National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
COttawa, Ontario
K1AON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 19706, c¢. C-30, and
subsequent amendments.

i+t

Canada

395, rue Wellington
Ottawa (Ontario}

Yowrs e Volre r@loronce

Our e Notre eforencs

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

A HIERARCHICAL APPROACH TO

LOCAL FILE SYSTEM DESIGN

FOR A TRANSPUTER-BASED

MULTIPROCESSOR

by
Timothy J. Dudra

BSc. (Honours), Simon Fraser University, 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

© Timothy J. Dudra, 1992
Simon Fraser University

December 1992

All rights reserved. This thesis may not be reproduced in whole or in part,
by photocopy or other means without the permission of the author.

National Lib
Bl S

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibltographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your Me Volre rélérence

Qur fle Notre réléence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-91038-0

Canada

APPROVAL

Name: Timothy Joseph Dudra
Degree: Master of Science
Title of thesis: A Hierarchical Approach to Local File System Design for

a Transputer-based Multiprocessor

Examining Committee: Dr. Ramesh Krishnamurti
Chair

Dr. M. Stella Atkins, Senior Supervisor

v [
Dr. Wo-Shun Luk, Supervisor

~

Dr. Alan Wagner, Examiner

Date Approved: E)“"«C \ 1992

i

PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users ot the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational Institution, on
its own behalf or for one of Its users. | further agree that permission
tor multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. |t is understood that copying
or publication of this work for fipanclai gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

A Hierarchical Appfoach to Local File System Design for a Transputer-based

Multiprocessor.

Author: i s —
\\
(ngBafure)

Timothy Joseph Dudra

{name)

December 7., 1992
{date)

Abstract

The rate at which processor power is increasing is not being matched by similar
increases in mass storage performance, nor is this disparity expected to be rectified. This
problem is especially acute in multiprocessor architectures and has come to be known as the
170 bottleneck crisis. Vast quantities of data are required for full utilization of a multiproces-
sor and this data must be provided to that processor, either directly or indirectly, via high

speed networks, from some mass storage medium.

Disk caching and prefetching have been proposed as good (possibly short-term) tech-
niques for reducing the impact of the I/O bottleneck on multiprocessor throughput. An
‘impressive amount of research has been invested in analyzing the effects of these techniques
on the performance of tightly coupled shared memory multiprocessors; Application of these
methods to loosely coupled multiprocessors has not been pursued with the same fervour.
This thesis presents the design and performance of a disk cache system for use within net-
works of Inmos transputers. The intent of this system is to provide a local file system for the
transputer network. This system is intended to be a building block in the development of a

distributed file system for the transputer multiprocessor.

The Transputer Auxiliary Storage System supports advanced cache management
features such as user directed prefetching, opportunistic write back, disk interleaving, multi-
threaded server support and RAM disks. The design and implementation issues encountered
during the creation of this storage system are discussed. Also, the performance of the system
is analyzed for various workloads. The results confirm the positive effect of the system upon

sustained I/O performance into and out of the transputer network.

Acknowledgements

Firstly, I would like to thank all of those persons who persevered with me through the
seemingly eternal ages of this work. My family was perpetually supportive. My supervisor
was probably more patient than I deserved. The SFU computing science department did not
threaten me with expulsion if I could not show some progress (actually, near the end they

hinted a little).

Credit has to be given to those persons who joined me during many evenings of inspired
drinking and pseudo-philosophical discussion. The emotional and psychological cleansing

associated with these rituals cannot be underestimated.

Lastly, I extend special thanks to my father, whose constant nudging during my youth

finally, against all odds, convinced me that an education has value.

iv

Section

1.1
1.2
13
i4

2.1
2.1.1
2.1.1.1
2112
2.1.13
2.12
2.12.1
22
221
23
231
232
233
234
235
24
24.1
242
243
243.1
2432
24321

Table Of Contents

Title

Approval

Abstract
Acknowledgements
Table of Contents
Index of Tables
Index of Figures

Introduction
Apologies
Hardware Overview
Research Goals
Thesis Overview

Related Research

The Memory Hierarchy

Disk Performance

Buffering to Reduce Disk Delays

Disk Scheduling to Reduce Seek Times

Track and Sector Interleaving to Reduce Rotational Latency

Joining of Multiple Disks

High Bandwidth Disk Arrays From Low Bandwidth Disks

Cache Design
Cache Components
Caching Strategies

- Placement Policy

Replacement Algorithms
Combined and Partitioned Caches
Write Policy

Prefetching

Data Access

Data Operations

Data Objects

Data Access Patterns

Categories of Data Access Patterns
Relevant Patterns

Sequential Global Irregular

Page
ii

iii

iv

X1

NN = e e

11
14
15
16
19
20
24
25
27
28
30
32
34
35
36
37
38
38
38
39
40

24322
24323
25

251
252
253

3.1
3.1.1
3.1.2
3.13
3.14
32
321
322
3224
3224
3224
3224

4.1
4.1.1
4.1.2
4.13
4.1.4
4.2
43
4.4

5.1
5.1.1
512
51.21
5122
513
5.14
52
521
52.2

Sequential Local Disjoint Irregular
Random Overlapped

Other Systems

RAID

DataMesh

A Parallel Interleaved File System

Design Overview

Hardware Environment
Transputer Architecture
Vendor Boards

SFU Transputer Environment
Vendor Supplied Software
TASS Design

Hardware Configuration for TASS Storage Nodes
Software Design

Client Interface Layer

File System Layer

Cache Layer

Disk Support Layer

The Disk Server

Considerations in the Design

Device Dependent Interface

Device Independent Interface

Server Message Protocol

Miscellaneous Considerations

Implementation of the First Disk Server Prototype
Implementation of the Disk Server 2 Prototype
Implementation of the RAM Disk Server Prototypes

The Cache Server

Layer Requirements

Disk Support Layer

Cache Layer

Overview

Memory vs CPU Cycles Trade-off
File System Layer

Server Message Layer
Implementation of the Cache Server 1 Prototype
Requestor Process Group
Acceptor Process Group

vi

42
42
43
44
45
46

51
51
51
53
55
57
59
63
65
67
67
70
72

74
78
78
80
81
82
84
87
91

92
92
92
95
95
96
98
100
102
105
106

523
524
53

53.1
53.2
5321
53.2.1.1
53212
53213
53214
53215
53216
532.1.7
5322
533
5.3.3.1
5332
5.3.33
54

7.1
7.1.1
7.1.2
72
7.2.1
722
7.2.3
124
725
73
73.1
732
7321
7322
7323
7.3.2.4
7325
74

File Server Process Group
The Cache Manager
Implementation of the Cache Server 2 Prototype
Disk Support Layer

Cache Layer

The CacheManager Module
Get Lock

Release Lock

Insert New Entry

Start Write Back

Finish Write Back

Stop Cache Flush

Stop Cache Flush

The Cache Module

File System Layer

File Server Process Group
Write Back Process Group
Predictor Process Group
RAM Cache Prototype

The Client Interface

Device and Disk Server Performance
Approximating Data Access Patterns
Sequential Global Irregular

Random Overlapped

Device Performance Limitations
Host Interconnect

Transputer Link Throughput
CP-3100 Fixed Disk Throughput
T800 Based RAM Disk Throughput
Context Switch Time

Disk Server

Testing Environment

Test Results

Sector Interleaving

Track Interleaving

Sequential Access

Random Access

Processor Usage

Conclusions

vii

107
107
110
112
115
115
116
117
117
118
119
119
120
120
121
121
122
124
125

126

130
131
132
133
134
134
135
136
136
136
137
137
138
138
139
140
142
145
145

8

8.1

8.2

8.2.1
8.2.1.1
8.2.1.2
8.2.1.2.1
8.2.1.2.2
821221
82.1.222
822
8221
8.2.22
8.3

8.3.1
8.3.1.1
8.3.1.2
8.3.1.3
8.3.2

8.4

8.4.1

8.5

9

9.1

92

921
92.1.1
92.1.2
9213
92.14
922
9221
9222
92221
92222
9223
9224
9.3

Q
7

10

Cache Server Performance
Testing Environment

Disk Support Layer

I/0 Bandwidth

Optimal Workloads
Comparing DSL Results to Disk Server Results
Single Disk Systems
Multiple Disk Systems
Sequential Access
Random Access

Processor Cycle Usage
DiskLink Module
DiskLayer Module

Cache Layer

I/0 Bandwidth

Optimal Workload
Sequential Access
Random Access

Processor Cycle Usage
Server and File System Layers
Processor Cycle Usage
Conclusions

TASS Storage Node Performance
Testing Environment

-1/0 Bandwidth

Read Access

Only Cache Hits
Sequential Global Access with Prefetching
Random Access
Comments

Write Access

Only Cache Hits
Sequential Global Access
Single Disk Systems
Multiple Disk Systems
Random Access

Start-up Performance
Processor Cycle Usage
Conclusions

Summary

viii

147
147
150
150
150
157
158
159
159
160
162
162
165
166
167
167
171
174
174
175
176
176

180
180
182
182
183
183
186
190
190
191
192
192
194
195
197
200
201

204

11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.8.1
11.8.2

Appendix A

Future Work

New Hardware

Increased Cache Capacity

Expanding Disk Server Functionality

Additional Disk Joinings

Removing the Implicit Prioritization of ProcAltList()
Non-RPC Client Interface

More Functional Local File Systems

Distributed File Systems for the Transputer Multiprocessor
DFS using Point-to-Point Communication

DFS for SFU Style T800-based Network

Glossary
Bibliography

ix

208
208
209
209
210
211
211
212
212
213
214

217
221

Table

N B L N e

~J

&)
8(ii)

10
11
12
13
14
15
16
17
18
19
20

~
pa

22
23
24
25
26
27
28
29

Index of Tables

Description

Catezories of Parallel File Access Patterns

CP-3100 Specifications

File System Operations

Cache Layer Interface

Disk Support Layer Core Primitives

Interface to the Device Dependent Layer

Disk Server to Cache Server Communication Protocol

Cache Server to Client Communication Protocol

Cache Server to Client Communication Protocol (continued)
The Procedures of the Client Interface

Transputer to Transputer SDTR

Read Access SDTR for Various Chunk Interleavings

Write Access SDTR for Various Chunk Interleavings

Disk Server SDTR Samples and Averages

RAM Disk SDTR in KBytes/second

Random Access SDTR over Entire Disk Address Space

Disk Layer Throughput - Sequential Global Irregular DAP

Disk Layer Throughput - Sequential Local Disjoint Irregular DAP
Disk Layer Throughput - Random Overlapped DAP

Disk Support Layer Throughput in KB/s by Joining & Workload
Processor Cycle Usage for DiskLink Module

Processor Cycle Usage for the Disk Support Layer

Cache Layer Throughput - Sequential Global Irregular DAP
Cache Layer Throughput - Random Overlapped DAP

Cache Layer Throughput in KBytes/second by Joining and Workload
Processor Cycle Usage for the Cache Layer

Processor Cycle Usage for the File System and Server Layers
Read Access Sustained Data Transfer in KBytes/second

Write Access Sustained Data Transfer in KBytes/second
Processor Cycle Usage for the TASS Client Interface

Page

39

35

oY

72

73

79

83
101
102
128
135
140)
140
141
141
143
152
153
154
157
163
166
168
170
171
175
177
182
191
200

Figure

axcoe\lc\ua-hum—a

L = AV RN B WU W S FURY b

Description

Objective of Network Disk Support
A Simple Disk Device

Sector Interleaving

Track Interleaving

Joining Techniques

Sequential Global Irregular DAP
Random Overlapped DAP

- The Transputer Processor Family

The SFU Transputer Network

TASS Storage Node Configurations

Distribution of Primary Layers over Component Processors
Components of The Disk Support Layer

Disk Access Pipeline

Disk Server Prototype 1 Process Heirarchy

Disk Server Prototype 2 Process Hierarchy

Cache Server Prototype 1 Process Hierarchy

Cache Server Prototype 2 Process Hierarchy

Random Access for Varying Sizes of Disk Region

The Cache Server Test Environment

The TASS Storage Node Testing Environment

Random Read Access Performance While Varying File Size

Random Write Access Performance While Varying File Size

Start-up Performance Under a SGI write DAP
A Distributed File System Environment

Page

12
17
18
22
41
43
52
56
63
66
75
76
85
88
104
111
144
148
181
188
196
198
215

1. Introduction

This section overviews the hardware and software environment within which this
research occurred. The goals that have been pursued during this research are direct conse-
quences of conditions found within this environment. My goals are presented as a subset of
the more extensive goals of the Simon Fraser University Transputer Research Group. The
work presented here is targeted to a transputer based multiprocessor. However, the findings
should not be considered valid only for that platform as they may apply, in some degree, to

any loosely coupled multiprocessor platform.

1.1. Apologies

I tend to use acronyms. Being a person who hates people who use acronyms, I find
myself perched precariously on the precipice of hypocrisy. To prevent a perilous plunge, I
provide a glossary of acronyms with this document. Please feel free to use it. The previous
sentences prompt the next apology. I tend to be too verbose. This would be excusable if |
had any idea what half the words I use actually mean. Therefore, I humbly apologize for any

faux pas regarding sentence structure and word usage.

1.2. Hardware Overview

The primary hardware used during this research is a 64 node transputer network, consti-
tuting a loosely coupled multiprocessor. The transputer is a family of reduced instruction set
(RISC) processors which were introduced in 1985 by Inmos [Inm89]. Each transputer is
equipped with four high speed bi-directional serial links which allow parallel processing net-
works to be built easily and economically. Additionally, each device is also equipped with 4

KBytes of on-chip memory and a memory interface allowing the chip to be augmented with

external memory. Through the use of direct memory access (DMA) circuitry, the transputer
allows communication and computation to occur simultaneously and autonomously. There is
no hardware support for shared memory between any two nodes in a transputer network, thus
~the autonomous communication, via the serial links, is required to provide transputer net-

works with an efficient message passing model.

The SFU transputer network is subservient to a Sun-4 host and is connected to that dev-
ice via the Sun’s VMEbus (This is elaborated on in Section 3.1.3). The Sun-4 host is also

connected to the SFU computing science research ethernet.

At the commencement of this work, mass storage support systems were not available for
transpﬁter networks. In most cases, information to be processed by the transputers had to be
routed from disk into the transputer network via the host machine (in our case the Sun-4) and
the research ethernet. As if in answer to this problem, transputer based device controllers
conforming to the SCSI standard [ANS86] were appearing but there existed little in the way

of software capable of turning these controllers into full mass storage systems.

1.3. Research Goals

One of the goals of the SFU transputer group is to study the feasibility of providing
transputer networks with a distributed file system. The work presented in this thesis is our

initial adventure within this realm of research.

Disk systems can be classified into two layers, the lowest layer being Local File Systems

(LFS) and the highest layer being Distributed File Systems (DFS). Local file systems pro-

vide an interface between client programs and a group of storage devices!, which are con-
trolled, possibly indirectly, by a single processor. The traditional distributed file system does
not physically control any disks, rather it is a collection of communication protocols, cache
coherency algorithms, etc., which coerce a consistent pattern of behaviour from numerous
distinct local file systems. For examaple, Russeil Sandberg et al [San85] discuss the imple-
mentation of the Unix based Sun Network File System using varying numbers of file servers,
each of which provides a Unix based local file system. Also, Peter Dibble [Dib90] discusses
a parallel interleaved file system (PIFS) which is built entirely upon a group of local file sys-
tems. This style of DFS is further detailed in sections 2.5.3 and 3.2.2.

One of the nasty realities in developing a DFS is the need for supporting LFSs to build
upon. Often these LFSs can be purchased from some computer vendor and the DFS built
upon these pillars. For example, the Andrew system at Carnegie Mellon University was built
upon generic Unix local file servers [How87]. Alternatively, an LFS can be simulated and
used as the platform for the actual DFS. The simulation technique was used by Dibble in his
PhD research. In our case no vendor-supported transputer-based LFS was available, there-
fore the first step in developing a DFS for the transputer network became the development of
a LFS. It was our decision to implement an actual LFS, rather than simulating one, as was

done by Dibble.

After great consideration I chose to call our LFS the Transputer Auxiliary Storage Sys-

tem (TASS)2. The primary goal of the TASS design is to provide a simple, efficient interface

! The term group is meant to include groups containing only one storage device.

2 To give some perspective to the time span of this thesis: Once upon a time, when this research began,
there was a viable world power called the Soviet Union. It spanned a good percentage of Asia and Europe, in-
cluding such countries as Russia, The Ukraine, Lithuania and Latvia, Within the Soviet Union lurked an infor-
mation agency called TASS which performed admirably at the absorption of data and a little less admirably at

between mass storage and the transputer network. The system will not constitute a DFS,
rather it will provide pockets of mass storage support (MSS) within the transputer network, in
the form of LFS server nodes. These MSS pockets are to behave as if they were a single
transputer node with access to large quantities of slow memory. This will allow the MSS
“pockets to be placed within the network wherever the system and/or program designer
wishes, thus providing the system with good flexibility. This concept is illustrated in Figure
1. A fully distributed disk support system is shown as an example of what we are not trying
to achieve and is compared to a network with two ’pockets’ of mass storage. One pocket,
Disk 1, provides storage support to transputers 1 and 4, while the other pocket services nodes

1,5 and 6. Nodes 2 and 3 are not provided with any mass storage support at all. To improve

N ///' \ = N

B

~
" ——
m

- \\ 4 / e T \ / s
T5 ' T5

(i) Future Work: A DFS (ii) The Objective: A LFS
Figure 1: Objective of Network Disk Support

the provision of that data to interested parties. To me, this sounded a little like a mass storage system (although
closer to a tape based one than to a disk based one), so I thought it might be cute to choose some lofty title with
the acronym of TASS. However, for the purposes of litigation, I must state that any similarities between this
system and any persons, places, government agencies either living or dead is purely coincidental.

data throughput, a software disk cache will be implemented as a component of the TASS LFS

design.

1.4. Thesis Overview

Chapter 2 overviews related work in the area of disk and disk cache system design.
Also presented are some of the findings regarding the application of these techniques to
parallel processing environments. Some similar systems, to the one proposed herein, are dis-

cussed.

Chapter 3 covers the design of the TASS system. This is a high level discussion dealing
predominantly with issues of design modularity and system functionality. As a good percen-
tage of the TASS design was dictated by the available hardware, an overview of the tran-
sputer multiprocessor platform used during this research is presented. TASS was designed as
a rigidly layered heirarchy of modules. The functionality provided by each prifnary layer is

discussed.

Chapters 4 through 6 cover the gory details of the software implementation. Chapter 4
covers the disk server design, focusing on the breakdown of the server into device dependent
and device independent component modules. Chapter 5 covers the design of the cache server
and file system. Chapter 6 overviews the interface between TASS and its clients. The tech-
niques used within each software layer in order to provide the required services is discussed.
A qualitative comparison between some of the techniques used and some possible alternative

techniques is made.

Chapters 7 through 9 cover the performance of the TASS system. Chapter 7 is dedi-
cated to the disk server performance. Similarly, Chapter 8 looks at the cache server perfor-

mance and Chapter 9 analyzes the performance of the entire TASS system, as perceived by

client processors. Performance issues considered include sustained data throughput between
disk and clients. How the intervening layers of software affect data throughput is analyzed.

The usage of processor cycles by each of the primary software layers is presented.
Chapter 10 presents the conclusions of the work.
Chapter 11 suggests future work, including design possibilities for a DFS.

The appendix consists of a glossary of acronyms, followed by the bibliography.

2. Related Research

There has been a great deal of research devoted to disk caching for multiprocessor
environments, however most of this research appears to be grouped into the two categories of
tightly-coupled (shared memory) multiprocessors and local area networks. The area of
loosely-coupled multiprocessors seems to have been relegated to the technological
revolution’s back burner’. What research I have seen regarding disk systems in loosely cou-
pled multiprocessors usually makes the assumption that point to point communication
between all processing elements exists within the hardware architecture. Currently, the tran-
sputer environment does not support point to point communication and therefore much of the

related research was not too relevant.

2.1. The Memery Hierarchy

Before discussing the concepts of caching and their application to the transputer
environment, I will provide a brief discussion of the motivations behind data caches. Hwang
and Briggs [Hwa84] describe computer memory systems as hierarchical levels of memory

devices.

3 This is my opinion and could just be a manifestation of my persecution complex which often leads me to
assume that everything is a direct assault on my person. In other words, my inability to find suitable references
may have led me to believe that no other persons are interested in the same things that I am, therefore, no other
persons give a hoot in Hades about loosely coupled multiprocessors.

“The objectives [of a hierarchical memory structure] are to attempt to match the proces-
sor speed with the rate of information transfer or the bandwidth of the memory at the
lowest level and at a reasonabie cost” [Hwa84](page 52).

“[In other words,] the goal in designing an n-level memory hierarchy is to achieve a per-
formance close to that of the fastest memory and a cost per bit [of storage] close to that of
the cheapest memory” [Hwa84](page 56).

They further describe an example hierarchy involving, from highest to lowest layers, high
speed (cache) memory, main memory, bulk memory, fixed head disk, moveable arm disk and
tape devices. So, the objective of this hierarchy would be to provide data support to attached
processors at or near the bandwidth of the fast cache memory, while providing an extremely
large total memory capacity at the relatively inexpensive cost of tape and disk. The memory
hierarchy concept was not originated by Hwang and Briggs, they just happen to be my
- favourite réference to it. It is also presented by Peterson and Silberschatz [Pet85], who date

it back to the IBM 650 of the late 1950’s, and by John Wilkes [Wil89].

The primary trait of each layer in the memory hierarchy is that the data transfer
bandwidth provided by the associated device (the device at that layer) is larger than the
bandwidth provided by devices at lower layers of the hierarchy. Additionally, the higher
layers of the hierarchy almost always have significantly smaller total storage capacity than
lower layers. Also, the size of the basic unit of transfer between the devices at each layer
becomes smaller as the level gets higher. In other words, cache memory may allow transfers
of single words of data between the processors and cache memory, whereas transfers between

main memory and disk devices will usually be in the range of 1 to 100 KBytes.

The concepts behind Hwang and Briggs’ memory hierarchy can be extended to distri-
buted systems when augmented with additional layers such as local processor caches, local

processor main memory, shared memory and network disk caches.

The operat.on of a memory hierarchy is similar to a recursive’ procedure. Using the
above hierarchy as an example, when a processor reads a piece of data, (eg: a specific word),
the access goes through the high speed (cache) memory. If a copy of that word is currently
stored in this high speed memory, then the word is transferred to the processor and execution
continues. If that word is not resident in high speed memory, a process (either hardware
based or software based) is invoked that will copy the specific word from slower main
memory into the high speed memory. The first 'recursion’ occurs at the level of main
memory, where if the requested data is available, it is transferred to high speed memory. If
the requested data is not available, the memory hierarchy will obtain it from the next lower
level, namely bulk memory. This single data access may result in eventual accesses to disk
and/or tape devices. At first, this process seems incredibly inefficient, since it may require
access to every memory device in the entire memory hierarchy in order to read one 32 bit
word. However, traditional data accesses exhibit what is known as locality of reference. The
three basic flavours of locality of reference are temporal, spatial and sequential locality.
Because these localities are discussed in some form by nearly every text and paper dealing
with caching [Smi78],[Hwa84],[Pet85],[Sin88], etc., I will (and not be the first to) tag them
with the lofty title of principles.

In the traditional software environment, both code and data segments of a program will
exhibit temporal locality. What this means is that if a segment of code or piece of data has
recently been used, then the odds are high that it will also be required by the program in the
near future. This situation is a consequence of the fact that programs tend to be oriented
around loop and procedure constructions which are often executed numerous times during
any single program execution. Furthermore, programs usually involve temporary variables
and stacks which are accessed often. A good example is the simple addition of a number A

to some variable B. The contents of the memory location storing B usually must be copied

into a register, the number A will then be added to it and B will be immediately returned to
the same memory location. This accesses the same region of memory twice within a very

short period of time.

Spatial locality is a phenomenon that occurs predominantly in the code segments of pro-
grams, however, it is not uncommon in data segments. The principle is that any reference to
an element of memory will usually be followed, in the near future, by a reference to an ele-
ment of memory that is spatially close to the previously referenced element. In other words,
a reference to memory address k, will usually be followed by a reference to memory address

ktn where n is some small number. Examples are program branching and array processing.

Sequential locality is a specific form of spatial locality. It is mentioned separately since
it leads into the discussion of prefetching (see section 2.3.5). In sequential locality, a refer-
ence to address k is usually followed by a reference to address k+1. Again, this occurs in
both code and data segments, with examples being normal sequential execution of program

regions and sequential processing of arrays.

As mentioned earlier, the memory hierarchy relies on these principles in order to pro-
vide high performance from a large amount of slow memory storage. Because most memory
references exhibit temporal and spatial locality, a program can be executed with most of its
current code and data requirements stored in high speed memory, which is the top layer of the
memory hierarchy. Additionally, the entire program can often be stored in the slightly slower
main memory. With programs that observe the locality of reference principles, the average
time to access each word of memory should approximate the average time to read a word
from the high speed memory, with only a slight degradation due to the occasional accesses
that must be fetched from lower layers of the memory hierarchy. For example, 10000 data
~ accesses at memory speeds of 30 ns per read coupled with one disk access at 5 ms per read

will provide an average data access time of 499 ns per read, which is much closer to 30 ns

10

than it is to 5 ms. In actual operation, the ratio of memory accesses to disk accesses will usu-
ally be much higher than the conservative 10000:1 ratio used here, further reducing the aver-
age access time. For example, 16 KBytes of data read during one disk access should require
at least 4000 4 byte word transfers between processor and cache memory. Reuse of these
bytes (during program loops or repetitive variable usage) while they remain in memory

should increase this minimum of 4000 references.

The word cache is deriS/ed from the French word cachet which means "a supply of
goods stockpiled for future use” [CSD79]. The concept of caching, as applied to computer
systems, is derived from the memory hierarchy and the locality of reference principles. The
locality of reference principles allow each layer of the memory hierarchy to act as a stockpile
- of data held for probable future use by any processors acting upon that memory. The rhigh
speed memory at the top layer of our previously specified memory hierarchy acts as a cache
between the processors and main memory. The term cache seems to be becoming
synonymous with this top level manifestation, however, 1 believe the word cache can and
should be applied to lower levels of the hierarchy as well. For example, paging systems and
buffering techniques, allow main memory to act as a cache of disk data. Caches of disk data
within main memory are often referred to as buffer pools. Using tapes as backing store effec-
tively makes disk packs a cache of the current state of the computer system, with the hope-

fully unneeded previous (backup) states of the system being stored in the less efficient tape

library.

2.1.1. Disk Performance

Disks are manufactured as one or more disk platters, each having two surfuces®.

* On some disk devices, one surface is not used. For example, the disk devices for the Apple II were im-

11

Surfaces are partitioned into sectors (similar to the partitioning of a cherry pie). Further-
more, each surface is further partitioned into tracks, much like the tracks of a record, except
that disk tracks are separate circular entities, rather than one long spiral groove. Each
sector/track combination is called a block and is capable of storing some fixed number of data
bytes®. For example, each of the CP-3100 disk devices used within this research have 4
platters, giving a total of 8 surfaces. Each surface has 776 distinct tracks and is divided into
33 sectors. The 8*776*33=204864 blocks formed by these tracks and sectors each hold 512

bytes of information. An example disk is diagrammed in Figure 2. One additional term may

Sector

Block /(*

Track

Surface

Platter

Figure 2: A Simple Disk Device

plemented with only one head, which was capable of reading only one surface of the standard 5 1/4" floppy
disk.

12

prove useful, so I will define a cylinder to be the set of all tracks that are aligned vertically
over all the surfaces. In other words, the outermost cylinder comprises all tracks that are
outermost on their own particular disk surface. Each surface is equipped with a read/write
head (RW head) that allows magnetically encoded data to be either read from or written to

disk blocks.

Because of the architecture of disks, they are usually operated as block transfer devices,
with information being transferred to and from them in either single block amounts, or multi-
ple block amounts, often called extents or chunks [McV91],[Wil91],[Dud92]. The SCSI stan-
dard [ANS86] does allow for transfers of single bytes, but often the disk devices themselves
prevent this style of access. In any event, such a technique would result in horrendous per-

formance when looked at as an overhead:byte-transferred ratio.

To simplify the upcoming discussion, I will discuss read accesses only. If the material
does not apply to write access, then I will qualify it. This will eliminate problem sentences
like "data is copied from/to the disk to/from the controller”. Disk platters are constantly
being rotated. As a track on one platter passes under the head of the disk, the data can be
transferred from the track and passed to any connected controllers. The time taken to per-
form this transfer is called the transfer time. Unfortunately, to begin reading a track the RW
head must be positioned at the start of the data region to be transferred. The time taken to
achieve this alignment is referred to as the rotational latency associated with a particular disk
access. More often, this is referred to as the average rotational latency and is associated with
a large sequence of disk accesses. Additionally, there is usually only one RW head per disk

surface and this head must be positioned over the appropriate track, prior to beginning the

13

disk access. The time required to position the RW head is called the seek time®. The VO
bandwidth of a disk device is the amount of data transferred divided by the sum of the rota-
tional latency time, seek time and transfer time required to read that data. There is little that
can be done to reduce the transfer time, since this is directly proportional to the rotational
speed of the device which is in turn limited by the state of technology at the time the device
was designed. Section 2.1.1.1 briefly covers a standard technique, known as buffering, which
is intended to overlap computation with I/O, in order to reduce the delays suffered by proces-
sors that must wait for disk transfers to complete. Buffering does not alter the effective disk
bandwidth, it merely tries to overlap it with computation. In order to improve the actual disk
bandwidth, it is important to try and minimize the overhead associated with the rotational
latency and the seek time. Fortunately, there has been a great dea! of research devoted to
minimization of the effects of both these times on system performance. Soine known iech-

niques for accomplishing just that are discussed in sections 2.1.1.2 and 2.1.1.3.

2.1.1.1. Buffering to Reduce Disk Delays

Perhaps the most common technique for dealing with disk delays is known as buffering
and/or double-buffering.

“The idea is quite simple. After data has been read and the cpu is about to start operating
on it, the input device is instructed to begin the next input immediately. The cpu and in-
put device are then both busy. With luck, by the time that the cpu is ready for the next
data item, the input device will have finished reading it. The cpu can then begin process-
ing the newly read data, while the device starts to read the following data" [Pet85](page
12).

? Fixed-head disk devices do exist. In such devices, each disk track has a dedicated head so no head
movement is necessary, and hence the devices have no seek time. However, these devices are very expensive
and therefore are not very common.

14

"[The effect of buffering on system performance is) to smooth over variations in the time
it takes to process a [unit of storage]. If the average speeds (in [units of storage pro-
cessed] per second) of the cpu and the /O devices are the same, then buffering allows the
cpu to get slightly ahead or behind the I/O devices, with both still processing everything
at full speed” [Pet85](page 15).
Effectively, buffering allows a system to proceed at the processing rate of the slowest device
in the system, without imposing the additional delays that would result from activating all

involved devices in a sequential fashion.

2.1.1.2. Disk Scheduling to Reduce Seek Times

The most prevalent technique for reducing seek times is to organize all outstanding disk
access requests. The largest seek times for any disk device occur when the disk head must
move across the entire disk surface, from the outermost track to the innermost, or vice versa.
The time taken to seek to a new track is usually less when the tracks are closer together. If
outstanding disk requests are organized so that they arrive at the disk controller in an order
that minimizes the distance between any two subsequently accessed tracks, then the seek time
observed between any two subsequent requests will be as small as possible, and the overhead
imposed on the system, due to seek time, will be smaller than if the same requests are issued
in an unordered fashion. There exist a number of disk scheduling algorithms that attempt to
accomplish this task. However, any reordering of disk requests may have side effects on sys-
tem performance. For example, an optimal disk scheduling algorithm is not fair if a disk
request is starved out. Peterson and Silberschatz [Pet85](pages 257-268) provide a good
overview of disk scheduling algorithms, and the interested reader is referred to their text.
This software testbed used during this thesis does not implement any disk scheduling algo-
rithm, rather the simple First Come, First Served (FCFS) method is utilized. Reasons for this

will be discussed later in Section 4.1.1.

15

2.1.1.3. Track and Sector Interleaving to Reduce Rotational Latency

As mentioned earlier, rotational delay occurs when the disk controller has to wait for the
- disk head to line up with the start of the disk region to be accessed. Often, there is little that
“can be done to reduce this problem. For example, after a disk seek, the position of the
desiredr track in relation to the disk head may simply not line up and since that track must be
accessed next, there is nothing to do but wait. However, in some cases the penalty due to
rotational delay may be reduced. It is important to note that these delays appear random to
the user of the disk, but in fact are not random for particulai instances. In other words, a seek
beginning at track 5 and ending at track 23 will always take the same time. Similarly, since
the disk is rotating at a fixed speed, it will move through the exact same number of rotations
during that specific seek as it did during any previous seeks between tracks 5 and 23. More
importantly, seeks between adjacent tracks will always take the same amount of time. Disk
- controllers can take advantage of this predictability in order to reduce the average rotational

delay exhibited by the system.

Assuming that an entire disk track cannot be read during a single disk access, then the
order in which blocks are addressed around that track becomes an important performance
issue. Usually, the solution to this addressing issue is extended to sectors addressing around

each surface of the disk platters. These addressing techniques are called sector interleaving.

Figure 3 shows two options for block address placement on a single track of a single
disk surface. Figure 3 (i) shows what many people would at first consider to be the obvious
addressing technique. However, if two consecutive reads to addresses i and i+1 were to
occur (a common event during sequential access to disk data), then during the small but non-
‘zero time taken to complete the access to block i and subsequently initiate the access to block
i+1, the disk head would have moved past the starting point of block i+1 and the disk would

have to wait one entire revolution before it could execute the second read. If the sector

16

(it)

Figure 3: Sector Interleaving

interleaving shown in Figure 3 (ii) were used, then the time to finish one request and initiate
the other should be less than the time taken to rotate to the next sector. Therefore, the
amount of time spent waiting for the disk to rotate should be substantially less than one entire
rotation. McVoy and Kleiman write that "If the I/O system is properly tuned, the I/O request
will get to the disk as the appropriate block is moving under the head". They further discuss
that unfortunately this arrangement, with every second sector being a "hole’ in the sequential
ordering of blocks around the disk, "reduces the maximum transfer rate to half that of the

disk rate” [McV91].

Alternatively, if an entire disk track can be read during a single disk access, then it has
been shown, and this research will verify again, that the highest data throughput to/from disk
occurs when the unit of disk access is equivalent to an entire disk track. The reason for this

is that an entire track’s worth of data of file data can be read in one [disk] rotation. The

17

problem with this technique is that, after reading an entire track, there is nothing for the dev-
ice to do except seek to a new track, or in the case of multiple disk platters, switch to a new
RW head on a different platter. Although the seek time or head switch time may be
significantly smaller than the rotation time for the disk device, an entire rotation may be
required to align the RW head with the start of the new track. Therefore, each track read

requires a second rotation to realign the RW head with the start of the track.

Some devices attempt to compensate for this alignment problem by staggering the start
of tracks. For example, the disk in Figure 4 has finished reading the inside track and seeks to
the outside track. If the seek time is less than 1/9th of the rotation time (nine total sectors,
outside track is staggered by one sector) then the disk head will finish the seek prior to the
start of the track arriving at the head’s position. This is known as trac}c interleaving since the

optimal choice for how many tracks to seek over may not be a single track, depending on the

Figure 4: Track Interleaving

18

staggering of sectors around neighbouring tracks.

2.1.2. Joining of Multiple Disks

Traditionally, high performance disk devices have been built as single large expensive
disks (SLED) and controlled individually or as groups of individual devices. Facilities that
require large, high speed data stores will use large, high speed disk devices. The higher the
facilities requirement for data storage size and I/O bandwidth, the higher the cost of the
storage devices. Providing high I/O bandwidth with large disk devices usually leads to a high
cost per megabyte of storage.

"The performance of [SLED devices] has improved [during recent years] at a modest
rate. These mechanical devices are dominated by the seek and the rotation delays: from
1971 to 1981, the raw seek time for a high end IBM disk improved by only a factor of
two while the rotation time did not change... ... There is no reason to expect a faster rate
in the near future” [Pat88].

"Personal computers have created a market for inexpensive magnetic disks. These lower cost
disks have lower performance as well as less capacity” [Pat88]. However, as these smaller
disks are targeted towards the general public, the need to make them affordable has been a
primary driving force in their design. In other words, these smaller disks are also becoming
quite inexpensive. In a 1989 paper by Garth Gibson, et al., they state that "The 5.25 inch
form-factor drives may currently have the best cost per megabyte, and the 3.5 inch form-
factor is expected to overtake it soon" [Gib89]. This significant advantage in cost per mega-
byte has prompted a new trend towards providing high capacity, high performance disk sys-

tems using multiple small inexpensive disks.

Research has burgeoned in the field of high performance disk devices composed of
arrays of inexpensive disks. Primary examples are the numerous papers available on the con-

cept of Redundant Arrays of Inexpensive Disks (RAID) [Gib89],[Pat88],[Sch88] as well as

19

the more specific discussions of Hewlett-Packard’s DataMesh prototypes [Wil89],[Wil91].
Most of the research involved in RAID prototypes involves the joining of multiple disks into

a ’single’ abstract disk which provide high performance as well as reliable data storage.

2.1.2.1. High Bandwidth Disk Arrays From Low Bandwidth Disks

The underlying factor in providing high /O bandwidth using low bandwidth disks is
that all disks in a group of disks can be accessed in parallel, whereas a single disk can only
deal with one disk request at any given instant in time. Given that a SLED can provide data
to its users at some bandwidth B, and an array is built using n disks each of bandwidth B/n,
then the same data throughput should be obtainable from the multiple disks as is obtained
using the SLED. By adding more disks to the array, even higher I/0O bandwidths should be
obtainable. Increasing the bandwidth of SLED devices would require improvements in dev-
ice design which might require a higher level of technology than is currently available and/or

an expensive upgrade of disk devices.

For this paper, I will define a disk joining to be any technique for combining multiple
disks into a single abstract disk. From the point of view of performance, the abstraction of a
group of multiple disks into an array of disks (which behaves like a SLED), can be done
using at least three disk joining techniques. The three techniques that are relevant to this
research are concatenation, interleaving and striping. I have been surprised to find that many
papers claim that interleaved and striped disk systems are manifestations of the same mon-
ster. Other papers, notably [Kot91], differ on this point. I will agree with the latter group

and claim that interleaving and striping are distinctly different.

For the purposes of this research, it will be sufficient to assume that all disks in any
given joining are identical. The concepts presented can be extended to environments where

the component disks are not identical, but this makes the discussion significantly more

20

complex. All three techniques, concatenation, interleaving and striping, are shown in Figure
5. This figure does not attempt to describe joinings using generalized component disks.
Rather, component disks are simple devices, each having three storage regions which will be
called chunks. The joining of these simple component disks should be sufficient to illustrate
the three join techniques described herein. The three techniques serve to combine a group of
N component disks, D, for 0 < n < N, into a single abstract disk, D, . .. Given that each

bytes, then the capacity C

Joine

component disk has a storage capacity of C
abstract disk will be N*C

Component d of the

Component bytes. An extent or chunk is a general unit of disk transfer

whose size is selected to provide optimal disk performance during disk transfers. The term
extents is used here instead of bytes, tracks or sectors, because the techniques are general and
will apply to any choice of base storage unit. The choice of extent size is usually a perfor-
mance issue and as such should not be specified at this point. Rather, [will define the size of
each extent to be S, for component disk n. The size of the extent for the combined disk will

be denoted as S Furthermore, the component disks will each have E extents,

Joined” Component

while the combined disk will have E

Toined €XtENtS. Each component disk has its own address

space which I will refer to as D [i] where 0<i< C Similarly, the abstract disk has

Component’

an address space which can be described notationally as Dfj] where 0 <j < C Addition-

Joined’

ally, div and mod will be used to represent the integer division and integer modulo opera-

tions, respectively.

contiguous exients onto D For

For concatenation, each disk Di maps E. Joined

omponent

example, the first group of extents within D

roineg &€ stored on D, the second group of

extents within D, ., are found on D,. All component disks, as well as the combined disk,

will have the same extent size.

