
Prescribed Automorphism Groups
and Two Problems in Galois Geometries

Joanna Lynn Wallis

B.A., University of Windsor, 1998.

B.Sc., Brock University, 2002.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F THE REQUIREMENTS FOR THE DEGREE OF

in the Department

of

Mathematics

Joanna Lynn Wallis 2006

SIMON FRASER UNIVERSITY

Summer 2006

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Joanna Lynn Wallis

Master of Science

Prescribed Automorphism Groups

and Two Problems in Galois Geometries

Examining Committee: Dr. N. Bruin

Chair

Date of Defense:

Dr. P. Lisonek

Senior Supervisor

Dr. J. Jedwab

Supervisory Committee

Dr. M. Mishna

Examiner

July 25, 2006

ii

SIMON FRASER .
" N m R s I d I brary

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

We study two combinatorial design problems: finding small t-fold blocking sets in PG(2, q)

for q prime, and finding large caps in PG(n, q). These problems are combinatorially dif-

ficult, but their problem sizes can be reduced by prescribing a group of automorphisms

in order to take advantage of the anticipated symmetry of the solution sets. Using this

method, a new family of 2-fold blocking sets of size 39 + 1 was discovered. These new sets

have the additional property that their complement is also a 2-fold blocking set.

For caps, a backtracking algorithm with pruning was developed to solve the resulting

0-1 integer linear programming problem, and was implemented using C. This algorithm

takes advantage of the small size of the right-hand side of the constraints in the LP

problem.

Also presented is an introduction to finite projective geometries and group actions and

the application of group actions to projective geometries.

Keywords: Prescribed Autornorphisms, Finite Projective Geometries, Blocking Sets, Caps,

Coding Theory.

Dedication

On the path of personal discovery andfurfillment all the energy of the universe

strives to allow you to succeed. Just as you come close to actualizing these

aspirations, l$e becomes more dflcult than ever imagined, and all seems out of

reach. The challenge is to find the strength and power to endure the final step to

fulfilling your dreams.

For Don and Geo Anne Wallis, and Georgena Schisler, for all their support and

encouragement in helping me to fulfill my dreams and to Kaylee, Jessica and Megan for

always given me a reason to smile.

Acknowledgements

I would like to express my sincerest appreciation to my senior supervisor, Dr. Petr LisonEk,

whose dedication, commitment and encouragement kept me working long after I'd given

up hope of ever completing this thesis.

I'd Like to thank Dr. Alistair Lachlan for supporting me and giving me the opportunity to

study at Simon Fraser University. I would like to also express my thanks to Dr. Sheridan

Houghten, and Dr. Tom Jenkyns who supported me through my undergraduate degree

and encouraged me to pursue a graduate degree.

I'd like to thank NSERC for the funding I received as a Reasearch Assistant, and I'd

like to thank Simon Fraser University and the Simon Fraser University Mathematics De-

partment for the funding I received through a Graduate Fellowship and many Teaching

Assistant appointments. I'd also like to thank IRMACS and their friendly and helpful staff

for providing a pleasant and functional environment in which I was able to work.

Finally, I would Like to thank Mike Letourneau for going above and beyond the call of

friendship, and my parents and family for always believing in me and supporting me.

Approval . ii

. Abstract iii

. Dedication iv

. Acknowledgements v

. Contents vi

. List of Tables viii

. List of Figures ix

. 1.1 Introduction 1

. 1.2 Finite Projective Spaces 2

1.2.1 m-spaces in PG(n, q) . 3

1.2.2 Counting m-spaces in PG(n, q) 5

1.2.3 The Dimension Theorem in PG(n. q) 7

1.2.4 Collineations and Projectivities 8

. 1.2.5 Caps and Blocking Sets 11

. 1.3 Example: The Fano Plane 12

. 2 Prescribed Automorphisms and Linear Programming 15

. 2.1 Group Actions and Orbits 15

. 2.2 The Action of PGL(n + 1. q) on PG(n. q) 20

. 2.3 The Method of Prescribed Automorphisms 21

. 2.4 The Linear Programming Problem 23

. 2.5 Choosing a Group 29

3 Blocking Sets in PG(2. q) . 33

3.1 1-fold Blocking Sets . 33

. 3.2 Double Blocking Sets 36

. 3.2.1 A 38-Point Double Blocking Set in PG(2. 13) 36

. 3.3 A Family of Proper Double Blocking Sets 37

. 3.3.1 Preparatory Facts 37

. 3.3.2 The Construction 40

. 4 Codes and Caps 46

. 4.1 Coding Theory Background 46

. 4.2 A Relationship Between Caps and Codes 50

. 4.3 Known Maximum Caps 51

4.4 Prescribed Automorphisms and Maximum Caps 54

. 4.5 Solving the Integer Linear Programming Problem 57

. 4.6 Results 63

. 5 Conclusion and Future Works 65

. 5.1 Conclusion 65

. 5.2 Future Works 66

A Magmacode . 67

. B Integer Programming Code 73

. B.l The C Code 73

. B.2 Input File 89

. Bibliography 91

vii

List of Tables

. 3.1 Orbits On Lines and Repair Points 45

. 4.1 CPLEX and ipv6.c Timings (in seconds) 64

. 4.2 Large caps in small projective spaces with q prime 64

List of Figures

. 1.1 TheFanoPlane- PG(2. 2) 12

. 1.2 A Relabeling of the Points in PG(2. 2) 12

. 1.3 An Alternative Labeling of the Points of PG(2. 2) 13

. 3.1 A Typical &-Orbit 41

. 4.1 Codes With Minimum Distance d 48

. 4.2 An Example Search Tree for a Backtracking Algorithm 58

. 4.3 Backtracking Algorithm with Pruning 59

. 4.4 A Linked List 60

Chapter 1

Galois Geometries

1.1 Introduction

Suppose in a given population there are two definable groups of people, a majority and

a minority. Now, suppose the population has a government consisting of 57 people that

resolves issues and decides policy for the entire population. The decision making is di-

vided among committees; each committee consists of 8 people, and each person sits on

8 committees. Suppose that the committee votes on propositions, and any two votes can

veto, or block a proposition. What is the minimum number of government members that

must be from the minority group, and how should they be assigned to the committees in

order to ensure that they can veto any proposition on any committee? This problem can

be solved by means of a combinatorial design problem known as a 2-fold blocking set, or

double blocking set in the finite projective plane PG(2, q) , where in this case, q = 7.

For prime q, the smallest known family of 2-fold blocking sets has size 39, but it re-

quires that three of the committees are comprised entirely of minority members. In the

case where q is prime and q = 3 (mod 4) , using the method of prescribed automorphisms,

we have discovered a 2-fold blocking set of size 39 + 1 such that the complement of the

2-fold blocking set is also a 2-fold blocking set (see Theorem 3 .11) . Thus, by assigning one

more seat to the minority, we can distribute the members in such a way that both groups

have blocking power on every committee. These results along with others are presented

CHAPTER 1. GALOIS GEOMETRIES

in Chapter 3.

Coding theory, the study of encoding and transmitting information over noisy chan-

nels, is considered to have its origins in a 1948 paper by Claude Shannon, entitled "Math-

ematical Theory of Communication." Since then, scientists have attempted to find and

construct better codes in an effort to improve the reliability and efficiency of transmis-

sion, as well as the amount of information that can be transmitted. In Chapter 4, a

second combinatorial design problem, that of finding caps in PG(n, q), is presented and

discussed along with a relationship between caps and codes. As in the problem of finding

small t-fold blocking sets, finding large caps in PG(n, q) is combinatorially difficult for n

and q large enough. Also presented in Chapter 4 is a program written by the author for

solving the resulting zero-one integer programming problem.

In Chapter 2, the method of prescribed automorphisms, a technique used to reduce

the size of the design problems mentioned above, is described in detail.

Chapter 1 introduces finite projective spaces, a type of Galois Geometry, along with

the supporting definitions and notation used in this thesis.

1.2 Finite Projective Spaces

We follow much of the notation used in [Hir98] and direct the interested reader to that

text for a more thorough introduction and study of Projective Geometries.

Throughout this thesis, q denotes a prime power, and all vectors are row vectors unless

otherwise stated, or if it is clear from the context. For a prime power q, let IF, be the finite

field of q elements and let V = IF;+ be the (n + 1)-dimensional vector space over IF,. For

simplicity of notation, let VO = V \ (0) and let IF,* = IF, \ (0). For u, v E Vo, the relation R

defined by uRv w 3 t E IF,* such that tu = v, is an equivalence relation on VO. We denote

the equivalence classes of this relation by P(x) where x E Vo. So, P(x) = {y (y E Vo and

y = tx for some t E IF,*}. Let P(&) = {P(x) (x E Vo}.

The elements of P(&) are the points of a geometrical structure denoted by PG(n, q),

the n-dimensional projective space over IF,. The projective and affine spaces over IF,

are sometimes called Galois Geometries since IF, is also known as the Galois Field of q

CHAPTER 1. GALOIS GEOMETRIES

elements. If n = 2 then PG(2, q) may be referred to as the projective plane over IF,. If

v = (vo, v l , . . . , v,) E Vo then the points of PG(n, q) are explicitly denoted by P (v) = (tvo : tvl :

. . . : tun) for some t E IF,*. Notice that the choice oft does not matter, and for any r, s E IF;,

P(rv) = P(sv). The point P (v) is usually left normalized, that is t is chosen so that the

leftmost nonzero entry is 1.

1.2.1 m-spaces in PG(n, q)

For -1 5 m I n, an m-subspace of PG(n, q) (also known as an m-space or m-flat) denotes

a set of points in PG(n, q) that, along with the zero vector, form an (m + 1)-dimensional

subspace of V, with projective dimension m. Notice that by definition an m-space is

a PG(m, q). The 0-spaces, previously denoted by P(&), are the points of PG(n, q), the

1-spaces are called lines, the 2-spaces are called planes and the (n - 1)-spaces are called

hyperplanes. The (-1)-space is the empty space.

Definition 1.1 For ml 5 m2, an ml -space is said to be incident with an m2-space if the

ml -space is completely contained within the m2-space.

The concept of incidence is very important in finite projective spaces, since it is the only

geometric relationship defining the space. There is no concept of length or distance, for

example, and so the only relationship between objects in the space is given by incidence.

In particular, we look a t the incidence between a given m-space, and the points, the

smallest non-empty subspaces in PG(n, q). The following proposition gives a mathematical

relationship between these two objects.

Proposition 1.2 An m-space M can be described by a nonzero, (n - m) x (n + 1) matriv A

over IF, with rank n - m where, for any point P(x) incident with M, xAT = 0.

Note that if M in Proposition 1.2 is a hyperplane, then A is a vector in Vo. Let u =

(uo, . . . , u,) E IF:+' be a non-zero vector. By uL we denote the hyperplane in PG(n, q)

consisting of all projective points (vo : . . . : v,) such that uovo + ulvl + . . . + unvn = 0. We

denote uL explicitly by [uo : ul : . . . : u,]. Note that, as with projective points, uL = (tu)l for

t E IF;.

CHAPTER 1. GALOIS GEOMETRES

Definition 1.3 If Ml is an ml -space and M2 is an m2-space in PG(n, q), the join of Ml and

M2, denoted by Ml M2, is the smallest subspace containing both MI and M2.

Definition 1.4 If MI is an ml-space and M2 is an m2-space in PG(n, q), the intersection

of MI and M2, denoted MI n M2, is the set of points contained in both Ml and M2 and is

also a subspace.

Any m-space M in PG(n, q) is a join of m + 1 linearly independent points. Specifically, if

M is a 1-space, or line, then it is the join of any two distinct points incident with M, and

is often described in this way. That is, if r and s are points in PG(n, q) then rs is the line

that contains both r and s. (See Point 1. following Example 1.15.)

There are now two ways to describe an m-space M in PG(n,q): by a representative

matrix A such that X A ~ = 0 for all P (x) E M , as is often done with hyperplanes, or by the

join of m + 1 linearly independent points in PG(n, q) incident with M , as is usually done

with lines and planes. Finally, let PG,(n, q) denote the set of all m-spaces in PG(n, q),

and note that P(V0) = PGo(n, q).

Example 1.5 The finite projective geometry PG(2,3) has the following 13 points:

PGo(2,3) = { (~ : ~ : ~) , (~ : ~ : ~) 7 (~ : ~ : ~) 7 (O : ~ : ~) 7 (~ : ~ : ~) , (~ : ~ : ~) , (~ : ~ : ~) 7

(1 : 1 : 0) , (1 : 1 : l) , (1 : 1 : 21, (1 : 2 : O) , (1 : 2 : I) , (1 : 2 : 2)).

In the next section, we count the number of points in a projective geometry and show

that these are in fact all of the points of PG(2,3).

The following lemma completes this section.

Lemma 1.6 Points P(a) , P(b), P(c) E PG(2, q) are collinear ifand only if

ao a1 a2

bo bl b2

co c1 c2

= 0 ,

where P(a) = (a0 : a1 : az), P(b) = (bo : bl : bz), P(c) = (co : cl : c2).

CHAPTER 1. GALOIS GEOMETRIES

Proof: Points P(a), P(b), P(c) E PG(2, q) are collinear if and only if there exists uL = [uo :

ul : u ~] E PG(2, q) such that auT = 0, buT = 0 and cuT = 0 since a line in PG(2, q) is also a

hyperplane. This is true if and only if

which has a nontrivial solution for u if and only if

1.2.2 Counting m-spaces in PG(n, q)

Let GL(n, q) denote the general linear group of degree n over F,, that is the set of n x n,

invertible matrices with entries from F,, together with the operation of ordinary matrix

multiplication. Since the n x n identity matrix is invertible, the product of two n x n

invertible matrices is an n x n invertible matrix, and the inverse of an n x n invertible

matrix is also an n x n invertible matrix, and since matrix multiplication is associative,

GL(n, q) is indeed a group.

Theorem 1.7 The number of matrices in GL(n, q) is given by

Proof: This can be shown by counting the possible columns of a matrix in GL(n, q). The

first column can be any column vector except 0 and so there are qn - 1 possibilities. The

second column can be any column vector except multiples of the first column. Since there

are q multiples of the &st column, including 0, there are qn - q possibilities for the second

column. In general, for m 2 2, the mth column can be any column vector but a linear

combination of the previous m - 1 columns, so there are qn - qm-l possibilities for the mth

column.

CHAPTER 1. GALOIS GEOMETRIES

Theorem 1.8 W W O l , Chapter 241 The number of m-spaces in PG(n, q) for m 5 n is given

by the Gaussian number [zzt] q , where

A Gaussian number is sometimes called a Gaussian coefficient in order to emphasize

its analogous relationship to the binomial coefficient (z) which counts the number of

subsets of size m in a set of size n.

Proof: (Theorem 1.8) We start by counting all bases of F,"+l in F;+', that is we count all

sequences of linearly independent vectors of size m + 1. Using a similar argument to that

in the proof of Theorem 1.7, there are (qn+l - l)(qn+l - q)(qn+' - q2) . . . (qn+l - qm) such

sequences. However, two bases span the same (m + 1)-dimensional vector space if and

only if there is a matrix M E GL(m + 1, q) that maps one basis to the other, so we have

counted IGL(m + 1, q) 1 bases for each (m + 1)-dimensional vector space. Therefore, the

number of (m + 1)-dimensional vector spaces in IF;+' is

Recognize that the same argument holds for the number of m-spaces in PG(n, q).

Corollary 1.9 A projective geometry PG(n, q) has (qn+l - 1) /(q - 1) points and each line is

incident with q + 1 points.

Recall from Example 1.5, the set of 13 points in PG(2,3) and note that since (33 - 1)/2 =

13, these are all of the points in PG(2,3).

Example 1.10 Each line in PG(3,5) has 6 points. For example, the line (0 : 0 : 0 : 1)(0 : 0 :

1 : 0) contains the points

CHAPTER 1. GALOIS GEOMETRIES

while the line described by the matrix A = (: a) contains the points

Example 1.11 The projective geometry PG(3,7) contains (74 - 1) / (7 - 1) = 400 points,

(74 - 1) (7 ~ - 1) / [(72 - 1)(7 - I)] = 2850 lines, and (74 - 1) / (7 - 1) = 400 hyperplanes. Each

hyperplane contains (73 - 1) / (7 - 1) = 57 lines and (73 - 1) / (7 - 1) = 57 points. Each line

contains (7 + 1) = 8 points.

1.2.3 The Dimension Theorem in PG(n, q)

Let dim(U) denote the projective dimension of U .

Theorem 1.12 IVLWOl , page 31 31 (The dimension theorem in PG(n , q)l Let U, W be sub-

spaces in P G (n , q) , then

Example 1.13 To illustrate equation (1. l), consider two lines 11, l2 in PG(3, q). In Theorem

1.12, let U = 11, W = 12. Since dim(U) = d i m (W) = 1, the right-hand side of (1.1) is 2. Since

1 5 d im(UW) 5 3 and d i m (U n W) > -1, exactly three cases can occur: (i) dim(UW) = 3 and

d i m (U n W) = -1 (11 and l2 are two skew lines), (ii) dim(UW) = 2 and d i m (U n W) = 0 (Il and

12 are two distinct lines in a plane, which intersect in a single point - see Example 1.15),

or (iii) d im(UW) = 1 and dim(U n W) = 1 (11 and l2 are equal).

Example 1.14 Consider two distinct points r , s in PG(n, q). Let U = r , W = s in Theorem

1.12. Since dim(U) = d i m (W) = 0, the right-hand side of (1.1) is 0 and since r , s are distinct,

their intersection is the empty set, so dim(U n W) = -1. Thus, d im(UW) = 1, and r s is a

line.

Example 1.15 Let 11, 12 be two distinct lines in PG(2, q) , and let U = 11, W = 12 in Theorem

1.12. Again, the right-hand side of (1.1) is 2. Since U, W are distinct, 1 < d im(UW) I 2.

Thus, dim(UW) = 2 and dim(U n W) = 0.

CHAPTER 1. GALOIS GEOMETRlES

Examples 1.14 and 1.15 illustrate the following two important results for projective

geometries:

1. Any two distinct points in PG(n, q) uniquely determine a line, and

2. Any two distinct lines in PG(2, q) intersect a t a single point.

Corollary 1.16 The number of lines through a point in PG(2, q) is q + 1.

Proof: Let P be a point in PG(2, q), and let 1 be a line in PG(2, q) such that P @ 1. For each

point Q on 1, PQ is a distinct line through P, so there are a t least q + 1 lines through P.

Consider a line 1' through P. By Theorem 1.12 (and point 2. in the comments following

Example 1.15) 11 n 1' (2 1, so there are at most q + 1 lines through P.

1.2.4 Collineations and Projectivities

The following five definitions from [Hir98j form the basis of much of the work done in this

thesis. The concepts are introduced here and are explored more fully in Chapter 2.

Definition 1.17 The mapping C : PG(n, q) - PG(n, q) is called a collineation ifand only

if it is a bijection and it preserves incidence; that is, i fMl and M2 are subspaces of PG(n, q)

such that M1 c M2 then C(Ml) c C(M2).

In other words, a collineation preserves the incidence structure of subspaces in PG(n, q)

in much the same way that rigid motion preserves distance and angles in a Euclidean

space. So if a set of m-spaces in PG(n, q), m 5 n , satisfies a set of properties related to

incidence, then these properties continue to be satisfied in the image of this set under a

collineation. For example, if a set B of points is a cap (or t-fold blocking set) in PG(n, q),

then it remains a cap (or t-fold blocking set) under the collineation. (The definitions for

caps and t-fold blocking sets can be found in Section 1.2.5.)

