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Abstract 

This thesis consists of two parts. The part on infinite games and online problems is 

joint work with Xiaotie Deng [DM911 and the second part which is on Amplification 

is work done jointly with Arvind Gupta [GM92]. 

In an online problem, requests come online, and they need to be answered without 

knowing future requests. Competitive ratio, a performance measure for an online 

algorithm, measures how well the algorithm performs against an optimal algorithm 

which knows all the requests in advance. It is the worst case ratio of the cost incurred by 

the online algorithm versus the cost of the optimal offline algorithm. If the competitive 

ratio of an online algorithm is not more than a, it is called an a-competitive algorithm. 

Ben-David, Borodin, Karp, Tardos and Wigderson(l990) initiated a systematic 

study of randomization in online problems. They formalized online problems as 

request-answer games, and also clarified several issues regarding randomization in 

online problems. They argued that several papers on randomized algorithms for online 

problems had used different notions of adversary. The different adversaries were then 

identified and formalized: oblivious adversary, adaptive online adversary, adaptive 

offline adversary. Among these, oblivious adversary is the weakest and adaptive offline 

adversary is the strongest. Among the several seminal theorems, they showed the 

following beautiful and simple theorem: 

Theorem [BDBK+90] .If there exists randomized online strategy for a problem that is 

a competitive against an adaptive offline adversary, then there exists an a competitive 

deterministic strategy. 

A natural question that arises in this context is whether this theorem can be made 

constructive. We show that it cannot. In fact, we show that there exists an online 

problem such that there is a very simple computable randomized strategy that is 1- 

competitive, but no deterministic computable strategy that is a-competitive for any 



finite a. 

We also show an interesting game-theoretic result which asserts that the BBKTW 

theorem is the tightest possible. 

In my thesis, I also consider the following issue: 

Consider a random boolean formula that approximately realizes a boolean function. 

Amplification (first proposed by Valiant) is a technique wherein several independent 

copies of the formula are combined in some manner to prove the existence of a formula 

that exactly computes the function. Valiant used amplification to produce polynomial 

size formulas for the majority function over the basis {A,  v). Boppana then showed 

that Valiant achieved best possible amplification. We use amplification to show the 

existence of small formulas for majority when the basis consists of small(fixed) majority 

gates. The obtained formula sizes are optimal modulo the amplification method. 
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Chapter 1 

Introduction to Part I 

Motivation 

Consider the following problem, called the paging problem which arises in design of 

most operating systems: Let us assume that the main memory has k pages. Every time 

there is a request for a page, the operating system looks at the main memory, and if 

the requisite page is in the memory (a hit), the page is read by the requesting process. 

Otherwise (a miss), the required page is in the secondary memory, and it replaces some 

page of the main memory. There is a non-negligible cost associated with a miss, so we 

need to minimize the number of misses. Now the question is: In the case of a miss, 

which page in the main memory should be replaced? If the operating system knew in 

advance, which page in the main memory would not be requested for the longest time 

into the future, one could replace such a page. However decisions have to be made 

online, that is, as requests are received,and the future is not certain. So we need to 

design a strategy for page replacement that will do well under all circumstances. In 

order to measure the performance of such a strategy, we compare its cost (measured in 

terms of the number of misses) versus the cost of an optimal algorithm which knows 

all the page requests in advance. 
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Background 

Let us assume we have a system which gets requests one at a time which must be 

served as soon as they are received. Further assume that each request can be served 

in one of several possible ways, and there is a cost associated with serving the request. 

The problem of servicing the requests so as to minimize the total cost is called an 

online problem. The method used to service the requests is an online strategy. If 

the strategy is computable, it is called an online algorithm. We define a state of the 

system to be all the information that must be known to determine the present and 

future behavior of the system. After serving the request, the system reaches a new 

state which also depends on the request, how the request is served and the old state 

of the system. The cost incurred in serving the request depends on the current state 

of the system, the request and the way in which the request is served. In the paging 

system example above, the state is all the pages in the main memory, and the cost in 

serving a given request is 0 in case of a hit and 1 othertwise. The cost of servicing a 

sequence of requests a using a strategy A is simply the sum of costs of servicing each 

request using A and is denoted costA(a). 

Sleator and Tarjan [ST851 introduced the notion of competitive ratio to measure 

the performance of online strategies. Competitive ratio of an online strategy A is 

defined to be the worst case ratio, over all finite request sequences a, of the cost 

incurred by A on a versus the cost incurred by an optimal strategy which knows all the 

requests in advance (or an ofline strategy) in a. To avoid trivialities, we will assume 

that the cost function is unbounded, that is, for every natural n, there is a request 

sequence a, such that the cost of the best offline strategy over a is bigger than n. In 

such a case, we can define a weaker notion of competitiveness. We say that a strategy 

A is a-competitive (in the weak sense) if for every request sequence a: 

costA (a) 
lim sup 5 

C O S ~ , ~ ~ ( ~ ) + O O  C O S ~ , ~  f (a) 

where costoff is the cost function of the best offline strategy, and d is a constant 

independent of a. 

Mannasse, Mcgeoch and Sleator [MMS88] defined the following canonical online 
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problem, called the k server problem: 

Let M be a metric space, and let k servers be placed on different points of M. 

Requests come, one at a time, at points of the metric space. A request is said to be 

served if one of the servers moves to the position of the request. The cost incurred in 

serving the request is the distance moved by the server. The cost to serve a sequence 

of requests is defined in the obvious manner. The problem is to design a strategy that 

compares well (in terms of cost) against the optimal offline strategy. 

This problem models a wide variety of problems such as the paging problem, 

where M is a uniform metric space. [MMS88] also show a lower bound of k for the 

competitive ratio. For k = 2, they also show an upper bound of 2 which completely 

solves the 2-server problem. Much effort has been spent in designing good algorithms 

when k > 2. Fiat, Rabani and Ravid [FRRSO] exhibit an algorithm that achieves 

competitive ratio of ( ~ ( e ~ ' " g ( ~ ) ) .  Before this, no algorithm was known which achieved 

a constant ratio independent of the cost of the sequence. 

Having discussed deterministic online algorithms, we now consider what happens 

if we give coin-flipping capability(randomization) to the algorithms. Before we start 

to meaningfully address this question, we have to clarify what randomization means 

for online problems. As we will see, depending on what we mean by randomization, it 

either helps us immensely or it does not help at all. 

Ben-David et a1 clarified the notion of randomization for online problems in their 

seminal paper [BDBK+SO]. They observed that online problems could be studied 

in terms of two person games between a player and an adversary. The adversary 

gives requests and the player serves the requests in one of several possible ways. The 

adversary also serves the requests and can use an optimal algorithm to serve its own 

requests. The competitive ratio at any point is the ratio of the player's cost to the 

adversary's cost. Suppose the player claims that he can achieve a competitive ratio 

of a. The job of the adversary is to make the competitive ratio bigger than a, so she 

gives requests keeping this in mind. If we are using the weak notion of competitive 

ratio, the adversary has to make the ratio bigger than a infinitely often, whereas if the 

stronger notion is used, then she only has to make the ratio bigger than a once. 

In the deterministicstrategy, the adversary knows how the player is going to behave 
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at any particular instant, so we can assume that she chooses the request sequence in 

advance. However, if the player adopts a randomized strategy (that is, he has the ability 

to throw coins and decide how to answer requests accordingly), then the adversary can 

either decide the request sequence in advance, or adapt her requests to the answers 

given by the player. Clearly, the second kind of adversary - the adaptive adversary, is 

at least as strong as the first - the oblivious (also called the weak adversary), and in 

fact is strictly stronger than the oblivious adversary as was shown in [BDBK+SO]. In 

the case of the oblivious adversary, since she knows the request sequence in advance, 

she uses the best offline algorithm to service her own requests. However the adaptive 

adversary does not know the request sequence in advance and only comes to know what 

requests she should give incrementally as the game progresses. Therefore it may make a 

difference whether she serves her own requests online or offline in computing her costs. 

The first kind of adaptive adversary is called a medium adversary and the second 

is called a strong adversary. We now have three different notions of randomization 

corresponding to the three different adversaries: oblivious or weak adversary, medium 

adversary and strong adversary. [BDBK+SO] show the following theorem in their 

paper: 

Theorem [BDBK+SO]: For an online problem, if there exists a randomized 

strategy that is a-competitive against a strong adversary, then there is a deterministic 

a-competitive strategy. 

This theorem shows that randomizing against a strong adversary does not help. 

[MMSSS] showed that if the weak notion of adversary is used, one can achieve a 

competitive ratio of log k for the k-server problem when the underlying metric space 

is uniform. On the other hand, the argument by [MMSSS] can be modified to show 

that any randomized online strategy for the k-server problem must have a competitive 

ratio of at least k against a medium adversary. This shows that the weak adversary is 

strictly weaker than the medium adversary. 
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1.3 Overview oft he Results 

In this thesis, we show that the derandomization thesis of [BDBK+SO] cannot be con- 

structivized. In particular, we show the existence of an online problem for which there 

is a 1-competitive randomized algorithm (that is, a computable strategy) against any 

offline adversary, but no a-competitive deterministic algorithm (that is, a computable 

strategy). To prove this main theorem, we need to define the notion of semicomputable 

determinacy which is analogous to the notion of determinacy in classical infinite game 

theory except that one player has access to only computable strategies and the other 

has access to all possible strategies. This models the notion of a computer playing 

against an infinitely powerful adversary. We will define these notions more carefully in 

a later section. We then prove some characterization theorems about semicomputable 

determinacy which help us establish our main results. We also show an elegant re- 

sult about classical infinite game theory. The derandomization thesis of [BDBK+SO] 

applies to any determinate game (as we shall see, online problems are special cases 

of determinate games). We show that the derandomization thesis does not hold for 

indeterminate games, that is, we construct an indeterminate game for which there 

exist randomized winning strategies for both players. This proof relies on the Axiom 

of Choice and the Continuum Hypothesis. Before we can meaningfully discuss our 

results, we give some preliminary background on topology and measure theory. 