21

Abstract Concatenated Disk

Chunk O] Chunk 1| Chunk2| Chunk3| Chunk4| Chunk5| Chunk 6] Chunk 7] Chunk 8

Chunk 0| Chunk 1] Chunk 2 Chunk 0| Chunk 1] Chunk 2 Chunk 0| Chunk 1| Chunk 2
Physical Disk O Physical Disk 1 Physical Disk 2
Abstract Interleaved Disk

Chunk O Chunk 1| Chunk2| Chunk 3| Chunk4| Chunk5| Chunk 6| Chunk7| Chunk 8

Chunk 0] Chunk 1] Chunk 2 Chunk 0 Chunk 1| Chunk 2 Chunk 0| Chunk 1| Chunk 2
Physical Disk 0 Physical Disk 1 Physical Disk 2
Abstract Striped Disk
¢ Chunk 0 X Chunk 1 X Chunk 2————)

Low Bytes | Mid Bytes : High Bytes

Low Bytes | Mid Bytes : High Bytes

Low Bytes : Mid Bytes : High Bytes

[S —

Chunk 0§ Chunk 1

Chunk 2

Physical Disk 0

Chunk O

Chunk 1

Chunk 2

Physical Disk 1

Chunk 0

Chunk 1

Chunk 2

Physical Disk 2

Figure 5: Joining Techniques

22

1 - n i mand
D[i] - 2 aiv NU mod "’Componem]
S sined = S, foralln
- *
EJoined - N EComponenr

For interleaving, the disk extents from each real disk are alternated with disk extents
from other disks in order to form the combined disk. The size of each extent on the com-
bined disk is equivalent to the size of each extent on the component disks. Notationally we

have,

b [l] = l)i mod N[i div CCampnnent]
S 1ined = S, forall n
Joined = N* EComponent

In striping, extents k from each component disks are concatenated together to form one
extent, which will be extent k on the combined disk. Therefore, the combined disk has an

extent size which is the sum of the extent sizes from each component disk.

D] = Concatenation of all D, [i]
— *
S Joined - N SComponen!
Joined = Component

Each technique has advantages and disadvantages. Concatenated disk systems do not
generally provide as good of data support as do systems joined by the other techniques.
However, when multiple independent processes are each accessesing a unique file (ie: each

process reads/writes one file), often these files can be distributed across the n disks of the

23

joining so that each process has its own dedicated disk, or only shares a disk with a small
number of other processes. In these circumstances a concatenated disk system can perform

better than a striped or interleaved disk system.

The striping and interleaving techniques generally multiplex the disk access across the
component disks better than the concatenation technique does. However, this is only a sub-
stantial advantage when the sequence of disk accesses moves through the disk address space
in a sequential fashion. Each striped access activates all component disks in the disk joining,
effectively keeping all disks busy at all times. The interleaving technique activates one com-
ponent disk, each access. All disks can be kept busy under heavy load, since there should
always be at least one outstanding request that is targeted for each component disk. As dis-
~cussed for concatenated disk systems, if multiple processes try to access multiple files in a
striped or interleaved disk system, the result is often poor performance. Simultaneously
accessing multiple files, which happen to be distributed across the disk address space, gen-
erates a sequence of disk accesses that appear random to the component disks in a striped or

interleaved joining, even though those accesses are not random when viewed at a higher level

of abstraction.

2.2. Cache Design

As with any feature of any computer, there are three primary ways of implementing
caches, namely with hardware, software or a combination of the two. In some cases, the type
of solution required is dictated by the environment. For example, high speed memory caches
layered on top of slower main memory must be controlled by hardware, since software solu-
tions would require execution of code segments for each memory access. Since executing a

code segment requires memory access, the existence of a software solution would constitute a

paradox®. Similarly, a main memory based cache of disk data may require a software solu-
tion if no supporting hardware was provided by the manufacturers of the target computer sys-
tem. An example of a combination sclution would be a paging system, where specialized
hardware is required to detect page faults and trap them to the operating system, which then
uses software routines to fetch the required pages into main memory. Paging is a fairly
detailed concept and I don’t wish to explore it further, as it does not signifantly apply to this
thesis. Paging is discussed in most operating system textbooks and numerous papers, includ-
ing [Hwa84],[Pet85],[Mor88]. Likewise, hardware based caching is not particularly relevant
to this thesis and the interested reader is referred to [Hwa84],[SmiS7],[Hi188]. The research
within this thesis is entirely related to software based cache systems. I will try to note the
places where hardware or combination based systems have either influenced the design of my

software platform or motivated some avenue of research.

2.2.1. Cache Components

Hwang and Briggs state that

"The cache memory generally consists of two parts, the cache directory (CD) and the
random-access memory (RAM). The memory portion is partitioned into a number of
equal-sized blocks called block frames. The directory, which is usually implemented as
some form of associative memory, consists of block address tags and some control
bits..." [Hwa84](page 98).

All physical data stored in the cache will be maintained in the block frames. The block
address tags provide a mapping between the actual physical addresses of the data and the

block frame where that data has been cached, if it is present. Block frames will alternatively

® This statement assumes that we are not talking about a micro-coded software solution. Personally, 1
lump micro-coding in with hardware, since micro-code is usually stored in a ROM which is dedicated o the
micro-code engine.

25

be called cache buffers during much of this paper. The two terms are equivalent and inter-
changeable. The types of control bits required vary with the design selected. Some of the
common bits are the valid and dirty bits. Additionally, various protection bits may be neces-

sary to insure consistent cache operation.

o The dirty bit for each cache buffer designates whether or not the data maintained in that

cache buffer has been altered since it was copied from some lower level of the memory

hierarchy.

o The valid bit for each cache buffer designates whether or not the data maintained in that

cache buffer constitutes a valid copy of the data for the indicated memory address.

e The primary use of protection bits are to prevent violation of the write one, read many
(WORM) requirement, which states that only one process can have write access to a
memory location at any instant in time. It also states that numerous processes may simul-

taneously read a memory location, assuming a write to that location is not currently under-
way.
A few basic terms are common in discussions of cache operation and cache perfor-
mance. Since I can think of no better place to define them, I will do so now.

Definition: A cache hit occurs when an attempt to access some region of the disk address

space finds a valid copy of the data from that disk region stored in the cache.

Definition: A cache miss occurs when an attempt to access some region of the disk address
space fails to find a valid copy of the data from that disk region stored in the cache. A cache
miss is the opposite of a cache hit. Each cache access results in either a cache hit or a cache

INiss.

- Definition: The hit ratio exhibited by a cache is the ratio of the number of cache hits, to the

number of cache accesses.

26

Definition: The miss ratio exhibited by a cache is the ratio of the number of cache misses, to

the number of cache accesses. The sum of the miss ratio and the hit ratio is always 1.

2.3. Caching Strategies

There has been extensive research on cache techniques for both hardware and software
cache environments. As I am fond of old growth forests, I do not want this thesis to be single
handedly responsible for their destruction, thereiore, I will give a highly abridged discussion

of this research.

Regarding hardware based cache memories, Alan J. Smith writes

"... their design is far from cut and dried. The designer has to make several choices and
set various parameters. For example, decisions must be made on the algorithms that
fetch, place and replace information, on the way the cache should be addressed, on the
best size of the cache, given performance goals and design constraints, and on the best
way to ensure consistency among several caches in a multiprocessor” [Smi87).

" Most of these considerations will have to be dealt with by designers of software caches as

well. These numerous design decisions I will cumulatively refer to as caching strategies.

There are a few primary conditions that must be handled by any cache system. Any
design that does not correctly satisfy these conditions, will result in incorrect cache operation.

The primary conditions are:

e The data stored in the cache must accurately reflect the data stored in the next lower level
of the memory hierarchy. Any changes to the cached version of the data must eventually
be executed to the copies stored at the lower level of the hierarchy. Furthermore, use of
copies stored at lower levels of the memory hierarchy must be prevented when and if a
modified version of that data is present in a higher level cache. 1 will cali this requirement

the cache consistency criterion.

27

e In parallel environments, it is often the case that multiple caches exist at the same level in
the memory hierarchy. This environment will be discussed later. For now, it will be
sufficient to state that changes to data stored in one cache must be reflected in all other
caches at the same level of the memory hierarchy, before that data is used by other
processes. For example, let processor A have a cache C, and processor B have a cache Cg
which are both at the same levels of the memory hierarchy. If A changes some shared vari-
able x in C,, then B should not be able t. access the same variable x from C, until the

-change has been reflected in C;. This is known as the cache coherency criterion.

e As all caches must have a limited size, they will eventually become filled as programs
reference sufficient code and data to exceed the caches capacity. Therefore, a technique for
obtaining room by replacing old cached data with new cached data must be decided upon.
I will refer to the selected technique as the cache replacement algorithm (CRA). Common

- variants on CRAs will be overviewed in section 2.3.2.

2.3.1. Placement Policy

Hwang and Briggs state that "One of the most important parameters in the design of a
cache memory is the placement policy" [Hwa84](page 99). The placement policy for a cache
at level i of a memory hierarchy establishes a correlation between cache addresses and
corresponding memory addresses at the immediately lower level i-1 of the hierarchy. As this
research regards disk caches, the remainder of this section will refer to placement policy for
disk caches. Any discussion regarding other levels of the memory hierarchy will be expli-
citly indicated. The purpose of a placement policy within a disk cache is to establish a corre-
lation between cache buffer addresses and the actual disk addresses whose data is stored in
| that buffer. In other words, a placement policy is a mapping between disk addresses and

cache buffer addresses.

There are three primary placement policies, (i) direct mapped, (ii) fully associative and
(iii) set associative. An exhaustive description of these mapping techniques is given in
Hwang and Briggs [Hwa84](pages 102-107). I will only provide the briefest of descriptions

of each technique and any interested readers are referred to Hwang and Briggs.

Direct mapping is the simplest of the placement policies. Given that there are N disk
regions of size S, direct mapped caches use k cache buffers, also of size S, to cache those
N=m*k disk regions. If resident in the cache, disk region i, 0<'i < n; will always be stored in
cache buffer i modulo k. The performance and implementation of direct mapped caches is

well discussed by Mark Hill [Hil88].

Fully associative mappings are, "In terms of performance, the best and most expensive
- cache organization. The mapping is such that any block in memory can be in any block
frame" [Hwa84](page 104). In other words, there is no correlation between disk address and
cache buffer address, as any disk region can be stored in any of the cache buffers. Usually,
this technique is too expensive to implement, especially in hardware based caches of main
memory, since large Content Addressable Memories (CAM) are required [Hwa84](page
380). These CAMs usually require too much of the available silicon real estate. For
software based caches, fully associative mappings are not limited by silicon real estate, but
often the memory required to maintain cache control data structures is too large to justify the
use of a fully associative mapping. The software test bed for this thesis utilized this tech-

nique with optimizations to reduce memory requirements. This is detailed in section 5.1.2,

Set associative mappings are a hybrid of direct mapped and fully associative mappings.
Basically, the cache is divided into S sets, each of which contains some constant number & of
the B=S*b cache buffers. Disk regions are directly mapped to particular sets. In other
words, disk region i will always be stored in a buffer within set i modulo S. However, within

sets, the mapping is fully associative so that any disk region can be mapped into any of the b

29

cache buffers within set i modulo S. With soinie consideration it can be seen that direct, fully

associative and set associative mappings are all set associative mappings, with direct and

fully associative mappings being the opposite extremes’.

2.3.2. Replacement Algorithms

As mentioned previously, there exists an irritating problem associated with caches,
namely that they have a finite size and therefore will at some point fill to their capacity.
Determining what information should remain in a full cache, and what information should be
replaced with more immediately useful information, is a highly studied field. Numerous
cache replacement algorithms (CRAs) exist, although almost all research has shown that one
particular algorithm, known as least recently used (LRU) usually provides the best general

purpose performance [Hwa84],[Pet85],[Smi87],[Sto89].

| T he research contained in this thesis used a purely LRU replacement policy, so most of
‘the 7discussion on replacement algorithms will deal with LRU and its advantages and disad-
vantages. However, to provide some breadth on the topic, I will briefly mention some other
algorithms that have been proposed as CRAs. My source for these is [Pet85] and although I

do not use direct quotes, I have paraphrased extensively.

e Optimal: This algorithm is the best CRA. The policy used in the optimal algorithm is
Replace that entry which will not be used for the longest period of time. This algorithm is

impossible to implement as it requires detailed knowledge regarding the future, and any

7 Direct mapping is a set associative mapping where each set contains only one cache buffer. Fully associ-
ative mappings are a set associative mapping where there is only one set, containing all of the available cache
buffers,

30

programmer with such detailed knowledge would be a very rich gambler or stock broker
and probably never touch another computer in their lifetime, let alone deal with something
as mundane as CRAs. The optimal algorithm is used by Peterson and Silberschatz as a

performance target for all other replacement algorithms.

e Least Recently Used (LRU): This algorithm replaces the entry that was used the longest
time ago (or least recently). As expected, "the LRU replacement policy is good, but not
optimal” [Sto89]. In the same paper, Stone states that "an LRU strategy is robust, near-

optimal, and difficult to improve upon in practice".

e Most Recently Used (MRU): This algorithm replaces the entry that was used the shortest
time ago (or most recently). At first glance this may seem to be a fajrly'absurd policy, but |

for certain access patterns it has been shown to be quite effective.

"Considering large sequential /O, we can see that the pages just brought in [to the
cache] are recently touched and as such will not be candidates for page replacement
[under LRU algorithm]. This has the side effect of using all of memory as a buffer
cache for I/O pages. For limited /O, this is generally a good policy, but for large
(greater than memory size) I/O this is a poor policy since it will replace all, potentially
useful, pages with /O pages that are unlikely to be reused” [McV91].

The MRU algorithm attempts to bypass this problem by replacing the most recently used

pages, which will usually contain the stream data that was just written out or read in.

Although choosing a replacement algorithm is an important decision in any cache
design, "It has been shown that, in general, the effect of cache replacement algorithms on the
performance of the cache is secondary when compared to the effect of the [placement policy]

on performance” [Hwa84](page 118).

31

2.3.3. Combined and Partitioned Caches

The effectiveness of a cache at improving data throughput between levels of a memory
hierarchy is often dependent upon the type of data access pattern encountered. A data access
pattern (DAP) is the way in which memory accesses occur, relative to previous and subse-
quent mefnory accesses. For example, DAPs can be sequential or random. David Kotz pro-
| vides a détailed description of sequential and parallel DAPs in his PhD thesis [Kot91]. I pro-
vide a summary of his work on this topic in the upcoming section 2.4.3. Often, cache perfor-
mahce can be tuned to the nature of the DAP that is expected to be encountered. For exam-
ple, a database machine would be more likely to produce a random DAP than would a data
acquisition system, which would most likely generate a sequential DAP. Also, multipro-
grammed environments will present multiple processes competing for a shared cache space.
Differences in the DAPs generated and in how they are cached by these processes can seri-
ously affeét system performance.

“"Traditionally, computers have been built with a single cache for both data and instruc-
tions. This is the simplest method -- one cache communicates with one main memory.
Moreover, the CPU’s components have only one unit to refer to, whether they are reading
or writing data, or calling for instructions... ...But there are advantages to splitting data

-and instructions into two separate caches. Conflicts between simultaneous instruction
and fetches and data reads and writes are eliminated..." [Smi87].

The approach of splitting caches has usually been kept to high speed caches of main memory
data, as determining the differences between instruction and data fetches is easiest at this
level. I am unaware of any attempts to perform this type of cache partitioning at the disk

cache level.

Thiebaut and Stone discuss a cache partitioning for multiple disk environments.

32

"Because each physical disk has a particular set of resident files and the accesses to those
files have characteristic [data access] patterns, a natural way to use the partitioning model
for our purposes is to associate a distinct process with each physical disk. The cache-
partitioning problem becomes a problem in partitioning a large cache among [N] compet-
ing processes, each associated with a distinct disk" [Thi89].

They also claim that "It is also possible to partition a composite stream of accesses into

streams associated with operating system, other systems programs, and individual application

programs” [Thi89].

Partitioning of caches into separate regions, one for each currently active process, has
also been extensively researched. In a multiprogrammed environment, with one cache shared

by all processes and utilizing LRU replacement would have the current process P, .

replace all inStructions and/or data cached by all other processes before any of P >s data

Current
was replaced. In this fashion, when another process is swapped in and begins to execute,
none of its recently used instructions and data will be cached, resulting in cache misses on all
initial accesses, further increasing context switch time (or in the worst case, causing a page

fault and subsequent context switch).

"The miss rate tends to be high during the early part of the [context switch and cache re-
load] transient, and then drops as the working set of the process becomes resident in
cache For large caches a better replacement policy than LRU replacement is to in-
crease the cache allocation of a running process until the marginal improvement in miss

rate multiplied by the time remaining in the quantum drops below unity" {Sto89}.3

In multiproccessor environments the partitioning of caches among competing processes

is also under investigation. However, this is not relevant to this research and the interested

8 The process’ quantum is the amount of CPU time it has been dedicated during its current execution
phase. In other words, it is the amount of time it will be allowed to execute between being swapped in and sub-
sequently swapped out, barring an interrupt.

3

reader is referred to [Sto89],[Thi89].

2.3.4. Write Policy

A write to level i of the memory hierarchy only alters the copy of the target data item
stored at that level. The method used to update the changes to the item at the next lower level
i-1 of the memory hierarchy is called the write policy for level i. There are two schools of

thought on write policies, these being write-through and write-back policies [Hwa84].

In write through, any write to a piece of data cached at level i of a memory hierarchy,
will also generate a write to the copy of that data stored at the lower level i-1. Therefore, the
operation writes "through’ the level i cache. The advantage of using a write through policy is
that the copies of a daia item stored at two adjacent levels of the memory hierarchy are
always identical, therefore, during failures there is no worry that'changes to data is not
reflected at the lowest level of the hierarchy. The primary disadvantage of using write
~ through is that "5 to 30 percent of all memory references are write operations, [and for
writes to a full cache] the processor is blocked during the write-through" [Hwa84(page 114).
Effectively, read operations execute at or near the speed of level i of the hierarchy, but write

operations execute at speeds dictated by some or all of the lower levels of the hierarchy.

Write back policies execute write operations only to the cached copy of the data. Writ-
ing changes to lower levels of the memory hierarchy is postponed until the data item is expli-
citly flushed out of the cache or until the cache buffer in which the data is stored in gets tar-
getted for replacement by the cache replacement algorithm. The advantage of write back is
that write operations can proceed at ths speeds of the higher levels of the memory hierarchy.
Th; disadvantag¢ of write back is that users of the system are not antomatically guaranteed
that theif Chéuiges get executed directly to permanent storage. Generally, a write back policy

is implgmgnted as a flagged write back. A dirty bit is associated with each particular cache

34

buffer and is set whenever the data item stored in the cache buffer is modified. Before a
cache buffer can be used for other purposes (ie: contents replaced with new data as per
replacement algorithm), the dirty bit must be checked. If the bit is set, the entry must be
written back to the next lower level of the memory hierarchy before the cache buffer can be
used for other purposes. If the bit is nci set, then the data can be discarded as it has not been
modified while in the cache and the copy stored at the next lower level of the memory hierar-

chy will be identical.

2.3.5. Prefetching

The technique of prefetching is often used as a method for increasing the data
thrbugﬁput betweeh any two levels of a memory hierarchy. As this research concentrates on
disk caching, so will the following discussion. Waiting for a program to reference some

pie;ic of data‘stored on disk will probably result in a cache miss within the disk cache, since
that piece of data has likely not been used recently. Hdwever, if the computer system were
able to accurately predict what regions of disk would be referenced in the near future, then
those regions could be fetched from disk and copied into the disk cache, prior to the time at
which the actual data access occurs. If this region is fetched prior to the physical access, then
use of the data can occur at main memory speeds, rather than at the much slower disk speeds.
Of course, being able to infallibly predict the future is not always possible, therefore, the
effectiveness of prefetching is limited by the accuracy of the prediction technique. "Certain
[data access] patterns are commonly found in memory referencing behavior of computer pro-
grams, and it is possible to use these patterns to attempt to predict which sections of a
program’s address space will be referenced next" [Smi78](page 7). Smith mentions that the
scquential'nénne of most object code and data stores (eg: arrays and queues) makes predic-

tion of data accesses relatively easy.

35

Smith discusses that "... prefetching is generally a better idea for larger memory sizes"
[Smi78)(page 11). Therefore, its use in a disk cache, where the size of the memories
involved is usually fairly large, should provide an effective performance enhancement. "For
large enough memory sizes, prefetching reduces the miss ratio to about 15 percent of its
former level” [Smi78](page 11). However, a slight increase in disk transfers (of about 10

percent) may occur since not all predictions will be correct, therefore some prefetches will

copy unrequired data into the disk cache.

The prediction technique presented by Alan Smith in the much referenced 1978 paper
[Smi78] involves only prefetching within a sequential access environment. The technique is
called one-block look-ahead since the only data prefetched is that data stored in the memory
~ region which is immediately sequential to the memory region just accessed. In other words,
a memory access to region i will read that region from disk into the cache memory, in order
to satisfy the m'e'mory access, and then immediately éﬁerward a prefetch request to read
region i+i from disk into the cache will also be issued. This technique can be generalized to
n-block look-ahead where the n disk regions subsequently following the immediately
accessed region are read into the cache. This generalized technique assumes that sequential

access will occur over much larger regions of the disk address space.

2.4. Data Access

The data throughput of a file and/or mass storage system while under load varies with
the natﬁre of workload presented. Often throughput will vary drastically with the nature of
the workload. Showing that a given system provides some set rate of throughput is a mean-
ingless endeavor uniess a qualification is made regarding the type of workload that was util-
ized while the performance tests were underway. Additionally, if a manufacturer’s perfor-

mance figures are provided for some specific workload and a new system’s requirements

36

dictate that the probable workload will be drastically different than the manufacturer’s test
load, then any throughput results provided by that manufacturer may be worthless to the sys-

tem designers. Because of these factors, I believe a strict definition must be provided in

order to classify most® workloads into logical groupings. There are at least three components
required in any classification of data access. These are (i) the type of access, eg: whether
data is written to the disk or read from the disk), (ii) the nature of object accessed (eg: fixed
size regions as opposed to variable length regions) and (jii) the temporal and spatial locality

of the data accesses.

2.4.1. Data Operations

There are three basic operations for accessing the daté within a file, these are read, write
and update. These three operations differ only in the operations executed between the times
when the file is opened and closed. A file is read if the only operations performed are read
operations. Similarly, a file is written if the only operations are write operations. A file is
updated, if both read and write operations occur. When data stored on a disk lacks the high
level distinction incorporated within concepts such as a file, then the idea of updating such

data loses meaning.

I suggest that file activity is usually limited to read or write access. In support of this [
reference [Flo86],[Kot91]. Therefore, this research deals primarily with read and write

access, according less attention to update activity.

® With any classification system, an example can almost always be found that does not fit with any
category of the classification. Adding an all others category does not work simply because the members of
such a category are usually too disparate to give the category any real meaning.

37

2.4.2. Data Objects

The architecture of the physical disk device is usually responsible for the choice of data
objects within a disk control system. In most environments, selection of fixed sized data
objects for disk transfers is preferred. Using variable sized data objects forces the system to
both allocate and release cache memory, since no fixed size of cache buffer can store all sizes
of data objects. Constant allocation and release of memory leads to memory fragmentation
problems which are thoroughly discussed in [Pet85]. As noted in [Wil91], an interface for

controlling variable sized data objects can be easily built upon a system that provides con-

stant sized data objects.

--2.4.3. Data Access Patterns

Fortunately, much of the available research regarding data access pattern (DAP)
categdrization has been well summarized by David Kotz [Kot91](pages 14-17). Rather than
discilssing DAPs in detail, I will mention only those which are relevant to this research.

Althdugh Kotz deals with files, his categorizations are applicable to any data objects.

2.4.3.1; Categories of Data Access Patterns

David Kotz breaks accesses down into two primary categories, random and sequential.
Each of these categories has additional sub-categories. The final breakdown is shown in
Table 1. T provide acronyms to ease later references to particular DAPs. These acronyms

should all be listed in the glossary, when you eventually start to reencounter them.

Briefly, random access patterns have no regularity, accessing file entries without any
correlation between current accesses and previous or future accesses. These random accesses

are further broken into two categories where, (i) multiple clients access overlapping regions

38

Table 1: Categories of Paraliei File Access Patterns

Access Pattern Acronym
Random Overlapped RO
Random Disjoint RD

Sequential Local Overlapped Regular SLOR
Sequential Local Overlapped Irregular SLOI

Sequential Local Disjoint Regular SLDR

Sequential Local Disjoint Irregular SLDI
Sequential Global Regular SGR
Sequential Global Irregular SGI

of the file and (ii) clients access disjoint file regions, never sharing the same file portions.

Sequential access patterns have some regularity with current accesses being related, in
some fashion, to either previous or future accesses. The file regions spanned by these corre-
lated accesses are called sequential portions of the file. An access pattern is said to be locally
sequential when each individual client uses a sequential portion of the file. A contrast to that
is global sequential access, where some group of cooperating clients use a sequential portion

of a file.

As sequential portions of a file may be shared by multiple clients, the locally sequential

access patterns can be broken down into overlapping and disjoint patterns.

Finally, sequential accesses may be either regular or irregular. A regular access occurs
when all sequential portions contain a consistent number of file units (blocks, records, etc.).

All other access patterns are considered to be irregular.

2.4.3.2. Relevant Patterns

Not all of Kotz’s patterns are relevant to the research contained in this thesis. I have

concentrated on RO and SGI DAPs. Some use of the SLDI DAP has been made. For more

39

information on any DAPs that I do not elaborate upon, the interested reader is referred to

[Kot91].

The two upcoming sub-sections utilize Figures 6 and 7 to describe relevant appropriate
DAPs. In these two figures, the disk address space is layed out across the bottom of the
figure. In each figure, three processes compete for disk services!®. What these figures show
is an example of each DAP and how three processes could interact with the disk while operat-
~ ing within the parameters of that DAP. If process 0 accesses disk region O at time O then a t,
will appear on the line corresponding to process O and directly above disk address 0. The
figures assume that every disk access will occur at some distinct time interval. This assump-
tion is reasonable since the chances of two disk accesses arriving at exactly the same instant

~in time is almost nil. Therefore, on each ﬁgure,' disk accesses are indicated by the time of

their arrival using ¢, for i 2 0.

2.4.3.2.1. Sequential Global Irregular

Figure 6 shows a SGI access pattern. The arrival time of each access occurs after all
accesses to lower numbered disk regions and before all accesses to higher numbered disk
regions. Therefore the access is sequential. The three processes cooperate to access the
entire disk address space sequentially, but the pattern of access is irregular, in that one pro-

cess may read address regions 0, 4, 8, 12, 13, 14.

A more concrete example of a SGI pattern would be the following. A program for

approximating solutions for an NP-complete problem uses a breadth-first branch and bound

' The choice of three processes is arbitrary and does not imply that the DAP only occurs when three
processes are competing for disk services.

40

ProcessO .-, ., ., "+, . . '8, 0 te ity by oo

Process 1

—fn
5

Process2 |

.
b
.y

L0 1 ,2,3,4,5,6,7,8,;9 10,11,12,13,14 15,

Disk Address

Figure 6: Sequential Global Irregular DAP

algorithm. This algorithm requires storage for long lists of partial solutions to lh@ problem.
7As these partial solutions may be quite large and cannot all be simultaneously stored in main
memory, they must be maintained on disk. Two distinct disk systems are to be used to store
partial solutions. Om; disk system stores a sequential file of partial solutions for level / of the
problem; while the other disk system stores the partial solutions for level /+1. Each proces-
sor reads a partial solution from the source disk system /, calculates a new partial solution
based on that solution, and writes the new partial solution to the target disk system /+1. As
each partial solution is *completed’ it is written to disk by whichever processor generated it.
The writing of partial solutions exhibits a SGI access pattern, since solutions are sequentially
laid down on disk as they are created, but there are no guarantees that generation of partial
solutions will take the same length of time for each processor (in other words, over some
period of time, one processor may write out twice as many partial solutions as any other pro-
cessors). Similarly, reading of partial solutions will also display a SGI access pattern on the

source disk system.

41

SGI access patterns are used in this research since I believe that they best represent the
use of shared files for the environment in which we are working. Additionally, I believe that
SGI patterns represent a best case situation for disk throughput performance tests, as access
is always sequential and there is no potential for slow downs due to the process synchroniza-

tion that would be required in a SGR access pattern.

2.4.3.2.2. Sequential Local Disjoint Irregular

This DAP is exemplary of concurrent access to multiple files. Effectively, it is multiple
SGI DAPs, executed in parallel. In other words, there are n groups of processes, each group
- issuing a SGI DAP on one of n files. This DAP is not uncommon ia disk systems and is
presented since it is used as the best case DAP for concatenated multiple disk systems. The
reason it is considered optimal for those disk systems is that each file can be placed on an
individual disk, assuming n 2 D, where D is the number of disks. In that case, each group of

procesées issues a SGI DAP to one disk, which is not shared by any other group.

2.4.3.2.3. Random Overlapped

Programs accessing many types of database often exhibit random overlapped DAPs. An
example of a RO DAP is shown in Figure 7. As a further illustration, accesses to a very large
externally stored array may be randomly distributed throughout that database. Furthermore,
there need not be any correlation between the client process issuing the request and the array
indices specified within that request. In that event, the database regions accessed by one pro-

cess may overlap the regions accessed by other processes sharing the database.

The SFU transputer group is associated with research projects concerning image
analysis and reconstruction. The use of large databases, such as look-up tables, has been

considered by some members of these projects. For this reason, the RO DAP is of

42

ProcessO f7, , fo, he, B, e, T, Loy
Process1 —y 4oty (P Fe, T te, Tt
Process2 o, e, P3P :f”:taé —
,o',l12,3,4,5,6,7,8,9,10,11,12[13,14,15,'

Disk Address

Figure 7: Random Overlapped DAP

considerable interest and will be included in the analysis of TASS perfbrmance.

Poor data throughput is usually the penalty for using random access patterns with mass

storage devices. Average disk seek times are almost always larger for random access than for

sequential access. This is because the disk head usually must travel extensively between sub-

sequent random disk accesses. However, the range of head travel is limited by the size of the

database region accessed. These regions can range from one byte up to the entire disk

address Space. It is expected that average disk seek times will be lower for smaller databases,

hence the data throughput to them should be greater.

For the above reasons, random overlapping DAPs will be used to provide approximate

lower limits on TASS data throughput.

2.5. Other Systems

This section presents concepts and systems that have influenced the TASS design.

43

2.5.1. RAID

, VA SLED of storage capacity C can be replaced using a simple disk array composed of n
smaller inexpensive disks each having storage capacity of C/n bytes. The discussion in Sec-
tion 2.1.2 hints that the cost of this disk array will be significantly cheaper than the cost of the
SLED, since the cost per megabyte of storage is less for the smaller disks. Of course this
does not reflect the cost involved in the cabling and packaging that would be required for
such arrays. I have not seen any concrete estimates on these packaging costs for any particu-
lar arrays and the papers I have read give the impression that the costs should not be

significant in comparison to the costs of the physical disk devices themselves.

" "The biggest problem with this simple approach is that multiple disk systems are, on

average, less reliable than single disk systems. A valuable benchmark for disk devices is the

hzean ttme to failure (MTTF) or mean time to datd loss (MTTDL)“. Patterson claims that
the MTTF of thé simble disk array as described above to be the MTTF of each disk, divided
by the numb'errorf disks in the array. In other words, the chance of disk failure for an array of
n diSks 'is 1/n the chance of failure for each disk in the array. Given that the MTTF of a

Conner-Peripherals CP-3100 disk is 30,000 hours, we can conclude that

"The MTTF of [an array of] 100 CP-3100 disks is 30,000/100 = 300 hours, or less than 2
weeks. Compared to the 30,000 hour (> 3 years) MTTF of the IBM 3380, this is dismal.
If we consider scaling the array to 1,000 disks, then the MTTF is 30 hours or about one
day, requiring an adjective worse than dismal. Without fault tolerance, large arrays of
inexpensive disks are too unreliable to be useful” [Pat88].

" Two terms for the same idea.

Providing fault tolerance in arrays of disks is the primary focus of the RAID papers I
have referenced [Gib89],[Pat88],[Sch88]. The basic idea is to utilize additional disks in order

to provide reliable storage of data in the presence of individual disk failures. Patterson gives

"... a taxonomy of five different organizations of disk arrays, beginning with mirrored
disks and progressing through a variety of [disk array organization] alternatives with
differing performance and reliability. [He] refers to each organization as a RAID level"
[Pat88]. '
I do not wish to delve into a discussion of RAID levels as my interest was limited to small
groupings of disk devices, due to the hardware environment I was using (this will be further

discussed in section 3.2). The only redundancy technique of interest to myself was RAID

level 1, which is Mirrored Disks.

"Mirrored disks are a traditional approach to improving reliability of magnetic disks"
[Pat88]. Basically, a copy of all data is maintained on two distinct but related disks. If one
disk fails, all data should still be available from the other disk 7(a$suming that a highly
unlikely simultaneous failure of both disks does not occur). The problem with this approach
is that the cost of data storage, in dollars per megabyte, is doubled since 2*n disks are
required to store what could otherwise be held by n disks. Furthermore, performance of two

disks operating in tandem may be worse than the performance of a single disk acting alone.

"When many arms seek to the same track then rotate to the described sector, the average
seek and rotate time will be larger than the average for a single disk, tending toward the
worst case times” [Pat88].

Readers interested in higher levels of RAID are referred to [Pat88].

2.5.2. DataMesh

Hewlett Packard’s DataMesh project [Wil89],[Wil91] utilizes both disk joining and data |

redundancy techniques. Additional research avenues encountered in the DataMesh project

45

: include that of SmartData where data storage elements are coupled with processing power to
provide more intelligent approaches to data access than available using the traditional options
of read and write access. The goal of this project is to address the 1/O bottleneck problem
ihherent in current disk technology by "... using parallel systems technology to consturct
large, fast, highly-functional storage servers for groups of high-powered workstations serving
the needs of technical professionals” [Wil91]. These DataMesh devices will behave in a
fashion similar to the disk server devices employed in today’s ethernet environments. For
| example, a DataMesh device could be used as a high performance replacement torthe stan-
dard Sun disk servers found in local area networks (LANs) like that employed at Simon

Fraser University.

2.5.3. A Parailel Interleaved File System

~In his PhD thesis, Peter Dibble 7[Dib90] presents a Parallel Interleaved File System
_(PIFS) which is based on a group of 2 or more local file systems. These local file systems are
combined, according to the technique layed out in Dibble’s thesis, into a PIFS. Although
Dibble does not state that each LFS should be interface and performance equivalent it seems
apparent that this must be the case (as the system will exhibit behavior no better than that of a
PIFS comprised of n LFS which are performance equivalent to the worst LFS in the actual
system. As an example, if three LFS are used, having storage capacities 100M, 200M and
300M respectively, then the final PIFS will apparently have total storage capacity of 300M

and utilize 100M from each file system!2. This is because parallel files are interleaving over

12 The PIFS comes with a set of Tools which actually allow access to these unused regions of disk. How-
ever, discussion of these tools is beyond the scope of this paper. The interested reader is referred to [Dib90].

46

the LFS’ by placing the first record onto LFS,, the second record on LFS,, ..., the nth record
on LFS, and the n+1th record back on LFS,, where n is the number of LFS in the PIFS A file
of 30 records stored in a PIFS composed of 3 component LFS will be placed with 10 records
per LFS. By extension, the smallest capacity LFS will eventually fill and prevent storage
remaining on all the other LFS from being utilized. Different interleaving techniques could
probably be applied to overcome these deficiencies, but this would be at the expense of ihe

Scalability of the PIFS, which Dibble states to be a primary goal of his design.

The PIFS provides three distinct interfaces to the user. Each interface provides a trade-
off between ease of use and parallelism. A PIFS server provides the first two interfaces,

whereas the third is not really an interface, but I refer to it as such. The three interfaces are:

(1) The standard interface provides no control of parallelism to the user. Some parallelism
may be achieved within the file system due to the interleaving of files over many LFS.
Thus, n records could be pre-fetched (or stored) in parallel. However, as the user would
not have any control over this, this would simply be a sequential pre-fetch cache of size
n. The standard interface provides eight basic functions, namely Read, Write, Delete,
Current (File) Position, Exd of File, Create, Open and Seek. The standard interface
stores files as logical records, rather than using the Unix convention of byte streams,
This allows the PIFS to place one logical record on each LFS. The LFS can be modified
to place records within sectors thus reducing the probability of sector faults during read

(write) access.

(2) The parallel interface provides all the services of the standard interface, plus parallel
open, parallel read, and parailel write. These parallel requests are made by a job con-
troller on behalf of all processes in the job (the job controller may or may not be
required to perform the duties of a worker processor. I assume it is required to perform

these duties, rather than having special controller status). Included with the parallel

47

3)

open request is a list of handles informing the PIFS how it is to route relevant data to
each process within the group. Parallel reads (writes) require that all the target (source)
processes within the job be ready to accept (transmit) the next record. This forces syn-
chronization on all processors (assuming one process per processor) during each read
(write) phase of the algorithm. This synchronization must be handled by the job con-
trc;lier, as the PIFS does not provide any. Incorrect synchronization may cause the PIFS
to overwrite (accept) buffers upon which a processor has not finished operations.
Again, it is not clear how Dibble utilizes the list of handles to route data. Is all data

routed through the job controller, directly to each process, or through a forest of proces-

-sors? He states that large amounts of data transfer can saturate the job controller. The

parallelism exhibited is only as good as that of the worst processor and because of the
synchronization, the multiprocessor is only as effective as the heavily worked job con-

troller processor (multiplied m times where m is the number of processors in the job).

The tools intetface allows special programs (eg: sorttool) to have full access to the file
system’s internal parallelism. In other words, tools can access all the LFS directly,
without being forced through the PIFS server. Tools must have knowledge regarding
the storage (interleaving) scheme of the PIFS in order to access PIFS files. This

requires that the storage mechanism be consistent over all files. Tools will access data

-through the LFS interfaces rather than those of the PIFS. Unlike users of the PIFS

parallel interface, all parallelism and synchronization must be handled by the processes

within the tool. Clearly, programming of tools will be very complex as compared to

“utilizing the more standard PIFS interfaces, but a higher degree of parallelism should be

achrire\{ébrle.” Also, performance differences between LFS could be utilized to improve

parallelism and increase storage capacity.

48

Dibble discusses a PIFS implementation called Bridge. The LFS for Bridge is the Ele-
mentary File System (EFS) developed for the Cronus operating system. Bridge is imple-
mented primarily as a single centralized process (the Bridge Server) which provides the fol-

lowing four functions:

(1) The server maintains the Bridge directory (directory of all files stored within the PIFS).
(2) Provides the standard and parallel interfaces.

(3) Provides EFS handles for use by any tools in the PIFS.

(4) Consistency checking and performance monitoring.

User processes and tools communicate with the server via a message passing protocol.

Dibble emphasizes the fact that he did not implement message passing with the shared
memory available on the Butterfly since he wanted to prove Bridge was extendable to mui-

tiprocessors without shared memory, without major performance sacrifices.

The Bridge directory keeps a list of all Bridge files and a list of EFS files comprising
each Bridge file, along with which processors (EFS system) that the EFS file resides on.

Since Dibble did not have access to many disk packs, he simulated disks using some of
the Butterﬂy’s processors. By the end of all this simulation, he retained approximately 32
processors for actually running user and tool processes on the Bridge system. Consequently,
I hesitate to believe his scalibility claims above 32 processors. Dibble’s disk approximations
are a little naive. He simulates disks by simply enforcing a sleep time between request
arrival and servicing. This fails to capture disk timing problems like rotational latency and
seek time. In this fashion he effectively prevents his system from dealing with short intervals
of worst case behaviour, and assumes average performance respon‘se from the disks at all

times.

49

There are many cases of overly optimistic simplifications of the type described above,
and even with all this, the PIFS system performance is not outstanding (although the
Butterfly upon which he based it can hardly be considered brisk as each processor runs at

only 8MHz).

50

3. Design Overview

This chapter describes the high level design that is the basis for the Transputer Auxili-
ary Storage System (TASS) local file system. Before a detailed design can proceed, it is
necessary to be familiar with the available hardware. This is because many decisions in any
device oriented software design are direct consequences of hardware functionality. There-
fore, I will first present a description of the transputer architecture. That will be followed by
a brief description of the vendor supplied boards and some of the vendor software support

that comprise the SFU transputer environment.

