
INFINITE GAMES, ONLINE PROBLEMS AND
AMPLIFICATION

Sanjeev Mahajan

B.Tech, Indian Institute of Technology, Delhi, 1982

M.Sc., Simon Fraser University, 1987

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS FOR T H E DEGREE O F

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

@ Sanjeev Mahajan 1992

SIMON FRASER UNIVERSITY

September 1992

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Sanjeev Mahajan

Doctor of Philosophy

Infinite Games, Online Problems and Amplification

-

Dr. Tjko Kameda, Senior$hpervisor

, ,- "
I

Dr. Arvind - Gupta, Sen/pr Supervisor

. - -- ,
V

Dr. Pavol Hell, s u p e r v d r

--

Dr. Ramesh Krishnamurti, Internal Examiner

L - -
Dr. Russell Impagliazzo, External Examiner

Assistant Professor,

Computer Science, UC, San Diego

PARTIAL COPYRIGHT LICENSE

I hereby g r a n t t o Simon Fraser Un ive rs i t y the r i g h t t o lend

my thes i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser U n i v e r s i t y L ibrary, and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o the r u n i v e r s i t y , o r o ther educat iona l i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r t h e Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l l c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l not be a l lowed

w i thou t my w r i t t e n permission.

T i t l e o f Thesls/Project/Extended Essay

I n f i n i t e Games, Onl ine Problems and Ampl i f i ca t ion .

Author: / w A A
Y u

(s ignature)
u

Se~tember 8. 1992

(da te)

Abstract

This thesis consists of two parts. The part on infinite games and online problems is

joint work with Xiaotie Deng [DM911 and the second part which is on Amplification

is work done jointly with Arvind Gupta [GM92].

In an online problem, requests come online, and they need to be answered without

knowing future requests. Competitive ratio, a performance measure for an online

algorithm, measures how well the algorithm performs against an optimal algorithm

which knows all the requests in advance. It is the worst case ratio of the cost incurred by

the online algorithm versus the cost of the optimal offline algorithm. If the competitive

ratio of an online algorithm is not more than a, it is called an a-competitive algorithm.

Ben-David, Borodin, Karp, Tardos and Wigderson(l990) initiated a systematic

study of randomization in online problems. They formalized online problems as

request-answer games, and also clarified several issues regarding randomization in

online problems. They argued that several papers on randomized algorithms for online

problems had used different notions of adversary. The different adversaries were then

identified and formalized: oblivious adversary, adaptive online adversary, adaptive

offline adversary. Among these, oblivious adversary is the weakest and adaptive offline

adversary is the strongest. Among the several seminal theorems, they showed the

following beautiful and simple theorem:

Theorem [BDBK+90] .If there exists randomized online strategy for a problem that is

a competitive against an adaptive offline adversary, then there exists an a competitive

deterministic strategy.

A natural question that arises in this context is whether this theorem can be made

constructive. We show that it cannot. In fact, we show that there exists an online

problem such that there is a very simple computable randomized strategy that is 1-

competitive, but no deterministic computable strategy that is a-competitive for any

finite a.

We also show an interesting game-theoretic result which asserts that the BBKTW

theorem is the tightest possible.

In my thesis, I also consider the following issue:

Consider a random boolean formula that approximately realizes a boolean function.

Amplification (first proposed by Valiant) is a technique wherein several independent

copies of the formula are combined in some manner to prove the existence of a formula

that exactly computes the function. Valiant used amplification to produce polynomial

size formulas for the majority function over the basis {A, v). Boppana then showed

that Valiant achieved best possible amplification. We use amplification to show the

existence of small formulas for majority when the basis consists of small(fixed) majority

gates. The obtained formula sizes are optimal modulo the amplification method.

Acknowledgements

Given the time I have spent at SFU, it goes without saying that I owe a lot to a lot

of different people. However incorrigible ingrate that I am, I am only going to thank

those people whom it is absolutely necessary to thank.

I am grateful to Prof. Tiko Kameda to have accepted an intractable and stubborn

person like me as a student. He has been extremely patient with my various intolerable

idiosyncrasies, and has supported me financially during the course of this research.

I am also extremely thankful to Xiaotie Deng to whom I owe many intellectually

stimulating conversations, not just on infinite games, but also on such wide-ranging

topics such as the applicability of bolshevism to chinese chess. It was with Xiaotie that

I fleshed out the first part of my thesis.

Arvind Gupta deserves my sincere thanks for uncountably infinite number of

reasons. He has been not just a supervisor, but also a good friend. He has given me

sage advice on millions of things, not the least of which is how to make Indian cheese

out of homogenized milk. Arvind and I have had a fruitful research relationship and I

hope wherever I go after my Ph.D., I will be able to find people like Arvind.

Contents

...
Abstract 111

Acknowledgements v

1 Introduction to Part I 1

. 1.1 Motivation 1

. 1.2 Background 2

. 1.3 Overview of the Results 4

. 1.4 Some Basics of Topology and Measure Theory 5

. 1.5 Background on Infinite Game Theory 7
. 1.5.1 Definitions and Notations 7

2 Main Theorems 11

. 2.1 Semicomputable Determinacy 12

. 2.2 Applications to Online Algorithms 17

. 2.3 Indeterminacy and Randomization 21

3 Conclusions to Part I 24

4 Introduction to Part I1 27

. 4.1 Motivation 27

. 4.2 Overview of the Results 29

. 4.2.1 Previous Work 30

5 Preliminaries 31

. 5.1 Basic Definitions 31

. 5.2 Intuition behind Amplification 32

6 Computing Majority with Small Majority Gates 35

. 6.1 Nearly optimd lower bounds for majority over {A. V. M3) 36

. 6.2 Computing majority with small majority gates 40

. 6.3 Lower Bounds For the First Phase 43

. 6.4 Bounds on alternate distributions 45

7 Conclusions to Part I1 47

vii

Chapter 1

Introduction to Part I

Motivation

Consider the following problem, called the paging problem which arises in design of

most operating systems: Let us assume that the main memory has k pages. Every time

there is a request for a page, the operating system looks at the main memory, and if

the requisite page is in the memory (a hit), the page is read by the requesting process.

Otherwise (a miss), the required page is in the secondary memory, and it replaces some

page of the main memory. There is a non-negligible cost associated with a miss, so we

need to minimize the number of misses. Now the question is: In the case of a miss,

which page in the main memory should be replaced? If the operating system knew in

advance, which page in the main memory would not be requested for the longest time

into the future, one could replace such a page. However decisions have to be made

online, that is, as requests are received,and the future is not certain. So we need to

design a strategy for page replacement that will do well under all circumstances. In

order to measure the performance of such a strategy, we compare its cost (measured in

terms of the number of misses) versus the cost of an optimal algorithm which knows

all the page requests in advance.

CHAPTER 1. INTRODUCTION T O PART I

Background

Let us assume we have a system which gets requests one at a time which must be

served as soon as they are received. Further assume that each request can be served

in one of several possible ways, and there is a cost associated with serving the request.

The problem of servicing the requests so as to minimize the total cost is called an

online problem. The method used to service the requests is an online strategy. If

the strategy is computable, it is called an online algorithm. We define a state of the

system to be all the information that must be known to determine the present and

future behavior of the system. After serving the request, the system reaches a new

state which also depends on the request, how the request is served and the old state

of the system. The cost incurred in serving the request depends on the current state

of the system, the request and the way in which the request is served. In the paging

system example above, the state is all the pages in the main memory, and the cost in

serving a given request is 0 in case of a hit and 1 othertwise. The cost of servicing a

sequence of requests a using a strategy A is simply the sum of costs of servicing each

request using A and is denoted costA(a).

Sleator and Tarjan [ST851 introduced the notion of competitive ratio to measure

the performance of online strategies. Competitive ratio of an online strategy A is

defined to be the worst case ratio, over all finite request sequences a, of the cost

incurred by A on a versus the cost incurred by an optimal strategy which knows all the

requests in advance (or an ofline strategy) in a. To avoid trivialities, we will assume

that the cost function is unbounded, that is, for every natural n, there is a request

sequence a, such that the cost of the best offline strategy over a is bigger than n. In

such a case, we can define a weaker notion of competitiveness. We say that a strategy

A is a-competitive (in the weak sense) if for every request sequence a:

costA (a)
lim sup 5

C O S ~ , ~ ~ (~) + O O C O S ~ , ~ f (a)

where costoff is the cost function of the best offline strategy, and d is a constant

independent of a.

Mannasse, Mcgeoch and Sleator [MMS88] defined the following canonical online

CHAPTER 1. INTRODUCTION TO PART I

problem, called the k server problem:

Let M be a metric space, and let k servers be placed on different points of M.

Requests come, one at a time, at points of the metric space. A request is said to be

served if one of the servers moves to the position of the request. The cost incurred in

serving the request is the distance moved by the server. The cost to serve a sequence

of requests is defined in the obvious manner. The problem is to design a strategy that

compares well (in terms of cost) against the optimal offline strategy.

This problem models a wide variety of problems such as the paging problem,

where M is a uniform metric space. [MMS88] also show a lower bound of k for the

competitive ratio. For k = 2, they also show an upper bound of 2 which completely

solves the 2-server problem. Much effort has been spent in designing good algorithms

when k > 2. Fiat, Rabani and Ravid [FRRSO] exhibit an algorithm that achieves

competitive ratio of (~ (e ~ ' " g (~)) . Before this, no algorithm was known which achieved

a constant ratio independent of the cost of the sequence.

Having discussed deterministic online algorithms, we now consider what happens

if we give coin-flipping capability(randomization) to the algorithms. Before we start

to meaningfully address this question, we have to clarify what randomization means

for online problems. As we will see, depending on what we mean by randomization, it

either helps us immensely or it does not help at all.

Ben-David et a1 clarified the notion of randomization for online problems in their

seminal paper [BDBK+SO]. They observed that online problems could be studied

in terms of two person games between a player and an adversary. The adversary

gives requests and the player serves the requests in one of several possible ways. The

adversary also serves the requests and can use an optimal algorithm to serve its own

requests. The competitive ratio at any point is the ratio of the player's cost to the

adversary's cost. Suppose the player claims that he can achieve a competitive ratio

of a. The job of the adversary is to make the competitive ratio bigger than a, so she

gives requests keeping this in mind. If we are using the weak notion of competitive

ratio, the adversary has to make the ratio bigger than a infinitely often, whereas if the

stronger notion is used, then she only has to make the ratio bigger than a once.

