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We study two combinatorial design problems: finding small t-fold blocking sets in PG(2, q )  

for q prime, and finding large caps in PG(n, q).  These problems are combinatorially dif- 

ficult, but their problem sizes can be reduced by prescribing a group of automorphisms 

in order to take advantage of the anticipated symmetry of the solution sets. Using this 

method, a new family of 2-fold blocking sets of size 39 + 1 was discovered. These new sets 

have the additional property that their complement is also a 2-fold blocking set. 

For caps, a backtracking algorithm with pruning was developed to solve the resulting 

0-1 integer linear programming problem, and was implemented using C. This algorithm 

takes advantage of the small size of the right-hand side of the constraints in the LP 

problem. 

Also presented is an introduction to finite projective geometries and group actions and 

the application of group actions to projective geometries. 

Keywords: Prescribed Autornorphisms, Finite Projective Geometries, Blocking Sets, Caps, 

Coding Theory. 
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Chapter 1 

Galois Geometries 

1.1 Introduction 

Suppose in a given population there are two definable groups of people, a majority and 

a minority. Now, suppose the population has a government consisting of 57 people that 

resolves issues and decides policy for the entire population. The decision making is di- 

vided among committees; each committee consists of 8 people, and each person sits on 

8 committees. Suppose that the committee votes on propositions, and any two votes can 

veto, or block a proposition. What is the minimum number of government members that 

must be from the minority group, and how should they be assigned to the committees in 

order to ensure that they can veto any proposition on any committee? This problem can 

be solved by means of a combinatorial design problem known as  a 2-fold blocking set, or 

double blocking set in the finite projective plane PG(2, q) ,  where in this case, q = 7. 

For prime q, the smallest known family of 2-fold blocking sets has size 39, but it re- 

quires that three of the committees are comprised entirely of minority members. In the 

case where q is prime and q = 3 (mod 4) ,  using the method of prescribed automorphisms, 

we have discovered a 2-fold blocking set of size 39 + 1 such that the complement of the 

2-fold blocking set is also a 2-fold blocking set (see Theorem 3 .11) .  Thus, by assigning one 

more seat to the minority, we can distribute the members in such a way that both groups 

have blocking power on every committee. These results along with others are presented 
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in Chapter 3. 

Coding theory, the study of encoding and transmitting information over noisy chan- 

nels, is considered to have its origins in a 1948 paper by Claude Shannon, entitled "Math- 

ematical Theory of Communication." Since then, scientists have attempted to find and 

construct better codes in an effort to improve the reliability and efficiency of transmis- 

sion, as  well as  the amount of information that can be transmitted. In Chapter 4, a 

second combinatorial design problem, that of finding caps in PG(n, q), is presented and 

discussed along with a relationship between caps and codes. As in the problem of finding 

small t-fold blocking sets, finding large caps in PG(n, q) is combinatorially difficult for n 

and q large enough. Also presented in Chapter 4 is a program written by the author for 

solving the resulting zero-one integer programming problem. 

In Chapter 2, the method of prescribed automorphisms, a technique used to reduce 

the size of the design problems mentioned above, is described in detail. 

Chapter 1 introduces finite projective spaces, a type of Galois Geometry, along with 

the supporting definitions and notation used in this thesis. 

1.2 Finite Projective Spaces 

We follow much of the notation used in [Hir98] and direct the interested reader to that 

text for a more thorough introduction and study of Projective Geometries. 

Throughout this thesis, q denotes a prime power, and all vectors are row vectors unless 

otherwise stated, or if it is clear from the context. For a prime power q, let IF, be the finite 

field of q elements and let V = IF;+ be the (n + 1)-dimensional vector space over IF,. For 

simplicity of notation, let VO = V \ ( 0 )  and let IF,* = IF, \ (0). For u, v E Vo, the relation R 

defined by uRv w 3 t E IF,* such that tu = v, is an equivalence relation on VO. We denote 

the equivalence classes of this relation by P(x) where x E Vo. So, P(x) = {y ( y E Vo and 

y = tx for some t E IF,*}. Let P(&) = {P(x) ( x E Vo}. 

The elements of P(&) are the points of a geometrical structure denoted by PG(n, q), 

the n-dimensional projective space over IF,. The projective and affine spaces over IF, 

are sometimes called Galois Geometries since IF, is also known as  the Galois Field of q 
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elements. If n = 2 then PG(2, q) may be referred to as  the projective plane over IF,. If 

v = (vo, v l  , . . . , v,) E Vo then the points of PG(n, q) are explicitly denoted by P ( v )  = (tvo : tvl : 

. . . : tun) for some t E IF,*. Notice that the choice oft  does not matter, and for any r, s E IF;, 

P(rv) = P(sv). The point P ( v )  is usually left normalized, that is t is chosen so that the 

leftmost nonzero entry is 1. 

1.2.1 m-spaces in PG(n, q )  

For -1 5 m I n, an m-subspace of PG(n, q) (also known as an m-space or m-flat) denotes 

a set of points in PG(n, q) that, along with the zero vector, form an (m + 1)-dimensional 

subspace of V, with projective dimension m. Notice that by definition an m-space is 

a PG(m, q). The 0-spaces, previously denoted by P(&), are the points of PG(n, q), the 

1-spaces are called lines, the 2-spaces are called planes and the (n - 1)-spaces are called 

hyperplanes. The (-1)-space is the empty space. 

Definition 1.1 For ml 5 m2, an ml -space is said to be incident with an m2-space if the 

ml -space is completely contained within the m2-space. 

The concept of incidence is very important in finite projective spaces, since it is the only 

geometric relationship defining the space. There is no concept of length or distance, for 

example, and so the only relationship between objects in the space is given by incidence. 

In particular, we look a t  the incidence between a given m-space, and the points, the 

smallest non-empty subspaces in PG(n, q). The following proposition gives a mathematical 

relationship between these two objects. 

Proposition 1.2 An m-space M can be described by a nonzero, (n - m) x (n + 1) matriv A 

over IF, with rank n - m where, for any point P(x) incident with M, xAT = 0. 

Note that if M in Proposition 1.2 is a hyperplane, then A is a vector in Vo. Let u = 

(uo, . . . , u,) E IF:+' be a non-zero vector. By uL we denote the hyperplane in PG(n, q) 

consisting of all projective points (vo : . . . : v,) such that uovo + ulvl + . . . + unvn = 0. We 

denote uL explicitly by [uo : ul : . . . : u,]. Note that, as with projective points, uL = (tu)l for 

t E IF;. 
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Definition 1.3 If Ml is an ml  -space and M2 is an m2-space in PG(n, q),  the join of Ml and 

M2, denoted by Ml M2, is the smallest subspace containing both MI and M2. 

Definition 1.4 If MI is an ml-space and M2 is an m2-space in PG(n, q), the intersection 

of MI and M2, denoted MI n M2, is the set of points contained in both Ml and M2 and is 

also a subspace. 

Any m-space M in PG(n, q) is a join of m + 1 linearly independent points. Specifically, if 

M is a 1-space, or line, then it is the join of any two distinct points incident with M, and 

is often described in this way. That is, if r and s are points in PG(n, q) then rs is the line 

that contains both r and s. (See Point 1. following Example 1.15.) 

There are now two ways to describe an m-space M in PG(n,q): by a representative 

matrix A such that X A ~  = 0 for all P ( x )  E M ,  as is often done with hyperplanes, or by the 

join of m + 1 linearly independent points in PG(n, q) incident with M ,  as is usually done 

with lines and planes. Finally, let PG,(n, q) denote the set of all m-spaces in PG(n, q),  

and note that P(V0) = PGo(n, q). 

Example 1.5 The finite projective geometry PG(2,3) has the following 13 points: 

PGo(2,3) = { ( ~ : ~ : ~ ) , ( ~ : ~ : ~ ) 7 ( ~ : ~ : ~ ) 7 ( O : ~ : ~ ) 7 ( ~ : ~ : ~ ) , ( ~ : ~ : ~ ) , ( ~ : ~ : ~ ) 7  

(1 : 1 : 0) ,  (1 : 1 : l ) ,  (1 : 1 : 21, (1  : 2 : O ) ,  (1 : 2 : I ) ,  (1 : 2 : 2)). 

In the next section, we count the number of points in a projective geometry and show 

that these are in fact all of the points of PG(2,3). 

The following lemma completes this section. 

Lemma 1.6 Points P(a) ,  P(b),  P(c) E PG(2, q) are collinear ifand only if 

ao a1 a2 

bo bl b2 

co c1 c2 

= 0 ,  

where P(a) = (a0 : a1 : az), P(b) = (bo : bl : bz), P(c) = (co : cl : c2).  
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Proof: Points P(a), P(b), P(c) E PG(2, q) are collinear if and only if there exists uL = [uo : 

ul : u ~ ]  E PG(2, q )  such that auT = 0, buT = 0 and cuT = 0 since a line in PG(2, q) is also a 

hyperplane. This is true if and only if 

which has a nontrivial solution for u if and only if 

1.2.2 Counting m-spaces in PG(n, q) 

Let GL(n, q )  denote the general linear group of degree n over F,, that is the set of n x n, 

invertible matrices with entries from F,, together with the operation of ordinary matrix 

multiplication. Since the n x n identity matrix is invertible, the product of two n x n 

invertible matrices is an  n x n invertible matrix, and the inverse of an n x n invertible 

matrix is also an n x n invertible matrix, and since matrix multiplication is associative, 

GL(n, q)  is indeed a group. 

Theorem 1.7 The number of matrices in GL(n, q )  is given by 

Proof: This can be shown by counting the possible columns of a matrix in GL(n, q). The 

first column can be any column vector except 0 and so there are qn - 1 possibilities. The 

second column can be any column vector except multiples of the first column. Since there 

are q multiples of the &st column, including 0,  there are qn - q possibilities for the second 

column. In general, for m 2 2, the mth column can be any column vector but a linear 

combination of the previous m - 1 columns, so there are qn - qm-l possibilities for the mth 

column. 
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Theorem 1.8 W W O l ,  Chapter 241 The number of m-spaces in PG(n, q) for m 5 n is given 

by the Gaussian number [zzt] q ,  where 

A Gaussian number is sometimes called a Gaussian coefficient in order to emphasize 

its analogous relationship to the binomial coefficient (z)  which counts the number of 

subsets of size m in a set of size n. 

Proof: (Theorem 1.8) We start by counting all bases of F,"+l in F;+', that is we count all 

sequences of linearly independent vectors of size m + 1. Using a similar argument to that 

in the proof of Theorem 1.7, there are (qn+l - l)(qn+l - q)(qn+' - q2) . . . (qn+l - qm) such 

sequences. However, two bases span the same (m + 1)-dimensional vector space if and 

only if there is a matrix M E GL(m + 1, q) that maps one basis to the other, so we have 

counted IGL(m + 1, q) 1 bases for each (m + 1)-dimensional vector space. Therefore, the 

number of (m + 1)-dimensional vector spaces in IF;+' is 

Recognize that the same argument holds for the number of m-spaces in PG(n, q). 

Corollary 1.9 A projective geometry PG(n, q) has (qn+l - 1) /(q - 1) points and each line is 

incident with q + 1 points. 

Recall from Example 1.5, the set of 13 points in PG(2,3) and note that since (33 - 1)/2 = 

13, these are all of the points in PG(2,3). 

Example 1.10 Each line in PG(3,5) has 6 points. For example, the line (0 : 0 : 0 : 1)(0 : 0 : 

1 : 0) contains the points 
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while the line described by the matrix A = ( : a ) contains the points 

Example 1.11 The projective geometry PG(3,7)  contains (74 - 1) / (7  - 1) = 400 points, 

(74 - 1 ) ( 7 ~  - 1) / [ (72  - 1)(7 - I ) ]  = 2850 lines, and (74 - 1) / (7  - 1) = 400 hyperplanes. Each 

hyperplane contains (73 - 1) / (7  - 1)  = 57 lines and (73 - 1) / (7  - 1) = 57 points. Each line 

contains (7 + 1) = 8 points. 

1.2.3 The Dimension Theorem in PG(n, q) 

Let dim(U) denote the projective dimension of U .  

Theorem 1.12 IVLWOl , page 31 31 (The dimension theorem in PG(n ,  q)l Let U, W be sub- 

spaces in P G ( n ,  q )  , then 

Example 1.13 To illustrate equation (1. l), consider two lines 11, l2 in PG(3,  q).  In Theorem 

1.12, let U = 11, W = 12. Since dim(U) = d i m ( W )  = 1, the right-hand side of (1.1) is 2. Since 

1 5 d im(UW)  5 3 and d i m ( U n  W )  > -1, exactly three cases can occur: (i) dim(UW) = 3 and 

d i m ( U n  W )  = -1 (11 and l2 are two skew lines), (ii) dim(UW) = 2 and d i m ( U n  W )  = 0 (Il and 

12 are two distinct lines in a plane, which intersect in a single point - see Example 1.15), 

or (iii) d im(UW)  = 1 and dim(U n W )  = 1 (11 and l2 are equal). 

Example 1.14 Consider two distinct points r ,  s  in PG(n,  q).  Let U = r ,  W = s  in Theorem 

1.12. Since dim(U) = d i m ( W )  = 0,  the right-hand side of (1.1) is 0 and since r ,  s  are distinct, 

their intersection is the empty set, so dim(U n W )  = -1. Thus, d im(UW)  = 1, and r s  is a 

line. 

Example 1.15 Let 11, 12 be two distinct lines in PG(2, q ) ,  and let U = 11, W = 12 in Theorem 

1.12. Again, the right-hand side of (1.1) is 2. Since U,  W are distinct, 1 < d im(UW)  I 2. 

Thus, dim(UW) = 2 and dim(U n W )  = 0. 
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Examples 1.14 and 1.15 illustrate the following two important results for projective 

geometries: 

1. Any two distinct points in PG(n, q) uniquely determine a line, and 

2. Any two distinct lines in PG(2, q) intersect a t  a single point. 

Corollary 1.16 The number of lines through a point in PG(2, q) is q + 1. 

Proof: Let P be a point in PG(2, q), and let 1 be a line in PG(2, q) such that P @ 1. For each 

point Q on 1, PQ is a distinct line through P,  so there are a t  least q + 1 lines through P. 

Consider a line 1' through P. By Theorem 1.12 (and point 2. in the comments following 

Example 1.15) 11 n 1' ( 2 1, so there are at most q + 1 lines through P. 

1.2.4 Collineations and Projectivities 

The following five definitions from [Hir98j form the basis of much of the work done in this 

thesis. The concepts are introduced here and are explored more fully in Chapter 2. 

Definition 1.17 The mapping C : PG(n, q) - PG(n, q) is called a collineation ifand only 

if it is a bijection and it preserves incidence; that is, i fMl and M2 are subspaces of PG(n, q) 

such that M1 c M2 then C(Ml)  c C(M2). 

In other words, a collineation preserves the incidence structure of subspaces in PG(n, q) 

in much the same way that rigid motion preserves distance and angles in a Euclidean 

space. So if a set of m-spaces in PG(n, q), m 5 n ,  satisfies a set of properties related to 

incidence, then these properties continue to be satisfied in the image of this set under a 

collineation. For example, if a set B of points is a cap (or t-fold blocking set) in PG(n, q), 

then it remains a cap (or t-fold blocking set) under the collineation. (The definitions for 

caps and t-fold blocking sets can be found in Section 1.2.5.) 

It is sufficient to show that a given mapping is a collineation by showing that it is a 

bijection that preserves the incidence between points and lines in a projective geometry, 

hence the name collineation. 
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Let the operation of multiplication between a matrix M E GL(n + 1,q) and a point 

P ( x )  E PGo(n, q) be defined by M P ( x )  = P ( M x ~ ) .  Note that if P ( x )  = P(y)  then there exists 

t  E P,* such that x  = ty ,  therefore M P ( x )  = p ( M x T )  = P ( M ( ~ ~ ) ~ )  = P ( ~ ( M ~ ~ ) )  = p ( M y T )  = 

M P ( y ) ,  thus this multiplication is well-defined. Further, if K is a subspace of PG(n,q) 

then we define M K  = { M P ( x )  ( P ( x )  E K ) .  

Definition 1.18 The mapping C : PG(n, q) - PG(n, q) is called a projectivity i f  and only 

if it is a bijection given by a matrix M E GL(n + 1, q) such that CP(x)  = M P ( x )  for all 

P ( x )  f2 PG(n, 9) - 

Note from definitions 1.17 and 1.18 that a projectivity is a collineation. 

An automorphic collineation a  of PG(n, q) is an extension of the automorphism of P, 

given by a P ( x )  = P ( a ( x ) )  = P((a(xo) ,a (x l ) ,  . . . , a(x,))). If q  is prime then P, has only one 

automorphism, the identity mapping, and thus there is only one automorphic collineation. 

Theorem 1.19 [Hir98, Section 2.1.21 The Fundamental Theorem of Projective Geome- 

tries Let C' : PG(n, q) - PG(n, q) be a collineation, then C' = aC where a  is a n  automorphic 

collineation and C is a projectivity. Spec~fically, i f q  is a prime then there exists a matrix 

M E GL(n + 1, q) such that CP(x)  = M P ( x )  for all P ( x )  E PG(n, q). 

The Fundamental Theorem of Projective Geometries tells us that if q  is a prime, then 

the only collineations from PG(n, q) to PG(n, q) are projectivities. In this thesis, only the 

cases when q  is a prime are considered. 

Example 1.20 Let C : PG(2,3) - PG(2,3) be given by the matrix M = 

the following mapping of the points of PG(2,3): 

that the determinant of M ,  det(M) = 2  # 0, so C is a projectivity. The projectivity C gives 
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Notice that C does in fact preserve lines as expected. For example, the line 

( 0 :  1  : l ) ( l  : 1 : 2) = { ( O :  1 : l ) , ( l  : 1 : 2),(1 : 0 :  l ) , ( l  : 2 :  0 ) )  

maps to the line 

( 0 :  1  : 2 ) ( 0 :  0 :  1) = {(O:  1  : 2 ) , ( 0 :  0  : l ) , ( O :  1 : O ) , ( O :  1  : 1)). 

the same projectivity. Define a relation R such that for M, M' E G L ( ~ ,  q), MR'M' if and 

only if M P ( x )  = M'P(x)  for all P ( x )  E PGo ( n  - 1, q) . The relation R is an equivalence 

relation and thus partitions GL(n, q) into classes. Let [MI = {M' E GL(n,  q) I MrP(x)  = 

M P ( x )  for all P ( x )  E PGo(n - 1,q))  and note that M' E [MI if and only if M' = AM for 

some X E IF:. For simplicity of notation, let M denote the class containing the matrix M 

whenever the meaning is obvious from the context. 

Let PGL(n, q) = {[MI ( M E GL(n,  q ) ) ,  and define the operation of multiplication on this 

set by [ M ] [ N ]  = [ M N ]  for all M ,  N E GL(n, q). If [MI = [M'] then there exists X E I F ,  such 

that M' = AM, similarly if [N]  = [N'] then there exists t  E I F ,  such that N' = t N ,  thus, 

[M'][Nf]  = [ (XM)( tN)]  = [(Xt)(MN)]  = [ M N ] ,  so multiplication is well-defined. Under the 

operation of multiplication as defined here, PGL(n, q) is known as the projective general 

linear group of degree n over IF,. Note that for q = 2, PGL(n, 2 )  .- GL(n, 2). 