It is sufficient to show that a given mapping is a collineation by showing that it is a

bijection that preserves the incidence between points and lines in a projective geometry,

hence the name collineation.

CHAPTER 1. GALOIS GEOMETRIES

Let the operation of multiplication between a matrix M E GL(n + 1,q) and a point

P (x) E PGo(n, q) be defined by M P (x) = P (M x ~) . Note that if P (x) = P(y) then there exists

t E P,* such that x = ty , therefore M P (x) = p (M x T) = P (M (~ ~) ~) = P (~ (M ~ ~)) = p (M y T) =

M P (y) , thus this multiplication is well-defined. Further, if K is a subspace of PG(n,q)

then we define M K = { M P (x) (P (x) E K) .

Definition 1.18 The mapping C : PG(n, q) - PG(n, q) is called a projectivity i f and only

if it is a bijection given by a matrix M E GL(n + 1, q) such that CP(x) = M P (x) for all

P (x) f2 PG(n, 9) -

Note from definitions 1.17 and 1.18 that a projectivity is a collineation.

An automorphic collineation a of PG(n, q) is an extension of the automorphism of P,

given by a P (x) = P (a (x)) = P((a(xo) ,a (x l) , . . . , a(x,))). If q is prime then P, has only one

automorphism, the identity mapping, and thus there is only one automorphic collineation.

Theorem 1.19 [Hir98, Section 2.1.21 The Fundamental Theorem of Projective Geome-

tries Let C' : PG(n, q) - PG(n, q) be a collineation, then C' = aC where a is a n automorphic

collineation and C is a projectivity. Spec~fically, i f q is a prime then there exists a matrix

M E GL(n + 1, q) such that CP(x) = M P (x) for all P (x) E PG(n, q).

The Fundamental Theorem of Projective Geometries tells us that if q is a prime, then

the only collineations from PG(n, q) to PG(n, q) are projectivities. In this thesis, only the

cases when q is a prime are considered.

Example 1.20 Let C : PG(2,3) - PG(2,3) be given by the matrix M =

the following mapping of the points of PG(2,3):

that the determinant of M , det(M) = 2 # 0, so C is a projectivity. The projectivity C gives

CHAPTER 1. GALOIS GEOMETRIES

Notice that C does in fact preserve lines as expected. For example, the line

(0 : 1 : l) (l : 1 : 2) = { (O : 1 : l) , (l : 1 : 2),(1 : 0 : l) , (l : 2 : 0))

maps to the line

(0 : 1 : 2) (0 : 0 : 1) = {(O: 1 : 2) , (0 : 0 : l) , (O : 1 : O) , (O : 1 : 1)).

the same projectivity. Define a relation R such that for M, M' E G L (~ , q), MR'M' if and

only if M P (x) = M'P(x) for all P (x) E PGo (n - 1, q) . The relation R is an equivalence

relation and thus partitions GL(n, q) into classes. Let [MI = {M' E GL(n, q) I MrP(x) =

M P (x) for all P (x) E PGo(n - 1,q)) and note that M' E [MI if and only if M' = AM for

some X E IF:. For simplicity of notation, let M denote the class containing the matrix M

whenever the meaning is obvious from the context.

Let PGL(n, q) = {[MI (M E GL(n, q)) , and define the operation of multiplication on this

set by [M] [N] = [M N] for all M , N E GL(n, q). If [MI = [M'] then there exists X E I F , such

that M' = AM, similarly if [N] = [N'] then there exists t E I F , such that N' = t N , thus,

[M'][Nf] = [(XM)(tN)] = [(Xt)(MN)] = [M N] , so multiplication is well-defined. Under the

operation of multiplication as defined here, PGL(n, q) is known as the projective general

linear group of degree n over IF,. Note that for q = 2, PGL(n, 2) .- GL(n, 2).

The centre of a group G , denoted Z (G) , is the set of those elements of G that commute

with every element in G. That is, Z(G) = {g E G (gx = xg for all x E G). The centre of

the group GL(n, q) can be shown to be the set Z(GL(n, q)) = {XIn I X E IF:) where In is

the n x n identity matrix. The factor group of GL(n, q) by its centre Z(GL(n, q)) is given by

GL(n, q)/Z(GL(n, q)) = {MZ(GL(n , q)) / M E GL(n, q)) and since MZ(GL(n, q)) = {AM I X E

IF:), it is clear that PGL(n, q) 2 GL(n, q) /Z(GL(n, 9)) .

For completeness, we note that the set of collineations form a group under composition

known as the collineation group and often denoted by PrL(n , q). By Theorem 1.19, for q

a prime, PGL(n, q) Y PrL(n , q).

CHAPTER 1 . GALOIS GEOMETRIES

1.2.5 Caps and Blocking Sets

The following sets are introduced here and discussed in more detail in the following chap-

ters. Examples are given in the next section.

Definition 1.21 A cap is a set of points S in PG(n, q) such that no three points of S are

collinear. A cap with m points is called an m-cap.

By definition, every subset of a cap is again a cap. This reduces the problem of finding

all possible caps of a given space to finding all maximal caps with respect to inclusion.

This motivates the following definition.

Definition 1.22 A complete cap or maximal cap is a cap which is not properly contained

in any other cap in the same space.

A maximum cap is a cap of maximum size in a given space. While not all complete

caps are necessarily maximum caps, clearly all maximum caps are complete.

Definition 1.23 A t-fold blocking set B is a set of points in PG(2, q) such that every line

in PG(2, q) intersects B in at least t points. A t-fold blocking k-set is a t-fold blocking set

with k points.

Recall that in Section 1.1, we described the problem of assigning members to com-

mittees so that the minority group always has veto power over any committee. If the

additional requirement that the majority group must also have veto power over any com-

mittee is added, then we are led to the following definition:

Definition 1.24 A proper t-fold blocking set B is a t-fold blocking set such that the com-

plement of B, B = PGo(2, q) \ B is also a t-fold blocking set. That is,

Analogous to the case of caps, every superset of a t-fold blocking set is again a t-

fold blocking set, however, while every superset of a proper t-fold blocking set is a t-fold

blocking set, it is not necessarily proper.

CHAPTER 1. GALOIS GEOMETRIES

Definition 1.25 A (proper) t-fold blocking B is said to be minimal iJ there is no point P in

B such that B \ { P) is a (proper) t-fold blocking set.

1.3 Example: The Fano Plane

Figure 1.1 : The Fano Plane - PG(2,2)

The Fano Plane PG(2,2), named for Italian mathematician Gino Fano (1 87 1 - l952), a

pioneer in the study of finite geometry, is the smallest non-trivial finite projective plane.

The Fano Plane has 7 points and 7 lines. Each line has 3 points and each point is incident

with precisely 3 lines. Thus, the Fano Plane is also a 2-(7,3,1) design (see WLWO1, Chapter

191).

Example 1.26 Let M = 1 o o be a matrix over Fz. The determinant of M , det (M) = [: : :I
1 thus M E PGL(3,2). The matrix M defines in the following collineation;

Figure 1.2: A Relabeling of the Points in PG(2,2)

CHAPTER 1. GALOIS GEOMETRIES

The matrix M also gives the following mapping for the lines (not pictured): [l : 0 : 01 4

[0:1:0], [0 :1 :0]+[1 :1 :1] , [0 :0 :1]+[0 :0 :1] , [1 :1 :0]+ [1 :0 :1] , [1 :0 :1]+ [0 :1 :1] ,

[0 : 1 : 11 4 [l : 1 : 01, [l : 1 : I] + [l : 0 : 01. Note that the application of the collineation to the

points [lines) can be visualized as a rotation of the points [lines).

Example 1.27 Using the M in Example 1.26, the results can be rewritten as a permu-

tation. Relabel the points in Figure 1.1 as in Figure 1.3, then M results in the following

permutation: a = (132) (465) (7).

Figure 1.3: An Alternative Labeling of the Points of PG(2,2)

Example 1.28 Let IT be the set of points in PG(2,2). By definition of a cap, the empty

set is a 0-cap, every subset of IT of size 1 is a 1-cap and every subset of IT of size 2 is a

2-cap. Every subset of IT of size 3 that does not form a line in PG(2,2) is a 3-cap. There

are (z) = 35 distinct subsets of size 3 in II, seven of which form lines in PG(2,2). Thus

there are 35 - 7 = 28 3-caps in IT. Every subset of IT of size 4 that does not contain a line

in PG(2,2) is a 4-cap. There are (i) = 35 distinct subsets of size 4 in II and there are 4 .7

subsets of size 4 which contain exactly one line since there are four points outside of every

line. Thus, there are seven $-caps. There are no k-caps in PG(2,2) for k > 4. Consider

k=5 . If.rrisa5-capinPG(2,2)thenforanyu,vlx,y~.rrsuchthatu# vandx#y,uv=xy

if and only if {u, v} = {x, y). Thus, .rr represents (E) = 10 lines in PG(2,2) which has only

seven lines. Since there are no 5-caps, there are clearly no 6-caps nor 7-caps in PG(2,2).

Thus, the total number of caps in PG(2,2) is (i) + (i) + (i) + 28 + 7 = 64.

Example 1.29 The following is a case analysis of t-fold blocking sets in PG(2,2). Note

that we make no generalizations about these results.

CHAPTER 1. GALOIS GEOMETRIES

Since there are 7 lines, and every point in the Fano Plane is incident with exactly three

lines, no single point, nor any pair of points can form a 1-fold blocking set. However, since

every line in the Fano Plane intersects every other line exactly once, every line forms a

1-fold blocking set of size 3. Two distinct points r , s are incident with exactly 5 lines, and

the remaining two lines intersect at the point r + s on rs so that there is no proper 1-fold

blocking set of size 3. A set of four points such that no three are collinear, is incident

with 4 3 - (i) = 6 lines, so there is no proper 1-fold blocking set of size 4. The analysis of

caps in PG(2,2) in Example 1.28 showed that any set of five or more points must contain

a line, and so also cannot be a proper 1-fold blocking set. Thus, the Fano Plane contains

no proper 1-fold blocking set and by extension, no proper t-fold blocking set for t 2 1, and

any 1-fold blocking set that is not a line cannot be minimal. For any set of 5 points, there

must be a line that intersects the set at no more than 1 point, so there can be no 2-fold

blocking set of size 5 or smaller. However, any set of six points is a 2-fold blocking set.

Trivially, any 3-fold blocking set must contain all seven points.

Chapter 2

Prescribed Automorphisms and

Linear Programming

In this chapter we introduce the topic of prescribed automorphisms. We begin the discus-

sion with a brief introduction to group actions in Section 2.1, followed by the application

of the definitions and theorems directly to PGL(n+l, q) and PG(n, q) in Section 2.2. In Sec-

tion 2.3, the method of prescribed automorphisms is described as it pertains to PG(n, q) ,

and Section 2.4 shows how certain problems of finding sets with a specified structure

relating to incidence can be translated into an integer linear programming problem (ILP

problem) and how the method of prescribed automorphisms is applied to the ILP problem

in an effort to make it solvable. Finally, in Section 2.5, we discuss methods for choosing

the groups used to prescribe the automorphisms.

2.1 Group Actions and Orbits

Throughout this chapter, let G be a group and let X be a nonempty set. For groups G, H,

the notation H 2 G means that H is a subgroup of G. Most of the material covered in this

section can be found in [Ker99].

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

Definition 2.1 A group action of G on X is described by a mapping

G x X 4 X : (g l x) ~ g x)

such that, for each x E X and any g, g' E G, the following hold:

g(glx) = (ggl)x , and

l x = x.

W e may sometimes abbreviate this by saying that G acts on X.

Example 2.2 Let S3 be the symmetric group on {l, 2 ,3) and let X be the set of all se-

quences of length 3 from the set {a , b, c, . . . , z). Define the action of S3 on X by .rrx =

. ~ ~ (X ~ , X ~ ~ X ~) = (X ~ - ~ (~) , X ~ - ~ (~) , X ~ - I (~)) . SO, for example, if .ir = (123), then T-' = (132) and

for x = (a , b, r) , .rrx = (r , a , b) .

Example 2.3 Let G = (1 , g) , where g2 = 1, and let XN be the set of positive integer divisors

of a positive integer N . Define the action of G on XN by 1x = x and gx = N I X for all x E XN.

So, for example, if N = 10 and a = 5 , then l a = 5 and ga = 2.

The action of G on X can be extended to all subsets of X. Let 2X denote the power set

of X, the set of all subsets of X.

Definition 2.4 Let the induced action of G on 2X be given by gS := { g s I s E S) for each

g E G and eachS c X.

Notice that 1 s = S and g(glS) = (ggl)S and so this is indeed a group action.

Lemma 2.5 For all g E G and for all S G X , (gS(= (S J .

Proof: Since gS = {gs (s E S) , (gS (5 IS(. For s , t E S , if gs = gt then g-'(gs) = g-'(gt) and

by Definition 2.1, (g- lg)s = (gP lg) t . Therefore, s = t and (gS(> IS(.

Example 2.6 Let G4 be the set of labeled graphs on the vertex set {1 ,2 ,3 ,4) and let S4 be

the symmetric group on the set {1,2,3,4) . Then S4 acts on G4 by permuting the vertices

CHAPTER 2. PRESCRBED AUTOMORPHISMS AND LP

of x E G4 according to their labels. The induced action of S4 on pairs of vertices gives the

mapping for edges as stated in Definition 2.4.

For example, let X I , 2 2 E G4 be given by

and let g = (12) (34) E S4. Then,

In Example 2.6, the graphs xl and gxl are isomorphic, meaning that there is a bijection

on the set of labels that maps one graph to the other. Similarly, x2 and gx2 are isomorphic.

In fact, for any g E S4 and x E G4, x and gx will be isomorphic. Further, if x , y E G4 such

that x and y are not isomorphic, then there is no g E S4 such that y = gx. This concept

extends to all group actions and leads to the following lemma and definition.

Lemma 2.7 The relation R given by

is an equivalence relation on X .

Proof: Let x , y, z E X . The relation R is reflexive since x = l x where 1 is the identity of

G. If xRy then there exists g E G such that y = gx which implies by Definition 2.1 that

g - l y = g- l (gx) = (gP1g)x = l x = x , so yRx and R is symmetric. If xRy and yRz then there

exist g , h E G such that y = gx and z = hy which implies that z = h(gx) = (hg)x, so xRz and

R is transitive.

Definition 2.8 The equivalence class of R as described in Lemma 2.7, containing x E X , is

denoted by

G (x) = {gx I g E GI

and is called the G-orbit of x , or the orbit of x when the meaning is cleal:

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

The set of all G-orbits on X will be denoted by

Notice that if G is the multiplicative group IF: and if X = IF;+', then the IF:-orbit of

x E IF;+' is the projective point P(x) and IF: \\ IF;+' = PGo(n, q).

Now that the concept of an orbit has been established, it is natural to ask about the

size of an orbit. Before this can be answered the following definition is needed.

Definition 2.9 The stabilizer of x E X , denoted by StabG(x), is the set of elements of G

which& x; that is:

StabG(x) = {g E G I gX = 2).

The following definition is also included and will be of use in later sections.

Definition 2.10 The stabilizer of a subset S of X , denoted by StabG(S), is the set of ele-

ments of G which& S setwise; that is:

StabG(S) = {g E G I gS = S).

Note that for both the stabilizer of a set element and the stabilizer of a subset, the

subscript G may be omitted if it is clear which group or subgroup is acting on X.

Theorem 2.11 For x E X , StabG(x) is a subgroup of G.

Proof: StabG (x) is nonempty, since it contains the identity element of G. For gl , gz E

StabG (x), (glg2)x = gl (gzx) = g1x = x, therefore glgz E StabG (x). If g E StabG (x) then gx = x

implies that x = g-lx, thus g-I E StabG(x).

Theorem 2.12 For S c X , StabG(S) is a subgroup of G.

The proof of Theorem 2.12 is similar to that for the Theorem 2.11

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

Lemma 2.13 There exists a bijection between the orbit of x, G(x) , and the set of left cosets

G/StabG (x) .

Proof: Let t : G(x) H G/StabG(x) be given by t(gx) = gStabG(x). To show that t is well-

defined and injective, note the following:

Further, since every element of G/StabG(x) has the form gStabG(x) for some g E G, t is

surjective.

An immediate consequence of Lemma 2.13 is the following result:

Corollary 2.14 The length of the orbit is the index of the stabilizec

In particular; ij 1 GI is finite, then IG(x) 1 = IGI /IStabG (x) 1 .

Example 2.15 As in Example 2.6, let G4 be the set of labeled graphs on four vertices and

let S, be the symmetric group on the set (1,. . . , m). Then S4 acts on G4 by permuting the

vertices of x E G4 according to their labels. Note that 1,941 = 24. Let

The stabilizer of x, Stabs4(x) = S4, SO IS4(x)(= IS41/1S41 = 1 by Corollary 2.14. The

&-orbit S4(x) = {x). The stabilizer of y is the set of elements of S4 that fix the sets {1,2)

and {3,4), so Stabs4(y) E S2 x S2. Therefore IStabs4(y)l = IS2 x S21 = 4, and IS4(y)l = 2414 =

6 = (i) as expected. The S4-orbit S4(y) = {h E G4 I h has exactly one edge). The stabilizer

of z is the set of elements of S4 that fix the sets {1,3), (2) and {4), so Stabs4(z) E S2.

Therefore IStabs4(z)l = (S21 = 2, and IS4(z)l = 2412 = 12 = 4 - 3, as expected. The S4-orbit

S4(z) = {h E G4 I h has exactly two edges which share a common vertex).

Notice that the set of all &-orbits of G4, S4 \\ G4, is the set of unlabeled graphs on four

vertices.

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

2.2 The Action of PGL(n + 1, q) on PG(n, q)

In this section the definitions and properties of Section 2.1 are considered as they directly

pertain to the group PGL(n + 1, q) and the set PG(n, q).

Recall from Chapter 1 and the previous section that [MI E PGL(n + 1, q) denotes the

IF:-orbit of M E GL(n + l ,q) containing the matrix M , that P(x) E PGo(n, q) denotes the

IF;-orbit of x E IF;+' and that [M]P(x) = p(MxT) .

Proposition 2.16 The mapping

describes a group action of PGL(n + 1, q) on the set of points PGo (n, 9).

Proof: Note that 1 P(x) = [I,+l] P (x) = P(x) and if [g] , [g f] E PGL(n + 1, q) then [g] ([gf]P(x)) =

[glP(gfx) = P(ggfx) = [ggflP(x).

Now consider the induced action of PGL(n + 1, q) on S 2 PGo(n,q) and notice that

since the elements of PGL(n + 1, q) are collineations, this induced action of PGL(n + 1, g)

on S preserves all incidence relationships pertaining to S in PG(n,q) (see Section 1.2.4).

Specifically, if S is an m-space PG(n,q), then gS is also an m-space in PG(n,q), so for

example g maps lines to lines, planes to planes and hyperplanes to hyperplanes.

o 1 o . Let G = (M) and note that G E Z3 = {M, M2, I) . Let X be the set of all i 1 o ~ " ' i
(0 O l /
points in PG(2,2). Then G \\ X = {wl, w2, w3) where

W l = { (O : 0 : I) , (1 : 0 : I) , (0 : 1 : 1))

w2 = { (1 : 0 : 0) , (1 : 1 : 0) , (0 : 1 : 0) }

w3 = { (I : 1 : 1)).

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

Using Definition 2.4 we can also calculate the orbits on the hyperplanes.

