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Abstract 

Diagnosis involves finding explanations for the observed behavior 
of an often complex physical system. Historically, approaches to 
diagnosis have differed, depending upon the existence, or not, of a 
theoretical model of system behavior. Problems in medical diagnosis 
are characterized by a highly incomplete knowledge of how the 
human body operates. In contrast, the behavior of engineered 
systems is typically described by a sophisticated theory based on 
established scientific principles. 

Early expert systems developed for medical diagnosis model the 
reasoning strategies of human experts, rather than human 
physiology. These systems feature ad-hoc uncertainty calculi, and 
shallow, heuristic domain knowledge. Alternatively, recent medical 
diagnosis systems utilize Bayesian Belief Networks to represent 
statistical, causal models of the human body and disease. 

Model-based diagnosis systems address engineering domains and 
incorporate engineering models of system behavior. The lack of a 
generalized uncertainty calculus results in difficulties in ranking 
diagnoses, and in diagnosing faults which are not covered by the 
theoretical model. 

We propose a generalized model-based approach to diagnosis 
which reconciles statistical and deterministic modeling. We argue 
that even with an engineered system, particularly one which is 
faulty, there are aspects of system behavior which are incompletely 
understood. We require a representation which is equally good at 
representing both well-understood and partially-understood aspects 
of system behavior. 

We present a way of representing Bayesian Belief networks as 
logic programs with extra-logic probability annotations. In doing so 
we extend the dual procedural and declarative semantics of the 
annotated logic programs. We also present an architecture for 
diagnostic inferencing. The proposed architecture features a 



combination of best-first search and intelligent backtracking and 
generates diagnoses in order of decreasing likelihood. The 
architecture explicitly supports the comparison of multiple diagnoses 
with incremental observations, a process typical of diagnostic 
problem solving. 
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Chapter 1 
Introduction 

Humans are often called upon to diagnose a complex physical 
system exhibiting abnormal behavior. Such problems are inherently 
difficult. Complex systems fail in many different ways, not all of 
which are well understood. There may be several possible 
explanations for an observed set of symptoms, with some 
explanations being much more likely than others, In spite of these 
difficulties, human experts such as physicians and mechanics are 
remarkably adept at diagnosing problems in diverse application 
domains. 

In recent years diagnosis has been studied as a problem in 
Artificial Intelligence. Diagnostic Expert Systems have been 
developed which model the knowledge intensive reasoning of human 
experts in solving diagnosis problems. MYCIN [Buchanan,84] is an 
early example of an Expert System for medical diagnosis. While 
relatively successful, the limitations of these early systems are 
readily apparent. MYCIN models knowledge as if-then rules of the 
form i f  symptom then disease. The uncertain nature of diagnostic 
reasoning is modeled by associating ad-hoc certainty factors with 
these rules which are combined according to the way in which the 
rules are combined in a line of reasoning. The ad-hoe, procedural 
nature of MYCIN certainty factors can lead to incorrect, non-intuitive 
results as well as problem solving inflexibilities [Pear1,88]. For 
example, MYCINts certainty factors do not combine properly for 
correlated sources of evidence. Also, MYCIN only supports diagnostic 
queries. It can reason from symptom to disease but not vice-versa. 

The i f  symptom then disease form of MYCINts rules leads to a 
s ha 1 low knowledge base. Rather than reflecting an in-depth domain 
understanding, these rules model how experts solve diagnosis 
problems in a particular application domain. This perspective results 
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in shallow, surface knowledge which is immodular, and difficult to 
extend. Domain knowledge which, in principle, can be applied to 
many different domain problems, is instead tied to a particular 
usage. 

In recent years Bayesian Belief Networks [Pear1,88] have been 
applied to medical diagnosis. Bayesian Belief Networks remedy many 
of the problems associated with MYCIN. Bayesian Belief Networks 
model causal (cause + symptom) relationships between diseases 

and their symptoms in a modular and intuitively appealing way. 
Moreover, this is accomplished without sacrificing the formal 
semantics of Bayesian probabilities. However, Bayesian Belief 
Networks are essentially propositional representations. This 
represents a modeling limitation, particularly in Engineering 
domains, where we often have generative theories capable of 
deriving complex system behaviors. Bayesian Belief Networks are 
well suited to medical diagnosis where we do not have a well 
understood theory of the human body and disease. 

Recent research in Model Based Diagnosis has focused on domains 
where the physical system is an engineered artifact such as a circuit, 
or a mechanical system. Model Based Diagnosis incorporates an 
elaborate model of how the physical system ought to work. A 
complex system is represented as many interconnected components 
with localized, well understood modes of operation. Each component 
includes a model of its normal healthy behavior, as well as one or 
more faulty behavioral states. The global behavior of the system can 
be derived from the net effect of local behavioral interactions 
between connected compoqents. The problem of enumerating global 
disease/symptom pairs has been replaced with the problem of 
modeling the localized behavior of components, and their 
inter-connection. 

Formalizations of model based diagnosis [Reiter,87a], 
[de Kleer,90a], [Selman,90] are based on predicate calculus and are 
closely related to formalizations of default logic. Like Bayesian Belief 
Network applications, the model based approach is based on causal, 
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modular, and intuitively appealing representations. However, unlike 
Bayesian Belief Networks they do not incorporate a generalized 
uncertainty calculus. As a result, model based diagnosis systems 
often resort to implicit and explicit assumptions in order to 
distinguish between likely and unlikely diagnoses. Often, for 
example, it is assumed that single component failures are more likely 
than multiple component failures. De Kleer's SHERLOCK system 
[de Kleer,89a] assumes that components fail independently. Perhaps 
more seriously, model based systems implicitly assume that the 
inter-connectivity of components is as given by the model. This rules 
out the possibility of shorted circuits in a circuit diagnosis 
application. As a result of such assumptions, model based diagnosis 
systems loose modelling completeness. There are some states of the 
actual physical system which are not represented. 

In this thesis we posit that the partitioning of diagnosis problems 
according to whether the application domain is well understood or 
not is superficial. Diagnosis domains do not either have a well 
developed theory or none at all. Rather most applications contain 
aspects of both. An Engineering system may have a well understood 
theory provided that certain conditions hold. If these conditions are 
not met, then the system may exhibit behavior which can only be 
modeled statistically. 

We propose a way of representing Bayesian Belief Networks as 
Horn clause logic programs which are annotated with extra-logic 
probabilities. We refer to such programs as Bayesian programs. This 
integrated representation offers both the benefits of Bayesian Belief 
Networks and predicate-calculus-based formulations of model based 
diagnosis. It offers generalized probabilistic ranking of diagnoses, 
together with the expressivity of predicate calculus for those parts of 
the model which have a well founded theory. 

We also propose an architecture for problem solving with 
Bayesian programs. At first glance Bayesian programs look very 
much like Prolog programs. However, we argue that the 
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requirements of diagnostic problem solving make for very different 
architectural tradeoffs. 

The adoption of causal rules strengthens the importance of search. 
Whereas MYCIN reasons directly from symptoms to disease, we 
search among a space of possible causes to find those that generate 
the observed symptoms. In complex systems containing many 
components, the search space becomes very large. It is essential that 
we adopt a strategy for moving through this search space efficiently. 

Recent intelligent backtracking implementations for Prolog 
[Bruynooghe,84], [Cox,84], [Drakos,88], [Havens,9 11, [You,89] use 
Reason Maintenance System (RMS) techniques to improve the 
efficiency of search. These techniques are based on the early 
identification of search space branches which cannot possibly lead to 
a solution. In the case of diagnosis problems, it is not sufficient to 
find any diagnosis. Rather, it is important that we find the most 
likely diagnosis first. We therefore propose an integration of 
best-first probabilistic search with intelligent backtracking. 

Another characteristic of diagnostic problem solving is that 
typically, diagnosis systems are called upon to recommend a course 
of action based on a set of highly likely diagnoses. A diagnosis 
system may recommend that a particular measurement be taken in 
order to discriminate between several highly likely diagnostic 
candidates. Typically, depending upon the result of this 
measurement, several candidates are eliminated from further 
consideration. Here we see the need to maintain multiple solutions to 
a diagnostic query, and to support incremental, interactive 
comparisons involving these solutions. These capabilities are in 
marked contrast to most Prolog-like systems which generate the next 
solution by destroying the first. 

This thesis is organized as follows. Chapter 2 discusses diagnosis 
as an example of the more general form of reasoning known as 
abduction. We present a survey of recent research related to the 
above objectives. Chapter 3 describes a new knowledge 
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representation for abductive problem solving. The declarative and 
procedural semantics of this representation are developed as an 
extension to conventional logic programs. In chapter 4 we discuss an 
inferencing architecture which addresses the special requirements of 
abductive problem solving. We finish with chapter 5 which draws 
conclusions. 



Chapter 2 
Recent Research 

In this chapter we view diagnosis as an example of the more 
general class of problems which are solved through abductive 
reasoning. We discuss what abduction is and survey related research. 

2.1. What is Abduction 

Abduction is the reasoning process by which one generates 
explanations for observations. In medical diagnosis we may observe 
that John has a sore throat. Abductive reasoning enables one to 
propose the hypothetical explanation that John has a cold which is 
causing his sore throat. We can think of abduction as an unsound rule 
of inference which resembles a sort of inverse deduction. 

Whereas deduction leads to unequivocal assertions, abduction 
leads to equivocal assertions. That John has a cold is essentially a 
guess. It is a hypothesis which, if it were  unequivocally true, would 
deductively lead to the observed sore throat. Here we see that 
abductive and deductive reasoning often work together with 
deduction acting as a partial justification for abductive guesses. 

Of course there are many other possible reasons for John's sore 
throat, some of which are more likely than others. Typically, in 
proposing that John has a cold, we have implicitly selected this 
explanation on the basis that it is more likely than other equally 
possible explanations. The ranking and comparison of multiple 
possible explanations is a common feature of problems which require 
abduction. 
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The equivocal nature of assertions reached through abduction 
leads to an inherent non-monotonicity that does not occur in 
deductive problem solving. We may have to retract previous 
assertions in the light of new evidence. If we were to discover that 
John has just undergone an operation to remove his tonsils, we would 
typically retract the previous explanation in favour of a now much 
more likely explanation, namely, that John's sore throat was caused 
by the operation which lead to swelling and damaged tissue. 

Charniak and McDermott point out that abduction is properly 
related to causation [Charniak,87]. They cite the example: 

patient in ward 5 + patient has cancer 

patient has cancer 
patient in ward 5 

If abduction generates explanations which explain observations 
then our unsound rule of inference falls short as a definition of 
abduction. The fact that a patient is in ward 5, does not explain why 
he or she has cancer. Charniak and McDermott offer an alternative 
rule of inference - one which is based on causality rather than logical 
implication. 

a causes b 

b 
a 

The difficulty with this definition is  that whereas logical 
implication is well understood, the human notion of causality has 
proven difficult to define precisely, in spite of its intuitive appeal. 
Model based reasoning adopts causality as a primitive notion and 
incorporates it  into the way in which knowledge is modeled. Model 
based systems use rules of the form cause  + ef fec t .  which makes 

the two rules of inference proposed above, equivalent. 
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2.2. Approaches to Abduction 

A1 researchers have developed different approaches to the 
problem of abductive reasoning. Several researchers have proposed 
nonmonotonic extensions to classical logic. These logics are referred 
to as nonmonotonic logics. Reiter's Default Logic [Reiter,80], 
McDermott and Doyle's nonmonotonic logic [McDermott,80], and 
Poole's framework for default reasoning [Poole,88] are based on the 
notion of logical consistency. The essential idea is to interpret the 
pattern "in the absence of information to the contrary, assume A", as 
"if A can be consistently assumed, then do so". Recent work in model 
based diagnosis exploits this idea. Components are assumed to 
operate normally unless this leads to predictions which conflict with 
observations. If necessary, assumptions are retracted until 
inconsistencies between observed and predicted behavior is 
removed. This forms the basis for several recent model based 
diagnosis systems [de Kleer,87], [Genesereth,84], [Reiter,87a], 
[Poole,87], [Davis,84], [de Kleer, 89al. 

McCarthy's circumscription [McCarthy,80] is a form of non- 
monotonic reasoning based on the notion of selecting interpretations 
which minimize the number of accepted abnormalities or exceptions. 

There are computational difficulties associated with both 
circumscription and default logics. However, for our purposes, a more 
important deficiency is the lack of any ranking criteria. While default 
logics enumerate a space of possible abductive explanations, the 
logics are not able to rank which explanations are better than others. 
This is critical as some abductive explanations are intuitively far 
superior to others which are equally well supported by the 
nonmonotonic logic. Diagnostic systems deal with this requirement in 
different ways. Reiter [Reiter,87a] generates diagnoses in order of the 
increasing cardinality of the set of faulty components. This is a 
generalization of the single-fault assumption often used in 
conventional MYCIN-like diagnosis systems [Charniak,87]. De Kleer 
[de Kleer,87], [de Kleer, 89a], [de Kleer,90b] uses Bayesian analysis 
together with simplifying independence assumptions. This leads to 
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the more general question as to whether we are looking in the wrong 
place in our quest for an abductive reasoning formalism. Perhaps 
probabilistic reasoning should be given explicit consideration, rather 
than treated as an afterthought. 

Bayesian probability theory enables us to reason with uncertainty 
in a very general and consistent way. Consider the joint probability 
distribution, P(D1 ,D2,S 1 ,S2). From a knowledge representation point 
of view, it has a well defined denotational semantics. The frequency 
with which D l = d l  ,D2=d2,S 1=sl  ,S2=s2 occurs is P(d1 ,d2,sl ,s2). 
Another property of joint probability distributions is  global 
coherence. Global coherence refers to the property that individual 
pieces of knowledge making up a knowledge base sum to a complete 
understanding of a whole system. In this case our pieces of 
knowledge are probability values. The complete set of these pieces of 
knowledge supports generalized global queries. If we consider Dl,D2 
to represent diseases, and Sl ,S2 symptoms, then we can perform 
abductive calculations such as: 

We are equally able to calculate deductive conditional 
probabilities such as P(S 1 =s 1 ID 1 =yes). 

Unfortunately, the joint probability distribution representation is 
extremely immodular. Each piece of knowledge is a statement about 
the entire system. We essentially have a single system with a very 
large set of attributes. If we change any probability value, we must 
reexamine the entire system in order to ensure that the distribution 
remains normalized. As a knowledge representation, this deficiency 
is fatal. Such a representation is extremely difficult to build and to 
maintain. 
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In the 70's and early 80's researchers developed Expert Systems 
for medical diagnosis of which the much written about MYCIN is a 
notable example [Buchanan,84], [Charniak,87]. These systems 
incorporate ad-hoc uncertainty calculi so as to avoid the modularity 
difficulties associated with probability representations. The basic 
strategy is to exploit the syntactic modularity of rule based 
representations, namely, the property whereby rules can be invoked 
incrementally without regard for each other. Unfortunately, in doing 
so, desirable properties of Bayesian probabilities, such as global 
coherence, and denotational semantics are sacrificed. 

In [Pear1,88], Pearl refers to systems which use MYCIN-like 
uncertainty calculi as e x t  e n s i o n  a 1 systems. He contrasts the 
procedural semantics of extensional systems with the denotational 
semantics of intensional systems such as Bayesian probability theory. 
In his words, the propositional rule A + B, with associated certainty 

factor m means: "If you see the certainty of A undergoing a change 
DA, then regardless of what other things the knowledge base 
contains and regardless of how DA was triggered, you are given an 
unqualified license to modify the current certainty of B by some 
amount DB, which may depend on m, on DA, and on the current 
certainty of B". In contrast, in the Bayesian formalism the rule can be 

1 

associated with the conditional probability P(BIA) = m which states 
that of all world's for which A is true, those for which B is also true 
constitute an m percent majority. Extensional systems mean what 
they allow one to do. Intensional systems make statements about a 
domain. 

While extensional semantics results in localized, syntactic 
manipulations, it creates other difficulties. Consider the rules S1 + D 
with associated certainty factor m l ,  and S2 + D with associated 

. certainty factor m2. In MYCIN certainty factors are real numbers 
between -1 and 1. A certainty factor of -1 indicates a complete lack 
of believe; a value of 1 represents complete certainty. If both m l  and 
m2 are positive, and both rules are executed, MYCIN calculates the 
certainty factor for D as CF(D) = m l  + m2(1-ml). The effect of the 
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Figure 2.1. P(DISl,S2) is not constrained by P(DIS1) and P(DIS2) 

second rule invocation is always to increase the certainty of D 
resulting from the first rule invocation. 

Under a Bayesian formalism the assertions P(DISl)=ml and 
P(DIS2)=m2 do not constitute sufficient information to determine 
P(DISl,S2). This can be seen in the Venn diagram representations of 
figure 2.1. In both Venn diagrams P(DDS1) and P(DIS2) are close to 
one, yet in the first case P(DISl,S2) = 1, and in the second case 
P(DISl,S2) = 0. The value of P(DISl,S2) is not constrained in any way 
by a knowledge of P(DIS1) and P(DIS2). Knowledge about the 
relationship between sets S1 and D, and between S2 and D, is 
inadequate when it  comes to making further statements about the 
nature of S l n S 2  and its relationship with D. 

Extensional semantics provides a certainty factor calculation 
mechanism which parallels the conventional, highly localized rule 
execution mechanism. Unfortunately, certainty factors do not 
combine in such a way as to reflect global interrelationships in our 
models. Global coherence has been sacrificed for syntactic 
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modularity. Improper treatment of correlated sources of evidence 
[Pear1,88] and other difficulties can be attributed to this sacrifice. 

The earlier definition of extensional rule semantics is explicitly 
tied to the direction of reasoning. Extensional semantics propagates 
certainty factors from rule antecedent to rule consequent. It does not 
provide a similar license to reason in reverse. As a result, MYCIN-like 
systems support only a single direction of reasoning. Since MYCIN 
reasons from symptoms to disease, i t  uses rules of the form 
e f f ec t  + c a u s e .  Moreover, in order to prevent certainty factor 

amplification cycles, i t  must not have a n y  rules of the form 
cause + effect.  This is at odds with our treatment of abduction as a 
rule of inference. As such, a single rule of the form cause + effect 

should support either forward reasoning (deduction) or backward 
reasoning (abduction). 

The procedural nature of MYCIN-like reasoning binds the form of 
its knowledge representation to the particular problem being solved. 
Extensional systems can compute a diagnosis, but cannot predict 
additional symptoms which might arise from that diagnosis. From a 
purely syntactic point of view, MYCIN appears to be doing deduction. 
From a semantic point of view it is clearly a form of abduction. It is 
probably best described as procedural abduction with no 
concomitant deduction at all. Apart from preventing the same 
knowledge base from being used for more than one purpose, the 
unidirectional limitation of extensional systems compromises 
diagnostic problem solving. In the case of a suspected disease, it is 
natural to predict additional symptoms likely to be present if that 
disease were in fact true. Whether or not these predicted symptoms 
are actually present can be used to corroborate or discredit the 
original explanation. 

We have seen the sacrifices that extensional systems make in 
order to achieve the syntactic modularity of rule based systems. 
However, modularity can also be looked from a semantic point of 
view. From this perspective we are concerned with examining 
whether rules tie together remotely related concepts and entities. In 
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this regard it is prehaps ironic to discover that while MYCIN-like 
expert systems provide syntactic modularity, they suffer from poor 
semantic level modularity. Figure 2.2 illustrates the problem. In the 
example, either rain or sprinkler-on can result in grass-wet .  In a 
causal representation where we represent rules in the form 
cause + ef fec t ,  this situation can be represented quite naturally as 
rain + grass-wet and sprinkler + grass-wet. In a MYCIN-like 

system we are required to choose a rule form which corresponds to 
the direction of our reasoning. In this case our reasoning is 
abductive, that is, from effect to cause. If we adopt a non-causal 
representation of the form effect + cause, then we must use rules 
such as g r a s s - w e t ,  s p r i n k l e r - o n  + rain and 
grass-w e t ,  rain + sprinkler-on, These rules resort to exceptions 

to tie together concepts like rain and sprinkler-on which are only 
remotely related to each other. 

A precise definition of causality has proven elusive [Iwasaki,86a], 
[Iwasaki,86b], [de Kleer,86e], [Forbus,88b]. Pearl [Pear1,88] speculates 
that prehaps the human notion of causality is tied to an unconscious 
selection of inherently parsimonious memory representations as a 
way of structuring and simplifying our understanding of the world 
within which we live. The unidirectional reasoning of MYCIN-like 
systems rules out causal knowledge representations, thereby 
eliminating from consideration, intuitively appealing and modular 
representations. 

Semantic level modularity is crucial to complex model building. 
From this perspective, non-causal representations represent a 
serious modeling handicap. Expert systems such as MYCIN are often 
referred to as having s h a  1 1  o w  knowledge bases. They reflect 
associative rather than causal relationships, are incomplete, and are 

. based on the heuristic experience of domain experts rather than on a 
problem independent understanding of the domain itself. The 
knowledge bases consist of highly inter-related problem dependent 
rules and are difficult to maintain and extend. 
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(a) Causal Form 

(b) Non-causal Form 

Figure 2.2. Causal representations link related concepts 
only 

In contrast, Model Based Diagnosis systems adopt the causal, 
object-based representations. These systems are referred to as 
having deep knowledge. The resulting modularity and parsimony 
enables relatively complex systems to be incrementally developed 
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and maintained. These systems allow for both diagnostic and 
predictive reasoning. 

In recent years Bayesian Belief Networks (from here on we refer 
to Bayesian Belief Networks simply as Bayesian Networks ) have 
been proposed [Pear1,88] as an alternate knowledge representation 
for uncertain reasoning. Bayesian Networks are intensional systems 
and are based on Bayesian probability theory. The motivation is for a 
representation which is modular, as well as having global coherence 
and denotational semantics. 

Consider the joint probability distribution P(A,B,C,D,E). We can use 
the chain rule of probability theory, and a total ordering of the 
variables, to express the joint probability distribution as a chain of 
multiplications. In this example the variables are ordered 
alphabetically: 

Expressing the joint probability distribution in this form enables 
one to exploit independence relationships in the semantic domain in 
simplifying this expression. For example, the fact that B does not 
depend on A is expressed as P(BIA) = P(B). Reducing the worlds 
under consideration to those for which A is true, does not change the 
percentage for which B is also true. Typically, there are many such 
independence relationships. For each conditional probability in the 
above expression, we determine the smallest set of conditioning 
variables which directly influences the conditioned variable. 
Continuing our example, we assume the following independence 
relationships: 

P(B IA) = P(B) 

P(D I A,B,C) = P(D I C) 

P(E I A,B,C,D) = P(E I A) 

This simplifies the expression for the joint probability 
distribution: 
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Figure 2.3. A Bayesian Network 

P(A,B,C,D,E) = P(A) P(B) P(C IA,B) P(D I C) P(E IA) 

A Bayesian Network represents expressions of this sort as a 
Directed Acyclic Graph (DAG). Figure 2.3 shows a Bayesian Network 
representation of the above expression. Each variable is represented 
as a node. Terms such as P(CIA,B) can be interpreted qualitatively as 
"C depends on A and B." We represent this as directed edges from A 
and B to C. There are directed edges from each conditioning variable 
to the conditioned variable for each conditional probability in the 
above expression. Bayesian Networks are given quantitative meaning 
through the association of a set of probabilities at each node. Each 
probability term in the original expression is associated with the 
variable node for its conditioned variable. For example, we associate 
P(CIA,B) with variable node C. If A,B,C have domains DA, DB, DC 

respectively, then node C stores IDA l x IDB l x IDC l conditional 

probabilities. Root nodes, for which there are no incoming edges, 
store unconditional probabilities. 
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The Bayesian Network DAG represents a partial ordering of the 
variables which is consistent with the original total ordering. After 
the Bayesian Network has been formed, the original total ordering 
can be disregarded. Any total ordering consistent with the final 
partial ordering would have lead to the same Bayesian Network 
[Pear1,88]. 

Although a Bayesian Network Representation can be formed 
regardless of which total variable ordering is initially adopted, the 
modularity of the final DAG is very different for different orderings. 
For example, figure 2.4 illustrates Bayesian Network representations 
for the earlier example of figure 2.2. The first case represents a 
causal ordering of the variables. The second case reverses the 
ordering used in the first case. As in our earlier discussion, the 
relatively better modularity of the second case suggests that we 
adopt causal Bayesian Network representations. This is reinforced by 
the intuitive nature of causal representations, and the availability of 
conditional probabilities. We are far more likely to have probabilities 
for the first case than for the second. In fact, although the preceding 
discussion has focused on decomposing an existing joint probability 
distribution into a Bayesian Network, in practise we are more likely 
to incrementally build Bayesian Networks from an understanding of 
causal dependencies among variables. The global distribution is 
synthesized from an understanding of local causation. 

Bayesian Networks achieve semantic level modularity by making 
explicit use of independence relationships in the underlying 
probability distribution. Unlike extensional systems, this is not 
achieved at the expense of denotational semantics and global 
cohesiveness. Bayesian Networks explicitly define the way in which 
each variable directly depends on other variables. The way in which 

. variables indirectly depend on each other under different evidential 
conditions, can be derived through graph traversal algorithms 
[Pear1,88]. Such procedures enables a Bayesian Network to act as a 
graph traversing Inference Engine capable of answering generalized 
queries, based on the underlying probability distribution. 
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Causal Form 

(b) Non-causal Form 

Figure 2.4. Causal Bayesian Networks are modular 

Pearl [Pear1,88] presents a distributed message-based approach to 
belief updating and revision. In doing so he achieves syntactic 
modularity not unlike that of rule based systems. Unfortunately, his 
approach is limited to singly connected networks. A singly connected 
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network is a network for which no more than one path exists 
between any two nodes. As we encountered earlier with extensional 
systems, local syntactic reasoning mechanisms limit our ability to 
maintain global correctness under all circumstances. In the case of 
Bayesian Networks, however, a well defined semantics provides a 
basis for which to develop more general meaning preserving 
algorithms. One approach results in approximate answers through 
the use of stochastic simulation techniques [Henrion,88]. Other 
approaches use search and graph traversal based reasoning steps to 
derive correct answers to Bayesian queries. Shachter [Shachter,86], 
[Shachter,88] describes an approach based on transforming Bayesian 
networks through a series of arc-reversal and node removal 
reductions. Jensen et. al. [Jensen,89a], [Jensen,89b] outline a scheme 
which makes use of a secondary structure known as a junction tree 
for propagating belief information in multiply connected networks. 
D'Ambrcsio et. al. [D'Ambrosio,90] describe a goal-driven approach 
which is incremental with respect to both queries and observations. 
Shimony and Charniak [Shimony,90] describe an algorithm for 
finding maximum a-posteriori (MAP) assignments of node values 
through the use of an intermediate boolean network and best-first 
search techniques. Henrion [Henrion,90], [Henrion,91] investigates the 
use of admissability heuristics for pruning best-first search trees. 

