National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)

K1A ON4 KIAGON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality o. the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Your the Volie rfeonce

Our e Notre refsrence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [luniversité
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactyiographiées a l'aide d’'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

CONCEPTUAL CLUSTERING AND CONCEPT
HIERARCHIES IN KNOWLEDGE DISCOVERY

by

Xiacaua Hu
B.Sc., Wuhan University, China, 1985

M.Sc., Institute of Computing Technology, Academia Sinica, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

(© Xiaohua Hu 1992
SIMON FRASER UNIVERSITY
December 1992

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without the permission of the author.

I * l National Library Bibliothéque nationale
du Canada

Your hle Voire raldrence

O hle Noirs rdldrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE

of Canada
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa, Ontano Ottawa (Ontario)
K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN

IRREVOCABLE NON-EXCLUSIVE

LICENCE ALLOWING THE NATIONAL

LIBRARY OF CANADA TO

REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01128-3

Canadi

REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

APPROVAL

Name: Xiaohua Hu
Degree: Master of Science
Title of thesis: Conceptual Clustering and Concept Hierarchies in Knowl-

edge Discovery

Examining Committee: Dr. Ramesh Krishnamurti
Chair

Dr. Nick Cercone, Senior Supervisor

Dr. Jiawei Han, Supervisor

Dr.“ Paul McFetridge, External Examiner

Date Approved: December 14, 1992

1

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on
its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. it is understood that copying
or publication of this work for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

Conceptual Clustering and Concept Hierarchies in Knowledge Discovery

Author:

(signature)

Xiaohua HU

(name)

@GA \Q, w‘ﬁL

(date)

Abstract

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and
potentially useful information from data. Knowledge discovery from a database is a
form of machine learning where the discovered knowledge is represented in a high-
level language. The growth in the size and number of existing databases far exceeds
human abilities to analyse the data, which creates both a need and an opportunity
for extracting knowledge from databases. In this thesis, I propose two algorithms for
knowledge discovery in database systems. One algorithm finds knowledge rules asso-
ciated with concepts in the different levels of the conceptual hierarchy; the algorithm
is developed based on earlier attribute-oriented conceptual ascension techniques. The
other algorithm combines a conceptual clustering technique and machine learning.
It can find three kinds of rules, characteristic rules, inheritance rules, and domain
knowledge, even in the absence of a conceptual hierarchy. OQur methods are simple

and efhicient.

i1

Acknowledgements

I would like to express my deepest gratitude to my senior supervisor Dr. Nick Cercone,
supervisor Dr. Jiawei Han for their generosity, guidance encouragement, academic
help and financial support throughout this research. I am also grateful to Dr. Paul
McFetridge for his careful reading of the thesis and his valuable comments. My
discussion with fellow student Yue Huang were very helpful in designing the program.

Contents

Abstract iii
Acknowledgements iv
1 Introduction 1
2 Learning From Databases 4
2.1 Concepts of Learning From Examples: An Al Approach 4
2.1.1 Basic Components in Learning from Examples 5

2.1.2 Types of Knowledge Rules 6

2.1.3 Control Strategies in Learning from Examples 6

2.2 Some {.carning From ExamplesModels 8
2.2.1 The Candidate Elimination Algorithm 8

222 AQIlland AQ15Systems 10

2.3 Concepts of Learning From Databases 11

"

2.4

2.3.1 Data Relevant to the Discovery Process . . 0 0 0 0 0000 L L.

232 TypesofRules ... o000 0oL
2.3.3 Background Knowledgeo o 000000
2.3.4 Representation of Learning Results . 000000000000
Kunowledge Discovery in Large Databases . 000000000000
241 INLEN Systemo o o000

2.4.2 An Algorithm for Discovering Strong Rules in Databases . . .

243 Thonght/IKD1 L

3 Attribute-Oriented Induction in Relational Database

3.1

3.2

3.3

4.1

4.2

4.3

The Basic Acvtribute_Oriented Induetion Algorithm 0 .

Learning Other Knowledge Rules by Attribute-Oriented Indnction . .

3.2.1 Learning Discrimination Rules 0 0 00000000
3.2.2 Learning Data Evolution Regulanity . . . 0 00 .
Iinplementation of the Database Learning Algorithms . 0. 0 0 . . .

Discovery of Knowledge with a Conceptual Hierarchy
An Algorithm for Discovering Three Kinds of Rules =00 00000
An Algorithm for Discovering Inheritance Rules .00 0000000

Test Example . . o0 . 0 o0

A%

29

29

31

32

A4

5 Knowledge Discovery by Conceptual Clustering 52

51 Introduction o o o o e e e e e e e e e e 52

5.2 Approaches to Conceptual Clustering . . . o o o o0 000000 54

5.3 Knowledge Discovery by Conceptual Clustering . o oo o o000 56
5.3.1 Aggregating Objects into Different Clusters .o o000 L 57

5.3.2 Learning from object classeso oo o oL 58

54 Apn Example Lo 59

6 Discussion 66

6.1 Discovery of Knowledge Associated with a Concept Hierarchy 66
6.1.1 Scarch Space L 67
6.1.2 Utilizing Database Facilities o000 0. 68

6.1.3 Comnjnnctive Rules, Disjunctive Rules and Incremental Learning 68

6.1.4 Dealing with Different Kinds of Concept Hierarchies 69

6.2 Discovery of Knowledge by Conceptual Clustering 72

7 Conclusion and Future Research 75
7.1 Conclusions o v ot e e 75
7.2 Futurcrescarch L 76

vil

7.2.1

7.2.2

Bibliography

Applications of Knowledge Rules Discovered from Relational

Databases

Construction of an Interactive Learning System

viii

........

........

78

Chapter 1

Introduction

Learning is one of the most important characteristics of human and machine intel-
ligence. Machine learning is a fundamental area in Artificial Intelligence which has
achieved significant progress in the last two decades. Many learning systems have
been constructed for scientific, business, industrial and medical appilcations; it is im-
portant to develop learning machanisms for knowledge discovery in large databases,

especially relational databases.

An important machine learning paradigm, learning from ezamples, that is, learn-
ing by generalizing specific facts or observations [5,7], has been adopted in many ex-
isting induction learning algorithms. Current systems for learning from ezxamples
take training examples from various sources, such as, data extracted from experiments
[1,24], examples given by teachers and experts [32], facts recognized by people [34]
and rules accumulated from past experience[28], etc.. However, not many systems

directly extract knowledge from data stored in relational databases.

Knowledge discovery is the nontrivial extraction on implicit, previously unknown,

and potentially useful information from data [11].

CHAPTER 1. INTRODUCTION

s

The growth in the size and number of existing databases far exceeds human abili-
ties to analyze this data, which creates both a need and an opportunity for extracting
knowledge from databases. Recently, data mining has been ranked as one of the
most promising research topics for the 1990s by both database and machine learning

researchers [43].

From our point view, one of the major reasons that the learning systems do not
integrate well with relational database systems is because of the inefficiency of current
learning algorithms when applying to large databases. Most existing algorithms for
learning from examples apply a tuple-oriented approach which examines one tuple
at a time. In order to discover the most specific concept that is satisfied by all the
training examples, the tuple-oriented approach must test the concept coverage after
each generalization on a single attribute value of a training example [7,28]. Since
there are a large number of possible combinations in such testing, the tuple-oriented
approach is quite inefficient when performing learning from large databases. More-
over, most existing algerithms do not make use of the features and implementation
techniques provided by database systems. To make learning algorithms applicable
to database systems, highly efficient algorithms should be designed and explored in
depth.

In previous studies [2,13,14], an attribute-oriented induction method has been
developed for discovery in relational databases. The method integrates a machine
learning paradigm, especially learning from examples techniques, with database
operations and extracts generated data from actual data in databases. Two types of
knowledge rules, characteristic rules and classification rules, can be learned. A key

to the upproach is attribute-oriented database operations which substantizlly redace

CHAPTER 1. INTRODUCTION 3

the computational complexity of the database learning processes.

In this thesis, I further develop the results from previous studies [2,13,14] in two
ways. The previous method is developed further to find knowledge rules associated
with different levels of the concepts in the conceptual hierarchy. Furthermore, if
the concept hierarchy is unavailable, our method can construct a concept hierarchy
automatically from the data and infer some knowledge rules based simply on the
containment relationship between different clusters. This method combines our con-
ceptual clustering technique with machine learning. It can find three kinds of rules

even in the absence of a conceptual hierarchy. Our methods are simple but efficient.

This thesis is organized into seven chapters. A brief survey of the methods de-
veloped for learning from examples and knowledge discovery in large databases is
presented in Chapter 2. Attribute_Oriented Induction in relational databases is ad-
dressed in Chapter 3. An algorithm for discovering knowledge rules associated with
concepts of different levels in the conceptual hierarchy table and statistical rules with
different concepts is explained in Chapter 4. Then we propose a new algorithm, knowl-
edge discovery by conceptual clustering, in Chapter 5. In Chapter 6, the variations
of our method, the comparision with other discovery systems are discussed. Finally,
in Chapter 7, we conclude our research and propose some interesting topics for future

research.

Chapter 2

Learning From Databases

We survey some theoretical issues related to learning from examples, and some recent
progress in knowledge discovery in database systems and knowledge base systems

which adopt the learning from examples paradigm.

2.1 Concepts of Learning From Examples: An Al

Approach

As a basic method in empirical learning, learning from examples has been studied
extensively. We review the basic components and the generalization rules of learning
from examples, the types of knowledge rules which can be learned, and the control

strategies of the learning process.

CHAPTER 2. LEARNING FROM DATABASES 5

2.1.1 Basic Components in Learning from Examples

Learning from examples can be characterized by a tuple { P,N,C, A), where P is a set
of positive examples of a concept, N is a set of negative examples of a concept, C is
the conceptual bias which consists of a set of concepts to be used in defining learning

rules and results, and A is the logical bias which captures particular logic forms [12].

In most learning systems, the training examples are classified in advaace by the
tutor into two disjoint sets, the positive examples set and the negative examples set
[28]. The training examples represent low-level, specific information. The learning

task is to generalize these low-level concepts to general rules.

There could be numerous inductive conclusions derived from a set of training ex-
amples. To cope with this multiplicity of possibilities, it is necessary to use some
additional information, problem background knowledge, to constrain the space of pos-
sible inductive conclusions and locate the most desired one(s) [12]. The conceptual
bias and the logical bias provide the desired concepts and the logic forms which serve
as this kind of background knowledge. These biases restrict the candidates to formu-
las with a particular vocabulary and logic forms. Only those concepts which can be
written in terms of this fixed vocabulary and logic forms are considered in the learning

process.

Usually, the examples presented to the learning system consist of several attributes.
Depending on the structure of the attribute domains, we can distinguish among three

basic types of attributes [28]:

(1) nominal attributes: the value set of such attributes consists of independent

symbols or names.

CHAPTER 2. LEARNING FROM DATABASES 6

(2) numerical attributes: the value set of such attributes is a totally ordered set.

(3) structured attributes: the value set of such attributes has a tree structure
which forms a generalization hierarchy. A parent node in such a structure represents
a more general concept than the concepts represented by its children nodes. The

domain of structured attributes is defined by the problem background knowledge.

2.1.2 Types of Knowledge Rules

Given a learning-from-examples problem characterized as { P,N,C, A,), several differ-
ent rules can be extracted. The learned concept is a characteristic rule if and only if
it is satisfied by all of the positive examples. The learned concept is a discrimination
rule if and only if it is not satisfied by any of the negative examples. The learned
concept is an admissible rule if and only if it is both characteristic and discriminant
[7,12]. A statistical rule is a rule associated with statistical information which assesses

the representativeness of the rule.

Most learning algorithms are designed for learning admissible rules [7,28]. A few
algorithms, such as INDUCE 1.2 [6] and SPROUTER [18], are designed for learning
characteristic rules. DBLEARN [2,13,14,22] can discover all of the three kinds of

rules.

2.1.3 Control Strategies in Learning from Examples

Induction methods can be divided into data-driven (bottom-up), model-driven (top-
down), and mixed methods depending on the strategy employed during the search

for generalized concepts [7]. All of these methods maintain a set, H, of the currently

CHAPTER 2. LEARNING FROM DATABASES 7

most plausible rules. These methods differ primarily in how they refine the set H so

that it eventually includes the desired concepts.

In the data-driven methods, the presentation of the training examples drives the
search. These methods process the input examples one at a time, gradually general-
izing the current set of concepts until a final conjunctive generalization is computed.
The typical examples of such control strategy include the candidate-elimination algo-

rithm [33,34], the approach adopted in [18,48], the ID3 techniques [37] and the Bacon

learning system [20].

In the model-driven methods, an priori model is used to constrain the search.
These methods search a set of possible generalization in an attempt to find a few
‘best’ hypotheses that satisfy certain requirements. Typical examples of systems
which adopt this startegy are AM [25], DENDRAL and Meta-DENDRAL [1], and
the approach used in the INDUCE system [6].

