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ABSTRACT 

The equilibrium shape of a fluid-lipid-bilayer vesicle is governed by the curvature elastic 

properties of the bilayer membrane. Experiments on artificially prepared giant vesicles 

have revealed a rich fauna of vesicle shapes and shape transformations, remarkably similar 

to what occurs in simple biological systems such as the human erythrocyte. The focus of 

this thesis work is to search for a theoretical understanding of these phenomena via the 

study of different models of lipid bilayers. 

We first study the spontaneous-curvature (SC) model, which has two material param- 

eters, the bending rigidity and the spontaneous curvature. The equilibrium shape, which 

minimizes the total bending energy at fixed surface area A and enclosed volume V, is ex- 

plored over a significant range of the parameters, A and V. We map out for the first time a 

(shape) phase diagram, which shows the full systematics of equilibrium shapes and shape 

transformations predicted by the SC model. In particular, we show that both discontinuous 

budding (the eruption of a satellite connected to the parent body via a neck) and continu- 

ous vesiculation (the limiting case when the neck radius goes to zero) occur as equilibrium 

transitions in the appropriate regime. 

Available experiments are not fully consistent with the predictions of either of the two . 

extant membrane models (the SC model and the so-called area-difference or AA model). 

We propose that these discrepancies require generalization of the models to incorporate an 

area-difference elasticity (ADE), which allows the area difference between the two leaves of 

the bilayer to react elastically. We argue that this new term in the energy is comparable 

to those considered in the extant models. We introduce a new model (the ADE model) 

to incorporate this effect. We study budding and vesiculation in the ADE model. We 

find that, while vesiculation is still continuous, as it is in the SC model, the budding 

transition can occur either continuously or discontinuously, depending on the values of the 

elastic parameters and on the initial condition of the vesicle. For parameter values relevant 

to recent experiments, the ADE model predicts discontinuous budding. We discuss the 

connection between these predictions and laboratory observations. 

iii 
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Chapter 1 

Introduction 

Understanding red-blood-cell shapes has been a classic problem in cell biology since the 

invention of the microscope 300 hundred years ago. During the past two decades the dis- 

tinctive discoidal contours of red blood cells at rest and the exquisite responses of these cells 

to  diverse chemical perturbations in the form of a limited number of shape transformations 

(see Fig. 1.1) [I, 21 have attracted physicists' attention, as well [3]. An ultimate explana- 

tion, which relates these intriguing macroscopic properties of the red cell to the molecular 

structure of its cell membrane, is not to be reached easily. The reason is the following: The 

red-cell membrane has a marvelously complicated structure [4], as schematically pictured 

in Fig. 1.2. Its most elementary and indispensable structural component is a fluid bilayer 

formed from a mixture of cholesterol molecules and up to 1000 different kinds of lipids. 

Incorporated in this fluid-lipid-bilayer matrix are many diverse intramembrane proteins. 

Furthermore, the red-cell membrane includes a cytoskeleton, a cross-linked 2-dimensional 

protein network consisting principally of spectrin (a linear protein), which is anchored to 

the inner (cytoplasmic) surface of the lipid bilayer. This cytoskeletal network provides a 

strength and shear rigidity, which the fluid-lipid-bilayer component by itself would lack 

and which are crucial in maintaining red-cell integrity in the turbulent circulatory environ- 

ment. It plays an important role in limiting red-cell shape deformations under conditions of 

high stress. Nevertheless, following the pioneering work of Canham, Helfrich and Deuling 

[6, 7, 81, the present consensus is that normal equilibrium red-cell shapes are principally 

(but not entirely) controlled by the energetics of the fluid-lipid-bilayer component. 



Figure 1.1 : Shape transformations of erythrocytes, driven by external chemical perturba- 
tions (Ref. 121). (A) A scanning electron micrograph of normal human erythrocytes in their 
discoidal shape (discocyte). (B) Cells treated with lysolecithin: They become spiculate 
echinocytes. (C) Cells with 37% of their cholesterol removed. This leads to imaginations 
and deepened dimples (stomatocytes). (D) Cells with reduced cholesterol, as in (C), were 
treated again with lysolecithin, as in (B). Note the restoration of the discoidal shape. 



actin 

Figure 1.2: Anatomy of a red-cell membrane (Ref.[5]). The lipid bilayer is its main struc- 
tural component. Band 3 and glycophorin are two types of intramembrane proteins. The 
cytoskeleton on the cytoplasmic (inner) side of the cell is formed primarily of linear spec- 
trin molecules cross-linked via actin molecules. It is anchored to the lipid bilayer by its 
association with glycophorin via band 4.1 (protein), and with band 3 via ankyrin (protein). 

It is of fundamental importance and interest to acquire a basic understanding of bilayer 

shapes and shape deformations and of the physical properties underlying such phenomena. 

Artificial lipid-bilayer vesicles serve as model systems ideal for this purpose. An artificial 

vesicle consists of a single encapsulating bilayer composed of one kind or at most a few 

kinds of lipids and free of complicating structures such as the cytoskeleton. In this thesis, 

we are concerned with the equilibrium shapes of lipid-bilayer vesicles, i.e., the geometrical 

surface profiles the vesicles assume when they are in equilibrium with their aqueous fluid 

environment. Although these model systems are enormously simpler in structure than red 

cells, they do exhibit a rich fauna of shapes and shape transformations, and there is a 

striking similarity between certain features of these physical model systems and the more 

complicated biological cells. It is tempting to think that these model systems are relevant in 

important ways to our understanding of elementary biological systems, such as red cells and 

of some elementary biological processes, such as endocytosis and exocytosis, which occur 



frequently in real cells. On the other hand, we emphasize that the physics t o  be described 

in this thesis should be considered physics done with biological materials rather than true 

biophysics. The reasons are obvious: The membrane deformation in real biological cells 

is very complex and involves in general many types of molecules with highly non-trivial 

properties. For example, the budding-off of secretory vesicles from the plasma membrane 

of a cell is always associated with a particular type of protein molecules called Clathrins, 

which form a two-dimensional network-like coating over the budded vesicle. Furthermore, 

living biological cells are in general out of equilibrium. Hence, the biological implications 

of our understanding of model membranes are at best often indirect. 

Our working hypotheses can be stated at the outset. We shall consider a lipid-bilayer 

vesicle freely suspended in an aqueous environment, e.g., distilled water or dilute sugar 

or salt solutions. There are two macroscopic length scales in this system: its linear size, 

which describes its shape and is typically 10-20 pm for laboratory vesicles studied [9], and 

the surface-persistence length, which describes its thermal undulations and is even larger 

than the linear size [lo]. The thickness D of the bilayer membrane (typically 2-4 nm) is 

microscopic. Thus, the membrane is "thin" and can be represented on macroscopic length 

scales as a 2-dimensional geometrical surface. The equilibrium shape and, in general, the 

statistical behavior of such a fluctuating surface can be modelled by a hamiltonian which 

describes the elastic energy associated with curvature deformations of the membrane surface. 

The meaning of this statement will be made precise as we develop the fundamentals of the 

theory of vesicle equilibrium shapes in the remaining sections of this chapter and in the 

next chapter. 

1.1 Physical properties of lipid-bilayer membranes 

We first discuss some basic physical facts relevant to lipid bilayers and the orders of mag- 

nitude of important physical quantities [ l l ]  which are essential to the understanding of 

equilibrium vesicle shapes and shape transformations. 

The elementary building blocks of artificial vesicles are glycerophospholipid molecules, 



which are abundant in natural biological cell membranes. Giant (linear size of 10-20 pm) 

bilayer vesicles spontaneously form when glycerophospholipids are dispersed in water. The 

fact that phospholipid bilayers self-organize in this way is crucial to their occurrence as 

essential structural components of biological cell membranes and can be attributed to the 

dual (amphiphilic) nature of these molecules. They have structurally two well-defined parts: 

a phosphate-containing head group which is either polar or negatively charged and is, there- 

fore, highly soluble in water (i.e., hydrophilic) and two fatty-acyl hydrocarbon chains that 

are attached to the headgroup and are almost completely insoluble in water (hydrophobic) 

(see Fig. 1.3(a)). 

The hydrophobic feature is generic for nonpolar molecules or groups such as hydrocar- 

bons, and it has highly non-trivial consequences [12]: When a non-polar particle is dissolved 

in water, the surrounding water molecules, otherwise isotropically arranged, must rearrange 

and become more ordered, an effect which decreases the entropy. The attraction between 

water molecules and the non-polar group is not strong enough to compensate for this en- 

tropy loss. The net result is an unfavourable free energy increase for a solution of non-polar 

particles in water. The hydrophobic effect induces a strong water-mediated attraction be- 

tween non-polar particles or the non-polar parts of dissolved phospholipid molecules. It is 

this strong attraction that is the main driving force for the self-aggregation of phospholipids 

in water. In general, there can be several forms of phospholipid self-assembly. Examples 

are hexagonal structure, micelle structure, and bilayer structure, as shown in Fig. 1.3(b). 

For most two-chain phospholipids in the temperature and concentration ranges of interest, 

the favoured structure is a bilayer, in which the chains form a hydrocarbon interior and the 

heads face the water. We will only consider this structure in this thesis. 

The lipid bilayer is self-bound and all the intermolecular forces must have reached a 

balance. The effect of such a balance is to reach an optimal average area per lipid molecule, 

a concept which will be extremely useful in developing the theory of the equilibrium vesicle 

shapes. Let us consider a lipid bilayer suspended in an aqueous solution, as sketched in 

Fig. 1.4. Headgroups are immersed in water. Separating the headgroup region and the 

hydrocarbon interior is an interface on each side of the bilayer, a substantial part of which 
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Figure 1.3: (a) Schematic illustration of molecular structures of SOPC and DMPC. The 
polar head group is phosphatidylcholine for both lipids. SOPC has one saturated and one 
unsaturated (note the double bond) fatty-acid chain; DMPC has two identical saturated 
fatty-acid chains. 



Micelle 

The inverted hexagonal structure 

Figure 1.3: (b) Schematic diagram of examples of generic structures of lipid self-assembly in 
water. They are micelle structure, bilayer structure, and the inverted hexagonal structure. 

is exposed to water-hydrocarbon contact1. Suppose that there are N molecules in a spatially 

uniform monolayer. Let a be the average local area per molecule and express the free energy 

of these N lipid molecules as a function of a, 

where fph,(a) and fph;(a) correspond, respectively, to the effective attractive (hydrophobic) 

and repulsive (hydrophilic) interactions mediated by the water, while fint(a) represents 

the generically repulsive steric interactions between the hydrocarbon chains. These var- 

ious factors are not easy to treat exactly on a microscopic basis; however, an empirical 

approach proposed by Israelachvili [13] can at least provide an intuitive picture of the inter- 

play between the opposing forces and give the correct order of magnitude for the relevant 

properties. The hydrophobic part can be modelled as, 

lTypicaJly, the van der Waals type excluded area per headgroup is 0.4nm2, whereas the actual area per 
headgroup in a bilayer is 0.6nm2. 



Repulsive chain-chain 
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Figure 1.4: Schematic representation of the different kinds of interactions involved in a 
lipid bilayer (Ref. [1 31). The effective repulsive forces arise from headgroup-headgroup and 
chain-chain interactions; the attractive forces originates from the hydrophobic effect. In 
general, these forces do not act in the same plane. 

where y x 35erg/cm2 is typical of the interfacial free-energy density of the water-hydrocarbon 

interface, and a, is the excluded area per headgroup (of van der Waals type). The combined 

repulsive part varies roughly as a - l ,  so 

with C x 1.15 x 10-13erg - nm2.2 The overall interfacial free energy per lipid molecule, 

f ( a )  r F(a ) /N  2 y(a  - up)  + C / a  , (1.4) 

has a minimum at a0 = FZ 0.57nm2. One of the fundamental principles governing 

lipid self-assembly into bilayer structure is that, in the absence of external forces, each lipid 

molecule in the bilayer will assume this optimal area at the water-hydrocarbon interface. 

2The surface pressure measurement of a lipid monolayer sitting at a water-hydrocarbon interface effec- 
tively measures the repulsive interaction. For di-acyl-phosphatidylcholine, such an empirical repulsive energy 
fits the measured data over a large range of surface area per molecule. 



Expanding Eq. (1.4) for the monolayer free energy in the vicinity of this minimum leads to 

an approximate free energy per molecule for densities near ao, 

2y S 70dynelcm can be thought of as the area-compressibility modulus of the monolayer 

(roughly doubled for a bilayer). It is much smaller than a typical area-compressibility 

modulus of a solid thin shell of the same thickness. In other words, a lipid bilayer is 

much more def~rmable.~ Indeed, phospholipid bilayer structures distinguish themselves 

from solid structures formed through strong intermolecular cohesion in this one important 

respect: The forces that hold phospholipid molecules together in the bilayer structure are 

not due to strong covalent or ionic bonds but arise from weaker van der Wads, hydrophobic, 

hydrogen-bonding and screened electrostatic interactions. Consequently, bilayers are soft 

and easily deformable. 

From a physical point of view, lipid molecules in a bilayer have two different sets of 

fundamental degrees of freedom, internal conformations of their hydrocarbon chains and 

lateral translational motions. In general, a hydrated phospholipid bilayer can exhibit a 

variety of solid and fluid phases, depending, e.g., on temperature, which influences the in- 

terplay between the two sets of degrees of freedom. A typical low-temperature solid phase 

is the so-called gel phase, where the hydrocarbon chains are almost all in the full-trans (or- 

dered) configuration and the molecules are packed into a two-dimensional hexagonal lattice. 

As temperature increases and passes a certain temperature called the main transition tem- 

perature, denoted T,, the hydrocarbon chains become disordered, assuming many gauche 

configurations and transition to a fluid phase occurs. The main transition temperature T, 

of a pure lipid bilayer depends upon parameters such as the length of the hydrocarbon 

chains and their degree of saturation (the number of C = C double bonds), and, therefore, 

it varies from one lipid to another. For example, T,(DMPC) .V 23OC and T,(SOPC) 2 5OC 

[14]. In this thesis, we restrict ourselves to the simplest fluid phase. Most of the experi- 

ments performed to investigate the shapes and shape transformations with which we shall 

3The typical bulk modulus for a solid, e.g., aluminum, is 7.5 x An estimate for the area- 
compressibility modulus of a thin shell of thickness 2nm can be obtained by multiplying the bulk modulus 
by the thickness, a process which turns out to give 140 x l ~ ~ d ~ n e l c r n !  



compare our theoretical study are done in temperature ranges well above the main transi- 

tion temperature of the corresponding lipid bilayer. Bilayer fluidity greatly simplifies the 

analysis of the vesicle shape problem: There is no shear present when a fluid-lipid-bilayer 

vesicle undergoes geometrical surface deformations! 

The lipid molecules in a fluid bilayer diffuse freely laterally in each individual monolayer, 

as molecules in an ordinary fluid do. The lateral diffusion coefficient is typically of order 

- 1 0 - ~ c m ~ / s e c  [15]. This means that a lipid molecule can move across the entire 

surface of a vesicle of pm size within a second! 

In addition to their fast lateral diffusion, lipid molecules in a fluid bilayer are, in principle, 

capable of moving transversely from one monolayer to the other. However, such a motion- 

called flip-flop-is energetically very unfavourable. Indeed, in order for a lipid molecule 

to move intact from one leaf of the bilayer to the other, it would be necessary to  drag 

the hydrophilic polar headgroup through the hydrophobic interior occupied by hydrocarbon 

chains. The transmembrane mobility of various phospholipids in both model membranes 

and biological membranes has been investigated. The results vary widely and are sometimes 

even contr~versial;~ but, in general, it can be concluded that flip-flop rates are exceedingly 

slow in model membranes, with half-times ranging from hours to days [16]. In several of the 

biological membranes systems, however, a half-time of minutes or less has been reported 

[17]. The more rapid transmembrane diffusion may be due to specific proteins, such as 

"flipase", or to non-specific lipid-protein interactions which provide lower energy pathways 

for the migration of polar lipids across the membrane. 

At the same time, a vesicle suspended in a fluid would in principle exchange lipid 

molecules with the adjacent fluid inside and outside. The low solubility of phospholipids in 

aqueous environments renders this lipid transport process insignificant. We arrive, therefore, 

at the following conclusion: The number of lipid molecules in each of the two individual 

monolayers of a closed vesicle can be considered to be separately conserved on the timescales 

of seconds-minutes necessary for mechanical equilibration. 

'The primary reason for this seems to be that the conditions under which various experiments were 
performed are different and may affect lipid flip-flop in different ways. For example, an imbalance of pressure 
inside and outside a vesicle may induce significant lipid transport across the biiayer. 



The last but not the least important physical property we would like to point out is 

the coupling of the two lipid monolayers that make up a bilayer. The monolayers are 

not bonded covalently, but are weakly adherent through van der Wads forces and, perhaps, 

slightly interdigitated [5] .  Consequently, each individual monolayer is capable of collectively 

sliding relative to the other. As a result, the bilayer geometry does not impose any local 

constraint on the monolayer-surface-density fields. 

1.2 Experiments on artificial vesicles 

Although the main focus of this thesis will be the theoretical study of equilibrium shapes 

of lipid-bilayer vesicles, it is appropriate to review briefly the recent experiments performed 

mainly by two groups [9, 18, 19,201 to investigate the equilibrium shapes and shape tran- 

sitions of fluid-lipid-bilayer vesicles, for the following reasons: First, our theoretical work 

was originally motivated by the beautiful experimental observations of lipid-bilayer vesi- 

cle shapes recorded in the laboratory of Professor E. Evans a t  the University of British 

Columbia. Secondly, available experimental information is crucial to our theoretical study, 

since it provides both guidance and the ultimate touchstone of success. 

Before describing the shapes which are observed, it will be helpful to explain how ar- 

tificial vesicles are prepared, in laboratory. Outlined below are the sequence of steps by 

which SOPC5 vesicles are prepared in Professor Evans' lab. (i) A droplet containing the 

lipid dissolved in an organic solvent is placed on a roughened teflon disc. (ii) The solvent 

evaporates, leaving a residue of the pure dry lipid, presumed to  exist in some lamellar phase. 

(iii) A stream of Ar saturated with water vapor is passed gently over the sample in order to 

swell the lipid layers as nondestructively as possible. The water apparently intercalates be- 

tween the layers and lifts the lamellae apart. (iv) Liquid water is now introduced, producing 

a solution of vesicular structures. The mechanisms by which these structures rise off the 

substrate and close are not understood. (v) The solution at this stage includes, in addition 
- 

5SOPC is the abbreviation for the long name of one particular lipid, stearoyl-oleyl-phosphatidylcholine. 
It has a neutral head group. One of the two acyl chains (oleyl) is unsaturated while the other (stearoyl) is 
saturated. 



to the "ideal" single-wall vesicles we shall discuss below, onion-skin structures with multi- 

ple walls, vesicles within vesicles, and multiple vesicles connected by small tubules. This 

"mess" is examined under the microscope. An "ideal" vesicle is selected and transferred to 

a second observation chamber by micropipette across an air barrier, thus effectively break- 

ing any tubular connections. (vi) The selected vesicle (typically 10 - 20pm in diameter) 

is examined and recorded, usually by phase-contrast video microscopy. Vesicle-shape tran- 

sitions are induced by adjusting the temperature of the experimental chamber and/or the 

osmolarity of the aqueous solution exterior to the vesicle. 

The effects of increasing the temperature and changing osmolarity are the following: 

(a) Although, at given temperature T,  the area A of the vesicle is fixed6, increasing the 

temperature causes thermal expansion. Thus, A = A(T) and increases as a function of 

temperature. (b) If there is an appreciable difference in osmolarity between the interior 

and the exterior of the vesicle, an osmotic pressure difference develops and water transport 

across the bilayer can and does occur. Thus, in the experiments, the interior and exterior 

osmolarities are carefully matched, so that negligible osmotic transport takes place on the 

timescales of seconds or minutes necessary for mechanical shape equilibration. The enclosed 

volume is kept fixed during shape equilibration. By controlling small osmotic differences on 

longer timescales, it is possible to inflate or deflate the vesicle at will. (c) The topology of 

the vesicles is normally spherical (however, toroidal vesicles have been seen [21]). (d) When 

the temperature is raised, the interior fluid is in principle subject to  thermal expansion as 

well. It turns out, however, that this volume expansion is appreciably smaller than the area 

expansion discussed above,7 so we may to a first approximation regard the volume as fixed 

in experiments where temperature is the only control parameter. 

There follows now a brief catalog of some of the shapes and shape-transformation se- 

quences seen in experiments by the two groups mentioned above: 

A. Thermally induced discocyte-stomatocyte transitions [20, 231. Discoid DMPCs vesicles 

'The physical reason underlying this statement will be given in the next chapter. 
'The volume expansivity of water is 3 x 10-'/K and the typical value of lipid bilayer area expansivity is 

4 x ~ o - ~ / K  [22]. 
'DMPC is the abbreviation for di-myristyl-phosphatidylcholine. It has the same head group as SOPC 

but its two acyl chains are identical and saturated. 



Figure 1.5: Overview of the experimental observations on artificially prepared giant vesicles. 
Top: Thermally induced discocyte-stomatocyte transition of DMPC vesicles: pictures were 
taken at 43.8,43.9,44.0 and 44.1•‹C (Ref. [23]). Middle: Thermally induced continuous bud- 
ding of DMPC vesicles: the shapes were recorded at 31.4,35.5,35.6 and 35.B•‹C (Ref. [23]). 
Note that the pear-shaped intermediate is observed over the temperature range from 31.4 
to  35.5OC, and is apparently the stable equilibrium shape in this range. Bottom: Thermally 
induced discontinuous budding of SOPC vesicles (by courtesy of H-G Dobereiner). The 
pear shape is observed only as a ddynamical transient. Note that the time for the pear shape 
t o  become vesiculated or nearly vesiculated is very short (20 seconds) (see the time shown 
on the upper-left conner of each picture). This transition is first order. 



change to  stomatocytes as the temperature is raised. Up/down symmetry is broken a t  this 

transition. The shape apparently evolves continuously. The transformation is analogous 

t o  that shown in Fig. 1.1 for red cells. At some higher temperature, the shape abruptly 

becomes invaginated. This process is illustrated in Fig. 1.5(top set), following the original 

which appeared in Ref. [23]. 

B. Thermally induced continuous budding via "pear" shapes [20, 231. DMPC vesicles 

[Fig. 1.5(middle set)] which are elliptical in shape at lower temperatures break up/down 

symmetry to  become pear-shaped as T is increased. The pear shape is observed over a few 

degrees of temperature increase and suddenly jumps at a higher temperature to  a seemingly 

vesiculated shape which consists of two spheres connected through an invisible (possibly mi- 

croscopic) neck. 

C. Thermally induced discontinuous budding [9]. SOPC vesicles go through a temperature- 

driven and apparently discontinuous budding as T is increased from a prolate ellipsoid to  

an almost vesiculated shape [Fig. 1.5(bottom set)] without the pear-shaped  intermediate^.^ 

D. Osmotically induced budding. In these experiments quasi-spherical SOPC vesicles were 

produced in 200 mOsm sucrose solution, then pipetted into 200 mOsm glucose, and finally 

transferred to  240 mOsm glucose at  all fixed T. This leads to osmotic deflation of the vesicle, 

which was allowed to  proceed at fixed temperature. Budding transition t o  a narrow-necked 

or vesiculated shape was observed. 

1.3 Overview of the thesis 

It is well recognized that a fluid-lipid-bilayer surface has elastic resistance against curva- 

ture (or bending) deformations. Several versions of elastic curvature energies have been 

' ~ c t u a l l ~ ,  the present status concerning the experiments is not entirely clear: The distinction between the 
characteristics of the budding transitions described in Sequences B and C has not been made as unambigu- 
ously as stated. The identification of the symmetry-breaking shape evolution as a continuous equilibrium 
transition, as reported in Case B, is based on the fact that the asymmetric pears are observed over several 
degrees of temperature increase, which was implemented on the time scale of minutes. As we shall discuss 
in Sec. 4.4.1, the subtle interplay between this time scale and the typical relaxation time of overdamped 
shape fluctuations may allow one to have a different interpretation of the observation. By the same token, 
the claim for discontinuous budding, as stated in Sequence C, should be taken with caution too, although 
we are inclined to think that it is the case, based on more recent experimental observations [24]. 



proposed to  model such resistance. In Chapter 2, we introduce three curvature models, 

the area-difference-elasticity (ADE) model, the spontaneous-curvature (SC) model and the 

area-difference (AA) model. The emphasis is on the ADE model: We present in detail a 

"microscopic" derivation of its curvature energy, by incorporating the fundamental physical 

properties of a fluid-lipid-bilayer vesicle, as reviewed in Chapter 1. The ADE model not 

only takes into account the elastic effect associated with changes in local curvatures on the 

vesicle surface, but also allows the area difference of the two leaves of the bilayer to react 

elastically (the ADE effect). It is, therefore, a generalization of the two extant models, the 

SC model and the AA model which are from this perspective limiting cases of the ADE 

model. 

Chapter 3 describes our systematic investigation of the taxonomy of equilibrium shapes 

and shape transformations within the context of the SC model. We first develop a general 

framework, applicable to all the vesicle-shape models. To this end, we introduce the con- 

strained minimization of the model free-energy functional, the Euler-Lagrange differential 

equations to which it leads, the regular Euler shapes as solutions to the Euler equations, 

and the resulting (shape) phase diagram. Several classes of stationary shapes and shape 

transitions are found and examined in detail. In particular, the importance of multiplets, 

configurations in which two or more regular Euler shapes join each other tangentially and 

possess collectively the total surface area and volume, in competition for the lowest-energy 

shape is recognized for the first time. Close associates of multiplets, shapes consisting of 

several segments connected via small open necks, are shown to undergo "vesiculation", i.e., 

to become multiplets as the necks are driven to zero by the changes in control parame- 

ter. We derive a general criterion for the location of vesiculation boundaries. We also 

identify "budding" as an equilibrium shape transition, at which a parent vesicle (usually 

quasi-spherical) erupts to form one or more small daughter vesicles, bound to it through 

small necks. In addition, we obtain a set of useful results for spheres, sphere multiplets 

and nearly spherical shapes. The analytical treatments of the mathematical bifurcation 

structures both near vesiculation and close to spheres are relegated to Appendix C and 

Appendix D, respectively. Finally, we map out the full phase diagram through numerical 



and quasi-analytical means. This phase diagram summarizes the specifics of equilibrium 

shapes and shape transitions in the SC model. 

Neither the SC model nor the AA model gives a fully consistent explanation of all the 

results observed in controlled shape experiments. Chapter 4 reports our study of the more 

general ADE model. This research was motivated by the conjecture that the incorporation 

of the area-difference-elasticity effects in the ADE model may lead to  a better understand- 

ing of the experiments. We focus on the two prominent shape transitions, the budding 

transition and the vesiculation transition. We find that the budding transition can occur ei- 

ther continuously or discontinuously, depending on the values of the elastic parameters and 

the initial conditions of the vesicle. For parameter values relevant to recent experiments, 

the ADE model predicts discontinuous budding. We discuss the connections between these 

predictions and laboratory observations. 



Chapter 2 

Continuum Models for Fluid 
Lipid- bilayer Vesicles 

Over the past two decades, several models have been developed to describe the shape of 

a single isolated vesicle formed by a fluid lipid bilayer. They are all continuum models, 

valid in the limit where typical radii of curvature of the vesicle are large on the scale of the 

bilayer thickness. Among them are two now-traditional ones, the spontaneous-curvature 

model (which we shall denote hereinafter as the SC model) and the area-difference or AA 

model, definitions of which will be given later in this chapter. These models were originally 

studied [8,25,26] in order to explain the observed shapes of red blood cells. Indeed, twenty 

years ago Helfrich and Deuling [8] showed that the SC model contains a rich catalogue 

of possible vesicle shapes with many similarities to those observed for real red blood cells 

(Fig. 1.1). It soon became clear, however, that the spontaneous curvature parameter in the 

SC model would require further explanation. In particular, all vesicles in the same chemical 

preparation do not share the same spontaneous curvature. The AA model [23, 25, 26, 271 

provided an escape from this difficulty by linking (as we shad see below) the closure process 

for each individual vesicle to the effective values of its spontaneous curvature. The full 

systematics of equilibrium shapes and shape transformations predicted by these two models 

has only been revealed recently through our work1 [28] and the parallel work of Seifert, 

Berndl and Lipowsky [27]. 