There are strong similarities between Model Based Diagnosis, and 
recent Bayesian Network based diagnosis which, out of convenience, 
we refer to as Network Based Diagnosis. Both approaches represent 
knowledge in the form cause + effect. Predicate calculus based 

formalizations of Model Based Diagnosis [Reiter,87a], [de Kleer,90a] 
provide well defined denotational semantics although this semantics 
does not extend to the ranking of diagnoses. Both Model Based 
Diagnosis and Network Based Diagnosis offer a well defined 
enumeration of possible system states. Under Model Based Diagnosis, 
global system behavior arises out of the way in which components 
encapsulating local behavior, are physically connected. Under 
Network Based Diagnosis, global assignments arise out of the way in 
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which nodes encapsulating local conditional probabilities, are 
connected. 

At first glance, the object ontology which underlies Model Based 
Diagnosis would seem to represent a fundamental difference. The 
Model Based world consists of objects or components which interact 
according to how they are physically connected. Whereas 
components encapsulate deterministic behavior, Bayesian Network 
nodes encapsulate statistical behavior. Whereas components are 
physically connected, Bayesian Network nodes are causally 
connected. However, recent research [Dechter,91] suggests that 
object abstractions arise naturally out of causal interpretations of the 
world, particularly in those cases where we have deterministic 
models of behavior. From this perspective, causal representations 
represent a generalization of object-based representations. The 
object ontology of Model Based Diagnosis simply reflects the 
relatively more complete theories associated with engineering 
domains as compared with medical diagnosis. 

The are however, important distinctions between the two 
approaches. As mentioned above Model Based Diagnosis formalisms 
do not include a general uncertainty calculus. As a result, diagnoses 
cannot be ranked except through the use of simplified probabilistic 
assumptions or heuristics. On the other hand, Model Based 
formalisms offer the expressivity of predicate calculus over the 
propositional nature of Bayesian Networks. 

We argue that the partitioning of diagnosis problems into 
different problem classes, according to whether the problem domain 
is well understood or not, is superficial. In the general case we can 
expect to encounter problem domains for which some aspects are 
well understood and other aspects are not well understood. In 
automobile diagnosis, while many properties can be derived from a 
well understood theory, there may be other symptoms such as 
"rough-idle" which can only be statistically modelled. This point is 
related to the issue of completeness in Model Based Diagnosis. Davis 
and Hamscher [Davis,88], [Hamscher,90b] point out that a purely 
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Model Based System cannot account for all possible failure modes of 
a device since it is based on the assumption that the model correctly 
reflects the physical structure of the artifact undergoing diagnosis. 
Indeed, there are implicit assumptions in any abstract model of 
reality that may or may not be met in the case of a particular 
artifact. Whereas predicate logic representations are good at 
representing theoretical component behavior given a particular 
framework of assumptions, probabilities are needed to summarize 
possibilities which lie outside the assumptions sanctioning the 
theory. 

Recent research interest focuses on the possibility of overcoming 
technical difficulties found in logic through the use of probabilities. 
McDermott [McDermott,87] and Watanabe [Watanabe,87] discuss the 
limitations of A1 systems based fundamentally on deductive logic, in 
a world where abduction and induction play dominant roles in 
commonsense and scientific reasoning. Cheeseman [Cheeseman,88] 
suggests that Bayesian inferencing can overcome many of logic's 
technical difficulties. Bacchus [Bacchus,90] argues that it is important 
to distinguish between statistical and subjective degree of belief 
interpretations for probability. His logic LP is an extension of 
first-order logic for reasoning with statistical knowledge. Statistical 
statements in LP specify probability distributions over a domain of 
discourse. LP includes random designators which are treated as 
random variables, rather than as conventional universally quantified 
variables. 

An alternative approach to integrating logic and probability is to 
extend the possible worlds semantics of first-order logic to a 
probability distribution over a set of possible worlds. Probabilities 
assigned to sentences are treated as part of each sentence's assertion, 

. and must hold for universally quantified variables of the sentence. 
There is recent research along these lines. Charniak and Shimony 
[Charniak,90] define a boolean belief network representation for a 
propositional rule system and assign probabilistic semantics to 
cost-based abduction. In [Poole,91] Poole proposes extensions to Horn 
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clause logic and represents Bayesian Networks as extended logic 
programs. In this thesis we propose a similar representational 
mechanism. The motivation is to combine the representational 
advantages of predicate logic with those of Bayesian Networks, 
thereby supporting a generalized approach to diagnostic problem 
solving. 

2.3. Architectures for Abduction 

In [Nii,89] Nii distinguishes between two problem solving 
paradigms, one based on search and the other on recognition. In the 
search-based paradigm a problem solver makes each problem 
solving choice in the context of a well enumerated set of possible 
choices. The search paradigm is referred to as a weak method since 
virtually all programs that employ search use weak knowledge to 
evaluate which of the available choices is best. In the recognition 
paradigm a problem solver matches the current problem state with a 
piece of knowledge that can be applied in this situation. As Nii puts 
it: 

"At any particular computational state, instead of generating and 
evaluating the possible next states, a recognition system simply 
knows what the next state should be." 

The recognition paradigm is referred to as knowledge rich. It 
relies heavily on task specific criteria to know what the next state 
should be. Most current expert systems are recognition systems. 

Whereas MYCIN is a recognition system, Model and Network 
systems are search-based. As a result we are interested in 
architectures which efficiently support search, particularly 

- abductive, or nonmonotonic search. This leads to an examination of 
Reason Maintenance Systems, and the architectures which use them. 

A Reason Maintenance System (RMS) and a Problem Solver are 
two components which together form an overall reasoning system. 
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The role of the RMS is to keep a record of propositional assertions 
arrived at by the Problem Solver during problem solving. These 
assertions are referred to as d a t u m s .  The RMS records both the 
datums themselves, and the way in which these datums are justified 
by other datums and/or assumptions. By recording datum 
dependencies the RMS supports the Problem Solver in its use of 
retractable assumptions. Should a line of reasoning lead to an 
inconsistency, the datum dependencies identify which set of 
assumptions lead to this inconsistency. Conjunctive sets of 
inconsistent assumptions are referred to as nogoods .  In order to 
proceed, at least one of a newly discovered nogood's assumptions 
must be retracted. As assumptions are retracted and/or asserted, 
datum dependencies propagate resulting changes in datum belief 
status. The complete set of nogoods encountered thus far serves to 
prune the assumption search space of other, as yet unvisited, points 
which subsume nogoods. Such search space points do not need to be 
investigated as they subsume a previously discovered inconsistency. 

It is the Problem Solver's responsibility to ensure the semantic 
correctness of information which it passes to the RMS. The RMS 
treats these expressions purely syntactically. This separates the 
design of non-monotonic belief revision mechanisms from issues 
concerning knowledge representation and inferencing, which differ 
from one reasoning system to the next. 

As well as supporting non-monotonic reasoning, and search space 
reduction, the RMS acts as a cache of inferencing results. Search 
space points typically share many common inferences. The RMS 
stores these results and makes them available to the Problem Solver, 
thereby eliminating the need for executing inferencing steps more 
than once. 

One of the early RMS systems was that of Doyle in the late 
seventies [Doyle,79]. Doyle's RMS (which he called a TMS) is often 
referred to as a justification based RMS, by way of distinguishing it 
from de Kleer's more recent [de Kleer,86a], [de Kleer,86b], 
[de Kleer,86c], [de Kleer,88] assumption-based RMS (which he refers 
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to as an ATMS). The distinguishing feature is the way in which the 
relationship between datums and their entailing assumptions are 
maintained. In Doyle's TMS this relationship is implicitly represented 
by datum justification dependencies. Whenever an inconsistency is 
identified, datum dependencies are followed in reverse, in order to 
explicitly retrieve the responsible assumptions. In de Kleer's ATMS, 
as well as recording justifications, assumptions responsible directly 
or indirectly for a datum are explicitly and incrementally maintained 
as information stored with each datum. He refers to these 
conjunctive assumption sets as environments. Since each datum can 
be inferred under more than one environment, each datum stores a 
label which is a disjunctive set of environments. As each new datum 
justification is added, its label environments are propagated forward 
through the new justification. 

By explicitly maintaining datum labels, the ATMS is able to 
efficiently respond to Problem Solver queries concerning more than 
one problem solving extension.1. Here we use extension to refer to 
the set of datums which follow from a maximal set of consistent 
assumptions referred to as an interpretation. All datums whose label 
contains an environment which is a subset of an interpretation, are 
held to be true in that extension. In contrast, Doyle's TMS supports 
queries regarding only one problem solving extension at a time. Each 
datum is labeled as being either in the current extension or out of 
the current extension. In principle, queries concerning other 
extensions can be derived from existing datum dependencies; to do 
so, however, is prohibitively computationally expensive. The ATMS 
maintains datum labels in anticipation of Problem Solver queries for 
more than just the current extension under active consideration. As a 
result, the Problem Solver can switch its attention between very 
different search space points at relatively little computational 
expense. This is particularly attractive in abductive problem solving, 

l ~ o r e  generally an ATMS supports multiple contexts. A context refers to the 
set of datums which follow from a characterizing set of consistent 
assumptions. An extension refers to the set of datums which follow from a 
characterizing maximal set of consistent assumptions. 
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as we are often lead to compare several equally possible, mutually 
inconsistent explanations. 

Historically, the control interface between the Problem Solver and 
its RMS has seen many variations. Doyle's TMS took responsibility for 
selecting which assumption to retract from a nogood set, and for 
selecting which alternative assumption to assert. In Doyle's 
dependency d i r ec t ed  backtracking these choices are made 
arbitrarily, thereby denying the Problem Solver a role in guiding the 
direction of problem solving. In [de Kleer,86c] de Kleer points out a 
Problem Solver-RMS synchronization difficulty which he refers to as 
the unouting problem. This problem concerns how a Problem Solver 
keeps track of inferences which it has left on its agenda. Some 
inferences are common to several contexts. When a Problem Solver 
switches to a new context, it cannot always tell whether a shared 
inference has previously been executed or not. Often, in order to be 
sure, inferences are reexecuted unnecessarily. 

De Kleer's Consumer Architecture [de Kleer,86c] presents a 
Problem Solver-ATMS interface which solves the unouting problem. 
In this architecture, the Problem Solver keeps track of its agenda 
items, called consumers,  by associating them with the RMS datums 
that must be true in order for the consumer to be executed. By 
attaching consumers to datums, they are assigned labels much like 

\ regular datums. These labels can be used to determine whether a 

consumer is executable in a particular interpretation. Consumers 
disappear from the agenda immediately after execution. In this way, 
only consumers which are executable in a selected interpretation, 
and which have never been executed before, are scheduled for 
execution. 

i 

Unfortunately, de Kleer's original Consumer Architecture, is based 
on a breadth-first search of a l l  possible interpretations. He argues 
that this approach is warranted for problems with many solutions all 
of which are required. In more recent work [de Kleer,86d], 
[Forbus,88a] de Kleer et. al. propose modifications to the original 
Consumer Architecture which place focusing control in the hands of 
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the Problem Solver, where it belongs. The Problem Solver defines a 
problem solving focus of attention by specifying one or more focus 
environments. As before, the Problem Solver associates consumers 
with RMS datums. In this case, however, only consumers which are 
executable in one of the focus environments are scheduled for 
execution. Consumer execution is interrupted whenever a focus 
environment becomes inconsistent. When this occurs the Problem 
Solver establishes an alternative set of focus environments. This 
focusing mechanism makes the architecture attractive for problems 
requiring a limited number of h igh ly  ranked solutions. 
Unfortunately, the view persists that the ATMS is specifically aimed 
at problems with many solutions, all of which are required. 

The Consumer Architecture can be viewed as a kind of Blackboard 
Architecture. Blackboard Architectures are based on a paradigm of 
multiple specialists working together to solve a common problem. At 
any time, the state of the problem solving is represented on a global 
blackboard accessible to each specialist. Specialists view the 
emerging state of the blackboard solution and indicate when they are 
able to make a problem solving contribution. When authorized by a 
controlling monitor, specialists make their contributions by updating 
the blackboard with newly inferred information. When viewed as a 
Blackboard Architecture, the consumers are specialists, the RMS 
database is a blackboard, and the Problem Solver is the monitor. 
There are numerous examples of Blackboard Architectures in the 
literature [Nii,89]. Many of these systems solve problems best 
viewed as abduction. Protean determines possible 3-D protein 
molecule structures from evidence such as nuclear magnetic 
resonance (NMR) data obtained from the protein in solution. Other 
systems involve applications such as signal interpretation, and 
speech recognition. 

Recent research has seen the incorporation of RMS techniques into 
Prolog implementations. Although resolution is based on deduction, 
its goal directed or backward chaining implementation in Prolog is 

, syntactically indistinguishable from abduction. In both cases we 
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follow rules "backwards" from consequent to antecedent. Goebel 
[Goebel,90] distinguishes the two by the equivocal nature of the 
assumptions we reason back to in abduction, as compared to the 
unequivocal facts of Prolog. With abduction we reason back to 
assumptions which, if they were true, would explain our 
observations. In backward chaining we reason back to facts which 
are  true. From the point of view of a Prolog Inference Engine, this 
difference is relatively minor. When faced with a non-deterministic 
clause choice during backward chaining, an Inference Engine does 
not know at that time whether a particular clause choice will 
successfully terminate in known facts or not. It can only proceed by 
making optimistic assumptions until inconsistencies force retractions. 
Thus the Inference Engine resorts to non-monotonic reasoning. This 
naturally leads to consideration of an RMS-based architecture. 

Under Prolog's SLD-refutation procedure [Lloyd, 841, clause choices 
result in resolvant transformations. High level resolvant goals are 
replaced by lower level subgoals; variables acquire bindings. From an 
RMS point of view, clause choices are assumptions. The assertion that 
a subgoal must be proven, or that a variable has a particular binding, 
are datums. By establishing justifications for each new datum, 
subgoals and their arguments are associated with the clause choices 
responsible for their state. As a result, unification failures can be 
analyzed and associated with nogoods as part of a dependency 
directed backtracking mechanism. This approach forms the basis for 
recent work in Intelligent Backtracking for Prolog [Bruynooghe,84], 
[Cox,84], [Drakos,88], [Havens,91], [You,89]. 

In practise intelligent backtracking schemes for Prolog are faced 
with a need to make practical tradeoffs. An RMS-based approach 
avoids needless rule execution at the expense of additional 

- unification overhead as well as additional memory. Often it is better 
to execute some rules needlessly rather than attempt to eliminate all 
such needless executions. Many of the tradeoffs can be seen from the 
point of view of preserving the popular, efficient stack-based 
memory allocation scheme used in Prolog implementations 
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[Warren,77]. In these architectures a single problem solving context 
is incrementally extended and rolled back with the depth first 
pre-order traversal of the SLD search space. Likewise, intelligent 
backtracking schemes maintain a single context, and link the storage 
of datum dependency information to the stack-based problem 
solving state storage mechanism. Whenever an assumption is 
retracted, the problem solving context is rolled back to the point 
where that assumption was first made. In the process datums are 
discarded which could, in principle, be reused. Nogoods are also 
discarded prematurely. 

Echidna [Havens,90] is a Constraint Logic Programming (CLP) 
language with dependency directed backtracking. Havens 
[Havens,91] refers to Echidna's unique integration of dependency 
backtracking with constraint propagation as dataflow dependency 
backtracking. The CLP paradigm [Jaffar,87a] provides natural support 
for the constraint relaxation techniques found in model based 
diagnosis [Davis,84], [de Kleer,87]. Havens argues against the use of a 
stack-based architecture for Echidna's dataflow dependency 
backtracking. As a result, when an assumption is retracted, rather 
than roll the problem solving state back to the state it had when the 
retracted assumption was first made, Echidna is able to keep datums 
that can be immediately reused. 

Earlier we discussed the close relationship between the goal 
directed reasoning of Logic Programming languages and abductive 
reasoning. This similarity is reflected in the design of RMS-based 
systems for diagnosis [Hamscher,90a], [Struss,89], [de Kleer,86c], [de 
Kleer,87], [Hamscher,90b] and the incorporation of RMS techniques 
into intelligent backtracking techniques for Prolog. There are, 
however, important differences that affect the design of an efficient 

. reasoning architecture. Abductive applications involve a comparison 
of multiple, ranked explanations. In purely deductive domains like 
theorem proving, only one solution is typically required. When more 
than one solution is required, they are not ranked in comparison to 
each other. Whereas intelligent backtracking schemes are based on 
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finding a single solution, diagnosis systems require multiple, 
highly-ranked diagnoses. 

D'Ambrosio [DtAmbrosio,90a], [D1Ambrosio,90b], [DtAmbrosio,87] 
uses an ATMS as a basis for generalized probabilistic reasoning. 
D'Ambrosio shows that by associating assumptions with certainty 
values, label propagation computes symbolic certainty expressions 
for ATMS datums. His concern is not diagnosis, but the support of 
generalized probabilistic queries for arbitrary propositions, as 
conditioned by an incrementally maintained set of observations. 
D'Ambrosio's earlier work [D1Ambrosio,87] uses a certainty calculus 
based on the DempsterIShafer theory of evidence. Subsequent work 
uses Bayesian probabilities and an ATMS representation of Bayesian 
networks. The ATMS is unfocused and maintains all possible 
contexts. This results in an exponential growth in the size of datum 
labels. To circumvent this problem, D'Ambrosio and Edwards 
[D1Ambrosio,91] decompose problems into a subproblem abstraction 
hierarchy, and use a partitioned ATMS which summarizes labels into 
simpler form, for datums exchanged between partitions. 

De Kleer and Williams incorporate Bayesian analysis in SHERLOCK, 
an ATMS-based system for circuit diagnosis [de Kleer,89a]. Unlike 
D'Ambrosio's system, SHERLOCK sacrifices generality in favour of a 
particular application, namely, model based diagnosis. It assumes, for 
example, that circuit component states are statistically independent. 
SHERLOCK uses a best-first search to find diagnoses in order of 
decreasing probability. It uses focusing heuristics to limit the size of 
the set of competing diagnosis to only those which are highly likely. 
As a result, SHERLOCK avoids the exponential label growth problem, 
as well as the computational cost of deriving many relatively 
unlikely diagnoses. 

2.4. What is needed 

In distinguishing between model based diagnosis and medical 
diagnosis, we focus on the fact that whereas model based diagnosis is 
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concerned with physical systems like circuits or engines, medical 
diagnosis is concerned with the human body. In the former case we 
have a precise theory of how the system should behave; in the latter 
case we have only an empirical understanding of how the human 
body works. We argue that this distinction is not fundamental. 
Rather than two distinctly different kinds of problems, we have a 
continuum of abductive problems ranging from theoretically well 
understood systems, to systems for which we have only an empirical 
understanding. 

Even for the case where we have a precise theory, completeness 
considerations can force us to consider the possibility that our theory 
is based on false assumptions. For example, in model based diagnosis 
we assume that the physical connectivity between components is as 
described by our model. Completeness forces us to consider the 
possibility of structural faults such as electrical shorts. Such 
problems are outside the theory represented by our model. Theories 
represent abstractions of the real world artifact under diagnosis. 
They are formed by distinguishing between those artifact properties 
that are important and those that are not. These distinctions are 
necessary to prevent us from having to model the artifact in infinite 
detail. Unfortunately, these same distinctions amount to contextual 
assumptions which can only be empirically justified. In the actual 
case of a faulty artifact, almost anything could be the cause, even 
that which we considered to be not worth modeling. It would seem 
that we can never actually have a purely model based diagnostic 
reasoner which offers diagnostic completeness. Even at this end of 
the spectrum we require a hybrid system. Whereas some parts of 
our model can be precisely defined, other parts can only be 
statistically defined. 

Generalized abductive reasoning requires a knowledge 
representation capable of supporting both model-based and 
network-based diagnosis. Whereas deterministic behavior of healthy 
circuit components is well represented by rules or procedures, 
explicitly enumerated conditional probability distributions are 
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required in  the case of medical diagnosis. A generalized 
representation must support theoretical representations of well 
understood behaviors as well as probabilistic representations of 
statistical behavior. In this thesis we propose a way of representing 
Bayesian networks in logic programs so as to accomplish this. In 
order to be useful, the integrated representation must preserve the 
desirable features of both logic and Bayesian network 
representations. 

While we adopt a Prolog-like framework for our reasoning 
system, it is important to reconsider architectural issues in the light 
of abductive problem solving. We propose an architecture which 
utilizes a focused ATMS for Horn clause reasoning. We incorporate 
Bayesian techniques to ensure that more likely explanations are 
found first. The implications of these decisions changes the nature of 
many of the practical tradeoffs normally associated with intelligent 
backtracking. In particular, a best-first search of the assumption 
search space visits possible solutions in a very different order from 
the pre-order traversal of a stack-based Prolog implementation. This 
precludes the efficient stack-based architecture upon which many 
intelligent backtracking tradeoffs are based, but raises the possibility 
of adopting probabilistic heuristics to control datum caching. 



Chapter 3 
A Knowledge Representation for Abduction 

In this chapter we present a knowledge representation based on 
Horn clause logic and Bayesian networks which is suitable for general 
problems in abductive reasoning. Horn clause programs are 
commonly referred to as definite programs. The notion of a definite 
program is extended to support complete representations of Bayesian 
networks. Under these extensions, programs used to represent 
Bayesian networks are referred to as Bayesian programs. 

3.1. Syntax 

In the following we provide syntactic definitions for definite 
programs, Bayesian networks and Bayesian programs. 

3.1.1. Definite Programs 

The reference textbook on the standard theory of logic 
programming is [Lloyd,84]. Our discussion of definite programs is 
based on a summary of this material. The interested reader is 
referred to the original text for a more complete presentation. 

A first order theory consists of an alphabet, a first order language, 
a set of axioms and a set of inference rules. We are interested in first 
order theories where the set of axioms is a definite program, and 
resolution is the only inferencing rule. 

An alphabet consists of seven classes of symbols: 
(a) variables 
(b) constants 
(c) function symbols or functor 
(d) predicate symbols 
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(e) connectives 
(f) quantifiers 
(g) punctuation symbols. 

The connectives are T,A,v,+ and H- . The quantifiers are 3 and 'd. 

The punctuation symbols are "(", ")" and "," . 

The following definitions are needed for the definition of a first 
order language. 

A term is defined inductively as: 
(a) A variable is a term. 
(b) A constant is a term 
(c) If f is an n-ary function symbol and t l ,  ..., tn are terms, then 

f(t1, ..., tn) is a term. 

A (well-formed) formula is defined inductively as: 
(a) If p is an n-ary predicate symbol and t l ,  ..., tn are terms, then 

p(t1, ... tn) is a formula (called an atomic formula or, more 
simply, an atom). 

(b) If F and G are formulas, then so are (-F),(FAG),(FvG),(F+G) and 
(F-G). 

(c) If F is a formula and x is a variable, then ('dx F) and (3x F) are 

formulas. 

The formula (F+G) is often written as (G :- F). 

The first order language given by an alphabet consists of the set 
of all formulas constructed from the symbols of the alphabet. 

The following definitions are needed to support the definition of a 
definite program. 

The s c o p e  of 'dx (resp. 3x) in 'dx F (resp. 3 x  F) is F. A b o u n d  

occurrence of a variable in a formula is an occurrence immediately 
following a quantifier, or an occurrence, within the scope of a 
quantifier, of the same variable as immediately follows the 
quantifier. Any other occurrence of a variable is free. 
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A closed formula is a formula with no free occurrences of any 
variable. 

If F is a formula, then V(F) denotes the universal closure of F, 

which is the closed formula obtained by adding a universal 
quantifier for every variable having a free occurrence in F. 

A ground formula is a formula with no variables. 

A literal is an atom or the negation of an atom. A positive literal 
is an atom. A negative literal is the negation of an atom. 

A clause is a closed formula of the form Vxl  ... Vxs (Llv ... v L m )  

where each Li is a literal and xl , . . . ,x are all the variables occurring S 

in L1v ... vLm. 

I t  i s  e a s y  t o s h o w  t h a t  t h e  c l a u s e  

Vxl ... Vxs (A1v ... vAmv7B lv. . .v~B,) ,  where Al ,..., Ak,B 1 ,..., Bn are atoms 

and x l  ,..., x are all the variables appearing in these atoms, is S 

equivalent to Vx ... Vxs (Al v...vAm :- B A...AB,) which, by convention, 

is written A1 ,...,Am :- B1 ,..., B, Under this convention, all variables 

are assumed to be universally quantified, the commas in the 
antecedent B I  ,... Bn denote conjunction and the commas in the 

consequent Al ,. . .Ak denote disjunction. 

A definite program clause is a clause of the form A1 :- B ,... ,Bn 

which contains precisely one atom in its consequent. A is called the 
head  and B1, ... Bn is called the b o d y  of the program clause. The 
informal semantics of a clause of this form is that "for each 
assignment of each variable, if B1, ..., Bn are all true, then A is true". 

A unit clause is a definite program clause with an empty body. It 
has the form A :- .The informal semantics of a unit clause is that "A is 
unconditionally true for each assignment of each variable." 

We often denote the unit clause, 'A :- ' as simply 'A.' . 



A Khowledge Representation for Abduction 3 5 

A definite program is a finite set of definite program clauses. 

A definite program for which: 
(a) all unit clauses are ground 
(b) no clause head includes variables which do not appear in the 

clause body is said to be a ground definite program. 

In a definite program, the set of clauses with the same predicate 
symbol p in the head is called the definition of predicate p. 

A definite goal is a clause which has an empty consequent. If 

y 1 , . . . ,yr are the variables of the goal :- B I , .  . . ,Bn then this clausal 

notation is shorthand for V y . . .V yr(7B v .. .vTB .) or, equivalently, 

3y l . . .3yr(B1~. . .~Bn) .  Each Bi (i=l,n) is called a subgoal of the goal. 

We often denote the goal, :- B I ,..., Bn , as ?- B1 ,..., Bn. 

The empty clause, denoted 0, is the clause with empty consequent 

and empty antecedent. This clause is to be underst0,od as a 
contradiction. 

A Horn clause is a clause which is either a definite program clause 
or a definite goal. Alternatively, a Horn clause is a clause which 
contains either one atom or no atoms in its consequent. 

3.1.2. Bayesian Networks 

The following sequence of definitions leads to the definition of a 
Bayesian network. 

A directed graph G = (V,E) consists of: 
(a) a finite, nonempty set of vertices V 
(b) set of directed edges E 

A directed edge is an ordered pair of vertices; v is called the tai l  
and w the head of edge (v,w). We write tail(e) to refer to the tail of 
edge e. Similarly, head(e) refers to the head of edge e. 
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A p a t h  is a sequence of edges (vI,v2), (v2,v3) ... ( v ~ - ~ ,  v ). We 

say that the path is from v l  to vn and is of length n-1. 

A path is s imple  if all edges and all vertices on the path except 
possibly the first and last vertices, are distinct. 

A c y c l e  is a simple path of length at least 1 which begins and 
ends at the same vertex. 

A directed acyclic graph (DAG) is a directed graph with no cycles. 

If (v,w) is an edge in a directed graph, we say that v is a p a r e n t  
of w and that w is a child of v. 