1.4 Some Basics of Topology and Measure Theory 

Topology is a branch of mathematics that deals with mathematical properties that 

are invariant under deformations and continuous transformations. For the sake of 

illustration, we will study the real line. The E - S definition of continuous functions on 

the real line says that a function f is continuous at xo iff for every E > 0 there is a S > 0 

such that, whenever x differs from xo by at most 6, f (x) differs from f (so) by at most 

e.  Note that, as continuity is a topological property (that is, a continuous function 

remains continuous when we deform it and vice-versa), the preceding definition is 

not very satisfactory, as it depends on the notion of a metric on the real line. To 
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remedy this situation, we observe that, if a function f is discontinuous at some point 

xo (say when one approaches xo from the left, the function value is fl and when one 

approaches from the right, the function value is f2 where fl < f2),  then the inverse 

image of the open interval (fl, f2) (under f )  maps to the single point xo. This hints at 

the following definition of continuity: f is continuous iff whenever V is a disjoint union 

of open intervals, f-'(V) is also a disjoint union of open intervals. One can show that 

this definition of continuity and the E - S definition of continuity are equivalent, and 

therefore one can dispense with the e - S definition. 

In the real line situation, the disjoint unions of open sets are called open sets, 

and the collection of all open sets is called the natural topology. In general, we can 

have any arbitrary ground set X and define a topology on it as a collection of open 

sets(which are subsets of X )  which have the following properties: 

4 is open and X is open 

Arbitrary union of open sets is open 

Finite intersection of open sets is open 

Observe that disjoint unions of open intervals satisfy all these properties. Also 

observe that the word 'finite' in the third condition cannot be replaced by 'arbitrary' 

as the intersection of open intervals (2, i) for all positive integers n is {0} which 

is clearly not a union of disjoint open intervals. Also notice that there are trivial 

collections of subsets of X which satisfy the above properties, such as the collection 

{$,XI and the collection of all subsets of X. Under these two topologies, we do not 

get anything interesting. To make things non-trivial, we have to introduce what are 

called separation axioms. But we will not dwell on the niceties of such separation 

axioms, and instead talk about measures and measure spaces. 

To fix thoughts, consider again the real line. We wish to generalize the notion of 

length of an interval to arbitrary subsets of reals. One such generalization which is 

used in Lebesgue integration theory is the outer measure. If Y (a subset of reals) is 

an open set under the natural topology (that is, Y is a union of disjoint intervals), 

then the outer measure of Y is defined to be the sum of lengths of the disjoint intervals 
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contained in Y. Otherwise the outer measure of Y is defined to be the infimum over 

all open sets U which cover Y of the measure of U (intuitively it is the measure of 

the 'smallest' open set that is a superset of Y). It turns out that the outer measure 

satisfies the following properties: 

Subadditivity: The measure of a countable union of sets is less than or equal to 

sum of the measures of individual sets. 

0 Translation invariance: If every element of a set is translated by the same amount, 

the measure of the resulting set remains the same. 

0 Compatibility with the notion of length: The measure of an interval (open, 

half-open or closed) is its length. 

The second and third properties are definitely desirable, but the first is not as 

strong as we would like it to be. We would like to have the measure of countable union 

of mutually disjoint sets to be exactly the sum of the measures of the individual sets. 

It turns out that if we restrict ourselves to measurable sets, that is, those sets Y for 

which the measure of the 'largest' open set contained in Y and the measure of the 

'smallest' open set containing Y is the same, then we can change 'subadditivity' to 

'additivity'. It also turns out that measurable sets are closed under complementation 

and count able union. 

Consider the smallest collection of sets which contains all the open sets and is 

closed under complementation and countable union. The sets in this collection are 

measurable under any measure. These sets are given a special name: Bore1 sets. 

1.5 Background on Infinite Game Theory 

1.5.1 Definitions and Notations 

An infinite game is described as an infinite tree on which two players make their moves 

in turn, starting at the root. The tree may be finitely or infinitely branching. We only 

consider the case where the tree is finitely branching. The game is played by 2 players, 
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Player I our player and Player I1 the adversary. The set of all the infinite paths is 

partitioned into two subsets A and B, where A is the winning set for our player and B 

is the winning set of the adversary. Starting from the root ao, the adversary chooses 

a child a1 of ao, and then our player chooses a child a2 of al, and so on. In essence, 

the adversary and our player alternately choose the child of the current node. Our 

player wins if he can force the infinite path (ao, al, ....) to be in the set A; otherwise 

the adversary wins. A strategy T (a) for the adversary (our player) corresponds to 

a pruned tree T, (T,) from the original game tree on which each branching at even 

(odd) levels is pruned to allow at most one possible child. The resulting play (a, T) for 

a given T and a given a is specified by a path in the game tree. We call a a winning 

strategy for our player if for every T, (a, T) belongs to A. The winning strategies for 

the adversary are defined similarly. Finally, the game is determinate if either player 

has a winning strategy. 

We now define a topology on the set of all plays. A subset S of all the paths is 

defined to be open iff for every path (ao, al, ...) E S, there exists a number n such that, 

for a11 bn+l, bn+2, .. . , 
(ao, a1 . - - 7  an, bn+~, bn+2, ...) E S. 

A set of paths is closed if it is the complement of an open set. 

A game is open (closed) if the winning set of our player is open (closed). A set is 

called Fu (the a in the index is not to be confused with the request sequence a) if it is a 

union of countably many closed sets. We call a game F, if the winning set of our player 

is F,. In their classical paper on infinite games [GS53], Gale and Stewart showed 

that all open and closed games are determinate and that there exists a game that is 

indeterminate. Martin [Mar751 then showed that all Borel games are determinate (a 

game is Borel if the winning set of Player I (or 11) is Borel under the topology defined 

above). Observe that, in classical infinite game theory, there is no restriction on the 

strategies in terms of computability. 

In [BDBK+90], online problems are formulated as finite games, and Raghavan 

and Snir [RS89] give an infinite game formulation. Depending on the criteria of 

competitiveness, one may get different winning sets for an online problem. We provide 

a brief overview of this formulation. 
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Suppose that the adversary chooses requests from the request set {rl, r2....) and 

that our player can answer from the answer set {al, a2...) (called respectively, the 

choice sets of the adversary and the player). The online problem is then modeled as 

the following infinite game. 

The adversary and our player alternate between choosing a request from the request 

set and an answer from the answer set, respectively. Since both the adversary and our 

player can choose from several possible requests and answers respectively, this then 

describes an infinite game. The cost of our player OC at the stage of the game where 

our player has just answered a request, is a function of the history of the requests given 

by the adversary and the answers provided by our player and the answer currently 

given. We assume that OC is a monotonically non-decreasing function of the history of 

request-answer sequence to make this formulation of online problems meaningful. That 

is, OC(rl, al, ..., r,, a,) 5 OC(rl, al, ..., r,, a,, r,+l, a,+l). The cost of the adversary, 

denoted by AC is also a function of the history of the request sequence seen so far. 

However AC is only a function of the requests in this history and not the player's 

answers. In the case of the weak and strong adversaries, the function that defines 

AC is simply the optimal offline cost of serving the request sequence embedded in the 

request answer sequence seen so far, and in the case of the medium adversary, it is 

the online cost of serving the request sequence, when the medium adversary uses a 

particular online strategy to serve its own requests. At each stage of the game, the 

adversary's objective is to make the competitive ratio (so far) as large as possible, 

and our player's objective is to make the competitive ratio as small as possible. For 

instance, if our player claims that he can achieve a competitive ratio of a (in the 

strong sense), then our player wins if he can ascertain that at every stage of the game, 

the ratio achieved between our player's cost and adversary's cost so far is at most a, 

and the adversary wins if she can make this ratio bigger than a at least once. If the 

player claims that he can achieve a competitive ratio of a in the weak sense, then the 

adversary needs to make the ratio between our player's cost and the adversary's cost 

bigger than a infinitely often. 

Let us now formalize precisely what we have just described. A simple 

a-competitiveness requirement is defined by OC 5 a . AC. We will call this the 
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strong competitivecondition. When the cost function is accumulative, e.g., in the case 

of the server problem, strong competitiveness will define a closed game: The adversary 

wins iff the play reaches a node at which the condition is violated. Raghavan and Snir 

use a formulation which allows an arbitrary additive constant. This gives rise to a 

game with a winning set in F,: 

-a AC(x0, , xk) < i). 
Thus, infinite paths of constant cost are in the winning set. We call this the weak 

competitive condition. 

Without loss of generality, we assume that each player has two choices at each 

turn of their play. A randomized strategy for our player is a function that makes an 

assignment of probability to the choices aO, a1 depending on the position of the node 

on the game tree. We say a randomized strategy is computable if the probability 

distribution on the choice space is a computable function. As noted in [RS89, HT891, 

a statement about a randomized strategy is true if it is true for all adversary strategies. 

Thus, given a randomized strategy, we consider each deterministic strategy T of the 

adversary, and the induced probability distribution for the pruned tree T,. We specify 

a topology and a probability measure on the smallest a-algebra (a a-algebra is a 

collection of subsets of a given ground set, which is closed under countable unions 

and complementation) generated by the topology, by specifying the measure on all 

the basic open sets: A basic open set U is specified by a node x on T, such that it 

contains all the paths passing through x and its probability measure is the probability 

the randomized strategy reaches x. The measure is extended to all the Bore1 sets in 

the topology by a standard method described in any classical textbook in Measure 

Theory such as [CT78]. When we specify an adversary strategy T, a similar method 

is applied to define the conditional distribution on the pruned trees T,. Again, a 

randomized strategy is a-competitive almost surely, iff for all the pruned tree TT7 it is 

a-competitive almost surely with respect to this probability distribution. 