Let a E IFF+' be the vector describing the hyperplane aL in PG(2,2) and let P (x) be

a point incident with aL. Recall from Proposition 1.2 and the comment following, that

xuT = 0. Let N E G such that ~ a l = bL. Note that since N is a collineation, bL must also

be a hyperplane. By Definition 2.4, N P (x) = P (y) where P(y) is a point incident with bL

which implies that y = X(NxT) for some X E IF;, so yT = N X ~ . Since bL is a hyperplane,

ybT = 0, thus (x N ~) bT = x(NTbT) = x (~ N) ~ = 0. Since this is true for any x incident with a

it must be that a = bN. Multiplying on the left by N-l we get b = aN-l. So the orbits of G

on the hyperplanes of PG(2,2) are

o1 = {[O : 0 : 11)

o2 = { [l : 0 : 11, [O : 1 : 11, [l : 1 : 01)

o3 = {[0 : 1 : 01, [l : 1 : 11, [l : 0 : 01).

Remark 2.18 Example 2.17 shows that the action of N E PGL(n+l, q) on aL E PG,-1 (n, q)

where a E IF;+' is given by NuL = (u N - ') ~ .

2.3 The Method of Prescribed Automorphisms

Much of the work completed in this thesis follows from the method of prescribed auto-

morphisms, an approach that has previously been used successfully to find 7-designs and

8-designs [Ker99], linear codes [Bra051 and double blocking sets [BW05]. This method al-

lows us to reduce the size of a problem's search space by considering an orbit of points

as a single object rather than considering each point individually. We will see in Sec-

tion 4.5 that this can significantly reduce the number of variables and constraints in the

associated integer linear programming problem.

Throughout this section, we assume that the group G acts on the set X. This is a

necessary condition of the method of prescribed automorphisms.

Definition 2.19 An automorphism group of S & X is any subgroup of StabG(S). An

element of an automorphism group is called an automorphism.

CHAPTER 2. PRESCRTBED AUTOMORPHISMS AND LP

While the phrases automorphism group and subgroup of StabG(S) can be used inter-

changeably, notice that the word automorphism implies a little more, in that it suggests

not just the stabilizing of a set, but also the stabilizing of the set's shape. The fact that

the groups being applied in this thesis are collineations is important, as has already been

emphasized, because the preservation of the structure of the point-sets is important, and

so there is a preference for calling these groups automorphism groups in order to futher

emphasize this preservation of structure.

Also, note that an automorphism group of a set S is not necessarily maximal, meaning

that it can be properly contained within another automorphism group. The stabilizer of

S, StabG(S) is maximal.

Recall the comments following Example 2.6 where we introduced the concept of iso-

morphisms of graphs. The following gives a formal definition for two isomorphic sets.

Definition 2.20 Let S1, S2 be subsets of X . The set S1 is said to be isomorphic to S2,

denoted S1 S2, if and only there exists a g E G such that gS1 = gS2.

Theorem 2.21 Let S be a subset of X and let H be a subgroup of G. IfH is an automor-

phism group of S then S is a union of H-orbits on X .

Proof: If H is an automorphism group of S and s E S, then hs E S for all h E H, so the

H-orbit of s, H(s), is a subset of S. Therefore S is a union of H-orbits on X.

Theorem 2.22 Let G be a subgroup of PGL(n + 1,q). Let w be an arbitrary G-orbit on

PGo(n, q), and let a be an arbitrary G-orbit on the set of m-spaces PG,(n, q). If J, K E a,
thenJJnwl = IKnwl.

Proof: If J ,K E a, then K = g J for some g E G. Since w is an orbit, w = gw. So,

K n w = g J n w = g (J n w) . Thus, byLemma2.5 I J n w l = IKnwl.

Please notice that, by Theorem 2.22, given a G-orbit on an m-space J, the size of the

intersection between any m-space in G(J) and the G-orbit of a point P(x) is independent

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

of the choice of m-space in G(J) . In other words, if J is an m-space and the intersection

IJ n G(P(x))I = t , then IK n G(P(x))I = t for all K E G (J) . As will be shown in the next

section, this becomes very important when setting up the linear programming problem.

2.4 The Linear Programming Problem

Suppose we want to find a set B C PGo(n, q) such that for each m-space 1 E PGm(n, q), for

a fixed m < n, 11 n BI 5 t where t is an integer. That is, we want to find a set of points B,

such that each m-space intersects B a t no more than t points. Further, suppose we want

to maximize the size of B. This geometric problem can be translated into an integer linear

programming problem in the following way. If we consider that each point Pi E PG(n, q)

is either in B or not and thus associate with each Pi an xi, 1 5 i 5 r = (qn f l - 1) / (Q - 1)

where xi = 1 if Pi E B, and xi = 0 otherwise, then IBI = xl + x2 + . . . + x,. Also, for each

l j E PGm(n, q), let cji = 1 if l j is incident with Pi and cji = 0 otherwise. Then IB n ljI 5 t can

be rewritten as the inequality cjlxl + cj2x2 + . . . + cj,x, 5 t. We then have the following 0- 1

integer programming problem:

Maximize

(BI = x 1 + x 2 + . . .+x,,

subject to, for each l j E PG,(n, q)

and xi E {O,l), 1 5 i 5 r.

Similarly, suppose we want to find a smallest set B C P G o (~ , ~) such that for each

m-space l j E PGm(n,q), Ilj n BI 2 t where t is an integer. This can be rewritten as the

following minimization problem.

Minimize

JBI = X I + 2 2 + . . . + x,,

subject to, for each l j E PGm(n, q)

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

and xi E {O,l), 15 i 5 r .

Note that we can also associate more than one constraint with each m-space, a s we do

in the case of proper double blocking sets.

Before providing an example, the following definitions are given.

Definition 2.23 The right-hand-sides of Equations (2.1) and (2.3) are called the objective

function. Each inequality in (2.2) and (2.4) is known as aconstraint. The requirement that

xi E { O , l) will be referred to as the 0-1 constraints. A vector X E (0, is called a feasible

solution, or simply feasible, if it satisfies all constraints, including the 0-1 constraints. A

feasible solution is called an optimal solution if no other feasible solution returns a better

objective_function value.

Example 2.24 Find a largest set of points B in PG(2,3) such that every line in PG(2,3)

intersects B at no more than three points.

L e t P l = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : I) , P 4 = (1 : 2 : 0), P5 = (0 : 1 : 2),

p6 = (1 : 2 : I) , p7 = (1 : 1 : I) , P8 = (1: 1 : 2), PCJ = (1 : 0 : I) , p l o = (1 : 1 : o), Pl1 = (o : 1 : I) ,

P12 = (1 : 2 : 2), P13 = (1 : 0 : 2), and let xi = 1 if Pi E B and xi = 0 otherwise. Also, if

Pi = (a : b : c) then let Li = [a : b : c]. The linear programming problem becomes:

Maximize

subject to

where C j is the constraint associated with line Lj and xi E {O,1} for 1 5 i 5 13. Note that

the coefficient of xi in C j is 1 if Pi is incident with Lj and 0 if Pi is not incident with Lj .

CHAPTER 2. PRESCRIBED AUTOMORPHZSMS AND LP

An upper bound on IBl can be found by considering that any solution must satisfy

each of the 13 constraints and that each point is associated with exactly 4 constraints so

that (BI 5 113.3/4] = 9. Since PG(2 ,3) is a plane, every line intersects every other line at

exactly one point, so if B = PGo(2, 3) \ Lt , for some t then I B(= 13 - 4 = 9 and B satisfies

all constraints.

Solving the linear programming problem will give the above result, and further testing

shows that the plane less a line is the only optimal solution to this problem.

It is known that the 0-1 integer programming problem is NP-complete [GJ79, pg. 2451,

and the problem of finding optimal solutions in P G (n , q) as n and q get larger quickly

becomes intractable. For example, recall from Theorem 1.8 that the number of points in

P G (5 , 5) is [;I5 = 3906, and the number of lines is [:I5 = 508431, so an associated linear

programming problem would have 3906 variables and 50843 1 constraints.

By restricting our attention to sets that have a certain amount of symmetry, that

is, by prescribing an automorphism group to the solution, we arrive at a new, more

constrained problem of a smaller size. In this way, we are prescribing the symmetry

or, in other words, requiring that a certain symmetry be contained within any solution

considered. As such, we are assuming that some type of symmetry exists in the optimal

solution S, or at least in some interesting solution, which is not unreasonable since the

very nature of the objects within which we are working, the finite projective geometries,

are filled with symmetries, as is much of mathematics, and indeed the world around us.

We first formulate the new problem and then comment on its relationship to the origi-

nal problem.

Let G be a subgroup of P G L (n + 1, q) and let w l , . . . , wk denote the k distinct G-orbits

on P G o (n , q) , and let R1,. . . , RK denote the K distinct G-orbits on PG,(n, q) . Let xi = 1

if wi c B and xi = 0 otherwise. Then, the new linear programming problem for the

maximization problem defined by (2.1, 2.2) is given by:

Maximize

subject to, for each R j

CHAPTER 2. PRESCRIl3ED AUTOMORPHISMS AND LP

and xi E {0,1), and cji = 11 n wiI for any m-space 1 E Rj.

Note that the minimization problem originally introduced in (2.3, 2.4) is treated sirni-

larly.

Theorems 2.2 1 and 2.22 guarantee that any optimal solution to the problem given in

(2.5) and (2.6) is a largest solution to the original problem defined by (2.1, 2.2) that also

has the symmetry prescribed by the group G.

From Corollary 2.14, it follows that the length of any G-orbit could be as large as the

order of G. Thus, in the best case, we can reduce the number of variables and the number

of constraints from the original problem by a factor of 1/IGJ. An instance of such a case

can be found in Example 4.24, where JGJ = 5 and indeed the number of variables and

constraints is exactly 115 of the the number of variables and constraints in the original

problem. Note that in the extreme case when G is the trivial group we see no change from

the original problem.

Suppose a set S c PGo(n, q) is an optimal solution to the original ILP problem. If we

have successfully chosen our group G such that the set S is in fact a union of G-orbits,

then the new ILP problem given by (2.5) and (2.6) will have an equivalent solution in that

it will return a set of size IS(. However, if G is not an automorphism group of any optimal

solution to the original problem, then the new ILP problem cannot return an optimal

solution to the original problem as is shown in Example 2.26. We may no longer be able

to find an optimal solution to the original problem, or even to know that we have achieved

an optimal solution to the original problem, but we may be able to increase our knowledge

and find good sets in a reasonable amount of time by focusing our attention on the new,

smaller problem.

Note that the following two examples are contrived in order to demonstrate the im-

portance of finding the appropriate group. The groups applied were chosen with full

knowledge of the optimal solution. For the problems in which the method of prescribed

automorphisms is a useful strategy, the choice of G that will yield an optimal solution is

largely unknown since the optimal solutions themselves are largely unknown, and at best

educated guesses can be made about what group should be applied to the problem.

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

Example 2.25 Use the method of prescribed automorphisms to attempt to find an opti-

mal solution to the problem described in Example 2.24.

Let G 5 PGL(3,3) be the stabilizer of a set of points in PG(2,3). In particular, let

L1 = [I : 0 : 01 and let G be StabPGL(3,3)(L1) n StabPGL(3,3)((1 : 1 : 1)). Using the method of

prescribed automorphisms, we can create a new, condensed linear programming problem

by finding the G-orbits on the set of points and the set of lines in PG(2,3). The group G

has the following orbits on points:

and the following orbits on lines:

Note that, a s constructed, the line L1 is fixed.

Let xi = 1 if wi c B and 0 otherwise. We arrive at the following ILP problem:

Subject to

xi E {O,l).

An optimal solution is given by X = (1,0,1) and the associated point-set is B = wl U w3,

which is the plane less a line (namely the line L1), and has size equal to 9, as expected.

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

The linear programming problem in Example 2.25 is much smaller than the original

problem in Example 2.24, only three variables and three constraints as compared with

thirteen variables and thirteen constraints in the original problem, yet both problems

yielded the same results. However, we were able to use the knowledge of the symmetry of

the optimal solution to the problem being asked in order to find a subgroup of PGL(3,3)

that would act appropriately on our point set and yield the desired result. Without that

knowledge, the method of prescribed automorphisms may not give the optimal solution

as we show in the next example.

Example 2.26 We answer the question posed in Example 2.24 using the method of pre-

scribed automorphisms, but with a group that will not yield an optimal solution.

k t R = {(I : 0 : O),(O : 0 : l) , (l : 2 : O),(l : 2 : l) , (l : 1 : l) ,(l : 1 : O) , (l : 0 : 2)) and

note that R is a feasible solution to the original problem (though it is not optimal). Let

G 5 PGL(3,3) be the stabilizer of R. It turns out that G is isomorphic to S4 and gives the

following orbits on the set of points of PG(2,3):

W l = {(I : 0 : O), (1 : 2 : I) , (1 : 1 : I)},

w2 = {(O : 0 : l) , (1 : 2 : O), (1 : 1 : O), (1 : 0 : 2)},

W 3 = { (0 : 1 : 0) , (0 : 1 : 2) , (1 : 1 : 2) , (1 : 0 : 1) ,

(0 : 1 : I), (1 : 2 : 2)},

and the following orbits on lines:

R1 = {[0: 1 :2] , [O: 1 : 1] , [1 :0 :2]) ,

Q2 = { [1 : 0 : 0] , [1 : 1 : 2] , [1 : 0 : 1] , [1 : 2 : 2]) ,

Q3 = { [0 : 1 : 0] , [0 : 0 : 1] , [1 : 2 : 0] , [1 : 2 : 1] , [1 : 1 : 1] , [1 : 1 : 0]) .

The corresponding integer linear program is given by

Subject to

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

where x i = 1 if wi c B and 0 otherwise.

An optimal solution is given by X = (1,1,0) and the associated point-set is B = wl Uw2 =

R, and has size equal to 7, which is clearly not an optimal solution to the original problem.

Example 2.27 We conclude this section with a practical example of the computational

savings achieved using the method of prescribed automorphisms. We applied the method

to the problem of finding a proper double blocking set in PG(2,19), of size less than or

equal to 3.19+ 1 = 58, using the group Z4. This group is introduced in the proof of Theorem

3.11. The ILP solver, CPLEX, was able to find a solution of size 58 to the reduced problem

in 0.82 seconds. After running the original problem for over 35 hours, no solution had

yet been found.

2.5 Choosing a Group

As is implied by Theorem 2.2 1, if an optimal set X to the problem being considered is the

union of G-orbits for some group G, then finding that group is key to finding the solution

X. However, it is also necessary to find a group that will result in a small number of

orbits, so that the related ILP problem can be solved. Note, that this is not a simple

problem. Though there are some basic strategies for finding G (see [Bra05]), in general,

it is problem dependent and difficult. In this thesis, we attempt two methods of finding

groups.

The first strategy is to use the symmetric groups. This strategy is expected to produce

successful results if the point-set in PG(n, q) lies in a relatively small number of m-spaces.

In the case of proper 2-fold blocking sets, the point-set found lies on 4 lines, and so

success was achieved with a subgroup of the symmetric group S4, specifically Z4. This is

presented more fully in Chapter 3.

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

The second strategy is the use of cyclic subgroups. The benefit of this strategy is

that all groups have cyclic subgroups, and specifically, good groups, that is groups that

are both an automorphism group of the set X and produce a relatively small number of

orbits, have cyclic subgroups. So, if we cannot find all of the symmetry associated with

a good group, we may still be able to find some of the symmetry, and hopefully enough

of the symmetry to solve the problem. Also, as will be shown below, we have a sufficient

condition (Theorem 2.30) that can be implemented practically in conjuction with Theorem

2.32 so that we need only test relatively few cyclic subgroups to ensure that all cyclic

subgroups have been considered. The theory behind this is discussed here, and the

technique is employed in Chapter 4 while searching for large caps.

Let G be a group. Let g, h E G. We say that g is conjugate to h, denoted g - h, if and

only if there exists x E G such that h = xgx-l. Conjugacy is an equivalence relation on

the elements of the group G. The concept of conjugacy can be extended to subgroups as

follows:

Definition 2.28 Let G1, G2 be subgroups of G, then G1 is conjugate to G2, denoted G1 -
G2, ifand only there exists x E G such that G2 = xGlx-l, where xGlx-l = {xgx-I I g E GI).

Theorem 2.29 Conjugmy is an equivalence relation on the subgroups of the group G.

Proof: Let Gl,G2, G3 be subgroups of G such that G1 - G2 and G2 - G3. Since G1 =

lGll-', conjugacy is reflexive. Since G1 - G2, there exists x E G such that G2 = xGlx-'

which implies that GI = x r l G ~ x , so conjugacy is symmetric. Finally, since G2 - G3, there

exists y E G such that G3 = yG2y-l, then G3 = y (~ G ~ x - ~) y - ~ = (y ~) G ~ (y x) - ~ , SO conjugacy

is transitive.

Recall that for g E G, (g) denotes the cyclic subgroup of G generated by g.

Theorem 2.30 For gl, g2 E G, ifgl - g2 then (gl) - (g2).

Proof: Suppose gl - g2, then there exists k E G such that g2 = kgl k-l. So g2i = (kgl k-l)i =

kg; k-' . Now, (g2) = ig$ I i E Z) = {kg: k-l (i E Z) = k(gl) k-l . Therefore, (gl) - (g2).

CHAPTER 2. PRESCRlBED AUTOMORPHISMS AND LP

Note that the converse of Theorem 2.30 is not true. For example, consider the group

Z, under addition. Since Z, is abelian, gl - g2 if and only if gl = g2, but if Ic E Z, satisfies

GCD(k, n) = 1 then (I c) = Z,. The number of such Ic E Z, is known as the phi function

$(n) and for n > 2, $(n) 2 2. In general, it is possible to have two or more non-conjugate

elements generate cyclic subgroups in the same conjugacy class.

Lemma 2.3 1 Let G1, G2 be subgroups of G such that G1 - G2, then G2 (gx) = gG1 (x) , where

g E G satisfies G2 = gGlg-l.

Theorem 2.32 IfGl - G2 and Sl C X is a union of G1-orbits, then there exists S2 C X

isomorphic to S1 such that S2 is a union of G2-orbits.

Proof: By Lemma 2.3 1, G2(gx) = gGl(x), where g E G satisfies G2 = g ~ l g - ' so from

S1 = Ui GI (xi), we get gS1 = g (U Gl (xi)) = Ui G2 (gxi) = 5'2.

In other words, Theorem 2.32 says that if G1 is an automorphism group for some

set X, then every group G2 such that G1 - G2 is an automorphism group for some set

isomorphic to X. So, only one representative from a conjugacy class of subgroups need

be applied to the problem.

Thus, for small enough n and q all cyclic subgroups of PGL(n + 1,q) can be tested

by generating a representative element from each conjugacy class and testing the group

generated by that element on the set of points of PG(n, q) . This dramatically reduces the

number of cyclic groups being tested. For example, PGL(4,2) has 14 conjugacy classes of

elements with an average of 1440 elements in each class, while PGL(5,2) has 27 conjugacy

classes of elements with an average of approximately 370347 elements per class. However,

CHAPTER 2. PRESCRIBED AUTOMORPHISMS AND LP

note that from the comments following Theorem 2.30, generating the conjugacy classes

of the cyclic subgroups in this way will still result in some redundancy. For example, the

number of conjugacy classes of cyclic subgroups in PGL(4,2) and PGL(5,2) is 12 and 18

respectively.