Any reasonable software design should be based on a rigidly defined hierarchy of
software components. For example, the International Organization for Standardization
(ISO) has developed the hierarchical OSI model for the design and implementation of com-
munication protocols. This model incorporates seven increasingly abstract layers, namely the
Physical, Data Link, Network, Transport, Session, Presentation and Application layers
[Sta88](pages 9-14). The formation of a design hierarchy should be prompted by any obvi-
ous levels of functionality within the problem to be solved. However, there is always some
flexibility in choosing where to produce layer boundaries. The last section of this chapter
overviews the layered approach to disk system design that was proposed and implemented

within this thesis.
3.1. Hardware Environment

3.1.1. Transputer Architecture

The transputer was briefly overviewed in Section 1.2. The basic architecture of the tran-

sputer family is shown in Figure 8. In addition to the features described there, the transputer

51

Floating
. Process
Pth Schedul , . 7
Unit cheduler * On-Chip Memory
A
- ¥
External Memory
Interface
CPU ”
| Memory

Y

Direct Memory Access Link Controller

A ' A

y) y ' . i

Link 0 Link 1 - | Link 2 Link 3

Figure 8: The Transputer Processor Family

provides a two priority level process heirarchy, coupled with a hardware based process
‘ schedulér.; The scheduler provides rapid process context switches which, according to my

tests (see Section 7.2.5) are usually in the neighbourhood of 4 microseconds. This

52

architecture promotes the use of multiple process software environments, often implemented
in the form of multi-threaded process groups. As there is no memory management provided

by the device, all processes within one transputer share the same memory space.

There are two transputer variants discussed within this thesis, namely the 16 bit T222
and the 32 bit T800. Both provide all the features mentioned above, with the only notable
difference being the limited 64 KByte address space of the T222.

7 3.1.2. Vendor Boards

- All of our vendor supplied boards are products of Computer Systems Architects (CSA).
To avoid numerous references to the same bibliographical entry, I will simply state that any
facts regarding these boards are derived from their user manuals [CSA89], unless otherwise
explicitly stated, There are four types of board used within the SFU transputer network, these
are the Part.6 T800 Transputer Board, the Part.7 Crossbar Switch, the Part.8 VMEbus Inter-
face Board, and Part.12 T222 Based SCSI Controller.) |

The Part.6 board consists of 4 20 MHz T800 transputers, each equipped with 2 MBytes
of on-board RAM. The transputer serial links are all routed to the board edge for easy inter-

connection with other transputer-based boards.

Each Part.7 is a 16 by 16 crossbar which allows concurrent serial communication
between two transputers over each of the sixteen currently connected wires. The crossbar is

configurable using three additional serial links, called the up, down and control connections.

The Part.8 provides a connection between a VMEDbus and 6 transputer style serial links.
Access to the links occurs as memory mapped data transfers between the VMEbus address
space and the serial links. Data transfers over the links can proceed both to and from the

VMEDbus.

53

The discussion of the Part.12 device will be slightly more detailed than that provided for
the other CSA products since aspects of the device driver software design are dictated by the
Part.12 architecture. The board consists of a 16 bit Inmos T222 transputer device, 64 KBytes
of on-board RAM, and a memory mapped Western Digital 33C93A SCSI Bus Interface Con-
troller (SBIC). "Four KBytes of internal RAM and about 52 KBytes of external RAM are
‘available to the programmer. The rest of the address space is for memory mapping of the
‘SBIC and other devices...". Data is transferred from the SCSI bus to the physical RAM using
two 512 byte FIFO buffers. Data transfers between the FIFO buffers and disk, controlled by
the SBIC, can overlap with access between main memory and the FIFOs However, as the
'memoi'y to FIFO transfers are much faster than the FIFO to disk accesses, there is not a great
degree of performance gain due to this. CSA claim thai "It is pessible to transfer data
di}ectly out of a link from the FIFO or in from a link to the FIFO without going into tran-
sputer memory, reducing latency slightly at the expense of a slight bandwidth reduction”.
The device drivers provided with the Part.12 boards made use of this feature, and it’s penal-

ties and benefits are discussed later in Section 3.1.4.

Each Part.12 is equipped with a Conner-Peripherals CP-3100 disk drive. The CP-3100
is capable of storing 104 MBytes of data. The dimensions of the device were given in Sec-
tion 2.1.1, but for the purposes of clarity they are tabulated in Table 2 along with other per-

tinent parameters.

It is possible to attach multiple disk drives to the SCSI bus of the Part.12 board. Any of
these drives could be accessed by the T222 controller, however this would require the imple-
mentation of a SCSI bus disconnect/reconnect protocol. I have it on firm authority from my
(ex) brother-in-law that this is no trivial matter. No disk server version was implemented for

this multiple disk hardware configuration.

Table 2: CP-3100 Specifications

Diameter 3.5 inches
Capacity 104 MBytes
Platters 4
Surfaces 8 (2 per platter)
Tracks/Surface 776
Sectors/Track 33
Blocks/Sector 1
Bytes/Block 512
Bytes/Track 512 * 33 = 16896
Seek Times

Track to Adjacent Track 8 ms

Average 25 ms

Maximum 45 ms
Revolutions/Second .60
Rotation Time 16.7 ms
Average Rotational Latency 8.4 ms
Mean Time To Failure 30,000 hours

3.1.3. SFU Transputer Environment

The SFU transputer network is connected to a Sun-4/110 host, draco, via a single Part.8
VMEDbus interface. The environment is pictured in Figure 9. The Part.8 provides a commun-
ication link between the network host, draco and one T800 transputer, which will be
hereinafter refered to as the root transputer. The Part.8 additionally provides a communica-
tion medium whereby draco can configure all of the Part.7 crossbars. The host, draco, is also

connected to the SFU computing science research ethernet.

The SFU transputer network consists 15 Part.6 boards, providing a total of 60 T800
transputers, and 4 Part.12 boards, constituting 4 T222 transputers, each of which is aug-
mented by a CP-3100 disk drive. All 64 transputers are interconnected using 8 Part.7
crossbar boards, which are in turn configured using a single Part.8 VMEbus interface. The
size and number of crossbar switches used does not allow all the transputers to be intercon-

nected in all possible ways, however, the implementation of the network provides a sufficient

55

Sun 4 Host

A

 J

= \ — VMEBus

Y

CSA Part.8
Link Adaptor

To Other Xbars

T8OO [] — 11800
| —] —— ——

T800 [— =HOA = 11800
e —] Part.7 F— —

- e N : Xbar : E I)

T80O | —_1T800

—_——
S—

[1]

T222 |1 T222 T222 || T222

—
——
oo

Figure 9: The SFU Transputer Network

subset of the possible interconnections to serve most research needs.

Software to be executed on the component transputers can be compiled on any Sun host

within the ethernet. However, the object code can only be downloaded to the transputer

56

network using draco. The software is downloaded to the root transputer, which acts as a con-
duit for downloading software to all other transputers within the network. The crossbars are
configured at the time the network is booted and currently there is no ability to recorfigure
the network during program execution. The transputer network constitutes a multiple instric-
tion, multiple data {MIMD) system, so the code downloaded to one transputer need not be

the same as the code downloaded to other transputers in the same network.

The purchase of the SFU transputer system occurred in incremental stages. As a conse-
quence of these incremental enhancements, the actual Part.12 disk controllers (and their
related disks) were purchased without firmly establishing their suitability to the SFU tran-
sputer group. It seemed likely that the hardware itself would be sufficient to provide data
storage services within the transputer net, however, the effectiveness of the vendor supplied

software was not known.

3.1.4. Vendor Supplied Software

All support software, for example, network loaders and debuggers, are CSA products.
All software within the TASS system was implemented using the Logical Systems C compiler
[CSA90]. Most of TASS’s SCSI disk driver was translated to C from a vendor supplied

Modula-2 implementation.

The support software and compiler were quite adequate for the purposes of TASS
development. This section deals primarily with the vendor supplied Modula-2 SCSI driver,
as it was determined, in the opinion of the SFU transputer users, to be inappropriate for our

purposes. The reasons for this decision were:

e Software development on the SFU transputer network has predominantly been performed

using C. Simultaneously booting a transputer network with code elements, some of which

57

were compiled from C and some compiled from Modula-2, was not possible with the first
release of the CSA Modula-2 system. Eventually, CSA rectified this problem, but using

code produced from both languages was still more difficult than using code produced by

just a single compiler.

The operation of these CSA disk systems was severely limited in the fact that only one
Part.12 disk controller transputer (called a disk node for now) could operate within any
transputer network. In addition to that, it was required that the disk node be connected to
the root transputer only. Therefore, at least one of the root transputer’s links had to be

dedicated to communication with the Part.12 board.

The CSA Modula-2 disk system was targeted at transputer networks with MS-DOS
configured IBM AT hosts. Because of that, the CSA disk system operai=d as an MS-DOS
*clone’, with all operations to/from disk having to be executed in that directory and file
environment. This MS-DOS implementation was distributed between the Part.12’s T222
and the T800 root transputer, with the majority of computational overhead foisted onto the
T800. Any software requiring disk access that was to be executed on the T800 root tran-
sputer was required to link in this disk software, and at first this required the root transputer

code to be compiled from Modula-2, and loaded using the Modula-2 system.

In order to gain the benefits of reduced latency (mentioned earlier in section 3.1.2), CSA
had implemented the T222 software as a minimalistic driver, acting as a router for disk
block read/write/status requests from the T800 to disk and as a dumb controller for data
transfers between transputer serial links and the Part.12 FIFO hardware buffers. Because
of this, there was no disk abstraction at the T800 level of the implementation, therefore
detailed knowledge of the particular disk used, and how to address it, was required at this
higher level of the system.

58

e There was no attempt to allow parallel accesses to the disk system. No protection was pro-
vided for multiple processes accessing the disk support routines. Part of this problem was
that the disk access primitives involved a complicated protocol between the root transputer
and the T222 on the Part.12 board. Accesses had to be purely sequential, with every access
having to complete, in it’s entirety, before any other access could begin. Not even simple

semaphore protection was provided by these data access procedures.

e It is a common technique to split device drivers into two halves, the lower one being device
dependent and the upper half being device independent [Com84}(pages 283-308). This
basic software engineering technique had not been utilized in the CSA server, rather it had

been hard-coded for handling CP-3100 drives.

It was our (the SFU transputer users) opinion that these points made the CSA disk sys-
tem unusable for our computing requirements. We were hoping to use multi'ple disks within
our transputer network. We wanted the flexibility to place those disks where they would be
most useful, within the network configuration dictated by each specific application. We did
not particularly wish to use an MS-DOS directory hierarchy, nor suffer the penalty of compu-
tational and data transfer overhead imposed on a system by such a rigid file environment. It
was further noted that the implementation of the CSA system utilized no buffering of disk
access requests and that it prevented any simple modification that would incorporate buffer-
ing. These issues prompted the first rewrite of the CSA disk system, which eventually led to
the development of TASS.

3.2. TASS Design

As mentioned in Chapter 1, the goal of the TASS design is to provide a simple efficient

interface between mass storage and the transputer network. This mass storage has been

59

implemented as a rudimentary local file system (LFS) under the control of a group of tran-
sputers, cumulatively known as a TASS Storage Node. This storage node is based on the
client/server model which was utilized extensively in the V system. In this model, disk dev-
ices are resources to be managed by server processes. "When a user or a process wants to
use a resource controlled by such a server, it sends a request, thus becoming a client of that
server” [Ber86]. Since the transputer architecture currently lacks point to point communica-
tion, the TASS storage node is only accessible by client processors that are directly connected

to the storage node.

TASS refiects the fact that the transputer multiprocessor is a high performance computa-
tikpn platform. McVoy & Kleiman point out that some database users, in the pursuit of per-
forman'ce,' actualiy get rid of the file system altogether.r T'he'sersort of programs are imple-
mented to access the raw disk itself. They also point point out that "This solution is an act of
desperation. There is no file system, no file abstraction, etc." [McV91]. The overhead
imposed by a high performance computing platform’s file System should not be so great as to
drive the platform’s users to those frantic extremes. Therefore, the secondary intentions of
TASS are to provide the highest possible mass storage performance. As such, the TASS
design stresses performance over functionality. The performance parameters of interest are

(i) high data throughput and (i7) low client processor and communication overhead.

To achieve high data throughput, we decided to implement TASS according to the fol-

lowing:

e Disk transfer size is chosen to maximize disk throughput. This indicates that all data
transfers to and from disk are performed in fixed size units of transfer. Furthermore, the
disk transfer data object is fairly large, in order to distribute the computation and communi-

cation overhead associated with each disk access across as many transferred bytes as

possible. In other words, we try to minimize the amount of overhead per byte of data
transferred. However, the system is not hard-coded for the size of the data object, rather it

is designed to allow disk transfer object size to be varied.

TASS includes a cache, allowing programs that issue temporally and spatially local data
access patterns, to satisfy some of their data requirements using fast memory (the cache)

rather than through accessing much slower disk devices.-

The system provides for parallelizing multiple disk devices within any single TASS storage
node. Parallelization can occur using the concatenation, interleaving or striping techniques
described in Section 2.1.2.1. The number of disks and the nature of the joining within each
TASS node is easily selected at compile time. Also, if one TASS node utilizes one com-
ponent disk, this does not prevent other TASS nodes within the same transputer network

from being configured as multiple disk nodes.

The system provides clients with the ability to prefetch into the cache any disk regions that
they are likely to need in the near future. This allows clients with predictable access pat-
terns to instruct the file system regarding what disk regions should be fetched into the

cache.

Buffering within the disk controller(s) is provided to more evenly parallelize the computa-

tion and physical I/0O components of all disk accesses.

The user of the system retains a high degree of control over system configuration. Many
important performance issues are configurable at either run-time or compile-time, thus pro-
viding the user with the ability to select for system features that they require, without forc-
ing users to be penalized due to the overhead imposed by redundant or superfluous system

functions. In other words, the user retains a high level of control over what functions their

61

LFS provides.

To achieve low client processor overhead, the TASS client interface is designed with the

following considerations:

e The object code size for linked LFS libraries is kept minimal. Programs utilizing the disk

system are not forced to allocate large portions of their local memory, in order to access the

| largé disk memory.

e The number of client processor cycles required to execute a single disk access is minim-
ized. Additionally, the number of context switches required due to processes blocking dur-

ing execution of the LFS library has been kept to a minimum.

e The system is implemented so that users having less stringent performance requirements

can- utilize. more functional interfaces, without requiring alternate disk system control

software.

e The system can adapt to alternative file systems, without requiring major overhauls in the
lower layers of the code. The concept is similar to that of a plug-in feature, if the user
desires a Unix file system (and someone has written one), then they are able to plug that
file system in at the appropriate level of the TASS code and execute their programs using
that interface. In other words, implementing an alternative file system, perhaps modelled
'on Unix or MS-DOS, does not require that the disk drivers and cache control be altered to

support that file system.

The TASS design is broken down into both hardware and software components. The
nature of the hardware configuration upon which TASS is built is central to the design of the

software itself,

62

3.2.1. Hardware Configuration for TASS Storage Nodes

Since TASS is designed as a disk control system, it is expected that data transfers
between memory and disk will be rather large. If possible, the transfer should be in the form
of an entire track in order to maximize the amount of data transferred between disk seeks and
rotational delays. The CP-3100 specifications in Table 2 provide a ballpark figure for the
expected size of disk transfers, namely one track of 16896 bytes, which is a little over 16
KBytes. One primary drawback of the available hardware is the limited 64 KByte address
space of the Part.12’s T222 transputer. Implementation of a cache within such a small
address space was not considered to be a very profitable adventure, since the size of the cache
could be as little as three buffers. Implementation of a useful cache required a larger main
‘memory, indicating that an additional transputer, of the 32 bit T800 variety, be utilized as a
cache controller. Fortunately, the 64 KByte address space of the T222 is sufficient for double
or even triple buffering of 1/O requests, allowing the T222 transputer to be used as a disk
cdntroller. This reasoning led to the first concept of the TASS storage node, pictured in Fig-

ure 10 (i). The TASS storage node is configured as three hierarchical layers of processors,

(i) One Disk (i1) Two Disks (iii) Three Disks (iv) RAM Cache
To Clients To Clients To Clients To Clients
Cache Cache Cache Cache
Server Server Server Server
Disk Disk Disk Disk Disk Disk
Server Server Server Server Server Server

Figure 10: TASS Storage Node Configurations

63

namely, from highest to lowest, the client processor(s), cache server and disk server(s).
Note that one serial link of the cache server is dedicated to communicating with the subser-

vient T222 disk server. The three remaining serial links are available for communicating

with client processors.

Using an extra T800 transputer for a cache controller is what prompted my interest in
disk joining techniques. If a T8OO were to be used as a cache controller connected to a disk
controller, then why not parallelize disk access using concatenation, interleaving or striping?
Alternatively, a more robust disk system could be built using mirrored disks. The fact that

the T80O0 has only four serial links limited this configuration to a maximum of three subser-

vient disks!3. However, even using two parallel disks could greatly increase disk throughput
for each storage node. Figures 10 (ii) and (iii) show these alternative configurations. Using a
single T800 transputer, without subservient disks, could service as a RAM disk (or RAM
cache). This cbnﬁguration is shown in Figure 10 (iv). Hardware configurations similar to

that of TASS are discussed as building blocks for Hewlett-Packard’s DataMesh storage
rserver'architecture [Wil89],[Wil91].

Communication between neighbouring layers of processors is via the transputers serial
links. This environment requires that software protocols are adhered to by neighbouring pro-
cessor layers. However, "Most programmers do not understand message communication and
prefer a simple procedural interface to services and facilities” [Che84]. Like the V system
described in [Che84],[Ber86],[Che88], TASS provides a remote procedure call (RPC)

abstraction to hide the communication protocols used over the interprocessor serial

13 One serial link is required to communicate with the outside world. A disk system is not of much use if it
is detached from all computers.

connections. An additional advantage of RPC implementations is that programmers utilizing
an abstract system probably have enough problems of their own, without having to worry

about whether or not they are correctly communicating with servers.

3.2.2. Software Design

The TASS software design is based on the premise that there are at least four primary
layers within any local file system (LFS). Regardless of hardware architecture or device
type, there must always be (i) a client interface layer (CIL), (ii) a file systém layer (FSL), (iii)
a cache layer (CL) and (iv) a disk support layer (DSL). This exact breakdown of LFS pri-
mary layers is also presented by Maurice Bach [Bac86](pages 19-21). The four primary
layers are distributed across the component processors in the fashion described in Figure 11.
The reasons for this distribution are detailed in Chapters 4 through 6. These chapters
‘approach the design from the bottom up, beginning first with the disk support layer, and pro-
gressing on up thrqugh to the client interface layer. I feel that this is a more natural 'progrcl:s-

sion, since the design itself progressed in this fashion.

Each of the physical communication points (ie: between the client processor(s) and the
cache server and between the cache server and the disk server(s)), will require splitting of the
layer spanning those communication links into secondary layers. The CIL will be broken
down into a client processor based client communication layer and a cache server based
server message layer. The DSL will be broken down into a cache server based client com-

munication layer and a disk server based server message layer.

To provide a concise division of layer boundaries, these layers are abstracted into a pro-
cedure call interface, either remote or local. This thesis proposes a technique for distributing
these layers across multiple processor elements within a loosely coupled multiprocessor. The

distribution technique is discussed in Sections 3.2.2.1 t0 3.2.2.4

65

Client Client Applications

Processor(s)

—
=4

Client Interface Layer

N,

Cache File System Layer

Server / Cache Layer

" Disk Disk Support Layer

Server(s)

Figure 11: Distribution of Primary Layers over Component Processors

3.2.2.1. Client Interface Layer

The highest level of any LFS has the responsibility of communicating with client
processes and/or processors. This is the client interface layer. The client interface should
provide an efficient set of primitives which will allow file access to be effective and easily
understood. These primitives should allow the client to utilize all file system features neces-
sary for any application, without requiring undue knowledge of the file system operation nor
of the communication involved in the interaction with the file servers. For example, client
knowledge of the communication protocol used between the client interface layer and the file
system should not be a prerequisite to using that file system. An effective client interface
should provide high performance access while hiding the ugliness of implementation details.
It should also provide a complete set of file system operations, without restricting the effec-

tiveness of those operations, nor affecting the consistency of them.

In a distributed environment, this layer is responsible for relaying data between clients
and the file system. It usually involves two components, which David Cheriton refers to as
- the client communication interface (CCIl) and the server message interface (SMI) [Che84].
In a non-distributed environment, there is no need for distribution so the client interface layer

becomes a null entity, effectively mapping directly onto the file system layer.

3.2.2.2. File System Layer

There are core operations that must be supported by any and all file systems, or the sys-
tem will not function reasonably. Any file system must allow the reading and writing of data
to/from the mass storage medium. Additionally, these read/write operations must behave in
such a way that a client can control which data items they will operate on. For example, if a
client writes ten files to disk, the client should be able to read back the fifth file and not have

to worry that the disk system will provide the wrong file, or a jumbled combination of the ten

67

files. Additionally, the system must maintain data integrity. In other words, data written by a

client has to be read back without any alterations to the content of that data.

As mentioned earlier, the first implementation of TASS was not intended to provide a
comprehensive and complete file system. It is intended to perform as a high performance
local file system, only capable of distributing data to clients which are physically connected
to the TASS LFS. As such, a complex interface was not required. We chose to provide what
is herein called a Chunk I/0 disk interface.

Definition: A chunk is a constant sized region of the disk address space of any TASS local file

system, A chunk is roughly analogous to a disk track or sector and in fact the current TASS

prototype uses a 1:1 mapping between chunks and disk tracks'®,

‘The TASS chuhk I/O interface slices the disk address space into an array of chunks. Each
chunk is a distinct entity within the mass storage address space, therefore chunks can be
operated on indiVidually, but not in groups nor in any manner that crosses chunk boundaries.
The interface provides the core operations defined in Table 3. When reading about the core
operations, it is relevant to consider the array of chunks abstraction. To utilize an array, it is
necessary to be able to read from it, write to it and also to know the dimensions of the array,

and of its elements.

This file system will be described in greater detail in Chapter 5. The selection of the
chunk I/O interface does not prevent TASS from supporting an alternative file system.
Rather it is intended to provide sufficient services in order to make TASS a useful support

system. Implementation of a simple file system, in addition to the chunk I/O interface, was

4 The term chunk was used, as opposed to words like page, track, sector, line, etc., in order to avoid
~ confusing the chunk concept with the preconceived notions usually associated with those words. Other authors
have used the term, notably John Wilkes [Wil91], to denote similar structures.

Table 3: File System Operations

Read Chunk Copy a single chunk from the address space of the TASS LFS into the address
space of the client processor.

Write Chunk Copy a single chunk from the client processor’s address space into the address
space of the TASS LFS. ‘

Prefetch Chunk Copy a single chunk from the physical storage device within the TASS LFS into

the cache storage space of the TASS LFS. The data is not copied to the client
processor requesting the prefetch.

Flush Cache Force all chunks resident in the TASS LFS cache to be written back to the phy-
sical storage devices within the TASS LFS.
Chunk Size Obtain the size of the chunk. The chunk size is dictated by the physical disk

device and disk joining technique used.. This information is required by pro-
grams that need to allocate local storage buffers.

Number of Chunks This primitive is required to inform client programs of the amount of data
storage available on the storage node. Again, this information is dictated by the
physical disk device, and must be made available.

considered, but these plans were tabled due to time constraints.

A second object type, the TASS file is occasionally refen*éd to within this thesis. The
term TASS file is used to reference a contiguous section of disk chunks. Within this context,
files are neither defined nor maintained by the file system. The concept of a file is used only
to provide a higher level of disk organization than would be available using the disk chunk

abstraciion.

Definition: A TASS file of size k chunks, is a contiguous region of disk chunks begin-

ning at disk chunk i, and spanning every chunk through to disk chunk i+k-1, inclusively.

To minimize disk seek times, many traditional and real-time systems attempt to allocate
or preallocate files in this fashion [McV91],{Wil91]. Therefore, I believe this definition will

provide reasonable approximation of real-time disk access activity.

69

3.2.2.3. Cache Layer

The cache layer is an autonomous module that converts the procedure call interface of
the disk layer into a cache level interface for use by the file system layer. This cache level
interface provides access to the cached data objects, without imparting special status to par-
ticular regions. A file system may be forced to allocate regions of disk for maintaining file
access tables and directory listings but the appearance of these items to a non-partitioned
cache should not be any different than the appearance of more mundane file data. Some sys-
tems incorporate caching directly into the file system, with file system style operations exe-
cuting both above and below the actual cache. I believe choosing such a style of cache con-

stitutes a poor design decision because

¢ In an intermixed environment, modification of the file system may affect cache operation,

perhaps degrading performance or accuracy.

e Caching of data is a distinct concept. Caching responds to data access patterns and the
operation of a file system on a disk is simply a complex DAP. The cache should be able to

deal with these DAPs without specific information from the file system manager.
The TASS cache operations provide access to data chunks while hiding details such as:
e Whether the data is in the cache or on disk.

© On a cache miss, whether a free cache buffer is available to read (or write) the requested

chunk into, or if a write back of a dirty buffer must first be performed.

® The cache abstraction hides whether or not the entry is currently being written to, or read
from, and assures that two data accesses do not simuitaneously access the entry in a fashion

that would make the results of one or both operations invalid.

70

e The cache keeps track of which cache buffers are in use, in order to avoid that buffer being

targeted for replacement prior to the cache client(s) finishing with the data stored therein,

e The cache locks entries in order to make the two above guarantees, and the file system

should not have to be concerned with the protocol involved in these locks.

Briefly, the operations provided by the cache layer interface are shown in Table 4. The
need for both lock and release primitives is to avoid internal copying of data. Memory copy-
ing is a time consuming process and transferring data between one buffer and another, within
a single processor, is often a useless activity. Using two procedures, one to lock and one to
release, allows the client processes to operate directly on the cache buffer and it avoids
unnecessary copies and the coherency problems that occur from using them. Some of these
operations operate simply as a ’relay’ between the disk support layer and the file system

layer.

Admittedly, many marketable disk systems do not incorporate a cache layer. For exam-
ple, the Microsoft MS-DOS environment, prior to version 5.0, did not incorporate caching of
any data read from or written to storage devices!>. The disk support is provided in the BIOS
layer and the client interface is provi¢ad within the DOS layer. The newest release of MS-
DOS, namely version 5.0, has (finaily) incorporated caching for storage devices, although
Microsoft has been a little tight lipped about how this has been implemented. Designers of
systems like MS-DOS which will not contain a cache layer should tailor their disk support

interface to allow the easy and transparent insertion of a cache, when and if it is ever

15 Actually, MS-DOS is more than a file sy=tem. In fact it provides other hardware oriented services that
do not fit within a file system. However, there does exist (contrary to some rumours) an effective LFS within
the MS-DOS environment.

71

Table 4: Cache Layer Interface

Get Read Lock on Chunk This operation locks the cache buffer (that stores the target data
item) and prevents concurrent accesses from writing to that buffer
until the read lock is released. Simultaneous read operations are al-
lowed since they do not modify the actual data stored in the buffer.

Release Read Lock on Chunk This operation informs the cache that the read operation on the
specified buffer has completed.

Get Write Lock on Chunk This operation locks the cache buffer (that stores the target data
item) and prevents concurrent accesses from reading from or writing
to that buffer until the write lock is released. Simultaneous read
operations are not allowed since they may copy the buffer’s contents
before the current write operation has completed, therefore reading
an invalid version of the data.

Release Write Lock on Chunk This operation informs the cache that the write operation on the
cache buffer has completed.

Write Back Chunk Allows the user of the cache to specify that a specific data chunk be
returned to disk. This allows the file system to guarantee that data
has been stored on disk.

Prefetch Chunk Bring the indicated data chunk into the cache, pending later use.

Flush Cache This operation returns all cache entries to disk.

Chunk Size The size of data chunks is relevant to the file system layer, therefore
this information must be made available as part of the cache layer
abstraction.

Number of Chunks The number of chunks available on disk defines the size of the data

store. The file system will require this information and so it must be
part of the cache layer interface.

required.

3.2.2.4. Disk Support Layer

The lowest level of any LFS is the disk support layer. This layer should provide a set of
primitives allowing read (write) operations from (to) any region of the device’s address
space, regardless of the type of device (or number of devices) present. These core primitives
must provide only essential services and should not incorporate any of the functionality that
normally would be provided within a file system. In other words, the device support layer

should be independent of the type of file system within which it will be used. Additionally,

72

services that may help to enhance the performance of higher software layers should be pro-
vided, as long as they do not detract from the performance of the disk support layer itself and
do not violate the independence criterion. Since the performance bottleneck in a LFS is usu-
ally the storage devices, streamlining the performance of this layer is paramount to an

efficient LFS.

As with higher layers, a procedure call interface to the disk support layer should be
used. Forcing client processes, namely those operating in the cache layer or higher, to handle
communication protocols in order to utilize the disk access primitives can often lead to
confusing and inaccurate code. With the selection of a procedure call interface, the required
primitives can be selected. For TASS, the core primitives for the disk support layer are given
in Table 5. These are not the only primitives that are provided by the layer, however those
not listed are simply for accessing statistics accumulated during execution of the TASS

storage node .

Table 5: Disk Support Layer Core Primitives

Pead Chunk Copy a single chunk from the physical disk into the buffer provided by the
client process.

Write Chunk Copy a single chunk from the buffer provided by the client process to the physi-
cal disk.

Chunk Size Obtain the size of the chunk. The chunk size is dictated by the physicai disk

device and disk joining technique used. This information will be needed by the
cache layer, in order to allocate cache buffers and control structures.

Number of Chunks This primitive is required by the cache layer during allocation of control struc-
tures. As this is disk dependent information, it must be abstracted in this fashion
to allow a device independent cache layer implementation.

73

As mentioned in Chapter 3, all the software generated for the TASS disk server was
written using Logical Systems C (version 89.1). Initially, the lowest levels of this driver
were translated to C from the CSA Modula-2 disk driver product. The actual module
translated was SCSIDisk. MOD. I have since modified the C version extensively. The disk
- server is built upon the CSA Part.12 board described in Section 3.1.2, but wherever possible,

the code has been implemented in a device independént fashion.

The software comprising the Disk Support Layer (DSL) operates within at least two dis-
tinct processors, namely the disk server(s) and the cache server. There are five primary com-
ponents of the DSL. Two of these components reside in the cache server processor, namely
(i) the disk services layer (DSL) and (ii) the client communication layer (CCL). The remain-
ing three components operate within the disk server processor(s) and are (iii) the server mes-
sage layer (SML), (iv) the device independent layer (DIL) and (v) the device dependent layer
(DDL). These components, and their intercommunication, are depicted in Figure 12. This
chapter discusses the design of the three levels which are resident within the disk server
(DIL, DDL, SML), postponing discussion of the remaining two levels to the cache server dis-

cussion in Chapter 5.

The actual hierarchy of the disk server based layers may be a point of consternation. If
the SML communicates with the cache server based CCL, why is it lower in the hierarchy
than the DIL? The reason for this is that the SML and CCL are hardware dependent layers
since they deal with a physical communication medium, and the protocol used to communi-
cate across it. Effectively, the SML and CCL are device dependent layers and therefore
should be abstracted beneath the device independent layer. David Cheriton’s TimeServer

code example in [Che84])(page 25) justifies this practice. The best way to consider the

74

Cache Server Disk Server

Interface to Cache Layer

Disk Services Layer

Device Independent Layer

) e
Client Communication Layer Ei= =3 Server Message Layer Device Dependent Layer m

14
it
]|

3
l Local Procedure Call Y Remote Procedure Cali == Physical Communication Medium

Figure 12: Components of The Disk Support Layer

hierarchy is to picture the DIL communicating with the DSL, each using the SML and CCL

as subservient tools to achieve that communication.

The operation of the disk server processor bears some consideration. Within the archi-
tectural constraints of a loosely coupled multiprocessor, any processing element controlling a
disk device must perform the following three basic activities during the execution of a single

disk request:

(1) Accept an incoming disk request, in the form of a message from a client. If the new
request is a write operation, copy the data from the communication medium into a local

memory buffer.

(2) Execute the indicated disk request, copying data between the local memory buffer and

the physical disk in the appropriate direction (either read or write).

75

(3) Respond to the client, returning them an error status (informing them that the request
succeeded or failed) and transferring to them, via the communication medium, any data

read.

These three operational regions form a disk access pipeline, which is shown in Figure
13. Any process operating within some region of the pipeline must control specific hardware
resources in order to operate. The figure indicates that these resources are, for the transputer
processor, (i) the incoming communication link, (ii) the SBIC (and subservient disk device)
and (iii) the outgoing communication link, for the three regions respectively. Furthermore,
the operation of a process (and its acquired hardware) within any region of the pipeline, is
independent of the hardware devices in other regions of the pipe. This allows for multipro-
cessing within the disk server transputer, with three or more server threads being able to con-

currently operate on some phase of the pipeline.

""""""" e e

Transputer | Incoming | SCSI Bus | Outgoing I

o I . i } Interface . . I

Hardware ' Serial Link | Controller Serial Link |

------------ R LT | T |

i | I

SCSIBus | | i

and | i |

. - i | |
Disk Devices

| i Fixed Disk I

| i |

r.] 1 o o

I (1) Incoming i I (i11) Outgoing)

| Communication | (i1) Disk | Communication |

! and ! Access i and !

o . . . |

: Preprocessing : ' Postprocessing '

Figure 13: Disk Access Pipeline

76

One of the perceived drawbacks of the vendor supplied Modula-2 implementation was
that no local memory buffers were used, hence there existed an overlap of required hardware
resoﬁrces within each region of the pipeline. This is because data transfer to (from) disk
occurred concurrently with data transfer in from (out to) the communication medium. This
single fact prevented the use of multiple processes within the disk server processor, prompt-
ing change to the driver code. In the Modula-2 driver, only one process was handling all
aspects of server operation. This prevented the disk server from concurrently executing
regions of the pipeline and subsequently reduced the data throughput of the disk server as a
whole. The only solution to this problem was to implement an alternate driver that took
advantage of the natural concurrency of the problem. The decision to re-engineer the disk
driver software opened the door for the implementation of a multiple process disk server

environment.

Section 4.1 describes some of the primary considerations in the design of the disk server
code component. Target interfaces between software layers are defined and the communica-
tion protocol utilized between the disk server and the cache server processors is detailed.
Sections 4.2 and 4.3 describe the implementation of two TASS disk server prototypes. The
two prototypes are referred to as Disk Server 1 (DS1) and Disk Server 2 (DS2). Both proto-
types are functionally equal, providing the same basic services and operating on fixed sized
data chunks. The modularity and overall software quality of DS1 was not up to personal
standards, mostly due to some poor initial design decisions. Additionally, DS1 did not pro-
vide acceptable performance, and for these reasons it was scrapped. Prototype DS2 provides
significantly better disk transfer rates than DS1 and as such has been selected for use within

TASS. Section 4.4 discusses the implementation of two RAM disk server prototypes.

77

-

4.1. Considerations in the Design

Each layer within a hierarchical design presents an interface to higher layers of the sys-
tem. For the disk server design, both the device dependent and device independent layers
provide a procedure call interface. The server message layer must provide a conversion from
the services of the device independent layer into a communication protocol that can be used
across the communication medium connecting the disk server to its clients. This section

describes the interface or protocol chosen for each of the three software layers.

4.1.1. Device Dependent Interface

| Therdevice dependent layer is responsible for controlling the physical disk device. Con-
trary to its name, this layer must provide a set of device independent services that will give
the user sufficient control of the device, without unnecessarily encumbering them with device
control considerations. This is a trade-off, and as such there is never a ’right’ solution. For
the purposes of TASS, and the approach that I knew would be taken at higher levels of the
design, a sufficient set of primitives would provide for device initialization, device format-
ting, allow reading and writing of fixed size data chunks, as well as providing certain pieces

of device dependent information in an abstract way (for example, number of chunks, size of

chunk, etc.)!®. In addition, the clients of the layer would need their own distinct workspaces

within the layer (to maintain information like which buffer they were using, etc.), so a client

¥ I do not claim that this interface is sufficient for all possible disk server environments, however, I gave
considerable thought to its composition and I am still satisfied with it. More functionality would probably be
required for a more robust interface, but time constraints limited the interface to providing those functions that
were necessary for the TASS system itself.

78

registration primitive was included. The primitive set selected is given in Table 6. The two

procedures GetBuffer() and RegisterClientThread() are dependent upon the amount of avail-

able memory, which is a board dependent issue. All other procedures, convert the intent of

Table 6: Interface to the Device Dependent Layer

Format Parameters: (f) Track interleave factor
(i) Sector interleave factor :
Results: Re-formats the disk using the specified track and sector in-
terleave factors.
Retoms: Emor, if any occurred.
Initialize Parameters: (i) Start of available memory
(i1 Size of available memory
(iif) Number of buffers to allocate
Resuits: The disk is reset and made ready for use. If there is
sufficient memory available between the specified memory
positions, then the procedure allocates the indicated
number of buffers.” Otherwise, the maximum number of
buffers that will fit in the available space are allocated and
this number returned in parameter iii.
Retumns: Error, if any occurred. ’
RegisterClientThread Parameters: None.
Retumns: Client thread i.d.
GetBuffer Parameters: (/) Client thread i.d.
Returns: Memory address of the buffer currently allocated to that
thread.
ReadChunk Parameters: (i) Client thread i.d.
(ii) Disk Address of the chunk to be read.
Results: Data from specified disk address is read into the buffer
currently allocated to that client thread.
Returns: Emor, if any occurred.
WriteChunk Parameters: (i) Client thread i.d.
(if) Disk Address of the chunk to be written.
Resulis: Data from the buffer currently ailocated to the client is
written to the specified disk address.
Retumns: Emror, if any occurred.
GetInformation Parameters: (i) Client thread i.d.
(ii) Buffer to read information into.
Results: All device specific information that is relevant to higher
levels of the system is transferred into the indicated buffer.
This includes data like the number of disk chunks, the size
of the disk chunk, etc.
Returns: Enor, if any occurred.

79

the procedure and its parameters into a sequence of SCSI bus commands which are issued to

ylwwu

the SBIC chip of the Part.12 board.

~ No disk scheduling algorithm was implemented in any TASS disk server prototypes
since the address space of the Part.12’s T222 controller is only 64 KBytes. This means that
no more than 3 outstanding requests can reside in the disk server, assuming an optimized
chunk size of 1 track which is 16896 bytes. Scheduling within a list of 3 outstanding

requests was not considered profitable.

4.1.2. Device Independent Interface

The primary purpose of the device independent layer is in implementing the process
environment that controls the flow of requests through the disk pipeline of Figure 13.
According to David Cheriton, "The complexity of handling message communication is only
imposed on programmers developing distributed programs and is overshadowed by the com-
plexity of concurrent programming in general” [Che84](page 24). Implementing the process
structures and their interaction is part of the concurrent programming problem within the disk
server. Its logical grouping in the device independent layer is to make the process environ-
ment immune to changes in device dependent features like the type of disk controlled and the

type of communication medium utilized.

The actual functionality of the device independent interface is very similar to that pro-

vided by the device dependent layer. In fact, the actual interface supports equivalent Read-

Chunk(), WriteChunk() and GetInformation() services!”. The other services were not
deemed necessary for the higher levels of TASS and, due to time constraints, were not imple-
mented. One new function, Ping(), has been added. The purpose of the Ping() operation is to
allow client processors to determine whether the disk server is active and if the disk device is

- functioning correctly.

4.1.3. Server Message Protocol

Communication between the disk server processor and its client, the cache server,
occurs via a transputer serial link. This fact implies that intercourse between the two servers
must occur using some form of communication protocol.

[In order for processes on separate processors] to communicate successfully, they must
*speak the same language’. What is communicated, how it is communicated, and when it
is communicated must conform to some mutually acceptable conventions between the
[processes] involved. The conventions are referred to as a protoco! [Sta88](page 10).

Defining the communication protocol for the serial link connecting the cache and disk server
processors was one of the first considerations involved in the disk server code design. It had
to be firmly established before the design could proceed. The protocol must convert the three
selected disk services into a protocol that effects interprocessor communication. The com-
munication takes place in two portions, namely the initial request and subsequent reply.
Communication between the disk server and its clients can occur via any of the transputer’s

hardware links, as well as a internally allocated channel (soft link). Connecting the disk

server software to the cache server software via an internal channel allows RAM disks to be

17 With the exception that no client thread i.d. parameter is required, since that is a local phenomenon,
vsed to indicate what thread is accessing the device dependent layer.

81

resident on the same transputer as the client it is servicing. The soft link connection was
included to make the software compatible with any new disk device having an address space

large enough to operate both the cache server and disk server software within the same tran-

sputer.

