
EXTRACTING FUNCTIONAL
DEPENDENCIES AND SYNONYMS FROM

RELATIONAL DATABASES

Xiaobing Chen

B.S.E.E. Tsinghua University, Beijing, China, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School
of

Computing Science

@ Xiaobing Chen 1992
SIMON FRASER UNIVERSITY

November 1992

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Xiaobing Chen

Degree: Master of Science

Title of thesis: Extracting Functional Dependencies and Synonynls
fi-0111 Relational Databases

Examining Conlmittee: Dr. F. David Fracchia, Chairman

Dr. Nick Cercone, Senior Supervisor

Dr. Jiawei Yan, Supervisor
. ,

Date Approved:

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs i t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ib ra ry , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther u n i v e r s i t y , o r o ther educational i n s t i t u t i o n , on

i t s own beha l f o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l gain s h a l l not be allowed

wi thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

vrnq f r o m Relat

Author:

(s ignature)

(name)

December 1 . 1992

(date)

ABSTRACT

To build a natural language interface that accesses relational databases, it is impor-

tant to analyze the underlying databases in order to provide a semantic representation

of the relations and attributes in them, so that the natural language interface has the

knowledge about the semantic structures of the databases. We need to make clear

many kinds of relationships among attributes of relations, so that when forming a

relational query corresponding to a natural language query, we can connect attributes

and relations correctly and systematically. Among those kinds of relationships be-

tween attributes, functional dependencies and the synonym relationship of attributes

are most important and have direct impact on matching natural language expressions

to relational queries.

In this thesis, we study different strategies and methods to extract such knowledge

and information from relational databases. Algorithms are designed and presented

to extract functional dependencies and synonyms from unnormalized relations. The

algorithms use information retrieved from data dictionaries, and learn from the data.

Extracting these relationships is useful for discovering semantic connections among

attributes and relations so that a natural language interface will have the knowledge

about the structure of the underlying databases it requires to interpret its input. Our

algorithms discover those functional dependencies that organize at tributes within a

relation, as well as the synonymity among attributes which correlates different rela-

tions. Two algorithms for functional dependency extraction and synonym matching of

attributes were implemented and the results of testing and analysis of the performance

of these algorithms are presented.

ACKNOWLEDGMENTS

I would like to thank my senior supervisor, Dr. Nick Cercone, for supervising my

M.Sc. study and this thesis. He has been patient with my work and given me

sincere help whenever I had any problems. I would like to thank my supervisor, Dr.

Jiawei Han, who has made valuable suggestions to my work and helped me to clarify

the presentation of the thesis. I am indebted to Mr. Gary Hall, who as my thesis

examiner, has carefully examined the thesis draft and helped me to solve several

confused problems, and provided testing data for my experiments. I would like to

thank Dr. David Fracchia. Being the chairman of my supervisory committee, he has

made my thesis defence enjoyable and memorable to me.

I would like to acknowledge the financial support from the School of Computing

Science and the Center for Systems Sciences of Simon Fraser University, and the

Natural Sciences and Engineering Research Council of Canada.

CONTENTS

... ABSTRACT 111

ACKNOWLEDGMENTS . v

. LIST OF FIGURES ix

LIST OF TABLES . x

. 1 INTRODUCTION 1

. 1.1 TheTask 2

. 1.2 The Thesis Structure 5

. 2 RELATED WORK 6

. 2.1 SystemX 6

. 2.2 Knowledge Discovery in Databases 9

. 2.2.1 Overview 10

. 2.2.2 Existing FD-extraction systems 11

. 2.2.3 Data clustering 13

. 3 EXTRACTING FDS FROM 1NF 16

. 3.1 Extracting Implied FDs from Data 16

. 3.1.1 Sorting method 17

. 3.1.2 Complexity of the naive algorithm 19

. 3.1.3 A modified algorithm for extracting implied FDs 24

. 3.2 Attribute Hierarchy Based on FDs 31

. 3.2.1 Observations from 1NF relations 32

. 3.2.2 A hierarchy structure of attributes and its metric 35

. 3.2.3 Clustering method 39

. 3.2.4 Non-FD deduction 43

. 3.2.5 Criteria for choosing multiple FDs in a cluster 46

. 3.2.6 Combining attributes into groups 49

. 3.3 Implementation 50

. 4 THE SYNONYM MATCHING ALGORITHM 53

. 4.1 Exploit Information in Data Dictionary 56

. 4.1.1 Checking the cluster definition 57

. 4.1.2 Checking the view definition 58

. 4.1.3 Attributedefinition 60

. 4.2 Data Analysis 61

. 4.3 The Algorithm and Implementation 63

. 5 CONCLUSIONS AND FUTURE RESEARCH 67

. 5.1 Conclusion 67

. 5.2 Future Research 69

. A Relational databases Theory and the Data Dictionary 71

. A.l Functional Dependency 71

. A.2 Design of relational databases 73

. A.3 The Data Dictionary 74

. B Test Result of FUND 77

vii

C Test result of SYNONYM . 82

D Program Listing . 84

REFERENCES . 110

...
Vl l l

LIST OF FIGURES

2.1 A graphical representation of SystemX 7

. 2.2 Lattice for a sample relation 12

. 2.3 A hierarchical clustering scheme 15

. 3.1 A naive algorithm for FD-extraction 18

. 3.2 Attributes hierarchy for relation flight 35

. 3.3 Two hierarchies with different clustering criteria 43

. 3.4 Structure of FUND, an FD-extraction system 52

. 4.1 Set representation of d-value 63

LIST OF TABLES

. 2.1 Distance matrix for a set of nodes 14

. 2.2 Distance matrix after two steps of clustering 14

. 3.1 A Flight relation in 1NF 33

. 3.2 The flight relations in 2NF 33

. 3.3 The flight relations in 3NF 34

CHAPTER 1

INTRODUCTION

Much research has been carried out in the area of querying relational databases with

natural languages. To build a natural language interface to a relational database,

we first require a parser to translate a natural language query into an internal form

of representation in terms of the schema of relations in the database and relational

operations such as JOIN, SELECT, PROJECT, etc. We then use the internal rep-

resentation to query the database after suitable translation into the language of the

DBMS, and transform the query result into natural language expressions[l, 5, 11, 31.

In translation from natural language expressions to relation based internal forms, one

important item is to analyze the schema of the relations, or more precisely, we must

determine the structures of the relations, the relationship among attributes inside a

relation and among different relations, so that the natural language interfaces have

the domain knowledge and know what kinds of internal structure they are going to

translate.

C H A P T E R 1. INTRODUCTION 2

Relational databases are organized into relations with attributes defined in each

relation. Usually, a relation represents a real world entity, and its at tributes represent

the characteristics of the entity. There are some relationships among attributes in a

relation and between different relations in a database. These relationships represent

how components of the real world entities are correlated. The problem we need to

solve is to extract the relationships between attributes in relational databases in order

to form a semantic structure for their relations.

1.1 The Task

Many relationships exist among attributes within a relation and among attributes

belonging to different relations in a relational database. A relational database is

designed on the basis of functional dependencies. A functional dependency (FD) is

a restriction on a relation; a formal definition is given in Appendix A. Research in

[13] showed that knowledge of FDs in a database is important for interpreting natural

language expressions which refer to the relationships represented by those FDs. So

one important relationship between attributes we need to extract is FDs.

The Synonymity of attributes belonging to different relations is the key factor per-

mitting the natural join of the relations. We define that two attributes are synonyms

if they can be logically compared in a natural join condition. In a relational query

which specifies a natural join, the attributes in the join condition are synonyms; this

synonym relationship between attributes is explicitly specified. It is the user's respon-

sibility to know that the attributes are synonyms in order to correctly specify the join

operation. For a natural language query, the natural language interface must form a

CHAPTER 1. INTRODUCTION 3

relational query automatically according to the intent of natural language expression.

It is the system's responsibility to determine which relations should be involved and,

if a join has to be formed, on which attribute pair the join should be applied. Thus we

must determine the synonyms for attributes. The synonym relation is another type

of relationship we need to extract.

One may assume that these relationships should be specified by the database

designer. In addition to the design work, the database designer may also provide

documentations of his products. This provide us two ways to get the relationship

information when we need it: ask the original database designer or refer to the product

document at ion.

Sometimes the above access methods are not available. Usually database products

were often designed for performance, not purity of functional specifications, thus re-

sulted in poor design; a database could deteriorate with modification; many databases

are designed with no explicit FD specifications; and, knowledge we require is not al-

ways available in system documentations. Thus we would need to do some analysis

on relations and data in the database. We would like to have some automatic utilities

extract useful information from the data to help discover the required information.

An older, well used database usually has large amount of and persistent data. Analy-

sis of the database will provide interesting and useful information, if we do not make

use of them for our task, we waste resources available to us. For this reason, we will

work on large, ofter older, poorly documented databases.

From the theory of relational databases, we know relations should be designed and

normalized to Third Normal Form (3NF) or Boyce/Codd Normal Form (BCNF) or

higher [lo, 301, in order to remove redundancy and update anomalies. If a relation

CHAPTER 1. INTRODUCTION

was normalized to 3NF or higher, its only functional dependencies are those from

its keys to non-key attributes. This aspect is recorded in the data dictionary of

the database management system and is accessible on-line even if there is no written

documentation for it. But for actual relational databases in use, relations usually were

not normalized to 3NF. From our experience and observation of designing relational

databases, designers sometimes conveniently put attributes into a relation without

worrying about normalizations for the sake of better performance, or even do not

think about functional dependencies other than to identify the keys. For a mature

relational database, it may not have been constructed and decomposed into 3NF or

higher. Especially for older applications, the relation may be specified in First Normal

Form (1NF) and the FDs may not have been considered in the original design, or the

FDs are not clear; implicit FDs are only expressed in the use of the database by

convention. When new relations are added to the database, not all relationships

between the new and the old relations can be found or organized, so attributes with

the same meaning may have different names.

To extract proper relationships among attributes from these databases is more de-

manding. They require new views of themselves for correct and efficient use, because

it was poorly structured. The large amount of relatively static data also provide us

a better environment to extract more information. While it is tedious for humans

to analyze such data, an automatic information extraction or knowledge discovery

mechanism will help. For our task of extracting FDs and synonym relationship from

relational databases, we will consider relations in First Normal Form. No documenta-

tion or semantical information resources are assumed available except for the data in

the relations and the data dictionary, which exists in the RDBMS. No name conven-

tions are assumed, i.e., attributes with the same name are not definitely synonyms,

C H A P T E R 1. INTRODUCTION

nor are synonyms necessarily named the same.

1.2 The Thesis Structure

This thesis is organized into five chapters. We introduce in Chapter 2 areas related

to our topic, such as the natural language interface for relational databases known as

SystemX[3], strategies used for knowledge discovery, and data analysis techniques. In

chapter 3, we discuss methods for extracting FDs from relational databases, then we

provide a synonym matching algorithm in chapter 4. The algorithms implementation

description and testing results are given in the Appendixes. We provide concluding

remarks, summonizing our accomplishments, and propose further work in chapter 5.

CHAPTER 2

RELATED WORK

In this chapter we present background information related to our work. We describe

SystemX in Section 2.1, for which our extraction system is intended. In the next

section, we study the area of knowledge discovery in relational databases since our

problem belongs to this category.

2.1 SystemX

SystemX [3, 61 is a natural language interface to relational databases under develop-

ment at Simon Fraser University. At present, SystemX translates English into the de

facto standard relational database manipulation language SQL. Figure 2.1 (from [3])

gives a graphical representation of the system.

The system consists of a set of modules that create a canonical query representation

according to the input natural language expression. A second set of modules then

CHAPTER 2. RELATED WORK

Natural * Preprocessor
Language

Parser a Grammar

Semantic
Lexicon

Semantic Interpreter <

Rules

canonical forms

V

Canonical Form

to SQL Translator

Response
Management System

u
Figure 2.1: A graphical representation of SystemX

CHAPTER 2. RELATED WORK

translate the canonical form into a logical form and then into SQL. The SQL form

is used to query the database. The canonical query representation represents terms

in the natural language expression by objects in the underlying database queried and

relational operations, as well as quantifiers.

A natural language expression is first transformed into a parse tree organized ac-

cording to the language syntax structure of the expression. The semantic interpreter

transforms the parse tree to the canonical form in terms of database structures and

relational operations. Thus it needs domain knowledge pertaining to the underlying

database schema. In addition to the domain knowledge built in the semantic lexi-

con, SystemX requires the Pathfinder[l3] subsystem to assist in making appropriate

transformations. When the semantic interpreter receives a parse tree as its input, it

matches nodes of the parse tree to the database. The leaf nodes are matched to the

names of the database relations and attributes. The interpretation of a nonleaf node

often requires establishing the relationship between attributes corresponding to the

heads of its subtrees. This relationship corresponds to an access path to the database.

Thus, an access path to connect its subtrees must be found. Usually many possible

access paths exist. Pathfinder is used to select one that contains the most cohesive

relationship between the given set of attributes using a semantic model known as a

join graph whose construction is based almost exclusively on FDs.

Pathfinder [13] generates access paths from the join graph whose nodes represent

database objects such as relations and attributes, and whose represent relationships

among those objects. The relationships have significant matching pattern in natural

language expressions because they model real world relationships to which those ex-

pressions refer. As stated in [3], "a database scheme represents relationships between

CHAPTER 2. RELATED W O R K

entities in the world because database designers represent dependencies that exist be-

tween entities by dependencies between the database attributes that denote those enti-

ties". Expressions in natural language queries refer to these real world dependencies.

[13] defined five types of database dependencies for Pathfinder. The first and the

most significant one is the functional dependency, as stated in [13], "The relation-

ships between entities in the world which correspond to functional dependencies in

the database are most likely to be referred to b y simple natural language expressions",

p.44. Other types of data dependencies like co-dependency and coincidental depen-

dency are derived from functional dependencies, thus the FD relationship between

attributes is the most important relationship for Pathfinder.

Another goal of SystemX is that it be easily portable among different databases.

Each natural language interface is built to access a specific database because it needs

domain knowledge about the application database. Some automated knowledge dis-

covery utility should be incorporated to SystemX. This thesis discusses methods and

algorithms to extract knowledge from relational databases, which facilitate the mi-

gration of natural language interfaces to new database applications.

2.2 Knowledge Discovery in Databases

Our work is closely related to knowledge discovery in relational databases. In this

section we discuss knowledge discovery issues in databases.

CHAPTER 2. RELATED WORK

2.2.1 Overview

[12] gives a thorough overview of the area of knowledge discovery in databases. Ac-

cording to this article, knowledge discovery is the nontrivial extraction of implicit,

previously unknown, and potentially useful information from data. It has four main

characteristics: discovered knowledge is represented with a high-level language; dis-

coveries are accurate or measured with certainty; results are interesting according to

user-defined biases; and the discovery process is efficient. For the last characteristic, i t

noted that most knowledge discovery problems are intractable (NP-hard), so problem

domain constraints are specified, or solutions apply only to problems in special cases.

Knowledge discovery in relational databases include techniques to extract informa-

tion from data. Data in relations is analyzed for classification, pattern identification,

summarization, and discrimination, etc. Interesting regularities are found and de-

scribed as results if they are related to the interests of users. When the amount of

data is huge, statistical methods should be used to select appropriate data. Statistics

are also used to measure the certainty of discovery.

An RDBMS can provide us with useful utilities in knowledge discovery, such as

the data dictionary. The data dictionary is used to store descriptions about relations

and attributes in a database. Discovery processes use the data dictionary to retrieve

domain knowledge about the problem.

Most knowledge discovery systems extract regularities from data in databases.

Some knowledge discovery systems work vertically on data in a relation, such as for

discovering data distributions or classifications for at tributes. Some systems work

horizontally to extract relationships among attributes. In the latter case, vertical

CHAPTER 2. RELATED WORK 11

data analysis is always required. In some systems, tuples in a relation are clustered

and rules for each cluster are discovered. In more sophisticated systems, general rules

for attributes, or rules for the rules in each cluster are generalized. FD-extraction

requires a system to find generalized rules for attributes because an FD restriction

applies to not only a portion or cluster of tuples, but all values of attributes involved.

Some successful knowledge discovery systems include FORTY-NINER[34], INLEN[17],

DBLearn[S, 21, as well as systems described in [32, 27, 7, 351.

2.2.2 Existing FD-extraction systems

The FD represents the relationship between attributes in a relation, the data in the

relation conforms to the FD constraints. Thus vertical data analysis is required to

extract the relationships. Horizontal analysis of the extraction result is also required

because the FD is an attribute relationship.

Few systems exist for FD-extraction. [23] described a knowledge discovery system

which can be used to detect the FD relationship between attributes. This system

constructs a lattice based on tuples and attribute names. A lattice is an acyclic

directed graph in which every pair of nodes has a least common superior and a greatest

common subordinate and these are necessarily unique. All values appearing in tuples

and all tuples are constructed into the lattice. For example, a relation r (A , B, C, D, E)

with two tuples and their values as u (a , b, c, dl e) and v(al, b, c, dl, e'), its lattice is

shown in Figure 2.2. In this way a lattice is created for a relation. Tuples with the

same values for some of their attributes are connected with intermediate nodes, so

relationships reflected in the values can be extracted by further analysis on the lattice.

CHAPTER 2. RELATED WORK

u v

Figure 2.2: Lattice for a sample relation

Although the lattice analysis approach is not originally designed for the goal of

FD-extraction, we can see that the FD relationships are represented in a lattice for

a relation. In the example in Figure 2.2, any attributes of A, D, or E cannot be

functionally determined by B or C because value b and c formed an intermediate

node in the lattice. The problems with this method are that it uses all domain

values and tuples in a relation to construct the lattice, which is not practical for large

relations; and the relationship between tuples or attributes represented in the lattice

structure is purely based on values, without any prior guidance in choosing the data,

this will make the lattice complicated to analyze for FD relationships.

There is another system for assisting database design processes, for which a sub-

system is dedicated to extracting functional dependencies, as described in [18]. The

main task of the subsystem is to extract FDs from testing data, the extraction results

are used as feedback for database design. It focuses on updating the set of existing

FDs when new testing tuples are added. The existing FD set is created by checking

the data according to FD definition. No semantic analysis is provided.

In our FD-extraction system to be discussed, we will use the similar method as

in [18] to extract FDs implied by data in a relation, and do semantic analysis on the

implied FDs.

CHAPTER 2. RELATED WORK

2.2.3 Data clustering

Some knowledge discovery systems discover knowledge using data analysis to extract

interesting patterns or regularities from the data. Some use statistical approaches to

sample data for analysis, and the regularities or rules found bear probabilities; some

systems classify data into clusters, and check for regularities for each cluster. Various

data analysis approaches are described in [4, 7, 8, 9, 14, 16, 23, 28, 32, 351. Here we

describe a data clustering method introduced in [15], which also organizes clusters

into a hierarchical structure. Based on this idea we will create attribute hierarchies

according to FDs implied in a relation, thus get a well organized FD set.

The data clustering method tries to cluster a set of nodes; each step clusters several

nodes together. The intermediate result consists of a level of a hierarchy. The final

result will be a hierarchical structure of the set of nodes. For a set of nodes with a

metric representing distance values between each pair of nodes, we want to organize

the nodes into hierarchical clusters according to the distances. At first, each node is

a cluster and the set of original clusters constructs the lowest level in the hierarchy,

then clusters close to each other are grouped into new clusters to form another level

in the hierarchy. The process is repeated until all nodes are included in a final top

level cluster.

Take an example in [15], a set of nodes (1,2,3,4,5,6) with its distance matrix as

shown in Table 2.1. We use d(m, n) to denote the distance between nodes or clusters

m and n. Thus, from Table 2.1, we have d(1,2) = .3l, d(3,5) = .04, etc..

The first cluster is (3 5) because with d(3,5) = .04, they are the pair closest to

each other. Then the distance between the new cluster and other nodes should be

CHAPTER 2. RELATED WORK

Table 2.1: Distance matrix for a set of nodes

Table 2.2: Distance matrix after two steps of clustering

adjusted. Fortunately, node 3 and node 5 have the same distance to all other nodes,

so the distance value from the new cluster to others are not altered and the semantic

meaning of the distance is still preserved.

Then we found that the closest clusters are (3 5) and 6, with d((3 5), 6) = .07, so

we get another cluster (3 5 6). We also see that distances between this new cluster

and remaining nodes need not be altered. Now we have Table 2.2.

From Table 2.2, we see that (3 5 6) should be clustered with node 1, and node 2

and 4 should be clustered together at the same time. Finally, we merge the last two

clusters (1 3 5 6) and (2 4) together. We have the cluster hierarchy in Figure 2.3.

The key to the process we just described is being able to replace two (or more)

objects by a cluster, and still being able to define the distance between such clusters

and other objects. The semantics of such a hierarchy depends on applications, and

the metric used and the function for distance adjustment after creating a new cluster

CHAPTER 2. RELATED W O R K

............................... (1 2 3 4 5 6) level 5

........................ (1 3 5 6) (2 4) level 4

................ (1) (3 5 6) (2) (4) level 3

............ (4) level 2

............ (1) (3) (5) (6) (2) (4) level 1

Figure 2.3: A hierarchical clustering scheme

should conform to the semantics. Different functions exist for distance adjustment

depending on different applications, such as

d ((x Y) , 2) = m W (x , 4, d(Y, 4)

for adjusting the distance between object z and a new cluster (x y). The semantics

for the two functions are different.

When we apply this method in data analysis or synthesis, we should select a mean-

ingful metric and distance calculation function, as mentioned in [B], or the semantics

of the cluster hierarchy is not clear.

CHAPTER 3

EXTRACTING FDS FROM 1NF

3.1 Extracting Implied FDs from Data

Definition 3.1 For a relation R and two attribute sets A and B of R, if the functional

dependency A -+ B is satisfied b y the current tuples in R, this relationship between A

and B is called an implied FD for A and B and R with current tuples.

Since most of the time the FD-extraction algorithm we discuss deal with implied

FDs, we will still use the symbol t to denote implied FDs, i.e., A -+ B should be

considered as an implied FD unless stated otherwise.

An implied FD may not be a true FD for the relation. That is, a relation which

satisfies the FD condition for two sets of attributes does not mean that the FD is

defined for the relation. But every FD defined for a relation must be an implied FD

for that relation at any moment. Notice that all characteristics of FDs expressed by

CHAPTER 3. EXTRACTING FDS FROM 1 NF

axioms in Appendix A also apply to implied FDs.

To extract implied FDs, we just need to check the data by the FD definition.

However, we have to check all tuples in the relation before we can make a decision.

For a set of attributes A and two attributes X and Y, A + X Y implies A + X

and A + Y, and vice versa. To simplify the combinations of the determinee for an

FD, we consider FDs in the form that the determinee contains only one attribute.

In order to simplify the determinants of FDs, we will consider only full FDs as well

as full implied FDs, thus A B + C will not be extracted if we already have A + C.

Trivial FDs like X Y + X are always held by any relation, thus we eliminate trivial

FDs in our extraction.

3.1.1 Sorting method

The basic method for extracting implied FDs from data is the sorting method. For

a given relation with U as its set of attributes, we try to find all determinees for a

set of attributes A C U . First we record U - A as the candidate set of determinees,

and sort the tuples in the relation according to the values for A. Then we go through

the sorted relation as follows: for an attribute X in the candidate set, if we find two

consecutive tuples with the same values for A but not the same values for X , we

remove X from the candidate set. After we reach the end of the data, any attribute

Y left in the candidate set will be recorded as an implied FD A -t Y.

In a naive algorithm based on the sorting method, we need to consider all possible

combinations of attributes in U except for U itself to form the possible determinant

A. Because we consider the implied FDs in a form in which the determinee is a single

CHAPTER 3. EXTRACTING FDS FROM 1 NF

Input: Relation R with n tuples, and the set of attributes U for R.

Output: The set of implied FDs.

Method:
C = the set of all combinations of attributes from U except U;
for each A E C

sort the tuples in R according to values for A;
implied(A) = U - A;
for i = 2 t o n do

for any X E implied(A) do
if (tuple[i - 1](A) = tuple[i](A)) and

(tuple[i - 1](X) # tuple[i](X))
implied(A) = implied(A) - X ;

if implied(A) is empty
break;

for each X left in implied(A)
record A -t X as an implied FD;

end.

Figure 3.1: A naive algorithm for FD-extraction

attribute, we do not worry about combinations for the determinees.

The naive algorithm based on the sorting method is outlined in Figure 3.1.

In the naive algorithm, tuples are labeled from 1 to n as in an array, tuple[i](A)

represents the value of ith tuple in the relation for attribute set A. For example, in

the following relation:

CHAPTER 3. EXTRACTING FDS FROM INF

Currently, tuple[l](W, X) = (5, lo), tuple [3] (2) = 20. We say "currently" because the

labeling for tuples may change after we sort on them and swap some tuples. Some of

the implied FDs are:

3.1.2 Complexity of the naive algorithm

The naive sorting algorithm is only useful for time complexity analysis.

Suppose we have m attributes and n tuples for a relation R. Consider the combi-

nations of attributes, there are CA combinations with one attribute, C i combinations

with two attributes, Thus the total number of combinations are C i . For

combination A with p attributes, there are m - p attributes originally in A's determ-

inee candidate set, or in implied(A) in the naive algorithm of Figure 3.1, each, in the

worst case, needs to compare n - 1 tuples. So for all combinations with p attributes

(Ck combinations all together), we need

comparisons.

Each combination of attributes requires sorting on it, we need to perform sorting

CHAPTER 3. EXTRACTING FDS FROM INF 20

C:;' C i times, each sorting needs O(n log n) in time. The total sorting is

m-1

C CL - O(n log n)
i=l

We can calculate the time complexity T for the naive algorithm as:

m-1
= (2m - 2) . O(n log n) + (n - 1) . C; . (m - i)

i=l
(3.1)

m-1

TO calculate the last factor C C i . (m - i) in (3.1), let

reverse the right side of the equation and add both sides to themselves:

2s = CA(m- l)+C; (rn -2)+ . . .+ C 2 - ' (r n - (m - l))

+ Cz- ' (m- (m - 1)) +C:-2(m- (m - 2)) + ... +CA(m - 1)

because CG = C,"-"

C H A P T E R 3. E X T R A C T I N G FDS FROM 1 NF

Substitute this into (3.1):

m
T = (2" -2)-O(n1ogn) + (n - 1) . -(2" - 2)

2

We determine the time complexity as:

T = O(n . (log n + m/2) - 2") (3.2)

We see that the algorithm will need exponential time with respect to the number

of attributes, m, in the relation. This is not a big problem if we work on relations

with small number of attributes. In practice, the number of attributes in a relation is

usually limited (10 or 15 attributes in a relation is usually considered as too many)

so that it will not cause major problems to use the algorithm.

We are usually interested in only full functional dependencies. To repeat, a full

FD A -t B for a relation R is that A -t B holds on R but (A - C) -+ B does not hold

on R for any C C A. Consider full FDs for a relation, the number of attributes in

the determinants of any FD is limited. That means if we can estimate the maximum

possible number of attributes that any full FD can have on its left side, we can use

that number to limit the number of combinations of attributes for checking. This will

reduce the factor 2" in (3.2) above.

Suppose we estimate k as the maximum number of attributes that any full FD can

have as determinants, the naive algorithm will only consider c!=, Ck combinations.

Get it back to (3.1), the time required by the naive algorithm will be:

C H A P T E R 3. E X T R A C T I N G FDS FROM I N F

We calculate the last factor of (3.3).

Let

Let

divide x from both side of (3.4)

C H A P T E R 3. E X T R A C T I N G FDS FROM I N F

the last factor is 2G(x). So we have

We can see that G (x) is S when x = 1. So we have

m (m - 1) m - k m k
- -

2 + T c ; + Z x c ; i=2

because

and from k I: m - 1 , we have

Combine the above with (3.6), we have

Now we substitute S into (3.3)

or the time complexity is:

k + l ,

O(n . (logn + m / 2) . x C;)
i = l

CHAPTER 3. EXTRACTING FDS FROM INF 24

From (3.7), we can see that a small change of k would cause greater change of the

result, and the change happens drastically when k is around m/2. That means if we

think k is around m/2, we should estimate k more carefully because, at that point, a

small decrease of k will save a large amount of time for the algorithm.

In the time complexity of (3.2) or (3.7), n is also a factor which cannot be ignored.

Because we work on large databases, the number of tuples in a relation may be huge.

If a relation contains 1,000 tuples, even a polynomial time algorithm of 0 (n2) will

cause a million of steps of computation. In the naive algorithm, because the number

of attributes, or m, is limited in practice, it could have better performance compared

to an 0(n2) algorithm when n is large. In (3.2), if m is limited and n is large, 2"

would not increase as fast as n, so n2 would be larger than 2" . n when n reaches

some value. This means, n becomes a deterministic factor when the relation has large

number of tuples.

If we work on very large relations, the time consideration forces us to work not

on all tuples, but part of them. We would select tuples by random method, or with

some well-defined criteria. Determining such criteria requires further study. By this,

we cannot guarantee that all resulted FDs are implied FDs for the relation, but we

can be sure that all correct implied FDs are included in the result.

3.1.3 A modified algorithm for extracting implied FDs

Starting from the naive algorithm, we can make some modifications to reduce the

time of computation. We will not create all combination of attributes initially, but

compute one combination at a time, then check the data for it, then create another

CHAPTER 3. EXTRACTING FDS FROM INF

combination, and go on.

First we select attributes which must be checked out as candidate determinants.

Those single attributes defined explicitly as keys are removed for consideration. But

if multiple attributes together are defined as a key, we should still include them

individually because each of them could determine other attributes.

For those selected attributes, we order them into a sequence either using the

sequence which are found in the relation schema or a sequence that place one with

more variation of values. We check data in rounds. For the first round, we take each

single attribute as a candidate determinant, and check the data to see if the candidate

functionally determines any other attributes. The next round, we form new candidates

by adding a single attribute to the candidates already checked out. Each following

round adds one more attribute to form new candidates, until we reach a threshold.

The threshold is the maximum number of attributes permitted in the determinants of

any full FDs. For example, suppose we have five attributes, A, B, C, D, and E, in a

relation, and we have decided that any full FD would have at most three attributes in

the determinant. The order of sequence is taken as their natural appearance, i.e., A is

the first, B is the second, and so on. For each round, we have possible combinations

of attributes as follow:

round 1: A, B, C, D, E

round 2: AB,AC,AD, AE, BC, BD, BE, CD, C E , D E

round 3: ABC,ABC,ABE,ACD,ACE, ADE, B C E , BCE, B D E , C D E

We stop at round 3 because the next round will exceed the threshold.

CHAPTER 3. EXTRACTING FDS FROM INF

At each round, we check the candidate determinants from left to right in the se-

quence. Each candidate determinant will have a candidate set of dependents. Initially,

for the above example, A will have {B, C, D, E } as the candidate set, and B will have

{ A , C, D, E},

For each round, we don't have to check all possible determinees in a candidate set

for a possible determinant, and we don't have to check all the possible determinants.

For example, if by checking determinant A, we found A + C D is an implied FD, then

in checking combination B, we found B + A, then we don't have to check B + C D in

the data because A + C D and B + A imply B --t CD. This lets us remove C D from

B's candidate set. In general, we create an ordered sequence on the attributes, and

check the determinants in order. For each determinant, we divide its candidate set into

two parts, the former part contains those attributes positioned before all attributes in

the combination with respect to the order, and the rest is the latter part. For example,

for combination BD, its candidate set could be ACE, then the former part would be

A because A proceeds B and D in the order, and the latter part would be CE . We

check the former part first, then see if any attribute can be removed from the latter

part. This is because when we check determinants in order, the determinants in the

former part have been checked before we start checking the present combination, so

after we checked the former part, we can use the transitivity characteristic of FDs to

infer some determinees in the latter part and those determinees need not be checked

in data.

For example, in the first round, if the present determinant is B, its candidate set

is ACDE, its former part is A and latter part is CDE. When checking against its

former part, we may find B + A. Because the determinants of its former part have

C H A P T E R 3. E X T R A C T I N G FDS FROM INF 2 7

been checked, we may already have A -t C and A -+ D, so we can use it to reduce

the latter part to E, and we need only to check if B -t E holds on the data.

We can do something to reduce candidate determinants too. In the first round,

all single attribute candidate determinants are checked, these candidate determinants

cannot be removed because each single attribute could functionally determine some

other attribute set. In the first round, we try to find all implied FDs for each single

attribute determinant. After this step we divide the candidate set for each known

determinant into two parts. We call the part that is functionally determined by the

determinant the determined part and the others the remaining part. Now we should

make candidate determinants with one more attribute added to an already precessed

candidate determinant. The attribute we select to combine with the processed deter-

minant is from the original candidate set of determinees for that determinant because

initially, in the first round, all attributes in the relation except the combination at-

tribute is in the candidate set. The following corollary tells us that we can select only

from the remaining part of the candidate set without losing any implied FD to be

found.

Corollary 3.1 Given a relation R with attribute set U , with A as a subset of U . For

any attribute B E A+, we have (AB)+ r A+.

A+ is the FD closure of A, i.e., the set of attributes in U that functionally determined

by A. Proof of the corollary is simple. Because A -, C j A B -t C, which means

A+ C (AB)+, and for any A B + C, we have:

A + B (B E A+)

AA + A B (Augmentation)

C H A P T E R 3. E X T R A C T I N G FDS FROM I N F

so A + C (Transitivity)

So (AB)+ C A+. Thus (AB)+ - A+.

Back to our algorithm, we're going to make a new candidate determinant by

selecting one attribute from the candidate set and combining it with the original

determinant. Because in the candidate set, the determined part is actually the FD

closure of the original combination, selecting attributes from that part will make a

determinant whose determinees are already known. So we can remove the determined

part and choose attributes only from the remaining part for new combinations.

For example, for a relation with attribute set {A, B , C, D, El F, G), {A) is a com-

bination in the first round, its candidate set is {B, C, D, El F, G). After checking the

data, we found implied FDs A -t B E F , then {B, El F) is the determined part of

{B, C, D, E, F, G) and {C, D, G) is the remaining part. Then we know combinations

like {A, B) , {A, E) , or {A, F) will functionally determine nothing more than at-

tributes in {B, E, F) u {A), the A+. In order to find new implied FDs, we don't need

to include such combinations for further data checking. So we will create combinations

{A, C), {A, D), and {A, G) for the next round consideration.

The above phenomenon is not confined only to the first round, because in the

axiom, A is any set of attributes, not just a one-attribute set. That is, for any deter-

minant and its candidate set, it is not necessary to check the candidate determinee

formed by combining the attribute with the original determinant. The precondition

is, of course, we should first find all implied FDs for the original combinations.

In conclusion, to each combination is attached a candidate set consisting of at-

tributes which could be determinees of the combination. The candidate set is divided

CHAPTER 3. EXTRACTING FDS FROM INF 29

into f o r m e r part and l a t t e r part with respect to the order of sequence defined on at-

tributes, this partition is used to check the data for determinees for the combination.

After data checking for the combination, the candidate is divided into d e t e r m i n e d and

remaining part, which is used to form new combinations for the next round. The first

partition may reduce the time used to check data, the other partition may reduce

the number of combinations for further consideration. The preconditions are that an

order is defined on attributes and combinations are checked according to the order,

and at the first round an attribute should have all other attributes in its candidate

set so that it need to select attributes only from its candidate set in order to make

new combinations.

Now we give the complete algorithm. In the algorithm below, input T is the max-

imum number of attributes any full FD for this relation can have in its determinant.

The algorithm will output other information as count() and weight() values, which

will be explained in later sections.

The algorithm invokes subroutine check(X, Y), whose function is to check through

the tuples in the relation to find out implied FDs from X to any attributes in Y. The

found implied FDs then are recorded in a global list. The method used is similar in

the naive algorithm.

The algorithm for the calculation of FD closures is from [30].

C H A P T E R 3. EXTRACTING FDS FROM INF

Input: Relation R with n tuples, the set of attributes U in R, and a threshold T.

Output: Implied FDs and count() and weight() values.

Met hod:

1. remove attributes that are keys by themselves from U, assign a sequence number

to each attribute in U with its natural appearance order in R.

2. initialize C, the set of attribute combinations, and their candidate sets.

2.1 C = empty;

2.2 for each A E U

candidate({A)) = U - {A);

add { A) into C;

3. round = 1 /* start from the first round */

4. checking data within a round.

4.1 if round > T, goto step 7;

4.2 take an X in C

4.2.1 sort data in R based on X ;

4.2.2 calculate count(X) and weight(X)

if 1x1 == 1, calculate count(X);

if 1x1 == 2, calculate weight(X);

4.2.3 divide candidate(X) into its former and latter part;

4.2.4 checking implied FDs from X to former(X).

call check(X, former(X))

candidate(X) = candidate(X) - closure(X);

if candidate(X) == {), goto step 4.2;

4.2.5 checking implied FDs from X to latter(X).