The set of parents of a vertex x is designated as rrx. 

If v is a vertex in a directed graph, we refer to the set consisting 
of v and all of its parents as the family of v. 

If v and w are two vertices in a directed graph, and there is a 
path from v to w, then we say that v is an ances tor  of w. We write 
ancestor(w) to refer to the set of all of w's ancestors. 

If v and w are two vertices in a directed graph we say that v is a 
weak ancestor of w if v is an ancestor of w o r  v = w. We write 
prev(w) to refer to the set of all of w's weak ancestors. 

If v and w are two vertices in a directed graph, then c is a 
common weak ancestor of v and w if: 

(a) c is an element of prev(v) 
(b) c is an element of prev(w) 

If v and w are two vertices in a directed graph, then r is a recen t  
weak ancestor of v and w if: 

(a) r is a common weak ancestor of v and w. 
(b) no direct successor of r is a common weak ancestor of v and w. 

A vertex with no parents is referred to as a terminal vertex. 
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A Bayesian network is a DAG whose vertices are nodes.  In the 
following we lead up to precise definitions for the terminal and 
non-terminal nodes of a Bayesian network. 

An unconditional probability expression for random variable V is 
a sentence of the form: 

P ( V = c ) = x  
where x is a real number such  that 0 I x 1 1.0, 

c is a constant, 
a n d  "P, "(" , ")" , a n d  "=" are  punctuation symbols. 

An unconditional probability distribution on variable V, denoted 
by P(V), is a set of unconditional probability expressions for V such 
that: 

(a)All constants contained in the expressions of P(V) are distinct. - 

(b) z x i  = 1.0. Note that in order for this normalization 

condition to hold, P(V) must contain at least one element. 

A terminal node is a pair (V,P(V)). In a Bayesian network a 
terminal node is designated by the name of its variable V. 

For the terminal node (V,P(V)), the domain of V is defined as the 
set of those constants which appear in one of the node's associated 
probability expressions: 

A conditional probability expression for conditioned variable V 
and conditioning variables BI ,..., Bn, is a sentence of the form: 

P(V=C l B =b 1,. . . ,Bn=bn) = x 

where x is a real number such  that 0 2 x 1 1.0 , 
c is a constant, 
bbP","(bb,")" a n d  "=" are  punctuation symbols, 
and  b E domain(B . . ., bn E domain(Bn). 
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F o r  t h e  c o n d i t i o n a l  p r o b a b i l i t y  e x p r e s s i o n  

P(V=clB1=bl, ..., Bn=bn) = x, the sentence B l=b l  ,..., Bn=bn is referred 

to as the condition of the expression; the sentence V=c is called the 
proposition of the expression. 

A conditional probability distribution on variable V is denoted by 
P(VIB1=bl, ..., Bn=bn) where B1, ..., Bn are conditioning variables. It is a 

set of conditional probability expressions such that: 
(a)The same condition appears in each conditional probability 

expression. 
(b)All  constants  contained in  the  proposi t ions  of 

P(VIB =b 1 ,..., Bn=bn) are distinct. 

(c) P(VIB1=bl, ..., Bn=bn) is the empty set or 

The informal semantics of the empty set is that the specified 
condition does not occur in the associated semantic domain. If 
the condition does occur, then P(VIB =b l,... ,Bn=bn) contains at 

least one element since V must assume some value. 

P(VIBl,...,Bn) denotes a set of conditional probability distributions: 

A non-terminal node is a pair (V,P(VIBl ,..., Bn)) where Bl ,..., Bn are 

the parents of node V. In a Bayesian network a non-terminal node is 
designated by the name of its variable V. 

For the non-terminal node (V,P(VIBl ,..., B,)), the domain of V is 

defined as the set of those constants which appear in the 
propositional part of one of the node's associated conditional 
probability expressions : 
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This completes the definition of a Bayesian network. The following 
terms are needed in the next section where a Bayesian program is 
defined. 

The set of variable assignments, such that each variable of a 
Bayesian network B, is assigned one of its domain values, is called an 
extension of B 

From the definition of a Bayesian network, if N is a node in a 
Bayesian network B, then N together with its ancestors also 
constitutes a Bayesian network. We refer to an extension of this 
network as a tail extension of node N.  

If N1 and N2 are nodes of a Bayesian network B, and N1 is an 
ancestor of N2, then each tail extension E2, of node N2, includes a tail 
extension E l  of node N1. We say that El  is a sub-tail extension of E2. 

3.1.3. Bayesian Programs 

A Bayesian program is a definite program which is structured 
after a Bayesian network, and where some program clauses are 
annotated with probabilities. In the following we define how a 
Bayesian program is constructed from a Bayesian network. 

An annotated clause is of the form { definite program clause, x } 
where x is a real number and 0 < x < 1.0 . 

A Bayesian clause is either a definite program clause or an 
annotated definite program clause. 

Following convention we adopt "." as the list functor. A list may be 
defined inductively as: 

(a) [I which is a symbol for the  nil list 
(b) .(X, list) where X s tands  for any term 
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Also following convention we adopt the more convenient Prolog 
syntax for representing lists. The difference between the two 
representations is illustrated by the following table: 

Formal Representation Prolop Representation 

We adopt the Prolog representation purely a matter of 
convenience. The Prolog syntax can always be replaced with its 
equivalent first order language syntax. 

Let B be a Bayesian network, and let N be the set of all variable 
names for B, then a node term is defined as: 

/(Nodename, Nodevalue) where Nodename represents an 
element of N and  Nodevalue, an element of 
domain(Nodename) . 

For syntactic convenience we represent the "1" functor as an infix 
operator. The term Nodename/Nodevalue is equivalent to the term 
/(Nodename,Nodevalue). By convention we use capital letters for 
Nodenames and small letters for Nodevalhes. Informally, the node 
term A/a represents the assignment A=a for random variable A. We 
use the "-" character to distinguish between constants and variables. 
The node term -A/-a consists of the variables -A and -a. The node 
term A/a consists of the constants A and a. 

An extension term is defined as: 

t( X,Es) where X stands for a node term, and  E s  is a list of 

extension terms. E s  may be the  nil list. 
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Figure 3.1. A Bayesian Network. 

Informally, extension terms are used to represent the tail 
extensions of a Bayesian network node. The tail extension of a node 
consists of the union of the tail extensions of its parents, Es, together 
with its own assigned node value, X. Again, as a matter of syntactic 
convenience, we represent the t functor as an infix operator. The 
term X t [Y ,Z] is syntactically equivalent to the term t (X, [Y ,Z]). A 

tail extension of node D of the Bayesian network shown in figure 3.1 
is represented as D/d t [ Blb t [ Ma t [I], C/c t [Ala t [I] ] . 

In a Bayesian network a terminal node V is represented as 
(V,P(V)). We convert this to a set of annotated definite program 
clauses : 

(a) associate a unary predicate with the  node. For the  purpose 
of discussion let this predicate be  referred to as "node-V". 
Informally, this predicate enumerates  t h e  possible tail 
extensions of terminal node V. 

(b) If P(V) conta ins  t h e  single probability expression 
P(V=c) = 1.0 c r e a t e  t h e  u n a n n o t a t e d  c l a u s e :  
node-V( V/c t [I ). 
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(c) for each probability expression P(V=c) = x E P o ,  where x 

is neither zero nor one, create the annotated clause: 

{node-V( V/c + 11 ),XI. 

In a Bayesian network a non-terminal node V is represented as 
(V,P(VIB I ,..., Bn) ). We convert this to a set of annotated definite 

program clauses: 

(a) let F be the family of V. Associate a k-ary predicate with V 

where k is the cardinality of F. For the purpose of discussion 
let this predicate be referred to as "family-V. 

(b) for each probability expression P(V=c l B =b l,. . . ,Bn=bn)= 1 .O 
associated with ( V  I B , . . . , B ) ,  create the  clause: 

family-V(V/c,B 1 /b 1,. . . ,Bn/bn). 
(c) for each probability expression P(V=c l B =b l,. . . , Bn=bn) = x 

associated with P(V I B .. ,Bn) where x is neither zero nor 

o n e ,  c r e a t e  t h e  a n n o t a t e d  c l a u s e  
{ family-V(V/c,B 1 /b 1,. . . ,Bn/bn) , x }. 

(d) associate a unary predicate with the node. For the purpose 
of discussion let this predicate be referred to as "node-V. 
Informally, this predicate enumerates the tail extensions of 
non-terminal node V. 

(e) let P be the set {B .Bn), the parents of V. Let R be the set  

{r I 3Bi 3B. B.E PA B.E P A r E recent weak ancestor of Bi and 
J J 

Bi 1 
(f) if R is t h e  empty s e t  create the  node clause: 

node-V(-V+[-B 1 +-XI,. . . ,-Bnt-Xn]):- node-B 1 ( -B 1 +-XI) 
, . . . , node-Bn(-Bnt-Xn) , family-V(-V,-B 1 , . . . ,-Bn) . Informally, 

n o d e  builds tail extensions of V from the tail extensions 
of its parent nodes provided that  the node terms of V and 
its parents form a consistent family of values. In this case 
the variables -XI,. . . ,-Xn simply abstract away unnecessary 
detail. 

(g) if R is not the empty set, we elaborate variables Xl,.  . . ,Xn so 
as to identify sub-tail  extensions which parent  tail 
extensions are required to have in common. We do this by 
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replacing t h e  var iables  X l , .  . . ,Xn wi th  extension 
representations for which each tail extension of a recent 
weak ancestor E R is named with a distinct variable. In this 

way shared sub-tail extensions are  represented as variables 
which are  shared between subgoals in the  body of the  node 
clause. A node clause for which sha red  node subgoal  
variables correctly represent shared sub-tail extensions is 
said to be  network consistent. 

Ignoring variables for a moment we see that the 
A :- B1, ..., Bn,family-A structure of a node clause represents the local 
network relationships of node A with its immediate parents. This is 
similar to the syntactic modularity of MYCIN rules described earlier. 
In contrast, the shared variables of node subgoals represent those 
global network relationships which are required in order to maintain 
the global coherency which was lacking in MYCIN's representation. 
By representing only recent weak ancestors as shared variables, we 
keep global information to a minimum in each node clause. 

We refer to node-A predicates, where A is a node name, as n o d e  
predicates.  Similarly family-A is referred to as a family predicate. 

If we apply the above transformations to the set of nodes of a 
Bayesian network B, then the set of annotated and unannotated 
clauses which result constitute a Bayesian program based on B. 

A Bayesian clause is an element of a Bayesian program. 

Let BP be a Bayesian Program. Let BP' be the definite program 
formed by stripping each annotated clause in BP of its annotation. 
We refer to BP' as the base program for BP. 

The following is an example of a Bayesian program based on the 
Bayesian network shown in figure 3.1. 
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Thus far, Bayesian program clauses correspond 1 : 1 with Bayesian 
network probability sentences. We now describe equivalent Bayesian 
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program representations which can offer more succinct, generative 
representations. 

Consider the node A of a Bayesian network B with 
domain(A) = {a l  ,a2,...,an}. Let BP be a Bayesian Program constructed 

from B as described above. We have a set S of n clauses of the form 
{ n o d e - A ( A l a i t  [I) , xi } where each clause i corresponds to the 

distinct A value ai. 

Since several clauses may have the same x value, we have m 
distinct x values where m I n. Consider the case where: 

(1) n is large 
(2) m is small 

In this case we may wish to consider the following equivalent 
representation. Let Sx be an S subset of k clauses which share the 

same probability x. We can replace these k clauses with: 

(a)the annotated clause { node-A(A/-a t [I ) :- node-ax(_a), x } 

(b) the' clauses of a ground definite program Nax defined such  
that: 
(1) Nax includes a definition of node-ax 
(2) node-ax(a) E MH, the least Herbrand model for Nax, iff 

M represents the declarative meaning of definite program Nax, 

as will be discussed in a subsequent section. 

We may replace any number of unit node clauses in this way. If 
node-A is defined by a complete set of ground unit clauses we say 
that these clauses form an explicit definit ion for node-A. 
Alternatively, if we do one or more of the substitutions described 
above, we refer to the final set of clauses as a generative definition 
for node-A. 

We can make similar replacements for family clauses. We have a 
set S of n = l domain(A) I x I domain(B1) I x ... x I domain(Bn) I 
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clauses of the form { familyA( A/ai, Bllbli ,  ..., Bn/bni ) , xi } where 

the parents of node A are B ,. . . ,Bn and each clause i corresponds to a 

distinct set of A,Bl ,..., Bn values. 

We have m distinct x values where m I n. In the case where n is 
large and m is small we may wish to consider a generative 
representation. 

Let Sx be an S subset of k clauses which share the same 

probability x. We can replace the k clauses with the annotated clause: 

(a) {family-A(A/-a,B 1 /-b 1,. . . ,Bn/-bn) :1 
family-ax(-a,-b 1,. . . ,-bn), x} 

(b) the  clauses of a ground definite program Fax defined such  
that: 
(1) Fax includes a definition of family-ax 
(2) family-ax(a,b 1,. . . ,bn) E MH, the  least Herbrand model for 

Fax, iff {family-A(A/ a,B 1 / b 1 , . . . , Bn/ bn) , x ) E S, 

Unannotated family clauses F are treated as equivalent to {F,1.0}. 
We may follow the same replacement procedure for sets of 
unannotated family clauses. 

As with terminal nodes we refer to family-A definitions as being 
either explicit or generative. 

3.2. Declarative Semantics 

In the following we define the declarative semantics of definite 
programs, Bayesian networks and Bayesian programs. 

3.2.1. Definite Programs 

A p r e - i n t e r p r e t a t i o n  of a first order language L consists of the 
following: 



A Khowledge Representation for Abduction 4 7 

(a) A non-empty set D, called the d o  m a i n  of the pre- 
interpretation. 

(b) For each constant in L, the assignment of an element in D. 
(c) For each n-ary function symbol in L, the assignment of a 

mapping from D" to D. 

Informally, a pre-interpretation of a language defines a semantic 
domain, and a way of referring to elements of that domain. 

An interpretation I of a first order language L consists of a pre- 
interpretation J with domain D together with the following: 
For each n-ary predicate symbol in L, the assignment of a mapping 

from D" into {true,false} (or, equivalently, a relation on D"). We say 
that I is based on J. 

Informally, an interpretation of a language defines a set of atomic 
assertions that we can make about the elements of a semantic 
domain, There are many possible interpretations for any particular 
pre-interpretation. 

Let J be a pre-interpretation of a first order language L. A 
variable assignment (wrt J )  is an assignment to each variable in L of 
an element in the domain of J. 

Let J be a pre-interpretation with domain D of a first order 
language L and let V be a variable assignment. The term assignment 
(wrt J and V) of the terms in L is defined as follows: 

(a) Each variable is given its assignment according to V. 
(b) Each constant is given its assignment according to J. 
(c) If t t l  ,..., t', are the term assignments of t l  ,..., tn and f is the 

assignment of the n-ary function symbol f, then f (ttl ,..., t tn) E D 

is the term assignment of f(t l , .  . ., tn) . 

Let I be an interpretation with domain D of a first order language 
L and let V be a variable assignment. Then a formula in L can be 
given a truth value, true or false, (wrt I and V) as follows: 
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(a) If the formula is an atom p(t1, ..., tn), then the truth value is 
obtained by calculating the value of p'(tl ,. ..,ttn) where p' is the 

mapping assigned to p by I and t ' l  ,..., t '  are the term n 
assignments of t l , .  . .,tn wrt I and V. 

(b) If the formula has the form -,F, FAG,FvG,F+G or FHG, then the 

truth value of the formula is given by the following table: 

t r u e  t r u e  false t r u e  t r u e  t r u e  t r u e  

t r u e  false false false t r u e  false false 

false t r u e  t r u e  false t r u e  t r u e  false 

false false t r u e  false false t r u e  t r u e  

(c) If the formula has the form 3 x  F, then the truth value of the 
formula is true if there exists d E D such that F has truth value 

wrt I and V(x/d), where V(x/d) is V except that x is assigned d; 
otherwise, its truth value is false. 

(d) If the formula has the form Vx F, then the truth value of the 
formula is true if, for all d E D, we have that F has truth value 

true wrt I and V(x/d); otherwise, its truth value is false. 

It is clear from the above that the truth value of a closed formula 
does not depend on the variable assignment V. 

If the truth value of a closed formula with respect to an 
interpretation is true (resp., false), we say the formula is true( resp., 
false) with respect to the interpretation. 

Let I be an interpretation of a first order language L and let F be a 
. closed formula of L. We say that I is a model for F if F is true wrt I. 

Let S be a set of closed formulas of a first order language L and let 
I be an interpretation of L. We say I is a mode 1 for S if I is a model 
for each formula of S. 
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Let P be a definite program defined on a language L and let I be 
an interpretation of L. As a special case of the above statement, I is a 
model for P if I is a model for each clause of P. 

Let S be a set of closed formulas of a first order language L. We 
say that S is unsatisfiable if no interpretation of L is a model for S. 

Typically, we define a definite program with a particular semantic 
domain and interpretation in mind. While the above procedure 
enables us to determine whether or not an intended interpretation is 
a model for a particular definite program, we are also interested in 
whether or not the intended interpretation follows from the definite 
program and the intended semantic domain. Does our definite 
program when interpreted with respect to  a particular 
pre-interpretation necessarily lead to the intended interpretation? In 
order to answer such questions we define the notion of logical 
consequence. 

Let P be a definite program of first order language L and F be a 
closed formula of L. Let F have the form 3y ,..., 3yr (Bl ,..., B,) where 

y I ,. ..,yr represent the complete set of variables appearing in atoms 

B 1 ,..., Bn. We say that F is a logical consequence of P if, for every 

interpretation I of L, I is a model for P implies that I is a model for F. 

It is not difficult to show that F is a logical consequence of P iff 
P u {7F} is unsatisfiable. Since the formula TF is equivalent to the 
definite goal G = :- B I ,B2,. . .,Bn , F is a logical consequence of P is 

equivalent to showing that the set of Horn clauses P u {G)  is 

unsatisfiable. 

To show that P u {G} is unsatisfiable, we must show that no 
interpretation of L is a model for P u {GI. At first glance this seems 

difficult as there are any number of semantic domains upon which 
we can base an interpretation. Fortunately, as it turns out, we can 
restrict our attention to a particular domain called the Herbrand 
universe. 
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Let L be a first order language. The Herbrand universe UL for L is 

the set of all ground terms, which can be formed out of the constants 
and function symbols appearing in L. 

Informally, the Herbrand universe for L is the set of all names for 
'things' supported L. 

Let L be a first order language. The Herbrand base BL for L is the 

set of all ground atoms which can be formed by using predicate 
symbols from L with ground terms from the Herbrand universe as 
arguments. 

Let L be a first order language. The Herbrand pre-interpretation 
for L is the pre-interpretation given by the following: 

(a) The domain of the pre-interpretation is the Herbrand universe 

UL. 
(b) Constants in L are assigned themselves in UL. 

(c) If f is an n-ary function symbol in L, then the mapping from 

( u ~ ) ~  into UL defined by (tl ,..., tn) -1 f(tl ,..., tn) is assigned to f. 

In effect, the Herbrand pre-interpretation lets each name for a 
'thing' supported by the language L, stand for itself in the set of all 
such names. 

A Herbrand interpretation for L is any interpretation based on 
the Herbrand pre-interpretation for L. 

Following convention we identify each Herbrand interpretation 
with a particular subset of the Herbrand base. For each Herbrand 
interpretation, its associated Herbrand base subset consists of only 
those ground atoms which are made true by the interpretation. 
Conversely, for any subset of the Herbrand base, its associated 
Herbrand interpretation is defined by specifying that the mapping 
defined by predicate symbols maps arguments to true precisely 
when the atom made up of the predicate symbol and these same 
arguments is in the Herbrand base subset. This identification enables 
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us to talk of Herbrand interpretations as equivalent to Herbrand base 
subsets. 

Let L be a first order language and S a set of closed formulas of L. 
An Herbrand model for S is an Herbrand interpretation for L which 
is a model for S. 

We can now associate each interpretation I of a language L with a 
corresponding Herbrand interpretation H for L. 

H = { p(t 1,. . . ,tn) I p(t 1, .  . . ,tn) E BL A p(t 1,. . . ,tn) is true wrt I ) 

It is readily shown that if I is a model for S, a set of clauses 
defined on L, then H is also a model for S. 

The implication is that if S has any model then it must have a 
Herbrand model. Put differently, S is unsatisfiable iff S has no 
Herbrand models. 

Let P be a definite program of L and F a closed formula of L of the 
form 3y ,..., 3yr (B I ,..., B n )  We said that F is a logical consequence of P 

iff P u {G} is unsatisfiable where G = :- B1 ,B2,. ..,Bn. From the above 

results, since P u {G} is a set of clauses (Horn clauses), it is only 

necessary to consider Herbrand Interpretations in order to establish 
the unsatisfiability of P u { G ) . 

The declarative semantics of a definite program can now be 
established. It is straightforward to show that for P, a definite 
program of L, and a non-empty set of Herbrand models for P, {Mi}, 

then n M i  is also a model for P. Since every definite program P has 

1 

B p as an Herbrand model, the set of all Herbrand models for P is 

non-empty. Thus the intersection of all Herbrand models for P is 
again a model, called the least Herbrand model, for P. We denote this 
model by Mp. Mp is the declarative meaning of a definite program. 
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I t  can be shown that for  a definite program P,  

M = { A  I A E B A A is a logical consequence of P } . The ground 

atoms contained in Mp are precisely those that are logical 

consequences of P. 

It is also readily shown that the least Herbrand model Mp of a 

definite program P grows monotonically as clauses are added to P. 
The addition of clauses to P can only add new atoms to Mp; it cannot 

remove previously included atoms. We say that Horn clause logic is 
monotonic. 

We can also give a fixpoint characterization of Mp. First we define 

some notation. Let f be a mapping defined on domain d, f: d + d. We 

define fn(x) inductively, where n is a positive non-zero integer and 
X E  d :  

(a) f1 (x) = f(x) 
(b) fn(x) = f(fn- ' (x)) 

We use P" (x) to refer to fn(x) where n is infinity (the least upper 
bound of the set of non-negative integers). 

We say that x is a fixpoint of f if f(x) = x. 

A fixpoint characterization of Mp requires the notion of a 

substitution. 

A substitution 8 is a finite set of the form {vl l t l  ..., vnltn), where 

each vi is a variable, each ti is a term distinct from vi and the 

variables v l  ,..., v are distinct. Each element vilti is called a binding n 
for vi. 0 is called a ground substitution if the ti are all ground terms. 

An e x p r e s s i o n  is either a term, a literal or a conjunction or 
disjunction of literals. 

Let 8 = {vl It ,... ,vnltn } be a substitution and E be an expression. 

Then E8, the instance of E by 8, is the expression obtained from E by 
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simultaneously replacing each occurrence of the variable vi in E by 

the term ti ( 1  n ) .  If E is ground, then EB is called a g ro und 

instance of E. 

The substitution given by the empty set is called the ident i ty  
substitution. 

Let P be a definite program of the first order language L. Let 2BP 
represent the set of all Herbrand interpretations of L including the 

empty set interpretation. The mapping Tp: 2 B ~  + 2 B ~  is defined as 

follows. Let I be an Herbrand interpretation. Then: 

T (I) = {A I A E  B A A  :-A1, ...,A, is aground instance of a 
P P 

clause in P and I 7  {A1, ...,A,} }. 

It can be shown that Mp is a fixpoint1 of Tp, and that it is equal to 

T p Y 0 ) .  

We refer to the function Tp for P as the fixpoint function for P. 

If Mp is a finite set then there will exist a smallest finite positive 

integer k such that ~ ~ " ' ~ ( 0 )  = ~ ~ ~ ( 0 )  = Mp. 

It remains to relate Mp to the intended interpretation of a definite 

program P defined on a first order language L. Let J be the intended 
pre-interpretation defined for the intended semantic domain. We can 
associate Mp, and J with an interpretation M based on J. 

Let M = { p(ttl ,... ,tfn) I p(tl ,..., tn) E Mp A ttl ,..., ttn are the term 
assignments under J of the ground terms t . . , tn } 

- In the above we refer to p(tfl ,..., t tn) as a J-instance of predicate p. 

B IIt is actually the least fixpoint of Tp where 2 P is recognized as a complete 

lattice under the partial order of set inclusion. A least fixpoint is 5 any other 
f ixpoint .  
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Here we identify the interpretation M with a set of J-instances in 
the same way that we identified Herbrand interpretations with 
Herbrand base subsets. The mapping associated with a predicate 
symbol maps arguments to true precisely when the associated 
J-instance E M. 

Clearly, M is also a model for P. In comparing M with an intended 
interpretation I we compare actual and intended meanings of P. The 
actual meaning M is sound if it is a subset of I. The actual meaning M 
is complete if it is a superset of I. The actual meaning is both sound 
and complete with respect to an intended meaning if M = I. 

Finally we provide a declarative definition of a correct answer. 

Let P be a definite program and G a definite goal. An answer for 
P u {G) is a substitution for the variables of G. 

Let P be a definite program, G a definite goal ?- A1,. . . ,Ak and 8 an 

answer for P u {G). We say that 8 is a correct answer for P u {G) if 
V ( ( A 1 ~  ... "Ak)8) is a logical consequence of P. 

Let P be a definite program and G a definite goal ?- AI , . . .,Ak. 

Suppose 8 is an answer for P u {G) such that (Al A . . . A A ~ ) ~  is ground. 

Then 8 is correct iff (Al A ... A A  k)8  is true wrt the least Herbrand 

model of P. 

3.2.2. Bayesian Networks 

In this section we define what a probability model is, and what it 
means. We then show that a Bayesian network, along with implicit 
independence assumptions, is equivalent to a probability model. 

For our purposes, we define an experiment  as a set of r a n d o m  
variables and a set of distinguishable elements called outcomes. 

A random variable of an experiment is a total function which 
maps from the set of experiment outcomes to a particular set of 
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values called the r a n g e  of the random variable. Since each 
experiment outco'me is mapped to a different range value, the 
random variable partitions the set of experiment outcomes into 
subsets of outcomes which have the same associated random 
variable assignment. 

An experiment outcome is distinguishable from other outcomes 
purely by the complete set of its associated random variable 
assignments, one for each random variable of the experiment. For an 
experiment with three random variables A,B,C, an outcome with 
random variable assignments a l , b l , c l  i s  represented as 

{ (A,al),(B,bl),(C,cl) I.  

An event of an experiment is a set of experiment outcomes. We 
1 write A- (al)  to refer to the set of outcomes: {ol A(o) = a1 I. In this 

way we can represent arbitrary sets of events as set theoretic 
express ions .  For  example ,  we wr i te  the  express ion 

( ~ - ' ( a l )  u ~ - ' ( b l ) )  n c m 1 ( c 1 )  to represent the event 
{0 I (A(o)=al v B(o)=bl) A C(o) = c l  ). We note that any set theoretic 

expression can be written in 'union of intersection' form. 

