
National Library
of Canada

Acquisitions and
Bibliographic Services Brar~ch

395 Wefling!on Street
Ottawa, Ontario
KIA W 4

NOTICE

Bibtiotheque nationale
du Canada

Direction des acquisitions el
des services bibliographfques

395, rue Wellington
Ottaut~ (Ontario)
KIA ON4

The quality of this microform is
heavily dependent upon the
quality ~f the original thesis
submitted for micrtfiiming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,

A fin R.S.G. 1970, c. L-du, and
subsequent amendments.

La qualit6 de cette microforme
depend grandernent de la qualitd
de h th&se sournise ala
microfilmage. Msus awns tout
fait pour assurer une qualite
superieure de reproduction.

S'il manque des pages, veuillez
communiquer avec I'universit8
qui a confere le grade.

La qualite d'impression de
certaines pages peut laisser 5
desirer, surtout si les pages
originaies ont ete
dactylographiees a I'aide d'un
ruban use ou si I'universite nous
a fait parvenir une photocopie de
qualit6 inferieure.

La reproduction, mBme partielle,
de cette microforme est soumise
a la to i canadienne sur %e droit
d'auteui;, SRC 1970, c. 6-30, et
ses amendements subs6quents.

LOCAL FILE SYSTEM DESIGN

FOR A TRANSPUTER-BASED

by

Timothy J. Dudra

BSc. (Honours), Simon Fraser University, 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

O Timothy 3. Dudra, 1992

Simon Fraser University

December 1992

AII rights reserved. This thesis may not be reproduced in whole or in part,
by photocopy or other means without the permission of the author.

National Library w*m of Canada
Bibiiotheque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Sewices Branch des services bibliographiques

395 Wellington Street 395, rue Wellingtm
Ottawa, Ontario Ottawa (Ontario)
KIA ON4 KIA ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L'auteur a accord6 une licence
irrevocable et non exclusive
perrnettant a la Bibliothhque
nationale du Canaaa de
reproduire, pr&er, distribuer ou
vendre des copies de sa these
de quelque mani6re et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
th6se a la disposition des
personnes interess6es.

The author retains ownership sf L'auteur conserve la propriete du
the copyright in his/her thesis. droit d'auteur qui protege sa
Neither the thesis nor substantial these. Ni la these ni des extraits
extracts from it may be printed or substantiels de cel led ne
otherwise reproduced without doivent Qre imprimes ou
hislhar permission. autrement reproduits sans son

autorisation.

ISBN 0-315-91038-0

APPROVAL

Name:

Degree:

Title of thesis:

Timothy Joseph Dudra

Master of Science

-4 Hierarchical Approach to Local File System Design for

a Transputer-based Multiprocessor

Examining Committee: Dr. Ramesh Krishnamurti

Chair

Dr. M. Stella. Atkins, Senior Supervisor

Date Approved:

V C/
Dr. Wo-Shun Luk, Supervisor

--.
Dr. Alan Wagner, Examiner

PARTIAL COPYRIGHT LICENSE

f hereby g ran t to Simon Fraser Un l ve rs l t y t h e r i g h t t o lend

my thes is , p r o j e c t o r extended essay f i h e f l t l e o f which i s shown below)

t o users of the Simon Fraser U n l v e r s f t y L ibrary , and t o make p a r t i a l or

singie copies on l y f o r such userr or in response t o a request from the

l i b r a r y o f any o the r un fvers l t y , o r o ther educational i n s t i t u t i o n , on

i t s own behalf or for one of i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f this work f o r scho la r l y purposes may be granted

by me sf the Dean sf Graduate Studies. it i s understood t h a t copying

o r publication o f t h i s work f o r f i nanc la ! ga in sha l l not be al lowed

without my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

A Hierarchical Approach t o Local F i le System Pesign f o r a Transputer-based

Mu1 t i processor.

Timothy Joseph Dudra

- December 7. 1992

I data)

Abstract

The rate at which processor power is increasing is not being matched by similar

increases in mass storage performance, nor is this disparity expected to be rectified. This

problem is especially acute in multiprocessor architectures and has come to be known as the

U 0 bottleneck crisis. Vast quantities of data are required for full utilization of a multiproces-

sor and this data must be provided to that processor, either directly or indirectly, via high

speed networks, from so,^ mass storage medium.

Disk caching and prefetching have been proposed as good (possibly short-term) tech-

niques for reducing the impact of the UO bottleneck on multiprocessor throughput. An

impressive amount of research has been invested in analyzing the effects of these techniques

on the performance of tightly coupled shared memory multiprocessors; Application of these

methods to loosely coupled multiprocessors has not been pursued with the same fervour.

This thesis presents the design and performance of a disk cache system for use within net-

works of Inmos transputers. The intent of this system is to provide a local file system for the

transputer network. This system is intended to be a building block in the development of a

distributed file system for the transputer multiprocessor.

The Transputer Auxiliary Storage System supports advanced cache management

festtures such as user directed prefetching, opportunistic write back, disk interleaving, multi-

threaded server support and RAM disks. The design and implementation issues encountered

during the creation of this storage system are discussed. Also, the performance of the system

is analyzed for various workloads. The results confirm the positive effect of the system upon

sustained U 0 performanee into and out of the transputer network.

Acknowledgements

Firstly, I would like to thank all of those persons who persevered with me through the

seemingly eternal ages of this work. My family was perpetually supportive. My supervisor

was probably more patient than I deserved. The SFU computing science department did not

threaten me with expulsion if I could not show some progress (actually, near the end they

hinted a little).

Credit has to be given to those persons who joined me during many evenings of inspired

drinking and pseudo-philosophical discussion. The emotional and psychological cleansing

associated with these rituals cannot be underestimated.

Lastly, I extend special thanks to my father, whose constant nudging during my youth

finally, against all odds, convinced me that an education has value.

Section

Table Of Contents

Title Page

Approval
Abstract
Ac~nowledgemefits
Table of Contents
Index of Tables
Index of Figures

f ntrori ticti on
Apologies
Hardware Overview
Research Goals
Thesis Overview

Related Research
The Memory Hierarchy
Disk Performance
Buffering to Reduce Disk Delays
Disk Scheduling to Reduce Seek Times
Track ahd Sector Interleaving to Reduce Rotational Latency
Joining of Multiple Disks
High Bandwidth Disk Arrays From Low Bandwidth Disks
Cache Design
Cache Components
Caching Strategies
Placement Policy
Replacement Algorithms
Combined and Partitioned Caches
Write Policy
Prefetching
Data Access
Datz Operations
Data Objects
Data Access Patterns
Categories of Data Access Patterns
Relevant Patterns
Sequential Global Irregular

Sequential Local Disjoint Irregular
w I\alld~l?i an OGer!iippeO

Other Systems
RAID
DataMesR
A Parallel Interleaved File System

Design Overview
Hardware Environment
Transputer Architecture
Vendor Boards
SFU Transputer Environment
Vendor Supplied Software
TASS Design
Hardware Configuration for TASS Storage Nodes
Software Design
Client Interface Layer
File System Layer
Cache Layer
Disk Support Layer

The Disk Server
Considerations in the Design
Device Dependent Interface
Device Independent Interface
Server Message Protocol
Miscellaneous Considerations
Implementation of the First Disk Server Prototype
Implementation of the Disk Server 2 Prototype
Implementation of the RAM Disk Server Prototypes

The Cache Server
Layer Requirements
Disk Support Layer
Cache Layer
Overview
Memory vs CPU Cydes Trade-off
File System Layer
Server Message Layer
Implementation of the Cache Server 1 Prototype
Requestor Process Group
Acceptor Process Group

File Server Process Group
The Cadhe Mmqp
Implementation of the Cache Server 2 Prototype
Disk Support layer
Cache Layer
The CacheManager Module
Get Lock
Release Luck
Insert New Entry
Start Write Back
Finish Write Back
Stop &he Flush
Stop Cache Flush
The Cache Module
File System Layer
File Server Process Group
Write Back Process Group
Predictor Process Group
RAM Cache Prototype

The Client Interface

Device and Disk Server Performance
Approximating Data Access Patterns
Sequential Global Irregular
Random Overlapped
Device Performance Limitations
Host Interconnect
Transputer Link Throughput
CP-3 100 Fixed Disk Throughput
T8OO Based RAM Disk Throughput
Context Switch Time
Disk Server
Testing Environment
Test Results
Sector Interleaving
Track Interleaving
Sequential Access
Random Access
Processor Usage
Conclusio~s

vii

Cache Server Performance
Testing Environment
Disk Support Layer
V 0 Bandwidth
Optimal Workloads
Comparing DSL Results to Disk Server Results
Single Disk Systems
Multiple Disk Systems
Sequential Access
Random Access
Processor Cycle Usage
DiskLink Module
DiskLayer Module
Cache Layer
I/O Bandwidth
Optimal Workload
Sequential Access
Random Access
Processor Cycle Usage
Server and File System Layers
Processor Cycle Usage
Conclusions

TASS Storage Node Performance
Testing Environment
ID Bandwidth
Read Access
Only Cache Hits
Sequential Global Access with Prefetching
Random Access
Comments
Write Access
Only Cache Hits
Sequential Global Access
Single Disk Systems
Multiple Disk Systems
Random Access
Start-up Performance
Processor Cycle Usage
Conclusions

summary

Appendix A

Future Work
New Hardware
Increased Cache Capacity
Expanding Disk Server Functionality
Additional Disk Joinings
Removing the Implicit Prioritization of ProcAltList()
Non-RPC Client Interface
More Functional Local File Systems
Distributed File Systems for the Transputer Multiprocessor
DFS using Point-to-Point Communication
DFS for SFU Style T800-based Network

Glossary
Bibliography

Index of Tables

Table

1
2
3
4
5
6
7
w
8 (ii)

9
10
11
12
13
14
15
16
17
18
19
20
2 1
22
23
24
25
26
27
28
29

Description

Categories of Parallel File Act-ess Patterns
CP-3 100 Specifications
File System Operations
Cache Layer Interface
Disk Support Layer Core Primitives
Interface to the Device Dependent Layer
Disk Server to Cache Server Communication Protocol
Cache Server to Client Communication Protocol
Cache Server to Client Communication Protocol (continued)
The Procedures of the Client interface
Transputer to Transputer SDTR
Read Access SDTR for Various Chunk Interleavings
Write Access SDTR for Various Chunk Interleavings
Disk Server SDTR Samples and Averages
RAM Disk SDTR in KByteslsecond
Random Access SDTR over Entire Disk Address Space
Disk Layer Throughput - Sequential Global Irregular DAP
Disk Layer Throughput - Sequential Local Disjoint Irregular DAP
Disk Layer Throughput - Random Overlapped DAP
Disk Support Layer Throughput in KB/s by Joining & Workload
Processor Cycle Usage for DiskLink Module
Processor Cycle Usage for the Disk Support Layer
Cache Layer Throughput - Sequential Global Irregular DAP
Cache Layer Throughput - Random Overlapped DAP
Cache Layer Throughput in KByteslsecond by Joining and Workload
Processor Cycle Usage for the Cache Layer
Processor Cycle Usage for the File System and Server Layers
Read Access Sustained Data Transfer in KByies/second
Write Access Sustained Data Transfer in KBytes/second
Processor Cycle Usage for the TASS Client Interface

Figure Description

Objective of Network Disk Support
A Simple Disk Device
Sector f nterleaving
Track Interleaving
Joining Techniques
Sequential Global Irregular DAP
Random Overlapped DAP
The Transputer Processor Family
The SFU Transputer Network
TASS Storage Node Configurations
Distribution of Primary Layers over Component Processors
Components of The Disk Support Layer
Disk Access Pipeline
Disk Server Prototype 1 hocess Heirarchy
Disk Server Prototype 2 Process Hierarchy
Cache Server Prototype 1 Process Hierarchy
Cache Server Prototype 2 Process Hierarchy
Random Access for Varying Sizes of Disk Region
The Cache Server Test Environment
The TASS Storage Node Testing Environment
Random Read Access Performance While Varying File Size
Random Write Access Performance While Varying File Size
Start-up Performance Under a SGI write DAP
A Distributed File Sfitem Environment

Page

1. Introduction

This section overviews the hardware and software environment within which this

research occurred. The gods that have been pursued during this research are direct conse-

quences of conditions found within this environment. My goals are presented as a subset of

the more extensive goals of the Simon Fraser University Transputer Research Group. The

work presented here is targeted to a transputer based multiprocessor. However, the findings

should not be considered valid only for that platform as they may apply, in some degree, to

any loosely coupled multiprocessor platform.

1.1. Apologies

I tend to use acronyms. Being a person who hates people who use acronyms, I find

myself perched precariously on the precipice of hypocrisy. To prevent a perilous plunge, I

providc a glossary of acronyms with this document. Please feel free to use it. The previous

sentences prompt the next apology. I tend to be too verbose. This would be excusable if I

had any idea what hdf the words I use actually mean. Therefore, I humbly apologize for any

faux pas regarding sentence structure and word usage.

f 2. Hardware Overview

The primary hardware used during this research is a 64 node transputer network, consti-

tuting a loosely coupled multiprocessor. The transputer is a family of reduced instruction set

(RISC) processors which were introduced in 1985 by Inmos [Inm89]. Each transputer is

equipped 6th four high speed bi-directional serial links which allow parallel processing net-

works to be built easily and economically. Additionally, each device is also equipped with 4

KBytes of on-chip memory and a memory interface allowing the chip to be augmented with

external memory. T'horlgfi the use of direct mmory access (DM_4) circuitry, the trmsptP,r

allows communication and computation to occur simultaneously and autonomously. There is

no hardware support for shared memory between any two nodes in a transputer network, thus

the autonomous communication, via the serial links, is required to provide transputer net-

works with an efficient message passing model.

The SFU transputer network is subservient to a Sun4 host and is connected to that dev-

ice via the Sun's VMEbus (This is elaborated on in Section 3.1.3). The Sun-4 host is also

connected to the SFU computing science research ethernet.

At the commencement of this work, mass storage support systems were not available for

transputer networks. In most cases, information to be processed by the transputers had to be

routed from disk into the transputer network via the host machine (in our case the Sun-4) and

the research ethernet. As if in answer to this problem, transputer based device controllers

conforming to the SCSl standard [ANS86] were appearing but there existed little in the way

of s o h a r e capable of turning these controllers into full mass storage systems.

13. Research Goals

One of the goals of the S N transputer group is to study the feasibility of providing

transputer networks with a distributed file system. The work presented in this thesis is our

initial adventure within this realm of research.

Disk systems can be classified into two layers, the lowest layer being Local File Systems

(LFS) and the highest layer being Distributed File Systems (DFS). Local file systems pro-

vide an interface between client programs and a group of storage devices', which are con-

trolled, possibly indirectly, by a single processor. The traditional distributed file system does

not physically control my disks, rather it is a collectican of communication protocols, cache

coherency algorithms, etc., which coerce a consistent pattern of behaviour from numerous

distinct local file systems. For example, Russell Sandberg et a1 [SanSS] discuss the imple-

mentation of the Unix based Sun Network File System using varying numbers of file servers,

each of which provides a Unix based local file system. Also, Peter Dibble [DibgO] discusses

a parallel interleaved file system (PIES) which is built entirely upon a group of local file sys-

tems. This style of DFS is further detailed in sections 2.5.3 and 3.2.2.

One of the nasty realities in developing a DFS is the need for supporting LFSs to build

upon. Often these LFSs can be purchased from some computer vendor and the DFS built

upon these pillars. For example, the Andrew system at Carnegie Mellon University was built

upon generic Unix local file servers [How87]. Alternatively, an LFS can be simulated and

used as the platform for the actual DFS. The simulation technique was used by Dibble in his

PhD research. In our case no vendor-supported transputer-based LFS was available, there-

fore the first step in developing a DFS for the transputer network became the development of

a LFS. It was our decision to implement an actual LFS, rather than simulating one, as was

done by Dibble.

After great consideration I chose to call our LFS the Transputer Auxiliary Storage Sys-

tem (TASS)~. The primary god of the TASS design is to provide a simple, efficient interface

The term group is meant to include groups containing only one storage device.

To ghe some perspective io the iime span of ihis thesis: Once upon a time, when 'uk research began,
there was a viable world power called the Soviet Union. It spanned a good percentage of Asia and Europe, in-
dudkg such coontries as Russia, The Uk.r&ne, Lithuania and Latvia. Within the Soviet Union !ur?:d an infor=
mation agency called TASS which performed admirably at the absorption of data and a little less admirably at

between mass storage and the transputer network. The system will not constitute a DFS,

rather it will provide pockets of mass storage support (MSS) within the transputer network, in

the f o m of LFS server nodes. These MSS pockets are to behave as if they were a single

transputer node with access to large quantities of slow memory. This will allow the MSS

pockets to be placed within the network wherever the system andlor program designer

wishes, thus providing the system with good flexibility. This concept is illustrated in Figure

1. A fully distributed disk support system is shown as an example of what we are not trying

to achieve and is compared to a network with two 'pockets' of mass storage. One pocket,

Disk 1, provides storage support to transputers 1 and 4, while the other pocket services nodes

1, 5 and 6. Nodes 2 and 3 are not provided with any mass storage support at all. To improve

u

(i) Future Work: A DFS

T4

(ii) The Objective: A LFS

Figure 1: Objective of Network Disk Support

the provision of that data to interested parties. To me, this sounded a little like a mass storage system (although
closer to a tape based one than to a disk based one), so I thought it might be cute to choose some lofty title with
the acronym of TASS. However, for the purposes of litigation, I must state that any similarities between this
system and any persons, places, government agencies either living or dead is purely coincidental.

data throughput, a software disk cache will be implemented as a component of the TASS LFS

design.

1.4. Thesis Overview

Chapter 2 overviews related work in the area of disk and disk cache system design.

Also presented are some of the findings regarding the application of these techniques to

parallel processing environments. Some similar systems, to the one proposed herein, are dis-

cussed.

Chapter 3 covers the design of the TASS system. This is a high level discussion dealing

predominantly with issues of design modularity and system functionality. As a good percen-

tage of the TASS design was dictated by the available hardware, an overview of the tran-

sputer mu~tiprocessor platform used during this research is presented. TASS was designed as

a rigidly layered heirarchy of modules. The functionality provided by each primary layer is

discussed.

Chapters 4 through 6 cover the gory details of the software implementation. Chapter 4

covers the disk server design, focusing on the breakdown of the server into device dependent

and device independent component modules. Chapter 5 covers the design of the cache server

and file system. Chapter 6 overviews the intefface between TASS and its clients. The tech-

niques used within each software layer in order to provide the required services is discussed.

A qualitdive comparison between some of the techniques used and some possible alternative

techniques is made.

Chapters 7 through 9 cover the performance of the TASS system. Chapter 7 is dedi-

cated to the disk server pedormitnce. Similarly, Chapter 8 looks at the cache sewer pepfor-

mance and Chapter 9 anaiyzes the performance of the entire TASS system, as perceived by

cfient processors. Performan= issues considered include sustained data throughput between

disk and clients. How the intervening layers of software affect data throughput is analyzed.

The usage of processor cydes by each of the primary software layers Is presented.

Chapter 10 presents the conclusions of the work.

Chapter I 1 suggests future wok, induding design possibilities for a DFS.

The appendix consists of a glossary of acronyms, followed by the bibliography.

2. Related Research

There has been a great deal of research devoted to disk caching for multiprocessor

environments, however most of this research appears to be grouped into the two categories of

tightly-coupled (shared memory) multiprocessors and local area networks. Tie area of

loosely-coupled multiprocessors seems to have been relegated to the technological

revolution's back burneP. What research I have seen regarding disk systems in loosely cou-

pled multiprocessors usually makes the assumption that point to point communication

between all processing elements exists within the hardware architecture. Currently, the tran-

sputer environment does not support point to point communication and therefore much of the

related research was not too relevant.

2.f. The Memory Hierarchy

Before discussing tfte concepts of caching and their application to the transputer

environment, I will provide a brief discussion of the motivations behind data caches. Hwang

and Briggs Pwa841 describe computer memory systems as hierarchical levels of memory

devices.

This is my opinion md could just be a manifestation of my persecution complex which often leads me to
assume that everything is a direct assault on my person. In other words, my inability to find suitable references
may have led me to believe that no other persons are interested in the same things that 1 am, therefore, no otber
persons give a hoot in Hades about 1ooseIy coupled muftiprocessors.

"The objectives [of a hierarchicd.rnernory structure] are to attempt to match the proces-
sor speed with the rate of information transfer or the bandwidth of the memory at the
lowest Ievei and at a reasonabie cost" [Hwa%J(page 52).

"[in other words,] the goal in designing an n-level memory hierarchy is to achieve a per-
formance close to that of the fastest memory and a cost per bit [of storage] close to that of
the cheapest memory" [Hwa84J(page 56).

They further describe an example hierarchy involving, from highest to lowest layers, high

speed (cache) memory, main memory, bulk memory, fixed head disk, moveable arm disk and

tape devices. So, the objective of this hierarchy would be to provide data support to attached

processors at or near the bandwidth of the fast cache memory, while providing an extremely

large total memory capacity at the relatively inexpensive cost of tape and disk. The memory

hierarchy concept was not originated by Hwang and Briggs, they just happen to be my

favourite reference to it. It is also presented by Peterson and Silberschatz [Pet85], who date

it back to the IBM 650 of the late 1950's, and by John Wilkes [Wi189].

The primary trait of each layer in the memory hierarchy is that the data transfer

bandwidth provided by the associated device (the device at that layer) is larger than the

bandwidth provided by devices at lower layers of the hierarchy. Additionally, the higher

layers of the hierarchy almost always have significantly smaller total storage capacity than

lower layers. Also, the size of the basic unit of transfer between the devices at each layer

becomes smaller as the level gets higher. In other words, cache memory may allow transfers

of single words of data between the processors and cache memory, whereas transfers between

main memory and disk devices will usually be in the range of 1 to 100 KBytes.

The concepts behind Hwang and Briggs' memory hierarchy can be extended to distri-

buted systems when augmented with additional layers such as local processor caches, local

processor main memory, s W memory and network disk caches.

The operation of a memory hierarchy is similar to a 'recursive* procedure. Using the

above hierarchy as an example, when a processor reads a piece of data, (eg: a specific word),

the access goes through the high speed (cache) memory. If a copy of that word is currently

stored in this high speed memory, then the word is transferred to the processor and execution

continues. If that word is not resident in high speed memory, a process (either hardware

based or software based) is invoked that will copy the specific word from slower main

memory into the high speed memory. The first 'recursion' occurs at the level of main

memory, where if the requested data is available, it is transferred to high speed memory. If

the requested data is not available, the memory hierarchy will obtain it from the next lower

level, namely bulk memory. This single data access may result in eventual accesses to disk

and/or tape devices. At first, this process seems incredibly inefficient, since it may require

access to every memory device in the entire memory hierarchy in order to read one 32 bit

word. However, traditional data accesses exhibit what is known as locality of reference. The

three basic flavours of locality of reference are temporal, spatial and sequentiul locality.

Because these localities are discussed in some form by nearly every text and paper dealing

with caching [Smi78],[Hwa84],[Pet85],[Sin88], etc., I will (and not be the first to) tag them

with the lofty title of principles.

In the traditional software environment, both code and data segments of a program will

exhibit tempor& locality. What this means is that if a segment of code or piece of data has

recently been used, then the odds are high that it will also be required by the program in the

near future. This situation is a consequence of the fact that programs tend to be oriented

around loop and procedure constructions which are often executed numerous times during

any single program execution. Furthermore, programs usually involve temporary variables

and stacks which are accessed often. A good example is the simple addition of a number A

to some variable B. The contents of the memory location storing B usually must be copied

into a register, tne number A wiEi then be added to it and 16 wiii be immediately returned to

the same memory location. This accesses the same region of memory twice within a very

short period of time.

Spatial locality is a phenomenon that occurs predominantly in the code segments of pro-

grams, however, it is not uncommon in data segments. The principle is that any reference to

an element of memory will usually be followed, in the near future, by a reference to an ele-

ment of memory that is spatially close to the previously referenced element. In other words,

a reference to memory address k, will usually be followed by a reference to memory address

Mn where n is some small number. Examples are program branching and array processing.

Sequential locality is a specific form of spatial locality. It is mentioned separately since

it leads into the discussion of prefetching (see section 2.3.5). In sequential locality, a refer-

ence to address k is usually followed by a reference to address k+l. Again, this occurs in

both code and data segments, with examples being normal sequential execution of program

regions and sequential processing of arrays.

As mentioned earlier, the memory hierarchy relies on these principles in order to pro-

vide high performance from a large amount of slow memory storage. Because most memory

references exhibit temporal and spatial locality, a program can be executed with most of its

current code and data requirements stored in high speed memory, which is the top layer of the

memory hierarchy. Additionally, the entire program can often be stored in the slightly slower

main memory. With programs that observe the locality of reference principles, the average

time to access each word of memory should approximate the average time to read a word

from the high speed memory, with only a slight degradation due to the occasional accesses

that must be fetched from lower layers of the memory hierarchy. For example, 1OOOO data

accesses at memory speeds of 30 ns per read coupled with one disk access at 5 ms per read

will provide an average data access time of 499 ns per read, which is much closer to 30 ns

than_ it is to 5 ms. In actual opratiorr_, the ratio of memory accesses to disk accesses will usu-

ally be much higher than the conservative 10000: 1 ratio used here, further reducing the aver-

age access time. For example, 16 KBytes of data read during one disk access should requise

at least 4000 4 byte word transfers between processor and cache memory. Reuse of these

bytes (during program loops or repetitive variable usage) while they remain in memory

shuld increase this minimum of 4000 references.

The word cache is derived from the French word cachet which means "a supply of

goods stockpiled for future use" [CSD79]. The concept of caching, as applied to computer

systems, is derived from the memory hierarchy and the locality of reference principles. The

locality of reference principles allow each layer of the memory hierarchy to act as a stockpile

of data held for probable future use by any processors acting upon that memory, The high

speed memory at the top layer of our previously specified memory hierarchy acts as a cache

between the processors and main memory. The term cache seems to be becoming

synonymous with this top level manifestation, however, I believe the word cache can and

should be applied to lower levels of the hierarchy as well. For example, paging systems and

buffering techniques, allow main memory to act as a cache of disk data. Caches of disk data

within main memory are often referred to as bufler pools. Using tapes as backing store effec-

tively makes disk packs a cache of the current state of the computer system, with the hope-

fully unneeded previous (backup) states of the system being stored in the less efficient tape

library.

Disks are manufactured as one or more disk platters, each having two .surfuces4.

On some disk devices, one surface is not used. For example, the disk devices for the Apple 11 were im-

Surfaces are partitioned into sectors (similar to the partitioning of a cherry pie). Further-

more, each surface is further partitioned into tracks, much like the tracks of a record, except

that disk tracks are separate circular entities, rather than one long spiral groove. Each

sectorjtrack combination is called a block and is capable of storing some fixed number of data

bytes5. For example, each of the CP-3100 disk devices used within this research have 4

platters, giving a total of 8 surfaces. Each surface has 776 distinct tracks and is divided into

33 sectors. The 8*776*33=204864 blocks formed by these tracks and sectors each hold 512

bytes of information. An example disk is diagrammed in Figure 2. One additional term may

Sector

Block

Track

Surface

Platter

Figure 2: A Simple Disk Device

plemented with only one head, which was capable of reading only one surface of the standard 5 114" floppy
disk.

prove useful. so 1 wiil define a cylinder to be the set of all tracks that are aligned veftically

over all the surfaces. In other words, the outermost cylinder comprises all tracks that we

outermost on their own particular disk surface. Each surface is equipped with a reildlwritc

head (RW head) that allows magnetically encoded data to be either read from or written to

disk blocks.

Because of the architecture of disks, they are usually operated as block transfer devices,

with information being transferred to and from them in either single block amounts, or multi-

ple block amounts, often called extents or chunks [McV91],[Wil91],[Dud92]. The SCSI stan-

dard [ANS86] does allow for transfers of single bytes, but often the disk devices themselves

prevent this style of access. In any event, such a technique would result in horrendous per-

formance when looked at as an 0verhead:byte-transferred ratio.

To simplify the upcoming discussion, I will discuss read accesses only. If the material

does not apply to write access, then I will qualify it. This will eliminate problem sentences

like "data is copied from/to the disk tolfrom the controller". Disk platters are constantly

being rotated. 4 s a track on one platter passes under the head of the disk, the data can be

transferred from the track and passed to any connected controllers. The time taken to per-

form this transfer is called the transfer time. Unfortunately, to begin wading a track the RW

head must be positioned at the start of the data region to be transferred. The time taken to

achieve this alignment is referred to as the rotational latency associated with a particular disk

access. More often, this is referred to as the average rotational latency and is associated with

a large sequence of disk accesses. Additionally, there is usually only one RW head per disk

surface and this head must be positioned over the appropriate track, prior to beginning the

bandwidth of a disk device is the amount of data transferred divided by the sun? of the rota-

tional latency time, seek time and transfer time required to read that data. There is little that

can be done to reduce the transfer time, since this is directly proportional to the rotational

speed of the device which is in tun limited by the state of technology at the time the device

was designed. Section 2.1 -1.1 briefly covers a standard technique, known as buficring, which

is intended to overIap computation with YO, in order to reduce the delays suffered by proces-

sors that mast wait for disk transfers to complete. Buffering does not alter the effective disk

bandwidth, it merefy tries to overlap it with computation. In order to improve the actual disk

bandwidth, it is important to iv and minimize the overhe& associated with the rotational

latency and the seek time. Fortunately, there has been a great ded of research devoted to

minimization of the effects of both these times an system performance. Some hcwr, iech-

niques for accomplishing just that are discussed in sections 2.1.1.2 and 2.1.1.3.

2.1.1.1. BufTering to Reduce Disk Delays

Perhaps the most common technique for dealing with disk delays is known as buflering

andfor double-buffering .

"The idea is quite simple. After data has been read and the cpu is about to stmt operating
on it, the input device is instructed to begin the next input immediately. The cpu and in-
put device are then both busy. With luck, by the time that the cpu is ready for the next
data item, the input device will have finished reading it. The cpu can then begin process-
ing the newly read data, while the device starts to read the following data" [Pet85J(page
12).

' Fixed-head disk devices do exist. in such devices, each disk track has a dedicated head so no head
movement is necessary, and hence the devices have no seek time. However, these devices are very expensive
&Ed &R?f&E &Fi? Vev C€?WlT&il.

"Dhe effect of buffering on system performance is] to smooth over variations in the time
it takes to prmess a [unit of storage]. If the average speeds (in [units of storage pro-
cessed] per second) of the cpu and the 110 devices are the same, then buffering allows the
cpu to get slightly ahead or behind the I/0 devices, with both still processing everything
at full speedn [Pet85](page 15).

Effectively, buffering allows a system to proceed at the processing rate of the slowest device

in the system, without imposing the additional delays that would result from activating dl

involved devices in a sequential fashion.

2.1.1.2. Disk Scheduling to Reduce Seek Times

The most prevalent technique for reducing seek times is to organize all outstanding disk

access requests. The largest seek times for any disk device occur when the disk head must

move across the entire disk surface, from the outermost track to the innermost, or vice versa.

The time taken to seek to a new track is usually less when the tracks are closer together. If

outstanding disk requests are organized so that they arrive at the disk controller in an order

that minimizes the distance between any two subsequently accessed tracks, then the seek time

observed between any two subsequent requests will be as small as possible, and the overhead

imposed on the system, due to seek time, will be smaller than if the same requests are issued

in an unordered fashion. There exist a number of disk scheduling algorithm that attempt to

accomplish this task. However, any reordering of disk requests mey have side effects on sys-

tem performance. For example, an optimal disk scheduling algorithm is not fair if a disk

request is starved out. Peterson and Silberschatz [Pet85J(pages 257-268) provide a good

overview of disk scheduling algorithms, and the interested reader is referred to their text,

This software testbed used during this thesis does not implement any disk scheduling dgo-

rithm, rather the simple First Come, First Sewed (KFS) method is utilized, Reasons for this

wi!I be discussed laiei irr Section 4.1.1.

2.1.13, Track and Sector Interleaving to Reduce Ratationspll Latency

As mentioned earlier, rotational delay occurs when the disk controller has to wait for the

disk head to line up with the start of the disk region to be accessed. Often, there is little that

can be done to reduce this problem. For example, after a disk seek, the position of the

desired track in relation to the disk head may simply not line up and since that track must be

accessed next, there is nothing to do but wait. However, in some cases the penalty due to

rotational delay may be reduced. It is important to note that these delays appear random to

the user of the disk, but in fact are not random for particular instances. In other words, a seek

beginning at track 5 and ending at track 23 will always take the same time. Similarly, since

the disk is rotating at a fixed speed, it will move through the exact same number of rotations

during that specific seek as it did during any previous seeks between tracks 5 and 23. More

importantly, seeks between adjacent tracks will always take the same amount of time. Disk

controllers can take advantage of this predictability in order to reduce the average rotational

delay exhibited by the system.

Assuming that an entire disk track cannot be read during a single disk access, then the

order in which blocks are addressed around that track becomes an important performance

issue. Usually, the solution to this addressing issue is extended to sectors addressing around

each surface of the disk platters. These addressing techniques are called sector interleaving.

Figure 3 shows two options for block address placement on a single track of a single

disk surface. Figure 3 (i) shows what many people would at first consider to be the obvious

addressing technique. However, if two consecutive reads to addresses i and i+l were to

occur (a common event during sequential access to disk data), then during the small but non-

zero time taken to complete the access to block i and subsequently initiate the access to block

i+l, the disk k a d would have moved past the swing point of block i+i and the disk would

have to wait one entire revolution before it could execute the second read. If the sector

0) (ii)
Figure 3: Sector Interleaving

interleaving shown in Figure 3 (ii) were used, then the time to finish one request and initiate

the other should be less than the time taken to rotate to the next sector. Therefore, the

amount of time spent waiting for the disk to rotate should be substantially less than one entire

rotation. McVoy and Kleiman write that "If the 110 system is properly tuned, the VQ request

will get to the disk as the appropriate block is moving under the head". They further discuss

that unfortunately this arrangement, with every second sector being a 'hole' in the sequential

ordering of bIocks around the disk, "reduces the maximum transfer rate to half that of the

disk rate" [McVgl].

Alternatively, if an entire disk track can be read during a single disk access, then it has

k e n shown, and this research will verify again, that the highest data throughput toffrom disk

occurs when the unit of disk access is equivalent to an entire disk track. The reason for this

is that an entire track's worth of data of file data can be read in one [disk] rotation. The

probjern with this technique is that, after reading an entire track, there is nothing for the dev-

ice to do except seek to a new track, or in the case of multiple disk platters, switch to a new

RW head on a different platter. Although the seek time or head switch time may be

significantly smaller than the rotation time for the disk device, an entire rotation may be

required to align the RW head with the start of the new track. Therefore, each track read

requires a second rotation to realign the RW head with the start of the track.

Some devices attempt to compensate for this alignment problem by staggering the start

of tracks. For example, the disk in Figure 4 has finished reading the inside track and seeks to

the outside track. If the seek time is less than 119th of the rotation time (nine total sectors,

outside track is staggered by one sector) then the disk head will finish the seek prior to the

start of the track arriving at the head's position. This is known as track interleaving since the

optimal choice for how many tracks to seek over may not be a single track, depending on the

Figure 4: Track Interleaving

staggering of sectors around neighbouring tracks.

2.2.2. Joining of Multiple Disks

Traditionally, high performance disk devices have been built as single large expensive

disks (SLED) and controlled individually or as groups of individual devices. Facilities that

require large, high speed data stores will use large, high speed disk devices. The higher the

facilities requirement for data storage size and VO bandwidth, the higher the cost of the

storage devices. Providing high I/O bandwidth with large disk devices usually leads to a high

cost per megabyte of storage.

"The performance of [SLED devices] has improved [during recent years] at a modest
rate. These mechanical devices are dominated by the seek and the rotation delays: from
1971 to 1981, the raw seek time for a high end IBM disk improved by only a factor of
two while the rotation time did not change There is no reason to expect a faster rate
in the near future" [Pat88].

"Personal computers have created a market for inexpensive magnetic disks. These lower cost

disks have lower performance as well as less capacity" [Pat88]. However, as these smaller

disks are targeted towards the general public, the need to make them affordable has been a

primary driving force in their design. In other words, these smaller disks are also becoming

quite inexpensive. In a 1989 paper by Garth Gibson, et al., they state that "The 5.25 inch

fom-factor drives may currently have the best cost per megabyte, and the 3.5 inch form-

factor is expected to overtake it soon" [Gib89]. This significant advantage in cost per mega-

byte has prompted a new trend towards providing high capacity, high performance disk sys-

tems using multiple small inexpensive disks.

Research has burgeoned in the field of high performance disk devices composed of

arrays of inexpensive disks. Primary examples are the numerous papers available on the con-

cept of Redundant Arrays of Inexpensive Disks (RAID) [Cib89],[Pat88],[Sch88] as well as

the more specific discussions of Hewlett-Packard's DataMesh prototypes [Wi189],[Wi191].

Most of the research involved in RAID prototypes involves the joining of multiple disks into

a 'single' abstract disk which provide high performance as well as reliable data storage.

2.1.2.1. High Bandwidth Disk Arrays From Low Bandwidth Disks

The underlying factor in providing high I/O bandwidth using low bandwidth disks is

that all disks in a group of disks can be accessed in parallel, whereas a single disk can only

deal with one disk request at any given instant in time. Given that a SLED can provide data

to its users at somc bandwidth B, and an array is built using n disks each of bandwidth B/n,

then the same data throughput should be obtainable from the multiple disks as is obtained

using the SLED. By adding more disks to the array, even higher UO bandwidths should be

obtainable. Increasing the bandwidth of SLED devices would require improvements in dev-

ice design which might q u i r e a higher level of technology than is currently available andlor

an expensive upgrade of disk devices.

For this paper, I will define a disk joining to be any technique for combining multiple

disks into a single abstract disk. From the point of view of performance, the abstraction of a

group of multiple disks into an array of disks (which behaves like a SLED), can be done

using at least three disk joining techniques. The three techniques that are relevant to this

research are concatenation, interleaving and striping. I have been surprised to find that many

papers claim that interleaved and striped disk systems are manifestations of the same mon-

ster. Other papers, notably [Kotgl], differ on this point. I will agree with the latter group

and claim that interleaving and striping are distinctly different.

For the p u ~ ~ s of thk ~ w ~ c h , it, will be sufficient to assnme that all dish k any

given joining are identld. The concepts presented can be extended to environments where

the component disks are not identical, but this makes the discussion significantly more

complex. A!! thee techiques, concatenation, iiiierka~iiig sti+ping, are sirown in Rgure

5. This figure does not attempt to describe joinings using generalized component disks.

Rath~r, component disks are simple devices, each having three storage regions which will be

called chunks. The joining of these simple component disks should be sufficient to illustrate

the three join techniques described herein. The three techniques serve to combine a group of

N component disks, q, for 0 S n < N, into a single abstract disk, DJoinad. Given that each

component disk has a storage capacity of CCownW bytes, then the capacity CJoinrd of the

abstract disk will be N*CGmPnen, bytes. An extent or chunk is a general unit of disk transfer

whose size is selected to provide optimal disk performance during disk transfers. The term

extents is used here instead of bytes, tracks or sectors, because the techniques are general and

will apply to any choice of base storage unit. The choice of extent size is usually a perfor-

mance issue and as such should not be specified at this point. Rather, I will define the size of

each extent to be Sn for component disk n. The size of the extent for the combined disk will

be denoted as SJgined. Furthermore, the component disks will each have EcomPOnent extents,

while the combined disk will have EJOined extents. Each component disk has its own address

space which I will refer to as Dx[i] where 0 5 i c Ccompnen,. Similarly, the abstract disk has

an address space which can be described notationally as DLj] where 0 I j < CJoind. Addition-

ally, div and mod will be used to represent the integer division and integer modulo opera-

tions, respectively.