CHAPTER 3. EXTRACTING FDS FROM INF

call check(X, former(X))

candidate(X) = candidate(X) - closure(X);

4.2.6 goto step 4.2

6. prepare for next round determinant set

6.1 Ctmp = {I;
6.2 for each X E C do {

6.2.1 make combinations with X and each attribute from the remaining

part of candidate(X), decide their candidate sets;

6.2.2 add those combinations with non-empty candidate sets to Ctmp

6.2.3 if Ctmp # {), C = Ctmp;

else goto step 4;

7. calculate weight() for pairs of attributes not counted;

8. output implied FDs, and count() and weight() information;

end.

3.2 Attribute Hierarchy Based on FDs

T h e result from the algorithm in last section is a set of unorganized implied FDs, all

true FDs are included in the set, but there may be some implied FDs that are not

real FDs defined for the relation scheme.

CHAPTER 3. EXTRACTING FDS FROM INF 32

We need some analysis to extract "real" FDs from implied FDs. We must be aware

that the truly real FDs cannot be extracted solely by checking in the data. Thus the

"real" FDs we are going to extract will be called the intentional FDs. However, from

our effort and analysis, we will see that the intentional FDs are more likely to be real

FDs.

In the next section we will analyze some relations in INF. Based on the observation

we try to sketch a structure to organize FDs in a relation together, and find some

measure to create this structure. We will see that the process of creating the structure

is helpful in determining intentional FDs, and it provide us a way to get rid of fake

FDs from the implied FD set.

3.2.1 Observations from 1NF relations

Relations in 1NF are simply two-dimensional tables with the only requirement being

that the values for attributes are atomic, i.e., an attribute cannot take another table or

set as values. FDs in a 1NF relation can be defined between any two set of attributes.

Table 3.1 is an example of 1NF relation, which is a variation of an example from [20].

The relation in Table 3.1 represents a schedule of airline company in an airport;

(FLIGHT DAY) is the key; FLIGHT + GATE means that the same FLIGHT always

takes passengers at a certain GATE; GATE + GATELOCATION means that the

gate location in the airport is constant.

There are several data redundancies in this relation which makes manipulations of

data inconvenient. Suppose we want to add a tuple like (FLIGHT=112, DAY=June

6, PILOT=Bosley, GATE=8, GATELOCATION=east). This will make the relation

CHAPTER 3. EXTRACTING FDS FROM 1NF

flight relation

I FLIGHT I DAY I PILOT I GATE I GATE-LOCATION

FDs: (FLIGHT DAY) + PILOT GATE GATE-LOCATION
FLIGHT + GATE
GATE + GATE-LOCATION

Table 3.1: A Flight relation in 1NF

gassi.qn

112
112
125
203
204

passign

203
204

June 6
June 7
June 10
June 9
June 6

FDs: (FLIGHT DAY) -+ PILOT FDs: FLIGHT + GATE
GATE -, GATE-LOCATION

- -

Table 3.2: The flight relations in 2NF

Bosley
Brooks
Mark
Bosley
Bruce

FLIGHT
112
125
203
204

violate the FD FLIGHT -+ GATE. Assume this addition is valid and we are required

to change existing inconsistent tuples. Then we have to search the relation and, for

those tuples with FLIGHT=112, change their corresponding GATE value to 8.

To avoid this kind of problem, we can decompose the relation into two relations

as in Table 3.2.

7
7
7

12
15

GATE
7
7

12
15

In Table 3.2 we put GATE-LOCATION in gassign relation because the attribute

is related with GATE by an FD GATE + GATE-LOCATION. If we put it in passign

east
east
east
south
south

GATELOCATION
east
east
south
south

CHAPTER 3. EXTRACTING FDS FROM INF

jlight-gate glocation

I FLIGHT I GATE I I GATE I GATE-LOCATION -1 1 12 south

FDs: FLIGHT + GATE FDs: GATE + GATELOCATION

Table 3.3: The flight relations in 3NF

relation, the FD would get lost.

In gassign, there is still some data anomaly problems. We can solve these problems

by further decomposing gassign to relations in Table 3.3. Relations in Table 3.3 and

passign in Table 3.2 have the property that all attributes are directly functionally

dependent on their keys, there is no transitive FDs in each relation, these relations

are in 3NF. 3NF relations remove some data redundancies and avoid most potential

anomaly problems.

From the above example, we can find some interesting phenomena about relations

in 1NF or 2NF. The first is that attributes in such relations can be organized into a

hierarchy structure according to FDs, and the decomposition process of relations is

the process to create the hierarchy. The attributes in Table 3.1 have the structure of

Figure 3.2.

The second observation is that relations in 1NF may have many data redundancies

which can cause data manipulation anomalies. Mostly the redundancies exist because

of the FD relationship. If A -t B is an FD in a relation and if in several tuples the

value for A is repeated, B will have to repeat its value in these tuples.

CHAPTER 3. EXTRACTING FDS FROM 1NF

(FLIGHT DAY)

FLIGHT PILOT

GATE

GATE-LOCATION

Figure 3.2: Attributes hierarchy for relation flight

From these observations we can see that in a 1NF relation, FD restrictions may

cause data redundancy. This gives us a hint in finding some intentional FDs from the

set of implied fDs. That is, if for a set of attributes there are a lot of redundancies

for their data in the relation, then the implied FDs among them are more likely to be

intentional FDs.

Another hint is that FDs in a relation can organize attributes into a hierarchy, In

the process of creating the hierarchy, we can determine intentional FDs.

3.2.2 A hierarchy structure of attributes and its metric

First we can define a hierarchy structure for attributes in a 1NF relations.

The hierarchy can be represented as a directed graph with attributes or set of

attributes as nodes and implied FDs between nodes as arcs. A direct (non-transitive)

FD contributes to the hierarchy in the following way: its determinant is located in a

particular layer and its determinee is located at the next layer, they are connected by

C H A P T E R 3. E X T R A C T I N G FDS FROM I N F

a directed arc from the determinant to the determinee. A hierarchy for a relation will

have its top layer comprised of keys and bottom layer comprised, but not confined

to, attributes which are not determinants in any FD. The hierarchy is connected and

contains all attributes in the relation, because each relation must have a key which

connects all attributes in the relation.

Figure 3.2 is an example of attribute hierarchy for the relation in Table 3.1.

The hierarchy can be created bottom up. Suppose we have found all implied FDs

for a relation, we can select several attributes to form a cluster. The selection is based

on a measure which include attributes involved in direct FDs. The direct FDs in the

cluster are used to create two layers of the hierarchy: the determinees are in the lower

layer, the determinants are in the higher layer; then the determinants are clustered

with other attributes to create other higher layers thereafter. Go on with this process

and we will get the keys of the relation as the highest level.

One thing to remember, however, we are not going to get such a hierarchy for a

relation. We loosely defined the hierarchy because we do not care what the hierarchy

would look like if created, such as whether it can have repeated nodes. We are

only interested in the process of creating the hierarchy, because this is the process

to confirm implied FDs. Our goal is to extract intentional FDs, and the process of

creating hierarchies can help us selecting intentional FDs. Thus during the process,

we will record the FDs used for the hierarchy but we will not create the hierarchy.

There are some graph representations of FDs introduced in [20, 331, which are

similar to our hierarchy structure of attributes. However, the hierarchy structure is

different from those FD graphs in several ways:

CHAPTER 3. EXTRACTING FDS FROM INF 37

The hierarchy is created according to the implied FDs and a way to cluster

attributes, not solely to FDs defined for a relation scheme. Attributes are first

clustered, then the implied FDs contained in the cluster are used to construct

one level of the hierarchy, then the determinants in this level are clustered with

other attributes for other levels.

The hierarchy structure is a hierarchy of attributes based on FDs, not a structure

to represent all FDs, some FDs may not present in the hierarchy because they

are not confirmed as intentional FDs. Because our goal is to create connections

among attributes based on FDs, we will be satisfied when all attributes are

organized together. If we wanted just FDs, we would prompt users with the

implied FDs in order to eliminate some false FDs and get the result, in which

most of the work is done after we get those implied FDs. In this hierarchy work,

our goal is to create a systematic organization of attributes based on intentional

FDs

There are several methods to create the FD hierarchy or the FD graph, such as by

symbolic analysis on a set of FDs, transitive FDs are extracted and the FD hierarchy

is constructed. The method doesn't apply to our task for several reasons. At first, we

are working on a set of implied FDs, some of them may not be true, but the symbolic

analysis method is intended for real FDs. Second, our goal is to extract intentional

FDs, we find that the process to create an FD hierarchy is helpful in extracting the

intentional FDs, thus whether the final hierarchy is created or not is not important,

the thing really matters is the process in creating the hierarchy. The symbolic analysis

method concerns more about creating the hierarchy but less in determining intentional

FDs.

C H A P T E R 3. E X T R A C T I N G FDS FROM INF 38

We will introduce a hierarchy creation method which provides helpful information

in determining intentional FDs. In creating the hierarchy, with some measure, several

attributes are selected to be clustered first and only FDs between them are consid-

ered. We need to give a method for selecting which attributes should be clustered

together. We select those attributes that are related by direct FDs. According to the

observation in Section 3.3.1, when two attributes in a relation in 1NF are involved

in a FD relationship, there may be some data redundancy in tuple values for these

attributes. Thus the amount of data redundancy evidenced by implied FDs can be

used to measure the likelyhood that the FD is intentional. The data redundancy can

be measured with the number of values repeated. If two attributes repeat their corre-

sponding values in some tuples, then the more such tuples exist, the more likely it is

that these attributes are involved in an FD. Thus we use this frequency of repetition

to measure the probability that an implied FD is an intentional FD and use it to

cluster attributes.

In the algorithm in Section 3.1.3, the function weight() serves for the purpose of

calculating repeatness. For two attributes A and B in a relation R, the weight(A, B)

is calculated as follows: initially weight(A, B) is set to 0; after the tuples in R are

sorted on (A, B), we go through them, if we find two consecutive tuples with values

for A and B not changed, we increase weight(A, B) by 1; after we finished checking

with all tuples, we get the value for weight(A, B) in this relation.

For example, in the relation in Table 3.1, we have:

CHAPTER 3. EXTRACTING FDS FROM INF 39

The weight value differences in the example is small because we have a small number

of tuples in the flight relation. But because the data represented all FD and non-

FDs, the weight values expressed direct FD relationship among attributes and the

level of transitive FDs. That is, GATE -t GATE-LOCATION is at the lower level

while FLIGHT -t GATE is at the higher level for the transitive FDs among FLIGHT,

GATE, and GATELOCATION.

Weight values always involves two objects. These objects may be attributes, but

we can also define weight values between clusters. The algorithm in Section 3.1.3

calculates weight values for all pairs of attributes. The determination of weight values

between clusters attributes is discussed in the next section.

In the algorithm in Section 3.1.3, count() is calculated for each single attribute,

this is the number of distinct values for the attribute. This information will be used to

help select intentional FDs from implied FDs. This aspect is discussed in Section 3.2.5.

3.2.3 Clustering method

As discussed in the last section, attributes are clustered and implied FDs in the

cluster are used to construct a level of the hierarchy, then attributes which are only

determinees are removed from further consideration, while determinants are used

to cluster with other attributes. Because we create the hierarchy from bottom up,

determinees attributes contribute nothing to upper layers, so they can be removed.

The cluster method is based on the discussion in Section 2.3.3, in which we de-

scribed a method to create a hierarchical structure for a set of nodes with distance

values between pairs of nodes. In the working space in our problem, initial nodes are

CHAPTER 3. EXTRACTING FDS FROM 1 NF 40

single attributes, the distance measures between nodes are the weight values for pairs

of attributes. We cluster attributes with largest weight values, then create a level of

the hierarchy if there is any implied FD exists in the cluster that are confirmed by

users as an intentional FD. If some attributes are only determinees in the cluster, we

remove them, reset the working space-the initial working space with some attributes

removed, and cluster from this space again; if no attributes can be removed in a clus-

ter, perhaps because that there is no real FD in it, we adjust the weight value between

the cluster and other attributes or clusters, and try to make new clusters according

to the adjusted weight value.

We use weight values as the measure of distances between attributes because a

weight value is a closeness measurement of attributes with respect to FDs, as described

in previous sections. The greater the weight value between two attributes, the more

likely that a real direct FD exists between these attributes. If we cluster attributes

according to weight values, we get pairs of attributes with direct implied FDs which

are more promising to be real.

There is a problem with adjusting weight values. A weight value between two

attributes represents the closeness of the attributes with respect to FD relationship.

The adjusted weight value should preserve this semantics. For example, consider a

relation of 100 tuples with attributes A, B, and C , and weight values for (A, C)

and (B , C) of 70 and 50 respectively. Assume A and B are first clustered but no

implied FD relationship between them. We need to calculate the weight value between

cluster (A, B) and C for further clustering. The weight value should express the

semantics that, when (A, B) is considered as a single attribute X, the weight value

is the repetition value between attribute X and C as evidenced by the tuples in the

CHAPTER 3. EXTRACTING FDS FROM INF

relation.

One method to calculate this weight is to do it directly from the data in the algo-

rithm in Section 3.1.3. But this actually requires that all combinations of attributes

in a relation be considered which results in an NP-complete procedure with respect

to the number of attributes in the relation. We take another approach to estimate

the adjusted weight value.

In the above example, with 100 tuples in the relation and weight(A,C)=70,

weight (B , C)=50, the maximum possible repetition value between (A, B) and C is

50 because the repetition values cannot be more than the smaller of weight(A, C) and

weight(B, C) , i.e.

weight((A, B) , C) 5 min(weight(A, C) , weight(B, C)) .

weight(A, C)=70 means that there are 70 tuples with their values for A and C

repeated, and weight (B, C)=50 means that there are 50 tuples with their values for

B and C repeated, if no tuples with values for A, B, and C repeated at the same

time, we would have at least 70+50 = 120 tuples in the relation. Since there are 100

tuples all together, we are sure that there are at least 120-100 = 20 tuples with values

for A, B, and C repeated at the same time, thus weight((A, B) , C) should be larger

or equal to 20.

In general, for attributes A, B, and C in a relation with n tuples, we have

weight ((A , B) , C) 2 max(0, weight(A, C) + weight(B, C) - n) (3.8)

weight((A, B), C) 5 min(weight(A, C) , weight(B, C)) (3.9)

We should select the adjusted value in this range. In our algorithm, we select

CHAPTER 3. EXTRACTING FDS FROM INF 42

the upper bound of the range for the adjusted weight value, because usually n, the

number of attributes, is large, which makes the lower bound be zero. Thus the lower

bounds for most adjusted values are always the same, while the upper bound can

show the difference which makes the adjusted values comparable.

In the same manner, weight values between clusters are also calculated, if we take

A, B, and C for clusters as well as attributes.

During the clustering process, we always select the pairs with greatest weight value

to combine them. This will preserve transitive FDs in the hierarchy. In transitive FDs

like A -t B, B -, C, weight (B, C) is guaranteed to be greater than weight (A, C) and

weight(A, B). Because in tuples with values for A and B repeated, the value for B

and C will have to repeat. But in tuples with values for B and C repeated, the

value for A may not repeat. Thus weight(B, C) 2 weight(A, B) and weight(B, C) 2

weight(A, C). When we first cluster attributes with greater weight values, we cluster

B and C together, then we remove C for further consideration, in the next step, A

and B are clustered together. This makes the hierarchy in (a) of Figure 3.3. If we

cluster A and B together first, we.would remove B after we create the A-B link in

the hierarchy, and the next step we cluster A and C together, which finally yields the

hierarchy in (b) of Figure 3.3, in which the FD B + C is lost.

Based on the discussion in above paragraph, we have some corollaries for weight

values

Corollary 3.2 IfA + B, B + C, then weight(B, C) 2 weight(A, C) and weight(B, C) 2

weight(A, B).

Corollary 3.3 If A -+ B, B -, C, C -+ A, then weight(A, B) = weight(B,C) =

CHAPTER 3. EXTRACTING FDS FROM INF

(a) the hierarchy when cluster B C first (b) the hierarchy when cluster A B first

Figure 3.3: Two hierarchies with different clustering criteria

weight (C, A)

3.2.4 Non-FD deduction

The process of creating the hierarchy is a process of clustering attributes, breaking

clusters, and reclustering attributes. Each time a cluster is formed, the implied FDs

among attributes in the cluster are used to create a level of the hierarchy. As long as

one implied FD is confirmed as a real FD, this FD will contribute to the hierarchy

creation. If some implied FDs are rejected as real FDs by users, these FDs should be

recorded and can be used in conducting further hierarchy creation.

As the above process continues, for a cluster with some implied FDs confirmed and

some implied FDs rejected as real FDs, a level of hierarchy is created for attributes

involved in the real FDs, then some attributes are removed from working space and the

cluster is broken, we start clustering again from scratch. Because with some attributes

removed, the previously clustered attributes can group with other attributes. Next

time in a cluster, the previously rejected implied FDs may appear again in the cluster,

when we select implied FDs in the cluster for user confirmation, we thus will not

C H A P T E R 3. E X T R A C T I N G FDS FROM 1NF

prompt those rejected implied FDs, because we already know that they have been

rejected and we have recorded the information.

For a set of implied FDs, if we find that one FD is false, we will see that some

other FDs have to be false because of the first false FD. The following corollaries will

provide some cases and proofs that how a false FD affects other FDs. Based on the

corollaries, we can design a utility to deduce other false FDs from a set of implied

FDs when one false FD appears. This utility can be used in the attribute hierarchy

creation process to obtain more false FDs when one is rejected by users, which helps

to remove false FDs from the implied FD set automatically.

In the following corollaries, we will use f , to denote the non-FD relationship, i.e.,

A f , B means that A does not functionally determine B.

Corollary 3.4 I f X f , Y, X is a set of attributes, then for any subset Z C X,

z f , Y.

Proof: assume Z + Y, because Z is a subset of X, X - Z is meanful, thus we have

(Z U (X - 2)) -+ Y by the augmentation property of functional dependencies,

or we have X -t Y, which contradict to the precondition. Thus we must have

z f , Y .

Corollary 3.5 If X f , Z, Y -t Z, Y is a single attribute, then X f , Y.

Proof: Assume X -+ Y, because Y -+ Z, we have X + Z by the transitivity

property of functional dependencies, which contradicts the precondition. Thus

we must have X f , Y.

CHAPTER 3. EXTRACTING FDS FROM INF 45

In the second corollary, Y is a single attribute. If Y is a set of attributes, X f , Y

will mean that X does not functionally determines any attribute in Y, which may not

be true. For example, if Y is {A, B) and we have X + A and X f , B, we see that

X f , Y is correct, but we will lose X -t A if we record this as a non-FD. Thus, we

take Y as a single attribute in the corollary.

Based on the above corollaries, we can design utilities to deduce more false FDs

when we find one false FD. Generally, we have a set of implied FDs, and we find that

one FD X -+ Y in the assumed set is not true, from here we deduce some other FDs in

the set of implied FDs that should also be false; and we can find more attributes that

previously determined to be dependent on X but now are known not to be dependents

of X .

The first corollary is not useful in our system because the implied FDs we extracted

are all full implied FDs. That is, if X -t Y is extracted and stored as a implied FD,

we are sure no subset of X can functionally determine Y.

Using the second corollary, we can find more attributes for the right-hand side of

an non-FD. For a set of assumed FDs, if we find X -t Z in the set is actually false,

we should record that X does not determines Z, then we check X + , the FD closure

of X . If any single attribute in X + determines Z, we will add this attribute to X's

non-FD set. This is because we already know X f , Z, and for any attribute Y E X+ ,

if Y -t Z, we should remove Y from X's FD closure according to the second corollary.

We can sketch the algorithm for this function as below:

Input: A set of implied FDs, and X f , Y

Output: nfd(X) - attributes not functionally depend on X

CHAPTER 3. EXTRACTING FDS FROM INF

Method:

nfd(X) = (set of all attributes) - closure(X) - Y;

For any A E (closure(X) - X) do

if (closure(A) n nfd(X)) not empty

add { A } into nfd(X) = nfd(X)

end.

3.2.5 Criteria for choosing multiple FDs in a cluster

As we stated, the final decision about FDs is from the user confirmation. When

attributes are combined into a cluster, implied FDs in the cluster are prompted to

users for confirmation. To make the confirmation process more informative, we give

each implied FD a credit so that the higher the credit, the more likely that it is a true

FD.

The credit is a relative measure of FDs. Some measurements are based on human

experiences and habits in designing and using databases, which are not necessarily

true for any relations involved. But the credit calculation does bear some favorable

probabilities in determining intentional FDs.

We assign the credit according to the information from the data dictionary and

from the data. At first each attribute has an attribute credit according to some

properties of the attribute, then for each implied FD, its credit is the sum of credits for

attributes from its determinant, combined with some value according to the property

of the determinant.

CHAPTER 3. EXTRACTING FDS FROM INF

If one attribute is defined as the key of the relation, it will have a greatest attribute

credit which is some multiple of the number of tuples in the relation, Otherwise it

can take its number of distinct values as its credit, or its count () as calculated by the

algorithm in Section 3.1.3.

Then the credit for the attribute can be increased if the attribute is defined as

NOT NULL.

Another credit adjustment is according to its position defined in the definition

of the relation. Although in relational databases theory there is no sequence order

for attributes in a relation scheme, in implementations, the RDBMS will record the

sequence of attributes when users specify the relation definition, thus in the definition

specification, the attribute specified first will have a position 1 in the relation, and

the secondly specified attribute will have position 2 in the relation, All attributes

will have a position in the relation.

In specifying a relation definition, users prefer to specify the key attributes first, or

for attributes with FD relations, they usually specify the determinant attributes prior

to determinee attributes. Thus when we adjust the credit for an attribute according

to its position, we will give more credit to it if the attribute appeared at the front of

the position list. Consider an example, we have A -+ C and C -+ A as two implied

FDs, if we know that A was defined prior to C in the relation definition, we would

assume that A is more likely a determinant than C, thus giving A more credit than

C is quite reasonable.

The above information for an attribute, as whether it is defined as a key, or it is

restricted to take NOT NULL values, or about its position in the relation scheme,

CHAPTER 3. EXTRACTING FDS FROM INF

can be extracted from the data dictionary.

From the way we assign credit to attributes, we see that the higher the credit for

an attribute, the more likely that it can be a determinant component in some FDs.

For an implied FD, at first its credit is the sum of attribute credits from its deter-

minant attributes, then the implied FD credit is adjusted according to its determinant

as a whole. If the determinant has a unique index on it, this implied FD should be

added with much more credit. The unique index information can be extracted from

the data dictionary.

For implied FDs in a cluster, we prompt them with their credits for user confir-

mation, so that the users can be more informative about the implied FDs, they will

know that the more credit an implied FD has, the more likely that it is a real FD

according to information from the relation scheme and data.

The actual credit value is relative, some factors in credit calculation can be ad-

justed by users. In our implemented system for FD-extraction, we used a credit

calculation method to calculate the credit for an attribute as follow:

For an attribute A,

1. if A is defined as key, credit(A) = maximum

else credit(A) = # of its distinct values.

2. if A is not nullable, credit(A) increases 50%.

3. credit(A) increases 5% if defined as the second last in definition sequence, 10%

if defined as the third last, . . . , and so on.

C H A P T E R 3. EXTRACTING FDS FROM INF 49

The credit for an implied FD is the sum of credits of its determinant attributes.

3.2.6 Combining attributes into groups

Consider the decomposition process of 1NF relations to 3NF. We see that some at-

tributes are decomposed into different relations, that there are only a few attributes

are duplicated across relations, and that FDs are localized in the decomposed rela-

tions. For example, in the relation in Table 3.1, the FDs FLIGHT -t GATE and

GATE + GATE-LOCATION are localized to gassign relation in Table 3.2.

From this observation, we see that a particular FD is confined to a group of

attributes. We would like to extract FDs in a group of attributes and then, take the

group as a single entity to extract its relationship with other attributes or groups.

There are several methods to group attributes. We wish to group attributes which

would form an individual relation if the original 1NF relation is decomposed to higher

normal forms. This means that the attribute group represent an independent concept

in the problem domain.

We think that attributes defined in an index should be grouped together. Users

create indexes on a set of attributes because these attributes together define an entity

which can be used for indexing other values of tuples, to speed queries or other

purposes.

In addition to this, we wish users to provide group information for attributes. The

clustering process is also a process to ask for user confirmation of intentional FDs.

The users intervention is necessary and makes the extraction mechanism to give better

C H A P T E R 3. E X T R A C T I N G FDS FROM 1NF

result.

When some at tributes are grouped, we try to create the hierarchy structures inside

each group, then connect these sub-hierarchies together via the FD relationship.

The whole process is like the following: first confirm and record intentional FDs

in each group during the process of sub-hierarchy creation. Then we work with the

whole relation. Because intentional FDs in each group are already confirmed, we will

not re-extract those FDs when we work with the whole relation, thus some attributes

limited to those FDs are excluded in the last attempt of hierarchy creation.

3.3 Implementation

Based on the discussion in above sections, we implemented a FD-extraction system

called FUND which works with databases implemented on ORACLE RDBMS.

The system works in two phases. In the first phase, it implements the algorithm

in Section 3.1.3; it searches data to extract implied FDs. Results such as implied FDs

and count() and weight() information, as well as information from the data dictionary,

are stored into an intermediate file using a defined format.

In the second phase, the system reads input from the intermediate file, and use

the approaches discussed in above sections to construct attribute hierarchies. At first,

the user may specify grouping information in the intermediate file, in order to guide

the FD-extraction process. Then hierarchies are built in each group of attributes.

In creating a hierarchy, weight values are used to cluster attributes or clusters. If

there are some implied FDs in a cluster, they are prompted with credit values for

C H A P T E R 3. E X T R A C T I N G FDS FROM 1 NF 5 1

user confirmation. If some implied FDs are confirmed as real FDs, they are recorded,

some attributes are removed from the working space, the cluster is broken and a new

round of clustering starts. If no FDs are confirmed, the rejected implied FDs are

stored and some other false FDs can be inferred, the stored non-FD record is used to

narrow the searching space of FDs; after the record and deduction of non-FDs, weight

value between the cluster and other attributes or clusters are adjusted, and we form

another cluster for further consideration.

After each group of attributes are considered, we may have some sub-hierarchies

for each group. Then we apply the cluster method to attributes in the relation. This

time, attributes from different sub-hierarchies may be clustered together, in this case,

we need to consider not only to cluster two attributes but connect the sub-hierarchies

together. The method to connect sub-hierarchies are discussed in last section.

The final result will be confirmed FDs which can be used to create a hierarchy

structure of attributes. These FDs are more likely to be real because they come from

the hierarchy creation process.

FUND implemented an interactive interface for user confirmation. In this inter-

active environment, users can browse database information in addition to FD confir-

mation.

The components of FUND system and their functions, relationship between each

other, are outlined in Figure 3.4.

In Appendix A, we give test result of this system.

CHAPTER 3. EXTRACTING FDS FROM 1NF

input relation J

implied FD
extraction dictionary 11

+ User add information

intermediate result about grouping of
attributes

$. hierarchy creation
I I
I global hierarchy

'7' use FD pattern suitable for

output 0

t , , use basic FD pattern for hierarchy

sub-hierarchies for

hierarchy

Phrase 2

weight adjusting

non-FD deduction

mechanisms t

confirmation

create hierarchies

in groups

Figure 3.4: Structure of FUND, an FD-extraction system

clustering

and

I User

t-

C

-

C

CHAPTER 4

THE SYNONYM MATCHING

ALGORITHM

As stated in Chapter 1, we define the synonymity of attributes as: two attributes from

different relations are synonyms if they can be logically compared in a natural join

condition. The comparison must be logically correct because only such comparisons

will make sense in real queries.

Synonyms are usually used in join conditions for comparison, thus it is necessary

to know synonym attributes when forming a query across relations. Relations in a

database is related via synonym attributes. In discovering the structure of a database

for a natural language interface, it is important to find synonym attributes from

different relations.

The synonym matching problem is simpler when compared with the FD-extraction

problem. For two relations in a relational database, we take one attribute from a

C H A P T E R 4. T H E S Y N O N Y M MATCHING ALGORITHM 54

relation and try to determine if there is any attribute from the other relation that

could be a synonym for the attribute. We assume that attributes with the same

name, or naming that has the same linguistic meaning, does not suggest that they

are synonyms.

For example, in a database describing a product's development and distribution,

there is a relation for the product's implementation and another relation for sales

statistics. In the first relation, there is an attribute named company which represents

who developed a product; in the second relation, there is an attribute also named

company (or corporation), but it denotes to the organization to which the product is

sold. Although the two attributes have the same name (company), or the names have

the same linguistic meaning (company and corporation), they are not synonyms.

Synonyms from different relations may have different names, especially in a database

to which more relations are added later. Different names may be used for the same ob-

ject, possibly because relations are designed by different groups of people and archive

management for the database development is not organized properly. In the above

example, the second relation may need a field to denote a product's developers and

developer was used for the attribute name. This developer is a synonym for company

in the first relation. Remember that, as in the FD-extraction problem, we are dealing

with poorly documented, mature databases; there could be many pairs of attributes

which are synonyms but we cannot derive the synonym relationship from their names.

Thus we make the no-name-convention assumption for our synonym-matching prob-

lem.

In one relation, different attributes may have similar meaning although they rep-

resent different aspects of an entity. For example, in a management relation scheme

CHAPTER 4. THE SYNONYM MATCHING ALGORITHM 55

department(emp1oyee-id, n a m e , . . . , manager-id), attribute employee-id and n a m e de-

note an employee's id and name, attribute manager-id denotes the manager for the

department in which the employee works. A manager's id in one tuple may appear in

the employee-id column because the manager belongs to another, higher-level depart-

ment. Although employee-id and manager-id denote different objects in the relation,

they could be assumed as synonyms in some queries. For example, to find an employee

who is also a manager, we would issue an SQL query like:

SELECT n a m e FROM department

WHERE emplo yee-id IN

(SELECT manager-id FROM depar tment)

In this query, employee-id and manager-id are compared as synonyms. In other sit-

uations, queries relating two relations may compare one attribute in a relation with

two attributes in the other relation, thus the attribute in the first relation may have

two or more synonyms in the other relation.

In most cases, synonym attributes in one relation do not have the same value for

the same tuple. In a query which considers two attributes in one relation as synonyms,

although the query works on one relation, it is equivalent to say that the query works

on two identical relations and joins them together. Thus synonym attributes from

one relation can be considered synonyms from different relations with respect to the

jo in operation.

The purpose of our synonym matching system is to extract synonyms for Pathfinder[l3]

in SystemX[3] so that Pathfinder could form the jo in graph to connect different rela-

tions. From this point and from the discussions in above paragraphs, we would like

C H A P T E R 4. T H E S Y N O N Y M MATCHING A L G O R I T H M 56

to have our system to match synonyms from one relation to another, and there could

be more than one synonym in a relation for an attribute in the other. While the

system requires two relations as input, attributes from one relation are matched with

attributes from the other relation, but not to the relation to which it belongs. For the

purpose of extracting synonyms from a single relation, this relation should be used

for both inputs.

There are many works which find synonyms from the linguistic point of view,

especially in natural language understanding[21, 31. Starting from our assumptions,

those methods do not apply to our problem domain. What we can do is to study

the information from the data dictionary and from data in the database, providing

suggestions of synonym pairs, and as most knowledge discovery systems do, expect

the final confirmation from users.

4.1 Exploit Information in Data Dictionary

The data dictionary provides information about the structures of tables defined in

a database and the definitions of attributes for relations. For the types of tables

described in a data dictionary, there are relations, indexes, clusters, views, and others.

The descriptions for relations and indexes are confined to single relations, while a

cluster or a view may include several relations. Since we need to find synonyms of

at tributes from different relations, we may consider cluster and view definitions for

our task.

C H A P T E R 4. T H E S Y N O N Y M MATCHING ALGORITHM

4.1.1 Checking the cluster definition

A cluster[29] is a physical organization of data. Clustering permit several related

tables to share the same extents of disk space. In addition to economizing space,

clusters improve the performance of join queries because tuples that are joined are

stored together.

To be clustered, a group of tables must share at least one column with the same

type, length, and meaning, i.e. they must share at least on synonym. One effect of

clustering is that the rows from all of the tables that have the same value in their

cluster columns are stored in the same disk page(s). The cluster columns are stored

only once and are shared by each of the shared tables.

To create clustered tables, you must first create a cluster; then you must create

the tables and specify that they are to be members of the cluster.

A cluster is created by specifying a set of cluster attributes. Then we can create

tables in it by specifying which of their attributes correspond to the cluster attributes.

The matching attributes from each table will share the same storage. Thus they must

be defined with the same data type and length.

For example, we can create a cluster with attributes M and N. Then we create a

table R1(A1, A2, As) with A1, A2 matched to M, N, and another table R2(B1, B2, B3, B4)

with B2, B4 also matched to M, N. In this way the values for Al and B2 will be stored

as one. The values for A2 and B4 will also be stored together.

From the definition and organization of clusters, we see that, for any two relations

clustered together, their corresponding attributes in the cluster must be synonyms.

CHAPTER 4. THE SYNONYM MATCHING ALGORITHM 58

We can study the cluster and relation definitions to find those synonym pairs.

We do not require user confirmation for them, thus in our system we perform cluster

checking before other kinds of checking. Because one attribute may have multiple

synonyms in another relation, the synonyms found by cluster checking can be used as

feedback for further extraction. For example, suppose attribute A was as a synonym of

attribute B from another relation R via cluster checking. Later we find that attribute

C in R could also be a synonym for A via a method which requires user confirmation.

Then we would prompt the user thusly: " A already matched B. Will A also match

C?". This provides more information for the user to make decisions.

4.1.2 Checking the view definition

view is a reorganization of the schema of relations. A view is a pseudo relation with

some attributes and data from underlying relations, but the data is not copied from

the underlying relations. There are many reasons for providing views for relations.

For security reasons, an ordinary person may only be allowed to see a portion of a

relation and that portion can be defined as a view and the access authority can be

restricted to that view. A view also provides the user with a different appearance of

the underlying relations, which makes for convenient user access. For example, if a

view is defined across relations, the user can use the view with simple queries instead

of specifying queries with various join conditions across many relations.

When a view is defined across relations, it takes portions of underlying relations

to form pseudo a table as if new a table has been created. In most cases, it connects

relations by join operations. A view is defined according to a SELECT query, and

only the definition is stored in the data dictionary. When querying a view, the view

C H A P T E R 4. T H E S Y N O N Y M MATCHING ALGORITHM

definition query is executed and the underlying relations are accessed.

We give an example for view definition. Assume there is a relation teach(instructor,

course, . . .) representing that instructor teaches course, and another relation take(student,

course, . . .) representing that student takes course, we can define a view for "students

taking courses taught by instructors" as

SELECT student instructor FROM take teach

WHERE take.course = teach. course

This view takes two relations and uses the join operation to connect them.

When a view is defined on more than one relation, we can check the view definition

for synonym matching purposes. We actually analyze the defining SELECT query.

The SELECT query may involve join operations, the synonym information may be

extracted from the join conditions.

For a SQL SELECT statement, it may have the form

SELECT attrl . . . attr, FROM rell . . . rel,

WHERE join-condition

where the join-condition is NOT, AND, or OR of comparisons like

Operators in the comparison can be =, <, <, >, 2, and #, corresponding to equal, less

C H A P T E R 4. T H E S Y N O N Y M MATCHING ALGORITHM 60

than, etc., operations. Two attributes compared as above in a view definition will be

considered as synonyms.

From this analysis, we can see that any SELECT query can be analyzed for syn-

onym matching, not just the view definition query. If we have transaction records

for queries applied to the databases, we can study every SELECT query to obtain

additional information.

4.1.3 Attribute definition

An attribute is defined in a relation with data type, data length, data precision, etc..

In relational databases, attributes are defined to be of some basic data types provided

by the RDBMS. Generally, the basic data types are INTEGER, FLOAT, STRING,

DATE, etc.. Associated with each type, there may be data length, data precision,

etc.. Attributes with the same data type can have different lengths, such as different

lengths of strings. In addition to the above data type properties, some RDBMSs have

data dictionary tables which provide COMMENTS field to store textual descriptions

about the defined at tributes and relations.

The ORACLE RDBMS provides only simple data types, an attribute must be

defined with one of them. No user defined data types or abstract data types such as the

RECORD type in PASCAL are allowed. Thus, there is not very much information to

glean the synonymity of attributes according to their type definition. But synonymous

attributes must be defined with the same basic data type. The precise description

of their type definition may not be exact, for example, they may have different data

lengths due to a design mismatch or other design considerations for the database.

CHAPTER 4. THE SYNONYM MATCHING ALGORITHM 61

When we check a pair of attributes for synonym matching, we should check if they

are of the same basic data type. If they also equal on data length and data precision,

etc., more credibility is given to our assumption.

If the RDBMS also provides a COMMENTS field for attribute definition, we

can prompt the comments for users in the confirmation process. Analyzing the text

comments for semantic equivalence appears difficult and is beyond our objectives.

4.2 Data Analysis

In addition to examining the data dictionary, we need to apply data analysis methods

to the data in the database to discover synonyms.