An elemental event is an event consisting of one outcome. 

A probability model is an experiment and a probability function 
Prob. Prob is a function which maps experiment events into a 
non-negative real number such that the following three axioms of 

probability hold: 

I. Prob(event) 2 0 

11. Prob(S) = 1 where S, the  certain event, is the  set of all 
experiment outcomes. 

111. if e l  n e2 = 0 then Prob(e1 u e l )  = Prob(e1) + Prob(e2). 

From these three axioms other properties of probabilities can be 
derived: 

P r o b ( 0 )  = 0 where the  empty se t  is referred to as the  

impossible event. 
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Prob(e) = 1 - P r ~ b ( ~ e )  
Prob(e1 u e2) = Prob(e1) + Prob(e2) - Prob(e1 n e l )  

The conditional probability function is defined as: 

Prob(e n m) 
Pr0b(e Im) = ~ ~ ~ b ( ~ )  for Prob(m) > 0 

We say that Prob(elm) is the probability of event e given the 
condition m. If (E,Prob) is a probability model, then so is (E,Prob') 
where Prob' is the function s.t. Prob'(e) = Prob(elm) for given 
condition m. In other words Prob(elm) maps event e into a 
non-negative real number such that the three probability axioms 
hold. As a result, conditional probabilities with the same condition m 
can be combined in the same way that unconditional probabilities 
can. For example, we can write: 

Prob(0 I m) = o. 

Prob(e l m) = 1 - P r ~ b ( ~ e  l m )  
Prob(e1 u e21m) = Prob(e1 lm) + Prob(e2lm) - 
Prob(e1 n e l l m )  

If m is the certain event then these expressions reduce to their 
earlier form, since Prob(elcertain event) = Prob(e). 

We can subsequently form Prob" from Prob' and condition m2. It 
can be shown that: 

Prob" (e) = Prob'(elm2) = Prob(elm,m2). 

The celebrated Bayes theorem follows from the definition of the 
conditional probability function: 

Event e l  is said to be independent of e2 if: 

l ~ h r o u ~ h o u t  the thesis, whenever we write Prob(elm) we shall assume that 
Prob(m) ;t 0 even if this is not explicitly stated. 
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Prob(e 1 n e2) = Prob(e l)Prob(e2). 

which is equivalent to: 

which is equivalent to: 

Prob(e2 l e l )  = Prob(e2). 

We can add a condition m to the above expressions to form 
definitions for conditional independence. Event e l  is said to be 
conditionally independent of e2 if: 

which is equivalent to: 

which is equivalent to: 

Since any event can be expressed as a union of elemental events, 
and since elemental events are mutually exclusive, then by 
probability axiom 111, the probability of an arbitrary event can be 
represented as the sum of elemental event probabilities. In other 
words, an experiment E together with probability values for each 
elemental event of E, constitutes a complete probability model. The 
probabilities of arbitrary events can be derived from these numbers. 
Likewise, since conditional probabilities are defined in terms of 
unconditional probabilities, arbitrary conditional probabilities can 
also be derived from elemental event probabilities. 

If we have a probability model P for experiment E with random 
variables A,B,C ... then we can define an associated joint probability 
function P as: 
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P(X,Y,Z ,...I =  rob( A - 1 ~  n B-'O n c-~(z) ...) 

where the domains of X,Y,Z ,... are the  ranges of A,B,C,. .. 
respectively. 

It is readily apparent that: 

(3) distinct (X,Y,Z, . . .) points correspond to distinct, mutually 
exclusive elemental events 

The joint probability distribution P(X,Y,Z ...) together with 
experiment E is a complete representation of a probability model. 

Since the variable names X,Y,Z, ... are arbitrary, by convention we 
name each variable after the random variable which assigns it  a 
value. For example, we write P(X,Y,Z ,...) as P(A,B,C ,... ). In order to 
prevent ambiguous interpretations of the symbols A,B,C ... we do not 
use this convention for expressions involving the Prob function. 

We can eliminate variables in P(X,Y,Z, ...) by summing over them. 
For example: 

P(X,Y) has the following properties: 

(3) distinct (X,Y) points correspond to distinct, mutually 
exclusive events 

We can also define conditional joint probability functions as ratios 
of joint probability functions. For example: 
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The following chain rule is derived by repeated application of the 
definition of conditional probability. This rule states that for a joint 
probability distribution on variables XI,X2, ... Xn, we have the identity: 

where Previ is the  se t  of variables )4 where j < i. 

We now turn to semantic issues. Consider the probability model E 
with random variables A,B,C ... . It is defined by a set of normalized 
probability sentences for elemental events: 

Prob(A- ' (ai) n B-I (bi) n C-I (ci) n...) = ri 

where i denotes a particular sentence. 

For convenience we use the simpler equivalent representation: 

Each of these probability sentences asserts that: 

(I) [A/ai,B/bi,C/ci, ...I denotes a particular experiment 

outcome. 
(2) Its associated non-zero, elemental probability equals ri 

We can therefore treat 'prob' as a generalized predicate which 
maps to a probability value. A non-zero probability corresponds to 

- TRUE. We can separate the semantic issues accordingly. Which 
experiment outcomes are possible? What do the probability values 
mean?  
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Considering the first question, we form the definite program DP 
made up of the ground atomic assertions: 

For this definite program 'AlaiT is an infix representation of 

/(A, ai). Similarly, we can consider [Alai,Blbi,Clci,.. .I to be equivalent 

to the functor [I applied to terms (A/ai,Blbi,C/ci, ...) . 

For this program the Herbrand universe is: 

(1) 'A','BV etc. 
(2) 'ai', 'bit etc. 
(3) 'A/%', 'A/bjl etc. 
(4) '[B/q,A/bi,C/ci,. . .I' etc, 

The Herbrand pre-interpretation is just: 

(1) 'A' -, 'A', 'B' + 'B' etc. 
(2) 'ai'-flai' , 'bi'-ftbi' etc. 
(3) I / '  maps 'A','%' to 'A/%' etc. 
(4) '[I' maps  A/q,B/bi,C/ci, . to [A/ai,B/bi,C/ci ,... 1 etc. 

The least Herbrand model consists of precisely those ground 
atomic assertions making up DP. As required, each DP clause asserts 
the possible occurrence of a particular experiment outcome. 

In effect DP defines an Herbrand experiment where the outcomes 
are syntactic terms such as ' [A/ai ,B/bi ,C/ci ,  ...I1. For the set of 

outcomes, the random variable symbols such as 'A', do indeed act as 
random variables. For example, 'A' maps outcome sentence 

'[A/ai,Blbi,Clci, ...I1 to 'ai' 

We can relate DP to 'real' experiments. For example, in a circuit 
diagnosis application, the 'real' experiment may be to select a circuit 
from the set of all circuits of a particular type. An outcome of this 
experiment is a particular circuit. Each circuit has measurable 
properties such as its output signal level. 
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We form the semantic domain made up of: 

(1) properties such  as output signal level. 
(2) property values such as 5.0 volts. 
(3) property assignments such as output signal level = 5.0 volts. 
(4) combinations of property assignments. 

The semantic pre-interpretation is : 

(1) mappings such as 'A' + output signal level. 
(2) mappings such  as 'ai'+ 5.0 volts. 

(3) ' / I  maps properties and property values to property 
assignments. 
(4) '[I' maps  property assignments into property assignment 
combinations. 

The actual semantic interpretation is formed by interpreting the 
arguments of the atoms making up the least Herbrand model 
according to their semantic pre-interpretation. The program DP 
defines the circuits which constitute outcomes to this 'real' 
experiment by enumerating the measurable property values of each 
circuit. 

We turn now to the second of our semantic questions. What do the 
probabilities assigned to each elemental event mean? So far these 
assignments have no significance other than that they are consistent 
with the three axioms of probability. Clearly, it is necessary to assign 
a 'real' interpretation to the probabilities that we assign to events. 
We can assign any interpretation which satisfies (makes true) the 
three axioms of probability. Historically, two such interpretations 
have been made. The relative frequency interpretation interprets 
probabilities according to the frequencies with which outcomes occur 
when an experiment is executed many times. The probability as a 
measure of belief interpretation assigns a subjective measure of 
belief in the truth or falsity of an outcome. 



A Knowledge Representation for ~bduction 6 2 

In this thesis we adopt the relative frequency interpretation as it 
is well suited to abductive problem solving. Here we consider that a 
good explanation is one which is quite frequently correct. We 
proceed to describe the relative frequency interpretation in more 
detail. 

A trial is a single performance of a well defined 'real' experiment. 
At a trial we observe a single outcome. We say that event e occurred  
at this trial if it contains element e. The certain event occurs at every 
trial. The impossible event never occurs. If e l  and e2 are mutually 
exclusive then both events cannot occur at the same trial. 

When an experiment under consideration is repeated n times, out 
of which event e occurs ne times, then according to the relative 

frequency interpretation, its probability is defined as the limit of the 
relative frequency ne/n of the occurrence of e. 

l im ne - Prob(e) = n+= n 

For large n, Prob(e) = n e / n  

It is quite easily shown that this interpretation satisfies the three 
axioms of probability. As a result if we assign probabilities to 
elemental events according to this interpretation, then we can derive 
probabilities for arbitrary events, and assign to these numbers the 
same relative frequency interpretation. 

We can interpret conditional probabilities according to the relative 
frequency interpretation. Consider an experiment which is repeated 
n times out of which event m occurs nm times, and event e A m 

occurs nem times. For large n: 

If we discard all trials in which event m did not occur and retain 
. the sub-sequence of nm trials in which it occurred, then Prob(elm) 
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equals the relative frequency of the occurrence of event e in that 
sub-sequence. 

Finally, we can interpret event independence according to the 
relative frequency interpretation. Consider an experiment which is 
repeated n times out of which event m occurs nm times, event e 

occurs ne times and event e A m occurs nem times. If e and m are 

independent events then for large n: 

for independent events Prob(e) = Prob(e lm) , 
therefore ne/n = nem/nm 

For independent events e and m, the relative frequency of the 
occurrence of event e in the original sequence of trials equals the 
relative frequency of the event e in the sub-sequence of of nm trials 

in which event m occurred. 

We are now in a position to describe what a Bayesian network 
means. Assume that we have a complete probability model for the 
experiment E. We show that a Bayesian network is an equivalent 
representation of this probability model. 

As described earlier, terminal nodes are characterized by 
sentences of the form 'P(V=c) = x' where the x values of these 
sentences sum to one. These are interpreted as joint probability 
distributions over a single random variable. 'P(V=c) = x' is 

1 interpreted to mean Prob(Vm (c)) = x for experiment E. 

Non-terminal nodes are characterized by sentences of the form 
'P(V=c I B 1 =b  ,..., Bn=bn) = x' where the x values of these sentences 

sum to one for each fixed set of conditioning values bl  ,..., b ,  

Moreover, we have a normalized set of these sentences for each 
possible condition made from b l e  doma in (B l ) ,  ..., bn€ domain(Bn) .  

' P ( V = c l  B 1 = b l ,  ..., B n = b n )  = x' is  interpreted to mean 
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~ r o b ( ~ - l ( c )  I ~ ~ - l ( b ~ ) n . . . n B ~ - l ( b ~ ) )  = x for experiment E. If 

domain(B 1 ), . . . ,domain(Bn) represent the ranges of random variables 

B 1 , . . . ,Bn then this represents a complete conditional joint probability 

distribution. 

We now justify our interpretation of the previously defined 
domain function. We wish to show that domain(Xk) is the range of 

random variable Xk. 

Proof. Let XI ,X2,...Xn represent a total ordering of a Bayesian 

network B's variables. Let this total ordering be consistent with the 
partial ordering represented by the DAG of B. Consider the terminal 
node X I .  Recall that domain(X1) consists of the set of X1 values 

assigned by the probability sentences making up P(Xl). Since by 

definition random variable X1 partitions the set of experiment 

outcomes, this set represents the range of random variable X I .  We 

now inductively assume the domain(X) interpretation for variables 
which are < X k  and show that as a result, the interpretation also 

holds for Xk. Recall that domain(Xk) consists of the set of Xk values 

assigned by the conditional probability sentences making up 

P ( X k  I P1 ,.. . ,Pn) where P1 ,. . . ,Pn are the parents of Xk. Since the 

parents of Xk are all < Xk then we can form the set of possible 

conditions for PI  ,..., Pn by taking the cross product of the parent 

variable domains.1 This forms a set of mutually exclusive conditions 
which partitions the set of experiment outcomes. Hence if we 
enumerate possible Xk values over these conditions we generate the 

range of random variable Xk. 

Bayesian networks embody the following implicit independence 
. assumption [Pear1,88]: 

l ~ o m e  of these parent combinations may have zero-valued probabilities and 
hence cannot serve as conditions in a conditional probability. In this case the 
Bayesian network simply does not include a conditional probability 
distribution for this parent condition. This does not invalidate the argument 
presented here. 
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Each random variable x is conditionally independent of all its 
non-descendants, given its parents n,. Furthermore, no  proper 

subset  of nx satisfies this condition. 

As a result of this independence condition we can multiply the 
probability distributions for each Bayesian network node to form a 
single probability distribution over all the random variables. This is 
true since by the chain rule: 

where Previ is the  se t  of variables 5 where j < i. 

If XI ,X2,  ... Xn represents a total ordering on the variables which is 

consistent with the partial ordering represented by the Bayesian 
network DAG, then by the implicit independence assumption we 
have: 

To summarize, a Bayesian network represents a complete 
probability model. We adopt relative frequency semantics for the 
numeric probabilities. We can interpret the associated experiment as 

' the Herbrand experiment. Alternatively, we can interpret the 
experiment as a set of real world outcomes with measurable 
properties. 

3.2.3. Bayesian Programs 

In order to develop the semantics of Bayesian programs it is 
necessary to develop additional results for both DAGs and Bayesian 
networks. 



A Khowledge Representation for Abduction 6 6 

Let D = (V,E) be a DAG and let S be a subset of V. We say that a 
vertex v is barren wrt S defined on D if: 

(a) v E S 
(b) v has no direct successors in S 

Let D = (V,E) be a DAG. We say that S is a complete subset of V 
wrt D if: 

(a) V I S 
(b) if r E S then S 2 prev(r) 

We note that if A is a vertex of DAG D = (V,E), then prev(A) is a 
complete subset of V wrt D. We also note that if S1 and S2 are both 
complete subsets of V wrt D then so is S1 u S2. Combining these two 
observations, we note that for any set of V vertices { v  , v , . . , v n } ,  the 

set {prev(vl) u prev(v2) u...u prev(vn)} is a closed subset of V wrt D. 

Theorem 3.1. If D = (V,E).is a DAG and C is a complete subset of 
V wrt D and B is the set defined as B = { b I b is barren wrt C defined 
on D } then C = u prev(b) . 

Proof. First we prove that u prev(b) j C. If c E C then either: 

be B 
(a) c has no direct successors in C. Therefore c is an element b of B. 

Therefore c is an element of prev(b). Therefore c is an element 
of u prev(b) .  

bE B 

(b) c has direct successors in C. In a finite D, one of c's successors 
must be barren wrt C. Therefore c is an ancestor to an element 
b of B. Therefore c is an element of prev(b). Therefor v must be 
an element of y prev(b) .  

b~ B 
Next we prove that C 2 u prev(b). Since C is a complete 

b€ B 
subset of V wrt D then C 2 prev(b) for each b E B. Therefore 
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C 2 u prev(b) .  

be B 

Since C 2 u prev(b) and u prev(b) 2 C then C = 

be B be B 

u prev(b). This completes the proof. We say that B spawns 

be B 

the set C. 

Theorem 3.2. If D = (V,E) is a DAG and vl ,v2 are two distinct 

vertices of V and C is the set defined by C = prev(vl) n prev(v2), 

then C is a complete subset of V wrt. D. 

Proof.  C is a subset of V since both prev(vl ) and prev(v2) are 

subsets of V, hence so is their intersection. Let c E C. By the 
definition of C, c E prev(vl) and since prev(vl) is a complete subset 

of V wrt D, then prev(vl ) 2 prev(c). Similarly prev(v2) 2 prev(c). 

Therefore prev(vl) n prev(v2) 2 prev(c). Therefore by definition C is 

a complete.subset of V wrt. D. 

Note that C is, by definition, the set of common weak ancestors of 
v1 and v2. Since C is a complete subset of V wrt D, then by theorem 

3.1 we can spawn C with the set B consisting of all vertices which are 
barren wrt C defined on D. The elements of this set are by definition 
the recent weak ancestors of vertices vl and v2. Thus, the following 

proposition: 

Proposition 3.1. If D = (V,E).is a DAG and v l  ,v2 are two distinct 

vertices of V, and C is the set C = { c I c is a common weak ancestor of 
v1 and v2 } and R = { r I r is a recent weak ancestor of v l  and v2 } 

then C = u prev(r) , 

r~ R 

If Al,A2, ..., An are nodes in a Bayesian network, and TA1, 
TA2,. . . ,TAn are tail extensions for A 1 ,A2,. . .An respectively, then 
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TAl,TA2, ... TAn are said to be consistent if TA1 u TA2 u ... u TAn 
does not contain more that one assignment for the same random 
variable. 

Theorem 3.3. If Al,A2, ..., An are nodes in a Bayesian network, 
and T is a set of tail extensions T= {TAl,TA2 ,..., TAn} for Al,A2 ,...., An 
respectively, then T is consistent iff its elements are pairwise 
consistent. 

Proof.  If the union of any two elements of T results in multiple 
variable assignments, then so will the union of all elements of T. As a 
result we can state that T is consistent all pairs of its elements are 

consistent. The reverse direction can be proved by contradiction. 
Under the assumption that all pairs of T elements are consistent and 
that T is inconsistent, then at least one random variable must be 
assigned more than one value. Since each element of T assigns 
precisely one value to each of its variables, this implies that at least 
two T elements must assign the same variable different values. 
Therefore we must have at least one pair of inconsistent T element 
pairs. This contradicts our assumption. which must be false. As a 
result we can state that all pairs of T elements are consistent 3 T is 

consistent. 

Theorem 3.4. If A1 and A2 are two nodes in a Bayesian network 
with tail extensions TA1 and TA2 respectively then TA1 and TA2 are 
consistent iff they have identical sub-tail extensions for each recent 
weak ancestor of A1 and A2. 

Proof. Let R be the set of all recent weak ancestors of A1 and A2. 
TA1 assigns values to each variable in prev(A1). Similarly, TA2 
assigns values to each variable in prev(A2). Both TA1 and TA2 assign 
values to variables in the set of common weak ancestors 
CWA = prev(A1) n prev(A2). By definition TA1 and TA2 are 
consistent iff x(TA1) = x(TA2) for all x E CWA. With this notation 

x(TA1) refers to the value that TA1 assigns to random variable x. 



Since by proposition 3.1, CWA = prev(r) then we have that 

re R 
x(TA1) = x(TA2) for all x E CWA iff x(TA1) = x(TA2) for all 
x E prev(r) for all r E R. This completes the proof. 

Theorem 3.5. If Al,A2, ..., An are nodes in a Bayesian network, 
and T is a set of tail extensions T= {TAl,TA2 ,..., TAn) for Al,A2 ,...., An 
respectively, then T is consistent iff each pair of T elements TAi, TAj 
have identical sub-tail extensions for each recent weak ancestor of Ai 
and Aj. 

Proof. This follows directly from theorem 3.3 and theorem 3.4. 

Theorem 3.6. If B = (N,E) is a Bayesian network for the joint 
probability distribution P(XN) and N' is a complete subset of N wrt B, 

and E' = {e I ee E A tail(e) E N' A head(e) E N' .), then B' = (N',Et) is 
the Bayesian network corresponding to P(XN'). We say that B' is a 

sub-Bayesian network of B. 

Proof. We proceed in steps: 
(1) Let S = {sl s is barren wrt N defined on B ). S spawns N since N 

is a complete subset of N wrt B. 
(2) Let St = {s'l st is barren wrt N' defined on B' ) and s E S. We 

show that s E N' + s E St. Equivalently, s P S' + s P N'. By 

definition s doesn't have a direct successor in N and since N' is 
a subset of N, then s also doesn't have a direct successor in N'. 
Therefore if s E N' then s E S'. 

(3) We show that St 2 S N' = N. Since N' is a complete subset of 

N wrt B, then S' spawns N', and if St includes S which spawns N, 
then S' must spawn a set which includes N. Therefore N' must 
include N. Since by definition N includes N', then N' = N and 
S' = S. We can restate this result as N 2 N' + 3 s ( s ~  S A S P  S t ) .  
Combining steps 2 and 3 we have N 2 N' + 3s(s E S A s P N'). 

(4) We know that N 2 N'. If N = N',the theorem is trivially true. Let 
us consider the case where N 2 N'. From step 3 we know that 
we can find at least one s E S that is not an element of N'. Let 
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this node be called xk. In general, let the elements of N be 

designated as N = {xl ,x2 ,..., xk ,..., xn}, then: 

Since xk is barren wrt N defined on B we can write that: 

And since X p ( x k  = c l n k )  = 1, then 

i # k  
(5) Step 4 constructs a new Bayesian network without node xk. 

xk )  then 
B*  = (N*,E*) i s  a Bayesian Network representing 

P(x 1 ,x2,. ..,xk- 1 ,xk+ 1 . . . ,xn)  We can show that N' is a complete 

subset of N*.wrt B*. First we show that N* includes N'. Since 
N 2 N' then N* = N - {xk} 2 N' - {xk} and since xk a N' then 

N* a N'. If we designate the prev function for B* as prev* to 
distinguish it  from the original prev function defined for B, 
then we can write prev*(n) = prev(n) for each n E N', since the 

only edges removed from E in forming E* were those 
connecting to xk which s N'. Since N' is a complete subset of N 

wrt B then if r E N' then N' a prev(r). Therefore if r E N' then 
N' 2 prev*(r). Therefore N' is a complete subset of N* wrt B*. 

(6) steps 4 and 5 can be used repeatedly to form new B*s with 
one fewer node. As long as N* 3 N', we can always find a node 

which is barren wrt N* defined on B* and which is not included 
in N'. We can remove this node to form a smaller superset of N'. 
Since there are a finite number of N* nodes which are not 
included in N', this process will terminate with B* = B' = (N7,E'). 
This sub-Bayesian network of B represents the joint probability 
distribution: 
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where domain(N-N') equals the cartesian product of the 
domain for each node in the set N-N'. This completes the proof. 

Theorem 3.7. If A is a node in a Bayesian Network B = (N,E), A's 
parents are Bl,B2, ... Bn.and CA is a tail extension of A. then P(CA) > 0 
iff: 

(1)CB 1 ,CB2,CB3,...,CBn are consistent tail extensions of B 1 ,B2,...Bn 
(2)CA = {A=a) u CB1 u CB2 u ... u CBn 

(3)P(CB I), P(CB2), P(CB3), ..,, P(CBn) > 0 
(4) P(A=al aA(CA)) > 0 

Note that the notation trA(CA) denotes the subset of CA containing 

only the random variable value assignments for r r ~ ,  the parents of A. 

Proof.  
(1) By definition CA has precisely one assignment for each 

element of prev(A) = {A} u ancestor(A). Since 

ancestor(A) = y prev(Bp) then this condition is true iff 

CA = { A=a} u CB 1 u CB2 u ... u CBn where CB 1 ,CB2,CB3 ,..., CBn 

are consistent tail extensions of Bl,B2, ... Bn and a is an element 
of domain(A). 

(2) Since ancestor(A) is a complete subset of N wrt B, we can write 
P(CA) = P(A=alrrA(CA)) ~ P ( x ~ ( c A ) I ~  

Xi€ ancestor(A) 

Therefore P(CA) > 0 iff 
u 
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(3) ~ P ( x ~ ( c A ) I ~  (CA)) > 0 iff 

P(Xi(CA) lx . (CA)) > 0 for all Xic ancestor(A). 
X1 

(4) Since ancestor(A) = y prev(Bp) then we can write that 

P(Xi(CA)I x . (CA)) > 0 for all Xi€ ancestor(A) is true iff 
X1 

P(Xi(CA)lx .(CA)) > 0 for all Xis prev(Bp) for all B ~ E  ZA 
X1 

(5) For CA = {A=a} u CBl u CB2 u ... u CBn, Xi(CA) = Xi(CBp) 

Xi€ prev(Bp) for all Bps KA. Therefore P(Xi(CA)lx 

for all 

0 for 

all Xi€ ancestor(A) is true iff 

P(Xi(CBp)lnx.(CBp)) > 0 for all Xi€ prev(Bp) for all B p c x ~  
1 

(6) P(Xi(CBp)lx .(CBp)) > 0 for all Xi€ prev(Bp) for all Bpe XA is 
X1 

true iff 
~ P ( X ~ ( C B ~ ) I ~  (CBp)) > 0 for all BpsxA. 

'i 

This product = P(CBp) since Prev(Bp) is a complete subset of N 
wrt B. This completes the proof. 

We now relate the above results to Bayesian programs. As defined 
earlier a tail extension of a Bayesian network node A is a set of 
variable assignments, one for each element of prev(A). Consider a 
simple three node Bayesian network where nodes B and C are 
parents to node A. The representation {A=a,B=b,C=c} refers to a tail 
extension of node A. Bayesian programs include representations of 
structured tail extensions which preserve the underlying causal 
relationships between variables. For example, the tail extension of A 
is represented as the term A/a t [ B/b t [I, C/c t [I ] . The node 

term A/a represents the assignment for A. The list of extensions 
[ Blb t [I, Clc t [I ] represents the set of tail extensions of A's 

parents. The structured tail extension TA' of A can be constructed 
from the tail extension TA of A and the original Bayesian network 
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B = (N,E); TA' = struct(TA,E). Similarly, a tail extension of A can be 
derived from a structured tail extension of A; TA = unstruct(TAt). 
For convenience, we often refer to TA as simply a tail extension.and 
disambiguate based on the context that it is used in. In expressions 
of the form P(TA), TA is understood as the unstructured version. In 
the context of node-A(TA), TA is interpreted as the structured 
version. 

In the previous section, where the semantics of probability 
models was discussed, we distinguished between two aspects of the 
semantics. We adopt a similar approach here. Firstly, we consider the 
semantics of the base program for a Bayesian program. The base 
program is a definite program whose least Herbrand model defines 
the experiment of a probability model. It enumerates the experiment 
outcomes, and the random variables, or properties of these outcomes. 
Having established this, we proceed to show how Bayesian programs 
assign probabilities to each elemental event. In this way the 
equivalence of Bayesian programs and probability models is 
established. 