'Chapter 3 contains an account of our work on the systematics of the SC model. 



Only recently has it been possible to compare the predictions of the SC and the AA 

models with the observed results of controlled experiments on the artificial lipid-bilayer 

vesicles, as described in Chapter 1. It has turned out [29] (also see Chapter 4) that consid- 

erable discrepancy persists between the predictions of the two models and the experimental 

findings. In particular, neither the SC model nor the AA model can be made consistent 

with all observations. This disagreements has motivated reflection on the physical basis of 

the two models. Stimulated by the earlier remarks of Helfrich [7], Evans [30] and Svetina 

and ~ e k ~  [31], we have concluded that there exists in the problem an additional physical 

parameter, which is not adequately represented in either the SC model or the AA model. 

This new parameter, an area-difference elasticity, provides an elastic correction to  the area 

difference of the AA model. On the basis of crude estimates (see later text in this chap- 

ter), we believe that these elastic effects are fully comparable in magnitude to  the effects 

contained in the SC and the AA models. The study of a new model (The ADE model) 

incorporating this area-difference-elasticity effect forms Chapter 4 of this thesis. 

This chapter is devoted to the introduction of the three continuum models, the SC 

model, the AA model and the ADE model. This discussion continues the development of 

fundamentals started in Chapter 1. It will also provide a comprehensive review of both our 

present best understanding of the physics of fluid-lipid-bilayer vesicles and the historical 

development in this field. For pedagogical reasons we will not follow the course of history. 

Rather, we will start by presenting the more general ADE model. Both the SC model and 

the AA model will then be introduced as special cases, in which, as will become clear, the 

ADE effect is either overlooked or overestimated. 

2.1 A general curvature-energy model-the ADE model 

We consider a single giant artificial lipid-bilayer vesicle suspended in an aqueous solvent. 

In the continuum limit, the global geometrical quantities characterizing its shape S are its 

surface area A and enclosed volume V. The basic local geometrical variables are the two 

local principal curvatures C1 and C2 at each point on the vesicle surface. The pioneering 



work of Canham, Helfrich, Deuling and Helfrich, Evans and Skalak [6, 7, 8, 321 has led 

t o  the belief that the shape of such a vesicle is governed primarily by the elastic (or me- 

chanical) properties of the encapsulating lipid-bilayer membrane [6, 7,321. Each continuum 

model proposed to  describe this macroscopic (typically pm scale) phenomenon, therefore, 

consists of an elastic-energy functional depending on the shape S of the vesicle, and a set of 

constraints on the global geometrical quantities. The global constraints reflect the physical 

conditions which the vesicle is assumed to be under. 

The ADE model has the following energy functional, 

where the integral runs over the surface of the vesicle. The local principal curvatures Cl(r) 

and Cz(r)  are defined to  be positive when the center of curvature is towards the vesicle 

interior. Co is a phenomenological parameter called the spontaneous curvature, which we 

shall discuss below. K is the local bending elastic constant of the bilayer membrane and 

has the dimension of energy. The second term in the energy functional, characterized by 

another bending elastic constant R,  is called the non-local bending energy and derives from 

the fact that the vesicle surface is composed of two monolayers, with (possibly) different 

compositions, which can and may respond differently when the vesicle surface undergoes a 

geometrical deformation. Both elastic constants K and ii are positive. D, as defined before, 

is the membrane thickness. AAo represents the preferential surface-area difference between 

the two monolayers. In the simplest case, where the bilayer contains only a single species 

of lipids with an optimal area a0 per molecule, AAo G (NOut - ~ ~ " ) a o ,  with NOut and N ~ "  

being the number of molecules in the outer and inner monolayers, respectively. AA is the 

actual geometrical area difference, another global quantity dependent on the specific vesicle 

shape: If the thickness D is regarded as a constant over the whole membrane, then it is an 

elementary geometrical result that AA is related to  the integral of the local mean curvature 

Cl(r) + C2(r) over the vesicle surface, 

where R is the characteristic radius of curvature of the vesicle. The model (2.1) will be 



referred to  as the ADE model (ADE stands for the "area difference elasticity"), because it 

involves the (unconventional) elastic energy connected with the monolayer area difference. 

The remainder of this section will be devoted to a "microscopic" derivation of the ADE 

energy functional (2.1). A precise understanding of the macroscopic elastic properties rep- 

resented by the energy functional (2.1) at the molecular level can be expected t o  be pro- 

hibitively difficult, because of the complexity of the molecular interactions involved. There 

are interesting attempts at  developing fully microscopic theories along this line [33, 341; 

however, we shall content ourselves in this thesis with a simple, semi-phenomenological 

derivation, which gives important insights into the essential and relevant physics embedded 

in the energy functional (2.1). 

.We begin by looking at one individual monolayer component of the bilayer membrane, 

assumed t o  be in its 

per molecule a0 and 

lipid-monolayer, Eq. 

fluid state. We recall from Chapter 1 the concept of the optimal area 

the quadratic expansion of the elastic energy per molecule of a fluid 

(1.5), 

In the considerations there, all the interactions (i.e., the attractive hydrophobic interaction, 

the repulsive hydration force between the headgroups, the repulsive steric chain-chain in- 

teraction, and less importantly the van der Wads interactions), are assumed to act in the 

same plane. A more realistic picture of these interactions is depicted in Fig. 2.1, in which 

we assume that the centers of action of the opposing forces are localized in two regions 

separated by a distance 6, one corresponding to the heads of the molecules, the other, to  

the chains. The elastic energy per molecule can then be written as 

1 1 
f (a) = ?Khah,o (ahlah.0 - 1)2 + Z K c a c , ~  ( ~ C / ~ C , O  - 1)2 7 

where a h  and a, are the actual area per molecule at  the level of heads and chains, respec- 

tively. ah,o and ac,o are the optimal area per molecule and may in general be different. Kh 

and Kc are elastic area-stretching const ants (or area-compressibility moduli). I t  may be 

helpful t o  picture the shape of a single lipid molecule as a truncated cone. The energy (2.4) 



bilayer 
neutral surface Y 

! dour \ 
\ monolayer 
41 neutral surface 

Figure 2.1: A simple microscopic model of the curvature elasticities of a lipid-bilayer. It 
is assumed that different forces are localized in a discrete set of surfaces, represented by 
solid lines. Various neutral surfaces are shown with the dashed lines. In the monolayer 
discussion, we consider a single layer of lipid molecules. The distance S = Sh + 6, separates 
the surfaces of head-head and chain-chain interaction. 

has a simple mechanical interpretation: (ah/ah,o - 1) and (ac/aC,o - 1) can be thought of as 

the local, isotropic elastic strains representing area dilation/compression. The correspond- 

ing elastic surface tensions (or stresses) are, then, Kh (ah/ah,o - 1) and Kc (ac/ac,o - I), 

respectively. Note that the stresses are isotropic, as is characteristic of a fluid surface. 

It is necessary now to choose a reference surface, with respect to which the geometrical 

characteristics of the monolayer surface at the macroscopic scale (such as surface area and 

local curvatures) can be defined. We will make a particular choice of such a reference 

surface below and will call it the "neutral surface". Let us call a the area per molecule at 

this neutral surface, and Sh, S,, the respective distances of the head and the chain surfaces 

from the monolayer neutral surface. It follows from simple geometry that 

with 6 = tih + 6,. Two important implications of Eq. (2.5) should be pointed out: (i) If the 

monolayer is bent, as represented by non-zero local curvatures, the area change at the level 

of the headgroups is different from that at the level of the chains; (ii) On the other hand, 

the changes are constrained locally, since the head and tail surfaces are rigidly connected 



through molecules. The local constraint is 

By introducing Eq. (2.5) into the elastic energy (2.4), one obtains 

By choosing the position of the neutral surface so that2 

we arrive at the following expression for the energy density (energy per unit area)3: 

where the relevant parameters are given by 

2Note that this eliminates the coupling term in Eq. (2.7), a2 (CI + C2). 
3This derivation is, in fact, just an expansion of the elastic energy in terms of the small quantities 

(a/ao - 1) and (6C). Only quadratic terms in these small quantities are kept in the final expression. 



The choice of the neutral surface given by Eq. (2.8) has the following interpretation: The 

local elastic energy density corresponding to an arbitrary deformation of the monolayer can 

be decomposed into one contribution arising from the area dilation of the neutral surface, 

represented by (a/ao - I), and another due to the bending deformation, described in terms 

of the two principal curvatures. Under this convention a pure bending is defined to be a 

deformation which does not cause any area variation of the neutral surface and leads only 

to  change in the curvatures. In this case the only contribution to the elastic energy density 

comes from the curvature energy. 

This derivation can already provide several insights into the physics contained in the 

part of the curvature-related elastic energy in Eq. (2.9). Eq. (2.12) tells us that the local 

bending elastic constant of the monolayer K cx Kh,,S2, (not S3 as it would be for a solid 

thin shell [35]) and that this elastic constant is always positive. A crude estimate of this 

quantity can be obtained easily: For typical values, Kh = Kc = K/2 x 35erg/cm2 (see 

Chapter 1) and S x 2nm, we find K N 5 x 10-13erg, a number which is in good agree- 

ment with the experimentally measured value [22]. The physical origin of the monolayer 

spontaneous curvature Co defined in Eq. (2.13) becomes intuitively clear. It is related to 

the steric asymmetry of the molecular shape. Since the steric shape is a phenomenological 

representation of all the microscopic interactions, one can imagine controlling this asymme- 

try by modifying some of the interactions, e.g., the interaction between headgroups, which 

intimately depends on the chemical or electrostatic conditions in the aqueous environment 

adjacent to the monolayer. In contrast to the bending rigidity K, the elastic constant K, 

associated with the local Gaussian curvature (C1C2) can be positive or negative, depend- 

ing upon the relative magnitudes of the head and chain contributions to Eq. (2.13). This 

fact is important for soluble amphiphiles, since varying the sign of r;, of a monolayer can 

influence the phase behavior of the amphiphile-water system [36]. Eq. (2.14) also suggests 

that K, may be smaller than K by a couple of orders of magnitude due to its dependence on 

the factor [ (Kh~c,o  - Kcah,o)/(Khac,o + K,ah,o)](ah,~/ac,o - I),  which can be small for lipid 



molecules with only slight asymmetry in shape. 

The local elastic energy density f l u o  given in Eq. (2.9) is the simplest Landau energy 

involving the two sets of coarse-grained degrees of freedom fundamental to a lipid mono- 

layer, the "internal" degrees of freedom, represented by (a/ao - 1) and corresponding t o  

the translational motion of lipid molecules within the monolayer, and the "external" (or 

shape-dependent) degrees of freedom, such as local curvatures, connected with the shape 

of the monolayer surface. This Landau functional contains all possible local, isotropic, and 

Euclidean-invariant (i-e., invariant under translations and rotations in the 3-dimensional 

embedding space) terms through second order in (a/ao - 1) and in the local curvatures, 

including the coupling term between the two sets of degrees of freedom: Up through second 

derivatives of the shape, the only local Euclidean invariants are the principal curvatures C1, 

C2. If we require isotropy, then C1 and C2 must enter symmetrically. Thus, at first order 

in C,  there is only one invariant, the local mean curvature H = C1 + C2, while at second 

order there are two, H 2  and the Gaussian curvature (C1C2). Additional terms, involving 

higher orders of (a/ao - 1) and C1, C2 and higher derivatives of the shape, are in principle 

present but neglected herein (see Helfrich's recent work for the effect of these higher-order 

terms [37]). The coupling term between the "internal" and "external" degrees of freedom 

in Eq. (2.9) will also be neglected, since it effectively makes a small contribution of order 

(a/ao - 1) to the spontaneous curvature Co. 

Another important piece of physics revealed by this derivation should be emphasized: 

There are two (we neglect the Gaussian curvature term for the moment) vastly different 

energy scales associated with the monolayer deformation, a fact which can be easily seen if 

we write the total elastic free energy of the monolayer approximately in the form, 

where A. is the surface area of the whole monolayer. The energy scale (KAo) is connected 

with surface-area dilation. The ratio of this energy to the bending energy constant K is 

roughly AO/S~ N (R/S)2 .- lo6. An area dilation which costs an energy comparable to the 

bending energy is, therefore, only of order SIR .- 



Having discussed the physics of a single monolayer, we turn now to the properties of 

a closed membrane bilayer composed of two such monolayers. It will be assumed that 

the thickness D of the bilayer, or, more specifically, the separation between the monolayer 

neutral surfaces, stays constant. The elastic energy of the lipid bilayer can thus be written 

where fi has the form given in Eq. (2.9), 

and the index i (i = out, in) labels the individual mono layer^.^ 

In this approximation, the surface density variables, aout and ain, can always be equi- 

librated, independent of local curvature changes. Indeed, as noted in Chapter 1, there is 

no local constraint imposed on aout and ain. Consequently, both aout and ain will adjust 

themselves independently of one another to minimize the total elastic free energy. The only 

constraints are that the number of molecules in each monolayer is conserved separately. The 

constrained minimization of the elastic energy with respect to ai can then be formulated as 

follows: 

where the chemical potentials pout and P" are used to enforce the constraints on the number 

of molecules, hi dAi/a' = N' in each monolayer i. The two variations (2.18) lead to two 

local equations, 

'Two remarks are in order here. First, in writing out the total energy of the bilayer, as  is in Eq. (2.16), 
we are performing a mean-field treatment of the system, in which certain degrees of freedom have been 
integrated out. Secondly, we have neglected the van der Waals interactions between molecules within the 
two leaves. One might expect that such interactions would induce correlated inhomogeneity in the surface 
density distribution of each monolayer. However, it is easy to show that at the mean-field level solutions with 
uniform lateral density continue to  exist and, for these solutions, the effect of the van der Wads interaction 
is merely to add an overall constant to (2.24). 



In Eq. (2.19) the only term depending on the local curvatures (included in fi) comes from 

the curvature-energy contribution, as given in Eq. (2.17). It describes a "secondary" ef- 

fect (of the order of ( c ~ / R ) ~ ) ,  and can be neglected. It follows from Eq. (2.19) that the 

density deviation at equilibrium, (ai - a;), is independent of position on the monolayer 

surface. Thus, the area dilation of each monolayer is a global quantity, characteristic of 

each monolayer surface, and is equal to (A~/A; - 1). We thus rewrite the bilayer energy 

(2.161, 

+ higher-order corrections . (2.20) 

A neutral surface for the bilayer can be defined in the same way that was done for the 

monolayer, 

where A. is defined to be the preferred area of the bilayer neutral surface, and dout, din 

indicate the distances of the two monolayer neutral surfaces from that of the bilayer, i.e., 

din+dout = D. Again, the total bilayer elastic energy should generally contain contributions 

coming from both area dilation and bending of the bilayer neutral surface. If we characterize 

the neutral surface of a vesicle by its surface area A, and its local principal curvatures C1 

and C2, then the closed geometry of the vesicle requires that the area dilation/compression 

of each monolayer should be 



The monolayer mean curvature is simply 

Substituting Eqs.(2.22) and (2.23) into the expression (2.20), we finally obtain the elastic- 

energy functional for the bilayer, 

where 

Non-zero values of the bilayer spontaneous curvature Co in the free energy (2.24) reflect 

a spontaneous tendency for the bilayer to curve one way or the other, arising from the 

asymmetry between the constituent monolayers, as suggested by the simple expression 

(2.27). If two identical lipid monolayers (&Out = and C6ut = -C$)5 are brought 

together, the intrinsic monolayer asymmetry cancels completely, and Co = 0. There are a t  

least two possible mechanisms which can lead to an incomplete cancellation and a nonzero 

value of Co. The first invokes a molecular compositional asymmetry between the monolayers, 

'The negative sign appears because both C,OUt and C? are now referred to a single inside/outside sign 
convention, which treats the head/tail asymmetry of the individual monolayers oppositely. 
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SO that rcoUt # rcin, COOUt # Cp, simply because of some difference in the chemical structures 

of lipid molecules on the two sides. The second mechanism allows the two leaves to be 

identical in composition but focusses on the chemical difference between the adjacent fluid 

environments inside and outside the vesicle. Such chemical differences, as we have already 

discussed, ultimately lead to  different modifications in steric shapes of molecules-even the 

same kind of molecules-as they interact with the different fluids inside and outside the 

vesicle. This effect can also modify the microscopic interactions that are responsible for the 

macroscopic elasticities. 

We comment briefly on the physical meaning of the individual terms in Eq. (2.24) and on 

their relative contributions to the overall energy. The first term in (2.24) is the elastic energy 

needed to stretch the bilayer from its preferred area A. to its actual overall area A. The 

factor (A/Ao - 1) is dimensionless, so the energy scale of this contribution is KAo N KR2, 

i.e., larger by a factor than the other elastic moduli in the problem (Eqs. (2.12) and 

(2.14), and Eqs. (2.25) and (2.28)). Because of this large energy, deformations involving 

dilation are ordinarily strongly suppressed. When this is so (as it will usually be, in what 

follows), it is permissible to drop this term and replace it by the constraint that A be fixed 

at its preferred value Ao. This is the case, for example, for flaccid vesicles, which can take 

on many different shapes a t  fixed V and A, differing in energy from one another only at 

the energy scale of KD2 of the bending energies. The only situation in which this does not 

apply is when large osmotic pressures inflate the vesicle so that its volume becomes greater 

than Vo = (4x13) ( A ~ / ~ x ) ~ / ~ ;  thus, the preferred membrane area can not accommodate the 

required volume. Under these conditions, the overall dilation energy enters, the energy scale 

of fluctuations is KR2, the large fluctuations characteristic of flaccid vesicles are suppressed, 

and all vesicle shapes are (strained) spheres. 

The local curvature variables occur only in the second and fourth terms. These terms 

describe the shape-dependent part of the overall bilayer energy. Discussion of these terms 

for the bilayer model parallels what was said after Eq. (2.9) for the monolayer model. In par- 

ticular, these terms include all Euclidean invariants in the local curvatures through second 

order. The integrals in both terms are dimensionless, so the two bending rigidities K and rc, 



have units of energy. Both these energies are generically of order KS2, although , it may be 

expected that K~ is appreciably smaller than K, as explained after Eq. (2.9). The Gaussian 

term is a topological invariant by virtue of the Gauss-Bonnet theorem ($dAC1C2 = 47r 

for sphere topology). Thus, in comparing the energies of different shapes with the same 

topology, this term provides a trivial additive constant and will be omitted hen~efor th .~  

Finally, the third term in Eq. (2.24) represents the cost in elastic energy of deforma- 

tions which force the area difference AA of the monolayers to depart from the relaxed value 

AAo, which it would have if each molecule had exactly its optimal area. This term is global 

or non-local in the sense that, because of Eq. (2.2), it involves the integral of the mean 

curvature over the entire vesicle surface. The factor in the square bracket is dimensionless 

and of order unity in magnitude for unstrained configurations. The area-difference elas- 

ticity E (Eq. (2.26)) has a magnitude of order KD2, which is the same scale as that of K 

and K ~ ,  at least under (typical) conditions, where D N 6. The reason for this is demon- 

strated in the microscopic derivation: This term arises generically from the lateral elastic 

dilation/compression of the constituent monolayers (Eq. (2.20)). The actual surface areas 

of the two leaves are constrained by the global geometry, as indicated in Eq. (2.22). Con- 

sequently the optimal state, where both monolayers assume their preferred surface areas 

Agut and ~ t ; " ,  will not be reached when the vesicle takes an arbitrary shape. A uniform 

area dilation/compression of the order of D/R is in general unavoidable for either or both 

leaves, giving rise to the non-local elastic energy of order of K ( D / R ) 2 ~  K D ~ . ~  

The upshot of this discussion is that, for flaccid vesicles of fixed topology, the full elastic 

energy Eq. (2.24) simplifies to Eq. (2.1). This is the ADE model which we shall study in 

Chapter 4. 

The non-local bending energy (third term in Eq. (2.24); second term in Eq. (2.1)) is 

61n comparing the energies of topologically different biiayer configurations, this term plays a crucial role 
PSI. 

'This can be easily illustrated in the following example. We consider a bilayer which is initially flat and 
its two constituent monolayers have the exactly same optimal area. Imagine the bilayer is then closed to 
form a vesicle such that the mid-surface of the biiayer is unstretched. The outer leaf must experience an area 
expansion of (012)  $ dA (Cl + C 2 ) / A  - (DIR) where the inner one suffers a compression - ( D / 2 )  $ dA (Cl + 
C2)/A.  



absent in the SC and the AA models. As shown above by the derivation based on a 

simple microscopic model, this term is of the same order of magnitude as the local bending 

elasticity term (Eq. (2.12) and Eq. (2.25)). This expectation is supported by the first 

direct measurement of non-local bending rigidity by Waugh, Song, Svetina and ~ e k ~ .  This 

experiment uses the tether formation technique and yields a value ii/~ x 1.1 [39]. Thus, 

there seems no justification for omitting this term in studying equilibrium vesicle shapes. 

The non-local elasticity term has a form rather different from that of the local bending 

energy: It seems to  involve some long-range interaction between local curvatures at different 

points on the surface, whereas it is clear that the interactions we start with are completely 

local (Eq. (2.16)). It may be, therefore, useful to summarize here the reasons for the 

apparent non-locality. It comes about because of the homogeneity of the local density 

distribution of the individual monolayer (Eq. (2.19)), the global constraints imposed by the 

fixed distance D between the individual monolayers and the closed boundary condition, 

and the fact that the numbers of lipid molecules in the individual monolayers are separately 

conserved (see Section 1.1). 

The microscopic picture (i-e., the four-layer picture) of a fluid lipid bilayer, on which we 

have based our derivation and discussion of the ADE model, was first proposed by Svetina, 

Brumen and &kg in 1985. However, our presentation in this section is the first "system- 

atic" discussion, which gives a unifying and semi-quantitative (i.e., order-of-magnitude) 

explanation of the various macroscopic elasticities of a fluid-lipid-bilayer membrane. The 

energy scale associated with the dilation of the membrane surface, KR2, and those associ- 

ated with the bending, K D ~ ,  are all determined by the elementary elastic constant, K ,  the 

area-compressibility modulus, and by the two fundamental length scales in the system, R, 

the macroscopic scale, and D, the microscopic thickness of the membrane. 

We complete the discussion of the ADE model Eq. (2.1) by summarizing all the con- 

straints in this model. The ADE model takes as constraints fixed values of the surface 

area and the enclosed volume. There is no constraint on the geometrical area difference 

AA between the two leaves of the bilayer. The optimal area difference AAo depends on 

the history of the formation of the vesicle and is a shape-independent constant, as long as 



temperature and other macroscopic conditions in the adjacent fluids are kept fixed. The 

spontaneous curvature Co is also assumed constant over the whole vesicle surface and is 

independent of the specific vesicle shape profile S.8 

2.2 Two canonical continuum models-special cases of the 
ADE model 

The discussion of the ADE model in the preceding section enables us to introduce the 

two canonical models, the spontaneous-curvature model and the area-difference model, as 

special cases of the ADE model. In this process, both the physics they capture and the 

intrinsic limitations they have can be illustrated in a transparent way. 

The SC model describes a closed fluid lipid-bilayer vesicle by the energy functional 

supplemented by constraints of fixed surface area and volume. 

The SC model was first introduced by Canham [6] and subsequently has been reformu- 

lated by Helfrich [7] to take into account the effect of bilayer asymmetry via the spontaneous 

curvature. Helfrich and Deuling [8] exploited the model further: They found a catalogue 

of vesicle shapes, including prolate ellipse and oblate ellipse, and showed that, at given 

vesicle volume and area, prolate and oblate ellipses have different bending energies. Many 

others have also made their particular contributions [32, 40,41,42]. For example, Peterson 

[42] performed a stability analysis of vesicle shapes which indicated that the axisymmetric 

shapes are frequently but not always stable with respect to non-axisymmetric perturbations. 

The energy functional (2.29) contains only a local bending-energy term. As we have 

learned from the derivation presented in the previous Section (see Eqs. (2.5) and (2.9)), 

this energy originates from the bending deformation of two surfaces which are coupled 

locally. The SC model therefore implies that the two monolayers forming the bilayer are 

locally constrained, both dynamically and statically, thus behaving effectively as one, and 

'This may not always be true. Indeed, when the vesicle bilayer is composed of a mixture of lipids and 
there is surface domain formation, one can expect this parameter to vary locally. 



it simply does not see the bilayer structure of the membrane. However, it has been shown 

that, for bilayer vesicles composed of glycerophospholipids, the two constituent monolayers 

are not laterally constrained to each other [43]. The description given by the SC model is 

therefore not fully applicable to these systems. 

The AA model (originally called the bilayer-couple model) takes a different perspective. 

Like the SC model, it is described by a bending energy depending upon the local curvatures 

of the vesicle surface, 

The constraints in this model include the fixed surface-area and volume constraints. In 

addition, there is a third constraint on the monolayer-area difference AA. 

This model was put forward by Svetina and ~ e k ~ ,  based on the bilayer-couple hypoth- 

esis: The two leaflets of a closed bilayer membrane may respond differently to various 

perturbations while remaining in contact [30, 441. Subsequent investigations of this model 

by Svetina and ~ e k ~  [25, 26, 311 have indicated a number of interesting properties of vesi- 

cle shapes, such as the occurrence of the symmetry-breaking instability associated with 

discocyte-stomatocyte transformation and geometrical limitations of possible shapes. The 

full picture of shapes and shape transformations has been given recently by Seifert, Berndl 

and Lipowsky [27]. 

The AA model does see the two constituent monolayers as independent entities. It 

assumes that the optimal state, where both of the two leaves have their preferred surface 

areas, is strictly enforced upon the vesicle, thereby considering each lipid monolayer ab- 

solutely unstretchable or incompressible. This leads to  the additional global constraint, 

AA E AAO. Under the assumption that the bilayer thickness D is a constant over the 

entire surface, this in turn leads to a constraint on the integrated mean curvature, as fol- 

lows from Eq. (2.2). The spontaneous curvature Co is set to zero, since it is coupled to the 

constrained AA, thus merely shifting the curvature energy by a constant, and is, therefore, 

irrelevant to  equilibrium shapes. However, the assumption that AA is constrained is not a 

very realistic one. Indeed, as we have pointed out, a deviation of each monolayer area from 



its optimal value of the order of D / R  should be possible and will make contributions to the 

total elastic free energy which are comparable to the local bending energy. The final value 

of AA should be determined as an outcome of minimizing the total free energy instead of 

being fixed a priori. 

Both of these curvature-energy models can be regarded as the special cases of the ADE 

model, wherein the non-local bending effect is looked at from two extreme points of view. 

The SC model corresponds to the case where the non-local bending constant R is taken to 

be zero, whereas the AA model is recovered as the limiting case when iZ + oo. Furthermore, 

neither the SC model nor the AA model gives a unifying explanation of all the experimental 

findings. A more detailed discussion of this issue is deferred to Chapter 4. 

2.3 Concluding remarks 

We conclude this chapter with some general remarks on the continuum models. First, all 

three of the curvature-energy models we have considered in this chapter have neglected 

short-distance effects (i.e., effects at distances comparable to the thickness of the lipid 

bilayer), where van der Wads forces may be an important source for intravesicular inter- 

action. Indeed, Bruinsma [45] has recently shown how van der Wads interactions may 

stabilize tubular structures and/or cause dynamical instability towards bead-like struc- 

tures, which, under appropriate circumstances, might resemble our equilibrium multiplets 

(see Chapter 3). Secondly, these models assume that the bilayer under consideration has 

a homogeneous surface structure. Important modifications will have to  be made when one 

investigates the equilibrium shapes of vesicles consisting of a lipid mixture which is capable 

of phase separating to form intramembrane domains [46]. 



Chapter 3 

Equilibrium Shapes and Shape 
Transit ions in the 
Spontaneous-Curvature Model 

3.1 Introductory remarks 

In this chapter, we describe the theory of equilibrium shapes and shape transitions for fluid 

lipid- bilayer vesicles within the context of the SC model. In particular, we shall concentrate 

on the equilibrium shapes and shape transitions involving "budding" and "vesiculation" 

processes. 

