutation procedure [Lloyd, 841, clause choices
result in resolvant transformations. High level resolvant goals are
replaced by lower level subgoals; variables acquire bindings. From an
RMS point of view, clause choices are assumptions. The assertion that
a subgoal must be proven, or that a variable has a particular binding,
are datums. By establishing justifications for each new datum,
subgoals and their arguments are associated with the clause choices
responsible for their state. As a result, unification failures can be
analyzed and associated with nogoods as part of a dependency
directed backtracking mechanism. This approach forms the basis for
recent work in Intelligent Backtracking for Prolog [Bruynooghe,84],
[Cox,84], [Drakos,88], [Havens,91], [You,89].

In practise intelligent backtracking schemes for Prolog are faced
with a need to make practical tradeoffs. An RMS-based approach
avoids needless rule execution at the expense of additional

- unification overhead as well as additional memory. Often it is better
to execute some rules needlessly rather than attempt to eliminate all
such needless executions. Many of the tradeoffs can be seen from the
point of view of preserving the popular, efficient stack-based
memory allocation scheme used in Prolog implementations

Recant Research 2 8

[Warren,77]. In these architectures a single problem solving context
is incrementally extended and rolled back with the depth first
pre-order traversal of the SLD search space. Likewise, intelligent
backtracking schemes maintain a single context, and link the storage
of datum dependency information to the stack-based problem
solving state storage mechanism. Whenever an assumption is
retracted, the problem solving context is rolled back to the point
where that assumption was first made. In the process datums are
discarded which could, in principle, be reused. Nogoods are also
discarded prematurely.

Echidna [Havens,90] is a Constraint Logic Programming (CLP)
language with dependency directed backtracking. Havens
[Havens,91] refers to Echidna's unique integration of dependency
backtracking with constraint propagation as dataflow dependency
backtracking. The CLP paradigm [Jaffar,87a] provides natural support
for the constraint relaxation techniques found in model based
diagnosis [Davis,84], [de Kleer,87]. Havens argues against the use of a
stack-based architecture for Echidna's dataflow dependency
backtracking. As a result, when an assumption is retracted, rather
than roll the problem solving state back to the state it had when the
retracted assumption was first made, Echidna is able to keep datums
that can be immediately reused.

Earlier we discussed the close relationship between the goal
directed reasoning of Logic Programming languages and abductive
reasoning. This similarity is reflected in the design of RMS-based
systems for diagnosis [Hamscher,90a], [Struss,89], [de Kleer,86c], [de
Kleer,87], [Hamscher,90b] and the incorporation of RMS techniques
into intelligent backtracking techniques for Prolog. There are,
however, important differences that affect the design of an efficient

. reasoning architecture. Abductive applications involve a comparison
of multiple, ranked explanations. In purely deductive domains like
theorem proving, only one solution is typically required. When more
than one solution is required, they are not ranked in comparison to
each other. Whereas intelligent backtracking schemes are based on

Recent Research 2 9

finding a single solution, diagnosis systems require multiple,
highly-ranked diagnoses.

D'Ambrosio [DtAmbrosio,90a], [D1Ambrosio,90b], [DtAmbrosio,87]
uses an ATMS as a basis for generalized probabilistic reasoning.
D'Ambrosio shows that by associating assumptions with certainty
values, label propagation computes symbolic certainty expressions
for ATMS datums. His concern is not diagnosis, but the support of
generalized probabilistic queries for arbitrary propositions, as
conditioned by an incrementally maintained set of observations.
D'Ambrosio's earlier work [D1Ambrosio,87] uses a certainty calculus
based on the DempsterIShafer theory of evidence. Subsequent work
uses Bayesian probabilities and an ATMS representation of Bayesian
networks. The ATMS is unfocused and maintains all possible
contexts. This results in an exponential growth in the size of datum
labels. To circumvent this problem, D'Ambrosio and Edwards
[D1Ambrosio,91] decompose problems into a subproblem abstraction
hierarchy, and use a partitioned ATMS which summarizes labels into
simpler form, for datums exchanged between partitions.

De Kleer and Williams incorporate Bayesian analysis in SHERLOCK,
an ATMS-based system for circuit diagnosis [de Kleer,89a]. Unlike
D'Ambrosio's system, SHERLOCK sacrifices generality in favour of a
particular application, namely, model based diagnosis. It assumes, for
example, that circuit component states are statistically independent.
SHERLOCK uses a best-first search to find diagnoses in order of
decreasing probability. It uses focusing heuristics to limit the size of
the set of competing diagnosis to only those which are highly likely.
As a result, SHERLOCK avoids the exponential label growth problem,
as well as the computational cost of deriving many relatively
unlikely diagnoses.

2.4. What is needed

In distinguishing between model based diagnosis and medical
diagnosis, we focus on the fact that whereas model based diagnosis is

Recent Research 3 0

concerned with physical systems like circuits or engines, medical
diagnosis is concerned with the human body. In the former case we
have a precise theory of how the system should behave; in the latter
case we have only an empirical understanding of how the human
body works. We argue that this distinction is not fundamental.
Rather than two distinctly different kinds of problems, we have a
continuum of abductive problems ranging from theoretically well
understood systems, to systems for which we have only an empirical
understanding.

Even for the case where we have a precise theory, completeness
considerations can force us to consider the possibility that our theory
is based on false assumptions. For example, in model based diagnosis
we assume that the physical connectivity between components is as
described by our model. Completeness forces us to consider the
possibility of structural faults such as electrical shorts. Such
problems are outside the theory represented by our model. Theories
represent abstractions of the real world artifact under diagnosis.
They are formed by distinguishing between those artifact properties
that are important and those that are not. These distinctions are
necessary to prevent us from having to model the artifact in infinite
detail. Unfortunately, these same distinctions amount to contextual
assumptions which can only be empirically justified. In the actual
case of a faulty artifact, almost anything could be the cause, even
that which we considered to be not worth modeling. It would seem
that we can never actually have a purely model based diagnostic
reasoner which offers diagnostic completeness. Even at this end of
the spectrum we require a hybrid system. Whereas some parts of
our model can be precisely defined, other parts can only be
statistically defined.

Generalized abductive reasoning requires a knowledge
representation capable of supporting both model-based and
network-based diagnosis. Whereas deterministic behavior of healthy
circuit components is well represented by rules or procedures,
explicitly enumerated conditional probability distributions are

Recent Research 3 1

required in the case of medical diagnosis. A generalized
representation must support theoretical representations of well
understood behaviors as well as probabilistic representations of
statistical behavior. In this thesis we propose a way of representing
Bayesian networks in logic programs so as to accomplish this. In
order to be useful, the integrated representation must preserve the
desirable features of both logic and Bayesian network
representations.

While we adopt a Prolog-like framework for our reasoning
system, it is important to reconsider architectural issues in the light
of abductive problem solving. We propose an architecture which
utilizes a focused ATMS for Horn clause reasoning. We incorporate
Bayesian techniques to ensure that more likely explanations are
found first. The implications of these decisions changes the nature of
many of the practical tradeoffs normally associated with intelligent
backtracking. In particular, a best-first search of the assumption
search space visits possible solutions in a very different order from
the pre-order traversal of a stack-based Prolog implementation. This
precludes the efficient stack-based architecture upon which many
intelligent backtracking tradeoffs are based, but raises the possibility
of adopting probabilistic heuristics to control datum caching.

Chapter 3
A Knowledge Representation for Abduction

In this chapter we present a knowledge representation based on
Horn clause logic and Bayesian networks which is suitable for general
problems in abductive reasoning. Horn clause programs are
commonly referred to as definite programs. The notion of a definite
program is extended to support complete representations of Bayesian
networks. Under these extensions, programs used to represent
Bayesian networks are referred to as Bayesian programs.

3.1. Syntax

In the following we provide syntactic definitions for definite
programs, Bayesian networks and Bayesian programs.

3.1.1. Definite Programs

The reference textbook on the standard theory of logic
programming is [Lloyd,84]. Our discussion of definite programs is
based on a summary of this material. The interested reader is
referred to the original text for a more complete presentation.

A first order theory consists of an alphabet, a first order language,
a set of axioms and a set of inference rules. We are interested in first
order theories where the set of axioms is a definite program, and
resolution is the only inferencing rule.

An alphabet consists of seven classes of symbols:
(a) variables
(b) constants
(c) function symbols or functor
(d) predicate symbols

A Khowledge Representation for Abduction

(e) connectives
(f) quantifiers
(g) punctuation symbols.

The connectives are T,A,v,+ and H- . The quantifiers are 3 and 'd.

The punctuation symbols are "(", ")" and "," .

The following definitions are needed for the definition of a first
order language.

A term is defined inductively as:
(a) A variable is a term.
(b) A constant is a term
(c) If f is an n-ary function symbol and t l , ..., tn are terms, then

f(t1, ..., tn) is a term.

A (well-formed) formula is defined inductively as:
(a) If p is an n-ary predicate symbol and t l , ..., tn are terms, then

p(t1, ... tn) is a formula (called an atomic formula or, more
simply, an atom).

(b) If F and G are formulas, then so are (-F),(FAG),(FvG),(F+G) and
(F-G).

(c) If F is a formula and x is a variable, then ('dx F) and (3x F) are

formulas.

The formula (F+G) is often written as (G :- F).

The first order language given by an alphabet consists of the set
of all formulas constructed from the symbols of the alphabet.

The following definitions are needed to support the definition of a
definite program.

The s c o p e of 'dx (resp. 3x) in 'dx F (resp. 3 x F) is F. A b o u n d

occurrence of a variable in a formula is an occurrence immediately
following a quantifier, or an occurrence, within the scope of a
quantifier, of the same variable as immediately follows the
quantifier. Any other occurrence of a variable is free.

A Khowledge Representation for ~bduction 3 4

A closed formula is a formula with no free occurrences of any
variable.

If F is a formula, then V(F) denotes the universal closure of F,

which is the closed formula obtained by adding a universal
quantifier for every variable having a free occurrence in F.

A ground formula is a formula with no variables.

A literal is an atom or the negation of an atom. A positive literal
is an atom. A negative literal is the negation of an atom.

A clause is a closed formula of the form Vxl ... Vxs (Llv ... v L m)

where each Li is a literal and xl , . . . ,x are all the variables occurring S

in L1v ... vLm.

I t i s e a s y t o s h o w t h a t t h e c l a u s e

Vxl ... Vxs (A1v ... vAmv7B lv. . .v~B,) , where Al ,..., Ak,B 1 ,..., Bn are atoms

and x l ,..., x are all the variables appearing in these atoms, is S

equivalent to Vx ... Vxs (Al v...vAm :- B A...AB,) which, by convention,

is written A1 ,...,Am :- B1 ,..., B, Under this convention, all variables

are assumed to be universally quantified, the commas in the
antecedent B I ,... Bn denote conjunction and the commas in the

consequent Al ,. . .Ak denote disjunction.

A definite program clause is a clause of the form A1 :- B ,... ,Bn

which contains precisely one atom in its consequent. A is called the
head and B1, ... Bn is called the b o d y of the program clause. The
informal semantics of a clause of this form is that "for each
assignment of each variable, if B1, ..., Bn are all true, then A is true".

A unit clause is a definite program clause with an empty body. It
has the form A :- .The informal semantics of a unit clause is that "A is
unconditionally true for each assignment of each variable."

We often denote the unit clause, 'A :- ' as simply 'A.' .

A Khowledge Representation for Abduction 3 5

A definite program is a finite set of definite program clauses.

A definite program for which:
(a) all unit clauses are ground
(b) no clause head includes variables which do not appear in the

clause body is said to be a ground definite program.

In a definite program, the set of clauses with the same predicate
symbol p in the head is called the definition of predicate p.

A definite goal is a clause which has an empty consequent. If

y 1 , . . . ,yr are the variables of the goal :- B I , . . . ,Bn then this clausal

notation is shorthand for V y . . .V yr(7B v .. .vTB .) or, equivalently,

3y l . . .3yr(B1~. . .~Bn) . Each Bi (i=l,n) is called a subgoal of the goal.

We often denote the goal, :- B I ,..., Bn , as ?- B1 ,..., Bn.

The empty clause, denoted 0, is the clause with empty consequent

and empty antecedent. This clause is to be underst0,od as a
contradiction.

A Horn clause is a clause which is either a definite program clause
or a definite goal. Alternatively, a Horn clause is a clause which
contains either one atom or no atoms in its consequent.

3.1.2. Bayesian Networks

The following sequence of definitions leads to the definition of a
Bayesian network.

A directed graph G = (V,E) consists of:
(a) a finite, nonempty set of vertices V
(b) set of directed edges E

A directed edge is an ordered pair of vertices; v is called the tai l
and w the head of edge (v,w). We write tail(e) to refer to the tail of
edge e. Similarly, head(e) refers to the head of edge e.

A Knowledge Representation for Abduction 3 6

A p a t h is a sequence of edges (vI,v2), (v2,v3) ... (v ~ - ~ , v). We

say that the path is from v l to vn and is of length n-1.

A path is s imple if all edges and all vertices on the path except
possibly the first and last vertices, are distinct.

A c y c l e is a simple path of length at least 1 which begins and
ends at the same vertex.

A directed acyclic graph (DAG) is a directed graph with no cycles.

If (v,w) is an edge in a directed graph, we say that v is a p a r e n t
of w and that w is a child of v.

The set of parents of a vertex x is designated as rrx.

If v is a vertex in a directed graph, we refer to the set consisting
of v and all of its parents as the family of v.

If v and w are two vertices in a directed graph, and there is a
path from v to w, then we say that v is an ances tor of w. We write
ancestor(w) to refer to the set of all of w's ancestors.

If v and w are two vertices in a directed graph we say that v is a
weak ancestor of w if v is an ancestor of w o r v = w. We write
prev(w) to refer to the set of all of w's weak ancestors.

If v and w are two vertices in a directed graph, then c is a
common weak ancestor of v and w if:

(a) c is an element of prev(v)
(b) c is an element of prev(w)

If v and w are two vertices in a directed graph, then r is a recen t
weak ancestor of v and w if:

(a) r is a common weak ancestor of v and w.
(b) no direct successor of r is a common weak ancestor of v and w.

A vertex with no parents is referred to as a terminal vertex.

A Khowledge Representation for Abduction 3 7

A Bayesian network is a DAG whose vertices are nodes. In the
following we lead up to precise definitions for the terminal and
non-terminal nodes of a Bayesian network.

An unconditional probability expression for random variable V is
a sentence of the form:

P (V = c) = x
where x is a real number such that 0 I x 1 1.0,

c is a constant,
a n d "P, "(" , ")" , a n d "=" are punctuation symbols.

An unconditional probability distribution on variable V, denoted
by P(V), is a set of unconditional probability expressions for V such
that:

(a)All constants contained in the expressions of P(V) are distinct. -

(b) z x i = 1.0. Note that in order for this normalization

condition to hold, P(V) must contain at least one element.

A terminal node is a pair (V,P(V)). In a Bayesian network a
terminal node is designated by the name of its variable V.

For the terminal node (V,P(V)), the domain of V is defined as the
set of those constants which appear in one of the node's associated
probability expressions:

A conditional probability expression for conditioned variable V
and conditioning variables BI ,..., Bn, is a sentence of the form:

P(V=C l B =b 1,. . . ,Bn=bn) = x

where x is a real number such that 0 2 x 1 1.0 ,
c is a constant,
bbP","(bb,")" a n d "=" are punctuation symbols,
and b E domain(B . . ., bn E domain(Bn).

A Khowledge Representation for Abduction 3 8

F o r t h e c o n d i t i o n a l p r o b a b i l i t y e x p r e s s i o n

P(V=clB1=bl, ..., Bn=bn) = x, the sentence B l=b l ,..., Bn=bn is referred

to as the condition of the expression; the sentence V=c is called the
proposition of the expression.

A conditional probability distribution on variable V is denoted by
P(VIB1=bl, ..., Bn=bn) where B1, ..., Bn are conditioning variables. It is a

set of conditional probability expressions such that:
(a)The same condition appears in each conditional probability

expression.
(b)All constants contained in the proposi t ions of

P(VIB =b 1 ,..., Bn=bn) are distinct.

(c) P(VIB1=bl, ..., Bn=bn) is the empty set or

The informal semantics of the empty set is that the specified
condition does not occur in the associated semantic domain. If
the condition does occur, then P(VIB =b l,... ,Bn=bn) contains at

least one element since V must assume some value.

P(VIBl,...,Bn) denotes a set of conditional probability distributions:

A non-terminal node is a pair (V,P(VIBl ,..., Bn)) where Bl ,..., Bn are

the parents of node V. In a Bayesian network a non-terminal node is
designated by the name of its variable V.

For the non-terminal node (V,P(VIBl ,..., B,)), the domain of V is

defined as the set of those constants which appear in the
propositional part of one of the node's associated conditional
probability expressions :

A I<howledge Representation for abduction 3 9

This completes the definition of a Bayesian network. The following
terms are needed in the next section where a Bayesian program is
defined.

The set of variable assignments, such that each variable of a
Bayesian network B, is assigned one of its domain values, is called an
extension of B

From the definition of a Bayesian network, if N is a node in a
Bayesian network B, then N together with its ancestors also
constitutes a Bayesian network. We refer to an extension of this
network as a tail extension of node N.

If N1 and N2 are nodes of a Bayesian network B, and N1 is an
ancestor of N2, then each tail extension E2, of node N2, includes a tail
extension E l of node N1. We say that El is a sub-tail extension of E2.

3.1.3. Bayesian Programs

A Bayesian program is a definite program which is structured
after a Bayesian network, and where some program clauses are
annotated with probabilities. In the following we define how a
Bayesian program is constructed from a Bayesian network.

An annotated clause is of the form { definite program clause, x }
where x is a real number and 0 < x < 1.0 .

A Bayesian clause is either a definite program clause or an
annotated definite program clause.

Following convention we adopt "." as the list functor. A list may be
defined inductively as:

(a) [I which is a symbol for the nil list
(b) .(X, list) where X s tands for any term

A Khowledge Regresentation for Abduction 4 0

Also following convention we adopt the more convenient Prolog
syntax for representing lists. The difference between the two
representations is illustrated by the following table:

Formal Representation Prolop Representation

We adopt the Prolog representation purely a matter of
convenience. The Prolog syntax can always be replaced with its
equivalent first order language syntax.

Let B be a Bayesian network, and let N be the set of all variable
names for B, then a node term is defined as:

/(Nodename, Nodevalue) where Nodename represents an
element of N and Nodevalue, an element of
domain(Nodename) .

For syntactic convenience we represent the "1" functor as an infix
operator. The term Nodename/Nodevalue is equivalent to the term
/(Nodename,Nodevalue). By convention we use capital letters for
Nodenames and small letters for Nodevalhes. Informally, the node
term A/a represents the assignment A=a for random variable A. We
use the "-" character to distinguish between constants and variables.
The node term -A/-a consists of the variables -A and -a. The node
term A/a consists of the constants A and a.

An extension term is defined as:

t(X,Es) where X stands for a node term, and E s is a list of

extension terms. E s may be the nil list.

A Khowledge Representation for ~bcluction

Figure 3.1. A Bayesian Network.

Informally, extension terms are used to represent the tail
extensions of a Bayesian network node. The tail extension of a node
consists of the union of the tail extensions of its parents, Es, together
with its own assigned node value, X. Again, as a matter of syntactic
convenience, we represent the t functor as an infix operator. The
term X t [Y ,Z] is syntactically equivalent to the term t (X, [Y ,Z]). A

tail extension of node D of the Bayesian network shown in figure 3.1
is represented as D/d t [Blb t [Ma t [I], C/c t [Ala t [I]] .

In a Bayesian network a terminal node V is represented as
(V,P(V)). We convert this to a set of annotated definite program
clauses :

(a) associate a unary predicate with the node. For the purpose
of discussion let this predicate be referred to as "node-V".
Informally, this predicate enumerates t h e possible tail
extensions of terminal node V.

(b) If P(V) conta ins t h e single probability expression
P(V=c) = 1.0 c r e a t e t h e u n a n n o t a t e d c l a u s e :
node-V(V/c t [I).

A Khowl edge Representation for Abduction 4 2

(c) for each probability expression P(V=c) = x E P o , where x

is neither zero nor one, create the annotated clause:

{node-V(V/c + 11),XI.

In a Bayesian network a non-terminal node V is represented as
(V,P(VIB I ,..., Bn)). We convert this to a set of annotated definite

program clauses:

(a) let F be the family of V. Associate a k-ary predicate with V

where k is the cardinality of F. For the purpose of discussion
let this predicate be referred to as "family-V.

(b) for each probability expression P(V=c l B =b l,. . . ,Bn=bn)= 1 .O
associated with (V I B , . . . , B) , create the clause:

family-V(V/c,B 1 /b 1,. . . ,Bn/bn).
(c) for each probability expression P(V=c l B =b l,. . . , Bn=bn) = x

associated with P(V I B .. ,Bn) where x is neither zero nor

o n e , c r e a t e t h e a n n o t a t e d c l a u s e
{ family-V(V/c,B 1 /b 1,. . . ,Bn/bn) , x }.

(d) associate a unary predicate with the node. For the purpose
of discussion let this predicate be referred to as "node-V.
Informally, this predicate enumerates the tail extensions of
non-terminal node V.

(e) let P be the set {B .Bn), the parents of V. Let R be the set

{r I 3Bi 3B. B.E PA B.E P A r E recent weak ancestor of Bi and
J J

Bi 1
(f) if R is t h e empty s e t create the node clause:

node-V(-V+[-B 1 +-XI,. . . ,-Bnt-Xn]):- node-B 1 (-B 1 +-XI)
, . . . , node-Bn(-Bnt-Xn) , family-V(-V,-B 1 , . . . ,-Bn) . Informally,

n o d e builds tail extensions of V from the tail extensions
of its parent nodes provided that the node terms of V and
its parents form a consistent family of values. In this case
the variables -XI,. . . ,-Xn simply abstract away unnecessary
detail.

(g) if R is not the empty set, we elaborate variables Xl,. . . ,Xn so
as to identify sub-tail extensions which parent tail
extensions are required to have in common. We do this by

A Khowledge Representation for Abduction 4 3

replacing t h e var iables X l , . . . ,Xn wi th extension
representations for which each tail extension of a recent
weak ancestor E R is named with a distinct variable. In this

way shared sub-tail extensions are represented as variables
which are shared between subgoals in the body of the node
clause. A node clause for which sha red node subgoal
variables correctly represent shared sub-tail extensions is
said to be network consistent.

Ignoring variables for a moment we see that the
A :- B1, ..., Bn,family-A structure of a node clause represents the local
network relationships of node A with its immediate parents. This is
similar to the syntactic modularity of MYCIN rules described earlier.
In contrast, the shared variables of node subgoals represent those
global network relationships which are required in order to maintain
the global coherency which was lacking in MYCIN's representation.
By representing only recent weak ancestors as shared variables, we
keep global information to a minimum in each node clause.

We refer to node-A predicates, where A is a node name, as n o d e
predicates. Similarly family-A is referred to as a family predicate.