The centre of a group G ,  denoted Z ( G ) ,  is the set of those elements of G that commute 

with every element in G. That is, Z(G)  = {g E G ( gx = xg for all x E G). The centre of 

the group GL(n, q) can be shown to be the set Z(GL(n, q))  = {XIn I X E IF:) where In is 

the n x n identity matrix. The factor group of GL(n, q) by its centre Z(GL(n, q))  is given by 

GL(n, q)/Z(GL(n,  q))  = {MZ(GL(n ,  q))  / M E GL(n, q ) )  and since MZ(GL(n,  q ) )  = {AM I X E 

IF:), it is clear that PGL(n, q) 2 GL(n, q) /Z(GL(n,  9)) .  

For completeness, we note that the set of collineations form a group under composition 

known as the collineation group and often denoted by PrL(n ,  q). By Theorem 1.19, for q 

a prime, PGL(n, q) Y PrL(n ,  q). 
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1.2.5 Caps and Blocking Sets 

The following sets are introduced here and discussed in more detail in the following chap- 

ters. Examples are given in the next section. 

Definition 1.21 A cap is a set of points S in PG(n, q)  such that no three points of S are 

collinear. A cap with m points is called an m-cap. 

By definition, every subset of a cap is again a cap. This reduces the problem of finding 

all possible caps of a given space to finding all maximal caps with respect to inclusion. 

This motivates the following definition. 

Definition 1.22 A complete cap or maximal cap is a cap which is not properly contained 

in any other cap in the same space. 

A maximum cap is a cap of maximum size in a given space. While not all complete 

caps are necessarily maximum caps, clearly all maximum caps are complete. 

Definition 1.23 A t-fold blocking set B is  a set of points in PG(2, q)  such that every line 

in PG(2, q)  intersects B in at least t points. A t-fold blocking k-set is  a t-fold blocking set 

with k points. 

Recall that in Section 1.1, we described the problem of assigning members to com- 

mittees so that the minority group always has veto power over any committee. If the 

additional requirement that the majority group must also have veto power over any com- 

mittee is added, then we are led to the following definition: 

Definition 1.24 A proper t-fold blocking set B is  a t-fold blocking set such that the com- 

plement of B,  B = PGo(2, q)  \ B is also a t-fold blocking set. That is, 

Analogous to the case of caps, every superset of a t-fold blocking set is again a t- 

fold blocking set, however, while every superset of a proper t-fold blocking set is a t-fold 

blocking set, it is not necessarily proper. 
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Definition 1.25 A (proper) t-fold blocking B is said to be minimal iJ there is no point P in 

B such that B \ { P )  is a (proper) t-fold blocking set. 

1.3 Example: The Fano Plane 

Figure 1.1 : The Fano Plane - PG(2,2) 

The Fano Plane PG(2,2), named for Italian mathematician Gino Fano (1 87 1 - l952), a 

pioneer in the study of finite geometry, is the smallest non-trivial finite projective plane. 

The Fano Plane has 7 points and 7 lines. Each line has 3 points and each point is incident 

with precisely 3 lines. Thus, the Fano Plane is also a 2-(7,3,1) design (see WLWO1, Chapter 

191). 

Example 1.26 Let M = 1 o o be a matrix over Fz. The determinant of M ,  det ( M )  = [: : :I 
1 thus M E PGL(3,2). The matrix M defines in the following collineation; 

Figure 1.2: A Relabeling of the Points in PG(2,2) 
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The matrix M also gives the following mapping for the lines (not pictured): [l : 0 : 01 4 

[0:1:0], [0 :1 :0]+[1 :1 :1] ,  [0 :0 :1]+[0 :0 :1] ,  [ 1 :1 :0 ]+ [1 :0 :1 ] ,  [ 1 :0 :1 ]+ [0 :1 :1 ] ,  

[0 : 1 : 11 4 [l : 1 : 01, [l : 1 : I] + [l : 0 : 01. Note that the application of the collineation to the 

points [lines) can be visualized as a rotation of the points [lines). 

Example 1.27 Using the M in Example 1.26, the results can be rewritten as a permu- 

tation. Relabel the points in Figure 1.1 as in Figure 1.3, then M results in the following 

permutation: a = (132) (465) (7). 

Figure 1.3: An Alternative Labeling of the Points of PG(2,2) 

Example 1.28 Let IT be the set of points in PG(2,2). By definition of a cap, the empty 

set is a 0-cap, every subset of IT of size 1 is a 1-cap and every subset of IT of size 2 is a 

2-cap. Every subset of IT of size 3 that does not form a line in PG(2,2) is a 3-cap. There 

are (z) = 35 distinct subsets of size 3 in II, seven of which form lines in PG(2,2). Thus 

there are 35 - 7 = 28 3-caps in IT. Every subset of IT of size 4 that does not contain a line 

in PG(2,2) is a 4-cap. There are (i) = 35 distinct subsets of size 4 in II and there are 4 .7  

subsets of size 4 which contain exactly one line since there are four points outside of every 

line. Thus, there are seven $-caps. There are no k-caps in PG(2,2) for k > 4. Consider 

k=5 .  If.rrisa5-capinPG(2,2)thenforanyu,vlx,y~.rrsuchthatu# vandx#y,uv=xy 

if and only if {u, v} = {x, y). Thus, .rr represents (E) = 10 lines in PG(2,2) which has only 

seven lines. Since there are no 5-caps, there are clearly no 6-caps nor 7-caps in PG(2,2). 

Thus, the total number of caps in PG(2,2) is (i) + (i) + (i) + 28 + 7 = 64. 

Example 1.29 The following is a case analysis of t-fold blocking sets in PG(2,2). Note 

that we make no generalizations about these results. 
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Since there are 7 lines, and every point in the Fano Plane is incident with exactly three 

lines, no single point, nor any pair of points can form a 1-fold blocking set. However, since 

every line in the Fano Plane intersects every other line exactly once, every line forms a 

1-fold blocking set of size 3. Two distinct points r ,  s  are incident with exactly 5 lines, and 

the remaining two lines intersect at the point r + s on rs  so that there is no proper 1-fold 

blocking set of size 3. A set of four points such that no three are collinear, is incident 

with 4 3 - (i) = 6 lines, so there is no proper 1-fold blocking set of size 4. The analysis of 

caps in PG(2,2) in Example 1.28 showed that any set of five or more points must contain 

a line, and so also cannot be a proper 1-fold blocking set. Thus, the Fano Plane contains 

no proper 1-fold blocking set and by extension, no proper t-fold blocking set for t 2 1, and 

any 1-fold blocking set that is not a line cannot be minimal. For any set of 5 points, there 

must be a line that intersects the set at no more than 1 point, so there can be no 2-fold 

blocking set of size 5 or smaller. However, any set of six points is a 2-fold blocking set. 

Trivially, any 3-fold blocking set must contain all seven points. 



Chapter 2 

Prescribed Automorphisms and 

Linear Programming 

In this chapter we introduce the topic of prescribed automorphisms. We begin the discus- 

sion with a brief introduction to group actions in Section 2.1, followed by the application 

of the definitions and theorems directly to PGL(n+l, q )  and PG(n, q )  in Section 2.2. In Sec- 

tion 2.3, the method of prescribed automorphisms is described as  it pertains to PG(n, q ) ,  

and Section 2.4 shows how certain problems of finding sets with a specified structure 

relating to incidence can be translated into an integer linear programming problem (ILP 

problem) and how the method of prescribed automorphisms is applied to the ILP problem 

in an effort to make it solvable. Finally, in Section 2.5, we discuss methods for choosing 

the groups used to prescribe the automorphisms. 

2.1 Group Actions and Orbits 

Throughout this chapter, let G be a group and let X be a nonempty set. For groups G, H, 

the notation H 2 G means that H is a subgroup of G. Most of the material covered in this 

section can be found in [Ker99]. 
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Definition 2.1 A group action of G on X is described by a mapping 

G x X 4 X : ( g l x )  ~ g x )  

such that, for each x E X and any g, g' E G, the following hold: 

g(glx) = (ggl)x ,  and 

l x  = x.  

W e  may sometimes abbreviate this by saying that G acts on X. 

Example 2.2 Let S3 be the symmetric group on {l, 2 ,3 )  and let X be the set of all se- 

quences of length 3  from the set {a ,  b, c, . . . , z).  Define the action of S3 on X by .rrx = 

. ~ ~ ( X ~ , X ~ ~ X ~ )  = ( X ~ - ~ ( ~ ) , X ~ - ~ ( ~ ) , X ~ - I ( ~ ) ) .  SO, for example, if .ir = (123), then T-' = (132) and 

for x  = (a ,  b, r ) ,  .rrx = ( r ,  a ,  b ) .  

Example 2.3 Let G = ( 1 ,  g) ,  where g2 = 1, and let XN be the set of positive integer divisors 

of a positive integer N .  Define the action of G on XN by 1x = x  and gx = N I X  for all x  E XN. 

So, for example, if N = 10 and a  = 5 ,  then l a  = 5 and ga = 2. 

The action of G on X can be extended to all subsets of X. Let 2X denote the power set 

of X, the set of all subsets of X. 

Definition 2.4 Let the induced action of G on 2X be given by gS := { g s  I s E S )  for each 

g  E G and eachS c X. 

Notice that 1 s  = S  and g(glS)  = (ggl)S and so this is indeed a group action. 

Lemma 2.5 For all g  E G and for all S  G X ,  (gS(  = ( S J .  

Proof: Since gS = {gs ( s  E S ) ,  ( gS (  5 IS(. For s , t  E S ,  if gs = gt then g-'(gs) = g-'(gt) and 

by Definition 2.1, (g- lg)s  = (gP lg ) t .  Therefore, s  = t and (gS(  > IS(. 

Example 2.6 Let G4 be the set of labeled graphs on the vertex set {1 ,2 ,3 ,4 )  and let S4 be 

the symmetric group on the set {1,2,3,4) .  Then S4 acts on G4 by permuting the vertices 
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of x E G4 according to their labels. The induced action of S4 on pairs of vertices gives the 

mapping for edges as stated in Definition 2.4. 

For example, let X I ,  2 2  E G4 be given by 

and let g = (12) (34) E S4. Then, 

In Example 2.6, the graphs xl and gxl are isomorphic, meaning that there is a bijection 

on the set of labels that maps one graph to the other. Similarly, x2 and gx2 are isomorphic. 

In fact, for any g E S4 and x E G4, x and gx will be isomorphic. Further, if x ,  y E G4 such 

that x and y are not isomorphic, then there is no g E S4 such that y = gx. This concept 

extends to all group actions and leads to the following lemma and definition. 

Lemma 2.7 The relation R given by 

is an equivalence relation on X .  

Proof: Let x ,  y, z  E X .  The relation R is reflexive since x = l x  where 1 is the identity of 

G. If xRy then there exists g E G such that y = gx which implies by Definition 2.1 that 

g - l y  = g- l (gx )  = (gP1g)x = l x  = x ,  so yRx and R is symmetric. If xRy and yRz then there 

exist g ,  h  E G such that y = gx and z = hy which implies that z = h(gx) = (hg)x,  so xRz and 

R is transitive. 

Definition 2.8 The equivalence class of R as described in Lemma 2.7, containing x E X ,  is 

denoted by 

G ( x )  = {gx I g E GI 

and is called the G-orbit of x ,  or the orbit of x when the meaning is cleal: 
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The set of all G-orbits on X will be denoted by 

Notice that if G is the multiplicative group IF: and if X = IF;+', then the IF:-orbit of 

x E IF;+' is the projective point P(x) and IF: \\ IF;+' = PGo(n, q). 

Now that the concept of an orbit has been established, it is natural to ask about the 

size of an orbit. Before this can be answered the following definition is needed. 

Definition 2.9 The stabilizer of x E X ,  denoted by StabG(x), is the set of elements of G 

which& x; that is: 

StabG(x) = {g E G I gX = 2). 

The following definition is also included and will be of use in later sections. 

Definition 2.10 The stabilizer of a subset S of X ,  denoted by StabG(S), is the set of ele- 

ments of G which& S setwise; that is: 

StabG(S) = {g E G I gS = S). 

Note that for both the stabilizer of a set element and the stabilizer of a subset, the 

subscript G may be omitted if it is clear which group or subgroup is acting on X. 

Theorem 2.11 For x E X ,  StabG(x) is a subgroup of G. 

Proof: StabG (x) is nonempty, since it contains the identity element of G. For gl , gz E 

StabG (x), (glg2)x = gl (gzx) = g1x = x, therefore glgz E StabG (x). If g E StabG (x) then gx = x 

implies that x = g-lx, thus g-I E StabG(x). 

Theorem 2.12 For S c X ,  StabG(S) is a subgroup of G. 

The proof of Theorem 2.12 is similar to that for the Theorem 2.11 
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Lemma 2.13 There exists a bijection between the orbit of x, G(x) , and the set of left cosets 

G/StabG (x) . 

Proof: Let t : G(x) H G/StabG(x) be given by t(gx) = gStabG(x). To show that t is well- 

defined and injective, note the following: 

Further, since every element of G/StabG(x) has the form gStabG(x) for some g E G, t is 

surjective. 

An immediate consequence of Lemma 2.13 is the following result: 

Corollary 2.14 The length of the orbit is the index of the stabilizec 

In particular; ij 1 GI is finite, then IG(x) 1 = IGI /IStabG (x) 1 .  

Example 2.15 As in Example 2.6, let G4 be the set of labeled graphs on four vertices and 

let S, be the symmetric group on the set (1,. . . , m). Then S4 acts on G4 by permuting the 

vertices of x E G4 according to their labels. Note that 1,941 = 24. Let 

The stabilizer of x, Stabs4(x) = S4, SO IS4(x)( = IS41/1S41 = 1 by Corollary 2.14. The 

&-orbit S4(x) = {x). The stabilizer of y is the set of elements of S4 that fix the sets {1,2) 

and {3,4), so Stabs4(y) E S2 x S2. Therefore IStabs4(y)l = IS2 x S21 = 4, and IS4(y)l = 2414 = 

6 = (i) as expected. The S4-orbit S4(y) = {h E G4 I h has exactly one edge). The stabilizer 

of z is the set of elements of S4 that fix the sets {1,3), (2) and {4), so Stabs4(z) E S2. 

Therefore IStabs4(z)l = (S21 = 2, and IS4(z)l = 2412 = 12 = 4 - 3, as  expected. The S4-orbit 

S4(z) = {h E G4 I h has exactly two edges which share a common vertex). 

Notice that the set of all &-orbits of G4, S4 \\ G4, is the set of unlabeled graphs on four 

vertices. 
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2.2 The Action of PGL(n + 1, q )  on PG(n, q )  

In this section the definitions and properties of Section 2.1 are considered as they directly 

pertain to the group PGL(n + 1, q) and the set PG(n, q). 

Recall from Chapter 1 and the previous section that [MI E PGL(n + 1, q) denotes the 

IF:-orbit of M E GL(n + l ,q )  containing the matrix M ,  that P(x )  E PGo(n, q) denotes the 

IF;-orbit of x E IF;+' and that [M]P(x )  = p(MxT) .  

Proposition 2.16 The mapping 

describes a group action of PGL(n + 1, q) on the set of points PGo (n, 9). 

Proof: Note that 1 P(x )  = [I,+l] P (x )  = P(x )  and if [g] , [ g f ]  E PGL(n + 1, q) then [g] ([gf]P(x)) = 

[glP(gfx) = P(ggfx) = [ggflP(x). 

Now consider the induced action of PGL(n + 1, q) on S 2 PGo(n,q) and notice that 

since the elements of PGL(n + 1, q) are collineations, this induced action of PGL(n + 1, g )  

on S preserves all incidence relationships pertaining to S in PG(n,q) (see Section 1.2.4). 

Specifically, if S is an m-space PG(n,q), then gS is also an m-space in PG(n,q), so for 

example g maps lines to lines, planes to planes and hyperplanes to hyperplanes. 

o 1 o . Let G = (M) and note that G E Z3 = {M, M2, I ) .  Let X be the set of all i 1  o ~ " ' i  
( 0  O l /  
points in PG(2,2). Then G \\ X = {wl, w2, w3) where 

W l  = { ( O  : 0 : I ) ,  (1 : 0 : I ) ,  (0 : 1 : 1))  

w2 = { ( 1 : 0 : 0 ) , ( 1 : 1 : 0 ) , ( 0 : 1 : 0 ) }  

w3 = { ( I  : 1 : 1)). 
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Using Definition 2.4 we can also calculate the orbits on the hyperplanes. 

Let a E IFF+' be the vector describing the hyperplane aL in PG(2,2) and let P ( x )  be 

a point incident with aL. Recall from Proposition 1.2 and the comment following, that 

xuT = 0. Let N E G such that ~ a l  = bL. Note that since N is a collineation, bL must also 

be a hyperplane. By Definition 2.4, N P ( x )  = P ( y )  where P(y)  is a point incident with bL 

which implies that y = X(NxT) for some X E IF;, so yT = N X ~ .  Since bL is a hyperplane, 

ybT = 0, thus ( x N ~ )  bT = x(NTbT) = x ( ~ N ) ~  = 0. Since this is true for any x incident with a 

it must be that a = bN. Multiplying on the left by N-l we get b = aN-l.  So the orbits of G 

on the hyperplanes of PG(2,2) are 

o1 = {[O : 0 : 11) 

o2 = { [ l  : 0 :  11, [O : 1 : 11, [ l  : 1 : 01) 

o3 = {[0 : 1 : 01, [ l  : 1 : 11, [ l  : 0 : 01). 

Remark 2.18 Example 2.17 shows that the action of N E PGL(n+l, q) on aL E PG,-1 (n, q) 

where a E IF;+' is given by NuL = ( u N - ' ) ~ .  

2.3 The Method of Prescribed Automorphisms 

Much of the work completed in this thesis follows from the method of prescribed auto- 

morphisms, an approach that has previously been used successfully to find 7-designs and 

8-designs [Ker99], linear codes [Bra051 and double blocking sets [BW05]. This method al- 

lows us to reduce the size of a problem's search space by considering an orbit of points 

as  a single object rather than considering each point individually. We will see in Sec- 

tion 4.5 that this can significantly reduce the number of variables and constraints in the 

associated integer linear programming problem. 

Throughout this section, we assume that the group G acts on the set X. This is a 

necessary condition of the method of prescribed automorphisms. 

Definition 2.19 An automorphism group of S & X is any subgroup of StabG(S). An 

element of an automorphism group is called an automorphism. 
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While the phrases automorphism group and subgroup of StabG(S) can be used inter- 

changeably, notice that the word automorphism implies a little more, in that it suggests 

not just the stabilizing of a set, but also the stabilizing of the set's shape. The fact that 

the groups being applied in this thesis are collineations is important, as has already been 

emphasized, because the preservation of the structure of the point-sets is important, and 

so there is a preference for calling these groups automorphism groups in order to futher 

emphasize this preservation of structure. 

Also, note that an automorphism group of a set S is not necessarily maximal, meaning 

that it can be properly contained within another automorphism group. The stabilizer of 

S, StabG(S) is maximal. 

Recall the comments following Example 2.6 where we introduced the concept of iso- 

morphisms of graphs. The following gives a formal definition for two isomorphic sets. 

Definition 2.20 Let S1, S2 be subsets of X .  The set S1 is said to be isomorphic to S2, 

denoted S1 S2, if and only there exists a g E G such that gS1 = gS2. 

Theorem 2.21 Let S be a subset of X and let H be a subgroup of G. IfH is an automor- 

phism group of S then S is a union of H-orbits on X .  