Data-driven techniques generally have the advantage of supporting incremental
learning. The learning process can start not only from the specific training examples,
but also from the rules which have been discovered. The learning systems are capable
of updating the existing hypotheses to account for each new example. In contrast, the
model-driven methods, which test and reject hypotheses based on an examination of
the whole body of data, are difficult to use in incremental learning situations. When
new training examples become available, model-driven methods must either backtrack
or restart the learning process from the very beginning, because the criteria by which
hypotheses were originally tested (or schemas instantiated) have been changed [7].
On the other hand, an advantage of model-driven methods is that they tend to have

good noise immunity. When a set of hypotheses, H, is tested against noisy training

vs]

CHAPTER 2. LEARNING FROM DATABASES

exzmples, the model-driven methods need not reject a hypothesis on the basis of one
or two counterexamples. Since the whole set of training examples is available, the
program can use statistic measures of how well a proposed hypothesis accounts for

the data.

2.2 Some Learning From Examples Models

Since the 1960’s, many algorithms and experimental systems on learning from
examples have been developed [33], which demonstrate aspects of machine learn-
ing in science, industry and business applications {17,39]. In this section, we present

several successful models which are related to our research.

2.2.1 The Candidate Elimination Algorithm

Mitchell developed an elegant framework, version space, for describing systems that
use a data-driven approach to concept learning [32]. This framework can be described
as follows. Assume we are trying to learn some unknown target concept defined on
the instance space. We are given a sequence of positive and negative examples which
are called samples of the target concept. The task is to produce a concept that is
consistent with the samples. The set of all hypothesis, H, that are consistent with
the sample is called the version space of the samples. The version space i8 empty in

the case that no hypothesis is consistent with the samples.

Mitchell proposed an algorithm, called the candidate-elimination algorithm, to

solve this learning task. The algorithm maintains two subsets of the version space:

CHAPTER 2. LEARNING FROM DATABASES 9

the set S of the most specific hypothesis in the version space and the set G of the
most general hypotheses. These sets are updated with each new example. The positive
examples force the program to generalize the S set, and the negative examples force

the program to specify the G set. The learning process terminates when G = S.

A good feature of this method is that the incremental learning can be performed

by the learning program. The sets S and G can easily be modified to account for new

training examples without any recomputation.

However, as with all data-driven algorithms, the candidate elimination algorithm
has difficulty with noisy training examples. Since this algorithm seeks to find a con-
cept that is consistent with all of the training examples, any single bad example (that
is, a false positive or false negative example) can have a profound effect. When the
learning system is given a false positive example, for instance, the concept set to
become overly generalized. Similarly, a false example causes the concept set to be-
come overly specialized. Eventually, noisy training examples can lead to a situation
in which there are no concepts that are consisitent with all of the training examples.
The second and most important weakness of this algorithm is its inability to discover
disjunctive concepts. Many concepts have a disjunctive form, but if disjunctions of
arbitrary length are permitted in the represenatation language, the data-driven algo-
rithm described above never generalizes. Unlimited disjunction allows the partially

ordered rule space to become infinitely ‘branchy’.

There are two computational problems associated with this method. The first one
is that in order to update the sets S and G we must have an efficient procedure for

testing whether or not one hypothesis is more general than another. Unfortunately,

CHAPTER 2. LEARNING FROM DATABASES 10

this testing problem is NP-complete if we allow arbitratrly many examples and arbi-
trarily many attributes in the hypothesis. The second computational problem is that
the size of the sets .S and G can become unmanageably large. It has been shown that,
if the number of attributes is large, the size of set S and set G can grow exponentially

in the number of examples [16].

To improve computational efficiency, Haussler proposed a one-sided algorithm
which is in constrast to the two-sided approach of the candidate elimination algo-
rithm. The one-sided algorithm computes only the set S using the positive examples
and then checks to see if any negative examples are contained in the set S. If the rule
in the set S is not satisfied by any negative examples, the rule is valid. Otherwise,

there is no rule which can be discovered [16,17].

2.2.2 AQ11 and AQ15 Systems

Michalski and his colleagues have developed a series of AQ) learning systems. The
AQ11 system [29] is designed to find the most general rule in the rule space that dis-
criminates training examples in a class from all training examples in all other classes.
Michalski et. al. call these types of rules discriminate descriptor or discriminant
rules since their purpose is to discriminate one class from a predetermined set of

other classes.

The language used by Michalski to represent discriminant rules is VL1, an ex-
tension of the propositional calculus. VLI is a fairly rich language that includes
conjunction, disjunction, and the set-membership operators. Consequently, the rule

space of all possible VL1 discriminant rules is quite large. To search this rule space,

CHAPTER 2. LEARNING FROM DATABASES 11

AQI11 uses the AQ algorithm, which is nearly equivalent to the repeated application
of the candidate-elimination algorithm. AQ11 converts the problem of learning dis-
criminant rules into a series of single-concept learning problems. To find a rule for
class A, it considers all of the known examples in class A as positive examples and all
other training examples in all of the remaining classes as negative examples. The AQ
algorithm is then applied to find a concept that covers all of the positive examples
without covering any of the negative examples. AQ11 seeks the most general such

concept, which corresponds to a necessary condition for class membership.

The discriminant rules developed by AQ11 correspond to the set of most general
concepts consistent with the training examples. In many situations, it is also good
to develop the most specific concepts of the class, thus permitting a very explicit

handling of the unobserved portion of the space.

After developing the AQ11 system, Michalski et. al proposed another inductive
learning system AQ15 in 1986 [31]. Ths system is an extended version of the AQ11
system, which is able to incrementally learn disjunctive concepts from noisy and
overlapping examples, and can perform constructive induction in which new concepts

are introduced in the formation of the inductive conclusions.

2.3 Concepts of Learning From Databases

Learning from databases can be characterized by a triple (D,C, A, } where D repre-
sents the set of data in the database relevant to a specific learning task, C represents a
set of ‘concept biases’ (generalization, hierarchies, etc.) useful for defining particular

concepts, and A is a language used to phrase definitions.

CHAPTER 2. LEARNING FROM DATABASES 12

Three primitives should be provided for the specification of a learning task: task-
relevant data, background knowledge, and the expected representations of learning re-
sults. For illustrative purposes, we only examine relational databases, however, the

results can be generalized to other kinds of databases.

2.3.1 Data Relevant to the Discovery Process

A database usually stores a large amount of data, of which only a portion may be
relevant to a specific learning task. For example, to characterize the features of
mammeal in animal, only the data relevant to mammal in animal are appropriate in
the learning process. Relevant data may extend over several relations. A query can be
used to collect task-relevant data from the database. Task-relevant data can be viewed
as examples for learning processes. Undoubtedly, learning-from-ezamples should be
an important strategy for knowledge discovery in databases. Most learning-from-
ezamples algorithms partition the set of examples into positive and negative sets and
perform generalization using the positive data and specialization using the negative
ones [7]. Unfortunately, a relational database does not explicitly store negative data,
and thus no explicitly specified negative examples can be used for specialization.
Therefore, a database induction process relies mainly on generalization, which should

be performed cautiously to avoid over-generalization.

Definition 2.3.1 A generalized relation is a relation obtained by substituting the spe-

cific concept(s) by the general concept(s) in some atiribuie(s).

CHAPTER 2. LEARNING FROM DATABASES 13

2.3.2 Types of Rules

There are three types of rules, characteristic rules, classification rules and statistical

rules which can be easily learned from relational databases.

Definition 2.3.2 A characteristic rule is an assertion which characterizes the con-

cepts satisfied by all of the data stored in the database.

For example, the symptoms of a specific disease can be summarized as a characteristic

rule.

Definition 2.3.8 A classification rule is an assertion which descriminates the con-

cepts of one class from other classes.

For example, to distinguish one disease from others a classification rule should sum-

marize the symptoms that discriminate this disease from others.

Definition 2.3.4 A statistical rule is a rule associated with statistical information

which assesses the representativeness of the rule.

Characteristic rules, classification rules and statistical rules are useful in many
applications. A characteristic rule provides generalized concepts abcut a property
which can help people recognize the common features of the data in a class. the
classification rule gives a discrimination criterion which can be used to predict the
class membership of new data and the statistical rules give the summary information

about the data in the databases

CHAPTER 2. LEARNING FROM DATABASES 14

The data relavant to the learning task can usually be classified ino several classes
based on the values of a specific attribute. For example, the data about animal may
be classified into mammal and bird based on the value of the attribute ‘type’. We

introduce new concepts target class and contrasting class

Definition 2.3.5 A target class is a class in which the data are tuples in the database

consistent with the learning concepts.

Definition 2.3.6 A contrasting class is a class in which the data do not belong to

the target class.

For instance, to distinguish mamma/! from bird, the class of mammal is the target

class, and the class of bird is the contrasting class.

In learning a characteristic rule, relevant data are collected into one class, the
target class, for generalization. In learning a discirimination rule, it is necessary to
collect data into two classes, the target class and the contrasting class(es). The data
in the contrasting class(es) imply that such data cannot be used to distinguish the
target class from the contrasting one(s), that is, they are used to exclude the properties

shared by both classes.

Since learning of these two rules represents two different learning tasks, different
sets of examples are required for the learning processes. The characteristic rules only
concern the characteristics of the data. Therefore, positive examples alone are enough
to furnish the learning task. However, for learning classification rules, the negative
examples must be incorporated into the learning process to derive the concepts which

have the discrimination property.

CHAPTER 2. LEARNING FROM DATABASES 15

2.3.3 Background Knowledge

Concept hierarchies represent necessary background knowledge which controls the
generalization process. Different levels of concepts are often organized into a taxonomy
of concepts. The concept taxonomy can be partially ordered according to a general-
to-specific ordering. The most general concept is the null description (described by a
reserved word ‘any’), and the most specific concepts correspond to the specific values
of the attributes in the database [2,33]. Using a concept hierarchy, the rules learned
can be represented in terms of generalized concepts and stated in a simple and explicit

form, whcih is desirable to most users.

Concept hierarchies can be provided by knowledge engineers or domain experts.
This is reasonable for even large databases since a concept tree registers only the
distinct discrete attribute values or ranges of numerical values for an attribute which
are, in general, not very large and can be input by domain experts. But if the concept
hierarchies are not available, in some case , it is possible to construct them based on

the data in the databases. I will address this problem in Chapter 5.

2.3.4 Representation of Learning Results

From a logical point of view, each tuple in a relation is a logic formula in conjunctive
normal form, and a data relation is characterized by a large set of disjunctions of such
conjunctive forms. Thus, both the data for learning and the rules discovered can be

represented in either relational form or first-order predicate calculus.

The complexity of the rule can be controlled by the generalization threshold. A

moderately large threshold may lead to a relatively complex rule with many disjuncts

CHAPTER 2. LEARNING FROM DATABASES 16

and the results may not be fully generalized. A small threshold value leads to a
simple rule with few disjuncts. However, small threshold values may result in an
overly generalized rule and some valuable information may get lost. A better method
is to adjust the threshold values within a reasonable range interactively and to select

the best generalized rules by domain experts and/or users.

Exceptional data often occurs in a large relation. It is important to consider excep-
tional cases when learning in databases. Statistical information helps learning-from-
ezamples to handle exceptional and/or noisy data [13,14,22]. A special atiribute,
vote, can be added to each generalized relation to register the number of tuples in the
original relation which are generalized to the current tuple in the generalized relation.
The attribut vote carries database statistics and supports the pruning of scattered
data and the generalization of the concepts which take a majority of votes. The final
generalized rule will be the rule which represents the characteristic of a majority
number of facts in the database (called an approzimate rule) or indicate quantiative

measurement of each conjunct or disjunct in the rule (called a quantitative rule).

2.4 Knowledge Discovery in Large Databases

Currently; the steady growth in the number and size of large databases in many
areas, including medicine, business and industry has created both a need and an
opportunity for extracting knowledge from databases. Some recent results have been

reported which extract different kinds of knowledge from databases.

Knowledge discovery in databases poses challenging problems, especially when

databases are large. Such databases are uaually accompanied by substancial domain

CHAPTER 2. LEARNING FROM DATABASES 17

knowledge to facilitate discovery. Access to large databases is expensive, hence it is
necessary to apply the techniques for sampling and other statistical methods. Fur-
thermore, knowledge discovery in databases can benefit from many available tools
and techniques in different fields, such as, expert systems, machine learning, intelli-

gent databases, knowledge acquisition, and statistics [2,13,14,22].

2.4.1 INLEN System

The INLEN system was developed by Kaufman et. al in 1989 [23]. The system com-
bines the database, knowledge-base, and machine learning techniques to provide a
user with an integrated system of tools for conceptually analyzing data and searching
for interesting relationships and regularities among data. It merges several exist-
ing learning systems and provides a control system to facilitate access. Figure 2.1

illustrates the general design of the system.

CHAPTER 2. LEARNING FROM DATABASES 18

APPEND @

N
-

iy

KB ______

S N

QD At | G \Canmvaa >, OLEm
o> @ (o

Figure 2.1: The organization of the INLEN System

The general design of INLEN is shown in Figure 2.1. The INLEN system consists
of a relational database for storing known facts about a domain and a knowledge

base for storing rules, constraints, hierarchies, decision trees, equations accompanied

CHAPTER 2. LEARNING FROM DATABASES 19

with preconditions and enabling conditions for performing various actions on the
database or knowledge base. The knowledge base not only can contain knowledge
about the contents of the database but also metaknowledge for the dynamic upkeep

of the knowledge base itself.