Chapter 2 

Main Theorems 

We mentioned in the last chapter that [BDBK+90] showed the following: 

Theorem 2.0.1. [BDBK+$O]: Given an online problem, whenever there is an a- 

competitive randomized strategy against the strong adversary, there is an a-competitive 

deterministic strategy. 

We call this the Derandomization Hypothesis. Now a natural question that arises 

is whether this derandomization can be constructivized. We show in this chapter that 

such is not the case. In fact, we show the following: 

Theorem 2.0.2. : There is an online problem for which there is a simple random- 

ized computable 1-competitive strategy, but no a-competitive deterministic computable 

strategy for any a. 

The main thrust of this chapter is to prove the above theorem. However, in 

order to prove the theorem, we will have to develop the concept of semicomputable 

determinacy which is interesting in its own right. 

In order to prove their theorems, [BDBK+90] and [RS89] use determinacy of finite 

and F, games respectively. The basic idea is that, because online problems can be 

modeled as F, games [RS89], (for the weak notion of competitive ratio), these games 

are determinate. We essentially need to show that, whenever there is a randomized 

winning strategy (say, for player I) in these games, then there is a deterministic winning 
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strategy for player I. Assume not. Then by the determinacy of these games, there is 

a deterministic winning strategy T for player 11. Now if player I1 plays according to 7 ,  

then no matter what probability distribution player I puts on his answers, he can never 

win, as all the paths in T are winning for 11. This is a contradiction to the hypothesis. 

As we need to establish that the computable derandomization hypothesis does not 

hold, we define the notion of semicomputable determinacy. The idea is that we will 

allow our player to use only computable strategies, and allow the adversary unlimited 

power. This models the worst case behavior of computable online problems. 

Definition:An infinite game is semicomputably determinate (in terms of player I or 

our player) iff either there is a computable strategy for our player that wins against 

all strategies of player I1 (the adversary) or there is an adversary strategy that wins 

against all computable strategies of our player. 

2.1 Semicomputable Determinacy. 

While all Bore1 games are determinate [Mar75], we would like to know, under what 

topological conditions, a game is semicomputably determinate. First, we have 

Theorem 8 .1 .1 .  There is a semicomputably indeterminate closed game. 

We give both players two choices of actions: ro, rl for the adversary and ao, a1 for our 

player. We first give some intuition on the proof of the theorem. We need to partition 

the set of all the paths into two sets A (the winning set for our player which is closed) 

and B (the winning set for the adversary) such that for each computable strategy a 

of our player, there exists an adversary strategy T such that (a, T) is in B (call this 

condition Cl),  and for each strategy T of the adversary, there exists a computable 

strategy of our player a such that (a, T) is in A (call this condition C2). C1 and C2 

force certain plays to be put in A and B,  respectively, and we should make sure that 

(A, B) is a partition. Moreover, we want a construction which makes A a closed set. 

Observe that the indeterminacy proof given in [GS53] cannot be translated into 

this case. Our result is obtained via a new method which may be useful in other similar 

situations. 
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We construct A and B in stages. Initially both are empty. Let the computable 

strategies of our player be ordered as a;, i = 0,1,2,. . .. Say that a strategy a is killed 

in stage j, if we put (a, TI) E B for some strategy TI of the adversary in stage j .  

Similarly for an adversary strategy. At each stage, we kill at least one a and perhaps 

an uncountable number of TS, so that A and B remain disjoint and make sure that each 

a and each T is killed in some finite stage without destroying the disjointness criterion. 

A semicornputably indeterminate game is thus constructed. The construction will 

guarantee that the A so constructed is closed. Now we give the technical details of the 

result. 

Proof. For simplicity, we assume each player has two choices at each step of their 

plays: The adversary has move ro,rl and our player has move ao,al. We list all 

(computable) strategies of our player in the set 

such that a0 is the strategy that choose move a. all the time. Informally, we need to 

construct a game with winning sets A for our player and B for the adversary such that 

[Cl] for each a E C there is a T E 7 such that (a, T) E B; 

[C2] for each T E 7 there is a a E C such that (a, T) E A. 

Construction of A, B. Initially, we set 

and B = 0. Let us denote the root of the game tree to be Level 0. Incrementally assign 

level number to the tree. We will prune the tree in levels. First Level 1 is processed, 

and then we show inductively how to process Level n for each n = 2,3,. . .. 

Level 1. Denote by 17; all the strategies making first request as rl. We assign the 

paths {(ao, T) : T E 17;) to the set B1 and all the other paths starting with rl are 

assigned to A1. Update A t A U A1 and B t B U B1. Thus, Condition [Cl] 

holds for a,-, and Condition [C2] holds for all T E q. 
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Level 2i. The following is the inductive assumption for the pruning process at 

the end of Level 2i. Each remaining node at Level 2i is a descendent of the 

adversary playing ro at all the past i requests. Thus, each node can be denoted 

by an i-bit binary number corresponding to the plays made by our player from 

the root to the node in the natural way. That is, each remaining node at level 2i 

corresponds to the player answering in one of the 2"ossible ways to the requests 

of the adversaries. Each such node can thus be encoded as an i-bit binary number 

where the j th position is a O(1) if the player answers the j th  request by ro (rl). 

We say that a strategy a of the player is consistent with an i bit vector a: if 

the player answers according to x in the sense just described. At node j, Cj 

represents all our player strategies which are consistent with j up to this node. 

Cj7s, j = oi, . , li, form a partition of the remaining members in C which does 

not satisfy Condition [Cl] yet. All the adversary strategies remaining at node 

j are those which make i consecutive requests of TO'S, when played against our 

player which answers j correspondingly. We will denote them by '7j. 

Level 2i + 1. Consider each node independently. Without loss of generality, let 

us look at node 0;. Let 

Denote by '&il all the strategies in zi which makes the (i + 1)-st request as rl . 
We assign the paths {(aoi0, T )  : T E '&ill to the set Boil and all the other paths 

starting from oi and continuing with rl are assigned to Aoil. At Level 2i + 2, 

according to the choice of our player, the strategy set for our player is partitioned 

into two subset Coio, Coil, where the lists for Coio, Coil keep the same order as 

the list in C. Thus, Condition [Cl] holds for aoi, and Condition [C2] holds for all 

T E '&il. We also do the similar operations on all the nodes j of i bits. For all 

j of i bits, Condition [Cl] holds for ajo and Condition [C2] holds for all T E $1. 

Update the set A and B by assigning A t A u:L0i Ajl and B t B LJiL0i Bjl. 

Correctness Proof. We now prove that Conditions [Cl] and [C2] are true for all 

adversary strategies and our player's strategies. Notice that our player's strategies 
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are first enumerated in the set C and the ordering is kept when it is partitioned at 

each level. For the first strategy a in Cj, there is an adversary strategy T such that 

(a, T )  E B, according to our pruning process. Therefore, for each i = 1,2, .  . , ai 
satisfies Condition [Cl] no later than Level 2i in our construction. To prove that 

Condition [C2] holds for all adversary strategies, we consider two cases: one is the case 

the adversary plays ro all the time; the other is the case the adversary plays an rl at 

least once for some strategy. The first case is done by the initial assignment of the set 

A. For the second case, we notice that, for any other strategy T of the adversary, it will 

play an r l  at least once for a strategy of our player at a finite level. If the strategy of 

our player is not a computable strategy, we can simply truncate the infinite strategy 

at that finite level and append it by always playing ao. This will be a computable 

strategy a(7). Suppose j is the node for the first step the adversary plays an rl, then 

the adversary strategy T will lose to O ( T )  at one path in '7jl. QED 
In contrast, all open games with a finite choice space for the adversary have enough 

mathematical structure to make them semicomputably determinate. 

Theorem 2.1.2. All open games are semicomputably determinate, if the choice space 

for the adversary is finite. 

Proof. Assuming that there is no computable strategy for our player that wins against 

all adversary strategies, we will show that there exists an adversary strategy that wins 

against all computable strategies of our player. Let the adversary's choice space be rl 

, . . . , r,. We claim that there is a request r by the adversary such that no computable 

strategy of our player can win if the adversary uses r as the first request. If this were 

not so, then for every request r; (1 5 i 5 n) ,  there is a computable strategy ai of our 

player such that a; is a winning strategy against any adversary strategy which uses ri 

as the first request. Thus the following computable strategy for our player: 

If the first request is r l ,  play a1 else 

0 If the first request is r,, play an 
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wins against any adversary strategy, a contradiction. A partial adversary strategy at 

stage i is an adversary strategy when the game tree is truncated at stage i (that is, 

at adversary's ith move). We say that a partial adversary strategy a at stage i + 1 

extends a partial adversary strategy ,f3 at stage i ,  if a is the same as ,f3 upto stage 

i. We prove by induction on stages that at any stage i ,  there is a partial adversary 

strategy a; at stage i ,  which extends a;-1, such that if the adversary plays according 

to a; until stage i ,  no computable strategy of our player can win against it. Towards 

a contradiction, assume that there is a path p (which is necessarily finite) in a;-1 such 

that there is an answer by our player at stage i - 1 such that if p is extended by this 

answer, then for every request rk there is a computable strategy ak of our player such 

that it wins against any adversary strategy which follows the partial path p. This, as 

before gives us a computable strategy for our player that wins against any adversary 

strategy which extends a;-1. Then a;-l is not a non-losing strategy for the adversary, 

a contradiction. The union of ai's gives a complete adversary strategy that cannot 

lose against any computable strategy of our player. As the adversary's winning set 

is closed, this non-losing strategy of the adversary is also a winning strategy for the 

adversary. QED 
We also introduce a stronger theorem for the case where the choice space of our 

player is also restricted to be finite. 

Lemma 2.1.3. Suppose that the choice spaces for the adversary and the player are 

both finite. Then for every open game, either there is an adversary strategy which wins 

over all the strategies of our player, or there is a strategy that can be encoded by a finite 

state machine of our player which wins over all the strategies of the adversary. 