Proof: If H is an  automorphism group of S and s E S, then hs E S for all h E H, so the 

H-orbit of s, H(s), is a subset of S. Therefore S is a union of H-orbits on X. 

Theorem 2.22 Let G be a subgroup of PGL(n + 1,q).  Let w be an arbitrary G-orbit on 

PGo(n, q), and let a be an arbitrary G-orbit on the set of m-spaces PG,(n, q). If J, K E a, 
thenJJnwl = IKnwl. 

Proof: If J ,K E a, then K = g J  for some g E G. Since w is an orbit, w = gw. So, 

K n w = g J n w = g ( J n w ) .  Thus, byLemma2.5 I J n w l  = IKnwl. 

Please notice that, by Theorem 2.22, given a G-orbit on an m-space J, the size of the 

intersection between any m-space in G(J) and the G-orbit of a point P(x) is independent 
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of the choice of m-space in G( J ) .  In other words, if J is an m-space and the intersection 

IJ n G(P(x))I = t ,  then IK n G(P(x))I = t for all K E G ( J ) .  As will be shown in the next 

section, this becomes very important when setting up the linear programming problem. 

2.4 The Linear Programming Problem 

Suppose we want to find a set B C PGo(n, q) such that for each m-space 1 E PGm(n, q), for 

a fixed m < n,  11 n BI 5 t where t is an integer. That is, we want to find a set of points B,  

such that each m-space intersects B a t  no more than t points. Further, suppose we want 

to maximize the size of B.  This geometric problem can be translated into an integer linear 

programming problem in the following way. If we consider that each point Pi E PG(n, q) 

is either in B or not and thus associate with each Pi an xi, 1 5 i 5 r = (qn f  l - 1 ) / ( Q  - 1) 

where xi = 1 if Pi E B,  and xi = 0 otherwise, then IBI = xl + x2 + . . . + x,. Also, for each 

l j  E PGm(n, q), let cji = 1 if l j  is incident with Pi and cji = 0 otherwise. Then IB n ljI 5 t can 

be rewritten as the inequality cjlxl + cj2x2 + . . . + cj,x, 5 t. We then have the following 0- 1 

integer programming problem: 

Maximize 

(BI = x 1 + x 2 + . .  .+x,, 

subject to, for each l j  E PG,(n, q) 

and xi E {O,l), 1 5 i 5 r. 

Similarly, suppose we want to find a smallest set B C P G o ( ~ , ~ )  such that for each 

m-space l j  E PGm(n,q), Ilj n BI 2 t where t is an integer. This can be rewritten as  the 

following minimization problem. 

Minimize 

JBI = X I  + 2 2  + . . . + x,, 

subject to, for each l j  E PGm(n, q) 
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and xi E {O,l), 15 i 5 r .  

Note that we can also associate more than one constraint with each m-space, a s  we do 

in the case of proper double blocking sets. 

Before providing an example, the following definitions are given. 

Definition 2.23 The right-hand-sides of Equations (2.1) and (2.3) are called the objective 

function. Each inequality in (2.2) and (2.4) is known as aconstraint. The requirement that 

xi E { O , l )  will be referred to as the 0-1 constraints. A vector X E (0, is called a feasible 

solution, or simply feasible, if it satisfies all constraints, including the 0-1 constraints. A 

feasible solution is called an optimal solution if no other feasible solution returns a better 

objective_function value. 

Example 2.24 Find a largest set of points B in PG(2,3) such that every line in PG(2,3) 

intersects B at  no more than three points. 

L e t P l  = (1 : 0 :  0), P2 = ( 0 :  1 : 0), P3 = ( 0 :  0 :  I) ,  P 4  = (1 : 2 :  0), P5 = ( 0 :  1 : 2), 

p6 = ( 1 :  2 :  I) ,  p7 = (1 : 1 : I) ,  P8 = (1:  1 :  2), PCJ = ( 1 :  0 :  I ) ,  p l o =  (1 :  1 :  o), Pl1 = ( o :  1 :  I) ,  

P12 = (1 : 2 : 2), P13 = (1 : 0 : 2), and let xi = 1 if Pi E B and xi = 0 otherwise. Also, if 

Pi = ( a : b : c) then let Li = [a : b : c]. The linear programming problem becomes: 

Maximize 

subject to 

where C j  is the constraint associated with line Lj and xi E {O,1}  for 1 5 i 5 13. Note that 

the coefficient of xi in C j  is 1 if Pi is incident with Lj and 0 if Pi is not incident with Lj .  
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An upper bound on IBl can be found by considering that any solution must satisfy 

each of the 13 constraints and that each point is associated with exactly 4 constraints so 

that (BI 5 113.3/4] = 9. Since PG(2 ,3)  is a plane, every line intersects every other line at 

exactly one point, so if B = PGo(2,  3 )  \ Lt , for some t then I B(  = 13 - 4 = 9 and B satisfies 

all constraints. 

Solving the linear programming problem will give the above result, and further testing 

shows that the plane less a line is the only optimal solution to this problem. 

It is known that the 0-1 integer programming problem is NP-complete [GJ79, pg. 2451, 

and the problem of finding optimal solutions in P G ( n ,  q )  as n and q get larger quickly 

becomes intractable. For example, recall from Theorem 1.8 that the number of points in 

P G ( 5 , 5 )  is [;I5 = 3906, and the number of lines is [:I5 = 508431, so an associated linear 

programming problem would have 3906 variables and 50843 1 constraints. 

By restricting our attention to sets that have a certain amount of symmetry, that 

is, by prescribing an automorphism group to the solution, we arrive at a new, more 

constrained problem of a smaller size. In this way, we are prescribing the symmetry 

or, in other words, requiring that a certain symmetry be contained within any solution 

considered. As such, we are assuming that some type of symmetry exists in the optimal 

solution S, or at least in some interesting solution, which is not unreasonable since the 

very nature of the objects within which we are working, the finite projective geometries, 

are filled with symmetries, as  is much of mathematics, and indeed the world around us. 

We first formulate the new problem and then comment on its relationship to the origi- 

nal problem. 

Let G be a subgroup of P G L ( n  + 1,  q )  and let w l ,  . . . , wk denote the k distinct G-orbits 

on P G o ( n , q ) ,  and let R1,. . . , RK denote the K distinct G-orbits on PG,(n, q) .  Let xi = 1 

if wi c B and xi = 0 otherwise. Then, the new linear programming problem for the 

maximization problem defined by (2.1, 2.2) is given by: 

Maximize 

subject to, for each R j  
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and xi E {0,1), and cji = 11 n wiI for any m-space 1 E Rj. 

Note that the minimization problem originally introduced in (2.3, 2.4) is treated sirni- 

larly. 

Theorems 2.2 1 and 2.22 guarantee that any optimal solution to the problem given in 

(2.5) and (2.6) is a largest solution to the original problem defined by (2.1, 2.2) that also 

has the symmetry prescribed by the group G. 

From Corollary 2.14, it follows that the length of any G-orbit could be as large as  the 

order of G. Thus, in the best case, we can reduce the number of variables and the number 

of constraints from the original problem by a factor of 1/IGJ. An instance of such a case 

can be found in Example 4.24, where JGJ = 5 and indeed the number of variables and 

constraints is exactly 115 of the the number of variables and constraints in the original 

problem. Note that in the extreme case when G is the trivial group we see no change from 

the original problem. 

Suppose a set S c PGo(n, q) is an optimal solution to the original ILP problem. If we 

have successfully chosen our group G such that the set S is in fact a union of G-orbits, 

then the new ILP problem given by (2.5) and (2.6) will have an equivalent solution in that 

it will return a set of size IS(. However, if G is not an automorphism group of any optimal 

solution to the original problem, then the new ILP problem cannot return an optimal 

solution to the original problem as is shown in Example 2.26. We may no longer be able 

to find an optimal solution to the original problem, or even to know that we have achieved 

an optimal solution to the original problem, but we may be able to increase our knowledge 

and find good sets in a reasonable amount of time by focusing our attention on the new, 

smaller problem. 

Note that the following two examples are contrived in order to demonstrate the im- 

portance of finding the appropriate group. The groups applied were chosen with full 

knowledge of the optimal solution. For the problems in which the method of prescribed 

automorphisms is a useful strategy, the choice of G that will yield an optimal solution is 

largely unknown since the optimal solutions themselves are largely unknown, and at best 

educated guesses can be made about what group should be applied to the problem. 
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Example 2.25 Use the method of prescribed automorphisms to attempt to find an opti- 

mal solution to the problem described in Example 2.24. 

Let G 5 PGL(3,3) be the stabilizer of a set of points in PG(2,3). In particular, let 

L1 = [I : 0 : 01 and let G be StabPGL(3,3)(L1) n StabPGL(3,3)((1 : 1 : 1)). Using the method of 

prescribed automorphisms, we can create a new, condensed linear programming problem 

by finding the G-orbits on the set of points and the set of lines in PG(2,3). The group G 

has the following orbits on points: 

and the following orbits on lines: 

Note that, a s  constructed, the line L1 is fixed. 

Let xi = 1 if wi c B and 0 otherwise. We arrive at the following ILP problem: 

Subject to 

xi E {O,l). 

An optimal solution is given by X = (1,0,1) and the associated point-set is B = wl U w3, 

which is the plane less a line (namely the line L1), and has size equal to 9, as expected. 
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The linear programming problem in Example 2.25 is much smaller than the original 

problem in Example 2.24, only three variables and three constraints as compared with 

thirteen variables and thirteen constraints in the original problem, yet both problems 

yielded the same results. However, we were able to use the knowledge of the symmetry of 

the optimal solution to the problem being asked in order to find a subgroup of PGL(3,3) 

that would act appropriately on our point set and yield the desired result. Without that 

knowledge, the method of prescribed automorphisms may not give the optimal solution 

as we show in the next example. 

Example 2.26 We answer the question posed in Example 2.24 using the method of pre- 

scribed automorphisms, but with a group that will not yield an optimal solution. 

k t  R = {(I : 0 : O),(O : 0 : l ) , ( l  : 2 : O),(l : 2 : l ) , ( l  : 1 : l) ,(l  : 1 : O ) , ( l  : 0 : 2)) and 

note that R is a feasible solution to the original problem (though it is not optimal). Let 

G 5 PGL(3,3) be the stabilizer of R. It turns out that G is isomorphic to S4 and gives the 

following orbits on the set of points of PG(2,3): 

W l  = {(I : 0 : O), (1 : 2 : I ) ,  (1 : 1 : I)}, 

w2 = {(O : 0 : l ) ,  (1 : 2 : O), (1 : 1 : O), (1 : 0 : 2)}, 

W 3  = { ( 0 : 1 : 0 ) , ( 0 : 1 : 2 ) , ( 1 : 1 : 2 ) , ( 1 : 0 : 1 ) ,  

(0 : 1 : I),  (1 : 2 : 2)}, 

and the following orbits on lines: 

R1 = {[0: 1 :2] , [O:  1 :  1] , [1 :0 :2] ) ,  

Q2 = { [ 1 : 0 : 0 ] , [ 1 : 1 : 2 ] , [ 1 : 0 : 1 ] , [ 1 : 2 : 2 ] ) ,  

Q3 = { [ 0 : 1 : 0 ] , [ 0 : 0 : 1 ] , [ 1 : 2 : 0 ] , [ 1 : 2 : 1 ] , [ 1 : 1 : 1 ] , [ 1 : 1 : 0 ] ) .  

The corresponding integer linear program is given by 

Subject to 
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where x i  = 1 if wi c B and 0 otherwise. 

An optimal solution is given by X = (1,1,0) and the associated point-set is B = wl Uw2 = 

R, and has size equal to 7, which is clearly not an optimal solution to the original problem. 

Example 2.27 We conclude this section with a practical example of the computational 

savings achieved using the method of prescribed automorphisms. We applied the method 

to the problem of finding a proper double blocking set in PG(2,19), of size less than or 

equal to 3.19+ 1 = 58, using the group Z4. This group is introduced in the proof of Theorem 

3.11. The ILP solver, CPLEX, was able to find a solution of size 58 to the reduced problem 

in 0.82 seconds. After running the original problem for over 35 hours, no solution had 

yet been found. 

2.5 Choosing a Group 

As is implied by Theorem 2.2 1, if an optimal set X to the problem being considered is the 

union of G-orbits for some group G, then finding that group is key to finding the solution 

X. However, it is also necessary to find a group that will result in a small number of 

orbits, so that the related ILP problem can be solved. Note, that this is not a simple 

problem. Though there are some basic strategies for finding G (see [Bra05]), in general, 

it is problem dependent and difficult. In this thesis, we attempt two methods of finding 

groups. 

The first strategy is to use the symmetric groups. This strategy is expected to produce 

successful results if the point-set in PG(n, q) lies in a relatively small number of m-spaces. 

In the case of proper 2-fold blocking sets, the point-set found lies on 4 lines, and so 

success was achieved with a subgroup of the symmetric group S4, specifically Z4. This is 

presented more fully in Chapter 3. 
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The second strategy is the use of cyclic subgroups. The benefit of this strategy is 

that all groups have cyclic subgroups, and specifically, good groups, that is groups that 

are both an automorphism group of the set X and produce a relatively small number of 

orbits, have cyclic subgroups. So, if we cannot find all of the symmetry associated with 

a good group, we may still be able to find some of the symmetry, and hopefully enough 

of the symmetry to solve the problem. Also, as will be shown below, we have a sufficient 

condition (Theorem 2.30) that can be implemented practically in conjuction with Theorem 

2.32 so that we need only test relatively few cyclic subgroups to ensure that all cyclic 

subgroups have been considered. The theory behind this is discussed here, and the 

technique is employed in Chapter 4 while searching for large caps. 

Let G be a group. Let g, h E G. We say that g is conjugate to h, denoted g - h, if and 

only if there exists x E G such that h = xgx-l. Conjugacy is an equivalence relation on 

the elements of the group G. The concept of conjugacy can be extended to subgroups as  

follows: 

Definition 2.28 Let G1, G2 be subgroups of G, then G1 is conjugate to G2, denoted G1 - 
G2, ifand only there exists x E G such that G2 = xGlx-l, where xGlx-l = {xgx-I I g E GI). 

Theorem 2.29 Conjugmy is an equivalence relation on the subgroups of the group G. 

Proof: Let Gl,G2, G3 be subgroups of G such that G1 - G2 and G2 - G3. Since G1 = 

lGll-', conjugacy is reflexive. Since G1 - G2, there exists x E G such that G2 = xGlx-' 

which implies that GI = x r l  G ~ x ,  so conjugacy is symmetric. Finally, since G2 - G3, there 

exists y E G such that G3 = yG2y-l, then G3 = y ( ~ G ~ x - ~ ) y - ~  = ( y ~ ) G ~ ( y x ) - ~ ,  SO conjugacy 

is transitive. 

Recall that for g E G, (g) denotes the cyclic subgroup of G generated by g. 

Theorem 2.30 For gl, g2 E G, ifgl - g2 then (gl) - (g2). 

Proof: Suppose gl - g2, then there exists k E G such that g2 = kgl k-l. So g2i = (kgl k-l)i = 

kg; k-' . Now, (g2) = ig$ I i E Z) = {kg: k-l ( i E Z) = k(gl) k-l . Therefore, (gl) - (g2). 
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Note that the converse of Theorem 2.30 is not true. For example, consider the group 

Z, under addition. Since Z, is abelian, gl - g2 if and only if gl = g2, but if Ic E Z, satisfies 

GCD(k, n) = 1 then ( I c )  = Z,. The number of such Ic E Z, is known as  the phi function 

$(n) and for n > 2, $(n) 2 2. In general, it is possible to have two or more non-conjugate 

elements generate cyclic subgroups in the same conjugacy class. 

Lemma 2.3 1 Let G1, G2 be subgroups of G such that G1 - G2, then G2 (gx) = gG1 (x) , where 

g E G satisfies G2 = gGlg-l. 

Theorem 2.32 IfGl - G2 and Sl C X is a union of G1-orbits, then there exists S2 C X 

isomorphic to S1 such that S2 is a union of G2-orbits. 

Proof: By Lemma 2.3 1, G2(gx) = gGl(x), where g E G satisfies G2 = g ~ l g - '  so from 

S1 = Ui GI (xi), we get gS1 = g (U Gl (xi)) = Ui G2 (gxi) = 5'2. 

In other words, Theorem 2.32 says that if G1 is an automorphism group for some 

set X, then every group G2 such that G1 - G2 is an automorphism group for some set 

isomorphic to X. So, only one representative from a conjugacy class of subgroups need 

be applied to the problem. 

Thus, for small enough n and q all cyclic subgroups of PGL(n + 1,q) can be tested 

by generating a representative element from each conjugacy class and testing the group 

generated by that element on the set of points of PG(n, q) . This dramatically reduces the 

number of cyclic groups being tested. For example, PGL(4,2) has 14 conjugacy classes of 

elements with an average of 1440 elements in each class, while PGL(5,2) has 27 conjugacy 

classes of elements with an average of approximately 370347 elements per class. However, 
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note that from the comments following Theorem 2.30, generating the conjugacy classes 

of the cyclic subgroups in this way will still result in some redundancy. For example, the 

number of conjugacy classes of cyclic subgroups in PGL(4,2) and PGL(5,2) is 12 and 18 

respectively. 

For the work done in this thesis, the mathematical software program Magma was used 

to generate the conjugacy classes of cyclic subgroups in PGL(n + 1, q ) ,  which attempts to 

do this by examining a random selection of group elements and their powers. However, 

conjugacy classes can be computed more efficiently by recognizing that two ( n  + 1 )  x ( n  + 1) 

matrices A and B are conjugate if and only if XI-B and XI-A have the same Smith normal 

form over the ring of polynomials over IF, [RotO2, Chapter 9.41. 

Because of the algorithm used by Magma, for n and q large enough, producing all con- 

jugacy classes is computationally difficult, and it becomes necessary to simply generate 

a subset of the conjugacy classes, though doing so reduces the chances of finding a good 

group. 



Chapter 3 

Blocking Sets in PG(2, q )  

Recall that throughout this thesis, we are primarily interested in the case when q is a 

prime and there is no extra algebraic structure available on IF,, therefore we exclusively 

study blocking sets in the case when q is odd. For the case where q = 2 see Example 

1.29. Our analyses will be limited to 1-fold blocking sets and 2-fold blocking sets. For 

the remainder of this chapter, following the notation of [Hir98], a 1-fold blocking set will 

be referred to as a blocking set and a 2-fold blocking set will be referred to as a double 

blocking set. For all t-fold blocking sets, the problem being studied is to find minimal sets 

and to find sets of minimum size. 

In Section 3.1, the discussion begins with known minimal 1 -fold blocking sets in 

PG(2, q). In Section 3.2 we look at double blocking sets and the discovery of a 38-point 

double blocking set in PG(2,13). In Section 3.3 we present two families of proper double 

blocking sets discovered during the completion of this thesis. 

3.1 1-fold Blocking Sets 

Recall from Definition 1.23 that a blocking set is a set of points in PG(2, q )  such that every 

line passes through the set at least once, and from Definition 1.24, a proper blocking 

set is a blocking set that contains no line completely. Recall from Definition 1.25 that a 

minimal blocking set is a blocking set which contains no proper subset which is also a 
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blocking set. 

Definition 3.1 A projective triangle of side n in PG(2, q) is a set B of 3(n - 1) points such 

that 

(a) on each side of a triangle PoPlP2 there are n points of B; 

Ib) the vertices Po, PI, P2 are in B; 

(c) IfQo E P1P2 and Q1 E P~Po are in B, QO # Q1, then so is Q2 = QoQ1 n POPl. 

