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ABSTRACT 

To build a natural language interface that accesses relational databases, it is impor- 

tant to analyze the underlying databases in order to provide a semantic representation 

of the relations and attributes in them, so that the natural language interface has the 

knowledge about the semantic structures of the databases. We need to make clear 

many kinds of relationships among attributes of relations, so that when forming a 

relational query corresponding to a natural language query, we can connect attributes 

and relations correctly and systematically. Among those kinds of relationships be- 

tween attributes, functional dependencies and the synonym relationship of attributes 

are most important and have direct impact on matching natural language expressions 

to relational queries. 

In this thesis, we study different strategies and methods to extract such knowledge 

and information from relational databases. Algorithms are designed and presented 

to extract functional dependencies and synonyms from unnormalized relations. The 

algorithms use information retrieved from data dictionaries, and learn from the data. 

Extracting these relationships is useful for discovering semantic connections among 

attributes and relations so that a natural language interface will have the knowledge 

about the structure of the underlying databases it requires to interpret its input. Our 

algorithms discover those functional dependencies that organize at tributes within a 



relation, as well as the synonymity among attributes which correlates different rela- 

tions. Two algorithms for functional dependency extraction and synonym matching of 

attributes were implemented and the results of testing and analysis of the performance 

of these algorithms are presented. 
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CHAPTER 1 

INTRODUCTION 

Much research has been carried out in the area of querying relational databases with 

natural languages. To build a natural language interface to a relational database, 

we first require a parser to translate a natural language query into an internal form 

of representation in terms of the schema of relations in the database and relational 

operations such as JOIN, SELECT, PROJECT, etc. We then use the internal rep- 

resentation to query the database after suitable translation into the language of the 

DBMS, and transform the query result into natural language expressions[l, 5, 11, 31. 

In translation from natural language expressions to relation based internal forms, one 

important item is to analyze the schema of the relations, or more precisely, we must 

determine the structures of the relations, the relationship among attributes inside a 

relation and among different relations, so that the natural language interfaces have 

the domain knowledge and know what kinds of internal structure they are going to 

translate. 
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Relational databases are organized into relations with attributes defined in each 

relation. Usually, a relation represents a real world entity, and its at tributes represent 

the characteristics of the entity. There are some relationships among attributes in a 

relation and between different relations in a database. These relationships represent 

how components of the real world entities are correlated. The problem we need to 

solve is to extract the relationships between attributes in relational databases in order 

to form a semantic structure for their relations. 

1.1 The Task 

Many relationships exist among attributes within a relation and among attributes 

belonging to different relations in a relational database. A relational database is 

designed on the basis of functional dependencies. A functional dependency (FD) is 

a restriction on a relation; a formal definition is given in Appendix A. Research in 

[13] showed that knowledge of FDs in a database is important for interpreting natural 

language expressions which refer to the relationships represented by those FDs. So 

one important relationship between attributes we need to extract is FDs. 

The Synonymity of attributes belonging to different relations is the key factor per- 

mitting the natural join of the relations. We define that two attributes are synonyms 

if they can be logically compared in a natural join condition. In a relational query 

which specifies a natural join, the attributes in the join condition are synonyms; this 

synonym relationship between attributes is explicitly specified. It is the user's respon- 

sibility to know that the attributes are synonyms in order to correctly specify the join 

operation. For a natural language query, the natural language interface must form a 
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relational query automatically according to the intent of natural language expression. 

It is the system's responsibility to determine which relations should be involved and, 

if a join has to be formed, on which attribute pair the join should be applied. Thus we 

must determine the synonyms for attributes. The synonym relation is another type 

of relationship we need to extract. 

One may assume that these relationships should be specified by the database 

designer. In addition to the design work, the database designer may also provide 

documentations of his products. This provide us two ways to get the relationship 

information when we need it: ask the original database designer or refer to the product 

document at ion. 

Sometimes the above access methods are not available. Usually database products 

were often designed for performance, not purity of functional specifications, thus re- 

sulted in poor design; a database could deteriorate with modification; many databases 

are designed with no explicit FD specifications; and, knowledge we require is not al- 

ways available in system documentations. Thus we would need to do some analysis 

on relations and data in the database. We would like to have some automatic utilities 

extract useful information from the data to help discover the required information. 

An older, well used database usually has large amount of and persistent data. Analy- 

sis of the database will provide interesting and useful information, if we do not make 

use of them for our task, we waste resources available to us. For this reason, we will 

work on large, ofter older, poorly documented databases. 

From the theory of relational databases, we know relations should be designed and 

normalized to Third Normal Form (3NF) or Boyce/Codd Normal Form (BCNF) or 

higher [lo,  301, in order to remove redundancy and update anomalies. If a relation 
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was normalized to 3NF or higher, its only functional dependencies are those from 

its keys to non-key attributes. This aspect is recorded in the data dictionary of 

the database management system and is accessible on-line even if there is no written 

documentation for it. But for actual relational databases in use, relations usually were 

not normalized to 3NF. From our experience and observation of designing relational 

databases, designers sometimes conveniently put attributes into a relation without 

worrying about normalizations for the sake of better performance, or even do not 

think about functional dependencies other than to identify the keys. For a mature 

relational database, it may not have been constructed and decomposed into 3NF or 

higher. Especially for older applications, the relation may be specified in First Normal 

Form (1NF) and the FDs may not have been considered in the original design, or the 

FDs are not clear; implicit FDs are only expressed in the use of the database by 

convention. When new relations are added to the database, not all relationships 

between the new and the old relations can be found or organized, so attributes with 

the same meaning may have different names. 

To extract proper relationships among attributes from these databases is more de- 

manding. They require new views of themselves for correct and efficient use, because 

it was poorly structured. The large amount of relatively static data also provide us 

a better environment to extract more information. While it is tedious for humans 

to analyze such data, an automatic information extraction or knowledge discovery 

mechanism will help. For our task of extracting FDs and synonym relationship from 

relational databases, we will consider relations in First Normal Form. No documenta- 

tion or semantical information resources are assumed available except for the data in 

the relations and the data dictionary, which exists in the RDBMS. No name conven- 

tions are assumed, i.e., attributes with the same name are not definitely synonyms, 
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nor are synonyms necessarily named the same. 

1.2 The Thesis Structure 

This thesis is organized into five chapters. We introduce in Chapter 2 areas related 

to  our topic, such as the natural language interface for relational databases known as 

SystemX[3], strategies used for knowledge discovery, and data analysis techniques. In 

chapter 3, we discuss methods for extracting FDs from relational databases, then we 

provide a synonym matching algorithm in chapter 4. The algorithms implementation 

description and testing results are given in the Appendixes. We provide concluding 

remarks, summonizing our accomplishments, and propose further work in chapter 5. 



CHAPTER 2 

RELATED WORK 

In this chapter we present background information related to our work. We describe 

SystemX in Section 2.1, for which our extraction system is intended. In the next 

section, we study the area of knowledge discovery in relational databases since our 

problem belongs to this category. 

2.1 SystemX 

SystemX [3, 61 is a natural language interface to relational databases under develop- 

ment at  Simon Fraser University. At present, SystemX translates English into the de 

facto standard relational database manipulation language SQL. Figure 2.1 (from [3]) 

gives a graphical representation of the system. 

The system consists of a set of modules that create a canonical query representation 

according to the input natural language expression. A second set of modules then 
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translate the canonical form into a logical form and then into SQL. The SQL form 

is used to query the database. The canonical query representation represents terms 

in the natural language expression by objects in the underlying database queried and 

relational operations, as well as quantifiers. 

A natural language expression is first transformed into a parse tree organized ac- 

cording to the language syntax structure of the expression. The semantic interpreter 

transforms the parse tree to the canonical form in terms of database structures and 

relational operations. Thus it needs domain knowledge pertaining to the underlying 

database schema. In addition to the domain knowledge built in the semantic lexi- 

con, SystemX requires the Pathfinder[l3] subsystem to assist in making appropriate 

transformations. When the semantic interpreter receives a parse tree as its input, it 

matches nodes of the parse tree to the database. The leaf nodes are matched to the 

names of the database relations and attributes. The interpretation of a nonleaf node 

often requires establishing the relationship between attributes corresponding to the 

heads of its subtrees. This relationship corresponds to an access path to the database. 

Thus, an access path to connect its subtrees must be found. Usually many possible 

access paths exist. Pathfinder is used to select one that contains the most cohesive 

relationship between the given set of attributes using a semantic model known as a 

join graph whose construction is based almost exclusively on FDs. 

Pathfinder [13] generates access paths from the join graph whose nodes represent 

database objects such as relations and attributes, and whose represent relationships 

among those objects. The relationships have significant matching pattern in natural 

language expressions because they model real world relationships to which those ex- 

pressions refer. As stated in [3], "a database scheme represents relationships between 
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entities in the world because database designers represent dependencies that exist be- 

tween entities by dependencies between the database attributes that denote those enti- 

ties". Expressions in natural language queries refer to these real world dependencies. 

[13] defined five types of database dependencies for Pathfinder. The first and the 

most significant one is the functional dependency, as stated in [13], "The relation- 

ships between entities in the world which correspond to functional dependencies in 

the database are most likely to be referred to b y  simple natural language expressions", 

p.44. Other types of data dependencies like co-dependency and coincidental depen- 

dency are derived from functional dependencies, thus the FD relationship between 

attributes is the most important relationship for Pathfinder. 

Another goal of SystemX is that it be easily portable among different databases. 

Each natural language interface is built to access a specific database because it needs 

domain knowledge about the application database. Some automated knowledge dis- 

covery utility should be incorporated to SystemX. This thesis discusses methods and 

algorithms to extract knowledge from relational databases, which facilitate the mi- 

gration of natural language interfaces to new database applications. 

2.2 Knowledge Discovery in Databases 

Our work is closely related to knowledge discovery in relational databases. In this 

section we discuss knowledge discovery issues in databases. 
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2.2.1 Overview 

[12] gives a thorough overview of the area of knowledge discovery in databases. Ac- 

cording to  this article, knowledge discovery is the nontrivial extraction of implicit, 

previously unknown, and potentially useful information from data. It has four main 

characteristics: discovered knowledge is represented with a high-level language; dis- 

coveries are accurate or measured with certainty; results are interesting according to 

user-defined biases; and the discovery process is efficient. For the last characteristic, i t  

noted that most knowledge discovery problems are intractable (NP-hard), so problem 

domain constraints are specified, or solutions apply only to problems in special cases. 

Knowledge discovery in relational databases include techniques to extract informa- 

tion from data. Data in relations is analyzed for classification, pattern identification, 

summarization, and discrimination, etc. Interesting regularities are found and de- 

scribed as results if they are related to the interests of users. When the amount of 

data is huge, statistical methods should be used to select appropriate data. Statistics 

are also used to measure the certainty of discovery. 

An RDBMS can provide us with useful utilities in knowledge discovery, such as 

the data dictionary. The data dictionary is used to store descriptions about relations 

and attributes in a database. Discovery processes use the data dictionary to retrieve 

domain knowledge about the problem. 

Most knowledge discovery systems extract regularities from data in databases. 

Some knowledge discovery systems work vertically on data in a relation, such as for 

discovering data distributions or classifications for at tributes. Some systems work 

horizontally to extract relationships among attributes. In the latter case, vertical 
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data analysis is always required. In some systems, tuples in a relation are clustered 

and rules for each cluster are discovered. In more sophisticated systems, general rules 

for attributes, or rules for the rules in each cluster are generalized. FD-extraction 

requires a system to find generalized rules for attributes because an FD restriction 

applies to  not only a portion or cluster of tuples, but all values of attributes involved. 

Some successful knowledge discovery systems include FORTY-NINER[34], INLEN[17], 

DBLearn[S, 21, as well as systems described in [32, 27, 7, 351. 

2.2.2 Existing FD-extraction systems 

The FD represents the relationship between attributes in a relation, the data in the 

relation conforms to the FD constraints. Thus vertical data analysis is required to  

extract the relationships. Horizontal analysis of the extraction result is also required 

because the FD is an attribute relationship. 

Few systems exist for FD-extraction. [23] described a knowledge discovery system 

which can be used to detect the FD relationship between attributes. This system 

constructs a lattice based on tuples and attribute names. A lattice is an acyclic 

directed graph in which every pair of nodes has a least common superior and a greatest 

common subordinate and these are necessarily unique. All values appearing in tuples 

and all tuples are constructed into the lattice. For example, a relation r (A ,  B, C, D, E) 

with two tuples and their values as u ( a ,  b, c, dl e) and v(al, b, c, dl, e'), its lattice is 

shown in Figure 2.2. In this way a lattice is created for a relation. Tuples with the 

same values for some of their attributes are connected with intermediate nodes, so 

relationships reflected in the values can be extracted by further analysis on the lattice. 
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u v 

Figure 2.2: Lattice for a sample relation 

Although the lattice analysis approach is not originally designed for the goal of 

FD-extraction, we can see that the FD relationships are represented in a lattice for 

a relation. In the example in Figure 2.2, any attributes of A, D, or E cannot be 

functionally determined by B or C because value b and c formed an intermediate 

node in the lattice. The problems with this method are that it uses all domain 

values and tuples in a relation to construct the lattice, which is not practical for large 

relations; and the relationship between tuples or attributes represented in the lattice 

structure is purely based on values, without any prior guidance in choosing the data, 

this will make the lattice complicated to analyze for FD relationships. 

There is another system for assisting database design processes, for which a sub- 

system is dedicated to extracting functional dependencies, as described in [18]. The 

main task of the subsystem is to extract FDs from testing data, the extraction results 

are used as feedback for database design. It focuses on updating the set of existing 

FDs when new testing tuples are added. The existing FD set is created by checking 

the data according to FD definition. No semantic analysis is provided. 

In our FD-extraction system to be discussed, we will use the similar method as 

in [18] to extract FDs implied by data in a relation, and do semantic analysis on the 

implied FDs. 



CHAPTER 2. RELATED WORK 

2.2.3 Data clustering 

Some knowledge discovery systems discover knowledge using data analysis to extract 

interesting patterns or regularities from the data. Some use statistical approaches to  

sample data for analysis, and the regularities or rules found bear probabilities; some 

systems classify data into clusters, and check for regularities for each cluster. Various 

data analysis approaches are described in [4, 7, 8, 9, 14, 16, 23, 28, 32, 351. Here we 

describe a data clustering method introduced in [15], which also organizes clusters 

into a hierarchical structure. Based on this idea we will create attribute hierarchies 

according to FDs implied in a relation, thus get a well organized FD set. 

The data clustering method tries to cluster a set of nodes; each step clusters several 

nodes together. The intermediate result consists of a level of a hierarchy. The final 

result will be a hierarchical structure of the set of nodes. For a set of nodes with a 

metric representing distance values between each pair of nodes, we want to organize 

the nodes into hierarchical clusters according to the distances. At first, each node is 

a cluster and the set of original clusters constructs the lowest level in the hierarchy, 

then clusters close to each other are grouped into new clusters to form another level 

in the hierarchy. The process is repeated until all nodes are included in a final top 

level cluster. 

Take an example in [15], a set of nodes (1,2,3,4,5,6) with its distance matrix as 

shown in Table 2.1. We use d(m, n) to denote the distance between nodes or clusters 

m and n. Thus, from Table 2.1, we have d(1,2) = .3l, d(3,5) = .04, etc.. 

The first cluster is (3 5) because with d(3,5) = .04, they are the pair closest to  

each other. Then the distance between the new cluster and other nodes should be 
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Table 2.1: Distance matrix for a set of nodes 

Table 2.2: Distance matrix after two steps of clustering 

adjusted. Fortunately, node 3 and node 5 have the same distance to all other nodes, 

so the distance value from the new cluster to others are not altered and the semantic 

meaning of the distance is still preserved. 

Then we found that the closest clusters are (3 5) and 6, with d((3 5), 6) = .07, so 

we get another cluster (3 5 6). We also see that distances between this new cluster 

and remaining nodes need not be altered. Now we have Table 2.2. 

From Table 2.2, we see that (3 5 6) should be clustered with node 1, and node 2 

and 4 should be clustered together at the same time. Finally, we merge the last two 

clusters (1 3 5 6) and (2 4) together. We have the cluster hierarchy in Figure 2.3. 

The key to  the process we just described is being able to replace two (or more) 

objects by a cluster, and still being able to define the distance between such clusters 

and other objects. The semantics of such a hierarchy depends on applications, and 

the metric used and the function for distance adjustment after creating a new cluster 



CHAPTER 2. RELATED W O R K  

............................... (1 2 3 4 5 6) level 5 

........................ (1 3 5 6) (2 4) level 4 

................ (1) (3 5 6) (2) (4) level 3 

............ (4) level 2 

............ (1) (3) (5) (6) (2) (4) level 1 

Figure 2.3: A hierarchical clustering scheme 

should conform to the semantics. Different functions exist for distance adjustment 

depending on different applications, such as 

d ( ( x  Y ) ,  2) = m W ( x ,  4, d(Y, 4) 

for adjusting the distance between object z and a new cluster ( x  y).  The semantics 

for the two functions are different. 

When we apply this method in data analysis or synthesis, we should select a mean- 

ingful metric and distance calculation function, as mentioned in [B], or the semantics 

of the cluster hierarchy is not clear. 



CHAPTER 3 

EXTRACTING FDS FROM 1NF 

3.1 Extracting Implied FDs from Data 

Definition 3.1 For a relation R and two attribute sets A and B of R, if the functional 

dependency A -+ B is satisfied b y  the current tuples in R, this relationship between A 

and B is called an implied FD for A and B and R with current tuples. 

Since most of the time the FD-extraction algorithm we discuss deal with implied 

FDs, we will still use the symbol t to denote implied FDs, i.e., A -+ B should be 

considered as an implied FD unless stated otherwise. 

An implied FD may not be a true FD for the relation. That is, a relation which 

satisfies the FD condition for two sets of attributes does not mean that the FD is 

defined for the relation. But every FD defined for a relation must be an implied FD 

for that relation at any moment. Notice that all characteristics of FDs expressed by 
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axioms in Appendix A also apply to implied FDs. 

To extract implied FDs, we just need to check the data by the FD definition. 

However, we have to check all tuples in the relation before we can make a decision. 

For a set of attributes A and two attributes X and Y, A + X Y  implies A + X 

and A + Y, and vice versa. To simplify the combinations of the determinee for an 

FD, we consider FDs in the form that the determinee contains only one attribute. 

In order to simplify the determinants of FDs, we will consider only full FDs as well 

as full implied FDs, thus A B  + C will not be extracted if we already have A + C. 

Trivial FDs like X Y  + X are always held by any relation, thus we eliminate trivial 

FDs in our extraction. 

3.1.1 Sorting method 

The basic method for extracting implied FDs from data is the sorting method. For 

a given relation with U as its set of attributes, we try to find all determinees for a 

set of attributes A C U .  First we record U - A as the candidate set of determinees, 

and sort the tuples in the relation according to the values for A. Then we go through 

the sorted relation as follows: for an attribute X in the candidate set, if we find two 

consecutive tuples with the same values for A but not the same values for X ,  we 

remove X from the candidate set. After we reach the end of the data, any attribute 

Y left in the candidate set will be recorded as an implied FD A -t Y. 

In a naive algorithm based on the sorting method, we need to consider all possible 

combinations of attributes in U except for U itself to form the possible determinant 

A. Because we consider the implied FDs in a form in which the determinee is a single 
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Input: Relation R with n tuples, and the set of attributes U for R. 

Output: The set of implied FDs. 

Method: 
C = the set of all combinations of attributes from U except U; 
for each A E C 

sort the tuples in R according to values for A; 
implied(A) = U - A; 
for i = 2 t o n  do 

for any X E implied(A) do 
if (tuple[i - 1](A) = tuple[i](A)) and 

(tuple[i - 1](X) # tuple[i](X)) 
implied(A) = implied(A) - X ;  

if implied(A) is empty 
break; 

for each X left in implied(A) 
record A -t X as an implied FD; 

end. 

Figure 3.1: A naive algorithm for FD-extraction 

attribute, we do not worry about combinations for the determinees. 

The naive algorithm based on the sorting method is outlined in Figure 3.1. 

In the naive algorithm, tuples are labeled from 1 to n as in an array, tuple[i](A) 

represents the value of ith tuple in the relation for attribute set A. For example, in 

the following relation: 
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Currently, tuple[l](W, X )  = (5, lo), tuple [3] (2) = 20. We say "currently" because the 

labeling for tuples may change after we sort on them and swap some tuples. Some of 

the implied FDs are: 

3.1.2 Complexity of the naive algorithm 

The naive sorting algorithm is only useful for time complexity analysis. 

Suppose we have m attributes and n tuples for a relation R. Consider the combi- 

nations of attributes, there are CA combinations with one attribute, C i  combinations 

with two attributes, . . . . Thus the total number of combinations are C i .  For 

combination A with p attributes, there are m - p attributes originally in A's determ- 

inee candidate set, or in implied(A) in the naive algorithm of Figure 3.1, each, in the 

worst case, needs to compare n - 1 tuples. So for all combinations with p attributes 

(Ck combinations all together), we need 

comparisons. 

Each combination of attributes requires sorting on it, we need to perform sorting 
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C:;' C i  times, each sorting needs O(n log n )  in time. The total sorting is 

m-1 

C CL - O(n log n )  
i=l 

We can calculate the time complexity T for the naive algorithm as: 

m-1 
= (2m - 2 )  . O(n log n )  + (n  - 1 )  . C; . ( m  - i )  

i=l 
(3.1) 

m-1 

TO calculate the last factor C C i  . ( m  - i )  in (3.1), let 

reverse the right side of the equation and add both sides to themselves: 

2s = CA(m- l )+C; ( rn -2 )+  . . .+ C 2 - ' ( r n - ( m - l ) )  

+ Cz- ' (m-  ( m -  1 ) )  +C:-2(m- ( m - 2 ) )  + ...  +CA(m - 1 )  

because CG = C,"-" 
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Substitute this into (3.1): 

m 
T = (2" -2)-O(n1ogn)  + (n - 1 ) .  -(2" - 2 )  

2 

We determine the time complexity as: 

T = O(n . (log n + m/2) - 2") (3.2) 

We see that the algorithm will need exponential time with respect to the number 

of attributes, m, in the relation. This is not a big problem if we work on relations 

with small number of attributes. In practice, the number of attributes in a relation is 

usually limited (10 or 15 attributes in a relation is usually considered as too many) 

so that it will not cause major problems to use the algorithm. 

We are usually interested in only full functional dependencies. To repeat, a full 

FD A -t B for a relation R is that A -t B holds on R but (A - C) -+ B does not hold 

on R for any C C A. Consider full FDs for a relation, the number of attributes in 

the determinants of any FD is limited. That means if we can estimate the maximum 

possible number of attributes that any full FD can have on its left side, we can use 

that number to limit the number of combinations of attributes for checking. This will 

reduce the factor 2" in (3.2) above. 

Suppose we estimate k as the maximum number of attributes that any full FD can 

have as determinants, the naive algorithm will only consider c!=, Ck combinations. 

Get it back to (3.1), the time required by the naive algorithm will be: 
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We calculate the last factor of (3.3). 

Let 

Let 

divide x from both side of (3.4) 
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the last factor is 2G(x). So we have 

We can see that G ( x )  is S when x = 1. So we have 

m ( m - 1 )  m - k  m k  
- - 

2 + T c ; + Z x c ;  i=2 

because 

and from k I: m - 1 ,  we have 

Combine the above with (3.6), we have 

Now we substitute S into (3.3) 

or the time complexity is: 

k + l  , 

O(n . (logn + m / 2 ) .  x C;)  
i = l  
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From (3.7), we can see that a small change of k would cause greater change of the 

result, and the change happens drastically when k is around m/2. That means if we 

think k is around m/2, we should estimate k more carefully because, at that point, a 

small decrease of k will save a large amount of time for the algorithm. 

In the time complexity of (3.2) or (3.7), n is also a factor which cannot be ignored. 

Because we work on large databases, the number of tuples in a relation may be huge. 

If a relation contains 1,000 tuples, even a polynomial time algorithm of 0 (n2)  will 

cause a million of steps of computation. In the naive algorithm, because the number 

of attributes, or m, is limited in practice, it could have better performance compared 

to an 0(n2)  algorithm when n is large. In (3.2), if m is limited and n is large, 2" 

would not increase as fast as n, so n2 would be larger than 2" . n when n reaches 

some value. This means, n becomes a deterministic factor when the relation has large 

number of tuples. 

If we work on very large relations, the time consideration forces us to work not 

on all tuples, but part of them. We would select tuples by random method, or with 

some well-defined criteria. Determining such criteria requires further study. By this, 

we cannot guarantee that all resulted FDs are implied FDs for the relation, but we 

can be sure that all correct implied FDs are included in the result. 

3.1.3 A modified algorithm for extracting implied FDs 

Starting from the naive algorithm, we can make some modifications to reduce the 

time of computation. We will not create all combination of attributes initially, but 

compute one combination at a time, then check the data for it, then create another 
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combination, and go on. 

First we select attributes which must be checked out as candidate determinants. 

Those single attributes defined explicitly as keys are removed for consideration. But 

if multiple attributes together are defined as a key, we should still include them 

individually because each of them could determine other attributes. 

For those selected attributes, we order them into a sequence either using the 

sequence which are found in the relation schema or a sequence that place one with 

more variation of values. We check data in rounds. For the first round, we take each 

single attribute as a candidate determinant, and check the data to see if the candidate 

functionally determines any other attributes. The next round, we form new candidates 

by adding a single attribute to the candidates already checked out. Each following 

round adds one more attribute to form new candidates, until we reach a threshold. 

The threshold is the maximum number of attributes permitted in the determinants of 

any full FDs. For example, suppose we have five attributes, A, B, C, D,  and E, in a 

relation, and we have decided that any full FD would have at  most three attributes in 

the determinant. The order of sequence is taken as their natural appearance, i.e., A is 

the first, B is the second, and so on. For each round, we have possible combinations 

of attributes as follow: 

round 1: A, B, C, D,  E 

round 2: AB,AC,AD, AE, BC, BD,  BE, CD,  C E ,  D E  

round 3: ABC,ABC,ABE,ACD,ACE,  ADE, B C E ,  BCE, B D E , C D E  

We stop at  round 3 because the next round will exceed the threshold. 
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At each round, we check the candidate determinants from left to right in the se- 

quence. Each candidate determinant will have a candidate set of dependents. Initially, 

for the above example, A will have {B, C, D, E }  as the candidate set, and B will have 

{ A ,  C, D, E}, . . . . 

For each round, we don't have to check all possible determinees in a candidate set 

for a possible determinant, and we don't have to check all the possible determinants. 

For example, if by checking determinant A, we found A + C D  is an implied FD, then 

in checking combination B, we found B + A, then we don't have to check B + C D  in 

the data because A + C D  and B + A imply B --t CD. This lets us remove C D  from 

B's candidate set. In general, we create an ordered sequence on the attributes, and 

check the determinants in order. For each determinant, we divide its candidate set into 

two parts, the former part contains those attributes positioned before all attributes in 

the combination with respect to the order, and the rest is the latter part. For example, 

for combination BD, its candidate set could be ACE, then the former part would be 

A because A proceeds B and D in the order, and the latter part would be CE .  We 

check the former part first, then see if any attribute can be removed from the latter 

part. This is because when we check determinants in order, the determinants in the 

former part have been checked before we start checking the present combination, so 

after we checked the former part, we can use the transitivity characteristic of FDs to 

infer some determinees in the latter part and those determinees need not be checked 

in data. 

For example, in the first round, if the present determinant is B, its candidate set 

is ACDE, its former part is A and latter part is CDE. When checking against its 

former part, we may find B + A. Because the determinants of its former part have 
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been checked, we may already have A -t C and A -+ D, so we can use it to reduce 

the latter part to E, and we need only to check if B -t E holds on the data. 

We can do something to reduce candidate determinants too. In the first round, 

all single attribute candidate determinants are checked, these candidate determinants 

cannot be removed because each single attribute could functionally determine some 

other attribute set. In the first round, we try to find all implied FDs for each single 

attribute determinant. After this step we divide the candidate set for each known 

determinant into two parts. We call the part that is functionally determined by the 

determinant the determined part and the others the remaining part. Now we should 

make candidate determinants with one more attribute added to an already precessed 

candidate determinant. The attribute we select to combine with the processed deter- 

minant is from the original candidate set of determinees for that determinant because 

initially, in the first round, all attributes in the relation except the combination at- 

tribute is in the candidate set. The following corollary tells us that we can select only 

from the remaining part of the candidate set without losing any implied FD to be 

found. 

Corollary 3.1 Given a relation R with attribute set U ,  with A as a subset of U .  For 

any attribute B E A+, we have (AB)+ r A+. 

A+ is the FD closure of A, i.e., the set of attributes in U that functionally determined 

by A. Proof of the corollary is simple. Because A -, C j A B  -t C, which means 

A+ C (AB)+,  and for any A B  + C, we have: 

A +  B ( B E  A+) 

AA + A B  ( Augmentation ) 
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so A + C ( Transitivity ) 

So (AB)+ C A+. Thus (AB)+ - A+. 

Back to our algorithm, we're going to make a new candidate determinant by 

selecting one attribute from the candidate set and combining it with the original 

determinant. Because in the candidate set, the determined part is actually the FD 

closure of the original combination, selecting attributes from that part will make a 

determinant whose determinees are already known. So we can remove the determined 

part and choose attributes only from the remaining part for new combinations. 

For example, for a relation with attribute set {A, B ,  C, D, El F, G), {A) is a com- 

bination in the first round, its candidate set is {B, C, D, El F, G). After checking the 

data, we found implied FDs A -t B E F ,  then {B, El F )  is the determined part of 

{B, C, D, E, F, G) and {C, D, G) is the remaining part. Then we know combinations 

like {A, B) ,  {A, E) ,  or {A, F )  will functionally determine nothing more than at- 

tributes in {B, E, F) u {A), the A+. In order to find new implied FDs, we don't need 

to include such combinations for further data checking. So we will create combinations 

{A, C), {A, D),  and {A, G) for the next round consideration. 

The above phenomenon is not confined only to the first round, because in the 

axiom, A is any set of attributes, not just a one-attribute set. That is, for any deter- 

minant and its candidate set, it is not necessary to check the candidate determinee 

formed by combining the attribute with the original determinant. The precondition 

is, of course, we should first find all implied FDs for the original combinations. 

In conclusion, to each combination is attached a candidate set consisting of at- 

tributes which could be determinees of the combination. The candidate set is divided 
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into f o r m e r  part and l a t t e r  part with respect to the order of sequence defined on at- 

tributes, this partition is used to check the data for determinees for the combination. 

After data checking for the combination, the candidate is divided into d e t e r m i n e d  and 

remaining part, which is used to form new combinations for the next round. The first 

partition may reduce the time used to check data, the other partition may reduce 

the number of combinations for further consideration. The preconditions are that an 

order is defined on attributes and combinations are checked according to the order, 

and at the first round an attribute should have all other attributes in its candidate 

set so that it need to select attributes only from its candidate set in order to make 

new combinations. 

Now we give the complete algorithm. In the algorithm below, input T is the max- 

imum number of attributes any full FD for this relation can have in its determinant. 

The algorithm will output other information as count() and weight() values, which 

will be explained in later sections. 

The algorithm invokes subroutine check(X, Y), whose function is to check through 

the tuples in the relation to find out implied FDs from X to any attributes in Y. The 

found implied FDs then are recorded in a global list. The method used is similar in 

the naive algorithm. 

The algorithm for the calculation of FD closures is from [30]. 
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Input: Relation R with n tuples, the set of attributes U in R, and a threshold T. 

Output: Implied FDs and count() and weight() values. 

Met hod: 

1. remove attributes that are keys by themselves from U, assign a sequence number 

to  each attribute in U with its natural appearance order in R. 

2. initialize C, the set of attribute combinations, and their candidate sets. 

2.1 C = empty; 

2.2 for each A E U 

candidate({A)) = U - {A); 

add { A )  into C;  

3. round = 1 /* start from the first round */ 

4. checking data within a round. 

4.1 if round > T, goto step 7; 

4.2 take an X in C 

4.2.1 sort data in R based on X ;  

4.2.2 calculate count(X) and weight(X) 

if 1x1 == 1, calculate count(X); 

if 1x1 == 2, calculate weight(X); 

4.2.3 divide candidate(X) into its former and latter part; 

4.2.4 checking implied FDs from X to former(X). 

call check(X, former(X)) 

candidate(X) = candidate(X) - closure(X); 

if candidate(X) == {), goto step 4.2; 

4.2.5 checking implied FDs from X to latter(X). 
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call check(X, former(X)) 

candidate(X) = candidate(X) - closure(X); 

4.2.6 goto step 4.2 

6. prepare for next round determinant set 

6.1 Ctmp = {I; 
6.2 for each X E C do { 

6.2.1 make combinations with X and each attribute from the remaining 

part of candidate(X), decide their candidate sets; 

6.2.2 add those combinations with non-empty candidate sets to Ctmp 

6.2.3 if Ctmp # {), C = Ctmp; 

else goto step 4; 

7. calculate weight() for pairs of attributes not counted; 

8. output implied FDs, and count() and weight() information; 

end. 

3.2 Attribute Hierarchy Based on FDs 

T h e  result from the algorithm in last section is a set of unorganized implied FDs, all 

true FDs are included in the set, but there may be some implied FDs that  are not 

real FDs defined for the relation scheme. 
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We need some analysis to extract "real" FDs from implied FDs. We must be aware 

that the truly real FDs cannot be extracted solely by checking in the data. Thus the 

"real" FDs we are going to extract will be called the intentional FDs. However, from 

our effort and analysis, we will see that the intentional FDs are more likely to be real 

FDs. 

In the next section we will analyze some relations in INF. Based on the observation 

we try to sketch a structure to organize FDs in a relation together, and find some 

measure to create this structure. We will see that the process of creating the structure 

is helpful in determining intentional FDs, and it provide us a way to get rid of fake 

FDs from the implied FD set. 

3.2.1 Observations from 1NF relations 

Relations in 1NF are simply two-dimensional tables with the only requirement being 

that the values for attributes are atomic, i.e., an attribute cannot take another table or 

set as values. FDs in a 1NF relation can be defined between any two set of attributes. 

Table 3.1 is an example of 1NF relation, which is a variation of an example from [20]. 

The relation in Table 3.1 represents a schedule of airline company in an airport; 

(FLIGHT DAY) is the key; FLIGHT + GATE means that the same FLIGHT always 

takes passengers at  a certain GATE; GATE + GATELOCATION means that the 

gate location in the airport is constant. 

There are several data redundancies in this relation which makes manipulations of 

data inconvenient. Suppose we want to add a tuple like (FLIGHT=112, DAY=June 

6, PILOT=Bosley, GATE=8, GATELOCATION=east). This will make the relation 
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flight relation 

I FLIGHT I DAY I PILOT I GATE I GATE-LOCATION 

FDs: (FLIGHT DAY) + PILOT GATE GATE-LOCATION 
FLIGHT + GATE 
GATE + GATE-LOCATION 

Table 3.1: A Flight relation in 1NF 

gassi.qn 

112 
112 
125 
203 
204 

passign 

203 
204 

June 6 
June 7 
June 10 
June 9 
June 6 

FDs: (FLIGHT DAY) -+ PILOT FDs: FLIGHT + GATE 
GATE -, GATE-LOCATION 

- - 

Table 3.2: The flight relations in 2NF 

Bosley 
Brooks 
Mark 
Bosley 
Bruce 

FLIGHT 
112 
125 
203 
204 

violate the FD FLIGHT -+ GATE. Assume this addition is valid and we are required 

to change existing inconsistent tuples. Then we have to search the relation and, for 

those tuples with FLIGHT=112, change their corresponding GATE value to 8. 

To avoid this kind of problem, we can decompose the relation into two relations 

as in Table 3.2. 

7 
7 
7 

12 
15 

GATE 
7 
7 

12 
15 

In Table 3.2 we put GATE-LOCATION in gassign relation because the attribute 

is related with GATE by an FD GATE + GATE-LOCATION. If we put it in passign 

east 
east 
east 
south 
south 

GATELOCATION 
east 
east 
south 
south 
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jlight-gate glocation 

I FLIGHT I GATE I I GATE I GATE-LOCATION -1 1 12 south 

FDs: FLIGHT + GATE FDs: GATE + GATELOCATION 

Table 3.3: The flight relations in 3NF 

relation, the FD would get lost. 

In gassign, there is still some data anomaly problems. We can solve these problems 

by further decomposing gassign to relations in Table 3.3. Relations in Table 3.3 and 

passign in Table 3.2 have the property that all attributes are directly functionally 

dependent on their keys, there is no transitive FDs in each relation, these relations 

are in 3NF. 3NF relations remove some data redundancies and avoid most potential 

anomaly problems. 

From the above example, we can find some interesting phenomena about relations 

in 1NF or 2NF. The first is that attributes in such relations can be organized into a 

hierarchy structure according to FDs, and the decomposition process of relations is 

the process to create the hierarchy. The attributes in Table 3.1 have the structure of 

Figure 3.2. 

The second observation is that relations in 1NF may have many data redundancies 

which can cause data manipulation anomalies. Mostly the redundancies exist because 

of the FD relationship. If A -t B is an FD in a relation and if in several tuples the 

value for A is repeated, B will have to repeat its value in these tuples. 
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(FLIGHT DAY) 

FLIGHT PILOT 

GATE 

GATE-LOCATION 

Figure 3.2: Attributes hierarchy for relation flight 

From these observations we can see that in a 1NF relation, FD restrictions may 

cause data redundancy. This gives us a hint in finding some intentional FDs from the 

set of implied fDs. That is, if for a set of attributes there are a lot of redundancies 

for their data in the relation, then the implied FDs among them are more likely to be 

intentional FDs. 

Another hint is that FDs in a relation can organize attributes into a hierarchy, In 

the process of creating the hierarchy, we can determine intentional FDs. 

3.2.2 A hierarchy structure of attributes and its metric 

First we can define a hierarchy structure for attributes in a 1NF relations. 