Proof. Suppose no adversary strategy wins over all computable strategies of our 

player. Since open games are determinate [GS53], [Mar75], there is a strategy a 

for our player which wins against all adversary strategies (although a may not be 

computable). Consider the pruned tree T,. Since A is open, for each infinite path 

in To, there is a node x on the path such that all the paths passing through x are 

in A. We can thus remove all the children of x ,  and all the siblings of x as well as 

their children, from the tree T, without changing the winllose situation of the tree. 



CHAPTER 2. MAIN THEOREMS 

The game tree thus pruned has no infinite path. Since both players have only a finite 

number of choices at each node, the pruned tree is finite. Thus, if there is no adversary 

winning strategy, our player can simply code the structure of the pruned tree into a 

finite state machine and choose its moves accordingly. QED 
We thus have the following corollary. 

Corollary 2.1.4. For closed games, either there is a finite state adversary strategy 

which wins against all strategies of our player or there is a strategy of our player which 

wins against all adversary strategies, if the choice spaces for both the adversary and our 

player are finite. 

For the notion of strong competitiveness, the winning set of our player is closed. If 

there is no deterministic winning strategy for our player, then the winning strategy 

of the adversary will enable us to prune the tree to a finite tree, according to the 

above corollary. We will thus easily conclude that there is no competitive randomized 

strategy for our player. The result of [BDBK+9O], [RS89] for infinite games follows 

immediately. The above corollary also implies that, if we allow our player to use 

unlimited power, we only need to look for lower bounds by adversaries with a simple 

computational power: finite state machines. 

2.2 Applications to Online Algorithms. 

While online problems are formulated as closed and Fu games, we would also like to 

formulate closed and F, games as online problems such that there is a winning strategy 

for our player in a given game iff there is an a-competitive online algorithm for the 

corresponding online problem. This may not be true in general. However, for games 

constructed in this thesis, we want to make sure that the above condition is satisfied. 

First, we construct a game similar to the one given in the last section for this goal. 

Theorem 2.2.1. There exists a semicomputably indeterminate F, game such that 

there is a computable randomized strategy for our player, which wins almost surely. 
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Before going into the proof, we notice that the following two corollaries derived 

from the theorem give us the desired results for strong competitiveness and weak 

competitiveness, respectively. 

Corollary 2.2.2. There exists an online problem for which there is no computable 

deterministic strong competitive strategy but there is a computable, randomized, strongly 

1-competitive strategy almost surely (that is, with probability 1). 

Corollary 2.2.3. There exists an online problem of accumulative cost such that there 

is a computable, randomized, weak 1-competitive strategy almost surely, but there is no 

computable, deterministic, weak competitive strategy. 

Proof. We follow a similar construction to the game in the last section. The change is 

that in forming the sets A and B,  we put all the paths irrelevant to the indeterminacy 

into A instead of B. Initially, we will put all the paths (a;, T ~ )  into A, where TO is the 

strategy that always requests ro. In level one, we will choose one strategy E ?; and 

put ( U ~ , T ' )  in Bl and put all the other paths starting with r l  into Al. Similarly, at 

node j, we will choose one strategy ~j E I,  and put (ajo, ~ j )  in Bjl and all the other 

paths starting at node j and continuing with r l  into Ajl. All other constructions follow 

the same pattern. Similar to the proof in Theorem 1, the game can be shown to be 

semicomputably indeterminate. 

Consider the randomized algorithm which always chooses ao, a1 with probability 

0.5 : 0.5. We claim that this simple (computable) randomized algorithm wins with 

probability with probability 1. Consider a pruned tree T, corresponding to an arbitrary 

adversary strategy T. From the construction of the winning set A, when the adversary 

first chooses rl,  the branch of T, starting from that node will contain exactly one 

winning path for the adversary and our player wins almost surely starting from that 

node. With this observation, we further prune T, as follows: Start from the root until a 

request r l  is encountered and delete the branch after that node. Thus, the only infinite 

paths of the newly pruned tree will contain request ro only. Since those paths are all 

in the winning set of our player, the randomized strategy wins almost surely in TT. 

Because the game is semicomputably indeterminate, any given computable strategy is 

doomed to lose to some adversary. QED 
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We may have different formulations of infinite games as online problems but we 

shall use the two formulations defined below for our discussion. 

If we adopt the concept of strong competitiveness, there is no need to require the 

adversary's cost grow as the game is played. For the strong condition, intuitively, 

we want to simply assign cost zero to each infinite path in the winning set of the 

player, and cost one to each path in the adversary winning set. That answers our 

question immediately. Strictly speaking, however, the preceding construction of the 

cost function is not very precise, as it does not make sense to assign costs to infinite 

paths when we are talking about online problems. Games for these problems are either 

closed or F,, as we have seen above. In the case of closed games, we can assign a cost 

of 1 to those nodes which are descendents of the defining nodes of the basic open sets 

comprising the winning set of the adversary (a defining node of a basic open set is the 

deepest node through which all the paths of the basic open set pass), and the rest of 

the nodes are assigned the cost of 0. Similar assignments of the cost function can be 

done for F, games. Corollary 2.2.2 follows immediately by assigning such cost function 

since the randomized strategy has cost 0 almost surely. 

However, one may want to have an accumulative cost function such that it increases 

smoothly as the play proceeds and it is unbounded. For each request sequence, we 

eliminate ro at the head of the sequence until the request rl is at the beginning. We 

call the remaining request sequence the suffix. If all the requests leading to a node are 

ro, the cost of reaching this node will be 0. For other nodes, the cost will be the number 

of the requests on the suffix before the node which are coincident to an infinite path in 

the winning set of the adversary. The cost of our player will be the cost of the node it 

is on. The cost of the adversary will be the minimum cost over all the nodes with the 

same request sequence (i.e., we consider an offline adaptive adversary). The cost of an 

infinite path for our player is defined as the limit of the cost of its intermediate nodes. 

The cost of the adversary is again defined as the minimum cost over all the infinite 

paths with the same request sequence. 

To prove Corollary 2.2.3, we want to use the accumulative cost function defined 

above. First, let us consider an adversary which makes its first request on r l .  In 

the construction of the game, we notice that there is only one winning path for the 
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adversary from this node on. The adversary's cost will thus be 1 since it can avoid that 

path by serving the first request with an answer which is not on that path. Since all the 

paths except the one in the adversary's winning set in this pruned tree has bounded 

cost, the randomized algorithm is 1-competitive almost surely. For the pruned tree 

corresponding to each adversary strategy, we can take those nodes for which all but 

the last request are ro and the last request is rl. From the construction of the game, 

the conditional distributions from those branches on are the same as the above case. 

Since paths with all requests being ro are in the winning set of our player anyway, the 

result follows. We also notice that similar statements hold when we use the notion of 

expected value for competitiveness instead of almost surely except that the expected 

cost of the adversary is bounded. We can make the expected cost of the adversary 

unbounded if we use instead the cost function which is the product of the original cost 

function and the number of requests starting from the first r l  in the path. 

In this case, we achieve a competitive ratio of three, whereas no deterministic 

algorithm can achieve a finite ratio. In fact, for the case where the first request is rl,  

the best strategy for the adversary is to put requests only when our player answers 

so that the resulting path coincides currently with the unique winning path of the 

adversary, stopping whenever our player deviates from this path. The randomized 

algorithm of our player will incur a cost of i2 at level i. For this adversary strategy, 

our player incurs this cost of i2 with probability $ for all i > 1, and the adversary 

incurs a cost of i with probability 3 for all i 2 1. So the expected cost of our player 

is CP",, i2 * $ = 6, and the expected cost of the adversary is Czl i * $ = 2, resulting 

in a competitive ratio of three. Observe that the expected cost of the adversary goes 

to infinity if the adversary strategy truncates at the same level regardless of how our 

player moves. 

If a further restriction that the winning set be closed is imposed, we can choose an 

open set of measure 6 which contains (ao, r l )  to put in Bl and do similar things to all 

the B(ils. 

Theorem 2.2.4. For any 6 > 0, there exists a semicomputably indeterminate closed 

game such that there is a computable randomized strategy for our player which wins 

with probability 1 - 6 .  
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As an immediate corollary of Lemma 2.1.3, we have 

Theorem 2.2.5. The computable derandomization hypothesis holds for all open 

games. 

2.3 Indeterminacy and Randomization 

In the section, we discuss indeterminate infinite games and the power of randomization 

in this case. 

The results of [BDBK+SO] and [RS89] basically say that, for a determinate game, 

whenever there is a randomized strategy for Player I, which wins with probability 1, 

there is a deterministic winning strategy for Player I. If this result were extendible to 

the indeterminate games, it would mean that, for every indeterminate game, there is 

no randomized winning strategy for any of the players. The following theorem shows 

that this does not happen. Moreover, this artificially constructed game has another 

counter-intuitive implication: Even though Player I has a randomized strategy winning 

almost surely against all the deterministic strategies of Player 11, that randomized 

strategy does not necessarily win almost surely against all the randomized strategies of 

Player 11. This theorem, which is apparently new, is a pure game theoretic result, and 

hence might be of interest to descriptive set theorists and game theorists. For a good 

introduction on infinite games, we refer the reader to [Mos80]. The book by Blackwell 

and Girshick [BG64] is a good reference for randomized (or mixed) strategies. 

Theorem 2.3.1. Assuming the Axiom of Choice and the Continuum hypothesis, there 

is an indeterminate game for which Player I has a randomized winning strategy which 

wins almost surely against any deterministic strategy of Player 11, and vice-versa. 