"Budding" and "vesiculation" refer to processes in which a single, more or less spher- 

ical vesicle (or cell in the bioIogica1 context), when subjected to change in some external 

parameter or stimulus, undergoes a shape transformation to produce one or more globular 

appendages linked to the parent body through narrow necks or tubes. When the neck has 

a non-zero diameter, we shall call the process "budding". To distinguish the limiting case 

where the neck diameter goes to zero1, we shall refer to this as "vesiculation". Both these 

processes affect the shape but not the,topology. If subsequently the appendage breaks off 

from the parent body (fission), only then does the topology change. 

"Zeron neck diameter is a well-defined limit in the continuum description. In real life, it corresponds to 
a short-distance cut-off, at which the continuum description may fail, and van der Wads interactions may 
become important. 



Budding of small vesicles from large membrane surfaces was originally observed in bio- 

logical cells. It is a frequent event in cells and is usually driven by complex chemical stimuli 

[47]. However, budding has also been found to occur in non-biological systems, such as 

artificial laboratory vesicles, as shown by the controlled experiments reviewed in Chapter 1. 

It  is the theme of this chapter that budding and vesiculation in artificial vesicles can be 

successfully described within the context of continuum models. 

The equilibrium vesicle shape is that which minimizes the SC bending energy (2.29) at 

given A and V ,  i.e., it is the mechanically stable shape of lowest energy. For many ex- 

perimental systems (e.g., fluid bilayers made of SOPC and DMPC), the bending rigidity 

K is appreciably larger than the thermal energy at room t empera t~ re ,~  so thermal fluctu- 

ations are small, and this zero-temperature (T = 0) approximation is valid. Under these 

conditions, the energy scale K drops out and only geometry is left. There remain three 

length scales, RA, RV, Ro, defined by A - 47rRi, V E 47rR$/3 (note that RA 2 RV), 

and Co 2/Ro. We shall assume that Co # o . ~  There is then no loss of generality4 in 

taking Co > 0, so spheres of radius Ro (which we shall refer to as "Helfrich spheres") cost 

no energy, and we are free to set the scale of length by taking Co = 1 (i-e., Ro = 2). 

The minimization of the mechanical bending energy expressed by Eq. (2.29) at fixed A 

and V leads to a catalog of shapes, which was first compiled by Deuling and Helfrich [8] and 

has subsequently been extended and refined by other authors [40, 41, 421. Many (but not 

all [25, 26, 27, 311) authors have restricted their attention to the regime RA, Rv N 1, i.e., 

vesicle dimensions comparable to Ro. A variety of shapes and shape transitions do, indeed, 

show up in this region, including discocytes, stomatocytes, torocytes (mostly corresponding 

to  negative values of Co), etc.; however, budding and vesiculation are absent. 

The purpose of our investigation of the spontaneous-curvature model was, therefore, 

twofold. First, we wished to explore the regime RA N RV >> 1, of large and more or less 

full vesicles. In this we were motivated by the early experimental observations of Evans 

2Typical values for rs quoted [22] for PC-lecithins are 0.4 - 2.0 x 10-12eq or (10 - 20)k~T,-, in 
agreement with the rough estimate given in the microscopic derivation presented in the preceding chapter. 

3The analysis we shall perform is perfectly applicable to the case where Co = 0; however, no budding 
and vesiculation occurs in that case. 

*Co < 0 is achieved in this convention by closing the vesicle "inside outn, i.e., below z = 0 in Fig. 3.1. 



and Rawicz [IS], Sackmann, Duwe, and Engelhardt [48] and others [23] on budding of giant 

artificial vesicles. Our second focus was to construct for the above regime a real "phase 

diagram," showing the systematics of shapes and shape changes, rather than just a catalog 

of shapes: The systematics is crucial to testing the different theoretical models, since, as it 

turns out, all models give same catalog of shapes. By simply looking at equilibrium shapes, 

one is not able to distinguish one model from the other. It is the fundamental outcome of 

our study that budding and vesiculation can and do both occur as adiabatic processes (i.e., 

processes involving only equilibrium states) in the SC model-the simplest model for fluid 

vesicles. 

The physical origin of budding and vesiculation in this continuum curvature model is 

easy to  understand. When RA = RV, the only possible vesicle shape is a sphere. As area 

increases via, e.g., thermal expansion (or, equivalently, as volume decreases through osmotic 

deflation), an excess area AA becomes available and other shapes can occur. If we write 

A = 4 ~ R c ( 1 +  A) in terms of the fractional excess area A, then AA = 47rRcA. As soon as 

Aa becomes comparable to  4nRi (16n in our units), it is favorable for the vesicle to  shed 

the excess area in the form of a bud with a radius of the order of Ro, which costs very little 

energy (we emphasize again that no energy is required when the radius is exactly R o ) . ~  AS 

the area increases further, the shedding process proceeds in a more or less periodic manner, 

until the volume of the parent body becomes, itself, comparable to  that of the Helfrich 

sphere. The full sequence of shape transitions is quite complicated, and we will find that it 

involves a nice interplay of some shape configurations with small necks (buds) and others 

in which the neck radii shrink to zero (vesiculation). 

This mechanism for budding and vesiculation appears to have been originally proposed 

by Luke and Kaplan [49]; however, no systematic calculations were done prior to  our investi- 

gation. Seifert and co-workers independently studied these phenomena from a point of view 

similar to ours [27]. They have carried out a comprehensive study of the low-volume regime 

'One might expect that the formation of a narrow neck, at which the two local principal curvatures 
assume large values, requires a large curvature energy. It turns out that, an appropriate neck costs very 
little energy indeed, no energy a s  the neck radius a - 0, as we shall discuss in detail in Subsection 3.2.3 and 
Appendix C. 



(i.e., V N 4nRi) .  Budding and vesiculation do occur in their studies, but the sequences 

which we shall find at high volume are absent. 

We have argued in Chapter 2 that the SC model is not fully adequate for describing 

lipid-bilayer vesicle shapes. What, then, is the rationale for studying this model in detail? 

The answer is several-fold: 

(a) The SC model was the first and for some time the only model of fluid vesicle shapes. At 

the time when this work was done, it was still regarded as a credible model of equilibrium 

vesicle shapes. Indeed, it is at  least partially a consequence of our work on the shape-change 

systematics that it was possible to see that the SC model did not-apparently-adequately 

describe what was seen in the lab for giant artificially prepared phospholipid vesicles. 

(b) The SC model does correctly capture some of the physics of fluid lipid bilayers, even 

though it does not capture all of it. It does recognize the central importance of the local 

bending elasticity. It is of theoretical interest, at  least, to understand what implications 

this crucial term has-acting by itself-for vesicle shapes and shape transformations. 

(c) There exist two-headed lipids, called bola lipids [50]. In a lipid bilayer containing a 

significant number of bola lipids, the two leaves may be expected to be "spot-welded" 

together, thus preventing free sliding of the two leaves relative to one another. The SC 

model would be a credible model for such systems. Indeed, there is a t  least preliminary 

evidence that the kind of multiple vesiculation predicted by the SC model is especially 

common when bola lipids are present [50]. 

(d) Most of the ideas and concepts for the description of equilibrium vesicle shapes and 

shape transitions developed within the framework of the SC model are fundamentally and 

universally important to this research field. 

(e) The systematic understanding of the SC model will shed light on our investigation of 

the more general ADE model, as it is one of the two limiting cases of the ADE model. In 

fact, it will become clear in the next chapter that a great technical advantage can be gained 

from studying such limiting cases. 



3.2 General formulation of the problem and systematics of 
the analysis 

3.2.1 Constrained minimization as a variational problem 

Following Deuling and Helfrich [8], we formulate the constrained minimization of the bend- 

ing energy (2.29) as a variational problem by introducing the variational functional, 

which we shall refer to as a free energy, in analogy with thermodynamics. C and P are 

Lagrange multipliers used to  enforce the surface-area and volume constraints, respectively. 

C has the dimension of surface tension, while P has the dimension of pressure. In what fol- 

lows, we shall choose units such that K and Co are equal to unity. The Lagrange multipliers 

a and p are thus dimensionless, defined as, 

We shall restrict our attention, for technical reasons, to shapes with axisymmetry. Of 

course, it is not always true that a mechanically stable axisymmetric shape will be stable 

against local non-axisymmetric perturbations, even if it is stable with respect t o  axisym- 

metric perturbations. This restriction may be justified, in principle, only if a careful local 

analysis of non-axisymmetric perturbations about an axisymmetric shape proves its stability 

(Refs. [51, 52, 531). On the other hand, this restriction is not too limiting in practice: Most 

of the vesicle shapes observed in experiments (Fig. 1.5) exhibit axisymmetry in the regime 

of parameters which we shall explore. Theoretical work is consistent with this expectation 

[511. 

Parametrization of an axisymmetric shape is illustrated in Fig. 3.1. z and r measure 

distances along and perpendicular to  the symmetry axis, respectively. The function z(r) 

then determines a shape. Let 0 be the angle between the local tangent and the symmetry 

axis, and C,(r), C,(r) be the principal curvatures, defined positive when the center of 

curvature lies along the direction of the interior normal h. It is the consequence of the 
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Figure 3.1: Parametrization of an axisymmetric vesicle shape. Either the distance from 
the axis, T, or the arclength, s, may be used as the variable parametrizing the shape. The 
local principal curvatures Cm and Cp are defined positive when the corresponding center of 
curvature lies along the line of the interior normal 6. 

axisymmetry that 
d(cos 0 )  cos 0 

Cm = - 7 C p = - y i  
d T 

where O(T) depends on z(r), 

Making the free energy (3.1) stationary subject to the condition of axisymmetry leads 

to the following set of Euler-Lagrange equations, originally derived by Deuling and Helfrich 



[8] (the "'Helfrich representation"), 

This set of Euler equations is convenient for analytical treatment of the problem, as will 

be demonstrated in our discussion of the nearly vesiculated shapes (Appendix C); however, 

it has the deficiency that points with infinite derivative dzldr ("belly" points) are singular 

points. Near these points, numerical integration of the Euler equations cannot be dealt 

with efficiently. 

This problem was solved by Peterson [42]: Using the arclength s as the parametrization 

variable, he first composed the following variational energy, 

dO cos 0 
= ~ s O d s { ~  [dr-T- 1 1 + ~ ~ T + ~ T ~ C O S O + ~ ( S )  [$-sin@]} , . 

following from the geometrical relationships, 

d r  dz 
- = s i n @ ,  - = cos 0 , 
ds ds 

The last term in this variational energy was introduced specifically to  deal with the lo- 

cal constraint, d r lds  = sin 0, imposed by the geometry on the functions ~ ( s )  and O(s). 

The function b(s) may be considered a "Lagrange-multiplier function" which enforces this 

constraint. 

Making the variational energy (3.6) stationary against arbitrary (axisymmetric) shape 

changes leads to  

d z - - - COS 0 , 
ds 



dO - = C,, 
ds 

dCm - - C, sin O cos O sin O - - - 1 bcosO - E T s i n ~  - -- 
dS T r2 2 2 T '  

(3.11) 

along with a conserved "Hamiltonian function" 

cos 0 
s [ -  (-T-l)2] 2 u r - p r 2 c o s ~ + ~ s i n ~ ,  (3.13) 

which is identically zero along the shape c ~ n t o u r . ~  The boundary conditions for O and r 

at both the north and south poles are obvious, 

Note that z(0) can be chosen to be 0 as a convention, while z(so) depends on the particular 

shape calculated. It follows from the conservation of 'H that the boundary conditions for 

b(s)  must be 

b(0) = 0 , b(so) = 0 . (3.15) 

We shall henceforth refer to this set of Euler equations as the "Peterson representationn. The 

belly points are no longer the singular points of this set of Euler equations. We therefore 

performed all our numerical calculations of the shapes using the Euler equations in this 

representation. 

In Appendix A, we give detailed derivations of the Euler-Lagrange equations in both 

representations and we show their equivalence. 

'There is nothing mysterious about this Hamiltonian function: It comes about as a conserved quantity, 
simply because the integrand in the variational energy (3.6) has no explicit dependence on the variable s. 



3.2.2 Euler shapes and the phase diagram 

Smooth solutions to the Euler-Lagrange equations, Eq. (3.5) or Eqs. (3.8)-(3.12), define 

what we shall call the Euler shapes, i.e., the axisymmetric shapes that are in mechanical 

equilibrium. These shapes are found by integrating the equations for Cm(s) and Cp(s) from 

s = 0 (the "north pole") to s = so (the "south pole"). Boundary conditions at the north 

pole are T = 0 and Cm = C,. Suppose that the integration starts at s = 0 with initial 

curvature cro = Cm(0) = Cp(0). For a general value of ao, the figure will not close and 

there is no Euler shape. For each value of a and p there are only a discrete set of initial 

curvatures {at)(o,p)} for which the shape equations close smoothly at the south pole. We 

shall describe in Appendix B systematic algorithms which lead in principle to  a complete set 

of solutions corresponding to the {at)}. These solutions, which are the stationary points 

of the free energy (3.1), are local minima or saddle points in the space of all configurations. 

The local minima correspond to shapes which are locally stable; the saddle points give the 

activation energies for transitions between different minima. Whether a shape is a minimum 

or a saddle point can be investigated by performing a local stability analysis. In this work 

we have not attempted to perform such an analysis in general;' however, we shall address 

the question of stability near the spherical limit in Section 3.3 below. 

The set of Euler shapes, which we denote Sn(a,p), have corresponding areas A,(a,p) - 
A[Sn(a, p)], volumes V,(a, p) z V[Sn(a, p)] , and bending energies En(a, p) - E[Sn(a7 p)]. 

The stationary free energy is then given by 

Because Sn(a,p) makes @[a,p; S] stationary, it is easy to show that 

To do this, note that the variation of @[a,p; S] must vanish, 

'Note that the Euclidean invariance of the bending energy functional and the constraints guarantees that 
shapes which satisfy the axial Euler equation are stationary with respect to local non-axial perturbations. 
It is not guaranteed, however, that such stationary shapes are local minima, and, indeed, it is not always 
true. This point has been explored by Peterson, Milner and Safran, Ou-Yang and Helfrich in special cases 
(Refs. [51, 52, 53, 541). 



This leads to 

On the other hand, we may calculate the differential change of @, as, 

Combining this with Eq. (3.19), we arrive at the result given in (3.17). There are typically 

many solutions to the Euler equations at given o and p. The evolution of this set of solutions 

as a and p vary leads to a family of sheets described by {@,(a, p))' over the (a,p) plane. 

On a single sheet, the dependence @,(a,p) is generally analytic; however, the sheets can 

cross, they can fold over and connect to each other, and they can merge into or bifurcate 

from one another. 

If the free energy @,(a,p) is not globally convex, there may be several solutions to the 

inversion An(a7 p) = A, Vn(a, p) = V for each sheet n at given A, V. Let a,(A, V), p,(A7 V) 

'It may be asked at this point why one does not form directly the energy surfaces En(u, p) rather than 
the free-energy surfaces. The answer is that the Legendre-transform structure makes O the natural free 
energy. Relations like Eq. (3.17) and (3.22) mean that local second-order structure is normally preserved 
(but see the next footnote for an exception). 



and Sm(A,V) label the complete set of such solutions (i.e., over both n and the different 

solutions for each fixed n). (om(A, V), pm(A, V)) consists of a discrete set of points. The 

corresponding family of energy surfaces, 

is simply a Legendre transform of the stationary free energy 0, and has, also, a complex 

structure. Local bifurcation structure is normally, but not alwaysg, preserved in the change 

of variables. It is a consequence of the Legendre-transform structure that 

which is true as a local statement for any sheet m. Although Eqs. (3.17) and (3.22) look 

very "thermodynamic," it must be kept in mind that the functions @,(a, p) and Em (A, V) 

do not in general satisfy convexity conditions even locally, so second derivatives such as 

a2Em/dV2 and a2E,/dA2 may have either sign. 

Once all the energy sheets are known (and we shall see in the next section that the 

Euler-shape sheets are only a subset), the solution to the constrained minimization problem 

originally posed is 

i.e., the solution always chooses the lowest-energy sheet at each point (A, V).1•‹ In regions 

of the (A, V) plane where the solution remains on a single sheet Em, the energy E(A, V) is 

analytic. Nonanalyticities arise when the global minimum Eeq(A7 V) passes from one sheet 

onto another. This occurs where sheets cross or where they merge, bifurcate or terminate in 

some other way. The energy is continuous over the accessible region of the (A, V) space;'' 

however, as we shall see in some detail, it is not generally convex and its derivatives may be 

'The exception is the sphere sheets @s(u,p) which transforms into a line in E(A, V ) ,  thus changing 
the associated bifurcation structure significantly. We shall discuss this in some detail in Section 3.3. This 
apparent anomaly is actually a simple consequence of the Euclidean invariance of the problem. 

''Note that the lowest sheet Em(A, V) does not necessarily correspond to the lowest sheet @,(u,p) at  the 
corresponding values u,  (A, V) and pm (A,  V ) .  

''The continuity of E(A,  V )  can presumably be proved rigorously by arguing that a shape S which has 
energy E at area A and volume V can always be slightly modified in such a way as to acquire area A + 6A 
and volume V + 6V with an energy change 6E which goes to zero as 6A and 6V go to zero. 



discontinuous. Borrowing from thermodynamics the terminology of phase transitions , we 

call the regions of analyticity "single-phase" regions and refer to the loci of nonanalyticity as 

"phase boundaries". When BE/BA and/or BE/dV changes discontinuously, we refer to the 

transition as "first order" (generically, this is the situation when sheets cross); otherwise, it 

is "second order" (as occurs at bifurcations). The loci of nonanalyticity in the (A, V) plane 

constitute the "(A, V) phase diagram". The corresponding loci in the (a ,p)  plane constitute 

the "(a, p) phase diagram", which nicely provides a Legendre conjugate of the ( A ,  V) phase 

diagram. Note that crossing a first-order transition corresponds to a discontinuous jump in 

(a,p) and may occur a t  a point where the surface @,(o,p) is smooth. 

3.2.3 Boundary minima, coexistence, and mult iplets 

It might seem that all minimum-energy shapes correspond to solutions of the Euler equations 

(3.8)-(3.12). To understand why this is not so, we consider an arbitrary smooth function 

f of a single scalar variable x in the interval [b, c]. To find the minimum of f ,  it is true 

that we must search the points where dfldx = 0 (analogous to the Euler equation); but, 

we must also compare with the boundary values f (b) and f (c). These "boundary" minima 

correspond in the vesicle shape problem to configurations which consist of two or more 

Euler shapes which touch each other tangentially and possess the required total area and 

volume collectively (see Fig. 3.2(a)). Technically, such a shape should be thought of as the 

limit of a single connected (topologically spherical) shape with one or more necks which 

approach zero diameter.12 At first sight it might appear that the large curvatures which 

occur near the necks would always lead to  large energies in the bending energy (2.29) and 

would place such configurations very far from any energy minimum. (Indeed, this is true 

for a D = 1 vesicle in two space dimensions, and for this system vesiculation is absent.) 

The key point is that, although the absolute values of the two curvatures diverge as the 

neck diameter a tends to  zero, the signs are opposite. It turns out that, by an appropriate 

choice of neck shape, the leading divergences of the two principal curvatures cancel, and 

the changes in both the free energy and the bending energy resulting from the opening of a 

''If fission occurs, then the omitted Gaussian curvature terms would have to be put in. 



neck vesiculated shape "fission" 
a > O  a + 0' 

C<O C=O C>O 
neck stable "kissing" multiplet stable 

Figure 3.2: Vesiculated shapes versus narrow-necked shapes, and the kissing condition. 
(a) Vesiculated shapes consist of two or more bodies connected via infinitesimal necks. In 
situations where these shapes are locally stable (e.g., when C > 0 for sphere multiplets), 
increasing the neck radius a from zero raises the energy. "Fission" changes the topology and 
is not considered in this thesis. (b) Generic neck geometry of Euler shapes near a kissing 
boundary (C = 0). The criterion [ I -  ( l /RA + l/RB)] < 0 for neck stability applies when 
the necks join nearly spherical shapes. 



neck of size a scale as Ca to  lowest order in a (see Appendix C ) .  As long as the coefficient C 

is positive, the limiting configuration is locally an energy minimum and can compete with 

the lowest-energy Euler shape of the same area and volume. We shall call these limiting 

configurations, in which two or more Euler shapes touch tangentially and communicate via 

an infinitesimal neck, "multiplets" . 

We give a more detailed account of our treatment of the neck region in Appendix C 

and simply quote here the three results that are relevant to our present discussion. We 

have shown (for axisymmetric narrow-necked shapes that approach multiplets consisting of 

spherical segments) the following: 

(a) In the limit a + 0, the energy (both the free energy and the mechanical bending energy) 

of the neck region vanishes. 

(b) The coefficient C is proportional to (1 - l /RA - l /RB) with a positive prefactor, where 

RA and RB are the radii of the corresponding osculating spheres.13 The multiplet is locally 

stable when this bracket is positive; however, when this bracket is negative and small in 

magnitude, a narrow-necked shape which is very close in shape to a spherical multiplet 

exists as a local minimum. 

(c) The equilibrium neck size can be driven to zero by varying parameters such as A and 

V (or a and p). At this boundary, the coefficient C becomes equal to zero, so 

which we call the "the kissing condition." 

This equation defines lines in the (a,p) plane (see, e.g., Fig. 3.3).14 Near such a line 

there are two sheets of similar stationary-energy shapes, one necked and one vesiculated 

(Fig. 3.2(b)). The two sheets meet tangentially at the kissing boundary. On one side of 

the kissing line, C < 0 and the necked shapes are locally stable and have lower energy 

13This corresponds in unnormalized units to  (2/&-l/RA-l/RB), where & is the spontaneous curvature. 
'*Actually, as we show in Appendix C, this kissing condition is of a very local character, in the sense that 

it only depends upon the local curvatures at  the osculating point, not on the global shape of the osculating 
objects. Hence, we expect a bifurcation structure involving both narrow-necked shapes and vesiculated 
multiplets whenever the more general condition CA + CB = 1 is satisfied by two arbitrary axisymmetric 
Euler objects touching each other tangentially at  the symmetry axis. CA and CB are local curvatures of the 
two objects at  the osculating point. 



Inset 
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Figure 3.3: The ( a , p )  diagram showing special features associated with spheres. Euler 
spheres do not exist in the region above the parabola, (3.30). Below, there are two distinct 
spheres with radii given by (3.29). On the parabola, the two radii become equal. The lines 
labeled by 1 = 2 and I = 3 mark the bifurcation boundaries, defined by (3.38), at which 
small perturbation dominated by a particular 1 spherical harmonic develops smoothly from 
spheres. The inset shows how all these bifurcation lines emerge from the point (-1/2,0). 
For I = 2, prolate ellipses lie to the right of the bifurcation line. a = 112 is the kissing 
boundary for unequal spheres. a = p is the locus of Helfrich spheres, at which the kissing 
condition is automatically satisfied. 



than the multiplets; while, on the other side, C > 0 and the vesiculated shapes are local 

boundary minima. In this region the neck shape predicted by the Euler-Lagrange equations 

is self-intersecting and, therefore, unacceptable for a real vesicle. 

We now discuss the thermodynamics of the multiplet configurations. A multiplet con- 

sisting of M (? 2) smooth shapes may be taken to satisfy the following conditions: 

where i = 1, ..., M labels the members of the multiplet. Notice that, in omitting any 

energy contribution due to the necks, we have made use of result (a) above. In looking 

for an energy minimum, there is no loss of generality in choosing multiplet members to 

be Euler shapes, since the lowest-energy smooth shape of given area and volume is an 

Euler shape. It remains to determine how to minimize the energy (3.25) by redistributing 

the area and volume among all the members of the multiplet subject to the constraints 

(3.26). Incorporating the constraints via Lagrange multipliers and using Eq. (3.22) for the 

individual multiplet members yields 

as the conditions for stationarity.15 Thus, the coexistence condition for the members of 

a given multiplet is that they share same values of a and p. When all members of the 

multiplet satisfy d2E;/dA! > 0 and d2E; /dY2  > 0, then the stationary point is guaranteed 

to be a local minimum.16 If either second derivative is negative for all members of the 

multiplet, then the stationary point cannot be a local minimum.17 In general, the signs are 

mixed and nothing can be said without specific calculation. 

''We have assumed here that Ai and K are independent variables. This is true for all Euler shapes except 
spheres, which require special treatment, since the spherical radius R, determines both A, and . We shall 
comment further in Section 3.3. The conclusion is that this result holds equally for spheres. 

16An example here is the situation for spheres, which we shall study in detail in Section 3.3. Of course, 
in the spherical case A and V are not independent and the relevant condition is a2E/dR2 > 0. 

''An example of this is elliptical shapes which are not too far from spheres, for which a 2 ~ / d ~ 2  < 0, as 
we shall show in Section 3.3. 



The stationary point or points given by (3.27) define a set of multiplet energy sheets 

E,(A,V) which must be combined with the Euler sheets of Subsection 3.2.1 in selecting 

the true lowest-energy state (3.23) at each given point ( A ,  V). 

3.3 Spheres, sphere multiplets and perturbations about spheres 

3.3.1 Spheres, sphere multiplets and vesiculations 

In the (A,V) plane, spheres lie along the line V = ~ ~ / ~ / 3 & ,  which bounds the physical 

region from above. Each point on this line corresponds to a particular radius R. The 

spherical symmetry of the problem guarantees that such shapes will be solutions of the 

Euler problem and, indeed, we see that C,(r) = Cp(r) = 1/R satisfies, e.g., Eq. (3.5), 

provided 

which is just the usual soap-bubble formula corrected for the contribution coming from the 

curvature energy. Note that Eq. (3.28) is linear in both a and p, so that each sphere is 

represented by a straight line in the (a,p) plane. Inverting Eq. (3.28) to find the allowed 

radii at fixed (a, p) gives 

so that spheres are forbidden above the parabola 

Along this boundary (Fig. 3.3), the two allowed spheres have equal radii. In the region 

below this curve, there are two free-energy sheets asli(a,p) (one above the other) defined 

for spheres R* (a, p) , respectively, as 

The two sheets merge smoothly along the boundary (3.30). 



All this structure maps in the (A, V) plane onto the line V = ~ ~ / ~ / 3 f i  with corre- 

sponding energy, 

E(R) = Eo(R) = 27r(2 - R ) ~  . (3.32) 

The mechanism for this reduction is a simple property of the Legendre transform [55]: The 

variational free energy for a sphere of radius R has the form, 

which defines a plane P(u,p; R) over the (a,p) space. Note that the entire plane P(a,p;  R) 

maps under Legendre transformation onto a single point (47rR2,4nR3/3) in the (A,V) 

plane. Now, the intersection of the spherical sheet Qs(u, p) with this plane lies along the 

locus (3.28). Furthermore, because of the relation (3.28), the sheet and the plane meet 

tangentially along this line. Thus, the entire line of this intersection maps, as part of the 

plane, into the single point ( 4 n ~ ~ ,  4nR3/3) in the ( A ,  V) plane. 