In the deterministicstrategy, the adversary knows how the player is going to behave

CHAPTER 1. INTRODUCTION T O PART I 4

at any particular instant, so we can assume that she chooses the request sequence in

advance. However, if the player adopts a randomized strategy (that is, he has the ability

to throw coins and decide how to answer requests accordingly), then the adversary can

either decide the request sequence in advance, or adapt her requests to the answers

given by the player. Clearly, the second kind of adversary - the adaptive adversary, is

at least as strong as the first - the oblivious (also called the weak adversary), and in

fact is strictly stronger than the oblivious adversary as was shown in [BDBK+SO]. In

the case of the oblivious adversary, since she knows the request sequence in advance,

she uses the best offline algorithm to service her own requests. However the adaptive

adversary does not know the request sequence in advance and only comes to know what

requests she should give incrementally as the game progresses. Therefore it may make a

difference whether she serves her own requests online or offline in computing her costs.

The first kind of adaptive adversary is called a medium adversary and the second

is called a strong adversary. We now have three different notions of randomization

corresponding to the three different adversaries: oblivious or weak adversary, medium

adversary and strong adversary. [BDBK+SO] show the following theorem in their

paper:

Theorem [BDBK+SO]: For an online problem, if there exists a randomized

strategy that is a-competitive against a strong adversary, then there is a deterministic

a-competitive strategy.

This theorem shows that randomizing against a strong adversary does not help.

[MMSSS] showed that if the weak notion of adversary is used, one can achieve a

competitive ratio of log k for the k-server problem when the underlying metric space

is uniform. On the other hand, the argument by [MMSSS] can be modified to show

that any randomized online strategy for the k-server problem must have a competitive

ratio of at least k against a medium adversary. This shows that the weak adversary is

strictly weaker than the medium adversary.

CHAPTER 1. INTRODUCTION TO PART I

1.3 Overview oft he Results

In this thesis, we show that the derandomization thesis of [BDBK+SO] cannot be con-

structivized. In particular, we show the existence of an online problem for which there

is a 1-competitive randomized algorithm (that is, a computable strategy) against any

offline adversary, but no a-competitive deterministic algorithm (that is, a computable

strategy). To prove this main theorem, we need to define the notion of semicomputable

determinacy which is analogous to the notion of determinacy in classical infinite game

theory except that one player has access to only computable strategies and the other

has access to all possible strategies. This models the notion of a computer playing

against an infinitely powerful adversary. We will define these notions more carefully in

a later section. We then prove some characterization theorems about semicomputable

determinacy which help us establish our main results. We also show an elegant re-

sult about classical infinite game theory. The derandomization thesis of [BDBK+SO]

applies to any determinate game (as we shall see, online problems are special cases

of determinate games). We show that the derandomization thesis does not hold for

indeterminate games, that is, we construct an indeterminate game for which there

exist randomized winning strategies for both players. This proof relies on the Axiom

of Choice and the Continuum Hypothesis. Before we can meaningfully discuss our

results, we give some preliminary background on topology and measure theory.

1.4 Some Basics of Topology and Measure Theory

Topology is a branch of mathematics that deals with mathematical properties that

are invariant under deformations and continuous transformations. For the sake of

illustration, we will study the real line. The E - S definition of continuous functions on

the real line says that a function f is continuous at xo iff for every E > 0 there is a S > 0

such that, whenever x differs from xo by at most 6, f (x) differs from f (so) by at most

e. Note that, as continuity is a topological property (that is, a continuous function

remains continuous when we deform it and vice-versa), the preceding definition is

not very satisfactory, as it depends on the notion of a metric on the real line. To

CHAPTER 1. INTRODUCTION TO PART 1

remedy this situation, we observe that, if a function f is discontinuous at some point

xo (say when one approaches xo from the left, the function value is fl and when one

approaches from the right, the function value is f2 where fl < f2), then the inverse

image of the open interval (fl, f2) (under f) maps to the single point xo. This hints at

the following definition of continuity: f is continuous iff whenever V is a disjoint union

of open intervals, f-'(V) is also a disjoint union of open intervals. One can show that

this definition of continuity and the E - S definition of continuity are equivalent, and

therefore one can dispense with the e - S definition.

In the real line situation, the disjoint unions of open sets are called open sets,

and the collection of all open sets is called the natural topology. In general, we can

have any arbitrary ground set X and define a topology on it as a collection of open

sets(which are subsets of X) which have the following properties:

4 is open and X is open

Arbitrary union of open sets is open

Finite intersection of open sets is open

Observe that disjoint unions of open intervals satisfy all these properties. Also

observe that the word 'finite' in the third condition cannot be replaced by 'arbitrary'

as the intersection of open intervals (2, i) for all positive integers n is {0} which

is clearly not a union of disjoint open intervals. Also notice that there are trivial

collections of subsets of X which satisfy the above properties, such as the collection

{$,XI and the collection of all subsets of X. Under these two topologies, we do not

get anything interesting. To make things non-trivial, we have to introduce what are

called separation axioms. But we will not dwell on the niceties of such separation

axioms, and instead talk about measures and measure spaces.

To fix thoughts, consider again the real line. We wish to generalize the notion of

length of an interval to arbitrary subsets of reals. One such generalization which is

used in Lebesgue integration theory is the outer measure. If Y (a subset of reals) is

an open set under the natural topology (that is, Y is a union of disjoint intervals),

then the outer measure of Y is defined to be the sum of lengths of the disjoint intervals

CHAPTER 1. INTRODUCTION T O PART 1

contained in Y. Otherwise the outer measure of Y is defined to be the infimum over

all open sets U which cover Y of the measure of U (intuitively it is the measure of

the 'smallest' open set that is a superset of Y). It turns out that the outer measure

satisfies the following properties:

Subadditivity: The measure of a countable union of sets is less than or equal to

sum of the measures of individual sets.

0 Translation invariance: If every element of a set is translated by the same amount,

the measure of the resulting set remains the same.

0 Compatibility with the notion of length: The measure of an interval (open,

half-open or closed) is its length.

The second and third properties are definitely desirable, but the first is not as

strong as we would like it to be. We would like to have the measure of countable union

of mutually disjoint sets to be exactly the sum of the measures of the individual sets.

It turns out that if we restrict ourselves to measurable sets, that is, those sets Y for

which the measure of the 'largest' open set contained in Y and the measure of the

'smallest' open set containing Y is the same, then we can change 'subadditivity' to

'additivity'. It also turns out that measurable sets are closed under complementation

and count able union.

Consider the smallest collection of sets which contains all the open sets and is

closed under complementation and countable union. The sets in this collection are

measurable under any measure. These sets are given a special name: Bore1 sets.

1.5 Background on Infinite Game Theory

1.5.1 Definitions and Notations

An infinite game is described as an infinite tree on which two players make their moves

in turn, starting at the root. The tree may be finitely or infinitely branching. We only

consider the case where the tree is finitely branching. The game is played by 2 players,

CHAPTER 1. INTRODUCTION T O PART I 8

Player I our player and Player I1 the adversary. The set of all the infinite paths is

partitioned into two subsets A and B, where A is the winning set for our player and B

is the winning set of the adversary. Starting from the root ao, the adversary chooses

a child a1 of ao, and then our player chooses a child a2 of al, and so on. In essence,

the adversary and our player alternately choose the child of the current node. Our

player wins if he can force the infinite path (ao, al,) to be in the set A; otherwise

the adversary wins. A strategy T (a) for the adversary (our player) corresponds to

a pruned tree T, (T,) from the original game tree on which each branching at even

(odd) levels is pruned to allow at most one possible child. The resulting play (a, T) for

a given T and a given a is specified by a path in the game tree. We call a a winning

strategy for our player if for every T, (a, T) belongs to A. The winning strategies for

the adversary are defined similarly. Finally, the game is determinate if either player

has a winning strategy.

We now define a topology on the set of all plays. A subset S of all the paths is

defined to be open iff for every path (ao, al, ...) E S, there exists a number n such that,

for a11 bn+l, bn+2, .. . ,
(ao, a1 . - - 7 an, bn+~, bn+2, ...) E S.

A set of paths is closed if it is the complement of an open set.

A game is open (closed) if the winning set of our player is open (closed). A set is

called Fu (the a in the index is not to be confused with the request sequence a) if it is a

union of countably many closed sets. We call a game F, if the winning set of our player

is F,. In their classical paper on infinite games [GS53], Gale and Stewart showed

that all open and closed games are determinate and that there exists a game that is

indeterminate. Martin [Mar751 then showed that all Borel games are determinate (a

game is Borel if the winning set of Player I (or 11) is Borel under the topology defined

above). Observe that, in classical infinite game theory, there is no restriction on the

strategies in terms of computability.

In [BDBK+90], online problems are formulated as finite games, and Raghavan

and Snir [RS89] give an infinite game formulation. Depending on the criteria of

competitiveness, one may get different winning sets for an online problem. We provide

a brief overview of this formulation.

CHAPTER 1. INTRODUCTION T O PART I

Suppose that the adversary chooses requests from the request set {rl, r2....) and

that our player can answer from the answer set {al, a2...) (called respectively, the

choice sets of the adversary and the player). The online problem is then modeled as

the following infinite game.

The adversary and our player alternate between choosing a request from the request

set and an answer from the answer set, respectively. Since both the adversary and our

player can choose from several possible requests and answers respectively, this then

describes an infinite game. The cost of our player OC at the stage of the game where

our player has just answered a request, is a function of the history of the requests given

by the adversary and the answers provided by our player and the answer currently

given. We assume that OC is a monotonically non-decreasing function of the history of

request-answer sequence to make this formulation of online problems meaningful. That

is, OC(rl, al, ..., r,, a,) 5 OC(rl, al, ..., r,, a,, r,+l, a,+l). The cost of the adversary,

denoted by AC is also a function of the history of the request sequence seen so far.

However AC is only a function of the requests in this history and not the player's

answers. In the case of the weak and strong adversaries, the function that defines

AC is simply the optimal offline cost of serving the request sequence embedded in the

request answer sequence seen so far, and in the case of the medium adversary, it is

the online cost of serving the request sequence, when the medium adversary uses a

particular online strategy to serve its own requests. At each stage of the game, the

adversary's objective is to make the competitive ratio (so far) as large as possible,

and our player's objective is to make the competitive ratio as small as possible. For

instance, if our player claims that he can achieve a competitive ratio of a (in the

strong sense), then our player wins if he can ascertain that at every stage of the game,

the ratio achieved between our player's cost and adversary's cost so far is at most a,

and the adversary wins if she can make this ratio bigger than a at least once. If the

player claims that he can achieve a competitive ratio of a in the weak sense, then the

adversary needs to make the ratio between our player's cost and the adversary's cost

bigger than a infinitely often.