The motivating goal of the INLEN system is to integrate three basic technologies-
databases, expert systems and machine learning and inference to provide a user with
a powerful tool for manipulating both data and knowledge and extracting new or
better knowledge from these data and knowledge. It is especially appropriate to
apply INLEN to data systems that are constantly changing or growing; among the
system’s capal.ilities are the abilities to detect changes over time and explore the

ramifications of the changes.

INLEN employs three sets of operators: data management operators (DMOs),

knowledge management operators (KMOs), and knowledge generation operators (KGOs).

The DMOs are standard operators for accessing, retrieving and manually alter-
ing the information in the database. The KMOs are used to create, manipulate and
modify INLEN’s knowledge base, thereby allowing the knowledge base to be handied
in a manner analogous to handling a database. The KGOs take input from both
the database and knowledge base, and invoke various machine learning programs to
perform learning tasks. For example, the operator CLUSTER creates the conceptual
clustering algorithm developed in [29]. The operator DIFF determines the discrim-
ination rules, and can be executed in the AQ program [29]. The operator CHAR
discovers the characteristic rules, which is also implemented in an AQ program [29].

The operator VARSEL selects the most relevant attributes and the operator ESEL

CHAPTER 2. LEARNING FROM DATABASES 20

determines the most representative examples. The operator DISEQ discovers equa-
tions governing numerical variables , which is based on the ABACUS-2 system for
integrated qualitative and quantitative discovery [8]. ABACUS-2 is related to pro-
grams such as BACON [22] and FAHRENHEIT [47]. Most of these machine learning
programs are invoked by EGOS and represent existing learning algorithms which have

been well implemented.

As in the case of many machine learning systems, the major challenge to the
INLEN system is computational inefficiency. Many learning algorithms included in
this system adopt the tuple-oriented approach which examines the training examples
tuple by tuple. In the learning process, these algorithms usually have a large search
space and costly time complexity because they are not designed for large databases.
Although this system integrates databases, knowledge-based and machine learning
techniques, the database operations are applied only for retrieving data and storing
knowledge rules. The algorithms in this system do not take advantage of database

implementation techniques in the learning process.

2.4.2 An Algoerithm for Discovering Strong Rules in Databases

Another interesting study on learning from relational databases was performed by
Piatetsky-Shapiro [35]. He developed an algorithm to discover strong rules in rela-
tional databases. Somewhat different from an exact rule, which is a rule that is always
correci, a strong rule is one that is always or almost always correct. This algorithm
can find interesting rules of the form (A4 = ¢)— > (B = &) from relational datahases,

that is, if the value of attribute A is a, then the value of attribute B is b.

CHAPTER 2. LEARNING FROM DATABASES 21

This algorithm only requires one access to each database tuple. It is thus optimal
to within a constant factor, since at least one access is needed to each tuple to check

whether this tuple disproved any of the previously inferred rules.

The idea is to hash each tuple according to the value of A. When a tuple is hashed
to an empty cell, the cell is initialized. Each cell contains the value of A, the Count
of tuples hashed to that cell and a current cell Tuple. When a tuple is hashed to
an occupied cell, it is compared with the cell for (A = a) and it contains all the
information necessary for deriving rules implied by (A = a), such as, the number of
tuples whose value of attribute A are a and the difference among those tuples which

are hashed to the same cell.

A significant speed-up is achieved by using a test for early rejection of rules in an
attribute. For a nominal attribute, if the value in the newly hashed tuple is different
from the value stored in the cell T'uple, this attribute can be removed from further
consideration. A taxonomic or an internal attribute is rejected when the intermediate

result covers more than a user specified threshold value which is the maximum allowed

sample coverage.

Piatesky-Shapiro has derived formulas for predicting rule accuracy on the entire
database after rules are discovered in a sample. These formulas measure the signifi-

cance of the correction between two attributes based on some statistical techniques.

This algorithm has been implemented in LISP and tested in relational databases.
While most machine learning algorithms suffer from computational inefliciency, this
algorithm can discover many strong rules from databases quickly, and can therefore
be applied to relatively large databases. However, this algorithm may generate a large

set of rules. For example, the author conducted an experiment on 500 tuples, each

CHAPTER 2. LEARNING FROM DATABASES 22

having 12 attributes, and the learning algorithm produced 150 rules [35]. This system
cannot perform incremental learning when the database is updated. The learning
process must be restarted after the new data are insterted into a database because
the criteria which determines whether a tuple should be rejected or saved have been

changed.

2.4.3 Thought/KD1

Thought/KD1 consists of two components, one is a conceptual clustering system
called Leobs [19] and the other is a multipurpose system called GS that uses learn-
ing from examples. Leobs is an extension of the well-known conceptual clustering
CLUSTER/2. GS is a new multipurpose system of learning from examples which
generates a description in DNF of a class of (positive) examples compared with the
union of the rest of the classes of (negative) examples. Thought/KD]1 first performs
conceptual clustering using Leobs to partition the set of given examples into a certain
number of subsets and then abstracts descriptions of the generated subsets. Then
Thought/KD1 explores some implication relations between descriptions according to
the relationships of the corresponding clusters. For rule formation, there are four
algorithms of knowledge discovery in Thought/KD1: hierarchical knowledge discov-
ery (HKD), parallel knowledge discovery (PKD), characteristic knowledge discovery
(CKD), and inheritance knowledge discovery (IKD). HKD is based on hierarchical
clustering and its corresponding abstraction. PKD is based on parallel clustering and
its corresponding abstraction. CKD is based on classification and a characteristic de-

scription for each cluster. The HKD and CKD subsystems are used to discover domain

CHAPTER 2. LEARNING FROM DATABASES 23

knowledge, but the PKD subsystem is used to discover not only the domain know!-
edge but also knowledge with uncertainty, noise, or exceptions. For HKD, the result
is a hierarchy of clustering and corresponding descriptions, each of which comprises a
family of clusters of its father clustering. For PKD, k clusterings are independently
obtained. The second step is rule formation. That is, for hierarchical discovery, new
knowledge is discovered by finding all possible implications between the descriptions
in a clustering and those in its father clustering. The same holds for parallel discovery
except for implications are found between cluster descriptions and clustering corre-
sponding to large k’s. For IKD, the rules are discovered by searching the path from
the root of the hierarchy to the current cluster. For CKD, it just examines at the

characteristic description for each cluster and finds the equivalent form of different

attributes.

Chapter 3

A-O Induction in RDB

In this chapter, we explain and summarize the attribute-oriented method presented

in [2,13,14].

3.1 The Basic Attribute_Oriented Induction Al-

gorithm

Efficient induction techniques in relational databases are challenged by the large size
of relational databases. Most existing algorithms for learning from examples conduct
exhaustive searches of the given concept space, which makes the algorithms infeasibly
slow for large database application [2]. Furthermore, although relational databases
provide many facilities which have been well implemented, most machine learning
algorithms do not take advantage of these facilities. Those learning systems suffer from

computational inefficiency when they are used for learning from relational databases.

To make the learning mechanism applicable in relational databases, the learning

24

CHAPTER 3. A-O INDUCTION IN RDB 25

algorithm should be able to utilize the database implementation techniques and com-
pute efficiently. The attribute-oriented induction approach can efficiently learn the
characteristic rules and classification rules from relational databases [2,13,14]. The ap-
proach integrates database operations with the learning process and provides a simple
and efficient way of learning from large databases. In contrast to the tuples-oriented
approach, the attribute-oriented approach performs generalization attribute by at-
tribute. The training data are examined one attribute at a time. After each attribute
has been generated, the sub-concepts are combined to form the entire tree. The ap-
proach is demonstrated by two algorithms, the LCHR (for Learning Characteristic

Rules) algorithm and the LCLR (for Learning Classification Rules) algorithm.

The general idea of basic attribute-oriented induction is that generalization is per-
formed attribute by attribute using attribute removal and concept tree ascension. As
a result, different tuples may be generalized to identical ones, and the final gener-
alized relation may consist of only a small number of distinct tuples, which can be
transformed into a simple logical rule. This basic approach can be illustrated by the

follwoing algorithm:
Algorithm 3.1: Basic attribute-oriented induction in relational databases.

Input (i) a relational database, (ii) the learning task,(iii)the (optional) prefered con-
cept hierarchies, and (iv) the (optional) preferred form to express learning results

(e.g., generalization threshold).
Output
A characteristic rule learned from the database

Method.

CHAPTER 3. A-O INDUCTION IN RDB 26

1. Collection of the task-relevant data
2. Basic attribute-oriented induction
3. Simplification of the generalized relation, and

4. Transformation of the final relation into a logical rule

Notice that the basic attribute-oriented induction step is performed as follows:

begin { basic attribute-oriented induction }

for each attribute A; (1 <i < n, where n = # of attributes)
in the generalized relation GR do
while # of distinct values A; > threshold do {
if no higher level concept in the concept
hierarchy table for A;
then remove A;
else substitute for the values of the A;’s by
its corresponding minimal generalized concepts;
merge identical ones, }
while # of tuples in GR > threshold do {
selectively generalize attributes;
merge identical tuples }

end

In Step 1, the relevant set of data in the database is collected for induction. The

then-part in the first while-loop of Step 2 incorporates attribute removal, and the

CHAPTER 3. A-O INDUCTION IN RDB 27

else-part utilizes concept tree ascension. The condition for the first while-loop is
based on threshold control on each attribute and that for the second one on threshold
control on the generalized relation. Attribute removal is used in Step 2 to ensure
that the generalization is performed on the minimal decomposable components. Each
generalization statement in both while-loops applies the least-commitment principle
based on those stategies. Finally, Step 3 and Step 4 apply logic transformations
based on the correspondence between relational tuples and logical formulas. Thus the

obtained rule should be the desired result which summarizes the characteristics of the

target class.

The basic attribute-oriented induction algorithm extracts a characteristic rule from
an initial relation. Since the generalized rule covers all of the positive examples in the
database, it forms the necessary conditions of the learning concept, that is, the rule
is in the form of learning_class(z)— > condition(z) where condition(z) is a formula
containing x. However, since data in other classes are not taken into consideration in
the learning process, there could be data in classes which can also meet the specified
condition. Thus, condition(z) is necessary but may not be sufficient for x to be in

the learning class.

3.2 Learning Other Knowledge Rules by Attribute-

Oriented Induction

The attribute-oriented induction method can also be applied to learning other knowl-

edge rules, such as discrimination rules, data regularities, etc.

CHAPTER 3. A-O INDUCTION IN RDB 28

3.2.1 Learning Discrimination Rules

Since a discrimination rule distinguishes the concepts of the target class from those
of contrasting classes, the generalized condition in the target class that overlaps the
condition in contrasting classes should be detected and removed from the description
of discrimination rules. Therefore, a discrimination rule can be extracted by general-
izing the data in both the target class and the conceptual class synchronously and by

excluding the properties that overlap in both classes in the final generalized rule.

To implement this notion, the basic attribute-oriented algorithin can be modified
corresponding for discovery of discrimination rules. Since different classes may share
tuples, the tuples shared by different classes are called overlapping tuples. In order
to get an effective discrimination rule, care must be taken to handle the overlapping
tuples. Usually these tuples should be marked and be excluded from the final dis-
crimination rule, since the overlapping tuples represent the same assertions in both
the target and the contrasting class, the concept described by the overlapping tuples
cannot be used to distinguish the target class from the contrasting class. By detect-
ing and marking overlapping tuples which have a discriminating property in the ruie,

which ensures the correctness of the learned discrimination rule.

3.2.2 Learning Data Evolution Regularity

Data evolution regularity reflects the trend of changes in database over time. Discov-
ery of regularuties in an evolving database is important for many applications. To
simplify our discussion, we assume that the database schema remains stable in data

evolution. A database instance, DB, is the database state, i.e., all of the data in the

CHAPTER 3. A-O INDUCTION IN RDB 29

database, at time t.

Data evolution regularities can be classified into characteristic rules and dis-
crimination rules. The former rules summarize characteristics of the changed data;

while the latter distinguish general characteristics of the relevant data in the current

database from those in a previous database.

In general, data evolution regularities can be extracted by collecting the learning
task-relevant data (usually, the evolving portion) in different database instances and

performing attribute-oriented induction on the corresponding task-revelant data set.

3.3 Implementation of the Database Learning Al-

gorithms

To test and experiment on the algorithms, an experimental database learning sys-
tem, DBLEARN, has been constructed and some interesting experiments have been

conducted in the learning system.