The hierarchy can be represented as a directed graph with attributes or set of 

attributes as nodes and implied FDs between nodes as arcs. A direct (non-transitive) 

FD contributes to the hierarchy in the following way: its determinant is located in a 

particular layer and its determinee is located at the next layer, they are connected by 
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a directed arc from the determinant to the determinee. A hierarchy for a relation will 

have its top layer comprised of keys and bottom layer comprised, but not confined 

to, attributes which are not determinants in any FD. The hierarchy is connected and 

contains all attributes in the relation, because each relation must have a key which 

connects all attributes in the relation. 

Figure 3.2 is an example of attribute hierarchy for the relation in Table 3.1. 

The hierarchy can be created bottom up. Suppose we have found all implied FDs 

for a relation, we can select several attributes to form a cluster. The selection is based 

on a measure which include attributes involved in direct FDs. The direct FDs in the 

cluster are used to create two layers of the hierarchy: the determinees are in the lower 

layer, the determinants are in the higher layer; then the determinants are clustered 

with other attributes to create other higher layers thereafter. Go on with this process 

and we will get the keys of the relation as the highest level. 

One thing to remember, however, we are not going to get such a hierarchy for a 

relation. We loosely defined the hierarchy because we do not care what the hierarchy 

would look like if created, such as whether it can have repeated nodes. We are 

only interested in the process of creating the hierarchy, because this is the process 

to confirm implied FDs. Our goal is to extract intentional FDs, and the process of 

creating hierarchies can help us selecting intentional FDs. Thus during the process, 

we will record the FDs used for the hierarchy but we will not create the hierarchy. 

There are some graph representations of FDs introduced in [20, 331, which are 

similar to our hierarchy structure of attributes. However, the hierarchy structure is 

different from those FD graphs in several ways: 
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The hierarchy is created according to the implied FDs and a way to cluster 

attributes, not solely to FDs defined for a relation scheme. Attributes are first 

clustered, then the implied FDs contained in the cluster are used to construct 

one level of the hierarchy, then the determinants in this level are clustered with 

other attributes for other levels. 

The hierarchy structure is a hierarchy of attributes based on FDs, not a structure 

to represent all FDs, some FDs may not present in the hierarchy because they 

are not confirmed as intentional FDs. Because our goal is to create connections 

among attributes based on FDs, we will be satisfied when all attributes are 

organized together. If we wanted just FDs, we would prompt users with the 

implied FDs in order to eliminate some false FDs and get the result, in which 

most of the work is done after we get those implied FDs. In this hierarchy work, 

our goal is to create a systematic organization of attributes based on intentional 

FDs 

There are several methods to create the FD hierarchy or the FD graph, such as by 

symbolic analysis on a set of FDs, transitive FDs are extracted and the FD hierarchy 

is constructed. The method doesn't apply to our task for several reasons. At first, we 

are working on a set of implied FDs, some of them may not be true, but the symbolic 

analysis method is intended for real FDs. Second, our goal is to extract intentional 

FDs, we find that the process to create an FD hierarchy is helpful in extracting the 

intentional FDs, thus whether the final hierarchy is created or not is not important, 

the thing really matters is the process in creating the hierarchy. The symbolic analysis 

method concerns more about creating the hierarchy but less in determining intentional 

FDs. 
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We will introduce a hierarchy creation method which provides helpful information 

in determining intentional FDs. In creating the hierarchy, with some measure, several 

attributes are selected to be clustered first and only FDs between them are consid- 

ered. We need to give a method for selecting which attributes should be clustered 

together. We select those attributes that are related by direct FDs. According to the 

observation in Section 3.3.1, when two attributes in a relation in 1NF are involved 

in a FD relationship, there may be some data redundancy in tuple values for these 

attributes. Thus the amount of data redundancy evidenced by implied FDs can be 

used to measure the likelyhood that the FD is intentional. The data redundancy can 

be measured with the number of values repeated. If two attributes repeat their corre- 

sponding values in some tuples, then the more such tuples exist, the more likely it is 

that these attributes are involved in an FD. Thus we use this frequency of repetition 

to measure the probability that an implied FD is an intentional FD and use it to 

cluster attributes. 

In the algorithm in Section 3.1.3, the function weight() serves for the purpose of 

calculating repeatness. For two attributes A and B in a relation R, the weight(A, B )  

is calculated as follows: initially weight(A, B )  is set to 0; after the tuples in R are 

sorted on (A, B), we go through them, if we find two consecutive tuples with values 

for A and B not changed, we increase weight(A, B )  by 1; after we finished checking 

with all tuples, we get the value for weight(A, B) in this relation. 

For example, in the relation in Table 3.1, we have: 
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The weight value differences in the example is small because we have a small number 

of tuples in the flight relation. But because the data represented all FD and non- 

FDs, the weight values expressed direct FD relationship among attributes and the 

level of transitive FDs. That is, GATE -t GATE-LOCATION is at  the lower level 

while FLIGHT -t GATE is at  the higher level for the transitive FDs among FLIGHT, 

GATE, and GATELOCATION. 

Weight values always involves two objects. These objects may be attributes, but 

we can also define weight values between clusters. The algorithm in Section 3.1.3 

calculates weight values for all pairs of attributes. The determination of weight values 

between clusters attributes is discussed in the next section. 

In the algorithm in Section 3.1.3, count() is calculated for each single attribute, 

this is the number of distinct values for the attribute. This information will be used to  

help select intentional FDs from implied FDs. This aspect is discussed in Section 3.2.5. 

3.2.3 Clustering method 

As discussed in the last section, attributes are clustered and implied FDs in the 

cluster are used to construct a level of the hierarchy, then attributes which are only 

determinees are removed from further consideration, while determinants are used 

to cluster with other attributes. Because we create the hierarchy from bottom up, 

determinees attributes contribute nothing to upper layers, so they can be removed. 

The cluster method is based on the discussion in Section 2.3.3, in which we de- 

scribed a method to create a hierarchical structure for a set of nodes with distance 

values between pairs of nodes. In the working space in our problem, initial nodes are 
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single attributes, the distance measures between nodes are the weight values for pairs 

of attributes. We cluster attributes with largest weight values, then create a level of 

the hierarchy if there is any implied FD exists in the cluster that are confirmed by 

users as an intentional FD. If some attributes are only determinees in the cluster, we 

remove them, reset the working space-the initial working space with some attributes 

removed, and cluster from this space again; if no attributes can be removed in a clus- 

ter, perhaps because that there is no real FD in it, we adjust the weight value between 

the cluster and other attributes or clusters, and try to make new clusters according 

to the adjusted weight value. 

We use weight values as the measure of distances between attributes because a 

weight value is a closeness measurement of attributes with respect to FDs, as described 

in previous sections. The greater the weight value between two attributes, the more 

likely that a real direct FD exists between these attributes. If we cluster attributes 

according to weight values, we get pairs of attributes with direct implied FDs which 

are more promising to be real. 

There is a problem with adjusting weight values. A weight value between two 

attributes represents the closeness of the attributes with respect to FD relationship. 

The adjusted weight value should preserve this semantics. For example, consider a 

relation of 100 tuples with attributes A, B, and C ,  and weight values for (A, C )  

and (B ,  C) of 70 and 50 respectively. Assume A and B are first clustered but no 

implied FD relationship between them. We need to calculate the weight value between 

cluster (A, B) and C for further clustering. The weight value should express the 

semantics that, when (A, B) is considered as a single attribute X, the weight value 

is the repetition value between attribute X and C as evidenced by the tuples in the 
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relation. 

One method to calculate this weight is to do it directly from the data in the algo- 

rithm in Section 3.1.3. But this actually requires that all combinations of attributes 

in a relation be considered which results in an NP-complete procedure with respect 

to the number of attributes in the relation. We take another approach to estimate 

the adjusted weight value. 

In the above example, with 100 tuples in the relation and weight(A,C)=70, 

weight (B ,  C)=50, the maximum possible repetition value between (A, B )  and C is 

50 because the repetition values cannot be more than the smaller of weight(A, C)  and 

weight(B, C) ,  i.e. 

weight(( A, B) ,  C )  5 min(weight(A, C) ,  weight(B, C)) .  

weight(A, C)=70 means that there are 70 tuples with their values for A and C 

repeated, and weight (B,  C)=50 means that there are 50 tuples with their values for 

B and C repeated, if no tuples with values for A, B, and C repeated at  the same 

time, we would have at  least 70+50 = 120 tuples in the relation. Since there are 100 

tuples all together, we are sure that there are at  least 120-100 = 20 tuples with values 

for A, B, and C repeated at  the same time, thus weight((A, B) ,  C )  should be larger 

or equal to 20. 

In general, for attributes A, B, and C in a relation with n tuples, we have 

weight ( ( A ,  B) ,  C )  2 max(0, weight(A, C )  + weight(B, C)  - n) (3.8) 

weight((A, B), C)  5 min(weight(A, C) ,  weight(B, C)) (3.9) 

We should select the adjusted value in this range. In our algorithm, we select 
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the upper bound of the range for the adjusted weight value, because usually n, the 

number of attributes, is large, which makes the lower bound be zero. Thus the lower 

bounds for most adjusted values are always the same, while the upper bound can 

show the difference which makes the adjusted values comparable. 

In the same manner, weight values between clusters are also calculated, if we take 

A, B, and C for clusters as well as attributes. 

During the clustering process, we always select the pairs with greatest weight value 

to  combine them. This will preserve transitive FDs in the hierarchy. In transitive FDs 

like A -t B, B -, C,  weight (B,  C )  is guaranteed to be greater than weight (A, C )  and 

weight(A, B). Because in tuples with values for A and B repeated, the value for B 

and C will have to repeat. But in tuples with values for B and C repeated, the 

value for A may not repeat. Thus weight(B, C )  2 weight(A, B) and weight(B, C )  2 

weight(A, C). When we first cluster attributes with greater weight values, we cluster 

B and C together, then we remove C for further consideration, in the next step, A 

and B are clustered together. This makes the hierarchy in (a) of Figure 3.3. If we 

cluster A and B together first, we.would remove B after we create the A-B link in 

the hierarchy, and the next step we cluster A and C together, which finally yields the 

hierarchy in (b) of Figure 3.3, in which the FD B + C is lost. 

Based on the discussion in above paragraph, we have some corollaries for weight 

values 

Corollary 3.2 IfA + B,  B + C,  then weight(B, C )  2 weight(A, C )  and weight(B, C) 2 

weight(A, B).  

Corollary 3.3 If A -+ B, B -, C, C -+ A, then weight(A, B) = weight(B,C) = 
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(a) the hierarchy when cluster B C first (b) the hierarchy when cluster A B first 

Figure 3.3: Two hierarchies with different clustering criteria 

weight (C, A) 

3.2.4 Non-FD deduction 

The process of creating the hierarchy is a process of clustering attributes, breaking 

clusters, and reclustering attributes. Each time a cluster is formed, the implied FDs 

among attributes in the cluster are used to create a level of the hierarchy. As long as 

one implied FD is confirmed as a real FD, this FD will contribute to the hierarchy 

creation. If some implied FDs are rejected as real FDs by users, these FDs should be 

recorded and can be used in conducting further hierarchy creation. 

As the above process continues, for a cluster with some implied FDs confirmed and 

some implied FDs rejected as real FDs, a level of hierarchy is created for attributes 

involved in the real FDs, then some attributes are removed from working space and the 

cluster is broken, we start clustering again from scratch. Because with some attributes 

removed, the previously clustered attributes can group with other attributes. Next 

time in a cluster, the previously rejected implied FDs may appear again in the cluster, 

when we select implied FDs in the cluster for user confirmation, we thus will not 
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prompt those rejected implied FDs, because we already know that they have been 

rejected and we have recorded the information. 

For a set of implied FDs, if we find that one FD is false, we will see that some 

other FDs have to be false because of the first false FD. The following corollaries will 

provide some cases and proofs that how a false FD affects other FDs. Based on the 

corollaries, we can design a utility to deduce other false FDs from a set of implied 

FDs when one false FD appears. This utility can be used in the attribute hierarchy 

creation process to obtain more false FDs when one is rejected by users, which helps 

to remove false FDs from the implied FD set automatically. 

In the following corollaries, we will use f ,  to denote the non-FD relationship, i.e., 

A f ,  B means that A does not functionally determine B. 

Corollary 3.4 I f  X f ,  Y, X is a set of attributes, then for any subset Z C X, 

z f ,  Y. 

Proof: assume Z + Y, because Z is a subset of X, X - Z is meanful, thus we have 

(Z U (X - 2)) -+ Y by the augmentation property of functional dependencies, 

or we have X -t Y, which contradict to the precondition. Thus we must have 

z f ,  Y .  

Corollary 3.5 If X f ,  Z, Y -t Z, Y is a single attribute, then X f ,  Y. 

Proof: Assume X -+ Y, because Y -+ Z, we have X + Z by the transitivity 

property of functional dependencies, which contradicts the precondition. Thus 

we must have X f ,  Y. 
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In the second corollary, Y is a single attribute. If Y is a set of attributes, X f ,  Y 

will mean that X does not functionally determines any attribute in Y, which may not 

be true. For example, if Y is {A, B) and we have X + A and X f ,  B, we see that 

X f ,  Y is correct, but we will lose X -t A if we record this as a non-FD. Thus, we 

take Y as a single attribute in the corollary. 

Based on the above corollaries, we can design utilities to deduce more false FDs 

when we find one false FD. Generally, we have a set of implied FDs, and we find that 

one FD X -+ Y in the assumed set is not true, from here we deduce some other FDs in 

the set of implied FDs that should also be false; and we can find more attributes that 

previously determined to be dependent on X but now are known not to be dependents 

of X .  

The first corollary is not useful in our system because the implied FDs we extracted 

are all full implied FDs. That is, if X -t Y is extracted and stored as a implied FD, 

we are sure no subset of X can functionally determine Y. 

Using the second corollary, we can find more attributes for the right-hand side of 

an non-FD. For a set of assumed FDs, if we find X -t Z in the set is actually false, 

we should record that X does not determines Z,  then we check X + ,  the FD closure 

of X .  If any single attribute in X +  determines Z,  we will add this attribute to X's 

non-FD set. This is because we already know X f ,  Z, and for any attribute Y E X+ ,  

if Y -t Z, we should remove Y from X's FD closure according to the second corollary. 

We can sketch the algorithm for this function as below: 

Input: A set of implied FDs, and X f ,  Y 

Output: nfd(X) - attributes not functionally depend on X 
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Method: 

nfd(X) = (set of all attributes) - closure(X) - Y; 

For any A E (closure(X) - X )  do 

if (closure(A) n nfd(X)) not empty 

add { A }  into nfd(X) = nfd(X) 

end. 

3.2.5 Criteria for choosing multiple FDs in a cluster 

As we stated, the final decision about FDs is from the user confirmation. When 

attributes are combined into a cluster, implied FDs in the cluster are prompted to 

users for confirmation. To make the confirmation process more informative, we give 

each implied FD a credit so that the higher the credit, the more likely that it is a true 

FD. 

The credit is a relative measure of FDs. Some measurements are based on human 

experiences and habits in designing and using databases, which are not necessarily 

true for any relations involved. But the credit calculation does bear some favorable 

probabilities in determining intentional FDs. 

We assign the credit according to the information from the data dictionary and 

from the data. At first each attribute has an attribute credit according to some 

properties of the attribute, then for each implied FD, its credit is the sum of credits for 

attributes from its determinant, combined with some value according to the property 

of the determinant. 
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If one attribute is defined as the key of the relation, it will have a greatest attribute 

credit which is some multiple of the number of tuples in the relation, Otherwise it 

can take its number of distinct values as its credit, or its count () as calculated by the 

algorithm in Section 3.1.3. 

Then the credit for the attribute can be increased if the attribute is defined as 

NOT NULL. 

Another credit adjustment is according to its position defined in the definition 

of the relation. Although in relational databases theory there is no sequence order 

for attributes in a relation scheme, in implementations, the RDBMS will record the 

sequence of attributes when users specify the relation definition, thus in the definition 

specification, the attribute specified first will have a position 1 in the relation, and 

the secondly specified attribute will have position 2 in the relation, . . . . All attributes 

will have a position in the relation. 

In specifying a relation definition, users prefer to specify the key attributes first, or 

for attributes with FD relations, they usually specify the determinant attributes prior 

to determinee attributes. Thus when we adjust the credit for an attribute according 

to its position, we will give more credit to it if the attribute appeared at the front of 

the position list. Consider an example, we have A -+ C and C -+ A as two implied 

FDs, if we know that A was defined prior to C in the relation definition, we would 

assume that A is more likely a determinant than C,  thus giving A more credit than 

C is quite reasonable. 

The above information for an attribute, as whether it is defined as a key, or it is 

restricted to take NOT NULL values, or about its position in the relation scheme, 
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can be extracted from the data dictionary. 

From the way we assign credit to attributes, we see that the higher the credit for 

an attribute, the more likely that it can be a determinant component in some FDs. 

For an implied FD, at first its credit is the sum of attribute credits from its deter- 

minant attributes, then the implied FD credit is adjusted according to its determinant 

as a whole. If the determinant has a unique index on it, this implied FD should be 

added with much more credit. The unique index information can be extracted from 

the data dictionary. 

For implied FDs in a cluster, we prompt them with their credits for user confir- 

mation, so that the users can be more informative about the implied FDs, they will 

know that the more credit an implied FD has, the more likely that it is a real FD 

according to information from the relation scheme and data. 

The actual credit value is relative, some factors in credit calculation can be ad- 

justed by users. In our implemented system for FD-extraction, we used a credit 

calculation method to calculate the credit for an attribute as follow: 

For an attribute A, 

1. if A is defined as key, credit(A) = maximum 

else credit(A) = # of its distinct values. 

2. if A is not nullable, credit(A) increases 50%. 

3. credit(A) increases 5% if defined as the second last in definition sequence, 10% 

if defined as the third last, . . . , and so on. 
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The credit for an implied FD is the sum of credits of its determinant attributes. 

3.2.6 Combining attributes into groups 

Consider the decomposition process of 1NF relations to 3NF. We see that some at- 

tributes are decomposed into different relations, that there are only a few attributes 

are duplicated across relations, and that FDs are localized in the decomposed rela- 

tions. For example, in the relation in Table 3.1, the FDs FLIGHT -t GATE and 

GATE + GATE-LOCATION are localized to gassign relation in Table 3.2. 

From this observation, we see that a particular FD is confined to a group of 

attributes. We would like to extract FDs in a group of attributes and then, take the 

group as a single entity to extract its relationship with other attributes or groups. 

There are several methods to group attributes. We wish to group attributes which 

would form an individual relation if the original 1NF relation is decomposed to higher 

normal forms. This means that the attribute group represent an independent concept 

in the problem domain. 

We think that attributes defined in an index should be grouped together. Users 

create indexes on a set of attributes because these attributes together define an entity 

which can be used for indexing other values of tuples, to speed queries or other 

purposes. 

In addition to this, we wish users to provide group information for attributes. The 

clustering process is also a process to ask for user confirmation of intentional FDs. 

The users intervention is necessary and makes the extraction mechanism to give better 
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result. 

When some at tributes are grouped, we try to create the hierarchy structures inside 

each group, then connect these sub-hierarchies together via the FD relationship. 

The whole process is like the following: first confirm and record intentional FDs 

in each group during the process of sub-hierarchy creation. Then we work with the 

whole relation. Because intentional FDs in each group are already confirmed, we will 

not re-extract those FDs when we work with the whole relation, thus some attributes 

limited to those FDs are excluded in the last attempt of hierarchy creation. 

3.3 Implementation 

Based on the discussion in above sections, we implemented a FD-extraction system 

called FUND which works with databases implemented on ORACLE RDBMS. 

The system works in two phases. In the first phase, it implements the algorithm 

in Section 3.1.3; it searches data to extract implied FDs. Results such as implied FDs 

and count() and weight() information, as well as information from the data dictionary, 

are stored into an intermediate file using a defined format. 

In the second phase, the system reads input from the intermediate file, and use 

the approaches discussed in above sections to construct attribute hierarchies. At first, 

the user may specify grouping information in the intermediate file, in order to guide 

the FD-extraction process. Then hierarchies are built in each group of attributes. 

In creating a hierarchy, weight values are used to cluster attributes or clusters. If 

there are some implied FDs in a cluster, they are prompted with credit values for 
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user confirmation. If some implied FDs are confirmed as real FDs, they are recorded, 

some attributes are removed from the working space, the cluster is broken and a new 

round of clustering starts. If no FDs are confirmed, the rejected implied FDs are 

stored and some other false FDs can be inferred, the stored non-FD record is used to 

narrow the searching space of FDs; after the record and deduction of non-FDs, weight 

value between the cluster and other attributes or clusters are adjusted, and we form 

another cluster for further consideration. 

After each group of attributes are considered, we may have some sub-hierarchies 

for each group. Then we apply the cluster method to attributes in the relation. This 

time, attributes from different sub-hierarchies may be clustered together, in this case, 

we need to consider not only to cluster two attributes but connect the sub-hierarchies 

together. The method to connect sub-hierarchies are discussed in last section. 

The final result will be confirmed FDs which can be used to create a hierarchy 

structure of attributes. These FDs are more likely to be real because they come from 

the hierarchy creation process. 

FUND implemented an interactive interface for user confirmation. In this inter- 

active environment, users can browse database information in addition to FD confir- 

mation. 

The components of FUND system and their functions, relationship between each 

other, are outlined in Figure 3.4. 

In Appendix A, we give test result of this system. 
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CHAPTER 4 

THE SYNONYM MATCHING 

ALGORITHM 

As stated in Chapter 1, we define the synonymity of attributes as: two attributes from 

different relations are synonyms if they can be logically compared in a natural join 

condition. The comparison must be logically correct because only such comparisons 

will make sense in real queries. 

Synonyms are usually used in join conditions for comparison, thus it is necessary 

to know synonym attributes when forming a query across relations. Relations in a 

database is related via synonym attributes. In discovering the structure of a database 

for a natural language interface, it is important to find synonym attributes from 

different relations. 

The synonym matching problem is simpler when compared with the FD-extraction 

problem. For two relations in a relational database, we take one attribute from a 
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relation and try to determine if there is any attribute from the other relation that 

could be a synonym for the attribute. We assume that attributes with the same 

name, or naming that has the same linguistic meaning, does not suggest that they 

are synonyms. 

For example, in a database describing a product's development and distribution, 

there is a relation for the product's implementation and another relation for sales 

statistics. In the first relation, there is an attribute named company which represents 

who developed a product; in the second relation, there is an attribute also named 

company (or corporation), but it denotes to the organization to which the product is 

sold. Although the two attributes have the same name (company), or the names have 

the same linguistic meaning (company and corporation), they are not synonyms. 

Synonyms from different relations may have different names, especially in a database 

to which more relations are added later. Different names may be used for the same ob- 

ject, possibly because relations are designed by different groups of people and archive 

management for the database development is not organized properly. In the above 

example, the second relation may need a field to denote a product's developers and 

developer was used for the attribute name. This developer is a synonym for company 

in the first relation. Remember that, as in the FD-extraction problem, we are dealing 

with poorly documented, mature databases; there could be many pairs of attributes 

which are synonyms but we cannot derive the synonym relationship from their names. 

Thus we make the no-name-convention assumption for our synonym-matching prob- 

lem. 

In one relation, different attributes may have similar meaning although they rep- 

resent different aspects of an entity. For example, in a management relation scheme 
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department(emp1oyee-id, n a m e ,  . . . , manager-id),  attribute employee-id and n a m e  de- 

note an employee's id and name, attribute manager-id denotes the manager for the 

department in which the employee works. A manager's id in one tuple may appear in 

the employee-id column because the manager belongs to another, higher-level depart- 

ment. Although employee-id and manager-id denote different objects in the relation, 

they could be assumed as synonyms in some queries. For example, to find an employee 

who is also a manager, we would issue an SQL query like: 

SELECT n a m e  FROM department  

WHERE emplo  yee-id IN 

( SELECT manager-id FROM depar tment  ) 

In this query, employee-id and manager-id are compared as synonyms. In other sit- 

uations, queries relating two relations may compare one attribute in a relation with 

two attributes in the other relation, thus the attribute in the first relation may have 

two or more synonyms in the other relation. 

In most cases, synonym attributes in one relation do not have the same value for 

the same tuple. In a query which considers two attributes in one relation as synonyms, 

although the query works on one relation, it is equivalent to say that the query works 

on two identical relations and joins  them together. Thus synonym attributes from 

one relation can be considered synonyms from different relations with respect to the 

jo in  operation. 

The purpose of our synonym matching system is to extract synonyms for Pathfinder[l3] 

in SystemX[3] so that Pathfinder could form the jo in  graph to connect different rela- 

tions. From this point and from the discussions in above paragraphs, we would like 
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to have our system to match synonyms from one relation to another, and there could 

be more than one synonym in a relation for an attribute in the other. While the 

system requires two relations as input, attributes from one relation are matched with 

attributes from the other relation, but not to the relation to which it belongs. For the 

purpose of extracting synonyms from a single relation, this relation should be used 

for both inputs. 

There are many works which find synonyms from the linguistic point of view, 

especially in natural language understanding[21, 31. Starting from our assumptions, 

those methods do not apply to our problem domain. What we can do is to study 

the information from the data dictionary and from data in the database, providing 

suggestions of synonym pairs, and as most knowledge discovery systems do, expect 

the final confirmation from users. 

4.1 Exploit Information in Data Dictionary 

The data dictionary provides information about the structures of tables defined in 

a database and the definitions of attributes for relations. For the types of tables 

described in a data dictionary, there are relations, indexes, clusters, views, and others. 

The descriptions for relations and indexes are confined to single relations, while a 

cluster or a view may include several relations. Since we need to find synonyms of 

at tributes from different relations, we may consider cluster and view definitions for 

our task. 
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4.1.1 Checking the cluster definition 

A cluster[29] is a physical organization of data. Clustering permit several related 

tables to share the same extents of disk space. In addition to economizing space, 

clusters improve the performance of join queries because tuples that are joined are 

stored together. 

To be clustered, a group of tables must share at least one column with the same 

type, length, and meaning, i.e. they must share at least on synonym. One effect of 

clustering is that the rows from all of the tables that have the same value in their 

cluster columns are stored in the same disk page(s). The cluster columns are stored 

only once and are shared by each of the shared tables. 

To create clustered tables, you must first create a cluster; then you must create 

the tables and specify that they are to be members of the cluster. 

A cluster is created by specifying a set of cluster attributes. Then we can create 

tables in it by specifying which of their attributes correspond to the cluster attributes. 

The matching attributes from each table will share the same storage. Thus they must 

be defined with the same data type and length. 

For example, we can create a cluster with attributes M and N.  Then we create a 

table R1(A1, A2, As) with A1, A2 matched to M, N,  and another table R2(B1, B2, B3, B4) 

with B2, B4 also matched to M, N.  In this way the values for Al and B2 will be stored 

as one. The values for A2 and B4 will also be stored together. 

From the definition and organization of clusters, we see that, for any two relations 

clustered together, their corresponding attributes in the cluster must be synonyms. 
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We can study the cluster and relation definitions to find those synonym pairs. 

We do not require user confirmation for them, thus in our system we perform cluster 

checking before other kinds of checking. Because one attribute may have multiple 

synonyms in another relation, the synonyms found by cluster checking can be used as 

feedback for further extraction. For example, suppose attribute A was as a synonym of 

attribute B from another relation R via cluster checking. Later we find that attribute 

C in R could also be a synonym for A via a method which requires user confirmation. 

Then we would prompt the user thusly: " A  already matched B. Will A also match 

C?". This provides more information for the user to make decisions. 

4.1.2 Checking the view definition 

view is a reorganization of the schema of relations. A view is a pseudo relation with 

some attributes and data from underlying relations, but the data is not copied from 

the underlying relations. There are many reasons for providing views for relations. 

For security reasons, an ordinary person may only be allowed to see a portion of a 

relation and that portion can be defined as a view and the access authority can be 

restricted to that view. A view also provides the user with a different appearance of 

the underlying relations, which makes for convenient user access. For example, if a 

view is defined across relations, the user can use the view with simple queries instead 

of specifying queries with various join conditions across many relations. 

When a view is defined across relations, it takes portions of underlying relations 

to  form pseudo a table as if new a table has been created. In most cases, it connects 

relations by join operations. A view is defined according to a SELECT query, and 

only the definition is stored in the data dictionary. When querying a view, the view 
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definition query is executed and the underlying relations are accessed. 

We give an example for view definition. Assume there is a relation teach(instructor, 

course, . . . ) representing that instructor teaches course, and another relation take(student, 

course, . . .) representing that student takes course, we can define a view for "students 

taking courses taught by instructors" as 

SELECT student instructor FROM take teach 

WHERE take.course = teach. course 

This view takes two relations and uses the join operation to connect them. 

When a view is defined on more than one relation, we can check the view definition 

for synonym matching purposes. We actually analyze the defining SELECT query. 

The SELECT query may involve join operations, the synonym information may be 

extracted from the join conditions. 

For a SQL SELECT statement, it may have the form 

SELECT attrl . . . attr, FROM rell . . . rel, 

WHERE join-condition 

where the join-condition is NOT, AND, or OR of comparisons like 

Operators in the comparison can be =, <, <, >, 2,  and #, corresponding to equal, less 
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than, etc., operations. Two attributes compared as above in a view definition will be 

considered as synonyms. 

From this analysis, we can see that any SELECT query can be analyzed for syn- 

onym matching, not just the view definition query. If we have transaction records 

for queries applied to the databases, we can study every SELECT query to obtain 

additional information. 

4.1.3 Attribute definition 

An attribute is defined in a relation with data type, data length, data precision, etc.. 

In relational databases, attributes are defined to be of some basic data types provided 

by the RDBMS. Generally, the basic data types are INTEGER, FLOAT, STRING, 

DATE, etc.. Associated with each type, there may be data length, data precision, 

etc.. Attributes with the same data type can have different lengths, such as different 

lengths of strings. In addition to the above data type properties, some RDBMSs have 

data dictionary tables which provide COMMENTS field to store textual descriptions 

about the defined at tributes and relations. 

The ORACLE RDBMS provides only simple data types, an attribute must be 

defined with one of them. No user defined data types or abstract data types such as the 

RECORD type in PASCAL are allowed. Thus, there is not very much information to 

glean the synonymity of attributes according to their type definition. But synonymous 

attributes must be defined with the same basic data type. The precise description 

of their type definition may not be exact, for example, they may have different data 

lengths due to a design mismatch or other design considerations for the database. 
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When we check a pair of attributes for synonym matching, we should check if they 

are of the same basic data type. If they also equal on data length and data precision, 

etc., more credibility is given to our assumption. 

If the RDBMS also provides a COMMENTS field for attribute definition, we 

can prompt the comments for users in the confirmation process. Analyzing the text 

comments for semantic equivalence appears difficult and is beyond our objectives. 

4.2 Data Analysis 

In addition to examining the data dictionary, we need to apply data analysis methods 

to the data in the database to discover synonyms. 

If two attributes from different relations in a database are synonyms, they have 

many values in common. So, for two attributes under consideration, the number of 

values that are common between them can be used as a metric. We define a d-value 

for a pair of attributes as the ratio of the number of common values to the sum of the 

distinct values in each attribute. 

Definition 4.1 For two attributes A and B from diflerent relations, let c-value c(A, 

B) be: 

c(A, B )  = (number of distinct values equal on A and B) 

then the d-value d(A, B) is 

d(A, B )  = 100 x c(A, B) / (  number of distinct A + number of distinct B) 

For example, consider the following two relations: 
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Using dis(X) for the number of distinct values for attribute X, we have 

We can obtain 

Thus, the d-value for those pairs are: 

The d-value for a pair of attributes expresses the closeness of the pair in value. It 

is equivalent to measuring the relative size of the intersection of two sets. Figure 4.1 

represents two sets A, B, and their intersection C, the d-value is equivalent to the 

ratio of the shaded area and (area A + area B) ,  or 

d-value = I C I  x 100 
IAI + IBI 

Thus for two attributes with larger d-value, it expresses that they have more common 

values, and more likely that they are synonyms. 

In the calculation of d-values, we take attribute definitions into consideration. 

Only a pair of attributes defined of the same type and similar length, precision, etc. 

will have its d-value calculated. 
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Figure 4.1: Set representation of d-value 

We can then pick attribute pairs in descending order of their d-values and prompt 

for user confirmation of them in synonym matching. From the above example, we 

order the pairs according to their d-values as ((B, D), (A, C),  (A, D), (B, C)),  thus, B 

and C will be first selected for confirmation, because this pair has the largest d-value. 

4.3 The Algorithm and Implementation 

We have designed an algorithm to extract synonyms based on cluster checking, view 

checking, and d-value calculations. A program called SYNONYM based on the algo- 

rithm was implemented on the ORACLE RDBMS platform. 

The program first performs cluster checking. The approach is straightforward. We 

need to check cluster definitions in the data dictionary to see if the two relations under 

consideration are involved in one cluster. If they are, the corresponding attributes 

matched into the cluster are recorded as synonyms and stored in each others synonym 

lists. 

The program then checks view definitions. In ORACLE, view definitions are stored 

as text strings in the data dictionary, which are in the format of SQL SELECT queries. 

So the viewchecking portion of the program has implemented a parser to extract join 

conditions from the definition queries. Attributes from different relations involved in 
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comparisons of join conditions are recorded as synonyms. 

Then for each pair of attributes from different relations which have similar at- 

tribute definition, its d-value is calculated. 

For complexity analysis, we assume a naive method to calculate the number of 

common values for two attributes, or the c-value defined in Definition 4.1. Assume 

two relations with ml attributes and nl tuples in one relation and m2 attributes 

and n2 attributes in the other. For a pair of attributes A and B from each relation 

respectively, each value of A will be compared with all values of B, thus to get c (A ,  B) 

we need nln2 comparisons. There are mlm2 different pairs of attributes from the two 

relation, thus to determine the c-value for all pairs, the time required is 0(mlm2nln2). 

In the implementation, we use relational operations provided by ORACLE to 

calculate the d-value for all pairs of attributes that have not been found as synonyms 

by cluster or view checking, and are defined with the same data type, length, etc. To 

calculate the number of distinct values for an attribute A from relation R, we issue 

an SQL query: 

SELECT COUNT ( DISTINCT A ) FROM R. 

To calculate the c-value for attribute A and B from relations R1 and R2 respectively, 

we issue an SQL query: 

SELECT COUNT ( DISTINCT A ) FROM Rl R2 

WHERE A = B 

COUNT and DISTINCT are SQL functions The query does a join operation on 
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attribute A and B. Because ORACLE has its standard methods to implement these 

functions and operations, and it can consult other resources such as indexes to enhance 

their performance, we can calculate the c-value efficiently. 

The last step is the confirmation, which is implemented as an interactive program 

with other functions in addition to requesting confirmation. It selects a pair of at- 

tributes with the highest d-value, prompts with other information about the pair, 

such as the list of synonyms each attribute already has, and the comment about an 

attribute stored in the data dictionary (if there is any), then asks the user to confirm 

whether or not they are synonyms. 

Commands provided by the interactive environment are: 

help - list the commands provided 

table tablename - display the scheme of tablename 

current - display the current pair of attributes for confirmation 

yes/no - claim/disclaim synonym relationship of the current pair of 

attributes 

display table.attr - display the descriptions for table.attr, including its 

current synonyms list. 

addlremove tablel.attr1 table2.attr2 - force additionldeletion of the 

synonym relationship between tablel.attr1 and tabZe2.attr2 

quit -- finish up 

The interactive environment enables us not only to confirm an assumption of 

synonyms, but also to change the synonym list for each attribute dynamically. This 
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gives users freedom to judge the candidate pairs according to the attribute information 

provided by the program and their own biases. A completely automatic extraction 

process can also be implemented in that the system checks the list of pairs of attributes 

in descending order of their d-values. 

In the Appendix we will provide results of the implementation. 



CHAPTER 5 

CONCLUSIONS AND FUTURE 

RESEARCH 

5.1 Conclusion 

In this thesis we studied methods discover functional dependencies and attribute 

synonyms in relational databases. This information is useful for natural language 

interfaces to relational databases. We reviewed various systems in the area of knowl- 

edge discovery in databases, and applied several data analysis methods to design and 

implement two systems for discovery of FDs and synonyms in relational databases re- 

spectively. These systems make use of the data dictionary and information resulting 

from analysis of the data both. 

The system for the FD discovery is called FUND. It operates on ORACLE databases 

with first normal form relations. FUND first checks the data exhaustively to extract 
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implied FDs, which are possible FDs suggested by the amount data in the relation. 

Any true FDs must be included in these implied FDs. Mechanisms based on the 

theory of FDs are employed to control the search of the data, avoiding a completely 

trivial search of all combinations of attributes. The implied FDs are analyzed based 

on a sophisticated data analysis method and information from the data dictionary 

to create a hierarchy of FDs. FDs for the relation are organized and connected into 

a hierarchy which represents their transitivity relations. The hierarchy also provide 

an organization of attributes in a relation in the way that attributes are related via 

FDs. This structure of the attribute organization is necessary for constructing the 

join graph in Pathfinder, which provides the representation of relation schema used 

for a natural language interface. 

The other system, SYNONYM, in an ORACLE RDBMS discovers synonyms for 

attributes from different relations. The synonyms are formed by analyzing the data 

dictionary and the data in the relations. The data analysis method is different from 

that for FD discovery. 

Both systems provide interactive interfaces to enable users to confirm or reject 

intermediate results thus providing guidance for further discovery. 

We have tested both systems on test databases. The results showed that they 

performed to our expectations. 
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Future Research 

Most knowledge discovery approaches deal with intractable (NP-hard) problems. 

Thus, either problem domains need to be restricted or statistical methods are used 

to analyze data and produce results bearing probabilities as certainty measures. Our 

systems will have problems when the amount of data is huge. In the worst case, the 

discovery processes are time expensive. Fortunately, the time-consuming parts are 

restricted to earlier stages of the processes and do not require user intervention, thus 

the earlier discovery can be executed as background tasks. 

One method of dealing with this problem is to use statistical methods to sample 

data for analysis. Research into selecting an appropriate data set is necessary. Statis- 

tics and probabilistic theory also provide mechanisms to predict future events based 

on past observations[25, 261. The theory can conduct us in sampling proper data set 

for consideration. 