Many-sphere multiplets are a special case of Eqs. (3.25) and (3.26) but require special 

treatment, since A; and V ,  are related. For M = 2, the partition of area and volume is 

completely determined by the constraints (3.26), and there is a unique solution (up to an 

overall interchange 1 c-t 2) provided that A 5 2ll3 - 1, where A is the fractional excess 

(total) area defined by A = 47rR$(1 + A). Since the (a,p) lines representing two spheres 

always cross, the intersection point defines the coexistence condition for the two spheres of 

radius R1 and R2, 

a = ( I /& + I/&) - 112, P = 2/(RiRz) - (3.34) 

When M 2 3, the stationarity condition a(E + XAA - XvV)/BR; = 0 results in a quadratic 

equation for the multiplet radii, so the conclusion is that the spheres belonging to a multiplet 

can have at most two different radii. Such states are always local minima with respect to  

changes of the radii, since the second derivative of Eq. (3.32) is positive. When V >> 1 and 

A is not too large, then the lowest-energy sphere-multiplet always uses one large sphere 

and n = l , 2 , 3  ... small ones. Representative sphere-multiplet energy diagrams are shown 

in Fig. 3.4 for fixed volumes, V = 272 and V = 2723. Near A = 0 there exist other non- 

multiplet configurations of lower energy; however, these multiplets always provide one route 



Figure 3.4: Curves of energy E versus fractional excess area (A) for sphere multiplets 
(S+ns) of given volume. The largest possible A of (S+ns) occurs when all spheres have 
the same radius, i.e., at A = (n + 1)lI3 - 1, independent of volume. Two typical cases are 
shown. (a) For small volume (Rv = 4.02), the curves do not intersect, and continuity of 
the energy requires additional phases. (b) For larger volume (Rv = 8.66), successive curves 
intersect (additional phases are required here but for more subtle reasons). At the special 
points a = p and a = 112, spheres in the multiplet satisfy the kissing condition. Note that 
the a = 112 point is only relevant (i.e., lowest energy) for the first multiplet. At larger 
volume, the a = p points become irrelevant for high multiplets. 



whereby the original sphere may lower its energy as its area is increased. We shall discuss 

in the following two sections the extent to which, starting from large initial volumes, this 

route is actually followed. Note that, when it is, the transitions are first order. When V 

is sufficiently large, there are no gaps early in this process; for V 5 420 a gap first occurs 

between n = 1 and n = 2, so other configurations are necessarily required.18 

Properties (b) and (c) summarized in the preceding section (for more details, see Ap- 

pendix C) give some further insights. There are generically two types of kissing boundaries 

at which the kissing condition (3.24) can be satisfied, as illustrated in Fig. 3.5: 

(i) When the two spheres involved are of equal radius, Eq. (3.24) is only fulfilled when 

RA = RB = Ro = 2 (Helfrich spheres), i.e., along the line a = p. Sphere-multiplet configu- 

rations (n > 2) near this line are always close in energy to shapes consisting essentially of 

Helfrich spheres connected through narrow necks (dumbbells or multiple dumbbells). The 

local stability near this kissing boundary depends on the sign of the coefficient C, or, ex- 

plicitly, the sign of the bracket (1 - 2/RA). It follows from Eq. (3.29) that, for a > 112, 

the Helfrich spheres are given by the solution R+(a, p) (the larger of the two equilibrium 

radii) at a = p. It is easy to see that the bracket (1 - 2/R+(a,p)) is positive to the right of 

the line a = p and negative to the left. The situation reverses when a < 112. The Helfrich 

spheres now correspond to the solution R-(o,p) at the line a = p. In this case, the bracket 

is given by (1 - 2/R-(a,p)), which turns out to be negative to the right and positive to the 

left of the a = p line. For 0 < a < 1/2,19 thus, the stable (i.e., low-energy) configuration 

will be dumbbells to the right and sphere-multiplets to the left. Similar statements can be 

made for the case in which a > 112. 

(ii) When the two spheres have unequal radii, the kissing condition is satisfied when a = 112 

(and20 p < 112). Near this line, we expect competition from asymmetric dumbbell shapes 

(or multiple dumbbells involving alternate sizes). The asymmetric necks are stable for 

a > 112 and the multiplets, for a < 112. These special points are indicated in Fig. 3.4 

lsActually, for reasons discussed in Section 3.5, these other configurations come in slightly before the gap 
opens. 

lgFor u < 0, the stability is expected to be different. See discussion in Appendix C. 
'O~or p < 0, one of the spheres,R-(n,p), acquires a negative radius. The vesiculation is then inverted 

( "invagination"). 



Figure 3.5: The kissing boundaries of sphere multiplets and the local stability of small 
necks. Notation is similar to that used in Fig. 3.3. The two kissing boundaries, (a = p) 
and (a = 1/2), are shown by solid lines. Along (a = p), the kissing spheres are all Helfrich 
spheres; along ( a  = 1/2), the coexisting spheres have distinct radii (Eq. (3.29)). The 
hatched regions represent the regions where small necks are stable. 

and will play an important role in later discussion. Note that the a = 112 point is only 

relevant (i.e., low-energy) for the smallest multiplet configuration, (S+s), which consists of 

two spheres of unequal radii. On the other hand, for V sufficiently large, the a = p points 

remain lowest-energy configurations for most higher multiplets (S+ns), as we shall see in 

Section 3.5. 

3.3.2 Perturbations about spheres 

We now turn to the discussion of nearly spherical shapes. The discussion illustrates the 

continuous development of quasi-spherical shapes from spheres ("bifurcation"), as param- 

eters are varied, and also leads to certain analytical results useful to the determination of 



the final phase diagram. 

Nearly spherical shapes can be treated perturbatively [51, 52, 53, 541, provided that the 

fractional excess area A is not too large. For axisymmetric shapes S, we may expand in 

spherical coordinates in terms of the m = 0 spherical harmonics, 

The functionals E[S], V[S], A[S] and @[S] ad become functions of the distance R and the 

coefficients {al). Because of Euclidean in~ariance,~' there is no loss of generality in setting 

a1 = 0. Thus, for example, 

with 

Terms of order a3 and a4 are given in Appendix D, which provides a complete treatment of 

the local bifurcation structure using the perturbation expansion about spheres. For given a 

and p, the stationarity of @[S] with respect to R and a1 leads to  a set of nonlinear equations 

equivalent to, e.g., Eq. (3.5). The condition d@/dR = 0 leads to R = Ro(a, p) + O(a l )  

with Ro(o, p) given by Eq. (3.28). The condition a@/Bal = 2 ~ / ~ ) ( o ,  p; R)al + - - - = 0 

shows that, for each integer 1 > 1, there is a sheet of nearly spherical Euler shapes which 

(2) bifurcates continuously away from spheres along the line Cl (o,p; &) = 0. The locus of 

this bifurcation is given parametrically [53] by 

21E, @, A, and V are invariant under Euclidean transformations of S. What is important here is that 
translations of S along the symmetry axis induce nonlinear transformations on the coefficients {ar) but 
leave the values of these functionals unchanged. By means of such a translation it is always possible to make 



as illustrated in Fig. 3.3. The stationarity conditions, a @ / a R  = 0 and b@/da l  = 0, are 

equivalent to the Euler-Lagrange equations given in Section 3.2.1. The perturbative solution 

to these variational equations corresponds to a quasi-spherical Euler shape. Its evolution 

with the change of a and p leads to a free-energy sheet which separates smoothly from the 

lower of the two sphere sheets along each of these boundaries, as illustrated schematically 

in Fig. 3.6. 

The mechanical bending energies of these perturbative quasi-spherical shapes, as func- 

tions of A and V, are of essential importance to constructing the phase diagram. In order 

to develop these energies, we now make use of the fact that these perturbative solutions, 

when treated in the (A,V) ensemble, can be developed in powers of All2. It turns out 

[52] that the I = 2 prolate ellipse sheet provides the lowest-energy shape among all the de- 

formed spheres characterized by different Its, when the fractional excess area (A) is small. 

Consider a prolate ellipse which bifurcates from a sphere of radius Rv via the I = 2 mode, 

and preserving the volume of the sphere but having an excess area of A. Expansion near 

the bifurcation takes the form,22 

The energy of this shape is given by 

which shows how the energy increases as the area increases at constant volume. Terms 

through 0(A2)  are given in Appendix D and will be needed in Section 3.5, as we consider 

budding and vesiculation in the large-volume limit. 

22The absence of odd 1 terms is the general consequence of the up/down symmetry of the shape in the 
perturbative regime. 



Figure 3.6: Structure of bifurcations from spheres. (a) A schematic view of a section of the 
free-energy sheets aE and as, cut dong a straight line in the (o,p) plane corresponding to 
a sphere of fixed radius R. Bifurcation of the I = 2 and I = 3 sheets away from the sphere 
sheet is characterized by the separations between the sheets, 110 - 02113 and 110 - 03112, 
respectively. Note, also, that the 1 = 3 bifurcation is one sided (see Appendix D). (b) The 
same structure in the ( A ,  V) plane, showing how the two bifurcation points coincide in this 
representation. The lowest-energy sheet near A = 0 is always the prolate branch of the 
1 = 2 shape. The dashed lines show the leading corrections to the sphere energy, linear in 
A. The next correction go as a3I2 for 1 = 2. 



3.4 Shape evolution at V = 272: numerical results 

To set the stage for a more general discussion of the shape evolution and phase diagram at 

a large (fixed) volume as area A = 4 ~ R $ ( l +  A) increases away from the sphere, we present 

in this section results for a volume V = 272, i.e., Rv = 4.02 (in units such that Co = 1). 

The numerical algorithms used for the shape calculations on which these results are based 

are explained in Appendix B. In short, the Euler-Lagrange equations (3.8)-(3.12) were 

integrated by Runge-Kutta methods. The numerical integration becomes rather unstable 

for large volumes and the choice in our example represents a volume which is appreciably 

larger than unity but still in a domain where numerical convergence is excellent and details 

of neck shape can be studied reliably. 

Figures 3.7 and 3.8 illustrate the shape evolution, including both the energy as a func- 

tion of A and sketches of the corresponding minimizing shapes. Although the energy is 

continuous as a function of A, the curve consists of many segments and is certainly not con- 

vex. Each segment corresponds to a region or "phase" in the (A, V) space, where the shape 

evolves smoothly. The segments are separated by phase transitions. Both first-order tran- 

sitions (slope discontinuity) and second-order phase transitions (no slope discontinuity) are 

represented. The initial (A = 0) spherical shape (S) immediately passes through the I = 2 

threshold (Section 3.3 and Appendix D) into a prolate elliptical shape (E), which persists 

until fractional excess area A = 0.07. At this point (see inset on Fig. 3.7, point 1) there is 

a first-order budding transition (in which upidown symmetry is broken) to a necked phase 

(N)  with small neck radius (a = 0.03). As A is increased further, the neck radius shrinks 

smoothly to  zero at A = 0.086, where there is a second-order vesiculation transition (point 

2) to a multiplet (S+s) consisting of one large sphere (R1 = 3.97) plus one sphere with a 

radius (R2 = 1.34) somewhat smaller than the Helfrich sphere. On further increase of the 

area, the smaller sphere grows at the expense of the larger one, until at A = 0.260 the two 

spheres have equal volume. At this point (3), one of the two spheres deforms continuously 

into an elliptical shape, having a volume which grows with A, and the remaining sphere 

starts to shrink (E+s). The transition (Sfs) +(E+s) involves a discontinuous jump in the 



Inset No. 1 

Inset No.2 

Figure 3.7: Energy versus fractional excess area A for Rv = 4.02 (V = 272). The successive 
phases (S)+(E)+(N)+(S+s)+ - . . are explained in Fig. 3.8. Insets show extra detail in 
special regions. The sequence from (S+2s) through (S+3s) parallels that of (S+s) to  (s+2s), 
shown in the inset. Phase boundary points are labeled S(0),1,2,.. and appear again in the 
(a,p) diagram, Fig. 3.9. First-order transitions (slope discontinuity) are shown as open 
circles; second-order points (no slope discontinuity) are shown as solid circles. The data are 
partially analytic and partially from numerical solution of the Euler equation. 



Figure 3.8: Shape evolution of a vesicle a s  A increases, corresponding sequentially to the 
different regions (phases) of Fig. 3.7 (Rv = 4.02). S represents sphere; E,"ellipsen; N, neck; 
S+s, two-sphere multiplet; E+s, "ellipse" plus sphere multiplet; S+dz, sphere plus two-part 
dumbbell; etc. 



(a, p) plane and is first order, despite the fact that the actual shape changes are continuous. 

The (E+s) energy curve crosses the (S+2s) energy curve at A = 0.2866; however, in this 

region the (S+2s) multiplet is unstable to another multiplet, (S+d2), in which a large sphere 

coexists with a small symmetric dumbbell. Thus, the actual transition is (E+s) -+(S+d2) at 

A = 0.2857 (first order, point 4), followed by (S+d2) -t (S+2s) at A = 0.327 (second order, 

point 5) on the a = p line, where the neck of the dumbbell shrinks to zero. This scenario 

appears to  continue, with (S+2s)+ (E+2s)+ (S+d3)+ (S+3s)+ ..., where d3 represents a 

three-component symmetric dumbbell. The only uncertainty is whether at some stage the 

a = p point moves far enough to the left so that the transition (E+ns)+ (S+(n + 1)s) takes 

place directly. Of course, other shapes presumably appear at sufficiently large A; we have 

only followed the process through A = 0.5. 

The trajectory of the shape evolution in the (a,p) plane is shown in Fig. 3.9. Second- 

order transitions (solid dots) are continuous in this representation; however, first-order 

transitions involve a discontinuous jump, so each open circle appears twice and there would 

be corresponding tie lines on the full (a, p) phase diagram. The bifurcation lines a = 112 and 

a = p are shown for convenience, along with both the 1 = 2 threshold (see Section 3.3) and 

the boundary, Eq. (3.30), of the regions allowed for sphere solutions. Note, in particular, the 

mechanism for the (S+s)+(E+s) transition: The (S+s) phase ends at the boundary of the 

allowed-sphere region, where the radii of the two spheres are equal at R1 = R2 = ~ ~ / f i .  
The phase point then jumps along the (a,p) line representing a sphere of this radius t o  its 

intersection with the 1 = 2 threshold. This explains how the transition can be first order 

but still have a smooth shape variation. 

We close this Section with a remark on rigor. The Euler equations are nonlinear and 

have many solutions. It is not hard to follow a particular solution numerically as a and p 

are varied; however, there is no general method for proving whether or not the branch one 

is following has the lowest energy. The existence of multiplet regions makes this problem 

even more acute, since, in principle, one must test all possible multiplet combinations to 

search for the lowest energy. We cannot claim to have done this in any rigorous manner. 

The phase diagrams shown in this and the next sections are the result of a search only over 



Figure 3.9: (a, p) trajectory of the shape evolution for Rv = 4.02. The shape evolution 
in Fig. 3.8 is traced out in the (a,p) plane. Notation corresponds to that of Fig. 3.7 and 
Fig. 3.8. Note that a first-order transition corresponds to a discontinuous jump in the 
(u,p) plane, so that the corresponding point appears twice (e.g., point 1). Second-order 
transitions occur at bifurcation lines (here, 1 = 2, o = p, and a = 112, shown as thin lines). 
Inset shows detail. 



those configurations, Euler shapes and multiplets, which we have found and considered 

likely candidates. 

3.5 Analytical results for the phase diagram at large volume 

To find the full phase diagram, one may repeat the calculations of Section 3.4 for many 

different volumes and simply tabulate the results. A rather complete study of this sort has 

recently been carried out by Seifert et al. [27] for a range of RA, RV N 1 (in Co = 1 units). 

On the other hand, as we shall outline in this Section, at large volumes and fractional 

excess areas which are not too large, the phase boundaries may be mapped out quasi- 

analytically. In this region the numerical integrations become unstable, and, in this sense, 

our work complements that of Seifert et  al., extending it to large volumes, where budding 

and vesiculation dominate the phase diagram. 

Conceptually, the scenario is as anticipated in Section 3.3: A sphere of volume NVH 

with N >> 1 (VH = 3 2 ~ 1 3  is the volume of the Helfrich sphere) vesiculates off a sequence 

of small spheres, as its area is increased. As long as A << NAH (where AH = 1 6 ~  is 

the area of the Helfrich sphere), the minimum-energy configuration is always a multiplet 

which consists in effect of n (< N) Helfrich spheres (which cost no energy) and one larger 

sphere which carries the remaining volume. As area increases, the energy decreases from 

E = 8 7 r ( ~ ' / ~  - 1) at A = 47rR; to near zero at A = N AH ( E  = 0 when N is an integer). 

These successive vesiculations are essentially periodic in A with period AH, as each 

increment of area is shed in the form of an approximate Helfrich sphere. Between successive 

vesiculations, the additional area can be absorbed either by increasing the radius of the 

small spheres at the expense of the large one or by deforming the large sphere. The former 

route is always preferable when it is possible; but, as we shall see below, it is not always 

possible a t  low volume. The vesiculation (n - 1) -+ n normally occurs when the radius of 

the n small spheres is slightly less than Ro, i.e., at a point just to the right of the line a = p, 

where, as discussed in Section 3.3 and Appendix C, C < 0 and the n-fold multiple dumbbell 

d, exists as an Euler shape (see Fig. 3.10). The multiplet phase (S+d,) always has lower 



Figure 3.10: (a,p) trajectory of the shape evolution for Rv = 8.66 (V = 2723). Same as 
Fig. 3.9 but for the larger volume Rv = 8.66 (V = 2723). Note here that, in contrast 
t o  Fig. 3.9, the multiplet phase (S+s) becomes unstable to (S+d2) before reaching the 
parabolic boundary. (S+d2) transforms to (S+2s) at a second-order transition, when it 
reaches the bifurcation line a = p. For nonspherical shapes the data are approximate, 
based on perturbative results. Separation between multiplet trajectories are exaggerated 
by about a factor of 2 in order to make the structure visible at this scale. 



energy than the (S+ns) phase. The dumbbell phase (S+d,) therefore precedes the phase 

(S+ns) in the vesiculation sequence. The scenario sketched above holds until n becomes 

comparable to N. For n ? ~  (large area A) ,  the bending energy E must begin to increase 

with A. At this point, there is much excess area available and it becomes energetically 

preferable to use nonspherical shapes in the multiplets, so other configurations may occur. 

This large-excess-area, large-volume region of the phase diagram remains to be explored. 

Figure 3.11 shows the large-volume phase diagram, which summarizes our calculational 

results and includes data through the fourth vesiculation. The lowest volume shown cor- 

responds to  V = 2VH (Rv = 24/3), which is the minimum volume at which the first 

vesiculation can take place via the mechanism we have described, since the a = 3 bifurca- 

tion line (Fig. 3.4) ends at p = 4, where the corresponding radius is that of the Helfrich 

sphere. Volumes comparable to and smaller than this have been explored in Ref. [27].23 

More generally, when RV/RH N n1I3, new phases and new phase sequences-not shown in 

Fig. 3.11-can and do occur. Generally, the (S + (n - 1)s) phase does not occur below the 

point labelled H, with coordinates [A = n1I3 - 1, R v  = 2n1I3], where n Helfrich spheres 

coexist. 

The sequence of phases, as A increases at fixed V, is similar to what we observed in 

Section 3.4, but with some important modifications: 

(a) One difference is the absence above appropriate critical volumes of the (E+ns) phases, 

which in Section 3.4 intervened between (S+ns) and (S + d,) in the sequence (S+ns) + 

... -+ (S + (n + 1)s). The reason for this-already anticipated in Fig. 3.4-is that the energy 

curves Es+,,(A) overlap at sufficiently high volume, and the small-sphere (s) members of 

the multiplets remain on the scale of the Helfrich sphere. In Fig. 3.11 we have denoted by 

E,+l the largest-volume point of the phase (E+ns). 

(b) Another difference is the disappearance of the dumbbell phases (S + d,) at interme- 

diate volumes for n > 3. The mechanism for this disappearance is the movement of the 

a = p point into a physically irrelevant (i.e., high-energy) region over this interval. The 

23~ccording to Ref. [27], just below V = 2VH the sequence of phases is reentrant: (E) goes to (N) (called 
"pearn in Ref. [27]) via a first-order transition, but then the neck grows again and, at a higher area, (N) 
reconverts to (E) by a bifurcation (second-order). 



Figure 3.11: Phase diagram for the spontaneous-curvature model in the region of large 
volume [V = 4~R$/3]  and small excess area [ A  = 47rR$(1 + A)]. The labeling of the 
phases is given in Fig. 3.8. First-order transitions are shown by dashed lines; second-order 
transitions, by solid lines. The location of special points is provided in Table I. The gray 
region corresponds to A ? ( R ~ / ~ )  - 1 (i.e., areas comparable to  and larger than N Helfrich 
spheres), where the phase diagram is not controlled by the arguments given here. At large 
excess area, the phase diagram is not yet known, and it is probable that nonaxisymmetric 
phases play a role. 



Table 3.1: Location of special points in the phase diagram of the SC model (Fig. 3.11). H, 
corresponds to a multiplet of n coexisting Helfrich spheres (Ro = 2). En+' are the points 
above which the phase (E+ns) does not occur. D?)'(') are the points above/below which 
the dumbbell phase (S+d,) occurs. N, are the intersection points of the (E+ns)-energy 
curves with the (S+d,)-energy curves, at which the kissing condition (CE + C, = 1) is also 
satisfied. Where analytical expressions are not shown, the coordinates rely on numerical 
results and/or perturbative expressions, and corresponding uncertainties are given. 

corresponding lower and upper boundaries of the (S + d,) phase we denote D;) and D?), 

respectively. 

(c) Finally, at volumes near but above (n + l)VH, the (E+ns) phase reaches the (E)-(s) 

kissing boundary, as area increases, before intersecting with (S + dn+l). At the kissing 

boundary the condition CE + C, = 1 is satisfied, so, based on the discussion given in Ap- 

pendix C, one expects that narrow-necked shapes are close in energy to  the vesiculated 

E+ns and that they may come into play, as do those small-necked shapes near spherical 

multiplets. However, it does not seem to be true that a small neck is always mechanically 

stable, as would be the case where the osculating objects are all spheres. The structure 



of the transition sequence in this regime may become very complex.24 We have not in- 

vestigated this regime thoroughly and shall mark in the phase diagram only the kissing 

boundaries of the E+ns multiplets, which are represented by the curves between points 

Hn+1 and Nn+l 

('1 (4 Positions of the special points, H,, En, D, , Dn , and N,, are given in Table I. 

We turn now to  the location of the phase boundaries. The necking boundary, (E)+(N), 

is first order and must in principle be calculated numerically. However, the energy curves 

for the (N) and (S+s) phases lie very close to one another, as is already visible in Fig. 3.7, so 

an excellent approximation can be obtained simply by equating the perturbative expression 

(3.40) (including the higher-order corrections (Eq. (D.39)) to the energy of the (S+s) multi- 

plet. At high volume, the fractional excess area at the transition is Al = 1/R$ + 0(1/R$) 

. The (second-order) vesiculation boundary, (N)+(S+s), is just the a = 4 curve, Rv = 

1/rl(A)+l/r2(A) with r;+ri = 1 and r;+ri = l+A. The range of A over which the necked 

phase (N) exists decreases asymptotically in width like (const.)/R$ as Rv + 0 0 . ~ ~  The 

boundary between (S+ns) and (Efns) occurs when the radius of the n small spheres has 

grown to that of the coexisting large sphere, i.e., along the sphere boundary (3.30), which 

gives A = (n + 1)lI3 - 1, independent of volume. (E+ns) o (S + dn+l) is first-order [like 

(E)tt(N)] but, again, because the dumbbell neck energy is small, it is well approximated by 

equating the (E+ns) energy (numerical or perturbative) to the (S + (n + 1)s) energy (ana- 

lytic). Finding the kissing boundary (E+ns) requires knowing the volume and axial curva- 

ture of the "ellipse" shapes, both of which can be well approximated perturbatively, giving 

the curves shown. Finally, the second-order vesiculation boundary (S + d,) * (S+ns) is 

the curve o = p, Rv = 2/r2(A), with r; + r i  = 1 and r: + nrg = 1 + A. 

241nvolved in the competition for the lowest energy shape are not only the multiplets E+ns, and nearby 
small-necked shapes, but also those necked shapes bifurcating from other multiplets such as ml E+m2s where 
ml + m2 = n + 1, although these multiplets, themselves, are higher-energy shapes and are excluded from 
the competition. 

251nterestingly, the value of the constant seems not to be fully determined by the coefficients in Appendix D; 
however, we believe that the evidence is strong that it is positive and of order unity. 



Chapter 4 

Budding and Vesiculation in the 
ADE Model 

4.1 Introductory remarks 

The motivation to study the area-difference-elasticity or ADE model is the failure of either 

of the two earlier models (SC and AA) to consistently describe available experiments, along 

with the fact (emphasized in Chapter 2) that the global elasticity term-omitted by these 

models-is generically of the same order of magnitude as the local bending energy. Our 

study of the SC model is described in Chapter 3 and Ref. [29]. A parallel study of the 

AA model, based on an approach similar to ours, was carried out by Seifert, Berndl and 

Lipowsky [27]. It turns out that the AA model has the same catalog of stationary shapes 

as the SC model, but it predicts shape-transition sequences distinctly different from those 

of the SC model. It will be useful to  give here a brief account of the main results of Seifert 

et al. 

The AA model assumes that the equilibrium shape of a fluid lipid-bilayer vesicle mini- 

mizes the bending energy (2.30) under the constraints of fixed surface area A and volume V, 

and subject to an additional constraint on the area difference AA between the two leaves. 

AA is considered to have been fixed at the time of vesicle closure.' If M denotes the inte- 

'change in temperature certainly induces change in AA, which is the one of the factors driving shape 
transitions. We assume, however, that there is no lipid exchange between the two leaves on the timescale of 
experiments. 



grated mean curvature, M E $ dA(CI + C2)/2, AA can then be expressed as AA x 2DM, 

as follows from (2.2). The constrained minimization for the AA model necessarily needs an 

additional Lagrange multiplier Q coupled to M. Thus, we introduce a new free energy 

where G[S] is given by (2.30), and where we have written C1 and PI to emphasize that 

these are at this stage different parameters from C and P in (3.1). It is a natural outcome 

of the variational procedure that the Lagrange multipliers C1, PI and Q are related to 

the first derivatives of the bending energy at the corresponding stationary point, i.e., for 

Gm(A, V, M)  E G(Am(C1, PI, Q), Vm(C1, PI, Q), Mm(C1, PI, Q)), 

An important observation can now be made: Q couples linearly to the integrated mean 

curvature, M = $ dA (C1 + Cz). This coupling term has the same form as a cross term in 

the bending energy of the SC model. Thus, Q1[C1, PI, Q; S] has exactly the same form as 

the free energy Q[C, P; S] (3.1), provided that 

C1 = C + rc ~ : / 2 ,  PI = P, and Q = -26 Co . (4.3) 

Thus, the Euler-Lagrange equations for the stationary shapes which follow from Eq. (4.1) 

are identical to those which follow from Eq. (3.1), except for a trivial change of notation, so 

(as noted in the previous paragraph) the two models share the same catalog of stationary 

shapes. Explicitly put, S,(C, P, Co) = Sn(C1, PI, Q), provided that (4.3) is satisfied. In 

what follows, we will no longer make a distinction between (C1,P1,Q) and (C,P,Co), and we 

shall in practice use the variables (C,P,Co). Hence, we rewrite Eq. (4.2) as 

Although the two models predict the same catalog of stationary shapes, it does not 

follow that the phase diagrams of the two models are identical, since it is now the bending 

energy G (rather than the bending energy E) that must be used in selecting the overall 



minimum-energy shape from among the stationary shapes &(A, V, M). A phase diagram 

which summarizes the systematics of the vesicle shapes and shape transitions predicted by 

the AA model is illustrated in Fig. 4.1. 

There are still three length scales in the problem, RA, Rv, and M,  even though the 

spontaneous curvature becomes irrelevant now (see Section 2.2). The bending energy G 

given in (2.30) is invariant under uniform dilation of the shape S by a factor A,  a fact which 

implies that 

G(A, V, M) = G ( X ~  A, X3 V, X M )  . (4.5) 

It is, therefore, convenient to choose as variables for the phase diagram values of the volume 

and area difference scaled by the "area" length RA, 

Hence, G(v, Aa) = G(A, V, M )  = G(X2 A, X3 V, X M)  uniquely defines the phase diagram. 

Note that 0 < v 5 1. The point v = 1, Aa = 1 corresponds to spherical shapes and is a 

useful point of reference. 

Fig. 4.1 shows the part of the full (v,  Aa) phase diagram in which budding and vesicu- 

lation occur. Starting above and to the left of the sphere point, we see a region of (prolate) 

elliptical shapes. Under increasing Aa and decreasing v, these shapes evolve via a transition 

which breaks up/down symmetry to "pear" shapes, which transform smoothly into narrow- 

necked shapes and finally reach vesiculation. Similarly, decreasing Aa leads through oblate 

ellipses via stomatocytes to internally vesiculated or invaginated shapes. Much of this is 

broadly similar to what we have seen in the SC model; however, two features associated 

with these shape transformations are crucially different: First, the driving mechanism for 

the budding is different. The constraint on the area difference produces a couple which 

tends to bend the surface in much the same way that a temperature-induced length dif- 

ference bends a bimetallic strip. The larger AA gets, the more the vesicle surface tends 

to bend, in order to  be convex outward towards the side with the larger area. Thus, large 

positive Aa (in our convention) favors small spherical buds on the outside (and small Aa 

favors small spherical buds on the inside) to extent allowed by the constraints on A and V. 