The request primitives contain a service operation code, which dictates what disk ser-
vice is to be invoked, and a (possibly null) set of arguments. Since all transputer link com-
munication is synchronous, with sender processes being blocked until their messages are
received, there is no need for disk server processes to acknowledge the receipt of a service
request. Table 7 shows the components involved in both the request communication and the
reply communication. The set of service operation codes is { PING, CHUNK_READ,
| CHUNK_WRITE, GET_DISK_INFORMATION }. A request consists of an operation code,
followed by any arguments applicable to that operation. There is only one reply primitive,
with subsequent arguments being passed in the indicated order, depending upon what service

has completed and whether that service was error free or not.

4.1.4. Miscellaneous Considerations

The TASS disk server provides read and write operations for fixed size data chunk
transfers only. Note that a disk chunk is the only data transfer size available within the disk
server component of TASS, hence the term chunk will be used to describe data transfers
throughout this paper. The choice of chunk size is not arbitrary but can be defined at compile
time by alteration of a compiler constant. Ideally, chunk size should be optimized for the
storage device used. The optimum chunk size for our CP-3100 disks will be shown (in sec-
tion 7.3.2.2) to be 16896 bytes, the size of a single disk track. The actual size used is limited

to any integer multiple of the disk device’s block size and also by the amount of memory

82

Table 7: Disk Server te Cache Server Communication Protocol

(i) Requests

Operation: PING

Arguments: None

Purpose: Allow the neighbouring processor to test if a neighbouring disk server is *alive’,

Operation: CHUNK_READ

Arguments: (i) Chunk Address

Purpose: Request that the disk server read from disk all the data stored at the indicated chunk ad-
dress.

Operation: CHUNK_WRITE

Arguments: (i) Chunk Address
(ii) Chunk Data

Purpose: Request that the disk server write the provided data to the disk chunk specified by the in-
dicated chunk address.

Operation: GET_DISK_INFORMATION

Arguments: None.

Purpose: Request for a copy of all disk specific parameters, like the total number of disk chunks,
disk chunk size, etc.

(ii) Responses

Arguments: {i) Operation Responded To
(ii) Chunk Address
(iii) Emror Code
(iv) Length of Data to be Transmitted
(v) Data Chunk or information Block

Purpose: inform requesting client that the indicated operation on the specified disk chunk address
has completed. Indicate any error that occurred and finally transfer any data requested
by the client.

space available for creating buffers!®.

18 The primary benefit of the TASS disk server design, as compared to the CSA design, is that multiple
buffers are used within the disk server. If a chunk size is selected that is sufficiently large so as to prevent allo-
cation of more than one data buffer, then many of the benefiis of the TASS disk server are lost. Considering
that the available memory on our Part.12 device is about 52 KBytes, this is not an unreasonable concern.

4.2. Implementation of the First Disk Server Prototype

K

I will briefly describe the DS1 prototype in order to provide an understanding of why
the prototype was abandoned in favour of DS2. DSI1 is designed as a hierarchically layered

set of modules, each of which performs one basic task. David Clark states that

"When implementing a system specified as a number of layers of abstraction, it is tempt-
ing to implement each layer as a process. However, this requires that communication
between layers be via asynchronous inter-process messages. Our experience sug-
gests that asynchronous communication between layers leads to serious performance
problems” [Cla85].

Woe unto me! I fell prey to that temptation, consequently most of the DS1 modules allocated

process groups to perform the operations for that module. The tasks were as follows:
e Accepting new requests from neighbour processor(s).

e Executing requests to disk.

e Issuing responses to neighbour processor(s).

e Controlling buffered requests/responses.

The process groups responsible for those four operations were labelled, Receivers, Disk
Controllers, Senders and Queue Managers, respectively. The queue manager group was
required to be single threaded. All other groups were capable of being muiti-threaded. The
process group interaction within DS1 is shown in Figure 14. Initially, the queue manager
creates as many buffers as the available heap space allows. These buffers are allocated to the
free buffer queue. The incoming and outgoing queues are initialized to empty lists. The rou-

tine operation of DS1 then proceeds as follows:

(1) A receiver obtains a free buffer from the queue manager.

CSA Part.12 Hardware

CP-3100
Disk
Device

Client
Links

Receiver Process Pool

P L T Ut (VRS URPU

J

RAM
Allocated to
Buffers

[P,

=3
Sender Process Pool

Queue Manager Process

SCSI Bus
Interface

<-—>{_ Incoming Requests l
(Queue Manager

Key

i

t

1

i

! SCSIBus ===}
1

! Data Flow =—>
H

]

1

1

1

1

Queue Layer

r Outgoing Responses]

Free Buffers]

Disk Controller Process Pool

Disk Controller Il

Controller -

Device Dependent
Layer

Device Independent

Layer

Figure 14: Disk Server Prototype 1 Process Heirarchy

(2) The receiver blocks on the incoming link until a request arrives. Then it reads the

request, according to the link protocol, copying any incoming data chunk into the allo-

cated buffer.

(3) The buffer is returned to the queue manager and the receiver returns to step 1.

(4) The queue manager places the buffer onto the incoming requests list.

~~
n
St

is given one.

85

A disk controller requests a buffer from the incoming requests list, and when available,

{6) The request is issued to disk via the SBIC.

(7) Results from the SBIC are written into the buffer.

(8) The buffer is returned to the queue manager and the disk coniroller returns to step 5.

(9) The queue manager places the buffer onto the outgoing responses list.

(10) A sender process requests a buffer from the outgoing responses list, and when available,
is given one.

(11) The response is transmitted over the hardware link.

(12) Ttz buffer is returned to the queue manager and the sender returns to step 10.

(13) Queue manager places the buffer onto the free buffer list.

The reason for the failure of this initial prototype is, as Clark indicated, that there are
too many communication points between the queue manager and all the other processes.
Every interaction between two process groups requires a communication using a software
channel construct. Additionally, these communications often involve the exchange of multi-
ple data items, requiring multiple messages. Each message requires a context switch between
sender and receiver, followed by another context switch once the receiver has obtained the
component. This produces sufficient communication overhead to cause the DS1 prototype
exhibits lower transfer rates than the DS2 driver when operating under light load, even
though its sustained transfer rates are comparable to those shown by DS2. The reason for

this is that, under heavy load, the communication overhead for one request can occur in paral-

86

lel with the disk access component of other requests!®. Therefore, 2 disk requests will take
approximately the same time as is required to perform the n physical disk accesses. How-
ever, under light loads, the communication overhead is sequentialized with the physical disk
access. This fact may reduce the observed disk bandwidth since some disk accesses may be
delayed long enough for the start of target disk track to move past the read/write head, forc-
ing an additional 17 millisecond rotation of the disk device prior to actually performing the
physical disk access. The speculation that lead to the design of DS2 was that removal of

these interprocess communication points would lead to enhanced performance.

4.3. Implementation of the Disk Server 2 Prototype

The functionality of DS2 is equivalent to that provided by DS1. Primarily, device
dependencies are still isolated within low level software modules and the disk server still pro-
vides multiple buffering of disk requests. The failure of the first prototype was due to the
- overhead involved in queue management and process synchronization. To avoid these prob-
lems, DS2 was conceptualized as a vertical integration of all DS1 process groups, each per-
forming a different function, into a single DS2 process group that handles all of those func-
tions. This entails that multiple identical processes execute across all layers of the server
design. The advantages of restructuring complex multi-level process designs into simpler

vertically integrated designs have been discussed by Clark [Cla85] and Atkins [Atk88].

¥ Actually, the communication overhead overlaps with two other disk accesses, since communication for
request R occurs both before and after the actual disk access for request R. So the *before’ part of the commun-
ication overlaps with the disk access for request R-1 and the ’after’ part of the communication overlaps with the

disk access for request R+1.

87

DS2 provides multiple buffering by generating 2 or more disk server processes within
each disk controller. Figure 15 shows the threads of this process group in relation to the disk

server hardware. Each of these processes has access to the following shared data structures:
(1) Memory addresses of the serial links.

(2) Mutual exclusion semaphores.

CSA Part.12 Hardware Device Independent Layer

Key

SCSIBus ===»

13

]

¥

t

1]

1

]

1

1

¥

t

]
: Data Flow ==

Client 1
. : Control Flow ———

Links H
: Layer Boundary ~-=-~

'

1

' Server Process Pool

H

i

1

]

RAM !

t

Allocated to +

¥

¥

Buffers ; Server l

i

1

~ 3

i

1

i

1

P

h FIFG Queues |<—-‘—-
cp3100 ¥—3A i
Disk
Device

SCSI Bus
Interface
Controller

Device Dependent Layer

Figure 15: Disk Server Prototype 2 Process Hierarchy

88

Also, each process has exclusive access to an instance of the following unshared data

structures:

(1) Storage buffer for holding one chunk worth of data.

(2) Command block array for transfers between process and SBIC.

(3) A stack.

The use of device dependent structures, namely the serial link addresses and the com-

mand block array are hidden with the device dependent SML and DDL, respectively.

Such a disk server, operating within our hardware environment, encounters three poten-
tially blocking (process queueing) bottlenecks, which define the disk access pipeline shown
in Figure 13. First, the request is accepted, along with any accompanying arguments, over a
temporarily dedicated transputer hardware incoming link. Secondly, the disk operation is
issued to, and a response accepted from the SBIC. Thirdly, the results of the disk operation
are returned to the invoking processor via a temporarily dedicated transputer hardware outgo-
ing link. These three sub-tasks must occur without interference from any competing
processes, therefore each is treated as a critical section and mutually exclusive access to these

sections is provided through the use of semaphores.
The basic operation of each DS2 server thread is as follows:
Critical Section: Incoming Hardware Links

(1) Gains control of the incoming hardware links by entering the incoming links critical

section.

(2) Block until input is observed for one of the hardware channels (let it be link §).

89

3)

4

)

(6)

€))

(®)

9)

Read the disk operation code and any required parameters from Iink / into local storage.
If a write operation is indicated then the data to be written to disk is DMA’d from link §

into the local storage buffer.

Exit the incoming links critical section. freeing those links for the use of other threads.

Critical Section: SCSI Bus Interface Controller
Enter the SBIC critical section, gaining control of the SBIC and by default, the disk.

Issue the disk request by writing the appropriate SCSI command codes to the SBIC’s
memory mapped addresses. If the operation is a write, then the chunk data is DMA’d to

the SCSI1 FIFQ buffers.

Read the results from the appropriate memory mapped SBIC registers. If disk data has

been read, then DMA it into the thread’s internal storage buffer.

Exit the SBIC critical section.

Critical Section: Outgoing Hardware Links

Enter the outgoing links critical section, gaining access to all outgoing links.

(10) DMA the results, and any data that was read, out link i into the client processor’s

address space.

(11) Exit the outgoing links critical section.

(12) Retuin to step 1.

4.4. Implementation of the RAM Disk Server Prototypes

Two RAM disk server prototypes are also implemented. Both are based on the DS2
prototype. Both are intended to run on a T800 transputer, since the T222 has too little
memory space to act as a RAM disk. Both prototypes use all of the available address space
of the T800 as a RAM disk. The memory is chopped up into numerous disk chunks, with the
size of those disk chunks defined at the time the RAM disk is compiled. The first prototype
is implemented using the strict device dependent/device independent abstraction. However,
due to the fact that server threads need to obtain a free buffer, prior to reading disk requests,
it is impossible to implement the RAM disk device without using the bcopy() operation to
transfer data between the RAM disk and the buffers. The second prototype streamlined the
operation of the server by eliminating the need to use bcopy(), but at the expense of reduced
modularity. The RAM disks are presented as a brief example of the modular design vs. per-
formance trade-off. Some performance results for these two RAM disks are presented in
Sections 7.2.4 and 7.3.2.3 indicating how much of a data transfer throughput penalty is

imposed on the system through the use of the bcopy() operation.

91

Py |

5. The Cache Server

This chapter details the software design for the cache server processor which was shown
in Figure 10. As shown in Figure 11, the cache server processor executes the highest por-
tions of the disk support layer (DDL), the entire cache layer (CL) and file system layer
(FSL), as well as the lowest section of the client interface layer (CIL). Since the body of
code spans four distinct layers of the software hierarchy, Section 5.1 will briefly discuss the
requirements of each layer prior to actually discussing prototype design. Section 5.1.1 will
deal with the resident portion of the disk support layer, Section 5.1.2 will cover the cache
layer, Section 5.1.3 presents the file system layer and finally, Section 5.1.4 overviews the

server message layer (SML), which is the resident portion of the client interface layer.

As was the case for the disk server design, two cache server prototypes have been
implemented. These are referred to herein as Cache Server 1 (CS1) and Cache Server 2
(CS2). The initial prototype, CS1, has been abandoned in favour of CS2 for qualitative,
rather than quantitative reasons. In other words, the perceived failing of CS1 is in the quality
of its design, rather than the performance provided by it, which is in fact comparable to that
provided by CS2. Sections 5.2 and 5.3 provide descriptions of the design methodology used

for each prototype.
5.1. Layer Requirements

5.1.1. Disk Support Layer

The lowest three levels of the disk support layer were discussed in Chapter 4. The
higher two levels, namely the client communication layer (CCI) and the disk services layer

(DSL) are presented in this sub-section. These two layers act as a relay, enabling the cache

92

layer to directly invoke the disk services outlined in Chapter 4, without requiring knowledge
of the underlying disk devices, the number of such devices, or even the fact that the disk con-
trollers are actuaily separate processors. In this fashion, the cut between the disk support
layer and the cache layer is the point in the TASS design where the abstraction of the disk

device(s) into an array of chunks is complete.

As mentioned in Chapter 4, the cache server’s CCL and the disk server’s server mes-
sage layer (SML) are simply tools used to facilitate communication between the cache
server's DSL and the disk server’s device independent layer (DIL). The CCL communicates
directly with the SML, both conforming to the protocol outlined in Section 4.1.3. This proto-
col takes the form of a group of four request primitives and a group of one response primi-
tive. Cheriton and Berglund have discussed [Che84],[Ber86],[Che88] that most programmers
prefer to deal with procedure calls rather than communication oriented request/response
primitive sets. For this reason, the interface between the disk support layer (DSL) and the
cache layer (CL) is implemented as a procedure call, hiding the request/response nature of
the protocol. However, the two prototypes CS1 and CS2 handle the call quite differently.
The former using upcalls [Cla85] and the latter using a more traditional downward procedure

call interface.

Although the actual transputer serial links are synchronous communication mediums,
the fact that the disk server protocol is implemented as a set of request and response primi-
tives, makes the protocol itself an asynchronous communication. This is because there are no
guarantees provided by the protocol that response Rsp; wiil match request Rq, for all i.

Therefore, each response must be matched to a particular request, or incorrect operation of

93

the disk support layer will result®’. It is entirely possible that after being issued to the disk
server, request Rq may be delayed, perhaps due to a disk scheduling algorithm resident in
the disk server, and the response associated with that request will therzfore also be delayed.
This problem becomes even more discernible when a group of D disks are being joined using
disk striping. In that case, D requests must be issued, depending upon implementation, either
sequentially or in parallel. A resulting response must be matched not only to the initial
request, but also to the associated responses from the other disks. All of these considerations

compound the asynchronicity of the communication medium.

Essentially, the problem faced by the disk support layer is how to provide synchronous
communication primitives across .n asynchronous communication medium or protocol.
Once a synchronovs communication environment is established, then conversion from a
remote procedure call (RPC) to a synchronous communication, and vice versa, is a well
documented technique, a good example being [Che84]. To achieve synchronous communica-
tion using the specified protocol, it was deemed necessary (by the author) to utilize two pro-
cess groups, the Requestor process group is responsible for issuing requests, as instructed by
some higher software level, and the Acceptor process group accepts a!l responses issued by
the disk server, and relays those responses to the next higher software layer. A very similar
technique is used by Yang and Qu [Yan92], who provide a transputer-based point to point
communication service using Sending-Threads and Receiving-Threads as part of a
Commmunication Server process group. The technique used in TASS to match disk server
requests with related responses differs from prototypes CS1 to CS2, so that discussion will be

postponed to Sections 5.2 and 5.3.

20 Data or error return codes resulting from an access to address A may be matched up with a request is-
sued to address B.

94

5.1.2. Cache Layer

5.1.2.1. Overview

The cache layer is responsible for abstracting (i) the disk services specified in Table 5
and (ii) the actual cache control mechanisms, into the interface described in Table 4. The

TASS cache itself is implemented according to the following list of caching strategies:

e The cache uses a fully associative mapping.
@ The cache uses the least recently used (LRU) replacement algorithm.

e When a prefetch occurs, the corresponding data will not be locked into the cache until it is
eventually used, as has been proposed by some researchers [Smi78],[Kot91]. Holding of
prefetched data until its eventual use requires the emplacement of an erroneous prefetch
detection algorithm. The addition of any locks required to hold prefetched data within the
cache has been foreseen in the design, and as such could be implemented with little
difficulty. However, this would entail the addition of (i) an erroneous prefetch detector as
part of the file system layer and (ii) additional cache layer functionality to allow that detec-
tor to signal the cache regarding incorrect prefetches. The execution of such a detector
would require processor cycles (which might reduce system efficiency) and as such was
excluded in the current TASS prototypes. Rather than using a prefetch locking mechanism,
the TASS prefetch will simply be treated as an access to that data, and if the data is not
present in the cache it will be brought in, or, if the data is present, then the cache entry

holding the data will be moved to the MRU position within the cache.

e The cache can implement write-one, read-many access restrictions, or it can be compile

time directed to allow write-many, read-many access, if the user so desires.

95

=]
&
&=
(¢
(9]
=
[wad
=
o
<
8
wn
]
—
=5
&
~
=}
[¢)
vl
£
o
&
.U_D
=
<
fand
a
=
jare
=
o
2
=5
=
-
=

e The cache makes no distinctio

as information stored in the array of chunks abstraction.

e The cache is a delayed write-back implementation. Write backs can be (i) delayed until
forced by the need for a free cache entry, (if) explicitly performed on specified addresses
(therefore allowing a write-through policy to be easily implemented), or (iii) can be per-
formed on the least recently used dirty address, allowing a generic write back service to be

implemented in a higher software layer (more on this in Section 5.3.3.2).

e The cache maintains information on cached data regarding whether that data is valid and/or
dirty. Data within the cache that has not been modified need not be re-written to disk using

the blind write-back method, rather write backs need only occur on dirty data.

5.1.2.2. Memory vs CPU Cycles Trade-off

The selection of some of these strategies, particularly the fully associative mapping,
makes both processor cycle and memory usage demands on the cache server processor.
These demands are effectively overhead to the operation of the TASS storage node. Regard-
ing memory requirements, the only portion of the cache that is not overhead is the actual
storage space allocated for cached data. All other information used to initiate and maintain a
coherent structuring of that cached data constitues memory overhead. The cached data is
stored in cache buffers. These c.che buffers can be allocated as either an array of buffers or
a linked list of buffers. The two TASS prototypes both use an array of buffers, maintaining
these buffers in an LRU order using a separate linked list. This linked list structure requires,
for each cache buffer, storage for [ru-neighbour and mru-neighbour pointers, as well as
storage for the actual disk address that the data in the buffer is a copy of. Also, a bit-set is

provided for each cache buffer in order to maintain the dirty, valid and protection bits. This

96

overhead amounts to between 6 and 10 bytes per cache buffer (depending on size of address
buffers, number of protection bits, etc.). Since the size of chunks being cached is in the 4000
to 17000 byte range (depending upon disk type and configuration), 6 to 10 bytes of overhead
per 4000 to 17000 bytes of storage is probably not significant. In the actual TASS implemen-
tations, the 2 MByte memory of the T800 cache server, coupled with the 16896 byte chunk
size (proven to be optimal in Chapter 7), allows for a maximum of 124 cache buffers if no
memory is used for code or overhead. In actuality, only 119 buffers can usually be allocated.
Because of this, the mru and Iru-neighbour pointers need only 1 byte. The 100 MByte CP-
3100 disk, divided into 16896 byte chunks leaves a total of 6208 individual chunks, which

can be addressed using only 2 bytes. 2 bytes are used for the bit-set, leaving a total memory

overhead per cache buffer of 6 bytes/16896 bytes of storage, or 0.036%2'.

Most of the memory overhead comes from the fully associative cache mapping used.
The cache mapping provides a means for the cache manager to (i) determine if the requested
address A is present in the cache and (ii) determine what cache entry currently stores the data
for address A, if it is present. The implementation of this mapping is a trade-off between
memory overhead and processor cycle usage. One way to perform the mapping is to simply
search the cache buffer list for every disk access. This is very expensive in processor cycles,
especially considering that every cache miss requires a search of the entire list, in order to
determine that the requested address is not held within. As the intention of TASS is to pro-
vide a highly efficient LFS, I chose to eliminate searching of the cache list, by keeping a bit

set, with one bit for every disk chunk. Any time a chunk is brought into the cache that bit is

2! In striped disk systems, the actual chunk size is larger, so for two striped disks there can be no more than
59 cache buffers with overhead of 6 bytes/33792 bytes. For three striped disks there can be no more than 39
cache buffers, with overhead of 6 bytes/S0688 bytes.

set, and when it is removed from the cache, that bit is cleared. This bit-set requires very little
in the way of memory (for example, our CP-3100 disks are each divided into 6208 chunks,
which makes the size of this bit set 6208/8=776 bytes). Use of this bit set eliminates a great
deal of processor overhead, at the cost of less than 1 cache buffer in memory overhead. This
bit-set structure eliminates list searching on cache misses, however, list searching still occurs
on cache hits. To eliminate all list searching, an index into the cache buffer array is main-
tained for each disk chunk. As mentioned above, the optimal size for the CP-3100 disk
chunk is 16896 bytes, leaving room in the 2 MByte T800 memory for 119 cache buffers.
Each index into the cache buffer array need only be 1 byte (or as much as 2 bytes if a T800

with a larger memory is used). Therefore, the 6208 disk chunks can be indexed with a 6208

byte mapping function??. This mapping technique eliminates all list searching, streamlining

the processor usage, at the expense of between 1 and 2 cache buffers.

5.1.3. File System Layer

The file system is the highest level of the cache server’s design heirarchy, since the
Cache Layer (CL) and Server Message Layer (SML) are directly and the Disk Support Layer
(DSL) is indirectly subservient to the File System Layer (FSL). The TASS chunk I/O FSL is
provided predominantly as a hook into which any advanced file system can be inserted,
assuming that one is designed and coded. This is because the TASS chunk interface (or file
system), described in Table 3, maps almost directly to the cache layer described in Table 4.

A few minor file system functions are required, for example, implementing the FSL

22 This assumes that multiple disks are striped, or that interleaved or concatenated disk systems are only 1
disk. For multiple disk interleaved/concatenated systems, the size of this index is 6208 * the number of disks.
Even in this case, no more than 2 cache buffers are lost in providing this mapping.

98

read/write chunk operations requires a simple sequence of subservient layer operations,
namely a CL lock chunk, followed by a SML transfer of the physical data (between client
processor and cache processor), finally followed by a CL release chunk operation. Addition-
ally, some code has to exist to invoke the subservient CL. and SML in an intelligent fashion,
however, these details require very little code, so the FSL is almost a null entity, existing

more as an abstraction than as a physical code module.

Since the file system services multiple clients using multiple communication links, it
seems to be a design imperative that the cache server’s file system be multi-threaded. There-
fore, the file system is split into two component layers, the lowest of which provides the file
system services described in Table 3, and the uppermost layer responsible for generating
multiple server processes, which in turn invoke the file system services on behalf of client
processes. This process group will be referred to herein as the file servers or just the servers
for brevity. This will be elaborated upon in Section 5.3.3.1, however, knowledge of this
multi-process environment is necessary in order to understand some of the upcoming discus-

sion.

The only functionality added by the TASS FSL is the implementation of a prediction
service. This service effectively controls prefetching within the TASS system. It is true that
a prefetch operation is available as part of the TASS FSL, however, its use is limited to pre-
fetching specific disk addresses. Often it is possible to utilize an algorithm to intelligently
issue prefetch operations [Smi78],[Kot91]. This style of automated prefetching often takes
the form of a n-block look-ahead algorithm. Currently, the TASS FSL provides for
automated n-block look-ahead prefetching during read operations only. The value of n can be
specified by the client (or the client can use a default value). Since sequential prefetching is a
simple algorithm, no process group is required to implement it. However, more complex

prediction algorithms try to determine what DAP is indicated by observing recent data

99

accesses. This style of DAP analysis often requires a great deal of computation, therefore a
dedicated process is usually required to perform this task. Therefore, the TASS FSL pro-
vides the ability to invoke the prediction module as either a simple procedure call, or as an

interprocess communication (this will be discussed in Section 5.3.3.3).

5.1.4. Server Message Layer

The client interface layer (CIL) is responsible for conveying file system services from
the FSL to TASS clients. It is important to note at this point, that the CIL is the lowest level
of a distributed file system. Hence, this is where the division occurs between this thesis’ tar-
get of providing a basic LFS (which can be used as a building block for a DFS) and actually
implementing a DFS. Because the nature of this DFS is unknown, the design of the client
side of the CIL, which is the client communication layer (CCL) cannot be firmly set. To test
TASS, we needed some form of client interface and for this reason (which will be further ela-
borated on in Chapter 6), the CCL was implemented as a simple RPC interface. The cache
server resident portion of the CIL is the server message layer (SML) which is a tool for con-
verting the request/response protocol issued by the CCL into the file system services shown
in Table 3. This protocol is shown in Table 8 (i) and Table 8 (ii). Unlike the protocol used
in the disk server to cache server communication, all responses are not provided by a generic
response primitive. Each individual request type has a specific response associated with it.
Since the communication controlled by this protocol is a RPC, this implies that the client pro-
cess that issued the request is blocked waiting for a response, and, since it knows the nature

of the request, it will know and understand the nature of the response.

100

Table 8 (i): Cache Server to Client Communication Protocol

Operation:

Set Links
Request Format:

Response Format:

Purpose:

Note:

(?) Operation Code = SET_LINKS

(1) TASS Chunk Size

(ii) TASS Cache Size

(#i)) Number of Available Disk Chunks

(iv) Error Code

Allows the client processor to test if a neighbouring cache
server is ’alive’. In addition to that, the primitive allows for
the communication of relevant constants between the cache
server and the client processor, eliminating the communica-
tion expense that would be involved in implementing opera-
tions such as get_cache_size() using a RPC protocol.

This procedure is not specified in the File System Operations
(Table 3). It is not really a file system operation, rather it is
necessary to initiate the communication protocol over the
link. Itis also used to stream!line protocol operation as well.

Operation:

Read Chunk
Request Format:

Response Format:

Purpose:

(i) Operation Code = READ

(/i) Chunk Address

(#ii) Offset Within Chunk

(iv) Number Bytes to Transfer

(v) Predictor Argument

(i) Error Code

(ii) Data Transfer

This format allows the client to request that the data stored at
the indicated chunk address be copied to the client’s local
memory. The read need not transfer an entire chunk, rather
partial chunk transfers are facilitated using the offset and
number of bytes parameters. A predictor argument is also
passed, enabling the client to direct the work of the predictor
algorithm (if any) discussed in Sections 5.1.2 and 5.3.3.3.

Operation:

Write Chunk
Request Format:

Response Format:

Purpose:

(/) Operation Code = WRITE

(ii) Chunk Address

(#ii) Offset Within Chunk

(iv) Number Bytes to Transfer

(v) Write Through Flag

(vi) Data Transfer

(i) Error Code

Allows the client to request that the data contained in the data
transfer component be copied into the indicated chunk ad-
dress. As with the Read operation, partial chunk transfers are
possible. In addition, the client can specify that the chunk be
immediately flushed through the cache to disk.

101

Table 8 (if): Cache Server to Client Communication Protocol (continued)

Operation: Prefetch Chunk
Request Format:

Purpose:

Note:

Response Format:

(i) Operation Code = PREFETCH

(i) Chunk Address

(iii) Number of Chunks

None.

Allow the client to request the prefetching of the indicated
chunk address. In addition, the number of chunks argument
allows for the prefetch of the specified number of sequential-
ly subsequent chunks.

The fact that there is no response makes the prefetch an asyn-
chronous operation. The client will not be made aware of any
errors that occurred during the reading of a chunk until an ac-
tual Read operation for that chunk is issued.

Operation: Fiush Cache
Request Format:

Purpose:

Note:

Response Format:

(i) Operation Code = FLUSH

(ii) Invalidate Flag

None.

Indicates that all dirty chunks cumrently resident in the cache
are to be written to disk. Additionally, the invalidate flag al-
lows the client to request that all of the data stored in the
cache be invalidated (forcing it to be re-read from disk the
next time it is accessed).

Like the Prefetch operation, flush is an asynchronous pro-
cedure.

5.2. Implementation of the Cache Server 1 Prototype

The two cache server prototypes only differ in the implementation of the DSL and CL.
The FSL and SML implementations are not identical, but the CS1 versions of those layers are
a sub-set of the CS2 versions. Because of this prototype being abandoned, those layers did
not undergo the complete implementation intended by the design. Therefore, this section

only discusses how the DSL and CL are implemented in the CS1 prototype. The discussion

of the FSL and SML are postponed until the CS2 prototype discussion.

The initial attempts at generating a TASS cache design involved letting the file servers
each access the cache directly. Wherever access to shared data structuses, like the cache list,

valid bits, look-aside buffers, etc., was required, a critical section would be established to

102

monitor those accesses. Concurrent access to critical sections was prevented using the sema-

phore construction. That way any file server process operating in the cache server can share

these important structures without fear that another server is already tampering with them.

This design approach did not progress very far because the problems involved with these

semaphores, namely the potential for deadlock and/or erroneous behaviour, was deemed too

great. Circular dependency issues [Baw91] cropped up everywhere. For example,

1

()

(3)

4

A file server, P, trying to read disk address A, accesses the list of cache entries and

obtains mutually exclusive access to that list.

P, finds the cache entry it is looking for, but the entry is currently being read from disk

by another file server P,. Clearly, P, cannot read the data yet, since it is not in the

cache yet.

P, cannot go forward, since the data is not available, and it clearly cannot block,
because it still holds mutually exclusive access to the cache list, which P, will require in

order to insert the data that PI waits for.

Even if P, tries to release exclusive access to the cache list, then immediately block
waiting for a signal from P,, it may be context switched out after releasing the cache
list, but before placing itself on the blocked list for the desired cache entry. P, could
easily come along and insert the data into the appropriate cache entry, find no other pro-
cess waiting for the data, and as a consequence P,, would issue no wake up call to P,

who would then be blocked indefinitely.

This is just an example, but illustrates one of the many problems involved with the

implementation of a complex data structure that is to be shared by numerous concurrent

processes. 1 decided that modularizing the cache control by creating a single process, the

Cache Manager, to monitor all of these data structures was the only reasonable alternative.

103

Prompted by the perceived need for a Cache Manager prototype, I fell prey (as | had in
the first disk server prototype) to the temptation of allocating a process group to perform each
of the *obvious’ required tasks®>. Eventually, this led to the process hierarchy shown in Fig-

ure 16. The Cache Manager is the central process, with all other process groups requesting

5
E Server Layer
:
]
i

Client ' Server Process Pools

Links 1 Server Server Server Server
i Client 0 Client 1 Client 2 Client 3
! = = <
]
H
H
e e e e e e e e e e e e e e e 7 e e o e 2 4 o e ot ;i e
]
i
1
' _ Look

RAM : [Cache ! Through
' Manager

Allocated to ! l hd Cache

Cache E
L e e e e e e e e e e e e e e e e o e] e ey]
¥
1
i
1
: P Pool
: Requestor Process Pool Acceptor Process Pools
1
t R Acceptor Acceptor Acceptor
T l (Disk 0 Diskl Disk 2

. i \\ T\

Disk !

Links : J D
! 3 Key Data Flow ===3
1]

- 1 T
Transputer Disk Support Layer i Control Flow —=
t ! " -
Hardware : i Layer Boundary

Figure 16: Cache Server Prototype 1 Process Hierarchy

2 However, since the cache server code is significantly more complex than that of the disk server so it is
much easier to justify imposing a little communication overhead to achieve a high degree of modularity,

104

service from that centralized source. In the case of the File Servers and the Requestors, this
corresponds to the normal downward flow of client requests to the disk server. However, the
asynchronous responses issued by the disk server, and accepted by the Acceptors contravenes

this downward flow. The fact that the Acceptors *depend on’ the Cache Manager for service

is an upward control flow.

This design uses an approach similar to that of the upcall technique presented by Clark
[Cla85]. In Clark’s method, the natural flow of control for the problem at hand, is mapped to
the operation of the system’s components, whether that flow of control is in a hierarchly
downward or upward fashion.

"... there are organizational and modularity reasons why this [hierarchical] downward
flow of control is appealing in a layered system. However, the natural flow of controi is
not always downward. In a network driven environment, for example, most of the ac-
tions are initiated, not by the client from above, but by the network from below. The na-
tural flow of control is thus upward, not downward. Especially where such an upward
flow of control crosses a protection boundary, most systems do not permit this flow to be
implemented as a procedure call. Instead, some more cumbersome and asynchronous
mechanism must be used, such as an interprocess communications signal. Substantial
inefficiencies and complexities can result from asynchronous upward flows. In our
methodology, the system is organized so that the programmer has the choice as to wheth-
er an upward flow is implemented by procedure calls or asynchronous signals”
[Cla85](page 171).

5.2.1. Requestor Process Group

The operation of the Requestor group for CS1 is very simple. Each Requestor process
makes an upcall to the Cache Manager and (effectively) says "I am idle. Give me work.".
When the Cache Manager needs a disk access performed, it issues the disk operation to one
of the idle Requestors which then issues it to disk. After that, one further upcall is made
from the Requestor to the Cache Manager in order to return the buffer within which the data

was stored. As the Requestor knows what operation is associated with the buffer, it is its

105

responsibility to inform the Cache Manager as to what must be done with the buffer. For a
write operation, the buffer is returned to the cache (as the data in it is still valid). For a read
operation, the buffer is returned to the free buffer list where it will eventually be filled with

data from disk.

Any disk joining technique can be abstracted within this model as the Requestor process
can map the disk address specified by the Cache Manager to the physical disk, and the
address within that disk, which would correspond to the joining. However, since only one
Requestor process is handling the request, a striped disk joining would have its component

requests (one request per physical disk) serialized rather than parallelized.

5.2.2. Acceptor Process Group

Operation of the Acceptor process group is even more simple than for the Requestors.
Each Acceptor must have a buffer available in case the operation it tries to accept is a read. If
it has no buffer, it makes an upcall to the Cache Manager, which gives it a buffer from the
free buffer list (the code is constructed so that there is always a free buffer available). The
Acceptor then waits for any incoming disk server response. Once such a response is
observed, the Acceptor reads it (and any incoming data is read into the available buffer) and

makes an upcall to the Cache Manager to inform it as to the contents of that response.

As discussed with the Regquestor process group, any disk joining could be implemented
using this model. However, striped disks might pose a problem since all the responses from
component disks would have to be assembled together into one combined response. This
would require some form of bookkeeping structure, not currently incorporated into the
model, in order to maintain the status of outstanding requests. The CS1 implementation was
abandoned before the addition of striping to the multiple disk model, so I am not certain as to

the problems that may have occurred in an actual striped implementation using the CSI

106

model.

5.2.3. File Server Process Group

Briefly, File Servers read requests from the clients via the serial links. These requests
are then passed through the file system code which converts them into a sequence of cache
accesses. These accesses are issued to the Cacrie Manager and appear to the issuing File
Server to be synchronous events. For example, a File Server issuing a Write Chunk to
address A will block until it is given an exclusive lock on A within the cache. The File
Server will not notice any time spent waiting for the address to be read into the cache or for
- some other File Server to finish with address A before that lock is given to the requesting

File Server. The File Server operation will be discussed in more detail in Section 5.3.3.1.

5.2.4. The Cache Manager

In the CS1 implementation, the Cache Manager performs the majority of the work
involved in the operation of the system. Because of that, its operation is critical to the perfor-
mance of the entire cache server. For this reason, the following rules are zealously adhered

to.

e The Cache Manager can never be blocked while waiting for communication if there is
another process, dependent on the Cache Manager, that would be starved due to that block-
age. In other words, the Cache Manager cannot block while waiting for a disk access to
complete if that blocking would prevent the Cache Manager from satisfying the request of

some other process.

e Before entering into communication with any other process, the Cache Manager must be

guaranteed that that communication can proceed to completion without requiring the Cache

107

Manager to indefinitely block during the communication.

The actual implementation of the Cache Manager requires that it maintain a list of com-
munication channels, one per client process (R Requestors, A Acceptors and F File Servers,
for a total of R+A+F channels). The Cache Manager can only block if none of these com-
munication channels are active. Once one channel indicates an incoming communication,
that communication must be completely handled in some fashion, thus allowing the Cache

Manager to return to biocking on the list of channels.

For the Requestors, three possible communication types can occur, namely the “I am
idle" message and the two buffer return message variants. The buffer return messages are
simple to process to completion, since they require the Cache Manager to accept the buffer
and place it on either the cache buffer list, or the free buffer list. The "I am idle" message is
not as simple to handle. It is entirely possible that the Cache Manager has no nced for a
Requestor at this moment in time. It cannot leave the communication pending because, due
to the nature of transputer interprocess communication, acknowledging the incoming message
effectively begins the protocol for handling that message. So the communication with the
Requestor must be completed. This requires that the Cache Manager maintains a separate
structure to keep the status of all Requestors. In other words, the Cache Manager must maii-
tain a list, in some form, of all Requestors that have signalled they are idle, and who have not

been issued a request to handle since that idle message arrived.

There is no need to maintain any structure regarding the status of the Acceptor
processes. The Acceptor processes simply act as relays, passing disk server responses to the
Cache Manager (they are required since waiting on the disk server is an indefinitely long
communication block, which the Cache Manager, by the above rules, cannot do itself). What
the Cache Manager must maintain is a list of outstanding disk requests, since every incoming

response must be matched to one of those requests. So even the correct operation of the

108

Acceptor process group requires the maintenance of status structures within the Cache

Manager.

As for the File Server process group, there are many distinct communication operations
that can occur, since a request for a Read Lock, Write Lock, Write Partial Lock, Release Read
Lock, etc., can be issued. Some of these operations are inherently blocking in nature. For
example, obtaining locks may require a File Server to block, since the data may not be in the
cache and a disk access must be made to fetch it or the data may already be in the cache, but
is currently locked, and the new lock violates the write-one, read-many (WORM) access cri-
terion. Some other operations are not inherently blocking, since lock release operations can
always be immediately satisfied. Because of this, the Cache Manager must accept incoming
file server communications in order to determine if they are satisfiable. If they are immedi-
ately satisfiable then the Cache Manager can do that and all concerned parties are happy.
However, if the request cannot be satisfied right away, then the File Server must be blocked
until that request can be satisfied. This req'uires that the Cache Manager maintain a list of all
blocked File Servers, as well as the reason why they are blocked. Every time another opera-
tion completes (for example a disk access completes and address A is placed in the cache, or
a release lock operation is performed on address A), the Cache Manager must then check this

list of blocked File Servers to see if their request can now be satisfied.

Furthermore, a distinction must be made as to whether a File Server wishes to write an
entire chunk, or just part of it. If the whole chunk is to be overwritten, then there is no need
to first read it from disk. However, if only part of a chunk is to be overwritten, then the
chunk must first be read from disk. The addition of an alternate form of write locking, in the

interests of avoiding unnecessary disk accesses, helped to complicate the software.

The primary reason for the perceived failure of this prototype was that during coding of

the Cache Manager process, it became all too apparent that the concept behind the design

169

was unwieldy. The Cache Manager process performed the majority of work within the sys-
tern, maintaining cache integrity, issuing disk requests, processing disk responses, etc. Con-
sequently, it was responsible for maintaining not only the cache data structures, but also
status information regarding the progress of each Requestor, Acceptor, File Server and
(effectively) of each client processor’s outstanding requests. The Cache Manager software
module rapidly became a king among monsters, its size rivaling Tyrannosaurus Rex, its com-
plexity reminiscent of Fettucine Alfredo. For this reason alone, the decision to scrap the CS1

prototype was made, and the decision was made to proceed, hand in hand with all the

knowledge gained in the CS1 experience, with the second cache server prototype, CS2%*.