For concatenation, each disk Di maps Ecomponent contiguous extents onto DJoined. Fur

example, the first group of extents within DJojnrd are stored on Do, the second grcup of

extents within DJoned are found on Dl. A11 component disks, as well as the combined disk,

will !!we t k smc exteat size.

Abstract Concatenated Disk

Physical Disk 0 Physical Disk 1 Physical Disk 2

Abstract Interleaved Disk

Physical Disk 0 Physical Disk 1 Physical Disk 2

Abstract Striped Disk
(-. ~ h u n l r 0+ Chunk I--* Chunk 2-)

Physical Disk 0 Physical Disk 1 Physical Disk 2

Figure 5: Joining Techniques

D [i] - - [i mod CComPnent
-i div N 1

For interleaving, the disk extents from each real disk are alternated with disk extents

from other disks in order to form the combined disk. The size of each extent on the corn-

bined disk is equivalent to the size of each extent on the component disks. Notationally we

have,

In striping, extents k from each component disks are concatenated together to form one

extent, which will be extent k on the combined disk. Therefore, the combined disk has an

extent size which is the sum of the extent sizes from each component disk.

DEil - - Concatenation of all DComponennr [il

--
%oined

- * '~omponenr

-
E~oined

- E ~ o m ~ o n e n t

Each technique has advantages and disadvantages. Concatenated disk systems do not

g i ~ e ~ f y ftrovide as good of data support as do systems joined by the other techniques.

Ifowever, w h e ~ mu!tip!e i?Oe;~xlent. processes we each accessesing a unique file (ie: each

process reads/writes one file), often these files can be distributed across the n disks of the

joining so that each process has its own dedicated disk, or only shares a disk with a small

number of other processes. In these circumstances a concatenated disk system can perform

better than a striped or interleaved disk system.

The striping and interleaving techniques generally multiplex the disk access across the

component disks better than the concatenation technique does. However, this is only a sub-

stantial advantage when the sequence of disk accesses moves through the disk address space

in a sequential fashion. Each striped access activates all component disks in the disk joining,

effectively keeping d l disks busy at all times. The interleaving technique activates one com-

ponent disk, each access. All disks can be kept busy under heavy load, since there should

always be at least one outstanding request that is targeted for each component disk. As dis-

cussed for concatenated disk systems, if multiple processes try to access multiple files in a

striped or interleaved disk system, the result is often poor performance. Simultaneously

accessing multiple files, which happen to be distributed across the disk address space, gen-

erates a sequence of disk accesses that appear random to the component disks in a striped or

interleaved joining, even though those accesses are not random when viewed at a higher level

of abstraction.

2.2. Cache Design

As with any feature of any computer, there are three primary ways of implementing

caches, namely with hardware, software or a combination of the two. In some cases, the type

of solution required is dictated by the environment. For example, high speed memory caches

layered on top of slower main memory must be controlled by hardware, since software solu-

tions would require execution of code segments for each memory access. Since executing a

code segment requires memory access, the existence of a software solution would constitute a

paradox6. Similarly, a main memory based cache of disk data may require a software soiu-

tion if no supporting hardware was provided by the manufacturers of the target computer sys-

tem. An example of a combination solution would be a paging system, where specialized

hardware is required to detect page faults and trap them to the operating system, which then

uses software routines to fetch the required pages into main memory. Paging is a fairly

detailed concept and I don't wish to explore it further, as it does not signifantly apply to this

thesis. Paging is discussed in most operating system textbooks and numerous papers, includ-

ing [Hwa84],[Pet85],[Mor88]. Likewise, hardwar based caching is not particularly relevant

to this thesis and the interested reader is referred to [Hwa84],[Smi87],[14i188]. The research

within this thesis is entirely related to software based cache systems. I will try to note the

places where hardware or combination based systems have either influenced the design of my

software platform or motivated some avenue of research.

2.2.1. Cache Components

Hwang and Briggs state that

"The cache memory generally consists of two parts, the cache directory (CD) and the
random-access memory (RAM). The memory portion is partitioned into a number of
equal-sized blocks called block frames. The directory, which is usually implemented as
some form of associative memory, consists of block address tags and some control
bits ..." [Hwa84](page 98).

All physical data stored in the cache will. be maintained in the block frames. The block

address tags provide a mapping between the actual physical addresses of the data and the

block frame where that data has been cached, if it is present. Block frames will alternatively

This statement assumes that we are not talking about a micro-coded sojbvure solution, Personally, I
lump micro-coding in w i a h?~'&xwe, since ~icro-code is usually stored in a ROM which is dedicated to the
micro-code engine.

be cdled cache buffers during much of this paper. The two terns are equivalent and inter-

changeable. The types of control bits required vary with the design selected. Some of the

common bits are the valid and dirty bits. Additionally, various protection bits may be neces-

sary to insure consistent cache operation.

e The dirty bit for each cache buffer designates whether or not the data maintained in that

cache buffer has been altered since it was copied from some lower level of the memory

hierarchy.

e The valid bit for each cache buffer designates whether or not the data maintained in that

cache buffer constitutes a valid copy of the data for the indicated memory address.

e The primary use of protection bits are to prevent violation of the write one, read many

(WORM) requirement, which states that only one process can have write access to a

memory location at any instant in time. It also states that numerous processes may simul-

taneously read a memory location, assuming a write to that location is not currently under-

way.

A few basic terms are common in discussions of cache operation and cache perfor-

mance. Since I can think of no better place to define them, I will do so now.

Definition: A cache hit occurs when an attempt to access some region of the disk address

space finds a valid copy of the data from that disk region stored in the cache.

Definition: A cache miss occurs when an attempt to access some region of the disk address

space fails to find a valid copy of the data from that disk region stored in the cache. A cache

miss is the opposite of a cache hit. Each cache access results in either a cache hit or a cache

miss.

Definition: The hit ratio exhibited by a cache is the ratio of the number of cache hits, to the

number of cache accesses.

Definition: The miss ratio exhibited by a cache is the ratio of the number of cache misses, to

the number of cache accesses. The sum of the miss ratio and the hit ratio is always 1.

2.3. Caching Strategies

There has been extensive research on cache techniques for both hardware and software

cache environments. As I am fond of old growth forests, I do not want this thesis to be single

handedly responsible for their destruction, thererore, I will give a highly abridged discussion

of this research.

Regarding hadware based cache memories, Alan J. Smith writes

"... their design is far from cut and dried. The designer has to make several choices and
set various parameters. For example, decisions must be made on the algorithms that
fetch, place and replace information, on the way the cache should be addressed, on the
best size of the cache, given performance goals and design constraints, and on the best
way to ensure consistency among several caches in a multiprocessor" fSmi871.

Most of these considerations will have to be dealt with by designers of software caches as

well. These numerous design decisions I will cumuiativeiy refer to as caching srrclregies.

There are a few primary conditions that must be handled by any cache system. Any

design that does not correctly satisfy these conditions, will result in incorrect cache operation.

The primary conditions are:

The data stored in the cache must accurately reflect the data stored in the next lower level

of the memory hierarchy. Any changes to the cached version of the data must eventually

be executed to the copies stored at the lower level of the hierarchy. Furthermore, use of

copies stored at lower levels of the memory hierarchy must be prevented when and if a

modified version of that- data is present in a higher level cache. i will caii this requirement

the cache consistency criterion.

r, In parallef environments, it is often the case that multiple caches exist at the same level in

the memory hierarchy. This environment will be discussed later. For mow, it will be

sufficient to state that changes to data stored in one cache must be reflected in d l other

caches at the same level of the memory hierarchy, before that data is used by other

processes. For example, let processor A have a cache 5 and processor B have a cache CB

which are both at the same levels of the memory hierarchy. If A changes some shared vari-

able x in CA, then B should not be able t c access the same variable x from C, until the

change has been reflected in CB. This is known as the cache coherency criterion.

e As all caches must have a lirnitcd size, they will eventually become filled as programs

reference sufficient code and data to exceed the caches capacity. Therefore, a technique for

obtaining room by replacing old cached data with new cached data must be decided upon.

I will refer to the selected technique as the cache replacement algorithm (CRA). Common

variants on CRAs will be oventiewed in section 2.3.2.

23.3. Placement Policy

Mwang and Briggs state that "One of the most important parameters in the design of a

cache memory is the placement policy" @!lwa84](page 99). The placement policy for a cache

at level i of a memory hierarchy establishes a correlation between cache addresses and

corresponding memory addresses at the immediately lower level i-1 of the hierarchy. As this

research regards disk caches, the remainder of this section will refer to placement policy for

disk caches. Any discussion regarding other levels of the memory hierarchy will be expli-

citly indicated. The purpose of a placement policy within a disk cache is to establish a corre-

lation between cache buffer addresses and the actual disk addresses whose data is stored in

that buffer. In other words, a placement policy is a mapping betwsen disk addresses and

cache buffer addresses.

There are three primary placement policies, (i) direct mapped, (ii) fully associative and

(iii) set associative. An exhaustive description of these mapping techniques is given in

Hwang and Briggs [Hwa84](pages 102-107). I will only provide the briefest of descriptions

of each technique and any interested readers are referred to Hwang and Briggs.

Direct mapping is the simplest of the placement policies. Given that there are N disk

regions of size S, direct mapped caches use k cache buffers, also of size S, to cache those

N=m*k disk regions. If resident in the cache, disk region i, 0 I i < n, will always be stored in

cache buffer i modulo k. The performance and implementation of direct mapped caches is

well discussed by Mark Mill [Hi188].

Fully associative mappings are, "In terms of performance, the best and most expensive

cache organization. The mapping is such that any block in memory can be in any block

frame" [Hwa84](page 104). In other words, there is no correlation between disk address and

cache buffer address, as any disk region can be stored in any of the cache buffers. Usually,

this technique is too expensive to implement, especially in hardware based caches of main

memory, since large Content Addressable Memories (CAM) are required [Hwa84](page

380). These CAMS usually require too much of the available silicon real estate. For

software based caches, fully associative mappings are not limited by silicon real estate, but

often the memory required to maintain cache control data structures is too large to justify the

use of a fully associative mapping. The software test bed for this thesis utilized this tech-

nique with optimizations to reduce memory requirements. This is detailed in section 5.1.2,

Set associative mappings are a hybrid of direct mapped and fully associative mappings.

Basically, the cache is divided into S sets, each of which contains some constant number b of

the B=S*b cache buffers. Disk regions are directly map-ped to articular sets. In other

words, disk region i will always be stored in a buffer within set i modulo S. However, within

sets, the mapping is fully associative so that any disk region can be mapped into any of the b

cache buffers within set i modulo S. With sorne consideration it can be seen that direct, fully

associative and set associative mappings are all set associative mappings, with direct and

fully associative mappings being the opposite extremes7.

23.2. Replacement Algorithms

As mentioned previously, there exists an irritating problem associated with caches,

namely that they have a finite size and therefore will at some point fill to their capacity.

Determining what information should remain in a full cache, and what information should be

replaced with more immediately useful information, is a highly studied field. Numerous

cache replacement algorithms (CRAs) exist, although almost all research has shown that one

particular algorithm, known as least recently used (LRU) usually provides the best general

purpose performance [Hwa84], [Pet85], [Smi87], [Sto89].

The research contained in this thesis used a purely LRU replacement policy, so most of

the discussion on replacement algorithms will deal with LRU and its advantages and disad-

vantages. However, to provide some breadth on the topic, I will briefly mention some other

algorithms that have been proposed as CRAs. My source for these is [Pet851 and although I

do not use direct quotes, I have paraphrased extensively.

a Optimal: This algorithm is the best CRA. The policy used in the optimal algorithm is

Replace that entry which will not be used for the longest period of time. This algorithm is

impossible to implement as it requires detailed knowledge regarding the future, and any

Dii& illfipiiig is a set associative mapping where each set contains only one cache buffer. Fuliy associ-
ative mappings are a set associative mapping where there is only one set, containing all of the available cache
buffers.

programmer with such detailed knowledge would be a very rich gambler or stock broker

and probably never touch another computer in their lifetime, let alone ded with something

as mundane as CRAs. The optimd algorithm is used by Peterson and Silkrschatz as a

performance target for a11 other replacement algorithms.

0 Least Recently Used (LRU): This algorithm replaces the entry that was used the longest

time ago (or least recently). As expected, "the LRU replacement policy is good, but not

optimd" [Sto89]. In the same paper, Stone states that "an LRU strategy is robust, near-

optimal, and difficult to improve upon in practice".

Most Recently Used (MRU): This algorithm replaces the entry that was used the shortest

time ago (or most recently). At first glance this may seem to be a fairly absurd policy, but

for certain access patterns it has been shown to be quite effective.

"Considering large sequential YO, we can see that the pages just brought in [to the
cache] are recently touched and as such will not be candidates for page replacement
[under LRU algorithm]. This has the side effect of using all of memory as a buffer
cache for YO pages. For limited YO, this is generally a good policy, but for large
(greater than memory size) I/O this is a poor policy since it will replace all, potentially
useful, pages with YQ pages that are unlikely to be reused" [McV91].

The MRU algorithm attempts to bypass this problem by replacing the most recently used

pages, which will usually contain the stream data that was just written out or read in.

Although choosing a replacement algorithm is an important decision in my cache

design, "It has been shown that, in general, the effect of cache replacement algorithms on the

performance of the cache is secondary when compared to the effect of the [placement policy]

on performance" [HwaW](page 1 18).

233. Combined and Partitioned Caches

The effectiveness of a cache at improving data throughput between levels of a memory

hierarchy is often dependent upon the type of data access pattern encountered. A data access

pattern (DAP) is the way in which memory accesses occur, relative to previous and subse-

quent memory accesses. For example, DAPs can be sequential or random. David Kotz pro-

vides a detailed description of sequential and parallel DAPs in his PhD thesis [KotB 11. I pro-

vide a summary of his work on this topic in the upcoming section 2.4.3. Often, cache perfor-

mance can be tuned to the nature of the DAP that is expected to be encountered. For exam-

ple, a database machine would be more likely to produce a random DAP than would a data

acquisition system, which would most likely generate a sequential DAP. Also, multipro-

grmd environments will present multiple processes competing for a shared cache space.

Differences in the DAPs generated and in how they are cached by these processes can seri-

ously affect system performance.

"Traditionally, computers have been built with a single cache for both data and instruc-
dons. This is the simplest method -- one cache communicates with one main memory.
Moreover, the CPU's components have only one unit to refer to, whether they are reading
or writing data, or calling for instructions But there are advantages to splitting data
and instructions into two separate caches. Conflicts between simultaneous instruction
and fetches and data reads and writes are eliminated ..." [Smi87].

The approach of splitting caches has usually been kept to high speed caches of main memory

data, as determining the differences between instruction and data fetches is easiest at this

level. I am unaware of any attempts to perform this type of cache partitioning at the disk

cache level.

Thiebaut and Stone discuss a cache partitioning for multiple disk environments.

"Because each physical disk has 2 p&*tcu!ar set of resident files md hie accesses io b'lose
files have characteristic [data access] patterns, a na tud way to nse the partitioning model
for our purposes is to associate a distinct process with each physical disk. The cache-
partitioning problem becomes a problem in partitioning a large cache among [N] compet-
ing processes, each associated with a distinct disk" [Thi89].

They also claim that "It is also possible to partition a composite stream of accesses into

streams associated with operating system, other systems programs, and individual application

programs" [Thi89 1.

Partitioning of caches into separate regions, one for each currently active process, has

also been extensively researched. In a multiprogrammed environment, with one cache shared

by d l processes and utilizing LRU replacement would have the current process BCumnt

replace d l instructions and/or data cached by all other processes lxfore any of PCurrent 's data

was replaced. In this fashion, when another process is swapped in and begins to execute,

none of its recently used instructions and data will be cached, resulting in cache misses on all

initial accesses, further increasing context switch time (or in the worst case, causing a page

fault and subsequent context switch).

"The miss rate tends to be high during the early part of the [context switch and cache re-
load] transient, and then drops as the working set of the process becomes resident in
cache For large caches a better replacement policy than LRU replacement is to in-
crease the cache allocation of a running process until the marginal improvement in miss
rate multiplied by the time remaining in the quantum drops below unity" [~ to89] .~

In multiproccessor environments the partitioning of caches among competing processes

is also under investigation. However, this is not relevant to this research and the interested

The process' quantum is the amount of CPU time it has been dedicated during its current execution
phase. In other words, it is the amount of time it will be allowed to execute between being swapped in md sub-
sequently swapped out, baning an interrupt.

reader is referred to [Sto89J,[Thi89].

234. Write IPolicy

A write to level i of the memory hierarchy only alters the copy of the target data item

stored at that level. The method used to update the changes to the item at the next lower level

i-1 of the memory hierarchy is called the write policy for level i. There are two schools of

thought on write policies, these being write-through and write-back policies [Hwa84].

In write through, any write to a piece of data cached at level i of a memory hierarchy,

will also generate a write to the copy of that data stored at the lower level i-1. Therefore, the

operation writes 'through' the level i cache. The advantage of using a write through policy is

that the copies of a data item stored at two adjacent levels of the memory hierarchy are

always identical, therefore, during failures there is no worry that changes to data is not

reflected at the lowest level of the hierarchy. The primary disadvantage of using write

through is that "5 to 30 percent of d l memory references are write operations, [and for

writes to a full cache] the processor is blocked during the write-through" [Hwa84(page 1 14).

Effectively, read operations execute at or near the speed of level i of the hierarchy, but write

operations execute at speeds dictated by some or all of the lower levels of the hierarchy.

Write back policies execute write operations only to the cached copy of the data. Writ-

ing changes to lower levels of the memory hierarchy is postponed until the data item is expli-

citly fiushed out of the cache or until the cache buffer in which the data is stored in gets tar-

getted for replacement by the cache replacement algorithm. The advantage of write back is

The disadvantage of write back is that users of the system are not mtomaticdy guaranteed

that their changes get executed directly to permanent storage. Generally, a write back policy

is implemented as aftagged write back. A dirty bit is associated with each particular cache

buffer is set wi'lcnever the data item stored in the cache buffer is modified. Before a

cache buffer can be used for other purposes (ie: contents replaced with new data as per

replacement algorithm), the dirty bit must be checked. If the bit is set, the entry must be

written back to the next lower level of the memory hierarchy before the cache buffer can be

used for other purposes. If the bit is not set, then the data can be discarded as it has not been

modified while in the cache and the copy stored at the next lower level of the memory hierar-

chy will be identical.

2.3.5. Prefetching

The technique of prefetching is often used as a method

throughput between any two levels of a memory hierarchy. As this

for increasing the data

research concentrates on

disk caching, so will the following discussion. Waiting for a program to reference some

piece of data stored on disk will probably result in a cache miss within the disk cache, since

that piece of data has likely not been used recently. However, if the computer system were

able to accurately predict what regions of disk would be referenced in the near future, then

those regions could be fetched from disk and copied into the disk cache, prior to the time at

which the actual data access occurs. If this region is fetched prior to the physical access, then

use of the data can occur at main memory speeds, rather than at the much slower disk speeds.

Of course, being able to infallibly predict the future is not always possible, therefore, the

effectiveness of p~fetching is limited by the accuracy of the prediction technique. "Certain

[data access] patterns are commonly found in memory referencing behavior of computer pro-

grams, and it is possible to use these patterns to attempt to predict which sections of a

program's address space will 'be referenced next" [Smi78j(page 7). Smith mentions that the

quential mtwe of ,most object code =i! data stares (eg: mays and queues) makes predic-

tion of data accesses relatively easy.

Smlth discusses that ",.. prefetching is generally a better idea for larger memory sizes"

fSmi78j(page 1 I). Therefore, its use in a disk cache, where the size of the memories

involved is usually fairly large, should provide an effective performance enhancement. "For

large enough memory sizes, prefetching reduces the miss ratio to about 15 percent of 3 s

former level" [Smi78](page I I). However, a slight increase in disk transfers (of about 10

percent) may occur since not all predictions will be correct, therefore some prefetches will

copy unrquired data into the disk cache.

The prediction technique presented by Alan Smith in the much referenced 1978 paper

[Smi78] involves only prefetching within a sequential access environment. The technique is

called one-block look-ahead since the only data prefetched is that data stored in the memory

region which is immediately sequential to the memory region just accessed. In other words,

a memory access to region i will read that region from disk into &e cache memory, in order

to satisfy the memory access, and then immediately afterward a prefetch request to read

region i+I from disk into the cache will also be issued. This technique can be generalized to

n-block bok-ahead where the n disk regions subsequently following the immediately

accessed region are read into the cache. This generalized technique assumes that sequential

access will occur over much larger regions of the disk address space.

2.4. Data Access

The data throughput of a file andlor mass storage system while under load varies with

the nature of workload presented. Often throughput will vary drastically with the nature of

the workload. Showing that a given system provides some set rate of throughput is a mean-

irngiess endeavor uniess a qualification is made regarding the type of workload that was util-

ized wPLk *& j i e ~ o m m e tests =ere uzdm-ay. Additionally, if a manufacturer's perfor-

mance figures are provided for some specific workload and a new system's requirements

dictate that the probable workload will be drastically different than the manufacturer's test

load, then any throughput results provided by that manufacturer may be worthless to the sys-

tem designers. Because of these factors, I believe a strict definition must be provided in

order to classify mostg workloads into logical groupings. There are at least three components

required in any classification of data access, These are (i) the type of access, eg: whether

data is written to the disk or read from the disk), (ii) the nature of object accessed (eg: fixed

size regions as opposed to variable length regions) and (iii) the temporal and spatial locality

of the data accesses.

2.4.1. Data Operations

There are three basic operations for accessing the data within a file, these are read, write

and update. These three operations differ only in the operations executed between the times

when the file is opened and closed. A file is r e d if the only operations performed are read

operations. Similarly, a file is written if the only operations are write operations. A file is

aphted, if both read and write operations occur. When data stored on a disk lacks the high

level distinction incorporated within concepts such as a file, then the idea of updating such

data losses meaning.

I suggest that file activity is usually limited to read or write access. In support of this I

reference mo86], Eot9 13. Therefore, this research deals primarily with read and write

access, according less attention to update activity.

With any classification system, an example can almost always be found that does not fit with any
category o f the classification. Adding an all others category does not work simply because the members of
snch a category are usually too disparate to give the category any red meaning,

2.4.2. Dab Objects

The architecture of the physical disk device is usually responsible for the choice of data

objects within a disk control system. In most environments, selection of fixed sized data

objects for disk transfers is preferred. Using variable sized data objects forces the system to

both allocate and release cache memory, since no fixed size of cache buffer can store all sizes

of data objects. Constant allocation and release of memory leads to memory fragmentation

problems which are thoroughly discussed in [Pet85]. As noted in [Wi191], an interface for

controlling variable sized data objects can be easily built upon a system that provides con-

stant sized data objects.

2.4.3. Data Access Patterns

Fortunately, much of the available research regarding data access pattern (DAP)

categorization has been well summarized by David Kotz [Kot9l](pages 14-17). Rather than

discussing DAPs in detail, I will mention only those which are relevant to this research.

Although Kotz deals with files, his categorizations are applicable to any data objects.

2.4.3.1. Categories of Data Access Patterns

David Kotz breaks accesses down into two primary categories, random and sequential.

Each of these categories has additional sub-categories. The final breakdown is shown in

Table 1. I provide acronyms to ease later references to particular DAPs. These acronyms

should all be listed in the glossary, when you eventually start to reencounter them.

Briefly, random access patterns have no regularity, accessing file entries without any

correlation between current accesses and previous or future accesses. These random accesses

are further broken into two categories where, (i) multiple clients access overlapping regions

Ta3le I: Categories sf ParalleS File Access Patterns

Access Pattern
Random Overlapped

Random Disjoint
Sequential Local Overlapped Regular
Sequential Local Overlapped Irregular

Sequential Local Disjoint Regular
Sequential Local Disjoint Irregular

Sequential Global Regular
Sequential Global Irregular

Acronym
RO
RD

SLOR
SLOI
SLBR
SLDI
SGR
SG!

of the file and (ii) clients access disjoint file regions, never sharing the same file portions.

Sequential access patterns have some regularity with current accesses being related, in

some fashion, to either previous or future accesses. The file regions spanned by these corre-

lated accesses are called sequential portions of the file. An access pattern is said to be locally

sequential when each individual client uses a sequential portion of the file. A contrast to that

is global sequential access, where some group of cooperating clients use a sequential portion

of a file.

As sequential portions of a file may be shared by multiple clients, the locally sequential

access patterns can be broken down into overlapping and disjoint patterns.

Finally, sequential accesses may be either regular or irregular. A regular access occurs

when all sequential portions contain a consistent number of file units (blocks, records, etc.).

All other access patterns are considered to be irregular.

2.43.2. Relevant Patterns

Not d! of Kotz's paiierils are relevant to the research contained in this thesis. 1 have

concentrated on RO and •˜GI DAPs. Some use of the SLDI DAP has been made. For more

informtion on any DAPs that I do not elaborate upon, the interested reader is referred to

[KotBI].

The two upcoming sub-sections utilize Figures 6 and 7 to describe relevant appropriate

DAPs. In these two figures, the disk address space is layed out across the bottom of the

figure. In each figure, three processes compete for disk service^'^. What these figures show

is an example of each DAP and how three processes could interact with the disk while operat-

ing within the parameters of that DAP. If process 0 accesses disk region 0 at time 0 then a to

will appear on the line corresponding to process 0 and directly above disk address 0. The

figures assume that every disk access will occur at some distinct time interval. This assump-

tion is reasonable since the chances of two disk accesses arriving at exactly the same instant

in time is almost nil. Therefore, on each figure, disk accesses are indicated by the time of

their arrival using 5 for i 2 0.

2.4.3.2.1. Sequential Global Irregular

Figure 6 shows a SGI access pattern. The arrival time of each access occurs after all

accesses to lower numbered disk regions and before all accesses to higher numbered disk

regions. Therefore the access is sequential. The three processes cooperate to access the

entire disk address space sequentially, but the pattern sf access is irregular, in that one pro-

cess may read address regions 0,4,8, 12, 13, 14.

A more concrete example of a SGI pattern would be the following. A program for

approximating solutions for an NP-complete problem uses a breadth-first branch and bound

l3 ITAe choice of three processes is arbitrary arid does not imply that the DAP only occurs when three
processes are competing for disk services.

Process 1 I I t l , I * Z , a I I I , f 5 I I I I I t 9 I h o t I I I I I
I I I

Process 2 , t I I I , * 3 , I I , I t , I *, I , I I t~ I I I IS
I i

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 1 0 ~ 1 1 I 1 2 I I 3 1 1 4 I 1 5 ~

Disk Address

Figure 6: Sequential Global Irregular DAP

algorithm. This algorithm requires storage for long lists of partial solutions to the problem.

As these partial solutions may be quite large and cannot all be simultaneously stored in main

memory, they must be maintained on disk. Two distinct disk systems are to be used to store

partial solutions. One disk system stores a sequential file of partial solutions for level 1 of the

problem, while the other disk system stores the partial solutions for level li-1. Each proces-

sor reads a partial solution from the source disk system 1, calculates a new partial solution

based on that solution, and writes the new partial solution to the target disk system lcl. As

each partial solution is 'completed' it is written to disk by whichever processor generated it,

The writing of partid soluaions exhibits a SGI access pattern, since solutions are sequentially

laid down on disk as they are created, but there are no guarantees that generation of partial

solutions wiff take the same length of time for each processor (in other word?, over some

period of time, one processor may write out twice as many partial solutions as any other pro-

cessorsj. Similarly, reading of partial solutions will also display a SGI access pattern on the

source disk system.

SG1 access patterns are used in this research since I believe that they best represent the

use of shared files for the environment in which we are working. Additionally, I believe that

SGI patterns represent a best case situation for disk throughput performance tests, as access

is always sequential and there is no potential for slow downs due to the process synchroniza-

tion that would be required in a SGR access pattern.

2.43.2.2. Sequential Lsca! Disjoint Iiiregtlar

This DAP is exemplary of concurrent access to multiple files. Effectively, it is multiple

SGI DAPs, executed in parallel. In other words, there are n groups of processes, each group

Issuing a SGI DAP on one of n files. This DAP is not uncommon ia disk systems and is

presented since it is used as the best case DAP for concatenated multiple disk systems. The

reason it is considered optimal for those disk systems is that each file can be placed on an

individual disk, assuming n 2 I), where I) is the number of disks. In that case, each group of

processes issues a SGI DAP to one disk, which is not shared by any other group.

2.43.2.3. Random Overlapped

Programs accessing many types of database often exhibit random overlapped DAPs. An

example of a RO DAP is shown in Figure 7. As a further illustration, accesses to a very large

externally stored array may be randomly distributed throughout that database. Furthermore,

there need not be any correlation between the client process issuing the request and the array

indices specified within that request. In that event, the database regions accessed by one pro-

cess may overlap the regions accessed by other processes sharing the database.

The SFU tmspter goup is associated with research pro@- concerning image

analysis and reconstruction. The use of large databases, such as look-up tables, has been

considefed by some members of these projects. For this w o n , the RO DAP is of

Process 0

Process 1 I I , I t l , I I I , I I t 1 3 1 I I I , I t 2 , , t 4 , f 1 2 , '15 $16
I I 1 I 1

Process 2

Disk Address

Figure 7: Random Overlapped DAP

considerable interest and will be included in the analysis of TASS performance.

Poor data throughput is usually the penalty for using random access patterns with mass

storage devices. Average disk seek times are almost always larger for random access than for

sequential access. This is because the disk head usually must travel extensively between sub-

sequent random disk accesses. However, the range of head travel is limited by the size of the

database region accessed. These regions can range from one byte up to the entire disk

address space. It is expected that average disk seek times will be lower for smaller databases,

hence the data throughput to them should be greater.

For the above reasons, random overlapping DAPs will be used to provide approximate

lower limits on TASS data throughput.

2.5. Other Systems

This section presents concepts and systems that have inflwnced ?he TASS design.

A SLED of storage capacity C can be replaced using a simple disk array composed of n

smaller inexpensive disks each having storage capacity of C/n bytes. The discussion in Sec-

tion 2.1.2 hints that the cost of this disk array will be significantly cheaper than the cost of the

SLED, since the cost per megabyte of storage is less for the smaller disks. Of course this

does not reflect the cost involved in the cabling and packaging that would be required for

such arrays. I have not seen any concrete estimates on these packaging costs for any particu-

Ear arrays and the papers f have read give the impression that the costs should not be

significant in comparison to the costs of the physical disk devices themselves.

The biggest problem with this simple approach is that multiple disk systems are, on

average, less reliable than single disk systems. A valuable benchmark for disk devices is the

mean time to failure (MTTF) or mean time to data loss (MTTDL)". Patterson claims that

the MTTF of the simple disk array as described above to be the MTTF of each disk, divided

by the number of disks in the array. In other words, the chance of disk failure for an array of

n disks is lfn the chance of failure for each disk in the array. Given that the MTTF of a

Conner-Peripherals CP-3100 disk is 30,000 hours, we can conclude that

"The MTTF of [an array ofj 100 CP-3100 disks is 30,000/100 = 300 hours, or less than 2
weeks. Compared to the 30,000 hour (> 3 years) MTTF of the IBM 3380, this is dismal.
If we consider scaling the array to 1,000 disks, then the MTTF is 30 hours or about one
day, requiring an adjective worse than dismal. Without fault tolerance, large arrays of
inexpensive disks are too unreliable to be useful" Pat881.

Two terms for the same idea.

Providing fault tolerance in arrays of disks is the primary focus of the RAID papers I

have referenced [Gib89],fPat88],[Sch88]. The basic idea is to utilize additional disks in order

to provide reliable storage of data in the presence of individual disk failures. Patterson gives

"... a taxonomy of five different organizations of disk arrays, beginning with m i m d
disks and progressing through a variety of [disk array organization] alternatives with
differing performance and reliability. [He] refers to each organization as a RAID level"
[Pat88f.

I do not wish to delve into a discussion of RAID levels as my interest was limited to small

groupings of disk devices, due to the hardware environment I was using (this will be further

discussed in section 3.2). The only redundancy technique of interest to myself was RAID

level 1, which is Mirrored Disks.

"Mirrored disks are a traditional approach to improving reliability of magnetic disks"

pat88]. Basically, a copy of all data is maintained on two distinct but related disks. If one

disk fails, all data should still be available from the other disk (assuming that a highly

unlikely simultaneous failure of both disks does not occur). The problem with this approach

is that the cost of data storage, in dollars per megabyte, is doubled since 2*n disks are

required to store what could otherwise be held by n disks. Furthermore, performance of two

disks operating in tandem may be worse than the performance of a single disk acting alone.

"When many arms seek to the same track then rotate to the described sector, the average
seek and rotate time will be larger than the average for a single disk, tending toward the
worst case times" jPat881.

Readers interested in higher levels of RAID are referred to [Pat88].

Hewlett Packard's DataMesh project wi189],[Wi191] utilizes both disk joining and data

redundancy techniques. Additional research avenues encountered in the DataMesh project

include that of Smarthta where data storage elements are coupled with processing power to

provide more intelligent approaches to data access than available using the traditional options

of read and write access. The goal of this project is to address the VO bottleneck problem

inherent in current disk technology by "... using parallel systems technology to consturct

large, fast, highly-functional storage servers for groups of high-powered workstations serving

the needs of technical professionals" [WilBI]. These DataMesh devices will behave in a

fashion similar to the disk server devices employed in today's ethernet environments. For

example, a DataMesh device could be used as a high performance replacement to the stan-

dard Sun disk servers found in local area networks (LANs) like that employed at Simon

Fraser University .

2.5.3. A Parallel Interleaved File System

Tn his PhD thesis, Peter Dibble [DibBO] presents a Parallel Interleaved File System

(PIFS) which is based on a group of 2 or more local file systems. These local file systems are

combined, according to the technique layed out in Dibble's thesis, into a PIFS. Although

Dibble does not state that each LFS should be interface and performance equivalent it seems

apparent that this must be the case (as the system will exhibit behavior no better than that of a

PIFS comprised of n LFS which are performance equivalent to the worst LFS in the actual

system. As an example, if three LFS are used, having storage capacities IOOM, 200M and

300M respectively, then the final PIFS will apparently have total storage capacity of 300M

and utilize l00M from each file system12. This is because parallel files are interleaving over

I2 The PIFS comes with a set of Tools which actually allow access to these unused regions of disk. How-
ever, discussion of these tools is beyond the scope of this paper. The interested reader is referred to [DibBO].

the LFS' by placing the first record onto LFSI, the second record on LFS2, ..., the nth record

on LFSn and the n+lth record back on LFSI, where n is the number of LFS in the PIFS A file

of 30 records stored in a PIFS composed of 3 component LFS will be placed with 10 records

per LFS. By extension, the smallest capacity LFS will eventually fill and prevent storage

remaining on d l the other LFS from being utilized. Different interleaving techniques could

probably be applied to overcome these deficiencies, but this would be at the expense of the

scalability of the PIFS, which Dibble states to be a primary god of his design.

The PIFS provides three distinct interfaces to the user. Each interface provides a trade-

off between ease of use and parallelism. A PIFS server provides the first two interfaces,

whereas the third is not really an interface, but I refer to it as such. The three interfaces are:

The standard ink@ace provides no control of parallelism to the user. Some parallelism

may be achieved within the file system due to the interleaving of files over many LFS.

Thus, n records could be pre-fetched (or stored) in parallel. However, as the user would

not have any control over this, this would simply be a sequential pre-fetch cache of size

n. The standard interface provides eight basic functions, namely Read, Write, Delete,

Current (File) Position, Erd of File, Create, Open and Seek. The standard interface

stores files as logical records, rather than using the Unix convention of byte streams,

This allows the PIFS to place one logical record on each IFS. The LFS can be modified

to place records within sectors thus reducing the probability of sector faults during read

(write) access.

The parallel inteqace provides all the services of the standard interface, plus parallel

open, parallel read, and parallel write. These parallel requests are made by a job con-

troller on behalf of d l processes in the job (the job controller may or may not be

required to perform the duties of a worker processor. I assume it is required to perform

these duties, rather than having special controller status). Included with the parallel

open request is a list of handles informing the PIFS how it is to route relevant data to

each process within the group. Parallel reads (writes) require that all the target (source)

processes within the job be ready to accept (transmit) the next record. This forces syn-

chronization on all processors (assuming one process per processor) during each read

(write) phase of the algorithm. This synchronization must be handled by the job con-

troller, as the PIFS does not provide any. Incorrect synchronization may cause the PIFS

to overwrite (accept) buffers upon which a processor has not finished operations.

Again, it is not clear how Dibble utilizes the list of handles to route data. Is all data

routed through the job controller, directly to each process, or through a forest of proces-

sors? He states that large amounts of data transfer can saturate the job controller. The

parallelism exhibited is only as good as that of the worst processor and because of the

synchronization, the multiprocessor is only as effective as the heavily worked job con-

troller processor (multiplied m times where m is the number of processors in the job).

(3) The tools interfQce allows special programs (eg: sorttool) to have full access to the file

system's internal parallelism. In other words, tools can access d l the LFS directly,

without being forced bough the PIFS server. Tools must have knowledge regarding

the storage (interleaving) scheme of the PIFS in order to access PIFS files. This

requires that the storage mechanism be consistent over all files. Tools will access data

through the LFS interfaces rather than those of the BIFS. Unlike users of the PIFS

parallel interface, all parallelism and synchronization must be handled by the processes

within the tool. Clearly, programming of tools will be very complex as compared to

utilizing the more standard PFS interfaces, but a higher degree of parallelism should be

achievable. Also, performance differences between LFS could be utilized to improve

parallelism a d increase storage capacity.

Dibble discusses a PFS implementation called Bridge, The LFS for Bridge is the Ek-

mentary File System (EFS) developed for the Cronus operating system. Bridge is imple-

mented primarily as a single centralized process (the Bridge Server) which provides the fol-

lowing four functions:

(1) The server maintains the Bridge directory (directory of all files stored within the PIFS).

(2) Provides the standard and parallel interfaces.

(3) Provides EFS handles for use by any tools in the PIFS.

(4) Consistency checking and performance monitoring.

User processes and tools communicate with the server via a message passing protocol.

Dibble emphasizes the fact that he did not implement message passing with the shared

memory available on the Butterfly since he wanted to prove Bridge was extendable to mul-

tiprocessors without shared memory, without major performance sacrifices.

The Bridge directory keeps a list of all Bridge files and a list of EFS files comprising

each Bridge file, along with which processors (EFS system) that the EFS file resides on.

Since Dibble did not have access to many disk packs, he simulated disks using some of

the Butterfly's processors. By the end of all this simulation, he retained approximately 32

processors for actually running user and tool processes on the Bridge system. Consequently,

1 hesitate to believe his scalibility claims above 32 processors. Dibble's disk approximations

are a little naive. He simulates disks by simply enforcing a sleep time between request

arrival and servicing. This fails to capture disk timing problems like rotational latency and

seek t h e . In this fashion he effectively prevents his system frnm dealing with short intern&

of worst case behaviour, and assumes average performance response from the disks at all

times.