For the work done in this thesis, the mathematical software program Magma was used

to generate the conjugacy classes of cyclic subgroups in PGL(n + 1, q) , which attempts to

do this by examining a random selection of group elements and their powers. However,

conjugacy classes can be computed more efficiently by recognizing that two (n + 1) x (n + 1)

matrices A and B are conjugate if and only if XI-B and XI-A have the same Smith normal

form over the ring of polynomials over IF, [RotO2, Chapter 9.41.

Because of the algorithm used by Magma, for n and q large enough, producing all con-

jugacy classes is computationally difficult, and it becomes necessary to simply generate

a subset of the conjugacy classes, though doing so reduces the chances of finding a good

group.

Chapter 3

Blocking Sets in PG(2, q)

Recall that throughout this thesis, we are primarily interested in the case when q is a

prime and there is no extra algebraic structure available on IF,, therefore we exclusively

study blocking sets in the case when q is odd. For the case where q = 2 see Example

1.29. Our analyses will be limited to 1-fold blocking sets and 2-fold blocking sets. For

the remainder of this chapter, following the notation of [Hir98], a 1-fold blocking set will

be referred to as a blocking set and a 2-fold blocking set will be referred to as a double

blocking set. For all t-fold blocking sets, the problem being studied is to find minimal sets

and to find sets of minimum size.

In Section 3.1, the discussion begins with known minimal 1 -fold blocking sets in

PG(2, q). In Section 3.2 we look at double blocking sets and the discovery of a 38-point

double blocking set in PG(2,13). In Section 3.3 we present two families of proper double

blocking sets discovered during the completion of this thesis.

3.1 1-fold Blocking Sets

Recall from Definition 1.23 that a blocking set is a set of points in PG(2, q) such that every

line passes through the set at least once, and from Definition 1.24, a proper blocking

set is a blocking set that contains no line completely. Recall from Definition 1.25 that a

minimal blocking set is a blocking set which contains no proper subset which is also a

CHAPTER 3. BLOCKING SETS IN PG(2, q)

blocking set.

Definition 3.1 A projective triangle of side n in PG(2, q) is a set B of 3(n - 1) points such

that

(a) on each side of a triangle PoPlP2 there are n points of B;

Ib) the vertices Po, PI, P2 are in B;

(c) IfQo E P1P2 and Q1 E P~Po are in B, QO # Q1, then so is Q2 = QoQ1 n POPl.

Recall that PGo(2,q) denotes the set of 0-spaces, or the set of projective points in

PG(2, q) . If X 2 PGo (2, q) then a k-secant of X is a line in PG(2, q) that intersects the set

X exactly k times. In [Hir98], it is proven that there exists a projective triangle of side

a (q + 3) which is also a minimal proper double blocking set in PG(2, q) of size ; (3q + 2) and

this is repeated here in Proposition 3.3. The following is a slightly stronger result; that is

every projective triangle of side i (q + 3) in PG(2, q) is a minimal proper blocking set.

Theorem 3.2 IfB is aprojective triangle of side ;(q + 3) in PG(2, q) with q odd then B is a

minimal proper blocking set of size (q + 1).

Proof: Let Po, PI, and P2 denote the vertices of the projective triangle B, and let {i, j , k) =

{07 11 2).

Since POPI, PoPz and PlP2 each intersect B at ;(q + 3) points, there are at least three

[i (q + 3)] -secants.

From the definition of a projective triangle, if an arbitrary line 1 intersects POPl and

POP2 at non-vertex points in B, then it intersects PIP2 at a non-vertex point in B and

is therefore a 3-secant. Since any line is uniquely determined by two distinct points in

PG(2, q), we can choose a point r on POPl and a point s on POP2 to determine 1. There are
1 Z. (q + 3) - 2 = ;(q - 1) non-vertex points on each side of the projective triangle, so there are
1 ,(q - 1) choices for both r and s. Once r and s are chosen, 1 n PlP2 is uniquely determined,

thus the number of such 3-secants is [;(q - 1)12.

If 1 is incident with a vertex Pk and a non-vertex point on Pipj in B, then 1 is a 2-secant.

There are three choices for Pk and i (q - 1) non-vertex points on P,P, which are in B, so

the number of such 2-secants is :(q - 1).

CErlAPTER 3. BLOCKING SETS IN PG(2, q)

If I is incident with the vertex Pk and a point on Pipj not in B, then I is a 1-secant.

There are three choices for Pk and (q + 1) - ;(q + 3) = ;(q - 1) non-vertex points on Pipj

which are not in B, so the number of such 1-secants is :(q - 1).

If I is incident with a non-vertex point on Pipj in B, and a point on Pipk not in B, then

by the definition of a projective triangle, I is incident with a point on PjPk not in B and is

thus a 1 -secant. Since there are ; (q - 1) non vertex points on Pipj which are in B, ; (q - 1)

points in Pipk which are not in B, and since there are three choices for the line Pi Pj, there

are 3 [;(q - I)]' such 1-secants. Note also that the two types of 1-secants described are

mutually exclusive since the 1-secants in the former set contain a vertex while those in

the latter set do not.

Summing the number of 1-secants, 2-secants, 3-secants and [i (q + 3)] -secants found

above, we get

3 (~) ~ + 3 (q) + 3 (q) +

But q2+q+l is the total number of lines in PG(2, q) , thus all lines in PG(2, q) are incident

with a t least one point in B, and since we have counted all lines, no line intersects B a t

more than $ (q + 3) points. Since (q + 3) < q + 1 for q > 2 it follows that no line is completely

contained within B, and therefore B is a proper blocking set.

Finally, note that if P is a vertex, then there exists line PP' such that P' is on the side

of the projective triangle that does not contain P and P' $! B so P lies on a 1-secant and

B \ {P) is not a blocking set. If P E B is a non vertex, then again, there exists P' on a

side of the projective triangle, not on the same side as P such that P' $! B, so that PP' is

a 1-secant and B \ {P) is not a blocking set. Thus B is minimal.

Proposition 3.3 There exists a projective triangk of side (q + 3) in PG(2, q) , for each odd

prime power q.

ProofiLet Qo(ao) = (0 : 1 : ao), Ql(a1) = (1 : 0 : al) and Qz(a2) = (1 : -a2 : 0) be points in

PG(2, q). Let B consist of the vertices (0 : 0 : l), (0 : 1 : O), and (1 : 0 : 0) and the points

CHAPTER 3. BLOCKING SETS IN PG(2, q)

Qi(ai) such that ai is a nonzero square. Since there are i (q - 1) nonzero squares in IF,,

I BI = 3 + 3 . i (q - 1) = $ (q + 1) . By Lemma 1.6, Qo, Q1 and Q2 are collinear if and only if

a0 = ala2, so if 2 non-vertex points are in the set, then the third point must also be in the

set. Thus B is a projective triangle of side (q + 1).

As will be shown in Section 3.3, an analogous, though more complicated construction

exists for proper double blocking sets in PG(2, q).

3.2 Double Blocking Sets

Theorem 3.4 There exists a double blocking set in PG(2, q) of size 3q.

Proof: Let 1 1 , 1 2 , l 3 be three distinct, non-concurrent lines in PG(2, q) and let B = l l u l 2 u 1 3 .

The order of B is given by JBI = 3 - (q + 1) - 3 = 3q, so it only remains to show that B is a

double blocking set. Since B lies in a plane, every line intersects every line at least once,

so for an arbitrary line 1 E PG(2, q) , 1 must intersect each of 1 1 , 1 2 , and l 3 SO that I1 n BI = 2 ,

3 o r q f 1 .

3.2.1 A 38-Point Double Blocking Set in PG(2,13)

Until recently, for q a prime, the smallest known size of a double blocking set in PG(2, q)

was 3q (Theorem 3.4). By applying the method of prescribed automorphisms to a comple-

mentary problem in [BW05], the authors were able to find a double blocking set of size 38

for PG(2,13), one point less than the known best of 39. Independently, while researching

the contents of this thesis, we found an isomorphic set of size 38. Further, by studying

the structure of this set, and the subgroup of PGL(3,13) used to find it, we were able to

discover some other interesting results (Theorem 3.1 1).

It had been suspected for a time before this set was discovered, that 3q was not optimal,

but even with this knowledge, finding the set was difficult. Even if it were known that

CHAFTER 3. BLOCKING SETS IN PG(2, q)

there existed a double blocking set of size 38 in PG(2,13), there are ('3":) z 2130 point sets

of size 38 in PG(2,13). However, PGL(3,13) is still small enough that all of its subgroups

can be generated and applied to PG(2,13). The alternating group on 4 elements, A4

produced the following 38-point double blocking set.

B = {(I : 12 : O), (0 : 1 : 121, (1 : 6 : 12)> (1 : 4 : 2)> (1 : 9 : I)> (1 : 8 : I)> (1 : 2 : 8)> (1 : 11 : l l) > (1 :

2 : 7)>(1 : 0 : 2)>(1 : 0 : l) > (l : 5 : 7)> (1 : 10 : 7)>(1 : 1 : O)>(O : 1 : l) > (l : 4 : lO),(l : 5 : 3)>(1 : 10 :

4)> (1 : 4 : I l l 7 (0 : 1 : 7)) (1 : 12 : I) > (1 : 9 : 5)> (1 : 3 : lo)> (1 : 7 : 9)> (1 : 7 : 4)> (1 : 4 : 9)> (1 : 6 :

8),(1 : 10 : 12)>(1 : 8 : 6)>(1 : 3 : 5)>(1 : 12 : 2)>(1 : 0 : 8)>(1 : 4 : 6)>(1 : 1 : l) > (l : 11 : 0)>(1 : 12 :

3)> (1 : 7 : 7)> (1 : 0 : 7))

Once B was found, a natural question to ask was "Does the set have any geometric

properties that can be exploited in an attempt to find a double blocking set smaller than

39 for higher values of q?". It turns out that of the 38 points in B, 34 of them lie on 4 lines

in general position, and the 6 intersecting points of these four lines are also in B. Using

this information, we narrowed our focus to groups that permute four lines for q > 13 and

used the ILP approach as outlined in Chapter 2. Though we were unable to find a double

blocking set of size smaller than 39, we did consistently find a non-trivial proper double

blocking set of size 39 + 1 for q prime and q = 3 (mod 4). Working with this knowledge, we

were able to find a construction for a proper double blocking set for all such q which is

presented in Section 3.3.2.

3.3 A Family of Proper Double Blocking Sets

Throughout this section, let q be an odd prime power.

3.3.1 Preparatory Facts

Definition 3.5 For x E IF, we say that x is square i f x = s2 for some s E IF,. Otherwise, x is

nonsquare .

Definition 3.6 By 0, we denote the set of all nonzero squares of IF, and by p, we denote

the set ofall nonsquares of IF,. Note that 0 does not appear in either set.

CHAPTER 3. BLOCKING SETS IN PG(2, q)

Proof: Let a be a primitive element in IF,. If a , b E El,, then there exist some t , s E Z such

that a = cu2t and b = a2s. If C , d E p,, then there exist some p, r E Z such that c = cu2pf1 and

d = cu2'+I. SO 1 = a,-I where q - 1 is even. Thus,

Notice that, though not explicitly stated, all exponents are taken modulo (q - l) , but in

the case where (q - 1) is even, e mod (q - l) , e E Z , is even if and only if e is even.

Lemma 3.8 Zfq = 3 (mod 4) , then -1 E p, .

Proof: Let cu be a primitive element in P,. Since -1 = it follows that -1 is square

if and only if i(q - 1) is even. But, q = 3 (mod 4) , thus i(q - 1) = 1 (mod 2) , so -1 is not

square.

Corollary 3.9 Forq = 3 (mod 4) , a E El, $and only $-a E p,.

Proof: The proof follows from Lemmas 3.7 and 3.8.

Proposition 3.10 For any prime q with q = 3 (mod 4) the set

S = { X E P , ~ x E o , o ~ x $ ~ E ~ ,)

has cardinality 2 (3q - 5) .

Proof: Consider the set

CHAPTER 3. BLOCKING SETS IN PG(2 , q)

and note that Sf U (0 , -1) is the complement of S. If x E Sf, then by Corollary 3.9, for some

s , t ~ I F ; , x = - s ~ a n d x + l = t ~ . T h u s , s ~ + t ~ = l .

Let C = { (s , t) E IF: I s2 + t2 = 1) and note that (1,O) E C. For (s , t) E C, (s , t) # (1 , O),

define c = t / (s - I) , then t = cs - c and

Since s # 1. it must be that s = $& and thus t = 3. So,

We want to count the number of distinct values of x = -s2 where s = ~. and x E Sf.

Note that (so , t o) E C and (s l , t l) E C yield the same value for x if so = f s l . Now, if c = 0

then x = - (- 1) = - 1 and x 9 Sf, thus we need only consider what happens if c E IF;.

Suppose that for some e l , c2 E IF;, and & yield the same value for x = -s2. Then

either

CHAPTER 3. BLOCKING SETS IN P G (2 , q)

Thus for c E IF:, c, -c, c-l and -c-' yield the same value for x E St . However, since

0 @ S t , we see that c # k1 which implies that c # *c-l and since q is odd and c # 0, c # -c.

Thus c, -c, c-l, -c-l are all distinct. Since c E IF, \ {O,1, -I}, there are q - 3 choices for c

and so ISt/ = : (q - 3) .

Therefore

3.3.2 The Construction

Theorem 3 .11 Let q 2 7 such that q E 3 (mod 4) . There is a proper double blocking set B

in P G (2 , q) such that I B I = 39 + 1 and each line of P G (2 , q) intersects B in at most (q + 1)

points.

Our construction of the proper double blocking (39 + 1)-set has some parallels to the

construction of the proper blocking set discussed in Section 3.1. In the case of the proper

blocking set, all points in the set lay on three lines in general position, while the proper

double blocking set in our construction lies on four lines in general position. A second

similarity lies in how the points are chosen for the sets. Though the selection is more com-

plicated for double blocking sets, both constructions are based on properties of squares

in IF:. For these reasons, the construction of a proper blocking set presented below in the

C-R 3. BLOCKING SETS IN PG(2, q)

proof of Theorem 3 .11 can be considered a generalization of the construction of a projec-

tive triangle.

Proof: (Theorem 3.11) Since we require four lines in general position, for the purpose of

computation, it is natural to choose lo = [l : 0 : 01, 11 = [0 : 1 : 01, 12 = [0 : 0 : 11, and

l3 = [I : 1 : 11.

Let M be the projectivity of PG(2, q) that maps lo to 11, l1 to 12, l2 to 13, and l3 to lo. Then

and M~ = 13. The subgroup G = (M) of PGL(3, q) is isomorphic to Z4. We have ll = Mlo,

12 = M210, l3 = M310. The G-orbit of point (0 : 1 : a) E lo is

Figure 3 . 1 : A Typical Z4-Orbit

Note that if a # 0 then IG((0 : 1 : a))l = 4. If a # {-1,O) then p E G((0 : 1 : a)) lies on

exactly one of li, 0 5 i 5 3, and i f a E { - l , O) , thenp = li n l j , i # j .

Let

CHAPTER 3. BLOCKING SETS IN P G (2 , q)

where

S = { X E I F , (x ~ U , o r x + 1 ~ ~ , } ,

as in Proposition 3.10, and let

Then, let

B = B I U B v .

We call Bv the vertices of B and BI the internal points of B. Throughout this proof it

will be useful to write points in the form implied by Equation (3. l), rather than in their

left-normal form as is done elsewhere in the thesis. That is if a non-vertex point P lies on

lo itwill have the form P = (0 : 1 : a) , a E P,* \ { - I } and i f P lies on 11, itwill have the form

P = (b + 1 : 0 : - I) , b E IF,* \ (-1) . Vertices will continue to be written in left-normalized

form.

Note that if a # 0 then IG((0 : 1 : a))] = 4. If a @ {-1,O) then p E G ((0 : 1 : a)) lies on

exactly one of li, 0 < i 5 3, and if a E { - l ,O} , then p E Bv and also notice that we have

the following two orbits on vertices: ((0 : 1 : - I) , (0 : 0 : I) , (1 : 0 : O) , (1 : -1 : 0)) and

{(O : 1 : O) , (1 : 0 : - I) } .

Clearly IBvl = 6 and by Proposition 3.10 there are i (3 q - 5) points of the form (0 : 1 : a) ,

a E S , thus lBll = 4 . a(3q - 5) = 34 - 5. Since -1,O $ S the G-orbit of the point (0 : 1 : a)

cannot contain a vertex and so B I n BV = 0. Thus, IBI = IBv I + lBI 1 = 6 + (39 - 5) = 39 + 1.

Next we show that B is a proper double blocking set.

Consider a line 1 E P G 1 (2 , q) . One of the following three cases must be true about I .

Either 1 contains two vertices, 1 contains one vertex, or 1 contains no vertices.

If 1 contains two vertices and is not one of l i , i E { O , l , 2 ,3} , then 11 n BI = 2. If 1 contains

twovertices and is one of li, then 2 5 11 n BI = a(3q - 5) + 2 = :(q+ 1) < q - 1.

For the case where 1 contains a single vertex we note that by Theorem 2.22, we need

only consider one vertex for each orbit on vertices.

Consider I E P G (2 , q) such that V = (0 : 1 : 0) = 1 n lo = 1 n 12, PI = (b + 1 : 0 : -1) = 1 n 11,

and P3 = (-1 : -d : d + 1) = 1 n l3 and P I , P3 @ Bv. If PI E B then we are done. Otherwise,

ChWTER 3. BLOCKZNG SETS IN PG(2, q)

it must be that b 6 S, so b E qq and b + 1 E D,, since b $ {-1,O). Lemma 1.6 gives

d = -b/(b + 1) so that d E 0, by Lemmas 3.7 and 3.8. Thus P3 E B and 2 I 11 n BI I 3.

Consider1~PG(2,q)suchthatV=(0:1:-1)=1~1~=1n/~,P~=(b+1:0:-1)=1n1~,

and P2 = (C : -(c + 1) : 0) = 1 n 12 and PI, P2 6 Bv. If Pl E B then we are done. Otherwise,

Lemma 1.6 gives c = -(b + l) / b so that c E 0, by Lemmas 3.7 and 3.8. Thus P2 E B and

2 5 11 n Bl 1 3.

Finally, we consider the case where 1 does not contain a vertex. Let 1 be a line not

containing a vertex of B. Let P = {PO, PI, Pz, P3) where Pi = 1 n li and Pi 6 Bv. We want to

show that if two points in P are not in B then the other two points must be in B. Recall

that 11 = M10, 12 = M210, l3 = M310, so MPo E 11, M2p0 E 12 and M3po E 13. Similarly,

MPl E 12, M2Pl E l3 and M3Pl E lo.

Again, by Theorem 2.22 we need only consider the following two cases only: (i) Po, Pl

are both outside B, (ii) Po, P2 are both outside B.

Case(i):LetPo=(O:1:a)andPl=(b+l:O:-1)wherea,b~S.Thusa~~,,a+l~O,,

b ~ @ , , a n d b + l ~ D , . L e t P 2 = (c : - (c + 1) : O) , P 3 = (- 1 : - d : d + l) . UsingLemma

1.6 we find that c = -a(b + l)/(ab + a + I), and note that ab + a + 1 # 0 since ab E 0, and

- (a+ l) E p,. Wewant toshowthatc~ Swhichis t r u e i f c ~ D,orc+l E q,. I f c ~ 0,

then we are done. Otherwise, c E p,, and -c = a(b+l)/(ab+a+l) E D,. Since a(b+l) E p,,
by Lemma 3.7, l/(ab + a + 1) E P,. But c + 1 = -a(b + l)/(ab + a + 1) + 1 = l/(ab + a + 1).