5.3. Implementation of the Cache Server 2 Prototype

The concept behind the design of CS2 is to offload some of the work performed by
CS1’s Cache Manager onto the other processes in the system. In this fashion, the complexity
of the CS2 Cache Manager is reduced to more manageable levels, at the expense of slightly
more complex process structures for the Requestors, Acceptors and File Servers. Addition-
ally, the problems inherent in disk striping under the CS1 model (Section 5.2) are considered
and dealt with by the CS2 implementation. The process hierarchy is shown in Figure 17.
Note that all the process groups in the CS1 prototype are also used within the CS2 prototype.
There are two new process groups, namely the Write Back and Predictor groups. These will
be discussed in Sections 5.3.3.2 and 5.3.3.3, respectively. Until those sections, it will be

sufficient to simply think of the Write Back process group as being equivalent to the File

24 This assumes that all the knowledge gained is actually retained. If you were fully aware of my filing
system, you would scoff at this claim.

110

T :
ransputer ;
p : Server Process Pools Write Back Process Pool
Hardware . s =
i Server erver crver ; .
! ch;cmo]f’ {c* ieat 1 Chcnz2]j Cliznt 3 &nlc Back][) File
1
1
Clicat :] System
1
Links !
t,
3 Predictor Probess Pool Layer
s Predictor ’]
i —J
:. ---
4 I /T l
1
1
RAM ! /] Cache
1 Cache
Allocated 1o ' Manager M\ Layer
Cache H
i
: M
i
(ISR SUSEO U SRS VRPN NSRS SR
] , .
? Acceptor Process Pool Disk
1 |Requestor Process Pool Pending CCeplor r'rocess L'ools
' Reguestor —1 Requests [—>] ((Acceptor Acccpxor Acceplor SllppOI‘t
. T Lis Disk 0 stkl Disk 2
Disk .) Layer
1
Links H
]
i
¥
1

Dala Flow —> Control Flow —> Layer Boundary —---

Figure 17: Cache Server Prototype 2 Process Hierarchy

Server process group. It should also be sufficient to not think of the Predictor process group

at all.-

The major changes in the operation of the cache server are:

e The upcall technique used for Requestor and Acceptor communication with the Cache
Manager has been abandoned. Rather, the Requestors and Acceptors cooperate with each
other to provide a procedure call interface that is concurrently accessible to multiple

processes. This makes for a very clean modular cut at the disk support layer/cache layer

interface.

111

e Rather than the Cache Manager being responsible for issuing disk accesses to the disk sup-
port layer, the File Server process group directly issues disk accesses to the disk support

layer, when those accesses cannot be satisfied by the cache contents.

e The Cache Manager controls a look-aside cache, rather than the look-through cache of
CS1. In other words, File Servers simply query the Cache Manager as to whether the
required disk address A is resident in the cache. If A is resident, then the Cache Manager
will either give the File Server access to the buffer holding the data from address A, or
block the File Server if that access is not immediately satisfiable. If A is not resident, then
the Cache Manager gives the File Server a cache buffer into which the data for A can be
read (or written). Additionally, the Cache Manager tells the File Server whether the pro-
vided buffer holds a ’dirty’ disk chunk B, and if it does, the File Server is responsible for
returning the data for B to the disk, prior to using the buffer for address A. Once the data
for A is copied into the buffer (either from disk, from the client, or both), the Filz Server
returns that buffer to the Cache Manager requesting that it place address A and its

corresponding data into the cache.

5.3.1. Disk Suppert Layer

This section describes the interaction between the Requestor and Acceptor process
groups. The disk support layer core primitives are shown in Table 5. The conversion of an
asynchronous protocol into a set of efficient remote procedure call stubs, and vice versa, was
not as easy as I had expected. The most simplistic RPC implementation would be to have
one process gain exclusive access to the disk server communication links and issue a request,
holding the communication links until the associated response is obtained. This method
gains its simplicity by sacrificing some of the inherent parallelism of the disk server access.

As discussed in Chapter 4 and shown in Figure 13, execution of the disk server can be

112

thought of as a pipeline. If every stage of this pipeline is not kept busy, then sub-maximal
performance will be observed by the clients of that disk server. In Chapter 8 it will be shown
that at least three simultaneously active requests are required to keep the TASS disk server
and CP-3100 disk device busy, when a sequential data access pattern is being issued. When a

random DAP is being issued, only two simultaneously active requests are required.

A less naive approach might be to have a process obtain mutually exclusive access to
the send link, issue its request to the disk server and then obtain mutually exclusive access to
the response link, reading its associated response when it becomes available. This assumes
that the sequence of requests will identically match the sequence of responses, which we have
already stated (in Section 5.1.1) will not be the case. Therefore, providing a device indepen-

dent disk support layer cannot utilize this approach.
The TASS approach uses the Requestor and Acceptor processes as follows:

(1) The Requestor accepts a request from one of the disk support layer’s clients, noting the
clientid. of that client?,
(2) The request is preprocessed, in order to determine which subordinate disk it must be

issued to (assuming multiple disk environment) and what address on that disk is actually

being referenced.

(3) The request is issued to the subordinate disk. In the case of striped disks, the request is

sequentially issued to all three component disks.

25 In the TASS system, each process is given a unique process i.d. code upon generation of that process.

113

(4)

()

©6)

(7

®

)

The Requestor generates and places an entry on the pending requests list (PRL), which
is maintained by the Requestor and Acceptor process groups. That entry contains the
process i.d. of the requesting client, the physical disk involved (in a mulitiple disk
environment), the type of disk operation, the physical disk address to which that opera-

tion is being issued, and the buffer into which any data transfer is to made.
The Requestor returns to monitoring for new client requests.

Initially, one Acceptor process is blocked on each incoming communication link from
one of the disk servers. Once an incoming communication is observed, the Acceptor
begins by reading the first portions of the response primitive (from Table 7), namely the

operation and the disk address with which this response is associated.

These two components of the response, coupled with what disk that response comes
from, can be used to uniqﬁely identify the corresponding entry on the PRL. If multiple
duplicate requests for an address are on the PRL, then the assumption is that the
response matches the first of those duplicate requests found. The entry is removed from

the PRL and the client i.d. and buffer are kept by the Acceptor.

Communication with the disk server completes when the Acceptor reads the error code,

as well as any incoming data into the buffer.

The Acceptor then uses the client i.d. in order to return that data to the appropriate client

process, freeing it to continue its operation.

(10) Finally, the Acceptor returns to monitoring the link from the disk server.

In this method, the Requestor operation is implemented as a purely downward fiow of

control, from client process request through to the issuance of the actual disk access(es). The

Acceptor operation is still an upcall, however, the fact that an upcall is involved is completely

114

hidden from any clients of the disk support layer. This provides a better abstraction of disk

services than is provided by the CS1 prototype.

5.3.2. Cache Layer

The Cache Manager, the File Server and the Write Back process groups all operate
within the cache layer. The cache layer is divided into many distinct modules, however, there
are only two primary ones, namely the Cache and CacheManager modules. All the other
modules are subservient to the CacheManager module. As the name suggests, only the
Cache Manager executes within the CacheManager module. The File Servers and Write

Back processes execute the Cache module software.

5.3.2.1. The CacheManager Module

This is the central module to the cache server software. Even with the streamlining of
the Cache Manager process ihat took place between the CS1 and CS2 prototypes, this
module still remains quite large. However, its function is simpler, and, as a side effect, the
code is a little less unwieldy and easier to comprehend?®. In trying to simplify the design of

the CS1 Cache Manager, 1 observed that there are seven basic operations that are required to

completely service any cache request within the cache layer model outlined in Table 4%7.

26 [have written two pieces of code in my life that I could not understand after 6 months without looking
at it. These are the very first large program I wrote, which was in BASIC, and the CS1 Cache Manager
software.

%7 This does not include many of the basic functions like ChunkSize and NumberOfChunks, as these do
not even directly access the Cache Manager, rather they are routed by the Cache module directly to the disk
support layer procedures of the same name. The only other procedure of note is CacheSize, which is easily im-
plemented as a procedure call that returns the value of a variable cache_size which is in turn set by the Cache
Manager immediately after the cache is initialized. In other words, none of these procedures require communi-
cation with the Cache Manager.

115

These seven procedures, which are discussed in the following sections, can be used to effec-
tively execute any change to the state of the cache that might be required by any of the cache
layer primitives. In the discussion of the primitives, the word server is used to mean either a

File Server or a Write Back process.

5.3.2.1.1. Get Lock
Arguments: (¥ Serveri.d
(it) Requested Address
(iii) Type of Lock Requested
Results: (i) Obtained Address

(ii) Pointer to Buffer Holding Data
(iii) Dirty Flag

(iv) Error Code

The server requests that the Cache Manager place a lock, from the set of lock types, on
the requested address. The set of lock types is {Read,Write,None}. If the requested address
is in the cache, then the Cache Manager can grant the lock, if possible, or block the request-
ing server until the lock is possible. If the requested address is not in the cache, the Cache
Manager need only give the server a buffer and tell it to go fetch the requested address from
disk. However, if the buffer provided has valid and dirty data in it, then the server must
return that data to disk first. For this reason, the Cache Manager provides an obtained
address field which tells the server which disk address it has received. If the obtained address
does not match the requested address and the dirty flag is set, then a forced write back is

necessary to clear the data in the buffer. The obtained address field also informs the server as

116

to the disk address that the dirty data belongs in. Prefetch operations are simply Gei Lock
operations which use the None’ lock type option. Note that unlike the CS1 prototype, no
alternate write lock (to deal with partial writes) need be provided since the server process can

choose to read the data from the disk prior to the access, if that is applicable.

5.3.2.1.2. Release Lock
Arguments: (i) Serveri.d
(ii) Locked Address
(iii) Type of Lock Requested
Results: (¥ Error Code

The server informs the Cache Manager that it has completed its operations on the
locked address and that the type of lock specified can be removed. This operation only

applies to Read and Write locks and is not necessary for the None lock variety.

5.3.2.1.3. Insert New Entry

117

Arguments; (i) Serveri.d.
(ii) Address
(#ii) Lock Type
(iv) Make MRU Flag
(v) Is Valid Flag,
(vi) Pointer to Data Buffer

Results: (i) Error Code

This allows the server to complete a disk access by inserting the newly read address
(and its data) into the cache. Also, since the server may still need a lock on that entry, it can
specify that by using the Lock Type argument (thus giving the server that fetched the data
first crack at using the data). Also, to allow a greater degree of control, the procedure was
also implemented with flags allowing the server to select if the entry is placed in the MRU or

LRU position of the cache, or even to indicate that the data in the buffer is not valid.

5.3.2.1.4. Start Write Back

Arguments: (¥) Server 1.d.
(ii) Requested Address
Results: (i) Obtained Address

(ii) Pointer to Buffer Holding Data

(iif) Error Code

118

The server informs the Cache Manager that it wishes to write a chunk back to disk. The
server can specify the address, in which case it will either be given that address and the buffer
holding the corresponding data, or informed (via the Error Code) that the address is not dirty
or not currently in the cache. Alternatively, the server can specify an invalid address, in
which case the Cache Manager will give it the least recently used dirty address, if one is

available. This last option is used by the Write Back process group.

5.3.2.1.5. Finish Write Back

Arguments: () Serveri.d.
(ii) Address
Results: (i) Error Code

This allows the server to inform the Cache Manager that the indicated address has been

successfully returned to disk and that its dirty bit can be cleared.

5.3.2.1.6. Stop Cache Flush

Arguments: (1) Client i.d.
(if) Invalidate Flag
Results: (?) Error Code

Allows a server to inform the Cache Manager that a cache flush has been requested.
Cache operations are to be suspended while all dirty data in the cache is cleansed by indivi-
dual Start/Stop Write Back calls. Additionally, the server can inform the Cache Manager

119

to invalidate all the entries within the cache, once they have been returned to disk (if they

were dirty).

5.3.2.1.7. Stop Cache Flush
Arguments: (i) Client i.d.
Results: (i) Error Code

Once one of the Start Write Back operations returns an error code indicating that there
are no dirty entries left in the cache, the server can use this procedure to inform the Cache

Manager that the flush has completed and that normal cache operations can proceed.

5.3.2.2. The Cache Module

By now the modularity purists are screaming, "How can those procedures be justified
when they require a higher layer of software to provide consistent lock values and operate in
a consistent fashion, issuing start and stop operations in the correct order, etc., etc., etc.?”
How I propose to justify those primitives is by adding an additional module layered on top of
the CacheManager module. This module will be part of the cache layer, but its code wili be
in-line procedures executed by the clients. What the Cache module accomplishes is to pro-
vide a set of procedures that will call the CacheManager module in a consistent fashion.
Furthermore, it allows for the client processes, namely the File Server and Write Back
processes to directly access the disk support layer, effectively eliminating the Cache

Manager’s dependence on that layer.

120

5.3.3. File System Layer

As mentioned earlier, in 5.1.3, the file system layer of TASS is effectively a null entity.
The interesting component of the file system layer is the implementation of the three resident
process groups, namely the File Servers, Write Backs and Predictor. Also of interest is how

they interact with each other and the cache layer and server message layer.

5.3.3.1. File Server Process Group

The file server process gréup is the workhorse of the TASS system. It is responsible for
(i) accepting requests from the serial links that connect TASS to its clients, (i) converting
those requests into a sequence of file system layer procedure calls, (iii) querying the Cache
Manager to see if the request can be satisfied by the current contents of the cache, (iv) if not
satisfiable by the cache, then the server group must execute the request to disk by initiating a
sequence of calls to the disk support layer and (v) finally, return the results of the operation to
the client via the same serial link upon which the request arrived. Admittedly, some of these
operations ((iif) and (iv)) are hidden from the file server process group by the cache layer
abstraction, but the fact that the File Server threads must actually do the operations makes the

importance of the group paramount.

At compile time, the number of File Server threads is selected through the use of five
constants. These are, from the Process.h header file PROCESS_SERVERS_PER_LINK,
which defines how many file server threads will be allocated to the pool for each client link
and four constants from the ConfigureLinks.h header file,
CONFIGURELINKS_CLIENT_ON_LINK_i, where i ranges from O to 3. Basically, the
client on link constants are booleans, defining what links are used for communicating with
client processors and what links communicate with disk servers. Because of this, each client

has a dedicated pool of servers, rather than all clients sharing the same pool.. There are both

121

advantages and disadvantages to this approach.

To exemplify a disadvantage, consider the following. A TASS storage node services
two clients. One client only issues one disk request at a time and uses no prefetching or other
services that tie up File Servers. Another client is executing using a highly predictable DAP
and wants to prefetch extensively. However, the fixed size of that client’s File Server pool
limits the degree to which the client can control prefetching, even though there are idle File

Servers sitting in the other clients pool.

The advantages to this technique are in simplicity of design and minimizing of shared
data structures. Each pool is dedicated to a single serial link, therefore the threads in that
pool don’t have to worry about any other client links, therefore the code for those processes
is simpler. Additionally, there is no need to share multiple client links, hence there is no
need to implement a critical section that encompasses all client links. The design of such an

encompassing critical section, within the constraints of the Logical C and transputer com-

munication environment is not easy?®. It is significantly simpler to use a single semaphore to
guarantee any thread within a pool mutually exclusive access to the one link serviced by that

pool.

5.3.3.2. Write Back Process Group

The write back process group is a compile-time optional component of the TASS sys-

tem. Its objective is to keep the cache clean without degrading system performance. The

28 Numerous methods were attempted. Either (i) they failed to correctly operate, leading to deadlock or
(i) they provided atrocious performance due to excessive communication overhead required to circumvent the
problems that led to failure (i).

122

ideas prompting the inclusion of this process group are:

e In a delayed write back cache environment, altered data for disk address A stays within the
cache until the buffer holding it is targetted for replacement. At this point, the modified
data has to be written back to disk, prior to being replaced by any new data for disk address
A’. When this occurs, the client waiting for the data from A’ must wait for two disk

accesses, first the write back of A and then the read of A’. This degrades the response time

observed by the client processor.

e During periods of low disk activity, it is possible to slip a few write backs in to the disk
access stream, opportunistically flushing the buffers (and possibly eliminating the need to

~ force a File Server to write back those buffers).

The initial plan for the TASS write back process group was to have it monitor the disk
accesses. When a lull appeared, indicated by a small list of pending requests or a fixed time
passing since the last issued disk request, a Write Back thread would be dispatched to per-
form an opportunistic write-back disk access. Like I said, that was the initial plan. During
the implementation of the TASS system, I needed to put the write back process group in
place to test its operation. 1 had not yet determined the method whereby opportunisitic
activity would occur. Being a bit of a hacker, I simply made the WriteBack threads operate at
a lower priority than the File Server threads. No opportunistic check was made, the rule
being any time’s a good time for a write-back, as long as no real cache accesses are
currently underway. Performance was atrocious. The Write Back threads quickly cleared the
cache, and then proceeded to use even the slightest gap in File Server requests to tie up the
Cache Manager with useless *Anything to write back?’ queries. Even with the Write Back
threads operating at low priority, the overhead imposed on the Cache Manager was sufficient

to drastically degrade performance. As you may be aware, early failures never dissuade a

123

good hacker. I thought, well, if I can prevent these streams of useless queries, then I can get
on with testing the code for bugs. So, I simply forced each Write Back thread to sleep for a

short period of time after being told the cache contains no dirty entries®”.

The performance obtained with the Write Back threads wsing this 'sleep” period is
dramatically beiter than the performance observed when they were not using it. In fact, as
will be discussed in Chapter 9, performance results using this method are so good that 1 have
never felt the need to properly implement an opportunistic decision algorithm. Consequently,
the write back process group still operates using the 'hack’ described above. One very sub-
stantial advantage to this simple hack is that it is almost without processor overhead. A little
communication overhead is imposed by the communications between the Cache Manager
and the Write Back threads, but it does not appear to affect the 1/0 throughput of the system
as a whole. In fact, the use of the write back process group will be shown to substantially

improve TASS performance during sustained periods of write activity.

5.3.3.3. Predictor Process Group

A ’hook’ is provided into which a Predictor process group could be inserted. This hook
provides the basic communication service that would be required for the use of such a pro-
cess group. Therefore, TASS users are able to design their own prediction algorithms, and
hook them into the TASS system without worrying about communication considerations.

Exhaustive testing of this component of TASS has not been performed.

* The time selected was approximately the time required for three disk accesses to be issued and complet-
ed. The reason for this selection was sort of random, chosen simply because it seemed like a good period of
time. Some tests I have run have shown that I am either (i) incredibly intuitive in matters disk physical, or (ii)
as lucky as an Irishman at a convention of leprechauns.

124

Due to the simplicity of the n-block look-ahead prediction algorithm, it was not imple-
mented as part of an autonomous Predictor process, rather it is provided as an in-line code
procedure call. This eliminates the inter-process communication that would be required
between the File Servers and any Predictor processes. All tests performed on the TASS sys-
tem are made while using either no prediction service, or this simple in-line procedure call
variant. The interface provided by the procedure call variant is identical to that provided by

the communication stubs (or "hook’).

5.4. RAM Cache Prototype

The CS2 prototype can be utilized as a RAM disk, or RAM cache (to differentiate it
from the disk server versions). This is a compile directed option and is selected by choosing
the RAM cache option from the list of disk joining options. The implementation is fairly
straigtforward, with the only significant difference being that the after the Cache Manager

has allocated all of the cache buffers, it must make a call to the disk support layer to set the

number of disk chunks to the number of cache buffers allocated>’.

¥ The SetNumberDiskChunks operation is not normally part of the disk support layer interface. Howev-
er, when the RAM Cache version is selected at compile time, this procedure is added. Additionally, the disk
support layer’s ReadChunk and WriteChunk procedures are replaced by do nothing procedures that simply re-
turn with a "no error nccurred’ error code. :

125

6. The Client Interface

This chapter will be refreshingly brief. The TASS client interface provides a set of RPC
stubs that allow processes operating within any processor directly connected to a TASS
storage node, to access the mass storage system provided by that TASS node. This set of
procedure calls are given in Table 3. As discussed in Section 5.1.4, the client interface, as it
exists on the client processors, is the first region of the TASS system that is part of a distri-
buted file system. Since this research is oriented to local file system design, the client inter-
face does not fit within the scope of this thesis. Regardless of that fact, it is included hers for

“reasons discussed in the upcoming paragraphs.

In Section 5.3.1 it was discussed that implementation of a simplistic RPC stub, where
the client process obtains mutually exclusive control of both the outgoing and incoming com-
munication links and maintains that control for the duration of the communication, sacrifices
the inherent parallelism of the environment. In spite of this, that very technique was utilized

for the client interface RPC stubs. There are three primary reasons for this decision,

(1) Some form of client interface is necessary to test the TASS system for both correct
function and performance measurement. Also, other SFU transputer users require the
TASS system to support their parallel sort research testbed [Atk92]. This technique

presented the easiest path for providing a suitable interface.

(2) The client interface, although a component of the TASS system, is not a component of

the TASS LFS. Therefore, 2 complex implementation is beyond the scope of this thesis.

(3) As discussed in Chapter 5 it is practical (and maybe necessary) to use multiple
processes to implement an efficient RPC on top of an asynchronous communication pro-

tocol.

126

The reason that the third point is an issue stems from the requirements specified in Sec-

tion 3.2. These state

e The object code size for linked LFS libraries (in other words the client interface RPC
stubs) is kept minimal. Programs utilizing the disk system are not forced to allocate large

portions of their local memory, in order to access the large disk memory.

e The number of client processor cycles required to execute a single disk access is minim-
 jzed. Additionally, the number of context switches required due to processes blocking dur-

ing execution of the LFS library has been kept to a minimum.

Implementing a set of RPC stubs using a method similar to that used in the cache

server’s disk support layer would violate both of these conditions.

In an effort to offset the penalties imposed by such a simplistic RPC implementation,
the use of client directed prefetching has been heavily stressed. The interface has been
tailored to easily provide sequential prefetching, often hiding it within the normal Read
Chunk operation. This assumes that the cache server software has been compiled using the
sequential access prediction service mentioned in Section 5.3.3.3. Because of this, the actual
interface which is shown in Table 9, provides numerous variants on the basic read and write
operations. There is no explanation of the procedures given, as the actual names are quite
long and hopefully completely descriptive of the function. Each of the tass_read() pro-
cedures is equipped with a PredictorArgument parameter which is passed to the sequential
prediction service and is used to indicate the value of n which is to be used for n-block look-
ahead prediction. The interface also allows for the client to easily choose between the
delayed write back and forced write through caching strategies. Any operation that commun-
icates with the cache server processor will return an error code indicating what, if any, error

occurred during the execution of the request. The predefined type TASSError (which is just

127

Table 9: The Procedures of the Client Interface

TASSError tass_set_links()

int tass_number_chunks()

int tass_cache_size()

int tass_chunk_size()

TASSError tass_read_chunk()

TASSError tass_read_chunk_sequentially()
TASSError tass_read_chunk_sequentially_by_n()
TASSError tass_read_partial_chunk()
TASSError tass_read_partial_chunk_sequentially_by_n()
TASSError tass_write_chunk()

TASSError tass_write_partial_chunk()
TASSError tass_write_through_chunk()
TASSError tass_write_through_partial_chunk()
TASSError tass_prefetch()

TASSError tass_prefetch_n_chunks()
TASSError tass_flush()

TASSError tass_flush_and_invalidate()
TASSError tass_shutdown()

TASSError tass_cache_statistics()

TASSError tass_detailed_cache_statistics()
TASSError tass_disk_statistics()

TASSError tass_detailed_disk_statistics()

an unsigned integer) is used for these errors.

Basic operation of the client interface involves first issuing a tass_set_links() operation,

specifying the addresses of the in and out components of the serial link3! which connects the

client processor to the TASS storage node. This operation can be issued as often as desired

31 For example, LINKOIN and LINKOOUT in Logical Systems C. All serial links in Logical C are ac-
cessed using the defined constants, LINK/IN and LINK/OUT where i indicates which of the four serial links,
from Q to 3, is to be accessed.

128

(although once per link is all that is necessary), and for as many serial links as are connected
to TASS storage nodes, allowing one client processor to access as many as four TASS
storage nodes (although, barring shared memory interfaces, that would effectively cut the
client off from the rest of the world). The tass_set_links() operation returns the code for any
error that was observed, plus a TASSLink indicator. Subsequent calls to the interface use
this indicator to determine which of the connected TASS storage nodes is to be accessed.

This means that the client need not constantly specify the serial link addresses, which serves

to eliminate some of the problems that might occur if that were the case>2.

" To help preserve data integrity, the client can issue cache flush instructions. An addi-
tional option to the cache flush is tass_shutdown(), which firsts issues a cache flush and then

causes program execution within the TASS cache server to halt.

For performance analysis, it is necessary to monitor cache activity. For this reason,
TASS has been modified to tabulate various statistics, for example, the number of cache hits
and misses, the number of disk read and write accesses, etc. Statistics tabulation is a compile
directed option. In other words, if the statistics are not required for the users application, the
code and data structures required to amass those statistics are not generated within the cache
server. This helps to both optimize TASS performance as well as maximize the memory

available for the cache.

321t is fairly easy, I have found, to mistype LINKOIN and put something inappropriate like LINKOOUT or
LINKIIN. It is also fairly difficult to find that sort of error, since it is the communication protocol and not the
compiler that objects. Run-time errors, ya’ gotta love ’em.

129

7. Device and Disk Server Performance

The primary motivation for this research (section 1.3) is to implement an efficient local
file system for use within the transputer multiprocessor. The previous chapters overviewed
the design of a LFS, discussing qualitative issues involved in the implementation of prototype
versions of this LFS. However, the efficiency of the resulting system has not been analyzed.
How much data throughput can the system provide to a network of transputers? How much
throughput is lost due to software overhead? Are the processors controlling the LFS taxed to
the point where a more elaborate file system would saturate the processing power of the sys-
tem? These are all questions regarding the efficiency of the LFS and cannot be answered in a

qualitative fashion, rather they require a more quantitative analysis.

The quantitative analysis (or performance) of the TASS LFS can be approached in terms

of (i) sustained data transfer rates (SDTR) and (ii) system software processor use (SSPU).

Definition: The sustained data transfer rate (SDTR) of a mass storage device is the number
of data bytes that can be transferred each second between the device and the main memory of
a processor. Furthermore, that data transfer must be sustainable over prolonged periods of
time*3,

Definition: The system software processor use (SSPU) within a processor operating as a

component of a software system is the percentage of the available processor cycles consumed

in the act of executing that software system.

The analysis of these two issues shows whether the limiting factor to TASS performance is

33 It should be noted that all SDTR results between a transputer and a device (possibly another transputer)
are determined without utilizing the transputer’s on-chip RAM. Also, a prolonged period of time is usually in-
terpreted as a small (integral) number of seconds.

130

the design of the system, or the physical hardware itself. Assuming that the bottleneck is the
hardware, the analysis indicates what degree of hardware upgrade will be possible before the
system becomes the limiting factor. If the system is the limit to performance, then the quali-
tative analysis indicates what regions of the software, and under what conditions, are the

cause of the performance degradation.

Section 7.1 discusses the techniques used to approximate the data access patterns
(DAPs) used within the performance testing. These approximation techniges are defined
here, and used throughout this chapter and the subsequent two chapters. Section 7.2
discusses the hardware limitations which indicate the upper bounds on TASS performance.
‘Section 7.3 concentrates on the SDTR performance of the disk server software and compare

those results to the hardware limitations described in Section 7.2.

7.1. Approximating Data Access Patterns

Techniques are presented for producing approximations of the two predominant data
access patterns (DAPs) used in performance analyéis of the TASS prototype. These patterns
are Sequential Global Irregular (SGI) and Random Overlapped (RO). In every level of
analysis that requires a particular data access pattern, I have attempted to utilize the same pat-
tern generation technique without any modifications. Where the technique is modified, a
brief overview of the modifications is provided, accompanied by a discussion regarding the

effects those modifications have upon results obtained using the data access pattern.

For all access patterns, SDTR results are determined using S generated samples, each
sample involving N read (or write) disk chunk operations. In situations dispiaying negligible
variance in results, S may be kept small, possibly as low as 1 sample per test. The number of
chunks operated on, N, will usually be large, in the neighbourhood of 200 to 1000 operations.

The actual SDTR figures presented are determined by timing how long it takes to execute the

131

N disk chunk operations. Timing begins immediately prior to the first disk request being
issued and stops immediately after the last response from the disk server is accepted. Let this
length of time be . The data throughput is then calculated as (N chunks * B bytes/chunk) / ¢
seconds, giving the SDTR in bytes/second. All SDTR figures are actually given in
KBytes/second, so this result is additionally divided by 1000 bytes/KByte.

7.1.1. Sequential Global Irreguiar

The sequential access SDTR figures for each of the TASS components is determined
using SGI data access patterns. The SGI pattern minimizes average disk seek times since
each disk access follows an access to the sequentially previous chunk. It is discussed in Sec-
tion 7.3.2.2 that the chunk interleave factor and chunk size used with all the TASS disk
servers is chosen to provide maximal data throughput for purely sequential access patterns.
Therefore, any other access patterns can only exhibit larger average seek times, providing

lower SDTR results.

Each of the N contiguous disk addresses accessed during each sample are operated on
by one of the P worker processes. A process p, 0 < p < P initiating a new operation accesses

address n+1, where n was the previous address upon which an operation was initiated.

During each sample, the nth operation issued accesses disk chunk address n+a, where 0
< n < N and a is the address of the first disk chunk accessed in this sample. In each of the S
samples, the values of a are (approximately) evenly distributed across the entire disk address
space. In other words, at the start of each sample, the first chunk accessed is not always
chunk 0, rather it might be chunk 2000 for the second sample, then chunk 4000 for the third

sample, etc.

132

To implement the above strategy, each worker requires access to a shared resource.
This resource informs workers as to which disk address is next in global sequential order.
This shared resource is implemented as either a shared procedure or an autonomous process,
depending upon whether workers are resident on the same or separate processors, respec-

tively.

7.1.2. Random Overlapped

The use of the RO DAP shows the minimum sustained data throughput that can be

achieved using TASS3*. This provides an indication of the lowest /O bandwidth that each

TASS storage node can provide to clients within the transputer network.

There are two stages involved in the generation of an approximate RO DAP. Firstly, a
RO DAP is supposed to emulate random access to a file, therefore some contiguous region of
the disk address space must be selected to be that *file’. Often, the region chosen will be the
entire disk address space, however, sometimes the number of chunks N in the TASS file (see
Section 3.2.2.2) is chosen to be somewhat less than size of the entire disk. Once the TASS

file size is chosen, it must be randomly distributed within the disk address space by randomly

determining the first chunk (in the group of contiguous chunks)>.

3 Assuming that the availability of requests saturates the server, forcing it to access the disk constantly.
Also, this assumes a reasonable disk access pattern. Some access patterns could maliciously choose disk
accesses that would maximize the time spent performing disk seeks and display a lower SDTR than that
displayed using the RO DAP.

33 1t would be poor scientific practice to test a random access to the same region of disk for all samples. It
is possible that performance would be worse when the region accessed is varied. This may not be likely, but
tiien again, it is not hard to siagger where the contiguous region begins.

133

Once the region of disk to use is determined, individual disk accesses to that region are

made in a random fashion. Each address to access is generated using the formula
CurrentAddress = (rand() modulo N) + F

where F is the first chunk address in the disk region.

The rand() function does not provide a random sequence of integers, rather each time it
is used it will generate the same sequence of pseudo-random integers. To provide more real-

ism, every sample generated will utilize a different sequence of pseudo-random numbers by

using the srand() seed initialization function’®.

7.2. Device Performance Limitations

7.2.1. Host Interconnect

Data transfer between a Sun host and the root of a transputer network has been docu-
mented in {Atk91]. Results given in that paper were obtained using a serial link interconnect
which was driven by a Sun resident buffered polling device driver. That paper indicates the
current I/0 throughput between a transputer network and a Sun-3 or Sun-4 host is 634 or 699

KBytes/second, respectively.

36 The srand() function is initialized using a new prime number each time. Idon’t believe prime numbers
are required, but I took a number theory course and I have to apply it somewhere.

134

7.2.2. Transputer Link Throughput

There are many active users of the Simon Fraser University transputer environment.
Since the transputer network must support the interconnections required by each user, each
serial link on each transputer is connected to a CSA Part.7 crossbar switch, allowing arbitrary

transputer interconnections to be made when each user’s program is booted.

Sustained uni-directional transputer to transputer data transfers are expected to be no
higher than 1.74 MBytes/second [Inm89]. Those résults, however, are based upon transfers
between each transputer’s on chip RAM. The relatiVely small size of on chip RAM
prompted the additipn of an external 2 MByte, 3 cycle RAM to the CSA transputer boards.
The SDTR between two transputers’ external RAM is detailed in Table 10. The transfer rates

given are for transfers through direct wire connections and also through CSA Part.7 crossbar

switches.

The degradation of performance due to the crossbars is a consequence of CSA equip-
ping each crossbar link with lin¢ driver hardware. The line drivers, intended to provide
increased noise immunity, impose a (pessimistic) 45 ns delay on each serial communication
[CSA89],[AMD8'1], Coupling that with the crossbar delay of 1.75 bits/byte [Inm89] (which
works out to approximately 88 ns), a combined delay of 133 ns occurs during each communi-
cation. As two signals, send and acknowledge, are required for every serial transfer, the total

delay is in the neighbourhood of 266 ns. This approximation agrees reasonably with the

Table 10: Transputer to Transputer SDTR

Connection | Sustained Data Average Time
Medium Transfer Rate | to Transfer 1 Byte
(KBytes/sec) (nanoseconds)
Wire 1,666 600
Crossbar 1,243 805

135

805-600=205 ns difference shown in Tabie 10 for one byte transfers through both wires and

crossbars.

Since we are utilizing crossbar switches within our hardware configuration, any SDTR
results involving a transputer link have an upper limit of 1,243 KBytes/second. Where possi-
ble, relevant performance results using wire interconnections have been included to augment

the results obtained using the crossbars.

7.2.3. CP-3100 Fixed Disk Throughput

The CP-3100 device can transfer data no faster than one 16896 byte track per rotation of
the device. Since a rotation occurs every 16.8 ms (from Table 2), this means the absolute
best performance obtainable would be about 1 MByte/second. This is a very optimistic esti-

mate and the actual limit is probably much lower.

7.2.4. T800 Based RAM Disk Throughput

The maximum transfer rate for the RAM disk device is effectively limited by the serial
link connecting the disk device with its clients. The previous section demonstated that this
limit is 1,243 KBytes/second through the crossbar switches, and 1,666 KBytes/second
through interconnecting wires. The actual performance of these devices is documented in

Section 7.3.2.3.

7.2.5. Context Switch Time

The time required to execute a context switch within a T800 transputer is determined
using two processes, each incrementing a counter and then forcing a context switch to the

other process. Results from this software indicate that 7.9 million context switches can occur

136

in a 30 second period. This means that the average time for a context switch is approxi-
mately 3.8 microseconds. These results are for two processes operating within the

transputer’s off-chip memory, rather than using the on-chip memory.

7.3. Disk Server

Disk server performance results given herein are for both the CSA Part.12 physical disk
device and a T800 RAM disk device. Due to the simplicity of the RAM disk device, testing

will concentrate on the physical disk device.

7.3.1. Testing Environment

Within SFU’s transputer environment, it is impractical to determine the SDTR between
disk and main memory of the Part.12’s T222 transputer. Connecting a 16 bit T222 as the
root node of the network would seriously inconvenience other users. Furthermore, debug-

ging of test software without the T222 as root node would seriously inconvenience myself.

Data can be relayed from T222 memory into a connected T800’s memory faster than
that data can be read from disk. Since the transputer DMA serial link interface allows com-
munication to oocur in parallel with computation, I allege that SDTR results obtained
between disk and T800 main memory accurately portray the SDTR between disk and T222
main memory. Therefore, disk server SDTR is determined for transfers between disk and a

client T800 transputer directly connected to the T222 disk controller.

The test software utilizes all the modules within the disk server software as well as the
lowest module within the cache server software. This module, DiskLink, abstracts the link
communication protocol from Table 7 into a set procedure calls that allow for requests to be

issued and responses to be accepted. The overhead from these DiskLink procedures is

137

considered to be insignificant since the DiskLink code is small and contains no computation-
ally intensive regions. Two client processes operate above the DiskLink layer. One process,
the Requestor, issues disk access requests while the other process, the Acceptor, obtains disk
access responses>’. Tests, which are not discussed herein, verify that one process handling
each of these tasks is sufficient to provide maximal performance. An explanation for this is

that requests are temporally spaced by at least the time taken for the disk to rotate once,

which is 16.7 ms?®. The processing time required by the disk server threads and the
Requestor/Acceptor processes is insignificant when compared to those limits. Therefore, one
process can issue disk access requests as rapidly as possible, while one process can com-

~ pletely handle any disk response before subsequent responses become available.

7.3.2. Test Results

Each of the following sub-sections details one particular aspect of disk server perfor-

mance. Both read and write access results are presented for each of these tests.

7.3.2.1. Sector Interleaving

Varying the sector interleaving of the CP-3100 has no effect on performance, since the

CP-3100 can only be configured with 1 block interleaving, where each block follows its

37 These two processes are not to be confused with the Requestor and Acceptor process groups discussed in
Section 5.3.1. Their function in communicating with the disk server is similar to that of the process groups, and
they use identical communication protocols, however, they do not operate in the same fashion as the process
group versions.

38 The disk can transfer data no faster than one track per rotation, since it only has one RW head per platter
and only one head can be active at any given time.

138

immediate predecessor39. This configuration is shown in Chapter 2, Figure 3(i). According
to the SCSI protocol [ANS86], each manufacturer is required to provide 1 block interleaving
and a default interleaving. Apparently, these two interleavings can be the same because the
CP-3100 device, which conforms to the SCSI standard, has been implemented in this fashion.
Because of this, there is no benefit to modifyir:g the sector interleaving even though both the

SBIC and CP-3100 will allow you to do so.

7.3.2.2. Track Interleaving

Track interleaving is implemented in the device dependent layer (DDL) of the disk

server code. The degree of interleaving is controlled by a user-definable compile time con-

stant.

Tables 11 and 12 show the performance of the TASS disk server, while controlling a
CP-3100 disk device. Both the chunk size and the track interleaving are varied. Testing is
performed for both read and write accesses, each test performing 200 of those operations dur-
ing the timing samples. Disk chunk accesses are sequential, meeting the SGI data access pat-
tern tjequirement“d, The SDTR, in KBytes/second was determined in each case. For both
read and write accesses, the highest SDTR is obtained when the chunk size is 16896 bytes

and the track interleaving is 3. These results indicate that

e The expectation that using chunk sizes which span one entire track provide the highest data

throughput, since any read (or write) transfers the maximum quantity of data bytes between

¥ With the exception that the first block of a track follows the last block.

40 Actually, the pattern is SGR, however, with only one Reguestor process, it is also vacuously SGL

J ¥ s

139

Table 11: Read Access SDTR for Various Chunk Interleavings

Disk Chunk Interleave Factor
Size (bytes) 0 1 2 3 4 5 6 7 8 9 10
5632 329 | 381 | 436 | 294 | 248 | 376 | 264 | 254 | 330 | 241 | 332

8192 478 | 442 | 429 | 295 | 397 | 275 | 377 | 274 | 346 | 332 | 325
16384 483 | 443 | 425 | 409 | 522 | 587 | 557 | 558 | 528 | 505 | 482
16896 502 | 472 | 669 | 728 | 667 | 617 | 573 | 535 | 502 | 472 | 446

Table 12: Write Access SDTR for Various Chunk Interleavings

Disk Chunk Interleave Factor
Size (bytes) 0 1 2 3 4 5 | 6 7 8 9 10
5632 330 | 241 | 43¢ | 295 | 249 | 376 | 265 ; 396 | 331 | 241 | 406

8192 481 | 305 | 430 | 296 | 393 | 275 | 377 | 372 | 344 | 415 | 321
16384 499 | 457 | 438 | 422 | 526 | 561 | 577 | 571 | 545 | 520 | 485
16896 498 | 470 | 623 | 712 | 661 | 611 | 569 | 531 | 498 | 469 | 443

each disk head seek.

e The highest data throughput is obtained with a track interleaving of 3. This is probably due

to the disk’s average rotational latency being minimized with this track interleaving.

Because of these results, the performance tests presented in the remainder of this

chapter are performed with 16896 byte chunks and a chunk interleave factor of 3.