DBLEARN is implemented in C and runs under Unix on a Sun workstation. It im-
plements both the LCHR (for Learning Characteristic Rules) and LCLR (for Learning
Classification Rules) algorithms. The language of DBLEARN can be viewed as an ex-
tension to the relational language SQL for knowlegde discovery in databases. The test
result of applying DBLEARN to a relatively real large database: the NSERC Grant
Information System [22] shows that DBLEARN is very efficient. The architecture of
DBLEARN is presented in Figure 3.1:

CHAPTER 3. A-O INDUCTION IN RDB

USER LEARNING
REQUEST ULT
USER-INTERFACE
LEARNING PROGRAM
LCHR LCLR

/

DATABASE

DATA

AN

CONCEPTUAL
BIAS

Figure 3.1. The architecture of DBLEARN

Chapter 4

D-K with Hierarchies

In chapter 3, we discussed the attribute-oriented method for discovering knowledge in
relational databases. The method integrates a machine learning paradigm, especially
learning from erample techniques, with database operations and extracts generalized
data from actual data in the databases. A key to the approach is attribute-oriented
concept tree ascension for generalization which applies the well-developed set-oriented
database operations and substantially reduces the computational complexity of the

database learning process.

In this chapter, the attribute-oriented approach is further developed for learning
different kinds of rules, including characteristic rules, classification rules, hierarchy
rules, domain knowledge. Moreover, learning can also be performed with databases

containing noisy data and exceptional cases using database statistics.

31

CHAPTER 4. D-K WITH HIERARCHIES 32

4.1 An Algorithm for Discovering Three Kinds of
Rules

In this section, a new algorithm is presented which is based on the attributed-oriented
concept ascension techniques proposed [2,13 14]. In [2,13,14], the key to the approach
is an attribute-oriented concept tree ascension technique for generalization which was
implemented using well-developed set-oriented database operations, substantially re-
ducing the computational complexity of the database learning task. The general idea
of basic attribute-oriented induction is one in which generalization is performed at-
tribute by attribute using attribute removal and concept tree ascension. As a result,
different tuples may be generalized to identical ones, and the final generalized relation
may consist of only a small number of distinct tuples, which can be transformed into

a simple logical rule.

However, there are some drawbacks when using this method. The most obvious
one is that the threshold has a great influence on the concept-tree ascension. If
the threshold is too large, the algorithm stops at a very low level in the concept
hierarchy and the discovered rules are too specific. Alternatively, if the threshold
is too small, then the algorithm may not find a suitable concept for the generalized
table, and the discovered rules are too general to be useful. Another limitation is that
all the discovered rules are only related to some concepts at some level of the concept
hierarchy, namely once the threshold is set, then the level of the concept is determined
by the threshold value. Because of these limitations, we revise the previous method.

Before we explain the details, we first give some definitions.

CHAPTER 4. D-K WITH HIERARCHIES 33

Definition 4.1.1 An attribute in a relatively large relation is desirable for consider-
ation for generalization if the number of distinct values it contains does not exceed a

user-specified desirability threshold (usually 6 or less).

Definition 4.1.2 An attribute is generalizable if there are a large number of distinct
values in the relation but there exists a concept hierarchy for the attribute (i.e.,

there are higher level concepts which subsume these attribute values). Otherwise, it is

nongeneralizable.

Attribute-oriented induction is performed in 3 steps. First, a set of data relevant
to the learning task is collected by a database query. Secondly, the collected data
is then generalized by (1) removal of nongenera.mlizable attributes; and (2) performing
concept-tree ascension (replacing lower-level attribute values in a relation using the
concept hierarchy) on each generalizable attribute until the attribute becomes desir-
able (i.e., containing only a small number of distinct values). The identical generalized
tuples in the relation are merged into one with a special internal attribute, vote, as-
sociated to register how many original tuples are generalized to this resultant tuple.
The generalized relation obtained at this stage is called the prime relation. Thirdly,
simplify the generalized relation, and transform the final relation into a logical rule.
The core of the attribute-oriented induction is concept -tree ascension on generaliz-
able attributes, which relies heavily on the concept hierarchy information available in
the database. A stored concept hierarchy should be appropriately modified based on
the statistics of relevant data sets and user preference in order to extract interesting

rules.

A prime relation R, for a set of data R stored in the relational table is an interme-

diate relation generalized from the relation R by removing nongeneralizable attributes

CHAPTER 4. D-K WITH HIERARCHIES 34

and generalizing each attribute to a desirable level . Let a desirability threshold be
available for each attribute, which could be set by default or specified by the user or
an expert, based on the semantics of the attributes and/or the expected forms of gen-
eralized rules. A prime relation maintains the relationship among generalized data in
different attributes for a frequently inquired data set. It can be used for extraction of
various kinds of generalized rules. The following algorithm extracts the prime relation

R, from a set of data R stored in relational table.

Algorithm 4.1. Extraction of the prime relation from a set of data R

Input: (i)A set of data R, a relation of arity n with a set of attributes 4; (1 <7 < n);
(ii) a set of concept hierarchies, H;, where H; is a hierarchy on the generalized attribute

A;, if available; and (iii) a set of desirability thresholds T; for each attribute A;
Output. The prime relation R,

Method

1. R; := R; /* R; is a temporary relation. */

2. for each attribute A; (1 < ¢ < n) of R, do {
if A; is nongeneralizable then remove A;;
if A; is not desirable but generalizable then generalize A; to

desirable level;

/* Generalization is implemented as follows. First, collect the distinct values in
the relation and compute the lowest desirable level L on which the number of

distinct values will be no more than T; by synchronously ascending the concept

CHAPTER 4. D-K WITH HIERARCHIES 35

hierarchy from these values. Then generalize the attribute to this level L by

substituting for each value A;’s with its corresponding concept H; at level L. */
}

/* Identical tuples in the generalized relation R; are merged

with the number of identical tuples registered in vote */ .

3. Rp = Rt

Theorem 4.1.3 Algorithm 4.1 correctly extracts the prime relation R, from a data

relation K.

Proof An attribute-value pair represents a conjunct in the logical form of a tuple.

The removal of a conjunct eliminates a constraint and thus generalizes the rule, which

corresponds to the generalization rule dropping conditions in learning from examples.
Thus if an attribute is nongeneralizable, its removal generalizes the relation. More-
over, if an attribute is not at the desirable level but generalizable, the substitution
of an attribute value by its higher level concept makes the tuple cover more cases
than the original tuple and thus generalizes the tuple. This process corresponds to
the generalization rule, climbing generalization trees in learning from ezamples. Since
all of the generalizable attributes are at the desirable level, the generalized relation is

the prime relation. a

For example, given the animal world depicted in Table 4.1 and the concept hier-

archy for the attribute ‘Animal’ depicted in Table 4.2:

CHAPTER 4. D-K WITH HIERARCHIES 36

| Animal | Hair[Teeth Eyes | Feathers [Feet | Eat Mild Fly | Swim
1{ tiger yes | pointed|forward| ™© claw | meat |yes| no | yes
2 |cheetah |yes | pointed | forward| MO claw | meat |yes | no | yes
3 | giraffe |yes | blunt |side no hoof | grass |yes | no no
4 | zebra yes | plunt |Side no hoof | grass lyes | po | no
5]ostrich |NO |p4 side yes claw | grain |no | yes | no
6 | penguin | M© |no side yes web | fish |no | ™ | no
7 | albotross [0 | no side yes claw | grain no | yes yes
8 |eagle no | no forward| yes claw| meat no yes no
9 | viper no_ | pointed | forward| no no | meat {no | MO | yq

Table 4.1: Animal World

LEVEL #

1 imal

2 mag{mal ird

3 carnivoug_mammal ungujate 7% nonflying_bird

4 tiger cheetah giraffe zcbra albatross eagle ostrich penguin

Table 4. 2: Conceptual Hierarchy of the Animal World

in the initial relation, for the attribute ‘Animal’, there are 9 distinct values, which

CHAPTER 4. D-K WITH HIERARCHIES 37

is greater than the threshold value for desirable level (suppose the desirability thresh-
old is 6), the concept-tree ascension technique is applied, applying Algorithm 4.1, it is
generalized to the desirable level (level 3) { carnivous_.mammal, ungulate, flying_bird,

nonflying_bird } in Table 4.2, result in a prime relation as shown in Table 4.3:

| Animal |HaifTeeth Eyes | Feathers|Feet| Eat Milk}] Fly | Swim | vote
1{ cmammal|yes | pointed | forward| NO claw| meat | yes |no | yes

2 | ungulate |yes | blunt | side no hoof{ grass| yes |no |yes 2
3{nonfly |no |no side yes claw] grain| no |no | no 1
4| nonfly no | no side yes web | fish no |no |yes 1
5| flyingb [no |no side yes claw| grain| no fyes |no 1
6] flyingb |[no |no forward| yes claw! meat | no |yes |no 1
7| viper no | pointed | forward{ no no meat { no |[no |[no i

Table 4. 3: Prime relation

The derivatien and storage of prime relations for frequently inquired data sets may
faciiitate the extraction of different kinds of generalized rules from the prime relations.
Further generalization can be performed on prime relations to derive characteristic
or classification rules [2,13,21] if there are still many tuples in the prime relation.
Moreover feature tables can be extracted from the prime relations, and relationships
between generalized attribute values can be extracted directly from the feature ta-
bles as generalized rules. Based upon different interests, a generalized relation can
be directly mapped into different feature tables. In general, we have the following

algorithm for the extraction of a feature table from a generalized relation.

Algerithm 4.2. Extraction of the feature table T4 for an attribute A from the

CHAPTER 4. D-K WITH HIERARCHIES 38

generalized relation R’.

Input : A generalized relation R’ consists of (i) an attribute A with distinct values
a1,...,ay, (i1) j other attributes By,..., B;, (suppose different attributes have unique

distinct values), and (iii) a special attribute, vote.
Output. The feature table T4

Method.

1. The feature table T4 consisits of m + 1 rows and [4+ 1 columns, where ! is the
total number of distinct values in all the attributes. Each slot of the table is

initialized to 0.

2. Each slot in T4 (except the last row) is filled by the following procedure,

for each row r ir. R’ do {
for each attribute B; in R’ do
Ta[r.A,7.B)) := Ty[r.A,r.B]] + r.vote;

Ta[r.A,vote] := Tyir.A,vote] + r.vote; }
3. The last row p in T is filled by the following precedure:

for each column s in T4 do
for each row t (except the last row p) in T4 do

Talp, s] := Talp, s] + Talt, s];

Theorem 4.1.4 Algorithm 4.2 correctly registers the number of occurrences for each

general feature in the generalized relation R’

CHAPTER 4. D-K WITH HIERARCHIES 39

Proof Following the algorithm, each tuple in the generalized relation is examined
once with every feature registered in the corresponding slot in the feature table. Their

column-wise summation is registered in the last row. Thus we have the theorem. 0O

In our example, in order to get the feature table, the prime relation is further
generalized by substituting the concept at level 3 by those at level 2, resulting in the

generalized relation as shown in Table 4.4

#| Animal | Hair[Teeth Eyes | Feathers [Feet | Eat Milkf Fly| Swim} vote
1| mammal| yes |pointed| forward| nO claw |meat | yes |no | yes 2
2| mammal| yes |blunt | side no hoof |grass | yes | no | yes 2
3] bird no |no side yes claw |grain | no |no | no 1
4} bird no |no side yes web ifish no |no | yes 1
5} bird no |no side yes claw |grain | no | yes no 1
6| bird no |{no forward| yes claw |meat { no | yes | no 1
7| other N0 Inointed | forward] NO N0 |meat | no |mo | NO 1

Table 4. 4: the generalized relation

Then the feature table is extracted from the generalized relation by using algorithm
2 based on the attribute ‘Animal’ and the result is shown in Table 4.5. (since we are

interested in learning for Animal)

CHAPTER 4. D-K WITH HIERARCHIES 40

animal| Hair Teeth Feather - Milk vote

Type | yes| Dof pointediypye | ono| | yes | 0| - yes no
mammat|4 | 0| 2 2 10 {10 |4 4 0 4
bird |0 | 4]0 o |4 .4 Jol| . o 4 4
others |0 111 0 0 0 1 1 0 1
toial 4 5113 2 4 4 5 5 4 9

Table 4.5 : feature table for the attribute Animal

Different feature tables can be extracted froin the prime relation based on the
interest of different attributes. The extracted feature table is useful at derivation of
the relationships between the classification attribute and other attributes at a high
level. For example, the generalized rule All the animal with hair are mammal can be
extracted from Table 4.5 based on the fact the class mammal takes all the with Hazr

count.

Next we present two algorithms for discovering different kinds of rules from database

system.

Algorithm 4.3: An attribute-oriented algorithm for discovering different kinds of
knowledge rules associated with the concepts for different levels in the concept hier-

archy.

Input (i) a set of task-relevant data stored in a relational table (ii) a concept hierarchy

CHAPTER 4. D-K WITH HIERARCHIES 41

table

Output

A

set of classification rules, domain knowledge, and characterist:c rules.

Method.

using Algorithm 4.1, extract the prime relation from the original relational table,

record number of votes.
save the prime relation .