Therefore c + 1 E @, and so c E S which implies P2 E B.

Using Lemma 1.6 again, we find d = -b/[(b + l)(a + I)], but b E p, and b + l,a + 1 E 0,

gives b/[(b + l)(a + l)] E p, by Lemma 3.7 and thus d E D,. Therefore, d E S and P3 E B.

Case (ii): Let Po = (0 : 1 : a), P2 = (c : -(c + 1) : 0) where a,c 6 S . Thus a E g,, a + 1 E U,,

c ~ p , , a n d c + l ~ ~ , . L e t P l = (b + l : O : - 1) , a n d P 3 = (- 1 : - d : d + l) . Wewant

to show that PI, P3 E B. Using Lemma 1.6, we find b = -(c + ac + a)/[a(c + l)] and thus

b + 1 = -c/[a(c + I)] but c/[a(c + I)] E 0, by Lemma 3.7, thus b + 1 E @, by Lemma 3.8.

Therefore, b E S and P2 E B.

Using Lemma 1.6 again, we find d = -(c + ac + a)/[c(a + I)]. Interchanging a and c, the

argument is the same as in the previous paragraph.

CHAPTER 3. BLOCKING SETS IN PG(2, q)

With less effort we get the following slightly weaker result.

Theorem 3.12 Let q 2 7 and q prime. There is a proper double blocking set in PG(2, q) of

size3q+ 2.

Proof: Letlo = [l : 0 :0] , l1 = [O : 1 :0], l2 = [O : 0 : 11 a n d l e t G 5 PGL(3,q) bethegroupof

3 x 3 permutation matrices; that is G S3. Also, refer to the points (1 : 0 : O) , (0 : 1 : O),

(0 : 0 : 1) as vertices. Let T denote the set of 3q points on the lines lo, 11, 12. Note that G is

an automorphism group of T. Now take

where U = G((0 : 1 : 2)) and V = [G((l : 2 : 3)) U G((1 : -2 : -2))l \ ((-2 : -2 : 1)). Notice

that IUI = 6 and IVI = 6 + 3 - 1 = 8 and IBJ = 3q + 2. We begin by considering the set

B' = B U ((-2 : -2 : 1)). and later it will be shown that the point (-2 : -2 : 1) can be safely

removed from the set. Notice that G is an automorphism group of B'.

By Theorem 3.4, T is a double blocking set, so we need only consider those points that

pass through one or more of the points in U. For any line 1 E PG1(2, q) such that 11 n UI > 0,

there are three cases to consider; the case where 1 passes through exactly one point in U

and no vertex; the case where 1 passes through a vertex and a point in U; and the case

where 1 passes through at least 2 points in U.

Case (i): If 1 passes through exactly one point P in U and no vertex, then (I n BI = 2

since it must intersect the remaining two lines (those lines that do not contain P) at two

distinct points.

Case (ii): There are six lines that pass through one point in U and a vertex and these

six lines all lie in the same G-orbit (G([2 : 0 : -11) in Table 3.1). Since B' is the union of

G-orbits, by Theorem 2.22, we need only consider the size of the intersection of one line

of the six lines. From Table 3.1 we see that 11 n B'I > 2 for 1 E G([2 : 0 : -11). Note also that

G((-2 : -2 : 1)) n [2 : 0 : -11 = 0 and (1 : 2 : 3) @ [2 : 0 : 11 so 11 n B'J 5 q - 1 since q > 7.

Case (iii): There are (;) = 15 lines that pass through at least two points in U. Three of

these lines are the lo, l1 and l2 and since T n V = 0, we have that lli n BI = q - 1 > 2 since

q > 7, for i E {O,1, 2). The remaining 12 lines lie in the three G-orbits shown in Table 3.1.

From Table 3.1 we see that for 1 satisfymg (I n UI 2 2, 11 n B' I 2 2. Also note that G((l : -2 :

CHAPTER 3. BLOCKING SETS IN PG(2, q)

Case (ii) G(I2:O:-11)

Case (iii) G([l: 1:-21)

Table 3.1: Orbits On Lines and Repair Points

-2)) n [l : 1 : -21 = 0, G((1 : 2 : 3)) n [-2 : 1 : -21 = 0, and G((1 : -2 : -2)) n [4 : 1 : -21 = 0. SO

for 1 E PG1(2,q) such that (In U (2, 2 5 11 n B'I I q - 1.

Finally, it is clear that all the points in G((l : 2 : 3)) are require to repair the lines

in G([4 : 1 : -2]), but this is not true of the points of G((1 : -2 : -2)). It turns out that

IG((1 : -2 : -2)) n [-2 : 1 : -211 = 2 and so only 2 points in the orbit need be chosen in order

repair the lines in G([-2 : 1 : -21). Thus we remove the point (-2 : -2 : 1) from the set B'

to obtain B.

Chapter 4

Codes and

In the Introduction of Chapter 1.1, a relationship between caps and codes was suggested,

motivating the desire to find caps in finite projective geometries. In Section 4.2, a known

relationship between caps in PG(r - 1 , q) and codes with distance at least 4 is explicitly

shown. It turns out that the larger the cap is, the better the code, and so ultimately,

we want to find maximum caps in a given projective geometry. In Section 4.3, a brief

survey of known caps is given. In Section 4.4, the method of prescribed automorphisms

is applied directly to the problem of finding large caps in PG(r - 1, q). Section 4.5 shows

an algorithm written by the author to solve the resulting 0- 1 integer linear programming

(LP) problem. Finally, Section 4.6 gives the computational results found by the author.

We begin with the coding theory background presented in Section 4.1.

4.1 Coding Theory Background

The following required definitions can be found in any text that offers an introduction to

coding theory including [MS77].

Definition 4.1 A [n, k] linear code over I F , , or [n, k],-code, C , is a k-dimensional linear

subspace of I F ; . Ifq = 2 then C is called a binary linear code or an [n, k]-code. The elements

of C are called codewords, and the block length of C is n. We call k the dimension of C,

CHAPTER 4. CODES AND CAPS

and note that such a code has q"odewords.

Throughout this chapter, let C denote an [n, k],-code. Note again that C is a linear code

as some of the following definitions and theorems may not apply to nonlinear codes.

Definition 4.2 The rate or efficiency of C is k/n and is denoted by R(C).

The larger the value of R(C) is, the more "efficient" the code is considered to be. The

efficiency of a code measures the relationship between the dimension of the code, and

the length of a codeword. If the dimension k is considered to represent the amount of

information that can be sent in a codeword, then the remaining (n - k) elements can be

considered to be the elements that provide the reliability, or error-correcting ability of the

code. Clearly, these two desirable traits of a code are competing; that is, for a fixed code

length n, one can only be increased at the expense of the other. So while a high efficiency

is desirable, it comes a t the cost of reliability; a code with efficiency equal to 1 has no

error-correcting ability. The codes studied in this chapter have fixed error-correcting

abilities, but attempt to improve efficiency by increasing both n and k. These codes are

discussed further in Section 4.2.

Definition 4.3 The Hamming weight of a vector x = (xl, x2, . . . , x,) E IF; is the number of

nonzero xi, 1 5 i < n, and is denoted by wt(x).

Definition 4.4 The Hamming distance between two vectors x = (xl, 22,. . . , x,) and y =

(yl, y2, . . . , y,) E IF;, denoted by dist(x, y), is the number of places in which x and y d~ffec

that is, dist(x, y) = wt(x - y).

Definition 4.5 The minimum distance of C is

min dist(x, y) = min wt(x - y)
x,YEC,X#Y X,UEC,X#Y

and is denoted by d.

Sometimes C is called an [n, k , dlq-code.

The following theorem and proof is taken directly from [MS77, pg. 101.

CHAPTER 4. CODES AND CAPS

@ Denotes a codeword.

Denotes a noncodeword.

Figure 4.1: Codes With Minimum Distance d.

Theorem 4.6 Lett E Z be nonnegative. An [n, k],-code with minimum distanced can correct

t errorsifd=2t+l andt - 1 errors ifd=2t.

Proof: Suppose d = 2t + 1 for some positive integer t. A ball of radius r and centre x is the

set of vectors y E IF," such that dist(x, y) 5 r. Consider the set of balls with centre in C and

r = t. If u, v E C are the centres of two such balls and x E IF," such that dist(x, u) 5 t then by

the triangle inequality, dist(x, v) 2 t + 1, so that the balls are disjoint. So if codeword x is

transmitted and vector y is received and dist(x, y) 5 t , y will be closest to x. If dist(x, y) > t

then y may not be closest to x. In other words, a code with minimum distance d = 2t + 1
can detect and correct up to t = (d - 1)/2 errors. Thus for d odd, the [n, k],-code can correct

t errors. (See Figure 4. la.)

If d = 2t is even, by the same argument, at least one pair of balls of radius t centered

a t u and v , where u, v E C will overlap at one point, so that C can detect up to t errors, but

can only correct t - 1 errors. (See Figure 4. lb.)

Codes are often measured by their error-correcting ability; given a block length n, and

a dimension k, what is the best error correcting ability a code can have. This is known

as the packing problem; what is the largest possible radius t of disjoint balls centered a t

codewords. As shown in Theorem 4.6 this is the error-correcting ability of the code. There

is a second common way of measuring codes that looks at the opposite problem.

Definition 4.7 The covering radius of C , denoted by p, is the smallest integer r such that

CHAPTER 4. CODES AND CAPS

for every v E P:, dist(x, v) 5 r for some x E C

Geometrically, the covering radius can be considered as the smallest integer r such

that every vector in P: lies in at least one ball of radius r centered at a codeword. In

this way, the balls of radius r jointly cover the vector space IF;. The covering radius

is used to approach problems such as data compression and information hiding as the

packing problem is used to approach error correcting. The following Proposition shows a

relationship between the covering radius and the minimum distance of a code.

Proposition 4.8 The covering radius p of a code with minimum distance d satisfis d 5

2p+ 1.

Proof: Let cl, cz E C such that dist(cl, CZ) = d and let B, denote the ball of radius p around

the codeword c. Consider v E P: such that dist(cl, v) + dist(v, cz) = d, and suppose v does

not lie in either B,, nor in B,,, then there exists CQ E C such that dist(v, c3) 5 p. So,

dist(c3, v) < dist(v, cl), thus dist(c2, c3) 5 dist(c2, v) + dist(v, c3) < dist(cz, v) + dist(cl, v) = d,

a contradiction. So, v lies in at least one of B,, or B,, . Now, suppose d > 2p + 1, then there

exists u E P: such that dist(ci, u) > p + 1, for i = 1,2, and dist(cl, u) + dist(u,c2) = d, but

then u would lie outside of both B,, and B,, . So d I 2p + 1.

If d = 2p + 1 in Proposition 4.8, then C is called a perfect code. A perfect code has

covering radius equal to its error-correcting ability, so it solves both problems optimally.

While these are desirable codes, the number of such codes is extremely small; the family

of Hamming codes [s, 5 - rJ], for integer r 2 2, the binary Golay code [23,12, 712 and

the ternary Golay code [ll, 6, 513 are the only non-trivial examples. Trivial perfect codes

include [n, n, 11, codes and the repetition code [n, 1, nI2 when n is odd.

Definition 4.9 A quasi-perfect code C is a code where d = 2p.

In Section 4.2 it will be shown that the codes searched for in this chapter can be

extended into either perfect codes, or more commonly, quasi-perfect codes.

Definition 4.10 Let G be a k x n matrix over P,, then G is called a generator matrix for C

if and only if the rows of G form a basis for C.

CHAPTER 4. CODES AND CAPS

Definition 4.11 Let H be an (n - k) x n matrix over F, with rank n - k, then H is a called

a parity check matrix for C i f and only iffor every c E C, H C ~ = 0.

Definition 4.12 Let C be a code with generator matrix G and parity check matrix H. The

dual of C , denoted CL, is the code with generator matrix H and parity check matrix G.

Note that

C ~ = { U E P ; [u . v = O f o r a l l v ~ C) ,

and CL is an [n, n - k],-code.

The following theorem can be found in [MS77, pg. 331. As an exercise we present a

more explicit proof.

Theorem 4.13 Let H be a parity check matrix for a linear code C. Then C has minimum

distance d if and only if any set of d - 1 columns of H is linearly independent, and there is

at least one set of d columns that is linearly dependent.

Proof: Let n be the block length of C. Suppose C has minimum distance d, then there

exists some codeword x = (x l , x2,. . . ,x,) E C such that Hx = 0 and wt (x) = d. Let

H = [hllhzl ...I h,] where hi E then Hx = hlxl + h2x2 + . . . + hnxn = 0. Since x has

weight d there are d nonzero entries in x , say xi l , x iz , . . . ,xid and the remaining entries

are zero. Then Hx = hi,xil + hi2xi2 + . . . + hidxid = 0, SO that the set {hi l , h iz , . . . ,hid) is

a set of d linearly dependent columns of H. Now, suppose there exists a set of d - 1

linearly dependent columns in H , say {hj,, hjz , . . . , hj(d- l)) , then for some cl, c2, . . . , cd-1 not

all zero, we have cl hj , + c2 hjz + . . . + cd- 1 hjd- = 0 , SO that if y = yl y2 . . . yn with y j k = ck for

1 5 k I d - 1, and all other entries 0, then y is a codeword with w t (y) < d, a contradiction.

4.2 A Relationship Between Caps and Codes

Recall from Definition 1.2 1 that a cap is a set of points B in PG(n, q) such that no three

points of B are collinear and an m-cap is a cap with m points. Also recall from Definition

1.22 that a complete cap is a cap which is not properly contained within any other cap

CHAPTER 4. CODES AND CAPS

in PG(n, q), and a maximum cap is a cap of maximum size in PG(n, q) . The relationship

between caps and linear codes is discussed in this section.

Let B = {P(h l) , P(h2), . . . , P(h,)) be an n-cap with n 2 4 in PG(r-1, q), then, by Theorem

4.13, the matrix H with columns {h l , h2, . . . , h,) is a parity check matrix for an [n, n - r] ,

code C with distance d > 4. Such a code has qn-' codewords and efficiency R(C) =

(n - r) / n . Since r is fixed by the choice of PG(r - 1, q), increasing n results in a more

efficient code with a larger number of codewords. So it is desirable to try to maximize the

size of the cap B.

Theorem 4.14 Let H = {h l , ha, . . . , h,) be the columns of aparity check matrix of an [n, n -

r] , code C with d 2 4. Then B = {P(h l) , P(hz) , . . . , P(h,)) is a complete cap in PG(r - 1 , q) if

and only ijC has covering radius p = 2.

Proof: Suppose p = 2. Let y E IF;. Since H has rank n - k , y = HzT for some x E IF;. Now,

since p = 2, there exists z E IF; such that (x - z) E C and wt(z) 5 2. So, H(x - z) ~ = 0

which implies that y = H Z ~ and since wt(z) 5 2 it follows that H is a complete cap. The

reverse argument shows us that if H is a complete cap, then p 5 2, so it only remains to

show that equality holds. By Proposition 4.8, d 5 2p + 1, thus p > 2.

By Proposition 4.8, it is clear that if p = 2 then H forms a parity check matrix of a

perfect or quasi-perfect code.

It should be noted that any cap can be extended to a complete cap in polynomial time.

The simplest algorithm to do so would be to find a point in PG(n, q) that does not lie on a

line that intersects the cap at exactly two points and add that point to the cap. If the new

set is not a complete cap, then the process should be repeated.

4.3 Known Maximum Caps

In the previous section, it was shown that complete caps form the parity check matrix

of perfect or quasi-perfect codes and that the larger the cap is, the better the code is

CHAPTER 4. CODES AND CAPS

considered to be, so it is desirable to find caps of maximum size. However, finding such

maximum caps in PG(n, q) is still an open problem for all but a very restricted number

of finite projective geometries (see Theorem 4.15, Theorem 4.19, Theorem 4.21, and the

comments following Theorem 4.21) . This section briefly summarizes the relevant in-

formation of two survey papers, one by J. Bierbrauer [Bie03] and the second by J.W.P.

Hirschfeld and L. Storme [HSOl], and provides some proofs and examples. For simplicity

of notation, let rnZ(n, k) denote the maximum size of a complete cap in PG(n, k) .

Theorem 4.15 [Bos471The muximum size of a cap in PG(N, 2) is rnz(N, 2) = 2 N .

Proof: Let H be a set of points in PG(N, 2) constructed by removing a hyperplane from

the set of all points. By Theorem 1.12 a line in PG(N, 2) is either contained completely

in the hyperplane, or intersects the hyperplane a t exactly one point. Since every line has

three points, H is a cap. By Theorem 1.8, the number of points contained in a hyperplane

in PG(N, 2) is [(Nzi+l I * = (2 N - 1) points so that /HI = [(2Nt1 - 1) - (g N - I)] = a N .

Now, suppose there exists a cap H' such that lH'I 2 2 N + 1. Choose a point y E H',

then for every x E H', there is a point x + y @ H' and if x # x', then x + y # x' + y . Hence

we can count 2 (2 N) + 1 = 2N+1 + 1 distinct points which is more than the total number of

points in PG(N, 2) .

The proof of Theorem 4.15 suggests a construction for a complete cap in PG(N,2)

and in fact, as Theorem 4.17 will show, the only complete caps in PG(N, 2) are those

constructed by removing a hyperplane from the set of points in PG(N, 2) .

Lemma 4.16 If C is a cap of size 2N in PG(N, 2), then C has no tangent line. That is, no

line intersects C exactly once.

Proof: Suppose there exists a line 1 such that 1 intersect C at exactly one point, call that

point y. By Corollary 1.9 we know that PG(N,2) has 2N+1 - 1 points and each line has

3 points. For each x E C such that x # y, there exists a point x + y not in C, since C is

a cap, and not on I , since x is not on 1. Counting, we get 2(2N - 1) + 3 = 2N+1 + 1 where

the additional 3 points are the points on 1. This is a contradiction, since there are only

2N+1 - 1 points in PG(N, 2).

CHAPTER 4. CODES AND CAPS

Theorem 4.17 [Seg59] If C is a cap of size 2N in PG(N, 2), then the complement of C , E, is
a hyperplane.

Proof: B y L e m m a 4 . 1 6 , i f x , y ~ ~ t h e n x + ~ ~ ~ . ~ l s o i f x ~ ~ t h e n c x ~ ~ o r c x = ~ f o r

c E P2. Thus forms a subspace of PG(N, 2) of size 2N+1 - 1 - 2N = 2N - 1. Since the only

subspaces of this size are hyperplanes, it must be that is a hyperplane.

The following example shows that not all complete caps need be maximum.

0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 0

Example 4.18 Let H = o 1 o o 1 1 o o 1 be a parity check matrix for a

0 0 1 0 1 0 1 0 1

0 0 0 1 1 0 0 1 1 i 1
[9,4]2 code and let H' be the set of columns of H. Since every nonzero vector in IF; which

is not in H' can be written as a linear combination of exactly two elements of H i , H' forms

a complete cap in PG(4,2). By Theorem 4.15, H' is not maximum.

The proof for the following theorem can be found in [Hir98, pg. 1771.

Theorem 4.19 The maximum size of a cap in PG(2, q) is m2(2, q) = q + 1 i f q is odd, and

m2(2, q) = q + 2 i f q is even.

Example 4.20 Let H be the set of points (xo : xl : x2) in PG(2, q) that satisfy xi - xlx2 = 0.

The set H has q + 1 points, no three of which are collinear. If q is odd, then H is a complete

cap. If q is even the set of tangents of H intersect at exactly one point N , thus H u { N) is

a complete cap.

