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Abstract 

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and 
potentially useful information from data. Knowledge discovery from a database is a 
forrn of machine learning where the discovered knowledge is represented in a high- 
level language. The growth in the size and number of existing databases far exceeds 
human abilities to analyse the data, which creates both a need and an opportunity 
for extracting knowledge from databases. In this thesis, I propose two algorithms for 
knowledge discovery in database systems. One algorithm finds knowledge rules asso- 
ciated with concepts in the different levels of the conceptual hierarchy; the algorithm 
is developed based on earlier attribute-oriented conceptual ascension techniques. The 
other algorithm combines a conceptual clustering technique and machine learning. 
It can find three kinds of rules, characteristic rules, inheritance rules, and domain 
knowledge, even in the absence of 2 conceptual hierarchy. Our methods are simple 
and efficient. 
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Chapter 1 

htroduct ion 

Learning is one of the most important characteristics of human and machine intel- 

ligence. Machine learning is a fundamental area in Artificial Intelligence which has 

achieved significant progress in the last two decades. Many learning systems have 

been constructed for scientific, business, industrial and medical appilcations; it is im- 

portant to develop learning machanisms for knowledge discovery in large databases, 

especially relational databases. 

An important machine learning paradigm, learning from examples, that is, learn- 

ing by generalizing specific facts or observations [5, ' i] ,  has been adopted in many ex- 

isting induction learning algorithms. Current systems for learning from examples 

take training examples from various sources, such as, data extracted from experiments 

[1,24], examples given by teachers and experts [32], facts recognized by people [34] 

and rules accumulated from past experience[28], etc.. However, not many systems 

directly extract knowledge from data stored in relational databases. 

Knowledge &scot!ery is the nontrivial extraction on implicit, previously unknown, 

and potentially useftil information from data [l 11. 



CHAPTER 1.  INTRODUCTION 

The growth in the size and number of existing databases far exceeds tiurnm abili- 

ties to analyze this data, which creates bot,h a need and an opportunity for extracting 

knowledge from databases. Recently, data mining has been ranked as ont. of ttlw 

most promising research topics for the 1990s by both database and machine lcar~iing 

researchers 1431. 

From our point view, one of the major reasons that the learning systclns clo not, 

integrate well with relational database systems is because of the inefficiency of currcnt 

learning algorithms when applying to large databases. Most existing algorithms for 

learning from examples apply a tuple-oriented approach which examines one trtplc! 

at a time. In order to discover the most specific concept that is sa,tisfied by all t h t  

training examples, the tuple-oriented approach must test the concept coverage a f k r  

each generalization on a single attribute value of a training example [7,28]. Sincc 

there are a large number of possible combinations in such testir~g, the tuple-oricntcxl 

approach is quite inefficient when performing learning from large databases. Morc- 

over, most existing algorithms do not make use of the features and implerncntat,ion 

techniques provided by database systems. To make learning algorithms applicabie 

to database systems, highly efficient algorithms should he designed and explored in 

depth. 

In previous studies [2,13,14], an attribute-oriented induct.ion method has been 

developed for discovery in relational databases. The met hod integrates a rnachinc 

learning paradigm, especially learning from exumpiev techniques, with database 

operations and extracts generated data from actual data in databases. Two typcs of 

knowledge rules, characteristic rules and classification rules, can be learned. A key 

to  the .;ppro;~ch is attribute-oriented database operations which substantislly reduce 



the computational complexity of the database learning processes. 

In this thesis, I further develop the results from previous studies [2,13,14] in two 

ways. The previous method is developed further to find knowledge rules associated 

with different levels of the concepts in the conceptual hierarchy. Furthermore, if 

the concept hierarchy is unavailable, our method can construct a concept hierarchy 

automatically from the data and infer some knowledge rules based simply on the 

containment relationship between different clusters. This method combines our con- 

ceptual clustering technique with machine learning. It can find three kinds of rules 

even in the absence of a conceptual hierarchy. Our methods are simple but efficient. 

This thesis is organized into seven chapters. A brief survey of the methods de- 

veloped for learning from examples and knowledge discovery in large databases is 

presented in Chapter 2. Att ribute-Oriented Induction in relational databases is ad- 

dressed in Chapter 3. An algorithm for discovering knowledge rules associated with 

concepts of different levels in the conceptual hierarchy table and statistical rules with 

different concepts is explained in Chapter 4. Then we propose a new algorithm, knowl- 

edge discovery by conceptual clustering, in Chapter 5. In Chapter 6, the variations 

of our method, the comparision with other discovery systems are discussed. Finally, 

in Chapter 7, we conclude our research and propose some interesting topics for future 

research. 



Chapter 2 

Learning From Databases 

We survey some theoretical issues related to learning from examples, and some recent 

progress in knowledge discovery in database systems and knowledge base systems 

which adopt the learning f r o m  ezamples paradigm. 

2.1 Concepts of Learning From Examples: An A1 

Approach 

As a basic method in empirical learning, learning from examples has been studied 

extensively. We review the basic components and the generalization rules of learning 

from examples, the types of knowledge rules which can be learned, and the control 

strategies of the learning process. 
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2.1.1 Basic Components in Learning from Examples 

Learning from esampkes can be characterized by a tuple ( P,N,C, A ), where P is a set 

of positive examples of a concept, N is a set of negative examples of a concept, C is 

the conceptual bias which consists of a set sf concepts to be used in defining learning 

rules and results, and A is the logical bias which captures particular logic forms [12]. 

In most learning systems, the training examples are classified in advallce by the 

tutor into two disjoint sets, the positive examples set and the negative examples set 

[28]. The training examples represent low-level, specific information. The learning 

task is to generalize these low-level concepts to general rules. 

There could be numerous inductive conclusions derived from a set of training ex- 

amples. To cope with this multiplicity of possibilities, it is necessary to use some 

additional information, problem background knowledge, to constrain the space of pos- 

sible inductive conclusions and locate the most desired one(s) [12]. The conceptual 

bias and the logical bias provide the desired concepts and the logic forms which serve 

as this kind of background knowledge. These biases restrict the candidates to formu- 

las with a particular vocabulary and logic forms. Only those concepts which can be 

written in terms of this fixed vocabulary and logic forms are considered in the learning 

process. 

Usually, the examples presented to the learning system consist of several attributes. 

Depending on the structure of the attribute domains, we can distinguish among three 

basic types of attributes [28]: 

(1) nominal attributes: the value set of such attributes consists of independent 

symbols or names. 
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(2) numerical attributes: the value set of such attributes is a totally ordered set. 

(3) structured attributes: the value set of such attributes has a tree struct,ure 

which forms a generalization hierarchy. A parent node in such a structure represents 

a more general concept than the concepts represented by its children nodes. The 

domain of structured attributes is defined by the problem background knowledge. 

2.1.2 Types of Knowledge Rules 

Given a learning-from-examples problem characterized as ( P,N,C, A,) ,  several differ- 

ent rules can be extracted. The learned concept is a characteristic rude if and only if 

it is satisfied by all of the positive examples. The learned concept is a discriminution 

rule if and only if it is not satisfied by any of the negative examples. The learned 

concept is an admissible rule if and only if it is both characteristic and discriminant 

[7,12]. A statistical rule is a rule associated with statistical information which assesses 

the representativeness of the rule. 

Most learning algorithms are designed for learning admissible rules [7,28]. A few 

algorithms, such as INDUCE 1.2 [6] and SPROUTER [18], are designed for learning 

characteristic rules. DBLEARN [2,13,14,22] can discover all of the three kinds of 

rules. 

2.1.3 Control Strategies in Learning from Examples 

Induction methods can be divided into data-driven (bottom-up), model-driven (top- 

down), and mixed methods depending on the strategy employed during the search 

for generalized concepts [7]. All of these methods maintain a set, tl, of the currently 



CHAPTER 2. LEARNING FROM DATABASES 

most plausible rules. These methods differ primarily in how they refine the set H so 

that it eventually includes the desired ccncepts. 

In the data-driven methods, the presentation of the training examples drives the 

search. These methods process the input examples one at a time, gradually general- 

izing the current set of concepts until a final conjunctive generalization is computed. 

The typical examples of such control strategy include the candidate-elimination algo- 

rithm [33,34], the approach adopted in [18,48], the ID3 techniques [37] and the Bacon 

learning system [20]. 

In the model-driven methods, an priori model is used to constrain the search. 

These methods search a set of possible generalization in an attempt to find a few 

'best' hypotheses that satisfy certain requirements. Typical examples of systems 

which adopt this startegy are AM [25], DENDRAL and Meta-DENDRAL [I], and 

the approach used in the INDUCE system [6] .  

Data-driven techniques generally have the adva.ntage of supporting incremental 

learning. The learning process can start not only from the specific training examples, 

but also from the rules which have been discovered. The learning systems are capable 

of updating the existing hypotheses to account for each new example. In contrast, the 

model-driven methods, which test and reject hypotheses based on an examination of 

the whole body of data, are difficult to use in incremental learning situations. When 

new training examples become available, model-driven methods must either backtrack 

or restart the learning process from the very beginning, because the criteria by which 

hypotheses were originaf ly tested (or schemas instantiated) have been changed [7]. 

On the other hand, an advantage of model-driven methods is that they tend to have 

goad noise immunity. When a set of hypotheses, H, is tested against noisy training 
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exxnples, the model-driven methods need not reject a hypothesis on the basis of one 

or two counterexamples. Since the whole set of training examples is available, the 

program can use statistic measures of how well a proposed hypothesis accounts for 

the data. 

2.2 Some Learning From Examples Models 

Since the 19607s, many algorithms and experimental systems on learzing froin 

examples have been developed f331, which demonstrate aspects of machine learn- 

ing in science, industry and business applications [17,39]. In this section, we present 

several successful models which are related to our research. 

2.2.1 The Candidate Elimination Algorithm 

Mitchell developed an elegant framework, version space, for describing systems that 

use a data-driven approach to concept learning [32]. This framework can be dcscrihcd 

as follows. Assume we are trying to learn some unknown target concept defined on 

the instance space. We are given a sequence of positive and negative examples which 

are called samples of the target concept. The task is to produce a concept, that is 

consistent with the samples. The set of all hypothesis, H ,  that are consistent with 

the sample is called the version space of the samples, The version space iu empty in 

the case that no hypothesis is consistent with the samples. 

Mitchell proposed an algorithm, called the candidate-elimination algorithm, to 

solve this learning task. The algorithm maintains two subsets of the version space: 
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the set S of the most specific hypothesis in the version space and the set G of the 

most general hypotheses. These sets are updated with each new example. The positive 

examples force the program to generalize the S set, and the negative examples force 

the program to specify the G set. The learning process terminates when G = S. 