(further generalize the attributes) based on the concept hierarchy, starting from
the desirable level, each time climb one level up until it reach the next highest

concept” in the concept hierarchy

using Algorithm 4.2, extract a feature table from the generalized relation based
on some attribute A: if there are I distinct values for attribute A, then Algo-

rithm 4.2 classifies the data into I classes.

assume there are total I classes, namely there are I distinct values for attribute
A and J attributes for the data in the feature table. we use K to denocte the
number of distinct values for the attributes, for different attribute, K is different.
According to feature table: for the k** value (k=1,..., K) of the j** attribute
(j=1,..,J) in the 7** class (i=1,..,I), we associate two probability values: b; ; r and
cijk- We use a; ;x denotes the number of tuples with the £** values for the j**

attribute in the " class.

bijk = a;;k | total

CHAPTER 4. D-K WITH HIERARCHIES 42

Cijk = @ijk [vote

b; ;k represents the prbbability of a,; in the entire database and ¢, ;4 denotes

the probability of a; ;s in the particular class.

6. iteration step

discover the characteristic rules, classification rules and domain knowledge based
on the probability for each distinct value of every attribute in each class in the

feature table:

if both b; ;x = ¢i;x = 1, then infer a rule:
jt* Attribute_name=:* attribute_value <= Class=:"* Class_name
check the values for the next attribute

(the (7 + 1) attribute for the same class 7)

if b;;xk =1 and ¢; jx < 1, then infer a rule:
jt* Attribute_name=:** attribute_value — Class=:* Class_name
check the next value for the same attribute

(the (k + 1)t value in the j** attribute)

if b; jx <1 and ¢;;x = 1, then
include j** Attribute_name= #** attribute_value as a component
for the corresponding classification rule forthe i** class
check the next attribute
(the (7 + 1)* attribute in the same class 1)

else

CHAPTER 4. D-K WITH HIERARCHIES 43

if b;;x # 0 and ¢;jx # 0 and b; jx * Cijk < Tirequency
then ignore this value,
check the next value for the same attribute
(the (k + 1)** value for the j™* attribute)
else include the value as one of the characteristic
values for the attributes
check the next value for the same attribute

(the (k + 1)** value for the j** attribute)

iterate step 6 until all the classes are finished

/* since data in a database may be distributed along the full spectrum of the
possible values, without using possible quantitative information, it is impossible
to obtain a meaningful rule for such kind of data. However, using the quan-
titative information, various kinds of techniques can be developed to extract
meaningful rules. Que method treats the data which occur rarely in the en-
tire database as exceptional or noise data and filters them using the rfrequency-
T frequency 15 @ small percentage number which is used to filter out those data in

the entire database with a very low frequency ratio. */

7. simplify the learned rules: if the distinct data value set of an attribute does
cover the entire set of values for the attribute, then remove this attribute and
its asociated values from the rule, otherwise compare the number of the values
appearing as the characteristic values for the attribute with the total number
of distinct values for the atiribute. If the difference is larger than some pre-set

number, then the ‘not’ operator is introduced to the rules to simplify it.

CHAPTER 4. D-K WITH HIERARCHIES 44

8. (discover the relationship between different attributes based on the feature table)
for each class C;, for any two attributes jj,j, that relate the ki* value in the ji*
attribute and k%" value in the ji* attribute, if a; ;, x, = @i j, k, = vote then infer

a rule:
the ji* attribute-name=the ki* value <=

the jt* attribute_name=the k%" value

*next highest concept is the concept one level below the mest generalized concept

‘any’.

4.2 An Algorithm for Discovering Inheritance Rules

Algorithm 4.4: An attribute-oriented algorithm for discovering inheritance rules

associated with concepts for different levels in the concept hierarchy.

Input (i) the prime relation obtained by Algorithm 4.1 (ii) the concept hierarchy

tables
Output
A set of inheritance rules

Method.

1. attach one class attribute to the prime table (we call it E-attribute, E means

extra)

CHAPTER 4. D-K WITH HIERARCHIES 45

2. Each time descend one level from the next highest generalized concept according

to the concept table until reaching the desirable level of the concept table.

(a) fill the E-attribute with the generalized concept and the corresponding

attribute with the concept one ievel down of the E-attribute value
(b) extract the related data, and store them in the temporary relation

(c) project off the corresponding attributes which have the same values for all
the low level concepts within the same generalized concept from the prime
relation

(d) find the inheritance rules: within the same generalized concept, check those
attributes which have different values for different lower level concepts

within the same generalized concept.

4.3 Test Example

In this section, we use a data set from [50] to demonstrate Algorithm 4.3 and Algo-

rithm 4.4, step by step.

Given the animal world depicted in Table 4.1 and the concept hierarchy for the

attribute ‘Animal’ depicted in Table 4.2:

First step: applying Algorithm 4.1 to Table 4.1, resulting in the prime relation of
Table 4.3. then further generalize Table 4.3 to the generalized relation as shown in

Table 4.4.

Second step: extracting the feature table based on the attribute ‘Animal’ depicted

in Table 4.5.

CHAPTER 4. D-K WITH HIERARCHIES 46

Third step: in the feature table, there are three classes for animal category, mam-
mal, bird and other. For Class=mammal, Hair=yes, a1 1, = 4, big1 = 101 = 1,
Class=mammal appears four times, and the total tuples for Class=mammal is four,

Hair=yes only appears four times in the whole table, so we can infer a rule as follows:
(Hair=yes) «— (Class=mammal)
similarly we can get :
(Milk=yes) «— (Class=mammal)
(Class=mammal) — (Feet=claw or hoof) A (Eats=meat or grass)
for Class=bird:
(Feather=yes) «— (Class=bird)
(Class=bird) — (Feet=claw or web) A (Eats=grain or fish or)meat)

The fourth step is to simplify the above rules, count the number of values appearing
as the characteristic values for the attribute and compare with the total number of
distinct values for the attribute. If the difference is larger than some threshold (for
example, 2) then the ‘not’ operator is introduced to the rules to simplify the forms of
the discovered rules. For example, the attribute ‘Eats’ has four distinct values: meat,

grass, grain, and fish. In the dicovered rule:
(Class=bird) — (Feet=claw or web) A (Eats=grain or fish or meat),

the Eats takes grain, fish and meat. So we can use not(Eats=grass) instead of
Eats=grain or fish or meat) as a component for the classification rule and the dis-
gr

covered rule can be simplified as:

CHAPTER 4. D-K WITH HIERARCHIES 47

(Class=bird) — not(Feet=hoof) A not (Eats=grass)

similarly, the rule:

(Class=mammal) — (Feet=claw or hoof) A (Eats=meat or grass)
can be simplified as

(Class=mammal) — not(Feet=web) A (Eats=meat or grass)

The last step is to analyze the data between different attributes and find the

relationship between them: for example, for Hair=yes, Feather=no,
(Hair=yes) <=> (Feather=No)

(Hair=yes) <= (Milk=yes)

(Feathers=yes) <= (Milk=No)

Then we can continue the process by using Algorithm 4. The prime relation table

is illustrated in Table 4.3:

Attach the E_attribute to the table, use the next higher-level concept in the concept

hierarchy for substitution, resulting in the temporary relation in Table 4.6:

CHAPTER 4. D-K WITH HIERARCHIES 48

| Animal |HaifTeeth Eyes | Feathers|Feet| Eat Milk| Fly | Swim | E

1| cmammal |yes | pointed | forward] no claw| meat yes Ino | yes mammal
2 | ungulate [yes | blunt | side no hoof| grass| yes |no |yes mammal
3| nonflyb |no |no side yes claw| grain{ no |no | no bird

41 nonflyb |no |no side yes web | fish no |no |yes bird

5} flyingb [no |no side yes claw| grain{ no {yes |no bird

6| flyingb |no |no forward| yes claw| meat | no |yes |no bird

7 | viper no | pointed | forward] no no meat { no |{no |no | other

note: cmammal=carnivorous mammal, nonflyb=non-flying bird, flyingb=flying bird

Table 4. 6: temporary relation after substitution

From Table 4.7, we can see that for mammals, Hair, Feather, Milk, Fly, and

Swim do not distinguish mammals; Teeth, Eat do distinguish mammals, we can thus

generalize the rules:

Animal |HaifTeeth |Eyes |Feathers|Feet | Eat | Milk| Fly | Swim | E
1| cmammal]yes | pointed | forward]| no claw | meat | yes |no | yes mammal
2] ungulate |yes | blunt | side no hoof | grass| yes |no |yes mammal

(Class=mammal) A (Teeth=pointed) — (Animal=carnivorous.-mammal)

Table 4. 7: temporary relation for mammal

(Class=mammal) A (Teeth=blunt) — (Animal=ungulate)

CHAPTER 4. D-K WITH HIERARCHIES

(Class=mammal) A\ (Eats=meat) — (Animal=cmammal)

(Class=mammal) A (Eats=grass) — (Animal=ungulate)

49

#| Animal | Hair| Teeth{ Eyes |Feather| Feet|Eat Milk | Fly| Swim| E

3| nonflyb|] no |no side yes claw| grain| no | no | no bird
4| nonflyb| no |no side yes web | fish no | no | yes bird
5| flyingb| no |no side yes claw| grain| no | yes| no bird
6| flyingb! no |no forward] yes claw] meat | no | yes| no bird

Table 4. 8: temporary relation for bird

Similarly for bird, based on Table 4.8, we can derive the following rules:

(Class=bird) A (Flies=yes) — (Animal=flying bird)

(Class=bird) A (Flies=no) — (Animal=nonflyingb)

then continue the process, descending one level of the concept hierarchy

| Animal | HaifTeeth Eyes | Feathers|Feet |Eat Milk |Fly | Swim E
1| tiger yes | pointed | forward] no claw | meat | yes |no |yes cmammal
2| cheetah | yes | pointed | forward{ no claw| meat |yes [no yes | cmammal

Table 4. 9: temporary relation for cmammal

CHAPTER 4. D-K WITH HIERARCHIES 50

#| Animal | Hair| Teeth Eyes | Feathers | Feet | Eat Milk|Fly | Swim E
giraffe |yes |blunt | side no hoof | grass |yes [no | no ungulate
2|zebra [yes [blunt | side no hoof| grass |yes | no | no ungulate

Table 4.10:temporary relation for ungulate

Nothing interest can be found based on Table 4.9, Table 4.10. Because the in-
formation stored in the database is not enough to distinguish the animal: tiger and

cheetah, giraffe and zebra.

#| Animal | Hair| Tceth Eyes | Feathers | Feet | Eat Milk|Fly [Swim E
5| ostrich | no no sidec | yes claw | grain no |no |no nonflyb
6 | penguin| no ne sidc | yes web | fish no {no |yes nonflyb

Table 4. 11: temporary relation for non-flying-bird

(Class=nonflying_bird) A (Feet=claw) — (Animal=ostrich)
(Class=nonflying_bird) A (Eat=grain) — (Animal=ostrich)

(Class=nonflying_bird) A (Feet=web) — (Animal=penguin)
(Class=nonflying_bird) A (Swim=yes) — (Animal=penguin)

CHAPTER 4. D-K WITH HIERARCHIES 51

#| Animal | Hair| Teeth Eyes | Feathers | Feet | Eat Milk{Fly | Swim E
7 plbatross{ no no ide yes claw |grain |no |yes |no flyingb
8 pagle no no orward| yes claw | meat |no |yes |no flyingb

Table 4.12 : temporary relation for flying-bird

(Class=flying_bird) A (Eye=side) — (Animal=albatross)
(Class=flying_bird) A (Eats=grain) — (Animal=aibatross)
(Class=flying_bird) A(Eats=forward) — (Animal=eagle)
(Class=flying bird) A (Eats=meat) — (Animal=eagle)

Chapter 5

K-Discovery by Clustering

5.1 Introduction

In the previous chapter, we discussed the method which can find knowledge rules
associated with concepts in different levels in the concept hierarchy. The method
integrates a machine learning paradigm, especially learning from example tech-
niques, with database operations and extracts generalized data from actual data in
the databases. A key to the approach is attribute-oriented concept tree ascension for
generalization which applies the well-developed set-oriented database operations and

substantially reduces the computational complexity of the databases learning process.

Since it is often necessary to incorporate higher level concepts in the learning
process [33], candidate rules are restricted to formula with particular vocabulary,
that is, a basis set called the conceptual bias, permitting the learned rules to be
represented in a simple and explicit form. Different levels of concepts can be organized
into a taxonomy of concepts. The concepts in a taxonomy can be partially ordered

according to general-to-specific ordering. The specification of conceptual bias is a

52

CHAPTER 5. K-DISCOVERY BY CLUSTERING 53

necessary and natural process for learning. Such a concept tree is specified using an
IS-A hierarchy and stored in a relational table, the conceptual hierarchy table. In cur

previous method it is assumed that the concept hierarchy table is provided by the

user or data analyst explicitly.

Since databases potentially store a large amount of data, it is important to develop
efficient methods to explore regularities from them. Although data in a relational
database are usually well-formatted and modeled by semantic and data models [2],
the contents of the data may not be classified. For example, a chemistry database
may store a large amount of experimental data in a relational format, but knowledge
and effort are needed to classify the data in order to determine the intrinsic regularity
of the data. Clearly, schemas and data formats are not equivalent to conceptual
classes. Observation of the cognitive process of human discovery shows that human
tends to cluster the data into different classes based on conceptual similarity and then
extract the characteristics from these classes. For example, by clustering experimental
data based on the knowledge of chemists, interesting relationships among data can be

discovered.