There are some other problems with the FD-extraction system. The first concerns 

the metric used to calculate the distance or weight values in the stage of clustering raw- 

FDs. For two attributes, their weight value is measured as the number of points in the 

table where they change value at the same time. This represents the closeness of the 

two attributes with respect to functional dependencies, i.e. the weight value measures 

the possibility that a non-transitive FD may exists between the pair of attributes. But 

when two attributes are grouped as a cluster, the weight value between the cluster 

and other attributes somehow, loses the semantic of closeness to some extent. To 

preserve the semantics of the measure, we should treat attributes in a cluster as one 

attribute and calculate the weight value between this new attribute and others by 
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going through the data, but this requires all combinations of attributes be considered 

which is NP-complete. Another method is to use other metrics for the measurement 

which represent the characteristics of functional dependencies. 

Another problem is that the discovery result depends on the sequence of FD con- 

firmation. Although a user confirmation mechanism can reduce the search space, 

sometimes a weak FD confirmation will hide a strong FD which is more appropriate 

in the hierarchy representation. Such case happened to the test in Appendix B, where 

when attributes are not first grouped, a direct (non-transitive) FD is missed in the 

result. This is also a major problem in knowledge discovery and artificial intelligence, 

where search for a global solution is prohibited and only local optimistic result is 

obtained instead. 

For the synonym extraction problem, we can exploit more information from the 

data dictionary. Some data dictionaries store integrity rules for data, such as to 

restrict positive values for at tributes representing age, or to restrict that only positive 

numbers less than or equal to 1 can be used for an attributes representing probabilities. 

This kind of information can be used to specify the value domain of attributes. And 

attributes that are synonyms must have the same interest domain. 

If the above kinds of information are stored in the data dictionary. We would 

extract this information to see if there are similar constraints or integrity rules for 

the values for two attributes from different relations, and such attribute pairs will be 

assumed as synonyms. 



Appendix A 

Relational databases Theory and 

the Data Dictionary 

We present a brief introduction to the design theory of relational databases and func- 

tional dependency. [30, 101 provide a thorough introduction to them. 

A.1 Functional Dependency 

[30] defines FD as: 

Definition A.l Let R(A1, A2,. . . , A,) be a relation scheme, and let X and Y be 

subsets of Al, A2,.  . . , A,. We say X + Y ,  read "X functionally determines Y"  

or 'Y functionally depends on X" if, whatever relation r is the current value for 

R, it is not possible that r has two tuples that agree in the components for all attributes 

in the set X yet disagree in one or more components for attributes in the set Y .  X 
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is called the determinant and Y is the determinee for the functional dependency. 

Definition A.2 Let X + Y be a functional dependency on scheme R, X and Y are 

subsets of attributes of R. X t Y is a full functional dependency if, for any 

attribute A E X, (X - A) t Y is not a functional dependency for R. 

For a relational scheme R, every relation r in R must conform to every FD. But 

conversely, the fact that an FD apparently holds for an instance of a relation R, does 

not mean that the FD is defined for R. 

We cannot decide FDs by checking in the data of a particular relation, and we can 

study the characteristics of FDs without worrying about any real relation. Given a 

set of FDs, we can infer new FDs by a set of rules called Armstrong's axioms. First 

we excerpt some concept definitions about FDs from [30]. 

Definition A.3 Let F be a set of functional dependencies for relation scheme R, 

and let X + Y be a functional dependency. We say F logically implies X + Y, 

written F X + Y ,  if every relation r for R that satisfies the dependencies in F 

also satisfies X + Y .  

Definition A.4 We define F+, the closure of F ,  to be the set of functional depen- 

dencies that are logically implied b y  F ;  i.e., F+ = { X  t Y I F + X + Y) 

In the following axioms, F denotes a set of FDs defined on a relational scheme R; 

U is the set of all attributes for R;  X, Y, and Z are subsets of attributes of U ;  and 

X Y  is a shorthand for X U Y .  
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Axiom A. l  (Reflexivity) If Y X ,  then X + Y is logically implied by  F .  This 

kind of dependencies are culled the trivial dependencies. 

Axiom A.2 (Augmentation) X -+ Y X Z  -, Y Z  

Axiom A.3 (Transitivity) I f X  t Y and Y + Z holds, then X + Z holds. 

Armstrong's axioms are sound and complete, which means that all the inferred 

FDs using Armstrong's axioms are correct, and we can infer all possible FDs implied 

by F using only Armstrong's axioms. 

In the next chapter, we will use these axioms to specify corollaries for our FD- 

extraction algorithm. 

[33] provides a graph representation of FDs for a relational scheme, which provides 

some hints in organizing FDs for subsequent analysis in later chapters. 

A.2 Design of relational databases 

Functional dependencies are the design basis for relational databases. A database is 

a representation of a real world model, its relations represent entities of the model 

and attributes of relations represents characteristics of the entities. No arbitrary com- 

binations of values for attributes are valid; there are some dependency relationships 

existing among the data. FD is one of the most important types of dependencies for 

the relational representation of real world models. 
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A relational scheme should incorporate its FD restrictions in order to map a real 

world model correctly. A badly designed scheme, however, may lead to anomalies in 

the data. If the design allows a particular data value of the determinant of an FD 

to be repeated in a relation, the value for the determinee of the FD will also repeat, 

which results in data redundancy. The redundancy may cause update, insertion, and 

deletion anomalies. The reader is referred to [ lo ,  301 for exposition to the concepts 

and examples. 

The anomaly problems can be solved by refining a poorly designed scheme to a 

good design via decomposition in the level of normal forms (NFs). Relations in 3NF or 

higher have less data redundancy and are thus considered good design, while relations 

in lower normal forms have more data redundancy and will likely cause anomalies. 

A.3 The Data Dictionary 

The data dictionary is an important resource in knowledge discovery because it stores 

metadata-t he informat ion about information-for relational databases. Concepts of 

the data dictionary are introduced in [22, 311. 

The data dictionary is both a tool and a resource. As a tool, the dictionary permits 

us to document, organize, and control the design, development, and use of databases. 

As a resource, the dictionary is an organized repository of information describing the 

source and the content of data. 

In an RDBMS, definitions for relations, views, attributes, indexes, clusters, etc., 
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are all stored in the data dictionary. The data dictionary has descriptions about at- 

tributes such as their data types, lengths, and whether NULL values are permitted. 

By checking the dictionary we could decide which attribute (or a set of attributes) 

is the key (if defined) for a relation, or assume that an attribute could be a determi- 

nant for some FD because it does not permit NULL values. In extracting synonym 

relationships between attributes, two attribute are more likely to be synonyms if they 

are defined as the same data type, data length, and take values in the same domain. 

This type of information can be found from the data dictionary. 

In the ORACLE RDBMS, the data dictionary is presented as several sets of tables 

(relations), users use the same language (SQL) and met hods to access the dictionary as 

in accessing ordinary relations in application databases. Some sets of tables are used 

by the database administrator so that the dictionary acts as a tool for maintenance 

and management of the RDBMS; some tables store the descriptions about relations 

and attributes, etc., of database applications and can be accessed by ordinary users. 

All dictionary tables are described in [24]. We select some of them which are useful 

to our task. The following format: 

tablename description of the table (or relation) 

columnname description of the column (or attribute) in  tablename 

is used to describe those tables. 

ACCESSIBLE-COLUMNS columns of all tables, views, and clusters 

TABLE-NAME the name of the table 

COLUMN-NAME the name for this column or attribute 
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DATA-TYPE data type of the attribute 

DATA-LENGTH number of bytes for the data of the attribute 

NULLABLE the type, length, and nullable definitions are the characteristics 

of the attribute 

COLUMNID can be used to decide the significance of attributes 

ALL-COL-COMMENTS comments on columns of tables or views; can be used to 

prompt user for decisions 

ALLINDEXES description of indexes on tables 

TABLE-NAME on which table the index was created 

UNIQUENESS whether it is a unique index; an unique index is used to check 

if a set of attribute(s) is the key 

ALLINDXOLUMNS on which columns the index was created 

ALL-VIEWS view definition 

TEXT the view definition text as an SQL query 

USER-CLUSTERS cluster definition; clusters can be used to check for synonyms 

The above components are part of the tables which we will use in the imple- 

mentation of a knowledge discovery system. In the next two chapters, we describe 

two systems which extract functional dependencies and synonym relationships respec- 

tively. They use combinations of techniques and approaches discussed in this chapter 

and approaches pertinent to the specific problems. 
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Test Result of FUND 

To illustrate the functionality of FUND, we create a 1NF relation by joining sev- 

eral relations and running FUND on the joined relation to see if it can recover the 

structures of the underlying relations. 

Below are several relations in a UNIVERSITY database. The relations are in 3NF 

and their corresponding keys are underlined. 

0 STUDENT(STUD#, SNAME, SSEX) 

0 CLASS(CLID, CNAME, UNITS, FAG'#) 

FA CULT Y(FA C#, FNA ME, FSEX) 

GRADES(STUD#, CLID, GRADE) 

By joining them together, we created a UNIVERSITY relation with attributes: 
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UNIVERSIT Y(STUD#, SNA ME, SSEX, CLID, CNAME, UNITS, GRADE, 

FA C#, FNA ME, FSEX) 

There should be following functional dependencies in UNIVERSITY: 

(STUD#) + (SNAME, SSEX) 

(CLID) + (CNAME, UNITS, FA C#) 

(FA C#) -+ (FNAME, FSEX) 

key: (STUD#, CLID) 

When FUND works on UNIVERSITY relation, it first extracts raw FDs for the 

relation, as well as weight values for pairs of attributes. When in the analysis phase, it 

gives FD assumptions with their credits for user to confirm. The process is illustrated 

below: 

With a larger credit, ( FAC# ) + ( FNAME ) is confirmed as an FD. 

2. ( C N A M E )  + ( C L I D ) :  19 

( C L I D )  + ( C N A M E )  : 22 

Similarly, ( CLID ) -+ ( CNAME ) is confirmed. 

3. ( C L I D )  -t (FAG'#) : 22 

No alternatives and this FD seems correct. 
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4. (STUD# ) 4 ( S N A M E )  : 33 

Confirmed. 

5. ( C L I D )  + ( U N I T S F S E X )  : 22 

Confirmed. 

Confirmed. 

7. ( STUD# CLID ) + ( GRADE ) : 55 

( CLID GRADE ) + ( STUD# ) : 37 

( STUD# GRADE ) 4 ( CLID ) : 48 

According to the credit values, FUND favors ( STUD# CLID ) + ( 

G R A D E )  to be confirmed. 

The result yields FDs: 

( STUD# CLID ) + ( GRADE ) 

0 ( STUD# ) + ( SNAME SSEX ) 

0 ( CLID ) + ( CNAME UNITS FAC# FSEX ) 

0 ( F A C # )  -+ ( F N A M E )  

In the result, the FD (FAC#) 4 (FSEX) is lost compared to the original FDs. 

This is because from step 3 above, (CLID) + (FAC#) is deduced prior to (FAC#) 

+ (FSEX), which causes FAC# removed from further consideration. But when there 



APPENDIX B. TEST RESULT OF FUND 80 

were more tuples in the relation, it would be more possible that (FAG'#) + (FSEX) 

be induced first because (CLID) + (FSEX) is a transitive FD. 

Another way to polish the result is using grouping. If we group FAC#, FNAME, 

and FSEX together in the intermediate result from first phase, we will finally get 

exactly the FDs from the original relations, as: 

( STUD# CLID ) -, ( GRADE ) 

( STUD# ) t ( SNAME SSEX ) 

0 ( C L I D )  -, (CNAME UNITS FAC#) 

0 ( F A C # )  t (FNAME FSEX)  

The other test used an NSERC database with large amount of data (almost 10000 

tuples). The relation scheme is: 

D-GRANT(DEPT, GRANT-CODE, GRANT-TITLE, GRANT-ORDER) 

with FDs: 

key: (DEPT, GRANT-CODE) 

GRANT-CODE -+ (GRANT-TITLE, GRANT-ORDER) 

The first phase of FUND calculated the weight between GRANT-TITLE and 

GRANT-ORDER as the highest (1647), and it happened that there are implied FDs 

between them. Thus in the second phase, FUND prompt these two attributes first 

for FD confirmation. When user rejected that there is any FD exist between them, 
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it worked right all the way to give the result the same as the defined FDs. This test 

shows that user intervention is important in excluding irrelevant results. 



Appendix C 

Test result of SYNONYM 

The two relations shown here are from a real database about NSERC award informa- 

t ion. 

One relation AREA has the schema: 

AREA(AREA-CODE, AREA-TITLE, AREA-TITRE) 

In AREA, AREA-CODE is defined as NUMBER. 

In the other relation, AWARD, it has NUMBER typed attributes as: 

A WA RD(0RG-CODE, FISCAL- YR, COMP- YR, AMOUNT, CTEE-CODE, 

AREA-CODE, DISC-CODE, CNT2) 

We illustrate the result as SYNONYM looking for synonyms from AWARD for 

attribute A REA-CODE in AREA. Because SYNONYM matches synonyms only for 
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attributes defined of the same data type, we listed only attributes in AWARD that 

are defined as NUMBER. 

In the following table, AREA-CODE in AREA is matched with each attributes in 

AWARD listed above: 

I Attribute from AWARD 

ORG-CODE 

FISCAL-YR 

COMP-YR 

AMOUNT 

CTEE-CODE 

AREA-CODE 

DISC-CODE 

CNT2 

The d-value is in the range of 0 to 200. 

d-value 

In this example, SYNONYM takes AREA-CODE in AWARD as the synonym for 

AREA-CODE in AREA, according to the d-values calculated, which is obvious. 
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Program Listing 

Source code for FUND and SYNONYM are listed here. The systems are implemented 

using PC-a SQL embedded C-and C, on the ORACLE RDBMS. 

The first three programs belong to FUND. search.pc performs the functions of 

the first phase in FUND, which is to extract implied FDs given a relation; fund.c 

performs the second phase, which determines intentional FDs during the process of 

attribute hierarchy creation; fund.h is the header file included by both search.pc 

and fund.c. 

The last listing is SYNONYM. Program synonym.pc is in PC language. 
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u
n
e
 4
,
 
1
9
9
2
 

* 
T
h
i
s
 p
r
o
g
r
a
m
 
a
c
c
e
s
s
e
s
 
a
 
r
e
l
a
t
i
o
n
 
i
n
 a
 
r
e
l
a
t
i
o
n
a
l
 
d
a
t
a
b
a
s
e
,
 
c
h
e
c
k
s
 
t
h
e
 

* 
d
a
t
a
 
d
i
c
t
i
o
n
a
r
y
 
a
n
d
 t
h
e
 d
a
t
a
 
i
n
 t
h
e
 r
e
l
a
t
i
o
n
,
 
e
x
t
r
a
c
t
s
 
i
n
f
o
r
m
a
t
i
o
n
 

a
b
o
u
t
 
a
t
t
r
i
b
u
t
e
s
,
 
i
n
d
e
x
e
s
,
 a
n
d
 
g
e
t
s
 
a
l
l
 
F
D
s
 w
h
i
c
h
 
a
r
e
 
c
o
r
r
e
c
t
l
y
 
h
e
l
d
 

b
y
 
t
h
e
 d
a
t
a
 
i
n
 
t
h
e
 r
e
l
a
t
i
o
n
.
 T

h
e
 r
e
s
u
l
t
 
i
s
 o
u
t
p
u
t
 
t
o
 a
 
f
i
l
e
.
 

#
d
e
f
i
n
e
 U
S
E
R
 
'x
ia
ob
in
g/
ch
en
Bn
sc
' 

#
d
e
f
i
n
e
 T
U
P
L
E
 
1
0
0
0
0
 

/*
 M
a
x
 

# 
t
u
p
l
e
s
 
a
 
r
e
l
a
t
i
o
n
 
c
a
n
 h
a
v
e
 
*
/ 

t
y
p
e
d
e
f
 
c
h
a
r
 
s
t
o
r
e
~
t
y
p
e
(
T
U
P
L
E
+
1
I
[
F
I
E
L
D
~
L
E
N
G
T
H
+
1
1
;
 

E
X
E
C
 
S
Q
L
 B
E
G
I
N
 
D
E
C
L
A
R
E
 
S
E
C
T
I
O
N
;
 

V
A
R
C
H
A
R
 
u
i
d
[
3
0
]
 ;
 

/*
 t

h
e
 s
i
z
e
 
f
o
r
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 V
A
R
C
H
A
R
 
a
r
r
a
y
s
 
s
h
o
u
l
d
 b
e
 
t
h
e
 s
a
m
e
 
a
s
 

N
A
M
E
-
L
E
N
G
T
H
 

*/
 

V
A
R
C
H
A
R
 
t
a
b
l
e
_
n
a
m
e
[
3
0
]
;
 

V
A
R
C
H
A
R
 
c
o
l
r
n
n
a
m
e
 [ 3
 0
 I 
;
 

V
A
R
C
H
A
R
 
i
n
d
e
x
n
a
m
e
 [ 3
0
 I 
;
 

c
h
a
r
 n
u
l
l
a
b
l
e
;
 

i
n
t
 
c
o
l
u
m
n
-
i
d
;
 

c
h
a
r
 u
n
i
q
u
e
 [ 
1
0
 I 
;
 

V
A
R
C
H
A
R
 
h
o
l
d
e
r
[
6
5
1
;
 

/*
 t
h
e
 a
r
r
a
y
 
s
i
z
e
 
s
h
o
u
l
d
 b
e
 
a
s
 F
I
E
L
D
-
L
E
N
G
T
H
 

*/
 

c
h
a
r
 q
u
e
r
y
[
1
0
0
]
;
 

E
X
E
C
 
S
Q
L
 E
N
D
 
D
E
C
L
A
R
E
 
S
E
C
T
I
O
N
;
 

E
X
E
C
 
S
Q
L
 I
N
C
L
U
D
E
 
S
Q
L
C
A
;
 

a
t
t
r
-
t
y
p
e
 
a
t
t
r
[
M
A
X
-
N
U
M
P
T
T
R
]
;
 

/*
 t
o
 h
o
l
d
 
a
t
t
r
i
b
u
t
e
 
s
p
e
c
i
f
i
c
a
t
i
o
n
 

*
I 

i
n
t
 
nu
n-
at
tr
; 

/*
 n
u
m
b
e
r
 
o
f
 
a
t
t
r
i
b
u
t
e
s
 
in
 
t
h
e
 t
a
b
l
e
 
*
/ 

i
n
d
e
x
t
y
p
e
 i
n
d
e
x
[
I
N
D
E
X
-
N
U
M
I
;
 

/*
 s
t
r
u
c
t
u
r
e
 t
o
 h
o
l
d
 
i
n
d
e
x
 s
p
e
c
i
f
i
c
a
t
i
o
n
 

*/
 

i
n
t
 
n
m
i
n
d
e
x
;
 

/*
 n
u
m
b
e
r
 
o
f
 
i
n
d
e
x
e
s
 
o
n
 
t
h
e
 t
a
b
l
e
 

*
/ 

i
n
t
 
s
e
l
e
c
t
-
l
i
s
t
[
M
X
-
N
U
H
-
A
m
]
;
 

s
t
a
t
i
c
 
i
n
t
 
n
m
s
e
l
e
c
t
e
d
;
 

s
t
o
r
e
-
t
y
p
e
 
*
s
;
 

i
n
t
 
i
n
d
s
[
T
U
P
L
E
+
l
I
;
 

i
n
t
 
n
;
 

i
n
t
 
l
e
f
t
-
s
i
z
e
;
 

/*
 M
a
x
 

# 
a
t
t
r
i
b
u
t
e
s
 
i
n
 d
e
t
e
r
m
i
n
a
n
t
s
 
o
f
 F
D
s
 
*/

 

s
t
r
u
c
t
 
w
e
i
g
h
t
-
s
t
r
u
 

[ 
u
n
s
i
g
n
e
d
 
l
o
n
g
 p
a
i
r
;
 

in
t 
v
a
l
u
e
;
 

) 
w
e
i
g
h
t
;
 

i
n
t
 
nu
-e
ig
ht
; 

s
t
a
t
i
c
 v
o
i
d
 
l
o
a
d
(
)
,
 
f
d
-
c
h
e
c
k
i
n
g
(
)
,
 
s
t
o
r
e
-
f
d
0
,
 
d
i
s
t
i
n
c
t
-
v
a
l
0
,
 
w
e
i
g
h
t
-
v
a
l
0
,
 

q
u
i
c
k
s
o
r
t
 ( 

) 
;
 

s
t
a
t
i
c
 
u
n
s
i
g
n
e
d
 
l
o
n
g
 
c
h
e
c
L
i
n
-
s
t
o
r
e
(
)
,
 
c
l
o
s
u
r
e
(
)
;
 

s
t
a
t
i
c
 
in
t 

n
a
m
e
2
n
u
m
0
,
 
c
m
p
0
 ;
 

m
a
i
n
 (
a
r
g
c
,
 a
r
g
v
)
 

i
n
t
 
a
r
g
c
;
 

c
h
a
r
 
"a
rg
v;
 

( 
in
t 

i
,
 
j
,
 m
, 

r
o
u
n
d
;
 

l
o
n
g
 
i
n
t
 
a
l
l
;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
1
,
 
a-
le
ft
, 

a-
ri
gh
t;
 

s
t
r
u
c
t
 
fd

- 
st

^ 
*
c
p
,
 
*
c
q
,
 
*
c
r
,
 
*
c
h
e
c
k
,
 *
p
i
c
k
;
 

if
 
(
M
A
X
-
N
U
M
-
A
T
T
R
 

>
 E
*
s
i
z
e
o
f
(
i
n
t
)
)
 

[ 
pr
in
tf
('
To
o 

m
a
n
y
 
a
t
t
r
i
b
u
t
e
s
 p
e
r
m
i
t
t
e
d
!
\
n
g
)
;
 

e
x
i
t
 (
-
1
)
 ;
 

1 

/*
 l
o
g
i
n
 t

o
 O
R
A
C
L
E
,
 
u
s
e
 u
s
e
r
i
d
 
a
n
d
 
p
a
s
s
w
o
r
d
 p
r
o
v
i
d
e
d
 
by
 
U
S
E
R
 
'/
 

s
t
r
c
p
y
 (
u
i
d
.
a
r
r
,
 U
S
E
R
)
 ;
 

u
i
d
.
l
e
n
 

= 
s
t
r
l
e
n
(
u
i
d
.
a
r
r
)
;
 

E
X
E
C
 
S
Q
L
 C
O
N
N
E
C
T
 
:
u
i
d
;
 

if
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 

!=
 
0
)
 
( 

pr
in
tf
('
Co
nn
ec
ti
on
 

pr
ob
le
m.
\n
')
; 

e
x
i
t
 (
-
1
)
 ;
 

1 E
X
E
C
 
S
Q
L
 W
H
E
N
E
V
E
R
 
S
Q
L
E
R
R
O
R
 G
O
T
0
 e
r
r
r
p
t
;
 

/*
 g
e
t
 
t
h
e
 t
a
b
l
e
 n
a
m
e
 a
n
d
 
c
h
e
c
k
 
if
 
it
 
i
s
 
a
 
T
A
B
L
E
 
*
/ 

if
 
(
a
r
g
c
 =

= 
2
)
 
s
t
r
c
p
y
(
t
a
b
1
e
-
n
a
m
e
.
a
r
r
,
 
a
r
g
v
[
l
l
)
;
 

e
l
s
e
 

( 
pr
in
tf
('
gi
ve
 

m
e
 
t
h
e
 t
a
b
l
e
 n
a
m
e
:
 

')
; 

sc
an
f(
'$
s'
, 

ta
bl
e-
na
me
.a
rr
);
 

I t
a
b
l
e
-
n
a
m
e
.
l
e
n
 

= 
s
t
r
l
e
n
(
t
a
b
1
e
-
n
a
m
e
.
a
r
r
)
;
 

E
X
E
C
 
S
Q
L
 S
E
L
E
C
T
 T
A
B
L
E
-
T
Y
P
E
 
I
N
T
O
 
:c
ol
um
n-
na
me
 
F
R
O
M
 A
LL
-C
AT
AL
OG
 

W
H
E
R
E
 
T
A
B
L
E
-
N
A
M
E
 

= 
:t
ab
le
-n
am
e;
 

if
 

( 
s
t
r
n
c
m
p
(
c
o
l
u
m
n
_
n
a
m
e
.
a
r
r
,
 '
TA
BL
E'
, 

5)
 

!=
 
0
)
 
( 

p
r
i
n
t
f
(
"
\
n
I
t
'
s
 
n
o
t
 
a
 
t
a
b
l
e
.
\
n
m
)
;
 

e
x
i
t
 (
-
1
)
 ;
 

I 

/*
 q
u
e
r
y
 
f
o
r
 c
o
l
u
m
n
s
 i
n
 t
h
e
 t
a
b
l
e
 
*/

 
E
X
E
C
 
S
Q
L
 D
E
C
L
A
R
E
 C

1
 C
U
R
S
O
R
 
F
O
R
 

S
E
L
E
C
T
 C
O
L
U
M
N
-
N
A
M
E
,
 
N
U
L
L
A
B
L
E
,
 
CO
L-
ID
 

F
R
O
M
 A
L
L
-
T
A
B
_
C
O
L
U
H
N
S
 

W
H
E
R
E
 
T
A
B
L
E
-
N
A
M
E
 

= 
:t
ab
le
-n
am
e;
 

E
X
E
C
 
S
Q
L
 O
P
E
N
 
C
1
;
 

f
o
r
 
(
i
=
O
;
 i
<
M
A
X
-
N
U
M
_
A
T
T
R
;
 
i
+
+
)
 
[ 

E
X
E
C
 
S
Q
L
 F
E
T
C
H
 C
1
 
I
N
T
O
 
:c
ol
um
n-
na
me
, 

:
n
u
l
l
a
b
l
e
,
 
:c
ol
um
n-
id
; 

if
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

= 
1
4
0
3
)
 b
r
e
a
k
;
 

/*
 l
a
s
t
 
r
o
w
 s
e
l
e
c
t
e
d
 
*
/ 

c
o
l
u
m
n
-
n
a
m
e
.
a
r
r
[
c
o
l
u
m
n
~
n
a
m
e
.
l
e
n
l
 =

 
'\
O'
; 

j
 

= 
c
o
l
u
m
n
-
i
d
 
- 
1
;
 

s
t
r
c
p
y
 (
a
t
t
r
[
 jl
 .
na
me
, 
c
o
l
w
n
n
j
a
m
e
.
a
r
r
)
 ;
 

if
 
(
n
u
l
l
a
b
l
e
 =

=
 
'Y
')
 
a
t
t
r
[
j
l
.
n
u
l
l
a
b
l
e
 

= 
1
;
 

e
l
s
e
 
a
t
t
r
[
i
l
.
n
u
l
l
a
b
l
e
 

= 
0
;
 

a
t
t
r
[
i
l
 .
ke
y 

= 
0
;
 

at
tr
[i
l.
co
un
t 

= 
0
;
 

1 n
u
x
a
t
t
r
 =

 i
;
 

E
X
E
C
 
S
Q
L
 C
L
O
S
E
 
C
1
;
 

/*
 q
u
e
r
y
 
f
o
r
 i
n
d
e
x
e
s
 
f
o
r
 t
h
e
 t
a
b
l
e
 
*/

 
E
X
E
C
 
S
Q
L
 D
E
C
L
A
R
E
 C
2
 
C
U
R
S
O
R
 
F
O
R
 

S
E
L
E
C
T
 I
N
D
E
X
N
A
M
E
,
 
U
N
I
Q
U
E
N
E
S
S
 
F
R
O
M
 A
L
L
-
I
N
D
E
X
E
S
 



W
H
E
R
E
 T
A
B
L
E
-
N
A
M
E
 

= 
:t
ab
le
-n
am
e;
 

E
X
E
C
 
S
Q
L
 O
P
E
N
 C
2
;
 

f
o
r
 
(
i
=
O
;
 i
<
I
N
D
E
]
C
N
U
M
;
 
i
+
+
)
 (

 
E
X
E
C
 
S
Q
L
 F
E
T
C
H
 C
2
 
I
N
T
O
 
:
i
n
d
e
x
-
n
a
m
e
,
 
:
u
n
i
q
u
e
;
 

if
 
(
s
q
l
c
a
-
s
q
l
c
o
d
e
 =

= 
1
4
0
3
)
 b
r
e
a
k
;
 

i
n
d
e
x
~
a
m
e
.
a
r
r
[
i
n
d
e
x
-
n
a
m
e
.
l
e
n
]
 

= 
'\
O'
; 

s
t
r
c
p
y
(
i
n
d
e
x
[
i
l
.
n
a
m
e
,
 
i
n
d
e
x
-
n
a
m
e
.
a
r
r
)
;
 

if
 

( 
u
n
i
q
u
e
[
O
]
 

==
 
'U
' 

) 
i
n
d
e
x
[
i
l
.
u
n
i
q
u
e
 

= 
1
;
 

e
l
s
e
 
i
n
d
e
x
[
i
l
.
u
n
i
q
u
e
 

= 
0
;
 

i
n
d
e
x
[
i
l
 .
on
 

= 
0;
 

1 n
u
m
i
n
d
e
x
 =

 
i
;
 

E
X
E
C
 
S
Q
L
 C
L
O
S
E
 C
2
;
 

I*
 q
u
e
r
y
 
f
o
r
 c
o
l
u
m
n
s
 
o
n
 w
h
i
c
h
 
i
n
d
e
x
e
s
 w
e
r
e
 
c
r
e
a
t
e
d
 

*
/ 

/*
 p
r
e
p
a
r
e
 
t
h
e
 S
Q
L
 q
u
e
r
y
,
 w
i
t
h
 
i
n
d
e
x
-
n
a
m
e
 
u
n
f
i
l
l
e
d
 

*
/ 

E
X
E
C
 
S
Q
L
 
D
E
C
L
A
R
E
 C
3
 
C
U
R
S
O
R
 
F
O
R
 

S
E
L
E
C
T
 C
O
L
U
M
N
-
N
A
M
E
 
F
R
O
M
 A
L
L
-
I
N
L
L
C
O
L
U
M
N
S
 

W
H
E
R
E
 
T
A
B
L
E
-
N
A
M
E
 

= 
:t
ab
le
-n
am
e 

A
N
D
 
I
N
D
E
X
-
N
A
M
E
 

= 
:
i
n
d
e
x
-
n
a
m
e
;
 

/*
 
f
i
l
l
 
i
n
 
i
n
d
e
x
-
n
a
m
e
 
f
o
r
 e
a
c
h
 
i
n
d
e
x
,
 a
n
d
 
f
i
n
d
 
t
h
e
 c
o
l
u
m
n
s
 
f
o
r
 t

h
e
 i
n
d
e
x
 
*
/ 

f
o
r
 
(
i
=
O
;
 i
<
n
u
m
_
i
n
d
e
x
;
 i
+
+
)
 
[ 

s
t
r
c
p
y
(
i
n
d
e
x
-
n
a
m
e
.
a
r
r
,
 
i
n
d
e
x
[
i
l
.
n
a
m
e
)
;
 

i
n
d
e
x
_
n
a
m
e
.
l
e
n
 

= 
s
t
r
l
e
n
(
i
n
d
e
x
-
n
a
m
e
.
a
r
r
)
;
 

E
X
E
C
 
S
Q
L
 O
P
E
N
 
C
3
;
 

f
o
r
 
(
j
=
0
;
 j
<
n
u
m
-
a
t
t
r
;
 
j
+
+
)
 
( 

E
X
E
C
 
S
Q
L
 F
E
T
C
H
 C
3
 
I
N
T
O
 
:
c
o
l
u
m
n
_
n
a
m
e
;
 

i
f
 
(
s
q
l
c
a
-
s
q
l
c
o
d
e
 =

= 
1
4
0
3
)
 b
r
e
a
k
;
 

c
o
l
u
m
n
_
n
a
m
e
.
a
r
r
[
c
o
l
u
m
n
_
n
a
m
e
.
l
e
n
l
 

= 
'
\
O
1
;
 

m
 

= 
n
a
m
e
2
n
u
m
(
c
o
l
u
n
m
-
n
a
m
e
.
a
r
r
1
;
 

i
n
d
e
x
[
i
]
.
o
n
 
I=
 
(
0
x
0
1
 <

<
 m
)
;
 

I E
X
E
C
 
S
Q
L
 C
L
O
S
E
 C
3
;
 

i
f
 

( 
j
 

=
=

 1
 
hh
 
i
n
d
e
x
[
i
l
.
u
n
i
q
u
e
 

) 
a
t
t
r
[
m
l
.
k
e
y
 

= 
1
;
 

1 

/*
 s
e
l
e
c
t
 
o
n
l
y
 n
o
n
-
k
e
y
 
a
t
t
r
i
b
u
t
e
s
 
f
o
r
 d
a
t
a
 
c
h
e
c
k
i
n
g
 

*/
 

n
x
s
e
l
e
c
t
e
d
 =

 0
;
 

f
o
r
 
(
i
=
O
;
 i
<
n
u
m
_
a
t
t
r
;
 
i
+
+
)
 

if
 

( 
!
a
t
t
r
[
i
l
.
k
e
y
 

1 
s
e
l
e
c
t
-
l
i
s
t
[
n
u
m
_
s
e
l
e
c
t
e
d
+
+
l
 

= 
i
;
 

i
f
 
(
n
m
s
e
l
e
c
t
e
d
 =

=
 0

)
 
( 

pr
in
tf
('
\n
Ev
er
y 

s
i
n
g
l
e
 
a
t
t
r
i
b
u
t
e
 
i
n
 
t
h
e
 r
e
l
a
t
i
o
n
 
i
s
 a
 
k
e
y
\
n
m
)
;
 

e
x
i
t
 (
1
)
 ;
 

1 pr
in
tf
('
\n
Ta
bl
e 

d
e
f
i
n
i
t
i
o
n
 
r
e
a
d
\
n
m
)
;
 

s
 

= 
(
s
t
o
r
e
-
t
y
p
e
 
*
)
c
a
l
l
o
c
(
n
~
s
e
l
e
c
t
e
d
,
 s
i
z
e
o
f
(
s
t
o
r
e
-
t
y
p
e
)
)
;
 

nu
n-
we
ig
ht
 

= 
(n
-s
el
ec
te
d 

(
n
u
m
-
s
e
l
e
c
t
e
d
-
l
]
)
/
2
;
 

w
e
i
g
h
t
 

= 
(
s
t
m
c
t
 w
e
i
g
h
t
-
s
t
r
u
 
*
)
c
a
l
l
o
c
(
n
u
m
_
w
e
i
g
h
t
,
 

s
i
z
e
o
f
(
s
t
r
u
c
t
 w
e
i
g
h
t
-
s
t
r
u
)
)
;
 

if
 
(
s
=
=
N
U
L
L
 

11
 w
e
i
g
h
t
=
=
N
U
L
L
)
 

( 
pr
in
tf
('
\n
me
mo
ry
 

a
l
l
o
c
a
t
i
o
n
 
f
a
i
l
e
d
.
\
n
m
)
;
 

e
x
i
t
(
-
1
)
 ;
 

I pr
in
tf
('
\n
ma
x 

X 
o
f
 
f
i
e
l
d
s
 t
h
e
 
l
e
f
t
 
s
i
d
e
 o
f
 a
n
y
 
f
u
l
l
y
 F
D
 c
a
n
 h
a
v
e
:
 

'I; 
sc
an
f(
'O
dm
, 

&
l
e
f
t
-
s
i
z
e
)
;
 

if
 
(
l
e
f
t
-
s
i
z
e
 >

 n
un
-s
el
ec
te
d)
 
le
ft
-s
iz
e 

= 
n
u
m
-
s
e
l
e
c
t
e
d
;
 

l
o
a
d
 ( 

1 
;
 

pr
in
tf
('
\n
Da
ta
 

l
o
a
d
i
n
g
 s
u
c
c
e
s
s
f
u
l
\
n
~
)
;
 

E
X
E
C
 
S
Q
L
 W
H
E
N
E
V
E
R
 
S
Q
L
E
R
R
O
R
 
C
O
N
T
I
N
U
E
;
 

E
X
E
C
 S
Q
L
 R
O
L
L
B
A
C
K
 
W
O
R
K
 
R
E
L
E
A
S
E
;
 

f
o
r
 
(
i
=
O
;
 i
<
n
u
m
_
s
e
l
e
c
t
e
d
;
 
i
+
+
)
 s
[i
l 
[
n
]
 [
O
]
 =

 
'\
0'
; 

fo
r 

(
i
=
O
;
 i
<
=
n
;
 
i
+
+
)
 i
n
d
s
[
i
]
 =

 
i;
 

m
 

= 
0
;
 

fo
r 

(
i
=
O
;
 i
<
n
u
m
_
s
e
l
e
c
t
e
d
-
1
;
 
i
+
+
)
 (

 
a
l
l
 

= 
0
x
0
1
 
<
<
 
i
;
 

/*
 a
l
l
 
r
e
p
r
e
s
e
n
t
s
 a
t
t
r
i
b
u
t
e
 
i
 

*/
 

f
o
r
 
(
j
=
i
+
l
;
 j
<
n
u
m
_
s
e
l
e
c
t
e
d
;
 j

+
+
)
 (

 
/*

 t
h
e
 p
a
i
r
 
f
o
r
 
a
t
t
r
i
b
u
t
e
s
 
i
 
a
n
d
 
j
 

*/
 

w
e
i
g
h
t
[
m
]
.
p
a
i
r
 

= 
(
(
u
n
s
i
g
n
e
d
 l
o
n
g
l
0
x
0
1
 <

<
 
j
)
 

I 
a
l
l
;
 

w
e
i
g
h
t
 [
m
]
 .
v
a
l
u
e
 

= 
-
1
;
 

m
+
+
;
 

I 
I 

/*
 i
n
i
t
i
a
l
i
z
e
 c
h
e
c
k
i
n
g
 
l
i
s
t
 
*/

 
a
l
l
 

= 
0
x
0
1
;
 

f
o
r
 
(
i
d
;
 i
<
n
u
m
_
s
e
l
e
c
t
e
d
;
 
i
+
+
)
 
a
l
l
 

= 
(
a
l
l
 <

<
 
11
 

I 
0
x
0
1
;
 

c
h
e
c
k
 =

 N
U
L
L
;
 

fo
r 

(
i
=
n
x
s
e
l
e
c
t
e
d
-
1
;
 i
>
=
O
;
 i
--
1 

( 
c
p
 

= 
(
s
t
r
u
c
t
 f
d-
st
ru
 
'
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 
fd
-s
tr
u)
);
 

c
p
-
>
l
e
f
t
 

= 
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<
 
i;
 

c
p
-
>
r
i
g
h
t
 =

 a
l
l
 h
 
-
c
p
-
>
l
e
f
t
;
 

c
p
-
>
n
e
x
t
 

= 
c
h
e
c
k
;
 

c
h
e
c
k
 =

 c
p
;
 

I fd
s 

= 
N
U
L
L
;
 

fo
r 

(
r
o
u
n
d
=
l
;
 r
o
u
n
d
<
=
l
e
f
t
-
s
i
z
e
;
 
r
o
u
n
d
+
+
)
 (

: 
p
i
c
k
 

= 
c
h
e
c
k
;
 

w
h
i
l
e
 

( 
p
i
c
k
 

!=
 N
U
L
L
 

) 
I 

pr
in
tf
('
ch
ec
ki
ng
: 

'I
; 

o
u
t
p
u
t
n
a
m
e
(
s
t
d
o
u
t
,
 
p
i
c
k
-
>
l
e
f
t
)
;
 

p
u
t
c
h
a
r
 ( 
' \
n'
 ) 
;
 

qu
ic
k-
so
rt
 
(
p
i
c
k
-
>
l
e
f
t
,
 0
,
 n
-
1
)
 ;
 

f
&
c
h
e
c
k
i
n
g
(
p
i
c
k
)
;
 

if
 
(
r
o
u
n
d
 =

= 
1
)
 
d
i
s
t
i
n
c
t
-
v
a
l
(
p
i
c
k
-
>
l
e
f
t
)
;
 

i
f
 
(
r
o
u
n
d
 =

= 
2
)
 
w
e
i
g
h
t
-
v
a
l
(
p
i
c
k
-
>
l
e
f
t
]
;
 

/*
 
if
 
t
w
o
 
fi
el
d.
 
a
8
 

t
h
e
 l
ef
t,
 
w

 u
l
~
~
h
t
e
 

t
h
e
i
r
 w
e
i
g
h
t
 

*/
 

p
i
c
k
 

=
 p
i
c
k
 
-
>
n
e
x
t
;
 

I i
f
 
(
r
o
u
n
d
 =

=
 l
e
f
t
-
s
i
z
e
)
 
b
r
e
a
k
;
 

/*
 b
u
i
l
d
 
c
h
e
c
k
i
n
g
 
l
i
s
t
 
f
o
r
 n
e
x
t
 
r
o
u
n
d
 
*/

 
c
p
 =

 N
U
L
L
;
 

/*
 t
h
e
 n
e
w
 c
h
e
c
k
i
n
g
 
l
i
s
t
 
w
i
l
l
 b
e
 t
e
m
p
o
r
a
l
l
y
 l
i
n
k
e
d
 t
o
 c
p
 
*
I 

p
i
c
k
 

= 
c
h
e
c
k
;
 

w
h
i
l
e
 
l
~
i
c
k
 !=

 N
U
L
L
)
 

I 
.-

 -
 

. 
. 

i
f
 
(
p
i
c
k
-
>
r
i
g
h
t
 !