Figure 4.1: Phase diagram for the AA model (after Ref. [27]). Cpea  and Csto denote the 
lines of continuous transitions at which the up/down symmetry of the vesicle is broken. 
Beyond the dashed line additional interactions have to be taken into account in order to 
prevent self-intersection of the membrane. 



A budded state conveniently accommodates this trend. Secondly, the budding2 predicted 

by this model, whether it is outward or inward, is always second order (i.e., continuous) and 

proceeds via the pear-shaped intermediary, in contrast to the first order (i.e., discontinuous) 

budding characteristic of the SC model. 

The bending energies for the stationary shapes of the SC and AA models are related by 

a transformation similar to a Legendre transformation. To see this, we rewrite the bending 

energy in the SC model as 

where G[A, V, M;  S] is the bending energy Eq. (2.30) in the AA model. Imagine that we 

perform the constrained minimization of E[A, V, Co; S] at given A, V, and fixed Co in two 

steps: First, we minimize the expression on the right-hand side of Eq. (4.7) with respect 

to  those shape variations that keep A, V, and M constant. This leads to  the stationary 

shapes of the AA model, with 

G,(A, V, M )  is the bending energy of a stationary shape which belongs to a branch n, and 

there may be many branches for given (A, V, M). We may now make the energy function 

E(A, V, Co; M)  stationary against arbitrary variations of M to determine its extrema, 

dE(A, V, Co; M*) - G,(A, V, M*) 
dM* - dM* 

- 2 C o = O ,  (4.9) 

which determines M* as a function of A, V, and Co. The bending energy functional E at 

its stationary points is, therefore, given by the following transform of G,(A, V, M*), which 

is very similar to a Legendre transform in spirit: 

&(A, V, CO) = Gn(A, V, M*) - 2 Co M* + 1 2 C: A .  

It is sometimes more convenient to write everything in dimensionless form. In this form, 

'Note that, in this continuous route to the narrow-necked, budded state the only "thermodynamicn 
singularity is at the up/down symmetry-breaking transition. The further evolution of the pear to the 
narrow neck is entirely smooth. 



we define the "reduced spontaneous curvature," co = CORA, and we find 

E,(v, co) = G ~ ( v ,  m*) - 2 co m* + 2~ C: , 
(4.11) 

dGn(v, m') = 2 c 0 .  
dm* 

This result will be useful when we make a connection between the ADE model and its 

limiting cases, i.e., the SC and AA models, in Section 4.3. 

Which model describes correctly the physics of a fluid lipid-bilayer vesicle? The an- 

swer can only come from a careful comparison between the theoretical predictions and the 

available experimental evidence, such as that summarized in Chapter 1. Since both the 

SC and AA models are capable of producing the same catalog of stationary  shape^,^ they 

cannot be distinguished by looking just at the shapes of single vesicles. It is necessary to 

consider the systematics of the sequence of shape transitions [29]. It  turns out that the 

characteristics of the vesicle shape transitions revealed by the experiments is more complex 

than the predictions of either of the two models. 

We shall concentrate in the following on outward budding and vesiculation, exclusively, 

since they are the most prominent shape transformations seen experimentally and obser- 

vations are, correspondingly, more extensive and systematic [9, 201 than for other shape 

changes. The temperature trajectories B and C described in Section 1.2 show two typical 

scenarios for budding and vesiculation. The thermally induced discontinuous budding in- 

volved in trajectory C is similar to  the first-order transition from a prolate ellipsoid to a 

budded state in the SC model, a fact which makes this model attractive. However, the SC 

model is really unsatisfactory: It postulates an asymmetry represented by Co. According 

t o  the SC picture, the asymmetry which causes Co # 0 is chemical in origin, resulting, for 

example, from a difference in composition between the interior and exterior leaves of the 

3The unit length chosen here, as in Eq. (4.6), is the "area" length RA. This choice of the dimensionless 
variables, i.e., v and co, is consistent with the normalization of length scale, RA = 1. This choice is an 
alternative to our previous one, A and Rv, as made for the calculations in Chapter 3. co is therefore 
equivalent to the "arean length in Chapter 3, which is scaled by Co and equals to Rv (1 + Thus, 
co = Rv (1 + a ) l t 2 ,  and v = 1/(1 + 

4As far as predicting equilibrium shapes is concerned, both models are quite successful. All the stationary 
shapes obtained in theoretical calculations have been observed in experiments. 



bilayer or from different screening properties of the interior and exterior aqueous environ- 

ments. If this picture were valid, all vesicles prepared in the same way should have the 

same Co, and the direction (outward or inward) of vesiculation should be the same for all 

vesicles in a given preparation. This prediction is simply not consistent with the observed 

diversity of shape sequences, as outlined in Chapter 1. Another problem is that,  if the con- 

tinuous symmetry-breaking transition that takes a prolate to a pear shape (see Sequence 

B in Section 1.2) is, indeed, an equilibrium transition (referred to as continuous budding in 

later text), the SC model cannot provide an explanation for it. The AA model seems more 

promising from this perspective: Continuous symmetry breaking is a characteristic feature 

of this model. Furthermore, the diversity of shapes observed in a given preparation can be 

explained within the context of the AA model by the hypothesis that different vesicles in 

the preparation have different values of AA as a result of the (unknown) closure process, 

when the vesicle first formed. Indeed, a variety of observed thermal trajectories have all 

been explained by postulating a small asymmetry in the thermal expansion coefficient of 

the two leaves of the bilayer [23]. Despite this impressive success however, the AA model 

does not give a full picture, since it cannot explain either the discontinuous budding in 

Sequence C (Section 1.2) or the discontinuous transition observed in Sequence B between 

the weakly asymmetric pear and the narrow-necked or completely vesiculated shape. We 

are, therefore, inclined to  believe that there are physical variables and effects which have 

not yet been properly controlled or incorporated into the two models. 

Moreover, it has also been shown that pretreatment of a vesicle before observation affects 

its transition sequence. For example, precooling a vesicle for several hours always induces 

the outward budding, whereas vesicles without the same treatment show other transition 

sequences, such as a transition to the stomatocyte followed by inverse vesiculation [20]. This 

suggests that the history of the vesicle formation and the treatment prior to the observation 

must be considered as variables relevant to shape transitions. 

The ADE model seems to have the potential to  solve some but not all of these problems. 

Since it contains an additional coupling il (see Eq. (2.1)), it provides another control pa- 

rameter which may be important in explaining the diversity of different observed behaviors. 



Furthermore, it interpolates between the SC and AA models (Section 2.2) and, so, may be 

expected to  encompass both discontinuous budding directly from the up/down-symmetric 

state (as in the SC model) and continuous upidown symmetry breaking (as in the AA 

model). I t  is the purpose of this chapter to explore how the presence of the non-local bend- 

ing energy is reflected in equilibrium shapes and shape transitions of vesicles, and to discuss 

whether this model is able to reconcile theory with experiments. 

The technical framework within which the systematic analysis of the ADE model should 

be performed is, in principle, the same as for the two conventional models. The equilibrium 

shape is determined by minimizing the bending energy (2.1) for given surface area A, volume 

V, and for fixed spontaneous curvature Co and optimal area difference AAo between the 

two monolayers. For the sake of convenience, we recall the ADE bending energy (2.1), 

where n is set to  1. One might expect that the additional non-local bending energy would 

complicate the analysis. Fortunately, the same catalog of stationary shapes seen in the 

SC and AA models emerges again from the ADE model: Suppose that Sn(C7 P, c0)5 is a 

stationary shape in the AA model, corresponding to  v and m E 47rAa. This same shape 

will also be a stationary shape in the ADE model, for the same v and some fixed a, co and 

m ~ , ~  -- AA0/(2DRA), if it is specified that6 

where Gk -= - = 2 Zo denotes the derivative of the bending energy Gn(v, m) a t  fixed 2 I, 
v along the branch of stationary shapes to which Sn(C, P , co )  belongs. Making use of 

Eq. (4.13) to  evaluate the bending energy W(Q, v, co, mo) defined in Eq. (4.12), we obtain 

the bending energy for stationary shapes in the ADE model as follows: 

Q 
Wn(c17 V, Q, mo) = Gn(v, m) - 2com + 2 x 4  + 2(m - m ~ ) ~ .  (4.14) 

'We have changed notation slightly, using CO to denote the Lagrange multiplier coupled to the integrated 
mean curvature M, which was represented previously by Co in Eq. (4.4). The purpose is to distinguish it 
from the physical parameter Co (the spontaneous curvature). 

'This relationship is established by the same "two-step variationn argument used in deriving the Legendre 
transformation (4.9) and (4.10) between the SC model and the AA model. 



The use of the dimensionless variables v, co, and mo eliminates the redundancy associated 

with the invariance of the bending energy under dilations (see Eq. (4.5)). Combined with 

a, the variables v, co, and mo span a complete four-dimensional phase space, in which the 

systematics of equilibrium shapes and shape transformations coming out of our analysis can 

be illustrated. 

In view of the connection with previous work on the SC and AA models, the detailed 

investigation is rather straightforward; however, its outcome is non-trivial. In particular, 

for fixed values of the elastic constants with 0 < E / K  = cr < oo, we find budding sequences 

which are both continuous (second order), as in the AA model, and discontinuous (first 

order), as in the SC model. Which sequence a particular vesicle will follow depends on the 

value of its initial, relaxed area difference AAo. It will not be difficult to relate AAo to  the 

treatment vesicles receive prior to  shape-transformation experiments, as we shall discuss in 

Section 4.4.2. 

The remainder of this chapter is organized as follows: In Section 4.2, we derive the 

phase diagram of the ADE model for the special case in which Co = 0. In particular, 

we show how the characteristics of budding depend on the value of a. In Section 4.3, we 

generalize the results obtained in Section 4.2 to the case where the spontaneous curvature Co 

is non-zero. We show that the effect of a non-zero spontaneous curvature leads to a nearly 

trivial modification of the Co = 0 phase diagram. We also discuss how the phase diagram 

in the ADE model interpolates between those in the SC and AA models. In Section 4.4, 

we discuss the relation of the predictions of the ADE model to the available experiments: 

We calculate temperature trajectories in phase space, which show the shape evolution of a 

vesicle in a temperature-driven experiment. Estimates for the model parameters a and AAo 

for the experimentally studied systems SOPC and DMPC suggest that it is the first-order 

scenario which should be expected. In fact, apparent second-order budding is frequently 

observed. We discuss in Section 4.4.2 the current status of attempts to reconcile theory 

with experiments. 



4.2 Budding and vesiculation I: Zero sponta.neous curva- 
t ure 

We discuss first behavior when the spontaneous curvature Co is zero. This case deserves 

special attention, since vesicles formed by a perfectly symmetric lipid-bilayer fall into this 

category (see Chapter 2). Also, all generic features of the model are already present in this 

case and are best illustrated here. Generalization to the case where Co + 0 is straightfor- 

ward, as we shall demonstrate in Section 4.3. 

The budding and vesiculation we shall focus on in this chapter involve two free-energy 

branches of axisymmetric stationary shapes: The symmetric branch consists of shapes hav- 

ing mirror (or upldown) symmetry with respect to their equatorial plane and resembling 

prolate ellipses or dumbbells. The asymmetric branch, in which the mirror symmetry is 

broken, is composed of the so-called "pear-like" (with wide neck) or "budded" (with narrow 

neck) shapes. This branch ends with a fully vesiculated shape, where the neck radius has 

formally shrunk to  zero. 

4.2.1 The phase diagram at cr = 4 : Discontinuous budding versus con- 
tinuous budding 

For co = 0, the phase diagram is still three-dimensional, corresponding to  parameters 

(a ,  v, mo), where ct = E / K ,  v 5 V/(47rRi/3), and mo - AAo/(2 DRA). A typical, two- 

dimensional fixed-a section is shown for a = 4 in Fig. 4.2. Symmetric prolate ellipses and 

dumbbells are the lowest-energy shapes in the region below the two-part curve labelled7 

CPem and Dpear. The lower bound of this region is delimited by a transition either to  a 

non-axisymmetric ellipsoid or to an oblate shape, depending on a, v, and mo. Since these 

transitions are not at the center of the problem being addressed in this chapter, we will 

not discuss them in any detail. At the line denoted CPem, the symmetric shapes become 

locally unstable with respect to a mode that breaks the mirror symmetry and undergo a 

continuous transition to pear-like shapes which take over as the lowest-energy configurations 

7 ~ e  wilI denote a11 phase boundaries by superscripted capital letters: C stands for "continuousn; D, for 
"discontinuousn; M,  for "metastablen; L, for "limitingn; etc. 



Figure 4.2: Phase diagram in the (v, mo)-plane involving budding and vesiculation at fixed 
a = 4. Symmetric and asymmetric shapes are separated by lines of continuous transitions, 
Cpe", or discontinuous transitions, DPeas. These lines of budding transitions meet at the 
tricritical point T. The line MprO denotes the limit of metastability of the symmetric shapes. 
The line LPe" denotes the vesiculation line, where the neck size has shrunk to  zero. It ends at 
the point E, where the limiting shape consists of two spheres of the same size. In the shaded 
region above this line, multiplets involving several buds become relevant (see Ref. [28]). 

in the region above CPe". The phase boundary Dpe* at larger reduced volumes marks the 

onset of an instability of a different character: Above DPe" and below MprO, the symmetric 

shapes remain locally stable but are unstable globally, since the asymmetric shapes have 

lower overall bending energy. The transition is therefore discontinuous or "first-order". The 

continuous phase boundary Cpe" and the discontinuous phase boundary Dpe" meet at the 

special point T with coordinates (vT(cr), mo,T(cr)), which we call a "tricritical point" by 

analogy with thermodynamics. Bounded below by CPe" and Dpe" and above by LPew is 

the single-phase region of asymmetric shapes. The neck radii go to zero continuously as 

LPe" is approached. 



In constructing the phase diagram Fig. 4.2, we exploited the relationship between the 

AA model and the ADE model established in Eqs. (4.13) and (4.14). In particular, the 

bending energy W for each branch of stationary shapes may be expressed as 

while its first and second derivatives are related to those of the bending energy, Gn(v, m), 

according to 

and 

where 

Note that m = 47rAa (Eq. (4.6)). The details of the mapping, based on Eqs. (4.15)-(4.17), 

are illustrated in Fig. 4.3. The two upper plots in this figure show the generic structure 

of the bending energy G in the AA model as a function of m for fixed v, both for the 

symmetric branch and for the asymmetric branch [27]. At the bifurcation point, labeled 

by C in the figure, the energy curves of the two branches have the same first derivative. 

This property is preserved as m is mapped onto mo according to (4.13) and GS,,(v, m) are 

transformed to W,,,(a, v, mo) by (4.15). It is clear, therefore, that, in the neighborhood of 

the bifurcation point, the difference AW between the bending energies of the two branches 

depends upon the second derivatives only, i.e., 

1 
= 5 [ w / ( ~ , v ,  mo,c) - w/(a,v, mo,c)] (mo - mo,d2. (4.19) 

We can, thus, read off the local energetics from Eq. (4.19) near the bifurcation point mo,c = 

mc + G:,,(v, mc)/a, once we know the second derivatives of W. Eq. (4.17) enables us 

to acquire this information from the second derivatives of the bending energy G,. We 

find, through direct numerical analysis, that the following properties hold generically for 

0.72 < v < 1: 



Figure 4.3: Schematic representation of the mapping between the AA and the ADE models, 
which involves the energy G as a function of m for the AA model and the energy W as a 
function of mo for the ADE model, respectively. L denotes the vesiculated shape where the 
neck size is zero and C denotes the bifurcation point. For large a, as displayed in (a), the 
topology of the bifurcation is preserved in the ADE model and the budding transition is 
still continuous. For small a, as in (b), the symmetric branch develops a wing structure in 
the ADE model, thus rendering the budding transition discontinuous. 



(i) G,"(v, m) > 0 for all values of m accessible to the symmetric branch; 

(ii) For the asymmetric branch the situation is entirely different: G,"(v, m) starts being 

negative at  the bifurcation point and then increases monotonically, reaching a positive value 

at  the vesiculation point; 

(iii) The magnitude of G,"(v, mc) increases monotonically in v and eventually diverges in 

the limit v t 1. 

Finally, it is useful to  know the behavior of the mapping (4.13) near the bifurcation point: 

Differentiating (4.13) with respect to m leads to the relation, 

At the bifurcation point, the relation is, explicitly, 

1 1 
= l+;G:(v, mc) , and = I+-G:(v,mc) . (4.21) 

am m=m, o! 

These properties allow us to distinguish two different scenarios for the bifurcation in 

the ADE model, corresponding to  the continuous transitions CPear and the discontinuous 

transitions Dpear, respectively: 

(i) For v < vT(Q) (with vT(a) determined by G,"(vT,mC) = -a), the mapping (4.13) is 

monotonic for both the symmetric and the asymmetric branches, and AW is positive, as 

follows from Eqs. (4.17) and (4.19). Consequently, the local topology of the energy diagram 

of the AA model is well as sketched in Fig. 4.3(a), and the symmetry-breaking 

transition remains continuous, as it is in the AA model. The corresponding phase boundary 

CPear is simply given by 

(ii) For v > vT(cr), the function mo(m) defined by (4.13) becomes non-monotonic for the 

asymmetric branch, while it remains monotonic for the symmetric branch. In addition, for 
< mo-mo,c, AW < 0. The symmetric branch and the asymmetric branch thus interchange 

their relative positions locally, leading to a different global topology manifested by the 

'The global energetics is not available in this kind of local analysis. In order to determine it, we performed 
the one-to-one mapping using Eq. (4.15) for the whole branches. 



wing structure in the energy diagram shown in Fig. 4.3(b), where the cusp on the left 

hand side of the wing is determinedg by G,"(v, m*) = -a. The corresponding budding 

transition is, therefore, discontinuous and is represented by Dpear. The precise location of 

the first-order boundary has to be computed numerically. We performed such computations 

for v < 0.90. For larger values of the reduced volume v, numerical determination of the 

asymmetric branch becomes more cumbersome, due to the same kind of numerical instability 

of the differential shape equations that we have pointed out in Chapter 3 and Appendix B. 

However, approximating the very small-necked shapes by the vesiculated shapes, one can 

obtain a good approximation to Dpear.10 

Related to  the discontinuous transition is the issue of metastability. In particular, both 

symmetric prolate (or dumbbell) and asymmetric pear (or narrow necked) shape are locally 

stable at  the transition DPear. Above Dpear, the symmetric shapes remain locally stable 

until they eventually develop a local instability with respect to asymmetric perturbation at 

the (spinodal) line, denoted by MPrO, which is just the continuation of the line described 

by Eq. (4.22) beyond the tricritical point. Similarly, the asymmetric shape remains a local 

minimum of the bending energy below DPear, only becoming locally unstable with respect 

t o  the symmetric disturbance at another spinodal point (Mpear). The location of MPear is 

given by 
1 

m;) ,M(~7 V) = m*(v) + --G;(v7 m*) , (4.23) 
a 

where m* is determined by 

G:(v, m*) = -a . 

For a given v, this spinodal point corresponds to the cusp in the wing structure (see Fig. 4.3), 

and must be found numerically. 

The tricritical point T at which CPear and Dpear meet has coordinates specified by 

'Such a wing structure is analogous to the Landau-theory picture of a first-order transition, in which the 
wing structure eventually disappears at a critical point. 

''AS v approaches 1, the neck size of the budded shape at the first-order transition point becomes smaller 
and smaller. Since the bending energy W of a necked shape, when the neck is small, is very close to that 
of the corresponding (i.e., same area, volume and mo) vesiculated shape, we may use the bending energy of 
the vesiculated sheet, WL(a, v, mO) = 2 x 87r + (a/2)[m0 - m ~ ( v ) ] ~ ,  a s  a good approximation to that of the 
narrow-necked shapes. 



(vT(a), m o , ~ ( a ) )  where VT satisfies the condition, 

and mo,T is given through the relationship (4.13). 

The vesiculation boundary LPea, corresponding to shapes having two coexisting spheres 

of different radii connected by an infinitesimal neck, is approached continuously by the pear- 

shaped vesicles and defines the upper limit of the "pear" region. This boundary may be 

parametrized in terms of the area difference Aa (Eq. (4.6)). In this form it is described by 

the following two equations: 

With this we complete the derivation of the budding transition. The region above and to  

the left of the limiting line Lpear has not yet been seriously explored for the ADE model. For 

0 < a < oo (i.e., away from the limiting cases), we expect, on the basis of our work on the 

SC model, a narrow strip where the lowest-energy configuration is a two-sphere multiplet, 

followed perhaps by a prolate (ellipse)-plus-sphere multiplet. Further, complex multiplets 

presumably form as AAo (or mo) increases. 

In the phase diagram Fig. 4.2 and throughout the above analysis, we have chosen reduced 

volume, v > 0.72. This choice is made in order to avoid a complete discussion of the 

neighborhood of the special point E (v = &/2, mo = 4&(n + l/cr)), where the vesiculation 

line Lpear ends with a vesiculated shape consisting of two spheres of equal radii. This point 

is a limit point for various branches of shapes which approach E from v < 4 1 2 .  Due to  the 

presence of these additional branches, a detailed analysis can be expected to be difficult. 

For most recent experiments, however, this point seems to  be unimportant, since observed 

vesiculations have typically involved a bud of much smaller size than the mother vesicle, 

corresponding to  a reduced volume vsl. 
Finally, we comment on the asymptotic behavior of the various phase boundaries shown 



in Fig. 4.2 as v -+ 1. We recapitulate here the asymptotic behavior of the vesiculation 

boundary LPea, the discontinuous budding phase boundary Dpear7 and the instability line 

MprO. A detailed discussion is presented in Appendix E. The asymptotic behavior of the 

vesiculation boundary can be calculated as a series expansion in terms of (1 - v)'i2. The 

result is 

m ~ , ~ ( a 7  V) = m ~ ( v )  + (2/a)c~,~(v)7 (4.27) 

where, to  the first few orders, 

and 

The asymptotics of the boundary DPea is given in leading order by 

which is the same as the leading-order term in the expression for the vesiculation boundary. 

It  is more difficult to deal with the asymptotics of the instability line MP". AS sketched in 

Appendix E, we have reasons to believe that mo,M has also the leading divergence of the 

form const./(l - v)'l2, where const. > ( 2 m ) J a ) .  

4.2.2 Variation of the phase diagram with cr: The SC and AA models as 
limiting cases. 

We describe in this subsection a complete phase diagram for budding and vesiculation in 

the ADE model, which is illustrated in Fig. 4.4. The three-dimensional features of the phase 

diagram are illustrated by several sections corresponding to  different values of a ,  for which 

the calculation discussed in the previous subsection is repeated. We discuss separately the 

situation for values of a smaller and larger than a = 4. 

(i) As the value of the parameter cu decreases, the tricritical point moves towards smaller 

values of the reduced volume, i.e., vT(a) decreases monotonically with decrease of a. It 

reaches the value 0.72, when a decreases to cyl -- 1.2. The issue of whether the tricritical 



Figure 4.4: Phase diagram for the ADE model for various values of a. For a = 1, the 
budding transition is always discontinuous (DPe"). For a = 50, the budding is continuous 
(Cpe"), except very close to v = 1. We can only provide an upper bound (in v and mo) to 
the tricritical point denoted by the open circle. 

point T persists or disappears, and how it persists or disappears, as a decreases from a l ,  has 

not been explored thoroughly: Close to the special point E (the endpoint of the vesiculation 

boundary, at which the vesiculated shape involves two spheres of the same radii), many 

branches may participate in the competition for lowest-energy shape. The interplay of 

those branches needs to be understood, in order to resolve the further development of the 

tricritical point. It is clear however, that, when cr < a1, the budding transition is exclusively 

discontinuous, for 0.72 < v < 1. As cr -t 0, we recover the results reported in Ref. [27] for 

the SC model with Co = 0. This limit is approached as follows: The discontinuous phase 



boundary DPew and the vesiculation boundary LPem move towards infinite mo as 

respectively. Eo,~(v)  is the value of the reduced spontaneous curvature at  the discontinuous 

transition point in the SC model. ~ ~ , ~ ( v )  and mL(v) denote the values of those parameters 

at  the vesiculation point. Consequently, at a = 0, prolates (dumbbells) are the only equi- 

librium shapes for v > 0.72, irrespective of the value of mo. 

(ii) As the value of a increases from a = 4, the tricritical point moves towards v = 1, 

and the budding transition is continuous throughout almost the whole range 1 > v > 0.72. 

The budding and the vesiculation phase boundaries both approach those in the AA model, 

which are their proper limits as a -+ oo, as indicated by Eqs. (4.22) and (4.27). However, 

the approach to the AA model is singular for v -t 1. For the vesiculation boundary, we can 

rewrite Eq. (4.27) using Eqs. (4.28) and (4.29), 

It follows that, as a -t oo at fixed v (but very close to I), mo,L approaches 4a. On the other 

hand, mo,L diverges as 1/(1 - v)'I2 when v + 1 at fixed a. Using results and arguments 

from Appendix E, we find for the continuous phase boundary Pear, 

which ends a t  the tricritical point. We were not able to  perform a rigorous calculation for the 

behavior of the tricritical point in the limit a + oo. Our best guess is that 1 - v ~ ( a )  l/a 

and mo,T(a) x 4 r  + c ~ n s t . / a ' / ~ .  



4.3 - Budding and vesiculation 11: Nonzero values of the spon- 
t aneous curvature 

Nonzero values of the spontaneous curvature Co result from the fact that a lipid bilayer may 

have a tendency to curve one way or the other due either to intrinsic chemical asymmetry 

of the two constituent monolayers or to a chemical asymmetry of the adjacent (interior and 

exterior) fluids (see Section 2.1). Both these effects are likely to occur in many systems of 

lipid-bilayer vesicles. We devote this section to a discussion of the budding transition in the 

case where Co is nonzero. 

The generalization of our discussion in the previous sections to this case is, in fact, 

technically straightforward. By defining a new variable, 

we can express the bending energy (4.14) as 

where 7ji0 and m are related by the mapping, 

For a fixed nonzero co, the functional dependence of the bending energy Wn on fro differs 

from that in the case of co = 0 only by a constant and a term linear in mo (as shown by 

Eq. (4.36)), neither of which enters the second derivative of W, in Eq. (4.36). Thus, our 

previous discussion both of the preservation of the topology of the energy curves by the 

mapping and of the location of the tricritical points hold true again here. Explicitly, the 

location of the continuous symmetry-breaking phase boundary mo,c(co) is, for fixed co, 

The discontinuous budding transition occurring when v > VT has to be determined from 



which simplifies t o  

This condition is identical to the one which determines the discontinuous budding transition 

for the case Co = 0, only with mo now replaced by fio.  The solution is, then, 

where (v, mo,~(co = 0, v)) defines the discontinuous phase boundary DPem in Fig. 4.2. 

These results show that the fixed-a section of the budding phase diagram for a nonzero 

value of the spontaneous curvature co is identical to  the co = 0 phase diagram (see Fig. 4.2) 

except for a shift of mo by an amount -(2/a)co. 

The ADE model recovers the SC model and the AA model as its two limiting cases 

as K + 0 and K + IXJ, just as for Co = 0. We illustrate this feature in Fig. 4.5, a three- 

dimensional phase diagram for budding and vesiculation in the parameter space ( a ,  co, mo) 

for a typical (fixed) value of the reduced volume (v = 0.8). In the limit a -+ oo, which 

corresponds to  the AA model, the continuous symmetry-breaking transition Cpem and the 

final vesiculation LPem are represented asymptotically by the two straight lines a t  mo = 

mc(v) and mo = mL(v) [27], respectively, independent of co. As a + 0, the budding and 

vesiculation boundaries are again two straight lines, co = EOvD(v) and co = Eo,~(v) [27, 281, 

independent of mo. The tricritical line, 

separates the continuous bifurcations, denoted by the sheet C, from the discontinuous bud- 

ding, denoted by the sheet D. The asymptotic limits of each of the two sheets, as a -+ IXJ 

and a + 0, are two straight lines perpendicular to each other. The twist of the sheets C and 

D and the splitting of the sheet D along the line Eo = ? o , D ( ~ )  may then be understood as a 

necessity for accommodating the peculiar geometry imposed by these two limiting cases. 