The theorem shows that the [BDBK+SO] and [RS89] result is the best possible in 

the sense that if we drop the condition that the game be determinate, the derandom- 

ization hypothesis does not always hold. This result assumes the Axiom of Choice and 

the Continuum Hypothesis. The Axiom of Choice seems necessary here because it is 

not even known if indeterminate games exist in the absence of the Axiom of Choice. 
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Proof. We assume that each player has two choices at any point in the game. By 

Axiom of Choice, we can well-order Player 1's deterministic strategies as a, for a < PO, 
and Player 11's deterministic strategies as TO for ,8 < 2N0. 

Our randomized strategy for either the Player I or I1 (6 and y, respectively) assigns 

a probability of 0.5 to each of the two possible moves. We now construct the winning set 

for Player I and that for Player I1 so that both these strategies are winning strategies 

if the other player uses only deterministic strategies. 

We need to satisfy the following conditions: 

1. For each deterministic strategy a of Player I, only countably many paths in the 

pruned tree corresponding to a belong to the winning set of Player I and the rest 

belong to the winning set of Player 11. 

2. For each deterministic strategy T of Player 11, only countably many paths in the 

pruned tree corresponding to T can belong to the winning set of Player 11. 

It is clear that if we can satisfy these conditions, then S wins with probability 1 

against any deterministic strategy of Player 11, and y wins with probability 1 against 

any deterministic strategy of Player I (Each path has probability measure 0, and by 

the countable additivity of probability measure, countably many such paths will have 

measure 0). 

We say a deterministic strategy a is killed if we can satisfy Condition 1 for this a 

(define killing of T symmetrically). We kill a's and T'S in stages. At stage a < 2 N ~  we 

kill a, and then T, making sure that the winning sets of the two players are disjoint. 

We denote the winning set of Player I by A and the winning set of Player I1 by B. 

Initially, they are empty. They are updated in each stage by transfinite induction on 

the stages. 

At stage a, we put in B all paths of the pruned tree To, corresponding to a,, that 

have not already been put in A. Then we put in A all paths of the pruned tree T,, 

corresponding to T,, that have not already been put in B. 

This completes the construction. It is easy to see that the disjointness condition 

of A and B is automatically satisfied when these sets were constructed. We prove 
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Conditions 1 and 2 by transfinite induction on stages. To verify Condition 1, consider 

stage a. In the pruned tree Tua for Player 1's strategy a,, the paths already put in A 

are Tua n A. Since A C Up<aT7,, To, n A G Up<aTUa n TV. By Continuum Hypothesis, 

each a < 2N0 is either finite or countable. Tua n TTp is a single path. Therefore, 

To, n A G Up<aTua n TTp contains only a countable number of paths. This proves 

Condition 1. Condition 2 can be proven similarly. QED 
We notice that the above proof still works with minor modifications even if the 

Continuum Hypothesis is replaced by a strictly weaker axiom, Martin's Axiom. One 

of the consequences of Martin's Axiom is that for any cardinal K, strictly between No 
and 2N0, the union of K sets (as subsets of R) of Lebesgue Measure 0 has Lebesgue 

measure 0. The topology that we use for the game tree is similar to the real line, 

and the probability measure on the paths induced by y or S is similar to the Lebesgue 

Measure. So this consequence applies to our case. 

Although the randomized strategy 6 for player I (7 for player 11) wins against all 

deterministic strategies of player I1 (player I), it does not win against all randomized 

strategies of player I1 (player I). In particular, S does not win against 7 (and vice 

versa). Perhaps the power of randomization in this case results from its easy access to 

all deterministic strategies at once. 

We have addressed the situation where one player uses randomized strategy and 

the other uses deterministic strategy. What happens when both use randomized 

strategies? Is it possible to obtain an equilibrium solution? That is, is there a pair 

of randomized strategies of the players such that none can gain by deviating from 

this randomized strategy? The problem has been long open when the choice space 

is continuous [Mos80]. We conjecture that this is true for games with universally 

measurable winning sets. A set is universally measurable if it is measurable under 

any probability measure. Even if the conjecture is confirmed, we still need to know if 

there is an indeterminate game which is also universally measurable. For a complete 

understanding of the exact power randomization provides to infinite games, we need 

to resolve these problems. 
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Conclusions to Part I 

While the [BDBK+9O] and [RS89] results are a first step in under anding th 

relationship of randomized strategies and deterministic strategies in online problems, 

our study attempts to get a more refined understanding of this relationship in terms 

of computability. The answer to our main question is not very satisfactory since it is 

done by an artificially constructed problem. It would be much more interesting if this 

could be done on natural problems. 

Although online problems can be easily formulated as infinite games [BDBK+SO], 

[RS89], there is no immediate transformation from the latter to the former. Even 

though we tried to construct a game to emulate the behavior of online problems, 

one may notice that the construction of the specific game for our main result needs 

the power of enumerating all computable strategies, which makes the game noncom- 

putable. Thus, there is still a gap to be filled between our result and the result of 

[BDBK+9O], [RS89]. A more legitimate candidate for infinite games as online prob- 

lems is closed computable games. A closed game is computable, if there is a Turing 

machine which can test for membership of basic open sets of the winning set of the 

adversary. We thus have an immediate question. 

[I] Does randomization provide more power to computable closed games? 

Another question is whether or not the result of [BDBK+90], [RS89] can be 

strengthened to apply to semicomputably determinate games. 
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[2] Is there an a-competitive computable deterministic strategy if there is an 

a-competitive randomized strategy against an off-line adaptive adversary and 

the game is semicomputably determinate? 

[BDBK+90], [RS89] also show that competitive ratio of a strategy versus offline 

adaptive adversaries is related to that versus online adaptive adversaries by a quadratic 

function. But the exact relative power of these two types of adversaries is still unknown. 

In particular, does there exist an online problem which separates online adaptive 

adversaries from offline adaptive adversaries? 

There are two notions of separability that one can talk about. In the first notion, 

we ask if there is a randomized algorithm for a problem, which is a-competitive 

(for some a 2 1) against any on-line adversary, but not a-competitive against some 

off-line adversary. This question was answered in the affirmative by Raghavan and 

Snir [RS89]. However, there is another notion of separability. In this context, we 

ask if there is an on-line problem for which there exists an a-competitive randomized 

algorithm (for some a 2 1) against any on-line adversary, but there does not exist any 

a-competitive randomized algorithm against an off-line adversary for the problem. A 

negative answer to this question would give a positive answer to the k-server conjecture 

for resistive metric spaces [CDRSSO]. 

[CDRSSO] give an example of an online problem where the two adversaries can 

be separated, however this example is not very natural. Therefore, the question on 

natural online problems remains open though we believe that they should be separable, 

at least for some natural online problems. 

[3] Can offline adaptive adversaries be separated from online adaptive adversaries 

for a natural online problem? 

We know that the k-server game whose winning set is defined by the set of all those 

paths which achieve a ratio of less than c for any c < k is semicomputably determinate 

from the lower bound results of [MMS88]. We also know from Fiat et al's result 

[FRRSO] that when c > eO(k 'Ogk) ,  the k-server game is semicomputably determinate for 

every metric space. (Observe that the 2-server game is semicomputably determinate 



CHAPTER 3. CONCLUSIONS T O  PART I 26 

for any c and any metric space, as we have a computable algorithm [MMS88] whose 

competitive ratio is 2). 

[4] Can we show that the k-server game is semicomputably determinate when c 

is in neither of these ranges? 



Introduction to Part I1 

4.1 Motivation 

In this part of the thesis, we will be concerned with designing polynomial size formulas 

for certain boolean functions. A formula is a rooted tree where the leaves are the 

input variables and the internal nodes represent A, V, 1 operations or some other 

operations taken from a predefined basis. An internal node such as an A is said to 

represent (recursively) the AND of the functions represented by its children. The 

function evaluated by a formula is the function represented by the root. 

As there are 22n boolean functions on n variables, and there are only 2•‹(nk) functions 

with representing formulas of size at O(nk), there are functions for which there do not 

exist polynomial size formulas. As we wish to gain insight into how we can construct 

polynomial size formulas for boolean functions, it seems advisable to look at simple 

functions first. We will therefore restrict ourselves to what are known as monotone 

symmetric boolean functions. These functions are symmetric in that they are insensitive 

to the interchange of any two input variables, and they are monotone in that they can 

be represented by formulas which only involve A and V gates. 

For any monotone boolean function f ,  if the function is true for some truth 

assignment of input variables, it cannot become false if any of the false input variable 

is assigned to be true. It is clear that symmetric functions only depend on the number 

of input variables which are set to true (or equivalently on the number of input 
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variables which are set to false). For symmetric monotone functions, if the number 

of true input variables is bigger than a certain threshold, then the function is true, 

otherwise the function is false For this reason, symmetric monotone boolean functions 

are also known as Threshold functions. Among the Threshold functions, we will be 

particularly interested in the Majority function, which is defined as follows: If the 

number of true input variables exceeds n/2 (n being the number of input variables), 

then the function is true else it is false. The techniques that we describe to prove the 

existence of polynomial size formulas for the Majority function can be extended to 

other Threshold functions. The basis over which these formulas are constructed will 

consist of A, V and small majority gates (that is, gates which compute the majority 

function over a constant number of input variables). 

To show good upper bounds on the size of the majority function, we will use 

a technique called ampki fication, first developed by Valiant [Va184]. The idea of 

this technique is to consider a simple random boolean formula that only approximately 

computes a given function and then combine several independent copies of this formula 

to prove the existence of a deterministic boolean formula that exactly computes the 

function. Valiant [Val841 used amplification to prove the existence of 0(n5e3) size 

formulas (where n is the number of variables) for majority over the basis {A, V) 

(observe that the naive DNF formula for majority has exponentially many terms). 

In order to prove his result, Valiant uses a random boolean function which is 1 with 

probability p + O(l/n) when the input is more than half ones, and otherwise it is 1 with 

probability p - O(l/n). Here 0 < p < 1 is a constant. Ideally we would like to have the 

first probability to be 1 and the second one to be 0. Valiant amplifies the separation 

(P - O(l/n), + O(1ln)) to (c, 1 - c) for some constant 0 < c < 1 by composing the 

initial random boolean function with a deterministic boolean function of size 0(n3.27), 

and then amplifies (c, 1 - c) to (2-n-1, 1 - 2-n-1) using an amplifier of size 0(n2). 