=
 
0
)
 
[ 

a
l
l
 
= 

(
l
o
n
g
 i
n
t
)
O
x
0
1
 <

<
 
(
s
i
z
e
o
f
(
1
o
n
g
 i
n
t
)
*
8
-
1
)
;
 

w
h
i
l
e
 
(
!
(
a
l
l
 h
 
p
i
c
k
-
>
l
e
f
t
)
)
 a
l
l
 >

>
=

 
1;
 

a
l
l
 &

=
 
p
i
c
k
-
>
r
i
g
h
t
;
 

pr
in
tf
('
\n
Lo
ad
in
g 

da
ta
..
.'
);
 



s
e
a
r
c
h
.
 p
c
 

1
 =

 0
x
0
1
;
 

f
o
r
 
(
i
=
O
;
 i
<
n
u
m
-
s
e
l
e
c
t
e
d
;
 
i
+
+
)
 

i
f
 
(
1
 &

 
a
l
l
)
 

( 
a-
le
ft
 

= 
p
i
c
k
-
>
l
e
f
t
 

) 
1
;
 

a-
ri
gh
t 

= 
c
l
o
s
u
r
e
(
a
-
l
e
f
t
)
;
 

a-
ri
gh
t 

= 
p
i
c
k
-
>
r
i
g
h
t
 
h
 
-
(
a
-
r
i
g
h
t
)
;
 

i
f
 
(a
-r
ig
ht
 

!=
 
0
)
 
( 

c
q
 
= 

(
s
t
r
u
c
t
 f
d-
st
ru
 

*
)
 

r
n
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 
fd
-s
tr
u)
);
 

c
q
-
>
l
e
f
t
 

= 
a-
le
ft
; 

c
q
-
>
r
i
g
h
t
 

= 
a-
ri
gh
t:
 

c
q
-
>
n
e
x
t
 

= 
N
U
L
L
;
 

if
 
(
c
p
 =

= 
N
U
L
L
)
 

{ 
c
p
 

= 
c
q
;
 

c
r
 

= 
c
p
;
 

1 e
l
s
e
 

{ 

c
r
-
>
n
e
x
t
 =

 c
q
;
 

c
r
 

= 
cq
: 

1 

1 1
 <

<
=

 
1;
 

1 
1 p
i
c
k
 

= 
p
i
c
k
-
>
n
e
x
t
:
 

/*
 f
r
e
e
 t
h
e
 m
e
m
o
r
y
 
a
l
l
o
c
a
t
e
d
 
f
o
r
 c
h
e
c
k
-
h
e
a
d
 

*
/ 

w
h
i
l
e
 
(
c
h
e
c
k
 !

=
 N
U
L
L
)
 

( 
c
q
 =

 
c
h
e
c
k
-
>
n
e
x
t
;
 

f
r
e
e
 (
c
h
e
c
k
)
 :
 

c
h
e
c
k
 =

 c
q
;
 

c
h
e
c
k
 

= 
c
p
;
 

1 

/*
 c
a
l
c
u
l
a
t
e
 w
e
i
g
h
t
 
v
a
l
u
e
s
 
f
o
r
 a
n
y
 p
a
i
r
 
l
e
f
t
 
u
n
c
a
l
c
u
l
a
t
e
d
 

*/
 

f
o
r
 
(
i
=
O
;
 i
<
n
u
m
_
w
e
i
g
h
t
;
 
i
+
+
)
 

if
 
(
w
e
i
g
h
t
t
i
]
 .
v
a
l
u
e
 =

= 
-
1
)
 {

 
q
u
i
c
)
c
s
o
r
t
(
w
e
i
g
h
t
[
i
l
.
p
a
i
r
,
 
0
,
 
n
-
1
)
;
 

w
e
i
g
h
t
-
v
a
l
(
w
e
i
g
h
t
[
i
l
.
p
a
i
r
)
:
 

1 

o
u
t
p
u
t
 ( 

) 
;
 

e
x
i
t
 (
0
)
;
 

e
r
r
r
p
t
 :
 

pr
in
tf
('
\n
 

8
.
7
0
s
 
(
%
d
)
\
n
*
,
 s
q
l
c
a
.
s
q
l
e
r
r
m
.
s
q
l
e
r
r
m
c
,
 
-
s
q
l
c
a
.
s
q
l
c
o
d
e
)
;
 

E
X
E
C
 
S
Q
L
 W
H
E
N
E
V
E
R
 
S
Q
L
E
R
R
O
R
 C
O
N
T
I
N
U
E
;
 

E
X
E
C
 
S
Q
L
 
R
O
L
L
B
A
C
K
 
W
O
R
K
 
R
E
L
E
A
S
E
:
 

e
x
i
t
 (
-
1
)
 ;
 

I ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
. 

* * 
s
y
n
o
p
s
i
s
 

* 
l
o
a
d
 ( 

) 

* 
D
e
s
c
r
i
p
t
i
o
n
 

l
o
a
d
s
 d
a
t
a
 
i
n
t
o
 g
l
o
b
a
l
 
a
r
r
a
y
 
s.
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

s
t
a
t
i
c
 v
o
i
d
 

l
o
a
d
 ( 

) 

{ 
in
t 

f
o
r
 

1 
1 

(
i
=
O
;
 i
<
n
u
m
-
s
e
l
e
c
t
e
d
:
 
i
+
+
)
 (

 
s
p
r
i
n
t
f
(
q
u
e
r
y
,
 
'S
EL
EC
T 

%
s
 
F
R
O
M
 
8
s
 O
R
D
E
R
 
B
Y
 
R
O
W
N
U
M
 
',
 

a
t
t
r
[
s
e
l
e
c
t
~
l
i
s
t
[
i
l
l
.
n
a
m
e
,
 
ta
bl
e-
na
me
.a
rr
);
 

E
X
E
C
 
S
Q
L
 
P
R
E
P
A
R
E
 S
 
F
R
O
M
 
:
q
u
e
r
y
;
 

E
X
E
C
 
S
Q
L
 
D
E
C
L
A
R
E
 C
L
 
C
U
R
S
O
R
 
F
O
R
 
S
;
 

E
X
E
C
 
S
Q
L
 O
P
E
N
 
C
L
;
 

f
o
r
 
(
n
=
O
;
 n
<
T
U
P
L
E
:
 n

+
+
)
 

{ 
E
X
E
C
 
S
Q
L
 F
E
T
C
H
 C
L
 I
N
T
O
 
:
h
o
l
d
e
r
;
 

if
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 

==
 1

4
0
3
)
 b
r
e
a
k
;
 

h
o
l
d
e
r
.
a
r
r
[
h
o
l
d
e
r
.
l
e
n
l
 

= 
'\
0'
: 

s
t
r
c
p
y
(
s
[
i
l
[
n
l
,
 h
ol
de
r.
az
-r
);
 

1 E
X
E
C
 
S
Q
L
 C
L
O
S
E
 
C
L
;
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

S
y
n
o
p
s
i
s
 

f
d
-
c
h
e
c
k
i
n
g
 (
p
)
 

s
t
r
u
c
t
 
fd
-s
tr
u 

*
p
;
 

D
e
s
c
r
i
p
t
i
o
n
 

it
 
c
h
e
c
k
s
 
t
h
e
 
F
D
s
 
f
r
o
m
 p
-
>
l
e
f
t
 
t
o
 a
n
y
 
a
t
t
r
i
b
u
t
e
s
 
r
e
p
r
e
s
e
n
t
e
d
 
i
n
 

* 
p
-
>
r
i
g
h
t
.
 
T
h
e
 c
h
e
c
k
 t
a
k
e
s
 o
n
 
t
h
e
 d
a
t
a
 
i
n
 a
r
r
a
y
 
s.
 
s
 
s
h
o
u
l
d
 
b
e
 

s
o
r
t
e
d
 a
c
c
o
r
d
i
n
g
 
t
o
 p
-
>
l
e
f
t
 b
e
f
o
r
e
 
c
a
l
l
i
n
g
 
t
h
i
s
 
f
u
n
c
t
i
o
n
.
 

T
h
e
 r
e
s
u
l
t
 
i
s
 
s
t
o
r
e
d
 
i
n
 t
h
e
 l
i
s
t
 
fd
s.
 
p
-
>
r
i
g
h
t
 
i
s
 u
p
d
a
t
e
d
 
t
o
 

c
o
n
t
a
i
n
 
f
i
e
l
d
s
 c
a
n
n
o
t
 b
e
 
d
e
t
e
r
m
i
n
e
d
 b
y
 
p
-
>
l
e
f
t
.
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. 

s
t
a
t
i
c
 
v
o
i
d
 

fd
-c
he
ck
in
g 
(
p
)
 

s
t
r
u
c
t
 
fd
-s
tr
u 

p
;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 m
,
 
r
,
 
f
o
r
m
e
r
;
 

l
o
n
g
 
in
t 

la
tt
er
: 

in
t 

i.
 
j:
 

r
 

= 
p
-
>
r
i
g
h
t
;
 

/*
 r
 
i
s
 
t
h
e
 s
e
t
 
o
f
 
f
i
e
l
d
 f
o
r
 c
h
e
c
k
i
n
g
 a
s
 
t
h
e
 r
i
g
h
t
 s
i
d
e
 
*
/ 

i
 

= 
0
;
 

c
h
e
c
k
 t
u
p
l
e
s
 w
i
t
h
 
N
U
L
L
 
v
a
l
u
e
s
 
f
o
r
 p
-
>
l
e
f
t
.
 
B
e
c
a
u
s
e
 
s
 
i
s
 
s
o
r
t
e
d
 a
c
c
o
r
d
i
n
g
 

t
o
 p
-
>
l
e
f
t
,
 

a
l
l
 N
U
L
L
 v
a
l
u
e
s
 
f
o
r
 p
-
>
l
e
f
t
 
a
r
e
 a
t 

t
h
e
 b
e
g
i
n
i
n
g
 
o
f
 
s.
 

s[
][
nl
 
r
e
p
r
e
s
e
n
t
s
 a
 
t
u
p
l
e
 n
u
l
l
e
d
 
i
n
 a
l
l
 
f
i
e
l
d
s
.
 

w
h
i
l
e
 
(
i
<
n
 &

&
 
c
m
p
(
p
-
>
l
e
f
t
,
 
i,
 
n
)
=
=
O
)
 1

 
m
 

= 
0
x
0
1
;
 

f
o
r
 
(
j
=
0
;
 j
<
n
u
=
s
e
l
e
c
t
e
d
;
 

j
+

+
)
 ( 

i
f
 

( 
m
 

&
 
r
 

&
&

 
s[
j]
[i
nd
s[
il
l[
01
 

!=
 
'\
0'
 

1 
r
 

&
=

 
-
m
;
 

m
 

<
<

=
 
1;
 



/*
 c

h
e
c
k
 
t
h
e
 
f
o
r
m
e
r
 p
a
r
t
 
of
 
r
 
*
/ 

/+
 
l
a
t
t
e
r
 w
i
t
h
 
i
t
s
 
s
i
g
n
 b
i
t
 
s
e
t
 

*
/ 

l
a
t
t
e
r
 =

 
(
l
o
n
g
 i
n
t
)
O
x
0
1
 
<

<
 
(
s
i
z
e
o
f
(
1
o
n
g
 i
n
t
1
*
8
-
1
)
;
 

w
h
i
l
e
 
(
!
(
l
a
t
t
e
r
 &

 
p
-
>
l
e
f
t
)
)
 

l
a
t
t
e
r
 

>
>

=
 
1
;
 

f
o
r
m
e
r
 

= 
r
 

&
 
(
-
l
a
t
t
e
r
)
 ;
 

/*
 
f
o
r
m
e
r
 
i
s
 t
h
e
 
f
o
r
m
e
r
 p
a
r
t
 
of
 
r
 

*
/ 

m
 

= 
c
h
e
c
k
-
i
n
-
s
t
o
r
e
(
p
-
>
l
e
f
t
,
 
f
o
r
m
e
r
,
 
i
)
;
 
/*

 m
 
i
s
 t
h
e
 
r
i
g
h
t
 
s
i
d
e
 

d
e
t
e
r
m
i
n
a
n
t
s
 
a
f
t
e
r
 
c
h
e
c
k
i
n
g
 
*/

 
i
f
 
(
m
!
=
O
)
 (

 
s
t
o
r
e
-
f
d
(
p
-
>
l
e
f
t
,
 
m
)
 ;
 

/*
 s
t
o
r
e
 
r
e
s
u
l
t
 
*/

 
m
 

= 
c
l
o
s
u
r
e
(
p
-
>
l
e
f
t
)
;
 

/*
 c
a
l
c
u
l
a
t
e
 
t
h
e
 
c
u
r
r
e
n
t
 
c
l
o
s
u
r
e
 
o
f
 
p
-
>
l
e
f
t
 
*/

 
p
-
>
r
i
g
h
t
 

&
=

 
-
m
;
 

/*
 r
e
m
o
v
e
 
t
h
e
 c
l
o
s
u
r
e
 
f
r
o
m
 
p
-
>
r
i
g
h
t
 

*
/ 

r
 

&
=

 
-
m
;
 

/*
 a
l
s
o
 
r
e
m
o
v
e
 
t
h
e
 c
l
o
s
u
r
e
 
f
r
o
m
 
r
 

*/
 

I l
a
t
t
e
r
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=
 
r
;
 

/*
 l

a
t
t
e
r
 n
o
w
 
i
s
 
t
h
e
 
l
a
t
t
e
r
 p
a
r
t
 
o
f
 
r
 

*
I 

m
 

= 
c
h
e
c
k
-
i
n
-
s
t
o
r
e
(
p
-
>
l
e
f
t
,
 
l
a
t
t
e
r
,
 
i
)
;
 

i
f
 
(
m
 
!
=
O
)
 (
 

s
t
o
r
e
-
f
d
(
p
-
>
l
e
f
t
,
 
m
)
 ;
 

p
-
>
r
i
g
h
t
 

&
=

 
-
m
;
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1 
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n
o
p
s
i
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u
n
s
i
g
n
e
d
 
l
o
n
g
 
c
h
e
c
k
i
n
-
s
t
o
r
e
(
1
,
 
r
,
 w
)
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
1
,
 r
;
 

i
n
t
 
w:
 

1
 * 

D
e
s
c
r
i
p
t
i
o
n
 

* 
it
 
g
o
e
s
 
t
h
r
o
u
g
h
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h
e
 d
a
t
a
 
s
t
o
r
e
d
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n
 
t
h
e
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l
o
b
l
e
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r
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y
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,
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r
o
m
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t
o
 

t
h
e
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n
d
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a
n
d
 
c
h
e
c
k
s
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1
 d
e
t
e
r
m
i
n
e
s
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n
y
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t
t
r
i
b
u
t
e
s
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e
p
r
e
s
e
n
t
e
d
 

i
n
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. 

I
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r
e
t
u
r
n
s
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h
o
s
e
 
c
h
e
c
k
i
n
g
-
c
o
n
f
i
r
m
e
d
 
r
i
g
h
t
-
s
i
d
e
s
 
a
s
 a
n
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
i
n
t
.
 

T
h
e
 s
t
o
r
e
 
s
 m
u
s
t
 
b
e
 
s
o
r
t
e
d
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c
c
o
r
d
i
n
g
 
t
o
 1
 b
e
f
o
r
e
 
c
a
l
l
i
n
g
 
t
h
i
s
 
f
u
n
c
t
i
o
n
.
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s
t
a
t
i
c
 
u
n
s
i
g
n
e
d
 
l
o
n
g
 

c
h
e
c
k
-
i
n
-
s
t
o
r
e
 
(
1
,
 r
,
 

w
) 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
1.
 
r
;
 

i
n
t
 
w
;
 

( 
u
n
s
i
g
n
e
d
 
l
o
n
g
 m
;
 

i
n
t
 
i
,
 
j
;
 

f
o
r
 

( 
i-
-w
+l
; 
r
!
=
O
 &

&
 
i
<
n
;
 
i
+
+
)
 

i
f
 

( 
c
m
p
(
1
,
 
i,
 
i
-
1
)
=
=
0
 )

 
( 

/*
 t
w
o
 
t
u
p
l
e
s
 w
i
t
h
 
1
 
f
i
e
l
d
s
 
e
q
u
a
l
 
*/

 
m
 

= 
0
x
0
1
;
 

f
o
r
 
(
j
=
O
;
 r
!
=
O
 &

h
 
j
a
u
m
_
s
e
l
e
c
t
e
d
;
 
j
+
+
)
 (

 
i
f
 
(
m
 &

 
r
 

&
&

 
c
m
p
(
m
,
 
i
,
 
i
-
1
)
 !
=
O
)
 
r
 

&
=

 
-
m
;
 

m
 

<
<

=
 
1
;
 

1 
1 

r
e
t
u
r
n
(
r
)
 ;
 

1 

t
 

S
y
n
o
p
s
i
s
 

s
t
o
r
e
-
f
d
(
1
,
 
r
)
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
1
,
 r
; 

D
e
s
c
r
i
p
t
i
o
n
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s
t
o
r
e
s
 
t
h
e
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D
 
1
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>
 
r
 

i
n
t
o
 
f
d
s
.
 

r
 
m
u
s
t
 
b
e
 n
o
n
-
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e
r
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.
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s
t
a
t
i
c
 
v
o
i
d
 

s
t
o
r
e
-
f
d
(
1
,
 
r
)
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
1
,
 
r:
 

v
 

= 
f
d
s
;
 

w
h
i
l
e
 
(
v
 !

=
 
N
U
L
L
 

&
&

 
v
-
>
l
e
f
t
 

!=
 
1
)
 
v
 

= 
v
-
>
n
e
x
t
;
 

i
f
 
(
V
 !

=
 
N
U
L
L
)
 

V
-
>
r
i
g
h
t
 
I=
 
r
;
 

e
l
s
e
 

( 
v
 

=
 
(
s
t
r
u
c
t
 f
d
-
s
t
r
u
 
+
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 
f
d
-
s
t
r
u
)
)
;
 

v
-
>
l
e
f
t
 

= 
1;
 

v
-
>
r
i
g
h
t
 

= 
r;
 

v
-
>
n
e
x
t
 

= 
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f
d
s
 =
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..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. 

S
y
n
o
p
s
i
s
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u
n
s
i
g
n
e
d
 
l
o
n
g
 c
l
o
s
u
r
e
(
x
)
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 x
;
 

1
 * 

D
e
s
c
r
i
p
t
i
o
n
 

it
 
t
a
k
e
s
 
a
 
s
e
t
 
o
f
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t
t
r
i
b
u
t
e
s
 
r
e
p
r
e
s
e
n
t
e
d
 
i
n
 x
, 

a
n
d
 
d
e
r
i
v
e
 
t
h
e
 

F
D
 c
l
o
s
u
r
e
 
f
o
r
 x
 
a
c
c
o
r
d
i
n
g
 
t
o
 F
D
s
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n
 t
h
e
 g
l
o
b
l
e
 
f
d
s
 l
i
s
t
.
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r
e
t
u
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 c
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s
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r
e
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e
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n
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s
i
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n
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d
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o
n
g
 
i
n
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.
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+
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s
t
a
t
i
c
 
u
n
s
i
g
n
e
d
 
l
o
n
g
 

c
l
o
s
u
r
e
 (
XI
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 x
: 

( 
u
n
s
i
g
n
e
d
 
l
o
n
g
 r
e
s
u
l
t
:
 

s
t
r
u
c
t
 
f
d
-
s
t
m
 
*
p
;
 

d
o
 

1 r
e
s
u
l
t
 

= 
x
;
 

p
 

= 
f
d
s
;
 

w
h
i
l
e
 

(p
 !

=
 
N
U
L
L
)
 

( 
i
f
 

(
(
x

 &
 
p
-
>
l
e
f
t
)
 

==
 p
-
>
l
e
f
t
)
 x

 
I=
 
P
-
>
r
i
g
h
t
;
 

p
 

= 
p
-
>
n
e
x
t
;
 

1 
) 
w
h
i
l
e
 
(
r
e
s
u
l
t
 
!=

 
x

) 
;
 

r
e
t
u
r
n
 (
r
e
s
u
l
t
 :
 

1 





in
t 
c
m
p
 (
b
a
s
e
,
 c
l
,
 c
2
 

u
n
s
i
g
n
e
d
 l
o
n
g
 b
a
s
e
;
 

i
n
t
 c
l
,
 c
2
;
 

R
e
t
u
r
n
 v
a
l
u
e
s
 

t
 

s
a
m
e
 a
s
 s
t
r
c
m
p
(
s
1
,
 s
2)
. 

* 
D
e
s
c
r
i
p
t
i
o
n
 

it
 
c
o
m
p
a
r
e
s
 t
w
o
 t
u
p
l
e
s
 a
t 
p
o
s
i
t
i
o
n
s
 
c
l
 a
n
d
 c
2
 a
c
c
o
r
d
i
n
g
 t
o 
t
h
e
 
f
i
e
l
d
s
 

r
e
p
r
e
s
e
n
t
e
d
 b
y 
ba
se
. 

c
l
 a
n
d
 c
2
 a
r
e
 r
e
f
e
r
e
n
c
e
d
 t
h
r
o
u
g
h
 
i
n
d
e
x
 
in
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].
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.
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*
,
 

s
t
a
t
i
c
 i
nt
 

c
m
p
(
b
a
s
e
,
 
c
l
,
 c
2
)
 

u
n
s
i
g
n
e
d
 l
on
g 
b
a
s
e
;
 

i
n
t
 c
l
,
 c
2
;
 

( 
in
t 
i
,
 r
e
s
u
l
t
;
 

f
o
r
 
(
i
-
0
;
 i
<
n
u
m
_
s
e
l
e
c
t
e
d
;
 i
+
+
)
 (

 
if
 
(
0
x
0
1
 &

 
b
a
s
e
)
 

( 
r
e
s
u
l
t
 =

 s
tr
nc
mp
(s
[i
l 
[
i
n
d
s
[
c
l
l
l
,
 s
[i
l 
[i
nd
s[
c2
]1
, 
F
I
E
L
D
-
L
E
N
G
T
H
)
;
 

i
f
 
(
r
e
s
u
l
t
 !

=
 
0
)
 r
e
t
u
r
n
(
r
e
s
u
1
t
)
;
 

I b
a
s
e
 

>
>

=
 
1;
 

I r
e
t
u
r
n
(
0
)
 ;
 

I o
u
t
p
u
t
 ( 

) 

( 
i
n
t
 i
,
 j
; 

u
n
s
i
g
n
e
d
 l
o
n
g
 m
;
 

F
I
L
E
 '
fp
; 

c
h
a
r
 b
u
f
1
N
A
M
E
-
L
E
N
G
T
H
 

+
 

41
: 

s
t
r
u
c
t
 f
d-
st
ru
 
*p
: 

s
t
r
c
p
y
(
b
u
f
,
 t
ab
le
-n
am
e.
ar
r)
; 

s
t
r
c
a
t
 (
b
u
f
,
 '
 .
d
b
m
)
 ;
 

pr
in
tf
('
\n
\n
 .

..
 da
t
a
 s
e
a
r
c
h
i
n
g
 c
o
m
p
l
e
t
e
d
 ..

. \
n
m
)
:
 

pr
in
tf
('
re
su
1t
s 

w
i
l
l
 b
e
 
i
n
 f
il
e:
 
%
s
\
n
g
,
 b
u
f
)
;
 

i
f
 
((
fp
 

= 
fo
pe
n(
bu
f,
 
'w
e)
) 

==
 N
U
L
L
)
 
( 

pr
in
tf
('
op
en
 
%
s
 f
o
r
 w
r
i
t
i
n
g
 r
e
s
u
l
t
 
f
a
i
l
e
d
\
n
m
.
 b
u
f
)
;
 

pr
in
tf
('
ou
tp
ut
 

t
o
 s
t
d
o
u
t
\
n
\
n
m
)
;
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 =

 s
t
d
o
u
t
;
 

I f
p
r
i
n
t
f
(
f
p
,
 
'T
AB
LE
 
%
s
\
n
\
n
m
,
 ta
bl
e-
na
me
.a
rr
);
 

f
p
r
i
n
t
f
(
f
p
,
 
'M
AX
-L
EF
T-
ED
 

%
d
\
n
\
n
m
,
 le
ft
-s
iz
e)
; 

f
o
r
 
(
i
=
O
;
 i
<n
-a
tt
r;
 

i
+
+
)
 

f
p
r
i
n
t
f
(
f
p
,
 '
FI
EL
D 

%
s
 %
d 
%
d
 %
d
\
n
0
,
 a
tt
r[
il
.n
am
e,
 
at
tr
[i
].
nu
ll
ab
le
, 

at
tr
[i
l 
.k
ey
, 
at
tr
[i
l 
.
c
o
u
n
t
)
 :
 

fp
ut
c(
'\
n'
, 

fp
);
 

f
o
r
 
(
i
=
O
;
 i
<n
-i
nd
ex
: 

i
+
+
)
 {

 

f
p
r
i
n
t
f
 (
f
p
,
 '
IN
DE
X 
%
s
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d
U

, i
nd
ex
[i
l 
.
n
a
m
e
,
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nd
ex
[i
] 
.
u
n
i
q
u
e
)
;
 

m
 

= 
0
x
0
1
;
 

f
o
r
 
(
j
=
O
;
 j
<
n
m
a
t
t
r
;
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+
+
)
 
( 

i
f
 
(
m
 &

 
in
de
xL
i1
 .
o
n
)
 
f
p
r
i
n
t
f
 (
f
p
,
 . 

%
s
m
,
 at
tr
[j
l 
.n
am
e)
; 

m
 <

<
=

 
1
;
 

1 fp
ut
c(
'\
n'
, 

fp
);
 

fo
r 
(
i
=
O
;
 i
<
n
u
m
_
w
e
i
g
h
t
;
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+
+
)
 

i
f
 
(
w
e
i
g
h
t
 [i
l 
.
v
a
l
u
e
 !

=
 
0
)
 (

 
fp
ri
nt
f(
fp
, 
WE
IG
HT
')
; 

o
u
t
p
u
t
n
a
m
e
(
f
p
,
 w
ei
gh
t[
il
.p
ai
r)
; 

f
p
r
i
n
t
f
(
f
p
,
 

%
d
\
n
*
,
 w
ei
gh
t[
i]
.v
al
ue
);
 

1 
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ut
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'\
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, 

f
p
)
 ;
 

p
 =
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s:
 

w
h
i
l
e
 
(
p
 !

=
 
N
U
L
L
)
 
( 

f
p
r
i
n
t
f
 (
f
p
,
 '
PF
D 
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):

 
o
u
t
p
u
t
n
a
m
e
(
f
p
,
 p
-
>
l
e
f
t
)
;
 

fp
ri
nt
f(
fp
, 
' 

) 
--

>
 

('1
; 

o
u
t
p
u
t
n
a
m
e
(
f
p
,
 p
-
>
r
i
g
h
t
)
;
 

f
p
r
i
n
t
f
 (
f
p
.
 . 
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\n
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:
 

p
 

= 
p
-
>
n
e
x
t
:
 

I 

o
u
t
p
u
t
n
a
m
e
 ( 
f
 , 
n
o
d
e
)
 

F
I
L
E
 '
f;
 

i
n
t
 n
od
e:
 

( 
in
t 
i
;
 

u
n
s
i
g
n
e
d
 l
o
n
g
 m
;
 

m
 

= 
0
x
0
1
;
 

fo
r 
(
i
=
O
;
 i
<
n
u
m
-
s
e
l
e
c
t
e
d
;
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+
+
)
 (

 
if
 
(
m
 &

 
n
o
d
e
)
 f
p
r
i
n
t
f
(
f
,
 . 

a
s
g
,
 a
t
t
r
[
s
e
l
e
c
t
~
l
i
s
t
[
i
l
l
.
n
a
m
e
)
:
 

m
 

<
<

=
 
1
;
 

1 
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s
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o
g
r
a
m
 
a
n
a
l
y
z
e
 
t
h
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l
t
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F
D
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e
x
t
r
a
c
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n
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d
e
f
i
n
e
 M
A
X
-
L
I
N
E
 
2
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0
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 t
h
e
 m
a
x
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c
h
a
r
s
 p
e
r
 
l
i
n
e
 
i
n
 
t
h
e
 
i
n
p
u
t
 
f
i
l
e
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s
t
r
u
c
t
 w
o
r
k
i
n
g
-
b
o
a
r
d
 

( 
u
n
s
i
g
n
e
d
 
l
o
n
g
 
f
i
r
s
t
,
 
s
e
c
o
n
d
;
 

in
t 

v
a
l
u
e
;
 

1;
 

s
t
r
u
c
t
 
w
o
r
k
i
n
g
-
b
o
a
r
d
 

o
r
i
g
i
n
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M
A
X
-
N
U
L
A
T
F
R
*
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M
A
X
-
N
U
M
-
A
m
-
1
)
 /
2
1
.
 

b
o
a
r
d
[
M
A
X
-
N
U
M
_
A
T
P
R
*
(
M
A
X
-
N
U
M
A
m
-
1
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/
2
1
;
 

i
n
t
 
or
ig
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-n
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b
o
a
r
c
n
u
m
;
 

c
h
a
r
 
t
a
b
l
e
-
n
a
m
e
[
N
A
M
E
-
L
E
N
G
T
H
+
l
]
;
 

a
t
t
r
-
t
y
p
e
 
a
t
t
r
[
M
A
L
N
U
M
-
A
T
T
R
I
;
 

i
n
t
 
a
t
t
r
-
n
u
m
;
 

i
n
d
e
x
-
t
y
p
e
 
g
r
o
u
p
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G
R
O
U
P
-
N
U
M
]
 ;
 

i
n
t
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ou
p-
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m;
 

s
t
r
u
c
t
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-s
tr
u 
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fd
, 

*
c
f
d
,
 
*
n
f
d
;
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r
e
s
u
m
e
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a
n
d
 
c
o
n
f
i
r
m
e
d
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n
s
i
g
n
e
d
 
l
o
n
g
 
a
l
l
;
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l
l
 
a
t
t
r
i
b
u
t
e
s
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/ 

i
n
t
 
l
e
f
t
-
s
i
z
e
;
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h
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a
x
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a
t
t
r
i
b
u
t
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t
h
e
 
l
e
f
t
 
s
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d
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a
n
y
 
F
D
,
 

d
e
f
a
u
l
t
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o
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/ 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
t
o
t
a
l
-
c
o
u
n
t
;
 

/*
 
t
h
e
 s
u
m
 
o
f
 
a
t
t
r
[
i
l
.
c
o
u
n
t
 
*
/ 

s
t
a
t
i
c
 
i
n
t
 
n
a
m
e
2
n
u
m
(
)
 ;
 

s
t
a
t
i
c
 v
o
i
d
 
r
e
a
d
n
a
m
e
s
 ( 
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o
u
t
p
u
t
 (
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, 
a
n
a
l
y
s
i
s
 (

)
 ;
 

m
a
i
n
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a
r
g
c
,
 a
r
g
v
)
 

i
n
t
 
a
r
g
c
;
 

c
h
a
r
 
*
*
a
r
g
v
;
 

( 
c
h
a
r
 b
uf
fe
r[
--
LE
NG
TH
+4
];
 

c
h
a
r
 
o
n
e
-
l
i
n
e
[
W
-
L
I
N
E
+
l
]
;
 

i
n
t
i
,
 j
,
 
k,
 
1
;
 

F
I
L
E
 
*
f
p
;
 

S
t
r
U
c
t
 
fd
- 
st
^ 

*
p
;
 

i
f
 
(
a
r
g
c
 =

= 
1
)
 

( 
pr
in
tf
('
1n
pu
t 

t
h
e
 
.d
b 

f
i
l
e
:
 

")
; 

sc
an
f(
'Z
sg
, 

b
u
f
f
e
r
)
 ;
 

1 e
l
s
e
 
s
t
r
c
p
y
(
b
u
f
f
e
r
,
 
a
r
g
v
[
l
l
 ) 
;
 

i
f
 
(
(
f
p
 =

 f
o
p
e
n
(
b
u
f
f
e
r
,
 
'r')
 

)
=
=
N
U
L
L
)
 (

 
pr
in
tf
('
Ca
n'
t 

o
p
e
n
 
%
s
.
\
n
m
,
 b
u
f
f
e
r
)
;
 

e
x
i
t
 (
-
1
)
 ;
 

at
tr
-n
um
 

= 
gr
ou
p-
nu
m 

= 
or
ig
in
-n
um
 

= 
0
;
 

p
f
d
 

= 
N
U
L
L
;
 

to
ta
l-
co
un
t 

= 
0
;
 

le
ft
-s
iz
e 

= 
0;
 

/*
 r

e
a
d
 
t
h
e
 a
t
t
r
i
b
u
t
e
 
o
r
 
f
i
e
l
d
 n
a
m
e
s
 

*/
 

w
h
i
l
e
 
(
!
f
e
o
f
(
f
p
)
)
 (

 
f
g
e
t
s
(
o
n
e
-
l
i
n
e
,
 
-L
IN
E,
 

fp
);
 

if
 
(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 '
FI
EL
D'
, 

5
)
=
=
0
)
 (

 
s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,
 
'F
IE
LD
 
Zs
Zd
Zd
Zd
',
 

a
t
t
r
[
a
t
t
r
-
n
u
m
l
.
n
a
m
e
,
 
h
j
,
 
hk
, 

h
l
)
;
 

a
t
t
r
[
a
t
t
r
-
n
u
m
1
.
n
u
l
l
a
b
l
e
 

= 
j;

 
a
t
t
r
[
a
t
t
r
-
n
u
m
1
.
k
e
y
 

= 
k
;
 

a
t
t
r
l
a
t
t
r
-
n
u
m
l
 .
c
o
u
n
t
 =

 
1
;
 

t
o
t
a
l
-
c
o
u
n
t
 

+=
 1

;
 

a
t
t
r
-
n
u
n
+
+
;
 

1 
1 if
 
(a
tt
r-
nu
m 

==
 0

)
 

( 
pr
in
tf
('
No
 

a
t
t
r
i
b
u
t
e
 
i
n
 
t
h
e
 r
e
l
a
t
i
o
n
\
n
\
n
m
)
;
 

e
x
i
t
 (
1
)
 ;
 

1 r
e
w
i
n
d
(
f
p
)
 ;
 

w
h
i
l
e
 
(
!
f
e
o
f
(
f
p
)
)
 (

 
f
g
e
t
s
 (
on
e-
li
ne
, 

MA
X-
LI
NE
, 

f
p
)
 ;
 

if
 
(
s
t
r
n
c
m
p
 (
o
n
e
-
l
i
n
e
,
 
'T
AB
LE
',
 

5
)
=
=
0
)
 

1 
s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,
 
'T
AB
LE
 
Zs
',
 

t
a
b
l
e
-
n
a
m
e
)
;
 

c
o
n
t
i
n
u
e
;
 

1 i
f
 
(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 
'M
AX
-L
EF
T-
FD
',
 

l
l
)
=
=
O
)
 (

 
s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,
 
'M
AX
-L
EF
T-
FD
 

Zd'
. 