There are many cases of overly optimistic simvlifications of the ty-pe described above,

and even with all this, the PIFS system performance is not outstanding (although the

Butterfly upon which he based it can hardly be considered brisk as each processor runs at

only 8MHz).

3. Design Overview

This chapter describes the high level design that is the basis for the Transputer Auil i -

ary Storage System (TASS) local file system. Before a detailed design can proceed, it is

necessary to be familiar with the available hardware. This is because many decisions in any

device oriented software design are direct consequences of hardware functionality, There-

fore, I will first present a description of the transputer architecture. That will be followed by

a brief description of the vendor supplied boards and some of the vendor software support

that comprise the SFU transputer environment.

Any reasonable software design should be based on a rigidly defined hierarchy of

software components. For example, the lnternational Organization for Standurdizution

(S O) has developed the hierarchical OSI model for the design and implementation of com-

munication protocols. This model incorporates seven increasingly abstract layers, namely the

Physical, Data Link Network, Transport, Session, Presentation and Application layers

[Sta88](pages 9-1 4). The formation of a design hierarchy should be prompted by any obvi-

ous levels of functionality within the problem to be solved. However, there is always some

Aexibifity in choosing where to produce layer boundaries. The last section of this chapter

overviews the layered approach to disk system design that was proposed and implemented

within this thesis.

3.1, Hardware Environment

The transputer was briefly overviewed in Section 1.2. The basic architecture of the tran-

sputer f d y is shown in Figure 8. In addition to the features described there, the transputer

Floating

Scheduler On-Chip Memory v
External Memory

Interface

Memory

1

I Direct Memory Access Link Controller

Figure 8: The Transputer Processor Family

provides a two priority level process heirarchy, coupled with a hardware based process

scheduler. The scheduler provides rapid process context switches which, according to my

tests (see Section 7.2.5) are usually in the neighbourhood of 4 microseconds. This

architect= promotes the use of multiple process software environments, often implemented

in the form of multi-threaded process groups. As there is no memory management provided

by the d,evice, all processes within one transputer share the same memory space.

There are two transputer variants discussed within this thesis, namely the 16 bit T222

and the 32 bit T800. Both provide all the features mentioned above, with the only notable

difference being the limited 64 KByte address space of the T222.

3.1.2. Vendor Boards

All of our vendor supplied boards are products of Computer Systems Architects (CSA).

To avoid numerous references to the same bibliographical entry, I will simply state that any

facts regarding these boards are derived from their user manuals [CSA89], unless otherwise

explicitly stated, There are four types of board used within the SFU transputer network, these

are the Part.6 T800 Transputer Board, the Part.7 Crossbar Switch, the Part.8 VMEbus Inter-

face Board, and Part.12 T222 Based SCSI Controller.

The Part.6 board consists of 4 20 MHz T800 transputers, each equipped with 2 MBytes

of on-board RAM. The transputer serial links are all routed to the board edge for easy inter-

connection with other transputer-based boards.

Each Part.7 is a 16 by 16 crossbar which allows concurrent serial communication

between two transputers over each of the sixteen currently connected wires. The crossbar is

configurable using three additional serial links, called the up, down and control connections.

The Part.8 provides a connection between a VMEbus and 6 transputer style serial links.

Access to the links occurs as memory rnagqped data transfers between the VMEhs address

space and the serial links. Data transfers over the links can proceed both to and from the

VMEbus.

The discussion of the Part. 12 device will be slightly more detailed t h that provided for

the other CSA products since aspects of the device driver software design are dictated by the

Part.12 architecture. The board consists of a 16 bit Inmos T222 transputer device, 64 KBytes

of on-board RAM, and a memory mapped Western Digital 33C93A SCSI Bus Interface Con-

troller (SBK). "Four Kf3ytes of internal RAM and about 52 KBytes of external RAM are

available to the programmer. The rest of the address space is for memory mapping of the

SBIC and other devices...". Data is transferred from the SCSI bus to the physical RAM wing

two 522 byte FPEO buffers. Data transfers 'between the FIFO buffers and disk, controlled by

the SBIC, can overlap with access between main memory and the FIFOs. However, as the

memory to FIFO transfers are much faster than the FIFO to disk accesses, there is not a great

degree of performance gain due to this. CSA claim that "It is possible to transfer data

directly out of a link from the FIFO or in from a link to the FIFO without going into tran-

sputer memory, reducing latency slightly at the expense of a slight bandwidth reduction".

The device drivers provided with the Part.12 boards made use of this feature, and it's penal-.

ties and benefits are discussed later in Section 3.1 '4.

Each Part.12 is equipped with a Conner-Peripherals CP-3100 disk drive. The CB-3100

is capable of storing 104 MBytes of data. The dimensions of tbe device were given in Sec-

tion 2.1.1, but for the purposes of clarity they are tabulated in Table 2 along with other per-

tinent parameters.

It is possible to attach multiple disk drives to the SCSI bus of the Part. 12 board. Any of

these drives could be accessed by the T222 controller, however this would require the imple-

mentation of a SCSI bus disconnectlreconnect: protocol. I have it on firm authority from my

(ex) brother-in-law that this is no trivial matter. No disk server version was imphmted f ~ r

this multiple disk hardware configuration.

Table 2: CP-3180 Specifications

Diameter 3.5 inches
Capacity 104 MBytes
Platters 4
Surfaces 8 (2 per platter)
TrackdSurface 776
SectorsKrack 33
Blocks/Sector 1
ByteslBlwk 512
B ytesmrack 512 * 33 = 16895
Seek Times

Track to Adjacent Track 8ms
Average 25 ms
Maximum 45 ms

Revolutions/Second 60
Rotation Time 16.7 ms
Average Rotational Latency 8.4 ms
Mean Time To Failure 30,000 hours

3.13. SF'U Transputer Environment

The SFU transputer network is connected to a Sun-4/110 host, dram, via a single Part.$

VMEbus interface. The environment is pictured in Figure 9. The Part.8 provides a commun-

ication link between the network host, draco and one T800 transputer, which will be

hereinafter refered to as the root transputer. The Part.8 additionally provides a communica-

tion medium whereby draco can configure all of the Part.7 crossbars. The host, draco, is also

connected to the S N computing science research ethernet.

The SFU transputer network consists 15 Part.6 boards, providing a total of 60 T800

transputers, and 4 Part.12 boards, constituting 4 T222 transputers, each of which is aug-

mented by a CP-3lOO disk drive. All 64 transputers are interconnected using 8 Part.7

crossbar bards, which are in turn configured using a single P a t 8 VMEbus interface. The

size a d number of crossbar swit&es used does not &OW aii the transputers to be intercon-

nected in all possible ways, however? the implementation of the network provides a sufficient

1 Link Adaptor I

To Other Xbars rr"

Figure 9: The SFU Transputer Network

subset af h e possibie interconnections to serve most research needs.

Software to be executed on the component transputers can be compiled on any Sun host

wi&ftin the ethernet. However, tfie object code can only be downloaded to the transputer

network using dram. The software is downloaded to the root transputer, which acts as a con-

duit for downloading software to all other transputers within the network. The crossbars are

configured at the time the network is booted and currently there is no ability to reco~figure

the network during program execution. The transputer network constitutes a multiple instrw-

tiun, multiple data (MlMD) system, so the code downloaded to one transputer need not be

the same as the code downloaded to other transputers in the same network.

The purchase of the SFU transputer system occurred in incremental stages. As a conse-

quence of these incremental enhancements, the actual Part.12 disk controllers (and their

related disks) were purchased without firmly establishing their suitability to the SFU tran-

sputer group. It seemed likely that the hardware itself would be sufficient to provide data

storage services within the transputer net, however, the effectiveness of the vendor supplied

software was not known.

3.1.4. Vendor Supplied Software

All support software, for example, network loaders and debuggers, are CSA products.

All software within the TASS system was implemented using the bgical Systems C compiler

[CSA90]. Most of TASS's SCSI disk driver was translated to C from a vendor supplied

ModuIa-2 implementation.

The support software and compiler were quite adequate for the purposes of TASS

development. This section deals primarily with the vendor supplied Modula-2 SCSI driver,

as it was determined, in the opinion of the SFU transputer users, to be inappropriate for our

poqmses. The reasom for dccisim were:

e Software development on the SFU transputer network has predominantly been performed

using C. Simultaneously b t i n g a transputer network with code elements, some of which

were compiled from C and some compiled from Modula-2, was not ~ossible with the first

release of the CSA Msdula-2 system. Eventually, CSA rectified this problem, but using

code produced from both hguages was still more difficult than using code produced by

just a single compiler.

The operation of these CSA disk systems was severely limited in the fact that only one

Part.12 disk controller transputer (called a disk node for now) could operate within any

transputer network. In addition to that, it was required that the disk node be connected to

the root transputer only. Therefore, at least one of the root transputer's links had to be

dedicated to communication with the Part. 12 board.

e The CSA Modula-2 disk system was targeted at transputer networks with MS-DOS

configured IBM AT hosts. Because of that, the CSA disk system operacd as an MS-DOS

'clone', with all operations to/from disk having to be executed in that directory and file

environment. This MS-DOS implementation was distributed betwzen the Part.12'~ T222

and the T800 root transputer, with the majority of computationd overhead foisted onto the

TSW. Any software requiting disk access that was to be executed on the T800 root tran-

sputer was required to link in this disk software, and at first this required the root transputer

code to be compiled from Modula-2, and loaded using the Modula-2 system.

e In order to gain the benefits of reduced latency (mentioned earlier in section 3.1.2), CSA

had implemented the T222 software as a minimalistic driver, acting as a router for disk

block readlwritefstatus requests from the T8OO to disk and as a dumb controller for data

transfers between transputer serial links and the Part.12 FIFO hardware buffers. Because

of this, &ere was na disk Astraction at the T800 level of the implementation, therefore

detailed howIedge of the particular disk used, and how to address it, was required at this

higher level of the system.

There was no attempt to diow parailei accesses to the disk system. No protection was pro-

vided for multiple processes accessing the disk support routines. Part of this problem was

that the disk access primitives involved a complicated protocol between the root transputer

and the T222 on the Part.12 board. Accesses had to be purely sequential, with every access

having to complete, in it's entirety, before any other access could begin. Not even simple

semaphore protection was provided by these data access procedures.

It is a common technique to split device drivers into two halves, the lower one being device

dependent and the upper half being device independent [Com84](pages 283-308). This

basic software engineering technique had not been utilized in the CSA server, rather it had

been hard-coded for handling CP-3 100 drives.

It was our (the SFU transputer users) opinion that these points made the CSA disk sys-

tem unusable for our computing requirements. We were hoping to use multiple disks within

our transputer network. We wanted the flexibility to place those disks where they would be

most useful, within the network configuration dictated by each specific application. We did

not particularly wish to use an MS-DOS directory hierarchy, nor suffer the penalty of compu-

tational and data transfer overhead imposed on a system by such a rigid file environment. It

was further noted that the implementation of the CSA system utilized no buffering of disk

access requests and that it prevented any simple modification that would incorporate buffer-

ing. These issues prompted the first rewrite of the CSA disk system, which eventually led to

the development of TASS.

32. T A S Design

As mentioned in Chapter 1, the goal of the TASS design is to provide a simple efficient

interface between mass storage and the transputer network. This mass storage has been

implemented as a rudimentary local file system (LFS) under the control of a group of tran-

sputers, cumulatively known as a TASS Storage Node, This storage node is based on the

clientlserver model which was utilized extensively in the V system. In this model, disk dev-

ices are resources to be managed by sewer processes. "When a user or a process wants to

use a resource controlled by such a server, it sends a request, thus becoming a client of that

server" [Bei-863. Since the transputer architecture currently lacks point to point cornmunica-

tion, the TASS storage node is only accessible by client processors that are directly connected

to the storage node.

TASS reflects the fact that the transputer multiprocessor is a high performance computa-

tion platform. McVoy & Kleiman point out that some database users, in the pursuit of per-

formance, actually get rid of the file system altogether. These sort of programs are imple-

mented to access the raw disk itself. They also point point out that "This solution is an act of

desperation. There is no file system, no file abstraction, etc." [McVgl]. The overhead

imposed by a high performance computing platform's file system should not be so great as to

drive the platform's users to those frantic extremes. Therefore, the secondary intentions of

TASS are to provide the highest possible mass storage performance. As such, the TASS

design stresses performance over functionality. The performance parameters of interest are

(0 high data throughput and (ii) low client processor and communication overhead.

To achieve high data throughput, we decided to implement TASS according to the fol-

lowing:

e Disk transfer size is chosen to maximize disk throughput. This indicates that all data

msfers $e a d frsm disk ftiz p,rfolmed ir, fixed size unit6 of trmsfer. I;r;;?sheImorg:, the

disk transfer data object is fairly large, in order to distribute the compaabatioin and corn-mni-

cation overhead associated with each disk access across as many transferred bytes as

p ~ s i b k . Lnl other words, we try to mini-nGze the mount of overhad per byte of data

transferred. However, the system is not hard-coded for the size of the data object, rather it

is designed to allow disk transfer object size to be varied.

6 TASS includes a cache, allowing programs that issue temporally and spatially locd data

access patterns, to satisfy some of their data requirements using fast memory (the cache)

rather than through accessing much slower disk devices.

The system provides for parallelizing multiple disk devices within any single TASS storage

node. Parallelization can occur using the concatenation, interleaving or striping techniques

described in Section 2.1.2.1. The number of disks and the nature of the joining within each

TASS node is easily selected at compile time. Also, if one TASS node utilizes one com-

ponent disk, this does not prevent other TASS nodes within the same transputer network

from being configured as multiple disk nodes.

9 Tke system provides clients with the ability to prefetch into the cache any disk regions that

they are likely to need in the near future. This allows clients with predictable access pat-

terns to instruct the file system regarding what disk regions should be fetched into the

cache.

e Buffering within the disk controller(s) is provided to more evenly parallelize the computa-

tion and physical VO components of all disk accesses.

a The user of the system retains a high degree of control over system configuration. Many

important performance issues are configurable at either run-time or compile-time, thus pro-

viding the user with the ability to select for system features that they require, without forc-

ing users to be penalized due to the overhead imposed by redundant or supefiuous system

functions. In other words, the user retains a high level of control over what functions their

To achieve low client processor overhead, the TASS client interface is designed with the

following considerations:

The object code size for linked LFS libraries is kept minimal. Programs utilizing the disk

system are not forced to allocate large portions of their local memory, in order to access the

large disk memory.

The number of client processor cycles required to execute a single disk access is minim-

ized. Additionally, the number of context switches required due to processes blocking dur-

ing execution of the LFS library has been kept to a minimum.

The system is implemented so that users having less stringent performance requirements

cart utilize more functional interfaces, without requiring alternate disk system control

software.

The system can adapt to alternative file systems, without requiring major overhauls in the

lower layers of the code. The concept is similar to that of a plug-in feature, if the user

desires a Unix file system (and someone has written one), then they are able to plug that

file system in at the appropriate level of the TASS code and execute their programs using

that interface. In other words, implementing an alternative file system, perhaps modelled

on Unix or MS-DOS, does not require that the disk drivers and cache control be altered to

support that file system.

The TASS design is broken down into both hardware and software components. The

satwe of the hft'dwar wnf gxmtkm upm which TASS is bl;i!t is ceiitii t~ the h i g i i of the

software itself.

3.2.1. Hardware Configuration for TASS Storage Nodes

Since TASS is designed as a disk control system, it is expected that data transfers

between memory and disk will be rather large. If possible, the transfer should be in the fornl

of an entire track in order to maximize the amount of data transferred between disk seeks and

rotational delays. The CP-3100 specifications in Table 2 provide a ballpark figure for the

expected size of disk transfers, namely one track of 16896 bytes, which is a little over 16

KBytes. One primary drawback of the available hardware is the limited 64 KByte address

space of the Part.12'~ T222 transputer. Implementation of a cache within such a small

address space was not considered to be a very profitable adventure, since the size of the cache

could be as little as three buffers. Implementation of a useful cache required a larger main

memory, indicating that an additional transputer, of the 32 bit T800 variety, be utilized as a

cache controller, Fortunately, the 64 KByte address space of the T222 is sufficient for double

or even triple buffering of I/U requests, allowing the T222 transputer to be used as a disk

controller. This reasoning led to the first concept of the TASS storage node, pictured in Fig-

ure 20 (i). The TASS storage node is configured as three hierarchical layers of processors,

(i) One Disk

To Clients

(ii) Two Disks

To Clients

(iii) Three Disks (iv) RAM Cache

To Clients To Clients

Sewer
Cache
Server

I 1
I

Disk
Server

Disk
Server

Risk
Server

namely, from highest to lowest, the client processor(s), cache sewer and disk sewerfs).

Note that one serial link of the cache server is dedicated to communicating with the subser-

vient T222 disk server. The three remaining serial links are available for communicating

with client processors.

Using an extra T800 transputer for a cache controller is what prompted my interest in

disk joining techniques. If a T8OO were to be used as a cache controller connected to a disk

controller, then why not parallelize disk access using concatenation, interleaving or striping?

Alternatively, a more robust disk system could be built using mirrored disks. The fact that

the T800 has only four serial links limited this configuration to a maximum of three subser-

vient clisits13. However, even using two parallel disks could greatly increase disk throughput

for each storage node. Figures 10 (ii) and (iii) show these alternative configurations. Using a

single T80f) transputer, without subservient disks, could service as a RAM disk (or RAM

cache). This configuration is shown in Figure 10 (iv). Hardware configurations similar to

that of TASS are discussed as building blocks for Hewlett-Packard's DataMesh storage

server architecture fWi1891, fWi19 11.

Communication between neighbouring layers of processors is via the transputers serial

links. This environment requires that software protocols are adhered to by neighbouring pro-

cessor layers. However, "Most programmers do not understand message communication and

prefer a simple procedural interface to services and facilities" [Che84]. Like the V system

described in [Che84],[Ber86],[Che88], TASS provides a remote procedure call (RPC)

abstraction to hide the communication protocols used over the interprocessor serial

l3 One serial link is required to communicate with the outside world. A disk system is not of much use if it
is detached from df compgtm.

connections. An additional advantage of RPC implementations is that programmers utilizing

an abstract system probably have enough problems of their own, without having to worry

about whether or not they are correctly communicating with servers.

3.2.2. Software Design

The TASS software design is based on the premise that there are at least four primacy

layers within any local file system (LFS). Regardless of hardware architecture or device

type, there must always be (i) a client integace layer (CIL), (ii) a$le system layer (FSL), (iii)

a cache layer (CL) and (iv) a disk support layer (DSL). This exact breakdown of LFS pri-

mary layers is also presented by Maurice Bach [Bac86J(pages 19-21). The four primary

layers are distributed across the component processors in the fashion described in Figure 11.

The reasons for this distribution are detailed in Chapters 4 through 6. These chapters

approach the design from the bottom up, beginning first with the disk support layer, and pro-

gressing on up through to the client interface layer. I feel that this is a more natural progres-

sion, since the design itself progressed in this fashion.

Each of the physical communication points (ie: between the client processor(s) and the

cache saver and between the cache server and the disk server(s)), will require splitting of the

layer spanning those communication links into secondary layers. The CIL will be broken

down into a client processor based client communication layer and a cache server based

server message layer. The DSL will be broken down into a cache server based client com-

munication layer and a disk server based server message layer.

To provide a concise division of layer boundaries, these layers are abstracted into a pro-

cedure d interface, eit'her remote or iocd. This thesis proposes a technique for distdbuting

thlese layers across ~~ialtiple pr~2si) l ' elements within a loosely coiipied mii2iip~~ssor. The

distribution technique is discussed in Sections 322.1 to 3.2.2.4

Client Interface Layer

File System Layer

Cache Layer

Disk Support Layer

Figure 11: Distribution of Primary Layers over Component Processors

3.2.2.1. Client Interface Layer

The highest level of any LFS has the responsibility of communicating with client

processes and/or processors. This is the client i n k ~ a c e layer. The client interface should

provide an efficient set of primitives which will allow file access to be effective and easily

understood. These primitives should allow the client to utilize all file system features neces-

sary for any application, without requiring undue knowledge of the file system operation nor

of the communication involved in the interaction with the file servers. For example, client

knowledge of the communication protocol used between the client interface layer and the file

system should not be a prerequisite to using that file system. An effective client interface

should provide high performance access while hiding the ugliness of implementation details.

It should also provide a complete set of file system operations, without restricting the effec-

tiveness of those operations, nor affecting the consistency of them.

Tn a distributed environment, this layer is responsible for relaying data between clients

and the file system. It usuaEy involves two components, which David Cheriton refers to as

the client communication inrevace (CCI) and the server message intevace (SMI) [Che84].

In a non-distributed environment, there is no need for distribution so the client interface layer

becomes a null entity, effectively mapping directly onto the file system layer.

3.22.2. File System Layer

There are core operations that must be supported by any and all file systems, or the sys-

tem will not function reasonably. Any file system must allow the reading and writing of data

toifmm the mass storage medium. Additionally, these read/write operations must behave in

such a way that a client can control which Bata items they will operate on, For examplei if a

client writes ten files to disk, the client should be able to read back the fifth file and not have

to worry that the disk system will provide the wrong file, or a jumbled combination of the ten

files. Additionally, the system must maintain data integrity, fn other words, data written by a

client has to be read back without any alterations to the content of that data.

As mentioned earlier, the first implementation of TASS was not intended to provide a

comprehensive and complete file system. It is intended to perform as a high performance

focal file system, only capable of distributing data to clients which are physically connected

to the TASS LFS. As such, a complex interface was not required. We chose to provide what

is herein called a Chunk VO disk interface.

Definition: A chunk is a constant sized region of the disk address space of any TASS local file

system, A chunk is roughly analogous to a disk track or sector and in fact the current TASS

prototype uses a 1: 1 mapping between chunks and disk tracks14.

The TASS chunk VO interface slices the disk address space into an array of chunks. Each

chunk is a distinct entity within the mass storage address space, therefore chunks can be

operated on individually, but not in groups nor in any manner that crosses chunk boundaries.

The interface provides the core operations defined in Table 3. When reading about the core

operations, it is relevant to consider the array of chunks abstraction. To utilize an array, it is

necessary to be able to read from it, write to it and also to know the dimensions of the array,

and of its elements.

This file system will be described in greater detail in Chapter 5. The selection of the

chunk I/0 interface does not prevent TASS from supporting an alternative file system.

Rather it is intended to provide sufficient services in order to make TASS a useful support

system. Implementation of a simple file system, in addition to the chunk VO interface, was

I4 The term chunk was used, as opposed to words like page, track, sector, line, etc., in order to avoid
emhciisiiig 'itie chunk concept witb the preconceived notions usuaiiy associated with those words. Otber authors
have used the tern, notably John Wilkes pi1911, to denote similar structures.

Table 3: File System Operations

Read Chunk Copy a single chunk from the address space of the TASS LFS into the address
space of the client processor.

Write Chunk Copy a single chunk from the client processor's address space into the address
space of the TASS LFS.

Prefetch Chunk Copy a single chunk fiom the physical storage device within the TASS LFS into
the cache storage space of the TASS LFS. The data is not copied to the client
processor requesting the prefetch.

Flush Cache Force ail chunks resident in the TASS LFS cache to be written back to the phy-
sical storage devices within the TASS LFS.

Chunk Size Obtain the size of the chunk. The chunk size is dictated by the physical disk
device and disk joining technique used. This information is required by pro-
grams that need to allocate local storage buffers.

Number of Chunks This primitive is required to inform client programs of the amount of data
storage available on the storage node. Again, this information is dictated by the
physical disk device, and must be made available.

considered, but these plans were tabled due to time constraints.

A second object type, the TASSJile is occasionally referred to within this thesis. The

term TASSJile is used to reference a contiguous section of disk chunks. Within this context,

files are neither defined nor maintained by the file system. The concept of a file is used only

to provide a higher level of disk organization than would be available using the disk chunk

Definition: A TASS$k of size k chunks, is a contiguous region of disk chunks begin-

ning at disk chunk i, and spanning every chunk through to disk chunk i+k- 1, inclusivety.

To minimize disk seek times, inany traditional and real-time systems attempt to allocate

or preallocate files in this fashion [McV91],[Wil91]. Therefore, I believe this definition will

provide reasonable approxk&on of ,red-he disk zccess zcthity.

3.2.23. Caclhe Layer

The cache layer is an autonomous module that converts the procedure call interface of

the disk layer into a cache level interface for use by the file system layer. This cache level

interface provides access to the cached data objects, without imparting special status to par-

ticular regions. A file system may be forced to allocate regions of disk for maintainingfile

access rubies and directory listings but the appearance of these items to a non-partitioned

cache should not be any different than the appearance of more mundane file data. Some sys-

tems incorporate caching directly into the file system, with file system style operations exe-

cuting both above and below the actual cache. I believe choosing such a style of cache con-

stitutes a p r design decision because

* In an intermixed environment, modification of the file system may affect cache operation,

perhaps degrading performance or accuracy.

* Caching of data is a distinct concept. Caching responds to data access patterns and the

operation of a file system on a disk is simply a complex DAP. The cache should be &ble to

deal with these DAPs without specific information from the file system manager.

The TASS cache operations provide access to data chunks while hiding details such as:

rr Whether the data is in the cache or on disk.

9 On a cache miss, whether a free cache buffer is available to read (or write) the requested

chunk into, or if a write back of a dirty buffer must first be performed.

The cache abstraction hides whether or not the entry is currently being written to, or read

from, arad assures that two data accesses do not sirnuitaneousiy access the entry in a fashion

r k at +.,A. *WJKJ IA make the rests of om or both opeiiitioils iilvalid.

e The cache keeps track of which cache buffers are in use, in order to avoid that buffer being

targeted for replacement prior to the cache client(s) finishing with the data stored therein.

The cache locks entries in order to make the two above guarantees, and the file system

should not have to be concerned with the protocol involved in these locks.

Briefly, the operations provided by the cache layer interface are shown in Table 4. The

need for both lock and release primitives is to avoid internal copying of data. Memory copy-

ing is a time consuming process and transferring data between one buffer and another, within

a single processor, is often a useless activity. Using two procedures, one to lock and one to

release, allows the client processes to operate directly on the cache buffer and it avoids

unnecessary copies and the coherency problems that occur from using them. Some of these

operations operate simply as a 'relay' between the disk support layer and the file system

layer.

Admittedly, many marketable disk systems do not incorporate a cache layer. For exam-

ple, the Microsoft MS-DOS environment, prior to version 5.0, did not incorporate caching of

any data read from or written to storage devices15. The disk support is provided in the BIOS

layer and the client interface is provichd within the DOS layer. The newest release of MS-

DOS, namely version 5.0, has (finaily) incorporated caching for storage devices, although

Microsoft has been a little tight lipped about how this has been implemented. Designers of

systems like MS-DOS which will not contain a cache layer should tailor their disk support

interface to allow the easy and transparent insertion of a cache, when and if it is ever

'* Actually, MS-DOS is more than a file sy:?em. In fact it provides other hardware odented services that
do not fit within a file system. However, there does exist (contrary to some rumours) an effective LFS within
&e MS-DOS environment.

Table 4: Cache Layer Interface

Get Read Lock on Chunk This operation locks the cache buffer (that stores the target data
item) and prevents concurrent accesses from writing to that buffer
until the read lock is released. Simultaneous read operations are al-
lowed since they do not modify the actual data stored in the buffer.

Release Read Lock on Chunk This operation icforms the cache that the read operation on the
specified buffer has completed.

Get Write Lock on Chunk This operation locks the cache buffer (that stores the target data
item) and prevents concurrent accesses from reading from or writing
to that buffer until the write lock is released. Simultaneous read

I
operations are nor allowed since they may copy the buffer's contents
before the current write operation has completed, therefore reading
an invalid version of the data.

Release Write Lock on Chunk This operation informs the cache that the write operation on the
cache buffer has completed.

Write Back Chunk Allows the user of the cache, to specify that a specific data chunk be
returned to disk. This allows the file system to guarantee that data
has been stored on disk.

Prefetch Chunk Bring the indicated data chunk into the cache, pending later use.
Flush Cache This operation rebms all cache entries to disk.

C

Chunk Size The size of data chunks is relevant to the file system layer, therefore
this information must be made available as part of the cache layer
abstraction.

Number of Chunks The number of chunks available on disk defines the size of the data
store. The file system will require this information and so it must be
part of the cache layer interface.

required.

3.2.2.4. Disk Support Layer

The lowest level of any LFS is the disk support layer. This layer should provide a set of

primitives allowing read (write) operations from (to) any region of the device's address

space, regardiess of the type of device (or number of devices) present. These core primitives

must provide only essential services and should not incorporate any of the functionality that

normally would be provided within a file system. In other words, the device support layer

should be independent of the type of file system within which it will be used. Additionally,

sew ice^ tb_& m y help to enhate the pdormace of higher so&w:\re layers should be pro-

vided, as long as they do not detract from the performance of the disk support layer itself and

do not violate the independence criterion. Since the performance bottleneck in a LFS is usu-

ally the storage devices, streamlining the performance of this layer is paramount to an

efficient LFS.

As with higher layers, a procedure call interface to the disk support layer should be

used. Forcing client processes, namely those operating in the cache layer or higher, to handle

communication protocols in order to utilize the disk access primitives can often lead to

confusing and inaccurate code. With the selection of a procedure call interface, the required

primitives can be selected. For TASS, the core primitives for the disk support layer are given

in Table 5. These are not the only primitives that are provided by the layer, however those

not listed are simply for accessing statistics accumulated during execution of the TASS

storage node .

Table 5: Disk Support Layer Core Primitives

Read Chunk Copy a single chunk from the physical disk into the buffer provided by the
client process.

Write Chunk Copy a single chunk from the buffer provided by the client process to the physi-
cal disk.

Chunk Size Obtain the size of the churtk. The chunk size is dictated by the physical disk
device a d disk joining technique used. This information will be needed by the
cache layer, in order to allocate cache buffers and control structures.

Number of Chunks This primitive is required by the cache layer during allocation of contra1 stmc-
tures. As this is disk dependent information, it must be abstracted in this fashion
to &ow a device independent cache layer implententation.

4. The Disk Server

As mentioned in Chapter 3, d l the software generated for the TASS disk server was

written using Logical Systems C (version 89.1). Initially, the lowest levels of this driver

were translated to C from the CSA Modula-2 disk driver product. The actual module

translated was SCSIDiskMOD. I have since modified the C version extensively. The disk

server is built upon the CSA Pat12 bard described in Section 3.1.2, but wherever possible,

the code has been implemented in a device independent fashion.

The software comprising the Disk Support Layer (DSL) operates within at least two dis-

tinct processors, namely the disk server(s) and the cache server. There are five primary com-

ponents of the DSL. Two of these components reside in the cache server processor, namely

(0 the disk services layer (DSL) and (ii) the client communication layer (CCL). The remain-

ing three components operate within the disk server processor(s) and are (iii) the server mes-

sage hyer (SML), (iv) the device independent layer @IL) and (v) the device dependent layer

@DL). These components, and their intercommunication, are depicted in Figure 12. This

chapter discusses the design of the three levels which are resident within the disk server

(DIL, DDL, SML), postponing discussion of the remaining two levels to the cache server dis-

cussion in Chapter 5.

The actual hierarchy of the disk server based layers may be a point of consternation. If

the SML communicates with the cache server based CCL, why is it lower in the hierarchy

than the DIL? Tne reason for this is that the SML and CCL are hardware dependent layers

since they deal with a physical communication medium, and the protocol used to communi-

cate across it. Effectively, the SMZ and CCL are device dependent layers and therefore

should be abstracted beneath the device independent layer. David Cheriton's Timeserver

code example in [Che84f(page 25) justifies this practice. The best way to consider the

Cache Server

Interface to Cache Layer

Client Communication Layer I
1 Local Procedure CalI

Disk Server

Device Independent Layer 5-?
Server Message Layer I Device Dependent Layer 1 = =

i Remote Procedure Cali - - , , Physical Communication Medium

Figure 12: Components of The Disk Support Layer

hierarchy is to picture the DIL communicating with the DSL, each using the SML and CCL

as subservient tools to achieve that communication.

The operation of the disk server processor bears some consideration. Within the archi-

tectural, constraints of a loosely coupled multiprocessor, any processing element controlling a

disk device must perform the following three basic activities during the execution of a single

disk request:

(1) Accept an incoming disk request, in the form of a message from a client. If the new

request is a write operation, copy the data from the communication medium into a focal

memory buffer.

(2) Execute the indicated disk request, copying data between the local memory buffer and

the physical disk in the appropriate direction (either read or write).

(3) Respond to the client, returning them an error status (informing them that the request

succeeded or failed) and transferring to them, via the communication medium, any data

read.

These three operational regions form a disk access pipeline, which is shown in Figure

13. Any process operating within some region of the pipeline must control specific hardware

resources in order to operate. The figure indicates that these resources are, for the transputer

processor, (i) the incoming communication link, (ii) the SBIC (and subservient disk device)

and (iii) the outgoing communication link, for the three regions respectively. Furthermore,

the operation of a process (and its acquired hardware) within any region of the pipeline, is

independent of the hardware devices in other regions of the pipe. This allows for multipro-

cessing within the disk server transputer, with three or more server threads being able to con-

currently operate on some phase of the pipeline.

I
SCSI Bus I

and I
Disk Devices 1

I
I

I Communication 1 (ii) Disk I Communication I
I and I Access I and I

Reprocessing I I

D I I I
Postprocessing

Figure 13: Disk Access Pipeline

Gae of the perceived drawbacks of the vendor supplied P~fobula-2 impleis-miation was

that no local memory buffers were used, hence there existed an overlap of required hardware

resources within each region of the pipeline. This is because data transfer to (from) disk

occurred concurrently with data transfer in from (out to) the communication medium. This

single fact prevented the use of multiple processes within the disk server processor, prompt-

ing change to the driver code. In the Modula-2 driver, only one process was handling all

aspects of server operation. This prevented the disk server from concurrently executing

regions of the pipeline and subsequently reduced the data throughput of the disk server as a

whole. The only solution to this problem was to implement an alternate driver that took

advantage of the natural concurrency of the problem. The decision to reengineer the: disk

driver software opened the door for the implementation of a multiple process disk server

environment.

Section 4.1 describes some of the primary coasideratmns in the design of the disk server

code component. Target interfaces between software layers are defined and the communica-

tion protocol utilized between the disk server and the cache server processors is detailed.

Sections 4.2 and 4.3 describe the implementation of two TASS disk server prototypes. The

two prototypes are referred to as Disk Server I (DS1) and Disk Server 2 (DS2). Both proto-

types are functionally equal, providing the same basic services and operating on fixed sized

data chunks. The modularity and overall software quality of DSl was not up to personal

standards, mostly due to some poor initial design decisions. Additionally, DS1 did not pro-

vide acceptable pe r fomce , and for these reasons it was scrapped. Prototype DS2 provides

significantly better disk transfer rates than DSl and as such has been selected for use within

TASS. Sixtior; 4.4 bisctsses tf;e irnp1iternei;tatim of two RAP4 Cisk server piototjjps.

Each layer within a hierarchical design presents an interface to higher layers of the sys-

tem. For the disk server design, both the device dependent and device independent layers

provide a procedure cat1 interface. The server message layer must provide a conversion from

the services of the device independent layer into a communication protocol that can be used

across the communication medium connecting the disk server to its clients. This section

desckks &e interface or protecol chosen for each of the thee software layers.

4.6.1. Device Dependent Interface

The device dependent layer is responsible for controlling the physical disk device. Con-

trary to its name, this layer must provide a set of device independent services that will give

the user sufficient control of the device, without unnecessarily encumbering them with device

control considerations. This is a trade-off, and as such there is never a 'right' solution. For

the purposes of TASS, and the approach that I knew would be taken at higher levels of the

design, a sufficient set of primitives would provide for device initialization, device format-

ting, allow reading and writing of fixed size data chunks, as well as providing certain pieces

sf device dependent information in an abstract way (for example, number of chunks, size of

chunk, etc.)16. In addition, the clients of the layer would need their own distinct workspaces

within the layer (to maintain information like which buffer they were using, etc.), so a client

I do not claim that this interface is sufficient for all possible disk server environments, however, I gave
considerable thought to its composition and I am still satisfied with it. More functionality would probably be
mpireri for a more robust interface, but time constraints limited the interface to providing those functions that
were necessary for the TASS system itself,

re$st&on pimitive was indud&. T.k pfi-i;mithe set sdected is give!! in Table 5. The two

procedures GetBuffefi) and RegisterClientThread() are dependent upon the amount of avail-

able memory, which is a board dependent issue. All other procedures, convert the intent of

Tabte 6: Interface to the Device Dependent Layer
Format Parameters: (i) Track interleave factor

(i i) Sector interleave factor
Results: Re-formats the disk using the specified track and sector in-

terleave factors.
Returns: Error, if any occurred.

Initialize Parameters: (i) Start of available memory
(ii) Size of available memory
(iii) Number of buffers to allocate

Resuits: The disk is reset and made ready for use. If there is
sufficient memory available between the specified memory
positions, then the procedure allocates the indicated
number of buffers. Otherwise, the maximum number of
buffers that will fit in the available space are allocated and
this number returned in parameter iii.

Returns: Error, if any occurred.
RegkterCPentThread ParameLrs: None.

Returns: Client thread i.d.
GetBuffer Parameters: (i) Client thread i.d.

Returns: Memory address of the buffer currently allocated to that
thread.

Readchunk Parameters: (i) Client thread id.
(ii) Disk Address of the chunk to be read.

Results: Data from specified disk address is read into the buffer
currently allocated to that client thread.

Returns: Error, if any occurred.
Writechunk Parameters: fi) Client thread i.d.

(ii) Disk Address of the chunk to be written.
Results: Data from the buffer currently dlocated to the client is

written to the specified disk address.
Returns: Error, if any occurred.

Getlnfomtion Parameters: (i) Client thread i.d.
(ii) Buffer to read information into.

Results: AII device specific information that is relevant to higher
levels of the system is transferred into the indicated buffer.
This irtcldes data like ttte number of disk chunks, the size
of the disk chunk, etc.

Returns: Error1 if any occurred. I

I

the p ~ w d u r e 2nd its p2f~aneters into z sequence of SCSJ bus commmds which it'e issued to

the SBIC chip of the Part.12 board.

No disk scheduling algorithm was implemented in any TASS disk server prototypes

since the address space of the Part.12'~ T222 controller is only 64 KBytes. This means that

no more than 3 outstanding requests can reside in the disk server, assuming an optimized

chunk size of 1 track which is 16896 bytes. Scheduling within a list of 3 outstanding

quests was not considered profitable.

4.1.2. Device Independent Interface

The primary purpose of the device independent layer is in implementing the process

environment that controls the flow of requests through the disk pipeline of Figure 13.

According to David Cheiiton, "The complexity of handling message communication is only

imposed on programmers developing distributed programs and is overshadowed by the com-

plexity of concurrent programming in general" [CheU](page 24). Implementing the process

structures and their interaction is part of the concurrent programming problem within the disk

server. Its logical grouping in the device independent layer is to make the process environ-

ment immune to changes in device dependent features like the type of disk controlled and the

type of communication medium utilized.