Let us now formalize precisely what we have just described. A simple

a-competitiveness requirement is defined by OC 5 a . AC. We will call this the

CHAPTER 1. INTRODUCTION T O PART I

strong competitivecondition. When the cost function is accumulative, e.g., in the case

of the server problem, strong competitiveness will define a closed game: The adversary

wins iff the play reaches a node at which the condition is violated. Raghavan and Snir

use a formulation which allows an arbitrary additive constant. This gives rise to a

game with a winning set in F,:

-a AC(x0, , xk) < i).
Thus, infinite paths of constant cost are in the winning set. We call this the weak

competitive condition.

Without loss of generality, we assume that each player has two choices at each

turn of their play. A randomized strategy for our player is a function that makes an

assignment of probability to the choices aO, a1 depending on the position of the node

on the game tree. We say a randomized strategy is computable if the probability

distribution on the choice space is a computable function. As noted in [RS89, HT891,

a statement about a randomized strategy is true if it is true for all adversary strategies.

Thus, given a randomized strategy, we consider each deterministic strategy T of the

adversary, and the induced probability distribution for the pruned tree T,. We specify

a topology and a probability measure on the smallest a-algebra (a a-algebra is a

collection of subsets of a given ground set, which is closed under countable unions

and complementation) generated by the topology, by specifying the measure on all

the basic open sets: A basic open set U is specified by a node x on T, such that it

contains all the paths passing through x and its probability measure is the probability

the randomized strategy reaches x. The measure is extended to all the Bore1 sets in

the topology by a standard method described in any classical textbook in Measure

Theory such as [CT78]. When we specify an adversary strategy T, a similar method

is applied to define the conditional distribution on the pruned trees T,. Again, a

randomized strategy is a-competitive almost surely, iff for all the pruned tree TT7 it is

a-competitive almost surely with respect to this probability distribution.

Chapter 2

Main Theorems

We mentioned in the last chapter that [BDBK+90] showed the following:

Theorem 2.0.1. [BDBK+$O]: Given an online problem, whenever there is an a-

competitive randomized strategy against the strong adversary, there is an a-competitive

deterministic strategy.

We call this the Derandomization Hypothesis. Now a natural question that arises

is whether this derandomization can be constructivized. We show in this chapter that

such is not the case. In fact, we show the following:

Theorem 2.0.2. : There is an online problem for which there is a simple random-

ized computable 1-competitive strategy, but no a-competitive deterministic computable

strategy for any a.

The main thrust of this chapter is to prove the above theorem. However, in

order to prove the theorem, we will have to develop the concept of semicomputable

determinacy which is interesting in its own right.

In order to prove their theorems, [BDBK+90] and [RS89] use determinacy of finite

and F, games respectively. The basic idea is that, because online problems can be

modeled as F, games [RS89], (for the weak notion of competitive ratio), these games

are determinate. We essentially need to show that, whenever there is a randomized

winning strategy (say, for player I) in these games, then there is a deterministic winning

CHAPTER 2. MAIN THEOREMS

strategy for player I. Assume not. Then by the determinacy of these games, there is

a deterministic winning strategy T for player 11. Now if player I1 plays according to 7 ,

then no matter what probability distribution player I puts on his answers, he can never

win, as all the paths in T are winning for 11. This is a contradiction to the hypothesis.

As we need to establish that the computable derandomization hypothesis does not

hold, we define the notion of semicomputable determinacy. The idea is that we will

allow our player to use only computable strategies, and allow the adversary unlimited

power. This models the worst case behavior of computable online problems.

Definition:An infinite game is semicomputably determinate (in terms of player I or

our player) iff either there is a computable strategy for our player that wins against

all strategies of player I1 (the adversary) or there is an adversary strategy that wins

against all computable strategies of our player.

2.1 Semicomputable Determinacy.

While all Bore1 games are determinate [Mar75], we would like to know, under what

topological conditions, a game is semicomputably determinate. First, we have

Theorem 8 .1 .1 . There is a semicomputably indeterminate closed game.

We give both players two choices of actions: ro, rl for the adversary and ao, a1 for our

player. We first give some intuition on the proof of the theorem. We need to partition

the set of all the paths into two sets A (the winning set for our player which is closed)

and B (the winning set for the adversary) such that for each computable strategy a

of our player, there exists an adversary strategy T such that (a, T) is in B (call this

condition Cl), and for each strategy T of the adversary, there exists a computable

strategy of our player a such that (a, T) is in A (call this condition C2). C1 and C2

force certain plays to be put in A and B, respectively, and we should make sure that

(A, B) is a partition. Moreover, we want a construction which makes A a closed set.

Observe that the indeterminacy proof given in [GS53] cannot be translated into

this case. Our result is obtained via a new method which may be useful in other similar

situations.

CHAPTER 2. MAIN THEOREMS

We construct A and B in stages. Initially both are empty. Let the computable

strategies of our player be ordered as a;, i = 0,1,2,. . .. Say that a strategy a is killed

in stage j, if we put (a, TI) E B for some strategy TI of the adversary in stage j .

Similarly for an adversary strategy. At each stage, we kill at least one a and perhaps

an uncountable number of TS, so that A and B remain disjoint and make sure that each

a and each T is killed in some finite stage without destroying the disjointness criterion.

A semicornputably indeterminate game is thus constructed. The construction will

guarantee that the A so constructed is closed. Now we give the technical details of the

result.

Proof. For simplicity, we assume each player has two choices at each step of their

plays: The adversary has move ro,rl and our player has move ao,al. We list all

(computable) strategies of our player in the set

such that a0 is the strategy that choose move a. all the time. Informally, we need to

construct a game with winning sets A for our player and B for the adversary such that

[Cl] for each a E C there is a T E 7 such that (a, T) E B;

[C2] for each T E 7 there is a a E C such that (a, T) E A.

Construction of A, B. Initially, we set

and B = 0. Let us denote the root of the game tree to be Level 0. Incrementally assign

level number to the tree. We will prune the tree in levels. First Level 1 is processed,

and then we show inductively how to process Level n for each n = 2,3,. . ..

Level 1. Denote by 17; all the strategies making first request as rl. We assign the

paths {(ao, T) : T E 17;) to the set B1 and all the other paths starting with rl are

assigned to A1. Update A t A U A1 and B t B U B1. Thus, Condition [Cl]

holds for a,-, and Condition [C2] holds for all T E q.

CHAPTER 2. MAIN THEOREMS 14

Level 2i. The following is the inductive assumption for the pruning process at

the end of Level 2i. Each remaining node at Level 2i is a descendent of the

adversary playing ro at all the past i requests. Thus, each node can be denoted

by an i-bit binary number corresponding to the plays made by our player from

the root to the node in the natural way. That is, each remaining node at level 2i

corresponds to the player answering in one of the 2"ossible ways to the requests

of the adversaries. Each such node can thus be encoded as an i-bit binary number

where the j th position is a O(1) if the player answers the j th request by ro (rl).

We say that a strategy a of the player is consistent with an i bit vector a: if

the player answers according to x in the sense just described. At node j, Cj

represents all our player strategies which are consistent with j up to this node.

Cj7s, j = oi, . , li, form a partition of the remaining members in C which does

not satisfy Condition [Cl] yet. All the adversary strategies remaining at node

j are those which make i consecutive requests of TO'S, when played against our

player which answers j correspondingly. We will denote them by '7j.

Level 2i + 1. Consider each node independently. Without loss of generality, let

us look at node 0;. Let

Denote by '&il all the strategies in zi which makes the (i + 1)-st request as rl .
We assign the paths {(aoi0, T) : T E '&ill to the set Boil and all the other paths

starting from oi and continuing with rl are assigned to Aoil. At Level 2i + 2,

according to the choice of our player, the strategy set for our player is partitioned

into two subset Coio, Coil, where the lists for Coio, Coil keep the same order as

the list in C. Thus, Condition [Cl] holds for aoi, and Condition [C2] holds for all

T E '&il. We also do the similar operations on all the nodes j of i bits. For all

j of i bits, Condition [Cl] holds for ajo and Condition [C2] holds for all T E $1.

Update the set A and B by assigning A t A u:L0i Ajl and B t B LJiL0i Bjl.

Correctness Proof. We now prove that Conditions [Cl] and [C2] are true for all

adversary strategies and our player's strategies. Notice that our player's strategies

CHAPTER 2. MAIN THEOREMS 15

are first enumerated in the set C and the ordering is kept when it is partitioned at

each level. For the first strategy a in Cj, there is an adversary strategy T such that

(a, T) E B, according to our pruning process. Therefore, for each i = 1,2, . . , ai
satisfies Condition [Cl] no later than Level 2i in our construction. To prove that

Condition [C2] holds for all adversary strategies, we consider two cases: one is the case

the adversary plays ro all the time; the other is the case the adversary plays an rl at

least once for some strategy. The first case is done by the initial assignment of the set

A. For the second case, we notice that, for any other strategy T of the adversary, it will

play an r l at least once for a strategy of our player at a finite level. If the strategy of

our player is not a computable strategy, we can simply truncate the infinite strategy

at that finite level and append it by always playing ao. This will be a computable

strategy a(7). Suppose j is the node for the first step the adversary plays an rl, then

the adversary strategy T will lose to O (T) at one path in '7jl. QED
In contrast, all open games with a finite choice space for the adversary have enough

mathematical structure to make them semicomputably determinate.

Theorem 2.1.2. All open games are semicomputably determinate, if the choice space

for the adversary is finite.

Proof. Assuming that there is no computable strategy for our player that wins against

all adversary strategies, we will show that there exists an adversary strategy that wins

against all computable strategies of our player. Let the adversary's choice space be rl

, . . . , r,. We claim that there is a request r by the adversary such that no computable

strategy of our player can win if the adversary uses r as the first request. If this were

not so, then for every request r; (1 5 i 5 n) , there is a computable strategy ai of our

player such that a; is a winning strategy against any adversary strategy which uses ri

as the first request. Thus the following computable strategy for our player:

If the first request is r l , play a1 else

0 If the first request is r,, play an

CHAPTER 2. MAIN THEOREMS 16

wins against any adversary strategy, a contradiction. A partial adversary strategy at

stage i is an adversary strategy when the game tree is truncated at stage i (that is,

at adversary's ith move). We say that a partial adversary strategy a at stage i + 1

extends a partial adversary strategy ,f3 at stage i , if a is the same as ,f3 upto stage

i. We prove by induction on stages that at any stage i , there is a partial adversary

strategy a; at stage i , which extends a;-1, such that if the adversary plays according

to a; until stage i , no computable strategy of our player can win against it. Towards

a contradiction, assume that there is a path p (which is necessarily finite) in a;-1 such

that there is an answer by our player at stage i - 1 such that if p is extended by this

answer, then for every request rk there is a computable strategy ak of our player such

that it wins against any adversary strategy which follows the partial path p. This, as

before gives us a computable strategy for our player that wins against any adversary

strategy which extends a;-1. Then a;-l is not a non-losing strategy for the adversary,

a contradiction. The union of ai's gives a complete adversary strategy that cannot

lose against any computable strategy of our player. As the adversary's winning set

is closed, this non-losing strategy of the adversary is also a winning strategy for the

adversary. QED
We also introduce a stronger theorem for the case where the choice space of our

player is also restricted to be finite.