A good feature of this method is that the incremental learning can be performed 

by the learning program. The sets S and G can easily be modified to account for new 

training examples without any recomputation. 

However, as with all data-driven algorithms, the candidate elimination algorithm 

has difficulty with noisy training examples. Since this algorithm seeks to find a con- 

cept that is consistent with all of the training examples, any single bad example (that 

is, a false positive or false negative example) can have a profound effect. When the 

learning system is given a false positive example, for instance, the concept set to 

become overly generalized. Similarly, a false example causes the concept set to be- 

come overly specialized. Eventually, noisy training examples can lead to a situation 

in which there are no concepts that are consisitent with all of the training examples. 

The second and most important weakness of this algorithm is its inability to discover 

disjunctive concepts. Many concepts have a disjunctive form, but if disjunctions of 

arbitrary length are permitted in the represenatation language, the data-driven algo- 

ri thm described above never generalizes. Unlimited disjunction allows the partially 

ordered rule space to become infinitely 'branchy'. 

There are two computational problems associated with this method. The first one 

is that in order to update the sets S and G we must have an efficient procedure for 

testing whether or not one hypothesis is more general than another. Unfortunately, 
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this testing problem is NP-complete if we allow arbitratrly many examples a.nd a.rbi- 

trarily many attributes in the hypothesis. The second computatio~~al problem is that 

the size of the sets S and G can become unmanageably large. It has been shown that, 

if the number of attributes is large, the size of set S and set G can grow exponentially 

in the number of examples [16]. 

To improve computational efficiency, Haussler proposed a one-sided algorithm 

which is in constrast to the two-sided approach of the candidate elimination algo- 

rithm. The one-sided algorithm computes only the set S using the positive examples 

and then checks to see if any negative examples are contained in the set S. If the rule 

in the set S is not satisfied by any negative examples, the rule is valid. Otherwise, 

there is no rule which can be discovered [16,17]. 

2.2.2 AQ11 and AQ15 Systems 

Michalski and his colleagues have developed a series of AQ learning systems. TEE 

AQl l  system [29] is designed to find the most general rule in the rule space that dis- 

criminates training examples in a class from all training examples in all other classes. 

Michalski et . al. call these types of rules discriminate descriptor or discrimincmt 

rules since their purpose is to discriminate one class from a predetermined set of 

other classes. 

The language used by Rlichalski to represent discriminant rules is VLI,  an ex- 

tension of the propositional calculus. VLI is a fairly rich language that includes 

conjunction, disjunction, and the set-membership operators. Consequently, the rule 

space of all possible VL1 discriminant rules is quite large. To search this rule space, 
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A Q l l  uses the AQ algorithm, which is nearly equivalent to the repeated application 

of the candidate-elimination algorithm. AQl 1  converts the problem of learning dis- 

criminant rules into a series of single-concept learning problems. To find a rule for 

class A, it considers all of the known examples in class A as positive examples and all 

other training examples in all of the remaining classes as negative examples. The A$ 

algorithm is then applied to find a concept that covers all of the positive examples 

without covering any of the negative examples. A Q l l  seeks the most general such 

concept, which corresponds to a necessary condition for class membership. 

The discriminant rules developed by A Q l l  correspond to the set of most general 

concepts consistent with the training examples. In many situations, it is also good 

to develop the most specific concepts of the class, thus permitting a very explicit 

handling of the unobserved portion of the space. 

After developing the A Q l l  system, Michalski et. a1 proposed another inductive 

learning system AQ15 in 1986 [31]. Ths system is an extended version of the A Q l l  

system, which is able to incrementally learn disjunctive concepts from noisy and 

overlapping examples, and can perform constructive induction in which new concepts 

are introduced in the forruation of the inductive conclusions. 

2.3 Concepts of Learning From Databases 

Learning from databases can be characterized by a triple ( D,C, A, ) where D repre- 

sents the set of data in the database relevant to a specific learning task, C represents a 

set of 'concept biases' (generalization, hierarchies, etc.) useful for defining particular 

concepts, and A is a language used to phrase definitions. 
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Three primitives should be provided for the specification of a learning task: task- 

relevant data, background knowledge, and the expected representations of learning re- 

sults. For illustrative purposes, we only examine relational databases, however, the 

results can be generalized to other kinds of databases. 

2.3.1 Data Relevant to the Discovery Process 

A database usually stores a large amount of data, of which only a portion may be 

relevant to a specific learning task. For example, to characterize the features of 

mammal in animal, only the data relevant to mammal in animal are appropriate in 

the learning process. Relevant data may extend over several relations. A query can be 

used to collect task-relevant data from the database. Task-relevant data can be viewed 

as examples for learning processes. Undoubtedly, learning- from- examples should be 

an important strategy for knowledge discovery in databases. Most learning-from- 

examples algorithms partition the set of examples into positive and negative sets and 

perform generalization using the positive data and specialization using the negative 

ones [7]. Unfortunately, a relational database does not explicitly store negative data, 

and thus no explicitly specified negative examples can be used for specialization. 

Therefore, a data'base induction process relies mainly on generalization, which should 

be performed cautiously to avoid over-generalization. 

Definition 2.3.1 A generalized relation is a relatio~. obtained b y  substituting the spe- 

cific concept(s) by the general concept(s) in some attribute(s). 
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2.3.2 Types of Rules 

There are three types of rules, characteristic rules, classification rules and statistical 

rules which can he easily learned from relational databases. 

Definition 2.3.2 A characteristic rule is an assertion which characterizes the con- 

cepts satisfied b y  all of the data stored in the database. 

For example, the symptoms of a specific disease can be surninarized as a characteristic 

rule. 

Definition 2.3.3 A classification rule is an assertion which descriminates the con- 

cepts of one class from other classes. 

For example, to distinguish one disease from others a classification rule should sum- 

marize the symptoms that discriminate this disease from others. 

Definition 2.3.4 A statistical rule is a rule associated with statistical information 

which assesses the representativeness of the rule. 

Characteristic rules, clasification rules and statistical rules are useful. in many 

applications. A characteristic rule provides generalized concepts abmt a property 

which can help people recognize the common features of the data in a class. the 

classification rule gives a discrimination criterion which can be used to predict the 

class membership of new data and the statistical rules give the summary information 

about the deta in the databases 
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The data relavant to the learning task can usually be classified ino several classes 

based on the values of a specific attribute. For example, the data about animal may 

be classified into mammal and bird based on the value of the attribute 'type'. kVc 

introduce new concepts target class and contrasting class 

Definition 2.3.5 A target class is a class in which the data are tuples in the database 

consistent with the learning concepts. 

Definition 2.3.6 A contrasting class is a class in which the data do  not belong t o  

the target class. 

For instance, to distinguish mammal from bird, the class of martarnal is the target 

class, and the class of bird is the contrasting class. 

In learning a characteristic rule, relevant data are collected into one class, the 

target class, for generalization. In learning a discirimination rule, it is necessary to 

collect data into two classes, the target class and the contrasting class(es). The data 

in the contrasting class(es) imply that such data cannot be used to distinguish the 

target class from the contrasting one(s), that is, they are used to exclude the properties 

shared by both classes. 

Since learning of these two rules represents two different learning tasks, different 

sets of examples are required for the learning processes. The characteristic rules only 

concern the characteristics of the data. Therefore, positive examples alone are enough 

to furnish the learning task. However, for learning classification rules, the negative 

examples must be incorporated into the learning process to derive the concepta which 

have the discrimination property. 
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2.3.3 Background Knowledge 

Concept hierarchies represent necessary background knowledge which controls the 

generalization process. Different levels of concepts are often organized into a taxonomy 

of concepts. The concept taxonomy can be partially ordered according to a general- 

to-specific ordering. The most general concept is the null description (described by a 

reserved word 'any' ), and the most specific concepts correspond to the specific values 

of the attributes in the database [2,33]. Using a concept hierarchy, the rules learned 

can be represented in terms of generalized concepts and stated in a simple and explicit 

form, whcih is desirable to most users. 

Concept hierarchies can be provided by knowledge engineers or domain experts. 

This is reasonable for even large databases since a concept tree registers only the 

distinct discrete attribute values or ranges of numerical values for an attribute which 

are, in general, not very large and can be input by domain experts. But if the concept 

hierarchies are not available, in some case , it is possible to construct them based on 

the data in the databases. I will address this problem in Chapter 5. 

2.3.4 Representat ion of Learning Results 

From a logical point of view, each tuple in a relation is a logic formula, in conjunctive 

normal form, and a data relation is characterized by a large set of disjunctions of such 

conjunctive forms. Thus, both the data for learning and the rules discovered can be 

represented in either relational form or first-order predicate calculus. 

The complexity of the rule can be controlled by the generalization threshold. A 

moderately large threshold may lead to a relatively complex rule with many disjuncts 
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and the results may not be fully generalized. A small threshold value leads to a 

simple rule with few disjuncts. However, small threshold values may result in an 

overly generalized rule and some valuable information may get lost. A better rnethod 

is to adjust the threshold values within a reasonable range interactively and to select 

the best generalized rules by domain experts and/or users. 

Exceptional data often occurs in a large relation. It is important to consider excep- 

tional cases when learning in databases. Statistical information helps learning-from- 

examples to handle exceptional and/or noisy data [13,14,22]. A special attribute, 

vote, can be added to each generalized relation to register the number of tuples in the 

original relation which are generalized to the current tuple in the generalized relation. 

The attribut vote carries database statistics and supports the pruning of scat terecl 

data and the generalization of the concepts which take a majority of votes. The final 

generalized rule will be the rule which represents the characteristic of a majority 

number of facts in the database ('called an approximate rule) or indicate quantiative 

measurement of each conjunct or disjunct in the rule (called a quaztitative rule). 

Knowledge Discovery in Large Databases 

Currently; the steady growth in the number and size of large databases in marly 

areas, including medicine, business and industry has created both a need and an 

opportunity for extracting knowledge from databases. Some recent results have been 

reported which extract different kinds of knowledge from databases. 

Knowledge discovery in databases poses challenging problems, especially when 

databases are large. Such databases are uaually accompanied by substancial domain 
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knowledge to facilitate discovery. Access to large databases is expensive, hence it is 

necessary to apply the techniques for sampling and other statistical methods. Fur- 

thermore, knowledge discovery in databases can benefit from many available tools 

and techniques in different fields, such as, expert systems, machine learning, intelli- 

gent databases, knowledge acquisition, and statistics [2,13,14,22]. 