&
l
e
f
t
-
s
i
z
e
)
;
 

c
o
n
t
 i
n
u
e
;
 

if
 
(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 .
I
N
D
E
X
m
,
 5
)
=
=
0
)
 (

 
s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,
 
'I
ND
EX
 
%
s
Z
d
W
,
 g
r
o
u
p
[
g
r
o
u
p
~
n
u
m
l
.
n
a
m
e
.
 h
k
)
;
 

g
r
o
u
p
 [
g
r
o
u
p
-
n
u
m
]
 .
u
n
i
q
u
e
 =

 k
: 

/*
 t

h
e
 
i
n
p
u
t
 
l
i
n
e
 
s
h
o
u
l
d
 
h
a
v
e
 
t
h
e
 
f
o
r
m
a
t
 

I
N
D
E
X
 i
n
d
e
x
-
n
a
m
e
 
u
n
i
q
u
e
n
e
s
s
(
O
/
l
)
 
on
-a
tt
r 

..
. 

*
/ 

j
 
= 
7
;
 

/*
 t
h
e
 .
sm
al
le
st
 p
o
s
i
t
i
o
n
 
s
u
b
s
c
r
i
p
t
 t
h
a
t
 
t
h
e
 b
l
a
n
k
 

b
e
f
o
r
e
 
(
0
/
1
)
 c
a
n
 o
c
c
u
r
 

/ 
w
h
i
l
e
 
(
o
n
e
-
l
i
n
e
[
j
]
 

!=
 
' 

')
 

j
+
+
;
 

w
h
i
l
e
 
(
!
i
s
d
i
g
i
t
(
o
n
e
-
l
i
n
e
[
+
+
j
l
)
)
 
;
 

j+
+

; 
r
e
a
d
n
a
m
e
s
(
h
(
o
n
e
-
l
i
n
e
[
j
l
)
,
 &
(
g
r
o
u
p
[
g
r
o
u
p
-
n
u
m
l
.
o
n
)
)
;
 

if
 
(
g
r
o
u
p
[
g
r
o
u
p
-
n
u
m
l
-
o
n
 !

=
 0

)
 
g
r
o
u
p
-
n
u
+
+
;
 

c
o
n
t
i
n
u
e
;
 

i
f
 
(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 *
G
R
O
U
P
e
,
 5
)
=
=
0
)
 (

 

s
p
r
i
n
t
f
 (
g
r
o
u
p
 [g
ro
up
-n
um
l 
.
n
a
m
e
,
 
'$
GR
OU
P-
%d
m 

, 
g
r
o
u
p
-
n
u
m
)
 ;
 

g
r
o
u
p
 [
gr
ou
p-
nu
ml
 .
u
n
i
q
u
e
 =

 
0
;
 

r
e
a
d
n
a
m
e
s
(
&
(
o
n
e
-
l
i
n
e
[
6
]
)
,
 
h
(
g
r
o
u
p
[
g
r
o
u
p
~
n
u
m
l
.
o
n
)
)
;
 

if
 
(
g
r
o
u
p
[
g
r
o
u
p
-
n
u
m
]
.
o
n
 

!=
 
0
)
 
g
r
o
u
p
-
n
u
n
+
+
;
 

c
o
n
t
 i
n
u
e
 ;
 

1 i
f
 
(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 '
WE
IG
HT
'.
 

6
)
=
=
0
)
 (

 



1 

f
u
n
d
 . c 

c
h
a
r
 
n
a
m
e
l
[
N
A
M
E
-
L
E
N
G
T
H
+
l
]
,
 
n
a
m
e
Z
[
N
A
M
E
-
L
E
N
G
T
H
+
l
l
;
 

s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,
 
'W
EI
GH
T 

%
s
%
s
%
d
*
,
 
n
a
m
e
l
.
 
n
a
m
e
2
,
 &
k
)
;
 

o
r
i
g
i
n
r
o
r
i
g
i
n
-
n
u
n
]
.
v
a
l
u
e
 

= 
k
;
 

k
 

= 
n
a
m
e
l
n
u
m
(
n
a
m
e
1
)
 ;
 

i
f
 
(
k
 =

= 
-
1
)
 
c
o
n
t
i
n
u
e
;
 

o
r
i
g
i
n
[
o
r
i
g
i
n
-
n
u
m
l
.
f
i
r
s
t
 

= 
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<
 
k:
 

k
 

= 
n
a
m
e
2
n
u
m
(
n
a
m
e
2
)
;
 

i
f
 
(
k
 =

= 
-
1
)
 
c
o
n
t
i
n
u
e
;
 

o
r
f
g
f
n
[
o
r
i
g
i
n
-
n
u
m
l
.
s
e
c
o
n
d
 

= 
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<
 k
;
 

o
r
i
g
i
n
-
n
u
n
+
+
;
 

c
o
n
t
i
n
u
e
;
 

(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 '
PF
D'
, 

3
)
=
=
0
)
 (

 
p
 

= 
(
s
t
m
c
t
 f
d-
st
ru
 
*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 
f
d
-
s
t
r
u
)
)
;
 

j
 

= 
4

: 
w
h
i
l
e
 
(o
ne
-l
in
e[
jl
 

!=
 

'(
')

 
j
+
+
:
 

r
e
a
d
n
a
m
e
s
 (&

 (
on
e-
li
ne
[ 
j
+
l
l
 ) 
. &

 (
p
-
>
l
e
f
t
)
 ) 
;
 

w
h
i
l
e
 
(o
ne
-l
in
e[
jl
 

!=
 

'>
' 

) 
j
+
+
;
 

w
h
i
l
e
 
(o
ne
-l
in
e[
jl
 

!=
 
' (

' 
) 

j
+
+
;
 

r
e
a
d
n
a
m
e
s
(
&
 (
o
n
e
-
l
i
n
e
[
 j
+
l
l
)
 , 

&
 (
p
-
>
r
i
g
h
t
)
 ) 
;
 

p
-
>
n
e
x
t
 

= 
p
f
d
;
 

p
f
d
 

= 
p
;
 

f
c
l
o
s
e
(
f
p
)
:
 

w
h
i
l
e
 
(
p
f
d
 

!=
 
N
U
L
L
 

&
&

 
(
p
f
d
-
>
l
e
f
t
 =

= 
0
 

11
 p
f
d
-
>
r
i
g
h
t
 

==
 0

)
)
 
( 

c
f
d
-
=
 p
f
d
;
 

p
f
d
 

= 
p
f
d
-
>
n
e
x
t
;
 

f
r
e
e
(
c
f
d
)
;
 

(
p
f
d
 =

= 
N
U
L
L
)
 

( 
pr
in
tf
('
no
 

p
r
e
s
u
m
e
d
 
F
D
s
 p
r
o
v
i
d
e
d
,
 
t
h
i
s
 m
e
a
n
s
 
n
o
 F
D
 e
x
i
s
t
s
\
n
m
)
;
 

e
x
i
t
(
0
)
;
 

c
f
d
 

= 
p
f
d
;
 

w
h
i
l
e
 
(
c
f
d
-
>
n
e
x
t
 !

=
 
N
U
L
L
)
 

[ 
n
f
d
 

= 
c
f
d
-
>
n
e
x
t
:
 

i
f
 
(
n
f
d
-
>
l
e
f
t
 =

=
 
0
 

(1
 
n
f
d
-
>
r
i
g
h
t
 

==
 0

)
 

( 
c
f
d
-
>
n
e
x
t
 

= 
n
f
d
-
>
n
e
x
t
;
 

f
r
e
e
(
n
f
d
)
 ;
 

1 e
l
s
e
 c
f
d
 

= 
c
f
d
-
>
n
e
x
t
;
 

1 if
 
(
l
e
f
t
-
s
i
z
e
 

==
 0

)
 
l
e
f
t
-
s
i
z
e
 

= 
5;

 

a
l
l
 

= 
0
;
 

f
o
r
 
(
i
=
O
;
 i
<a
tt
r-
nu
n:
 
i
+
+
)
 

a
l
l
 

= 
(
a
l
l
 <

<
 
1
)
 

( 
0
x
0
1
;
 

c
f
d
 

= 
n
f
d
 

= 
N
U
L
L
;
 

f
o
r
 
(
i
=
0
;
 i
q
r
o
u
p
-
n
u
n
;
 
i
+
+
)
 

a
n
a
l
y
s
i
s
 (
g
r
o
u
p
[
i
l
 .
o
n
)
 :
 

p
r
i
n
t
f
(
'
\
n
\
n
\
n
A
n
a
l
y
s
i
s
 
co
mp
le
te
l\
n\
n'
);
 

p
~
i
n
t
f
(
~
f
i
1
e
n
a
m
e
 

t
o
 s
a
v
e
 t
h
e
 r
e
s
u
l
t
 

( 
'-

' 
fo
r 
s
t
d
o
u
t
)
:
 

'1
; 

sc
an
f(
'%
s'
, 

b
u
f
f
e
r
)
;
 

if
 
(
s
t
r
c
m
p
(
b
u
f
f
e
r
,
 '

-'
) 

!=
 

0
)

 
i
f
 
(
(
f
p
 =

 f
o
p
e
n
(
b
u
f
f
e
r
,
 '
w')
) 

==
 N
U
L
L
)
 

pr
in
tf
('
\n
Ca
n'
t 

o
p
e
n
 %

s
\
n
m
,
 b
u
f
f
e
r
)
;
 

e
l
s
e
 o
u
t
p
u
t
 (
f
p
)
 :
 

o
u
t
p
u
t
 (
s
t
d
o
u
t
)
 ;
 

1 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

* * 
S
y
n
o
p
s
i
s
 

* 
i
n
t
 
n
a
m
e
l
n
u
m
 (
c
 ) 

t
 

c
h
a
r
 
"c
; 

* * 
R
e
t
u
r
n
 
v
a
l
u
e
s
 

* 
i
 
if
 
a
t
t
r
[
i
l
.
n
a
m
e
 

==
 c
; 

* 
-
1
 o
t
h
e
r
w
i
s
e
.
 

* ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. 

s
t
a
t
i
c
 
i
n
t
 

n
a
m
e
2
n
u
m
(
c
)
 

c
h
a
r
 
*
c
;
 

f 
in
t 

i:
 

f
o
r
 
(
i
=
O
;
 i
<a
tt
r-
nu
m:
 
i
+
+
)
 

i
f
 
(
s
t
r
c
m
p
(
a
t
t
r
[
i
]
 .
n
a
m
e
,
 c
)
=
=
O
)
 b
r
e
a
k
;
 

i
f
 
(
i
 =

= 
a
t
t
r
-
n
u
m
)
 

r
e
t
u
r
n
(
-
1
)
;
 

r
e
t
u
r
n
(
i
)
 ;
 

1 

S
y
n
o
p
s
i
s
 

r
e
a
d
n
a
m
e
s
(
s
.
 x

)
 

c
h
a
r
 
's 
;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
*x
: 

D
e
s
c
r
i
p
t
i
o
n
 

s
e
a
r
c
h
e
s
 
a
 
s
t
r
i
n
g
 
s
 
t
o
 
f
i
n
d
 w
o
r
d
s
,
 
w
h
i
c
h
 
s
h
o
u
l
d
 a
n
 
a
t
t
r
i
b
u
t
e
 n
a
m
e
,
 

c
o
n
v
e
r
t
 
t
h
e
 n
a
m
e
 
t
o
 i
t
s
 s
e
q
u
e
n
c
i
a
l
 n
u
m
b
e
r
,
 a
n
d
 
s
t
o
r
e
 i
t 
a
t
 

a
e
 b
i
t
 

p
o
s
i
t
i
o
n
s
 
i
n
 
*
x
.
 

it
 
w
i
l
l
 
c
o
n
v
e
r
t
 a
l
l
 w
o
r
d
s
 
i
n
 
t
h
e
 s
t
r
i
n
g
 u
n
t
i
l
 

')
' 

o
r
 
e
o
l
n
 i
s
 

e
n
c
o
u
n
t
e
r
e
d
 

if
 
t
h
e
 a
t
t
r
i
b
u
t
e
 d
o
e
s
 n
o
t
 
e
x
i
s
t
,
 
t
h
e
 b
i
t
 
i
n
 
*
x
 i
s
 n
ot
 
se
t.
 

(
s
o
 *
x
 m
a
y
 
b
e
 
z
e
r
o
 o
n
 r
e
t
u
r
n
i
n
g
,
 
c
a
l
l
i
n
g
 
f
u
n
c
t
i
o
n
 s
h
o
u
l
d
 b
e
 
a

w
a

rd
 

o
f
 
i
t
)
 

s
t
a
t
i
c
 
v
o
i
d
 

r
e
a
d
n
a
m
e
s
 (
6
,
 x
)
 

c
h
a
r
 
*s
; 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
*x
i 

( 
in
t 

i,
 
j
,
 
k
;
 



f
u
n
d
 . c 

c
h
a
r
 
n
a
m
e
 [
N
A
M
E
_
L
E
N
G
T
H
+
l
 I :
 

'x 
= 

0
;
 

i
 

= 
0
;
 

w
h
i
l
e
 
(
1
)
 

s
w
i
t
c
h
 
(
s
[
i
l
)
 (

 
c
a
s
e
 
' )

 '
 :
 

c
a
s
e
 

'\
O

':
 

c
a
s
e
 
' \
n'
 :
 

r
e
t
u
r
n
;
 

c
a
s
e
 
' 

' :
 

i
+
+
;
 

b
r
e
a
k
;
 

d
e
f
a
u
l
t
 :
 

j
 

= 
0
;
 

d
o
 

( n
a
m
e
[
j
+
+
]
 

= 
s
[
i
+
+
]
;
 

1 
w
h
i
l
e
 
(
s
[
i
]
!
=
'
 
' 

&
&

 
s
[
i
]
!
=
'
\
O
'
 &

&
 
s
[
i
]
!
=
'
)
'
 

&
&

 
s
[
i
]
!
=
,
\
n
,
)
;
 

na
me
[j
l 

=
 
'\
0'
; 

k
 

= 
n
a
m
e
Z
n
u
m
(
n
a
m
e
)
;
 

if
 
(
k
 !

=
 
-
1
)
 

*x
 
I=
 
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<
 
k
;
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

S
y
n
o
p
s
i
s
 

m
e
r
g
e
(
i
,
 
x.
 
Y
)
 

in
t 

i
;
 

t
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
x
,
 
y
;
 

t
 * 

D
e
s
c
r
i
p
t
i
o
n
 

t
 

at
 
b
o
a
r
d
[
i
l
 
i
s
 
a
 
p
a
i
r
 
(
y
 z
)
,
 
t
h
i
s
 p
r
o
c
e
d
u
r
e
 
s
e
a
r
c
h
e
s
 
b
o
a
r
d
 
f
r
o
m
 
i
,
 

t
 

t
o
 
f
i
n
d
 a
 
p
a
i
r
 
(
x
,
 z
).
 
m
a
k
e
 
a
n
 e
n
t
r
y
 a
t
 
i
 
a
s
 
f
o
r
 p
a
i
r
 
(
(
x
 y
)
 2
).
 

r
e
m
o
v
e
 
t
h
e
 p
a
i
r
 
(
x
,
 z
)
,
 
a
n
d
 u
p
d
a
t
e
 
bo
ar
d-
nu
n.
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
 

s
t
a
t
i
c
 v
o
i
d
 

m
e
r
g
e
(
i
,
 
x
,
 Y
)
 

in
t 

i
;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 x

. 
y
;
 

in
t 

j
;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
z;
 

if
 
[
b
o
a
r
d
[
i
l
.
f
i
r
s
t
 =

= 
y
)
 
z
 

= 
b
o
a
r
d
[
i
l
.
s
e
c
o
n
d
;
 

e
l
s
e
 

z 
= 
b
o
a
r
d
[
i
]
.
f
i
r
s
t
;
 

f
o
r
 
(
j
=
i
+
l
;
 j
<b
oa
r&
nu
rn
; 

j
+
+
)
 

if
 
(
b
o
a
r
d
[
j
]
.
f
i
r
s
t
 =

= 
x
 

&
&

 
b
o
a
r
d
[
j
l
.
s
e
c
o
n
d
 

==
 z
 

I I 
b
o
a
r
d
[
j
]
.
f
i
r
s
t
 

=
=

 z
 

&
&

 
b
o
a
r
d
[
j
l
.
s
e
c
o
n
d
 

==
 x

) 
b
r
e
a
k
;
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 
* * 

s
y
n
o
p
s
i
s
 

* 
a
d
j
u
s
t
g
o
a
r
d
(
a
,
 
b
)
 

c
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 a
, 

b
;
 

t
 

D
e
s
c
r
i
p
t
i
o
n
 

t
 

it
 
a
d
j
u
s
t
s
 
t
h
e
 w
e
i
g
h
t
 
v
a
l
u
e
s
 
b
e
t
w
e
e
n
 
t
h
e
 n
o
d
e
s
 
in
 b
o
a
r
d
 
a
n
d
 
(
a
 b
)
.
 

a
 
a
n
d
 b
 
a
r
e
 m
e
r
g
e
d
 
t
o
g
e
t
h
e
r
.
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

s
t
a
t
i
c
 v
o
i
d
 

a
d
j
u
s
t
-
b
o
a
r
d
(
a
,
 
b
)
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
a,
 
b
;
 

( 
in
t 

i;
 

i
 

= 
0
;
 

w
h
i
l
e
 
(
i
 <

 
b
o
a
r
d
-
n
u
n
)
 

( 
if
 
(
b
o
a
r
d
[
i
]
.
f
i
r
s
t
 

==
 a
 

&
&

 
b
o
a
r
d
[
i
l
.
s
e
c
o
n
d
 

==
 b
 

(1
 

b
o
a
r
d
[
i
]
.
f
i
r
s
t
 

==
 b
 

&
&

 
b
o
a
r
d
[
i
l
.
s
e
c
o
n
d
 

==
 a
 

) 
( 

b
o
a
r
d
-
n
u
n
-
-
;
 

if
 
(
b
o
a
r
d
-
n
u
m
 
! =

 
i
)
 

( 
b
o
a
r
d
[
i
l
 

= 
b
o
a
r
d
[
b
o
a
r
d
~
u
m
l
 ;
 

i
-
-
;
 

I 
1 e
l
s
e
 
i
f
 
[
b
o
a
r
d
[
i
]
.
f
i
r
s
t
 

==
 a
 

11
 b
o
a
r
d
[
i
l
.
s
e
c
o
n
d
 

==
 a

)
 

m
e
r
g
e
(
i
,
 
b
,
 
a)
: 

e
l
s
e
 
i
f
 
(
b
o
a
r
d
[
i
]
.
f
i
r
s
t
 

==
 b
 

(1
 b
o
a
r
d
[
i
l
.
s
e
c
o
n
d
 

==
 b
)
 

rn
er
ge
(i
, 
a,
 
b
)
;
 

i
+
+
;
 

1 
1 

S
y
n
o
p
s
i
s
 

* 
fi
ll
-b
oa
rd
(x
1 

u
n
s
i
g
n
e
d
 
l
o
n
g
 x

; 

D
e
s
c
r
i
p
t
i
o
n
 

c
o
p
y
 w
e
i
g
h
t
 
v
a
l
u
e
s
 
f
r
o
m
 o
r
i
g
i
n
[
]
 
t
o
 b
o
a
r
d
[
]
,
 
f
o
r
 n
o
d
e
s
 
i
n
 x

. 
if
 
n
o
 
w
e
i
g
h
t
 
v
a
l
u
e
s
 
f
o
r
 a
 
p
a
i
r
 
i
n
 x
,
 
t
h
e
 w
e
i
g
h
t
 
f
o
r
 
i
t
 
i
s
 z
er
o.
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

s
t
a
t
i
c
 v
o
i
d
 

f
 il
l-
bo
ar
d 
(
x
)
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 x
; 

( 
i
n
t
 
i,
 
j;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 m
. 

n
;
 

bo
ar
d-
nu
n 

= 
0
;
 

m
 

= 
0
x
0
1
;
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f
u
n
d
 . c r

e
l
e
a
s
e
(
p
1
 

s
t
r
u
c
t
 
fd
-s
tr
u 
*
p
;
 

D
e
s
c
r
i
p
t
i
o
n
 

r
e
l
e
a
s
e
 a
 
fd
-s
tr
u 

l
i
s
t
 p
o
i
n
t
e
d
 b
y
 p
. 

s
t
a
t
i
c
 v
o
i
d
 

r
e
l
e
a
s
e
 (
p
)
 

S
t
~
c
t
 

f
c
s
t
r
u
 '
p;
 

( 
if
 
(
p
 !

=
 N
U
L
L
)
 

( 
r
e
l
e
a
s
e
(
p
-
>
n
e
x
t
)
;
 

f
r
e
e
(
p
)
 ;
 

1 
1 

S
y
n
o
p
s
i
s
 

e
v
a
l
u
a
t
e
 (
q
)
 

* 
s
t
r
u
c
t
 
fd
-s
tr
u 

'q
; 

D
e
s
c
r
i
p
t
i
o
n
 

a
s
s
i
g
n
s
 c
r
e
d
i
t
s
 t
o
 t
h
e
 p
r
e
s
u
m
e
d
 
ED
 
p
o
i
n
t
e
d
 b
y
 q
;
 

* 
q
-
>
r
i
g
h
t
 i
s 
n
o
t
 
z
e
r
o
,
 a
n
d
 q
-
>
c
r
e
d
i
t
 h
a
s
 b
e
e
n
 
i
n
i
t
i
a
l
i
z
e
d
.
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

s
t
a
t
i
c
 v
o
i
d
 

e
v
a
l
u
a
t
e
 (
q)
 

s
t
r
u
c
t
 f
d-
st
ru
 
*
q
;
 

( 
i
n
t
 i
;
 

u
n
s
i
g
n
e
d
 
lo
ng
 m
;
 

m
 

= 
0
x
0
1
;
 

f
o
r
 
(
i
=
O
;
 i
<a
tt
r-
nu
m;
 
i
+
+
)
 
( 

if
 
(
m
 &

 
q
-
>
l
e
f
t
)
 (

 
if
 
(a
tt
r[
il
.k
ey
) 

q
-
>
c
r
e
d
i
t
 +

=
 
to
ta
l-
co
un
t:
 

e
l
s
e
 q
-
>
c
r
e
d
i
t
 +

= 
at
tr
[i
l.
co
un
t;
 

i
f
 
(!
at
tr
[i
l.
nu
ll
ab
le
) 

q
-
>
c
r
e
d
i
t
 =

 q
-
>
c
r
e
d
i
t
 +

 0
.5
 

at
tr
[i
l 
.
c
o
u
n
t
;
 

q
-
>
c
r
e
d
i
t
 =

 q
-
>
c
r
e
d
i
t
 +

 
(
a
t
t
r
-
n
u
-
i
)
'
O
.
O
S
*
t
o
t
a
l
-
c
o
u
n
t
;
 

1 m
 

= 
m
 

<<
 
1
;
 

1 f
o
r
 
(
i
=
O
;
 i
q
r
o
u
p
-
n
u
m
;
 i
+
+
)
 

if
 
(
q
-
>
l
e
f
t
 =

= 
gr
ou
p[
i]
.o
n 

&
&

 
gr
ou
p[
il
.u
ni
qu
e)
 

q
-
>
c
r
e
d
i
t
 =

 q
-
>
c
r
e
d
i
t
 

1.
1:
 

1 ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
. 

s
y
n
o
p
s
i
s
 

o
u
t
p
u
t
n
a
m
e
s
 (
f
p
,
 x
)
 

P
I
L
E
 
*
f
p
;
 

u
n
s
i
g
n
e
d
 l
o
n
g
 x
;
 

D
e
s
c
r
i
p
t
i
o
n
 

o
u
t
p
u
t
s
 t
o 
fp
 t
h
e
 a
t
t
r
i
b
u
t
e
 n
a
m
e
s
 s
t
o
r
e
d
 i
n
 x
,
 i
n
 
fo
rm
at
 
of
: 

t
 

a
t
t
r
l
 a
t
t
r
2
 
..
. 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 

s
t
a
t
i
c
 v
oi
d 

o
u
t
p
u
t
n
a
m
e
s
 (
f
p
,
 x
)
 

F
I
L
E
 
*
f
p
;
 

u
n
s
i
g
n
e
d
 l
on
g 

x
; 

( 
in
t 
i
;
 

u
n
s
i
g
n
e
d
 l
o
n
g
 m
;
 

m
 =

 
0
x
0
1
;
 

f
o
r
 
(
i
=
O
;
 i
<
a
t
t
r
-
n
u
n
;
 i
+
+
)
 (

 

if
 
(
m
 &

 
X
)
 
f
p
r
i
n
t
f
(
f
p
,
 .

%
a

 '
, 
at
tr
[i
l.
na
me
);
 

m
 

<<
= 
1;
 

1 
1 

S
y
n
o
p
s
i
s
 

ou
tp
ut
-a
n-
fd
(f
p,
 
l
e
f
t
,
 r
i
g
h
t
)
 

t
 

F
I
L
E
 
'f
p;
 

u
n
s
i
g
n
e
d
 l
on
g 
l
e
f
t
,
 r
i
g
h
t
;
 

D
e
s
c
r
i
p
t
i
o
n
 

* 
o
u
t
p
u
t
s
 t
o
 
fp
 a
n
 E
D
 
le
ft
 

--
>

 
r
i
g
h
t
,
 i
n
 f
o
r
m
a
t
 o
f:
 

( 
a
t
t
l
l
 a
t
t
l
2
 
..
. 

) 
--

>
 

( 
a
t
t
r
l
 a
t
t
r
2
 
..
. 

) 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 

s
t
a
t
i
c
 v
oi
d 

ou
tp
ut
-a
n-
fd
( 
f
p
,
 l
e
f
t
,
 r
i
g
h
t
)
 

F
I
L
E
 
*
f
p
;
 

u
n
s
i
g
n
e
d
 l
on
g 
l
e
f
t
,
 r
i
g
h
t
 

I 
f
p
r
i
n
t
f
 (
f
p
,
 '
 ( 

')
 
;
 

o
u
t
p
u
t
n
a
m
e
s
(
f
p
,
 
l
e
f
t
)
 

f
p
r
i
n
t
f
(
f
p
,
 

')
 

--
>

 
( 

o
u
t
p
u
t
n
a
m
e
s
 ( 
f
p
,
 r
ig
ht
 

fp
ut
c(
')
'.
 
fp
);
 

1 

s
y
n
o
p
s
i
s
 

o
u
t
p
u
t
 (
f
p
)
 

F
I
L
E
 
*
f
p
;
 

D
e
s
c
r
i
p
t
i
o
n
 

o
u
t
p
u
t
s
 t
h
e
 d
a
t
a
b
a
s
e
 i
n
f
o
r
m
a
t
i
o
n
 t
o
 
fp
. 

* .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
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.
.
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.
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.
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.
.
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.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
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.
 

s
t
a
t
i
c
 v
oi
d 



f
u
n
d
 . c 

o
u
t
p
u
t
 ( 
f
p
)
 

F
I
L
E
 
'f
p;
 

( 
i
n
t
 i
;
 

S
t
r
u
C
t
 
fd
- 
st
^ 
'p
; 

f
p
r
i
n
t
f
(
f
p
,
 
'T
AB
LE
 

%
s
\
n
\
n
m
,
 ta
bl
e-
na
me
);
 

f
p
r
i
n
t
f
(
f
p
,
 
'M
A]
CL
EF
T-
FD
 
%
d
\
n
\
n
m
,
 l
ef
t-
si
ze
);
 

f
o
r
 
(
i
=
O
;
 i
<a
tt
r-
nu
m;
 
i
+
+
)
 

fp
ri
nt
f(
fp
, 

'F
IE
LD
 

%
s
 %
d 
%
d
 %
d
\
n
9
,
 a
tt
r[
il
.n
am
e,
 
at
tr
[i
].
nu
ll
ab
le
, 

at
tr
[i
l.
ke
y,
 
at
tr
[i
l.
co
un
t)
; 

f
p
u
t
c
 (
'
\
n
l
,
 fp
) 
;
 

f
o
r
 
(
i
=
O
;
 i
<g
ro
up
-n
um
; 
i
+
+
)
 (

 

f
p
r
i
n
t
f
 (
f
p
,
 '
GR
OU
P 

%
s
 %
d 

',
 
gr
ou
p[
il
 .
n
a
m
e
,
 g
ro
up
[i
l 
.u
ni
qu
e)
; 

o
u
t
p
u
t
n
a
m
e
s
(
f
p
,
 g
ro
up
[i
].
on
);
 

f
p
u
t
c
 (

' 
\n
' 
, 
fp
) 
;
 

1 f
p
u
t
c
(
'
\
n
'
,
 f
p
)
 ;
 

f
o
r
 
(
i
=
O
;
 i
<o
ri
gi
n-
nu
m;
 
i
+
+
)
 (

 
f
p
r
i
n
t
f
(
f
p
,
 
'W
EI
GH
T 

')
; 

o
u
t
p
u
t
n
a
m
e
s
(
f
p
,
 o
ri
gi
n[
il
.f
ir
st
 

I 
or
ig
in
[i
l.
se
co
nd
);
 

f
p
r
i
n
t
f
 (
f
p
,
 

%
d
\
n
m
,
 or
ig
in
[i
l 
.
v
a
l
u
e
)
 :
 

1 fp
ut
c(
'\
n'
, 

fp
);
 

p
 

= 
p
f
d
;
 

w
h
i
l
e
 
(
p
 !

= 
N
U
L
L
)
 

( 
f
p
r
i
n
t
f
(
f
p
,
 
'P
FD
 

'1
; 

ou
tp
ut
-a
n-
fd
(f
p,
 
p
-
>
l
e
f
t
,
 p
-
>
r
i
g
h
t
)
;
 

fp
ut
c(
'\
n'
, 

fp
);
 

p
 

= 
p
-
>
n
e
x
t
;
 

1 fp
ut
c(
'\
n'
, 

fp
);
 

p
 

= 
n
f
d
;
 

w
h
i
l
e
 
(p
 

I=
 
N
U
L
L
)
 

( 
fp
ri
nt
f(
fp
. 

'N
FD
 

')
; 

ou
tp
ut
-a
n-
fd
(f
p,
 
p
-
>
l
e
f
t
.
 p
-
>
r
i
g
h
t
)
;
 

fp
ut
c(
'\
n'
, 

fp
);
 

p
 

= 
p
-
>
n
e
x
t
;
 

1 f
p
u
t
c
(
'
\
n
l
,
 f
p
)
 ;
 

p
 

= 
c
f
d
;
 

w
h
i
l
e
 
(
p
 !

=
 N
U
L
L
)
 

( 
f
p
r
i
n
t
f
 (
fp
. 
'C
FD
 

'1
 ;
 

o
u
t
p
u
t
-
a
~
f
d
(
f
p
,
 p
-
>
l
e
f
t
 

fp
ut
c(
'\
n'
, 

f
p
)
 ;
 

p
 

=
 p
-
>
n
e
x
t
;
 

1 S
y
n
o
p
s
i
s
 

b
r
o
w
s
e
(
h
,
 n
)
 

s
t
m
c
t
 f
d-
st
rU
 
h[
l 
;
 

in
t 
n
;
 

D
e
s
c
r
i
p
t
i
o
n
 

o
u
t
p
u
t
 t
o
 s
t
d
o
u
t
 t
he
 F
D
s
 i
n
 a
r
r
a
y
 h
[l
 
w
i
t
h
 
t
h
e
i
r
 c
re
di
ts
. 

t
 

n
 
is
 t
h
e
 s
i
z
e
 o
f 
th
e 
a
r
r
a
y
.
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s
t
a
t
i
c
 v
o
i
d
 

b
r
o
w
s
e
(
h
,
 n
)
 

s
t
r
u
c
t
 
fd
-s
tr
u 
h[
l;
 

in
t 
n
;
 

( 
in
t 
i;
 

fo
r 

(
i
=
O
;
 i
<
n
;
 i
+
+
)
 

if
 
(h
[i
l.
le
ft
 

!=
 
0
)
 (

 

pr
in
tf
('
se
qu
en
ti
a1
 
n
u
m
b
e
r
:
 %
d\
n'
, 

i
+
l
)
;
 

ou
tp
ut
-a
n-
fd
(s
td
ou
t,
 
h[
il
 
.
l
e
f
t
,
 h
[ 
il
 .
r
i
g
h
t
)
 ;
 

pr
in
tf
('
\n
cr
ed
it
 

fo
r 
i
t
s
 l
ef
t 
si
de
: 
%
d
\
n
\
n
m
,
 h[
il
.c
re
di
t)
; 

1 

S
y
n
o
p
s
i
s
 

s
t
a
t
i
c
 
in
t 
c
o
n
f
i
r
m
a
t
i
o
n
(
p
)
 

s
t
m
c
t
 f
d-
st
ru
 
*
p
;
 

R
e
t
u
r
n
 v
a
l
u
e
s
 

1
 

th
er
e'
re
 
c
o
n
f
i
r
m
e
d
 F
D
s
;
 

0
 

o
t
h
e
r
w
i
s
e
 

D
e
s
c
r
i
p
t
i
o
n
 

c
o
n
f
i
r
m
a
t
i
o
n
 p
r
o
c
e
s
s
 a
b
o
u
t
 a
 
li
st
 
of
 p
r
e
s
u
m
e
d
 F
D
s
 p
oi
nt
ed
 b
y
 
p.
 

t
h
e
 l
is
t 
m
a
y
 
c
o
n
t
a
i
n
 F
D
s
 w
i
t
h
 
e
m
p
t
y
 r
i
g
h
t
 s
id
e.
 

A
f
t
e
r
 t
h
e
 c
o
n
f
i
r
m
a
t
i
o
n
,
 f
o
r
 e
a
c
h
 
e
n
t
r
y
 i
n
 p
,
 i
t
s
 r
i
g
h
t
 f
ie
ld
 

c
o
n
t
a
i
n
s
 t
h
e
 c
o
n
f
i
r
m
e
d
 F
D
s
 a
n
d
 i
t
s
 c
r
e
d
i
t
 
f
i
e
l
d
 c
o
n
t
a
i
n
s
 t
h
e
 

c
o
n
f
i
r
m
e
d
 n
o
n
-
F
D
s
.
 
(S
o 
al
l 
e
n
t
r
i
e
s
 s
h
o
u
l
d
 b
e 
up
da
te
d)
 

it
 
p
r
o
v
i
d
e
s
 a

n
 
i
n
t
e
r
a
c
t
i
v
e
 e
n
v
i
r
o
n
m
e
n
t
,
 w
i
t
h
 
t
h
e
 f
ol
lo
wi
ng
 f
un
ct
io
ns
: 

0
 
q
u
i
t
 
c
o
n
f
i
r
m
a
t
i
o
n
 p
r
o
c
e
s
s
 

-
1
 
h
e
l
p
,
 p
r
i
n
t
 a
 
li
st
 
of
 
c
o
m
n
d
s
 

-
2
 
b
r
o
w
s
e
 
t
h
e
 p
r
e
s
u
m
e
d
 
li
st
 

-
3
 
p
r
i
n
t
 
t
h
e
 d
a
t
a
b
a
s
e
 i
n
f
o
r
m
a
t
i
o
n
 

-4
 
p
r
i
n
t
 a
 
s
e
l
e
c
t
e
d
 a
t
t
r
i
b
u
t
e
 i
n
f
o
r
m
a
t
i
o
n
 

-5
 
p
r
i
n
t
 
c
o
n
f
i
r
m
e
d
 F
D
s
 

-
6
 
p
r
i
n
t
 
c
o
n
f
i
r
m
e
d
 n
o
n
-
F
D
s
 

s
t
a
t
i
c
 
in
t 

c
o
n
f
i
r
m
a
t
i
o
n
 (
p
)
 

s
t
r
u
c
t
 f
I
L
S
t
N
 '
p;
 

( 
s
t
r
u
c
t
 f
d
-
s
t
n
 
*
r
,
 *
h
e
a
d
;
 

in
t 
i
,
 n
,
 s
e
l
;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 m
;
 

c
h
a
r
 6
 [N
AM
E-
LE
NG
TH
+l
];
 



f
u
n
d
 . c 

i
 =

 0
;
 

r
 

= 
p
;
 

w
h
i
l
e
 
(
r
 !

=
 
N
U
L
L
 

) 
( 

if
 
(
r
-
>
r
i
g
h
t
 !

=
 
0
)
 
i
+
+
;
 

r
 

= 
r
-
>
n
e
x
t
;
 

1 h
e
a
d
 

= 
(
s
t
r
u
c
t
 f
d-
st
ru
 
*
)
c
a
l
l
o
c
(
i
,
 s
i
z
e
o
f
(
s
t
r
u
c
t
 
f
d
-
s
t
r
u
)
)
;
 

r
 

= 
p
;
 

n
 

= 
0
;
 

w
h
i
l
e
 
(
r
 !

=
 N
U
L
L
)
 

( 
if
 
(
r
-
>
r
i
g
h
t
 !

=
 0
)
 
( 

h
e
a
d
[
n
l
.
l
e
f
t
 

= 
r
-
>
l
e
f
t
;
 

h
e
a
d
[
n
l
.
r
i
g
h
t
 

= 
r
-
>
r
i
g
h
t
;
 

he
ad
[n
].
cr
ed
it
 

= 
r
-
>
c
r
e
d
i
t
;
 

he
ad
[n
l.
ne
xt
 

= 
r
;
 

n
+
+
;
 

I r
 

= 
r
-
>
n
e
x
t
;
 

I pr
in
tf
('
\n
se
le
ct
 

o
n
e
 F
D
 
f
o
r
 c
on
fi
rm
at
io
n\
n'
);
 

pr
in
tf
('
Yo
u 

c
a
n
:
\
n
m
)
;
 

pr
in
tf
('
\t
in
pu
t 

t
h
e
 s
e
q
u
e
n
t
i
a
l
 n
u
m
b
e
r
,
\
n
*
)
;
 

pr
in
tf
('
\t
or
 

n
e
g
a
t
i
v
e
 n
u
m
b
e
r
s
 
f
o
r
 o
t
h
e
r
 
f
u
n
c
t
i
o
n
s
 
(
-
1
 f
o
r
 h
e
l
p
)
.
\
n
m
)
;
 

w
h
i
l
e
 
(
1
)
 (

 
f
o
r
 
(
i
=
O
;
 i
<
n
;
 i
+
+
)
 

i
f
 
(
h
e
a
d
[
i
l
.
l
e
f
t
 !