In some applications, the conceptual knowledge is not available, So it is very useful
if we can find some regularity from the database in the absence of a concept hierarchy

table.

In this chapter, based on our previous research, we develop the method further.
The algorithm presented here combines the techniques of conceptual clustering and
machine learning. The new method can cluster the data automatically, extract char-
acteristics for different classes and then derive some knowledge rules according to the

relationships between different classes.

CHAPTER 5. K-DISCOVERY BY CLUSTERING 54

5.2 Approaches to Conceptual Clustering

Conceptual clustering is a process which groups objects with common properties into
clusters and extracts the characteristic of each cluster over a set of data objects. It
is originally motivated and defined by Michalski and Stepp [30] as an extension of
processes of numerical taxonomy. Currently there are two views regarding conceptual
clustering. One view represents an extension to techniques of numerical taxonomy, the
other view is a form of learning by observations or conceptual formation as distinct
from methods of learning from examples or concept identification. Clustering
algorithms which have been framed as extensions to numerical taxonomy techniques
include CLUSTER/2 [30] and COBWEB [9]. The clustering algorithm can be viewed
as an extension of learning by observation, which includes HUATAOQ [3] and Thou-
ght/KD1 [19]. Numerical taxonomy techniques are mainly used to form classification
schema over data sets based on some numerical measure of similarity and they do not
produce any conceptual description of the clusters. The problem of interpretation is
simply left to the data analyst. Conceptual clustering as an extension of learning by
observation not only considers the distance between objects as in numerical taxonomy,
but also their relationships to other objects, and most importantly, their relationship
to some predetermined concepts. The price for using such a ‘concept-dependent’
similarity measure results in significantly greater computational complexity, so this
method is not feasible to knowledge discovery in database system since databases
usually store a huge amount of data. Furthermore, these two techniques do not
find any relationships between different clusters. Both the conceptual clustering and
learning from examples methods are concerned with formulating some description that

summarizes a set of data. In learning from examples, a tutor specifies which objects

CHAPTER 5. K-DISCOVERY BY CLUSTERING 55

should be assigned to which classes and the learner must characterize each class. In
conceptual clustering the learner has the two-fold task of creating object classes as
well as characterizing these classes. Among the many existing clustering algorithms
such as CLUSTER/2 and COBWERB, none of them have been applied specifically to

database applications and they tend to be computationally expensive.

Based on the relationships among the clusters and cluster descriptions, three dif-

ferent types of intercluster structures are commonly distinguished in the literature.

Optimization techniques of numerical taxonomy form a ‘flat’ (ie, unstructured) set
of mutually exclusive clusters (ie. a partition over the input object set). Optimization
techniques make an explicit search for a globally optimal K-partition of an object set,
where K is a user supplied parameter. This search for globally optimal partitions
make optimization techniques computationally expensive, thus constraining their use

to small data sets and/or small values of K.

Hzierarchical techniques form classification trees over object sets, where leaves of
a tree are individual objects, and internal nodes represent object clusters. A ‘flat’
clustering of mutually-exclusive clusters may be obtained from the classification tree
by severing the tree at some level. Hierarchical techniques are further divided into
divistve and agglomerative techniques, which construct the classification tree top-
down and bottom-up, respectively. Hierarchical techniques depends on ‘good’ clus-
terings arising from a serial of ‘local’ decisions. In the case of divisive techniques, a
node in a partially constructed tree is divided independent of other (non-ancestrial)
nodes of the tree. The use of ‘local’ decision-making in hierarchical methods make
them computationally less expensive than optimization techniques with an associated

probable reduction in the quality of constructed clusterings.

CHAPTER 5. K-DISCOVERY BY CLUSTERING 56

Clumping techniques return clusterings where constitutent clusters possible over-
lap. The possibility of cluster overlap stems from independently treating some number

of clusters as possible hosts for an object which must be incorporated into a clustering.

A natural approach would combine the advantages of these techniques. We propose
a new method for knowledge discovery that can find knowledge from databases by first
clustering data using a numerical taxonomy, then extract a characteristic feature for
the cluster, and finally treat each cluster as a positive example as in learning from
examples and use existing machine learning methods to derive knowledge rules. Thus,

there are three tasks which must be addressed by our algorithm:
(1) aggregating objects into different clusters;
(2) assigning conceptual descripticns to object classes; and
(3) learning from object classes.

In this chapter, we only consider problems (1) and (3) since problem (2) is identical

to the well-studied task of learning from examples [2,4].

5.3 Knowledge Discovery by Conceptual Clus-

tering

Our method is divided into three phases. Phase 1 uses a numerical taxonomy to
classify the object set. Phase 2 assigns conceptual descriptions to object classes.
Phase 3 finds the hierarchical, inheritance and domain knowledge based simply on

different relationships between different classes.

CHAPTER 5. K-DISCOVERY BY CLUSTERING 57

5.3.1 Aggregating Objects into Different Clusters

For a numerical taxonomy, various measures of similarity have been proposed, most
of them based on a Euclidean measure of distance between numerical attribute, con-
sequently, the algorithm only works well on numerical data. More recently, database
applications use non-numerical data. We propose a new measure; we use the number
of common attribute values in two data set as a reasonable similarity measure between

them. (the number of common attribute values of a data set with itself is defined as

0.)
Algorithm 5.1: a simple data clustering algorithm
Input. a set of data stored in the relational table

Output. a cluster hierarchy of the data set

Method.

1. (prelimemary step): generalize some attributes to a ‘desirable level’, for example,
in a employer database, for the ‘age’ attribute, it is better to substitute the many
different values into a few distinct values such as ‘young’, ‘middle-aged’, or ‘old’.

This may make the descriptions of the clusters concise and meaningful.
2. calculate the number of common attribute values between each pair of data.

3. based on the threshold value for the similarity, form a cluster for each data. (the
threshold is changed in each iteration, it can be given by the user or determined

by analyzing the distribution of the numbers of common attribute values)

4. delete the redundant clusters.

CHAPTER 5. K-DISCOVERY BY CLUSTERING 58

5. is there any new cluster produced? If not, terminate; otherwise
6. form the hierarchy based on the new and untouched* clusters

7. use the new cluster and the untouched clusters as data for the next iteration,

go back to step 2

*Note: A cluster which is not an component of any newly formed clusters is called

an untouched cluster.

5.3.2 Learning from object classes

We can discover three kinds of knowledge rules from object classes: hierarchical knowl-
edge rules, the relationship between different attributes and inheritance knowledge
rules. Given a set of data, after phase 1, the data is clustered into a hierarchy as

illustrated in Figure 5.1

Level #

Figure 5. 1: Conceptual Hierarchy

where H's denote the clusters in the hierarchy, H; ; is a subset of H; and the concep-

tual descriptions assigned to these classes are Dy,..., Di, D11, D1,y Diayee, Dy,

CHAPTER 5. K-DISCOVERY BY CLUSTERING 59

and so on. The values of k, 1,..,m depend on the actual data set.

For rule formation, there are three algorithms of knowledge discovery: Hierarchical
Knowledge Discovery (HKD), Attribute Knowledge Discovery (AKD) and Inheritance
Knowledge Discovery (IKD). For HKD, new rules are discovered by finding all possible
implications between the descriptions of clusters in a cluster and those in its father
clustering, namely D; ; — D;. For AKD, the algorithm just looks at the characteris-
tic description for each cluster, based on the relationship on different attribute values,
then gives the result in terms of a logically equivalent form. For IKD, which is a
modification of HKD, labels are used, which are either explicitly defined by the users

in terms of domain knowledge or labels are produced automatically by the system.

Clustering labels play an important role in knowledge discovery, the new rules

discovered can be formed as
D\&D; & ... &D; ;. . xg — LABEL(H;; k1)
or
LABEL(H;; +)&D;; xi — LABEL(H;; k1)

where the condition part of the rule consists of the conjunction of the description of

the current cluster and the label of its father’s clustering.

5.4 An Example

In this section, we use a set of data from [50] to explain our method, step by step.

Given the animal world depicted in Table 5.1:

CHAPTER 5. K-DISCOVERY BY CLUSTERING 60

| Animal | Hair|Teeth Eyes |Feathers |Feet | Eat Milk| Fly | Swim
1 | tiger yes | pointed | forward no claw | meat{ Yes |no |yes

2 |cheetah | yes pointed | forward| M claw} meat | Yes | no | yes
3 | giraffe |yes |blunt |side no hoof | grass | yes no no
4 | zebra yes | blunt |side ho hoof | grass [yes | M0 | no
5{ostrich | DO [n, side yes claw| grain | no |yes | RO

6 |penguin | no | no side yes web | fish | N0 | no no

7 | albotross | RO | no side yes claw | grain | no | yes yes
8 |eagle no |no forward| yes claw| meat | no |yeq | no

for example, the data in row 1 means that a tiger is a animal with hair, pointed

teeth, forward eyes, claw feet, and no feather, it gives milk and can not fly but can

swim.

In Phase 1, the clustering algorithm is applied to classify the raw data. After the

first iteration, the number of common attribute values between each pair of data is

computed in Table 5.2:

Table 5.1 Animal World

CHAPTER 5. K-DISCOVERY BY CLUSTERING 61

1 23 4 5 6 7 8
1 0f{9ala|2]2]1]3
2 9lofafal| 2| 2 1] -
3 4lalofo] 3] 1]2]1
4 4(a19fof 3] 1] 2|1
5 21213 [3|0|7]8]6
6 2121]1)7]0]5]5
7 112]2]8|5]0]7
8 31311 |1lels|7]o0

Table 5. 2: number of common attribute values after 1st iteration

For example, the ‘9’ in row 1, column 2 is computed by counting the number of

common attribues between the data set in row 1 and row 2 of Table 5.1.

Suppose we choose 6 as the threshold value for similarity, the algorithm produces
8 clusters (1,2), (2,1), (3,4), (4,3), (5,6,7,8) ,(6,5), (7,5,8),(8,5,7), then 5 distinct
clusters (1,2),(3,4),(5,6,7,8),(5,6),(5,7,8) are formed after deleting redundant ones and

a hierarchy is formed as depicted in Figure 5.2:

12| |34 /—"’6'7’8\
1 2 3 4 5.6 57,8
6 5 7 8

Figure 5. 2: Conceptual Hierarchy after 1st iteration

CHAPTER 5. K-DISCOVERY BY CLUSTERING 62

Next, the clustering algorithm is applied to {1,2), (3,4), (5,6,7,8), it calculate the
similarity for the three clusters (1,2), (3,4), (5,6,7,8), the common attribute values
are presented in Table 5.3 and the algorithm chooses 5 as the threshold value for this

iteration, resulting in the hierarchy shown in Figure 5.3:

1,2,3,4

Figure 5. 3: Conceptual hierarchy after 2nd iteration

12) G4) (5,6,7,8)

(1,2) O 5 O (1’2’3)4) (5 76!7’8)
3.d) 5 |o 0 (1.2.3.4) 0 0
5678 L0 10 0 (5,6,7,.8) 0 0

Table 5. 3: # of common attribute value after 2nd iteration
Table 5. 4: # of common attribute value after 3rd iteration

Finally, the clustering algorithm is applied to (1,2,3,4),(5,6,7,8). After the third
iteration, the common attribute values between these two clusters are presented in
Table 5.4 and the resultant conceptual hierarchy is illustrated in Figure 5.4. (char-

acteristic descriptions of each cluster is the commom values for all the data in the

cluster)

CHAPTER 5. K-DISCOVERY BY CLUSTERING 63

Hair=yes Milk=no
. Feather=yes
Milk=yes 1,2,3.4,5,6,7.8
Fly=ves
Feet=claw
— Eyes=side : Eat=grain or meat
Teeth=pointed 1234 oo B8 Eategrain or fish [5,67,3

g

Eyes=forward =claw or web

Eyes=side
Feet=hoof

Feet=claw
Eat=meat

Figure 5.4: Conceptual hierarchy after the 3rd iteration

In phase 3, the three Knowledge Discovery Algorithms HKD, AKD, and IKD as
presented in section 3.2 are applied to the hierarchy depicted in Figure 5.4, respec-
tively. Algorithm HKD results in Table 5.5, a rule set which can be interpreted as
follows. Rule # 1 means if a animal has hoof feet, then it gives milk. The rule sets

are generated as follows:

Knowledge Rules discovered by HKD
Feet=hoof-->Milk=yes

Teeth=pointed or blunt-->Milk=yes

Eat=grasss-->Milk=yes

Feet=hoof-->Hair=yes

Teeth=pointed or blunt-->Hair=yes

Al i it e |3

Eat=grass-->Hair=yes

Table 5. 5: Hierarchical Knowledge Rules

CHAPTER 5. K-DISCOVERY BY CLUSTERING

64

Algorithm AKD results in Table 5.6, a rule set which can be interpreted as follows.

#

Knowledge rules discovered |

Hair=yes<==>Milk=ycs

Feather=yes<==>Milk=no

Rule # 1 means if a animal has hair, then it gives milk, vice versa

Table 5. 6: Equivalent logic:

Algorithm IKD results in Table 5.7,a rule set which can be interpreted as follows.