7.3.2.3. Sequential Access

The sequential access throughput of the TASS disk server is shown for a SGI data
access pattern. The fact that only one worker process is used to issue the data accesses effec-
tively nullifies the global/local and regular/irregular distinctions between the various sequen-
tial DAPs. Therefore, the SGI pattern used is equivalent to any of the sequential patterns
mentioned in Chapter 2. Ten samples of 1000 read (or write) chunk operations are provided
in Table 13. The average of those ten samples is also given, as well as the expected uncer-

tainty of the given average. The uncertainty figure provided is determined as half the

140

difference between the high and low samples. The largest variance observed is 21
KBytes/second between the high and low samples for write access. The consistency of the
read results indicates that larger samplings would not seriously alter the averages determined
from the given samples. Increased sampling for write results might serve to refine both the

average and the uncertainty.

The TASS RAM disk server results exhibited less variance than those given for the
TASS fixed disk server. In fact, every sample taken for both read and write access was ident-
ical. The results, for both RAM disk server prototypes, are given in Table 14. They indicate
that there is no loss in throughput due to software or communication overhead when utilizing
- the RAM disk 2 server (without bcopy). Recall that the RAM2 disk server avoided internal
memory copying by transferring data directly from the RAM disk out the serial links. Refer-
ring back to Table 10, the maximum SDTR that can be achieved between two transputers is

1243 and 1666 KBytes/second for crossbar and wire interconnects respectively. Comparing

Table 13: Disk Server SDTR Samples and Averages

Operation Samples Average
Read 730 731 729 729 731
731 730 731 731 731 730%1

Write 712 702 700 702 702
695 701 707 691 693 | 70111

Table 14: RAM Disk SDTR in KBytes/second

Transputer RAM disk 1 RAM disk 2
Operation | Interconnect | (with bcopy) | (without bcopy)

Read Crossbar 1102 1206
Wire 1503 1672
Write Crossbar 1130 1229
Wire 1465 1652

141

these figures to those given in the RAM disk 2 column, indicates that the second RAM disk
prototype exhibits no throughput loss due to software or communication overhead. The
RAM disk 1 implementation, using bcopy, can achieve no more than 89% to 92% of the
maximum I/O bandwidth. The SDTR for a third ’implementation’ was also determined. In
fact, this implementation used the exact same code as the RAM disk 1 version, however, the
beopy() function was never invoked*!. The use of this third implementation verifies that it is
indeed the bcopy() function that is limiting the data throughput, and that it is not the modular
design of the TASS disk server. The reason why it verifies that claim is that there was no
significant difference between the TASS disk server 2 results and those for the ’disabled’

TASS disk server 1 prototype.

This illustrates one of the many trade-offs between modularity and performance that

constantly crop up in support system software design.

7.3.2.4. Random Access

SDTR results are presented in Table 15 for random access of entries distributed
throughout the entire disk address space. Each sample is generated in the same fashion as for
sequential access. Ten samples of 200 operations per sample were taken. Again, the uncer-
tainty is simply the half the difference between the high and low samples. The random
access results, for both read and write operations, are very consistent, indicating that they are

accurate to a very small margin of error.

4! In other words, all processing was exactly the same as in the RAM disk 1 version, but no data was actu-
ally transferred between the RAM disk and the transfer buffers. No data was ever copied from client to RAM
disk or RAM disk to client.

142

Table 15: Random Access SDTR over Entire Disk Address Space

Operation Samples Average
Read 329 329 330 330 330
329 330 330 330 330 | 3301

Write 313 313 313 313 314
314 313 314 313 313 313+1

Random access SDTR results for varying length databases are also presented. The
graph in Figure 18 shows SDTR for random accesses while the size of the disk region
accessed is varied. Although the data points comprising the graph are not explicitly indi-
cated, each one was determined using 1 sample of 1000 disk accesses per sample. The ran-
dom nﬁmber sequence used is the same for each data point. The data points in the graph are
not evenly distributed, rather concentrations of points -are generated in regions where the

graphs change dramatically.

The figure shows the performance of the TASS disk server for both read and write
accesses. The sustained throughput is shown for two cases, (i) where the inherent parallelism
of the request/response primitives are exploited and (/) where a simplistic remote procedure
call (RPC) interface is forced onto the disk server to client communication. The comparison

between these two cases is intended to show the limitation of the RPC style interface.

Figure 18 shows that for most random read accesses using the request/response primi-
tives, performance of the TASS disk server ranges between 330 and 400 KBytes/second,
while write accesses vary between about 310 and 360 KBytes/second. Only when the size of
the disk region being accessed is very small, in the range of 50 chunks, is a significant
increase in throughput (due to lower average seek times) observed. When the region
accessed drops to nearly 1 chunk, performance increases to as high as about 550

KBytes/second which is as expected, approximately one half of the maximum data transfer

143

6 0 0 i H] T T 1] L1 T T
Request/Response - Read -~
550 ¢ - Write ~--— .
RPC Interface - Read -
500 : - Write - -
9 E
3 450 K .
154 t
1] [
“ \
B 400 "\‘\ .
1] A,
ﬁ T
a 350 F Ttsee -
= T T e e e
5 300 Pl -
) - [L LT RS A A AL T TP ’
Jl‘é) 250 + et P =
(4
o 200 |- : .
W
a .
ﬁ 150 -1
3]
100 1
50 -1
0 1 i]] i i i 1 1
0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Size of Disk Region Accessed in Chunks

Figure 18: Random Access for Varying Sizes of Disk Region

rate for the CP-3100 disks*?. When the RPC interface is used, it can be seen that I/O
bandwidth suffers dramatically, dropping to around 80% of the bandwidth that is provided

using the request/response primtives.

42 The CP-3100 rotates approximately 60 times per second, therefore, 60 tracks could be read (assuming
no seek time or rotational latency) in each second. This means that 60*16896=1,013,760 byies could be read
per second. Clearly, if we are reading a disk region of 1 chunk, half of our time will be wasted waiting for the

disk to rotate around again, so one half of this maximum is the best that could be hoped for.
(=]

144

Memory is a random access device, so I expect that there will be no difference in the
time taken to access a RAM disk sequentially or randomly. Therefore, no discussion is
~ presented for random access to the RAM disk servers as I expect the results would be the

same as that seen for sequential access (Table 14).

7.3.2.5. Processor Usage

Thé usage of disk server processor cycles is not calculated. The CSA Part.12 boards
have too little memory to allocate additional work space for a process designed to determine
free cycles. Adding such a process would reduce the disk server’s available buffer space,
- reducing the number of buffers allocated and thereby degrading disk server performance.
That performance drop would invalidate any obtained results regarding available processing
power. It seems safe to assume that the limited memory space of the T222 processor, as well

as the transputer serial links, are the bottlenecks to disk server performance.

7.4. Conclusions

In this chapter’s preamble, a question was posed regarding what is the limiting factor to
data throughput in the TASS disk server design. The results presented in this chapter show
that the limiting factor of the TASS disk server is the physical disk device itself. This is a
highly expected result, since it is fairly common knowledge that the limiting factor in /O
bandwidth is the physical devices, not the processor power. The RAM disk server results in
Table 14 show that the disk server software can deliver data to clients at virtually the same
rate as the hardware links are capable of (Table 10). Therefore, since the physical disk server
software uses the same process structure as the RAM disk server, and its code is virtually
identical (except for the small device dependent modules that control the actual disk devices),

then the limits given for the disk server in Table 13 probably provide a fairly accurate claim

145

as to the performance of the actual CP-3100 disk devices.

The small memory address space of the Part.12’s T222 transputer does provide an effec-
tive limitation on the ability of the disk server to provide additional functionality. This is
because the optimal size for the TASS chunk (with CP-3100 disks) is 16896 bytes, and to
utilize buffering techniques requires a minimum of 2 buffers, and probably 3 should be used,
to allow all three regions of the disk pipeline (see Figure 13) to operate concurrently. These
buffers require between 33792 and 50688 bytes, effectively using all of the T222’s available
address space (recall from Chapter 3 that there is only about 52 KBytes of usable memory on

the Part.12).

For random access, there is a slight improvement in SDTR for the disk server when thé
region being accessed is kept small. However, this performance boon is not that significant.
From Figure 18, it can be seen that the improved rate of read access data transfers drops to
about 430 KBytes/second when the region of disk being accessed reaches a span of about 50
chunks. This means that when less than 1% of the disk is being accessed, then performance
can be improved to about 130% of the SDTR that would be observed if the entire disk were
accessed. After that point, the SDTR drops almost linearly with the increase in the size of the
accessed disk region, until the region is about 1/3 of the total disk size of 6208 chunks, at

which point the SDTR graph levels off.

Also, it can be concluded that even one TASS disk server can provide more 1/0
bandwidth to the SFU transputer network than could be provided by the only technique previ-
ously available, which was by transferring data through the host interconnect. Under sequen-
tial access, the TASS disk server can provide 730 KBytes of data each second, whereas the
host interconnect is only capable of providing the network with between 634 and 699 KBytes

of data each second.

146

8. Cache Server Performance

‘This chapter details the performance of the TASS cache server software. Similar to the
disk server performance discussion of Chapter 7, the analysis of cache server performance is
determined according to two criterion, namely the sustained data transfer rate (SDTR) and
system software processor use (SSPU). The I/O throughput that can be provided by the Disk
Support Layer (DSL) and Cache Layer (CL) is shown (see Figure 11). The amount of pro-
cessor cycles consumed by these layers fs also discussed. No I/O throughput analysis is
made of the performance of the File Server Layer (FSL), as that is too integrally connected

“with the client communication services, and as a consequence its performance is documented
in Chapter 9, which covers performance of the TASS system as a whole. However, the CPU

usage of the FSL will be discussed in this chapter, since it does not logically belong in

Chapter 9.

8.1. Testing Environment

All tests within this chapter, unless explicitly stated otherwise, are generated using a
group of identical worker processes which drive the layer being tested. The workers are
responsible for issuing read (or write) data accesses to specific disk addresses, in a fashion
that mimics the actual activity of the File Server and Write Back process groups (see Section
5.3.3). The addresses to use are provided to the workers through the use of a shared address
generation procedure. The environment is shown in Figure 19. Since both the DSL and CL
provide a procedure call interface to their clients, the operation of the worker processes is

-~ fairly simple, consisting of a procedure call to the shared address generator, followed by a

procedure call to the layer being tested.

147

Controller L
(main) J‘

Worker Processes
(Flop }

s) Coute

[

Y

Layer Being Tested (DSL or CL)

Figure 19: The Cache Server Test Environment

As each new layer of TASS software is added, the amount of processor cycles required
to execute that software will be determined. The method used will be to create a low priority
process, called the flop counter, which will execute whenever all other processes in the sys-
tem are blocked. This flop counter will keep track of how long it has been running by count-
ing the number of floating point operations that it can execute. Floating point operations will
be recorded in the form of flops.

Definition: A flop will be defined, for the purposes of this paper, as one double precision ad-

dition accompanied by one double precision multiplication.

In order to provide some scope as to what a flop indicates, the temporal cost to execute one
flop has been determined. Testing consists of numerous samples, each determining the
number of flops that can be calculated on a T800 transputer within a period of 10 seconds.

The averaged results are as follows:

148

Time Period 10 seconds
Number of Flops Executed 2,428,111

Time Required per Flop 4.1184278 microseconds

Therefore, the T800 performs at 0.24 MFlops. Inmos states that the T800 processor operates
at 2.2 MFlops at 20 MHz [Inm89]. This disparity between Inmos’ and my results arises
because the flop counter process is coded in C, so in addition to the floating point operations
described, numerous accesses to main memory, to obtain data and code, are also involved in
the execution of each flop. Additionally, one branch operation is required. These additional
components are probably responsible for the high cost involved in calculating each flop.
Furthermore, memory support for all of my flop calculatidns is provided entirely by main

memory; no use is made of the transputer’s on-chip RAM which is three times faster.

- The transputer architecture has only two priority levels, high and low. Because the flop
counter must execute at low priority, in order to work correctly, there can be no other low
priority processes running within the system. The only TASS processes that normally run at
low priority are the Write Back processes (see Figure 17). Therefore, processor usage can
only be determined in an environment where there are no Write Back processes. Conse-
quently, the maximum and minimum CPU usage will be analyzed using only read access
DAPs. If we assume that processor cycle usage will be a constant for each unit of data
transferred (ie: same processing requirements for each chunk transferred), then the maximum
CPU usage, in percent of available cycles, should occur for SGI access. Similarly, the
minimum CPU usage will be given for RO access. The use of read accesses instead of write
accesses is a bit of a simplification, however the I/O throughput results for both will be
shown to be reasonably close. So, in terms of processor usage, the results for read and write

access should be similar and that helps to justify the simplification.

149

8.2. Disk Suppori Layer

This section analyzes the components of the DSL that execute within the cache server
processor. The DSL is responsible for completing the abstraction of multiple disks into an
array of chunks, hiding the natare in which these disks are joined, and providing a procedure
call interface which allows multiple clients to concurrently access all of the disks. The actual
implementation of the disk support layer utilizes many modules, however, performance is
only analyzed for the hierarchically highest and lowest which are the DiskLayer and DiskLink
modules, respectively. When the performance of the DSL is discussed, it is in fact the per-
formance of the DiskLayer module and all of its subservient modules and subservient disk
servers, that is being analyzed. The I/O throughput and CPU usage of the entire DSL is
determined by analyzing the DiskLayer module, which in turn utilizes all of the subordinate
modules. Most of this analysis is centered on the performance exhibited while driving the
DSL while it is configured under the various disk joinings. The processor cycle usage of the
lowest module, DiskLink, is given since it represents the minimum CPU requirements for
communicating with the disk server and provides a base CPU usage for comparison to the

CPU usage of the entire DSL.
8.2.1. I/O Bandwidth

8.2.1.1. Optimal Workloads

As mentioned earlier, the I/O bandwidth of the disk support layer will be analyzed for
each of the supported disk joining techniques. Each of the disk joining techniques provides
differing data throughput results, depending upon the client workload. The Sequential Global
Irregular (SGI) DAP discussed in Chapters 2 and 7 portrays the optimal client workload for

striped and interleaved disk systems. The optimal client workload for concatenated disk

150

systems is actually the Sequential Local Disjoint Irregular (SLDI) DAP.

The SGI DAP is generated in the fashion described in Section 7.1.1. The SLDI DAP
generation is similar but involves two groups of clients sequentially accessing two indepen-
dent regions of the disk address space. This test, although seemingly contrived for a two disk
system, is actually representative of a typical SLDI workload for a TASS node. For example,
a two disk TASS storage node will support either one or two clients. In the event that two
clients each operate upon a disk region which is disjoint from that used by the other client,

then this SLDI workload is quite representative of a typical workload.

" The type of DAP issued by the worker processes does not uniquely define the client
workload. Additionally, the rate at which the clients issue that DAP is an important con-
sideration. As discussed in Chapter 4, the disk is a pipeline, and each stage of that pipeline
must be kept busy at all times in order to achieve maximal performance from the disk device.
Therefore, a single client issuing a request through a procedure call interface cannot possibly
keep three pipe stages busy, since the one request will sequentially step through these stages.
Because of this, the number of active requests, hence the number of active workers must be

considered in the analysis of performance.

Tables 16, 17 and 18 show the performance of the DSL for the various disk joinings
during execution of a SGI DAP, SLDI DAP and a RO DAP, respectively. Each entry in
these tables reflects only one sample. The SDTR for the sample was determined by timing
1000 read (or write) chunk operations. Because of the single sample, the error margin for
each table entry is potentially quite high. In other words, the numbers are soft, but not likely
to be wildly inaccurate. From additional samples (to verify results) and from other tests per-
formed (and not documented herein) I would estimate that the error margin is about £ 2
KBytes/second for read access and £+ 20 KBytes/second for write access. In the discussion of

this section, the term equivalent is defined as equivalent in data throughput, within these

151

Table 16: Disk Layer Throughput - Sequential Global Irregular DAP

(i) Read Access
Joining Number Number of Workers

Technique of Disks 1 2 3 4 5 6 7 8
Concatenation 1 423 731 731 731 731 731 731 731
2 424 731 731 731 731 731 731 730
Interleaved 1 421 727 730 730 730 731 731 731
2 348 844 | 1172 | 1455 | 1457 | 1458 | 1460 | 1459
3 393 750 | 1263 | 1422 | 1764 | 2183 | 1978 | 2184
Striped 1 423 730 730 731 731 730 730 730
2 700 | 1460 | 1461 | 1462 | 1461 | 1461 | 1461 | 1461

(ii) Write Access
Joining | Number Number of Workers

Technique of Disks 1 2 3 4 5 6 7 8
Concatenation 1 424 715 711 714 713 715 709 717
2 423 689 685 690 686 691 679 683
Interleaved 1 422 717 713 711 703 710 703 699
2 372 842 1 1143 | 1415 | 1354 | 1384 | 1393 | 1252
3 404 748 1 1262 | 1594 | 1835 | 2002 | 2003 | 1977
Sﬁﬁé‘é{;}&\ 1 424 701 699 702 705 702 706 705
=2 596 | 1069 | 1357 | 1377 | 1374 | 1381 | 1383 | 1371

152

= T

Table 17: Disk Layer Throughput - Sequential Local Disjeint Irregular DAP
(i) Read Access

Joining Number Number of Woe:kers
Technique of Disks 1 2 3 4 5 6 7 8
Concatenation 2 374 | 846 | 1015 | 1458 | 1457 | 1457 | 1456 | 1455
Interleaved 2 274 | 500 630 T4 748 749 737 750
Striped 2 474 | 680 680 1,86 684 634 605 634
(i) Write Access
Joining Number Number of Workers
Technique of Disks 1 2 3 4 5 6 7 8
Concatenation 2 374 | 845 | 1162 | 1401 | 1387 | 1375 | 1411 | 1306
Interleaved 2 262 | 483 577 692 681 678 681 747
Striped 2 425 | 594 594 597 594 630 592 590

153

Table 18: Disk Layer Throughput - Random Overiapped DAP

(i) Read Access
Joining Number Number of Workers

Technique of Disks 1 2 3 4 5 6 7 8
Concatenation 1 248 | 329 | 310 | 309 | 309 | 301 { 304 | 304
2 247 | 411 | 500 | 543 | 563 | 570 | 558 | 537
Interleaved 1 247 | 331 | 331 | 330 | 329 322 | 327 | 326
2 247 | 496 | 636 | 655 | 646 | 654 | 652 | 647
3 250 | 451 | 599 | 675 | 735 | 778 | 788 | 778
Striped 1 248 | 329 | 329 | 330 | 329 | 319 | 323 | 323
2 483 | 658 | 657 | 659 | 658 | 633 | 643 | 644

(ii) Write Access
Joining Number Number of Workers

Technique of Disks 1 2 3 4 5 6 7 8
Concatenation 1 249 | 318 | 317 | 318 | 318 { 309 | 312 | 313
2 246 | 400 | 481 | 524 | 537 | 541 | 527 | 502
Interleaved 1 240 | 310 | 312 | 312 | 311 | 305 | 309 | 307
2 248 | S05 | 615 | 632 | 629 | 632 | 628 | 627
3 247 |} 446 | S83 | 665 | 705 | 713 | 739 | 719
Striped 1 249 | 318 | 318 | 317 | 318 | 309 | 312 | 312
2 411 | 632 | 635 | 636 | 636 | 602 | 612 | 615

approximate error limits. Since the worker threads issuing the DAP operate within the cache
server transputer, the I/O bandwidth from/to the joined disks is not constrained by the serial

link throughput of 1225 KBytes/second presented in Table 10 (see Chapter 7).

From all three tables and for all three joinings, it can be seen that as the number of
worker processes increases, the I/O bandwidth provided by the DSL appears to peak, and
then level off, when there are two active workers per disk in the joining. The three excep-

tions to this rule are

(1) in the multiple striped disk environment, every request activates all disks in the joining.
Therefore, one active worker issues as many requests to physical disk devices as would

be issued by D workers in an interleaved or concatenated environment (where D is the

154

(2)

3

number of joined disks). So a total of two active workers is sufficient to keep all disks

busy.

SGI write access for two striped disks. The low performance for two workers operating
on two striped disks is due to the fact that each Requestor issues the D requests to the D
disks sequentially, rather than in parallel (Section 5.3.1). Because a write access
involves a data transfer as part of the request operation (Table 7), the actual communica-
tion of the request to the disk server takes longer for write operations than it does for
read operations. The non-maximal throughput for two workers, writing to two striped
disks is probably a consequence of the sequentializing of requests. Two workers issuing
read requests to two striped disks observe maximal throughput, since there is no data
transfer component to the request, therefore, there is less time required to issue all of the

requests sequentially.

A SGI DAP issued within the multiple concatenated disk environment. In this case, the
SGI DAP is only ever accessing one of the physical disks, so there is no disk parallelism
and as such the results are equivalent to those for 1 concatenated disk, which means that

two workers should be sufficient to keep the disk busy.

The fact that a minimum of two active workers per disk is needed to drive the DSL at its

maximal throughput illustrates the pipeline nature of the disk system. However, it is apparent

that the time taken to access the physical disk (Figure 13, Stage (if)), is long enough to enable

Stages (i) and (iii) to be completed sequentially (relative to each other), but in parallel to

Stage (ii). In other words, in the time taken for request R, to be issued to disk, the postpro-

cessing of request R, | can occur and be sequentially followed by the preprocessing of

155

request R, +143. This menns that during the time one worker is blocked awaiting completion
of a physical disk access, another worker can observe the completion of one request and issue

anecw one.

There are no three disk results shown for striped or concatenated disk systems. This is

for a couple of reasons:

(1) The software used to determine the results shown in the Tables 16, 17 and 18 is con-
strained to running on the root transputer, T,. The T, tran;,puter permanently allocates
one serial link (link 0), for communicating with the network’s Sun host (See Figure 9).
Because of this, a three disk configuration would require a disk to be connected to the
root transputer on each of its remaining links, 1, 2 and 3. The three disk results shown
for the interleaved disk system were mads early in the development of TASS, and at that
time it was possible to connect, via the crossbar switches, one of the Part.12 T222 tran-
sputers to link 3 of T;. However, since then the network has been reconfigured and it is
no longer possible to use the crossbars to connect any of the T222 transputers to link 3
of T,. To make such a connection would require a physical rewiring of the network and
would probably inconvenience other transputer users. I do not consider these results to
be important enough to warrant that risk. No three disk striped or concatenated results

were obtained prior to the network reconfiguration.

43 Since both postprocessing and preprocessing require the CPU, they cannot actually occur in parallel.
However, once Stage (ii) has completed communication with the SCSI Bus Interface Controller (SBIC) chip,
then any worker operating in that stage will not need the CPU again until the disk access completes. Therefore
disk operation can be completely parallelized with the preprocessing and postprocessing componenits of the
pipeline. Also, it is shown in [Inm89] that the throughput of a transputer link passing data simultaneously in
both directions is not as high as twice the throughput of the link when it is passing data in only one direction.
Therefore, even the communication components of the pre and postprocessing cannot totally be parallelized.

156

(2) Although joinings of three disks are supported by TASS, their practical use is limited.
A three disk TASS node could have only one client, connected by the one remaining
serial link. The 1225 KBytes/second bandwidth across that link (Table 10) becomes the
limiting factor in performance. Even a two disk system operating at the maximum
throughput of 1460 KBytes/second will saturate one serial link, effectively nullifying
the bandwidth of the third disk*. For non-optimal data access patterns (ie: RO) a three
disk system may be useful. It is expected that when operating under an optimal DAP
workload, each of the disk joinings should be able to provide the same throughput in a

three disk environment as are provided by the interleaved joining.

8.2.1.2. Comparing DSL Results to Disk Server Results

As Tables 16, 17 and 18 are rather busy, I have summarized the results in Table 19.

Unlike the single sample per entry technique used in those three tables, each of the entries in

Table 19: Disk Support Layer Throughput in KBytes/second by Joining and Workload

Two Joined Disks Three
Data Access Single Interleaved

Pattern- Operation Disk | Concatenated | Striped | Interleaved Disks

Sequential Global Read 731 - 731 1461 1456 2187

Irregular Wiite 704 686 1382 1375 1965
Sequential Local Read 351 1457 633 748
Disjoint Irregular Write 297 1376 627 618

Random Read 327 574 637 642 765

Overlapped Write 307 540 591 597 714

Even a serial link with a wire interconnect having a bandwidth of 1666 KBytes/second (Table 10) will
nearly be saturated by two disks.

157

Table 19 are averages of 10 samples, with each sample consisting of 1000 read or write
operations. Three worker processes are generated for each physical disk used in each test (ie:
If the sample tests a two disk joining, then 6 worker processes are generated, if the test is for
a one disk joining then only 3 workers are generated). The choice of 3 workers per disk is
prompted by the fact that a minimum of two workers per disk are required to demonstrate the
DSL’s full IO throughput, and in some cases three workers are necessary (eg: 2 striped disks
under SGI write DAP). For sequential samplings, the initial starting address is staggered
throughout the disk address space. For random samplings, the seed used to initialize the ran-

dom number generator is varied.

8.2.1.2.1. Single Disk Systems

Since all disk joinings provide equivalent performance for single disk systems, only
results for the 1 interleaved disk joining are shown in Table 19, data column 1. The results in
that column show that the I/O throughput provided by the disk support layer (DSL) control-
ling a single disk, is equivalent to the I/O throughput shown for the disk server devices in
Chapter 7, Tables 13, 14 and 15. The only notable difference is a very slight drop in RO
write throughput from 313 KBytes/second for the disk server, down to 307 KBytes/second

for the entire DSL. This difference may still be due to sample variations, however, that can

not be shown from the results given in this paper®>. It can be seen that for SLDI access, the

performance of the single disk system is very comparable to RO access. This is because two

45 The margin of error is + 1 KByte/second for the disk server results and + 3 Kbytes/second for the DSL
results. These give a range of 312 to 314 KBytes/second for the disk server and 304 to 310 KBytes/second for
the entire DSL. The range of values for the two resulis do not intersect, but are very close. In fact, the 1
KByte/second margin of error for the disk server RO write access is the lowest margin of error | have observed
for write accesses in general.

158

regions of disk are being accessed sequentially and due to the single disk environment, a
large disk seek must be invoked for nearly every access. The SLDI read results may be
slightly higher than the RO read results since it is more likely that two consecutive disk
accesses are issued to sequentially contiguous disk chunks. If enough cases occur where 2 or
more accesses are sequential, then this would have a positive effect on the I/O throughput of
thé disk systerri. A similar explanation can be given as to why the SLDI write results are
lower than the RO write results. Since each disk request for a write access contains a data
transfer, these requests take longer to issue, and fewer pairs of sequential accesses are likely
to occur. Therefore, the actual. SLDI write tends to have a large seek between every disk

access, which is not true even for the RO write, which should have numerous small seeks due

to the random pattern of accesses.
8.2.1.2.2. Multiple Disk Systems

8.2.1.2.2.1. Sequential Access

The two joined disk results in Table 19 show that there is no substantial loss in sequen-
tial /O bandwidth for any joining when operating under the optimal DAP for that joining.
The disk server results from Chapter 7°s Table 13 show that sequential read performance is
limited to a maximum of 731 KBytes/second. Therefore, two disks operating together cannot
possibly provide better read /O throughput than 2%*731 KBytes/second = 1462
KBytes/second. The optimal DAP for concatenated disk systems is SLDI, where the con-
catenated joining provides a two disk read I/O bandwidth of 1457 KBytes/second which is
equivalent, within error limits, to the 1462 KBytes/second limit. Similarly, the SGI DAP is
optimal for both interleaved and striped systems and the corresponding results are 1461 and

1456 KBytes/second respectively, each being equivalent to the 1462 KBytes/second limit.

159

The three interleaved disks resuits of 2187 KBytes/second agree with the maximum of 3 *

731 KBytes/second = 2193 KBytes/second.

The write resuits show a very small clipping of performance, with the concatenated,
interleaved and striped results being 1376, 1382 and 1375 KBytes/second, respectively (for
each joinings optimal DAP). These results are about 98.4% of the expected 2 * 701
KBytes/second = 1402 KBytes/second (from Chapter 7’s Table 13). It is important to note
that the margin of error in write results is significant and these four figures are equivalent
within those error margins, however, since alil joinings provide lower than expected results 1
assume that a very slight clipping of performance is occurring. This clipping is sufficiently
small and the error margins are so large that I have not been able to establish a reason for any

clipping, assuming that it is there at all.

8.2.1.2.2.2. Random Access

The results for random access are not as impressive. A pronounced loss of 1/0
bandwidth is observed. For example, two disk servers can provide 2 * 330 KBytes/second =
660 KBytes/second RO read throughput (see Table 15). The performance demonstrated by
the DSL is 574, 637 and 642 KBytes/second for the concatenated, interleaved and striped
joinings, respectively. The interleaved and striped joinings achieve approximately 97% of
the maximum 660 KBytes/second. However the concatenated results are significantly lower
at 87% of this limit. Again, the interleaved and striped results might agree within error mar-
gins, but the fact that they are slightly lower tends to convince me that a loss of bandwidth is
occurring. I cannot explain the dramatic loss of bandwidth for the concatenated disk systems,
but this loss seems to occur at all levels of TASS. For example, the RO write results also
show that the interleaved and striped joinings provide 95% of the maximum 2 * 313

KBytes/second = 626 KBytes/second (see Table 15). However, the concatenated results are

160

about 86% of the 626 KBytes/second maximum. My only guess is that the random address
generator used is somehow consistently distributing more accesses to either the lower or
higher portion of the joined disk address space. This non-random distribution would have
less effect on interleaved or striped disk systems since the concentration on one half of the
disk address space would affect both disks equally. However, the effect on concatenated disk
systems would tend to concentrate accesses on one disk, underutilizing the other. I believe
that there is no reason why concatenated systems should behave worse for random access, if
in fact that access is truly random. Therefore, I believe the only solution to the problem is
the fact that a pseudo-random number generator is used. Coupling pseudo-random numbers
with the truncation nature of the transputer’s integer arithmetic could be responsible for such

a consistent non-random sequence of ‘random’ addresses.

Three disk servers can provide 3 * 330 KBytes/second = 990 KBytes/second of read
bandwidth and 939 KBytes/second of write bandwidth (from Table 15). However, the results
for the three interleaved disks show distinctly lower 1/O throughput of 765 and 714
KBytes/second for RO read and RO write, respectively. The explanation for this is a flaw in
the testing environment and requires a detailed explanation. Figure 17 shows the process
hierarchy of the CS2 prototype. There is only one pool of Requestor processes, with each
Requestor accessing any disk, depending upon the requirements of the request it is servicing.
While implementing the DSL software I ran some initial tests to determine what the best size
of the Requestor process pool was. As I expected, since issuing requests does not take that
long, these tests showed that one Requestor per disk should be more ‘than sufficient to pro-
vide maximal I/O throughput. I believe that these low results for the .. see disk system illus-
trate that my initial expectations and tests were incorrect. Even though there are 9 workers
issuing the DAP, there are only 3 Requestors available to relay those accesses to disk. What

I assume is happening is that a sequence of three requests to one disk, which is all too

161

possible in a RO DAP, tie up all three Requestors, leaving no Requestors available to access
the other two disks. In fact, in a RO DAP it is not very likely that at all times one Requestor
will be issuing a request to each disk. It is far more likely that two Requestors will be vying
for the control of one disk, while one of the other disks remains idle. No size of requestor
process group could guarantee that this sort of problem did not occur, but larger sized reques-
tor process groups could offset the prbblem to a greater degree. Alternatively, a pool of
requestors could be dedicated to each disk, however, implementing this environment would
have been more difficult and was not attempted. For reasons mentioned earlier in Secticn
8.2.1.1, verifying these claims by running new tests on a three disk system with a larger

requestor process pool is not appropriate.
8.2.2. Processor Cycle Usage

8.2.2.1. DiskLink Module

The DiskLink module is the lowest layer of the DSL. It provides a set of request and
response procedure stubs that are used to both (i) issue actual disk service requests and (if)
accept disk server responses. The layer hides the nature of the communication protocol used,
providing services of the RequestReadChunk, RequestWriteChunk and AcceptResponse
variety. The reason why this specific module is documented here is that it was used during
the performance tests shown in Chapter 7. It was not discussed within Chapter 7 since it is
actually a part of the cache server code. In my opinion, the module represents the smallest
(or very nearly so) set of primitives that can be used to intelligently converse with the disk
server. Therefore, its I/O throughput performance is intrinsically part of the disk server per-
formance. The throughput results for the DiskLink module are the throughput results for the

disk server. However, the amount of cache server processor cycles used by the DiskLink

162

module are not, and probably should not be, docamented as part of the disk server perfor-

mance analysis. Therefore, the CPU usage is documented here.

The processor power required by the DiskLink module is considered to be the minimum
needed to converse with the disk server. It is provided in addition to the analysis of the disk
layer’s processor cycle usage (given in Section 8.2.2.2). The conversion from the
request/response primitives provided by DiskLink, to the procedure call abstraction provided
by the disk layer requires the use of additional process groups and data structures. The cost

of providing this abstraction will be documented by a comparison between the results of the

DiskLink and disk layer analyses.

The processor cycles required by the DiskLink module are calculated by averaging the
results of ten samples for each device and data access pattern indicated in Table 20. The SGI
read and SGI write samples use initial addresses which are distributed throughout the disk
address space. The RO samples distribute individual accesses throughout the entire disk
address space. Each sample performed 1000 operations, either reading or writing a chunk
each operation. The time required to execute the operations, plus the number of flops calcu-
lated during each test are provided. From those results, the time required to calculate the

flops is estimated, based on the figure of 4.118 microseconds per flop execution (section

Table 20: Processor Cycle Usage for DiskLink Module

Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGIRead 23.1 54 ' 1.0 4.5%1.6
SGI Write 23.7 5.5 1.1 4.81+2.1
RO Read 51.0 12.2 0.6 1.3+0.2
RO Write 53.9 12.9 0.7 1.310.1
RAMI1 Any 15.1 35 0.8 5.210.4
RAM2 Any 13.8 32 0.7 54103

163

6.3.5). The time required by the DiskLink software is determined using the total time and the
estimate of flop calculation time. From that result, the percentage of total time required to

execute the DiskLink software can be determined.

The third data column, Seconds Used, shows how much processor time is required to
issue and accept the 1000 requests and responses. For all devices and all DAPs (except the
CP-3100 SGI DAPs), this time is constant at approximately 0.7 seconds, which translates to
about 700 microseconds of CPU use for each request/response pair. The reason why more
time is used during a SGI DAP on the CP-3100 disks than is used for the RO DAP is not
known and is under investigation. The high margin of error in the SGI samplings makes such
an investigation quite difficult. There is no obvious reason why the SGI DAPs should require
more processing power than do the RO DAPs, since the only difference in the tests is
whether the current address is set by a call to rand() for RO DAPs, or incremented by 1 for
SGI DAPs. Neither operation should require a great amount of processing power, and in fact,
the call to rand() should be the most expensive of the two. In the rest of this chapter 1 make

the assumption that the SGI DAP figures given in Table 20 are too high.

The actual percentage of available processor cycles used ranges from 1.3% for RO
accesses to the CP-3100 disk server up to 5.4% for accesses to the RAMI and RAM?2 disk
servers. It is important to note that these figures are ballpark figures, since the error margin
ranges from 0.1% for the RO write results up to 2.1% for the CP-3100 SGI write results.
The reason for these high error margins is the high variance in the sampled values for the
number of MFlops calculated. Since the number of seconds used is calculated directly from
the MFldps figures, the error margin in the flop count extends to the seconds used figures.
This might explain why the number of seconds used during the SGI DAP tests is higher than
for the other tests. If we use the more likely value of 0.8 seconds for the SGI DAP results,

instead of the 1.0 and 1.1 seconds shown in Table 20, then the percentage overhead would be

164

3.5% for read access and 3.4% for write access.

CPU usage is shown for both read and write accesses, contrary to what was said in Sec-
tion 8.1, in order to provide some justification for the claim made in that section that the CPU
usage for SGI read will be equivalent to that for SGI write and that RO read usage will be

similar to RO write. No further CPU usage results for write access will be given in upcom-

ing sections.

8.2.2.2. DiskLayer Module

Table 21 shows the processor cycle usage for the disk support layer. This table is bro-
ken down into four portions, namely (i) one disk, (ii) two concatenated disks, (iii) two inter-
leaved disks and (iv) two striped disks. This table has few surprises since in all cases the per-
centage overhead for the DSL is higher than for the DiskLink module (see Table 20). There
are no substantial increases in the CPU usage, which is expected since the DSL was imple-
mented without the use of busy waiting or any processor intensive operations. The fact that
the total time, number of flops and seconds used results given for striped disks are approxi-
mately twice as large as the corresponding results for interleaved and concatenated disks is
not an unexpected result. Recall that each chunk access in the two striped disks environment
requires communication with both disk servers whereas each access in the interleaved or con-
catenated environments requires communication with only one disk server. Therefore, the
greater CPU usage in the two striped disk environment is simply indicative of the fact that
twice as many disk requests are prepared and twice as many disk responses are accepted than
would be prepared and accepted in the other joinings. This is verified since the percentage

overhead for striped disks is nearly equivalent to that of the other joinings.

165

Table 21: Processor Cycle Usage for the Disk Support Layer
(i) One Disk - Any Joining

Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGIRead 234 54 1.1 4.6+1.8
RO Read 51.7 122 1.6 3.110.1
RAM?2 Any 14.1 1.6 1.0 7.510.1
(ii) Two Concatenated Disks
Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SLDIRead 16.0 3.7 1.0 6.41£0.3
RO Read 29.0 6.8 1.3 4.210.1
RAM?2 Any 82 1.8 0.9 11.31+0.7
(iii) Two Interleaved Disks
Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGIRead 16.8 37 1.0 6.240.3
RO Read 26.0 6.0 1.2 4.510.1
RAM2 Any 7.4 1.6 0.9 11.910.7
(iv) Two Striped Disks
Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGIRead 325 7.5 1.8 5.540.2
RO Read 544 12.7 2.2 4.010.1
RAM?2 Any 14.8 32 1.6 10.910.3

8.3. Cache Layer

At this level of the TASS analysis, I have decided to not include results for concatenated
disk systems. I believe that consistenily showing SGI DAP resuits for striped and interleaved
disk systems, as well as SLDI DAP results for the concatenated system is confusing to the
reader and leads to a poor flow within the discussion. Presenting SGI DAP results for the

concatenated system is not interesting, since it represents a non-maximal, non-minimal DAP

166

for that architecture. Some tests which I have made (but do not include in this paper) show
that the two concatenated disk system performs equivalently to the striped and interleaved
systems, when each is operating under the optimal DAP for that joining. The only difference
is that the consistently poor RO DAP performance of the concatenated systems, which was

discussed in Section 8.2.1.1, still manifests itself at this level of the analysis.

Additionally, results for the RAM disks will also be discontinued. At this level of the
analysis, the size of the cache, at about 119 chunks (for the interleaved joining) is nearly the
size of the RAM disk at about 123 chunks. Therefore, using a RO DAP would result in a
high percentage of cache hits, consequently invalidating the results. Using a SGI DAP would
require the workers to wrap around from the last disk chunk back to the first disk chunk.
This would probably produce accurate results if the LRU replacement managed to flush out
each chunk just before it was required again. Due to the internal workings of the TASS sys-

tem, this could not be completely guaranteed for a single RAM disk system, so it was not

attempted.
8.3.1. /O Bandwidth

8.3.1.1. Optimal Workload

When issuing a read oriented SGI DAP, there is no need to consider the effect of the
actuai cache on SDTR results. Regardless of whether the cache is empty or full (assuming no
cache hits and no dirty entries), then each address request in the SGI DAP will miss in the
cache and a free clean buffer will be available for reading the data into. So, using an empty
cache is the same as using a full cache. For write oriented DAPs, we cannot start with an
empty cache, since we are trying to show sustained data transfer rates. Therefore, we don’t

want the first C chunks (where C is the size of the cache) to be written to the cache without

167

Ny

any corresponding disk access. Under a sustained SGI write, the cache would always be
filled with dirty chunks, so we must pre-fill the cache with dirty chunks, prior to beginning
the timing tests. Additionally, the dirty chunks selected for pre-fill must be chosen so that no

write access will hit within the cache on one of those pre-filled addresses.