Figure 4.5: Three-dimensional (a, co, mo) phase diagram for the ADE model at a typical 
(constant) reduced volume. Two transition surfaces are shown. The rear one (with darker 
shading) corresponds to budding and the front one corresponds to vesiculation. As cr -+ oo 
(one of the limiting cases), the two sheets asymptotically approach their limits, represented 
by the two lines mo(v) = mC(v) and mo(v) = mL(v), respectively. These limit lines are 
independent of Co, as in the AA model; when ct -t 0, the discontinuous budding at c o , ~  and 
the final vesiculation at EO,L predicted by the SC model are asymptotically recovered. T de- 
notes the tricritical line, which separates the continuous transitions, represented by the sheet 
C, from the discontinuous budding transitions, represented by the sheet D. The budding 
sheet splits along c o , ~  = ~ O , D  and the two parts develop in opposite directions. The split- 
ting terminates at the point P with coordinates (a  = 0, co = c o , ~ ,  mo = ( m , , ~  + m,,~)/2) ,  
where m,,D and m,,D are the actual area differences of the symmetric and asymmetric 
shapes at the first-order transition point in the SC model. The vesiculation sheet has 
a similar topology, with a splitting along the line co = GJ,. Its splitting terminates at 
( a  = 0, co = E o , ~ ,  mo = mL). 



4.4 Discussion: Relation to experiments 

In Section 1.2, we described certain vesicle-shape transition sequences seen in the labora- 

tory. In this Section, we wish to examine the question of to what extent the theoretical 

models we have presented are compatible with those observations. Most (but not all) of 

the experiments involve temperature-driven shape transformations. Thus, before begin- 

ning, it is important to establish (a) how the model parameters A, V, AAo, a, and Co 

may be expected to vary with temperature and (b) how the trajectories through parameter 

space defined by v(T), mo(T), etc., intersect the phase diagrams we have presented in the 

preceding Sections. 

4.4.1 Temperature trajectories 

Temperature increase leads to a thermal expansion of both the membrane area A of the 

vesicle and the volume V of its enclosed aqueous interior. We focus on the simple case 

where the vesicle is composed of two identical monolayers. It makes sense, therefore, to 

assume that both monolayers have the same thermal expansivity711 

Consequently, the bilayer, effectively represented by the neutral surface (see Eq. (2.21)), 

has the same thermal expansion as the two monolayers, 

The volume expansivity of the enclosed aqueous fluid (principally water) is typically ap- 

preciably smaller than the membrane area expansivity. Typical values are Pv(H20) E 

3 x ~ o - ~ / K  and PA E 4 x IO-~/K for SOPC and DMPC [22]. Thus, neglecting volume 

expansion, one obtains the temperature variation of the reduced volume v as 

"Of course, one should not at all exclude the possibility that some kind of residual impurities within each 
of the constituent monolayers may create an asymmetry in the thermal expansivities, a fact which has been 
explored in Ref. [27] and takes on a special importance in the AA model. 



The dependence of mo upon temperature is determined not only by the thermal behavior 

of the membrane area, but also by that of the bilayer thickness D. The temperature 

dependence of D has been measured for the fluid bilayers of several phospholipids, including 

POPC and DMPC, by using the NMR technique [56, 571. In their fluid state ("liquid- 

crystalline" state, in the terminology used in the references), these phospholipid bilayers 

show a decrease in thickness as temperature is increased, indicating a negative thermal 

expansivity for the thickness, 

presumably due to entropic effects for the tails. In fact, the volume of a bilayer membrane, 

for a number of lipids, has been shown to change by only about 0.07% per degree ([57], [58]) 

and can, therefore, be effectively treated as constant over the temperature range explored 

in experiments. This suggests that PD = -PA should be a good first approximation to the 

thermal behavior of lipid bilayers, if we assume Vbilayer II AD fixed. With these assumptions, 

we find a simple temperature dependence for mo, 

Eliminating T,  we arrive at a simple relation between v and mo, 

Temperature trajectories in the (v,mo) plane can, thus, be parametrized by the re- 

duced equilibrium area difference mo for the corresponding spherical shape. For the sake 

of simplicity, we shall assume a to be temperature independent (since there is, so far, no 

systematic information on a possible temperature dependence of this parameter).12 Findy,  

for a first analysis, we take Co = 0. Under these conditions, Eq. (4.48) completely specifies 

the temperature trajectories. It will be useful in what follows to refer to  the particular 

temperature trajectories which pass through the tricritical point T ( v ~ ( a ) ,  mo ,~(a ) )  and 

the special endpoint E (J2/2, &(47r + 4/a)) (see Fig. 4.6). We shall, in what follows, call 

12However, one does have a crude picture, based on the microscopic derivation presented in Chapter 2: a 
depends principally on the ratio of the monolayer thickness to the bilayer thickness. This ratio should not 
depend strongly on temperature T. 



them the T and E trajectories, respectively. The initial (i.e., v = 1) values of the reduced 

area difference for these trajectories are 

The relative positions of the special trajectories T and E defined above change with a 

and, thereby, define three regimes. The trajectories T and E divide the phase plane (v,mo) 

into regions of different budding/vesiculation behavior: 

(A) For an intermediate value of a both trajectories T and E exist with mo,T < mo,E, as 

shown in Fig. 4.6 for a = 4. Different initial area differences lead to  different characteristic 

thermally induced budding trajectories. 

(i) Discontinuous budding with vesiculation. For m0 > motE, increasing temperature 

causes the vesicle to follow a trajectory that crosses the discontinuous budding transition 

and finally leads to a smooth vesiculation. Note, however, that the elliptical branch re- 

mains locally stable at the discontinuous phase boundary DPe" and does not develop local 

instability until reaching the spinodal line MPrO. Between DPem and MprO is a region of 

metastability/hysteresis. Thus, upon slow heating, a prolate ellipse is expected to pass 

smoothly through the first-order boundary DPe" and to become unstable only somewhat 

before MprO, when the metastable barrier has diminished to order bBT, so thermal fluctu- 

ations can drive the shape over the barrier to a new minimum of the free energy. For large 

values of mO the region of prolate metastability can extend well beyond the vesiculation 

line Lpe", SO the eventual instability may well be into a fully vesiculated shape. In this 

way, it is possible that increasing-temperature trajectories may miss entirely the region of 

stable pears. Of course, MprO eventually meets the tricritical point, so, for smaller values 

of mO, the spinodal is still in the pear region. In general, the larger mo is, the smaller is 

the temperature interval between DPe" and LPe", the smaller is the size of the vesiculated 

bud, and the more likely is the hysteretic effect which misses the pear. 

(ii) Discontinuous budding trajectory without vesiculation. For mo,.r < mo < m o , ~ ,  the 

spherical vesicle, upon heating, exhibits again a discontinuous symmetry breaking. With 



Figure 4.6: Temperature trajectories in the ( v ,  mo)-plane for a = 4. All trajectories are 
represented by thin lines, with arrows pointing out the direction of a temperature increase 
starting from a spherical shape but different equilibrium area differences mo. For large ma, 
one obtains discontinuous budding with vesiculation; for a small intermediate range of mo, 
discontinuous budding without vesiculation; and, for even smaller mo, a continuous budding 
with reentrant behavior. The larger mO, the smaller the vesiculated bud at the limit line 
Lpear. 

increasing temperature, however, the vesicle will become either symmetric again (discon- 

tinuous reentmnt trajectory ) and/or approach another limiting shape for v < */2. Since 

we have not attempted analyzing the shapes for v < */2, we cannot yet decide between 

these two alternatives. 

(iii) Continuous budding without vesiculation. For mo < mO,T, the vesicle exhibits a contin- 

uous symmetry breaking as it passes into the pear region. Beyond this, either it will become 

symmetric again (continuous reentmnt trajectory ) and/or it will approach another limiting 

shape for v < &/2. We have not investigated the lowest value mo for which this trajectory 



occurs. For even lower values of mo, the trajectories either remain in the prolate/dumbbell 

phase or reach non-axisymmetric or oblate and stomatocyte shapes. 

This picture holds for intermediate values of a ,  with a1 < a < a 2 .  The lower bound 

a1 11 1.2 of this regime is determined by vT(al) = 0.72. The reason for making this choice 

has been given in Section 4.2.1. Unfortunately, a numerical determination of the upper limit 

a 2  of this regime, defined by m 0 , ~ ( a 2 )  = m ~ , ~ ( a ~ ) ,  is quite difficult. We were able numeri- 

cally to follow the tricritical point up to a = 6.5, which is still in the intermediate regime. 

For large a, the asymptotic analysis of Appendix E shows that 7 j Z 0 , ~  < mO,T. Thus, we can 

conclude 6.5 < a 2  < oo, but we do not know how tight this lower bound is. In Fig. 4.7, we 

show how the values mo,T and mOYE and, consequently, the qualitatively different budding 

and vesiculation trajectories depend on a. 

(B) For large values of a (a > a2)  both T and E trajectories persist, but with a reverse in 

the ordering, i.e., moVT > mo,E, as illustrated in Fig. 4.7. Similarly to  case (A), there are 

three scenarios for a thermally-driven shape evolution. 

(i) Discontinuous budding with vesiculation still occurs, for mo > m o , ~ .  The discussion on 

the metastability/hysteresis parallels that given for Scenario (i) in case (A). 

(ii) Continuous budding with vesiculation becomes possible for mo,g < mO < mO,T, as a 

result of the change of ordering of the T and E trajectories. However, the window in mo 

for this to happen, i.e., (mo,E, mo,T), is very narrow (see Fig. 4.7). This scenario will be 

difficult to observe experimentally. 

(iii) Continuous budding without vesiculation remains a possibility for mo < m o , ~ .  Upon 

heating the vesicle will follow a continuous reentrant sequence, in which the vesicle ex- 

periences the up/down symmetry breaking first and becomes pear-like, then restores this 

symmetry and may eventually reach another limiting shape. There exists a smallest value 

of mO, below which the particular budding associated with prolate ellipses and pears is no 

longer present. However, we have not obtained this value as a function of a systematically 

(as shown by the shaded region in Fig. 4.7). 

(C) For small values of a (a  < a l )  the situation is less clear, since the evolution of the tri- 
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Figure 4.7: Character of the budding as a function of the equilibrium area difference m0 
and a. For a > 6.5 the curve mo,T can no longer be obtained numerically. The schematic 
representation for large a (inset) shows the small region where continuous budding transi- 
tions with subsequent vesiculation exist. The gray area shows schematically the region in 
which the transition from prolates to pears are no longer present. 



critical point with a has not yet been investigated13. However, for mo > mo,E, it is certain 

that there is discontinuous budding followed by vesiculation. Since the transition to the 

pear region is first order, we expect hysteresis. For values of mO that are smaller than mo& 

but immediately follow mO,E, we expect a reentrant trajectory, in which the transition to 

the pear region is discontinuous. 

In summary, the ADE model exhibits different temperature trajectories even for a fixed 

value of cr depending on the equilibrium area difference mo. In particular, continuous 

budding with subsequent vesiculation occurs only in a restricted range of a and, even there, 

over a very narrow range of mO. These results were obtained under the assumption of 

zero spontaneous curvature. For non-zero spontaneous curvature, one would have to know 

the temperature dependence of this quantity, for which there are so far no measurements 

available. Assuming Co to be temperature independent, one obtains still the same scenarios 

for budding and vesiculation as discussed above, since Co # 0 basically shifts the scale 

on the mo-axis, as discussed in Section 4.3. In particular, the presence of a non-zero 

spontaneous curvature does not alter the value of a* below which all budding transitions 

are discontinuous. 

4.4.2 Comparison with the experiments 

We close this Section with a few comments on the relation between the predictions of the 

ADE model and the available experimental observations. It is convenient to  structure these 

remarks in the form of questions and answers: 

(a) Can the budding and vesiculation scenarios described in Section 1.2 be explained by the 

ADE model? 

Experiments apparently see both continuous and discontinuous budding transitions, fol- 

lowed by vesiculation. Neither the SC nor the AA models could explain this diversity, since 

each of them contains one type of transition but not the other. As we have seen, the ADE 

1 3 ~ t  this point, the division between the regime A and regime C, a = al, is somewhat an artificial one, 
since our analysis is not sufficient to show that there is a clear distinction between the behaviors seen in 
these two regimes. 



model does allow both continuous and discontinuous budding, depending on the parameter 

a (and with some lesser significance Co). It even allows continuous and discontinuous tran- 

sitions for a given single value of a, if the initial area difference mo is adjusted appropriately. 

In this sense, the ADE model is at least qualitatively successful. 

On the other hand, closer examination reveals some difficulties. To make a quantita- 

tive comparison with the experiments we need to know what value of a = K/rc to use. In 

Chapter 2, we estimated this ratio as of order unity for common phospholipids (cr x 1.1 

for DMPC and a x 1.4 for SOPC). The only experimental determination of a that we are 

aware of was for SOPC+POPC mixed-lipid bilayers and used a tether-pulling technique 

[39]. This measurement yielded a z 1.1 + 1.61 - 0.8, consistent with our expectation, but 

with a large range of uncertainty. These values of a are substantially smaller than a 2 ,  so 

the theory predicts that any temperature-induced budding should be discontinuous. Note 

that this prediction is independent of both the initial area difference mo (see Fig. 4.4) and 

the value of the spontaneous curvature. Such discontinuous budding has, indeed, been ob- 

served [9], as in sequence C of Section 1.2; however, scenario B (Section 1.2) of continuous 

symmetry breaking followed by a discontinuous shrinkage of the pear neck [20], cannot be 

explained by the ADE model. Not only is the continuous symmetry-breaking transition not 

available for such a low value of a but, in addition, a discontinuous transition from weak 

pears to  strong pears or to a vesiculated phase is not available in the ADE model for any 

value of a. 

(b) Is there a possible explanation for the inconsistency between the predictions of the 

ADE model with a x 1 and scenario B? 

It is not clear at this writing whether this disagreement for budding scenario B is serious 

or whether it is an experimental artifact. One possibility provides a fairly straightforward 

explanation of the continuous symmetry breaking: It is not always easy to distinguish be- 

tween unilamellar and multilamellar vesicles in the laboratory. The reason for this difficulty 

is that observations are done by light microscopy and, even with sophisticated techniques, 

it is impossible to  resolve distances less than a few tenths of a micron. Thus, all determi- 



nations of membrane thickness are inferential and depend on looking for regions of lamellar 

separation, differences between the behavior of different vesicles from the same preparation, 

etc. If multilamellar vesicles are present, then these vesicles would have a larger effective 

value of a: For a bilamellar vesicle, for example, treating both bilayers as elastic fluid sheets 

(as in Chapter 2) leads to an effective a,fi = Ct(Dbilwe,/D)2, where a is the single-bilayer 

value and Dbilayer is the interbilayer distance. Suppose Dbilayer = 2 0  + Dfluid where Dfluid 

is the thickness of any water layer separating the two bilayers. If Dfluid = 0, the enhance- 

ment of a is a factor of four. For Dfluid > 0, it could be appreciably larger. For a > a 2 ,  

there is a range of initial area difference for which continuous budding followed by smooth 

vesiculation can occur. But, the discontinuous transition observed in scenario B between a 

weak pear and a narrow-necked or full vesiculated shape still remains unexplained, without 

some additional mechanism. 

Another possible explanation is that the shapes identified in scenario B as stable weak 

pears were, in fact, slow fluctuations and/or unstable dynamical intermediates. Experi- 

mentally, the issue centers on how to distinguish between continuous and discontinuous 

shape transitions. In practice, the experiments are done [9, 201 by slowly ramping up14 the 

temperature, while watching the shape evolution via video microscopy. In the early days 

temperature ramping rates of 0.3 OClminute were commonly used. More recently, DMPC 

experiments have been done with rates of 0.1 OC/15minutes [20]. Ordinarily, shape equi- 

libration after a temperature change takes only a few seconds and fluctuations are weak. 

Near the transition, however, strong shape fluctuations have been observed, sometimes last- 

ing for periods of several minutes or more [24], so there are clearly some long timescales 

in the system. Furthermore, the observed shape must, of course, evolve smoothly, as it 

passes through a transition, whether the transition be first-order or second. Thus, even for 

discontinuous transitions, weak pears may be observed as dynamical intermediates. 

These issues have not yet been adequately explored; however, the crucial questions 

are: What is responsible for the long timescales and can a changing equilibrium shape be 

"Once the neck closes, there are strong hysteresis effects (probably connected with short-range van der 
Wads forces in the region of the (microscopic) neck [45, 591). Thus, reproducible cycling through the 
transition has not yet been achieved. 



distinguished from a slow dynamical transient? One interpretation of the observations is 

that the transitions are continuous and that the long timescale is the usual critical slowing 

down, characteristic of a second-order transition. Another interpretation, which we shall 

now explore, is that the long timescale is associated with approach to the spinodal line 

(MprO) and that the observed weak pears are fluctuations and/or dynamical transients. 

From this perspective, the apparent extended region of weak pears is, in fact, a region of 

metastable ellipses in which there are long-lived thermally-induced pear fluctuations. In this 

interpretation, the observed discontinuous transition to a narrow-necked or fully vesiculated 

state is just the termination of metastability marginally before the spinodal MPrO, as a 

thermal fluctuation finally drives the system over the (small) remaining free-energy barrier 

and it falls to a low-energy stable equilibrium. 

There is some experimental evidence to support this interpretation. In the experiments 

[60] on DMPC, unexplained fluctuations of the "stable" pears back to the prolate ellipse 

were occasionally observed. Furthermore, in recent experiments on SOPC [24] long-lived 

pear fluctuations, lasting as long as 10 minutes, are regularly observed.15 

On the theoretical side, to explore this alternative we must discuss the characteristic 

timescales of the system. If the transition is first-order, i.e., hysteretic, there are at least 

two time scales to be recognized: The symmetric shape, whether it is stable globally or just 

a metastable state, is subject to asymmetric (pear-like) fluctuations. These fluctuations are 

normally overdamped by the viscosity of the surrounding fluid, and they have a character- 

istic relaxation time which we shall call 71. Another scale, which we shall call 72,  is the 

characteristic time for giant fluctuations to occur, which take the system over the kinetic 

barrier to  a new minimum. When the height of the barrier is large compared to the thermal 

energy, these two timescales are distinct, with rl the short timescale and 72 the long one. 

A very crude estimate of the typical value of is obtained simply by dimensional analysis: 

TI -- rlRi/tc cz 1Oseconds [52], where 77 N O.Olg/cmsec is the viscosity of water, RA N 10pm 

is the size of the vesicle, and tc = 10-12erg is a typical bending rigidity. This is entirely 

lSInterestingiy, although these fluctuations go in both "up" and "down" directions, preliminary analysis 
of the fluctuations indicates that they usually do not quite average to zero, so some source of up/down 
asymmetry apparently remains [24]. 



consistent with the typical observed timescale for achieving mechanical equilibrium far from 

any shape transition. However, close to the spinodal point (and also, of course, close to  any 

real second-order transition), the relaxation time of the asymmetric mode that will initiate 

the onset of the instability can be much longer than seconds, because the corresponding TI 

acquires an additional factor 1 / X ,  where X is the smallest eigenvalue of the linear stability 

matrix for small shape fluctuations around equilibrium [61]. This eigenvalue goes to zero at 

the instability , so TI diverges at the spinodal line and is presumably very small just before 

MPrO, when the metastable barrier is comparable to kgT. Close to MPrO, there is no longer 

a sharp distinction between TI and 72,  and, generically, all timescales are comparable to  TI,  

at least at the mean-field level. We have made some very preliminary estimates (relying on 

a Langevin description [62] of the thermal lifetime) of how large this additional factor might 

be. It is easy to come up with timescales of order 10 min., which would be consistent with 

the SOPC observations. Certainly a more detailed calculation will be necessary to obtain 

a reliable estimate. 

(c) The ADE model relies on variation of the model parameter mo to explain the diversity 

of shapes and thermal trajectories seen in experiment. Are the values of this parameter 

required for explanation of the experiments physically reasonable? 

mo is essentially the equilibrium or relaxed initial area difference between the two mono- 

layers of the vesicle. This area difference is set at the time the vesicle is formed. Subsequent 

to vesicle closure it can only change by lipid flip-flop processes, which we have assumed to 

be slow normally (see Chapter 1). Initial vesicle closure takes place as water is added to 

the dry lipid (see Section 1.2), and the mechanism is not understood. Nevertheless, some 

crude estimates can be made: If the two monolayers (inner and outer) are identical in 

composition and if the inner and outer fluids are the same, then the area difference is just 

due to the difference in the number of lipid molecules which each monolayer contains, so 

AAo(T) G (NOut - N;")U~(T), where ao(T) is the optimal (relaxed) area per molecule at 

temperature T, and NOut and N ~ "  represent the numbers of lipid molecules in the outer 

and inner monolayers, respectively. For a relaxed spherical vesicle with a radius of lOpm, a 



bilayer thickness of 3nm, and a mean area per molecule of 0.6nm2, the average number of 

lipid molecules in each single monolayer is approximately N& 2 x lo9, whereas the optimal 

(when both monolayers are unstretched) difference in the number of molecules between the 

two monolayers is AN - NOut - N;" - lo6. Of course, initial closure may take place in 

configurations other than spherical. The relaxed area difference goes generally as CRD, 

where C is a constant, R is a typical vesicle dimension and D is the bilayer thickness. For 

the sphere C = 87r and Aao = 1. Other closure geometries lead to values of the constant C 

which can differ from this by factors of order unity, so we expect Aao of order unity with 

typical fluctuations of the same order. This is broadly consistent with the range of shapes 

observed experimentally, as may be seen from Fig. 1.5. Note that A N  of order lo6 is much 

larger than 0, so random fluctuations of equal-area monolayers cannot account for the 

required area difference. 

(d) We have already observed (Section 4.1) that precooling a vesicle tends to induce outside 

budding (when the vesicle is rewarmed). Can this be understood in the context of the ADE 

model? 

These experimental observations [9, 201 relate to vesicles which are cooled so that their 

surface area shrinks and they become, apparently, tense spheres. Characteristically in this 

state, all observable shape fluctuation ceases. This is consistent with a state of lateral ten- 

sion in which the higher elastic energy scale KR2 (see Section 2.1) comes into play, and 

the interior pressure rises dramatically. The question, then, is, can we in some way Link 

this increase of interior pressure to  an increase in Aao, which would, in turn, explain the 

subsequent exterior budding? An intriguing suggestion of Helfrich [63] provides just such 

a link. Helfrich proposed in another context that the flow of water through a membrane 

could produce a parallel transport of lipid along the pressure gradient. We speculate that 

the interior pressure (due to the lateral stress induced by the cooling) may force the out- 

ward permeation of water molecules through the bilayer and may also cause the formation 

of microscopic pores. According to Helfrich's idea, this water flow could carry lipids from 

the inner leaf of the bilayer to the outer. Likewise, the existence of pores would also fa- 



cilitate lipid flip-flop. Both mechanisms lead to  a redistribution of lipid molecules between 

the leaves of the bilayer in such a way as to increase Aao and, therefore, mO, thus favor- 

ing outside budding. Using the estimate given in Ref. [63] for the coupling between the 

water and lipid flows (one lipid molecule is transferred by the transmembrane flow of ev- 

ery 5 x lo5 water molecules), we arrive at  a rough estimate for this induced lipid flip-flop, 

which is of the order of lo6 for a cooling of 10 O C  from the unstressed state of the vesi- 

cle. As explained in the previous paragraph, this is just the right order of magnitude to 

produce a significant shape change favoring outside vesiculation of small buds (see Fig. 4.6). 

(e) The ADE model clearly has some attractive features but also some drawbacks. What 

experiments might be crucial to  establishing its viability? 

First, it should be pointed out that no simultaneous measurements of material parame- 

ters and shapes (or shape trajectories) has yet been done. Thus, it would be very useful to 

be able to  measure rc and E (e-g., by tether pulling [39]) for some vesicle (thus determining 

a) and then to observe shapes for the same vesicle as temperature is varied. This would 

allow a straightforward comparison of observed and predicted shapes, which has not so far 

been possible. Such a measurement for a variety of vesicles could also put to rest any doubts 

about whether observed vesicles are unilammellar or multilamellar. 

The main outstanding difficulty at  this point is the budding sequence B of Section 1.2. 

First, one should obviously reassess the crucial issue of whether stable pears really do or do 

not exist in these systems. The focus has to  be a unique characterization of these shapes 

as equilibrium shapes in contrast to slow fluctuations or dynamical transients. A very 

careful temperature control and an observation time long enough to ensure equilibration of 

the system a t  each given temperature will be necessary to  resolve this important problem. 

Experiments which study the dynamics of shape fluctuations in this regime are presently 

in progress [24]. 

If a can be measured and if continuous and discontinuous transitions can reliably be 

distinguished, it will be interesting to see whether the tricritical point can be located directly. 

In this case, the order of the budding transition would crucially depend on the value of the 



parameter m0 and sufficient variations of mo for the same vesicle (i.e., at fixed a) would 

lead to budding transitions of different order. Likewise a systematic investigation of the 

dependence of the temperature trajectories on the equilibrium area difference mo would lead 

to more insight, even for the case where the budding transition is always discontinuous. This 

equilibrium area difference could be controlled either by using the precooling mechanism 

described above or by forced lipid transfer through a trans-membrane pH-gradient as in 

Ref. [64]. In such a study one could use the temperature interval necessary for budding 

and the size of the vesiculated bud as important indicators to locate trajectories on a phase 

diagram like Fig. 4.4. One could then test the prediction that, the more lipid molecules are 

transferred to the outer layer, the smaller is the increase in temperature necessary to  create 

budding and the smaller is the radius of the vesiculated bud. We hope that this kind of 

study may be possible in the not-too-distant future. 



Chapter 5 

Summary 

In this thesis, we have studied theoretically equilibrium shapes and shape transitions in sys- 

tems of fluid lipid-bilayer vesicles, based on two different models (the spontaneous-curvature 

model and the area-difference-elasticity model). The objective of the thesis was to provide 

a theoretical basis for understanding the shapes and shape transitions observed in the con- 

trolled experiments, which are briefly reviewed in Chapter 1. 

The first model we studied was the spontaneous-curvature model. This model has two 

material parameters, the bending rigidity K and the spontaneous curvature Co. An equi- 

librium shape in this model is the shape of lowest bending energy under the constraints of 

fixed area A and volume V. There are three length scales in this model, RA, RV (where 

A r 4 ~ R i  and V = 4nR$/3) and Ro 2/Co. The parameter regime where RA > RV - RO 

(or RA > Rv N 1 in our units) was explored by Deuling and Helfrich [8] and many other 

groups [26, 401. Characteristic shapes, such as discocytes and stomatocytes, were found 

(mostly for negative values of the spontaneous curvature). The recent work of Seifert et.  

ak. [27] has revealed the systematics in this parameter regime: For C&O, the typical 

low-energy shapes are prolates, oblates, discocytes, stomatocytes, and invaginated shapes. 

The characteristic shape transitions are discontinuous transitions from prolates to oblates 

(or discocytes), discontinuous symmetry-breaking (or "inside" budding) and continuous in- 

ner vesiculation (or invagination). But, outside budding and vesiculation are absent in this 

regime. Their study also showed that, when Rv - Ro > 0 (the low-volume regime), budding 



and vesiculation do occur (consistently with our results). In our study of the spontaneous- 

curvature model, which is reported in Chapter 3, we have investigated the large-volume 

regime where RA > Rv >> Ro or RA > Rv >> 1 in our reduced units. Our results can be 

summarized as follows: 

(i) The discontinuous transition from a prolate ellipse to a budded shape is present, always 

followed by a smooth vesiculation. (ii) "Multiplets", each consisting of two or more seg- 

ments which touch each other tangentially at the axis and can exchange area and volume 

in a collective way, can be boundary minima in the space of configurations and, therefore, 

can compete with the regular Euler shapes (shapes that are solutions to the Euler-Lagrange 

equations) for being the lowest-energy shape. In particular, for those multiplets which are 

composed of spherical elements (only two radii, RA and RB, for the spheres are allowed), 

the condition for them to be boundary minima is that 1 - ( l /RA + l /RB) < 0. (iii) The sys- 

tematics of equilibrium shapes and shape transitions is summarized in a final phase (shape) 

diagram (Fig. 3.11). Successive buddings and vesiculations are the dominant transitions in 

this regime. The physical mechanism underlying the sequential budding is not hard to  un- 

derstand: The Helfrich sphere R = Ro(= 2) costs no bending energy; thus, if a quasisphere 

with a volume much larger than that of the Helfrich sphere has an excess area of the order 

of the surface area of the Helfrich sphere, it is energetically favourable for the large vesicle 

to shed the excess area to form a bud approximately the size of a Helfrich sphere. 