2.4.1 INLEN System 

The INLEN system was developed by Kaufman et. a1 in 1989 [23]. The system com- 

bines the database, knowledge-base, and machine learning techniques to provide a 

user with an integrated system of tools for conceptually analyzing data and searching 

for interesting relationships and regularities among data. It merges several exist- 

ing learning systems and provides a control system to facilitate access. Figure 2.1 

illustrates the general design of the system. 
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@-I STRUCT 

Figure 2.1: The organization of the INLEN System 

The general design of INLEN is shown in Figure 2.1. The INLEN system consists 

of a relational database for storing known facts about a domain and a knowledge 

base for storing rules, constraints, hierarchies, decision trees, equations accompanied 
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with preconditions and enabling conditions for performing various actions on the 

database or knowledge base. The knowledge base not only can contain knowledge 

about the contents of the database but also metaknowledge for the dynamic upkeep 

of the knowledge base itself. 

The motivating goal of the INLEN system is to integrate three basic technologies- 

databases, expert systems and machine learning and inference to provide a user with 

a powerful tool for manipulating both data and knowledge and extracting new or 

better knowledge from these data and knowledge. It is especially appropriate to 

apply INLEN to data systems that are constantly changing or growing; among the 

system's capatilities are the abilities to detect changes over time and explore the 

ramifications of the changes. 

INLEN employs three sets of operators: data management operators (DMOs), 

knowledge management operators (KMOs), and knowledge generation operators (KGBs) 

The DMOs are standard operators for accessing, retrieving and manually alter- 

ing the information in the database. The KMOs are used to create, manipulate and 

modify INLEN's knowledge base, thereby allowing the knowledge base to be handled 

in a manner analogous to handling a database. The KGOs take input from both 

the database and knowledge base, and invoke various machine learning prqyams to 

perform learning tasks. For example, the operator CLUSTER creates the conceptual 

clustering algorithm developed in [29]. The operator DIFF determines the cliscrim- 

ination rules, and can be executed in the A& program [29]. The operator CHAR 

discovers the characteristic rules, which is also implemented in an AQ program [29]. 

The operator VARSEL selects the most relevant attributes and the operator ESEL 
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determines the most representative examples. The operator DISEQ discovers equa- 

tions governing numerical variables , which is based on the ABACUS-2 system for 

integrated qualitative and quantitative discovery [8]. ABACUS-2 is related to pro- 

grams such as BACON [22] and FAHRENHEIT [47]. Most of these machine learning 

programs are invoked by EGOS and represent existing learning algorithms which have 

been well implemented. 

As in the case of many machine learning systems, the major challenge to the 

INLEN system is computational inefficiency. Many learning algorithms inclucled in 

this system adopt the tuple-oriented approach which examines the training examples 

tuple by tuple. In the learning process, these algorithms usually have a large acarclz 

space and costly time complexity because they are not designed for large databases. 

Although this system integrates databases, knowledge-based and machine learning 

techniques, the database operations are applied only for retrieving data and storing 

knowledge rules. The algorithms in this system do not take advantage of databasc 

implementation techniques in the learning process. 

2.4.2 An Algorithm for Discovering Strong Rules in Databases 

Another interesting study on learning from relational databases was performed by 

Piatetsky-Shapiro [35]. He developed an algorithm to discover strong rules in rela- 

tional databases. Somewhat different from an exact rule, which is a rule that is always 

correct, a strong rule is one that is always or almost always correct. This algorithm 

can find interesting rules of the form (A. = a)  - > (B = b )  from relational databases, 

that is, if the value of attribute A is a ,  then the value of attribute B is 6 .  
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This algorithm only requires one access to each database tuple. It is thus optimal 

to within a constant factor, since at least one access is needed to each tuple to check 

whet her this tuple disproved any of the previously inferred rules. 

The idea is to hash each tuple according to the value of A. When a tuple is hashed 

to an empty cell, the cell is initialized. Each cell contains the value of A, the Count 

of tuples hashed to that cell and a current cell Tuple. When a tuple is hashed to 

an occupied cell, it is compared with the cell for ( A  = a) and it contains all the 

information necessary for deriving rules implied by ( A  = a), such as, the number of 

tuples whose value of attribute A are a and the difference among those tuples which 

are hashed to the same cell. 

A significant speed-up is achieved by using a test for early rejection of rules in an 

attribute. For a nominal attribute, if the value in the newly hashed tuple is different 

from the value stored in the cell Tuple, this attribute can be removed from further 

consideration. A taxonomic or an internal at tribute is rejected when the intermediate 

result covers more than a user specified threshold value which is the maximum allowed 

sample coverage. 

Piatesky-Shapiro has derived formulas for predicting rule accuracy on the entire 

database after rules are discovered in a sample. These formulas measure the signifi- 

cance of the correction between two attributes based on some statistical techniques. 

This algorithm has been implemented in LISP and tested in relational databases. 

While most machine learning algorithms suffer from computational inefficiency, this 

algorithm can discover many strong rules from databases quickly, and can therefore 

be applied to relatively large databases. However, this algorithm may generate a large 

set of rules. For example, the author conducted an experiment on 500 tuples, each 
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having 12 attributes, and the learning algorithm produced 150 rules 1351. This system 

cannot perform incremental learning when the database is updated. The learning 

process must be restarted after the new data are insterted into a database because 

the criteria which determines whether a tuple should be rejected or saved have been 

changed. 

Thought/KDl consists of two components, one is a conceptual clustering system 

called Leobs [19] and the other is a multipurpose system called GS that uses learn- 

ing from examples. Leobs is an extension of the well-known conceptual clustering 

CLUSTER/2. GS is a new multipurpose system of learning from examples which 

generates a description in DNF of a class of (positive) examples compared with the 

union of the rest of the classes of (negative) examples. Thought/KDl first perfarms 

conceptual clustering using Leobs to partition the set of given examples into a certain 

number of subsets and then abstracts descriptions of the generated subsets. Then 

Thought/KDl explores some implication relations between descriptions according to 

the relationships of the corresponding clusters. For rule formation, there are four 

algorithms sf knowledge discovery in Thought jKD1: hierarchical knowledge discov- 

ery (HKD), parallel knowledge discovery (PKD), characteristic knowledge discovery 

(CKD), and inheritance knowledge discovery (IKD). HKD is based on hierarchical 

clustering and its corresponding abstraction. PKD is based on parallel clustering and 

its corresponding abstraction. CKD is based on classification and a characteristic dc- 

scription for each cluster. The HKD and CKD subsystems are used to discover domain 
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knowledge, but the PKD subsystem is used to discover not only the domain knowl- 

edge but also knowledge with uncertainty, noise, or exceptions. For HKD, the result 

is a hierarchy of clustering and corresponding descriptions, each of which comprises a 

family of clusters of its father clustering. For PKD, k clusterings are independently 

obtained. The second step is rule formation. That is, for hierarchical discovery, new 

knowledge is discovered by finding all possibie implications between the descriptions 

in a clustering and those in its father clustering. The same holds for parallel discovery 

except for implications are found between cluster descriptions and clustering corre- 

sponding to large k's. For IKD, the rules are discovered by searching the path from 

the root of the hierarchy to the current cluster. For CKD, it just examines at the 

characteristic description for each cluster a.nd finds the equivalent form of different 

attributes. 



Chapter 3 

A - 0  Induction in RDB 

In this chapter, we explain and summarize the attribute-oriented method presented 

in [2,13,14]. 

3.1 The Basic Attribute-Oriented Induction A1- 

gorit hm 

Efficient induction techniques in relational databases are challenged by the large size 

of relational databases. Most existing algorithms for learning from examples conduct 

exhaustive searches of the given concept space, which makes the algorithms infeasibly 

slow for large database application [2]. Furthermore, although relational databases 

provide many facilities which have been well implemented, most machine learning 

algorithms do not take advantage of these facilities. Those learning sysierns suffer front 

computational inefficiency when they are used for learning from relational databases. 

To make the learning mechanism applicable in relational databases, the learning 



CHAPTER 3. A - 0  INDUCTION IN RDB 

algorithm should be able to utilize the database implementation techniques and com- 

pute efficiently. The attribute-oriented induction approach can efficiently learn the 

characteristic rules and classification rules from relational databases [2,13,14]. The ap- 

proach integrates database operations with the learning process and provides a simple 

and efficient way of learning from large databases. In contrast to the tuples-oriented 

approach, the attribute-oriented approach performs generalization attribute by at- 

tribute. The training data are examined one attribute at a time. After each attribute 

has been generated, the sub-concepts are combined to form the entire tree. The ap- 

proach is demonstrated by two algorithms, the LCHR (for Learning Characteristic 

Rules) algorithm and the LCLR (for Learning Classification Rules) algorithm. 

The general idea of basic attribute-oriented induction is that generalization is per- 

formed attribute by attribute using attribute removal and concept tree ascension. As 

a result, different tuples may be generalized to identical ones, and the final gener- 

alized relation may consist of only a small number of distinct tuples, which can be 

transformed into a simple logical rule. This basic approach can be illustrated by the 

follwoing algorithm: 

Algorithm 3.1: Basic attribute-oriented induction in relational databases. 

Input (i) a relational database, (ii) the learning task,(iii) the (optional) prefered con- 

cept hierarchies, and (iv) the (optional) preferred form to express learning results 

(e.g., generalization threshold). 

Output 

A characteristic rule learned from the database 

Method. 
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1. Collection of the task-relevant data 

2. Basic attribute-oriented induction 

3. Simplification of the generalized relation, and 

4. Transformation of the final relation into a logical rule 

Notice that the basic attribute-oriented induction step is performed as follows: 

begin { basic attribute-oriented induction ) 

for each attribute A; (1 5 i < n, where n = # of attributes) 

in the generalized relation GR do 

while # of distinct values A; > threshold do { 

if no higher level concept in the concept 

hierarchy table for A; 

then remove A; 

else substitute for the values of the Ai's by 

its corresponding minimal generalized concepts; 

merge identical ones, ) 

while # of tuples in GR > threshold do { 

selectively generalize at tributes; 

merge identical tuples ) 

end 

In Step 1, the relevant set of data in the database is collected for induction. The 

then-part in the first while-loop of Step 2 incorporates attribute removal, and the 
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else-part utilizes concept tree ascension. The condition for the first while-loop is 

based on threshold control on each attribute and that for the second one on threshold 

control on the generalized relation. Attribute removal is used in Step 2 to ensure 

that the generalization is performed on the minimal decomposable components. Each 

generalization statement in both while-loops applies the least-commitment principle 

based on those stategies. Finally, Step 3 and Step 4 apply logic transformations 

based on the correspondence between relational tuples and logical formulas. Thus the 

obtained rule should be the desired result which summarizes the characteristics of the 

target class. 

The basic attribute-oriented induction algorithm extracts a characteristic rule from 

an initial relation. Since the generalized rule covers all of the positive examples in the 

database, it forms the necessary conditions of the learning concept, that is, the rule 

is in the form of learning-cluss(x)- > condition(x) where condidion(x) is a formula 

containing x. However, since data in other classes are not taken into consideration in 

the learning process, there could be data in classes which can also meet the specified 

condition. Thus, conddtiotz(s) is necessary but may not be sufficient for x to be in 

the learning class. 