If we apply the above transformations to the set of nodes of a
Bayesian network B, then the set of annotated and unannotated
clauses which result constitute a Bayesian program based on B.

A Bayesian clause is an element of a Bayesian program.

Let BP be a Bayesian Program. Let BP' be the definite program
formed by stripping each annotated clause in BP of its annotation.
We refer to BP' as the base program for BP.

The following is an example of a Bayesian program based on the
Bayesian network shown in figure 3.1.

A -ledge Representation for Abduction

Thus far, Bayesian program clauses correspond 1 : 1 with Bayesian
network probability sentences. We now describe equivalent Bayesian

-

A Knowledge Representation for Abduction 4 5

program representations which can offer more succinct, generative
representations.

Consider the node A of a Bayesian network B with
domain(A) = {a l ,a2,...,an}. Let BP be a Bayesian Program constructed

from B as described above. We have a set S of n clauses of the form
{ n o d e - A (A l a i t [I) , xi } where each clause i corresponds to the

distinct A value ai.

Since several clauses may have the same x value, we have m
distinct x values where m I n. Consider the case where:

(1) n is large
(2) m is small

In this case we may wish to consider the following equivalent
representation. Let Sx be an S subset of k clauses which share the

same probability x. We can replace these k clauses with:

(a)the annotated clause { node-A(A/-a t [I) :- node-ax(_a), x }

(b) the' clauses of a ground definite program Nax defined such
that:
(1) Nax includes a definition of node-ax
(2) node-ax(a) E MH, the least Herbrand model for Nax, iff

M represents the declarative meaning of definite program Nax,

as will be discussed in a subsequent section.

We may replace any number of unit node clauses in this way. If
node-A is defined by a complete set of ground unit clauses we say
that these clauses form an explicit definit ion for node-A.
Alternatively, if we do one or more of the substitutions described
above, we refer to the final set of clauses as a generative definition
for node-A.

We can make similar replacements for family clauses. We have a
set S of n = l domain(A) I x I domain(B1) I x ... x I domain(Bn) I

A Khowledge Representation for Abduction 4 6

clauses of the form { familyA(A/ai, Bllbli , ..., Bn/bni) , xi } where

the parents of node A are B ,. . . ,Bn and each clause i corresponds to a

distinct set of A,Bl ,..., Bn values.

We have m distinct x values where m I n. In the case where n is
large and m is small we may wish to consider a generative
representation.

Let Sx be an S subset of k clauses which share the same

probability x. We can replace the k clauses with the annotated clause:

(a) {family-A(A/-a,B 1 /-b 1,. . . ,Bn/-bn) :1
family-ax(-a,-b 1,. . . ,-bn), x}

(b) the clauses of a ground definite program Fax defined such
that:
(1) Fax includes a definition of family-ax
(2) family-ax(a,b 1,. . . ,bn) E MH, the least Herbrand model for

Fax, iff {family-A(A/ a,B 1 / b 1 , . . . , Bn/ bn) , x) E S,

Unannotated family clauses F are treated as equivalent to {F,1.0}.
We may follow the same replacement procedure for sets of
unannotated family clauses.

As with terminal nodes we refer to family-A definitions as being
either explicit or generative.

3.2. Declarative Semantics

In the following we define the declarative semantics of definite
programs, Bayesian networks and Bayesian programs.

3.2.1. Definite Programs

A p r e - i n t e r p r e t a t i o n of a first order language L consists of the
following:

A Khowledge Representation for Abduction 4 7

(a) A non-empty set D, called the d o m a i n of the pre-
interpretation.

(b) For each constant in L, the assignment of an element in D.
(c) For each n-ary function symbol in L, the assignment of a

mapping from D" to D.

Informally, a pre-interpretation of a language defines a semantic
domain, and a way of referring to elements of that domain.

An interpretation I of a first order language L consists of a pre-
interpretation J with domain D together with the following:
For each n-ary predicate symbol in L, the assignment of a mapping

from D" into {true,false} (or, equivalently, a relation on D"). We say
that I is based on J.

Informally, an interpretation of a language defines a set of atomic
assertions that we can make about the elements of a semantic
domain, There are many possible interpretations for any particular
pre-interpretation.

Let J be a pre-interpretation of a first order language L. A
variable assignment (wrt J) is an assignment to each variable in L of
an element in the domain of J.

Let J be a pre-interpretation with domain D of a first order
language L and let V be a variable assignment. The term assignment
(wrt J and V) of the terms in L is defined as follows:

(a) Each variable is given its assignment according to V.
(b) Each constant is given its assignment according to J.
(c) If t t l ,..., t', are the term assignments of t l ,..., tn and f is the

assignment of the n-ary function symbol f, then f (ttl ,..., t tn) E D

is the term assignment of f(t l , . . ., tn) .

Let I be an interpretation with domain D of a first order language
L and let V be a variable assignment. Then a formula in L can be
given a truth value, true or false, (wrt I and V) as follows:

A Khowledge Representation for Abduction 4 8

(a) If the formula is an atom p(t1, ..., tn), then the truth value is
obtained by calculating the value of p'(tl ,. ..,ttn) where p' is the

mapping assigned to p by I and t ' l ,..., t ' are the term n
assignments of t l , . . .,tn wrt I and V.

(b) If the formula has the form -,F, FAG,FvG,F+G or FHG, then the

truth value of the formula is given by the following table:

t r u e t r u e false t r u e t r u e t r u e t r u e

t r u e false false false t r u e false false

false t r u e t r u e false t r u e t r u e false

false false t r u e false false t r u e t r u e

(c) If the formula has the form 3 x F, then the truth value of the
formula is true if there exists d E D such that F has truth value

wrt I and V(x/d), where V(x/d) is V except that x is assigned d;
otherwise, its truth value is false.

(d) If the formula has the form Vx F, then the truth value of the
formula is true if, for all d E D, we have that F has truth value

true wrt I and V(x/d); otherwise, its truth value is false.

It is clear from the above that the truth value of a closed formula
does not depend on the variable assignment V.

If the truth value of a closed formula with respect to an
interpretation is true (resp., false), we say the formula is true(resp.,
false) with respect to the interpretation.

Let I be an interpretation of a first order language L and let F be a
. closed formula of L. We say that I is a model for F if F is true wrt I.

Let S be a set of closed formulas of a first order language L and let
I be an interpretation of L. We say I is a mode 1 for S if I is a model
for each formula of S.

A Xhowledge Representation for Abduction 4 9

Let P be a definite program defined on a language L and let I be
an interpretation of L. As a special case of the above statement, I is a
model for P if I is a model for each clause of P.

Let S be a set of closed formulas of a first order language L. We
say that S is unsatisfiable if no interpretation of L is a model for S.

Typically, we define a definite program with a particular semantic
domain and interpretation in mind. While the above procedure
enables us to determine whether or not an intended interpretation is
a model for a particular definite program, we are also interested in
whether or not the intended interpretation follows from the definite
program and the intended semantic domain. Does our definite
program when interpreted with respect to a particular
pre-interpretation necessarily lead to the intended interpretation? In
order to answer such questions we define the notion of logical
consequence.

Let P be a definite program of first order language L and F be a
closed formula of L. Let F have the form 3y ,..., 3yr (Bl ,..., B,) where

y I ,. ..,yr represent the complete set of variables appearing in atoms

B 1 ,..., Bn. We say that F is a logical consequence of P if, for every

interpretation I of L, I is a model for P implies that I is a model for F.

It is not difficult to show that F is a logical consequence of P iff
P u {7F} is unsatisfiable. Since the formula TF is equivalent to the
definite goal G = :- B I ,B2,. . .,Bn , F is a logical consequence of P is

equivalent to showing that the set of Horn clauses P u {G) is

unsatisfiable.

To show that P u {G} is unsatisfiable, we must show that no
interpretation of L is a model for P u {GI. At first glance this seems

difficult as there are any number of semantic domains upon which
we can base an interpretation. Fortunately, as it turns out, we can
restrict our attention to a particular domain called the Herbrand
universe.

A K ! l edge Representation for Abduction 5 0

Let L be a first order language. The Herbrand universe UL for L is

the set of all ground terms, which can be formed out of the constants
and function symbols appearing in L.

Informally, the Herbrand universe for L is the set of all names for
'things' supported L.

Let L be a first order language. The Herbrand base BL for L is the

set of all ground atoms which can be formed by using predicate
symbols from L with ground terms from the Herbrand universe as
arguments.

Let L be a first order language. The Herbrand pre-interpretation
for L is the pre-interpretation given by the following:

(a) The domain of the pre-interpretation is the Herbrand universe

UL.
(b) Constants in L are assigned themselves in UL.

(c) If f is an n-ary function symbol in L, then the mapping from

(u ~) ~ into UL defined by (tl ,..., tn) -1 f(tl ,..., tn) is assigned to f.

In effect, the Herbrand pre-interpretation lets each name for a
'thing' supported by the language L, stand for itself in the set of all
such names.

A Herbrand interpretation for L is any interpretation based on
the Herbrand pre-interpretation for L.

Following convention we identify each Herbrand interpretation
with a particular subset of the Herbrand base. For each Herbrand
interpretation, its associated Herbrand base subset consists of only
those ground atoms which are made true by the interpretation.
Conversely, for any subset of the Herbrand base, its associated
Herbrand interpretation is defined by specifying that the mapping
defined by predicate symbols maps arguments to true precisely
when the atom made up of the predicate symbol and these same
arguments is in the Herbrand base subset. This identification enables

A Knowledge Representation for Abduction 5 1

us to talk of Herbrand interpretations as equivalent to Herbrand base
subsets.

Let L be a first order language and S a set of closed formulas of L.
An Herbrand model for S is an Herbrand interpretation for L which
is a model for S.

We can now associate each interpretation I of a language L with a
corresponding Herbrand interpretation H for L.

H = { p(t 1,. . . ,tn) I p(t 1, . . . ,tn) E BL A p(t 1,. . . ,tn) is true wrt I)

It is readily shown that if I is a model for S, a set of clauses
defined on L, then H is also a model for S.

The implication is that if S has any model then it must have a
Herbrand model. Put differently, S is unsatisfiable iff S has no
Herbrand models.

Let P be a definite program of L and F a closed formula of L of the
form 3y ,..., 3yr (B I ,..., B n) We said that F is a logical consequence of P

iff P u {G} is unsatisfiable where G = :- B1 ,B2,. ..,Bn. From the above

results, since P u {G} is a set of clauses (Horn clauses), it is only

necessary to consider Herbrand Interpretations in order to establish
the unsatisfiability of P u { G) .

The declarative semantics of a definite program can now be
established. It is straightforward to show that for P, a definite
program of L, and a non-empty set of Herbrand models for P, {Mi},

then n M i is also a model for P. Since every definite program P has

1

B p as an Herbrand model, the set of all Herbrand models for P is

non-empty. Thus the intersection of all Herbrand models for P is
again a model, called the least Herbrand model, for P. We denote this
model by Mp. Mp is the declarative meaning of a definite program.

A -ledge Representation for Abduction 5 2

I t can be shown that for a definite program P,

M = { A I A E B A A is a logical consequence of P } . The ground

atoms contained in Mp are precisely those that are logical

consequences of P.

It is also readily shown that the least Herbrand model Mp of a

definite program P grows monotonically as clauses are added to P.
The addition of clauses to P can only add new atoms to Mp; it cannot

remove previously included atoms. We say that Horn clause logic is
monotonic.

We can also give a fixpoint characterization of Mp. First we define

some notation. Let f be a mapping defined on domain d, f: d + d. We

define fn(x) inductively, where n is a positive non-zero integer and
X E d :

(a) f1 (x) = f(x)
(b) fn(x) = f(fn- ' (x))

We use P" (x) to refer to fn(x) where n is infinity (the least upper
bound of the set of non-negative integers).

We say that x is a fixpoint of f if f(x) = x.

A fixpoint characterization of Mp requires the notion of a

substitution.

A substitution 8 is a finite set of the form {vl l t l ..., vnltn), where

each vi is a variable, each ti is a term distinct from vi and the

variables v l ,..., v are distinct. Each element vilti is called a binding n
for vi. 0 is called a ground substitution if the ti are all ground terms.

An e x p r e s s i o n is either a term, a literal or a conjunction or
disjunction of literals.

Let 8 = {vl It ,... ,vnltn } be a substitution and E be an expression.

Then E8, the instance of E by 8, is the expression obtained from E by

A Khowledge Representation for Abduction 5 3

simultaneously replacing each occurrence of the variable vi in E by

the term ti (1 n) . If E is ground, then EB is called a g ro und

instance of E.

The substitution given by the empty set is called the ident i ty
substitution.

Let P be a definite program of the first order language L. Let 2BP
represent the set of all Herbrand interpretations of L including the

empty set interpretation. The mapping Tp: 2 B ~ + 2 B ~ is defined as

follows. Let I be an Herbrand interpretation. Then:

T (I) = {A I A E B A A :-A1, ...,A, is aground instance of a
P P

clause in P and I 7 {A1, ...,A,} }.

It can be shown that Mp is a fixpoint1 of Tp, and that it is equal to

T p Y 0) .

We refer to the function Tp for P as the fixpoint function for P.

If Mp is a finite set then there will exist a smallest finite positive

integer k such that ~ ~ " ' ~ (0) = ~ ~ ~ (0) = Mp.

It remains to relate Mp to the intended interpretation of a definite

program P defined on a first order language L. Let J be the intended
pre-interpretation defined for the intended semantic domain. We can
associate Mp, and J with an interpretation M based on J.

Let M = { p(ttl ,... ,tfn) I p(tl ,..., tn) E Mp A ttl ,..., ttn are the term
assignments under J of the ground terms t . . , tn }

- In the above we refer to p(tfl ,..., t tn) as a J-instance of predicate p.

B IIt is actually the least fixpoint of Tp where 2 P is recognized as a complete

lattice under the partial order of set inclusion. A least fixpoint is 5 any other
f ixpoint .

A Krmtrledge Representation for Abduction 5 4

Here we identify the interpretation M with a set of J-instances in
the same way that we identified Herbrand interpretations with
Herbrand base subsets. The mapping associated with a predicate
symbol maps arguments to true precisely when the associated
J-instance E M.

Clearly, M is also a model for P. In comparing M with an intended
interpretation I we compare actual and intended meanings of P. The
actual meaning M is sound if it is a subset of I. The actual meaning M
is complete if it is a superset of I. The actual meaning is both sound
and complete with respect to an intended meaning if M = I.

Finally we provide a declarative definition of a correct answer.

Let P be a definite program and G a definite goal. An answer for
P u {G) is a substitution for the variables of G.

Let P be a definite program, G a definite goal ?- A1,. . . ,Ak and 8 an

answer for P u {G). We say that 8 is a correct answer for P u {G) if
V ((A 1 ~ ... "Ak)8) is a logical consequence of P.

Let P be a definite program and G a definite goal ?- AI , . . .,Ak.

Suppose 8 is an answer for P u {G) such that (Al A . . . A A ~) ~ is ground.

Then 8 is correct iff (Al A ... A A k)8 is true wrt the least Herbrand

model of P.

3.2.2. Bayesian Networks

In this section we define what a probability model is, and what it
means. We then show that a Bayesian network, along with implicit
independence assumptions, is equivalent to a probability model.

For our purposes, we define an experiment as a set of r a n d o m
variables and a set of distinguishable elements called outcomes.

A random variable of an experiment is a total function which
maps from the set of experiment outcomes to a particular set of

A Khowledge Representation for Abduction 5 5

values called the r a n g e of the random variable. Since each
experiment outco'me is mapped to a different range value, the
random variable partitions the set of experiment outcomes into
subsets of outcomes which have the same associated random
variable assignment.

An experiment outcome is distinguishable from other outcomes
purely by the complete set of its associated random variable
assignments, one for each random variable of the experiment. For an
experiment with three random variables A,B,C, an outcome with
random variable assignments a l , b l , c l i s represented as

{ (A,al),(B,bl),(C,cl) I.

An event of an experiment is a set of experiment outcomes. We
1 write A- (al) to refer to the set of outcomes: {ol A(o) = a1 I. In this

way we can represent arbitrary sets of events as set theoretic
express ions . For example , we wr i te the express ion

(~ - ' (a l) u ~ - ' (b l)) n c m 1 (c 1) to represent the event
{0 I (A(o)=al v B(o)=bl) A C(o) = c l). We note that any set theoretic

expression can be written in 'union of intersection' form.

An elemental event is an event consisting of one outcome.

A probability model is an experiment and a probability function
Prob. Prob is a function which maps experiment events into a
non-negative real number such that the following three axioms of

probability hold:

I. Prob(event) 2 0

11. Prob(S) = 1 where S, the certain event, is the set of all
experiment outcomes.

111. if e l n e2 = 0 then Prob(e1 u e l) = Prob(e1) + Prob(e2).

From these three axioms other properties of probabilities can be
derived:

P r o b (0) = 0 where the empty se t is referred to as the

impossible event.

A Khowledge Representation for Abduction 5 6

Prob(e) = 1 - P r ~ b (~ e)
Prob(e1 u e2) = Prob(e1) + Prob(e2) - Prob(e1 n e l)

The conditional probability function is defined as:

Prob(e n m)
Pr0b(e Im) = ~ ~ ~ b (~) for Prob(m) > 0

We say that Prob(elm) is the probability of event e given the
condition m. If (E,Prob) is a probability model, then so is (E,Prob')
where Prob' is the function s.t. Prob'(e) = Prob(elm) for given
condition m. In other words Prob(elm) maps event e into a
non-negative real number such that the three probability axioms
hold. As a result, conditional probabilities with the same condition m
can be combined in the same way that unconditional probabilities
can. For example, we can write:

Prob(0 I m) = o.

Prob(e l m) = 1 - P r ~ b (~ e l m)
Prob(e1 u e21m) = Prob(e1 lm) + Prob(e2lm) -
Prob(e1 n e l l m)

If m is the certain event then these expressions reduce to their
earlier form, since Prob(elcertain event) = Prob(e).

We can subsequently form Prob" from Prob' and condition m2. It
can be shown that:

Prob" (e) = Prob'(elm2) = Prob(elm,m2).

The celebrated Bayes theorem follows from the definition of the
conditional probability function:

Event e l is said to be independent of e2 if:

l ~ h r o u ~ h o u t the thesis, whenever we write Prob(elm) we shall assume that
Prob(m) ;t 0 even if this is not explicitly stated.

A Khowledge Representation for Abduction

Prob(e 1 n e2) = Prob(e l)Prob(e2).

which is equivalent to:

which is equivalent to:

Prob(e2 l e l) = Prob(e2).

We can add a condition m to the above expressions to form
definitions for conditional independence. Event e l is said to be
conditionally independent of e2 if:

which is equivalent to:

which is equivalent to:

Since any event can be expressed as a union of elemental events,
and since elemental events are mutually exclusive, then by
probability axiom 111, the probability of an arbitrary event can be
represented as the sum of elemental event probabilities. In other
words, an experiment E together with probability values for each
elemental event of E, constitutes a complete probability model. The
probabilities of arbitrary events can be derived from these numbers.
Likewise, since conditional probabilities are defined in terms of
unconditional probabilities, arbitrary conditional probabilities can
also be derived from elemental event probabilities.

If we have a probability model P for experiment E with random
variables A,B,C ... then we can define an associated joint probability
function P as:

A Knowledge Representation for Abduction 5 8

P(X,Y,Z ,...I = rob(A - 1 ~ n B-'O n c-~(z) ...)

where the domains of X,Y,Z ,... are the ranges of A,B,C,. ..
respectively.

It is readily apparent that:

(3) distinct (X,Y,Z, . . .) points correspond to distinct, mutually
exclusive elemental events

The joint probability distribution P(X,Y,Z ...) together with
experiment E is a complete representation of a probability model.

Since the variable names X,Y,Z, ... are arbitrary, by convention we
name each variable after the random variable which assigns it a
value. For example, we write P(X,Y,Z ,...) as P(A,B,C ,...). In order to
prevent ambiguous interpretations of the symbols A,B,C ... we do not
use this convention for expressions involving the Prob function.

We can eliminate variables in P(X,Y,Z, ...) by summing over them.
For example:

P(X,Y) has the following properties:

(3) distinct (X,Y) points correspond to distinct, mutually
exclusive events

We can also define conditional joint probability functions as ratios
of joint probability functions. For example:

A Khowl edge Regresentation for Abduction

The following chain rule is derived by repeated application of the
definition of conditional probability. This rule states that for a joint
probability distribution on variables XI,X2, ... Xn, we have the identity:

where Previ is the se t of variables)4 where j < i.

We now turn to semantic issues. Consider the probability model E
with random variables A,B,C It is defined by a set of normalized
probability sentences for elemental events:

Prob(A- ' (ai) n B-I (bi) n C-I (ci) n...) = ri

where i denotes a particular sentence.

For convenience we use the simpler equivalent representation:

Each of these probability sentences asserts that:

(I) [A/ai,B/bi,C/ci, ...I denotes a particular experiment

outcome.
(2) Its associated non-zero, elemental probability equals ri

We can therefore treat 'prob' as a generalized predicate which
maps to a probability value. A non-zero probability corresponds to

- TRUE. We can separate the semantic issues accordingly. Which
experiment outcomes are possible? What do the probability values
mean?

A -ledge Representation for Abduction 6 0

Considering the first question, we form the definite program DP
made up of the ground atomic assertions:

For this definite program 'AlaiT is an infix representation of

/(A, ai). Similarly, we can consider [Alai,Blbi,Clci,.. .I to be equivalent

to the functor [I applied to terms (A/ai,Blbi,C/ci, ...) .

For this program the Herbrand universe is:

(1) 'A','BV etc.
(2) 'ai', 'bit etc.
(3) 'A/%', 'A/bjl etc.
(4) '[B/q,A/bi,C/ci,. . .I' etc,

The Herbrand pre-interpretation is just:

(1) 'A' -, 'A', 'B' + 'B' etc.
(2) 'ai'-flai' , 'bi'-ftbi' etc.
(3) I / ' maps 'A','%' to 'A/%' etc.
(4) '[I' maps A/q,B/bi,C/ci, . to [A/ai,B/bi,C/ci ,... 1 etc.

The least Herbrand model consists of precisely those ground
atomic assertions making up DP. As required, each DP clause asserts
the possible occurrence of a particular experiment outcome.

In effect DP defines an Herbrand experiment where the outcomes
are syntactic terms such as ' [A/ai ,B/bi ,C/ci , ...I1. For the set of

outcomes, the random variable symbols such as 'A', do indeed act as
random variables. For example, 'A' maps outcome sentence

'[A/ai,Blbi,Clci, ...I1 to 'ai'

We can relate DP to 'real' experiments. For example, in a circuit
diagnosis application, the 'real' experiment may be to select a circuit
from the set of all circuits of a particular type. An outcome of this
experiment is a particular circuit. Each circuit has measurable
properties such as its output signal level.