Another conceptually similar study of the AA model was done by Seifert and co-workers 

[23, 271, a short review of which is given in Chapter 4. It is easy to see that both the SC 

and the AA models produce same catalog of equilibrium shapes (see Section 4.1). However, 

the sequence of equilibrium transitions for this model was shown to be different from what 

is predicted by the SC model. In particular, budding (either "inside" or "outside") is 

always continuous in the AA model in the sense that a budded shape with a narrow neck is 

approached via a continuous symmetry breaking transition from a prolate ellipse to  a pear 

(wide-necked) shape, followed by smooth shrinkage of the neck. 

The controlled experiments performed recently on fluid lipid-bilayer (POPC and DMPC) 

vesicles (see Chapter 1 for references) provided the test ground for the two distinct types of 



shape-transition systematics. It turned out that the predictions of neither of the two models 

about the shape transitions is fully consistent with the available experimental observations. 

For the SC model, we see two unsatisfactory facts: First, the diversity of shapes and 

shape transitions (for example, both the discocyte- stomatocyte sequence and the prolate 

ellipse* pear sequence) observed for samples from the same chemical preparation cannot 

be explained, since this would require that different samples prepared in exactly the same 

way have different spontaneous curvature and in the SC model there is no mechanism for 

a distribution of Co values in vesicles that are under exactly same chemical conditions. 

Secondly, the discontinuous character of budding in this model is not compatible with the 

observed occurrence of budding via a continuous symmetry-breaking transition (trajectory 

B in Section 1.2). The AA model faces a similar dilemma: It does not provide an explanation 

for the discontinuous thermal-budding trajectory (trajectory C in Section 1.2) or for the 

discontinuous shrinkage of the neck in Sequence B. We were then led to believe that the 

resolution of these discrepancies requires consideration of some additional physical effect or 

effects. 

The area-difference-elasticity (ADE) model (see Chapter 2) became our natural candi- 

date for a generalization of the SC and AA models: It contains the additional area-difference 

elasticity, ii, which allows the monolayer area difference to react elastically. We argued in 

Chapter 2, based on a microscopic model for the bending moduli, that this new effect is 

comparable to the bending effect considered in the two extant models (SC and AA model). 

The ADE model is, in fact, an interpolation between the SC and AA models, and it has 

the potential to encompass the different scenarios of shape transitions. 

We focused on understanding budding and vesiculation within the context of the ADE 

model. We found, as we expected, that the ADE model is at least qualitatively successful 

in the following respect: It does contain both the discontinuous budding and continuous 

symmetry-breaking transitions, depending on the values of the elastic parameters and on 

the initial condition of vesicles (i.e., AAo). And, the diversity of the observed shapes is 

not hard to understand in this model: The parameter AAo depends on the vesicle closure 

process and, as we argued in Section 4.4.2, can have a reasonable range of distribution, 



leading to  two different shape sequences. However, a closer examination reveals problems. 

The estimated value of the ratio a = ii/~ of the area-difference elasticity is close to  1, 

a fact supported by experimental measurement of this parameter [39]. The theoretical 

prediction for vesicles having this a value is that thermally-induced budding should always 

be discontinuous, followed by a continuous vesiculation. Thus, the same difficulty faced by 

the SC model exists for this model, as well: This prediction is consistent with the sequence 

C (Section 1.2), but it does not explain the continuous symmetry-breaking transition in 

Sequence B. 

We have discussed in Section 4.4.2 various possibilities for a consistent explanation of 

this discrepancy within the ADE model. At present, we favour the following scenario: The 

observed continuous symmetry-breaking transition and apparently "stable" pear shapes are 

actually effects of the metastability characteristic of the equilibrium discontinuous transi- 

tion. The pear shapes are in fact long-lived asymmetric (with respect to  up/down symme- 

try) fluctuations about the (symmetric) metastable prolate ellipse. The sudden narrowing 

of the neck in a pear shape corresponds to the process in which the system is driven by large 

thermal fluctuations over the kinetic barrier to the global stable state-the narrow-necked 

shape or the vesiculated shape. Within this picture the apparently discontinuous vesicula- 

tion observed in experiments, as the neck of the pear shrinks suddenly to zero, is really a 

kinetic process in which the metastable prolate is finally driven over a free-energy barrier 

and the system falls to a stable vesiculated state. 

Further experiments will be required to determine whether the foregoing scenario is, 

in fact, correct. What is clear now, we feel, is that the previous SC and AA models are 

not adequate to describe the observed diversity of budding and vesiculation processes. The 

ADE model-with the above interpretation is not inconsistent with the experiments we are 

aware of. 



Appendix A 

Derivation of the Euler-Lagrange 
Shape Equations 

As we have discussed briefly in Section 3.2.1, the Euler-Lagrange equations which deter- 

mine the stationary points of the variational free energy (3.1) can have two different forms, 

depending on the particular parametrization used to represent shapes geometrically. The 

two sets of differential equations included in Chapter 3 (the Peterson and Helfrich repre- 

sentations) are equivalent in the sense that they must have exactly the same solution for 

the same parameter values (a and p) and boundary conditions. Thus, they can be used 

interchangeably. Despite this manifest equivalence, Ou-Yang et al. have claimed that these 

two representations of the shape equations are intrinsically different [65]. In this appendix, 

we shall give derivations of the two representations of the shape equations based on the 

variational principle. Furthermore, we will clarify the issue raised by Ou-Yang by explicitly 

showing that one expression maps into the other under the appropriate transformation of 

variables. 

We first derive the Euler-Lagrange equations in the Peterson representation. To perform 

the variation conveniently, we introduce an arbitrary parameter t in the range [0,1] which 

simply keeps track of the ordering of the points along the contour1. Thus, t = 0 denotes 

'The introduction of the variable t is only to facilitate the variation procedure: The total arclength s of 
the contour depends on the particular shape and varies when the shape changes. Direct variation of the free 
energy using the s variable is entirely permissible but requires dealing separately with the endpoint variation 
s = 0 and s = so. By introducing the parameter t ,  s may be considered a function o f t ,  and the endpoints 
are dealt with automatically. 



the north pole, while t = 1 labels the south pole. The way in which t runs along the 

curve is entirely arbitrary at this point, a feature sometime referred to a "reparametrization 

invariance" [66]. The two-dimensional projection of an arbitrary axisymmetric shape is, 

thus, represented by [ ~ ( t ) ,  ~ ( t ) ]  (refer to Fig. 3.1). In order that the shape be smooth and 

properly closed, the following boundary conditions have to be satisfied: 

The arclength s(t) depends on [ ~ ( t ) ,  z(t)] according to 

with the boundary conditions s(0) = 0 and s(1) = so .  The angle 

variables via 

dxldt 
cot O(t) = - 

drldt ' with 

O(t) is defined in these 

drldt 
or, equivalently sin O(t) = - . 

dsldt 

Using the geometrical relationships summarized in Eq. (3.7) , we express the free energy 9 

explicitly in terms of the three functions ~ ( t ) ,  s(t), O(t), as 

dOldt cos O 
9 / ~  = i l d t { ~  [- - -- co + 2CT + p T 2  coso 

T I' (A.5) 

Note that the three shape functions ~ ( t ) ,  s(t), O(t) are not independent of each other 

because of the local constraint (A.4). We follow here the approach, employed first by 

Peterson [42], of incorporating this local constraint into the variational procedure through 

a "Lagrange-multiplier functionn b(t). The complete variational energy then reads, 



where 

2 drldt 
co] + 2Xr + pr2 cos + b [;i;j;ii - sin O(t)]  . 

T 

Varying Q with respect to ~ ( t )  subject to the boundary conditions (A.l) leads to the 

differential equation, 
ds d L  d  d L  -- - - 
dt dT(t) dt d(dT/ds) 

= o .  

The corresponding equation for the variation of O( t )  is 

Variation of Q with respect to s ( t )  turns out to give 

where the "Hamiltonian function" H( t )  has the following definition, 

The Euler-Lagrange equation for s ( t )  is dHldt = 0,  because P contains only the derivative 

of s( t ) .  This implies that 'H(t)  is a conserved quantity along the shape contour. The fact 

that the variation of the total arclength, 6so, is in general non-zero leads to the boundary 

condition H ( t  = 1)  = 0. Since H ( t )  is a constant along the curve, this boundary condition 

indicates that H ( t )  is identically zero everywhere on the curve. 

Up to this point, the equations are written generally, for an arbitrary parametrization 

t. It is convenient to choose the particular parametrization s ( t )  = sot. With this choice, 

dsldt = so and the two differential equations (A.8) and (A.9) reduce to Eqs. (3.11) and 

(3.12) of the text, while (A.lO) becomes the Hamiltonian function, Eq. (3.13). 

We now turn to the derivation of the Euler shape equations in the Helfrich represen- 

tation, where the radial distance T from the symmetry axis is eventually chosen to be the 



coordinate parametrizing the shape. We consider a simple case in which a vesicle shape 

has only one belly point, corresponding to dz/dr = 0, and is divided into northern and 

southern   hemisphere^".^ We then write the total free energy as the sum of the energies 

for the northern (N)  and southern (S) hemispheres. aN has the form 

where T ,  is the distance from the axis at the belly point. The expression for QS/r  is similar. 

An arbitrary parameter t  is now chosen, such that r(t = 0) = 0 and3 r(t  = 1) = T,. We 

can rewrite Q!N as 

1 T dCP 2 / = 1 d t d y  [(r- +2cP-co) - P T ~ C ~ + ~ Z ]  $ 
1 - (TCP) dr 

The variation of Q! can now be performed by treating the functions r ( t )  and C,(t) indepen- 

dently, subject t o  the boundary condition imposed by the geometry, ~ ( 1 )  r r,  = l / C p ( l ) .  

The variation, 

6Q! = 6@/6cp + 6Q!l, = 0 ,  (A.14) 

leads to the two differential equations, 

along with the boundary condition at the belly point, 

2The generalization of the variational procedure demonstrated below to more general shapes with more 
than one belly point is straightforward. 

3The reason for using this parameter is, again, that it leads to an efficient treatment of the endpoint 
variations. 



If we choose T = tr,, the differential equations (A.15) reduce to 

and the geometrical condition, 
dCp Cm - Cp -- - 
dr T 

Eqs. (A.17) and (8.18) constitute the Euler-Lagrange system (3.5) given first by Helfrich 

[8]. The boundary condition (A.16) reduces to 

Finally, we show that, by appropriate transformation of variables, one can pass from one 

representation of the shape equations to the other: Using the fact that dsldr  = 1/s in0 ,  

and \/I - (TC,)~ = sin O (for the northern hemisphere), we re-express the Helfrich equation 

(A.17) for C, in terms of the arclength s, 

dCm 1 T - = -- sin O 
{ c ~ [ ( c ~ - c ~ ) ~ - c ~ ] + ~ C C ~ - P ) - - ( C ~ - C ~ ) .  (A.20) 

ds 2 sin O T 

To reach this result in the Peterson representation, we note that the Lagrange-multiplier 

function b(s) is fixed via the conservation of the Hamiltonian function t o  ensure axial sym- 

metry. Explicitly, it takes the form, 

Substituting Eq. (A.21) into the differential equation Eq. (3.11) for Cm, we arrive a t  

Eq. (A.20). 



Appendix B 

Numerical Algorithms for the 
Shape Calculation 

In this Appendix, we describe the algorithms we employed to solve numerically the Euler- 

Lagrange equations (3.8)-(3.12) for stationary shapes. 

At a fixed point in ( a , p )  space, there exists a set of solutions (Euler singlets), each of 

( which is characterized by, e.g., its curvature at the north pole1 a,"). The task of finding 

regular solutions is, therefore, equivalent to locating this set of initial curvatures. Integrating 

the differential equations (3.8)-(3.12) with some ap) from this set, subject to the additional 

boundary conditions, z(0) = 0, ~ ( 0 )  = 0, 0(0) = 7r/2, and b(0) = 0, gives a closed Euler 

shape.2 Now, consider a small deviation in initial curvature, a0 = ap)+6. We observed that 

numerical integration then resulted in, typically, one or the other of the two shape contours 

depicted in Fig. B. l(a). Fig. B. l(b) shows the systematic convergence of integration results 

towards a closed shape. 

Like the north pole, the south pole is a singular point of the equations and cannot be 

reached numerically. When the typical length scale (Rv) is not too large and numerical 

convergence of the integration is good, the "shooting method" [67] is used to overcome 

'The two principal curvatures a t  the axis for an axisymmetric closed shape are the same. 
2Since the north pole is a singular point of the shape equations (7  = O), the numerical integration cannot 

in practice be started exactly a t  the pole. Close to the pole the local solution can be found a s  series 
expansions in the arclength s. The integration is thus started at some point s* (typically away from 
the axis. The boundary values needed for the integration are obtained by evaluating the series expansions 
a t  this point. 



Figure B.l:  Schematic illustration of the numerical search for an Euler shape. (a) This shows 
the two typical behaviors near the axis of a shape, arising from the numerical integration of 
the Euler shape equations, corresponding to the deviations f 6 in the initial curvature from 
the "perfect value". (b) This shows how successive attempts converge towards an Euler 
shape, as the deviation in initial curvature gets smaller and smaller. 



( this difficulty as follows: A reasonable approximation Bo to a,") is picked through the 

initial search process (see Fig. B.l(b)). Estimates So for the total arclength and ti1 for 

the curvature a t  the south pole are obtained in a similar manner. These estimates serve 

as trial values in the shooting procedure. In each iteration, we start from the north pole 

with initial curvature Go and integrate out to some fixed arclength S < So, thus calculating 

r l ( S ) ,  ( S ) ,  ( S ) ,  z l ( ) ,  and b l ( ) .  Similarly, we perform a second (backwards) 

integration, starting from the south pole with ti1 and integrating out from So to  (So - S), 

thus calculating d2)(1), c!?(I), d2) (S) ,  Z(~)(I), and b(2)(ri). For the correct choice of trial 

(n) parameters (Bo = aO , GI = a?), and 5 = s t ) ) ,  which characterize an Euler shape, these 

two sets of calculated values at 3 should match. In practice, Go, B1 and So are iteratively 

adjusted until d1)(3) = d2)(s),  CC)(S) = C:)(S), and @(')(I) = ~ ( ~ ) ( r ) .  The matching of 

z(s) and b(s) is automatic, since these quantities depend on r, C, and 0.3 

Once one stationary shape has been successfully found, it is relatively simple t o  follow 

its evolution under small changes of o and p, thus tracing out a particular free-energy sheet 

over (o,p) plane. 

Finding the appropriate shape for given surface area A and volume V is done by ad- 

justing o and p. The shooting method described above facilitates this adjustment, since we 

can supplement the shape equations (3.8)-(3.12) with two more differential equations for A 

and V, 

and 
dV - = -7rr2 cos 0 , 
ds 

subject to the boundary conditions, 

31t should be noted here that, in looking for a shape with up/down symmetry, the shooting procedure 
can be simplified: In this case, the matching can be done at the equator. Consequently, there are only two 
to-be-determined parameters, cro and so/2, subject to the matching conditions at the equator, @ = T and 
b = 0. This simplification was implemented in practice. 



where A1 and Vl are the prescribed values for A and V. These two equations then add two 

more conditions t o  the matching process, and the free parameters, a0, q, so, o, and p, are 

all determined together. 

Special techniques were needed to deal with those stationary shapes that are so unstable 

that the shooting method does not converge numerically. One particular example for which 

the shooting procedure fails is the nearly vesiculated shapes where the segments connected 

via narrow necks are very different in sizes.4 We, in these cases, performed a straightforward 

integration of the differential equations.' The search for the stationary shape is done based 

on the schema shown in Fig. B.1, and the final determination of the "perfect" curvature is 

obtained by sequentially narrowing down the separation between the initial curvatures cor- 

responding to  the two types of behavior illustrated in Fig. B.l(b). The smallest separation 

we reached is of the order of The complete shape, its bending energy, surface area 

and volume are finally calculated by the direct integration of the augmented set of shape 

equations t o  a point very close to the south pole ( r  = 

One important application of the numerical scheme discussed in the preceding paragraph 

was in locating numerically the kissing (vesiculation) boundary (see Subsection 3.2.3) for 

necked shapes consisting of two nearly spherical elements and investigating in detail the 

shape of the narrow neck. For a fixed value of p, the evolution of an initial necked shape 

under change of the value of a was studied. It was found that the neck radius a approaches 

zero as o reaches 112. Repeated investigation for several values of p indicated that this 

was true for all p. This established the kissing boundary numerically. The a = p kissing 

boundary was numerically located in a similar way. Both of these kissing boundaries were 

subsequently derived analytically (Appendix C). 

The constant volume trajectory for necked shapes near the kissing boundary space 

was obtained in a way somewhat different from what has been described in the preceding 

paragraphs: An initial shape was found a t  some values (al, p l )  with surface area A(al, pl) 

and volume V(ol,pl). The value of p is changed to  pz. Two different values of o, op) 
'Interestingly, the larger the size difference is, the more unstable the integration is. 
'This direct integration may be less efficient than the shooting method, but it is certainly "foo1proof." 



( b )  and 0, , are then chosen, such that v ( ~ F ) , ~ ~ )  > V(al,pl) and  of),^^) < V(ol,pl). 

Bisection between OF) and o r )  finally leads to a 0 2  for which V(02,p2) = V(al,pl). It is in 

this way that we determined the bending-energy curves EN(A,  V), such as the one shown 

in Fig. 3.7. 



Appendix C 

Analytical Treatment of the 
Nearly Vesiculated Shapes 

In Chapter 3, we stated that multiplets (or vesiculated shapes) may, under certain con- 

ditions, correspond to (boundary) minima in the space of configurations and compete in 

energy with stable Euler singlets of the same area and volume. Associated generically with 

multiplets is another class of stationary shapes-the necked shapes: They have the form of 

two (or more) compact bodies connected by a narrow but finite neck (or necks), and they 

satisfy shape equations, e.g., Eq. (3.5), which express the constrained minimization of the 

total bending energy. These two classes of shapes exist in certain regions of the phase space 

((a,p) or (A ,V) ) .  Changing control parameters (a, p or their conjugates A, V) allows one to 

pass smoothly between necked and vesiculated shapes. We call this change from the necked 

to  vesiculated shapes a "kissing transition," since it occurs at the boundary where the neck 

approaches zero and the two bodies joined by the neck.touch each other tangentially. De- 

pending upon the interplay between the vesiculated and the necked sheets in the region local 

to  the kissing boundary, a kissing transition may sometimes correspond to  an equilibrium 

phase transition, i.e., "vesiculation," as is seen in the phase diagram Fig. 3.11. In other 

cases, it only indicates the existence of a bifurcation structure for higher-free-energy sheets. 

It is helpful to have in mind the following generic picture of a kissing transition: Suppose, 

at some given a and p, that a; is an initial, north-pole curvature such that the shape 

resulting from integration of the Euler equations closes smoothly at the south pole. It is 



possible that there exists another initial curvature a,-, = af, + 6, close to a;, which leads 

to a properly closed necked shape. 6 is then a function of o and p, and the neck radius 

a depends on 6. The fact that this necked shape satisfies the Euler equations means that 

it is at mechanical equilibrium; however, the equilibrium may be either locally stable or 

locally unstable. A locally stable state may (or may not) correspond to a global minimum; 

a unstable state cannot. By varying the control parameters a and p, we shall find that it 

is possible to  drive 6 and, in turn, a to zero. In this limit, the necked shape then reaches a 

well defined limit which is simply a "kissing" multiplet. The condition 6(a,p) = a(a,p) = 0 

defines a "kissing" boundary in the (a,p) plane (or, equivalently, in the ( A ,  V) plane). 

The free-energy sheets anedred(a,p) and @vesicdatd(~,p), corresponding to the necked and 

vesiculated shapes, join along the kissing boundary and are close to one another when a(a, p) 

is small. When this bifurcation structure involves the lowest-energy sheet, then the kissing 

transition is a vesiculation transition. 

This Appendix is devoted to the study of the region near a kissing boundary. Our 

purpose is to  show generically how small-necked structures can be mechanically stable, low- 

energy configurations, how nearby vesiculated shapes are boundary minima in configuration 

space, and how the two types of shapes meet along the kissing boundary. In the process, 

we will show that a(a,p) = 0 is equivalent to the "kissing condition" (Eq. (3.24)), 

where CA(a, p) and CB(a, p) are the curvatures of the two connected shapes at the osculating 

point. 

Our treatment has three parts. In Section C.l, we present a treatment based on a 

variational "toy-model." Despite the fact that it is approximate, this treatment captures 

in a simple way all of the important physics. In Section C.2, we provide a mathematical 

derivation of the kissing condition and other results for osculating spheres (i.e., sphere 

multiplets and spheres joined via narrow necks). In Section C.3, we generalize the results 

to non-spherical axisymmetric shapes. 



C.1 The toy model 

We have pointed out in Section 3.3 that, at each point in the allowed region of the (a, p) 

plane, there are two stationary spheres with the (exact) equilibrium radii, 

R* (a, p) = [(2 a + 1) k J-] /2p - 

These two spheres have positive radii when p > 0 and a > -112. 

To look at the problem of a narrow-necked shape which is close to  two osculating spheres, 

we adopt a variational trial shape S (see Fig. C.l) in which the two end caps (I and IV) 

are hemispheres with radii R1 and R2, respectively, but the inner regions (I1 and 111) are 

described by 

This shape is chosen to fit the boundary condition 8 = lr/2 both at the equators of the 

Figure C.1: The "toy shape" used in the variational calculation: Regions I and IV are 
hemispheres with radii R1 and R2; Regions I1 and 111 have the form expressed in Eq. (C.3). 
R1, RP and the neck radius a are the variational parameters of the model. 

hemispheres and at the center of the neck. Parametrizing the shape (and in turn the 

free-energy functional) are three variational variables, R1, Rq, and a. The free-energy 

contributions from the spherical regions I and TV are trivial. A brief calculation for region 

I1 gives 
RR; 

Vzz(Rl 7 a )  = 3 [(B + PI + P?) E(ql) - 3 ~ :  ~ ( q l ) ]  7 (C.4) 



and 

where p; = a/R;, pi = Ja, i=1,2. The functions E(q) and K(q) are complete elliptic 

integrals [68]. Expanding the elliptic integrals for small a leads to expressions for the volume, 

area, and free energy in terms of Rl, R2, and a, 

and 

Equivalent expressions for region III+IV are obtained by replacing R1 by R2, SO we may 

finally form the variational free-energy function corresponding to the trial shape of Fig. C.l, 

@(R17 R2, a) = %(RI) + @o(R2) + C(a,p; RI, R2) s a.-- D(a,p; R1, R2)s a2 In a + 0(a2) , 
(C.10) 

where the coefficients of the terms in a and a2 In a are 

and 

We now study the behavior of the free-energy sheets at small neck size on the basis of 

the variational function (C.lO). The stationarity conditions d@/dR; = 0, i = 1,2, lead to 

values for R1 and R2 which differ from the solutions R*(a,p) in (C.2) only by terms at 

most of order a,  provided that a is small. Thus, near the stationary points and correct 

through order a2, we may replace R1 and R2 in Eq. (C.lO) by Rk(a,p) to write @ as a 

function of the neck radius a alone. @(a) plays the role of a Landau function in which a 

is the order parameter. Evaluating the coefficients C(a,p; R1, R2) and D(o,p; RI, R2) at 



equilibrium sphere radii, R A , ~ ,  we arrive at  an expression for the Landau function, 

@(a) = 90 (RA) + Qo (RB) + 4na 1 - - D ( C , ~ ;  RA, RB) nu2 ln a + 0(a2 )  , ( RA RB 
(C.13) 

where both RA and RB may take the value of either of the two sphere radii, R*(p, a) .  It 

is clear from Eq. (C.13) that, as long as the coefficient D is positive, the vesiculated shape 

( a  = 0) is a boundary minimum of the Landau function whenever ( l /RA + l /RB)  < 1, so it 

is variationally stable to  the formation of a small neck. Conversely, when ( l /RA + l /RB)  > 
1, the vesiculated shape becomes locally unstable, and the Landau function has a local 

minimum a t  a small but nonzero radius a. This minimum corresponds to a narrow necked 

shape having the neck size, 

(C. 14) 

with corrections of order a. The kissing boundary is defined by the locus where the bracket 

on the right hand side of Eq. (C.14) vanishes, i.e., 

which is a special case (i.e., for spheres) of the general kissing condition (C.l). Three cases 

can be distinguished: 

(i) RA and RB are different, and correspond to  R+ and R-, respectively. It follows from 

(C.2) that the quantity (1/R+ + 1/R-) equals unity along the line a = 112. Eq. (C.14) 

predicts stable necks in the region just to  the right of this line (see Fig. 3.3) with size given 

by 

[(I + 2a12 - 4 (-aln a )  = 4 ( a  - 1/21 . (C.16) 

(ii) RA = RB = R+(a,p) = 2, which occurs along the line a = p for a > 112. There are 

stable small necks in the region just to  the left of this line with radii satisfying 

(iii) RA = RB = R-(a,p) = 2, which occurs along the line a = p for a < 1/2. Stable small 

necks exist in the region just to the right of this line with radii satisfying 



"Stability" in the preceding paragraph refers, of course, to the free energy in the 

(a,p) ensemble. However, it does not necessarily follow that the same stability holds for the 

mechanical energy E in the (A, V) ensemble, which is simply the Legendre conjugate of the 

free energy at the stationary point. To study the local energetics there, it is convenient t o  

return to variables A, V. Consider first a vesiculated configuration consisting of two spheres 

of radii R1 and R2 with R1 # Rg, SO that V = 4r(R:+ R$) /3  and A = 47r(R; + R;). Suppose 

now that a small neck of radius a is allowed to open up between the spheres, so that the 

overall shape is given by Fig. C.1. In this process the radii RA and RB have to deviate 

from R1 and R2 SO that A and V stay fixed. Solving Eqs. (C.7) and (C.8) for RA and RB 

as functions of a and using these solutions to calculate the bending energy, we obtain the 

total mechanical energy as a function of the neck radius, 

We note that the energy required to make a small neck at fixed A, V vanishes with the neck 

radius. Clearly, small necks are stable when the condition (l/R1 + 1/R2) > 1 is satisfied.l 

Mapping back to a, p variables regenerates Eq. (C.16). 

We have now derived, only variationally (for the toy-model shape), the following results: 

the formula (C.14) for the equilibrium neck radius through order a h  a, the location of the 

kissing boundary expressed by Eq. (C.15), and the condition (l/R1 + 1/R2) > 1 for small- 

neck stability (see Eq. (C.19)). It turns out that Eqs. (C.14) and (C.15) are in fact exact 

consequences of the Euler shape equations near the vesiculation boundary. We now turn to  

a more rigorous discussion, which is based on solving the Euler shape equations, in order 

t o  put this claim on a firm base. 

'Any (exact) equilibrium shape has the lowest energy among shapes of the same area and volume. Thus, 
the minimum energy, (C.19), of toy shapes provides an upper bound to the energy of the necked shapes in 
any region where these shapes are stable. 



C.2 Exact solution for spheres with small necks 

For the sake of convenience, we recapitulate here the Euler equations (3.5) expressed in the 

Helfrich repre~entation,~ 

The plan of attack is to develop systematically solutions for the shape in the two regions, 

far from the neck (where the perturbation theory is valid) and in the (small) neck region 

(where we employ a scaling Ansatz). Then, by matching those solutions in a region of 

overlap, we will be able to establish important features of the Euler shapes for a + 0. 

Let us focus first on the local shape near the neck in the limit when the neck radius 

a << 1. It turns out that a simple scaling Ansatz will allow us to solve the Euler-Lagrange 

equations (C.20) locally in the neck region order-by-order in terms of the small parameter 

a.  To set this up, we define first the following dimensionless quantities and variables, 

With this notation, Eq. (C.20) becomes, 

2Here we use the Helfrich representation of the Euler equations. It is more suitable for analytical treatment 
than the Peterson representation. 