=
 
0
)
 
b
r
e
a
k
;
 

if
 
(i
 =

= 
n
)
 

s
e
l
 =

 0
;
 

e
l
s
e
 

( 
pr
in
tf
('
\n
in
pu
t 

a
n
 
i
n
t
e
g
e
r
:
 

')
; 

sc
an
f(
'%
d'
, 

&
s
e
l
)
;
 

1 s
w
i
t
c
h
 
(s
el
l 

( 
c
a
s
e
 0
: 

pr
in
tf
('
\n
Th
e 

F
D
s
 n
o
t
 
c
o
n
f
i
r
m
e
d
 w
i
l
l
 b
e
 
c
o
n
s
i
d
e
r
e
d
 a
s
 n
o
n
-
F
D
s
\
n
m
)
;
 

pr
in
tf
('
Ar
e 

y
o
u
 s
u
r
e
 t
o
 q
u
i
t
 

( 
0
 -

- 
n
o
;
 1
 -

- 
q
u
i
t
)
 
:
 

')
; 

sc
an
f(
'%
dm
, 

r
s
e
l
)
;
 

i
f
 
(
s
e
l
 =

= 
1
)
 (

 
rn
 

= 
0
;
 

f
o
r
 
(
i
=
O
;
 i
<
n
;
 i
+
+
)
 (

 
r
 

= 
h
e
a
d
f
i
l
 .
n
e
x
t
;
 

if
 
(
h
e
a
d
[
i
]
 .
l
e
f
t
 =

= 
0
)
 

( 
r
-
>
c
r
e
d
i
t
 =

 r
-
>
r
i
g
h
t
 &

 
-h
ea
d[
i]
.r
ig
ht
; 

r
-
>
r
i
g
h
t
 =

 h
ea
d[
il
.r
ig
ht
; 

1 e
l
s
e
 

( 
r
-
>
c
r
e
d
i
t
 =

 r
-
>
r
i
g
h
t
;
 

r
-
>
r
i
g
h
t
 =

 0
;
 

I if
 
(
r
-
>
r
i
g
h
t
 !

=
 
0
)
 
m
 

= 
1
;
 

1 pr
in
tf
('
\n
\n
En
d 

o
f
 
c
u
r
r
e
n
t
 c
o
n
f
i
r
m
a
t
i
o
n
 s
e
s
s
i
o
n
\
n
m
)
;
 

if
 
(
m
)
 r
e
t
u
r
n
(
1
)
 ;
 

r
e
t
u
r
n
 (
0
)
 ;
 

1 b
r
e
a
k
;
 

c
a
s
e
 -
1
:
 

pr
in
tf
('
\n
Yo
u 

c
a
n
 
i
n
p
u
t
 t
h
e
 s
e
q
u
e
n
t
i
a
l
 n
u
m
b
e
r
 
f
o
r
 a
n 
P
D
\
n
m
)
;
 

pr
in
tf
('
or
 
t
h
e
 f
o
l
l
o
w
i
n
g
 c
om
ma
nd
s:
')
; 

pr
in
tf
('
\t
 
0
 

q
u
i
t
 
t
h
e
 c
o
n
f
i
r
m
a
t
i
o
n
 p
r
o
c
e
s
s
\
n
g
)
;
 

pr
in
tf
('
\t
-1
 

h
e
l
p
,
 p
r
i
n
t
 
t
h
i
s
 
l
i
s
t
 o
f
 c
om
ma
nd
s\
n'
);
 

pr
in
tf
('
\t
-2
 

b
r
o
w
s
e
 t
h
e
 l
i
s
t
 o
f
 F
D
s
 
f
o
r
 c
o
n
s
i
d
e
r
a
t
i
o
n
\
n
m
)
;
 

pr
in
tf
('
\t
-3
 

p
r
i
n
t
 
t
h
e
 d
a
t
a
b
a
s
e
 
i
n
f
o
r
m
a
t
i
o
n
\
n
m
)
;
 

b
r
e
a
k
;
 

c
a
s
e
 -
2
:
 

b
r
o
w
s
e
(
h
e
a
d
,
 n
)
;
 

b
r
e
a
k
;
 

c
a
s
e
 -
3
 :
 

o
u
t
p
u
t
(
s
t
d
o
u
t
)
;
 

b
r
e
a
k
;
 

d
e
f
a
u
l
t
:
 

i
f
 
(
s
e
l
 >

 
0
 

&
&

 
s
e
l
 <

=
 n
)
 
( 

s
e
l
-
-
;
 

if
 
(
h
e
a
d
[
s
e
l
l
.
l
e
f
t
 =

= 
0
)
 [

 
pr
in
tf
('
th
is
 

F
D
 h
a
s
 
j
u
s
t
 b
e
e
n
 
c
o
n
s
i
d
e
r
e
d
\
n
m
)
;
 

b
r
e
a
k
;
 

1 o
u
t
p
u
t
-
a
n
-
f
d
(
s
t
d
o
u
t
,
 
h
e
a
d
[
s
e
l
l
.
l
e
f
t
,
 
h
e
a
d
[
s
e
l
l
.
r
i
g
h
t
)
;
 

p
r
i
n
t
f
(
"
\
n
t
h
e
 a
b
o
v
e
 F
D
 f
o
r
 c
on
fi
rm
at
io
n\
n'
);
 

pr
in
tf
('
to
 
d
e
c
i
d
e
 w
h
i
c
h
 
a
t
t
r
i
b
u
t
e
 o
n
 
t
h
e
 r
i
g
h
t
 s
i
d
e
 i
s
 a
 
\ 

d
e
p
e
n
d
e
n
t
,
 y
o
u
 m
a
y
 
i
n
p
u
t
:
 
\n
')
; 

pr
in
tf
('
\t
th
e 

n
a
m
e
 o
f
 
t
h
e
 a
t
t
r
i
b
u
t
e
,
\
n
0
)
;
 

pr
in
tf
('
\t
or
 

O
 t
o
 
s
e
l
e
c
t
 a
l
l
 a
t
t
r
i
b
u
t
e
s
\
n
m
)
;
 

pr
in
tf
('
in
pu
t 

$ 
t
o
 
f
i
n
i
s
h
\
n
m
)
;
 

m
 

= 
0
;
 

w
h
i
l
e
 
(
m
 !

=
 
h
e
a
d
[
s
e
l
l
.
r
i
g
h
t
)
 

[ 
p
r
i
n
t
f
 (
'\
n>
 

')
 ;
 

s
c
a
n
f
 ('
%a
',
 

s
)
 ;
 

if
 
(
s
t
r
c
m
p
(
s
.
 '
O
m
)
 =

= 
0
)
 (

 
m
 

= 
he
ad
[s
el
l 
.
r
i
g
h
t
;
 

b
r
e
a
k
;
 

1 if
 
(
s
t
r
c
m
p
(
s
,
 '$

')
 

==
 0
)
 
b
r
e
a
k
;
 

i 
= 
n
a
m
e
2
n
u
m
l
s
)
;
 

i
f
 
(i
 =

= 
-
1
 

11
 

(
(
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<
 
i
)
 &

 
he
ad
[s
el
l.
ri
gh
t)
 

==
 0
)
 

pr
in
tf
('
n0
 

s
u
c
h
 a
t
t
r
i
b
u
t
e
 o
n
 t
h
e
 r
i
g
h
t
\
n
9
)
;
 

e
l
s
e
 m
 

= 
m
 

1 
(
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<
 
i
)
;
 

1 

e
l
s
e
 pr
in
tf
('
in
pu
t 

o
u
t
 
o
f
 r
a
n
g
e
\
n
m
)
;
 

1 
1 

1 



f
u
n
d
 . c
 

S
y
n
o
p
s
i
s
 

t
 

a
n
a
l
y
s
i
s
 (
x
)
 

* 
u
n
s
i
g
n
e
d
 
l
o
n
g
 x
;
 

D
e
s
c
r
i
p
t
i
o
n
 

it
 
a
n
a
l
y
z
e
s
 
t
h
e
 F
D
s
 
in
 
a
 g
r
o
u
p
 
o
f
 
x.
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

s
t
a
t
i
c
 
v
o
i
d
 

a
n
a
l
y
s
i
s
 (
x
)
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
x;
 

( 
in
t 

i,
 
j
,
 m
. 

r
o
u
n
d
;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
c
a
n
d
i
d
a
t
e
,
 y
,
 
z
;
 

s
t
r
u
c
t
 
fd
-s
tr
u 

*p
. 

'q.
 

'r
, 

'r
l;
 

s
h
o
r
t
 
in
t 

d
o
n
e
,
 
n
e
e
d
;
 

fi
ll
-b
oa
rd
 (
x
)
 ;
 

w
h
i
l
e
 
(
b
o
a
r
d
-
n
u
m
 >

 
0
)
 

( 

m
 

= 
b
o
a
r
d
[
O
l
.
v
a
l
u
e
;
 

j
 

= 
0
;
 

f
o
r
 
(
i
=
l
;
 i
<
b
o
a
r
d
-
n
u
n
;
 
i
+
+
)
 

i
f
 
(
m
 <

 b
o
a
r
d
[
i
l
.
v
a
l
u
e
)
 

( 

m
 

=
 b
o
a
r
d
[
i
l
 .
v
a
l
u
e
;
 

j
 
= 

i;
 

1 
c
a
n
d
i
d
a
t
e
 =

 b
o
a
r
d
[
j
l
.
f
i
r
s
t
 
I 
b
o
a
r
d
[
j
]
.
s
e
c
o
n
d
;
 

r
o
u
n
d
 

= 
1
;
 

p
 
=
N
U
L
L
;
 

d
o
n
e
 

= 
0
;
 

w
h
i
l
e
 
(
r
o
u
n
d
 <

=
 
l
e
f
t
-
s
i
z
e
)
 

( 
i
f
 
(
p
 =

=
 N
U
L
L
)
 

( 
y
 

= 
0
x
0
1
;
 

f
o
r
 
(
i
=
O
;
 i
<
a
t
t
r
-
n
u
n
;
 
i
+
+
)
 
( 

if
 
(
y
 &

 
c
a
n
d
i
d
a
t
e
)
 

{ 
q
 

= 
(
s
t
r
u
c
t
 f
d-
st
ru
 
*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 
fd
-s
tr
u)
);
 

q
-
>
l
e
f
t
 

= 
y
;
 

q
-
>
n
e
x
t
 

= 
p;
 

P
 

= 
q
;
 

1 y
 

= 
y
 

<
<

 
1;
 

1 
I e
l
s
e
 

( 
r
 

= 
p
;
 

r
l
 
= 
N
U
L
L
;
 

w
h
i
l
e
 
(
r
 !

=
 
N
U
L
L
)
 

( 
y
 

= 
0
x
0
1
;
 

w
h
i
l
e
 
(
(
y
 &

 
r
-
>
l
e
f
t
)
=
=
O
)
 
y
 

= 
(
y
 <

<
 
1
)
 
I 
0
x
0
1
;
 

y
 

= 
(
y
 >

>
 
1
)
 &

 
c
a
n
d
i
d
a
t
e
;
 

if
 
(
y
 

!=
 0
)
 

( 
z
 

= 
0
x
0
1
;
 

f
o
r
 
(
i
=
O
;
 i
<
a
t
t
r
-
n
u
m
;
 
i
+
+
)
 
( 

i
f
 
(
Z
 h

 
Y
)
 

( 
q
 

= 
(
s
t
r
u
c
t
 f
d-
st
ru
 

*
)
 

m
a
l
l
o
c
 (
s
i
z
e
o
f
(
s
t
r
u
c
t
 f
d-
st
ru
) 

) 
;
 

q
-
>
l
e
f
t
 

= 
r
-
>
l
e
f
t
 

1 
z
;
 

q
-
>
n
e
x
t
 

= 
r
l
;
 

r
l
 

= 
q;
 

1 z 
= 

z
 <

<
 
1
;
 

I 

1 r
 

= 
r
-
>
n
e
x
t
;
 

1 r
e
l
e
a
s
e
 (
p
)
 ;
 

p
 
= 

r
l
;
 

1 i
f
 
(
p
-
>
n
e
x
t
 =

= 
N
U
L
L
)
 
b
r
e
a
k
;
 

q
 

= 
p
;
 

n
e
e
d
 

= 
0
;
 

w
h
i
l
e
 
(
q
 !

=
 N
U
L
L
)
 

( 
q
-
>
r
i
g
h
t
 

= 
c
l
o
s
u
r
e
(
p
f
d
,
 q
-
>
l
e
f
t
)
 &

 
c
a
n
d
i
d
a
t
e
 

&
 
-
(
c
l
o
s
u
r
e
(
c
f
d
,
 q
-
>
l
e
f
t
)
)
 ;
 

if
 
(
q
-
>
r
i
g
h
t
)
 {

 
r
 

= 
n
f
d
;
 

w
h
i
l
e
 
(
r
 !

= 
N
U
L
L
 

&
&

 
r
-
>
l
e
f
t
 

!=
 
q
-
>
l
e
f
t
)
 
r
 

= 
r
-
>
n
e
x
t
;
 

if
 
(
r
 

q
-
>
r
i
g
h
t
 

!=
 
N
U
L
L
)
 = 
q
-
>
r
i
g
h
t
 &

 
-
r
-
>
r
i
g
h
t
;
 

1 q
-
>
c
r
e
d
i
t
 

=
 0
;
 

if
 
(
q
-
>
r
i
g
h
t
)
 {

 

e
v
a
l
u
a
t
e
 (
q
)
 ;
 

n
e
e
d
 

= 
1
;
 

1 q
 

= 
q
-
>
n
e
x
t
;
 

1 if
 
(
n
e
e
d
)
 (

 
d
o
n
e
 =

 c
o
n
f
i
r
m
a
t
i
o
n
(
p
)
 ;
 

9
 =

 P
; 

w
h
i
l
e
 
(
q
 

!=
 
N
U
L
L
)
 

( 
i
f
 
(
q
-
>
c
r
e
d
i
t
 
!=

 
0
)
 

n
o
n
-
f
d
(
q
-
>
l
e
f
t
,
 
q
-
>
c
r
e
d
i
t
)
;
 

q
 

= 
q
-
>
n
e
x
t
;
 

1 
1 i
f
 
(
d
o
n
e
)
 
b
r
e
a
k
;
 

if
 
(
d
o
n
e
)
 (

 

9
 =

 P
; 

y
 

= 
0;
 

w
h
i
l
e
 
(
q
 !

=
 N
U
L
L
)
 

( 
if
 
(
q
-
>
r
i
g
h
t
)
 (

 

r
 

= 
c
f
d
;
 

w
h
i
l
e
 
(
r
 !

=
 N
U
L
L
 

&
&

 
r
-
>
l
e
f
t
 

!=
 q
-
>
l
e
f
t
)
 
r
 

= 
r
-
>
n
e
x
t
;
 

i
f
 
(
r
 !

= 
N
U
L
L
)
 

r
-
>
r
i
g
h
t
 

(=
 q
-
>
r
i
g
h
t
:
 

e
l
s
e
 r
 ( 

= 
(
s
t
r
u
c
t
 f
d-
st
ru
 
*
)
m
a
l
l
o
c
 (
s
i
z
e
o
f
 (
s
t
r
u
c
t
 f
d-
st
ru
) 

) 
;
 

r
-
>
l
e
f
t
 =

 q
-
>
l
e
f
t
;
 

r
-
>
r
i
g
h
t
 

= 
q-
>r
ig
ht
: 

r
-
>
n
e
x
t
 

= 
c
f
d
;
 

c
f
d
 

= 
r
;
 

1 



f
u
n
d
 . c 

w
h
i
l
e
 
(
q
 1

= 
N
U
L
L
)
 

( 
if

 
(
q
-
>
r
i
g
h
t
)
 
y
 

= 
y
 

h
 
-
q
-
>
l
e
f
t
;
 

q
 

= 
q
-
>
n
e
x
t
;
 

1 X
 

= 
X
 

&
 
-
y
;
 

f
 i
l
l
-
b
o
a
r
d
 (
x
)
 ;
 

1 e
l
s
e
 a
d
j
u
s
t
-
b
o
a
r
d
(
b
o
a
r
d
[
j
l
.
f
i
r
s
t
,
 
b
o
a
r
d
[
j
l
.
s
e
c
o
n
d
)
;
 

r
e
l
e
a
s
e
 (

p
) ;
 

) 
/*

 w
h
i
l
e
 
(
b
o
a
r
a
n
u
r
n
 >

 
1
)
 *

/ 
I 



f
u
n
d
 . h 

#
d
e
f
i
n
e
 
I
N
D
E
X
-
N
U
M
 
5
 

/*
 M
a
x
 

# 
i
n
d
e
x
e
s
 a
 
r
e
l
a
t
i
o
n
 h

a
s
 

*
/ 

#
d
e
f
i
n
e
 
G
R
O
U
P
-
N
U
M
 
I
N
D
E
]
C
N
U
M
 

+
 
5
 
/*

 M
a
x
 

# 
g
r
o
u
p
s
 

*
/ 

#
d
e
f
i
n
e
 
F
I
E
L
D
-
L
E
N
G
T
H
 
4
2
 

#
d
e
f
i
n
e
 M

A
X
-
m
A
T
P
R
 
1
0
 

/*
 M
a
x
i
m
u
m
 
a
s
 
8
 x
 
s
i
z
e
o
f
(
1
o
n
g
 
i
n
t
)
 
*
/ 

/*
 s
t
r
u
c
t
u
r
e
 
f
o
r
 a
t
t
r
i
b
u
t
e
s
 
d
e
s
c
r
i
p
t
i
o
n
 

*
/ 

t
y
p
e
d
e
f
 
s
t
r
u
c
t
 

( 
c
h
a
r
 n
a
m
e
[
N
A
M
E
_
L
E
N
G
T
H
+
l
]
;
 

s
h
o
r
t
 
in
t 
n
u
l
l
a
b
l
e
:
 

/*
 1
 
i
f
 
n
u
l
l
a
b
l
e
,
 
0
 
o
t
h
e
r
w
i
s
e
 
*/

 
s
h
o
r
t
 
in
t 

k
e
y
;
 

/'
 
1
 
i
f
 k
e
y
,
 
0
 
o
t
h
e
r
w
i
s
e
 
'/
 

in
t 

c
o
u
n
t
;
 

/*
 #

 
d
i
s
t
i
n
c
t
 
v
a
l
u
e
s
 
'/
 

) 
a
t
t
r
-
t
y
p
e
;
 

/*
 s
t
r
u
c
t
u
r
e
 
f
o
r
 
i
n
d
e
x
 d
e
s
c
r
i
p
t
i
o
n
 

*/
 

t
y
p
e
d
e
f
 
s
t
r
u
c
t
 

I 
c
h
a
r
 n
a
m
e
[
N
A
M
E
-
L
E
N
G
T
H
+
l
l
;
 

/*
 i

n
d
e
x
 n
a
m
e
 

*
/ 

s
h
o
r
t
 
in
t 

u
n
i
q
u
e
;
 

/*
 u
n
i
q
u
e
n
e
s
s
 

*
/ 

u
n
s
i
g
n
e
d
 
l
o
n
g
 o
n
;
 

/*
 a
t
t
r
i
b
u
t
e
s
 
t
h
e
 
i
n
d
e
x
 c
r
e
a
t
e
d
 
o
n
 
*/

 
) 
i
n
d
e
x
-
t
y
p
e
;
 

/*
 s
t
r
u
c
t
u
r
e
 
f
o
r
 
F
D
 d
e
s
c
r
i
p
t
i
o
n
 

*
/ 

s
t
r
u
c
t
 
fd
-s
tr
u 

1 
u
n
s
i
g
n
e
d
 
l
o
n
g
 
l
e
f
t
,
 
r
i
g
h
t
;
 

u
n
s
i
g
n
e
d
 
l
o
n
g
 
c
r
e
d
i
t
;
 

s
t
m
c
t
 
fd
-s
tr
u 

n
e
x
t
;
 

I;
 



...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.. 

* 
@
(
#
)
s
y
n
o
n
y
m
 
M
a
y
 

5
, 

1
9
9
2
 

* 
T
h
i
s
 
i
s
 a
 
p
r
o
g
r
a
m
 w
h
i
c
h
 
d
o
e
s
 
s
y
n
o
n
y
m
 m
a
t
c
h
i
n
g
.
 
G
i
v
i
n
g
 
t
w
o
 r
e
l
a
t
i
o
n
s
 w
i
t
h
 
n
o
 

n
a
m
i
n
g
 
c
o
n
v
e
n
t
i
o
n
s
,
 
i.
e.
, 

f
i
e
l
d
s
 w
i
t
h
 
t
h
e
 s
a
m
e
 n
a
m
e
 
d
o
 
n
o
t
 
s
u
g
g
e
s
t
 
t
h
a
t
 
t
h
e
y
 

a
r
e
 
s
y
n
o
n
y
m
s
,
 
t
h
e
 p
r
o
g
r
a
m
 
t
r
i
e
s
 
t
o
 
f
i
n
d
 a
t
t
r
i
b
u
t
e
s
 
t
h
a
t
 
a
r
e
 s
y
n
o
n
y
m
s
.
 

O
n
e
 
a
t
t
r
i
b
u
t
e
 
c
a
n
 h
a
v
e
 
m
o
r
e
 
t
h
a
n
 o
n
e
 a
t
t
r
i
b
u
t
e
s
 
i
n
 t
h
e
 
o
t
h
e
r
 r
e
l
a
t
i
o
n
 
a
s
 

* 
s
y
n
o
n
y
m
s
.
 

F
o
r
 
t
w
o
 
f
i
e
l
d
s
 A
 
a
n
d
 
B
 
i
n
 d
i
f
f
e
r
e
n
t
 
r
e
l
a
t
i
o
n
s
,
 w
e
 
d
e
f
i
n
e
 
d
(
A
,
 
B
)
 a
s
:
 

* 
c
(
A
,
B
)
 =

 l
o
o
*
(
#
 d
i
s
t
i
n
c
t
 
t
u
p
l
e
s
 
e
q
u
a
l
s
 
o
n
 
A
 
a
n
d
 
B
)
 

d
(
A
,
B
)
 =

 c
 (
A
,
B
)
 / 
(
d
i
s
t
i
n
c
t
 A
)
 

+
 
c
 (
A
,
 B)
 / 
(
d
i
s
t
i
n
c
t
 B
)
 

t
h
i
s
 d
-
v
a
l
u
e
 w
i
l
l
 b

e
 u
s
e
d
 
t
o
 
j
u
d
g
e
 
t
h
e
 c
l
o
s
e
n
e
s
s
 
of
 
A
 
a
n
d
 
B.
 

1
 

/*
 l

o
g
i
n
 o
n
t
o
 O
R
A
C
L
E
 

*/
 

#
d
e
f
i
n
e
 U
S
E
R
 
'
x
i
a
o
b
i
n
g
/
c
h
e
n
@
a
a
a
m
 

/*
 t
h
e
 d
-
v
a
l
u
e
 b
e
l
o
w
 w
h
i
c
h
 
s
h
o
u
l
d
 
n
o
t
 
b
e
 
c
o
n
s
i
d
e
r
e
d
 
*/

 
#
d
e
f
i
n
e
 
L
O
W
-
B
O
U
N
D
 
0
 

/'
 
m
a
x
i
m
u
m
 
n
u
m
b
e
r
 
o
f
 
a
t
t
r
i
b
u
t
e
s
 
in
 
e
a
c
h
 
r
e
l
a
t
i
o
n
 
*/

 
#
d
e
f
 i
n
e
 M
AX
-N
UM
-A
TT
R 

2
 0
 

/*
 
l
e
n
g
t
h
 
o
f
 
t
a
b
l
e
 n
a
m
e
s
,
 
a
t
t
r
i
b
u
t
e
 
n
a
m
e
s
,
 
et
c.
, 

i
n
 b
y
t
e
s
 

*/
 

#
d
e
f
i
n
e
 
N
A
M
E
-
L
E
N
G
T
H
 
3
0
 

/*
 
f
o
r
 p
a
r
s
i
n
g
 
o
f
 
vi
ew
-t
ex
t 

*/
 

#
d
e
f
 i
n
e
 E
ND
 

0
 

#
d
e
f
i
n
e
 
D
O
T
 

1
 

#
d
e
f
i
n
e
 
E
Q
U
A
L
 
2 

#
d
e
f
i
n
e
 V
A
R
 

3
 

#
d
e
f
i
n
e
 W
H
E
R
E
 
4
 

#
d
e
f
i
n
e
 A

N
D
 

5
 

#
d
e
f
i
n
e
 
O
R
 

6
 

#
d
e
f
i
n
e
 N
O
T
 

7
 

#
d
e
f
i
n
e
 
O
T
H
E
R
 
8
 

/*
 l

i
s
t
 
t
o
 s
t
o
r
e
 s
y
n
o
n
y
m
s
 
f
o
r
 
e
a
c
h
 
a
t
t
r
i
b
u
t
e
 

*
/ 

s
t
r
u
c
t
 
sy
n-
st
ru
 

( 
i
n
t
 
f
i
e
l
d
;
 

/*
 a
t
t
r
i
b
u
t
e
 n
u
m
b
e
r
 

*/
 

s
t
r
u
c
t
 
sy
n-
st
ru
 

n
e
x
t
;
 

1;
 

/*
 s

t
r
u
c
t
u
r
e
 f
o
r
 a
t
t
r
i
b
u
t
e
 s
p
e
c
i
f
i
c
a
t
i
o
n
 

*/
 

s
t
r
u
c
t
 
at
tr
-s
tr
u 

( 
c
h
a
r
 n
a
m
e
[
N
A
U
E
-
L
E
N
G
T
H
]
;
 

/'
 
a
t
t
r
i
b
u
t
e
 n
a
m
e
 
*/

 
c
h
a
r
 
ty
pe
[8
]:
 

/*
 d
a
t
a
 
t
y
p
e
 

*/
 

i
n
t
 

l
e
n
g
t
h
;
 

/*
 d
a
t
a
 
l
e
n
g
t
h
 

*/
 

in
t 

p
r
e
c
i
s
i
o
n
;
 

i
n
t
 

s
c
a
l
e
;
 

c
h
a
r
 
c
o
m
m
e
n
t
s
[
2
0
0
1
;
 

/*
 c

o
m
m
e
n
t
s
 o
n
 
t
h
e
 
f
i
e
l
d
 
*/

 
i
n
t
 
n-
sy
n;
 

/*
 #

 
s
y
n
o
n
y
m
s
 a
l
r
e
a
d
y
 m
a
t
c
h
e
d
 
t
o
 
it
 

*I
 

s
t
r
u
c
t
 
s
y
n
-
s
t
r
u
 

s
y
n
;
 

/*
 p
o
i
n
t
s
 
t
o
 
i
t
s
 
l
i
s
t
 
o
f
 
s
y
n
o
n
y
m
s
 

*/
 

1;
 

/*
 a
r
r
a
y
 
f
o
r
 t
h
e
 a
t
t
r
i
b
u
t
e
s
 
o
f
 
t
w
o
 r
e
l
a
t
i
o
n
s
 
*/

 
s
t
r
u
c
t
 
at
tr
-s
tr
u 

a
1
 [
M
A
X
J
W
J
l
T
R
l
,
 

a
2
 [
r
y
u
C
N
u
y
A
T
T
R
l
;
 

in
t 

n
l
,
 
n2
: 

/*
 #

 
of
 
a
c
t
u
a
l
 a
t
t
r
i
b
u
t
e
s
 
i
n
 e
a
c
h
 
r
e
l
a
t
i
o
n
 

*
/ 

/*
 a
r
r
a
y
 
t
o
 s
t
o
r
e
 d
 
v
a
l
u
e
 
'/
 

s
t
a
t
i
c
 
in
t 

d
[
H
A
X
H
A
X
N
U
M
-
A
T
P
R
l
 

[
M
A
X
-
N
U
Y
A
T
T
R
I
 ;
 

/*
 m
a
x
i
m
u
m
 
n
u
m
b
e
r
 
o
f
 
s
y
n
o
n
y
m
s
 a
n
 a
t
t
r
i
b
u
t
e
 
c
a
n
 h
a
v
e
*
/
 

in
t 

ma
x-
sy
n;
 

/*
 p
o
s
i
t
i
o
n
 
i
n
d
i
c
a
t
o
r
 
f
o
r
 v
i
e
w
 
t
e
x
t
 
a
n
a
l
y
s
i
s
 

*
/ 

in
t 

p
o
s
;
 

E
X
E
C
 
S
Q
L
 B
E
G
I
N
 D
E
C
L
A
R
E
 
S
E
C
T
I
O
N
;
 

V
A
R
C
H
A
R
 
u
i
d
[
3
O
l
;
 

V
A
R
C
H
A
R
 
t
a
b
l
e
l
[
3
0
1
;
 

/*
 t
a
b
l
e
 n
a
m
e
s
 

*
/ 

V
A
R
C
H
A
R
 
t
a
b
l
e
2
[
3
0
1
;
 

V
A
R
C
H
A
R
 
co
l-
na
me
[3
01
: 

V
A
R
C
H
A
R
 
co
l-
na
me
l[
30
1 
;
 

V
A
R
C
H
A
R
 
c
o
l
_
t
y
p
e
[
8
1
;
 

in
t 

c
o
l
-
l
e
n
g
t
h
;
 

in
t 

c
o
l
q
r
e
c
i
s
i
o
n
;
 

s
h
o
r
t
 
in
t 
pr
e-
in
d;
 

in
t 

c
o
l
-
s
c
a
l
e
;
 

s
h
o
r
t
 
in
t 

s
c
a
l
e
-
i
n
d
;
 

V
A
R
C
H
A
R
 
c
o
l
~
c
o
m
m
e
n
t
s
[
2
0
0
]
:
 

s
h
o
r
t
 
in
t 

co
rn

-i
nd

; 

V
A
R
C
H
A
R
 
b
u
f
 [ 
4
0
 I ;
 

in
t 

c
o
u
n
t
;
 

c
h
a
r
 q
u
e
r
y
[
2
6
0
1
;
 

V
A
R
C
H
A
R
 
vi
ew
-t
ex
t 

[ 3
 0
0 

I ;
 

E
X
E
C
 
S
Q
L
 E
N
D
 
D
E
C
L
A
R
E
 
S
E
C
T
I
O
N
;
 

E
X
E
C
 
S
Q
L
 
I
N
C
L
U
D
E
 S
Q
L
C
A
;
 

s
t
a
t
i
c
 
v
o
i
d
 
c
l
u
s
t
e
r
-
c
h
e
c
k
i
n
g
(
)
,
 
v
i
e
w
-
c
h
e
c
k
i
n
g
(
)
,
 
d
a
t
a
-
c
h
e
c
k
i
n
g
(
)
,
 

c
o
n
f
i
r
m
a
t
i
o
n
(
)
,
 o
u
t
p
u
t
 [

)
 ;
 

m
a
i
n
 (
a
r
g
c
,
 a
r
g
v
)
 

i
n
t
 
a
r
g
c
;
 

c
h
a
r
 
*
*
a
r
g
v
;
 

[ 
in
t 

i
;
 

/*
 l

o
g
i
n
 
t
o
 O
R
A
C
L
E
,
 
u
s
e
 u
s
e
r
i
d
 
a
n
d
 p
a
s
s
w
o
r
d
 
p
r
o
v
i
d
e
d
 b
y
 
U
S
E
R
 

*/
 

s
t
r
c
p
y
 (
u
i
d
-
a
r
r
,
 U
S
E
R
)
 ;
 

u
i
d
.
l
e
n
 

= 
s
t
r
l
e
n
(
u
i
d
.
a
r
r
)
;
 

E
X
E
C
 
S
Q
L
 C
O
N
N
E
C
T
 
:
u
i
d
;
 

if
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 

!=
 
0
)
 

( 
pr
in
tf
('
Co
nn
ec
ti
on
 
p
r
o
b
l
e
m
.
\
n
m
)
;
 

e
x
i
t
 (
1
)
 ;
 

I 
- 

E
X
E
C
 
S
Q
L
 W
H
E
N
E
V
E
R
 
S
Q
L
E
R
R
O
R
 G
O
T
0
 e
r
r
r
p
t
;
 

if
 
(
a
r
g
c
 =

= 
3
)
 
( 

/*
 a

r
g
u
m
e
n
t
s
 
i
n
 t
h
e
 c
o
m
m
a
n
d
 
l
i
n
e
 a
r
e
 
1
.
 

n
a
m
e
s
 
fo
r 

t
h
e
 t
w
o
 t
a
b
l
e
s
 
*/

 
s
t
r
c
p
y
(
t
a
b
l
e
l
.
a
r
r
,
 a
r
g
v
[
l
l
)
;
 

0
 
\
 

s
t
r
c
p
y
(
t
a
b
l
e
2
.
a
r
r
.
 
a
r
g
v
[
2
]
)
;
 



1 e
l
s
e
 

( 
pr
in
tf
('
Th
e 

t
w
o
 t
a
b
l
e
 n
a
m
e
s
 
f
o
r
 
s
y
n
o
n
y
m
 m
a
t
c
h
i
n
g
:
 

')
; 

s
c
a
n
f
(
'
%
s
%
s
m
,
 
t
a
b
l
e
l
.
a
r
r
,
 
t
a
b
l
e
2
.
a
r
r
)
;
 

1 t
a
b
l
e
l
.
l
e
n
 

= 
s
t
r
l
e
n
(
t
a
b
l
e
1
.
a
~
~
)
;
 

t
a
b
l
e
2
.
l
e
n
 

= 
s
t
r
l
e
n
(
t
a
b
l
e
2
.
a
~
~
)
;
 

/*
 c
h
e
c
k
 i
f
 
t
h
e
 t
w
o
 t
a
b
l
e
s
 e
x
i
s
t
 
i
n
 t
h
e
 d
a
t
a
b
a
s
e
 
*
/ 

E
X
E
C
 
S
Q
L
 
S
E
L
E
C
T
 T
A
B
L
E
-
T
Y
P
E
 
I
N
T
O
 
:
b
u
f
 
F
R
O
M
 A
L
L
-
C
A
T
A
L
O
G
 

W
H
E
R
E
 
T
A
B
L
E
-
N
A
M
E
 

= 
:
t
a
b
l
e
l
;
 

i
f
 
(
s
t
r
n
c
m
p
(
b
u
f
.
a
r
r
,
 
'T
AB
LE
',
 

5
)
 

!=
 
0
)
 

( 

pr
in
tf
('
\n
%s
 

i
s
 n
o
t
 
a
 
t
a
b
l
e
\
n
m
,
 t
a
b
l
e
1
.
a
~
~
)
;
 

e
x
i
t
 (
1
)
;
 

1 E
X
E
C
 
S
Q
L
 
S
E
L
E
C
T
 T
A
B
L
E
-
T
Y
P
E
 
I
N
T
O
 
:
b
u
f
 F
R
O
M
 
A
L
L
-
C
A
T
A
L
O
G
 

W
H
E
R
E
 
T
A
B
L
E
-
N
A
M
E
 

= 
:
t
a
b
l
e
2
;
 

if
 
(
s
t
r
n
c
m
p
(
b
u
f
.
a
r
r
,
 '
T
A
B
L
E
"
,
 

5
)

 
!=

 
0
)
 
( 

pr
in
tf
('
\n
%s
 

i
s
 n
o
t
 
a
 
t
a
b
l
e
\
n
m
,
 t
a
b
l
e
2
.
a
r
r
)
:
 

e
x
i
t
 (
1
)
;
 

1 pr
in
tf
('
\n
th
e 

m
a
x
 

# 
o
f
 
s
y
n
o
n
y
m
s
 
a
n
 a
t
t
r
i
b
u
t
e
 
c
a
n
 
h
a
v
e
 
(
u
s
u
a
l
l
y
 1
)
:
 

.)
; 

sc
an
f(
'%
d'
, 

&
m
a
x
-
s
y
n
)
;
 

if
 
(
m
a
x
-
s
y
n
 

<
 
1
)
 m
a
x
s
y
n
 =

 
1
;
 

/*
 S
Q
L
 q
u
e
r
y
 
t
o
 g
e
t
 
a
t
t
r
i
b
u
t
e
 
d
e
s
c
r
i
p
t
i
o
n
s
 
f
r
o
m
 d
a
t
a
 
d
i
c
t
i
o
n
a
r
y
.
 