The previous example shows a construction for maximum caps in PG(2, q), and in fact

the same construction can be made using the rational points of any conic. It happens that

for q odd, any maximum cap must be the set of rational points of a conic lSeg54, Seg551.

CHAPTER 4. CODES AND CAPS

For q even, however, it is known that not all maximum caps are the union of a conic and

the intersection of the tangent lines of the conic.

Theorem 4.21 lBos47, q oddlQvi52, q even1 The maximum size of a complete cap in PG(3, q)

forq> 3 ismz(3,q) = q 2 + l .

As in the case for PG(2, q) , there is a geometrical construction for maximum caps in

PG(3, q) . The rational points of an elliptic quadric form a maximum cap in PG(3, q) . Like

the case with PG(2,q), not all maximum caps in PG(3,q) are formed in this way. For

example, in PG(3,22e+1), e 2 1, there is another construction known as the Tits ovoid

[Tit62].

G. Pellegrino offers a geometric proof for m2 (4 ,3) = 20 [Pe170]. The Hill cap, named

after its discoverer R. Hill, is the largest cap in PG(5,3) and has size 56 [Hi173], thus,

m2(5,3) = 56. J . Bierbrauer and Y. Edel were able to prove that m2(4,4) = 41 with the aid

of a computer program [EB99]. It is expected that any further discoveries will be largely

based on computational effort.

Though no other values of m2(n,q) are known, their upper bounds are known. The

following two theorems are found in [Bie03].

Theorem 4.22 Let n 2 3 and q > 2 . Then

Theorem 4.23 For n 2 3 and q > 3,

For certain n and q, better upper bounds are known, and the interested reader is

referred to [HSOl] for a complete listing.

4.4 Prescribed Automorphisms and Maximum Caps

In Chapter 2, the foundations for using prescribed automorphisms to help find interest-

ing point sets in PG(n, q), were introduced. In this section, these foundations are applied

CHAPTER 4. CODES AND CAPS

directly to the problem of finding caps in PG(n, q). It should be noted that a similar ap-

proach was used in [Bra051 to find the generator matrix for linear codes with a prescribed

minimum distance.

Let PI, . . . , Pt denote the t = (qn+l - 1)/(q - 1) distinct points in PG(n, q). The problem of

finding maximum caps in PG(n, q) is equivalent to the following 0- 1 integer LP problem:

subject to, for each line lj in PG(n, q)

where xi E {0,1) for all i and

1 if line lj is incident with Pi,
Cji =

0 otherwise.

The point Pi is in the set B if and only if xi = 1.

Such a problem becomes intractable very quickly. For example, PG(5,3) has 364

points and 1101 1 lines, so the total number of possible solutions is 2364, each of which

must be tested against the 1101 1 constraints. The method of prescribed automorphisms

can reduce the problem size dramatically; for example, the cyclic group generated by the

element

reduces the original problem with 364 points and 1101 1 lines to 15 orbits on points and

431 orbits on lines, but we may lose the ability to find an optimal solution to the original

problem, as was shown in Example 2.26, or even to know that an optimal solution has

been found. Ideally, the goal is to find a group that will create a small number of orbits,

but will also be an automorphism of a large cap, and thus the new 0- 1 integer LP problem

will still produce a good solution for the original problem.

CHAPTER 4. CODES AND CAPS

In Section 2.5, strategies for choosing groups were discussed. Since little is known

about the structure of maximum caps in PG(n, q) the strategy used for this problem was

to use cyclic subgroups of PGL(n + 1,q). Using cyclic subgroups can often be a good

place to start since there are relatively few cyclic subgroups up to conjugacy, and since

any 'good' group will have cyclic subgroups. As shown in Section 2.4, once the group is

chosen and applied to the original 0- 1 integer LP problem, a new 0- 1 integer LP problem

is found.

Let wl, . . . , wk denote the k distinct G-orbits of PGo(n, q) for some G 5 PGL(n + 1, q), and

let R1,. . . , OK denote the K distinct G-orbits of PGl(n, q).

where xi E {0,1), and cji = 11 n wiI, for any Line 1 E aj

Example 4.24 Theorem 4.15 states that PG(3,2) has a maximum cap size of 8. How-

1 1 0

1 0 1
ever, consider g =

1 0 0

9;g2 =

produce:

. The cyclic group generated by g is given by (g) =
1
O I

Maximize

1 . This group

subject to

CHAPTER 4. CODES AND CAPS

where xi E (0, l), for all i.

An optimal solution to this problem is associated with the cap

which is clearly not maximum, but is complete. Also, it should be noted that this is the

only cyclic subgroup (up to conjugacy) that generates B.

4.5 Solving the Integer Linear Programming Problem

Though the method of prescribed automorphisms may significantly reduce the size of

the original 0-1 integer LP problem, the new problem must still be solved. It is known

that the 0- 1 integer LP problem is NP-complete ([GJ79], Page 245), so there is no known

polynomial-time algorithm to solve it. Instead, we look to an exponentially-timed algo-

rithm and attempt to improve its efficiency by using knowledge of the current problem

being solved and adapting the algorithm accordingly.

The exponential-time algorithm used here is a backtracking algorithm, and a method

known as pruning is used in order to improve the efficiency of the backtracking algorithm.

Before we describe what pruning is and how it is specifically applied to this problem, we

give a brief overview of a general backtracking algorithm.

Let P be a 0- 1 integer LP problem. Recall from Definition 2.23 that a feasible solution

is a 0-1 vector such that all the constraints of P are satisfied. Let X = (xo,xl,. . . ,x,) be a

not necessarily feasible solution of P. A backtracking algorithm is a recursive algorithm

CHAPTER 4. CODES AND CAPS

Search Order

Figure 4.2: An Example Search Tree for a Backtracking Algorithm.

that performs a depth-first search of a binary tree where the ith level of the tree represents

the ith variable x,. Once a solution has been processed, the algorithm backtracks to find

the next solution (Figure 4.2). Each recursive call of the backtracking algorithm takes

the problem P, the current solution state X, and the current depth of the search tree 1

as parameters, and processes the solution X when x1 = 0 and when xl = 1. If 1 = n + 1,

processing X means computing the objective function value of X and comparing it to

the best solution so far. If 1 < n + 1 then processing X means recursively calling the

backtracking algorithm. The backtracking algorithm visits every possible solution, so if

the problem has n variables and m constraints, the algorithm will generate 2" solutions

and will test every solution on m constraints and so has a complexity of order m2". Since

every possible solution is visited, the algorithm is guaranteed to find an optimal solution

if one exists. Recall however, that in the context of this thesis, this is a reduced problem,

and the backtracking algorithm will not guarantee a solution to the original problem.

Very important to the 0- 1 ILP problem and by extension, the backtracking algorithm,

is the concept of feasibility. A standard backtracking algorithm tests the feasibility of the

current solution when x1 = 1 at every level of recursion. If X is a feasible solution then the

algorithm will continue normally, but if X is not a feasible solution, then the algorithm

will need to act accordingly. In the case where the inequalities are I, as they are in

the caps problem, the algorithm would stop searching that branch of the search tree;
- that is, if X = [?fl,. . . ,x1,0,. . . ,0] is not a feasible solution, the algorithm will not consider

any solution where X = [?fl, . . . , zl, . . . , x,]. By testing for feasibilty early, that is before

CHAPTER 4. CODES AND CAPS

Algorithm: Backtrack(P, X, 1)

global optP, optS

i f l = n + l
curP = CL1 wixi;
if (curP>optP) then

optPtcurP;
o p t s t X;

else
2 1 t 1
L = Feasibility(xJ
if(Prune(xl)>optP) Backtrack(P, X, xl .Right)

21 + 0
DancingLinks(L)
if(Prune(x1) >optP) Backtrack(P, X, xl . Right)

Figure 4.3: Backtracking Algorithm with Pruning

1 = n, the number of complete solutions visited may be reduced so that the algorithm is no

longer visiting all 2" solutions. The feasibility testing in the backtracking algorithm used

in the algorithm in this thesis differs slightly from the standard method, in that rather

than testing a current solution it takes advantage of an algorithm developed by Knuth

[KnuOO] called Dancing Links, and tests future solutions so that any solution visited is a

feasible solution. This method for testing feasibility is discussed in further detail below.

Figure 4.3 gives a brief overview of the algorithm used in this thesis. It should be noted

that initially, X = 0, optS = 0, and optP= 0.

There are three subprocesses being performed in the backtracking algorithm; they are

Feasibility(xl) , DancingLinks(L) and Prune(xl). Before discussing these three sub processes

in detail, we look at what happens when the terminal case 1 = n + 1 is reached. At

this stage, the current solution X is compared to the best known solution so far. If the

objective function value for the current solution curP is better than optP, the objective

function value for the best solution so far, then the best known solution opts is replaced

by the current solution X.

CNAPTER 4. CODES AND CAPS

a) A doubly linked list.

b) Removing Node B from the doubly linked list.

c) Removing Node C from the doubly linked list

d) A damaged linked list: Recovering Node B before Node C

Note that travelling right, C is in the linked list though it has not been recovered,
and travelling left, B is not in thelinked list though it has been recovered.

Figure 4.4: A Linked List

Before describing the remaining subprocesses, an overview of the Dancing Links Al-

gorithm [KnuOO] is given. The first part, Remove, is performed during the Feasibility(xl)

subprocess, and the second part, Recovery, is performed during the DancingLinks(L) sub-

process. The Dancing Links Algorithm allows for an element stored in a doubly linked list

to be removed from the list and later recovered in its original position. For this reason,

each X-coordinate is stored in a structure known as a node. A node in a doubly linked

list points to the node before it in the list (using the pointer Left), and the node after (using

the pointer Right) (see Figure 4.4a). Removing a node from a doubly linked list is done in

the following manner.

CHAPTER 4. CODES AND CAPS

While the node has been removed from the doubly linked list, meaning that it cannot

be reached from any node in the list, it still points to nodes in the list, indicating its

original position. To recover the removed node, the following procedure is applied;

Together, these two procedures, Remove and Recovery, form the Dancing Links Algo-

rithm. It should be noted that if more than one node is removed before recovery takes

place, then nodes should be recovered in the reverse order of removal, in order to ensure

the integrity of the linked list (see Figure 4.4d).

The simple recovery process used in the Dancing Links Algorithm makes it ideal for

testing the feasibility of all vectors below the current vector in the search tree, and not just

the current vector as is normally done in a backtracking algorithm. If xl is set to 1, any xi,

i > 1 that can no longer be set to 1 and be part of a feasible solution is then considered to

be 0 and is removed from the linked list so that it will not be visited by the backtracking

algorithm. Any xi considered for removal, but not removed is called live. Feasibility(x1)

returns a stacked list L which contains the location of all removed variables. When xl is

set to 0, the DancingLinks(L) subprocess recovers the removed xi's using the Recovery

algorithm. Since L is a stacked list, the xi's are returned to linked list in the reverse

order of removal, thus ensuring the integrity of the linked list. It is important to note that

this method of feasibility testing means that any solution X = [xl , . . . , xl ,0. . .O] visited is a

feasible solution which is not necessarily true when standard feasibility testing is used.

The final subprocess is the bounding function, Prune(xl). A bounding function assigns

a value b to a partial solution Xl = [al,. . . , all such that the objective function value of

the best solution containing Xl, Xb = [al,. . . ,all xl+l,. . . , xn] is less than or equal to b. If

b is less than or equal to the objective function value of the best known solution so far,

then a better solution does not exist in the subtree rooted at the partial solution Xl and

no further testing in that subtree need be done and so the search tree is 'pruned' of this

subtree, reducing the number of complete solutions visited.

The algorithm in this thesis implements one of two bounding functions. The first is

called the Standard Bounding Function. It takes a partial solution and sets all remaining

CHAPTER 4. CODES AND CAPS

live X-coordinates to 1 without any further feasibility testing. The objective function value

of this solution becomes the bound b. It is not possible for any solution containing the

current partial solution to be better than this bound.

The second bounding function, called the Modified Bounding Function, takes advan-

tage of the structure of the problem for caps, using the fact that the right-hand-side of

every constraint is less than or equal to 2 to store and easily retrieve information for

computing the bound. The Modified Bounding Function chooses a single constraint and

finds the best objective function value based on this constraint and the 0-1 constraints.

This objective function value becomes the bound. For each constraint, three arrays are

created C2, C1 and Co. The array Ci, i E {O,1, 2) contains the variables xj such that the

coefficient of xj in the constraint is i . Each array is sorted in descending order according

to the objective function coefficient of xj so that a greedy algorithm can be applied effi-

ciently. Let oi be the objective function coefficient of the variable xi. Let xk be the first

live variable in the array C2 and let b2 = ok. Let xkl and xk2 be the first two (respectively)

live variables in C1, and let bP1 = okl + 0 k 2 and bll = o k l . Let bo be the sum of the objective

function coefficients of all live variables in Co. Finally, let P = ,& otxt be the objective

function value of the current partial solution. In order to compute the bound b for the

Modified Bounding Function given constraint Lj, we consider the slack sj = 2 - ELl cjtxt

associatedwithLj. Ifsl =2 thenb= P+max(b2+bo, b21+bO),if~1 = l thenb=P+bl l+bo ,

a n d i f s =Othenb= P + b o .

Example 4.25 To demonstrate the two different bounding functions, consider the follow-

ing linear programming problem.

Maximize

IBI = 4x1 + 2x2 + 2x3 + x4,

subject to

CHAPTER 4. CODES AND CAPS

xi E {O,l) for all i.

Suppose the partial solution (x l , x2) = (1 , O) is being considered and that the cur-

rent best known solution is (1, l , 0,O) which has an objective function value of 6. Using

the standard bounding function, the objective function value for the solution (1,0,1,1) is

computed and has a value of 7. Using the modified bounding function and the constraint

Cl , the objective function value for the solution (1,0,1,O) is computed and has a value of

6. The modified bounding function will prune this branch of the tree, and not look at any

more solutions extending the partial solution xl = 1 and 2 2 = 0 since the bounding func-

tion shows that no solution can have a better result than the current best. The standard

bounding function will continue to the next level of the tree and test the partial solution

X I = 1,x2 = O and23 = 1.

Notice that the modified bounding function will never return a worse bound than the

standard bounding function.

4.6 Results

The Algorithm described in Section 4.5 was implemented in the programming language

C , in a program called ipv6.c which can be found in Appendix B. There were two main

reasons for writing a C program to solve the Integer Programming Problem associated with

finding caps in PG(n, q). The first was to take advantage of the fact that we are looking a t

a problem where the right-hand-side of the constraints is always 2, and thus implement

the modified bounding function in an efficient manner. The second reason was to create

a program that would not be constrained by licensing restrictions. That is, we wanted a

program that was easily ported to any accessible computer.

The program ipv6.c has the added benefit of being able to consider numerous problem

instances for a given PG(n, q). That is, multiple problems can be submitted to the program

and the best known solution will be used over all problems, not just the one it is found in.

This ability also allows the program to run in parallel. By writing the best known solution

found, as soon as it is found, to a file outside of the program, other programs can access

the file, and update their best known solution accordingly.

Table 4.1 shows the running times for a set of integer programming problems for

CEtAPTER 4. CODES AND CAPS

PG(3,2), PG(3,3), PG(4,2), and PG(5,2). The problems were run twice using ipv6.c, once

with the standard bound, and once with the modified bound, and again using the software

package CPLEX.

I Problem 1 CPLEX I ipv6.c -

Table 4.1: CPLEX and ipv6.c Timings (in seconds)

Instance I Time I Standard Bound (Modified Bound (Problem Instances

Table 4.2: Large caps in small projective spaces with q prime

ipv6.c -

PG(3,2) 1 0.05s I 0.01s

Table 4.2 shows the size of largest known caps [HSOl]. The method of prescribed

automorphisms and ipv6.c were applied in attempt to find large caps in PG(4,5), PG(4,7),

PG(5,5), PG(6,3) and PG(6,5), running each for an average of approximately two weeks.

The entries indicate known maximum caps and the * entries indicate instances where

we were able to find caps of size equal to the largest known size.

Number of

0.03s 13

Chapter 5

Conclusion and Future Works

5.1 Conclusion

The method of prescribed automorphisms, discussed in Chapter 2, and applied to the

problem of finding small double blocking sets in PG(2, q) (Chapter 3), and large caps

in PG(n, q) (Chapter 4), has been used successfully in a number of problems including

finding and classifying designs [Ker99], error -correcting codes [Bra05, BW041, and finding

(m,r)-arcs in PG(2,q) [BW05]. Note that a cap of size m in PG(2,q) is an (m,2)-arc.

For more information, a twenty-three page survey of the method and its applications,

including the classification of Latin squares and 1-factorizations of complete graphs, can

be found in [K O O ~ , Chapter 91.

For both problems considered in this thesis, that of double blocking sets in PG(2, q)

and caps in PG(n, q) , the method of prescribed automorphisms was used in order to

reduce their problem sizes and, consequently, significantly reduce the computing time as

compared to solving the original problem, in an effort to find new results. In the case

of double blocking sets in PG(2, q), the method was used to successfully find and prove

a new family of proper double blocking sets of size 3q + 1 for the case where q is prime

and q = 3 (mod 4) (Theorem 3.11). Previously, no families of size less than or equal to

3q + 1 were known for proper double blocking sets. We were also able to use the method

of prescribed automorphisms to prove the existence of a family of proper double blocking

CHAPTER 5. CONCLUSION AND FUTURE WORKS

sets of size 3q+ 2 for any prime q > 7 (Theorem 3.12). Though this result is slightly weaker,

its proof and construction is less complicated than that for Theorem 3.11.

In the case of caps, we were able to apply the method of prescribed automorphisms to

match the best known results for several large caps (Section 4.6). The implementation of

an integer linear programming solver written by the author allowed us to take advantage

of the specific structure of the ILP associated with finding large caps, and allowed us to

run the problem on multiple computers without the need of a license a s is required by

software programs such as CPLEX (Section 4.5).

5.2 Future Works

In the future, we would like to extend the construction of Theorem 3.11 to the case of q

prime satisijing q = 1 (mod 4). Though it is expected that the proper double blocking set

will be larger than 3q + 1, we hope that the construction itself will be similar. We would

also like to extend the results to finding proper t-fold blocking sets on t+2 lines fort > 2 by

applying the method of prescribed automorphisms. For example, using the same strategy

for constructing the ILP problem for proper double blocking sets, we can search for 3-fold

blocking sets on 5 lines by considering subgroups of the symmetric group S5.

We would like to continue the study of large caps in PG(n, q) and reduce the amount of

redundancy in testing cyclic subgroups by finding a way to recognize whether or not two

cyclic subgroups in PGL(n + 1, q) are in the same conjugacy class much as we can recog-

nize that two elements of PGL(n+ 1, q) are in the same conjugacy class by considering their

Smith Normal forms over the ring of polynomials over IF, as mentioned in Section 2.5.

Appendix A

Magma Code

The following is the Magma code and results for Examples 2.24, 2.25 and 2.26.

> /*the following is an example of a 0-1 linear programming problem

> this program finds the objective function and the constraint set for

> the problem of finding a maximum set of points in PG(2,q) such that

> every line passes through the set at most 3 times. * /

>

> q:=3;

>

> / * P1 := the projective plane

> P := the point set - used to retrieve individual points.

> eg. the third point is given by P.3

> L := the line set - used to retrieve individual lines.

> eg. the fourth line is given by L.4 * /

>

> P1, P, L := FiniteProjectivePlane(q);

>

> / * CG := PGL (3 ,3) returned as a permutation group.

> Pa := the set of points on which G acts.