Lemma 2.1.3. Suppose that the choice spaces for the adversary and the player are

both finite. Then for every open game, either there is an adversary strategy which wins

over all the strategies of our player, or there is a strategy that can be encoded by a finite

state machine of our player which wins over all the strategies of the adversary.

Proof. Suppose no adversary strategy wins over all computable strategies of our

player. Since open games are determinate [GS53], [Mar75], there is a strategy a

for our player which wins against all adversary strategies (although a may not be

computable). Consider the pruned tree T,. Since A is open, for each infinite path

in To, there is a node x on the path such that all the paths passing through x are

in A. We can thus remove all the children of x , and all the siblings of x as well as

their children, from the tree T, without changing the winllose situation of the tree.

CHAPTER 2. MAIN THEOREMS

The game tree thus pruned has no infinite path. Since both players have only a finite

number of choices at each node, the pruned tree is finite. Thus, if there is no adversary

winning strategy, our player can simply code the structure of the pruned tree into a

finite state machine and choose its moves accordingly. QED
We thus have the following corollary.

Corollary 2.1.4. For closed games, either there is a finite state adversary strategy

which wins against all strategies of our player or there is a strategy of our player which

wins against all adversary strategies, if the choice spaces for both the adversary and our

player are finite.

For the notion of strong competitiveness, the winning set of our player is closed. If

there is no deterministic winning strategy for our player, then the winning strategy

of the adversary will enable us to prune the tree to a finite tree, according to the

above corollary. We will thus easily conclude that there is no competitive randomized

strategy for our player. The result of [BDBK+9O], [RS89] for infinite games follows

immediately. The above corollary also implies that, if we allow our player to use

unlimited power, we only need to look for lower bounds by adversaries with a simple

computational power: finite state machines.

2.2 Applications to Online Algorithms.

While online problems are formulated as closed and Fu games, we would also like to

formulate closed and F, games as online problems such that there is a winning strategy

for our player in a given game iff there is an a-competitive online algorithm for the

corresponding online problem. This may not be true in general. However, for games

constructed in this thesis, we want to make sure that the above condition is satisfied.

First, we construct a game similar to the one given in the last section for this goal.

Theorem 2.2.1. There exists a semicomputably indeterminate F, game such that

there is a computable randomized strategy for our player, which wins almost surely.

CHAPTER 2. MAIN THEOREMS 18

Before going into the proof, we notice that the following two corollaries derived

from the theorem give us the desired results for strong competitiveness and weak

competitiveness, respectively.

Corollary 2.2.2. There exists an online problem for which there is no computable

deterministic strong competitive strategy but there is a computable, randomized, strongly

1-competitive strategy almost surely (that is, with probability 1).

Corollary 2.2.3. There exists an online problem of accumulative cost such that there

is a computable, randomized, weak 1-competitive strategy almost surely, but there is no

computable, deterministic, weak competitive strategy.

Proof. We follow a similar construction to the game in the last section. The change is

that in forming the sets A and B, we put all the paths irrelevant to the indeterminacy

into A instead of B. Initially, we will put all the paths (a;, T ~) into A, where TO is the

strategy that always requests ro. In level one, we will choose one strategy E ?; and

put (U ~ , T ') in Bl and put all the other paths starting with r l into Al. Similarly, at

node j, we will choose one strategy ~j E I, and put (ajo, ~ j) in Bjl and all the other

paths starting at node j and continuing with r l into Ajl. All other constructions follow

the same pattern. Similar to the proof in Theorem 1, the game can be shown to be

semicomputably indeterminate.

Consider the randomized algorithm which always chooses ao, a1 with probability

0.5 : 0.5. We claim that this simple (computable) randomized algorithm wins with

probability with probability 1. Consider a pruned tree T, corresponding to an arbitrary

adversary strategy T. From the construction of the winning set A, when the adversary

first chooses rl, the branch of T, starting from that node will contain exactly one

winning path for the adversary and our player wins almost surely starting from that

node. With this observation, we further prune T, as follows: Start from the root until a

request r l is encountered and delete the branch after that node. Thus, the only infinite

paths of the newly pruned tree will contain request ro only. Since those paths are all

in the winning set of our player, the randomized strategy wins almost surely in TT.

Because the game is semicomputably indeterminate, any given computable strategy is

doomed to lose to some adversary. QED

CHAPTER 2. MAIN THEOREMS

We may have different formulations of infinite games as online problems but we

shall use the two formulations defined below for our discussion.

If we adopt the concept of strong competitiveness, there is no need to require the

adversary's cost grow as the game is played. For the strong condition, intuitively,

we want to simply assign cost zero to each infinite path in the winning set of the

player, and cost one to each path in the adversary winning set. That answers our

question immediately. Strictly speaking, however, the preceding construction of the

cost function is not very precise, as it does not make sense to assign costs to infinite

paths when we are talking about online problems. Games for these problems are either

closed or F,, as we have seen above. In the case of closed games, we can assign a cost

of 1 to those nodes which are descendents of the defining nodes of the basic open sets

comprising the winning set of the adversary (a defining node of a basic open set is the

deepest node through which all the paths of the basic open set pass), and the rest of

the nodes are assigned the cost of 0. Similar assignments of the cost function can be

done for F, games. Corollary 2.2.2 follows immediately by assigning such cost function

since the randomized strategy has cost 0 almost surely.

However, one may want to have an accumulative cost function such that it increases

smoothly as the play proceeds and it is unbounded. For each request sequence, we

eliminate ro at the head of the sequence until the request rl is at the beginning. We

call the remaining request sequence the suffix. If all the requests leading to a node are

ro, the cost of reaching this node will be 0. For other nodes, the cost will be the number

of the requests on the suffix before the node which are coincident to an infinite path in

the winning set of the adversary. The cost of our player will be the cost of the node it

is on. The cost of the adversary will be the minimum cost over all the nodes with the

same request sequence (i.e., we consider an offline adaptive adversary). The cost of an

infinite path for our player is defined as the limit of the cost of its intermediate nodes.

The cost of the adversary is again defined as the minimum cost over all the infinite

paths with the same request sequence.

To prove Corollary 2.2.3, we want to use the accumulative cost function defined

above. First, let us consider an adversary which makes its first request on r l . In

the construction of the game, we notice that there is only one winning path for the

CHAPTER 2. MAIN THEOREMS 20

adversary from this node on. The adversary's cost will thus be 1 since it can avoid that

path by serving the first request with an answer which is not on that path. Since all the

paths except the one in the adversary's winning set in this pruned tree has bounded

cost, the randomized algorithm is 1-competitive almost surely. For the pruned tree

corresponding to each adversary strategy, we can take those nodes for which all but

the last request are ro and the last request is rl. From the construction of the game,

the conditional distributions from those branches on are the same as the above case.

Since paths with all requests being ro are in the winning set of our player anyway, the

result follows. We also notice that similar statements hold when we use the notion of

expected value for competitiveness instead of almost surely except that the expected

cost of the adversary is bounded. We can make the expected cost of the adversary

unbounded if we use instead the cost function which is the product of the original cost

function and the number of requests starting from the first r l in the path.

In this case, we achieve a competitive ratio of three, whereas no deterministic

algorithm can achieve a finite ratio. In fact, for the case where the first request is rl,

the best strategy for the adversary is to put requests only when our player answers

so that the resulting path coincides currently with the unique winning path of the

adversary, stopping whenever our player deviates from this path. The randomized

algorithm of our player will incur a cost of i2 at level i. For this adversary strategy,

our player incurs this cost of i2 with probability $ for all i > 1, and the adversary

incurs a cost of i with probability 3 for all i 2 1. So the expected cost of our player

is CP",, i2 * $ = 6, and the expected cost of the adversary is Czl i * $ = 2, resulting

in a competitive ratio of three. Observe that the expected cost of the adversary goes

to infinity if the adversary strategy truncates at the same level regardless of how our

player moves.

If a further restriction that the winning set be closed is imposed, we can choose an

open set of measure 6 which contains (ao, r l) to put in Bl and do similar things to all

the B(ils.

Theorem 2.2.4. For any 6 > 0, there exists a semicomputably indeterminate closed

game such that there is a computable randomized strategy for our player which wins

with probability 1 - 6 .

CHAPTER 2. MAIN THEOREMS

As an immediate corollary of Lemma 2.1.3, we have

Theorem 2.2.5. The computable derandomization hypothesis holds for all open

games.

2.3 Indeterminacy and Randomization

In the section, we discuss indeterminate infinite games and the power of randomization

in this case.

The results of [BDBK+SO] and [RS89] basically say that, for a determinate game,

whenever there is a randomized strategy for Player I, which wins with probability 1,

there is a deterministic winning strategy for Player I. If this result were extendible to

the indeterminate games, it would mean that, for every indeterminate game, there is

no randomized winning strategy for any of the players. The following theorem shows

that this does not happen. Moreover, this artificially constructed game has another

counter-intuitive implication: Even though Player I has a randomized strategy winning

almost surely against all the deterministic strategies of Player 11, that randomized

strategy does not necessarily win almost surely against all the randomized strategies of

Player 11. This theorem, which is apparently new, is a pure game theoretic result, and

hence might be of interest to descriptive set theorists and game theorists. For a good

introduction on infinite games, we refer the reader to [Mos80]. The book by Blackwell

and Girshick [BG64] is a good reference for randomized (or mixed) strategies.

Theorem 2.3.1. Assuming the Axiom of Choice and the Continuum hypothesis, there

is an indeterminate game for which Player I has a randomized winning strategy which

wins almost surely against any deterministic strategy of Player 11, and vice-versa.

The theorem shows that the [BDBK+SO] and [RS89] result is the best possible in

the sense that if we drop the condition that the game be determinate, the derandom-

ization hypothesis does not always hold. This result assumes the Axiom of Choice and

the Continuum Hypothesis. The Axiom of Choice seems necessary here because it is

not even known if indeterminate games exist in the absence of the Axiom of Choice.