If two attributes from different relations in a database are synonyms, they have

many values in common. So, for two attributes under consideration, the number of

values that are common between them can be used as a metric. We define a d-value

for a pair of attributes as the ratio of the number of common values to the sum of the

distinct values in each attribute.

Definition 4.1 For two attributes A and B from diflerent relations, let c-value c(A,

B) be:

c(A, B) = (number of distinct values equal on A and B)

then the d-value d(A, B) is

d(A, B) = 100 x c(A, B) / (number of distinct A + number of distinct B)

For example, consider the following two relations:

CHAPTER 4. THE SYNONYM MATCHING ALGORITHM

Using dis(X) for the number of distinct values for attribute X, we have

We can obtain

Thus, the d-value for those pairs are:

The d-value for a pair of attributes expresses the closeness of the pair in value. It

is equivalent to measuring the relative size of the intersection of two sets. Figure 4.1

represents two sets A, B, and their intersection C, the d-value is equivalent to the

ratio of the shaded area and (area A + area B) , or

d-value = I C I x 100
IAI + IBI

Thus for two attributes with larger d-value, it expresses that they have more common

values, and more likely that they are synonyms.

In the calculation of d-values, we take attribute definitions into consideration.

Only a pair of attributes defined of the same type and similar length, precision, etc.

will have its d-value calculated.

C H A P T E R 4. T H E S Y N O N Y M MATCHING ALGORITHM

Figure 4.1: Set representation of d-value

We can then pick attribute pairs in descending order of their d-values and prompt

for user confirmation of them in synonym matching. From the above example, we

order the pairs according to their d-values as ((B, D), (A, C), (A, D), (B, C)), thus, B

and C will be first selected for confirmation, because this pair has the largest d-value.

4.3 The Algorithm and Implementation

We have designed an algorithm to extract synonyms based on cluster checking, view

checking, and d-value calculations. A program called SYNONYM based on the algo-

rithm was implemented on the ORACLE RDBMS platform.

The program first performs cluster checking. The approach is straightforward. We

need to check cluster definitions in the data dictionary to see if the two relations under

consideration are involved in one cluster. If they are, the corresponding attributes

matched into the cluster are recorded as synonyms and stored in each others synonym

lists.

The program then checks view definitions. In ORACLE, view definitions are stored

as text strings in the data dictionary, which are in the format of SQL SELECT queries.

So the viewchecking portion of the program has implemented a parser to extract join

conditions from the definition queries. Attributes from different relations involved in

CHAPTER 4. THE SYNONYM MATCHING ALGORITHM

comparisons of join conditions are recorded as synonyms.

Then for each pair of attributes from different relations which have similar at-

tribute definition, its d-value is calculated.

For complexity analysis, we assume a naive method to calculate the number of

common values for two attributes, or the c-value defined in Definition 4.1. Assume

two relations with ml attributes and nl tuples in one relation and m2 attributes

and n2 attributes in the other. For a pair of attributes A and B from each relation

respectively, each value of A will be compared with all values of B, thus to get c (A , B)

we need nln2 comparisons. There are mlm2 different pairs of attributes from the two

relation, thus to determine the c-value for all pairs, the time required is 0(mlm2nln2).

In the implementation, we use relational operations provided by ORACLE to

calculate the d-value for all pairs of attributes that have not been found as synonyms

by cluster or view checking, and are defined with the same data type, length, etc. To

calculate the number of distinct values for an attribute A from relation R, we issue

an SQL query:

SELECT COUNT (DISTINCT A) FROM R.

To calculate the c-value for attribute A and B from relations R1 and R2 respectively,

we issue an SQL query:

SELECT COUNT (DISTINCT A) FROM Rl R2

WHERE A = B

COUNT and DISTINCT are SQL functions The query does a join operation on

CHAPTER 4. THE SYNONYM MATCHING ALGORITHM

attribute A and B. Because ORACLE has its standard methods to implement these

functions and operations, and it can consult other resources such as indexes to enhance

their performance, we can calculate the c-value efficiently.

The last step is the confirmation, which is implemented as an interactive program

with other functions in addition to requesting confirmation. It selects a pair of at-

tributes with the highest d-value, prompts with other information about the pair,

such as the list of synonyms each attribute already has, and the comment about an

attribute stored in the data dictionary (if there is any), then asks the user to confirm

whether or not they are synonyms.

Commands provided by the interactive environment are:

help - list the commands provided

table tablename - display the scheme of tablename

current - display the current pair of attributes for confirmation

yes/no - claim/disclaim synonym relationship of the current pair of

attributes

display table.attr - display the descriptions for table.attr, including its

current synonyms list.

addlremove tablel.attr1 table2.attr2 - force additionldeletion of the

synonym relationship between tablel.attr1 and tabZe2.attr2

quit -- finish up

The interactive environment enables us not only to confirm an assumption of

synonyms, but also to change the synonym list for each attribute dynamically. This

C H A P T E R 4. T H E S Y N O N Y M MATCHING ALGORITHM 66

gives users freedom to judge the candidate pairs according to the attribute information

provided by the program and their own biases. A completely automatic extraction

process can also be implemented in that the system checks the list of pairs of attributes

in descending order of their d-values.

In the Appendix we will provide results of the implementation.

CHAPTER 5

CONCLUSIONS AND FUTURE

RESEARCH

5.1 Conclusion

In this thesis we studied methods discover functional dependencies and attribute

synonyms in relational databases. This information is useful for natural language

interfaces to relational databases. We reviewed various systems in the area of knowl-

edge discovery in databases, and applied several data analysis methods to design and

implement two systems for discovery of FDs and synonyms in relational databases re-

spectively. These systems make use of the data dictionary and information resulting

from analysis of the data both.

The system for the FD discovery is called FUND. It operates on ORACLE databases

with first normal form relations. FUND first checks the data exhaustively to extract

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

implied FDs, which are possible FDs suggested by the amount data in the relation.

Any true FDs must be included in these implied FDs. Mechanisms based on the

theory of FDs are employed to control the search of the data, avoiding a completely

trivial search of all combinations of attributes. The implied FDs are analyzed based

on a sophisticated data analysis method and information from the data dictionary

to create a hierarchy of FDs. FDs for the relation are organized and connected into

a hierarchy which represents their transitivity relations. The hierarchy also provide

an organization of attributes in a relation in the way that attributes are related via

FDs. This structure of the attribute organization is necessary for constructing the

join graph in Pathfinder, which provides the representation of relation schema used

for a natural language interface.

The other system, SYNONYM, in an ORACLE RDBMS discovers synonyms for

attributes from different relations. The synonyms are formed by analyzing the data

dictionary and the data in the relations. The data analysis method is different from

that for FD discovery.

Both systems provide interactive interfaces to enable users to confirm or reject

intermediate results thus providing guidance for further discovery.

We have tested both systems on test databases. The results showed that they

performed to our expectations.

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

Future Research

Most knowledge discovery approaches deal with intractable (NP-hard) problems.

Thus, either problem domains need to be restricted or statistical methods are used

to analyze data and produce results bearing probabilities as certainty measures. Our

systems will have problems when the amount of data is huge. In the worst case, the

discovery processes are time expensive. Fortunately, the time-consuming parts are

restricted to earlier stages of the processes and do not require user intervention, thus

the earlier discovery can be executed as background tasks.

One method of dealing with this problem is to use statistical methods to sample

data for analysis. Research into selecting an appropriate data set is necessary. Statis-

tics and probabilistic theory also provide mechanisms to predict future events based

on past observations[25, 261. The theory can conduct us in sampling proper data set

for consideration.

There are some other problems with the FD-extraction system. The first concerns

the metric used to calculate the distance or weight values in the stage of clustering raw-

FDs. For two attributes, their weight value is measured as the number of points in the

table where they change value at the same time. This represents the closeness of the

two attributes with respect to functional dependencies, i.e. the weight value measures

the possibility that a non-transitive FD may exists between the pair of attributes. But

when two attributes are grouped as a cluster, the weight value between the cluster

and other attributes somehow, loses the semantic of closeness to some extent. To

preserve the semantics of the measure, we should treat attributes in a cluster as one

attribute and calculate the weight value between this new attribute and others by

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH 70

going through the data, but this requires all combinations of attributes be considered

which is NP-complete. Another method is to use other metrics for the measurement

which represent the characteristics of functional dependencies.

Another problem is that the discovery result depends on the sequence of FD con-

firmation. Although a user confirmation mechanism can reduce the search space,

sometimes a weak FD confirmation will hide a strong FD which is more appropriate

in the hierarchy representation. Such case happened to the test in Appendix B, where

when attributes are not first grouped, a direct (non-transitive) FD is missed in the

result. This is also a major problem in knowledge discovery and artificial intelligence,

where search for a global solution is prohibited and only local optimistic result is

obtained instead.

For the synonym extraction problem, we can exploit more information from the

data dictionary. Some data dictionaries store integrity rules for data, such as to

restrict positive values for at tributes representing age, or to restrict that only positive

numbers less than or equal to 1 can be used for an attributes representing probabilities.

This kind of information can be used to specify the value domain of attributes. And

attributes that are synonyms must have the same interest domain.

If the above kinds of information are stored in the data dictionary. We would

extract this information to see if there are similar constraints or integrity rules for

the values for two attributes from different relations, and such attribute pairs will be

assumed as synonyms.

Appendix A

Relational databases Theory and

the Data Dictionary

We present a brief introduction to the design theory of relational databases and func-

tional dependency. [30, 101 provide a thorough introduction to them.

A.1 Functional Dependency

[30] defines FD as:

Definition A.l Let R(A1, A2,. . . , A,) be a relation scheme, and let X and Y be

subsets of Al, A2,. . . , A,. We say X + Y , read "X functionally determines Y"

or 'Y functionally depends on X" if, whatever relation r is the current value for

R, it is not possible that r has two tuples that agree in the components for all attributes

in the set X yet disagree in one or more components for attributes in the set Y . X

APPENDIX A. RELATIONAL DATABASES THEORY AND THE DATA DICTIONARY72

is called the determinant and Y is the determinee for the functional dependency.

Definition A.2 Let X + Y be a functional dependency on scheme R, X and Y are

subsets of attributes of R. X t Y is a full functional dependency if, for any

attribute A E X, (X - A) t Y is not a functional dependency for R.

For a relational scheme R, every relation r in R must conform to every FD. But

conversely, the fact that an FD apparently holds for an instance of a relation R, does

not mean that the FD is defined for R.

We cannot decide FDs by checking in the data of a particular relation, and we can

study the characteristics of FDs without worrying about any real relation. Given a

set of FDs, we can infer new FDs by a set of rules called Armstrong's axioms. First

we excerpt some concept definitions about FDs from [30].

Definition A.3 Let F be a set of functional dependencies for relation scheme R,

and let X + Y be a functional dependency. We say F logically implies X + Y,

written F X + Y , if every relation r for R that satisfies the dependencies in F

also satisfies X + Y .

Definition A.4 We define F+, the closure of F , to be the set of functional depen-

dencies that are logically implied b y F ; i.e., F+ = { X t Y I F + X + Y)

In the following axioms, F denotes a set of FDs defined on a relational scheme R;

U is the set of all attributes for R; X, Y, and Z are subsets of attributes of U ; and

X Y is a shorthand for X U Y .

APPENDIX A. RELATIONAL DATABASES THEORY AND THE DATA DICTIONARMS

Axiom A. l (Reflexivity) If Y X , then X + Y is logically implied by F . This

kind of dependencies are culled the trivial dependencies.

Axiom A.2 (Augmentation) X -+ Y X Z -, Y Z

Axiom A.3 (Transitivity) I f X t Y and Y + Z holds, then X + Z holds.

Armstrong's axioms are sound and complete, which means that all the inferred

FDs using Armstrong's axioms are correct, and we can infer all possible FDs implied

by F using only Armstrong's axioms.

In the next chapter, we will use these axioms to specify corollaries for our FD-

extraction algorithm.

[33] provides a graph representation of FDs for a relational scheme, which provides

some hints in organizing FDs for subsequent analysis in later chapters.

A.2 Design of relational databases

Functional dependencies are the design basis for relational databases. A database is

a representation of a real world model, its relations represent entities of the model

and attributes of relations represents characteristics of the entities. No arbitrary com-

binations of values for attributes are valid; there are some dependency relationships

existing among the data. FD is one of the most important types of dependencies for

the relational representation of real world models.

APPENDIX A. RELATIONAL DATABASES THEORY AND THE DATA DICTIONARY74

A relational scheme should incorporate its FD restrictions in order to map a real

world model correctly. A badly designed scheme, however, may lead to anomalies in

the data. If the design allows a particular data value of the determinant of an FD

to be repeated in a relation, the value for the determinee of the FD will also repeat,

which results in data redundancy. The redundancy may cause update, insertion, and

deletion anomalies. The reader is referred to [lo , 301 for exposition to the concepts

and examples.

The anomaly problems can be solved by refining a poorly designed scheme to a

good design via decomposition in the level of normal forms (NFs). Relations in 3NF or

higher have less data redundancy and are thus considered good design, while relations

in lower normal forms have more data redundancy and will likely cause anomalies.

A.3 The Data Dictionary

The data dictionary is an important resource in knowledge discovery because it stores

metadata-t he informat ion about information-for relational databases. Concepts of

the data dictionary are introduced in [22, 311.

The data dictionary is both a tool and a resource. As a tool, the dictionary permits

us to document, organize, and control the design, development, and use of databases.

As a resource, the dictionary is an organized repository of information describing the

source and the content of data.

In an RDBMS, definitions for relations, views, attributes, indexes, clusters, etc.,

APPENDIX A. RELATIONAL DATABASES THEORY AND THE DATA DICTIONARY75

are all stored in the data dictionary. The data dictionary has descriptions about at-

tributes such as their data types, lengths, and whether NULL values are permitted.

By checking the dictionary we could decide which attribute (or a set of attributes)

is the key (if defined) for a relation, or assume that an attribute could be a determi-

nant for some FD because it does not permit NULL values. In extracting synonym

relationships between attributes, two attribute are more likely to be synonyms if they

are defined as the same data type, data length, and take values in the same domain.

This type of information can be found from the data dictionary.

In the ORACLE RDBMS, the data dictionary is presented as several sets of tables

(relations), users use the same language (SQL) and met hods to access the dictionary as

in accessing ordinary relations in application databases. Some sets of tables are used

by the database administrator so that the dictionary acts as a tool for maintenance

and management of the RDBMS; some tables store the descriptions about relations

and attributes, etc., of database applications and can be accessed by ordinary users.

All dictionary tables are described in [24]. We select some of them which are useful

to our task. The following format:

tablename description of the table (or relation)

columnname description of the column (or attribute) in tablename

is used to describe those tables.

ACCESSIBLE-COLUMNS columns of all tables, views, and clusters

TABLE-NAME the name of the table

COLUMN-NAME the name for this column or attribute

APPENDIX A. RELATIONAL DATABASES THEORY AND THE DATA DICTIONARY76

DATA-TYPE data type of the attribute

DATA-LENGTH number of bytes for the data of the attribute

NULLABLE the type, length, and nullable definitions are the characteristics

of the attribute

COLUMNID can be used to decide the significance of attributes

ALL-COL-COMMENTS comments on columns of tables or views; can be used to

prompt user for decisions

ALLINDEXES description of indexes on tables

TABLE-NAME on which table the index was created

UNIQUENESS whether it is a unique index; an unique index is used to check

if a set of attribute(s) is the key

ALLINDXOLUMNS on which columns the index was created

ALL-VIEWS view definition

TEXT the view definition text as an SQL query

USER-CLUSTERS cluster definition; clusters can be used to check for synonyms

The above components are part of the tables which we will use in the imple-

mentation of a knowledge discovery system. In the next two chapters, we describe

two systems which extract functional dependencies and synonym relationships respec-

tively. They use combinations of techniques and approaches discussed in this chapter

and approaches pertinent to the specific problems.

Appendix B

Test Result of FUND

To illustrate the functionality of FUND, we create a 1NF relation by joining sev-

eral relations and running FUND on the joined relation to see if it can recover the

structures of the underlying relations.

Below are several relations in a UNIVERSITY database. The relations are in 3NF

and their corresponding keys are underlined.

0 STUDENT(STUD#, SNAME, SSEX)

0 CLASS(CLID, CNAME, UNITS, FAG'#)

FA CULT Y(FA C#, FNA ME, FSEX)

GRADES(STUD#, CLID, GRADE)

By joining them together, we created a UNIVERSITY relation with attributes:

APPENDIX B. TEST RESULT OF FUND

UNIVERSIT Y(STUD#, SNA ME, SSEX, CLID, CNAME, UNITS, GRADE,

FA C#, FNA ME, FSEX)

There should be following functional dependencies in UNIVERSITY:

(STUD#) + (SNAME, SSEX)

(CLID) + (CNAME, UNITS, FA C#)

(FA C#) -+ (FNAME, FSEX)

key: (STUD#, CLID)

When FUND works on UNIVERSITY relation, it first extracts raw FDs for the

relation, as well as weight values for pairs of attributes. When in the analysis phase, it

gives FD assumptions with their credits for user to confirm. The process is illustrated

below:

With a larger credit, (FAC#) + (FNAME) is confirmed as an FD.

2. (C N A M E) + (C L I D) : 19

(C L I D) + (C N A M E) : 22

Similarly, (CLID) -+ (CNAME) is confirmed.

3. (C L I D) -t (FAG'#) : 22

No alternatives and this FD seems correct.

APPENDIX B. T E S T RESULT OF FUND

4. (STUD#) 4 (S N A M E) : 33

Confirmed.

5. (C L I D) + (U N I T S F S E X) : 22

Confirmed.

Confirmed.

7. (STUD# CLID) + (GRADE) : 55

(CLID GRADE) + (STUD#) : 37

(STUD# GRADE) 4 (CLID) : 48

According to the credit values, FUND favors (STUD# CLID) + (

G R A D E) to be confirmed.

The result yields FDs:

(STUD# CLID) + (GRADE)

0 (STUD#) + (SNAME SSEX)

0 (CLID) + (CNAME UNITS FAC# FSEX)

0 (F A C #) -+ (F N A M E)

In the result, the FD (FAC#) 4 (FSEX) is lost compared to the original FDs.

This is because from step 3 above, (CLID) + (FAC#) is deduced prior to (FAC#)

+ (FSEX), which causes FAC# removed from further consideration. But when there

APPENDIX B. TEST RESULT OF FUND 80

were more tuples in the relation, it would be more possible that (FAG'#) + (FSEX)

be induced first because (CLID) + (FSEX) is a transitive FD.

Another way to polish the result is using grouping. If we group FAC#, FNAME,

and FSEX together in the intermediate result from first phase, we will finally get

exactly the FDs from the original relations, as:

(STUD# CLID) -, (GRADE)

(STUD#) t (SNAME SSEX)

0 (C L I D) -, (CNAME UNITS FAC#)

0 (F A C #) t (FNAME FSEX)

The other test used an NSERC database with large amount of data (almost 10000

tuples). The relation scheme is:

D-GRANT(DEPT, GRANT-CODE, GRANT-TITLE, GRANT-ORDER)

with FDs:

key: (DEPT, GRANT-CODE)

GRANT-CODE -+ (GRANT-TITLE, GRANT-ORDER)

The first phase of FUND calculated the weight between GRANT-TITLE and

GRANT-ORDER as the highest (1647), and it happened that there are implied FDs

between them. Thus in the second phase, FUND prompt these two attributes first

for FD confirmation. When user rejected that there is any FD exist between them,

APPENDIX B. TEST RESULT OF FUND 81

it worked right all the way to give the result the same as the defined FDs. This test

shows that user intervention is important in excluding irrelevant results.

Appendix C

Test result of SYNONYM

The two relations shown here are from a real database about NSERC award informa-

t ion.

One relation AREA has the schema:

AREA(AREA-CODE, AREA-TITLE, AREA-TITRE)

In AREA, AREA-CODE is defined as NUMBER.

In the other relation, AWARD, it has NUMBER typed attributes as:

A WA RD(0RG-CODE, FISCAL- YR, COMP- YR, AMOUNT, CTEE-CODE,

AREA-CODE, DISC-CODE, CNT2)

We illustrate the result as SYNONYM looking for synonyms from AWARD for

attribute A REA-CODE in AREA. Because SYNONYM matches synonyms only for

APPENDIX C. TEST RESULT OF SYNONYM 83

attributes defined of the same data type, we listed only attributes in AWARD that

are defined as NUMBER.

In the following table, AREA-CODE in AREA is matched with each attributes in

AWARD listed above:

I Attribute from AWARD

ORG-CODE

FISCAL-YR

COMP-YR

AMOUNT

CTEE-CODE

AREA-CODE

DISC-CODE

CNT2

The d-value is in the range of 0 to 200.

d-value

In this example, SYNONYM takes AREA-CODE in AWARD as the synonym for

AREA-CODE in AREA, according to the d-values calculated, which is obvious.

Appendix D

Program Listing

Source code for FUND and SYNONYM are listed here. The systems are implemented

using PC-a SQL embedded C-and C, on the ORACLE RDBMS.

The first three programs belong to FUND. search.pc performs the functions of

the first phase in FUND, which is to extract implied FDs given a relation; fund.c

performs the second phase, which determines intentional FDs during the process of

attribute hierarchy creation; fund.h is the header file included by both search.pc

and fund.c.

The last listing is SYNONYM. Program synonym.pc is in PC language.

s
e
a
r
c
h
.
 p
c

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

* *

0
0

)
 s
e
a
r
c
h
.
p
c
,

l
a
s
t
 m
o
d
i
f
i
e
d

J
u
n
e
 4
,

1
9
9
2

*
T
h
i
s
 p
r
o
g
r
a
m

a
c
c
e
s
s
e
s

a

r
e
l
a
t
i
o
n

i
n
 a

r
e
l
a
t
i
o
n
a
l

d
a
t
a
b
a
s
e
,

c
h
e
c
k
s

t
h
e

*
d
a
t
a

d
i
c
t
i
o
n
a
r
y

a
n
d
 t
h
e
 d
a
t
a

i
n
 t
h
e
 r
e
l
a
t
i
o
n
,

e
x
t
r
a
c
t
s

i
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

a
t
t
r
i
b
u
t
e
s
,

i
n
d
e
x
e
s
,
 a
n
d

g
e
t
s

a
l
l

F
D
s
 w
h
i
c
h

a
r
e

c
o
r
r
e
c
t
l
y

h
e
l
d

b
y

t
h
e
 d
a
t
a

i
n

t
h
e
 r
e
l
a
t
i
o
n
.
 T

h
e
 r
e
s
u
l
t

i
s
 o
u
t
p
u
t

t
o
 a

f
i
l
e
.

#
d
e
f
i
n
e
 U
S
E
R

'x
ia
ob
in
g/
ch
en
Bn
sc
'

#
d
e
f
i
n
e
 T
U
P
L
E

1
0
0
0
0

/*
 M
a
x

t
u
p
l
e
s

a

r
e
l
a
t
i
o
n

c
a
n
 h
a
v
e

*
/

t
y
p
e
d
e
f

c
h
a
r

s
t
o
r
e
~
t
y
p
e
(
T
U
P
L
E
+
1
I
[
F
I
E
L
D
~
L
E
N
G
T
H
+
1
1
;

E
X
E
C

S
Q
L
 B
E
G
I
N

D
E
C
L
A
R
E

S
E
C
T
I
O
N
;

V
A
R
C
H
A
R

u
i
d
[
3
0
]
 ;

/*
 t

h
e
 s
i
z
e

f
o
r

t
h
e

f
o
l
l
o
w
i
n
g
 V
A
R
C
H
A
R

a
r
r
a
y
s

s
h
o
u
l
d
 b
e

t
h
e
 s
a
m
e

a
s

N
A
M
E
-
L
E
N
G
T
H

*/

V
A
R
C
H
A
R

t
a
b
l
e
_
n
a
m
e
[
3
0
]
;

V
A
R
C
H
A
R

c
o
l
r
n
n
a
m
e
 [3
 0
 I
;

V
A
R
C
H
A
R

i
n
d
e
x
n
a
m
e
 [3
0
 I
;

c
h
a
r
 n
u
l
l
a
b
l
e
;

i
n
t

c
o
l
u
m
n
-
i
d
;

c
h
a
r
 u
n
i
q
u
e
 [
1
0
 I
;

V
A
R
C
H
A
R

h
o
l
d
e
r
[
6
5
1
;

/*
 t
h
e
 a
r
r
a
y

s
i
z
e

s
h
o
u
l
d
 b
e

a
s
 F
I
E
L
D
-
L
E
N
G
T
H

*/

c
h
a
r
 q
u
e
r
y
[
1
0
0
]
;

E
X
E
C

S
Q
L
 E
N
D

D
E
C
L
A
R
E

S
E
C
T
I
O
N
;

E
X
E
C

S
Q
L
 I
N
C
L
U
D
E

S
Q
L
C
A
;

a
t
t
r
-
t
y
p
e

a
t
t
r
[
M
A
X
-
N
U
M
P
T
T
R
]
;

/*
 t
o
 h
o
l
d

a
t
t
r
i
b
u
t
e

s
p
e
c
i
f
i
c
a
t
i
o
n

*
I

i
n
t

nu
n-
at
tr
;

/*
 n
u
m
b
e
r

o
f

a
t
t
r
i
b
u
t
e
s

in

t
h
e
 t
a
b
l
e

*
/

i
n
d
e
x
t
y
p
e
 i
n
d
e
x
[
I
N
D
E
X
-
N
U
M
I
;

/*
 s
t
r
u
c
t
u
r
e
 t
o
 h
o
l
d

i
n
d
e
x
 s
p
e
c
i
f
i
c
a
t
i
o
n

*/

i
n
t

n
m
i
n
d
e
x
;

/*
 n
u
m
b
e
r

o
f

i
n
d
e
x
e
s

o
n

t
h
e
 t
a
b
l
e

*
/

i
n
t

s
e
l
e
c
t
-
l
i
s
t
[
M
X
-
N
U
H
-
A
m
]
;

s
t
a
t
i
c

i
n
t

n
m
s
e
l
e
c
t
e
d
;

s
t
o
r
e
-
t
y
p
e

*
s
;

i
n
t

i
n
d
s
[
T
U
P
L
E
+
l
I
;

i
n
t

n
;

i
n
t

l
e
f
t
-
s
i
z
e
;

/*
 M
a
x

a
t
t
r
i
b
u
t
e
s

i
n
 d
e
t
e
r
m
i
n
a
n
t
s

o
f
 F
D
s

*/

s
t
r
u
c
t

w
e
i
g
h
t
-
s
t
r
u

[
u
n
s
i
g
n
e
d

l
o
n
g
 p
a
i
r
;

in
t
v
a
l
u
e
;

)
w
e
i
g
h
t
;

i
n
t

nu
-e
ig
ht
;

s
t
a
t
i
c
 v
o
i
d

l
o
a
d
(
)
,

f
d
-
c
h
e
c
k
i
n
g
(
)
,

s
t
o
r
e
-
f
d
0
,

d
i
s
t
i
n
c
t
-
v
a
l
0
,

w
e
i
g
h
t
-
v
a
l
0
,

q
u
i
c
k
s
o
r
t
 (

)
;

s
t
a
t
i
c

u
n
s
i
g
n
e
d

l
o
n
g

c
h
e
c
L
i
n
-
s
t
o
r
e
(
)
,

c
l
o
s
u
r
e
(
)
;

s
t
a
t
i
c

in
t

n
a
m
e
2
n
u
m
0
,

c
m
p
0
 ;

m
a
i
n
 (
a
r
g
c
,
 a
r
g
v
)

i
n
t

a
r
g
c
;

c
h
a
r

"a
rg
v;

(
in
t

i
,

j
,
 m
,

r
o
u
n
d
;

l
o
n
g

i
n
t

a
l
l
;

u
n
s
i
g
n
e
d

l
o
n
g

1
,

a-
le
ft
,

a-
ri
gh
t;

s
t
r
u
c
t

fd

-
st

^
*
c
p
,

*
c
q
,

*
c
r
,

*
c
h
e
c
k
,
 *
p
i
c
k
;

if

(
M
A
X
-
N
U
M
-
A
T
T
R

>
 E
*
s
i
z
e
o
f
(
i
n
t
)
)

[
pr
in
tf
('
To
o

m
a
n
y

a
t
t
r
i
b
u
t
e
s
 p
e
r
m
i
t
t
e
d
!
\
n
g
)
;

e
x
i
t
 (
-
1
)
 ;

1

/*
 l
o
g
i
n
 t

o
 O
R
A
C
L
E
,

u
s
e
 u
s
e
r
i
d

a
n
d

p
a
s
s
w
o
r
d
 p
r
o
v
i
d
e
d

by

U
S
E
R

'/

s
t
r
c
p
y
 (
u
i
d
.
a
r
r
,
 U
S
E
R
)
 ;

u
i
d
.
l
e
n

=
s
t
r
l
e
n
(
u
i
d
.
a
r
r
)
;

E
X
E
C

S
Q
L
 C
O
N
N
E
C
T

:
u
i
d
;

if

(
s
q
l
c
a
.
s
q
l
c
o
d
e

!=

0
)

(

pr
in
tf
('
Co
nn
ec
ti
on

pr
ob
le
m.
\n
')
;

e
x
i
t
 (
-
1
)
 ;

1 E
X
E
C

S
Q
L
 W
H
E
N
E
V
E
R

S
Q
L
E
R
R
O
R
 G
O
T
0
 e
r
r
r
p
t
;

/*
 g
e
t

t
h
e
 t
a
b
l
e
 n
a
m
e
 a
n
d

c
h
e
c
k

if

it

i
s

a

T
A
B
L
E

*
/

if

(
a
r
g
c
 =

=
2
)

s
t
r
c
p
y
(
t
a
b
1
e
-
n
a
m
e
.
a
r
r
,

a
r
g
v
[
l
l
)
;

e
l
s
e

(
pr
in
tf
('
gi
ve

m
e

t
h
e
 t
a
b
l
e
 n
a
m
e
:

')
;

sc
an
f(
'$
s'
,

ta
bl
e-
na
me
.a
rr
);

I t
a
b
l
e
-
n
a
m
e
.
l
e
n

=
s
t
r
l
e
n
(
t
a
b
1
e
-
n
a
m
e
.
a
r
r
)
;

E
X
E
C

S
Q
L
 S
E
L
E
C
T
 T
A
B
L
E
-
T
Y
P
E

I
N
T
O

:c
ol
um
n-
na
me

F
R
O
M
 A
LL
-C
AT
AL
OG

W
H
E
R
E

T
A
B
L
E
-
N
A
M
E

=
:t
ab
le
-n
am
e;

if

(
s
t
r
n
c
m
p
(
c
o
l
u
m
n
_
n
a
m
e
.
a
r
r
,
 '
TA
BL
E'
,

5)

!=

0
)

(

p
r
i
n
t
f
(
"
\
n
I
t
'
s

n
o
t

a

t
a
b
l
e
.
\
n
m
)
;

e
x
i
t
 (
-
1
)
 ;

I

/*
 q
u
e
r
y

f
o
r
 c
o
l
u
m
n
s
 i
n
 t
h
e
 t
a
b
l
e

*/

E
X
E
C

S
Q
L
 D
E
C
L
A
R
E
 C

1
 C
U
R
S
O
R

F
O
R

S
E
L
E
C
T
 C
O
L
U
M
N
-
N
A
M
E
,

N
U
L
L
A
B
L
E
,

CO
L-
ID

F
R
O
M
 A
L
L
-
T
A
B
_
C
O
L
U
H
N
S

W
H
E
R
E

T
A
B
L
E
-
N
A
M
E

=
:t
ab
le
-n
am
e;

E
X
E
C

S
Q
L
 O
P
E
N

C
1
;

f
o
r

(
i
=
O
;
 i
<
M
A
X
-
N
U
M
_
A
T
T
R
;

i
+
+
)

[

E
X
E
C

S
Q
L
 F
E
T
C
H
 C
1

I
N
T
O

:c
ol
um
n-
na
me
,

:
n
u
l
l
a
b
l
e
,

:c
ol
um
n-
id
;

if

(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

=
1
4
0
3
)
 b
r
e
a
k
;

/*
 l
a
s
t

r
o
w
 s
e
l
e
c
t
e
d

*
/

c
o
l
u
m
n
-
n
a
m
e
.
a
r
r
[
c
o
l
u
m
n
~
n
a
m
e
.
l
e
n
l
 =

'\
O'
;

j

=
c
o
l
u
m
n
-
i
d

-
1
;

s
t
r
c
p
y
 (
a
t
t
r
[
 jl
 .
na
me
,
c
o
l
w
n
n
j
a
m
e
.
a
r
r
)
 ;

if

(
n
u
l
l
a
b
l
e
 =

=

'Y
')

a
t
t
r
[
j
l
.
n
u
l
l
a
b
l
e

=
1
;

e
l
s
e

a
t
t
r
[
i
l
.
n
u
l
l
a
b
l
e

=
0
;

a
t
t
r
[
i
l
 .
ke
y

=
0
;

at
tr
[i
l.
co
un
t

=
0
;

1 n
u
x
a
t
t
r
 =

 i
;

E
X
E
C

S
Q
L
 C
L
O
S
E

C
1
;

/*
 q
u
e
r
y

f
o
r
 i
n
d
e
x
e
s

f
o
r
 t
h
e
 t
a
b
l
e

*/

E
X
E
C

S
Q
L
 D
E
C
L
A
R
E
 C
2

C
U
R
S
O
R

F
O
R

S
E
L
E
C
T
 I
N
D
E
X
N
A
M
E
,

U
N
I
Q
U
E
N
E
S
S

F
R
O
M
 A
L
L
-
I
N
D
E
X
E
S

W
H
E
R
E
 T
A
B
L
E
-
N
A
M
E

=
:t
ab
le
-n
am
e;

E
X
E
C

S
Q
L
 O
P
E
N
 C
2
;

f
o
r

(
i
=
O
;
 i
<
I
N
D
E
]
C
N
U
M
;

i
+
+
)
 (

E
X
E
C

S
Q
L
 F
E
T
C
H
 C
2

I
N
T
O

:
i
n
d
e
x
-
n
a
m
e
,

:
u
n
i
q
u
e
;

if

(
s
q
l
c
a
-
s
q
l
c
o
d
e
 =

=
1
4
0
3
)
 b
r
e
a
k
;

i
n
d
e
x
~
a
m
e
.
a
r
r
[
i
n
d
e
x
-
n
a
m
e
.
l
e
n
]

=
'\
O'
;

s
t
r
c
p
y
(
i
n
d
e
x
[
i
l
.
n
a
m
e
,

i
n
d
e
x
-
n
a
m
e
.
a
r
r
)
;

if

(
u
n
i
q
u
e
[
O
]

==

'U
'

)
i
n
d
e
x
[
i
l
.
u
n
i
q
u
e

=
1
;

e
l
s
e

i
n
d
e
x
[
i
l
.
u
n
i
q
u
e

=
0
;

i
n
d
e
x
[
i
l
 .
on

=
0;

1 n
u
m
i
n
d
e
x
 =

i
;

E
X
E
C

S
Q
L
 C
L
O
S
E
 C
2
;

I*
 q
u
e
r
y

f
o
r
 c
o
l
u
m
n
s

o
n
 w
h
i
c
h

i
n
d
e
x
e
s
 w
e
r
e

c
r
e
a
t
e
d

*
/

/*
 p
r
e
p
a
r
e

t
h
e
 S
Q
L
 q
u
e
r
y
,
 w
i
t
h

i
n
d
e
x
-
n
a
m
e

u
n
f
i
l
l
e
d

*
/

E
X
E
C

S
Q
L

D
E
C
L
A
R
E
 C
3

C
U
R
S
O
R

F
O
R

S
E
L
E
C
T
 C
O
L
U
M
N
-
N
A
M
E

F
R
O
M
 A
L
L
-
I
N
L
L
C
O
L
U
M
N
S

W
H
E
R
E

T
A
B
L
E
-
N
A
M
E

=
:t
ab
le
-n
am
e

A
N
D

I
N
D
E
X
-
N
A
M
E

=
:
i
n
d
e
x
-
n
a
m
e
;

/*

f
i
l
l

i
n

i
n
d
e
x
-
n
a
m
e

f
o
r
 e
a
c
h

i
n
d
e
x
,
 a
n
d

f
i
n
d

t
h
e
 c
o
l
u
m
n
s

f
o
r
 t

h
e
 i
n
d
e
x

*
/

f
o
r

(
i
=
O
;
 i
<
n
u
m
_
i
n
d
e
x
;
 i
+
+
)

[

s
t
r
c
p
y
(
i
n
d
e
x
-
n
a
m
e
.
a
r
r
,

i
n
d
e
x
[
i
l
.
n
a
m
e
)
;

i
n
d
e
x
_
n
a
m
e
.
l
e
n

=
s
t
r
l
e
n
(
i
n
d
e
x
-
n
a
m
e
.
a
r
r
)
;

E
X
E
C

S
Q
L
 O
P
E
N

C
3
;

f
o
r

(
j
=
0
;
 j
<
n
u
m
-
a
t
t
r
;

j
+
+
)