Recall that PGo(2,q) denotes the set of 0-spaces, or the set of projective points in 

PG(2, q) . If X 2 PGo (2, q) then a k-secant of X is a line in PG(2, q) that intersects the set 

X exactly k times. In [Hir98], it is proven that there exists a projective triangle of side 

a (q + 3) which is also a minimal proper double blocking set in PG(2, q) of size ; (3q + 2) and 

this is repeated here in Proposition 3.3. The following is a slightly stronger result; that is 

every projective triangle of side i ( q  + 3) in PG(2, q) is a minimal proper blocking set. 

Theorem 3.2 IfB is aprojective triangle of side ;(q + 3) in PG(2, q) with q odd then B is a 

minimal proper blocking set of size (q + 1). 

Proof: Let Po, PI, and P2 denote the vertices of the projective triangle B, and let {i, j , k) = 

{07 11 2). 

Since POPI, PoPz  and PlP2 each intersect B at ;(q + 3) points, there are at least three 

[i (q + 3)] -secants. 

From the definition of a projective triangle, if an arbitrary line 1 intersects POPl and 

POP2 at  non-vertex points in B, then it intersects PIP2 at a non-vertex point in B and 

is therefore a 3-secant. Since any line is uniquely determined by two distinct points in 

PG(2, q), we can choose a point r on POPl and a point s on POP2 to determine 1. There are 
1 Z. (q + 3) - 2 = ;(q - 1) non-vertex points on each side of the projective triangle, so there are 
1 ,(q - 1) choices for both r and s. Once r and s are chosen, 1 n PlP2 is uniquely determined, 

thus the number of such 3-secants is [;(q - 1)12. 

If 1 is incident with a vertex Pk and a non-vertex point on Pipj in B, then 1 is a 2-secant. 

There are three choices for Pk and i ( q  - 1) non-vertex points on P,P, which are in B, so 

the number of such 2-secants is :(q - 1). 
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If I is incident with the vertex Pk and a point on Pipj not in B, then I is a 1-secant. 

There are three choices for Pk and (q + 1) - ;(q + 3) = ;(q - 1) non-vertex points on Pipj 

which are not in B, so the number of such 1-secants is :(q - 1). 

If I is incident with a non-vertex point on Pipj in B, and a point on Pipk not in B, then 

by the definition of a projective triangle, I is incident with a point on PjPk not in B and is 

thus a 1 -secant. Since there are ; (q - 1) non vertex points on Pipj which are in B, ; (q - 1) 

points in Pipk which are not in B, and since there are three choices for the line Pi Pj, there 

are 3 [;(q - I)]' such 1-secants. Note also that the two types of 1-secants described are 

mutually exclusive since the 1-secants in the former set contain a vertex while those in 

the latter set do not. 

Summing the number of 1-secants, 2-secants, 3-secants and [i (q + 3)] -secants found 

above, we get 

3 ( ~ ) ~ + 3  (q) + 3  (q) + 

But q2+q+l is the total number of lines in PG(2, q) ,  thus all lines in PG(2, q) are incident 

with a t  least one point in B, and since we have counted all lines, no line intersects B a t  

more than $ (q + 3) points. Since (q + 3) < q + 1 for q > 2 it follows that no line is completely 

contained within B, and therefore B is a proper blocking set. 

Finally, note that if P is a vertex, then there exists line PP' such that P' is on the side 

of the projective triangle that does not contain P and P' $! B so P lies on a 1-secant and 

B \ {P) is not a blocking set. If P E B is a non vertex, then again, there exists P' on a 

side of the projective triangle, not on the same side as P such that P' $! B, so that PP' is 

a 1-secant and B \ {P) is not a blocking set. Thus B is minimal. 

Proposition 3.3 There exists a projective triangk of side (q + 3) in PG(2, q) , for each odd 

prime power q. 

ProofiLet Qo(ao) = (0 : 1 : ao), Ql(a1) = (1 : 0 : al) and Qz(a2) = (1 : -a2 : 0) be points in 

PG(2, q). Let B consist of the vertices (0 : 0 : l), (0 : 1 : O),  and (1 : 0 : 0) and the points 
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Qi(ai) such that ai is a nonzero square. Since there are i (q  - 1 )  nonzero squares in IF,, 

I BI = 3 + 3 . i (q - 1 )  = $ (q  + 1 ) .  By Lemma 1.6, Qo, Q1 and Q2 are collinear if and only if 

a0 = ala2, so if 2 non-vertex points are in the set, then the third point must also be in the 

set. Thus B is a projective triangle of side ( q  + 1). 

As will be shown in Section 3.3, an analogous, though more complicated construction 

exists for proper double blocking sets in PG(2, q).  

3.2 Double Blocking Sets 

Theorem 3.4 There exists a double blocking set in PG(2, q) of size 3q. 

Proof: Let 1 1 , 1 2 ,  l 3  be three distinct, non-concurrent lines in PG(2, q )  and let B = l l  u l 2  u 1 3 .  

The order of B is given by JBI = 3 - (q + 1 )  - 3 = 3q, so it only remains to show that B is a 

double blocking set. Since B lies in a plane, every line intersects every line at least once, 

so for an arbitrary line 1 E PG(2, q) ,  1 must intersect each of 1 1 ,  1 2 ,  and l 3  SO that I1 n BI = 2 ,  

3 o r q f 1 .  

3.2.1 A 38-Point Double Blocking Set in PG(2,13) 

Until recently, for q a prime, the smallest known size of a double blocking set in PG(2, q) 

was 3q (Theorem 3.4). By applying the method of prescribed automorphisms to a comple- 

mentary problem in [BW05], the authors were able to find a double blocking set of size 38 

for PG(2,13), one point less than the known best of 39. Independently, while researching 

the contents of this thesis, we found an isomorphic set of size 38. Further, by studying 

the structure of this set, and the subgroup of PGL(3,13) used to find it, we were able to 

discover some other interesting results (Theorem 3.1 1). 

It had been suspected for a time before this set was discovered, that 3q was not optimal, 

but even with this knowledge, finding the set was difficult. Even if it were known that 
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there existed a double blocking set of size 38 in PG(2,13), there are ('3":) z 2130 point sets 

of size 38 in PG(2,13). However, PGL(3,13) is still small enough that all of its subgroups 

can be generated and applied to PG(2,13). The alternating group on 4 elements, A4 

produced the following 38-point double blocking set. 

B = {(I : 12 : O), (0 : 1 : 121, (1 : 6 : 12)> (1 : 4 : 2)> (1 : 9 : I )>  (1 : 8 : I )>  (1 : 2 : 8)> (1 : 11 : l l ) >  (1 : 

2 : 7)>(1 : 0 : 2)>(1  : 0 : l ) > ( l  : 5 : 7)> (1 : 10 : 7)>(1  : 1 : O)>(O : 1 : l ) > ( l  : 4 : lO),(l : 5 : 3)>(1  : 10 : 

4)> (1 : 4 : I l l 7  (0 : 1 : 7 ) )  (1 : 12 : I ) >  (1 : 9 : 5)> (1 : 3 : lo)> (1 : 7 : 9)> (1 : 7 : 4)> (1 : 4 : 9)> (1 : 6 : 

8),(1 : 10 : 12)>(1 : 8 : 6)>(1  : 3 : 5)>(1  : 12 : 2)>(1 : 0 : 8)>(1  : 4 : 6)>(1 : 1 : l ) > ( l  : 11 : 0)>(1  : 12 : 

3)> (1 : 7 : 7)> (1 : 0 : 7)) 

Once B was found, a natural question to ask was "Does the set have any geometric 

properties that can be exploited in an attempt to find a double blocking set smaller than 

39 for higher values of q?". It turns out that of the 38 points in B, 34 of them lie on 4 lines 

in general position, and the 6 intersecting points of these four lines are also in B. Using 

this information, we narrowed our focus to groups that permute four lines for q > 13 and 

used the ILP approach as  outlined in Chapter 2. Though we were unable to find a double 

blocking set of size smaller than 39, we did consistently find a non-trivial proper double 

blocking set of size 39 + 1 for q prime and q = 3 (mod 4). Working with this knowledge, we 

were able to find a construction for a proper double blocking set for all such q which is 

presented in Section 3.3.2. 

3.3 A Family of Proper Double Blocking Sets 

Throughout this section, let q be an odd prime power. 

3.3.1 Preparatory Facts 

Definition 3.5 For x E IF, we say that x is square i f x  = s2 for some s E IF,. Otherwise, x is 

nonsquare . 

Definition 3.6 By 0, we denote the set of all nonzero squares of IF, and by p, we denote 

the set ofall nonsquares of IF,. Note that 0 does not appear in either set. 
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Proof: Let a be a primitive element in IF,. If a ,  b E El,, then there exist some t ,  s E Z such 

that a = cu2t and b = a2s. If C ,  d E p,, then there exist some p, r E Z such that c = cu2pf1 and 

d = cu2'+I. SO 1 = a,-I where q - 1 is even. Thus, 

Notice that, though not explicitly stated, all exponents are taken modulo (q  - l ) ,  but in 

the case where ( q  - 1)  is even, e mod (q  - l ) ,  e E Z ,  is even if and only if e is even. 

Lemma 3.8 Zfq = 3 (mod 4 ) ,  then -1 E p, . 

Proof: Let cu be a primitive element in P,. Since -1 = it follows that -1 is square 

if and only if i(q - 1) is even. But, q = 3 (mod 4 ) ,  thus i(q - 1)  = 1 (mod 2 ) ,  so -1 is not 

square. 

Corollary 3.9 Forq = 3 (mod 4 ) ,  a E El, $and only $-a E p,. 

Proof: The proof follows from Lemmas 3.7 and 3.8. 

Proposition 3.10 For any prime q with q = 3 (mod 4 )  the set 

S = { X E P ,  ~ x E o , o ~ x $ ~ E ~ , )  

has cardinality 2 (3q - 5 ) .  

Proof: Consider the set 
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and note that Sf U ( 0 ,  -1)  is the complement of S. If x E Sf, then by Corollary 3.9, for some 

s , t ~ I F ; , x = - s ~ a n d x + l = t ~ . T h u s , s ~ + t ~ = l .  

Let C = { ( s , t )  E IF: I s2 + t2 = 1 )  and note that (1,O) E C. For ( s , t )  E C, ( s , t )  # (1 ,  O), 

define c  = t / ( s  - I ) ,  then t = cs - c  and 

Since s  # 1. it must be that s  = $& and thus t = 3. So, 

We want to count the number of distinct values of x = -s2 where s  = ~. and x E Sf. 

Note that ( so , t o )  E C and ( s l ,  t l )  E C yield the same value for x if so = f s l .  Now, if c  = 0  

then x = - (- 1)  = - 1  and x 9 Sf, thus we need only consider what happens if c  E IF;. 

Suppose that for some e l ,  c2 E IF;, and & yield the same value for x = -s2. Then 

either 
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Thus for c E IF:, c, -c, c-l and -c-' yield the same value for x E St .  However, since 

0 @ S t ,  we see that c # k1 which implies that c # *c-l and since q is odd and c # 0, c # -c. 

Thus c, -c, c-l, -c-l are all distinct. Since c E IF, \ {O,1, -I}, there are q - 3 choices for c 

and so ISt/ = : (q  - 3 ) .  

Therefore 

3.3.2 The Construction 

Theorem 3 .11  Let q 2 7 such that q E 3 (mod 4 ) .  There is a proper double blocking set B 

in P G ( 2 ,  q )  such that I B I = 39 + 1 and each line of P G ( 2 ,  q )  intersects B in at most ( q  + 1) 

points. 

Our construction of the proper double blocking (39 + 1)-set has some parallels to the 

construction of the proper blocking set discussed in Section 3.1. In the case of the proper 

blocking set, all points in the set lay on three lines in general position, while the proper 

double blocking set in our construction lies on four lines in general position. A second 

similarity lies in how the points are chosen for the sets. Though the selection is more com- 

plicated for double blocking sets, both constructions are based on properties of squares 

in IF:. For these reasons, the construction of a proper blocking set presented below in the 
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proof of Theorem 3 .11  can be considered a generalization of the construction of a projec- 

tive triangle. 

Proof: (Theorem 3.11)  Since we require four lines in general position, for the purpose of 

computation, it is natural to choose lo = [l : 0 : 01, 11 = [0 : 1 : 01, 12 = [0 : 0 : 11, and 

l3 = [ I :  1 :  11. 

Let M be the projectivity of PG(2, q) that maps lo to 11, l1 to 12, l2 to 13, and l3 to lo. Then 

and M~ = 13. The subgroup G = ( M )  of PGL(3, q) is isomorphic to Z4. We have ll = Mlo, 

12 = M210, l3 = M310. The G-orbit of point (0 : 1 : a) E lo is 

Figure 3 . 1  : A Typical Z4-Orbit 

Note that if a # 0 then IG((0 : 1 : a))l = 4. If a # {-1,O) then p E G((0 : 1 : a)) lies on 

exactly one of li, 0 5 i 5 3, and i f a  E { - l , O ) ,  thenp = li n l j ,  i # j .  

Let 
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where 

S = { X E I F ,  ( x ~ U , o r x + 1 ~ ~ , } ,  

as in Proposition 3.10, and let 

Then, let 

B = B I U B v .  

We call Bv the vertices of B and BI the internal points of B. Throughout this proof it 

will be useful to write points in the form implied by Equation (3. l), rather than in their 

left-normal form as  is done elsewhere in the thesis. That is if a non-vertex point P lies on 

lo itwill have the form P  = ( 0 :  1  : a ) ,  a  E P,* \ { - I }  and i f P  lies on 11, itwill have the form 

P  = (b  + 1  : 0  : - I ) ,  b  E IF,* \ ( -1 ) .  Vertices will continue to be written in left-normalized 

form. 

Note that if a  # 0  then IG((0 : 1  : a ) ) ]  = 4. If a  @ {-1,O) then p E G ( ( 0  : 1  : a ) )  lies on 

exactly one of li, 0  < i 5 3,  and if a  E { - l ,O} ,  then p E Bv and also notice that we have 

the following two orbits on vertices: ( ( 0  : 1  : - I ) ,  ( 0  : 0  : I ) ,  ( 1  : 0  : O ) ,  ( 1  : -1 : 0 ) )  and 

{(O : 1  : O ) ,  ( 1  : 0  : - I ) } .  

Clearly IBvl = 6 and by Proposition 3.10 there are i ( 3 q  - 5 )  points of the form (0 : 1  : a ) ,  

a  E S ,  thus lBll = 4 . a(3q - 5 )  = 34 - 5. Since -1,O $ S  the G-orbit of the point (0  : 1  : a )  

cannot contain a vertex and so B I  n BV = 0. Thus, IBI = IBv I + lBI 1 = 6 + (39 - 5 )  = 39 + 1. 

Next we show that B is a proper double blocking set. 

Consider a line 1 E P G 1  (2 ,  q ) .  One of the following three cases must be true about I .  

Either 1 contains two vertices, 1 contains one vertex, or 1 contains no vertices. 

If 1 contains two vertices and is not one of l i ,  i E { O , l ,  2 ,3} ,  then 11 n BI = 2. If 1 contains 

twovertices and is one of li, then 2  5 11 n BI = a(3q - 5 )  + 2  = :(q+ 1 )  < q -  1. 

For the case where 1 contains a single vertex we note that by Theorem 2.22, we need 

only consider one vertex for each orbit on vertices. 

Consider I E P G ( 2 ,  q )  such that V = ( 0  : 1  : 0 )  = 1 n lo = 1 n 12, PI = (b  + 1  : 0  : -1) = 1 n 11, 

and P3 = (-1 : -d : d  + 1 )  = 1 n l3 and P I ,  P3 @ Bv. If PI E B then we are done. Otherwise, 
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it must be that b 6 S, so b E qq and b + 1 E D,, since b $ {-1,O). Lemma 1.6 gives 

d = -b/(b + 1) so that d E 0, by Lemmas 3.7 and 3.8. Thus P3 E B and 2 I 11 n BI I 3. 

Consider1~PG(2,q)suchthatV=(0:1:-1)=1~1~=1n/~,P~=(b+1:0:-1)=1n1~, 

and P2 = (C : -(c + 1) : 0) = 1 n 12 and PI,  P2 6 Bv. If Pl E B then we are done. Otherwise, 

Lemma 1.6 gives c = -(b + l ) / b  so that c E 0, by Lemmas 3.7 and 3.8. Thus P2 E B and 

2 5 11 n Bl 1 3. 

Finally, we consider the case where 1 does not contain a vertex. Let 1 be a line not 

containing a vertex of B. Let P = {PO, PI,  Pz, P3) where Pi = 1 n li and Pi 6 Bv. We want to 

show that if two points in P are not in B then the other two points must be in B. Recall 

that 11 = M10, 12 = M210, l3 = M310, so MPo E 11, M2p0 E 12 and M3po E 13. Similarly, 

MPl E 12, M2Pl E l3 and M3Pl E lo. 

Again, by Theorem 2.22 we need only consider the following two cases only: (i) Po, Pl 

are both outside B, (ii) Po, P2 are both outside B. 

Case(i):LetPo=(O:1:a)andPl=(b+l:O:-1)wherea,b~S.Thusa~~,,a+l~O,, 

b ~ @ , , a n d b + l ~ D , .  L e t P 2 = ( c : - ( c + 1 ) : O ) , P 3 = ( - 1 : - d : d + l ) .  UsingLemma 

1.6 we find that c = -a(b + l)/(ab + a + I), and note that ab + a  + 1 # 0 since ab E 0, and 

- ( a+ l )  E p,. Wewant toshowthatc~  Swhichis t r u e i f c ~  D,orc+l  E q,. I f c ~  0, 

then we are done. Otherwise, c E p,, and -c = a(b+l)/(ab+a+l) E D,. Since a(b+l) E p,, 
by Lemma 3.7, l/(ab + a + 1) E P,. But c + 1 = -a(b + l)/(ab + a + 1) + 1 = l/(ab + a + 1). 

Therefore c + 1 E @, and so c E S which implies P2 E B. 

Using Lemma 1.6 again, we find d = -b/[(b + l)(a + I)], but b E p, and b + l,a + 1 E 0, 

gives b/[(b + l)(a + l)] E p, by Lemma 3.7 and thus d E D,. Therefore, d E S and P3 E B. 

Case (ii): Let Po = (0 : 1 : a), P2 = (c : -(c + 1) : 0) where a,c 6 S .  Thus a E g,, a + 1 E U,, 

c ~ p , , a n d c + l ~ ~ , .  L e t P l = ( b + l : O : - 1 ) , a n d P 3 = ( - 1 : - d : d + l ) .  Wewant 

to show that PI,  P3 E B. Using Lemma 1.6, we find b = -(c + ac + a)/[a(c + l)] and thus 

b + 1 = -c/[a(c + I)] but c/[a(c + I)] E 0, by Lemma 3.7, thus b + 1 E @, by Lemma 3.8. 

Therefore, b E S and P2 E B. 

Using Lemma 1.6 again, we find d = -(c + ac + a)/[c(a + I)]. Interchanging a and c, the 

argument is the same as in the previous paragraph. 
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With less effort we get the following slightly weaker result. 

Theorem 3.12 Let q 2 7 and q prime. There is a proper double blocking set in PG(2, q) of 

size3q+ 2. 