The performance of TASS for the interleaved and striped joinings, while the cache layer
is being driven by a varying number of worker processes, is shown in Table 22. As was seen
in the disk support iayer results, there is a minimum requirement of two active workers, per
component disk, to achieve maximal throughput for the interleaved joining. For the striped
joining, two active workers can drive the system at its maximal throughput during read
access. However, for write access to a two striped disk environment, three workers are still

required. This was discussed in Section 8.2.1.1. It is important to note that the addition of

Table 22: Cache Layer Throughput - Sequential Global Irregular DAP

(i) Read Access
Joining Number Number of Workers
Technique of Disks 1 2 3 4 5 6 7 8
Concatenation 1 407 720 723 717 717 722 722 722
2 408 722 723 726 725 725 724 726
Interleaved 1 418 730 729 729 730 730 730 730
2 354 833 983 | 1454 | 1320 | 1455 | 1440 | 1456
Striped 1 423 730 730 730 730 730 730 730
2 707 | 1453 | 1455 | 1452 | 1453 | 1458 | 1454 | 1450
(ii) Write Access
Joining Number Number of Workers
Technique of Disks 1 2 3 4 5 6 7 8
Concatenation 1 418 585 583 585 587 586 588 589
2 418 586 586 584 589 586 588 587
Interleaved 1 418 583 588 588 586 586 589 587
p 373 831 | 1116 | 1155 | 1126 | 1140 | 1151 | 1133
Striped 1 417 584 582 581 583 586 586 581
2 595 | 1043 | 1159 | 1164 | 1168 | 1160 | 1168 | 1164

168

the new software layers (the DSL and CL) increase the length of the pre-processing and
post-processing stages of the disk access pipeline. Although, only SGI write to two striped
disks is currently affected, this increase in pipe length cannot continue without ramifications.
This problem is only just starting to show, since it only affects one joining and one type of
access. The addition of the the DSL, using the Requestor and Acceptor process groups, adds
an internal software-based communication to the length of the pre-processing and post-
processing components of the disk access pipeline. These communications are necessary to
relay worker requests to the Requestor which passes them to disk and also to relay responses
from disk to the worker, via the Acceptors. Recall that the reason two workers are sufficient
to drive the disk server and the DSL is that one worker (and other processes working for it)
can completely execute both the post-processing and pre-processing pipe segments (on two
separate requests) during the same time another worker is in the disk access segment (see
Chapter 4). From the results in Section 8.2.1.1, the increase in pipe length due to the DSL is
not enough to prevent one worker from executing the two pipe segments. However, adding
the cache layer requires additional pre-processing and post-processing communication with
the CacheManager. The reason why SGI wriiz access to two striped disks is the first DAP to
be affected is that (i) SGI access has the shortest disk access component of the pipeline, (ii)
write access transfers data between cache server and disk server in the pre-processing seg-
ment of the pipe and (iif) the fact that the striped disk implementation sequentializes the issu-
ing of requests to the component disks (see Section 5.3.1) means that the pre-processing pipe
segment is significantly longer for that particular DAP than it would be for any other DAP.
Read results are not affected since the data transfers from the disk server to the cache server
are more parallelized due to the use of multiple acceptor pools (one pool per link) which
allow ail data transfers to occur simultaneously (depending upon how good the transputers

DMA hardware is).

169

0LY

665 | S6S | 109 | 619 | 819 | 819 | 819 | 66€ 4
PIC | TI€ | 80€ | LI€ | LI€ | LIE | 8IE | LT i pading
986 | €09 | 019 | 609 | 209 | LLS | €Lv | T¥T 4
SIe | 21 | O1€ | L1€ | L1€ | L1E | LIE | 91T I paAeapdu]
8 L 9 S 14 £ 4 I | sysigjo | onbuuyday
SIIOA JO JOQUINN Joquiny] Summoy
$S3%0Y NI (I1)
Tv9 | 869 | 959 | 859 | LS9 | 959 | SS9 | T9F r4
vZ€ | €T | 0¢e | lee | O€e | €€ | 1€€ | L¥C I padims
1S9 | #S9 | 919 | €59 | Lv9 | 679 | 88F | ¥¥T z
TCe | TTe | 6T€ | OfE | 6Z€ | 6T€ | O£ | 94T I paaeaIdu]
8 L 9 S 14 £ ré 1 || s¥sigjo | onbruyogy
SINIOM JO I_quInN J3quinpn 3[1![1!0[
$5330Y peay (1)

dvd pdddepraaQ wiopuey - yndysnoay J, 1a4e| ayoe)) :¢7 Qe L

I8 PR TIE'
‘SUOTJOAS 0M] IXDU JY) Ul PISSNOSIP e J[qe) SIY) Ul umoys synsax sy -Aiduwo Ajeniur sem
AYoBD YY) SSI0OE peal Joj pue pI[[ya1d sem ayoed JY) SSI00' UM JO °$ISSIO0E BIRp Q00T Sul
-AjoAur drdures yoea ‘sajdwes ud) jo a3eraae ue sI 9[qe) SIy] Ul AU Yoy ‘47 d[qeL Ul Jake]

AyIBd AY) 10§ SINSa1 JY) pazLrewWINS 2AeYy | “loke] poddns MSIp 9y} JOJ SUOp SeM SY

-uedyrudis jou st adid oy Jo sjuawdas Fuissasoxd-1sod
pue Fuisssooid-ard o Jo Y3ud| Yy pasearour sey Iake| ayord Y} 1Y) 1R} Y] “QI0JAISYL
'dVvaA 1DS Y1 :opun ssaooe ue 0) uosuedwod Aq ‘a8ref A1oA s1 aurpadid ay) jo uorpod ssadoe
Nsip a1 a19[dwod 0) 3sanbai e 10§ uaey awm Y] ‘gvVd OF Y ¥ YIpimpueq O [EwIxews
$)1 Je Juimoy walsAs oY) doay 01 ySnoua are Ysip Jod s19q10M JATIOR om] ‘Uledy *SI[qe) ISyl

ut s)nsal Juisudns ou ame aroyl ‘€7 2JqeL UL UMOYS aIe JV(J O 94l 10J S}nsar agf

171

Table 24: Cache Layer Throughput in KBytes/second by Joining and Workload

: Two Joined Disks
Data Access Single
Pattemn Operation Disk | Interleaved | Striped
Sequential Global Read 721 1445 1445
Irregular Write 584 1124 1162
Random Read 330 650 656
Overlapped Write 317 616 610

8.3.1.2. Sequential Access

Table 24 shows a noticeable drop in SDTR for SGI access patterns. For example, the
DSL provides SGI read access from a single disk at 730 KBytes/second, however the cache
layer supports only 98.8% of that figure, namely 721 KBytes/second. Single disk SGI write
access has dropped to 584 KBytes/second, which is 83% of the DSL’s 704 KBytes/second.
I/0 bandwidth reduction also occurs in the two disk environment, with read access dropping
to 1445 KBytes/second (both joinings) as compared to the DSL’s figures of 1456 and 1461
KBytes/second for interleaved and striped disks respectively. This constitutes a 1% reduc-
tton in SDTR. The cache layer’s two disk write access SDTR is 82% and 84% of the DSL’s

figures, for interleaved and striped systems.

The reason for this significant loss in SDTR is intrinsically involved with the operation
of the cache server software. Most of the processes in the TASS cache server are event
driven, where the processes block on some communication channel and await input*®®. The

File Servers and Acceptors are driven by events that are signalled through the hardware serial

“ The Write Back process group is not event driven. Rather it decides when to act and effectively causes
an event for the Cache Manager.

171

links. In addition, since the File Server and Acceptor process groups are divided into pools,
each allocated to a particular hardware link, the individual processes know where their next
communication will come from (namely the hardware link they are dedicated to). The
CacheManager and Requestor processes are also event driven, but their events are signalled
by the File Servers and Write Back process groups, via internal communication channels,
often called soft links. Neither the CacheManager or Requestors know, in advance, what
other process will signal them, in indication of an event to be serviced. Therefore, they must
be able to block on a large number of soft links, returning to the active state only when one of
those links becomes active. Fortunately, Logical Systems C provides the ProcAltList() func-
tion that performs just this task. Therefore, extensive use was made 6f ProcAltList() in the
TASS cache server design. Unfortunately, ProcAltList() has a few drawbacks. The order of
soft links within the list given to ProcAltList() defines an implicit prioritization of requests.
If two soft links in the list go active before the process calling ProcAltList() can awake, then
the soft link appearing earliest in the list will always be serviced first. This means that the
client thread (either File Server or Write Back) that is earliest in the list will has a higher

effective priority than all the other threads in those groups.

Although the DSL interface is part of the problem, the problem did not noticeably affect
the DSL results for the following reason. Each worker using the DSL blocks until its out-
standing disk access completes and the response from that disk access is returned to the
worker. Immediately after that the worker issues a new request with little to no lag due to
computation (the worker process is a very simple one involving a loop containing the two
operations GetAddress and ReadChunk). Because of this, the actual requests issued to the
DSL are temporally spaced by about the time needed for a single disk access. Therefore,
there is plenty of time for a Requestor to pick up that request and issue it to disk before any

new requests can be issued by a different worker. This leaves little chance that the

172

ProcAltList() prioritization will affect the first-come, first-served (FCFS) request order. The
worker processes in the cache layer tests do a great deal more work (considering the com-
munication with the CacheManager et al)) and so the lag between obtaining the DSL
response and issuing a new DSL request is larger. Therefore, when including the cache layer

in the software, there is a greater chance that the DSL will aid in the shuffling of the SGI

requests.

Now back to the question as to why the SDTR for the write and read accesses has
dropped within the cache layer. What is shown by the results is that the implicit prioritiza-
tion of ProcAltList() is shuffling the first-come, first-served ordering of worker requests, both
at the junction between the CacheManager and at the Requestors, so that by the time the
requests are issued to disk they are no longer in the optimal sequential ordering. Since no
disk scheduler exists in the TASS system (see Section 4.1.1), this problem cannot be rectified
and sub-maximal I/O bandwidth is the consequence. The reason why the loss in throughput
is more pronounced for write access, dropping 18% from 1375 to 1124 KBytes/second as
opposed to the read access loss of 1% from 1456 to 1445 KBytes/second (for interleaved
joining), is that the worker threads are issuing the read requests to the addresses indicated by
the SGI DAP, and as discussed earlier, there is a slight temporal spacing between individual
requests, due to the physical disk access. Therefore, the read accesses do not get shuffled that
readily. However, during write accesses, the actual requests issued to disk are in fact write
backs of earlier write requests and are selected by the CacheManager based on the LRU ord-
ering of the cache list itself. Since writing an actual request to cache does not take that long,
and is first preceeded by an entire disk access including post-processing, there is a much
larger chance that the order in which the write requests eventually get executed to the cache
will not be the order indicated by the SGI DAP. Then, when those entries are returned to

disk, as a delayed write-back, that shuffling hidden within the LRU order will degrade I/O

173

throughput.

8.3.1.3. Random Access

The /O bandwidth through the cache layer, when a RO DAP is being executed, is
equivalent to the performance provided by the DSL, as shown in Table 19. In fact, a very
slight increase in throughput is shown for every configuration and every joining. For exam-
ple, the two interleaved disk results for the cache layer show a bandwidth of 650
KBytes/second for read access. The results for the same configuration through the DSL is
only 642 KBytes/second. This is an increase in bandwidth of about 1%. However, the CL
and DSL throughput figures are equivalent within the error margins of the samples. Due to
the high error margins in the samples (around * 15 KBytes/second), 1 am hesistant to claim
that the 1% increase in throughput is an indication that some disk accesses are hitting within
the cache. However, considering that two interleaved disks have 12416 chunks and the size
of the cache is 119 chunks, then each disk access has about a 1 in 100 chance of being a hit.
So on 1000 disk accesses we should score about 10 hits, which should give about a 1%

improvement in throughput.

It should also be noted that the problem of shuffling within the disk request order does

not affect the RO DAP, since there is no way to randomize a random ordering.

8.3.2. Processor Cycle Usage

The CPU usage figures for the cache layer are shown in Table 25. The results show a
significant increase in CPU usage, over the corresponding DSL figures, of between 4% and
6% for SGI DAP access. The RO results alsc show about a 3% increase in CPU use, except
for the two interleaved disk joining which seems to have dropped slightly. I don’t believe

that the CPU usage has gone down in this case, rather it is probably an erroneous result. As |

174

Table 25: Processor Cycle Usage for the Cache Layer

(i) One Disk - Any Joining

Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGI Read 236 5.2 2.1 9.0+0.1
RO Read 51.0 11.6 3.2 6.2140.1
(ii) Two Interleaved Disks
Data I Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGIRead 12.2 2.6 1.2 10.240.6
RO Read 26.1 6.1 1.1 4.240.1
(iii) Two Striped Disks
Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Patiern in Seconds | Calculated Software Overhead
CP-3100 | SGIRead 23.6 5.1 2.7 11.440.7
RO Read 51.5 116 3.8 7.340.1

have tried to stress, these CPU usage results are very soft and should be taken with a grain of

sait?’.

8.4. Server and File System Layers

The I/O bandwidth performance of these two layers will be documented in Chapter 9 as
part of the TASS storage node performance analysis. The operation of these layers is too

inter-related with the client communication to provide a bandwidth analysis from ’inside’ the

T In fact, I am convinced that the actual margin of error for these CPU usage results is probably higher
than the ones 1 have listed in the tables. However, it has been a long time since I used complex statistical
oriented margin of error calculations and because of that I have used more simplistic methods that probably do

not capture the variance in figures as accurately.

175

cache server processor. However, the processor cycle usage is documented in this section,

since it logically belongs in the cache server analysis.

8.4.1. Precessor Cycle Usage

The processor cycle usage for the server and file system layers is obtained using a dif-
ferent technique than was described in Section 8.1. Here external client processors are used
to issue the DAP. The final results from the flop counter are passed to one of these clients
and printed by that client. The total time required to execute the DAP was determined on one
of the client processors. Because of the fact that the two vital pieces of information, namely
the total time and the flop count, were determined on separate processors leads me to believe
that the error margin of these samples should be much higher than what is indicated in Table
26. As expected, the processor cycle usage figures for the server and file system layers,
shown in Table 26, are either equivalent or slightly higher than the corresponding results for
the cache layer. The only exception being RO read access to the two striped disk
configuration. As stated earlier, I believe that either this result is a little too low, or the

corresponding striped disks RO result from the cache layer is a little too high.

8.5. Conclusions

The disk support layer component of the cache server software effectively relays data
between the subservient disk server(s) and the supervisory cache layer. The layer hides the
request/response nature of the disk server/cache server communication protocol, abstracting it
into a more programmer friendly procedure call interface. No appreciable loss in 1/0
bandwidth occurs due to the addition of this software layer. The results for two striped disk
SGI write access hint that the ’length’ of the disk access pipeline of Figure 13 is increasing,

since the number of active requests required to achieve maximal throughput increases from 2

176

Table 26: Processor Cycle Usage for the File System and Server Layers
(i) One Disk - Any Joining

Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGIRead 234 5.1 24 10.31£0.1
RO Read 51.2 119 2.1 -4.010.1
(ii) Two Interleaved Disks
Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGI Read 149 3.1 22 15.0+0.1
RO Read. 46.3 10.8 1.9 4.110.1
(iii) Two Striped Disks
Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGIRead 28.5 6.1 32 11.240.1
RO Read 534 123 29 5.440.1

to 3 within the DSL. However, the growth in the pipe length does not affect the 1/0
bandwidth for any other DAPs or disk join techniques. It is likely that the problem (which
affects two striped disk SGI write) is due to the sequential way in which component disk
requests are issued to the subordinate disk servers in the striped joining*® This problem could
be rectified if a technique, with low communication and computation requirements, could be
encoded to allow parallelization of the individual disk request communications within the

striped environment.

*8 In other words, each disk access issued to the DSL will require a disk access being issued to each of the
component disks in a striped disk joining. In the current TASS implementation, these component requests are
issued sequentially, rather than in parallel.

177

All three joining techniques, concatenating, interleaving and striping, provide equivalent
I/O bandwidth regardless of the number of subservient disks. This assumes that an optimal
DAP, for that configuration, is being issued. The only exception is two concatenated disks,
when operating under a RO DAP. In this case, /O bandwidth is significantly lower, but
since there is no obvious reason for this I believe it to be an unlucky side-effect of the

pseudo-random number sequence used.

The I/0O bandwidth of the TASS system starts to degrade with the introduction of the
cache layer. This loss of throughput is localized to the SGI DAPs and is due to scrambling of
the disk request sequence. This randomizing of the SGI sequence is caused by the implicit
prioritization imposed by the ProcAltList() construct of the Logical C compiler. Throughput
degrades because any change in the optimal sequential request sequence effectively increases
the average disk seek time for the entire DAP, which increases the average time required to

execute each request, therefore reducing I/O bandwidth.

Even though additional inter-process communications are used to coordinate the activi-
ties of the File Server threads and the Cache Manager thread, the additional time required to
perform this communication does not yet seem to be seriously affecting the performance of
the TASS system. However, as for the DSL, the requirement for three active requests (rather
than two) in order to obtain maximal write bandwidth for two striped disks is still apparent in

the results given in Table 22.

There is some indication that the cache layer has a positive effect on 1/0 bandwidth
under a RO DAP. RO throughput at the cache layer appears to have increased by about 1%
over the DSL’s RO bandwidth. However, the large margin of error in the results prevents
verification of this fact. Considering that the size of the cache is 1% of the entire disk
address space in a two disk joining and 2% of the disk address space for a one disk joining,

the expected increase in bandwidth should be about 1% or 2%.

178

When CP-3100 physical disks provide the system’s data store, the DSL uses no more
than 7% of the T800 cache server’s available processing power. If higher bandwidth disks
are used, the results obtained using RAM disk servers, indicate that the CPU utilization will

increase to an upper limit of about 12% of the available processing power.

The TASS cache server software, as an entire unit, utilizes a fairly small portion of the
T800’s available processing power. The largest use of CPU cycles is about 15% of the avail-
able processing power and that occurs with two interleaved disks, operating under a SGI
DAP (see Table 26). This leaves, in the worst case, about 85% of the available processing
power free for execution of more complex code segments, such as file systems, write back

“opportunity determination, access pattern predictions, etc. This allows ample opportunity for
enhancement of the existing TASS system with little worry regarding loss of performance
due to overworking the cache server processor. Each new primary level of the TASS cache
server software uses between 1% and 5% of the available processing power, depending upon
the number of subservient disks and nature of the DAP. As expected, the CPU use analysis
of the entire cache server software (Table 26), shows that the two striped disk environment
requires less processing power than does the two interleaved disk environment* since each
client request transfers twice as much data with the same amount of work. However, within
the DSL the two striped disk system does require twice the work, per request, so the CPU
usage for a two striped disk system is slightly higher than is required by the one disk environ-

ment.

47 Although not shown here, the CPU usage of the concatenated disk system is comparable to the inter-
leaved environment, when a SLDI DAP is substituted for the SGI DAP.

179

2

9. TASS Storage Node Performance

This chapter discusses the performance of the TASS storage node as a unit. The tests in
this chapter portray the SDTR that the node can provide to client processors, as well as the
percentage of CPU cycles required to provide that 1/0O bandwidth. Performance results for
TASS storage nodes are based upon transfers between either disk or cache, and main memory
of one or more client processors. The presentation of results in this chapter will be a slight
departure from what has been used in the previous chapters. The primary partitioning of
results will still be by I/O bandwidth and CPU usage. However, rather than dividing the 1/O
bandwidth sections first by DAP, then by type of data access (read or write), this chapter will
section them first by type of access, then by DAP. Hopefully, this break in technique will not
be confusing. The method used in the previous chapters would have produced quite a few

more ugly tables than arise using this new breakdown.

9.1. Testing Environment

Tests of the entire TASS storage node are accomplished using the processor
configuration shown in Figure 20. Note that the cache server can only communicate with
four other processors, due to the number of serial links provided to each transputer. There-
fore, the use of three clients and three disk servers in the diagram is meant to show the max-
imum number of processors in each category. The actual configuration would use some com-
bination of clients and disk servers adding up to no more than four. The root transputer is
responsible for organizing the DAP to be issued. Basically, the root transputer, T, gives each
client processor any start-up parameters that they require, for example, whether the test is for
read access or write access, etc. Once the clients have performed any relevant initialization,

including testing whether the storage node is functional or not, they inform T, that they are

180

Root Transputer

€
ot

Client Processors (1 to 3)

Cache Server

Disk Servers (1 to 3)

Figure 20: The TASS Storage Node Testing Environment

ready for the test tc begin. Once all clients are ready, T, issues addresses, as appropriate to
the selected DAP, to each of the client processors. When the first address is received, each
client makes an initial timestamp and then issues the appropriate disk request. This contin-
ues, with each client requesting an address from T, and issuing that request, until an invalid
address is issued by T, to each client. That invalid address signals the end of the test and
causes the clients take a final timestamp. From the two timestamps, and the nuniber of actual
disk accesses made between these timestamps, the clients can determine the SDTR that the
TASS storage node provided to them. The final SDTR of the TASS storage node is deter-
mined to be the sum of the rates observed by each of the client processors. In other words, if
client C observes a SDTR of 730 KBytes/second, and client C, observes a SDTR of 711
KBytes/second, then the SDTR provided by the TASS storage node is considered to be 730 +

181

711 = 1441 KByies/second. Although not reproduced in this thesis, I have performed tests
that show that the client communicaticn with T, between every TASS storage node access
does not noticeably affect the SDTR results obtained. This is because the time required for
the client to communicate with T, is considerably smaller than the time that the client is

blocked, waiting for the disk access to complete.

For the same reasons discussed in Section 8.3, the results for concatenated disk systems

have been excluded from this chapter.
9.2. YO Bandwidth

9.2.1. Read Access

The read access performance results are provided for both SGI and RO DAPs. The I/O
bandwidth provided by the TASS storage node is shown in Table 27. Results are provided
for most of the possible TASS storage node configurations. Each configuration is described

by the number of clients served, the number of disks used and the disk joining technique

Table 27: Read Access Sustained Data Transfer in KBytes/second

Configuration Chunks Prefetched Ahead
Only Random
Clients | Disks Joining Hits 0 1 2 3 4 5 6 Overlapped
1 1 All 1186 | 298 | 298 536 730 730 730 730 206
2 1 All 2344 | 536 | 536 536 | 730 730 730 730 333
3 1 All 3453 | 7306 ; 730 2 730 730 730 730 333
1 2 Interleaved || 1196 | 280 | 277 595 819 | 1054 | 1142 | 1142 205
2 2 Interleaved || 2321 | 596 | 596 596 826 | 1070 | 1304 | 1450 368
1 3 Interlcaved || 1200 | 281 ; 281 545 869 | 1036 | 1151 | 1155 205
1 2 Striped 1209 | 450 | 448 846 | 1180 | 1182 | 1182 | 1182 341
2 2 Striped 2392 | 847 | 847 847 | 1279 | 1448 | 1445 | 1446 636
1 3 Striped 1221 | 558 | 558 | 1079 | 1204 ; 1204 | 1204 | 1204 446

182

applied. Following the configuration description are the data columns. Data column 1 shows
TASS throughput when all client accesses are cache hits. Data columns 2 through 8 present
the throughput when the indicated number of chunks have been prefetched prior to their
access by the client. In many of these cases the average delay due to each cache miss is often
reduced, resulting in significantly higher data throughput. The ninth data column provides

results for random accesses to the TASS storage node.

Each entry in Table 27 is determined by averaging the sustained transfer rates obtained

during ten samples. Each of these samples involved 1000 chunk read operations.

9.2.1.1. Only Cache Hits

The results in data column 1 of Table 27 show that each TASS client, continuously hit-
ting within the cache, can read between 3453/3=1151 and 1221 KBytes/second, for the 3
client/1 disk and 1 client/3 striped disk configurations, respectively. This indicates that for
cache hits, the sustained TASS read throughput is at least 94% of the maximum link

throughput of 1225 KBytes/second.

9.2.1.2. Sequential Global Access with Prefetching

The second through eighth data columns show the /O bandwidth of the TASS storage
node when operating under a SGI DAP. The individual columns display the throughput for
varying degrees of prefetch. As the degree of prefetch increases, the throughput also
increases unfil the maximal disk throughput is reached. This is becausc each prefetch request
activates a File Server thread within the TASS cache server. These threads directly access
the disk support software, bringing the requested disk chunk into the cache. Any subsequent
read request from a client also activates a server thread, however this thread need not access

the disk support layer because it will hit within the cache, since the previously issued prefetch

183

will have brought, or be in the process of bringing, that chunk into the cache. Therefore, the
number of server threads actively using the disk support layer is equal to the degree of pre-
fetch (the number of chunks looked ahead). When a thread handlirg a read request queries
the CacheManager regarding address A, which is currently being prefetched, then that thread
will be blocked until the prefetch completes. As the degree of prefetch increases the time
between issuing the prefetch to address A and issuing the read to address A also increases.
Therefore, the higher the prefetch degree, the less time server threads, attempting to read
data, spend blocked at the CacheManager and consequently, the less time the disk access
appears to take, from the client’s point of view. Columns 2 through 8 of Table 27 show that
for all storage node configurations and for all DAPs, throughput increases as prefetch degree
increases, until the maximal throughput (for that configuration) is reached. The only cases
where increased prefetch degree does not improve throughput are (/) when the limiting
bandwidth has been reached and (ii) when the prefetch degree is increased from O to 1. When
the prefetch degree is 0, no prefetch operations are issued by the clients, so when the read
request is received by a server thread, that thread must directly access the DSL (via the cache
layer). With prefetch degree of 1, the threads handling the prefetch operations access the
DSL and because the read requests are issued almost immediately after the prefetch requests,
the threads handling those read requests immediately block at the CacheManager interface
and wait for the prefetch to complete. Because of this, the results for the O and 1 prefetch
columns are equivalent, since in both cases, the same number of file server threads (one per

client processor) are directly accessing the DSL.

As discussed in Sections 8.2.1.1 and 8.3.1.1, the maximal SDTR for sequential access
patterns cannot be achieved unless there are between two and three server threads simultane-
ously accessing each disk. Table 27 shows that in the 1 disk configurations, maximal SDTR

i1s not achieved until prefetching reaches degree 3. The 1 disk/3 client configuration is a

184

special case, since the 3 clients each activate one server thread to service their read requests.
As shown by comparison to the O prefetch column for this configuration, these three threads,
regardless of prefetch degree, are sufficient to provide maximal throughput. Comparing the
single disk configurations to the results for the disk support layer and cache layer (Sections
8.2.1.1 and 8.3.1.1), shows a discernible increase in the number of active servers required to
achieve maximal throughput. The increase to the current requirement of three active servers,
as opposed to the cache layer and disk support layer requirement of two active servers is an
indication that the disk access pipeline (see Chapter 4) has (once again) increased in length.
Effectively, the communication beteen the client processors and the cache server processor
have added two new components to the pipeline, one prior to the pre-processing stage and the
other after the post-processing stage. Since this communication is performed as an RPC call,
these new stages have no inherent parallelism with each other. Furthermore, these new
stages increase the time required for each request to proceed through the entire pipeline,
therefore effectively increasing the number of active requests that are required to keep the

disks busy.

The multiple disk configurations display more variety. All single client configurations
(both 2 disk and 3 disk systems) exhibit a clipping of read throughput at between 1142 and
1200 KBytes/second. This is a consequence of the Part.7 crossbar bottleneck discussed in
section 7.2.2. The throughput for two client configurations peaks at 1450 KBytes/second,
with 6 and 4 prefetches, for interleaved and striped disks respectively. Therefore, TASS
throughput for a 2 disk system is equivalent (within error margins) to the cache layer’s
throughput of 1445 KBytes/second, shown in Table 22. For interleaved systems, the perfor-
mance peak is for six prefetches since (due to the pipeline increase for the client interface
communications) three active File Server threads are required to keep each disk busy. As

discussed in section 8.2.1.1, striped systems require only two active server threads in order to

185

provide maximum disk support layer throughput, regardless of the number of disks joined.
The increased pipe length, due to the client interface communications, was expected to
increase this requirement to three active server threads, rather than the four indicated in Table
27. 1 believe this is a consequence of the fact that the striped disk system has a slightly
longer pre-processing pipe stage than does the interleaved system, since requests to the
striped disk servers are sequentialized, rather than parallelized. Although this longer pre-
processing pipe did not affect striped disk bandwidth for read access in the Chapter 8 results,

I believe that by coupling it with the client interface communications, it is starting to have an

impact.

9.2.1.3. Random Access

The last column of Table 27 shows the maximum throughput that a TASS storage node
can provide to clients using random data access patterns. Single disk systems achieve SDTR
equivalent to that provided by the disk support layer and cache layer (see Tables 19 and 24),
only if multiple clients are accessing the TASS node. For multiple disks, only the two client,
two striped disks configuration achieves SDTR equivalent to the results presented in Tables
19 and 24. The poor performance displayed by the other configurations is due to the remote
procedure call interface used by TASS clients. Each client can only issue one random access
request at a time, therefore, there is never more than one active server thread per client. Two
active server threads are required per disk, to provide maximum SDTR for a random data
access pattern. Therefore, single client systems can keep only one server thread active, which
prevents maximum SDTR from being achieved. Similarly, two client systems with two inter-
ieaved disks can keep only one server thread active per disk, on average. Striped disk sys-
tems require only two threads to keep all disks active, therefore a two striped disk system

achieves maximum throughput when controlled by two clients.

186

client interface does not increase the

-
o
4
o
[« 9
[
jae gl
Q
n}
o]
5,
(@]
@]
=
5
E
=
(el
&i
i >
o
]
Lom }
"D
R
2
]
D
[«%
o
<
—
o
4]

required number of workers from two to three, as it did for the SGI access, since the physical

disk component of the pipe, for RO DAPs, is still too large.

Figure 21 shows the I/O throughput of the TASS storage node when the TASS File

being accessed varies in length®®. Four graphs are shown in the figure, these show the RO
DAP throughput for (i) two striped disks, (ii) two interleaved disks, as well as any single disk
system, (iii) one disk server, controlled by request/response primitives and tested with a con-
stant stream of incoming requests. This graph has been doubled to indicate the maximum
throughput that could be provided by two such disk servers, controlled independently of
TASS and (iv) one disk server connected to its client by an RPC interface. Graphs (iii) and
(iv) are reproduced from Chapter 7°’s Figure 18. Graph (iii) is simply a doubling of Figure
18’s read graph, while graph (iv) is the same graph as Figure 18’s RPC read graph. The rea-
son why graphs (iii) and (iv) are included in Figure 27 is to show how the random read per-
formance compares to direct disk access. McVoy & Kleiman state that some users "get rid of
the file system altogether by using the raw disk” [McV91]. Users resorting to this desperate
technique are usuaily those running database applications, which often have a predominance
of random access activity. If the TASS system does not provide as good, or better perfor-
mance than could be achieved using direct access of the disk servers then such users may still

have to resort to such techniques.

It can be seen in the figure that as the region of disk being accessed increases, the I/O

throughput of the TASS storage node, using a RO DAP, drops from approximately 1200

¢ Recall that the term TASS File was defined for referencing contigucus regions of disk chunks (see Sec-
tion 3.2.2.2). In other words, a TASS File of 4000 chunks, starting at chunk address 50, would include all
chunks in the contiguous range of addresses 50 through to 4049,

187

1300 T T T T T

1250 TASS Storage Node
1200

T T T

2 Striped Disks _
2 Interleaved Disks - ~
1100 Request/Response (x2) -~ -
1100 Req g

1050 | .
1000
950 |
900
850
800
750
700 | %
650 |}
600 | !
550 % 7
“\
i

j/‘]) I

-
o

TASS Disk Server

T
T

T -

1

T

500 |
450 |
400 | \]
350 |,]
300 | T
250 e T T T T
200 | i
150 F R
100 | i
50 |]

0 ' 1 { 1 1 1 ! A !

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000
Size of Disk Address Space Accessed in KBytes

Transfer Rage in KBytes/second

.......................

Figure 21: Random Read Access Performance While Varying File Size

KBytes/second down to about 360 KBytes/second (for striped disks) and 225 KBytes/second
(for interleaved disks). These results are equivalent to the SDTR figures in Table 27 for the
case when all accesses are cache hits, and for the RO DAP results (also in Table 27) for each
joining. The cache size is approximately 2000 KBytes (2 MByte main memory for the T800
cache server), and as soon as the cache fills, performance of the TASS storage node makes a
sharp plunge. When the file size is about 4 MBytes, which is twice the cache size, perfor-
mance for both striped and interleaved access has dropped to about 150% of the sustained RO
DAP results in Table 27. By the point where the region of disk being accessed is approxi-

mately 6 MBytes (3 times the cache size), performance is virtually equivalent to the sustained

188

RO DAP results. Therefore, except for very small files, the cache has virtually no advanta-

gous effects on disk throughput.

Note that the two interleaved disk graph is used to represent the single disk TASS
storage node environment as well. In the RO DAP tests on the TASS storage node, requests
are issued one at a time, with no prefetching. Therefore, in the interleaved disk system, only
one disk is accessed per request and there is no disk paralielism. Consequently, the two
interleaved disk graph is virtually the same as the single interleaved (or striped) disk graphs.
By comparison to the graphs for the disk server, it is clear that a user could get better perfor-
mance by using one disk server than can be obtained by using a TASS storage node with two
interleaved disks. This is because in the extra communication required to pass the data from
the cache server to the client processor (as opposed to the direct disk server to client proces-
sor link used in graph (iv)), causes an additional lag in the time between the request being
issued by the client and the response being received. Therefore, the resulting interleaved
throughput is actually lower than can be obtained by direct disk server access. The two
striped disk environment appears to be better than the interleaved environment, however, this
is not necessarily the case. Recall that the striped disk environment moves twice as much
data per request as does the interleaved environment. Therefore, the striped disk results
should be compared to twe RPC disk servers since two disk servers are being simultaneously
accessed. A mental doubling of the RPC disk server graph should suffice to show that the

striped disk environment also fails to improve on direct disk access.

The graph for the two request/response disk servers is a bit like “comparing apples to
oranges”. The results in that graph show what can be provided by two disk servers when two
or more requests (per disk) are simultaneously active, at all times. It is included in Figure 21
to illustrate what sort of performance should be achievable by the TASS storage node if the

client processors are not restricted to the limitations imposed by the RPC nature of the TASS

189

client interface>!.

9.2.1.4. Comments

The apparent advantages of striped systems, namely fewer prefetches required to
achieve maximum sequential throughput, and better random performance, are offset by the
fact that the chunk size for striped disks is larger. For example, sequential access with degree
three prefetch to a two striped disk system, will actually look-ahead the same number of
bytes as a degree six prefetck on an interleaved system. Furthermore, for a random system,
prefetching the next chunk to be used, prior to issuing the read request for the current chunk,
would provide sufficient active threads for most interleaved configurations. This would fetch
the same amount of data from disk as would be read by any a single random access using two
striped disks. It would also have the advantage of allowing the user to fetch that data from

two different places in the database, rather than just one larger place, as is done using the

striped disks.

9.2.2. Write Access

The SDTR for TASS write access is given in Table 28. Results are given for the same

storage node configurations as were used in Table 27. Prefetching is not applicable to write

access52, so the breakdown of the data columns differs from that used in Table 27. The first

5! In other words, it shows what should probably be achievable if a better client interface were implement-
ed and if that interface allowed multiple client processes, within one client processor, to be involved in the issu-
ing of the RO DAP.

52 This assumes that the entire chunk is being overwritten. For partial chunk writes, prefetching the chunk
into the cache well in advance of the actual write operation would help significantly.

190

Table 28: Write Access Sustained Data Transfer in KBytes/second

Configuration Sequential Global Irregular
Only Random
Clients | Disks Joining Hits | Without Write Back | With Write Back | Overlapped
1 1 All 1157 298 702 324
2 1 All 2287 513 633 323
3 1 All 3413 525 579 323
1 2 Interleaved || 1163 273 1145 572
2 2 Interleaved || 2302 596 1219 599
1 3 Interleaved || 1170 295 1156 691
1 2 Striped 1198 374 1200 616
2 2 Striped 2390 757 1124 615
1 3 Striped 1212 430 1197 933

data column of Table 28 shows the write performance when every access hits within the
cache. Columns 2 and 3 show the performance of the TASS storage node when operating as
a delayed write back cache. Column 2 indicates the I/O throughput when no write back pro-
cess group is operating within the cache server and column 3 indicates the throughput when a
4 threaded write back process group is active. Finally, data column 4 shows the random
access performance of the TASS storage node, also with a 4 threaded write back process

group active.

All results in Table 28 are determined using 10 samples, each sample consisting of 1000
chunk writes. The cache was pre-filled with dirty chunk entries, prior to each sample com-

mencing.

9.2.2.1. Only Cache Hits

A cache hit, for the purposes of the Only Hits column of Table 28, occurs when a write
access to address A finds address A within the cache. In this case, the same (possibly dirty)

cache entry is overwritten, with no disk access required to reinstate any dirty chunks into

191

permanent storage.

Table 28, column 1 shows that the maximum write SDTR provided by TASS occurs
when all accesses hit within the cache. The observed SDTR is within 94% of the crossbar
throughput limit of 1225 KBytes/second. Throughput for cache hits to a nr disk striped sys-
tem is slightly better than for n disk interleaved systems (n = 2). Recall that the size of
chunks in the striped system are larger by a factor of n than the chunks within the interleaved
system. Therefore the quantity of data transferred per operation is also larger by a factor of
n. Regardless of disk joining, the overhead per operation will be equivalent, discounting the
actual data movement over the serial link, therefore n times the data is transferred per unit of

overhead.

9.2.2.2. Sequential Glebal Access

The resuilts for write access using a SGI DAP are divided into two columns. The
columns display the /0O bandwidth of the TASS storage node for this access pattern when (i)
no write back process group is operating within the cache server and (ii) when a four

threaded write back process group is enabled.

9.2.2.2.1. Single Disk Systems

As for most of the results in this paper, all three joining techniques are bandwidth
equivalent for the single disk environment. With just one disk, and no write back threads,
I/0 bandwidth of the TASS storage node is significantly lower than the throughput provided
by the cache layer (Table 22). The TASS storage node can provide a single client with only
298 KBytes/second, which is 71% of the cache layer throughput (with just one worker) of
418 KBytes/second. With two or more clients, the 1 disk TASS node performs slightly
better, providing approximately 520 KBytes/second which is 89% of the 583 KBytes/second

192

provided by the cache layer. The loss in bandwidth is again due to the RPC nature of the
client interface. Since each client issues an RPC call, it can only activate one File Server
thread within the cache server processor, and this thread accesses the cache layer and subse-
quently the disk support layer as an agent for the client. The bandwidth observed by the File
Server threads can be no greater than what is indicated in the cache layer results (Table 22)>*.
The fact that the client first has to issue the write request to a file server thread, and then
receive the associated response, adds additional communication time to each write request,

reducing the effective bandwidth.

With the inclusion of a write back process group, the performance for the single disk
system improves dramatically. A single client observes I/O bandwidths equivalent to that
provided by the raw disk server (Tabie 13). Since one client is issuing all requests, those
requests get executed to cache in the pure SGI order. If we assume an LRU replacement
algorithm, then the order in which cache entries are written back to disk will also be the pure
SGI order, consequently, no shuffling of the SGI order can occur during communication with
the Cache Manager. Because a write back process group is active, it will be the Write Back
threads that return most of those entries to disk. Furthermore, since the individual Wrire
Back threads are put in the same order within the ProcAltList() calls of both the Cache
Manager and the Requestors, they have the same implicit priority, with respect to all other
Write Back threads, at both of these inter-process communication points. Because of this, the
order in which write backs are issued to Write Back threads at the cache manager interface
will usually be the same order in which those write requests are accepted by the Requestors.

Therefore, there is little chance that any shuffling of the SGI order will occur at the DSL and

3 Assuming the same *shuffling’ of requests is taking place (Section 8.3.1.2).

193

1

therefore, the SGI order of the requests should be maintained through to the physical disk.

The results in Table 28 show that when two or more clients are issuing the SGI DAP to
a storage node equipped with a write back process group, the throughput is significantly
better than when no write back group is active. However, the results fall short of the 702
KBytes/second limit of the disk server. Once again, this is the SGI order shuffling problem
rearing its ugly head. Even though two clients may issue their individual requests to the
TASS storage node in SGI order™, the File Server thread that accepts the write request for
address A, from client 0, may have a lower implicit priority (within the Cache Manager’s
ProcAltList() call) than does the File Server thread that accepts the write request for address
A , from client 1. Because of this, if the two requests arrive at the Cache Manager simul-

taneously, the write request for address A. | will be processed first and the SGI pattern will

be shuffied.