3.2 Learning Other Knowledge Rules by Attribute- 

Oriented Induct ion 

The attribute-oriented induction method can also be applied to learning other knowl- 

edge rules, such as discrimination rules, data regularities, etc. 
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3.2.1 Learning Discrimination Rules 

Since a discrimination rule distinguishes the concepts of the target cla-ss from those 

of contrasting classes, the generalized condition in the target class that overlaps the 

condition in contrasting classes should be detected and removed from the description 

of discrimination rules. Therefore, a discrimination rule can be extracted by gcneral- 

izing the data in both the target class and the conceptual class synchronously and by 

excluding the properties that overlap in both classes in the final generalized rtilc. 

To implement this notion, the basic at tribute-oriented algorithm can be rnodified 

corresponding for discovery of discrimination rules. Since different classes may share 

tuples, the tuples shared by different classes are called overlapping tuples. In order 

to  get an effective discrimination rule, care must be taken to handle the overlapping 

tuples. Usually these tuples should be marked and be excluded from the final dis- 

crimination rule, since the overlapping tuples represent the same assertions in 1mtl.1 

the target and the contrasting class, the concept described by the overlapping tuples 

cannot be used to distinguish the target class from the contrasting class. By detect- 

ing and marking overlapping tuples which have a discriminating property in the rule, 

which ensures the correctness of the learned discrimination rule. 

3.2.2 Learning Data Evolution Regularity 

Data evolution regularity reflects the trend of changes in database over time. Discov- 

ery of regularuties in an evolving database is important for many applications. To 

simplify our discussion, we assume that the database schema remains ~ t a k l c  i n  data 

evolution. A database instance, DBt, is the database state, i.e., all of the data in the 
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database, at time t. 

Data evolution regularities can be classified into characteristic rules and dis- 

crimination rules. The former rules summarize characteristics of the changed data; 

while the latter distinguish general characteristics of the relevant data in the current 

database from those in a previous database. 

In general, data evolution regularities can be extracted by collecting the learning 

task-relevant data (usually, the evolving portion) in different database instances and 

performing attribute-oriented induction on the corresponding task-revelant data set. 

3.3 Implementation of the Database Learning Al- 

gorit hms 

To test and experiment on the algorithms, an experimental database learning sys- 

tem, DBLEARN, has been constructed and some interesting experiments have been 

conducted in the learning system. 

DBLEARN is implemented in C and runs under Unix on a Sun workstation. It im- 

plements both the LCHR (for Learning Characteristic Rules) and LCLR (for Learning 

Classification Rules) algorithms. The language of DBLEARN can be viewed as an ex- 

tension to the relational language SQL for knowlegde discovery in databases. The test 

result of applying DBLEARN to a relatively real large database: the NSERC Grant 

Information System [22] shows that DBLEARN is very efficient. The architecture of 

DBLEARN is presented in Figure 3.1: 
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USER LEARNING 

USER-INTERFACE 

LEARNING PROGRAM 

CONCEPTUAL 

Figure 3.1. The architecture of DBLEARN 



Chapter 4 

D-K wi'ch Hierarchies 

In chapter 3, we discussed the attribute-oriented method for discovering knowledge in 

relational databases. The method integrates a machine learning paradigm, especially 

learning from example techniques, with database operations and extracts generalized 

data from actual data in the databases. A key to the approach is attribute-oriented 

concept tree ascension for generalization which applies the well-developed set-oriented 

database operations and substantially reduces the computational complexity of the 

database learning process. 

In this chapter, the attribute-oriented approach is further developed for learning 

different kinds of rules, including characteristic rules, classification rules, hierarchy 

rules, domain knowledge. Moreover, learning can also be performed with databases 

containing noisy data and exceptional cases using database statistics. 
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An Algorithm for Discovering Three Kinds of 

Rules 

In this section, a new algorithm is presented which is based on the attributed-oriented 

concept ascension techniques proposed [2,13 141. In [2,13,14], the key to the approach 

is an attribute-oriented concept tree ascension technique for generalization which was 

implemented using well-developed set-oriented database operations, subst antially re- 

ducing the computational complexity of the database learning task. The general idea 

of basic attribute-oriented induction is one in which generalizakion is performed at- 

tribute by attribute using attribute removal and concept tree ascension. As a result, 

different tuples may be generalized to identical ones, and the final generalized relation 

may consist of only a small number of distinct tuples, which can be transformed into 

a simple logical rule. 

However, there are some drawbacks when using this method. The most obvious 

one is that the threshold has a great influence on the concept-tree ascension. If 

the threshold is too large, the algorithm stops at a very low level in the concept 

hierarchy and the discovered rules are too specific. Alternatively, i f  the threshold 

is too small, then the algorithm may not find a suitable concept for the generalized 

table, and the discovered rules are too general to be useful. Another limitation is that 

all the discovered rules are only related to some concepts at some level of thc concept 

hierarchy, namely once the threshold is set, then the level of the concept is determined 

by the threshold value. Because of these limitations, we revise the previous method. 

Before we explain the details, we first give some definitions. 
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Definition 4.1.1 An attribute in a relatively large relation is desirable for consider- 

ation for generalization if the number of distinct values it contains does not exceed a 

user-specified desirability threshold (usually 6 or less). 

Definition 4.1.2 An attribute is generalizable if there are a large number of distinct 

values in the relation but there exists a concept hierarchy for the attribute ( i.e., 

there are higher level concepts which subsume these attribute values). Otherwise, it is 

nongeneralizable. 

Attribute-oriented induction is performed in 3 steps. First, a set of data relevant 

to the learning task is collected by a database query. Secondly, the collected data 

is then generalized by (1) removal of nongeneralizable attributes; and (2) performing 

concept- tree ascension (replacing lower-level at tribute values in a relation using the 

concept hierarchy) on each generalizable attribute until the at tribute becomes desir- 

able (i.e., containing only a small number of distinct values). The identical generalized 

tuples in the relation are merged into one with a special internal attribute, vote, as- 

sociated to register how many original tuples are generalized to this resultant tuple. 

The generalized relation obtained at this stage is called the prime relation. Thirdly, 

simplify the generalized relation, and transform the final relation into a logical rule. 

The core of the attribute-oriented induction is concept -tree ascension on generaliz- 

able attributes, which relies heavily on the concept hierarchy infbrmation available in 

the database. A stored concept hierarchy should be appropriately modified based on 

the statistics of relevant data sets and user preference in order to extract interesting 

rules. 

A prime relation R, for a set of data R stored in the relational table is an interme- 

diate relation generalized from the relation R by removing nongeneralizable at tributes 
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and generalizing each attribute to a desirable level . Let a desirability threshold be 

available for each attribute, which could be set by default or specified by the user or 

a= expert, based on the semantics of the at tributes and/or the expected forms of gen- 

eralized rules. A prime relation maintains the relationship among generalized. data in 

different attributes for a frequently inquired data set. It can be used for extraction of 

variolis kinds of generalized rules. The following algorithm extracts the prime relation 

Rp from a set of data R stored in relational table. 

Algorithm 4.1. Extraction of the prime relation from a set of data R 

Input: (i)A set of data R, a relation of arity n with a set of attributes A; ( 1 5 i < T I ) ;  

(ii) a set of concept hierarchies, H i ,  where Hi is a hierarchy on the generalized attribute 

Ai7 if available; and (iii) a, set of desirability thresholds Ti for each attribute Ai 

Output. The prime relation Rp 

Method 

1. Rt := R; /*  Rt is a temporary relation. * /  

2. for each attribute A; ( 1 5 i 5 n) of Rt do { 

if Ai is nongeneralizable then remove A;; 

if Ai is not desirable but generalizable then generalize Ai to 

desirable level; 

/* Generalization Is implemented as follows. First, collect the distinct values in 

the relation and compute the lowest desirable level I, on which the number of 

distinct values will be no more than Ti by synchronously ascending the concept 
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hierarchy from these values. Then generalize the attribute to this level L by 

substituting for each value A;'s with its corresponding concept Hi at level L. */ 

1 

/* Identical tuples in the generalized relation Rt are merged 

with the number of identical tuples regist.ered in vote * /  . 

Theorem 4.1.3 Algorithm 4.1 correctly extracts the prime relation R, from a data 

relation R. 

Proof An at tribute-value pair represents a conjunct in the logical form of a tuple. 

The removal of a conjunct eliminates a constraint and thus generalizes the rule, which 

corresponds to the generalization rule dropping conditions in learning from examples. 

Thus if an attribute is nongeneralizable, its removal generalizes the relation. More- 

over, if an attribute is not at the desirable level but generalizable, the substitution 

of an attribute value by its higher level concept makes the tuple cover more cases 

than the original tuple and thus generalizes the tuple. This process corresponds to 

the generalization rule, climbing generalization trees in learning from examples. Since 

all of the generaiizable attributes are at the desirable level, tho generalized relation is 

the prime relation. 

For example, given the animal world depicted in Table 4.1 and the concept hier- 

archy for the attribute 'Animal' depicted in Table 4.2: 
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tiger 
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grain 

meat 
meat - 

Table 4.1 :Animal World 

LEVEL # 
1 imal 

2 ma mal 

3 x a m m a l  #\ A 7~ n o x  

4 tiger cheetah giraffe zebra albatross eagle ostrich penguin 

Table 4.2: Conceptual Hierarchy of the Animal World 

in the initial relation, for the attribute 'Animal', there are 9 distinct values, which 
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is greater than the threshold value for desirable level (suppose the desirability thresh- 

old is 6 ) ,  the concept-tree ascension technique is applied, applying Algorithm 4.1, it is 

generalized to  the desirable level (level 3) ( carnivousmammal, ungulate, flying-bird, 

nonfiying-bird ) in Table 4.2, result in a prime relation as shown in Table 4.3: 
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Table 4. 3: Prime relation 

The derivation and storage of prime relations for frequently inquired data sets may 

Milk 
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no 

no 

no 

no 

no 

faciiitate the extraction of different kinds of generalized rules from the prime relations. 

F'urther generalization can be performed on prime relations to derive characteristic 

or classification rules [2,13,21] if there are still many tuples in the prime relation. 

Moreover feature tables can be extracted from the prime relations, and relationships 

between generalized attribute values can be extracted directly from the feature ta- 

bles as generalized rules. Based upon different interests, a generalized relation can 

be directly mapped into different feature tables. In general, we have the following 

algorithm for the extraction of a feature table from a generalized relation. 

Algorithm 4.2. Extraction of the feature table TA for an attribute A from the 

Fly 

no 

no 

no 

no 

yes 

yes 
no 

Swi 

yes 
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no 

yes 
no 

no 

no 
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generalized relation R'. 