(

E
X
E
C

S
Q
L
 F
E
T
C
H
 C
3

I
N
T
O

:
c
o
l
u
m
n
_
n
a
m
e
;

i
f

(
s
q
l
c
a
-
s
q
l
c
o
d
e
 =

=
1
4
0
3
)
 b
r
e
a
k
;

c
o
l
u
m
n
_
n
a
m
e
.
a
r
r
[
c
o
l
u
m
n
_
n
a
m
e
.
l
e
n
l

=
'
\
O
1
;

m

=
n
a
m
e
2
n
u
m
(
c
o
l
u
n
m
-
n
a
m
e
.
a
r
r
1
;

i
n
d
e
x
[
i
]
.
o
n

I=

(
0
x
0
1
 <

<
 m
)
;

I E
X
E
C

S
Q
L
 C
L
O
S
E
 C
3
;

i
f

(
j

=
=

 1

hh

i
n
d
e
x
[
i
l
.
u
n
i
q
u
e

)
a
t
t
r
[
m
l
.
k
e
y

=
1
;

1

/*
 s
e
l
e
c
t

o
n
l
y
 n
o
n
-
k
e
y

a
t
t
r
i
b
u
t
e
s

f
o
r
 d
a
t
a

c
h
e
c
k
i
n
g

*/

n
x
s
e
l
e
c
t
e
d
 =

 0
;

f
o
r

(
i
=
O
;
 i
<
n
u
m
_
a
t
t
r
;

i
+
+
)

if

(
!
a
t
t
r
[
i
l
.
k
e
y

1
s
e
l
e
c
t
-
l
i
s
t
[
n
u
m
_
s
e
l
e
c
t
e
d
+
+
l

=
i
;

i
f

(
n
m
s
e
l
e
c
t
e
d
 =

=
 0

)

(

pr
in
tf
('
\n
Ev
er
y

s
i
n
g
l
e

a
t
t
r
i
b
u
t
e

i
n

t
h
e
 r
e
l
a
t
i
o
n

i
s
 a

k
e
y
\
n
m
)
;

e
x
i
t
 (
1
)
 ;

1 pr
in
tf
('
\n
Ta
bl
e

d
e
f
i
n
i
t
i
o
n

r
e
a
d
\
n
m
)
;

s

=
(
s
t
o
r
e
-
t
y
p
e

*
)
c
a
l
l
o
c
(
n
~
s
e
l
e
c
t
e
d
,
 s
i
z
e
o
f
(
s
t
o
r
e
-
t
y
p
e
)
)
;

nu
n-
we
ig
ht

=
(n
-s
el
ec
te
d

(
n
u
m
-
s
e
l
e
c
t
e
d
-
l
]
)
/
2
;

w
e
i
g
h
t

=
(
s
t
m
c
t
 w
e
i
g
h
t
-
s
t
r
u

*
)
c
a
l
l
o
c
(
n
u
m
_
w
e
i
g
h
t
,

s
i
z
e
o
f
(
s
t
r
u
c
t
 w
e
i
g
h
t
-
s
t
r
u
)
)
;

if

(
s
=
=
N
U
L
L

11
 w
e
i
g
h
t
=
=
N
U
L
L
)

(
pr
in
tf
('
\n
me
mo
ry

a
l
l
o
c
a
t
i
o
n

f
a
i
l
e
d
.
\
n
m
)
;

e
x
i
t
(
-
1
)
 ;

I pr
in
tf
('
\n
ma
x

X
o
f

f
i
e
l
d
s
 t
h
e

l
e
f
t

s
i
d
e
 o
f
 a
n
y

f
u
l
l
y
 F
D
 c
a
n
 h
a
v
e
:

'I;
sc
an
f(
'O
dm
,

&
l
e
f
t
-
s
i
z
e
)
;

if

(
l
e
f
t
-
s
i
z
e
 >

 n
un
-s
el
ec
te
d)

le
ft
-s
iz
e

=
n
u
m
-
s
e
l
e
c
t
e
d
;

l
o
a
d
 (

1
;

pr
in
tf
('
\n
Da
ta

l
o
a
d
i
n
g
 s
u
c
c
e
s
s
f
u
l
\
n
~
)
;

E
X
E
C

S
Q
L
 W
H
E
N
E
V
E
R

S
Q
L
E
R
R
O
R

C
O
N
T
I
N
U
E
;

E
X
E
C
 S
Q
L
 R
O
L
L
B
A
C
K

W
O
R
K

R
E
L
E
A
S
E
;

f
o
r

(
i
=
O
;
 i
<
n
u
m
_
s
e
l
e
c
t
e
d
;

i
+
+
)
 s
[i
l
[
n
]
 [
O
]
 =

'\
0'
;

fo
r

(
i
=
O
;
 i
<
=
n
;

i
+
+
)
 i
n
d
s
[
i
]
 =

i;

m

=
0
;

fo
r

(
i
=
O
;
 i
<
n
u
m
_
s
e
l
e
c
t
e
d
-
1
;

i
+
+
)
 (

a
l
l

=
0
x
0
1

<
<

i
;

/*
 a
l
l

r
e
p
r
e
s
e
n
t
s
 a
t
t
r
i
b
u
t
e

i

*/

f
o
r

(
j
=
i
+
l
;
 j
<
n
u
m
_
s
e
l
e
c
t
e
d
;
 j

+
+
)
 (

/*

 t
h
e
 p
a
i
r

f
o
r

a
t
t
r
i
b
u
t
e
s

i

a
n
d

j

*/

w
e
i
g
h
t
[
m
]
.
p
a
i
r

=
(
(
u
n
s
i
g
n
e
d
 l
o
n
g
l
0
x
0
1
 <

<

j
)

I
a
l
l
;

w
e
i
g
h
t
 [
m
]
 .
v
a
l
u
e

=
-
1
;

m
+
+
;

I
I

/*
 i
n
i
t
i
a
l
i
z
e
 c
h
e
c
k
i
n
g

l
i
s
t

*/

a
l
l

=
0
x
0
1
;

f
o
r

(
i
d
;
 i
<
n
u
m
_
s
e
l
e
c
t
e
d
;

i
+
+
)

a
l
l

=
(
a
l
l
 <

<

11

I
0
x
0
1
;

c
h
e
c
k
 =

 N
U
L
L
;

fo
r

(
i
=
n
x
s
e
l
e
c
t
e
d
-
1
;
 i
>
=
O
;
 i
--
1

(
c
p

=
(
s
t
r
u
c
t
 f
d-
st
ru

'
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t

fd
-s
tr
u)
);

c
p
-
>
l
e
f
t

=
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<

i;

c
p
-
>
r
i
g
h
t
 =

 a
l
l
 h

-
c
p
-
>
l
e
f
t
;

c
p
-
>
n
e
x
t

=
c
h
e
c
k
;

c
h
e
c
k
 =

 c
p
;

I fd
s

=
N
U
L
L
;

fo
r

(
r
o
u
n
d
=
l
;
 r
o
u
n
d
<
=
l
e
f
t
-
s
i
z
e
;

r
o
u
n
d
+
+
)
 (

:
p
i
c
k

=
c
h
e
c
k
;

w
h
i
l
e

(
p
i
c
k

!=
 N
U
L
L

)
I

pr
in
tf
('
ch
ec
ki
ng
:

'I
;

o
u
t
p
u
t
n
a
m
e
(
s
t
d
o
u
t
,

p
i
c
k
-
>
l
e
f
t
)
;

p
u
t
c
h
a
r
 (
' \
n'
)
;

qu
ic
k-
so
rt

(
p
i
c
k
-
>
l
e
f
t
,
 0
,
 n
-
1
)
 ;

f
&
c
h
e
c
k
i
n
g
(
p
i
c
k
)
;

if

(
r
o
u
n
d
 =

=
1
)

d
i
s
t
i
n
c
t
-
v
a
l
(
p
i
c
k
-
>
l
e
f
t
)
;

i
f

(
r
o
u
n
d
 =

=
2
)

w
e
i
g
h
t
-
v
a
l
(
p
i
c
k
-
>
l
e
f
t
]
;

/*

if

t
w
o

fi
el
d.

a
8

t
h
e
 l
ef
t,

w

 u
l
~
~
h
t
e

t
h
e
i
r
 w
e
i
g
h
t

*/

p
i
c
k

=
 p
i
c
k

-
>
n
e
x
t
;

I i
f

(
r
o
u
n
d
 =

=
 l
e
f
t
-
s
i
z
e
)

b
r
e
a
k
;

/*
 b
u
i
l
d

c
h
e
c
k
i
n
g

l
i
s
t

f
o
r
 n
e
x
t

r
o
u
n
d

*/

c
p
 =

 N
U
L
L
;

/*
 t
h
e
 n
e
w
 c
h
e
c
k
i
n
g

l
i
s
t

w
i
l
l
 b
e
 t
e
m
p
o
r
a
l
l
y
 l
i
n
k
e
d
 t
o
 c
p

*
I

p
i
c
k

=
c
h
e
c
k
;

w
h
i
l
e

l
~
i
c
k
 !=

 N
U
L
L
)

I
.-

 -

.
.

i
f

(
p
i
c
k
-
>
r
i
g
h
t
 !

=

0
)

[

a
l
l

=

(
l
o
n
g
 i
n
t
)
O
x
0
1
 <

<

(
s
i
z
e
o
f
(
1
o
n
g
 i
n
t
)
*
8
-
1
)
;

w
h
i
l
e

(
!
(
a
l
l
 h

p
i
c
k
-
>
l
e
f
t
)
)
 a
l
l
 >

>
=

1;

a
l
l
 &

=

p
i
c
k
-
>
r
i
g
h
t
;

pr
in
tf
('
\n
Lo
ad
in
g

da
ta
..
.'
);

s
e
a
r
c
h
.
 p
c

1
 =

 0
x
0
1
;

f
o
r

(
i
=
O
;
 i
<
n
u
m
-
s
e
l
e
c
t
e
d
;

i
+
+
)

i
f

(
1
 &

a
l
l
)

(
a-
le
ft

=
p
i
c
k
-
>
l
e
f
t

)
1
;

a-
ri
gh
t

=
c
l
o
s
u
r
e
(
a
-
l
e
f
t
)
;

a-
ri
gh
t

=
p
i
c
k
-
>
r
i
g
h
t

h

-
(
a
-
r
i
g
h
t
)
;

i
f

(a
-r
ig
ht

!=

0
)

(

c
q

=

(
s
t
r
u
c
t
 f
d-
st
ru

*
)

r
n
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t

fd
-s
tr
u)
);

c
q
-
>
l
e
f
t

=
a-
le
ft
;

c
q
-
>
r
i
g
h
t

=
a-
ri
gh
t:

c
q
-
>
n
e
x
t

=
N
U
L
L
;

if

(
c
p
 =

=
N
U
L
L
)

{
c
p

=
c
q
;

c
r

=
c
p
;

1 e
l
s
e

{

c
r
-
>
n
e
x
t
 =

 c
q
;

c
r

=
cq
:

1

1 1
 <

<
=

1;

1
1 p
i
c
k

=
p
i
c
k
-
>
n
e
x
t
:

/*
 f
r
e
e
 t
h
e
 m
e
m
o
r
y

a
l
l
o
c
a
t
e
d

f
o
r
 c
h
e
c
k
-
h
e
a
d

*
/

w
h
i
l
e

(
c
h
e
c
k
 !

=
 N
U
L
L
)

(
c
q
 =

c
h
e
c
k
-
>
n
e
x
t
;

f
r
e
e
 (
c
h
e
c
k
)
 :

c
h
e
c
k
 =

 c
q
;

c
h
e
c
k

=
c
p
;

1

/*
 c
a
l
c
u
l
a
t
e
 w
e
i
g
h
t

v
a
l
u
e
s

f
o
r
 a
n
y
 p
a
i
r

l
e
f
t

u
n
c
a
l
c
u
l
a
t
e
d

*/

f
o
r

(
i
=
O
;
 i
<
n
u
m
_
w
e
i
g
h
t
;

i
+
+
)

if

(
w
e
i
g
h
t
t
i
]
 .
v
a
l
u
e
 =

=
-
1
)
 {

q
u
i
c
)
c
s
o
r
t
(
w
e
i
g
h
t
[
i
l
.
p
a
i
r
,

0
,

n
-
1
)
;

w
e
i
g
h
t
-
v
a
l
(
w
e
i
g
h
t
[
i
l
.
p
a
i
r
)
:

1

o
u
t
p
u
t
 (

)
;

e
x
i
t
 (
0
)
;

e
r
r
r
p
t
 :

pr
in
tf
('
\n

8
.
7
0
s

(
%
d
)
\
n
*
,
 s
q
l
c
a
.
s
q
l
e
r
r
m
.
s
q
l
e
r
r
m
c
,

-
s
q
l
c
a
.
s
q
l
c
o
d
e
)
;

E
X
E
C

S
Q
L
 W
H
E
N
E
V
E
R

S
Q
L
E
R
R
O
R
 C
O
N
T
I
N
U
E
;

E
X
E
C

S
Q
L

R
O
L
L
B
A
C
K

W
O
R
K

R
E
L
E
A
S
E
:

e
x
i
t
 (
-
1
)
 ;

I ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

* *
s
y
n
o
p
s
i
s

*
l
o
a
d
 (

)

*
D
e
s
c
r
i
p
t
i
o
n

l
o
a
d
s
 d
a
t
a

i
n
t
o
 g
l
o
b
a
l

a
r
r
a
y

s.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c
 v
o
i
d

l
o
a
d
 (

)

{
in
t

f
o
r

1
1

(
i
=
O
;
 i
<
n
u
m
-
s
e
l
e
c
t
e
d
:

i
+
+
)
 (

s
p
r
i
n
t
f
(
q
u
e
r
y
,

'S
EL
EC
T

%
s

F
R
O
M

8
s
 O
R
D
E
R

B
Y

R
O
W
N
U
M

',

a
t
t
r
[
s
e
l
e
c
t
~
l
i
s
t
[
i
l
l
.
n
a
m
e
,

ta
bl
e-
na
me
.a
rr
);

E
X
E
C

S
Q
L

P
R
E
P
A
R
E
 S

F
R
O
M

:
q
u
e
r
y
;

E
X
E
C

S
Q
L

D
E
C
L
A
R
E
 C
L

C
U
R
S
O
R

F
O
R

S
;

E
X
E
C

S
Q
L
 O
P
E
N

C
L
;

f
o
r

(
n
=
O
;
 n
<
T
U
P
L
E
:
 n

+
+
)

{
E
X
E
C

S
Q
L
 F
E
T
C
H
 C
L
 I
N
T
O

:
h
o
l
d
e
r
;

if

(
s
q
l
c
a
.
s
q
l
c
o
d
e

==
 1

4
0
3
)
 b
r
e
a
k
;

h
o
l
d
e
r
.
a
r
r
[
h
o
l
d
e
r
.
l
e
n
l

=
'\
0'
:

s
t
r
c
p
y
(
s
[
i
l
[
n
l
,
 h
ol
de
r.
az
-r
);

1 E
X
E
C

S
Q
L
 C
L
O
S
E

C
L
;

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

S
y
n
o
p
s
i
s

f
d
-
c
h
e
c
k
i
n
g
 (
p
)

s
t
r
u
c
t

fd
-s
tr
u

*
p
;

D
e
s
c
r
i
p
t
i
o
n

it

c
h
e
c
k
s

t
h
e

F
D
s

f
r
o
m
 p
-
>
l
e
f
t

t
o
 a
n
y

a
t
t
r
i
b
u
t
e
s

r
e
p
r
e
s
e
n
t
e
d

i
n

*
p
-
>
r
i
g
h
t
.

T
h
e
 c
h
e
c
k
 t
a
k
e
s
 o
n

t
h
e
 d
a
t
a

i
n
 a
r
r
a
y

s.

s

s
h
o
u
l
d

b
e

s
o
r
t
e
d
 a
c
c
o
r
d
i
n
g

t
o
 p
-
>
l
e
f
t
 b
e
f
o
r
e

c
a
l
l
i
n
g

t
h
i
s

f
u
n
c
t
i
o
n
.

T
h
e
 r
e
s
u
l
t

i
s

s
t
o
r
e
d

i
n
 t
h
e
 l
i
s
t

fd
s.

p
-
>
r
i
g
h
t

i
s
 u
p
d
a
t
e
d

t
o

c
o
n
t
a
i
n

f
i
e
l
d
s
 c
a
n
n
o
t
 b
e

d
e
t
e
r
m
i
n
e
d
 b
y

p
-
>
l
e
f
t
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

s
t
a
t
i
c

v
o
i
d

fd
-c
he
ck
in
g
(
p
)

s
t
r
u
c
t

fd
-s
tr
u

p
;

u
n
s
i
g
n
e
d

l
o
n
g
 m
,

r
,

f
o
r
m
e
r
;

l
o
n
g

in
t

la
tt
er
:

in
t

i.

j:

r

=
p
-
>
r
i
g
h
t
;

/*
 r

i
s

t
h
e
 s
e
t

o
f

f
i
e
l
d
 f
o
r
 c
h
e
c
k
i
n
g
 a
s

t
h
e
 r
i
g
h
t
 s
i
d
e

*
/

i

=
0
;

c
h
e
c
k
 t
u
p
l
e
s
 w
i
t
h

N
U
L
L

v
a
l
u
e
s

f
o
r
 p
-
>
l
e
f
t
.

B
e
c
a
u
s
e

s

i
s

s
o
r
t
e
d
 a
c
c
o
r
d
i
n
g

t
o
 p
-
>
l
e
f
t
,

a
l
l
 N
U
L
L
 v
a
l
u
e
s

f
o
r
 p
-
>
l
e
f
t

a
r
e
 a
t

t
h
e
 b
e
g
i
n
i
n
g

o
f

s.

s[
][
nl

r
e
p
r
e
s
e
n
t
s
 a

t
u
p
l
e
 n
u
l
l
e
d

i
n
 a
l
l

f
i
e
l
d
s
.

w
h
i
l
e

(
i
<
n
 &

&

c
m
p
(
p
-
>
l
e
f
t
,

i,

n
)
=
=
O
)
 1

m

=
0
x
0
1
;

f
o
r

(
j
=
0
;
 j
<
n
u
=
s
e
l
e
c
t
e
d
;

j
+

+
)
 (

i
f

(
m

&

r

&
&

s[
j]
[i
nd
s[
il
l[
01

!=

'\
0'

1
r

&
=

-
m
;

m

<
<

=

1;

/*
 c

h
e
c
k

t
h
e

f
o
r
m
e
r
 p
a
r
t

of

r

*
/

/+

l
a
t
t
e
r
 w
i
t
h

i
t
s

s
i
g
n
 b
i
t

s
e
t

*
/

l
a
t
t
e
r
 =

(
l
o
n
g
 i
n
t
)
O
x
0
1

<

<

(
s
i
z
e
o
f
(
1
o
n
g
 i
n
t
1
*
8
-
1
)
;

w
h
i
l
e

(
!
(
l
a
t
t
e
r
 &

p
-
>
l
e
f
t
)
)

l
a
t
t
e
r

>
>

=

1
;

f
o
r
m
e
r

=
r

&

(
-
l
a
t
t
e
r
)
 ;

/*

f
o
r
m
e
r

i
s
 t
h
e

f
o
r
m
e
r
 p
a
r
t

of

r

*
/

m

=
c
h
e
c
k
-
i
n
-
s
t
o
r
e
(
p
-
>
l
e
f
t
,

f
o
r
m
e
r
,

i
)
;

/*

 m

i
s
 t
h
e

r
i
g
h
t

s
i
d
e

d
e
t
e
r
m
i
n
a
n
t
s

a
f
t
e
r

c
h
e
c
k
i
n
g

*/

i
f

(
m
!
=
O
)
 (

s
t
o
r
e
-
f
d
(
p
-
>
l
e
f
t
,

m
)
 ;

/*
 s
t
o
r
e

r
e
s
u
l
t

*/

m

=
c
l
o
s
u
r
e
(
p
-
>
l
e
f
t
)
;

/*
 c
a
l
c
u
l
a
t
e

t
h
e

c
u
r
r
e
n
t

c
l
o
s
u
r
e

o
f

p
-
>
l
e
f
t

*/

p
-
>
r
i
g
h
t

&
=

-
m
;

/*
 r
e
m
o
v
e

t
h
e
 c
l
o
s
u
r
e

f
r
o
m

p
-
>
r
i
g
h
t

*
/

r

&
=

-
m
;

/*
 a
l
s
o

r
e
m
o
v
e

t
h
e
 c
l
o
s
u
r
e

f
r
o
m

r

*/

I l
a
t
t
e
r
 &

=

r
;

/*
 l

a
t
t
e
r
 n
o
w

i
s

t
h
e

l
a
t
t
e
r
 p
a
r
t

o
f

r

*
I

m

=
c
h
e
c
k
-
i
n
-
s
t
o
r
e
(
p
-
>
l
e
f
t
,

l
a
t
t
e
r
,

i
)
;

i
f

(
m

!
=
O
)
 (

s
t
o
r
e
-
f
d
(
p
-
>
l
e
f
t
,

m
)
 ;

p
-
>
r
i
g
h
t

&
=

-
m
;

1
1

S
y
n
o
p
s
i
s

u
n
s
i
g
n
e
d

l
o
n
g

c
h
e
c
k
i
n
-
s
t
o
r
e
(
1
,

r
,
 w
)

u
n
s
i
g
n
e
d

l
o
n
g

1
,
 r
;

i
n
t

w:

1
 *

D
e
s
c
r
i
p
t
i
o
n

*
it

g
o
e
s

t
h
r
o
u
g
h
 t
h
e
 d
a
t
a

s
t
o
r
e
d

i
n

t
h
e

g
l
o
b
l
e
 a
r
r
a
y

s
,

f
r
o
m
 w

t
o

t
h
e
 e
n
d
,

a
n
d

c
h
e
c
k
s

if

1
 d
e
t
e
r
m
i
n
e
s

a
n
y
 a
t
t
r
i
b
u
t
e
s
 r
e
p
r
e
s
e
n
t
e
d

i
n
 r
.

I
t

r
e
t
u
r
n
s
 t
h
o
s
e

c
h
e
c
k
i
n
g
-
c
o
n
f
i
r
m
e
d

r
i
g
h
t
-
s
i
d
e
s

a
s
 a
n

u
n
s
i
g
n
e
d

l
o
n
g

i
n
t
.

T
h
e
 s
t
o
r
e

s
 m
u
s
t

b
e

s
o
r
t
e
d
 a
c
c
o
r
d
i
n
g

t
o
 1
 b
e
f
o
r
e

c
a
l
l
i
n
g

t
h
i
s

f
u
n
c
t
i
o
n
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

s
t
a
t
i
c

u
n
s
i
g
n
e
d

l
o
n
g

c
h
e
c
k
-
i
n
-
s
t
o
r
e

(
1
,
 r
,

w
)

u
n
s
i
g
n
e
d

l
o
n
g

1.

r
;

i
n
t

w
;

(
u
n
s
i
g
n
e
d

l
o
n
g
 m
;

i
n
t

i
,

j
;

f
o
r

(
i-
-w
+l
;
r
!
=
O
 &

&

i
<
n
;

i
+
+
)

i
f

(
c
m
p
(
1
,

i,

i
-
1
)
=
=
0
)

(

/*
 t
w
o

t
u
p
l
e
s
 w
i
t
h

1

f
i
e
l
d
s

e
q
u
a
l

*/

m

=
0
x
0
1
;

f
o
r

(
j
=
O
;
 r
!
=
O
 &

h

j
a
u
m
_
s
e
l
e
c
t
e
d
;

j
+
+
)
 (

i
f

(
m
 &

r

&
&

c
m
p
(
m
,

i
,

i
-
1
)
 !
=
O
)

r

&
=

-
m
;

m

<
<

=

1
;

1
1

r
e
t
u
r
n
(
r
)
 ;

1

t

S
y
n
o
p
s
i
s

s
t
o
r
e
-
f
d
(
1
,

r
)

u
n
s
i
g
n
e
d

l
o
n
g

1
,
 r
;

D
e
s
c
r
i
p
t
i
o
n

it

s
t
o
r
e
s

t
h
e
 F
D

1

--

>

r

i
n
t
o

f
d
s
.

r

m
u
s
t

b
e
 n
o
n
-
z
e
r
o
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

s
t
a
t
i
c

v
o
i
d

s
t
o
r
e
-
f
d
(
1
,

r
)

u
n
s
i
g
n
e
d

l
o
n
g

1
,

r:

v

=
f
d
s
;

w
h
i
l
e

(
v
 !

=

N
U
L
L

&
&

v
-
>
l
e
f
t

!=

1
)

v

=
v
-
>
n
e
x
t
;

i
f

(
V
 !

=

N
U
L
L
)

V
-
>
r
i
g
h
t

I=

r
;

e
l
s
e

(
v

=

(
s
t
r
u
c
t
 f
d
-
s
t
r
u

+
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t

f
d
-
s
t
r
u
)
)
;

v
-
>
l
e
f
t

=
1;

v
-
>
r
i
g
h
t

=
r;

v
-
>
n
e
x
t

=
fd
s:

f
d
s
 =

v;

I

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

S
y
n
o
p
s
i
s

*
u
n
s
i
g
n
e
d

l
o
n
g
 c
l
o
s
u
r
e
(
x
)

u
n
s
i
g
n
e
d

l
o
n
g
 x
;

1
 *

D
e
s
c
r
i
p
t
i
o
n

it

t
a
k
e
s

a

s
e
t

o
f
 a
t
t
r
i
b
u
t
e
s

r
e
p
r
e
s
e
n
t
e
d

i
n
 x
,

a
n
d

d
e
r
i
v
e

t
h
e

F
D
 c
l
o
s
u
r
e

f
o
r
 x

a
c
c
o
r
d
i
n
g

t
o
 F
D
s
 i
n
 t
h
e
 g
l
o
b
l
e

f
d
s
 l
i
s
t
.

It

r
e
t
u
r
n
s

t
h
e
 c
l
o
s
u
r
e

r
e
p
r
e
s
e
n
t
e
d

i
n
 a
n
 u
n
s
i
g
n
e
d

l
o
n
g

i
n
t
.

**
**

*+
**

*+
**

**
**

**
*+

**
**

**
**

**
**

.*
**

*+
**

+
+

**
**

**
**

**
**

**
**

**
**

**
**

**
*+

**
/

s
t
a
t
i
c

u
n
s
i
g
n
e
d

l
o
n
g

c
l
o
s
u
r
e
 (
XI

u
n
s
i
g
n
e
d

l
o
n
g
 x
:

(
u
n
s
i
g
n
e
d

l
o
n
g
 r
e
s
u
l
t
:

s
t
r
u
c
t

f
d
-
s
t
m

*
p
;

d
o

1 r
e
s
u
l
t

=
x
;

p

=
f
d
s
;

w
h
i
l
e

(p
 !

=

N
U
L
L
)

(
i
f

(
(
x

 &

p
-
>
l
e
f
t
)

==
 p
-
>
l
e
f
t
)
 x

I=

P
-
>
r
i
g
h
t
;

p

=
p
-
>
n
e
x
t
;

1
)
w
h
i
l
e

(
r
e
s
u
l
t

!=

x

)
;

r
e
t
u
r
n
 (
r
e
s
u
l
t
 :

1

in
t
c
m
p
 (
b
a
s
e
,
 c
l
,
 c
2

u
n
s
i
g
n
e
d
 l
o
n
g
 b
a
s
e
;

i
n
t
 c
l
,
 c
2
;

R
e
t
u
r
n
 v
a
l
u
e
s

t

s
a
m
e
 a
s
 s
t
r
c
m
p
(
s
1
,
 s
2)
.

*
D
e
s
c
r
i
p
t
i
o
n

it

c
o
m
p
a
r
e
s
 t
w
o
 t
u
p
l
e
s
 a
t
p
o
s
i
t
i
o
n
s

c
l
 a
n
d
 c
2
 a
c
c
o
r
d
i
n
g
 t
o
t
h
e

f
i
e
l
d
s

r
e
p
r
e
s
e
n
t
e
d
 b
y
ba
se
.

c
l
 a
n
d
 c
2
 a
r
e
 r
e
f
e
r
e
n
c
e
d
 t
h
r
o
u
g
h

i
n
d
e
x

in
&[
].

*
t
*
*
*
*
*
*
*
t
l
*
*
*
*
*
*
*
*
*
*
*
*
*
+
*
*
*
+
*
*
.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
.
*
*
*
*
*
*
*
*
*
*
*
,

s
t
a
t
i
c
 i
nt

c
m
p
(
b
a
s
e
,

c
l
,
 c
2
)

u
n
s
i
g
n
e
d
 l
on
g
b
a
s
e
;

i
n
t
 c
l
,
 c
2
;

(
in
t
i
,
 r
e
s
u
l
t
;

f
o
r

(
i
-
0
;
 i
<
n
u
m
_
s
e
l
e
c
t
e
d
;
 i
+
+
)
 (

if

(
0
x
0
1
 &

b
a
s
e
)

(
r
e
s
u
l
t
 =

 s
tr
nc
mp
(s
[i
l
[
i
n
d
s
[
c
l
l
l
,
 s
[i
l
[i
nd
s[
c2
]1
,
F
I
E
L
D
-
L
E
N
G
T
H
)
;

i
f

(
r
e
s
u
l
t
 !

=

0
)
 r
e
t
u
r
n
(
r
e
s
u
1
t
)
;

I b
a
s
e

>
>

=

1;

I r
e
t
u
r
n
(
0
)
 ;

I o
u
t
p
u
t
 (

)

(
i
n
t
 i
,
 j
;

u
n
s
i
g
n
e
d
 l
o
n
g
 m
;

F
I
L
E
 '
fp
;

c
h
a
r
 b
u
f
1
N
A
M
E
-
L
E
N
G
T
H

+

41
:

s
t
r
u
c
t
 f
d-
st
ru

*p
:

s
t
r
c
p
y
(
b
u
f
,
 t
ab
le
-n
am
e.
ar
r)
;

s
t
r
c
a
t
 (
b
u
f
,
 '
 .
d
b
m
)
 ;

pr
in
tf
('
\n
\n
 .

..
 da
t
a
 s
e
a
r
c
h
i
n
g
 c
o
m
p
l
e
t
e
d
 ..

. \
n
m
)
:

pr
in
tf
('
re
su
1t
s

w
i
l
l
 b
e

i
n
 f
il
e:

%
s
\
n
g
,
 b
u
f
)
;

i
f

((
fp

=
fo
pe
n(
bu
f,

'w
e)
)

==
 N
U
L
L
)

(

pr
in
tf
('
op
en

%
s
 f
o
r
 w
r
i
t
i
n
g
 r
e
s
u
l
t

f
a
i
l
e
d
\
n
m
.
 b
u
f
)
;

pr
in
tf
('
ou
tp
ut

t
o
 s
t
d
o
u
t
\
n
\
n
m
)
;

fp
 =

 s
t
d
o
u
t
;

I f
p
r
i
n
t
f
(
f
p
,

'T
AB
LE

%
s
\
n
\
n
m
,
 ta
bl
e-
na
me
.a
rr
);

f
p
r
i
n
t
f
(
f
p
,

'M
AX
-L
EF
T-
ED

%
d
\
n
\
n
m
,
 le
ft
-s
iz
e)
;

f
o
r

(
i
=
O
;
 i
<n
-a
tt
r;

i
+
+
)

f
p
r
i
n
t
f
(
f
p
,
 '
FI
EL
D

%
s
 %
d
%
d
 %
d
\
n
0
,
 a
tt
r[
il
.n
am
e,

at
tr
[i
].
nu
ll
ab
le
,

at
tr
[i
l
.k
ey
,
at
tr
[i
l
.
c
o
u
n
t
)
 :

fp
ut
c(
'\
n'
,

fp
);

f
o
r

(
i
=
O
;
 i
<n
-i
nd
ex
:

i
+
+
)
 {

f
p
r
i
n
t
f
 (
f
p
,
 '
IN
DE
X
%
s
 %

d
U

, i
nd
ex
[i
l
.
n
a
m
e
,
 i
nd
ex
[i
]
.
u
n
i
q
u
e
)
;

m

=
0
x
0
1
;

f
o
r

(
j
=
O
;
 j
<
n
m
a
t
t
r
;
 j
+
+
)

(

i
f

(
m
 &

in
de
xL
i1
 .
o
n
)

f
p
r
i
n
t
f
 (
f
p
,
 .

%
s
m
,
 at
tr
[j
l
.n
am
e)
;

m
 <

<
=

1
;

1 fp
ut
c(
'\
n'
,

fp
);

fo
r
(
i
=
O
;
 i
<
n
u
m
_
w
e
i
g
h
t
;
 i
+
+
)

i
f

(
w
e
i
g
h
t
 [i
l
.
v
a
l
u
e
 !

=

0
)
 (

fp
ri
nt
f(
fp
,
WE
IG
HT
')
;

o
u
t
p
u
t
n
a
m
e
(
f
p
,
 w
ei
gh
t[
il
.p
ai
r)
;

f
p
r
i
n
t
f
(
f
p
,

%
d
\
n
*
,
 w
ei
gh
t[
i]
.v
al
ue
);

1
fp
ut
c(
'\
n'
,

f
p
)
 ;

p
 =

fd
s:

w
h
i
l
e

(
p
 !

=

N
U
L
L
)

(

f
p
r
i
n
t
f
 (
f
p
,
 '
PF
D

('
):

o
u
t
p
u
t
n
a
m
e
(
f
p
,
 p
-
>
l
e
f
t
)
;

fp
ri
nt
f(
fp
,
'

)
--

>

('1
;

o
u
t
p
u
t
n
a
m
e
(
f
p
,
 p
-
>
r
i
g
h
t
)
;

f
p
r
i
n
t
f
 (
f
p
.
 .

)
\n
')

:

p

=
p
-
>
n
e
x
t
:

I

o
u
t
p
u
t
n
a
m
e
 (
f
 ,
n
o
d
e
)

F
I
L
E
 '
f;

i
n
t
 n
od
e:

(
in
t
i
;

u
n
s
i
g
n
e
d
 l
o
n
g
 m
;

m

=
0
x
0
1
;

fo
r
(
i
=
O
;
 i
<
n
u
m
-
s
e
l
e
c
t
e
d
;
 i
+
+
)
 (

if

(
m
 &

n
o
d
e
)
 f
p
r
i
n
t
f
(
f
,
 .

a
s
g
,
 a
t
t
r
[
s
e
l
e
c
t
~
l
i
s
t
[
i
l
l
.
n
a
m
e
)
:

m

<
<

=

1
;

1
1

f
u
n
d
 . c

T
h
i
s
 p
r
o
g
r
a
m

a
n
a
l
y
z
e

t
h
e
 r
e
s
u
l
t

f
r
o
m

p
r
o
g
r
a
m

's
ea
rc
h'
.

It

e
n
h
a
n
c
e
s

t
h
e

*
F
D
-
e
x
t
r
a
c
t
i
o
n

r
e
s
u
l
t
.