> La := the set of lines on which G acts. * /

>

APPENDLX A. MAGMA CODE

> CG, Pa, La := CollineationGroup (Pl) ;

>

>

> / * Print out the point set. * /

> for i := 1 to #P do

> printf1'P-{%o)=%o\nt', i,P.i;

> end for;

P-{I)=(1 : 0 : 0)

P-{2)=(0 : 1 : 0)

P-{31=(0 : 0 : 1)

P-{4)=(1 : 2 : 0)

P-{5)=(0 : 1 : 2)

P-{6)=(1 : 2 : 1)

P-{7)=(1 : 1 : 1)

P-IS)=(1 : 1 : 2)

P-{9)=(1 : 0 : 1)

P-{lo}=(1 : 1 : 0)

P-{Ill=(0 : 1 : 1)

P-{12)=(1 : 2 : 2)

P-{13)=(1 : 0 : 2)

>

> / * Print out the line set. * /

> for i := 1 to #P do

> printfl'L-(%o)=%o\nU, i, L.i;

> end for;

L-{I)=< 1 : 0 : 0 >

L-{2)=< 0 : 1 : 0 >

L-{3)=< 0 : 0 : 1 >

L-{4)=< 1 : 2 : 0 >

L-{5)=< 0 : 1 : 2 >

L-{6)=< 1 : 2 : 1 >

L-{7)=< 1 : 1 : 1 >

L-{8)=< 1 : 1 : 2 >

L-{9)=< 1 : 0 : 1 >

L-{lo)=< 1 : 1 : 0 >

L-Ill)=< 0 : 1 : 1 >

APPENDIXA. MAGMA CODE

/ * Create the incidence matrix between points and lines. * /

IM:=IncidenceMatrix (Pl) ;

/ * Print out the incidence matrix in a LaTeX friendly format * /

for i := 1 to #P do

f st :=true;

for j := 1 to #P-1 do

if IM[i, j] ne 0 then

if not fst then

printf "+";
end if;

fst:=false;

printf'lx-{%o) ", j;

end if;

end for;

if IM[i,#Pl ne 0 then

printfWx-{%o)", #P;

end if;

printf "&\leq 3& \\\\\nW;

APPENDLXA. MAGMA CODE

x~{5ltx~{9]+x~[10)+x~{12l&leq 3 & \ \

x-{2}+~-{6}+~-{7}+x-I9}&leq 3& \ \

>

> / * The following code finds a subgroup H of PGL(3,3) that stabilizes

> both the line [1:0:0] and the point (1:l:l) and finds the

> H-orbits on the set of points and the set of lines. (Example 2.25) * /

>

> G := Stabilizer(CG,La,L! [1,0,0]);

> H := Stabilizer (G , P a , P ! [I, 1,1]) ;

>

> / * Find the H-Orbits of the point set. * /

> Orbits (H, Pa) ;

[

GSetI (1 : 1 : 1) 1,

GSet[(O : l : O) , (O : O : l) , (0 : 1 : 2) , (O : l : l) } ,

GSet((l : O : O) , (1 : 2 : 0) , (1 : 2 : 1) , (1 : 1 : 2) , (l : o : l) , (1 :

2 : 2) , (1 : 0 : 2))

I
>

> / * Find the H-Orbits of the line set. * /

> Orbits (H, La) ;

[

GSet {

< 1 : 0 : 0 >

1 ,

GSet I

< 1 : 2 : 0 > ,

< 0 : 1 : 2 > ,

< l : l : l > ,

< 1 : 0 : 2 >

1 I

GSet [

< 0 : 1 : 0 > ,

< 0 : 0 : 1 > ,

< 1 : 2 : I > ,

< 1 : 1 : 2 > ,

APPENDLXA. MAGMA CODE

< l : O : l > ,

< 1 : 1 : 0 > ,

< 0 : 1 : 1 > ,

< 1 : 2 : 2 >

1

I

>

> / * T h e f o l l o w i n g c o d e f i n d s a s u b g r o u p G o f P G L (3 , 3) t h a t s t a b i l i z e s

> t h e se t R shown b e l o w t h e G - o r b i t s o n t h e set o f p o i n t s a n d t h e s e t o f

> l i n e s . (E x a m p l e 2 . 2 6) * /

>

> R:={P! [l , O , O] , P ! [O , O , l] , P ! [1 , 2 , O] , P ! [1 , 2 , 1] , P ! [l , l , l] , P ! [l , l , O] , P ! [1 , 0 , 2]) ;

> G : = S t a b i l i z e r (CG, P a , R) ;

>

> / * F i n d t h e G - O r b i t s o f t h e p o i n t s e t . * /

> O r b i t s (G, P a) ;

[

G S e t { (l : O : O) , (1 : 2 : 1) , (1 : l : l)) ,

G S e t { (O : O : l) , (1 : 2 : 0) , (l : l : O) , (1 : 0 : 2) } ,

G S e t { (O : l : O) , (0 : 1 : 2) , (1 : 1 : 2) , (l : O : l) , (O : l : l) , (1 :

I

>

> / * F i n d t h e G - O r b i t s o f t h e l i n e se t . * /

> O r b i t s (G ,La) ;

[

G S e t {

< 0 : 1 : 2 > ,

< 0 : 1 : 1 > ,

< 1 : 0 : 2 >

1 ,

G S e t {

< 1 : 0 : 0 > ,

< 1 : 1 : 2 > ,

< 1 : 0 : 1 > ,

< 1 : 2 : 2 >

1 r

APPENDLXA. MAGMA CODE

I
>

> quit;

Appendix B

Integer Programming Code

B.l The C Code

/*This program performs a backtracking algorithm on a 0-1 Integer

Programming Problem specifically designed to find caps in PG(n,q).

Author: Joanna Wallis

Date: July 2006

Version: 6

Command line arguments:

1) filename - the input file (read only)

2) filename - the output file (write only)

3) integer - bound type: 1 indicates the normal bound,

2 indicates the modified bound

4) filename - a file containing the best known value so far.

(read/write) * /

APPENDLX B. INTEGER PROGRAMMING CODE

#define MAX-n 200+1

#define MAX-m 70000+1

#define BOUNDZREP 1

#define MAXVAR 500

int backtrack (int

void terminate (int

1, int curP

curP) ;

int bounding (int t, int curP, int 1) ;

void dancinglink(int removedlist[MAX-n], int sizeofrl);

int modbound(int curP, int 1) ;

int standbound(int curP, int 1) ;

int feasibility (int removedlist [MAX-n] , int 1) ;

void readinput () ;

void initialize (void) ;

/ * The following structure contains information about the ith variable.*/

struct xi

I

int ob jcoef f;

int conscoef f [MAX-m] ;

int left;

int right;

int value;

int sort;

int loc;

int flag;

/*coefficient of x in the objective

function*/

/*a single array containing the

coefficients of x for each constraint*/

/*left of x in a doubly linked list*/

/*right of x in a doubly linked list*/

/*value of x. Must be 0 or 1*/

/*X'S location in the sorted list*/

/*X'S original location*/

/*a control flag used for the modified

bounding function. If the flag is set to 0,

then it cannot be considered for the bound*/

int N,Q;

int m,n;

/*PG (N, Q) * /

/*m is the number of rows in our matrix M,

n is the number of columns in our matrix M*/

APPENDLX B. INTEGER PROGRAMMING CODE

i n t boundtype; /*The t y p e o f bound ing f u n c t i o n . 0 - none,

1 - s t a n d a r d , 2 - m o d i f i e d * /

i n t n o d e s t e s t e d ; / * t h e number o f nodes t e s t e d . Used f o r

e f f i c i e n c y and compar i son t e s t i n g * /

i n t l e a f n o d e s t e s t e d ; / * t h e number o f l e a f nodes t e s t e d * /

s t r u c t x i x[MAX-n] ; / *an a r r a y o f x i s t r u c t u r e s . T h i s , a l o n g

w i t h slack[MfLX-m], i s t h e 0-1 I n t e g e r

Programming Problem*/

i n t slack[MAX-m]; / * a r r a y t o t h e m a t r i x c o n t a i n i n g t h e RHS o f

t h e c o n s t r a i n t s * /

i n t z e r o s [MAX-m] [MAX-n] ; / * z e r o s [i] [j] s t o r e s t h e l o c a t i o n o f x

i n t o n e s [MAX-ml [MAX-n

i n t twos [MAX-m] [MAX-n

i n t o p t P ;

i n t optX [MAX-n] ;

i n t o p t i n s t a n c e ;

i n t o p t s o l s i z e ;

i n t c u r i n s t a n c e ;

i n t magmaoptP;

c h a r o p f i l e [l o o] ;

FILE * f p i n p u t ;

FILE * f p o u t p u t ;

FILE *fpdebug;

FILE * f p e r r o r ;

FILE * f p o p t i m a l ;

v a r i a b l e s w i t h c o e f f i c i e n t 0 i n c o n s t r a i n t i * /

/ *ones [i] [j] s t o r e s t h e l o c a t i o n o f x

v a r i a b l e s w i t h c o e f f i c i e n t 1 i n c o n s t r a i n t i * /

/ * twos [i] [j] s t o r e s t h e l o c a t i o n o f x

v a r i a b l e s w i t h c o e f f i c i e n t 2 i n c o n s t r a i n t i * /

/ * s t o r e s t h e o b j e c t i v e f u n c t i o n v a l u e o f t h e

b e s t s o l u t i o n s o f a r * /

/ * s t o r e s t h e b e s t s o l u t i o n s o f a r * /

/ * t h e p rob lem i n s t a n c e o f t h e o p t i m a l s o l u t i o n * /

/ * t h e number o f v a r i a b l e s i n t h e optimum

s o l u t i o n * /

/ * t h e p rob lem i n s t a n c e o f t h e c u r r e n t s o l u t i o n * /

/ * t h e o p t i m a l s o l u t i o n g i v e n by Magma*/

/ * t h e s t r i n g name o f t h e f i l e c o n t a i n i n g t h e

o p t i m a l s o l u t i o n v a l u e * /

/ * f i l e p o i n t e r t o t h e i n p u t f i l e * /

/ * f i l e p o i n t e r t o t h e o u t p u t f i l e * /

/ * f i l e p o i n t e r t o t h e debug f i l e * /

/ * f i l e p o i n t e r t o t h e e r r o r f i l e * /

/ * f i l e p o i n t e r t o a f i l e c o n t a i n i n g t h e o p t i m a l

s o l u t i o n v a l u e * /

i n t main (i n t a r g c , c h a r * a r g v [I)

I

i n t i , k ; / * s t a n d a r d l o o p c o u n t e r s * /

APPENDLX B. INTEGER PROGRAMMING CODE

char str1[1000] ; /*used for reading input data*/

int dummy [MAX-n] ; /*this is an array that stores the location of x

variables that are not live (cannot be 1) in

the initial problem*/

clock-t start-clock; /*the start time for each instance*/

if (argc<4)

I

printf ("Error: incorrect line arguments. \nl') ;

return 0;

}

fpinput=fopen (argv [I], "r") ;

fpoutput=fopen (argv [2] , "w") ;

strcpy (opfile, argv[4]) ;

boundtype = atoi (argv [3]) ;

fprintf (fpoutput, "Input File: %s\t\tBound type: %s\n\nT', argv[l] , argv [3]) ;

fprintf (fpoutput, "Problem\t\t#Point\t#Line\tClock\t (Nodes Tested) \n") ;

fprintf (fpoutput, "Instance\tOrbits\tOrbits\tTime\t\t Total\t

Leaf\tOptP\tMoptP\tOptS\n");

/*read "Problem Instance: ? " for some integer ? * /

fgets (strl, 1000, fpinput) ;

k=O ;

optinstance=O;

fpoptimal=fopen (opf ile, "r") ;

fscanf (fpoptimal, "%d\n",&optP) ;

fclose (fpoptimal) ;

printf ("Optval so far is %d\nl',optP);

while (!feof (fpinput))

I

start-clock = clock();

APPENDZX B. INTEGER PROGRAMMING CODE

/ * Initialize the solution * /

kt+;

printf ("PROBLEM INSTANCE: %d\t ", k) ;

curinstance=k;

readinput () ;

printf ("n=%d\n", n) ;

fflush (stdout) ;

if (niMAX-n & & miMAX-m)

I

initialize 0 ;

/*perform the initial feasibility test. x variables that have a

constraint coefficient greater than 2 are removed from the problem.

The location of such x variables is stored in the array dummy.*/

feasibility (dummy, 0) ;

backtrack (x[0] .right, 0) ;

fprintf (fpoutput, "%d\t\t%d\t%d\t%4f \t %d\t %d\t%d\t%d\tW, k, n,m,

(clock () -start-clock) / (double) CLOCKS-PER-SEC, nodestested,

leafnodestested, optP, magmaoptp) ;

for (i=l; ii=optsolsize; itt) fprintf (fpoutput, "%d ", optX [i]) ;
fprintf (fpoutput, "\n") ;

}/*if condition*/

fflush(fpoutput);

/*read "Problem Instance: ? " for some integer ? * /

fgets (strl, 1000, fpinput) ;

}/*while*/

fprintf(fpoutput,"\n\nOptimal Solution Instance:%d\n",optinstance);

fclose (•’pinput) ;

fclose (fpoutput) ;

APPENDIX B. INTEGER PROGRAMMING CODE

return 0;

]/*main*/

/ * This function performs the recursive backtracking algorithm. It first

tests for the terminal case, which is the case where we are considering

the x-(n+l] variable, a dummy variable. If not it proceeds by setting

the current x variable to 1, testing feasibility, then testing the bound

and performing the recursion if appropriate. It then sets the current x

variable to 0 and retests the bound, performing the recursion if

appropriate.

int 1 the location of the current x variable (node) being tested.

int curP the value of the solution so far. * /

int backtrack (int 1, int curP)

{

int sizeofrl; /*number of x variables removed for

infeasibility.(The effective size of the

removed list) * /

int removedlist[MAX-n]; /*a list of the locations of the x variables

removed due to infeasibility*/

int i; /*standard loop counter*/

int B; /*given the current state of the solution, B

denotes the best possible solution using the

bounding function*/

/ * test for terminal case. * /

if (l==n+l)

(

terminate (curP) ;

leafnodestested++;

APPENDLX B. INTEGER P R O G M M I N G CODE

1

e l s e

{

x [l] . v a l u e = l ; / * s e t x-i=l. * /

/ * a d j u s t t h e s l a c k (RHS) f o r each c o n s t r a i n t * /

f o r (i = l ; i < = m ; i + +) s l a c k [i] -=x [l] .conscoeff [i] ;

/ * t e s t f o r f e a s i b i l i t y i n t h e remaining x v a r i a b l e s * /

sizeofrl=feasibility(removedl

curP+=x [1] .ob jcoef f ;

/*perform t h e bounding f u n c t i

f u n c t i o n . I f T i s 2 , u s e

is t , 1) ;

/*updated t h e c u r r e n t s o l u t i o n v a l u e . * /

on T . I f T i s 1, modif ied bounding

t h e s t a n d a r d bounding f u n c t i o n . I f T i s

any th ing e l s e , no bounding f u n c t i o n i s used. * /

B=bounding (boundtype, curP, 1) ;

/ * i f t h e bounded s o l u t i o n v a l u e i s b e t t e r t h a n t h e c u r r e n t opt imal

va lue , optP, t h e n c o n t i n u e t e s t i n g * /

i f (B>optP) back t rack (x [l] . r i g h t , curP) ;

/*undo t h e c u r r e n t node v i s i t . * /

x [l] . value=O;

f o r (i = l ; i<=m; i + +) s l a c k l i] + = x [l] . conscoef f [i] ;

curP-=x [l] .ob j c o e f f ;

danc ing l ink (removedl i s t , s i z e o f r l) ;

/*given t h a t x-i=O, t e s t t h e bounding f u n c t i o n . * /

B=bounding (boundtype, curP, 1) ;

i f (B>optP) back t rack (x [l] . r i g h t , curP) ;

1

x [l] . f l a g = l ;

r e t u r n 0;

) /*back t rack* /

/ * I f t h e t e r m i n a t i o n c o n d i t i o n i s met d u r i n g back t rack ing , t h i s f u n c t i o n

i s c a l l e d t o t e s t i f t h e c u r r e n t complete s o l u t i o n i s b e t t e r t h a n t h e

c u r r e n t op t imal s o l u t i o n . I f it i s , t h e n t h e op t imal s o l u t i o n i s

APPENDXX B. INTEGER PROGRAMMING CODE

r e p l a c e d by t h e c u r r e n t s o l u t i o n .

i n t cu rP t h e c u r r e n t s o l u t i o n v a l u e . * /

v o i d t e r m i n a t e (i n t c u r P)

I

i n t i; / * s t a n d a r d l o o p c o u n t e r * /

i f (cu rP>op tP)

I

optP=curP;

fpop t ima l=fopen (o p f i l e , "w") ;

f p r i n t f (f p o p t i m a l , "%d\n" ,optP) ;

f c l o s e (fpop t i rna l) ;

pr in t f ("***********New OptP = %d***********\nl' , o p t p) ;

f o r (i = l ; i<=n ; i + +) o p t X [i] = x [i] . v a l u e ;

optinstance=curinstance;

o p t s o l s i z e = n ;

1

] / * t e r m i n a t e * /

/ * The s t a n d a r d bounding f u n c t i o n . T h i s f u n c t i o n c a l c u l a t e s t h e

upper bound on t h e c u r r e n t s o l u t i o n v a l u e by assuming a l l f e a s i b l e

x v a r i a b l e s f o l l o w i n g t h e c u r r e n t x v a r i a b l e b e i n g t e s t e d a r e 1.

i n t cu rP t h e c u r r e n t s o l u t i o n v a l u e

i n t c t h e l o c a t i o n o f t h e c u r r e n t x v a r i a b l e b e i n g t e s t e d .

r e t u r n s t h e upper bound g i v e n by t h e bounding f u n c t i o n . * /

i n t s tandbound (i n t cu rP , i n t c)

I

i n t i; / * s t a n d a r d l o o p c o u n t e r * /

i n t v a l u e ; /*upper bound g i v e n by t h e bounding f u n c t i o n * /

APPENDLX B. INTEGER PROGRAMMING CODE

i = x [c] . r i g h t ;

/ * t h e f o l l o w i n g w h i l e loop sums t h e o b j e c t i v e f u n c t i o n c o e f f i c i e n t

v a l u e s f o r t h e f e a s i b l e x v a r i a b l e s f o l l o w i n g t h e c u r r e n t x v a r i a b l e * /

whi le (i < = n)

{

v a l u e + = x [i] . o b j c o e f f ;

i = x [i] . r i g h t ;

} /*whi le loop* /

r e t u r n va lue ;

) / *standbound*/

/ * The modi f i ed bounding f u n c t i o n (Problem s p e c i f i c) c a l c u l a t e s t h e

upper bound by c o n s i d e r i n g a s i n g l e c o n s t r a i n t choosing t h e maximum

p o s s i b l e number o f x v a r i a b l e s t o s e t 1 based on t h e c u r r e n t s o l u t i o n

s o f a r , and s a t i s f y i n g t h a t s i n g l e c o n s t r a i n t .

i n t curP t h e c u r r e n t v a l u e of t h e s o l u t i o n

i n t 1 t h e c u r r e n t x v a r i a b l e (node) b e i n g t e s t e d . * /

i n t modbound(int cu rP , i n t 1)