Theorem 3.8. Let BP be a Bayesian program based on a Bayesian 
network B = (N,E). Let BPI be the base program for BP and let MH be 

the least Herbrand model for BP'. If node-A is a node predicate for 
node A in BP', then node-A(X) E M H  iff X is a tail extension of A and 

Proof. We prove by induction on a total ordering p of the nodes 

consistent with the partial ordering defined by B. This total ordering ~ 

enables us to compare any two nodes. For nodes A and B, we say that 
A <p B iff A precedes B in the total ordering p. We show that the 

theorem is true for terminal nodes. Then we show that if the 
. theorem is true for all nodes which are < A for some node A then it 

P 
is true for node A as well. We refer to the fixpoint function for BP' as 

TP. 
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Let node T represent a terminal node. By definition an explicit 
representation of node-T consists of ground node-T clauses of the 
form {node-T(T/t t [I ), x} iff P(T=t) = x > 0. Therefore by the 
definition of Tp, node-T(Tltc[]) E MH iff P(T=t) > 0. Alternatively, a 

generative definition of node-T may be used. Based on the way that 
generative representat ions are  constructed from explici t  
representations, and the declarative semantics of definite programs, 
explicit and generative definitions of node-T are equivalent. They 
result in the same ground atoms for node-T in MH. Therefore the 

theorem is true for terminal nodes. 

Now consider the non-terminal node A. From theorem 3.7 we 
know that if TA is a tail extension of A and Bl,B2, ..., Bn are the 
parents of A then P(TA) > 0 iff 
(1)TB 1 ,TB2,...,TBn are consistent tail extensions of B 1,B2, ... Bn. 
(2)TA = {A=a} u TB1 u TB2 u ... u TBn 

(3)P(TBl), P(TB2), P(TB3), ..., P(TBn) > 0 
(4) P(A=al nA(TA)) > 0 According to the rules for creating node-A 

clauses, we have a single defining definite program clause for 
node-A. Instances of this clause have the form 
node-A(A/a t [TB 1 ,TB2,. ..,TBn]):- 

node-B 1 (TB l),node-B2(TB2) ,..., node-Bn(TBn), 
family-A(A/a,B l l b l  ,..., Bnlbn) 

where shared clause variables establish additional conditions, 
namely: 

(5) TB 1 ,TB2,...,TBn are extension terms 
B l /b l ,B2/b2 ,..., Bnlbn. 

(6) For any pair of elements, TBi,TBj from 
TBi and TBj share common sub-tail 
weak ancestor of Bi,Bj. 

Since this is the only defining rule for 
the function Tp, node-A(TA) is an element 

(6) is true 

with associated node terms 

the set T={TBl,TB2 ,..., TBn), 
extensions for each recent 

node-A, then according to 
of HM iff: 

(7) TA has the form A/a t [TBl,TB2, ..., TBn] 
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(8) n o d e B  1 (TB l),nodeB2(TB2), . . . , n o d e - B n )  are all E MH 

(9) (5) is true and family-A(A/a,B/bl, ..., Bnlbn) is E MH. 

Together with the induction assumption, these conditions can be 

shown to be equivalent to conditions (1),(2),(3),(4) above. 

B Y  t h e  i n d u c t i o n  a s s u m p t i o n ,  
node-B 1 (TB l),node-B2(TB2), ..., node-Bn(TBn) are all E M iff 

TB 1 ,TB2,...,TBn are tail extensions of B 1 ,B2,...,Bn respectively and 
P(TB l),P(TB2), . . .,P(TBn) > 0. If TB 1 ,TB2,.. .,TBn are tail extensions of 
Bl,B2 ,..., Bn then by theorem 3.5, (6) is true = TBl,TB2 ,..., TBn are 

consistent. If TBl,TB2, ..., TBn are consistent tail extensions for 
Bl,B2, ..., Bn then condition (7) becomes equivalent to condition 
(2).and condition (5) ensures that b l  ,b2,...,bn are the values assigned 
by TA to Bl,B2, ..., Bn. Finally, by definition an explicit representation 
of family-A consists  of ground clauses of the form 
{family-A(A/a,B/bl, ..., Bnlbn). ,x) iff P(A=al B=bl, ..., Bn=bn) =x > 0 . 
T h e r e f o r e ,  b y  t h e  d e f i n i t i o n  o f T~ , 
family-A(A/a,Blbl, ..., Bnlbn) E MH iff P(A=al B=bl, ..., Bn=bn) > 0. 

Alternatively, a generative definition of family-A may be used. 
Based on the way in which generative representations are 
constructed from explicit representations, and the declarative 
semantics of definite programs, explicit and generative definitions of 
family-A are equivalent. They result in the same ground atoms for 
family-A in MH. This completes the proof. 

We have shown that the least Herbrand model of BP' enumerates 
the possible tail extensions of Bayesian network nodes. Conversely, 
ground atoms of node predicates which are not elements of the least 
Herbrand model are false or not possible. This is in contrast to the 
declarative semantics of a definite program. A ground atom which is 
not an element of a definite program's least Herbrand model may or 
may not be false. The often used closed world assumption is the 
assumption that such atoms are false. By the semantics of a Bayesian 
program, such atoms must be false. 
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We now show that the numeric clause annotations of the 
Bayesian program BP define probabilities for Bayesian network 
extensions. Our approach is to extend the definition of the fixpoint 
function Tp. 

Let P be a joint probability distribution over random variables 

X 1 ,  X 2,. . . ,Xn.  We refer to syntactic probability sentences such as 

'P(X 1 =x )' or 'P(X1=xl l X2=x2)', for the random variables of P as 

symbolic probabilities. Under the semantic interpretation discussed 
earlier, each symbolic probability can be associated with a numeric 
probability. For example 'P(X 1 =x )' can be associated with P(X1=xl) 

which is a real number between 0 and 1 inclusive. An assumption is 
a symbolic probability whose associated numeric probability is a real . 
number between 0 and 1 exclusive. 

Let C8 be a ground instance of a Bayesian clause C. C8 has an 
associated clause assumption A(C8) which is defined as follows: 

(a) if C is an annotated terminal node clause for node A with 
probability annotation x, then A(C8) = 'P(A=a)' where a is the 
assignment for A appearing in C8. 'P(A=a)' is an assumption 

with associated numeric value P(A=a) = x. 
(b) if C is an annotated family clause for node A with parents 

B 1 ,..., Bn and with clause probability annotation x, then 
A ( C 8 )  = 'P(A=alB1=b 1 ,..., Bn=bn) '  where a , b 1 , ,  b are the 

a s s i g n m e n t s  f o r  A,B , . . . , B appearing in  C 8 .  

' P ( A = a l B 1 = b l ,  ..., Bn=bn) '  is an assumption with associated 

numeric value P(A=alB l=b ,..., B -bn) = x. n - 
(c) else A(C0) = nil f' 

A set of assumptions is termed an environment. 

Each ground instance of a Bayesian clause C8, has an associated 
clause environment Env(C8) which is defined as follows: 

(a) if A(C8) = nil then Enx(C8) = 0 

l ~ h i s  terminology anticipates the use of an ATMS based architecture as 
described later. 
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(b) else Env(C0) = (A(C0) } 

Let BP be a Bayesian program and let ABp be the set of all clause 

assumptions for BP. ABp is referred to as the assumption base for 

BP. Let EB p be the powerset of AB p .  EB P is referred to as the 

environment base for BP. 

Let BP be a Bayesian program, BP' be the base program for BP, Bp 

the Herbrand base associated with BP' and EBp the environment base 

for BP. The fixpoint function of BPI is referred to as Tp. We define the 
function Tpt(I)={ (A,E(A)) I A E Bp and E(A) E EBp and the clause 

C = A :- A1, ..., An is a ground instance of a clause in BP' and 
I 2 { ( A 1  , E ( A l ) ) , . . . , ( A n , E ( A n ) )  1 a n d  

E(A) = Env(C) u E(A1) u E(A2) u ... u E(An) } 

Recall that MH, the least Herbrand model for BP' is defined by 

MH = ~ p " ( 0 ) .  Likewise we define MB, the Bayesian model for BP as 

M B  = ~ p ' " ( 0 ) .  In comparing Tp' and Tp we see that Tp' maps sets of 

ground atoms to sets of ground atoms in exactly the same way that 
Tp does. The difference is that Tp' also defines an environment for 
each ground atom included in the output set. As a result, MB contains 

the same ground atoms that MH does, but each ground atom has an 

associated environment. 

Let BP be a Bayesian program with associated Bayesian Model MB. 

Let EBp be the environment base for BP, BP' be the base program for 

BP and MH be the least Herbrand model for BP'. MB is a set 

consisting of elements of the form (A,E(A)) where A E MH and 
i 

E(A) E EBP . We refer to the function E as the environment function 

for BP. It assigns each A E MH an environmentl. 

l ~ h e  environment function actually maps sets of ground atoms to an 
environment. This supports a more general usage of the environment 
function, namely that it assign environments to answers of Bayesian queries. 
As a result E(A) is more precisely expressed as E({A)). By convention we just 
write E(A). 
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We now show that the environments of ground node atoms 
correspond to tail extension probabilities. 

Theorem 3.9. Let BP be a Bayesian program with Bayesian 
model MB. If f a m i l y  is a family predicate for node A in BP, then 

(family-A(A/a, B 1 , .  . .,Bnlbn) ,E( family-A(Ala, B lb ,Bnlbn) ) E 

MB iff 

(1) a,bl , . . .bn are valid assignments for nodes A,B . .Bn 

(2) P(A=alB l=bl ,..., Bn=bn) > 0 

(3) E( family-A(Ala, B lb ,Bnlbn) ) = 

{ P(A=alB l=b 1 ,..., Bn=bn) } if P(A=alB l=bl ,..., Bn=bn)<l 

otherwise 

Proof. This follows directly from: 
(1) the definition of Tp' and Env 

(2) the criteria used to define explicit family clauses for Bayesian 
programs 

(3) the equivalence of generative and explicit definitions for 
family predicates. 

Theorem 3.10. Let BP be a Bayesian program. If node-A is a 
node predicate for node A in BP, then ( node-A(TA), E(node-A(TA)) ) 

MB iff 

(1) TA is a tail extension of A 
(2) P(TA) > 0 
(3) E(node-A(TA)) = u 1 P(X(TA)lx,(TA)) 1 

xc S~~ 
where STA = { X I X E prev(A) A 0 < P(X(TA)lx,(TA)) < 1 } . 

i 

l ~ o t e  that we use symbolic probabilities like 'P(X(CA)ln,(CA))' in two ways. In 

set expressions like E = u P(X(CA)ln,(CA)) it is a symbolic entity. In product 
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Proof. We know from theorem 3.8 that node-A(TA) E MH, the 

least Herbrand model for BP' where BP' is the base program of BP, iff 
TA is a tail extension of A and P(TA) > 0. Since MB has the same 

atoms as MH we need only prove that the environment E, assigned 

We prove by induction on a total ordering p of the nodes 

consistent with the partial ordering defined by B. From the 
definition of Tp and the equivalence of explicit and generative 
definitions for terminal node predicates, this equality is true for 
terminal nodes. We show that if the equality is true for all nodes 
which are < A for some node A then it is true for A as well. 

P 

Consider the non-terminal node A with parents Bl,B2, ..., Bn. BP has 
a single defining definite program clause for node-A. As described in 
the previous proof, instances of this clause have the form: 
node-A(A/a c [TB 1 ,TB2 ,..., TBn]):-node-B 1(TB I), node-B2(TB2), ..., 

node-Bn(TBn), family-A(A/a,B l / b  1 ,. . .,Bn/bn) 

From the results of the previous proof node-A(TA) is E MH iff: 

(1) node-B 1(TB I), node-B2(TB2), ... n o d e - B n )  E MH 

(2) {TB 1 ,TB2,...,TBn} is consistent 
(3) TA = A/a t [TB 1 ,TB2,...,TBn] 
(4) family-A(A/a,B/b 1,. . .,Bn/bn) E MH where tail extensions 

TB 1 ,TB2,. . . ,TBn have associated node terms 
B l l b l  ,B2/b2 ,..., Bnlbn. 

By theorem 3.9 we have that 
E(fami1y-A(Ala,B/b 1 ,. . .,Bn/bn)) = {P(A=alB=bl , . . . ,Bn=pn)}. [ 1 1 
By the inductive assumption we have that 

expressions of the form E = nP(X(CA)llrx(CA)) it refers to its associated 

XE 'CA 
numeric probability. The expression context can be used to disambiguate. 
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X' 'TB~ 
where STBi = { x I x E prev(Bi) A 0 < P(X(TBi)lax(TBi)) < 1 }. 

Using the definition of Tp', 
E(node-A(TA)) = E(node-B 1 (TB 1)) u E(node-B2(TB2)) u.. .u 

E(node-Bn(TBn)) u E(fami1y-A(A/a,B/b 1,. . . ,Bn/bn)). 

If we substitute [I] and [2] into [3] and take into account that 
{TB 1 ,TB2,. . .,TBn} is consistent, then we have: 

xE S~~ 
where STA = { x l x E prev(A) A 0 < P(X(TA)la,(TA)) < 1 } This 

completes the proof. 

Since for possible tail extensions TA of A, 

X E  prev(A) xE S~~ 

where ST A = { x l x E prev(A) A 0 < P(X(TA)ln,(TA)) < 1 ) then the 

environment of an MH node atom can be converted into the numeric 

probability of the node atom's tail extension by replacing each 
environment assumption with its numeric probability, and forming 
the product. 

We now provide a declarative definition of a correct answer for a 
query to a Bayesian program. 

A Bayesian goal for a Bayesian program is a definite goal for 
which: 

(1) all subgoal predicates are node predicaes. 

(2) subgoal arguments guarantee a consistent set of tail extensions 
for the complete set of subgoal tail extensions. In other words, 
the subgoals of a Bayesian goal are network consistent. 
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Let BP be a Bayesian program and G a Bayesian goal. Let BP' be 
the base program for BP. An answer for BP union {G} is ( 8 , ~ )  where 
8 is an answer to BP' union {G} and E E EBp, the environment base for 

BP. 

Let BP be a Bayesian program with base program BP', G be a 
Bayesian goal ?- A1,. . . ,Ak and E be the environment function for BP. 

We say that ( 8 , ~ )  is a correct answer to BP u {G} iff: 

(1) 8 is a correct answer to BP' u {G) 
(2) 8 is a ground substitution 
(3) E = E(G8) = E(Al 0) u E(A28) u.. .U E(Ak8)1 

Comparing the above definition for correct answer with the earlier 
definition for a correct answer to a definite program, the above 
definition imposes additional restrictions on 8 ,  namely that it make 
(A ,Ak)8 ground. 

Theorem 3.11. Let BP be a Bayesian program with Bayesian 
model MB, and G be a Bayesian goal ?- A ,...,Axk. Under this 

X1 
notation A is a subgoal for node x l .  If ( 8 , ~ )  is a correct answer to BP 

1 

where ext = V ( ta i l  extension argument  of (Ax.)@ ) 
1 \ 

lThis extends the definition of the environment function which previously 
was defined only for single ground atoms. 



A Khowledge Representation for Abduction 8 2 

k 
and Se = {x l x E prev(xi) A 0 c P(X(ext)ln,(ext)) < 1 } u 

i= 1 
Moreover, P(ext) can be derived from E; P(ext) = n ~ ( x ( e x t ) l n , ( e x t ) )  

XE Se 

Proof. Let T = (the tail extension argument of (A J0.) We know 
X1 

that ((AX.)9,eX.)) E MB. By theorem 3.10 E 
1 1 Xi = u {p(x(Txi)lnx(Tx?) 1 

X€ S 
Ti 

whe re  
S = {x l XE prev(xi) A 0 < P(X(TXi)lnX(TXi)) < 1 } 

Ti 
Since ( 0 , ~ )  is a correct answer to BP union {G} we have that 
E = & X I  u ex2 u ... u cXk .Substituting for E, and taking into account 

i 
that {Txl ,Tx2,...,T } is consistent leads to the desired result for E. 

Xk 

Since u prev(xi) is a complete subset of BPI, then we can form 

i= 1 
P(ext) from E by replacing symbolic probabilities with their numeric 

values and forming the product over all set elements. This completes 
the proof. 

P(ext), as defined for the above proof, can be used to rank each 
correct answer relative to other correct answers. Let obs be the set of 
all node assignments established by ground terms in the Bayesian 
goal G of the preceding theorem. For example, obs might be {A=a} 
where A is one of the nodes for which ext has a value assignment. In 

IWe use a slight abuse of language here. It is understood that BP is based on 
k 

the Bayesian network B=(N,E) and that 
V 

prev(xi) is a complete subset of N 

i= 1 
wrt B. 
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this case obs ensures that the 'ext' of all correct answers must assign 
A=a. By Baye's theorem we have that P(extlobs) = P(ext A obs)/P(obs). 
By the chain rule P(ext A obs) is  equal to P(obslext)P(ext). 
Depending on whether ext includes obs or not, P(obslext) is either 
one or zero respectively. Therefore, for answers which are correct, 
P(extlobs) = P(ext )/P(obs). In this expression, P(obs) is simply a 
normalization factor and is the same for all correct answers. 
Therefore P(ext) ranks the correct answers to BP u { G } .  

3.3. Procedural Semantics 

In the following we define the procedural semantics of definite 
programs, and Bayesian programs. 

3.3.1. Definite Programs 

We present definitions leading to the definition of a computed 
answer, which is then compared with the previously defined correct 
answer. 

Let 8 = {ullsl  ,..., umlsm} and o = { vll t l  ,..., vnltn) be substitutions. 

Then the composition 8 0  of 8 and o is the substitution obtained from 
the set {ul Is 1 0,. ..,urn Ism o,v  I It 1 ,  .. .,vn/tn } by deleting any binding 

uilsio for which u i = s i o  and deleting any binding v./t for which J j 

I 

Let E and F be expressions. we say E and F are variants if there 
exist substitutions 8 and o such that E = F8 and F = Eo. We also say E 
is a variant of F or F is a variant of E. 

Let S be a finite set of simple expressions. A substitution 8 is 
called a unifier for S if S8 is a singlgon. a unifier 8 for S is called a 
most general unifier (mgu) for S if, for each unifier o of S, there 
exists a substitution y such that o=8y. 
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Several unification algorithms exist [Lloyd,84] for finding the rngu 
of a finite set of simple expressions S. If S is unifiable such 
unification algorithms terminate and return a rngu for S. If S is not 
unifiable, then such unification algorithms terminate and report this 
fact. 

Let G be ?- Al ,...,Am ,..., Ak and C be A:- B ,..., B . Then G' is derived 
q 

from G and C using rngu 0 if the following conditions hold: 
(a) Am is an atom, called the selected atom, in G. 

(b) 8 is an rngu of Am and A. 

(c) G' is the goal ?- (Al ,..., Am-1 ,Bl ,..., Bq,Am+1 ,..., Ak)8 

G' is called a resolvent of G and C. 

Let P be a definite program and G a definite goal. An S L D -  
der iva t ion  of P u {G) consists of a (finite or infinite) sequence 

GO=G,G1 ,..., of goals, a sequence Cl  , C 2 ,  of variants of program clauses 

of P and a sequence 0 ,8 ,... of mgu's such that each Gi+ 1 is derived 

from Gi and Ci+ 1 using Bi+ 1. 

Each Ci is a suitable variant of the corresponding program clause 

so that Ci does not have any variables which already appear in the 

derivation up to Giml. Each program clause variant Ci is called an 

input clause of the derivation. 

An SLD-refutation of P u {G} is a finite SLD-derivation of P u {G} 
which has the empty clause as the last goal in the derivation. If Gn 

\ 

equals the empty clause, we say the refutation has length n. 

Let P be a definite program and G a definite goal. A c'omp u t ed  
answer  0 for P u {G} is the substitution obtained by restricting the 

- composition 8 ... e n  to the variables of G, where 8 1 ,...,On is the 

sequence of mgu's used in an SLD-refuation of P u {G). 

The soundness of SLD-Resolution theorem [Lloyd,84] states that 
every computed answer is correct. Let P be a definite program and G 
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a definite goal. then every computed answer for P u {G) is a correct 
answer for P u {G). 

The completeness of SLD-resolution theorem [Lloyd,84] states that 
every correct answer is an instance of a computed answer. Let P be a 
definite program and G a definite goal. For every correct answer 9 for  
P u {G),  there exists a computed answer o for P u {G) and a 
substitution y such that 9 = oy. 

We briefly discuss the concept of a computation rule, which is 
used to select atoms in an SLD-derivation. 

A computation rule is a function from a set of definite goals to a 
set of atoms such that the value of the function for a goal is an atom, 
called the selected atom, in that goal. 

Let P be a definite program, G a definite goal and R a computation 
rule. An SLD-refutation of P u {G} via R is an SLD-refutation of 
P u {G) in which the computation rule R is used to select atoms. 

Let P be a definite program, G a definite goal and R a computation 
rule. An R-computed answer for P u {G) is a computed answer for 
P u {G) which has come from an SLD-refutation of P u {G) via R. 

The independence of the computation rule theorem [Lloyd,84] 
states that for any choice of computation rule, if P u {G) is 

unsatisfiable, we can always find a refutation using the given 
computation rule. Let P be a definite program and G a definite goal. 
Suppose there is an SLD-refutation of P u {G) with computed answer 
o. Then, for any computation rule R, there exists an SLD-refutation of 
P u {G) via R with R-computed answer o' such that Go' is a variant of 
Go. 

i 

3.3.2. Bayesian Programs 

As with definite programs, we present definitions leading to the 
definition of a computed answer, which is then compared with the 



A Khowledge Representation for ~bduction 8 6 

previously defined correct answer. We refer to the modified 
resolution procedure as SLDB resolution. 

Let BP be a Bayesian program with base program BP' and G be a 
Bayesian goal. A computed answer for BP u {G) is ( 8 , ~ )  such that: 

(a) 8 is a computed answer resulting from S, an SLD-refutation of 
BP' u {G) of length n. 

(b) E = Env(Ci8) where Cl ,C2,...,Cn is the sequence of input 

i~ 1 

clauses in S 

For comparison, we repeat the earlier definition of a correct 
answer to BP u {G). 

Let BP be a Bayesian program with base program BP', G be a 
Bayesian goal ?- A1 ,...,Ak and E be the environment function for BP. 

We say that ( 8 , ~ )  is a correct answer to BP u {G) iff: 
(1) 8 is a correct answer to BP' u {G) 
(2) 8 is a ground substitution 
(3) E = E(G8) = E(A18) u E(A28) u...u E(Ak8)l 

In the following we show first of all, that condition (a) of the 
definition for a computed answer to BP u {G) is equivalent to 

condition (1) and (2) of the definition of a correct answer to 
B P  u {G).  We will then proceed to show that condition (b) of the 
definition for a computed answer 40 BP u {G) is equivalent to 
condition ( 3 )  of the definition of a correct answer to BP u {G). In so 

doing, we establish the completeness and soundness of SLDB 
resolution. 

We note that by definition, the base programs of Bayesian 
programs are ground definite programs. 

l ~ h i s  extends the definition of the environment function which previously 
was defined only for single atoms. 
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Theorem 3.12. If P  is a ground definite program, G is a definite 
goal and 8 is a computed answer to P  u {G}, then 8 is a ground 
substitution. 

Proof .  We prove by induction on the length of the computed 
answer's SLD-refutation of P  u {G}. 

First consider the case where the refutation length is 1. G is of the 
form ?- A1 and P  has a unit clause of the form A. We have that 

G = the empty clause under mgu 8 1. Therefore Al 8 = A8 1. Since P  

ia a ground definite program, A is ground. Therefore Al 8 1 = A and 

8 1 is a ground substitution. 

We now show that if the theorem is true for SLD refutations of 
length n-1 then it  is true for SLD-refutations of length n. Let 
G = ?- A ,..., Am,. . .,Ak be a goal for which there is an SLD-refutation 

of length n. Let C = A:- B1 ,..., B be the first input clause of this 
4 

SLD-refutation, and let Am be the selected atom of G. The 

SLD-refutat ion der ives  G1 from G and C using mgu 8 

G 1 = ? - ( A l  , .- ,Am- 1 3  l , . . . ,Bq,Am+ 1 , . . . ,Ak) 8 Since G has an 

SLD-refutation of length n then G1 has an SLD-refutation of length 

n- 1 .  By the inductive assumption (A , . . .,Am - ,B , , . . ,B q ,  Am + 1 , . . . ,Ak) 

8 ... en  is ground. Therefore (B1 ,..., B )8 ... 8, is ground. Therefore 
q 1  

since the head of C does not include any variables which are not in 
the body of C, then (A1 ,..., Am- lAm,Am+l ,..., Ak)O1 ... en = (G)B1 ... On is 

ground. Thus we have that the oomputed answer €1~...8, to P  v {G} is 

a ground substitution. This completes the proof. 

Theorem 3.13. Let P  be a ground definite program and G a 
definite goal. Then: 

(a)Each computed answer for u {G) is a correct answer for 

P U  { G I  
(b)Each correct answer for P  u (G) is a computed answer for 

P U  {GI  
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Proof. (a) follows directly from the soundness of SLD-Resolution 
theorem. (b) foll.ows from the completeness of SLD-Resolution 
theorem and from theorem 3.12 above. By the completeness of 
SLD-resolution theorem, for every correct answer 8 for P u {G), there 
exists a computed answer o for P u {G) and a substitution y such 
that 8 = oy. By theorem 3.12, a is ground. Therefore 8 = o and y is the 
identity substitution. 

Theorem 3.14. If P is a ground definite program and G is a 
definite goal and 8 is a correct answer to P u {G), then 8 is a ground 

substitution. 

Proof. This follows directly from theorem 3.12 and theorem 3.13 
above. 

We can now incorporate this result into our original definition for 
a correct answer to a Bayesian goal. 

Theorem 3.15. Let BP be a Bayesian program with base program 
BP', G be a Bayesian goal ?- AI ,...,Ak and E be the environment 

function for BP. Then ( 8 , ~ )  is a correct answer to BP u {G) iff: 

(1) 0 is a correct answer to BPI u {G) 
(2) E = E(G8) = E(A18) u E(A28) u . . . ~  E(Ak8) 

Proof .  This follows directly from the definition of a correct 
answer to BP u {G) and from the fact that BP' is a ground definite 

program and from theorem 3.14. 

Theorem 3.16. Let BP' be a Bayesian program and G a Bayesian 
goal. If ( 8 , ~ )  is a computed answer of BP u {G) then E = E(G0) where E 

is the environment function for BP. 

P r o o f .  We prove this by induction on the length n of the 
2 

SLD-refutation associated with a computed answer. We consider 
G' = ?-  A l ,  ..., An where G' is not necessarily a Bayesian goal as it 

may contain subgoals for predicates other than node predicates. We 
consider goals of this more general form since they occur in the 
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sequence of goals associated with an SLD-refutation for a Bayesian 
goal. Since G' is a more general goal type than a Bayesian goal, if the 
theorem holds for G' then it must also hold for Bayesian goals. 

Suppose first that n=l. This means that G' is a goal of the form 
?- A1 and BP has a ground unit clause of the form A. and A l e l  = A. 