Then using probabilistic arguments, it is easy to show that there is a deterministic 

boolean formula of size 0(n5.3) which computes majority over n variables. 

Boppana [Bop89] showed that Valiant achieved optimal amplification in both 

stages. In particular, he showed that if one starts with an initial separation of 

(p,p + l l n )  (where 0 < p < 1 is a constant), then any read - once formula which 
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amplifies this to (c, 1 - c) has size 0(n3-27), and any read-once formula that amplifies 

(c, 1 - c) to (2-n-1, 1 - 2-n-1) has size 0(n2). A read-once formula is one in which every 

variable occurs at most once. Boppana uses a novel information theoretic argument to 

prove his result. We will describe this argument in detail, in the next chapter. 

Using ideas from Valiant and Boppana, we show the existence of optimal formulas 

(upto amplification) for majority when small majority gates are allowed in the basis. 

4.2 Overview of the Results 

Suppose we have a probabilistic(random) Boolean formula (a Probabilistic Boolean 

Formula is a random variable picked according to a specified probability distribution 

on deterministic formulas) which approximates some Boolean function. The basic idea 

behind amplification is to combine several independent copies of such probabilistic 

formulas to prove the existence of small formulas for the function. 

In 1984, Valiant [Val841 used amplification to show the existence of 0(n5.3) size 

monotone formulas for majority. Boppana [Bop891 showed that amplification can not 

yield better bounds. In both of these papers, the basis functions were {A, v). 
As the amplifier obtained in [Val841 is optimal, a natural question which arises from 

this work is whether we can get smaller size formulas if we use basis functions other 

than A and V. 

The first nontrivial symmetricmonotone function on more than 2 inputs is majority 

on 3 inputs (we denote majority on i inputs by Mi). Using some techniques from 

[Val841 and [Bop89], we show that there are 0(n4.29) size monotone formulas for the 

nth majority function over the basis {A, V, M3). In this construction only M3 gates 

are used in the formula. We also give a matching lower bound on formula size over 

this basis. Combining these two results we obtain the surprising conclusion that, using 

amplification, the optimal formula for majority over {A, V, M3) is a tree consisting of 

only M3 gates. 

We next extend our results to computing majority when the basis consists of 

{A, V, M3, M5, . .. , M2k+l) where Ic is any fixed number. Here the optimal formula size 
1 

for the nth majority function is n3+ '(-I. Again these lower bounds are with respect 
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to amplification. 

In amplification, an initial set of functions with some probability distribution is 

required. Since different distributions will yield different bounds on formula size, the 

choice of distribution is quite important. For example, if the set of formulas consists 

of all functions and the distribution assigns probability 1 to the optimal majority 

formula then we trivially obtain the optimal bound. In [Val841 the set consisting of 

the projection functions and constant function 0 is chosen. Here we investigate a large 

class of initial distributions and show that better bounds are not possible with these 

distributions. Thus amplification technique used in [Val841 is optimal modulo both 

the amplifier and any initial distribution from our class. 

4.2.1 Previous Work 

Valiant [Val841 was the first to use amplification to prove upper bounds of 0(n5.3) on 

the size of monotone formulas for majority over the basis {A, v). Previous to this, 

the best known upper bound was 0(n9.310gn) given by Friedman [Fri86]. Over the 

basis {A, V, i), Paterson, Pippenger and Zwick [PPZ9O] showed that majority can be 

computed by formulas of size 0(n4.85). For the lower bound, Khrapchenko [Khr72] 

showed that over {A, V, 1) the formula size for majority is R(n2). No better bound is 

known for {A, v). 
A considerable amount of research has been dedicated to finding upper and lower 

bounds for threshold functions. Boppana [Bop891 showed that over {A, v}, there is 

a formula of size 0(k4-3nlog n) which computes the kth threshold function. He also 

shows that Valiant's amplifier is optimal for both stages of the amplification process. 

Observe however, that this does not show that Valiant's amplifier is optimal if one 

were to directly go from a separation of (p, p + @(!)) to (2-"-', 1 - 2-"-' ). Dubiner 

and Zwick [DZ92] show that Valiant's amplifier is indeed optimal even in this sense. 

They also show that Valiant's amplifier is optimal even if we include XOR gates in 

the basis. Recently, Radhakrishnan [Radgl] has shown a lower bound of R(kn log & ) 
for monotone contact networks. This result improved over the previous lower bounds 

of R(kn) due to Khrapchenko [Khr72] and R(n log n) due to Krichevskii [Kri64] and 
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Hansel [Han64 J. 



Chapter 5 

Preliminaries 

5.1 Basic Definitions 

A monotone Boolean function is one which is non-decreasing in all it inputs, that is, if 

some input is changed from a 0 to 1 (with other inputs unchanged) then the value of 

the function cannot change from a 1 to a 0. If B is a set of monotone functions then 

a monotone formula over 23 is a Boolean formula which only uses gates labelled by 

functions from B. Z? is also called the basis over which the formula is constructed. In 

general, we will not distinguish between a gate and the corresponding function of that 

gate. The size of a Boolean formula (over 8) is the number of occurrences of variables. 

A formula is read-once if every variable of the formula occurs exactly once. 

For n odd, the nth majority function, Mn, is 1 iff more than half its inputs are 1. 

Notice that Mn is monotone for every n. 

Following the notation in [Bop89], for f : (0, lIn -, {0,1}, its amplification 

function, Af : [O, 11 -, [O, 11 is given by 

where X I , .  . . , xn are independently chosen to be 1 with probability p. For 0 5 
p, q,p1, q' 5 1, the function f amplifies (p, q) to (p', q') if AI(p) 5 p' and Af(q) 2 q'. 

For 2) a distribution, the support of V, is the set of all elements of the underlying 

universe which have non-zero probability. 
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Let n = 2m + 1. Let yo, yl E {O,1)" be the set of all vectors having at most 

m 1's and at least (m + 1) 1's respectively. For k;: E yi and 0 5 p < q 5 1, a 

distribution D on deterministic formulas has separation (p, q) if P r (F (K)  = 1) > q 

and Pr(F(Yo) = 1) < p when F is chosen from D. 
Let 21,. . . , xn be boolean indeterminates (that is, variables). Then sym(k, n) is the 

set of all M2h+l's on all possible (21+1) indeterminates from {xl, . . . , I,). For example, 

sym(l,4) is {M3(~1,52,53), M 3 ( ~ 1 , ~ 2 , ~ 4 ) ,  M3(51, x31 4, M3(~2, x3,54)). We denote 

by D(k, n) the uniform distribution with support s y  m(k, n). 

Throughout this thesis, all logarithms will be base 2 unless otherwise specified. 

The entropy function appears throughout the thesis. 

Definition: The entropy function H : [O, 11 --+ [O, I] is defined as: 

5.2 Intuition behind Amplification 

Consider a probabilistic formula F which only approximately computes the majority 

, function, that is the probability that F is 1 over vectors which have more than half 

the number of ones is at least q and the probability that F is 0 over vectors which 

have at most half the number of ones is at most p (where p < q). We call the interval 

(p, q) the separation of F. Clearly, if q is 1 and p is 0, F exactly computes majority 

(that is, every function in its support computes majority). However it is sufficient that 

> 1 - 2-,-l and p 5 2-"-' since if we want at least one function in the support of q - 
F to exactly compute M,) because then 

So the Prob(F $ Mn) > f ,  and therefore there exists a function in the support 

of F that exactly computes the majority. So how do we get an F with separation 
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( 2 n 1 ,  1 - 2 n 1 ) ?  Valiant starts out with a probabilistic formula G (with corre- 

sponding distribution B) with separation (c, c + R(i ) )  where 0 < c < 1 is a constant. 

He then amplifies the desired separation with the help of a deterministic boolean 

function f (called the amplifier), that is, he composes f with G to get another proba- 

bilistic formula F with separation (2-n-1, 1 - 2-n-1). The composition operation here 

involves substituting independently, a copy from B for each variable in f .  Valiant's 

amplifier f is a tree of alternating A and V gates. Alternately, one can think of f as 

iteratively amplifying the separation, that is at stage i + 1, we compose the function 

g = (xl V x2) A (x3 V x4) with the probabilistic function at stage i. This means that we 

draw 4 independent copies of the probabilistic formula at stage i and replace xl, x2, x3 

and x4 respectively in g by them. Valiant then shows that O(1og n) stages are enough 

to get the required separation. Note that the amplifying formula f so constructed is 

read - once, that is every variable in it appears at most once. 

To see that O(1og n) stages are enough, let p; be the probability that the random 

formula at stage i is 0 on a vector which contains more than half the number of l's, 

and q; be the probability that the random formula at stage i is 1 on a vector which 

contains at most half the number of 1's. That is, pi's and q;'s are error probabilities. 

Then p;+l and q;+l are some polynomial functions of pi and q; respectively, say g(p;) 

and h(p;) respectively. Let us concentrate on qi's as the argument for pi's is similar. 