9.2.2.2.2. Multiple Disk Systems

In the multiple disk systems, there is a very dramatic improvement in effective
bandwidth when a write back process group is utilized. Without the write back group, a sin-
gle client using a TASS node can utilize less than 300 KBytes/second of bandwidth for inter-
leaved disks and only 374 or 430 KBytes/second of bandwidth for 2 or 3 striped disks,

respectively. However, with the use of the write back process group, performance for all

3% This in itself is not assured. In the testing environment described in Section 9.1, each client processor
obtains the next address to issue from the root transputer. There is no guarantee that that client processor will
actually issue the write request for that address to the TASS node before another ciieni processor manages to
obtain the subsequent address in the DAP and issue it to the TASS node. However, since each processor is a
T80O. each is clocked at the same speed, and each executes the exact same code between the acceptance of the
address from the root transputer and the issuance of that write request to the TASS node, it is highly likely that

the SGI order will be maintained.

194

configurations exceeds 1124 KBytes/second. A single client accessing a two disk TASS
storage node can utilize all of the 1124 (interleaved) or 1162 (striped) KBytes/second
bandwidth that is available at the cache layer interface (see Table 24). With a single client
and three disks, the bandwidth available to the client is clipped by the 1243 KBytes/second
limitation of the CSA Part.7 crossbar switch (see Table 10). Two client, two disk
configurations also provide performance equivalent (within error margin) to the cache layer

results given in Table 24.

9.2.2.3. Random Access

Random access write results are equivalent to the results for the disk support layer.
Threads within the write back process group use lulls in client activity to flush dirty cache
entries to disk. Since the access is random, any re-ordering of the disk access sequence, due
to the prioritization mentioned earlier, should have little effect on disk throughput. Addition-
ally, if the size of the write back process group is large enough, there should be two threads
accessing the disk at all times®>. The above tests were run with a four threaded write back
group. This small sized group may explain why the performance for a 3 disk interleaved sys-
tem is much worse than that for a 3 disk striped system. The interleaved system would need
approximately six active threads to keep all three disks busy, whereas the striped system

would still only require two threads.

Figure 22 shows the 1/0 bandwidth of the TASS storage node for RO write access to a
varying length database. The TASS bandwidth for 2 disk storage nodes is shown for both

33 Recall that only two active threads per disk are required to provide maximum random access throughput
to disk.

195

1300 1 T T T T T T T T

1250 TASS Storage Node - 2 Striped Disks —
1200 ¢ - 2 Interleaved Disks -~ -
1150 -~ TASS Disk Server - Request/Response (x2) -~ ~

1100 F
1050 B
1000
950
900
850
800
750
700 e

650 - e
600 |-
550 -
500 -
450
400
350
300
250 -
200 -
150
100

Transfer Rate in KBytes/second

_{ 1 1 ! i ! i) 1 i

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000
Size of Disk Address Space Accessed in KBytes

Figure 22: Random Write Access Performance While Varying File Size

striped and interleaved joinings. These graphs are contrasted with the maximum throughput
that could be obtained by directly accessing two disk servers using the request/response
interface. Clearly, the use of the cache enhances throughput for both joinings, when access-
ing databases of up to 40 MBytes in length. As the databases grow larger, up to the max-
imum of 200 MBytes (each CP-3100 stores about 100 MBytes), TASS node throughput

drops to the levels described in Table 28, which are equivalent to that provided by 2 disk

196

servers (see Table 10)56. The reason that the performance of the TASS storage node for RO
read access is poor is that only one active File Server thread is operating within the cache
server at any time. During the RO write operation, only one thread is ever issuing an actual
write request, however, four write back threads will be actively attempting to keep the cache
clean, hence four or five threads will be accessing the disk suppost layer, which provides the
required workload in order to obtain maximal disk throughput. Therefore, unlike the RO
read results for the TASS storage node, the write results in Figure 22 indicate that the cache

enhances the performance of the disks.

9.2.2.4. Start-up Performance

Here I vary from previous sections in that the issue under discussion is not sustained
data transfer, rather the section analyzes the effect of the cache on I/O throughput during
short bursts of write activity. I have chosen to call the sub-section Start-up Performance
since it deals with write access to an empty cache, which is what happens during the start of a
write oriented DAP. Write accesses can be entirely handled within the cache, without the
nreed for a corresponding disk access, if there is an available non-dirty cache entry to
overwrite. Furthermore, that entry must be the one selected for replacement by the cache
replacement algorithm. When a write DAP begins, (assuming no previous write accesses
ever occurred), no entry within the cache is dirty. Therefore, at least the first C write chunk
operations can be handled by the cache without any required disk accesses (where C is the
size of the cache in chunks). In other words, the first C operations will be performed at a

bandwidth indicative of every access being a cache hit. However, once the cache fills, then

36 Actually, the results indicated in Table 28 for the interleaved joining are a little less than could be ob-
tained using two disk servers, however, the throughput values are equivalent within the sampled error margins.

197

dirty entries must be written back to disk prior to the data involved in the current write

request being copied into the cache. Eventually, this wili cause throughput to degrade to the

sustained transfer levels indicated in Table 28.

The graphs of Figure 23 show the start-up performance for a one disk TASS storage

node, serving a single client which is issuing a SGI write DAP. Each of the three graphs

shows the 1/0 bandwidth of the system, as observed by the client processor, as a single SGI

write DAP proceeds from the first operation through to the one-thousandth operation. To

achieve this, an initial time stamp is taken before the first operation is issued. Then, after the

Transfer Rate in KBytes/second

1200

1100

1000

900

800

700

600

500

400

300

200

100

1 1 T i ¥ i ¥ T

y 2 Write Back Threads ——
‘ 1 Write Back Thread ---- -
‘ 0 Write Back Threads -----

i 1 1 1 1 ! 1 {

200 300 400 500 600 700 800 900 1000
Number of Chunks Written

Figure 23: Start-up Performance Under a SGI write DAP

198

compietion of each individual operation, another time stamp is taken. This produces a
sequence of time stamps that can be used to determine the effective bandwidth after the first n
operations, as n proceeds from 1 through to 1000. There are three graphs, each showing the
start-up performance of the system with either 0, 1 or 2 Write Back processes operating
within the cache server. Any tests with 3 or more Write Back processes are not shown as
their graphs only marginally differ from that of the 2 threaded Write Back process group.
The graphs illustrate the effectiveness of the write back process group at transparently clean-
ing the cache even during periods of high client (but low disk) activity. Not only is the
SDTR under a SGI write DAP better with the write back process group included (see Table
28), but the size of the cache is effectively increased for the initial burst of write activity.
With O Write Back threads operating in the cache server, the bandwidth plunges dramatically
after about 120 accesses, which not coincidentally, is also the size of the cache. In other
words, the first 120 accesses go to the cache and then delayed write backs must begin and the
bandwidth falls off. However, as the number of active Write Back threads increases, the
number of accesses that can be processed at the ’cache hit’ bandwidth of 1200
KBytes/second also increases until with 2 threads, the first 300 accesses proceed at the "cache
hir’ rate. From the vantage point of the client processor, the cache appears to be 300 chunks

in size, rather than the actual 120 chunks.

As a corollary, if a client issues bursts of write activity where each burst is less than 300
operations, then assuming the gap between bursts to be of sufficient length for the Wrire Back
processes to completely cleanse the cache, then the client will always appear to be accessing

the TASS storage node at the ‘cache hit’ bandwidth.

No similar analysis was made for read performance since each read access must go to
disk, regardless of the state of the cache, effectively making the start-up performance

equivalent to the sustained performance.

199

9.3. Processor Cycle Usage

One of the primary considerations in the TASS design is to provide disk services to
clients, without using a substantial portion of the processing power available to those clients.
The results in Table 29 show the CPU usage requirements for a single client processor,
accessing a TASS storage node. These results illustrates that the TASS client interface
achieves the low processing power utilization goal. For the high bandwidth SGI access pat-
terns, CPU usage ranges from 1.3% for single disk systems up to 2.1% for two disk systems.
For the lower bandwidth RO DAP, CPU usage ranges from 0.3% to 0.5%. Since both the
client interface and the test program used to determine the flop usage are very simple code
segments, the low error margin indicated in Table 29 is probably justified. Almost all sam-

ples agreed in percentage overhead to within 0.02%, however, since the figures are rounded

Table 29: Processor Cycle Usage for the TASS Client Interface
(i) One Disk - Any Joining

Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software QOverhead
CP-3100 | SGI Read 235 5.6 0.3 1.310.1
RO Read 83.2 20.1 0.2 0.340.1
(ii) Two Interleaved Disks
Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGI Read 15.0 3.6 0.3 2.140.1
RO Read 83.0 20.1 0.05 0.310.1
(i1i) Two Striped Disks
Data Number Seconds Used
Access Total Time MFlops by DiskLink Percent
Device Pattern in Seconds | Calculated Software Overhead
CP-3100 | SGI Read 28.6 6.8 0.6 2.010.1
RO Read 101.1 244 0.5 0.540.1

200

off to one decimal place, the error margin must also be rounded up to 0.1%. This is nice to

know after some of the high margins of error observed in earlier CPU usage calculations.

9.4. Conclusions

The TASS client interface achieves most of its goal of providing high bandwidth disk
services between client processors and disk servers. Furthermore, there is very little process-

ing power consumed within the client processor during the execution of disk access func-

tions.

For SGI read access, the disk bandwidth available to client processors is equivalent to
what could be obtained through direct access to the disk server. When two or more disks are
provided by the TASS storage node, a single client cannot utilize the entire bandwidth of
those disks, since the crossbar switches used for interprocessor communication clip that
bandwidth at approximately 1150 to 1200 KBytes/second. To provide the highest possible
SGI bandwidth, the client must issue prefetch instructions or utilize the automated prefetch-
ing facilities provided by the TASS interface. Fortunately, SGI DAPs are highly predictable
and the accuracy of prefetches within that DAP is, as a consequence, quite high. In a single
disk system, 3-chunk look-ahead (alternatively I have used the term degree 3 prefetch), is
sufficient to achieve the maximal disk bandwidth. For two interleaved disks, 6-chunk look-
ahead is required. This indicates that three active File Server threads must exist, within the
TASS node, for each disk within the joining. For two striped disks, 4-chunk look-ahead is
required to keep all subservient disks busy. The degree of prefetch required to keep any three
disk joining busy cannot be determined from the results in Table 27, since the throughput is
clipped by the crossbar switches well before maximal SDTR is achieved. The additional
communication required between client processors and the cache server has increased the

length of the disk access pipeline. As a consequence, the time required for each request to

201

proceed through the pipeline has increased and because of that, the number of active workers

(File Server threads accessing the DSL and CL) required to provide maximal throughput has

increased by at least one, over the results indicated for the cache layer.

For read access using a RO DAP, TASS performance is quite poor. This is due to the
simplistic RPC interface, which prevents more than one request from being active, within the
cache server, for each client using the TASS storage node. In fact, better RO throughput
could be obtained by clients if they used an RPC interface to the physical disk itself. Only
when the region of disk beiug accessed in a RO fashion is very small, in the neighbourhood
of 2 MBytes, does the effect of the cache provide any improvement over the disk server’s
throughput. Alternatively, if the clients know in advance the address which will be issued
next in the RO sequence (sometimes this is the case in random access), they could observe
better sustained throughput by prefetching that address explicitly, prior to issuing the current

RO read access.

For SGI write access, the performance of the TASS storage node is comparable with the
performance of the cache layer. In some cases (eg: one client/one disk) throughput has even

increased over the cache layer levels. This is due to the transparent activity of the write back

process group.

The write back process group is an effective tool for transparently cleaning the cache,
while also providing a surplus of active server threads, as compared to the number of threads
that can be kept active by clients alone. The increase in active threads serve to keep the disk
support layer busy, thereby increasing the effective bandwidth observed by client processors.
Also, for bursts of write activity, as well as for the initial phases of a prolonged write DAP,
the write back processes can provide the client with the appearance of having access to a

larger cache than that which is actually provided.

202

Finally, the TASS client interface requires only a very small portion of the available
processing power within each client processor. Therefore, programmers should not (usually)
have to worry about using the TASS system within their code, since they will still have
almost all of the processing power of the T80O0 transputer, with the additional bonus of an

attached mass storage system.

203

10. Summary

The Transputer Auxiliary Storage System meets nearly all of the goals set for it. It pro-
vides a consistent local file system for use within the transputer network. Because TASS is
an LFS, it is not capable of serving all nodes within a given network, however, it does ade-
quately achieve the goal of providing pockets of mass storage support to subsets of proces-
sors within the network. In this role it has been effectively used by a number of parallel sort
applications, which are documented in [Atk92]. Prior to the implementation of TASS, users
of the SFU transputer network were forced to pass all data into (and out of) the network using
the host interconnect. This limited the rate at which data could be provided to an application
program to approximately 700 KBytes/second. Each disk operating within a TASS storage
node can provide between 250 and 730 KBytes/second of 1/O bandwidth to the transputer
network, providing an I/O bandwidth increase of 35% to 105% of that of the host intercon-
nect. With TASS, some (if not all) application data can be maintained within the network,
and provided to application programs from TASS storage nodes. The rate at which this data
can be provided to application programs is dictated only by the number and throughput of the
TASS node’s subservient disk devices, as well as the number of transputer links available for

connecting client processors to those TASS nodes.

The TASS system is designed according to a rigidly defined hierarchy of processing ele-
ments. These, from top down are the client processors, the cache server and the disk servers.
This physical composition of the storage node allows programmers to easily configure the
TASS storage node, varying both the number of subservient disks as well as the number of
clients to be served by the node. This allows storage architecture to be tailored to the task at

hand. Again, this functionality has been utilized in [Atk92].

204

A hierarchy of software layers is distributed across these processing elements. The four
primary layers are defined as the client interface layer, the file system layer, the cache layer
and the disk support layer. Each level defines a procedure call interface that provides the
layer’s services to those of higher levels in a simple and concise fashion. Communication
issues and protocols are abstracted within the boundaries of these layers. The highest level,
the client interface, provides an efficient (although admittedly primitive) set of primitives that
are easily used, yet provide effective access to the mass storage devices (disks). The simpli-
city of the client interface is a result of TASS design consistently stressing performance over

functionality.

The software design is highly influenced by limitations of the physical hardware. Some

of the primary examples of hardware functionality which direct the software design are:

e The 64 KByte address space of the T222 transputer prevents its use as a cache server. This

dictates that a T800 transputer be allocated as the cache server in the TASS storage node.

e The use of a separate T800 transputer as a cache server allows for the parallelizing of mul-
tiple disk servers beneath each cache server. Had a single processor been used as both
cache server and disk server, parallelizing of disks would have to be implemented using the
SCSI bus protocol, thereby complicating the device dependent software. In this environ-

ment, the I/O throughput bottleneck for multiple disks is the SCSI bus itself.

e The bandwidth of the transputer serial links limits the throughput between each TASS node
and any given client to between 1240 KBytes/second and 1666 KBytes/second, depending

upon whether a crossbar or wire interconnect is utilized.

e Since the transputer processor only provides two priority levels, there is little flexibility for

varying the priorities of competitive and/or cooperative process groups.

205

For sequential read access, which constitutes the majority of disk accesses

[Nel87][Flo86]%’, the I/O bandwidth of TASS is virtually equivalent to the maximum
bandwidth that can be provided using either the CP-3100 disk devices or the TASS RAM
disk devices. Therefore, little bandwidth loss occurs during the execution of the TASS
software. However, random read performance does not fare as well. Due to the simplistic
RPC nature of the TASS client interface, it is usually impossible for TASS clients to provide
a sufficient workload to achieve maximal throughput from the disk devices. The performance
of TASS for sequential write access also fails to meet the expectations set out in the TASS
requirements. A single client, independently accessing a TASS node can utilize the max-
imum 1/O bandwidth of the subservient disk devices. When two or more clients attempt to
write to a shared storage node, bandwidth suffers due to an unfortunate side-effect imposed
by the compiler’s ProcAltList() library procedure. On the plus side though, random write

access to the TASS node can proceed with a higher bandwidth than could be achieved using

direct disk access.

Two software prototypes are implemented for each of the TASS cache server processsor
and the TASS disk server processor. In each case, the initial prototype was abandoned in
favour of the second one. In the case of the disk servers, the first version was abandoned due
to poor performance, whereas the first cache server prototype’s perceived failing was in the

complexity of its central process, the Cache Manager,

The first disk server prototype (DS1) utilizes four process groups, and as a consequence,

requires significant inter-process communication to control and sequence the operation of

57 [Nel87] states that only 1/3 of all disk accesses are write accesses. [Flo86] analyzes the nature of both
write and read accesses and determines that the majority of data accesses are sequential in nature.

206

these process groups. Due to this, performance of DS1 is sluggish. This is because systems
utilizing similarly complex process group structures often suffer performance ornented prob-
lems due to the context switching and communication overhead imposed by those process
hierarchies. This has been discussed in [Cla85] and [Atk88] and although not quantitatively
verified here, some qualitative issues are addressed that reinforce these claims. The second
disk server prototype integrates the activities of all process groups into a single server group.

The resulting disk server software is not only more efficient, but also more understandable.

The first cache server prototype (CS1) utilizes (or would utilize had it been maintained)
the same process groups as does the second prototype (CS2). Almost all of the work required
during the execution of each client request was handied by the Cache Manager. All other
process groups virtually operated as dummy message relays between other processors and the
monstrous Cache Manager. Because of this, the code for the Cache Manager is vast and
cumbersome. The CS2 prototype reduced the complexity of the cache manager by offloading
the responsibility for much of its functionality onto the File Server threads. This provides for
more understandable code although it may increase communication requirements to some
degree. The results in Chapter 8 indicate that shuffling of the disk access sequernce occurs at
the communicaticn interface between the Cache Manager and the File Servers and this has
caused sequential write throughput to degrade significantly. Further vertical integration of
the cache server design may improve I/O bandwidth by reducing the amount of inter-process
communication and thereby eliminating the dependence of the software on the ProcAltList()
procedure. For example, 1 am considering a technique whereby the operation of the File
Server process group and the Requestor process group could be integrated. This would elim-

inate one of the primary communication interfaces within the cache server.

207

11. Future Work

TASS provides a suitable test-bed for further research. Some of the possible avenues

for such future work are documented in this chapter.

11.1. New Hardware

The T9000 transputer, the newest family member, is pending release from Inmos. This
transputer will provide significantly more processing power than is available using the
current transputer work#orse, the T800. Additionally, Inmos plans to incorporate into the
T9000 a hardware based message router that will provide point-to-point communication
between all T900O0 transputers within a network. Furthermore, the bandwidth of the serial
links will be expanded to 20 MBytes/second. Increasing the bandwidth of the transputer
serial links would eliminate the clipping of throughput observed for the SGI Read results
(Table 28) and make the three disk storage node practical. Using the T9000 or TI C40 (see
next paragraph) with their significantly higher link bandwidths would allow for effective use
to be made of three disk TASS nodes. Because processor use is not a bottleneck in the
current TASS implementation, further increasing processing power over the T800 levels

probably has few ramifications for the TASS system.

Texas Instruments has released the TMS320C40 microprocessor, which is usually
referred to as the C40 [Tex91]. Although this is not a transputer device, each of these proces-
sors is equipped with six transputer compatible serial links. As with the T9000, these links
are capable of transmitting 20 MBytes/second. Due to the six serial links, using a C40 as a
cache server would increase the number of possible TASS storage node configurations.
Between 1 and 5 subservient disks could be joined within a TASS storage node, providing a

higher degree of disk parallelism. Similarly, between 1 and 5 clients could be serviced by

208

each TASS node, which couid serve to keep more server threads active, achieving maximal

disk throughput using lower degrees of prefetching.

Improved transputer-based SCSI interface boards are now becoming available from
various vendors. For example, Paralogic Inc., of Bethlehem PA, has released a board that
uses a T80O0 transputer as its control processor. This provides a processing platform capable
of supporting both the cache server and disk server components of a TASS storage node.
Multiple disks can be connected to the board’s T800 using the SCSI1 bus interface. Since this
is a more complicated SCSI environment than is used within the current TASS implementa-
tion, a more complex SCSI driver would be required (however, since SCSI drivers are fairly
common software demons (sic), a good template for a driver design could be easily

acquired).

11.2. Increased Cache Capacity

The results presented in this thesis are obtained using T800 cache servers. Each of
these T800s is equipped with only 2 MBytes of RAM. Using a T800 (or other 32 bit tran-
sputer) with 8 MBytes of memory would allow the TASS node to provide approximately four
times the cache space than is provided by the current version. Enlarging the cache space
would serve to increase the average hit ratio, which would enhance I/0 throughput of the sys-

tem as a whole.

11.3. Expanding Disk Server Functionality

The request and response primitives provided by the TASS disk server do not provide
all of the functionality that may be desired by potential users of such disk servers. Some
suggestions for expanding the set of disk access primitives are included in this section. 1

have not implemented these suggested primitives as they are not required for my research,

209

however, they would probably be recessary in a fully functional system.

To allow a client processor (like the cache server) to know that all disk operations have
been completed, a Flush Disk Queue primitive could be included in the disk server interface.
Receipt of this request at the disk server would prevent any new disk requests from being

accepted until all outstanding disk requests have completed.

Although a Format Disk primitive has been implemented as part of the device depen-
dent layer of the disk server software, access to that primitive was not extended to client pro-

cessors. Adding it to the disk server interface would probably be required in a more

comprehensive disk system.

Clients of the disk server cannot reset the disk if they perceive a problem in its opera-

tion. Therefore, a Reset primitive would also be required in a complete disk system.

Finally, a Chunk Test operation might be required to allow clients to test whether a

disk chunk is storing data correctly. This would be required to allow a file system to main-

tain a bad blocks list.

11.4. Additional Disk Joinings

The concatenated, striped and interleaved disk joinings are not all of the possible join-
ings of multiple disks that can be provided. For example, Section 2.5.1 discussed the RAID
concept which proposes a hierarchy of techniques for providing highly reliable disk storage
from inexpensive disk devices. The simplest technique defined in the RAID hierarchy is mir-
roring, where two disks can be joined together to provide data redundancy. In other words, a
two disk system can be implemented such that each chunk is written to both disks. Then, if
an access to one of the disk returns an error, or perhaps a cyclic redundancy check (if pro-

vided by the hardware) indicates an error in the data read, then it is highly likely that the

210

other *mirrored’ disk will still accurately store the data and can pass it on to the client.

Adding this joining technique to TASS would not be a trivial matter. Given two disk
servers D, and D, and the disk support layer process environment described in Chapter 5, the
following issues arise. An Acceptor process that receives a disk response from D, which
indicates an error in disk operation has occurred would have to guarantee that an accurate
copy of the data (which has been obtained in parallel from D,) is returned to D,. Therefore,
that Acceptor must issue a new request for a write operation to D,. This requires a communi-
cation to the Requestor process group which will issue the request. This situation may

violate the no-circular wait criterion that has been used in TASS for deadlock prevention.

11.5. Removing the Implicit Prioritization of ProcAltList()

Many of the I/0O bandwidth losses that occur within TASS are due to shuffling in the
order of disk requests, between when they are accepted from clients and when they are issued
to disk. Most of this shuffling occurs as a side-effect of the implicit prioritization imposed by
the Logical C ProcAltList() function. Alternative techniques for providing the functionality

of ProcAltList() without this hidden penalty, could be explored.

11.6. Non-RPC Client Interface

Another source of bandwidth loss in the TASS system is the simplistic RPC interface
used between client processors and cache server processors. This interface could be modified
to allow multiple processes to share the interconnecting communication link, thereby allow-

ing a higher degree of parallelism in client access to TASS.

211

11.7. More Functional Local File Systems

As stated frequently in this thesis, the TASS chunk VO interface sacrifices functionality
in the pursuit of efficiency. However, CPU utilization results (see Chapter 8) have shown
that plenty of processing power still remains within the cache server processors. Therefore,

more functional file systems could probably be implemented without reducing data transfer

bandwidth.

11.8. Distributed File Systems for the Transputer Multiprocessor

As mentioned in Chapter 1, the goal of TASS is to provide a local file system which can
be used as a building block within a distributed file system, which is to be implemented later.
Obviously, no future work chapter would be complete without some reference to this DFS.
During the period of this research, a few ideas have occurred to me as to what form that DFS
might take. 1 will briefly describe two of these ideas in hope that they might prompt an

undertaking of the DFS design.

One of the primary components in DFS design is communication. Every processor con-
trolling some group of disks must be able to communicate with any client processor, as well
as all the other disk control processors in order to provide coherent operation within the DFS.

I propose two DFS architectures, one for a transputer network that has point-to-point com-

munication>® while the other is based on the message passing model currently used in the

%8 Any processor can send a message directly to any other processor. Routing of messages between two
indirectly connected processors (via a chain of processors) is performed either in hardware or using some gener-
ic software package, like the Trollius Operating System.

212

SFU transputer network™’.

11.8.1. DFS using Point-to-Point Communication

This model is the simplest of the two because many DFS have been built within similar
environments, for example Andrew [How87], Sprite [Ous88],[Nel87] and PIFS [Dib90}, and
as such a surplus of research and ideas for such a system are available. Basically, the TASS
storage nodes are configured as part of a generic network. The point-to-point communication
allows any processor to communicate with the TASS node, and vice versa. Additionally, the
environment required for this model may become a reality whenever the T9000 series tran-

sputer is realeased.

An important issue in DFS design is location transparency [How87]. This is a form of
information hiding whereby the clients of the DFS need not knov? the physical structure of
the file system (ie: how many disks, where are they in the network, how is each file distri-
buted over those disks). Provision of a location transparent DFS, built upon TASS nodes,
requires the modication of the TASS client interface. Any client request to read some region
of disk, either directly as in the TASS chunk 1/O interface, or as part of a file within a more

advanced file system, must be routed to all of the appropriate TASS nodes in order to be

satisfied®®. This knowledge of where the disk region is must be maintained at some level of
the DFS and be easily available to the client. Some of the alternatives for providing this

abstraction are:

% Only transputers that are directly connected to each other are able to pass messages to each other. Rout-

ing of messages beiween indirectly connected processors has to be handled by the DFS sofiware.

% A client request to read 500 bytes from a file may actually require access to more than one TASS node if
that file is distributed across many disks.

213

(1) Let the individual storage nodes maintain all the information regarding the file system.
Then, if a request for data arrives at a storage node, but cannot be satisfied by that node,

then the storage node will relay the request to whatever node(s) are able to satisfy the
request.

(2) Dibble [Dib90] utilizes a Bridge server to maintain all file control structures. Clients
issue requests to the Bridge server which informs the client as to where the required data

can be found.

(3) The directory structures and file access tables can be maintained within each client pro-
cessor. This requires a coherency algorithm be provided to guarantee that every client is

using the current state of the directory structures and file access tables.

Similarly, client side caching of data can, and as illustrated by [How87],[Nel87], prob-
ably should be implemented. Again, this requires coherency algorithms to guarantee that all

clients are accessing current copies of the data.

The interface between the TASS storage node and its respective clients has to be
modified to allow TASS File Servers to keep track of what process on which processor
issued the disk access request. Then, when the file operation is complete, the File Server can
use the point-to-point communication environment to pass the response back to the appropri-

ate client.

These are just some of the issues to be pursued in such a DFS environment.

11.8.2. DFS for SFU Style T800-based Network

Given that no point-to-point communication exists in the target network, an alternative

method for providing the required communication between client processors and component

214

TASS nodes must be established. In keeping with my penchant for allocating hardware to
solve irritating problems, I propose the architecture shown in Figure 24. In this environment,
the set of TASS nodes are placed beneath a chain of DFS nodes. Each DFS node allocates
two communication links to the DFS chain, one communication link to a client processor and

one link to either a TASS storage node, or another client processor. This requires, in the

6! " This chain of

worst case, that each client processor is matched with one DFS processor
DFS processors can then be used to relay client requests (and subsequent responses) to (and

from) the appropriate TASS storage node.

Additional levels of caching could be provided within either the processors comprising
the DFS chain, the client processors, or both. Any cache coherency algorithms required to
sustain these multiple caches could utilize the DFS chain as a common communication

medium.

Client Processors

DEFS Processor Chain

TASS Storage Nodes

Figure 24: A Distributed File System Environment

8! In other words, discounting the processors already allocated to TASS storage nodes approximately one
half of the network’s remaining processors are used for the distributed file system. However, these nodes need
not be the most expensive flavour of transputer, they could be T222 or T414 varieties, which are cheaper and
Iess functional.

215

This technique is not very scalable, since as the network size grows, so does the DFS
chain. The longer the DFS chain, the longer it will take a request to proceed from the issuing
client to the target TASS node. Similarly, the response time will increase and as a conse-

quence, throughput will suffer.

216

Appendix A: Glossary of Acronyms

C

CCL

CCl

Chunk

CL

CRA

CSA

DAP

DDL

DFS

DIL

A wonderful programming lznguage.

Client communication layer. Two software layers, one utilized in the
cache server processor and the other utilized in the disk server processor
code. This layer is the software module that implements the CCI.

Client communication interface. The client side component of the client
interface layer.

The unit of data transfer used in TASS.

Cache Layer. One of the primary software layers in TASS.

Cache Replacement Algorithm. Method for determining what informa-
tion should remain in a full cache, and what information should be re-
placed with more pertinent information. The most common form of CRA

is least recently used (LRU).

Computer Systems Architects. A transputer board manufacturer in Provo,
Utah.

A data access pattern. See section 2.4.3 for a discussion of the various
DAPs.

Device Dependent Layer. The layer of software within the disk server
that actually controls the physical disk devices. This layer is tailored for
dealing with specific hardware components, abstracting hardware realities
into device independent services.

Distributed file system.

Device Independent Layer. The top most software layer of the disk server
processor code.

217

DMA

DSL

DS1
DS2

FIFO

"Flop

FSL

1/0
KByte
LFS
LRU
MByte
MFlop

MID

Modula-2

ms

Direct memory access. The transputer utilizes DMA circuitry to transfer
data between communication links and internal memory. This allows
communication and computation to occur in parallel.

Disk Support Layer. The lowest of the primary layers in the TASS
design. This acronym is additionally used to indicate the highest of the
secondary or component layers within the disk support layer.

Notation used to describe the first TASS disk server prototype.

Notaiion used to describe the second TASS disk server prototype.

First In, First OQut. A cache replacement policy. Also, a term sometimes
used to describe queue operation.

A unit of measurement for processor cycles. Within this paper, one flop
is defined to be one double precision floating point multiplication and one

double precision floating point addition.

File System Layer. One of the primary software layers in the TASS
design.

A contraction for "input and output”.

One kilobyte, which is 1,000 bytes.

Local file system.

The least recently used cache replacement algorithm. See also CRA.
One megabyte, which is 1,000,000 bytes.

One million flops.

Multiple Inexpensive Disks. A simple acronym to describe using multiple
inexpensive disks to substitute for more expensive disks (SLEDs).

A programming language.

Millisecond.

218

MSS

MTTDL

MTTF

ns

PET

PVl

RAID

RAM

RAMI1

RAM2

RISC

o

SBIC

Mass Storage Support.

Mean Time To Data Loss. The average time between disk failures for all
instances of the same model of disk device.

Mean Time To Failure. The same as MTTDL.
Nanosecond.

Positron Emission Tomography. A medical process for providing 3D im-
ages of human anatomy.

Positron Volume Imaging. One of the technique used in PET.

Redundant Arrays of Inexpensive Disks. The concept involved in using
multiple inexpensive disks to provide the same /O bandwidth, storage
capacity and reliability that would normally be provided by large expen-
sive disk packs.

Random Access Memory.

A RAM disk driver. This particular driver is implemented in confor-
mance to the device and services modularity used for all TASS disk
drivers. The driver utilizes bcopy() for transfers between the disk
(memory) and internal buffers.

A RAM disk driver. This driver is implemented independently of other
TASS disk drivers. The driver does not conform to the device and ser-
vices modularity used by other TASS disk drivers. Due to the speciality
of its implementation, there was no need to use bcopy() within the driver
software.

Reduced Instruction Set Computer. This is a style of processor design
which provides a very small, very efficient instruction set.

Random Overlapped. A type of data access pattern.

SCSI Bus Interface Controller, A chip designed to provide memory-
mapped SCSI bus control to hardware devices.

219

SCSI

SDTR

SGI

SGR

SLDI

SLED

SMI

SML

T222

T800

TASS

WORM

Small Computer Systems Interface. A standard proposed by ANSI for
providing device support to small computer systems.

Sustained Data Transfer Rate. The rate, in KBytes/second at which data
can be transferred between two endpoints, usually disk and main memory
for a client processor.

Sequential Global Irregular. A type of data access pattern.
Sequential Global Regular. A type of data access pattern.
Sequential Local Disjoint Irregular. A type of data access pattern.

Single Large Expensive Disk. An acronym for the traditional large disk
devices used in large scale computing systems.

Server message interface. The server side component of the client inter-
face layer.

Server message layer. Two software layers, one utilized in the cache
server code and the other a component of the client processor libraries.

A 16 bit transputer device.
A 32 bit transputer device.
Transputer Auxiliary Storage System. The software testbed used for
research within this thesis. Also, a Soviet information service known for

fast data absorption and inconsistent release.

Write one, read many cache locking technique.

220

Bibliography

[AMDS1]

[ANS86]

[Atk88]

[Atk91]

[Atk92]

[Bac86]

[Baw91]

[Ber86]

[Che84]

[Che88]

Advanced Micro Devices, Inc., Bipolar Microprocessor Logic and Inter-
face Data Book, 901 Thompson Place, P.O. Box 453, Sunnyvale, Califor-
nia, 94086 U.S.A,, 1981.

American National Standards Institute, Small Computer System Interface
(SCSI1), New York, 1986.

M. Stella Atkins, Experiments in SR with Different Upcall Program
Structures, ACM Transactions on Computer Systems, Volume 6, Number
4, November 1988, pages 365-392.

M. Stella Atkins, and Yan Chen, Performance of SUN-Transputer Inter-
Jaces: some surprises, Proceedings of the Transputing 91 Conference,
IOS Press, pages 124-138, April 1991.

M. Stella Atkins and Mark Mezofenyes, Sorting Large Files on a Tran-
sputer Network, Transputer Research and Applications 5, The Proceed-
ings of the 5th North American Transputer Users Group, 10S Press, 1992.

Maurice J. Bach, The Design of the Unix Operating System, Prentice-Hall
Inc., Englewood Cliffs, New Jersey 07632, U.S.A., 1986.

Hugh Bawtree, Restructuring the Run-Time Support of a Distributed
Language, MSc. Thesis, School of Computing Science, Simon Fraser

University, Bumaby, B.C., Canada, November 1991.

Eric J. Berglund, An Introduction to the V-System, IEEE Micro, August
1986, pages 35-51.

David R. Cheriton, The V Kernel: A Software Base for Distributed Sys-
tems, IEEE Software, April 1984, pages 19-42.

David R. Cheriton, The V Distributea System, Communications of the
ACM, Voiume 31, Number 3, March 1988.

221

[Cla85]

[Com84]

[CSA89]

[CSA90]

[CSD79]

[Dib90]

[Dud92]

[Flo86]

[Gib39]

[Hil88]

D. D. Clark, The Structuring of Systems Using Upcalls, Proceedings of
the 10th Symposium on Operating Systems Principles, ACM, New York,
1985, pages 171-180.

Douglas Comer, Operating System Design, The XINU Approach,
Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632, U.S.A., 1986.

Computer System Architects, Part.6, Part.7, Part.8, and Part.12 Users’
Manuals, Computer System Architects, 950 North University Avenue,
Provo, Utah, 84604, U.S.A., June 1989.

Computer System Architects, Logical Systems C for the Transputer: Ver-
sion 89.1 User Manual, Computer System Architects, 950 North Univer-
sity Avenue, Provo, Utah, 84604, U.S.A., June 1989.

W. S. Avis, P. D. Drysdale, R. J. Gregg, M. H. Scargill, Canadian Senior
Dictionary, Gage Publishing Ltd., Vancouver, British Columbia, Canada
1979.

Peter C. Dibble, A Parallel Interleaved File System, PhD. Thesis, Dept. of
Computer Science, University of Rochester, March 1990.

Timothy J. Dudra, M. Stella Atkins, An Auxiliary Storage System for
Transputer-based Multicomputers, Transputer Research and Applications
5, The Proceedings of the 5th North American Transputer Users Group,
10S Press, 1992.

Rick Floyd, Short-Term File Reference Patterns in a UNIX Environment,
Report TR 177, Computer Science Department, University of Rochester,
March 1986

Garth A. Gibson, Lisa Hellerstein, Richard M. Karp, Randy H. Katz and
David A. Patterson, Failure Correction Techniques for Large Disk Ar-
rays, Proceedings of the 1989 ACM Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Pages
123-132, April 1989.

Mark D. Hill, A Case for Direct-Mapped Caches, IEEE Computer, Pages
25-40, December 1988.

222

[How87]

[Hwa84]

[Inm89]

[Kot91]

[McV91]

[Mor88]

[Nel87]

[Ous88]

[Pat88]

[Pet85]

[San85]

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham and Michael J. West, Scale
and Performance in a Distributed File System, Proceedings of the 11th
Symposium on Operating Systems Principles, ACM, New York, 1987.

Kai Hwang and Faye A. Briggs, Computer Architecture and Parallel Pro-
cessing, McGraw-Hill Book Company, Toronto, Ontario, 1984.

Inmos Ltd., Transputer Data Book, 2nd Edition, 1000 Aztec West, Al-
mondsbury, Bristol, BS12 4SQ, U.K,, 1989.

David Kotz, Prefetching and Caching Techniques in File Systems for
MIMD Multiprocessors, PhD. Thesis, Dept. of Computer Science, Duke
University, 1991.

L. W. McVoy and S. R. Kleiman, Extent-like Performance from a UNIX
File System, Proceedings of the USENIX Conference, Winter 1991.

Joseph P. Moran, SunOS Virtual Memory Implementation, Proceedings of
the European UNIX User’s Group, April 1988.

Michael N. Nelson, Brent B. Welch, John K. Ousterhout, Caching in the
Sprite Network File System, Proceedings of the 11th Symposium on
Operating Systems Principles, ACM, New York, 1987.

John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael
N. Nelson, and Brent B. Welch, The Sprite Network Operating System,
IEEE Computer, February 1988.

David A. Patterson, Garth Gibson and Randy H. Katz, A Case for Redun-
dant Arrays of Inexpensive Disks (RAID), Proceedings of the 1988 ACM
Conference of the Special Interest Group on Management Of Data (SIG-
MOD), ACM Press, Pages 109-116, June 1988.

James L. Peterson and Abraham Silberschatz, Operating Systems Con-
cepts, 2nd Edition, Addison-Wesley, Don Mills, Ontario, Canada, 1985.

Russell Sandberg, et al., Design and Implementation of the Sun Network
Filesystem, Usenix, June 1985.

[Sch8]

[Sin88]

[Smi78]

[Smi87]

[Sta88]

[Sto89]

[Tex91]

[Thig9]

[Wil89]

[Wil91]

[Yan92]

Martin E. Schulze, Considerations in the Design of a RAID Prototype,
Report Number UCB/CSD 88/448, Computer Science Division, Universi-
ty of California, Berkely, California, 94720, U.S.A., August, 1988.

Jaswinder Pal Singh, Harold S. Stone, Dominique F. Thiebaut, An
Analytical Model for Fully Associative Cache Memories, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, 1988.

Alan J. Smith, Sequential Program Prefetching in Memory Heirarchies,
IEEE Computer, pages 7-21, December 1978.

Alan J. Smith, Cache Memory Design: An Evolving Art, IEEE Spectrum,
pages 40-44, December 1987.

William Stallings, Data and Computer Communications, Second Edition,
Macmillan Publishing Company, 866 Third Avenue, New York, New
York, 10022, U.S.A, 1988.

Harold S. Stone and John Turek, Optimal Partitioning of Cache Memory,
IBM Thomas J. Watson Research Center, Yorktown Heights, New York

10598, 1989.

Texas Instruments, TMS320C40 User’s Guide, 2564090-9721 revision A,
May 1991.

Dominique F. Thiebaut and Harold S. Stone, Improving Disk Cache Hit-
Ratios through Cache Partitioning, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York 10598, 1989.

John Wilkes, DataMesh - Scope and Objectives: a Commentary,
Hewlett-Packard Computer Systems Center, Palo Alto, California, July

1989.

John Wilkes, The DataMesh Research Project, Proceedings of the Tran-
sputing *91 Conference, 10S Press, April 1991.

Cui-Qing Yang and YaoShuang Qu, Supporting Communications in a
Transputer Distributed Environment, Transputer Research and Applica-
tions 5, The Proceedings of the 5th North American Transputer Users
Group, 10S Press, 1992.

224