Therefore E = Env(A). By the definition of Tp, the fixpoint function 
for BP, E(A) = Env(A). Therefore E = E(A) = E(G'0 

Now suppose that the result holds for computed answers derived 
from refutations of length n- 1. Let 0 . .,en be the mgu sequence of 

the SLD-refutation S for BP u {G'), C = A:- B1 ,..., B be the first input 
9 

clause and Am the selected atom of G'. Therefore the first derived 

goal of S is: 
GI1 = ?- (A1 ,..., Am- ,B ,..., Bq,Am+ ,..., An)O Since GI1 has a refutation 

length of n-1, then by the inductive hypothesis = E(Gfl 0' ) where 

0'= e2...en. Therefore E = Env(C0) u E(G' 0') where 0 = 0 0'. 

Substituting for GI1 we have that 

It remains to show that Env(CO)uE(BlO)u ... uE(BqO) = E(AmO). This 

is true by the. definition of Tp and the fact that Am 0:- B 1 B,.. .,B q0 is a 

ground instance of C.   his completes the proof. 

We can now assert that SLDB resolution is complete and sound. 

Theorem 3.17 Let BP be a Bayesian program and G a Bayesian 
goal. Then: 

(a)Each computed answer for BP u {G) is a correct answer for 
BP u {G)  

(b)Each correct answer for BP u {G) is a computed answer for 

P u  { G I  
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Proof. Let BPI be the base program for BP. We consider (a) first: 
By the definition of a computed answer and theorem 3.13 if ( 8 , ~ )  is a 
computed answer to BP u {G) then 8 is a computed answer to 
BP' u {G) which is also a correct answer to BP' u {G). By theorem 
3.16 we also have that E = E(G8). Therefore ( 8 , ~ )  is a correct answer 
t o B P u  {G). 

then 8 
answer 
BP' u 
for th 
BP u 

Now consider (b) above. If ( 8 , ~ )  is a correct answer for BP u {G) 
is a correct answer for BP' u {G) which is also a computed 
to BP' u {G). Therefore there must exist an SLD-refutation for 
{G) which results in 8. Therefore there must exist a computed E' 

is SLD-refutation such that ( 8 , ~ ' )  is a computed answer to 
{G). Therefore by theorem 3.16, E' = E(G8) which equals E by 

definition. Therefore (8,s) is a computed answer to BP u {G). 

SLDB resolution is also independent of the computation rule. 

Theorem 3.18. Let BP be a Bayesian program with base program 
BPI and G be a Bayesian goal. Suppose there is an SLD-refutation of 
BPI u {G) resulting in computed answer ( 8 , ~ )  to BP u {G). Then, for 

any computation rule R, there exists an SLD-refutation of BP' u {G} 
via R resulting in the same computed answer ( 8 , ~ )  to BP u {G). 

P r o o f .  Let BP' be the base program for BP. Since ( 8 , ~ )  is a 
computed answer for BP u {G) then 8 is a computed answer for 
BP' u {G) .  By the independence of computation rule theorem, for 

any computation rule R, there exists an SLD-refutation of BP' u {G) 
via R with R-computed answer 8 '  such that G8' is a variant of G8. 
There must also exist a computed E' for this SLD-refutation such that 
(@I,&') is a computed answer to BP u {G). Since G8 and GO' are ground 
then 8 = 8'. E' = E(G8') = E(G8) = E and (8 ' ,~ ' )  = ( 8 , ~ ) .  

3.4. Examples 

The advantage of Bayesian programs over Bayesian networks is 
that whereas Bayesian networks are propositional, Bayesian 
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programs contain logical variables, thereby enabling one clause to 
take the place of many ground propositions. Consider, for example, a 
Bayesian network family of nodes X,Y and Z where Z is 
deterministically 'caused' by X and Y according to the equation 
Z = X + Y. This is represented as: 

node-ZCZ t [-X t -XA, -Y t -YA]  ) :- node-X(X t -XA), 
node-Y (-Y t -Y A). 

family-Z(-Z,-X,-Y). 

In this example, it is assumed that the 'plus' predicate is defined 
with the 'correct' plus semantics. Every instance of the family-Z 
clause has the same associated condit ional  probability, 
P(-ZI-X,-Y) = 1. As a result, ground 'plus' instances are represented 
generatively rather than explicitly enumerated. 

Consider the case where X,Y,Z are boolean variables and usually 
Z = X AY when S = ok. This is represented as: 

node-Z(-Z t [-S c -SA,-X t -XA,-Y t -YAl ) :- 

node-X(-X t XA), 
I -  node-Y(-Y t -YA), 

node-S( -S t  -SA), 

family-ZLZ, -X, X-S) . 

In this example, it is assumed that the predicates 'and', 'nand' and 
'bool' are defined with the appropriate semantics. We can think of 
the Z node as a component in a model based diagnosis system. When 
the state S is ok, the component exhibits normal 'AND' behavior most  
of the time but not all of the time. The .05 probability summarizes 
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those outcomes for which the output of the 'and' component is faulty 
even though the 'and' component is healthy. This can occur, for 
example, if there is a short in the system that this component is a 
part of. In other words we allow for unmodeled causes of Z's value. 
In this way a complete diagnostic component model is constructed, 
something which is  not possible in conventional model based 
diagnosis. 

In effect, conventional model based diagnosis is implicitly based 
on the assumption that the component structure is fixed or given. 
This dramatically reduces the number of possibilities that need to be 
modeled. However, as a result we are not able to correctly diagnose 
failure modes which violate this assumption. In a Bayesian program 
we are able to entertain the possibility of this assumption not 
holding, without dramatically increasing modeling complexity. Rather 
than explicitly identifying additional 'causes' of the Z output, we 
simply model the ok-state component behavior as non-deterministic. 

The final clause is an example of a nil constraint on component 
behavior. When the component state is 'not ok' then for any given 
-X,-Y pair, the -2 value is just as likely TRUE as FALSE. In this case, 
when the component is broken the 

I - 

3.5. Comparison with Probabilistic 

In [ P o o ~ , ~  11 Poole describes 

component behavior is random. 

Horn Abduction 

a formalism, referred to as 
probabilistic Horn abduction, for representing Bayesian networks in 
a Horn clause logic. His formalism is similar to that described for 

i 
Bayesian programs, but different. 

A major difference is that Poole does not explicitly represent 
. Bayesian network extensions. As a result, Poole must introduce non- 

Horn clauses to ensure that no assumption (annotated clause) is 
counted more than once. With Bayesian programs we accomplish this 
through the explicit representation of node tail extensions and the 
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use of network consistent subgoals in both Bayesian goals and node 
predicate definitions. As a result non-Horn clauses are not needed. 

The semantics of Bayesian programs are also developed 
differently. Poole develops his formalism as a generalization of a 
simplified form of Theorist [Poole,87], a reasoning system for 
defaults and diagnosis. As a result his semantics is based on the 
notion of adding assumptions, which are equivocal and have 
associated probabilities, to unequivocally true clauses in order to 
construct a theory explaining a set of observations. Each theory thus 
constructed has its own least Herbrand model. Under probabilistic 
Horn abduction each such minimal model can be assigned a 
probability. We thus have a set of ranked possible worlds or minimal 
models to choose from. In contrast, with Bayesian programs we have 
a single least Herbrand model. Each element of the model is tagged 
with a probability representing the frequency with the atomic 
proposition occurs in the semantic domain. 

A final difference is that Poole's assumptions are by definition 
atoms. With Bayesian programs we can provide non-atomic 
definitions for annotated family and terminal node predicates. It is 
this feature that allows us to exploit the expressivity of predicate 
calculus over propositional calculus, in order to succinctly represent 
assumptiom which share the same associated probability. 



Chapter 4 
An Architecture for Abduction 

In this chapter we present a problem solving architecture for 
Bayesian programs which is based on De Kleer's focused consumer 
architecture [de Kleer,86c], [de Kleer,86d], [Forbus,88a] Following a 
description of the basic architecture, we show how it may be adapted 
to a problem solving architecture for Bayesian programs. 

4.1. Consumer Architecture 

De Kleer describes several variations of the Consumer 
Architecture all of which are based on an ATMS. Indeed, De Kleer 
also distinguishes between several ATMS variants. The main 
distinguishing feature of these architectures is the degree to which 
problem solving control is focused. In the following we do not 
distinguish between the different architectures. Rather, we describe 
a single architecture which is suited to our purposes. We adopt the 
labeling algorithm described in [de Kleer,88].We also explicitly 
extend De, Kleer's focusing mechanism to include label propagation. 
Although De Kleer suggests this approach in [Forbus,88a] it is not 
explicitly described. 

Figure 4.1 illustrates the three components which make up the 
Consurger architecture. The A TMS maintains the current state of the 
problem solving, and supports queries on this information. The 
Contro 11 e r focuses problem solving by establishing intermediate 
problem solving goals. The scheduler maintains an agenda of things 
to do, given the current problem solving state and the intermediate 
goals established by the controller. It executes items from this 
agenda until its agenda is complete, or an inconsistency is detected. 

- The Controller analyzes detected inconsistencies and revises the 
problem solving focus. 
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Scheduler r - 0  

Figure 4.1. Consumer Architecture. 

The ATMS maintains the problem solving state in the form of 
a s sumpt ions ,  d a t  urns and just if icat ions.  Assumptions represent 
choice points in a search space. Datums are propositions resulting 
from the execution of inferencing steps. Justifications relate inferred 
datums to the antecedents from which they were inferred. The 
scheduler's agenda items are called c o n s  um e r s  . The controller 
focuses problem solving by establishing one or more problem solving 
focus environrnent.~. A focus environment defines a conjunctive set 
of active problem solving choices or assumptions. The scheduler 
schedules for execution those consumers  which are activated by an 
established focus environment. Consumers, when executed, record 
their outcome by establishing new ATMS assumptions, datums and 
justifications. The ATMS supports queries on the results of problem 
solving for any one of the established focus environments. The ATMS 
supports datum sharing between focus environments by 

i 
maintaining a l a b e l  for each datum, associating i t  with the 
assumptions which logically entail it. 

We proceed to discuss each Consumer architecture level in detail 
beginning with the ATMS. 
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4.1.1. ATMS 

An ATMS node is a tuple with three parts. Using De Kleer's 
notation we represent an ATMS node as ydatum : < datum, label, 

justification set >. y, designates the node with datum x; however, the 

same designation is often used to refer to both the node and its 
datum. 

A datum is a proposition asserted by the consumer level during 
problem solving which the ATMS treats as atomic. Although from the 
problem solving point of view each datum may be a complex 
syntactic structure, the ATMS treats each datum as an atomic 
proposition. It has no access to problem solving semantics. 

A justification is a reasoning step asserted by the consumer level 
during problem solving. It is a propositional Horn clause of the form 
al"a2"..."an + c where al,a2, ..., an and c are ATMS nodes. The nodes 

a 1 ,a2,.  ..,an are referred to as the antecedent nodes. The node c is 

referred to as the consequent. 

A justification set for yc is a set of justifications each with the 

same consequent c. Since by definition a justification set is associated 
with a node c, and since each justification set member has the same 
consequent c, each justification in a justification set is represented 
simply by its set of antecedent nodes. As a result, the justification set 
can be interpreted as a disjunctive normal form expression which 
implies the node datum. For example, for  the node 

<x,label,{(al ,a2),(a3,a4)}> we have (al"a2) v (a3"a4) 3 x. 
i 

In a moment an assumption will be defined as a distinguished 
kind of ATMS node. For now it suffices to say that an assumption is a 
node which can be presumed true unless there is evidence to the 
contrary. 

An environment is a set of assumptions. 
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A label is a set of environments. The main role of the ATMS is the 
derivation of node labels. The environments of a node label imply 
the node datum. More precisely, let J be the current set of ATMS 
justifications. Then for each environment E of datum x's label we 
have that J l E  + x . A label can be interpreted as a disjunctive 

normal form expression which implies the node datum. For example, 
for the node <x,{{AI , A 2  } ,  { A 3  ,A4 } }, justification set> we have 

There are four node types corresponding to premises, 
assumptions, assumed nodes and derived nodes. A premise node has 
a justification with no antecedents. For example < p, { {  }},{()}> 

represents the premise p which is always true. 

An assumption is a node whose label contains an environment 
mentioning itself. 

An assumption whose label contains a singleton environment 
mentioning itself is called a primitive assumption.  The node 
<A, { {A} } ,{(A) ) > represents the primitive assumption A. A primitive 
assumption can be presumed true unless there is evidence to the 
contrary. 

A non-primitive assumption is referred to a d e p  e n d  e n t - 

assumption. The node <B, { { A,B } }, {(B, ...)} > is a dependent assumption. B 
can be presumed true provided that A is also presumed true, and 
that there is no evidence to the contrary. In effect B is an assumption 
whose existence depends on having already made assumption A. 

i An assumed node is neither a premise nor an assumption and has 
a justification mentioning an assumption. The assumed datum a 
which holds under assumption A is represented as <a, {{A}},{(A)}> . 

All other nodes are derived nodes. 

lThe symbol is used here to mean 'logically follows' 
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The distinguished node yl : < l, label, justification set > represents 

falsity. The environments of the label are called n o g o o d s .  Each 
nogood E represents an inconsistent conjunction of assumptions since 
we have J + E + false which is equivalent to J + TE. The label of yl 

is termed the nogood set. Consumers which detect inconsistent 
results indicate this to the ATMS by specifying justifications with yl 

as the consequent. 

Assumptions are often established as a set of disjunctive choices. 
For example, a subgoal may be unified with one of several clauses. If 
we associate each clause choice with a separate assumption we have 
a disjunctive set of assumptions. Precisely one of the assumptions 
must be true in any solution. 

In order to model disjunctive assumption sets, the ATMS allows 
negated assumptions to appear directly in justification antecedents. 
The negation of assumption A is a non-assumption node and is 
referred to as lA. this enables the disjunction A v B v C to be 
expressed as the justification 7A,lB ,lC + I. We can also express 

disjunctions for dependent assumptions. If the disjunction 
B 1 v B 2  v B3 depends on assumption A1 we assert:  
A 1 , B 1 , B 2 ,  -.l B3 + I ,  which is  logically equivalent to 
A 1  + B 1  v B 2  v B 3 .  - 

A oneof disjunction is a disjunctive set of assumptions for which 
precisely one assumption can be true. The ATMS represents oneof 
disjunctions as a disjunction in combination with additional nogood 
justifications, one for each pair of assumptions declared in the choose 
dssertion. For example, oneof(C , C 2 ,  C ) is represented as 

lC1,TC2,1C3 + I and CI ,C2 + I ,  C1,C3 + I, C2,C3 + I. The 

justifications used to represent a oneof disjunction for a given set of 
assumptions C, are referred to as the oneof justifications for set C. 

A focus environment is an environment established by the 
focusing level to focus both ATMS label derivation and consumer 
level consumer execution. 



An Architecture for Abduction 9 9 

An active environment is an environment which is a subset of a 
focus environment. 

An active nogood is a nogood which is a subset of a focus 
environment. 

A maximal consistent set of assumptions is  called an 
interpretation. An extension is a set of datums which are true under 
an interpretation. 

An active interpretation is an interpretation which is also a focus 
environment. Later we will see that in our use of the ATMS, 
whenever a new focus environment is first presented for consumer 
execution, it is also an interpretation. When problem solving is 
complete, each focus environment which remains is an active 
interpretation whose extension corresponds to a distinct solution. 

We are now in a position to completely characterize node labels. 
Let J be the set of all ATMS justifications and let {El,  ..., En} be a label 

for node n. The ATMS ensures that this label has the following 
properties1 : 

(1) [Soundness.] J 3 Ei + n for each Ei 

(2) [Consistency.] Each active Ei is not nogood. Moreover, the 

nogood set consists of all active nogoods which follow from J. - 

(3) [Completeness. ] each active interpretation in which n holds is 
a superset of some Ei 

(4) [Minimality.] No Ei is a proper subset of any other. 

i As a result of the above properties, the ATMS can determine the 
extension of any active interpretation. It is only necessary to 
examine each node to determine whether it has an environment 
which is a subset of the interpretation. 

The ATMS supports the following operations: 
(1) definition of a new premise 

l ~ i s t o r i c a l l ~ ,  these properties have been defined for an unfocused ATMS. Here 
we provide definitions for a focused system. 
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(2) definition of a new primitive assumption 
(3) definition of a new justification 
(4) establishment of a new focus environment 
(5) removal of a focus environment 
(6) general ATMS state queries 
(7) consumer installment 
(8) consumer removal 
(9) establishment of a class consumer 

The significance of consumer installment and removal are 
described in the next section. Of the above operations, most result in 
straight forward ATMS database changes or queries. The exceptions 
are operations three and four which trigger label propagation. 

Consider the case where a new justification is established. If the 
justification has a consequent which is not yet known to the ATMS, a 
new node is created for it and the consequent is copied into the 
datum slot. Referring to the node designated by the consequent, 
whether it be newly created or an already existing node, as N, the 
antecedents of the justification are copied into N's justification slot. 
The addition of the new justification triggers label propagation which 
maintains correct node labels by propagating incremental label 
changes. 
- 

At the heart of the algorithm is an operation called reduce.  Reduce 
takes an input set S of ATMS node labels. Each label in S is associated 
with a particular ATMS node. Reduce returns a label L. Reduce 
performs the following: 

[ REDUCE(S) -t L ] 

R1. If any label in S is the empty set, then return label L = { ). 
R2. Check each label for inactive environments. Mark each 

inactive environment as b l o c k e d  for the ATMS node 
associated with the environment's label. 

R3. Viewing the labels as propositional expressions in 
disjunctive normal form, compute a new label L by 
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* 
converting the expression A label  i to disjunctive normal 

i 

form where l a b e l *  is the i th label minus its blocked 

environments. 
R4. Remove inconsistent environments, that is, environments 

which are supersets of nogoods, from L. 
R5. Remove subsumed environments, that is, environments 

which are supersets of other environments in L, from L. 
R6. Return L. 

Let J be a newly added justification for node N. The ATMS 
executes the following steps: 

(I) [ Derive incremental change to N's label.] 
11. Form the set of labels associated with the J antecedent 

nodes 
12. REDUCE this set of labels to the incremental label L 

(A) [ Add L to N's label. ] 
Al.  Delete from L every environment which is a superset of an 

environment in N's label. 
A2. Delete from N's label every environment which is a 

superset of an environment in L. - 

A3. If L is the empty set then we are done, otherwise add 
remaining L environments to N's label. 

A4. If N is yl, each environment E of L is a nogood. Invoke 

nogood processing for E ( step (N) described below). We are 
done. 

AS. If N is not yL, then step (P) is executed for each node N' 

which is a consequent of a justification J' for which N is an 
antecedent. 

(P) [ Propagate L through J' to N' from N. ] 
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PI.  Let R be the set of J' antecedents minus {N). Considering L 
to be associated with N, form the set of labels consisting of L 
together with the labels associated with R nodes. 

P2. Reduce this set of labels to the incremental label L' 
P3. Invoke step (A) to add L' to the N' label. 

It remains to describe nogood processing. ( step A4 above). Let E 
be a newly discovered nogood. Nogood processing consists of the 
following: 

[N-D I 
N1. Sweep E and any superset from every node label. 
N2. For every assumption A E E for which lA appears in some 

justification invoke step (2) above to add E - {A) to l A ' s  
label. 

An example serves to illustrate the necessity of the second nogood 
processing step. Suppose we have A v B. This is represented as 
lA,lB + I. Suppose we also have the two nogoods {A,C) and {B,C). 

Intuitively, it is clear that {C) must also be a nogood since it cannot 
occur with either A or B and we know that at least one of A or B is 
true. Nogood processing produces <lA, { { C ) ) >, <lB, { { C ) ) >, and 
<7C,{ {A),{B) )> which, when propagated through the justification 
lA,lB + I, results in the required discovery of the new nogood {C). 

Nogood processing ensures that all  active nogoods are derived 
thereby guaranteeing label consistency. 

ATMS implementations typically perform label propagation very 
efficiently. The results of a simple label propagation is shown in 
figure 4.2. A is a datum with label {{a l ) ) ;  B is a datum with label 
{{a2,a3)),  and datum C has label {{a3),{a4)) .  These labels are 
propagated through justifications J1  and 52 to produce the label for 
datum D. 

When a new focus environment is established, the ATMS unblocks 
those blocked environments which are made active by the new focus 
environment. This i s  accomplished by unblocking active 
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Figure 4.2. Simple label propagation in an ATMS. 

environments and executing label propagation. The label propagation 
described above is only slightly modified to unblock additional 
environments as label propagation proceeds. In the following italics 
are used to identify the label propagation differences. 

The ATMS executes the following steps.: 

(S) Select an ATMS node N which has blocked active - 

environments. Set L = { ) 

(AU) [ Add L to N's label and unblock active environments. ] 
AU1. Delete from L every environment which- is a superset of 

an environment in N's label. 
AU2. Delete from N's label every environment which is a 

superset of an environment in L. 
AU3. Add remaining L environments to N's label. 
AU4. If N is yl, each environment E of L is a nogood. Invoke 

nogood processing for E (step (N)). We are done. 
- AU5. Unblock any blocked active environments in N's label and 

add to L. If L is the empty set then we are done. 
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U6. The step (PU) is executed for each node N' which is a 
consequent of a justification J' for which N is an antecedent. 

(PU) [ Propagate L through J' to N' from N and unblock active 
environments. ] 

PU1. Let R be the set of J' antecedents minus {N). Considering L to 
be associated with N, form the set of labels consisting of L 
together with the labels associated with R nodes. 

PU2. Reduce this set of labels to the incremental label L' 
PU3. Invoke step (AU) to add L' to the N' label and unblock active 

environments. 

(RR) Repeat from (S) until there are no more nodes with blocked 
active environments. 

4.1.2. Consumer Level 

The consumer level consists of consumers and a consumer 
scheduler. 

A consumer is very similar to an ATMS node with a single 
justification except that in place of a datum a consumer has a 
procedure or rule which can be applied to the antecedent nodes in 

- order to derive new problem solving results. In effect, a consumer is 
an instance of a procedure whose argument bindings serve as 
connections to antecedent ATMS nodes. 

The process of establishing a consumer and its antecedent 
, connections is referred to as consumer installation. The ATMS treats 

the antecedent node, consumer relationship as a conventional 
justification with the consumer playing the role of the consequent. 
We refer to a consumer and its antecedents as a c o n s  u m  e r 
j u s t i f i ca t ion .  The ATMS maintains labels for consumers by 
propagating labels through consumer justifications in  the 
conventional way. An active consumer is one whose label contains at 
least one active environment. 
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Unlike ATMS nodes, consumers have only a single justification. 
Consumers cannot be used as antecedents in other justifications. 

Each consumer, when executed, establishes its results by 
communicating new justifications to the ATMS. Consumers may 
establish new justifications for any type of datum including I. Each  

new justification has precisely the same set of antecedents as the 
consumer itself. An exception is the case where a consumer installs a 
new assumption. In this case the new justification includes the new 
assumption node itself, as an additional antecedent. Consumers only 
execute once. They remove themselves immediately after they are 
executed. There is no need for a consumer to execute more than once 
as their results will have already been captured by the ATMS. 
Consumers may also install new consumers. 

It is also possible to define generic consumers whose antecedents 
are classes of nodes rather than specific nodes. A class is an ATMS 
construct used to represent a set of ATMS nodes of a particular type. 
For example we may represent all nodes with datums of the form 
Xlbinding as the X-variable class. With class consumers a class is 
specified for each consumer antecedent. A class consumer is a 
procedure which can be applied to any combination of antecedent 
nodes provided that each antecedent node is of the designated class. 

- Whereas a consumer is a procedure instance, a class consumer is a 
procedure. After a class consumer is registered with the ATMS, the 
ATMS ensures that a class consumer instance is attached to each 
existing or new combination of member nodes of the specified 
antecedent classes. Whenever a new member of a class is added to ' the ATMS database, the ATMS automatically checks whether new 
class consumer instances need to be installed. Once installed, there is" 
no distinguishing between class consumer instances and conventional 
consumers. Class consumer instances are, in fact, consumers. 

The consumer scheduler is activated whenever a new focus 
environment is established. The scheduler responds by executing 
active consumers. Consumer execution continues until either all 
active consumers have been successfully executed, or until a 
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consumer's execution uncovers an inconsistency (establishes a 
justification for I). 

We now examine the scheduler's strategy regarding which active 
consumer to execute next. If F1 , . . ,Fn are the current focus 

e n v i r o n m e n t s  a n d  P ( F i )  is  the powerset of Fi then 

S = P(F u P ( F 2 ) u  ..., u P ( F n )  is the set of all active environments. 

Each E E S occurs in zero or more consumer labels. We say that E 

act ivates  the consumers whose labels it occurs in. The scheduler 
selects consumers for execution indirectly. It selects an element of S 
and then executes the consumers which are activated by the selected 
environment. The scheduler selects elements of S in order of 
increasing environment size. Starting with the empty set, ever larger 
environments are considered, ending with the focus environments 
themselves. If we have the single focus environment, {Al,A2,A3}, the 

The above scheduling strategy is based on finding the most 
general (minimal) node labels as early as possible. In doing so we 
avoid superfluous label updating, and greater reuse of already 
derived results whenever a new focus environment is established. In 
the case of yl, more general labels result in more effective search 

- 
space pruning. 

4.1.3. Focusing Level 

) The focusing level consists of a controller whose basic role is to 
provide top level control over the problem solving. The set of 
assumptions encountered during problem solving form a search 
space of possible solutions. The controller moves the problem solving 
from point to point in this search space by establishing different 
focus environments. The controller must ensure that each search 
space point which is not ruled out by a nogood is considered a 
solution candidate, but that no point is visited more than once. We 
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can think of the controller as having an adaptive strategy for ranking 
search space points and for ensuring that both the ATMS and 
consumer levels are focused on the most highly ranked possibility. 

Before describing the controller's algorithm we introduce some 
definitions. 

The current focus environment is the most recently established 
focus environment. 

Recall that an interpretation is a maximal consistent set of 
assumptions. In computing solutions to problems, we extend focus 
environments until they are interpretations and there are no 
remaining active consumers. A focus environment satisfying these 
conditions is called a solution environment. Extensions to solution 
environments correspond to solutions. 

The aim of the controller is  to extend the current focus 
environment into a solution environment. The controller must 
subject each new focus environment to consumer execution in order 
to determine whether or not the current focus environment must be 
modified again, or whether it  is already a solution environment. 
When a solution environment is found, and if additional solutions are 
desired, the controller begins work on another focus environment, 

- leaving the previous one intact. Over time a number of solution 
environments are generated. 

The controller algorithm is described in terms of the following 
operations. 

(1) SETUP. The initial problem state and consumers are 
established with the ATMS. 

(2) FIND-NEXT-fe. A new current focus environment is  
established. 

(3)  FIND-NEXT-SOLUTION. A new solution environment is 
established. 

(4) FIND-SOLUTIONS. The desired number of solution 
environments are established. 
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The current focus environment is denoted by current. We write 
current = start  to refer to the startup condition where no focus 
environments have been established yet. We write current = end to 
refer to the terminating condition where no further solution 
environments are to be found. 

The controller executes the following: 
(C) C1.SETUP 

C2. current = start. 
C3. FIND-SOLUTIONS 

[ FIND_SOLUTIONS ] 
S 1. FINCIINCINEx7:-SOLUTIQN 
S2. if current = end return 
53. if desired number of solutions already found then return 
S4. repeat from step S1. 