A Khowledge Representation for Rbductian

We form the semantic domain made up of:

(1) properties such as output signal level.
(2) property values such as 5.0 volts.
(3) property assignments such as output signal level = 5.0 volts.
(4) combinations of property assignments.

The semantic pre-interpretation is :

(1) mappings such as 'A' + output signal level.
(2) mappings such as 'ai'+ 5.0 volts.

(3) ' / I maps properties and property values to property
assignments.
(4) '[I' maps property assignments into property assignment
combinations.

The actual semantic interpretation is formed by interpreting the
arguments of the atoms making up the least Herbrand model
according to their semantic pre-interpretation. The program DP
defines the circuits which constitute outcomes to this 'real'
experiment by enumerating the measurable property values of each
circuit.

We turn now to the second of our semantic questions. What do the
probabilities assigned to each elemental event mean? So far these
assignments have no significance other than that they are consistent
with the three axioms of probability. Clearly, it is necessary to assign
a 'real' interpretation to the probabilities that we assign to events.
We can assign any interpretation which satisfies (makes true) the
three axioms of probability. Historically, two such interpretations
have been made. The relative frequency interpretation interprets
probabilities according to the frequencies with which outcomes occur
when an experiment is executed many times. The probability as a
measure of belief interpretation assigns a subjective measure of
belief in the truth or falsity of an outcome.

A Knowledge Representation for ~bduction 6 2

In this thesis we adopt the relative frequency interpretation as it
is well suited to abductive problem solving. Here we consider that a
good explanation is one which is quite frequently correct. We
proceed to describe the relative frequency interpretation in more
detail.

A trial is a single performance of a well defined 'real' experiment.
At a trial we observe a single outcome. We say that event e occurred
at this trial if it contains element e. The certain event occurs at every
trial. The impossible event never occurs. If e l and e2 are mutually
exclusive then both events cannot occur at the same trial.

When an experiment under consideration is repeated n times, out
of which event e occurs ne times, then according to the relative

frequency interpretation, its probability is defined as the limit of the
relative frequency ne/n of the occurrence of e.

l im ne - Prob(e) = n+= n

For large n, Prob(e) = n e / n

It is quite easily shown that this interpretation satisfies the three
axioms of probability. As a result if we assign probabilities to
elemental events according to this interpretation, then we can derive
probabilities for arbitrary events, and assign to these numbers the
same relative frequency interpretation.

We can interpret conditional probabilities according to the relative
frequency interpretation. Consider an experiment which is repeated
n times out of which event m occurs nm times, and event e A m

occurs nem times. For large n:

If we discard all trials in which event m did not occur and retain
. the sub-sequence of nm trials in which it occurred, then Prob(elm)

A Knowledge Representation for Abduction 6 3

equals the relative frequency of the occurrence of event e in that
sub-sequence.

Finally, we can interpret event independence according to the
relative frequency interpretation. Consider an experiment which is
repeated n times out of which event m occurs nm times, event e

occurs ne times and event e A m occurs nem times. If e and m are

independent events then for large n:

for independent events Prob(e) = Prob(e lm) ,
therefore ne/n = nem/nm

For independent events e and m, the relative frequency of the
occurrence of event e in the original sequence of trials equals the
relative frequency of the event e in the sub-sequence of of nm trials

in which event m occurred.

We are now in a position to describe what a Bayesian network
means. Assume that we have a complete probability model for the
experiment E. We show that a Bayesian network is an equivalent
representation of this probability model.

As described earlier, terminal nodes are characterized by
sentences of the form 'P(V=c) = x' where the x values of these
sentences sum to one. These are interpreted as joint probability
distributions over a single random variable. 'P(V=c) = x' is

1 interpreted to mean Prob(Vm (c)) = x for experiment E.

Non-terminal nodes are characterized by sentences of the form
'P(V=c I B 1 =b ,..., Bn=bn) = x' where the x values of these sentences

sum to one for each fixed set of conditioning values bl ,..., b ,

Moreover, we have a normalized set of these sentences for each
possible condition made from b l e doma in (B l) , ..., bn€ domain(Bn) .

' P (V = c l B 1 = b l , ..., B n = b n) = x' is interpreted to mean

A Khowledge Representation for Abduction 6 4

~ r o b (~ - l (c) I ~ ~ - l (b ~) n . . . n B ~ - l (b ~)) = x for experiment E. If

domain(B 1), . . . ,domain(Bn) represent the ranges of random variables

B 1 , . . . ,Bn then this represents a complete conditional joint probability

distribution.

We now justify our interpretation of the previously defined
domain function. We wish to show that domain(Xk) is the range of

random variable Xk.

Proof. Let XI ,X2,...Xn represent a total ordering of a Bayesian

network B's variables. Let this total ordering be consistent with the
partial ordering represented by the DAG of B. Consider the terminal
node X I . Recall that domain(X1) consists of the set of X1 values

assigned by the probability sentences making up P(Xl). Since by

definition random variable X1 partitions the set of experiment

outcomes, this set represents the range of random variable X I . We

now inductively assume the domain(X) interpretation for variables
which are < X k and show that as a result, the interpretation also

holds for Xk. Recall that domain(Xk) consists of the set of Xk values

assigned by the conditional probability sentences making up

P (X k I P1 ,.. . ,Pn) where P1 ,. . . ,Pn are the parents of Xk. Since the

parents of Xk are all < Xk then we can form the set of possible

conditions for PI ,..., Pn by taking the cross product of the parent

variable domains.1 This forms a set of mutually exclusive conditions
which partitions the set of experiment outcomes. Hence if we
enumerate possible Xk values over these conditions we generate the

range of random variable Xk.

Bayesian networks embody the following implicit independence
. assumption [Pear1,88]:

l ~ o m e of these parent combinations may have zero-valued probabilities and
hence cannot serve as conditions in a conditional probability. In this case the
Bayesian network simply does not include a conditional probability
distribution for this parent condition. This does not invalidate the argument
presented here.

A m l e d g e Representation for Abduction 6 5

Each random variable x is conditionally independent of all its
non-descendants, given its parents n,. Furthermore, no proper

subset of nx satisfies this condition.

As a result of this independence condition we can multiply the
probability distributions for each Bayesian network node to form a
single probability distribution over all the random variables. This is
true since by the chain rule:

where Previ is the se t of variables 5 where j < i.

If XI ,X2, ... Xn represents a total ordering on the variables which is

consistent with the partial ordering represented by the Bayesian
network DAG, then by the implicit independence assumption we
have:

To summarize, a Bayesian network represents a complete
probability model. We adopt relative frequency semantics for the
numeric probabilities. We can interpret the associated experiment as

' the Herbrand experiment. Alternatively, we can interpret the
experiment as a set of real world outcomes with measurable
properties.

3.2.3. Bayesian Programs

In order to develop the semantics of Bayesian programs it is
necessary to develop additional results for both DAGs and Bayesian
networks.

A Khowledge Representation for Abduction 6 6

Let D = (V,E) be a DAG and let S be a subset of V. We say that a
vertex v is barren wrt S defined on D if:

(a) v E S
(b) v has no direct successors in S

Let D = (V,E) be a DAG. We say that S is a complete subset of V
wrt D if:

(a) V I S
(b) if r E S then S 2 prev(r)

We note that if A is a vertex of DAG D = (V,E), then prev(A) is a
complete subset of V wrt D. We also note that if S1 and S2 are both
complete subsets of V wrt D then so is S1 u S2. Combining these two
observations, we note that for any set of V vertices { v , v , . . , v n } , the

set {prev(vl) u prev(v2) u...u prev(vn)} is a closed subset of V wrt D.

Theorem 3.1. If D = (V,E).is a DAG and C is a complete subset of
V wrt D and B is the set defined as B = { b I b is barren wrt C defined
on D } then C = u prev(b) .

Proof. First we prove that u prev(b) j C. If c E C then either:

be B
(a) c has no direct successors in C. Therefore c is an element b of B.

Therefore c is an element of prev(b). Therefore c is an element
of u prev(b) .

bE B

(b) c has direct successors in C. In a finite D, one of c's successors
must be barren wrt C. Therefore c is an ancestor to an element
b of B. Therefore c is an element of prev(b). Therefor v must be
an element of y prev(b) .

b~ B
Next we prove that C 2 u prev(b). Since C is a complete

b€ B
subset of V wrt D then C 2 prev(b) for each b E B. Therefore

A Khowledge Representation for Abduction 6 7

C 2 u prev(b) .

be B

Since C 2 u prev(b) and u prev(b) 2 C then C =

be B be B

u prev(b). This completes the proof. We say that B spawns

be B

the set C.

Theorem 3.2. If D = (V,E) is a DAG and vl ,v2 are two distinct

vertices of V and C is the set defined by C = prev(vl) n prev(v2),

then C is a complete subset of V wrt. D.

Proof. C is a subset of V since both prev(vl) and prev(v2) are

subsets of V, hence so is their intersection. Let c E C. By the
definition of C, c E prev(vl) and since prev(vl) is a complete subset

of V wrt D, then prev(vl) 2 prev(c). Similarly prev(v2) 2 prev(c).

Therefore prev(vl) n prev(v2) 2 prev(c). Therefore by definition C is

a complete.subset of V wrt. D.

Note that C is, by definition, the set of common weak ancestors of
v1 and v2. Since C is a complete subset of V wrt D, then by theorem

3.1 we can spawn C with the set B consisting of all vertices which are
barren wrt C defined on D. The elements of this set are by definition
the recent weak ancestors of vertices vl and v2. Thus, the following

proposition:

Proposition 3.1. If D = (V,E).is a DAG and v l ,v2 are two distinct

vertices of V, and C is the set C = { c I c is a common weak ancestor of
v1 and v2 } and R = { r I r is a recent weak ancestor of v l and v2 }

then C = u prev(r) ,

r~ R

If Al,A2, ..., An are nodes in a Bayesian network, and TA1,
TA2,. . . ,TAn are tail extensions for A 1 ,A2,. . .An respectively, then

A Khowledge Regresentation for Abduction 6 8

TAl,TA2, ... TAn are said to be consistent if TA1 u TA2 u ... u TAn
does not contain more that one assignment for the same random
variable.

Theorem 3.3. If Al,A2, ..., An are nodes in a Bayesian network,
and T is a set of tail extensions T= {TAl,TA2 ,..., TAn} for Al,A2 ,...., An
respectively, then T is consistent iff its elements are pairwise
consistent.

Proof. If the union of any two elements of T results in multiple
variable assignments, then so will the union of all elements of T. As a
result we can state that T is consistent all pairs of its elements are

consistent. The reverse direction can be proved by contradiction.
Under the assumption that all pairs of T elements are consistent and
that T is inconsistent, then at least one random variable must be
assigned more than one value. Since each element of T assigns
precisely one value to each of its variables, this implies that at least
two T elements must assign the same variable different values.
Therefore we must have at least one pair of inconsistent T element
pairs. This contradicts our assumption. which must be false. As a
result we can state that all pairs of T elements are consistent 3 T is

consistent.

Theorem 3.4. If A1 and A2 are two nodes in a Bayesian network
with tail extensions TA1 and TA2 respectively then TA1 and TA2 are
consistent iff they have identical sub-tail extensions for each recent
weak ancestor of A1 and A2.

Proof. Let R be the set of all recent weak ancestors of A1 and A2.
TA1 assigns values to each variable in prev(A1). Similarly, TA2
assigns values to each variable in prev(A2). Both TA1 and TA2 assign
values to variables in the set of common weak ancestors
CWA = prev(A1) n prev(A2). By definition TA1 and TA2 are
consistent iff x(TA1) = x(TA2) for all x E CWA. With this notation

x(TA1) refers to the value that TA1 assigns to random variable x.

Since by proposition 3.1, CWA = prev(r) then we have that

re R
x(TA1) = x(TA2) for all x E CWA iff x(TA1) = x(TA2) for all
x E prev(r) for all r E R. This completes the proof.

Theorem 3.5. If Al,A2, ..., An are nodes in a Bayesian network,
and T is a set of tail extensions T= {TAl,TA2 ,..., TAn) for Al,A2 ,...., An
respectively, then T is consistent iff each pair of T elements TAi, TAj
have identical sub-tail extensions for each recent weak ancestor of Ai
and Aj.

Proof. This follows directly from theorem 3.3 and theorem 3.4.

Theorem 3.6. If B = (N,E) is a Bayesian network for the joint
probability distribution P(XN) and N' is a complete subset of N wrt B,

and E' = {e I ee E A tail(e) E N' A head(e) E N' .), then B' = (N',Et) is
the Bayesian network corresponding to P(XN'). We say that B' is a

sub-Bayesian network of B.

Proof. We proceed in steps:
(1) Let S = {sl s is barren wrt N defined on B). S spawns N since N

is a complete subset of N wrt B.
(2) Let St = {s'l st is barren wrt N' defined on B') and s E S. We

show that s E N' + s E St. Equivalently, s P S' + s P N'. By

definition s doesn't have a direct successor in N and since N' is
a subset of N, then s also doesn't have a direct successor in N'.
Therefore if s E N' then s E S'.

(3) We show that St 2 S N' = N. Since N' is a complete subset of

N wrt B, then S' spawns N', and if St includes S which spawns N,
then S' must spawn a set which includes N. Therefore N' must
include N. Since by definition N includes N', then N' = N and
S' = S. We can restate this result as N 2 N' + 3 s (s ~ S A S P S t) .
Combining steps 2 and 3 we have N 2 N' + 3s(s E S A s P N').

(4) We know that N 2 N'. If N = N',the theorem is trivially true. Let
us consider the case where N 2 N'. From step 3 we know that
we can find at least one s E S that is not an element of N'. Let

A Khawledge Regresentation for Abduction 7 0

this node be called xk. In general, let the elements of N be

designated as N = {xl ,x2 ,..., xk ,..., xn}, then:

Since xk is barren wrt N defined on B we can write that:

And since X p (x k = c l n k) = 1, then

i # k
(5) Step 4 constructs a new Bayesian network without node xk.

xk) then
B* = (N*,E*) i s a Bayesian Network representing

P(x 1 ,x2,. ..,xk- 1 ,xk+ 1 . . . ,xn) We can show that N' is a complete

subset of N*.wrt B*. First we show that N* includes N'. Since
N 2 N' then N* = N - {xk} 2 N' - {xk} and since xk a N' then

N* a N'. If we designate the prev function for B* as prev* to
distinguish it from the original prev function defined for B,
then we can write prev*(n) = prev(n) for each n E N', since the

only edges removed from E in forming E* were those
connecting to xk which s N'. Since N' is a complete subset of N

wrt B then if r E N' then N' a prev(r). Therefore if r E N' then
N' 2 prev*(r). Therefore N' is a complete subset of N* wrt B*.

(6) steps 4 and 5 can be used repeatedly to form new B*s with
one fewer node. As long as N* 3 N', we can always find a node

which is barren wrt N* defined on B* and which is not included
in N'. We can remove this node to form a smaller superset of N'.
Since there are a finite number of N* nodes which are not
included in N', this process will terminate with B* = B' = (N7,E').
This sub-Bayesian network of B represents the joint probability
distribution:

A Knowledge Representation for ~bduction 7 1

where domain(N-N') equals the cartesian product of the
domain for each node in the set N-N'. This completes the proof.

Theorem 3.7. If A is a node in a Bayesian Network B = (N,E), A's
parents are Bl,B2, ... Bn.and CA is a tail extension of A. then P(CA) > 0
iff:

(1)CB 1 ,CB2,CB3,...,CBn are consistent tail extensions of B 1 ,B2,...Bn
(2)CA = {A=a) u CB1 u CB2 u ... u CBn

(3)P(CB I), P(CB2), P(CB3), ..,, P(CBn) > 0
(4) P(A=al aA(CA)) > 0

Note that the notation trA(CA) denotes the subset of CA containing

only the random variable value assignments for r r ~ , the parents of A.

Proof.
(1) By definition CA has precisely one assignment for each

element of prev(A) = {A} u ancestor(A). Since

ancestor(A) = y prev(Bp) then this condition is true iff

CA = { A=a} u CB 1 u CB2 u ... u CBn where CB 1 ,CB2,CB3 ,..., CBn

are consistent tail extensions of Bl,B2, ... Bn and a is an element
of domain(A).

(2) Since ancestor(A) is a complete subset of N wrt B, we can write
P(CA) = P(A=alrrA(CA)) ~ P (x ~ (c A) I ~

Xi€ ancestor(A)

Therefore P(CA) > 0 iff
u

A Khowledge Regresentation for AMuctian

(3) ~ P (x ~ (c A) I ~ (CA)) > 0 iff

P(Xi(CA) lx . (CA)) > 0 for all Xic ancestor(A).
X1

(4) Since ancestor(A) = y prev(Bp) then we can write that

P(Xi(CA)I x . (CA)) > 0 for all Xi€ ancestor(A) is true iff
X1

P(Xi(CA)lx .(CA)) > 0 for all Xis prev(Bp) for all B ~ E ZA
X1

(5) For CA = {A=a} u CBl u CB2 u ... u CBn, Xi(CA) = Xi(CBp)

Xi€ prev(Bp) for all Bps KA. Therefore P(Xi(CA)lx

for all

0 for

all Xi€ ancestor(A) is true iff

P(Xi(CBp)lnx.(CBp)) > 0 for all Xi€ prev(Bp) for all B p c x ~
1

(6) P(Xi(CBp)lx .(CBp)) > 0 for all Xi€ prev(Bp) for all Bpe XA is
X1

true iff
~ P (X ~ (C B ~) I ~ (CBp)) > 0 for all BpsxA.

'i

This product = P(CBp) since Prev(Bp) is a complete subset of N
wrt B. This completes the proof.

We now relate the above results to Bayesian programs. As defined
earlier a tail extension of a Bayesian network node A is a set of
variable assignments, one for each element of prev(A). Consider a
simple three node Bayesian network where nodes B and C are
parents to node A. The representation {A=a,B=b,C=c} refers to a tail
extension of node A. Bayesian programs include representations of
structured tail extensions which preserve the underlying causal
relationships between variables. For example, the tail extension of A
is represented as the term A/a t [B/b t [I, C/c t [I] . The node

term A/a represents the assignment for A. The list of extensions
[Blb t [I, Clc t [I] represents the set of tail extensions of A's

parents. The structured tail extension TA' of A can be constructed
from the tail extension TA of A and the original Bayesian network

A Khowl edge Representation for Abduction 7 3

B = (N,E); TA' = struct(TA,E). Similarly, a tail extension of A can be
derived from a structured tail extension of A; TA = unstruct(TAt).
For convenience, we often refer to TA as simply a tail extension.and
disambiguate based on the context that it is used in. In expressions
of the form P(TA), TA is understood as the unstructured version. In
the context of node-A(TA), TA is interpreted as the structured
version.

In the previous section, where the semantics of probability
models was discussed, we distinguished between two aspects of the
semantics. We adopt a similar approach here. Firstly, we consider the
semantics of the base program for a Bayesian program. The base
program is a definite program whose least Herbrand model defines
the experiment of a probability model. It enumerates the experiment
outcomes, and the random variables, or properties of these outcomes.
Having established this, we proceed to show how Bayesian programs
assign probabilities to each elemental event. In this way the
equivalence of Bayesian programs and probability models is
established.

Theorem 3.8. Let BP be a Bayesian program based on a Bayesian
network B = (N,E). Let BPI be the base program for BP and let MH be

the least Herbrand model for BP'. If node-A is a node predicate for
node A in BP', then node-A(X) E M H iff X is a tail extension of A and

Proof. We prove by induction on a total ordering p of the nodes

consistent with the partial ordering defined by B. This total ordering ~

enables us to compare any two nodes. For nodes A and B, we say that
A <p B iff A precedes B in the total ordering p. We show that the

theorem is true for terminal nodes. Then we show that if the
. theorem is true for all nodes which are < A for some node A then it

P
is true for node A as well. We refer to the fixpoint function for BP' as

TP.

A Know1 edge Representation for Abduction 7 4

Let node T represent a terminal node. By definition an explicit
representation of node-T consists of ground node-T clauses of the
form {node-T(T/t t [I), x} iff P(T=t) = x > 0. Therefore by the
definition of Tp, node-T(Tltc[]) E MH iff P(T=t) > 0. Alternatively, a

generative definition of node-T may be used. Based on the way that
generative representat ions are constructed from explici t
representations, and the declarative semantics of definite programs,
explicit and generative definitions of node-T are equivalent. They
result in the same ground atoms for node-T in MH. Therefore the

theorem is true for terminal nodes.

Now consider the non-terminal node A. From theorem 3.7 we
know that if TA is a tail extension of A and Bl,B2, ..., Bn are the
parents of A then P(TA) > 0 iff
(1)TB 1 ,TB2,...,TBn are consistent tail extensions of B 1,B2, ... Bn.
(2)TA = {A=a} u TB1 u TB2 u ... u TBn

(3)P(TBl), P(TB2), P(TB3), ..., P(TBn) > 0
(4) P(A=al nA(TA)) > 0 According to the rules for creating node-A

clauses, we have a single defining definite program clause for
node-A. Instances of this clause have the form
node-A(A/a t [TB 1 ,TB2,. ..,TBn]):-

node-B 1 (TB l),node-B2(TB2) ,..., node-Bn(TBn),
family-A(A/a,B l l b l ,..., Bnlbn)

where shared clause variables establish additional conditions,
namely:

(5) TB 1 ,TB2,...,TBn are extension terms
B l /b l ,B2/b2 ,..., Bnlbn.

(6) For any pair of elements, TBi,TBj from
TBi and TBj share common sub-tail
weak ancestor of Bi,Bj.

Since this is the only defining rule for
the function Tp, node-A(TA) is an element

(6) is true

with associated node terms

the set T={TBl,TB2 ,..., TBn),
extensions for each recent

node-A, then according to
of HM iff:

(7) TA has the form A/a t [TBl,TB2, ..., TBn]

A Eawwledge Representation for Abduction

(8) n o d e B 1 (TB l),nodeB2(TB2), . . . , n o d e - B n) are all E MH

(9) (5) is true and family-A(A/a,B/bl, ..., Bnlbn) is E MH.

Together with the induction assumption, these conditions can be

shown to be equivalent to conditions (1),(2),(3),(4) above.

B Y t h e i n d u c t i o n a s s u m p t i o n ,
node-B 1 (TB l),node-B2(TB2), ..., node-Bn(TBn) are all E M iff

TB 1 ,TB2,...,TBn are tail extensions of B 1 ,B2,...,Bn respectively and
P(TB l),P(TB2), . . .,P(TBn) > 0. If TB 1 ,TB2,.. .,TBn are tail extensions of
Bl,B2 ,..., Bn then by theorem 3.5, (6) is true = TBl,TB2 ,..., TBn are

consistent. If TBl,TB2, ..., TBn are consistent tail extensions for
Bl,B2, ..., Bn then condition (7) becomes equivalent to condition
(2).and condition (5) ensures that b l ,b2,...,bn are the values assigned
by TA to Bl,B2, ..., Bn. Finally, by definition an explicit representation
of family-A consists of ground clauses of the form
{family-A(A/a,B/bl, ..., Bnlbn). ,x) iff P(A=al B=bl, ..., Bn=bn) =x > 0 .
T h e r e f o r e , b y t h e d e f i n i t i o n o f T~ ,
family-A(A/a,Blbl, ..., Bnlbn) E MH iff P(A=al B=bl, ..., Bn=bn) > 0.