Proof: Letlo = [l : 0 :0 ] ,  l1 = [ O :  1 :0], l2 = [ O :  0 :  11 a n d l e t G 5  PGL(3,q) bethegroupof 

3 x 3 permutation matrices; that is G S3. Also, refer to the points (1 : 0 : O ) ,  (0 : 1 : O), 

(0 : 0 : 1) as vertices. Let T denote the set of 3q points on the lines lo,  11, 12. Note that G is 

an automorphism group of T. Now take 

where U = G((0 : 1 : 2)) and V = [G((l : 2 : 3)) U G((1 : -2 : -2))l \ ((-2 : -2 : 1)). Notice 

that IUI = 6 and IVI = 6 + 3 - 1 = 8 and IBJ = 3q + 2. We begin by considering the set 

B' = B U ((-2 : -2 : 1)). and later it will be shown that the point (-2 : -2 : 1) can be safely 

removed from the set. Notice that G is an automorphism group of B'. 

By Theorem 3.4, T is a double blocking set, so we need only consider those points that 

pass through one or more of the points in U. For any line 1 E PG1(2, q) such that 11 n UI > 0, 

there are three cases to consider; the case where 1 passes through exactly one point in U 

and no vertex; the case where 1 passes through a vertex and a point in U; and the case 

where 1 passes through at least 2 points in U. 

Case (i): If 1 passes through exactly one point P in U and no vertex, then ( I  n BI = 2 

since it must intersect the remaining two lines (those lines that do not contain P) at two 

distinct points. 

Case (ii): There are six lines that pass through one point in U and a vertex and these 

six lines all lie in the same G-orbit (G([2 : 0 : -11) in Table 3.1). Since B' is the union of 

G-orbits, by Theorem 2.22, we need only consider the size of the intersection of one line 

of the six lines. From Table 3.1 we see that 11 n B'I > 2 for 1 E G([2 : 0 : -11). Note also that 

G((-2 : -2 : 1)) n [2 : 0 : -11 = 0 and (1 : 2 : 3) @ [2 : 0 : 11 so 11 n B'J 5 q - 1 since q > 7. 

Case (iii): There are (;) = 15 lines that pass through at  least two points in U. Three of 

these lines are the lo, l1 and l2 and since T n V = 0, we have that lli n BI = q - 1 > 2 since 

q > 7, for i E {O,1, 2). The remaining 12 lines lie in the three G-orbits shown in Table 3.1. 

From Table 3.1 we see that for 1 satisfymg ( I  n UI 2 2, 11 n B' I 2 2. Also note that G((l : -2 : 



CHAPTER 3. BLOCKING SETS IN PG(2, q) 

Case (ii) G(I2:O:-11) 

Case (iii) G([l: 1:-21) 

Table 3.1: Orbits On Lines and Repair Points 

-2)) n [l : 1 : -21 = 0, G((1 : 2 : 3)) n [-2 : 1 : -21 = 0, and G((1 : -2 : -2)) n [4 : 1 : -21 = 0. SO 

for 1 E PG1(2,q) such that (In U (  2, 2 5 11 n B'I I q -  1. 

Finally, it is clear that all the points in G( ( l  : 2 : 3)) are require to repair the lines 

in G([4 : 1 : -2]), but this is not true of the points of G((1 : -2 : -2)). It turns out that 

IG((1 : -2 : -2)) n [-2 : 1 : -211 = 2 and so only 2 points in the orbit need be chosen in order 

repair the lines in G([-2 : 1 : -21). Thus we remove the point (-2 : -2 : 1) from the set B' 

to obtain B. 



Chapter 4 

Codes and 

In the Introduction of Chapter 1.1, a relationship between caps and codes was suggested, 

motivating the desire to find caps in finite projective geometries. In Section 4.2, a known 

relationship between caps in PG(r - 1 , q )  and codes with distance at least 4 is explicitly 

shown. It turns out that the larger the cap is, the better the code, and so ultimately, 

we want to find maximum caps in a given projective geometry. In Section 4.3, a brief 

survey of known caps is given. In Section 4.4, the method of prescribed automorphisms 

is applied directly to the problem of finding large caps in PG(r - 1, q). Section 4.5 shows 

an algorithm written by the author to solve the resulting 0- 1 integer linear programming 

(LP) problem. Finally, Section 4.6 gives the computational results found by the author. 

We begin with the coding theory background presented in Section 4.1. 

4.1 Coding Theory Background 

The following required definitions can be found in any text that offers an introduction to 

coding theory including [MS77]. 

Definition 4.1 A [n, k ]  linear code over I F , ,  or [n, k],-code, C ,  is a k-dimensional linear 

subspace of I F ; .  Ifq = 2 then C is called a binary linear code or an [n, k]-code. The elements 

of C are called codewords, and the block length of C is n. We call k the dimension of C,  
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and note that such a code has q"odewords. 

Throughout this chapter, let C denote an [n, k],-code. Note again that C is a linear code 

as some of the following definitions and theorems may not apply to nonlinear codes. 

Definition 4.2 The rate or efficiency of C is k/n and is denoted by R(C). 

The larger the value of R(C) is, the more "efficient" the code is considered to be. The 

efficiency of a code measures the relationship between the dimension of the code, and 

the length of a codeword. If the dimension k is considered to represent the amount of 

information that can be sent in a codeword, then the remaining (n - k )  elements can be 

considered to be the elements that provide the reliability, or error-correcting ability of the 

code. Clearly, these two desirable traits of a code are competing; that is, for a fixed code 

length n, one can only be increased at the expense of the other. So while a high efficiency 

is desirable, it comes a t  the cost of reliability; a code with efficiency equal to 1 has no 

error-correcting ability. The codes studied in this chapter have fixed error-correcting 

abilities, but attempt to improve efficiency by increasing both n and k. These codes are 

discussed further in Section 4.2. 

Definition 4.3 The Hamming weight of a vector x = (xl, x2, . . . , x,) E IF; is the number of 

nonzero xi, 1 5 i < n, and is denoted by wt(x). 

Definition 4.4 The Hamming distance between two vectors x = (xl, 22,. . . , x,) and y = 

(yl, y2, . . . , y,) E IF;, denoted by dist(x, y), is the number of places in which x and y d~ffec 

that is, dist(x, y) = wt(x - y). 

Definition 4.5 The minimum distance of C is 

min dist(x, y) = min wt(x - y) 
x,YEC,X#Y X,UEC,X#Y 

and is denoted by d. 

Sometimes C is called an [n, k ,  dlq-code. 

The following theorem and proof is taken directly from [MS77, pg. 101. 
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@ Denotes a codeword. 

Denotes a noncodeword. 

Figure 4.1: Codes With Minimum Distance d.  

Theorem 4.6 Lett E Z be nonnegative. An [n, k],-code with minimum distanced can correct 

t errorsifd=2t+l andt - 1  errors ifd=2t. 

Proof: Suppose d = 2t + 1 for some positive integer t. A ball of radius r and centre x is the 

set of vectors y E IF," such that dist(x, y) 5 r. Consider the set of balls with centre in C and 

r = t. If u, v E C are the centres of two such balls and x E IF," such that dist(x, u) 5 t then by 

the triangle inequality, dist(x, v) 2 t + 1, so that the balls are disjoint. So if codeword x is 

transmitted and vector y is received and dist(x, y) 5 t ,  y will be closest to x. If dist(x, y) > t 

then y may not be closest to x. In other words, a code with minimum distance d = 2t + 1 
can detect and correct up to t = ( d  - 1)/2 errors. Thus for d odd, the [n, k],-code can correct 

t errors. (See Figure 4. la.) 

If d = 2t is even, by the same argument, at least one pair of balls of radius t centered 

a t  u and v ,  where u, v E C will overlap at one point, so that C can detect up to t errors, but 

can only correct t - 1 errors. (See Figure 4. lb.) 

Codes are often measured by their error-correcting ability; given a block length n, and 

a dimension k, what is the best error correcting ability a code can have. This is known 

as the packing problem; what is the largest possible radius t of disjoint balls centered a t  

codewords. As shown in Theorem 4.6 this is the error-correcting ability of the code. There 

is a second common way of measuring codes that looks at the opposite problem. 

Definition 4.7 The covering radius of C ,  denoted by p, is the smallest integer r such that 
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for every v E P:, dist(x, v) 5 r for some x E C 

Geometrically, the covering radius can be considered as the smallest integer r such 

that every vector in P: lies in at least one ball of radius r centered at a codeword. In 

this way, the balls of radius r jointly cover the vector space IF;. The covering radius 

is used to approach problems such as  data compression and information hiding as  the 

packing problem is used to approach error correcting. The following Proposition shows a 

relationship between the covering radius and the minimum distance of a code. 

Proposition 4.8 The covering radius p of a code with minimum distance d satisfis d 5 

2p+ 1. 

Proof: Let cl, cz E C such that dist(cl, CZ) = d and let B, denote the ball of radius p around 

the codeword c. Consider v E P: such that dist(cl, v) + dist(v, cz) = d, and suppose v does 

not lie in either B,, nor in B,,, then there exists CQ E C such that dist(v, c3) 5 p. So, 

dist(c3, v) < dist(v, cl), thus dist(c2, c3) 5 dist(c2, v) + dist(v, c3) < dist(cz, v) + dist(cl, v) = d, 

a contradiction. So, v lies in at least one of B,, or B,, . Now, suppose d > 2p + 1, then there 

exists u E P: such that dist(ci, u) > p + 1, for i = 1,2, and dist(cl, u) + dist(u,c2) = d, but 

then u would lie outside of both B,, and B,, . So d I 2p + 1. 

If d = 2p + 1 in Proposition 4.8, then C is called a perfect code. A perfect code has 

covering radius equal to its error-correcting ability, so it solves both problems optimally. 

While these are desirable codes, the number of such codes is extremely small; the family 

of Hamming codes [s, 5 - rJ], for integer r 2 2, the binary Golay code [23,12, 712 and 

the ternary Golay code [ll, 6, 513 are the only non-trivial examples. Trivial perfect codes 

include [n, n, 11, codes and the repetition code [n, 1, nI2 when n is odd. 

Definition 4.9 A quasi-perfect code C is a code where d = 2p. 

In Section 4.2 it will be shown that the codes searched for in this chapter can be 

extended into either perfect codes, or more commonly, quasi-perfect codes. 

Definition 4.10 Let G be a k x n matrix over P,, then G is called a generator matrix for C 

if and only if the rows of G form a basis for C. 
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Definition 4.11 Let H be an ( n  - k) x n matrix over F, with rank n - k, then H is a called 

a parity check matrix for C i f  and only iffor every c E C, H C ~  = 0. 

Definition 4.12 Let C be a code with generator matrix G and parity check matrix H. The 

dual of C ,  denoted CL, is the code with generator matrix H and parity check matrix G. 

Note that 

C ~ = { U E P ;  [ u . v = O f o r a l l v ~ C ) ,  

and CL is an [n, n - k],-code. 

The following theorem can be found in [MS77, pg. 331. As an exercise we present a 

more explicit proof. 

Theorem 4.13 Let H be a parity check matrix for a linear code C. Then C has minimum 

distance d if and only if any set of d - 1 columns of H is linearly independent, and there is 

at least one set of d columns that is linearly dependent. 

Proof: Let n be the block length of C. Suppose C has minimum distance d, then there 

exists some codeword x = ( x l ,  x2,. . . ,x,) E C such that Hx = 0 and wt (x )  = d. Let 

H = [hllhzl ...I h,] where hi E then Hx = hlxl + h2x2 + . . . + hnxn = 0. Since x has 

weight d there are d nonzero entries in x ,  say xi l ,  x iz , .  . . ,xid and the remaining entries 

are zero. Then Hx = hi,xil + hi2xi2 + . . . + hidxid = 0, SO that the set {hi l ,  h iz , .  . . ,hid) is 

a set of d linearly dependent columns of H. Now, suppose there exists a set of d - 1 

linearly dependent columns in H ,  say {hj,,  hjz , . . . , hj(d- l ) ) ,  then for some cl, c2, . . . , cd-1 not 

all zero, we have cl hj ,  + c2 hjz + . . . + cd- 1 hjd- = 0 ,  SO that if y = yl y2 . . . yn with y j k  = ck for 

1 5 k I d - 1, and all other entries 0, then y is a codeword with w t ( y )  < d, a contradiction. 

4.2 A Relationship Between Caps and Codes 

Recall from Definition 1.2 1 that a cap is a set of points B in PG(n, q )  such that no three 

points of B are collinear and an m-cap is a cap with m points. Also recall from Definition 

1.22 that a complete cap is a cap which is not properly contained within any other cap 
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in PG(n, q), and a maximum cap is a cap of maximum size in PG(n, q ) .  The relationship 

between caps and linear codes is discussed in this section. 

Let B = {P(h l ) ,  P(h2),  . . . , P(h,)) be an n-cap with n 2 4 in PG(r-1, q), then, by Theorem 

4.13, the matrix H with columns {h l ,  h2, .  . . , h,) is a parity check matrix for an [n, n  - r] ,  

code C with distance d > 4. Such a code has qn-' codewords and efficiency R(C) = 

( n  - r ) / n .  Since r  is fixed by the choice of PG(r - 1, q), increasing n results in a more 

efficient code with a larger number of codewords. So it is desirable to try to maximize the 

size of the cap B. 

Theorem 4.14 Let H = {h l ,  ha, .  . . , h,) be the columns of aparity check matrix of an [n, n  - 

r] ,  code C with d 2 4. Then B = {P(h l ) ,  P(hz) ,  . . . , P(h,)) is a complete cap in PG(r - 1 ,  q) if 

and only ijC has covering radius p = 2. 

Proof: Suppose p = 2. Let y E IF;. Since H has rank n - k ,  y = HzT for some x  E IF;. Now, 

since p = 2, there exists z  E IF; such that ( x  - z)  E C and wt(z )  5 2. So, H(x  - z ) ~  = 0 

which implies that y = H Z ~  and since wt(z )  5 2 it follows that H is a complete cap. The 

reverse argument shows us that if H is a complete cap, then p 5 2,  so it only remains to 

show that equality holds. By Proposition 4.8, d 5 2p  + 1, thus p > 2. 

By Proposition 4.8, it is clear that if p = 2 then H forms a parity check matrix of a 

perfect or quasi-perfect code. 

It should be noted that any cap can be extended to a complete cap in polynomial time. 

The simplest algorithm to do so would be to find a point in PG(n, q) that does not lie on a 

line that intersects the cap at exactly two points and add that point to the cap. If the new 

set is not a complete cap, then the process should be repeated. 

4.3 Known Maximum Caps 

In the previous section, it was shown that complete caps form the parity check matrix 

of perfect or quasi-perfect codes and that the larger the cap is, the better the code is 
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considered to be, so it is desirable to find caps of maximum size. However, finding such 

maximum caps in PG(n, q) is still an open problem for all but a very restricted number 

of finite projective geometries (see Theorem 4.15, Theorem 4.19, Theorem 4.21, and the 

comments following Theorem 4.21) . This section briefly summarizes the relevant in- 

formation of two survey papers, one by J. Bierbrauer [Bie03] and the second by J.W.P. 

Hirschfeld and L. Storme [HSOl], and provides some proofs and examples. For simplicity 

of notation, let rnZ(n, k )  denote the maximum size of a complete cap in PG(n, k) .  

Theorem 4.15 [Bos471The muximum size of a cap in PG(N, 2 )  is rnz(N, 2 )  = 2 N .  

Proof: Let H be a set of points in PG(N, 2) constructed by removing a hyperplane from 

the set of all points. By Theorem 1.12 a line in PG(N, 2 )  is either contained completely 

in the hyperplane, or intersects the hyperplane a t  exactly one point. Since every line has 

three points, H is a cap. By Theorem 1.8, the number of points contained in a hyperplane 

in PG(N, 2 )  is [(Nzi+l I *  = ( 2 N  - 1) points so that /HI = [ (2Nt1  - 1 )  - ( g N  - I ) ]  = a N .  

Now, suppose there exists a cap H' such that lH'I 2 2 N  + 1. Choose a point y E H', 

then for every x E H', there is a point x + y @ H' and if x # x', then x + y # x' + y .  Hence 

we can count 2 ( 2 N )  + 1 = 2N+1 + 1 distinct points which is more than the total number of 

points in PG(N, 2 ) .  

The proof of Theorem 4.15 suggests a construction for a complete cap in PG(N,2) 

and in fact, as  Theorem 4.17 will show, the only complete caps in PG(N, 2 )  are those 

constructed by removing a hyperplane from the set of points in PG(N, 2 ) .  

Lemma 4.16 If C is a cap of size 2N in PG(N, 2), then C has no tangent line. That is, no 

line intersects C exactly once. 

Proof: Suppose there exists a line 1 such that 1 intersect C at exactly one point, call that 

point y. By Corollary 1.9 we know that PG(N,2) has 2N+1 - 1 points and each line has 

3 points. For each x E C such that x # y, there exists a point x + y not in C, since C is 

a cap, and not on I ,  since x is not on 1. Counting, we get 2(2N - 1) + 3 = 2N+1 + 1 where 

the additional 3 points are the points on 1. This is a contradiction, since there are only 

2N+1 - 1 points in PG(N, 2). 
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Theorem 4.17 [Seg59] If C is a cap of size 2N in PG(N, 2),  then the complement of C ,  E, is 
a hyperplane. 

Proof: B y L e m m a 4 . 1 6 , i f x , y ~ ~ t h e n x + ~ ~ ~ .  ~ l s o i f x ~ ~ t h e n c x ~ ~ o r c x = ~ f o r  

c E P2. Thus forms a subspace of PG(N, 2) of size 2N+1 - 1  - 2N = 2N - 1. Since the only 

subspaces of this size are hyperplanes, it must be that is a hyperplane. 

The following example shows that not all complete caps need be maximum. 

0 0 0 0 0  1 1 1 1  

1 0 0 0 1  0 0 0 0  

Example 4.18 Let H = o 1  o o 1  1  o o 1  be a parity check matrix for a 

0 0 1 0 1  0 1 0 1  

0 0 0 1 1  0 0 1 1  i 1 
[9,4]2 code and let H' be the set of columns of H. Since every nonzero vector in IF; which 

is not in H' can be written as a linear combination of exactly two elements of H i ,  H' forms 

a complete cap in PG(4,2). By Theorem 4.15, H' is not maximum. 

The proof for the following theorem can be found in [Hir98, pg. 1771. 

Theorem 4.19 The maximum size of a cap in PG(2, q) is m2(2, q )  = q + 1 i f q  is odd, and 

m2(2, q) = q + 2 i f q  is even. 

Example 4.20 Let H be the set of points (xo : xl : x2) in PG(2, q) that satisfy xi - xlx2 = 0. 

The set H has q + 1  points, no three of which are collinear. If q is odd, then H is a complete 

cap. If q is even the set of tangents of H intersect at exactly one point N ,  thus H u { N )  is 

a complete cap. 

The previous example shows a construction for maximum caps in PG(2, q), and in fact 

the same construction can be made using the rational points of any conic. It happens that 

for q odd, any maximum cap must be the set of rational points of a conic lSeg54, Seg551. 
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For q even, however, it is known that not all maximum caps are the union of a conic and 

the intersection of the tangent lines of the conic. 

Theorem 4.21 lBos47, q oddlQvi52, q even1 The maximum size of a complete cap in PG(3, q) 

forq> 3 ismz(3,q)  = q 2  + l .  

As in the case for PG(2, q) ,  there is a geometrical construction for maximum caps in 

PG(3, q) .  The rational points of an elliptic quadric form a maximum cap in PG(3, q) .  Like 

the case with PG(2,q),  not all maximum caps in PG(3,q) are formed in this way. For 

example, in PG(3,22e+1), e 2 1, there is another construction known as the Tits ovoid 

[Tit62]. 