* #
d
e
f
i
n
e
 M
A
X
-
L
I
N
E

2
0
0

/*
 t
h
e
 m
a
x

c
h
a
r
s
 p
e
r

l
i
n
e

i
n

t
h
e

i
n
p
u
t

f
i
l
e

*/

s
t
r
u
c
t
 w
o
r
k
i
n
g
-
b
o
a
r
d

(
u
n
s
i
g
n
e
d

l
o
n
g

f
i
r
s
t
,

s
e
c
o
n
d
;

in
t

v
a
l
u
e
;

1;

s
t
r
u
c
t

w
o
r
k
i
n
g
-
b
o
a
r
d

o
r
i
g
i
n
 [
M
A
X
-
N
U
L
A
T
F
R
*
 (
M
A
X
-
N
U
M
-
A
m
-
1
)
 /
2
1
.

b
o
a
r
d
[
M
A
X
-
N
U
M
_
A
T
P
R
*
(
M
A
X
-
N
U
M
A
m
-
1
)
/
2
1
;

i
n
t

or
ig
in
-n
um
.

b
o
a
r
c
n
u
m
;

c
h
a
r

t
a
b
l
e
-
n
a
m
e
[
N
A
M
E
-
L
E
N
G
T
H
+
l
]
;

a
t
t
r
-
t
y
p
e

a
t
t
r
[
M
A
L
N
U
M
-
A
T
T
R
I
;

i
n
t

a
t
t
r
-
n
u
m
;

i
n
d
e
x
-
t
y
p
e

g
r
o
u
p
 [
G
R
O
U
P
-
N
U
M
]
 ;

i
n
t

gr
ou
p-
nu
m;

s
t
r
u
c
t

fd
-s
tr
u

'p
fd
,

*
c
f
d
,

*
n
f
d
;

/*
 p
r
e
s
u
m
e
d

a
n
d

c
o
n
f
i
r
m
e
d

F
D
s

*/

u
n
s
i
g
n
e
d

l
o
n
g

a
l
l
;

/*
 a
l
l

a
t
t
r
i
b
u
t
e
s

*
/

i
n
t

l
e
f
t
-
s
i
z
e
;

/*
 t

h
e
 m
a
x

of

a
t
t
r
i
b
u
t
e
s

at

t
h
e

l
e
f
t

s
i
d
e
 o
f

a
n
y

F
D
,

d
e
f
a
u
l
t

t
o
 5

*
/

u
n
s
i
g
n
e
d

l
o
n
g

t
o
t
a
l
-
c
o
u
n
t
;

/*

t
h
e
 s
u
m

o
f

a
t
t
r
[
i
l
.
c
o
u
n
t

*
/

s
t
a
t
i
c

i
n
t

n
a
m
e
2
n
u
m
(
)
 ;

s
t
a
t
i
c
 v
o
i
d

r
e
a
d
n
a
m
e
s
 (

)
,
o
u
t
p
u
t
 (

)
,
a
n
a
l
y
s
i
s
 (

)
 ;

m
a
i
n
 (
a
r
g
c
,
 a
r
g
v
)

i
n
t

a
r
g
c
;

c
h
a
r

*
*
a
r
g
v
;

(
c
h
a
r
 b
uf
fe
r[
--
LE
NG
TH
+4
];

c
h
a
r

o
n
e
-
l
i
n
e
[
W
-
L
I
N
E
+
l
]
;

i
n
t
i
,
 j
,

k,

1
;

F
I
L
E

*
f
p
;

S
t
r
U
c
t

fd
-
st
^

*
p
;

i
f

(
a
r
g
c
 =

=
1
)

(
pr
in
tf
('
1n
pu
t

t
h
e

.d
b

f
i
l
e
:

")
;

sc
an
f(
'Z
sg
,

b
u
f
f
e
r
)
 ;

1 e
l
s
e

s
t
r
c
p
y
(
b
u
f
f
e
r
,

a
r
g
v
[
l
l
)
;

i
f

(
(
f
p
 =

 f
o
p
e
n
(
b
u
f
f
e
r
,

'r')

)
=
=
N
U
L
L
)
 (

pr
in
tf
('
Ca
n'
t

o
p
e
n

%
s
.
\
n
m
,
 b
u
f
f
e
r
)
;

e
x
i
t
 (
-
1
)
 ;

at
tr
-n
um

=
gr
ou
p-
nu
m

=
or
ig
in
-n
um

=
0
;

p
f
d

=
N
U
L
L
;

to
ta
l-
co
un
t

=
0
;

le
ft
-s
iz
e

=
0;

/*
 r

e
a
d

t
h
e
 a
t
t
r
i
b
u
t
e

o
r

f
i
e
l
d
 n
a
m
e
s

*/

w
h
i
l
e

(
!
f
e
o
f
(
f
p
)
)
 (

f
g
e
t
s
(
o
n
e
-
l
i
n
e
,

-L
IN
E,

fp
);

if

(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 '
FI
EL
D'
,

5
)
=
=
0
)
 (

s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,

'F
IE
LD

Zs
Zd
Zd
Zd
',

a
t
t
r
[
a
t
t
r
-
n
u
m
l
.
n
a
m
e
,

h
j
,

hk
,

h
l
)
;

a
t
t
r
[
a
t
t
r
-
n
u
m
1
.
n
u
l
l
a
b
l
e

=
j;

a
t
t
r
[
a
t
t
r
-
n
u
m
1
.
k
e
y

=
k
;

a
t
t
r
l
a
t
t
r
-
n
u
m
l
 .
c
o
u
n
t
 =

1
;

t
o
t
a
l
-
c
o
u
n
t

+=
 1

;

a
t
t
r
-
n
u
n
+
+
;

1
1 if

(a
tt
r-
nu
m

==
 0

)

(
pr
in
tf
('
No

a
t
t
r
i
b
u
t
e

i
n

t
h
e
 r
e
l
a
t
i
o
n
\
n
\
n
m
)
;

e
x
i
t
 (
1
)
 ;

1 r
e
w
i
n
d
(
f
p
)
 ;

w
h
i
l
e

(
!
f
e
o
f
(
f
p
)
)
 (

f
g
e
t
s
 (
on
e-
li
ne
,

MA
X-
LI
NE
,

f
p
)
 ;

if

(
s
t
r
n
c
m
p
 (
o
n
e
-
l
i
n
e
,

'T
AB
LE
',

5
)
=
=
0
)

1
s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,

'T
AB
LE

Zs
',

t
a
b
l
e
-
n
a
m
e
)
;

c
o
n
t
i
n
u
e
;

1 i
f

(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,

'M
AX
-L
EF
T-
FD
',

l
l
)
=
=
O
)
 (

s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,

'M
AX
-L
EF
T-
FD

Zd'
.

&
l
e
f
t
-
s
i
z
e
)
;

c
o
n
t
 i
n
u
e
;

if

(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 .
I
N
D
E
X
m
,
 5
)
=
=
0
)
 (

s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,

'I
ND
EX

%
s
Z
d
W
,
 g
r
o
u
p
[
g
r
o
u
p
~
n
u
m
l
.
n
a
m
e
.
 h
k
)
;

g
r
o
u
p
 [
g
r
o
u
p
-
n
u
m
]
 .
u
n
i
q
u
e
 =

 k
:

/*
 t

h
e

i
n
p
u
t

l
i
n
e

s
h
o
u
l
d

h
a
v
e

t
h
e

f
o
r
m
a
t

I
N
D
E
X
 i
n
d
e
x
-
n
a
m
e

u
n
i
q
u
e
n
e
s
s
(
O
/
l
)

on
-a
tt
r

..
.

*
/

j

=
7
;

/*
 t
h
e
 .
sm
al
le
st
 p
o
s
i
t
i
o
n

s
u
b
s
c
r
i
p
t
 t
h
a
t

t
h
e
 b
l
a
n
k

b
e
f
o
r
e

(
0
/
1
)
 c
a
n
 o
c
c
u
r

/
w
h
i
l
e

(
o
n
e
-
l
i
n
e
[
j
]

!=

'

')

j
+
+
;

w
h
i
l
e

(
!
i
s
d
i
g
i
t
(
o
n
e
-
l
i
n
e
[
+
+
j
l
)
)

;

j+
+

;
r
e
a
d
n
a
m
e
s
(
h
(
o
n
e
-
l
i
n
e
[
j
l
)
,
 &
(
g
r
o
u
p
[
g
r
o
u
p
-
n
u
m
l
.
o
n
)
)
;

if

(
g
r
o
u
p
[
g
r
o
u
p
-
n
u
m
l
-
o
n
 !

=
 0

)

g
r
o
u
p
-
n
u
+
+
;

c
o
n
t
i
n
u
e
;

i
f

(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 *
G
R
O
U
P
e
,
 5
)
=
=
0
)
 (

s
p
r
i
n
t
f
 (
g
r
o
u
p
 [g
ro
up
-n
um
l
.
n
a
m
e
,

'$
GR
OU
P-
%d
m

,
g
r
o
u
p
-
n
u
m
)
 ;

g
r
o
u
p
 [
gr
ou
p-
nu
ml
 .
u
n
i
q
u
e
 =

0
;

r
e
a
d
n
a
m
e
s
(
&
(
o
n
e
-
l
i
n
e
[
6
]
)
,

h
(
g
r
o
u
p
[
g
r
o
u
p
~
n
u
m
l
.
o
n
)
)
;

if

(
g
r
o
u
p
[
g
r
o
u
p
-
n
u
m
]
.
o
n

!=

0
)

g
r
o
u
p
-
n
u
n
+
+
;

c
o
n
t
 i
n
u
e
 ;

1 i
f

(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 '
WE
IG
HT
'.

6
)
=
=
0
)
 (

1

f
u
n
d
 . c

c
h
a
r

n
a
m
e
l
[
N
A
M
E
-
L
E
N
G
T
H
+
l
]
,

n
a
m
e
Z
[
N
A
M
E
-
L
E
N
G
T
H
+
l
l
;

s
s
c
a
n
f
(
o
n
e
-
l
i
n
e
,

'W
EI
GH
T

%
s
%
s
%
d
*
,

n
a
m
e
l
.

n
a
m
e
2
,
 &
k
)
;

o
r
i
g
i
n
r
o
r
i
g
i
n
-
n
u
n
]
.
v
a
l
u
e

=
k
;

k

=
n
a
m
e
l
n
u
m
(
n
a
m
e
1
)
 ;

i
f

(
k
 =

=
-
1
)

c
o
n
t
i
n
u
e
;

o
r
i
g
i
n
[
o
r
i
g
i
n
-
n
u
m
l
.
f
i
r
s
t

=
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<

k:

k

=
n
a
m
e
2
n
u
m
(
n
a
m
e
2
)
;

i
f

(
k
 =

=
-
1
)

c
o
n
t
i
n
u
e
;

o
r
f
g
f
n
[
o
r
i
g
i
n
-
n
u
m
l
.
s
e
c
o
n
d

=
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<
 k
;

o
r
i
g
i
n
-
n
u
n
+
+
;

c
o
n
t
i
n
u
e
;

(
s
t
r
n
c
m
p
(
o
n
e
-
l
i
n
e
,
 '
PF
D'
,

3
)
=
=
0
)
 (

p

=
(
s
t
m
c
t
 f
d-
st
ru

*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t

f
d
-
s
t
r
u
)
)
;

j

=
4

:
w
h
i
l
e

(o
ne
-l
in
e[
jl

!=

'(
')

j
+
+
:

r
e
a
d
n
a
m
e
s
 (&

 (
on
e-
li
ne
[
j
+
l
l
)
. &

 (
p
-
>
l
e
f
t
)
)
;

w
h
i
l
e

(o
ne
-l
in
e[
jl

!=

'>
'

)
j
+
+
;

w
h
i
l
e

(o
ne
-l
in
e[
jl

!=

' (

'
)

j
+
+
;

r
e
a
d
n
a
m
e
s
(
&
 (
o
n
e
-
l
i
n
e
[
 j
+
l
l
)
 ,

&
 (
p
-
>
r
i
g
h
t
)
)
;

p
-
>
n
e
x
t

=
p
f
d
;

p
f
d

=
p
;

f
c
l
o
s
e
(
f
p
)
:

w
h
i
l
e

(
p
f
d

!=

N
U
L
L

&
&

(
p
f
d
-
>
l
e
f
t
 =

=
0

11
 p
f
d
-
>
r
i
g
h
t

==
 0

)
)

(

c
f
d
-
=
 p
f
d
;

p
f
d

=
p
f
d
-
>
n
e
x
t
;

f
r
e
e
(
c
f
d
)
;

(
p
f
d
 =

=
N
U
L
L
)

(
pr
in
tf
('
no

p
r
e
s
u
m
e
d

F
D
s
 p
r
o
v
i
d
e
d
,

t
h
i
s
 m
e
a
n
s

n
o
 F
D
 e
x
i
s
t
s
\
n
m
)
;

e
x
i
t
(
0
)
;

c
f
d

=
p
f
d
;

w
h
i
l
e

(
c
f
d
-
>
n
e
x
t
 !

=

N
U
L
L
)

[
n
f
d

=
c
f
d
-
>
n
e
x
t
:

i
f

(
n
f
d
-
>
l
e
f
t
 =

=

0

(1

n
f
d
-
>
r
i
g
h
t

==
 0

)

(
c
f
d
-
>
n
e
x
t

=
n
f
d
-
>
n
e
x
t
;

f
r
e
e
(
n
f
d
)
 ;

1 e
l
s
e
 c
f
d

=
c
f
d
-
>
n
e
x
t
;

1 if

(
l
e
f
t
-
s
i
z
e

==
 0

)

l
e
f
t
-
s
i
z
e

=
5;

a
l
l

=
0
;

f
o
r

(
i
=
O
;
 i
<a
tt
r-
nu
n:

i
+
+
)

a
l
l

=
(
a
l
l
 <

<

1
)

(
0
x
0
1
;

c
f
d

=
n
f
d

=
N
U
L
L
;

f
o
r

(
i
=
0
;
 i
q
r
o
u
p
-
n
u
n
;

i
+
+
)

a
n
a
l
y
s
i
s
 (
g
r
o
u
p
[
i
l
 .
o
n
)
 :

p
r
i
n
t
f
(
'
\
n
\
n
\
n
A
n
a
l
y
s
i
s

co
mp
le
te
l\
n\
n'
);

p
~
i
n
t
f
(
~
f
i
1
e
n
a
m
e

t
o
 s
a
v
e
 t
h
e
 r
e
s
u
l
t

(
'-

'
fo
r
s
t
d
o
u
t
)
:

'1
;

sc
an
f(
'%
s'
,

b
u
f
f
e
r
)
;

if

(
s
t
r
c
m
p
(
b
u
f
f
e
r
,
 '

-'
)

!=

0
)

i
f

(
(
f
p
 =

 f
o
p
e
n
(
b
u
f
f
e
r
,
 '
w')
)

==
 N
U
L
L
)

pr
in
tf
('
\n
Ca
n'
t

o
p
e
n
 %

s
\
n
m
,
 b
u
f
f
e
r
)
;

e
l
s
e
 o
u
t
p
u
t
 (
f
p
)
 :

o
u
t
p
u
t
 (
s
t
d
o
u
t
)
 ;

1 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

* *
S
y
n
o
p
s
i
s

*
i
n
t

n
a
m
e
l
n
u
m
 (
c
)

t

c
h
a
r

"c
;

* *
R
e
t
u
r
n

v
a
l
u
e
s

*
i

if

a
t
t
r
[
i
l
.
n
a
m
e

==
 c
;

*
-
1
 o
t
h
e
r
w
i
s
e
.

* ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

s
t
a
t
i
c

i
n
t

n
a
m
e
2
n
u
m
(
c
)

c
h
a
r

*
c
;

f
in
t

i:

f
o
r

(
i
=
O
;
 i
<a
tt
r-
nu
m:

i
+
+
)

i
f

(
s
t
r
c
m
p
(
a
t
t
r
[
i
]
 .
n
a
m
e
,
 c
)
=
=
O
)
 b
r
e
a
k
;

i
f

(
i
 =

=
a
t
t
r
-
n
u
m
)

r
e
t
u
r
n
(
-
1
)
;

r
e
t
u
r
n
(
i
)
 ;

1

S
y
n
o
p
s
i
s

r
e
a
d
n
a
m
e
s
(
s
.
 x

)

c
h
a
r

's
;

u
n
s
i
g
n
e
d

l
o
n
g

*x
:

D
e
s
c
r
i
p
t
i
o
n

s
e
a
r
c
h
e
s

a

s
t
r
i
n
g

s

t
o

f
i
n
d
 w
o
r
d
s
,

w
h
i
c
h

s
h
o
u
l
d
 a
n

a
t
t
r
i
b
u
t
e
 n
a
m
e
,

c
o
n
v
e
r
t

t
h
e
 n
a
m
e

t
o
 i
t
s
 s
e
q
u
e
n
c
i
a
l
 n
u
m
b
e
r
,
 a
n
d

s
t
o
r
e
 i
t
a
t

a
e
 b
i
t

p
o
s
i
t
i
o
n
s

i
n

*
x
.

it

w
i
l
l

c
o
n
v
e
r
t
 a
l
l
 w
o
r
d
s

i
n

t
h
e
 s
t
r
i
n
g
 u
n
t
i
l

')
'

o
r

e
o
l
n
 i
s

e
n
c
o
u
n
t
e
r
e
d

if

t
h
e
 a
t
t
r
i
b
u
t
e
 d
o
e
s
 n
o
t

e
x
i
s
t
,

t
h
e
 b
i
t

i
n

*
x
 i
s
 n
ot

se
t.

(
s
o
 *
x
 m
a
y

b
e

z
e
r
o
 o
n
 r
e
t
u
r
n
i
n
g
,

c
a
l
l
i
n
g

f
u
n
c
t
i
o
n
 s
h
o
u
l
d
 b
e

a

w
a

rd

o
f

i
t
)

s
t
a
t
i
c

v
o
i
d

r
e
a
d
n
a
m
e
s
 (
6
,
 x
)

c
h
a
r

*s
;

u
n
s
i
g
n
e
d

l
o
n
g

*x
i

(
in
t

i,

j
,

k
;

f
u
n
d
 . c

c
h
a
r

n
a
m
e
 [
N
A
M
E
_
L
E
N
G
T
H
+
l
 I :

'x
=

0
;

i

=
0
;

w
h
i
l
e

(
1
)

s
w
i
t
c
h

(
s
[
i
l
)
 (

c
a
s
e

')

 '
 :

c
a
s
e

'\
O

':

c
a
s
e

' \
n'
 :

r
e
t
u
r
n
;

c
a
s
e

'

' :

i
+
+
;

b
r
e
a
k
;

d
e
f
a
u
l
t
 :

j

=
0
;

d
o

(n
a
m
e
[
j
+
+
]

=
s
[
i
+
+
]
;

1
w
h
i
l
e

(
s
[
i
]
!
=
'

'

&
&

s
[
i
]
!
=
'
\
O
'
 &

&

s
[
i
]
!
=
'
)
'

&
&

s
[
i
]
!
=
,
\
n
,
)
;

na
me
[j
l

=

'\
0'
;

k

=
n
a
m
e
Z
n
u
m
(
n
a
m
e
)
;

if

(
k
 !

=

-
1
)

*x

I=

(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<

k
;

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

S
y
n
o
p
s
i
s

m
e
r
g
e
(
i
,

x.

Y
)

in
t

i
;

t

u
n
s
i
g
n
e
d

l
o
n
g

x
,

y
;

t
 *

D
e
s
c
r
i
p
t
i
o
n

t

at

b
o
a
r
d
[
i
l

i
s

a

p
a
i
r

(
y
 z
)
,

t
h
i
s
 p
r
o
c
e
d
u
r
e

s
e
a
r
c
h
e
s

b
o
a
r
d

f
r
o
m

i
,

t

t
o

f
i
n
d
 a

p
a
i
r

(
x
,
 z
).

m
a
k
e

a
n
 e
n
t
r
y
 a
t

i

a
s

f
o
r
 p
a
i
r

(
(
x
 y
)
 2
).

r
e
m
o
v
e

t
h
e
 p
a
i
r

(
x
,
 z
)
,

a
n
d
 u
p
d
a
t
e

bo
ar
d-
nu
n.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

s
t
a
t
i
c
 v
o
i
d

m
e
r
g
e
(
i
,

x
,
 Y
)

in
t

i
;

u
n
s
i
g
n
e
d

l
o
n
g
 x

.
y
;

in
t

j
;

u
n
s
i
g
n
e
d

l
o
n
g

z;

if

[
b
o
a
r
d
[
i
l
.
f
i
r
s
t
 =

=
y
)

z

=
b
o
a
r
d
[
i
l
.
s
e
c
o
n
d
;

e
l
s
e

z
=
b
o
a
r
d
[
i
]
.
f
i
r
s
t
;

f
o
r

(
j
=
i
+
l
;
 j
<b
oa
r&
nu
rn
;

j
+
+
)

if

(
b
o
a
r
d
[
j
]
.
f
i
r
s
t
 =

=
x

&
&

b
o
a
r
d
[
j
l
.
s
e
c
o
n
d

==
 z

I I
b
o
a
r
d
[
j
]
.
f
i
r
s
t

=
=

 z

&
&

b
o
a
r
d
[
j
l
.
s
e
c
o
n
d

==
 x

)
b
r
e
a
k
;

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

* *

s
y
n
o
p
s
i
s

*
a
d
j
u
s
t
g
o
a
r
d
(
a
,

b
)

c

u
n
s
i
g
n
e
d

l
o
n
g
 a
,

b
;

t

D
e
s
c
r
i
p
t
i
o
n

t

it

a
d
j
u
s
t
s

t
h
e
 w
e
i
g
h
t

v
a
l
u
e
s

b
e
t
w
e
e
n

t
h
e
 n
o
d
e
s

in
 b
o
a
r
d

a
n
d

(
a
 b
)
.

a

a
n
d
 b

a
r
e
 m
e
r
g
e
d

t
o
g
e
t
h
e
r
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c
 v
o
i
d

a
d
j
u
s
t
-
b
o
a
r
d
(
a
,

b
)

u
n
s
i
g
n
e
d

l
o
n
g

a,

b
;

(
in
t

i;

i

=
0
;

w
h
i
l
e

(
i
 <

b
o
a
r
d
-
n
u
n
)

(
if

(
b
o
a
r
d
[
i
]
.
f
i
r
s
t

==
 a

&
&

b
o
a
r
d
[
i
l
.
s
e
c
o
n
d

==
 b

(1

b
o
a
r
d
[
i
]
.
f
i
r
s
t

==
 b

&
&

b
o
a
r
d
[
i
l
.
s
e
c
o
n
d

==
 a

)
(

b
o
a
r
d
-
n
u
n
-
-
;

if

(
b
o
a
r
d
-
n
u
m

! =

i
)

(
b
o
a
r
d
[
i
l

=
b
o
a
r
d
[
b
o
a
r
d
~
u
m
l
 ;

i
-
-
;

I
1 e
l
s
e

i
f

[
b
o
a
r
d
[
i
]
.
f
i
r
s
t

==
 a

11
 b
o
a
r
d
[
i
l
.
s
e
c
o
n
d

==
 a

)

m
e
r
g
e
(
i
,

b
,

a)
:

e
l
s
e

i
f

(
b
o
a
r
d
[
i
]
.
f
i
r
s
t

==
 b

(1
 b
o
a
r
d
[
i
l
.
s
e
c
o
n
d

==
 b
)

rn
er
ge
(i
,
a,

b
)
;

i
+
+
;

1
1

S
y
n
o
p
s
i
s

*
fi
ll
-b
oa
rd
(x
1

u
n
s
i
g
n
e
d

l
o
n
g
 x

;

D
e
s
c
r
i
p
t
i
o
n

c
o
p
y
 w
e
i
g
h
t

v
a
l
u
e
s

f
r
o
m
 o
r
i
g
i
n
[
]

t
o
 b
o
a
r
d
[
]
,

f
o
r
 n
o
d
e
s

i
n
 x

.
if

n
o

w
e
i
g
h
t

v
a
l
u
e
s

f
o
r
 a

p
a
i
r

i
n
 x
,

t
h
e
 w
e
i
g
h
t

f
o
r

i
t

i
s
 z
er
o.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c
 v
o
i
d

f
 il
l-
bo
ar
d
(
x
)

u
n
s
i
g
n
e
d

l
o
n
g
 x
;

(
i
n
t

i,

j;

u
n
s
i
g
n
e
d

l
o
n
g
 m
.

n
;

bo
ar
d-
nu
n

=
0
;

m

=
0
x
0
1
;

U U

2 E
A u
b , "

w
I1 0

a 2

f
u
n
d
 . c r

e
l
e
a
s
e
(
p
1

s
t
r
u
c
t

fd
-s
tr
u
*
p
;

D
e
s
c
r
i
p
t
i
o
n

r
e
l
e
a
s
e
 a

fd
-s
tr
u

l
i
s
t
 p
o
i
n
t
e
d
 b
y
 p
.

s
t
a
t
i
c
 v
o
i
d

r
e
l
e
a
s
e
 (
p
)

S
t
~
c
t

f
c
s
t
r
u
 '
p;

(
if

(
p
 !

=
 N
U
L
L
)

(
r
e
l
e
a
s
e
(
p
-
>
n
e
x
t
)
;

f
r
e
e
(
p
)
 ;

1
1

S
y
n
o
p
s
i
s

e
v
a
l
u
a
t
e
 (
q
)

*
s
t
r
u
c
t

fd
-s
tr
u

'q
;

D
e
s
c
r
i
p
t
i
o
n

a
s
s
i
g
n
s
 c
r
e
d
i
t
s
 t
o
 t
h
e
 p
r
e
s
u
m
e
d

ED

p
o
i
n
t
e
d
 b
y
 q
;

*
q
-
>
r
i
g
h
t
 i
s
n
o
t

z
e
r
o
,
 a
n
d
 q
-
>
c
r
e
d
i
t
 h
a
s
 b
e
e
n

i
n
i
t
i
a
l
i
z
e
d
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c
 v
o
i
d

e
v
a
l
u
a
t
e
 (
q)

s
t
r
u
c
t
 f
d-
st
ru

*
q
;

(
i
n
t
 i
;

u
n
s
i
g
n
e
d

lo
ng
 m
;

m

=
0
x
0
1
;

f
o
r

(
i
=
O
;
 i
<a
tt
r-
nu
m;

i
+
+
)

(

if

(
m
 &

q
-
>
l
e
f
t
)
 (

if

(a
tt
r[
il
.k
ey
)

q
-
>
c
r
e
d
i
t
 +

=

to
ta
l-
co
un
t:

e
l
s
e
 q
-
>
c
r
e
d
i
t
 +

=
at
tr
[i
l.
co
un
t;

i
f

(!
at
tr
[i
l.
nu
ll
ab
le
)

q
-
>
c
r
e
d
i
t
 =

 q
-
>
c
r
e
d
i
t
 +

 0
.5

at
tr
[i
l
.
c
o
u
n
t
;

q
-
>
c
r
e
d
i
t
 =

 q
-
>
c
r
e
d
i
t
 +

(
a
t
t
r
-
n
u
-
i
)
'
O
.
O
S
*
t
o
t
a
l
-
c
o
u
n
t
;

1 m

=
m

<<

1
;

1 f
o
r

(
i
=
O
;
 i
q
r
o
u
p
-
n
u
m
;
 i
+
+
)

if

(
q
-
>
l
e
f
t
 =

=
gr
ou
p[
i]
.o
n

&
&

gr
ou
p[
il
.u
ni
qu
e)

q
-
>
c
r
e
d
i
t
 =

 q
-
>
c
r
e
d
i
t

1.
1:

1 ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

s
y
n
o
p
s
i
s

o
u
t
p
u
t
n
a
m
e
s
 (
f
p
,
 x
)

P
I
L
E

*
f
p
;

u
n
s
i
g
n
e
d
 l
o
n
g
 x
;

D
e
s
c
r
i
p
t
i
o
n

o
u
t
p
u
t
s
 t
o
fp
 t
h
e
 a
t
t
r
i
b
u
t
e
 n
a
m
e
s
 s
t
o
r
e
d
 i
n
 x
,
 i
n

fo
rm
at

of
:

t

a
t
t
r
l
 a
t
t
r
2

..
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

s
t
a
t
i
c
 v
oi
d

o
u
t
p
u
t
n
a
m
e
s
 (
f
p
,
 x
)

F
I
L
E

*
f
p
;

u
n
s
i
g
n
e
d
 l
on
g

x
;

(
in
t
i
;

u
n
s
i
g
n
e
d
 l
o
n
g
 m
;

m
 =

0
x
0
1
;

f
o
r

(
i
=
O
;
 i
<
a
t
t
r
-
n
u
n
;
 i
+
+
)
 (

if

(
m
 &

X
)

f
p
r
i
n
t
f
(
f
p
,
 .

%
a

 '
,
at
tr
[i
l.
na
me
);

m

<<
=
1;

1
1

S
y
n
o
p
s
i
s

ou
tp
ut
-a
n-
fd
(f
p,

l
e
f
t
,
 r
i
g
h
t
)

t

F
I
L
E

'f
p;

u
n
s
i
g
n
e
d
 l
on
g
l
e
f
t
,
 r
i
g
h
t
;

D
e
s
c
r
i
p
t
i
o
n

*
o
u
t
p
u
t
s
 t
o

fp
 a
n
 E
D

le
ft

--
>

r
i
g
h
t
,
 i
n
 f
o
r
m
a
t
 o
f:

(
a
t
t
l
l
 a
t
t
l
2

..
.

)
--

>

(
a
t
t
r
l
 a
t
t
r
2

..
.

)

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

s
t
a
t
i
c
 v
oi
d

ou
tp
ut
-a
n-
fd
(
f
p
,
 l
e
f
t
,
 r
i
g
h
t
)

F
I
L
E

*
f
p
;

u
n
s
i
g
n
e
d
 l
on
g
l
e
f
t
,
 r
i
g
h
t

I
f
p
r
i
n
t
f
 (
f
p
,
 '
 (

')

;

o
u
t
p
u
t
n
a
m
e
s
(
f
p
,

l
e
f
t
)

f
p
r
i
n
t
f
(
f
p
,

')

--
>

(

o
u
t
p
u
t
n
a
m
e
s
 (
f
p
,
 r
ig
ht

fp
ut
c(
')
'.

fp
);

1

s
y
n
o
p
s
i
s

o
u
t
p
u
t
 (
f
p
)

F
I
L
E

*
f
p
;

D
e
s
c
r
i
p
t
i
o
n

o
u
t
p
u
t
s
 t
h
e
 d
a
t
a
b
a
s
e
 i
n
f
o
r
m
a
t
i
o
n
 t
o

fp
.

* .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c
 v
oi
d

f
u
n
d
 . c

o
u
t
p
u
t
 (
f
p
)

F
I
L
E

'f
p;

(
i
n
t
 i
;

S
t
r
u
C
t

fd
-
st
^
'p
;

f
p
r
i
n
t
f
(
f
p
,

'T
AB
LE

%
s
\
n
\
n
m
,
 ta
bl
e-
na
me
);

f
p
r
i
n
t
f
(
f
p
,

'M
A]
CL
EF
T-
FD

%
d
\
n
\
n
m
,
 l
ef
t-
si
ze
);

f
o
r

(
i
=
O
;
 i
<a
tt
r-
nu
m;

i
+
+
)

fp
ri
nt
f(
fp
,

'F
IE
LD

%
s
 %
d
%
d
 %
d
\
n
9
,
 a
tt
r[
il
.n
am
e,

at
tr
[i
].
nu
ll
ab
le
,

at
tr
[i
l.
ke
y,

at
tr
[i
l.
co
un
t)
;

f
p
u
t
c
 (
'
\
n
l
,
 fp
)
;

f
o
r

(
i
=
O
;
 i
<g
ro
up
-n
um
;
i
+
+
)
 (

f
p
r
i
n
t
f
 (
f
p
,
 '
GR
OU
P

%
s
 %
d

',

gr
ou
p[
il
 .
n
a
m
e
,
 g
ro
up
[i
l
.u
ni
qu
e)
;

o
u
t
p
u
t
n
a
m
e
s
(
f
p
,
 g
ro
up
[i
].
on
);

f
p
u
t
c
 (

'
\n
'
,
fp
)
;

1 f
p
u
t
c
(
'
\
n
'
,
 f
p
)
 ;

f
o
r

(
i
=
O
;
 i
<o
ri
gi
n-
nu
m;

i
+
+
)
 (

f
p
r
i
n
t
f
(
f
p
,

'W
EI
GH
T

')
;

o
u
t
p
u
t
n
a
m
e
s
(
f
p
,
 o
ri
gi
n[
il
.f
ir
st

I
or
ig
in
[i
l.
se
co
nd
);

f
p
r
i
n
t
f
 (
f
p
,

%
d
\
n
m
,
 or
ig
in
[i
l
.
v
a
l
u
e
)
 :

1 fp
ut
c(
'\
n'
,

fp
);

p

=
p
f
d
;

w
h
i
l
e

(
p
 !

=
N
U
L
L
)

(
f
p
r
i
n
t
f
(
f
p
,

'P
FD

'1
;

ou
tp
ut
-a
n-
fd
(f
p,

p
-
>
l
e
f
t
,
 p
-
>
r
i
g
h
t
)
;

fp
ut
c(
'\
n'
,

fp
);

p

=
p
-
>
n
e
x
t
;

1 fp
ut
c(
'\
n'
,

fp
);

p

=
n
f
d
;

w
h
i
l
e

(p

I=

N
U
L
L
)

(
fp
ri
nt
f(
fp
.

'N
FD

')
;

ou
tp
ut
-a
n-
fd
(f
p,

p
-
>
l
e
f
t
.
 p
-
>
r
i
g
h
t
)
;

fp
ut
c(
'\
n'
,

fp
);

p

=
p
-
>
n
e
x
t
;

1 f
p
u
t
c
(
'
\
n
l
,
 f
p
)
 ;

p

=
c
f
d
;

w
h
i
l
e

(
p
 !

=
 N
U
L
L
)

(
f
p
r
i
n
t
f
 (
fp
.
'C
FD

'1
 ;

o
u
t
p
u
t
-
a
~
f
d
(
f
p
,
 p
-
>
l
e
f
t

fp
ut
c(
'\
n'
,

f
p
)
 ;

p

=
 p
-
>
n
e
x
t
;

1 S
y
n
o
p
s
i
s

b
r
o
w
s
e
(
h
,
 n
)

s
t
m
c
t
 f
d-
st
rU

h[
l
;

in
t
n
;

D
e
s
c
r
i
p
t
i
o
n

o
u
t
p
u
t
 t
o
 s
t
d
o
u
t
 t
he
 F
D
s
 i
n
 a
r
r
a
y
 h
[l

w
i
t
h

t
h
e
i
r
 c
re
di
ts
.

t

n

is
 t
h
e
 s
i
z
e
 o
f
th
e
a
r
r
a
y
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

s
t
a
t
i
c
 v
o
i
d

b
r
o
w
s
e
(
h
,
 n
)

s
t
r
u
c
t

fd
-s
tr
u
h[
l;

in
t
n
;

(
in
t
i;

fo
r

(
i
=
O
;
 i
<
n
;
 i
+
+
)

if

(h
[i
l.
le
ft

!=

0
)
 (

pr
in
tf
('
se
qu
en
ti
a1

n
u
m
b
e
r
:
 %
d\
n'
,

i
+
l
)
;

ou
tp
ut
-a
n-
fd
(s
td
ou
t,

h[
il

.
l
e
f
t
,
 h
[
il
 .
r
i
g
h
t
)
 ;

pr
in
tf
('
\n
cr
ed
it

fo
r
i
t
s
 l
ef
t
si
de
:
%
d
\
n
\
n
m
,
 h[
il
.c
re
di
t)
;

1

S
y
n
o
p
s
i
s

s
t
a
t
i
c

in
t
c
o
n
f
i
r
m
a
t
i
o
n
(
p
)

s
t
m
c
t
 f
d-
st
ru

*
p
;

R
e
t
u
r
n
 v
a
l
u
e
s

1

th
er
e'
re

c
o
n
f
i
r
m
e
d
 F
D
s
;

0

o
t
h
e
r
w
i
s
e

D
e
s
c
r
i
p
t
i
o
n

c
o
n
f
i
r
m
a
t
i
o
n
 p
r
o
c
e
s
s
 a
b
o
u
t
 a

li
st

of
 p
r
e
s
u
m
e
d
 F
D
s
 p
oi
nt
ed
 b
y

p.

t
h
e
 l
is
t
m
a
y

c
o
n
t
a
i
n
 F
D
s
 w
i
t
h

e
m
p
t
y
 r
i
g
h
t
 s
id
e.

A
f
t
e
r
 t
h
e
 c
o
n
f
i
r
m
a
t
i
o
n
,
 f
o
r
 e
a
c
h

e
n
t
r
y
 i
n
 p
,
 i
t
s
 r
i
g
h
t
 f
ie
ld

c
o
n
t
a
i
n
s
 t
h
e
 c
o
n
f
i
r
m
e
d
 F
D
s
 a
n
d
 i
t
s
 c
r
e
d
i
t

f
i
e
l
d
 c
o
n
t
a
i
n
s
 t
h
e

c
o
n
f
i
r
m
e
d
 n
o
n
-
F
D
s
.

(S
o
al
l
e
n
t
r
i
e
s
 s
h
o
u
l
d
 b
e
up
da
te
d)

it

p
r
o
v
i
d
e
s
 a

n

i
n
t
e
r
a
c
t
i
v
e
 e
n
v
i
r
o
n
m
e
n
t
,
 w
i
t
h

t
h
e
 f
ol
lo
wi
ng
 f
un
ct
io
ns
:

0

q
u
i
t

c
o
n
f
i
r
m
a
t
i
o
n
 p
r
o
c
e
s
s

-
1

h
e
l
p
,
 p
r
i
n
t
 a

li
st

of

c
o
m
n
d
s

-
2

b
r
o
w
s
e

t
h
e
 p
r
e
s
u
m
e
d

li
st

-
3

p
r
i
n
t

t
h
e
 d
a
t
a
b
a
s
e
 i
n
f
o
r
m
a
t
i
o
n

-4

p
r
i
n
t
 a

s
e
l
e
c
t
e
d
 a
t
t
r
i
b
u
t
e
 i
n
f
o
r
m
a
t
i
o
n

-5

p
r
i
n
t

c
o
n
f
i
r
m
e
d
 F
D
s

-
6

p
r
i
n
t

c
o
n
f
i
r
m
e
d
 n
o
n
-
F
D
s

s
t
a
t
i
c

in
t

c
o
n
f
i
r
m
a
t
i
o
n
 (
p
)

s
t
r
u
c
t
 f
I
L
S
t
N
 '
p;

(
s
t
r
u
c
t
 f
d
-
s
t
n

*
r
,
 *
h
e
a
d
;

in
t
i
,
 n
,
 s
e
l
;

u
n
s
i
g
n
e
d

l
o
n
g
 m
;

c
h
a
r
 6
 [N
AM
E-
LE
NG
TH
+l
];

f
u
n
d
 . c

i
 =

 0
;

r

=
p
;

w
h
i
l
e

(
r
 !