We then propose the simplest scaling Ansatz for a solution to the above shape equations: 

Substituting (C.23) into the Euler equations (C.22), we generate an infinite sequence of 

inhomogeneous linear differential equations, corresponding to successive powers of a, 

This system can be solved recursively, order by order. The function Qn({Pm, Qm; m < n )  ; x) 

involves solutions from all levels lower than n and is, in general, a cumbersome expression. 

General solutions to this set of differential equations can be formally found as 

where Kn and En are integration constants. In particular, the solutions of the two lowest 

orders are easily obtained: 

3This simple scaling Ansatz is certainly consistent not only with the fact that the local mean curva- 
ture (Cm + C,) is not divergent anywhere along the shape contour, but also with the boundary condition 
!I!(,=, = a - oaZ + 0(a3).  This boundary condition is the consequence of the condition for the continuity 
of the shape at z = 1, which requires that the curly bracket in (C.22) should be zero at  this point. 



and 

Note that the boundary conditions P(X)~, ,~  = 1 and !Fl(x)(,=l = 1 have been satisfied 

by choosing the integration constants KO = 1 and ffl = - l/Z4 If we take this solution to 

describe the part of the neck in region 11, then the part in region 1115 is then described by 

the solution,6 

The asymptotic behavior of these solutions in the limit x -t oo (or r >> a) will be important 

in what follows. We give explicitly the form of P(x) at large x, 

The functional behavior of these scaling solutions gives the local shape of any narrow neck. 

We now look away from the neck region and study a perturbative development of the 

axisymmetric shape equations about closed Euler shapes. This is relevant because a small 

deviation 5 in initial curvature from that of a closed shape leads to a failure of closure at 

the opposite end, producing a narrow neck. The question we wish to address is: How is the 

shape modified if we start the integration with a misfit 6 in the initial curvature? If the 

 o ow ever, these two boundary conditions are not sufficient to determine K l .  Rather, KI can be related 
to the derivative & / d p  at  the center in the neck, which parametrizes a family of solutions corresponding to 
the same neck size a. Other integration constants Kn, n > 1 ,  are found to depend upon K I .  

'Regions I1 and I11 now refer to the neck region of a narrow-necked shape which has a geometry 
similar to  the toy-model shape in Fig. (3.1. 

'The change of sign in front of Kl in Eq.(C.28) compared to Eq.(C.27) reflects the fact that the derivative 
dzldp = f ( 1  - z2p2 ) lJ2  has two different signs for region I1 and region 111, respectively. Only through this 
change of sign can the derivative dC,/ds be kept continuous a t  the center of the neck. 



closed Euler shapes are spheres, a family of perturbative solutions parametrized by 6 can 

be derived explicitly by solving the shape equations. We carry through this program below. 

An Euler sphere at some fixed a, p has an equilibrium radius R(a, p) (R(a, p) now denotes 

either of the two radii, R*(o, p), as given in Eq. (C.2)), so its two principal curvatures are 

simply c ~ ) ( T )  = c ~ ) ( T )  = l/R(a,p). We now consider a perturbative solution, 

with the boundary condition 

~ ~ ( 0 )  = 6 .  

Substituting Eq. (C.30) in the Euler equations (C.22), we find the linearized equation for 

~P(T), 

A change of variable to z = r2/R2 reduces this to the hypergeometric equation [69], 

where 

R R2 
A + B = 1 / 2 ,  and A B = - ( p ~ 2 - 2 ) = - [ ( 2 0 + 1 ) - % ]  8 8 R . (C.34) 

The boundary condition (C.31) picks out the solution which is regular at z = T = o , ~  and 

we find 

~p(z)  = SF(A, B, 2; z) , 

where F(A, B, 2; z) is the hypergeometric function. This solution is only valid on the initial 

(north-pole) side of the belly (region I in Fig. C.l). The function F(A, B,  2; z )  is finite as 

z -t 1 and can be expanded there in powers of (1 - z)'I2, 

7The hypergeometric equation (C.32) has two linearly independent solutions: One, denoted by 
F ( A ,  B, 2; z), is analytic at z = 0 and can be expressed in terms of hypergeometric series for lzl < 1. The 

other is singular at z = 0 and is given by gF(A, B, 2; z) ln 1 + 1/z hn zn where g and hn are constants. 
n=O 



To continue beyond the belly into region 11, an analytic continuation is required, reflecting 

the fact that the shape in the belly region is entirely smooth. This continuation leads to an 

expression for the perturbative solution in region 11, 

(C.37) 

Having obtained a perturbative solution for the shape in region 11, we are now in a position 

to  examine this solution in the neck region. As (2, r )  + 0 in region 11, the magnitude of 

the perturbation generally diverges. Indeed, it is precisely this divergence which prevents 

closure for small b # 0, leading to the formation of a nonzero neck. By developing the 

solution (C.37) asymptotically for small t (i.e., in the region close to the axis),g we arrive 

at the perturbative solution to the full Euler equations near the neck,1•‹ 

where 

and 

'The reason for the change of sign is the following: The shape is completely smooth at the belly 
point. Any shape function (i.e., ~ ( s ) ,  Cm(s), and C,(s)) can be expanded in powers of As E s - st,, 
f(As) = ft, + fn(As)". r is the arclength variable, and sa is the arclength at the belly point. If the 

n= 1 
shape has the up/down symmetry about the belly point, all the odd-power terms in A s  disappear. If this 
symmetry is broken, odd-power terms are in general a l l  present. In this case, the shape function f(As) 

becomes different on the two sides of the belly point: On one side (As > 0), fI(As) = fa + fn(AsIn; on 
n=l 

the other side (As < O), frr(As) = fa  + C ( - l ) "  fn 1 ~ ~ 1 " .  The coefficients of the odd-power terms in 1 As1 
n=l 

reverse their sign, in passing from one side of the belly point to the other. This is precisely the sign reversal 
in Eq. (C.36) and Eq. (C.37), since (1 - z)'I2 actually corresponds to IAsl, and (1 - 2)312 is responsible for 
generating the odd-power terms. 

'The function F(A, B, C; 1 - z) becomes divergent as z + 0, if C - (A + B) = m, (m = 0,1,2, ...). 
' O ~ h e  perturbative solution cm(r) is straightforward to get, using E,(T) = T dcp/dr + cp(r). 



The combinations sin(aA) sin(aB) and (1 - A) (1 - B) can be easily evaluated by using 

Eq. (C.34), and we simply give the results here, 

l 
and 1 - 1 - B )  = - ( p ~ 3 - 2 ~ + 4 ) .  

8 
((2.40) 

The asymptotic shape (C.38) is only valid over a limited range of T, near but not too near 

the neck. On the one hand, we must have z << 1 (T << R), so that higher-order asymptotic 

terms are negligible. On the other hand, too near the neck the term in Cp(r) linear in 

6 becomes large and higher-order corrections, S2 and larger, would have to be included. 

To avoid this, we require / 6- 4f2 1 < f . These two requirements together determine an 

important regime, JK B: T << R, where Eq. (C.38) well represents the full solution to 

the Euler equations. 

Thus far, we have developed two sets of solutions by looking at two different regions: 

a family of scaling solutions describing the neck region, which are parametrized by the 

integration constant K1 and the neck size a, and a set of perturbative solutions, which 

depends upon the initial curvature misfits, SA and SB, at the opposite ends. If there is a 

narrow-necked shape existing as a solution to the Euler equations, the corresponding K1, 

a ,  and SA and aB are all functions of a and p. We expect that matching between these two 

sets of solutions, if properly done, will uniquely and explicitly determine the parameters. 

To do this, we form from Eq. (C.38) the combination, 

which must be matched to the scaling form (C.29). Matching the constant terms and the 
1 - terms in the equations (C.29) and (C.41) leads to the following two conditions on the 

2 2  

parameters," 

"1t is not obvious that the use of the asymptotic expression (C.29) in the matching procedure is consistent 
with the use of the perturbative solution. It turns out, however, that in the end the matching regime, 
1611'2 < r  << R, is also self-consistently the asymptotic regime ( r  >> a )  of the scaling solution, since 6 is 
linear in a for small a .  



Likewise, from matching between region I11 and region IV, we have 

Eliminating K1 from Eqs. (C.42) and (C.44), we obtain again, but now more rigorously, 

Eq. (C.16) for the equilibrium neck size (to order aln a). The kissing condition (C.15) is 

retrieved as the neck radius a approaches zero. From Eqs. (C.43) and (C.45), one sees that 

the initial misfit for a necked shape is linear in a, but the sign of 5 in general depends on a 

and p through CY and R. 

The agreement with the variational calculation seems remarkable, considering how sim- 

ple the toy shape is. On closer examination, however, this is not at all surprising: The 

matching presented here involves the 1/x2 and constant terms, which are both captured 

correctly by the toy shape described by Eq. (C.3). The remaining terms in both solutions 

cannot be easily related at this level of approximation. For example, the In x term in the 

perturbative solution (C.41), has no counterpart in the linear scaling solution. Indeed, the 

matching of this term can only be done when the nonlinear part of P(x), a2P2(x) is taken 

into account. We believe that the matching of this term is consistent with the matching of 

the other two terms. 

C.3 Narrow necks between non-spherical Euler shapes 

The preceding analysis was performed for the special case where the shapes connected by 

narrow necks are (nearly) spheres; however, its outcome, namely the equilibrium condi- 

tion (C.16), and, in turn, the criterion for vesiculation, Eq. (C.15), can be generalized to  

cases in which the osculating shapes are arbitrary axisymmetric shapes which meet on a 

common symmetry axis. In the remainder of this Appendix, we shall, develop a basis for 

this generalization. Broadly speaking, the characteristic asymptotic behaviors of both the 



scaling solution and the perturbative solution do not depend on the particular shapes of 

the osculating objects. 

The argument is similar to that given in the preceding Section, only now we consider 

a perturbation about some arbitrary Euler shape represented by shape functions Cm(r),  
- 
Cp(r). Let CA be the axial curvature of the Euler shape at the osculating point. We write 

the perturbed shape as 

c ~ ( T ) z C ~ ( T ) + E L ( T ) ,  k =  m,p, (C.46) 

It is then straightforward to show that the linearized differential equation for the perturba- 

tion is 

where t zz T CA. The functions g and f are defined as 

which are all regular. Eq. (C.47) is a second-order linear homogeneous differential equation 

which has singular points at t = 0 and t = 1. Close to the axis (t + 0), this equation has 

two independent solutions [69]: One solution is analytic and can be expressed as a Taylor 

series in t, 

$)(t) = d O ( l + ~ t ~ +  ...), 

where do is the integration constant and A = [(2u + 1) - 4 CA] 116 c;. The other solution 

is singular, 

ho is a constant to be determined by some boundary condition. The asymptotic behaviors 

described by l / t2  and In t are universal. This singular solution is generically present in the 



neck region and dominates any contribution from the regular solution. We suppose, then, 

that (C.50) describes the perturbation in a region which is located away from the axis, 

far enough so that the perturbation can still be considered linear yet close enough so that 

the asymptotic terms given in Eq. (C.50) pick up the dominant contributions. We expect 

that further development of this perturbation will lead to  a neck as the axis is approached, 

precisely in the same way as it does when spheres are the osculating objects. The essential 

feature of the previous matching analysis is again seen here: The explicit perturbative shape 

t o  be matched to the scaling asymptotics of the neck has the following form, when scaled 

by the neck size a:12 

Matching the coefficients of the 1/x2  and constant terms, as we did in the special case, we 

arrive a t  the condition for a stationary neck, 

where the coefficient B is explicitly 

As the neck size a -t 0, the kissing condition (C.l) is again retrieved, now for axisymmetric 

but non-spherical shapes.13 

l2EP(r) is analytic close to the axis, corresponding to a smooth closure at the axis. The series expansion 
for C,(t) is Ep(r)  = CA + CP)r2 + 0(r3),  where 6) is an expansion coefficient that depends on o, p and 
the initial curvature CA. 

13The function of a global analysis of the perturbed shapes seems to be only in relating the equilibrium 
neck size to the corresponding misfit(s) in initial curvature. 



Appendix D 

Calculation of Local Perturbations 
about Spheres 

In this Appendix, we present in detail the calculations which provide the basis for the 

discussions given in Section 3.3. The focus is on the local bifurcation structures in both ( a , p )  

and ( A ,  V) spaces, which are associated with the development of perturbations characterized 

by spherical harmonics of different order 1 > 1. 

An arbitrary axisymmetric perturbation about a sphere can be expressed in terms of 

spherical harmonics, as is in Eq. (3.35), 

where the amplitudes { a l }  are s m d .  Straightforward calculations lead to  expressions for 

the surface area and the volume of the deformed sphere as functions of R and {al), 

while the bending energy (2.29) is given by 



with coefficients 

and 

The coefficient G(I1, 12, 13) = J' dfl qy(fl) q'(fl) q t ( R )  is easily expressed in terms of Clebsch- 

Gordan coefficients and vanishes unless triangle inequalities and parity are satisfied. 

(4) BIlr12,13,14(R) is even more cumbersome. For our purposes it is sufficient to give only the 

term in a;, which is required in extending Eq. (3.40), 

The variational free energy (3.1) therefore has the form given by Eq. (3.36) with the following 

coefficient for the third-order term: 

The term in a: is 

The spherical-harmonic representation (D.l) of nearly spherical shapes is convenient for 

the description of bifurcations from the spheres, to which we now turn. For nearly spherical 

shapes which are mechanically stable, the free energy @(u,p; R, {al)) has stationary points in 

which all the coefficients {al) are small (but one or more are nonzero). In the limit {ar -+ 01, 

such shapes can only exist in the neighborhood of the loci defined by c,(~)(u, p; Ro(o,p) = 0, 



where Ro(a, p) is one of the radii R*(a, p) of the two stable spheres which exist at each point 

(a,p) outside the forbidden region (see Section 3.3 and Fig. 3.3). This condition defines a 

set of loci in the (a,p) plane which may be regarded as parametrized (al(R),pl(R)) by the 

radii of the corresponding spheres. For (a,p) near the locus (al(R),pl(R)), there is a nearly 

spherical stable shape dominated by the perturbation al in Eq. (D.l). As (a,p) moves 

away from (q(R),pl(R)), the asphericity grows and the stable shape develops additional 

spherical-harmonic content. The free energies of these shapes form sheets over the (a,p) 

plane. The sheet labelled by 1 bifurcates from a sphere sheet along the locus (ar(R), pl(R)). 

We now examine the structure of this bifurcation, i.e., the way in which the sheet 1 separates 

from the sphere sheet along the bifurcation line. We shall explore this bifurcation structure 

in detail for the simpler cases, 1 = 2 and 1 = 3. 

D.l  Perturbation calculation for I = 2 

We first consider the I = 2 bifurcation from a sphere of radius Ro. Shifts of a and p from 

their (spherical) threshold values are denoted by 

The difference between R and Ro is defined as SR, i.e., 

The low-order terms in the free energy relevant for this bifurcation are 



The stationarity condition d @ / d R  = 0 yields, 

where the D coefficients denote the derivatives of the C coefficients with respect to  R, 

I .  order to apply these conditions, we need the coefficients ~ ( " 1 .  To the order that 

we will need them, the required coefficients can be evaluated directly from Eqs. (3.37) and 

(D.7). These results are: 

(3) - - (3) C2,2,2(02, ~ 2 ;  R) -- C2,2,2(~2, p2; RO) + smitll corrections 

(3) - - (3) 
C2,2,4(02, ~ 2 ;  R) C2,2,4(02,p2; Ro) + s m d  corrections 

'In principle,there is one such equation for every I ;  however, those modes corresponding to higher 1's only 
come in as high order contributions and do not enter at the order of our treatment. 



= ~$! ,2 ,2(a2~~2;  R) - 2,2,2,2(~2, p2; RO) + small corrections 

(2) - - (2) C4 (u2, p2; R) 5 C4 (a2, p2; &) + s m d  corrections 

(2) - - (2) C3 ( ~ 2 ~ ~ 2 ;  R) r C3 (u2,p2; Ro) + s m d  corrections 

(3) - - (3) 
C2,2,3(02, p2; R) C2,2,3(a27 p2; Ro) + small corrections 

The bifurcation structure can be illustrated most conveniently if we choose a particular 

trajectory in the (a, p) plane, cp = 2cc/R0 5 C, which lies along the straight line corre- 

sponding to the sphere of radius Ro. Over this line in the (u,p) plane the free-energy curve 

for the sphere is particularly simple, 

The stationary solution corresponding to the deformed sphere can be found for this partic- 

ular choice of a and p by solving the set of nonlinear equations for R, a2, as, a4, and so on. 

From Eq. (D.13), it is easy to see that, to the leading order, SR is proportional to a2. In 

fact, solving (D.13) for SR, we obtain 

The solution to Eq. (D.15) is found to be 



which is also quadratic in ~ 2 . ~  The solution to (D.16) in the perturbative regime is as = 0. 

Hence, up to  order a;, the variational free energy of this quasispherical shape (resembling 

an ellipse E) can be evaluated by substituting the above variational solution into (D.11). 

In this case, we obtain an expression for !BE as a.function of a2 alone, 

The function @ ~ ( a ~ )  plays the role of a Landau function in which a2 is the order parameter. 

It is schematically illustrated in Fig. D.1. The stationarity of this Landau function leads to 

the solution. 

The free energy at this stationary point thus has the same linear term as that of the sphere 

(tangent bifurcation), but differs by a term proportional to ( B ~ - U ~ ) ~ ,  as sketched in Fig. 3.6. 

We may now pose a similar question in the (A,V) ensemble: How does the bending 

energy E of the 1 = 2 prolate ellipse branch behave as function of A and V, when the shape 

is not too far from a sphere? We choose to consider a constant-volume trajectory, i.e., 

In the perturbative regime, where A is small, these two constraints can be rewritten in 

terms of the deformation variables dR and {al), 

and 

'BY the same token, a6 oc a;, since the first term linear in a6 is aza4a.s. 
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Figure D.1: Schematic plot of the Landau function @,4a2).  For E > 0, a2 > 0 and the 
shape resembles a prolate ellipse. The corresponding free energy is higher than that of the 
sphere by a term proportional to (az - a2)3.  When c < 0, a2 > 0 and the shape looks like 
an oblate ellipse, which has a free energy lower than the sphere energy. 



From the variational calculation formulated in the (a,p) ensemble, we have found the 

quasi-spherical solution described by R(a, p) and {al(a, p)). In order that the above two con- 

straints be satisfied, E, and E, must be adjusted so that they are appropriate functions of Ro 

and A. It turns out that, for fixed Ro, E,(R~, A), ep(RO, A), and, thus, SR(Ro, A), al(Ro, A) 

can be expanded in terms of powers of all2: It is clear that, to  lowest order, a2 is linear in E, 

and 6, (see Eq. (D.14)), while a4 is quadratic (Eq. (D.15)) and as is at least cubic. Further- 

more, E, is of the same order of smallness as €,, and SR depends quadratically on E, (or E,): 

On the one hand, Eq. (D.13) yields the solution SR = ~ $ 6 ,  - 2 c,/Ro)/12 + 0 ( 5 ,  E:, rPC); 

on the other hand, the volume constraint (D.30) requires that SR be quadratic in a2 and, 

thereby, in E, (E,). These two conditions together require that the linear term, (E, -2 E,/R~), 

in 6~ disappears, i.e., E, = &E, + O(E;). Thus, SR becomes quadratic in E, (4).  Using this 

result and the fact that a2 is linear in E, (E,), to evaluate the righthand side of Eq. (D.31), 

we arrive at a polynomial function in E, (or 6,) with the leading order term being quadratic. 

Consequently, the solution to (D.31), co(R0, A), eP(RO, A) will in general be a polynomial 

function of All2. 

In what follows we shall carry out the perturbative calculation of the energy E(V, A) = 

E(Ro, A), through order A2, thus extending Eq. (3.40). The relevant terms are the follow- 

ing: 

E, = ( r , ~ ' / ~  + &A + 7 , ~ 3 / 2  + /L ,A~ , 

where we have used the fact that a0 = 0 and a4 = 0. 

The set of variational equations (D .13)-(D. 15) establishes relationships between the 



coefficients of a, p and the coefficients of bR and For example, 

We give the other more complicated relationships only symbolically, to indicate functional 

dependences, 

Po = Po(%, ap; Po, Pp) 

P 2  = P 2 ( ~ o ,  ap; Po7 Pp) 

The two constraints (D.30) and (D.31) can now be used to determine the coefficients 

{Po, 70, po; a 2 ,  P2, 72; P4(a2)) .4 We summarize the find results here, 

3To be consistent with the expansion, which is valid to the order of A2, Eq. (D.13) is solved to a 2 ,  
whereas Eq. (D.14) is solved to a3I2,  and Eq. (D.15) is solved to A. 

4There are effectively six conditions, corresponding to terms of orders A through n 2 .  



and 

The functional forms of 6, and cP can be evaluated5 explicitly to  order A, 

Evaluating the bending energy (D.3) at the solution given above, we obtain the addi- 

tional terms which extend Eq. (3.40) through order A2, 

D.2 Perturbation calculation for I = 3 

The bifurcation associated with the 1 = 3 mode can be treated in a way similar to what 

we have just done for I = 2; however, the absence of an a: term, as a consequence of the 

parity of the Clebsch-Gordan coefficients, results in a local bifurcation structure governed 

by a power law different from the cubic bifurcation we found for 1 = 2. Again, we choose 

to investigate the local perturbation along the line in the (a,p) plane corresponding to the 

sphere of radius Ro, i.e., 
'-I 

The general structure of the free energy is the following: 

5There is only one condition relating y, and yp and one for p ,  and pp, which is not enough to determine 
these coefficients. 



as and as only contribute to the free energy at higher orders. 

The stationarity condition, 8@(53,1j3; R, {al))/dR = 0, leads to, 

Other stationarity conditions, d@(a3,153; R, {al))/dazn = 0, n = 1,2,3, determine a 2 ,  ad, 

and a6 as functions of as, 

The free energy $(e3, 1j3; R, {ar)) can then be evaluated to give a Landau function of the 

order parameter as, 

( 2 )  - - where C3 (03,p3; RO) = 5 R i ~  and 

This Landau function has two symmetrical stationary points, as cx f fi, if and only if 

6 > o . ~  The bifurcation is therefore one-sided, and the separation between the sheets goes 

as a$ or (a - 

"hese two points actually represent the same geometrical shape, reflecting the upldown-symmetry 
breaking in the shape. 



Appendix E 

Asymptotic Behavior of the 
ADE-model Phase Boundaries as 

In this Appendix, we discuss the asymptotic behavior of the various phase boundaries for 

the ADE model discussed in Chapter 4  in the limit v  + 1 .  

The analytical calculation of the vesiculation boundary follows from the geometrical 

constraints associated with the two-sphere limiting shape. Let T = R1/R2  be the ratio of 

the radius of the smaller sphere ( R 1 )  to that of the larger sphere (R2) .  The reduced volume 

v  defined in Section 4.1 can then be expressed as 

In the limit v  + 1, T goes to  zero and has the following expansion in powers of ( 1  - v)'I2: 

The reduced geometric area difference mL(v)  of this limiting shape is 

= 47r + 4 ~ 4 2 / 3 ( 1 -  v)'I2 + 0[(1- v ) ]  . (E-3) 

In Chapter 4, we established that Gk = 2 Eo ( E q .  (4.2)), where Eo is the dimensionless 

Lagrange multiplier coupled to the integrated mean curvature M. The Lagrange multiplier 



corresponding to the two-sphere limiting shape, Co7 is found to be l/R1 + 1/R2, where R1 

and R2 are the radii of the two kissing spheres, respectively.' Making use of this fact, we 

evaluate Gh at the vesiculation point and find 

Eqs. (E.3) and Eq. (E.4) lead straightforwardly to Eqs. (4.27)-(4.29) given in Section 4.2.1. 

The phase boundary DPe" marks the loci of the intersection points of the energy 

[W,(a, v, mo)] curve of the symmetric branch (labeled s) with that of the asymmetric branch 

(labeled a) .  Explicitly, the intersection is given by the following condition, 

where mo,D is related to m , , ~  and ma,D via the mapping (4.13), i.e., 

In principle, the loci mo,D of the discontinuous boundary, along with m,,D and malo, should 

be exactly solved for from Eq. (E.5) and Eq. (E.6). Typically, m , , ~  # malo. In the follow- 

ing, we simply give the leading asymptotic behavior of Dpear, found by an approximation: 

We observe that, as v + 1, m,,D approaches 4n as,2 

'This is exactly the kissing condition we found in Section 3.2.3. This expression is slightly different from 
that in Section 3.2.3, which is given in its dimensionless form with the normalization chosen so that CII = 1. 

21n Appendix E in Ref. [27], it was proved that, for a smooth and deformed sphere, the geometric area 
difference rn has the leading terms given here. 



Accordingly, the bending energy G is given by 

With these expressions, we write W,(a, v, rno,D) as, 

We approximate the bending energy W for the asymmetric branch near the discontinuous 

transition point by that of the two-sphere vesiculated shape, which is 

CY 
W.(q v, m o , ~ )  = 2 x 8 r  + - {mo,D - 4r[1+ f i ( 1  - v)'12 + O(1- v)] 

2 

Substituting these two bending energies into Eq. (E.5), we arrive at the leading-order asymp- 

totic behavior of the discontinuous transition boundary, 

Concerning the line MPrO, where the symmetric prolate ellipse develops an instability 

with respect to a mode breaking the mirror-symmetry, a quantitative assessment of the 

asymptotic behavior is difficult. Our speculation is that, to leading order, mo,M also diverges 

in the form of const./(l - v)'I2. For the sake of convenience, we construct our argument 

within the context of the AA-model: In the limit v -+ 1, the symmetric shape is a slightly 

deformed sphere, for which the deformations from the sphere can be well represented by 

the spherical harmonics x,o(9,q5) with even I. On the other hand, the first perturbative 

mode which breaks the mirror symmetry can be described by x,o(B, 4) with odd I's. For 

such nearly spherical shapes, the variational free energy 9[S] defined for the AA-model as 

[271 

@(C, P, Co; [S]) = G[S] + CA[S] + PV[S] - ~RCIJM[S], (E. 12) 

can be expressed in terms of the amplitudes {al) of the spherical harmonics, as in Ap- 

pendix D. Varying 9 with respect to {al) leads to algebraic equations in {al), which are 

equivalent to the Euler shape equations. Starting from those values of C, P, Go which 

correspond to the I = 2 instability of the sphere [27, 28, 531 and varying these parameters 



continuously, we get solutions having nonzero amplitudes for the even spherical harmonics 

and zero amplitudes for the odd spherical harmonics. These solutions are prolate ellipses 

with surface area A, volume V and the integrated mean curvature M,  given as 

Eq. (E.13) can be inverted to yield 

C = C(A, V, M), P = P(A, V, M), Co = Co(A, V, M) . (E.14) 

We observe that, near the onset of the symmetry-breaking instability, the part of that 

depends on the amplitudes of the odd-l spherical harmonics takes the form, 

At the onset of the instability, the smallest eigenvalue of the coefficient matrix fl,,12(C, P, co)  

changes sign from being positive to being negative. At this point a solution for the {ar) with 

nonzero values for odd 1's first develops. The matrix elements frl,r,(C, P, Co) in Eq. (E.15) 

contain only the scaling form3 (coRA)(l - ~ ) l / ~ .  It is then reasonable to  anticipate that the 

condition on the smallest eigenvalue at the onset of the instability will lead to an equation 

of the form, 

( C o ~ A ) ( l  - v)'I2 = constant . 

Following from Eq. (4.4), we have 

The above condition, combined with the mapping (4.13) in Section 4.1, then implies 

1 const. 
mo,M s mC + -G, 

a a (1  - . 

We also performed a numerical analysis of this instability for reduced volumes up to 

u = 0.994. The numerical data are consistent with Eq. (E.18). Furthermore, the numerical 

3This fact can be traced back to the perturbative development of the 1 = 2 symmetric ellipse, which can 
be expressed in powers of the fractional excess area (see Appendix D). Note that A is linear in (1 - v) 
to lowest order, as v +- 1. 



analysis shows that const. z 2(2.8) > 2(m); so, the spinodal line MprO has the same 

asymptotic divergence [1/(1 - v)lI2] as the discontinuous boundary and the vesiculation 

boundary, when v + 1, but diverges faster than those two boundaries. This implies that 

the spinodal line extends beyond the vesiculation boundary as v approaches 1. 
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