Input : A generalized relation R' consists of ( i )  an attribute A with distinct values 

a l  ,..., ar, (ii) j other attributes B1, ..., BJ, (suppose different attributes have unique 

distinct values ), and (iii) a special attribute, vote. 

Output. The feature table T' 

Method. 

1. The feature table TA consisits of m + 1 rows and I + 1 columns, where 1 is the 

total number of distinct values in all the attributes. Each slot, of the table is 

initialized to 0. 

2. Each slot in TA (except the last row) is filled by the following procedure, 

for each row r ic R' do { 

for each attribute Bi in R' do 

TA[r.A,r.Bi] := TA[r.A,r.B;] + r.vote; 

TA[r.A, vote] := TA[r.A, vote] + r.uote; ) 

3. The last row p in TA is filled by the following procedure: 

for each column s in TA do 

for each row t ( except the last row p)  in TA do 

T A ~ ,  S ]  := TA[P, S ]  + TA[~,  s]; 

Theorem 4.1.4 Algorithm 4.2 correctly registers the number of occurrences for each 

general feature in the generalized relation R '. 
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Proof Following the algorithm, each tuple in the generalized relation is examined 

once with every feature registered in the corresponding slot in the feature table. Their 

column-wise summation is registered in the last row. Thus we have the theorem, 

In our example, in order to get the feature table, the prime relation is further 

generalized by substituting the concept at  level 3 by those at  level 2, resulting in the 

seneralized relation as shown in Table 4.4 

Animal 

mammal 

mammd 

bird 

bird 

bird 

bird 

other 

Eyes 

forwal 

side 

side 

side 

side 

forwar1 

forwarc 

Hair 

yes 

yes 
no 

no 

no 

no 

Feathers Teeth 

pointed 

blunt 

no 

no 

no 

no 

minted 

Feet - 
claw 

hoof 

claw 

web 

claw 

claw 
no 

Eat - 
meat 

prws 
grain 

fish 

gain 

meat 

meat - 

Mill - 
Yes 

Yes 
no 

no 

no 

no 

no - 

vote 

2 

2 

1 

1 

1 

1 

1 

Table 4.4: ihe generalized relation 

Then the feature table is extracted from the generalized relation by using algorithm 

2 based on the attribute 'Animal' and the result is shown in Tabie 4.5. (since we are 

interested in learning for Animal) 
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Table 4.5 : feature table for the attribute Animal 

bird 

others 

total 

Different feature tables can be extracted f ro~n  the prime relation based on the 

interest of different attributes. The extracted feature table is useful at  derivation of 

the relationships between the classification attribute and other attributes at  a high 

level. For example, the generalized rule All the animal with hair are mamrrtal can be 

extracted from Table 4.5 based on the fact the class mammal takes all the with Huzr 

count. 

Next we present two algorithms for discovering different kinds of rules froin dat a b a ~ e  

system. 

0  

0 

Algorithm 4.3: An attribute-oriented algorithm for discovering different kinds of 

knowledge rules associated with the concepts for different levels in the concept hier- 

archy. 

vote e 
Input (i) a set of task-relevant data stored in a relational table (ii) a concept hierarchy 

4 1 0  
0  

0  1 

1 5  4  

1 

3 1 

4 

0  

... 

... 

en. 

4 I 5 

4 

0  

... 

0 

1 

l 4  

. . 

... 

0  

1 

4 

0  
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table 

Output 

A set of cfassification rules, domain knowledge, and characteristic rules. 

Method. 

1. using Algorithm 4.1, extract the prime relation from the original relational table, 

record number of votes. 

2. Tave the prime relation . 

3. (further generalize the at tributes) based on the concept hierarchy, starting from 

the desirable level, each time climb one level up until it reach the next highest 

concepi* in the concept hierarchy 

4. using Algorithm 4.2, extract a feature table from the generalized relation based 

on some attribute A: if there are I distinct values for attribute A, then Algo- 

rithm 4.2 classifies the data into I classes. 

5. assume there are total I classes, namely there are I distinct values for attribute 

A and J attributes for the data in the feature table. we use Ii' to  denote the 

number of distinct vaiues for the attributes, for different attribute, Ii' is different. 

According to feature table: for the kth value ( k=l,  ..., K) of the jth attribute 

(j=l,..,J) in the ith class (i=1 , . . ,I),  we associate two probability values: bi,j,* and 

C i , j , k .  We use ai,j,k denotes the number of tuples with the kih vaiues for the jth 

attribute in the ith class. 



CHAPTER 4. 6)-K WITH HIERARCHIES 

bi,jVk represents the probability of a ; , j , k  in the entire database and c ; , j , k  denotes 

the probability of a i j , k  in the particular class. 

6. iteration step 

discover the characteristic rules, classification rules and domain knowledge based 

on the probability for each distinct value of every attribute in each class in the 

feature table: 

if both bi,,.,k = c i , j , k  = 1, then infer a rule: 

jth Attributeaame=ith attribute-value M Class=ith Class-name 

check the values for the next attribute 

(the ( j  + l ) t h  attribute for the same class i )  

if b i , j , k  = 1 and c i , j , k  < 1, then infer a rule: 

jth Attributeaame=ith at  tribu te-value 4 class=ith Class-name 

check the next value for the same attribute 

( the (k + l ) th  value in the jth attribute ) 

if bi , j ,k  < 1 and c , , j , k  = 1, then 

include jth Attributeaame= ith attribute-value as a component 

for the corresponding classification rule forthe i th class 

check the next. attribute 

(the ( j  $ l) th attribute in the same class i) 

else 
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if b i , j , k  # 0 and Ci , j ,k  # 0 and b i , j , k  * Ci,j ,k I f f ~ e g u e n c y  

then ignore this value, 

check the next value for the same attribute 

( the (k + I ) ' ~  value for the jih attribute ) 

else include the value as one of the characteristic 

values for the attributes 

check the next value for the same attribute 

( the (k + l ) lh  value for the jth attribute ) 

iterate step 6 until all the classes are finished 

/* since data in a database may be distributed along the full spectrum of the 

possible values, without using possible quantitative information, it is impossible 

to obtain a meaningful rule for such kind of data. However, using the quan- 

titative information, various kinds of techniques can be developed to extract 

meaningful rules. Oue method treats the data which occur rarely in the en- 

tire database as exceptional or noise data and filters them using the rfT,q,e,,y. 

rf,e, ,en,y is a small percentage number which is used to filter out those data in 

the entire database with a very low frequency ratio. */ 

7. simplify the learned rules: if the distinct data value set of an attribute does 

cover the entire set of values for the attribute, then remove this attribute and 

its asociated values from the rule, otherwise compare the number of the values 

appearing as the characteristic values for the attribute with the total number 

of distinct values for the attribute. If the difference is larger than some pre-set 

number, then the 'not' operator is introduced to the rules to simplify it. 
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8. (discover the relationship between different at tributes based on the feature tablc) 

for each class Ci, for any two attributes jl , j2  that relate the bib value in the j ih 

attribute and kih value in the j ih attribute, if a,,Jl,r, = a;,J2,r, = vote then infer 

a rule: 

the j ih at tributename=the kih value u 

the jib attributename=the kih value 

*next highest concept is the concept one level below the mczt generalized concept, 

'any9. 

4.2 An Algorithm for Discovering Inheritance Rules 

Algorithm 4.4: An attribute-oriented algorithm for discovering inheritance rules 

associated with concepts for different levels in the concept hierarchy. 

Input (i) the prime relation obtained by Algorithm 4.1 (ii) the concept hierarchy 

tables 

Output 

A set of inheritance rules 

Method. 

1. attach one class attribute to the prime table (we call it E-attribute, E means 

extra) 
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2. Each time descend one level from the next highest generalized concept according 

to the concept table until reaching the desirable level of the concept table. 

(a) fill the E-attribute with the generalized concept and the corresponding 

attribute with the concept one level down of the E-attribute value 

(b) extract the related data, and store them in the temporary relation 

(c) project off the corresponding attributes which have the same values for all 

the low level concepts within the same generalized concept from the prime 

relation 

jd) find the inheritance rules: within the same generalized concept, check those 

attributes which have different values for different lower level concepts 

within the same generalized concept. 

Test Example 

In this section, we use a data set from [50] to demonstrate Algorithm 4.3 and Algo- 

rithm 4.4, step by step. 

Given the animal world depicted in Table 4.1 and the concept hierarchy for the 

attribute 'Animal' depicted in Table 4.2: 

First step: applying Algorithm 4.1 to Table 4.1, resulting in the prime relation of 

Table 4.3. then further generalize Table 4.3 to the generalized relation as shown in 

Table 4.4. 

Second step: extracting the feature tab\e based on the attribute 'Animal' depicted 

in Table 4.5. 
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Third step: in the feature table, there are three classes for animal category, rnanl- 

mal, bird and other. For Class=mammal, Hair=yes, al,l,l, = 4, bt , l , l  = c1,1,1 = 1, 

Class=mammal appears four times, and the total tuples for Class=mammal is four, 

Hair=yes only appears four times in the whole table, so we can infer a rule as follows: 

similarly we can get : 

(Class=mammal) -+ (Feet=claw or hoof) /\ (Eats=meat or grass) 

for Class=bird: 

(Feather=yes) t-, (Class=bird) 

(Class=bird) ---+ (Feet=claw or web) A (Eats=grain or fish or meat) 

The fourth step is to simplify the above rules, count. the number of values appearing 

as the characteristic values for the attribute and compare with the total number of 

distinct values for the attribute. If the difference is larger than some threshold (for 

example, 2) then the 'not' operator is introduced to the rules to simplify the forms of 

the discovered rules. For example, the attrihute 'Eats' has four distinct values: mcat, 

grass, grain, and fish. In the dicovered rule: 

(Class=bird) ---+ (Feet=claw or web) A (Eats=grain or fish or meat), 

the Eats takes grain, fish and meat. So we can use not(Eats==grass) instead of 

(Eats=grain or fish or meat) as a component for the classification rule and the dis- 

covered rule can be simplified as: 
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(Class=bird) + not(Feet=hoof) A not (Eats=grass) 

similarly, the. rule: 

(Class=mammal) -+ (Feet=claw or hoof) A (Eats=meat or grass) 

can be simpiified as 

(Class=mammal) --+ not(Feet=web) (Eats=meat or grass) 

The last step is to analyze the data between different attributes and find the 

relationship between them: for example, for Hair=yes, Feather=no, 

Then we can continue the process by using Algorithm 4. The prime relation table 

is illustrated in Table 4.3: 

Attach the E-attribute to the table, use the next higher-level concept in the concept 

hierarchy for substitution, resulting in the temporary relation in Table 4.6: 
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Hai: - 