=

N
U
L
L

)
(

if

(
r
-
>
r
i
g
h
t
 !

=

0
)

i
+
+
;

r

=
r
-
>
n
e
x
t
;

1 h
e
a
d

=
(
s
t
r
u
c
t
 f
d-
st
ru

*
)
c
a
l
l
o
c
(
i
,
 s
i
z
e
o
f
(
s
t
r
u
c
t

f
d
-
s
t
r
u
)
)
;

r

=
p
;

n

=
0
;

w
h
i
l
e

(
r
 !

=
 N
U
L
L
)

(
if

(
r
-
>
r
i
g
h
t
 !

=
 0
)

(

h
e
a
d
[
n
l
.
l
e
f
t

=
r
-
>
l
e
f
t
;

h
e
a
d
[
n
l
.
r
i
g
h
t

=
r
-
>
r
i
g
h
t
;

he
ad
[n
].
cr
ed
it

=
r
-
>
c
r
e
d
i
t
;

he
ad
[n
l.
ne
xt

=
r
;

n
+
+
;

I r

=
r
-
>
n
e
x
t
;

I pr
in
tf
('
\n
se
le
ct

o
n
e
 F
D

f
o
r
 c
on
fi
rm
at
io
n\
n'
);

pr
in
tf
('
Yo
u

c
a
n
:
\
n
m
)
;

pr
in
tf
('
\t
in
pu
t

t
h
e
 s
e
q
u
e
n
t
i
a
l
 n
u
m
b
e
r
,
\
n
*
)
;

pr
in
tf
('
\t
or

n
e
g
a
t
i
v
e
 n
u
m
b
e
r
s

f
o
r
 o
t
h
e
r

f
u
n
c
t
i
o
n
s

(
-
1
 f
o
r
 h
e
l
p
)
.
\
n
m
)
;

w
h
i
l
e

(
1
)
 (

f
o
r

(
i
=
O
;
 i
<
n
;
 i
+
+
)

i
f

(
h
e
a
d
[
i
l
.
l
e
f
t
 !

=

0
)

b
r
e
a
k
;

if

(i
 =

=
n
)

s
e
l
 =

 0
;

e
l
s
e

(
pr
in
tf
('
\n
in
pu
t

a
n

i
n
t
e
g
e
r
:

')
;

sc
an
f(
'%
d'
,

&
s
e
l
)
;

1 s
w
i
t
c
h

(s
el
l

(
c
a
s
e
 0
:

pr
in
tf
('
\n
Th
e

F
D
s
 n
o
t

c
o
n
f
i
r
m
e
d
 w
i
l
l
 b
e

c
o
n
s
i
d
e
r
e
d
 a
s
 n
o
n
-
F
D
s
\
n
m
)
;

pr
in
tf
('
Ar
e

y
o
u
 s
u
r
e
 t
o
 q
u
i
t

(
0
 -

-
n
o
;
 1
 -

-
q
u
i
t
)

:

')
;

sc
an
f(
'%
dm
,

r
s
e
l
)
;

i
f

(
s
e
l
 =

=
1
)
 (

rn

=
0
;

f
o
r

(
i
=
O
;
 i
<
n
;
 i
+
+
)
 (

r

=
h
e
a
d
f
i
l
 .
n
e
x
t
;

if

(
h
e
a
d
[
i
]
 .
l
e
f
t
 =

=
0
)

(
r
-
>
c
r
e
d
i
t
 =

 r
-
>
r
i
g
h
t
 &

-h
ea
d[
i]
.r
ig
ht
;

r
-
>
r
i
g
h
t
 =

 h
ea
d[
il
.r
ig
ht
;

1 e
l
s
e

(
r
-
>
c
r
e
d
i
t
 =

 r
-
>
r
i
g
h
t
;

r
-
>
r
i
g
h
t
 =

 0
;

I if

(
r
-
>
r
i
g
h
t
 !

=

0
)

m

=
1
;

1 pr
in
tf
('
\n
\n
En
d

o
f

c
u
r
r
e
n
t
 c
o
n
f
i
r
m
a
t
i
o
n
 s
e
s
s
i
o
n
\
n
m
)
;

if

(
m
)
 r
e
t
u
r
n
(
1
)
 ;

r
e
t
u
r
n
 (
0
)
 ;

1 b
r
e
a
k
;

c
a
s
e
 -
1
:

pr
in
tf
('
\n
Yo
u

c
a
n

i
n
p
u
t
 t
h
e
 s
e
q
u
e
n
t
i
a
l
 n
u
m
b
e
r

f
o
r
 a
n
P
D
\
n
m
)
;

pr
in
tf
('
or

t
h
e
 f
o
l
l
o
w
i
n
g
 c
om
ma
nd
s:
')
;

pr
in
tf
('
\t

0

q
u
i
t

t
h
e
 c
o
n
f
i
r
m
a
t
i
o
n
 p
r
o
c
e
s
s
\
n
g
)
;

pr
in
tf
('
\t
-1

h
e
l
p
,
 p
r
i
n
t

t
h
i
s

l
i
s
t
 o
f
 c
om
ma
nd
s\
n'
);

pr
in
tf
('
\t
-2

b
r
o
w
s
e
 t
h
e
 l
i
s
t
 o
f
 F
D
s

f
o
r
 c
o
n
s
i
d
e
r
a
t
i
o
n
\
n
m
)
;

pr
in
tf
('
\t
-3

p
r
i
n
t

t
h
e
 d
a
t
a
b
a
s
e

i
n
f
o
r
m
a
t
i
o
n
\
n
m
)
;

b
r
e
a
k
;

c
a
s
e
 -
2
:

b
r
o
w
s
e
(
h
e
a
d
,
 n
)
;

b
r
e
a
k
;

c
a
s
e
 -
3
 :

o
u
t
p
u
t
(
s
t
d
o
u
t
)
;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

i
f

(
s
e
l
 >

0

&
&

s
e
l
 <

=
 n
)

(

s
e
l
-
-
;

if

(
h
e
a
d
[
s
e
l
l
.
l
e
f
t
 =

=
0
)
 [

pr
in
tf
('
th
is

F
D
 h
a
s

j
u
s
t
 b
e
e
n

c
o
n
s
i
d
e
r
e
d
\
n
m
)
;

b
r
e
a
k
;

1 o
u
t
p
u
t
-
a
n
-
f
d
(
s
t
d
o
u
t
,

h
e
a
d
[
s
e
l
l
.
l
e
f
t
,

h
e
a
d
[
s
e
l
l
.
r
i
g
h
t
)
;

p
r
i
n
t
f
(
"
\
n
t
h
e
 a
b
o
v
e
 F
D
 f
o
r
 c
on
fi
rm
at
io
n\
n'
);

pr
in
tf
('
to

d
e
c
i
d
e
 w
h
i
c
h

a
t
t
r
i
b
u
t
e
 o
n

t
h
e
 r
i
g
h
t
 s
i
d
e
 i
s
 a

\

d
e
p
e
n
d
e
n
t
,
 y
o
u
 m
a
y

i
n
p
u
t
:

\n
')
;

pr
in
tf
('
\t
th
e

n
a
m
e
 o
f

t
h
e
 a
t
t
r
i
b
u
t
e
,
\
n
0
)
;

pr
in
tf
('
\t
or

O
 t
o

s
e
l
e
c
t
 a
l
l
 a
t
t
r
i
b
u
t
e
s
\
n
m
)
;

pr
in
tf
('
in
pu
t

$
t
o

f
i
n
i
s
h
\
n
m
)
;

m

=
0
;

w
h
i
l
e

(
m
 !

=

h
e
a
d
[
s
e
l
l
.
r
i
g
h
t
)

[
p
r
i
n
t
f
 (
'\
n>

')
 ;

s
c
a
n
f
 ('
%a
',

s
)
 ;

if

(
s
t
r
c
m
p
(
s
.
 '
O
m
)
 =

=
0
)
 (

m

=
he
ad
[s
el
l
.
r
i
g
h
t
;

b
r
e
a
k
;

1 if

(
s
t
r
c
m
p
(
s
,
 '$

')

==
 0
)

b
r
e
a
k
;

i
=
n
a
m
e
2
n
u
m
l
s
)
;

i
f

(i
 =

=
-
1

11

(
(
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<

i
)
 &

he
ad
[s
el
l.
ri
gh
t)

==
 0
)

pr
in
tf
('
n0

s
u
c
h
 a
t
t
r
i
b
u
t
e
 o
n
 t
h
e
 r
i
g
h
t
\
n
9
)
;

e
l
s
e
 m

=
m

1
(
(
u
n
s
i
g
n
e
d
 1
o
n
g
)
O
x
O
l
 <

<

i
)
;

1

e
l
s
e
 pr
in
tf
('
in
pu
t

o
u
t

o
f
 r
a
n
g
e
\
n
m
)
;

1
1

1

f
u
n
d
 . c

S
y
n
o
p
s
i
s

t

a
n
a
l
y
s
i
s
 (
x
)

*
u
n
s
i
g
n
e
d

l
o
n
g
 x
;

D
e
s
c
r
i
p
t
i
o
n

it

a
n
a
l
y
z
e
s

t
h
e
 F
D
s

in

a
 g
r
o
u
p

o
f

x.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c

v
o
i
d

a
n
a
l
y
s
i
s
 (
x
)

u
n
s
i
g
n
e
d

l
o
n
g

x;

(
in
t

i,

j
,
 m
.

r
o
u
n
d
;

u
n
s
i
g
n
e
d

l
o
n
g

c
a
n
d
i
d
a
t
e
,
 y
,

z
;

s
t
r
u
c
t

fd
-s
tr
u

*p
.

'q.

'r
,

'r
l;

s
h
o
r
t

in
t

d
o
n
e
,

n
e
e
d
;

fi
ll
-b
oa
rd
 (
x
)
 ;

w
h
i
l
e

(
b
o
a
r
d
-
n
u
m
 >

0
)

(

m

=
b
o
a
r
d
[
O
l
.
v
a
l
u
e
;

j

=
0
;

f
o
r

(
i
=
l
;
 i
<
b
o
a
r
d
-
n
u
n
;

i
+
+
)

i
f

(
m
 <

 b
o
a
r
d
[
i
l
.
v
a
l
u
e
)

(

m

=
 b
o
a
r
d
[
i
l
 .
v
a
l
u
e
;

j

=

i;

1
c
a
n
d
i
d
a
t
e
 =

 b
o
a
r
d
[
j
l
.
f
i
r
s
t

I
b
o
a
r
d
[
j
]
.
s
e
c
o
n
d
;

r
o
u
n
d

=
1
;

p

=
N
U
L
L
;

d
o
n
e

=
0
;

w
h
i
l
e

(
r
o
u
n
d
 <

=

l
e
f
t
-
s
i
z
e
)

(
i
f

(
p
 =

=
 N
U
L
L
)

(
y

=
0
x
0
1
;

f
o
r

(
i
=
O
;
 i
<
a
t
t
r
-
n
u
n
;

i
+
+
)

(

if

(
y
 &

c
a
n
d
i
d
a
t
e
)

{
q

=
(
s
t
r
u
c
t
 f
d-
st
ru

*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t

fd
-s
tr
u)
);

q
-
>
l
e
f
t

=
y
;

q
-
>
n
e
x
t

=
p;

P

=
q
;

1 y

=
y

<
<

1;

1
I e
l
s
e

(
r

=
p
;

r
l

=
N
U
L
L
;

w
h
i
l
e

(
r
 !

=

N
U
L
L
)

(
y

=
0
x
0
1
;

w
h
i
l
e

(
(
y
 &

r
-
>
l
e
f
t
)
=
=
O
)

y

=
(
y
 <

<

1
)

I
0
x
0
1
;

y

=
(
y
 >

>

1
)
 &

c
a
n
d
i
d
a
t
e
;

if

(
y

!=
 0
)

(
z

=
0
x
0
1
;

f
o
r

(
i
=
O
;
 i
<
a
t
t
r
-
n
u
m
;

i
+
+
)

(

i
f

(
Z
 h

Y
)

(
q

=
(
s
t
r
u
c
t
 f
d-
st
ru

*
)

m
a
l
l
o
c
 (
s
i
z
e
o
f
(
s
t
r
u
c
t
 f
d-
st
ru
)

)
;

q
-
>
l
e
f
t

=
r
-
>
l
e
f
t

1
z
;

q
-
>
n
e
x
t

=
r
l
;

r
l

=
q;

1 z
=

z
 <

<

1
;

I

1 r

=
r
-
>
n
e
x
t
;

1 r
e
l
e
a
s
e
 (
p
)
 ;

p

=

r
l
;

1 i
f

(
p
-
>
n
e
x
t
 =

=
N
U
L
L
)

b
r
e
a
k
;

q

=
p
;

n
e
e
d

=
0
;

w
h
i
l
e

(
q
 !

=
 N
U
L
L
)

(
q
-
>
r
i
g
h
t

=
c
l
o
s
u
r
e
(
p
f
d
,
 q
-
>
l
e
f
t
)
 &

c
a
n
d
i
d
a
t
e

&

-
(
c
l
o
s
u
r
e
(
c
f
d
,
 q
-
>
l
e
f
t
)
)
 ;

if

(
q
-
>
r
i
g
h
t
)
 {

r

=
n
f
d
;

w
h
i
l
e

(
r
 !

=
N
U
L
L

&
&

r
-
>
l
e
f
t

!=

q
-
>
l
e
f
t
)

r

=
r
-
>
n
e
x
t
;

if

(
r

q
-
>
r
i
g
h
t

!=

N
U
L
L
)
 =
q
-
>
r
i
g
h
t
 &

-
r
-
>
r
i
g
h
t
;

1 q
-
>
c
r
e
d
i
t

=
 0
;

if

(
q
-
>
r
i
g
h
t
)
 {

e
v
a
l
u
a
t
e
 (
q
)
 ;

n
e
e
d

=
1
;

1 q

=
q
-
>
n
e
x
t
;

1 if

(
n
e
e
d
)
 (

d
o
n
e
 =

 c
o
n
f
i
r
m
a
t
i
o
n
(
p
)
 ;

9
 =

 P
;

w
h
i
l
e

(
q

!=

N
U
L
L
)

(
i
f

(
q
-
>
c
r
e
d
i
t

!=

0
)

n
o
n
-
f
d
(
q
-
>
l
e
f
t
,

q
-
>
c
r
e
d
i
t
)
;

q

=
q
-
>
n
e
x
t
;

1
1 i
f

(
d
o
n
e
)

b
r
e
a
k
;

if

(
d
o
n
e
)
 (

9
 =

 P
;

y

=
0;

w
h
i
l
e

(
q
 !

=
 N
U
L
L
)

(
if

(
q
-
>
r
i
g
h
t
)
 (

r

=
c
f
d
;

w
h
i
l
e

(
r
 !

=
 N
U
L
L

&
&

r
-
>
l
e
f
t

!=
 q
-
>
l
e
f
t
)

r

=
r
-
>
n
e
x
t
;

i
f

(
r
 !

=
N
U
L
L
)

r
-
>
r
i
g
h
t

(=
 q
-
>
r
i
g
h
t
:

e
l
s
e
 r
 (

=
(
s
t
r
u
c
t
 f
d-
st
ru

*
)
m
a
l
l
o
c
 (
s
i
z
e
o
f
 (
s
t
r
u
c
t
 f
d-
st
ru
)

)
;

r
-
>
l
e
f
t
 =

 q
-
>
l
e
f
t
;

r
-
>
r
i
g
h
t

=
q-
>r
ig
ht
:

r
-
>
n
e
x
t

=
c
f
d
;

c
f
d

=
r
;

1

f
u
n
d
 . c

w
h
i
l
e

(
q
 1

=
N
U
L
L
)

(
if

(
q
-
>
r
i
g
h
t
)

y

=
y

h

-
q
-
>
l
e
f
t
;

q

=
q
-
>
n
e
x
t
;

1 X

=
X

&

-
y
;

f
 i
l
l
-
b
o
a
r
d
 (
x
)
 ;

1 e
l
s
e
 a
d
j
u
s
t
-
b
o
a
r
d
(
b
o
a
r
d
[
j
l
.
f
i
r
s
t
,

b
o
a
r
d
[
j
l
.
s
e
c
o
n
d
)
;

r
e
l
e
a
s
e
 (

p
) ;

)
/*

 w
h
i
l
e

(
b
o
a
r
a
n
u
r
n
 >

1
)
 *

/
I

f
u
n
d
 . h

#
d
e
f
i
n
e

I
N
D
E
X
-
N
U
M

5

/*
 M
a
x

i
n
d
e
x
e
s
 a

r
e
l
a
t
i
o
n
 h

a
s

*
/

#
d
e
f
i
n
e

G
R
O
U
P
-
N
U
M

I
N
D
E
]
C
N
U
M

+

5

/*

 M
a
x

g
r
o
u
p
s

*
/

#
d
e
f
i
n
e

F
I
E
L
D
-
L
E
N
G
T
H

4
2

#
d
e
f
i
n
e
 M

A
X
-
m
A
T
P
R

1
0

/*
 M
a
x
i
m
u
m

a
s

8
 x

s
i
z
e
o
f
(
1
o
n
g

i
n
t
)

*
/

/*
 s
t
r
u
c
t
u
r
e

f
o
r
 a
t
t
r
i
b
u
t
e
s

d
e
s
c
r
i
p
t
i
o
n

*
/

t
y
p
e
d
e
f

s
t
r
u
c
t

(
c
h
a
r
 n
a
m
e
[
N
A
M
E
_
L
E
N
G
T
H
+
l
]
;

s
h
o
r
t

in
t
n
u
l
l
a
b
l
e
:

/*
 1

i
f

n
u
l
l
a
b
l
e
,

0

o
t
h
e
r
w
i
s
e

*/

s
h
o
r
t

in
t

k
e
y
;

/'

1

i
f
 k
e
y
,

0

o
t
h
e
r
w
i
s
e

'/

in
t

c
o
u
n
t
;

/*
 #

d
i
s
t
i
n
c
t

v
a
l
u
e
s

'/

)
a
t
t
r
-
t
y
p
e
;

/*
 s
t
r
u
c
t
u
r
e

f
o
r

i
n
d
e
x
 d
e
s
c
r
i
p
t
i
o
n

*/

t
y
p
e
d
e
f

s
t
r
u
c
t

I
c
h
a
r
 n
a
m
e
[
N
A
M
E
-
L
E
N
G
T
H
+
l
l
;

/*
 i

n
d
e
x
 n
a
m
e

*
/

s
h
o
r
t

in
t

u
n
i
q
u
e
;

/*
 u
n
i
q
u
e
n
e
s
s

*
/

u
n
s
i
g
n
e
d

l
o
n
g
 o
n
;

/*
 a
t
t
r
i
b
u
t
e
s

t
h
e

i
n
d
e
x
 c
r
e
a
t
e
d

o
n

*/

)
i
n
d
e
x
-
t
y
p
e
;

/*
 s
t
r
u
c
t
u
r
e

f
o
r

F
D
 d
e
s
c
r
i
p
t
i
o
n

*
/

s
t
r
u
c
t

fd
-s
tr
u

1
u
n
s
i
g
n
e
d

l
o
n
g

l
e
f
t
,

r
i
g
h
t
;

u
n
s
i
g
n
e
d

l
o
n
g

c
r
e
d
i
t
;

s
t
m
c
t

fd
-s
tr
u

n
e
x
t
;

I;

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
..

*
@
(
#
)
s
y
n
o
n
y
m

M
a
y

5
,

1
9
9
2

*
T
h
i
s

i
s
 a

p
r
o
g
r
a
m
 w
h
i
c
h

d
o
e
s

s
y
n
o
n
y
m
 m
a
t
c
h
i
n
g
.

G
i
v
i
n
g

t
w
o
 r
e
l
a
t
i
o
n
s
 w
i
t
h

n
o

n
a
m
i
n
g

c
o
n
v
e
n
t
i
o
n
s
,

i.
e.
,

f
i
e
l
d
s
 w
i
t
h

t
h
e
 s
a
m
e
 n
a
m
e

d
o

n
o
t

s
u
g
g
e
s
t

t
h
a
t

t
h
e
y

a
r
e

s
y
n
o
n
y
m
s
,

t
h
e
 p
r
o
g
r
a
m

t
r
i
e
s

t
o

f
i
n
d
 a
t
t
r
i
b
u
t
e
s

t
h
a
t

a
r
e
 s
y
n
o
n
y
m
s
.

O
n
e

a
t
t
r
i
b
u
t
e

c
a
n
 h
a
v
e

m
o
r
e

t
h
a
n
 o
n
e
 a
t
t
r
i
b
u
t
e
s

i
n
 t
h
e

o
t
h
e
r
 r
e
l
a
t
i
o
n

a
s

*
s
y
n
o
n
y
m
s
.

F
o
r

t
w
o

f
i
e
l
d
s
 A

a
n
d

B

i
n
 d
i
f
f
e
r
e
n
t

r
e
l
a
t
i
o
n
s
,
 w
e

d
e
f
i
n
e

d
(
A
,

B
)
 a
s
:

*
c
(
A
,
B
)
 =

 l
o
o
*
(
#
 d
i
s
t
i
n
c
t

t
u
p
l
e
s

e
q
u
a
l
s

o
n

A

a
n
d

B
)

d
(
A
,
B
)
 =

 c
 (
A
,
B
)
 /
(
d
i
s
t
i
n
c
t
 A
)

+

c
 (
A
,
 B)
 /
(
d
i
s
t
i
n
c
t
 B
)

t
h
i
s
 d
-
v
a
l
u
e
 w
i
l
l
 b

e
 u
s
e
d

t
o

j
u
d
g
e

t
h
e
 c
l
o
s
e
n
e
s
s

of

A

a
n
d

B.

1

/*
 l

o
g
i
n
 o
n
t
o
 O
R
A
C
L
E

*/

#
d
e
f
i
n
e
 U
S
E
R

'
x
i
a
o
b
i
n
g
/
c
h
e
n
@
a
a
a
m

/*
 t
h
e
 d
-
v
a
l
u
e
 b
e
l
o
w
 w
h
i
c
h

s
h
o
u
l
d

n
o
t

b
e

c
o
n
s
i
d
e
r
e
d

*/

#
d
e
f
i
n
e

L
O
W
-
B
O
U
N
D

0

/'

m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

a
t
t
r
i
b
u
t
e
s

in

e
a
c
h

r
e
l
a
t
i
o
n

*/

#
d
e
f
 i
n
e
 M
AX
-N
UM
-A
TT
R

2
 0

/*

l
e
n
g
t
h

o
f

t
a
b
l
e
 n
a
m
e
s
,

a
t
t
r
i
b
u
t
e

n
a
m
e
s
,

et
c.
,

i
n
 b
y
t
e
s

*/

#
d
e
f
i
n
e

N
A
M
E
-
L
E
N
G
T
H

3
0

/*

f
o
r
 p
a
r
s
i
n
g

o
f

vi
ew
-t
ex
t

*/

#
d
e
f
 i
n
e
 E
ND

0

#
d
e
f
i
n
e

D
O
T

1

#
d
e
f
i
n
e

E
Q
U
A
L

2

#
d
e
f
i
n
e
 V
A
R

3

#
d
e
f
i
n
e
 W
H
E
R
E

4

#
d
e
f
i
n
e
 A

N
D

5

#
d
e
f
i
n
e

O
R

6

#
d
e
f
i
n
e
 N
O
T

7

#
d
e
f
i
n
e

O
T
H
E
R

8

/*
 l

i
s
t

t
o
 s
t
o
r
e
 s
y
n
o
n
y
m
s

f
o
r

e
a
c
h

a
t
t
r
i
b
u
t
e

*
/

s
t
r
u
c
t

sy
n-
st
ru

(
i
n
t

f
i
e
l
d
;

/*
 a
t
t
r
i
b
u
t
e
 n
u
m
b
e
r

*/

s
t
r
u
c
t

sy
n-
st
ru

n
e
x
t
;

1;

/*
 s

t
r
u
c
t
u
r
e
 f
o
r
 a
t
t
r
i
b
u
t
e
 s
p
e
c
i
f
i
c
a
t
i
o
n

*/

s
t
r
u
c
t

at
tr
-s
tr
u

(
c
h
a
r
 n
a
m
e
[
N
A
U
E
-
L
E
N
G
T
H
]
;

/'

a
t
t
r
i
b
u
t
e
 n
a
m
e

*/

c
h
a
r

ty
pe
[8
]:

/*
 d
a
t
a

t
y
p
e

*/

i
n
t

l
e
n
g
t
h
;

/*
 d
a
t
a

l
e
n
g
t
h

*/

in
t

p
r
e
c
i
s
i
o
n
;

i
n
t

s
c
a
l
e
;

c
h
a
r

c
o
m
m
e
n
t
s
[
2
0
0
1
;

/*
 c

o
m
m
e
n
t
s
 o
n

t
h
e

f
i
e
l
d

*/

i
n
t

n-
sy
n;

/*
 #

s
y
n
o
n
y
m
s
 a
l
r
e
a
d
y
 m
a
t
c
h
e
d

t
o

it

*I

s
t
r
u
c
t

s
y
n
-
s
t
r
u

s
y
n
;

/*
 p
o
i
n
t
s

t
o

i
t
s

l
i
s
t

o
f

s
y
n
o
n
y
m
s

*/

1;

/*
 a
r
r
a
y

f
o
r
 t
h
e
 a
t
t
r
i
b
u
t
e
s

o
f

t
w
o
 r
e
l
a
t
i
o
n
s

*/

s
t
r
u
c
t

at
tr
-s
tr
u

a
1
 [
M
A
X
J
W
J
l
T
R
l
,

a
2
 [
r
y
u
C
N
u
y
A
T
T
R
l
;

in
t

n
l
,

n2
:

/*
 #

of

a
c
t
u
a
l
 a
t
t
r
i
b
u
t
e
s

i
n
 e
a
c
h

r
e
l
a
t
i
o
n

*
/

/*
 a
r
r
a
y

t
o
 s
t
o
r
e
 d

v
a
l
u
e

'/

s
t
a
t
i
c

in
t

d
[
H
A
X
H
A
X
N
U
M
-
A
T
P
R
l

[
M
A
X
-
N
U
Y
A
T
T
R
I
 ;

/*
 m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

s
y
n
o
n
y
m
s
 a
n
 a
t
t
r
i
b
u
t
e

c
a
n
 h
a
v
e
*
/

in
t

ma
x-
sy
n;

/*
 p
o
s
i
t
i
o
n

i
n
d
i
c
a
t
o
r

f
o
r
 v
i
e
w

t
e
x
t

a
n
a
l
y
s
i
s

*
/

in
t

p
o
s
;

E
X
E
C

S
Q
L
 B
E
G
I
N
 D
E
C
L
A
R
E

S
E
C
T
I
O
N
;

V
A
R
C
H
A
R

u
i
d
[
3
O
l
;

V
A
R
C
H
A
R

t
a
b
l
e
l
[
3
0
1
;

/*
 t
a
b
l
e
 n
a
m
e
s

*
/

V
A
R
C
H
A
R

t
a
b
l
e
2
[
3
0
1
;

V
A
R
C
H
A
R

co
l-
na
me
[3
01
:

V
A
R
C
H
A
R

co
l-
na
me
l[
30
1
;

V
A
R
C
H
A
R

c
o
l
_
t
y
p
e
[
8
1
;

in
t

c
o
l
-
l
e
n
g
t
h
;

in
t

c
o
l
q
r
e
c
i
s
i
o
n
;

s
h
o
r
t

in
t
pr
e-
in
d;

in
t

c
o
l
-
s
c
a
l
e
;

s
h
o
r
t

in
t

s
c
a
l
e
-
i
n
d
;

V
A
R
C
H
A
R

c
o
l
~
c
o
m
m
e
n
t
s
[
2
0
0
]
:

s
h
o
r
t

in
t

co
rn

-i
nd

;

V
A
R
C
H
A
R

b
u
f
 [
4
0
 I ;

in
t

c
o
u
n
t
;

c
h
a
r
 q
u
e
r
y
[
2
6
0
1
;

V
A
R
C
H
A
R

vi
ew
-t
ex
t

[3
 0
0

I ;

E
X
E
C

S
Q
L
 E
N
D

D
E
C
L
A
R
E

S
E
C
T
I
O
N
;

E
X
E
C

S
Q
L

I
N
C
L
U
D
E
 S
Q
L
C
A
;

s
t
a
t
i
c

v
o
i
d

c
l
u
s
t
e
r
-
c
h
e
c
k
i
n
g
(
)
,

v
i
e
w
-
c
h
e
c
k
i
n
g
(
)
,

d
a
t
a
-
c
h
e
c
k
i
n
g
(
)
,

c
o
n
f
i
r
m
a
t
i
o
n
(
)
,
 o
u
t
p
u
t
 [

)
 ;

m
a
i
n
 (
a
r
g
c
,
 a
r
g
v
)

i
n
t

a
r
g
c
;

c
h
a
r

*
*
a
r
g
v
;

[
in
t

i
;

/*
 l

o
g
i
n

t
o
 O
R
A
C
L
E
,

u
s
e
 u
s
e
r
i
d

a
n
d
 p
a
s
s
w
o
r
d

p
r
o
v
i
d
e
d
 b
y

U
S
E
R

*/

s
t
r
c
p
y
 (
u
i
d
-
a
r
r
,
 U
S
E
R
)
 ;

u
i
d
.
l
e
n

=
s
t
r
l
e
n
(
u
i
d
.
a
r
r
)
;

E
X
E
C

S
Q
L
 C
O
N
N
E
C
T

:
u
i
d
;

if

(
s
q
l
c
a
.
s
q
l
c
o
d
e

!=

0
)

(
pr
in
tf
('
Co
nn
ec
ti
on

p
r
o
b
l
e
m
.
\
n
m
)
;

e
x
i
t
 (
1
)
 ;

I
-

E
X
E
C

S
Q
L
 W
H
E
N
E
V
E
R

S
Q
L
E
R
R
O
R
 G
O
T
0
 e
r
r
r
p
t
;

if

(
a
r
g
c
 =

=
3
)

(

/*
 a

r
g
u
m
e
n
t
s

i
n
 t
h
e
 c
o
m
m
a
n
d

l
i
n
e
 a
r
e

1
.

n
a
m
e
s

fo
r

t
h
e
 t
w
o
 t
a
b
l
e
s

*/

s
t
r
c
p
y
(
t
a
b
l
e
l
.
a
r
r
,
 a
r
g
v
[
l
l
)
;

0

\

s
t
r
c
p
y
(
t
a
b
l
e
2
.
a
r
r
.

a
r
g
v
[
2
]
)
;

1 e
l
s
e

(
pr
in
tf
('
Th
e

t
w
o
 t
a
b
l
e
 n
a
m
e
s

f
o
r

s
y
n
o
n
y
m
 m
a
t
c
h
i
n
g
:

')
;

s
c
a
n
f
(
'
%
s
%
s
m
,

t
a
b
l
e
l
.
a
r
r
,

t
a
b
l
e
2
.
a
r
r
)
;

1 t
a
b
l
e
l
.
l
e
n

=
s
t
r
l
e
n
(
t
a
b
l
e
1
.
a
~
~
)
;

t
a
b
l
e
2
.
l
e
n

=
s
t
r
l
e
n
(
t
a
b
l
e
2
.
a
~
~
)
;

/*
 c
h
e
c
k
 i
f

t
h
e
 t
w
o
 t
a
b
l
e
s
 e
x
i
s
t

i
n
 t
h
e
 d
a
t
a
b
a
s
e

*
/

E
X
E
C

S
Q
L

S
E
L
E
C
T
 T
A
B
L
E
-
T
Y
P
E

I
N
T
O

:
b
u
f

F
R
O
M
 A
L
L
-
C
A
T
A
L
O
G

W
H
E
R
E

T
A
B
L
E
-
N
A
M
E

=
:
t
a
b
l
e
l
;

i
f

(
s
t
r
n
c
m
p
(
b
u
f
.
a
r
r
,

'T
AB
LE
',

5
)

!=

0
)

(

pr
in
tf
('
\n
%s

i
s
 n
o
t

a

t
a
b
l
e
\
n
m
,
 t
a
b
l
e
1
.
a
~
~
)
;

e
x
i
t
 (
1
)
;

1 E
X
E
C

S
Q
L

S
E
L
E
C
T
 T
A
B
L
E
-
T
Y
P
E

I
N
T
O

:
b
u
f
 F
R
O
M

A
L
L
-
C
A
T
A
L
O
G

W
H
E
R
E

T
A
B
L
E
-
N
A
M
E

=
:
t
a
b
l
e
2
;

if

(
s
t
r
n
c
m
p
(
b
u
f
.
a
r
r
,
 '
T
A
B
L
E
"
,

5
)

!=

0
)

(

pr
in
tf
('
\n
%s

i
s
 n
o
t

a

t
a
b
l
e
\
n
m
,
 t
a
b
l
e
2
.
a
r
r
)
:

e
x
i
t
 (
1
)
;

1 pr
in
tf
('
\n
th
e

m
a
x

o
f

s
y
n
o
n
y
m
s

a
n
 a
t
t
r
i
b
u
t
e

c
a
n

h
a
v
e

(
u
s
u
a
l
l
y
 1
)
:

.)
;

sc
an
f(
'%
d'
,

&
m
a
x
-
s
y
n
)
;

if

(
m
a
x
-
s
y
n

<

1
)
 m
a
x
s
y
n
 =

1
;

/*
 S
Q
L
 q
u
e
r
y

t
o
 g
e
t

a
t
t
r
i
b
u
t
e

d
e
s
c
r
i
p
t
i
o
n
s

f
r
o
m
 d
a
t
a

d
i
c
t
i
o
n
a
r
y
.

T
h
e

t
a
b
l
e
 q
u
e
r
i
e
d

i
s

A
L
L
-
T
A
B
-
C
O
L
U
M
N
S

/
E
X
E
C

S
Q
L

D
E
C
L
A
R
E

C
1
 C
U
R
S
O
R

F
O
R

S
E
L
E
C
T
 C
O
L
U
M
N
-
N
A
M
E
,

D
A
T
L
T
Y
P
E
,

D
A
T
A
-
L
E
N
G
T
H
,

D
A
T
A
-
P
R
E
C
I
S
I
O
N
,

D
A
T
A
-
S
C
A
L
E

F
R
O
M

A
L
L
-
T
A
B
-
C
O
L
U
M
N
S

W
H
E
R
E

T
A
B
L
E
-
N
A
M
E

=
:
b
u
f
;

/*
 q
u
e
r
y

f
o
r

t
a
b
l
e

1

*
/

s
t
r
c
p
y
(
b
u
f
.
a
r
r
,

t
a
b
l
e
l
.
a
r
r
)
;

b
u
f
.
l
e
n

=
s
t
r
l
e
n
(
b
u
f
.
a
r
r
)
;

E
X
E
C

S
Q
L

O
P
E
N

C
1
;

f
o
r

(
i
=
O
;
 i
<
M
A
X
-
N
U
K
A
T
T
R
;

i
+
+
)

(
E
X
E
C

S
Q
L

F
E
T
C
H

C
1

I
N
T
O

:
c
o
l
-
n
a
m
e
,

:
c
o
l
-
t
y
p
e
,

:
c
o
l
-
l
e
n
g
t
h
,

:
c
o
l
q
r
e
c
i
s
i
o
n
:
p
r
e
-
i
n
d
,

:
c
o
l
-
s
c
a
1
e
:
s
c
a
l
e
-
i
n
d
;

if

(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

=
1
4
0
3
)
 b
r
e
a
k
;

/*
 e
n
d

of

f
e
t
c
h

*
/

c
o
l
~
n
a
m
e
.
a
r
r
[
c
o
l
~
n
a
m
e
.
l
e
n
l
 =

'\
0'
;

c
o
l
-
t
y
p
e
.
a
r
r
[
c
o
l
-
t
y
p
e
-
l
e
n
l

=
'\
O'
;

s
t
r
c
p
y
(
a
l
[
i
l
.
n
a
m
e
,

c
o
l
-
n
a
m
e
.
a
r
r
)
;

s
t
r
c
p
y
(
a
l
[
i
l
.
t
y
p
e
,

c
o
l
-
t
y
p
e
.
a
r
r
)
;

a
1
 [
i
]
 .
l
e
n
g
t
h
 =

c
o
l
-
l
e
n
g
t
h
;

a
l
[
i
]
.
p
r
e
c
i
s
i
o
n

=
(
p
r
e
-
i
n
d

==

-
I
)
?

-
1

:
 c
o
l
q
r
e
c
i
s
i
o
n
;

a
l
[
i
]
.
s
c
a
l
e

=
(
s
c
a
l
e
-
i
n
d

=
=

 -
I
)
?