CHAPTER 2. MAIN THEOREMS

Proof. We assume that each player has two choices at any point in the game. By

Axiom of Choice, we can well-order Player 1's deterministic strategies as a, for a < PO,
and Player 11's deterministic strategies as TO for ,8 < 2N0.

Our randomized strategy for either the Player I or I1 (6 and y, respectively) assigns

a probability of 0.5 to each of the two possible moves. We now construct the winning set

for Player I and that for Player I1 so that both these strategies are winning strategies

if the other player uses only deterministic strategies.

We need to satisfy the following conditions:

1. For each deterministic strategy a of Player I, only countably many paths in the

pruned tree corresponding to a belong to the winning set of Player I and the rest

belong to the winning set of Player 11.

2. For each deterministic strategy T of Player 11, only countably many paths in the

pruned tree corresponding to T can belong to the winning set of Player 11.

It is clear that if we can satisfy these conditions, then S wins with probability 1

against any deterministic strategy of Player 11, and y wins with probability 1 against

any deterministic strategy of Player I (Each path has probability measure 0, and by

the countable additivity of probability measure, countably many such paths will have

measure 0).

We say a deterministic strategy a is killed if we can satisfy Condition 1 for this a

(define killing of T symmetrically). We kill a's and T'S in stages. At stage a < 2 N ~ we

kill a, and then T, making sure that the winning sets of the two players are disjoint.

We denote the winning set of Player I by A and the winning set of Player I1 by B.

Initially, they are empty. They are updated in each stage by transfinite induction on

the stages.

At stage a, we put in B all paths of the pruned tree To, corresponding to a,, that

have not already been put in A. Then we put in A all paths of the pruned tree T,,

corresponding to T,, that have not already been put in B.

This completes the construction. It is easy to see that the disjointness condition

of A and B is automatically satisfied when these sets were constructed. We prove

CHAPTER 2. MAIN THEOREMS 23

Conditions 1 and 2 by transfinite induction on stages. To verify Condition 1, consider

stage a. In the pruned tree Tua for Player 1's strategy a,, the paths already put in A

are Tua n A. Since A C Up<aT7,, To, n A G Up<aTUa n TV. By Continuum Hypothesis,

each a < 2N0 is either finite or countable. Tua n TTp is a single path. Therefore,

To, n A G Up<aTua n TTp contains only a countable number of paths. This proves

Condition 1. Condition 2 can be proven similarly. QED
We notice that the above proof still works with minor modifications even if the

Continuum Hypothesis is replaced by a strictly weaker axiom, Martin's Axiom. One

of the consequences of Martin's Axiom is that for any cardinal K, strictly between No
and 2N0, the union of K sets (as subsets of R) of Lebesgue Measure 0 has Lebesgue

measure 0. The topology that we use for the game tree is similar to the real line,

and the probability measure on the paths induced by y or S is similar to the Lebesgue

Measure. So this consequence applies to our case.

Although the randomized strategy 6 for player I (7 for player 11) wins against all

deterministic strategies of player I1 (player I), it does not win against all randomized

strategies of player I1 (player I). In particular, S does not win against 7 (and vice

versa). Perhaps the power of randomization in this case results from its easy access to

all deterministic strategies at once.

We have addressed the situation where one player uses randomized strategy and

the other uses deterministic strategy. What happens when both use randomized

strategies? Is it possible to obtain an equilibrium solution? That is, is there a pair

of randomized strategies of the players such that none can gain by deviating from

this randomized strategy? The problem has been long open when the choice space

is continuous [Mos80]. We conjecture that this is true for games with universally

measurable winning sets. A set is universally measurable if it is measurable under

any probability measure. Even if the conjecture is confirmed, we still need to know if

there is an indeterminate game which is also universally measurable. For a complete

understanding of the exact power randomization provides to infinite games, we need

to resolve these problems.

Chapter 3

Conclusions to Part I

While the [BDBK+9O] and [RS89] results are a first step in under anding th

relationship of randomized strategies and deterministic strategies in online problems,

our study attempts to get a more refined understanding of this relationship in terms

of computability. The answer to our main question is not very satisfactory since it is

done by an artificially constructed problem. It would be much more interesting if this

could be done on natural problems.

Although online problems can be easily formulated as infinite games [BDBK+SO],

[RS89], there is no immediate transformation from the latter to the former. Even

though we tried to construct a game to emulate the behavior of online problems,

one may notice that the construction of the specific game for our main result needs

the power of enumerating all computable strategies, which makes the game noncom-

putable. Thus, there is still a gap to be filled between our result and the result of

[BDBK+9O], [RS89]. A more legitimate candidate for infinite games as online prob-

lems is closed computable games. A closed game is computable, if there is a Turing

machine which can test for membership of basic open sets of the winning set of the

adversary. We thus have an immediate question.

[I] Does randomization provide more power to computable closed games?

Another question is whether or not the result of [BDBK+90], [RS89] can be

strengthened to apply to semicomputably determinate games.

CHAPTER 3. CONCLUSIONS T O PART I

[2] Is there an a-competitive computable deterministic strategy if there is an

a-competitive randomized strategy against an off-line adaptive adversary and

the game is semicomputably determinate?

[BDBK+90], [RS89] also show that competitive ratio of a strategy versus offline

adaptive adversaries is related to that versus online adaptive adversaries by a quadratic

function. But the exact relative power of these two types of adversaries is still unknown.

In particular, does there exist an online problem which separates online adaptive

adversaries from offline adaptive adversaries?

There are two notions of separability that one can talk about. In the first notion,

we ask if there is a randomized algorithm for a problem, which is a-competitive

(for some a 2 1) against any on-line adversary, but not a-competitive against some

off-line adversary. This question was answered in the affirmative by Raghavan and

Snir [RS89]. However, there is another notion of separability. In this context, we

ask if there is an on-line problem for which there exists an a-competitive randomized

algorithm (for some a 2 1) against any on-line adversary, but there does not exist any

a-competitive randomized algorithm against an off-line adversary for the problem. A

negative answer to this question would give a positive answer to the k-server conjecture

for resistive metric spaces [CDRSSO].

[CDRSSO] give an example of an online problem where the two adversaries can

be separated, however this example is not very natural. Therefore, the question on

natural online problems remains open though we believe that they should be separable,

at least for some natural online problems.

[3] Can offline adaptive adversaries be separated from online adaptive adversaries

for a natural online problem?

We know that the k-server game whose winning set is defined by the set of all those

paths which achieve a ratio of less than c for any c < k is semicomputably determinate

from the lower bound results of [MMS88]. We also know from Fiat et al's result

[FRRSO] that when c > eO(k 'Ogk) , the k-server game is semicomputably determinate for

every metric space. (Observe that the 2-server game is semicomputably determinate

CHAPTER 3. CONCLUSIONS T O PART I 26

for any c and any metric space, as we have a computable algorithm [MMS88] whose

competitive ratio is 2).

[4] Can we show that the k-server game is semicomputably determinate when c

is in neither of these ranges?

Introduction to Part I1

4.1 Motivation

In this part of the thesis, we will be concerned with designing polynomial size formulas

for certain boolean functions. A formula is a rooted tree where the leaves are the

input variables and the internal nodes represent A, V, 1 operations or some other

operations taken from a predefined basis. An internal node such as an A is said to

represent (recursively) the AND of the functions represented by its children. The

function evaluated by a formula is the function represented by the root.

As there are 22n boolean functions on n variables, and there are only 2•‹(nk) functions

with representing formulas of size at O(nk), there are functions for which there do not

exist polynomial size formulas. As we wish to gain insight into how we can construct

polynomial size formulas for boolean functions, it seems advisable to look at simple

functions first. We will therefore restrict ourselves to what are known as monotone

symmetric boolean functions. These functions are symmetric in that they are insensitive

to the interchange of any two input variables, and they are monotone in that they can

be represented by formulas which only involve A and V gates.

For any monotone boolean function f , if the function is true for some truth

assignment of input variables, it cannot become false if any of the false input variable

is assigned to be true. It is clear that symmetric functions only depend on the number

of input variables which are set to true (or equivalently on the number of input

CHAPTER 4. INTRODUCTION T O PART II 28

variables which are set to false). For symmetric monotone functions, if the number

of true input variables is bigger than a certain threshold, then the function is true,

otherwise the function is false For this reason, symmetric monotone boolean functions

are also known as Threshold functions. Among the Threshold functions, we will be

particularly interested in the Majority function, which is defined as follows: If the

number of true input variables exceeds n/2 (n being the number of input variables),

then the function is true else it is false. The techniques that we describe to prove the

existence of polynomial size formulas for the Majority function can be extended to

other Threshold functions. The basis over which these formulas are constructed will

consist of A, V and small majority gates (that is, gates which compute the majority

function over a constant number of input variables).

To show good upper bounds on the size of the majority function, we will use

a technique called ampki fication, first developed by Valiant [Va184]. The idea of

this technique is to consider a simple random boolean formula that only approximately

computes a given function and then combine several independent copies of this formula

to prove the existence of a deterministic boolean formula that exactly computes the

function. Valiant [Val841 used amplification to prove the existence of 0(n5e3) size

formulas (where n is the number of variables) for majority over the basis {A, V)

(observe that the naive DNF formula for majority has exponentially many terms).

In order to prove his result, Valiant uses a random boolean function which is 1 with

probability p + O(l/n) when the input is more than half ones, and otherwise it is 1 with

probability p - O(l/n). Here 0 < p < 1 is a constant. Ideally we would like to have the

first probability to be 1 and the second one to be 0. Valiant amplifies the separation

(P - O(l/n), + O(1ln)) to (c, 1 - c) for some constant 0 < c < 1 by composing the

initial random boolean function with a deterministic boolean function of size 0(n3.27),

and then amplifies (c, 1 - c) to (2-n-1, 1 - 2-n-1) using an amplifier of size 0(n2).

Then using probabilistic arguments, it is easy to show that there is a deterministic

boolean formula of size 0(n5.3) which computes majority over n variables.

Boppana [Bop89] showed that Valiant achieved optimal amplification in both

stages. In particular, he showed that if one starts with an initial separation of

(p,p + l l n) (where 0 < p < 1 is a constant), then any read - once formula which

CHAPTER 4. INTRODUCTION TO PART 11 29

amplifies this to (c, 1 - c) has size 0(n3-27), and any read-once formula that amplifies

(c, 1 - c) to (2-n-1, 1 - 2-n-1) has size 0(n2). A read-once formula is one in which every

variable occurs at most once. Boppana uses a novel information theoretic argument to

prove his result. We will describe this argument in detail, in the next chapter.