T
h
e
 
t
a
b
l
e
 q
u
e
r
i
e
d
 
i
s
 

A
L
L
-
T
A
B
-
C
O
L
U
M
N
S
 

/ 
E
X
E
C
 
S
Q
L
 
D
E
C
L
A
R
E
 
C
1
 C
U
R
S
O
R
 
F
O
R
 

S
E
L
E
C
T
 C
O
L
U
M
N
-
N
A
M
E
,
 
D
A
T
L
T
Y
P
E
,
 
D
A
T
A
-
L
E
N
G
T
H
,
 
D
A
T
A
-
P
R
E
C
I
S
I
O
N
,
 

D
A
T
A
-
S
C
A
L
E
 
F
R
O
M
 
A
L
L
-
T
A
B
-
C
O
L
U
M
N
S
 

W
H
E
R
E
 
T
A
B
L
E
-
N
A
M
E
 

= 
:
b
u
f
;
 

/*
 q
u
e
r
y
 
f
o
r
 
t
a
b
l
e
 
1
 
*
/ 

s
t
r
c
p
y
(
b
u
f
.
a
r
r
,
 
t
a
b
l
e
l
.
a
r
r
)
;
 

b
u
f
.
l
e
n
 

= 
s
t
r
l
e
n
(
b
u
f
.
a
r
r
)
;
 

E
X
E
C
 
S
Q
L
 
O
P
E
N
 
C
1
;
 

f
o
r
 
(
i
=
O
;
 i
<
M
A
X
-
N
U
K
A
T
T
R
;
 
i
+
+
)
 

( 
E
X
E
C
 
S
Q
L
 
F
E
T
C
H
 
C
1
 
I
N
T
O
 

:
c
o
l
-
n
a
m
e
,
 
:
c
o
l
-
t
y
p
e
,
 
:
c
o
l
-
l
e
n
g
t
h
,
 

:
c
o
l
q
r
e
c
i
s
i
o
n
:
p
r
e
-
i
n
d
,
 

:
c
o
l
-
s
c
a
1
e
:
s
c
a
l
e
-
i
n
d
;
 

if
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

= 
1
4
0
3
)
 b
r
e
a
k
;
 

/*
 e
n
d
 
of
 
f
e
t
c
h
 
*
/ 

c
o
l
~
n
a
m
e
.
a
r
r
[
c
o
l
~
n
a
m
e
.
l
e
n
l
 =

 
'\
0'
; 

c
o
l
-
t
y
p
e
.
a
r
r
[
c
o
l
-
t
y
p
e
-
l
e
n
l
 

= 
'\
O'
; 

s
t
r
c
p
y
(
a
l
[
i
l
.
n
a
m
e
,
 
c
o
l
-
n
a
m
e
.
a
r
r
)
;
 

s
t
r
c
p
y
(
a
l
[
i
l
.
t
y
p
e
,
 
c
o
l
-
t
y
p
e
.
a
r
r
)
;
 

a
1
 [
i
]
 .
l
e
n
g
t
h
 =

 
c
o
l
-
l
e
n
g
t
h
;
 

a
l
[
i
]
.
p
r
e
c
i
s
i
o
n
 

= 
(
p
r
e
-
i
n
d
 

==
 
-
I
)
?
 
-
1
 
:
 c
o
l
q
r
e
c
i
s
i
o
n
;
 

a
l
[
i
]
.
s
c
a
l
e
 

= 
(
s
c
a
l
e
-
i
n
d
 

=
=

 -
I
)
?
 
-
1
 
:
 c
o
l
-
s
c
a
l
e
;
 

a
l
[
i
l
 .
c
o
m
e
n
t
s
[
O
]
 

= 
'\
0'
; 

/*
 t
h
e
s
e
 
t
w
o
 
l
i
n
e
s
 a
r
e
 
i
n
i
t
i
a
l
i
z
a
t
i
o
n
 
*/

 
al
[i
l 
.n
-s
yn
 

= 
0
;
 

a
l
[
i
l
 .
s
y
n
 =

 N
U
L
L
;
 

1 n
l
 

= 
i;
 

/*
 n
u
m
b
e
r
 
o
f
 
a
t
t
r
i
b
u
t
e
s
 
i
n
 
t
a
b
l
e
 
1
 
*
/ 

E
X
E
C
 
S
Q
L
 C
L
O
S
E
 
C
1
;
 

/*
 q
u
e
r
y
 
f
o
r
 
t
a
b
l
e
 
2
 

*/
 

s
t
r
c
p
y
(
b
u
f
.
a
r
r
,
 
t
a
b
l
e
2
.
a
~
~
)
;
 

b
u
f
.
l
e
n
 

= 
s
t
r
l
e
n
(
b
u
f
.
a
r
r
)
;
 

E
X
E
C
 
S
Q
L
 O
P
E
N
 C
1
;
 

f
o
r
 
(
i
=
O
;
 i
<
M
A
X
-
N
U
M
-
A
T
r
m
;
 
i
+
+
)
 

( 
E
X
E
C
 
S
Q
L
 
F
E
T
C
H
 C
1
 
I
N
T
O
 

:c
ol
-n
am
e,
 
:c
ol
-t
yp
e,
 
:
c
o
l
-
l
e
n
g
t
h
,
 

:
c
o
l
q
r
e
c
i
s
i
o
n
:
p
r
e
-
i
n
d
,
 
:c
ol
-s
ca
1e
:s
ca
le
-i
nd
; 

i
f
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

= 
1
4
0
3
)
 b
r
e
a
k
;
 

c
o
l
~
n
a
m
e
.
a
r
r
[
c
o
l
~
n
a
m
e
.
l
e
n
l
 = 
'
\
O
1
;
 

c
o
l
~
t
y
p
e
.
a
r
r
[
c
o
l
~
t
y
p
e
.
l
e
n
l
 = 

'
\
O
1
;
 

s
t
r
c
p
y
(
a
2
[
i
]
.
n
a
m
e
,
 
co
l-
na
me
.a
rr
);
 

.r
) ;
 

-
I
)
?
 
-
1
 
:
 c
o
l
q
r
e
c
i
s
i
o
n
;
 

.)
?

 
-
1
 
:
 
c
o
l
-
s
c
a
l
e
;
 

s
t
r
c
p
y
(
a
2
 [
il
 .
t
y
p
e
,
 
co
l-
ty
pe
.a
r 

a
2
[
i
]
.
l
e
n
g
t
h
 

= 
c
o
l
-
l
e
n
g
t
h
;
 

a
2
 [
il
 .
p
r
e
c
i
s
i
o
n
 =

 
(p
re
-i
nd
 

==
 

a
2
 [
il
 .
s
c
a
l
e
 

= 
(
s
c
a
l
e
-
i
n
d
 

==
 -

1 

a
2
[
i
]
 .
c
o
m
m
e
n
t
s
[
O
l
 

= 
'\
O'
; 

a
2
[
i
l
 .
n-
sy
n 

= 
0
;
 

a
2
 [
il
 .
s
y
n
 

= 
N
U
L
L
;
 

1 n
2
 

= 
i
;
 

E
X
E
C
 
S
Q
L
 C
L
O
S
E
 
C
1
;
 

/*
 g
e
t
 
c
o
m
m
e
n
t
s
 
f
o
r
 e
a
c
h
 
a
t
t
r
i
b
u
t
e
s
.
 

T
h
e
 
t
a
b
l
e
 
q
u
e
r
i
e
d
 
i
s
 
A
L
L
-
C
O
L
-
C
O
M
M
E
N
T
S
 

*
/ 

E
X
E
C
 
S
Q
L
 W
H
E
N
E
V
E
R
 
S
Q
L
E
R
R
O
R
 C
O
N
T
I
N
U
E
;
 

f
o
r
 
(
i
-
0
:
 
i
<
n
l
;
 
i
+
+
)
 (

 
s
t
r
c
p
y
(
c
o
1
-
n
a
m
e
.
a
r
r
,
 
a
l
[
i
l
.
n
a
m
e
)
;
 

c
o
l
-
n
a
m
e
.
l
e
n
 

=
 s
t
r
l
e
n
(
c
o
1
-
n
a
m
e
.
a
r
r
)
:
 

E
X
E
C
 
S
Q
L
 
S
E
L
E
C
T
 C
O
M
M
E
N
T
S
 
I
N
T
O
 
:
c
o
l
~
c
o
m
m
e
n
t
s
:
c
o
m
~
i
n
d
 

F
R
O
M
 A
L
L
-
C
O
L
-
C
O
M
M
E
N
T
S
 

W
H
E
R
E
 
T
A
B
L
E
-
N
A
M
E
 

= 
:
t
a
b
l
e
1
 A
N
D
 C
O
L
U
M
N
-
N
A
M
E
 

= 
:c
ol
-n
am
e;
 

i
f
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 

<
 
0
 
hh
 

s
q
l
c
a
.
s
q
l
c
o
d
e
 

!=
 
-
1
4
0
6
)
 
g
o
t
o
 
e
r
r
r
p
t
;
 

i
f
 
(c
or
n-
in
d 

==
 -

1
)
 

a
l
[
i
l
.
c
o
~
e
n
t
s
[
O
l
 =

 
'\
0'
; 

e
l
s
e
 

( 
c
o
l
~
c
o
m
m
e
n
t
s
.
a
r
r
[
c
o
l
~
c
o
n
u
n
e
n
t
s
.
l
e
n
l
 = 
'\
O'
; 

s
t
r
c
p
y
(
a
l
[
i
l
.
c
o
m
m
e
n
t
s
,
 c
o
l
-
c
o
m
e
n
t
s
.
a
r
r
)
;
 

1 
1 f
o
r
 
(
i
=
O
;
 i
<
n
2
;
 
i
+
+
)
 (

 
s
t
r
c
p
y
(
c
o
1
-
n
a
m
e
.
a
r
r
,
 
a
a
[
i
I
.
n
a
m
e
)
;
 

c
o
l
-
n
a
m
e
.
l
e
n
 

= 
s
t
r
l
e
n
(
c
o
1
-
n
a
m
e
-
a
r
r
)
;
 

E
X
E
C
 
S
Q
L
 
S
E
L
E
C
T
 C
O
M
M
E
N
T
S
 
I
N
T
O
 
:
c
o
l
-
c
o
m
e
n
t
s
:
c
~
i
n
d
 

F
R
O
M
 A
L
L
-
C
O
L
-
C
O
M
M
E
N
T
S
 

W
H
E
R
E
 
T
A
B
L
E
-
N
A
M
E
 

= 
:
t
a
b
l
e
2
 A
ND
 
C
O
L
U
M
N
-
N
A
M
E
 

= 
:c
ol
-n
am
e;
 

i
f
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 

<
 
0
 
&&
 

s
q
l
c
a
.
s
q
l
c
o
d
e
 

!=
 
-
1
4
0
6
)
 
g
o
t
o
 -

t
i 

i
f
 
(c
or
n-
in
d 

=
=

 
-
1
)
 

a
2
[
i
]
.
c
o
m
e
n
t
s
[
O
l
 

= 
'\
0'
; 

e
l
s
e
 

( 
c
o
l
~
c
o
m
m
e
n
t
s
.
a
r
r
[
c
o
l
~
c
o
m
e
n
t
s
.
l
e
n
l
 =

 
'\
O'
; 

s
t
r
c
p
y
(
a
2
[
i
]
.
c
o
m
m
e
n
t
s
,
 c
o
l
-
c
o
m
e
n
t
s
.
a
r
r
)
;
 

1 

E
X
E
C
 
S
Q
L
 W
HE

NE
VE

R 
S
Q
L
E
R
R
O
R
 G
O
T
0
 e

r
p
t
;
 

E
X
E
C
 
S
Q
L
 W
H
E
N
E
V
E
R
 
S
Q
L
E
R
R
O
R
 C
O
N
T
I
N
U
E
;
 



E
X
E
C
 
S
Q
L
 W
H
E
N
E
V
E
R
 
S
Q
L
E
R
R
O
R
 G
O
T
0
 e
r
r
r
p
t
;
 

c
o
n
f
i
r
m
a
t
i
o
n
 ()

 ;
 

o
u
t
p
u
t
 ( 

) 
;
 

e
x
i
t
 (
0
)
;
 

e
r
r
r
p
t
 :
 

pr
in
tf
('
\n
 
%
.
7
0
s
 
(
%
d
)
\
n
m
,
 s
q
l
c
a
.
s
q
l
e
r
r
m
.
s
q
l
e
r
r
m
c
,
 
-
s
q
l
c
a
.
s
q
l
c
o
d
e
)
;
 

E
X
E
C
 
S
Q
L
 W
H
E
N
E
V
E
R
 
S
Q
L
E
R
R
O
R
 C
O
N
T
I
N
U
E
:
 

E
X
E
C
 
S
Q
L
 
R
O
L
L
B
A
C
K
 
W
O
R
K
 
R
E
L
E
A
S
E
;
 

e
x
i
t
(
1
)
 ;
 

I 

S
y
n
o
p
s
i
s
 

i
n
t
 
s
y
n
o
n
y
m
s
(
x
,
 y
)
 

i
n
t
 
x,
 
y
;
 

A
r
g
u
m
e
n
t
s
 

* 
i
n
t
 
x
,
 
y
 

a
t
t
r
i
b
u
t
e
s
 i
n
 
t
a
b
l
e
1
 a
n
d
 
t
a
b
l
e
2
 
r
e
s
p
e
c
t
i
v
e
l
y
.
 

* 
R
e
t
u
r
n
 v
a
l
u
e
s
 

s
e
e
 d
e
s
c
r
i
p
t
i
o
n
 b
e
l
o
w
.
 

D
e
s
c
r
i
p
t
i
o
n
 

t
 

c
h
e
c
k
s
 i
f 
x
 
a
n
d
 y
 
a
r
e
 
s
y
n
o
n
y
m
s
 p
r
e
s
e
n
t
l
y
 r
e
c
o
r
d
e
d
 i
n
 
on
e'
s 

a
t
t
r
i
b
u
t
e
 

d
e
s
c
r
i
p
t
i
o
n
 s
t
r
u
c
t
u
r
e
.
 

It
 
r
e
t
u
r
n
s
 
1
 
i
f
 
t
h
e
y
 a
r
e
,
 
a
n
d
 
0
 
i
f
 
t
h
e
y
'
r
e
 
n
o
t
.
 

s
t
a
t
i
c
 
i
n
t
 

SY
nO
ll
Ym
S 
(X
. 
Y
)
 

i
n
t
 
x
,
 y
;
 

( 
s
t
r
u
c
t
 s
y
n
-
s
t
r
u
 
*
p
;
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. 

S
y
n
o
p
s
i
s
 

* 
a
d
L
w
n
o
n
y
m
 (
x
,
 Y
 

* 
i
n
t
 
x,
 
y
;
 

* 
A
r
g
u
m
e
n
t
s
 

i
n
t
 
x

, 
y
 

a
t
t
r
i
b
u
t
e
s
 i
n
 
t
a
b
l
e
1
 a
n
d
 
t
a
b
l
e
2
 
r
e
s
p
e
c
t
i
v
e
l
y
.
 

* 

D
e
s
c
r
i
p
t
i
o
n
 

t
 

r
e
c
o
r
d
 t
h
e
 
f
a
c
t
 
t
h
a
t
 
x
 
a
n
d
 
y
 
a
r
e
 
s
y
n
o
n
y
m
.
 

t
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

s
t
a
t
i
c
 v
o
i
d
 

a
d
d
-
s
y
n
o
n
y
m
 (
x
.
 Y
)
 

in
t 
x
,
 
y
;
 

( 
s
t
r
u
c
t
 
s
y
n
-
s
t
r
u
 
'P
; 

if
 
(
a
l
[
x
]
.
n
-
s
y
n
 

>
=

 m
ax
-s
yn
 

11
 
a
2
[
y
]
.
n
_
s
y
n
 

>
=

 m
s
y
n
)
 (

 
pr
in
tf
('
To
o 

m
a
n
y
 
s
y
n
o
n
y
m
s
 f
o
r
 
o
n
e
 
f
i
e
l
d
,
 
s
y
n
o
n
y
m
s
 n
o
t
 
ad
de
d\
n\
n'
);
 

r
e
t
u
r
n
;
 

1 if
 
(
s
y
n
o
n
y
m
s
 (x

, 
y
)
 =

= 
0
)
 

( 
p
 

= 
(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u
 
*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u
)
 )

; 
p
-
>
f
i
e
l
d
 =

 y
;
 

p
-
>
n
e
x
t
 

= 
a
1
 [
X
I
 .
s
y
n
;
 

a
1
 1
x1
 .
s
y
n
 

= 
p
;
 

a
1
 [
X
I
 .
n
-
s
y
n
+
+
;
 

p
 

= 
(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u
 
*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u
)
)
;
 

p
-
>
f
i
e
l
d
 =

 
x;
 

p
-
>
n
e
x
t
 

= 
a
2
 [
yl
 .
s
y
n
;
 

a
2
 [
yl
 .
sy
n 

= 
P
;
 

a
2
 [
yl
 .
n
-
s
y
n
+
+
;
 

d
[
x
l
 [
yl
 

= 
0
;
 

pr
in
tf
('
%s
.%
s 

a
n
d
 
%
s
.
%
s
 
a
d
d
e
d
 
a
s
 
sy
no
ny
ms
.\
n\
n'
, 

t
a
b
l
e
l
-
a
r
r
.
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

S
y
n
o
p
s
i
s
 

r
e
m
(
x
.
 
Y
)
 

i
n
t
 x
,
 
y
;
 

Al
rg
um
en
ts
 

i
n
t
 
x
,
 y
 

a
t
t
r
i
b
u
t
e
s
 i
n
 
t
a
b
l
e
1
 a
n
d
 
t
a
b
l
e
2
 r
e
s
p
e
c
t
i
v
e
l
y
.
 

t
 * 

D
e
s
c
r
i
p
t
i
o
n
 

r
e
m
o
v
e
 t
h
e
 r
e
c
o
r
d
 
t
h
a
t
 
x
 
a
n
d
 
y
 
a
r
e
 
s
y
n
o
n
y
m
s
.
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 

s
t
a
t
i
c
 v
o
i
d
 

r
e
m
(
x
,
 Y
)
 

in
t 
x
,
 
y
;
 

( 
s
t
r
u
c
t
 
s
y
n
-
s
t
r
u
 

*
p

, 
*
q
;
 

p
 

= 
a
1
 [
XI
 .
s
y
n
;
 

b
i
l
e
 
(
p
 !

=
 
N
U
L
L
 

&
&

 
p
-
>
f
i
e
l
d
 !

=
 
Y
)
 
[ 

q
 

= 
Pi
 

p
 

= 
p
-
>
n
e
x
t
;
 

1 i
f
 
(
p
 =

= 
N
U
L
L
)
 



pr
in
tf
('
th
ey
'r
e 

n
o
t
 
s
y
n
o
n
y
m
s
.
\
n
\
n
m
)
;
 

e
l
s
e
 
( 

i
f
 
(
p
 =

= 
al
[x
l 
.
s
y
n
)
 a
l
[
x
l
 .
s
y
n
 =

 p
-
>
n
e
x
t
;
 

e
l
s
e
 

q
-
>
n
e
x
t
 

= 
p
-
>
n
e
x
t
;
 

f
r
e
e
 (
P
)
 ;
 

a
l
[
x
]
 .
n-
sy
n-
-;
 

P
 

= 
a
2
[
~
1
 

.
s
y
n
;
 

w
h
i
l
e
 
(
p
 !

=
 
N
U
L
L
 

h
h

 
p
-
>
f
i
e
l
d
 

!=
 
x
)
 

( 

q
 

= 
P
;
 

p
 

= 
p
-
>
n
e
x
t
;
 

1 i
f
 
(
p
 =

= 
a
2
 [
y
]
 .
s
y
n
)
 
a
2
 [
yl
 .
s
y
n
 =

 p
-
>
n
e
x
t
;
 

e
l
s
e
 

q
-
>
n
e
x
t
 

= 
p
-
>
n
e
x
t
;
 

f
r
e
e
(
p
)
 ;
 

a2
[y
1 
.n
-S
F-
-;
 

p
r
i
n
t
f
(
'
6
y
n
o
n
y
m
s
 

r
e
m
o
v
e
d
.
\
n
\
n
m
)
;
 

1 
1 

S
y
n
o
p
s
i
s
 

d
a
t
a
-
c
h
e
c
k
i
n
g
 (

 1 

D
e
s
c
r
i
p
t
i
o
n
 

c
h
e
c
k
i
n
g
 d
a
t
a
 
i
n
 t
h
e
 d
a
t
a
b
a
s
e
 
t
o
 c
a
l
c
u
l
a
t
e
 
d
-
v
a
l
u
e
s
.
 
T
h
e
 d
-
v
a
l
u
e
s
 

w
i
l
l
 
b
e
 
u
s
e
d
 
i
n
 t
h
e
 
s
y
n
o
n
y
m
-
m
a
t
c
h
i
n
g
 
p
r
o
c
e
d
u
r
e
 
i
n
 
c
o
n
f
i
r
m
a
i
o
n
(
)
.
 

s
t
a
t
i
c
 v
o
i
d
 

d
a
t
a
-
c
h
e
c
k
i
n
g
 (

 )
 

1 /*
 g
e
t
 
t
h
e
 n
u
m
b
e
r
 
o
f
 
d
i
s
t
i
n
c
t
 
t
u
p
l
e
s
 
f
o
r
 
e
a
c
h
 a
t
t
r
i
b
u
t
e
s
 
i
n
 t
a
b
l
e
 
1
 
*/

 
f
o
r
 
(
i
=
0
;
 i
a
l
;
 i

++
) 

( 
s
p
r
i
n
t
f
(
q
u
e
r
y
,
 
'S
EL
EC
T 

C
O
U
N
T
(
D
I
S
T
1
N
C
T
 
%
s
)
 F
R
O
M
 
%
a
 
',
 
al
[i
l.
na
rn
e,
 

t
a
b
l
e
l
 .
a
r
r
)
 ;
 

E
X
E
C
 
S
Q
L
 
P
R
E
P
A
R
E
 
D
S
1
 
F
R
O
M
 
:
q
u
e
r
y
;
 

E
X
E
C
 
S
Q
L
 D
E
C
L
A
R
E
 
D
C
1
 
C
U
R
S
O
R
 
F
O
R
 
D
S
1
;
 

E
X
E
C
 
S
Q
L
 O
P
E
N
 
D
C
1
;
 

E
X
E
C
 
S
Q
L
 
F
E
T
C
H
 
D
C
1
 
I
N
T
O
 
:
c
o
u
n
t
;
 

E
X
E
C
 
S
Q
L
 
C
L
O
S
E
 
D
C
1
;
 

i
f
 
(
c
o
u
n
t
 =

= 
0
)
 
( 

pr
in
tf
('
\n
ta
bl
e 

w
i
t
h
 
n
o
 d
a
t
a
 
y
e
t
\
n
m
)
;
 

r
e
t
u
r
n
;
 

1 c
l
[
i
]
 

= 
c
o
u
n
t
;
 

1 

/*
 g
e
t
 
t
h
e
 n
u
m
b
e
r
 
o
f
 d
i
s
t
i
n
c
t
 
t
u
p
l
e
s
 
f
o
r
 
e
a
c
h
 a
t
t
r
i
b
u
t
e
s
 
i
n
 t
a
b
l
e
 
1
 
*/

 
f
o
r
 
(
i
=
O
;
 i
<
n
2
;
 
i
+
+
)
 
[ 

s
g
r
i
n
t
f
(
q
u
e
r
y
,
 
'S
EL
EC
T 

C
O
U
N
T
(
D
I
S
T
1
N
C
T
 
%s
l 

F
R
O
M
 
%
s
 
',
 
a
2
[
i
]
.
m
e
,
 

t
a
b
l
e
2
 .
a
m
)
 ;
 

E
X
E
C
 
S
Q
L
 
P
R
E
P
A
R
E
 
D
S
2
 
F
R
O
M
 
:
q
u
e
r
y
;
 

E
X
E
C
 
S
Q
L
 D
E
C
L
A
R
E
 
D
C
2
 
C
U
R
S
O
R
 F
O
R
 
D
S
2
;
 

E
X
E
C
 
S
Q
L
 
O
P
E
N
 
D
C
2
;
 

E
X
E
C
 
S
Q
L
 
F
E
T
C
H
 
D
C
2
 
I
N
T
O
 
:
c
o
u
n
t
;
 

E
X
E
C
 
S
Q
L
 
C
L
O
S
E
 
D
C
2
;
 

c
2
[
i
l
 

= 
c
o
u
n
t
;
 

1 

/*
 c
a
l
c
u
l
a
t
i
n
g
 
d
-
v
a
l
u
e
s
.
 
o
n
l
y
 p
a
i
r
s
 
of
 
t
h
e
 s
a
m
e
 d
a
t
a
 
t
y
p
e
 
a
n
d
 
l
e
n
g
t
h
 a
r
e
 

c
a
l
c
u
l
a
t
e
d
 

/ 
f
o
r
 
(
i
=
O
;
 i
<
n
l
;
 i
+
+
)
 

f
o
r
 
(
j
=
O
;
 j
<
n
2
;
 j
+
+
)
 

if
 
(
s
t
r
c
m
p
(
a
l
[
i
]
.
t
y
p
e
,
 a
2
[
j
]
.
t
y
p
e
)
=
=
O
 

h
h

 
a
l
[
i
]
.
l
e
n
g
t
h
=
=
a
2
[
j
]
.
l
e
n
g
t
h
 

&
&

 
a
l
[
i
]
.
p
r
e
c
i
s
i
o
n
=
=
a
2
[
j
]
.
p
r
e
c
i
s
i
o
n
 h

h
 
a
l
[
i
]
.
s
c
a
l
e
=
=
a
2
[
j
]
.
s
c
a
l
e
 

h
h

 
!
s
y
n
o
n
y
m
s
(
i
,
 j
)
)
 (

 
s
p
r
i
n
t
f
(
q
u
e
r
y
,
'
S
E
L
E
C
T
 
C
O
U
N
T
(
D
I
S
T
1
N
C
T
 
$
6
)
 F
R
O
M
 
$
6
,
 
$
6
 
W
H
E
R
E
 
9
6
.
9
6
 
=
%
s
.
%
s
m
,
 

a
l
[
i
]
.
n
a
m
e
,
 
t
a
b
l
e
l
-
a
r
r
,
 t
a
b
l
e
2
-
a
r
r
,
 t
a
b
l
e
l
.
a
r
r
,
 
a
l
[
i
l
.
n
a
m
e
,
 

t
a
b
l
e
2
.
a
r
r
,
 
a
2
F
j
I
.
n
a
m
e
)
;
 

E
X
E
C
 
S
Q
L
 
P
R
E
P
A
R
E
 
D
S
3
 
F
R
O
M
 
:
q
u
e
r
y
;
 

E
X
E
C
 
S
Q
L
 D
E
C
L
A
R
E
 
D
C
3
 
C
U
R
S
O
R
 
F
O
R
 
D
S
3
;
 

E
X
E
C
 
S
Q
L
 
O
P
E
N
 
D
C
3
;
 

E
X
E
C
 
S
Q
L
 
F
E
T
C
H
 D
C
3
 
I
N
T
O
 
:
c
o
u
n
t
;
 

E
X
E
C
 
S
Q
L
 
C
L
O
S
E
 
D
C
3
;
 

S
y
n
o
p
s
i
s
 

i
n
t
 
n
a
m
e
2
n
u
m
(
t
,
 
6
)
 

i
n
t
 
t
;
 

t
a
k
i
n
g
 
t
w
o
 v
a
l
u
e
s
 
(
1
/
2
)
,
 r
e
p
r
e
s
e
n
t
i
n
g
 
t
a
b
l
e
1
 o
r
 

t
a
b
l
e
l
.
 

c
h
a
r
 
*
s
;
 

a
t
t
r
i
b
u
t
e
 
n
a
m
e
 
s
t
r
i
n
g
.
 

R
e
t
u
r
n
 v
a
l
u
e
s
 

* 
t
h
e
 c
a
r
d
i
n
a
l
 
o
f
 
s
 i
f
 
s
 
f
o
u
n
d
 
i
n
 
t
a
b
l
e
 
t
,
 

o
r
 
-
1
 
i
f
 
n
o
t
 
f
o
u
n
d
.
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. 

s
t
a
t
i
c
 
i
n
t
 

n
a
m
e
2
n
u
m
(
t
,
 
s
)
 

i
n
t
 
t;
 

c
h
a
r
 

s
;
 

( 
s
t
r
u
c
t
 a
t
t
r
-
s
t
r
u
 
*
a
;
 

in
t 

n
;
 

in
t 

i;
 

i
f
 
(
t
 

!=
 
1
 

h
h

 
t!
= 

2
)
 
r
e
t
u
r
n
(
-
1
)
;
 

i
f
 
(
t
 =

= 
1
)
 
( 

a
 

= 
a
l
;
 

n
 

= 
n
l
;
 

1 e
l
s
e
 

( 
a
 

= 
a
2
;
 

n
 

= 
n
2
;
 



1 f
o
r
 
(
i
=
0
;
 i
<
n
;
 i
+
+
)
 

if
 
(
s
t
r
c
m
p
(
s
,
 a
[i
l 
.
n
a
m
e
)
 =

= 
0
)
 

r
e
t
u
r
n
(
i
)
 :
 

if
 
(
i
 =

= 
n
)
 
r
e
t
u
r
n
(
-
1
)
;
 

S
y
n
o
p
s
i
s
 

c
l
u
s
t
e
r
-
c
h
e
c
k
i
n
g
o
 

D
e
s
c
r
i
p
t
i
o
n
 

it
 
c
h
e
c
k
s
 i
f 
t
w
o
 a
t
t
r
i
b
u
t
e
s
 f
r
o
m
 
t
h
e
 t
w
o
 
t
a
b
l
e
s
 a
r
e
 
d
e
f
i
n
e
d
 

o
n
 
t
h
e
 
s
a
m
e
 c
l
u
s
t
e
r
 
c
o
l
u
m
n
 o
f 
a
 
c
l
u
s
t
e
r
.
 
I
f
 
it
 
is
, 
t
h
e
y
 a
r
e
 

r
e
c
o
r
d
e
d
 a
s
 
s
y
n
o
n
y
m
s
.
 

d
a
t
a
 
d
i
c
t
i
o
n
a
r
y
 t
a
b
l
e
 c
h
e
c
k
e
d
 
f
o
r
 
c
l
u
s
t
e
r
:
 

U
S
E
R
-
C
L
U
-
C
O
L
U
M
N
S
 

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

s
t
a
t
i
c
 v
o
i
d
 

c
l
u
s
t
e
r
-
c
h
e
c
k
i
n
g
0
 

( 
in
t 

i,
 
j
;
 

s
t
r
u
c
t
 s
yn
-s
t=
 

p;
 

E
X
E
C
 
S
Q
L
 D
E
C
L
A
R
E
 C
C
 
C
U
R
S
O
R
 F
O
R
 

S
E
L
E
C
T
 T
1.
TA
B-
CO
LU
MN
-N
AM
E,
 

T
2
.
T
A
B
-
C
O
L
U
M
N
-
N
A
M
E
,
 
T
1
.
C
L
U
S
T
E
R
-
N
A
M
E
 

F
R
C
M
 
U
S
E
R
-
C
L
U
-
C
O
L
U
M
N
S
 
T
I
,
 
U
S
E
R
-
C
L
U
-
C
O
L
U
M
N
S
 
T
2
 

W
H
E
R
E
 T
1
.
C
L
U
S
T
E
R
-
N
A
M
E
 

= 
T
2
.
C
L
U
S
T
E
R
-
N
A
M
E
 

A
N
D
 T
1
.
C
L
U
-
C
O
L
U
M
N
-
N
A
M
E
 

= 
T2
.C
LU
-C
OL
UM
N-
NA
ME
 

A
N
D
 T
1.
TA
BL
E-
NA
ME
 

= 
:
t
a
b
l
e
1
 

A
N
D
 
T
2
.
T
A
B
L
E
-
N
A
M
E
 

= 
:
t
a
b
l
e
2
;
 

E
X
E
C
 
S
Q
L
 O
P
E
N
 C
C:
 

w
h
i
l
e
 
(
1
)
 (

 
E
X
E
C
 
S
Q
L
 
F
E
T
C
H
 C
C 

I
N
T
O
 
:c
ol
-n
am
e.
 
:c
ol
-n
am
el
, 

:
b
u
f
;
 

if
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

= 
1
4
0
3
)
 b
r
e
a
k
;
 

c
o
l
-
n
a
m
e
.
a
r
r
[
c
o
l
-
n
a
m
e
-
l
e
n
l
 

= 
'\
O'
; 

c
o
l
~
n
a
m
e
l
.
a
r
r
[
c
o
l
~
n
a
m
e
l
.
l
e
n
l
 = 
'\
O'
; 

b
u
f
 .
a
n
[
b
u
f
 .
le
nl
 

= 
'\
O'
 ;
 

/*
 c
o
l
-
n
a
m
e
 
c
o
l
-
n
a
m
e
1
 
a
r
e
 
s
y
n
o
n
y
m
s
,
 t
h
e
y
 a
r
e
 c
o
n
v
e
r
t
e
d
 
t
o
 a
t
t
r
i
b
u
t
e
 n
u
m
b
e
r
 
*
/ 

i
 

= 
n
a
m
e
l
n
u
m
(
1
,
 c
o
l
-
n
a
m
e
.
a
r
r
)
;
 

j
 

= 
n
a
m
e
2
n
u
m
(
2
,
 c
o
l
-
n
a
m
e
l
.
a
r
r
)
;
 

if
 
(
i
 >
=
O
 

h
h

 
j
 >

=
 
0
)
 

[ 
pr
in
tf
('
\n
by
 

c
h
e
c
k
i
n
g
 
C
L
U
S
T
E
R
 %
s
.
 .
.
\
n
m
,
 b
u
f
-
a
r
r
)
;
 

a
d
d
-
s
y
n
o
n
y
m
 (

 i
 , 

j 
) 
;
 

1 
1 E
X
E
C
 
S
Q
L
 
C
L
O
S
E
 C
C
;
 

I .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
 

t
 

S
y
n
o
p
s
i
s
 

in
t 
g
e
t
-
w
o
r
d
 (
6
)
 

c
h
a
r
 
*
s
;
 

D
e
s
c
r
i
p
t
i
o
n
 

c
 

t
o
 g
e
t
 
a
 w
o
r
d
 
f
r
o
m
 v

i
e
~
t
e
x
t
,
 r
e
t
u
r
n
s
 s
y
m
b
o
l
i
c
 c
o
n
s
t
a
n
t
.
 

i
n
v
o
k
e
d
 
o
n
l
y
 b
y
 
v
i
e
w
-
s
y
n
0
 

s
t
a
t
i
c
 i
nt
 

g
e
t
-
w
o
r
d
(
s
)
 

c
h
a
r
 
*
s
 ;
 

( 
c
h
a
r
 c
;
 

in
t 

i:
 

i
 =

 0
;
 

w
h
i
l
e
 
(
v
i
e
w
-
t
e
x
t
.
a
r
r
[
p
o
s
]
 =

=
 
' 

')
 

p
o
s
+
+
;
 

c
 

= 
v
i
e
w
-
t
e
x
t
.
a
r
r
[
p
o
s
l
;
 

i
f
 
(
C
 =

= 
'
\
O
'
)
 

r
e
t
u
m
(
E
N
D
)
;
 

p
o
s
+
+
;
 

i
f
 
(
C
 =

= 
'
.
I
)
 

r
e
t
u
r
n
(
D
0
T
)
;
 

i
f
 
(
C
 =

= 
'=

' 
) 

r
e
t
u
r
n
(
E
Q
U
A
L
)
;
 

i
f
 
(
C
 >

=
'A

' 
h

h
 
C
 

<
=

 
'2
')
 

( 
w
h
i
l
e
 
(
(
c
 >

=
 
'A
' 

h
h

 
C

 
<

=
 
'2
')
 

11
 (

C
 >

= 
'0
' 

h
h

 
C
 

<
=

 
'9

')
 

11
 

(
C
 =

= 
*-

')
 

I I
 (
C
 =

= 
'#

')
 

I I
 (
C
 =

= 
'$

')
I 

( 

s
[
i
+
+
l
 =

 c
;
 

c
 

= 
v
i
e
w
-
t
e
x
t
.
a
r
r
[
p
o
s
+
+
l
;
 

I p
o
s
-
-
;
 

s[
il
 

= 
'\
O'
; 

i
f
 
(
s
t
r
c
m
p
(
s
,
 .
WE
RE
')
 

==
 
0
)
 r
e
t
u
r
n
(
W
E
R
E
)
 ;
 

if
 
(
s
t
r
c
m
i
(
s
,
 'A
ND
' 

i
f
 
(
s
t
r
c
m
p
(
s
,
 '
OR
')
 

i
f
 
(
s
t
r
c
m
p
(
s
,
 '
NO
T'
 

r
e
t
u
r
n
(
V
A
R
)
;
 

I r
e
t
u
r
n
 (
O
T
H
E
R
)
 ;
 

1 

) 
=

=
 0
)
 

r
e
t
u
r
n
(
A
N
D
1
;
 

--
 

- 
0
 

r
e
t
u
r
n
 (
O
R
)
 ;
 

) 
=

=
 0
)
 

r
e
t
u
r
n
(
N
O
T
1
;
 

S
y
n
o
p
s
i
s
 

t
 

v
i
e
w
_
s
Y
n
 ( 

) 

D
e
s
c
r
i
p
t
i
o
n
 

* 
a
n
a
l
i
z
e
s
 a
 
vi
ew
-t
ex
t 

t
o
 e
x
t
r
a
c
t
 
s
y
n
o
n
y
m
 i
n
f
o
r
m
a
t
i
o
n
s
.
 

P
r
e
s
e
n
t
l
y
 i
t 
c
h
e
c
k
s
 i
f 
t
w
o
 a
t
t
r
i
b
u
t
e
s
 f
r
o
m
 t
h
e
 t
w
o
 
t
a
b
l
e
s
 

a
r
e
 
i
n
v
o
l
v
e
d
 i
n
 a
 
E
Q
U
A
L
 
c
o
n
d
i
t
i
o
n
,
 
t
h
e
n
 t
h
e
y
 a
r
e
 r
e
c
o
r
d
e
d
 

a
s
 
s
y
n
o
n
y
m
s
.
 

* ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
. 

( 
c
h
a
r
 s
y
m
b
o
l
[
N
A
M
B
-
L
E
N
G
T
H
+
1
1
,
 
h
o
l
d
[
N
A
M
E
-
L
W
G
T
H
+
1
1
;
 

in
t 
t
o
k
e
n
;
 

in
t 
t
l
,
 
a
l
,
 
t2
, 
a
2
;
 

p
o
s
 

= 
0
;
 

w
h
i
l
e
 
(
(
t
o
k
e
n
 =

 
g
e
t
-
w
o
r
d
(
s
y
m
b
o
1
)
)
 

!=
 W
H
E
R
E
 

&
&

 
t
o
k
e
n
 

!=
 
E
N
D
)
 
;
 



s
y
n
o
n
y
m
.
 p
c
 

w
h
i
l
e
 
(
t
o
k
e
n
 !