We want to get to a stage i where qi is at most 2-n-1. h has a fixed point a where 

0 < a < 1. If q; ever assumes the value a, the amplification process will stop. We can 

avoid this problem by starting out with an initial probabilistic boolean function with 

separation (a - R(!), a + R(!)). Now if qi = a - E, then by Taylor series expansion 

around a, we have that q;+l = h(a) - h ' ( a ) ~  + 0(c2) = a - ht(a)c + 0(c2) since a is a 

fixed point. Now it turns out that ht(a) > 1, so for any 1 < y < ht(a), we can choose 

a constant k small enough such that if the q;'s are less than a - k, then 

Then as qo = a - a(:), we can, in log,(n) iterations, get q; < a - k, that is we are able 

to achieve a constant separation. Now after a further constant number of iterations, 

we can get any desired constant separation. 
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To get to a stage where q; < 2-n-1, it turns out that q;+l < dqT, where d is a large 

enough constant. So if we have achieved a large enough constant separation, then in 

a further log2(n) iterations we can get a separation of (2-n-1, 1 - 2-'+'). The size of 

the formula so achieved is 410gr(n)+0(1)+10g2(n) = 0(n5.27) 



Chapter 6 

Computing Majority with Small 

Majority Gates 

In this chapter, we show there is a formula of size 0(n4.29) for M, over {A, V, M3}. In 

the next section we will show that this bound is nearly optimal. 

Let n = 2m + 1 and let V be the uniform distribution with support {XI,. . . , X,} 

where Xi is the ith projection function (the ith projection function X; is defined as 

follows: Xi (xl, . . . , x,) = xi). Then, for Y E yl, and F chosen from V, Pr(F(Y) = 
1 a n d f o r Y ~ Y ~ , P ~ ( F ( Y ) = l ) < i - m .  w;+50 

We construct a sequence of probability distributions Do, Dl,. . . as follows: 

2. Suppose we have constructed Vi. Then, Vi+l is defined as follows: Let Fl, F2, F3 

be independently chosen from Vi. Then, F = M3(F1, F2, F3) is in Vi+l. 

We note that this construction is equivalent to composing a read-once amplifying 

function with the initial distribution Do. 

Let F E V;. Then for Y E yl, let pi = Pr(F(Y) = 0) and for Y E Yo, let 

qi = PT(F(Y) = 1). Here p; and q; are the probabilities that a function in Vi is 

different from M, for Y E yl and Y E yo respectively. Let g(x) = 3x2 - 2x3. Then, 

for Fl, F2, F3 E Vi and Y E Yl, we obtain that 
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and for Y E Yo, 

The following lemma is not difficult. 

1 Lemma 6.0.1. The only fixed point of g(x) in (0, l )  is 2 .  

Thus, i is the fixed point for both recurrence relations (i.e. for both p; and q;). 

Note that Do was chosen so that this fixed point would lie in (qo, 1 - po). 

Now, suppose that for some i, pi = i - r for some s > 0. Then, pi+l = ! - rg1(1/2) + 
O(e2). Therefore 

1 p; = - - 1 
2 

E * p;+1 = - - ry 
2 

for each y, 1 < y < g'(f) and a sufficiently small r. Since g'(i) = ?j we can choose such 

a 7. 
We can now show that there are constants c, c' independent of n such that after 

k = logg.(; n + c iterations, pk, qk = ! and after a further k' = log n + d iterations, 

pk+kl, qk+kl < 2-'+'. Using a standard probability argument, this implies the existence 

of a deterministic formula for Mn of the same size. Since the formula size increases by 
log 3+log3 

a factor of 3 at each iteration, the size of the final formula is 3k+k' = 0 ( n  3 ) w 
0(n4v2'). 

In summary, our construction proceeds in two phases described by the following 

lemmas. 

log 3 
Lemma 6.0.2. There is a formula of size O(n ) which amplifies (qo, 1 - po) = 

(; - q),; + q)), to (qk, 1 - P ~ )  = (a ,  s). 
Lemma 6.0.3. There is a formula of size 0(n1•‹g3) which amplifies (i, i) to (2-"-', 1 - 
2-n-1). 

6.1 Nearlyoptimallower bounds for majorityover 

In this section we prove the following two results. 
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Theorem 6.1.1. 

1. Over the basis {A,  V, M3), for 0 < p < 1 and n 2 1, every read-once formula that 

amplifies (p, p+i) to (i, i) must have size a ( ( H ( ~ ) n ) ~ )  where a = logs 3 w 2.709. 
2 

2. For any constant c, 0 < c < 1, every formula which amplifies (c, 1 - c) to 

(2-"-', 1 - 2-"-') must have size fl(n1•‹g3). 

Lemma 6.1.2. For all x, y E [ O , 1 ]  and y 2 1, 

is a non-decreasing function with respect to y. 

Proof: Without loss of generality assume that yH(x) 5 xH(y). Then, G(x,  y, 7) = 
YH z 7 H(xy) - xH(y)(l + (&) )t . Since < 1 and y 2 1, (1 + (%)')$ is a 

non-increasing function of y. Thus, G(x, y , y) is a non-decreasing function of y. QED 

Lemma 6.1.3. Let ,B = log 3. Then, for all x, y, z E [0, 11, 

F(x, y ,  2) = (H(xy + yz + xz - 2xyz))' - ((y + z - 2yz)~(x))'- 

((x + z - 2 x z ) ~ ( y ) ) ~  - ((3 + y - 2xy)~(z ) ) '  2 0 

Proof: We show that F(f , f , f )  = 0 is a global minimum. From this the result clearly 

follows. By checking the first partial derivatives and the Hessian of F [BL67], it is 

straightforward to check that F reaches a local minimum at ( f ,  f ,  f ) .  If one of x, y or z 

is 0, say z = 0, then F(x, y, z) 2 0 iff G(x, y, 8) 2 0. But, G(x, y, .+) 2 0 [Bop891 
log 2 

and ,B 2 so by Lemma 6.1.2, the result holds in this case. A similar observation 
log 2 

can be made when one of x, y or z is 1. 

Finally, for any point (xo, yo, zo) bounded away from (O,0, O), (1,1,1) and ( I  2 '  27 2 ) 9 

we show the function is positive by a non-negligible amount, S(xo, yo, zo), by considering 

an €-box (6 a function of (xo, yo, 20)) around the point. We consider the Taylor series 
1 1 1  of F about (;, ?, ;) and take sufficient terms to make the remainder term less than 

&(so, yo, 20). Since E can be chosen arbitrarily small, the result follows. QED 



CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 39 

The remainder of this section is a proof of the main theorem. For any read-once 

formula f ,  we first obtain an upper bound (in terms of size(f)) for A)(p) over the 

basis {A, V, M3). 

lo 3 Lemma 6.1.4. For f a read-once fonu la  over the basis {A, V, M3) and a = log3f log2, 

Proof: The proof is by structural induction on f .  The case where size( f )  = 1 is 

trivial. For f = fl A f2 or f = fl V f 2 ,  the proof is similar to that in [Bop89]. Now, 

Suppose f = M3(fl1 f i l  f3). Then, 

By the induction hypothesis, 
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To prove the theorem, we note the following observation first made in [Bop89] . 
Let f be a function amplifying (p, p + l l n )  to ($ , i). Then by the mean-value theorem 

of calculus, there is an r ) ,  p 5 r )  _< p + such that A;(q) = n(Aj(p + :) - A j(p)). 
Since At(p + !) - Aj(p) > f ,  then by Lemma 6.1.4 ( ~ i z e ( f ) ) ~ ( ~ & ~ ) ) )  > Aj(q) > f 
and thus part one of Theorem 6.1.1 holds. 

For part 2 of the theorem, we begin with the following definitions which first appear 

in [MS56]. Our choice of notation appears in [Bop89]. 

Definition: Let f be a boolean function. Then, Lo( f )  is the minimum number of 

variables of f which must be set to 0 to force f to 0. Similarly, Ll(f) is the minimum 

number of variables which must be set to 1 to force f to 1. 

It is clear that for any read-once monotone boolean formulas f ,  g and h 

Theorem 6.1.1 follows from the following lemma: 

Lemma 6.1.5. Let f be a read-once monotone formula over the basis {A, V, M3). 
2 

Then, Lo(f)Ll(f) 5 size(f)l.gs. 

To see the theorem, we begin by noting that in [Bop89], it is shown that for any 

constant 0 < c < 112, a function f which amplifies (c, 1 - c) to (2-n-1, 1 - 2-n-1) has 

Lo( f ) ,  Ll (f) 2 kn where k is a constant depending on c. Therefore, by the lemma, 

Thus, size(f) > (kn)'"g3. 

Proof of Lemma 6.1.5: We must first prove the following result: For every odd 

n > 1 the formula g of size n which maximizes the product Lo(g) Ll (g) is the tree of 
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minimum height consisting entirely of M3 gates. This proof follows from the fact that 

for a complete ternary tree of height k, the formula g obtained by labelling all internal 

nodes by M3 has Lo(g) = Ll(g) = 2" Now induction on n gives this result. 

The proof of the lemma is by structural induction on f .  When f is fl A f2 or 

fl V f2, it is straight-forward to verify the result. When f is M3(f1, f2, f3) then by 

the above result, all f; are full ternary trees. Furthermore, all the f; must have the 

same size otherwise we can increase the product Lo( f )  Ll (f)  by making the size of one 

of the f;'s smaller and another bigger. Furthermore, for 1 5 i 5 3 we can choose f; 

such that Lo( f;) and Ll(fi) is maximized. Therefore, Lo(fl) = Lo( f2) = Lo(f3) and 

Ll(f1) = Ll(f2) = L3(f3) and 

2 
and 3- = 4, the result follows. Since size( fl) = QED 

6.2 Computing majority with small majority gates 

In this section we generalize the results of sections 6.0 and 6.1 to derive the upper and 

lower bounds on the size of a formula over the basis Bk = {A, V, M3, M5, . . . , M2k+l) 

for Mn using amplification. We begin with the upper bounds. 

Theorem 6.8.1. Let k > 0 and a = log (2k+l Then: 

1. Let 0 < p < 1 be fixed and n > 1. Then, there is a monotone read-once formula 

over Bk of size O(na) which amplifies (p, p + !) to (i, q) .  
8. There is a monotone read-once formula over Bk of size 0(n10gk+l(2k+1)) which 

amplifies (i, 4) to (2-n-1, 1 - 2-n-1). 

By composing the two functions from the theorem and observations made in the 

previous section, we obtain the following corollary. 