-
1

:
 c
o
l
-
s
c
a
l
e
;

a
l
[
i
l
 .
c
o
m
e
n
t
s
[
O
]

=
'\
0'
;

/*
 t
h
e
s
e

t
w
o

l
i
n
e
s
 a
r
e

i
n
i
t
i
a
l
i
z
a
t
i
o
n

*/

al
[i
l
.n
-s
yn

=
0
;

a
l
[
i
l
 .
s
y
n
 =

 N
U
L
L
;

1 n
l

=
i;

/*
 n
u
m
b
e
r

o
f

a
t
t
r
i
b
u
t
e
s

i
n

t
a
b
l
e

1

*
/

E
X
E
C

S
Q
L
 C
L
O
S
E

C
1
;

/*
 q
u
e
r
y

f
o
r

t
a
b
l
e

2

*/

s
t
r
c
p
y
(
b
u
f
.
a
r
r
,

t
a
b
l
e
2
.
a
~
~
)
;

b
u
f
.
l
e
n

=
s
t
r
l
e
n
(
b
u
f
.
a
r
r
)
;

E
X
E
C

S
Q
L
 O
P
E
N
 C
1
;

f
o
r

(
i
=
O
;
 i
<
M
A
X
-
N
U
M
-
A
T
r
m
;

i
+
+
)

(
E
X
E
C

S
Q
L

F
E
T
C
H
 C
1

I
N
T
O

:c
ol
-n
am
e,

:c
ol
-t
yp
e,

:
c
o
l
-
l
e
n
g
t
h
,

:
c
o
l
q
r
e
c
i
s
i
o
n
:
p
r
e
-
i
n
d
,

:c
ol
-s
ca
1e
:s
ca
le
-i
nd
;

i
f

(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

=
1
4
0
3
)
 b
r
e
a
k
;

c
o
l
~
n
a
m
e
.
a
r
r
[
c
o
l
~
n
a
m
e
.
l
e
n
l
 =
'
\
O
1
;

c
o
l
~
t
y
p
e
.
a
r
r
[
c
o
l
~
t
y
p
e
.
l
e
n
l
 =

'
\
O
1
;

s
t
r
c
p
y
(
a
2
[
i
]
.
n
a
m
e
,

co
l-
na
me
.a
rr
);

.r
) ;

-
I
)
?

-
1

:
 c
o
l
q
r
e
c
i
s
i
o
n
;

.)
?

-
1

:

c
o
l
-
s
c
a
l
e
;

s
t
r
c
p
y
(
a
2
 [
il
 .
t
y
p
e
,

co
l-
ty
pe
.a
r

a
2
[
i
]
.
l
e
n
g
t
h

=
c
o
l
-
l
e
n
g
t
h
;

a
2
 [
il
 .
p
r
e
c
i
s
i
o
n
 =

(p
re
-i
nd

==

a
2
 [
il
 .
s
c
a
l
e

=
(
s
c
a
l
e
-
i
n
d

==
 -

1

a
2
[
i
]
 .
c
o
m
m
e
n
t
s
[
O
l

=
'\
O'
;

a
2
[
i
l
 .
n-
sy
n

=
0
;

a
2
 [
il
 .
s
y
n

=
N
U
L
L
;

1 n
2

=
i
;

E
X
E
C

S
Q
L
 C
L
O
S
E

C
1
;

/*
 g
e
t

c
o
m
m
e
n
t
s

f
o
r
 e
a
c
h

a
t
t
r
i
b
u
t
e
s
.

T
h
e

t
a
b
l
e

q
u
e
r
i
e
d

i
s

A
L
L
-
C
O
L
-
C
O
M
M
E
N
T
S

*
/

E
X
E
C

S
Q
L
 W
H
E
N
E
V
E
R

S
Q
L
E
R
R
O
R
 C
O
N
T
I
N
U
E
;

f
o
r

(
i
-
0
:

i
<
n
l
;

i
+
+
)
 (

s
t
r
c
p
y
(
c
o
1
-
n
a
m
e
.
a
r
r
,

a
l
[
i
l
.
n
a
m
e
)
;

c
o
l
-
n
a
m
e
.
l
e
n

=
 s
t
r
l
e
n
(
c
o
1
-
n
a
m
e
.
a
r
r
)
:

E
X
E
C

S
Q
L

S
E
L
E
C
T
 C
O
M
M
E
N
T
S

I
N
T
O

:
c
o
l
~
c
o
m
m
e
n
t
s
:
c
o
m
~
i
n
d

F
R
O
M
 A
L
L
-
C
O
L
-
C
O
M
M
E
N
T
S

W
H
E
R
E

T
A
B
L
E
-
N
A
M
E

=
:
t
a
b
l
e
1
 A
N
D
 C
O
L
U
M
N
-
N
A
M
E

=
:c
ol
-n
am
e;

i
f

(
s
q
l
c
a
.
s
q
l
c
o
d
e

<

0

hh

s
q
l
c
a
.
s
q
l
c
o
d
e

!=

-
1
4
0
6
)

g
o
t
o

e
r
r
r
p
t
;

i
f

(c
or
n-
in
d

==
 -

1
)

a
l
[
i
l
.
c
o
~
e
n
t
s
[
O
l
 =

'\
0'
;

e
l
s
e

(
c
o
l
~
c
o
m
m
e
n
t
s
.
a
r
r
[
c
o
l
~
c
o
n
u
n
e
n
t
s
.
l
e
n
l
 =
'\
O'
;

s
t
r
c
p
y
(
a
l
[
i
l
.
c
o
m
m
e
n
t
s
,
 c
o
l
-
c
o
m
e
n
t
s
.
a
r
r
)
;

1
1 f
o
r

(
i
=
O
;
 i
<
n
2
;

i
+
+
)
 (

s
t
r
c
p
y
(
c
o
1
-
n
a
m
e
.
a
r
r
,

a
a
[
i
I
.
n
a
m
e
)
;

c
o
l
-
n
a
m
e
.
l
e
n

=
s
t
r
l
e
n
(
c
o
1
-
n
a
m
e
-
a
r
r
)
;

E
X
E
C

S
Q
L

S
E
L
E
C
T
 C
O
M
M
E
N
T
S

I
N
T
O

:
c
o
l
-
c
o
m
e
n
t
s
:
c
~
i
n
d

F
R
O
M
 A
L
L
-
C
O
L
-
C
O
M
M
E
N
T
S

W
H
E
R
E

T
A
B
L
E
-
N
A
M
E

=
:
t
a
b
l
e
2
 A
ND

C
O
L
U
M
N
-
N
A
M
E

=
:c
ol
-n
am
e;

i
f

(
s
q
l
c
a
.
s
q
l
c
o
d
e

<

0

&&

s
q
l
c
a
.
s
q
l
c
o
d
e

!=

-
1
4
0
6
)

g
o
t
o
 -

t
i

i
f

(c
or
n-
in
d

=
=

-
1
)

a
2
[
i
]
.
c
o
m
e
n
t
s
[
O
l

=
'\
0'
;

e
l
s
e

(
c
o
l
~
c
o
m
m
e
n
t
s
.
a
r
r
[
c
o
l
~
c
o
m
e
n
t
s
.
l
e
n
l
 =

'\
O'
;

s
t
r
c
p
y
(
a
2
[
i
]
.
c
o
m
m
e
n
t
s
,
 c
o
l
-
c
o
m
e
n
t
s
.
a
r
r
)
;

1

E
X
E
C

S
Q
L
 W
HE

NE
VE

R
S
Q
L
E
R
R
O
R
 G
O
T
0
 e

r
p
t
;

E
X
E
C

S
Q
L
 W
H
E
N
E
V
E
R

S
Q
L
E
R
R
O
R
 C
O
N
T
I
N
U
E
;

E
X
E
C

S
Q
L
 W
H
E
N
E
V
E
R

S
Q
L
E
R
R
O
R
 G
O
T
0
 e
r
r
r
p
t
;

c
o
n
f
i
r
m
a
t
i
o
n
 ()

 ;

o
u
t
p
u
t
 (

)
;

e
x
i
t
 (
0
)
;

e
r
r
r
p
t
 :

pr
in
tf
('
\n

%
.
7
0
s

(
%
d
)
\
n
m
,
 s
q
l
c
a
.
s
q
l
e
r
r
m
.
s
q
l
e
r
r
m
c
,

-
s
q
l
c
a
.
s
q
l
c
o
d
e
)
;

E
X
E
C

S
Q
L
 W
H
E
N
E
V
E
R

S
Q
L
E
R
R
O
R
 C
O
N
T
I
N
U
E
:

E
X
E
C

S
Q
L

R
O
L
L
B
A
C
K

W
O
R
K

R
E
L
E
A
S
E
;

e
x
i
t
(
1
)
 ;

I

S
y
n
o
p
s
i
s

i
n
t

s
y
n
o
n
y
m
s
(
x
,
 y
)

i
n
t

x,

y
;

A
r
g
u
m
e
n
t
s

*
i
n
t

x
,

y

a
t
t
r
i
b
u
t
e
s
 i
n

t
a
b
l
e
1
 a
n
d

t
a
b
l
e
2

r
e
s
p
e
c
t
i
v
e
l
y
.

*
R
e
t
u
r
n
 v
a
l
u
e
s

s
e
e
 d
e
s
c
r
i
p
t
i
o
n
 b
e
l
o
w
.

D
e
s
c
r
i
p
t
i
o
n

t

c
h
e
c
k
s
 i
f
x

a
n
d
 y

a
r
e

s
y
n
o
n
y
m
s
 p
r
e
s
e
n
t
l
y
 r
e
c
o
r
d
e
d
 i
n

on
e'
s

a
t
t
r
i
b
u
t
e

d
e
s
c
r
i
p
t
i
o
n
 s
t
r
u
c
t
u
r
e
.

It

r
e
t
u
r
n
s

1

i
f

t
h
e
y
 a
r
e
,

a
n
d

0

i
f

t
h
e
y
'
r
e

n
o
t
.

s
t
a
t
i
c

i
n
t

SY
nO
ll
Ym
S
(X
.
Y
)

i
n
t

x
,
 y
;

(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u

*
p
;

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

S
y
n
o
p
s
i
s

*
a
d
L
w
n
o
n
y
m
 (
x
,
 Y

*
i
n
t

x,

y
;

*
A
r
g
u
m
e
n
t
s

i
n
t

x

,
y

a
t
t
r
i
b
u
t
e
s
 i
n

t
a
b
l
e
1
 a
n
d

t
a
b
l
e
2

r
e
s
p
e
c
t
i
v
e
l
y
.

*

D
e
s
c
r
i
p
t
i
o
n

t

r
e
c
o
r
d
 t
h
e

f
a
c
t

t
h
a
t

x

a
n
d

y

a
r
e

s
y
n
o
n
y
m
.

t

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c
 v
o
i
d

a
d
d
-
s
y
n
o
n
y
m
 (
x
.
 Y
)

in
t
x
,

y
;

(
s
t
r
u
c
t

s
y
n
-
s
t
r
u

'P
;

if

(
a
l
[
x
]
.
n
-
s
y
n

>
=

 m
ax
-s
yn

11

a
2
[
y
]
.
n
_
s
y
n

>
=

 m
s
y
n
)
 (

pr
in
tf
('
To
o

m
a
n
y

s
y
n
o
n
y
m
s
 f
o
r

o
n
e

f
i
e
l
d
,

s
y
n
o
n
y
m
s
 n
o
t

ad
de
d\
n\
n'
);

r
e
t
u
r
n
;

1 if

(
s
y
n
o
n
y
m
s
 (x

,
y
)
 =

=
0
)

(
p

=
(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u

*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u
)
)

;
p
-
>
f
i
e
l
d
 =

 y
;

p
-
>
n
e
x
t

=
a
1
 [
X
I
 .
s
y
n
;

a
1
 1
x1
 .
s
y
n

=
p
;

a
1
 [
X
I
 .
n
-
s
y
n
+
+
;

p

=
(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u

*
)
m
a
l
l
o
c
(
s
i
z
e
o
f
(
s
t
r
u
c
t
 s
y
n
-
s
t
r
u
)
)
;

p
-
>
f
i
e
l
d
 =

x;

p
-
>
n
e
x
t

=
a
2
 [
yl
 .
s
y
n
;

a
2
 [
yl
 .
sy
n

=
P
;

a
2
 [
yl
 .
n
-
s
y
n
+
+
;

d
[
x
l
 [
yl

=
0
;

pr
in
tf
('
%s
.%
s

a
n
d

%
s
.
%
s

a
d
d
e
d

a
s

sy
no
ny
ms
.\
n\
n'
,

t
a
b
l
e
l
-
a
r
r
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

S
y
n
o
p
s
i
s

r
e
m
(
x
.

Y
)

i
n
t
 x
,

y
;

Al
rg
um
en
ts

i
n
t

x
,
 y

a
t
t
r
i
b
u
t
e
s
 i
n

t
a
b
l
e
1
 a
n
d

t
a
b
l
e
2
 r
e
s
p
e
c
t
i
v
e
l
y
.

t
 *

D
e
s
c
r
i
p
t
i
o
n

r
e
m
o
v
e
 t
h
e
 r
e
c
o
r
d

t
h
a
t

x

a
n
d

y

a
r
e

s
y
n
o
n
y
m
s
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

s
t
a
t
i
c
 v
o
i
d

r
e
m
(
x
,
 Y
)

in
t
x
,

y
;

(
s
t
r
u
c
t

s
y
n
-
s
t
r
u

*
p

,
*
q
;

p

=
a
1
 [
XI
 .
s
y
n
;

b
i
l
e

(
p
 !

=

N
U
L
L

&
&

p
-
>
f
i
e
l
d
 !

=

Y
)

[

q

=
Pi

p

=
p
-
>
n
e
x
t
;

1 i
f

(
p
 =

=
N
U
L
L
)

pr
in
tf
('
th
ey
'r
e

n
o
t

s
y
n
o
n
y
m
s
.
\
n
\
n
m
)
;

e
l
s
e

(

i
f

(
p
 =

=
al
[x
l
.
s
y
n
)
 a
l
[
x
l
 .
s
y
n
 =

 p
-
>
n
e
x
t
;

e
l
s
e

q
-
>
n
e
x
t

=
p
-
>
n
e
x
t
;

f
r
e
e
 (
P
)
 ;

a
l
[
x
]
 .
n-
sy
n-
-;

P

=
a
2
[
~
1

.
s
y
n
;

w
h
i
l
e

(
p
 !

=

N
U
L
L

h
h

p
-
>
f
i
e
l
d

!=

x
)

(

q

=
P
;

p

=
p
-
>
n
e
x
t
;

1 i
f

(
p
 =

=
a
2
 [
y
]
 .
s
y
n
)

a
2
 [
yl
 .
s
y
n
 =

 p
-
>
n
e
x
t
;

e
l
s
e

q
-
>
n
e
x
t

=
p
-
>
n
e
x
t
;

f
r
e
e
(
p
)
 ;

a2
[y
1
.n
-S
F-
-;

p
r
i
n
t
f
(
'
6
y
n
o
n
y
m
s

r
e
m
o
v
e
d
.
\
n
\
n
m
)
;

1
1

S
y
n
o
p
s
i
s

d
a
t
a
-
c
h
e
c
k
i
n
g
 (

 1

D
e
s
c
r
i
p
t
i
o
n

c
h
e
c
k
i
n
g
 d
a
t
a

i
n
 t
h
e
 d
a
t
a
b
a
s
e

t
o
 c
a
l
c
u
l
a
t
e

d
-
v
a
l
u
e
s
.

T
h
e
 d
-
v
a
l
u
e
s

w
i
l
l

b
e

u
s
e
d

i
n
 t
h
e

s
y
n
o
n
y
m
-
m
a
t
c
h
i
n
g

p
r
o
c
e
d
u
r
e

i
n

c
o
n
f
i
r
m
a
i
o
n
(
)
.

s
t
a
t
i
c
 v
o
i
d

d
a
t
a
-
c
h
e
c
k
i
n
g
 (

)

1 /*
 g
e
t

t
h
e
 n
u
m
b
e
r

o
f

d
i
s
t
i
n
c
t

t
u
p
l
e
s

f
o
r

e
a
c
h
 a
t
t
r
i
b
u
t
e
s

i
n
 t
a
b
l
e

1

*/

f
o
r

(
i
=
0
;
 i
a
l
;
 i

++
)

(
s
p
r
i
n
t
f
(
q
u
e
r
y
,

'S
EL
EC
T

C
O
U
N
T
(
D
I
S
T
1
N
C
T

%
s
)
 F
R
O
M

%
a

',

al
[i
l.
na
rn
e,

t
a
b
l
e
l
 .
a
r
r
)
 ;

E
X
E
C

S
Q
L

P
R
E
P
A
R
E

D
S
1

F
R
O
M

:
q
u
e
r
y
;

E
X
E
C

S
Q
L
 D
E
C
L
A
R
E

D
C
1

C
U
R
S
O
R

F
O
R

D
S
1
;

E
X
E
C

S
Q
L
 O
P
E
N

D
C
1
;

E
X
E
C

S
Q
L

F
E
T
C
H

D
C
1

I
N
T
O

:
c
o
u
n
t
;

E
X
E
C

S
Q
L

C
L
O
S
E

D
C
1
;

i
f

(
c
o
u
n
t
 =

=
0
)

(

pr
in
tf
('
\n
ta
bl
e

w
i
t
h

n
o
 d
a
t
a

y
e
t
\
n
m
)
;

r
e
t
u
r
n
;

1 c
l
[
i
]

=
c
o
u
n
t
;

1

/*
 g
e
t

t
h
e
 n
u
m
b
e
r

o
f
 d
i
s
t
i
n
c
t

t
u
p
l
e
s

f
o
r

e
a
c
h
 a
t
t
r
i
b
u
t
e
s

i
n
 t
a
b
l
e

1

*/

f
o
r

(
i
=
O
;
 i
<
n
2
;

i
+
+
)

[

s
g
r
i
n
t
f
(
q
u
e
r
y
,

'S
EL
EC
T

C
O
U
N
T
(
D
I
S
T
1
N
C
T

%s
l

F
R
O
M

%
s

',

a
2
[
i
]
.
m
e
,

t
a
b
l
e
2
 .
a
m
)
 ;

E
X
E
C

S
Q
L

P
R
E
P
A
R
E

D
S
2

F
R
O
M

:
q
u
e
r
y
;

E
X
E
C

S
Q
L
 D
E
C
L
A
R
E

D
C
2

C
U
R
S
O
R
 F
O
R

D
S
2
;

E
X
E
C

S
Q
L

O
P
E
N

D
C
2
;

E
X
E
C

S
Q
L

F
E
T
C
H

D
C
2

I
N
T
O

:
c
o
u
n
t
;

E
X
E
C

S
Q
L

C
L
O
S
E

D
C
2
;

c
2
[
i
l

=
c
o
u
n
t
;

1

/*
 c
a
l
c
u
l
a
t
i
n
g

d
-
v
a
l
u
e
s
.

o
n
l
y
 p
a
i
r
s

of

t
h
e
 s
a
m
e
 d
a
t
a

t
y
p
e

a
n
d

l
e
n
g
t
h
 a
r
e

c
a
l
c
u
l
a
t
e
d

/
f
o
r

(
i
=
O
;
 i
<
n
l
;
 i
+
+
)

f
o
r

(
j
=
O
;
 j
<
n
2
;
 j
+
+
)

if

(
s
t
r
c
m
p
(
a
l
[
i
]
.
t
y
p
e
,
 a
2
[
j
]
.
t
y
p
e
)
=
=
O

h
h

a
l
[
i
]
.
l
e
n
g
t
h
=
=
a
2
[
j
]
.
l
e
n
g
t
h

&
&

a
l
[
i
]
.
p
r
e
c
i
s
i
o
n
=
=
a
2
[
j
]
.
p
r
e
c
i
s
i
o
n
 h

h

a
l
[
i
]
.
s
c
a
l
e
=
=
a
2
[
j
]
.
s
c
a
l
e

h
h

!
s
y
n
o
n
y
m
s
(
i
,
 j
)
)
 (

s
p
r
i
n
t
f
(
q
u
e
r
y
,
'
S
E
L
E
C
T

C
O
U
N
T
(
D
I
S
T
1
N
C
T

$
6
)
 F
R
O
M

$
6
,

$
6

W
H
E
R
E

9
6
.
9
6

=
%
s
.
%
s
m
,

a
l
[
i
]
.
n
a
m
e
,

t
a
b
l
e
l
-
a
r
r
,
 t
a
b
l
e
2
-
a
r
r
,
 t
a
b
l
e
l
.
a
r
r
,

a
l
[
i
l
.
n
a
m
e
,

t
a
b
l
e
2
.
a
r
r
,

a
2
F
j
I
.
n
a
m
e
)
;

E
X
E
C

S
Q
L

P
R
E
P
A
R
E

D
S
3

F
R
O
M

:
q
u
e
r
y
;

E
X
E
C

S
Q
L
 D
E
C
L
A
R
E

D
C
3

C
U
R
S
O
R

F
O
R

D
S
3
;

E
X
E
C

S
Q
L

O
P
E
N

D
C
3
;

E
X
E
C

S
Q
L

F
E
T
C
H
 D
C
3

I
N
T
O

:
c
o
u
n
t
;

E
X
E
C

S
Q
L

C
L
O
S
E

D
C
3
;

S
y
n
o
p
s
i
s

i
n
t

n
a
m
e
2
n
u
m
(
t
,

6
)

i
n
t

t
;

t
a
k
i
n
g

t
w
o
 v
a
l
u
e
s

(
1
/
2
)
,
 r
e
p
r
e
s
e
n
t
i
n
g

t
a
b
l
e
1
 o
r

t
a
b
l
e
l
.

c
h
a
r

*
s
;

a
t
t
r
i
b
u
t
e

n
a
m
e

s
t
r
i
n
g
.

R
e
t
u
r
n
 v
a
l
u
e
s

*
t
h
e
 c
a
r
d
i
n
a
l

o
f

s
 i
f

s

f
o
u
n
d

i
n

t
a
b
l
e

t
,

o
r

-
1

i
f

n
o
t

f
o
u
n
d
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

s
t
a
t
i
c

i
n
t

n
a
m
e
2
n
u
m
(
t
,

s
)

i
n
t

t;

c
h
a
r

s
;

(
s
t
r
u
c
t
 a
t
t
r
-
s
t
r
u

*
a
;

in
t

n
;

in
t

i;

i
f

(
t

!=

1

h
h

t!
=

2
)

r
e
t
u
r
n
(
-
1
)
;

i
f

(
t
 =

=
1
)

(

a

=
a
l
;

n

=
n
l
;

1 e
l
s
e

(
a

=
a
2
;

n

=
n
2
;

1 f
o
r

(
i
=
0
;
 i
<
n
;
 i
+
+
)

if

(
s
t
r
c
m
p
(
s
,
 a
[i
l
.
n
a
m
e
)
 =

=
0
)

r
e
t
u
r
n
(
i
)
 :

if

(
i
 =

=
n
)

r
e
t
u
r
n
(
-
1
)
;

S
y
n
o
p
s
i
s

c
l
u
s
t
e
r
-
c
h
e
c
k
i
n
g
o

D
e
s
c
r
i
p
t
i
o
n

it

c
h
e
c
k
s
 i
f
t
w
o
 a
t
t
r
i
b
u
t
e
s
 f
r
o
m

t
h
e
 t
w
o

t
a
b
l
e
s
 a
r
e

d
e
f
i
n
e
d

o
n

t
h
e

s
a
m
e
 c
l
u
s
t
e
r

c
o
l
u
m
n
 o
f
a

c
l
u
s
t
e
r
.

I
f

it

is
,
t
h
e
y
 a
r
e

r
e
c
o
r
d
e
d
 a
s

s
y
n
o
n
y
m
s
.

d
a
t
a

d
i
c
t
i
o
n
a
r
y
 t
a
b
l
e
 c
h
e
c
k
e
d

f
o
r

c
l
u
s
t
e
r
:

U
S
E
R
-
C
L
U
-
C
O
L
U
M
N
S

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c
 v
o
i
d

c
l
u
s
t
e
r
-
c
h
e
c
k
i
n
g
0

(
in
t

i,

j
;

s
t
r
u
c
t
 s
yn
-s
t=

p;

E
X
E
C

S
Q
L
 D
E
C
L
A
R
E
 C
C

C
U
R
S
O
R
 F
O
R

S
E
L
E
C
T
 T
1.
TA
B-
CO
LU
MN
-N
AM
E,

T
2
.
T
A
B
-
C
O
L
U
M
N
-
N
A
M
E
,

T
1
.
C
L
U
S
T
E
R
-
N
A
M
E

F
R
C
M

U
S
E
R
-
C
L
U
-
C
O
L
U
M
N
S

T
I
,

U
S
E
R
-
C
L
U
-
C
O
L
U
M
N
S

T
2

W
H
E
R
E
 T
1
.
C
L
U
S
T
E
R
-
N
A
M
E

=
T
2
.
C
L
U
S
T
E
R
-
N
A
M
E

A
N
D
 T
1
.
C
L
U
-
C
O
L
U
M
N
-
N
A
M
E

=
T2
.C
LU
-C
OL
UM
N-
NA
ME

A
N
D
 T
1.
TA
BL
E-
NA
ME

=
:
t
a
b
l
e
1

A
N
D

T
2
.
T
A
B
L
E
-
N
A
M
E

=
:
t
a
b
l
e
2
;

E
X
E
C

S
Q
L
 O
P
E
N
 C
C:

w
h
i
l
e

(
1
)
 (

E
X
E
C

S
Q
L

F
E
T
C
H
 C
C

I
N
T
O

:c
ol
-n
am
e.

:c
ol
-n
am
el
,

:
b
u
f
;

if

(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

=
1
4
0
3
)
 b
r
e
a
k
;

c
o
l
-
n
a
m
e
.
a
r
r
[
c
o
l
-
n
a
m
e
-
l
e
n
l

=
'\
O'
;

c
o
l
~
n
a
m
e
l
.
a
r
r
[
c
o
l
~
n
a
m
e
l
.
l
e
n
l
 =
'\
O'
;

b
u
f
 .
a
n
[
b
u
f
 .
le
nl

=
'\
O'
 ;

/*
 c
o
l
-
n
a
m
e

c
o
l
-
n
a
m
e
1

a
r
e

s
y
n
o
n
y
m
s
,
 t
h
e
y
 a
r
e
 c
o
n
v
e
r
t
e
d

t
o
 a
t
t
r
i
b
u
t
e
 n
u
m
b
e
r

*
/

i

=
n
a
m
e
l
n
u
m
(
1
,
 c
o
l
-
n
a
m
e
.
a
r
r
)
;

j

=
n
a
m
e
2
n
u
m
(
2
,
 c
o
l
-
n
a
m
e
l
.
a
r
r
)
;

if

(
i
 >
=
O

h
h

j
 >

=

0
)

[
pr
in
tf
('
\n
by

c
h
e
c
k
i
n
g

C
L
U
S
T
E
R
 %
s
.
 .
.
\
n
m
,
 b
u
f
-
a
r
r
)
;

a
d
d
-
s
y
n
o
n
y
m
 (

 i
 ,

j
)
;

1
1 E
X
E
C

S
Q
L

C
L
O
S
E
 C
C
;

I .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

t

S
y
n
o
p
s
i
s

in
t
g
e
t
-
w
o
r
d
 (
6
)

c
h
a
r

*
s
;

D
e
s
c
r
i
p
t
i
o
n

c

t
o
 g
e
t

a
 w
o
r
d

f
r
o
m
 v

i
e
~
t
e
x
t
,
 r
e
t
u
r
n
s
 s
y
m
b
o
l
i
c
 c
o
n
s
t
a
n
t
.

i
n
v
o
k
e
d

o
n
l
y
 b
y

v
i
e
w
-
s
y
n
0

s
t
a
t
i
c
 i
nt

g
e
t
-
w
o
r
d
(
s
)

c
h
a
r

*
s
 ;

(
c
h
a
r
 c
;

in
t

i:

i
 =

 0
;

w
h
i
l
e

(
v
i
e
w
-
t
e
x
t
.
a
r
r
[
p
o
s
]
 =

=

'

')

p
o
s
+
+
;

c

=
v
i
e
w
-
t
e
x
t
.
a
r
r
[
p
o
s
l
;

i
f

(
C
 =

=
'
\
O
'
)

r
e
t
u
m
(
E
N
D
)
;

p
o
s
+
+
;

i
f

(
C
 =

=
'
.
I
)

r
e
t
u
r
n
(
D
0
T
)
;

i
f

(
C
 =

=
'=

'
)

r
e
t
u
r
n
(
E
Q
U
A
L
)
;

i
f

(
C
 >

=
'A

'
h

h

C

<
=

'2
')

(
w
h
i
l
e

(
(
c
 >

=

'A
'

h
h

C

<

=

'2
')

11
 (

C
 >

=
'0
'

h
h

C

<
=

'9

')

11

(
C
 =

=
*-

')

I I
 (
C
 =

=
'#

')

I I
 (
C
 =

=
'$

')
I

(

s
[
i
+
+
l
 =

 c
;

c

=
v
i
e
w
-
t
e
x
t
.
a
r
r
[
p
o
s
+
+
l
;

I p
o
s
-
-
;

s[
il

=
'\
O'
;

i
f

(
s
t
r
c
m
p
(
s
,
 .
WE
RE
')

==

0
)
 r
e
t
u
r
n
(
W
E
R
E
)
 ;

if

(
s
t
r
c
m
i
(
s
,
 'A
ND
'

i
f

(
s
t
r
c
m
p
(
s
,
 '
OR
')

i
f

(
s
t
r
c
m
p
(
s
,
 '
NO
T'

r
e
t
u
r
n
(
V
A
R
)
;

I r
e
t
u
r
n
 (
O
T
H
E
R
)
 ;

1

)
=

=
 0
)

r
e
t
u
r
n
(
A
N
D
1
;

--

-
0

r
e
t
u
r
n
 (
O
R
)
 ;

)
=

=
 0
)

r
e
t
u
r
n
(
N
O
T
1
;

S
y
n
o
p
s
i
s

t

v
i
e
w
_
s
Y
n
 (

)

D
e
s
c
r
i
p
t
i
o
n

*
a
n
a
l
i
z
e
s
 a

vi
ew
-t
ex
t

t
o
 e
x
t
r
a
c
t

s
y
n
o
n
y
m
 i
n
f
o
r
m
a
t
i
o
n
s
.

P
r
e
s
e
n
t
l
y
 i
t
c
h
e
c
k
s
 i
f
t
w
o
 a
t
t
r
i
b
u
t
e
s
 f
r
o
m
 t
h
e
 t
w
o

t
a
b
l
e
s

a
r
e

i
n
v
o
l
v
e
d
 i
n
 a

E
Q
U
A
L

c
o
n
d
i
t
i
o
n
,

t
h
e
n
 t
h
e
y
 a
r
e
 r
e
c
o
r
d
e
d

a
s

s
y
n
o
n
y
m
s
.

* ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

(
c
h
a
r
 s
y
m
b
o
l
[
N
A
M
B
-
L
E
N
G
T
H
+
1
1
,

h
o
l
d
[
N
A
M
E
-
L
W
G
T
H
+
1
1
;

in
t
t
o
k
e
n
;

in
t
t
l
,

a
l
,

t2
,
a
2
;

p
o
s

=
0
;

w
h
i
l
e

(
(
t
o
k
e
n
 =

g
e
t
-
w
o
r
d
(
s
y
m
b
o
1
)
)

!=
 W
H
E
R
E

&
&

t
o
k
e
n

!=

E
N
D
)

;

s
y
n
o
n
y
m
.
 p
c

w
h
i
l
e

(
t
o
k
e
n
 !

=

E
N
D
)

(
t
l
 =

 t
2

=
a
1
 =

a
2

=
-
1
;

w
h
i
l
e

(
(
t
o
k
e
n
 =

 g
e
t
-
w
o
r
d
(
s
y
m
b
o
1
)
)

!=
 V
A
R

6t
h

t
o
k
e
n

!=
 E
N
D
)

;

i
f

(
t
o
k
e
n

!=

 E
N
D
)

(
t
o
k
e
n

=
g
e
t
-
w
o
r
d
(
h
o
1
d
)
;

i
f

(
t
o
k
e
n
 =

=
D

m
)

(
t
o
k
e
n

=
g
e
t
-
w
o
r
d
(
h
o
1
d
)
;

if

(
s
t
r
c
m
p
(
s
y
m
b
o
1
,
 t
a
b
l
e
1
.
a
~
~
)

==
 0

)

t
l
 =

 1
;

if

(
s
t
r
c
m
p
(
s
y
m
b
o
1
,
 t
a
b
l
e
2
.
a
~
~
)

==

0
)

t
l
 =

2
;

a
1

=
n
a
m
e
Z
n
u
m
(
t
1
,

h
o
l
d
)
;

t
o
k
e
n

=
g
e
t
-
w
o
r
d
(
s
y
m
b
o
1
)
;

1 e
l
s
e
 if

(
(
a
1
 =

 n
a
m
e
Z
n
u
m
(
1
,

s
y
m
b
o
l
)
)

!=

-
1
)

tl

=
1
;

e
l
s
e

(

a
1

=
n
a
m
e
Z
n
u
m
(
2
,

s
y
m
b
o
l
)
;

tl

=
2
;

1
i
f

(
a
1
 !

=

-
1

&
&

t
o
k
e
n

==
 E
Q
U
A
L
)

(
t
o
k
e
n

=
g
e
t
-
w
o
r
d
(
s
y
m
b
o
1
)
;

if

(
t
o
k
e
n
 =

=
V
A
R
)

(
t
o
k
e
n

=
g
e
t
-
w
o
r
d
(
h
o
1
d
)
;

if

(
t
l
 =

=
1
)
 t
2

=
2
;

e
l
s
e

t
2

=
l
;

if

(
t
o
k
e
n
 =

=
D
O
T
)

(
t
o
k
e
n

=
g
e
t
-
w
o
r
d
(
h
o
1
d
)
;

i
f

(
t
2
 =

=
1

&
&

s
t
r
c
m
p
(
s
y
m
b
o
1
,

t
a
b
l
e
1
.
a
~
~
)

=
=

 0

11

t
2

==
 2

 &
&

s
t
r
c
m
p
(
s
y
m
b
o
1
,

t
a
b
l
e
2
.
a
r
r
)

==
 0

)
a
2

=
n
a
m
e
2
n
u
m
 (
t
2
,
 h
o
l
d
)
 ;

1 e
l
s
e

a
2

=
n
a
m
e
Z
n
u
m
(
t
2
,

s
y
m
b
o
l
)
 ;

if

(
a
2
 !

=

-
1
)

(
pr
in
tf
('
\n
by

c
h
e
c
k
i
n
g
 V
I
E
W

%s
..
.\
n*
,

co
l-
na
me
.a
rr
);

if

(
t
l
 =

=
1
)
 a
d
d
-
s
y
n
o
n
y
m
(
a
1
,

a
2
)
;

e
l
s
e

a
d
d
-
s
y
n
o
n
y
m
 (
a
2
,
 a
l
)
 ;

)
1

1
1

1
1

S
y
n
o
p
s
i
s

v
i
e
w
-
c
h
e
c
k
i
n
g
 (

)

D
e
s
c
r
i
p
t
i
o
n

t
a
k
i
n
g

t
h
e
 t
e
x
t
 d
e
f
i
n
i
t
i
o
n
s

f
o
r
 V
I
E
W
S

w
h
i
c
h

c
o
n
t
a
i
n
s

t
a
b
l
e
1

1

a
n
d

t
a
b
l
e
2
,

c
a
l
l
i
n
g
 v
i
e
w
-
s
y
n
(
)

t
o
 a
n
a
l
y
z
e

t
h
e
 t
e
x
t
s
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

s
t
a
t
i
c
 v
o
i
d

v
i
e
w
-
c
h
e
c
k
i
n
g
 (

)
f

E
X
E
C

S
Q
L
 D
E
C
L
A
R
E
 C
V
 C
U
R
S
O
R

F
O
R

S
E
L
E
C
T
 V
IE
W-
NR
ME
,

T
E
X
T
 F
R
O
M

U
S
E
R
-
V
I
E
W
S
;

E
X
E
C

S
Q
L
 O
P
E
N

C
V
;

i
f

(
s
q
l
c
a
.
s
q
l
c
o
d
e
 =

=
1
4
0
3
)

b
r
e
a
k
;

if

(
s
q
l
c
a
.
s
q
l
c
o
d
e
 <

0

h
h

s
q
l
c
a
.
s
q
l
c
o
d
e

!=

-
1
4
0
6
)

c
o
n
t
i
n
u
e
;

c
o
l
~
n
a
m
e
.
a
r
r
[
c
o
l
~
n
a
m
e
.
l
e
n
l
 =

'\
O'
;

i
f

(v
ie
w-
te
xt
.l
en

==
 3
0
0
)

v
i
e
w
-
t
e
x
t
-
l
e
n

=
2
9
9
;

v
i
e
w
~
t
e
x
t
.
a
r
r
[
v
i
e
w
~
t
e
x
t
.
l
e
n
l
 =
'
\
O
1
;

if

(
s
t
r
s
t
r
 (
vi
ew
-t
ex
t
.
a
m
,
 t
a
b
l
e
l
 .
a
r
r
)

! =

 N
U
L
L

&
&

s
t
r
s
t
r
(
v
i
e
w
-
t
e
x
t
.
a
r
r
,

t
a
b
l
e
2
.
a
~
~
)

!=

N
U
L
L
)

vi
ew
-s
yn
 (

1
;

) E
X
E
C

S
Q
L
 C
L
O
S
E

CV
;

1 ..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

S
y
n
o
p
s
i
s

g
e
t
-
c
u
r
r
e
n
t
 (
x
,
 y
)

*
in
t

*
x
,

*
y
;

A
r
g
u
m
e
n
t
s

t

in
t

*
x
,

*
y
;

t
h
e

t
w
o

in
t

p
o
i
n
t
e
r
s
 w
i
l
l

b
e

u
s
e
d

t
o
 r
e
t
u
r
n

t
h
e

s
e
l
e
c
t
i
o
n

r
e
s
u
l
t
;

if

n
o
 p
a
i
r

o
f

a
t
t
r
i
b
u
t
e
s

c
a
n

b
e

s
e
l
e
c
t
e
d
,

*
x
 w
i
l
l
 b
r
i
n
g

b
a
c
k

v
a
l
u
e

-1
.