[ FINDFINDNExTx?'SOLuT1ON ] 
N 1. FIND-NEXTfe 
N2. if current = end then return 
N3. invoke scheduler 
N5. if current is a solution environment then return. 
N6. repeat from step N1. 

For the moment we leave undefined the operations FIND-NEXT-fe - 
and SETUP, as well as the criteria for deciding what constitutes the 
desired number of solutions. These items depend on the particular 
problem that is being solved. Consider them as slots to be filled in 
converting the consumer architecture schema to an actual problem 

) solving architecture. 

4.2. Definite Programs 

The consumer architecture described above is a framework for a 
design. If we are to apply it to a particular problem it is necessary to 
-fill in the generic 'slots' of the framework with specific design 
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decisions. At the ATMS level the types of datums and classes must be 
specified. At the consumer level the types of consumers and 
consumer classes must be defined. At the focusing level we need to 
define the strategy for finding the next focusing environment. In this 
section we apply the consumer architecture to the problem of 
computing answers to definite program goals. 

Variables which appear in one or more goals of an SLD-refutation 
are referred to as active variables. For example, consider the query 
?-p(X,g(Y)), and the clause p(g(W),z) :- a(W),b(Z). If we resolve our 
query with this clause we obtain the new goal a(W),b(g(Y)) and 
binding Xlg(W). In this example variables X,Y and W are active 
variables. Variables X and Y appear in the first goal. Variable W 
appears in the second. Variable Z is inactive and does not appear in 
any goal. The binding Xlg(W) is termed an active variable binding. It 
is only necessary to keep track of bindings for active variables. We 
do not need to store the binding for variable Z. 

We make use of three kinds of datums, subgoal datums, variable 
datums and assumptions. A subgoal datum corresponds to a subgoal 
which must be proven true in order to complete a refutation. Subgoal 
datums are only defined for those refutation subgoals which have 
multiple clause choices. The set of clause choices for a subgoal with 

- predicate p, and a definite program P is the subset of P which 
defines p. We refer to subgoals with multiple clause choices as 
non-deterministic subgoals. Subgoals with a single clause choice are 
referred to as deterministic subgoals. In the above example p(X,g(Y)), 

a(W) and b(g(Y)) are possible subgoal datums, depending on whether 
) or not they are non-deterministic. 

Variable datums are used to record variable bindings for active 
variables. In the above example, Xlg(W) is established as a variable 
datum. The ATMS recognizes the set of all variable datum nodes for a 
particular active variable as a distinct variable class. 
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Assumptions are used to represent non-deterministic subgoal 
clause choices. Each clause choice is established as a distinct 
assumption. 

We often refer to nodes and justifications by the type of their 
datum or consequent. For example, we refer to subgoal nodes, 
variable nodes and assumption nodes. We also refer to s u b g o a l  
justifications, variable justifications and assumption justifications. A 
justification for I is referred to as a nogood justification. 

At the consumer level we make use of resolution consumers and 
unification class consumers. 

Each resolution consumer is attached to a non-deterministic 
subgoal S and an assumption corresponding to one of the clause 
choices of S. When a resolution consumer is executed it performs the 
following sequence of steps. Let S be the consumer's antecedent 
subgoal, and C be the program clause associated with its antecedent 
assumption. 

[Make a non-deterministic choice C for subgoal S] 
(1 )  Interpreting G as the goal :- S, derive G' from G and C using 

mgu 8. 

(2) If unification fails establish a nogood justification. Remove 
consumer and return 

[Resolve deterministic subgoals of G'. Establish variable bindings 
in final 81 

(1) Select a deterministic subgoal D from G'. 
(2) Derive new G' from G' and clause associated with D using 

mgu 8'. 

(3) If unification fails establish a nogood justification. Remove 
consumer and return 

(4) Derive new 8 from 8 composition 8'. 

(5) Repeat from step ( 1 )  until resulting G' contains only non- 
deterministic subgoals. 
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(6) Establish a variable justification for each active variable 
binding in final 8. 

[ Establish new active variables for final G'] 
(1) Each variable appearing in final G' which has not yet been 

established as an active variable is a new active variable. 
Establish each such variable as an active variable by 
establishing a unification class consumer for the variable. 

[ Establish new non-deterministic subgoals for final G' ] 

(1) Remove a non-deterministic subgoal N from G'. 
(2) Establish a subgoal justification for N. 
(3) Establish an assumption justification for each of N's clause 

choices. 
(4) Establish oneof justifications for the complete set of these 

choice assumptions for N. 
(5) Attach a new resolution consumer to each pairing of N with 

one of its clause choice assumptions. 
(6) Repeat from step (1) until there are no more members of G'. 

[ We are done ] 
(1) Remove consumer 
(2) Return 

- 
Recall that all justifications installed by a consumer have the same 

antecedents as the consumer itself except that assumption 
justifications also have themselves as an antecedent. Resolution 
consumers deviate from this practise somewhat in the case of 
assumption justifications. Resolution consumers install subgoal 
justifications, and then attach assumptions to subgoals. Each 
assumption justification has exactly two antecedents, itself and the 
subgoal for which it is a clause choice to. As a result, each subgoal 
node is the antecedent of its own clause choices. We can think of 
these assumption nodes as belonging to their antecedent subgoal 
node. We refer to these assumption nodes as subgoal assumptions. 

' Logically, we can think of the resolution consumer as attaching a 
choice consumer to each new subgoal which immediately installs the 
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subgoal's assumptions. The situation is illustrated in figure 4.3. 
Justifications for variable nodes and subgoal nodes are established 
with the resolution consumer's antecedents in the conventional way. 

A unification class consumer is defined for each active variable. A 
unification class consumer for active variable X has two antecedents. 
The class of variable X is the designated class of both antecedents. By 
establishing a unification class consumer for each active variable, we 
automatically cause a unification class consumer instance, referred to 
as a unification consumer, to be attached to each pair of distinct X 
variable nodes. When a unification consumer is executed, it performs 
the following: 

[ Unify antecedent variable bindings ] 

(1) Unify the first antecedent variable binding with the second. 
(2) If unification fails establish a nogood justification. Remove 

consumer and return 
(3) Otherwise, establish variable justifications to record the 

results of the unification. 
(4) Remove consumer (instance) and return 

As an example consider the definite program goal, 
?- A(X,f(Y)),B(X). Let both subgoals be non-deterministic subgoals, 

- each with two defining clauses. Let the first clause choices for 
subgoals A and B be: 

Figure 4.3 illustrates some of the justifications installed by 
consumers during problem solving. In the figure, subgoal, variable, 
and assumption datums are represented by rectangles, circles and 

. diamonds respectively. In this case problem solving has uncovered 
the nogood (A1,Bl).  For clarity, figure 4.3 does not show the oneof 
justifications installed for each subgoal's clause choices. For example, 

, the following justifications are installed for Cl,C2. 
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c o , 4  1 , 4 2  + 1. 

Cl,C2 + 1. 
- 

These justifications establish Cl ,C2  as a conditional oneof 
disjunction. As long as C(V) holds, then precisely oneof its clause 
choices must be true. Since the label of C(V) is {{Al } }, the occurrence 
of the Cl ,C2 oneof disjunction depends on having first made 

) assumption A l .  

At the focusing level we need to provide procedures for SETUP 
and FIND-NEXT-fe, and we need to describe criteria for deciding 
when enough solutions have been found. 

The initial problem state is set up by establishing a set of 
' premises which describe the goal to which we require an answer. In 

. effect our basic premise is that the goal does have a computed 
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answer. Discovering that this premise is not true amounts to finding 
that the empty set is a nogood. If this ever occurs, problem solving 
will halt as required. Setting up the initial problem state involves 
many of the same steps as resolution consumer execution. In the 
following, previously described resolution consumer steps are 
surrounded by curly brackets. 

[ SETUP ] 

[Set up all variables appearing in goal as active variables. ] 
(1) Establish a unification class consumer for each variable 

appearing in the goal. 

[Set up to execute resolution consumer steps] 
(1) G' = goal 
(2) 8 = identity substitution 

(3) treat consumer antecedents as the empty set. As a result, 
variable and subgoal justifications established by the 
following resolution consumer steps create premises. 
Assumption justifications create primitive assumptions. 

{ Resolve deterministic subgoals of G'. Establish variable bindings 
in final 8. } 

{ Establish new active variables for final G'. } 

{ Establish new non-deterministic subgoals for final G'} 

We turn now to describing FIND-NEXT-fe. In moving through the 
search space, the basic strategy of chronological backtracking is 

) adopted. Whenever an inconsistency is encountered, we simply 
change the most recent choice and try again. Whenever we find that 
no choices from a oneof set lead to a solution, we back up to the most 

. recent oneof set with untried choices. 

This approach has been generalized and made more effective by 
, RMS-based backtracking algorithms [Bruynooghe,84], [Cox,84], 

[Drakos,88], [Havens,91], [You,89]. In these algorithms, whenever a 
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nogood is encountered the most recent choice which also contributed 
to the nogood is changed. The situation where all choices of a oneof 
set are exhausted results in a new nogood containing those earlier 
choices which lead to this situation. We adopt the same approach and 
adapt it to the ATMS-based consumer architecture. 

Each subgoal node is associated with the chronological time of its 
creation by the ATMS. This forms a total ordering of all subgoal 
nodes. Since each subgoal has an associated oneof assumption set, 
then we can consider chronological time as providing a total 
ordering of subgoal assumption sets. This total ordering is, of course, 
consistent with the partial ordering defined by logical subgoal 
dependencies. Since focus environments do not contain more than 
one assumption from the same subgoal assumption set, then all 
assumptions in any focus environment are totally ordered by the 
times associated with their assumption sets. 

When a single nogood makes the current focus environment 
inconsistent, we replace the most recent assumption in the nogood 
with an untried assumption from its assumption set. The case where 
all assumptions from the assumption set have been tried, and all 
introduce nogoods, leads to a new nogood containing earlier 
assumptions which lead to this situation. In this case we change 

- assumptions by considering the nogoods one at a time in a particular 
order. We consider the nogood consisting of assumptions which are 
all earlier than the most recent assumption of any other nogood first. 
This is analogous to backing up to the most recent assumption set for 
which there remain untried assumptions. 

Under this backtracking strategy, the ranking of solution 
environments is arbitrary and does not draw upon problem domain 
semantics. The controller does however ensure completeness. 

We now examine the mechanism by which new nogoods arise 
when all assumptions from an assumption set are exhausted. 
Consider what happens when nogood A1,Bl,Cl is uncovered. Here we 

assume that AI ,B I ,C I correspond to assumptions for subgoals A,B,C 
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respectively. We also assume that the ordering of these subgoals is 
A < B < C. The ATMS' NOGOOD procedure records {Bl ,Cl  } as an 

environment in -A 1 's label. Similarly, {Al ,C } is recorded for lB 1 ; 
{ A I , B 1 } is recorded for 7 C . The controller then changes the most 

recent assumption of Al , B 1 , C . Suppose it tries the combination 

A 1 ,B 1 ,C2 next. Of the three new environments established for nodes 

lA ,-,B ,'C 1, only the {Al ,B 1 } environment for 4 remains active. 

We refer to this environment as El as it  serves to justify the 

retraction of C1. Note that El is made up of the other assumptions in 

the initial nogood, all of which are earlier than C. In exhausting each 
of the C choices, an active environment Ei is created for each Ci. The 

ATMS automatically propagates these environments through the 
oneof justification lC1,1C2,... -, I. The result is a new nogood made 
up of the union of the E i t s  This new nogood consists entirely of 

assumptions which are earlier than C. 

Before describing the algorithm for FIND-NEXT-fe in detail it is 
necessary to introduce some definitions. 

A left out subgoal is a subgoal node which: 
(1) has a label containing an environment which is a subset of the 

current focus environment. 
, (2) does not have any of its subgoal assumptions included in the 

current focus environment. 

A solution assumption is introduced after a new solution 
environment is found. It is the assumption that there exists another 

) solution which is distinct from any solution found thus far. In most 
prolog implementations additional solutions are found by treating 
the current solution as a nogood. Solution assumptions enable 
problem solving to continue without invalidating the solutions found 
thus far. Thei-e is at most one solution assumption per focus 
environment. By definition it is considered the oldest assumption in 

, the focus environment. 
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Strictly speaking, we do not consider solution assumptions to be a 
part of solution environments, however, when the distinction is not 
important we sometimes refer to focus environments formed from a 
solution environment u {S}  where S is a solution assumption, as a 
solution environment. 

The algorithm for FIND-NEXT-fe is described in terms of the 
following operations. 

(1) REPLACE(fe) . The current focus environment is replaced with 
the new focus environment fe, which becomes the new current 
focus environment. This operation causes label propagation 
which may result in new active nogoods. 

(2) NEW(fe). A new focus environment, fe, is established. It 
becomes the new current focus environment. This operation 
causes label propagation which may result in new active 
nogoods. 

(3) EXTEND. This operation is invoked when the current focus 
. The current focus 

is bigger by one 

ingle backtrack step. 

environment is consistent but not maximal 
environment is replaced with one which 
assumption. 

(4) BACKTRACK. This operation executes a s 
The current focus environment is replaced. 

(5) NEXT. This operation is invoked when the current focus 
environment is a solution environment. A new solution 
assumption is established. The new solution assumption is used 
to invalidate the current focus environment. 

We follow the conventions established earlier. The current focus 
environment is denoted by current .  We write current = start to refer 
to the startup condition where no focus environments have been 
established yet. We write current = end to refer to the terminating 
condition where no further solution environments are to be found. 
We detect this by testing for a nogood consisting of either 0 or {S}  
where S is a solution assumption. 

[ NEW(fe) I 
(1) establish fe as a new focus environment. 
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[ REPLACE(fe) ] 
(1) remove current as a focus environment. 
(2) establish fe as a new focus environment. 

[ J x l x N D  I 
(1) fe = current 
(2) select a left out subgoal. 
(3) add one of selected subgoal's assumptions to fe while 

ensuring that fe remains consistent. Note that we can always 
accomplish this as long as curren t  is consistent to begin 
with. 

(4) REPLACE(fe) 

[ BACKTRACK ] 
(1) fetch the set S of nogoods which make current inconsistent 
(2) select from S the nogood N with the earliest most recent 

assumption. 
(3) fe = current.  
(4) let A be the most recent assumption in N. Replace A in fe 

with an assumption from A's oneof set which is consistent 
with the earlier assumptions in fe. Note that we can always 
accomplish this as long as N is the nogood with the earliest 
most recent assumption. 

(5) remove any assumption from fe which depends on A 
(6) REPLACE(fe). 

[ N3XT I 
(1) Form the set A = {AO,A 1 ,...,An of solution environments 

discovered so far. In this case we strip off solution 
assumptions from each Ai. Current corresponds to the final 

solution environment An. 

(2) Form the set S = {Sl ,..., Sn} of solution assumptions defined 

so far. Note that A. does not have an associated solution 

assumption. 
(3) Define the new solution assumption Sn+l  

(4) install Sn+l, Ai + I for each 0 2 i r n 
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(5) install Sn+l,  Si + I for each 15 i S n 

(61 NEW( { S,+l 1 u An ). 

[ FIND-NEXT-fe 1 
CASE 
{ current = start 

NEW(0) 

{ current = end 
r e tu rn  

{ current = a solution environment } 

NEXT 
EMXlASE 
UNTIL current is consistent and no more left out subgoals 

CASE 
{ current is consistent } 

EXTEND 
{ no more solutions } 

REPLACE(end) 
Return 

{ -end and current is not consistent } 
BACKTRACK 

ENDCASE 
ENDUNTIL 
Return 

It remains to define the controller's criteria for deciding when 

1 
enough solutions have been obtained. Since, in this case, solution 
environment ranking is arbitrary, all solution environments are 
equally good from a domain semantics point of view. As a result, the 
most useful mechanism is probably an interactive one. The 
interactive user can simply indicate when enough solutions have 
been obtained. 

Having introduced an interactive user, it is useful to exploit the 
multiple solution architecture by allowing the interactive user to 
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incrementally add to the goal that we are computing solutions to. For 
instance, the user may wish to add new conjunctive subgoals, or to 
provide bindings to goal variables. As the case of new conjunctive 
subgoals requires slightly more elaborate control we illustrate the 
principle by simply allowing the user to specify goal variable 
bindings. The following is a updated version of the top level control 
exercised by the controller. We also repeat the earlier 
FIND-SOLUTIONS procedure for easy reference. 

[ TOP I 
C1. SETUP 
C2. current = start. 
C3. FIND-SOLUTIONS 
C4. If no solutions found then finished 
C5. If no further goal refinements then finished 
C6. REFINE 
C7. Repeat from C3. 

[ FIND-SOLUTIONS ] 

S 1. FIND~NEXT~SOLUTION 
S2. if current = end return 
S3. if desired number of solutions already found then return 
S4. repeat from step S1. 

/ 

Step S3 is an interactive step. FIND-SOLUTIONS will generate as 
many solutions as requested by the interactive user at which point 
control returns to TOP. Step C5 enables the user to incrementally 
refine the original goal. The REFINE operation of step C6 

) communicates the changed goal to the ATMS. As a result some 
previously computed solution environments may no longer 
correspond to goal solutions. These solution environments are 
dropped from the list of focus environments maintained by the 
controller. Finally, normal problem solving resumes with 
FIND-SOLUTIONS. As usual the current focus environment will be 
modified in an attempt to generate the next solution environment. 

The REFINE procedure is as follows. 



An Architecture for Abduction 1 2  1 

[ REFINE ] 
(1) Establish new goal bindings as premises. This may result in 

label propagation. It will also result in the creation of new 
unification consumers. 

(2) Invoke scheduler to execute the new consumers. 
(3) Remove any focus environments that have become 

inconsistent as a result. 

In principle it is not difficult to provide for the addition of new 
conjunctive subgoals as well as bindings to goal variables. The 
controller invokes the SETUP procedure on the new subgoals. If this 
results in new non-deterministic subgoals then the controller marks 
all previously discovered solution environments which remain 
consistent as partial solution environments. The very first partial 
solution environment becomes the new current focus environment. 
Now when the controller returns to finding solutions it attempts to 
extend the first partial solution environment into a new solution 
environment. Whenever one partial solution environment becomes 
inconsistent the controller skips ahead to the next partial solution 
environment. Eventually the controller is left with only complete 
solution environments once again. 

This goal revision mechanism enables the interactive user to 
compare multiple solutions, and to incrementally apply filtering 
conditions to reduce them in number. This is a process which occurs 
naturally in abductive reasoning problems. 

) 4.3. Comparison with Intelligent Backtracking 

In this section we briefly compare the backtracking approach 
described above, which we refer to as ATMS-based backtracking, 
with various intelligent backtracking schemes [Bruynooghe,84], 
[Cox,84], [Drakos,88], [Havens,9 11, [You,89] for Prolog. For the most 
part we make this comparison at an abstract design level rather than 
at an implementation level. 
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Perhaps the most significant difference is that whereas intelligent 
backtracking schemes are based on a single problem solving context, 
ATMS-based backtracking supports multiple contexts. As discpssed 
above multiple context problem solving supports the generation and 
comparison of multiple solutions. Moreover, a goal can be 
interactively refined and the changes applied to all previously 
discovered solutions. While single context systems provide some 
mechanisms for generating multiple solutions, they do not maintain 
dependency information for any but the latest partial solution. Nor 
do they support mechanisms for maintaining an ongoing relationship 
between several solutions and a changing goal. The consumer 
architecture described above is explicitly based on supporting and 
maintaining this relationship. 

Another difference between the two approaches is that whereas 
intelligent backtracking schemes discard datums and nogoods which 
are of limited use, ATMS-based backtracking, as described above, 
never discards any information that is registered with the ATMS. The 
rationale for discarding information is based on a practical tradeoff 
between search space reduction and datum reuse on the one hand, 
and the space and storage overheads which perfect search space 
reduction and datum reuse require. Many of these tradeoffs are tied 
to the efficient stack-based memory allocation scheme used in most 

' Prolog implementations. 

We point out that this is not a fundamental difference between 
the two approaches. It is not difficult to modify ATMS-based 
backtracking to discard essentially the same information as the 
intelligent backtracking schemes. For example, one simple 
mechanism is for the ATMS to purge all inactive environments from 
labels. Any node whose label becomes the empty set as a result, is 
discarded. As nodes disappear so do any consumers which are 
attached to them. Resolution consumers are retained as long as they 
are attached to an active subgoal, and are reexecuted each time they 
are activated. The environment purging mechanism deletes nogoods 
from the nogood set while preserving a record of those nogoods that 
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are needed in order to prevent the same choice being tried more 
than once. For instance, if choice B 1 in combination with an earlier 
choice A1 is found to be nogood then our conventional ATMS-based 
backtracking system creates the justification A1 + 7B1. This results 
in the active environment { A l )  for node TB1 even after we have 
modified the B choice to B2. This active label for - ,B1 acts to record 
the fact that B1 cannot be retried as long as A1 remains in the focus 
environment. This mechanism is analogous to that found in 
intelligent backtracking schemes. Like intelligent backtracking, this 
modified approach ensures no search space point is visited more 
than once while skipping over portions of the search space. On the 
other hand some nogoods which are discarded may end up being 
discovered more than once. 

It would seem that the above modified ATMS scheme makes the 
same tradeoffs as intelligent backtracking while retaining the 
advantages of multiple context problem solving. This is not quite the 
case, however, since intelligent backtracking implementations often 
tie their tradeoffs explicitly to their stack-based architecture.The 
stack-based architecture is not suited to multiple context problem 
solving, nor is it suited to probabilistic best-first type search of the 
kind discussed in the next section. We argue that abductive problem 
solving is especially suitable to probabilistic reasoning and multiple 
context problem solving. Under these circumstances, the basic 
practical tradeoffs of RMS-based search techniques for Prolog need to 
be reexamined. 

A more fundamental difference between the two approaches 
) concerns the way in which ATMS-based backtracking schedules 

consumers. This is best illustrated by an example. Consider the goal 
-?  pl(X),p2(X),p3(X). Let these three subgoals be non-deterministic 

. subgoals. We designate the first clause choice for subgoal pl(X) as 
Al ,  the first clause choice for p2(X) as B1, and the first clause choice 
for p3(X) as C1. The clauses associated with these choices are: 
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Given a focus environment of Al ,Bl ,Cl  the consumer scheduler 
schedules active consumer execution according to the environment 
sequence {Al},{Bl},{Cl},{Al,Bl},{Al,Cl},{Bl,Cl},{Al,Bl,Cl}. The 
resulting justifications are shown in figure 4.4 (a). The nogood 
{B 1 ,C 1 } is discovered after six reasoning steps. In contrast, intelligent 
backtracking schemes execute incremental reasoning steps. They 
begin by deriving new results under assumption A l .  Next 
assumption B1 is added to assumption A1 and new results obtained 
under these combined assumptions. Finally assumption C1 is added 
to A1 and B1  to  form the  environment  sequence 
A A B 1 A B 1 1  } Each new assumption triggers reasoning 
steps which make use of the results obtained under previous 
assumptions. The result is shown in figure 4.4 (b). The nogood 
(A1 ,B 1 ,C 1 } is discovered after three reasoning steps. 

In comparing the results of the two approaches we see that 
ATMS-based backtracking finds the most general form of the nogood, 
but executes more reasoning steps to find it. Here we have a basic 
tradeoff. More general nogoods lead directly to more efficient search 

/ space reduction. Hence we save on future reasoning steps but pay in 
current reasoning steps. 

We can characterize the difference between the labels derived by 
the two approaches. The labels computed by intelligent backtracking 
reflect the order in which subgoal choices are made during problem 
solving. If the choices are made in a different order, the label 
environments may be in a more general form. In the example, if we 
choose B1 first, followed by C1, we discover the more general nogood 
{B 1,Cl) .  In contrast, ATMS backtracking computes labels which are 
independent of the order in which subgoal choices are made. This 
follows from the fact that every possible way of incrementally 
building the combination A1 ,B 1 ,C 1 is represented in the scheduler's 
environment sequence. The environment sequence includes 
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{A1 ) ,{A1 ,B 1 },{A1 ,B 1 ,C1) as a sub-sequence. It also includes sub- 
sequence {C 1 }, {B 1 ,Cl} ,  {A1 ,B 1 ,C1). The result is labels which are in 
their logically most general form and do not reflect arbitrary subgoal 
choice orderings. 

The tradeoff represented by order independent labels requires 
further study. At this point we simply point out the tradeoff and 
reflect on its relationship to a stack-based architecture. For example, 
a characteristic of intelligent backtracking's incremental approach is 
that variables become incrementally more specific as problem 
solving proceeds. Said differently, variable bindings form a total 
ordering of increasing specificity. In the example first we have Xlf(Y) 
then Yla. From the point of view of X it is bound to f(Y) first, then 
f(a). Compare this with ATMS-based backtracking where we have 
partially ordered bindings for X: Xlf(Y), Xlf(a) and Xlf(b). The 
incremental nature of intelligent backtracking is well suited to the 
stack-based architecture which incrementally extends and rolls back 
the problem solving state. Again, for abductive problem solving the 
tradeoff should be examined in a different light. 

The incremental single context nature of intelligent backtracking 
results in labels which consist of single environments only. With 
ATMS-based backtracking even if we maintain only a single context, 
we may have labels consisting of several disjunctive environments. 
This occurs for example in the case where choice A1 leads to the 
same X binding as choice B1 taken by itself. Intelligent backtracking 
systems actually maintain a datum environment rather than a datum 
label. 
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(a) Order-independent Reasoning 

(b) Order-dependent Reasoning 

Figure 4.4. ATMS-based backtracking derives order-independent 
labels. 
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Finally, we point out that the order-independent approach of 
ATMS-based backtracking makes it  easier to reuse datums when 
focus environments are changed. In the example, consider the case 
where we wish to change the initial assumption A l .  In intelligent 
backtracking this is not easy as the resolution step for p2(X), 
resulting in the justification for Yla, is based on the results of Al .  For 
ATMS-based backtracking, the results of the resolution step for p2(X) 
are available independent of assumption Al .  Hence this earlier result 
is readily reused. Again, clause reuse is not a consideration for 
conventional intelligent backtracking systems, which rely on the 
stack mechanism to roll back problem solving to the point where the 
choice being changed was made, in the process discarding results 
that could, in principle, be reused. 

4.4. Bayesian Programs 

In this section we examine how the consumer architecture may be 
applied to the problem of computing answers to Bayesian program 
goals. Our approach is to extend the definite program design of the 
previous section. 

Consider the Bayesian network shown in figure 4.5. The Bayesian 
program BP for this network contains the following node predicate 

/ 

definitions for non-terminal nodes. 
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Figure 4.5 A Simple Bayesian Network 

We refer to the family predicates of a Bayesian program, together 
with node predicates for terminal nodes as characteristic predicates. 
Subgoals for these predicates are referred to as c h a ra  c t e r i s  t i c  
s u bg oa  1 s . In the above example the characteristic predicates are 
family-B, family-C, family-D, and node-A. We refer to predicates 
with annotated clauses in their definitions as annotated predicates. 
Subgoals for these predicates are referred to as annotated subgoals. 
Annotated predicates are always characteristic predicates. 