Yes 

Yes 
no 

no 

no 

no 

no - 

# 

1 

2 

3 

4 

5 

6 

7 

reeth 1 Eyes Animal 

cmammal 

ungulate 

nonflyb 

nonflyb 

flyingb 

fiyingb 

viper 

no 1 side 

pointed 

blunt 

no 

no ( side 

forward 

side 

side 

no 1 forward 

pointed I forward 

Feathers I Feet 1 Eat 

- 
Mill - 
Yes 

Yes 
no 

no 

no 

no 

no - 

claw 

hoof 

claw 
# 

web 

claw 

claw 

no 

meat 

grass 

grain 

fish 

grain 

meat 

meat 

mammal 
mammal 

bird 

bird 

bird 

bird 

other 

Fly 

no 

no 

no 

no 

yes 

yes 
no 

Table 4.6: tern-porary relation after substitution 

Swim 

yes 

yes 
no 

yes 
no 

no 

na 

note: crnammal=carnivorous mammal, nonflyb=non-flying bird, flyingb=flying bird 

From Table 4.7, we can see that for mammals, Hair, Feather, Milk, Fly, and 

Swim do not distinguish mammals; Teeth, Eat do distinguish mammals, we can thus 

generalize the rules: 

Animal Hai 

:+z$m 
21 ungulate 1 yes 

Teeth I Eyes 

pointed forward I 
blunt (side 

Feathers 1 Feet I Eat 

no I claw I meat 

no I hoof ( grass 

Table 4.7: temporary relation for mammal 

Milk Fly Swim -t 
no I yes 

no I yes 

mammal I 
mammal I 
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Table 4. 8: temporary relation for bird 

Similarly for bird, based on Table 4.8, we can derive the following rules: 

then continue the process, descending one level of the concept hierarchy 

Table 4. 9: temporary relation for cmammal 

# 

1 

2 ,  

Animal 

tiger 

cheetah 

Hair 

yes 

yes , 

Teeth 

pointed 

pointed, 

Eyes 

forward 

forward 

Fearhen 

no 

Feet 

claw 

no , claw 

Eat 

meat 

meat 

Milk 

yes 

Fly 

no 

yes 

Swim 

yes 

no 

E 

cmammal 

yes cmammal 
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-- 

Table 4.10:temporary relation for ungulate 

Nothing interest can be found based on Table 4.9, Table 4.10. Bccause the in- 

formation stored in the databa.se is not enough to  distinguish the animal: tigcr and 

cheetah, giraffe and zebra. 

- - - - - - - 

Table 4. 11 : temporary relation for non-flying-bird 

# 

5 

6 

(Class=nonflying-bird) /\ (Feet =web) + ( Animal=penguin) 

(Class=nsnflying-bird) A (Swim=yes) -+ (Animal=penguin) 

Animal 

ostrich 

pnguin 

Hair 

no 

no 

Teeth 

no 

no 

Eyes 

side 

side 

Feathers 

yes 

yes 

Fcct 

claw 

web 

Eat 

grain 

fish 

Milk 

no 

no 

Fly 
no 

no 

Swim 

no 

yes 

E 

non flyb 

nonflyb 
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- pppp - p-p 

Tabie 4.12 : temporary relation for flying-bird 

, 
# 

7 

8 

Animal 

albatross 

~ a g l e  

Milk 

no 

no 

Hair 

no 

no 

Fly 

yes 

yes 

Teeth 

no 

no 

Swim 

no 

no 

Feathers 

yes 

yes 

Eyes 

side 

forward 

E 

flyingb 

flyingb 

Feet 

claw 

claw 

Eat 

grain 

meat 



Chapter 5 

K-Discovery by Clustering 

5.1 Introduction 

In the previous chapter, we discussed the method which can find knowledge rules 

associated with concepts in different levels in the concept hierarchy. The mcthucl 

integrates a machine learning paradigm, especially learning from example tech- 

niques, with database operations and extracts generalized data from actual data in 

the databases. A key to the approach is attribute-oriented concept tree ascension f o r *  

generalization which applies the well-deveioped set-oriented database operations and 

substantially reduces the computational complexity of the databases learning process. 

Since it is often necessary to incorporate higher level concepts in the learning 

process [33], candidate rules are restricted to formula with particular vocabulary, 

that is, a basis set called the conceptual bias, permitting the learned rules to be 

represented in a simple and explicit form. Different levels of concepts can be organized 

into a taxonomy of concepts. The concepts in a taxonomy car1 be partially ordered 

according to general-to-specific ordering. The specification of conceptual bim is a 
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necessary and natural process for learning. Such a concept tree is specified using an 

IS-A hierarchy and stored in a relational table, the conceptual hierarchy table. In o.ur 

previous method it is assumed that the concept hierarchy table is provided by the 

user or data analyst explicitly. 

Since databases potentially store a large amount of data, it is important to develop 

efficient methods to explore regularities from them. Although data in a relational 

database are usually well-formatted and modeled by semantic and data models [2], 

the contents of the data may not be classified. For example, a chemistry database 

may store a large amount of experimental data in a relational format, but knowledge 

and effort are needed to classify the data in order to determine the intrinsic regularity 

of the data. Clearly, schemas and data formats are not equivalent to conceptual 

classes. Observation of the cognitive process of human discovery shows that human 

tends to cluster the data into different classes based on conceptual similarity and then 

extract the characteristics from these classes. For example, by clustering experimental 

data based on the knowledge of chemists, interesting relationships among data can be 

discovered. 

In some appiications, the conceptual knowledge is not available, So it is very useful 

if we can find some regularity f r ~ m  the database in the absence of a concept hierarchy 

table. 

In this chapter, based on our previous research, we develop the method further. 

The algorithm presented here combines the techniques of conceptual clustering and 

machine learning. The new method can cluster the data automatically, extract char- 

acteristics for different classes and then derive some knowledge rules according to the 

relationships between different classes. 
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5.2 Approaches to Conceptual Clustering 

Conceptual clustering is a process which groups objects with common properties into 

clusters and extracts the characteristic of each cluster over a set of data objects. It  

is originally motivated and defined by Michalski and Stepp [30] as an extension of 

processes of numerical taxonomy. Currently there are two views regarding conceptual 

clustering. One view represents an extension to techniques of numerical taxonorny, the 

other view is a form of learning by observations or conceptual formation as distinct 

from methods of learning from examplcs or concept identification. Clustering 

algorithms which have been framed as extensions to numerical taxonomy techniques 

include CLUSTER12 [303 and COBWEB [9]. The clustering algorithm can be viewed 

as an extension of learning by observation, which includes HUATAO (31 and Thou- 

ght/KDl [19]. Numerical taxonomy techniques are mainly used to form classification 

schema over data sets based on some numerical measure of similarity and they $0 not 

produce any conceptual description of the clusters. The problem of interpretation is 

simply left to the data analyst. Conceptual clustering as an extension of learning by 

observation not only considers the distance between objects as in numerical taxonomy, 

but also their relationships to other objects, and most importantly, their relationship 

to some predetermined concepts. The price for using such a 'concept-depcnclcnt ' 

similarity measure results in signil'icantly greater computational cornplcxity, 60 thiu 

method is not feasible to knowledge discovery in database system since databases 

usually store a huge amount of data. Furthermore, these two techniques do not 

find any relationships between different clusters. Both the conceptual clustering and 

learning from examples methods are concerned with formulating some description that 

summarizes a set of data. In learning from examples, a tutor specifies which objects 
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should be assigned to which classes and the learner must characterize each class. In 

conceptual clustering the learner has the two-fold task of creating object classes as 

well as characterizing these classes. Among the many existing clustering algorithms 

such as CLUSTER12 and COBWEB, none of them have been applied specifically to 

database applications and they tend to be computationally expensive. 

Based on the relationships among the clusters and cluster descriptions, three dif- 

ferent types of intercluster structures are commonly distinguished in the literature. 

Optimization techniques of numerical taxonomy form a 'flat' (ie, unstructured) set 

of mutually exclusive clusters (ie. a partition over the input object set). Optimization 

techniques make an explicit search for a globally optimal K-partition of an object set, 

where K is a user supplied parameter. This search for globally optimal partitions 

make optimization techniques computationalPy expensive, thus constraining their use 

to small data sets and/or small values of K. 

Hierarchical techniques form classification trees over object sets, where leaves of 

a tree are individual objects, and internal nodes represent object clusters. A 'flat' 

clustering of mutually-exclusive clusters may be obtained from the classification tree 

by severing the tree at some level. Hierarchical techniques are further divided into 

divisive and agglomerative techniques, which construct the classification tree top- 

down and bottom-up, respectively. Hierarchical techniques depends on 'good.' clus- 

ter ing~ arising from a serial of 'local' decisions. In the case of divisive techniques, a 

node in a partially constructed tree is divided independent of other (non-ancestrial) 

nodes of the tree. The use of 'local' decision-making in hierarchical methods make 

them computationally less expensive than optimization techniques with an associated 

probable reduction in the quality of constructed clusterings. 
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Clumping techniques return clusterings where constitutent clusters possible over- 

lap. The possibility of cluster overlap stems from independently treating some riumbcr 

of clusters as possible hosts for an object which must be incorporated into a clustering. 

A natural approach would combine the advantages of these techniqucs. We propose 

a new method for knowledge discovery that can find knowledge from databases by first 

clustering data using a numerical taxonomy, then extract a characteristic feature for 

the cluster, and finally treat each cluster ds a positive example as in learning f rom 

examples and use existing machine learning methods to derive knowledge rules. Thus, 

there are three tasks which must be addressed by our algorithm: 

(1) aggregating objects into different clusters; 

(2) assigning conceptual descriptions to object classes; and 

(3) learning from object classes. 

In this chapter, we only consider problems (1)  and (3) since problem (2) is identical 

to the well-studied task of learning from examples [2,4]. 

5.3 Knowledge Discovery by Conceptual Clus- 

tering 

Our method is divided into three phases. Phase 1 uses a numerical taxonomy to 

classify the object set. Phase 2 assigns conceptual descriptions to object classes. 

Phase 3 finds the hierarchical, inheritance and domain knowledge bared simply on 

different relationships between different classes. 
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5.3.1 Aggregating Objects into Different Clusters 

For a numerical taxmomy, various measures of similarity have been proposed, most 

of them based on a Euclidean measure of distance between numerical attribute, con- 

sequently, the algorithm only works well on numerical data. More recently, database 

applications use non-numerical data. We propose a new measure; we use the number 

of common attribute values in two data set as a reasonable similarity measure between 

them. (the number of coinmon attribute values of a data set with itself is defined as 

0.) 

Algorithm 5.1: a simple data clustering algorithm 

Input. a set of data stored in the relational table 

Output. a cluster hierarchy of the data set 

Method. 