Alternatively, a generative definition of family-A may be used.
Based on the way in which generative representations are
constructed from explicit representations, and the declarative
semantics of definite programs, explicit and generative definitions of
family-A are equivalent. They result in the same ground atoms for
family-A in MH. This completes the proof.

We have shown that the least Herbrand model of BP' enumerates
the possible tail extensions of Bayesian network nodes. Conversely,
ground atoms of node predicates which are not elements of the least
Herbrand model are false or not possible. This is in contrast to the
declarative semantics of a definite program. A ground atom which is
not an element of a definite program's least Herbrand model may or
may not be false. The often used closed world assumption is the
assumption that such atoms are false. By the semantics of a Bayesian
program, such atoms must be false.

A Khowledge Representation for Abduction 7 6

We now show that the numeric clause annotations of the
Bayesian program BP define probabilities for Bayesian network
extensions. Our approach is to extend the definition of the fixpoint
function Tp.

Let P be a joint probability distribution over random variables

X 1 , X 2,. . . ,Xn. We refer to syntactic probability sentences such as

'P(X 1 =x)' or 'P(X1=xl l X2=x2)', for the random variables of P as

symbolic probabilities. Under the semantic interpretation discussed
earlier, each symbolic probability can be associated with a numeric
probability. For example 'P(X 1 =x)' can be associated with P(X1=xl)

which is a real number between 0 and 1 inclusive. An assumption is
a symbolic probability whose associated numeric probability is a real .
number between 0 and 1 exclusive.

Let C8 be a ground instance of a Bayesian clause C. C8 has an
associated clause assumption A(C8) which is defined as follows:

(a) if C is an annotated terminal node clause for node A with
probability annotation x, then A(C8) = 'P(A=a)' where a is the
assignment for A appearing in C8. 'P(A=a)' is an assumption

with associated numeric value P(A=a) = x.
(b) if C is an annotated family clause for node A with parents

B 1 ,..., Bn and with clause probability annotation x, then
A (C 8) = 'P(A=alB1=b 1 ,..., Bn=bn) ' where a , b 1 , , b are the

a s s i g n m e n t s f o r A,B , . . . , B appearing in C 8 .

' P (A = a l B 1 = b l , ..., Bn=bn) ' is an assumption with associated

numeric value P(A=alB l=b ,..., B -bn) = x. n -
(c) else A(C0) = nil f'

A set of assumptions is termed an environment.

Each ground instance of a Bayesian clause C8, has an associated
clause environment Env(C8) which is defined as follows:

(a) if A(C8) = nil then Enx(C8) = 0

l ~ h i s terminology anticipates the use of an ATMS based architecture as
described later.

A Khowl edge Representation for Abduction

(b) else Env(C0) = (A(C0) }

Let BP be a Bayesian program and let ABp be the set of all clause

assumptions for BP. ABp is referred to as the assumption base for

BP. Let EB p be the powerset of AB p . EB P is referred to as the

environment base for BP.

Let BP be a Bayesian program, BP' be the base program for BP, Bp

the Herbrand base associated with BP' and EBp the environment base

for BP. The fixpoint function of BPI is referred to as Tp. We define the
function Tpt(I)={ (A,E(A)) I A E Bp and E(A) E EBp and the clause

C = A :- A1, ..., An is a ground instance of a clause in BP' and
I 2 { (A 1 , E (A l)) , . . . , (A n , E (A n)) 1 a n d

E(A) = Env(C) u E(A1) u E(A2) u ... u E(An) }

Recall that MH, the least Herbrand model for BP' is defined by

MH = ~ p " (0) . Likewise we define MB, the Bayesian model for BP as

M B = ~ p ' " (0) . In comparing Tp' and Tp we see that Tp' maps sets of

ground atoms to sets of ground atoms in exactly the same way that
Tp does. The difference is that Tp' also defines an environment for
each ground atom included in the output set. As a result, MB contains

the same ground atoms that MH does, but each ground atom has an

associated environment.

Let BP be a Bayesian program with associated Bayesian Model MB.

Let EBp be the environment base for BP, BP' be the base program for

BP and MH be the least Herbrand model for BP'. MB is a set

consisting of elements of the form (A,E(A)) where A E MH and
i

E(A) E EBP . We refer to the function E as the environment function

for BP. It assigns each A E MH an environmentl.

l ~ h e environment function actually maps sets of ground atoms to an
environment. This supports a more general usage of the environment
function, namely that it assign environments to answers of Bayesian queries.
As a result E(A) is more precisely expressed as E({A)). By convention we just
write E(A).

A Klnowl edge Representation for Abduction 7 8

We now show that the environments of ground node atoms
correspond to tail extension probabilities.

Theorem 3.9. Let BP be a Bayesian program with Bayesian
model MB. If f a m i l y is a family predicate for node A in BP, then

(family-A(A/a, B 1 , . . .,Bnlbn) ,E(family-A(Ala, B lb ,Bnlbn)) E

MB iff

(1) a,bl , . . .bn are valid assignments for nodes A,B . .Bn

(2) P(A=alB l=bl ,..., Bn=bn) > 0

(3) E(family-A(Ala, B lb ,Bnlbn)) =

{ P(A=alB l=b 1 ,..., Bn=bn) } if P(A=alB l=bl ,..., Bn=bn)<l

otherwise

Proof. This follows directly from:
(1) the definition of Tp' and Env

(2) the criteria used to define explicit family clauses for Bayesian
programs

(3) the equivalence of generative and explicit definitions for
family predicates.

Theorem 3.10. Let BP be a Bayesian program. If node-A is a
node predicate for node A in BP, then (node-A(TA), E(node-A(TA)))

MB iff

(1) TA is a tail extension of A
(2) P(TA) > 0
(3) E(node-A(TA)) = u 1 P(X(TA)lx,(TA)) 1

xc S~~
where STA = { X I X E prev(A) A 0 < P(X(TA)lx,(TA)) < 1 } .

i

l ~ o t e that we use symbolic probabilities like 'P(X(CA)ln,(CA))' in two ways. In

set expressions like E = u P(X(CA)ln,(CA)) it is a symbolic entity. In product

A Khowledge Representation for Abduction 7 9

Proof. We know from theorem 3.8 that node-A(TA) E MH, the

least Herbrand model for BP' where BP' is the base program of BP, iff
TA is a tail extension of A and P(TA) > 0. Since MB has the same

atoms as MH we need only prove that the environment E, assigned

We prove by induction on a total ordering p of the nodes

consistent with the partial ordering defined by B. From the
definition of Tp and the equivalence of explicit and generative
definitions for terminal node predicates, this equality is true for
terminal nodes. We show that if the equality is true for all nodes
which are < A for some node A then it is true for A as well.

P

Consider the non-terminal node A with parents Bl,B2, ..., Bn. BP has
a single defining definite program clause for node-A. As described in
the previous proof, instances of this clause have the form:
node-A(A/a c [TB 1 ,TB2 ,..., TBn]):-node-B 1(TB I), node-B2(TB2), ...,

node-Bn(TBn), family-A(A/a,B l / b 1 ,. . .,Bn/bn)

From the results of the previous proof node-A(TA) is E MH iff:

(1) node-B 1(TB I), node-B2(TB2), ... n o d e - B n) E MH

(2) {TB 1 ,TB2,...,TBn} is consistent
(3) TA = A/a t [TB 1 ,TB2,...,TBn]
(4) family-A(A/a,B/b 1,. . .,Bn/bn) E MH where tail extensions

TB 1 ,TB2,. . . ,TBn have associated node terms
B l l b l ,B2/b2 ,..., Bnlbn.

By theorem 3.9 we have that
E(fami1y-A(Ala,B/b 1 ,. . .,Bn/bn)) = {P(A=alB=bl , . . . ,Bn=pn)}. [1 1
By the inductive assumption we have that

expressions of the form E = nP(X(CA)llrx(CA)) it refers to its associated

XE 'CA
numeric probability. The expression context can be used to disambiguate.

A Khowledge Representation for ~bductian

X' 'TB~
where STBi = { x I x E prev(Bi) A 0 < P(X(TBi)lax(TBi)) < 1 }.

Using the definition of Tp',
E(node-A(TA)) = E(node-B 1 (TB 1)) u E(node-B2(TB2)) u.. .u

E(node-Bn(TBn)) u E(fami1y-A(A/a,B/b 1,. . . ,Bn/bn)).

If we substitute [I] and [2] into [3] and take into account that
{TB 1 ,TB2,. . .,TBn} is consistent, then we have:

xE S~~
where STA = { x l x E prev(A) A 0 < P(X(TA)la,(TA)) < 1 } This

completes the proof.

Since for possible tail extensions TA of A,

X E prev(A) xE S~~

where ST A = { x l x E prev(A) A 0 < P(X(TA)ln,(TA)) < 1) then the

environment of an MH node atom can be converted into the numeric

probability of the node atom's tail extension by replacing each
environment assumption with its numeric probability, and forming
the product.

We now provide a declarative definition of a correct answer for a
query to a Bayesian program.

A Bayesian goal for a Bayesian program is a definite goal for
which:

(1) all subgoal predicates are node predicaes.

(2) subgoal arguments guarantee a consistent set of tail extensions
for the complete set of subgoal tail extensions. In other words,
the subgoals of a Bayesian goal are network consistent.

A Khowledge Representation for Abduction 8 1

Let BP be a Bayesian program and G a Bayesian goal. Let BP' be
the base program for BP. An answer for BP union {G} is (8 , ~) where
8 is an answer to BP' union {G} and E E EBp, the environment base for

BP.

Let BP be a Bayesian program with base program BP', G be a
Bayesian goal ?- A1,. . . ,Ak and E be the environment function for BP.

We say that (8 , ~) is a correct answer to BP u {G} iff:

(1) 8 is a correct answer to BP' u {G)
(2) 8 is a ground substitution
(3) E = E(G8) = E(Al 0) u E(A28) u.. .U E(Ak8)1

Comparing the above definition for correct answer with the earlier
definition for a correct answer to a definite program, the above
definition imposes additional restrictions on 8 , namely that it make
(A ,Ak)8 ground.

Theorem 3.11. Let BP be a Bayesian program with Bayesian
model MB, and G be a Bayesian goal ?- A ,...,Axk. Under this

X1
notation A is a subgoal for node x l . If (8 , ~) is a correct answer to BP

1

where ext = V (ta i l extension argument of (Ax.)@)
1 \

lThis extends the definition of the environment function which previously
was defined only for single ground atoms.

A Khowledge Representation for Abduction 8 2

k
and Se = {x l x E prev(xi) A 0 c P(X(ext)ln,(ext)) < 1 } u

i= 1
Moreover, P(ext) can be derived from E; P(ext) = n ~ (x (e x t) l n , (e x t))

XE Se

Proof. Let T = (the tail extension argument of (A J0.) We know
X1

that ((AX.)9,eX.)) E MB. By theorem 3.10 E
1 1 Xi = u {p(x(Txi)lnx(Tx?) 1

X€ S
Ti

whe re
S = {x l XE prev(xi) A 0 < P(X(TXi)lnX(TXi)) < 1 }

Ti
Since (0 , ~) is a correct answer to BP union {G} we have that
E = & X I u ex2 u ... u cXk .Substituting for E, and taking into account

i
that {Txl ,Tx2,...,T } is consistent leads to the desired result for E.

Xk

Since u prev(xi) is a complete subset of BPI, then we can form

i= 1
P(ext) from E by replacing symbolic probabilities with their numeric

values and forming the product over all set elements. This completes
the proof.

P(ext), as defined for the above proof, can be used to rank each
correct answer relative to other correct answers. Let obs be the set of
all node assignments established by ground terms in the Bayesian
goal G of the preceding theorem. For example, obs might be {A=a}
where A is one of the nodes for which ext has a value assignment. In

IWe use a slight abuse of language here. It is understood that BP is based on
k

the Bayesian network B=(N,E) and that
V

prev(xi) is a complete subset of N

i= 1
wrt B.

A Khowl edge Regresentation for Abduction 8 3

this case obs ensures that the 'ext' of all correct answers must assign
A=a. By Baye's theorem we have that P(extlobs) = P(ext A obs)/P(obs).
By the chain rule P(ext A obs) is equal to P(obslext)P(ext).
Depending on whether ext includes obs or not, P(obslext) is either
one or zero respectively. Therefore, for answers which are correct,
P(extlobs) = P(ext)/P(obs). In this expression, P(obs) is simply a
normalization factor and is the same for all correct answers.
Therefore P(ext) ranks the correct answers to BP u { G } .

3.3. Procedural Semantics

In the following we define the procedural semantics of definite
programs, and Bayesian programs.

3.3.1. Definite Programs

We present definitions leading to the definition of a computed
answer, which is then compared with the previously defined correct
answer.

Let 8 = {ullsl ,..., umlsm} and o = { vll t l ,..., vnltn) be substitutions.

Then the composition 8 0 of 8 and o is the substitution obtained from
the set {ul Is 1 0,. ..,urn Ism o,v I It 1 , .. .,vn/tn } by deleting any binding

uilsio for which u i = s i o and deleting any binding v./t for which J j

I

Let E and F be expressions. we say E and F are variants if there
exist substitutions 8 and o such that E = F8 and F = Eo. We also say E
is a variant of F or F is a variant of E.

Let S be a finite set of simple expressions. A substitution 8 is
called a unifier for S if S8 is a singlgon. a unifier 8 for S is called a
most general unifier (mgu) for S if, for each unifier o of S, there
exists a substitution y such that o=8y.

A Khowledge Representation for ~bduction 8 4

Several unification algorithms exist [Lloyd,84] for finding the rngu
of a finite set of simple expressions S. If S is unifiable such
unification algorithms terminate and return a rngu for S. If S is not
unifiable, then such unification algorithms terminate and report this
fact.

Let G be ?- Al ,...,Am ,..., Ak and C be A:- B ,..., B . Then G' is derived
q

from G and C using rngu 0 if the following conditions hold:
(a) Am is an atom, called the selected atom, in G.

(b) 8 is an rngu of Am and A.

(c) G' is the goal ?- (Al ,..., Am-1 ,Bl ,..., Bq,Am+1 ,..., Ak)8

G' is called a resolvent of G and C.

Let P be a definite program and G a definite goal. An S L D -
der iva t ion of P u {G) consists of a (finite or infinite) sequence

GO=G,G1 ,..., of goals, a sequence Cl , C 2 , of variants of program clauses

of P and a sequence 0 ,8 ,... of mgu's such that each Gi+ 1 is derived

from Gi and Ci+ 1 using Bi+ 1.

Each Ci is a suitable variant of the corresponding program clause

so that Ci does not have any variables which already appear in the

derivation up to Giml. Each program clause variant Ci is called an

input clause of the derivation.

An SLD-refutation of P u {G} is a finite SLD-derivation of P u {G}
which has the empty clause as the last goal in the derivation. If Gn

\

equals the empty clause, we say the refutation has length n.

Let P be a definite program and G a definite goal. A c'omp u t ed
answer 0 for P u {G} is the substitution obtained by restricting the

- composition 8 ... e n to the variables of G, where 8 1 ,...,On is the

sequence of mgu's used in an SLD-refuation of P u {G).

The soundness of SLD-Resolution theorem [Lloyd,84] states that
every computed answer is correct. Let P be a definite program and G

A Khowledge Representation for Abduction 8 5

a definite goal. then every computed answer for P u {G) is a correct
answer for P u {G).

The completeness of SLD-resolution theorem [Lloyd,84] states that
every correct answer is an instance of a computed answer. Let P be a
definite program and G a definite goal. For every correct answer 9 for
P u {G), there exists a computed answer o for P u {G) and a
substitution y such that 9 = oy.

We briefly discuss the concept of a computation rule, which is
used to select atoms in an SLD-derivation.

A computation rule is a function from a set of definite goals to a
set of atoms such that the value of the function for a goal is an atom,
called the selected atom, in that goal.

Let P be a definite program, G a definite goal and R a computation
rule. An SLD-refutation of P u {G} via R is an SLD-refutation of
P u {G) in which the computation rule R is used to select atoms.

Let P be a definite program, G a definite goal and R a computation
rule. An R-computed answer for P u {G) is a computed answer for
P u {G) which has come from an SLD-refutation of P u {G) via R.

The independence of the computation rule theorem [Lloyd,84]
states that for any choice of computation rule, if P u {G) is

unsatisfiable, we can always find a refutation using the given
computation rule. Let P be a definite program and G a definite goal.
Suppose there is an SLD-refutation of P u {G) with computed answer
o. Then, for any computation rule R, there exists an SLD-refutation of
P u {G) via R with R-computed answer o' such that Go' is a variant of
Go.

i

3.3.2. Bayesian Programs

As with definite programs, we present definitions leading to the
definition of a computed answer, which is then compared with the

A Khowledge Representation for ~bduction 8 6

previously defined correct answer. We refer to the modified
resolution procedure as SLDB resolution.

Let BP be a Bayesian program with base program BP' and G be a
Bayesian goal. A computed answer for BP u {G) is (8 , ~) such that:

(a) 8 is a computed answer resulting from S, an SLD-refutation of
BP' u {G) of length n.

(b) E = Env(Ci8) where Cl ,C2,...,Cn is the sequence of input

i~ 1

clauses in S

For comparison, we repeat the earlier definition of a correct
answer to BP u {G).

Let BP be a Bayesian program with base program BP', G be a
Bayesian goal ?- A1 ,...,Ak and E be the environment function for BP.

We say that (8 , ~) is a correct answer to BP u {G) iff:
(1) 8 is a correct answer to BP' u {G)
(2) 8 is a ground substitution
(3) E = E(G8) = E(A18) u E(A28) u...u E(Ak8)l

In the following we show first of all, that condition (a) of the
definition for a computed answer to BP u {G) is equivalent to

condition (1) and (2) of the definition of a correct answer to
B P u {G). We will then proceed to show that condition (b) of the
definition for a computed answer 40 BP u {G) is equivalent to
condition (3) of the definition of a correct answer to BP u {G). In so

doing, we establish the completeness and soundness of SLDB
resolution.

We note that by definition, the base programs of Bayesian
programs are ground definite programs.

l ~ h i s extends the definition of the environment function which previously
was defined only for single atoms.

A Knowledge Representation for Abduction 8 7

Theorem 3.12. If P is a ground definite program, G is a definite
goal and 8 is a computed answer to P u {G}, then 8 is a ground
substitution.

Proof . We prove by induction on the length of the computed
answer's SLD-refutation of P u {G}.

First consider the case where the refutation length is 1. G is of the
form ?- A1 and P has a unit clause of the form A. We have that

G = the empty clause under mgu 8 1. Therefore Al 8 = A8 1. Since P

ia a ground definite program, A is ground. Therefore Al 8 1 = A and

8 1 is a ground substitution.

We now show that if the theorem is true for SLD refutations of
length n-1 then it is true for SLD-refutations of length n. Let
G = ?- A ,..., Am,. . .,Ak be a goal for which there is an SLD-refutation

of length n. Let C = A:- B1 ,..., B be the first input clause of this
4

SLD-refutation, and let Am be the selected atom of G. The

SLD-refutat ion der ives G1 from G and C using mgu 8

G 1 = ? - (A l , .- ,Am- 1 3 l , . . . ,Bq,Am+ 1 , . . . ,Ak) 8 Since G has an

SLD-refutation of length n then G1 has an SLD-refutation of length

n- 1 . By the inductive assumption (A , . . .,Am - ,B , , . . ,B q , Am + 1 , . . . ,Ak)

8 ... en is ground. Therefore (B1 ,..., B)8 ... 8, is ground. Therefore
q 1

since the head of C does not include any variables which are not in
the body of C, then (A1 ,..., Am- lAm,Am+l ,..., Ak)O1 ... en = (G)B1 ... On is

ground. Thus we have that the oomputed answer €1~...8, to P v {G} is

a ground substitution. This completes the proof.

Theorem 3.13. Let P be a ground definite program and G a
definite goal. Then:

(a)Each computed answer for u {G) is a correct answer for

P U { G I
(b)Each correct answer for P u (G) is a computed answer for

P U {GI

A Khowledge Representation for Abduction 8 8

Proof. (a) follows directly from the soundness of SLD-Resolution
theorem. (b) foll.ows from the completeness of SLD-Resolution
theorem and from theorem 3.12 above. By the completeness of
SLD-resolution theorem, for every correct answer 8 for P u {G), there
exists a computed answer o for P u {G) and a substitution y such
that 8 = oy. By theorem 3.12, a is ground. Therefore 8 = o and y is the
identity substitution.

Theorem 3.14. If P is a ground definite program and G is a
definite goal and 8 is a correct answer to P u {G), then 8 is a ground

substitution.

Proof. This follows directly from theorem 3.12 and theorem 3.13
above.

We can now incorporate this result into our original definition for
a correct answer to a Bayesian goal.

Theorem 3.15. Let BP be a Bayesian program with base program
BP', G be a Bayesian goal ?- AI ,...,Ak and E be the environment

function for BP. Then (8 , ~) is a correct answer to BP u {G) iff:

(1) 0 is a correct answer to BPI u {G)
(2) E = E(G8) = E(A18) u E(A28) u . . . ~ E(Ak8)

Proof . This follows directly from the definition of a correct
answer to BP u {G) and from the fact that BP' is a ground definite

program and from theorem 3.14.

Theorem 3.16. Let BP' be a Bayesian program and G a Bayesian
goal. If (8 , ~) is a computed answer of BP u {G) then E = E(G0) where E

is the environment function for BP.

P r o o f . We prove this by induction on the length n of the
2

SLD-refutation associated with a computed answer. We consider
G' = ?- A l , ..., An where G' is not necessarily a Bayesian goal as it

may contain subgoals for predicates other than node predicates. We
consider goals of this more general form since they occur in the

A Knowledge Representation for Abduction 8 9

sequence of goals associated with an SLD-refutation for a Bayesian
goal. Since G' is a more general goal type than a Bayesian goal, if the
theorem holds for G' then it must also hold for Bayesian goals.

Suppose first that n=l. This means that G' is a goal of the form
?- A1 and BP has a ground unit clause of the form A. and A l e l = A.

Therefore E = Env(A). By the definition of Tp, the fixpoint function
for BP, E(A) = Env(A). Therefore E = E(A) = E(G'0

Now suppose that the result holds for computed answers derived
from refutations of length n- 1. Let 0 . .,en be the mgu sequence of

the SLD-refutation S for BP u {G'), C = A:- B1 ,..., B be the first input
9

clause and Am the selected atom of G'. Therefore the first derived

goal of S is:
GI1 = ?- (A1 ,..., Am- ,B ,..., Bq,Am+ ,..., An)O Since GI1 has a refutation

length of n-1, then by the inductive hypothesis = E(Gfl 0') where

0'= e2...en. Therefore E = Env(C0) u E(G' 0') where 0 = 0 0'.