{

i n t i, j , k; /*S tandard l o o p v a r i a b l e s * /

i n t oneva l ; /*The sum of t h e o b j e c t i v e f u n c t i o n c o e f f i c i e n t s o f t h e

chosen (0, 1 o r 2) x v a r i a b l e s wi th a c o n s t r a i n t

c o e f f i c i e n t v a l u e o f I . * /

i n t twoval ; /*The sum of t h e o b j e c t i v e f u n c t i o n c o e f f i c i e n t s of t h e

chosen (0 , o r 1) x v a r i a b l e s wi th a c o n s t r a i n t

c o e f f i c i e n t v a l u e of 2 .*/

i n t z e r o v a l ; /*The sum of t h e o b j e c t i v e f u n c t i o n c o e f f i c i e n t s of

a l l (u n t e s t e d) x v a r i a b l e s wi th a c o n s t r a i n t c o e f f i c i e n t

v a l u e o f O.*/

i n t minval; /*The minimum v a l u e of t h e upper bound. Th i s i s used i f

t e s t i n g more t h a n one c o n s t r a i n t . CURRENTLY NOT

IMPLEMENTED. * /

i n t c u r v a l ; /*The upper bound g iven t h e c u r r e n t c o n s t r a i n t . * /

APPENDIX B. INTEGER PROGRAMMING CODE

int counter; /*A standard counter.*/

for (i=l; i<=BOUND2REP; it+)

I

oneval=O;

twoval=O ;

zeroval=O;

switch (slack [i])

case 2: j=l;

k=twos [i] [j] ;

while (k)

I

if (x [k] . flag)
I
twoval=x[kl.objcoeff;

break;

1

j++;

k=twos [i] [j] ;

1 /*FALL THROUGH*/

case 1: j=l;

k=ones [i] [j] ;

counter=O;

while (k&& (counter<slack [i]))

I
if (x [k] . flag)
I
oneval+=x [k] .objcoeff;

counter++;

1

j++;

k=ones [i] [jl ;

APPENDLX B. INTEGER PROGRAMMING CODE

}/*FALL THROUGH*/

case 0: j=l;

k=zeros [i] [j] ;

while (k)

I

if (x [k] .flag) zeroval+=x [k] .ob jcoeff;

j++;

k=zeros [i] [j] ;

I

break;

default: fprintf (stderr, "Illegal coefficient value\nV) ;

)/*switch*/

if(twoval>=oneval) curval=twoval+zeroval+curP;

else curval=oneval+zeroval+curP;

if(curval<minval) minval=curval;

)/*for loop*/

return minval;

}/*modbound*/

int feasibility (int removedlist [MAX-n] , int 1)

{

int sizeofrl; /*size of the list of infeasible(or removed)variables*/

int i, j; /*standard loop counters*/

/*for each constraint, test that each x variable is feasible. If it

is not, that is if the constraint coefficient for an x variable

is greater than the slack, remove it from the linked list so that it

is not considered. Note that this uses the method of the dancing

links. While the linked list no longer points to the removed x

variable, the x variable still points to the linked list*/

for (i=l; i<=m; i++)

{

j=x[l] .right;

APPENDLX B. ZlVTZCGER PROGRAMMING CODE

whi le

I

i f (x

i

r emoved l i s t [s i z e o f r l] = j ;

x [x [j] . l e f t] . r i g h t = x [j] . r i g h t ;

x [x [j] . r i g h t] . l e f t = x [j] . l e f t ;

x [j] .f lag=O;

1

j=x [j] . r i g h t ;

1

}

r e t u r n s i z e o f r l ;

} / * f e a s i b i l i t y * /

/ * The f o l l o w i n g f u n c t i o n d i r e c t s t h e program t o t h e a p p r o p r i a t e

bounding f u n c t i o n .

i n t t bounding f u n c t i o n f l a g . 2 f o r t h e modi f i ed f u n c t i o n ,

1 f o r t h e s t a n d a r d bounding f u n c t i o n .

i n t curP t h e c u r r e n t s o l u t i o n v a l u e .

i n t 1 t h e c u r r e n t node b e i n g t e s t e d .

r e t u r n s t h e upper bound based on t h e bounding f u n c t i o n . * /

i n t bounding (i n t t , i n t curP, i n t 1)

i

i n t bound;

i f (t==2) bound=modbound(curP, 1) ;

i f (t = = l) bound=standbound (curP , 1) ;

r e t u r n bound;

} /*bounding*/

/ * The f o l l o w i n g f u n c t i o n performs t h e dancing l i n k a l g o r i t h m . That i s ,

it r e p a i r s t h e l i n k e d l i s t , r e t u r n i n g removed x v a r i a b l e s t o t h e l i s t

APPENDZX B. INTEGER PROGRAMMING CODE

u s i n g t h e f a c t t h a t t h e x - v a r i a b l e s s t i l l p o i n t t o t h e l i s t e v e n

t h o u g h t h e l i s t d o e s n o t p o i n t t o t hem. * /

v o i d d a n c i n g l i n k (i n t removedlis t[MAX-n], i n t s i z e o f r l)

{

i n t i, k; / * s t a n d a r d l o o p c o u n t e r s * /

f o r (i = s i z e o f r l ; i > = l ; i--)

{

k = r e m o v e d l i s t [i] ;

x [x [k] . l e f t] . r i g h t = k ;

x [x [k] . r i g h t] . l e f t = k ;

x [k] . f l a g = l ;

] / * f o r l o o p * /

] / * d a n c i n g l i n k * /

/ * t h e f o l l o w i n g f u n c t i o n r e a d s a n i n p u t f i l e o f a p p r o p r i a t e form*/

v o i d r e a d i n p u t ()

I

i n t i, j; / * s t a n d a r d l o o p c o u n t e r s * /

c h a r s t r 1 [1 0 0 0] ; / * u s e d f o r r e a d i n g i n d a t a * /

c h a r * s t r 2 ; / * u s e d f o r r e a d i n g i n d a t a * /

f g e t s (s t r l , 1000, f p i n p u t) ; / * r e a d s "n=?" f o r some i n t e g e r ? * /

s t r 2 = s t r t o k (s t r l , " = I t) ;

s t r 2 = s t r t o k (NULL, " = V ;

N = a t o i (s t r 2) ;

fgets(strl,lOOO,fpinput); / * r e a d s "q=?" f o r some i n t e g e r ?* /

s t r 2 = s t r t o k (s t r l , "=") ;

s t r 2 = s t r t o k (NULL, "=") ;

Q = a t o i (s t r 2) ;

f g e t s (s t r l , 1000, f p i n p u t) ; / * r e a d s "The number o f o r b i t s on p o i n t s i s " * /

f g e t s (s t r l , 1000 , f p i n p u t) ; / * r e a d s n = ?* /

n = a t o i (s t r l) ;

fgets(strl,lOOO,fpinput); / * r e a d s "The number o f o r b i t s on l i n e s i s " * /

APPENDIX B. INTEGER PROGRAMMING CODE

f g e t s (s t r l , 1000, f p i n p u t) ; / * r e a d s m = ? * /

m=ato i (s t r l) ;

i f (m>MAX-m I I n>MAX-n)

p r i n t f ("ERROR: P a r a m e t e r s a r e t o o l a r g e \ t n = % d \ t m=%d\nW,n,rn);

f f l u s h (s t d o u t) ;

w h i l e (s t r c m p (s t r l , "END\nn') !=O) f g e t s (s t r l , 1000, f p i n p u t) ;

r e t u r n ;

I

fgets(strl,lOOO,fpinput); / * r e a d s "M i s g i v e n by t h e f o l l o w i n g M a t r i x w * /

f o r (i = l ; i<=m; i + +) / * r e a d s t h e n e x t m l i n e s which g i v e t h e m a t r i x M*/

I

f g e t s (s t r l , 1000, f p i n p u t) ;

s t r 2 = s t r t o k (s t r l , " [I ") ;

x [l] . c o n s c o e f f [i] = a t o i (s t r 2) ;

f o r (j = 2 ; j<=n; j + +)

I

s t r 2 = s t r t o k (NULL, " [I ") ;

x[j] . c o n s c o e f f [i l = a t o i (s t r 2) ;

I / * f o r l o o p * /

} / * f o r l o o p * /

f g e t s (s t r l , 1000, f p i n p u t) ; / * r e a d s "The o b j e c t i v e f u n c t i o n i s g i v e n by:"*/

f g e t s (s t r l , 1000, f p i n p u t) ;

s t r 2 = s t r t o k (s t r l , " [I ") ;

x [l] . o b j c o e f f = a t o i (s t r 2) ;

f o r (i = l ; i < n ; i++)

s t r 2 = s t r t o k (NULL, " [I 'I) ;

x [i + l] . ob j c o e f f = a t o i (s t r 2) ;

} / * f o r l o o p * /

/ * r e a d s "An o p t i m a l s o l u t i o n r e p o r t e d by Magma i s : " * /

APPENDLX B. INTEGER PROGRAMMING CODE

f g e t s (s t r l , 1000, f p i n p u t) ;

/* reads op t imal s o l u t i o n r e p o r t e d by Magma*/

f g e t s (s t r l , 1000, f p i n p u t) ;

/* reads "The v a l u e of t h i s s o l u t i o n (s i z e of op t imal s e t f o r t r=l)

i s : ' I * /

f g e t s (s t r l , 1000, f p i n p u t) ;

/ * r e a d s t h e v a l u e of t h i s s o l u t i o n * /

f g e t s (s t r l , 1000, f p i n p u t) ;

magmaoptP=atoi (s t r l) ;

whi le (s t rcmp (s t r l , "END\nl') ! = O) f g e t s (s t r l , 1000, f p i n p u t) ;

} / * r e a d i n p u t * /

v o i d i n i t i a l i z e (v o i d)

i n t i, j; /*s tandard loop c o u n t e r s * /

i n t c u r r e n t ; / * a temporary v a r i a b l e used t o s o r t and c r e a t e

t h e doubly l i n k e d l i s t of x v a r i a b l e s * /

i n t tempO,templ,tempZ; /*temporary v a r i a b l e s used t o t r a c k t h e number

of x v a r i a b l e s i n t h e a r r a y f o r a c o n s t r a i n t

f o r ze ros , ones and twos r e s p e c t i v e l y . * /

/*The f o l l o w i n g loop i n i t i a l i z e s t h e s l a c k v a r i a b l e s t o two.

NOTE THAT THIS IS MUST BE CHANGED FOR ANY PROBLEM WHERE THE RHS IS

NOT TWO. * /

f o r (i= l ; i<=m; i t+) s l a c k [i] = 2 ;

/ * t h i s loop i n i t i a l i z e s t h e v a l u e s f o r x [i] , s e t t i n g each t o 0*/

f o r (i=l; i < = n ; i t t) x [i] .value=O;

/ * s e t and l i n k t h e t a i l and t h e head of t h e doubly l i n k e d l i s t * /

x [O] . left=NULL;

x [0] . r i g h t = n t l ;

x [O] .ob jcoeff=9999999;

x [n t l] . right=NULL;

x [n t l] . l e f t=O;

x [n t l] .objcoeff=-1;

APPENDLX B. INTEGER PROGRAMMING CODE

/ * t h i s l o o p u s e s a n i n s e r t s o r t t o c r e a t e t h e doubly l i n k e d l i s t i n

d e s c e n d i n g o r d e r o f t h e o b j e c t i v e f u n c t i o n c o e f f i c i e n t v a l u e * /

f o r (i = l ; i < = n ; i++)

I

current=O;

/*The w h i l e l o o p f i n d s t h e p o s i t i o n t o i n s e r t t h e i t h x v a l u e . * /

w h i l e (x [i] . ob j coe f f <x [c u r r e n t] .ob j c o e f f) c u r r e n t z x [c u r r e n t] . r i g h t ;

x [i] . r i g h t = c u r r e n t ;

x [i] . l e f t = x [c u r r e n t] . l e f t ;

x [x [c u r r e n t] . l e f t] . r i g h t = i;

x [c u r r e n t] . l e f t = i ;

c u r r e n t = x [O] . r i g h t ;

} / * f o r l o o p * /

/ * t h i s l o o p s t o r e s t h e i n i t i a l p o s i t i o n o f e a c h x [i] * /

f o r (i=l; i<=n ; i + +) x [i] . l o c = i ;

/ * t h e f o l l o w i n g f o r l o o p i n i t i a l i z e s t h e twos, ones and z e r o s a r r a y s .

These a r r a y s c o n t a i n t h e l o c a t i o n o f v a r i a b l e s (x - i) w i t h t h e

a p p r o p r i a t e c o n s t r a i n t c o e f f i c i e n t . For example, twos [3] [4] =5 t e l l s

u s t h a t x-5 h a s c o e f f i c i e n t 2 i n t h e t h i r d c o n s t r a i n t . F u r t h e r , it

i s t h e f o u r t h v a r i a b l e (b a s e d on t h e s o r t i n g o f t h e d o u b l e l i n k e d

l i s t , t o have a c o e f f i c i e n t o f 2 i n t h a t c o n s t r a i n t . * /

f o r (i = l ; i<=m; i + +)

I

twos [i l [l] =O;

ones [i] [I] = O ;

z e r o s [i] [l]=O;

} / * f o r loop* /

/ * t h e f o l l o w i n g f o r l o o p s t o r e s t h e l o c a t i o n o f x v a r i a b l e s wi th

a p p r o p r i a t e c o e f f i c i e n t s i n t h e a r r a y s ones , twos and z e r o s , f o r e a c h

c o n s t r a i n t . An e n t r y o f 0 i n d i c a t e s t h e r e a r e no more c o e f f i c i e n t s w i t h

t h i s v a l u e i n t h e c o n s t r a i n t . * /

APPENDLX B. INTEGER PROGRAMMING CODE

f o r (j = l ; j<=m; j++)

ternpl=O;

temp2=0;

i = x [O] . r i g h t ;

w h i l e (i ! = n + l)

I

s w i t c h (x [i] . c o n s c o e f f [j])

I

c a s e 0 : tempo++;

z e r o s [j] [tempo] = i ;

z e r o s [j] [tempO+ll=O;

b r e a k ;

c a s e 1: tempi++;

ones [j] [t e r n p l] = i ;

o n e s [j l [t empl+ l]=O;

b r e a k ;

c a s e 2 : temp2++;

twos [j] [te rnp2]=i ;

twos [j] [temp2+1]=0;

b r e a k ;

} / * s w i t c h s t a t e m e n t * /

i = x [i] . r i g h t ;

} / * w h i l e l o o p * /

} / * f o r l o o p * /

} / * i n i t i a l i z e * /

B.2 Input File

The following is an example input file. Note that while an input file can contain multiple problem

instances, each instance must be separated by the string END and a newline character. Also, any

line beginning and ending with a * can contain any string with a newline character.

Problem I n s t a n c e : l

APPENDLX B. INTEGER PROGRAMMING CODE

n=3

q=2

*The number o f o r b i t s on p o i n t s i s *

3

*The number o f o r b i t s on l i n e s i s *

5

M i s g i v e n by t h e f o l l o w i n g Mat r ix

[I 2 01

1 1 1

[I 2 01

[I 2 01

t 3 0 01

The o b j e c t i v e f u n c t i o n i s g i v e n by:

[7 7 1 1

Any number o f l i n e s may f o l l o w u n t i l END

END

Bibliography

L. Batten. Combinatorics of Finite Geometries. Cambridge University Press, Cam-

bridge, second edition, 1997.

J. Bierbrauer. Large caps. J. Geom, 76(1-2): 16-5 1, 2003. Combinatorics, 2002

(Maratea) .

J. Bierbrauer. Introduction to Coding Theory. Discrete Mathematics and its Ap-

plications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2005.

R. C. Bose. Mathematical theory of the symmetrical factorial design. Sankhya

8:107-166, 1947.

M. Braun. Optimal linear codes from matrix groups. IEEE Trans. Inform Theory,

51(12):4247-4251, 2005.

M. Braun, A. Kohnert and A. Wasserman. Construction of linear codes with

large minimum distance. IEEE Trans. Inform Theory, 50(8): 1687-1691, 2004.

M. Braun, A. Kohnert and A. Wasserman. Construction of (n, r)-arcs in PG(2, q).

Innov. Incidence Geom , 1 : 133-14 1, 2005.

Y. Edel and J. Bierbrauer. 41 is the largest size of a cap in PG(4,4). Des. Codes

Cryptog~, 16(2): 151-160, 1999.

M. Garey and D. Johnson. Computers and Intractability. W. H . Freeman and

Co., San Francisco, Calif., 1979.

R. Hill. On the largest size of cap in S5, 3. Atti Accud. Naz. Lincei Rend. Cl. Sci

Fis. Mat. Natur. (81, 54:378-384 (1974), 1973.

BIBLIOGRAPHY

[Hir85] J. Hirschfeld. Finite Projective Spaces of Three Dimensions. The Clarendon Press

Oxford University Press, New York, 1985.

[Hir98] J. Hirschfeld. Projective Geometries over Finite Fields. Oxford Mathematical

Monographs. The Clarendon Press Oxford University Press, New York, second

edition, 1998.

[HSOl] J. Hirschfeld and L. Storme. The packing problem in statistics, coding theory

and finite projective spaces: update 200 1. In Finite geometries, volume 3 of Dev.

Math., pages 20 1-246. Kluwer Acad. Publ., Dordrecht, 200 1.

[Ker99] A. Kerber. Applied Finite Group Actions, volume 19 of Algorithms and Combina-

torics. Springer-Verlag, Berlin, second edition, 1999.

[KnuOO] D. Knuth. Dancing links. December 27 2000. Retrieved from http://www-cs-

faculty.stanford.edu/-knuth/papers/dancing-color.ps.gz.

P. Kaski and P. 6stergkd. Class~fication Algorithms for Codes and Designs, vol-

ume 15 of Algorithms and computation in Mathematics. Springer-Verlag, Berlin,

2006. With 1 DVD-ROM (Windows, Macintosh and UNIX).

D. Kreher and D. Stinson. CombinatoriQl Algorithms: Generation, Enumeration,

and Search. CRC Press, Boca Raton, FL, 1999.

F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. Elsevier Sci-

ence Publishers B.V., Amsterdam, 1977. North-Holland Mathematical Library,

Vol. 16.

G. Pellegrino. Sul massirno ordine delle calotte in S4,3. Matematiche (Catanid,

25: 149-157 (1971), 1970.

Vera Pless. Introduction to the Theory of Error-Correcting Codes. Wiley-

Interscience Series in Discrete Mathematics and Optimization. John Wiley &

Sons Inc., New York, third edition, 1998. A Wiley-Interscience Publication.

B. Qvist. Some remarks concerning curves of the second degree in a finite plane.

Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1952(134):27, 1952.

J . Rotman. Advanced Modern Algebra Prentice Hall Inc., Upper Saddle River,

N J , 2002.

BIBLIOGRAPHY

(Seg541 B. Segre. Sulle ovali nei piani lineari finiti. Atti Accad. Naz. Lincei Rend. C1. Sc i

Fis. Mat. Nat. (81, 17:141-142, 1954.

(Seg551 B. Segre. Ovals in a finite projective plane. Canad. J. Math, 7:4 14-4 16, 1955.

Beg591 B. Segre. Le geometric di Galois. Ann. Mat. Pura Appl. (41, 48: 1-96, 1959.

[Sti95] D. Stinson. Cryptography: Theory and Practice. CRC Press Series on Discrete

Mathematics and its Applications. CRC Press, Boca Raton, FL, 1995.

(Tit621 J. Tits. Ovoides et groupes de Suzuki. Arch Math., 13: 187-198, 1962.

IVLWOl] J. Van Lint and R. Wilson. A Course in Cornbinatorics. Cambridge University

Press, Cambridge, second edition, 2001.