D
e
s
c
r
i
p
t
i
o
n

t

g
e
t
s

o
n
e
 p
a
i
r

of

a
t
t
r
i
b
u
t
e
s
 w
h
i
c
h

a
r
e
 m
o
s
t

l
i
k
e
l
y
 s
y
n
o
n
y
m
s

b
a
s
e
d

o
n

t
h
e
 d
-
v
a
l
u
e
 a
r
r
a
y
.

P
a
i
r
s
 w
i
t
h

d
-
v
a
l
u
e

l
e
s
s

t
h
a
n

L
O
W
-
B
O
U
N
D

i
s
 n
o
t

s
e
l
e
c
t
a
b
l
e
.

T
h
e
 p
a
i
r

i
s
 n
o
t

p
r
e
v
i
o
u
s
l
y

c
o
n
f
i
r
m
e
d
 a

s
 s
y
n
o
n
y
m
s

o
r
 n
o
n
-
s
y
n
o
n
y
m
s
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

s
t
a
t
i
c

v
o
i
d

g
e
t
-
c
u
r
r
e
n
t
(
x
,

y
)

in
t

*x
,

*
y
;

in
t

i,

j
,
 m
;

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

S
y
n
o
p
s
i
s

s
h
o
w
-
c
u
r
r
e
n
t
 (
x
,
 y

)

t

in
t

x
,

y
;

*
w
h
i
l
e

(
1
)
 (

E
X
E
C

S
Q
L
 F
E
T
C
H

C
V

I
N
T
O

:c
ol
-n
am
e,

:v
ie
w-
te
xt
;

D
e
s
c
r
i
p
t
i
o
n

p
r
i
n
t
s

t
h
e

c
u
r
r
e
n
t
 p
a
i
r

o
f

a
t
t
r
i
b
u
t
e
s

f
o
r
 s
y
n
o
n
y
m
 c
o
n
f
i
r
m
a
t
i
o
n
.

s
t
a
t
i
c

v
o
i
d

s
h
o
w
-
c
u
r
r
e
n
t
 (
x
,
 y
)

in
t

x
,

y
;

(
if

(
X
 =

=
-
1
)

pr
in
tf
(.
\n
No

m
o
r
e

p
a
i
r

c
a
n
 b
e

s
y
n
o
n
y
m
s
\
n
m
)
;

e
l
s
e

(

pr
in
tf
('
\n
%s
.%
s\
nm
,

t
a
b
l
e
l
.
a
r
r
,

a
l
[
x
l
.
n
a
m
e
)
;

pr
in
tf
('
co
mm
en
ts
:

%
s
\
n
m
,
 a
l
[
x
l
.
c
o
m
e
n
t
s
)
;

pr
in
tf
('
\n
th
ei
r

b
e
i
n
g

s
y
n
o
n
y
m
s

n
e
e
d

t
o
 b
e

co
nf
ir
me
d\
n'
);

1 S
y
n
o
p
s
i
s

g
e
t
-
a
t
t
r
(
s
.

t
,

a
)

c
h
a
r

*
s
;

*
i
n
t

*
t
,

*
a
;

A
r
g
u
m
e
n
t
s

c
h
a
r

*
s
;

a

i
n
p
u
t

s
t
r
i
n
g

f
o
r
 a

n
 a
t
t
r
i
b
u
t
e

n
a
m
e
,

c
a
n
 b
e

a

s
i
n
g
l
e

a
t
t
r
i
b
u
t
e

n
a
m
e
 o
r
 p
r
e
f
i
x
e
d

b
y

't
ab
le
na
me
.'
.

i
n
t

't
;

w
i
l
l

r
e
t
u
r
n

t
h
e

t
a
b
l
e

t
h
e
 a
t
t
r
i
b
u
t
e
 i
s
 i
n.

i
f

t
h
e
 a
t
t
r
i
b
u
t
e

i
s

i
n
 b
o
t
h

t
a
b
l
e
1

a
n
d

t
a
b
l
e
2
,

r
e
t
u
r
n

0
;

if

t
h
e
 a
t
t
r
i
b
u
t
e

i
s

i
n
 o
n
l
y

o
n
e

t
a
b
l
e
,

r
e
t
u
r
n

1
 o
r

2
;

if

t
h
e
 a
t
t
r
i
b
u
t
e

i
s
 n
o
t

i
n
 a
n
y

t
a
b
l
e
,
 r
e
t
u
r
n
 -
1.

in
t

*a
:

t
h
e
 c
a
r
d
i
n
a
l

o
f

t
h
e
 a
t
t
r
i
b
u
t
e
,

v
a
l
i
d

o
n
l
y
 w
h
e
n

*t

d
o
e
s

n
o
t

r
e
t
u
r
n

-
1
.

D
e
s
c
r
i
p
t
i
o
n

g
i
v
e
n

a

s
t
r
i
n
g

i
n
 s

r
e
p
r
e
s
e
n
t
i
n
g

t
h
e

(
f
u
l
l
)
 n
a
m
e

o
f

a
n
 a
t
t
r
i
b
u
t
e
,

it

t
r
i
e
s

t
o

l
o
c
a
t
e
 w
h
a
t

t
a
b
l
e
 t
h
e
 a
t
t
r
i
b
u
t
e

i
s

i
n
 a
n
d

t
h
e
 c
a
r
d
i
n
a
l

o
f

t
h
e
 a
t
t
r
i
b
u
t
e

if

it
's

i
n
 o
n
e

o
f

t
h
e
 t
a
b
l
e
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

s
t
a
t
i
c
 v
o
i
d

g
e
t
-
a
t
t
r
[
s
,

t
,

a
)

c
h
a
r

*
s
;

i
n
t

*
t
,

*a
;

(
c
h
a
r
 c
[
N
A
M
E
-
L
E
N
G
T
H
]
;

i
n
t

i,

j;

i

=
0
;

w
h
i
l
e

(
s
[
i
l

!=

'\
O'

&
&

s

c[
il

=
'
\
O
1
;

if

(s
[i
l

=
=

'.

')

(

e
l
s
e

i
f

(
s
t
r
c
m
p
(
c
,
 t
a
b
l
e
2
.
a
~
~
)

=
=

 0
)

*t

=
 2
;

e
l
s
e

(
*t

=
-
1
;

r
e
t
u
r
n
;

1

j

=
0
;

d
o

(
c
[
j
+
+
l

=
s
[
+
+
i
l
;

)
w
h
i
l
e

(s
[i
l

!=

'\
0'
);

'a
=
n
a
m
e
2
n
u
m
(
*
t
,

c
)
;

i
f

(
*
a
 =

=
-
1
)
 *
t

=
-
1
;

r
e
t
u
r
n
;

1 e
l
s
e

(
*
a
 =

 n
a
m
e
2
n
u
m
(
l
,

c)
;

if

('a

>
=

 0
)

if

(
n
a
m
e
l
n
u
m
(
2
,
 c
)
 =

=
-
1
)

't

=
1
;

e
l
s
e

*
t

=
0
;

e
l
s
e
 if

(
(
+
a
 =

 n
a
m
e
2
n
u
m
(
2
,

c
)
)
 >

=
0
)

't

=
2
;

e
l
s
e

*
t
 =

 -
1
;

r
e
t
u
r
n
;

*
S
y
n
o
p
s
i
s

p
u
t
a
t
t
r
(
t
,

i
)

+
in
t

t,

i
;

*
A
r
g
u
m
e
n
t
s

in
t

t
;

t
a
b
l
e

t,

t
a
k
e
s
 v
a
l
u
e
s

o
f

1
o
r

2;

in
t

i
;

t
h
e

i'
s

a
t
t
r
i
b
u
t
e

i
n

t
h
e
 a
t
t
r
i
b
u
t
e
 s
t
r
u
c
t
u
r
e
 a
rr
ay
.

*
D
e
s
c
r
i
p
t
i
o
n

o
u
t
p
u
t
s
 t
h
e
 d
e
s
c
r
i
p
t
i
o
n

o
f

a
t
t
r
i
b
u
t
e
 a

i
n
 t
a
b
l
e

t.

*
t

a
n
d
 a

m
u
s
t

b
e

c
o
r
r
e
c
t

f
o
r
 l
o
c
a
t
i
n
g
 a
n
 a
t
t
r
i
b
u
t
e

in
 a
l[
l

o
r
 a
2[
1.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

s
t
a
t
i
c

v
o
i
d

p
u
t
a
t
t
r
(
t
,

i
)

in
t

t
,

i
;

I
s
t
r
u
c
t

a
t
t
r
-
s
t
r
u

*
a
,

*
a
a
;

s
t
r
u
c
t
 s
yn
-s
tr
u

*
p
;

if

(
t
 =

=
1
)

(
a

=
a
l
;

a
a

=
a
2
;

e
l
s
e

(
a

=
a
2
;

a
a

=
a
l
;

1 pr
in
tf
(.
na
me
:

%
s
\
n
t
y
p
e
:

%
s
\
t
\
t
l
e
n
g
t
h
:
 %
d
\
n
a
,
 a
[i
l.
na
me
,

a[
il
.t
yp
.,

a
[
i
l
.
l
e
n
g
t
h
)
;

pr
in
tf
('
co
mm
en
ts
:

%s
\n
',

a[
il
.c
on
on
en
ts
);

pr
in
tf
('
sy
no
ny
ms

i
n

t
h
e
 o
t
h
e
r

t
a
b
l
e
:
\
n
q
)
;

p

=
 a
[i
l
.
s
y
n
;

w
h
i
l
e

(
p
 !

=

N
U
L
L
)

[
pr
in
tf
('
%s

',
 a

a
[
p
-
>
f
i
e
l
d
l
.
n
a
m
e
)
;

p

=
p
-
>
n
e
x
t
;

1

c
o
n
f
 i
n
n
a
t
i
o
n
(
)

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

S
y
n
o
p
s
i
s

s
h
o
w
-
t
a
b
l
e
(
t
)

i
n
t

t
;

A
r
g
u
m
e
n
t

i
n
t

t
;

t
a
k
e
s

v
a
l
u
e
s

1

o
r

2
,

i
n
d
i
c
a
t
e
s
 w
h
i
c
h

t
a
b
l
e
.

D
e
s
c
r
i
p
t
i
o
n

it

p
r
i
n
t
s

o
u
t

t
h
e

i
n
f
o
r
m
a
t
i
o
n

f
o
r
 a
l
l

a
t
t
r
i
b
u
t
e
s

i
n
 a

t
a
b
l
e

t.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

s
t
a
t
i
c
 v
o
i
d

s
h
o
w
-
t
a
b
l
e
 (
t
)

i
n
t

t;

(
i
n
t

i
,

n;

s
t
r
u
c
t

s
y
n
-
s
t
r
u

*
p
;

i
f

(
t
 =

=
1
)

(

n

=
n
l
;

p
r
i
n
t
f
(
'
\
n
\
n
T
A
B
L
E

%
s
\
n
\
n
\
n
m
,
 t
a
b
l
e
1
.
a
~
~
)
;

1 e
l
s
e

(
n

=
n
2
;

p
r
i
n
t
f
(
'
\
n
\
n
T
A
B
L
E

%
s
\
n
\
n
\
n
m
,
 t
a
b
l
e
2
.
a
~
~
)
;

1 f
o
r

(
i
=
O
;
 i
<
n
;
 i
+
+
)

p
u
t
a
t
t
r
(
t
,

i
)
;

1

S
y
n
o
p
s
i
s

c
o
n
f
 i
n
n
a
t
i
o
n
(
)

D
e
s
c
r
i
p
t
i
o
n

it

i
s
 a
n

i
n
t
e
r
a
c
t
i
v
e

e
n
v
i
r
o
n
m
e
n
t

t
o
 p
r
o
m
p
t

a

p
a
i
r

o
f

a
t
t
r
i
b
u
t
e
s

f
o
r
 u
s
e
r

c
o
n
f
i
r
m
a
t
i
o
n

a
s
 s
y
n
o
n
y
m
s
.

It

i
s
 b
a
s
e
d

o
n

t
h
e
 d
-
v
a
l
u
e

c
a
l
c
u
l
a
t
e
d

p
r
e
v
i
o
u
s
l
y
.

I
t

p
r
o
v
i
d
e
s

t
h
e

f
o
l
l
o
w
i
n
g

c
o
m
m
a
n
d
:

h
e
l
p

h
e
l
p

m
e
s
s
a
g
e
.

t
a
b
l
e

t
a
b
l
e
n
a
m
e

t
h
e
 s
c
h
e
m
a

o
f

t
a
b
l
e
n
a
m
e

c
u
r
r
e
n
t

d
i
s
p
l
a
y

c
u
r
r
e
n
t

s
e
l
e
c
t
i
o
n

f
o
r

c
o
n
f
i
r
m
a
t
i
o
n
.

y
e
s

c
l
a
i
m

o
f

s
y
n
o
n
y
m

a
f
t
e
r

t
w
o
 a
t
t
r
i
b
u
t
e
s

p
r
o
v
i
d
e
d
.

n
o

d
i
s
c
l
a
i
m

o
f

s
y
n
o
n
y
m
.

d
i
s
p
l
a
y

t
a
b
l
e
.
a
t
t
r

d
i
s
p
l
a
y

t
h
e

d
e
s
c
r
i
p
t
i
o
n

o
f

a
t
t
r
#

i
n

t
a
b
l
e
#
 a
n
d

i
t
s

c
u
r
r
e
n
t

s
y
n
o
n
y
m
s
.

a
d
d

t
a
b
l
e
l
.
a
t
t
r
1

t
a
b
l
e
2
.
a
t
t
r
2

a
d
d

t
a
b
l
e
l
#
.
a
t
t
r
l
#

a
n
d

t
a
b
l
e
#
.
a
t
t
r
2
#

a
s

s
y
n
o
n
y
m
s
.

r
e
m
o
v
e
 t
a
b
l
e
l
.
a
t
t
r
1

t
a
b
l
e
2
.
a
t
t
r
2

r
e
m
o
v
e

t
h
e
s
e

t
w
o
 a
t
t
r
i
b
u
t
e
s
 a
s
 s
y
n
o
n
y
m
s
.

q
u
i
t

q
u
i
t

t
h
e
 c
o
n
f
i
r
m
a
t
i
o
n

e
n
v
i
r
o
n
m
e
n
t
.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

s
t
a
t
i
c

v
o
i
d

(
i
n
t

i
,

j
;

s
t
r
u
c
t

s
y
n
-
s
t
r
u

*
p
;

c
h
a
r

c
o
m
m
a
n
d
[
l
O
l
,

l
i
n
e
[
5
0
1
;

c
h
a
r

tl
[2
*-
-L
EN
GT
H+
ll
,

t
2
[
2
*
N
A
M
-
L
E
N
G
T
H
+
l
I
;

i
n
t

c
u
r
l
,

c
u
r
2
,

i
t
l
,

i
t
2
,
 a
t
l
,

a
t
2
;

p
r
i
n
t
f
(
'
\
n
\
n
\
t
\
t
\
t
C
o
n
f
i
r
m
a
t
i
o
n

Pr
oc
es
s\
n\
n'
);

pr
in
tf
('
ty
pe

h
e
l
p

f
o
r
 H
E
L
P
\
n
\
n
m
)
;

g
e
t
-
c
u
r
r
e
n
t
(
h
c
u
r
1
,

h
c
u
r
2
)
;

s
h
o
w
-
c
u
r
r
e
n
t
 (
c
u
r
l
,
 c
u
r
2
)
;

d
o

(d
o

(p
u
t
c
h
a
r
 (

'>
'I

;
g
e
t
s
 (
l
i
n
e
)
 ;

1
w
h
i
l
e

(
s
t
r
l
e
n
(
1
i
n
e
)
 =

=
0
)
;

i

=
0
;

w
h
i
l
e

(
l
i
n
e
[
i
l

!=

'\
0'
)

(
if

(
l
i
n
e
r
i
]
 >

=

'a
'

&
&

l
i
n
e
[
i
l

<
=

'
2

'
)

l
i
n
e
[
i
l

=
l
i
n
e
[
i
l

-

'a
'

+
'A
';

i
+
+
;

1 if

(
l
i
n
e
[
O
)
 =

=
'H
')

(
pr
in
tf
('
\n
\n

C
o
m
m
a
n
d
 a
v
a
i
l
a
b
l
e
:
\
n
S
)
;

p
r
i
n
t
f
(
'
H
[
e
l
p
l
\
t
\
t
\
t
t
h
i
s

h
e
l
p
 m
e
s
s
a
g
e
.
\
n
o
)
;

p
r
i
n
t
f
(
'
T
[
a
b
l
e
]

t
a
b
l
e
n
a
m
e
\
t
d
i
s
p
l
a
y
 t
h
e
 s
c
h
e
m
a

o
f

ta
bl
en
am
e'
);

p
r
i
n
t
f
(
'
C
[
u
r
r
e
n
t
l
\
t
\
t
\
t
s
h
o
w

c
u
r
r
e
n
t
 p
a
i
r

a
s
k
i
n
g

f
o
r

\

c
o
n
f
i
r
m
a
t
i
o
n
\
n
'
)
;

p
r
i
n
t
f
(
'
Y
[
e
s
]
\
t
\
t
\
t
c
l
a
i
m

o
f

s
y
n
o
n
y
m

f
o
r

t
h
e
 c
u
r
r
e
n
t
 p
a
i
r
.
\
n
9
)
;

p
r
i
n
t
f
(
'
N
[
o
]
\
t
\
t
\
t
d
i
s
c
l
a
i
m

of

t
h
e

c
u
r
r
e
n
t
 p
a
i
r

a
s
 s
yn
~n
yI
nS
.\
n.
l;

pr
in
tf
('
D[
is
pl
ay
l

[t
ab
le
.l
at
tr
\n
')
;

p
r
i
n
t
f
(
'
\
t
\
t
\
t
d
e
s
c
r
i
b
e

t
a
b
l
e
.
a
t
t
r

a
n
d

i
t
s
 c
u
r
r
e
n
t
 s
y
n
o
n
y
m
e
.
\
n
m
1
;

pr
in
tf
('
A[
dd
l

[
t
a
b
l
e
l
.
l
a
t
t
r
l

[
t
a
b
l
e
2
.
l
a
t
t
r
2
\
n
W
)
;

p
r
i
n
t
f
(
'
\
t
\
t
\
t
a
d
d

t
a
b
l
e
l
.
a
t
t
r
1

a
n
d

t
a
b
l
e
2
.
a
t
t
t
-
2
 a
s
 s
yn
on
ym
s.
\n
')
;

pr
in
tf
('
R[
em
ov
el

[
t
a
b
l
e
l
.
l
a
t
t
r
l

[
t
a
b
l
e
2
.
a
t
t
r
2
1
\
n
m
)
;

p
r
i
n
t
f
(
'
\
t
\
t
\
t
r
e
m
o
v
e

t
h
e
s
e

t
w
o
 a
t
t
r
i
b
u
t
e
s
 a
s
 s
yn
on
ym
s.
\n
.)
;

p
r
i
n
t
f
(
'
Q
[
u
i
t
]
\
t
\
t
\
t
q
u
i
t

t
h
e
 c
o
n
f
i
r
m
a
t
i
o
n
 e
nv
ir
on
me
nt
.\
n.
);

1 e
l
s
e

if

(
l
i
n
e
[
O
l
 =

=
'T
')

(
i
f

(
s
s
c
a
n
f
(
1
i
n
e
.
 '
%
s
%
s
g
,

co
nr
ma
nd
,
t
l
)

!=

2
)

pr
in
tf
('
a

t
a
b
l
e
n
a
m
e

s
h
o
u
l
d

f
o
l
l
o
w
 t
h
i
s
 c
o
n
r
m
a
n
d
.
\
n
\
n
m
)
;

e
l
s
e

i
f

(
s
t
r
c
m
p
(
t
1
,
 t
a
b
l
e
l
.
a
r
r
)

==
 0

)
 s
h
o
w
-
t
a
b
l
e
(
1
)
;

e
l
s
e

i
f

(
s
t
r
c
m
p
(
t
1
,
 t
a
b
l
e
2
 .
a
r
r
)

==
 0

)
 s
h
o
w
-
t
a
b
l
e
(
?
)
 ;

e
l
s
e
 p
ri
nt
f(
'w
ro
ng

t
a
b
l
e
 n
a
m
e
.
\
n
\
n
a
)
;

1 e
l
s
e

i
f

(
l
i
n
e
[
O
l
 =

=
'C
')

s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
.

c
u
r
l
)
;

e
l
s
e

i
f

(
l
i
n
e
[
O
l
 =

=
'Y
')

(
i
f

(
c
u
r
l

!=

-
1
)

(
a
d
d
-
s
y
n
o
n
y
m
 (
c
u
r
l
.

c
u
r
2

;

g
e
t
-
c
u
r
r
e
n
t
 (
&
c
u
r
l
,
 &
c
u
r
2

;

1 s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
,

c
u
r
2
)
;

1 e
l
s
e

i
f

(
l
i
n
e
[
O
l
 =

=

'N
')

(
i
f

(
c
u
r
l
 !

=

-
1
)

(

d
[
c
u
r
l
l
 [
c
u
r
2
1
 =

0
;

g
e
t
-
c
u
r
r
e
n
t
(
l
c
u
r
1
.

L
c
u
r
2
)
;

1 s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
,

c
u
r
l
)
;

1 e
l
s
e

i
f

(
l
i
n
e
[
O
l

==

'D
')

(

i
f

(
s
s
c
a
n
f
(
1
i
n
e
.
 '
%s
%s
',

c
o
m
m
a
n
d
,

t
l
)

!=

2
)

pr
in
tf
('
a

s
t
r
i
n
g

r
e
p
r
e
s
e
n
t
i
n
g

a

f
i
e
l
d
 s
h
o
u
l
d

f
o
l
l
o
w
 t
h
e

\

c
o
m
a
n
d
.
\
n
m
)
;

e
l
s
e

(
g
e
t
p
t
t
r
(
t
1
,

h
i
t
l
,

L
a
t
l
)
 ;

s
w
i
t
c
h

(
i
t
l
)
 (

c
a
s
e

-1
:

pr
in
tf
('
ta
b1
e

o
r
 a
t
t
r
i
b
u
t
e
 n
a
m
e
 n
o
t

f
o
u
n
d
\
n
\
n
m
)
;

br
ea
k:

c
a
s
e

0:

pr
in
tf
('
fi
e1
d

n
a
m
e
 n
o
t

u
n
i
q
u
e
.

t
a
b
l
e
 n
a
m
e
 a
s

\

p
r
e
f
i
x

s
h
o
u
l
d
 b
e

p
r
o
v
i
d
e
d
\
n
\
n
m
)
;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

p
u
t
a
t
t
r
(
i
t
1
,

a
t
l
)
;

1
1

1 e
l
s
e

if

(
l
i
n
e
[
O
l
 =

=
'A
')

(
if

(
s
s
c
a
n
f
(
1
i
n
e
.
 '
%s
%s
%s
',

c
o
m
m
a
n
d
,

t
l
,

t
2
)

!=

3
)

pr
in
tf
('
l%
o

s
t
r
i
n
g
s

r
e
p
r
e
s
e
n
t
i
n
g

t
w
o

f
i
e
l
d
s
 s
h
o
u
l
d

f
o
l
l
o
w

\

t
h
i
s
 c
om
ma
nd
.\
n'
):

e
l
s
e

(
g
e
t
-
a
t
t
r
(
t
1
,

h
i
t
l
,

h
a
t
l
)
;

g
e
t
p
t
t
r
(
t
2
,

h
i
t
2
,

h
a
t
2
)
;

i
f

(
i
t
1
 =

=
-
1

11

i
t
2
 =

=
-
1
)

pr
in
tf
('
ta
b1
e

o
r

a
t
t
r
i
b
u
t
e

n
a
m
e
 n
o
t

f
o
u
n
d
\
n
\
n
m
)
;

e
l
s
e

i
f
(
i
t
1

=

r

0

11

i
t
2
 =

=
0
)

pr
in
tf
('
fi
e1
d

n
a
m
e
 n
o
t

u
n
i
q
u
e
.

t
a
b
l
e
 n
a
m
e
 a
s
 p
r
e
f
i
x

\

s
h
o
u
l
d
 b
e

p
r
o
v
i
d
e
d
\
n
\
n
m
)
;

e
l
s
e

i
f

(
i
t
1
 =

=
i
t
2
)

pr
in
tf
('
id
en
ti
ca
1

t
a
b
l
e
 s
e
l
e
c
t
e
d
.
\
n
\
n
m
)
;

e
l
s
e

(
if

(
i
t
1
 =

=
1
)

a
d
&
s
y
n
o
n
y
m
(
a
t
l
,

a
t
2
)
;

e
l
s
e

a
d
d
-
s
y
n
o
n
y
m
(
a
t
2
,

at
l)
:

g
e
t
-
c
u
r
r
e
n
t
(
l
c
u
r
1
,

h
c
u
r
2
)
;

s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
,

c
u
r
l
)
;

1
1

1 e
l
s
e

if

(
l
i
n
e
[
O
]
 =

=
'R
')

(
if

(
s
s
c
a
n
f
(
l
i
n
e
,
 '
%s
%s
%s
',

c
o
m
m
a
n
d
,

t
l
,

t
2
)

!=

3
)

pr
in
tf
('
Tw
o

s
t
r
i
n
g
s
 r
e
p
r
e
s
e
n
t
i
n
g

t
w
o

f
i
e
l
d
s
 s
h
o
u
l
d

f
o
l
l
o
w
 \

t
h
i
s
 c
om
ma
nd
.\
n'
):

e
l
s
e

(

g
e
t
-
a
t
t
r
(
t
1
,

h
i
t
l
,

h
a
t
l
)
;

g
e
t
p
t
t
r
(
t
2
,

h
i
t
2
,

L
a
t
2
)
:

if

(
i
t
1
 =

=
-
1

11

i
t
2
 =

=

-
1
)

pr
in
tf
('
ta
b1
e

o
r

a
t
t
r
i
b
u
t
e

n
a
m
e
 n
o
t

f
o
u
n
d
\
n
\
n
q
)
:

e
l
s
e

i
f
(
i
t
1
 =

=
0

I I

i
t
2

=
=

 0
)

pr
in
tf
('
fi
e1
d

n
a
m
e
 n
o
t

u
n
i
q
u
e
.

t
a
b
l
e
 n
a
m
e
 a
s
 p
r
e
f
i
x

\

s
h
o
u
l
d
 b
e

p
r
o
v
i
d
e
d
\
n
\
n
m
)
;

e
l
s
e

i
f

(
i
t
1
 =

=
i
t
2
)

pr
in
tf
('
id
en
ti
ca
1

t
a
b
l
e

se
le
ct
ed
\n
\n
.'
);

e
l
s
e

(

i
f

(
i
t
1
 =

=
1
)

r
e
m
(
a
t
1
,

a
t
2
)
;

e
l
s
e

r
e
m
(
a
t
2
,

a
t
l
)
;

g
e
t
-
c
u
r
r
e
n
t
(
h
c
u
r
1
,

h
c
u
r
2
)
;

s
h
o
w
-
c
u
r
r
e
n
t
(
c
u
r
1
,

cu
r2
):

1
1

)
w
h
i
l
e

(
s
t
r
c
m
p
(
1
i
n
e
.
 '
QU
IT
')

!=

0
)
 :

I

S
y
n
o
p
s
i
s

o
u
t
p
u
t
 (

)
* *

D
e
s
c
r
i
p
t
i
o
n

o
u
t
p
u
t
s

t
h
e

f
i
n
a
l
 r
e
s
u
l
t
,

c
u
r
r
e
n
t
l
y
 o
n
l
y

t
o

t
h
e
 s
c
r
e
e
n
,
 n
o
t

s
a
v
e
d

i
n
t
o
 a
n
y

f
i
l
e
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

s
t
a
t
i
c
 v
o
i
d

o
u
t
p
u
t
 (

)
(

s
h
o
w
-
t
a
b
l
e
(
1
)
;

p
r
i
n
t
f
(
'
\
n
\
n
m
)
;

s
h
o
w
-
t
a
b
l
e
(
2
)
;

I

REFERENCES

[l] M. Bates, & R. Bobrow Natura l Language Interfaces: What ' s here,
What ' s coming, and W h o Needs It, Artificial Intelligence Applications for
Business (W. Reitman, ed.), pp. 179-194. Norwood, NJ:Ablex Publishing Com-
pany, 1984

[2] Y. Cai, N. Cercone, & J. Han Attribute-Oriented Induction in Rela-
t ional Databases, KNOWLEDGE DISCO VERY IN DATA BASES, edited by
G. Piatetsky-shapiro and W. Frawley, pp.213-228, AAAIIMIT Press, 1991

[3] N. Cercone, G. Hall, S. Joseph, M. Kao, W.S. Luk, P. McFetridge, & G. Mc-
Calla Natura l Language Interfaces: Introducing SystemX, Advances in
Artificial Intelligence in Software Engineering, JAI Press Inc., Vol.1, pp.169-250,
1990

[4] M. Chen & L. McNamee S u m m a r y D a t a Est imat ion Using Decision Trees,
KNOWLEDGE DISCOVERY IN DATABASES, edited by G. Piatetsky-shapiro
& W. Frawley, pp.309-323, AAAIIMIT Press, 1991

[5] N. Cercone & G. McCalla Accessing Knowledge Through Natura l Lan-
guage, In Advances in Computers , 25th Anniversary Issue(M.C. Yovits, ed.),
pp.1-99, New York: Academic Press, 1986

[6] N. Cercone, P. McFetridge, G. Hall, C. Groenboer A n Unnatura l Natura l
Language Interface, Presented at the combined 16th International ALLC Con-
ference & 9th International Conference on Computers and the Humanities, June
5-10, 1989, University of Toronto

[7] K. Chan & A. Wong A Statistical Technique for Extract ing Classificatory
Knowledge f rom Databases, Ir'NO WLEDGE DISCOVERY IN DATABASES,
edited by G. Piatetsky-shapiro and W. Frawley, pp.107-123, AAAIIMIT Press,
1991

REFERENCES 111

[8] D. Chiu, A. Wong, & B. Cheung Information Discovery through Hierar-
chical Maximum Entropy Discretization and Synthesis, KNOWLEDGE
DISCOVERY IN DATABASES, edited by G. Piatetsky-shapiro and W. Frawley,
pp.125-140, AAAIIMIT Press, 1991

[9] Y. Cai Attribute-Oriented Induction in Relational Databases, MSc The-
sis, Computing Science, Simon Fraser Univ., 1989.

[lo] C. J. Date An Introduction to Database Systems, Vol.1, Fourth Edition,
Chapter 17, Addison-Wesley, 1986

[ll] J. Davidson Natural Language Access to a Database: User Modelling
and Focus, Proceedings of the 4th National Conference of the CSCSI/SCEIO,
Saskatoon, Saskatchewan, 1982, pp.204-211

[12] W. Frawley, G. Piatetsky-Shapiro & C. Matheus Knowledge Discovery in
Databases: An Overview, KNOWLEDGE DISCOVERY IN DATABASES,
edited by G. Piatetsky-shapiro and W. Frawley, pp.1-27, AAAIIMIT Press, 1991

[13] G. Hall Querying Cyclic Databases in Natural Language, MSc Thesis,
Computing Science, Simon Fraser Univ., 1986.

[14] D. Jensen Knowledge Discovery Through Induction with Randomiza-
tion Testing, Knowledge Discovery in Databases Workshop 1991, AAAI-
91, pp.148-159

[15] S. Johnson Hierarchical Clustering Schemes, PSYCHOMETRIKA, vol. 32,
No. 3, Sept. 1967, pp.241-254

[16] M. Jafer & J. iytkow Cashing in on the Regularities Discovered in a
Database, Knowledge Discovery in Databases Workshop 1991, AAAI-
91, pp.133-147

[17] K. Kaufman, R. Michalski, & L. Kerschberg Mining for Knowledge in
Databases: Goals and General Description of the INLEN System,
KNOWLEDGE DISCOVERY IN DATABASES, edited by G. Piatetsky-shapiro
& W. Frawley, pp.449-462, AAAIIMIT Press, 1991

[18] M. Kantola, H. Mannila, K. Raiha, & H. Siirtola Discovering Functioal De-
pendencies in Relational Databases, Knowledge Discovery in Databases
Workshop 1991, AAAI-91, pp.179-190

REFERENCES 112

[19] W. Kim Object-Oriented Databases: Defini t ion a n d Resea rch Direc-
t ions, IEEE Trans. on Knowledge and Data Engineering, Vo1.2, No.3, pp.327-
341, Sept. 1990.

[20] D. Maier T h e T h e o r y of Rela t ional Databases, Computer Science Press,
1983, pp.51-62, pp.98-101

[21] N a t u r a l Language Processing, proceedings EAIA '90, 2nd Advanced School
in Artificial Intelligence, M. Filgueiras, et al. eds, Guarda, Portugal, Oct. 8-12,
1990

[22] R. Narayan DATA D I C T I O N A R Y : I M P L E M E N T A T I O N , USE, A N D
M A I N T E N A N C E , Prentice Hall, Mainfrase Software Series, 1988, pp.1-9,
pp.33-54

[23] G. Oosthuizen Latt ice-Based Knowledge Discovery, Knowledge Discovery
in Databases Workshop 1991, AAAI-91, pp.221-235

[24] O R A C L E R D B M S DATABASE A D M I N I S T R A T O R ' S G U I D E , Ver-
sion 6.0, Copyright @Oracle Corporation, 1987

[25] E. Pednault Minimal-Lengt h Encod ing a n d Induc t ive Inference,
KNOWLEDGE DISCOVERY I N DATABASES, edited by Piatetsky-shapiro, G.
and Frawley, W., pp.71-92, AAAI/MIT Press, 1991

[26] E. Pednault Infer r ing Probabi l i s t ic Theor ies f r o m D a t a , Proceedings of the
Seventh National Conference on Artificial Intelligence, pp.624-628, Menlo Park,
Calif: American Association for Artificial Intelligence, 1988

[27] C. Schaffer O n Evaluat ion of Domain- Independen t Scientific Function-
F ind ing Sys tems , KNOWLEDGE DISCOVERY I N DATABASES, edited by
Piatetsky-shapiro, G. and Frawley, W., pp.93-104, AAAI/MIT Press, 1991

[28] J. Schlimmer Learn ing De te rmina t ions a n d Checking Da tabases , Knowl-
edge Discovery i n Da tabases Workshop 1991, AAAI-91, pp.64-76

[29] SQL*Plus User's Guide , Version 2.0, Copyright @Oracle Corporation, 1987

[30] J.D. Ullman P R I N C I P L E S O F DATABASE A N D K N O W L E D G E -
B A S E S Y S T E M S , vol.1, Chapter 7, Computer Science Press, 1988

[31] C. Wertz T h e DATA Dic t ionary Concep t s a n d Uses, 2nd Edition, QED
Information Sciences, Inc., 1989

REFERENCES 113

[32] Y. Wu & S. Wang Discovering Functional Relationships f rom Obser-
vational Data , KNOWLEDGE DISCOVERY IN DATABASES, edited by G.
Piatetsky-shapiro and W. Frawley, pp.55-70, AAAI/MIT Press, 1991

[33] C. Yang Relational Databases, Prentice-Hall, 1986, pp.97-112

[34] J. zytkow & J. Baker Interactive Mining of Regularities in Databases, ICNOWL-
EDGE DISCOVERY IN DATABASES, edited by G. Piatetsky-shapiro and W.
Frawley, pp.31-53, AAAI/MIT Press, 1991

[35] W. Ziarko T h e Discovery, Analysis, and Representation of D a t a Depen-
dencies in Databases, KNOWLEDGE DISCOVERY IN DATABASES, edited
by G. Piatetsky-shapiro and W. Frawley, pp.195-209, AAAI/MIT Press, 1991