Rule # 1 means if a animal in Cluster Label(1,2,3,4,5,6,7,8) with hair or giving milk,

then it belongs to cluster Label(1,2,3,4).

Knowledge rules discovered by IKD

1 Label(1,2,3,4,5,6,7,8)and (hair=yes or Milk=yes)-->Label(1,2,3,4)

2 Label(1,2,3,4,5,6,7,8) and (Feather=yes or Milk=no)--> Label(5,6,7,8)
3 Label(1,2,3,4) and (Teeth=pointed or Eyes=forward or Feet=claw or Eats=meat)-->Label(1,2)
4 Label(1,2,3,4) and (Teeth=blunt or Eyes=side or Fee=hoof or Eats=grass)--> Label(3,4)

Table 5. 7: Inheritance Knowledge Rules

If we substitute the labels by the names given by an expert or users as shown in

Table 5.8:

CHAPTER 5. K-DISCOVERY BY CLUSTERING 65

Labels given by system Names given by expert or user
Label(1,2,3,4,5,6,7,8) Animals
Label(1,2,34) mammal
Label(5,6,7,8) bird
Label(1,2) camivorous mamal
Label(3,4) ungulate
Label(5,6) non-flying bird
Label(5,7,8) meaningless cluster

Table 5. 8z Name list

we can obtain a set of meaningful rules as follows:

Substitute the labels by the names given by experts or users

(Thing=animal)and(Hair=yes or Milk=yes)->mammal

(Animal=mammal)and(Teeth=pointed or Eyes=forward or Feet=claw or Eats=meat)->c_mammal

#

1

2 | (Thing=animal)and(Feather=yes or Milk=no)->bird
3
4

(Animal=mammal)and (Teeth=blunt or Eyes=side or Feet=hoof or Eats=grass)->ungulate

Table 5. 9: A set of meaningful rules after substitution
note: c_mammal=carnivorous mammal

Chapter 6

Discussion

In previous chapters, we presented two new methods for knowledge discovery in
databases system. One new method finds knowledge associated with concepts at
different levels in the conceptual hierarchy. The other method discovers knowlegde by
conceptual clustering in the absence of a concept hierarchical table. In this chapter,

we will discuss the two methods respectively.

6.1 Discovery of Knowledge Associated with a

Concept Hierarchy

The algorithm is based on the previous research [2,13,14,20]. Thus our method in-
herits all the advantages of the attribute-oriented concept-tree ascension techniques.
Moreover, our method can discover different kinds of rules associated with the con-

cepts at different levels in the concept hirarchy

66

CHAPTER 6. DISCUSSION 67

6.1.1 Search Space

Attribute-oriented induction provides a simple and efficient way to learn different
kinds of knowledge rules in relational databases. As an emerging field, there have
been only a few database-oriented knowledge discovery systems reported, most of
which are based on previously developed learning algorithms. The major difference
of our approach from the others is attribute-oriented induction vs. tuple-oriented

induction. It is essential to compare these two approaches.

A concept tree ascending technique is the major generalization techniques used
in both attribute-oriented generalization and tuple-oriented generalization. However,
the tuple-oriented approach performs generalization tuple by tuple, but the attribute-
oriented approach performs generalization attribute by attribute. We compare the
search spaces of our algorithms with that of a typical method of learning from

examples, the candidate elimination algorithm [7]

In the candidate elimination algorithm, the set of all concepts which are consistent
with the training examples is called the version space of the training examples. The
learning process is the search in this version space to induce a generalization concept

which is satisfied by all of the positive examples and none of the negative examples.

Since generalization in an attribute oriented approach is performed on individual
attributes, a concept hierarchy of each attribute can be treated as a factored version
space. Factoring the version space significantly improves the general efficiency. Sup-
pose there are p nodes in each concept tree and there are k concept trees (attributes)
in the relation, the total size of a k factorized version space is pk. However, the size

of the unfactorized version space for the same concept tree should be p*.

CHAPTER 6. DISCUSSION 68

6.1.2 Utilizing Database Facilities

Relational database systems provide many attractive features for machine learning,
such as the capacity to store a large amount of information in a structured and or-
ganized manner and the availability of well developed implementation techniques.
However most existing algorithms do not take advantage of these database facilities
[2]. An obvious advantage of our approach over many other learning algorithms is the
integration of the learning process with database operations. Most of the operations
used in our approach involve traditional relational database operations, such as selec-
tion, join, projection (extracting relevant data and removing attribute), tuple substi-
tution (ascending concept trees), and intersection (discovering common tuples among
classes). These operations are set-oriented and have been efliciently implemented
in many relational systems. While most learning algorithms suffer from inefficiency
problems in a large database enviroment [2,13,14], our approach can use database fa-
cilities to improve the performance. Moreover, in contrast to many machine learning
algorithms which can learn only qualitative rules, our approach can learn qualitative

rules with quantative information, and statistical rules.

6.1.3 Conjunctive Rules, Disjunctive Rules and Incremen-

tal Learning

Many machine learning algorithms, such as Winston’s algorithm for learning concepts
about the blocks world [49] and the candidate elimination algorithm [7] are concerned
with the discovery of a conjunctive rule when both positive examples and negative

examples are presented. Thoth [47] and SPROUT ER [18] both of which are designed

CHAPTER 6. DISCUSSION 69

for finding the maximally-specific conjunctive generalizations of input positive exam-
ples, can only learn conjunctive rules [2]. The goal of the learning process performed
by such algorithms is to induce a conjunctive rule which can be satisfied by all of the
training examples. Since disjunctives allow a partially ordered rule space to become
infinitely ‘branchy’, many algorithms do not permit disjunctives in the representation
language. However in real world applications, there are many knowledge rules which
should be expressed in a disjunctive norm form. Our algorithms can learn both con-
junctive and disjunctive rules under the control of a specified threshold value. If the
threshold value is set to 1, the learning result will be a conjunctive rule. Otherwise, if
the threshold is a small integer greater than 1, the learning result will be a disjunctive
rule consisting of a small number of conjuncts. When a new tuple is inserted into a
database relation, rather than restarting the learning process from the beginning, it is
preferable to amend and fortify what was learned from the previous data. Our algo-
rithm can be extended to facilitate such incremental learning [2]. Let the generalized
relation be stored in the database. When a new tuple is inserted into a database,
the concepts of the new tuple are first generalized to the level of the concepts in the
generalized relation. Then the generalized tuple can be naturally merged into the

generalized relation.

6.1.4 Dealing with Different Kinds of Concept Hierarchies

In our examples, all of the concept hierarchies are reprsented as balanced concept
trees and all of the primitive concepts reside at the same level of a concept tree.
Hence generalization can be performed synchronously on each attribute to generalize

the attribute values at the same lower level to the ones at the same higher level.

CHAPTER 6. DISCUSSION 70

However, we may encounter other kinds of concept hierarchies or we may encounter
the case where the primitive concepts do not reside at the same level of a concept

tree.

Generalization of the Concepts at Different Levels of a Hierarchy

The concept hierarchies may be organized as unbalanced concept trees. For example,
the left branch of a tree may have fewer levels of leaves than the right branch. In
these cases, synchronous tree ascension may reach the same level at different stages,
which may result in an incorrect generalization at that level. A similar problem
may occur when the primitive concepts reside at the different levels of a concept
tree. These problems can be solved by checking whether one generalized concept may
cover other concepts of the same attribute. If one generalized concept covers a concept
several levels down the concept tree, the covered concept is then substituted for by

the generalized concept, that is, ascending the tree several levels at once.

Example 6.1 Handling an unbalanced concept tree

regular_shape

//\

oyal gon
cigcle ellipse triangle square hexagon
small_circle large_circle

Figure 6.1. An unbalanced concept tree.

CHAPTER 6. DISCUSSION 71

Figure 6.1 shows an unbalanced concept tree. Based on the discussion above,
as long as the attribute value ‘eilipse’ has been generalized to ‘oval’, those attribute

values, ‘small circle’, ‘large.circle’ and ‘circle’, can be substituted by ‘oval’ at once.

This idea can be used for incremental learning as well. Relational databases are
characterized by frequent updating. As new data become available, it will be more
efficient to amend and reinforce what was learned from previous data than to restart
the learning process from scratch [31]. Our algorithms can be extended to perform
incremental learning. When new data are presented to a database, an efficient ap-
proach to characterization and classification of data is to first generalize the concepts
of the new data up to the level of the rules which have been learned, then the learning

algorithms can be used to merge the generalized concepts derived from the old data

and the new data.

Generalization of Concepts in the Hierarchies with Lattices

In all of our previous examples, the concept hierarchies are trees, that is, every node
has only one parent node. For any concept, therefore, there is only one direction to
perform the generalization. In some cases, however, the concept hierarchy may have

lattice. Figure 6.2 illustrates this case.

Example 6.2. Handling a concept with lattices.

CHAPTER 6. DISCUSSION 72

some
cquple W seyeral
two three four five six seven eight

Figure 6.2: A concept hicrarchy with lattices.

As illustrated in Figure 2, the concept ‘two’ can be generalized either to couple
or few. Both generalized concepts should be considered. Our method is to put all
possible generalized concepts into intermidiate generalized relations when a lattice
is encountered, and then perform further generalization on all those tuples. In this
example, after the tuple containing attribute value ‘two’ is generalized, two new tuples,
containing attribute values ‘couple’ and ‘few’, respectively, should be generalized. For
the concept ‘six’, the same technique should be applied. As a consequence, the size of
the generalized relation table may increase at some stage of the generalization process
because of the effect of a lattice. However, since the gereralization is controlled by the

specified value, the generalized relation will eventually shrink in further generalization.

6.2 Discovery of Knowledge by Conceptual Clus-

tering

Most conceptual classification algorithms in the literature {21,30] are tuple-oriented

algorithms. A tuple-oriented algorithm examines data in the database tuple by tuple

CHAPTER 6. DISCUSSION 73

and performs generalization and classification based on the comparision of tuple val-
ues with the intermediate generalization results. Since the number of possible tuple
combinations is exponential to the number of tuples in the relevant data set, the worst
case complexity of the generalization and classification process is exponential to the
size of the relevant data sets [21,30]. But our method use a new method to classify
the data set based on the commom attribute values between different tuples. At each
iteration, a matrix is constructed in O(n?) where n is the number of the tuples of the
data set. According to the distribution of the values in the matrix, a suitable value

1s choosen which is a similarity measure for classification.

Our method can discover three kinds of knowledge rules in the absence of a concep-
tual hierarchy. It first classifies the data into different clusters by using a attribute-
oriented technique to cluster data, extracts the characteristic of each cluster, then

discovers knowledge rules based on the relationship between different clusters.

The advantages of our method include:

(1) Our algorithm can automatically find a hierarchy table without assistance. The
number of clusters and the levels of the hierarchy are determined by the algorithm;
it is unlike the famous CLUSTSER/2 in which the user must specify the number of

final clusters and the initial seeds in the beginning.
(2) Objects are not assigned to clusters absolutely.

Our method calculates the similarity between each pair of objects, providing a
more intuitive classification than absolute partitioning techniques. Our method ag-
gregates objects from bottom to top based on the similarity between them and if

a object has the same number of common attribute value to two clusters, then the

CHAPTER 6. DISCUSSION 74

object is assigned to both clusters.
(3) All attributes are potentially significant.

Typically, objects to be clustered come from an experimenta; study of some phe-
nomenon and are described by a specific set of attributes (variables) selected by the
data analyst. The attributes selected by the data analyst are not always relevant.
to the clustering problem. In conventional approaches, the selection of relevant at-
tributes is treated as a separate preliminary step. In the conjunctive conceptual
clustering method, attribute selection is performed simultaneously with the {orma-
tion of clusters. The method selects those attributes from the viewpoint of assumed
criteria, allow it to ‘simply’ characterize the individual clusters in terms of available
concepts. But classification can be based on any or all attributes simultaneously, not
on just the most important one . This represents an advantage of our method over
human classification and many existing conceptual clustering algorithms. In many
applications, classes are distinguished not by one or even by several attributes, but by
small differences in many attributes. Humans often have difficulty taking more than
a few attributes into account and tend to focus on a few iinportant attributes. Qur

method uses all attributes, permitting uniform consideration of all of the data.

(4) The threshold value has a big influence on whether or not an instance is
admitted to a class. We can vary the threshold, get different hierarchy tables so the

algorithm can generate different sets of rules to meet the needs of varied applications.

Chapter 7

Conclusion and Future Research

7.1 Conclusions

In this thesis, we have studied the methods of learning different kinds of rules such as
characteristic rules, classification rules, hierarchy knowledge rules, inheritance knowl-
edge rules and attribute rules. Our algorithms adopt the attribute-oriented induction
approach, integrate database operations with the learning processes, and provide an

efficient way of extracting knowledge from databases.

Our first method finds knowldge rules associated with concepts at different levels
in the conceptual hierarchy. It adopts the attribute-oriented concept tree ascending
technique which substitutes the lower-level concepts of the attribute in a tuple by its
corresponding higher-level concepts and thus generalizes the relation. By eliminating
the redundant tuples and applying a threshold value to control the generalization
process, the final generalized relation consists of only a small number of tuples which

can be transformed into a simple logic formula.