TfK actual fbnctionality of the device independent interface is very similar to that pro-

vided by the device dependent layer. In fact, the actual interface supports equivalent Read-

Churk(), %!,t;it,eChurk() and GetInformattion() serrices". The other services; we:= x ~ :

deemed necessary for the higher levels of TASS and, due to time constraints, were not irnple-

mented. One new function, Ping(), has been added. The purpose of the Ping() operation is to

allow client processors to determine whether the disk server is active and if the disk device is

functioning correctly.

4.1.3. Server Message Protocol

Communication between the disk server processor and its client, the cache server,

occurs via a transputer serial link. This fact implies that intercourse between the two servers

must occur using some form of communication protocol.

un order for processes on separate processors] to communicate successfully, they must
'speak the same language'. What is communicated, how it is communicated, and when it
is communicated must conform to some mutually acceptable conventions between the
[processes] involved. The conventions are referred to as a protocol [Sta88](page 10).

Defining the communication protocol for the serial link connecting the cache and disk server

processors was one of the first considerations involved in the disk server code design. It had

to be firmly established before the design could proceed. The protocol must convert the three

selected disk services into a protocol that effects interprocessor communication. The com-

munication takes place in two portions, namely the initial request and subsequent reply.

Communication between the disk server and its clients can occur via any of the transputer's

hardware links, as well as a internally allocated channel (soft link). Connecting the disk

server software to the cache server software via an internal channel allows RAM disks to be

I? Witti the exception that no client thread id. pameter is required, since that is a local phenomenon,
used to indicate what thread is accessing Ehe device dependent layer.

resident on the same transputer as the ciieni it is sewicing. The sok link connection was

included to make the software compatible with any new disk device having an address space

large enough to operate both the cache server and disk server software within the same tran-

sputer.

The request primitives contain a service operation code, which dictates what disk ser-

vice is to be invoked, and a (possibly null) set of arguments. Since all transputer link com-

munication is synchronous, with sender processes being blocked until their messages are

received, there is no need for disk server processes to acknowledge the receipt of a service

request. Table 7 shows the components involved in both the request communication and the

reply communication. The set of service operation codes is (PING, CHUNK-READ,

CHUNK-WRITE, GET-DISKJNFORMATION). A request consists of an operation code,

followed by any arguments applicable to that operation. There is only one reply primitive,

with subsequent arguments being passed in the indicated order, depending upon what service

has completed and whether that service was error free or not.

4.1 -4. Miscellaneous Considerations

The TASS disk server provides read and write operations for fixed size data chunk

transfers only. Note that a disk chunk is the only data transfer size available within the disk

serves component of TASS, hence the term chunk will be used to describe data transfers

ahroughout this paper. The choice sf chunk size is not arbitrary but can be defined at compile

time by alteration of a compiler constant. Ideally, chunk size should be optimized for the

storage device used. The optimum chunk size for our CP-3100 disks will be shown (in sec-

tion 7.3.2.2) to be 16896 bytes, the size of a single disk track. The actual size used is limited

to any integer multiple of the disk device's block size and also by the amount of memory

Table 7: Disk Server ta Cache Serves Communication Protocol

Operation: PING
Arguments: Nor&
Purpose: Allow the neighbouring processor to test if a wighbouring disk server is 'alive'.
Operaticrii: CHUNK-READ
Arguments: (i) Chunk Address
Pu,pose: Request that the disk server r e d from disk all the data stored at the indicated chunk ad-

dress.
Operation: CEUNK-WIT
Arguments: (i) Chunk Address

(ii) Chunk Data
Purpose: Request that the disk server write the provided data to the disk chunk specified by the in-

dicated chunk address.
Operation: GET-DISK-IWORMATION
Arguments: None.
Purpcse: Request for a copy of all disk specific parameters, like the total number of disk chunks,

disk chunk size, etc.

(ii) Responses

Arguments: (i) Operation Responded To
(ii) Chunk Address
(iii) Error Code
(iv) Length of Data to be Transmitted
(v) Data Cnunk or Information Block

Furpose: Inform requesting client that the indicated operation on the specified disk chunk address
has completed. Indicate any error that occurred and finally transfer any data requested
by the client.

space available for creating buffers 18.

l8 The primary benefit of the TASS disk server design, as compared to the CSA design, is that rnukiple
buffers are used within the disk server. If a chunk size is selected that is sufficiently large so as to prevent allo-
cation of more than one data buffer, then many of the benefits of the TASS disk server are lost. Considering
that the available memory on our Part12 &vice is about 52 KBytes, this is not an unreasonable concern.

4.2, bnglennentatiorm of the First Disk Serves Prototype

I will briefly describe the DSl prototype in order to provide an understanding of why

the prototype was abandoned in favour of DS2. DSl is designed as a hierarchically layered

set of modules, each of which performs one basic task. David Clark states that

"When implementing a system specified as a number of layers of abstraction, it is tempt-
ing to implement each layer as a process. However, this requires that communication
between layers be via asynchronous inter-process messages. Our experience sug-
gests that asynchronous communication between layers leads to serious performance
problems" [Cla85].

Woe unto me! I fell prey to that temptation, consequently most of the DSI modules allocated

process groups to perform the operations for that module. The tasks were as follows:

Accepting new requests from neighbour processor(s),

e Executing requests to disk.

Issuing responses to neighbour processor(s).

o Controlling buffered requests/responses.

The process groups responsible for those four operations were labelled, Receivers, Disk

Controllers, Senders and Queue Managers, respectively, The queue manager group was

required to be single threaded. All other groups were capable of being mufti-threaded. The

process group interaction within DS1 is shown in Figure 14. Initially, the queue manager

creates as many buffers as the available heap space allows. These buffers are allocated to the

free buffer queue. The incoming and outgoing queues are initialized to empty lists. The rou-

tine oxperation of DS't then proceeds as follows:

(1 j k receiver obtains a fee buffer from the queue manager.

I CSA Part.12 Hardware
t
1
I
I

1
I
I
I Receiver Process Pool

Receiver fa -
\ Sender Process Pool

L

1
I
I
1 .

Key

i SCSI Bus ---j

Services Layer

I I
Allocated to I Queue Layer

I
I

Buffers Incoming Requests
1
I
I Outping Responses
I
1
I
r Free Buffers
I 1
:-----------------------------------'-----------------------

FIFO QUCUCS isk Controller Process Pool
CP-3100 Disk Controller

SCSI Bus a
I

I
k-- Interface -

I

I Controller . + :
I

I
I + I
I

Device Dependent

Layer

Device Independent

Layer

Figure 14: Disk Server Prototype 1 Process Heirarchy

The receiver blocks on the incoming link until a request arrives. Then it reads the

request, according to the link protocol, copying any incoming data chunk into the allo-

cated buffer.

The buffer is returned to the queue manager and the receiver returns to step 1.

The queue manager places the buffer onto the incoming requests list.

A disk controller requests a buffer from the incoming requests list, and when available,

is given one.

(6) Tire request is issued to disk via the SBIC.

(7) Results from the SBIC are written into the buffer.

(8) The buffer is returned to the queue manager and the disk conaoller returns to step 5.

(9) The queue manager places the buffer onto the outgoing responses list.

(10) A sender process requests a buffer from the outgoing responses list, and when available,

is given one.

(1 1) The response is transmitted over the hardware link.

(12) T k buffer is returned to the queue manager and the sender returns to step 10.

(13) Queue manager places the buffer onto the free buffer list.

The reason for the failure of this initial prototype is, as Clark indicated, that there are

too many communication points between the queue manager and all the other processes.

Every interaction between two process groups requires a communication using a software

channel construct. Additionally, these communicatior~s often involve the exchange of multi-

ple data items, requiring multiple messages. Each message requires a context switch between

sender and receiver, followed by another context switch once the receiver has obtained the

component. This produces sufficient communication overhead to cause the DSl prototype

exhibits lower transfer rates than the D S ~ driver when operating under light load, even

though its sustained transfer rates are comparable to those shown by DS2. The reason for

this is that, under heavy load, the communication overhead for one request can occur in paral-

lei with the disk access component of other requests1'. Therefore, n disk requests will take

approximately the same time as is required to perform the n physical disk accesses. How-

ever, under light loads, the communication overhead is sequentialized with the physical disk

access. This fact may reduce the observed disk bandwidth since some disk accesses may be

delayed long enough for the sfart of target disk track to move past the redwrite head, forc-

ing an additional 17 millisecond rotation of the disk device prior to actually performing the

physical disk ar-SS. The specu!ation that lead to the design of DS2 was that removal of

these interprocess communication points would lead to enhanced performance.

43, implementation of the Disk Server 2 Prototype

The functionality of DS2 is equivalent to that provided by DSl. Primarily, device

dependencies are still isolated within low level software modules and the disk server still pro-

vides multiple buffering of disk requests. The failure of the first prototype was due to the

overhead involved in queue management and process synchronization. To avoid these prob-

ferns, DS2 was conceptualized as a vertical integration of all DSl process groups, each per-

forming a different function, into a single DS2 process group that handles all of those func-

tions. This entails that multiple identical processes execute across all layers of the server

design. The advantages of restructuring complex multi-level process designs into simpler

vertically integrated designs have been discussed by Clark [Cla85] and Atkins [Atk88].

l9 Actually, the communication overhead overlaps with two other disk accesses, since communication for
ques t IR occurs both before and after the actuai disk access for request 8. So the 'before' part of the commun-
ication overlaps with the disk access for request R-1 and the 'after' part of the communication overlaps with the
disk access for request R+I.

DS2 provides muitipie buffering by generating 2 or more disk server processes within

each disk controlIer. Figure 15 shows the threads of this process group in relation to the disk

server hardware. Each of these processes has access to the following shared data structures:

(1) Memory addresses of the serial links.

(2) Mutual exclusion semaphores.

I

CSA Part. 12 Hardware : Device Independent Layer

IWM

Allocated to

Buffers

DeViCeTuLc/ SCSI BUS

s Interface

;ewer Process Pool

Sewer u

8 ' i Device Dependent Layer
I + I

n

Key

SCSI Bus ---9

Dxa Flow 4
Control Flow --+

Layer Boundary - - - -

Figure 15: Disk Server Prototype 2 Process Hierarchy

Also, each process has exclusive access to an instance of the following unshared data

structures:

(1) Storage buffer for holding one chunk worth of data.

(2) Command block array for transfers between process and SBIC,

(3) A stack.

The use of device dependent structures, namely the serial link addresses and the com-

mand block array are hidden with the device dependent SML and DDL, respectively.

Such a disk server, operating within oar hardware environment, encounters three poten-

tially blocking (process queueing) bottlenecks which define the disk access pipeline shown

in Figure 13. First, the request is accepted, along with any accompanying arguments, over a

temporarily dedicated transputer hardware incoming link, Secondly, the disk operation is

issued to, and a response accepted from the SBIC. Thirdly, the results of the disk operation

are returned to the invoking processor via a temporarily dedicated transputer hardware outgo-

ing link. These three sub-tasks must occur without interference from any competing

processes, therefore each is treated as a critical section and mutually exclusive access to these

sections is provided through the use of semaphores.

The basic operation of each DS2 server thread is as follows:

Critical Section: Incoming Hardware Links

(1) Gains control of the incoming hardware links by entering the incoming links critical

section.

(3) Read the disk operation code and any required parameters from Iink i into local storage.

If a write operation is indicated then the data to be written to disk is BMA'd from link i

into the l o d storage buffer.

(4) Exit the incoming links critical section. freeing those links for the use of other threads.

Critical Section: SCSI Bus Interface Controller

(5) Enter the SBIC critical section, gaining control of the SBIC and by default, the disk.

(6) Issue the disk request by writing the appropriate SCSI command codes to the SBIC's

memory mapped addresses. If the operation is a write, then the chunk data is DMA'd to

the SCSI FIFO buffers.

(7) Read the results from the appropriate memory mapped SBIC registers. if disk data has

been read, then DMA it into the thread's internal storage buffer.

(8) Exit the SBIC critical section.

Critical Section: Outgoing Hardware Links

9) Enter the outgoing links critical section, gaining access to all outgoing links.

(10) DiMA the results, and any data that was read, out link i into the client processor's

address space.

(1 1) Exit the outgoing 5inks critical section.

f 12) Return to step 1.

4.4. Implementation of the RAM Disk Server Prototypes

Two RAM disk server prototypes are also implemented. Both are based on the DS2

prototype. Both are intended to run on a T800 transputer, since the T222 has too little

memory space to act as a RAM disk. Both prototypes use all of the available address space

of the T800 as a RAM disk. The memory is chopped up into numerous disk chunks, with the

size of those disk chunks defined at the time the RAM disk is compiled. The first prototype

is implemented using the strict device dependentldevice independent abstraction. However,

due to the fact that server threads need to obtain a free buffer, prior to reading disk requests,

it is impossible to implement the RAM disk device without using the bcopy() operation to

transfer data between the RAM disk and the buffers. The second prototype streamlined the

operation of the server by eliminating the need to use bcopy(), but at the expense of reduced

rnodukuity. The RAM disks are presented as a brief example of the modular design vs. per-

formance trade-off. Some performance results for these two RAM disks are presented in

Sections 7.2.4 and 7.3.2.3 indicating how much of a data transfer throughput penalty is

imposed on the system through the use of the bcopy() operation.

pTll 5. ne Cache Server

This chapter details the software design for the cache server processor which was shown

in Figure 10. As shown in Figure 1 I, the cache server processor executes the highest por-

tions of the disk support layer (DDL), the entire cache layer (CL) and file system layer

(FSL), as well as the lowest section of the client interface layer (CIL). Since the body of

code spans four distinct layers of the software hierarchy, Section 5.1 will briefly discuss the

requirements of each layer prior to actually discussing prototype design. Section 5.1.1 will

deal with the resident portion of the disk support layer, Section 5.1.2 will cover the cache

layer, Section 5.1.3 pressnts the file system layer and finally, Section 5.1.4 overviews the

server message layer (SML), which is the resident portion of the client interface layer.

As was the case for the disk server design, two cache server prototypes have been

implemented. These are referred to herein as Cache Sewer I (CS I) and Cache Server 2

(CS2). The initial prototype, CS1, has been abandoned in favour of CS2 for qualitative,

rather than quantitative reasons. In other words, the perceived failing of CS1 is in the quality

of its design, rather than the performance provided by it, which is in fact comparable to that

provided by CS2. Sections 5.2 and 5.3 provide descriptions of the design methodology used

for each prototype.

5.1. Layer Requirements

5.1.1. Disk Support Layer

The lowest three levels of the disk support layer were discussed in Chapter 4. The

higher two levels, namely the client communication layer (CCI) and the disk services layer

(DSL) are presented in this subsection. These two layers act as a relay, enabling the cache

layer to directly invoke the disk services outlined in Chapter 4, without requiring knowledge

of the underlying disk devices, the number of such devices, or even the fact that the disk con-

trollers are actually separate processors. In ;his fashion, the cut between the disk support

layer and the cache layer is the point in the TASS design where the abstraction of the disk

device(s) into an array of chunks is complete.

As mentioned in Chapter 4, the cache server's CCL and the disk server's server mes-

sage luyer (SML) are simply tools used to facilitate communication between the cache

server's DSL and the disk server's device independent layer (DIL). The CCL communicates

directly with the SML, both conformirzg to the protocol outlined in Section 4.1.3. This proto-

col takes the form of a group of four request primitives and a group of one response prirni-

tive. Cheriton and Berglund have discussed [Che84],[Ber86],[Che88] that most programmers

prefer to deal with procedure cdls rather than communication oriented requestlresponse

primitive sets. For this reason, the interface between the disk support layer (DSL) and the

cache layer (CL) is implemented as a procedure call, hiding the request/response nature of

the protocol. However, the two prototypes CS1 and CS2 handle the call quite differently.

The former using upcalls [Cla85] and the latter using a more traditional downward procedure

call interface.

Although the actual transputer serial llnks are synchronous communication mediums,

the fact that the disk server protocoI is implemented as a set of request and response primi-

tives, makes the protocol itself an asynchronous communication. This is because there are no

gumtees provided by the protocol that response &pi will match request Rqi for all i.

Therefore, each response must be matched to a particular request, or incorrect operation of

the disk support layer will result2'. It is entirely possible that after being issued to the disk

server, reqtiest Rqn may be delayed, perhaps due to a disk scheduling algorithm resident in

the disk server, and the response associated with that request will therzfore also be delayed.

This problem becomes even more discernible when a group of D disks are being joined using

disk striping. In that casz, D requests must be Issued, depending upon implementation, either

sequentially or in parallel. A resulting response must be matched not only to the initial

request, but also to the associated responses from the other disks. All of these considerations

compound the asynchronicity of the communication medium.

Essentially, the problem faced by the disk support layer is how to provide synchronous

communication primitives across .,n asynchronous communication medium or protocol.

Once a synchronous communication environment is established, then conversion from a

remote procedure call (RPC) to a synchronous communication, and vice versa, is a well

documented technique, a good example being [Che84]. To achieve synchronous communictl-

rion using the specified protocol, it was deemed necessary (by the author) to utilize two pro-

cess groups, the Requestor process group is responsible for issuing requests, as instructed by

some higher software level, and the Acceptor process group accepts all responses issued by

the disk server, and relays those responses to the next higher software layer. A very similar

technique is used by Yang and Qu [Yan92], who provide a transputer-based point to point

communication service using Sending-Threads and Receiving-Threads as part of a

Commmunication Sewer process group. The technique used in TASS to match disk server

requests with related responses differs from prototypes CS 1 to CS2, so that discussion will be

postponed to Sections 5.2 and 5.3.

*' Data or error return codes resulting from an access to address A may be matched up with a request is-
sued to address B.

51.2. Cache Layer

5,I.Z.l. Overview

The cache layer is responsible for abstracting (i) the disk services specified in Table 5

and (ii) the actual cache control mechanisms, into the interface described in Table 4. The

TASS cache itself is implemented according to the following list of caching strategies:

e The cache uses a fully associative mapping.

c The cache uses the least recently used (LRU) replacement algorithm.

e When a prefetch occurs, the corresponding data will not be locked into the cache until it is

eventually used, as has been proposed by some researchers [Smi78],[Kot91]. Holding of

prefetched data until its eventual use requires the emplacement of an erroneous prefetch

detectdm algorithm. The addition of any locks required to hold prefetched data within the

cache has been foreseen in the design, and as such could be implemented with little

difficulty. However, this would entail the addition of (i) an erroneous prefetch detector as

part of the file system layer and (ii) additional cache layer functionality to allow that detec-

tor to signal the cache regarding incorrect prefetches. The execution of such a detector

would require processor cycles (which might reduce system efficiency) and as such was

excluded in the current TASS prototypes. Rather than using a prefetch locking mechanism,

the TASS prefetch will simply be treated as an access to that data, and if the data is not

present in the cache it will be brought in, or, if the data is present, then the cache entry

holding the data will be moved to the MRU position within the cache.

The cache can implement write-one, read-many access restrictions, or it can be compile

time directed to allow write-many, read-many access, if the user so desires.

e The cache makes no distinction between the types of data cached, simply treating all data

as information stored in the array of chunks abstraction.

e The cache is a delayed write-back implementation. Write backs can be ji) delayed until

forced by the need for a free cache entry, (ii) explicitly performed on specified addresses

(therefore allowing a write-throvgh policy to be easily implemented), or (iii) can be per-

formed on the least recently used dirty address, allowing a generic write back service to be

implemented in a higher software layer (more on this in Section 5.3.3.2).

The cache maintains information on cached data regarding whether that data is valid and/or

dirty. Data within the cache that has not k e n modified need not be re-written to disk using

the blind write-back method, rather write backs need only occur on dirty data.

5.1.2.2. Memory vs CPU Cycles Trade-off

The selection of some of these strategies, particularly the fully associative mapping,

makes both processor cycle and memory usage demands on the cache server processor.

These demands are effectively overhead to the operation of the TASS storage node. Regard-

ing memory requirements, the only portion of the cache that is not overhead is thc actual

storage space allocated for cached data. All other information used to initiate and maintain a

coherent structuring of that cached data constitues memory overhead. The cached data is

stored in cache buffers. These c,che Suffers can be allocated as either an array of buffers or

a linked list of buffers. The two TASS prototypes both use an array of buffers, maintaining

these buffers in an LRU order using a separate linked list. This linked list structure requires,

for each cache buffer, storage for Irrx-neighboar m d mru-neighbow pointers, as well as

storage for the actual disk address that the data in the buffer is a copy of. Also, a bit-set is

provided for each cache buffer in order to maintain the dirty, valid and protection bits. This

overhead amounts to between 6 and 10 bytes per cache buffer (depending on size of address

bt~ufb, number of protection bits, etc.). Since the size of chunks being cached is in the 4000

to 17600 byte range (depending upon disk type and configuration), 6 to 10 bytes of overhead

per 4000 to f 70QO bytes of storage is probably not significant. In the actual TASS implemen-

taions, the 2 MByte memory of the T800 cache server, coupled with the 16896 byte chunk

size (proven to be optimal in Chapter 71, allows for a maximum of 124 cache buffers if no

memory is used for code or overhead. In actuality, only 119 buffers can usually be allocated.

Because of this, the mru and Zru-neighbour pointers need only 1 byte. The 100 MByte CP-

3100 disk, divided into 16896 byte chunks leaves a total of 6208 individual chunks, which

cm be addressed using only 2 bytes. 2 bytes are used for the bit-set, leaving a total memory

overhead per cache buffer of 6 bytedl 6896 bytes of storage, or 0.036%~'.

Most of the memory overhead comes from the fully associative cache mapping used.

The cache mapping provides a means for the cache manager to (i) determine if the requested

address A is present in the cache and (ii) determine what cache entry currently stores the data

for address A, if it is present. The implementation of this mapping is a trade-off between

memory overhead and processor cycle usage. One way to perform the mapping is to simply

search the cache buffer list for every disk access. This is very expensive in processor cycles,

especially considering that every cache miss requires a search of the entire list, in order to

&tempi% that the requested address is not held within. As the intention of TASS is to pro-

vide a higMy efficient LFS, I chose to eliminate searching of the cache list, by keeping a bit

set, with one bit for every disk chunk. Any time a chunk is brought into the cache that bit is

set, and when it is removed from the cache, that bit is cleared. This bit-set requires very little

in the way of memory (for example, our CP-3100 disks are each divided into 6208 chunks,

which makes the size of this bit set 6208/8=776 bytes). Use of this bit set eliminates a great

deal of processor overhead, at the cost of less than 1 cache buffer in memory overhead. This

bit-set structure eliminates list searching on cache misses, however, list searching still occ~:rs

on cache hits. To eliminate all list searching, an index into the cache buffer array is main-

tained for each disk chunk. As mentioned above, the optimal size for the CP-3100 disk

chunk is 16896 bytes, leaving room in the 2 MByte T800 memory for 119 cache buffers.

Each index into the cache buffer array need only be 1 byte (or as much as 2 bytes if a T800

with a larger memory is used). Therefore, the 6208 disk chunks can be indexed with a 6208

byte mapping function22. This mapping technique eliminates all list searching, streamlining

the processor usage, at the expense of between 1 and 2 cache buffers.

5.1.3. File System Layer

The file system is the highest level of the cache server's design heirarchy, since the

Cache h y e r (CL) and Sewer Message Layer (SML) are directly and the Disk Support Layer

@SL) is indirectly subservient to the File System Layer (FSL). The TASS chunk I/O FSL is

provided predominantly as a hook into which any advanced file system can be inserted,

assuming that one is designed and coded. This is because the TASS chunk interface (or file

system), described in Table 3, maps almost directly to the cache layer described in Table 4.

A few minor file system functions are required, for example, implementing the FSL

Zt This assumes that multiple disks are striped, or that interleaved or concatenated disk systems are only 1
disk Far moltip!e disk ir?&r!ea~edc~ncsrtenated systems, the size of !his index is: 6208 * t k numkr of disks.
Even in this case, no more than 2 cache buffers are lost in providing this mapping.

readlwfite chunk operations requires a simple sequence of subservient layer operations,

namely a CL lock chunk, followed by a SML transfer of the physical data (between client

processor and cache processor), finally followed by a CL release chunk operation. Addition-

ally, some code has to exist to invoke the subservie~t CL and SML in an intelligent fashion,

however, these details require very little code, so the FSL is almost t null entity, existing

more as an abstraction than as a physical code module.

Since the file system services multiple clients using multiple communication links, it

seems to be a design imperative that the cache server's file system be multi-threaded. There-

fore, the file system is split into two component layers, the lowest of which provides the file

system services described in Table 3, and the uppermost layer responsible for generating

multiple server processes, which in turn invoke the file system services on behalf of client

processes. This process group will be referred to herein as theJile servers or just the servers

for brevity. This will be elaborated upon in Section 5.3.3.1, however, knowledge of this

multi-process environment is necessary in order to understand some of the upcoming discus-

sion.

The only functionality added by the TASS FSL is the implementation of a prediction

service. This service effectively controls prefetching within the TASS system. It is true that

a prefetch operation is available as part of the TASS FSL, however, its use is limited to pre-

fetching specific disk addresses. Often it is possible to utilize an algorithm to intelligently

issue prefetch operations [Smi78],[Kot91]. This style of automated prefetching often takes

the form of a n-block look-ahead algorithm. Currently, the TASS FSL provides for

automated n-block look-ahead prefetching during read operations only. The value of n can be

specified by the client (or the ciieni em use a befauit valuej. Since sequential prefetching is a

simple dgorithm, no process group is required to implement it. However, more complex

prediction algorithms try to determine what DAB is indicated by observing recent data

accesses. This style of DAP analysis often requires a great deal of computation, therefore sh

dedicated process is usually required to perform this task. Therefme, the %ASS FSE pro-

vides the ability to invoke the prediction module as either a simple procedure call, or as an

interprocess communication (this will be discussed in Section 5.3.3.3).

5.1.4. Server Message Layer

The client intevace layer (CIL) is responsible for conveying file system services from

the FSL to TASS clients. It is important to note at this point, that the CIL is the lowest level

of a distributed file system. Hence, this is where the division occurs- between this thesis' tar-

get of providing a basic LFS (which can be used as a building block for a DFS) and actually

implementing a DFS. Because the nature of this DFS is unknown, the design of the client

side of the CIL, which is the client communication layer (CCL) cannot be firmly set. To test

TASS, we needed some form of client interface and for this reason (which will be further ela-

borated on in Chapter 6), the CCL was implemented as a simple RPC interface. The cache

server resident portion of the CIL is the server message layer (SML) which is a tool for con-

verting the request/response protocol issued by the CCL into the file system services shawn

in Table 3. This protocol is shown in Table 8 (i) and Table 8 (ii), Unlike the protocol used

in the disk server to cache server communication, all responses are not provided by a generic

response primitive. Each individual request type has a specific response associated with it.

Since the cctmunication controlled by this protocol is a RPC, this implies that the client pro-

cess that issued the request is blocked waiting for a response, and, since it knows the nature

of the request, it will know and understand the nature of the response.

Tabie 8 (ij: Cache Sewer to Client Communication Protocol

Operation: Set Links
Request Format: (i) Operation Code = SET-LINKS
Response Format: (i) TASS Chunk Size

(ii) TASS Cache Size
(iii) Number of Available Disk Chunks
(iv) Error C d e

Purpose: Allows the client processor to test if a neighbouring cache
server is 'alive'. In addition to that, the primitive allows for
the communication of relevant constants between the cache
server and the client processor, eliminating the communica-
tion expense that would be involved in implementing opera-
tions such as get-cache-size() using a RPC protocol.

Note: This procedure is not specified in the File System Operations
(Table 3). It is not really a file system operation, rather it is
necessary to initiate the communication protocol over the
link. It is also used to streamline protocol operation as well.

Operation: Read Chunk
Request Format: (i) Operation Code = READ

(ii) Chunk Address
(iii) Offset Within Chunk
(iv) Number Bytes to Transfer
(v) Predictor Argument

Response Format: (i) Error Code
(ii) Data Transfer

Purpose: This format allows the client to request that the data stored at
the indicated chunk address be copied to the client's local
memory. The read need not transfer an entire chunk, rather
partial chunk transfers are facilitated using the offset and
number of bytes parameters. A predictor argument is also
passed, enabling the client to direct the work of the predictor
algorithm (if any) discussed in Sections 5.1.2 and 5.3.3.3.

Operation: Write Chunk
Request Format: (i) Operation Code = WRITE

(ii) Chunk Address
(iii) Offset Within Chunk
(iv) Number Bytes to Transfer
(v) Write Through Flag
(vi) Data Transfer

Response Format: (i) Error Code
Purpose: Allows the client to request that the data contained in the data

transfer component be copied into the indicated chunk ad-
dress. As with the Read operation, pariial chunk transfers are
possible. In addition, the client can specify that the chunk be
i ~ ~ e d i a t e l y fluskd *A-o'igh the cache to disk.

Table 8 (ii): Cache Server to Client Communication Protocol (continued)

Operation: Prefetch Chunk
Request Format: (i) Operation Code = PREFETCH

(i i) Chunk Address
(iii) Number of Chunks

Response Format: None.
Purpose: Allow the client to request the prefetching of the indicated

chunk address. In addition, the number of chunks argument
allows for the prefetch of the specified number of sequential-
ly subsequent chunks.

Note: The fact that there is no response makes the prefetch an asyn-
chronous operation. The client will not be made aware of any
errors that occurred during the reading of a chunk until an ac-
tual Read operation for that chunk is issued.

Operation: Flush Cache
Request Format: (i) Operation Code = FLUSH

(i i) Invalidate Flag
Response Format: None.
Purpose: Indicates that all dirty chunks currently resident in the cache

are to be written to disk. Additionally, the invalidate flag al-
lows the client to request that all of the data stored in the
cache be invalidated (forcing it to be re-read from disk the
next time it is accessed).

Note: Like the Prefetch operation, Rush is an asynchronous pro-
cedure.

5.2. Implementation of the Cache Server 1 Prototype

The two cache server prototypes only differ in the implementation of the DSL and CL.

The FSL and SML implementations are not identical, but the CS 1 versions of those layers are

a sub-set of the CS2 versions. Because of this prototype being abandoned, those layers did

not undergo the complete implementation intended by the design. Therefore, this section

only discusses how the DSL and CL are implemented in the CSl prototype. The discussion

of the FSL and SML are postponed until the CS2 prototype discussion.

The initial attempts at generating a TASS cache design involved letting theJile servers

each access the cache directly. Wherever access to shared data structures, like the cache list,

valid bits, look-aside buffers, etc., was required, a critical section would be established to

monitor those accesses. Concurrent access to critical sections was prevented using the sema-

phore construction. That way any file server process operating in the cache server can share

these important structures without fear that another server is already tampering with them.

This design approach did not progress very far because the problems involved with these

semaphores, namely the potential for deadlock andor erroneous behaviour, was deemed too

great. Circular dependency issues paw911 cropped up everywhere. For example,

(1) A file server, PI wing to read disk address A, accesses the list of cache envies and

obtains mutually exclusive access to that list.

(2) PI finds the cache entry it is looking for, but the entry is currently being read from disk

by another file server 5. Clearly, PI cannot read the data yet, since it is not in the

cache yet.

(3) P, cannot go forward, since the data is not available, and it clearly cannot block,

because it still holds mutually exclusive access to the cache list, which Pa will require in

order to insert the data that PI waits for.

(4) Even if P, tries to release exclusive access to the cache list, then immediately block

waiting for a signal from PZ, it may be context switched out after releasing the cache

list, but before placing itself on the blocked list for the desired cache entry. P2 could

easily come along and insert the data into the appropriate cache entry, find no other pro-

cess waiting for the data, and as a consequence P2, would issue no wake up call to PI

who would then be blocked indefinitely.

This is just an example, but illustrates one of the many problems involved with the

impfernentation of a complex data structure that is to be shared by numerous concurrent

processes, I decided that modularizing the cache control by creating a single process, the

Cache Manager, to monitor dl of these data structures was the only reasonable alternative.

Prompted by the perceived need for 2 Cache Manager prototype, I k!! prey (as 1 had in

the first disk server prototype) to the temptation of allocating a process group to perform each

of the 'obvious' required tasks23. Eventually, this led to the process hierarchy shown in Fig-

ure 16. The Cache Manager is the central process, with all other process groups requesting

CIien t

Links

RAM

Allocated to

Cache

1
I Server Layer
I
1

I I
I
I Requestor Process Pool Acceptor Process Pools
I
I
I Requestor -x I

I I m Disk 0 Diskl Disk 2
Disk I

Links I
I ----------------------.

I
I

L I
D m Flow

Transputer / Disk Support Layer I

I Control Flow ---+
I

Hardware I I
I Layer Boundary - - - -

Figure 16: Cache Sewer Prototype 1 Process Hierarchy

" However, since the cache server code is significantly more complex than that of the disk server so it is
m c h easier to justify imposing a little communication overhead to achieve a high degree of modularity.

service from that centralized source. in the case of the File Serwers and the Requestors, this

corresponds to the normal downward flow of client requests to the disk server. However, the

asynchronous responses issued by the disk server, and accepted by the Acceptors contravenes

this downward fiow. The fact that the Acceptors 'depend on' the Cache Manager for service

is an upward controf flow.

This design uses an approach similar to that of the upcall technique presented by Clark

fCia85f. In Clark's method, the naturai flow of control for the problem at hand, is mapped to

the operation of the system's components, whether that flow of control is in a hierarchly

downward or upward fashion.

"... there are organizational and modularity reasons why this [hierarchical] downward
flow of control is appealing in a layered system. However, the natural flow of control is
not always downward. In a network driven environment, for example, most of the ac-
tions are initiated, not by the client from above, but by the network from below. The na-
tural flow of control is thus upward, not downward. Especially where such an upward
flow of control crosses a protection boundary, most systems do not permit this flow to be
implemented as a procedure call. Instead, some more cumbersome and asynchronous
mechanism must be used, such as an interprocess communications signal. Substantial
inefficiencies and complexities can result from asynchronous upward flows. In our
methodology, the system is organized so that the programmer has the choice as to wheth-
er an upward fiow is implemented by procedure calls or asynchronous signals"
[Cla85](page 17 1).

5.2.1. Requestor Process Group

The operation of the Requestor group for CSl is very simple. Each Requestor process

makes an upcall to the Cache Manager and (effectively) says "l am idle. Give me work. ".
When the C a c k Manager needs a disk access performed, it issues the disk operation to one

of the idle Requestctrs which then issues it to disk. After that, one further upcdl is made

from the Requestor to the Cache Manager in order to return the buffer within which the data

was stored. As the Requestor knows what operation is associated with the buffer, it is its

responsibility to inform the Cache Manager as to what must be done with the buffer. For a

write operation, the buffer is returned to the cache (as the data in it is still valid). For a read

operation, the buffer is returned to the free buffer list where it will eventually 5e filled with

data from disk.

Any disk joining technique can be abstracted within this model as the Requestor process

can map the disk address specified by the Cache Manager to the physical disk, and the

address within that disk, which would correspond to the joining. However, since only one

Requestor process is handling the request, a striped disk joining would have its component

requests (ose request per physical disk) serialized rather than parallelized.

5.2.2. Acceptor Process Group

Operation of the Acceptor process group is even more simple than for the Requestors.

Each Acceptor must have a buffer available in case the operation it tries to accept is a read. If

it has no buffer, it makes an upcall to the Cache Manager, which gives it a buffer from the

free buffer list (the code is constructed so that there is always a free buffer available). The

Acceptor then waits for any incoming disk server response. Once such a response is

observed, the Acceptor reads it (and any incoming data is read into the available buffer) and

makes an upcall to the Cache Manager to inform it as to the contents of that response.

As discussed with the Requestor process group, any disk joining could be implemented

using this model. However, striped disks might pose a problem since all the responses from

component disks would have to be assembled togcther into one combined response. This

would require some form of bookkeeping structure, not currently incorporated into the

mobel, in order to maintain the status of outstanding requests. The CS1 implementation was

abandoned before the addition of striping to the multiple disk model, so I am not certain as to

the problems that may have occurred in an actual striped implementation using the CS1

model.

5.2.3. File Serves Process Group

Briefly, File Servers read requests from the clients via the serial links. These requests

are then passed through the file system code which converts them into a sequence of cache

accesses. These accesses are issued to the Cache Manager and appear to the issuing File

Server to be synchronous events. For example, a File Server issuing a Write Chunk to

address A will block until it is given an exclusive lock on A within the cache. The File

Server will not notice any time spent waiting for the address to be read into the cache or for

some other File Server to finish with address A before that lock is given to the requesting

File Sewer. The File Server operation will be discussed in more detail in Section 5.3.3.1.

5.2.4. The Cache Manager

In the CSl Implementation, the Cache Manager performs the majority of the work

involved in the operation of the system. Because of that, its operation is critical to the perfor-

mance of the entire cache server. For this reason, the following rules are zealously adhered

to.

The Cache Manager can never be blocked while waiting for communication if there is

another process, dependent on the C ~ c h e Manager, that would be starved due to that block-

age. In other words, the Cache Manager cannot block while waiting for a disk access to

complete if that blocking would prevent the Cache Manager from satisfying the request of

s m e &!her prmxss.

Before entering into communication with any other process, the Cache Manager must be

guaranteed that that communication can proceed to completion without requiring the Cache

Manager to indefinitely block during the communication.

The actual implementation of the Cache Manager requires that it maintain a list of com-

munication channels, one per client process (R Requestors. A Acceptors and F File Sentem,

for a total of R+A+F channels). The Cache Manager can only block if none of these c o w

munication channels are active. Once one channel indicates an incoming communication,

that communication must be completely handled in some fashion, thus allowing the Crxcltu

Manager to return to blocking on the list of channels.

For the Requestors, three possible communication types can occur, namely the " I am

idle" message and the two buffer return message variants. The buffer return messages are

simple to process to completion, since they require the Cache Manager to accept the buffer

and place it on either the cache buffer list, or the free buffer list. The "I am idle" message is

not as simple to handle. It is entirely possible that the Cache Manager has no need for a

Requestor at this moment in time. It cannot leave the communication pending because, due

to the nature of transputer interprocess communication, acknowledging the incoming message

effectively begins the protocol for handling that message, So the communication with the

Requestor must be completed. This requires that the Cache hfunager maintains a separate

structure to keep the status of all Requestors. in other words, the Cache Manager must main-

tain a list, in some form, of all Requestors that have signalled they are idle, and who have not

been issued a request to handle since that idle message arrived.

There is no need to maintain any structure regarding the status of the Acceptor

processes. The Acceptor processes simply act as relays, passing disk server responses to the

Cache Manager (they are required since waiting on the disk server is an indefinitely long

communication block, which the Cache Manager, by the above rules, cannot do itself). What

the Cache Manager must maintain is a list of outstanding disk requests, since every incoming

response must be matched to one of those requests. So even the correct operation of the

Acceptor process group requires the maintenance of status structures within the Cache

Manager.

As for the File Sewer process group, there are many distinct communication operations

that can occur, since a request for a Read Lock, Write Lock, Write Partial Lock, Release Read

Lock, etc,, can be issued. Some of these operations are inherently blocking in nature. For

example, obtaining locks may require a File Sewer to block, since the data may not be in the

cache and a disk access must be made to fetch it or the data may already be in the cache, but

is currently locked, and the new lock violates the write-one, read-many (WORM) access cri-

terion. Some other operations are not inherently blocking, since lock release operations can

always be immediately satisfied. Because of this, the Cache Manager must accept incoming

file sewer communications in order to determine if they are satisfiable. If they are immedi-

ately satisfiable then the Cache Manager can do that and all concerned parties are happy.