G.  Pellegrino offers a geometric proof for m2 (4 ,3)  = 20 [Pe170]. The Hill cap, named 

after its discoverer R. Hill, is the largest cap in PG(5,3) and has size 56 [Hi173], thus, 

m2(5,3) = 56. J .  Bierbrauer and Y. Edel were able to prove that m2(4,4) = 41 with the aid 

of a computer program [EB99]. It is expected that any further discoveries will be largely 

based on computational effort. 

Though no other values of m2(n,q)  are known, their upper bounds are known. The 

following two theorems are found in [Bie03]. 

Theorem 4.22 Let n 2 3 and q > 2 .  Then 

Theorem 4.23 For n 2 3 and q > 3, 

For certain n and q, better upper bounds are known, and the interested reader is 

referred to [HSOl] for a complete listing. 

4.4 Prescribed Automorphisms and Maximum Caps 

In Chapter 2, the foundations for using prescribed automorphisms to help find interest- 

ing point sets in PG(n, q),  were introduced. In this section, these foundations are applied 
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directly to the problem of finding caps in PG(n, q). It should be noted that a similar ap- 

proach was used in [Bra051 to find the generator matrix for linear codes with a prescribed 

minimum distance. 

Let PI, .  . . , Pt denote the t = (qn+l - 1)/(q - 1) distinct points in PG(n, q). The problem of 

finding maximum caps in PG(n, q) is equivalent to the following 0- 1 integer LP problem: 

subject to, for each line lj in PG(n, q) 

where xi E {0,1) for all i and 

1 if line lj is incident with Pi, 
Cji = 

0 otherwise. 

The point Pi is in the set B if and only if xi = 1. 

Such a problem becomes intractable very quickly. For example, PG(5,3) has 364 

points and 1101 1 lines, so the total number of possible solutions is 2364, each of which 

must be tested against the 1101 1 constraints. The method of prescribed automorphisms 

can reduce the problem size dramatically; for example, the cyclic group generated by the 

element 

reduces the original problem with 364 points and 1101 1 lines to 15 orbits on points and 

431 orbits on lines, but we may lose the ability to find an optimal solution to the original 

problem, as  was shown in Example 2.26, or even to know that an optimal solution has 

been found. Ideally, the goal is to find a group that will create a small number of orbits, 

but will also be an automorphism of a large cap, and thus the new 0- 1 integer LP problem 

will still produce a good solution for the original problem. 
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In Section 2.5, strategies for choosing groups were discussed. Since little is known 

about the structure of maximum caps in PG(n, q) the strategy used for this problem was 

to use cyclic subgroups of PGL(n + 1,q). Using cyclic subgroups can often be a good 

place to start since there are relatively few cyclic subgroups up to conjugacy, and since 

any 'good' group will have cyclic subgroups. As shown in Section 2.4, once the group is 

chosen and applied to the original 0- 1 integer LP problem, a new 0- 1 integer LP problem 

is found. 

Let wl, . . . , wk denote the k distinct G-orbits of PGo(n, q) for some G 5 PGL(n + 1, q), and 

let R1,. . . , OK denote the K distinct G-orbits of PGl(n, q). 

where xi E {0,1), and cji = 11 n wiI, for any Line 1 E aj 

Example 4.24 Theorem 4.15 states that PG(3,2) has a maximum cap size of 8. How- 

1 1 0  

1 0  1 
ever, consider g = 

1 0 0  

9;g2 = 

produce: 

. The cyclic group generated by g is given by (g)  = 
1 
O I 

Maximize 

1 . This group 

subject to 
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where xi E (0, l), for all i. 

An optimal solution to this problem is associated with the cap 

which is clearly not maximum, but is complete. Also, it should be noted that this is the 

only cyclic subgroup (up to conjugacy) that generates B. 

4.5 Solving the Integer Linear Programming Problem 

Though the method of prescribed automorphisms may significantly reduce the size of 

the original 0-1 integer LP problem, the new problem must still be solved. It is known 

that the 0- 1 integer LP problem is NP-complete ([GJ79], Page 245), so there is no known 

polynomial-time algorithm to solve it. Instead, we look to an exponentially-timed algo- 

rithm and attempt to improve its efficiency by using knowledge of the current problem 

being solved and adapting the algorithm accordingly. 

The exponential-time algorithm used here is a backtracking algorithm, and a method 

known as  pruning is used in order to improve the efficiency of the backtracking algorithm. 

Before we describe what pruning is and how it is specifically applied to this problem, we 

give a brief overview of a general backtracking algorithm. 

Let P be a 0- 1 integer LP problem. Recall from Definition 2.23 that a feasible solution 

is a 0-1 vector such that all the constraints of P are satisfied. Let X = (xo,xl,. . . ,x,) be a 

not necessarily feasible solution of P. A backtracking algorithm is a recursive algorithm 
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Search Order 

Figure 4.2: An Example Search Tree for a Backtracking Algorithm. 

that performs a depth-first search of a binary tree where the ith level of the tree represents 

the ith variable x,. Once a solution has been processed, the algorithm backtracks to find 

the next solution (Figure 4.2). Each recursive call of the backtracking algorithm takes 

the problem P, the current solution state X, and the current depth of the search tree 1 

as parameters, and processes the solution X when x1 = 0 and when xl = 1. If 1 = n + 1, 

processing X means computing the objective function value of X and comparing it to 

the best solution so far. If 1 < n + 1 then processing X means recursively calling the 

backtracking algorithm. The backtracking algorithm visits every possible solution, so if 

the problem has n variables and m constraints, the algorithm will generate 2" solutions 

and will test every solution on m constraints and so has a complexity of order m2". Since 

every possible solution is visited, the algorithm is guaranteed to find an optimal solution 

if one exists. Recall however, that in the context of this thesis, this is a reduced problem, 

and the backtracking algorithm will not guarantee a solution to the original problem. 

Very important to the 0- 1 ILP problem and by extension, the backtracking algorithm, 

is the concept of feasibility. A standard backtracking algorithm tests the feasibility of the 

current solution when x1 = 1 at every level of recursion. If X is a feasible solution then the 

algorithm will continue normally, but if X is not a feasible solution, then the algorithm 

will need to act accordingly. In the case where the inequalities are I, as  they are in 

the caps problem, the algorithm would stop searching that branch of the search tree; 
- that is, if X = [?fl,. . . ,x1,0,. . . ,0] is not a feasible solution, the algorithm will not consider 

any solution where X = [?fl, . . . , zl, . . . , x,]. By testing for feasibilty early, that is before 
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Algorithm: Backtrack(P, X, 1)  

global optP, optS 

i f l = n + l  
curP = CL1 wixi; 
if (curP>optP) then 

optPtcurP; 
o p t s t  X; 

else 
2 1  t 1 
L = Feasibility(xJ 
if(Prune(xl)>optP) Backtrack(P, X, xl .Right) 

21 + 0 
DancingLinks(L) 
if(Prune(x1) >optP) Backtrack(P, X, xl . Right) 

Figure 4.3: Backtracking Algorithm with Pruning 

1 = n, the number of complete solutions visited may be reduced so that the algorithm is no 

longer visiting all 2" solutions. The feasibility testing in the backtracking algorithm used 

in the algorithm in this thesis differs slightly from the standard method, in that rather 

than testing a current solution it takes advantage of an algorithm developed by Knuth 

[KnuOO] called Dancing Links, and tests future solutions so that any solution visited is a 

feasible solution. This method for testing feasibility is discussed in further detail below. 

Figure 4.3 gives a brief overview of the algorithm used in this thesis. It should be noted 

that initially, X = 0, optS = 0, and optP= 0. 

There are three subprocesses being performed in the backtracking algorithm; they are 

Feasibility(xl) , DancingLinks(L) and Prune(xl). Before discussing these three sub processes 

in detail, we look at what happens when the terminal case 1 = n  + 1 is reached. At 

this stage, the current solution X is compared to the best known solution so far. If the 

objective function value for the current solution curP is better than optP, the objective 

function value for the best solution so far, then the best known solution opts is replaced 

by the current solution X. 
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a) A doubly linked list. 

b) Removing Node B from the doubly linked list. 

c) Removing Node C from the doubly linked list 

d) A damaged linked list: Recovering Node B before Node C 

Note that travelling right, C is in the linked list though it has not been recovered, 
and travelling left, B is not in thelinked list though it has been recovered. 

Figure 4.4: A Linked List 

Before describing the remaining subprocesses, an overview of the Dancing Links Al- 

gorithm [KnuOO] is given. The first part, Remove, is performed during the Feasibility(xl) 

subprocess, and the second part, Recovery, is performed during the DancingLinks(L) sub- 

process. The Dancing Links Algorithm allows for an element stored in a doubly linked list 

to be removed from the list and later recovered in its original position. For this reason, 

each X-coordinate is stored in a structure known as  a node. A node in a doubly linked 

list points to the node before it in the list (using the pointer Left), and the node after (using 

the pointer Right) (see Figure 4.4a). Removing a node from a doubly linked list is done in 

the following manner. 
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While the node has been removed from the doubly linked list, meaning that it cannot 

be reached from any node in the list, it still points to nodes in the list, indicating its 

original position. To recover the removed node, the following procedure is applied; 

Together, these two procedures, Remove and Recovery, form the Dancing Links Algo- 

rithm. It should be noted that if more than one node is removed before recovery takes 

place, then nodes should be recovered in the reverse order of removal, in order to ensure 

the integrity of the linked list (see Figure 4.4d). 

The simple recovery process used in the Dancing Links Algorithm makes it ideal for 

testing the feasibility of all vectors below the current vector in the search tree, and not just 

the current vector as is normally done in a backtracking algorithm. If xl is set to 1, any xi, 

i > 1 that can no longer be set to 1 and be part of a feasible solution is then considered to 

be 0 and is removed from the linked list so that it will not be visited by the backtracking 

algorithm. Any xi considered for removal, but not removed is called live. Feasibility(x1) 

returns a stacked list L which contains the location of all removed variables. When xl is 

set to 0, the DancingLinks(L) subprocess recovers the removed xi's using the Recovery 

algorithm. Since L is a stacked list, the xi's are returned to linked list in the reverse 

order of removal, thus ensuring the integrity of the linked list. It is important to note that 

this method of feasibility testing means that any solution X = [xl , . . . , xl ,0.  . .O] visited is a 

feasible solution which is not necessarily true when standard feasibility testing is used. 

The final subprocess is the bounding function, Prune(xl). A bounding function assigns 

a value b to a partial solution Xl = [al,. . . , all such that the objective function value of 

the best solution containing Xl, Xb = [al,. . . ,all xl+l,. . . , xn] is less than or equal to b. If 

b is less than or equal to the objective function value of the best known solution so far, 

then a better solution does not exist in the subtree rooted at the partial solution Xl and 

no further testing in that subtree need be done and so the search tree is 'pruned' of this 

subtree, reducing the number of complete solutions visited. 

The algorithm in this thesis implements one of two bounding functions. The first is 

called the Standard Bounding Function. It takes a partial solution and sets all remaining 
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live X-coordinates to 1 without any further feasibility testing. The objective function value 

of this solution becomes the bound b. It is not possible for any solution containing the 

current partial solution to be better than this bound. 

The second bounding function, called the Modified Bounding Function, takes advan- 

tage of the structure of the problem for caps, using the fact that the right-hand-side of 

every constraint is less than or equal to 2 to store and easily retrieve information for 

computing the bound. The Modified Bounding Function chooses a single constraint and 

finds the best objective function value based on this constraint and the 0-1 constraints. 

This objective function value becomes the bound. For each constraint, three arrays are 

created C2, C1 and Co. The array Ci, i E {O,1, 2) contains the variables xj such that the 

coefficient of xj in the constraint is i .  Each array is sorted in descending order according 

to the objective function coefficient of xj so that a greedy algorithm can be applied effi- 

ciently. Let oi be the objective function coefficient of the variable xi. Let xk be the first 

live variable in the array C2 and let b2 = ok. Let xkl and xk2 be the first two (respectively) 

live variables in C1, and let bP1 = okl + 0 k 2  and bll = o k l .  Let bo be the sum of the objective 

function coefficients of all live variables in Co. Finally, let P = ,& otxt be the objective 

function value of the current partial solution. In order to compute the bound b for the 

Modified Bounding Function given constraint Lj, we consider the slack sj = 2 - ELl cjtxt 

associatedwithLj. Ifsl =2 thenb= P+max(b2+bo, b21+bO),if~1 = l thenb=P+bl l+bo ,  

a n d i f s  =Othenb= P + b o .  

Example 4.25 To demonstrate the two different bounding functions, consider the follow- 

ing linear programming problem. 

Maximize 

IBI = 4x1 + 2x2 + 2x3 + x4, 

subject to 
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xi E {O,l) for all i. 

Suppose the partial solution ( x l ,  x2)  = ( 1 , O )  is being considered and that the cur- 

rent best known solution is (1, l ,  0,O) which has an objective function value of 6. Using 

the standard bounding function, the objective function value for the solution (1,0,1,1) is 

computed and has a value of 7. Using the modified bounding function and the constraint 

Cl ,  the objective function value for the solution (1,0,1,O) is computed and has a value of 

6. The modified bounding function will prune this branch of the tree, and not look at any 

more solutions extending the partial solution xl = 1 and 2 2  = 0 since the bounding func- 

tion shows that no solution can have a better result than the current best. The standard 

bounding function will continue to the next level of the tree and test the partial solution 

X I  = 1,x2 = O  and23 = 1. 

Notice that the modified bounding function will never return a worse bound than the 

standard bounding function. 

4.6 Results 

The Algorithm described in Section 4.5 was implemented in the programming language 

C ,  in a program called ipv6.c which can be found in Appendix B. There were two main 

reasons for writing a C program to solve the Integer Programming Problem associated with 

finding caps in PG(n, q). The first was to take advantage of the fact that we are looking a t  

a problem where the right-hand-side of the constraints is always 2, and thus implement 

the modified bounding function in an efficient manner. The second reason was to create 

a program that would not be constrained by licensing restrictions. That is, we wanted a 

program that was easily ported to any accessible computer. 

The program ipv6.c has the added benefit of being able to consider numerous problem 

instances for a given PG(n, q). That is, multiple problems can be submitted to the program 

and the best known solution will be used over all problems, not just the one it is found in. 

This ability also allows the program to run in parallel. By writing the best known solution 

found, as soon as it is found, to a file outside of the program, other programs can access 

the file, and update their best known solution accordingly. 

Table 4.1 shows the running times for a set of integer programming problems for 
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PG(3,2), PG(3,3), PG(4,2), and PG(5,2). The problems were run twice using ipv6.c, once 

with the standard bound, and once with the modified bound, and again using the software 

package CPLEX. 

I Problem 1 CPLEX I ipv6.c - 

Table 4.1: CPLEX and ipv6.c Timings (in seconds) 

Instance I Time I Standard Bound ( Modified Bound ( Problem Instances 

Table 4.2: Large caps in small projective spaces with q prime 

ipv6.c - 

PG(3,2) 1 0.05s I 0.01s 

Table 4.2 shows the size of largest known caps [HSOl]. The method of prescribed 

automorphisms and ipv6.c were applied in attempt to find large caps in PG(4,5), PG(4,7), 

PG(5,5), PG(6,3) and PG(6,5), running each for an average of approximately two weeks. 

The entries indicate known maximum caps and the * entries indicate instances where 

we were able to find caps of size equal to the largest known size. 

Number of 

0.03s 13 



Chapter 5 

Conclusion and Future Works 

5.1 Conclusion 

The method of prescribed automorphisms, discussed in Chapter 2, and applied to the 

problem of finding small double blocking sets in PG(2, q) (Chapter 3), and large caps 

in PG(n, q) (Chapter 4), has been used successfully in a number of problems including 

finding and classifying designs [Ker99], error -correcting codes [Bra05, BW041, and finding 

(m,r)-arcs in PG(2,q) [BW05]. Note that a cap of size m in PG(2,q) is an (m,2)-arc. 

For more information, a twenty-three page survey of the method and its applications, 

including the classification of Latin squares and 1-factorizations of complete graphs, can 

be found in [ K O O ~ ,  Chapter 91. 

For both problems considered in this thesis, that of double blocking sets in PG(2, q) 

and caps in PG(n, q) ,  the method of prescribed automorphisms was used in order to 

reduce their problem sizes and, consequently, significantly reduce the computing time as 

compared to solving the original problem, in an effort to find new results. In the case 

of double blocking sets in PG(2, q), the method was used to successfully find and prove 

a new family of proper double blocking sets of size 3q + 1 for the case where q is prime 

and q = 3 (mod 4) (Theorem 3.11). Previously, no families of size less than or equal to 

3q + 1 were known for proper double blocking sets. We were also able to use the method 

of prescribed automorphisms to prove the existence of a family of proper double blocking 
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sets of size 3q+ 2 for any prime q > 7 (Theorem 3.12). Though this result is slightly weaker, 

its proof and construction is less complicated than that for Theorem 3.11. 

In the case of caps, we were able to apply the method of prescribed automorphisms to 

match the best known results for several large caps (Section 4.6). The implementation of 

an integer linear programming solver written by the author allowed us to take advantage 

of the specific structure of the ILP associated with finding large caps, and allowed us to 

run the problem on multiple computers without the need of a license a s  is required by 

software programs such as  CPLEX (Section 4.5). 

5.2 Future Works 

In the future, we would like to extend the construction of Theorem 3.11 to the case of q 

prime satisijing q = 1 (mod 4). Though it is expected that the proper double blocking set 

will be larger than 3q + 1, we hope that the construction itself will be similar. We would 

also like to extend the results to finding proper t-fold blocking sets on t+2 lines fort > 2 by 

applying the method of prescribed automorphisms. For example, using the same strategy 

for constructing the ILP problem for proper double blocking sets, we can search for 3-fold 

blocking sets on 5 lines by considering subgroups of the symmetric group S5. 

We would like to continue the study of large caps in PG(n, q) and reduce the amount of 

redundancy in testing cyclic subgroups by finding a way to recognize whether or not two 

cyclic subgroups in PGL(n + 1, q) are in the same conjugacy class much as we can recog- 

nize that two elements of PGL(n+ 1, q) are in the same conjugacy class by considering their 

Smith Normal forms over the ring of polynomials over IF, as mentioned in Section 2.5. 
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Magma Code 

The following is the Magma code and results for Examples 2.24, 2.25 and 2.26. 

> /*the following is an example of a 0-1 linear programming problem 

> this program finds the objective function and the constraint set for 

> the problem of finding a maximum set of points in PG(2,q) such that 

> every line passes through the set at most 3  times. * /  

> 

> q:=3; 

> 

> / *  P1 := the projective plane 

> P := the point set - used to retrieve individual points. 

> eg. the third point is given by P.3 

> L := the line set - used to retrieve individual lines. 

> eg. the fourth line is given by L.4 * /  

> 

> P1, P, L := FiniteProjectivePlane(q); 

> 

> / *  CG := PGL (3 ,3)  returned as a permutation group. 

> Pa := the set of points on which G acts. 