Substituting for GI1 we have that

It remains to show that Env(CO)uE(BlO)u ... uE(BqO) = E(AmO). This

is true by the. definition of Tp and the fact that Am 0:- B 1 B,.. .,B q0 is a

ground instance of C. his completes the proof.

We can now assert that SLDB resolution is complete and sound.

Theorem 3.17 Let BP be a Bayesian program and G a Bayesian
goal. Then:

(a)Each computed answer for BP u {G) is a correct answer for
BP u {G)

(b)Each correct answer for BP u {G) is a computed answer for

P u { G I

A Khowledge Regresentation for Abduction 9 0

Proof. Let BPI be the base program for BP. We consider (a) first:
By the definition of a computed answer and theorem 3.13 if (8 , ~) is a
computed answer to BP u {G) then 8 is a computed answer to
BP' u {G) which is also a correct answer to BP' u {G). By theorem
3.16 we also have that E = E(G8). Therefore (8 , ~) is a correct answer
t o B P u {G).

then 8
answer
BP' u
for th
BP u

Now consider (b) above. If (8 , ~) is a correct answer for BP u {G)
is a correct answer for BP' u {G) which is also a computed
to BP' u {G). Therefore there must exist an SLD-refutation for
{G) which results in 8. Therefore there must exist a computed E'

is SLD-refutation such that (8 , ~ ') is a computed answer to
{G). Therefore by theorem 3.16, E' = E(G8) which equals E by

definition. Therefore (8,s) is a computed answer to BP u {G).

SLDB resolution is also independent of the computation rule.

Theorem 3.18. Let BP be a Bayesian program with base program
BPI and G be a Bayesian goal. Suppose there is an SLD-refutation of
BPI u {G) resulting in computed answer (8 , ~) to BP u {G). Then, for

any computation rule R, there exists an SLD-refutation of BP' u {G}
via R resulting in the same computed answer (8 , ~) to BP u {G).

P r o o f . Let BP' be the base program for BP. Since (8 , ~) is a
computed answer for BP u {G) then 8 is a computed answer for
BP' u {G) . By the independence of computation rule theorem, for

any computation rule R, there exists an SLD-refutation of BP' u {G)
via R with R-computed answer 8 ' such that G8' is a variant of G8.
There must also exist a computed E' for this SLD-refutation such that
(@I,&') is a computed answer to BP u {G). Since G8 and GO' are ground
then 8 = 8'. E' = E(G8') = E(G8) = E and (8 ' ,~ ') = (8 , ~) .

3.4. Examples

The advantage of Bayesian programs over Bayesian networks is
that whereas Bayesian networks are propositional, Bayesian

A Khowledge Representation for Abduction 9 1

programs contain logical variables, thereby enabling one clause to
take the place of many ground propositions. Consider, for example, a
Bayesian network family of nodes X,Y and Z where Z is
deterministically 'caused' by X and Y according to the equation
Z = X + Y. This is represented as:

node-ZCZ t [-X t -XA, -Y t -YA]) :- node-X(X t -XA),
node-Y (-Y t -Y A).

family-Z(-Z,-X,-Y).

In this example, it is assumed that the 'plus' predicate is defined
with the 'correct' plus semantics. Every instance of the family-Z
clause has the same associated condit ional probability,
P(-ZI-X,-Y) = 1. As a result, ground 'plus' instances are represented
generatively rather than explicitly enumerated.

Consider the case where X,Y,Z are boolean variables and usually
Z = X AY when S = ok. This is represented as:

node-Z(-Z t [-S c -SA,-X t -XA,-Y t -YAl) :-

node-X(-X t XA),
I - node-Y(-Y t -YA),

node-S(-S t -SA),

family-ZLZ, -X, X-S) .

In this example, it is assumed that the predicates 'and', 'nand' and
'bool' are defined with the appropriate semantics. We can think of
the Z node as a component in a model based diagnosis system. When
the state S is ok, the component exhibits normal 'AND' behavior most
of the time but not all of the time. The .05 probability summarizes

A Khowl edge Representation for Abduction 9 2

those outcomes for which the output of the 'and' component is faulty
even though the 'and' component is healthy. This can occur, for
example, if there is a short in the system that this component is a
part of. In other words we allow for unmodeled causes of Z's value.
In this way a complete diagnostic component model is constructed,
something which is not possible in conventional model based
diagnosis.

In effect, conventional model based diagnosis is implicitly based
on the assumption that the component structure is fixed or given.
This dramatically reduces the number of possibilities that need to be
modeled. However, as a result we are not able to correctly diagnose
failure modes which violate this assumption. In a Bayesian program
we are able to entertain the possibility of this assumption not
holding, without dramatically increasing modeling complexity. Rather
than explicitly identifying additional 'causes' of the Z output, we
simply model the ok-state component behavior as non-deterministic.

The final clause is an example of a nil constraint on component
behavior. When the component state is 'not ok' then for any given
-X,-Y pair, the -2 value is just as likely TRUE as FALSE. In this case,
when the component is broken the

I -

3.5. Comparison with Probabilistic

In [P o o ~ , ~ 11 Poole describes

component behavior is random.

Horn Abduction

a formalism, referred to as
probabilistic Horn abduction, for representing Bayesian networks in
a Horn clause logic. His formalism is similar to that described for

i
Bayesian programs, but different.

A major difference is that Poole does not explicitly represent
. Bayesian network extensions. As a result, Poole must introduce non-

Horn clauses to ensure that no assumption (annotated clause) is
counted more than once. With Bayesian programs we accomplish this
through the explicit representation of node tail extensions and the

A KhowZedge Regresentation for Abduction 9 3

use of network consistent subgoals in both Bayesian goals and node
predicate definitions. As a result non-Horn clauses are not needed.

The semantics of Bayesian programs are also developed
differently. Poole develops his formalism as a generalization of a
simplified form of Theorist [Poole,87], a reasoning system for
defaults and diagnosis. As a result his semantics is based on the
notion of adding assumptions, which are equivocal and have
associated probabilities, to unequivocally true clauses in order to
construct a theory explaining a set of observations. Each theory thus
constructed has its own least Herbrand model. Under probabilistic
Horn abduction each such minimal model can be assigned a
probability. We thus have a set of ranked possible worlds or minimal
models to choose from. In contrast, with Bayesian programs we have
a single least Herbrand model. Each element of the model is tagged
with a probability representing the frequency with the atomic
proposition occurs in the semantic domain.

A final difference is that Poole's assumptions are by definition
atoms. With Bayesian programs we can provide non-atomic
definitions for annotated family and terminal node predicates. It is
this feature that allows us to exploit the expressivity of predicate
calculus over propositional calculus, in order to succinctly represent
assumptiom which share the same associated probability.

Chapter 4
An Architecture for Abduction

In this chapter we present a problem solving architecture for
Bayesian programs which is based on De Kleer's focused consumer
architecture [de Kleer,86c], [de Kleer,86d], [Forbus,88a] Following a
description of the basic architecture, we show how it may be adapted
to a problem solving architecture for Bayesian programs.

4.1. Consumer Architecture

De Kleer describes several variations of the Consumer
Architecture all of which are based on an ATMS. Indeed, De Kleer
also distinguishes between several ATMS variants. The main
distinguishing feature of these architectures is the degree to which
problem solving control is focused. In the following we do not
distinguish between the different architectures. Rather, we describe
a single architecture which is suited to our purposes. We adopt the
labeling algorithm described in [de Kleer,88].We also explicitly
extend De, Kleer's focusing mechanism to include label propagation.
Although De Kleer suggests this approach in [Forbus,88a] it is not
explicitly described.

Figure 4.1 illustrates the three components which make up the
Consurger architecture. The A TMS maintains the current state of the
problem solving, and supports queries on this information. The
Contro 11 e r focuses problem solving by establishing intermediate
problem solving goals. The scheduler maintains an agenda of things
to do, given the current problem solving state and the intermediate
goals established by the controller. It executes items from this
agenda until its agenda is complete, or an inconsistency is detected.

- The Controller analyzes detected inconsistencies and revises the
problem solving focus.

An *chi tecture for Abduction

Scheduler r - 0

Figure 4.1. Consumer Architecture.

The ATMS maintains the problem solving state in the form of
a s sumpt ions , d a t urns and just if icat ions. Assumptions represent
choice points in a search space. Datums are propositions resulting
from the execution of inferencing steps. Justifications relate inferred
datums to the antecedents from which they were inferred. The
scheduler's agenda items are called c o n s um e r s . The controller
focuses problem solving by establishing one or more problem solving
focus environrnent.~. A focus environment defines a conjunctive set
of active problem solving choices or assumptions. The scheduler
schedules for execution those consumers which are activated by an
established focus environment. Consumers, when executed, record
their outcome by establishing new ATMS assumptions, datums and
justifications. The ATMS supports queries on the results of problem
solving for any one of the established focus environments. The ATMS
supports datum sharing between focus environments by

i
maintaining a l a b e l for each datum, associating i t with the
assumptions which logically entail it.

We proceed to discuss each Consumer architecture level in detail
beginning with the ATMS.

An Architecture for Abduction 9 6

4.1.1. ATMS

An ATMS node is a tuple with three parts. Using De Kleer's
notation we represent an ATMS node as ydatum : < datum, label,

justification set >. y, designates the node with datum x; however, the

same designation is often used to refer to both the node and its
datum.

A datum is a proposition asserted by the consumer level during
problem solving which the ATMS treats as atomic. Although from the
problem solving point of view each datum may be a complex
syntactic structure, the ATMS treats each datum as an atomic
proposition. It has no access to problem solving semantics.

A justification is a reasoning step asserted by the consumer level
during problem solving. It is a propositional Horn clause of the form
al"a2"..."an + c where al,a2, ..., an and c are ATMS nodes. The nodes

a 1 ,a2,. ..,an are referred to as the antecedent nodes. The node c is

referred to as the consequent.

A justification set for yc is a set of justifications each with the

same consequent c. Since by definition a justification set is associated
with a node c, and since each justification set member has the same
consequent c, each justification in a justification set is represented
simply by its set of antecedent nodes. As a result, the justification set
can be interpreted as a disjunctive normal form expression which
implies the node datum. For example, for the node

<x,label,{(al ,a2),(a3,a4)}> we have (al"a2) v (a3"a4) 3 x.
i

In a moment an assumption will be defined as a distinguished
kind of ATMS node. For now it suffices to say that an assumption is a
node which can be presumed true unless there is evidence to the
contrary.

An environment is a set of assumptions.

Rn Architecture for Abduction 9 7

A label is a set of environments. The main role of the ATMS is the
derivation of node labels. The environments of a node label imply
the node datum. More precisely, let J be the current set of ATMS
justifications. Then for each environment E of datum x's label we
have that J l E + x . A label can be interpreted as a disjunctive

normal form expression which implies the node datum. For example,
for the node <x,{{AI , A 2 } , { A 3 ,A4 } }, justification set> we have

There are four node types corresponding to premises,
assumptions, assumed nodes and derived nodes. A premise node has
a justification with no antecedents. For example < p, { { }},{()}>

represents the premise p which is always true.

An assumption is a node whose label contains an environment
mentioning itself.

An assumption whose label contains a singleton environment
mentioning itself is called a primitive assumption. The node
<A, { {A} } ,{(A)) > represents the primitive assumption A. A primitive
assumption can be presumed true unless there is evidence to the
contrary.

A non-primitive assumption is referred to a d e p e n d e n t -

assumption. The node <B, { { A,B } }, {(B, ...)} > is a dependent assumption. B
can be presumed true provided that A is also presumed true, and
that there is no evidence to the contrary. In effect B is an assumption
whose existence depends on having already made assumption A.

i An assumed node is neither a premise nor an assumption and has
a justification mentioning an assumption. The assumed datum a
which holds under assumption A is represented as <a, {{A}},{(A)}> .

All other nodes are derived nodes.

lThe symbol is used here to mean 'logically follows'

An Architecture for Abduction 9 8

The distinguished node yl : < l, label, justification set > represents

falsity. The environments of the label are called n o g o o d s . Each
nogood E represents an inconsistent conjunction of assumptions since
we have J + E + false which is equivalent to J + TE. The label of yl

is termed the nogood set. Consumers which detect inconsistent
results indicate this to the ATMS by specifying justifications with yl

as the consequent.

Assumptions are often established as a set of disjunctive choices.
For example, a subgoal may be unified with one of several clauses. If
we associate each clause choice with a separate assumption we have
a disjunctive set of assumptions. Precisely one of the assumptions
must be true in any solution.

In order to model disjunctive assumption sets, the ATMS allows
negated assumptions to appear directly in justification antecedents.
The negation of assumption A is a non-assumption node and is
referred to as lA. this enables the disjunction A v B v C to be
expressed as the justification 7A,lB ,lC + I. We can also express

disjunctions for dependent assumptions. If the disjunction
B 1 v B 2 v B3 depends on assumption A1 we assert:
A 1 , B 1 , B 2 , -.l B3 + I , which is logically equivalent to
A 1 + B 1 v B 2 v B 3 . -

A oneof disjunction is a disjunctive set of assumptions for which
precisely one assumption can be true. The ATMS represents oneof
disjunctions as a disjunction in combination with additional nogood
justifications, one for each pair of assumptions declared in the choose
dssertion. For example, oneof(C , C 2 , C) is represented as

lC1,TC2,1C3 + I and CI ,C2 + I , C1,C3 + I, C2,C3 + I. The

justifications used to represent a oneof disjunction for a given set of
assumptions C, are referred to as the oneof justifications for set C.

A focus environment is an environment established by the
focusing level to focus both ATMS label derivation and consumer
level consumer execution.

An Architecture for Abduction 9 9

An active environment is an environment which is a subset of a
focus environment.

An active nogood is a nogood which is a subset of a focus
environment.

A maximal consistent set of assumptions is called an
interpretation. An extension is a set of datums which are true under
an interpretation.

An active interpretation is an interpretation which is also a focus
environment. Later we will see that in our use of the ATMS,
whenever a new focus environment is first presented for consumer
execution, it is also an interpretation. When problem solving is
complete, each focus environment which remains is an active
interpretation whose extension corresponds to a distinct solution.

We are now in a position to completely characterize node labels.
Let J be the set of all ATMS justifications and let {El, ..., En} be a label

for node n. The ATMS ensures that this label has the following
properties1 :

(1) [Soundness.] J 3 Ei + n for each Ei

(2) [Consistency.] Each active Ei is not nogood. Moreover, the

nogood set consists of all active nogoods which follow from J. -

(3) [Completeness.] each active interpretation in which n holds is
a superset of some Ei

(4) [Minimality.] No Ei is a proper subset of any other.

i As a result of the above properties, the ATMS can determine the
extension of any active interpretation. It is only necessary to
examine each node to determine whether it has an environment
which is a subset of the interpretation.

The ATMS supports the following operations:
(1) definition of a new premise

l ~ i s t o r i c a l l ~ , these properties have been defined for an unfocused ATMS. Here
we provide definitions for a focused system.

An Architecture for Abduction

(2) definition of a new primitive assumption
(3) definition of a new justification
(4) establishment of a new focus environment
(5) removal of a focus environment
(6) general ATMS state queries
(7) consumer installment
(8) consumer removal
(9) establishment of a class consumer

The significance of consumer installment and removal are
described in the next section. Of the above operations, most result in
straight forward ATMS database changes or queries. The exceptions
are operations three and four which trigger label propagation.

Consider the case where a new justification is established. If the
justification has a consequent which is not yet known to the ATMS, a
new node is created for it and the consequent is copied into the
datum slot. Referring to the node designated by the consequent,
whether it be newly created or an already existing node, as N, the
antecedents of the justification are copied into N's justification slot.
The addition of the new justification triggers label propagation which
maintains correct node labels by propagating incremental label
changes.
-

At the heart of the algorithm is an operation called reduce. Reduce
takes an input set S of ATMS node labels. Each label in S is associated
with a particular ATMS node. Reduce returns a label L. Reduce
performs the following:

[REDUCE(S) -t L]

R1. If any label in S is the empty set, then return label L = {).
R2. Check each label for inactive environments. Mark each

inactive environment as b l o c k e d for the ATMS node
associated with the environment's label.

R3. Viewing the labels as propositional expressions in
disjunctive normal form, compute a new label L by

An Architecture for Abduction

*
converting the expression A label i to disjunctive normal

i

form where l a b e l * is the i th label minus its blocked

environments.
R4. Remove inconsistent environments, that is, environments

which are supersets of nogoods, from L.
R5. Remove subsumed environments, that is, environments

which are supersets of other environments in L, from L.
R6. Return L.

Let J be a newly added justification for node N. The ATMS
executes the following steps:

(I) [Derive incremental change to N's label.]
11. Form the set of labels associated with the J antecedent

nodes
12. REDUCE this set of labels to the incremental label L

(A) [Add L to N's label.]
Al. Delete from L every environment which is a superset of an

environment in N's label.
A2. Delete from N's label every environment which is a

superset of an environment in L. -

A3. If L is the empty set then we are done, otherwise add
remaining L environments to N's label.

A4. If N is yl, each environment E of L is a nogood. Invoke

nogood processing for E (step (N) described below). We are
done.

AS. If N is not yL, then step (P) is executed for each node N'

which is a consequent of a justification J' for which N is an
antecedent.

(P) [Propagate L through J' to N' from N.]

An Architecture for Abduction 102

PI. Let R be the set of J' antecedents minus {N). Considering L
to be associated with N, form the set of labels consisting of L
together with the labels associated with R nodes.

P2. Reduce this set of labels to the incremental label L'
P3. Invoke step (A) to add L' to the N' label.

It remains to describe nogood processing. (step A4 above). Let E
be a newly discovered nogood. Nogood processing consists of the
following:

[N-D I
N1. Sweep E and any superset from every node label.
N2. For every assumption A E E for which lA appears in some

justification invoke step (2) above to add E - {A) to l A ' s
label.

An example serves to illustrate the necessity of the second nogood
processing step. Suppose we have A v B. This is represented as
lA,lB + I. Suppose we also have the two nogoods {A,C) and {B,C).

Intuitively, it is clear that {C) must also be a nogood since it cannot
occur with either A or B and we know that at least one of A or B is
true. Nogood processing produces <lA, { { C)) >, <lB, { { C)) >, and
<7C,{ {A),{B))> which, when propagated through the justification
lA,lB + I, results in the required discovery of the new nogood {C).

Nogood processing ensures that all active nogoods are derived
thereby guaranteeing label consistency.

ATMS implementations typically perform label propagation very
efficiently. The results of a simple label propagation is shown in
figure 4.2. A is a datum with label {{a l)) ; B is a datum with label
{{a2,a3)), and datum C has label {{a3),{a4)) . These labels are
propagated through justifications J1 and 52 to produce the label for
datum D.

When a new focus environment is established, the ATMS unblocks
those blocked environments which are made active by the new focus
environment. This i s accomplished by unblocking active

An Architecture for Abduction

Figure 4.2. Simple label propagation in an ATMS.

environments and executing label propagation. The label propagation
described above is only slightly modified to unblock additional
environments as label propagation proceeds. In the following italics
are used to identify the label propagation differences.

The ATMS executes the following steps.:

(S) Select an ATMS node N which has blocked active -

environments. Set L = {)

(AU) [Add L to N's label and unblock active environments.]
AU1. Delete from L every environment which- is a superset of

an environment in N's label.
AU2. Delete from N's label every environment which is a

superset of an environment in L.
AU3. Add remaining L environments to N's label.
AU4. If N is yl, each environment E of L is a nogood. Invoke

nogood processing for E (step (N)). We are done.
- AU5. Unblock any blocked active environments in N's label and

add to L. If L is the empty set then we are done.

An Architecture for Abduction 104

U6. The step (PU) is executed for each node N' which is a
consequent of a justification J' for which N is an antecedent.

(PU) [Propagate L through J' to N' from N and unblock active
environments.]

PU1. Let R be the set of J' antecedents minus {N). Considering L to
be associated with N, form the set of labels consisting of L
together with the labels associated with R nodes.

PU2. Reduce this set of labels to the incremental label L'
PU3. Invoke step (AU) to add L' to the N' label and unblock active

environments.

(RR) Repeat from (S) until there are no more nodes with blocked
active environments.

4.1.2. Consumer Level

The consumer level consists of consumers and a consumer
scheduler.

A consumer is very similar to an ATMS node with a single
justification except that in place of a datum a consumer has a
procedure or rule which can be applied to the antecedent nodes in

- order to derive new problem solving results. In effect, a consumer is
an instance of a procedure whose argument bindings serve as
connections to antecedent ATMS nodes.

The process of establishing a consumer and its antecedent
, connections is referred to as consumer installation. The ATMS treats

the antecedent node, consumer relationship as a conventional
justification with the consumer playing the role of the consequent.
We refer to a consumer and its antecedents as a c o n s u m e r
j u s t i f i ca t ion . The ATMS maintains labels for consumers by
propagating labels through consumer justifications in the
conventional way. An active consumer is one whose label contains at
least one active environment.

An Architecture for Abduction 105

Unlike ATMS nodes, consumers have only a single justification.
Consumers cannot be used as antecedents in other justifications.

Each consumer, when executed, establishes its results by
communicating new justifications to the ATMS. Consumers may
establish new justifications for any type of datum including I. Each

new justification has precisely the same set of antecedents as the
consumer itself. An exception is the case where a consumer installs a
new assumption. In this case the new justification includes the new
assumption node itself, as an additional antecedent. Consumers only
execute once. They remove themselves immediately after they are
executed. There is no need for a consumer to execute more than once
as their results will have already been captured by the ATMS.
Consumers may also install new consumers.

It is also possible to define generic consumers whose antecedents
are classes of nodes rather than specific nodes. A class is an ATMS
construct used to represent a set of ATMS nodes of a particular type.
For example we may represent all nodes with datums of the form
Xlbinding as the X-variable class. With class consumers a class is
specified for each consumer antecedent. A class consumer is a
procedure which can be applied to any combination of antecedent
nodes provided that each antecedent node is of the designated class.

- Whereas a consumer is a procedure instance, a class consumer is a
procedure. After a class consumer is registered with the ATMS, the
ATMS ensures that a class consumer instance is attached to each
existing or new combination of member nodes of the specified
antecedent classes. Whenever a new member of a class is added to ' the ATMS database, the ATMS automatically checks whether new
class consumer instances need to be installed. Once installed, there is"
no distinguishing between class consumer instances and conventional
consumers. Class consumer instances are, in fact, consumers.

The consumer scheduler is activated whenever a new focus
environment is established. The scheduler responds by executing
active consumers. Consumer execution continues until either all
active consumers have been successfully executed, or until a

An Architecture for Abduction 106

consumer's execution uncovers an inconsistency (establishes a
justification for I).

We now examine the scheduler's strategy regarding which active
consumer to execute next. If F1 , . . ,Fn are the current focus

e n v i r o n m e n t s a n d P (F i) is the powerset of Fi then

S = P(F u P (F 2) u ..., u P (F n) is the set of all active environments.