However, if the request cannot be satisfied right away, then the File Sewer must be blocked

until that request can be satisfied. This requires that the Cache Manager maintain a list of all

blocked File Sewers, as well as the reason why they are blocked. Every time another opera-

tion completes (for example a disk access completes and address A is placed in the cache, or

a release lock operation is performed on address A), the Cache Manager must then check this

list of blocked File Sewers to see if their request can now be satisfied.

Furthermore, a distinction must be made as to whether a File Sewer wishes to write an

entire chunk, or just part of it. If the whole chunk is to be overwritten, then there is no need

to first read it from disk. However, if only part of a chunk is to be overwritten, then the

chunk must first be read from disk. The addition of an alternate form of write locking, in the

interests of avoiding unnecessary disk accesses, helped to complicate the software.

The pfimary reason for the perceived failure of this prototype was that during coding of

the Cache Manager process, it became all too apparent that the concevt behind the design

was unwieldy. The Cache Manager process performed the majority of work within the sys-

tem, maintaining cache integrity, issuing disk requests, processing disk responses, etc. Con-

sequently, it was responsible for maintaining not only the cache data structures, but also

status information regarding the progress of each Requestor, Acceptor, File Server and

(effectively) of each client processor's outstanding requests. The Cache Munuger software

module rapidly became a king among monsters, its size rivaling Tyrannosaurus Rex, its corn-

plexity reminiscent of Fettucine Aifreds. For this reason alone, the decision to scrap the CS 1

prototype was made, and the decision was made to proceed, hand in hand with all the

knowledge gained in the CS 1 experience, with the second cache server prototype, CS~".

5.3. Implementation of the Cashe Server 2 Prototype

The concept behind the design of CS2 is to offload some of the work performed by

CSl's Cache Manager onto the other processes in the system. In this fashion, the complexity

of the CS2 Cache Manager is reduced to more manageable levels, at the expense of slightly

more complex process structures for the Requestors, Acceptors and File Servers. Addition-

ally, the problems inherent in disk striping under the CS1 model (Section 5.2) are considered

and dealt with by the CS2 implementation. ?'he process hierarchy is shown in Figure 17.

Note that all the process groups in the CS 1 prototype are also used within the CS2 prototype,

There are two new process groups, namely the Write Back and Predictor groups. These will

be discussed ir, Sections 5.3.3.2 and 5.3.3.3, respectively. Until those sections, it will be

sufficient to simply think of the Write Back process group as being equivalent to the File

'4 This assumes that all the knowiedge gained is actually retained. If you were fuily aware of my filing
system, you would scoff at this claim.

Disk

Links

t f

r~eauestor process Pool 1 Acceptor Process Pools 1
I

File

System

Layer

Cache

Layer

Disk

Support

Layer

Figure 17: Cache Server Prototype 2 Process Hierarchy

Semer process group. It should also be sufficient to not think of the Predictor process group

at all.

The major changes in the operation of the cache server are:

r The upcall technique used for Requestor and Acceptor communication with the Cache

Manager has k e n abandoned. Rather, the Requestors and Acceprors cooperate with each

other to provide a procedure call interface that is concurrently accessible to multiple

processes. This makes for a very clean modular cut at the disk support layerlcache layer

interface.

o Rather than the Cache Manager being responsible for issuing disk accesses to the disk sup-

port layer, the File Sewer process group directly issues disk accesses to the disk support

layer, when those accesses cannot be satisfied by the cache contents.

s The Cache Manager controls a look-aside cache, rather than the look-through cache of

CS1. In other words, File Sewers simply query the Cache Manager as to whether the

required disk address A is resident in the cache. If A is resident, then the Cache Manager

will either give the File Server access to the buffer holding the data from address A, or

block the File Server if that access is not immediately satisfiable. If A is not resident, then

the Cache Manager gives the File Server a cache buffer into which the data for A can be

read (or written). Additionally, the Cache Manager tells the File Server whether the pro-

vided buffer holds a 'dirty' disk chunk B, and if it does, the File Server is responsible for

returning the data for B to the disk, prior to using the buffer for address A. Once the data

for A is copied into the buffer (either from disk, from the client, or both), the File Server

returns that buffer to the Cache Manager requesting that it place address A and its

corresponding data into the cache.

53.31. Disk Support Layer

This section describes the interaction between the Requestor and Acceptor process

groups. The disk support layer core primitives are shown in Table 5. The conversion of an

asynchronous protocol into a set of efficient remote procedure call stubs, and vice versa, was

not as easy as I had expected. The most simplistic RPC implementation would be to have

one process gain exclusive access to the disk server communication links and issue a request,

holding the comunica~ion links ufitii the associated response is obtained. This method

gains its simpiicity by sacrificing scne of the inherent paral!e!ism of the disk server access.

As discussed in Chapter 4 and shown in Figure 13, execution of the disk server can be

thought of as a pipeline. If every stage of this pipeline is not kept busy, then sub-maximd

performance will be obsenred by the clients of that disk server. In Chapter 8 it will be shown

that at least three simultaneously active requests are required to keep the TASS disk server

and CP-3100 disk device busy, when a sequential data access pattern is being issued. When a

random DAP is being issued, only two simultaneously active requests are required.

A less naive approach might be to have a process obtain mutually exclusive access to

the send link, issue its request to the disk server and then obtain mutually exclusive access to

the response link, reading its associated response when it becomes available. This assumes

that the sequence of requests will identically match the sequence of responses, which we have

already stated (in Section 5.1.1) will not be the case. Therefore, providing a device indepen-

dent disk support layer cannot utilize this approach.

The TASS approach uses the Requestor and Acceptor processes as follows:

(1) The Requestor accepts a request from one of the disk support layer's clients, noting the

client i.d. of that client25.

(2) The request is preprocessed, in order to determine which subordinate disk it must be

issued to (assuming multiple disk environment) and what address on that disk is actually

being referenced.

(3) The request is issued to the subordinate disk. In the case of striped disks, the request is

sequentially issued to all three component disks.

in the TASS system, each process is given a unique process id . code upon generation of that process.

Tfie Requestor generates and piaces an entry on the pending requests ii.rr (PRL), which

is maintained by the Requestor and Acceptor process groups. That entry contains the

process i.d. of the requesting client, the physical disk involved (in a multiple disk

environment), the type of disk operation, the physical disk address to which that opera-

tion is being issued, and the buffer into which any data transfer is to ~nade.

The Requestor returns to monitoring for new client requests.

Initially, one Acceptor process is blocked on each incoming communication link from

one of the disk servers. Once an incoming communication is observed, the Acceptor

begins by reading the first portions of the response primitive (from Table 7), namely the

operation and the disk address with which this response is associated.

These two components of the response, coupled with what disk that response comes

from, can be used to uniquely identify the corresponding entry on the PRL. If multiple

duplicate requests for an address are on the PRL, then the assumption is that the

response matches the first of those duplicate requests found. The entry is removed from

the PRL and the client i.d. and buffer are kept by the Acceptor.

Communication with the disk server completes when the Acceptor reads the error code,

as well as any incoming data into the buffer.

The Acceptor then uses the client i.d. in order to return that data to the appropriate client

process, freeing it to continue its operation.

(10) Finally, the Acceptor returns to monitoring the link from the disk server.

in this method, the Requestor operation is implemented as a purely bownwad flow of

contro!, from client process rqdest though to the issmnce of the actual disk access(esj. The

Acceptor operatior, is still an upcall, however, the fact that an upcall is involved is completely

hidden from any clients of the disk support layer. This provides a better abstraction of disk

services than is provided by the CSI prototype.

5,3,2. Cache Layer

The Cache Manager, the File Sewer and the Write Back process groups all operate

within the cache layer. The cache layer is divided into many distinct modules, however, there

are only two primary ones, namely the Cache and CacheManager modules. All the other

modules are subservient to the CacheManager module. As the name suggests, only the

Cache Manager executes within the CacheManager module. The File Servers and Write

Back processes execute the Cache module software.

5.3.2.6. The CacheManager Module

This is the central module to the cache server software. Even with the streamlining of

the Cache Manager process that took place between the CS1 and CS2 prototypes, this

module still remains quite large. However, its function is simpler, and, as a side effect, the

code is a little less unwieldy and easier to comprehend26. In trying to simplify the design of

the CS 1 Cache Manager, I observed that there are seven basic operations that are required to

completely service any cache request within the cache layer model outlined in Table 427.

'6 I have written two pieces of code in my life that I could not understand after 6 months without looking
ar it. These are the very first large program I wrote, which was in BASIC, and the CSl Cache Manager
software.

27 This does not include many of the basic functions like Chunksize and NumberOfChunks, as these do
not even directly access the Cache Manager, rather they are routed by the Cache module directly to the disk
support layer procedures of the same name. The only other procedure of note is CacheSize, which is easily im-
plemented as a procedure cati that returns the value of a variable cache-size which is in turn set by the Cache
Manager immediately after the cache is initialized. In other words, none of these procedures require communi-
cation with the Cache Manager.

These seven procedures, which are discussed in the following sections, can be used to effec-

tively execute any change to the state of the cache that might be required by any of the cache

layer primitives. In the discussion of the primitives, the word server is used to mean either a

File Server or a Write Back process.

5.3.2.1.1. Get Lock

Results:

Arguments: (i) Server i.d

(ii) Requested Address

(iii) Type of Lock Requested

(i) Obtained Address

(ii) Pointer to Buffer Holding Data

(ili) Dirty Flag

(iv) Error Code

The server requests that the Cache Manager place a lock, from the set of lock types, on

the requested address. The set of lock types is {Read,Write,None}. If the requested address

is in the cache, then the Cache Manager can grant the lock, if possible, or block the request-

ing server until the lock is possible. If the requested address is not in the cache, the Cache

Manager need only give the server a buffer and tell it to go fetch the requested address from

disk. However, if the buffer provided has valid and dirty data in it, then the server must

return that data to disk first. For this reason, the Cache Manager provides an obtained

address field which tells the server which disk address it has received. Iff the obtained address

does not match the requested address and the dirty flag is set, then a forced write back is

necessary to clear the data in the buffer. The obtained address field also inforrns the server as

to the disk address that the dirty data belongs in. Prefetch operations are simply Gei Lock

operations which use the 'None' lock type option. Note that unlike the CS1 prototype, no

alternate write lock (to deal with partial writes) need be provided since the server process can

choose to read the data from the disk prior to the access, if that is applicable.

53.2.1.2. Release Lock

Arguments: (i) Server i.d

(ii) Locked Address

(iii) Type of Lock Requested

Results: (i) Error Code

The server informs the Cache Manager that it has completed its operations on the

locked address and that the type of lock specified can be removed. This operation only

applies to Read and Write locks and is not necessary for the None lock variety.

5.3.2.1.3. Insert New Entry

Arguments: (i) Server i.d.

(ii) Address

(iii) Lock Type

(iv) Make MRU Flag

(v) IS Valid Hag,

(vi) Pointer to Data Buffer

Results: (i) Error Code

This allows the server to complete a disk access by inserting the newly read address

(and its data) into the cache. Also, since the server may still need a lock on that entry, it can

specify that by using the Lock Type argument (thus giving the server that fetched the data

first crack at using the data). Also, to allow a greater degree of control, the procedure was

also implemented with flags allowing the server to select if the entry is placed in the MKU or

LRU position of the cache, or even to indicate that the data in the buffer is not valid.

53.2$.1.4. Start Write Back

Arguments: (i) Server i.d.

(ii) Requested Address

Results: (i) Obtained Address

(ii) Pointer to Buffer Holding Data

(iii) Error Code

The server informs the Cache Manager that it wishes to write a chunk back to disk. The

server can specify the address, in which case it will either be given that address and the buffer

holding the corresponding data, or informed (via the Error Code) that the address is not dirty

or not currently in the cache. Alternatively, the server can specify an invalid address, in

which case the Cache Manager will give it the least recently used dirty address, if one is

available. This last option is used by the Write Back process group.

53.2.1.5. Finish Write Back

Arguments: (i) Server i-d.

(ii) Address

Results: (i) Error Code

This allows the server to inform the Cache Manager that the indicated address has been

successfully returned to disk and that its dirty bit can be cleared.

53.2.3.6. Stop Cache Flush

Arguments: (i) Client id.

(ii) Invalidate Flag

Results: (i) En-or Code

Allows a server to inform che Cache Manager that a cache flush has been requested.

Cache operations are to be suspended while all dirty data in the cache is cleansed by indivi-

dud StartlStsp Write Back d s . Additionally, the server can inform the Cache Manager

to invalidate all the entries within the cache, once they have been returned to disk (if they

were dirty).

5.3.2.1.7. Stop Cache Flush

Arguments: (i) Client i.d.

Results: (i) Error Code

Once one of the Start Write Back operations returns an error code indicating that there

are no dirty entries left in the cache, the server can use this procedure to inform the Cuche

Manager that the flush has completed and that normal cache operations can proceed.

53.2.2. The Cache Module

By now the modularity purists are screaming, "How can those procedures be justified

when they require a higher layer of software to provide consistent lock values and operate in

a consistent fashion, issuing start and stop operations in the correct order, etc., etc., etc.?"

How I propose to justify those primitives is by adding an additional module layered on top of

the CachManager module. This module will be part of the cache layer, but its code will be

in-line procedures executed by the clients. What the Cache module accomplishes is to pro-

vide a set of procedures that will call the CacheManager module in a consistent fashion.

Furthermore, it allows for the client processes, namely the File Server and Write Buck

processes to directly access the disk support layer, effectively eliminating the Cache

Manager's dependence on that layer.

5.33. File System Layer

As mentioned earlier, jn 5.1.3, the file system layer of TASS is effectively a null entity.

The interesting component of the file system layer is the implementation of the three resident

process groups, namely the File Servers, Write Backs and Predictor. Also of interest is how

they interact with each other and the cache layer and server message layer.

5.3.3.1. File Sewer Process Group

The file server process group is the workhorse of the TASS system. It is responsible for

(i) accepting requests from the serial links that connect TASS to its clients, (ii) converting

those requests into a sequence of file system layer procedure calls, (i i i) querying the Cache

Manager to see if the request can be satisfied by the current contents of the cache, (iv) if not

satisfiable by the cache, then the server group must execute the request to disk by initiating a

sequence of calls to the disk support layer and (v) finally, return the results of the operation to

the client via the same serial link upon which the request arrived. Qdmittedly, some of these

operations ((iii) and (iv)) are hidden from the file server process group by the cache layer

abstraction, but the fact that the File Server threads must actually do the operations makes the

importance of the group paramount.

At compile time, the number of File Server threads is selected through the use of five

constants. These are, from the Pr0cess.h header file PROCESSLSERVERS-PER-LINK,

which defines how many file server threads will be allocated to the pool for each client link

and four constants from the ConjigureLinks. h header file,

CONFIGUREEINKS-CLIENT-ON-LINK-i, where i ranges from 0 to 3. Basically, the

client on link constants are booleans, defining what links are used for communicating with

client processors and what links communicate with disk servers. Because of this, each client

has a dedicated pool of servers, rather than all clients sharing the same pool. There are both

121

advantages and disadvantages to this approach.

To exemplify a disadvantage, consider the following, A TASS storage node services

two clients. One client only issues one disk request at a time and uses no prefetching or other

services that tie up File Servers. Another client is executing using a highly predictable DAP

and wants to prefetch extensively. However, the fixed size of that client's File Server pool

limits the degree to which the client can control prefetching, even though there are idle File

Sewers sitting in the other clients pool.

The advantages to this technique are in simplicity of design and minimizing of shared

data structures. Each pool is dedicated to a single serial link, therefore the threads in that

pool don't have to worry about any other client links, therefore the code for those processes

is simpler. Additionally, there is no need to share multiple client links, hence there is no

need to implement a critical section that encompasses all client links. The design of such an

encompassing critical section, within the constraints of the Logical C and transputer com-

munication environment is not easy28. It is significantly simpler to use a single semaphore to

guarantee any thread within a pool mutually exclusive access to the one link serviced by that

pool.

5.3.3.2. Write Back Process Group

The write back process group is a compile-time optional component of the TASS sys-

tem. Its objective is to keep the cache dean without degrading system performance. The

*' Numerous methods were attempted. Either (5) they failed to correctly operate, leading to deadlock or
(ii) they provided atrocious performance due to excessive communication overhead required to circumvent the
problems that led to failure (i).

ideas prompting the inclusion of this process group are:

8 In a delayed write back cache environment, altered data for disk address A stays within the

cache until the buffer holding it is targetted for replacement. At this point, the modified

data has to be written back to disk, prior to being replaced by any new data for disk address

A'. When this occurs, the client waiting for the data from A' must wait for two disk

accesses, first the write back of A and then the read of A'. This degrades the response time

observed by the client processor.

During periods of low disk activity, it is possible to slip a few write backs in to the disk

access stream, opportunistically flushing the buffers (and possibly eliminating the need to

force a File Server to write back those buffers).

The initial plan for the TASS write back process group was to have it monitor the disk

accesses. When a lull appeared, indicated by a small list of pending requests or a fixed time

passing since the last issued disk request, a Write Back thread would be dispatched to per-

form an opportunistic write-back disk access. Like I said, that was the initial plan. During

the implementation of the TASS system, I needed to put the write back process group in

place to test its operation. I had not yet determined the method whereby opportunisitic

activity would occur. Being a bit of a hacker, I simply made the WriteBack threads operate at

a lower priority than the File Server threads. No opportunistic check was made, the rule

being any time's a good time for a rite-back, as long as no real cache accesses are

currently underway. Performance was atrocious. The Write Back threads quickly cleared the

cache, and then proceeded to use even the slightest gap in File Server requests to tie up the

Cache Manager with useless 'Anything to write back?' queries. Even with the Write Back

threads operating at low priority, the overhead imposed on the Cache Manager was sufficient

to drastically degrade performance. As you may be aware, early failures never dissuade a

good hacker. I thought, we11, if I cat prevent these stream of US~!PES q~eTi.es, then ! can get

on with testing the code for bugs. So, I simply forced each Write Back thread to sleep for a

short period of time after k ing told the cache contains no dirty entries29.

The performance obtained with the Write Buck threads using this 'sleep' period is

dramatically better than the performance obstnect when they were not using it. In fact, ns

will be discussed in Chapter 3, performance results using this method are so good that I have

itever felt the need to pr~peify hplement m opportunistic decision algorithm. Consequently,

the write back process group still operates using the 'hack' described above. One very sub-

stantial advantage to this simple hack is that it is almost without processor overhead. A little

communication overhead is imposed by the communications between the Cuehe Mattuger

and the Write Back threads, but it does not appear to affect the 110 throughput of the system

as a whole. In fact, the use of the write back process group will be shown to substantially

improve TASS performance during sustained periods of write activity.

5.3.3.3. Predictor Process Group

A 'hook' is provided into which a Predictor process group could be inserted. This hook

provides the basic communication service that would be required for the use of such a pro-

cess group. Therefore, TASS users are able to design their own prediction algorithms, and

hook them into the TASS system without worrying about communication considerations.

Exhaustive testing of this component of TASS has not been performed.

'9 The time selected was approximately the time required for three disk accesses to be issued and complet-
ed. The reason for this selection was sort of random, chosen simply because it seemed like a good period of
time. Some tests T have run have shown titat i am eit-her lij incredibiy intuitive in matters disk physicaj, or (i i)
as lucky as an Irishman at a convention of leprechauns.

Due to the simplicity of the n-block look-ahead prediction algorithm, it was not imple-

mented as part of an autonomous Predictor process, rather it is provided as an in-line code

procedure cdl. This eliminates the inter-process communication that would be required

between the File Servers and any Predictor processes. All tests performed on the TASS sys-

tem are made while using either no prediction service, or this simple in-line procedure call

variant. The interface provided by the procedure call variant is identical to that provided by

the communication stubs (or 'hook').

5.4.]RAM Cache Prototype

The CS2 prototype can be utilized as a RAM disk, or RAM cache (to differentiate it

from the disk server versions). This is a compile directed option and is selected by choosing

the RAM cache option from the list of disk joining options. The implementation is fairly

straigtforward, with the only significant difference being that the after the Cache Manager

has allocated ail of the cache buffers, it must make a call to the disk support layer to set the

number of disk chunks to the number of cache buffen allocated3'.

The SetNumberDiikChunks operation is not normally part of the disk support layer interface. Howev-
er, when the RAM Cache version is selected at compile time, this procedure is added. Additionally, the disk
support layer's ReadCirunir and 'Virri'ieCkunk procedures are replaced by do nothing procedures that simply re-
cum with a 'no error occurred' error code.

6. The Client Interface

This chapter will be refreshingly brief. The TASS client interface provides a set of RPC

stubs that allow processes operating within any processor directly connected to a TASS

storage node, to access the mass storage system provided by that TASS node. This set of

procedure calls are given in Table 3. As discussed in Section 5.1.4, the client interface, as it

exists on the client processors, is the first region of the TASS system that is part of a distri-

buted file system. Since this research is oriented to local file system design, the client inter-

face does not fit within the scope of this thesis. Regardless of that fact, it is included he^ for

reasons discussed in the upcoming paragraphs.

In Section 5.3.1 it was discussed that implementation of a simplistic RPC stub, where

the client process obtains mutually exclusive control of both the outgoing and incoming corn-

munication finks and maintains that control for the duration of the communication, sacrifices

the inherent parallelism of the environment. In spite of this, that very technique was utilized

for the client interface RPC stubs. There are three primary reasons for this decision,

Some form of client interface is necessary to test the TASS system for both correct

hnction and performance measurement. Also, other SFU transputer users require the

TASS system to support their parallel sort research testbed [Atk92]. This technique

presented the easiest path for providing a suitable interface.

The client interface, although a component of the TASS system, is not a component of

the TASS LFS. Therefore, a complex implementation is beyond the scope of this thesis.

As discussed in Chapter 5 it is practical (and maybe necessary) to use multiple

processes to implement an efficient RPC on top of an asynchronous communication pro-

tocol.

The reason that the third point is an issue stems from the requirements specified in Sec-

tion 3.2. These state

r, The object code size for linked LFS libraries (in other words the client interface Kg@

stubs) is kept minimal. Programs utilizing the disk system are not forced to allocate large

portions of their local memory, in order to access the large disk memory.

e The number of client processor cycles required to execute a single disk access is minim-

ized. Additionally, the number of context switches required due to processes blocking dur-

ing execution of the LFS library has been kept to a minimum.

Implementing a set of RPC stubs using a method similar to that used in the cache

server's disk support layer would violate both of these conditions.

In an effort to offset the penalties imposed by such a simplistic RPC implementation,

the use of client directed prefetching has been heavily stressed. The interface has been

tailored to easily provide sequential prefetching, often hiding it within the normal Read

Chunk operation. This assumes that the cache server software has been compiled using the

sequential access prediction service mentioned in Section 5.3.3.3. Because of this, the actual

interface which is shown in Table 9, provides numerous variants on the basic read and write

operations. There is no explanation of the procedures given, as the actual names are quite

long and hopefully completely descriptive of the function. Each of the tass-read() pro-

cedws is equipped with a PredictorArgument parameter which is passed to the sequential

prediction service and is used to indicate the value of n which is to be used for n-block look-

ahead prediction. The interface also allows for the client to easily choose between the

delayed write back and forced write through caching strategies. Any operation that cornmun-

icates with the cache server processor will return an error code indicating what, if any, error

occurred during the execution of the request. The predefined type TASSError (which is just

Table 8: The Procedures of the Client Interface

TASSError tass-set-links()
tass-numberchunks()

int tass-cache-size()
int
TASSError
TASSError
TASSError
TASSError
TASSError
TASSError
TASSError
TASSError
TASSError tass-write-through-partialalchunk()
TASSError tass-prefetch()
TASSError tass-prefetch-n-chunks()
TASSError tass-flush()
TASSError tass-flush-andjnvalidate()
TASSError tass-shutdown()
TASSError tass-cache-statistics()
TASSError tass-detailed-cache-statisticso
TASSError tass-disk-statisticso
TASSError tass-detailed-disk-statisticso

an unsigned integer) is used for these errors.

Basic operation of the client interface involves first issuing a tass-set-links() operation,

specifying the addresses of the in and out components of the serial link3' which connects the

client processor to the TASS storage node. This operation can be issued as often as desired

31 For ex&iple, LINKEN and LINKQGUT in Logic& Sqiaiem? C . 41! serial !i~ks In Logid !! ~ : e @-

cessed using the defined constants, LJNKiIN and LINKiOUT where i indicates which of the four serial f i n k ~ ,
from 0 to 3, is to be accessed.

(although once per link is all that is necessary), and for as many serial links as are connected

to TASS storage nodes, allowing one client processor to access as many as four TASS

storage nodes (although, barring shared memory interfaces, that would effectively cut the

client off from the rest of the world). The tass-set-links() operation returns the code for any

error that was observed, plus a TASSLink indicator. Subsequent calls to the interface use

this indicator to determine which of the connected TASS storage nodes is to be accessed.

This means that the client need not constantly specify the serial link addresses, which serves

to eliminate some of the problems that might occur if that were the case32.

To help preserve data integrity, the client can issue cache flush instructions. An addi-

tional option to the cache flush is tass-shutdown(), which firsts issues a cache flush and then

causes program execution within the TASS cache server to halt.

For performance analysis, it is necessary to monitor cache activity. For this reason,

TASS has been modified to tabulate various statistics, for example, the number of cache hits

azzd misses, the number of disk read and write accesses, etc. Statistics tabulation is a compile

directed option. In other words, if the statistics are not required for the users application, the

code and data structures required to amass those statistics are not generated within the cache

server. This helps to both optimize TASS performance as well as maximize the memory

available for the cache.

32 It is fairly easy, 1 have found, to mistype LINKOIN and put something inappropriate like LINKOOUT or
LINKIIN. It is also fairly difficult to find that sort of error, since it is the communication protocol amd not the
compiler &at objects. Run-time errors, ya' got& love 'em.

7. Device and Disk Server Performance

The primary motivation for this research (section 1.3) is to implement an efficient local

file system for use within the transputer multiprocessor. The previous chapters overviewed

the design of a LFS, discussing qualitative issues involved in the implementation of prototype

versions of this LFS. However, the efficiency of the resulting system has not k e n analyzed.

Wow much data throughput can the system provide to a network of transputers? How much

throughput is lost due to software overhead? Are the processors controlling the LFS taxed to

the point where a more elaborate file system would saturate the processing power of the sys-

tem? These are dl questions regarding the efficiency of the LFS and cannot be answered in a

qualitative fashion, rather they require a more quantitative analysis.

The quantitative analysis (or performance) of the TASS EFS can be approached in terms

of (i) sustained data transfer rates (SDTR) and (ii) system software processor use (S S P U) .

Definition: The sustained data transfer rate (SDTR) of a mass storage device is the number

of data bytes that can be transferred each second between the device and the main memory of

a processor. Furthermore, that data transfer must be sustainable over prolonged periods of

time33.

Definition: The system software processor use (SSPU) within a processor operating as a

component of a software system is the percentage of the available processor cycles consumed

in the act of executing that software system.

The analysis of these two issues shows whether the limiting factor to TASS performance is

33 It should be noted that dl SDTR results between a transputs and a device (possibly another transputer)
are determined without utilizing the transputer's on-chip RAM. Also, a prolonged period of time i s usually in-
terpreted as a smaII (integral) number of seconds.

the design of the system, or the physical hardware itself. Assuming that the bottleneck is the

hardware, the analysis indicates what degree of hardware upgrade will be possible before the

system becomes the limiting factor. If the system is the limit to performance, then the quali-

tative analysis indicates what regions of the software, and under what conditions, are the

cause of the performance degradation.

Section 7.1 discusses the techniques used to approximate the data access patterns

(DAPs) used within the performance testing. These approximation techniqes are defined

here, and used throughout this chapter and the subsequent two chapters. Section 7.2

discusses the hardware limitations which indicate the upper bounds on TASS performance.

Section 7.3 concentrates on the SDTR performance of the disk server software and compare

those results to the hardware limitations described in Section 7.2.

7.1. Approximating Data Access Patterns

Techniques are presented for producing approximations of the two predominant data

access patterns (DAPs) used in performance analysis of the TASS prototype. These patterns

are Sequential Global Irregular (SGI) and Random Overlapped (RO). In every level of

analysis that requires a particular data access pattern, I have attempted to utilize the same pat-

tern generation technique without any modifications. Where the technique is modified, a

brief overview of the modifications is provided, accompanied by a discussion regarding the

effects those modifications have upon results obtained using the data access pattern.

For all access patterns, SDTR results are determined using S generated samples, each

sample involving N read for write) disk chunk operations. In situations dispiaying negligible

varhce ir. results, S mzy be kept small, possibly as low as 1 sample per test. Tbe number of

chunks operated on, N, will usually be large, in the neighbourhood of 200 to 1000 operations.

The actual SDTR figures presented are determined by timing how long it takes to execute the

N disk chunk operations. Timing begins immediately prior to the first disk request king

issued and stops immediately after the last response from the disk server is accepted. Let this

length of time be t. The data throughput is then calculated as (N chunks * B byteskhunk) / t

seconds, giving the SDTR ir? bytesfsecond. All SDTR figures are actually given in

KBytes/second, so this result is additionally divided by 1 0 0 bytes/KByte.

7.1.1. Sequential Global Irregular

The sequential access SDTR figures for each of the TASS components is determined

using SGI data access patterns. The SGI pattern minimizes average disk seek times since

each disk access follows an access to the sequentially previous chunk. It is discussed in Sec-

tion 7.3.2.2 that the chunk interleave factor and chunk size used with all the TASS disk

servers is chosen to provide maximal data throughput for purely sequential access patterns.

Therefore, any other access patterns can only exhibit larger average seek times, providing

lower SDTR results.

Each of the N contiguous disk addresses accessed during each sample are operated on

by one of the P worker processes. A process p, 0 I p < P initiating a new operation accesses

address n+l, where n was the previous address upon which an operation was initiated.

During each sample, the nth operation issued accesses disk chunk address n+a, where 0

I n c N and a is the address of the first disk chunk accessed in this sample. In each of the S

samples, the values of a are (approximately) evenly distributed across the entire disk address

space. In other words, at the start of each sample, the first chunk iiccessed is not always

chunk 0, rather it might be chunk 2000 for the second sample, then chunk 4WO for the third

sampie, etc.

To implement the above strategy, each worker requires access to a shared resource.

This resource informs workers as to which disk address is next in global sequential order.

This shared resource is implemented as either a shared procedure or an autonomous process,

depending upon whether workers are resident on the same or separate processors, respec-

tively.

7.1.2. Random Overlapped

The use of the RO DAP shows the minimum sustained data throughput that can be

achieved using T A S S ~ ~ . This provides an indication of the lowest I/Q

TASS storage node can provide to clients within the transputer network.

There are two stages involved in the generation of an approximate

bandwidth that each

RO DAP. Firstly, a

RO DAP is supposed to emulate random access to a file, therefore some contiguous region of

the disk address space must be selected to be that 'file'. Often, the region chosen will be the

entire disk address space, however, sometimes the number of chunks N in the TASSfile (see

Section 3.2.2.2) is chosen to be somewhat less than size of the entire disk. Once the TASS

fik size is chosen, it must be randomly distributed within the disk address space by randomly

determining the first chunk (in the group of contiguous chunks)35.

'4 Assuming that the availability of requests saturates the server, forcing it to access the disk constantly.
Also, this assumes a reasonable disk access pattern, Some access patterns could maliciously choose disk
accesses that would maximize the time spent performing disk seeks and display a lower SDTR than that
displayed using the RO DAP.

" it wouid be poor scientific practice to test a random access to the same region of disk for ai l samples. It
is possible that performance would be worse when the region accessed is varied. This may not be likely, but
&em again, it is mt hard to stagger where the contiguous region begins.

Once the region of disk to use is determined, individual disk accesses to that region are

made in a random fashion. Each address to access is generated using the formula

CurrentAddress = (rand() modulo PJ) + F

where F is the first chunk address in the disk region.

The rand() function does not provide a random sequence of integers, rather each time i t

is used it will generate the same sequence of pseudo-random integers. To provide more real-

ism, every sample generated will utilize a different sequence of pseudo-random numbers by

using the srandf) seed initialization function36.

7.2. Device Performance Limitations

7.2.1. Host Interconnect

Data transfer between a Sun host and the root of a transputer network has been docu-

mented in [Atkgl]. Results given in that paper were obtained using a serial link interconnect

which was driven by a Sun resident buffered polling device driver. That paper indicates the

current I/O throughput between a transputer network and a Sun-3 or Sun-4 host is 634 or 699

KSytes/second, respectively.

" The srmdO ~nct ion is initiaiized using a new prime number each time. i don't beiieve prime numbers
are required, but I took a number theory course and I have to apply it somewhere.

7.2.2. Transputer Link Throughput

There are many active users of the Simon Fraser University transputer environment.

Since the transputer network must support the interconnections required by each user, each

serial link on each transputer is connected to a CSA Part.7 crossbar switch, allowing arbitrary

transputer interconnections to be made when each user's program is booted.

Sustained uni-directional transputer to transputer data transfers are expected to be no

higher than 1.74 MBytesfsecond [Inm89]. Those results, however, are based upon transfers

between each transputer's on chip RAM. The relatively small size of on chip RAM

prompted the addition of an external 2 MByte, 3 cycle RAM to the CSA transputer boards.

The SDTR between two transputers' external RAM is detailed in Table 10. The transfer rates

given are for transfers through direct wire connections and also through CSA Part.7 crossbar

switches.

The degradation of performance due to the crossbars is a consequence of CSA equip-

ping each crossbar link with line' driver hardware. The line drivers, intended to provide

increased noise immunity, impose a (pessimistic) 45 ns delay on each serial con~munication

[CSA89],[AMD81]. Coupling that with the crossbar delay of 1.75 bitsbyte [Inm89] (which

works out to approximately 88 ns), a combined delay of 133 ns occurs during each communi-

cation. As two signals, send and acknowledge, are required for every serial transfer, the total

delay is in the neighbourhood of 266 ns. This approximation agrees reasonably with the

Table 10: Transputer to Transputer SDTR

1 Wire I 1,666 I 600

' Connection
~ e d i u m

Sustained Data
Transfer Rate

(KB y testsec)

I I

Average Time
to Transfer 1 Byte

(nanoseconds)

Crossbar I 1,243 805

805-600=205 ns difference shown in Table I0 for one byte transfers through both wires and

crossbars.

Since we are utilizing crossbar switches within our hardware configuration, any SDTR

results involving a transputer link have an upper limit of 1,243 MBytesfsecond. Where possi-

ble, relevant performance results using wire interconnections have been included to augment

the results obtained using the crossbars.

'7.2.3. CP-3180 Fixed Disk Throughput

The CP-3100 device can transfer data no faster than one 16896 byte track per rotation of

the device. Since a rotation occurs every 16.8 ms (from Table 2), this means the absolute

best performance obtainable would be about 1 MByteIsecond. This is a very optimistic esti-

mate and the actual limit is probably much lower.

7.2.4. T8OO Based]RAM Disk Throughput

The maximum transfer rate for the RAM disk device is effectively limited by the serial

link connecting the disk device with its clients. The previous section demonstated that this

limit is 1,243 KByteslsecond through the crossbar switches, and 1,666 KByteslsecond

through interconnecting wires. The actual performance of these devices is documented in

Section 7.3.2.3.

7.2.5. Context Switch Time

The time required to execute a context switch within a T8W transputer is determined

using two processes, each incremePlirng a counier and then forcing a coiltext siiiiich io the

other process. Results from this software indicate that 7.9 million context switches can occur

136

in a 30 second period. This means that the average time for a context switch is approxi-

mately 3.8 microseconds. These results are for two processes operating within the

transputer's off-chip memory, rather than using the on-chip memory.

7.3. Disk Server

Disk server performance results given herein are for both the CSA Part.12 physical disk

device and a T800 RAM disk device. Due to the simplicity of the RAM disk device, testing

will concentrate on the physical disk device.

7.3.1. Testing Environment

Within SF'Uts transputer environment, it is impractical to determine the SDTR between

disk and main memory of the Part.12'~ T222 transputer. Connecting a 16 bit T222 as the

root node of the network would seriously inconvenience other users. Furthermore, debug-

ging of test software without the T222 as root node would seriously inconvenience myself.

Data can be relayed from T222 memory into a connected T8Ws memory faster than

that data can be read from disk. Since the transputer D M serial link interface allows com-

munication to oocur in parallel with computation, I allege that SDTR results obtained

between disk and T800 main memory accurately portray the SDTR between disk and T222

main memory. Theref~re, disk server SDTR is determined for transfers between disk and a

client T800 transputer directly connected to the T222 disk controller.

The test software utilizes all the modules within the disk server software as well as the

lowest module within the cache server software. This module, DiskLink, abstracts the link

communication protocol from Table 7 into a set procedure calls that allow for requests to be

issued and responses to be accepted. The overhead from these DiskLink procedures is

considered to be insignificant since the DiskLink code is small and contains no computation-

ally intensive regions. Two client processes operate above the DiskLink layer. One process,

the Requestor, issues disk access requests while the other process, the Acceptor, obtains disk

access responses37. Tests, which are not discussed herein, verify that one process handling

each of these tasks is sufficient to provide maximal performance. An explanation for this is

that requests are temporally spaced by at least the timi taken for the disk to rotate once,

which is 16.7 ms38. The processing time required by the disk server threads and the

RequestorlAcceptor processes is insignificant when compared to those limits. Therefore, one

process can issue disk access requests as rapidly as possible, while one process can com-

pletely handle any disk response before subsequent responses become available.

7.3.2. Test Results

Each of the following sub-sections details one particuIar aspect of disk server perfor-

mance. Both read and write access results are presented for each of these tests.

7.3.2.1. Sector Interleaving

Varying the sector interleaving of the CP-3100 has no effect on performance, since the

CP-3100 can only be configured with I block interleaving, where each block follows its

37 These two processes are not to be confused with the Requestor and Acceptor process groups discussed in
Section 5.3.1. Their function in communicating with the disk server is similar to that of the process groups, and
they use identical communication protocols, however, they do not operate in the same fashion as the process
group versions.

38 The disk can transfer data no faster than one track per rotation, since it onfy has one RW fted per platter
and only one head can be active at any given time.

immediate predecesso?g. This configuration is shown in Chapter 2, Figure 3(i). According

to the SCSI protocol [ANS86], each manufacturer is required to provide 1 block interleaving

and a default interleaving. Apparently, these two interleavings can be the same because the

CP-3 tOO device, which conforms to the SCSI standard, has been implemented in this fashion.

Because of this, there is no benefit to modifying the sector interleaving even though both the

SBlC and CP-3200 will allow you to do so,

7.32.2. Track Interleaving

Track interleaving is implemented in the device dependent layer (DDL) of the disk

server code. The degree of interleaving is controlled by a user-definable compile time con-

stant.