1. (prelimemary step): generalize some attributes to a 'desirable level', for example, 

in a employer database, for the 'age' attribute, it is better to substitute the many 

different values into a few distinct values such as 'young', 'middle-aged', or 'old'. 

This may make the descriptions of the clusters concise and meaningful. 

2. calculate the number of common attribute values between each pair of data. 

3. based on the threshold value for the similarity, form a cluster for each data. (the 

threshold is changed in each iteration, it can be given by the user or determined 

by analyzing the distribution of the numbers of common attribute values) 

4. delete the redundant clusters. 
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5. is there any new cluster produced? If not, t.erminate; otherwise 

6. form the hierarchy based on the new and untouched* clusters 

7. use the new cluster and the untouched clusters as data for the next iteration, 

go back to step 2 

*Note: A cluster which is not an component of any newly formed clusters is called 

an untouched cluster. 

5.3.2 Learning from object classes 

We can discover three kinds of knowledge rules from object classes: hierarchical knowl- 

edge rules, the relationship between different attributes and inheritance knowledge 

rules. Given a set of data, after phase 1, the data is clustered into a hierarchy au 

illustrated in Figure 5.1 

Level # 

Figure 5. 1 : Conceptual Hierarchy 

where H's denote the clusters in the hierarchy, Hitj  is a subset of Hi and the concep- 

tual descriptions assigned to these classes are Dl ,..., Dk, Dl ,I , DI ,I ,. . , D ~ J  ,. . ,Dk,,n,. . . , 
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and so on. The values of k, l,..,m depend on the actual data set. 

For rule formation, there are three algorithms of knowledge discovery: Hierarchical 

Knowledge Discovery (HKD), Attribute Knowledge Discovery (AKD) and Inheritance 

Knowledge Discovery (IKD). For HKD, new rules are discovered by finding all possible 

implications between the descriptions of clusters in a cluster and those in its father 

clustering, namely DiTj -+ D;. For AKD, the algorithm just looks at the characteris- 

tic description for each cluster, based on the relationship on different attribute values, 

then gives the result in terms of a logically equivalent form. For IKD, which is a 

modification of HKD, labels are used, which are either explicitly defined by the users 

in terms of domain knowledge or labels are produced automatically by the system. 

Clustering labels play an important role in knowledge discovery, the new rules 

discovered can be formed as 

where the condition part of the rule consists of the conjunction of the description of 

the current, cluster and the label of its father's clustering. 

5.4 An Example 

In this section, we use a set of data from 1501 to explain our method, step by step. 

Given the animal world depicted in Table 5.1: 
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Animal 

tiger 

cheetah 

giraffe 

zebra 

ostrich 
penguin 

albatross 
eagle 

pointed 

pointed 

blunt 

blunt 

no 
no 
no 
no 

Eyes 

forward 

forward 

side 

side 

side 

side 

side 

forward 

Feathers 

- 
Feet - 
claw 

clau 

hoof 

hoof 

claw 
web 
claw 

claw 

Eat - 
meat 

meat 

grass 

grain 
fish 

grain 

meat 

- 
Milk 

- 
Swim - 
Ies 

Yes 

no 

no 

no 

no 

Yes 
no 

Table 5.1 Animal World 

for example, the data in row 1 means that a tiger is a animal with hair, pointed 

teeth, forward eyes, claw feet, and no feather, it gives milk and can not fly but can 

swim. 

In Phase 1, the clustering algorithm is applied to classify the raw data. After the 

first iteration, the number of common attribute values between each pair of data is 

computed in Table 5.2: 
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Table 5. 2: number of common attribute values after 1st iteration 

For example, the '9' in row 1, column 2 is computed by counting the number of 

common attribues between the data set in row 1 and row 2 of Table 5.1. 

Suppose we choose 6 as the threshold value for similarity, the algorithm produces 

8 clusters (1,2), (2,1), (3,4), (4,3), (5,6,7,8) ,(6,5), (7,5,8),(8,5,7), then 5 distinct 

clusters (1,2) ,(3,4),(5,6,7,8) ,(5,6),(5,7,8) are formed after deleting redundant ones and 

a hierarchy is formed as depicted in Figure 5.2: 

6 5 7- 

Figure 5. 2: Conceptual Hierarchy after I st iteration 
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Next, the clustering algorithm is applied to (1,2), (3,4), (5,6,7,6), it ca.!culate the 

similarity for the three clusters (1,2), (3,4), (5,6,7,8), the common attribute values 

are presented in Table 5.3 and the algorithm chooses 5 as the threshold value for this 

iteration, resulting in the hierarchy shown in Figure 5.3: 

Figure 5. 3: Conceptual hierarchy after 2nd iteration 

(12)  (3,4) (5,6,7,8) 

Table 5. 3: # of common attribute value after 2nd iteration 
Table 5.4: # of common attribute value after 3rd itcration 

Finally, the clustering algorithm is applied to (1,2,3,4),(5,6,7,8). After the third 

iteration, the common attribute values between these two clusters are presented i n  

Table 5.4 and the resultant conceptual hierarchy is illustrated in Figure 5.4. (char- 

acteristic descriptions of each cluster is the cornmom values for all the data in the 

cluster) 
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Figure 5.4: Conceptual hierarchy after the 3rd iteration 

In phase 3, the three Knowledge Discovery Algorithms HKD, AKD, and IKD as 

presented in section 3.2 are applied to the hierarchy depicted in Figure 5.4, sespec- 

tively. Algorithm HKD results in Table 5.5, a rule set which can be interpreted as 

follows. Rule # 1 means if a animal has hoof feet, then it gives milk. The rule sets 

are generated as follows: 

Table 5.5: Hierarchical Knowledge Rules 

# I Knowledge Rules discovered by HKD 

1 

2 

3 
" 

4 

Feet=hoof-->Milk=yes 

Teeth=pointed or blunt-->Milk=yes 

Eat=grasss-->Milk=yes 

Feet=hosf-->Hair=yes 
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Algorithm AKD results in Table 5.6, a rule set which can be interpreted as follows, I # I Knowledge rules discovered I 

Rule # 1 means i f  a animal has hair, then it gives milk, vice versa Table 5.6:  Equivalent logics 

Algorithm IKD results in Table 5.7,a rule set which can be interpreted as follows. 

Rule # 1 means if a animal in Cluster Labe1(1,2,3,4,5,6,7,8) with hair or giving milk, 

Table 5.7: Inheritance Knowledge Rules 

then it belongs to cluster Label(1,2,3,4). 

If we substitute the labels by the names given by an expert or users as shown in 

Table 5.8: 

# 

1 

2 

3 

4 

Knowledge rules discovered by IKD 

Label(l,2,3,4,5,6,7,8)and (hair=yes or Milk=yes)-->Label(l,2,3,4) 

Label(l,2,3,4,5,6,7,8) and (Feather=yes or Milk=no)--> Labe1(5,6,7,8) 

Labe1(1,2,3,4) and (Teeth=pointed or Eyes=forward or Feekclaw or Eats=meat)-->Label(I ,2) 

Labe1(1,2,3,4) and (Teeth=blwt or Eyes=side or Fee=hoof or Eats=grass)--> Labe1(3,4) 
.I 
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Table 5. 8: Name list 

we can obtain a set of meaningful rules as follows: 
# I Substitute the labels by the names given by experts or users 1 

Table 5.9:  A set of meaningful rules after substitution 
note: c-mamrnal=carnivorous mammal 
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Discussion 

In previous chapters, we presented two new methods for knowledge discovery in 

databases system. One new method finds knowledge associated with concepts at 

different levels in the conceptual hierarchy. The other method discovers kriowlegde by 

conceptual clustering in the absence of a concept hierarchical table. In this chapter, 

we will discuss the two methods respectively. 

6.1 Discovery of Knowledge Associated with a 

Concept Hierarchy 

The algorithm is based on the previous research [2,13,14,20]. Thus our method in- 

herits all the advantages of the attribute-oriented concept-tree ascension techniques. 

Moreover, our method can discover different kinds of rules associated with the con- 

cepts at different levels in the concept hirarchy 
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6.1.1 Search Space 

Attribute-oriented induction provides a simple and efficient way to learn different 

kinds of knowledge rules in relational databases. As an emerging field, there have 

been only a few database-oriented knowledge discovery systems reported, most of 

which are based on previously developed learning algorithms. The major difference 

of our approach from the others is attribute-oriented induction vs. tuple-oriented 

induction. It is essential to compare these two approaches. 

A concept tree ascending technique is the major generalization techniques used 

in both attribute-oriented generalization and tuple-oriented generalization. However, 

the tuple-oriented approach performs generalization tuple by tuple, but the attribute- 

oriented approach performs generalization attribute by attribute. We compare the 

search spaces of our algorithms with that of a typical method of learning from 

examples, the candidate elimination algorithm [7] 

In the candidate elimination algorithm, the set of all concepts which are consistent 

with the training examples is called the version space of the training examples. The 

learning process is the search in this version space to induce a generalization concept 

which is satisfied by all of the positive examples and none of the negative examples. 

Since generalization in an attribute oriented approach is performed on individual 

attributes, a concept hierarchy of each attribute can be treated as a factored version 

space. Factoring the version space significantly improves the general efficiency. Sup- 

pose there are p nodes in each concept tree and there are k concept trees (at tributes) 

in the relation, the total size of a k factorized version space is pk. However, the size 

of the unfactorized version space for the same concept tree should be pk. 
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6.1.2 Utilizing Database Facilities 

Relational database systems provide many attractive features for machine learning, 

such as the capacity to store a large amount of information in a structured and or- 

ganized manner and the availability of well developed implementation techniques. 

However most existing algorithms do not take advantage of these database facilities 

[2]. An obvious advantage of our approach over many other learning algorithms is the 

integration of the learning process with database operations. Most of the operations 

used in our approach involve traditional relational database operations, such as selec- 

tion, join, projection (extracting relevant data and removing attribute), tuple snbsti- 

tution (ascending concept trees), and intersection (discovering common tuples among 

classes). These operations are set-oriented and have been efiicient ly implemented 

in many relational systems. While most learning algorithms suffer from inefficiency 

problems in a large database environent [2,13,14], our approach can use database fa- 

cilities to improve the performance. Moreover, in contrast to many machine learnirig 

algorithms which can learn only qualitative rules, our approach can learn qualitative 

rules with quantative information, and statistical rules. 