Each E E S occurs in zero or more consumer labels. We say that E

act ivates the consumers whose labels it occurs in. The scheduler
selects consumers for execution indirectly. It selects an element of S
and then executes the consumers which are activated by the selected
environment. The scheduler selects elements of S in order of
increasing environment size. Starting with the empty set, ever larger
environments are considered, ending with the focus environments
themselves. If we have the single focus environment, {Al,A2,A3}, the

The above scheduling strategy is based on finding the most
general (minimal) node labels as early as possible. In doing so we
avoid superfluous label updating, and greater reuse of already
derived results whenever a new focus environment is established. In
the case of yl, more general labels result in more effective search

-
space pruning.

4.1.3. Focusing Level

) The focusing level consists of a controller whose basic role is to
provide top level control over the problem solving. The set of
assumptions encountered during problem solving form a search
space of possible solutions. The controller moves the problem solving
from point to point in this search space by establishing different
focus environments. The controller must ensure that each search
space point which is not ruled out by a nogood is considered a
solution candidate, but that no point is visited more than once. We

An Architecture for Abduction 107

can think of the controller as having an adaptive strategy for ranking
search space points and for ensuring that both the ATMS and
consumer levels are focused on the most highly ranked possibility.

Before describing the controller's algorithm we introduce some
definitions.

The current focus environment is the most recently established
focus environment.

Recall that an interpretation is a maximal consistent set of
assumptions. In computing solutions to problems, we extend focus
environments until they are interpretations and there are no
remaining active consumers. A focus environment satisfying these
conditions is called a solution environment. Extensions to solution
environments correspond to solutions.

The aim of the controller is to extend the current focus
environment into a solution environment. The controller must
subject each new focus environment to consumer execution in order
to determine whether or not the current focus environment must be
modified again, or whether it is already a solution environment.
When a solution environment is found, and if additional solutions are
desired, the controller begins work on another focus environment,

- leaving the previous one intact. Over time a number of solution
environments are generated.

The controller algorithm is described in terms of the following
operations.

(1) SETUP. The initial problem state and consumers are
established with the ATMS.

(2) FIND-NEXT-fe. A new current focus environment is
established.

(3) FIND-NEXT-SOLUTION. A new solution environment is
established.

(4) FIND-SOLUTIONS. The desired number of solution
environments are established.

An ~rchitecture for Rbductian 108

The current focus environment is denoted by current. We write
current = start to refer to the startup condition where no focus
environments have been established yet. We write current = end to
refer to the terminating condition where no further solution
environments are to be found.

The controller executes the following:
(C) C1.SETUP

C2. current = start.
C3. FIND-SOLUTIONS

[FIND_SOLUTIONS]
S 1. FINCIINCINEx7:-SOLUTIQN
S2. if current = end return
53. if desired number of solutions already found then return
S4. repeat from step S1.

[FINDFINDNExTx?'SOLuT1ON]
N 1. FIND-NEXTfe
N2. if current = end then return
N3. invoke scheduler
N5. if current is a solution environment then return.
N6. repeat from step N1.

For the moment we leave undefined the operations FIND-NEXT-fe -
and SETUP, as well as the criteria for deciding what constitutes the
desired number of solutions. These items depend on the particular
problem that is being solved. Consider them as slots to be filled in
converting the consumer architecture schema to an actual problem

) solving architecture.

4.2. Definite Programs

The consumer architecture described above is a framework for a
design. If we are to apply it to a particular problem it is necessary to
-fill in the generic 'slots' of the framework with specific design

An Architecture for Abduction 109

decisions. At the ATMS level the types of datums and classes must be
specified. At the consumer level the types of consumers and
consumer classes must be defined. At the focusing level we need to
define the strategy for finding the next focusing environment. In this
section we apply the consumer architecture to the problem of
computing answers to definite program goals.

Variables which appear in one or more goals of an SLD-refutation
are referred to as active variables. For example, consider the query
?-p(X,g(Y)), and the clause p(g(W),z) :- a(W),b(Z). If we resolve our
query with this clause we obtain the new goal a(W),b(g(Y)) and
binding Xlg(W). In this example variables X,Y and W are active
variables. Variables X and Y appear in the first goal. Variable W
appears in the second. Variable Z is inactive and does not appear in
any goal. The binding Xlg(W) is termed an active variable binding. It
is only necessary to keep track of bindings for active variables. We
do not need to store the binding for variable Z.

We make use of three kinds of datums, subgoal datums, variable
datums and assumptions. A subgoal datum corresponds to a subgoal
which must be proven true in order to complete a refutation. Subgoal
datums are only defined for those refutation subgoals which have
multiple clause choices. The set of clause choices for a subgoal with

- predicate p, and a definite program P is the subset of P which
defines p. We refer to subgoals with multiple clause choices as
non-deterministic subgoals. Subgoals with a single clause choice are
referred to as deterministic subgoals. In the above example p(X,g(Y)),

a(W) and b(g(Y)) are possible subgoal datums, depending on whether
) or not they are non-deterministic.

Variable datums are used to record variable bindings for active
variables. In the above example, Xlg(W) is established as a variable
datum. The ATMS recognizes the set of all variable datum nodes for a
particular active variable as a distinct variable class.

An Architecture for Abduction 1 1 0

Assumptions are used to represent non-deterministic subgoal
clause choices. Each clause choice is established as a distinct
assumption.

We often refer to nodes and justifications by the type of their
datum or consequent. For example, we refer to subgoal nodes,
variable nodes and assumption nodes. We also refer to s u b g o a l
justifications, variable justifications and assumption justifications. A
justification for I is referred to as a nogood justification.

At the consumer level we make use of resolution consumers and
unification class consumers.

Each resolution consumer is attached to a non-deterministic
subgoal S and an assumption corresponding to one of the clause
choices of S. When a resolution consumer is executed it performs the
following sequence of steps. Let S be the consumer's antecedent
subgoal, and C be the program clause associated with its antecedent
assumption.

[Make a non-deterministic choice C for subgoal S]
(1) Interpreting G as the goal :- S, derive G' from G and C using

mgu 8.

(2) If unification fails establish a nogood justification. Remove
consumer and return

[Resolve deterministic subgoals of G'. Establish variable bindings
in final 81

(1) Select a deterministic subgoal D from G'.
(2) Derive new G' from G' and clause associated with D using

mgu 8'.

(3) If unification fails establish a nogood justification. Remove
consumer and return

(4) Derive new 8 from 8 composition 8'.

(5) Repeat from step (1) until resulting G' contains only non-
deterministic subgoals.

An Architecture for Abduction

(6) Establish a variable justification for each active variable
binding in final 8.

[Establish new active variables for final G']
(1) Each variable appearing in final G' which has not yet been

established as an active variable is a new active variable.
Establish each such variable as an active variable by
establishing a unification class consumer for the variable.

[Establish new non-deterministic subgoals for final G']

(1) Remove a non-deterministic subgoal N from G'.
(2) Establish a subgoal justification for N.
(3) Establish an assumption justification for each of N's clause

choices.
(4) Establish oneof justifications for the complete set of these

choice assumptions for N.
(5) Attach a new resolution consumer to each pairing of N with

one of its clause choice assumptions.
(6) Repeat from step (1) until there are no more members of G'.

[We are done]
(1) Remove consumer
(2) Return

-
Recall that all justifications installed by a consumer have the same

antecedents as the consumer itself except that assumption
justifications also have themselves as an antecedent. Resolution
consumers deviate from this practise somewhat in the case of
assumption justifications. Resolution consumers install subgoal
justifications, and then attach assumptions to subgoals. Each
assumption justification has exactly two antecedents, itself and the
subgoal for which it is a clause choice to. As a result, each subgoal
node is the antecedent of its own clause choices. We can think of
these assumption nodes as belonging to their antecedent subgoal
node. We refer to these assumption nodes as subgoal assumptions.

' Logically, we can think of the resolution consumer as attaching a
choice consumer to each new subgoal which immediately installs the

An Architecture for Abduction 112

subgoal's assumptions. The situation is illustrated in figure 4.3.
Justifications for variable nodes and subgoal nodes are established
with the resolution consumer's antecedents in the conventional way.

A unification class consumer is defined for each active variable. A
unification class consumer for active variable X has two antecedents.
The class of variable X is the designated class of both antecedents. By
establishing a unification class consumer for each active variable, we
automatically cause a unification class consumer instance, referred to
as a unification consumer, to be attached to each pair of distinct X
variable nodes. When a unification consumer is executed, it performs
the following:

[Unify antecedent variable bindings]

(1) Unify the first antecedent variable binding with the second.
(2) If unification fails establish a nogood justification. Remove

consumer and return
(3) Otherwise, establish variable justifications to record the

results of the unification.
(4) Remove consumer (instance) and return

As an example consider the definite program goal,
?- A(X,f(Y)),B(X). Let both subgoals be non-deterministic subgoals,

- each with two defining clauses. Let the first clause choices for
subgoals A and B be:

Figure 4.3 illustrates some of the justifications installed by
consumers during problem solving. In the figure, subgoal, variable,
and assumption datums are represented by rectangles, circles and

. diamonds respectively. In this case problem solving has uncovered
the nogood (A1,Bl). For clarity, figure 4.3 does not show the oneof
justifications installed for each subgoal's clause choices. For example,

, the following justifications are installed for Cl,C2.

An Architecture for Abduction

c o , 4 1 , 4 2 + 1.

Cl,C2 + 1.
-

These justifications establish Cl ,C2 as a conditional oneof
disjunction. As long as C(V) holds, then precisely oneof its clause
choices must be true. Since the label of C(V) is {{Al } }, the occurrence
of the Cl ,C2 oneof disjunction depends on having first made

) assumption A l .

At the focusing level we need to provide procedures for SETUP
and FIND-NEXT-fe, and we need to describe criteria for deciding
when enough solutions have been found.

The initial problem state is set up by establishing a set of
' premises which describe the goal to which we require an answer. In

. effect our basic premise is that the goal does have a computed

An Architecture for Ahduction 1 1 4

answer. Discovering that this premise is not true amounts to finding
that the empty set is a nogood. If this ever occurs, problem solving
will halt as required. Setting up the initial problem state involves
many of the same steps as resolution consumer execution. In the
following, previously described resolution consumer steps are
surrounded by curly brackets.

[SETUP]

[Set up all variables appearing in goal as active variables.]
(1) Establish a unification class consumer for each variable

appearing in the goal.

[Set up to execute resolution consumer steps]
(1) G' = goal
(2) 8 = identity substitution

(3) treat consumer antecedents as the empty set. As a result,
variable and subgoal justifications established by the
following resolution consumer steps create premises.
Assumption justifications create primitive assumptions.

{ Resolve deterministic subgoals of G'. Establish variable bindings
in final 8. }

{ Establish new active variables for final G'. }

{ Establish new non-deterministic subgoals for final G'}

We turn now to describing FIND-NEXT-fe. In moving through the
search space, the basic strategy of chronological backtracking is

) adopted. Whenever an inconsistency is encountered, we simply
change the most recent choice and try again. Whenever we find that
no choices from a oneof set lead to a solution, we back up to the most

. recent oneof set with untried choices.

This approach has been generalized and made more effective by
, RMS-based backtracking algorithms [Bruynooghe,84], [Cox,84],

[Drakos,88], [Havens,91], [You,89]. In these algorithms, whenever a

An Architecture for Abduction

nogood is encountered the most recent choice which also contributed
to the nogood is changed. The situation where all choices of a oneof
set are exhausted results in a new nogood containing those earlier
choices which lead to this situation. We adopt the same approach and
adapt it to the ATMS-based consumer architecture.

Each subgoal node is associated with the chronological time of its
creation by the ATMS. This forms a total ordering of all subgoal
nodes. Since each subgoal has an associated oneof assumption set,
then we can consider chronological time as providing a total
ordering of subgoal assumption sets. This total ordering is, of course,
consistent with the partial ordering defined by logical subgoal
dependencies. Since focus environments do not contain more than
one assumption from the same subgoal assumption set, then all
assumptions in any focus environment are totally ordered by the
times associated with their assumption sets.

When a single nogood makes the current focus environment
inconsistent, we replace the most recent assumption in the nogood
with an untried assumption from its assumption set. The case where
all assumptions from the assumption set have been tried, and all
introduce nogoods, leads to a new nogood containing earlier
assumptions which lead to this situation. In this case we change

- assumptions by considering the nogoods one at a time in a particular
order. We consider the nogood consisting of assumptions which are
all earlier than the most recent assumption of any other nogood first.
This is analogous to backing up to the most recent assumption set for
which there remain untried assumptions.

Under this backtracking strategy, the ranking of solution
environments is arbitrary and does not draw upon problem domain
semantics. The controller does however ensure completeness.

We now examine the mechanism by which new nogoods arise
when all assumptions from an assumption set are exhausted.
Consider what happens when nogood A1,Bl,Cl is uncovered. Here we

assume that AI ,B I ,C I correspond to assumptions for subgoals A,B,C

An Architecture for Abduction 1 1 6

respectively. We also assume that the ordering of these subgoals is
A < B < C. The ATMS' NOGOOD procedure records {Bl ,Cl } as an

environment in -A 1 's label. Similarly, {Al ,C } is recorded for lB 1 ;
{ A I , B 1 } is recorded for 7 C . The controller then changes the most

recent assumption of Al , B 1 , C . Suppose it tries the combination

A 1 ,B 1 ,C2 next. Of the three new environments established for nodes

lA ,-,B ,'C 1, only the {Al ,B 1 } environment for 4 remains active.

We refer to this environment as El as it serves to justify the

retraction of C1. Note that El is made up of the other assumptions in

the initial nogood, all of which are earlier than C. In exhausting each
of the C choices, an active environment Ei is created for each Ci. The

ATMS automatically propagates these environments through the
oneof justification lC1,1C2,... -, I. The result is a new nogood made
up of the union of the E i t s This new nogood consists entirely of

assumptions which are earlier than C.

Before describing the algorithm for FIND-NEXT-fe in detail it is
necessary to introduce some definitions.

A left out subgoal is a subgoal node which:
(1) has a label containing an environment which is a subset of the

current focus environment.
, (2) does not have any of its subgoal assumptions included in the

current focus environment.

A solution assumption is introduced after a new solution
environment is found. It is the assumption that there exists another

) solution which is distinct from any solution found thus far. In most
prolog implementations additional solutions are found by treating
the current solution as a nogood. Solution assumptions enable
problem solving to continue without invalidating the solutions found
thus far. Thei-e is at most one solution assumption per focus
environment. By definition it is considered the oldest assumption in

, the focus environment.

An Architecture for Abduction 117

Strictly speaking, we do not consider solution assumptions to be a
part of solution environments, however, when the distinction is not
important we sometimes refer to focus environments formed from a
solution environment u {S} where S is a solution assumption, as a
solution environment.

The algorithm for FIND-NEXT-fe is described in terms of the
following operations.

(1) REPLACE(fe) . The current focus environment is replaced with
the new focus environment fe, which becomes the new current
focus environment. This operation causes label propagation
which may result in new active nogoods.

(2) NEW(fe). A new focus environment, fe, is established. It
becomes the new current focus environment. This operation
causes label propagation which may result in new active
nogoods.

(3) EXTEND. This operation is invoked when the current focus
. The current focus

is bigger by one

ingle backtrack step.

environment is consistent but not maximal
environment is replaced with one which
assumption.

(4) BACKTRACK. This operation executes a s
The current focus environment is replaced.

(5) NEXT. This operation is invoked when the current focus
environment is a solution environment. A new solution
assumption is established. The new solution assumption is used
to invalidate the current focus environment.

We follow the conventions established earlier. The current focus
environment is denoted by current . We write current = start to refer
to the startup condition where no focus environments have been
established yet. We write current = end to refer to the terminating
condition where no further solution environments are to be found.
We detect this by testing for a nogood consisting of either 0 or {S}
where S is a solution assumption.

[NEW(fe) I
(1) establish fe as a new focus environment.

An Architecture for Abduction

[REPLACE(fe)]
(1) remove current as a focus environment.
(2) establish fe as a new focus environment.

[J x l x N D I
(1) fe = current
(2) select a left out subgoal.
(3) add one of selected subgoal's assumptions to fe while

ensuring that fe remains consistent. Note that we can always
accomplish this as long as curren t is consistent to begin
with.

(4) REPLACE(fe)

[BACKTRACK]
(1) fetch the set S of nogoods which make current inconsistent
(2) select from S the nogood N with the earliest most recent

assumption.
(3) fe = current.
(4) let A be the most recent assumption in N. Replace A in fe

with an assumption from A's oneof set which is consistent
with the earlier assumptions in fe. Note that we can always
accomplish this as long as N is the nogood with the earliest
most recent assumption.

(5) remove any assumption from fe which depends on A
(6) REPLACE(fe).

[N3XT I
(1) Form the set A = {AO,A 1 ,...,An of solution environments

discovered so far. In this case we strip off solution
assumptions from each Ai. Current corresponds to the final

solution environment An.

(2) Form the set S = {Sl ,..., Sn} of solution assumptions defined

so far. Note that A. does not have an associated solution

assumption.
(3) Define the new solution assumption Sn+l

(4) install Sn+l, Ai + I for each 0 2 i r n

An Architecture for Abduction

(5) install Sn+l, Si + I for each 15 i S n

(61 NEW({ S,+l 1 u An).

[FIND-NEXT-fe 1
CASE
{ current = start

NEW(0)

{ current = end
r e tu rn

{ current = a solution environment }

NEXT
EMXlASE
UNTIL current is consistent and no more left out subgoals

CASE
{ current is consistent }

EXTEND
{ no more solutions }

REPLACE(end)
Return

{ -end and current is not consistent }
BACKTRACK

ENDCASE
ENDUNTIL
Return

It remains to define the controller's criteria for deciding when

1
enough solutions have been obtained. Since, in this case, solution
environment ranking is arbitrary, all solution environments are
equally good from a domain semantics point of view. As a result, the
most useful mechanism is probably an interactive one. The
interactive user can simply indicate when enough solutions have
been obtained.

Having introduced an interactive user, it is useful to exploit the
multiple solution architecture by allowing the interactive user to

An Architecture for Abduction 1 2 0

incrementally add to the goal that we are computing solutions to. For
instance, the user may wish to add new conjunctive subgoals, or to
provide bindings to goal variables. As the case of new conjunctive
subgoals requires slightly more elaborate control we illustrate the
principle by simply allowing the user to specify goal variable
bindings. The following is a updated version of the top level control
exercised by the controller. We also repeat the earlier
FIND-SOLUTIONS procedure for easy reference.

[TOP I
C1. SETUP
C2. current = start.
C3. FIND-SOLUTIONS
C4. If no solutions found then finished
C5. If no further goal refinements then finished
C6. REFINE
C7. Repeat from C3.

[FIND-SOLUTIONS]

S 1. FIND~NEXT~SOLUTION
S2. if current = end return
S3. if desired number of solutions already found then return
S4. repeat from step S1.

/

Step S3 is an interactive step. FIND-SOLUTIONS will generate as
many solutions as requested by the interactive user at which point
control returns to TOP. Step C5 enables the user to incrementally
refine the original goal. The REFINE operation of step C6

) communicates the changed goal to the ATMS. As a result some
previously computed solution environments may no longer
correspond to goal solutions. These solution environments are
dropped from the list of focus environments maintained by the
controller. Finally, normal problem solving resumes with
FIND-SOLUTIONS. As usual the current focus environment will be
modified in an attempt to generate the next solution environment.

The REFINE procedure is as follows.

An Architecture for Abduction 1 2 1

[REFINE]
(1) Establish new goal bindings as premises. This may result in

label propagation. It will also result in the creation of new
unification consumers.

(2) Invoke scheduler to execute the new consumers.
(3) Remove any focus environments that have become

inconsistent as a result.

In principle it is not difficult to provide for the addition of new
conjunctive subgoals as well as bindings to goal variables. The
controller invokes the SETUP procedure on the new subgoals. If this
results in new non-deterministic subgoals then the controller marks
all previously discovered solution environments which remain
consistent as partial solution environments. The very first partial
solution environment becomes the new current focus environment.
Now when the controller returns to finding solutions it attempts to
extend the first partial solution environment into a new solution
environment. Whenever one partial solution environment becomes
inconsistent the controller skips ahead to the next partial solution
environment. Eventually the controller is left with only complete
solution environments once again.

This goal revision mechanism enables the interactive user to
compare multiple solutions, and to incrementally apply filtering
conditions to reduce them in number. This is a process which occurs
naturally in abductive reasoning problems.

) 4.3. Comparison with Intelligent Backtracking

In this section we briefly compare the backtracking approach
described above, which we refer to as ATMS-based backtracking,
with various intelligent backtracking schemes [Bruynooghe,84],
[Cox,84], [Drakos,88], [Havens,9 11, [You,89] for Prolog. For the most
part we make this comparison at an abstract design level rather than
at an implementation level.

An Architecture for Abduction 122

Perhaps the most significant difference is that whereas intelligent
backtracking schemes are based on a single problem solving context,
ATMS-based backtracking supports multiple contexts. As discpssed
above multiple context problem solving supports the generation and
comparison of multiple solutions. Moreover, a goal can be
interactively refined and the changes applied to all previously
discovered solutions. While single context systems provide some
mechanisms for generating multiple solutions, they do not maintain
dependency information for any but the latest partial solution. Nor
do they support mechanisms for maintaining an ongoing relationship
between several solutions and a changing goal. The consumer
architecture described above is explicitly based on supporting and
maintaining this relationship.

Another difference between the two approaches is that whereas
intelligent backtracking schemes discard datums and nogoods which
are of limited use, ATMS-based backtracking, as described above,
never discards any information that is registered with the ATMS. The
rationale for discarding information is based on a practical tradeoff
between search space reduction and datum reuse on the one hand,
and the space and storage overheads which perfect search space
reduction and datum reuse require. Many of these tradeoffs are tied
to the efficient stack-based memory allocation scheme used in most

' Prolog implementations.

We point out that this is not a fundamental difference between
the two approaches. It is not difficult to modify ATMS-based
backtracking to discard essentially the same information as the
intelligent backtracking schemes. For example, one simple
mechanism is for the ATMS to purge all inactive environments from
labels. Any node whose label becomes the empty set as a result, is
discarded. As nodes disappear so do any consumers which are
attached to them. Resolution consumers are retained as long as they
are attached to an active subgoal, and are reexecuted each time they
are activated. The environment purging mechanism deletes nogoods
from the nogood set while preserving a record of those nogoods that

An Architecture for Abduction 1 2 3

are needed in order to prevent the same choice being tried more
than once. For instance, if choice B 1 in combination with an earlier
choice A1 is found to be nogood then our conventional ATMS-based
backtracking system creates the justification A1 + 7B1. This results
in the active environment { A l) for node TB1 even after we have
modified the B choice to B2. This active label for - ,B1 acts to record
the fact that B1 cannot be retried as long as A1 remains in the focus
environment. This mechanism is analogous to that found in
intelligent backtracking schemes. Like intelligent backtracking, this
modified approach ensures no search space point is visited more
than once while skipping over portions of the search space. On the
other hand some nogoods which are discarded may end up being
discovered more than once.