=
 
E
N
D
)
 

( 
t
l
 =

 t
2
 

= 
a
1
 =

 
a
2
 

= 
-
1
;
 

w
h
i
l
e
 
(
(
t
o
k
e
n
 =

 g
e
t
-
w
o
r
d
(
s
y
m
b
o
1
)
)
 

!=
 V
A
R
 

6t
h 

t
o
k
e
n
 

!=
 E
N
D
)
 
;
 

i
f
 
(
t
o
k
e
n
 
!=

 E
N
D
)
 

( 
t
o
k
e
n
 

= 
g
e
t
-
w
o
r
d
(
h
o
1
d
)
;
 

i
f
 
(
t
o
k
e
n
 =

= 
D

m
) 

( 
t
o
k
e
n
 

= 
g
e
t
-
w
o
r
d
(
h
o
1
d
)
;
 

if
 
(
s
t
r
c
m
p
(
s
y
m
b
o
1
,
 t
a
b
l
e
1
.
a
~
~
)
 

==
 0

)
 
t
l
 =

 1
;
 

if
 
(
s
t
r
c
m
p
(
s
y
m
b
o
1
,
 t
a
b
l
e
2
.
a
~
~
)
 

==
 
0
)
 
t
l
 =

 
2
;
 

a
1
 
= 
n
a
m
e
Z
n
u
m
(
t
1
,
 
h
o
l
d
)
;
 

t
o
k
e
n
 

= 
g
e
t
-
w
o
r
d
(
s
y
m
b
o
1
)
;
 

1 e
l
s
e
 if
 
(
(
a
1
 =

 n
a
m
e
Z
n
u
m
(
1
,
 
s
y
m
b
o
l
)
)
 

!=
 
-
1
)
 

tl
 

= 
1
;
 

e
l
s
e
 

( 

a
1
 

= 
n
a
m
e
Z
n
u
m
(
2
,
 
s
y
m
b
o
l
)
;
 

tl
 

= 
2
;
 

1 
i
f
 
(
a
1
 !

=
 
-
1
 

&
&

 
t
o
k
e
n
 

==
 E
Q
U
A
L
)
 

( 
t
o
k
e
n
 

= 
g
e
t
-
w
o
r
d
(
s
y
m
b
o
1
)
;
 

if
 
(
t
o
k
e
n
 =

= 
V
A
R
)
 

( 
t
o
k
e
n
 

= 
g
e
t
-
w
o
r
d
(
h
o
1
d
)
;
 

if
 
(
t
l
 =

= 
1
)
 t
2
 
=
2
;
 

e
l
s
e
 
t
2
 
=
l
;
 

if
 
(
t
o
k
e
n
 =

= 
D
O
T
)
 

( 
t
o
k
e
n
 
= 
g
e
t
-
w
o
r
d
(
h
o
1
d
)
;
 

i
f
 
(
t
2
 =

= 
1
 

&
&

 
s
t
r
c
m
p
(
s
y
m
b
o
1
,
 
t
a
b
l
e
1
.
a
~
~
)
 

=
=

 0
 

11
 

t
2
 

==
 2

 &
&

 
s
t
r
c
m
p
(
s
y
m
b
o
1
,
 
t
a
b
l
e
2
.
a
r
r
)
 

==
 0
 

) 
a
2
 

= 
n
a
m
e
2
n
u
m
 (
t
2
,
 h
o
l
d
)
 ;
 

1 e
l
s
e
 
a
2
 

= 
n
a
m
e
Z
n
u
m
(
t
2
,
 
s
y
m
b
o
l
)
 ;
 

if
 
(
a
2
 !

=
 
-
1
)
 

( 
pr
in
tf
('
\n
by
 

c
h
e
c
k
i
n
g
 V
I
E
W
 
%s
..
.\
n*
, 

co
l-
na
me
.a
rr
);
 

if
 
(
t
l
 =

= 
1
)
 a
d
d
-
s
y
n
o
n
y
m
(
a
1
,
 
a
2
)
;
 

e
l
s
e
 
a
d
d
-
s
y
n
o
n
y
m
 (
a
2
,
 a
l
)
 ;
 

) 
1 

1 
1 

1 
1 

S
y
n
o
p
s
i
s
 

v
i
e
w
-
c
h
e
c
k
i
n
g
 (

 )
 

D
e
s
c
r
i
p
t
i
o
n
 

t
a
k
i
n
g
 
t
h
e
 t
e
x
t
 d
e
f
i
n
i
t
i
o
n
s
 
f
o
r
 V
I
E
W
S
 
w
h
i
c
h
 
c
o
n
t
a
i
n
s
 
t
a
b
l
e
1
 

1
 

a
n
d
 
t
a
b
l
e
2
,
 
c
a
l
l
i
n
g
 v
i
e
w
-
s
y
n
(
)
 
t
o
 a
n
a
l
y
z
e
 
t
h
e
 t
e
x
t
s
.
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

. 

s
t
a
t
i
c
 v
o
i
d
 

v
i
e
w
-
c
h
e
c
k
i
n
g
 (

 ) 
f 

E
X
E
C
 
S
Q
L
 D
E
C
L
A
R
E
 C
V
 C
U
R
S
O
R
 
F
O
R
 

S
E
L
E
C
T
 V
IE
W-
NR
ME
, 

T
E
X
T
 F
R
O
M
 
U
S
E
R
-
V
I
E
W
S
;
 

E
X
E
C
 
S
Q
L
 O
P
E
N
 
C
V
;
 

i
f
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

= 
1
4
0
3
)
 
b
r
e
a
k
;
 

if
 
(
s
q
l
c
a
.
s
q
l
c
o
d
e
 <

 
0
 

h
h

 
s
q
l
c
a
.
s
q
l
c
o
d
e
 

!=
 
-
1
4
0
6
)
 
c
o
n
t
i
n
u
e
;
 

c
o
l
~
n
a
m
e
.
a
r
r
[
c
o
l
~
n
a
m
e
.
l
e
n
l
 =

 
'\
O'
; 

i
f
 
(v
ie
w-
te
xt
.l
en
 

==
 3
0
0
)
 
v
i
e
w
-
t
e
x
t
-
l
e
n
 

= 
2
9
9
;
 

v
i
e
w
~
t
e
x
t
.
a
r
r
[
v
i
e
w
~
t
e
x
t
.
l
e
n
l
 = 
'
\
O
1
;
 

if
 
(
s
t
r
s
t
r
 (
vi
ew
-t
ex
t 
.
a
m
,
 t
a
b
l
e
l
 .
a
r
r
)
 
! =

 N
U
L
L
 

&
&

 
s
t
r
s
t
r
(
v
i
e
w
-
t
e
x
t
.
a
r
r
,
 
t
a
b
l
e
2
.
a
~
~
)
 

!=
 
N
U
L
L
)
 

vi
ew
-s
yn
 (

1 
;
 

) E
X
E
C
 
S
Q
L
 C
L
O
S
E
 
CV
; 

1 ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
. 

S
y
n
o
p
s
i
s
 

g
e
t
-
c
u
r
r
e
n
t
 (
x
,
 y
)
 

* 
in
t 

*
x
,
 
*
y
;
 

A
r
g
u
m
e
n
t
s
 

t
 

in
t 

*
x
,
 
*
y
;
 

t
h
e
 
t
w
o
 
in
t 

p
o
i
n
t
e
r
s
 w
i
l
l
 
b
e
 
u
s
e
d
 
t
o
 r
e
t
u
r
n
 
t
h
e
 

s
e
l
e
c
t
i
o
n
 
r
e
s
u
l
t
;
 
if
 
n
o
 p
a
i
r
 
o
f
 
a
t
t
r
i
b
u
t
e
s
 
c
a
n
 

b
e
 
s
e
l
e
c
t
e
d
,
 
*
x
 w
i
l
l
 b
r
i
n
g
 
b
a
c
k
 
v
a
l
u
e
 
-1
. 

D
e
s
c
r
i
p
t
i
o
n
 

t
 

g
e
t
s
 
o
n
e
 p
a
i
r
 
of
 
a
t
t
r
i
b
u
t
e
s
 w
h
i
c
h
 
a
r
e
 m
o
s
t
 
l
i
k
e
l
y
 s
y
n
o
n
y
m
s
 

b
a
s
e
d
 
o
n
 
t
h
e
 d
-
v
a
l
u
e
 a
r
r
a
y
.
 
P
a
i
r
s
 w
i
t
h
 
d
-
v
a
l
u
e
 
l
e
s
s
 
t
h
a
n
 

L
O
W
-
B
O
U
N
D
 
i
s
 n
o
t
 
s
e
l
e
c
t
a
b
l
e
.
 

T
h
e
 p
a
i
r
 
i
s
 n
o
t
 
p
r
e
v
i
o
u
s
l
y
 
c
o
n
f
i
r
m
e
d
 a

s
 s
y
n
o
n
y
m
s
 
o
r
 n
o
n
-
s
y
n
o
n
y
m
s
.
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
 

s
t
a
t
i
c
 
v
o
i
d
 

g
e
t
-
c
u
r
r
e
n
t
(
x
,
 
y
)
 

in
t 

*x
, 

*
y
;
 

in
t 

i,
 
j
,
 m
;
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 

S
y
n
o
p
s
i
s
 

s
h
o
w
-
c
u
r
r
e
n
t
 (
x
,
 y

)
 

t
 

in
t 

x
,
 
y
;
 

* 
w
h
i
l
e
 
(
1
)
 (

 
E
X
E
C
 
S
Q
L
 F
E
T
C
H
 
C
V
 
I
N
T
O
 
:c
ol
-n
am
e,
 
:v
ie
w-
te
xt
; 

D
e
s
c
r
i
p
t
i
o
n
 

p
r
i
n
t
s
 
t
h
e
 
c
u
r
r
e
n
t
 p
a
i
r
 
o
f
 
a
t
t
r
i
b
u
t
e
s
 
f
o
r
 s
y
n
o
n
y
m
 c
o
n
f
i
r
m
a
t
i
o
n
.
 



s
t
a
t
i
c
 
v
o
i
d
 

s
h
o
w
-
c
u
r
r
e
n
t
 (
x
,
 y
)
 

in
t 

x
,
 
y
;
 

( 
if
 
(
X
 =

= 
-
1
)
 
pr
in
tf
(.
\n
No
 
m
o
r
e
 
p
a
i
r
 
c
a
n
 b
e
 
s
y
n
o
n
y
m
s
\
n
m
)
;
 

e
l
s
e
 

( 

pr
in
tf
('
\n
%s
.%
s\
nm
, 

t
a
b
l
e
l
.
a
r
r
,
 
a
l
[
x
l
.
n
a
m
e
)
;
 

pr
in
tf
('
co
mm
en
ts
: 

%
s
\
n
m
,
 a
l
[
x
l
.
c
o
m
e
n
t
s
)
;
 

pr
in
tf
('
\n
th
ei
r 

b
e
i
n
g
 
s
y
n
o
n
y
m
s
 
n
e
e
d
 
t
o
 b
e
 
co
nf
ir
me
d\
n'
);
 

1 S
y
n
o
p
s
i
s
 

g
e
t
-
a
t
t
r
(
s
.
 
t
,
 
a
)
 

c
h
a
r
 
*
s
;
 

* 
i
n
t
 
*
t
,
 
*
a
;
 

A
r
g
u
m
e
n
t
s
 

c
h
a
r
 
*
s
;
 

a
 
i
n
p
u
t
 
s
t
r
i
n
g
 
f
o
r
 a

n
 a
t
t
r
i
b
u
t
e
 
n
a
m
e
,
 
c
a
n
 b
e
 
a
 
s
i
n
g
l
e
 

a
t
t
r
i
b
u
t
e
 
n
a
m
e
 o
r
 p
r
e
f
i
x
e
d
 
b
y
 
't
ab
le
na
me
.'
. 

i
n
t
 
't
; 

w
i
l
l
 
r
e
t
u
r
n
 
t
h
e
 
t
a
b
l
e
 
t
h
e
 a
t
t
r
i
b
u
t
e
 i
s
 i
n.
 

i
f
 
t
h
e
 a
t
t
r
i
b
u
t
e
 
i
s
 
i
n
 b
o
t
h
 
t
a
b
l
e
1
 
a
n
d
 
t
a
b
l
e
2
,
 
r
e
t
u
r
n
 
0
;
 

if
 
t
h
e
 a
t
t
r
i
b
u
t
e
 
i
s
 
i
n
 o
n
l
y
 
o
n
e
 
t
a
b
l
e
,
 
r
e
t
u
r
n
 
1
 o
r
 
2
;
 

if
 
t
h
e
 a
t
t
r
i
b
u
t
e
 
i
s
 n
o
t
 
i
n
 a
n
y
 
t
a
b
l
e
,
 r
e
t
u
r
n
 -
1.
 

in
t 

*a
: 

t
h
e
 c
a
r
d
i
n
a
l
 
o
f
 
t
h
e
 a
t
t
r
i
b
u
t
e
,
 
v
a
l
i
d
 
o
n
l
y
 w
h
e
n
 
*t
 
d
o
e
s
 

n
o
t
 
r
e
t
u
r
n
 
-
1
.
 

D
e
s
c
r
i
p
t
i
o
n
 

g
i
v
e
n
 
a
 
s
t
r
i
n
g
 
i
n
 s
 
r
e
p
r
e
s
e
n
t
i
n
g
 
t
h
e
 
(
f
u
l
l
)
 n
a
m
e
 
o
f
 
a
n
 a
t
t
r
i
b
u
t
e
,
 
it
 

t
r
i
e
s
 
t
o
 
l
o
c
a
t
e
 w
h
a
t
 
t
a
b
l
e
 t
h
e
 a
t
t
r
i
b
u
t
e
 
i
s
 
i
n
 a
n
d
 
t
h
e
 c
a
r
d
i
n
a
l
 
o
f
 

t
h
e
 a
t
t
r
i
b
u
t
e
 
if
 
it
's
 
i
n
 o
n
e
 
o
f
 
t
h
e
 t
a
b
l
e
.
 

..
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..

..
..

..
..

..
..

..
..
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..
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..
..

..
..

..
..

..
 

s
t
a
t
i
c
 v
o
i
d
 

g
e
t
-
a
t
t
r
[
s
,
 
t
,
 
a
)
 

c
h
a
r
 
*
s
;
 

i
n
t
 
*
t
,
 
*a
; 

( 
c
h
a
r
 c
[
N
A
M
E
-
L
E
N
G
T
H
]
;
 

i
n
t
 
i,
 
j;
 

i
 

= 
0
;
 

w
h
i
l
e
 
(
s
[
i
l
 

!=
 
'\
O'
 

&
&

 
s 

c[
il
 

= 
'
\
O
1
;
 

if
 
(s
[i
l 

=
=

 
'.

')
 

( 

e
l
s
e
 
i
f
 
(
s
t
r
c
m
p
(
c
,
 t
a
b
l
e
2
.
a
~
~
)
 

=
=

 0
)
 
*t
 

=
 2
;
 

e
l
s
e
 

( 
*t
 

= 
-
1
;
 

r
e
t
u
r
n
;
 

1 

j
 

= 
0
;
 

d
o
 

( 
c
[
j
+
+
l
 

= 
s
[
+
+
i
l
;
 

) 
w
h
i
l
e
 
(s
[i
l 

!=
 
'\
0'
);
 

'a 
= 
n
a
m
e
2
n
u
m
(
*
t
,
 
c
)
;
 

i
f
 
(
*
a
 =

= 
-
1
)
 *
t 

= 
-
1
;
 

r
e
t
u
r
n
;
 

1 e
l
s
e
 

( 
*
a
 =

 n
a
m
e
2
n
u
m
(
l
,
 
c)
; 

if
 
('a 

>
=

 0
)
 

if
 
(
n
a
m
e
l
n
u
m
(
2
,
 c
)
 =

= 
-
1
)
 
't 

= 
1
;
 

e
l
s
e
 
*
t
 

= 
0
;
 

e
l
s
e
 if
 
(
(
+
a
 =

 n
a
m
e
2
n
u
m
(
2
,
 
c
)
)
 >

= 
0
)
 
't 

= 
2
;
 

e
l
s
e
 

*
t
 =

 -
1
;
 

r
e
t
u
r
n
;
 

* 
S
y
n
o
p
s
i
s
 

p
u
t
a
t
t
r
(
t
,
 
i
)
 

+ 
in
t 

t,
 
i
;
 

* 
A
r
g
u
m
e
n
t
s
 

in
t 

t
;
 

t
a
b
l
e
 
t,
 
t
a
k
e
s
 v
a
l
u
e
s
 
o
f
 
1 
o
r
 
2;
 

in
t 

i
;
 

t
h
e
 
i'
s 

a
t
t
r
i
b
u
t
e
 
i
n
 
t
h
e
 a
t
t
r
i
b
u
t
e
 s
t
r
u
c
t
u
r
e
 a
rr
ay
. 

* 
D
e
s
c
r
i
p
t
i
o
n
 

o
u
t
p
u
t
s
 t
h
e
 d
e
s
c
r
i
p
t
i
o
n
 
o
f
 
a
t
t
r
i
b
u
t
e
 a
 
i
n
 t
a
b
l
e
 
t.
 

* 
t
 
a
n
d
 a
 
m
u
s
t
 
b
e
 
c
o
r
r
e
c
t
 
f
o
r
 l
o
c
a
t
i
n
g
 a
n
 a
t
t
r
i
b
u
t
e
 
in
 a
l[
l 

o
r
 a
2[
1.
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..
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..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
. 

s
t
a
t
i
c
 
v
o
i
d
 

p
u
t
a
t
t
r
(
t
,
 
i
)
 

in
t 

t
,
 
i
;
 

I 
s
t
r
u
c
t
 
a
t
t
r
-
s
t
r
u
 
*
a
,
 
*
a
a
;
 

s
t
r
u
c
t
 s
yn
-s
tr
u 

*
p
;
 

if
 
(
t
 =

= 
1
)
 

( 
a
 

= 
a
l
;
 

a
a
 

= 
a
2
;
 

e
l
s
e
 

( 
a
 

= 
a
2
;
 

a
a
 

= 
a
l
;
 

1 pr
in
tf
(.
na
me
: 

%
s
\
n
t
y
p
e
:
 
%
s
\
t
\
t
l
e
n
g
t
h
:
 %
d
\
n
a
,
 a
[i
l.
na
me
, 

a[
il
.t
yp
.,
 

a
[
i
l
.
l
e
n
g
t
h
)
;
 

pr
in
tf
('
co
mm
en
ts
: 

%s
\n
',
 

a[
il
.c
on
on
en
ts
);
 

pr
in
tf
('
sy
no
ny
ms
 

i
n
 
t
h
e
 o
t
h
e
r
 
t
a
b
l
e
:
\
n
q
)
;
 

p
 

=
 a
[i
l 
.
s
y
n
;
 

w
h
i
l
e
 
(
p
 !

=
 
N
U
L
L
)
 

[ 
pr
in
tf
('
%s
 

',
 a

a
[
p
-
>
f
i
e
l
d
l
.
n
a
m
e
)
;
 

p
 

= 
p
-
>
n
e
x
t
;
 

1 



c
o
n
f
 i
n
n
a
t
i
o
n
(
)
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 

S
y
n
o
p
s
i
s
 

s
h
o
w
-
t
a
b
l
e
(
t
)
 

i
n
t
 
t
;
 

A
r
g
u
m
e
n
t
 

i
n
t
 
t
;
 
t
a
k
e
s
 
v
a
l
u
e
s
 
1
 
o
r
 
2
,
 
i
n
d
i
c
a
t
e
s
 w
h
i
c
h
 
t
a
b
l
e
.
 

D
e
s
c
r
i
p
t
i
o
n
 

it
 
p
r
i
n
t
s
 
o
u
t
 
t
h
e
 
i
n
f
o
r
m
a
t
i
o
n
 
f
o
r
 a
l
l
 
a
t
t
r
i
b
u
t
e
s
 
i
n
 a
 
t
a
b
l
e
 
t.
 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 

s
t
a
t
i
c
 v
o
i
d
 

s
h
o
w
-
t
a
b
l
e
 (
t
)
 

i
n
t
 
t;
 

( 
i
n
t
 
i
,
 
n;
 

s
t
r
u
c
t
 
s
y
n
-
s
t
r
u
 
*
p
;
 

i
f
 
(
t
 =

= 
1
)
 
( 

n
 

= 
n
l
;
 

p
r
i
n
t
f
(
'
\
n
\
n
T
A
B
L
E
 

%
s
\
n
\
n
\
n
m
,
 t
a
b
l
e
1
.
a
~
~
)
;
 

1 e
l
s
e
 

( 
n
 

= 
n
2
;
 

p
r
i
n
t
f
(
'
\
n
\
n
T
A
B
L
E
 

%
s
\
n
\
n
\
n
m
,
 t
a
b
l
e
2
.
a
~
~
)
;
 

1 f
o
r
 
(
i
=
O
;
 i
<
n
;
 i
+
+
)
 
p
u
t
a
t
t
r
(
t
,
 
i
)
;
 

1 

S
y
n
o
p
s
i
s
 

c
o
n
f
 i
n
n
a
t
i
o
n
(
)
 

D
e
s
c
r
i
p
t
i
o
n
 

it
 
i
s
 a
n
 
i
n
t
e
r
a
c
t
i
v
e
 
e
n
v
i
r
o
n
m
e
n
t
 
t
o
 p
r
o
m
p
t
 
a
 
p
a
i
r
 
o
f
 
a
t
t
r
i
b
u
t
e
s
 

f
o
r
 u
s
e
r
 
c
o
n
f
i
r
m
a
t
i
o
n
 
a
s
 s
y
n
o
n
y
m
s
.
 
It
 
i
s
 b
a
s
e
d
 
o
n
 
t
h
e
 d
-
v
a
l
u
e
 

c
a
l
c
u
l
a
t
e
d
 
p
r
e
v
i
o
u
s
l
y
.
 
I
t
 
p
r
o
v
i
d
e
s
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
c
o
m
m
a
n
d
:
 

h
e
l
p
 

h
e
l
p
 
m
e
s
s
a
g
e
.
 

t
a
b
l
e
 
t
a
b
l
e
n
a
m
e
 

t
h
e
 s
c
h
e
m
a
 
o
f
 
t
a
b
l
e
n
a
m
e
 

c
u
r
r
e
n
t
 

d
i
s
p
l
a
y
 
c
u
r
r
e
n
t
 
s
e
l
e
c
t
i
o
n
 
f
o
r
 
c
o
n
f
i
r
m
a
t
i
o
n
.
 

y
e
s
 

c
l
a
i
m
 
o
f
 
s
y
n
o
n
y
m
 
a
f
t
e
r
 
t
w
o
 a
t
t
r
i
b
u
t
e
s
 
p
r
o
v
i
d
e
d
.
 

n
o
 

d
i
s
c
l
a
i
m
 
o
f
 
s
y
n
o
n
y
m
.
 

d
i
s
p
l
a
y
 
t
a
b
l
e
.
a
t
t
r
 

d
i
s
p
l
a
y
 
t
h
e
 
d
e
s
c
r
i
p
t
i
o
n
 
o
f
 
a
t
t
r
#
 
i
n
 
t
a
b
l
e
#
 a
n
d
 

i
t
s
 
c
u
r
r
e
n
t
 
s
y
n
o
n
y
m
s
.
 

a
d
d
 
t
a
b
l
e
l
.
a
t
t
r
1
 
t
a
b
l
e
2
.
a
t
t
r
2
 

a
d
d
 
t
a
b
l
e
l
#
.
a
t
t
r
l
#
 
a
n
d
 
t
a
b
l
e
#
.
a
t
t
r
2
#
 
a
s
 

s
y
n
o
n
y
m
s
.
 

r
e
m
o
v
e
 t
a
b
l
e
l
.
a
t
t
r
1
 
t
a
b
l
e
2
.
a
t
t
r
2
 

r
e
m
o
v
e
 
t
h
e
s
e
 
t
w
o
 a
t
t
r
i
b
u
t
e
s
 a
s
 s
y
n
o
n
y
m
s
.
 

q
u
i
t
 

q
u
i
t
 
t
h
e
 c
o
n
f
i
r
m
a
t
i
o
n
 
e
n
v
i
r
o
n
m
e
n
t
.
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..
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..
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..
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..
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..

 

s
t
a
t
i
c
 
v
o
i
d
 

( 
i
n
t
 
i
,
 
j
;
 

s
t
r
u
c
t
 
s
y
n
-
s
t
r
u
 
*
p
;
 

c
h
a
r
 
c
o
m
m
a
n
d
[
l
O
l
,
 
l
i
n
e
[
5
0
1
;
 

c
h
a
r
 
tl
[2
*-
-L
EN
GT
H+
ll
, 

t
2
[
2
*
N
A
M
-
L
E
N
G
T
H
+
l
I
;
 

i
n
t
 
c
u
r
l
,
 
c
u
r
2
,
 
i
t
l
,
 
i
t
2
,
 a
t
l
,
 
a
t
2
;
 

p
r
i
n
t
f
(
'
\
n
\
n
\
t
\
t
\
t
C
o
n
f
i
r
m
a
t
i
o
n
 
Pr
oc
es
s\
n\
n'
);
 

pr
in
tf
('
ty
pe
 
h
e
l
p
 
f
o
r
 H
E
L
P
\
n
\
n
m
)
;
 

g
e
t
-
c
u
r
r
e
n
t
(
h
c
u
r
1
,
 
h
c
u
r
2
)
;
 

s
h
o
w
-
c
u
r
r
e
n
t
 (
c
u
r
l
,
 c
u
r
2
 ) 
;
 

d
o
 

( d
o
 

( p
u
t
c
h
a
r
 (

'>
'I

; 
g
e
t
s
 (
l
i
n
e
)
 ;
 

1 
w
h
i
l
e
 
(
s
t
r
l
e
n
(
1
i
n
e
)
 =

= 
0
)
;
 

i
 

= 
0
;
 

w
h
i
l
e
 
(
l
i
n
e
[
i
l
 

!=
 
'\
0'
) 

( 
if
 
(
l
i
n
e
r
i
]
 >

=
 
'a
' 

&
&

 
l
i
n
e
[
i
l
 

<
=

 
'
2

'
)

 

l
i
n
e
[
i
l
 

= 
l
i
n
e
[
i
l
 
- 

'a
' 

+ 
'A
';
 

i
+
+
;
 

1 if
 
(
l
i
n
e
[
O
)
 =

= 
'H
')
 

( 
pr
in
tf
('
\n
\n
 

C
o
m
m
a
n
d
 a
v
a
i
l
a
b
l
e
:
\
n
S
)
;
 

p
r
i
n
t
f
(
'
H
[
e
l
p
l
\
t
\
t
\
t
t
h
i
s
 
h
e
l
p
 m
e
s
s
a
g
e
.
\
n
o
)
;
 

p
r
i
n
t
f
(
'
T
[
a
b
l
e
]
 

t
a
b
l
e
n
a
m
e
\
t
d
i
s
p
l
a
y
 t
h
e
 s
c
h
e
m
a
 
o
f
 
ta
bl
en
am
e'
);
 

p
r
i
n
t
f
(
'
C
[
u
r
r
e
n
t
l
\
t
\
t
\
t
s
h
o
w
 
c
u
r
r
e
n
t
 p
a
i
r
 
a
s
k
i
n
g
 
f
o
r
 
\ 

c
o
n
f
i
r
m
a
t
i
o
n
\
n
'
)
;
 

p
r
i
n
t
f
(
'
Y
[
e
s
]
\
t
\
t
\
t
c
l
a
i
m
 
o
f
 
s
y
n
o
n
y
m
 
f
o
r
 
t
h
e
 c
u
r
r
e
n
t
 p
a
i
r
.
\
n
9
)
;
 

p
r
i
n
t
f
(
'
N
[
o
]
\
t
\
t
\
t
d
i
s
c
l
a
i
m
 

of
 
t
h
e
 
c
u
r
r
e
n
t
 p
a
i
r
 
a
s
 s
yn
~n
yI
nS
.\
n.
l;
 

pr
in
tf
('
D[
is
pl
ay
l 

[t
ab
le
.l
at
tr
\n
')
; 

p
r
i
n
t
f
(
'
\
t
\
t
\
t
d
e
s
c
r
i
b
e
 
t
a
b
l
e
.
a
t
t
r
 
a
n
d
 
i
t
s
 c
u
r
r
e
n
t
 s
y
n
o
n
y
m
e
.
\
n
m
1
;
 

pr
in
tf
('
A[
dd
l 

[
t
a
b
l
e
l
.
l
a
t
t
r
l
 
[
t
a
b
l
e
2
.
l
a
t
t
r
2
\
n
W
)
;
 

p
r
i
n
t
f
(
'
\
t
\
t
\
t
a
d
d
 

t
a
b
l
e
l
.
a
t
t
r
1
 
a
n
d
 
t
a
b
l
e
2
.
a
t
t
t
-
2
 a
s
 s
yn
on
ym
s.
\n
')
; 

pr
in
tf
('
R[
em
ov
el
 

[
t
a
b
l
e
l
.
l
a
t
t
r
l
 
[
t
a
b
l
e
2
.
a
t
t
r
2
1
\
n
m
)
;
 

p
r
i
n
t
f
(
'
\
t
\
t
\
t
r
e
m
o
v
e
 

t
h
e
s
e
 
t
w
o
 a
t
t
r
i
b
u
t
e
s
 a
s
 s
yn
on
ym
s.
\n
.)
; 

p
r
i
n
t
f
(
'
Q
[
u
i
t
]
\
t
\
t
\
t
q
u
i
t
 

t
h
e
 c
o
n
f
i
r
m
a
t
i
o
n
 e
nv
ir
on
me
nt
.\
n.
);
 

1 e
l
s
e
 
if
 
(
l
i
n
e
[
O
l
 =

= 
'T
')
 

( 
i
f
 
(
s
s
c
a
n
f
(
1
i
n
e
.
 '
%
s
%
s
g
,
 
co
nr
ma
nd
, 
t
l
)
 

!=
 
2
)
 

pr
in
tf
('
a 

t
a
b
l
e
n
a
m
e
 
s
h
o
u
l
d
 
f
o
l
l
o
w
 t
h
i
s
 c
o
n
r
m
a
n
d
.
\
n
\
n
m
)
;
 

e
l
s
e
 
i
f
 
(
s
t
r
c
m
p
(
t
1
,
 t
a
b
l
e
l
.
a
r
r
)
 

==
 0

)
 s
h
o
w
-
t
a
b
l
e
(
1
)
;
 

e
l
s
e
 
i
f
 
(
s
t
r
c
m
p
(
t
1
,
 t
a
b
l
e
2
 .
a
r
r
)
 

==
 0

)
 s
h
o
w
-
t
a
b
l
e
(
?
)
 ;
 

e
l
s
e
 p
ri
nt
f(
'w
ro
ng
 

t
a
b
l
e
 n
a
m
e
.
\
n
\
n
a
)
;
 

1 e
l
s
e
 
i
f
 
(
l
i
n
e
[
O
l
 =

= 
'C
')
 

s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
.
 
c
u
r
l
)
;
 

e
l
s
e
 
i
f
 
(
l
i
n
e
[
O
l
 =

= 
'Y
')
 

( 
i
f
 
(
c
u
r
l
 
!=

 
-
1
)
 

( 
a
d
d
-
s
y
n
o
n
y
m
 (
c
u
r
l
.
 
c
u
r
2
 
;
 

g
e
t
-
c
u
r
r
e
n
t
 (
&
c
u
r
l
,
 &
c
u
r
2
 
;
 

1 s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
,
 
c
u
r
2
)
;
 

1 e
l
s
e
 
i
f
 
(
l
i
n
e
[
O
l
 =

=
 
'N
')
 

( 
i
f
 
(
c
u
r
l
 !

=
 
-
1
)
 
( 

d
[
c
u
r
l
l
 [
c
u
r
2
1
 =

 
0
;
 

g
e
t
-
c
u
r
r
e
n
t
(
l
c
u
r
1
.
 
L
c
u
r
2
)
;
 

1 s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
,
 
c
u
r
l
)
;
 

1 e
l
s
e
 
i
f
 
(
l
i
n
e
[
O
l
 

==
 
'D
')
 

( 

i
f
 
(
s
s
c
a
n
f
(
1
i
n
e
.
 '
%s
%s
',
 

c
o
m
m
a
n
d
,
 
t
l
)
 

!=
 
2
)
 



pr
in
tf
('
a 

s
t
r
i
n
g
 
r
e
p
r
e
s
e
n
t
i
n
g
 
a
 
f
i
e
l
d
 s
h
o
u
l
d
 
f
o
l
l
o
w
 t
h
e
 
\ 

c
o
m
a
n
d
.
\
n
m
)
;
 

e
l
s
e
 

( 
g
e
t
p
t
t
r
(
t
1
,
 
h
i
t
l
,
 
L
a
t
l
)
 ;
 

s
w
i
t
c
h
 
(
i
t
l
)
 (

 
c
a
s
e
 
-1
: 

pr
in
tf
('
ta
b1
e 

o
r
 a
t
t
r
i
b
u
t
e
 n
a
m
e
 n
o
t
 
f
o
u
n
d
\
n
\
n
m
)
;
 

br
ea
k:
 

c
a
s
e
 
0:
 

pr
in
tf
('
fi
e1
d 

n
a
m
e
 n
o
t
 
u
n
i
q
u
e
.
 
t
a
b
l
e
 n
a
m
e
 a
s
 
\ 

p
r
e
f
i
x
 
s
h
o
u
l
d
 b
e
 
p
r
o
v
i
d
e
d
\
n
\
n
m
)
;
 

b
r
e
a
k
;
 

d
e
f
a
u
l
t
:
 

p
u
t
a
t
t
r
(
i
t
1
,
 
a
t
l
)
;
 

1 
1 

1 e
l
s
e
 
if
 
(
l
i
n
e
[
O
l
 =

= 
'A
')
 

( 
if
 
(
s
s
c
a
n
f
(
1
i
n
e
.
 '
%s
%s
%s
',
 

c
o
m
m
a
n
d
,
 
t
l
,
 
t
2
)
 

!=
 
3
)
 

pr
in
tf
('
l%
o 

s
t
r
i
n
g
s
 
r
e
p
r
e
s
e
n
t
i
n
g
 
t
w
o
 
f
i
e
l
d
s
 s
h
o
u
l
d
 
f
o
l
l
o
w
 
\ 

t
h
i
s
 c
om
ma
nd
.\
n'
):
 

e
l
s
e
 

( 
g
e
t
-
a
t
t
r
(
t
1
,
 
h
i
t
l
,
 
h
a
t
l
)
;
 

g
e
t
p
t
t
r
(
t
2
,
 
h
i
t
2
,
 
h
a
t
2
)
;
 

i
f
 
(
i
t
1
 =

= 
-
1
 

11
 
i
t
2
 =

= 
-
1
)
 

pr
in
tf
('
ta
b1
e 

o
r
 
a
t
t
r
i
b
u
t
e
 
n
a
m
e
 n
o
t
 
f
o
u
n
d
\
n
\
n
m
)
;
 

e
l
s
e
 
i
f
(
i
t
1
 
=

r
 
0
 

11
 
i
t
2
 =

= 
0
)
 

pr
in
tf
('
fi
e1
d 

n
a
m
e
 n
o
t
 
u
n
i
q
u
e
.
 
t
a
b
l
e
 n
a
m
e
 a
s
 p
r
e
f
i
x
 
\ 

s
h
o
u
l
d
 b
e
 
p
r
o
v
i
d
e
d
\
n
\
n
m
)
;
 

e
l
s
e
 
i
f
 
(
i
t
1
 =

= 
i
t
2
)
 

pr
in
tf
('
id
en
ti
ca
1 

t
a
b
l
e
 s
e
l
e
c
t
e
d
.
\
n
\
n
m
)
;
 

e
l
s
e
 

( 
if
 
(
i
t
1
 =

= 
1
)
 
a
d
&
s
y
n
o
n
y
m
(
a
t
l
,
 

a
t
2
)
;
 

e
l
s
e
 
a
d
d
-
s
y
n
o
n
y
m
(
a
t
2
,
 
at
l)
: 

g
e
t
-
c
u
r
r
e
n
t
(
l
c
u
r
1
,
 
h
c
u
r
2
)
;
 

s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
,
 
c
u
r
l
)
;
 

1 
1 

1 e
l
s
e
 
if
 
(
l
i
n
e
[
O
]
 =

= 
'R
')
 

( 
if
 
(
s
s
c
a
n
f
(
l
i
n
e
,
 '
%s
%s
%s
',
 

c
o
m
m
a
n
d
,
 
t
l
,
 
t
2
)
 

!=
 
3
)
 

pr
in
tf
('
Tw
o 

s
t
r
i
n
g
s
 r
e
p
r
e
s
e
n
t
i
n
g
 
t
w
o
 
f
i
e
l
d
s
 s
h
o
u
l
d
 
f
o
l
l
o
w
 \

 
t
h
i
s
 c
om
ma
nd
.\
n'
):
 

e
l
s
e
 

( 

g
e
t
-
a
t
t
r
(
t
1
,
 
h
i
t
l
,
 
h
a
t
l
)
;
 

g
e
t
p
t
t
r
(
t
2
,
 
h
i
t
2
,
 
L
a
t
2
)
:
 

if
 
(
i
t
1
 =

= 
-
1
 

11
 
i
t
2
 =

=
 
-
1
)
 

pr
in
tf
('
ta
b1
e 

o
r
 
a
t
t
r
i
b
u
t
e
 
n
a
m
e
 n
o
t
 
f
o
u
n
d
\
n
\
n
q
)
:
 

e
l
s
e
 
i
f
(
i
t
1
 =

= 
0
 

I I
 

i
t
2
 

=
=

 0
)
 

pr
in
tf
('
fi
e1
d 

n
a
m
e
 n
o
t
 
u
n
i
q
u
e
.
 
t
a
b
l
e
 n
a
m
e
 a
s
 p
r
e
f
i
x
 
\ 

s
h
o
u
l
d
 b
e
 
p
r
o
v
i
d
e
d
\
n
\
n
m
)
;
 

e
l
s
e
 
i
f
 
(
i
t
1
 =

= 
i
t
2
)
 

pr
in
tf
('
id
en
ti
ca
1 

t
a
b
l
e
 
se
le
ct
ed
\n
\n
.'
);
 

e
l
s
e
 

( 

i
f
 
(
i
t
1
 =

= 
1
)
 
r
e
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