Corollary 6.2.2. Let k > 0. Then, there is a monotone read-once formula of size 

O(na+lOgk+l 2k+1) where a is as in Theorem 6.8.1, which computes Mn over the basis &. 
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Before proving the theorem we require a number of combinatorial identities. 

Lemma 6.2.3. Let r,s E N, r 2 s + 1 .  Then, 

Proof: We prove the lemma by downward induction on s. For s = r - 1, the assertion 

is trivial. So let us assume that the assertion holds for all r - 1 > s > j. Then 

by the induction hypothesis, which further equals 

Lemma 6.2.4. Let k 2 1 .  Then, 

Proof: By straight-forward manipulation, we can reduce this problem to showing that 

This further reduces to 

But, 

Now, using the substitution, x = y, the result follows. 



CHAPTER 6. COMPUTING MAJORITY WITH SMALL MAJORITY GATES 43 

Lemma 6.2.5. Let k 2 1. Then, 

Proof: We can reduce the left-hand side of the identity to 

k l i k  and since Ci=o(-5) (;) = (i)*, the result follows. QED 
We are now ready to prove the main theorems. We refer the reader to the first 

section of this chapter for a more detailed analysis when k = 1. As in the case k = 1, 

instead of using M3 in our iterative process, we now use M2k+1. The definition of p; 

and qi is analogous to that in Section 3 except we now use 2k + 1 instead of 3 in our 

distribution. We obtain the recurrence pj+l = g(pi) and q;+l = g(qi) where 

Here the coefficients of g(x) are obtained using Lemma 6.2.3. By Lemma 6.2.4, i is a 

fixed point of g. In fact, $ is the only fixed point in (0,l) .  This is a key point since if 

g had more than one fixed point in (0, l), we could never avoid getting stuck at one of 

those points. Furthermore, 

2k+l and by Lemma 6.2.5, g'(f) = ( , )(k + ~ ) ( ! j ) ~ ~ .  Now, the size of the formula is 

n l ~ g ( g l (  ""lf-' 1). 

For the second part, we see that for a large enough constant c, < q$+' and 

similarly qi+l < cqf+'. Let e < fc-'/'. In t = O(1) iterations, we can amplify ( f ,  $) 
to ( q 1  - e). Solving the two inequalities pi+l < cp;+l, q;+l < cq:+' we obtain that 

Pi,Qi = 2(10g'+9)(k+1)i-9. Therefore after a further 1 0 g ~ + ~  n iterations, we will 
lo 2 k + l  

achieve a separation of (2-"-', 1 - 2-n-1). The size of the formula is n- which 

yeilds the required result. QED 

We now show the lower bounds. For the first phase we obtain the following: 
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Theorem 6.2.6. Let a = L e t O < c < 1 / 2 a n d O < p < l .  
log( k+' (k+1)(3)~~) ' 

Then, for any monotone read-once formula f which ampliJies (p,p + :) to (c, 1 - c), 

size(f E R ( ( H ( P ) ~ ) ~ ) .  

We prove this theorem in the next section. For the second phase, we obtain the 

following: 

Theorem 6.2.7. Let 0 < c < 112. Let f be a monotone read-once formula over Bk 
which amplifies (c,  1 - c) to (2-"-I, 1 - 2-"-' ) . Then, size( f )  E fl(n'Og*+l (2k+1)). 

The theorem follows in an analogous method to that in Section 6.1 from the 

following lemma. 

Lemma 6.2.8. For any monotone read-once formula f over the basis Bk, 
2 

Lo( f)Ll( f )  5 size( f ) ' " ~ k + l ( ~ ~ + l ~ .  

Since the proof of this lemma is similar to that of Lemma 6.1.5, we omit it. 

6.3 Lower Bounds For the First Phase 

In this section, we prove theorem 6.2.6. 

log 2k+l Theorem 6.9.1. Let k > 0 and a = loac2k/l 

Let 0 < p < 1 be fixed and n 2 1. Then every read-once formula over Bk which 

amplifies (p,p + l l n )  to (114,314) is of size f l ( (H(~)n)&).  

Every read-once formula over Bk which amplifies (1/4,3/4) to (2-"-l, 1 - 2-"-l) 

is of size R(n10gk+1(2k+')). 

To prove these results, we need to establish the following properties of the entropy 

function. 
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Lemma 6.3.2. Let @ = 5 where a is as in Theorem 6.3.1. Let (7) represent the 

collection of all subsets X the S = (1, ..., 2k + 1) with i elements. We represent the 

characteristic function of a subset X of S by x x  (that is xx(i) = 1 if i E X else it is 

0). For any 0 5 xl, ..., xk+l 5 1, F(x1, ..., x2k+l) > 0 where 

Proof: One can check that the function F reaches a local minimum at xl = ... = 
1 x2k+1 = 2 and that F = 0 at XI = ... = x2k+1 = f .  So if we can establish that in fact 

F has a global minimum at xl = ... = x, = i, we will be done. That F has a global 

minimum at this point can be obtained by met hods similar to the lower bound proof 

as obtained for the case k = 1, that is for M3. QED 

Theorem 6.3.3. Let f be a read-once formula over the basis {A, V,  M3, ..., M2k+l) 

which amplifies (c, c + i) to (1/4,3/4). Then size( f )  E R((H(c)n)")) where a is as in 

Theorem 6.3.1. 

Proof: We first show that if f is any read-once formula over the basis 
L H A  

{A, V, M3, ..., M2k+l)r then Aj(p) 5 (size( f ) )-  w. The proof is by structural 

induction on formulas. If f is a single variable, then the proof follows trivially. If f is 

of the form fl V f2, fl A f2 ,  the proof follows the same lines as in proof of Boppana's 

theorem [Bop89]. If f is Mzk+l( fl, ..., fik+l), then 

2k+1 
A (p) = x (-l)'-'+' (i i l) x A~, (~)XX( ' ) )  

i=k+1 

Then taking the first derivatives of the both sides of this equation, using the Holder's 

inequality, and the inequality for entropy in lemma 6.3.2, gives the result. QED 
The proof of the main theorem of this section then follows as if f amplifies (p, p+ i) 

to (1/4,3/4), then A (p) 5 1/4 and A (p+ i) 2 3/4 and hence by Mean value theorem, 

there is a q such that p 5 q 5 p + i, such that Aj(q) = n/2, which when combined 

with the above theorem gives the result. 
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6.4 Bounds on alternate distributions 

Valiant in his original paper [Val841 considered a simple distribution with support 

(0, XI,. . . , X,) where Xi is the ith projection function. Clearly, using amplification, 

not every distribution (over Boolean functions) can be generated from this one. For 

example, the distribution with support {XI + X2) cannot be obtained from any 

distribution with support (0, XI, X2}. Boppana shows that any initial distribution 

which obtains a separation (p, q) where q - p E O( i )  cannot be used to obtain better 

bounds. This immediately gives the result for Valiant's initial distribution. 

In this section we study the problem of using amplification on alternate distri- 

butions. Observe that proving results which hold for all distributions is tantamount 

to proving categorical lower bounds for majority: Simply choose an initial distribu- 

tion with support the optimal formula for majority. Here we prove that to compute 

formulas for M,, if our initial distribution contains majority functions Mk then the 

distribution does no better than Valiant's initial distribution, where the formula size 

of Mk is that yielded by amplification over any of the bases discussed in this paper. 

Throughout this section we will use the basis {A, V). Using the techniques from 

the previous sections, we can obtain similar results over bases which also contain small 

majority gates. 

Recall that V(k, n) is the uniform distribution with support sym(k, n). It is easy 

to see that for k # kt, V(k, n) cannot be generated from V(kt, n) using amplification. 

Since majority is a symmetric function, we do not need to consider any distribution on 

sym(k, n) other than D(k, n). 

Theorem 6.4.1. Let k < n. Then, using the initial distribution V(k, n), the size of 

the formula which amplifies the initial separation to a constant separation is R((n/k)"), 
log 2 where a = log(&-1) . 

Proof: To prove the theorem, we first compute the initial separation. 

Let n = 2m + 1. Consider an x, y E { O , l ) "  where x contains (m + 1) 1's and 

y contains m 1's. Then, for F a random variable in V(k, n), p = Pr(F(x)  = 1) = 
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2k+1 ~w and q = Pr(F(y )  = 1) = ~~~~~, w,. Then, (q,p) is the C j = k + l  2k+l 

separation of Vk and we asymptotically bound S = p - q. 

Hence 6 E o(:) and p, q E O(1). Now using results in [Bop891 gives the result. 

QED 



Chapter 7 

Conclusions to Part I1 

We have shown that amplification can be used to show the existence of small formulas 

for majority when small majority gates are allowed. As well, we have shown optimal 

lower bounds on the size of these formulas. 

We note that our techniques combined with those of Boppana [Bop891 can be 

generalized to prove the existence of small formulas for threshold functions using small 

majority gates. However, what happens if we also allow small threshold gates in the 

formula? We conjecture that the bounds will not be improved. 

The entropy function is used both in our proof and in [Bop89]. Recently, Bop- 

pana [Bop911 has shown that in his proof the function 

where $ = can also be used. We can show that no polynomial and in general 

no function of the form f (x)' where f (x) is analytic and c 2 1 can be used both in 

our case and in [Bop89]. In our case Boppana's new function also will not work. An 

interesting question is whether there are other functions which will also work in our 

case. Further work to determine a relationship between entropy and amplification is 

required. 

The work of Radhakrishnan [Radgl] suggests a new approach to computing lower 

bounds on formula size for threshold functions on {A, v). Can this work be extended 

to computing lower bounds for threshold functions using small majority gates? 
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Finally, we find the question of which initial distribution is used to be quite in- 

triguing. Our results imply that no distribution on sym(k, n) will improve the bounds. 

Therefore a natural problem is to investigate new classes of initial distributions. 
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