Tables 11 and 12 show the performance of the TASS disk server, while controlling a

CP-3100 disk device. Both the chunk size and the track interleaving are varied. Testing is

performed for both read and write accesses, each test performing 200 of those operations dur-

ing the timing samples, Disk chunk accesses are sequential, meeting the SGI data access pat-

tern requirement40. The SDTR, in KBytes/second was determined in each case. For both

read and write accesses, the highest SDTR is obtained when the chunk size is 16896 bytes

and the track interleaving is 3. These results indicate that

r, 'Fhe expectation that using chunk sizes which span one entire track provide the highest data

throughput, since any read (or write) transfers the maximum quantity of data bytes between

"P With r k exception that the first block of a track follows the last Mock

40 Act&!y. the patrtm is SGR, h~wever, wit! only om Requcsmr gtrocess, it is Jso vacuously SGI.

Table 1%: Read Access SDTR for Various Chunk In&erieavings

Table 12: Write Access SDTR for Various Chunk Interleavings

I Disk Chunk 11 Interleave Factor

each disk head seek.

s The highest data throughput is obtained with a track interleaving of 3. This is probably due

to the disk's average rotational latency being minimized with this track interleaving.

Because of these results, the performance tests presented in the remainder of this

chapter are performed with 16896 byte chunks and a chunk interleave factor of 3.

7.3.23. Sequential Access

The sequential access throughput of the TASS disk server is shown for a •˜GI data

access pattern. The fact that only one worker process is used to issue the data accesses effec-

tivef y nullifies the globaVloca1 and regularlirregular distinctions between t he various sequen-

DM%. Therefore, the SGI pzttern wed is equivzknt to my of the sequentid patterns

mentioned in Chapter 2. Ten samples of 1000 read (or write) chunk o-perations are provided

in Table 13. The average of those ten samples is also given, as well as the expected uncer-

tainty of the given average. The uncertainty figure provided is determined as half the

difference between the high and low samples. The largest variance observed is 21

KBytes/second between the high and low samples for write access. The consistency of the

read results indicates that larger samplings would not seriously alter the averages determined

from the given samples. Increased sampling for write results might serve to refine both the

average and the uncertainty.

The TASS RAM disk server results exhibited less variance than those given for the

TASS fixed disk server. In fact, every sample taken for both read and write access was ident-

ical. The results, for both RAM disk server prototypes, are given in Table 14. They indicate

that there is no loss in throughput due to software or communication overhead when utilizing

the RAM disk 2 server (without bcopy). Recall that the RAM2 disk server avoided internal

memory copying by transferring data directly from the RAM disk out the serial links. Refer-

ring back to Table 10, the maximum SDTR that can be achieved between two transputers is

1243 and 1666 KBytes/second for crossbar and wire interconnects respectively. Comparing

Table 13: Disk Serves SDTR Samples and Averages

Write 712 702 700 702 702 / 1695 701 707 691 6 9 3 7 0 1 f l l l

Operation
Read

Table 14: RAM Disk SDTR in KBytedsecond

I I Transputer I RAM disk l I RAM disk 2 1

Samples
730 731 729 729 731

Average

Operation
Read

Interconnect
Crossbar

Wire

(with bcopy)
1102
1503

(without bcopy)
1206
1672

these figures to those given in the RAM disk 2 column, indicates that the second RAM disk

prototype exhibits no throughput loss due to software or communication overhead. The

RAM disk 1 implementation, using bcopy, can achieve no more than 89% to 92% of the

maximum I/O bandwidth. The SDTR for a third 'implementation' was also determined. In

fact, this implementation used the exact same code as the RAM disk 1 version, however, the

bcopy() function was never invoked41. The use of this third implementation verifies that it is

indeed the bcopy() function that is limiting the data throughput, and that it is not the modular

design of the TASS disk server. The reason why it verifies that claim is that there was no

significant difference between the TASS disk server 2 results and those for the 'disabled'

TASS disk server 1 prototype,

This illustrates one of the many trade-offs between modularity and performance that

constantly crop up in support system software design.

73.2.4. Random Access

SDTR results are presented in Table 15 for random access of entries distributed

throughout the entire disk address space. Each sample is generated in the same fashion as for

sequential access. Ten samples of 200 operations per sample were taken. Again, the uncer-

tainty is simply the half the difference between the high and low samples. The random

access results, for both read and write operations, are very consistent, indicating that they are

accurate to a very small margin of error.

41 In other words, all processing was exactly the same as in the RAM disk 1 version, but no data was actu-
ally &ansferred between the RAM disk and the transfer buffers. No data was ever copied from client to RAM
disk or RAM disk to client.

Table 15: Wandom Access SDTW over Entire Disk Address Space

Random access SDTR results for varying length databases are also presented. The

graph in Figure 18 shows SDTR for random accesses while the size of the disk region

accessed is varied. Although the data points comprising the graph are not explicitly indi-

Average

33Ml

31311

Opera tion
Read

Write

cared, each one was determined using 1 sample of 1000 disk accesses per sample. The ran-

dom number sequence used is the same for each data point. The data points in the graph are

Samples
329 329 330 330 330
329 330 330 330 330
313 313 313 313 314
314 313 314 313 313

not evenly distributed, rather concentrations of points are generated in regions where the

graphs change dramatically.

The figure shows the performance of the TASS disk server for both read and write

accesses, The sustained throughput is shown for two cases, (i) where the inherent parallelism

of the request/response primitives are exploited and (ii) where a simplistic remote procedure

call (RPC) interface is forced onto the disk server to client communication. The comparison

between these two cases is intended to show the limitation of the RPC style interface.

Figure 18 shows that for most random read accesses using the request/response primi-

tives, performance of the TASS disk server ranges between 330 and 400 KBytes/second,

while write accesses vary between about 310 and 360 KBytes/second. Only when the size of

the disk region king accessed is very small, in the range of 50 chunks, is a significant

increase in throughput (due to lower average seek times) observed. When the region

accessed drops to nearly 1 chunk, performance increases to as high as about 550

KBytesfsecond which is as expected, approximately one half of the maximum data transfer

Figure 118: Random Access for Varying Sizes of Disk Region

rate for the CP-3100 disks32. When the RPC interface is used, it can be seen that I/O

bandwidth suffers dramatically, dropping to around 80% of the bandwidth that is provided

using the requestlresponse primtiyes.

4' The CP-3100 rotates approximately 60 times per second, therefore, 60 tracks could be read (assuming
no seek time or rotational latency) in each second. This means that 50*16896=1,0i3,760 byies could be read
per second. Clearly, if we are reading a disk region of I chunk, half of our time will be wasted waiting for the
Cisk to rotate aioiind agair;, so one half of this maximum is the best that could be hoped for.

Memory is a random access device, so I expect that there will be no difference in the

time taken to access a RAM disk sequentially or randomly. Therefore, no discussion is

presented for random access to the RAM disk servers as I expect the results would be the

same as that seen for sequential access (Table 14).

7.3.2.5. Processor Usage

The usage of disk server processor cycles is not calculated. The CSA Part.12 boards

have too little memory to allocate additional work space for a process designed to determine

free cycles. Adding such a process would reduce the disk server's available buffer space,

reducing the number of buffers allocated and thereby degrading disk server performance.

That performance drop would invalidate any obtained results regarding available processing

power. It seems safe to assume that the limited memory space of the T222 processor, as well

as the transputer serial links, are the bottlenecks to disk server performance.

7.4. Conclusions

In this chapter's preamble, a question was posed regarding what is the limiting factor to

data throughput in the TASS disk server design. The results presented in this chapter show

that the limiting factor of the TASS disk server is the physical disk device itself. This is a

highly expected result, since it is fairly common knowledge that the limiting factor in V 8

bandwidth is the physical devices, not the processor power. The RAM disk serves results in

Table 14 show that the disk server software can deliver data to clients at virtually the same

rate as the hardware links are capable of (Table 10). Therefore, since the physical disk server

softwse uses the same process structure as the RAM disk server, and its code is virtually

identical (except for the small device dependent modules that control the actual disk devices),

then the limits given for the disk server in Table 13 probably provide a fairly accurate claim

as to the performance of the actual CP-3100 disk devices.

The small memory address space of the Bart. 12's T222 transputer does provide an effec-

tive limitation on the ability of the disk server to provide additional functionality. This is

because the optimal size for the TASS chunk (with CP-3100 disks) is 16896 bytes, and to

utilize buffering techniques requires a minimum of 2 buffers, and probably 3 should be used,

to allow all three regions of the disk pipeline (see Figure 13) to operate concurrently. These

buffers require between 33792 and 50688 bytes, effectively using all of the T222's available

address space (recall from Chapter 3 that there is only about 52 KBytes of usable memory on

the Bart.12).

For random access, there is a slight improvement in SDTR for the disk server when the

region being accessed is kept small. However, this performance boon is not that significant.

From Figure 18, it can be seen that the improved rate of read access data transfers drops to

about 430 KBytesIsecond when the region sf disk being accessed reaches a span of about 50

chunks. This means that when less than 1% of the disk is being accessed, then performance

can be improved to about 130% of the SDTR that would be observed if the entire disk were

accessed. After that point, the SDTR drops almost linearly with the increase in the size of the

accessed disk region, until the region is about 113 of the total disk size of 6208 chunks, at

which point the SDTR graph levels off.

Also, it can be concluded that even one TASS disk server can provide more I/O

bandwidth to the SFU transputer network than could be provided by the only technique previ-

ously available, which was by transferring data through the host interconnect. Under sequen-

tial access, the TASS disk server can provide 730 KBytes of data each second, whereas the

host interconnect is only capable of providing the network with between 634 and 699 #Bytes

of data each second.

8. Cache Server Performance

This chapter details the performance of the TASS cache server software. Similar to the

disk server performance discussion of Chapter 7, the analysis of cache server performance is

determined according to two criterion, namely the sustained data transfer rate (SDTR) and

system s o e a r e processor use (SSPU). The UO throughput that can be provided by the Disk

Support Layer (DSL) and Cache Layer (CL) is shown (see Figure 1 I). The amount of pro-

cessor cycles consumed by these layers is also discussed. No VO throughput analysis is

made of the performance of the File Sewer Layer (FSL), as that is too integrally connected

with the client commnnication services, aad as a consequence its performance is documented

in Chapter 9, which covers performance of the TASS system as a whole. However, the CPU

usage of the FSL will be discussed in this chapter, since it does not logically belong in

Chapter 9.

8,X. Testing Environment

All tests within this chapter, unless explicitly stated otherwise, are generated using a

group of identical worker processes which drive the layer being tested. The workers are

responsible for issuing read (or write) data accesses to specific disk addresses, in a fashion

that mimics the actual activity of the File Sewer and Write Back process groups (see Section

5.3.3). The addresses to use are provided to the workers through the use of a shared address

generation procedure. The environment is shown in Figure 19. Since both the DSL and CL

provide a i j i~adti ie cdl interface to iheir cknis, ihe opiaiioii of the woikei processes is

fairly s i~p le , consisting of a proced~re cd! to thc shared address generator, fdlowed by a

procedure call to the layer being tested.

I Worker Processes

Counter u
Layer Being Tested (DSL or CL)

Figure 19: The Cache Server Test Environment

As each new Iayer of TASS software is added, the amount of processor cycles required

to execute that software will be determined. The method used will be to create a low priority

process, called t h e m couzter, which will execute whenever all other processes in the sys-

tem are blocked. This flop counter will keep track of how long it has been running by count-

ing the number of floating point operations that it can execute. Floating point operations will

be recorded in the form of flops.

Definition: A f l q will be defined, for the purposes of this paper, as one double precision ad-

dition accompanied by one double precision multiplication.

In order to provide some scope as to what a flop indicates, the temporal cost to execute one

flop has been determined. Testing consists of numerous samples, each determining the

number of flops tat can be calculated on a T800 transputer within a period of 10 seconds.

The a-maged results are as foliows:

Time Period 10 seconds

Number of Hops Executed 2,428,111

Time Required per Flop 4.11 84278 microseconds

Therefore, the T800 performs at 0.24 MFlops. Inmos states that the T800 processor operates

at 2.2 MFlops at 20 MHz [Inm89]. This disparity between Inmos' and my results arises

because theflop counter process is coded it C, so in addition to the floating p i n t operations

described, numerous accesses to main memory, to obtain data and code, are also involved in

the execution of each flop. Additionally, one branch operation is required. These additional

components are probably responsible for the high cost involved in calculating each flop.

Furthermore, memory support for all of my flop calculations is provided entirely by main

memory; no use is made of the transputer's on-chip RAM which is three times faster.

The transputer architecture has only two priority levels, high and low. Because the$op

counter must execute at low priority, in order to work correctly, there can be no other low

priority processes running within the system. The only TASS processes that normally run at

low priority are the Write Back processes (see Figure 17). Therefore, processor usage can

only be determined in an environment where there are no Write Back processes. Conse-

quently, the maximum and minimum CPU usage will be analyzed using only read access

DAPs. If we assume that processor cycle usage will be a constant for each unit of data

t r ans fed (ie: same processing requirements for each chunk transferred), then the maximum

CPU usage, in percent of available cycles, should occur for SGI access. Similarly, the

minimum CPU usage will be given for RO access. The use of read accesses instead of write

accesses is a bit of a simplification, however the 110 throughput results for both will be

shown to be reasonably close. So, in terms of processor usage, the results for read and write

access should be similar and that helps to justify the simplification.

8.2. Disk Support Layer

This section analyzes the components of the DSL that execute within the cache server

processor. The DSL is responsible for completing the abstraction of multiple disks into an

array of chunks, hiding the nature in which these disks are joined, and providing a procedure

call interface which allows multiple clients to concurrently access all of the disks. The actual

implementation of the disk support layer utilizes many modules, however, performance is

only analyzed for the hierarchically highest and lowest which are the DiskLayei- and DiskLink

modules, respectively. When the performance of the DSL is discussed, it is in fact the per-

formance of the DiskLayer module and all of its subservient modules and subservient disk

servers, that is being analyzed. The 110 throughput and CPU usage of the entire DSL is

determined by analyzing the Diskhyer module, which in turn utilizes all of the subordinate

modules. Most of this analysis is centered on the performance exhibited while driving the

DSL while it is configured under the various disk joinings. The processor cycle usage of the

lowest module, DiskLink, is given since it represents the minimum CPU requirements for

communicating with the disk server and provides a base CPU usage for comparison to the

CPU usage of the entire DSL.

8.2.1. UQ Bandwidth

8.2.1 .l. Optimal Workloads

As mentioned earlier, the VO bandwidth of the disk support layer will be analyzed for

each of the supported disk joining techniques. Each of the disk joining techniques provides

differing data throughput results, depending upon the client workload. The Sequential Global

Irregular (X I) DAP discussed in Chapters 2 and 7 portrays the optimal client workload for

striped and interleaved disk systems. The optimal client workload for concatenated disk

systems is actually the Sequential Local Disjoint Irregular (SLDI) DAP.

The SGI DAP is generated in the fashion described in Section 7.1.1. The SLDI DAP

generation is similar but involves two groups of clients sequentially accessing two indepen-

dent regions of the disk address space. This test, although seemingly contrived for a two disk

system, is actually representative of a typical SLDI workload for a TASS node. For example,

a two disk TASS storage node will support either one or two clients. In the event that two

clients each operate upon a disk region which is disjoint from that used by the other client,

then this SLDI workload is quite representative of a typical workload.

The type of DAP issued by the worker processes does not uniquely define the client

workload. Additionally, the rate at which the clients issue that DAP is an important con-

sideration. As discussed in Chapter 4, the disk is a pipeline, and each stage of that pipeline

must be kept busy at all times in order to achieve maximal performance from the disk device.

Therefore, a single client issuing a request through a procedure call interface cannot possibly

keep three pipe stages busy, since the one request will sequentially step through these stages.

Because of this, the number of active requests, hence the number of active workers must be

considerzd in the analysis of performance.

Tables 16, 17 and 18 show the performance of the DSL for the various disk joinings

during execution of a SGI DAP, SLDI DAP and a RQ DAP, respectively. Each entry in

these tables reflects only one sample. The SDTR for the sample was determined by timing

1000 read (or write) chunk operations. Because of the single sample, the error margin for

each table entry is potentially quite high. In other words, the numbers are soft, but not likely

to be wiidiy inacciiiaie. addiiional smpies (io verify yisdis) from other tests per-

formed (and not documented herein) I would estimate that the enor mxgir! is about + 2

KByteskecond for read access and 2 20 KBytesfsecond for write access. In the discussion of

this section, the term equivalent is defined as equivalent in data throughput, within these

Table 16: Disk Layer Throughput - Sequential Global Irregular DAP
(i) Read Access

1 Joining Number of Workers 1

(ii) Write Access

Joining
Technique

Concatenation

Enterleaved

Number
ofDisks

1
2
1

Number of Workers

2

I 3

1
424
423
422
372
404
424
596

s & i & - ,- 1
'- 2

2
715
689
717
842
748
701

1069

3
711
685
713

1143
1262
699

1357

4
714
690
711

1415
1594
702

1377

8
717
683
699

1252
1977
705

1371

5 ! 6 1 7

1354
1835
705

1374

713
686
703

1384
2002
702

1381

1393
2003
706

1383

715
691
710

709
679
703

(i) Read kccess

I I' I I I

Concatenation I 2 ii 374 i w i 1015 j 1458 3457 1 1457 i 1456 i 1455 1
Joining Number Number of W P X ~ ~

(ii) Write Access

1 1 2 1 3 1 4 1 5 Techniaue

I nterfeaved
, I, I I

2 11 274 500 1 630
Striped 2 11474 6801 680

ofDish

J

750
634

I I I

737
605

748
b86

748
684

749
634

(ii) Write Access

Tabie 18: DM Layer Throughput - Random Overiapped DAP
(i) Read Access

Joining I Number 11 Number of Workers 1

I

Striped f 1
2

approximate error limits. Since the worker threads issuing the DAP operate within the cache

server transputer, the I D bandwidth frondto the joined disks is not constrained by the serial

link throughput of 1225 KByteskcond presented in Table 10 (see Chapter 7).

"

Technique
Concatenation

Interleaved

Striped

From d l three tables and for all three joinings, it can be seen that as the number of

worker processes increases, the I/O bandwidth provided by the DSL appears to peak, and

then level off, when there are two active workers per disk in the joining. The three excep-

tions to this rule are

248
483

(I) in the multiple striped disk environment, every request activates all disks in the joining.

Therefore, one active worker issues as many requests to physical disk devices as would

be issued by D workers in an interleaved or concatenated environment (where D is the

329
657

329
658

of Disks
1
2
1
2
3
1
2

330
659

329
658

5
318
537
311
629
705
318
636

1
249
246
240
248
247
249
411

3
317
481

312
615
583
318
635

2
318
400
310
505
446
318
632

319
633

4
318
524
312
632
665
317
636

6
309
541
305
632
713
309
602

323
643

7
312
527
309
628
739
312
612

323
644

8
313
502
307
627
719
312
615

number of joined disks). So a totdf of two active workers is sufficient to keep di disks

busy.

(2) SGI write access for two striped disks. The low performance for two workers operating

on two striped disks is due to the fact that each Requestor issues the D requests to the D

disks sequentially, rather than in parallel (Section 5.3.1)- Because a write access

involves a data transfer as part of the request operation (Table 7), the actual communica-

tion of the request to the disk server takes longer for write operations than it does for

read operations. The non-maximal throughput for two workers, writing to two striped

disks is probably a consequence of the sequentializing of requests. Two workers issuing

read requests to two striped disks observe maximal throughput, since there is no data

transfer component to the request, therefore, there is less time required to issue all of the

requests sequentially,

(3) A SGI DAP issued within the multiple concatenated disk environment. In this case, the

SGI DAP is only ever accessing one of the physical disks, so there is no disk parallelism

and as such the results are equivalent to those for 1 concatenated disk, which means that

two workers should be sufficient to keep the disk busy.

The fact that a minimum of two active workers per disk is needed to drive the DSL at its

maximal throughput illustrates the pipeline nature of the disk system. However, it is apparent

that the time taken to access the physical disk (Figure 13, Stage (ii)), is long enough to enable

Stages (i) and (iii) to be completed sequentially (relative to each other), but in parallel to

Sfage Cii). In other words, in the time taken for request Ri to be issued to disk, the postpro-

cessing of reguest R,_, can occur and be sequentially followed by the preprocessing of

remest R ~ + ~ ~ ~ . This mems that during the time one worker is blocked awaiting completion

of a physical disk access, another worker can observe the completion of one request and issue

a new one.

There are no three disk results shown for striped or concatenated disk systems. This is

for a couple of reasons:

(1) The software used to determine the results shown in the Tables 16, 17 and 18 is con-

strained to running on the root transputer, T,. The T, tran .puter permanently allocates

one serial link (link O), for communicating with the network's Sun host (See Figure 9).

Because of this, a three disk configuration would reyire a disk to be connected to the

root transputer on each of its remaining links, 1, 2 and 3. The three disk results shown

~ C T the interleaved disk system were tl:& early in the development of TASS, and at that

time it was possible to connect, via the crossbar switches, one of the Part.12 T222 tran-

sputers to link 3 of TI. However, since then the network has been reconfigured and it is

no longer possible to use the crossbars to connect any of the T222 transputers to link 3

of T,. To make such a connection would require a physical rewiring of the network and

would probably inconvenience other transputer users. I do not consider these results to

be important enough to wanant that risk. No three disk striped or concatenated results

were obtained prior to the network reconfiguration.

43 Since both postprocessing sod preprocessing require the CPU, they cannot actually occur in parallel.
However, once Stage (ii) has completed communication with the SCSI Bus Interface Controller (SEW) chip,
then any worker operating in that stage will not need the CPU again until the disk access completes. Therefore
64 qxziion GM be compietdy pd!e!ized with t ! ppcessing SEC! ps!precessing ccqxm::ts of the
pipeline. Also, it is shown in vnm89J that the throughput of a transputer link passing data simultaneously in
both directions is not as K i as twice the throughput of the link when it is gassing data in only one direction.
Tberefoie, even the communication components of the pre and postprocessing cannot totally be parallelized.

(2) Although joinings of three disks are supported by TASS, their practical use is limited.

A three disk TASS node could have only one client, connected by the one remaining

serial link. The 1225 KBytes/second bandwidth across that link (Table 10) becomes the

limiting factor in performance. Even a two disk system operating at the maximum

throughput of 1460 KBytes/second will saturate one serial link, effectively nullifying

the bandwidth of the third disk44. For non-optimal data access patterns (ie: RO) a three

disk system may be useful. It is expected that when operating under an optimal DAP

workload, each of the disk joinings should be able to provide the same throughput in a

three disk environment as are provided by the interleaved joining.

8.2.1.2. Comparing DSL Results to Disk Server Results

As Tables 16, 17 and 18 are rather busy, I have summarized the results in Table 19.

Unlike the single sample per entry technique used in those three tables, each of the entries in

Table 19: Disk Support Layer Throughput in WBytesIsecond by Joining and Workload

Data Access
Pattern

Seciuential Global

Disioint Ine~ular f Write 11 297 1 1376 1 627 1 618 1

Irregular
Sequential Local

Operation
Read

Eve0 a serial link with a wire interconnect having a bandwidth of 1666 KBytesIsecond (Table 10) will
nearly be saturated by two disks.

W.de
Read

Single
Disk
731 .

" -
327
307

Random
Overlapped

I I

Read
Write

Three
Interleaved

Disks
2187

Two Joined Disks

1382
633

704
35 1

686
1457

574
540

Interleaved
1456

-
Concatenated

73 1
1375
748

642
597

637
59 1

Striped
1461

1965

765
714

Table 19 are averages of 10 samples, with each sample consisting of 1000 read or write

operations. Three worker processes are generated for each physical disk used in each test (ie:

'If the sample tests a two disk joining, then 6 worker processes are generated, if the test is for

a one disk joining then only 3 workers are generated). The choice of 3 workers per disk i s

prompted by the fact that a minimum of two workers per disk are required to demonstrate the

DSL's full 110 throughput, and in some cases three workers are necessary (eg: 2 striped disks

under SGI write DAP). For sequential samplings, the initial starting address is staggered

throughout the disk address space. For random samplings, the seed used to initialize the ran-

dom number generator is varied.

8.2.1.2.1. Single Disk Systems

Since all disk joinings provide equivalent performance for single disk systems, only

results for the 1 interleaved disk joining are shown in Table 19, data column I . The results in

that column show that the I/C) throughput provided by the disk support layer (DSL) control-

ling a single disk, is equivalent to the V 0 throughput shown for the disk server devices in

Chapter 7, Tables 13, 14 and 15. The only notable difference is a very slight drop in RO

write throughput from 313 KByieslsecond for the disk server, down to 307 KBytesIsecond

for the entire DSL. This difference may still be due to sample variations, however, that can

not be shown from the results given in this paper45. It can be seen that for SLDl access, the

performance of the single disk system is very comparable to RO access. This is because two

45 The margin of error is f 1 KByte/second for the disk server results and i 3 Kbytes/second for the DSL
results. rn-ese give a range of 312 b 314 KBytes/second for the disk server and 304 t_o 3!0 FCBy!es/second for
the entire DSL. The range of values for the two results do not intersect, but are very close. In fact, the 1
KByte/second margin of error for the disk server RO write access is the lowest margin of error 1 have observed
for write accesses in general.

regions of disk are being accessed sequentially and due to the single disk environment, a

large disk seek must be invoked for nearly every access. The SLDI read results may be

slightly higher than the RO read results since it is more likely that two consecutive disk

accesses are issued to sequentidly contiguous disk chunks. If enough cases occur where 2 or

more accesses are sequential, then this would have a positive effect on the I10 throughput of

the disk system. A similar explanation can be given as to why the SLDI write results are

lower than the RO write results. Since each disk request for a write access contains a data

transfer, these requests take longer to issue, and fewer pairs of sequential accesses are likely

to occur. Therefore, the actual SLDI white tends to have a large seek between every disk

access, which is not true even for the RO write, which should have numerous small seeks due

to the random pattern of accesses.

8.2.1.2.2. Multiple Disk Systems

8.2.1.2.2.1. Sequential Access

The two joined disk results in Table 19 show that there is no substantial loss in sequen-

tial V 0 bandwidth for any joining when operating mder the optimal DAP for that joining.

The disk sewer results from Chapter 7's Table 13 show that sequential read performance is

limited to a maximum of 731 KBytes/second. Therefore, two disks operating together cannot

possibly provide better read UO throughput than 2*731 KByteslsecond = 1462

KBytedsecond. The optimal DAP for concatenated disk systems is SLDI, where the con-

catenated joining provides a two disk read IIO bandwidth of 1457 KBytesIsecond which is

equivalent, within error limits, to the 1462 KByteslsecond limit. Similarly, the SGI DAP is

optimal for both interleaved and striped systems and the corresponding results are 1461 and

1455 KByteslsecond respectively, each k ing equivalent to the 1462 KBytes/second limit.

Tine three interleaved disks results of 2187 KBytes/second agree with the maximum of 3 *
73 1 KBytesIsecond = 2 193 KBytesIsecond.

The write results show a very small clipping of performance, with the concatenated,

interleaved and striped results being 1376, 1382 and 1375 KBytesIsecond, respectively (for

each joinings optimal DAP). These results are about 98.4% of the expected 2 * 701

KBytesIsecond = 1402 KBytesfsecond (from Chapter 7's Table 13). It is important to note

that the margin of error in write results is significant and these four jigures are equivulenf

within those error margins, however, since all joinings provide lower than expected results 1

assume that a very slight clipping of performance is occurring. This clipping is sufficiently

small and the error margins are so large that I have not been able to establish a reason for any

clipping, assuming that it is there at all.

8.2.1.2.2.2. Random Access

The results for random access are not as impressive. A pronounced loss of IIO

bandwidth is observed. For example, two disk servers can provide 2 * 330 KBytes/second =

660 KBytesIsecond RO read throughput (see Table 15). The performance demonstrated by

the DSI, is 574, 637 and 642 KBytesIsecond for the concatenated, interleaved and striped

joinings, respectively. The interleaved and striped joinings achieve approximately 97% of

the maximum 660 KBytesIsecond. However the concatenated results are significantly lower

at 87% of this limit. Again, the interleaved and striped results might agree within error mar-

gins, but the fact that they are slightly lower tends to convince me that a loss of bandwidth is

occurring. I cannot explain the dramatic loss of bandwidth for the concatenated disk systems,

but this loss seems to occur at all levels of TASS. For example, the RO write results also

show that the interleaved and striped joinings provide 95% of the maximum 2 * 313

XBytes/second = 626 KByteslsecond (see Table 15). However, the concatenated results are

abut 86% of the 026 RBytes/second maximum. h.ly only guess is that the random address

generator used is somehow consistently distributing more accesses to either the lower or

higher portion of the joined disk address space. This non-random distribution would have

less effect on interleaved or striped disk systems since the concentration on one half of the

disk address space would affect both disks equally. However, the effect on concatenated disk

systems would tend to concentrate accesses on one disk, underutilizing the other. I believe

that there is no reason why concatenated systems should behave worse for random access, if

in fact that access is truly random. Therefore, I believe the only solution to the problem is

the fact that a pseudo-random number generator is used. Coupling pseudo-random numbers

with the truncation nature of the transputer's integer arithmetic could be responsible for such

a consistent non-random sequence of 'random' addresses.

Three disk servers can provide 3 * 330 KBytes/second = 990 KBytes/second of read

bandwidb and 939 KBytes/second of write bandwidth (from Table 15). However, the results

for the three interleaved disks show distinctly lower UO throughput of 765 and 714

KByteslsecond for RO read and RO write, respectively. The explanation for this is a flaw in

the testing environment and requires a detailed explanation. Figure 17 shows the process

hierarchy of the CS2 prototype. There is only one pool of Requestor processes, with each

Requestor accessing any disk, depending upon the requirements of the request it is servicing.

While implementing the DSL software I ran some initial tests to determine what the best size

of the Requestor process pool was. As I expected, since issuing requests does not take that

long, these tests showed that one Requestor per disk should be more than sufficient to pro-

vide maximal I/O throughput. I believe that these low results for the .. Yee disk system illus-

&at my initid expectations and tests were incorrect, Even though there are 9 workers

issuing the DAP, there are only 3 Requestors available to relay those accesses to disk. What

f assume is happening is that a sequence of three requests to one disk, which is all too

possi3le iii a RO OA?, iie up ail three Requeston, leaving no Requestors a-a-jailabk to access

the other two disks. In fact, in a RO DAP it is not very likely that at all times one Requestor

will be issuing a request to each disk. It is far more likely that two Requestors will be vying

for the control of one disk, while one of the other disks remains idle. No size of requestor

process group could guarantee that this sort of problem did not occur, but larger sized reques-

tor process groups could offset the problem to a greater degree. Alternatively, a pool of

requestors could be dedicated to each disk, however, implementing this environment would

have been more difficult and was not attempted. For reasons mentioned earlier in Secticn

8.2.1.1, verifying these claims by running new tests on a three disk system with a larger

requestor process pool is not appropriate.

8.2.2. Processor Cycle Usage

8.2.2.1. DiskLink Module

The DiskLink module is the lowest layer of the DSL. It provides a set of request and

response procedure stubs that are used to both (i) issue actual disk service requests and (ii)

accept disk server responses. The layer hides the nature of the communication protocol used,

providing services of the RequestReadChunk, RequestWriteChunk and AcceptRespolnse

variety. The reason why this specific module is documented here is that it was used during

the performance tests shown in Chapter 7. It was not discussed within Chapter 7 since it is

actually a part of the cache server code. In my opinion, the module represents the smallest

(or very nearly so) set of primitives that can be used to intelligently converse with the disk

sewer. Theidore, iis YO thi~iighpui perfo~~ance is iniiirisicaEy phi of thc disk server px-

foomace. The throughput results for the DiskLink module zre the throughpt resu!ts for the

disk server. However, the amount of cache server processor cycles used by the DiskLink

module are not, and probabiy should not be, documented as part of the disk server peffor-

rnance analysis. Therefore, the CPU usage is documented here.

The processor power required by the DiskEink module is considered to be the minimum

needed to converse with the disk server. It is provided in addition to the analysis of the disk

layer's processor cycle usage (given in Section 8.2.2.2). The conversion from the

request/response primitives provided by DiskLink, to the procedure call abstraction provided

by the disk layer requires the use of additional process groups and data structures. The cost

of providing this abstraction will be documented by a comparison between the results of the

DiskLink and disk layer analyses.

The processor cycles required by the DiskLink module are calculated by averaging the

results of ten samples for each device and data access pattern indicated in Table 20. The SGI

read and SGI write samples use initial addresses which are distributed throughout the disk

address space. The RO samples distribute individual accesses ahroughout the entire disk

address space. Each sample performed 1000 operations, either reading or writing a chunk

each operation. The time required to execute the operations, plus the number of flops calcu-

lated during each test are provided. From those results, the time required to calculate the

flops is estimated, based on the figure of 4.1 18 microseconds per flop execution (section

Table 20: Processor Cyde Usage for DiskLink Module

Device
CP-3 100

RAM1
RAM2

Data
Access
Pattern

SGI Read
SGI Write
RO Read
RO Write

Any

Total Time
in Seconds

23.1
23.7
51.0
53.9
15.1

Number
m o p s

Calculated
5.4
5.5

12.2
12.9
3.5

Seconds Used
by DiskLink

Software
1.0
1.1
0.6
0.7
0.8
0.7 13.8 1 3.2

Percent
Overhead
4.521.6
4.8f2.1
1.3M.2
i3M. i
5.239.4
5.4M.3

6.3.5). The time required by the DiskLink software is determined using the total time and the

estimate of flop calculation time. From that result, the percentage of total time required ta

execute the DiskLink software can be determined.

The third data column, Seconds Used, shows how much processor time is required to

issue and accept the 1000 requests and responses. For all devices and all DAPs (except the

CP-3100 SGI DAPs), this time is constant at approximately 0.7 seconds, which translates to

about 700 microseconds of CPU use for each requestfresponse pair. The reason why more

time is used during a SGI DAP on the CP-3100 disks than is used for the RO DAP is not

known and is under investigation. The high margin of error in the SGI samplings makes such

an investigation quite difficult. There is no obvious reason why the SGI DAPs should require

more processing power than do the RO DAPs, since the only difference in the tests is

whether the current address is set by a call to rand() for RO BAPs, or incremented by 1 for

SGI DAPs. Neither operation should require a great amount of processing power, and in fact,

the call to rand() should be the most expensive of the two. In the rest of this chapter I make

the assumption that the SGI DAP figures given in Table 20 are too high.

The actual percentage of available processor cycles used ranges from 1.3% for RO

accesses to the CP-3100 disk server up to 5.4% for accesses to the RAM1 and RAM2 disk

servers. It is important to note that these figures are ballpark figures, since the error margin

ranges from 0.1% for the RO write results up to 2.1% for the CP-3100 SGI write results.

The reason for these high error margins is the high variance in the sampled values for the

number of MP;lops calculated. Since the number of seconds used is calculated directly from

the m o p s figures, the error margin in the flop count extends to the seconds used figures.

This might explain why the number of seconds used during the SGI DAP tests is higher than

for the other tests. If we use the more likely value of 0.8 seconds for the SGI DAP results,

instead of the 1.0 and 1.1 seconds shown in Table 20, then the percentage overhead would be

3.5% for read access and 3.4% for write access.

CPU usage is shown for both read and write accesses, contrary to what was said in Sec-

tion 8.1, in order to provide some justification for the claim made in that section that the CPU

usage for SCI read will be equivalent to that for SGI write and that RO read usage will be

similar to RO write. No further CPU usage results for write access will be given in upcom-

ing sections.

8.2.2.2. DiskLayer Module

Table 21 shows the processor cycle usage for the disk support layer. This table is bro-

ken down into four portions, namely (i) one disk, (ii) two concatenated disks, (iii) two inter-

leaved disks and (iv) two striped disks. This table has few surprises since in all cases the per-

centage overhead for the DSL is higher than for the DiskLink module (see Table 20). There

are no substantial increases in the CPU usage, which is expected since the DSL was imple-

mented without the use of busy waiting or any processor intensive operations. The fact that

the total time, number of flops and seconds used results given for striped disks are approxi-

mately twice as large as the corresponding results for interleaved and concatenated disks is

not an unexpected result. Recall that each chunk access in the two striped disks environment

requires communication with both disk servers whereas each access in the interleaved or con-

catenated environments requires communication with only one disk server. Therefore, the

greater CPU usage in the two striped disk environment is simply indicative of the fact that

twice as many disk requests are prepared and twice as many disk responses are accepted than

would be prepared and accepted in the other joinings. This is verified since the percentage

overhead for striped disks is nearly equivalent to that of the other joinings.

(ii) Two Concatenated Disks

Table 21: Processor Cycle Usage for the Disk Support Layer
(i) One Disk - Any Joining

Device
CP-3 100

RAM2

CP-3 100 I SLDI Read 11 16.0 I 3.7 I 1 .O I 6.4kO.3
Device

I RO Read If 29.0 1 6.8 1 1.3 I 4.2f0.1

Data
Access
Pattern

SGI Read
RO Read

Any

(iii) Two Interleaved Disks

Data
Access
Pattern

Total Time
in Seconds

23.4
51.7
14.1

(iv) Two Striped Disks

Total Time
in Seconds

Device
CP-3 100

RAM2

Number
m o p s

Calculated
5.4

12.2
1.6

Number
MFlops

Calculated

Data
Access
Pattern

SGI Read
RO Read

Any

Device

83. Cache Layer

Seconds Used
by DiskLink

Software
1.1
1.6
1 .O

At this Ievel of the TASS analysis, I have decided to not include results for concatenated

disk systems, 1 believe that consistenrly showing SGi DAF resuits fix striped and interleaved

disk system, ar; we!! as SLDI ifPiP results for the c~ncztenated system is cmfwing to the

reader and leads to a poor flow within the discussion. Presenting SGI DAP results for thc

concatenated system is not interesting, since it represents a rion-maximal, non-minimal DAP

Percent
Overhead
4.6f 1.8
3.1M.1
7.5M. 1

Seconds Used
by DiskLink

Software

Total Time
in Seconds

16.5
26.0
7.4

Data
Access
Pattern

t

Percent
Overhead

7.5
12.7
3.2

CP-3 100

RAM2

Number
MFlops

Calculated
3.7
6.0
1.6

Total Time
in Seconds

SGI Read
RO Read

Any

1.8
2.2
1.6

Seconds Used
by DiskLink

Software
1 .O
1.2
0.9

Number
MFlops

Calculated
32.5
54.4
14.8

5.550.2
4.039.1

10.9st0.3

Percent
Overhead

6.M.3
4.5f 0.1

1 1.939.7

Seconds Used
by DiskLink

Software
Percent

Overhead

for that a~cf?ifat?trf:~ Smme tests which ! have made (but do not im!ude in this paper) show

that the two concatenated disk system performs equivalently to the striped and interleaved

systems, when each is operating under the optimal DAP for that joining. The only difference

is that the cunsistently poor RO DAP performance of the concatenated systems, which was

discussed in Section 8.2.1.1, still manifests itself at this level of the analysis.

Additionally, results for the RAM disks will also be discontinued. At this level of the

analysis, the size of the cache, at about 1 I? chunks (for the interleaved joining) is nearly the

size of the RAM disk at about 123 chunks. Therefore, using a RO DAP would result in a

high percentage of cache hits, consequently invalidating the results. Using a SGI DAP would

require the workers to wrap around from the last disk chunk back to the first disk chunk.

This would probably produce accurate results if the LRU replacement managed to flush out

each chunk just before it was required again. Due to the internal workings of the TASS sys-

tem, this could not be completely guaranteed for a single RAM disk system, so it was not

attempted.