> La := the set of lines on which G acts. * /  

> 
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> CG, Pa, La := CollineationGroup (Pl) ; 

> 

> 

> / *  Print out the point set. * /  

> for i := 1 to #P do 

> printf1'P-{%o)=%o\nt', i,P.i; 

> end for; 

P-{I)=( 1 : 0 : 0 ) 

P-{2)=( 0 : 1 : 0 )  

P-{31=( 0 : 0 : 1 )  

P-{4)=( 1 : 2 : 0 ) 

P-{5)=( 0 : 1 : 2 ) 

P-{6)=( 1 : 2 : 1 ) 

P-{7)=( 1 : 1 : 1 ) 

P-IS)=( 1 : 1 : 2 )  

P-{9)=( 1 : 0 : 1 ) 

P-{lo}=( 1 : 1 : 0 ) 

P-{Ill=( 0 : 1 : 1 ) 

P-{12)=( 1 : 2 : 2 ) 

P-{13)=( 1 : 0 : 2 ) 

> 

> / *  Print out the line set. * /  

> for i := 1 to #P do 

> printfl'L-(%o)=%o\nU, i, L.i; 

> end for; 

L-{I)=< 1 : 0 : 0 > 

L-{2)=< 0 : 1 : 0 > 

L-{3)=< 0 : 0 : 1 > 

L-{4)=< 1 : 2 : 0 > 

L-{5)=< 0 : 1 : 2 > 

L-{6)=< 1 : 2 : 1 > 

L-{7)=< 1 : 1 : 1 > 

L-{8)=< 1 : 1 : 2 > 

L-{9)=< 1 : 0 : 1 > 

L-{lo)=< 1 : 1 : 0 > 

L-Ill)=< 0 : 1 : 1 > 
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/ *  Create the incidence matrix between points and lines. * /  

IM:=IncidenceMatrix (Pl) ; 

/ *  Print out the incidence matrix in a LaTeX friendly format * /  

for i := 1 to #P do 

f st :=true; 

for j := 1 to #P-1 do 

if IM[i, j] ne 0 then 

if not fst then 

printf "+"; 
end if; 

fst:=false; 

printf'lx-{%o) ", j; 

end if; 

end for; 

if IM[i,#Pl ne 0 then 

printfWx-{%o)", #P; 

end if; 

printf "&\leq 3& \\\\\nW; 
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x~{5ltx~{9]+x~[10)+x~{12l&leq 3 &  \ \  

x-{2}+~-{6}+~-{7}+x-I9}&leq 3& \ \  

> 

> / *  The following code finds a subgroup H of PGL(3,3) that stabilizes 

> both the line [1:0:0] and the point (1:l:l) and finds the 

> H-orbits on the set of points and the set of lines. (Example 2.25) * /  

> 

> G := Stabilizer(CG,La,L! [1,0,0]); 

> H := Stabilizer ( G , P a , P !  [I, 1,1]) ; 

> 

> / *  Find the H-Orbits of the point set. * /  

> Orbits (H, Pa) ; 

[ 

GSetI ( 1  : 1 : 1 )  1, 

GSet[ ( O : l : O ) ,  ( O : O : l ) ,  ( 0 : 1 : 2 ) ,  ( O : l : l ) } ,  

GSet( ( l : O : O ) ,  ( 1 : 2 : 0 ) ,  ( 1 : 2 : 1 ) ,  ( 1 : 1 : 2 ) ,  ( l : o : l ) ,  ( 1 :  

2 : 2 ) ,  ( 1 : 0 : 2 ) )  

I 
> 

> / *  Find the H-Orbits of the line set. * /  

> Orbits (H, La) ; 

[ 

GSet { 

< 1 : 0 : 0 >  

1 ,  

GSet I 

< 1 : 2 : 0 > ,  

< 0 : 1 : 2 > ,  

< l : l : l > ,  

< 1 : 0 : 2 >  

1 I 

GSet [ 

< 0 : 1 : 0 > ,  

< 0 : 0 : 1 > ,  

< 1 : 2 :  I > ,  

< 1 : 1 : 2 > ,  
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< l : O : l > ,  

< 1 : 1 : 0 > ,  

< 0 : 1 : 1 > ,  

< 1 : 2 : 2 >  

1 

I 

> 

> / *  T h e  f o l l o w i n g  c o d e  f i n d s  a s u b g r o u p  G  o f  P G L ( 3 , 3 )  t h a t  s t a b i l i z e s  

> t h e  se t  R  shown b e l o w  t h e  G - o r b i t s  o n  t h e  set o f  p o i n t s  a n d  t h e  s e t  o f  

> l i n e s .  ( E x a m p l e  2 . 2 6 )  * /  

> 

> R:={P!  [ l , O , O ] , P !  [ O , O , l ] , P !  [ 1 , 2 , O ] , P !  [ 1 , 2 , 1 ] , P !  [ l , l , l ] , P ! [ l , l , O ] , P !  [ 1 , 0 , 2 ] ) ;  

> G : = S t a b i l i z e r  (CG, P a , R )  ; 

> 

> / *  F i n d  t h e  G - O r b i t s  o f  t h e  p o i n t  s e t .  * /  

> O r b i t s  (G, P a )  ; 

[ 

G S e t {  ( l : O : O ) ,  ( 1 : 2 : 1 ) ,  ( 1 : l : l )  ) ,  

G S e t {  ( O : O : l ) ,  ( 1 : 2 : 0 ) ,  ( l : l : O ) ,  ( 1 : 0 : 2 ) } ,  

G S e t {  ( O : l : O ) ,  ( 0 : 1 : 2 ) ,  ( 1 : 1 : 2 ) ,  ( l : O : l ) ,  ( O : l : l ) ,  ( 1 :  

I 

> 

> / *  F i n d  t h e  G - O r b i t s  o f  t h e  l i n e  se t .  * /  

> O r b i t s  (G ,La)  ; 

[ 

G S e t  { 

< 0 : 1 : 2 > ,  

< 0 : 1 : 1 > ,  

< 1 : 0 : 2 >  

1 ,  

G S e t  { 

< 1 : 0 : 0 > ,  

< 1 : 1 : 2 > ,  

< 1 : 0 : 1 > ,  

< 1 : 2 : 2 >  

1 r 
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I 
> 

> quit; 



Appendix B 

Integer Programming Code 

B.l The C Code 

/*This program performs a backtracking algorithm on a 0-1 Integer 

Programming Problem specifically designed to find caps in PG(n,q). 

Author: Joanna Wallis 

Date: July 2006 

Version: 6 

Command line arguments: 

1) filename - the input file (read only) 

2) filename - the output file (write only) 

3) integer - bound type: 1 indicates the normal bound, 

2 indicates the modified bound 

4) filename - a file containing the best known value so far. 

(read/write) * /  
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#define MAX-n 200+1 

#define MAX-m 70000+1 

#define BOUNDZREP 1 

#define MAXVAR 500 

int backtrack (int 

void terminate (int 

1, int curP 

curP) ; 

int bounding (int t, int curP, int 1) ; 

void dancinglink(int removedlist[MAX-n], int sizeofrl); 

int modbound(int curP, int 1) ; 

int standbound(int curP, int 1) ; 

int feasibility (int removedlist [MAX-n] , int 1) ; 

void readinput ( )  ; 

void initialize (void) ; 

/ *  The following structure contains information about the ith variable.*/ 

struct xi 

I 

int ob jcoef f; 

int conscoef f [MAX-m] ; 

int left; 

int right; 

int value; 

int sort; 

int loc; 

int flag; 

/*coefficient of x in the objective 

function*/ 

/*a single array containing the 

coefficients of x for each constraint*/ 

/*left of x in a doubly linked list*/ 

/*right of x in a doubly linked list*/ 

/*value of x. Must be 0 or 1*/ 

/*X'S location in the sorted list*/ 

/*X'S original location*/ 

/*a control flag used for the modified 

bounding function. If the flag is set to 0, 

then it cannot be considered for the bound*/ 

int N,Q; 

int m,n; 

/*PG (N, Q) * /  

/*m is the number of rows in our matrix M, 

n is the number of columns in our matrix M*/ 
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i n t  boundtype;  /*The t y p e  o f  bound ing  f u n c t i o n .  0  - none,  

1 - s t a n d a r d ,  2 - m o d i f i e d * /  

i n t  n o d e s t e s t e d ;  / * t h e  number o f  nodes  t e s t e d .  Used f o r  

e f f i c i e n c y  and  compar i son  t e s t i n g * /  

i n t  l e a f n o d e s t e s t e d ;  / * t h e  number o f  l e a f  nodes  t e s t e d * /  

s t r u c t  x i  x[MAX-n] ; / *an  a r r a y  o f  x i  s t r u c t u r e s .  T h i s ,  a l o n g  

w i t h  slack[MfLX-m], i s  t h e  0-1 I n t e g e r  

Programming Problem*/  

i n t  slack[MAX-m]; / * a r r a y  t o  t h e  m a t r i x  c o n t a i n i n g  t h e  RHS o f  

t h e  c o n s t r a i n t s * /  

i n t  z e r o s  [MAX-m] [MAX-n] ; / * z e r o s  [ i ]  [ j ]  s t o r e s  t h e  l o c a t i o n  o f  x  

i n t  o n e s  [MAX-ml [MAX-n 

i n t  twos  [MAX-m] [MAX-n 

i n t  o p t P ;  

i n t  optX [MAX-n] ; 

i n t  o p t i n s t a n c e ;  

i n t  o p t s o l s i z e ;  

i n t  c u r i n s t a n c e ;  

i n t  magmaoptP; 

c h a r  o p f i l e  [ l o o ] ;  

FILE * f p i n p u t ;  

FILE * f p o u t p u t ;  

FILE *fpdebug;  

FILE * f p e r r o r ;  

FILE * f p o p t i m a l ;  

v a r i a b l e s  w i t h  c o e f f i c i e n t  0  i n  c o n s t r a i n t  i * /  

/ *ones  [ i ]  [ j ]  s t o r e s  t h e  l o c a t i o n  o f  x  

v a r i a b l e s  w i t h  c o e f f i c i e n t  1 i n  c o n s t r a i n t  i * /  

/ * twos  [ i ]  [ j ]  s t o r e s  t h e  l o c a t i o n  o f  x  

v a r i a b l e s  w i t h  c o e f f i c i e n t  2 i n  c o n s t r a i n t  i * /  

/ * s t o r e s  t h e  o b j e c t i v e  f u n c t i o n  v a l u e  o f  t h e  

b e s t  s o l u t i o n  s o  f a r * /  

/ * s t o r e s  t h e  b e s t  s o l u t i o n  s o  f a r * /  

/ * t h e  p rob lem i n s t a n c e  o f  t h e  o p t i m a l  s o l u t i o n * /  

/ * t h e  number o f  v a r i a b l e s  i n  t h e  optimum 

s o l u t i o n * /  

/ * t h e  p rob lem i n s t a n c e  o f  t h e  c u r r e n t  s o l u t i o n * /  

/ * t h e  o p t i m a l  s o l u t i o n  g i v e n  by Magma*/ 

/ * t h e  s t r i n g  name o f  t h e  f i l e  c o n t a i n i n g  t h e  

o p t i m a l  s o l u t i o n  v a l u e * /  

/ * f i l e  p o i n t e r  t o  t h e  i n p u t  f i l e * /  

/ * f i l e  p o i n t e r  t o  t h e  o u t p u t  f i l e * /  

/ * f i l e  p o i n t e r  t o  t h e  debug f i l e * /  

/ * f i l e  p o i n t e r  t o  t h e  e r r o r  f i l e * /  

/ * f i l e  p o i n t e r  t o  a  f i l e  c o n t a i n i n g  t h e  o p t i m a l  

s o l u t i o n  v a l u e * /  

i n t  main ( i n t  a r g c ,  c h a r  * a r g v  [ I  ) 

I 

i n t  i , k ;  / * s t a n d a r d  l o o p  c o u n t e r s * /  
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char str1[1000] ; /*used for reading input data*/ 

int dummy [MAX-n] ; /*this is an array that stores the location of x 

variables that are not live (cannot be 1) in 

the initial problem*/ 

clock-t start-clock; /*the start time for each instance*/ 

if (argc<4) 

I 

printf ("Error: incorrect line arguments. \nl') ; 

return 0; 

} 

fpinput=fopen (argv [I], "r") ; 

fpoutput=fopen (argv [ 2 ] ,  "w") ; 

strcpy (opfile, argv[4] ) ; 

boundtype = atoi (argv [3] ) ; 

fprintf (fpoutput, "Input File: %s\t\tBound type: %s\n\nT', argv[l] , argv [3] ) ; 

fprintf (fpoutput, "Problem\t\t#Point\t#Line\tClock\t (Nodes Tested) \n") ; 

fprintf (fpoutput, "Instance\tOrbits\tOrbits\tTime\t\t Total\t 

Leaf\tOptP\tMoptP\tOptS\n"); 

/*read "Problem Instance: ? "  for some integer ? * /  

fgets (strl, 1000, fpinput) ; 

k=O ; 

optinstance=O; 

fpoptimal=fopen (opf ile, "r") ; 

fscanf (fpoptimal, "%d\n",&optP) ; 

fclose (fpoptimal) ; 

printf ("Optval so far is %d\nl',optP); 

while (!feof (fpinput) ) 

I 

start-clock = clock(); 



APPENDZX B. INTEGER PROGRAMMING CODE 

/ *  Initialize the solution * /  

kt+; 

printf ("PROBLEM INSTANCE: %d\t ", k) ; 

curinstance=k; 

readinput ( ) ; 

printf ("n=%d\n", n) ; 

fflush (stdout) ; 

if (niMAX-n & & miMAX-m) 

I 

initialize 0 ; 

/*perform the initial feasibility test. x variables that have a 

constraint coefficient greater than 2 are removed from the problem. 

The location of such x variables is stored in the array dummy.*/ 

feasibility (dummy, 0) ; 

backtrack (x[0] .right, 0) ; 

fprintf (fpoutput, "%d\t\t%d\t%d\t%4f \t %d\t %d\t%d\t%d\tW, k, n,m, 

(clock ( )  -start-clock) / (double) CLOCKS-PER-SEC, nodestested, 

leafnodestested, optP, magmaoptp) ; 

for (i=l; ii=optsolsize; itt) fprintf (fpoutput, "%d ", optX [i] ) ; 
fprintf (fpoutput, "\n") ; 

}/*if condition*/ 

fflush(fpoutput); 

/*read "Problem Instance: ? "  for some integer ? * /  

fgets (strl, 1000, fpinput) ; 

}/*while*/ 

fprintf(fpoutput,"\n\nOptimal Solution Instance:%d\n",optinstance); 

fclose (•’pinput) ; 

fclose (fpoutput) ; 
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return 0; 

]/*main*/ 

/ *  This function performs the recursive backtracking algorithm. It first 

tests for the terminal case, which is the case where we are considering 

the x-(n+l] variable, a dummy variable. If not it proceeds by setting 

the current x variable to 1, testing feasibility, then testing the bound 

and performing the recursion if appropriate. It then sets the current x 

variable to 0 and retests the bound, performing the recursion if 

appropriate. 

int 1 the location of the current x variable (node) being tested. 

int curP the value of the solution so far. * /  

int backtrack (int 1, int curP) 

{ 

int sizeofrl; /*number of x variables removed for 

infeasibility.(The effective size of the 

removed list) * /  

int removedlist[MAX-n]; /*a list of the locations of the x variables 

removed due to infeasibility*/ 

int i; /*standard loop counter*/ 

int B; /*given the current state of the solution, B 

denotes the best possible solution using the 

bounding function*/ 

/ *  test for terminal case. * /  

if (l==n+l) 

( 

terminate (curP) ; 

leafnodestested++; 
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1 

e l s e  

{ 

x [ l ]  . v a l u e = l ;  / *  s e t  x-i=l. * /  

/ * a d j u s t  t h e  s l a c k  (RHS)  f o r  each c o n s t r a i n t * /  

f o r  ( i = l ;  i < = m ;  i + + )  s l a c k  [ i ]  -=x [ l ]  .conscoeff  [ i ]  ; 

/ * t e s t  f o r  f e a s i b i l i t y  i n  t h e  remaining x v a r i a b l e s * /  

sizeofrl=feasibility(removedl 

curP+=x [ 1 ]  .ob jcoef f ;  

/*perform t h e  bounding f u n c t i  

f u n c t i o n .  I f  T i s  2 ,  u s e  

is t ,  1) ; 

/*updated t h e  c u r r e n t  s o l u t i o n  v a l u e .  * /  

on T .  I f  T i s  1, modif ied bounding 

t h e  s t a n d a r d  bounding f u n c t i o n .  I f  T i s  

any th ing  e l s e ,  no bounding f u n c t i o n  i s  used.  * /  

B=bounding (boundtype, curP, 1) ; 

/ * i f  t h e  bounded s o l u t i o n  v a l u e  i s  b e t t e r  t h a n  t h e  c u r r e n t  opt imal  

va lue ,  optP,  t h e n  c o n t i n u e  t e s t i n g  * /  

i f  (B>optP) back t rack  (x  [ l ]  . r i g h t ,  curP)  ; 

/*undo t h e  c u r r e n t  node v i s i t .  * /  

x [ l ]  . value=O; 

f o r  ( i = l ;  i<=m; i + + )  s l a c k l i ]  + = x [ l ]  . conscoef f  [ i ]  ; 

curP-=x [ l ]  .ob j c o e f f ;  

danc ing l ink  ( removedl i s t ,  s i z e o f r l )  ; 

/*given t h a t  x-i=O, t e s t  t h e  bounding f u n c t i o n .  * /  

B=bounding (boundtype, curP, 1) ; 

i f  (B>optP) back t rack  ( x  [ l ]  . r i g h t ,  curP)  ; 

1 

x [ l ]  . f l a g = l ;  

r e t u r n  0; 

) /*back t rack* /  

/ * I f  t h e  t e r m i n a t i o n  c o n d i t i o n  i s  met d u r i n g  back t rack ing ,  t h i s  f u n c t i o n  

i s  c a l l e d  t o  t e s t  i f  t h e  c u r r e n t  complete s o l u t i o n  i s  b e t t e r  t h a n  t h e  

c u r r e n t  op t imal  s o l u t i o n .  I f  it i s ,  t h e n  t h e  op t imal  s o l u t i o n  i s  
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r e p l a c e d  by t h e  c u r r e n t  s o l u t i o n .  

i n t  cu rP  t h e  c u r r e n t  s o l u t i o n  v a l u e .  * /  

v o i d  t e r m i n a t e  ( i n t  c u r P )  

I 

i n t  i; / * s t a n d a r d  l o o p  c o u n t e r * /  

i f  ( cu rP>op tP)  

I 

optP=curP; 

fpop t ima l=fopen  ( o p f i l e ,  "w") ; 

f p r i n t f  ( f p o p t i m a l ,  "%d\n" ,optP)  ; 

f c l o s e  ( fpop t i rna l )  ; 

pr in t f ("***********New OptP = %d***********\nl' ,  o p t p ) ;  

f o r  ( i = l ;  i<=n ;  i + + )  o p t X [ i ] = x [ i ]  . v a l u e ;  

optinstance=curinstance; 

o p t s o l s i z e = n ;  

1 

] / * t e r m i n a t e * /  

/ *  The s t a n d a r d  bounding f u n c t i o n .  T h i s  f u n c t i o n  c a l c u l a t e s  t h e  

upper  bound on t h e  c u r r e n t  s o l u t i o n  v a l u e  by assuming a l l  f e a s i b l e  

x  v a r i a b l e s  f o l l o w i n g  t h e  c u r r e n t  x  v a r i a b l e  b e i n g  t e s t e d  a r e  1. 

i n t  cu rP  t h e  c u r r e n t  s o l u t i o n  v a l u e  

i n t  c  t h e  l o c a t i o n  o f  t h e  c u r r e n t  x v a r i a b l e  b e i n g  t e s t e d .  