6.1.3 Conjunctive Rules, Disjunctive Rules and Incremen- 

tal Learning 

Many machine learning algorithms, such as Winston's algorithm for learning concepts 

about the blocks world [49] and the candidate elimination algorithm [7] are concerned 

with the discovery of a conjunctive rule when both positive examples and negative 

examples are presented. Thoth 1471 and SPROUTER [18] both of which are deaigned 
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for finding the maximally-specific conjunctive generalizations of input positive exam- 

ples, can only learn conjunctive rules [2]. The goal of the learning process performed 

by such algorithms is to induce a conjunctive rule which can be satisfied by all of the 

training examples. Since disjunctives allow a partially ordered rule space to become 

infinitely 'branchy', many algorithms do not permit disjunctives in the representation 

language. However in real world applications, there are many knowledge rules which 

should be expressed in a disjunctive llorrn form. Our algorithms can learn both con- 

junctive and disjunctive rules under the control of a specified threshold value. If the 

threshold value is set to 1, the learning result will be a conjunctive rule. Otherwise, if 

the threshold is a small integer greater than 1, the learning result will be a disjunctive 

rule consisting of a small number of conjuncts. When a new tuple is inserted into a 

database relation, rather than restarting the learning process from the beginning, it is 

preferable to amend and fortify what was learned from the previous data. Our algo- 

rithm can be extended to facilitate such incremental learning [2]. Let the generalized 

relation be stored in the database. When a new tuple is inserted into a database, 

the concepts of the new tuple are first generalized to the level of the concepts in the 

generalized relation. Then the generalized tuple can be naturally merged into the 

generalized relation. 

6.1.4 Dealing with Different Kinds of Concept Hierarchies 

In our examples, all of the concept hierarchies are reprsented as balanced concept 

trees and all of the primitive concepts reside at the same level of a concept tree. 

Hence generalization can be performed synchronously on each attribute to generalize 

the attribute values at the same lower level to the ones at the same higher level. 
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However, we may encounter other kinds of concept hierarchies or we may encounter 

the case where the primitive concepts do not reside at the same level of a concept 

tree. 

Generalization of the Concepts at Different Levels of a Hierarchy 

The concept hierarchies may be organized as unbalanced concept trees. Ebr exalllple, 

the left branch of a tree may have fewer levels of leaves than the right branch, In 

these cases, synchronous tree ascension may reach the same level at different stages, 

which may result in an incorrect generalization at that level. A similar problem 

may occur when the primitive concepts reside at the different levels of a concept 

tree. These problems can be solved by checking whether one generalized concept may 

cover other concepts of the same attribute. If one generalized concept covers a concept! 

several levels down the concept tree, the covered concept is then substituted for by 

the generalized concept, that is, ascending the tree several levels at  once. 

Example 6.1 Handling an unbalanced concept tree 

regulacshape 

L 
A A 

ci cle 

A 
ellipse triangle square hexagon 

small-circle large-circle 

Figure 6.1. An unbalanced concept tree. 
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Figure 6.1 shows an unbalanced concept tree. Based on the discussion above, 

as long as the attribute value 'eilipse' has been generalized to 'oval', those attribute 

values, 'small-circle', 'large-circle' and 'circle', can be substituted by 'oval' a t  once. 

This idea can be used for incremental learning as well. Relational databases are 

characterized by frequent updating. As new data become available, it will be more 

efficient to amend and reinforce what was learned from previous data than to restart 

the learning process from scratch [31]. Our algorithms can be extended to perform 

incremental learning. When new data are presented to a database, an efficient ap- 

proach to characterization and classification of data is to first generalize the concepts 

of the new data up to the level of the rules which have been learned, then the learning 

algorithms can be used to merge the generalized concepts derived from the old data 

and the new data. 

Generalization of Concepts in the Hierarchies with Lattices 

In all of our previous examples, the concept hierarchies are trees, that is, every node 

has only one parent node. For any concept, therefore, there is only one direction to 

perform the generalization. In some cases, however, the concept hierarchy may have 

lattice. Figure 6.2 illustrates this case. 

Example 6.2. Handling a concept with lattices. 
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Figure 6.2: A concept hierarchy with lattices. 

As illustrated in Figure 2, the concept 'two' can be generalized either to couple 

or few. Both generalized concepts should be considered. Our method is to put, all 

possible generalized concepts into intermidiate generalized relations when a lattice 

is encountered, and then perform further generalization on all those tuples. In this 

example, after the tuple containing attribute value 'two' is generalized, two new tuples, 

containing attribute values 'couple' and 'few', respectively, should be generalized. For 

the concept 'six', the same technique should be applied. As a consequence, the size of 

the generalized relation table may increase at some stage of the generalization proccss 

because of the effect of a lattice. However, since the ge~eralization is controlled by thc? 

specified value, the generalized relation will eventually shrink in further generalization. 

6.2 Discovery of Knowledge by Conceptual Clus- 

tering 

Most conceptual classification algorithms in the literature 121,301 are t u ple-oriented 

algorithms. A tuple-oriented algorithm examines data in the database tuple by tuple 
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and performs generalization and classification based on the comparision of tuple val- 

ues with the intermediate generalization results. Since the number of possible tuple 

combinations is exponential to the number of tuples in the relevant data set, the worst 

case complexity of the generalization and classification process is exponential to the 

size of the relevant data sets [21,30]. But our method use a new method to classify 

the data set based on the commom attribute values between different tuples. At each 

iteration, a matrix is constructed in 0 (n2)  where n is the number of the tuples of the 

data set. According to the distribution of the values in the matrix, a suitable value 

is choosen which is a similarity measure for classification. 

Our method can discover three kinds of knowledge rules in the absence of a concep- 

tual hierarchy. It first classifies the data into different clusters by using a attribute- 

oriented technique to cluster data, extracts the characteristic of each cluster, then 

discovers knowledge rules based on the relationship between different clusters. 

The advantages of our method include: 

(1) Our algorithm can automatically find a hierarchy table without assistance. The 

number of clusters and the levels of the hierarchy are determined by the algorithm; 

it is unlike the famous CLUSTSER/fZ in which the user must specify the number of 

final clusters and the initial seeds in the beginning. 

(2) Objects are not assigned to clusters absolutely. 

Our method calculates the similarity between each pair of objects, providing a 

more intuitive ciassification thltn absolute partitioning techniques. Our method ag- 

gregates objects from bottom to top based on the similarity between them and if 

a object has the same number of common attribute value to two clusters, then the 
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object is assigned to both clusters. 

(3) All attributes are potentially significant. 

Typically, objects to be clustered come from an experimenta; study of some phe- 

nomenon and are described by a specific set of attributes (variables) selected by the 

data analyst. The attributes selected by the data analyst are not always ~elevant 

to the clustering problem. In conventional approaches, the selection of relevant at- 

tributes is treated as a separate preliminary step. In the conjunctive conceptual 

clustering method, attribute selection is performed simultaneously with the forma- 

tion of clusters. The method selects those attributes from the viewpoirlt of assurriecl 

criteria, allow it to 'simply' characterize the individual clusters in terms of available 

cmcepts. But classific~tion can be based on any or all attributes simultaneously, not 

on just the most important one . This represents an advantage of our niethod over 

human classification and many existing conceptual clustering algorithms. In rnany 

applications, classes are distinguished not by one or even by several attributes, but by 

small differences in many attributes. Humans often have difficulty taking mow than 

a few attributes into account arid tend to focus on a few important attributes. Our  

method uses all attributes, permitting uniform consideration of all of the data. 

(4) The threshold value has a big influence on whether or not an instance is 

admitted to a class. We can vary the threshold, get different hierarchy tables so thc 

algorithm can generate different sets of rules to meet the needs of varied applications. 
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Conclusion and Future Research 

7.1 Conclusions 

In this thesis, we have studied the methods of learning different kinds of rules such as 

characteristic rules, classification rules, hierarchy knowledge rules, inheritance knowl- 

edge rules and attribute rules. Our algorithms adopt the at tribute-oriented induction 

approach, integrate database operations with the learning processes, and provide an 

efficient way of extracting knowledge from databases. 

Our first method finds knowldge rules associated with concepts at different levels 

in the conceptual hierarchy. It adopts the attribute-oriented concept tree ascending 

technique which substitutes the lower-level concepts of the attribute in a tuple by its 

corresponding higher-level concepts and thus generalizes the relation. By eliminating 

the redrrndant tuples and applying a threshold value to control the generalization 

process, the final generalized relation consists of only a small number of tuples which 

can be transformed into a simple logic formula. 



The other method we proposed is designed for discovery of knowledge in the nb- 

sence of a conceptual hierarchy. 

A comparision of our approach with many other algorithms for learning from 

examples shows that our algorithms have many distinct features, such as, the ability 

to use database facilities, learn disjunctive rules and statistical rules. 

7.2 Future research 

There are many interesting research issues related to learning from large databases 

7.2.1 Applications of Knowledge Rules Discovered from Re- 

lational Databases 

The knowledge rules learned from relational databases are very useful in many appli- 

cations, some of which are listed below: 

(1) Discovery of knowledge rules from knowledge-base systems and expert systerns 

Since rules are derived from a huge number of data stored in a relational database, 

they represent important knowledge about data in the database. Thus our approach 

is an important method to obtain knowledge rules for knowledge-base systems and 

expert systems 

(2) Processing of queries which involve abstract concepts 

In general, relational databses can only amwer queries which involve the concepts 

in the database, but they cannot handk queries like What  are the major characteristic 
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of mammal?' and 'How can we describe the major differences between mammal a.nd 

bird?'. Such queries involve concepts which are at a higher level than the primitive 

data stored in relational databases. By applying the knowledge rules obtained by our 

learning algorithms, it is possible to answer such learning-requests in a natural way. 

(3) Semantic query optimization using the learned rules. 

Some queries can be answered more efficiently by the learned knowledge rules 

without searching databases. For example, the query, 'Is there any mammal who 

has feathers?', usually indicates that the relation must be searched. However, if the 

characteristic rule indicates that there is no mammal who has feathers, this query 

can be answered immediately without any search. Clearly, learned rules may speed 

up or optimize database query processing as previously studied in semantic query 

optimization. Notice that when there is a large number of learned rules, it is nontrivial 

to search such a rule space. In such a case, there is a trade-off between performing 

such semantic optimization versus searching the database directly. 

7.2.2 Construction of an Interactive Learning System 

As shown in our learning system, the database learning process is guided by experts or 

users. Experts and users must specify the learning task and define the threshold value. 

It is important to obtain such information by interaction with users and experts. 

(1) the system should have an user-friendly interface to facilitates users' commu- 

nication with the learning system. A more flexible database learning language should 

be developed for such an interface. 

(2) the entire learning process should be monitored and controlled by users. For 



CHAPTER 7. CONCLUSION AND FUTURE RESEA RCN 7% 

example, at some stage of the learning process, users may terminate th-. generalization 

on some selected sttributes but continue the process on other attributes. In order to 

obtain multiplerules, users may influence the learning process using different ttlresllold 

values. 
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