83.f. U0 Bandwidth

83.I.f. Optimal Workload

When issuing a read oriented SCI DAP, there is no need to consider the effect of the

actual cache on SDTR results. Regardless of whether the cache is empty or full (assuming no

cache hits and no dirty entries), then each address request in the SGI DAP will miss in the

cache and a free dean buffer will be available for reading the data into. So, using an empty

is ffK same as using a full cache. For write oriented DAPs, we cannot start with an

empty cache, since we are trying to show sustained data transfer rates. Therefore, we don't

want the first C chunks (where C is the size of the cache) to be written to the cache without

my corresponding disk access. Under a sustained SGi write, the cacne would always be

filled with dirty chunks, so we must pre-fill the cache with dirty chunks, prior to beginning

the timing tests. Additionally, the dirty chunks selected for pre-fill must be chosen so that no

write access will hit within the cache on one of those pre-filled addresses.

The performance of TASS for the interleaved and striped joinings, while the cache layer

is being driven by a varying number of worker processes, is shown in Table 22. As was seen

in itre disk support hyer results, there is a minimum requirement or" two active workers, per

component disk, to achieve maximal throughput for the interleaved joining. For the striped

joining, two active workers can drive the system at its maximal throughput during rcad

access. However, for write access to a two striped disk environment, three workers are still

required. This was discussed in Section 8.2.1.1. It is important to note that the addition of

Table 22: Cache Layer Throughput - Sequential Global Irregular DAY
(i) Read Access

Striped 1 423 730 730 730 730 730 730 730
2 707 1453 1455 1452 1453 1458 1454 1450

(ii) Write Access

the new software layers (the DSL and CL) increase the length of the pre-processing and

post-processing stages of the disk access pipeline. Although, only SGI write to two striped

disks is currently affected, this increase in pipe length cannot continue without ramifications.

This problem is only just starting to show, since it only affects one joining and one type of

access. The addition of the the DSL, using the Requestor and Acceptor process groups, adds

an internal software-based communication to the length of the pre-processing and post-

processing components of the disk access pipeline. These communications are necessary to

relay worker requests to the Requestor which passes them to disk and also to relay responses

from disk to the worker, via the Acceptors. Recall that the reason two workers are sufficient

to drive the disk server and the DSL is that one worker (and other processes working for it)

can completely execute both the post-processing and pre-processing pipe segments (on two

separate requests) during the same time another worker is in the disk access segment (see

Chapter 4). From the results in Section 8.2.1 .I, the increase in pipe length due to the DSL is

not enough to prevent one worker from executing the two pipe segments. However, adding

the cache layer requires additional pre-processing and post-processing communication with

the CacheManager. The reason why SGI wrii: access to two striped disks is the first DAP to

be affected is that (i) SGI access has the shortest disk access component of the pipeline, (ii)

write access transfers data between cache server and disk server in the pre-processing seg-

ment of the pipe and (iii) the fact that the striped disk implementation sequentializes the issu-

ing of requests to the component disks (see Section 5.3.1) means that the pre-processing pipe

segment is significantly longer for that particular DAP than it would be for any other DAP.

Read results are not affected since the data transfers from the disk server to the cache server

are more psdlelized due to the use of multiple acceptor pools (one pool per link) which

atlow dl data transfers to occur simultaneousfy (depending upon how good the transputers

DMA hardware is).

-1ue3 y ru%ls IOU s! adrd aql jo sluxu%as %u!ssam~d-~sod

put? 2?11!ssa30.rd-cta~d aqj JO yflual aq) pas~anu! st?q ~ a X q ay3w a q imp 1323 aqi ' a~oja~ar i~ ,

'dya 13s ayi .zapun ssa:,:,:! rn 01 uosp~dwo3 Xq 'a%nq &an sy aupdld ayl jo u o p d ssame

qstp aq) ala@io3 01 ~sanbar e JOJ uav) awy ayt 'dva OX ay) q -y$pp%pm?q 08 @U~~XF!IZI

s)! 1e ~ U ~ M O X J wa~sXs aql daay oi y%noua a n ys!p ad slayom a n p o ~ i 'u~e3v .salpt a s q

u! sgnsa %u!sydns ou a 2 aaqL 'EZ z q q ~ ? ~ UI u ~ r r q s d y a gtf 3 9 343; sqnsa $ r x

66S
GI•’

S65
i i • ’

619
Li•’

98s

109
80s

66s
LPZ

819
LIE

ZPZ •’09 I Z

Z
T
L

819
ti•’ @ws

019 f 609

819
8iE

209 LLS f EL9

Table 24: Cache Layer Throughput in KBytedsecond by Joining and Workload

Data Access
Pattern

1 Seauential GIobal

8.3.1.2. Sequential Access

Operation
Read

1 f

Overf apped

Table 24 shows a noticeable drop in SDTR for SGI access patterns. For example, the

584
330

Irregular
Random

Write 11 317 1 616 1 610

DSL provides SGI read access from a single disk at 730 KByteslsecond, however the cache

Single
Disk
721

Write
Read

layer supports only 98.8% of that figure, namely 721 KBytesIsecond. Single disk SGI write

access has dropped to 584 KByteslsecond, which is 83% of the DSL's 704 KBytesIsecond.

I

U 0 bandwidth reduction also occurs in the two disk environment, with read access dropping

to 1445 KBytes/second (both joinings) as compared to the DSL's figures of 1456 and 1461

Two Joined Disks

1124
650

KBytesIsecond for interleaved and striped disks respectively. This constitutes a 1% reduc-

tion in SDTR. The cache layer's two disk write access SDTR is 82% and 84% of the DSL's

Interleaved
1445

1162
656

figures, for interleaved and striped systems.

Striped
1445

The reason for this significant loss in SDTR is intrinsically involved with the operation

of the cache server software. Most of the processes in the TASS cache server are event

driven, where the processes block on some communication channel and await input46. The

File Servers and Acceptors are driven by events that are signalled through the hardware serial

'' The W i f e Back process goup is not event driven. Rather it decides when to act and effectively causes
an event for the Cache Manager.

links. In addition, since the File Sewer and Acceptor process groups are divided into pools,

each allocated to a particular hardware link, the individual processes know where their next

communication will come from (namely the hardware link they are dedicated to). The

CacheManager and Requestor processes are also event driven, but their events are signalled

by the File Sewers and Write Back process groups, via internal communication channels,

often called soft links. Neither the CacheManager or Requestors know, in advance, what

other process will signal them, in indication of an event to be serviced. Therefore, they must

be able to block on a large number of soft links, returning to the active state only when one of

those links becomes active. Fortunately, Logical Systems C provides the ProcAltList() func-

tion that performs just this task. Therefore, extensive use was made of ProcAltList() in the

TASS cache server design. Unfortunately, ProcAltListO has a few drawbacks. The order of

soft links within the list given to ProcAltListf) defines an implicit prioritization of requests.

If two soft links in the list go active before the process calling ProcAltList() can awake, then

the soft link appearing earliest in the list will always be serviced first. This means that the

client thread (either File Server or Write Back) that is earliest in the list will has a higher

effective priority than all the other threads in those groups.

Although the DSL interface is part of the problem, the problem did not noticeably affect

the DSL results for the following reason. Each worker using the DSL blocks until its out-

standing disk access completes and the response from that disk access is returned to the

worker. Immediately after that the worker issues a new request with littfe to no lag due to

computation (the worker process is a very simple one involving a loop containing the two

operations GetAddress and Readchunk). Because of this, the actual requests issued to the

DSL are temporally spaced by about the time needed for a single disk access. Therefore,

there is plenty of time for a Requestor to pick up that request and issue it to disk before any

new requests can be issued by a different worker. This leaves little chance that the

ProcAltIist() prioritization will affect thejirst-come, first-served (FCFS) request order. The

worker processes in the cache layer tests do a great deal more work (considering the com-

munication with the CachtManager et d.) and so the lag between obtaining the DSL

response and issuing a new DSL request is larger. Therefore, when imluding the cache layer

in the software, there is a greater chance that the DSL will aid in the shuffling of the SGI

requests.

Now back to the question as to why the SDTR for the write and read accesses has

dropped within the cache layer. What is shown by the results is that the implicit prioritiza-

tion of ProcAltList() is shuffling the first-come, first-served ordering of worker requests, both

at the junction between the CacheMamger and at the Requestors, so that by the time the

requests arc issued to disk they are no longer in the optimal sequential ordering. Since no

disk scheduler exists in the TASS system (see Section 4.1. I), this problem cannot be rectified

and sub-maximal IIO bandwidth is the consequence. The reason why the loss in throughput

is more pronounced for write access, dropping 18% from 1375 to 1124 KBytesIsecond as

opposed to the read access loss of 1% from '1456 to 1445 KBytesIsecond (for interleaved

joining), is that the worker threads are issuing the read requests to the addresses indicated by

the SGI DAP, and as discussed earlier, there is a slight temporal spacing between individual

requests, due to the physical disk access, Therefore, the read accesses do not get shuffled that

mdify. However, during write accesses, the actual requests issued to disk are in fact write

backs of earlier write requests and are selected by the CacheManager based on the LRU ord-

ering of the cache list itself. Since writing an actual request to cache does not take that long,

and is first preceeded by an entire disk access including post-processing, there is a much

larger chance that the order in which the write requests eventually get executed to the cache

will not be the order indicated by the SGI DAP. Then, when those entries are returned to

disk, as a delayed write-back, that shuffling hidden within the LRU order will degrade I/O

throughput.

8.3.13. Random Access

The I/O bandwidth through the cache layer, when a RO DAP is being executed, is

equivalent to the performance provided by the DSL, as shown in Table 19. In fact, a very

slight increase in throughput is shown for every configuration and every joining. For exam-

ple, the two interleaved disk results for the cache layer show a bandwidth of 650

KBytes/second for read access. The results for the same configuration through the DSL is

only 642 KBytesIsecond, This is an increase in bandwidth of about 1%. However, the CL

and DSL throughput figures are equivalent within the error margins of the samples. Due to

the high error margins in the samples (around + 15 KBytes/second), I am hesistant to claim

that the 1% increase in throughput is an indication that some disk accesses are hitting within

the cache. However, considering that two interleaved disks have 1241 6 chunks and the size

of the cache is 119 chunks, then each disk access has about a 1 in 100 chance of being a hit.

So on 1000 disk accesses we should score abu t 10 hits, which should give about a 1%

improvement in throughput.

It should atso be noted that the probiem of shuffling within the disk request order does

not affect the RO DAP, since there is no way to randomize a random ordering.

83.2. Processor Cycle Usage

The CPU usage figures for the cache layer are shown in Table 25. The results show a
. -

szgmficmt ticrease in CPU s;szge, over :he corizsponbiag DSL figriies, of between 4% and

6% for SG-I DA_P access. RO _r~,su!ts dsc show about a 3% increase in CPU use, except

for the two interleaved disk joining which seems to have dropped slightly. I don't believe

that the CPU usage has gone down in this case, rather it is probably an erroneous result. As I

Device
CP-3 100 F

Table 25: fiwessor Cycle Usage for the Cache Layer
(i) One Disk - Any Joining

Device
CP-3 100

(ii) Two Interleaved Disks

RO Read 11 26.1 1 6.1 1 1.1 1 42M.1 1

Total Time
in Seconds

23.6
51.0

Data
Access
Pattern

SGI Read
RO Read

Pattern
SGI Read

Access Data

Data
Access

I I RO Read

Number
m o p s

Calculated
5.2

11.6

1 Number
Total Time j MFlops

Seconds Used
by DiskLink

in Seconds
12.2

(iii) Two Striped Disks

Percent

Number Seconds Used
Total Time MFlops by DiskLink Percent

Seconds Used
by DiskLink

Software
2.1
3.2

Calculated
2.6

]I in Seconds (Calculated Software j Overhead
fl 23.6 1 5.1 2.7 1 1 1.4fO.7

Percent
Overhead
9.M.l
6.2fO. 1

have tried to stress, these CPU usage results are very soft and should be taken with a grain of

sal t4?

Software
1.2

8.4. Server and File System Layers

Overhead
10.2f0.6

The I/O bandwidth performance of these two layers will be documented in Chapter 9 as

part of the TASS storage node performance analysis. The operation of these layers is too

inter-related with the client communication to provide a bandwidth analysis from 'inside' the

'' fn facl, I am convinced that the actual margin of error for these CPU usage results is probably higher
than the ones I have listed in rhe tables. However, it has been a long time since I used complex statistical
oriented margin of error calculations and because of that I have used more simplistic methods that probably do
ROC capture t h variance in iigttres as accurateiy.

cache server processor. However, the processor cycle usage is documented in this section,

since it logically belongs in the cache server analysis.

8.4.1. Processor Cycle Usage

The processor cycle usage for the server and file system layers is obtained using a dif-

ferent technique than was described in Section 8.1. Here external client processors are used

to issue the DAP. The final results from the flop counter are passed to one of these clients

and printed by that client. The total time required to execute the DAP was determined on one

of the client processors. Because of the fact that the two vital pieces of information, namely

the total time and the flop count, were determined on separate processors leads me to believe

that the error margin of these samples should be much higher than what is indicated in 'Table

26, As expected, the processor cycle usage figures for the server and file system layers,

shown in Table 26, are either equivalent or slightly higher than the corresponding results for

the cache layer. The only exception being RO read access to the two striped disk

configuration. As stated earlier, I believe that either this result is a little too low, or the

corresponding striped disks RO result from the cache layer is a little too high.

8.5. Conclusions

The disk support layer component of :he cache server software effectively relays data

between the subservient disk server(s) and the supervisory cache layer. The layer hides the

request/response nature of the disk serverfcache server communication protocol, abstracting it

into a more programmer friendly procedure call interface, No appreciable loss in I/O

bandwidth occurs due to the addition of this software layer. The results for two striimd disk

SCI write access hint that the 'length' of the disk access pipeline of Figure 13 is increasing,

since the number of active requests required to achieve maximal throughput increases from 2

Table 26: Processor Cyde Usage for the File System and Server Layers
(i) One Disk - Any Joining

(ii) Two Interleaved Disks

Device
CP-3100

(iii) Two Striped Disks

1 1 RO Read 11 53.4 1 12.3 1 2.9

Total Time
in Seconds

23.4
51.2

Data
Access
Pattern

SGI Read
RO Read

Percent
Overhead
15.Of0.1
4.150.1

Data (Access
Device

CP-3 100

Percent
Overhead

5.439.1

r

Device
CP-3 100

to 3 within the DSL. However, the growth in the pipe length does not affect the VO

bandwidth for any other DAPs or disk join techniques. It is likely that the problem (which

Number
MFlops

Calculated
5.1

11.9

Total Time
in Seconds

14.9
46.3

Data
Access
Pattern

SGI Read
RO Read

Total Time
Patiern

SGI Read

affects two striped disk SGI write) is due to the sequential way in which component disk

requests are issued to the subordinate disk servers in the striped joining4' This problem could

be rectified if a technique, with low communication and computation requirements, could be

Seconds Used
by DiskLink

Software
2.4
2.1

Number
MFlops

Calculated
3.1

10.8

Number
MFlops

in Seconds
28.5

encoded to allow parallelization of the individual disk request communications within the

striped environment.

Percent
Overhead
10.3M.1
.4.0-10. 1

Seconds Used
by DiskLink

Software
2.2
1.9

Seconds Used
by DiskLink

In other words, each disk access issued to the DSL will require a disk access being issued to each of the
component disks in a striped disk joining. In the current TASS implementation, these component requests are
issued sequentially, rather than in paralkl,

Calculated
6.1

Software
3.2

All t h e joining techniques, c~ncaknaiiiig, interleaving a id s i~ j i~ng , provide equivalent

YO bandwidth regardless of the number of subservient disks. This assumes that an optiptirnal

DAP, for that configuration, is being issued. The only exception is two concatenated disks,

when operating under a RO DAP. In this case, I/O bandwidth is significantly lower, but

since there is no obvious reason for this I believe it to be an unlucky side-effect of the

pseudo-random number sequence used.

The VO bandwidth of the TASS system s*ms to degrade with the introduction of the

cache layer. This loss of throughput is localized to the SGI DAPs and is due to scrambling of

the disk request sequence. This randomizing of the SGI sequence is caused by the implicit

prioritization imposed by the ProcAltList() construct of the Logical C compiler. Throughput

degrades because any change in the optimal sequential request sequence effectively increases

the average disk seek time for the entire DAP, which increases the average time required to

execute each request, therefore reducing VO bandwidth.

Even though additional inter-process communications are used to coordinate the activi-

ties of the File Server threads and the Cache Manager thread, the additional time required to

perform this communication does not yet seem to be seriously affecting the performance of

the TASS system. However, as for the DSL, the requirement for three active requests (rather

than two) in order to obtain maximal write bandwidth for two striped disks is still apparent in

the results given in Table 22.

There is some indication that the cache layer has a positive effect on 110 bandwidth

under a RO DAP. RO throughput at the cache layer appears to have increased by about I O/o

over the DSL's RO bandwidth. However, the large margin of error in the results prevents

verification of this fact. Considering that the size of the cache is I % of the entire disk

address space in a two disk joining and 2% of the disk address space for a one disk joining,

the expected increase in bandwidth should be about I % or 2%.

When CP-3100 physicd disks provide the system's data store, the DSL uses no more

than 7% of the T80 cache server's available processing power. If higher bandwidth disks

are used, the results obtained using RAM disk servers, indicate that the CPU utilization will

increase to an upper limit of about 12% of the available processing power.

The TASS cache server software, as an entire unit, utilizes a fairly small portion of the

T800's available processing power. The largest use of CPU cycles is about 15% of the avail-

able processing power and that occurs with two interleaved disks, operating under a SGI

DAP (see Table 26). This leaves, in the worst case, about 85% of the available processing

power free for execution of more complex code segments, such as file systems, write back

opportunity determination, access pattern predictions, etc. This allows ample opportunity for

enhancement of the existing TASS system with little worry regarding loss of performance

due to overworking the cache server processor. Each new primary level of the TASS cache

server software uses between 1% and 5% of the available processing power, depending upon

the number of subservient disks and nature of the DAP. As expected, the CPU use analysis

of the entire cache server software (Table 26), shows that the two striped disk environment

requires less processing power than does the two interleaved disk envir~nrnent~~ since each

client request transfers twice as much data with the same amount of work. However, within

the DSL the two striped disk system does require twice the work, per request, so the CPU

usage for a two striped disk system is slightly higher than is required by the one disk environ-

ment.

J9 Abbugh not s b w c h e , &e CPU usage of the cmcmxmted dsk system is co;;;p;t'&le to the in&;--
leaved environment, when a SLDI DAP is substituted for the SGI DAP.

9. TASS Storage Node Performance

This chapter discusses the performance of the TASS storage node as a unit. The tests in

this chapter portray the SDTR that the node can provide to client processors, as well as the

percentage of CPU cycles required to provide that I/O bandwidth. Performance results for

TASS storage nodes are based upon transfers between either disk or cache, aad main memory

of one or more client processors. The presentation of results in this chapter will be a slight

departure from what has been used in the previous chapters. The primary partitioning of

results will still be by I/0 bandwidth and CPU usage. However, rather than dividing the Vt)

bandwidth sections first by DAP, then by type of data access (read or write), this chapter will

section them first by type of access, then by DAP. Hopefully, this break in technique will not

be confusing. The method used in the previous chapters would have produced quite a few

more ugly tables than arise using this new breakdown.

9.1, Testing Environment

Tests of the entire TASS storage node are accomplished using the processor

configuration shown in Figure 20. Note that the cache server can only communicate with

four other processors, due to the number of serial links provided to each transputer. There-

fore, the use of three clients ;in& three disk servers in the diagram is meant to show the max-

imum number of processors in each category. The actual configuration would use some com-

bination of clients and disk servers adding up to no more than four. The root transputer is

responsible for organizing the DAP to be issued. Basically, the root transputer, T, gives each

client processor any start-up parameters that they require, for example, whether the test is for

read access or write access, etc. Once the clients have performed any relevant initialization,

including testing whether the storage node is functional or not, they inform T, that they are

Root Transputer

Client Processors (1 to 3)

Cache Server

Disk Servers (1 to 3)

Figure 20: The TASS Storage Node Testing Environment

ready for the test tc begin. Once all clients are ready, TI issues addresses, as appropriate to

the selected DAP, to each of the client processors. When the first address is received, each

client makes an initial timestamp and then issues the appropriate disk request. This contin-

ues, with each client requesting an address from TI and issuing that request, until an invalid

address is issued by T, to each client. That invalid address signals the end of the test and

causes the clients take a final timestamp. From the two timestamps, and the nuniber of actual

disk accesses made between these timestamps, the clients can determine the SDTR that the

TASS storage node provided to them. The final SDTR of the TASS storage node is deter-

mined to be the sum of the rates observed by each of the client processors. In other words, if

client C observes a SDTR of 730 KBytesfsecond, and client CI observes a SDTR of 71 1

KBytesIsecond, then the SDTR provided by the TASS storage node is considered to be 730 +

71 I = 1 4 4 1 KByles/second. Although not reproduced in this thesis, I have performed tests

that show that the ciient comrnuniccfi: 2 with T, between every TASS storage node access

does not noticeably affect the SDTR results obtained. This is because the time required for

the client to communicate with TI is considerably smaller than the time that the client is

blocked, waiting for the disk access to complete.

For the same reasons discussed in Section 8.3, the results for concatenated disk systems

have been excluded from this chapter.

9.2. UU Bandwidth

9.2.1. Read Access

The read access performance results are provided for both SGI and RO DAPs. The I/O

bandwidth provided by the TASS storage node is shown in Table 27. Results are provided

for most of the possibIe TASS storage node configurations. Each configuration is described

by the number of clients served, the number of disks used and the disk joining technique

Table 27: Read Access Sustained Data Transfer in KBytesIsecond

applied. Following the configuration description are the data columns. Data column I shows

TASS throughput when all client accesses are cache hits. Data columns 2 through 8 present

the throughput when the indicated number of chunks have been prefetched prior to their

access by the client. In many of these cases the average delay due to each cache miss is often

reduced, resulting in significantly higher data throughput. The ninth data column provides

results for random accesses to the TASS storage node.

Each entry in Tabie 27 is determined by averaging the sustained transfer rates obtained

during ten samples. Each of these samples involved 1000 chunk read operations.

9.2.1.1. Only Cache Hits

The results in data column 1 of Table 27 show that each TASS client, continuously hit-

ting within the cache, can read between 3453/3=1151 and 1221 KBytedsecond, for the 3

clienul disk and 1 clientl3 striped disk configurations, respectively. This indicates that for

cache hits, the sustained TASS read throughput is at least 94% of the maximum link

throughput of 1225 KBytes/second.

9.2.1.2. Sequential Global Access with Prefetching

The second through eighth data columns show the 110 bandwidth of the TASS storage

node when operating under a SGI DAP. The individual columns display the throughput for

varying degrees of prefetch. As the degree of prefetch increases, the throughput also

increases until the maximal disk throughput is reached. This is because each prefetch request

activates a File Server thread within the TASS cache server. These threads directly access

the disk support software, bringing the requested disk chunk into the cache. Any subsequent

read request from a client also activates a server thread, however this thread need not access

the disk support layer because it will hit within the cache, since the previously issued prefetch

will. have brought, or be in the prctcess of bringing, that chunk into the cache. Therefore, the

number of server threads actively using the disk support layer is equal to the degree of pre-

fetch (the number of chunks looked ahead). When a thread handlirg a read request queries

the CacheNcrnager regarding address A, which is currently being prefetched, then that thread

will be blocked until the prefetch completes. As the degree of prefetch increases the time

between issuing the prefetch to address A and issuing the read to address A also increases.

Therefore, the higher the prefetch degree, the less time server threads, attempting to read

data, spend blocked at the CacheManager and consequently, the less time the disk access

appears to take, from the client's point of view. Columns 2 through 8 of Table 27 show that

for all storage node configurations and for all DAPs, throughput increases as prefetch degree

increases, until the maximal throughput (for that configuration) is reached. The only cases

where increased prefetch degree does not improve throughput are (i) when the limiting

bandwidth has been reached and (ii) when the prefetch degree is increased from 0 to 1. When

the prefetch degree is 0, no prefetch operations are issued by the clients, so when the read

request is received by a server thread, that thread must directly access the DSL (via the cache

layer). With prefetch degree of 1, the threads handling the prefetch operations access the

DSL and because the read .requests are issued almost immediately after the prefetch requests,

the threads handling those read requests immediately block at the CacheMmager interface

and wait for the prefetch to complete. Because of this, the results for the 0 and 1 prefetch

columns are equivalent, since in both cases, the same number of file server threads (one per

client processor) are directly accessing the DSL.

As discussed in Sections 8.2.1.1 and 8.3.1.1, the maximal SDTR for sequential access

patterns cannot be achieved unless there are between two and three server threads simultane-

ously accessing each disk. Table 27 shows that in the I disk configurations, maximal SOTR

is not achieved until prefetching reaches degree 3. The 1 disW3 client configuration is a

special case, since the 3 clients each activate one server thread to service their read requests.

As shown by comparison to the 0 prefetch column for this configuration, these three threads,

regardless of prefetch degree, are sufficient to provide maximal throughput. Comparing the

single disk configurations to the results for the disk support layer and cache layer (Sections

8.2.1.1 and 8.3.1. I), shows a discernible increase in the number of active servers required to

achieve maximal throughput. The increase to the current requirement of three active servers,

as opposed to the cache layer and disk support layer requirement of two active servers is an

indication that the disk access pipeline (see Chapter 4) has (once again) increased in length,

Effectively, the communication beteen the client processors and the cache server processor

have added two new components to the pipeline, one prior to the pre-processing stage and the

other after the post-processing stage. Since this commtinication is performed as an RPC call,

these new stages have no inherent parallelism with each other. Furthermore, these new

stages increase the time required for each request to proceed through the entire pipcline,

therefore effectively increasing the number of active requests that are required to keep the

disks busy.

The multiple disk configurations display more variety. All single client configurations

(both 2 disk and 3 disk systems) exhibit a clipping of read throughput at between 1142 and

1200 KBytes/second. This is a consequence of the Part.7 crossbar bottleneck discussed in

section 7.2.2. The throughput for two client configurations peaks at 1450 KBytesIsecond,

with 6 and 4 prefetches, for interleaved and striped disks respectively. Therefore, TASS

throughput for a 2 disk system is equivalent (within error margins) to the cache layer's

throughput of 1445 KBytes/second, shown in Table 22. For interleaved systems, the perfor-

mance peak is for six prefetches since (due to the pipeline increase for the client interface

communications) three active File Server threads are required to keep each disk busy. As

discussed in section 8.2.1.1, striped systems require only two active server threads in order to

provide maximum disk support layer throughput, regardless of the number of disks joined.

The increased pipe length, due to the client interface communications, was expect& to

increase this requirement to three active server threads, rather than the four indicated in Table

27. f believe this is a consequence of the fact that the striped disk system has a slightly

longer pre-processing pipe stage than does the interleaved system, since requests to the

striped disk servers are sequentialized, rather tban pardlelized. Although this longer pre-

processing pipe did not affect striped disk bandwidth for read access in the Chapter 8 results,

I believe that by coupling it with the client interface communications, it is starting to have an

impact.

9.2.1.3. Random Access

The last column of Table 27 shows the maximum throughput that a TASS storage node

can provide to clients using random data access patterns. Single disk systems achieve SDTR

equivalent to that provided by the disk support layer and cache layer (see Tables 19 and 24),

oniy if multiple clients are accessing the TASS node. For multiple disks, only the two client,

two striped disks configuration achieves SDTR equivalent to the results presented in TabIes

19 and 24. The poor performaice displayed by the other configurations is due to the remote

procedure call interface used by TASS clients. Each client can only issue one random access

request at a time, therefore, there is never more than one active server thread per client. Two

active server threads are required per disk, to provide maximum SDTR for a random data

access pattern. Therefore, single client systems can keep only one server thread active, which

prevents maximum SDTR from being achieved. Similarly, two client systems with two inter-

leaved disks can keep only one server thread active per disk, on average. Striped disk sys-

tems require only two threads to keep all disks active, therefore a two striped disk system

achieves maximum throughput when controlled by two clients.

The additional cornmrtnicatio~? required by the client interface does not increase the

required number of workers from two to three, as it did for the SGI access, since the physical

disk component of the pipe, for RO DAPs, is still too large.

Figure 21 shows the U 0 throughput of the TASS storage node when the TASS File

being accessed varies in lengths0. Four graphs are shown in the figure, these show the RO

DAP throughput for (i) two striped disks, (ii) two interleaved disks, as well as any single disk

system, (iii) one disk server, controlled by reqsestfresponse primitives and tested with a con-

stant stream of incoming requests. This graph has been doubled to indicate the maximum

throughput that could be provided by two such disk servers, controlled independently of

TASS and (iv) one disk server connected to its client by an RPC interface. Graphs (iii) and

(iv) are reproduced from Chapter 7's Figure 18. Graph (iii) is simply a doubling of Figure

18's read graph, while graph (iv) is the same graph as Figure 18's RPC read graph. The rea-

son why graphs (iii) and (iv) are included in Figure 27 is to show how the random read per-

formance compares to direct disk access. McVoy & Kleiman state that some users "get rid of

the file system altogether by using the raw disk" [McV91]. Users resorting to this desperate

technique are usuaily those running database applications, which often have a predominance

of random access activity. If the TASS system does not provide as good, or better perfor-

mance than could be achieved using direct access of the disk servers then such users may still

have to resort to such techniques.

It can be seen in the figure that as the region of disk being accessed increases, the I10

throughput of the TASS storage node, using a RO DAP, drops from approximately 1200

W - Recall that %he term TASS Fiie was defined for referencing coniigtiijiis regictiis of disk chunks (see f ec-
tion 3.2.2.2). In other words, a TASS File of 4000 chunks, starting at chunk address 50, would include dl
cisirks k the cmtigilws r a g e of addresses 50 throiigh to 4049.

Figure 21: Random Read Access Performance While Varying File Size

200
1 5 0
1 0 0

50

KByteslsecond down to about 360 KByteslsecond (for striped disks) and 225 KByteslsecond

(for interleaved disks). These results are equivalent to the SDTR figures in Table 27 for the

case when dl accesses are cache hits, and for the RO DAP results (also in Table 27) for each

joining: The cache size is approximately 2000 KBytes (2 MByte main memory for the T800

cache server), and as soon as the cache fills, performance of the TASS storage node makes a

sharp plunge. When the file size is about 4 MBytes, which is twice the cache size, perfor-

mance for both striped and interleaved access has dropped to about 150% of the sustained RO

DAP results in Table 27. By the point where the region of disk being accessed is approxi-

mately 6 MBytes (3 times the cache size), performance is virtually equivalent to the sustained

- -
- -
- -
- -

I 1 I
0 I I I I I 1

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000
Size of Disk Address Space Accessed in KEytes

RO DAP results. Therefore, except for very small files, the cache has virtually no advnntn-

gous effects on disk throughput.

Note that the two interleaved disk graph is used to represent the single disk TASS

storage node environment as well. In the RO DAP tests on the TASS storage node, requests

are issued one at a time, with no prefetching. Therefore, in the interleaved disk system, only

one disk is accessed per request and there is no disk paralielism. Consequently, the two

interleaved disk graph is virtually the same as the single interleaved (or striped) disk graphs.

By comparison to the graphs for the disk server, it is clear that a user could get better perfor-

mance by using one disk server than can be obtained by using a TASS storage node with two

interleaved disks. This is because in the extra communication required to pass the data from

the cache server to the client processor (as opposed to the direct disk server to client proces-

sor link used in graph (iv)), causes an additional lag in the time between the request being

issued by the client and the response being received. Therefore, the resulting interleaved

throughput is actually lower than can be obtained by direct disk server access. The two

striped disk environment appears to be better than the interleaved environment, however, this

is not necessarily the case. Recall that the striped disk environment moves twice as much

data per request as does the interleaved environment. Therefore, the striped disk results

should be compared to two RPC disk servers since two disk servers are being simultaneously

accessed. A mental doubling of the RPC disk server graph should suffice to show that the

striped disk environment also fails to improve on direct disk access.

The graph for the two request/response disk servers is a bit like "comparing apples to

oranges". The results in that graph show what can be pi.ovideb bj two disk servers when two

or =ore repests (per disk) are sirndtaneously active, at all times. It is included in Figure 2 1

to illustrate what sort of performance should be achievable by the TASS storage node if the

client processors are not restricted to the limitations imposed by the RPC nature of the TASS

client interface5'.

The apparent advantages of striped systems, namely fewer prefetches required to

achieve maximum sequential throughput, and better random performance, are offset by the

fact that the chunk size for striped disks is larger. For example, sequential access with degree

three prefetch to a two striped disk system, will actually look-ahead the sam9 number of

bytes as a degree six prefetch on an interleaved system. Furthermore, for a random system,

prefetching the next chunk to be used, prior to issuing the read request for the current chunk,

would provide sufficient active threads for most interleaved configurations. This would fetch

the same amount of data from disk as would be read by any a single random access using two

striped disks. It would also have the advantage of allowing the user to fetch that data from

two different places in the database, rather than just one larger place, as is done using the

striped disks.

9.2.2. Write Access

The SDTR for TASS write access is given in Table 28. Results are given for the same

storage node configurations as were used in Table 27. Prefetching is not applicable to write

access52, so the breakdown of the data columns differs from that used in Table 27. The first

'' In other words, it shows what should probably be achievable if a better client interface were irnplement-
ed and if that interface allowed multiple client processes, within OIie client processor, to be involved in the issu-
ing of the KO DAP.

'' This assumes that the entire chunk is being overwritten. For partial chunk writes, prefetching the chunk
into the cache well in advance of the actual write operation would help significantly.

Table 28: Write Access Sustained Data Transfer in KBytedsecornd

data column of Table 28 shows the write performance when every access hits within the

cache. Columns 2 and 3 show the performance of the TASS storage node when operating as

a delayed write back cache. Column 2 indicates the VO throughput when no write back pro-

cess group is operating within the cache server and column 3 indicates the throughput when a

4 threaded write back process group is active. Finally, data column 4 shows the random

access performance of the TASS storage node, also with a 4 threaded write back process

group active.

All results in Table 28 are determined using 10 samples, each sample consisting of.' 1 0 0

chunk writes. The cache was pre-filled with dirty chunk entries, prior to each sample com-

mencing.

9.2.2.1. Only Cache Hits

A cache hit, for the purposes of the Only Hits column of Table 28, occurs when a write

access to address A finds address A within the cache. In this case, the same (possibly diriy)

cache entry is overwritten, with no disk access required to reinstate any dirty chunks into

permanent storage.

Table 28, column 1 shows that the maximum write SDTR provided by TASS occurs

when all accesses hit within the cache. The observed SDTR is within 94% of the crossbar

throughput limit of 1225 KByteslsecond. Throughput for cache kits to a pr disk striped sys-

tem is slightly better than for n disk interlea-ed systems (n 2 2). Recall that the size of

chunks in the striped system are larger by a factor of n than the chunks within the interleaved

system. Therefore the quantity of data transferred per operation is also larger by a factor of

n. Regardless of disk joining, the overhead per operation will be equivalent, discounting the

actual data movement over the serial link, therefore n times the data is transferred per unit of

overhead.

9.2.2.2. Sequential Global Access

The results for write access using a SGI DAP are divided into two colums. The

columns display the VO bandwidth of the TASS storage node for this access pattern when (i)

no write back process group is operating within the cache server and (ii) when a four

threaded write back process group is enabled.

9.2.2.2.1. Single Disk Systems

As for most of the results in this paper, all three joining techniques are bandwidth

equivalent for the single disk environment. With just one disk, and no write back threads,

110 bandwidth of the TASS storage node is significantly lower than the throughput provided

by the cache layer (Table 22). The TASS storage node can provide a single ciient with only

298 KByteslsecond, which is 71% of the cache layer throughput (with just one worker) of

418 KByteslsecond. With two or more clients, the 1 disk TASS node performs slightly

better, providing approximately 520 KByteslsecond which is 89% of the 583 KBytesIsecond

provided by the cache layer. The loss in bandwidth is again due to the RPC nature of the

client interface. Since each client issues an RPC call, it can only activate one File Server.

thread within the cache server processor, and this thread accesses the cache layer and subsc-

quently the disk support layer as an agent for the client. The bandwidth observed by the File

Server threads can be no greater than what is indicated in the cache layer results (Table 22)".

The fact that the client first has to issue the write request to a file server thread, and then

receive the associated response, adds additional communication time to each write request,

reducing the effective bandwidth.

With the inclusion of a write back process group, the performance for the single disk

system improves dramatically. A single client observes I/O bandwidths equivalent to that

provided by the raw disk server (Tabie 13). Since one client is issuing all requests, those

requests get executed to cache in the pure SGI order. If we assume an LRU replacement

algorithm, then the order in which cache entries are written back to disk will also be the pure

SGI order, consequently, no shuffling of the SGI order can occur during communication with

the Cache Manager. Because a write back process group is active, it will be the Write Buck

threads that return most of those entries to disk. Furthermore, since the individual Write

Back threads are put in the same order within the ProcAltList() calls of both the Cuche

Manager and the Requestors, they have the same implicit priority, with respect to all other

Write Back threads, at both of these inter-process communication points. Because of this, the

order in which write backs are issued to Write Buck threads at the cache manager interface

will usually be the same order in which those write requests are accepted by the Requestors.

Therefore, there is little chance that any shuffling of the SGI order will occur at the DSL and

" Assuming the same 'shuffling' of requests is t&ing place (Section 8.3.1.2f.

therefore, the SGI order sf the requests should be maintained though to the physical disk.

The results in Tabfe 28 show that when two or more clients are issuing the SGI DAP to

a storage node equipped with a write back process group, the throughput is significantly

better than when no write tack group is active. However, the results fall short of the 702

KBytesIsecond limit of the disk server. Once again, this is the SGI order shuffling problem

rearing its ugly head. Even though two clients may issue their individual requests to the

TASS storage node in SGI o r d e r , the File Server thread that accepts the write request for

address Ai from client 0, may have a lower implicit priority (within the Cache Manager's

ProcAitList(] call) than does he File Sewer thread that accepts the write request for address

A,, from client 1. Because of this, if the two requests anive at the Cache Manager simul-

taneously, the wkte request for address A,+, wiIl be processed first and the SGI pattern will

be shuffkd.

9.2.2.2.2. Multiple Disk Systems

In the multiple disk systems, there is a very dramatic improvement in effective

bandwidth when a write back process group is utilized. Without the write back group, a sin-

gle client using a TASS node can utilize less than 300 KBytedsecond of bandwidth for inter-

leaved disks and only 374 or 430 KByteslsecond of bandwidth for 2 or 3 striped disks,

respectively. However, with the use of the write back process group, performance for all

-

This in itself is not assured. In the testing environment described in Section 9.1, each client processor
obtains rhe next address to issue from the root transputer. There is no guarantee that that client processor will
actually issue the write request for that address to the TASS node before another ciieni processor manages to
W.7 :k s&hy;en!. &ew in the D M and issue i t to the TASS no&. Eiowever, since each processor is a
TBfXt. each is cf&d at the same sped, anrt each executes the exact same code krween the acceptance of the
address frrrm the transputer and the issuance of that write request to the TASS node, it is highly likely that
the SGI order will be maintained.

configurations exceeds 1124 KBytesIsecond. A single client accessing a two disk TASS

storage node can utilize all of the 1 124 (interleaved) or 1 162 (striped) KB yteslsecond

bandwidth that is available at the cache layer interface (see Table 24). With a single client

and three disks, the bandwidth available to the client is clipped by the 1243 KBytesIsecond

limitation of the CSA Part.7 crossbar switch (see Table 10). Two client, two disk

configurations also provide performance equivalent (within error margin) to the cache layer

results given in Table 24.