r e t u r n s  t h e  upper  bound g i v e n  by t h e  bounding f u n c t i o n . * /  

i n t  s tandbound ( i n t  cu rP ,  i n t  c)  

I 

i n t  i; / * s t a n d a r d  l o o p  c o u n t e r * /  

i n t  v a l u e ;  /*upper  bound g i v e n  by t h e  bounding f u n c t i o n * /  
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i = x  [ c ]  . r i g h t ;  

/ * t h e  f o l l o w i n g  w h i l e  loop  sums t h e  o b j e c t i v e  f u n c t i o n  c o e f f i c i e n t  

v a l u e s  f o r  t h e  f e a s i b l e  x v a r i a b l e s  f o l l o w i n g  t h e  c u r r e n t  x  v a r i a b l e * /  

whi le  ( i < = n )  

{ 

v a l u e + = x [ i ]  . o b j c o e f f ;  

i = x  [ i ]  . r i g h t ;  

} /*whi le loop* /  

r e t u r n  va lue ;  

) / *standbound*/ 

/ *  The modi f i ed  bounding f u n c t i o n  (Problem s p e c i f i c )  c a l c u l a t e s  t h e  

upper bound by c o n s i d e r i n g  a  s i n g l e  c o n s t r a i n t  choosing t h e  maximum 

p o s s i b l e  number o f  x  v a r i a b l e s  t o  s e t  1 based  on t h e  c u r r e n t  s o l u t i o n  

s o  f a r ,  and s a t i s f y i n g  t h a t  s i n g l e  c o n s t r a i n t .  

i n t  curP t h e  c u r r e n t  v a l u e  of t h e  s o l u t i o n  

i n t  1 t h e  c u r r e n t  x  v a r i a b l e  (node) b e i n g  t e s t e d . * /  

i n t  modbound(int cu rP ,  i n t  1) 

{ 

i n t  i, j ,  k;  /*S tandard  l o o p  v a r i a b l e s * /  

i n t  oneva l ;  /*The sum of  t h e  o b j e c t i v e  f u n c t i o n  c o e f f i c i e n t s  o f  t h e  

chosen (0,  1 o r  2 )  x  v a r i a b l e s  wi th  a  c o n s t r a i n t  

c o e f f i c i e n t  v a l u e  o f  I . * /  

i n t  twoval ;  /*The sum of t h e  o b j e c t i v e  f u n c t i o n  c o e f f i c i e n t s  of t h e  

chosen (0 ,  o r  1) x  v a r i a b l e s  wi th  a  c o n s t r a i n t  

c o e f f i c i e n t  v a l u e  of 2 .*/  

i n t  z e r o v a l ;  /*The sum of  t h e  o b j e c t i v e  f u n c t i o n  c o e f f i c i e n t s  of 

a l l  ( u n t e s t e d )  x  v a r i a b l e s  wi th  a  c o n s t r a i n t  c o e f f i c i e n t  

v a l u e  o f  O.*/ 

i n t  minval;  /*The minimum v a l u e  of t h e  upper  bound. Th i s  i s  used  i f  

t e s t i n g  more t h a n  one c o n s t r a i n t .  CURRENTLY NOT 

IMPLEMENTED. * /  

i n t  c u r v a l ;  /*The upper bound g iven  t h e  c u r r e n t  c o n s t r a i n t . * /  
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int counter; /*A standard counter.*/ 

for (i=l; i<=BOUND2REP; it+) 

I 

oneval=O; 

twoval=O ; 

zeroval=O; 

switch (slack [i] ) 

case 2: j=l; 

k=twos [i] [ j] ; 

while (k) 

I 

if (x [k] . flag) 
I 
twoval=x[kl.objcoeff; 

break; 

1 

j++; 

k=twos [i] [ j] ; 

1 /*FALL THROUGH*/ 

case 1: j=l; 

k=ones [i] [ j] ; 

counter=O; 

while (k&& (counter<slack [i] ) ) 

I 
if (x [k] . flag) 
I 
oneval+=x [k] .objcoeff; 

counter++; 

1 

j++; 

k=ones [i] [ jl ; 
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}/*FALL THROUGH*/  

case 0: j=l; 

k=zeros [i] [ j] ; 

while (k) 

I 

if (x [k] .flag) zeroval+=x [k] .ob jcoeff; 

j++; 

k=zeros [i] [ j] ; 

I 

break; 

default: fprintf (stderr, "Illegal coefficient value\nV) ; 

)/*switch*/ 

if(twoval>=oneval) curval=twoval+zeroval+curP; 

else curval=oneval+zeroval+curP; 

if(curval<minval) minval=curval; 

)/*for loop*/ 

return minval; 

}/*modbound*/ 

int feasibility (int removedlist [MAX-n] , int 1) 

{ 

int sizeofrl; /*size of the list of infeasible(or removed)variables*/ 

int i, j; /*standard loop counters*/ 

/*for each constraint, test that each x variable is feasible. If it 

is not, that is if the constraint coefficient for an x variable 

is greater than the slack, remove it from the linked list so that it 

is not considered. Note that this uses the method of the dancing 

links. While the linked list no longer points to the removed x 

variable, the x variable still points to the linked list*/ 

for (i=l; i<=m; i++) 

{ 

j=x[l] .right; 
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whi le  

I 

i f  ( x  

i 

r emoved l i s t  [ s i z e o f r l ]  = j ;  

x [ x [ j ]  . l e f t ]  . r i g h t = x [ j ]  . r i g h t ;  

x [ x [ j ]  . r i g h t ]  . l e f t = x [ j ]  . l e f t ;  

x [ j ]  .f lag=O; 

1 

j=x [ j ]  . r i g h t ;  

1 

} 

r e t u r n  s i z e o f r l ;  

} / * f e a s i b i l i t y * /  

/ *  The f o l l o w i n g  f u n c t i o n  d i r e c t s  t h e  program t o  t h e  a p p r o p r i a t e  

bounding f u n c t i o n .  

i n t  t bounding f u n c t i o n  f l a g .  2 f o r  t h e  modi f i ed  f u n c t i o n ,  

1 f o r  t h e  s t a n d a r d  bounding f u n c t i o n .  

i n t  curP t h e  c u r r e n t  s o l u t i o n  v a l u e .  

i n t  1 t h e  c u r r e n t  node b e i n g  t e s t e d .  

r e t u r n s  t h e  upper  bound based  on t h e  bounding f u n c t i o n . * /  

i n t  bounding ( i n t  t ,  i n t  curP,  i n t  1) 

i 

i n t  bound; 

i f  ( t==2)  bound=modbound(curP, 1) ; 

i f  ( t = = l )  bound=standbound (curP ,  1) ; 

r e t u r n  bound; 

} /*bounding*/  

/ *  The f o l l o w i n g  f u n c t i o n  performs t h e  dancing l i n k  a l g o r i t h m .  That i s ,  

it r e p a i r s  t h e  l i n k e d  l i s t ,  r e t u r n i n g  removed x  v a r i a b l e s  t o  t h e  l i s t  
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u s i n g  t h e  f a c t  t h a t  t h e  x - v a r i a b l e s  s t i l l  p o i n t  t o  t h e  l i s t  e v e n  

t h o u g h  t h e  l i s t  d o e s  n o t  p o i n t  t o  t hem.  * /  

v o i d  d a n c i n g l i n k ( i n t  removedlis t[MAX-n],  i n t  s i z e o f r l )  

{ 

i n t  i, k; / * s t a n d a r d  l o o p  c o u n t e r s * /  

f o r  ( i = s i z e o f r l ;  i > = l ;  i--) 

{ 

k = r e m o v e d l i s t  [ i ]  ; 

x [ x [ k ]  . l e f t ]  . r i g h t = k ;  

x [ x [ k ]  . r i g h t ]  . l e f t = k ;  

x [ k ]  . f l a g = l ;  

] / * f o r  l o o p * /  

] / * d a n c i n g l i n k * /  

/ * t h e  f o l l o w i n g  f u n c t i o n  r e a d s  a n  i n p u t  f i l e  o f  a p p r o p r i a t e  form*/  

v o i d  r e a d i n p u t  ( )  

I 

i n t  i, j; / * s t a n d a r d  l o o p  c o u n t e r s * /  

c h a r  s t r 1 [ 1 0 0 0 ] ;  / * u s e d  f o r  r e a d i n g  i n  d a t a * /  

c h a r  * s t r 2 ;  / * u s e d  f o r  r e a d i n g  i n  d a t a * /  

f g e t s  ( s t r l ,  1000,  f p i n p u t )  ; / * r e a d s  "n=?" f o r  some i n t e g e r  ? * /  

s t r 2 = s t r t o k  ( s t r l ,  " = I t )  ; 

s t r 2 = s t r t o k  (NULL, " = V ;  

N = a t o i  ( s t r 2 )  ; 

fgets(strl,lOOO,fpinput); / * r e a d s  "q=?" f o r  some i n t e g e r  ?* /  

s t r 2 = s t r t o k  ( s t r l ,  "=") ; 

s t r 2 = s t r t o k  (NULL, "=") ; 

Q = a t o i  ( s t r 2 )  ; 

f g e t s  ( s t r l ,  1000,  f p i n p u t )  ; / * r e a d s  "The number o f  o r b i t s  on  p o i n t s  i s  " * /  

f g e t s  ( s t r l ,  1000 ,  f p i n p u t )  ; / * r e a d s  n  = ?* /  

n = a t o i  ( s t r l )  ; 

fgets(strl,lOOO,fpinput); / * r e a d s  "The number o f  o r b i t s  on  l i n e s  i s  " * /  
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f g e t s  ( s t r l ,  1000,  f p i n p u t )  ; / * r e a d s  m = ? * /  

m=ato i  ( s t r l )  ; 

i f  (m>MAX-m I I n>MAX-n) 

p r i n t f  ("ERROR: P a r a m e t e r s  a r e  t o o  l a r g e \ t  n = % d \ t  m=%d\nW,n,rn);  

f f l u s h  ( s t d o u t )  ; 

w h i l e ( s t r c m p  ( s t r l ,  "END\nn') !=O) f g e t s  ( s t r l ,  1000,  f p i n p u t )  ; 

r e t u r n ;  

I 

fgets(strl,lOOO,fpinput); / * r e a d s  "M i s  g i v e n  by t h e  f o l l o w i n g  M a t r i x w * /  

f o r  ( i = l ;  i<=m; i + + )  / * r e a d s  t h e  n e x t  m l i n e s  which g i v e  t h e  m a t r i x  M*/ 

I 

f g e t s  ( s t r l ,  1000,  f p i n p u t )  ; 

s t r 2 = s t r t o k  ( s t r l ,  " [ I  " )  ; 

x  [ l ]  . c o n s c o e f f  [ i ] = a t o i  ( s t r 2 )  ; 

f o r  ( j = 2 ;  j<=n; j + + )  

I 

s t r 2 = s t r t o k  (NULL, " [ I  " )  ; 

x[ j ]  . c o n s c o e f f  [ i l = a t o i  ( s t r 2 )  ; 

I / *  f o r  l o o p * /  

} / *  f o r  l o o p  * /  

f g e t s  ( s t r l ,  1000,  f p i n p u t )  ; / * r e a d s  "The o b j e c t i v e  f u n c t i o n  i s  g i v e n  by:"*/  

f g e t s  ( s t r l ,  1000,  f p i n p u t )  ; 

s t r 2 = s t r t o k  ( s t r l ,  " [I  " )  ; 

x  [ l ]  . o b  j c o e f  f = a t o i  ( s t r 2 )  ; 

f o r  ( i = l ;  i < n ;  i++) 

s t r 2 = s t r t o k  (NULL, " [ I  'I) ; 

x [ i + l ]  . ob  j c o e f f = a t o i  ( s t r 2 )  ; 

} / * f o r  l o o p * /  

/ * r e a d s  "An o p t i m a l  s o l u t i o n  r e p o r t e d  by Magma i s : " * /  
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f g e t s  (s t r l ,  1000, f p i n p u t )  ; 

/* reads  op t imal  s o l u t i o n  r e p o r t e d  by Magma*/ 

f g e t s  ( s t r l ,  1000, f p i n p u t )  ; 

/* reads  "The v a l u e  of  t h i s  s o l u t i o n  ( s i z e  of op t imal  s e t  f o r  t r=l)  

i s :  ' I * /  

f g e t s  ( s t r l ,  1000, f p i n p u t )  ; 

/ * r e a d s  t h e  v a l u e  of  t h i s  s o l u t i o n * /  

f g e t s  ( s t r l ,  1000, f p i n p u t )  ; 

magmaoptP=atoi ( s t r l )  ; 

whi le ( s t rcmp ( s t r l ,  "END\nl') ! = O )  f g e t s  ( s t r l ,  1000, f p i n p u t )  ; 

} / * r e a d i n p u t * /  

v o i d  i n i t i a l i z e  ( v o i d )  

i n t  i, j; /*s tandard  loop  c o u n t e r s * /  

i n t  c u r r e n t ;  / * a  temporary v a r i a b l e  used t o  s o r t  and c r e a t e  

t h e  doubly l i n k e d  l i s t  of  x  v a r i a b l e s * /  

i n t  tempO,templ,tempZ; /*temporary v a r i a b l e s  used t o  t r a c k  t h e  number 

of x  v a r i a b l e s  i n  t h e  a r r a y  f o r  a  c o n s t r a i n t  

f o r  ze ros ,  ones  and twos r e s p e c t i v e l y . * /  

/*The f o l l o w i n g  loop i n i t i a l i z e s  t h e  s l a c k  v a r i a b l e s  t o  two. 

NOTE THAT THIS IS  MUST BE CHANGED FOR ANY PROBLEM WHERE THE RHS IS 

NOT TWO. * / 

f o r  ( i= l ; i<=m;  i t+)  s l a c k  [ i ] = 2 ;  

/ * t h i s  loop i n i t i a l i z e s  t h e  v a l u e s  f o r  x [ i ] ,  s e t t i n g  each t o  0*/ 

f o r  (i=l; i < = n ; i t t )  x [ i ]  .value=O; 

/ * s e t  and l i n k  t h e  t a i l  and t h e  head of t h e  doubly l i n k e d  l i s t * /  

x  [O] . left=NULL; 

x [ 0 ]  . r i g h t = n t l ;  

x [O] .ob jcoeff=9999999; 

x  [ n t l ]  . right=NULL; 

x  [ n t l ]  . l e f t=O;  

x [ n t l ]  .objcoeff=-1;  
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/ * t h i s  l o o p  u s e s  a n  i n s e r t  s o r t  t o  c r e a t e  t h e  doubly  l i n k e d  l i s t  i n  

d e s c e n d i n g  o r d e r  o f  t h e  o b j e c t i v e  f u n c t i o n  c o e f f i c i e n t  v a l u e * /  

f o r  ( i = l ;  i < = n ;  i++) 

I 

current=O;  

/*The w h i l e  l o o p  f i n d s  t h e  p o s i t i o n  t o  i n s e r t  t h e  i t h  x  v a l u e . * /  

w h i l e  ( x  [ i ]  . ob j coe f  f  <x [ c u r r e n t  ]  .ob  j c o e f f )  c u r r e n t z x  [ c u r r e n t ]  . r i g h t ;  

x  [ i ]  . r i g h t = c u r r e n t ;  

x  [ i ]  . l e f t = x [ c u r r e n t ]  . l e f t ;  

x  [x  [ c u r r e n t ]  . l e f t ]  . r i g h t  = i; 

x  [ c u r r e n t  ]  . l e f t = i ;  

c u r r e n t = x  [O] . r i g h t ;  

} / *  f o r l o o p  * /  

/ * t h i s  l o o p  s t o r e s  t h e  i n i t i a l  p o s i t i o n  o f  e a c h  x [ i ] * /  

f o r  (i=l; i<=n ;  i + + )  x  [ i ]  . l o c = i ;  

/ * t h e  f o l l o w i n g  f o r  l o o p  i n i t i a l i z e s  t h e  twos,  ones  and  z e r o s  a r r a y s .  

These  a r r a y s  c o n t a i n  t h e  l o c a t i o n  o f  v a r i a b l e s ( x - i )  w i t h  t h e  

a p p r o p r i a t e  c o n s t r a i n t  c o e f f i c i e n t  . For  example,  twos  [ 3 ]  [ 4 ]  =5 t e l l s  

u s  t h a t  x-5 h a s  c o e f f i c i e n t  2 i n  t h e  t h i r d  c o n s t r a i n t .  F u r t h e r ,  it 

i s  t h e  f o u r t h  v a r i a b l e  ( b a s e d  on t h e  s o r t i n g  o f  t h e  d o u b l e  l i n k e d  

l i s t ,  t o  have a  c o e f f i c i e n t  o f  2 i n  t h a t  c o n s t r a i n t .  * /  

f o r  ( i = l ;  i<=m; i + + )  

I 

twos [ i l  [ l ]  =O; 

ones  [ i ]  [ I ]  = O ;  

z e r o s  [ i ]  [ l ]=O;  

} / * f o r  loop* /  

/ * t h e  f o l l o w i n g  f o r  l o o p  s t o r e s  t h e  l o c a t i o n  o f  x v a r i a b l e s  wi th  

a p p r o p r i a t e  c o e f f i c i e n t s  i n  t h e  a r r a y s  ones ,  twos and z e r o s ,  f o r  e a c h  

c o n s t r a i n t .  An e n t r y  o f  0  i n d i c a t e s  t h e r e  a r e  no more c o e f f i c i e n t s  w i t h  

t h i s  v a l u e  i n  t h e  c o n s t r a i n t . * /  
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f o r  ( j = l ;  j<=m; j++) 

ternpl=O; 

temp2=0; 

i = x  [ O ]  . r i g h t ;  

w h i l e  ( i ! = n + l )  

I 

s w i t c h  ( x [ i ]  . c o n s c o e f f  [ j ]  ) 

I 

c a s e  0 :  tempo++; 

z e r o s  [ j ]  [ tempo]  = i ;  

z e r o s  [ j ]  [tempO+ll=O; 

b r e a k ;  

c a s e  1: tempi++; 

ones  [ j ]  [ t e r n p l ] = i ;  

o n e s  [ j l  [ t empl+ l ]=O;  

b r e a k ;  

c a s e  2 :  temp2++; 

twos  [ j ]  [ te rnp2]=i ;  

twos  [ j ]  [ temp2+1]=0;  

b r e a k ;  

} / * s w i t c h  s t a t e m e n t * /  

i = x  [ i ]  . r i g h t ;  

} / * w h i l e  l o o p * /  

} / * f o r  l o o p * /  

} / *  i n i t i a l i z e  * /  

B.2 Input File 

The following is an example input file. Note that while an input file can contain multiple problem 

instances, each instance must be separated by the string END and a newline character. Also, any 

line beginning and ending with a * can contain any string with a newline character. 

*Problem I n s t a n c e :  l* 
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n=3 

q=2 

*The number o f  o r b i t s  on p o i n t s  i s *  

3  

*The number o f  o r b i t s  on l i n e s  i s *  

5 

*M i s  g i v e n  by t h e  f o l l o w i n g  Mat r ix*  

[ I  2 01 

1 1 1  

[ I  2 01 

[ I  2 01 

t 3  0 01 

*The o b j e c t i v e  f u n c t i o n  i s  g i v e n  by:* 

[ 7  7 1 1  

*Any number o f  l i n e s  may f o l l o w  u n t i l  END* 

END 
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