Using ideas from Valiant and Boppana, we show the existence of optimal formulas

(upto amplification) for majority when small majority gates are allowed in the basis.

4.2 Overview of the Results

Suppose we have a probabilistic(random) Boolean formula (a Probabilistic Boolean

Formula is a random variable picked according to a specified probability distribution

on deterministic formulas) which approximates some Boolean function. The basic idea

behind amplification is to combine several independent copies of such probabilistic

formulas to prove the existence of small formulas for the function.

In 1984, Valiant [Val841 used amplification to show the existence of 0(n5.3) size

monotone formulas for majority. Boppana [Bop891 showed that amplification can not

yield better bounds. In both of these papers, the basis functions were {A, v).
As the amplifier obtained in [Val841 is optimal, a natural question which arises from

this work is whether we can get smaller size formulas if we use basis functions other

than A and V.

The first nontrivial symmetricmonotone function on more than 2 inputs is majority

on 3 inputs (we denote majority on i inputs by Mi). Using some techniques from

[Val841 and [Bop89], we show that there are 0(n4.29) size monotone formulas for the

nth majority function over the basis {A, V, M3). In this construction only M3 gates

are used in the formula. We also give a matching lower bound on formula size over

this basis. Combining these two results we obtain the surprising conclusion that, using

amplification, the optimal formula for majority over {A, V, M3) is a tree consisting of

only M3 gates.

We next extend our results to computing majority when the basis consists of

{A, V, M3, M5, . .. , M2k+l) where Ic is any fixed number. Here the optimal formula size
1

for the nth majority function is n3+ '(-I. Again these lower bounds are with respect

CHAPTER 4. INTRODUCTION T O PART I1

to amplification.

In amplification, an initial set of functions with some probability distribution is

required. Since different distributions will yield different bounds on formula size, the

choice of distribution is quite important. For example, if the set of formulas consists

of all functions and the distribution assigns probability 1 to the optimal majority

formula then we trivially obtain the optimal bound. In [Val841 the set consisting of

the projection functions and constant function 0 is chosen. Here we investigate a large

class of initial distributions and show that better bounds are not possible with these

distributions. Thus amplification technique used in [Val841 is optimal modulo both

the amplifier and any initial distribution from our class.

4.2.1 Previous Work

Valiant [Val841 was the first to use amplification to prove upper bounds of 0(n5.3) on

the size of monotone formulas for majority over the basis {A, v). Previous to this,

the best known upper bound was 0(n9.310gn) given by Friedman [Fri86]. Over the

basis {A, V, i), Paterson, Pippenger and Zwick [PPZ9O] showed that majority can be

computed by formulas of size 0(n4.85). For the lower bound, Khrapchenko [Khr72]

showed that over {A, V, 1) the formula size for majority is R(n2). No better bound is

known for {A, v).
A considerable amount of research has been dedicated to finding upper and lower

bounds for threshold functions. Boppana [Bop891 showed that over {A, v}, there is

a formula of size 0(k4-3nlog n) which computes the kth threshold function. He also

shows that Valiant's amplifier is optimal for both stages of the amplification process.

Observe however, that this does not show that Valiant's amplifier is optimal if one

were to directly go from a separation of (p, p + @(!)) to (2-"-', 1 - 2-"-'). Dubiner

and Zwick [DZ92] show that Valiant's amplifier is indeed optimal even in this sense.

They also show that Valiant's amplifier is optimal even if we include XOR gates in

the basis. Recently, Radhakrishnan [Radgl] has shown a lower bound of R(kn log &)
for monotone contact networks. This result improved over the previous lower bounds

of R(kn) due to Khrapchenko [Khr72] and R(n log n) due to Krichevskii [Kri64] and

CHAPTER 4. INTRODUCTION T O PART II

Hansel [Han64 J.

Chapter 5

Preliminaries

5.1 Basic Definitions

A monotone Boolean function is one which is non-decreasing in all it inputs, that is, if

some input is changed from a 0 to 1 (with other inputs unchanged) then the value of

the function cannot change from a 1 to a 0. If B is a set of monotone functions then

a monotone formula over 23 is a Boolean formula which only uses gates labelled by

functions from B. Z? is also called the basis over which the formula is constructed. In

general, we will not distinguish between a gate and the corresponding function of that

gate. The size of a Boolean formula (over 8) is the number of occurrences of variables.

A formula is read-once if every variable of the formula occurs exactly once.

For n odd, the nth majority function, Mn, is 1 iff more than half its inputs are 1.

Notice that Mn is monotone for every n.

Following the notation in [Bop89], for f : (0, lIn -, {0,1}, its amplification

function, Af : [O, 11 -, [O, 11 is given by

where X I , . . . , xn are independently chosen to be 1 with probability p. For 0 5
p, q,p1, q' 5 1, the function f amplifies (p, q) to (p', q') if AI(p) 5 p' and Af(q) 2 q'.

For 2) a distribution, the support of V, is the set of all elements of the underlying

universe which have non-zero probability.

CHAPTER 5. PRELIMINARIES 33

Let n = 2m + 1. Let yo, yl E {O,1)" be the set of all vectors having at most

m 1's and at least (m + 1) 1's respectively. For k;: E yi and 0 5 p < q 5 1, a

distribution D on deterministic formulas has separation (p, q) if P r (F (K) = 1) > q

and Pr(F(Yo) = 1) < p when F is chosen from D.
Let 21,. . . , xn be boolean indeterminates (that is, variables). Then sym(k, n) is the

set of all M2h+l's on all possible (21+1) indeterminates from {xl, . . . , I,). For example,

sym(l,4) is {M3(~1,52,53), M 3 (~ 1 , ~ 2 , ~ 4) , M3(51, x31 4, M3(~2, x3,54)). We denote

by D(k, n) the uniform distribution with support s y m(k, n).

Throughout this thesis, all logarithms will be base 2 unless otherwise specified.

The entropy function appears throughout the thesis.

Definition: The entropy function H : [O, 11 --+ [O, I] is defined as:

5.2 Intuition behind Amplification

Consider a probabilistic formula F which only approximately computes the majority

, function, that is the probability that F is 1 over vectors which have more than half

the number of ones is at least q and the probability that F is 0 over vectors which

have at most half the number of ones is at most p (where p < q). We call the interval

(p, q) the separation of F. Clearly, if q is 1 and p is 0, F exactly computes majority

(that is, every function in its support computes majority). However it is sufficient that

> 1 - 2-,-l and p 5 2-"-' since if we want at least one function in the support of q -
F to exactly compute M,) because then

So the Prob(F $ Mn) > f , and therefore there exists a function in the support

of F that exactly computes the majority. So how do we get an F with separation

CHAPTER 5. PRELIMINARIES

(2 n 1 , 1 - 2 n 1) ? Valiant starts out with a probabilistic formula G (with corre-

sponding distribution B) with separation (c, c + R(i)) where 0 < c < 1 is a constant.

He then amplifies the desired separation with the help of a deterministic boolean

function f (called the amplifier), that is, he composes f with G to get another proba-

bilistic formula F with separation (2-n-1, 1 - 2-n-1). The composition operation here

involves substituting independently, a copy from B for each variable in f . Valiant's

amplifier f is a tree of alternating A and V gates. Alternately, one can think of f as

iteratively amplifying the separation, that is at stage i + 1, we compose the function

g = (xl V x2) A (x3 V x4) with the probabilistic function at stage i. This means that we

draw 4 independent copies of the probabilistic formula at stage i and replace xl, x2, x3

and x4 respectively in g by them. Valiant then shows that O(1og n) stages are enough

to get the required separation. Note that the amplifying formula f so constructed is

read - once, that is every variable in it appears at most once.

To see that O(1og n) stages are enough, let p; be the probability that the random

formula at stage i is 0 on a vector which contains more than half the number of l's,

and q; be the probability that the random formula at stage i is 1 on a vector which

contains at most half the number of 1's. That is, pi's and q;'s are error probabilities.

Then p;+l and q;+l are some polynomial functions of pi and q; respectively, say g(p;)

and h(p;) respectively. Let us concentrate on qi's as the argument for pi's is similar.

We want to get to a stage i where qi is at most 2-n-1. h has a fixed point a where

0 < a < 1. If q; ever assumes the value a, the amplification process will stop. We can

avoid this problem by starting out with an initial probabilistic boolean function with

separation (a - R(!), a + R(!)). Now if qi = a - E, then by Taylor series expansion

around a, we have that q;+l = h(a) - h ' (a) ~ + 0(c2) = a - ht(a)c + 0(c2) since a is a

fixed point. Now it turns out that ht(a) > 1, so for any 1 < y < ht(a), we can choose

a constant k small enough such that if the q;'s are less than a - k, then

Then as qo = a - a(:), we can, in log,(n) iterations, get q; < a - k, that is we are able

to achieve a constant separation. Now after a further constant number of iterations,

we can get any desired constant separation.

CHAPTER 5. PRELIMINARIES 35

To get to a stage where q; < 2-n-1, it turns out that q;+l < dqT, where d is a large

enough constant. So if we have achieved a large enough constant separation, then in

a further log2(n) iterations we can get a separation of (2-n-1, 1 - 2-'+'). The size of

the formula so achieved is 410gr(n)+0(1)+10g2(n) = 0(n5.27)

Chapter 6

Computing Majority with Small

Majority Gates

In this chapter, we show there is a formula of size 0(n4.29) for M, over {A, V, M3}. In

the next section we will show that this bound is nearly optimal.

Let n = 2m + 1 and let V be the uniform distribution with support {XI,. . . , X,}

where Xi is the ith projection function (the ith projection function X; is defined as

follows: Xi (xl, . . . , x,) = xi). Then, for Y E yl, and F chosen from V, Pr(F(Y) =
1 a n d f o r Y ~ Y ~ , P ~ (F (Y) = l) < i - m . w;+50

We construct a sequence of probability distributions Do, Dl,. . . as follows:

2. Suppose we have constructed Vi. Then, Vi+l is defined as follows: Let Fl, F2, F3

be independently chosen from Vi. Then, F = M3(F1, F2, F3) is in Vi+l.

We note that this construction is equivalent to composing a read-once amplifying

function with the initial distribution Do.

Let F E V;. Then for Y E yl, let pi = Pr(F(Y) = 0) and for Y E Yo, let

qi = PT(F(Y) = 1). Here p; and q; are the probabilities that a function in Vi is

different from M, for Y E yl and Y E yo respectively. Let g(x) = 3x2 - 2x3. Then,

for Fl, F2, F3 E Vi and Y E Yl, we obtain that

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 37

and for Y E Yo,

The following lemma is not difficult.