/ 

Consider the Bayesian goal G, ?- node-D(-X). In the preceding 
section for definite programs, we defined a SETUP procedure which 
executes as many deterministic SLD derivation steps as possible, 
leaving only non-deterministic subgoals. If we execute the SETUP 

I procedure for G we end up with the following set of 
non-deterministic subgoals, and binding for -X. 
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We are left with a characteristic subgoal for each node in the 
original Bayesian Network. It is not difficult to establish that this is 
true in general. For the Bayesian goal G, based on subgoals for nodes 
Nl ,N2,  ..., Nn, the SETUP step results in a single characteristic subgoal 

for each node in the set prev(Nl) u prev(N2) u ... u prev(Nn). 

Typically, a subset of these characteristic subgoals are annotated 
subgoals. 

Note that the same characteristic subgoal may be derived by 
SETUP more than once. In the above example node-A(-A) will be 
derived twice, once as node-B is resolved, and again as node-C is 
resolved. Our use of shared variables to represent most recent 
ancestors in Bayesian goals ensures that each occurrence of the 
node-A subgoal has identical arguments. Since we are only 
interested in the final s e t  of non-deterministic subgoals, the 
redundant subgoal is removed from further consideration. This is 
implicit in the operation of the ATMS which checks whether the 
consequent of each new justification is a new datum or not. In this 
case, since SETUP establishes premises, or justifications without 
antecedents, the ATMS simply ignores all but the first attempt to 
establish a premise. This simple mechanism acts to ensure that the 
cost (defined below) of an assumption is not counted more than once. 

Consider the case where a proper subset of the characteristic goals 
established by SETUP consists of annotated subgoals. As we have 
shown previously, each clause choice for an annotated subgoal 
contributes a probability factor to the probability associated with the 
final computed answer, The probability of the final computed answer 
consists of the product of these clause probabilities. If our objective 
is to find the most likely answer first, then we wish to find the 
answer which maximizes the final probability. This suggests an 
approach based on a best-first-search. We associate a cost with each 
annotated clause selection, cost = log (UPc) = -logPC where PC is the 

probability associated with clause c. This definition has the following 
desirable properties. Cost equals zero for Pc=l .  Cost increases 

monotonically to infinity as PC is changed monotonically towards 
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PC = 0. We have Costl + Cost2 = -(logP1 + logP2) which equals 

- l o g P  P 2 .  Thus we can add individual clause costs together to 

obtain the combined cost of having made a particular set of clause 
choices. We can now equivalently redefine our objective in terms of 
costs rather than probabilities. Our objective is to find the answer 
which minimizes the final cost. 

Note that not all characteristic subgoals are necessarily annotated 
subgoals. The clause choices of non-annotated characteristic subgoals 
have an effective cost of zero. The appearance of both zero cost 
subgoals and non-zero cost subgoals suggests a searching strategy 
which combines both backtracking and best-first-search techniques. 

As described earlier, we may provide intensional definitions for 
characteristic predicates. For example, We may have: 

During problem solving, the first choice may be taken. This choice 
comes at the cost of -log(.8) and leaves us with the unannotated 
subgoal pl(-d,-b). Note that the p l  subgoal's choices correspond to 
assumptions which depend on the earlier clause choice for the 
family-D subgoal. Here we see that generative definitions for 

/ 

characteristic predicates result in zero-cost subgoals, whose choices 
depend on earlier annotated subgoal choices. Again, the combination 
of zero cost subgoals and non-zero cost subgoals suggests that we 
combine best-first-search with backtracking. Note, however, that the 

1 situation is simplified by the fact that whereas zero cost choices may 
depend on non-zero cost choices, the reverse is never true. 

We are now in a position to extend the previous design for 
- definite programs. The SETUP procedure remains unchanged. We 

extend the FIND-NEXT-fe procedure to provide a best-first-search 
over annotated subgoal choices. First, some definitions are presented. 
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An annota ted  assumpt ion is an assumption belonging to an 
annotated subgoal. Note that an annotated assumption may have zero 
cost. Th i s  corresponds to the case where a particular assumption of 
an annotated subgoal has zero cost. Other choices for the subgoal will 
have non-zero cost. 

An unannotated assumption is an assumption belonging to an 
unannotated subgoal. 

We consider the current focus environment to be made up of 
three components: 

(1) Optionally, a solution assumption. 
(2) A set, designated as C1, of annotated assumptions. 

(3) A set, designated as C2, of unannotated assumptions. 

We adopt the chronological ordering of the backtracking algorithm 
described earlier. By definition, for any focus environment, we have 
that: 

(1) The solution assumption, if it exists, is the oldest assumption. 
(2) All the annotated assumptions are older than the unannotated 

assumptions. 

We say that C I  is complete if there are no left out annotated 

' subgoals. 

We say that C 2  is complete if there are no left out unannotated 

subgoals. 

-l 
We say that current is complete if both C1 and C2 are complete. 

FIND-NEXT-fe establishes a complete current focus environment 
to serve as the basis for further problem solving. Initially, a best- 
first search (procedure BFS) establishes a complete C1. FIND-NEXT-fe 

then extends the current focus environment to include a complete 
C2. When inconsistencies are encountered, FIND-NEXT-fe backtracks 

* 

over the C2 assumption space. Whenever forced to back up into the 

annotated assumption space, BFS is invoked to reestablish a new 
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complete C1. The terminating condition occurs whenever the solution 

assumption itself comes into question. 

[ FIND-NEXT-fe ] 

CASE 
{ current = start } 

BFS 
{ current = end } 

r e tu rn  
{ current = a solution environment } 

NEXT 
ENDCASE 
UNTIL current is consistent and complete 

CASE 
{ current is consistent } 

EXTEND 
{ no more solutions } 

REPLACE(end) 
Return 

{ -end and C1 is consistent and C2 is not consistent } 

BACKTRACK 
{ Tend and C1 is not consistent } 

set fe2 = C2 

BFS 
If current = end the return 
remove from fe2 any assumptions which depend on 
assumptions no longer included in current.  
REPLACE-C2(fe2) 

ENDCASE 
ENDUNTIL 
Return 

Note that REPLACE-C2 is similar to REPLACE except that it only 
-replaces C2 assumptions of the current focus environment. 
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The procedure BFS does a best-first search over the annotated 
assumption space. The complete set of annotated subgoals are 
established by SETUP. The time of subgoal creation is once again used 
to provide a total ordering of these subgoals. We can therefore talk of 
the subgoals which precede and follow a particular subgoal. 

The best-first search maintains a tree data structure representing 
the current state of the best-first search over the annotated 
assumption space. This tree is referred to as SS (Search Space). 
Except for the root node, each node in SS represents an annotated 
assumption. The root node represents the situation where no 
annotated assumptions have been made. If node N represents an 
assumption for an annotated subgoal SG, then its children correspond 
to the clause choices of the annotated subgoal which follows SG. The 
children of the root node correspond to the clause choices of the very 
first subgoal. For each node, the path back to the root node 
represents a distinct combination of assumptions. As we move ' from 
root to leaf node we encounter assumptions from each annotated 
subgoal in order of subgoal creation. Leaf nodes correspond to 
assumptions for the very last annotated subgoal. Figure 4.6 shows an 
example of a simple SS tree. In this example there are two 
annotated subgoals, A and B. There are three clause choices for 

' subgoal A and two for subgoal B. 

A path from the SS root node to a leaf is called a complete branch. 
Each complete branch corresponds to a complete C1. A complete 

branch which, when established as C1, does not activate any nogoods, 

is termed a consistent complete branch. 

A path from the SS root node to a non-leaf is called a partial  
branch .  A partial branch which when established as C1, does not 

. activate any nogoods, is termed a consistent partial branch. 
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Figure 4.6. A simple SS tree 

Starting at the root node the best-first procedure incrementally 
builds a path to a leaf node. At each step it extends its best partial 
branch by one assumption. If successful, this process results in a 
least-cost consistent complete branch. To ease memory requirements, 
SS branches are expanded only as they are deemed worth exploring. 

C 1 is kept in step with the best-first search. As assumptions are 

added or subtracted, C1 is updated. Whenever an assumption is 

added to C1, the ATMS is queried for active nogoods. Each SS branch 

which activates a nogood is deleted from further consideration. In 
this way SS is expanded as the search takes into consideration new 
search space points, and pruned as search space points are 

\ discovered to be nogood. 

Each node in SS is a tuple of the form: 

node(C,E,A,SG,Cs) where: 
C subgoal clause choice 
E estimated total cost of best solution which includes this SS 

branch 
A actual cost of choices made so  far (root node to here) 
SG next subgoal to make a clause choice for 
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Cs list of children nodes. Each child represents a choice for 
SG. 

We reference fields of a node by writing node.field. For example, 
node C is the subgoal clause choice associated with node. 

For the root node C = none and A=O by definition. 

Following conventional best-first search algorithms, when a node 
is created we derive E = A + H where H is a heuristic estimate of the 
least cost path from this node to an SS leaf. In other words, H is 
based on estimating the cost of making additional assumptions for 
each left out annotated subgoal. As long as the H estimate is less than 
or equal to the correct H value, we are guaranteed of finding the 
overall least cost combination first. A search algorithm is said to be 
admissible if it always produces an optimal solution provided that a 
solution exists at all. A heuristic used to estimate H is said to be an 
admissible heuristic if it is guaranteed to generate estimates which 
are less than or equal to correct H values. 

Each node is created when the partial branch ending with its 
parent node is first actively considered as part of a best complete 
branch. Each node is created with an empty children list. If, 

' subsequently, this node comes under active consideration, its node 
representation is expanded to include its children. From this point on, 
the node's E is updated to reflect the smallest E value of any of its 
children. 

> The BFS procedure simply sets up BEST-fe which does the real 
work. 

[ BFS I 
(1) If current = start then 

- NEW(0) 

- estimate H 
- SG = first (earliest) annotated subgoal 
- ROOT = node(SG,none,H,O,nil) 
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(2) BEST-fe(ROOT,-) + result 

(3) If result = never then REPLACE(end) 

Whenever BEST-fe(node,bound) is called, a partial branch ending 
in node's parent will have already been established for C1. BEST-fe 

searches for a path from n o d e  to a leaf such that the combined 
complete branch is consistent and has a total cost of less than or 
equal to bound .  BEST-fe returns one of {no,never,yes } A y e s 
indicates success. A never indicates that there are no complete 
branches which include the partial branch ending at this node. A n o  
indicates that while there remain untried paths to a leaf, all have an 
estimated cost greater than bound. 

[ BEST-fe(node,bound) ] 
(1) set fe = C1 

(2) remove any assumptions 2 n0de.C from fe 

(3) add n0de.C to fe 
(4) REPLACE-C 1 ( fe) 
(5) If C1 is inconsistent then delete all children (and their 

children etc.) and return never. 
(6) If C1 is complete then return yes. 

(7) If node.Cs = nil then EXPAND(node). 
/ 

(8) find node child, N1 with smallest E. 
(9) n0de.E = N1.E 
(10) If N1.E > bound then return no. 
(11) new-bound = bound 

\ 
(12) If there is one, get the N1 sibling, N2 with smallest E. If 

< 

N2.E < bound then new-bound = N2.E 
(13) BEST-fe(N1 ,new-bound) + result. 

(14) If result = yes then set n0de.E = N1.E and return yes. 
(15) If result = never then delete N1 and determine if there 

exists an active nogood whose most recent assumption is 
earlier then node.SG. If so then delete all node's children. 

(16) If node has no remaining children then return never. 
(17) repeat from step (8). 
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[ Expand(node) ] 

SG = node.SG 
Let R be the set of left out annotated subgoals minus {SG) 
Estimate H from R 
Form set S consisting of SG's clause choices. 
Select ch, an element' of S 
A = n0de.A + cost of ch 
E = A + H  
add new node(SG,ch,E,A,nil) to node.Cs list. 
repeat from (5) until S is empty 

It remains to specify an admissible heuristic for estimating H. One 
possibility is to always consider H = 0. This corresponds to the 
trivially admissible assumption that we will encounter no additional 
costs in extending a partial branch into a complete branch. While this 
heuristic is indeed admissible, it has no heuristic power and does not 
provide any guidance for the search. Ideally, we would like to use a 
heuristic which is as close as possible to the real H, while still being 
admissible. At this point, this is a topic for further research. 

Shimony and Charniak [Shimony,90] report on a best-first search 
algorithm for Bayesian network assignments. Their approach is based 

/ on mapping Bayesian networks into equivalent networks consisting 
of only nodes with boolean (ie: only 0 or 1) conditional probabilities. 
They then find a maximum a-posteriori assignment of values for the 
Bayesian network by using a best-first search on the new structure. 
The approach described here can be compared with that of Shimony 

) and Charniak where the propositions stored in the ATMS play a 
similar role to the boolean structure of Shimony and Charniak's 
intermediate network. They report reasonable results for the trivial 
admissible heuristic H=O and remark on their expectation of 

. improved results through the use of a better admissible heuristic. 
Along these lines it  may be possible to adapt the recent work of 
Henrion [Henrion,BO], [Henrion,91] to obtain bounds on the relative 
probability of partial diagnoses. 
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We can adopt the interactive mechanism described earlier for 
detecting when a sufficient number of solutions have been 
discovered. Alternatively, the probabilities associated with computed 
answers can be used. For example, we may continue problem solving 
until the probability associated with the next best answer is below 
some minimal fraction of the first best answer. There are many 
possible heuristics which could be used. De Kleer [de Kleer,89a] 
adopts this approach in his ATMS-based diagnosis system. 
Conventional second order predicates for Prolog such as bagof can 
be generalized to allow the programmer to define his own 
thresholding heuristics. 

The REFINE mechanism described earlier can also be used to 
incrementally refine Bayesian goals. This is particularly appropriate 
in interactive diagnosis systems which often recommend 
measurements or tests to reduce the number of likely explanations. 
New measurements are registered with our system as new variable 
binding premises. This triggers unification consumers which 
automatically eliminate diagnoses which are inconsistent with the 
new information. This, in turn, may affect our heuristic thresholding 
and result in a search for additional explanations. Here we see that 
goal refinement and heuristic second order predicates work together 

/ to provide flexible, high level support for interactive, abductive 
problem solving. 

The design described in this section computes Bayesian answers in 
best-first order. Moreover, it supports the ongoing interactive 
comparison of more than one answer, and incremental query 
refihement. The main cost of these capabilities is that of best-first 
search as compared with backtracking. The well known disadvantage 
of a best-first search over backtracking is that it requires additional 

. storage to maintain the search state (SS in our case). We keep this 
overhead to a minimum by resorting to backtracking for 
unannotated subgoals. A related disadvantage is the loss of the 
efficient stack-based memory management mechanism associated 
with Prolog backtracking implementations. 
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In the previous section we mentioned that most intelligent 
backtracking schemes discard information and recompute rather 
than suffer the memory and time overheads associated with storing 
all previous results and fetching them when appropriate. We briefly 
described an equivalent mechanism for ATMS-based backtracking 
involving purging inactive environments from node labels. We point 
out that in the above design we can adopt this same purging 
mechanism. The SS data structure ensures that no search space point 
is visited more than once. We point out, however, that the tradeoff is 
not clear. For instance the more nogoods we maintain, the more 
effectively SS is pruned, thereby limiting the principal disadvantage 
of best-first search. 

Another consideration is that some environments, even though 
inactive, may have high probabilities (low costs) associated with 
them. For example, in a diagnosis application, single fault diagnoses 
are often much more likely than multiple fault diagnoses. However, 
the controller may try several candidates for the single fault before 
arriving at one which is consistent with observations. We will want 
to keep datums representing components which are healthy even 
when they are currently inactive, as they will quite likely be under 
active consideration again. In contrast, datums representing 

/ 

unhealthy components can be discarded as soon as they become 
inactive. In principle, node labels can be converted to probabilities, 
and heuristics established to control which results are kept and 
which are discarded. More research into these issues is required. 

4.h  Introducing Constraints 

As a result of their importance in model based diagnosis, we 
briefly mention the possibility of integrating constraints -into 
Bayesian programs. Constraint suspension is a technique often used 
in model based diagnosis [Davis,88]. The basic idea is to model the 
normal behavior of each component in a network of components as a 
constraint on its interface properties. The result is a constraint 
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network. Observed property values are registered by providing 
bindings for property variables. Constraint propagation propagates 
the effect of these bindings on other variables. In a system where all 
input values are specified, constraint propagation derives the 
associated output values for a healthy system. If however, we 
observe output properties which are different from these expected 
values, then we need to relax or suspend one or more of the 
constraints in order to restore consistency. This corresponds to 
hypothesizing that a component is unhealthy. Often systems model 
unhealthy as well as healthy component behavior. In this case a 
constraint representing healthy behavior is replaced with one 
representing unhealthy behavior. 

Recently, Constraint Logic Programming (CLP) languages 
[Jaffar,87a], [Jaffar,87b], [Colmerauer,90] have emerged which 
integrate constraint propagation techniques into logic programming. 
Echidna [Havens,90] and CHIP [Van Hentenryck,89] are CLP 
languages based on built-in constraint predicates and the notion of 
domain variables. Domain variables are logical variables with an 
associated restricted domain of possible values. For example, the 
variable X may be assigned the domain consisting of an integer 
interval from one to ten. During constraint propagation, domain 

/ 

variables can be bound to either a value contained in its domain, or a 
new domain which is a subset of its current domain. Echidna and 
CHIP both contain built-in constraint predicates for arithmetic 
operations such as multiplication, addition, boolean comparisons and 
others. Resolution is not used for constraint subgoals encountered 
quring an SLD-refutation. Rather, a rule of inference based on 
arc -cons i s t ency  [Mackworth,77], [Mackworth,85], [Mohr,86], 
[Sidebottom,91] is invoked each time a constraint variable is bound 
to a new, more specific domain. Under arc-consistency, each 
constraint variable is assigned a new value by eliminating values in 
its current domain which are not possible given the constraint and 
the current domain values of other variables in the constraint. 
Repeated invocation of this arc-consistency rule of inference 
propagates new variable bindings through constraints to other 
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variables and triggers backtracking in the event that any variable 
domain becomes the empty set. 

Constraint propagation can be added to the consumer design 
defined for definite programs by defining constraint class consumers 
for constraint subgoals. These class consumers ensure that constraint 
consumers are attached to constraints and their constraint variables. 
A constraint consumer for a constraint subgoal C is attached to C and 
each set of variable datums representing all but one of C's variables. 
Upon execution, constraint consumers apply arc-consistency to 
derive a new binding for the left out constraint variable. By defining 
constraint consumers as class consumers, we ensure that 
arc-consistency processing is triggered after each new constraint 
variable binding. 

This approach can be compared with Echidna which combines 
RMS-based dependency backtracking with constraint propagation. 
Unlike Echidna, however, the consumer based design derives 
minimal, subgoal-order independent labels. 

Additional formalism is required to justify the use of constraints 
as a family predicate in a Bayesian program. Informally, we point out 
that constraint propagation executes only reasoning steps which 

/ 

follow from other choices or assumptions. As a result, constraints 
have a zero cost associated with them. They perform deterministic 
reasoning steps only. However, computed CLP answers can contain 
domain variables with non-ground answers. In this case we must 
interpret the computed probability mass as being distributed in 

)some fashion over the possible ground values for the variable. In a 
similar situation, de Kleer [de Kleer,87], [de Kleer,89a] makes the 
assumption that the probability mass is evenly distributed. For 
example, if we have a computed answer for which domain variable X 
has either an integer value of 0 or 1 with computed probability P, 

, then we can postulate the existence of a ground answer with X value 
of 1 with probability P/2. We must be tentative, however, since 
while arc-consistency guarantees local consistency, it  does not 
guarantee the existence of globally consistent solutions. To find 
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global solutions CLP programs choose consistent ground values for 
remaining domain variables until all domain variables are both 
ground and arc-consistent. This process is both sound and complete. 
In a diagnosis system, this last stage can be interactive. The 
interactive user makes incremental measurements until all domain 
variables are ground and arc-consistent. Each interactive 
measurement is treated as an assumption and assigned a probability 
which correctly distributes the probability mass. 



Chapter 5 
Conclusion 

This thesis addresses the need for a generalized approach to 
diagnostic or abductive problem solving. We have introduced a way 
of representing Bayesian networks as logic programs with 
extra-logic, probabilistic semantics. These Bayesian programs retain 
the dual procedural and declarative semantics of conventional 
definite programs. The probabilistic semantics of Bayesian programs 
provides relative rankings to abductive explanations. Explanations 
which are more likely are assigned higher rankings. 

The advantage of Bayesian programs over Bayesian networks is 
based on the extra expressivity of predicate logic over propositional 
logic. Bayesian networks are propositional. They describe particulars. 
A Bayesian network is fully specified by explicitly enumerating the 
conditional probabilities of each network node. In contrast, Bayesian 
programs support intensional representations of equal-valued 
conditional probabilities. 

This is of little value for problem domains which are not well 
understood, or for which we do not have a theory based on first 
principles. For such domains, our understanding is itself 
propositional. As a result, universally quantified variables are of 
little use. For domains with a well understood theory, the situation is 
different. Typically, there is a set of assumptions which sanction the 
theory. As long as these assumptions hold we have deterministic 
behavior, which can be represented intensionally. A Bayesian 
program can succinctly assert that the conditional probability of a 
healthy adder's output having a value, given any combination of 
~ d d e r  input values, equals one, as long as the inputs add to form the 
output. This statement is  true for all input, output value 
combinations. In other words, we can represent input, output values 
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as universally quantified variables rather than having to explicitly 
enumerate the complete set of input, output value combinations. 

In the above adder example, the sanctioning assumption is that 
the adder is h e a l t h y .  If the adder is not healthy, then the adder 
theory is no longer valid. Ultimately, as sanctioning assumptions are 
called into question, we must resort to statistical modeling. Bayesian 
programs represent an improvement over other model-based 
representations in that they support both statistical and theoretical 
modeling equally well. Bayesian programs provide a unified 
framework for modeling both idealized device theory, and the 
statistical nature of our incomplete understanding of the real world. 
Diagnostic completeness is a case in point. Model-based systems are 
implicitly sanctioned by the assumption that the system topology is 
as specified by the model. Model based systems enumerate possible 
diagnoses which are consistent with this assumption, however, they 
fail to consider the possibility of the assumption not holding. In this 
situation, a Bayesian program can explicitly resort to a completely 
general, probabilistic model of the system. 

We have presented an architecture for computing answers to 
Bayesian program queries. This architecture is specifically designed 
to meet the needs of abductive, or diagnostic problem solving. The 
architecture combines best-first search with dependency 
backtracking in order to efficiently compute answers in order of 
decreasing likelihood. The architecture efficiently maintains multiple 
solutions and supports interactive, incremental query refinement. 
This enables an interactive user to compare more than one highly 
likely explanation or diagnosis, and to incrementally apply additional 
obsdrvations in order to reduce them in number. This is a process 
which occurs naturally in abductive reasoning applications. 

There are remain several outstanding research issues as well as 
new directions to pursue. Firstly, there remain implementation level 
issues to resolve. Should the ATMS database ever discard any 
information, once it is established? Alternatively, should it act as a 
cache, retaining only datums which are either under active 



Conclusion 145 

consideration, or are likely to be needed again? The more nogoods, 
the more the search space is pruned. This is particularly important in 
our case as the best-first search maintains an explicit representation 
of the search space. Hence, by not pruning, we pay in memory 
storage as well as in execution time. One strategy is to convert datum 
labels to probabilities, and to discard information with low 
probabilities. This translation can be accomplished along the lines of 
D' Ambrosio's work [D'Ambrosio,90b]. 

Another issue is to decide upon an appropriate admissible 
heuristic for the best-first search. The work of Henrion [Henrion,90], 
[Henrion,91] is relevant to this issue. 

Unlike intelligent backtracking schemes for Prolog, the 
architecture presented here generates general, order-independent 
labels for both datums and nogoods. This results in more efficient 
search space pruning, and in increased datum reuse. However, these 
benefits come at the expense of additional reasoning steps during 
problem solving. Additional research is needed to examine the 
nature of this tradeoff. Under what circumstances does this represent 
a net benefit? 

/ 

One research direction is to extend Bayesian programs to include 
constraint processing as briefly described earlier. Hamscher 
[Hamscher,91] incorporates ATMS extensions to improve efficiency 
for ATMS-based constraint propagation. 

De Kleer's SHERLOCK [de Kleer,89a] supports a myopic decision 
theory policy, qased on an entropy calculation, for deciding which 
measurement to recommend taking next. Similar support could be 
built into the design presented here, resulting in a Prolog-like system 
with built in decision support. The basic architectural capabilities are 
in place, namely, the ability to maintain multiple solutions, each with 
an assigned probability. The programmer could reference the distinct 
solutions through the use of conventional second order predicates for 
Prolog-like bag-of, and set-of. 
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It should also be possible to offer generalized bag-of, set-of 

predicates which enable the programmer to specify probabilistic 
search cutoff criteria. In this way the programmer can exercise 
control over how many solutions are computed during problem 
solving. 

The architecture presented here resembles a Blackboard 
architecture [Nii,89]. The ATMS is the blackboard, the consumers are 
the knowledge sources, and the controller is the monitor. This is not 
surprising as both blackboard systems and the design presented here 
are based on adaptive, opportunistic problem solving. Recent 
research in  cooperative distributed problem solving (CDPS) 
[Durfee,89] makes substantial use of blackboard architectures. These 
systems are comprised of agents, each with their own blackboard, 
exchanging generalized problem solving results. Each agent 
independently decides what aspect of his part of the problem to 
focus on next. Much of CDPS research has to do with local decision 
making algorithms governing which partial results to transmit to a 
neighbor, and which local problem to focus on next. The intent is that 
locak, distributed decision making should eventually lead to a single 
consistent global solution. 

The local nature of message-based belief propagation algorithms 
[Pear1,88] for Bayesian networks, together with the blackboard-like 
nature of the architecture presented here suggests the possibility of 
a CDPS approach to abductive problem solving. Under this approach, 
a Bayesian program is partitioned among several problem-solving 
agents, each h i t h  its own consumer architecture for . computing 
answers to Bayesian queries. The agents exchange belief messages 
summarizing the belief status of shared variables. Incoming 
messages trigger an agent's inferencing. Each agent takes into 
account the beliefs of its neighbors in forming a local Bayesian goal 
whose answer is most likely needed as part of an overall 
explanation. Once formed, this goal serves as a focus for local 
problem solving. Local inferencing results in updated belief status 
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messages to neighboring agents. The belief propagation protocol 
ensures convergence to a global solution. 

Recent work [Bridgeland,90], [Mason,89] in distributed RMS 
systems is relevant to this approach. 

Finally, additional research, in the form of real world applications, 
is required in order to explore the representational adequacy of 
Bayesian programs. 
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