9.2.2.3. Random Access

Random access write results are equivalent to the results for the disk support layer.

Threads within the write back process group use lulls in client activity to flush dirty cache

entries to disk. Since the access is random, any re-ordering of the disk access sequence, due

to the prioritization mentioned earlier, should have little effect on disk throughput. Addition-

ally, if the size of the write back process group is large enough, there should be two threads

accessing the disk at all times55. The above tests were run with a four threaded write back

group. This small sized group may explain why the performance for a 3 disk interleaved sys-

tem is much worse than that for a 3 disk striped system. The interleaved system would need

approximately six active threads to keep all three disks busy, whereas the striped system

would still only require two threads.

Figure 22 shows the 1 0 bandwidth of the TASS storage node for RO write access to a

varying length database. The TASS bandwidth for 2 disk storage nodes is shown for both

55 Recall that only two active threads per disk are required to provide maximum random access throughput
to disk.

0- I 1 I
I I 1 I I

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000
Size of Disk Address Space Accessed in KBytes

Figure 22: Random Write Access Performance While Varying File Size

striped and interleaved joinings. These graphs are contrasted with the maxiinurn throughput

that could 5e obtained by directly accessing two disk servers using the request/response

interface. Clearly, the use of the cache enhances throughput for both joinings, when access-

ing databases of up to 40 MBytes in length. As the databases grow larger, up to the max-

imum of 200 MBytes (each CP-3100 stores about 100 MBytes), TASS node throughput

drops to the levels described in Table 28, which are equivalent to that provided by 2 disk

servers (see Table 4 0) ~ ~ . The reason that the performance of the TASS storage node for RO

read access is poor is that only one active File Sewer thread is oper2ting within the cache

server at any time. During the RO write operation, only one thread is ever issuing an actual

write request, however, four write back threads will be actively attempting to keep the cache

clean, hence four or five threads will be accessing the disk support layer, which provides the

required workload in order to obtain maximal disk throughput. Therefore, unlike the RO

read results for the TASS storage node, the write results in Figure 22 indicate that the cache

enhances the performance of the disks.

9.2.2.4. Start-up Performance

Here I vary from previous sections in that the issue under discussion is not sustained

data transfer, rather the section analyzes the effect of the cache on I/O throughput during

short bursts of write activity. 1 have chosen to call the sub-section Start-up Pe~ormunce

since it deals with write access to an empty cache, which is what happens duping the start of a

write oriented DAP. Write accesses can be entirely handled within the cache, without the

need for a corresponding disk access, if there is an available non-dirty cache entry to

overwrite. Furthermore, that entry must be the one selected for replacement by the cache

replacement algorithm. When a write DAP begins, (assuming no previous write accesses

ever occurred), no entry within the cache is dirty. Therefore, at least the first C write chunk

operations can be handled by the cache without any required disk accesses (where @ is the

size of the cache in chunks). In other words, the first C operations will be performed at a

bandwidth indicative of every access being a cache hit. However, once the cache fills, then

- --

" Actually, the results indicated in Table 28 for the interleaved joining are a little less than could be ob-
tained using two disk servers, however, the throughput values are equivalent within the sampled error margins.

dirty entries must be written back to disk prior to the data involved in the current write

request being copied into the cache. Eventually, this will cause throughput to degrade to the

sustained transfer levels indicated in Table 28.

The graphs of Figure 23 show the start-up performance for a one disk TASS storage

node, serving a single client which is issuing a SGI write DAP. Each of the three graphs

shows the 1/O bandwidth of the system, as observed by the client processor, as a single SGI

write DAP proceeds from the first operation through to the one-thousandth operation. To

achieve this, an initial time stamp is taken before the first operation is issued. Then, after the

f 1 I I 1 I I 1 I -
\

\ 2 Write Back Threads -
1 \ 1 Write Back Thread -
\

\ 0 Write Back Threads
,
I -
\

,
-

... --._ - -.
*-- --- -- ----_ ----- -----__ - ---------_______

0 100 200 300 400 500 600 700 800 900 1000
N w b n r of Chunks Written

Figure 23: Start-r;p Ferfornafice Ufider a •˜GI wriie Dk?

r...

completion of each individual operation, another time stamp is taken. inis produces n

sequence of time stamps that can be used to determine the effective bandwidth after the first ri

operations, as n proceeds from 1 through to 1000. There are three graphs, each showing the

start-up performance of the system with either 0, 1 or 2 Write Back processes operating

within the cache server. Any tests with 3 or more Write Back processes are not shown as

their graphs only marginally differ from that of the 2 threaded Write Back process group.

The graphs illustrate the effectiveness of the write back process group at transparently clean-

ing the cache even during periods of high client (but low disk) activity. Not only is the

SDTR under a SGI write DAP better with the write back process group included (see Table

28), but the size of the cache is effectively increased for the initial burst of write activity.

With 0 Write Back threads operating in the cache server, the bandwidth plunges dramatically

after about 120 accesses, which not coincidentally, is also the size of the cache. In other

words, the first 120 accesses go to the cache and then delayed write backs must begin and the

bandwidth falls off. However, as the number of active Write Back threads increases, the

number of accesses that can be processed at the 'cache hit' bandwidth of 1200

KBytes/second also increases until with 2 threads, the first 300 accesses proceed at the 'cache

hit' rate. From the vantage point of thc client processor, the cache appears to be 300 chunks

in size, rather than the actual 120 chunks.

As a corollary, if a client issues bursts of write activity where each burst is less than 300

operations, then assuming the gap between bursts to be of sufficient length for the Write Buck

processes to completely cleanse the cache, then the client will always appear to be accessing

the TASS storage node at the 'cache hit' bandwidth.

No similar analysis was made for read performance since each read access must go to

disk, regardless of the state of the cache, effectively making the start-up performance

equivalent to the sustained performance.

9.3. Processor CycIe Usage

One of the primary considerations in the TASS design is to provide disk services to

clients, without using a substantial portion of the processing power available to those clients.

The results in Table 29 show the CPU usage requirements for a single client processor,

accessing a TASS storage node. These results illustrates that the TASS client interface

achieves the low processing power utilization goal. For the high bandwidth SGI access pat-

terns, CPU usage ranges from 1.3% for single disk systems up to 2.1% for two disk systems.

For the lower bandwidth RO DAP, CPU usage ranges from 0.3% to 0.5%. Since both the

client interface and the test program used to determine the flop usage are very simple code

segments, the low error margin indicated in Table 29 is probably justified. Almost all sam-

ples agreed in percentage overhead to within 0.02%, however, since the figures are rounded

Table 29: Processor Cycle Usage for the TASS Client Interface
(i) One Disk - Any Joining

(ii) Two Interleaved Disks

Device
CP-3 100

Data
Access
Pattern

SGI Read
RO Read

Device
CP-3 100

Total Time
in Seconds

23.5
83.2

Data
Access
Pattern

SGI Read
RO Read

(iii) Two Striped Disks

Number
MFlops

Calculated
5.6

20.1

Total Time
in Seconds

15.0
83.0

&vice
CP-3 100

f

Seconds Used
by DiskLink

Software
0.3
0.2

Number
m o p s

Clculated
3.6

20.1

Data
Access

Percent
Overhead

1.3H. 1
0.3H. 1

Seconds Used
by DiskLink

Software
0.3
0.05

Total Time

Percent
Overhead
2.123.1
0.3H- 1

Pattern 1

Number
MFlops

in Seconds

Seconds Used
by DiskLink

Calculated
Percent

SGI Read
RO Read

0.6
0.5

28.6 1 6.8
101.1 24.4

2 . M . 1
0.5H. 1

Software Overhead

off to one decimal place. the error margin must also be rounded up to 0.1%. This is nice to

know after some of the high margins of error observed in earlier CPU usage calculations.

9.4. Conclusions

The TASS client interface achieves most of its goal of providing high bandwidth disk

services between client processors and disk servers. Furthermore, there is very little process-

ing power consumed within the client processor during the execution of disk access func-

tions.

For SGI read access, the disk bandwidth available to client processors is equivalent to

what could be obtained through direct access to the disk server. When two or more disks are

provided by the TASS storage node, a single client cannot utilize the entire bandwidth of

those disks, since the crossbar switches used for interprocessor communication clip that

bandwidth at approximately 1150 to 1200 KBytesIsecond. To provide the highest possiblc

SGI bandwidth, the client must issue prefetch instructions or utilize the automated prefetch-

ing facilities provided by the TASS interface. Fortunately, SCI DAPs are highly predictable

and the accuracy of prefetches within that DAP is, as a consequence, quite high. In a single

disk system, 3-chunk look-ahead (dternatively I have used the term degree 3 prefetch), is

sufficient to achieve the maximal disk bandwidth. For two interleaved disks, 6-chunk loak-

ahead is required. This indicates that three active File Server threads must exist, within the

TASS node, for each disk within the joining. For two striped disks, 4-chunk look-ahcad is

required to keep all subservient disks busy. The degree of prefetch required to keep any three

disk joining busy cannot be determined from the results in Table 27, since the throughput is

clipped by the crossbar switches well before maximal SDTR is achieved. The additional

communication required between client processors and the cache server has jncrea.sed the

length of the disk access pipeline. As a consequence, the time required for each request to

proceed though the pipehe has increased u?d because of that, the number of active workers

(File Server threads accessing the DSL and CL) required to provide maximal throughput has

increased by at least one, over the results indicated for the cache layer.

For read access using a RO DAP, TASS performance is quite poor. This is due to the

simplistic RPC interface, which prevents more than one request from being active, within the

cache server, for each client using the TASS storage node. In fact, better RO throughput

could be obtained by clients if they used an RBC interface to the physical disk itself. Only

when the region of disk kjiig accessed in a RQ fashion is very small, in the neighbourhood

of 2 MBytes, does the effect of the cache provide any improvement over the disk server's

throughput. Alternatively, if the clients know in advance the address which will be issued

next in the RO sequence (sometimes this is the case in random access), they could observe

better sustained throughput by prefetching that address explicitly, prior to issuing the current

RO read access.

For SGI write access, the performance of the TASS storage node is comparable with the

performance of the cache layer. In some cases (eg: one clientlone disk) throughput has even

increased over the cache layer levels. This is due to the transparent activity of the write back

process group.

The write back process group is an effective tool for transparently cleaning the cache,

while also providing a surplus of active server threads, as compared to the number of threads

that can be kept active by clients alone. The increase in active threads serve to keep the disk

support layer busy, thereby increasing the effective bandwidth observed by client processors.

Also, for bursts of write activity, as well as for the initial phases of a prolonged write DAP,

the write back processes can provide the client with the appearance of having access to a

larger cache than that which is actually provided.

Finally, the TASS client interface requires only a very small portion of the available

processing power within each client processor. Therefore, programmers should not (usualiy)

have to worry about using the TASS system within their code, since they will still have

almost all of the processing power of the T800 transputer, with the additional bonus of an

attached mass storage system.

10. Summary

The Transputer Auxiliary Storage System meets nearly all of the goals set for it. It pro-

vides a consistent local file system for use within the transputer network. Because TASS is

an LFS, it is not capable of serving all nodes within a given network, however, it does ade-

quately achieve the goal of providing pockets of mass storage support to subsets of proces-

sors within the network. In this role it has been effectively used by a number of parallel sort

applications, which are documented in [Atk92]. Prior to the implementation of TASS, users

of the SFU transputer network were forced to pass all data into (and out of) the network using

the host interconnect. This limited the rate at which data could be provided to an application

program to approximately 700 KBytesIsecond. Each disk operating within a TASS storage

node can provide between 250 and 730 KBytesIsecond of I/O bandwidth to the transputer

network, providing an I/O bandwidth increase of 35% to 105% of that of the host intercon-

nect. With TASS, some (if not all) application data can be maintained within the network,

and provided to application programs from TASS storage nodes. The rate at which this data

can be provided to application programs is dictated only by the number and throughput of the

TASS node's subservient disk devices, as well as the number of transputer links available for

connecting client processors to those TASS nodes.

The TASS system is designed according to a rigidly defined hierarchy of processing ele-

ments. These, from top down are the client processors, the cache server and the disk servers.

This physical composition of the storage node allows programmers to easily configure the

TASS storage node, varying both the umber of subservient disks as well as the number of

clients to be served by the node. This allows storage architecture to be tailored to the task at

hand. Again, this functionality has been utilized in [Atk92].

A hierarchy of software layers is distributed across these processing elements. The four

primary layers are defined as the client interface layer, the file system layer, the cache layer

and the disk support layer. Each level defines a procedure call interface that provides the

layer's services to those of higher levels in a simple and concise fashion. Gornmunication

issues and protocols are abstracted within the boundaries of these layers. The highest level,

the client interface, provides an efficient (although admittedly primitive) set of primitives that

are easily used, yet provide effective access to the mass storage devices (disks), The simpli-

city of the client interface is a result of TASS design consistently stressing performance over

functionality.

The software design is highly influenced by limitations of the physical hardware. Sorne

of the primary examples of hardware functionality which direct the software design are:

o The 64 KByte address space of the T222 transputer prevents its use as a cache server. This

dictates that a T800 transputer be allocated as the cache server in the TASS storage node.

0 The use of a separate T800 transputer as a cache server allows for the parallelizing of mul-

tiple disk servers beneath each cache server. Had a single processor been used as both

cache server and disk server, parallelizing of disks would have to be implemented using the

SCSI bus protocol, thereby complicating the device dependent software. In this environ-

ment, the I/O throughput bottleneck for multiple disks is the SCSI bus itself.

The bandwidth of the transputer serial links limits the throughput between each TASS node

and any given client to between 1240 KBytes/second and 1666 KBytesIsecond, depending

upon whether a crossbar or wire interconnect is utilized.

0 Since the transputer processor only provides two priority levels, there is little flexibility for

varying the priorities of competitive andlor cooperative process groups.

For sequential read access, which constitutes the majority of disk accesses

[~e187][Flo86]~~, the I/O bandwidth of TASS is virtually equivalent to the maximum

bandwidth that can be provided using either the CP-3 1 0 disk devices or the TASS RAM

disk devices, Therefore, little bandwidth loss occurs during the execution of the TASS

software. However, random read performance does not fare as well. Due to the simplistic

RPC nature of the TASS client interface, it is usually impossible for TASS clients to provide

a sufficient workload to achieve maximal throughput from the disk devices. The performance

of TASS for sequential write access also fails to meet the expectations set out in the TASS

requirements. A single client, independently accessing a TASS node can utilize the max-

imum 1/0 bandwidth of the subservient disk devices. When two or more clients attempt to

write to a shared storage node, bandwidth suffers due to an unfortunate side-effect imposed

by the compiler's ProcAltList() library procedure. On the plus side though, random write

access to the TASS node can proceed with a higher bandwidth than could be achieved using

direct disk access.

Two software prototypes are implemented for each of the TASS cache server processsor

and the TASS disk server processor. In each case, the initial prototype was abandoned in

favour of the second one. In the case of the disk servers, the first version was abandoned due

to poor performance, whereas the first cache server prototype's perceived failing was in the

complexity of its central process, the Cache Manager,

The first disk server prototype (DS 1) utilizes four process groups, and as a consequence,

requires significant inter-process communication to control and sequence the operation of

'' [Ne187] states that only If3 ~f all disk accesses are write accesses. IF10861 analyzes the nature of both
write and read accesses and determines that the majority of data accesses are sequential in nature.

these process groups. Due to this, performance of DSI is sluggish. This is because systems

utilizing similarly complex process group structures often suffer performance oriented prob-

lems due to the context switching and communication overhead imposed by those proccss

hierarchies. This has been discussed in [Cla85] and [Atk88] and although not quantitatively

verified here, some qualitative issues are addressed that reinforce these claims. The second

disk server prototype integrates the activities of all process groups into a single server group.

The resulting disk server software is not only more efficient, but also more understandable.

The first cache server piototype (CS1) utilizes (or would utilize had it been maintained)

the same process groups as does the second prototype (CS2). Almost all of the work required

during the execution of each client request was handled by the Cuche Manager, All other

process groups virtually operated as dummy message relays between other processors and the

monstrous Cache Manager. Because of this, the code for the Cache Manager is vast and

cumbersome. The CS2 prototype reduced the complexity of the cache manager by offloading

the responsibility for much of its functionality onto the File Server threads. This provides for

more understandable code although it may increase communication requirements to some

degree. The results in Chapter 8 indicate that shuffling of the disk access sequeme occurs at

the communicatim interface between the Cache Manager and the File Sewers and this has

caused sequential write throughput to degrade significantly. Further vertical integration of

the cache server design may improve 110 bandwidth by reducing the amount of inter-process

communication and thereby eliminating the dependence of the software on the ProcAltList()

procedure. For example, I am considering a technique whereby the operation of the File

Server process group and the Requestor process group could be integrated. This would elim-

inate one of the primary communication interfaces within the cache server.

11. Future Work

TASS provides a suitable test-bed for further research. Some of the possible avenues

for such future work are documented in this chapter.

11.1. New Hardware

Tle T9000 transputer, the newest family member, is pending release from Inmos. This

transputer will provide significantly more processing power than is available using the

current transputer workhorse, the TSOO. Additionally, Inmos plans to incorporate into the

T9000 a hardware based message router that will provide point-to-point communication

between all T9000 transputers within a network. Furthermore, the bandwidth of the serial

links will be expanded to 20 MBytes/second. Increasing the bandwidth of the transputer

seriaf links would eliminate the clipping of throughput observed for the SGI Read results

(Table 28) and make the three disk storage node practical. Using the T9000 or TI C40 (see

next paragraph) with their significantly higher link bandwidths would allow for effective use

to be made of three disk TASS nodes. Because processor use is not a bottleneck in the

current TASS implementation, further increasing processing power over the T800 levels

probably has few ramifications for the TASS system.

Texas Instruments has released the TMS320C40 microprocessor, which is usually

refemd to as the C40 [Tex9l]. Although this is not a transputer device, each of these proces-

sors is equipped with six transputer compatible serial links. As with the T9000, these links

arr= capable of transmitting 20 MByteslsecond. Due to the six serial links, using a C40 as a

cache server would increase the number of possible TASS storage node configurations,

Between I and 5 subservient disks could be joined within a TASS storage node, providing a

higher degree of disk parallelism. Similarly, between 1 and 5 clients could be serviced by

each TASS node, which could serve to keep more server threads active, achieving mmimal

disk throughput using lower degrees of prefetching.

Improved transputer-based SCSI interface boards are now becoming available from

various vendors. For example, Paralogic Inc., of Bethlehem PA, has released a board that

uses a T800 transputer as its control processor. This provides a processing platform capable

of supporting both the cache server and disk server components of a TASS storage node.

Multiple disks can be connected to the board's T800 using the SCSI bus interface. Since this

is a more complicated SCSI environment than is used within the current TASS implementa-

tion, a more complex SCSI driver would be required (however, since SCSI drivers are fairly

common software demons (sic), a good template for a driver design could be easily

acquired).

11.2. Increased Cache Capacity

The results presented in this thesis are obtained using T800 cache servers. &ch of

these T800s is equipped with only 2 MBytes of RAM. Using a T800 (or other 32 bit tran-

sputer) with 8 MBytes of memory would allow the TASS node to provide approximately four

times the cache space than is provided by the current version. Enlarging the cache space

would serve to increase the average hit ratio, which would enhance 110 throughput of the sys-

tem as a whole.

113. Expanding Disk Server Functionality

The request and response primitives provided by the TASS disk server do not provide

alt of the fknctionality that may be dpsired by potential users of such disk servers. Some

suggestions for expanding the set of disk access primitives are included in this section. 1

have not implemented these suggested primifives as they are not required for my research,

however, they would probably be rxcessary in a fully functional system.

To allow a client processor (like the cache server) to know that all disk operations have

k e n completed, a Flush Disk Queue primitive could be included in the disk server interface.

Receipt of this request at the disk server would prevent any new disk requests from being

accepted until all outstanding disk requests have completed.

A!rhough a Format Disk primitive has been implemented as part of the device depen-

dent layer of the disk server software, access to that primitive was not extended to client pro-

cessors. Adding it to the disk server interface would probably be required in a more

comprehensive disk system.

Clients of the disk server cannot reset the disk if they perceive a problem in its opera-

tion. Therefore, a Reset primitive would also be required in a complete disk system.

Finally, a Chunk Test operation might be required to allow clients to test whether a

disk chunk is storing data correctly. This would be required to allow a file system to main-

tain a bad blocks list.

11.4. Additional Disk Joinings

The concatenated, striped and interleaved disk joinings are not all of the possible join-

ings of multiple disks that can be provided. For example, Section 2.5.1 discnssed the RAW

concept which proposes a hierarchy of techniques for providing highly reliable disk storage

from inexpensive disk devices. The simplest technique defined in the RAID hierarchy is mir-

r~r ing , where two disks cm k joined together to provide data redundmcy. In other words, a

two disk system can be implemented such that each chunk is written to both disks, Then, if

an access to one of the disk returns an error, or perhaps a cyclic redundancy check (if pro-

vided by the hardware) indicates an error in the data read, then it is highly likely that the

other 'mirrored' disk will still accurately store the data and can pass it on to the client.

Adding this joining technique to TASS would not be a trivial matter. Given two disk

servers Dl and D2 and the disk support layer process environment described in Chapter 5, the

following issues arise. An Acceptor process that receives a disk response from Dl which

indicates an error in disk operation has occurred would have to guarantee that an accurate

copy of the data (which has been obtained in parallel from D2) is returned to Dl. Therefore,

that Acceptor must issue a new request for a write operation to Dl. This requires a communi-

cation to the Requestor process group which will issue the request. This situation may

violate the no-circular wait criterion that has been used in TASS for deadlock prevention.

11.5. Removing the Implicit Prioritization of ProcAltListO

Many of the I/0 bandwidth losses that occur within TASS are due to shuffling in the

order of disk requests, between when they are accepted from clients and when they are issued

to disk. Most of this shuffling occurs as a side-effect of the implicit prioritization imposed by

the Logical C ProcAltList() function. Alternative techniques for providing the functionality

of ProcAltList() without this hidden penalty, could be explored.

11.6. Non-RPC Client Interface

Another source of bandwidth loss in the TASS system is the simplistic RPC interface

used between client processors and cache server processors. This interface could be modified

to allow multiple processes to share the interconnecting communication link, thereby allow-

ing a higher degree of parallelism in client access to TASS.

11.7. More Functional Local File Systems

As stated frequently in this thesis, the TASS chunk I/O interface sacrifices functionality

in the pursuit of efficiency. However, CPU utilization results (see Chapter 8) have shown

that plenty of processing power still remains within the cache server processors. Therefore,

more functional file systems could probably be implemented without reducing data transfer

bandwidth.

11.8. Distributed File Systems for the Transputer Multiprocessor

As mentioned in Chapter 1, the goal of TASS is to provide a local file system which can

be used as a building block within a distributed file system, which is to be implemented later.

Obviously, no future work chapter would be complete without some reference to this DFS.

During the period of this research, a few ideas have occurred to me as to what form that DFS

might take. I will briefly describe two of these ideas in hope that they might prompt an

undertaking of the DFS design.

One of the primary components in DFS design is communication. Every processor con-

trolling some group of disks must be able to communicate with any client processor, as well

as all the other disk control processors in order to provide coherent operation within the DFS.

1 propose two DFS architectures, one for a transputer network that has point-to-point com-

munications8 while the other is based on the message passing model currently used in the

58 Any processor cm send a mssage directly to my other processor. Routing of mssages between two
indirectly connected processors (via a chain of processors) is performed either in hardware or using some gener-
ic software package, like the Trollius Operating System,

SFU transputer networks9.

11.8.1. DFS using Point-to-Point Communication

This model is the simplest of the two because many DFS have been built within similar

environments, for example Andrew [How87], Sprite [Ous88],[Nel87] and PIFS [DibBO], and

as such a surplus of research and ideas for such a system are available, Basically, the TASS

storage nodes are configured as part of a generic network. The point-to-point comrnunictition

allows any processor to communicate with the TASS node, and vice versa. Additionally, the

environment required for this model may become a reality whenever the T9000 series tran-

sputer is realeased.

An important issue in DFS design is location transparency [How87]. This is a form of

information hiding whereby the clients of the DFS need not know the physical structure of

the file system (ie: how many disks, where are they in the network, how is each file distri-

buted over those disks). Provision of a location transparent DFS, built upon TASS nodes,

requires the modication of the TASS client interface. Any client request to read some region

of disk, either directly as in the TASS chunk I/O interface, or as part of a file within a more

advanced file system, must be routed to all of the appropriate TASS nodes in order to be

satisfied6'. This knowledge of where the disk region is must be maintained at some level of

the DFS and be easily available to the client. Some of the alternatives for providing this

abstraction are:

59 Only transputers that are directly connected to each other are able to pass messages to each other. Rout-
i i g of messages between indirectly connecied processors has to Be handied by the DF3 sofiware.

@ A ciient request to read 500 bytes from a file may actually require access to more than one TASS node i f
that file is distributed across many disks.

Let the individual storage nodes maintain all the information regarding the file system.

Then, if a request for data arrives at a storage node, but cannot be satisfied by that node,

then the storage node will relay the request to whatever node(s) are able to satisfy the

request.

Dibble [Dib90] utilizes a Bridge server to maintain all file control structures. Clients

issue requests to the Bridge server which informs the client as to where the required data

can be found.

The directory structures and file access tables can be maintained within each client pro-

cessor. This requires a coherency algorithm be provided to guarantee that every client is

using the current state of the directory structures and file access tables.

Similarly, client side caching of data can, and as illustrated by [How87],[Ne187], prob-

ably should be implemented. Again, this requires coherency algorithms to guarantee that all

clients are accessing current copies of the data.

The interface between the TASS storage node and its respective clients has to be

modified to allow TASS File Servers to keep track of what process on which processor

issued the disk access request. Then, when the file operation is complete, the File Server can

use the point-to-point communication environment to pass the response back to the appropri-

ate client.

These are just some of the issues to be pursued in such a DFS environment.

X1.83. DFS for Sm Style TSW-based Network

Given that no point-to-point communication exists in the target network, an alternative

method for providing the required communication between client processors and component

TASS nodes must be established. In keeping with my penchant for allocating hardware to

solve irritating problems, I propose the architecture shown in Figure 24. In this environment,

the set of TASS nodes are placed beneath a chain of DFS nodes. Each DFS node allocates

two communication links to the DFS chain, one communication link to a client processor and

one link to either a TASS storage node, or another client processor. This requires, in the

worst case, that each client processor is matched with one DFS processor61. This chain of

DFS processors can then be used to relay client requests (and subsequent responses) to (and

from) the appropriate TASS storage node.

Additional levels of caching could be provided within either the processors comprising

the DFS chain, the client processors, or both. Any cache coheresky algorithms required to

sustain these multiple caches could utilize the DFS chain as a common communication

medium.

Client Processors

DFS Processor Chain

Figure 24: A Distributed File System Environment

In other words, discounting the processors already allocated to TASS storage nodes approximately one
half of the network's remaining processors ace used for the distributed file system. However, these nodes need
not be the most expensive flavour of transputer, they could be T222 or T414 varieties, which are cheaper and
Iess functional.

This technique is not, very scdabk, since as the network size grows, so does the DFS

chain. The longer the DFS chain, the longer it will take a request to proceed from the issuing

client to the target TASS node. Similarly, the response time will increase and as a conse-

quence, throughput will suffer.

Appendix A: Glossary of Acronyms

C

CCL

CCI

Chunk

CL

CRA

CSA

DAP

DDL

DFS

DIL

A wonderful programming kaguage.

Client communication layer. Two software layers, one utilized in the
cache server processor and the other utilized in the disk server processor
code. This layer is the software module that implements the CCI.

Client communication interface. The client side component of the client
interface layer.

The unit of data transfer used in TASS.

Cache Layer. One of the primary software layers in TASS.

Cache Replacement Algorithm. Method for determining what informa-
tion should remain in a full cache, and what information should be re-
placed with more pertinent information. The most common form of CKA
is least recently used (LRU).

Computer Systems Architects. A transputer board manufacturer in Provo,
Utah.

A data access pattern. See section 2.4.3 for a discussion of the various
DAPs.

Device Dependent Layer. The layer of software within the disk server
that actually controls the physical disk devices. This layer is tailored for
dealing with specific hardware components, abstracting hardware realities
into device independent services.

Distributed file system.

Device Independent Layer. The top most software layer of the disk server
processor code.

DMA

DSL

DS 1

DS2

FIFO

FSL

I/O

KByte

LFS

LRU

MByte

MFlop

MID

Direct memory access. The transputer utiiizes DMA circuitry to transfer
data between communication links and internal memory. This allows
communication and computation to occur in parallel.

Disk Support Layer. The lowest of the primary layers in the TASS
design. This acronym is additionally used to indicate the highest of the
secondary or component layers within the disk support layer.

Notation used to describe the first TASS disk server prototype.

Notation used to describe the second TASS disk server prototype.

First In, First Out. A cache replacement policy. Also, a term sometimes
used to describe queue operation.

A unit of measurement for processor cycles. Within this paper, one flop
is defined to be one double precision floating point multiplication and one
double precision floating point addition.

File System Layer. One of the primary software layers in the TASS
design.

A contraction for "input and output".

One kilobyte, which is 1,000 bytes.

Local file system.

The least recently used cache replacement algorithm. See also CRA.

One megabyte, which is 1,000,000 bytes.

One million flops.

Multiple Inexpensive Disks. A simple acronym to describe using multiple
inexpensive disks to substitute for more expensive disks (SEEDS).

A programming language.

Millisecond.

MSS Mass Storage Support.

MTTDL Mean Time To Data Loss. The average time between disk failures for all
instances of the same model of disk device.

MTTF Mean Time To Failure. The same as MTTDL.

ns Nanosecond.

PET Positron Emission Tomography. A medical process for providing 3D im-
ages of human anatomy.

PVI Positron Volume Imaging. One of the technique used in PET.

RAID Redundant Arrays of Inexpensive Disks. The concept involved in using
multiple inexpensive disks to provide the same I/0 bandwidth, storage
capacity and reliability that would normally be provided by large expen-
sive disk packs.

RAM

RAM1

RISC

Random Access Memory.

A RAM disk driver. This particular driver is implemented in confor-
mance to the device and services modularity used for all TASS disk
drivers. The driver utilizes bcopy() for transfers between the disk
(memory) and internal buffers.

A RAM disk driver. This driver is implemented independently of other
TASS disk drivers. The driver does not conform to the device and ser-
vices modularity used by other TASS disk drivers. Due to the speciality
of its implementation, there was no need to use bcopy() within the driver
software.

Reduced Instruction Set Computer. This is a style of processor design
which provides a very small, very efficient instruction set.

Itandom Overlqped. A type of data access pattern.

SCSi Bus Interface Controller. A chip desigried to piovide rnemory-
mapped SCSl bus control to hardware devices,

SCSI

SDTR

SGI

SGR

SLDf

SLED

SMI

SML

T222

T800

TASS

Small Computer Systems Interface. A standard proposed by ANSI for
providing device support to small computer systems.

Sustained Data Transfer Rate. The rate, in KByteshecond at which data
can be transferred between two endpoints, usually disk and main memory
for a client processor.

Sequential Global Irregular. A type of data access pattern.

Sequential Global Regular. A type of data access pattern.

Sequential Local Disjoint Irregular. A type of data access pattern.

Single Large Expensive Disk. An acronym for the traditional large disk
devices used in large scale computing systems.

Server message interface. The server side component of the client inter-
face layer.

Server message layer. Two software layers, one utilized in the cache
server code and the other a component of the client processor libraries.

A 16 bit transputer device.

A 32 bit transputer device.

Transputer Auxiliary Storage System. The software testbed used for
research within this thesis. Also, a Soviet information service known for
fast data absorption and inconsistent release.

WORM Write one, read many cache locking technique.

Bibliography

Advanced Micro Devices, Inc., Bipolar Microprocessor b g i c and Inter-
face Data Book, 901 Thompson Place, P.O. Box 453, Sunnyvale, Catifor-
nia, 94086 U.S.A., 1981.

American National Standards Institute, Small Computer System Irrte@ixe
(SCSI), New York, 1986.

M. Stella Atkins, Experiments in SR with Diflirent Upcall Program
Struciures, ACM Transactions on Computer Systems, Volume 6, Number
4, November 1988, pages 365-392.

M. Stella Atkins, and Yan Chen, Pe@orrnurzce of SUN-Transputer Inter-
faces: some surprises, Proceedings of the Transputing '91 Conference,
IOS Press, pages 124- 138, April 199 1.

M. Stella Atkins and Mark Mezofenyes, Sorting Lcrrge Files on a Trarr-
sputer Nefwork, Transputer Research and Applications 5, The Procecd-
ings of the 5th North American Transputer Users Group, IOS Press, 1992.

Maurice J. Bach, The Design of the Unix Operating System, Prentice-Hail
Inc., Englewood Cliffs, New Jersey 07632, U.S.A., 1986.

Hugh Bawtree, Restructuring the Run-Time Support of a Distribufed
hnguage, MSc. Thesis, School of Computing Science, Simon Fraser
University, Burnaby, B.C., Canada, November 199 1.

Eric J. Berglund, An Introduction to the V-System, lEEE Micro, August
1986, pages 35-5 1.

David R. Cheriton, The V Kernel: A Sofnvcrre Buse for Distribuied Sys-
tems, IEEE Software, April 1984, pages 19-42.

David R. Cheriton, The V Distributed System, Communications of the
ACM, Voiume 3 1, Sumber 3, arch i 988.

D. D, Clark, The Structuring of Systems Using Upcalls, Proceedings of
the 10th Symposium on Operating Systems Principles, ACM, New York,
1985, pages 171-180.

Douglas Comer, Operating System Design, The XINU Approach,
Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632, U.S.A., 1986.

Computer System Architects, Part.6 Part.7, Part.8, and Part.12 Users'
Manuals, Computer System Architects, 950 North University Avenue,
Provo, Utah, 84604, U.S.A., June 1989.

Computer System Architects, Logical Systems C for the Transputer: Ver-
sion 89.1 User Manual, Computer System Architects, 950 North Univer-
sity Avenue, Provo, Utah, 84604, U.S.A., June 1989.

W. S. Avis, P. D. Drysdale, R. J. Gregg, M. H. Scargill, Canadian Senior
Dictionary, Gage Publishing Ltd., Vancouver, British Columbia, Canada
1979.

Peter C. Dibble, A Parallel interleaved File System, PhD. Thesis, Dept. of
Computer Science, University of Rochester, March 1990.

Timothy J. Dudra, M. Stella Atkins, An Auxiliary Storage System for
Transputer-based Multicomputers, Transputer Research and Applications
5, The Proceedings of the 5th North American Transputer Users Group,
10s Press, 1992.

Rick Floyd, Short-Term File Reference Patterns in a UNIX Environment,
Report TR 177, Computer Science Department, University of Rochester,
March 1986

Garth A. Gibson, Lisa Hellerstein, Richard M. Karp, Randy H. Katz and
David A. Patterson, Failure Correction Techniques for Large Disk Ar-
rays, Proceedings of the 1989 ACM Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Pages
123-132, April 1989.

Mark D. Hill, A Case for Direct-Mapped Caches, IEEE Computer, Pages
25-40, December 1988.

[How 871 John H. f-Iowsd, Michael L. ,Yam, Sherri G. Menees, David A. N!cho!s,
M. Satyanarayanan, Robert N. Sidebotham and Michael J. West, Scale
and Peflormance in a Distributed File System, Proceedings of the 1 Ith
Symposium on Operating Systems Principles, ACM, New York, 1987.

Kai Hwang and Faye A. Briggs, Computer Architecture and Parallel Pro-
cessing, McGraw-Hill Book Company, Toronto, Ontario, 1984.

Inmos Ltd., Transputer Data Book, 2nd Edition, 1000 Aztec West, Al-
mondsbury, Bristol, BS12 4SQ, U.K., 1989.

David Kotz, Prefetching and Caching Techniques in File Systems for
MIMD Multiprocessors, PhD. Thesis, Dept. of Computer Science, Duke
University, 199 1.

L. W. McVoy and S. R. Kleiman, Extent-like Perjiormance from a UNIX
File System, Proceedings of the USENIX Conference, Winter 199 1.

Joseph P. Moran, SunOS Virtual Memory Implementation, Proceedings of
the European UNIX User's Group, April 1988.

Michael N. Nelson, Brent B. Welch, John K. Ousterhout, Caching in the
Sprite Network File System, Proceedings of the 11th Symposium on
Operating Systems Principles, ACM, New York, 1987.

John K. Ousterhout, Andrew R. Cherenson, Frederick Dougiis, Michael
N. Nelson, and Brent B. Welch, The Sprite Network Operating System,
IEEE Computer, February 1988.

David A. Patterson, Garth Gibson and Randy H. Katz, A Casefi~r Redun-
dant Arrays of Inexpensive Disks (RAID), Proceedings of the 1988 ACM
Conference of the Special Interest Group on Management Of Data (SIG-
MOD), ACM Press, Pages 109-1 16, June 1988.

James L. Peterson and Abraham Silberschatz, Operating Systems Con-
cepts, 2nd Edition, Addison-Wesley, Don Mills, Ontario, Canada, 1985.

Russell Sandberg, et al., Design and Implementation of the Sun Network
Filesystem, Usenix, June 1985.

Martin E. Schulze, Considerations in the Design of a RAID Prototype,
Report Number UCBKSD 881448, Computer Science Division, Universi-
ty of California, Berkely, California, 94720, U.S.A., August, 1988.

Jaswinder Pal Singh, Harold S. Stone, Dominique F. Thiebaut, An
Analytical Model for Fully Associative Cache Memories, IBM Thomas 9.
Watson Research Center, Yorktown Heights, New York, 1988.

Aian J. Smith, Sequential Program Prefetching in Memory Heirarchies,
IEEE Computer, pages 7-21, December 1978.

Alan J. Smith, Cache Memory Design: An Evolving Art, IEEE Spectrum,
pages 40-44, December 1987.

William Stallings, Data and Computer Communications, Second Edition,
Macmillan Publishing Company, 866 Third Avenue, New York, New
York, 10022, U.S.A, 1988.

Harold S. Stone and John Turek, Optimal Partitioning of Cache Memory,
IBM Thomas J. Watson Research Center, Yorktown Heights, New York
10598, 1989.

Texas Instruments, TMS320C40 User's Guide, 2564090-9721 revision A,
May 1991.

Dominique F. Thiebaut and Haroid S. Stone, Improving Disk Cache Hit-
Ratios through Cache Partitioning, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York 10598, 1989.

John Wilkes, DataMesh - Scope and Objectives: a Commentary,
Hewlett-Packard Computer Systems Center, Balo Alto, California, July
1989.

John Wilkes, The DataMesh Research Project, Proceedings of the Tran-
sputing '91 Conference, IOS Press, April 1991.

Cui-Qing Yang and YaoShuang Qu, Supporting Communications in a
Transputer Distributed Environment, Transputer Research and Applica-
tions 5, The Proceedings of the 5th North American Transputer Users
Group, IOS Press, 1992.