1 Lemma 6.0.1. The only fixed point of g(x) in (0, l) is 2 .

Thus, i is the fixed point for both recurrence relations (i.e. for both p; and q;).

Note that Do was chosen so that this fixed point would lie in (qo, 1 - po).

Now, suppose that for some i, pi = i - r for some s > 0. Then, pi+l = ! - rg1(1/2) +
O(e2). Therefore

1 p; = - - 1
2

E * p;+1 = - - ry
2

for each y, 1 < y < g'(f) and a sufficiently small r. Since g'(i) = ?j we can choose such

a 7.
We can now show that there are constants c, c' independent of n such that after

k = logg.(; n + c iterations, pk, qk = ! and after a further k' = log n + d iterations,

pk+kl, qk+kl < 2-'+'. Using a standard probability argument, this implies the existence

of a deterministic formula for Mn of the same size. Since the formula size increases by
log 3+log3

a factor of 3 at each iteration, the size of the final formula is 3k+k' = 0 (n 3) w
0(n4v2').

In summary, our construction proceeds in two phases described by the following

lemmas.

log 3
Lemma 6.0.2. There is a formula of size O(n) which amplifies (qo, 1 - po) =

(; - q),; + q)), to (qk, 1 - P ~) = (a , s).
Lemma 6.0.3. There is a formula of size 0(n1•‹g3) which amplifies (i, i) to (2-"-', 1 -
2-n-1).

6.1 Nearlyoptimallower bounds for majorityover

In this section we prove the following two results.

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 38

Theorem 6.1.1.

1. Over the basis {A, V, M3), for 0 < p < 1 and n 2 1, every read-once formula that

amplifies (p, p+i) to (i, i) must have size a ((H (~) n) ~) where a = logs 3 w 2.709.
2

2. For any constant c, 0 < c < 1, every formula which amplifies (c, 1 - c) to

(2-"-', 1 - 2-"-') must have size fl(n1•‹g3).

Lemma 6.1.2. For all x, y E [O , 1] and y 2 1,

is a non-decreasing function with respect to y.

Proof: Without loss of generality assume that yH(x) 5 xH(y). Then, G(x, y, 7) =
YH z 7 H(xy) - xH(y)(l + (&))t . Since < 1 and y 2 1, (1 + (%)')$ is a

non-increasing function of y. Thus, G(x, y , y) is a non-decreasing function of y. QED

Lemma 6.1.3. Let ,B = log 3. Then, for all x, y, z E [0, 11,

F(x, y , 2) = (H(xy + yz + xz - 2xyz))' - ((y + z - 2yz)~(x))'-

((x + z - 2 x z) ~ (y)) ~ - ((3 + y - 2xy)~(z)) ' 2 0

Proof: We show that F(f , f , f) = 0 is a global minimum. From this the result clearly

follows. By checking the first partial derivatives and the Hessian of F [BL67], it is

straightforward to check that F reaches a local minimum at (f , f , f) . If one of x, y or z

is 0, say z = 0, then F(x, y, z) 2 0 iff G(x, y, 8) 2 0. But, G(x, y, .+) 2 0 [Bop891
log 2

and ,B 2 so by Lemma 6.1.2, the result holds in this case. A similar observation
log 2

can be made when one of x, y or z is 1.

Finally, for any point (xo, yo, zo) bounded away from (O,0, O), (1,1,1) and (I 2 ' 27 2) 9

we show the function is positive by a non-negligible amount, S(xo, yo, zo), by considering

an €-box (6 a function of (xo, yo, 20)) around the point. We consider the Taylor series
1 1 1 of F about (;, ?, ;) and take sufficient terms to make the remainder term less than

&(so, yo, 20). Since E can be chosen arbitrarily small, the result follows. QED

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 39

The remainder of this section is a proof of the main theorem. For any read-once

formula f , we first obtain an upper bound (in terms of size(f)) for A)(p) over the

basis {A, V, M3).

lo 3 Lemma 6.1.4. For f a read-once fonu la over the basis {A, V, M3) and a = log3f log2,

Proof: The proof is by structural induction on f . The case where size(f) = 1 is

trivial. For f = fl A f2 or f = fl V f 2 , the proof is similar to that in [Bop89]. Now,

Suppose f = M3(fl1 f i l f3). Then,

By the induction hypothesis,

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 40

To prove the theorem, we note the following observation first made in [Bop89] .
Let f be a function amplifying (p, p + l l n) to ($, i). Then by the mean-value theorem

of calculus, there is an r) , p 5 r) _< p + such that A;(q) = n(Aj(p + :) - A j(p)).
Since At(p + !) - Aj(p) > f , then by Lemma 6.1.4 (~ i z e (f)) ~ (~ & ~))) > Aj(q) > f
and thus part one of Theorem 6.1.1 holds.

For part 2 of the theorem, we begin with the following definitions which first appear

in [MS56]. Our choice of notation appears in [Bop89].

Definition: Let f be a boolean function. Then, Lo(f) is the minimum number of

variables of f which must be set to 0 to force f to 0. Similarly, Ll(f) is the minimum

number of variables which must be set to 1 to force f to 1.

It is clear that for any read-once monotone boolean formulas f , g and h

Theorem 6.1.1 follows from the following lemma:

Lemma 6.1.5. Let f be a read-once monotone formula over the basis {A, V, M3).
2

Then, Lo(f)Ll(f) 5 size(f)l.gs.

To see the theorem, we begin by noting that in [Bop89], it is shown that for any

constant 0 < c < 112, a function f which amplifies (c, 1 - c) to (2-n-1, 1 - 2-n-1) has

Lo(f) , Ll (f) 2 kn where k is a constant depending on c. Therefore, by the lemma,

Thus, size(f) > (kn)'"g3.

Proof of Lemma 6.1.5: We must first prove the following result: For every odd

n > 1 the formula g of size n which maximizes the product Lo(g) Ll (g) is the tree of

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 41

minimum height consisting entirely of M3 gates. This proof follows from the fact that

for a complete ternary tree of height k, the formula g obtained by labelling all internal

nodes by M3 has Lo(g) = Ll(g) = 2" Now induction on n gives this result.

The proof of the lemma is by structural induction on f . When f is fl A f2 or

fl V f2, it is straight-forward to verify the result. When f is M3(f1, f2, f3) then by

the above result, all f; are full ternary trees. Furthermore, all the f; must have the

same size otherwise we can increase the product Lo(f) Ll (f) by making the size of one

of the f;'s smaller and another bigger. Furthermore, for 1 5 i 5 3 we can choose f;

such that Lo(f;) and Ll(fi) is maximized. Therefore, Lo(fl) = Lo(f2) = Lo(f3) and

Ll(f1) = Ll(f2) = L3(f3) and

2
and 3- = 4, the result follows. Since size(fl) = QED

6.2 Computing majority with small majority gates

In this section we generalize the results of sections 6.0 and 6.1 to derive the upper and

lower bounds on the size of a formula over the basis Bk = {A, V, M3, M5, . . . , M2k+l)

for Mn using amplification. We begin with the upper bounds.

Theorem 6.8.1. Let k > 0 and a = log (2k+l Then:

1. Let 0 < p < 1 be fixed and n > 1. Then, there is a monotone read-once formula

over Bk of size O(na) which amplifies (p, p + !) to (i, q) .
8. There is a monotone read-once formula over Bk of size 0(n10gk+l(2k+1)) which

amplifies (i, 4) to (2-n-1, 1 - 2-n-1).

By composing the two functions from the theorem and observations made in the

previous section, we obtain the following corollary.

Corollary 6.2.2. Let k > 0. Then, there is a monotone read-once formula of size

O(na+lOgk+l 2k+1) where a is as in Theorem 6.8.1, which computes Mn over the basis &.

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 42

Before proving the theorem we require a number of combinatorial identities.

Lemma 6.2.3. Let r,s E N, r 2 s + 1 . Then,

Proof: We prove the lemma by downward induction on s. For s = r - 1, the assertion

is trivial. So let us assume that the assertion holds for all r - 1 > s > j. Then

by the induction hypothesis, which further equals

Lemma 6.2.4. Let k 2 1 . Then,

Proof: By straight-forward manipulation, we can reduce this problem to showing that

This further reduces to

But,

Now, using the substitution, x = y, the result follows.

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 43

Lemma 6.2.5. Let k 2 1. Then,

Proof: We can reduce the left-hand side of the identity to

k l i k and since Ci=o(-5) (;) = (i)*, the result follows. QED
We are now ready to prove the main theorems. We refer the reader to the first

section of this chapter for a more detailed analysis when k = 1. As in the case k = 1,

instead of using M3 in our iterative process, we now use M2k+1. The definition of p;

and qi is analogous to that in Section 3 except we now use 2k + 1 instead of 3 in our

distribution. We obtain the recurrence pj+l = g(pi) and q;+l = g(qi) where

Here the coefficients of g(x) are obtained using Lemma 6.2.3. By Lemma 6.2.4, i is a

fixed point of g. In fact, $ is the only fixed point in (0,l) . This is a key point since if

g had more than one fixed point in (0, l), we could never avoid getting stuck at one of

those points. Furthermore,

2k+l and by Lemma 6.2.5, g'(f) = (,)(k + ~) (! j) ~ ~ . Now, the size of the formula is

n l ~ g (g l (""lf-' 1).

For the second part, we see that for a large enough constant c, < q$+' and

similarly qi+l < cqf+'. Let e < fc-'/'. In t = O(1) iterations, we can amplify (f , $)
to (q 1 - e). Solving the two inequalities pi+l < cp;+l, q;+l < cq:+' we obtain that

Pi,Qi = 2(10g'+9)(k+1)i-9. Therefore after a further 1 0 g ~ + ~ n iterations, we will
lo 2 k + l

achieve a separation of (2-"-', 1 - 2-n-1). The size of the formula is n- which

yeilds the required result. QED

We now show the lower bounds. For the first phase we obtain the following:

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 44

Theorem 6.2.6. Let a = L e t O < c < 1 / 2 a n d O < p < l .
log(k+' (k+1)(3)~~) '

Then, for any monotone read-once formula f which ampliJies (p,p + :) to (c, 1 - c),

size(f E R ((H (P) ~) ~) .

We prove this theorem in the next section. For the second phase, we obtain the

following:

Theorem 6.2.7. Let 0 < c < 112. Let f be a monotone read-once formula over Bk
which amplifies (c, 1 - c) to (2-"-I, 1 - 2-"-') . Then, size(f) E fl(n'Og*+l (2k+1)).

The theorem follows in an analogous method to that in Section 6.1 from the

following lemma.