75

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 76

The other method we proposed is designed for discovery of knowledge in the ab-

sence of a conceptual hierarchy.

A comparision of our approach with many other algorithms for learning from
examples shows that our algorithms have many distinct features, such as, the ability

to use database facilities, learn disjunctive rules and statistical rules.

7.2 Future research

There are many interesting research issues related to learning from large databases

7.2.1 Applications of Knowledge Rules Discovered from Re-

lational Databases
The kncwledge rules learned from relational databases are very useful in many appli-
cations, some of which are listed below:
(1) Discovery of knowledge rules from knowledge-base systems and expert systems

Since rules are derived from a huge number of data stored in a relational database,
they represent important knowledge about data in the database. Thus our approach

is an important method to obtain knowledge rules for knowledge-base systems and

expert systems
(2) Processing of queries which involve abstract concepts

In general, relational databses can only answer queries which involve the concepts

in the database, but they cannot handie queries itke ‘What are the major characteristic

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 77

of mammal?’ and ‘How can we describe the major differences between mammal and
bird?’. Such queries involve concepts which are at a higher level than the primitive
data stored in relational databases. By applying the knowledge rules obtained by our

learning algorithms, it is possible to answer such learning-requests in a natural way.
(3) Semantic query optimization using the learned rules.

Some queries can be answered more efficiently by the learned knowledge rules
without searching databases. For example, the query, ‘Is there any mammal who
has feathers?’, usually indicates that the relation must be searched. However, if the
characteristic rule indicates that there is no mammal who has feathers, this query
can be answered immediately without any search. Clearly, learned rules may speed
up or optimize database query processing as previously studied in semantic query
optimization. Notice that when there is a large number of learned rules, it is nontrivial
to search such a rule space. In such a case, there is a trade-off between performing

such semantic optimization versus searching the database directly.

7.2.2 Construction of an Interactive Learning System

As shown in our learning system, the database learning process is guided by experts or
users. Experts and users must specify the learning task and define the threshold value.

It is important to obtain such information by interaction with users and experts.

(1) the system should have an user-friendly interface to facilitates users’ commu-
nication with the learning system. A more flexible database learning language should

be developed for such an interface.

(2) the entire learning process should be monitored and controlled by users. For

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 78

example, at some stage of the learning process, users may terminate th-- generalization
on some selected sttributes but continue the process on other attributes. In order to

obtain multiplerules, users may influence the learning process using different threshold

values.

Bibliography

[1]

2]

[4]

[5]

[6]

B.G. Buchanan and T. M. Mitchell, Model-Directed Learning of Production
Rules, Pattern-Directed Inference System, Academic Press, Waterman et. al.

(eds), 1978, 291-312.

Y. Cai, N. Cercone and J. Han, Attribute_ Oriented Induction in Relational
databases, in Knowledge Discovery in Database, AAAI/MIT Press, G.Piatetsky-
Shapiro and W.J. Frawley (eds), 213-228, 1991.

Y. Cheng, K.S. Fu, Conceptual Clustering in Knowledge Organization, IEEE
Transaction on Pattern Analysis and Machine Intelligence, (5)9, 1985, 592-598.

P. Chessman, J. Kelly, M. Self, J. Stutz, W. Taylor, D. Freeman, AutoClass:
A bayesian Classification System, Proc. of the Fifth Internatioal Workshop on
Machine Learning, Morgan Kaufmann, San Mateo, CA, 230-245, 1988.

P. Cohen and E. A. Feigenbaum, The Handbook of Artificial Intelligence Vol. 3,

Heuristic Press and William Kaufmann Inc., 1983.

T.G. Dietterich and R.S. Michalski, Inductive Learning of Structural Descrip-
tions: Evaluation Criteria and Comparative Review of Selected Methods, Artifi-

cial Intelligence, Vol. 16, 1981, 251-294.

79

BIBLIOGRAPHY 80

[7] T.G. Dietterich and R.S. Michalski, A Comparative Review of Selected Meth-
ods for Learning from Exaniples, Machine Learning: An Artificial Intelligence

Approach, Vol. 1, Morgan Kaufmann, 1983, 41-82

(8] B.C. Falkenhainer and R.S. Michalski, Integrating Quantitative and Qualitiative
Discovery: the ABACUS system, Machine Learning, Vol. 1, No.4, 1986, 367-401.

[9] D. Fisher, Improving Inference Through Conceptual Clustering, Proc. 1987
AAAI Conf., Seattle, Washington, July 1987, 231-239.

[10] D. Fisher, A Computational Account of Basic Level and Typicality Effects, Pro-
ceedings of 1987 AAAI Conference, Seattle, Washington, July 1987, 461-465.

(11] W. J. Frawley, G. Piatetsky and C.J. Matheus, Knowledge Discovery in
Database : An Overview, Knowledge Discovery in Database, AAAI/MIT Press,
G.Piatetsky-Shapiro and W.J. Frawley (eds) 1-27, 1991.

[12] M. Genesereth and N. Nilson, Logical Foundation of Artificial Intelligence, Mor-

gan Kaufmann, 1987.

[13] J. Han, Y.Cai, N. Cercone, Knowledge Discovery in Databases:An Attribute-
Oriented Approach, Proceeding of the 18th VLDB Conference, Vancouver , B.C.,
Canada, 1992, 335-350.

[14] J. Han, Y.Cai, N. Cercone, Data_Driven Discovery of Quantiative Rules in Re-
lational Databases, IEEFE Trans. Knowledge and Data Engineering, 5(2), 1992.

[15] D. Haussler, Bias, Version Spaces and Valient’s Learning Framework, Proc. fth

Int. Workshop on Machine Learning Workshop, Irvine, CA, 1987, 324-336.

BIBLIOGRAPHY 81

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

D. Haussler, Quantifying the Inductive Bias in Concept Learning, Proceedings of

1986 AAAI Conference, Philadelphia, PA, August 1986, 485-489.

D. Haussler, Learning Conjuctive Concepts in Structural Domains, Proceedings

of 1987 AAAI Conference, Seattle, Washington, July 1987, 466-470.

F. Hayes-Roth and J. McDermott, Knowledge Acquisition from Structural De-
scriptions, Proceedings of 5th International Joint Conference on Artificial Intel-

ligence, Cambridge, MA, August 1977, 356-362.

J. Hong, C. Mao, Incremental Discovery of Rules and Structure by Hierarchical
and Parallel Clustering, Knowledge Discovery in Database, AAAI/MIT Press,
G.Piatetsky-Shapiro and W.J. Frawley (eds), 177-194.

X. Hu, N. Cercone, J. Han, Discovery of Konwledge Associated With Conceptual

Hierarchies in Databases, submitted to Data and Knowledge Engineering.

X. Hu, N. Cercone, J. Han, Object Aggregration and Cluster Identification: A

Knowledge Discovery Approach, submitted to Applied Math. Letter.

Y. Huang, J. Han, N. Cercone, G. Hall, Learning Statistical Rules from Relational

Databases, to appear in Al: statistical, 1993

K.A. Kaufman, R.S. Michalski and L. Kerschberg, Mining for Knowledge in
databases: Goals and general Descriptions of the INLEN System, Knowledge
Discovery in Database, AAAI/MIT Press, G.Piatetsky-Shapiro and W.J. Frawley
(eds), 449-462.

P.W. Langley, Rediscovery Phisics with BACON 3, Proceeding of the 5th [JCAI
Conference, Cambridge, MA, 1977, 505-507

BIBLIOGRAPHY 82

[25]

[26]

[27]

[28]

(29]

[30]

[31]

D.B. Lenat, On Automated Scientific Theory Formation: a case Study Using the
AM program. Machine Intelligence 9, J. E. hayes, D. Michie and L. I. Mikulich
(eds), Haalsted Press, 1977 251-256.

D.J. Lubinsky, Discovery from Database: A Review of Al and Statistical Tech-
niques, Proceedings of IJCA-89 Worshop on Knowledge Discovery in Databases,
Detroit, Michigan, August 1989, 204-218.

M.V. Manago and Y. Kodratoff, Noise and Knowledge Acquision, Proceedings of
the 10th IJCAI Conference , Milan, Italy, 1987, 348-354.

R.S. Michalski, A Theory and Methodology of Inductive Learning, Machine
Learning: An Artificial Intelligence Approach, vol. 1, Morgan Kaufmann, 1983,
83-134.

R.S. Michalski and R.L. Chilansky, Learning by Being Told and learning from
Examples: An Experienmental Comparision of the Two methods of Knowledge
Acquisition in the Context of Developing an Expert System for Soybean Disease
Diagnosis, International Journal of Policy Analysis and Information System |,

vol. 4, 1980, 125-161.

Michalski, R. and Stepp,R, Automated Construction of Classifications: Con-
ceptual Clustering Versus Numerical Taxonomy, IEEE Transaction on Pattern

Analysis and Machine Intelligence, 5,4(1983a), 396-409.

R. S. Michalski, L. Mozetic, J. Hong and N. Lavrac, The Multi-purpose Incre-
mental Learning System AQL5 and Its Testing Application to Three Medical
Domains, Proceedings of 1986 AAAI Conference, Philadelphia, PA 1986,1041-
1045.

BIBLIOGRAPHY 83

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

R.S. Michalski, How to Learn Imprecise Concepts: A Method for Employing a
Two-tiered Knowledge Representation in Learning, Proceedings of the 4th Inter-

national Workshop on Machine Learning, irvine, CA, 1987, 50-57.

T. M. Mitchell, Version Space: A Candidate Elimination Approach to Rule
Learning, Proceedings of the 5th IJCAI Conference, Cambridge, MA, 1977,305-

310.

T.M. Mitchell, An Analysis of Generalization as a Search Problem, Proceedings
of the 6th IJCAI Conference, Tokyo, Japan, 1979, 577-582.

Piatetsky-Shapiro, Discovery of Strong Rules in Databases, Proceedings of IJCAI-
89 workshop on Knowledge Discovery in Databases, Detroit, Michigan, USA,

August 1989, 264-274.

J. R. Quinlan, Learning Efficient Classification Procedures and Their Applic-
cation to Chess End-Games, Machine Learning: An Artificial Intelligence Ap-
proach, Vol. 1, Morgan Kaufmann, 1983, 463-482.

J.R. Quilian, The Effect of Noise on Concept Learning, Machine Learning: An
Artificial Intelligence Approach, Vol. 2, Morgan Kaufmann, 1986, 149-166.

R. Reiter, Towards a Logical Reconstruction of Relational Database Theory, On
Conceptual Modeling, Spring-Verlag, 1984, 191-233. M. Brodie, J. Mylopoulos
and J. Schmids (Eds).

L. Rendell, A General Framework for Induction and a Study of Selective Induc-

tion, Machine Learning, 1, 1986.

BIBLIOGRAPHY 84

[40]

1)

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

S. J. Russell, Tree-Structure Bias, Proceedings of 1988 AAAI Conference, Min-
neapolis, Minnesota, August 1988, 211-213.

J.C. Schlimmer, Learning Determinations and Checking Databases, Knowledge

Discovery in Database Workshop 1991.

W.M. Shen, Discivering Regularities from Knowledge Bases , Knowledge Discov-
ery in Database Workshop 1991.

A. Silberschatz, M.Stonebraker and J.D.Ullman, Database Systems: Achieve-
ments and Opportunities, Comm. ACM, 34(10), 1991, 94-109.

R.R. Sokal and R.H. Sneath Principles of Numericcal Taxonomy W.H. Freeman
1963.

R.E. Stepp, Concepts in Conceptual Clustering, Proceedings of the 10th IJACI
Conference, Milan, Italy, August 1987, 211-213.

D. Subramanian and J. Feigenbaum Factorization in Experiment Generalization,

Proc. 1986 AAAI Conf., Philadelphia, PA, August 1986, 512-522.

S.A. Vere, Induction of Concepts in the Predicate Calculus, Proceeding of the jth
International Joint Conference on Artificial Intelligence, Los Altos, CA 1975,

281-287.

L. Watanabe and R. Elio, Guiding Constructive Induction for Incremental Learn-
ing from Examples. Proceedings of the 10th 1JCAI Conference, Milan, Italy, Au-
gust 1987, 293-296.

P. Winston, Learning Structure Descriptions from Examples, The Psychology of
Computer Vision, Winston, P. (eds), McGraw-Hill, 1975, 157-209.

BIBLIOGRAPHY 85

[50] P. Winston and B.K.Horn LISP, Reading,Mass.: Addison.Wesley, 1984.

[51] A. K. C. Wong and K.C.C. Chan, Learning from Examples in the Presence
of Uncertainty , Preceedings of International Computer Science Conference’ 88,

Hong Kong, December, 1988, 369-376.

[52] J. M. Zytkow, Combining Many Searches in the FAHRENHEIT Discovery Sys-
tem, Proceedings of the Jth International Workshop on Machine learning, Irvine,

CA, 1987, 281-287.

[53) J. M. Zytkow and J. Baker, Interactive Mining of Regularities in Databases,
Knowledge Discovery in Database, AAAI/MIT Press, G.Piatetsky-Shapiro and
W.J. Frawley (eds), 31-54, 1991.