It would seem that the above modified ATMS scheme makes the
same tradeoffs as intelligent backtracking while retaining the
advantages of multiple context problem solving. This is not quite the
case, however, since intelligent backtracking implementations often
tie their tradeoffs explicitly to their stack-based architecture.The
stack-based architecture is not suited to multiple context problem
solving, nor is it suited to probabilistic best-first type search of the
kind discussed in the next section. We argue that abductive problem
solving is especially suitable to probabilistic reasoning and multiple
context problem solving. Under these circumstances, the basic
practical tradeoffs of RMS-based search techniques for Prolog need to
be reexamined.

A more fundamental difference between the two approaches
) concerns the way in which ATMS-based backtracking schedules

consumers. This is best illustrated by an example. Consider the goal
-? pl(X),p2(X),p3(X). Let these three subgoals be non-deterministic

. subgoals. We designate the first clause choice for subgoal pl(X) as
Al , the first clause choice for p2(X) as B1, and the first clause choice
for p3(X) as C1. The clauses associated with these choices are:

An Architecture for Abduction

Given a focus environment of Al ,Bl ,Cl the consumer scheduler
schedules active consumer execution according to the environment
sequence {Al},{Bl},{Cl},{Al,Bl},{Al,Cl},{Bl,Cl},{Al,Bl,Cl}. The
resulting justifications are shown in figure 4.4 (a). The nogood
{B 1 ,C 1 } is discovered after six reasoning steps. In contrast, intelligent
backtracking schemes execute incremental reasoning steps. They
begin by deriving new results under assumption A l . Next
assumption B1 is added to assumption A1 and new results obtained
under these combined assumptions. Finally assumption C1 is added
to A1 and B1 to form the environment sequence
A A B 1 A B 1 1 } Each new assumption triggers reasoning
steps which make use of the results obtained under previous
assumptions. The result is shown in figure 4.4 (b). The nogood
(A1 ,B 1 ,C 1 } is discovered after three reasoning steps.

In comparing the results of the two approaches we see that
ATMS-based backtracking finds the most general form of the nogood,
but executes more reasoning steps to find it. Here we have a basic
tradeoff. More general nogoods lead directly to more efficient search

/ space reduction. Hence we save on future reasoning steps but pay in
current reasoning steps.

We can characterize the difference between the labels derived by
the two approaches. The labels computed by intelligent backtracking
reflect the order in which subgoal choices are made during problem
solving. If the choices are made in a different order, the label
environments may be in a more general form. In the example, if we
choose B1 first, followed by C1, we discover the more general nogood
{B 1,Cl) . In contrast, ATMS backtracking computes labels which are
independent of the order in which subgoal choices are made. This
follows from the fact that every possible way of incrementally
building the combination A1 ,B 1 ,C 1 is represented in the scheduler's
environment sequence. The environment sequence includes

An Architecture for Abduction 1 2 5

{A1) ,{A1 ,B 1 },{A1 ,B 1 ,C1) as a sub-sequence. It also includes sub-
sequence {C 1 }, {B 1 ,Cl} , {A1 ,B 1 ,C1). The result is labels which are in
their logically most general form and do not reflect arbitrary subgoal
choice orderings.

The tradeoff represented by order independent labels requires
further study. At this point we simply point out the tradeoff and
reflect on its relationship to a stack-based architecture. For example,
a characteristic of intelligent backtracking's incremental approach is
that variables become incrementally more specific as problem
solving proceeds. Said differently, variable bindings form a total
ordering of increasing specificity. In the example first we have Xlf(Y)
then Yla. From the point of view of X it is bound to f(Y) first, then
f(a). Compare this with ATMS-based backtracking where we have
partially ordered bindings for X: Xlf(Y), Xlf(a) and Xlf(b). The
incremental nature of intelligent backtracking is well suited to the
stack-based architecture which incrementally extends and rolls back
the problem solving state. Again, for abductive problem solving the
tradeoff should be examined in a different light.

The incremental single context nature of intelligent backtracking
results in labels which consist of single environments only. With
ATMS-based backtracking even if we maintain only a single context,
we may have labels consisting of several disjunctive environments.
This occurs for example in the case where choice A1 leads to the
same X binding as choice B1 taken by itself. Intelligent backtracking
systems actually maintain a datum environment rather than a datum
label.

An Architecture for Abduction

(a) Order-independent Reasoning

(b) Order-dependent Reasoning

Figure 4.4. ATMS-based backtracking derives order-independent
labels.

An Architecture for Abduction 127

Finally, we point out that the order-independent approach of
ATMS-based backtracking makes it easier to reuse datums when
focus environments are changed. In the example, consider the case
where we wish to change the initial assumption A l . In intelligent
backtracking this is not easy as the resolution step for p2(X),
resulting in the justification for Yla, is based on the results of Al . For
ATMS-based backtracking, the results of the resolution step for p2(X)
are available independent of assumption Al . Hence this earlier result
is readily reused. Again, clause reuse is not a consideration for
conventional intelligent backtracking systems, which rely on the
stack mechanism to roll back problem solving to the point where the
choice being changed was made, in the process discarding results
that could, in principle, be reused.

4.4. Bayesian Programs

In this section we examine how the consumer architecture may be
applied to the problem of computing answers to Bayesian program
goals. Our approach is to extend the definite program design of the
previous section.

Consider the Bayesian network shown in figure 4.5. The Bayesian
program BP for this network contains the following node predicate

/

definitions for non-terminal nodes.

An Architecture for Abduction

Figure 4.5 A Simple Bayesian Network

We refer to the family predicates of a Bayesian program, together
with node predicates for terminal nodes as characteristic predicates.
Subgoals for these predicates are referred to as c h a ra c t e r i s t i c
s u bg oa 1 s . In the above example the characteristic predicates are
family-B, family-C, family-D, and node-A. We refer to predicates
with annotated clauses in their definitions as annotated predicates.
Subgoals for these predicates are referred to as annotated subgoals.
Annotated predicates are always characteristic predicates.

/

Consider the Bayesian goal G, ?- node-D(-X). In the preceding
section for definite programs, we defined a SETUP procedure which
executes as many deterministic SLD derivation steps as possible,
leaving only non-deterministic subgoals. If we execute the SETUP

I procedure for G we end up with the following set of
non-deterministic subgoals, and binding for -X.

An Architecture for Abduction 129

We are left with a characteristic subgoal for each node in the
original Bayesian Network. It is not difficult to establish that this is
true in general. For the Bayesian goal G, based on subgoals for nodes
Nl ,N2, ..., Nn, the SETUP step results in a single characteristic subgoal

for each node in the set prev(Nl) u prev(N2) u ... u prev(Nn).

Typically, a subset of these characteristic subgoals are annotated
subgoals.

Note that the same characteristic subgoal may be derived by
SETUP more than once. In the above example node-A(-A) will be
derived twice, once as node-B is resolved, and again as node-C is
resolved. Our use of shared variables to represent most recent
ancestors in Bayesian goals ensures that each occurrence of the
node-A subgoal has identical arguments. Since we are only
interested in the final s e t of non-deterministic subgoals, the
redundant subgoal is removed from further consideration. This is
implicit in the operation of the ATMS which checks whether the
consequent of each new justification is a new datum or not. In this
case, since SETUP establishes premises, or justifications without
antecedents, the ATMS simply ignores all but the first attempt to
establish a premise. This simple mechanism acts to ensure that the
cost (defined below) of an assumption is not counted more than once.

Consider the case where a proper subset of the characteristic goals
established by SETUP consists of annotated subgoals. As we have
shown previously, each clause choice for an annotated subgoal
contributes a probability factor to the probability associated with the
final computed answer, The probability of the final computed answer
consists of the product of these clause probabilities. If our objective
is to find the most likely answer first, then we wish to find the
answer which maximizes the final probability. This suggests an
approach based on a best-first-search. We associate a cost with each
annotated clause selection, cost = log (UPc) = -logPC where PC is the

probability associated with clause c. This definition has the following
desirable properties. Cost equals zero for Pc=l . Cost increases

monotonically to infinity as PC is changed monotonically towards

An Architecture for Abduction 1 3 0

PC = 0. We have Costl + Cost2 = -(logP1 + logP2) which equals

- l o g P P 2 . Thus we can add individual clause costs together to

obtain the combined cost of having made a particular set of clause
choices. We can now equivalently redefine our objective in terms of
costs rather than probabilities. Our objective is to find the answer
which minimizes the final cost.

Note that not all characteristic subgoals are necessarily annotated
subgoals. The clause choices of non-annotated characteristic subgoals
have an effective cost of zero. The appearance of both zero cost
subgoals and non-zero cost subgoals suggests a searching strategy
which combines both backtracking and best-first-search techniques.

As described earlier, we may provide intensional definitions for
characteristic predicates. For example, We may have:

During problem solving, the first choice may be taken. This choice
comes at the cost of -log(.8) and leaves us with the unannotated
subgoal pl(-d,-b). Note that the p l subgoal's choices correspond to
assumptions which depend on the earlier clause choice for the
family-D subgoal. Here we see that generative definitions for

/

characteristic predicates result in zero-cost subgoals, whose choices
depend on earlier annotated subgoal choices. Again, the combination
of zero cost subgoals and non-zero cost subgoals suggests that we
combine best-first-search with backtracking. Note, however, that the

1 situation is simplified by the fact that whereas zero cost choices may
depend on non-zero cost choices, the reverse is never true.

We are now in a position to extend the previous design for
- definite programs. The SETUP procedure remains unchanged. We

extend the FIND-NEXT-fe procedure to provide a best-first-search
over annotated subgoal choices. First, some definitions are presented.

An Architecture for Abduction 1 3 1

An annota ted assumpt ion is an assumption belonging to an
annotated subgoal. Note that an annotated assumption may have zero
cost. Th i s corresponds to the case where a particular assumption of
an annotated subgoal has zero cost. Other choices for the subgoal will
have non-zero cost.

An unannotated assumption is an assumption belonging to an
unannotated subgoal.

We consider the current focus environment to be made up of
three components:

(1) Optionally, a solution assumption.
(2) A set, designated as C1, of annotated assumptions.

(3) A set, designated as C2, of unannotated assumptions.

We adopt the chronological ordering of the backtracking algorithm
described earlier. By definition, for any focus environment, we have
that:

(1) The solution assumption, if it exists, is the oldest assumption.
(2) All the annotated assumptions are older than the unannotated

assumptions.

We say that C I is complete if there are no left out annotated

' subgoals.

We say that C 2 is complete if there are no left out unannotated

subgoals.

-l
We say that current is complete if both C1 and C2 are complete.

FIND-NEXT-fe establishes a complete current focus environment
to serve as the basis for further problem solving. Initially, a best-
first search (procedure BFS) establishes a complete C1. FIND-NEXT-fe

then extends the current focus environment to include a complete
C2. When inconsistencies are encountered, FIND-NEXT-fe backtracks

*

over the C2 assumption space. Whenever forced to back up into the

annotated assumption space, BFS is invoked to reestablish a new

An Architecture for Abduction 1 3 2

complete C1. The terminating condition occurs whenever the solution

assumption itself comes into question.

[FIND-NEXT-fe]

CASE
{ current = start }

BFS
{ current = end }

r e tu rn
{ current = a solution environment }

NEXT
ENDCASE
UNTIL current is consistent and complete

CASE
{ current is consistent }

EXTEND
{ no more solutions }

REPLACE(end)
Return

{ -end and C1 is consistent and C2 is not consistent }

BACKTRACK
{ Tend and C1 is not consistent }

set fe2 = C2

BFS
If current = end the return
remove from fe2 any assumptions which depend on
assumptions no longer included in current.
REPLACE-C2(fe2)

ENDCASE
ENDUNTIL
Return

Note that REPLACE-C2 is similar to REPLACE except that it only
-replaces C2 assumptions of the current focus environment.

An Architecture for Abduction 1 3 3

The procedure BFS does a best-first search over the annotated
assumption space. The complete set of annotated subgoals are
established by SETUP. The time of subgoal creation is once again used
to provide a total ordering of these subgoals. We can therefore talk of
the subgoals which precede and follow a particular subgoal.

The best-first search maintains a tree data structure representing
the current state of the best-first search over the annotated
assumption space. This tree is referred to as SS (Search Space).
Except for the root node, each node in SS represents an annotated
assumption. The root node represents the situation where no
annotated assumptions have been made. If node N represents an
assumption for an annotated subgoal SG, then its children correspond
to the clause choices of the annotated subgoal which follows SG. The
children of the root node correspond to the clause choices of the very
first subgoal. For each node, the path back to the root node
represents a distinct combination of assumptions. As we move ' from
root to leaf node we encounter assumptions from each annotated
subgoal in order of subgoal creation. Leaf nodes correspond to
assumptions for the very last annotated subgoal. Figure 4.6 shows an
example of a simple SS tree. In this example there are two
annotated subgoals, A and B. There are three clause choices for

' subgoal A and two for subgoal B.

A path from the SS root node to a leaf is called a complete branch.
Each complete branch corresponds to a complete C1. A complete

branch which, when established as C1, does not activate any nogoods,

is termed a consistent complete branch.

A path from the SS root node to a non-leaf is called a partial
branch . A partial branch which when established as C1, does not

. activate any nogoods, is termed a consistent partial branch.

An Architecture for Abduction

Figure 4.6. A simple SS tree

Starting at the root node the best-first procedure incrementally
builds a path to a leaf node. At each step it extends its best partial
branch by one assumption. If successful, this process results in a
least-cost consistent complete branch. To ease memory requirements,
SS branches are expanded only as they are deemed worth exploring.

C 1 is kept in step with the best-first search. As assumptions are

added or subtracted, C1 is updated. Whenever an assumption is

added to C1, the ATMS is queried for active nogoods. Each SS branch

which activates a nogood is deleted from further consideration. In
this way SS is expanded as the search takes into consideration new
search space points, and pruned as search space points are

\ discovered to be nogood.

Each node in SS is a tuple of the form:

node(C,E,A,SG,Cs) where:
C subgoal clause choice
E estimated total cost of best solution which includes this SS

branch
A actual cost of choices made so far (root node to here)
SG next subgoal to make a clause choice for

An Architecture for Abduction 1 3 5

Cs list of children nodes. Each child represents a choice for
SG.

We reference fields of a node by writing node.field. For example,
node C is the subgoal clause choice associated with node.

For the root node C = none and A=O by definition.

Following conventional best-first search algorithms, when a node
is created we derive E = A + H where H is a heuristic estimate of the
least cost path from this node to an SS leaf. In other words, H is
based on estimating the cost of making additional assumptions for
each left out annotated subgoal. As long as the H estimate is less than
or equal to the correct H value, we are guaranteed of finding the
overall least cost combination first. A search algorithm is said to be
admissible if it always produces an optimal solution provided that a
solution exists at all. A heuristic used to estimate H is said to be an
admissible heuristic if it is guaranteed to generate estimates which
are less than or equal to correct H values.

Each node is created when the partial branch ending with its
parent node is first actively considered as part of a best complete
branch. Each node is created with an empty children list. If,

' subsequently, this node comes under active consideration, its node
representation is expanded to include its children. From this point on,
the node's E is updated to reflect the smallest E value of any of its
children.

> The BFS procedure simply sets up BEST-fe which does the real
work.

[BFS I
(1) If current = start then

- NEW(0)

- estimate H
- SG = first (earliest) annotated subgoal
- ROOT = node(SG,none,H,O,nil)

An Architecture for Abduction

(2) BEST-fe(ROOT,-) + result

(3) If result = never then REPLACE(end)

Whenever BEST-fe(node,bound) is called, a partial branch ending
in node's parent will have already been established for C1. BEST-fe

searches for a path from n o d e to a leaf such that the combined
complete branch is consistent and has a total cost of less than or
equal to bound . BEST-fe returns one of {no,never,yes } A y e s
indicates success. A never indicates that there are no complete
branches which include the partial branch ending at this node. A n o
indicates that while there remain untried paths to a leaf, all have an
estimated cost greater than bound.

[BEST-fe(node,bound)]
(1) set fe = C1

(2) remove any assumptions 2 n0de.C from fe

(3) add n0de.C to fe
(4) REPLACE-C 1 (fe)
(5) If C1 is inconsistent then delete all children (and their

children etc.) and return never.
(6) If C1 is complete then return yes.

(7) If node.Cs = nil then EXPAND(node).
/

(8) find node child, N1 with smallest E.
(9) n0de.E = N1.E
(10) If N1.E > bound then return no.
(11) new-bound = bound

\
(12) If there is one, get the N1 sibling, N2 with smallest E. If

<

N2.E < bound then new-bound = N2.E
(13) BEST-fe(N1 ,new-bound) + result.

(14) If result = yes then set n0de.E = N1.E and return yes.
(15) If result = never then delete N1 and determine if there

exists an active nogood whose most recent assumption is
earlier then node.SG. If so then delete all node's children.

(16) If node has no remaining children then return never.
(17) repeat from step (8).

An mchitecture for Abduction

[Expand(node)]

SG = node.SG
Let R be the set of left out annotated subgoals minus {SG)
Estimate H from R
Form set S consisting of SG's clause choices.
Select ch, an element' of S
A = n0de.A + cost of ch
E = A + H
add new node(SG,ch,E,A,nil) to node.Cs list.
repeat from (5) until S is empty

It remains to specify an admissible heuristic for estimating H. One
possibility is to always consider H = 0. This corresponds to the
trivially admissible assumption that we will encounter no additional
costs in extending a partial branch into a complete branch. While this
heuristic is indeed admissible, it has no heuristic power and does not
provide any guidance for the search. Ideally, we would like to use a
heuristic which is as close as possible to the real H, while still being
admissible. At this point, this is a topic for further research.

Shimony and Charniak [Shimony,90] report on a best-first search
algorithm for Bayesian network assignments. Their approach is based

/ on mapping Bayesian networks into equivalent networks consisting
of only nodes with boolean (ie: only 0 or 1) conditional probabilities.
They then find a maximum a-posteriori assignment of values for the
Bayesian network by using a best-first search on the new structure.
The approach described here can be compared with that of Shimony

) and Charniak where the propositions stored in the ATMS play a
similar role to the boolean structure of Shimony and Charniak's
intermediate network. They report reasonable results for the trivial
admissible heuristic H=O and remark on their expectation of

. improved results through the use of a better admissible heuristic.
Along these lines it may be possible to adapt the recent work of
Henrion [Henrion,BO], [Henrion,91] to obtain bounds on the relative
probability of partial diagnoses.

An Architecture for Abduction 1 3 8

We can adopt the interactive mechanism described earlier for
detecting when a sufficient number of solutions have been
discovered. Alternatively, the probabilities associated with computed
answers can be used. For example, we may continue problem solving
until the probability associated with the next best answer is below
some minimal fraction of the first best answer. There are many
possible heuristics which could be used. De Kleer [de Kleer,89a]
adopts this approach in his ATMS-based diagnosis system.
Conventional second order predicates for Prolog such as bagof can
be generalized to allow the programmer to define his own
thresholding heuristics.

The REFINE mechanism described earlier can also be used to
incrementally refine Bayesian goals. This is particularly appropriate
in interactive diagnosis systems which often recommend
measurements or tests to reduce the number of likely explanations.
New measurements are registered with our system as new variable
binding premises. This triggers unification consumers which
automatically eliminate diagnoses which are inconsistent with the
new information. This, in turn, may affect our heuristic thresholding
and result in a search for additional explanations. Here we see that
goal refinement and heuristic second order predicates work together

/ to provide flexible, high level support for interactive, abductive
problem solving.

The design described in this section computes Bayesian answers in
best-first order. Moreover, it supports the ongoing interactive
comparison of more than one answer, and incremental query
refihement. The main cost of these capabilities is that of best-first
search as compared with backtracking. The well known disadvantage
of a best-first search over backtracking is that it requires additional

. storage to maintain the search state (SS in our case). We keep this
overhead to a minimum by resorting to backtracking for
unannotated subgoals. A related disadvantage is the loss of the
efficient stack-based memory management mechanism associated
with Prolog backtracking implementations.

An Architecture for Abduction

In the previous section we mentioned that most intelligent
backtracking schemes discard information and recompute rather
than suffer the memory and time overheads associated with storing
all previous results and fetching them when appropriate. We briefly
described an equivalent mechanism for ATMS-based backtracking
involving purging inactive environments from node labels. We point
out that in the above design we can adopt this same purging
mechanism. The SS data structure ensures that no search space point
is visited more than once. We point out, however, that the tradeoff is
not clear. For instance the more nogoods we maintain, the more
effectively SS is pruned, thereby limiting the principal disadvantage
of best-first search.

Another consideration is that some environments, even though
inactive, may have high probabilities (low costs) associated with
them. For example, in a diagnosis application, single fault diagnoses
are often much more likely than multiple fault diagnoses. However,
the controller may try several candidates for the single fault before
arriving at one which is consistent with observations. We will want
to keep datums representing components which are healthy even
when they are currently inactive, as they will quite likely be under
active consideration again. In contrast, datums representing

/

unhealthy components can be discarded as soon as they become
inactive. In principle, node labels can be converted to probabilities,
and heuristics established to control which results are kept and
which are discarded. More research into these issues is required.

4.h Introducing Constraints

As a result of their importance in model based diagnosis, we
briefly mention the possibility of integrating constraints -into
Bayesian programs. Constraint suspension is a technique often used
in model based diagnosis [Davis,88]. The basic idea is to model the
normal behavior of each component in a network of components as a
constraint on its interface properties. The result is a constraint

An Architecture for Abduction 140

network. Observed property values are registered by providing
bindings for property variables. Constraint propagation propagates
the effect of these bindings on other variables. In a system where all
input values are specified, constraint propagation derives the
associated output values for a healthy system. If however, we
observe output properties which are different from these expected
values, then we need to relax or suspend one or more of the
constraints in order to restore consistency. This corresponds to
hypothesizing that a component is unhealthy. Often systems model
unhealthy as well as healthy component behavior. In this case a
constraint representing healthy behavior is replaced with one
representing unhealthy behavior.

Recently, Constraint Logic Programming (CLP) languages
[Jaffar,87a], [Jaffar,87b], [Colmerauer,90] have emerged which
integrate constraint propagation techniques into logic programming.
Echidna [Havens,90] and CHIP [Van Hentenryck,89] are CLP
languages based on built-in constraint predicates and the notion of
domain variables. Domain variables are logical variables with an
associated restricted domain of possible values. For example, the
variable X may be assigned the domain consisting of an integer
interval from one to ten. During constraint propagation, domain

/

variables can be bound to either a value contained in its domain, or a
new domain which is a subset of its current domain. Echidna and
CHIP both contain built-in constraint predicates for arithmetic
operations such as multiplication, addition, boolean comparisons and
others. Resolution is not used for constraint subgoals encountered
quring an SLD-refutation. Rather, a rule of inference based on
arc -cons i s t ency [Mackworth,77], [Mackworth,85], [Mohr,86],
[Sidebottom,91] is invoked each time a constraint variable is bound
to a new, more specific domain. Under arc-consistency, each
constraint variable is assigned a new value by eliminating values in
its current domain which are not possible given the constraint and
the current domain values of other variables in the constraint.
Repeated invocation of this arc-consistency rule of inference
propagates new variable bindings through constraints to other

An Architecture for Abduction 141

variables and triggers backtracking in the event that any variable
domain becomes the empty set.