Lemma 6.2.8. For any monotone read-once formula f over the basis Bk,
2

Lo(f)Ll(f) 5 size(f) ' " ~ k + l (~ ~ + l ~ .

Since the proof of this lemma is similar to that of Lemma 6.1.5, we omit it.

6.3 Lower Bounds For the First Phase

In this section, we prove theorem 6.2.6.

log 2k+l Theorem 6.9.1. Let k > 0 and a = loac2k/l

Let 0 < p < 1 be fixed and n 2 1. Then every read-once formula over Bk which

amplifies (p,p + l l n) to (114,314) is of size f l ((H(~)n)&).

Every read-once formula over Bk which amplifies (1/4,3/4) to (2-"-l, 1 - 2-"-l)

is of size R(n10gk+1(2k+')).

To prove these results, we need to establish the following properties of the entropy

function.

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 45

Lemma 6.3.2. Let @ = 5 where a is as in Theorem 6.3.1. Let (7) represent the

collection of all subsets X the S = (1, ..., 2k + 1) with i elements. We represent the

characteristic function of a subset X of S by x x (that is xx(i) = 1 if i E X else it is

0). For any 0 5 xl, ..., xk+l 5 1, F(x1, ..., x2k+l) > 0 where

Proof: One can check that the function F reaches a local minimum at xl = ... =
1 x2k+1 = 2 and that F = 0 at XI = ... = x2k+1 = f . So if we can establish that in fact

F has a global minimum at xl = ... = x, = i, we will be done. That F has a global

minimum at this point can be obtained by met hods similar to the lower bound proof

as obtained for the case k = 1, that is for M3. QED

Theorem 6.3.3. Let f be a read-once formula over the basis {A, V, M3, ..., M2k+l)

which amplifies (c, c + i) to (1/4,3/4). Then size(f) E R((H(c)n)")) where a is as in

Theorem 6.3.1.

Proof: We first show that if f is any read-once formula over the basis
L H A

{A, V, M3, ..., M2k+l)r then Aj(p) 5 (size(f))- w. The proof is by structural

induction on formulas. If f is a single variable, then the proof follows trivially. If f is

of the form fl V f2, fl A f2 , the proof follows the same lines as in proof of Boppana's

theorem [Bop89]. If f is Mzk+l(fl, ..., fik+l), then

2k+1
A (p) = x (-l)'-'+' (i i l) x A~, (~)XX('))

i=k+1

Then taking the first derivatives of the both sides of this equation, using the Holder's

inequality, and the inequality for entropy in lemma 6.3.2, gives the result. QED
The proof of the main theorem of this section then follows as if f amplifies (p, p+ i)

to (1/4,3/4), then A (p) 5 1/4 and A (p+ i) 2 3/4 and hence by Mean value theorem,

there is a q such that p 5 q 5 p + i, such that Aj(q) = n/2, which when combined

with the above theorem gives the result.

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 46

6.4 Bounds on alternate distributions

Valiant in his original paper [Val841 considered a simple distribution with support

(0, XI,. . . , X,) where Xi is the ith projection function. Clearly, using amplification,

not every distribution (over Boolean functions) can be generated from this one. For

example, the distribution with support {XI + X2) cannot be obtained from any

distribution with support (0, XI, X2}. Boppana shows that any initial distribution

which obtains a separation (p, q) where q - p E O(i) cannot be used to obtain better

bounds. This immediately gives the result for Valiant's initial distribution.

In this section we study the problem of using amplification on alternate distri-

butions. Observe that proving results which hold for all distributions is tantamount

to proving categorical lower bounds for majority: Simply choose an initial distribu-

tion with support the optimal formula for majority. Here we prove that to compute

formulas for M,, if our initial distribution contains majority functions Mk then the

distribution does no better than Valiant's initial distribution, where the formula size

of Mk is that yielded by amplification over any of the bases discussed in this paper.

Throughout this section we will use the basis {A, V). Using the techniques from

the previous sections, we can obtain similar results over bases which also contain small

majority gates.

Recall that V(k, n) is the uniform distribution with support sym(k, n). It is easy

to see that for k # kt, V(k, n) cannot be generated from V(kt, n) using amplification.

Since majority is a symmetric function, we do not need to consider any distribution on

sym(k, n) other than D(k, n).

Theorem 6.4.1. Let k < n. Then, using the initial distribution V(k, n), the size of

the formula which amplifies the initial separation to a constant separation is R((n/k)"),
log 2 where a = log(&-1) .

Proof: To prove the theorem, we first compute the initial separation.

Let n = 2m + 1. Consider an x, y E { O , l) " where x contains (m + 1) 1's and

y contains m 1's. Then, for F a random variable in V(k, n), p = Pr(F(x) = 1) =

CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 47

2k+1 ~w and q = Pr(F(y) = 1) = ~~~~~, w,. Then, (q,p) is the C j = k + l 2k+l

separation of Vk and we asymptotically bound S = p - q.

Hence 6 E o(:) and p, q E O(1). Now using results in [Bop891 gives the result.

QED

Chapter 7

Conclusions to Part I1

We have shown that amplification can be used to show the existence of small formulas

for majority when small majority gates are allowed. As well, we have shown optimal

lower bounds on the size of these formulas.

We note that our techniques combined with those of Boppana [Bop891 can be

generalized to prove the existence of small formulas for threshold functions using small

majority gates. However, what happens if we also allow small threshold gates in the

formula? We conjecture that the bounds will not be improved.

The entropy function is used both in our proof and in [Bop89]. Recently, Bop-

pana [Bop911 has shown that in his proof the function

where $ = can also be used. We can show that no polynomial and in general

no function of the form f (x)' where f (x) is analytic and c 2 1 can be used both in

our case and in [Bop89]. In our case Boppana's new function also will not work. An

interesting question is whether there are other functions which will also work in our

case. Further work to determine a relationship between entropy and amplification is

required.

The work of Radhakrishnan [Radgl] suggests a new approach to computing lower

bounds on formula size for threshold functions on {A, v). Can this work be extended

to computing lower bounds for threshold functions using small majority gates?

CHAPTER 7. CONCLUSIONS TO PART I1 49

Finally, we find the question of which initial distribution is used to be quite in-

triguing. Our results imply that no distribution on sym(k, n) will improve the bounds.

Therefore a natural problem is to investigate new classes of initial distributions.

Bibliography

[BB65] R. Beckenbach and R. Bellman. Inequalities. Springer Verlag, 1965.

[BDBK+90] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On

the power of randomization in online algorithms. In Proceedings of the

22nd ACM Symposium on Theory of Computing, pages 379-386, 1990.

[BG64] D. Blackwell and M. Girshick. Theory of Games and Statistical Decisions.

John Wiley and Sons, Inc., 1964.

[BL67] Bers and Lipman. Calculus. Holt and Reinhart and Winston, 1967.

[Bop891 R. Boppana. Amplification of probabilistic boolean formulas. In S. Macali

and F. Preparata, editors, Advances in Computing Research, volume 5,

pages 27-45. Jai Press Inc., 1989.

[Bop911 R. Boppana, 1991. Private communication.

[CDRS9O] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on

weighted graphs, and application to on-line algorithms. In Proceedings

of the Twenty-Second Annual ACM Symposium on Theory of Computing,

pages 369-378, 1990.

[CT78] Y .S. Chow and H. Teicher. Probability Theory. Springer-Verlag, New

York, 1978.

[DM911 X. Deng and S. Mahajan. Infinite games: Randomization, computability

and applications to online problems. In Proceedings of the Twenty-Fourth

Annual ACMSymposium on Theory of Computing, pages 289-298, 1991.

BIBLIOGRAPHY 51

[DZ92] M. Dubiner and U. Zwick. Amplification and percolation. In Thirty-Third

Annual IEEE Symposium on Foundations of Computer Science, 1992.

[Fri86] J. Friedman. Constructing O(n log n) size monotone formulae for the kth

threshold function of n boolean variables. SIAM Journal on Computing,

15(3):641-654, 1986.

[FRRSO] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. In

Proceedings of the 31st Symposium on Foundations of Computer Science,

pages 454-463, 1990.

[GM92] A. Gupta and S. Mahajan. Using amplification to compute majority with

majority. In Preparation, 1992.

[GS53] D. Gale and F.M. Stewart. Infinite games with perfect information. In

W.H. Kuhn and A.W. Tucker, editors, Contributions to the Theory of

Games Vol. 11, Annals Mathematical Studies, volume 28, pages 245-266.

Princeton University Press, Princeton, New Jersey, 1953.

[Han64] G . Hansel. Nombre minimal de contacts de fermature nbcessaires pour

riliser une fonction boolkenne sym6trique de n variables. C.R. Acad. Sc.

Paris 258, pages 6037-6040, 1964.

[HT89] J.Y. Halpern and M.R. Tuttle. Knowledge, probability, and adversaries.

In Proceedings of the 8th Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 103-118, 1989.

[Khr72] V. Khrapchenko. A method of determining lower bounds for the com-

plexity of T-schemes. Math. Notes of the Academy of Sciences, USSR,

pages 474-479, 1972.

[Kri64] R. Krichevskii. Complexity of contact circuits realizing a function of

logical algebra. Soviet Physics Dokl., pages 770-772, 1964.

[Mar751 D.A. Martin. Bore1 determinacy. Annals of Mathematics, 102:363-371,

1975.

BIBLIOGRAPHY 52

[MMS88] M.S. Manasse, L. A. McGeoch, and D.D. Sleator. Competitive algorithms

for on-line problems. In Twentieth ACM Annual Symposium on Theory

of Computing, gages 322-333, 1988.

[Mos80] Y.N. Moschovakis. Descriptive Set Theory. North-Holland, New York,

1980.

[MS56] E. Moore and C. Shannon. Reliable circuits using less reliable relays.

Journal of the Franklin Institute, 262:191-208 and 281-297, 1956.

[PPZ90] M. Paterson, N. Pippenger, and U. Zwick. Faster circuits and shorter

formulae for multiple addit ion, multiplication and symmetric Boolean

functions. In 31St Symposium on the Foundations of Computer Science,

pages 642-650, 1990.

[Radgl] J. Radhakrishnan. Better bounds for threshold formulas. In 32"d Sympo-

sium on the Foundations of Computer Science, pages 314-323, 1991.

[RS89] P. Raghavan and M. Snir. Memory vs. randomization in online algorithms.

In proceedings of the 16th ICALP, 1989.

[ST851 D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and

paging rules. Communications of the A CM, 28(2):202-208, 1985.

[Val841 L. Valiant. Short monotone formulae for the majority function. Journal

of Algorithms, 5:363-366, 1984.