Constraint propagation can be added to the consumer design
defined for definite programs by defining constraint class consumers
for constraint subgoals. These class consumers ensure that constraint
consumers are attached to constraints and their constraint variables.
A constraint consumer for a constraint subgoal C is attached to C and
each set of variable datums representing all but one of C's variables.
Upon execution, constraint consumers apply arc-consistency to
derive a new binding for the left out constraint variable. By defining
constraint consumers as class consumers, we ensure that
arc-consistency processing is triggered after each new constraint
variable binding.

This approach can be compared with Echidna which combines
RMS-based dependency backtracking with constraint propagation.
Unlike Echidna, however, the consumer based design derives
minimal, subgoal-order independent labels.

Additional formalism is required to justify the use of constraints
as a family predicate in a Bayesian program. Informally, we point out
that constraint propagation executes only reasoning steps which

/

follow from other choices or assumptions. As a result, constraints
have a zero cost associated with them. They perform deterministic
reasoning steps only. However, computed CLP answers can contain
domain variables with non-ground answers. In this case we must
interpret the computed probability mass as being distributed in

)some fashion over the possible ground values for the variable. In a
similar situation, de Kleer [de Kleer,87], [de Kleer,89a] makes the
assumption that the probability mass is evenly distributed. For
example, if we have a computed answer for which domain variable X
has either an integer value of 0 or 1 with computed probability P,

, then we can postulate the existence of a ground answer with X value
of 1 with probability P/2. We must be tentative, however, since
while arc-consistency guarantees local consistency, it does not
guarantee the existence of globally consistent solutions. To find

An Architecture for Abduction

global solutions CLP programs choose consistent ground values for
remaining domain variables until all domain variables are both
ground and arc-consistent. This process is both sound and complete.
In a diagnosis system, this last stage can be interactive. The
interactive user makes incremental measurements until all domain
variables are ground and arc-consistent. Each interactive
measurement is treated as an assumption and assigned a probability
which correctly distributes the probability mass.

Chapter 5
Conclusion

This thesis addresses the need for a generalized approach to
diagnostic or abductive problem solving. We have introduced a way
of representing Bayesian networks as logic programs with
extra-logic, probabilistic semantics. These Bayesian programs retain
the dual procedural and declarative semantics of conventional
definite programs. The probabilistic semantics of Bayesian programs
provides relative rankings to abductive explanations. Explanations
which are more likely are assigned higher rankings.

The advantage of Bayesian programs over Bayesian networks is
based on the extra expressivity of predicate logic over propositional
logic. Bayesian networks are propositional. They describe particulars.
A Bayesian network is fully specified by explicitly enumerating the
conditional probabilities of each network node. In contrast, Bayesian
programs support intensional representations of equal-valued
conditional probabilities.

This is of little value for problem domains which are not well
understood, or for which we do not have a theory based on first
principles. For such domains, our understanding is itself
propositional. As a result, universally quantified variables are of
little use. For domains with a well understood theory, the situation is
different. Typically, there is a set of assumptions which sanction the
theory. As long as these assumptions hold we have deterministic
behavior, which can be represented intensionally. A Bayesian
program can succinctly assert that the conditional probability of a
healthy adder's output having a value, given any combination of
~ d d e r input values, equals one, as long as the inputs add to form the
output. This statement is true for all input, output value
combinations. In other words, we can represent input, output values

Conclusion 1 4 4

as universally quantified variables rather than having to explicitly
enumerate the complete set of input, output value combinations.

In the above adder example, the sanctioning assumption is that
the adder is h e a l t h y . If the adder is not healthy, then the adder
theory is no longer valid. Ultimately, as sanctioning assumptions are
called into question, we must resort to statistical modeling. Bayesian
programs represent an improvement over other model-based
representations in that they support both statistical and theoretical
modeling equally well. Bayesian programs provide a unified
framework for modeling both idealized device theory, and the
statistical nature of our incomplete understanding of the real world.
Diagnostic completeness is a case in point. Model-based systems are
implicitly sanctioned by the assumption that the system topology is
as specified by the model. Model based systems enumerate possible
diagnoses which are consistent with this assumption, however, they
fail to consider the possibility of the assumption not holding. In this
situation, a Bayesian program can explicitly resort to a completely
general, probabilistic model of the system.

We have presented an architecture for computing answers to
Bayesian program queries. This architecture is specifically designed
to meet the needs of abductive, or diagnostic problem solving. The
architecture combines best-first search with dependency
backtracking in order to efficiently compute answers in order of
decreasing likelihood. The architecture efficiently maintains multiple
solutions and supports interactive, incremental query refinement.
This enables an interactive user to compare more than one highly
likely explanation or diagnosis, and to incrementally apply additional
obsdrvations in order to reduce them in number. This is a process
which occurs naturally in abductive reasoning applications.

There are remain several outstanding research issues as well as
new directions to pursue. Firstly, there remain implementation level
issues to resolve. Should the ATMS database ever discard any
information, once it is established? Alternatively, should it act as a
cache, retaining only datums which are either under active

Conclusion 145

consideration, or are likely to be needed again? The more nogoods,
the more the search space is pruned. This is particularly important in
our case as the best-first search maintains an explicit representation
of the search space. Hence, by not pruning, we pay in memory
storage as well as in execution time. One strategy is to convert datum
labels to probabilities, and to discard information with low
probabilities. This translation can be accomplished along the lines of
D' Ambrosio's work [D'Ambrosio,90b].

Another issue is to decide upon an appropriate admissible
heuristic for the best-first search. The work of Henrion [Henrion,90],
[Henrion,91] is relevant to this issue.

Unlike intelligent backtracking schemes for Prolog, the
architecture presented here generates general, order-independent
labels for both datums and nogoods. This results in more efficient
search space pruning, and in increased datum reuse. However, these
benefits come at the expense of additional reasoning steps during
problem solving. Additional research is needed to examine the
nature of this tradeoff. Under what circumstances does this represent
a net benefit?

/

One research direction is to extend Bayesian programs to include
constraint processing as briefly described earlier. Hamscher
[Hamscher,91] incorporates ATMS extensions to improve efficiency
for ATMS-based constraint propagation.

De Kleer's SHERLOCK [de Kleer,89a] supports a myopic decision
theory policy, qased on an entropy calculation, for deciding which
measurement to recommend taking next. Similar support could be
built into the design presented here, resulting in a Prolog-like system
with built in decision support. The basic architectural capabilities are
in place, namely, the ability to maintain multiple solutions, each with
an assigned probability. The programmer could reference the distinct
solutions through the use of conventional second order predicates for
Prolog-like bag-of, and set-of.

Conclusion 1 4 6

It should also be possible to offer generalized bag-of, set-of

predicates which enable the programmer to specify probabilistic
search cutoff criteria. In this way the programmer can exercise
control over how many solutions are computed during problem
solving.

The architecture presented here resembles a Blackboard
architecture [Nii,89]. The ATMS is the blackboard, the consumers are
the knowledge sources, and the controller is the monitor. This is not
surprising as both blackboard systems and the design presented here
are based on adaptive, opportunistic problem solving. Recent
research in cooperative distributed problem solving (CDPS)
[Durfee,89] makes substantial use of blackboard architectures. These
systems are comprised of agents, each with their own blackboard,
exchanging generalized problem solving results. Each agent
independently decides what aspect of his part of the problem to
focus on next. Much of CDPS research has to do with local decision
making algorithms governing which partial results to transmit to a
neighbor, and which local problem to focus on next. The intent is that
locak, distributed decision making should eventually lead to a single
consistent global solution.

The local nature of message-based belief propagation algorithms
[Pear1,88] for Bayesian networks, together with the blackboard-like
nature of the architecture presented here suggests the possibility of
a CDPS approach to abductive problem solving. Under this approach,
a Bayesian program is partitioned among several problem-solving
agents, each h i t h its own consumer architecture for . computing
answers to Bayesian queries. The agents exchange belief messages
summarizing the belief status of shared variables. Incoming
messages trigger an agent's inferencing. Each agent takes into
account the beliefs of its neighbors in forming a local Bayesian goal
whose answer is most likely needed as part of an overall
explanation. Once formed, this goal serves as a focus for local
problem solving. Local inferencing results in updated belief status

Conclusion 1 4 7

messages to neighboring agents. The belief propagation protocol
ensures convergence to a global solution.

Recent work [Bridgeland,90], [Mason,89] in distributed RMS
systems is relevant to this approach.

Finally, additional research, in the form of real world applications,
is required in order to explore the representational adequacy of
Bayesian programs.

References

Bacchus,F., Lp, a logic for representing and reasoning
with statistical knowledge. Computational Intelligence,
Vol. 6, Number 4, November 1990, pp. 209-231.

Bridgeland,D.M. and Huhns,M.N., Distributed Truth
Maintenance,in Proc. 8th National Conference on
Artificial Intelligence, Vol. 1,1990, pp. 72-77.

Bruynooghe, M. and Pereira, L.M., Deduction Revision
by Intelligent Backtracking. In Implementations of
Prolog, pp. 194-2 15, Ellis Horwood Limited, 1984.

Buchanan, Shortliffe (eds), Rule-Based Expert Systems :
The MYCIN Experiments of The Stanford Heuristics
Programming Project, Addison-Wesley, 84.

Charniak,E. and McDermott, D., Introduction to
Artificial Intelligence, Addison-Wesley Publishing
Company, 1987.

Charniak,E. and Shimony, S.E., Probabilistic semantics
for cost-based abduction. Technical Report Cs-90-02,
Computer Science Department, Brown University,
Febrauary 1990.

Cheeseman,P. , An inqui ry in to computer
understanding. Computational Intelligence, 4(1): 58-66,
1988.

Colmerauer, A., An Introduction to Prolog 111,
Communications of the ACM 33 (7), pp. 69-90.

Cox,P.T., Finding backtrack points for intelligent
backtracking. In Implementations of Prolog, pp.216-233,
Ellis Horwood Limited, 1984.
7

D'Ambrosio, B., Truth Maintenance with Numeric
Certainty Estimates. In Proceedings Third Conference on
A1 Applications, pp. 244-249, Kissimmee, Florida,
Computer Society of the IEEE, February, 1987.

[D1Ambrosio,90a] DtAmbrosio,B., Process, Structure, and Modularity in
Reasoning with Uncertainty, Uncertainty in Artificial
Intelligence 4, 1990, pp. 15-25.

1 4 8

[D'Ambrosio,9Ob] DIAmbrosio,B., Incremental Construction and
Evaluation of Defeasible Probabilistic Models.
International Journal of Approximate Reasoning, vol. 4,
no. 4, p. 233-60, July, 1990.

[D1Ambrosio,90c] Shachter, R.D., DIAmbrosio,B. and DelFavero,B., . .
Symbolic probabilistic inference in belief networks. In
Proceedings 8th National Conference on AI, pages 126-
131. AAAI, August, 1990.

[Dechter,9U

-

[de Kleer,86a]

[de Kleer,86b]

[de Kleer,86c]

[de Kleer,86d]

[de Kleer,86e]

[de Kleer,87]

DIAmbrosio,B. and Edwards,J., A Partitioned ATMS,
Proceedings, Seventh IEEE Conference on Artificial
Intelligence Applications, p. 330-6, Feb., 1991.

Davis, R., Diagnostic Reasoning Based on Structure and
Behaviour, Artificial Intelligence 24 (1984) 347-410.

Davis, R., and Hamscher, W., Model-based Reasoning:
Troubleshooting, in Exploring Artificial Intelligence,
edited by H.E. Shrobe and the American Association for
Artificial Intelligence, (Morgan Kaufman, 1988), 297-346.

Dechter, R. and Pearl, J., Directed Constraint Networks:
A Relational Framework for Causal Modeling, proc
AAAI Spring Symposium on Constraint Reasoning,
Stanford, Ca, pp 110-127, March,l991.

de Kleer, J., An Assumption-Based Truth Maintenance
System, Artificial Intelligence 28 (1986), 127-162.

de Kleer, J., Extending the ATMS, Artificial Intelligence
28 (1986), 163-196.

de Kleer, J., Problem Solving with the ATMS, Artificial
Intelligence 28 (1986), 197-223.

de Kleer, J., and Williams, B.C., Back to Backtracking:
Controlling the ATMS. In Proc. 5th National Conf. on

tificial Intelligence, pages 910-917, Philadelphia, "n P ,August 1986.
de Kleer, J. and Brown, J.S., Theories of Causal
Ordering, Artificial Intelligence 29, 1986, pp. 33-61.

de Kleer, J. and Williams, B.C, Diagnosing Multiple
Faults, Artificial Intelligence 32(1) (1987), 97-130.

[de Kleer,88] de Kleer, J., A General Labeling Algorithm for
Assumption-Based Truth Maintenance. In Proc. 7th

[de Kleer,89a]

[de Kleer,89b]

[de Kleer,9Oal

[de Kleer,90b]

National Conference on Artificial Intelligence, pages 188-
192, St. Paul, Minnesota, August 1988.

de Kleer, J. and Williams, B.C, Diagnosis with
Behavioral Modes, in: Proceedings IJCAI-89, Detroit, MI
(1989), 1324-1330.

de Kleer, J., A Comparison of ATMS and CSP
Techniques, Proceedings IJCAI-89, Detroit, MI (1989),
290-296.

de Kleer, J., A.K. Mackworth, R. Reiter, Characterizing
Diagnoses, In Proceedings of AAAI-90, 1990, p. 324-330.

de Kleer, J., Using Crude Probability Estimates to Guide
Diagnosis, Research Note, Artificial Intelligence, 45(3),
1990.

Doyle, J., A Truth Maintenance System, Artificial
Intelligence 12 (1979), 231-272.

Drakos, N., Reason Maintenance in Horn Clause Logic
Programs, in Smith & Kelleher (eds.) Reason
Maintenance Systems and their Applications, John Wiley
and Sons, Toronto.

Durfee,E.H.,Lesser,V.R. and Corkill,D.D., Cooperative
Distributed Problem Solving, in Barr,A.,Cohen,P.R. and
Feigenbaum,E.A. (eds.),The Handbook of Artificial
intelligence, Vol IV,Addison-Wesley Publishing
Company,l989, pp. 85-147.

Forbus, K.D., and de Kleer, J., Focusing the ATMS. In
Proc. 7th National Conf. on Artificial Intelligence, pages
192-198, Minneapolis, MN, 1988.

Forbus, K.D., Qualitative Physics: Past, Present, and
Future, in Exploring Artificial Intelligence, edited by
H.E. Shrobe and the American Association for Artificial
Intelligence, (Morgan Kaufman, 1988), 239-296.

Genesereth, M.R., The Use of Design Descriptions in
Automated Diagnosis, Artificial Intelligence 24 (1984),
411-436.

Goebel, R., A quick review of hypothetical reasoning
based on abduction, Proc. of the AAAI Spring

Symposium on Automated Abduction, Stanford U.,
March 27-29,1990, pp. 145-149.

[Hamscher,9Oa] Hamscher, W., XDE: Diagnosing Devices with
Hierarchic Structure and Known Component Failure
Modes. IEEE Conference on A1 Applications, 1990.

[Hamscher,9Obl Hamscher, W., Modelling Digital Circuits for
Troubleshooting: An Overview, IEEE Conference on A1
Application, March 90

[Hamscher,911 Hamscher, W., Reason Maintenance and Inference
Control for Const Propagation over Intervals. In Proc
AAAI Spring Symposium on Constraint Reasoning,
Stanford, Ca, pp 93-97, March,l991.

[Havens ,901 Havens, W.S., S. Sidebottom, G. Sidebottom, J. Jones, M.
Cuperman, R. Davison, Echidna Constraint Reasoning
System: Next Generation Expert System Technology,
Simon Fraser University Technical Report, CSS-IS TR 90-

- 09.

[Havens,91] Havens, W.S., Dataflow Dependency Backtracking in a
new CLP Language, proc AAAI Spring Symposium on
Constraint Reasoning, Stanford, Ca, pp 110-127,
March, 1991.

[Henrion,88] Henrion, M., Propagation of uncertainty by probabilistic
logic sampling in Bayes' networks. In Uncertainty in
Artificial Intelligence, Vol. 2, J. Lemmer & L.N. Kana1
(Eds.),1988, North-Holland, amsterdam, pp149-164.

[Henrion,90] Henrion, M., Towards efficient probabilistic diagnosis in
multiply connected belief networks. In Influence
Diagrams, Belief Nets, and Decision Analysis, R.M.
Oliver & J.Q. Smith (eds.),1990, Wiley, London.

7
[Henrion,9 11 Henrion, M., Search-based Methods to Bound Diagnostic

Probabilities in Very Large Belief Nets. In Proc. of the
Seventh Conference on Uncertainty in Artificial
Intelligence, UCLA, July, 1991, pp142-150.

[Iwasaki,86a] Iwasaki,Y. and Simon,H., Causality in Device
Behaviour, Artificial Intelligence 29, 1986, pp. 3-32.

[Iwasaki,86b] Iwasaki,Y. and Simon,H., Theories of Causal Ordering:
Reply to de Kleer and Brown, Artificial Intelligence 29,
1986, pp. 63-72.

Ja f fa r , J. and J .L. Lassez, Constra int Logic
Programming, In Proc. Fourteenth ACM POPL Conf.,
Munich, 1987.

Jaffar , J. and S. Michaylov, Methodology and
Implementation of a CLP System, In Proc. Fourth
International Conference i n Logic Programming,
Melbourne, 1987.

Jensen,F.V.,Olesen,K.G. and Andersen,S.K., An
Algebra of Bayesian Belief Universes for Knowledge-
Based Systems, Networks, Vol. 20 (1990) pp. 637-659.

Jensen,F.V.,Lauritzen,S.L. and Olesen,K.G. Bayesian
Updating i n Recursive Graphical Models by Local
Computations, Technical Report R-89-15. ,Institute of
Electronic Systems, Aalborg University, Aalborg,
Denmark, June 1989.

Lloyd, J. W., Foundations of logic Programming. Spinger
Verlag, New York. 1984.

Mackworth, A.K., Consistency in Network Relations,
Artificial Intelligence, 8, pp. 99-1 18, 1977.

Mackworth, A.K., E.C. Freuder, The Complexity of Some
Polynomial Network Consistency Algorithm for
Constraint Satisfaction Problems, Artificial Intelligence,
25, pp.65-74,1985.

Mason, C.L. and Johnson,R.R., Datms: A framework for
Distributed Assumption Based Reasoning. In Les Gasser
and Michael N. Huhns, editors, Distributed Artificial
Intelligence, Vol. 11, pages 293-317. Pitman Publishing,
London, 1989.

McCarthy,J., Circumscription - a form of non-monotonic
rea&oning. Artificial Intelligence, 13: 27-39, 1980.

McDermott,D. and Doyle,J., Non-monotonic logic I,
Artificial Intelligence, 25, pp.41-72, 1980.

McDermott,D., A critique of pure reason. Computational
Intelligence, 3: 151-160, 1987.

Mohq R. and Henderson, T.C., Arc and P a t h
Consistency Revisited, Reseach Note, Artificial
Intelligence, 28, pp 225-233, 1986.

Nii,H.P., Blackboard Systems, in Barr,A. ,Cohen,P.R.
and Feigenbaum,E.A. (eds.),The Handbook of Artificial
intelligence, Vol IV,Addison-Wesley Publishing
Company,l989, pp. 3-82.

Papoulis,A., Probability, Random Variables, and
Stochastic Processes, McGraw-Hill,Inc., 1965.

Pearl, J., Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible inference, Morgan Kaufmann
Publishers, Inc. San Mateo, California, 1988.

Poole, D.L., Goebel,R.G., and Aleliunas,R., Theorist: A
logical reasoning system for defaults and diagnosis, in:
N. Cercone and G. McCalla (Eds.), The Knowledge
Frontier: Essays in the Representation of Knowledge
(Springer, New York, 1987) pp. 331-352.

Poole, D., A Logical Framework for Default Reasoning,
Artificial Intelligence, 36 (1988), pp. 27-47.

Poole, D., Representing Bayesian Networks within
Probabilistic Horn Abduction. In Proc. of the Seventh
Conference on Uncertainty in Artificial Intelligence,
UCLA, July, 1991, pp271-278.

Reiter, R., A Logic for Default Reasoning,Artificial,
Intelligence 13 (1980), 81-132.

Reiter, R., A Theory of diagnosis from the first
principles, Artificial Intelligence 32 (1987), 57-95.

Reiter, R., and de Kleer, J., Foundations of Assumption-
Based Truth Maintenance Systems: Preliminary Report,
Proceedings of the National Conference on Artificial
Intelligence, Seattle, WA (july, 1987), 183-188.

 elka an,^. and Levesque,H.J., Abductive and Default
Reasoning: A Computational Core. In Proc. of the 8th
National Conference on Artificial Intelligence, Vol. 1,
1990, pp. 343-348.

Shach te r , R.D.,Evaluating influence diagrams,
Operations Research Vol. 34, No. 6, November-December
1986, pp 871-882.

Shachter, R.D.,Probabilistic Inference and Influence
Diagrams, Operations Research Vol. 36, No. 4, July-
August, 1988, pp 589-604.

Shimony,S.E. and Charniak,E., A new algorithm for
finding MAP assignments to belief networks. In Proc. of
Sixth Conference on Uncertainty in AI, Cambridge,
Ma.,1990, pp 98-103.

Sidebottom, G., W.S. Havens, Hierarchical Arc
Consistency Applied to Numeric Constraints Processing
in Logic Programming, Simon Fraser University
Technical Report, in preparation.

Struss, P. and Dressler, O . , "Physical negationu-
Integrating Fault Fodels into the General Diagnosis
Engine, in: Proceedings IJCAI-89, Detroit, MI (1989),
1318-1323.

Wan Hentenryck,89] Van Hentenryck, P., Constraint Satisfaction in
Logic Programming, MIT Press, Cambridge, Mass. 1989.

[Warren,77] Warren, D.H.D., Implementing Prolog: Compiling
Predicate Logic Programs, D.A.I. Research Report nos.

- 39 & 40, Univ. of Edinburgh, Scotland. 1977.

[Watanabe,87] Watanabe,S.,Inductive ambiguity and the limits of
artificial intelligence. Computational Intelligence, 3: 304-
309,1987.

[Y O U , ~ ~] You, J.H. and Wong, B., Intelligent Backtracking in
Prolog Made Practical, tech. rep. TR89-4, Dept. of Comp.
Science, U. of Alberta, Edmonton, Alberta, Canada,
January 1989.

